{ "metadata": { "name": "", "signature": "sha256:308367390142ca69701c27a60b649f58dec3483f71d5fe87366628b17198229c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter10-Nuclear reactions" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.1 : : Page-455 (2011) \n", "#calculate The Q-value for the fromation\n", "import math\n", "M = 47.668; ## Total mass of reaction, MeV\n", "E = 44.359; ## Total energy, MeV\n", "Q = M-E; ## Q-value, MeV\n", "print'%s %.2f %s'%(\"\\nThe Q-value for the formation of P30 = \",Q,\" MeV\");\n", "\n", "## Result\n", "## The Q-value for the formation of P30 = 3.309 MeV " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The Q-value for the formation of P30 = 3.31 MeV\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.2 : : Page-455 (2011) \n", "#calculate The Q-value for the reaction\n", "import math\n", "E_x = 7.70; ## Energy of the alpha particle, MeV\n", "E_y = 4.44; ## Energy of the proton, MeV\n", "m_x = 4.0; ## Mass number of alpha particle\n", "m_y = 1.0; ## Mass number of protium ion\n", "M_X = 14; ## Mass number of nitrogen nucleus\n", "M_Y = 17; ## Mass number of oxygen nucleus\n", "theta = 90*3.14/180.; ## Angle between incident beam direction and emitted proton, degree\n", "A_x = 4.0026033; ## Atomic mass of alpha particle, u\n", "A_X = 14.0030742; ## Atomic mass of nitrogen nucleus, u\n", "A_y = 1.0078252; ## Atomic mass of proton, u\n", "Q = ((E_y*(1+m_y/M_Y))-(E_x*(1-m_x/M_Y))-2./M_Y*math.sqrt((m_x*m_y*E_x*E_y))*math.cos(theta))/931.5; ## Q-value, u\n", "A_Y = A_x+A_X-A_y-Q; ## Atomic mass of O-17, u\n", "print'%s %.4f %s %.2f %s '%(\"\\nThe Q-value of the reaction = \",Q,\" u\" \" \\nThe atomic mass of the O-17 =\",A_Y,\" u\");\n", "\n", "## Result\n", "## The Q-value of the reaction = -0.0012755 u \n", "## The atomic mass of the O-17 = 16.9991278 u \n", "## Atomic mass of the O-17 : 16.9991278 u " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The Q-value of the reaction = -0.0013 u \n", "The atomic mass of the O-17 = 17.00 u \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.3 : : Page-455 (2011) \n", "#calculate The kinetic energy of the emitted neutron \n", "import math\n", "m_p = 1.007276; ## Atomic mass of the proton, u\n", "m_H = 3.016049; ## Atomic mass of the tritium, u \n", "m_He = 3.016029; ## Atomic mass of the He ion, u \n", "m_n = 1.008665; ## Atomic mass of the emitted neutron, u\n", "Q = (m_p+m_H-m_He-m_n)*931.5; ## Q-value in MeV\n", "E_p = 3.; ## Kinetic energy of the proton, MeV \n", "theta = 30*3.14/180; ## angle, radian\n", "u = math.sqrt(m_p*m_n*E_p)/(m_He+m_n)*math.cos(theta); ##\n", "v = ((m_He*Q)+E_p*(m_He-m_p))/(m_He+m_n); ##\n", "E_n = (u+math.sqrt(u**2+v))**2; ## Kinetic energy of the emitted neutron,MeV\n", "print'%s %.2f %s'%(\"\\nThe kinetic energy of the emitted neutron = \",E_n,\" MeV\");\n", "\n", "## Result\n", "## The kinetic energy of the emitted neutron = 1.445 MeV " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The kinetic energy of the emitted neutron = 1.45 MeV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg456" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.4 : : Page-456 (2011)\n", "#findThe temperature in the fusion reaction \n", "import math\n", "r_min = 4e-015; ## Distance between two deutrons, metre\n", "k = 1.3806504e-023; ## Boltzmann's constant, Joule per kelvin\n", "alpha = 1/137.; ## Fine structure constant\n", "h_red = 1.05457168e-034; ## Reduced planck's constant, Joule sec\n", "C = 3e+08; ## Velocity of light, meter per second\n", "T = alpha*h_red*C/(r_min*k);\n", "print'%s %.2e %s'%(\"\\nThe temperature in the fusion reaction is =\",T,\" K\");\n", "\n", "## Result\n", "## The temperature in the fusion reaction is = 4.2e+009 K " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The