summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch13_1.ipynb
blob: 2d92c849c0ab8a4bad60e8b3652306dcc515a60c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
{
 "metadata": {
  "name": "",
  "signature": "sha256:98e5c2c383a1a1550ca177061033a45bcfa7bc464bb9def6e21c0e4e3bbd4374"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 13 : Thermodynamics in Phase Equilibria"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.1  Page No : 238"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "#Given\n",
      "#N2 obeys the relation : Z = 1+(2.11*10**-4*P)\n",
      "Tc = 126;#Critical temperature in K\n",
      "Pc = 33.5;#Critical pressure in atm\n",
      "T = 373;#in K\n",
      "P = 100;#in atm\n",
      "\n",
      "#To Calculate the fugacity of N2 at 373K and 100 atm\n",
      "#(i)Umath.sing the Z relation given above\n",
      "#From equation 13.12 (page no 239)\n",
      "phi = math.e**(2.11*10**-4*(P-0));#fugacity coefficient\n",
      "f = phi*P;\n",
      "print \"i)The fugacity of N2 umath.sing the given Z relation is %f atm\"%(f);\n",
      "\n",
      "#(ii)Umath.sing the fugacity chart given in figure A.2.9\n",
      "Pr = P/Pc;#Reduced pressure in atm\n",
      "Tr = T/Tc;#Reduced temperature in K\n",
      "#From figure A.2.9,\n",
      "phi = 1.04\n",
      "f = phi*P;\n",
      "print \" ii)The fugacity of N2 umath.sing the fugacity chart is %f atm\"%(f);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i)The fugacity of N2 umath.sing the given Z relation is 102.132418 atm\n",
        " ii)The fugacity of N2 umath.sing the fugacity chart is 104.000000 atm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.2  Page No : 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "#Given\n",
      "P1 = 50*1.03*10**4;#Initial pressure in Kgf/sq m\n",
      "T = 373.0;#Temperature in K\n",
      "P2 = 1.03*10**4;#Final pressure in Kgf/sq m\n",
      "V = 0.001*18;#Volume in cubic meter\n",
      "R = 848.0;#gas consmath.tant in m Kgf/Kgmole K\n",
      "\n",
      "#To Calculate the fugacity of liquid water\n",
      "#From equation 13.13(page no 240)\n",
      "del_u = (V/(R*T))*(P2-P1);#del_u = ln(f2/f1); Change in chemical potential\n",
      "f1 = P2;#in Kgf/sq m\n",
      "f2 = f1*(math.e**del_u);\n",
      "print \"The fugacity of the liquid water at 50 atm is %4.2e Kgf/sq m\"%(f2);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The fugacity of the liquid water at 50 atm is 1.00e+04 Kgf/sq m\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.3  Page No : 242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "import numpy\n",
      "\n",
      "#Given\n",
      "x1 = 0.1;#mole fraction of methane\n",
      "x2 = 0.9;#mole fraction of propane\n",
      "P = [28.1,31.6,35.1];#Pressure in Kgf/sq cm are\n",
      "K1 = [5.8,5.10,4.36];#Vapourisation consmath.tants of methane at the corresponding presssures\n",
      "K2 = [0.61,0.58,0.56];#Vapourisation consmath.tants of propane at the correspondig pressures\n",
      "\n",
      "#To Calculate the bubble point pressure of the solution\n",
      "#From equation 13.27 (page no 245)\n",
      "y1 = []\n",
      "y2 = []\n",
      "y = []\n",
      "for i in range(0,3):\n",
      "    y1.append(K1[i]*x1);#mole fraction of methane in the vapour phase\n",
      "    y2.append(K2[i]*x2);#mole fraction of propane in the vapour phase\n",
      "    y.append(y1[i]+y2[i]);#sum of the mole fraction in the vapour phase\n",
      "    \n",
      "\n",
      "plt.plot(P,y)\n",
      "plt.title(\"y vs pressure\")\n",
      "plt.xlabel(\"P\")\n",
      "plt.ylabel(\"y\")\n",
      "plt.show()\n",
      "P1 = numpy.interp(1,y,P)\n",
      "print \"The bubble point pressure of the solution is %f Kgf/sq cm\"%(P1);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH5RJREFUeJzt3X2clXP+x/HXmWkqhUIRaYWkmYpGjCI6W9rKXcoPvzyI\nfqxtV2ndJITGvW6oLLsbi3XfYm3EDxt2fnKTlOl+ZlSKbkgSKtLNnN8fn2vMmemc00zNdb7XOef9\nfDzO45xzXefmPdN0Puf63l0gIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIuKjeq4DANmuA4iI\nuDQCeLHatgeAiTEeOxJ4odq2Sd4F4FJgGfAD8BlwYZz3LPTec4r32DnAMVH7VwDXA/OBn4AsoAvw\nAbABmAt0j3p8vPdtA/wf8B2wzns/gNZAufe6FYqAy6Je733gfuAb4HagPjAe+Bz4CvgL0DDOzyci\nklZaAJuAJt79esBaID/GY38FbAb29u5nA2uAAqAx8D1wlLfvICAvznsWAluBAd5rXIt9wFd8c18B\nfAK0BBp4198Afbz9p3n3D9jF+z4H3Ojdrg+c5N1uzc6F4j/A/3i3LwW2AVd6j2kITACmAk29n/8V\n4O44P5+ISNp5Hbjcu30msDDBY2cAF3u3ewFLvduNsW/7A4C9dvF+hdjRQYUQVnBO9u4vxz6sK4wE\nnqz2Gm8Ag4BGCd73CWAyVmiitWbXheLzavk2AUdEbeuKFTeRGsna9UNEAu0J4CLv9kXAUwke+yww\n0Lt9IfCMd3szcAEwBPvQfxU4OsHrrIq6HfHuHxK1bWXU7cOA87CCUHE5GTsa+jHB+16PfcjPworf\n4AR5qot+/+ZYQZoT9f6vA81q8XoiIiltL+BboAOwETg0wWObYx/OLbEPzFjFoAHWnv9unNcoBD6M\nup/FzkcUPaL23wA8nOgHqMH7noz1dxzh/QzlVDahAZRQ9YhiRrV8m4GDa5BBJCYdUUiq+wn4J3a0\n8BFVv+1Xtw7r+P071vRS5m0/EOiHNUFtwz5YdyR4nc5Af6xP5I/AFmBmnMc+DZwF/Abrx2gIhLFi\nleh9z6Oy6H2HHbmUez/DaqwJLRsrEEcmyFoOPIJ18Df3trX08oiIZIxu2AfiJTV47EXeY6+N2tYC\nKyDfYUca7wDt4jx/NDZ6KnrUU6eo/dWPKMA6zIuA9cDXwDSsCCR63zFY0duI9aVcHvV6fbBCtwE7\nConuo7iEnY9KGgB3YaOrvgcWA0Pj/HwiSfcYNgplQZz97bDD+C1U/Y8LNnpkPlCMtdOKxNOKqiOa\n/DSaxP0gImnH76anx6kcFhjLemAY9q2ough2iJ6PfSMTiSUL+5LxHDa6x2+hJLyHSKD4PXN0Bjac\nL5513uWMOPv1n1ISaYwdsS4n8ReSuhTxLiIZIwhLDMQTAd7COvcmYx1yItGS1dwU7bYkv5+Ic0Eu\nFCcDX2IjNaYDpVQd9iciIkkQ5ELxpXe9DvgX1k9RpVAceeSRkWXLliU7l4hIqluGrSdWI0GZR1G9\nL6IRsI93uzE25nunkVPLli0jEokE/jJ69GjnGZRTOVM1o3LW/YXEc2924vcRxXPYSpnNsGUFRgM5\n3r7J2Djyj4F9sbHtw7FF0Q4EXorK+Azwb5+ziohIDH4XioG72P8VNga+uk1UncQkIiKOBKXpKa2F\nw2HXEWpEOetWKuRMhYygnK6l+jyFiNfeJiIiNRQKhaAWn/86ohARkYRUKEREJCEVChERSUiFQkRE\nElKhEBGRhFQoREQkIRUKERFJSIVCREQSUqEQEZGEVChERCQhFQoREUkorQrFZ5+5TiAikn7SplCs\nXg1du8KwYbBhg+s0IiLpI20KRcuWsHgxbN8OubnwyCOwY4frVCIiqS8tlxkvLoahQ2HrVnjwQTjx\nRAfJREQCSsuMA/n58N57cNVVMGAADB4Ma9e6TiUikprSslAAhEJw8cVQUgLNmkGHDjBxImzb5jqZ\niEhqScump1hKSmD4cFizBh54AHr08DmZiEhA1bbpKWMKhT0Ypk6Fq6+GggIYPx5+9Ssf04mIBJD6\nKBIIhaB/fxsdlZcHxx0Hd90FW7a4TiYiElwZVSgqNGoEhYXw8ccwe7b1X7z6qutUIiLBlFFNT/G8\n+aaNkGrTxjq8jzqqDpKJiASUmp52Q+/esGABhMM2u/umm2DTJtepRESCQYXCU78+jBgB8+fDF1/Y\n7O4pU6wDXEQkk6npKY733rPZ3U2bwp/+BB07+vI2IiJJp6anOtKtG8yZA+efDz17Wh/Gd9+5TiUi\nknwqFAlkZ8Mf/mDDabduhXbt4NFHobzcdTIRkeRR01MtzJljy5hv326LDRYUJO2tRUTqjJqefNS5\nc2XfxTnnwGWXwddfu04lIuIvFYpaysqCQYNs7aimTaF9e1s7avt218lERPyhpqc9tHixdXSvXWuj\no8Jhp3FERHZJiwI6CQEvvQTXXGMT9saPh0MPdZ1KRCQ29VE4EArBuedac1TbttCpE9xzD/z8s+tk\nIiJ7ToWiDjVqBLffDrNmwcyZttjga6+5TiUismf8LhSPAWuBBXH2twM+BLYA11bb1wcoBZYAI/0K\n6IcjjoCXX7Y+i6uvhrPOgqVLXacSEdk9fheKx7EP/HjWA8OA8dW2ZwMPes/NAwYCuX4E9FOfPrbY\nYLdu0KULjBoFmze7TiUiUjt+F4oZwIYE+9cBs4HqZ7IuAJYCK7x9U4B+PuTzXYMGMHIkzJsHK1bY\nYoPPP6/FBkUkdQS1j6IlsDLq/ipvW8pq2RKeeQaeftrOqtezJyxc6DqViMiu1XMdII4af98uLCz8\n5XY4HCYc8IkMp55qS4FMngw9esCFF9rZ9po2dZ1MRNJVUVERRUVFu/38ZMyjaA1MAxIt1D0a2ATc\n593vAhRS2b9xI1AOjKn2vEDMo9hd69ZZv8W0aXD33XDJJTbzW0TET6k6j6J64NnAUViRqQ9cALyS\n5Ey+a94cHn7YCsXkyXDSSXYebxGRIPH7iOI5oDvQDBsmOxrI8fZNBloAHwP7YkcMG7FRTpuAvsBE\nbATUo8A9MV4/pY8oopWXwxNP2GlYzzzTjjCaN3edSkTSkZbwSHHffQe33Wad3qNHw5AhUC+oPUki\nkpJUKNLEwoW22OA339i5L0491XUiEUkXKhRpJBKBF16A666zSXvjxtkwWxGRPZGqndkSQyhk5+wu\nKbFlQY45Bu69V4sNikhyqVCkgMaN4c474aOP4P33oWNHeP1116lEJFOo6SkFvfYa/PGPthzIhAlw\n5JGuE4lIKlHTUwY44wzr7O7aFU48EW65BX780XUqEUlXKhQpqkEDuPFGKC6GJUvs6OLFF7XYoIjU\nPTU9pYmiIhg2DA480M6DkZfnOpGIBJWanjJUOGxHF/36Qffudv7u7793nUpE0oEKRRqpV88m6S1a\nBD/8AO3a2bIg5eWuk4lIKlPTUxqbNQuGDoXsbJvd3bmz60QiEgRqepJfFBTAzJlw+eU2Uup3v7Ml\nQUREakOFIs1lZcFll0FpKTRsaJ3cDz0E27e7TiYiqUJNTxlmwQIbHfXddzY66pRTXCcSkWTTooCy\nS5EIPP+8LTZ46qm22OAhh7hOJSLJoj4K2aVQCC64wBYbPOwwW2xw7FjYutV1MhEJIh1RCEuW2NpR\nS5fCAw9A796uE4mIn9T0JLvt1VetYHToYIsNHn6460Qi4gc1PcluO/NMW2zwhBPg+OPtVKxabFBE\nVCikioYNYdQoWw6kpMSG0770khYbFMlkanqShN55x5YFOfhg67/IzXWdSET2lJqepE716GFHF2ec\nYUNpr7vO1pESkcyhQiG7lJNjndwLF8K339pig08+qcUGRTKFmp6k1mbOtNnd9evbYoP5+a4TiUht\nqOlJfNelC3z0EQweDH37wu9/D+vXu04lIn5RoZDdkpVlq9KWlNh5MPLy4K9/hR07XCcTkbqmpiep\nE/PmWXPUpk222ODJJ7tOJCLxaGa2OBOJwJQpMGKEjZYaM8aG1YpIsKiPQpwJhWDgQDv3xSGHQMeO\nMH68FhsUSXU6ohDffPopDB8OK1bYZL1evVwnEhFQ05METCQC06bZPIz8fLjvPmjd2nUqkcympicJ\nlFAIzj4bFi+GTp2gc2e47Tb46SfXyUSkplQoJCkaNoRbboFPPrEZ3nl5MHWqFhsUSQVqehIn3n7b\nhtO2amX9F0cf7TqRSOZQ05OkhJ49be5Fnz425+L662HjRtepRCQWvwvFY8BaYEGCxzwALAHmAdGr\nBq0A5gPFwCyf8olDOTlw9dXWFPX117bY4DPPqDlKJGj8bno6BdgEPAl0jLH/dGCod30iMAno4u1b\nDnQGvk3w+mp6SiMffghDh0KjRja7u1Mn14lE0lPQmp5mABsS7D8beMK7/RHQFDgoan+q96FILXTt\nCrNmwcUXQ+/ecOWVtqy5iLjluo+iJbAy6v4qbxtABHgLmA38Nsm5xJHsbLjiCltsEOyMepMna7FB\nEZdcFwqIf9TQDeuz6AtciTVjSYbYf3946CF48014+mkoKLCmKRFJvnqO33810Crq/qHeNoA13vU6\n4F9AAdaUVUVhYeEvt8PhMOFw2IeY4kqnTvDuu/Dss/Bf/2XLgNx7L7Ro4TqZSOooKiqiqKhot5+f\njD6A1sA0dt2Z3QWY6F03ArKBjUBj4N/Abd51NHVmZ5CNG+GOO+Cxx+Cmm2weRk6O61QiqSdoaz09\nB3QHmmHDZEcDFf+1J3vXDwJ9gM3AYOAT4AjgJW9/PeAZ4J4Yr69CkYHKyuCqq2DlShsd1bOn60Qi\nqSVohcJvKhQZKhKBl1+2eRidO9tig4cd5jqVSGoI2vBYEV+EQnDOObbY4DHHwHHHWbPUli2uk4mk\nHxUKSWl77QW33gpz5sDcubbY4CuvaHa3SF1S05OklenTrf+idWuYNAnatnWdSCR41PQkGa1XL1ts\n8LTT4KST4IYbYNMm16lEUpsKhaSd+vXh2mthwQJYs8YWG3z2WTVHiewuNT1J2nv/fVtscN99bTjt\nMce4TiTilpqeRKo5+WSYPRsGDrSmqWHDYEOipSpFpAoVCskI2dkwZIgNp92+3RYbfOQRLTYoUhNq\nepKMVFxszVFbt8KDD8KJJ7pOJJI8anoSqYH8fHjvPRtKO2AADB4Ma9e6TiUSTCoUkrFCITtJUkkJ\nNGsGHTrAxImwbZvrZCLBoqYnEU9JCQwfbkNqJ0ywjm+RdKRFAUX2QCQCU6fCiBFw9NEwbpwtCyKS\nTtRHIbIHQiHo3x8WLbLly7t3hz/8Ab7+2nUyEXdUKERiaNAArrkGSkttpndeHowZo9VpJTOpUIgk\ncMAB1sH9wQd2zu7cXJgyRcuBSGapSRvVVcBTQBDnsqqPQpKqqMiONBo0gPvvh65dXScSqT0/+igO\nAj4GnsdOWZrqHeAiuy0ctuVAfv97OP98uOACWL7cdSoRf9WkUIwC2gKPAZcCS4C7gSP9iyUSXFlZ\nMGiQnbu7Qwc4/ni4/nr4/nvXyUT8UdM+inLgK2AtsAPYD3gRGOdTLpHAa9QIbrnFljNfv96G0z70\nkCbsSfqpSTPScGAQsB74G/AvYBtWZJbg9shCfRQSGPPm2XkwVq+G8ePh9NNtuK1I0Pgx4e42rNnp\n8xj78oDFNX0zH6hQSKBEIvC//wvXXQctW8J998Gxx7pOJVKVZmaLBMC2bbaM+W23wZlnwp13wsEH\nu04lYjQzWyQAcnJsRndZmc3F6NABbr8dNm92nUyk9lQoRHzUtCmMHWtDahctsvN3P/kklJe7TiZS\nc2p6EkmiDz6wDu+tW63/Ihx2nUgykfooRAIuEoHnn4cbbrCO7rFjoW1b16kkk6iPQiTgQiGb0V1S\nAiedZJfhw20uhkgQqVCIONKwoc3oLimB7dut/+L+++Hnn10nE6lKhULEsebNbUb3u+/CO+9A+/bw\nz39qhVoJDvVRiATM9OnW4d2kiR1hnHCC60SSbtRHIZLievWC4mK49FLo1w8uugi++MJ1KslkKhQi\nAZSdDZddBp9+CkccAfn5MGoUbNzoOplkIhUKkQDbe2+b0T1vHqxaZcNoH37YOr9FkkV9FCIpZM4c\n679Yv95WqO3d23UiSUWacCeS5iIRePllGDEC2rSxgtG+vetUkkqC1pn9GHayowUJHvMAdl6LeUB+\n1PY+QKm3b6RfAUVSTSgE55xja0f16QO//jUMGQJr17pOJunK70LxOPaBH8/pQBvgKOAK4C/e9mzg\nQe+5ecBAINe/mCKpp359m9FdWmpn22vfHu65B376yXUySTd+F4oZwIYE+88GnvBufwQ0BVoABcBS\nYAV2Nr0pQD/fUoqksP33t/kWM2faKrXt2sGzz2qFWqk7rkc9tQRWRt1f5W07JM52EYmjTRub0f3U\nU1Y4unaF9993nUrSgetCAanfoS4SKKeeCrNmwbBhMHAgnHceLFvmOpWksnqO33810Crq/qHY0UNO\nte2tvO07KSws/OV2OBwmrAX+RcjKshndAwbAhAlQUACDB8PNN9vJlCSzFBUVUVRUtNvPT8a3+dbA\nNKBjjH2nA0O96y7ARO+6HlAG9ATWALOwDu2Sas/X8FiRGvjqK7j1VhtWe/PNNkoqJ8d1KnElaPMo\nngO6A82wYbKjsaMFgMnedcXops3AYOATb3tfrHBkA48C98R4fRUKkVpYsMAm7H3+OYwbB2edZcNt\nJbMErVD4TYVCpJYiEXjjDSsYLVrYKVnz83f9PEkfQZtwJyIBEwpB374wfz6cf77dHjwYVq92nUyC\nSoVCJEPVq2d9FWVldmRxzDFQWAibN7tOJkGjQiGS4Zo0sRndc+bYsuZt28Ljj8OOHa6TSVCoj0JE\nqpg5E665xpYCue8+6NHDdSKpa+rMFpE9FonAiy/CyJHQoQOMHWtLg0h6UGe2iOyxUMhmdJeU2Ezv\nbt1spvc337hOJi6oUIhIXA0awHXX2Qq1ALm5dv6Ln392m0uSS4VCRHapWTP4059gxgx4910rGC+8\nYE1Ukv7URyEitfb22zZhr3FjW6n2xBNdJ5LaUB+FiPiuZ08bTnv55bbw4IUX2rIgkp5UKERkt2Rn\n24zusjKbe3HccXDjjfDDD66TSV1ToRCRPbL33jaje/58W6W2bVv4619h+3bXyaSuqI9CROpUcbH1\nX6xdayOk+vTRCrVBowl3IuJcJALTpsGIEdC6tRWMjrHOSCNOqDNbRJwLheDss2HhQjjzTDjtNLji\nCmuaktSjQiEivsnJsRndpaWw777Qvj3cdZetIyWpQ4VCRHy3337W/DRrFsydC0cfDU8/DeXlrpNJ\nTaiPQkSS7r33bIXaSMQm7J1yiutEmUWd2SKSEsrLYcoUm3tx/PEwZgy0aeM6VWZQZ7aIpISsLJvR\nXVpqhaJLFzvK2LDBdTKpToVCRJzaay87qli0CH780fovJk2CrVtdJ5MKKhQiEggHHWQzut95B954\nw0ZITZ2qFWqDQH0UIhJIb75pM7ybNbNTsnbu7DpR+lAfhYikhd69bSjthRfapL1Bg2DVKtepMpMK\nhYgEVr16NqO7rAxatYJjj4Vbb4VNm1wnyywqFCISePvuazO6i4vhs89shdpHH4UdO1wnywzqoxCR\nlDNrlvVf/PCD9V+cdprrRKlFE+5EJCNEIvDSS3D99dCuHYwbB3l5rlOlBnVmi0hGCIXg3HNh8WI7\nNWv37nDllbBunetk6UeFQkRSWoMGNqO7tNQ6v3NzYexY2LLFdbL0oUIhImnhgANsRvcHH9glNxf+\n8Q9N2KsL6qMQkbRUVGRHGg0a2Aq1Xbu6ThQc6qMQEQHCYZg9G4YMgfPOg//+b1i+3HWq1KRCISJp\nKysLLrnEJuzl5dkqtSNHwvffu06WWlQoRCTtNW5sM7oXLIBvvrEJe3/+M2zf7jpZalAfhYhknLlz\nbcLemjV2itbTT7fhtpkiaBPu+gATgWzgb8CYavv3Ax4DjgC2AP8DLPL2rQB+AHYA24CCGK+vQiEi\nuyUSgddegxEjoGVLm+F97LGuUyVHkDqzs4EHsWKRBwwEcqs95ibgE+BYYBAwKWpfBAgD+cQuEiIi\nuy0UslVp58+H/v3hN7+Byy6DL790nSx4/CwUBcBS7MhgGzAF6FftMbnAf7zbZUBroHnU/gw6GBQR\nF3JybEZ3WZnNxejQAe64w862J8bPQtESWBl1f5W3Ldo8YIB3uwA4DDjUux8B3gJmA7/1L6aICDRt\najO6Z8+GhQvtlKxPPgnl5a6TuVfPx9euSefBvVhzUzGwwLuuWDi4G7AGO8KYDpQCM6q/QGFh4S+3\nw+Ew4XB4DyKLSKY7/HCb0f3BBzZhb9Ik679I5Y+WoqIiioqKdvv5fjbtdAEKsT4KgBuBcnbu0I62\nHOgIVD8tyWhv233VtqszW0R8E4lY0bjhBujUyY442rZ1nWrPBakzezZwFNbvUB+4AHil2mOaePvA\nmpf+DysIjYB9vO2Ngd9gRxwiIkkTCtmM7tJSWwLkpJNg+HBYv951suTys1BsB4YCbwKLgX8AJcDv\nvAvYaKgFWLNSb2C4t/0grJlpLvAR8Crwbx+ziojE1bChzehevBi2bbPzX0yYAFu3uk6WHKk+qkhN\nTyKSdIsX2/yLsjIYMwYGDEitCXtBm3DnNxUKEXFm+nSb4d2kia1Qe8IJrhPVTJD6KERE0lqvXlBc\nbAsP9usHF10EX3zhOlXdU6EQEdkD2dlw+eXWDHX44ZCfD6NGwcaNrpPVHRUKEZE6sM8+NqN77lxY\nudKG0T78cHqcYU+FQkSkDrVqZTO6p02Dr75KrU7ueFL9R1BntohILakzW0RE6pQKhYiIJKRCISIi\nCalQiIhIQioUIiKSkAqFiIgkpEIhIiIJqVCIiEhCKhQiIpKQCoWIiCSkQiEiIgmpUIiISEIqFCIi\nkpAKhYiIJKRCISIiCalQiIhIQioUIiKSkAqFiIgkpEIhIiIJqVCIiEhCKhQiIpKQCoWIiCSkQiEi\nIgmpUIiISEIqFCIikpAKhYiIJKRCISIiCalQiIhIQioUIiKSkN+Fog9QCiwBRsbYvx/wL2Ae8BHQ\nvhbPFRGRJPCzUGQDD2If+HnAQCC32mNuAj4BjgUGAZNq8dyUUVRU5DpCjShn3UqFnKmQEZTTNT8L\nRQGwFFgBbAOmAP2qPSYX+I93uwxoDRxYw+emjFT541HOupUKOVMhIyina34WipbAyqj7q7xt0eYB\nA7zbBcBhwKE1fK6IiCSBn4UiUoPH3As0BYqBod71jho+V0REUlwX4I2o+zey607p5cDetXjuUqyo\n6KKLLrroUvPLUgKiHrAM63eoD8xl5w7pJt4+gN8Cf6/Fc0VEJA30xTqpl2JHBQC/8y4AXb39pcCL\nWOFI9FwREREREZHd0wobSrsIWAhc5W0vAGZhHeEfAyc4SWfiZTwW+BCYD7wC7OMkXaWG2ATHucBi\n4B5v+/7AdOBT4N/YQAOX4uU8D/sd7wCOcxOting5xwEl2Oi+l6h6xOxCvJx3YBnnAm9jf8cuxctZ\n4VqgHPt7dSlezkJspGaxd+njIpwn0e9yGPb3uRAYk/xo/mgBdPJu7401S+UCRUBvb3tfKudluBAv\n48fAKd72wcDtyY+2k0bedT1gJtANGAtc720fiY1Kcy1WznZAW+zfOgiFAmLn7EXlyMJ7Ce7vM/qL\nyzDgb8kOFUOsnGBF7A1s4IvrQgGxc44GrnGWaGexMv4a+1KY4+1rnugFUmmtp6+wqgiwCauELYEv\nqfym1hRYnfxov4iX8Shghrf9LeDc5EfbyY/edX1sJvwG4GzgCW/7E8A5DnJVVz3nt1if1qfOEsUW\nK+d07Jsv2Le6Qx3kqi5Wzo1R+/cGvkl2qBhi5QS4n8ovM0EQ6/8RQMhNnJhiZRyCHV1s8/atc5DL\nd62Bz7E/6sOwyXlfYId7rg+bK7TGMu4DvE/lzPJrgB8cZYqWhRW1jdiRBFT+kYP9oW+o/iQHYuWs\nEKQjikQ5AaYBFyY1UWzxct6F/R8qxX2TI8TO2Q+Y4N0OyhFFrJyjsVUl5gGP4v73GStjMdZENhNr\nlTneRTA/7Q3MpvLb7ltAf+/2edi3ONeqZzwaeNPbdivB+MZWoQn2x/Jrdi4M3+78cGcqcoajtgWp\nUFSIlXMU8E8naeKLlRPgBuDxpKeJryLn6d71vt725cABrkLFEP37PBD7ohUC7sSKRRBEZ1xA5dp6\nJwCfOcrkixzsA/ePUduiv52HgO+TmmhnsTJGa4s1QwTJLcB12LfJFt62g737QVKRs0IQCwVUzXkp\ndkTZ0Fma+Kr/PgF+hXVuBsktwM3AWqxALMeaTFZgH8pBEev32Rr7UA6KioyvA92jti8lQeFNpT6K\nEFaZFwMTo7YvpfIH7oHbtut4GSs6irKwP/i/JDlXdc2oPBzeC+t0LcZGZF3ibb8EmJr8aFXEyxkt\nCG3B8XL2AUZgTSZb3ESrIl7ONlGP6cfOv+Nki5XzQ+Ag4HDvsgr7kvC1i4CeeL/PFlGP6Y/bQhEv\n41Ts8xLsy2t9YH3S0/mgG9YxOJfKYWd9sba1iuFfHwL5rgISP+NV2AioMuBuZ+kqdcSWd5+LDdkd\n4W3fH2vKC8rw2Hg5+2P9Uj9hAwhed5KuUrycS7B+qoq/hT87SVcpXs4XsQ+zuVgTmetv6fFyRvsM\n930U8XI+6d2fh30gH+QknYmXMQd4Cvt3n8POTZAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjWxA5sz\nsQB4HpvkJJLSUmlmtkgq+BGb9NkR2Iqt0imS0lQoRPzzHlWXxxBJSSoUIv6ohy3fMt91EBERCZbt\nVK7tNAkrGCIiIr/YuOuHiKQWNT2JiEhCKhQidSviOoCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niIiI+OD/AXPamuB7GdSzAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x10643f210>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The bubble point pressure of the solution is 35.100000 Kgf/sq cm\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.4  Page No : 244"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "#Given\n",
      "T = [80.6,79.0,77.3,61.4];#Various temperature in deg cel\n",
      "x1 = [0.0,15.0,29.0,100.0];#mole fraction of CHCl3 in liquid phase\n",
      "y1 = [0.0,20.0,40.0,100.0];#mole fraction of CHCl3 in vapour phase\n",
      "P1 = [1370,1310,1230,700];#Vapour pressure of CHCl3 in mm Hg\n",
      "P = 760.0;#Total pressure in mm Hg\n",
      "\n",
      "#To Calculate the equilibrium data i.e y/x and compare with the experimental values\n",
      "#From equation 13.27 (page no 245);K = y1/x1 = Pi/P\n",
      "print \"Temperature    Experimental   Calculated\";\n",
      "Ke_x = []\n",
      "K_c = []\n",
      "for i in range(0,4):\n",
      "    print \" %f\"%(T[i]),\n",
      "    if x1[i] == 0 :\n",
      "        print \"     Not defined\",\n",
      "        Ke_x.append(0)\n",
      "    else:\n",
      "        Ke_x.append(y1[i]/x1[i]);\n",
      "        print \"        %f\"%(Ke_x[i]),\n",
      "    K_c.append(P1[i]/P);\n",
      "    print \"      %f\"%(K_c[i])\n",
      "\n",
      "if Ke_x[i] == K_c[i]:\n",
      "    print ' The liquid solution is perfect';\n",
      "else:\n",
      "    print \" The liquid solution is imperfect\";\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature    Experimental   Calculated\n",
        " 80.600000      Not defined       1.802632\n",
        " 79.000000         1.333333       1.723684\n",
        " 77.300000         1.379310       1.618421\n",
        " 61.400000         1.000000       0.921053\n",
        " The liquid solution is imperfect\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.6  Page No : 246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "x1 = 0.1;#Mole fraction of dichloromethane (CCl2H2)\n",
      "x2 = 0.9;#Mole fraction of methyl acetate (C3H6O2)\n",
      "M1 = 85.0;#Molecular weight of CCl2H2\n",
      "M2 = 74.0;#Molecular weight of C3H602\n",
      "D1 = 1.3163;#Density of CCl2H2 in gm/cc\n",
      "D2 = 0.9279;#Density of C3H6O2 in gm/cc\n",
      "\n",
      "#To Calculate the volume of 10% dichloromethane solution\n",
      "V1 = M1/D1;#Specific volume of pure CCL2H2 in cc/gmole\n",
      "V2 = M2/D2;#Specific volume of C3H6O2 in cc/gmole\n",
      "#From equation 13.62(page no 256)& 13.78 (page no 257)\n",
      "V_e = x1*x2*(1.2672-0.771*x1);#excess volume in cc/gmole\n",
      "V = V1*x1+V2*x2+V_e;\n",
      "print \"The volume of 10 percent dichloromethane is %f cc/gmole\"%(V);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The volume of 10 percent dichloromethane is 78.339579 cc/gmole\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.7  Page No : 249"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "import numpy\n",
      "\n",
      "#Given\n",
      "x_T = 0.957;#mole fraction of Toluene\n",
      "x_D = 0.043;#mole fraction of 1,2-dichloroethane\n",
      "t = [90, 100, 110];#temperature in deg cel\n",
      "R = 1.98;#gas consmath.tant in Kcal/Kgmole K\n",
      "\n",
      "#To Calculate the vapour pressure of the solution, bubble point at 686 mm Hg and the vapour composition at equilibrium,\n",
      "#compare the experimental value of 91.2% toluene in vapour with the calculated value & calculate the free energy of mixing\n",
      "#(1)Calculation of vapour pressure\n",
      "print \"1Tempdeg cel    P_TmmHg          P_DmmHg           P_smmHg\";\n",
      "P_T = []\n",
      "P_D = []\n",
      "P_s = []\n",
      "for i in range(0,3):\n",
      "    P_T.append(10**(6.95464-(1344.8/(219.482+t[i]))));#Given as equation(a)(page no 260)\n",
      "    P_D.append(10**(7.03993-(1274.079/(223+t[i]))));#Given as equation(b)(page no 260)\n",
      "    P_s.append(x_T*P_T[i]+x_D*P_D[i]);#pressure of the solution in mm Hg\n",
      "    print '   %f'%(t[i]),\n",
      "    print '          %f'%(P_T[i]),\n",
      "    print '        %f'%(P_D[i]),\n",
      "    print '         %f'%(P_s[i])\n",
      "\n",
      "#(2)Calculation of bubble point and comparison of values\n",
      "plt.plot(t,P_s)\n",
      "plt.title(\"t vs P_s\")\n",
      "plt.xlabel(\"t\")\n",
      "plt.ylabel(\"P_s\")\n",
      "plt.show()\n",
      "T = numpy.interp(686,P_s,t)\n",
      "P = 686.0;#pressure of solution in mm Hg\n",
      "y_T_e = 0.912;#experimental value of mole fraction of toluene\n",
      "#From the graph we found that the temperature at P = 686 mm Hg is\n",
      "#t = 105.3;#in deg cel\n",
      "print '2)The bubble point is %f deg cel'%(T);\n",
      "#From equation (a)(page no 260)\n",
      "P_T = 10**(6.95464-(1344.8/(219.482+T)));#vapour pressure of Toluene in mmHg\n",
      "#From equation 13.27 (page no 245)\n",
      "y_T_c = (x_T*P_T)/P;\n",
      "y_D_c = 1-y_T_c;\n",
      "print '  The vapour composition of toluene is %f'%(y_T_c);\n",
      "print '  The vapour composition of 1,(2-dichloroethane is %f'%(y_D_c);\n",
      "e = ((y_T_e-y_T_c)/y_T_e)*100;\n",
      "print ' The percentage error is %f percent'%(e);\n",
      "\n",
      "#(3)Calculation of free energy\n",
      "del_F = R*(T+273)*((x_T*math.log(x_T))+(x_D*math.log(x_D)));\n",
      "print '3)The free energy of mixing is %f Kcal/Kgmole'%(del_F);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "1Tempdeg cel    P_TmmHg          P_DmmHg           P_smmHg\n",
        "   90.000000           406.737847         931.944531          429.321734\n",
        "   100.000000           556.321921         1245.698588          585.965118\n",
        "   110.000000           746.589152         1636.315096          784.847367\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecE3X+x/EXKohyKOIp0hSkiKs05VDUkxwgYAOUEzi8\nhwiIhRO7J9hYO6jYlTsBFRVR9CcKIkiRIBZAYKUtXVCWo6l0FHbZ+f3xmXXDun2TmUzyfj4eeWQy\nmUk+xpDPfr5tQERERERERERERERERERERERERERERERERERERESkCOuBNh69zz5gN7AZeB2o5MH7\nikTNYX4HIOIjByjn0ftcBlQGzgJaAPd78L4iUaNkIcnqLeBkYCL2F/9d+RyzHLg04vERwDagGVAR\neBv4CdgOzANOLMb7/g+YApxZxHHXAmuBXcD3QM9ivLaIiMTAOgpvhnoASwg5LgWWuds3ABOwpFEO\naI5VDgW9T1t3uzawFHiokPetBOwEGriPqwEphRwvIiIxVFSyqIf9ZV/RfTyG3Oaj3sBXQONivM96\nrHrZ7m6/BBxZyPGV3GOvBI4qxuuLiEgMFZUsAOYC3YCjscRxqrv/COBBrNLYCAx195X2ffJqD0zF\nksYnwGklPF9ERKLke4r+Eb8NGA/8A/imgGNOwZJGnwKeL02yyHEk8DTwRSnPF4kKdXBLMtuCNTUV\n5l2gA3Aj8E7E/hDWBHU41sSUCRyMUlwnAp2x5qhMYG8UX1skbg3C/upagv1jOxKoCkwDVmGldpU8\nx68GVmCluEisdAJ+wJp67ijkuOnAAQ4d7dQD+47uweZOPEfBf3yVtLI4CQgDO9zYPgcaleB8kcCp\ng5X6OZ157wG9gCeBf7v77gGGuNspwHdAeffcNaj6ERHxXax/iHdhZfTRWOff0dg4807AaPeY0UAX\nd7szMNY9Zz2WLFrGOEYRESlCrJPFL8Aw4EcsSezAmp+qYe3FuPfV3O0aQEbE+RlAzRjHKOKXPVh/\nR97b+X4GJZKfgob6RUs9bDRJHWyS0fvAP/Mc47i3ghT2nEiQ/cnvAESKK9bJogXwNfCz+/hDoBXW\nIXiSe18d2Oo+vxGb4ZqjlrvvEPXq1XPWrl0bo5BFRBLWWqB+aU6MdTPUCuBcbBZqOaAdkI6tx9PL\nPaYX8JG7PQEbZVIBqIstdzAv74uuXbsWx3F0i9Jt8ODBvseQKDd9lvo84/lG0UPFCxTrymIR8CYw\nH8gGFgKvYmvojAP6Yh3Z3dzj09396UAW0B81Q4mI+C7WyQJsmOyTefb9glUZ+XncvYmISJzQHAYh\nFAr5HULC0GcZXfo844cXF36JBcdtfxMRkWIqV64clPJ3X5WFiIgUSclCRCQJjB9ftvO96OAWERGf\nbNsGAwZAWlrZXkeVhYhIgnr/fWjSBGrXhu++K9trqbIQEUkwW7fCv/4FS5da89O555b9NVVZiIgk\nCMeB996zaqJePWt6ikaiAFUWIiIJYfNm6N8fVq6ECROgZZQv7qDKQkQkwBwH3nkHmjaF00+HhQuj\nnyhAlYWISGBt2gQ33gjffw+ffgpnnx2791JlISISMI4Db71l1UTTpjB/fmwTBaiyEBEJlI0b4YYb\nYMMGmDIFzjrLm/dVZSEiEgCOA2+8Ac2bQ4sW8O233iUKUGUhIhL3MjLg+uutj2LqVGjWzPsYVFmI\niMQpx4FRo6yaOO88mDfPn0QBqixEROLSjz9Cv37w00/w+efQuLG/8aiyEBGJI44Dr75qo5tat4Y5\nc/xPFKDKQkQkbqxfb9XEzp0QDsMZZ/gdUa5YVxanAWkRt53ArUAqkBGx/+KIcwYBq4EVQPsYxyci\n4rvsbBg+3EY5tWsHX38dX4kCvL2s6mHARqAl0AfYDTyT55gU4B3gL0BNYDrQEMjOc5wuqyoiCWHd\nOujbF/btg9deg5SU2L1XUC6r2g5YA2zAgs0v4M7AWCATWO8eH4NVTkRE/JWdDS+/bOs4XXIJfPVV\nbBNFWXnZZ9EDSwQADjAAuAaYD9wJ7ABqAHMizsnAKgwRkYSxdq1VE5mZ8OWXcNppfkdUNK8qiwrA\n5cD77uPhQF2gGbAJGFbIuWpvEpGEkJ0Nzz8P55wDnTvDF18EI1GAd5XFxcACYJv7eGvEcyOBie72\nRqB2xHO13H1/kJqa+vt2KBQiFApFJ1IRkRhYvRr69LHtb76BBg1i/57hcJhwOByV1/Kqg/tdYDIw\n2n1cHasoAG7HOrR7ktvB3ZLcDu76/LG6UAe3iATCwYPwwgvw2GPw4INw881wmE8z3MrSwe1FZVEJ\n69zuF7FvKNYE5QDrgBvc/enAOPc+C+iPmqFEJKBWroTevaF8eZtcV7++3xGVnpdDZ6NJlYWIxK2D\nB+HZZ2HoUBg82C536lc1ESneKwsRkaSxfLn1TRx1FMydC6ee6ndE0REHuU5EJPiysqySuPBC6NUL\npk9PnEQBqixERMps2TLrmzjmGLsoUZ06fkcUfaosRERKKSsLHn8cQiG47jqYNi0xEwWoshARKZUl\nS6yaOP54WLAATj7Z74hiS5WFiEgJZGbCI49AmzZw000wZUriJwpQZSEiUmyLFlk1cdJJsHAh1K5d\n9DmJQpWFiEgRDhyA1FS46CK45RaYNCm5EgWoshARKVRaGlx7rSWHtDSomaTrYKuyEBHJx/798MAD\n0KED3HUXTJyYvIkCVFmIiPzB/PnWN3HqqdZPUb263xH5T5WFiIhr/3647z649FIYNAg++kiJIocq\nCxERbOb1tdfaxYgWLbIRT5JLyUJEktpvv9lIpzfesKvYdesG5YK6HncMKVmISNKaM8f6Js48ExYv\nhhNP9Dui+KVkISJJ59df7ap1b79tV7G76iq/I4p/6uAWkaTy9dfQrBls2GDVhBJF8aiyEJGksG8f\n3H8/jB0LL70EXbv6HVGwqLIQkYQ3ezY0bQpbtthqsUoUJRfrZHEakBZx2wncAlQFpgGrgKlAlYhz\nBgGrgRVA+xjHJyIJbO9euPVW6NEDnnoKxoyBP//Z76iCKdbJYiXQ3L2dDewDxgMDsWTREJjhPgZI\nAbq79x2BVzyIUUQS0KxZ0KQJbN9u1USXLn5HFGxe/hC3A9YAG4BOwGh3/2gg539jZ2AskAmsd49v\n6WGMIhJwe/bAzTfD1VfDc8/Bm29C1ap+RxV8XiaLHlgiAKgGbHG3t7iPAWoAGRHnZABJvHSXiJTE\n559bNbF3r1UTl1/ud0SJw6vRUBWAy4F78nnOcW8Fyfe51NTU37dDoRChUKj00YlIoO3eDffcYyvD\n/ve/cMklfkcUH8LhMOFwOCqv5dWk9s7ATVg/BFjndQjYDFQHZgKNyO27GOLeTwEGA3PzvJ7jOIXl\nFxFJFtOnw3XXQdu2MGwYVKlS9DnJqpytY1Kq332vmqH+QW4TFMAEoJe73Qv4KGJ/D6wSqQs0AOZ5\nFKOIBMiuXXDDDdCnD/znPzBqlBJFLHmRLCphndsfRuwbAlyEDZ1tQ24lkQ6Mc+8nA/0pvIlKRJLQ\nZ59B48a2vXQpdOxY+PFSdkFdW1HNUCJJaOdOuPNOa3oaMcKuiS3FF4RmKBGRMvn0U1sdtnx5G+mk\nROEtrQ0lInFt+3a44w4Ih2H0aGjTxu+IkpMqCxGJW598Yn0TlSpZNaFE4R9VFiISd375BW67Db76\nyq45oWlU/lNlISJx5eOPrZo47ji73oQSRXxQZSEiceHnn+GWW2DePHj3XfjrX/2OSCKpshAR3334\noVUT1arBokVKFPFIlYWI+GbbNhgwABYuhPffh/PP9zsiKYgqCxHxxQcf2AqxtWpZNaFEEd9UWYiI\np7ZutetNLF5szU+tWvkdkRSHKgsR8YTjwHvvWTVRty6kpSlRBIkqCxGJuc2boX9/WLkSJkyAlrr+\nZeCoshCRmHEceOcdaNoUGjWCBQuUKIJKlYWIxMSmTXDTTbB2LUyaBC1a+B2RlIUqCxGJKseBt96y\naqJxY5g/X4kiEaiyEJGo+d//7Op1P/4IU6bAWWf5HZFEiyoLESkzx4E33oBmzeDss+Hbb5UoEo0q\nCxEpk4wMuP5666OYOtUShiQeVRYiUiqOA6NGQfPmNl9i3jwlikTmRWVRBRgJnAE4QB+gI3AdsM09\n5l5gsrs9yD3mIHALMNWDGEWkBH78Efr1g59+ghkzbKKdJDYvKovngU+B04EmwHIsaTwDNHdvOYki\nBeju3ncEXvEoRhEpBseBESOsX6J1a5gzR4kiWcS6sjgW+CvQy32cBex0t8vlc3xnYCyQCawH1gAt\ngTkxjVJEivTDD3DddbBjB8ycCWee6XdE4qVY/9VeF2tqeh1YCIwAjnafGwAsAkZhTVUANYCMiPMz\ngJoxjlFECpGdDcOH21yJtm3hm2+UKJJRrCuLI4CzgJuBb4HngIHAi8DD7jGPAMOAvgW8hpPfztTU\n1N+3Q6EQIV17USTq1q2Dvn1h3z6YNQtSUvyOSEoiHA4TDoej8lr5NQVF00nAN1iFAXABliwuizim\nDjARaOw+BzDEvZ8CDAbm5nldx3HyzSEiEgU51cTgwTBwINx+Oxx+uN9RSVmVK1cOSvm7H+vKYjOw\nAWgIrALaAcuwJLLZPeYKYIm7PQF4B+v8rgk0AObFOEYRibB2rVUTBw7Al1/aAoAiXow0GgCMwfon\nmgBPAE8Ci919rYHb3WPTgXHu/WSgPwU0Q4lIdGVnwwsvwDnnQKdOMHu2EoXkinUzVKyoGUokilav\ntmoiOxteew0aNvQ7IomFsjRDaQ6DSBI7eBCefdZmYHftap3YShSSH60NJZKkVq6E3r2hfHmbXFe/\nvt8RSTxTZSGSZA4ehKefhvPPh549bYKdEoUURZWFSBJZvhz69IGKFW3hv1NP9TsiCQpVFiJJICsL\nhg6FCy+Ea66xxf+UKKQkVFmIJLhly6xvonJluyhRnTp+RyRBpMpCJEFlZcETT0AoZAsATp+uRCGl\np8pCJAEtWWLVRNWqMH8+nHKK3xFJ0KmyEEkgmZnwyCPQpg3ceCN89pkShUSHKguRBLFokVUT1arB\nwoVQu7bfEUkiUWUhEnAHDsBDD8FFF8Ett8CnnypRSPSpshAJsLQ0qyZq1bLtmrpUmMSIKguRADpw\nAB58EDp0gDvugIkTlSgktlRZiATMggVWTdSpA999BzVq+B2RJANVFiIBsX8/3HcfXHIJ3HMPfPyx\nEoV4R5WFSAB8+y1ce60tH75oEZx0kt8RSbJRshCJY7/9Bqmp8Prr8Pzz0L07lAvqJcsk0IrbDNUN\nOMbdfgAYD5wVk4hEBLBrTDRvDmvWwOLF0KOHEoX4p7jJ4gFgF3AB0BYYBQyPVVAiyezXX+Huu6FL\nF3j4YfjgA5toJ+Kn4iaLg+79ZcAI4BOgQjHPrQJ8ACwH0oFzgKrANGAVMNU9JscgYDWwAmhfzPcQ\nSQhffw3NmsGPP9r6Tldd5XdEIqa4yWIj8CrQHZgEVCzBuc8DnwKnA02wJDAQSxYNgRnuY4AU9z1S\ngI7AKyV4H5HA2rfP5kt07QqPPw7vvQcnnOB3VCK5StJn8Rn2l/4O4Djg7ojnqxZw3rHAX4HX3MdZ\nwE6gEzDa3Tca6OJudwbGApnAemAN0LKYMYoE0uzZ0LQpbN5s1UTXrn5HJPJHxR0NtRf4v4jHm9xb\njhlA83zOqwtsA14HmgILgNuAasAW95gt7mOAGsCciPMzAM1LlYS0dy/cey+8/z688or1UYjEq1gP\nnT0CGzV1M/At8By5TU45HPdWkHyfS01N/X07FAoRCoXKEKaIt2bNgr59oVUrWLrUrjshEm3hcJhw\nOByV14rWQLw08q8sTgK+wSoMsNFUg4BTgb8Bm4HqwEygEbmJZIh7PwUYDMzN87qO4xSWX0Ti0549\nMGgQjB8Pw4fD5Zf7HZEkk3I29rpUv/ux7jzeDGzAOrIB2gHLgIlAL3dfL+Ajd3sC0AMbaVUXaADM\ni3GMIp74/HNo0gR277a+CSUKCRIvZnAPAMZgCWAt0Bs4HBgH9MU6sru5x6a7+9OxzvD+FN5EJRL3\ndu+2tZwmTID//hcuvdTviERKrqhy5CjgRqA+sBibjJeVz3HHAz9HN7RCqRlKAmH6dLjuOmjbFoYN\ngypVij5HJFbK0gxV1EnjgAPAl8DFWBVwa2neKMqULCSu7dpls7AnT4ZXX4WOHf2OSKRsyaKoZqjT\ngcbu9khsRJOIFGLqVOjXzy5MtGQJHHus3xGJlF1RySKrgG0RyWPLFps3MX06jBgB7bVYjSSQokZD\nNQF2R9waR2zvim1oIsGwfbtdlCglBSpXtmpCiUISTVGVxeGeRCESQHv2wAsvwLPPQufOkJYGJ5/s\nd1QisaFF+kRK6Lff7EJEDRrYdSa+/BJGjlSikMSmK+WJFFNWFoweDQ89ZAv/TZ5sy4mLJAMlC5Ei\nZGfDuHHw4INQs6YtH96qld9RiXhLyUKkAI4Dn3wC998PRx5pK8O2batLm0pyUrIQycfMmTYMds8e\nePRR6NRJSUKSm5KFSIS5c20Y7Pr11jfRowccrjGBIhoNJQI2N6JLF/j736FbN1i+HK6+WolCJIeS\nhSS1NWssKbRrB61bw+rVcP31UL6835GJxBclC0lKGzZYUjj3XDj9dEsat98OFSv6HZlIfFKykKSy\nbRvccYfNj6haFVatstFOlSv7HZlIfFOykKSwYwc88AA0agSZmXbd6yFDdO1rkeJSspCEtnevJYUG\nDWDjRliwAF58EapX9zsykWDR0FlJSPv32zLhjz8OF1wAs2dbVSEipaNkIQklKwveesvmSJxxBkya\nBM2b+x2VSPB50Qy1Hrt+dxowz92XCmS4+9KwS7bmGASsBlYAuiqAFEvO+k1nnglvvAFjxihRiEST\nF5WFA4SAX/Lse8a9RUoBurv3NYHpQEMgO+ZRSiA5jq3+et99NoHuhRfgoou0NIdItHnVDJXfP938\n9nUGxgKZWEWyBmgJzIlZZBJYs2bZ+k07dsAjj8AVVyhJiMSKF81QDlYhzAf6RewfACwCRgFV3H01\nsOapHBlYhSHyu/nzoUMH6N0bbrzRLkB05ZVKFCKx5EVlcT6wCTgBmIb1RQwHHnaffwQYBvQt4Hwn\nv52pqam/b4dCIUKhUFSClfi1bJnNlZg71+779IEKFfyOSiR+hcNhwuFwVF7L67/FBgN7sOSQow4w\nEWgMDHT3DXHvp7jnzM3zOo7j5JtDJAGtXQupqTB1Ktx9N/zrX3DUUX5HJRI85az8LtXvfqyboY4G\nchZSqISNbloCnBRxzBXuPoAJQA+gAlAXaEDuCCpJMhs3wk03wTnnQP36tsjfXXcpUYj4IdbNUNWA\n8RHvNQaYCrwJNMOamNYBN7jHpAPj3PssoD8FNENJ4vrpJ5t1/frr0LcvrFwJxx/vd1QiyS2oXYJq\nhkpAO3fCM8/ASy/ZRYfuuw9q1PA7KpHEEc/NUCJF2rcPnnrK1m9avx6+/RZeflmJQiSeaLkP8c2B\nAzByJDz2GLRqBeEwpKT4HZWI5EfJQjx38CC8/bat39SwIXz8MbRo4XdUIlIYJQvxjOPAhx/aHInj\nj7c1nC680O+oRKQ4lCwk5hwHPvvMrkiXnW2d2B06aMa1SJAoWUhMzZ5to5q2bbP1m668Eg7TsAqR\nwFGykJhYsMAqiRUrbPb11VfDEfq2iQSW/saTqFq+HK66Ci6/3G4rV0KvXkoUIkGnZCFRsW4dXHst\ntG4Nf/kLrFkD/ftroT+RRKFkIWWyaZMt7NeiBZxyiq3f9O9/w9FH+x2ZiESTkoWUys8/W1I480xb\n2G/FCps3ceyxfkcmIrGgZCElsns3PPwwnHYa7NoFixbB00/DCSf4HZmIxJKShRTLr7/CsGG5S4XP\nnQv/+Q/UquV3ZCLiBY1RkUJlZsKoUfDoo9CyJcyYYU1PIpJclCwkXwcPwtixMHgw1KsH48fbKCcR\nSU5KFnIIx4GPPrL1m4491qoKXd5cRJQsBLAkMW2azbrOzIShQ+GSS7R+k4gYJQvhq69s/aZNm2z9\npr//Xes3icih9JOQxL77Di67DHr2tCU5li2Dbt2UKETkj7z4WVgPLAbSgHnuvqrANGAVMBWoEnH8\nIGA1sAJo70F8SWflSujeHS6+2JYKX7UKevfW+k0iUjAvkoUDhIDmQEt330AsWTQEZriPAVKA7u59\nR+AVj2JMCj/8AH36wAUXQPPmtn7TgAFw5JF+RyYi8c6rH+K83aSdgNHu9migi7vdGRgLZGIVyRpy\nE4yU0ubNcMstcNZZULOmTaobOBAqVfI7MhEJCq8qi+nAfKCfu68asMXd3uI+BqgBZEScmwHU9CDG\nhPTLLzBoEJxxBhx+uC0f/sgjUKVK0eeKiETyopX6fGATcALW9LQiz/OOeytIvs+lpqb+vh0KhQhp\nMsDvdu+G55+32xVXWEd27dp+RyUiXguHw4TD4ai8ltej6AcDe7AKIwRsBqoDM4FG5PZdDHHvp7jn\nzM3zOo7jFJZfktNvv9l6TUOGQNu2doW6Bg38jkpE4kU5mzhVqt/9WDdDHQ1UdrcrYaOblgATgF7u\n/l7AR+72BKAHUAGoCzQgdwSVFCAzE0aMsMQwcyZMnQpjxihRiEj0xLoZqhowPuK9xmBDZecD44C+\nWEd2N/eYdHd/OpAF9KfwJqqklp0N770HDz5oFx764AM45xy/oxKRRBTUxRySuhnKcWDiRFuao1Il\neOwxaNPG76hEJN6VpRlK07ACZsYMuPde65947DGbga31m0Qk1pQsAmLOHFu/acMGu1KdluUQES/p\n5ybOLV4MnTpZcujZE9LToUcPJQoR8ZZ+cuLUqlXwj39A+/Y2DHbVKujbV+s3iYg/lCzizIYN0K8f\nnH8+NG5s6zfdeitUrOh3ZCKSzJQs4sTWrXDbbdCsGZx4olUS994Lf/qT35GJiChZ+G77duu4Pv10\nGxKbnm6jnI47zu/IRERyKVn4ZO9eeOIJaNgQtmyBtDRby6lataLPFRHxmpKFx/bvhxdegPr1baTT\nV1/ByJFw8sl+RyYiUjCNrfFIVhaMHm1zJJo0gcmTrX9CRCQIlCxiLDsb3n/f1m+qUQPefRdatfI7\nKhGRklGyiBHHgUmTbP2mI4+El1+2+RJamkNEgkjJIgbCYRv2uns3PPqozcBWkhCRIFOyiKJ582wY\n7Lp11jfRvbtdzlREJOg0GioKliyBLl2ga1e46iq71nXPnkoUIpI4lCzKYM0a+Oc/oV07aN0aVq+G\n66+H8uX9jkxEJLqULEohIwNuuAHOPRcaNbKkcfvtWr9JRBKXkkUJbNsGd9wBTZvachyrVtlop8qV\niz5XRCTIvEoWhwNpwET3cSqQ4e5LAy6OOHYQsBpYAbT3KL5C7dxp8yQaNYLMTFi6FIYMgapV/Y5M\nRMQbXo2GuhVIB3L+BneAZ9xbpBSgu3tfE5gONASyvQnzUPv2wYsvwrBhdvnSBQugTh0/IhER8ZcX\nlUUt4BJgJLkXCi9H/hcN7wyMBTKB9cAaoGXsQzzU/v3w0ku2ftOCBfDFF/Daa0oUIpK8vEgWzwJ3\nc2h14AADgEXAKKCKu78G1jyVIwOrMDyRlQVvvAGnnWZrN02aBOPGWfOTiEgyi3WyuAzYivVLRFYS\nw4G6QDNgEzCskNdwYhadK2f9psaN4fXXYcwYSxTNm8f6nUVEgiHWfRbnAZ2wZqiKwDHAm8A1EceM\nJLfjeyNQO+K5Wu6+P0hNTf19OxQKEQqFShyc48CUKTbr+rDD7HoSF12kpTlEJDGEw2HC4XBUXsvL\nn8XWwF3A5UB1rKIAuB34C9AT69h+B+unyOngrs8fqwvHccpWcHzxha3ftH27rd/UpYuShIgktnL2\nI1eqXzov14YqR+6P/pNAU/fxOuAGd386MM69zwL6E+VmqPnzrZJYvRoeekjLcoiIFEdQ/5YucWWR\nng4PPABz59pEuj59oEKFGEUnIhKHylJZJPwM7u+/h2uugb/9Dc47zyqKG29UohARKYmETRYbN8JN\nN0HLllCvniWJO++Eo47yOzIRkeBJuGTx009w9912nevKlWHlShg8GI45xu/IRESCK2GSxa5dkJpq\nE+j27bNrTDz5JBx/vN+RiYgEX+CTxb598NRT0KCBXaFu3jy73nWNGn5HJiKSOAJ7WdUDB2DUKJsj\n0aoVzJwJKSl+RyUikpgCmywaNbI1nCZMgLPP9jsaEZHEFth5FrNmOVx4od9hiIgER1nmWQQ2WZR1\nuQ8RkWSjSXkiIhJTShYiIlIkJQsRESmSkoWIiBRJyUJERIqkZCEiIkVSshARkSIpWYiISJGULERE\npEhKFiIiUiSvksXhQBow0X1cFZgGrAKmAlUijh0ErAZWAO09ik9ERArhVbK4FUgHchZ0Gogli4bA\nDPcxQArQ3b3vCLziYYxJKxwO+x1CwtBnGV36POOHFz/EtYBLgJHkLmDVCRjtbo8GurjbnYGxQCaw\nHlgDtPQgxqSmf5DRo88yuvR5xg8vksWzwN1AdsS+asAWd3uL+xigBpARcVwGUDPWAYqISOFinSwu\nA7Zi/RUFLYvrkNs8VdDzIiKSwB4HNgDrgE3AXuAtrPP6JPeY6u5jsL6LgRHnTwHOyed115CbZHTT\nTTfddCvebQ0B0Jrc0VBPAve42wOBIe52CvAdUAGoC6wluBdoEhGRUmgNTHC3qwLTyX/o7L1Y9lsB\ndPAyQBERERERSWC3AkuApe42FD6pTwqX3+eZio08S3NvHX2JLBhew0bwLYnYp0mmpVeSz7MO8Cu5\n39NXPIsyGPL7LK8ClgEHgbPyHJ9Q380zsf/witgs8GlAPazP49/uMfeQ2+chhSvo8xwM3OFjXEHy\nV6A5h/6DLOj7mNMHVx77oVuDJpnmVZLPs06e4+RQ+X2WjbDJzzM5NFmU+LsZ71/cRsBc4DcsM84C\nulLwpD4pXH6f55XucxpIUDyzge159mmSaemV5POUwuX3Wa7AKrS8SvzdjPdksRTLllWBo7GZ4LUo\neFKfFC6/z7O2+9wAYBEwCjXrlZQmmUZXYf++62JNUGHgAm/DSigl/m7Ge7JYAQzF2i0nY2XTwTzH\n5IwflqIp4mTnAAABnUlEQVQV9Hm+gv0jbIbNhxnmV4AJoKjvo76rJRP5ef4P++OmOdZs+g5Q2ae4\nElGh3814TxZgnTYtsKG327GSaguHTurb6k9ogRT5ee4AVgLbyP1HORI1lZRUQd/HjeRWbmBV8UYP\n4wqqgj7PA+Q2syzE5mE18Da0hFHi72YQksWJ7v3JWPv6O9h8jV7u/l7ARz7EFVSRn+cV2OdZPeL5\nK1AnYkkV9H2cAPQgd5JpA2Ce59EFT0Gf55+xgRkAp2Kf5/fehhZokf2SCfnd/AIb+vUd8Dd3X2GT\n+qRw+X2ebwKLsT6Lj1AfUGHGYs0hB7ClbHqjSaZlUZLP80qs3y0NWABc6nWwcS7vZ9kHGxywARty\nvBlrfs6h76aIiIiIiIiIiIiIiIiIiIiIiIiIiIiIxNKxwE1+ByEiIvGtDpr9LiIiRXgX2IfNMB7q\ncywiIhKnTkGVhSSoICwkKBIUuoCUJCwlCxERKZKShUj07EYX45EEpWQhEj0/A19h/Rbq4BYRERER\nERERERERERERERERERERERERERERERFJRv8P69Cq8Xr1R48AAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x1057dc4d0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "2)The bubble point is 105.029855 deg cel\n",
        "  The vapour composition of toluene is 0.901898\n",
        "  The vapour composition of 1,(2-dichloroethane is 0.098102\n",
        " The percentage error is 1.107696 percent\n",
        "3)The free energy of mixing is -132.756668 Kcal/Kgmole\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.8  Page No : 252"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "#Given\n",
      "#Consider the diagram shown in page no 263\n",
      "w1 = 100.0;#weight of LiBr entered as feed in the evaporator per hour in Kg\n",
      "x1 = 0.45;#weight  fraction of LiBr entered as feed\n",
      "x2 = 0.0;#weight fraction of steam in the LiBr soln\n",
      "x3 = 0.65;#weight fraction of LiBr formed as product\n",
      "H1 = -39.0;#Enthalpy of 45% solution at 25 deg cel in Kcal/Kg\n",
      "H3 = -4.15;#Enthalpy of 65% solution at 114.4 deg cel in Kcal/Kg\n",
      "H2 = 649.0;#Enthalpy of superheated steam at 100 mmHg and 114.4 deg cel in Kcal/Kg\n",
      "\n",
      "#To Calculate the heating load required for the process\n",
      "#According to material balance\n",
      "w3 = (w1*x1)/x3;#weight of LiBr solution formed after evaporation per hour in Kg\n",
      "w2 = w1-w3;# weight of steam formed in Kg/hr\n",
      "#According to energy balance\n",
      "Q = (w2*H2)+(w3*H3)-(w1*H1);\n",
      "print 'The heat that has to be supplied for this concentration process is %f Kcal/hr'%(Q);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The heat that has to be supplied for this concentration process is 23581.923077 Kcal/hr\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.12  Page No : 253"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "import numpy\n",
      "\n",
      "#Given\n",
      "x_A = [0.0, 0.0435, 0.0942, 0.1711, 0.2403, 0.3380, 0.5981];#mole fraction of acetic acid\n",
      "p_A = [0.0, 17.2, 30.5, 46.5, 57.8, 69.3, 95.7];#partial pressure of acetic acid in mmHg\n",
      "P_T1 = 202.0;#vapour pressure of toulene in mmHg\n",
      "P_T2_ex = 167.3;#experimental partial pressure in mmmHg\n",
      "\n",
      "#To Calculate the partial pressure of toulene in the solution and check with the experimental value\n",
      "#From the equation 13.95,\n",
      "#ln(P_T2/P_T1) = -intg(x_A/((1-x_A)*p_A))\n",
      "x = []\n",
      "for i in range(0,7):\n",
      "    if (p_A[i] != 0):\n",
      "        x.append((x_A[i]/((1-x_A[i])*p_A[i]))*10**4)\n",
      "    else:\n",
      "        x.append(0)\n",
      "\n",
      "\n",
      "plt.plot(x,p_A)\n",
      "plt.title(\" \")\n",
      "plt.xlabel(\"(x_A/((1-x_A)*p_A))*10**4\")\n",
      "plt.ylabel(\"p_A\")\n",
      "plt.show()\n",
      "      \n",
      "#Area of the graph drawn is\n",
      "A = -0.138;\n",
      "P_T2 = (math.e**A)*P_T1;\n",
      "e = ((P_T2-P_T2_ex)*100)/P_T2_ex;\n",
      "print 'The partial pressure of toulene is %f mmHg'%(P_T2);\n",
