1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Chapter 5:Convection"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex5.3:pg-206"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 5, Example 3\n",
"Reynolds number is\n",
"ReL= 55263.1578947\n",
"The average heat transfer coefficient over a length(L)= 1m ,in W/m**2 is\n",
"hbarL= 4.16\n",
"The rate of heat transfer in W/m of width is\n",
"Q= 332.8\n"
]
}
],
"source": [
" \n",
"import math \n",
"from scipy.integrate import quad\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 3\"\n",
"#Air at temprature (T1=20°C) and 1 atmospheric pressure flows over a flat plate with a free stream velocity(Uinf) of 1m/s.\n",
"Uinf=1;\n",
"T1=20;\n",
"#The length of plate is 1m and is heated over its entire length to a constant temprature of T2=100°C.\n",
"T2=100;\n",
"#For air at 20°C(The mean temprature of 100°C and 20°C),viscosity(mu=1.9*10**-5kg/(m*s)),density(rho=1.05kg/m**3),conductivity(k=0.03W/(m*K)),specific heat(cp=1.007kJ/(kg*K))\n",
"#Prandtl number is Pr=0.7\n",
"mu=1.9*10**-5;\n",
"rho=1.05;\n",
"k=0.03;\n",
"cp=1.007;\n",
"Pr=0.7;\n",
"#For laminar flow over a plate Nusselt number is Nux=0.332*Rex**0.5*Pr**(1/3)\n",
"#The boundary layer flow over a flat plate will be laminar if Reynolds number is Rex=(rho*Uinf*x)/mu<5*10**5\n",
"#First of all we have to check whether the flow is laminar or not.\n",
"#Let us check at x=1m\n",
"x=1.0;\n",
"print\"Reynolds number is\"\n",
"ReL=(rho*Uinf*x)/mu\n",
"print\"ReL=\",ReL\n",
"#There fore the flow is laminar and we can use the relationships of Nux,\n",
"#Thus Rex=(1.05*1*x)/(1.9*10**-5)=0.5526*10**5*x\n",
"#Therefore we can write Nux=(hx*x/k)=0.332*(0.5526*10**5*x)**0.5*Pr**(1/3)....or hx=2.08*x**(-1/2) W/(m**2*°C)\n",
"#hbarL is the average heat transfer coefficient over a length(L)\n",
"print\"The average heat transfer coefficient over a length(L)= 1m ,in W/m**2 is\"\n",
"L=1;\n",
"hbarL=(1.0/L)*quad(lambda x:2.08*x**(-1/2.0),0,L)[0]\n",
"print\"hbarL=\",hbarL\n",
"#Q is the rate of heat transfer\n",
"print\"The rate of heat transfer in W/m of width is\"\n",
"Q=hbarL*L*(T2-T1)\n",
"print\"Q=\",Q\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex5.4:pg-207"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 5, Example 4\n",
"The local heat transfer coefficient hx is hx=27.063*U**0.85\n",
"The minimum flow velocity in m/s is\n",
"U= 15.4806813943\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 4\"\n",
"#Air at atmospheric pressure is required to flow over a circuit board to cool the electronics element mounted on it.\n",
"#Chip has length (L)=3mm and width(B)=3mm located x=0.1m from the leading edge\n",
"L=0.003;#in metre\n",
"B=0.003;#in metre\n",
"x=0.1;\n",
"#The Nusselt no. is given by Nux=0.06*Rex**0.85*Pr**0.33\n",
"#The chip has to dissipate E=50mW of energy while its surface temprature has to be kept below temprature,Ts=45°C and free strem Temptrature of air is Tinf=25°C\n",
"Ts=45;\n",
"Tinf=25;\n",
"E=50*10**-3;#in watt\n",
