summaryrefslogtreecommitdiff
path: root/Materials_science_and_engineering_an_introduction/CH17.ipynb
blob: 294f5ff9bf02ec63ee604a9d28d9717c51346def (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
{
 "metadata": {
  "name": "CH17"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 17: Corrosion and Degradiation of Materials"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 17.1 Page No 629"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determination of Electrochemical Cell Characteristics\n",
      "\n",
      "#Given\n",
      "V_Cd=-0.403  #Half Cell Potential of Cd++|Cd\n",
      "V_Ni=-0.250  #Half Cell Potential of Ni++|Ni\n",
      "\n",
      "#calculation\n",
      "dV=V_Ni-V_Cd\n",
      "C_Ni=10**-3\n",
      "C_Cd=0.5\n",
      "n=2          #Net electron exchange in Redox reaction\n",
      "V=-dV-(0.0592*math.log10(C_Ni/C_Cd)/n)\n",
      "\n",
      "#Result\n",
      "print\"Standard Cell potential is \",dV,\"V\"\n",
      "print\"Net EMF is \",round(V,3),\"V\"\n",
      "if V<0:\n",
      "    print\"Ni is reduced & Cd is oxidised\"\n",
      "else:\n",
      "    print\"Cd is reduced & Ni is oxidised\"\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Standard Cell potential is  0.153 V\n",
        "Net EMF is  -0.073 V\n",
        "Ni is reduced & Cd is oxidised\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 17.2 Page No 637"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Rate of Oxidation Computation\n",
      "\n",
      "#Given\n",
      "#Activation polarisation data for Zn\n",
      "VZn_Zn2=-0.763\n",
      "iZn=10**-7\n",
      "beta_Zn=0.09\n",
      "#For H2\n",
      "iH2=10**-10\n",
      "VH_H2=0\n",
      "beta_H2=-0.08\n",
      "\n",
      "#calculation\n",
      "#Part i\n",
      "ic=10**((VH_H2-VZn_Zn2-(beta_H2*math.log10(iH2))+(beta_Zn*math.log10(iZn)))/(beta_Zn-beta_H2))\n",
      "n=2              #Exchange of 2 electrons\n",
      "F=96500          #Faradays constant\n",
      "r=ic/(n*F)\n",
      "#Part ii\n",
      "Vc=VH_H2+(beta_H2*log10(ic/iH2))\n",
      "\n",
      "#Result\n",
      "print\"i) Rate of oxiadation is\",round(r,12),\"mol/cm**2-s\"\n",
      "print\"ii) Corrosion potential is\",round(Vc,3),\"V\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i) Rate of oxiadation is 6.18e-10 mol/cm**2-s\n",
        "ii) Corrosion potential is -0.486 V\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}