{ "metadata": { "name": "", "signature": "sha256:6a2b99a338c7d2a71ec20bddeaf4c19ec8da980602f4c9834a7faee562a1e5cc" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6:Pure Bending and Bending with Axial force " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3 page number 293" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "#Entire area - hallow area\n", "l_e = 60.0 #mm - length of the entire area\n", "b_e = 40 #mm - width of the entire area\n", "l_h = 30 #mm - length of the hallow area\n", "b_h = 20 #mm - width of the hallow area\n", "A_e = l_e*b_e #mm2 - The entire area\n", "A_h = -l_h*b_h #mm2 - The hallow area '-' because its hallow\n", "A_re = A_e + A_h #mm2 resultant area\n", "y_e = l_e/2 # mm com from bottom \n", "y_h = 20+l_h/2 #mm com from bottom \n", "y_com = (A_e*y_e + A_h*y_h)/A_re \n", "#moment of inertia caliculatins - bh3/12 +ad2\n", "I_e = b_e*(l_e**3)/12 + A_e*((y_e-y_com)**2) #Parallel axis theorm\n", "I_h = b_h*(l_h**3)/12 - A_h*((y_h-y_com)**2) #Parallel axis theorm\n", "I_total = I_e - I_h\n", "print \"The moment of inertia of total system is \",I_total,\"mm4\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The moment of inertia of total system is 655000.0 mm4\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4 page number 295" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "l = 400 #mm - Length \n", "b = 300 #mm - breath \n", "F = 20 #KN _ the force applied on the beam \n", "F_d = 0.75 #KN-m - The force distribution \n", "d = 2 #mt - the point of interest from the free end\n", "#caliculations \n", "#From moment diagram\n", "M = F*d - F_d*d*1\n", "I = b*(l**3)/12 #mm4 - Bending moment diagram \n", "c = l/2 # the stress max at this C\n", "S = I/c #The maximum shear stress \n", "shear_max = M*(10**6)/S #MPA - the maximum stress \n", "print \"The maximum stress at 2 mt is\",round(shear_max,2),\"Mpa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum stress at 2 mt is 4.81 Mpa\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5 pagr number 297" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "#We will divide this into three parts\n", "F = 8 #k - force applied\n", "d = 16 #inch -distance\n", "l_1 = 1 #in \n", "l_2 = 3 #in \n", "b_1 = 4 #in \n", "b_2 = 1 #in\n", "A_1 = l_1* b_1 #in2 - area of part_1\n", "y_1 = 0.5 #in com distance from ab\n", "A_2 =l_2*b_2 #in2 - area of part_1\n", "y_2 = 2.5 #in com distance from ab\n", "A_3 = l_2*b_2 #in2 - area of part_1\n", "y_3 = 2.5 #in com distance from ab\n", "\n", "y_net = (A_1*y_1 +A_2*y_2 + A_3*y_3)/(A_1+A_2+A_3) #in - The com of the whole system\n", "c_max = (4-y_net) #in - The maximum distace from com to end\n", "c_min = y_net #in - the minimum distance from com to end\n", "I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) #Parallel axis theorm\n", "I_2 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)\n", "I_3 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)\n", "I_net = I_1 + I_2 + I_3 #in4 - the total moment of inertia\n", "M_c = F*d*c_max \n", "stress_cmax = M_c/I_net #Ksi - The maximum compressive stress\n", "\n", "M_t= F*d*c_min \n", "stress_tmax = M_t/I_net #Ksi - The maximum tensile stress\n", "print \"The maximum tensile stress\",stress_tmax ,\"Ksi\"\n", "print \"The maximum compressive stress\",round(stress_cmax,1) ,\"Ksi\"\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum tensile stress 16.0 Ksi\n", "The maximum compressive stress 21.6 