summaryrefslogtreecommitdiff
path: root/Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb
blob: ec39bab52f8fe8aa6ec0f1fe5448d983751becb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 5 Principles of Convection"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 5.1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "the increase in static pressure between sections 1 and 2 is: 61.88  kPa\n"
     ]
    }
   ],
   "source": [
    "#Example 5.1\n",
    "# water flow in a diffuser  \n",
    "\n",
    "#VARIABLE DECLARATION\n",
    "Tw = 20 \t\t\t# [degree celcius] water temperature \n",
    "m_dot = 8 \t\t\t# [kg/s] water flow rate \n",
    "d1 = 0.03 \t\t\t#[m] diameter at section 1\n",
    "d2 = 0.07 \t\t\t# [m] diameter at section 2\n",
    "\n",
    "#CALCULATION\n",
    "import math\n",
    "A1 = math.pi*d1**(2)/4 \t\t# [square meter] cross-sectional area at section 1\n",
    "A2 = math.pi*d2**(2)/4 \t\t# [square meter] cross-sectional area at section  2\n",
    "gc = 1 \t\t\t\t# [m/s**(2)] acceleration due to gravity\n",
    "rho = 1000 \t\t\t# [kg/cubic m] density of water at 20 degree celcius\n",
    "\n",
    "\t# calculate the velocities from the mass-continuity relation\n",
    "u1 = m_dot/(rho*A1) \t\t# [m/s]\n",
    "u2 = m_dot/(rho*A2) \t\t# [m/s]\n",
    "\t# the pressure difference is obtained by Bernoulli equation(5-7a)\n",
    "p2_minus_p1 = rho*(u1**(2)-u2**(2))/(2*gc)\t # [Pa] \n",
    "\n",
    "#RESULTS\n",
    "print\"the increase in static pressure between sections 1 and 2 is:\",round(p2_minus_p1/1000,2),\" kPa\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 5.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The static temperature is: 529.0 K\n",
      "Static pressure is: 0.5 MPa\n",
      "Mach number is: 0.651\n"
     ]
    }
   ],
   "source": [
    "#Example Number 5.2\n",
    "# isentropic expansion of air \n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "Ta = 300.0+273.0\t \t\t# [K] air temperature\n",
    "Pa = 0.7 \t\t\t\t# [MPa] pressure of air\n",
    "u2 = 300 \t\t\t\t# [m/s] final velocity\n",
    "gc = 1 \t\t\t\t\t# [m/s^(2)] acceleration due to gravity\n",
    "Y = 1.4 \t\t\t\t# gama value for air \n",
    "Cp = 1005 \t\t\t\t# [J/kg degree celsius]\n",
    "\t#the initial velocity is small and the process is adiabatic. in terms of \t\ttemperature \n",
    "\n",
    "\n",
    "#Calculation\n",
    "\n",
    "T2 = Ta-u2**(2)/(2*gc*Cp) \n",
    "\n",
    "#Result\n",
    "print \"The static temperature is:\",round(T2,1),\"K\" \n",
    "\n",
    "\t# we may calculate the pressure difference from the isentropic relation \n",
    "\n",
    "p2 = Pa*((T2/Ta)**(Y/(Y-1))) \n",
    "\n",
    "print \"Static pressure is:\",round(p2,1),\"MPa\"\n",
    "\n",
    "\t# the velocity of sound at condition 2 is \n",
    "a2 = (20.045*(T2**(0.5))) \t\t# [m/s] \n",
    "\t#so that the mach no. is \n",
    "M2 = u2/a2 \n",
    "print \"Mach number is:\",round(M2,3) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 5.4"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The heat transfered in first case of the plate is 81.2 W\n",
      "and the heat transfered in second case of the plate is: 114.8 W\n"
     ]
    }
   ],
   "source": [
    "#Example Number 5.4\n",
    "#Calculate the heat transfereed in first 20 cm of the plate and the first 40 cm of the  plate\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "\t# total heat transfer over a certain length of the plate is desired, so we \t\twish to calculate average heat transfer coefficients. \n",
    "\t# for this purpose we use equations (5-44) and (5-45), evaluating the \t\tproperties at the film temperature :\n",
    "Tp = 60+273.15 \t\t\t\t# [K] plate temperature \n",
    "Ta = 27+273.15 \t\t\t\t# [K] air temperature\n",
    "Tf = (Tp+Ta)/2 \t\t\t\t# [K]\n",
    "u = 2 \t\t\t\t\t# [m/s] air velocity\n",
    "\n",
    "\t# from appendix A the properties are \n",
    "\n",
    "v = 17.36*(10**(-6)) \t\t\t# [square meter/s] kinematic viscosity\n",
    "x1 = 0.2 \t\t\t\t# [m] distance from the leading edge of plate\n",
    "x2 = 0.4 \t\t\t\t# [m] distance from the leading edge of plate\n",
    "k = 0.02749 \t\t\t\t# [W/m K] heat transfer coefficient\n",
    "Pr = 0.7 \t\t\t\t# prandtl number\n",
    "Cp = 1006 \t\t\t\t# [J/kg K]\n",
    "\n",
    "\t# at x = 0.2m\n",
    "\n",
    "#Calculation\n",
    "\n",
    "Re_x1 =(u*x1/v) \t\t\t\t# reynolds number\n",
    "Nu_x1 = 0.332*(Re_x1**(0.5))*(Pr**(0.333)) \t# nusselt number\n",
    "hx1 = Nu_x1*k/x1 \t\t\t\t# [W/square meter K] \n",
    "\n",
    "\t# the average value of the heat transfer coefficient is twice this value, or\n",
    "\n",
    "h_bar1 = 2*hx1 \t\t\t\t\t# [W/square meter K] \n",
    "\n",
    "\t# the heat flow is \n",
    "\n",
    "A1 = x1*1 \t\t\t\t\t# [square meter] area for unit depth\n",
    "q1 = h_bar1*A1*(Tp-Ta) \t\t\t\t# [W]\n",
    "\n",
    "\t# at x = 0.4m\n",
    "\n",
    "Re_x2 = u*x2/v \t\t\t\t\t# reynolds number\n",
    "Nu_x2 = 0.332*Re_x2**(0.5)*Pr**(0.333) \t\t# nusselt number\n",
    "hx2 = Nu_x2*k/x2 \t\t\t\t# [W/square meter K] \n",
    "\n",
    "\t# the average value of the heat transfer coefficient is twice this value, or\n",
    "\n",
    "h_bar2 = 2*hx2 \t\t\t\t\t# [W/square meter K] \n",
    "\t# the heat flow is \n",
    "A2 = x2*1 \t\t\t\t\t# [square meter] area for unit depth\n",
    "q2 = h_bar2*A2*(Tp-Ta) \t\t\t\t# [W] \n",
    "\n",
    "#Result\n",
    " \n",
    "print\"The heat transfered in first case of the plate is\",round(q1,2),\"W\"\n",
    "print\"and the heat transfered in second case of the plate is:\",round(q2,1),\"W\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 5.5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average temperature difference along the plate is: 241.0  degree celsius\n",
      "Temperature difference at the trailing edge is: 365.3 degree celsius\n"
     ]
    }
   ],
   "source": [
    "#Example Number 5.5\n",
    "# Calculate the av temperature difference along the plate & Temperature diff at the trailing edge\n",
    "\n",
    "#Variable declaration\n",
    "\n",
    "u = 5 \t\t\t\t\t# [m/s] air velocity\n",
    "l = 0.6 \t\t\t\t# [m] plate length\n",
    "Ta = 27+273.15 \t\t\t\t# [K] temperature of airstream\n",
    "\n",
    "\t# properties should be evaluated at the film temperature, but we do not know \tthe plate temperature so for an initial calculation we take the properties at \tthe free-stream conditions of\n",
    "\n",
    "v = 15.69*10**(-6)\t \t\t#[square meter/s] kinematic viscosity\n",
    "k = 0.02624 \t\t\t\t#[W/m deg celsius] heat transfer coefficient\n",
    "Pr = 0.7 \t\t\t\t# prandtl number\n",
    "Re_l = l*u/v \t\t\t\t# reynolds number\n",
    "P = 1000 \t\t\t\t# [W] power of heater\n",
    "qw = P/l**(2) \t\t\t\t# [W/square meter] heat flux per unit area \n",
    "\n",
    "\t# from equation (5-50) the average temperature difference is \n",
    "\n",
    "#Calculation\n",
    "\n",
    "Tw_minus_Tinf_bar = qw*l/(0.6795*k*(Re_l)**(.5)*(Pr)**(0.333)) \t # [degree celsius]\n",
    "\n",
    "\t# now, we go back and evaluate properties at \n",
    "Tf = (Tw_minus_Tinf_bar+Ta+Ta)/2 \t# [degree celsius]\n",
    "\n",
    "\t# and obtain\n",
    "\n",
    "v1 = 28.22*10**(-6) \t\t\t# [square meter/s] kinematic viscosity\n",
    "k1 = 0.035 \t\t\t\t# [W/m deg celsius] heat transfer coefficient\n",
    "Pr1 = 0.687 \t\t\t\t# prandtl number\n",
    "Re_l1 = l*u/v1 \t\t\t\t# reynolds number\n",
    "Tw_minus_Tinf_bar1 = qw*l/(0.6795*k1*(Re_l1)**(0.5)*(Pr1)**(0.333)) #[degree celsius]\n",
    "\n",
    "\t# at the end of the plate(x = l = 0.6m) the temperature difference is obtained \tfrom equation (5-48) and (5-50) with the constant of 0.453\n",
    "\n",
    "Tw_minus_Tinf_x_equal_l = Tw_minus_Tinf_bar1*0.6795/0.453 \t# [degree celsius]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Average temperature difference along the plate is:\",round(Tw_minus_Tinf_bar),\" degree celsius\"\n",
    "print \"Temperature difference at the trailing edge is:\",round(Tw_minus_Tinf_x_equal_l,1),\"degree celsius\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 5.7"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average value of the convection coefficient is 219.1 W/sq meter degree celsius\n",
      " and the heat lost by the plate is 350.6 W\n"
     ]
    }
   ],
   "source": [
    "#Example Number 5.7\n",
    "# Calculate the heat lost by the plate\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "u = 1.2 \t\t\t# [m/s] oil velocity\n",
    "l = 0.2 \t\t\t# [m] plate length as well as width (square) \n",
    "To = 20+273.15 \t\t\t# [K] temperature of engine oil\n",
    "Tu = 60+273.15 \t\t\t# [K] uniform temperature of plate   \n",
    "\t# First we evaluate the film temperature \n",
    "T = (To+Tu)/2 \t\t\t# [K]\n",
    "\t# and obtain the properties of engine oil are \n",
    "rho = 876 \t\t\t# [kg/cubic meter] density of oil\n",
    "v = 0.00024 \t\t\t# [square meter/s] kinematic viscosity\n",
    "k = 0.144 \t\t\t# [W/m degree celsius] heat transfer coefficient\n",
    "Pr = 2870 \t\t\t# prandtl number\n",
    "\t# at the trailing edge of the plate the reynolds number is \n",
    "\n",
    "#Calculation\n",
    "\n",
    "Re = l*u/v \t\t\t# reynolds number\n",
    "\n",
    "\n",
    "\n",
    "\t# because the prandtl no. is so large we will employ equation(5-51) for the \t\tsolution. \n",
    "\n",
    "\t# we see that hx varies with x in the same fashion as in equation(5-44) , i.e. \thx is inversely proportional to the square root of x ,\n",
    "\t# so that we get the same solution as in equation(5-45) for the average heat \t\ttransfer coefficient. \n",
    "\n",
    "\t# evaluating equation(5-51) at x = 0.2m gives\n",
    "\n",
    "Nux = (0.3387*(Re**(1.0/2.0))*(Pr**(1.0/3.0)))/((1+(0.0468/Pr)**(2.0/3.0))**(1.0/4.0))\n",
    "\n",
    "\n",
    "hx = Nux*k/l \t\t\t# [W/sq m degree celsius]  heat transfer coefficient\n",
    "\n",
    "\t# the average value of the convection coefficient is \n",
    "\n",
    "h = 2*hx \t\t\t# [W/square meter degree celsius]  \n",
    "\n",
    "\t# so that total heat transfer is \n",
    "\n",
    "A = l**(2) \t\t\t# [square meter] area of the plate \n",
    "q = h*A*(Tu-To) \t\t#[W] \n",
    "\n",
    "print \"Average value of the convection coefficient is\",round(h,1),\"W/sq meter degree celsius\"\n",
    "print \" and the heat lost by the plate is\",round(q,1),\"W\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 5.8"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Drag force exerted on the first 0.4 m of the plate is 5.45 mN\n"
     ]
    }
   ],
   "source": [
    "#Example Number 5.8\n",
    "# Compute the drag force on the first 40 cm of the plate  \n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "\n",
    "\t# data is used from example 5.4 \n",
    "\t# we use equation (5-56) to compute the friction coefficient and then \t\tcalculate the drag force .\n",
    "\t# an average friction coefficient is desired, so st_bar*pr**(2/3) = Cf_bar/2\n",
    "\n",
    "p = 101325 \t\t\t# [Pa] pressure of air\n",
    "x = 0.4\t\t\t\t#[m] drag force is computed on first 0.4 m of the \t\t\t                  plate \n",
    "R = 287 \t\t\t# []\n",
    "Tf = 316.5 \t\t\t# [K]\n",
    "u = 2 \t\t\t\t# [m/s] air velocity\n",
    "Cp = 1006 \t\t\t# [J/kg K]\n",
    "Pr = 0.7 \t\t\t# prandtl no.\n",
    "rho = p/(R*Tf) \t\t\t# [kg/cubic meter] density at 316.5 K \n",
    "h_bar = 8.698 \t\t\t# [W/square meter K]  heat transfer coefficient\n",
    "\n",
    "\n",
    "#Calculation\n",
    "\t# for the 0.4m length\n",
    "\n",
    "st_bar = h_bar/(rho*Cp*u) \n",
    "\n",
    "\t# then from equation (5-56)\n",
    "\n",
    "Cf_bar = st_bar*Pr**(2.0/3.0)*2 \n",
    "\n",
    "\t# the average shear stress at the wall is computed from equation(5-52)\n",
    "\n",
    "tau_w_bar = Cf_bar*rho*u**(2)/2 \t# [N/square meter]\n",
    "A = x*1 \t\t\t\t# [square meter] area per unit length \n",
    "\n",
    "\t# the drag force is the product of this shear stress and the area,\n",
    "\n",
    "D = tau_w_bar*A \t\t\t# [N] \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Drag force exerted on the first 0.4 m of the plate is\",round(D*1000,2),\"mN\" \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 5.9"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Nul_bar is 2175.0\n",
      "Heat transfer from plate is 2369.0 W\n"
     ]
    }
   ],
   "source": [
    "#Example Number 5.9\n",
    "# Calculate the heat transfer from the plate\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "p = 101320.0 \t\t\t\t# [Pa] pressure of air\n",
    "R = 287.0 \t\t\t\t# []\n",
    "Ta = 20+273 \t\t\t\t# [K] temperature of air \n",
    "u = 35 \t\t\t\t\t# [m/s] air velocity\n",
    "L = 0.75 \t\t\t\t# [m] length of plate \n",
    "Tp = 60+273 \t\t\t\t# [K] plate temperature \n",
    "\n",
    "\n",
    "\t\t# we evaluate properties at the film temperature \n",
    "\n",
    "#Calculations\n",
    "\n",
    "Tf = (Ta+Tp)/2 \t\t\t\t# [K]\n",
    "\n",
    "\n",
    "rho = (p/(R*Tf)) \t\t\t# [kg/cubic meter]\n",
    "\n",
    "\n",
    "mu = 1.906*(10**(-5)) \t\t\t# [kg/m s] viscosity  \n",
    "k = 0.02723 \t\t\t\t# [W/m degree celsius]\n",
    "Cp = 1007 \t\t\t\t# [J/kg K]\n",
    "Pr = 0.7 \t\t\t\t# prandtl no.\n",
    "\n",
    "\t\t# the reynolds number is \n",
    "\n",
    "Rel = (rho*u*L)/mu \n",
    "Rel=round(Rel)\n",
    "\n",
    "\t\t# and the boundary layer is turbulent because the reynolds number is \t\t\tgreater than 5*10**(5).\n",
    "\t\t# therefore, we use equation(5-85) to calculate the average heat \t\t\ttransfer over the plate:\n",
    "\n",
    "Nul_bar = (Pr**(1.0/3.0))*(0.037*(Rel**(0.8))-871) \n",
    "\n",
    "print \"Nul_bar is\",round(Nul_bar)\n",
    "A = L*1 \t\t\t\t# [square meter] area of plate per unit depth\n",
    "h_bar = Nul_bar*k/L  \t\t\t# [W/square meter degree celsius]\n",
    "q = h_bar*A*(Tp-Ta) \t\t\t# [W] heat transfer from plate\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Heat transfer from plate is\",round(q),\"W\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 5.10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Turbulent-boundary-layer thickness at the end of the plate from the leading edge of the plate is 16.5 mm\n",
      "Turbulent-boundary-layer thickness at the end of the plate from the transition point at Re_crit = 5*10**(5) is 9.9  mm\n"
     ]
    }
   ],
   "source": [
    "#Example Number 5.10\n",
    "# Calculate turbulent-boundary-layer thickness at the end of plate   \n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "\t\t# we have to use the data from example 5.8 and 5.9\n",
    "Rel = 1.553*10**6 \t\t\t\t\t# from previous example\n",
    "L = 0.75 \t\t\t\t\t\t# [m] length of plate\n",
    "\t\t# it is a simple matter to insert this value in equations(5-91) and \t\t(5-95) \talong with\n",
    "x = L \t\t\t\t\t\t\t# [m]\n",
    "\t\t# turbulent-boundary-layer thickness are\n",
    "\t\t# part a.  from the leading edge of the plate \n",
    "\n",
    "#Calculation\n",
    "\n",
    "del_a = x*0.381*Rel**(-0.2) \t\t\t\t# [m] \n",
    "\t\t# part b   from the transition point at Recrit = 5*10**(5)\n",
    "\n",
    "del_b = x*0.381*Rel**(-0.2)-10256*Rel**(-1) \t\t# [m]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Turbulent-boundary-layer thickness at the end of the plate from the leading edge of the plate is\",round(del_a*1000,1),\"mm\" \n",
    "print \"Turbulent-boundary-layer thickness at the end of the plate from the transition point at Re_crit = 5*10**(5) is\",round(del_b*1000,1),\" mm\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}