      "print ' This deviates %i percent from the reported value'%(e);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH/NJREFUeJzt3X2clXP+x/FX0n3UxnajG6UkcptINzQiKoSKpsXWsotF\n2EU3rJXdnyX8JJLdxbYtfo1ulO50R4coSneiErpRbkZlE92Z6vz++FzjnJnmfs453+u6zvv5eMxj\nzrnmzLk+NTPncz7f7/f6fEFERERERERERERERERERERERERERERK6F9ANrAq7lgdYC6wDpgD1I77\n2lDgU2AtcFGKYhQREYfOBc4gb6J4FBjk3R4MPOLdPglYAVQCmgKfAYelJEoREXGqKXkTxVqgnne7\nvncfrJoYHPe4WcA5yQ5ORESK5uIdez1sOArvc27SOAbYEve4LUDDFMYlIiIFcD20E/U+ivq6iIg4\ndLiDc2ZjQ07fAA2Ab73jXwKN4x7XyDuWR/PmzaOff/55smMUEQmbz4EWZflGFxXFVKC/d7s/MCXu\neCZQGWgGHA8szv/Nn3/+OdFo1PcfDzzwgPMYFKfiDHKcQYgxSHECzcv6op3simIc0Bk4GtgM/Blb\n5TQeuAHYCFztPXa1d3w1sB+4BQ09iYg4l+xE0a+Q4xcWcvxv3oeIiPiE68ns0MrIyHAdQokozsRS\nnIkThBghOHGWRwXXAZRB1BtvExGREqpQoQKU8TVfFYWIiBRJiUJERIqkRCEiEmBr18KuXck9hxKF\niEjAbNwIw4fDGWdAly7wySfJPZ8ShYhIAHz1FYwcCe3bw1lnwYYNMGIEbN4Mbdok99xa9SQi4lPb\ntsGkSZCVBStWwOWXQ2YmXHABVKpUuucqz6onJQoRER/5/nt47TUYNw4WLoTu3S05dOsGVauW/XmV\nKEREAmz3bpg+3SqHN96A88+35HDppVCzZmLOoUQhIhIw+/bB7NmWHGbOhHbtLDlceSXUrl3895eW\nEoWISADs3w9vvmnJYcoUOOUUSw69e0Pdusk9txKFiIhPHTwI775rcw4TJ0LTptCvH1x1FTRqlLo4\nypMoXGxcJCISatEofPCBVQ6vvAJ16ljlsGgRNC/zrhDuKFGIiCTIqlWWHLKy4LDDrHKYPRtat3Yd\nWfkoUYiIlMOnn1rVkJUFO3da5TBhgl01XSGIg/sFCOI/Q3MUIuLUF1/A+PGWHLZsgauvtgRxzjlW\nSfiRJrNFRJIsO9sqhawsWLMGevWy5NC5MxwegLEZJQoRkST47jt49VVLDh98AJddZsmha1eoXNl1\ndKWjRCEikiA//ABTp1pyePttuOgiSw49ekC1aq6jKzslChGRctizx66OzsqCOXPg3HNtxVLPnnDE\nEa6jSwwlChGRUvrpJ5g715LD9Olw5plWOfTqZdc9hI0ShYhICRw4AJGIJYfJk6FVK0sOffpA/fqu\no0suXZktIlKIgwfhvfcsOUyYAA0bWnJYtgyaNHEdXTAoUYhI6ESjsHx5rIVGjRo25/D223D88a6j\nCx4lChEJjdWrYy00DhywymH6dDj55PBcJe2CEoWIBNr69bEWGtu3Q9++8PLL0LatkkOiBPG/UZPZ\nImnuyy9jLTQ2bLDJ6H79oGNH/7bQcE2rnkQk9LZutf0csrKsS+sVV9jQUpcuwWih4ZoShYiE0o4d\ntow1Kwvef9+ujs7MhIsvhipVXEcXLEoUIhIau3bBtGmWHObPhwsusORwySW2eknKRolCRAJt716Y\nNcuSw+uvQ4cOlhyuuAJq1XIdXTgoUYhI4OTkwBtvWHKYOhVOO82SQ+/ecPTRrqMLHyUKEQmEAwdg\nwQJLDpMmQYsWlhyuugqOOcZ1dOGmFh4i4lvRKCxebMlh/HioW9eSw+LF0KyZ6+ikJJQoRCTholH4\n8MPYVdJVqlhyeOMNa8QnweIyUQwFrgUOAquA3wA1gFeAY4GNwNXADkfxiUgpffJJLDns2WPJYfJk\nm3/QVdLB5epH1xR4EzgR2Iclh5lAa2Ab8CgwGPgFMCTf92qOQsRHNm2yFhrjxtm+0ldfbQmiXTsl\nBz8J4hzFTiAHqA4c8D5/hVUZnb3HjAUiHJooRMSxr7+2lt1ZWbBuna1UGjHCdoarWNF1dJJoLvP9\njcD/AnuA2cB1wH+xKgIstu/i7udSRSHiwPbttlIpK8taePfsaZXDhRdCpUquo5PiBLGiaA7ciQ1B\nfQ9MwOYr4kW9j0MMGzbs59sZGRlkZGQkIUQR2bkTXnvNhpXefRe6dYOBA6F7d6ha1XV0UpRIJEIk\nEknIc7mqKPoCXYHfevevA84BugDnA98ADYD5QP41EqooRJJo926YMcMqh3nzICPDKofLLoOaNV1H\nJ2UVxIpiLXA/UA3YC1wILAZ2Af2B4d7nKY7iE0kr+/bBnDmWHGbMgLPPtuTw/PPwi/yDv5J2XM5R\nDMKSwUFgGVZdHAGMB5pQ+PJYVRQiCbB/vzXdy8qCKVOgdWtLDn362EVxEi5q4SEiJXLwICxcaMlh\nwgQ49thYC43GjV1HJ8kUxKEnEUmRaBSWLrXk8MorNpSUmWkJo3lz19FJEChRiITURx/FrpKuUMGS\nw6xZNsQkUhpKFCIh8tlnseSwcyf07WtVRJs2ukpayi6IvzqaoxCJs3mzdWUdNw62bLH5hsxMaN8e\nDjvMdXTiF5rMFkkz2dkwcaJVDqtXQ69elhw6d4bDNU4gBVCiEEkD//0vvPqqJYclS+DSSy05XHQR\nVK7sOjrxOyUKkZD68UfbJjQrC956C7p2teTQowdUr+46OgkSJQqRENmzB15/3ZLD7NnQqRP062dN\n+I480nV0ElRKFCIBl5MDc+dacpg2zVYpZWba3MNRR7mOTsJAiUIkgA4csOGkrCybezjhhFgLjQYN\nXEcnYaMrs0UCIhqF996z5DB+PBxzjCWHpUutnYaIHylRiCRZNAorVsRaaFSvbnMOb70FLVu6jk6k\neEoUIkmyZk3sKumcHKscpk6FU07RVdISLEH8ddUchfjW+vVWNWRlwbZt1kIjMxPOOkvJQdzSZLaI\nQ19+aS27s7IsUfTpY8mhUye10BD/UKIQSbGtW2HSJEsOH34Il19u8w5duqiFhviTEoVICnz/PUye\nbMlh0SK7OjozE7p1gypVXEcnUjQlCpEk2bULpk+35PDmm1YxZGZan6UaNVxHJ1JyShQiCRSNwsyZ\n8NJL1kqjfXtLDldcAbVquY5OpGyUKEQSZONGuOkm+PpruOUW6N0bfvlL11GJlF95EoXWZIhg7TSe\nfhratoXzz7crpW++WUlCBHTBnQhr1sANN0DFivDuu9ZzSURiVFFI2vrpJ/if/4HzzoPrrrOWGkoS\nIodSRSFp6YMPrIpo1MiGmZo0cR2RiH+popC0sns33HOPLW8dPNiWvipJiBRNiULSxvz5cOqp1nJj\n1Sr41a/Uf0mkJDT0JKG3YwcMGmTXRDz7rFUTIlJyqigk1KZOhZNPthVNH32kJCFSFqooJJSys+H2\n22H5cnj5Zejc2XVEIsGlikJCJRqFF1+0uYhmzWDlSiUJkfJSRSGhsWmTtd/45hvr1XTmma4jEgkH\nVRQSeAcPwqhRlhg6d4YlS5QkRBJJFYUE2tq18Nvf2u133oFWrdzGIxJGqigkkHJy4KGH4Nxz7XqI\nt99WkhBJFlUUEjhLl8L110PDhmq/IZIKLiuK2sBEYA2wGmgH1AHmAuuAOd5jRABrvzFokG1Bes89\nMGOGkoRIKrhMFCOBmcCJwKnAWmAIlihaAm9490WIROC002DzZmu/ce21ar8hkiqu/tRqAcuB4/Id\nXwt0BrKB+kAEyD/yrB3u0sj331sVMXMmPPMM9OzpOiKRYAriDnfNgK3AGGAZ8BxQA6iHJQm8z/Wc\nRCe+MG2atd+oUMHabyhJiLjhajL7cKANcBuwBHiSQ4eZot6HpJlvv7X2G0uX2lXWGRmuIxJJb64S\nxRbvY4l3fyIwFPgGG3L6BmgAfFvQNw8bNuzn2xkZGWTolSQUolHry3TXXTBgAIwZA9WquY5KJJgi\nkQiRSCQhz+VyOvBt4LfYCqdhQHXv+HZgOFZh1KaASkNzFOHzxRdw8822V8QLL0Dbtq4jEgmXIM5R\nAAwEXgZWYqueHgIeAbpiyaOLd19C7OBBm6Q+80zo2NG2KFWSEPGXIC4wVEUREmvXwu9+Z8nihRd0\nZbVIMgW1opA09ve/Q6dO0LcvLFigJCHiZ2rhISk3caL1aVq8GI7LfyWNiPiOhp4kpd57Dy67DObO\nhdNPdx2NSPrQ0JMEwoYN0KuXLXtVkhAJDiUKSYkdO+CSS2DoULj0UtfRiEhpaOhJki4nB7p3h9at\nYeRI19GIpKfyDD0pUUhSRaO2BDY7G6ZMgYoVXUckkp7Kkyi06kmS6tFHYdky24FOSUIkmJQoJGkm\nTIBRo2ylU82arqMRkbLS0JMkhZbBiviLlseKr2zYAFdeqWWwImFRlkTRArgf+DjBsUgI5C6Dvfde\nLYMVCYuSJoqGwB+x/SM+AioCmckKSoIpJwf69IGuXWHgQNfRiEiiFDdedRPQD6iLbS40AZiKbWXq\niuYofEjLYEX8LZnLY0cBs4A7sH0jRAo0fLiWwYqEVXGJogFwFfAUsaqiUrKDkmCZMME2H9IyWJFw\nKk0Z0hjoiw1F1QBeBe5NRlDF0NCTj2gZrEgwpGp57GbgceBMoCewN+5rXctycgm23GWw//63koRI\nmCXqgrvlwBkJeq7iqKLwgR07oH17uPVWuO0219GISHF0wZ2k1E8/Qe/ecNFFShIi6UCJQkolGoXf\n/x5q1IAnnnAdjYikgpoCSqkMHw7Ll2sZrEg6KWmiqAbcAnQCosAC4FliE9obEh+a+M348TB6NCxa\npGWwIumkpBMbE4CdwEve9/wKqIVdY5Fqmsx2YNEi6NlTy2BFgioVO9ytBk4qwbFUUKJIsfXroWNH\neP55a/gnIsGTilVPy4D2cffPAZaW5YQSLN9/b11g77tPSUIkXZU0u6wFWmIX3UWBJsAnwH7v/qlJ\nia5gqihS6LbbYM8eeOEF15GISHmkYs/sbmV5cgm2Zctg4kRYvdp1JCLikrZClQIdPAgdOsCNN8L1\n17uORkTKS1dmS8L9619w2GEwYIDrSETENVUUcojt2+Gkk2DWLDgjVR28RCSpUrE81k+UKJLs5puh\nUiV4+mnXkYhIoqRiMlvSxJIl8NprsGaN60hExC80RyE/O3AAbrnF+jnVru06GhHxCyUK+dlzz0HV\nqnDdda4jERE/0RyFALB1K7RuDfPmwampvHxSRFIiyMtjK2K7403z7tcB5gLrgDmABkBSZMgQuOYa\nJQkROZTrRHEH1lwwt0QYgiWKlsAb3n1JskWLbCnssGGuIxERP3KZKBoBPYDniZVDPYGx3u2xwBUO\n4koruRPYjz0GtWq5jkZE/MhlohgB3AMcjDtWD8j2bmd79yWJnn3WVjj16+c6EhHxK1fXUVwKfIvN\nT2QU8pgosSEpSYLsbHjwQYhEoEIQlzWISEq4ShQdsGGmHkBV4EjgRayKqA98AzTAkskhhsUNpmdk\nZJCRkZHUYMNq0CDr5dS6tetIRCTRIpEIkUgkIc/lh/eRnYG7gcuAR4HtwHBsIrs2h05oa3lsAixY\nYMNNa9bAEUe4jkZEki3Iy2Nz5b7yPwJ0xZbHdvHuS4Lt3w+33gpPPKEkISLF80NFUVqqKMrpySdh\nxgyYM0dzEyLpQt1jpcS+/hpOOQXeeQdatXIdjYikihKFlNg110CTJvDww64jEZFUUptxKZFIxCoJ\n7YEtIqXhl8lsSbKcHJvAHjECatRwHY2IBIkSRZoYORIaN4Yrr3QdiYgEjeYo0sCWLXD66db87/jj\nXUcjIi5oMluK1LcvtGwJf/2r60hExBVNZkuh5s2DxYthzBjXkYhIUGmOIsT27YPbbrP5ierVXUcj\nIkGlRBFiI0ZAixZw2WWuIxGRINMcRUh98QW0aQPvvw/Nm7uORkRcC0NTQEmwP/wBBg5UkhCR8tNk\ndgjNmgUrVsBLL7mORETCQBVFyOzda5XEU09BtWquoxGRMFCiCJnHH7cd6y65xHUkIhIWmswOkY0b\n4cwzYelSaNrUdTQi4ieazBbAJrD/+EclCRFJLE1mh8SCBbBsGYwb5zoSEQkbVRQhEI3C4MHWy6lq\nVdfRiEjYKFGEwGuvwa5dtnudiEiiaTI74Pbvtz2wn3gCund3HY2I+JUms9PYmDFQvz506+Y6EhEJ\nK1UUAbZ7t21ENHkynH2262hExM9UUaSpkSOhQwclCRFJLlUUAbV9O5xwAixcaLvXiYgURVuhpqG7\n7oI9e2D0aNeRiEgQKFGkmU2bbK+Jjz+2iWwRkeIoUaSZX//a2nT85S+uIxGRoChPolALj4BZuRJm\nz4ZPP3UdiYikC616CpihQ+G+++DII11HIiLpQhVFgMyfD2vX2nUTIiKpoooiIHIb/z30EFSp4joa\nEUknShQBMWmS9XXq29d1JCKSbrTqKQBycmx702eega5dXUcjIkGkFh4h9/zzcOyxShIi4oYqCp/7\n8Udr/Dd9uu2HLSJSFkGsKBoD84GPgY+A273jdYC5wDpgDlDbSXQ+MmIEZGQoSYiIO64qivrexwqg\nJrAUuAL4DbANeBQYDPwCGJLve9Omoti6FU48ERYvhuOOcx2NiARZGFp4TAFGeR+dgWwskUSAVvke\nmzaJ4o47bFnsU0+5jkREgi7oiaIp8BZwMvAFVkWAxfZd3P1caZEo1q+Hs86CNWugbl3X0YhI0AW5\n11NNYBJwB/BDvq9FvY9DDBs27OfbGRkZZGRkJCc6h/70J6solCREpCwikQiRSCQhz+WyoqgETAde\nB570jq0FMoBvgAbYhHfaDT0tWwaXXGKN/2rWdB2NiIRBEFc9VQBeAFYTSxIAU4H+3u3+2NxF2hky\nBO6/X0lCRPzBVUXRCXgb+JDY8NJQYDEwHmgCbASuBnbk+95QVxRz58Itt8Dq1VCpkutoRCQsgj6Z\nXVqhTRQHD9oE9pAhcNVVrqMRkTAJ4tCTFGD8eKhYEfr0cR2JiEiM61VP4pk5E+68E7KyoEIQ6zwR\nCS0lCsd+/BHuvhtmzYJXXoHOnV1HJCKSl4aeHHrvPTjjDNi71/bCVpIQET9SReFATg785S/w3HMw\nejT06uU6IhGRwilRpNiaNXDttVC/PqxYYZ9FRPxMQ08pcvCgNfc77zy46SbbX0JJQkSCQBVFCmzZ\nAgMGwK5dsGgRtGjhOiIRkZJTRZFk48ZBmzZw/vmwYIGShIgEjyqKJPnuO2vF8eGH8Prr2qFORIJL\nFUUSzJkDp51mcxBLlypJiEiwqaJIoN27YfBgmDIFxoyBCy90HZGISPmpokiQJUtsLmL7dhtuUpIQ\nkbBQRVFO+/fD3/4Go0bZ8tfMTNcRiYgklhJFOaxbB9ddB7VqwfLl0LCh64hERBJPQ09lEI3Cs89C\nhw6WKGbNUpIQkfBSRVFKX30FN9wA27bBO+9Aq/w7eouIhIwqilKYMMG6vZ59NixcqCQhIulBFUUJ\n7NgBAwfC++/D1KnQrp3riEREUkcVRTHmz7eL5444wiaslSREJN2ooijE3r1w772269zzz0P37q4j\nEhFxQ4miAMuX22qmE0+0i+eOOsp1RCIi7mjoKc6BA/Dww3DxxTBkCIwfryQhIqKKwrN+Pfz611C5\nMnzwATRp4joiERF/SPuKIhq1OYh27aB3b5g3T0lCRCReWlcU2dnwu9/B5s0QiUDr1q4jEhHxn7St\nKKZMgdNPh5NPtusjlCRERAqWdhXFzp3whz9YBTFxInTs6DoiERF/S6uKYsECqyIOOwxWrFCSEBEp\nibSoKPbtgz//Gf7zH/jHP6BnT9cRiYgER+gTxapVcO210KwZrFwJdeu6jkhEJFhCO/R04AA8/jh0\n6QJ33AGTJytJiIiURSgrik2boH9/SxaLF1s1ISIiZROqiiIahbFjoW1b6NHDVjYpSYiIlE9oKopt\n2+Cmm2wf63nzrDW4iIiUnx8rim7AWuBTYHBJvmHGDDj1VDjuOFiyRElCRCSR/JYoKgKjsGRxEtAP\nOLGwB//4o1URt94K48bBY49B1aopirQYkUjEdQglojgTS3EmThBihODEWR5+SxRnA58BG4EcIAu4\nvKAHLlpkF8/t22fLXjt3Tl2QJRGUXx7FmViKM3GCECMEJ87y8NscRUNgc9z9LcAhm4/efz889xyM\nHg29eqUsNhGRtOS3RBEtyYOWLbMWHPXrJzscERGp4DqAfM4BhmFzFABDgYPA8LjHfAY0T21YIiKB\n9znQwnUQiXA49o9pClQGVlDEZLaIiKSn7sAnWOUw1HEsIiIiIiISJqW+GC9FGgPzgY+Bj4DbveN1\ngLnAOmAOUNtJdHlVBJYD07z7foyxNjARWAOsxla++THOodjPfBXwf0AV/BHnv4BsL65cRcU1FPub\nWgtclKIYoeA4H8N+7iuBV4FacV/zU5y57sLmUevEHfNbnAOx/9OPyDvf6yrOpKqIDUc1BSrhr/mL\n+sDp3u2a2NDZicCjwCDv+GDgkdSHdog/Ai8DU737foxxLHC9d/tw7MXCb3E2BdZjyQHgFaA//ojz\nXOAM8r5gFBbXSdjfUiXs3/QZqbu+qqA4u8ad/xH8GyfYG8RZwAZiicJvcZ6PvUGo5N3/pffZZZxJ\n1R77oeQa4n340RTgQixT1/OO1ffuu9QImIf98uRWFH6LsRb2Apyf3+Ksg70h+AWWzKZhL3J+ibMp\neV8wCotrKHmr81nY6sNUaUrB79QBrgRe8m77Mc4JwKnkTRR+i3M80KWAx5UqziBlkIIuxmvoKJai\nNMWy+vvYH2a2dzyb2B+qKyOAe7BSOZffYmwGbAXGAMuA54Aa+C/O74D/Bb4AvgJ2YO/c/BZnrsLi\nOgb7W8rlp7+r64GZ3m2/xXm5F8OH+Y77Lc7jgfOA94AI0NY7Xqo4g5QoSnQxnmM1gUnAHcAP+b4W\nxe2/4VLgW2x+orDrZ1zHCPbuvA0w2vu8i0MrRz/E2Ry4E3tjcAz2s78232P8EGdBiovLDzHfB/yE\nzf0UxlWc1YF7gQfijhV1TZrL/8/Dsar3HOxN4vgiHltonEFKFF9iY4K5GpM3I7pWCUsSL2JDT2Dv\n3HKvH2+AvVC70gHoiZXJ47By9EX8FSPYz3QLsMS7PxFLGN/grzjbAguB7cB+bOK1Pf6LM1dhP+f8\nf1eNvGMuDQB6ANfEHfNTnM2xNwgrsb+nRsBSrErzU5xgf0uvereXYKMJR+O/OBPGzxfjVQD+gw3t\nxHuU2DjgENxPwObqTGyOwo8xvg209G4Pw2L0W5ynYatIqmE//7HArfgnzqYcOpldUFy5k5qVsWG/\nz0ltx4am5I2zG7aS7Oh8j/NbnPEKmsz2S5w3AQ96t1tiQ6XgPs6k8uvFeJ2wTL0CG9pZjv3C18Em\nj/20pBMsUeSuevJjjKdh737il0j6Mc5BxJbHjsWqSj/EOQ6bN/kJm9f7TTFx3Yv9Ta0FLnYY5/XY\ncs1NxP6ORvsozn3E/j/jrSfv8lg/xVkJGzlYhVU9GT6IU0RERERERERERERERERERERERERERERE\nRCStVAHeomxXej6JtR3I/72VsAuGCnr+usAM7/ZR2N4gPwBPl+H8RZkCLMp37HbgunzH+gPHpuBc\nT2CtpeM9kO/+bdhFVfn3TAB4CrvAbSXWyLKo5ynsWP79TSSEgtTrSYLjGmA6pW+GdhjWj2o1dvV4\nvE7AO4U8/23Av73be4A/AXeX8tzFqQ2cTKzlQa4x2MYwYM0Bn8N66JwL/D2J5wJ4Fmv0BrYfykgs\nGVwOPOQdfwe4ALvaOV4PoAXWXfRG77nA/m/vBqp6z31NIcdy3YH9vPzQSFBEAmQu1lfmSqxtBFgj\nuk+wd/+F6QJMBjKBf+T72nCsLUr88+dajXX0jDeAoiuKO4EXvNunYC0Oqhbx+OuxXl5DOLR9zOtA\na+92Paz3z9S4r0ewSmm5d56zijhPac4F1uY6tx1HK6z9+TMFPGd8PyKwJNY37n78fhX9sEaHV8d9\nvaBjBe1vIiGkikISrSL2bngd9qL/NfaO/5/Anym6m2o/bKe4adg73sPjvpaBveDGPz9YR9QDwO58\nz1XcO9yR2DvqK7EtJG8E9hbx+EwvtvFenPEWYz3/GwB/xRLQeGJ9iqJY88AzgFu88xWlJOfKtRzr\nWnsacDPW12eOF0dRCtrfpZF3vobYlqTHevcLOgYF728iIlKsesRexMHe7X6J7QZWlMrYi1UN7/5E\n4BLvdkPsnXRBz98Oe2HMrz/Fz1E0A37EXgCLUo+8u+59QN539TeRdy/i/HMU88nbjG0TcGSCzvUw\n8Pu4+wXNI8ChFcU0oGPc/XlYO/einif+2KXEKpcMVFGEmioKSYb4iejG2Dv+ehQ9uX0xllQ+wl7U\nziX2zrUbebfBzf88JZk0v4JYR9LcF8SW2KR3cTuQXY29yG7wPpqS951+BfJWMGM5dE4gv8IqntKe\nK//9BymZ4vYjKOh54o8VtL/Jf0p4bhFJcxWx4SawoaPF2IvKP4G7ivi+/yPvmHl1bLOdatgQTO6c\nRPzzgw09FbRPwACKrihqYePyLYDZQO8iHrsQq1xyNcVWEuV6EBv2Kcx8YpPFnbBVRok611hiczdF\n2YCtCMvVg9g2o+dgW2WWVfz+JiIiJTIXOAG4H3jcO1YTWOMdz686tlNczXzHJ2LvsJcV8vy51hAb\nsgLY6D3fD9hGLa0KOOcL2NwJ2LvpTzl0sxywF+rNBRxfSmxSOv8Ec37zsfH8Zdjkc9tCHleWc32I\nJb3C3O49509YxfDPuK+NwpLQSvIOO5VW/P4mIiIlMoDYbmrl1ZG8m9cU9PzDyFuNpNKRxLZtLcx8\nyvdCXNi5WqIXaBEJqMrYdqbJmgPLff7cuYlfEhtGSbXbgWuLeUyiEkX+cz2BDWWJJFVo9kiVwLiY\nQ/eRXk/RcwSpMgC7gCzeO+S9yC2I5xIRERERERERERERERERERERERFJI/8PWAkS6uYdzjkAAAAA\nSUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x10654c750>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The partial pressure of toulene is 175.961936 mmHg\n",
        " This deviates 5 percent from the reported value\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.13  Page No : 254"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "\n",
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "import numpy\n",
      "from numpy.linalg import solve\n",
      "\n",
      "#Given\n",
      "P = 760.0;#pressure at maximum boiling azeotrope of A and B in mmHg\n",
      "x_A = 0.6;#mole fraction of A in liquid phase\n",
      "x_B = 0.4;#mole fraction of B in liquid phase\n",
      "p_A = 600.0;#vapour pressure of A at 90 deg cel\n",
      "p_B = 300.0;#vapour pressure of B at 90 deg cel\n",
      "\n",
      "#To Check whether the activity coefficient of the solution can be represented by the Margules equation\n",
      "y_A = P/p_A;#Activity coefficient of A\n",
      "y_B = P/p_B;#Activity coefficient of B\n",
      "#From the Margules equation or equation (a) & (b)\n",
      "U = [[((x_B**2)-(2*(x_B**2)*x_A)), (2*(x_B**2)*x_A)], [(2*(x_A**2)*x_B), ((x_A**2)-(2*(x_A**2)*x_B))]];\n",
      "V = [math.log(y_A), math.log(y_B)];\n",
      "W = solve(U,V);\n",
      "#Now the value of consmath.tants A and B in equations(a)&(b) are given as\n",
      "\n",
      "A = W[0];\n",
      "B = W[1];\n",
      "#let us assume \n",
      "x_A = [0.0,0.2,0.4,0.6,0.8,1.0];\n",
      "x_B = [1.0,0.8,0.6,0.4,0.2,0.0];\n",
      "#C = lny_A; D = lny_B; E = ln(y_A/y_B)\n",
      "C = []\n",
      "D = []\n",
      "E = []\n",
      "for i in range(6):\n",
      "    C.append((x_B[i]**2)*(2*(B-A)*x_A[i]+A));\n",
      "    D.append((x_A[i]**2)*(2*(A-B)*x_B[i]+B));\n",
      "    E.append(C[i]-D[i]);\n",
      "    \n",
      "plt.plot(x_A,E)\n",
      "plt.title(\" \")\n",
      "plt.xlabel(\"x_A\")\n",
      "plt.ylabel(\"ln(y_A/y_B)\")\n",
      "plt.show()\n",
      "#Since the graph drawn is approximately symmetrical.Thus it satisfies the Redlich-Kister Test\n",
      "print 'The actvity coefficients of the system can be represented by Margules equation';\n",
      "#end\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEQCAYAAACwSgOGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG3ZJREFUeJzt3XeY1OW58PHvsoA0kWAjiUYi2LsI0hkEEdFIQI2KJYr1\noLzm1eSK5U0gJx6j8VhOwJKg8bUbCxoVwaBhQREpigUUC6ghMSCKDVEB2fPHM+usS9nZMvPM/Ob7\nua65mJ39OXP7sPzufe6ngSRJkiRJkiRJkiRJkiRJklTwWgCzgReBV4HfxQ1HkhRTq/SfTYHngN4R\nY5GkktUkdgDA6vSfzYFyYGXEWCSpZBVCQmhCKBktB6YRSkeSpBK2FaFklIochySVpKaxA6jmE2AS\ncBBQUfVip06dKhcvXhwrJkkqVouBznX5D2KXjLYB2qWftwQOBeZXv2Dx4sVUVlb6qKxkzJgx0WMo\nlIdtYVvYFpt/AJ3qekOO3UP4LnAbITE1Ae4AnooakSSVqNgJ4RXgwMgxSJKIXzJSHaRSqdghFAzb\nIsO2yLAtGqYsdgBZqEzXwyRJWSorK4M63uPtIUiSABOCJCmtKBKCFSNJyr2iSAijRsH69bGjkKRk\nK4qEsHAhnHoqrFsXOxJJSq6iSAhTpsDy5XD88bBmTexoJCmZiiIhtGoFjzwSegjDhsEXX8SOSJKS\npygSAsAWW8D998NWW8ERR8CqVbEjkqRkKZqEANCsGdxxB3TqBIMGwccfx45IkpKjqBICQHk5/OlP\n0K0b9O8PK1bEjkiSkqHoEgJAWRlce20oHfXrB++9FzsiSSp+sXc7rbeyMrjsMmjdGvr2hSefhI4d\nY0clScWraBNClYsvhjZtQk9h6lTYddfYEUlScSr6hAAwenToKaRS8MQTsM8+sSOSpOKTiIQAMHJk\nWK9w6KHw2GNw0EGxI5Kk4pKYhABhJXPLljBkCEycCL17x45IkopHUc4y2pyhQ+Guu8KK5qlTY0cj\nScUjcQkBQtlo4kQ48cSw5YUkqXaJKhlV16cPPP44HHkkrF4dykmSpE1LbEKAMLA8dSoMHhySwsiR\nsSOSpMKV6IQAYQrqtGmhjPT552GKqiRpQ4lPCBAWq02fDgMHhl1SL744dkSSVHhKIiFA2NZixoxM\nUrjssrD9hSQpKIZbYmVlZWWjvdmKFXDYYWH/o2uvNSlISqaycHOr0x2uGG6HjZoQIJyjMGQI7LUX\n3HRT2FJbkpLEhFAHq1bBUUdBhw5w223h8B1JSor6JIRELkzLRps2MGkSfPIJHHssfPVV7IgkKa6S\nTQgQ9j166CFo2jT0Flavjh2RJMVT0gkBoHlzuPfeUDoaPBg+/TR2RJIUR8knBAg9hFtvDYPMAwfC\nypWxI5Kk/DMhpDVpAjfcEE5eS6Vg+fLYEUlSfpXMwrRslJXB738fBpz79oWnnoIddogdlSTlhwmh\nhrIyGDMmkxSmToVOnWJHJUm5Z0LYhAsvzJzT/Le/wR57xI5IknIrdkLYEbgd2A6oBP4E/CFqRNWc\nc044p/mQQ2DyZNh//9gRSVLuxF6p3CH9eBFoAzwP/Bh4rdo1OVmpXBcPPgijRsFf/wrdu0cNRZKy\nUowrlZcRkgHAKkIi+F68cDbu6KPDtNQf/QgqKmJHI0m5ETshVNcROACYHTmOjRoyBO67L2xzMXly\n7GgkqfHFHkOo0gZ4ADif0FP4lrFjx37zPJVKkUql8hXXt/TvD488AkOHwo03hp6DJBWCiooKKhpY\nwog9hgDQDHgMmAxct5HvRx9DqGn+/NBj+P3v4eSTY0cjSRuqzxhC7B5CGXAL8CobTwYF6YADwqK1\nQYPChnhnnx07IklquNg9hN7ADOBlwrRTgIuBKdWuKbgeQpXFi8PeR6NHwwUXxI5GkjI8ICeCpUth\nwAA46ST41a88klNSYTAhRLJsGRx6KBx+OFx5pUlBUnwmhIg+/DCcp9CtG4wbF3ZPlaRYTAiRffop\nHHFE2Azv5pvDOQuSFEMxrlROlLZtYcoUeO89GDEC1qyJHZEkZc+E0Mhatw6L1776CoYPhy++iB2R\nJGXHhJADLVrAAw/AllvCkUfCqg3WXktS4TEh5EizZnDnndCxY1jA9vHHsSOSpM0zIeRQeTlMmABd\nu4YzFT74IHZEkrRpJoQca9IErrsuTEnt1y8MOEtSIXJiZB6UlcHll2fOaX7qKdhpp9hRSdK3mRDy\n6JJLwiykvn3hySdhl11iRyRJGSaEPDv//NBTSKXgiSdg771jRyRJgQkhgtNPh1atwk6pkyZBly6x\nI5IkE0I0J5wQksLhh8PEidC7d+yIJJU6ZxlFNHRoWKswbFgYU5CkmEwIkQ0aFHoII0bAo4/GjkZS\nKTMhFIA+fcJYwhlnwF/+EjsaSaXKMYQC0bUrTJ0aFrCtXg2nnRY7IkmlxoRQQPbdF6ZNC6evff45\nnHde7IgklRITQoHZbTeYMSOc07xqFVx0UeyIJJUKE0IB6tgxJIWBA0NS+O1vPadZUu4Vw22maI7Q\nbGwrVoRZSKkUXHONSUFS9jxTOYE++giGDIF99oEbbwxbaktSbUwICfXZZ/DjH0Pz5mEh29Zbx45I\nUqGrT0JwHUIR2HJLmDIF9twz7Hs0b17siCQlkQmhSDRrBldfDVddFfY/mjABSrzjJKmRWTIqQosW\nwfDh0L07XH89tGwZOyJJhcaSUYnYfXeYMyesaO7VC5YsiR2RpCQwIRSpNm3gnnvgpz8NPYVJk2JH\nJKnYWTJKgGeegeOPh5EjYcwYp6ZKctppSVu2LCSFLbaAu+6CbbaJHZGkmBxDKGEdOoRDdvbdFw46\nCObOjR2RpGJjQkiQpk3DtNSrrw6rm//4R6emSsqeJaOEev31MDW1a1e44YZwfrOk0mHJSN/YbTeY\nPRvWrIGePWHx4tgRSSp0sRPCn4HlwCuR40ikNm3CAPPpp0OPHp7ZLGnz6loyagFUAl810uf3AVYB\ntwP7bOIaS0aN4Nln4Sc/gVNPhd/8xqmpUtLlomTUBBgO3A/8C3gbeDf9/AFgWF0/sIangY8a8N8r\nSz17wvPPw8yZ4dzmFStiRySp0NSWECqALsB/AzsD3wU6pJ//N9AVmJ7D+NSItt8epk6FAw8Mu6bO\nmRM7IkmFpLbf7reg9vJQNtdsTkfgUSwZ5dVDD8FZZ8F//iecc46nsUlJU5+SUW1nKte80bcG9iCU\njVZs4ppGN3bs2G+ep1IpUqlUrj8y8YYNg732gqOPhlmz4KabnJoqFbOKigoqKioa9B61ZY+jgD8A\nK4H/B1xPmBX0Q+CXwP9v0KcHHbGHEM3nn4eewoIF8OCD0Llz7IgkNYZcDCpfBgwCziYMLA8AuhNu\n3j+ve4gbuAd4FtgVWAqc1gjvqTpo3Tocy3nWWWHg+ZFHYkckKZbassd84ID081f49m/x1b+XS/YQ\n8uS55+DYY+Hkk8PYQtPaCoqSClYuegjlQHtga8L6g/bVvnYme8J07x6mps6eDYcdBu+/HzsiSflU\nW/Z4h5AIqq6t+av6Dxs7oI2wh5Bn69bBr34VVjnfd19IFJKKS8zzEPYCFjbSe9VkQojkr3+FM88M\nh+6MGuXUVKmYxEwIuRxPMCFE9NZbYdfU/fYLU1Nbt44dkaRsuNupGl3nzmGwuawslI7efDN2RJJy\nxYSgWrVqBbfdFspGvXrBww/HjkhSLlgyUp3Mnh2mpo4YAZdd5tRUqVDFLBnlfPsKFYaDDw5TU59/\nHgYNguXLY0ckqbFkmxAmAkds5nonJpaQbbeFKVPCyuaDDgp7IUkqftkmhBuBE4G3gCuA3XIWkYpC\neXkoGd1wAwwdCuPGgZU9qbjVdQyhHXA8YaO7fwATgDuBtY0cV3WOIRS4xYvDrql77gkTJjg1VSoE\nuR5D2Bo4FTgDeIGwC2oXYGpdPlDJ06lTOKKzefMwxvDGG7EjklQf2SaEh4BngFbAjwjbYt8LnAds\nmZvQVExatYJbb4XRo8PU1IkTY0ckqa5q6058D3gP6A9My304G2XJqMjMnQvHHAPHHQeXX+7UVCmG\nXGxdMZmwu2lF+vkzwLp6xNYQJoQi9MEHYa3C2rVw773hPGdJ+ZOLMYTDgRQhIQwHniOUj84CflDX\nAFU6ttkGJk+GPn3C1NRnn40dkaTa1Gel8s6ERHEY0AHo1qgRbcgeQpGbNAlGjoRLLw1jDO6aKuVe\nPnc77QOcAPwMWFPP98iWCSEBliwJU1N33z1MTW3TJnZEUrLletrpgcBVwLvAb4HXyH0yUELsvHMo\nG7VsGaamLloUOyJJNdWWEHYDxhJu/tcRFqOVEcYVxuUyMCVPy5Zwyy3ws5+FsYUHH4wdkaTqautO\nrAceI6w3+Ef6tbfJz9GZVSwZJdC8eWFq6jHHwBVXODVVamy5KBkNB74AZgA3AQPq+gHSxhx0UNgx\ndcECGDAAli2LHZGk2hLCw8BxwN7A08D/BbYlbHY3KLehKem23jrMQOrfPySIZ56JHZFU2urz2357\n4BjCJneHVHttZWMFVYMloxLw+ONw2mlw8cVw/vlOTZUaKp/TTmvyxDQ12NtvhzGFzp3h5pthS3fJ\nkuot5olpUoP98Icwc2ZIBAcfDK+9FjsiqbSYEFRQWrQIvYMLL4S+feH++2NHJJUOS0YqWM8/H0pI\nw4bBlVdCs2axI5KKhyUjJUqXLiEpLFoUpqb++9+xI5KSLduEcA2w12a+P7ARYpE20L49PPYYDBwY\npqY+/XTsiKTkyjYhvAb8CZgDnANsVeP7HzZmUFJ1TZrAr38dtr045hi45hqwiig1vrqOIexOOFd5\nBOGwnAnk/iQ1xxD0jXfeCSextWgB118Pe+8dOyKpMOV6DKGckBD2AFYALwEXAH+pywdKDdGxY9g1\n9bjj4JBD4IIL4NNPY0clJUO2CeFa4HVgCPBfQBfgSuBHwP65CU3auPJyGDUKFi6ETz4JZyzcdZdl\nJKmhsu1OjCT0BD7fyPfaAR83WkQbsmSkzZo1C849Nyxos4wkBbkoGXVK//lnNp4MIOxjJEXTowfM\nnRvKSP37W0aS6qu2hHA54TyEswgnpn0X+B6hZHQ2MCl9TUMMBhYBbwK/bOB7qUTVLCPtsYdlJKmu\nsulOdCbsbNoL2Cn92ruEWUb3AEsa8PnlhLGJgcC/gLmEs5qr72JjyUh1NmtWSBBt21pGUmmKudtp\nffUAxhB6CQAXpf+8oto1JgTVy9dfwx//CGPHwkknhT/bto0dlZQfuZ522ouw/uCUao+G+j6wtNrX\n/0y/JjVYVRlpwYJMGenuuy0jSZuSbUK4E7gK6A10rfZoKP9pKue22y6scn7gAbjqqjDwvGBB7Kik\nwpPt0eZdgD1p/Bv4v4Adq329I6GX8C1jx4795nkqlSKVSjVyGCoFPXrAvHmhjHTIIXDyyTBmjGUk\nJUNFRQUVFRUNeo9s60v3A+cD7zXo0zbUlDCoPCD93nNwUFl58P77cNFF8MQToddwwgke26lkyeWg\ncgVhRfIc4Kv0a5XAUXX5sE04HLiOMOPoFuB3Nb5vQlDOVM1G2mqrMBtpr83t6SsVkVwmhNQmXq+o\ny4fVkwlBOfX113DTTWEW0imnWEZSMhTjtNNsmBCUF5aRlCS5SAir2PRAciWQj9+jTAjKK8tISoJc\nrENoA2y5iYedaiVS1WykY4+FVAouvNC9kVQaPFNZ2ojy8rCD6sKF8NFHLmpTaSiGCqklI0VnGUnF\nJtdbV0glyzKSSoEJQcrSxspI99xjGUnJYclIqqdnnw0JwjKSCpElIymPevb8dhnp5z+Hzz6LHZVU\nfyYEqQGql5E+/BB2390ykoqXJSOpEVWVkdq1g/HjLSMpHktGUmQ9e8LcuXD00ZaRVHxMCFIja9oU\nzjsvU0ZyNpKKhSUjKccsIykGS0ZSAbKMpGJhQpDywDKSioElIykCy0jKNUtGUpGwjKRCZEKQIqkq\nIy1YkCkj3XuvZSTFY8lIKhAzZ4YyUvv2MG6cZSQ1jCUjqYj16hX2Rho+PJSRfvELy0jKLxOCVECq\nl5E++MAykvLLkpFUwKqXkcaPhz33jB2RioUlIylhqpeR+vWzjKTcMiFIBc4ykvLFkpFUZCwjKRuW\njKQSULOMNGIEzJplj0ENZw9BKmIffwy33hrOdN5qKxg9Go47Dlq2jB2ZYqtPD8GEICXA+vUwZUoo\nIc2bByNHwn/8B+y0U+zIFIslI6lENWkCQ4bA44+HMYavvoIDD4Rhw+Dvf7ecpOzYQ5ASatUquPPO\n0GuorAwzlU4+Gdq0iR2Z8sGSkaQNVFbC9Olhf6SKCjjppDBLadddY0emXLJkJGkDZWVhb6QHH4T5\n86F1a+jdGwYPhkmTwviDBPYQpJL05Zdw332h17ByZegxnHYafOc7sSNTY7GHICkrLVrAKafAnDlw\n993wwguw885w1lnw8suxo1MsJgSphJWVwcEHh8HnRYvgBz8Is5X69YP774e1a2NHqHyKWTI6FhgL\n7A50BV7YxHWWjKQ8WrsWHn44lJOWLIFzzgk9h+22ix2Z6qLYSkavAMOAGRFjkFRDs2Zw7LEwY0YY\ndH73XdhttzBldfbs2NEpl2ImhEXAGxE/X1It9tsPJkyAxYth//3hhBOgWze4/fYwMK1kcQxBUq3a\nt4cLL4Q334Rf/xruuitsi3HppbB0aezo1Fia5vj9pwIdNvL6JcCj2b7J2LFjv3meSqVIpVINjUtS\nPZSXw5FHhsfrr4dN9fbbDw45JKyE7tcvDFQr/yoqKqioqGjQexTCX9004EIcVJaK0mefwR13hC0y\nystDYjjppLAATvEU26BydYWQmCTVw5ZbwqhRsHAhXHcdTJ4cpq9ecAG89Vbs6FQXMRPCMGAp0B2Y\nBEyOGIukBiorgwEDwpTV55+H5s2hRw844oiQJNwio/AVw2/mloykIvXFF+H853HjQmnp3HPh1FOh\nXbvYkSWfu51KKkiVleGYz/HjQ2/h+ONDcth779iRJVcxjyFISrCyMujZM+yb9Oqr0KEDDBoE/fvD\nxImwbl3sCAX2ECRFsmZNSAbjx8M//hGO/DzjDNh229iRJYM9BElFo3nzUDp65pkwEP3WW+HQnp/+\nNJwLrfyzhyCpYHz4IdxyC9xwQygrjR4NxxwDW2wRO7Li46CypET4+mt47LEwO2nBAjjzzLDr6ve/\nHzuy4mHJSFIilJfD0KHw5JMwbRp89BHssw/85Cfw9NNh1pIanz0ESUXh00/httvCIHSLFmGLjBNP\nhFatYkdWmCwZSUq89etDz2H8eHj22bDQbdSocASoMkwIkkrKkiVw441w663QvTscdVTYcXXXXd11\n1YQgqSStXg0PPBB6DtOnhzUOffuG5JBKwR57lF6CMCFIEvDOO1BREZLD9OmwalUmQfTrF7bMaJLw\nKTUmBEnaiKVLQ2KoShIrV0KfPqH30K8f7LtvmNmUJCYEScrCe+9leg/Tp8OyZdC7d6YHccAB0DTX\n50nmmAlBkuph2TKYMSOTIJYuhV69MgmiSxdo1ix2lHVjQpCkRrBiRVgAV1VmevvtMIupapC6a9ew\nF1MhMyFIUg6sXJlJENOnwxtvQLdumR7EwQeHxXKFxIQgSXnw8cdhl9aqBPHqq6GsVDVI3b17/BXU\nJgRJiuCzz2DmzEyJ6ZVXYP/9Mz2Inj2hTZv8xmRCkKQC8PnnYVuNqh7E/Plhc76qBNGrF7Rtm9sY\nTAiSVIBWr4bnnsskiHnzwurpqkHq3r2hXbvG/UwTgiQVgS+/hDlzMiWmOXNgl10yPYi+faF9+4Z9\nhglBkorQmjUwd26mBzFrFnTsmBmk7tu37mdNmxAkKQHWroUXXshstTFzJuywQ6YH0a9fOGJ0c0wI\nkpRA69bBiy9mehBPPw3bb//tBFHzeFETgiSVgK+/hpdfziSIGTPgO9/JDFL36wc77WRCkKSSs349\nLFjw7QSxYoUJQZJKXmUlNGlS94SQ8CMiJKn01Pd0OBOCJAkwIUiS0kwIkiTAhCBJSjMhSJIAE4Ik\nKS1mQrgKeA14CZgIbBUxFkkqeTETwt+AvYD9gDeAiyPGUhQqKipih1AwbIsM2yLDtmiYmAlhKrA+\n/Xw2sEPEWIqCP+wZtkWGbZFhWzRMoYwhjAQejx2EJJWypjl+/6nAxnbtvgR4NP38UmANcHeOY5Ek\nbUbsze1OBc4EBgBfbuKat4BO+QpIkhJiMdA5dhDZGgwsBLaJHYgkKW4P4U2gObAy/fUsYFS8cCRJ\nkiQVjMHAIkKv4ZebuOYP6e+/BByQp7hiqa09TiS0w8vATGDf/IWWV9n8XAB0BdYBw/MRVCTZtEUK\nmA8sACryElUctbXFNsAU4EVCW5yat8jy78/AcuCVzVxTVPfOcsLAcUegGeEvcY8a1wwhMy31YOC5\nfAUXQTbt0YPMyu7BJLM9smmHquv+DjwGHJ2v4PIsm7ZoRxiTq1rPk9SxuWzaYizwu/TzbYAPyf2M\nylj6EG7ym0oIdbp3FsI6hG6Ev+B3gLXAvcDQGtccBdyWfj6b8MO/fZ7iy7ds2mMW8En6eVIX9WXT\nDgCjgQeAFXmLLP+yaYsRwIPAP9Nff5Cv4PIsm7b4N9A2/bwtISGsy1N8+fY08NFmvl+ne2chJITv\nA0urff3P9Gu1XZPEmyBk1x7VnU4yF/Vl+3MxFLgx/XVSD9/Opi12AdoD04B5wMn5CS3vsmmLCYRt\ncd4jlEnOz09oBalO985C6EZl+4+45oyopP7jr8v/V3/CKu9eOYolpmza4TrgovS1ZcRfV5Mr2bRF\nM+BAwpqeVoRe5HOE2nGSZNMWlxBKSSnCGqaphD3TPstdWAUt63tnISSEfwE7Vvt6RzLd3k1ds0P6\ntSTKpj0gDCRPIIwhbK7LWKyyaYcuhJIBhFrx4YQywiM5jy6/smmLpYQy0RfpxwzCTTBpCSGbtugJ\n/Ff6+WLgbWA3Qs+p1BTdvbMp4S+tI2FdQm2Dyt1J5iBqlWza4weEOmr3vEaWX9m0Q3W3ktxZRtm0\nxe7Ak4RB11aEQcY98xdi3mTTFtcAY9LPtyckjPZ5ii+GjmQ3qFw0987DgdcJN7mqbbDPTj+qjE9/\n/yVC1zjJamuPmwkDZfPTjzn5DjBPsvm5qJLkhADZtcXPCTONXgH+T16jy6/a2mIbwl5pLxHaYkS+\nA8yjewhjJWsIvcSRlPa9U5IkSZIkSZIkSZIkSZIkSZIkSSo6PyNsG9G2tgulQlQeOwApQf6HcGgR\nhC0VJEkJ0ZWw3H8LoDXh9K1N7Q/UCXiBsF/ME3mJTmpkSd0uWGosvwVaAC0Je8VcuYnrLgW+Bq4g\nbL7WA3g/HwFKkvKjGaGX8Byb/wXqFUIvAeBq4NwcxyVJyrPvEnaKXEDYVnpj9gG+JOy7/zZhv/ln\n8hKdJClvHgGOJ5zCNW4T11wO/LLGa0sI51ZIkhLgFOD+9PMmhLJRaiPXLQZ2rfHa1cAvchaZJEmS\nJEk55bRTKXv7ALfXeO1LwhRTSZIkSZIkSZIkSZIkSZIS7n8B02y2CVc2t6IAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x10654cdd0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The actvity coefficients of the system can be represented by Margules equation\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.14  Page No : 259"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "import numpy\n",
      "\n",
      "#Given\n",
      "P = 760.0#Total pressure of the mixture in mmHg\n",
      "T = [80, 90, 95, 100];#Temperature in deg celsius\n",
      "P1 = [87.4, 129.0, 162.0, 187.0];#vapour pressure of 1,1,2,2-tetrachloroethane in mmHg\n",
      "P2 = [356, 526, 648, 760];#Vapour pressure of water in mmHg\n",
      "\n",
      "#To Calculate the composition of the vapour evolved\n",
      "plt.plot(T,P1,\"green\",T,P2,\"red\")\n",
      "plt.title(\" \")\n",
      "plt.xlabel(\"Temp in deg cel\")\n",
      "plt.ylabel(\"Vapour pressure in mmHg\")\n",
      "plt.show()\n",
      "#From the graph we conclude that at 93.8 deg cel\n",
      "P1 = 155.0;#in mm Hg\n",
      "P2 = 605.0;#in mm Hg\n",
      "y_1 = P1/P;\n",
      "y_2 = P2/P;\n",
      "print 'Mole fraction of 1,(1,(2,(2-tetrachloroethane in vapour is %f'%(y_1);\n",
      "print ' Mole fraction of water in vapour is %f'%(y_2);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcU/X97/HXsA8wwEyFYVgUFIEi1q1wtdUSFRFcQGuv\nS12g2sV6rfror61if/0xffS2Cvdaa3t/ilUrQ6sj1KJoKwi2RK3WjV1xVEAqAzLsOwOz5P7xOSGZ\nkMmcZHJyksz7+XjkMclJcvLlPMJ557uc7xdERERERERERERERERERERERERERETEpanAB8Bq4Gmg\nM1ACLAY+BhYBvWJe/wlQBYzLaElFRCTjBgHrsXAAmANMBmYAP3G23Q3c79wfAawAOjrvXQu0y0xR\nRUSkOV6eiPcCdUBXoIPzdzMwEahwXlMBXOHcnwRUOu/ZgAXFaA/LJyIiLngZFDuBB4DPsIDYjTU5\nlQI1zmtqnMcA/YDqqPdXA/09LJ+IiLjgZVCcBNyFNSP1A7oDN8S8JuTcmpPoORERyYAOHu77y8Cb\nwA7n8TzgHGAL0Nf5WwZsdZ7fBAyMev8AZ1sTJ510UmjdunUeFVlEJG+tA4ak8kYvaxRVwNlAIVAA\njAXWAC9indo4f5937r8AXAt0AgYDJwPvxO503bp1hEIh3dJ0mzZtmu9lyKebjqeOZbbesFaelHhZ\no1gJzAbeAxqBZcDvgSJgLnAL1ml9tfP6Nc72NUA9cBtqehIR8Z2XQQE2FHZGzLadWO0inl85NxER\nyRK6TqGNCwQCfhchr+h4po+OZfYo8LsAKQg57W0iIuJSQUEBpHjOV41CREQSUlCIiEhCCgoREUlI\nQSEiIgl5PTxWRET8EgrB669DRUXLr01AQSEikm82bIDZsy0gCgth8uQW35KIhseKiOSD/fvh2Wct\nHFavhuuus4A46ywoKGjV8FgFhYhIrmpshFdftXCYPx/OOw+mTIFLL4XOnZu8VEEhItKWrFtn4TB7\nNvTsaeHwzW9CaWmzb2lNUKiPQkQkF+zdC3/+M8yaBR99ZMHw/PNw+umef7RqFCIi2aqhAZYssXD4\n61/hggus32HCBOjUKaldqelJRCSffPxxpGmpTx9rWrruOjjuuJR3qaYnEZFct3s3zJljAbF+Pdxw\nA7z0Epx6qt8lU41CRMQ3DQ2weLGFw4IFcNFFVnu4+GLokN7f8Wp6EhHJJWvWWDj86U/Qv7+Fw7XX\nQkmJZx+ppicRkWy3cyc884x1TG/aZE1LixfDiBF+l6xFqlGIiHilvh5eftnCYfFiG600eTKMHZv2\npqWWZPPCRcOA5VG3PcAdQAmwGPgYWAT0inrPVOAToAoY53H5RETSb/Vq+NGPYOBA+OUvLRg2bIDK\nShg/PuMh0VqZrFG0AzYBo4EfANuBGcDdQDFwDzACeBoYBfQHXgGGAo1R+1GNQkSyz/btFgSzZsHW\nrXDTTXYbNszvkgG500cxFlgLbAQmAmOc7RVAEAuKSUAlUAdscF4/Gngrg+UUEXGnrs6GsFZUwD/+\nAZddBtOnw/nnQ/v2fpcubTIZFNdiIQBQCtQ492ucxwD9aBoK1VjNQkQke6xYYeHw9NMwdKiNWpo1\nC3r08LtknshUUHQCLseamWKFnFtz1M4kIv7buhWeesoCYtcu65R+4w0YMsTvknkuU0ExAVgKbHMe\n1wB9gS1AGbDV2b4JGBj1vgHOtibKy8uP3g8EAgQCgXSXV0QEjhyxOZZmzYLXXoNJk+DBB2HMGGiX\n3StJB4NBgsFgWvaVqc7sZ4AFWH8EWCf2DmA61jfRi6ad2aOJdGYPoWmtQp3ZIuKdUAiWLbNweOYZ\nGDnSag9XXQVFRX6XLmXZfmV2N+DfwGBgn7OtBJgLHI91Wl8N7Haeuxe4GagH7gRejtmfgkJE0u/z\nz61padYsOHjQ+h1uvBEGD/a7ZGmR7UGRbgoKEUmP2lp48UULhzffhK9/3WoP556b9U1LyVJQiIi4\nFQrBO+9Yp/Tcubbwz5QpcOWV0K2b36XzTK5cRyEi4p9Nm+CPf7SAaGiwmsOyZXD88X6XLOspKEQk\nfx06ZMuFVlRYLeIb34AnnoBzzoGCXGxQ8YeCQkTySygE//qX9Ts8+yyMHm21h+eeg8JCv0uXkxQU\nIpIfPvss0rTUvr2Fw6pVMGCA3yXLeQoKEcldBw5YTWHWLFi+HK65xsJi9Gg1LaVRLh5JjXoSactC\nIXj9das5zJsHX/mK1R4mToQuXfwuXdbSqCcRyX8bNsDs2RYQhYU2pHXNGigr87tkeU9BISLZa/9+\n65CuqID337d1pefOhTPPVNNSBuXikVbTk0g+C4VsVtbHH4f58+G886z2cOml0Lmz36XLWboyW0Ry\n35491hE9c6atNf3d78L110NpacvvlRYpKEQkdy1dCo88An/5C1x8Mdx6q03jraaltFJntojklgMH\nbArvmTNtrenvfQ+qqlR7yFK5GNmqUYjkqvffh0cftSVEzz3Xag/jxuXV+tLZSjUKEcletbXWrDRz\nJqxfD9/+tq05PXBgy++VrKAahYh4Y+1aqz1UVMAZZ1jt4bLLoGNHv0vWJrWmRuFmZY59cW7VwHPA\nial8qIjkqbo6u1p63Di7YrqgwBYEevllW+9BIZGT3DQ9PQRsBCqdx9cCJwHLgT8AAU9KJiK5Y+NG\neOwxu/ZhyBCrPVx1la57yBNuqiGrgC/FbFsBnA6sBE5Ld6FaoKYnkWzQ0GA1hZkz7QK566+30Uun\nnOJ3ySQOr5ueDgLXOK9tB1wN1DrPuTlj9wKeBT4E1gD/AygBFgMfA4uc14RNBT4BqoBxLvYvIplU\nUwP33Wc1h/JyuOIKm+L7t79VSOQpN0FxPXAjsNW53QTcABQCt7t4/0PAS8AXsZpJFXAPFhRDgb87\njwFGYKE0AhgPPOyyjCLipVAIliyxabyHD7fRS88+a6vG3XxzXq81Ld6PeuqJ9WXEdnpXAWOAGqAv\nEASGY7WJRmC687qFQDnwVtR71fQkkik7d9qopUcftY7oW2+FG26Anj39LpkkyavrKH4XdT8U8wEh\n4A4X+x8MbAOexPoylgJ3AaVYSOD8DV+O2Y+moVAN9HfxOSKSLqEQvP22Tasxfz5cfrmtMx0exSRt\nTqKgWEokIH4O/BeRsHD7k74DcCbWRPUu8BsizUxhoRb2d8xz5eXlR+8HAgECgYDL4ohIs/btg6ee\nss7pAwes9vDAA3DccX6XTFIQDAYJBoNp2ZfbnwfLgTNS2H9f4F9YzQLgXKx56UTgfGALUAYswZqe\nwiFyv/N3ITANeDtqn2p6EkmnFSssHObMgQsvtIC44AJop+7BfOL1qKfW2IJdgzHUeTwW+AB4EZjs\nbJsMPO/cfwG7TqMTFi4nA+94XEaRtufgQVtn+uyzbQnRAQPggw+sg3rsWIWENJGJuZ5+ADyFnfzX\nAd8C2gNzgVuADdiQW7Dhs3Odv/XAbbhv5hKRllRVWcf0H/9oIfGf/wkTJmhSPkkoUTVkP5GTdCFw\nKOq5ENDDq0K1QE1PIsk4cgSee86al6qq4JZbbGK+QYP8LplkkBYuEpFjffop/P738OSTdiHcrbfC\npEnQqZPfJRMfZGKa8WJgYMzrl6XygSLiofp6+NvfrPbw3ntw003w6qswbJjfJZMc5iYofgFMAdZj\nF8OFne9FgUQkBZs22bUOjz0Gxx9vtYd586Cw0O+SSR5wExTXYLPFHvG4LCKSjMZGeOUVqz0Eg3Dd\ndVab+FLsHJ4ireMmKD7Amp5qWnqhiGTAtm3W7/Doo9CjB3z/+zbNRlGR3yWTPOWmY2MUMB94Hzjs\nbAsBE70qVAvUmS1tTygE//yn1R5eeskWAbr1Vhg1StNqiCtej3r6EHgEC4pwH0UIeDWVD0wDBYW0\nHbt32zUPM2daWNx6K9x4IxQX+10yyTFeB8W7WK0iWygoJL+FQjZiaeZM65AeP96al847T7UHSZnX\nw2NfB+7Dptc4HLVdw2NF0mn/fqistIDYtctWi/voI+jTx++SSRvnJl2CxJ9Gw6/hsapRSH5Zvdo6\npisr4Wtfs+aliy7SfEuSVl7XKAKp7FhEEqittQn4Zs6EDRvgO9+BlSttcj6RLOMmXYqx5U8HEQkW\ntwsXeUE1Csldn3xitYeKCjjrLKs9XHYZdMjE/JzSlnldo3gJW1NiFTbqqQDN6CriXl2drRQ3c6Y1\nM33rW7aC3ImxKwSLZCc36bIMW6UuW6hGIbnhs89sSo0nnoChQ632cOWV0Lmz3yWTNsjrhYueBr6L\nrURXEnUTkVgNDTaNxuWXw5ln2vKif/+7TbFx7bUKCclJbpqeaoH/A/yUphfcqd4sAnbdw+rV1rz0\n+OPQt6/VHubMga5d/S6dSKu5qYZ8il1wt93jsrilpifx3+7dsHgxLFxot8JCuOQSmDLFahIiWcbr\nzuxPaLq6nUjb09gIy5dbKCxYAKtW2ZXS48fD1KkwZIjfJRTxjJt0eR44BVhC00kBNTxW8tv27VZr\nWLAAXn4ZSkosGCZMsJDQWg+SQ7ye62mK8zd8dg4Pj61w+RkbgL1AA1AHjMY6w+cAJzjPXw3sdl4/\nFbjZef0dwKKY/SkoxBsNDTbH0oIFVnP48EMIBCwYLr4YBg/2u4QiKcv2NbM/Bc4CdkZtm4H1ecwA\n7sYu6rsHGIGNshoF9AdeAYbSdGU9BYWkT00NLFpk4bBoEZSVRWoNX/2qRilJ3siFoPgysCNqWxUw\nBlsMqS82n9RwrDbRCEx3XrcQKAfeinqvgkJSV19vF7uFaw1r18KFF0ZqDQMH+l1CEU943ZndWiGs\nZtAAPAo8BpQSWTGvxnkM0I+moVCN1SxEUrd5c2R00iuvwAknWDD8+tdwzjnQsaPfJRTJapkIiq8C\nnwO9gcVYbSJaiMRTghzzXHl5+dH7gUCAQCDQ2jJKPqmrgzfeiIxQqq622VgvuQQeesial0TyXDAY\nJBgMpmVfbqohw4AfceykgBek8HnTgP3Ad7BZabdgV3wvwZqe7nFed7/zd6Hznrej9qGmJznWZ59F\ngmHJEjj5ZKs1jB8Po0dr0j1p87zuo1iFLYW6DGs+AguKpS7e2xVoD+wDumEjmH4OjMX6LKZj4dCL\npp3Zo4l0Zg+haa1CQSFw+DC8/nokHLZutT6G8eNh3Dgt9iMSw+s+ijosKFJRCjwX9VlPYWHxHjAX\nuIXI8FiANc72NUA9cBuaqVbC1q+PBMOrr8LIkRYMs2bZ1dDt2/tdQpG85CZdyoFtwDyaLoW6M+6r\nvacaRVtx6JAFQniE0p49kaGrY8fCF77gdwlFcobXTU8biP+r3q+rjxQU+SoUsoV9wsHwxhtw+umR\ncDjtNC0PKpKibL+OIt0UFPnkwAHrfA6Hw+HDkWC48ELo1cvvEorkBa+C4kLg78BVxK9RzEvlA9NA\nQZHLQiGbGiMcDG+9BaNGRUYojRwJBbn4+0Uku3nVmf01LCguJ7uCQnLN3r22eE/4oreCAguG22+H\nefOgqMjvEopIArn40001imwXCtk03OERSkuX2hXQ4VrD8OGqNYhkmPooxH/hhXzCTUpdu0aCIRCA\nbt38LqFIm6agkMxLtJDPhAlayEckyygoJDNiF/IpLrZQ0EI+IlnP66DoBvwQOB6bo+lkbP6nv6by\ngWmgoMiU5hbyGT/eblrIRyRneB0Uc7F5nW7ClkTtBrwJnJbKB6aBgsJLWshHJC95HRRLsRXqlgNn\nONtWoqDID1rIR6RN8HpSwMNAdOPzSTSd80lyjRbyEZEkuEmXccBPsSnAF2MLEU3B1pDwg2oUyYpd\nyGfjRlvIJ1xr0EI+InnPy6andsD/xK7QPtvZ9jY2m6xfFBRuaCEfEYmSqT6KbKGgiEcL+YhIAl4H\nxf3AdmAOcCBqu9aj8FvsQj6nnBK5rkEL+YhIFK1H0VY0t5DP+PHW56CFfESkGboyO19pIR8RSROv\ng2Iy8WsUs1P5wDTI76CIXshnwQI4ckQL+YhIq3l9HcUoIkFRCFwALMN9ULQH3gOqsbUtSrD+jhOw\nZq2rgd3Oa6cCNwMNwB3AIpefkbsSLeQzf74W8hER36VyBuqFnegvdvn6H2KjpoqAicAMrHN8BnA3\nUAzcg12n8TQWTP2BV4ChQGPM/nK/RtHcQj7jx8MFF2ghHxFJO69rFLEO4r4jewBwCfBLLDDAwmKM\nc78CCGJBMQmoBOqwmsZaYDTwVgplzC6JFvK56y4t5CMiWc1NULwYdb8d9st/rsv9Pwj8GOgRta0U\nqHHu1ziPAfrRNBSqsZpFbmpuIZ8f/1gL+YhITnETFA9E3a8D/o2dxFtyGbAVm0ww0MxrQsTvKI9+\n/hjl5eVH7wcCAQKB5nafQYkW8rn3Xi3kIyIZFQwGCQaDadmXm/aO7sAhrIN5mHNbgIVGIr8CbgTq\ngS5YrWIe1gcRALYAZdicUcOx5iewC/wAFgLTsClDomVPH4UW8hGRHOH18NhlwLlYp/MbwLvAEeD6\nJD5nDPAjbNTTDGAHMB0Lh1407cweTaQzewjH1ir8Cwot5CMiOcrrzuwCrAP7FuBh7ES/MoXPCp/d\n78f6OG4hMjwWYI2zfQ1WC7mNxM1SmVFTY7WFhQubLuTzq19pIR8RaRPcpMty7KT9IHZy/wBYDZzq\nYbkS8bZGEb2Qz4IFsG6dFvIRkZzndY3iLuxCuOewkDgJ/9ai8EZzC/k8+KAW8hGRNi/ZdGmHdW7v\n9aAsbrW+RqGFfESkjfG6M7sS+B426uldoCfwENZX4YfUgkIL+YhIG+Z1UKwETsNGOZ2JjVBaRrb3\nUYQX8gmPUNJCPiLShnndR9EB6AhcAfw3dv2E/6OR4mluIZ9Zs7SQj4hIitwExaPYMNZVwGvAIGCP\nd0VKQnML+Vx/vYWDFvIREWm1VKohBdjU4fVpLotbodBvfqOFfEREkuB101NfbPbX/sB44IvAOcAT\nqXxgWqxeDd/+NlRWaiEfERGPuUmXhcCTwE+BL2H9FcuBkR6WK5HsmetJRCRHtKZG4aad5jhsoaIG\n53Ed/jU7iYhIhrkJiv1AdK/w2WRLZ7aIiHjOTR/Ff2CLF50IvAn0Br7hZaFERCR7tBQU7YGvObfh\nWPvWR9g04yIi0ga46dh4F1tsKFuoM1tEJEleT+HxIDbSaQ5wwHlPCJvGww8KChGRJHkdFEHiT9lx\nfiofmAYKChGRJHkdFNlGQSEikqRMXEfxO+wiu2XYFOOaRElEpI1wExTPAFuBr2PDYrdh/RUiItIG\nuAmKvsAvgE+B9cD/BkpdvK8L8DawAlgD3OdsLwEWAx8Di4DoyZqmAp8AVcA4F58hIiIecxMUi4Dr\nnNe2A65xtrWkFuvwPh2bI+p84Fxs4aPFwFDg785jgBHOvkdgkw8+7LJ8IiLiITcdG/uBrkCj87gd\nNkwWbDRUDxf76Aq8CkwB/gKMAWqw2koQu5hvqvMZ0533LATKgbdi9qXObBGRJHndmd3deV0H59YO\nKHJuLYVEO6zpqQZYAnyANVvVOM/XEGnG6gdUR723GpvaXEREfORmrqfWaMSannoCL3PstRchEi+r\nGve58vLyo/cDgQCBQKA1ZRQRyTvBYJBgMJiWfWXyOoqfAYeAbwMBYAtQhtU0hhPpq7jf+bsQmIZ1\niEdT05OISJK8bnpK1XFERjQVAhdh12K8AEx2tk8GnnfuvwBcC3QCBgMnA+94WD4REXGhpaanDli/\nwrAU9l0GVBAZLfVHbJTTcmAucAuwAbjaef0aZ/sabGGk20jcLCUiIhngphoyH7gD+LfHZXFLTU8i\nIklqTdOTm87sEqxW8Q5Nh8VOTOUDRUQkt7gJip95XgoREclamj1WRKQN8LrpaT+RTuVO2CJG+3F3\nRbaIiOQ4N0HRPep+O6xv4mxviiMiItkm1aanFdgV135Q05OISJK8bnq6Kup+O+As7AprERFpA9wE\nxeVE+ijqsYvkJnlVIBERyS4a9SQi0gZ4PdfTQOA5bAnUbdh6EgNS+TAREck9boLiSWzCvn7O7UVn\nm4iItAFuqiErgdNcbMsUNT2JiCTJ66anHcCNQHus8/sGYHsqHyYiIrnHTboMAn5H5CK7N4EfAJ95\nVKaWqEYhIpKk1tQoNOpJRKQN8Lrp6SSsA3s7NuppPnBiKh8mIiK5x01QPI2tPFeGjXr6M1DpZaFE\nRCR7uKmGrAK+FLNNo55ERHKI130U04HdRGoR1wDFwAzn8c5UPrgVFBQiIknyOig2EJnrKVaIxP0V\nA4HZQB/ntb8HfostrzoHOMHZ/9VYGAFMBW4GGrC1uhfFfqaCQkQkOdk86qmvc1uBrWuxFLgC+BbW\nOT4DuBurodwDjMD6REYB/YFXgKFAY9Q+FRQiIknyeppxgJHYSbxL1LbZLt63xbmBrYr3IRYAE4Ex\nzvYKIIgFxSSsiasOq2msBUYDb7ksp4iIpJmboCjHTuqnAH8DJgD/xF1QRBsEnAG8DZQCNc72Gucx\n2Kiq6FCoxoJFRER84iYovoGNcFqGNRmVAk8l+TndsVln7wT2xTwXovk+EOI9V15efvR+IBAgEAgk\nWRwRkfwWDAYJBoNp2Zeb9qp3sT6DpcAFwF6gChjm8jM6An8FFgC/cbZVAQGsWaoMWAIMx5qfAO53\n/i4EpmG1kDD1UYiIJMnrK7PfwzqbH3PuL8fme3JVNuAJYA2RkACbtnyyc38y8HzU9muBTsBg4GTg\nHZefJSIiHkiULg9jI5D+GbVtMNADu+DOjXOB17CL9sLVgKnYyX8ucDzHDo+9FxseW481Vb0cs0/V\nKEREgPrGenYc3MG2g9vYemAr2w5si3//4Daqbq8CD4bH3oVdXNcPu+ahEqtN+E1BISJ5KZkT/7YD\n29hdu5viwmL6dOtD76696d2tN3269qF3t9707trbtjv3R5aOBA+voxiENQddA3TFahmVwMepfGAa\nKChEJCd4eeLv060PJYUltG/X3lVZMnnB3RnYMqinYgsZ+UFBISK+yKYTf7K8DooOwCVYreJCbIRS\nJTbduB8UFCKSFrl84k+WV0ExDguHS7HO50psVNL+VD4ojRQUIhJXWzrxJ8uroPgHFg5/IfMzxCai\noBBpI3TiT59snhTQCwoKkTyw7/A+qvdWU723mo17Nx69H75t3rdZJ/40UlCISNYIhULsObznmBN/\nbCDUN9YzoMcABvYYyIAeA4659SvqxxcKv6ATf5ooKEQkI0KhELtqd9lJf09ULWBf00AAjgmA2Me9\nuvQKn7wkAxQUItJqoVCI7Qe3J6wFVO+tplP7Tgzs6Zz0i5rWAsLbe3Tu4fc/R2IoKEQkocZQI9sO\nbIvbFxB969apW+TEXxQ58Ydv/Yv6U9S5yO9/jqRAQSHShjU0NlBzoKZpLWDPxibNQZv3baZn555x\n+wLCTUL9e/Sna8eufv9zxCMKCpE8Vd9Yz5b9W5r2B0T1CWzcs5Et+7dQUljSbF9AOAS6dOjS8gdK\n3lJQiOSguoY6Nu/bnLA/YOuBrfTu1rtJc1Bsf0C/on50at/J73+OZDkFhUiWOVx/mM37NjfbJ7Bx\n70Z2HNxBaffShENEy7qX0bF9R7//OZIHFBQiHmoMNbKndg87D+1k56Gd7KrddfT+zkM72XVoFztr\nd7Lj4A427dtE9d5qdtfupqx7WbP9AQN6DKC0eykd2rlZjVik9RQUIi4crj/c/Ik+/Lg25vGhnew9\nvJfunbpTUlhCSWEJxYXFdr9LzOPCEvoX9T8aAu0K3CwgKZIZCgppM0KhEPuO7Gv+RB8vCJzHdQ11\nx57snRN+k8eFJRR3iTzu2aWnfvlLzlNQSM6pa6hrckJ3e7LfdWgXXTt2TXhij/u4sJhuHbvpSmBp\nsxQU4otQKMSBugNJnejDt0N1h5qc7N2c6MPb1bkrkrxsDoo/YOtZbMVWxQMowdbgPgHYAFwN7Hae\nmwrcDDQAdwCL4uxTQZFm9Y317K7dnfBk31y7fsf2HZM60YdvRZ2K9OteJIOyOSjOwxY6mk0kKGYA\n252/dwPFwD3ACGw97lFAf+AVYCjQGLNPBUUzDtUdSvyr3hmdE3uy339kPz069zj2xN6l+RN9cZdi\niguLdRGXSI5oTVB43UP3OjAoZttEYIxzvwIIYkExCVsoqQ6raawFRgNveVzGrBI9FLPZ0Tm18dv1\ngfi/4p3O2gE9BjTbWasROiLSHD+GcpQCNc79GucxQD+ahkI1VrPISW6GYsZrx99Tu+foUMx4I3PK\niso4pc8pcZt3CjsW+v3PFpE85PeYv5BzS/T8McrLy4/eDwQCBAKBtBbq6Ie3cihmopE5X+z9xbjt\n+L269NJQTBFptWAwSDAYTMu+MtGbOAh4kUgfRRUQALYAZcASYDjW/ARwv/N3ITANeDtmf0n3UUQP\nxUxmdM6uQ7so7FiY9MicksISDcUUkaySzZ3ZcGxQzAB2ANOxcOhF087s0UQ6s4dwbK0itOLzFa6H\nYe46tIuDdQcpLixOemROry69NNmaiOSFbA6KSqzj+jisP+K/gPnAXOB4jh0eey82PLYeuBN4Oc4+\nQ6c+fKrrk31xl2KKOheps1ZE2rRsDgovaHisiEiSWhMU+pktIiIJKShERCQhBYWIiCSkoBARkYQU\nFCIikpCCQkREElJQiIhIQgoKERFJSEEhIiIJKShERCQhBYWIiCSkoBARkYQUFCIikpCCQkREElJQ\niIhIQgoKERFJSEEhIiIJKShERCShbAyK8UAV8Alwt89lERFp87ItKNoD/w8LixHAdcAXfS1RngsG\ng34XIa/oeKaPjmX2yLagGA2sBTYAdcAzwCQ/C5Tv9J8xvXQ800fHMntkW1D0BzZGPa52tomIiE+y\nLShCfhdARESaKvC7ADHOBsqxPgqAqUAjMD3qNWuBkzJbLBGRnLcOGOJ3IdKhA/aPGQR0AlagzmwR\nEYkxAfgIqzlM9bksIiIiIiKSy6YCHwCrgaeBzkAJsBj4GFgE9PKtdLkn3vEsx0aXLXdu45t7sxzj\nTuxYvu/cB30/WyPe8SxH3083/gDUYMcvLNF3cSp2UXMVMC5DZfTEIGA9djIDmANMBmYAP3G23Q3c\nn/GS5aYw8JczAAAE1UlEQVRBxD+e04Af+lSmXDYS+0/ZBbtQdDE2yELfz9Q0dzz1/XTnPOAMmgZF\nc9/FEVj/b0fsvLCWFkbAZtvw2Gh7sYvuumKd3F2BzcBEoMJ5TQVwhS+lyz3xjucm57lsG/2WC4YD\nbwO1QAPwKnAV+n6mKt7x/LrznL6fLXsd2BWzrbnv4iSgEjsfbMCCYnSinWdzUOwEHgA+wwJiN/Yr\noxSrYuH8LfWldLkn3vF8xXnuB8BK4AnUVOLW+9ivuBIsdC8BBqDvZ6riHc+BznP6fqamue9iP6w5\nL6zFC5uzOShOAu7Cqkb9gO7ADTGvCaGL9NyKdzyvBx4BBgOnA59jYSItq8Ku71kELMCq8g0xr9H3\n073mjufD6PuZDi19FxN+T7M5KL4MvAnsAOqBecA5wBagr/OaMmCrL6XLPfGO51ew4xf+Ej1OC1VQ\naeIP2HEdg1X7P8Z+uen7mZro47kbGya/DX0/U9Xcd3ETkdoaWE14Ewlkc1BUYVdqF2JtlGOBNcCL\nWCcszt/nfSld7mnuePaNes2VNO0Mk8T6OH+Px9rTnwZeQN/PVEUfzyux41kW9by+n8lp7rv4AnAt\ndlHzYOBk4J2Mly6NfkJkOGcF1ktfgrWta/hh8mKPZydgNrAKawN+HrWpJ+M17HiuAM53tun7mbp4\nx1PfT3cqsb7HI9jEqt8i8XfxXqwTuwq4OKMlFREREREREREREREREREREREREREREZFkfYHItNOf\nE5mGehk24aFXfg5c2Ir3B4Gz0lOUpMzCJiwUSYmX/6lEvLIDm1IZbBrqfcCvM/C501r5fr/mftKc\nU9Iq2TyFh4hbBdgv9SDwHrCQyNQkQSxE3gU+BEYBz2FXq/7Cec0g7ArVP2HTmvwZm+ok1iwiv8w3\nYIvqLMWuHB4W5/WFwDPOPufF7HMcNvfWUmAu0M3ZfolTzveA32JT1sRqD/xf7Ar7lcDtzvbmjgFo\nqm4RacOmAT8C3gCOc7Zdg01JDbAEuM+5fwc2zUEpNn3JRqAYC4pGbNJJnPf+R5zPepLIGgmfAv/L\nuf994LE4r/8hNpEdwKnY/P9nOuV8lUhw3A38DFu05zPgBGd7eO6oWN/HwiX8Q68Ym97mTaxZDpoe\ngydR05O0gpqeJB90xlZIW+w8bo8FQlj4ZPu+cwvP0b8em0VzLxYa/3K2/wkLlZamtJ7n/F1GJECi\nnQc85NxfjdU8wCZnHIGd2MFC602sVrIe+LezvRL4bpz9XohND9/oPN6F/ftPIbLGSOwxEEmZgkLy\nQQE2mdxXmnn+sPO3Mep++HH4/0B0G34B7tr0w/tqoPn/S7FNPuHHi4Fvxjx3WgvvbWm/iY6BSMrU\nRyH54DDQG/ulDtYMMyLJfRwf9f5vYktLttZrRMJgJPAlLIDeAr6KLSYF1j9xMrb+wolEmp6uIX5g\nLQa+h9UawJqeqmj9MRCJS0Eh+aAB+Aa2QtoKbKjsOXFel2j0z0dYn8MaoCfWtONWc/t9BFtJcA02\ntPY9Z/t2YArWtLSSSLNTLXAb1hH9HtYktjfOfh/H+jJWYf/e67D+j0THQKOeRERaYRDZsyBOt6j7\n/w3c6VdBRMJUoxAx2fKL+ztYbeADoAfwqL/FEREREREREREREREREREREREREREREckr/x/T5jgr\n3MaCOwAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x106604950>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mole fraction of 1,(1,(2,(2-tetrachloroethane in vapour is 0.203947\n",
        " Mole fraction of water in vapour is 0.796053\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.15  Page No : 263"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "import numpy\n",
      "\n",
      "#Given\n",
      "T = [146.2, 142.3, 126.1, 115.9, 95.0, 98.0, 100.0];#Temperature in deg cel\n",