Ksi\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.8 page number 303" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "#Given \n", "#We will divide this into two parts\n", "E_w = 10.0 #Gpa - Youngs modulus of wood\n", "E_s = 200.0 #Gpa - Youngs modulus of steel\n", "M = 30.0 #K.N-m _ applied bending moment \n", "n = E_s/E_w \n", "l_1 = 250 #mm \n", "l_2 = 10 #mm\n", "b_1 = 150.0 #mm\n", "b_2 = 150.0*n #mm\n", "A_1 = l_1* b_1 #mm2 - area of part_1\n", "y_1 = 125.0 #mm com distance from top\n", "A_2 =l_2*b_2 #mm2 - area of part_1\n", "y_2 = 255.0 #mm com distance from top\n", "y_net = (A_1*y_1 +A_2*y_2)/(A_1+A_2) #mm - The com of the whole system from top\n", "I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y_net)**2) #Parallel axis theorm\n", "I_2 = b_2*(l_2**3)/12.0 + A_2*((y_2-y_net)**2)\n", "I_net = I_1 + I_2 #mm4 - the total moment of inertia\n", "c_s= y_net # The maximum distance in steel \n", "stress_steel = M*(10.0**6)*c_s/I_net #Mpa - The maximum stress in steel \n", "\n", "c_w= l_1+l_2-y_net # The maximum distance in wood \n", "stress_wood = n*M*(10.0**6)*c_w/I_net #MPa - The maximum stress in wood \n", "\n", "print \"The maximum stress in steel \",round(stress_steel,2) ,\"Mpa\"\n", "print \"The maximum stress in wood\",round(stress_wood,2) ,\"Mpa\" \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum stress in steel 11.49 Mpa\n", "The maximum stress in wood 97.09 Mpa\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.9 page number 305" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "M = 50000 #ft-lb , positive bending moment applied\n", "N = 9 # number of steel bars \n", "n = 15 # The ratio of steel to concrete \n", "A_s = 30 #in2 area of steel in concrete\n", "#(10*y)*(y/2) = 30*(20-y)\n", "#y**2 + 6*y -120\n", "#solving quadractic equation \n", "import math\n", "\n", "a = 1\n", "b = 6\n", "c = -120\n", "# calculate the discriminant\n", "d = (b**2) - (4*a*c)\n", "\n", "# find two solutions\n", "sol1 = (-b-math.sqrt(d))/(2*a)\n", "sol2 = (-b+math.sqrt(d))/(2*a)\n", "y = sol2 # Nuetral axis is found\n", "l_1 = y #in- the concrete below nuetral axis is not considered\n", "b_1 = 10 #in - width\n", "A_1 = l_1* b_1 #in2 - area of concrete\n", "y_1 = y/2 #in com of the concrete \n", "y_2 = 20-y #in com of the transformed steel \n", "I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y)**2) #in4 parallel axis theorm\n", "I_2 = A_s*((y_2)**2) #in4 first part is neglected\n", "I_net = I_1 + I_2 #in4 - the total moment of inertia\n", "c_c= y #in The maximum distance in concrete \n", "stress_concrete = M*12*c_c/I_net #psi - The maximum stress in concrete \n", "c_s= 20- y \n", "stress_steel =n*M*12*c_s/I_net #psi - The maximum stress in concrete \n", "print \"The maximum stress in concrete \",round(stress_concrete,2) ,\"psi\"\n", "print \"The stress in steel\",round(stress_steel,2) ,\"psi\"\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum stress in concrete 834.07 psi\n", "The stress in steel 17427.61 psi\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 6.10 page number 309" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "l = 50.0 #mm - the length of the beam \n", "b = 50.0 #mm - the width of the beam\n", "M = 2083 #Nm\n", "A = l*b #mm2 - The area \n", "#straight beam \n", "I = b*(l**3)/12.0 #mm4 - The moment of inertia of the beam\n", "c_1= l/2 # the distance where the stress is maximum \n", "c_2 = -l/2 # the distance