1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
{
"metadata": {
"name": "",
"signature": "sha256:308367390142ca69701c27a60b649f58dec3483f71d5fe87366628b17198229c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter10-Nuclear reactions"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg455"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.1 : : Page-455 (2011) \n",
"#calculate The Q-value for the fromation\n",
"import math\n",
"M = 47.668; ## Total mass of reaction, MeV\n",
"E = 44.359; ## Total energy, MeV\n",
"Q = M-E; ## Q-value, MeV\n",
"print'%s %.2f %s'%(\"\\nThe Q-value for the formation of P30 = \",Q,\" MeV\");\n",
"\n",
"## Result\n",
"## The Q-value for the formation of P30 = 3.309 MeV "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The Q-value for the formation of P30 = 3.31 MeV\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg455"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.2 : : Page-455 (2011) \n",
"#calculate The Q-value for the reaction\n",
"import math\n",
"E_x = 7.70; ## Energy of the alpha particle, MeV\n",
"E_y = 4.44; ## Energy of the proton, MeV\n",
"m_x = 4.0; ## Mass number of alpha particle\n",
"m_y = 1.0; ## Mass number of protium ion\n",
"M_X = 14; ## Mass number of nitrogen nucleus\n",
"M_Y = 17; ## Mass number of oxygen nucleus\n",
"theta = 90*3.14/180.; ## Angle between incident beam direction and emitted proton, degree\n",
"A_x = 4.0026033; ## Atomic mass of alpha particle, u\n",
"A_X = 14.0030742; ## Atomic mass of nitrogen nucleus, u\n",
"A_y = 1.0078252; ## Atomic mass of proton, u\n",
"Q = ((E_y*(1+m_y/M_Y))-(E_x*(1-m_x/M_Y))-2./M_Y*math.sqrt((m_x*m_y*E_x*E_y))*math.cos(theta))/931.5; ## Q-value, u\n",
"A_Y = A_x+A_X-A_y-Q; ## Atomic mass of O-17, u\n",
"print'%s %.4f %s %.2f %s '%(\"\\nThe Q-value of the reaction = \",Q,\" u\" \" \\nThe atomic mass of the O-17 =\",A_Y,\" u\");\n",
"\n",
"## Result\n",
"## The Q-value of the reaction = -0.0012755 u \n",
"## The atomic mass of the O-17 = 16.9991278 u \n",
"## Atomic mass of the O-17 : 16.9991278 u "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The Q-value of the reaction = -0.0013 u \n",
"The atomic mass of the O-17 = 17.00 u \n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg455"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.3 : : Page-455 (2011) \n",
"#calculate The kinetic energy of the emitted neutron \n",
"import math\n",
"m_p = 1.007276; ## Atomic mass of the proton, u\n",
"m_H = 3.016049; ## Atomic mass of the tritium, u \n",
"m_He = 3.016029; ## Atomic mass of the He ion, u \n",
"m_n = 1.008665; ## Atomic mass of the emitted neutron, u\n",
"Q = (m_p+m_H-m_He-m_n)*931.5; ## Q-value in MeV\n",
"E_p = 3.; ## Kinetic energy of the proton, MeV \n",
"theta = 30*3.14/180; ## angle, radian\n",
"u = math.sqrt(m_p*m_n*E_p)/(m_He+m_n)*math.cos(theta); ##\n",
"v = ((m_He*Q)+E_p*(m_He-m_p))/(m_He+m_n); ##\n",
"E_n = (u+math.sqrt(u**2+v))**2; ## Kinetic energy of the emitted neutron,MeV\n",
"print'%s %.2f %s'%(\"\\nThe kinetic energy of the emitted neutron = \",E_n,\" MeV\");\n",
"\n",
"## Result\n",
"## The kinetic energy of the emitted neutron = 1.445 MeV "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The kinetic energy of the emitted neutron = 1.45 MeV\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg456"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.4 : : Page-456 (2011)\n",
"#findThe temperature in the fusion reaction \n",
"import math\n",
"r_min = 4e-015; ## Distance between two deutrons, metre\n",
"k = 1.3806504e-023; ## Boltzmann's constant, Joule per kelvin\n",
"alpha = 1/137.; ## Fine structure constant\n",
"h_red = 1.05457168e-034; ## Reduced planck's constant, Joule sec\n",
"C = 3e+08; ## Velocity of light, meter per second\n",
"T = alpha*h_red*C/(r_min*k);\n",
"print'%s %.2e %s'%(\"\\nThe temperature in the fusion reaction is =\",T,\" K\");\n",
"\n",
"## Result\n",
"## The temperature in the fusion reaction is = 4.2e+009 K "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The temperature in the fusion reaction is = 4.18e+09 K\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg456"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa11.5 : : Page-456 (2011) \n",
"#find the excitation energy of the compound nucleus\n",
"import math\n",
"E_0 = 4.99; ## Energy of the proton, MeV \n",
"m_p = 1.; ## Mass number of the proton\n",
"m_F = 19.; ## Mass number of the flourine\n",
"E = E_0/(1+m_p/m_F); ## Energy of the relative motion, MeV\n",
"A_F = 18.998405; ## Atomic mass of the fluorine, amu\n",
"A_H = 1.007276; ## Atomic mass of the proton, amu\n",
"A_Ne = 19.992440; ## Atomic mass of the neon, amu\n",
"del_E = (A_F+A_H-A_Ne)*931.5; ## Binding energy of the absorbed proton, MeV\n",
"E_exc = E+del_E; ## Excitation energy of the compound nucleus, MeV\n",
"print'%s %.2f %s'%(\"\\nThe excitation energy of the compound nucleus = \",E_exc,\" MeV\");\n",
"\n",
"## Result\n",
"## The excitation energy of the compound nucleus = 17.074 MeV "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The excitation energy of the compound nucleus = 17.07 MeV\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg457"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.6 : : Page-457 (2011) \n",
"#find The excitation energy of the compound nucleus and The parity of the compound nucleus\n",
"import math\n",
"E_d = 0.6; ## Energy of the deutron, MeV \n",
"m_d = 2.; ## Mass number of the deutron\n",
"m_Li = 19.; ## Mass number of the Lithium\n",
"E = E_d/(1.+m_d/m_Li); ## Energy of the relative motion, MeV\n",
"A_Li = 6.017; ## Atomic mass of the Lithium, amu\n",
"A_d = 2.015; ## Atomic mass of the deutron, amu\n",
"A_Be = 8.008; ## Atomic mass of the Beryllium, amu\n",
"del_E = (A_Li+A_d-A_Be)*931.5; ## Binding energy of the absorbed proton, MeV\n",
"E_exc = E+del_E; ## Excitation energy of the compound nucleus, MeV\n",
"l_f = 2.; ## orbital angular momentum of two alpha particle\n",
"P = (-1)**l_f*(+1.)**2; ## Parity of the compound nucleus\n",
"print'%s %.2f %s %.2f %s '%(\"\\nThe excitation energy of the compound nucleus = \",E_exc,\" MeV\" and \"\\nThe parity of the compound nucleus = \",P,\"\");\n",
"\n",
"## Result\n",
"## The excitation energy of the compound nucleus = 22.899 MeV\n",
"## The parity of the compound nucleus = 1 \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The excitation energy of the compound nucleus = 22.90 \n",
"The parity of the compound nucleus = 1.00 \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg457"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.7 : : Page-457 (2011)\n",
"#find The cross section for neutron induced fission\n",
"import math\n",
"D = 1e-016; ## Disintegration constant, per sec\n",
"phi = 10**11; ## Neutron flux, neutrons per square cm per sec\n",
"sigma = 5*D/(phi*10**-27); ## Cross section, milli barns\n",
"print'%s %.2f %s'%(\"\\nThe cross section for neutron induced fission = \",sigma,\" milli barns\");\n",
"\n",
"## Result\n",
"## The cross section for neutron induced fission = 5 milli barns "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The cross section for neutron induced fission = 5.00 milli barns\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg457"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.8 : : Page-457 (2011)\n",
"#find The number of nuclei of Co60 produced and The initial activity\n",
"import math\n",
"N_0 = 6.02252e+026; ## Avogadro's constant \n",
"rho = 8.9*10**3; ## Nuclear density of Co-59, Kg per cubic metre\n",
"M = 59.; ## Mass number\n",
"sigma = 30e-028; ## Cross section, per square metre\n",
"phi = 10**16; ## Neutron flux, neutrons per square metre per sec\n",
"d = 0.04e-02; ## Thickness of Co-59 sheet, metre\n",
"t = 3*60*60; ## Total reaction time, sec\n",
"t_half = 5.2*365*86400; ## Half life of Co-60, sec \n",
"D = 0.693/t_half; ## Disintegration constant, per sec\n",
"N_nuclei = round(N_0*rho/M*sigma*phi*d*t); ## Number of nuclei of Co-60 produced\n",
"Init_activity = D*N_nuclei; ## Initial activity, decays per sec\n",
"print'%s %.2e %s %.2f %s '%(\"\\nThe number of nuclei of Co60 produced =\",N_nuclei,\" \" and \"\\nThe initial activity per Sq. metre = \",Init_activity,\" decays per sec\");\n",
"\n",
"## Result\n",
"## The number of nuclei of Co60 produced = 1.18e+019 \n",
"## The initial activity per Sq. metre = 5e+010 decays per sec "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The number of nuclei of Co60 produced = 1.18e+19 \n",
"The initial activity per Sq. metre = 49755893720.42 decays per sec \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg458"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.9 : : Page-458 (2011)\n",
"#find The number of events detected\n",
"import math\n",
"d = 0.1; ## Thickness of Fe-54 sheet, Kg per squre metre\n",
"M = 54.; ## Mass number of Fe \n",
"m = 1.66e-027; ## Mass of the proton, Kg\n",
"n = d/(M*m); ## Number of nuclei in unit area of the target, nuclei per square metre\n",
"ds = 10**-5; ## Area, metre square\n",
"r = 0.1; ## Distance between detector and target foil, metre\n",
"d_omega =ds/r**2; ## Solid angle, steradian\n",
"d_sigma = 1.3e-03*10**-3*10**-28; ## Differential cross section, square metre per nuclei\n",
"P = d_sigma*n; ## Probablity, event per proton\n",
"I = 10**-7; ## Current, ampere\n",
"e = 1.6e-19; ## Charge of the proton, C\n",
"N = I/e; ## Number of protons per second in the incident beam, proton per sec\n",
"dN = P*N; ## Number of events detected per second, events per sec\n",
"print'%s %.2f %s'%(\"\\nThe number of events detected =\",dN,\" events per sec\");\n",
"\n",
"## Result\n",
"## The number of events detected = 90 events per sec "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The number of events detected = 90.64 events per sec\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg458"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.10 : : Page-458 (2011)\n",
"#find The fractional attenuation of neutron beam on passing through nickel sheet\n",
"import math\n",
"N_0 = 6.02252e+26; ## Avogadro's constant\n",
"sigma = 3.5e-28; ## Cross section, square metre\n",
"rho = 8.9e+03; ## Nuclear density, Kg per cubic metre\n",
"M = 58.; ## Mass number \n",
"summation = rho/M*N_0*sigma; ## Macroscopic cross section, per metre\n",
"x = 0.01e-02; ## Thickness of nickel sheet, metre\n",
"I0_ratio_I = math.exp(summation*x/2.3026); ## Fractional attenuation of neutron beam on passing through nickel sheet\n",
"print'%s %.2f %s ' %(\"\\nThe fractional attenuation of neutron beam on passing through nickel sheet =\", I0_ratio_I,\"\");\n",
"print(\"Wrong answer given in the textbook\")\n",
"## Result\n",
"## The fractional attenuation of neutron beam on passing through nickel sheet = 1.0014 \n",
"## Wrong answer given in the textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The fractional attenuation of neutron beam on passing through nickel sheet = 1.00 \n",
"Wrong answer given in the textbook\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg458"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.11 : : Page-458 (2011)\n",
"#find he scattering contribution to the resonance \n",
"import math\n",
"D = math.sqrt(1.45e-021/(4.*math.pi)); ## Wavelength, metre\n",
"W_ratio = 2.3e-07; ## Width ratio\n",
"sigma = W_ratio*(4*math.pi)*D**2*10**28; ## Scattering contribution, barn\n",
"print'%s %.2f %s'%(\"\\nThe scattering contribution to the resonance = \",sigma,\" barns\");\n",
"\n",
"## Result\n",
"## The scattering contribution to the resonance = 3.33 barns \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The scattering contribution to the resonance = 3.33 barns\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex12-pg458"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.12 : : Page-458 (2011)\n",
"#find The relative probabilities\n",
"import math\n",
"sigma = 2.8e-024; ## Cross section, metre square\n",
"D = 2.4e-11; ## de Broglie wavelength, metre\n",
"R_prob = math.pi*sigma/D**2; ## Relative probabilities of (n,n) and (n,y) in indium\n",
"print'%s %.2f %s'%(\"\\nThe relative probabilities of (n,n) and (n,y) in indium = \", R_prob,\"\");\n",
"\n",
"## Result\n",
"## The relative probabilities of (n,n) and (n,y) in indium = 0.015 \n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The relative probabilities of (n,n) and (n,y) in indium = 0.02 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13-pg459"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.13 : : Page-459 (2011)\n",
"#find The cross section of neutron capture\n",
"import math\n",
"h = 6.625e-34; ## Planck's constant, joule sec \n",
"m_n = 1.67e-27; ## Mass of neutron, Kg\n",
"E = 4.906; ## Energy, joule \n",
"w_y = 0.124; ## radiation width, eV\n",
"w_n = 0.007*E**(1/2.); ## Probability of elastic emission of neutron, eV\n",
"I = 3.; ## Total angular momentum\n",
"I_c = 2.; ## Total angular momentum in the compound state\n",
"sigma = ((h**2)*(2*I_c+1)*w_y*w_n)*10**28/(2.*math.pi*m_n*E*1.602e-019*(2*I+1)*(w_y+w_n)**2); ## Cross section, barns\n",
"print'%s %.3e %s'%(\"\\nThe cross section of neutron capture = \",sigma,\" barns\");\n",
"\n",
"## Result\n",
"## The cross section of neutron capture = 3.755e+004 barns \n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The cross section of neutron capture = 3.755e+04 barns\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex14-pg459"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.14 : : Page-459 (2011)\n",
"#fid the value of theta max\n",
"import math\n",
"import numpy\n",
"R = 5.; ## Radius, femto metre\n",
"k_d = 0.98; ## The value of k for deutron \n",
"k_p = 0.82; ## The value of k for triton\n",
"theta = numpy.zeros((1,5)); ## Angles at which differetial cross section is maximum, degree\n",
"## Use of for loop for angles calculation(in degree)\n",
"for l in range (1,4):\n",
" theta = round((math.acos((k_d**2+k_p**2)/(2.*k_d*k_p)-l**2/(2.*k_d*k_p*R**2)))*180./3.14,0);\n",
" #theta = round((acos((k_d^2+k_p^2)/(2*k_d*k_p)-l^2/(2*k_d*k_p*R^2)))*180/3.14);\n",
" print'%s %.2f %s'%(\"\\nFor l = \", l,\"\");\n",
" print'%s %.2f %s'%(\"the value of theta_max = \", math.ceil(theta),\"degree\");\n",
" \n",
"\n",
"## Result\n",
"## For l = 0,the value of theta_max = 0 degree\n",
"## For l = 1,the value of theta_max = 8 degree\n",
"## For l = 2,the value of theta_max = 24 degree\n",
"## For l = 3,the value of theta_max = 38 degree\n",
"## For l = 4,the value of theta_max = 52 degree "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"For l = 1.00 \n",
"the value of theta_max = 8.00 degree\n",
"\n",
"For l = 2.00 \n",
"the value of theta_max = 24.00 degree\n",
"\n",
"For l = 3.00 \n",
"the value of theta_max = 38.00 degree\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex15-pg459"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"## Exa10.15 : : Page-459 (2011)\n",
"#calculate total angular momentum transfer\n",
"import math\n",
"k_d = 2.02e+30; ## The value of k for deutron\n",
"k_t = 2.02e+30; ## The value of k for triton\n",
"theta = 23*3.14/180; ## Angle, radiams\n",
"q = math.sqrt (k_d+k_t-2*k_t*math.cos(theta))*10**-15; ## the value of q in femto metre\n",
"R_0 = 1.2; ## Distance of closest approach, femto metre\n",
"A = 90.; ## Mass number of Zr-90\n",
"z = 4.30; ## Deutron size, femto metre\n",
"R = R_0*A**(1/3.)+1/2.*z; ## Radius of the nucleus, femto metre\n",
"l = round(q*R); ## Orbital angular momentum\n",
"I = l+1./2. ## Total angular momentum\n",
"print'%s %.2f %s'%(\"\\nThe total angular momentum transfer = \", I,\"\");\n",
"\n",
"## Result\n",
"## The total angular momentum transfer = 4.5 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The total angular momentum transfer = 4.50 \n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|