summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch13_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch13_1.ipynb')
-rwxr-xr-xChemical_Engineering_Thermodynamics_by_S._Sundaram/ch13_1.ipynb956
1 files changed, 956 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch13_1.ipynb b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch13_1.ipynb
new file mode 100755
index 00000000..2d92c849
--- /dev/null
+++ b/Chemical_Engineering_Thermodynamics_by_S._Sundaram/ch13_1.ipynb
@@ -0,0 +1,956 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:98e5c2c383a1a1550ca177061033a45bcfa7bc464bb9def6e21c0e4e3bbd4374"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13 : Thermodynamics in Phase Equilibria"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.1 Page No : 238"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "#N2 obeys the relation : Z = 1+(2.11*10**-4*P)\n",
+ "Tc = 126;#Critical temperature in K\n",
+ "Pc = 33.5;#Critical pressure in atm\n",
+ "T = 373;#in K\n",
+ "P = 100;#in atm\n",
+ "\n",
+ "#To Calculate the fugacity of N2 at 373K and 100 atm\n",
+ "#(i)Umath.sing the Z relation given above\n",
+ "#From equation 13.12 (page no 239)\n",
+ "phi = math.e**(2.11*10**-4*(P-0));#fugacity coefficient\n",
+ "f = phi*P;\n",
+ "print \"i)The fugacity of N2 umath.sing the given Z relation is %f atm\"%(f);\n",
+ "\n",
+ "#(ii)Umath.sing the fugacity chart given in figure A.2.9\n",
+ "Pr = P/Pc;#Reduced pressure in atm\n",
+ "Tr = T/Tc;#Reduced temperature in K\n",
+ "#From figure A.2.9,\n",
+ "phi = 1.04\n",
+ "f = phi*P;\n",
+ "print \" ii)The fugacity of N2 umath.sing the fugacity chart is %f atm\"%(f);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The fugacity of N2 umath.sing the given Z relation is 102.132418 atm\n",
+ " ii)The fugacity of N2 umath.sing the fugacity chart is 104.000000 atm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.2 Page No : 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "P1 = 50*1.03*10**4;#Initial pressure in Kgf/sq m\n",
+ "T = 373.0;#Temperature in K\n",
+ "P2 = 1.03*10**4;#Final pressure in Kgf/sq m\n",
+ "V = 0.001*18;#Volume in cubic meter\n",
+ "R = 848.0;#gas consmath.tant in m Kgf/Kgmole K\n",
+ "\n",
+ "#To Calculate the fugacity of liquid water\n",
+ "#From equation 13.13(page no 240)\n",
+ "del_u = (V/(R*T))*(P2-P1);#del_u = ln(f2/f1); Change in chemical potential\n",
+ "f1 = P2;#in Kgf/sq m\n",
+ "f2 = f1*(math.e**del_u);\n",
+ "print \"The fugacity of the liquid water at 50 atm is %4.2e Kgf/sq m\"%(f2);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fugacity of the liquid water at 50 atm is 1.00e+04 Kgf/sq m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.3 Page No : 242"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "\n",
+ "#Given\n",
+ "x1 = 0.1;#mole fraction of methane\n",
+ "x2 = 0.9;#mole fraction of propane\n",
+ "P = [28.1,31.6,35.1];#Pressure in Kgf/sq cm are\n",
+ "K1 = [5.8,5.10,4.36];#Vapourisation consmath.tants of methane at the corresponding presssures\n",
+ "K2 = [0.61,0.58,0.56];#Vapourisation consmath.tants of propane at the correspondig pressures\n",
+ "\n",
+ "#To Calculate the bubble point pressure of the solution\n",
+ "#From equation 13.27 (page no 245)\n",
+ "y1 = []\n",
+ "y2 = []\n",
+ "y = []\n",
+ "for i in range(0,3):\n",
+ " y1.append(K1[i]*x1);#mole fraction of methane in the vapour phase\n",
+ " y2.append(K2[i]*x2);#mole fraction of propane in the vapour phase\n",
+ " y.append(y1[i]+y2[i]);#sum of the mole fraction in the vapour phase\n",
+ " \n",
+ "\n",
+ "plt.plot(P,y)\n",
+ "plt.title(\"y vs pressure\")\n",
+ "plt.xlabel(\"P\")\n",
+ "plt.ylabel(\"y\")\n",
+ "plt.show()\n",
+ "P1 = numpy.interp(1,y,P)\n",
+ "print \"The bubble point pressure of the solution is %f Kgf/sq cm\"%(P1);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH5RJREFUeJzt3X2clXP+x/HXmWkqhUIRaYWkmYpGjCI6W9rKXcoPvzyI\nfqxtV2ndJITGvW6oLLsbi3XfYm3EDxt2fnKTlOl+ZlSKbkgSKtLNnN8fn2vMmemc00zNdb7XOef9\nfDzO45xzXefmPdN0Puf63l0gIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIuKjeq4DANmuA4iI\nuDQCeLHatgeAiTEeOxJ4odq2Sd4F4FJgGfAD8BlwYZz3LPTec4r32DnAMVH7VwDXA/OBn4AsoAvw\nAbABmAt0j3p8vPdtA/wf8B2wzns/gNZAufe6FYqAy6Je733gfuAb4HagPjAe+Bz4CvgL0DDOzyci\nklZaAJuAJt79esBaID/GY38FbAb29u5nA2uAAqAx8D1wlLfvICAvznsWAluBAd5rXIt9wFd8c18B\nfAK0BBp4198Afbz9p3n3D9jF+z4H3Ojdrg+c5N1uzc6F4j/A/3i3LwW2AVd6j2kITACmAk29n/8V\n4O44P5+ISNp5Hbjcu30msDDBY2cAF3u3ewFLvduNsW/7A4C9dvF+hdjRQYUQVnBO9u4vxz6sK4wE\nnqz2Gm8Ag4BGCd73CWAyVmiitWbXheLzavk2AUdEbeuKFTeRGsna9UNEAu0J4CLv9kXAUwke+yww\n0Lt9IfCMd3szcAEwBPvQfxU4OsHrrIq6HfHuHxK1bWXU7cOA87CCUHE5GTsa+jHB+16PfcjPworf\n4AR5qot+/+ZYQZoT9f6vA81q8XoiIiltL+BboAOwETg0wWObYx/OLbEPzFjFoAHWnv9unNcoBD6M\nup/FzkcUPaL23wA8nOgHqMH7noz1dxzh/QzlVDahAZRQ9YhiRrV8m4GDa5BBJCYdUUiq+wn4J3a0\n8BFVv+1Xtw7r+P071vRS5m0/EOiHNUFtwz5YdyR4nc5Af6xP5I/AFmBmnMc+DZwF/Abrx2gIhLFi\nleh9z6Oy6H2HHbmUez/DaqwJLRsrEEcmyFoOPIJ18Df3trX08oiIZIxu2AfiJTV47EXeY6+N2tYC\nKyDfYUca7wDt4jx/NDZ6KnrUU6eo/dWPKMA6zIuA9cDXwDSsCCR63zFY0duI9aVcHvV6fbBCtwE7\nConuo7iEnY9KGgB3YaOrvgcWA0Pj/HwiSfcYNgplQZz97bDD+C1U/Y8LNnpkPlCMtdOKxNOKqiOa\n/DSaxP0gImnH76anx6kcFhjLemAY9q2ough2iJ6PfSMTiSUL+5LxHDa6x2+hJLyHSKD4PXN0Bjac\nL5513uWMOPv1n1ISaYwdsS4n8ReSuhTxLiIZIwhLDMQTAd7COvcmYx1yItGS1dwU7bYkv5+Ic0Eu\nFCcDX2IjNaYDpVQd9iciIkkQ5ELxpXe9DvgX1k9RpVAceeSRkWXLliU7l4hIqluGrSdWI0GZR1G9\nL6IRsI93uzE25nunkVPLli0jEokE/jJ69GjnGZRTOVM1o3LW/YXEc2924vcRxXPYSpnNsGUFRgM5\n3r7J2Djyj4F9sbHtw7FF0Q4EXorK+Azwb5+ziohIDH4XioG72P8VNga+uk1UncQkIiKOBKXpKa2F\nw2HXEWpEOetWKuRMhYygnK6l+jyFiNfeJiIiNRQKhaAWn/86ohARkYRUKEREJCEVChERSUiFQkRE\nElKhEBGRhFQoREQkIRUKERFJSIVCREQSUqEQEZGEVChERCQhFQoREUkorQrFZ5+5TiAikn7SplCs\nXg1du8KwYbBhg+s0IiLpI20KRcuWsHgxbN8OubnwyCOwY4frVCIiqS8tlxkvLoahQ2HrVnjwQTjx\nRAfJREQCSsuMA/n58N57cNVVMGAADB4Ma9e6TiUikprSslAAhEJw8cVQUgLNmkGHDjBxImzb5jqZ\niEhqScump1hKSmD4cFizBh54AHr08DmZiEhA1bbpKWMKhT0Ypk6Fq6+GggIYPx5+9Ssf04mIBJD6\nKBIIhaB/fxsdlZcHxx0Hd90FW7a4TiYiElwZVSgqNGoEhYXw8ccwe7b1X7z6qutUIiLBlFFNT/G8\n+aaNkGrTxjq8jzqqDpKJiASUmp52Q+/esGABhMM2u/umm2DTJtepRESCQYXCU78+jBgB8+fDF1/Y\n7O4pU6wDXEQkk6npKY733rPZ3U2bwp/+BB07+vI2IiJJp6anOtKtG8yZA+efDz17Wh/Gd9+5TiUi\nknwqFAlkZ8Mf/mDDabduhXbt4NFHobzcdTIRkeRR01MtzJljy5hv326LDRYUJO2tRUTqjJqefNS5\nc2XfxTnnwGWXwddfu04lIuIvFYpaysqCQYNs7aimTaF9e1s7avt218lERPyhpqc9tHixdXSvXWuj\no8Jhp3FERHZJiwI6CQEvvQTXXGMT9saPh0MPdZ1KRCQ29VE4EArBuedac1TbttCpE9xzD/z8s+tk\nIiJ7ToWiDjVqBLffDrNmwcyZttjga6+5TiUismf8LhSPAWuBBXH2twM+BLYA11bb1wcoBZYAI/0K\n6IcjjoCXX7Y+i6uvhrPOgqVLXacSEdk9fheKx7EP/HjWA8OA8dW2ZwMPes/NAwYCuX4E9FOfPrbY\nYLdu0KULjBoFmze7TiUiUjt+F4oZwIYE+9cBs4HqZ7IuAJYCK7x9U4B+PuTzXYMGMHIkzJsHK1bY\nYoPPP6/FBkUkdQS1j6IlsDLq/ipvW8pq2RKeeQaeftrOqtezJyxc6DqViMiu1XMdII4af98uLCz8\n5XY4HCYc8IkMp55qS4FMngw9esCFF9rZ9po2dZ1MRNJVUVERRUVFu/38ZMyjaA1MAxIt1D0a2ATc\n593vAhRS2b9xI1AOjKn2vEDMo9hd69ZZv8W0aXD33XDJJTbzW0TET6k6j6J64NnAUViRqQ9cALyS\n5Ey+a94cHn7YCsXkyXDSSXYebxGRIPH7iOI5oDvQDBsmOxrI8fZNBloAHwP7YkcMG7FRTpuAvsBE\nbATUo8A9MV4/pY8oopWXwxNP2GlYzzzTjjCaN3edSkTSkZbwSHHffQe33Wad3qNHw5AhUC+oPUki\nkpJUKNLEwoW22OA339i5L0491XUiEUkXKhRpJBKBF16A666zSXvjxtkwWxGRPZGqndkSQyhk5+wu\nKbFlQY45Bu69V4sNikhyqVCkgMaN4c474aOP4P33oWNHeP1116lEJFOo6SkFvfYa/PGPthzIhAlw\n5JGuE4lIKlHTUwY44wzr7O7aFU48EW65BX780XUqEUlXKhQpqkEDuPFGKC6GJUvs6OLFF7XYoIjU\nPTU9pYmiIhg2DA480M6DkZfnOpGIBJWanjJUOGxHF/36Qffudv7u7793nUpE0oEKRRqpV88m6S1a\nBD/8AO3a2bIg5eWuk4lIKlPTUxqbNQuGDoXsbJvd3bmz60QiEgRqepJfFBTAzJlw+eU2Uup3v7Ml\nQUREakOFIs1lZcFll0FpKTRsaJ3cDz0E27e7TiYiqUJNTxlmwQIbHfXddzY66pRTXCcSkWTTooCy\nS5EIPP+8LTZ46qm22OAhh7hOJSLJoj4K2aVQCC64wBYbPOwwW2xw7FjYutV1MhEJIh1RCEuW2NpR\nS5fCAw9A796uE4mIn9T0JLvt1VetYHToYIsNHn6460Qi4gc1PcluO/NMW2zwhBPg+OPtVKxabFBE\nVCikioYNYdQoWw6kpMSG0770khYbFMlkanqShN55x5YFOfhg67/IzXWdSET2lJqepE716GFHF2ec\nYUNpr7vO1pESkcyhQiG7lJNjndwLF8K339pig08+qcUGRTKFmp6k1mbOtNnd9evbYoP5+a4TiUht\nqOlJfNelC3z0EQweDH37wu9/D+vXu04lIn5RoZDdkpVlq9KWlNh5MPLy4K9/hR07XCcTkbqmpiep\nE/PmWXPUpk222ODJJ7tOJCLxaGa2OBOJwJQpMGKEjZYaM8aG1YpIsKiPQpwJhWDgQDv3xSGHQMeO\nMH68FhsUSXU6ohDffPopDB8OK1bYZL1evVwnEhFQ05METCQC06bZPIz8fLjvPmjd2nUqkcympicJ\nlFAIzj4bFi+GTp2gc2e47Tb46SfXyUSkplQoJCkaNoRbboFPPrEZ3nl5MHWqFhsUSQVqehIn3n7b\nhtO2amX9F0cf7TqRSOZQ05OkhJ49be5Fnz425+L662HjRtepRCQWvwvFY8BaYEGCxzwALAHmAdGr\nBq0A5gPFwCyf8olDOTlw9dXWFPX117bY4DPPqDlKJGj8bno6BdgEPAl0jLH/dGCod30iMAno4u1b\nDnQGvk3w+mp6SiMffghDh0KjRja7u1Mn14lE0lPQmp5mABsS7D8beMK7/RHQFDgoan+q96FILXTt\nCrNmwcUXQ+/ecOWVtqy5iLjluo+iJbAy6v4qbxtABHgLmA38Nsm5xJHsbLjiCltsEOyMepMna7FB\nEZdcFwqIf9TQDeuz6AtciTVjSYbYf3946CF48014+mkoKLCmKRFJvnqO33810Crq/qHeNoA13vU6\n4F9AAdaUVUVhYeEvt8PhMOFw2IeY4kqnTvDuu/Dss/Bf/2XLgNx7L7Ro4TqZSOooKiqiqKhot5+f\njD6A1sA0dt2Z3QWY6F03ArKBjUBj4N/Abd51NHVmZ5CNG+GOO+Cxx+Cmm2weRk6O61QiqSdoaz09\nB3QHmmHDZEcDFf+1J3vXDwJ9gM3AYOAT4AjgJW9/PeAZ4J4Yr69CkYHKyuCqq2DlShsd1bOn60Qi\nqSVohcJvKhQZKhKBl1+2eRidO9tig4cd5jqVSGoI2vBYEV+EQnDOObbY4DHHwHHHWbPUli2uk4mk\nHxUKSWl77QW33gpz5sDcubbY4CuvaHa3SF1S05OklenTrf+idWuYNAnatnWdSCR41PQkGa1XL1ts\n8LTT4KST4IYbYNMm16lEUpsKhaSd+vXh2mthwQJYs8YWG3z2WTVHiewuNT1J2nv/fVtscN99bTjt\nMce4TiTilpqeRKo5+WSYPRsGDrSmqWHDYEOipSpFpAoVCskI2dkwZIgNp92+3RYbfOQRLTYoUhNq\nepKMVFxszVFbt8KDD8KJJ7pOJJI8anoSqYH8fHjvPRtKO2AADB4Ma9e6TiUSTCoUkrFCITtJUkkJ\nNGsGHTrAxImwbZvrZCLBoqYnEU9JCQwfbkNqJ0ywjm+RdKRFAUX2QCQCU6fCiBFw9NEwbpwtCyKS\nTtRHIbIHQiHo3x8WLbLly7t3hz/8Ab7+2nUyEXdUKERiaNAArrkGSkttpndeHowZo9VpJTOpUIgk\ncMAB1sH9wQd2zu7cXJgyRcuBSGapSRvVVcBTQBDnsqqPQpKqqMiONBo0gPvvh65dXScSqT0/+igO\nAj4GnsdOWZrqHeAiuy0ctuVAfv97OP98uOACWL7cdSoRf9WkUIwC2gKPAZcCS4C7gSP9iyUSXFlZ\nMGiQnbu7Qwc4/ni4/nr4/nvXyUT8UdM+inLgK2AtsAPYD3gRGOdTLpHAa9QIbrnFljNfv96G0z70\nkCbsSfqpSTPScGAQsB74G/AvYBtWZJbg9shCfRQSGPPm2XkwVq+G8ePh9NNtuK1I0Pgx4e42rNnp\n8xj78oDFNX0zH6hQSKBEIvC//wvXXQctW8J998Gxx7pOJVKVZmaLBMC2bbaM+W23wZlnwp13wsEH\nu04lYjQzWyQAcnJsRndZmc3F6NABbr8dNm92nUyk9lQoRHzUtCmMHWtDahctsvN3P/kklJe7TiZS\nc2p6EkmiDz6wDu+tW63/Ihx2nUgykfooRAIuEoHnn4cbbrCO7rFjoW1b16kkk6iPQiTgQiGb0V1S\nAiedZJfhw20uhkgQqVCIONKwoc3oLimB7dut/+L+++Hnn10nE6lKhULEsebNbUb3u+/CO+9A+/bw\nz39qhVoJDvVRiATM9OnW4d2kiR1hnHCC60SSbtRHIZLievWC4mK49FLo1w8uugi++MJ1KslkKhQi\nAZSdDZddBp9+CkccAfn5MGoUbNzoOplkIhUKkQDbe2+b0T1vHqxaZcNoH37YOr9FkkV9FCIpZM4c\n679Yv95WqO3d23UiSUWacCeS5iIRePllGDEC2rSxgtG+vetUkkqC1pn9GHayowUJHvMAdl6LeUB+\n1PY+QKm3b6RfAUVSTSgE55xja0f16QO//jUMGQJr17pOJunK70LxOPaBH8/pQBvgKOAK4C/e9mzg\nQe+5ecBAINe/mCKpp359m9FdWmpn22vfHu65B376yXUySTd+F4oZwIYE+88GnvBufwQ0BVoABcBS\nYAV2Nr0pQD/fUoqksP33t/kWM2faKrXt2sGzz2qFWqk7rkc9tQRWRt1f5W07JM52EYmjTRub0f3U\nU1Y4unaF9993nUrSgetCAanfoS4SKKeeCrNmwbBhMHAgnHceLFvmOpWksnqO33810Crq/qHY0UNO\nte2tvO07KSws/OV2OBwmrAX+RcjKshndAwbAhAlQUACDB8PNN9vJlCSzFBUVUVRUtNvPT8a3+dbA\nNKBjjH2nA0O96y7ARO+6HlAG9ATWALOwDu2Sas/X8FiRGvjqK7j1VhtWe/PNNkoqJ8d1KnElaPMo\nngO6A82wYbKjsaMFgMnedcXops3AYOATb3tfrHBkA48C98R4fRUKkVpYsMAm7H3+OYwbB2edZcNt\nJbMErVD4TYVCpJYiEXjjDSsYLVrYKVnz83f9PEkfQZtwJyIBEwpB374wfz6cf77dHjwYVq92nUyC\nSoVCJEPVq2d9FWVldmRxzDFQWAibN7tOJkGjQiGS4Zo0sRndc+bYsuZt28Ljj8OOHa6TSVCoj0JE\nqpg5E665xpYCue8+6NHDdSKpa+rMFpE9FonAiy/CyJHQoQOMHWtLg0h6UGe2iOyxUMhmdJeU2Ezv\nbt1spvc337hOJi6oUIhIXA0awHXX2Qq1ALm5dv6Ln392m0uSS4VCRHapWTP4059gxgx4910rGC+8\nYE1Ukv7URyEitfb22zZhr3FjW6n2xBNdJ5LaUB+FiPiuZ08bTnv55bbw4IUX2rIgkp5UKERkt2Rn\n24zusjKbe3HccXDjjfDDD66TSV1ToRCRPbL33jaje/58W6W2bVv4619h+3bXyaSuqI9CROpUcbH1\nX6xdayOk+vTRCrVBowl3IuJcJALTpsGIEdC6tRWMjrHOSCNOqDNbRJwLheDss2HhQjjzTDjtNLji\nCmuaktSjQiEivsnJsRndpaWw777Qvj3cdZetIyWpQ4VCRHy3337W/DRrFsydC0cfDU8/DeXlrpNJ\nTaiPQkSS7r33bIXaSMQm7J1yiutEmUWd2SKSEsrLYcoUm3tx/PEwZgy0aeM6VWZQZ7aIpISsLJvR\nXVpqhaJLFzvK2LDBdTKpToVCRJzaay87qli0CH780fovJk2CrVtdJ5MKKhQiEggHHWQzut95B954\nw0ZITZ2qFWqDQH0UIhJIb75pM7ybNbNTsnbu7DpR+lAfhYikhd69bSjthRfapL1Bg2DVKtepMpMK\nhYgEVr16NqO7rAxatYJjj4Vbb4VNm1wnyywqFCISePvuazO6i4vhs89shdpHH4UdO1wnywzqoxCR\nlDNrlvVf/PCD9V+cdprrRKlFE+5EJCNEIvDSS3D99dCuHYwbB3l5rlOlBnVmi0hGCIXg3HNh8WI7\nNWv37nDllbBunetk6UeFQkRSWoMGNqO7tNQ6v3NzYexY2LLFdbL0oUIhImnhgANsRvcHH9glNxf+\n8Q9N2KsL6qMQkbRUVGRHGg0a2Aq1Xbu6ThQc6qMQEQHCYZg9G4YMgfPOg//+b1i+3HWq1KRCISJp\nKysLLrnEJuzl5dkqtSNHwvffu06WWlQoRCTtNW5sM7oXLIBvvrEJe3/+M2zf7jpZalAfhYhknLlz\nbcLemjV2itbTT7fhtpkiaBPu+gATgWzgb8CYavv3Ax4DjgC2AP8DLPL2rQB+AHYA24CCGK+vQiEi\nuyUSgddegxEjoGVLm+F97LGuUyVHkDqzs4EHsWKRBwwEcqs95ibgE+BYYBAwKWpfBAgD+cQuEiIi\nuy0UslVp58+H/v3hN7+Byy6DL790nSx4/CwUBcBS7MhgGzAF6FftMbnAf7zbZUBroHnU/gw6GBQR\nF3JybEZ3WZnNxejQAe64w862J8bPQtESWBl1f5W3Ldo8YIB3uwA4DDjUux8B3gJmA7/1L6aICDRt\najO6Z8+GhQvtlKxPPgnl5a6TuVfPx9euSefBvVhzUzGwwLuuWDi4G7AGO8KYDpQCM6q/QGFh4S+3\nw+Ew4XB4DyKLSKY7/HCb0f3BBzZhb9Ik679I5Y+WoqIiioqKdvv5fjbtdAEKsT4KgBuBcnbu0I62\nHOgIVD8tyWhv233VtqszW0R8E4lY0bjhBujUyY442rZ1nWrPBakzezZwFNbvUB+4AHil2mOaePvA\nmpf+DysIjYB9vO2Ngd9gRxwiIkkTCtmM7tJSWwLkpJNg+HBYv951suTys1BsB4YCbwKLgX8AJcDv\nvAvYaKgFWLNSb2C4t/0grJlpLvAR8Crwbx+ziojE1bChzehevBi2bbPzX0yYAFu3uk6WHKk+qkhN\nTyKSdIsX2/yLsjIYMwYGDEitCXtBm3DnNxUKEXFm+nSb4d2kia1Qe8IJrhPVTJD6KERE0lqvXlBc\nbAsP9usHF10EX3zhOlXdU6EQEdkD2dlw+eXWDHX44ZCfD6NGwcaNrpPVHRUKEZE6sM8+NqN77lxY\nudKG0T78cHqcYU+FQkSkDrVqZTO6p02Dr75KrU7ueFL9R1BntohILakzW0RE6pQKhYiIJKRCISIi\nCalQiIhIQioUIiKSkAqFiIgkpEIhIiIJqVCIiEhCKhQiIpKQCoWIiCSkQiEiIgmpUIiISEIqFCIi\nkpAKhYiIJKRCISIiCalQiIhIQioUIiKSkAqFiIgkpEIhIiIJqVCIiEhCKhQiIpKQCoWIiCSkQiEi\nIgmpUIiISEIqFCIikpAKhYiIJKRCISIiCalQiIhIQioUIiKSkN+Fog9QCiwBRsbYvx/wL2Ae8BHQ\nvhbPFRGRJPCzUGQDD2If+HnAQCC32mNuAj4BjgUGAZNq8dyUUVRU5DpCjShn3UqFnKmQEZTTNT8L\nRQGwFFgBbAOmAP2qPSYX+I93uwxoDRxYw+emjFT541HOupUKOVMhIyina34WipbAyqj7q7xt0eYB\nA7zbBcBhwKE1fK6IiCSBn4UiUoPH3As0BYqBod71jho+V0REUlwX4I2o+zey607p5cDetXjuUqyo\n6KKLLrroUvPLUgKiHrAM63eoD8xl5w7pJt4+gN8Cf6/Fc0VEJA30xTqpl2JHBQC/8y4AXb39pcCL\nWOFI9FwREREREZHd0wobSrsIWAhc5W0vAGZhHeEfAyc4SWfiZTwW+BCYD7wC7OMkXaWG2ATHucBi\n4B5v+/7AdOBT4N/YQAOX4uU8D/sd7wCOcxOting5xwEl2Oi+l6h6xOxCvJx3YBnnAm9jf8cuxctZ\n4VqgHPt7dSlezkJspGaxd+njIpwn0e9yGPb3uRAYk/xo/mgBdPJu7401S+UCRUBvb3tfKudluBAv\n48fAKd72wcDtyY+2k0bedT1gJtANGAtc720fiY1Kcy1WznZAW+zfOgiFAmLn7EXlyMJ7Ce7vM/qL\nyzDgb8kOFUOsnGBF7A1s4IvrQgGxc44GrnGWaGexMv4a+1KY4+1rnugFUmmtp6+wqgiwCauELYEv\nqfym1hRYnfxov4iX8Shghrf9LeDc5EfbyY/edX1sJvwG4GzgCW/7E8A5DnJVVz3nt1if1qfOEsUW\nK+d07Jsv2Le6Qx3kqi5Wzo1R+/cGvkl2qBhi5QS4n8ovM0EQ6/8RQMhNnJhiZRyCHV1s8/atc5DL\nd62Bz7E/6sOwyXlfYId7rg+bK7TGMu4DvE/lzPJrgB8cZYqWhRW1jdiRBFT+kYP9oW+o/iQHYuWs\nEKQjikQ5AaYBFyY1UWzxct6F/R8qxX2TI8TO2Q+Y4N0OyhFFrJyjsVUl5gGP4v73GStjMdZENhNr\nlTneRTA/7Q3MpvLb7ltAf+/2edi3ONeqZzwaeNPbdivB+MZWoQn2x/Jrdi4M3+78cGcqcoajtgWp\nUFSIlXMU8E8naeKLlRPgBuDxpKeJryLn6d71vt725cABrkLFEP37PBD7ohUC7sSKRRBEZ1xA5dp6\nJwCfOcrkixzsA/ePUduiv52HgO+TmmhnsTJGa4s1QwTJLcB12LfJFt62g737QVKRs0IQCwVUzXkp\ndkTZ0Fma+Kr/PgF+hXVuBsktwM3AWqxALMeaTFZgH8pBEev32Rr7UA6KioyvA92jti8lQeFNpT6K\nEFaZFwMTo7YvpfIH7oHbtut4GSs6irKwP/i/JDlXdc2oPBzeC+t0LcZGZF3ibb8EmJr8aFXEyxkt\nCG3B8XL2AUZgTSZb3ESrIl7ONlGP6cfOv+Nki5XzQ+Ag4HDvsgr7kvC1i4CeeL/PFlGP6Y/bQhEv\n41Ts8xLsy2t9YH3S0/mgG9YxOJfKYWd9sba1iuFfHwL5rgISP+NV2AioMuBuZ+kqdcSWd5+LDdkd\n4W3fH2vKC8rw2Hg5+2P9Uj9hAwhed5KuUrycS7B+qoq/hT87SVcpXs4XsQ+zuVgTmetv6fFyRvsM\n930U8XI+6d2fh30gH+QknYmXMQd4Cvt3n8POTZAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjWxA5sz\nsQB4HpvkJJLSUmlmtkgq+BGb9NkR2Iqt0imS0lQoRPzzHlWXxxBJSSoUIv6ohy3fMt91EBERCZbt\nVK7tNAkrGCIiIr/YuOuHiKQWNT2JiEhCKhQidSviOoCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niIiI+OD/AXPamuB7GdSzAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x10643f210>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The bubble point pressure of the solution is 35.100000 Kgf/sq cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.4 Page No : 244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "T = [80.6,79.0,77.3,61.4];#Various temperature in deg cel\n",
+ "x1 = [0.0,15.0,29.0,100.0];#mole fraction of CHCl3 in liquid phase\n",
+ "y1 = [0.0,20.0,40.0,100.0];#mole fraction of CHCl3 in vapour phase\n",
+ "P1 = [1370,1310,1230,700];#Vapour pressure of CHCl3 in mm Hg\n",
+ "P = 760.0;#Total pressure in mm Hg\n",
+ "\n",
+ "#To Calculate the equilibrium data i.e y/x and compare with the experimental values\n",
+ "#From equation 13.27 (page no 245);K = y1/x1 = Pi/P\n",
+ "print \"Temperature Experimental Calculated\";\n",
+ "Ke_x = []\n",
+ "K_c = []\n",
+ "for i in range(0,4):\n",
+ " print \" %f\"%(T[i]),\n",
+ " if x1[i] == 0 :\n",
+ " print \" Not defined\",\n",
+ " Ke_x.append(0)\n",
+ " else:\n",
+ " Ke_x.append(y1[i]/x1[i]);\n",
+ " print \" %f\"%(Ke_x[i]),\n",
+ " K_c.append(P1[i]/P);\n",
+ " print \" %f\"%(K_c[i])\n",
+ "\n",
+ "if Ke_x[i] == K_c[i]:\n",
+ " print ' The liquid solution is perfect';\n",
+ "else:\n",
+ " print \" The liquid solution is imperfect\";\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temperature Experimental Calculated\n",
+ " 80.600000 Not defined 1.802632\n",
+ " 79.000000 1.333333 1.723684\n",
+ " 77.300000 1.379310 1.618421\n",
+ " 61.400000 1.000000 0.921053\n",
+ " The liquid solution is imperfect\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.6 Page No : 246"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "x1 = 0.1;#Mole fraction of dichloromethane (CCl2H2)\n",
+ "x2 = 0.9;#Mole fraction of methyl acetate (C3H6O2)\n",
+ "M1 = 85.0;#Molecular weight of CCl2H2\n",
+ "M2 = 74.0;#Molecular weight of C3H602\n",
+ "D1 = 1.3163;#Density of CCl2H2 in gm/cc\n",
+ "D2 = 0.9279;#Density of C3H6O2 in gm/cc\n",
+ "\n",
+ "#To Calculate the volume of 10% dichloromethane solution\n",
+ "V1 = M1/D1;#Specific volume of pure CCL2H2 in cc/gmole\n",
+ "V2 = M2/D2;#Specific volume of C3H6O2 in cc/gmole\n",
+ "#From equation 13.62(page no 256)& 13.78 (page no 257)\n",
+ "V_e = x1*x2*(1.2672-0.771*x1);#excess volume in cc/gmole\n",
+ "V = V1*x1+V2*x2+V_e;\n",
+ "print \"The volume of 10 percent dichloromethane is %f cc/gmole\"%(V);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The volume of 10 percent dichloromethane is 78.339579 cc/gmole\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.7 Page No : 249"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "\n",
+ "#Given\n",
+ "x_T = 0.957;#mole fraction of Toluene\n",
+ "x_D = 0.043;#mole fraction of 1,2-dichloroethane\n",
+ "t = [90, 100, 110];#temperature in deg cel\n",
+ "R = 1.98;#gas consmath.tant in Kcal/Kgmole K\n",
+ "\n",
+ "#To Calculate the vapour pressure of the solution, bubble point at 686 mm Hg and the vapour composition at equilibrium,\n",
+ "#compare the experimental value of 91.2% toluene in vapour with the calculated value & calculate the free energy of mixing\n",