where the stress is maximum \n", "s_1 = I/c_1\n", "s_2 = I/c_2\n", "stress_max_1 = M*(10**3)/s_1 #Mpa - the maximum strss recorded in the crossection\n", "stress_max_2 = M*(10**3)/s_2 #Mpa - the maximum strss recorded in the crossection \n", "print \"The maximum stress upward in straight case is\",stress_max_1,\"Mpa\"\n", "print \"The maximum stress downward in straight case is\",stress_max_2,\"Mpa\"\n", "\n", "#curved beam \n", "import math\n", "r = 250.0 #mm Radius of beam curved \n", "r_0 = r - l/2 # inner radius \n", "r_1 = r + l/2 # outer radius\n", "R = l/(math.log(r_1/r_0)) #mm \n", "e = r - R \n", "stressr_max_1 = M*(10**3)*(R-r_0)/(r_0*A*e)\n", "stressr_max_2 = M*(10**3)*(R-r_1)/(r_1*A*e)\n", "print \"The maximum stress upward in curved case is\",stressr_max_1,\"Mpa\"\n", "print \"The maximum stress downward in curved case is\",stressr_max_2,\"Mpa\"\n", "\n", "#curved beam _2 \n", "import math\n", "r = 75.0 #mm Radius of beam curved \n", "r_0 = r - l/2 # inner radius \n", "r_1 = r + l/2 # outer radius\n", "R = l/(math.log(r_1/r_0)) #mm \n", "e = r - R \n", "stressr_max_1 = M*(10**3)*(R-r_0)/(r_0*A*e)\n", "stressr_max_2 = M*(10**3)*(R-r_1)/(r_1*A*e)\n", "print \"The maximum stress upward in curved case2 is\",stressr_max_1,\"Mpa\"\n", "print \"The maximum stress downward in curved case2 is\",stressr_max_2,\"Mpa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum stress upward in straight case is 99.984 Mpa\n", "The maximum stress downward in straight case is -99.984 Mpa\n", "The maximum stress upward in curved case is 107.093207632 Mpa\n", "The maximum stress downward in curved case is -93.6813516989 Mpa\n", "The maximum stress upward in curved case2 is 128.733538525 Mpa\n", "The maximum stress downward in curved case2 is -81.0307692623 Mpa\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Page number 6.14 page number 318" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given \n", "#from example 6.9\n", "St_ul = 2500 #psi - ultimate strength\n", "st_yl = 40000 #psi _ yielding strength \n", "b = 10 #in - width from example \n", "A = 2 #in2 The area of the steel\n", "d = 20 \n", "t_ul = st_yl*A #ultimate capasity\n", "y = t_ul/(St_ul*b*0.85) #in 0.85 because its customary\n", "M_ul = t_ul*(d-y/2)/12 #ft-lb Plastic moment \n", "print \"The plastic moment of the system is \",M_ul,\"ft-lb\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The plastic moment of the system is 120784.313725 ft-lb\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.15 page number 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "#From example 5.8 \n", "W = 4.0 #N/m - The force distribution \n", "L = 3 # m - The length of the force applied\n", "M = W*L/8.0 # KN.m The moment due to force distribution\n", "o = 30 # the angle of force applid to horizantal\n", "l = 150.0 #mm length of the crossection \n", "b = 100.0 #mm - width of the crossection \n", "import math \n", "M_z = M*(math.cos(3.14/6))\n", "M_y = M*(math.sin(math.pi/6))\n", "I_z = b*(l**3)/12.0\n", "I_y = l*(b**3)/12.0\n", "#tanb = I_z /I_y *tan30\n", "b = math.atan(math.radians(I_z*math.tan(3.14/6.0)/I_y ))\n", "print \"The angle at which nuetral axis locates is\",b,\"radians\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle at which nuetral axis locates is 0.0226547191205 radians\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.16 pagenumber 323" ] }, { "cell_type": "code", "collapsed": false, "input": [ "M = 10 #KN.m - The moment applied\n", "I_max = 23.95*(10**6) #mm4 - I_z The moment of inertia\n", "I_min = 2.53*(10**6) #mm4 - I_y The moment of inertia\n", "o = 14.34 # degress the principle axis rotated\n", "#Coponents of M in Y,Z direction \n", "M_z = M*(10**6)*math.cos(math.radians(o))\n", "M_y = M*(10**6)*math.sin(math.radians(o))\n", "#tanb = I_z /I_y *tan14.34\n", "b = math.atan((I_max*math.tan(math.radians(o))/I_min ))\n", "B = math.degrees(b) \n", "y_p = 122.9 # mm - principle axis Y cordinate\n", "z_p = -26.95 #mm - principle axis z cordinate\n", "stress_B = - M_z*y_p/I_max + M_y*z_p/I_min #Mpa - Maximum tensile stress\n", "y_f = -65.97 # mm - principle axis Y cordinate\n", "z_f = 41.93 #mm - principle axis z cordinate\n", "stress_f = - M_z*y_f/I_max + M_y*z_f/I_min #Mpa - Maximum compressive stress\n", "print \"The maximum tensile stress\",round(stress_B,2) ,\"Mpa\"\n", "print \"The maximum compressive stress\",round(stress_f,2),\"Mpa\"\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum tensile stress -76.1 Mpa\n", "The maximum compressive stress 67.73 Mpa\n" ] } ], "prompt_number": 83 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.18 page number 328" ] }, { "cell_type": "code", "collapsed": false, "input": [ "l = 50 #mm - The length of the beam \n", "b = 50 #mm - The width of the beam \n", "A = l*b #mm2 - The area of the beam \n", "p = 8.33 #KN - The force applied on the beam \n", "stress_max = p*(10**3)/A #Mpa After cutting section A--b\n", "print \"The maximum stress in the beam\",stress_max ,\"Mpa \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum stress in the beam 3.332 Mpa \n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.24 page number 339" ] }, { "cell_type": "code", "collapsed": false, "input": [ "M = 10 #KN.m - The moment applied\n", "I_max = 23.95*(10**6) #mm4 - I_z The moment of inertia\n", "I_min = 2.53*(10**6) #mm4 - I_y The moment of inertia\n", "o = 14.34 # degress the principle axis rotated\n", "#Coponents of M in Y,Z direction \n", "M_z = M*(10**6)*math.cos(math.radians(o))\n", "M_y = M*(10**6)*math.sin(math.radians(o))\n", "#tanb = I_z /I_y *tan14.34\n", "b = math.atan((I_max*math.tan(math.radians(o))/I_min ))\n", "B = math.degrees(b) \n", "y_p = 122.9 # mm - principle axis Y cordinate\n", "z_p = -26.95 #mm - principle axis z cordinate\n", "stress_B = - M_z*y_p/I_max + M_y*z_p/I_min #Mpa - Maximum tensile stress\n", "y_f = -65.97 # mm - principle axis Y cordinate\n", "z_f = 41.93 #mm - principle axis z cordinate\n", "stress_f = - M_z*y_f/I_max + M_y*z_f/I_min #Mpa - Maximum compressive stress\n", "#location of nuetral axis To show these stresses are max and minimum \n", "#tanB = MzI_z + MzI_yz/MyI_y +M_YI_yz\n", "I_z = 22.64 *(10**6) #mm4 moment of inertia in Z direction\n", "I_y = 3.84 *(10**6) #mm4 moment of inertia in Y direction\n", "I_yz =5.14 *(10**6) #mm4 moment of inertia in YZ direction \n", "M_y = M #KN.m bending moment in Y dorection \n", "M_z = M #KN.m bending moment in Y dorection \n", "B = math.atan(( M_z*I_yz)/(M_z*I_y )) #radians location on neutral axis\n", "beta = math.degrees(B)\n", "print \"By sketching the line with angle\",round(beta,1),\"degrees The farthest point associated with B and F\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "By sketching the line with angle 53.2 degrees The farthest point associated with B and F\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }