1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
{
"metadata": {
"name": "",
"signature": "sha256:6a2b99a338c7d2a71ec20bddeaf4c19ec8da980602f4c9834a7faee562a1e5cc"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6:Pure Bending and Bending with Axial force "
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.3 page number 293"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"#Entire area - hallow area\n",
"l_e = 60.0 #mm - length of the entire area\n",
"b_e = 40 #mm - width of the entire area\n",
"l_h = 30 #mm - length of the hallow area\n",
"b_h = 20 #mm - width of the hallow area\n",
"A_e = l_e*b_e #mm2 - The entire area\n",
"A_h = -l_h*b_h #mm2 - The hallow area '-' because its hallow\n",
"A_re = A_e + A_h #mm2 resultant area\n",
"y_e = l_e/2 # mm com from bottom \n",
"y_h = 20+l_h/2 #mm com from bottom \n",
"y_com = (A_e*y_e + A_h*y_h)/A_re \n",
"#moment of inertia caliculatins - bh3/12 +ad2\n",
"I_e = b_e*(l_e**3)/12 + A_e*((y_e-y_com)**2) #Parallel axis theorm\n",
"I_h = b_h*(l_h**3)/12 - A_h*((y_h-y_com)**2) #Parallel axis theorm\n",
"I_total = I_e - I_h\n",
"print \"The moment of inertia of total system is \",I_total,\"mm4\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The moment of inertia of total system is 655000.0 mm4\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.4 page number 295"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"l = 400 #mm - Length \n",
"b = 300 #mm - breath \n",
"F = 20 #KN _ the force applied on the beam \n",
"F_d = 0.75 #KN-m - The force distribution \n",
"d = 2 #mt - the point of interest from the free end\n",
"#caliculations \n",
"#From moment diagram\n",
"M = F*d - F_d*d*1\n",
"I = b*(l**3)/12 #mm4 - Bending moment diagram \n",
"c = l/2 # the stress max at this C\n",
"S = I/c #The maximum shear stress \n",
"shear_max = M*(10**6)/S #MPA - the maximum stress \n",
"print \"The maximum stress at 2 mt is\",round(shear_max,2),\"Mpa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum stress at 2 mt is 4.81 Mpa\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5 pagr number 297"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"#We will divide this into three parts\n",
"F = 8 #k - force applied\n",
"d = 16 #inch -distance\n",
"l_1 = 1 #in \n",
"l_2 = 3 #in \n",
"b_1 = 4 #in \n",
"b_2 = 1 #in\n",
"A_1 = l_1* b_1 #in2 - area of part_1\n",
"y_1 = 0.5 #in com distance from ab\n",
"A_2 =l_2*b_2 #in2 - area of part_1\n",
"y_2 = 2.5 #in com distance from ab\n",
"A_3 = l_2*b_2 #in2 - area of part_1\n",
"y_3 = 2.5 #in com distance from ab\n",
"\n",
"y_net = (A_1*y_1 +A_2*y_2 + A_3*y_3)/(A_1+A_2+A_3) #in - The com of the whole system\n",
"c_max = (4-y_net) #in - The maximum distace from com to end\n",
"c_min = y_net #in - the minimum distance from com to end\n",
"I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) #Parallel axis theorm\n",
"I_2 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)\n",
"I_3 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)\n",
"I_net = I_1 + I_2 + I_3 #in4 - the total moment of inertia\n",
"M_c = F*d*c_max \n",
"stress_cmax = M_c/I_net #Ksi - The maximum compressive stress\n",
"\n",
"M_t= F*d*c_min \n",
"stress_tmax = M_t/I_net #Ksi - The maximum tensile stress\n",
"print \"The maximum tensile stress\",stress_tmax ,\"Ksi\"\n",
"print \"The maximum compressive stress\",round(stress_cmax,1) ,\"Ksi\"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum tensile stress 16.0 Ksi\n",
"The maximum compressive stress 21.6 Ksi\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.8 page number 303"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"#Given \n",
"#We will divide this into two parts\n",
"E_w = 10.0 #Gpa - Youngs modulus of wood\n",
"E_s = 200.0 #Gpa - Youngs modulus of steel\n",
"M = 30.0 #K.N-m _ applied bending moment \n",
"n = E_s/E_w \n",
"l_1 = 250 #mm \n",
"l_2 = 10 #mm\n",
"b_1 = 150.0 #mm\n",
"b_2 = 150.0*n #mm\n",
"A_1 = l_1* b_1 #mm2 - area of part_1\n",
"y_1 = 125.0 #mm com distance from top\n",
"A_2 =l_2*b_2 #mm2 - area of part_1\n",
"y_2 = 255.0 #mm com distance from top\n",
"y_net = (A_1*y_1 +A_2*y_2)/(A_1+A_2) #mm - The com of the whole system from top\n",
"I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y_net)**2) #Parallel axis theorm\n",
"I_2 = b_2*(l_2**3)/12.0 + A_2*((y_2-y_net)**2)\n",
"I_net = I_1 + I_2 #mm4 - the total moment of inertia\n",
"c_s= y_net # The maximum distance in steel \n",
"stress_steel = M*(10.0**6)*c_s/I_net #Mpa - The maximum stress in steel \n",
"\n",
"c_w= l_1+l_2-y_net # The maximum distance in wood \n",
"stress_wood = n*M*(10.0**6)*c_w/I_net #MPa - The maximum stress in wood \n",
"\n",
"print \"The maximum stress in steel \",round(stress_steel,2) ,\"Mpa\"\n",
"print \"The maximum stress in wood\",round(stress_wood,2) ,\"Mpa\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum stress in steel 11.49 Mpa\n",
"The maximum stress in wood 97.09 Mpa\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.9 page number 305"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"M = 50000 #ft-lb , positive bending moment applied\n",
"N = 9 # number of steel bars \n",
"n = 15 # The ratio of steel to concrete \n",
"A_s = 30 #in2 area of steel in concrete\n",
"#(10*y)*(y/2) = 30*(20-y)\n",
"#y**2 + 6*y -120\n",
"#solving quadractic equation \n",
"import math\n",
"\n",
"a = 1\n",
"b = 6\n",
"c = -120\n",
"# calculate the discriminant\n",
"d = (b**2) - (4*a*c)\n",
"\n",
"# find two solutions\n",
"sol1 = (-b-math.sqrt(d))/(2*a)\n",
"sol2 = (-b+math.sqrt(d))/(2*a)\n",
"y = sol2 # Nuetral axis is found\n",
"l_1 = y #in- the concrete below nuetral axis is not considered\n",
"b_1 = 10 #in - width\n",
"A_1 = l_1* b_1 #in2 - area of concrete\n",
"y_1 = y/2 #in com of the concrete \n",
"y_2 = 20-y #in com of the transformed steel \n",
"I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y)**2) #in4 parallel axis theorm\n",
"I_2 = A_s*((y_2)**2) #in4 first part is neglected\n",
"I_net = I_1 + I_2 #in4 - the total moment of inertia\n",
"c_c= y #in The maximum distance in concrete \n",
"stress_concrete = M*12*c_c/I_net #psi - The maximum stress in concrete \n",
"c_s= 20- y \n",
"stress_steel =n*M*12*c_s/I_net #psi - The maximum stress in concrete \n",
"print \"The maximum stress in concrete \",round(stress_concrete,2) ,\"psi\"\n",
"print \"The stress in steel\",round(stress_steel,2) ,\"psi\"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum stress in concrete 834.07 psi\n",
"The stress in steel 17427.61 psi\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example 6.10 page number 309"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"l = 50.0 #mm - the length of the beam \n",
"b = 50.0 #mm - the width of the beam\n",
"M = 2083 #Nm\n",
"A = l*b #mm2 - The area \n",
"#straight beam \n",
"I = b*(l**3)/12.0 #mm4 - The moment of inertia of the beam\n",
"c_1= l/2 # the distance where the stress is maximum \n",
"c_2 = -l/2 # the distance where the stress is maximum \n",
"s_1 = I/c_1\n",
"s_2 = I/c_2\n",
"stress_max_1 = M*(10**3)/s_1 #Mpa - the maximum strss recorded in the crossection\n",
"stress_max_2 = M*(10**3)/s_2 #Mpa - the maximum strss recorded in the crossection \n",
"print \"The maximum stress upward in straight case is\",stress_max_1,\"Mpa\"\n",
"print \"The maximum stress downward in straight case is\",stress_max_2,\"Mpa\"\n",
"\n",
"#curved beam \n",
"import math\n",
"r = 250.0 #mm Radius of beam curved \n",
"r_0 = r - l/2 # inner radius \n",
"r_1 = r + l/2 # outer radius\n",
"R = l/(math.log(r_1/r_0)) #mm \n",
"e = r - R \n",
"stressr_max_1 = M*(10**3)*(R-r_0)/(r_0*A*e)\n",
"stressr_max_2 = M*(10**3)*(R-r_1)/(r_1*A*e)\n",
"print \"The maximum stress upward in curved case is\",stressr_max_1,\"Mpa\"\n",
"print \"The maximum stress downward in curved case is\",stressr_max_2,\"Mpa\"\n",
"\n",
"#curved beam _2 \n",
"import math\n",
"r = 75.0 #mm Radius of beam curved \n",
"r_0 = r - l/2 # inner radius \n",
"r_1 = r + l/2 # outer radius\n",
"R = l/(math.log(r_1/r_0)) #mm \n",
"e = r - R \n",
"stressr_max_1 = M*(10**3)*(R-r_0)/(r_0*A*e)\n",
"stressr_max_2 = M*(10**3)*(R-r_1)/(r_1*A*e)\n",
"print \"The maximum stress upward in curved case2 is\",stressr_max_1,\"Mpa\"\n",
"print \"The maximum stress downward in curved case2 is\",stressr_max_2,\"Mpa\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum stress upward in straight case is 99.984 Mpa\n",
"The maximum stress downward in straight case is -99.984 Mpa\n",
"The maximum stress upward in curved case is 107.093207632 Mpa\n",
"The maximum stress downward in curved case is -93.6813516989 Mpa\n",
"The maximum stress upward in curved case2 is 128.733538525 Mpa\n",
"The maximum stress downward in curved case2 is -81.0307692623 Mpa\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Page number 6.14 page number 318"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given \n",
"#from example 6.9\n",
"St_ul = 2500 #psi - ultimate strength\n",
"st_yl = 40000 #psi _ yielding strength \n",
"b = 10 #in - width from example \n",
"A = 2 #in2 The area of the steel\n",
"d = 20 \n",
"t_ul = st_yl*A #ultimate capasity\n",
"y = t_ul/(St_ul*b*0.85) #in 0.85 because its customary\n",
"M_ul = t_ul*(d-y/2)/12 #ft-lb Plastic moment \n",
"print \"The plastic moment of the system is \",M_ul,\"ft-lb\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The plastic moment of the system is 120784.313725 ft-lb\n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.15 page number 231"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given \n",
"#From example 5.8 \n",
"W = 4.0 #N/m - The force distribution \n",
"L = 3 # m - The length of the force applied\n",
"M = W*L/8.0 # KN.m The moment due to force distribution\n",
"o = 30 # the angle of force applid to horizantal\n",
"l = 150.0 #mm length of the crossection \n",
"b = 100.0 #mm - width of the crossection \n",
"import math \n",
"M_z = M*(math.cos(3.14/6))\n",
"M_y = M*(math.sin(math.pi/6))\n",
"I_z = b*(l**3)/12.0\n",
"I_y = l*(b**3)/12.0\n",
"#tanb = I_z /I_y *tan30\n",
"b = math.atan(math.radians(I_z*math.tan(3.14/6.0)/I_y ))\n",
"print \"The angle at which nuetral axis locates is\",b,\"radians\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The angle at which nuetral axis locates is 0.0226547191205 radians\n"
]
}
],
"prompt_number": 50
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.16 pagenumber 323"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"M = 10 #KN.m - The moment applied\n",