      "P1 = [760.0, 685.0, 450.3, 313.0];#Vapour pressure of 1,1,2,2-tetrachloroethane at the coressponding temperature in mm Hg\n",
      "P2_5 = 648.0;#Vapour pressure of water at 95 deg cel in mm Hg\n",
      "P2_6 = 711.0;#Vapour pressure of water at 98 deg cel in mm Hg\n",
      "P = 760.0;#Total pressure of mixture in mm Hg\n",
      "\n",
      "x1 = [0, 0, 0, 0, 0, 0, 0];\n",
      "#To plot a graph between temperature and vapour phase composition\n",
      "for i in range(0,4):\n",
      "    x1[i] = P1[i]/P;#mole fraction of 1,1,2,2-tetrachloroethane\n",
      "x2_5 = P2_5/P;#mole fraction of water at 95 deg cel\n",
      "x2_6 = P2_6/P;#mole fraction of water at 98 deg cel\n",
      "x1[4] = 1-x2_5;\n",
      "x1[5] = 1-x2_6;\n",
      "\n",
      "plt.plot(x1,T)\n",
      "plt.title(\"\")\n",
      "plt.xlabel(\"mole fraction of 1,1,2,2-tetrachloroethane\")\n",
      "plt.ylabel(\"Temperature in deg cel\")\n",
      "plt.show()\n",
      "print 'The required graph has been ploted in the graphic window';\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2clPP+x/FXUo4kRaQUiyTlNoTurLsUupObHDpSEjly\nk7tynPYc/A7qIBwUyQktuTtKhNJWSkWlNkk3yil0d066r93a+f3xuebMNM3OXrM711xz834+HvuY\na665Zuaz1+xen/neg4iIiIiIiIiIiIiIiIiIiIiIiIiISFZ5FVgLFIbtywNWA/Ocn/Zhjw0AlgKL\ngbbJCVFERPzQGjiDvRPEIOCeKMc2Ab4FqgA5wDJgP4/jExGRGLy8CE8DNkbZXynKvk5APlAMrMQS\nRHPPIhMRkTL58S39DmA+MAKo6eyrh1U9Ba0GjkpyXCIiEibZCeJF4FjgdOBX4O8xjg0kJSIREYlq\n/yS/37qw7VeAcc72z0CDsMfqO/v2cvzxxweWL1/uXXQiIplpOdAw3icluwRRN2y7C6EG7LFAN6Aq\nVsI4AZgd+eTly5cTCAT0EwgwaNAg32NIlR+dC50LnYvYP8Dx5blge1mCyAfOB2oDq7AeTLlY9VIA\nWAH0cY5dBIxxbncDfVEVk4iIr7xMENdF2fdqjOP/z/kREZEUoLEGaSo3N9fvEFKGzkWIzkWIzkXF\nRRuTkMoCTn2aiIi4VKlSJSjH9V4lCBERiUoJQkREolKCEBGRqJQgREQkKiUIERGJSglCRESiUoIQ\nEZGokj1Zn4iIJMmGDTBsWPmfrxKEiEiG+e476N0bTjgBVqwo/+soQYiIZICSEvj4Y2jbFi65BI45\nBpYsgVdeKf9rqopJRCSNbdsGo0bB0KFQrRrcfTdccw0ccEDFX1sJQkQkDa1aBf/4h5UQWreG4cPt\ntlICZ9hTFZOISBqZNQu6dYPTToOdO2H2bPjgA2jTJrHJATSbq4hIytu9G95/H55+GtasgX79oGdP\nOOQQd88v72yuShAiIilq40Z4+WV4/nnIybH2hY4doXLl+F6nvAlCbRAiIilmyRJrdB49Gq64wqqQ\nzjwz+XEoQYiIpIBAAL74wqqRZs+GPn1sPEO9ev7FpAQhIuKjnTvhzTfhmWcsSdx1F7zzDhx4oN+R\nKUGIiPhizRp44QWbCuOss+Cpp+DiixPfE6ki1M1VRCSJ5s2DG2+Ek06yuZKmTIHx4230cyolB1CC\nEBHx3J498K9/wfnnWy+kJk1g+XIrQTRu7Hd0pVMVk4iIR7Zvt26qzz4LtWtbN9WuXaFKFb8jc0cJ\nQkQkwQIBePttuP9+a1944w0499zUq0IqixKEiEgCffutjXTevNkSQ5s2fkdUfmqDEBFJgA0b4NZb\n4dJL4frrYc6c9E4OoAQhIlIhxcXWxtCkiU2xvXixDXKLdzqMVORlgngVWAsURnmsP1ACHBq2bwCw\nFFgMtPUwLhGRhJg4EU4/HcaOhcmTbXqMWrX8jipxvGyDGAk8B4yK2N8AuAT4KWxfE+Ba5/YoYCLQ\nCEsiIiIpZcUK6N/f2hv+/nfo3Dn9GqDd8LIEMQ3YGGX/U8D9Efs6AflAMbASWAY09zA2EZG4bdsG\nDz9sPZPOPBMWLYIuXTIzOUDy2yA6AauBBRH76zn7g1ZjJQkREd8FApCfb4Pali+H+fPhoYfgd7/z\nOzJvJbObazVgIFa9FBQr72rhBxHx3bx51m112zZLEq1a+R1R8iQzQRwP5ADznfv1gTnAOcDPWNsE\nYY/9HO1F8vLy/redm5tLbm5uwgMVEVm/3koJY8fCI4/YCm7p0jOpoKCAgoKCCr+O1zVnOcA44JQo\nj60AzgT+izVOj8baHYKN1A3ZtxShFeVExFPFxTZH0qOP2niGQYPSv2dSKq4olw+cDxwGrAL+jPVs\nCgq/0i8Cxji3u4G+qIpJRJLs889tPYZ69WyW1SZN/I7IX+nW9q4ShIgk3I8/WrfV+fNtXYZOnTKr\nZ1J5SxAaSS0iWWvrVmtnaN4czj7buq1m6piG8lCCEJGsEwjYMp+NG8NPP1nJYeDAzO+2Gi/N5ioi\nWWXuXOu2umOHTcndsqXfEaUulSBEJCusWwe9e8Nll0GPHjB7tpJDWZQgRCSjFRfDM89A06ZQvbrN\ntnrzzekzpsFPqmISkYz12WfWbbVBA5g6FU46ye+I0osShIhknOXL4Z574LvvrNtqhw7qmVQeqmIS\nkYyxdav1Rmre3NaAXrgQOnZUcigvJQgRSXuBgK3/3LgxrFoFCxbAgAHqtlpRqmISkbT2zTfWbbWo\nCMaMgRYt/I4oc6gEISJpad06643UoQP06mXdVpUcEksJQkTSSlGRNTw3bQqHHGLdVnv1gv10NUs4\nVTGJSNqYMMG6rebkwLRp1uYg3lGCEJGUt2yZdVtdtAiefhquuEI9k5JBhTIRSVlbtsCDD1qX1ZYt\nbVyDxjQkT6wSxFZKX7QnANRIfDgiIlBSYrOtPvggXHSRdVutV8/vqLJPrARRPWlRiIg4vv7auq3u\n3g3vvWelB/GH2yqm1sBNzvbhwLHehCMi2WrtWujZ00Y+33ILzJql5OA3NwkiD3gAGODcrwq86VVA\nIpJdiorg73+3bquHHmrdVm+6Sd1WU4GbXkxdgDOAOc79n1H1k4gkwCefwN13w7HHwvTpcOKJfkck\n4dwkiF1ASdj9gzyKRUSyxNKl1m118WLrtnr55eqZlIrcFOLeAYYBNYFbgEnAK14GJSKZacsWeOAB\nOO88aN3aZlvVmIbU5aYEMRhoC2wBGgEPA597GZSIZJaSEnj9dZthtW1bKCyEunX9jkrK4iZvHwus\nAXY49w8E6gArPYoplkAgUNrQDBFJRbNnW7fVkhJ47jk45xy/I8o+layIFnc5zU0V07vAnrD7Jc4+\nEZFSrVljvZE6d4Zbb4WZM5Uc0o2bBFEZKAq7vwuo4k04IpLuiopgyBA4+WQ4/HBriO7RQ91W05Gb\nNogNQCfgQ+d+J2efiMhePv7Yuq02bAgzZkCjRn5HJBXhpk6qITYwLjgTymqgO7DMq6BiUBuESApa\nssQSw9Kl8MwzcNllfkck4crbBhHPEw52brfE+yYJpAQhkkI2b4ZHH4VXX7WJ9fr1g6pV/Y5KInnZ\nSB20hfiSw6vAWqAwbN8jwHzgW2w8RYOwxwYAS4HFWLdaEUlRJSXw2mu2YM/69Tae4d57lRwyjZfD\nU1pjU4aPAk5x9h1MKMncAZwG3Aw0AUYDZwNHAROxMRfhI7hBJQgR382aZSWFSpXg2WeheXO/I5Ky\nJKMEEa9pwMaIfeElkOqEGrs7AflAMTa+YhmgPzuRFPLrr9YbqUsXuP12a4RWcshsbnoxdWXfhYM2\nYVVH68rxno9hjdw7CCWBesDMsGNWYyUJEfHZrl0wdCg8+ST06gU//AAHH1z28yT9uUkQPYHzgMnO\n/VxgLjbC+q9YFVI8HnJ+HgSeIbTORKSodUl5eXn/287NzSU3NzfOtxcRt8aPh7vusraGr76CE07w\nOyJxo6CggIKCggq/jps6qc+wb/xrnft1gNeB64CpQNMYz80BxhFqgwh3NPAxcDKWLAAed24nAIOA\nWRHPURuESBL88IN1W12+3Lqttm/vd0RSEV62QTQglBzAqpUaAP9h7xHWboR//+gEzHO2xwLdsMWI\njnWOmx3na4tIBW3ebL2RWra0taALC5UcspmbKqbJwHhgDJaBugIF2LoQv8V4Xj5wPlAbWIWVCC4D\nTsTmdloO3OYcu8h5/UXAbqAvpVQxiUjiBbutPvSQDXL77juoU8fvqMRvbooc+wFXAi2d+9OB9/Dn\nAq4qJpEEmznTuq1WrmzdVs8+2++IJNG8Hkmdg1X7fA5Uwybw82NEtRKESIL88ouNfp40CR5/HK6/\nXhPqZSov2yBuwVaVe8m5Xx/4V7xvJCKpYdcueOIJOPVUqFfPZlvt3l3JQfblpg3idmy8QnCcwhLg\nCM8iEhFPBALw0Ue2FvRJJ1nVUsOGfkclqcxNgtjl/IQ/R/U8Imlk8WIbz7ByJTz/PFx6qd8RSTpw\nU6icgg1sqwZcglU3jfMyKBFJjE2boH9/aNXK1oJesEDJQdxzkyAeBNZjU2v0wQa3/cnLoESkYkpK\nYMQIGwG9aZN1W73nHs22KvHxcjZXL6gXk0gZZswIrcvw7LNw1ll+RyR+K28vplhtEIUxHgsAp8b7\nZiLinV9+gQcegMmTQ91WK6XbV0BJKbESRAfntq9z+zqWga73NCIRicuuXfD00zBkCNxyizVIV6/u\nd1SSCdx8v/gWOD1i3zzgjMSHUyZVMYmEmTQJbrvNuq0+9RQcf7zfEUkq8qKK6X+vDbQCvnTutyzP\nG4lI4qxfb5PqFRRYt9UOHcp8ikjc3PRi6gm8APzk/Lzg7BORJAsEbFK9k0+Gww6z3klKDuKVeEoC\nNZ3bWDO4ek1VTJK1fvgBbr0VtmyB4cOhWTO/I5J0kYw1qX/D3+QgkpV27YK//tXWaOjUyabIUHKQ\nZHDTBiEiPpk6Ffr0gUaNYN48aNDA74gkmyhBiKSg//4X7rsPPvvMBrt17qwxDZJ8bhNES2xNiODx\nAWCUFwGJZLNAAN5803ooXXONNULXqOF3VJKt3CSIN4DjsPEQe8L2K0GIJNCyZTamYf16GDsWmjf3\nOyLJdm4Krd8DTUiNKb7Vi0kyTlGRjYJ+6ilb4e2uu2B/Vf5KAnk5UG4hUBf4Jd4XF5HYpk+3Ruij\nj4ZvvoGcHL8jEglxkyAOBxYBswktHBQAOnoVlEim++03Ky2MHQvPPANXX61GaEk9bhJEntdBiGSL\nQADGjIG777YxDYsWQc2aZT9PxA/p9p1FbRCStlasgNtvh3//20ZCt2jhd0SSLbwYST3dud0KbIn4\n2RzvG4lkq+JiGDwYzj4bWreGuXOVHCQ9xKpiauncamZ5kXKaPdvWaDjiCJg1S9NxS3qJZy4mEXFp\n82a44w5rZ7jvPvj0UyUHST9KECIJFAjA++9Dkyawc6eNhNbSn5KuNBxHJEH+/W/44x9h6VIYPRra\ntPE7IpGKcVuCyAEudrarAW5mh3kVWAsUhu0bjI3Mng+8DxwS9tgAYCmwGGjrMi4R3+3ebWMZmjWz\nhuhvv1VykMzgJkHcArwDDHPu1wc+cPG8kUC7iH2fAU2B04AlWFIAm8rjWue2HbZqnaq/JOXNmQPn\nnGMD3mbMgIcfhgMO8DsqkcRwcxG+HVuTOti1dQlwhIvnTQM2Ruz7HChxtmdhyQagE5APFAMrgWWA\npiqTlLV1qw12u+wy6NcPJk2yNRtEMombBLGL0BQbYO0WiRit1hP42NmuB6wOe2w1cFQC3kMk4caN\ng6ZNYeNGa4S+8UY1QktmctNIPQV4CGt7uAToC4yr4Ps+BBQBo2McEzUJ5eXl/W87NzeX3NzcCoYi\n4s7PP1tpobAQRo6ECy/0OyKR6AoKCigoKKjw67j53rMfcDOhhuNPgVdwV4rIwZLJKWH7egC9gYuA\nnc6+B53bx53bCcAgrBoqnKbakKTbswdeegny8my9hoED4Xe/8zsqEfe8mu57f2y678bA8PjD2kc7\n4D7gfELJAWAsVpp4CqtaOgGbPVbEV/Pn23TcVarAlCk2vkEkW5TVBrEb+AE4phyvnQ/MAE4EVmFt\nDs9hU3d8DszDeiuBTSc+xrn9BKvGUlFBfLNtG9x/P1xyCdx8s5KDZCc3RY5pwBnYN/ptzj6/1oNQ\nFZN4bsIE6NsXzjvPVnmrU8fviEQqxssV5R6OOxqRNLRmjS33+fXX8OKLcOmlfkck4q9065ynEoQk\nXEkJvPwy/OlPVp308MNQrZrfUYkkjpcliK2E2gOqAlWcfW6m2xBJaQsXWiN0IABffAGnnFL2c0Sy\nhZuBctWBg52fA4ErCTUui6SlHTvgoYfgggvghhvgyy+VHEQixTvfUQnwL/adY0kkbUycaMlg6VJY\nsMDGNuynmb9E9uGmiqlr2PZ+wJnADm/CEfHOunXQvz9Mmwb/+AdcfrnfEYmkNjcJogOhNojd2GR6\nnbwKSCTRAgGbGmPAAOje3eZPOuggv6MSSX1uEsQrwJcR+1oC6xIfjkhiLV5sjdDbt9v4hjPO8Dsi\nkfThpub12Sj7nk90ICKJtHOnzZ3UqhV07QozZyo5iMQrVgniPKAFtvbDPYT60B6MFvORFFZQYKWG\nJk1sdbf69ct8iohEEStBVMWSQWXnNmgzcJWXQYmURyAAjz1mM68+/zx07ux3RCLpzc3IuhysYToV\naCS1RFVcbPMnzZ0LH30Edev6HZFI6vByJPV2YAi2XvSBzr4AoOVSJCVs3QpXX22ruk2ZAtWr+x2R\nSGZw05bwJrAYOA7Iw0oT33gXkoh7v/4K559v7Qxjxyo5iCSSmwRxGNbVtQhbfvQmVHqQFPD999Ci\nBVx5JQwfDvu7KQ+LiGtu/qWKnNs1wBXAL0AtzyIScWHqVKtWGjLEBr+JSOK5SRCPAjWB/tiKcDWA\nu70MSiSWt96Cfv0gPx8uusjvaEQyV1kJojLQCPgI+A3I9TogkdIEAjB4sHVhnTRJs6+KeM1Nt6ev\ngbO9DsQldXPNUnv2WKnhyy9h/HgNfhOJh5fdXL/EptZ4G1uTuhLWzXVuvG8mUh7bt8N119nt1Klw\nyCF+RySSHdxklAJCs7mGuyCxobiiEkSWWbcOOnSAxo1tWdCqVf2OSCT9lLcEoTWpJWUtWQLt29uK\nb3l5NhBOROJX3gThZhzEkcAIYIJzvwnQK943EonHjBnQpg0MHAh/+YuSg4gf3CSI14DPgHrO/aWo\nm6t46P33baK9116DXvoqIuIbNwmiNtZAvce5X4ytLCeScEOHWm+lTz+Fdlr5XMRXbnoxbcWm2wg6\nF9jkTTiSrUpKbL3oTz+F6dPhmGP8jkhE3CSI/sA4bLK+GcDhaD0ISaAdO2y6jA0bLDnU0kQuIinB\nbdPf/sCJzvE/YNVMflAvpgyzYQN06mQlhpEj4YAD/I5IJPN42YvpQOBObE6mvwJ/BH7n4nmvAmuB\nwrB9VwPfYe0ZzSKOH4A1gC8G2rp4fUlzP/4ILVtC69bwxhtKDiKpxk2CGIV1bX0WG1HdFHjdxfNG\nApHNjIVAF2BqxP4mwLXObTvgBZexSZqaPRtatYK77oLHH4f99GmLpBw3bRBNsQt30BfAIhfPm4Yt\nVxpucSnHdgLysaqrlcAyoDkw08X7SJoZN866r44YYaOkRSQ1ufneNhc4L+z+ucCcBMdRD1gddn81\ncFSC30NSwIsvQp8+NuGekoNIanNTgjgLmA6swuZkOhprqC507p/qUWxRW6Pz8vL+t52bm0tubq5H\nby+JVFJio6I/+MBmZD3uOL8jEslcBQUFFBQUVPh13LRq55Tx+MoynjsOiJy5fzLWfTY4I+yDzu3j\nzu0EYBAwK+J56sWUhnbtgptugp9+snWjDzus7OeISOJ42YtpJTYwrgZwaNjPSmInh7KEBzsW6AZU\nBY4FTgBmV+C1JUVs3AiXXgpFRTBxopKDSDpxU8X0CNAD+BEoCdtf1nTf+cD52FQdq7ASwX+xZUtr\nA+OBeUB7rNF7jHO7G+hLKVVMkj5++slmY23XztaOVk8lkfTipsixBDgZKPI4FjdUxZQm5s6Fjh3h\nvvvgzjv9jkYku3m5otx3QC1s0JtImSZMgD/8wXosde3qdzQiUl5uMsrZwIfAQmCXsy8AdPQqqBhU\ngkhxI0bAQw/ZlN0tWvgdjYiAtyWIUVjvooWE2iB0lZa9BAIwaBCMHm3rRjdq5HdEIlJRbqf7ftbr\nQCR9FRVB796weLGtBHfEEX5HJCKJ4KbI8RRWtTSWUBUThMYwJJOqmFLMpk1w1VVQrRrk59utiKSW\n8lYxuXlCAdGrlMrq5uoFJYgUsno1XH65zcY6dChUrux3RCISjZcJIpUoQaSIBQvgiivgjjvg3nuh\nUrr9JYlkES9HUh8JjMCmvwCb2VVLyWexSZPg4ovhySdtnIOSg0hmcpMgXgM+w2ZcBVvU526vApLU\nNmoU/P738O670K2b39GIiJdiJYhgD6fawNvYKnBgazbs9jIoST2BADz6qHVlLSiANm38jkhEvBar\nm+tsbFnQrViSCDoXm7xPskRxMfTta9NnzJgBdev6HZGIJEOsBBGsWe6PjaQ+DpgBHA5c5XFckiK2\nboWrr7Z2hilToHp1vyMSkWSJ1by4GhsDUcn5OcC53YVVNz3leXT7Ui+mJPr1V+up1KyZzau0v5th\nlSKScrzoxVQZOBioDhyElTYqA9Wc/ZLBvv/e5lK68koYPlzJQSQbxcoo84AzkhWISypBJMHUqVat\nNGQIdO/udzQiUlFeTtYnWeStt6BfP5s246KL/I5GRPwUK6McBvwnWYG4pBKERwIBGDwYnn8exo+H\nUyJXEReRtOVFCSLVkoN4ZM8eKzV8+aV1Y61f3++IRCQVqIopy23fDtddZ7dTp8Ihh/gdkYikCi0j\nn8XWrYMLLoBataxaSclBRMIpQWSpJUvgvPOgXTsYORKqVvU7IhFJNapiykIzZtj4hsceg16al1dE\nSqEEkWXefx9uvdVmZW3Xzu9oRCSVKUFkkaFDrSvrp5/CGak2BFJEUo4SRBYoKYH+/S0xTJ8Oxxzj\nd0Qikg6UIDLcjh02XcaGDZYcatXyOyIRSRfqxZTBNmywpUGrVrXSg5KDiMRDCSJD/fgjtGxpK7+9\n8QYccIDfEYlIuvEyQbwKrAUKw/YdCnwOLMHWua4Z9tgAbL3rxUBbD+PKeLNnQ6tWcNdd8Le/wX76\nGiAi5eDlpWMkENmR8kEsQTQCJjn3AZoA1zq37YAXPI4tY40bZ4v8DBsGt93mdzQiks68vAhPAzZG\n7OsI/NPZ/ifQ2dnuBOQDxcBKYBnQ3MPYMtKLL0KfPjZtRocOfkcjIuku2b2Y6mDVTji3dZztesDM\nsONWA0clMa60VlICAwfCBx/YjKzHHed3RCKSCfysxgk4P7Ee30e/fvDVV7Z+gcCuXXDDDTBtmk2h\noeQgIomS7BLEWuBIYA1QF1jn7P8ZaBB2XH1n3z4KC/PIz4fiYmjfPpf778/l9NOhUtxLYaS/jRuh\nSxeoXRsmToQDD/Q7IhFJBQUFBRQUFFT4dby+rOYA44Dg+mRPYgsRPYE1UNd0bpsAo7F2h6OAiUBD\n9i1FBAKBAIEAFBba8phvvWX9/Lt1s5/GjT3+jVLETz9B+/Y2n9KQIeqpJCKlK++Kcl4miHzgfKA2\nVnL4M/AhMAY4GmuMvgb4zTl+INAT2A3cCXwa5TX3WXI0EICvv7Y1lMeMgcMPtwVwrr0WcnIS/jul\nhLlzoWNHuO8+uPNOv6MRkVSXignCCzHXpN6zxxpp33oL3n0XGja0UsXVV0O9ekmM0kMTJsAf/gAv\nvWRTdouIlEUJIkJxMUyaZMniww9t9tJu3aBrVzjsMI+j9MiIEfCnP8F770GLFn5HIyLpQgkihp07\n4ZNPLFlMmGBTUHTrBp07Q40aHkSZYIEADBoEo0fDxx9Do0Z+RyQi6UQJwqWtW220cX4+TJlik9nd\ncIONPq5SJUFRJlBREfTuDYsXW9xHHOF3RCKSbpQgymHjRlthbeRIWLECevaEm29OnfUSNm2Cq66C\natUsoVWr5ndEIpKOypsgsrpzZK1atibzl1/adNibNkGzZnD55TB2LOze7V9sq1fbTKwnnmhJTMlB\nRJItq0sQ0Wzfbt1lhw2zi3SvXvbToEHZz02UBQusyqtfP1sJLhsHAYpI4qgEkSDVqkGPHjadx/jx\nsH49nHaajTsYP9660npp0iRrFxk8GO69V8lBRPyTbpcfz0sQ0WzbZj2ghg2DNWusnaJXLzgqwdMJ\njhplg9/eeceql0REEkGN1Ekybx4MHw5vv20X8T59oG1bqFy5/K8ZCMBjj9k4h48/hpNOSly8IiJK\nEEm2dav1LBo2zNZ+7t3bekHVrRvf6xQXQ9++Nn3GRx/F/3wRkbIoQfhozhxLFO+8AxdeaKWKiy8u\newK9rVttGpBKlaxhvHr15MQrItlFCSIFbN5so52HDbPt3r3hppugTp19j/31V+up1KyZrQS3f7In\nXheRrKFeTCmgRg249VarLsrPh6VLbfrxa66x3kklJXbc99/bXEpdu1p7hpKDiKQilSA8tmkTvPGG\nlSp27LBk8cortoZD9+5+Ryci2UBVTCkuEICZM+HNN22a7gsv9DsiEckWShAiIhKV2iBERCShlCBE\nRCQqJQgREYlKCUJERKJSghARkaiUIEREJColCBERiUoJQkREolKCEBGRqJQgREQkKiUIERGJSglC\nRESi8itB3AkUAgudbYBDgc+BJcBnQE1/QhMREfAnQZwM3AycDZwGXAEcDzyIJYhGwCTnvpSioKDA\n7xBShs5FiM5FiM5FxfmRIBoDs4CdwB5gCtAV6Aj80znmn0BnH2JLG/rjD9G5CNG5CNG5qDg/EsRC\noDVWpVQNuAyoD9QB1jrHrHXui4iIT/xYDXkx8ATWzrAN+BYrSYQLOD8iIuKTVFhR7jFgNdZYnQus\nAeoCk7HqqHDLsPYKERFxbznQ0O8g3DrCuT0a+B44BHgSeMDZ/yDwuA9xiYiIz6YC32HVSxc4+w4F\nJqJuriIiIiIiEq92WGP2UkLVTpGedR6fD5yRpLj8UNa5uB47BwuA6cCpyQst6dz8XYCNsdkNXJmM\noHzi5lzkAvOwnoMFSYnKH2Wdi9rABKzGYiHQI2mRJderWA/QwhjHpP11szLWGJ0DVME+1JMijrkM\n+NjZPgeYmazgkszNuTgPa8MB+0fJ5nMRPO4L4CNsfE0mcnMuamLVuPWd+7WTFVySuTkXecDfnO3a\nwH/wpwen11pjF/3SEkTc181UnIupOfaBrwSKgbeAThHHhA+qm4X9M2TiuAk35+IrYJOzPYvQBSHT\nuDkXAHcA7wLrkxZZ8rk5F78H3sN6CAJsSFZwSebmXPwK1HC2a2AJYneS4kumacDGGI/Hfd1MxQRx\nFLAq7P5qZ19Zx2TihdHNuQjXi9A3hEzj9u+iE/Cicz9Tx9K4ORcnYB0/JgPfAN2TE1rSuTkXLwNN\ngV+wqpXaJf1UAAAHjklEQVQ7yU5xXzdTsZjl9p86cgxHJl4M4vmdLgB6Ai09isVvbs7FM1gX6QD2\n95EK43y84OZcVAGaARdhMxZ8hVUpLPUwLj+4ORcDsaqnXGwc1efYPHBbvAsrZcV13UzFBPEz0CDs\nfgNCxeTSjqnv7Ms0bs4FWMP0y1gbRKwiZjpzcy7OxKoYwOqa22PVDmM9jy653JyLVVi10g7nZyp2\nUcy0BOHmXLTABuSCDRhbAZyIlayySUZcN/fHPsQcoCplN1KfS+Y2zLo5F0djdbDnJjWy5HNzLsKN\nJHN7Mbk5F42xcUWVsRJEIdAkeSEmjZtz8RQwyNmugyWQQ5MUX7Ll4K6ROq2vm+2BH7AL3wBnXx/n\nJ+h55/H5WFE6U5V1Ll7BGt3mOT+zkx1gErn5uwjK5AQB7s7FvVhPpkKgX1KjS66yzkVtYBx2rSjE\nGvAzUT7WzlKElSB7kr3XTREREREREREREREREREREREREREREUl/PYDn4nxOPombu2ZgxP3pCXjN\nWBpjg6bmAMdGPPYY8G9iT7XQGJueYifQv5RjDgTGY6siLiQ0Y2gkt1Oyn4/NzlsWt8e5tZLoA8d6\nEP/fTLw6sffAtgJsRLykgFScrE+8Ee9cVUcCZ2HTMwyNeKxyOd5/QMR9r+eM6gy8g11sVkQ89iE2\nC2gs/8Fmhh1SxnFPYhe4M7DfqV2UY34E2mCJ4RFgeCmvdQE2LURZYh1Xns8mOHdVtP3xKM97d2Hv\nEd6ZOKeaiOdysEVRRmKjRt8E2mLfSJdgi+SAfRP8F/aN9SvgFGf/jYS+DR6OTYk92/mJdrFZAGzH\nRme3wr7ZPQ18DdwDXIEN1Z+LTX4WXGe8uhPjAieGK7Fv1rud13rdOW6rc1sJGIyNcF0AXOPsz3Xe\n8x3sG/obpZyX05045gPvY1MYX4ZN8bwaWxuiNG4maxtE6SWISM9gM+rGUovo82nlEIp5HpZson1O\nx4QdNxf7bF4DXsLOwxDsb2GG8/h0oJHzHpWdxwux83W7s38FtmbCHOwzONHZH/43k4Ody/nYFB7B\nOX0i3zva5wE2Sd4n2PxHU533aIEl4h+dWI/DZp99HJuO+gfn9wu+/1QnxjmESlC5lP53cqbz2DfY\ngkFHIpKhcrCJ55piF9VvgBHOYx2BD5zt54CHne0LsIsN7F1dMJrQN/ijgUVR3u8Y9p7TZTI2TD8o\nfM3wmwl9034Cm/sm8rjIi3HwfldsDfJKWJL5CftHzgV+A+o5j80geqljAbZQCsBfsCQGdmG/J8rx\n0WKIxW2CqEloTqBY7qX0EkRkzKV9TpHHjcQmJAyWAg4m9G3+YizJANwGjCFUc1DLuV1BKFnchk38\nCHv/zYwjNGX4TYT+3l6LeO/SPo9JQENn+xznfjD28ClRJmNfGMCm0Pjc2T4QOMDZPgH7ogKl/51U\ncbYPc467ltD/i7iUirO5SulWYHPr4NxOdLYXErowtST0DzcZ+wc5OOJ1Lmbvet+DsQndtofti1bl\n8HbYdgPsYnMkNknaj87+i7B/xqDfSvtlHK2wC2EAWAdMwb4Bb8a+Nf/iHPct9juGt10c4vxMc+7/\nE/smGYw/WdN974+11wzF6vNL42ZK9vCYo31OB0U5Duz3DlbP1ARGYRfkAKH/84uwtTJKnPvhM/++\n79zOJfocVudi1XZg39KfdLYDYe9d2udxEFZaCH42YH8zQZG/S3gsOWHHP49Vee7BkkRQtL+TTdiX\nqeD/SOWwY8QlJYj0sitsuwSblCu4Hf5ZljXneyXsW1wR8dkWtv0cVmr4CGs0zYvx/rFEq/8Oxhv+\n++6h7L/X8NdJZl32cKw65NkYx0Sbkr0v0BuL9fIoz4nncwpP7o9g39C7YBfLyRGvGU3wXMc6z6U9\nd3sp+4PH74f9zqWtgRz5WUWL5W6saq07drHfGeX4yOd8h7s2HSmFGqkzzzSs1wxY8Xs9ofr+oM/Y\ne3bP012+dvgFogahb2Q9wvZ/Tqi6AkJVTMVEv/BMw0oc+2F17m2wb4Rukswm7MITrKfujtU5R8bq\nVhfg/yL2RXudSUBdZ/tR7FzcHeO1jsa+Fd+AzaQZ9AJ20WyGXfy2sHdpr7TPKfK4SLE+mz6Eqp9q\n4d4MoJuzfT3WHhCptM9jC1b6vcrZX4lQT64thJYDjaUGsMbZ/gOxG8QDWMI+nNA0+FXIzOnOPaUE\nkV4iv2kFomznYY1z87EL1I1hjweP6Yf1UJqPfcu6pRzvl4dVGXyDJaHgY49iF55CQqt4gX3LXkCo\nkTp4/AeEGrQnAfdhVU3h8ZYWD87vN9h5/qnAX8OOLa0U8SQ2HfKBzu2fnf3HE1rf+0jnsbuBP2Hd\nYqtj/zPHA//FFlwZiFUDzcXae3pGea0/Y+fkRWJPyT4OSyzBRurSPqfgccFG6uDvG/77/c15vHLY\nY684v8cC7LO5LkoM4ectfPsOrO1hPpYg7ox4TlBpn8f1WAP+t1iVaEdn/1vYZz4Ha6SOFg9YMr3R\nef6J7P2lJ9rnXIwlpCec58wjsV2DRSTLvE6oUbM0TSm766vb1xIRERERERERERERERERERERERER\nERERERGRBPh/OQohdiTCkTUAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x1064ce750>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required graph has been ploted in the graphic window\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.16  Page No : 266"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "#Given\n",
      "#B = -(1.203*10**10)*(T**2.7); second virial coefficient, T is in K\n",
      "#math.log P = 6.95464-(1344.8/(219.482+t))...(a);Vapour pressure of toulene\n",
      "t = 107.2;#Temperature in deg cel\n",
      "T = t+273.16;#in K\n",
      "H_ex = 7964.0;#experimental value of heat of vapourisation in Kcal/Kgmole\n",
      "d = 800.0;#density of liquid toulene in Kg/cubic meter\n",
      "R = 1.98;#gas consmath.tant in Kcal/Kgmole K\n",
      "M = 92.14;#molecular weight of toulene\n",
      "\n",
      "#To Calculate the heat of vapourization of toulene by umath.sing ideal gas law, second virial coefficient but neglecting vl and including vl\n",
      "#From equation (a), let K = dmath.logP/dT\n",
      "K = 1344.8/(219.482+t)**2;\n",
      "#(i)Umath.sing ideal gas behaviour\n",
      "#From equation 13.112(page no 286)\n",
      "H_c = (2.303*R*(T**2))*K;\n",
      "print 'i)The heat of vapourization  umath.sing ideal gas behaviour is %f Kcal/Kgmole'%(H_c);\n",
      "D = ((H_c-H_ex)/H_c)*100;\n",
      "print '    The deviation is %f percent'%(D);\n",
      "\n",
      "#(ii)Umath.sing second virial coeff but neglecting vl\n",
      "#From equation(a)\n",
      "P = 10**(6.95464-1344.8/(219.482+t));#in mm Hg\n",
      "P1 = P*1.033*10**4/760;#in Kgf/sq m\n",
      "B = -((1.203*10**10)/(T**2.7))*10**-3;#in cubic meter/Kgmole\n",
      "#From equation 13.111 (page no 286) neglecting vl,\n",
      "l = (R*T)+((B*P1)/427);#in Kcal/Kgmole\n",
      "H_c = K*2.303*T*l;\n",
      "print 'ii)The heat of vapourisation umath.sing second virial coefficient but neglecting vl is %f Kcal/Kgmole'%(H_c);\n",
      "D = ((H_c-H_ex)/H_c)*100;\n",
      "print '    The deviation in this case is %f percent'%(D);\n",
      "\n",
      "#(iii)Umath.sing second virial coeff including vl\n",
      "vl = M/d;#Liquid specific volume in cubic meter/Kgmole\n",
      "n = P1*vl/427;#in Kcal/Kgmole\n",
      "H_c = K*2.303*T*(l-n);\n",
      "print 'iii)The heat of vapourisation umath.sing second virial coefficient including vl is %f Kcal/Kgmole'%(H_c);\n",
      "D = ((H_c-H_ex)/H_c)*100;\n",
      "print '     The deviation in this case is %f'%(D);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i)The heat of vapourization  umath.sing ideal gas behaviour is 8312.967730 Kcal/Kgmole\n",
        "    The deviation is 4.197872 percent\n",
        "ii)The heat of vapourisation umath.sing second virial coefficient but neglecting vl is 7998.487742 Kcal/Kgmole\n",
        "    The deviation in this case is 0.431178 percent\n",
        "iii)The heat of vapourisation umath.sing second virial coefficient including vl is 7970.612948 Kcal/Kgmole\n",
        "     The deviation in this case is 0.082967\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.17  Page No : 269"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "#Given\n",
      "H_ex = 539.0;#Heat of vapoization of water in Kcal/Kg\n",
      "Tc = 647.0;#Critical temperature in K\n",
      "Pc = 218.0;#Critical pressure in atm\n",
      "Tb = 373.0;#Boiling point of water in K\n",
      "t = 100.0;#temperature in deg cel\n",
      "M = 18.0;#Molecular weight of water\n",
      "P = 1.0;#pressure at boiling point in atm\n",
      "P1 = 1.033*10**4;#pressure in Kgf/sq m\n",
      "\n",
      "#To Calculate the heat of vapourisation of water by Vishwanath and Kuloor method and by Riedel's method and compare with the experimental value\n",
      "#(i) Umath.sing Vishwanath and Kuloor method\n",
      "H_c = (4.7*Tc*((1-(P/Pc))**0.69)*math.log(P/Pc))/((1-(Tc/Tb))*18);\n",
      "print 'i)The heat of vapourisation of water umath.sing Vishwanath and Kuloor method is %f Kcal/Kg'%(H_c);\n",
      "D = (H_c-H_ex)*100/H_c;\n",
      "print '    The deviation occurs umath.sing this method is %f percent'%(D);\n",
      "\n",
      "#(ii)Umath.sing Riedel's method\n",
      "H_c = (Tb*2.17*(math.log(218)-1))/((0.93-(Tb/Tc))*18);\n",
      "print 'ii)The heat of vapourisation of water umath.sing Riedel method is %f Kcal/Kg'%(H_c);\n",
      "D = (H_c-H_ex)*100/H_c;\n",
      "print '    The deviation occurs umath.sing this method is %f percent'%(D);\n",
      "\n",
      "#(iii)By umath.sing given vapour equation; math.logP = 8.2157-(2218.8537/(273.16+t)), t is in deg cel\n",
      "#From steam table,\n",
      "Vv = 1.673;#in cubic meter/Kg\n",
      "Vl = 0.001;#in cubic meter/Kg\n",
      "H_c = (2218.8/(273.16+t)**2)*(2.3*Tb*P1*(Vv-Vl)/427);\n",
      "print 'iii)The heat of vapourisation umath.sing the given vapour equation is %f Kcal/Kg'%(H_c);\n",
      "D = (H_c-H_ex)*100/H_c;\n",
      "print '    The deviation occurs umath.sing this method is %f percent'%(D);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i)The heat of vapourisation of water umath.sing Vishwanath and Kuloor method is 1234.397750 Kcal/Kg\n",
        "    The deviation occurs umath.sing this method is 56.334982 percent\n",
        "ii)The heat of vapourisation of water umath.sing Riedel method is 557.743828 Kcal/Kg\n",
        "    The deviation occurs umath.sing this method is 3.360652 percent\n",
        "iii)The heat of vapourisation umath.sing the given vapour equation is 552.934102 Kcal/Kg\n",
        "    The deviation occurs umath.sing this method is 2.520029 percent\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.18  Page No : 270"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "#Given\n",
      "T1 = 273-87.0;#temp in K\n",
      "T2 = 273.0;#temp in K\n",
      "H1 = 115.0;#Latent heat of saturated ethane at 1 atm and -87 deg cel in Kcal/Kg\n",
      "H2_ex = 72.44;#Experimental value of latent heat at 0 deg cel in Kcal/Kg\n",
      "Tc = 306.0;#Critical temperature in K\n",
      "M = 30.0;#Molecular weight of ethane\n",
      "\n",
      "#To Calculate the latent heat of saturated ethane at 0 deg cel\n",
      "Tr1 = T1/Tc;#reduced temp in K\n",
      "Tr2 = T2/Tc;#reduced temp in K\n",
      "#(i)Umath.sing Waton's method:\n",
      "H2_c = H1*((1-Tr2)/(1-Tr1))**0.38;\n",
      "print 'i)The latent heat of saturated ethane at 0 deg cel umath.sing Waton method is %f Kcal/Kg'%(H2_c);\n",
      "D = (H2_ex-H2_c)*100/H2_ex;\n",
      "print '   The deviation occurs umath.sing this method is %f percent'%(D);\n",
      "\n",
      "#(ii)Umath.sing Vishwanath and Kuloor method\n",
      "#From equation 13.117 (page no 289)\n",
      "n = (0.00133*(H1*M/T1)+0.8794)**(1/0.1);\n",
      "H2_c = H1*((1-Tr2)/(1-Tr1))**n;\n",
      "print 'ii)The latent heat of saturated ethane at 0 deg cel umath.sing Vishwanath and Kuloor method is %f Kcal/Kg'%(H2_c);\n",
      "D = (H2_ex-H2_c)*100/H2_ex;\n",
      "print '   The deviation occurs umath.sing this method is %f percent'%(D);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i)The latent heat of saturated ethane at 0 deg cel umath.sing Waton method is 70.411608 Kcal/Kg\n",
        "   The deviation occurs umath.sing this method is 2.800099 percent\n",
        "ii)The latent heat of saturated ethane at 0 deg cel umath.sing Vishwanath and Kuloor method is 71.809846 Kcal/Kg\n",
        "   The deviation occurs umath.sing this method is 0.869898 percent\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13.19  Page No : 272"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "#Given\n",
      "H_s_ex = 32.7;#experimental value of latent heat of the solution in KJ/mole\n",
      "x1 = 0.536;#mole percent of toulene in the solution\n",
      "x2 = 1-0.536;#mole percent of 1,1,1-trichloroethane in the solution\n",
      "H1 = 33.34;#Latent heat of toulene in KJ/gmole\n",
      "H2 = 29.72;#Latent heat of 1,1,1-trichloroethane in KJ/gmole\n",
      "He = 0.0;#excess enthalpy is neglected\n",
      "Cp1 = 39.55;#Specific heat of toulene in cal/gmole deg cel\n",
      "Cp2 = 24.62;#Specific heat of 1,1,1-trichloroethane in cal/gmole deg cel\n",
      "T_D = 100.0;#dew point temperature in deg cel\n",
      "T_B = 92.6;#bubble point temperature in deg cel\n",
      "\n",
      "#To calculate the latent heat of the solution and compare it with the one which calculated from the given vapour pressure equation\n",
      "#(i)Calculation of latent heat of the solution\n",
      "#From equation 13.118 (page no 291)\n",
      "H_s = H1*x1+H2*x2+He+(Cp1*x1+Cp2*x2)*10**-3*4.17*(T_D-T_B);\n",
      "print 'i)The latent heat of the solution is %f KJ/gmole'%(H_s);\n",
      "D = ((H_s_ex-H_s)*100)/H_s_ex;\n",
      "print '    The deviation occurs using this method is %f percent'%(D);\n",
      "\n",
      "#(ii)Calculation of latent heat from the vapour pressure equation\n",
      "#From equation (a) (page no 291)\n",
      "K = 1657.599/((273.16+5)**2);\n",
      "H_s = (K*2.303*8.314*(273.16+5)**2)*10**-3;\n",
      "print 'ii)The latent heat of the solution is %f KJ/gmole'%(H_s);\n",
      "D = ((H_s_ex-H_s)*100)/H_s_ex;\n",
      "print '    The deviation occurs using this method is %f percent'%(D);\n",
      "#end\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i)The latent heat of the solution is 32.666984 KJ/gmole\n",
        "    The deviation occurs using this method is 0.100965 percent\n",
        "ii)The latent heat of the solution is 31.738283 KJ/gmole\n",
        "    The deviation occurs using this method is 2.941029 percent\n"
       ]
      }
     ],
     "prompt_number": 23
    }
   ],
   "metadata": {}
  }
 ]
}