"#For air ,density(rho=1.2kg/m**3),viscosity(mu=1.8*10**5kg/(m*s)),conductivity(k=0.03W/(m*K)) and specific heat(cp=1000J/(kg*K))\n",
"rho=1.2;\n",
"mu=1.8*10**5;\n",
"k=0.03;\n",
"cp=1000;\n",
"#Let the minimum flow velocity be U.\n",
"#The local heat transfer coefficient hx where the chip is mounted is determined as hx=(k/x)*0.06*(rho*U*x/mu)**0.85*(mu*cp/k)**0.33\n",
"print\"The local heat transfer coefficient hx is hx=27.063*U**0.85\"\n",
"#from an enrgy balance we can write as E=27.063*U**0.85*L*B*(Ts-Tinf)\n",
"print\"The minimum flow velocity in m/s is\"\n",
"U=(E/(27.063*L*B*(Ts-Tinf)))**(1/0.85)\n",
"print\"U=\",U\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex5.6:pg-208"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 5, Example 6\n",
"mdot= 0.0235619449019\n",
"(dTb/dx)in °C/m is\n",
"Y= 26.6666666667\n",
"Therefore Exit bulk mean temprature Tb2 in °C is\n",
"Tb2= 83.3333333333\n",
"Heat flux(hx) in W/(m**2*°C) is \n",
"hx= 100\n",
"Overall Nusselt number is \n",
"NuL= 87.7192982456\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 6\"\n",
"#Air at 1atm pressure and temprature(Tin)=30°C enters a tube of 25mm diameter(D) with a velocity(U) of 10m/s\n",
"D=0.025;#in metre\n",
"U=10;\n",
"Tin=30;\n",
"#Tube is heated so that a constant heat flux(q) of 2kW/m**2 is maintained at the wall whose temprature is deltaT=20°C above the bulk mean air temprature through the length of tube \n",
"#Let Tw-Tb=T\n",
"q=2000;\n",
"deltaT=20;\n",
"#The length(L)= 2m\n",
"L=2;\n",
"#For air density(rho=1.2kg/m**3),specific heat(cp=1000J/(kg*K))\n",
"rho=1.2;\n",
"cp=1000;\n",
"#From an energy balance of a control volume of air we get mdot*cp*(Tb+(dTb/dx)*deltax-Tb)=q*pi*D*deltax or (dTb/dx)=(q*pi*D)/(mdot*cp)\n",
"#mass flow rate=mdot\n",
"mdot=rho*math.pi*D**2*U;\n",
"print\"mdot=\",mdot\n",
"#let (dTb/dx)=Y\n",
"print\"(dTb/dx)in °C/m is\"\n",
"Y=(4*q*math.pi*D)/(mdot*cp)\n",
"print\"Y=\",Y\n",
"#Tb2 is Exit bulk mean temprature\n",
"print\"Therefore Exit bulk mean temprature Tb2 in °C is\"\n",
"Tb2=Tin+Y*2\n",
"print\"Tb2=\",Tb2\n",
"#Again we can write at any section of the tube hx*(Tw-Tb)=q or hx=q/(Tw-Tb)\n",
"#hx is heat flux\n",
"print\"Heat flux(hx) in W/(m**2*°C) is \"\n",
"hx=q/(deltaT)\n",
"print\"hx=\",hx\n",
"#Since Tw-Tb remains the same,The heat transfer coefficient at all sections are the same\n",
"#Now Overall Nusselt number,NuL=hx*D/k\n",
"#The thermal conductivity of air at mean temprature of (30+83.4)/2=56.7°C is k=0.0285 W/(m*K)\n",
"k=0.0285;\n",
"print\"Overall Nusselt number is \"\n",
"NuL=hx*D/k\n",
"print\"NuL=\",NuL\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex5.7:pg-210"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 5, Example 7\n",
"Beta(The volumetric coefficient of expansion in K**-1 is\n",
"Beta= 0\n",
"Grashoff number is\n",
"Gr= 0.0\n",
"The average nusselt number is\n",
"NuHbar= 0.13\n",
"Heat flux hbar in W/(m**2*°C)\n",
"hbar= 0.00169\n",
"The heat loss from the plate in W is\n",
"Q= 0.4394\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 7\"\n",
"#A wall is exposed to nitrogen at one atmospheric pressure and temprature,Tinf=4°C.\n",
"Tinf=4;\n",
"#The wall is H=2.0m high and B=2.5m wide and is maintained at temprature,Ts=56°C\n",
"Ts=56;\n",
"H=2;\n",
"B=2.5;\n",
"A=H*B;#area is(A)\n",
"#The average nusselt number NuHbar over the height of the plate is given by NuHbar=0.13*(Gr*Pr)**(1/3)\n",
"#The properties of nitrogen at mean film temprature(Tf) is (56+4)/2=30°C are given as density(rho=1.142kg/m**3) ,conductivity(k=0.026W/(m*K)),\n",
"#kinematic viscosity(nu=15.630*10**-6 m**2/s) ,Prandtl number(Pr=0.713)\n",
"rho=1.142;\n",
"k=0.026;\n",
"nu=15.630*10**-6;\n",
"Pr=0.713;\n",
"Tf=30;\n",
"#We first have to detrmine the value of Grashoff number,Gr.In consideration of nitrogen as an ideal gas,we can write\n",
"#Beta(The volumetric coefficient of expansion)=1/T\n",
"print\"Beta(The volumetric coefficient of expansion in K**-1 is\"\n",
"Beta=1/(273+Tf)\n",
"print\"Beta=\",Beta\n",
"#Now Gr=(g*Beta*(Ts-Tinf)*H**3)/nu**2\n",
"g=9.81;#acceleration due to gravity\n",
"print\"Grashoff number is\"\n",
"Gr=(g*Beta*(Ts-Tinf)*H**3)/nu**2\n",
"print\"Gr=\",Gr\n",
"print\"The average nusselt number is\"\n",
"NuHbar=0.13*(Gr*Pr)**(1/3)\n",
"print\"NuHbar=\",NuHbar\n",
"#hbar is the heat flux\n",
"print\"Heat flux hbar in W/(m**2*°C)\"\n",
"hbar=NuHbar*k/H\n",
"print\"hbar=\",hbar\n",
"#Q is the heat loss from the plate\n",
"print\"The heat loss from the plate in W is\"\n",
"Q=hbar*A*(Ts-Tinf)\n",
"print\"Q=\",Q\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex5.8:pg-211"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 5, Example 8\n",
"The heat flux in W/(m**2*K) is\n",
"hbar 120.0\n",
"The heat loss from the wire is Q=hbar*pi*D*L*(Twire-Tair) in Watt\n",
"Q= 1.88495559215\n",
"The current in Ampere is\n",
"I= 17.7245385091\n"
]
}
],
"source": [
" \n",
" \n",
" \n",
" \n",
" import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 8\"\n",
"#Eletric current passes through a L=0.5m long horizontal wire of D=0.1mm diameter.\n",
"L=0.5;\n",
"D=0.1*10**-3;\n",
"#The wire is to be maintained at temprature,Twire=400K and the air is at temprature,Tair=300K.\n",
"Twire=400;\n",
"Tair=300;\n",
"#The resistance of the wire(R) is 0.012ohm per meter.Nusselt number(NuL) over the length of wire to be 0.4.\n",
"NuL=0.4;\n",
"R=0.012;\n",
"#At mean temprature of Tf=350K, The thermal conductivity of air is k=0.03W/(m*K)\n",
"k=0.03;\n",
"#Nusselt number is NuL=hbar*D/k\n",
"#hbar is the heat flux\n",
"print\"The heat flux in W/(m**2*K) is\"\n",
"hbar=NuL*k/D\n",
"print\"hbar\",hbar\n",
"#Q is the heat loss from the wire\n",
"print\"The heat loss from the wire is Q=hbar*pi*D*L*(Twire-Tair) in Watt\"\n",
"Q=hbar*math.pi*D*L*(Twire-Tair)\n",
"print\"Q=\",Q\n",
"#At steady state the ohmic loss in the wire equals the heat loss from its surface Therfore I**2*R=Q\n",
"#I is the current flow.\n",
"print\"The current in Ampere is\"\n",
"I=(Q/(R*L))**0.5\n",
"print\"I=\",I\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|