"I_max = 23.95*(10**6) #mm4 - I_z The moment of inertia\n",
"I_min = 2.53*(10**6) #mm4 - I_y The moment of inertia\n",
"o = 14.34 # degress the principle axis rotated\n",
"#Coponents of M in Y,Z direction \n",
"M_z = M*(10**6)*math.cos(math.radians(o))\n",
"M_y = M*(10**6)*math.sin(math.radians(o))\n",
"#tanb = I_z /I_y *tan14.34\n",
"b = math.atan((I_max*math.tan(math.radians(o))/I_min ))\n",
"B = math.degrees(b) \n",
"y_p = 122.9 # mm - principle axis Y cordinate\n",
"z_p = -26.95 #mm - principle axis z cordinate\n",
"stress_B = - M_z*y_p/I_max + M_y*z_p/I_min #Mpa - Maximum tensile stress\n",
"y_f = -65.97 # mm - principle axis Y cordinate\n",
"z_f = 41.93 #mm - principle axis z cordinate\n",
"stress_f = - M_z*y_f/I_max + M_y*z_f/I_min #Mpa - Maximum compressive stress\n",
"print \"The maximum tensile stress\",round(stress_B,2) ,\"Mpa\"\n",
"print \"The maximum compressive stress\",round(stress_f,2),\"Mpa\"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum tensile stress -76.1 Mpa\n",
"The maximum compressive stress 67.73 Mpa\n"
]
}
],
"prompt_number": 83
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.18 page number 328"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"l = 50 #mm - The length of the beam \n",
"b = 50 #mm - The width of the beam \n",
"A = l*b #mm2 - The area of the beam \n",
"p = 8.33 #KN - The force applied on the beam \n",
"stress_max = p*(10**3)/A #Mpa After cutting section A--b\n",
"print \"The maximum stress in the beam\",stress_max ,\"Mpa \""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum stress in the beam 3.332 Mpa \n"
]
}
],
"prompt_number": 51
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.24 page number 339"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"M = 10 #KN.m - The moment applied\n",
"I_max = 23.95*(10**6) #mm4 - I_z The moment of inertia\n",
"I_min = 2.53*(10**6) #mm4 - I_y The moment of inertia\n",
"o = 14.34 # degress the principle axis rotated\n",
"#Coponents of M in Y,Z direction \n",
"M_z = M*(10**6)*math.cos(math.radians(o))\n",
"M_y = M*(10**6)*math.sin(math.radians(o))\n",
"#tanb = I_z /I_y *tan14.34\n",
"b = math.atan((I_max*math.tan(math.radians(o))/I_min ))\n",
"B = math.degrees(b) \n",
"y_p = 122.9 # mm - principle axis Y cordinate\n",
"z_p = -26.95 #mm - principle axis z cordinate\n",
"stress_B = - M_z*y_p/I_max + M_y*z_p/I_min #Mpa - Maximum tensile stress\n",
"y_f = -65.97 # mm - principle axis Y cordinate\n",
"z_f = 41.93 #mm - principle axis z cordinate\n",
"stress_f = - M_z*y_f/I_max + M_y*z_f/I_min #Mpa - Maximum compressive stress\n",
"#location of nuetral axis To show these stresses are max and minimum \n",
"#tanB = MzI_z + MzI_yz/MyI_y +M_YI_yz\n",
"I_z = 22.64 *(10**6) #mm4 moment of inertia in Z direction\n",
"I_y = 3.84 *(10**6) #mm4 moment of inertia in Y direction\n",
"I_yz =5.14 *(10**6) #mm4 moment of inertia in YZ direction \n",
"M_y = M #KN.m bending moment in Y dorection \n",
"M_z = M #KN.m bending moment in Y dorection \n",
"B = math.atan(( M_z*I_yz)/(M_z*I_y )) #radians location on neutral axis\n",
"beta = math.degrees(B)\n",
"print \"By sketching the line with angle\",round(beta,1),\"degrees The farthest point associated with B and F\" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"By sketching the line with angle 53.2 degrees The farthest point associated with B and F\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|