1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
|
{
"metadata": {
"name": "",
"signature": "sha256:b3709cc764fd68911c53d14fdc3847f8e66fbdd5fcd89885b01f065610802430"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 11: Transmission Lines<h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.1, Page number: 482<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"import scipy\n",
"\n",
"#Variable Declaration\n",
"\n",
"R=0\n",
"G=0\n",
"a=0\n",
"Ro=70 #characteristic impedence in ohms\n",
"B=3 #phase constant in rad/sec\n",
"f=100*10**6 #frequency in Hz\n",
"w=2*scipy.pi*f #omega in rad/sec\n",
"\n",
"#Calculations\n",
"\n",
"C=B/(w*Ro) #capacitance in F/m\n",
"L=Ro*Ro*C #inductance in H/m\n",
"\n",
"#Results\n",
"\n",
"print 'inductance per meter =',round(L*10**9,1),'nH/m'\n",
"print 'capacitance per meter =',round(C*10**12,1),'pF/m'\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"inductance per meter = 334.2 nH/m\n",
"capacitance per meter = 68.2 pF/m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.2, Page number: 483<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"#Variable Declaration\n",
"\n",
"Zo=60 #in ohms\n",
"a=20*10**-3 #in Np/m\n",
"u=0.6*3*10**8 #in m/sec\n",
"f=100*10**6 #in Hz\n",
"\n",
"#Calculations\n",
"\n",
"R=a*Zo #resistance in ohms/m\n",
"L=Zo/u #inductance in H/m\n",
"G=a*a/R #conductivity in S/m\n",
"C=1/(u*Zo) #capacitance in F/m\n",
"lam=u/f #wavelentgh in m\n",
"\n",
"#Results\n",
"\n",
"print 'R =',R,'ohm/m'\n",
"print 'L =',round(L*10**9,0),'nH/m'\n",
"print 'G =',round(G*10**6,0),'micro S/m'\n",
"print 'C =',round(C*10**12,2),'pF/m'\n",
"print 'lambda =',lam,'m'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"R = 1.2 ohm/m\n",
"L = 333.0 nH/m\n",
"G = 333.0 micro S/m\n",
"C = 92.59 pF/m\n",
"lambda = 1.8 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.3, Page number: 490<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"import cmath\n",
"from numpy import *\n",
"\n",
"#Variable Declaration\n",
"\n",
"w=10**6 #omega in rad/sec\n",
"B=1 #phase factor in rad/m\n",
"a=8.0/8.686 #alpha in Np/m\n",
"Y=a+1j #in m^-1\n",
"l=2 #length in m\n",
"Vg=10 #source voltage in volts\n",
"Zo=60+40j #in ohms\n",
"Zg=40 #in ohms\n",
"Zl=20+50j #load impedance in ohms\n",
"\n",
"#Calculations\n",
"\n",
"s=scipy.tanh(Y*l)\n",
"Zin=Zo*(Zl+Zo*s)/(Zo+Zl*s) #input impedance in ohms\n",
"Zinr=round(Zin.real,2) #real part of Zin rounded to 2 decimal places\n",
"Zini=round(Zin.imag,2) #imaginary part of Zin rounded to 2 decimal places\n",
"Io=Vg/(Zin+Zg) #in A\n",
"absIo=round(abs(Io),6) #absolute value of Io rounded to 6 decimal place\n",
"Ior=Io.real #real part of Io\n",
"Ioi=Io.imag #imaginary part of Io\n",
"angIo=scipy.arctan(Ioi/Ior)*180/scipy.pi \n",
" #in degrees\n",
"Vo=Zin*Io\n",
"Vop=(Vo+Zo*Io)/2\n",
"Vom =(Vo-Zo*Io)/2\n",
"Im=((Vop*scipy.e**(-Y)/Zo))-((Vom*scipy.e**Y)/Zo)\n",
" #current at the middle in A\n",
"absIm=round(abs(Im),5) #absolute value of Im rounded to 6 decimal place\n",
"Imr=Im.real #real part of Im \n",
"Imi=Im.imag #imaginary part of Im\n",
"angIm=360+scipy.arctan(Imi/Imr)*180/scipy.pi \n",
" #in degrees\n",
"\n",
"#Results\n",
"\n",
"print 'The input impedance =',Zinr,'+',Zini,'j ohms'\n",
"print 'The sending-end current is'\n",
"print 'mod =',absIo*10**3,'mA, angle =',round(angIo,2),'degrees'\n",
"print 'The current at the middle is'\n",
"print 'mod =',absIm*10**3,'mA, angle =',round(angIm,0),'degrees'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The input impedance = 60.25 + 38.79 j ohms\n",
"The sending-end current is\n",
"mod = 93.03 mA, angle = -21.15 degrees\n",
"The current at the middle is\n",
"mod = 34.92 mA, angle = 281.0 degrees\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.4, Page number: 499<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"import cmath\n",
"from numpy import *\n",
"\n",
"#Variable Declaration\n",
"\n",
"l=30 #length in m\n",
"Zo=50 #in ohms\n",
"f=2*10**6 #frequency in Hz\n",
"Zl=60+40j #load impedence in ohms\n",
"u=0.6*3*10**8 #in m/s\n",
"w=2*scipy.pi*f #omega in rad/sec\n",
"\n",
"#Calculations\n",
"\n",
"T=(Zl-Zo)/(Zl+Zo) #reflection coefficient\n",
"ang=scipy.arctan(T.imag/T.real)*180/scipy.pi #argument of T is degrees\n",
"s=(1+abs(T))/(1-abs(T)) #standing wave ratio \n",
"B=w/u #propogation vector in m^-1\n",
"Zin=Zo*(Zl+Zo*scipy.tan(B*l)*1j)/(Zo+Zl*scipy.tan(B*l)*1j)\n",
"Zinr=round(Zin.real,2) #real part of Zin rounded to 2 decimal places\n",
"Zini=round(Zin.imag,2) #imaginary part of Zin rounded to 2 decimal places\n",
"\n",
"#Results\n",
"\n",
"print 'The reflection coefficient is'\n",
"print 'mod =',round(abs(T),4),'angle =',round(ang,0),'degrees'\n",
"print 'The standing wave ratio s =',round(s,3)\n",
"print 'The input impedance =',Zinr,'+',Zini,'j ohms'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reflection coefficient is\n",
"mod = 0.3523 angle = 56.0 degrees\n",
"The standing wave ratio s = 2.088\n",
"The input impedance = 23.97 + 1.35 j ohms\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.5, Page number: 501<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"import scipy\n",
"import cmath\n",
"from numpy import *\n",
"\n",
"#Variable Declaration\n",
"\n",
"Zl=100+150j #load impedance in ohms\n",
"Zo=75 #impedance of line in ohms\n",
"B=2*scipy.pi \n",
"\n",
"#Calculations\n",
"\n",
"T=(Zl-Zo)/(Zl+Zo)\n",
"angT=scipy.arctan(T.imag/T.real)*180/scipy.pi \n",
"s=(1+abs(T))/(1-abs(T))\n",
"Yl=(1/Zl)*10**3 #admittance in mS\n",
"Ylr=round(Yl.real,2) #real part of Yl rounded to 2 decimal places\n",
"Yli=round(Yl.imag,2) #imaginary part of Yl rounded to 2 decimal places\n",
"l1=0.4\n",
"Zin=Zo*(Zl+Zo*scipy.tan(B*l1)*1j)/(Zo+Zl*scipy.tan(B*l1)*1j)\n",
"Zinr=round(Zin.real,2) #real part of Zin rounded to 2 decimal places\n",
"Zini=round(Zin.imag,2) #imaginary part of Zin rounded to 2 decimal places\n",
"\n",
"\n",
"#Results\n",
"\n",
"print 'r is mod =',round(abs(T),3),',angle =',round(angT,0),'degrees'\n",
"print 's =',round(s,2)\n",
"print 'The load admittance Yl =',Ylr,'+',Yli,'j mS'\n",
"print 'Zin at O.4 lambda from the load =',Zinr,'+',Zini,'j ohms'\n",
"#part (e) and (f) don't require computations"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"r is mod = 0.66 ,angle = 40.0 degrees\n",
"s = 4.88\n",
"The load admittance Yl = 3.08 + -4.62 j mS\n",
"Zin at O.4 lambda from the load = 21.96 + 47.61 j ohms\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.6, Page number: 509<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"import cmath\n",
"from numpy import *\n",
"\n",
"#Variable Declaration\n",
"\n",
"s=2\n",
"l1=11 \n",
"l2=19\n",
"ma=24 \n",
"mi=16\n",
"u=3*10**8 #speed of wave in m/s\n",
"Zo=50 #in ohms\n",
"\n",
"#Calculations\n",
"\n",
"l=(l2-l1)*2 #lambda in cm\n",
"f=(u/l)*10**-7 #frequency in GHz\n",
"L=(24-19)/l #Let us assume load is at 24cm\n",
"zl=1.4+0.75j # by smith chart\n",
"Zl=Zo*zl #ZL in ohms\n",
"\n",
"#Results\n",
"\n",
"print 'lambda =',l,'cm'\n",
"print 'f =',f,'GHz'\n",
"print 'ZL =',Zl,'ohms'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"lambda = 16 cm\n",
"f = 1.875 GHz\n",
"ZL = (70+37.5j) ohms\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.7, Page number: 510<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"import cmath\n",
"from numpy import *\n",
"\n",
"#Variable Declaration\n",
"\n",
"Zo=100 #in ohms\n",
"Zl=40+30j #in ohms\n",
"\n",
"#Calculations\n",
"\n",
"Yo=1.0/Zo #in S\n",
"yl=Zo/Zl\n",
"ys1=1.04j #By smith chart\n",
"ys2=-1.04j #By smith chart\n",
"Ys1=Yo*ys1 #in S\n",
"Ys2=Yo*ys2 #in S\n",
"la=round(0.5-(62-(-39))/720.0,2) #in units of lambda\n",
"lb=round((62-39)/720.0,3) #in units of lambda\n",
"da=round(88/720.0,4) #in units of lambda\n",
"db=round(272/720.0,4) #in units of lambda\n",
"\n",
"#Results\n",
"\n",
"print 'The required stub admittance values in mS are',Ys1*1000,'and',Ys2*1000\n",
"print 'The distance between stub and antenna at A =',la,'in units of lambda'\n",
"print 'The distance between stub and antenna at B =',lb,'in units of lambda'\n",
"print 'The stub lengths =',da,'and',db,'in units of lambda'\n",
"print 'Part (d) is done using smith chart'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required stub admittance values in mS are 10.4j and -10.4j\n",
"The distance between stub and antenna at A = 0.36 in units of lambda\n",
"The distance between stub and antenna at B = 0.032 in units of lambda\n",
"The stub lengths = 0.1222 and 0.3778 in units of lambda\n",
"Part (d) is done using smith chart\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.9, Page number: 521"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"import matplotlib.pyplot as plt\n",
"\n",
"#Variable Declarataion\n",
"\n",
"zo=75 #in ohms\n",
"zg=25 #in ohms\n",
"zl=100 #in ohms\n",
"vg=4 #in volts\n",
"l=60 #in m\n",
"c=3*10**8 #speed of light in m/s\n",
"u=0.1*c #in m/s\n",
"\n",
"#Calculations\n",
"\n",
"gammag=(zg-zo)/(zg+zo)\n",
"gammal=(zl-zo)/(zl+zo)\n",
"Vo=zo*vg/(zo+zg) #in V\n",
"t1=l/u #in micro sec\n",
"Io=vg/(zo+zg) #in mA\n",
"\n",
"#Results\n",
"\n",
"t1=[0,4,5,8,9,12,13,15]\n",
"I1=[40,31.43,-8.571,-7.959,0.6123,0.5685,-0.0438,-0.438]\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"ax.step(t1,I1,where='post')\n",
"ax.set_xlabel('Time (micro s)')\n",
"ax.set_ylabel(r'I(0,t) in mA')\n",
"plt.show()\n",
"\n",
"t2=[0,2,6,7,10,11,14]\n",
"I2=[0,34.3,31.9,-2.46,-2.28,0.176,0.176]\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"ax.step(t2,I2,where='post')\n",
"ax.set_xlabel('Time (micro s)')\n",
"ax.set_ylabel(r'I(l,t) in mA')\n",
"plt.show()\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEMCAYAAADeYiHoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGzFJREFUeJzt3X1wVNXhxvFn0SZgQUQtIMaQFCibgJAFQhIYwqqAVYxh\nFEaiQEdCRaryoradsdRGfzO0Gq1CLQlVY0dRUaqOjIIg6vJSQjaY2CImApUIqMibms0kwRDP7w+G\nLSEnDeTt3pDvZ2ZnsjfZex83sk/OuWfveowxRgAAnKaT0wEAAO5EQQAArCgIAIAVBQEAsKIgAABW\nFAQAwMrRgqitrZXP51NaWpokKRQKKT09XdHR0Zo0aZIqKiqcjAcAHZqjBbF48WLFx8fL4/FIknJy\nchQdHa1du3YpKipKubm5TsYDgA7NsYLYv3+/Vq9erVmzZunke/WCwaAyMzMVGRmpmTNnqqCgwKl4\nANDhne/UgRcsWKDs7GyVl5eHtxUWFsrr9UqSvF6vgsFgvcedHG0AAM7O2V44w5ERxFtvvaWePXvK\n5/PVCXym4Y0xrr/94Q9/cDzDmdyk9pGzvTyf5Ox4OdtDRmOadkUlR0YQW7Zs0apVq7R69WpVV1er\nvLxc06dPV2JiokpKSuTz+VRSUqLExEQn4gEA5NAIYtGiRdq3b5/27NmjFStW6Oqrr9YLL7ygpKQk\n5eXlqaqqSnl5eUpOTnYiHgBALnkfxMnzCnPmzNHevXs1cOBAffHFF7rzzjsdTtZ0fr/f6QhnyO90\ngDPSXp5Pcras9pCzPWRsKo9p6uSUQzweT5Pn01CfxyPxdALnvqa8drpiBAEAcB8KAgBgRUEAAKwo\nCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIAYEVBAACsKAgAgBUFAQCwoiAAAFYUBADAioIA\nAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIgAABWFAQAwIqCAABYURAAACsKAgBgRUEAAKwoCACA\nFQUBALCiIAAAVhQEAMCKggAAWJ3vdAA4q0cPyeNp+X0ePdqy+wTQ9jzGGON0iLPh8XjUziJ3OB6P\nxK8IcJemvHYyxQQAsHKsIKqrq5WUlKSEhAQlJyfriSeekCSFQiGlp6crOjpakyZNUkVFhVMRAaBD\nc6wgOnfurA8++EAfffSRNmzYoGeffVa7du1STk6OoqOjtWvXLkVFRSk3N9epiADQoTk6xXTBBRdI\nkioqKnT8+HFFRkYqGAwqMzNTkZGRmjlzpgoKCpyMCAAdlqOrmH744Qf5fD7t2LFDTz75pKKjo1VY\nWCiv1ytJ8nq9CgaD9R6XlZUV/trv98vv97dRYgBoHwKBgAKBQLP24YpVTGVlZbr++uv14osvKj09\nXTt37lTnzp1VWVmpuLg4ff755+GfZRWT+7GKCXCfdruKKSYmRtdff70KCgqUmJiokpISSVJJSYkS\nExMdTgcAHZNjBXH48GF9++23kqQjR45o3bp1Sk9PV1JSkvLy8lRVVaW8vDwlJyc7FREAOjTHppi2\nb9+uX/ziF6qtrVXv3r112223acaMGQqFQpo2bZqKi4s1bNgwLV++XF27dv1vYKaYXI8pJsB9mvLa\n6YpzEGeDgnA/CgJwn3Z7DgIA4D4UBADAioIAAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIgAABW\nFAQAwIqCAABYURAAACsKAgBgRUEAAKwoCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIAYEVB\nAACsKAgAgBUFAQCwoiAAAFYUBADAioIAAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIgAABWFAQA\nwIqCAABYnVVBVFRU6IUXXtDEiRNbKw8AwCUaLYhjx47p9ddf15QpU9SnTx+99957uvPOO5t94H37\n9umqq67SoEGD5Pf79dJLL0mSQqGQ0tPTFR0drUmTJqmioqLZxwIAnD2PMcbYvrF27Vq9/PLLev/9\n9+X3+zVlyhTdc889Kisra5EDHzhwQAcOHFBCQoIOHz6skSNH6l//+pdycnK0b98+PfbYY7rvvvsU\nExOj+++//7+BPR41EBku4fFI/IoAd2nKa2eDI4jrrrtOR48e1datW/X8888rLS1NHo+n2SFP6t27\ntxISEiRJl156qQYNGqTCwkIFg0FlZmYqMjJSM2fOVEFBQYsdEwBw5s5v6BtFRUV6+eWXNXbsWPXr\n109TpkxRbW1tq4TYvXu3duzYoZEjR+r222+X1+uVJHm9XgWDwXo/n5WVFf7a7/fL7/e3Si4AaK8C\ngYACgUCz9tHgFNNJxhht2bJFL7/8sl577TUNHTpUN910k+64445mHfikUCgkv9+vBx98MHzuYefO\nnercubMqKysVFxenzz///L+BmWJyPaaYAPdp0SmmU3c6evRoPfXUU9q/f7/uvfdebd26tckhT1VT\nU6Obb75Z06dPV3p6uiQpMTFRJSUlkqSSkhIlJia2yLEAAGfnjJa5Hj58WG+99ZbefPNNhUKhFlnm\naoxRZmamBg8erPnz54e3JyUlKS8vT1VVVcrLy1NycnKzjwUAOHuNTjFlZWXp1Vdflc/nU0RERHj7\nc88916wDb968WampqRoyZEj45Pcf//hHjR49WtOmTVNxcbGGDRum5cuXq2vXrv8NzBST6zHFBLhP\nU147Gy2IQYMGqbi4uE45OImCcD8KAnCfVjkHMXr0aOXn5zc5FACgfWp0BFFcXKzU1FRddNFFuuii\ni048yOPRv//97zYJeDpGEO7HCAJwn6a8djb4PoiTpk6dqqeeekopKSmumWYCALS+Rguie/fuysjI\noBwAoINptCBSU1M1adIkTZ48Wd27d5d0Yqhy0003tXo4AIBzGi2Iw4cPq1evXtq0aVOd7RQEAJzb\nGj1J7TacpHY/TlID7tMqy1wBAB0TBQEAsKIgAABWjZ6krqmpUX5+vvLz81VdXS3pxFzWgw8+2Orh\nAADOabQgTn7M6NixY+tcNA8AcG5rdBVTfHy8Pv74Y3Xq5I7ZKFYxuR+rmAD3aZVVTFdddZU++OCD\nJocCALRPZzSCKC0t1eWXX87F+nBGGEEA7tMqnwdRVlZm3R4TE3NWB2opFIT7URCA+7To1VzLy8t1\n4YUX6sILL2x2MABA+9PgCGLixIl6++23FRMTE/5I0PCDPB599tlnbRLwdIwg3I8RBOA+rTLF5DYU\nhPtREID7cC0mAECLoSAAAFYUBADA6owLYu/evdq3b19rZgEAuEiDy1yPHTuml156SU8//bQ+++wz\nXXbZZTLG6MCBA4qNjdUdd9yhW2+9VZGRkW2ZFwDQRhocQYwbN06HDx/WypUrdeDAARUXF+ujjz7S\ngQMHtHLlSh06dEjjxo1ry6wAgDbEMle0OJa5Au7TKstcr7nmmjPaBgA4tzR4DqKqqkqVlZU6dOiQ\njh49Gt5+8OBBhUKhNgkHAHBOgwWxbNkyLV68WF9++aWGDx8e3t63b1/Nnz+/TcIBAJzT6DmIJUuW\naO7cuW2Vp1Gcg3A/zkEA7tMm12Latm2b+vTpoz59+pzVgVoKBeF+FATgPm1SEDNmzND27dv1s5/9\nTK+88spZHawlUBDuR0EA7tOmV3M9+XkRbY2CcD8KAnCfVimIUCikYDAoj8ejxMREdevWrVkhm4uC\ncD8KAnCfFi2IzZs3a+7cuTLGaODAgZKk0tJSderUSYsXL9aYMWOan7gJKAj3oyAA92nRgoiPj1dO\nTo7Gjh1bZ3sgENCvfvUrffLJJ01P2gwUhPtREID7tOg7qWtqahQbG1tv+09/+lN9//33Z5/uNDNn\nzlSvXr105ZVXhreFQiGlp6crOjpakyZNUkVFRbOPAwBomgYL4p577tGECRM0f/58LVu2TMuWLdO8\nefM0YcIE3XPPPc0+8O2336533nmnzracnBxFR0dr165dioqKUm5ubrOPAwBomgYLYu7cudq4caOu\nueYa7d+/X/v27dO4ceO0YcMGzZs3r9kHHjNmjHr06FFnWzAYVGZmpiIjIzVz5kwVFBQ0+zgAgKZp\n8FIbktSzZ0+lpaUpLS2tTcIUFhbK6/VKkrxer4LBoPXnsrKywl/7/X75/f42SAcA7UcgEFAgEGjW\nPho8ST1u3DhNnTpVU6dOVdeuXet8LxQKacWKFXrllVe0fv36Jh+8rKxMaWlp2r59uyQpOjpaO3fu\nVOfOnVVZWam4uDh9/vnndQNzktr1OEkNuE+LnqR+7bXXFAqFlJycrJiYGKWmpmrMmDHq27evkpOT\nVVFRoddff73ZoU+VmJiokpISSVJJSYkSExNbdP8AgDPX4BRT9+7dtWDBAi1YsEBVVVXavXu3JKl/\n//7q0qVLq4RJSkpSXl6eHn30UeXl5Sk5OblVjgMAaJxjnyiXkZGhDRs26MiRI+rZs6cefvhhTZ48\nWdOmTVNxcbGGDRum5cuX15veYorJ/ZhiAtynRd8o17VrV3k8ngYPVF5efvYJWwAF4X4UBOA+bXqx\nPqdQEO5HQQDu0yqfSQ0A6JgoCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIAYEVBAACsKAgA\ngBUFAQCwoiAAAFYUBADAioIAAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIgAABWFAQAwIqCAABY\nURAAACsKAgBgRUEAAKwoCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIAYEVBAACsKAgAgJUr\nC2Ljxo2Ki4vTgAED9Je//MXpOICjLr5Y8ng65u3ii51+9js2jzHGOB3idD6fT4sXL1bfvn117bXX\navPmzbr00kslSR6PRy6MjFN4PBK/opbTkZ/Piy+Wvvmm5fbXo4d09GjL7a89acprp+tGEN99950k\nKTU1VX379tWECRNUUFDgcCoATjh69EQ5ttStJcumIzjf6QCnKywslNfrDd+Pj4/X1q1bNXHixPC2\nrKys8Nd+v19+v78NEwJor3r0ODEic7uWGOkEAgEFAoFm7cN1BXEmTi0IADhT7WV6qSVK7PQ/nh96\n6KGz3ofrppgSExNVWloavr9jxw4lJyc7mAgAOibXFUT37t0lnVjJVFZWpnfffVdJSUkOpwKAtuOW\nRQmunGJ68sknNXv2bNXU1Gju3LnhFUwAgLbjymWu/wvLXN2vIy/LbA08n2gJ58QyVwCAO1AQAAAr\nCgIAYEVBAACsKAgAgBUFAQCwoiAAAFYUBADAioIAAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIg\nAABWFAQAwIqCAABYURAAACsKAgBgRUEAAKwoCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIA\nYEVBAACsKAgAgBUFAQCwOt/pAMC55OKLpW++adl99ujRsvsDzpTHGGOcDnE2PB6P2lnkDsfjkTrq\nr6gj/7fD3Zry2skIAi2uR48TL5QdEX/t41zCCAIAOoCmvHZykhoAYEVBtJJAIOB0hDNCzpZFzpbV\nHnK2h4xN5UhBrFy5UoMGDdJ5552noqKiOt9bsmSJBgwYoPj4eG3evNmJeC2ivfxPQ86WRc6W1R5y\ntoeMTeVIQVx55ZV64403lJqaWmf7wYMHtXTpUr333nvKycnR3LlznYgHAJBDq5i8Xq91e0FBgX7+\n858rOjpa0dHRMsYoFAqpW7dubZwQACDjIL/fbz788MPw/YULF5rc3Nzw/VtuucWsX7++zmMkcePG\njRu3JtzOVquNIMaPH68DBw7U275o0SKlpaVZH2MsS7A8py2ot/0MAKDltVpBvPvuu2f9mKSkJK1f\nvz58v7S0VImJiS0ZCwBwhhxf5nrqiGDkyJFau3at9u7dq0AgoE6dOnH+AQAc4shJ6jfeeENz587V\n4cOHNXHiRPl8Pq1Zs0a9evXSnDlzdPXVVysiIkLLli1zIh4AQGrCWQsHbdiwwXi9XtO/f3+zZMkS\np+M0aO/evcbv95v4+HgzduxY8+KLLzodqUHHjx83CQkJ5oYbbnA6SoMqKirMjBkzzIABA0xcXJzJ\nz893OpLV3/72N5OSkmKGDRtm5s2b53ScsNtvv9307NnTDB48OLytvLzc3HjjjeaKK64w6enpJhQK\nOZjwBFvO+++/33i9XuPz+cy8efNMZWWlgwntGU967LHHjMfjMUeOHHEgWV0N5czLyzNer9fEx8eb\n3/zmN43up10VREJCgtmwYYMpKyszAwcONIcOHXI6ktVXX31liouLjTHGHDp0yMTGxpry8nKHU9k9\n/vjj5tZbbzVpaWlOR2nQfffdZxYuXGiqqqpMTU2N+fbbb52OVM+RI0dMTEyMqaioMLW1tea6664z\n77zzjtOxjDHGbNy40RQVFdV5sXjkkUfM3Xffbaqrq81dd91lsrOzHUx4gi3nunXrTG1tramtrTWz\nZs0yzzzzjIMJ7RmNOfFH4bXXXmtiYmJcURC2nNu3bzfJyclm586dxhhjDh482Oh+HD8Hcaa+++47\nSVJqaqr69u2rCRMmqKCgwOFUdr1791ZCQoIk6dJLL9WgQYO0bds2h1PVt3//fq1evVqzZs1y9eqw\n9evX64EHHlDnzp11/vnnq3v37k5HqqdLly4yxui7775TVVWVKisr1cMll3YdM2ZMvSzBYFCZmZmK\njIzUzJkzXfFvyZZz/Pjx6tSpkzp16qRrr71WGzZscCjdCbaMknTvvffq0UcfdSCRnS3nmjVrlJmZ\nqQEDBkiSfvKTnzS6n3ZTEIWFhXXeYBcfH6+tW7c6mOjM7N69Wzt27NDIkSOdjlLPggULlJ2drU6d\n3Pu/wf79+1VdXa05c+YoKSlJjzzyiKqrq52OVU+XLl2Uk5OjmJgY9e7dW6NHj3bl7/ykU/89eb1e\nBYNBhxM17umnn25wibyT3nzzTUVFRWnIkCFOR/mf1q1bp48//lgjRozQrFmz9MknnzT6GPe+MpwD\nQqGQbrnlFj3xxBP68Y9/7HScOt566y317NlTPp/P1aOH6upq7dy5UzfffLMCgYB27NihV1991elY\n9Rw6dEhz5szRJ598orKyMuXn5+vtt992OlaD3Pw7t3n44YfVrVs3TZkyxekodVRWVmrRokV66KGH\nwtvc+txWV1fr6NGj2rRpk9LT03X33Xc3+ph2UxCJiYkqLS0N39+xY4eSk5MdTPS/1dTU6Oabb9b0\n6dOVnp7udJx6tmzZolWrVik2NlYZGRl6//33NWPGDKdj1dO/f38NHDhQaWlp6tKlizIyMrRmzRqn\nY9UTDAaVnJys/v3765JLLtGUKVO0ceNGp2M1KDExUSUlJZKkkpISV7/f6O9//7vWrl2r5cuXOx2l\nnv/85z8qKyvT0KFDFRsbq/3792v48OE6ePCg09HqSU5O1i233KIuXbooLS1NpaWljY7G201BnJx3\n3rhxo8rKyvTuu+8qKSnJ4VR2xhhlZmZq8ODBmj9/vtNxrBYtWqR9+/Zpz549WrFiha6++mo9//zz\nTseyGjBggAoKCvTDDz/o7bff1rhx45yOVM+YMWO0bds2HT16VMeOHdOaNWs0YcIEp2M1KCkpSXl5\neaqqqlJeXp5r/9h65513lJ2drVWrVqlz585Ox6nnyiuv1Ndff609e/Zoz549ioqKUlFRkXr27Ol0\ntHpSUlK0Zs0aGWNUUFCgfv36Nf6ctvz589YTCASM1+s1/fr1M4sXL3Y6ToM2bdpkPB6PGTp0qElI\nSDAJCQlmzZo1TsdqUCAQcPUqpk8//dQkJSWZoUOHmvvuu89UVFQ4HcnqueeeM6mpqWbEiBFm4cKF\npra21ulIxhhjpk6dai677DITERFhoqKiTF5eniuXuZ7M+aMf/chERUWZZ5991vTv399ER0eH/x3N\nmTPHFRlPfS5PFRsb64pVTLacx48fN7NnzzZer9dMmjTJBIPBRvfT7j5yFADQNtrNFBMAoG1REAAA\nKwoCAGBFQQAArCgItHtHjhyRz+eTz+fTZZddpqioKPl8PnXr1u2M3gzUFM8++6xycnLO6jGjR49u\nlSyne/XVV5Wdnd0mx8K5jVVMOKc89NBD6tatm+69995WPc6oUaO0du3aVvu8ktraWp133nlNeuz3\n33+vUaNGqbCwsN4nMgJngxEEzjkn/+YJBALha/dkZWVp9uzZSk1NVb9+/bRu3Tr9/ve/1+DBgzVn\nzpzwYz799NPwdZ/uuusuHTlypN7+CwoKdPnll4fLwe/3a+HChUpISJDP59Pu3bs1efJkDR48WLm5\nueHHde3aNfz1ihUrNH78eA0dOlQPPPBAeD+/+93vNGLECC1ZskQffvihpkyZosTERD3++OM6fvx4\nvSwvvfSSUlJSNHToUGVkZEiSIiIi5PP5mvSpjsCpHPnAIMAJBQUF2rRpk4qKinTDDTfoqaee0vbt\n2zV+/HgVFRVp+PDh+vWvf62//vWvuuKKK7R06VI988wz+u1vf1tnP8XFxYqLiwvf93g8+vrrr1VU\nVKT/+7//08iRI1VYWKhevXopPj5es2fPlsfjCf81X1ZWpj/96U9avXq1+vTpo2+//Ta8nz179mjL\nli2KiIjQ8OHDtXTpUg0ZMkQZGRmKj4/XddddVyfLww8/rKKiIl1wwQUqLy8Pb4+Li1NRUZGr380N\n92MEgQ7B4/HoxhtvVLdu3ZSSkqJjx45p6tSp8ng8SkpKUn5+vg4dOqRNmzbpxhtvlM/nU25urv75\nz3/W29fu3bsVExNTZ1tGRoY6deqklJQUDRo0SP369VPXrl11xRVX1Ltq5sqVKzV16lT16dNHknTR\nRReFv3frrbcqIiJCX375pWpqapSUlKQuXbrotttu06pVq+plGTFihDIyMvSPf/yjzgUh+/Xrp08/\n/bQ5TxnACAIdx8nreUVERCgyMlKRkZHh+99//71qa2t1ySWXqLi4uNF9nX7q7uSLfERERJ0X/IiI\nCB07dqzRx590sjRO/35DP798+XJt2bJFy5cvV3Z2dvhzHX744QfOP6DZGEGgQ2hsLYYxRr1791Zs\nbKxee+01GWNUU1NjvWb+gAEDVFZW1uQskydP1ooVK/TFF19Ikr755pt6OS+//HJFRkYqGAyqqqpK\nK1asqHdVYGOMysrKNGrUKP35z3/WV199FS6jzz77TAMHDmxyRkCiIHAOOvmX86nz/qd+ferPnH5/\n6dKl+uCDD8InnPPz8+vtPyEhoc6l50/fT0N/uZ/cHhsbqwceeEDTpk1TQkKCHn/8cWuu3NxcZWdn\nKzU1VaNHj653Fdva2lpNnz5dQ4YM0TXXXKOsrKzwqKi0tFQ+n8+aAzhTLHMFmiAlJUVr167VhRde\n6HSUeo4dO6ZRo0Zp27ZtTDOhWRhBAE3wy1/+Ui+++KLTMazefPNNZWRkUA5oNkYQAAArRhAAACsK\nAgBgRUEAAKwoCACAFQUBALCiIAAAVv8PIrVuLX2NSRcAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x5f89c90>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEMCAYAAADJQLEhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHKVJREFUeJzt3Xlw1PXh//HXoiRAWRBECBiSMFw5OLLGsAkMmcUK2tgQ\nqDI19WBIam1ia2mEsWOpBp3SagZBqYKjxo6DIRWPQquAOHUFBHOYcBjDkUoQbQyXkI0JkYT9/eGX\n/IjkDpvPZ/k8HzOZ2d1kP/sib/J57ed6r83r9XoFALCsXkYHAAAYiyIAAIujCADA4igCALA4igAA\nLI4iAACL82kRnD17Vk6nU9HR0YqLi9OKFSskSVlZWQoODpbD4ZDD4dDmzZt9GQMA0Aabr68jqK2t\nVb9+/VRfX6+YmBi9/fbbys3Nld1uV2Zmpi9fGgDQAT7fNdSvXz9JUk1NjRoaGhQYGChJ4jo2ADCH\nq339AufPn5fD4VBpaalWrlypkJAQSdKqVau0fv16zZ07VxkZGbLb7c2eZ7PZfB0NAK5InX6j7e0h\nhw8f9kZERHiLi4u9VVVV3vPnz3tPnz7tve+++7zZ2dmX/HwPRvOJxx57zOgI3eLP+f05u9dLfqP5\ne/6urDt77KyhsLAwJSYmKj8/X0OHDpXNZtPAgQP1wAMP6O233+6pGACAH/BpEZw4cUKnT5+WJJ08\neVLvvfeekpOTVVlZKUlqaGhQbm6uEhMTfRkDANAGnx4jqKys1Pz589XY2KigoCAtWrRIw4cP1733\n3qvdu3crICBACQkJSk9P92UMQyxf7tLSpUan6A7/zd+/v0tZWUan6DqXy2V0hG4hv//x+emjXWWz\n2fz6zCKbTfLj+H6N3z2srCvrTq4sBgCLowgAwOIoAgCwOIoAACyOIgAAi6MIAMDiKAIAsDiKAAAs\njiIAAIujCADA4igCALA4n38wDdDTBg36fr4hXy7/1CnfLR/oaUw65yNMfHblYmxhZkw6BwDoNIoA\nACyOIgAAi6MIAMDiKAIAsDiKAAAszqdFcPbsWTmdTkVHRysuLk4rVqyQJHk8HiUnJyskJERz5sxR\nTU2NL2MAANrg0yLo06ePPvjgA+3evVsffvihXn75ZR06dEirV69WSEiIDh06pODgYK1Zs8aXMQAA\nbfD5rqF+/fpJkmpqatTQ0KDAwEAVFBQoLS1NgYGBSk1NVX5+vq9jAABa4fMpJs6fPy+Hw6HS0lKt\nXLlSISEhKiwsVHh4uCQpPDxcBQUFLT43Kyur6bbL5ZLL5fJ1XADwK263W263u1vL6LEpJioqKpSY\nmKjXXntNycnJOnjwoPr06aPa2lpFREToyJEjzYMxxQRMirGFmZl6iomwsDAlJiYqPz9fsbGxKisr\nkySVlZUpNja2p2IAAH7Ap0Vw4sQJnT59WpJ08uRJvffee0pOTpbT6VROTo7q6uqUk5OjuLg4X8YA\nALTBp7uG9u3bp/nz56uxsVFBQUG66667dO+998rj8ejuu+9WSUmJbrjhBq1du1b9+/dvHoxdQzAp\nxhZm1pV1J9NQ+wgriysXYwszM/UxAgCAOVEEAGBxFAEAWBxFAAAWRxEAgMVRBABgcRQBAFgcRQAA\nFkcRAIDFUQQAYHEUAQBYHEUAABZHEQCAxVEEAGBxFAEAWBxFAAAWRxEAgMVRBABgcT4tgqNHj2rG\njBmKioqSy+VSbm6uJCkrK0vBwcFyOBxyOBzavHmzL2MAANrg088s/vrrr/X1118rOjpaJ06c0JQp\nU7Rnzx49/fTTstvtyszMbD0Yn1kMk2JsYWZdWXde7aMskqSgoCAFBQVJkoYMGaKoqCgVFhZKkl+v\n5AHgSuLTIrhYeXm5SktL5XQ6tX37dq1atUrr16/X3LlzlZGRIbvdfslzsrKymm67XC65XK6eigsA\nfsHtdsvtdndrGT7dNXSBx+ORy+XSo48+quTkZB07dkzXXXedqqurtXjxYo0bN06LFi1qHoxdQzAp\nxhZm1pV1p8+L4Ny5c7rtttuUmJiohQsXXvL9PXv2KCMjQx999FHzYBQBTIqxhZl1Zd3p07OGvF6v\n0tLSNGHChGYlUFlZKUlqaGhQbm6uEhMTfRkDANAGn24R7NixQwkJCZo0aZJsNpskadmyZVq3bp12\n796tgIAAJSQkaMmSJRo8eHDzYGwRwKQYW5iZKXcNdRVFALNibGFmpts1BAAwP4oAACyOIgAAi6MI\nAMDiKAIAsDiKAAAsjiIAAIujCADA4igCALA4igAALI4iAACLowgAwOIoAgCwOIoAACyOIgAAi6MI\nAMDiKAIAsDiKAAAsjiIAAIvzaREcPXpUM2bMUFRUlFwul3JzcyVJHo9HycnJCgkJ0Zw5c1RTU+PL\nGACANvi0CHr37q0VK1aotLRUb7zxhpYsWSKPx6PVq1crJCREhw4dUnBwsNasWePLGACANvi0CIKC\nghQdHS1JGjJkiKKiolRYWKiCggKlpaUpMDBQqampys/P92UMAEAbru6pFyovL1dpaammTJmiBQsW\nKDw8XJIUHh6ugoKCFp+TlZXVdNvlcsnlcvVAUgDwH263W263u1vLsHm9Xu/lidM6j8cjl8ulRx99\ntOnYwMGDB9WnTx/V1tYqIiJCR44caR7MZlMPRPMZm03y4/hoA2MLM+vKutPnZw2dO3dOt99+u+65\n5x4lJydLkmJjY1VWViZJKisrU2xsrK9jAABa0aUiKCws7NDPeb1epaWlacKECVq4cGHT406nUzk5\nOaqrq1NOTo7i4uK6EgMAcBl0eNdQaWmp1q1bp7y8PA0cOFCffPJJu8/ZsWOHEhISNGnSJNlsNknS\nX/7yF02bNk133323SkpKdMMNN2jt2rXq379/82DsGoJJMbYws66sO9ssgsOHDysvL0/r1q1TQECA\nKioqVFRUpLCwsO5mbT8YRQCTYmxhZpf1GEF8fLzuuOMO2Ww2/fOf/1RRUZHsdnuPlAAAoOe0WgTD\nhg3TmTNnVFVVpWPHjvVkJgBAD2pz19Dp06f11ltvKS8vT+Xl5Tp16pS2bNkip9Pp+2DsGoJJMbYw\ns8t+jOBiVVVVev3117Vu3TodPXpUR48e7VLIDgejCGBSjC3MzKdFcLEjR44oNDS0s0/rFIoAZsXY\nwsy6su5sd4qJTz/9VC+88IJ27dql+vr6phfau3dv11ICAEyl3S2CadOm6Ve/+pXi4+MVEBDQ9Liv\nzx5iiwBmxdjCzHyyRSBJKSkpzUoAAHDlaHeLYOfOnVq5cqVuvfVWDRw48Psn2Wz62c9+5ttgbBHA\npBhbmJlPtgjWrVunPXv2qHfv3s22CnxdBACAntHuFsHYsWNVWlra47uG2CKAWTG2MDOfTEM9Y8YM\n7dq1q8uhAADm1u4WQWRkpPbv36/rr79e11xzzfdP6oHTR9kigFkxtjAzn1xQVlFR0eLjnD7aNlYW\nVy7GFmbWY1cW9wSKAGbF2MLMTPlRlQAAc6MIAMDiKAIAsLh2i+D999/XTTfdpGuuuUZ2u112u10D\nBgzoiWwAgB7QbhH84Q9/0BNPPKFTp07J4/HI4/Gourq6wy+QmpqqYcOGaeLEiU2PZWVlKTg4WA6H\nQw6HQ5s3b+5aegBAt7VbBAEBAYqJiVGvXl3bi7RgwYJLVvQ2m02ZmZkqKSlRSUmJbr311i4tGwDQ\nfe3ONTR9+nTNmTNH8+bNa3ZBWUfnGpo+fXqL1yL486mhAHAlabcIqqqqFBQUpB07djR7vLuTzq1a\ntUrr16/X3LlzlZGRIbvdfsnPZGVlNd12uVxyuVzdek0AuNK43W653e5uLaNHLiirqKhQUlKS9u3b\nJ0k6duyYrrvuOlVXV2vx4sUaN26cFi1a1DwYF5TBpBhbmNllnYb6ySef1MMPP6zf/va3Lb7Qs88+\n2/mE/2fo0KGSpIEDB+qBBx5QRkbGJUUAAOgZrRZBZGSkJCkmJkY2m63pca/X2+x+V1RWVmr48OFq\naGhQbm6uEhMTu7U8AEDX+XzXUEpKij788EOdOHFCw4YN09KlS+V2u7V7924FBAQoISFBS5Ys0eDB\ng5sHY9cQTIqxhZkx6ZyJsLK4cjG2MDMmnQMAdBpFAAAW1+Z1BF6vV1u3blVxcbEOHDggm82m8ePH\ny+FwaObMmd0+aAwAMF6rxwiys7P1j3/8Qw6HQxERERo9erTOnz+vzz//XGVlZSopKVFKSorPTvvk\nGAHMirGFmV3W6whCQ0O1c+dOBQQEtPj9+vp6bdiwoXMJAQCm0+5ZQ+vXr9e8efPafeyyB2OLACbF\n2MLMfHL6qMPhUElJSbuPXW4UAcyKsYWZXdZdQ5s2bdK7776rr776Sg8++GDTgo8fP64RI0Z0LykA\nwDRaLYIRI0YoJiZGGzZsUExMTNPUEqGhoYqPj+/JjAAAH2p319B3333X6gFjX2LXEMyKsYWZ+eTK\n4h+WwPz585Wenq5PP/20c+kAAKbU6bmGCgoK9MUXX6igoEBPPfWUr3KxRQDTYmxhZkw6ZyKsLK5c\njC3M7LKeNZSUlNTmC23cuLFTLwQAMKdWi+Chhx5q9UnMMQQAVw52DfkIuw+uXIwtzOyynjV08803\n66WXXlJNTc0l3/N4PHrxxRd18803dz4lAMBUWi2CN998Ux6PR3FxcQoLC1NCQoKmT5+u0NBQxcXF\nqaamRm+99VZPZgUA+ECHdg3V1dWpvLxckjRmzBj17dvX98HYNQSTYmxhZj77qMq+fftq4sSJmjhx\nYqdLIDU1VcOGDdPEiRObHvN4PEpOTlZISIjmzJnT4u4nAEDPaLUI+vfvL7vd3uLXgAEDOvwCCxYs\n0ObNm5s9tnr1aoWEhOjQoUMKDg7WmjVruv4vAAB0S6tFUFNTI4/H0+JXdXV1h19g+vTpGjRoULPH\nCgoKlJaWpsDAQKWmpio/P7/r/wIAQLe0+ZnFvlJYWKjw8HBJUnh4uAoKClr8uaysrKbbLpdLLper\nB9IBgP9wu91yu93dWkaPXEdQUVGhpKQk7du3T5IUEhKigwcPqk+fPqqtrVVERISOHDnSPBgHi2FS\njC3MzGcHiy+32NhYlZWVSZLKysoUGxtrRAwAgAwqAqfTqZycHNXV1SknJ0dxcXFGxAAAqAeKICUl\nRVOnTtXBgwc1cuRIvfLKK0pPT9cXX3yh8ePH66uvvtKvf/1rX8cAALSCuYZ8hP3IVy7GFmbmN8cI\nAADmQREAgMVRBABgcRQBAFgcRQAAFkcRAIDFUQQAYHEUAQBYHEUAABZHEQCAxVEEAGBxFAEAWBxF\nAAAWRxEAgMVRBABgcRQBAFgcRQAAFkcRAIDFUQQAYHFXG/niYWFhGjBggK666ir17t1bBQUFRsYB\nAEsytAhsNpvcbrcGDx5sZAwAsDTDdw15vV6jIwCApRm+RXDTTTdp1KhRSk1N1ezZs5t9Pysrq+m2\ny+WSy+Xq2YAAYHJut1tut7tby7B5DXxLXllZqeHDh6usrExJSUnasWOHgoKCvg9ms/n11oLNJvlx\nfLSBsYWZdWXdaeiuoeHDh0uSIiIiNHv2bP3rX/8yMg4AWJJhRVBbWyuPxyNJOn78uLZs2aJbb73V\nqDgAYFmGHSOoqqrS3LlzJUnXXnutHnroIY0cOdKoOABgWYYeI2gLxwhgVowtzMzvjhEAAIxHEQCA\nxVEEAGBxFAEAWBxFAAAWRxEAgMVRBABgcRQBAFgcRQAAFkcRAIDFUQQAYHEUAQBYHEUAABZHEQCA\nxVEEAGBxFAEAWBxFAAAWRxEAgMVRBABgcYYVwbZt2xQREaGxY8dq1apVRsUAAMsz7MPrHQ6Hnnnm\nGYWGhuqWW27Rjh07NGTIkP8fjA+vh0kxtjAzv/nw+jNnzkiSEhISFBoaqlmzZik/P9+IKAD8zODB\n35cxXy1/dcXVl3eIOqawsFDh4eFN9yMjI/Xxxx/rtttua/ZzNlvWRfdc//flHwYNMjoBcGX65hu2\nyC7mdrvldrub7i9d2vllGFIEHeX1ZhkdAQBMzeVyyeVyNd1f2oUmMGTXUGxsrPbv3990v7S0VHFx\ncUZEAQDLM6QIBg4cKOn7M4cqKiq0detWOZ1OI6IAgOUZtmto5cqVuv/++3Xu3Dk9+OCDzc4YAgD0\nHMNOH22Pv58+iisXp48ai99/2/zm9FEAgHlQBABgcRQBAFgcRQAAFkcRAIDFUQQAYHEUAQBYnKnn\nGgLgfwYP/n5iOF9hQsfLjyIAOmnQoK5P92sFgwZxwZe/4cpiALiCcGUxAKDTKAIAsDiKAAAsjiIA\nAIujCADA4igCALA4igAALI4iAACLowh8xO12Gx2hW/w5vz9nl8hvNH/P3xWGFEFWVpaCg4PlcDjk\ncDi0efNmI2L4lL//Z/Ln/P6cXSK/0fw9f1cYMteQzWZTZmamMjMzjXh5AMBFDNs1xDxCAGAOhkw6\nt3TpUr3yyisKCgrS3LlzlZGRIbvd3jwY0zsCQJd0drXusyKYOXOmvv7660se//Of/6y4uDhdd911\nqq6u1uLFizVu3DgtWrTIFzEAAO0wfBrqPXv2KCMjQx999JGRMQDAsgw5RlBZWSlJamhoUG5urhIT\nE42IAQCQQUXw8MMPa9KkSYqLi9O5c+eUnp5uRAwAgAwqgldffVV79+5VUVGRnn76aQ0ePLjZ97dt\n26aIiAiNHTtWq1atMiJilx09elQzZsxQVFSUXC6XcnNzjY7UaY2NjXI4HEpKSjI6Sqd9++23mj9/\nvsaNG6fIyEh9/PHHRkfqlBdffFFTp05VTEyMFi5caHScdqWmpmrYsGGaOHFi02Mej0fJyckKCQnR\nnDlzVFNTY2DCtrWUf/HixYqIiNANN9yghQsXqq6uzsCEbWsp/wXLly9Xr169dOrUqXaXY8ori3/3\nu9/phRde0Pvvv6/nnntOJ06cMDpSh/Xu3VsrVqxQaWmp3njjDS1ZskQej8foWJ3yzDPPKDIy0i/P\n3HrssccUEhKivXv3au/evYqIiDA6UoedOnVKy5Yt09atW1VYWKiDBw9qy5YtRsdq04IFCy65IHT1\n6tUKCQnRoUOHFBwcrDVr1hiUrn0t5Z81a5ZKS0tVVFSkb7/91tRv5lrKL33/hnTr1q0KDQ3t0HJM\nVwRnzpyRJCUkJCg0NFSzZs1Sfn6+wak6LigoSNHR0ZKkIUOGKCoqSkVFRQan6rgvv/xS7777rn75\ny1/65bUe77//vh555BH16dNHV199tQYOHGh0pA7r27evvF6vzpw5o7q6OtXW1mrQoEFGx2rT9OnT\nL8lYUFCgtLQ0BQYGKjU11dR/vy3lnzlzpnr16qVevXrplltu0YcffmhQuva1lF+SMjMz9dRTT3V4\nOaYrgsLCQoWHhzfd98fN+wvKy8tVWlqqKVOmGB2lw37/+98rOztbvXqZ7r9Gu7788kudPXtW6enp\ncjqdevLJJ3X27FmjY3VY3759tXr1aoWFhSkoKEjTpk3zq/87F1z8NxweHq6CggKDE3Xdiy++6He7\nSDds2KDg4GBNmjSpw8/xv792P+HxePTzn/9cK1as0I9+9COj43TIv//9bw0dOlQOh8MvtwbOnj2r\ngwcP6vbbb5fb7VZpaalef/11o2N12PHjx5Wenq7PPvtMFRUV2rVrl9555x2jY3WaP/7facnjjz8u\nu92uefPmGR2lw2pra7Vs2TItXbq06bGOjIfpiiA2Nlb79+9vul9aWqq4uDgDE3XeuXPndPvtt+ue\ne+5RcnKy0XE6bOfOndq4caNGjRqllJQU/ec//9G9995rdKwOGzNmjMaPH6+kpCT17dtXKSkp2rRp\nk9GxOqygoEBxcXEaM2aMrr32Ws2bN0/btm0zOlanxcbGqqysTJJUVlam2NhYgxN13t///ndt2bJF\na9euNTpKp/z3v/9VRUWFJk+erFGjRunLL79UTEyMjh071ubzTFcEF/bpbtu2TRUVFdq6daucTqfB\nqTrO6/UqLS1NEyZM8IuzPi62bNkyHT16VIcPH1ZeXp5uuukmvfrqq0bH6pSxY8cqPz9f58+f1zvv\nvKObb77Z6EgdNn36dBUVFenUqVOqr6/Xpk2bNGvWLKNjdZrT6VROTo7q6uqUk5Pjd2/kNm/erOzs\nbG3cuFF9+vQxOk6nTJw4UVVVVTp8+LAOHz6s4OBgFRcXa+jQoW0/0WtCbrfbGx4e7h09erT3mWee\nMTpOp2zfvt1rs9m8kydP9kZHR3ujo6O9mzZtMjpWp7ndbm9SUpLRMTrtwIEDXqfT6Z08ebL3oYce\n8tbU1BgdqVNeeeUVb0JCgvfGG2/0LlmyxNvY2Gh0pDbdeeed3uHDh3sDAgK8wcHB3pycHG91dbV3\n9uzZ3pEjR3qTk5O9Ho/H6JitupC/d+/e3uDgYO/LL7/sHTNmjDckJKTp7zc9Pd3omK1q6fd/sVGj\nRnlPnjzZ7nIMn2ICAGAs0+0aAgD0LIoAACyOIgAAi6MIAMDiKAL4hZMnT8rhcMjhcGj48OEKDg6W\nw+GQ3W7Xb37zG5+85ssvv6zVq1d36jnTpk3zSZYfev3115Wdnd0jr4UrH2cNwe8sXbpUdrtdmZmZ\nPn2dqVOnasuWLZd8jOrl0tjYqKuuuqpLz/3uu+80depUFRYW+uXkgDAXtgjgly68f3G73U1zwWRl\nZen+++9XQkKCRo8erffee09/+tOfNGHCBKWnpzc958CBA03zET3wwAM6efLkJcvPz8/X9ddf31QC\nLpdLS5YsUXR0tBwOh8rLy3XHHXdowoQJzWbX7N+/f9PtvLw8zZw5U5MnT9YjjzzStJw//vGPuvHG\nG/Xss8/qk08+0bx58xQbG6vly5eroaHhkiy5ubmKj4/X5MmTlZKSIkkKCAiQw+HQ1q1bL8evExZ3\ntdEBgMspPz9f27dvV3FxsX7605/qb3/7m/bt26eZM2equLhYMTExWrx4sZ577jmNHDlSzz//vF56\n6SU9/PDDzZZTUlLSbAprm82mqqoqFRcX64knntCUKVNUWFioYcOGKTIyUvfff79sNlvTu/OKigr9\n9a9/1bvvvqsRI0bo9OnTTcs5fPiwdu7cqYCAAMXExOj555/XpEmTlJKSosjISP3kJz9pluXxxx9X\ncXGx+vXrp+rq6qbHIyIiVFxc7JdXH8Nc2CLAFcNms2n27Nmy2+2Kj49XfX297rzzTtlsNjmdTu3a\ntUvHjx/X9u3bNXv2bDkcDq1Zs6bFz8suLy9XWFhYs8dSUlLUq1cvxcfHKyoqSqNHj1b//v01cuRI\nffbZZ81+dv369brzzjs1YsQISdI111zT9L1f/OIXCggI0P/+9z+dO3dOTqdTffv21V133aWNGzde\nkuXGG29USkqK3njjjWYTGI4ePVoHDhzozq8MkMQWAa4wF+aqCggIUGBgoAIDA5vuf/fdd2psbNS1\n116rkpKSdpf1w8NnF1bmAQEBzVbsAQEBqq+vb/f5F1wohx9+v7WfX7t2rXbu3Km1a9cqOzu7aX7/\n8+fPc3wAlwVbBLhitHfeg9frVVBQkEaNGqU333xTXq9X586du+TdvPT95HUVFRVdznLHHXcoLy9P\nX331lSTpm2++uSTn9ddfr8DAQBUUFKiurk55eXmXzFbr9XpVUVGhqVOn6umnn1ZlZWVT6Xz++eca\nP358lzMCF1AE8EsX3glfvF/+4tsX/8wP7z///PP64IMPmg787tq165LlR0dHN5sO/YfLae2d+IXH\nR40apUceeUR33323oqOjtXz58hZzrVmzRtnZ2UpISNC0adMumS21sbFR99xzjyZNmqQf//jHysrK\natrK2b9/vxwOR4s5gM7g9FGgFfHx8dqyZYsGDBhgdJRL1NfXa+rUqSoqKmL3ELqNLQKgFffdd59e\ne+01o2O0aMOGDUpJSaEEcFmwRQAAFscWAQBYHEUAABZHEQCAxVEEAGBxFAEAWBxFAAAW9/8AjjI6\n8BSLXDoAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x6342070>"
]
}
],
"prompt_number": 15
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.10, Page number: 527<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"\n",
"#Variable Declaration\n",
"\n",
"Er=3.8 #relative permittivity\n",
"c=3*10**8 #speed of wave in m/s\n",
"r=4.5 #ratio of line width to substrate thickness\n",
"\n",
"#Calculations\n",
"\n",
"Eeff=((Er+1)/2)+((Er-1)/(2*(1+12/r)**0.5))\n",
"Zo=(120*scipy.pi)/((r+1.393+(0.667*scipy.log(r+1.444)))*((Eeff)**0.5))\n",
"f=10**10\n",
"l=c/(f*scipy.sqrt(Eeff))\n",
"\n",
"#Results\n",
"\n",
"print 'The effective relative permittivity of the substrate =',round(Eeff,3)\n",
"print 'The characteristic impedance of the line =',round(Zo,2),'ohms'\n",
"print 'The wavelength of the line at 10 GHz =',round(l*1000,2),'mm'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The effective relative permittivity of the substrate = 3.131\n",
"The characteristic impedance of the line = 30.08 ohms\n",
"The wavelength of the line at 10 GHz = 16.95 mm\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 11.11, Page number: 527<h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"import scipy\n",
"\n",
"#Variable Declaration\n",
"\n",
"h=1 #in mm\n",
"w=0.8 #in mm\n",
"Er=6.6 #relative permittivity\n",
"P=scipy.arctan(0.0001) \n",
"c=5.8*10**7 #conductivity in S/m\n",
"f=10**10 #frequency in Hz\n",
"mu=4*scipy.pi*10**-7 #permeability of free space\n",
"C=3*10**8 #speed of wave in m/s\n",
"r=w/h\n",
"\n",
"#Calculations\n",
"\n",
"Ee=((Er+1)/2.0)+((Er-1)/(2.0*(1+12/r)**0.5))\n",
"Zo=(120.0*scipy.pi)/((r+1.393+(0.667*scipy.log(r+1.444)))*((Ee)**0.5))\n",
"Rs=scipy.sqrt((scipy.pi*f*mu)/c)\n",
"ac=8.686*Rs/(w*(10**-3)*Zo)\n",
"l=C/(f*(Ee)**0.5)\n",
"ad=27.3*(Ee-1)*Er*scipy.tan(P)/((Er-1)*Ee*l)\n",
"\n",
"#Results\n",
"\n",
"print 'attenuation due to conduction loss =',round(ac,2),'dB/m'\n",
"print 'attenuation due to dielectric loss =',round(ad,3),'dB/m'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"attenuation due to conduction loss = 4.35 dB/m\n",
"attenuation due to dielectric loss = 0.177 dB/m\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|