diff options
author | Trupti Kini | 2016-09-09 23:30:25 +0600 |
---|---|---|
committer | Trupti Kini | 2016-09-09 23:30:25 +0600 |
commit | 881c3e39d046002e9910d5c518c20fe000e63b37 (patch) | |
tree | c6f84e1956eb501ff64b872dafaa2184443e14c2 /Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb | |
parent | 28bb57cacd0c8bd76a5c86d7e99e3583f02f0b6c (diff) | |
download | Python-Textbook-Companions-881c3e39d046002e9910d5c518c20fe000e63b37.tar.gz Python-Textbook-Companions-881c3e39d046002e9910d5c518c20fe000e63b37.tar.bz2 Python-Textbook-Companions-881c3e39d046002e9910d5c518c20fe000e63b37.zip |
Added(A)/Deleted(D) following books
A Heat_Transfer_Principles_And_Applications_by_Dutta/README.txt
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch10.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch11.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch3.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch4.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch5.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch7.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch8.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/ch9.ipynb
A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/10.png
A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/5.png
A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/51.png
A Heat_Transfer_in_SI_units_by_Holman/Chapter1.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter10.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter2.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter3.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter4.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter6.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter7.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter8.ipynb
A Heat_Transfer_in_SI_units_by_Holman/Chapter9.ipynb
A Heat_Transfer_in_SI_units_by_Holman/README.txt
A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.1.png
A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.2.png
A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.4.png
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter2.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter3.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter4.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter5.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter6.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb
A Power_Electronics_Principles_and_Applications_by_Jacob/README.txt
A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/4.png
A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/5.png
A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/6.png
A sample_notebooks/AviralYadav/Chapter5.ipynb
Diffstat (limited to 'Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb')
-rw-r--r-- | Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb | 552 |
1 files changed, 552 insertions, 0 deletions
diff --git a/Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb b/Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb new file mode 100644 index 00000000..ec39bab5 --- /dev/null +++ b/Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb @@ -0,0 +1,552 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5 Principles of Convection" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the increase in static pressure between sections 1 and 2 is: 61.88 kPa\n" + ] + } + ], + "source": [ + "#Example 5.1\n", + "# water flow in a diffuser \n", + "\n", + "#VARIABLE DECLARATION\n", + "Tw = 20 \t\t\t# [degree celcius] water temperature \n", + "m_dot = 8 \t\t\t# [kg/s] water flow rate \n", + "d1 = 0.03 \t\t\t#[m] diameter at section 1\n", + "d2 = 0.07 \t\t\t# [m] diameter at section 2\n", + "\n", + "#CALCULATION\n", + "import math\n", + "A1 = math.pi*d1**(2)/4 \t\t# [square meter] cross-sectional area at section 1\n", + "A2 = math.pi*d2**(2)/4 \t\t# [square meter] cross-sectional area at section 2\n", + "gc = 1 \t\t\t\t# [m/s**(2)] acceleration due to gravity\n", + "rho = 1000 \t\t\t# [kg/cubic m] density of water at 20 degree celcius\n", + "\n", + "\t# calculate the velocities from the mass-continuity relation\n", + "u1 = m_dot/(rho*A1) \t\t# [m/s]\n", + "u2 = m_dot/(rho*A2) \t\t# [m/s]\n", + "\t# the pressure difference is obtained by Bernoulli equation(5-7a)\n", + "p2_minus_p1 = rho*(u1**(2)-u2**(2))/(2*gc)\t # [Pa] \n", + "\n", + "#RESULTS\n", + "print\"the increase in static pressure between sections 1 and 2 is:\",round(p2_minus_p1/1000,2),\" kPa\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The static temperature is: 529.0 K\n", + "Static pressure is: 0.5 MPa\n", + "Mach number is: 0.651\n" + ] + } + ], + "source": [ + "#Example Number 5.2\n", + "# isentropic expansion of air \n", + "\n", + "# Variable declaration\n", + "\n", + "Ta = 300.0+273.0\t \t\t# [K] air temperature\n", + "Pa = 0.7 \t\t\t\t# [MPa] pressure of air\n", + "u2 = 300 \t\t\t\t# [m/s] final velocity\n", + "gc = 1 \t\t\t\t\t# [m/s^(2)] acceleration due to gravity\n", + "Y = 1.4 \t\t\t\t# gama value for air \n", + "Cp = 1005 \t\t\t\t# [J/kg degree celsius]\n", + "\t#the initial velocity is small and the process is adiabatic. in terms of \t\ttemperature \n", + "\n", + "\n", + "#Calculation\n", + "\n", + "T2 = Ta-u2**(2)/(2*gc*Cp) \n", + "\n", + "#Result\n", + "print \"The static temperature is:\",round(T2,1),\"K\" \n", + "\n", + "\t# we may calculate the pressure difference from the isentropic relation \n", + "\n", + "p2 = Pa*((T2/Ta)**(Y/(Y-1))) \n", + "\n", + "print \"Static pressure is:\",round(p2,1),\"MPa\"\n", + "\n", + "\t# the velocity of sound at condition 2 is \n", + "a2 = (20.045*(T2**(0.5))) \t\t# [m/s] \n", + "\t#so that the mach no. is \n", + "M2 = u2/a2 \n", + "print \"Mach number is:\",round(M2,3) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.4" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The heat transfered in first case of the plate is 81.2 W\n", + "and the heat transfered in second case of the plate is: 114.8 W\n" + ] + } + ], + "source": [ + "#Example Number 5.4\n", + "#Calculate the heat transfereed in first 20 cm of the plate and the first 40 cm of the plate\n", + "\n", + "# Variable declaration\n", + "\n", + "\t# total heat transfer over a certain length of the plate is desired, so we \t\twish to calculate average heat transfer coefficients. \n", + "\t# for this purpose we use equations (5-44) and (5-45), evaluating the \t\tproperties at the film temperature :\n", + "Tp = 60+273.15 \t\t\t\t# [K] plate temperature \n", + "Ta = 27+273.15 \t\t\t\t# [K] air temperature\n", + "Tf = (Tp+Ta)/2 \t\t\t\t# [K]\n", + "u = 2 \t\t\t\t\t# [m/s] air velocity\n", + "\n", + "\t# from appendix A the properties are \n", + "\n", + "v = 17.36*(10**(-6)) \t\t\t# [square meter/s] kinematic viscosity\n", + "x1 = 0.2 \t\t\t\t# [m] distance from the leading edge of plate\n", + "x2 = 0.4 \t\t\t\t# [m] distance from the leading edge of plate\n", + "k = 0.02749 \t\t\t\t# [W/m K] heat transfer coefficient\n", + "Pr = 0.7 \t\t\t\t# prandtl number\n", + "Cp = 1006 \t\t\t\t# [J/kg K]\n", + "\n", + "\t# at x = 0.2m\n", + "\n", + "#Calculation\n", + "\n", + "Re_x1 =(u*x1/v) \t\t\t\t# reynolds number\n", + "Nu_x1 = 0.332*(Re_x1**(0.5))*(Pr**(0.333)) \t# nusselt number\n", + "hx1 = Nu_x1*k/x1 \t\t\t\t# [W/square meter K] \n", + "\n", + "\t# the average value of the heat transfer coefficient is twice this value, or\n", + "\n", + "h_bar1 = 2*hx1 \t\t\t\t\t# [W/square meter K] \n", + "\n", + "\t# the heat flow is \n", + "\n", + "A1 = x1*1 \t\t\t\t\t# [square meter] area for unit depth\n", + "q1 = h_bar1*A1*(Tp-Ta) \t\t\t\t# [W]\n", + "\n", + "\t# at x = 0.4m\n", + "\n", + "Re_x2 = u*x2/v \t\t\t\t\t# reynolds number\n", + "Nu_x2 = 0.332*Re_x2**(0.5)*Pr**(0.333) \t\t# nusselt number\n", + "hx2 = Nu_x2*k/x2 \t\t\t\t# [W/square meter K] \n", + "\n", + "\t# the average value of the heat transfer coefficient is twice this value, or\n", + "\n", + "h_bar2 = 2*hx2 \t\t\t\t\t# [W/square meter K] \n", + "\t# the heat flow is \n", + "A2 = x2*1 \t\t\t\t\t# [square meter] area for unit depth\n", + "q2 = h_bar2*A2*(Tp-Ta) \t\t\t\t# [W] \n", + "\n", + "#Result\n", + " \n", + "print\"The heat transfered in first case of the plate is\",round(q1,2),\"W\"\n", + "print\"and the heat transfered in second case of the plate is:\",round(q2,1),\"W\" " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.5" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average temperature difference along the plate is: 241.0 degree celsius\n", + "Temperature difference at the trailing edge is: 365.3 degree celsius\n" + ] + } + ], + "source": [ + "#Example Number 5.5\n", + "# Calculate the av temperature difference along the plate & Temperature diff at the trailing edge\n", + "\n", + "#Variable declaration\n", + "\n", + "u = 5 \t\t\t\t\t# [m/s] air velocity\n", + "l = 0.6 \t\t\t\t# [m] plate length\n", + "Ta = 27+273.15 \t\t\t\t# [K] temperature of airstream\n", + "\n", + "\t# properties should be evaluated at the film temperature, but we do not know \tthe plate temperature so for an initial calculation we take the properties at \tthe free-stream conditions of\n", + "\n", + "v = 15.69*10**(-6)\t \t\t#[square meter/s] kinematic viscosity\n", + "k = 0.02624 \t\t\t\t#[W/m deg celsius] heat transfer coefficient\n", + "Pr = 0.7 \t\t\t\t# prandtl number\n", + "Re_l = l*u/v \t\t\t\t# reynolds number\n", + "P = 1000 \t\t\t\t# [W] power of heater\n", + "qw = P/l**(2) \t\t\t\t# [W/square meter] heat flux per unit area \n", + "\n", + "\t# from equation (5-50) the average temperature difference is \n", + "\n", + "#Calculation\n", + "\n", + "Tw_minus_Tinf_bar = qw*l/(0.6795*k*(Re_l)**(.5)*(Pr)**(0.333)) \t # [degree celsius]\n", + "\n", + "\t# now, we go back and evaluate properties at \n", + "Tf = (Tw_minus_Tinf_bar+Ta+Ta)/2 \t# [degree celsius]\n", + "\n", + "\t# and obtain\n", + "\n", + "v1 = 28.22*10**(-6) \t\t\t# [square meter/s] kinematic viscosity\n", + "k1 = 0.035 \t\t\t\t# [W/m deg celsius] heat transfer coefficient\n", + "Pr1 = 0.687 \t\t\t\t# prandtl number\n", + "Re_l1 = l*u/v1 \t\t\t\t# reynolds number\n", + "Tw_minus_Tinf_bar1 = qw*l/(0.6795*k1*(Re_l1)**(0.5)*(Pr1)**(0.333)) #[degree celsius]\n", + "\n", + "\t# at the end of the plate(x = l = 0.6m) the temperature difference is obtained \tfrom equation (5-48) and (5-50) with the constant of 0.453\n", + "\n", + "Tw_minus_Tinf_x_equal_l = Tw_minus_Tinf_bar1*0.6795/0.453 \t# [degree celsius]\n", + "\n", + "#Result\n", + "\n", + "print \"Average temperature difference along the plate is:\",round(Tw_minus_Tinf_bar),\" degree celsius\"\n", + "print \"Temperature difference at the trailing edge is:\",round(Tw_minus_Tinf_x_equal_l,1),\"degree celsius\" " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.7" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average value of the convection coefficient is 219.1 W/sq meter degree celsius\n", + " and the heat lost by the plate is 350.6 W\n" + ] + } + ], + "source": [ + "#Example Number 5.7\n", + "# Calculate the heat lost by the plate\n", + "\n", + "# Variable declaration\n", + "\n", + "u = 1.2 \t\t\t# [m/s] oil velocity\n", + "l = 0.2 \t\t\t# [m] plate length as well as width (square) \n", + "To = 20+273.15 \t\t\t# [K] temperature of engine oil\n", + "Tu = 60+273.15 \t\t\t# [K] uniform temperature of plate \n", + "\t# First we evaluate the film temperature \n", + "T = (To+Tu)/2 \t\t\t# [K]\n", + "\t# and obtain the properties of engine oil are \n", + "rho = 876 \t\t\t# [kg/cubic meter] density of oil\n", + "v = 0.00024 \t\t\t# [square meter/s] kinematic viscosity\n", + "k = 0.144 \t\t\t# [W/m degree celsius] heat transfer coefficient\n", + "Pr = 2870 \t\t\t# prandtl number\n", + "\t# at the trailing edge of the plate the reynolds number is \n", + "\n", + "#Calculation\n", + "\n", + "Re = l*u/v \t\t\t# reynolds number\n", + "\n", + "\n", + "\n", + "\t# because the prandtl no. is so large we will employ equation(5-51) for the \t\tsolution. \n", + "\n", + "\t# we see that hx varies with x in the same fashion as in equation(5-44) , i.e. \thx is inversely proportional to the square root of x ,\n", + "\t# so that we get the same solution as in equation(5-45) for the average heat \t\ttransfer coefficient. \n", + "\n", + "\t# evaluating equation(5-51) at x = 0.2m gives\n", + "\n", + "Nux = (0.3387*(Re**(1.0/2.0))*(Pr**(1.0/3.0)))/((1+(0.0468/Pr)**(2.0/3.0))**(1.0/4.0))\n", + "\n", + "\n", + "hx = Nux*k/l \t\t\t# [W/sq m degree celsius] heat transfer coefficient\n", + "\n", + "\t# the average value of the convection coefficient is \n", + "\n", + "h = 2*hx \t\t\t# [W/square meter degree celsius] \n", + "\n", + "\t# so that total heat transfer is \n", + "\n", + "A = l**(2) \t\t\t# [square meter] area of the plate \n", + "q = h*A*(Tu-To) \t\t#[W] \n", + "\n", + "print \"Average value of the convection coefficient is\",round(h,1),\"W/sq meter degree celsius\"\n", + "print \" and the heat lost by the plate is\",round(q,1),\"W\" " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.8" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Drag force exerted on the first 0.4 m of the plate is 5.45 mN\n" + ] + } + ], + "source": [ + "#Example Number 5.8\n", + "# Compute the drag force on the first 40 cm of the plate \n", + "\n", + "# Variable declaration\n", + "\n", + "\n", + "\t# data is used from example 5.4 \n", + "\t# we use equation (5-56) to compute the friction coefficient and then \t\tcalculate the drag force .\n", + "\t# an average friction coefficient is desired, so st_bar*pr**(2/3) = Cf_bar/2\n", + "\n", + "p = 101325 \t\t\t# [Pa] pressure of air\n", + "x = 0.4\t\t\t\t#[m] drag force is computed on first 0.4 m of the \t\t\t plate \n", + "R = 287 \t\t\t# []\n", + "Tf = 316.5 \t\t\t# [K]\n", + "u = 2 \t\t\t\t# [m/s] air velocity\n", + "Cp = 1006 \t\t\t# [J/kg K]\n", + "Pr = 0.7 \t\t\t# prandtl no.