"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"import cmath\n",
"from numpy import *\n",
"\n",
"#Variable Declaration\n",
"\n",
"Zo=100 #in ohms\n",
"Zl=40+30j #in ohms\n",
"\n",
"#Calculations\n",
"\n",
"Yo=1.0/Zo #in S\n",
"yl=Zo/Zl\n",
"ys1=1.04j #By smith chart\n",
"ys2=-1.04j #By smith chart\n",
"Ys1=Yo*ys1 #in S\n",
"Ys2=Yo*ys2 #in S\n",
"la=round(0.5-(62-(-39))/720.0,2) #in units of lambda\n",
"lb=round((62-39)/720.0,3) #in units of lambda\n",
"da=round(88/720.0,4) #in units of lambda\n",
"db=round(272/720.0,4) #in units of lambda\n",
"\n",
"#Results\n",
"\n",
"print 'The required stub admittance values in mS are',Ys1*1000,'and',Ys2*1000\n",
"print 'The distance between stub and antenna at A =',la,'in units of lambda'\n",
"print 'The distance between stub and antenna at B =',lb,'in units of lambda'\n",
"print 'The stub lengths =',da,'and',db,'in units of lambda'\n",
"print 'Part (d) is done using smith chart'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required stub admittance values in mS are 10.4j and -10.4j\n",
"The distance between stub and antenna at A = 0.36 in units of lambda\n",
"The distance between stub and antenna at B = 0.032 in units of lambda\n",
"The stub lengths = 0.1222 and 0.3778 in units of lambda\n",
"Part (d) is done using smith chart\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.9, Page number: 521"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"import matplotlib.pyplot as plt\n",
"\n",
"#Variable Declarataion\n",
"\n",
"zo=75 #in ohms\n",
"zg=25 #in ohms\n",
"zl=100 #in ohms\n",
"vg=4 #in volts\n",
"l=60 #in m\n",
"c=3*10**8 #speed of light in m/s\n",
"u=0.1*c #in m/s\n",
"\n",
"#Calculations\n",
"\n",
"gammag=(zg-zo)/(zg+zo)\n",
"gammal=(zl-zo)/(zl+zo)\n",
"Vo=zo*vg/(zo+zg) #in V\n",
"t1=l/u #in micro sec\n",
"Io=vg/(zo+zg) #in mA\n",
"\n",
"#Results\n",
"\n",
"t1=[0,4,5,8,9,12,13,15]\n",
"I1=[40,31.43,-8.571,-7.959,0.6123,0.5685,-0.0438,-0.438]\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"ax.step(t1,I1,where='post')\n",
"ax.set_xlabel('Time (micro s)')\n",
"ax.set_ylabel(r'I(0,t) in mA')\n",
"plt.show()\n",
"\n",
"t2=[0,2,6,7,10,11,14]\n",
"I2=[0,34.3,31.9,-2.46,-2.28,0.176,0.176]\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"ax.step(t2,I2,where='post')\n",
"ax.set_xlabel('Time (micro s)')\n",
"ax.set_ylabel(r'I(l,t) in mA')\n",
"plt.show()\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEMCAYAAADeYiHoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGzFJREFUeJzt3X1wVNXhxvFn0SZgQUQtIMaQFCibgJAFQhIYwqqAVYxh\nFEaiQEdCRaryoradsdRGfzO0Gq1CLQlVY0dRUaqOjIIg6vJSQjaY2CImApUIqMibms0kwRDP7w+G\nLSEnDeTt3pDvZ2ZnsjfZex83sk/OuWfveowxRgAAnKaT0wEAAO5EQQAArCgIAIAVBQEAsKIgAABW\nFAQAwMrRgqitrZXP51NaWpokKRQKKT09XdHR0Zo0aZIqKiqcjAcAHZqjBbF48WLFx8fL4/FIknJy\nchQdHa1du3YpKipKubm5TsYDgA7NsYLYv3+/Vq9erVmzZunke/WCwaAyMzMVGRmpmTNnqqCgwKl4\nANDhne/UgRcsWKDs7GyVl5eHtxUWFsrr9UqSvF6vgsFgvcedHG0AAM7O2V44w5ERxFtvvaWePXvK\n5/PVCXym4Y0xrr/94Q9/cDzDmdyk9pGzvTyf5Ox4OdtDRmOadkUlR0YQW7Zs0apVq7R69WpVV1er\nvLxc06dPV2JiokpKSuTz+VRSUqLExEQn4gEA5NAIYtGiRdq3b5/27NmjFStW6Oqrr9YLL7ygpKQk\n5eXlqaqqSnl5eUpOTnYiHgBALnkfxMnzCnPmzNHevXs1cOBAffHFF7rzzjsdTtZ0fr/f6QhnyO90\ngDPSXp5Pcras9pCzPWRsKo9p6uSUQzweT5Pn01CfxyPxdALnvqa8drpiBAEAcB8KAgBgRUEAAKwo\nCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIAYEVBAACsKAgAgBUFAQCwoiAAAFYUBADAioIA\nAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIgAABWFAQAwIqCAABYURAAACsKAgBgRUEAAKwoCACA\nFQUBALCiIAAAVhQEAMCKggAAWJ3vdAA4q0cPyeNp+X0ePdqy+wTQ9jzGGON0iLPh8XjUziJ3OB6P\nxK8IcJemvHYyxQQAsHKsIKqrq5WUlKSEhAQlJyfriSeekCSFQiGlp6crOjpakyZNUkVFhVMRAaBD\nc6wgOnfurA8++EAfffSRNmzYoGeffVa7du1STk6OoqOjtWvXLkVFRSk3N9epiADQoTk6xXTBBRdI\nkioqKnT8+HFFRkYqGAwqMzNTkZGRmjlzpgoKCpyMCAAdlqOrmH744Qf5fD7t2LFDTz75pKKjo1VY\nWCiv1ytJ8nq9CgaD9R6XlZUV/trv98vv97dRYgBoHwKBgAKBQLP24YpVTGVlZbr++uv14osvKj09\nXTt37lTnzp1VWVmpuLg4ff755+GfZRWT+7GKCXCfdruKKSYmRtdff70KCgqUmJiokpISSVJJSYkS\nExMdTgcAHZNjBXH48GF9++23kqQjR45o3bp1Sk9PV1JSkvLy8lRVVaW8vDwlJyc7FREAOjTHppi2\nb9+uX/ziF6qtrVXv3r112223acaMGQqFQpo2bZqKi4s1bNgwLV++XF27dv1vYKaYXI8pJsB9mvLa\n6YpzEGeDgnA/CgJwn3Z7DgIA4D4UBADAioIAAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIgAABW\nFAQAwIqCAABYURAAACsKAgBgRUEAAKwoCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIAYEVB\nAACsKAgAgBUFAQCwoiAAAFYUBADAioIAAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIgAABWFAQA\nwIqCAABYnVVBVFRU6IUXXtDEiRNbKw8AwCUaLYhjx47p9ddf15QpU9SnTx+99957uvPOO5t94H37\n9umqq67SoEGD5Pf79dJLL0mSQqGQ0tPTFR0drUmTJqmioqLZxwIAnD2PMcbYvrF27Vq9/PLLev/9\n9+X3+zVlyhTdc889Kisra5EDHzhwQAcOHFBCQoIOHz6skSNH6l//+pdycnK0b98+PfbYY7rvvvsU\nExOj+++//7+BPR41EBku4fFI/IoAd2nKa2eDI4jrrrtOR48e1datW/X8888rLS1NHo+n2SFP6t27\ntxISEiRJl156qQYNGqTCwkIFg0FlZmYqMjJSM2fOVEFBQYsdEwBw5s5v6BtFRUV6+eWXNXbsWPXr\n109TpkxRbW1tq4TYvXu3duzYoZEjR+r222+X1+uVJHm9XgWDwXo/n5WVFf7a7/fL7/e3Si4AaK8C\ngYACgUCz9tHgFNNJxhht2bJFL7/8sl577TUNHTpUN910k+64445mHfikUCgkv9+vBx98MHzuYefO\nnercubMqKysVFxenzz///L+BmWJyPaaYAPdp0SmmU3c6evRoPfXUU9q/f7/uvfdebd26tckhT1VT\nU6Obb75Z06dPV3p6uiQpMTFRJSUlkqSSkhIlJia2yLEAAGfnjJa5Hj58WG+99ZbefPNNhUKhFlnm\naoxRZmamBg8erPnz54e3JyUlKS8vT1VVVcrLy1NycnKzjwUAOHuNTjFlZWXp1Vdflc/nU0RERHj7\nc88916wDb968WampqRoyZEj45Pcf//hHjR49WtOmTVNxcbGGDRum5cuXq2vXrv8NzBST6zHFBLhP\nU147Gy2IQYMGqbi4uE45OImCcD8KAnCfVjkHMXr0aOXn5zc5FACgfWp0BFFcXKzU1FRddNFFuuii\ni048yOPRv//97zYJeDpGEO7HCAJwn6a8djb4PoiTpk6dqqeeekopKSmumWYCALS+Rguie/fuysjI\noBwAoINptCBSU1M1adIkTZ48Wd27d5d0Yqhy0003tXo4AIBzGi2Iw4cPq1evXtq0aVOd7RQEAJzb\nGj1J7TacpHY/TlID7tMqy1wBAB0TBQEAsKIgAABWjZ6krqmpUX5+vvLz81VdXS3pxFzWgw8+2Orh\nAADOabQgTn7M6NixY+tcNA8AcG5rdBVTfHy8Pv74Y3Xq5I7ZKFYxuR+rmAD3aZVVTFdddZU++OCD\nJocCALRPZzSCKC0t1eWXX87F+nBGGEEA7tMqnwdRVlZm3R4TE3NWB2opFIT7URCA+7To1VzLy8t1\n4YUX6sILL2x2MABA+9PgCGLixIl6++23FRMTE/5I0PCDPB599tlnbRLwdIwg3I8RBOA+rTLF5DYU\nhPtREID7cC0mAECLoSAAAFYUBADA6owLYu/evdq3b19rZgEAuEiDy1yPHTuml156SU8//bQ+++wz\nXXbZZTLG6MCBA4qNjdUdd9yhW2+9VZGRkW2ZFwDQRhocQYwbN06HDx/WypUrdeDAARUXF+ujjz7S\ngQMHtHLlSh06dEjjxo1ry6wAgDbEMle0OJa5Au7TKstcr7nmmjPaBgA4tzR4DqKqqkqVlZU6dOiQ\njh49Gt5+8OBBhUKhNgkHAHBOgwWxbNkyLV68WF9++aWGDx8e3t63b1/Nnz+/TcIBAJzT6DmIJUuW\naO7cuW2Vp1Gcg3A/zkEA7tMm12Latm2b+vTpoz59+pzVgVoKBeF+FATgPm1SEDNmzND27dv1s5/9\nTK+88spZHawlUBDuR0EA7tOmV3M9+XkRbY2CcD8KAnCfVimIUCikYDAoj8ejxMREdevWrVkhm4uC\ncD8KAnCfFi2IzZs3a+7cuTLGaODAgZKk0tJSderUSYsXL9aYMWOan7gJKAj3oyAA92nRgoiPj1dO\nTo7Gjh1bZ3sgENCvfvUrffLJJ01P2gwUhPtREID7tOg7qWtqahQbG1tv+09/+lN9//33Z5/uNDNn\nzlSvXr105ZVXhreFQiGlp6crOjpakyZNUkVFRbOPAwBomgYL4p577tGECRM0f/58LVu2TMuWLdO8\nefM0YcIE3XPPPc0+8O2336533nmnzracnBxFR0dr165dioqKUm5ubrOPAwBomgYLYu7cudq4caOu\nueYa7d+/X/v27dO4ceO0YcMGzZs3r9kHHjNmjHr06FFnWzAYVGZmpiIjIzVz5kwVFBQ0+zgAgKZp\n8FIbktSzZ0+lpaUpLS2tTcIUFhbK6/VKkrxer4LBoPXnsrKywl/7/X75/f42SAcA7UcgEFAgEGjW\nPho8ST1u3DhNnTpVU6dOVdeuXet8LxQKacWKFXrllVe0fv36Jh+8rKxMaWlp2r59uyQpOjpaO3fu\nVOfOnVVZWam4uDh9/vnndQNzktr1OEkNuE+LnqR+7bXXFAqFlJycrJiYGKWmpmrMmDHq27evkpOT\nVVFRoddff73ZoU+VmJiokpISSVJJSYkSExNbdP8AgDPX4BRT9+7dtWDBAi1YsEBVVVXavXu3JKl/\n//7q0qVLq4RJSkpSXl6eHn30UeXl5Sk5OblVjgMAaJxjnyiXkZGhDRs26MiRI+rZs6cefvhhTZ48\nWdOmTVNxcbGGDRum5cuX15veYorJ/ZhiAtynRd8o17VrV3k8ngYPVF5efvYJWwAF4X4UBOA+bXqx\nPqdQEO5HQQDu0yqfSQ0A6JgoCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIAYEVBAACsKAgA\ngBUFAQCwoiAAAFYUBADAioIAAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIgAABWFAQAwIqCAABY\nURAAACsKAgBgRUEAAKwoCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIAYEVBAACsKAgAgJUr\nC2Ljxo2Ki4vTgAED9Je//MXpOICjLr5Y8ng65u3ii51+9js2jzHGOB3idD6fT4sXL1bfvn117bXX\navPmzbr00kslSR6PRy6MjFN4PBK/opbTkZ/Piy+Wvvmm5fbXo4d09GjL7a89acprp+tGEN99950k\nKTU1VX379tWECRNUUFDgcCoATjh69EQ5ttStJcumIzjf6QCnKywslNfrDd+Pj4/X1q1bNXHixPC2\nrKys8Nd+v19+v78NEwJor3r0ODEic7uWGOkEAgEFAoFm7cN1BXEmTi0IADhT7WV6qSVK7PQ/nh96\n6KGz3ofrppgSExNVWloavr9jxw4lJyc7mAgAOibXFUT37t0lnVjJVFZWpnfffVdJSUkOpwKAtuOW\nRQmunGJ68sknNXv2bNXU1Gju3LnhFUwAgLbjymWu/wvLXN2vIy/LbA08n2gJ58QyVwCAO1AQAAAr\nCgIAYEVBAACsKAgAgBUFAQCwoiAAAFYUBADAioIAAFhREAAAKwoCAGBFQQAArCgIAIAVBQEAsKIg\nAABWFAQAwIqCAABYURAAACsKAgBgRUEAAKwoCACAFQUBALCiIAAAVhQEAMCKggAAWFEQAAArCgIA\nYEVBAACsKAgAgBUFAQCwOt/pAMC55OKLpW++adl99ujRsvsDzpTHGGOcDnE2PB6P2lnkDsfjkTrq\nr6gj/7fD3Zry2skIAi2uR48TL5QdEX/t41zCCAIAOoCmvHZykhoAYEVBtJJAIOB0hDNCzpZFzpbV\nHnK2h4xN5UhBrFy5UoMGDdJ5552noqKiOt9bsmSJBgwYoPj4eG3evNmJeC2ivfxPQ86WRc6W1R5y\ntoeMTeVIQVx55ZV64403lJqaWmf7wYMHtXTpUr333nvKycnR3LlznYgHAJBDq5i8Xq91e0FBgX7+\n858rOjpa0dHRMsYoFAqpW7dubZwQACDjIL/fbz788MPw/YULF5rc3Nzw/VtuucWsX7++zmMkcePG\njRu3JtzOVquNIMaPH68DBw7U275o0SKlpaVZH2MsS7A8py2ot/0MAKDltVpBvPvuu2f9mKSkJK1f\nvz58v7S0VImJiS0ZCwBwhhxf5nrqiGDkyJFau3at9u7dq0AgoE6dOnH+AQAc4shJ6jfeeENz587V\n4cOHNXHiRPl8Pq1Zs0a9evXSnDlzdPXVVysiIkLLli1zIh4AQGrCWQsHbdiwwXi9XtO/f3+zZMkS\np+M0aO/evcbv95v4+HgzduxY8+KLLzodqUHHjx83CQkJ5oYbbnA6SoMqKirMjBkzzIABA0xcXJzJ\nz893OpLV3/72N5OSkmKGDRtm5s2b53ScsNtvv9307NnTDB48OLytvLzc3HjjjeaKK64w6enpJhQK\nOZjwBFvO+++/33i9XuPz+cy8efNMZWWlgwntGU967LHHjMfjMUeOHHEgWV0N5czLyzNer9fEx8eb\n3/zmN43up10VREJCgtmwYYMpKyszAwcONIcOHXI6ktVXX31liouLjTHGHDp0yMTGxpry8nKHU9k9\n/vjj5tZbbzVpaWlOR2nQfffdZxYuXGiqqqpMTU2N+fbbb52OVM+RI0dMTEyMqaioMLW1tea6664z\n77zzjtOxjDHGbNy40RQVFdV5sXjkkUfM3Xffbaqrq81dd91lsrOzHUx4gi3nunXrTG1tramtrTWz\nZs0yzzzzjIMJ7RmNOfFH4bXXXmtiYmJcURC2nNu3bzfJyclm586dxhhjDh482Oh+HD8Hcaa+++47\nSVJqaqr69u2rCRMmqKCgwOFUdr1791ZCQoIk6dJLL9WgQYO0bds2h1PVt3//fq1evVqzZs1y9eqw\n9evX64EHHlDnzp11/vnnq3v37k5HqqdLly4yxui7775TVVWVKisr1cMll3YdM2ZMvSzBYFCZmZmK\njIzUzJkzXfFvyZZz/Pjx6tSpkzp16qRrr71WGzZscCjdCbaMknTvvffq0UcfdSCRnS3nmjVrlJmZ\nqQEDBkiSfvKTnzS6n3ZTEIWFhXXeYBcfH6+tW7c6mOjM7N69Wzt27NDIkSOdjlLPggULlJ2drU6d\n3Pu/wf79+1VdXa05c+YoKSlJjzzyiKqrq52OVU+XLl2Uk5OjmJgY9e7dW6NHj3bl7/ykU/89eb1e\nBYNBhxM17umnn25wibyT3nzzTUVFRWnIkCFOR/mf1q1bp48//lgjRozQrFmz9MknnzT6GPe+MpwD\nQqGQbrnlFj3xxBP68Y9/7HScOt566y317NlTPp/P1aOH6upq7dy5UzfffLMCgYB27NihV1991elY\n9Rw6dEhz5szRJ598orKyMuXn5+vtt992OlaD3Pw7t3n44YfVrVs3TZkyxekodVRWVmrRokV66KGH\nwtvc+txWV1fr6NGj2rRpk9LT03X33Xc3+ph2UxCJiYkqLS0N39+xY4eSk5MdTPS/1dTU6Oabb9b0\n6dOVnp7udJx6tmzZolWrVik2NlYZGRl6//33NWPGDKdj1dO/f38NHDhQaWlp6tKlizIyMrRmzRqn\nY9UTDAaVnJys/v3765JLLtGUKVO0ceNGp2M1KDExUSUlJZKkkpISV7/f6O9//7vWrl2r5cuXOx2l\nnv/85z8qKyvT0KFDFRsbq/3792v48OE6ePCg09HqSU5O1i233KIuXbooLS1NpaWljY7G201BnJx3\n3rhxo8rKyvTuu+8qKSnJ4VR2xhhlZmZq8ODBmj9/vtNxrBYtWqR9+/Zpz549WrFiha6++mo9//zz\nTseyGjBggAoKCvTDDz/o7bff1rhx45yOVM+YMWO0bds2HT16VMeOHdOaNWs0YcIEp2M1KCkpSXl5\neaqqqlJeXp5r/9h65513lJ2drVWrVqlz585Ox6nnyiuv1Ndff609e/Zoz549ioqKUlFRkXr27Ol0\ntHpSUlK0Zs0aGWNUUFCgfv36Nf6ctvz589YTCASM1+s1/fr1M4sXL3Y6ToM2bdpkPB6PGTp0qElI\nSDAJCQlmzZo1TsdqUCAQcPUqpk8//dQkJSWZoUOHmvvuu89UVFQ4HcnqueeeM6mpqWbEiBFm4cKF\npra21ulIxhhjpk6dai677DITERFhoqKiTF5eniuXuZ7M+aMf/chERUWZZ5991vTv399ER0eH/x3N\nmTPHFRlPfS5PFRsb64pVTLacx48fN7NnzzZer9dMmjTJBIPBRvfT7j5yFADQNtrNFBMAoG1REAAA\nKwoCAGBFQQAArCgItHtHjhyRz+eTz+fTZZddpqioKPl8PnXr1u2M3gzUFM8++6xycnLO6jGjR49u\nlSyne/XVV5Wdnd0mx8K5jVVMOKc89NBD6tatm+69995WPc6oUaO0du3aVvu8ktraWp133nlNeuz3\n33+vUaNGqbCwsN4nMgJngxEEzjkn/+YJBALha/dkZWVp9uzZSk1NVb9+/bRu3Tr9/ve/1+DBgzVn\nzpzwYz799NPwdZ/uuusuHTlypN7+CwoKdPnll4fLwe/3a+HChUpISJDP59Pu3bs1efJkDR48WLm5\nueHHde3aNfz1ihUrNH78eA0dOlQPPPBAeD+/+93vNGLECC1ZskQffvihpkyZosTERD3++OM6fvx4\nvSwvvfSSUlJSNHToUGVkZEiSIiIi5PP5mvSpjsCpHPnAIMAJBQUF2rRpk4qKinTDDTfoqaee0vbt\n2zV+/HgVFRVp+PDh+vWvf62//vWvuuKKK7R06VI988wz+u1vf1tnP8XFxYqLiwvf93g8+vrrr1VU\nVKT/+7//08iRI1VYWKhevXopPj5es2fPlsfjCf81X1ZWpj/96U9avXq1+vTpo2+//Ta8nz179mjL\nli2KiIjQ8OHDtXTpUg0ZMkQZGRmKj4/XddddVyfLww8/rKKiIl1wwQUqLy8Pb4+Li1NRUZGr380N\n92MEgQ7B4/HoxhtvVLdu3ZSSkqJjx45p6tSp8ng8SkpKUn5+vg4dOqRNmzbpxhtvlM/nU25urv75\nz3/W29fu3bsVExNTZ1tGRoY6deqklJQUDRo0SP369VPXrl11xRVX1Ltq5sqVKzV16lT16dNHknTR\nRReFv3frrbcqIiJCX375pWpqapSUlKQuXbrotttu06pVq+plGTFihDIyMvSPf/yjzgUh+/Xrp08/\n/bQ5TxnACAIdx8nreUVERCgyMlKRkZHh+99//71qa2t1ySWXqLi4uNF9nX7q7uSLfERERJ0X/IiI\nCB07dqzRx590sjRO/35DP798+XJt2bJFy5cvV3Z2dvhzHX744QfOP6DZGEGgQ2hsLYYxRr1791Zs\nbKxee+01GWNUU1NjvWb+gAEDVFZW1uQskydP1ooVK/TFF19Ikr755pt6OS+//HJFRkYqGAyqqqpK\nK1asqHdVYGOMysrKNGrUKP35z3/WV199FS6jzz77TAMHDmxyRkCiIHAOOvmX86nz/qd+ferPnH5/\n6dKl+uCDD8InnPPz8+vtPyEhoc6l50/fT0N/uZ/cHhsbqwceeEDTpk1TQkKCHn/8cWuu3NxcZWdn\nKzU1VaNHj653Fdva2lpNnz5dQ4YM0TXXXKOsrKzwqKi0tFQ+n8+aAzhTLHMFmiAlJUVr167VhRde\n6HSUeo4dO6ZRo0Zp27ZtTDOhWRhBAE3wy1/+Ui+++KLTMazefPNNZWRkUA5oNkYQAAArRhAAACsK\nAgBgRUEAAKwoCACAFQUBALCiIAAAVv8PIrVuLX2NSRcAAAAASUVORK5CYII=\n",
"text": [
""
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEMCAYAAADJQLEhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHKVJREFUeJzt3Xlw1PXh//HXoiRAWRBECBiSMFw5OLLGsAkMmcUK2tgQ\nqDI19WBIam1ia2mEsWOpBp3SagZBqYKjxo6DIRWPQquAOHUFBHOYcBjDkUoQbQyXkI0JkYT9/eGX\n/IjkDpvPZ/k8HzOZ2d1kP/sib/J57ed6r83r9XoFALCsXkYHAAAYiyIAAIujCADA4igCALA4igAA\nLI4iAACL82kRnD17Vk6nU9HR0YqLi9OKFSskSVlZWQoODpbD4ZDD4dDmzZt9GQMA0Aabr68jqK2t\nVb9+/VRfX6+YmBi9/fbbys3Nld1uV2Zmpi9fGgDQAT7fNdSvXz9JUk1NjRoaGhQYGChJ4jo2ADCH\nq339AufPn5fD4VBpaalWrlypkJAQSdKqVau0fv16zZ07VxkZGbLb7c2eZ7PZfB0NAK5InX6j7e0h\nhw8f9kZERHiLi4u9VVVV3vPnz3tPnz7tve+++7zZ2dmX/HwPRvOJxx57zOgI3eLP+f05u9dLfqP5\ne/6urDt77KyhsLAwJSYmKj8/X0OHDpXNZtPAgQP1wAMP6O233+6pGACAH/BpEZw4cUKnT5+WJJ08\neVLvvfeekpOTVVlZKUlqaGhQbm6uEhMTfRkDANAGnx4jqKys1Pz589XY2KigoCAtWrRIw4cP1733\n3qvdu3crICBACQkJSk9P92UMQyxf7tLSpUan6A7/zd+/v0tZWUan6DqXy2V0hG4hv//x+emjXWWz\n2fz6zCKbTfLj+H6N3z2srCvrTq4sBgCLowgAwOIoAgCwOIoAACyOIgAAi6MIAMDiKAIAsDiKAAAs\njiIAAIujCADA4igCALA4n38wDdDTBg36fr4hXy7/1CnfLR/oaUw65yNMfHblYmxhZkw6BwDoNIoA\nACyOIgAAi6MIAMDiKAIAsDiKAAAszqdFcPbsWTmdTkVHRysuLk4rVqyQJHk8HiUnJyskJERz5sxR\nTU2NL2MAANrg0yLo06ePPvjgA+3evVsffvihXn75ZR06dEirV69WSEiIDh06pODgYK1Zs8aXMQAA\nbfD5rqF+/fpJkmpqatTQ0KDAwEAVFBQoLS1NgYGBSk1NVX5+vq9jAABa4fMpJs6fPy+Hw6HS0lKt\nXLlSISEhKiwsVHh4uCQpPDxcBQUFLT43Kyur6bbL5ZLL5fJ1XADwK263W263u1vL6LEpJioqKpSY\nmKjXXntNycnJOnjwoPr06aPa2lpFREToyJEjzYMxxQRMirGFmZl6iomwsDAlJiYqPz9fsbGxKisr\nkySVlZUpNja2p2IAAH7Ap0Vw4sQJnT59WpJ08uRJvffee0pOTpbT6VROTo7q6uqUk5OjuLg4X8YA\nALTBp7uG9u3bp/nz56uxsVFBQUG66667dO+998rj8ejuu+9WSUmJbrjhBq1du1b9+/dvHoxdQzAp\nxhZm1pV1J9NQ+wgriysXYwszM/UxAgCAOVEEAGBxFAEAWBxFAAAWRxEAgMVRBABgcRQBAFgcRQAA\nFkcRAIDFUQQAYHEUAQBYHEUAABZHEQCAxVEEAGBxFAEAWBxFAAAWRxEAgMVRBABgcT4tgqNHj2rG\njBmKioqSy+VSbm6uJCkrK0vBwcFyOBxyOBzavHmzL2MAANrg088s/vrrr/X1118rOjpaJ06c0JQp\nU7Rnzx49/fTTstvtyszMbD0Yn1kMk2JsYWZdWXde7aMskqSgoCAFBQVJkoYMGaKoqCgVFhZKkl+v\n5AHgSuLTIrhYeXm5SktL5XQ6tX37dq1atUrr16/X3LlzlZGRIbvdfslzsrKymm67XC65XK6eigsA\nfsHtdsvtdndrGT7dNXSBx+ORy+XSo48+quTkZB07dkzXXXedqqurtXjxYo0bN06LFi1qHoxdQzAp\nxhZm1pV1p8+L4Ny5c7rtttuUmJiohQsXXvL9PXv2KCMjQx999FHzYBQBTIqxhZl1Zd3p07OGvF6v\n0tLSNGHChGYlUFlZKUlqaGhQbm6uEhMTfRkDANAGn24R7NixQwkJCZo0aZJsNpskadmyZVq3bp12\n796tgIAAJSQkaMmSJRo8eHDzYGwRwKQYW5iZKXcNdRVFALNibGFmpts1BAAwP4oAACyOIgAAi6MI\nAMDiKAIAsDiKAAAsjiIAAIujCADA4igCALA4igAALI4iAACLowgAwOIoAgCwOIoAACyOIgAAi6MI\nAMDiKAIAsDiKAAAsjiIAAIvzaREcPXpUM2bMUFRUlFwul3JzcyVJHo9HycnJCgkJ0Zw5c1RTU+PL\nGACANvi0CHr37q0VK1aotLRUb7zxhpYsWSKPx6PVq1crJCREhw4dUnBwsNasWePLGACANvi0CIKC\nghQdHS1JGjJkiKKiolRYWKiCggKlpaUpMDBQqampys/P92UMAEAbru6pFyovL1dpaammTJmiBQsW\nKDw8XJIUHh6ugoKCFp+TlZXVdNvlcsnlcvVAUgDwH263W263u1vLsHm9Xu/lidM6j8cjl8ulRx99\ntOnYwMGDB9WnTx/V1tYqIiJCR44caR7MZlMPRPMZm03y4/hoA2MLM+vKutPnZw2dO3dOt99+u+65\n5x4lJydLkmJjY1VWViZJKisrU2xsrK9jAABa0aUiKCws7NDPeb1epaWlacKECVq4cGHT406nUzk5\nOaqrq1NOTo7i4uK6EgMAcBl0eNdQaWmp1q1bp7y8PA0cOFCffPJJu8/ZsWOHEhISNGnSJNlsNknS\nX/7yF02bNk133323SkpKdMMNN2jt2rXq379/82DsGoJJMbYws66sO9ssgsOHDysvL0/r1q1TQECA\nKioqVFRUpLCwsO5mbT8YRQCTYmxhZpf1GEF8fLzuuOMO2Ww2/fOf/1RRUZHsdnuPlAAAoOe0WgTD\nhg3TmTNnVFVVpWPHjvVkJgBAD2pz19Dp06f11ltvKS8vT+Xl5Tp16pS2bNkip9Pp+2DsGoJJMbYw\ns8t+jOBiVVVVev3117Vu3TodPXpUR48e7VLIDgejCGBSjC3MzKdFcLEjR44oNDS0s0/rFIoAZsXY\nwsy6su5sd4qJTz/9VC+88IJ27dql+vr6phfau3dv11ICAEyl3S2CadOm6Ve/+pXi4+MVEBDQ9Liv\nzx5iiwBmxdjCzHyyRSBJKSkpzUoAAHDlaHeLYOfOnVq5cqVuvfVWDRw48Psn2Wz62c9+5ttgbBHA\npBhbmJlPtgjWrVunPXv2qHfv3s22CnxdBACAntHuFsHYsWNVWlra47uG2CKAWTG2MDOfTEM9Y8YM\n7dq1q8uhAADm1u4WQWRkpPbv36/rr79e11xzzfdP6oHTR9kigFkxtjAzn1xQVlFR0eLjnD7aNlYW\nVy7GFmbWY1cW9wSKAGbF2MLMTPlRlQAAc6MIAMDiKAIAsLh2i+D999/XTTfdpGuuuUZ2u112u10D\nBgzoiWwAgB7QbhH84Q9/0BNPPKFTp07J4/HI4/Gourq6wy+QmpqqYcOGaeLEiU2PZWVlKTg4WA6H\nQw6HQ5s3b+5aegBAt7VbBAEBAYqJiVGvXl3bi7RgwYJLVvQ2m02ZmZkqKSlRSUmJbr311i4tGwDQ\nfe3ONTR9+nTNmTNH8+bNa3ZBWUfnGpo+fXqL1yL486mhAHAlabcIqqqqFBQUpB07djR7vLuTzq1a\ntUrr16/X3LlzlZGRIbvdfsnPZGVlNd12uVxyuVzdek0AuNK43W653e5uLaNHLiirqKhQUlKS9u3b\nJ0k6duyYrrvuOlVXV2vx4sUaN26cFi1a1DwYF5TBpBhbmNllnYb6ySef1MMPP6zf/va3Lb7Qs88+\n2/mE/2fo0KGSpIEDB+qBBx5QRkbGJUUAAOgZrRZBZGSkJCkmJkY2m63pca/X2+x+V1RWVmr48OFq\naGhQbm6uEhMTu7U8AEDX+XzXUEpKij788EOdOHFCw4YN09KlS+V2u7V7924FBAQoISFBS5Ys0eDB\ng5sHY9cQTIqxhZkx6ZyJsLK4cjG2MDMmnQMAdBpFAAAW1+Z1BF6vV1u3blVxcbEOHDggm82m8ePH\ny+FwaObMmd0+aAwAMF6rxwiys7P1j3/8Qw6HQxERERo9erTOnz+vzz//XGVlZSopKVFKSorPTvvk\nGAHMirGFmV3W6whCQ0O1c+dOBQQEtPj9+vp6bdiwoXMJAQCm0+5ZQ+vXr9e8efPafeyyB2OLACbF\n2MLMfHL6qMPhUElJSbuPXW4UAcyKsYWZXdZdQ5s2bdK7776rr776Sg8++GDTgo8fP64RI0Z0LykA\nwDRaLYIRI0YoJiZGGzZsUExMTNPUEqGhoYqPj+/JjAAAH2p319B3333X6gFjX2LXEMyKsYWZ+eTK\n4h+WwPz585Wenq5PP/20c+kAAKbU6bmGCgoK9MUXX6igoEBPPfWUr3KxRQDTYmxhZkw6ZyKsLK5c\njC3M7LKeNZSUlNTmC23cuLFTLwQAMKdWi+Chhx5q9UnMMQQAVw52DfkIuw+uXIwtzOyynjV08803\n66WXXlJNTc0l3/N4PHrxxRd18803dz4lAMBUWi2CN998Ux6PR3FxcQoLC1NCQoKmT5+u0NBQxcXF\nqaamRm+99VZPZgUA+ECHdg3V1dWpvLxckjRmzBj17dvX98HYNQSTYmxhZj77qMq+fftq4sSJmjhx\nYqdLIDU1VcOGDdPEiRObHvN4PEpOTlZISIjmzJnT4u4nAEDPaLUI+vfvL7vd3uLXgAEDOvwCCxYs\n0ObNm5s9tnr1aoWEhOjQoUMKDg7WmjVruv4vAAB0S6tFUFNTI4/H0+JXdXV1h19g+vTpGjRoULPH\nCgoKlJaWpsDAQKWmpio/P7/r/wIAQLe0+ZnFvlJYWKjw8HBJUnh4uAoKClr8uaysrKbbLpdLLper\nB9IBgP9wu91yu93dWkaPXEdQUVGhpKQk7du3T5IUEhKigwcPqk+fPqqtrVVERISOHDnSPBgHi2FS\njC3MzGcHiy+32NhYlZWVSZLKysoUGxtrRAwAgAwqAqfTqZycHNXV1SknJ0dxcXFGxAAAqAeKICUl\nRVOnTtXBgwc1cuRIvfLKK0pPT9cXX3yh8ePH66uvvtKvf/1rX8cAALSCuYZ8hP3IVy7GFmbmN8cI\nAADmQREAgMVRBABgcRQBAFgcRQAAFkcRAIDFUQQAYHEUAQBYHEUAABZHEQCAxVEEAGBxFAEAWBxF\nAAAWRxEAgMVRBABgcRQBAFgcRQAAFkcRAIDFUQQAYHFXG/niYWFhGjBggK666ir17t1bBQUFRsYB\nAEsytAhsNpvcbrcGDx5sZAwAsDTDdw15vV6jIwCApRm+RXDTTTdp1KhRSk1N1ezZs5t9Pysrq+m2\ny+WSy+Xq2YAAYHJut1tut7tby7B5DXxLXllZqeHDh6usrExJSUnasWOHgoKCvg9ms/n11oLNJvlx\nfLSBsYWZdWXdaeiuoeHDh0uSIiIiNHv2bP3rX/8yMg4AWJJhRVBbWyuPxyNJOn78uLZs2aJbb73V\nqDgAYFmGHSOoqqrS3LlzJUnXXnutHnroIY0cOdKoOABgWYYeI2gLxwhgVowtzMzvjhEAAIxHEQCA\nxVEEAGBxFAEAWBxFAAAWRxEAgMVRBABgcRQBAFgcRQAAFkcRAIDFUQQAYHEUAQBYHEUAABZHEQCA\nxVEEAGBxFAEAWBxFAAAWRxEAgMVRBABgcYYVwbZt2xQREaGxY8dq1apVRsUAAMsz7MPrHQ6Hnnnm\nGYWGhuqWW27Rjh07NGTIkP8fjA+vh0kxtjAzv/nw+jNnzkiSEhISFBoaqlmzZik/P9+IKAD8zODB\n35cxXy1/dcXVl3eIOqawsFDh4eFN9yMjI/Xxxx/rtttua/ZzNlvWRfdc//flHwYNMjoBcGX65hu2\nyC7mdrvldrub7i9d2vllGFIEHeX1ZhkdAQBMzeVyyeVyNd1f2oUmMGTXUGxsrPbv3990v7S0VHFx\ncUZEAQDLM6QIBg4cKOn7M4cqKiq0detWOZ1OI6IAgOUZtmto5cqVuv/++3Xu3Dk9+OCDzc4YAgD0\nHMNOH22Pv58+iisXp48ai99/2/zm9FEAgHlQBABgcRQBAFgcRQAAFkcRAIDFUQQAYHEUAQBYnKnn\nGgLgfwYP/n5iOF9hQsfLjyIAOmnQoK5P92sFgwZxwZe/4cpiALiCcGUxAKDTKAIAsDiKAAAsjiIA\nAIujCADA4igCALA4igAALI4iAACLowh8xO12Gx2hW/w5vz9nl8hvNH/P3xWGFEFWVpaCg4PlcDjk\ncDi0efNmI2L4lL//Z/Ln/P6cXSK/0fw9f1cYMteQzWZTZmamMjMzjXh5AMBFDNs1xDxCAGAOhkw6\nt3TpUr3yyisKCgrS3LlzlZGRIbvd3jwY0zsCQJd0drXusyKYOXOmvv7660se//Of/6y4uDhdd911\nqq6u1uLFizVu3DgtWrTIFzEAAO0wfBrqPXv2KCMjQx999JGRMQDAsgw5RlBZWSlJamhoUG5urhIT\nE42IAQCQQUXw8MMPa9KkSYqLi9O5c+eUnp5uRAwAgAwqgldffVV79+5VUVGRnn76aQ0ePLjZ97dt\n26aIiAiNHTtWq1atMiJilx09elQzZsxQVFSUXC6XcnNzjY7UaY2NjXI4HEpKSjI6Sqd9++23mj9/\nvsaNG6fIyEh9/PHHRkfqlBdffFFTp05VTEyMFi5caHScdqWmpmrYsGGaOHFi02Mej0fJyckKCQnR\nnDlzVFNTY2DCtrWUf/HixYqIiNANN9yghQsXqq6uzsCEbWsp/wXLly9Xr169dOrUqXaXY8ori3/3\nu9/phRde0Pvvv6/nnntOJ06cMDpSh/Xu3VsrVqxQaWmp3njjDS1ZskQej8foWJ3yzDPPKDIy0i/P\n3HrssccUEhKivXv3au/evYqIiDA6UoedOnVKy5Yt09atW1VYWKiDBw9qy5YtRsdq04IFCy65IHT1\n6tUKCQnRoUOHFBwcrDVr1hiUrn0t5Z81a5ZKS0tVVFSkb7/91tRv5lrKL33/hnTr1q0KDQ3t0HJM\nVwRnzpyRJCUkJCg0NFSzZs1Sfn6+wak6LigoSNHR0ZKkIUOGKCoqSkVFRQan6rgvv/xS7777rn75\ny1/65bUe77//vh555BH16dNHV199tQYOHGh0pA7r27evvF6vzpw5o7q6OtXW1mrQoEFGx2rT9OnT\nL8lYUFCgtLQ0BQYGKjU11dR/vy3lnzlzpnr16qVevXrplltu0YcffmhQuva1lF+SMjMz9dRTT3V4\nOaYrgsLCQoWHhzfd98fN+wvKy8tVWlqqKVOmGB2lw37/+98rOztbvXqZ7r9Gu7788kudPXtW6enp\ncjqdevLJJ3X27FmjY3VY3759tXr1aoWFhSkoKEjTpk3zq/87F1z8NxweHq6CggKDE3Xdiy++6He7\nSDds2KDg4GBNmjSpw8/xv792P+HxePTzn/9cK1as0I9+9COj43TIv//9bw0dOlQOh8MvtwbOnj2r\ngwcP6vbbb5fb7VZpaalef/11o2N12PHjx5Wenq7PPvtMFRUV2rVrl9555x2jY3WaP/7facnjjz8u\nu92uefPmGR2lw2pra7Vs2TItXbq06bGOjIfpiiA2Nlb79+9vul9aWqq4uDgDE3XeuXPndPvtt+ue\ne+5RcnKy0XE6bOfOndq4caNGjRqllJQU/ec//9G9995rdKwOGzNmjMaPH6+kpCT17dtXKSkp2rRp\nk9GxOqygoEBxcXEaM2aMrr32Ws2bN0/btm0zOlanxcbGqqysTJJUVlam2NhYgxN13t///ndt2bJF\na9euNTpKp/z3v/9VRUWFJk+erFGjRunLL79UTEyMjh071ubzTFcEF/bpbtu2TRUVFdq6daucTqfB\nqTrO6/UqLS1NEyZM8IuzPi62bNkyHT16VIcPH1ZeXp5uuukmvfrqq0bH6pSxY8cqPz9f58+f1zvv\nvKObb77Z6EgdNn36dBUVFenUqVOqr6/Xpk2bNGvWLKNjdZrT6VROTo7q6uqUk5Pjd2/kNm/erOzs\nbG3cuFF9+vQxOk6nTJw4UVVVVTp8+LAOHz6s4OBgFRcXa+jQoW0/0WtCbrfbGx4e7h09erT3mWee\nMTpOp2zfvt1rs9m8kydP9kZHR3ujo6O9mzZtMjpWp7ndbm9SUpLRMTrtwIEDXqfT6Z08ebL3oYce\n8tbU1BgdqVNeeeUVb0JCgvfGG2/0LlmyxNvY2Gh0pDbdeeed3uHDh3sDAgK8wcHB3pycHG91dbV3\n9uzZ3pEjR3qTk5O9Ho/H6JitupC/d+/e3uDgYO/LL7/sHTNmjDckJKTp7zc9Pd3omK1q6fd/sVGj\nRnlPnjzZ7nIMn2ICAGAs0+0aAgD0LIoAACyOIgAAi6MIAMDiKAL4hZMnT8rhcMjhcGj48OEKDg6W\nw+GQ3W7Xb37zG5+85ssvv6zVq1d36jnTpk3zSZYfev3115Wdnd0jr4UrH2cNwe8sXbpUdrtdmZmZ\nPn2dqVOnasuWLZd8jOrl0tjYqKuuuqpLz/3uu+80depUFRYW+uXkgDAXtgjgly68f3G73U1zwWRl\nZen+++9XQkKCRo8erffee09/+tOfNGHCBKWnpzc958CBA03zET3wwAM6efLkJcvPz8/X9ddf31QC\nLpdLS5YsUXR0tBwOh8rLy3XHHXdowoQJzWbX7N+/f9PtvLw8zZw5U5MnT9YjjzzStJw//vGPuvHG\nG/Xss8/qk08+0bx58xQbG6vly5eroaHhkiy5ubmKj4/X5MmTlZKSIkkKCAiQw+HQ1q1bL8evExZ3\ntdEBgMspPz9f27dvV3FxsX7605/qb3/7m/bt26eZM2equLhYMTExWrx4sZ577jmNHDlSzz//vF56\n6SU9/PDDzZZTUlLSbAprm82mqqoqFRcX64knntCUKVNUWFioYcOGKTIyUvfff79sNlvTu/OKigr9\n9a9/1bvvvqsRI0bo9OnTTcs5fPiwdu7cqYCAAMXExOj555/XpEmTlJKSosjISP3kJz9pluXxxx9X\ncXGx+vXrp+rq6qbHIyIiVFxc7JdXH8Nc2CLAFcNms2n27Nmy2+2Kj49XfX297rzzTtlsNjmdTu3a\ntUvHjx/X9u3bNXv2bDkcDq1Zs6bFz8suLy9XWFhYs8dSUlLUq1cvxcfHKyoqSqNHj1b//v01cuRI\nffbZZ81+dv369brzzjs1YsQISdI111zT9L1f/OIXCggI0P/+9z+dO3dOTqdTffv21V133aWNGzde\nkuXGG29USkqK3njjjWYTGI4ePVoHDhzozq8MkMQWAa4wF+aqCggIUGBgoAIDA5vuf/fdd2psbNS1\n116rkpKSdpf1w8NnF1bmAQEBzVbsAQEBqq+vb/f5F1wohx9+v7WfX7t2rXbu3Km1a9cqOzu7aX7/\n8+fPc3wAlwVbBLhitHfeg9frVVBQkEaNGqU333xTXq9X586du+TdvPT95HUVFRVdznLHHXcoLy9P\nX331lSTpm2++uSTn9ddfr8DAQBUUFKiurk55eXmXzFbr9XpVUVGhqVOn6umnn1ZlZWVT6Xz++eca\nP358lzMCF1AE8EsX3glfvF/+4tsX/8wP7z///PP64IMPmg787tq165LlR0dHN5sO/YfLae2d+IXH\nR40apUceeUR33323oqOjtXz58hZzrVmzRtnZ2UpISNC0adMumS21sbFR99xzjyZNmqQf//jHysrK\natrK2b9/vxwOR4s5gM7g9FGgFfHx8dqyZYsGDBhgdJRL1NfXa+rUqSoqKmL3ELqNLQKgFffdd59e\ne+01o2O0aMOGDUpJSaEEcFmwRQAAFscWAQBYHEUAABZHEQCAxVEEAGBxFAEAWBxFAAAW9/8AjjI6\n8BSLXDoAAAAASUVORK5CYII=\n",
"text": [
""
]
}
],
"prompt_number": 15
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 11.10, Page number: 527
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"import scipy\n",
"\n",
"#Variable Declaration\n",
"\n",
"Er=3.8 #relative permittivity\n",
"c=3*10**8 #speed of wave in m/s\n",
"r=4.5 #ratio of line width to substrate thickness\n",
"\n",
"#Calculations\n",
"\n",
"Eeff=((Er+1)/2)+((Er-1)/(2*(1+12/r)**0.5))\n",
"Zo=(120*scipy.pi)/((r+1.393+(0.667*scipy.log(r+1.444)))*((Eeff)**0.5))\n",
"f=10**10\n",
"l=c/(f*scipy.sqrt(Eeff))\n",
"\n",
"#Results\n",
"\n",
"print 'The effective relative permittivity of the substrate =',round(Eeff,3)\n",
"print 'The characteristic impedance of the line =',round(Zo,2),'ohms'\n",
"print 'The wavelength of the line at 10 GHz =',round(l*1000,2),'mm'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The effective relative permittivity of the substrate = 3.131\n",
"The characteristic impedance of the line = 30.08 ohms\n",
"The wavelength of the line at 10 GHz = 16.95 mm\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 11.11, Page number: 527
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" \n",
"\n",
"import scipy\n",
"\n",
"#Variable Declaration\n",
"\n",
"h=1 #in mm\n",
"w=0.8 #in mm\n",
"Er=6.6 #relative permittivity\n",
"P=scipy.arctan(0.0001) \n",
"c=5.8*10**7 #conductivity in S/m\n",
"f=10**10 #frequency in Hz\n",
"mu=4*scipy.pi*10**-7 #permeability of free space\n",
"C=3*10**8 #speed of wave in m/s\n",
"r=w/h\n",
"\n",
"#Calculations\n",
"\n",
"Ee=((Er+1)/2.0)+((Er-1)/(2.0*(1+12/r)**0.5))\n",
"Zo=(120.0*scipy.pi)/((r+1.393+(0.667*scipy.log(r+1.444)))*((Ee)**0.5))\n",
"Rs=scipy.sqrt((scipy.pi*f*mu)/c)\n",
"ac=8.686*Rs/(w*(10**-3)*Zo)\n",
"l=C/(f*(Ee)**0.5)\n",
"ad=27.3*(Ee-1)*Er*scipy.tan(P)/((Er-1)*Ee*l)\n",
"\n",
"#Results\n",
"\n",
"print 'attenuation due to conduction loss =',round(ac,2),'dB/m'\n",
"print 'attenuation due to dielectric loss =',round(ad,3),'dB/m'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"attenuation due to conduction loss = 4.35 dB/m\n",
"attenuation due to dielectric loss = 0.177 dB/m\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}