temperature in the fusion reaction is = 4.18e+09 K\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg456" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.5 : : Page-456 (2011) \n", "#find the excitation energy of the compound nucleus\n", "import math\n", "E_0 = 4.99; ## Energy of the proton, MeV \n", "m_p = 1.; ## Mass number of the proton\n", "m_F = 19.; ## Mass number of the flourine\n", "E = E_0/(1+m_p/m_F); ## Energy of the relative motion, MeV\n", "A_F = 18.998405; ## Atomic mass of the fluorine, amu\n", "A_H = 1.007276; ## Atomic mass of the proton, amu\n", "A_Ne = 19.992440; ## Atomic mass of the neon, amu\n", "del_E = (A_F+A_H-A_Ne)*931.5; ## Binding energy of the absorbed proton, MeV\n", "E_exc = E+del_E; ## Excitation energy of the compound nucleus, MeV\n", "print'%s %.2f %s'%(\"\\nThe excitation energy of the compound nucleus = \",E_exc,\" MeV\");\n", "\n", "## Result\n", "## The excitation energy of the compound nucleus = 17.074 MeV " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The excitation energy of the compound nucleus = 17.07 MeV\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg457" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.6 : : Page-457 (2011) \n", "#find The excitation energy of the compound nucleus and The parity of the compound nucleus\n", "import math\n", "E_d = 0.6; ## Energy of the deutron, MeV \n", "m_d = 2.; ## Mass number of the deutron\n", "m_Li = 19.; ## Mass number of the Lithium\n", "E = E_d/(1.+m_d/m_Li); ## Energy of the relative motion, MeV\n", "A_Li = 6.017; ## Atomic mass of the Lithium, amu\n", "A_d = 2.015; ## Atomic mass of the deutron, amu\n", "A_Be = 8.008; ## Atomic mass of the Beryllium, amu\n", "del_E = (A_Li+A_d-A_Be)*931.5; ## Binding energy of the absorbed proton, MeV\n", "E_exc = E+del_E; ## Excitation energy of the compound nucleus, MeV\n", "l_f = 2.; ## orbital angular momentum of two alpha particle\n", "P = (-1)**l_f*(+1.)**2; ## Parity of the compound nucleus\n", "print'%s %.2f %s %.2f %s '%(\"\\nThe excitation energy of the compound nucleus = \",E_exc,\" MeV\" and \"\\nThe parity of the compound nucleus = \",P,\"\");\n", "\n", "## Result\n", "## The excitation energy of the compound nucleus = 22.899 MeV\n", "## The parity of the compound nucleus = 1 \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The excitation energy of the compound nucleus = 22.90 \n", "The parity of the compound nucleus = 1.00 \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg457" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.7 : : Page-457 (2011)\n", "#find The cross section for neutron induced fission\n", "import math\n", "D = 1e-016; ## Disintegration constant, per sec\n", "phi = 10**11; ## Neutron flux, neutrons per square cm per sec\n", "sigma = 5*D/(phi*10**-27); ## Cross section, milli barns\n", "print'%s %.2f %s'%(\"\\nThe cross section for neutron induced fission = \",sigma,\" milli barns\");\n", "\n", "## Result\n", "## The cross section for neutron induced fission = 5 milli barns " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The cross section for neutron induced fission = 5.00 milli barns\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg457" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.8 : : Page-457 (2011)\n", "#find The number of nuclei of Co60 produced and The initial activity\n", "import math\n", "N_0 = 6.02252e+026; ## Avogadro's constant \n", "rho = 8.9*10**3; ## Nuclear density of Co-59, Kg per cubic metre\n", "M = 59.; ## Mass number\n", "sigma = 30e-028; ## Cross section, per square metre\n", "phi = 10**16; ## Neutron flux, neutrons per square metre per sec\n", "d = 0.04e-02; ## Thickness of Co-59 sheet, metre\n", "t = 3*60*60; ## Total reaction time, sec\n", "t_half = 5.2*365*86400; ## Half life of Co-60, sec \n", "D = 0.693/t_half; ## Disintegration constant, per sec\n", "N_nuclei = round(N_0*rho/M*sigma*phi*d*t); ## Number of nuclei of Co-60 produced\n", "Init_activity = D*N_nuclei; ## Initial activity, decays per sec\n", "print'%s %.2e %s %.2f %s '%(\"\\nThe number of nuclei of Co60 produced =\",N_nuclei,\" \" and \"\\nThe initial activity per Sq. metre = \",Init_activity,\" decays per sec\");\n", "\n", "## Result\n", "## The number of nuclei of Co60 produced = 1.18e+019 \n", "## The initial activity per Sq. metre = 5e+010 decays per sec " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The number of nuclei of Co60 produced = 1.18e+19 \n", "The initial activity per Sq. metre = 49755893720.42 decays per sec \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.9 : : Page-458 (2011)\n", "#find The number of events detected\n", "import math\n", "d = 0.1; ## Thickness of Fe-54 sheet, Kg per squre metre\n", "M = 54.; ## Mass number of Fe \n", "m = 1.66e-027; ## Mass of the proton, Kg\n", "n = d/(M*m); ## Number of nuclei in unit area of the target, nuclei per square metre\n", "ds = 10**-5; ## Area, metre square\n", "r = 0.1; ## Distance between detector and target foil, metre\n", "d_omega =ds/r**2; ## Solid angle, steradian\n", "d_sigma = 1.3e-03*10**-3*10**-28; ## Differential cross section, square metre per nuclei\n", "P = d_sigma*n; ## Probablity, event per proton\n", "I = 10**-7; ## Current, ampere\n", "e = 1.6e-19; ## Charge of the proton, C\n", "N = I/e; ## Number of protons per second in the incident beam, proton per sec\n", "dN = P*N; ## Number of events detected per second, events per sec\n", "print'%s %.2f %s'%(\"\\nThe number of events detected =\",dN,\" events per sec\");\n", "\n", "## Result\n", "## The number of events detected = 90 events per sec " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The number of events detected = 90.64 events per sec\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.10 : : Page-458 (2011)\n", "#find The fractional attenuation of neutron beam on passing through nickel sheet\n", "import math\n", "N_0 = 6.02252e+26; ## Avogadro's constant\n", "sigma = 3.5e-28; ## Cross section, square metre\n", "rho = 8.9e+03; ## Nuclear density, Kg per cubic metre\n", "M = 58.; ## Mass number \n", "summation = rho/M*N_0*sigma; ## Macroscopic cross section, per metre\n", "x = 0.01e-02; ## Thickness of nickel sheet, metre\n", "I0_ratio_I = math.exp(summation*x/2.3026); ## Fractional attenuation of neutron beam on passing through nickel sheet\n", "print'%s %.2f %s ' %(\"\\nThe fractional attenuation of neutron beam on passing through nickel sheet =\", I0_ratio_I,\"\");\n", "print(\"Wrong answer given in the textbook\")\n", "## Result\n", "## The fractional attenuation of neutron beam on passing through nickel sheet = 1.0014 \n", "## Wrong answer given in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The fractional attenuation of neutron beam on passing through nickel sheet = 1.00 \n", "Wrong answer given in the textbook\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.11 : : Page-458 (2011)\n", "#find he scattering contribution to the resonance \n", "import math\n", "D = math.sqrt(1.45e-021/(4.*math.pi)); ## Wavelength, metre\n", "W_ratio = 2.3e-07; ## Width ratio\n", "sigma = W_ratio*(4*math.pi)*D**2*10**28; ## Scattering contribution, barn\n", "print'%s %.2f %s'%(\"\\nThe scattering contribution to the resonance = \",sigma,\" barns\");\n", "\n", "## Result\n", "## The scattering contribution to the resonance = 3.33 barns \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The scattering contribution to the resonance = 3.33 barns\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.12 : : Page-458 (2011)\n", "#find The relative probabilities\n", "import math\n", "sigma = 2.8e-024; ## Cross section, metre square\n", "D = 2.4e-11; ## de Broglie wavelength, metre\n", "R_prob = math.pi*sigma/D**2; ## Relative probabilities of (n,n) and (n,y) in indium\n", "print'%s %.2f %s'%(\"\\nThe relative probabilities of (n,n) and (n,y) in indium = \", R_prob,\"\");\n", "\n", "## Result\n", "## The relative probabilities of (n,n) and (n,y) in indium = 0.015 \n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The relative probabilities of (n,n) and (n,y) in indium = 0.02 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.13 : : Page-459 (2011)\n", "#find The cross section of neutron capture\n", "import math\n", "h = 6.625e-34; ## Planck's constant, joule sec \n", "m_n = 1.67e-27; ## Mass of neutron, Kg\n", "E = 4.906; ## Energy, joule \n", "w_y = 0.124; ## radiation width, eV\n", "w_n = 0.007*E**(1/2.); ## Probability of elastic emission of neutron, eV\n", "I = 3.; ## Total angular momentum\n", "I_c = 2.; ## Total angular momentum in the compound state\n", "sigma = ((h**2)*(2*I_c+1)*w_y*w_n)*10**28/(2.*math.pi*m_n*E*1.602e-019*(2*I+1)*(w_y+w_n)**2); ## Cross section, barns\n", "print'%s %.3e %s'%(\"\\nThe cross section of neutron capture = \",sigma,\" barns\");\n", "\n", "## Result\n", "## The cross section of neutron capture = 3.755e+004 barns \n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The cross section of neutron capture = 3.755e+04 barns\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.14 : : Page-459 (2011)\n", "#fid the value of theta max\n", "import math\n", "import numpy\n", "R = 5.; ## Radius, femto metre\n", "k_d = 0.98; ## The value of k for deutron \n", "k_p = 0.82; ## The value of k for triton\n", "theta = numpy.zeros((1,5)); ## Angles at which differetial cross section is maximum, degree\n", "## Use of for loop for angles calculation(in degree)\n", "for l in range (1,4):\n", " theta = round((math.acos((k_d**2+k_p**2)/(2.*k_d*k_p)-l**2/(2.*k_d*k_p*R**2)))*180./3.14,0);\n", " #theta = round((acos((k_d^2+k_p^2)/(2*k_d*k_p)-l^2/(2*k_d*k_p*R^2)))*180/3.14);\n", " print'%s %.2f %s'%(\"\\nFor l = \", l,\"\");\n", " print'%s %.2f %s'%(\"the value of theta_max = \", math.ceil(theta),\"degree\");\n", " \n", "\n", "## Result\n", "## For l = 0,the value of theta_max = 0 degree\n", "## For l = 1,the value of theta_max = 8 degree\n", "## For l = 2,the value of theta_max = 24 degree\n", "## For l = 3,the value of theta_max = 38 degree\n", "## For l = 4,the value of theta_max = 52 degree " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "For l = 1.00 \n", "the value of theta_max = 8.00 degree\n", "\n", "For l = 2.00 \n", "the value of theta_max = 24.00 degree\n", "\n", "For l = 3.00 \n", "the value of theta_max = 38.00 degree\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex15-pg459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa10.15 : : Page-459 (2011)\n", "#calculate total angular momentum transfer\n", "import math\n", "k_d = 2.02e+30; ## The value of k for deutron\n", "k_t = 2.02e+30; ## The value of k for triton\n", "theta = 23*3.14/180; ## Angle, radiams\n", "q = math.sqrt (k_d+k_t-2*k_t*math.cos(theta))*10**-15; ## the value of q in femto metre\n", "R_0 = 1.2; ## Distance of closest approach, femto metre\n", "A = 90.; ## Mass number of Zr-90\n", "z = 4.30; ## Deutron size, femto metre\n", "R = R_0*A**(1/3.)+1/2.*z; ## Radius of the nucleus, femto metre\n", "l = round(q*R); ## Orbital angular momentum\n", "I = l+1./2. ## Total angular momentum\n", "print'%s %.2f %s'%(\"\\nThe total angular momentum transfer = \", I,\"\");\n", "\n", "## Result\n", "## The total angular momentum transfer = 4.5 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The total angular momentum transfer = 4.50 \n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }