1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 1 : Introduction : Economics of Power Generation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.1 Page23"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a)Load factor of the plant is 0.65\n",
"(b)Load factor of a standby equipment of 30 capacity if it takes up all the loads above 70 MW is 0.75\n",
"(c)Use factor is 0.75\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEZCAYAAAB8culNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFcdJREFUeJzt3X2QZXV95/H3BwaCiDI9YgZCQEgqREmBT7uISqQ1GFEC\nYjaCqAnlQ7Kp3aykSpMMxshk87DKrgvZtZJKRTQTjERWAwsuJIyWDUajCIIgAxI1o/I0w8OAoKZE\n+e4f5zRz6dPdMz09fc+93e9X1a0+99xzz/neU6fv5/5+5ylVhSRJg/bouwBJ0ugxHCRJHYaDJKnD\ncJAkdRgOkqQOw0GS1GE4SDspyfokF/ZdhzQMhoOWhSSbk/zCEi9m3pOCkjw1yflJvpnk4SRfS3Je\nkqctcV3Sbmc4aLkodvDlvZSS7A18CngW8IqqegrwQuA+4JhdmN+q3VuhtDCGg5a1JD/W/pq/s32c\n136Rk2R1kk8k2ZrkgSSXJzl44L2HJ7k6yXeSXAUcMM+ifg04BHhNVd0GUFX3VtWfVNWV7fweS/JT\nA/P/6yR/1A5PJrkjye8muRv4YJJNSU4amH5VknuTPKd9fmySzyXZluTGJMfvthWnFc9w0HL3+zS/\n3J/dPo4B3tW+tgdwAXBo+/g+8P6B934E+CLwNOCPgDOZu3VyAnBlVX1vAbXNbO2sBSbaWn4DuAg4\nY+D1VwBbq+rGNsQ+AfzXqpoA3gF8PMl8ASbtNMNBy93rab5A76uq+4A/BH4VoKoeqKpLqurfquoR\n4E+B4wGSHAr8O+APqurRqvoMcDmQOZazBrh7F+obnN9jwDnt8v6NJpxOSbLPwGe5qB1+I3BFVf1D\n+1k+CVwHvGoXapA6DActdz8BfHPg+bfacSTZN8lftjuzHwKuBvZPknaabVX1/YH3Ds5npvun57sI\n91bVD6afVNXXgVtpAmJf4GSawAB4BvDatktpW5JtwIuBAxdZgwQYDlr+7gIOG3h+KHBnO/x24Ajg\nmKran6bVkPZxNzDRfilPewZzdyt9EnjFjOln+h4w+PpBM+Y327ynu5ZeDWyqqm+0478FXFhVEwOP\np1TVufMsX9pphoOWk72T7DPwWEXz5fquJAe0/fHvBj7cTr8fzX6Gh5KsAc6ZnlFVfZOmm+YPk+yV\n5Djgl+ZZ9oXAt2n6/X82yR5JnpbknUle2U5zI/CGJHsmORF4yU58pr+j2dfwm8DfDoz/MHBykl9s\n57dPu1P74FnnIi2Q4aDl5AqaX+fTj3cDf0zzJX9T+7iuHQdwPvAkmsNNPwdcyRN/vb8eeAHwQDuv\nDXMtuO0OOgG4DdgIPAR8gWZfxOfbyc6i6Rra1s77kpmzmWW+97S1vRD46MD4O2haE+8EttK0JN6O\n/9PaTbJUN/tJ8kHgJJqjK45qx62h2cCfAWwGTquqB9vXzgbeDPwIeFtVXbUkhUmSdmgpf2V8CDhx\nxrh1wMaqOoLmhKF1AEmOBE4Hjmzf8+dJ/AUkST1Zsi/g9tC/bTNGn8L2pvkG4NR2+NXARe0hfJuB\nr7ELZ5VKknaPYf86X1tVW9rhLTQn/UBzCOAdA9PdAbhjTZJ60lvXTTU7O+bb4dHbdXIkaaUb9sW9\ntiQ5sKruSXIQzVEW0Bx3fsjAdD/J9mPRH5fEwJCkXVBVc53dP6thtxwuo7k+De3fSwfGvy7J3kkO\nB34GuHa2GVSVjyrOOeec3msYlYfrYvHrAvqvfXc/YNfWxXJ87IolazkkuYjmjNMDknyb5jjx9wAX\nJ3kL7aGsAFW1KcnFwCbgh8B/ql39RJKkRVuycKiqM+Z46YQ5pv9TmgufSZJ65rkEY2pycrLvEkaG\n62I718Wgyb4LGGtLdob0Ukhib5O0BBJYbv9ay/Ez7aok1IjvkJYkjQHDQZLUYThIkjoMB0lSh+Eg\nSeowHCRJHYaDJKnDcJAkdRgOkqQOw0GS1GE4SJI6DAdJUofhIEnqMBwkSR2GgySpw3CQJHUYDhp7\na9Y0N3YZxmPNmr4/rTQc3glOY2+Yd/xarncXW46fazl+pl3lneAkSbuF4SBJ6jAcJEkdhoMkqcNw\nkCR1GA6SpA7DQZLUYThIkjoMB0lSh+EgSeowHCRJHYaDJKnDcJAkdRgOkqQOw0GS1GE4SJI6egmH\nJGcnuSXJzUk+kuTHkqxJsjHJ7UmuSrK6j9okST2EQ5LDgF8HnldVRwF7Aq8D1gEbq+oI4FPtc0lS\nD/poOXwHeBTYN8kqYF/gLuAUYEM7zQbg1B5qkyTRQzhU1QPA+4Bv0YTCg1W1EVhbVVvaybYAa4dd\nmySpsWrYC0zy08BvA4cBDwH/J8kbB6epqkoy663B169f//jw5OQkk5OTS1WqpDE2MQHJ8Jb1wAPD\nWdbOmJqaYmpqalHzSNWs38FLJsnpwMur6q3t818FjgVeBry0qu5JchDw6ap65oz31rDr1ehLYFib\nxTCXNUzL9XMNy6ivvyRU1YKiso99DrcBxyZ5UpIAJwCbgMuBM9tpzgQu7aE2SRI9tBwAkvwuTQA8\nBnwJeCvwFOBi4FBgM3BaVT044322HNRhy2HxluvnGpZRX3+70nLoJRx2leGg2RgOi7dcP9ewjPr6\nG5duJUnSiDMcJEkdhoMkqcNwkCR1GA6SpA7DQZLUYThIkjoMB0lSh+EgSeowHCRJHYaDJKnDcJAk\ndRgOkqQOw0GS1GE4SJI6DAdJUofhIEnqMBwkSR2r+i5Aw7VmDWzb1ncVu9fERN8VSMuP95BeYUb9\nXrejbrmuv+X6uYZl1Nef95CWJO0WhoMkqcNwkCR1GA6SpA7DQZLUYThIkjoMB0lSh+EgSeowHCRJ\nHYaDJKnDcJAkdRgOkqQOw0GS1GE4SJI6DAdJUkcv4ZBkdZKPJbk1yaYkL0iyJsnGJLcnuSrJ6j5q\nkyT113L4M+CKqnoWcDRwG7AO2FhVRwCfap9Lknow9DvBJdkfuKGqfmrG+NuA46tqS5IDgamqeuaM\nabwT3CKN+h2rRt1yXX/L9XMNy6ivv3G5E9zhwL1JPpTkS0n+KsmTgbVVtaWdZguwtofaJEn0Ew6r\ngOcBf15VzwO+y4wupLZ5MMI5LEnL26q5XkgyUVXblmCZdwB3VNUX2+cfA84G7klyYFXdk+QgYOts\nb16/fv3jw5OTk0xOTi5BidLsJiaaLoTlZmKi7wrG2zC3i4kJeOCB+aeZmppiampqUcuZc59DknuB\n+4B/Aj4HfLaqbl/U0rbP+xrgrVV1e5L1wL7tS/dX1XuTrANWV9W6Ge9zn8MijXrfqKT57cr/8K7s\nc5h3h3SSnwVe1D5eCPw48M/A56rqvQsr7wnzfTbwAWBv4OvAm4A9gYuBQ4HNwGlV9eCM9xkOi2Q4\nSONtJMJhxsx/GjgJOAs4uKr2WVh5i2c4LJ7hII23YYXDfPscXsz2FsMhwDeAzwNvAG5YWGmSpHEy\n3z6Hx2hC4Dzgkqr67jALm40th8Wz5SCNt967ldojhqZbDscAewHX0+xz+Oeq+sbCyls8w2HxDAdp\nvPUeDrPMfF/gzcBvA4dX1Z4LK2/xDIfFMxyk8TYK+xz2Z/uRSi8Cngv8C3A58NmFlSZJGifzdSvd\nR3vYKk0YXFdV3xtibbPVZMthkWw5SOOt95ZDVR2wsMVLkpaL+bqVLqe5vtFsaVNVdcqSVSVJ6tWc\n4QAcS3MdpIuAL7TjpoPCjglJWsbm2+ewCng5cAZwFPD/gIuq6pbhldepyX0Oi+Q+B2m8DWufw5yX\n7K6qH1bVlVX1azStiK8BVyf5rYWVJUkaN/N1K5FkH5rrKb0OOIzm9p6XLH1ZkqQ+zdetdCHwc8AV\nwEer6uZhFjYbu5UWz24labz1foZ0e22lua6nVFX11IWVt3iGw+IZDtJ4G4XzHPq4hagkaQQYAJKk\nDsNBktRhOEiSOgwHSVLHfNdWeoS5L5PRy9FKkqThmO9opf0AkvwxcBfw4falNwA/sfSlSZL6ssM7\nwSW5qaqO3tG4YfA8h8XzPAdpvPV+baUB303yxiR7to83AI8srDRJ0jjZmXB4PXAasKV9nNaOkyQt\nUzvsVholdistnt1K0njr/fIZAzN9EvAW4Ehgn+nxVfXmhZUnSRoXO9OtdCGwFjgRuBo4BPc5SNKy\ntjNHK91YVc+ZPkIpyV7AP1XVC4ZT4hNqsVtpkexWksbbKB2t9IP270NJjgJWA09fWGmSpHGyw30O\nwF8lWQO8C7gM2A/4gyWtSpLUK49WWmHsVpLG28h0KyVZneS8JNe3j/cl2X9hpUmSxsnO7HP4IPAd\n4LU0J8A9DHxoKYuSJPVrZ45W+nJVPXtH44bBbqXFs1tJGm8j060EfD/Jzw8s5DjgewsrTZI0Tnbm\naKXfBP5mYD/DNuDMpStJktS3HbYcqurG9vLcRwNHV9VzgJcudsHtFV5vSHJ5+3xNko1Jbk9yVZLV\ni12GJGnX7PRtQqvqoap6qH369t2w7LOATWy/29w6YGNVHQF8qn0uSepBL/eQTvKTwKuADwDTO0lO\nATa0wxuAU3soTZJET+EAnAf8DvDYwLi1VbWlHd5Cc7E/SVIP5twhneQRtnf5zLTvri4wyS8BW6vq\nhiSTs01TVZXEAy4lqSdzhkNV7bdEy3wRcEqSV9HcH+KpSS4EtiQ5sKruSXIQsHW2N69fv/7x4cnJ\nSSYnJ5eoTEkaT1NTU0xNTS1qHr1eWynJ8cA7qurkJOcC91fVe5OsA1ZX1boZ03sS3CJ5Epw03kbp\nJLilNv0x3wO8PMntwMva55KkHnhV1hXGloM03lZSy0GSNGIMB0lSh+EgSeowHCRJHYaDJKnDcJAk\ndRgOkqQOw0GS1GE4SJI6DAdJUofhIEnqMBwkSR2GgySpw3CQJHUYDpKkDsNBktRhOEiSOgwHSVLH\nqr4LWKgs6EZ3mmliou8KJI2DsQsH738sSUvPbiVJUofhIEnqMBwkSR2GgySpw3CQJHUYDpKkDsNB\nktRhOEiSOgwHSVKH4SBJ6jAcJEkdhoMkqcNwkCR1GA6SpA7DQZLUYThIkjqGHg5JDkny6SS3JPlK\nkre149ck2Zjk9iRXJVk97NokSY3UkG+tluRA4MCqujHJfsD1wKnAm4D7qurcJL8HTFTVuhnvrWHX\nK0mjJFn4HTGTUFULusny0FsOVXVPVd3YDj8C3AocDJwCbGgn20ATGJKkHvS6zyHJYcBzgS8Aa6tq\nS/vSFmBtT2VJ0oq3qq8Ft11KHwfOqqqHk+0tnqqqJLM2nNavX//48OTkJJOTk0tbqCSNmampKaam\nphY1j6HvcwBIshfwCeDKqjq/HXcbMFlV9yQ5CPh0VT1zxvvc5yBpRVu2+xzSNBEuADZNB0PrMuDM\ndvhM4NJh1yZJavRxtNJxwDXATcD0ws8GrgUuBg4FNgOnVdWDM95ry0HSijaslkMv3Uq7ynCQtNIt\n224lSdLoMxwkSR2GgySpw3CQJHUYDpKkDsNBktRhOEiSOgwHSVKH4SBJ6jAcJEkdhoMkqcNwkCR1\nGA6SpA7DQZLUYThIkjoMB0lSh+EgSeowHCRJHYaDJKnDcJAkdRgOkqQOw0GS1GE4SJI6DAdJUofh\nIEnqMBwkSR2GgySpw3CQJHUYDpKkDsNBktRhOEiSOgwHSVKH4SBJ6jAcJEkdhoMkqWOkwiHJiUlu\nS/IvSX6v73okaaUamXBIsifwfuBE4EjgjCTP6req0TU1NdV3CSPDdbGd62I718XijEw4AMcAX6uq\nzVX1KPB3wKt7rmlkueFv57rYznWxneticUYpHA4Gvj3w/I52nCRpyEYpHKrvAiRJjVSNxndykmOB\n9VV1Yvv8bOCxqnrvwDSjUawkjZmqykKmH6VwWAV8FfgF4C7gWuCMqrq118IkaQVa1XcB06rqh0l+\nC/hHYE/gAoNBkvoxMi0HSdLoGKUd0vPyBLntkmxOclOSG5Jc23c9w5Tkg0m2JLl5YNyaJBuT3J7k\nqiSr+6xxWOZYF+uT3NFuGzckObHPGoclySFJPp3kliRfSfK2dvyK2zbmWRcL2jbGouXQniD3VeAE\n4E7gi6zg/RFJ/hV4flU90Hctw5bk54FHgL+pqqPacecC91XVue0Ph4mqWtdnncMwx7o4B3i4qv5n\nr8UNWZIDgQOr6sYk+wHXA6cCb2KFbRvzrIvTWMC2MS4tB0+Q61rQkQfLRVV9Btg2Y/QpwIZ2eAPN\nP8KyN8e6gBW4bVTVPVV1Yzv8CHArzXlSK27bmGddwAK2jXEJB0+Qe6ICPpnkuiS/3ncxI2BtVW1p\nh7cAa/ssZgT8lyRfTnLBSuhGmSnJYcBzgS+wwreNgXXx+XbUTm8b4xIOo9/3NVwvrqrnAq8E/nPb\nvSCgmn7Slby9/AVwOPAc4G7gff2WM1xtN8rHgbOq6uHB11battGui4/RrItHWOC2MS7hcCdwyMDz\nQ2haDytSVd3d/r0XuISm220l29L2s5LkIGBrz/X0pqq2Vgv4ACto20iyF00wXFhVl7ajV+S2MbAu\nPjy9Lha6bYxLOFwH/EySw5LsDZwOXNZzTb1Ism+Sp7TDTwZ+Ebh5/ncte5cBZ7bDZwKXzjPtstZ+\nAU57DStk20gS4AJgU1WdP/DSits25loXC902xuJoJYAkrwTOZ/sJcv+t55J6keRwmtYCNCcx/u1K\nWhdJLgKOBw6g6UN+N/B/gYuBQ4HNwGlV9WBfNQ7LLOviHGCSptuggH8F/uNAn/uyleQ44BrgJrZ3\nHZ1Nc6WFFbVtzLEu3gmcwQK2jbEJB0nS8IxLt5IkaYgMB0lSh+EgSeowHCRJHYaDJKnDcJAkdRgO\nWraSPG3g8sR3D1yu+OEk71+C5f11kv+wu+cr9WFk7gQn7W5VdT/NRceGdSnrJTlpKMkeVfXYUsxb\nmostB60kAUgymeTydnh9kg1JrmlvovTLSf5HezOlK9t7m5Pk+Umm2ivh/sP09Xpm8ZIkn03y9elW\nRBr/PcnN7XxPm1lH+/z9Sc5shzcneU+S64HXJnlbe/OWL7dnRktLypaD1Fyp8qXAz9Fc2vg1VfWO\nJH8PnJTkCuB/AydX1f1JTgf+BHjLjPmE5iYrL07yLJrr+nwc+GXg2cDRwNOBLya5ZpY6Bq8aWjQ3\nqXk+QJI7gcOq6tEkT91tn1yag+Ggla6AK6vqR0m+AuxRVf/YvnYzcBhwBE1wfLK5phl7AnfNMa/p\nK2DemmT63gHHAR9pr4a5NcnVwL8HvrOD2j46MHwT8JEkl7ICLh6n/hkOEvwAoKoeS/LowPjHaP5H\nAtxSVS/a2Xm1pu+6VQPDDIz7IU/s2n3SjGm+OzB8EvAS4GTg95McVVU/2ol6pF3iPgetdDtz28Sv\nAk9Pciw018pPcuQClvEZ4PQkeyR5Os2X/LXAt4Ajk+zd3pXrZbMW2DRXDq2qKWAdsD/w5AUsX1ow\nWw5aSQb782cbhu4RR9X28/8K8L+S7E/zf3MesGmeZTw+XFWXJHkh8OV23O9U1VaAJBcDX6G5hPKX\n5qh7T+DCdtkB/qyqdtQlJS2Kl+yWJHXYrSRJ6jAcJEkdhoMkqcNwkCR1GA6SpA7DQZLUYThIkjoM\nB0lSx/8HyW8b+IT12xEAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f5c10894090>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from __future__ import division\n",
"%matplotlib inline\n",
"from matplotlib.pyplot import plot, title, xlabel, ylabel, show\n",
"#Input data\n",
"C=30#Capacity in MW\n",
"M=70#Loads are taken above 70 MW\n",
"t1=[0,6]#Time range in hours\n",
"t2=[6,10]#Time range in hours\n",
"t3=[10,12]#Time range in hours\n",
"t4=[12,16]#Time range in hours\n",
"t5=[16,20]#Time range in hours\n",
"t6=[20,22]#Time range in hours\n",
"t7=[22,24]#Time range in hours\n",
"L=[30,70,90,60,100,80,60]#Load in MW\n",
"\n",
"#Calculations\n",
"E=((L[0]*(t1[1]-t1[0]))+(L[1]*(t2[1]-t2[0]))+(L[2]*(t3[1]-t3[0]))+(L[3]*(t4[1]-t4[0]))+(L[4]*(t5[1]-t5[0]))+(L[5]*(t6[1]-t6[0]))+(L[6]*(t7[1]-t7[0])))#Energy generated in MWh\n",
"AL=(E/24)#Average load in MW\n",
"PL=max(L[0],L[1],L[2],L[3],L[4],L[5],L[6])#Peak load in MW\n",
"LF=(AL/PL)#Load factor of the plant\n",
"E1=((L[2]-M)*(t3[1]-t3[0]))+((L[4]-M)*(t5[1]-t5[0]))+((L[5]-M)*(t6[1]-t6[0]))#Energy generated if the load above 70 MW is supplied by a standby unit of 30 MW capacity in MWh\n",
"T=(t3[1]-t3[0])+(t5[1]-t5[0])+(t6[1]-t6[0])#Time during which the standby unit remains in operation in h\n",
"AL1=(E1/T)#Average load in MW\n",
"LF1=(AL1/C)#Load factor \n",
"U=(E1/(C*T))#Use factor\n",
"\n",
"#Output\n",
"t=[0,0,6,6,10,10,12,12,16,16,20,20,22,22,24,24]#Time for plotting load curve in hours\n",
"l=[0,30,30,70,70,90,90,60,60,100,100,80,80,60,60,0]#Load for plotting load curve in MW\n",
"plot(t,l)#Load curve taking Time in hours on X-axis and Load in MW on Y- axis\n",
"title('Load Curve')\n",
"xlabel('Time hours')\n",
"ylabel('Load MW')\n",
"print \"(a)Load factor of the plant is %3.2f\\n(b)Load factor of a standby equipment of %3.0f capacity if it takes up all the loads above %3.0f MW is %3.2f\\n(c)Use factor is %3.2f\"%(LF,C,M,LF1,U)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.2 Page25"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) The average load on the power plant is 30 MW \n",
"(b) The energy supplied per year is 262.8 *10**6 kWh \n",
"(c) Demand factor is 0.811 \n",
"(d) Diversity factor is 1.233\n"
]
}
],
"source": [
"from __future__ import division\n",
"#Input data\n",
"P=60#Peak load on power plant in MW\n",
"L=[30,20,10,14]#Loads having maximum demands in MW\n",
"C=80#Capacity of the power plant in MW\n",
"A=0.5#Annual load factor\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"AL=(P*A)#Average load in MW\n",
"E=(AL*1000*Y)/10**6#Energy supplied per year in kWh*10**6\n",
"DF=(P/(L[0]+L[1]+L[2]+L[3]))#Demand factor \n",
"DIF=((L[0]+L[1]+L[2]+L[3])/P)#Diversity factor\n",
"\n",
"#Output\n",
"print \"(a) The average load on the power plant is %3.0f MW \\n(b) The energy supplied per year is %3.1f *10**6 kWh \\n(c) Demand factor is %3.3f \\n(d) Diversity factor is %3.3f\"%(AL,E,DF,DIF)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.3 Page25"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) The annual revenue earned by the power plant is Rs 46.25 crore \n",
"(b) Capacity factor is 0.457\n"
]
}
],
"source": [
"#Input data\n",
"C=210#Capacity of thermal power plant in MW\n",
"P=160#Maximum load in MW\n",
"L=0.6#Annual load factor \n",
"m=1#Coal consumption per kWh of energy generated\n",
"Rs=450#Cost of coal in Rs per tonne\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"AL=(L*P)#Average load in MW\n",
"E=(AL*Y)#Energy generated per year in MWh\n",
"CL=(E*1000)#Coal required per year in kg\n",
"CY=(E*Rs)#Cost of coal per year\n",
"CE=CL#Cost of energy sold in Rs\n",
"RY=(CE-CY)/10**7#Revenue earned by the power plant per year in Rs crore\n",
"CF=(AL/C)#Capacity factor\n",
"\n",
"#Output\n",
"print \"(a) The annual revenue earned by the power plant is Rs %3.2f crore \\n(b) Capacity factor is %3.3f\"%(RY,CF)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.4 Page 26"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) Annual energy production is 394.2 * 10**6 kWh \n",
"(b) Reserve capacity over and above the peak load is 15 MW \n",
"(c) The hours during which the plant is not in service per year is 674 hrs\n"
]
}
],
"source": [
"#Input data\n",
"L=0.75#Load factor\n",
"C=0.60#Capacity factor\n",
"U=0.65#Use factor\n",
"M=60#Maximum power demand in MW\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"A=(L*M)#Average load in MW\n",
"P=((A*1000)*Y)/10**6#Annual energy production in kWh *10**6\n",
"PC=(A/C)#Plant capacity in MW\n",
"R=(PC-M)#Reserve capacity in MW\n",
"HIO=(P*1000/(U*PC))#Hours in operation in hrs\n",
"NH=(Y-HIO)#Hours not in service in a year in hrs\n",
"\n",
"#Output\n",
"print \"(a) Annual energy production is %3.1f * 10**6 kWh \\n(b) Reserve capacity over and above the peak load is %3.0f MW \\n(c) The hours during which the plant is not in service per year is %3.0f hrs\"%(P,R,NH)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.5 Page26"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(i)Overall cost per kWh in Steam power plant is 91 paise \n",
"(ii)Overall cost per kWh in Hydroelectric power plant is 67 paise \n",
"(iii)Overall cost per kWh in Nuclear power plant is 99 paise\n"
]
}
],
"source": [
"from __future__ import division\n",
"#Input data\n",
"Dd=500#Maximum demand in MW\n",
"L=0.7#Load factor \n",
"#1)Steam power plant 2)Hydroelectric power plant 3)Nuclear power plant\n",
"CC=[0,3,4,5]#Capital cost per MW installed in Rs. crore\n",
"I=[0,6,5,5]#Interest in percent\n",
"D=[0,6,4,5]#Depreciation in percent\n",
"OP=[0,30,5,15]#Operating cost (including fuel) per kWh\n",
"TD=[0,2,3,2]#Transmission and distribution cost per kWh\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"#1)Steam power plant\n",
"CCX=(CC[(1)]*Dd*10**7)#Capital cost in Rs\n",
"IX=((I[(1)]/100)*CCX)#Interest in Rs\n",
"DX=((D[(1)]/100)*CCX)#Depreciation in Rs\n",
"AFCX=IX+DX#Annual fixed cost in Rs\n",
"EX=(L*Dd*1000*Y)#Energy generated per year in kWh\n",
"RX=(OP[(1)]+TD[(1)])#Running cost/kWh in paise\n",
"OX=((AFCX/EX)+(RX/100))*100#Overall cost/kWh in paise\n",
"\n",
"#2)Hydroelectric Power plant\n",
"CCY=(CC[(2)]*Dd*10**7)#Capital cost in Rs\n",
"IY=((I[(2)]/100)*CCY)#Interest in Rs\n",
"DY=((D[(2)]/100)*CCY)#Depreciation in Rs\n",
"AFCY=IY+DY#Annual fixed cost in Rs\n",
"EY=(L*Dd*1000*Y)#Energy generated per year in kWh\n",
"RY=(OP[(2)]+TD[(2)])#Running cost/kWh in paise\n",
"OY=((AFCY/EY)+(RY/100))*100#Overall cost/kWh in paise\n",
"\n",
"#3)Nuclear power plant\n",
"CCZ=(CC[(3)]*Dd*10**7)#Capital cost in Rs\n",
"IZ=((I[(3)]/100)*CCZ)#Interest in Rs\n",
"DZ=((D[(3)]/100)*CCZ)#Depreciation in Rs\n",
"AFCZ=IZ+DZ#Annual fixed cost in Rs\n",
"EZ=(L*Dd*1000*Y)#Energy generated per year in kWh\n",
"RZ=(OP[(3)]+TD[(3)])#Running cost/kWh in paise\n",
"OZ=((AFCZ/EZ)+(RZ/100))*100#Overall cost/kWh in paise\n",
"\n",
"#Output\n",
"print \"(i)Overall cost per kWh in Steam power plant is %3.0f paise \\n(ii)Overall cost per kWh in Hydroelectric power plant is %3.0f paise \\n(iii)Overall cost per kWh in Nuclear power plant is %3.0f paise\"%(OX,OY,OZ)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.6 Page28"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) The cost of power generation per kWh is 70 paise \n",
"(b) The reserve capacity is 21 MW\n"
]
}
],
"source": [
"from __future__ import division\n",
"#Input data\n",
"C=210#Capacity in MW\n",
"ID=12#Interest and depreciation in percent\n",
"CC=18000#Capital cost/kW installed in Rs\n",
"L=0.6#Annual load factor\n",
"AC=0.54#Annual capacity factor\n",
"RC=(200*10**6)#Annual running charges in Rs\n",
"E=6#Energy consumed by power plant auxiliaries in percent\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"MD=(C/L)*AC#Maximum demand in MW\n",
"RSC=(C-MD)#Reserve Capacity in MW\n",
"AL=(L*MD)#Average load in MW\n",
"EP=(AL*1000*Y)#Energy produced per year in kWh\n",
"NE=((100-E)/100)*EP#Net energy delivered in kWh\n",
"AID=((ID/100)*CC*C*1000)#Annual interest and depreciation in Rs\n",
"T=(AID+RC)#Total annual cost in Rs\n",
"CP=(T/NE)*100#Cost of power generation in paise\n",
"\n",
"#Output\n",
"print \"(a) The cost of power generation per kWh is %3.0f paise \\n(b) The reserve capacity is %3.0f MW\"%(CP,RSC)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.7 Page28"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a)The economic loading of two units when the total load supplied by the power plants is 200 MW are 75.86 MW and 124.14 MW\n",
"(b)The loss in fuel cost per hour if the load is equally shared by both units is Rs.42.24 per hour\n"
]
}
],
"source": [
"from numpy import mat\n",
"#Input data\n",
"L=200#The total load supplied by the plants in MW\n",
"#The incremental fuel costs for generating units a and b of power plant are given by\n",
"#dFa/dPa=0.065Pa+25\n",
"#dFb/dPb=0.08Pa+20\n",
"\n",
"#Calculations\n",
"#Solving two equations\n",
"#Pa+Pb=200\n",
"#0.065Pa+25=0.08Pb+20\n",
"A=mat([[1, 1],[0.065, -0.08]])#Coefficient matrix\n",
"B=mat([[L],[(20-25)]])#Constant matrix\n",
"X=(A**-1)*B#Variable matrix\n",
"P=100#If load is shared equally then Pa=Pb=100MW\n",
"a=(((0.065*P**2)/2)+(25*P))-(((0.065*X[0]**2)/2)+(25*X[0]))#increase in fuel cost for unit a in Rs. per hour\n",
"b=(((0.08*P**2)/2)+(20*P))-(((0.08*X[1]**2)/2)+(20*X[1]))#increase in fuel cost for unit a in Rs. per hour\n",
"x=a+b#Net increase in fuel cost due to departure from economic distribution of load in Rs. per hour\n",
"\n",
"#Output\n",
"print \"(a)The economic loading of two units when the total load supplied by the power plants is 200 MW are %3.2f MW and %3.2f MW\\n(b)The loss in fuel cost per hour if the load is equally shared by both units is Rs.%3.2f per hour\"%(X[0],X[1],x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.8 page29"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Cost of generation per kWh is 61 paise \n",
" Saving in cost per kWh if the annual load factor is raised to 60 percent is 11 paise\n"
]
}
],
"source": [
"from math import ceil\n",
"#Input data\n",
"C=200#Installed capacity of the plant in MW\n",
"CC=400#Capital cost in Rs crores\n",
"ID=12#Rate of interest and depreciation in percent\n",
"AC=5#Annual cost of fuel, salaries and taxation in Rs. crores\n",
"L=0.5#Load factor\n",
"AL2=0.6#Raised Annual load\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"AvL=(C*L)#Average Load in MW\n",
"E=(AvL*1000*Y)#Energy generated per year in kWh\n",
"IDC=((ID/100)*CC*10**7)#Interest and depreciation (fixed cost) in Rs\n",
"T=(IDC+(AC*10**7))#Total annual cost in Rs\n",
"CP1=(T/E)*100#Cost per kWh in paise\n",
"AvL2=(C*AL2)#Average Load in MW\n",
"E2=(AvL2*1000*Y)#Energy generated per year in kWh\n",
"CP2=(T/E2)*100#Cost per kWh in paise\n",
"S=((CP1)-(CP2))#Saving in cost per kWh in paise\n",
"S1=ceil(S)#Rounding off to next higher integer\n",
"\n",
"#Output\n",
"print \" Cost of generation per kWh is %3.0f paise \\n Saving in cost per kWh if the annual load factor is raised to 60 percent is %3.0f paise\"%(CP1,S1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.9 Page30"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) Load factor is 0.875 \n",
"(b) Capacity factor is 0.70\n"
]
}
],
"source": [
"#Input data\n",
"C=300#Capacity of power plant in MW\n",
"MXD=240#Maximum demand in MW in a year\n",
"MND=180#Minimum demand in MW in a year\n",
"#Assuming the load duration curve shown in Figure E1.9 on page no 30 to be straight line\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"E=((MND*Y)+0.5*(MXD-MND)*Y)*1000#Energy supplied per year in kWh\n",
"AL=(E/Y)#Average load in kW\n",
"L=((AL/1000)/MXD)#Load factor\n",
"CF=((AL/1000)*Y)/(C*Y)#Capacity factor\n",
"\n",
"#Output\n",
"print \"(a) Load factor is %3.3f \\n(b) Capacity factor is %3.2f\"%(L,CF)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.10 Page 31"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Revenue earned by the power plant = 3.679e+08 Rs./year\n"
]
}
],
"source": [
"#Input data\n",
"C=60#Capacity of power plant in MW\n",
"MXD=50#Maximum demand in MW in a year\n",
"L=60/100#Load factor\n",
"cc = 1 # kg/unit (Coal consumption)\n",
"c_cost = 600 # Rs/Tonne\n",
"e_cost = 2 # Rs/kWh\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"AL=(MXD*L)#Average load in MW\n",
"E=AL*10**3*Y #Energy generated per year in kWh\n",
"Coal = E*cc/10**3 # Tonnes (Coal required per year)\n",
"CC = Coal*c_cost # rupees (Coal cost / year)\n",
"CE = E*e_cost # Rs (Cost of energy sold)\n",
"Rev = CE-CC\n",
"#Output\n",
"print \"Revenue earned by the power plant = %0.3e Rs./year\"%(Rev)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.11 Page31"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEZCAYAAAB8culNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFSZJREFUeJzt3X2QZXV95/H3RwaCiGFmgjsgQmDdECQFgnGRqJH2cUl0\nkV03CGqWQk3tg1lNlbubYVdl3LiJurqwieXWVkR3goaE1ZWAQsIsReNTImIYQR5EjaiADCIPAmKJ\nme/+cU/TTf+6e6b7Tt9zu/v9qro15557Hr73zLn9ub/fOfecVBWSJM30hL4LkCSNH8NBktQwHCRJ\nDcNBktQwHCRJDcNBktQwHKRFSLIlyQV91yEtN8NBq0aS25K8eJlX4w+DtCYYDlpNilXwxzvJur5r\nkAwHrXpJfibJeUnu6B7nJtmne219kk8luTvJvUkuTXLIjHmPSHJ1kh8muQI4cBfremWS7UkeSPKN\nJC/rxj+uVTOzeyrJ4Ul2Jnl9km8DVya5LMmbZi37K0lO7YaPSrItyQ+S3JLkN/bU9pLAcNDa8J+B\nE4Bndo8TgLd1rz0BOB84rHs8Anxgxrx/CnwJ+Dng94Azmad1kuQEYCvw1qo6AHgB8O3u5dmtmrmW\n8QLgKOCfABcCZ8xY9tFdfZ9O8iRgG/BR4CnA6cAHkzxj4c0g7T7DQWvBa4D/UlX3VNU9wDuB3wSo\nqnur6pNV9eOqegj4feAkgCSHAc8G3l5Vj1bVZ4FLgcyznjcA51fVld2y76yqr80z7VzL2FJVj1TV\nj4GLgeOSHNq99lrgE1X1KPAK4FtVtbWqdlbVduD/ArYetMcYDloLnsr0N3iA73TjSLJfkv/Vdfs8\nAFwNHJAk3TT3VdUjM+aduZzZngZ8c4g6vzs1UFUPAp9muvVwOvCxbvjngeckuW/qwSAANw2xbulx\nDAetBXcCh894fhhwRzf8VuBI4ISuK+gkBt/qA3wP2JBkvxnz/jzzH/T+LvCP5nntYeBJM54fNMc0\ns5d7IXBGkl8B9q2qq7rx3wGurqoNMx5Prqo3Ie0hhoNWm32S7DvjsY7BH9m3JTkwyYHAOxj01wPs\nz+A4wwNJNgLnTC2oqr4NXAu8M8neSZ7PoEtnPucDZyV5UZInJDkkyS92r20HTk+yLsmzgVex6zOr\nLmMQRu8E/mzG+E8BRyZ5XVfX3kn+cZKjdrl1pN1kOGi1uQz40YzHO4B3Mfgjf333uLYbB3Ae8ETg\nHuALwOU8/o/2a4DnAPd2y9o634qr6kvAWcC5wP3AJINWCsDbgacD9wFbmO4iemz2OZb3EwbHEl7M\n4MD41PiHgJcx6Gq6g0EL5w+AfearTVqsLNfNfpJ8GHg5cHdVHdON2wj8OYNvQ7cBp1XV/d1rZwOv\nB/4eeHNVXbEshUmSdmk5Ww4fAU6eNW4zsK2qjgSu7J5Pnab3auDobp4PJrFVI0k9WbY/wN1pf/fN\nGn0K083yrcCp3fArgQu70wVvA77B4Fx0SVIPRv3tfFNV7eiGdzB96t1TgdtnTHc7cAiSpF701nVT\ng4MdCx3wWPHXyJGklWrUF/jakeSgqrorycHA3d34O4BDZ0z3NKbPQ39MEgNDkpagqub7Zf+cRt1y\nuITBtWno/r14xvjTk+yT5AjgF4Br5lpAVfmo4pxzzum9hnF5rNZtAatzWyzlfS3lsRK2xei2+eIt\nW8shyYUMfm16YJLvMjhH/N3ARUneQHcqK0BV3ZTkIuAm4KfAv62lviNJ0tCWLRyq6ox5XnrJPNP/\nPoOLnkmSeuZvCVaoiYmJvksYG26LaW6LaW6L4SzbL6SXQxJ7m7RmJLAad/fV+r7GWRJqzA9IS5JW\nAMNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNB\nktQwHCRJDcNBktRYttuEajxt3Aj33dd3FSvXhg1w7719VyEtP+8Et8Z4F67hjHL7rdb/q9X6vsaZ\nd4KTJO0RhoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4\nSJIahoMkqWE4SJIahoMkqdFLOCQ5O8mNSW5I8qdJfibJxiTbktya5Iok6/uoTZLUQzgkORz4LeBZ\nVXUMsBdwOrAZ2FZVRwJXds8lST3oo+XwQ+BRYL8k64D9gDuBU4Ct3TRbgVN7qE2SRA/hUFX3Au8H\nvsMgFO6vqm3Apqra0U22A9g06tokSQPrRr3CJE8Hfgc4HHgA+D9JXjdzmqqqJHPegnzLli2PDU9M\nTDAxMbFcpUrSijQ5Ocnk5ORQy0jVnH+Dl02SVwMvrao3ds9/EzgReBHwwqq6K8nBwFVVddSseWvU\n9a42CbgJl26U22+1/l+t1vc1zpJQVVnMPH0cc7gFODHJE5MEeAlwE3ApcGY3zZnAxT3UJkmih5YD\nQJL/yCAAdgJ/C7wReDJwEXAYcBtwWlXdP2s+Ww5D8lvbcGw5DG+1vq9xtpSWQy/hsFSGw/D8YA7H\ncBjean1f42yldCtJksac4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgO\nkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG\n4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqSG4SBJahgOkqRGL+GQ\nZH2Sjye5OclNSZ6TZGOSbUluTXJFkvV91CZJ6q/l8D+Ay6rqGcCxwC3AZmBbVR0JXNk9lyT1IFU1\n2hUmBwDXVdU/nDX+FuCkqtqR5CBgsqqOmjVNjbre1SYBN+HSjXL7rdb/q9X6vsZZEqoqi5mnj5bD\nEcD3k3wkyd8m+eMkTwI2VdWObpodwKYeapMk0U84rAOeBXywqp4FPMysLqSueeB3C0nqybr5Xkiy\noaruW4Z13g7cXlVf6p5/HDgbuCvJQVV1V5KDgbvnmnnLli2PDU9MTDAxMbEMJUpz27Bh0C0yqnVJ\nSzE5Ocnk5ORQy5j3mEOS7wP3AJ8DvgB8vqpuHWpt08v+DPDGqro1yRZgv+6lH1TVe5JsBtZX1eZZ\n83nMYUj296pv7oOjt5RjDgsekE7yi8Bzu8evAP8A+GvgC1X1niEKfSbwIWAf4JvAWcBewEXAYcBt\nwGlVdf+s+QyHIfnBVN/cB0dvj4fDrIU/HXg58BbgkKrad/ElDsdwGJ4fTPXNfXD0lhIOCx1zeB7T\nLYZDgb8D/gZ4LXDdEHVKksbcQsccdjIIgXOBT1bVw6MsbC62HIbntzb1zX1w9PZot1J3xtBUy+EE\nYG/gywyOOfx1Vf3dcOUunuEwPD+Y6pv74Ogt9zGH/YDXA78DHFFVey2+xOEYDsPzg6m+uQ+O3p4+\n5nAA02cqPRc4Hvg6cCnw+SHqlCSNuYW6le6hO22VQRhcW1U/GmFtc9Vky2FIfmtT39wHR2+Pthyq\n6sDhS5IkrUQLdStdyuD6RnOlTVXVKctWlSSpV/OGA3Aig+sgXQh8sRs3FRQ2CiVpFVvomMM64KXA\nGcAxwKeBC6vqxtGV19TkMYch2d+rvrkPjt4evZ9DVf20qi6vqn/JoBXxDeDqJL89ZJ2SpDG3ULcS\nSfZlcD2l04HDGdze85PLX5YkqU8LdStdAPwScBnw51V1wygLm4vdSsOzSa++uQ+O3p6+fMZOBndp\nm0tV1c8usr6hGQ7D84OpvrkPjt6e/p1DH7cQlSSNAQNAktQwHCRJDcNBktRY8FRWSdrTNmwYHJTW\n0mzYAPfeu/zrWehspYeY/zIZnq20QnmmiLSyLeUzvKfPVtq/W+i7gDuBj3YvvRZ46uJKkyStJLu8\nE1yS66vq2F2NGwVbDsOz5SCtbKNqOezOAemHk7wuyV7d47XAQ4srTZK0kuxOOLwGOA3Y0T1O68ZJ\nklapXXYrjRO7lYZnt5K0svV+QHrGQp8IvAE4Gth3anxVvX5x5UmSVord6Va6ANgEnAxcDRyKxxwk\naVXbnbOVtlfVcVNnKCXZG/hcVT1nNCU+rha7lYZkt5K0so3T2Uo/6f59IMkxwHrgKYsrTZK0kuzO\n5TP+OMlG4G3AJcD+wNuXtSpJUq88W2mNsVtJWtnGplspyfok5yb5cvd4f5IDFleaJGkl2Z1jDh8G\nfgj8BoMfwD0IfGQ5i5Ik9Wt3zlb6SlU9c1fjRsFupeHZrSStbGPTrQQ8kuRXZ6zk+cCPFleaJGkl\n2Z2zlf418CczjjPcB5y5fCVJkvq2y5ZDVW3vLs99LHBsVR0HvHDYFXdXeL0uyaXd841JtiW5NckV\nSdYPuw5J0tLs9j2kq+qBqnqge/rWPbDutwA3MX23uc3Atqo6Eriyey5J6sFuh8OelORpwK8DHwKm\nDpKcAmzthrcCp/ZQmiSJnsIBOBf4D8DOGeM2VdWObngHg4v9SZJ6MO8B6SQPMd3lM9t+S11hklcA\nd1fVdUkm5pqmqiqJJ1xKUk/mDYeq2n+Z1vlc4JQkv87g/hA/m+QCYEeSg6rqriQHA3fPNfOWLVse\nG56YmGBiYmKZypSklWlycpLJycmhltHrtZWSnAT8+6r6p0neC/ygqt6TZDOwvqo2z5reH8ENyR/B\nSSvbOP0IbrlNvc13Ay9Ncivwou65JKkHXpV1jbHlIK1sa6nlIEkaM4aDJKlhOEiSGoaDJKlhOEiS\nGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaD\nJKmxru8CFiuLutGdZtuwoe8KJK0EKy4cvP+xJC0/u5UkSQ3DQZLUMBwkSQ3DQZLUMBwkSQ3DQZLU\nMBwkSQ3DQZLUMBwkSQ3DQZLUMBwkSQ3DQZLUMBwkSQ3DQZLUMBwkSQ3DQZLUGHk4JDk0yVVJbkzy\n1SRv7sZvTLItya1JrkiyftS1SZIGUiO+tVqSg4CDqmp7kv2BLwOnAmcB91TVe5P8LrChqjbPmrdG\nXa8kjZNk8XfETEJVLeomyyNvOVTVXVW1vRt+CLgZOAQ4BdjaTbaVQWBIknrQ6zGHJIcDxwNfBDZV\n1Y7upR3App7KkqQ1b11fK+66lD4BvKWqHkymWzxVVUnmbDht2bLlseGJiQkmJiaWt1BJWmEmJyeZ\nnJwcahkjP+YAkGRv4FPA5VV1XjfuFmCiqu5KcjBwVVUdNWs+jzlIWtNW7TGHDJoI5wM3TQVD5xLg\nzG74TODiUdcmSRro42yl5wOfAa4HplZ+NnANcBFwGHAbcFpV3T9rXlsOkta0UbUceulWWirDQdJa\nt2q7lSRJ489wkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1\nDAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJ\nUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUmOswiHJyUluSfL1\nJL/bdz2StFaNTTgk2Qv4AHAycDRwRpJn9FvV+JqcnOy7hLHhtpjmtpjmthjO2IQDcALwjaq6raoe\nBf4MeGXPNY0td/xpbotpbotpbovhjFM4HAJ8d8bz27txkqQRG6dwqL4LkCQNpGo8/iYnORHYUlUn\nd8/PBnZW1XtmTDMexUrSClNVWcz04xQO64CvAS8G7gSuAc6oqpt7LUyS1qB1fRcwpap+muS3gb8C\n9gLONxgkqR9j03KQJI2PcTogvSB/IDctyW1Jrk9yXZJr+q5nlJJ8OMmOJDfMGLcxybYktya5Isn6\nPmsclXm2xZYkt3f7xnVJTu6zxlFJcmiSq5LcmOSrSd7cjV9z+8YC22JR+8aKaDl0P5D7GvAS4A7g\nS6zh4xFJvgX8clXd23cto5bkV4GHgD+pqmO6ce8F7qmq93ZfHDZU1eY+6xyFebbFOcCDVfXfey1u\nxJIcBBxUVduT7A98GTgVOIs1tm8ssC1OYxH7xkppOfgDudaizjxYLarqs8B9s0afAmzthrcy+CCs\nevNsC1iD+0ZV3VVV27vhh4CbGfxOas3tGwtsC1jEvrFSwsEfyD1eAf8vybVJfqvvYsbApqra0Q3v\nADb1WcwY+HdJvpLk/LXQjTJbksOB44Evssb3jRnb4m+6Ubu9b6yUcBj/vq/Rel5VHQ/8GvCmrntB\nQA36Sdfy/vI/gSOA44DvAe/vt5zR6rpRPgG8paoenPnaWts3um3xcQbb4iEWuW+slHC4Azh0xvND\nGbQe1qSq+l737/eBTzLodlvLdnT9rCQ5GLi753p6U1V3Vwf4EGto30iyN4NguKCqLu5Gr8l9Y8a2\n+OjUtljsvrFSwuFa4BeSHJ5kH+DVwCU919SLJPsleXI3/CTgZcANC8+16l0CnNkNnwlcvMC0q1r3\nB3DKP2ON7BtJApwP3FRV5814ac3tG/Nti8XuGyvibCWAJL8GnMf0D+T+oOeSepHkCAatBRj8iPFj\na2lbJLkQOAk4kEEf8juAvwAuAg4DbgNOq6r7+6pxVObYFucAEwy6DQr4FvCvZvS5r1pJng98Brie\n6a6jsxlcaWFN7RvzbIv/BJzBIvaNFRMOkqTRWSndSpKkETIcJEkNw0GS1DAcJEkNw0GS1DAcJEkN\nw0FrTpKfm3HZ4u/NuIzxg0k+sAzr+99JXrWnlystp7G5E5w0KlX1AwYXIxvVJa53+WOiJOuq6qfL\nWIO0KLYcpO4yxkkmklzaDW9JsjXJZ7qbK/3zJO/rbrJ0eXfPc5L8cpLJ7gq5fzl1HZ85vCDJ55N8\nc6oV0a3vs0n+Avhqd2mUTyfZnuSGJKeN4s1LczEcpPkdAbyQwT0BPgpsq6pjgUeAl3cXN/sj4FVV\n9WzgI8B/nWM5YXDzlecBrwDePeO144E3V9VRDK6ye0dVHdfdvOcvl+l9Sbtkt5I0twIur6q/T/JV\n4AlV9VfdazcAhwNHAr/E4N4aMLju153zLGvqypg3J5l5T4Frqurb3fD1wPuSvBv4VFV9bg+/J2m3\nGQ7S/H4CUFU7kzw6Y/xOBp+dADdW1XN3d1mdmXfjenhqoKq+nuR44OXAu5JcWVW/t+TqpSHYrSTN\nbXdup/g14ClJToTBNfSTHL3kFQ4uqfzjqvoY8D7gWUtdljQsWw7S9NlENc8wtGccVVU9muRfAH+Y\n5AAGn6dzgZsWWMdCw8cA/y3JTgYtjX+zqHch7UFesluS1LBbSZLUMBwkSQ3DQZLUMBwkSQ3DQZLU\nMBwkSQ3DQZLUMBwkSY3/D8lo63D7ezH3AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f5c10894c50>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEZCAYAAAB8culNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGaZJREFUeJzt3XmYZXV95/H3B1pEROlGTIMKgiaIOi5oJLjFq8GEqIMk\njogkhrjNJE7cnujYGiPlxKgYF5zJM8sTxemgophEAq50COW+YUAQRFzSKgiF2IACLmh/549zmrpd\np6q6q6rrnrpd79fz3KfOPfcs33v69v3c3+9sqSokSRq2R98FSJJWHsNBktRhOEiSOgwHSVKH4SBJ\n6jAcJEkdhoPGXpKJJGcsYPqtSe6znDXNWN9HkjxrVOuTdgXDQcsqyeYkv7XMq1kxJ+vMFlRV9aSq\n2unwklYCw0HLrVhBX95LkWRN3zUshyR79l2DVh7DQb1IcsckpyW5un28Lcle7Wtrk3woyXVJtiQ5\nN8k9h+Y9LMknkvwoyXnAATtY18uTfD/JVUmeM+O1ySTPHXr+x0k+NfR8a5IXJPkG8PV23NuTfDfJ\nTUkuTPKYdvyxwCuBZyT5cZKLZq4jjVe3LaqpJBuT3LV97dB2fX+U5DtJfpDkVfO8rzsleUu7rBuT\nfCrJ3kkGSb43Y9rNSZ7QDk8k+YckZyS5CXhVkluTrBua/sh2/Xu2z5+T5PL23+NjSQ6Zb5tr/BkO\n6stfAEcBD2kfRwGvbl/bA3gncEj7+Anwt0Pzvhf4EnA34K+Ak5mjddJ+Yf85cAxwePt32M60bJ4K\nPAJ4QPv8i23N69paPpBkr6r6GPB64H1VdZeqOnKWdTy7rXcA3AfYd8Z7A3h0W+tvAa9JcsQcdb0Z\nOBJ4JLA/8HJg6xzTznyPxwEfqKr9gL8BPgc8bej1k9rXf5nkqTSh93s0Qfwp4Mw51qPdhOGgvpwE\n/Pequr6qrgdeCzwLoKq2VNUHq+qnVXUzzRfu4wDaX6y/DvxlVd1WVZ8CzgUyx3pOAE6vqsur6lbg\nlEXU+oaqurGqftbW956quqGqtlbVW4E7Avdrp808tQD8AfCWqtpcVbfQfOmemGT4/+Jrq+pnVXUJ\n8BWaINpOO/2zgRdX1TVtLZ+vqp/v5Hv6bFWd076fn9KE3DPbZQd4RjsO4E/abfD1qtoKvAF4aJKD\nd3JdGkOGg/pyD+A7Q8+/244jyT5J/m/bFXIT8Algv/ZL6x7ADVX1k6F5h5cz00HAcBfLdxdR68wu\nmpe1XSw3JrkB2I8ddG3NqGfm+14DrB8ad+3Q8K3AnWdZzgHA3sC3dnK9M1014/k/AY9MciDwm8DW\nqvp0+9q9gbcnuaF9vz9sx98T7bYMB/Xl+8ChQ88PAa5uh/+cplvlqLbb43FM/yK/BliXZJ+hee/N\n3F1D17TLHl7PsFvY/sv3wFmWcfuykzyWpvvm6VW1tqrWATcx3VrYURfVbO/7F8DUDuab6Xrgp8Cv\nzvLaLcDt26fdb3D3GdNsV2dV3QCcR9NiOIntu42+C/znqlo39LhzVX1+gTVrjBgOGoW92h2l2x5r\naL58Xp3kgCQHAK8B3t1Ovy/NfoabkuzPUFdQVX0HuBB4bZI7tDuDnzLPus8C/jjJ/dtAmdmtdDHw\n++3O3V8FnttZwvbuQvNlfn2SvZK8Brjr0OvXAoe2rZzZnAm8tN35vC/T+yjm2lcAs3RTtdOfDrw1\nyUFJ9kzyyHan/pXA3kmelOQONPty7riD9wVNN9LJNPse3js0/v/Q7LR+AECS/ZI8fSeWpzFmOGgU\nPkLTPbLt8RrgdTRf8pe0jwvbcQCnAXei+XX8WeCjbP9L9yTgN4At7bI2zrXidifxacC/0nxpnj9j\nWW8Dfk7zy/1dNAE1/PrMlsDH2seVwGaaEBvuqvpA+/eHSS6cpaTTgTOATwLfptkeL5xnfXONA3gZ\ncCnNzvkf0uwLSFXdBLwAeAdN99HNbN81NtdO+HNoWiLXVNWlt09cdTZwKvC+tpvvUuB35qhJu4ks\n181+kpwOPBm4rqoe1I7bH3g/TTfAZuCEqrqxfe2VwHOAXwIvqqrzlqUwSdIOLWfL4V3AsTPGbQA2\nVdXhNL/gNgC0zdVn0BwqeCzwv2YcvSFJGqFl+wJuDzG8Ycbo45juAtgIHN8OPxU4sz00cTPwTZrj\n3iVJPRj1r/P1VbXtqIwppg/fuwfbH1p3FR4mJ0m96a3rppqdHfPt8NgtrscjSeNo1BcSm0pyYFVd\nm+Qg4Lp2/NXA8NmW92L6mPfbJTEwJGkRqmq+M/c7Rt1yOIfmOGrav2cPjT+xPW78MODXaK5f01FV\nu90DFj7PKaec0nvdK+XhtnBbuC3mfyzGsrUckpxJc2brAe0VIl8DvBE4q71C5Waa695QVZcnOQu4\nnOYEoxfUYt+RJGnJli0cquqZc7w086qY26Z/Pc3ZopKknnkuwZgaDAZ9l7BiuC2muS2muS2WZtnO\nkF4OSXbL3qYEdsO3JWmFSEKt8B3SkqQxYDhIkjoMB0lSh+EgSeowHCRJHYaDJKnDcJAkdRgOkqQO\nw0GS1GE4SJI6DAdJUofhIEnqMBwkSR2GgySpw3CQJHUYDpKkDsNBktTRSzgkeXGSS5N8NcmL23H7\nJ9mU5Mok5yVZ20dtkqQewiHJfwCeBzwCeAjwlCT3BTYAm6rqcOD89rkkqQd9tByOAL5QVT+tql8C\nnwCeBhwHbGyn2Qgc30NtkiT6CYevAo9tu5H2AZ4E3AtYX1VT7TRTwPoeapMkAWtGvcKquiLJqcB5\nwC3AxcAvZ0xTSWrUtUmSGiMPB4CqOh04HSDJXwNXAVNJDqyqa5McBFw327wTExO3Dw8GAwaDwbLX\nu9zWrYOk7yrG17p1sGVL31VIK8fk5CSTk5NLWkaqRv8DPcmvVNV1SQ4BPg4cDfwF8MOqOjXJBmBt\nVW2YMV/1Ua9WtgT8WEhzS0JVLegnaF/h8EngbsBtwEur6oIk+wNnAYcAm4ETqurGGfMZDuowHKT5\njU04LJbhoNkYDtL8FhMOniEtSeowHCRJHYaDJKnDcJAkdRgOkqQOw0GS1GE4SJI6DAdJUofhIEnq\nMBwkSR2GgySpw3CQJHUYDpKkDsNBktRhOEiSOgwHSVKH4SBJ6jAcJEkdhoMkqaOXcEjyyiSXJbk0\nyXuT3DHJ/kk2JbkyyXlJ1vZRmySph3BIcijwfOBhVfUgYE/gRGADsKmqDgfOb59LknrQR8vhR8Bt\nwD5J1gD7AN8HjgM2ttNsBI7voTZJEj2EQ1VtAd4CfJcmFG6sqk3A+qqaaiebAtaPujZJUmPNqFeY\n5L7AS4BDgZuADyT5w+FpqqqS1GzzT0xM3D48GAwYDAbLVaokjaXJyUkmJyeXtIxUzfodvGySPAN4\nYlU9r33+LOBo4AnA46vq2iQHARdU1REz5q1R16uVLwE/FtLcklBVWcg8fexzuAI4OsmdkgQ4Brgc\nOBc4uZ3mZODsHmqTJNFDywEgyX+jCYCtwL8BzwPuApwFHAJsBk6oqhtnzGfLQR22HKT5Labl0Es4\nLJbhoNkYDtL8xqVbSZK0whkOkqQOw0GS1GE4SJI6DAdJUofhIEnqMBwkSR2GgySpw3CQJHUYDpKk\nDsNBktRhOEiSOgwHSVKH4SBJ6jAcJEkdhoMkqcNwkCR1GA6SpA7DQZLUMfJwSHK/JBcNPW5K8qIk\n+yfZlOTKJOclWTvq2iRJjVSPd2ZPsgdwNXAU8ELg+qp6U5JXAOuqasOM6avPerUyJeDHQppbEqoq\nC5mn726lY4BvVtX3gOOAje34jcDxvVUlSatc3+FwInBmO7y+qqba4SlgfT8lSZLW9LXiJHsB/xF4\nxczXqqqSzNpRMDExcfvwYDBgMBgsU4WSNJ4mJyeZnJxc0jJ62+eQ5KnAn1bVse3zK4BBVV2b5CDg\ngqo6YsY87nNQh/scpPmN2z6HZzLdpQRwDnByO3wycPbIK5IkAT21HJLcGfgOcFhV/bgdtz9wFnAI\nsBk4oapunDGfLQd12HKQ5reYlkOvh7IulOGg2RgO0vzGrVtJkrRCzRkOSdaNshBJ0sox36GsVya5\nHvg08FngM1V15WjKkiT1ad59DknuBzyqfTwS+BXgc8Bnq+rUkVS4fT3uc1CH+xyk+S3rDukk9wWe\nDLwYuGdV7b3wEpfGcNBsDAdpfrs0HJI8mukWw8HAt4HP07QcLqqqny2t3IUzHDQbw0Ga364Oh63A\nRcDbgA9W1S1LL3FpDAfNxnCQ5rerw+EgplsORwF3AL5M03L4XFV9e2nlLpzhoNkYDtL8lnufwz7A\nc4CX0JzZvOfCS1waw0GzMRyk+S0mHOY8lDXJfkwfqfQo4EjgG8C5wGeWUKckaYWbr1vpetrDVmnC\n4MKqunWEtc1Wky0HddhykObntZW0KhkO0vx2dbfSuUABsy2wquq4BdYnSRoT810+42jgKpp7Lnyh\nHbctKPydJkm7sfn2OawBnkhzU54HAR8Gzqyqy0ZXXqcmu5XUYbeSNL9desnuqvpFVX20qv6IphXx\nTeATSf5siXVKkla4+bqVSLI3zfWUTgQOBd4OfHD5y5Ik9Wm+bqUzgAcCHwHeX1WXjrKw2ditpNnY\nrSTNbzmurTTX9ZSqqu66wPqWzHDQbAwHaX679FDWqlq2W4gmWQu8g6ZlUsCzac6+fj9wb2AzcEJV\n3bhcNUiS5tbXPaTfDnykqu4PPBi4AtgAbKqqw4Hz2+eSpB6M/Azp9ppNF1XVfWaMvwJ4XFVNJTkQ\nmKyqI2ZMY7eSOuxWkua3Sw9lXUaHAT9I8q4k/5bk75LcGVhfVVPtNFPA+h5qkySxg0NZl3GdDwP+\nrKq+lOQ0ZnQhVVUlmfW34MTExO3Dg8GAwWCwfJVqLKxb17QeRrWuLVtGsy5psSYnJ5mcnFzSMuY7\nWulm5r5MxqKPVmq7jD5XVYe1zx8DvBK4D/D4qrq2vdHQBXYraaWxC0vjaFcfrbRvu9DXAd8H3t2+\n9AfAPRZbZPvl/70kh1fVlcAxwGXt42Tg1Pbv2YtdhyRpaXa4QzrJJVX14B2NW9BKk4fQHMq6F/At\nmkNZ9wTOAg5hjkNZbTmob7YcNI52acthyC1J/pDm6qzQXErj5oUWN6yqvgI8YpaXjlnKciVJu8bO\nHK10EnACzRFEU+3wSctZlCSpX94JTloAu5U0jpalWynJnYDnAg8A9t42vqqes+AKJUljYWe6lc6g\nOSHtWOATwMEscZ+DJGll25mjlS6uqoduO0IpyR2AT1fVb4ymxO1qsVtJvbJbSeNouS6f8fP2701J\nHgSsBe6+0OIkSeNjZw5l/bsk+wOvBs4B9gX+clmrkiT1yqOVpAWwW0njaFm6lZKsTfK2JF9uH29p\nL7stSdpN7cw+h9OBHwFPpzkB7sfAu5azKElSv3bmaKWvVNVDdjRuFOxWUt/sVtI4Wq6jlX6S5LFD\nK3kMcOtCi5MkjY+dOVrpT4C/H9rPcAPNJbUlSbupnT5aaVs4VNVNSV5SVacta2Wz12C3knplt5LG\n0WK6lRZ1KGuS71XVwQuecYkMB/XNcNA4Wq59DpKkVcZwkCR1zLlDOsnNwFwN6H2WpxxJ0kowZzhU\n1b6jLESStHLszKGsu1ySzTRnXf8SuK2qjmov7vd+4N7AZuCEqrqxj/okabXra59DAYOqOrKqjmrH\nbQA2VdXhwPntc0lSD/rcIT3zsKrjgI3t8Ebg+NGWI0naps+Ww78kuTDJ89tx66tqqh2eork1qSSp\nB73scwAeXVXXJLk7sCnJFcMvVlUlmfVIqYmJiduHB4MBg8FgOeuUtrNuXXMinBZv3TrYsqXvKnZv\nk5OTTE5OLmkZvd/sJ8kpwM3A82n2Q1yb5CDggqo6Ysa0niEtjTnPMh+9sThDOsk+Se7SDt8Z+G3g\nUppbkG67oN/JwNmjrk2S1Bh5yyHJYcAH26drgPdU1RvaQ1nPAg5hjkNZbTlI48+Ww+iN7MJ7fTEc\npPFnOIzeWHQrSZJWPsNBktRhOEiSOgwHSVKH4SBJ6jAcJEkdhoMkqcNwkCR1GA6SpA7DQZLUYThI\nkjoMB0lSh+EgSeowHCRJHYaDJKnDcJAkdRgOkqQOw0GS1GE4SJI6eguHJHsmuSjJue3z/ZNsSnJl\nkvOSrO2rNkla7fpsObwYuBzYdqvxDcCmqjocOL99LknqQS/hkORewJOAdwBpRx8HbGyHNwLH91Ca\nJIn+Wg5vA14ObB0at76qptrhKWD9yKuSJAGwZtQrTPIU4LqquijJYLZpqqqS1GyvTUxM3D48GAwY\nDGZdhCStWpOTk0xOTi5pGama9Tt42SR5PfAs4BfA3sBdgX8CHgEMquraJAcBF1TVETPmrVHXK2nX\nSsD/xqOVhKrKjqecNvJupap6VVUdXFWHAScC/1pVzwLOAU5uJzsZOHvUtUmSGivhPIdtvyHeCDwx\nyZXAE9rnkqQejLxbaSnsVpLGn91KozcW3UqSpJXPcJAkdRgOkqQOw0GS1GE4SJI6DAdJUofhIEnq\nMBwkSR2GgySpw3CQJHUYDpKkDsNBktRhOEiSOgwHSVKH4SBJ6jAcJEkdhoMkqcNwkCR1jDwckuyd\n5AtJLk5yeZI3tOP3T7IpyZVJzkuydtS1SZIavdxDOsk+VXVrkjXAp4GXAccB11fVm5K8AlhXVRtm\nzOc9pKUx5z2kR29s7iFdVbe2g3sBewI30ITDxnb8RuD4HkqTJNFTOCTZI8nFwBRwQVVdBqyvqql2\nkilgfR+1SZJgTR8rraqtwEOT7Ad8PMnjZ7xeSWx4SlJPegmHbarqpiQfBh4OTCU5sKquTXIQcN1s\n80xMTNw+PBgMGAwGoyhV0i6ybl2z30GLs24dbNky/zSTk5NMTk4uaT0j3yGd5ADgF1V1Y5I7AR8H\nXgv8DvDDqjo1yQZgrTukJWl7i9mhv5gd0n20HA4CNibZg2afxxlVdX6Si4CzkjwX2Ayc0ENtkiR6\nOpR1sWw5SFrtRtVy8AxpSVKH4SBJ6jAcJEkdhoMkqcNwkCR1GA6SpA7DQZLUYThIkjoMB0lSh+Eg\nSeowHCRJHYaDJKnDcJAkdRgOkqQOw0GSxsio7lpgOEiSOgwHSVKH4SBJ6jAcJEkdIw+HJAcnuSDJ\nZUm+muRF7fj9k2xKcmWS85KsHXVtkqRGHy2H24CXVtUDgaOB/5rk/sAGYFNVHQ6c3z7XHCYnJ/su\nYcVwW0xzW0xzWyzNyMOhqq6tqovb4ZuBrwH3BI4DNraTbQSOH3Vt48QP/jS3xTS3xTS3xdL0us8h\nyaHAkcAXgPVVNdW+NAWs76ksSVr1eguHJPsC/wi8uKp+PPxaVRUwolM9JEkzpUZ1ut3wSpM7AB8C\nPlpVp7XjrgAGVXVtkoOAC6rqiBnzGRiStAhVlYVMv2a5CplLkgDvBC7fFgytc4CTgVPbv2fPnHeh\nb06StDgjbzkkeQzwSeASpruOXgl8ETgLOATYDJxQVTeOtDhJEtBTt5IkaWUbmzOkkxyb5Iok30jy\nir7r6VOSzUkuSXJRki/2Xc8oJTk9yVSSS4fGrcoTKOfYFhNJrmo/GxclObbPGkfFk2unzbMtFvTZ\nGIuWQ5I9ga8DxwBXA18CnllVX+u1sJ4k+Xfg4VW1pe9aRi3JY4Gbgb+vqge1494EXF9Vb2p/OKyr\nqt3+JMo5tsUpwI+r6q29FjdiSQ4EDqyqi9sjIb9Mc67Us1lln415tsUJLOCzMS4th6OAb1bV5qq6\nDXgf8NSea+rbqtw5X1WfAm6YMXpVnkA5x7aAVfjZ8OTaafNsC1jAZ2NcwuGewPeGnl/F9JtdjQr4\nlyQXJnl+38WsAJ5Aub0XJvlKkneuhm6UmTy5dtrQtvh8O2qnPxvjEg4rv+9rtB5dVUcCv0tzbarH\n9l3QSuEJlPxv4DDgocA1wFv6LWe0PLl2Wrst/oFmW9zMAj8b4xIOVwMHDz0/mKb1sCpV1TXt3x8A\nH6TpdlvNptp+VtoTKK/ruZ7eVNV11QLewSr6bLQn1/4jcEZVbTtPalV+Noa2xbu3bYuFfjbGJRwu\nBH4tyaFJ9gKeQXPS3KqTZJ8kd2mH7wz8NnDp/HPt9radQAlznEC5WrRfgNv8Hqvks7ETJ9fCKvls\nzLUtFvrZGIujlQCS/C5wGrAn8M6qekPPJfUiyWE0rQVoznB/z2raFknOBB4HHEDTh/wa4J9ZhSdQ\nzrItTgEGNN0GBfw78F+G+tx3W55cO22ObfEq4Jks4LMxNuEgSRqdcelWkiSNkOEgSeowHCRJHYaD\nJKnDcJAkdRgOkqQOw0GrTpK7DV22+Jqhyxj/OMnfLsP6/l+Sp+3q5UrLaeS3CZX6VlU/pLkY2agu\ncb3Dk4mSrKmqXyxjDdKC2HKQ2ssYJxkkObcdnkiyMckn25sr/X6SN7c3WfpokjXtdA9PMtleIfdj\n267jM4vfTPKZJN/a1opo1/epJP8MfLW9NMqHk1yc5NIkJ4zizUuzMRykuR0GPJ7mngDvBjZV1YOB\nnwBPbi9u9j+Bp1XVrwPvAv56luWE5uYrjwaeArxx6LUjgRdV1RE0V9m9uqoe2t6852PL9L6kHbJb\nSZpdAR+tql8m+SqwR1V9vH3tUuBQ4HDggTT31oDmul/fn2NZ266M+bUkw/cU+GJVfacdvgR4c5I3\nAh+qqk/v4vck7TTDQZrbzwGqamuS24bGb6X5vxPgsqp61M4uqzV8N65btg1U1TeSHAk8GXhdkvOr\n6q8WXb20BHYrSbPbmdspfh24e5KjobmGfpIHLHqFzSWVf1pV7wHeDDxsscuSlsqWgzR9NFHNMQzd\nI46qqm5L8p+A/5FkP5r/T28DLp9nHfMNPwj4myRbaVoaf7qgdyHtQl6yW5LUYbeSJKnDcJAkdRgO\nkqQOw0GS1GE4SJI6DAdJUofhIEnqMBwkSR3/Hzar/N4j8ceuAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f5bf6f06d50>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(c)Suitable generating units to supply the load are\n",
"i)One unit of 30 MW will run for 24 hours\n",
"ii)One unit of 30 MW will run for 18 hours\n",
"iii)One unit of 30 MW will run for 10 hours\n",
"iv)One unit of 10 MW will run for 4 hours\n",
"\n",
"(d)Load factor is 0.64\n",
"\n",
"(e)Capacity of the plant is 130 MW and Capacity factor is 0.494\n"
]
}
],
"source": [
"%matplotlib inline\n",
"from matplotlib.pyplot import plot,subplot,title,xlabel,ylabel,show\n",
"#Input data\n",
"t1x=[0,6]#Time range in hours\n",
"t2x=[6,12]#Time range in hours\n",
"t3=[12,14]#Time range in hours\n",
"t4=[14,18]#Time range in hours\n",
"t5=[18,24]#Time range in hours\n",
"L=[30,90,60,100,50]#Load in MW\n",
"\n",
"#Calculations\n",
"t1=[0,6,6,12,12,14,14,18,18,24,24]#Time in hours for Load curve\n",
"L1=[30,30,90,90,60,60,100,100,50,50,0]#Load in MW for Load curve\n",
"t2=[0,4,4,10,10,12,12,18,18,24,24]#Time in hours for Load duration curve\n",
"L2=[100,100,90,90,60,60,50,50,30,30,24]#Load in MW for Load duration curve\n",
"E=((L[0]*(t1x[1]-t1x[0]))+(L[1]*(t2x[1]-t2x[0]))+(L[2]*(t3[1]-t3[0]))+(L[3]*(t4[1]-t4[0]))+(L[4]*(t5[1]-t5[0])))#Energy generated in MWh\n",
"AL=E/24#Average load in MW\n",
"MD=max(L[0],L[1],L[2],L[3],L[4])#Maximum demand in MW\n",
"LF=(AL/MD)#Load factor\n",
"Lx=[30,10]#Loads for selecting suitable generating units in MW\n",
"tx=[24,18,10,4]#Time for selecting suitable generating units in hrs\n",
"PC=(Lx[0]*tx[3]+Lx[1]*1)#Plant capacity in MW\n",
"CF=(E/(PC*24))#Capacity factor \n",
"\n",
"#Output\n",
"plot(t1,L1)#Load curve taking Time in hrs on X- axis and Load in MW on Y- axis\n",
"title('Load curve')\n",
"xlabel('Time hrs')\n",
"ylabel('Load MW')\n",
"show()\n",
"plot(t2,L2)#Load duration curve taking Time in hrs on X- axis and Load in MW on Y- axis\n",
"title('Load duration curve')\n",
"xlabel('Time hrs')\n",
"ylabel('Load MW')\n",
"show()\n",
"print \"(c)Suitable generating units to supply the load are\\ni)One unit of %3.0f MW will run for %3.0f hours\\nii)One unit of %3.0f MW will run for %3.0f hours\\niii)One unit of %3.0f MW will run for %3.0f hours\\niv)One unit of %3.0f MW will run for %3.0f hours\\n\\n(d)Load factor is %3.2f\\n\\n(e)Capacity of the plant is %3.0f MW and Capacity factor is %3.3f\"%(Lx[0],tx[0],Lx[0],tx[1],Lx[0],tx[2],Lx[1],tx[3],LF,PC,CF)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.12 Page32"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overall cost of energy per kWh for:\n",
"(a)Domestic consumers is 70 paise\n",
"(b)Industrial consumers is 36 paise\n",
"(c)Street-lighting load is 51 paise\n"
]
}
],
"source": [
"#Input data\n",
"C=10#Capacity of generating unit in MW\n",
"MD=[6,3.6,0.4]#Maximum demand for domestic consumers, industrial consumers and street-lighting load respectively in MW\n",
"L=[0.2,0.5,0.3]#Load factor for domestic consumers, industrial consumers and street-lighting load respectively\n",
"CC=10000#Capital cost of the plant per kW in Rs\n",
"RC=3600000#Total rumming cost per year in Rs\n",
"AID=10#Annual interest and depreciation on capital cost in percent\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"E=((MD[0]*L[0])+(MD[1]*L[1])+(MD[2]*L[2]))*Y*1000#Energy supplied per year to all three consumers in kWh\n",
"OC=(RC/E)#Operating charges per kWh in Rs\n",
"CCP=(C*1000*CC)#capital cost of the plant in Rs\n",
"FCY=((AID/100)*CCP)#Fixed charges per year in Rs\n",
"FCkW=(FCY/CC)#Fixed charges per kW in Rs\n",
"#a) For domestic consumers\n",
"TC1=((FCkW*MD[0]*1000)+(OC*MD[0]*L[0]*Y*1000))#Total chrges in Rs\n",
"OC1=(TC1/(MD[0]*L[0]*Y*1000))*100#Overall cost per kWh in paise\n",
"#b)For industrial consumers\n",
"TC2=((FCkW*MD[1]*1000)+(OC*MD[1])*L[1]*Y*1000)#Total chrges in Rs\n",
"OC2=(TC2/(MD[1]*L[1]*Y*1000))*100#Overall cost per kWh in paise\n",
"#c) For street-lighting load\n",
"TC3=((FCkW*MD[2]*1000)+(OC*MD[2])*L[2]*Y*1000)#Total chrges in Rs\n",
"OC3=(TC3/(MD[2]*L[2]*Y*1000))*100#Overall cost per kWh in paise\n",
"\n",
"#Output\n",
"print \"Overall cost of energy per kWh for:\\n(a)Domestic consumers is %3.0f paise\\n(b)Industrial consumers is %3.0f paise\\n(c)Street-lighting load is %3.0f paise\"%(OC1,OC2,OC3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.13 Page32"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The amount of money to be saved annually is Rs.961317/-\n"
]
}
],
"source": [
"#Input data\n",
"CC=(80*10**6)#Capital cost in Rs\n",
"L=30#Useful life in years\n",
"S=5#Salvage value of the capital cost in percent\n",
"i=0.06#Yearly rate of compound interest\n",
"\n",
"#Calculations\n",
"A=((100-S)/100)*CC#Difference of capital cost and salvage value in Rs\n",
"P=((A*i)/((1+i)**L-1))#The amount of money to be saved annually in Rs\n",
"\n",
"#Output\n",
"print \"The amount of money to be saved annually is Rs.%3.0f/-\"%(P)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.14 Page34"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Present worth of the payments at the time of commissioning is Rs.5994.39 crores\n"
]
}
],
"source": [
"#Input data\n",
"i=4000#Initial investment in Rs crore\n",
"Y=4#Period in years\n",
"A=1200#Amount added in Rs crore\n",
"B=400#Amount paid from 5th year onwards to the 12th year in Rs crore\n",
"a=5#5th year\n",
"b=12#12th year\n",
"y=30#Period in years\n",
"C=600#Salvage value in Rs crore\n",
"I=0.1#Interest rate \n",
"\n",
"#Calculations\n",
"X=(1/(1+I))#X value for calculations\n",
"PW=(i+(A*X**Y)+((B/I)*X**b*((I+1)**b-1))-((B/I)*X**a*((I+1)**a-1))-(C*X**y))#Present worth of the payments at the time of commissioning in Rs. crores\n",
"\n",
"#Output\n",
"print \"Present worth of the payments at the time of commissioning is Rs.%3.2f crores\"%(PW)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.15 Page 35"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Incremental heat transfer rate at which the combined output of the two units is 1000 MW is IR = (IR)P = (IR)Q = 9293 kJ/kWh\n"
]
}
],
"source": [
"#Input data\n",
"O=1000#Combined output of two units in MW\n",
"#Two coal generating units P and Q have the incremental heat rate defined by\n",
"#(IR)P=0.4818*10**-7.LP**4 - 0.9089*10**-4.LP**3 + 0.6842*10**-1.LP**2 - 0.2106*10.LP + 9860\n",
"#(IR)R=0.9592*10**-7.LQ**4 - 0.7811*10**-4.LQ**3 + 0.2625*10**-1.LQ**2 - 0.2189*10.LQ + 9003\n",
"\n",
"#Calculations\n",
"#LP+LQ=1000\n",
"#By making (IR)P=(IR)Q and solving the above three equations by a numerical methos such as Newton-Raphson algorithm, we get \n",
"LP=732.5#Heat rate in MW\n",
"LQ=(O-LP)#Heat rate in MW\n",
"IR=0.4818*10**-7*LP**4 - 0.9089*10**-4*LP**3 + 0.6842*10**-1*LP**2 - 0.2106*100*LP + 9860\n",
"IR1=0.9592*10**-7*LQ**4 - 0.7811*10**-4*LQ**3 + 0.2625*10**-1*LQ**2 - 0.2189*10*LQ + 9003\n",
"\n",
"#Output\n",
"print \"Incremental heat transfer rate at which the combined output of the two units is %3.0f MW is IR = (IR)P = (IR)Q = %d kJ/kWh\"%(O,IR)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.16 Page 36"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"==============================================================================\n",
"Load Energy produced Fixed cost Fuel and Total cost Cost per\n",
"factor in 1hr with per hr operating cost per hr kWh\n",
"(percent) 1kW plant(kWh) (paise) (paise) (paise) (paise)\n",
"==============================================================================\n",
"100 1 31 40 71 71\n",
" 75 0.75 31 30 61 81\n",
" 50 0.50 31 20 51 102\n",
" 25 0.25 31 10 41 163\n",
"==============================================================================\n"
]
}
],
"source": [
"#Input data\n",
"F=2700#Fixed cost of the thermal station per kW of installed capacity per year in Rs,\n",
"FO=40#Fuel and operating costs per kWh generated in paise\n",
"L=[100,75,50,25]#Load factors\n",
"Y=8760#Number of hours in a year of 365 days\n",
"\n",
"#Calculations\n",
"FC=(F/Y)*100#Fixed costs per kW per hour in paise\n",
"E1=(L[0]/100)#Energy produced in 1 hr with 1 kW plant in kWh\n",
"FOC1=(E1*FO)#Fuel and operating cost in paise\n",
"TC1=(FC+FOC1)#Total cost per hr in paise\n",
"C1=(TC1/E1)#Cost per kWh in paise\n",
"E2=(L[1]/100)#Energy produced in 1 hr with 1 kW plant in kWh\n",
"FOC2=(E2*FO)#Fuel and operating cost in paise\n",
"TC2=(FC+FOC2)#Total cost per hr in paise\n",
"C2=(TC2/E2)#Cost per kWh in paise\n",
"E3=(L[2]/100)#Energy produced in 1 hr with 1 kW plant in kWh\n",
"FOC3=(E3*FO)#Fuel and operating cost in paise\n",
"TC3=(FC+FOC3)#Total cost per hr in paise\n",
"C3=(TC3/E3)#Cost per kWh in paise\n",
"E4=(L[3]/100)#Energy produced in 1 hr with 1 kW plant in kWh\n",
"FOC4=(E4*FO)#Fuel and operating cost in paise\n",
"TC4=(FC+FOC4)#Total cost per hr in paise\n",
"C4=(TC4/E4)#Cost per kWh in paise\n",
"\n",
"#Output\n",
"print \"==============================================================================\\nLoad Energy produced Fixed cost Fuel and Total cost Cost per\\nfactor in 1hr with per hr operating cost per hr kWh\\n(percent) 1kW plant(kWh) (paise) (paise) (paise) (paise)\\n==============================================================================\\n%3.0f %3.0f %3.0f %3.0f %3.0f %3.0f\\n%3.0f %3.2f %3.0f %3.0f %3.0f %3.0f\\n%3.0f %3.2f %3.0f %3.0f %3.0f %3.0f\\n%3.0f %3.2f %3.0f %3.0f %3.0f %3.0f\\n==============================================================================\"%(L[0],E1,FC,FOC1,TC1,C1,L[1],E2,FC,FOC2,TC2,C2,L[2],E3,FC,FOC3,TC3,C3,L[3],E4,FC,FOC4,TC4,C4)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|