\n", + "rho = p/(R*Tf) \t\t\t# [kg/cubic meter] density at 316.5 K \n", + "h_bar = 8.698 \t\t\t# [W/square meter K] heat transfer coefficient\n", + "\n", + "\n", + "#Calculation\n", + "\t# for the 0.4m length\n", + "\n", + "st_bar = h_bar/(rho*Cp*u) \n", + "\n", + "\t# then from equation (5-56)\n", + "\n", + "Cf_bar = st_bar*Pr**(2.0/3.0)*2 \n", + "\n", + "\t# the average shear stress at the wall is computed from equation(5-52)\n", + "\n", + "tau_w_bar = Cf_bar*rho*u**(2)/2 \t# [N/square meter]\n", + "A = x*1 \t\t\t\t# [square meter] area per unit length \n", + "\n", + "\t# the drag force is the product of this shear stress and the area,\n", + "\n", + "D = tau_w_bar*A \t\t\t# [N] \n", + "\n", + "#Result\n", + "\n", + "print \"Drag force exerted on the first 0.4 m of the plate is\",round(D*1000,2),\"mN\" \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.9" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Nul_bar is 2175.0\n", + "Heat transfer from plate is 2369.0 W\n" + ] + } + ], + "source": [ + "#Example Number 5.9\n", + "# Calculate the heat transfer from the plate\n", + "\n", + "# Variable declaration\n", + "\n", + "p = 101320.0 \t\t\t\t# [Pa] pressure of air\n", + "R = 287.0 \t\t\t\t# []\n", + "Ta = 20+273 \t\t\t\t# [K] temperature of air \n", + "u = 35 \t\t\t\t\t# [m/s] air velocity\n", + "L = 0.75 \t\t\t\t# [m] length of plate \n", + "Tp = 60+273 \t\t\t\t# [K] plate temperature \n", + "\n", + "\n", + "\t\t# we evaluate properties at the film temperature \n", + "\n", + "#Calculations\n", + "\n", + "Tf = (Ta+Tp)/2 \t\t\t\t# [K]\n", + "\n", + "\n", + "rho = (p/(R*Tf)) \t\t\t# [kg/cubic meter]\n", + "\n", + "\n", + "mu = 1.906*(10**(-5)) \t\t\t# [kg/m s] viscosity \n", + "k = 0.02723 \t\t\t\t# [W/m degree celsius]\n", + "Cp = 1007 \t\t\t\t# [J/kg K]\n", + "Pr = 0.7 \t\t\t\t# prandtl no.\n", + "\n", + "\t\t# the reynolds number is \n", + "\n", + "Rel = (rho*u*L)/mu \n", + "Rel=round(Rel)\n", + "\n", + "\t\t# and the boundary layer is turbulent because the reynolds number is \t\t\tgreater than 5*10**(5).\n", + "\t\t# therefore, we use equation(5-85) to calculate the average heat \t\t\ttransfer over the plate:\n", + "\n", + "Nul_bar = (Pr**(1.0/3.0))*(0.037*(Rel**(0.8))-871) \n", + "\n", + "print \"Nul_bar is\",round(Nul_bar)\n", + "A = L*1 \t\t\t\t# [square meter] area of plate per unit depth\n", + "h_bar = Nul_bar*k/L \t\t\t# [W/square meter degree celsius]\n", + "q = h_bar*A*(Tp-Ta) \t\t\t# [W] heat transfer from plate\n", + "\n", + "#Result\n", + "\n", + "print \"Heat transfer from plate is\",round(q),\"W\" " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.10" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Turbulent-boundary-layer thickness at the end of the plate from the leading edge of the plate is 16.5 mm\n", + "Turbulent-boundary-layer thickness at the end of the plate from the transition point at Re_crit = 5*10**(5) is 9.9 mm\n" + ] + } + ], + "source": [ + "#Example Number 5.10\n", + "# Calculate turbulent-boundary-layer thickness at the end of plate \n", + "\n", + "# Variable declaration\n", + "\n", + "\t\t# we have to use the data from example 5.8 and 5.9\n", + "Rel = 1.553*10**6 \t\t\t\t\t# from previous example\n", + "L = 0.75 \t\t\t\t\t\t# [m] length of plate\n", + "\t\t# it is a simple matter to insert this value in equations(5-91) and \t\t(5-95) \talong with\n", + "x = L \t\t\t\t\t\t\t# [m]\n", + "\t\t# turbulent-boundary-layer thickness are\n", + "\t\t# part a. from the leading edge of the plate \n", + "\n", + "#Calculation\n", + "\n", + "del_a = x*0.381*Rel**(-0.2) \t\t\t\t# [m] \n", + "\t\t# part b from the transition point at Recrit = 5*10**(5)\n", + "\n", + "del_b = x*0.381*Rel**(-0.2)-10256*Rel**(-1) \t\t# [m]\n", + "\n", + "#Result\n", + "\n", + "print \"Turbulent-boundary-layer thickness at the end of the plate from the leading edge of the plate is\",round(del_a*1000,1),\"mm\" \n", + "print \"Turbulent-boundary-layer thickness at the end of the plate from the transition point at Re_crit = 5*10**(5) is\",round(del_b*1000,1),\" mm\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |