diff options
author | Trupti Kini | 2017-01-10 23:30:44 +0600 |
---|---|---|
committer | Trupti Kini | 2017-01-10 23:30:44 +0600 |
commit | 3554f806c51433360eee87cea33654efc9862ace (patch) | |
tree | 43951ffd95301c8c67eb141e76709b46463a42f4 /Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb | |
parent | 7279c23059dbcc1c4c18c54e27dbbea80d7bbae3 (diff) | |
download | Python-Textbook-Companions-3554f806c51433360eee87cea33654efc9862ace.tar.gz Python-Textbook-Companions-3554f806c51433360eee87cea33654efc9862ace.tar.bz2 Python-Textbook-Companions-3554f806c51433360eee87cea33654efc9862ace.zip |
Added(A)/Deleted(D) following books
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb
A Introduction_to_Heat_Transfer_by_S._K._Som/screenshots/9.7.png
A Introduction_to_Heat_Transfer_by_S._K._Som/screenshots/Ex10.7.png
A Introduction_to_Heat_Transfer_by_S._K._Som/screenshots/Ex11.4.png
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter01.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter02.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter03.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter04.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter05.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter06.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter07.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter08.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter09.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter10.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter11.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter12.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter13.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter14.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter15.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter16.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter17.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter18.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/Chapter19.ipynb
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/15.8.png
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/4.3.png
A Thermodynamics,_Statistical_Thermodynamic_and_Kinetics_by_T._Engel_and_P._Reid/screenshots/9.6.png
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_5AfCLKz.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_9c27zxN.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_9cObgYn.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_9ui5Wjm.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_JaqgDu7.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_MnetfXH.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_N5LVZdn.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_NEmIMzZ.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_NaQvqio.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_Npcu1fX.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_SSPoRzJ.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_WJvqX73.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_cyWVjGT.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_eAEoe4s.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_ezyRCsC.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_jHUJFvU.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_rQOLXRQ.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_vVWK1Pz.ipynb
A Thermodynamics,_Statistical_Thermodynamics_and_Kinetics_by_T._Engel_and_P._Reid/Chapte_ys4AGAJ.ipynb
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb | 450 |
1 files changed, 450 insertions, 0 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb new file mode 100644 index 00000000..d3fc7380 --- /dev/null +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb @@ -0,0 +1,450 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Chapter 5:Convection" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.3:pg-206" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 5, Example 3\n", + "Reynolds number is\n", + "ReL= 55263.1578947\n", + "The average heat transfer coefficient over a length(L)= 1m ,in W/m**2 is\n", + "hbarL= 4.16\n", + "The rate of heat transfer in W/m of width is\n", + "Q= 332.8\n" + ] + } + ], + "source": [ + " \n", + "import math \n", + "from scipy.integrate import quad\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 3\"\n", + "#Air at temprature (T1=20°C) and 1 atmospheric pressure flows over a flat plate with a free stream velocity(Uinf) of 1m/s.\n", + "Uinf=1;\n", + "T1=20;\n", + "#The length of plate is 1m and is heated over its entire length to a constant temprature of T2=100°C.\n", + "T2=100;\n", + "#For air at 20°C(The mean temprature of 100°C and 20°C),viscosity(mu=1.9*10**-5kg/(m*s)),density(rho=1.05kg/m**3),conductivity(k=0.03W/(m*K)),specific heat(cp=1.007kJ/(kg*K))\n", + "#Prandtl number is Pr=0.7\n", + "mu=1.9*10**-5;\n", + "rho=1.05;\n", + "k=0.03;\n", + "cp=1.007;\n", + "Pr=0.7;\n", + "#For laminar flow over a plate Nusselt number is Nux=0.332*Rex**0.5*Pr**(1/3)\n", + "#The boundary layer flow over a flat plate will be laminar if Reynolds number is Rex=(rho*Uinf*x)/mu<5*10**5\n", + "#First of all we have to check whether the flow is laminar or not.\n", + "#Let us check at x=1m\n", + "x=1.0;\n", + "print\"Reynolds number is\"\n", + "ReL=(rho*Uinf*x)/mu\n", + "print\"ReL=\",ReL\n", + "#There fore the flow is laminar and we can use the relationships of Nux,\n", + "#Thus Rex=(1.05*1*x)/(1.9*10**-5)=0.5526*10**5*x\n", + "#Therefore we can write Nux=(hx*x/k)=0.332*(0.5526*10**5*x)**0.5*Pr**(1/3)....or hx=2.08*x**(-1/2) W/(m**2*°C)\n", + "#hbarL is the average heat transfer coefficient over a length(L)\n", + "print\"The average heat transfer coefficient over a length(L)= 1m ,in W/m**2 is\"\n", + "L=1;\n", + "hbarL=(1.0/L)*quad(lambda x:2.08*x**(-1/2.0),0,L)[0]\n", + "print\"hbarL=\",hbarL\n", + "#Q is the rate of heat transfer\n", + "print\"The rate of heat transfer in W/m of width is\"\n", + "Q=hbarL*L*(T2-T1)\n", + "print\"Q=\",Q\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.4:pg-207" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 5, Example 4\n", + "The local heat transfer coefficient hx is hx=27.063*U**0.85\n", + "The minimum flow velocity in m/s is\n", + "U= 15.4806813943\n" + ] + } + ], + "source": [ + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 4\"\n", + "#Air at atmospheric pressure is required to flow over a circuit board to cool the electronics element mounted on it.\n", + "#Chip has length (L)=3mm and width(B)=3mm located x=0.1m from the leading edge\n", + "L=0.003;#in metre\n", + "B=0.003;#in metre\n", + "x=0.1;\n", + "#The Nusselt no. is given by Nux=0.06*Rex**0.85*Pr**0.33\n", + "#The chip has to dissipate E=50mW of energy while its surface temprature has to be kept below temprature,Ts=45°C and free strem Temptrature of air is Tinf=25°C\n", + "Ts=45;\n", + "Tinf=25;\n", + "E=50*10**-3;#in watt\n", + "#For air ,density(rho=1.2kg/m**3),viscosity(mu=1.8*10**5kg/(m*s)),conductivity(k=0.03W/(m*K)) and specific heat(cp=1000J/(kg*K))\n", + "rho=1.2;\n", + "mu=1.8*10**5;\n", + "k=0.03;\n", + "cp=1000;\n", + "#Let the minimum flow velocity be U.\n", + "#The local heat transfer coefficient hx where the chip is mounted is determined as hx=(k/x)*0.06*(rho*U*x/mu)**0.85*(mu*cp/k)**0.33\n", + "print\"The local heat transfer coefficient hx is hx=27.063*U**0.85\"\n", + "#from an enrgy balance we can write as E=27.063*U**0.85*L*B*(Ts-Tinf)\n", + "print\"The minimum flow velocity in m/s is\"\n", + "U=(E/(27.063*L*B*(Ts-Tinf)))**(1/0.85)\n", + "print\"U=\",U\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.6:pg-208" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 5, Example 6\n", + "mdot= 0.0235619449019\n", + "(dTb/dx)in °C/m is\n", + "Y= 26.6666666667\n", + "Therefore Exit bulk mean temprature Tb2 in °C is\n", + "Tb2= 83.3333333333\n", + "Heat flux(hx) in W/(m**2*°C) is \n", + "hx= 100\n", + "Overall Nusselt number is \n", + "NuL= 87.7192982456\n" + ] + } + ], + "source": [ + " \n", + "import math\n", + " \n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 6\"\n", + "#Air at 1atm pressure and temprature(Tin)=30°C enters a tube of 25mm diameter(D) with a velocity(U) of 10m/s\n", + "D=0.025;#in metre\n", + "U=10;\n", + "Tin=30;\n", + "#Tube is heated so that a constant heat flux(q) of 2kW/m**2 is maintained at the wall whose temprature is deltaT=20°C above the bulk mean air temprature through the length of tube \n", + "#Let Tw-Tb=T\n", + "q=2000;\n", + "deltaT=20;\n", + "#The length(L)= 2m\n", + "L=2;\n", + "#For air density(rho=1.2kg/m**3),specific heat(cp=1000J/(kg*K))\n", + "rho=1.2;\n", + "cp=1000;\n", + "#From an energy balance of a control volume of air we get mdot*cp*(Tb+(dTb/dx)*deltax-Tb)=q*pi*D*deltax or (dTb/dx)=(q*pi*D)/(mdot*cp)\n", + "#mass flow rate=mdot\n", + "mdot=rho*math.pi*D**2*U;\n", + "print\"mdot=\",mdot\n", + "#let (dTb/dx)=Y\n", + "print\"(dTb/dx)in °C/m is\"\n", + "Y=(4*q*math.pi*D)/(mdot*cp)\n", + "print\"Y=\",Y\n", + "#Tb2 is Exit bulk mean temprature\n", + "print\"Therefore Exit bulk mean temprature Tb2 in °C is\"\n", + "Tb2=Tin+Y*2\n", + "print\"Tb2=\",Tb2\n", + "#Again we can write at any section of the tube hx*(Tw-Tb)=q or hx=q/(Tw-Tb)\n", + "#hx is heat flux\n", + "print\"Heat flux(hx) in W/(m**2*°C) is \"\n", + "hx=q/(deltaT)\n", + "print\"hx=\",hx\n", + "#Since Tw-Tb remains the same,The heat transfer coefficient at all sections are the same\n", + "#Now Overall Nusselt number,NuL=hx*D/k\n", + "#The thermal conductivity of air at mean temprature of (30+83.4)/2=56.7°C is k=0.0285 W/(m*K)\n", + "k=0.0285;\n", + "print\"Overall Nusselt number is \"\n", + "NuL=hx*D/k\n", + "print\"NuL=\",NuL\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.7:pg-210" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 5, Example 7\n", + "Beta(The volumetric coefficient of expansion in K**-1 is\n", + "Beta= 0\n", + "Grashoff number is\n", + "Gr= 0.0\n", + "The average nusselt number is\n", + "NuHbar= 0.13\n", + "Heat flux hbar in W/(m**2*°C)\n", + "hbar= 0.00169\n", + "The heat loss from the plate in W is\n", + "Q= 0.4394\n" + ] + } + ], + "source": [ + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 7\"\n", + "#A wall is exposed to nitrogen at one atmospheric pressure and temprature,Tinf=4°C.\n", + "Tinf=4;\n", + "#The wall is H=2.0m high and B=2.5m wide and is maintained at temprature,Ts=56°C\n", + "Ts=56;\n", + "H=2;\n", + "B=2.5;\n", + "A=H*B;#area is(A)\n", + "#The average nusselt number NuHbar over the height of the plate is given by NuHbar=0.13*(Gr*Pr)**(1/3)\n", + "#The properties of nitrogen at mean film temprature(Tf) is (56+4)/2=30°C are given as density(rho=1.142kg/m**3) ,conductivity(k=0.026W/(m*K)),\n", + "#kinematic viscosity(nu=15.630*10**-6 m**2/s) ,Prandtl number(Pr=0.713)\n", + "rho=1.142;\n", + "k=0.026;\n", + "nu=15.630*10**-6;\n", + "Pr=0.713;\n", + "Tf=30;\n", + "#We first have to detrmine the value of Grashoff number,Gr.In consideration of nitrogen as an ideal gas,we can write\n", + "#Beta(The volumetric coefficient of expansion)=1/T\n", + "print\"Beta(The volumetric coefficient of expansion in K**-1 is\"\n", + "Beta=1/(273+Tf)\n", + "print\"Beta=\",Beta\n", + "#Now Gr=(g*Beta*(Ts-Tinf)*H**3)/nu**2\n", + "g=9.81;#acceleration due to gravity\n", + "print\"Grashoff number is\"\n", + "Gr=(g*Beta*(Ts-Tinf)*H**3)/nu**2\n", + "print\"Gr=\",Gr\n", + "print\"The average nusselt number is\"\n", + "NuHbar=0.13*(Gr*Pr)**(1/3)\n", + "print\"NuHbar=\",NuHbar\n", + "#hbar is the heat flux\n", + "print\"Heat flux hbar in W/(m**2*°C)\"\n", + "hbar=NuHbar*k/H\n", + "print\"hbar=\",hbar\n", + "#Q is the heat loss from the plate\n", + "print\"The heat loss from the plate in W is\"\n", + "Q=hbar*A*(Ts-Tinf)\n", + "print\"Q=\",Q\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex5.8:pg-211" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 5, Example 8\n", + "The heat flux in W/(m**2*K) is\n", + "hbar 120.0\n", + "The heat loss from the wire is Q=hbar*pi*D*L*(Twire-Tair) in Watt\n", + "Q= 1.88495559215\n", + "The current in Ampere is\n", + "I= 17.7245385091\n" + ] + } + ], + "source": [ + " \n", + " \n", + " \n", + " \n", + " import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 5, Example 8\"\n", + "#Eletric current passes through a L=0.5m long horizontal wire of D=0.1mm diameter.\n", + "L=0.5;\n", + "D=0.1*10**-3;\n", + "#The wire is to be maintained at temprature,Twire=400K and the air is at temprature,Tair=300K.\n", + "Twire=400;\n", + "Tair=300;\n", + "#The resistance of the wire(R) is 0.012ohm per meter.Nusselt number(NuL) over the length of wire to be 0.4.\n", + "NuL=0.4;\n", + "R=0.012;\n", + "#At mean temprature of Tf=350K, The thermal conductivity of air is k=0.03W/(m*K)\n", + "k=0.03;\n", + "#Nusselt number is NuL=hbar*D/k\n", + "#hbar is the heat flux\n", + "print\"The heat flux in W/(m**2*K) is\"\n", + "hbar=NuL*k/D\n", + "print\"hbar\",hbar\n", + "#Q is the heat loss from the wire\n", + "print\"The heat loss from the wire is Q=hbar*pi*D*L*(Twire-Tair) in Watt\"\n", + "Q=hbar*math.pi*D*L*(Twire-Tair)\n", + "print\"Q=\",Q\n", + "#At steady state the ohmic loss in the wire equals the heat loss from its surface Therfore I**2*R=Q\n", + "#I is the current flow.\n", + "print\"The current in Ampere is\"\n", + "I=(Q/(R*L))**0.5\n", + "print\"I=\",I\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |