1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Chapter 3: An Op-Amp with Negative Feedback"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 3.1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Closed-loop voltage gain is 11.0\n",
"Input resistance with feedback is 36.37 Giga Ohm\n",
"Output resistance with feedback is 4.12 mOhm\n",
"Bandwidth with feedback is 90.91 KHz\n",
"Total output offset voltage with feedback is 0.715 mV\n"
]
}
],
"source": [
"#Example 3.1\n",
"#Compute the following parameters of voltage-series feedback amplifier\n",
"#Af,Ri,Ro,fF,VooT\n",
"\n",
"from __future__ import division #to perform decimal division\n",
"\n",
"#Variable declaration\n",
"R1=1000 #Resistance in ohms\n",
"Rf=10000 #Feedback Resistance in Ohms \n",
"A=200000 #Open-loop voltage gain\n",
"Ri=2*10**6 #Input resistance without feedback\n",
"Ro=75 #Output resistance without feedback\n",
"fo=5 #Break frequency of an Op-amp\n",
"Vsat=13 #Saturation voltage\n",
"\n",
"#calculation\n",
"B=R1/(R1+Rf) #Gain of the feedback circuit\n",
"Af=A/(1+A*B) #Closed-loop voltage gain\n",
"RiF=Ri*(1+A*B) #Input resistance with feedback\n",
"RoF=Ro/(1+A*B) #Output resistance with feedback\n",
"fF=fo*(1+A*B) #Bandwidth with feedback\n",
"VooT=Vsat/(1+A*B) #Total output offset voltage with feedback\n",
"\n",
"#Result\n",
"print \"Closed-loop voltage gain is\",round(Af,2)\n",
"print \"Input resistance with feedback is\",round(RiF/10**9,2),\"Giga Ohm\"\n",
"print \"Output resistance with feedback is\",round(RoF*10**3,2),\"mOhm\"\n",
"print \"Bandwidth with feedback is\",round(fF/10**3,2),\"KHz\"\n",
"print \"Total output offset voltage with feedback is \",round(VooT*10**3,3),\"mV\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 3.2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Closed-loop voltage gain is 1.0\n",
"Input resistance with feedback is 400.0 Giga Ohm\n",
"Output resistance with feedback is 0.375 mOhm\n",
"Bandwidth with feedback is 1.0 MHz\n",
"Total output offset voltage with feedback is 65.0 uV\n"
]
}
],
"source": [
"#Example 3.2\n",
"#Compute the following parameters of voltage follower circuit of figure 3-7\n",
"#Af,Ri,Ro,fF,VooT\n",
"\n",
"from __future__ import division #to perform decimal division\n",
"\n",
"#Variable declaration\n",
"R1=1000 #Resistance in ohms\n",
"Rf=10000 #Feedback Resistance in Ohms \n",
"A=200000 #Open-loop voltage gain\n",
"Ri=2*10**6 #Input resistance without feedback\n",
"Ro=75 #Output resistance without feedback\n",
"fo=5 #Break frequency of an Op-amp\n",
"Vsat=13 #Saturation voltage\n",
"B=1 #Gain of the feedback circuit of voltage follower\n",
"\n",
"#calculation\n",
"\n",
"Af=A/(1+A*B) #Closed-loop voltage gain\n",
"RiF=Ri*(1+A*B) #Input resistance with feedback\n",
"RoF=Ro/(1+A*B) #Output resistance with feedback\n",
"fF=fo*(1+A*B) #Bandwidth with feedback\n",
"VooT=Vsat/(1+A*B) #Total output offset voltage with feedback\n",
"\n",
"#Result\n",
"print \"Closed-loop voltage gain is\",round(Af)\n",
"print \"Input resistance with feedback is\",round(RiF/10**9),\"Giga Ohm\"\n",
"print \"Output resistance with feedback is\",round(RoF*10**3,3),\"mOhm\"\n",
"print \"Bandwidth with feedback is\",round(fF/10**6,2),\"MHz\"\n",
"print \"Total output offset voltage with feedback is \",round(VooT*10**6,3),\"uV\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 3.3"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Closed-loop voltage gain is -10.0\n",
"Input resistance with feedback is 470.0 Ohm\n",
"Output resistance with feedback is 4.12 mOhm\n",
"Bandwidth with feedback is 100.0 kHz\n",
"Total output offset voltage with feedback is 0.715 mV\n"
]
}
],
"source": [
"#Example 3.3\n",
"#Compute the following parameters of inverting amplifierof figure 3-8\n",
"#Af,Ri,Ro,fF,VooT\n",
"\n",
"from __future__ import division #to perform decimal division\n",
"\n",
"#Variable declaration\n",
"R1=470 #Resistance in ohms\n",
"Rf=4.7*10**3 #Feedback Resistance in Ohms \n",
"A=200000 #Open-loop voltage gain\n",
"Ri=2*10**6 #Input resistance without feedback\n",
"Ro=75 #Output resistance without feedback\n",
"fo=5 #Break frequency of an Op-amp\n",
"Vsat=13 #Saturation voltage\n",
"\n",
"\n",
"#calculation\n",
"\n",
"K=Rf/(R1+Rf) #Voltage attenuation factor\n",
"B=R1/(R1+Rf) #Gain of the feedback circuit\n",
"Af=-A*K/(1+A*B) #Closed-loop voltage gain\n",
"X=Rf/(1+A)\n",
"RiF=R1+(X*Ri)/(X+Ri) #Input resistance with feedback\n",
"RoF=Ro/(1+A*B) #Output resistance with feedback\n",
"fF=fo*(1+A*B)/K #Bandwidth with feedback\n",
"VooT=Vsat/(1+A*B) #Total output offset voltage with feedback\n",
"\n",
"#Result\n",
"print \"Closed-loop voltage gain is\",round(Af)\n",
"print \"Input resistance with feedback is\",round(RiF),\"Ohm\"\n",
"print \"Output resistance with feedback is\",round(RoF*10**3,2),\"mOhm\"\n",
"print \"Bandwidth with feedback is\",round(fF/10**3),\"kHz\"\n",
"print \"Total output offset voltage with feedback is \",round(VooT*10**3,3),\"mV\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 3.4"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VGX69/FP6E0UAakqGAsigiAdlNCLCAi6iK51m/5c\nt7hr31X28Xksu7qu6/5cy7oKdkRFQSGEkKB0qdJEBRQQQaQICFKSef64ZiRCQmaSmblP+b5fr7yY\nhJlzLsg557r7DSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKSFFcAW10HIVKSCq4DEEmDXKCS\nw2OsAvKTeDyRpFIikKBrAmQAhxweoxcwPckxiSRNRdcBiCSoCfA74DjgSqAAaA/cA7wBVAamAmOB\nvsBdwLdATezhexFwefT7C4FWwFLgZKBPMcf5KnqMXUAN4COgKfZw/z/A68Dvge7A7GLi2wjcADwF\nbCsSU9HjnRn9THXgXuAA8En031sx+v6TgCzgJuAz4I9AVWAUMKPM/5siIj5TE5gP1I1+PwhYgz2Y\n34/+rDvwbJHPvAycH33dD+gGvFbkeLEHbt9ijvOfYo4BlgROLfLeRsAtxcQ3EHgGaxoqqujxagJL\ngBOi30/HHvoxDwDXRF9fCdwGfA7Uj/7sfkTKSU1D4icjgQVYyRrgbGAC9qB8Mfqz3kBO9HUG0BZY\nGP1+KpYMJka/bwt8E32dA1x7xHGmFXMMsIf1z4Dno9+fGH3vkfG1BDKBD4t89sjjDQeWATuBakAt\n4Ovo31UCfsXhxJUFfA+sjx7jSuBxRMpJiUD8pDLWLALWjDICeBToAsyK/rwPkAf0xxJFrDR+eZG/\njzWlXAM8XOT4nYGZRxznf4o5BliJfl70dVusiae4+PKwjuJLoj9vecTx6mFNU7FzzgUGRL+vCXyJ\nPfyrAK2BPcB7WFJ7CYhgTUQiZaY+AvGTT7EmnBpYSfohrGmoBvYwboQ1mVTGEsM+rImnBvYwrgjc\njD1cO2Lt9y8VOf6Rx6kEvIs1J9XAEsie6HsrAp2i7/sQ2FFCfIewPoCPgS+in+te5HjLsCauDKBB\n9OsbYDmwH+tzqIsllQLgQSxh1ABaAKdE3yviWycA47ES0kqsRCaSKpdgD2e/aIg1FwHcjiUXkaRz\nPY75Mayae2k0lppuw5EAa4F16H4G1MZG7Xjd/wUWYf0HBcCbbsMRSb7jgbWugxARCTuXncXNsWn3\nz2Glnmewdk8REUkjl4mgEtAOeCL653fAHQ7jEREJJZd9BBujX7Ex1uM5IhFkZmZG1qxZk+64RET8\nbg1werxvdlkj2AxswIbWgQ2JW1H0DWvWrCESifj2695773Ueg+J3H0cY4/dz7EGIH5vIGDfXo4Zu\nxsZxV8Ey2HVuwxERCR/XiWAp0MFxDCIioaYlJlIoKyvLdQjlovjd8nP8fo4d/B9/ojJcB1CKSLS9\nS0RE4pSRkQEJPN9VIxARCTklAhGRkFMiEBEJOSUCEZGQUyIQEQk5JQIRkZBTIhARCTklAhGRkFMi\nEBEJOSUCEZGQUyIQEQk516uPSkDt2gWLFkG9epCZCdWru45IguDgQVi9GrZtg/POg+OPdx1RMKhG\nIEkTicDLL0P79tC4Mdx1F1x2GdSpA716wdy5riMUv1q6FAYMgNq14dJL4c47oUkTaNkSnnsOCgtd\nR+hvSgSSFGvX2o360EPwwANWYps9G1atgt274corLSmMHAl79riOVvxi3z745S+hf38YOhS2b4eP\nP7Zra+dOeOopePJJ6NYNli93Ha1/KRFIuS1fbjdir16wYAH07QtVqx7++8qV4Wc/g08+sRJdr17w\nzTfu4hV/2LULBg60gsTHH8ONN/64ibFSJbjgApgzB667Dnr3hvnz3cXrZ9qPQMplxQro0wf+/ncY\nNar090ci8Kc/wRtvwPTp1oQkcqTt262G2a4dPPEEVIijyDppElx/PUyYAF27pj5GL0t0PwIlAimz\njRuhY0d4+GG44orEPvuXv0B2NuTnQ5UqKQlPfKqgwJLA2WfDY49BRgJPqexsuOoqazo6/fTUxeh1\nSgSSFgUF1sTTrx/cfXfiny8shGHDoFkz+Oc/kx6e+Nhf/gJ5eTBtmjX/JOp//xf++19LBkWbKMNE\niUDS4r777GbNyYGKFct2jJ07bYTRfffF16wkwTdtGlx9NSxcCI0ale0YkYiNLGra1GoUYaREICk3\nezYMH243a5Mm5TvWokXWDLBiBdSvn5z4xJ927bLhoGPHWm2zPHbuhLZtrXYwaFBy4vMTJQJJqYIC\nOP98uOMOuPzy5Bzz97+3h8CzzybneOJPf/yjDTt+7rnkHG/KFPj1r62QEbYmIiUCSamnn4YXX4QZ\nMxLrxDuWXbusY/D11zXaI6xWroQePeyhfdJJyTvu0KHQpYsVXMJEiUBSZudOaNECJk+2ancyvfqq\nTURbuLBsHYTiX5GIzQG45BK4+ebkHnvtWhvZtnRp+Zsx/STRRKAJZRK3++6DIUOSnwTAZhzXrm0J\nQcJl0iTYutUmjCXbaafBDTfYkhRSMtUIJC5ffgnnnmtLRjRokJpzTJ9uN+3KlaoVhEUkAh062LpU\nw4en5hy7d1tCmDULzjwzNefwGtUIJCUeeQSuvTZ1SQCgZ09o2NAWrpNweO892L/f5pSkynHHwW9+\nA/ffn7pz+J0XagQVgQXARuDiI/5ONQIP2LoVzjrL1hRK9ZIQeXm2yNiqVaoVBF0kAp06wa232oKE\nqbRzp800nj/fagdB58cawW+BlYCe+B71j39YG3461gXKyrLzqFYQfFOmwN69MGJE6s91wgnWB/HA\nA6k/lx+5rhE0BZ4H/h9wC6oReE6sJLVggS0HkQ6TJ1ub8aJFyRuiKt7Tsyf84heJr1NVVtu2WR/B\n0qU26zjI/FYjeBS4FdC2Eh717LM28zddSQBs7fm9e+GDD9J3TkmvZctsWfJUNwkVVbeuJZ2nnkrf\nOf3CZSIYDHwNLMZ9zUSKUVgI//63zc5MpwoVrHNPi9EF1+OP2wixypXTe96bboJnnrEOajnMZXdc\nV2AIMAioBtQGxgJXF33T6NGjf3idlZVFVlZW2gIMu+xs2xO2U6f0n/vqq+Gee+CLL+DUU9N/fkmd\n7dttFvnHH6f/3C1a2DDo8eNt17ygyM/PJz8/v8yf90pJvAfwR9RH4CmDB9vY7uuvd3P+W26xkUN/\n/aub80tq/O1v1jQ0dqyb87/9Njz4oO1sFlR+XWKiB/AHrIZQlBKBI7Gp+evXQ40a7mLo1Mk2wAnb\nomFBVVBggw/GjbOJZK5iOO002yWvfXs3MaSa3zqLY2ZwdBIQh5580iaQuUoCYDdr69bwzjvuYpDk\nmj4d6tRxlwTA9s+48Ua7xsV4pUZQEtUIHDh0CE4+2baRPOsst7G89JKtdjp5sts4JDmuuMJWA032\n4nKJ2rQJzjnHaps1a7qNJRX8WiMQD8nOtuGirpMAWB/FvHmwYYPrSKS8du60JSXSNW/gWBo3toT0\n1luuI/EGJQI5ypgxcM01rqMw1avbrGZXHYuSPK++Cn372nh+L7j2Wnj+eddReIOahuRHduyA5s1h\n3Tpry/WC+fNtT+NPP7U5BuJPnTrBvfd6Z+vI77+3GcYLFwZviLKahqRcXnvNZvZ6JQmAdSxWrw4z\nZ7qORMpq5Uprj+/Xz3Ukh1WrZrXNF15wHYl7SgTyI88/751moZiMDJv888orriORsnrxRfsdem1F\n2VjzUNgbHtQ0JD/47DPo1s02ofHaDbtunc1r2LQp/csSSPlEIpCZaeP2U7G7XXlEIrYQ3SuvBGtO\ngZqGpMzGjYNLL/VeEgDrt8jMhNxc15FIoj780JL3eee5juRoGRnWPPTaa64jcUuJQH7w2mt2U3jV\nqFFqHvKjV1+Fyy/37pLil19u135hiNdAViIQwBYA27rVmoa86ic/sVnG33/vOhKJV2Gh9wsYrVrZ\ndpZz57qOxB0lAgHsZr3sMpt+71WNGlkb83vvuY5E4jVzJtSrBy1buo7k2MLePKREIID1D3i51BYz\nalS4b1i/iTULed3IkbY0dkGB60jcUCIQli+H3buhc2fXkZRu6FBbAkPNQ95XUGAjhdK5C1lZnXUW\nNGgQ3l3xlAiE8eNttJAfZu2edJKNPpk2zXUkUpo5c+zhevrpriOJz4gR4V17yAe3vqTaW2/BJZe4\njiJ+w4fDm2+6jkJK47fr6pJLYMKEcE4uUyIIubVr4auvoGtX15HEb9gwGz106JDrSKQkkYj/EkHL\nllClCixe7DqS9FMiCLm334YhQ7w9WuhIp5xiE8zef991JFKSpUvtzzZt3MaRiIwMS1xhbB5SIgi5\nCROshO03w4eH84b1i1htwKuTyEoS1kTg9V+T1hpKoa1brSNvyxZbidFPVq+G3r1tT2U/dHKHTevW\n8MQT0L2760gSU1gITZpYbfOMM1xHU3Zaa0jiNnGiLQvstyQANtyvVq1wtud63dq1Vrjo0sV1JImr\nUMGGKE+Y4DqS9FIiCLEJE/zVmXekiy+2ZCbeMmkSDB7sr36nooYNUyKQkNi3zzanHzjQdSRlN3iw\nPXTEWyZOtN+NX2Vl2STLbdtcR5I+SgQhlZdn6/Z4aSeyRHXtas0Qmza5jkRidu2yxdv69HEdSdlV\nqwY9e8KUKa4jSR8lgpCaNAkuush1FOVTuTIMGADvvus6EonJybEEfdxxriMpn7DVNpUIQigSsYen\n3xMB2A2rfgLviPUP+N2gQbam1cGDriNJDyWCEFqxwkZHeH1p4HgMGGB9Hfv2uY5ECguDU8Bo3BhO\nOw1mz3YdSXooEYRQrFnIb5N9inPiidbXMX2660jkww+hfn17gAbBRReFp9lRiSCEglJqi7noIm1W\n4wVBaRaKCVM/gRJByGzfbuvA9OzpOpLkGTAAJk8O56qRXjJlirWtB8X559v9snat60hSz3UiOBnI\nA1YAy4HfuA0n+HJy4MIL/TmbuCTnngsHDsCnn7qOJLy+/tr+//04m7gkFSpA//7WaRx0rhPBQeD3\nwDlAZ+Am4GynEQXclCn+nkRWnIyMw7UCcWPqVKtlVqniOpLkGjAgHPMJXCeCzcCS6Os9wCqgsbtw\ngi0SsYt6wADXkSRfWG5YrwpiAQOgb18blXbggOtIUst1IiiqGdAWmOc4jsD66COoWRMyM11Hknx9\n+sDMmRpG6kJhoTWf9O/vOpLkq1cPWrSAWbNcR5JalVwHEFULGA/8FqsZ/GD06NE/vM7KyiIrKyud\ncQVKdnYwawMAJ5xgexnPmBHcf6NXLVxow0ZPPdV1JKkRq216eYBFfn4++fn5Zf68F0aSVwYmAZOB\nfxzxd9qPIIl69YJbbgnWEL+i7r/flj9+7DHXkYTLfffBzp3wyCOuI0mNOXPghhsO77rmB37bjyAD\neBZYydFJQJJo926b8BPkCtXAgeoncGHy5GDXwjp0gA0bgr24oetE0A34KdATWBz9CvAl5U5eHnTs\naJu5BFWbNrBjB3zxhetIwmPHDli2DC64wHUkqVOpknUaB7mQ4ToRzIzGcB7WUdwWCPB/tztB7cwr\nqkIF6zTOyXEdSXjk5UG3bsGal1Kcfv1siGxQuU4EkiZTpwY/EUDwb1ivycmx//Og69sXcnNthFQQ\nKRGEwOef24Yh557rOpLUi92wBQWuIwmHqVPt/zzoTjkF6taFJUtKf68fKRGEQE6ONZlUCMFvu0kT\naNgQFi1yHUnwrVkDe/dCq1auI0mPvn2DW9sMwaNBcnLCUWqLUfNQesSuqyAsZx6Pfv2C2/+kRBBw\nBQXWVBK2RBDUG9ZLwtI/EJOVBfPnWy0oaJQIAm7xYmjQwJpMwuLCC2226+7driMJrkOHbDMgP29S\nn6jjjrPZ6x984DqS5FMiCLiwNQuBrafUoQO8/77rSIJrwQLrQG3Y0HUk6RXU2qYSQcCFrfoe06eP\nNYlJakybFq7aQExQO4yVCAJs715bVqJHD9eRpF/v3vawktQIayJo396Wm9iyxXUkyaVEEGAzZ1qb\nZpCXlSjJ+efbDbt5s+tIgue776xpKMjLSpSkUiUrWE2f7jqS5FIiCLCwltrAbtisrODdsF4wcya0\naxfOAgZYbTNozY5KBAGWm2sXbVgF8Yb1gjAXMOBws2OQVshXIgiobdtsM/GOHV1H4k5sAbog3bBe\nEPYCxtln29aVa9e6jiR5lAgCKi8PuncP3mbiiTjrLFsk7LPPXEcSHN98Y0tLhLmAkZERvMEISgQB\nlZsb7uo7BPOGdW36dOskrlzZdSRuBW14shJBQE2bFu7qe0yfPkoEyaQChund25JiUJalViIIoPXr\nbQ/ZMCw7XZpevSA/Pzg3rGu5ufZ/GnZNm9qy1H7ax/hYlAgCKHazhmHZ6dI0aQL16wfnhnXpiy9s\nX4uwLDtdmiCNStOjIoCmT1ezUFG9emk+QTJMn64CRlGx5qEg0K80YCIRDe87UpBKbi7FEoGYrCyb\nXHfwoOtIyk+JIGBWr7YRHaed5joS7wjSDetKJKJEcKS6dSEz09bz8jslgoCJ3axh2TUqHrEbdv58\n15H41+rVtmxHZqbrSLwlKLVNJYKAUamteEFqz3VBBYziBaX/SYkgQAoLbaikEsHRgnLDuqICRvEu\nuMCahvbtcx1J+SgRBMjSpVCvXri2pYzXhRfaDRvE/WZTrbDQlixRIjjaccdB69Ywe7brSMpHiSBA\nVGorWa1a0KYNzJnjOhL/UQHj2ILQT6BEECDTp0PPnq6j8C41D5WN5qUc24gR/p/Fr0QQEAcP2hBJ\nJYKSKRGUjWqax3beeTBqlOsoyifeRNAQuBgYDJyUxPMPAD4GPgVuT+JxQ2fBAmje3KrwUrwuXWD5\nclsmQeITK2BkZbmORFIpnkTwE2AecFn09fzo6/KqCPwLSwYtgVHA2Uk4biip1Fa6atWgQwf44APX\nkfjHwoUqYIRBPIngT0AH4OroVwfgz0k4d0fgM+Bz4CDwKjA0CccNJY3qiI+ahxKjAkY4xJMIMoCt\nRb7fFv1ZeTUBNhT5fmP0Z5Kg77+HefNsiKQcmxJBYpQIwqFSHO+ZAmQDL2MJYCQwOQnnjmsn2dGj\nR//wOisriyw1Vh5l7lxo2RJq13Ydifd16GBbLW7bZktPSMlUwPCP/Px88vPzy/z5eEr2fwS+Bs6L\nfv8B8FaZz3hYZ2A01kcAcCdQCDxU5D2Rb76J6IYtxT33WKfeAw+4jsQfBg2Cn/3Mhv1JyfLz4Y47\nrKAh/pJha4HE3XITT9NQLWxET0dgHZCsOXQLgDOAZkAVrKbxzpFvmjEjSWcLMFXfE9Orl/WpyLFp\nXkp4xJMIRgPnADdhw0jfB5Ixj+4Q8Gus2Wkl8Bqw6sg3qT332PbsgSVLoFs315H4h/oJ4qOJZOER\nTx9BzNfAZqyzuH6Szj+ZUvobdMMe28yZ0K4d1KjhOhL/aNMGNm+Gr76CRo1cR+NNsQJG166uI5F0\niKdG8D9APlYLqAf8HGidwph+JHbDSvFUaktcxYo2QUrNQyWbORPat1cBIyziSQQnA7/DJn3dizXj\npI1u2GNT/0DZqHno2HRdhUs8ieBOYEmqAylJz566YUuyYwd88gl06uQ6Ev9RIjg2JYJw8fyic7ph\nSzZjhrXhVqniOhL/Ofts25tg3TrXkXhPrIDRsaPrSCRdPJ8IWrbUDVuS3FyV2soqI0PDSEuiAkb4\neD4RxG5Y1QqOpup7+fTq5f8NRVJBBYzw8XwiACWC4mzeDJs2Qdu2riPxr9h1FYlrsZPw0ESy8PFF\nIujdWzfskfLybERVxYquI/Gv5s2halVYddQ0xvD66isrYLRr5zoSSSdfJILmzaF6dd2wReXmqtRW\nXhkZwdhvNpmmT1cBI4x8kQhA7blHys3VRLJkiNU2xei6CiffJAKV3A5bu9aWCG7Z0nUk/terl42S\nKShwHYl7kYgSQVj5JhHohj0sdrNmJGN7oJBr2BAaN4ZFi1xH4t7atbaceYsWriORdPNNImjQAJo0\n0Q0LMG2aSm3JpNqmiQ0bVQEjfHyTCEA3LEBhoRaaSzZdV0bNQuHlq0TQp49u2GXL4IQT4JRTXEcS\nHBdeaLtw7d/vOhJ3VMAIN18lgh497Ibdt891JO6o1JZ8J5wA55wDs5O1954PqYARbr5KBLVrQ+vW\n4b5hlQhSo08f63sJK/U7hZuvEgGE+4Y9eNA2DNFEsuQL83UF9m/v29d1FOKK7xJB797hvWHnzoXT\nT4d69VxHEjxdutjM9R07XEeSfvv3w6xZWmguzHyXCDp3htWrYft215GkX06OlVwl+apWhW7dwrks\n9Zw5NnegTh3XkYgrvksEVapA9+7hvGFVfU+tsDYP6boS3yUCCOcN++23NrKje3fXkQRXGK8rUE1T\nfJwIcnJcR5FeeXnWjl2tmutIguvcc2HnTvjiC9eRpM+OHbBype1IJuHly0Rw7rmwZ4+tjRIWOTmq\nvqdahQrhqxXk51vfSNWqriMRl3yZCDIyoF+/cNUK1I6bHmGrbapZSMCniQAsEUyd6jqK9Fi/3qrw\nrVu7jiT4+vWzpBuWVW6nTrV/s4SbbxNBnz62NsqhQ64jSb2pU23+RAXf/rb8o2lTW+k2DKvcrlkD\n331nTa0Sbr59tDRsCKeeCh9+6DqS1MvOhv79XUcRHv372/950MVqA1p2Wlwmgr8Bq4ClwJvA8Yke\noF+/4N+whw7Z+kJKBOkTlmZHFTAkxmUimAqcA7QBPgHuTPQA/fsH/4b98EM4+WRo1Mh1JOFx4YWw\neDHs2uU6ktQ5eNBGDGkAgoDbRJADFEZfzwOaJnqAbt1g+XIb+x1UKrWlX40aNmcjyLPX58yBzEyo\nX991JOIFXukjuB54L9EPVatmySDIm9UoEbgR9GbHqVN1XclhlVJ8/BygYTE/vwuYGH19N3AAeLm4\nA4wePfqH11lZWWRlZf3o7wcMgMmTYcSI8gfrNdu3w4oVWlbChf79YdgwiESC2ZmanQ0PP+w6CkmW\n/Px88vPzy/x515f4tcAvgN7A98X8fSQSiRzzAJ98YsvnbtgQvBt23DgYMwbefdd1JOETidhQ0rw8\nOPNM19Ek19attpz51q22iKMET4Y9DON+IrpsGhoA3AoMpfgkEJczzrAmomXLkhaXZ2RnW41H0i8j\nAwYNstpm0GRnW+FJSUBiXCaCx4FaWPPRYuCJshwkIwMGDoT3Eu5h8LZIxB5CSgTuBPG6Avs3DRrk\nOgrxEq83ppTaNAR2YT/0EMyYkYaI0mTxYhg50pq+xI1du6BJE9i8GWrWdB1NchQUwEknwUcf2b9N\ngslPTUNJk5VlSwJ8+63rSJLn3XfhootcRxFutWtDhw62lElQzJtn81KUBKSoQCSCGjVsGGmQlg9W\nIvCGoPUTqFlIihOIRADBas/dutU2C7ngAteRSOy6iqOF0heUCKQ4gUkEgwfbRV5YWPp7vS42qkOb\nhbjXsqUlgVWrXEdSfps2weefQ+fOriMRrwlMIsjMhDp1YMEC15GUn5qFvCMjw34XEyeW/l6vmzzZ\n1haqlOpppOI7gUkEABdfDO+84zqK8jl0yKb/DxzoOhKJGTIkGIlg4kS7R0SOFLhE4PcbdtYs22dB\nozq8o2dPm7C4davrSMpu714b/aT+ASlOoBJBly7WDvrFF64jKbu337Y1bsQ7qla1JhU/L/WRmwvn\nnw8nnug6EvGiQCWCihWtxDNpkutIyiYSgQkTYOhQ15HIkYYM8Xez49tv67qSkgUqEYC/+wmWL7dR\nT9qk3nsGDbJS9fdlXhXLncJCKxwNGeI6EvGqwCWC/v1h9mx/7i4VaxYK2iqqQVCvHrRp489ZxvPm\n2QY0p53mOhLxqsAlguOOs4lYfpxcpmYhbxsyxJK137z9tmoDcmyBSwRgm9S88YbrKBKzYQOsW6fZ\nxF42bJg9VAsKXEeSGPUPSGkCmQiGDLGx+Hv3uo4kfu+8YxOXNNnHu04/HRo2tCG+frFiBXz3nS2e\nJ1KSQCaC+vVtqNzUqa4jid/48TB8uOsopDSXXuqv2ub48VZDVr+THEsgEwH4q3lo82bbf0CbiXtf\nLBH4ZU2r8eMtZpFjCWwiuOQSmwB04IDrSEr35pvWLFS9uutIpDQtWsDxx9tIHK/7+GPYvt0mWooc\nS2ATQePGdtPm5rqOpHSvvw6XXeY6ConXpZdaSdvrYs1CFQJ7l0uyBPoSuewyGDfOdRTHFmsW0t7E\n/hFLBF7fo0DNQhKvQCeCkSNtbP6+fa4jKVmsWahaNdeRSLxatbJmPC83D336KWzZYjv3iZQm0Img\ncWNo187bk8vGjYOf/MR1FJKIjAy44gp46SXXkZTs5ZetRlyxoutIxA+8PqgsEiln/fvZZy0ReHEE\n0YYNtmzBpk2qEfjNmjXWCfvll1C5sutofiwSgTPPtGSg+QPhlGHjheN+vge6RgA2Nn/aNNi503Uk\nR3vpJSu1KQn4T2amfeXkuI7kaPPnWwdx+/auIxG/CHwiqFPH9v996y3XkfxYJAJjx8LVV7uORMrq\npz+FF190HcXRXnjBYtMkMomX1y+VcjcNgY2eePJJqxl4xcKF1jfw2We6Yf1q61ZbdmLjRlvs0AsO\nHrS+sXnztNpomKlpqBiDB8OSJd7auWzsWLjqKiUBP6tf3xYJ9FJtMzvb+geUBCQRoUgE1arBqFHw\n3HOuIzEHD8Krr1oiEH+75hrvXFcAY8ZYs5BIIrxeHk1K0xDA0qW2e9m6de6H1L3zDvz1rzBzpts4\npPwOHICTT4YPPrCSuEtbtths+s8/t2UwJLz81jT0B6AQSPmW2m3aQIMG3hjl8eST8Mtfuo5CkqFK\nFasV/Oc/riOxmsnw4UoCkjiXNYKTgWeAs4Dzge3FvCdpNQKAp56yDuPXX0/aIRO2bh107Ajr12uR\nuaD45BPrK1i/HqpWdRNDYSGccQa88opdXxJufqoR/B24LZ0nvPxyqxF8/XU6z/pjTz1lQ0aVBILj\nzDPhnHPcbmOZm2sjlzSBTMrCVSIYCmwEPkrnSY8/3hbhevrpdJ71sP37rfp+ww1uzi+p84tfuLuu\nwAoYv/qr2QK9AAAIzElEQVSVRqFJ2aTysskBGhbz87uBu4B+wC5gHdAe2FbMe5PaNASwfDn062dN\nNOmuxr/8siUCL/RTSHLt3w/NmtnvtlWr9J5740Zo3do6iWvXTu+5xZsSbRpK5Q65fUv4eSugObA0\n+n1TYCHQETiq0Wb06NE/vM7KyiIrK6tcQbVqZV+vvZbeWb2RCPzzn3D77ek7p6RP1arw61/DI4+k\nfzjpY49Zh7WSQHjl5+eTn59f5s97oSK5jjR1FsdMngx33mn7AKSrKp2fb1X3lSvdD1+V1Ni2zWYa\nr1hhs3vT4dtvbfLYokVw6qnpOad4n586i2PSvr1H//5WlS9HAk3Ygw/CbbcpCQRZ3bo2mevxx9N3\nzqeesk2NlASkPLxQIziWlNQIAJ55xpamnjIlJYf/kcWLbTLbmjXuhhdKeqxZA506WXt9rVqpPdeB\nA9C8ue3Nfd55qT2X+IsfawROXHMNrF6dntm9Dz0Et9yiJBAGmZnQuzf861+pP9cLL9iwVSUBKa/Q\n1gjAOvXGjIG8vNT1FaxYAT17WknRKytUSmqtXg3du9tEszp1UnOOffts/sK4cbZBjkhRqhEk4Kqr\nbHew3NzUneO22+Cuu5QEwuSss2DYMOsXSpXHH7fJY0oCkgyhrhGATcn/xz9g7tzk1wqmTYMbb7Ra\nQZUqyT22eFtsbP+yZdCkSXKPvX27JZuZM+1PkSOpRpCgkSOhoACefz65xy0ogD/8wfoHlATCp2lT\n+PnP4Z57kn/s+++3xeWUBCRZQl8jABuDPXCgzTquXz85x3z6aevMe/99TfsPq2+/tcmLY8bYdqnJ\nsGQJ9O0LH30EjRol55gSPInWCLz+iEpLIgArvX/9tT28y2vtWhtCmJeX/uUGxFsmTYLf/tYe3DVr\nlu9YBw7YyqK/+x1ce21SwpOAUiIooz177KH9739b7aCsCgqgRw+rut9yS/LiE/+66iqoVw8efbR8\nxxk9GhYsgIkTVcuUY1MiKIcZM2xD+VmzbKmAsnjgAVt4bNo0qBD6HhgBW3qidWvbkOjii8t2jFmz\nbCTSkiXJ73yW4FFncTn06AH33gtDh8Lu3Yl//o03bGG5559XEpDD6ta1De6vv976oxK1ejWMGGHN\nlkoCkgqqERx1QtsvYMMGGD8eatSI73M5OXDllZCdDW3bpjZG8ac33rD+gtmz4ZRT4vvMli02V+BP\nf7JEIhIP1QjKKSPDJuvUq2c1hK++Kv0zb70FV1wBb76pJCAlGzHCliHv2tWaekqzeLHNUL7uOiUB\nSS0lgmJUqWJD/oYOhc6dbY/jgoKj3/fttzZ649ZbrQOve/e0hyo+c/PNtuDh8OHw8MPw3XdHv+fA\nAXjiCdtA6b774M9/Tn+cEi5qGipFdraN1ti2zTqSGzSASpVg6lSYPh1GjbIbOtUrTUqwrF1rw0Bn\nzbK9tFu0sOtq1Sqb7d6qlXUua9KYlIVGDaUkCPjgA3vwb90Ke/faQnIXXWQdgSJltWEDjB0LmzfD\noUM2SeynP7XNZkTKSolARCTk1FksIiIJUSIQEQk5JQIRkZBTIhARCTklAhGRkFMiEBEJOSUCEZGQ\nUyIQEQk5JQIRkZBTIhARCTklAhGRkFMiEBEJOZeJ4GZgFbAceMhhHCIioeYqEfQEhgCtgVbAw47i\nSKn8/HzXIZSL4nfLz/H7OXbwf/yJcpUIbgQeAA5Gv9/qKI6U8vvFpPjd8nP8fo4d/B9/olwlgjOA\nC4G5QD7Q3lEcIiKhVymFx84BGhbz87uj560DdAY6AOMA7ckkIuKAqx3KJgMPAjOi338GdAK2HfG+\nz4DMNMYlIhIEa4DTXQdRml8Bf4m+PhNY7zAWERFxoDLwArAMWAhkOY1GRERERES8ZwDwMfApcLvj\nWBJ1MpAHrMAmzP3GbThlUhFYDEx0HUgZnACMxyYsrsQGJfjJndi1swx4GajqNpxS/RfYgsUbcyI2\nYOQTYCr2O/Gq4uL/G3b9LAXeBI53EFe8ios/5g9AIfb78J2KWEdxM6wZaQlwtsuAEtQQOC/6uhaw\nGn/FD3AL8BLwjutAymAMcH30dSW8fRMfqRmwlsMP/9eAa5xFE58LgLb8+EH0V+C26OvbscEhXlVc\n/H05PLz+QfwXP1iBdAqwDp8mgi7YPyDmjuiXX00AersOIgFNgWnYDHC/1QiOxx6kfnUiVnCogyWx\niUAfpxHFpxk/fhB9DDSIvm4Y/d7LmlF8iRrgEuDF9IVSJs04Ov7XsdUbSk0EXl10rgmwocj3G6M/\n86NmWLae5ziORDwK3IpVKf2mOTZT/TlgEfAMUMNpRInZDjyCjaTbBOzEkrLfNMCaK4j+2eAY7/W6\n64H3XAeRoKHYc/OjeN7s1UQQcR1AktTC2qp/C+xxHEu8BgNfY/0DruaZlEcloB3wRPTP7/BXbTIT\n+B1WgGiMXUNXugwoCSL4956+GziA9dX4RQ3gLuDeIj875r3s1UTwJda+FXMylt38pDLwBlalnOA4\nlkR0xRYEXAe8AvQCxjqNKDEbo18fRr8fjyUEv2gPzMYmVx7COiq7Oo2obLZweGWBRljhwm+uBQbh\nv0SciRUklmL3cVNsmP5JDmMqk0rYzLhmQBX811mcgT08H3UdSDn1wH99BADvYxMVAUbjr2XO22Aj\nzapj19EY4CanEcWnGUd3FsdG+92Btztb4ej4B2Ajt+o5iSZxzSi5j8O3ncUAA7FOs8+w4XR+0h1r\nX1+CNbEsxi4sv+mBP0cNtcFqBH4Y+lec2zg8fHQMVrv0slew/owDWN/eddiDZxr+GD56ZPzXY8PW\nv+Dw/fuEs+hKF4t/P4f//4tai48TgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIgHHA/c6DoIERFxpxkl\nz+IUEZEQeBXYi8049dPyFSIikiSnohqBBIhXVx8V8TI/Ls8tUiIlAhGRkFMiEEncbuA410GIJIsS\ngUjitgGzsH4CdRaLiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIP/x//Moob4qorpwAAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f41141b6f90>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output voltage is -10.0 V peak to peak\n"
]
}
],
"source": [
"%matplotlib inline\n",
"\n",
"from __future__ import division #to perform decimal division\n",
"from matplotlib.pyplot import ylabel, xlabel, title, plot, show\n",
"import matplotlib.pyplot as plt\n",
"import math\n",
"import numpy as np\n",
"#Variable declaration\n",
"R1=470 #Resistance in ohms\n",
"Rf=4.7*10**3 #Feedback Resistance in Ohms \n",
"A=200000 #Open-loop voltage gain\n",
"vin=1 #input voltage in Volts\n",
"\n",
"\n",
"\n",
"#calculation\n",
"K=Rf/(R1+Rf) #Voltage attenuation factor\n",
"B=R1/(R1+Rf) #Gain of the feedback circuit\n",
"Af=-A*K/(1+A*B) #Closed-loop voltage gain\n",
"vo=Af*vin #output voltage\n",
"\n",
"x=np.arange(0,4*math.pi,0.1)\n",
"y=-5*np.sin(x)\n",
"plt.plot(x,y)\n",
"plt.ylabel('vo')\n",
"plt.xlabel('t')\n",
"plt.title(r'$output voltage$')\n",
"plt.show()\n",
"#Result\n",
"print \"Output voltage is\",round(vo),\"V peak to peak\""
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 3.5_a & 3.5_b"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Voltage gain is -10.0\n",
"Input resistance of inverting amplifier is 1.0 kilo ohms\n",
"Input resistance of noninverting amplifier is 11.0 kilo ohms\n",
"Output voktage is 3.0 V peak to peak at 100 Hz\n"
]
}
],
"source": [
"#Example 3.5_a & 3.5_b\n",
"#For the circuit of figure 3_14,R1=R2=1 kilo ohm and the opamp is 741 IC.\n",
"#a) What are the gain and input resistance of the amplifier?\n",
"#b) Calculate output voltage vo if vx=2.7 V pp and vy=3 V pp sine waves at 100 Hz\n",
"\n",
"\n",
"\n",
"from __future__ import division #to perform decimal division\n",
"\n",
"#Variable declaration\n",
"R1=1000 #Resistance in ohms\n",
"R2=1000 #Resistance in ohms\n",
"Rf=10*10**3 #Feedback Resistance in Ohms\n",
"R3=10*10**3\n",
"vx=2.7 #input voltage in Volts\n",
"vy=3 #input voltage in Volts\n",
"\n",
"\n",
"#calculation\n",
"#part a\n",
"AD=-Rf/R1 #voltage gain\n",
"RiFx=R1 #Input resistance of inverting amplifier\n",
"RiFy=R2+R3 #Input resistance of noninverting amplifier\n",
"#part b\n",
"vxy=vx-vy\n",
"vo=AD*vxy #output volatage\n",
"\n",
"#Result\n",
"print \"Voltage gain is\",AD\n",
"print \"Input resistance of inverting amplifier is\",RiFx/10**3,\"kilo ohms\"\n",
"print \"Input resistance of noninverting amplifier is\",round(RiFy/10**3),\"kilo ohms\"\n",
"print \"Output voktage is\",vo,\"V peak to peak at 100 Hz\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Example 3.6_a & 3.6_b"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Voltage gain is 11.0\n",
"Input resistance of first stage amplifier is 364.0 Giga ohms\n",
"Input resistance of second stage amplifier is 36.4 Giga ohms\n",
"Output voLtage is 5.5 V peak to peak at 1 KHz\n"
]
}
],
"source": [
"#Example 3.6_a & 3.6_b\n",
"#For the differential amplifier of figure 3_16, R1=R3=680 ohm, Rf=R2=6.8 Kilo ohm\n",
"#vx=-1.5 V pp, vy=-2 V pp sine waves at 1 KHz and the opamp is 741 IC.\n",
"#a) What are the gain and input resistance of the amplifier?\n",
"#b) Calculate output voltage of the amplifier.(Assume vooT=0V)\n",
"\n",
"\n",
"\n",
"from __future__ import division #to perform decimal division\n",
"\n",
"#Variable declaration\n",
"R1=680 #Resistance in ohms\n",
"R2=6800 #Resistance in ohms\n",
"Rf=6800 #Feedback Resistance in Ohms\n",
"R3=680\n",
"Ri=2*10**6 #Open loop input resistance of the opamp\n",
"vx=-1.5 #input voltage in Volts\n",
"vy=-2 #input voltage in Volts\n",
"A=200000 #openloop gain\n",
"\n",
"\n",
"#calculation\n",
"#part a\n",
"AD=1+Rf/R1 #voltage gain\n",
"B=R2/(R2+R3)\n",
"RiFy=Ri*(1+A*B) #Input resistance of first stage amplifier\n",
"B=R1/(R1+Rf)\n",
"RiFx=Ri*(1+A*B) #Input resistance of second stage amplifier\n",
"#part b\n",
"vxy=vx-vy\n",
"vo=AD*vxy #output volatage\n",
"\n",
"#Result\n",
"print \"Voltage gain is\",AD\n",
"print \"Input resistance of first stage amplifier is\",round(RiFy/10**9),\"Giga ohms\"\n",
"print \"Input resistance of second stage amplifier is\",round(RiFx/10**9,1),\"Giga ohms\"\n",
"print \"Output voLtage is\",vo,\"V peak to peak at 1 KHz\"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|