+ "#(1)Calculation of vapour pressure\n",
+ "print \"1Tempdeg cel P_TmmHg P_DmmHg P_smmHg\";\n",
+ "P_T = []\n",
+ "P_D = []\n",
+ "P_s = []\n",
+ "for i in range(0,3):\n",
+ " P_T.append(10**(6.95464-(1344.8/(219.482+t[i]))));#Given as equation(a)(page no 260)\n",
+ " P_D.append(10**(7.03993-(1274.079/(223+t[i]))));#Given as equation(b)(page no 260)\n",
+ " P_s.append(x_T*P_T[i]+x_D*P_D[i]);#pressure of the solution in mm Hg\n",
+ " print ' %f'%(t[i]),\n",
+ " print ' %f'%(P_T[i]),\n",
+ " print ' %f'%(P_D[i]),\n",
+ " print ' %f'%(P_s[i])\n",
+ "\n",
+ "#(2)Calculation of bubble point and comparison of values\n",
+ "plt.plot(t,P_s)\n",
+ "plt.title(\"t vs P_s\")\n",
+ "plt.xlabel(\"t\")\n",
+ "plt.ylabel(\"P_s\")\n",
+ "plt.show()\n",
+ "T = numpy.interp(686,P_s,t)\n",
+ "P = 686.0;#pressure of solution in mm Hg\n",
+ "y_T_e = 0.912;#experimental value of mole fraction of toluene\n",
+ "#From the graph we found that the temperature at P = 686 mm Hg is\n",
+ "#t = 105.3;#in deg cel\n",
+ "print '2)The bubble point is %f deg cel'%(T);\n",
+ "#From equation (a)(page no 260)\n",
+ "P_T = 10**(6.95464-(1344.8/(219.482+T)));#vapour pressure of Toluene in mmHg\n",
+ "#From equation 13.27 (page no 245)\n",
+ "y_T_c = (x_T*P_T)/P;\n",
+ "y_D_c = 1-y_T_c;\n",
+ "print ' The vapour composition of toluene is %f'%(y_T_c);\n",
+ "print ' The vapour composition of 1,(2-dichloroethane is %f'%(y_D_c);\n",
+ "e = ((y_T_e-y_T_c)/y_T_e)*100;\n",
+ "print ' The percentage error is %f percent'%(e);\n",
+ "\n",
+ "#(3)Calculation of free energy\n",
+ "del_F = R*(T+273)*((x_T*math.log(x_T))+(x_D*math.log(x_D)));\n",
+ "print '3)The free energy of mixing is %f Kcal/Kgmole'%(del_F);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1Tempdeg cel P_TmmHg P_DmmHg P_smmHg\n",
+ " 90.000000 406.737847 931.944531 429.321734\n",
+ " 100.000000 556.321921 1245.698588 585.965118\n",
+ " 110.000000 746.589152 1636.315096 784.847367\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecE3X+x/EXKohyKOIp0hSkiKs05VDUkxwgYAOUEzi8\nhwiIhRO7J9hYO6jYlTsBFRVR9CcKIkiRIBZAYKUtXVCWo6l0FHbZ+f3xmXXDun2TmUzyfj4eeWQy\nmUk+xpDPfr5tQERERERERERERERERERERERERERERERERERERESkCOuBNh69zz5gN7AZeB2o5MH7\nikTNYX4HIOIjByjn0ftcBlQGzgJaAPd78L4iUaNkIcnqLeBkYCL2F/9d+RyzHLg04vERwDagGVAR\neBv4CdgOzANOLMb7/g+YApxZxHHXAmuBXcD3QM9ivLaIiMTAOgpvhnoASwg5LgWWuds3ABOwpFEO\naI5VDgW9T1t3uzawFHiokPetBOwEGriPqwEphRwvIiIxVFSyqIf9ZV/RfTyG3Oaj3sBXQONivM96\nrHrZ7m6/BBxZyPGV3GOvBI4qxuuLiEgMFZUsAOYC3YCjscRxqrv/COBBrNLYCAx195X2ffJqD0zF\nksYnwGklPF9ERKLke4r+Eb8NGA/8A/imgGNOwZJGnwKeL02yyHEk8DTwRSnPF4kKdXBLMtuCNTUV\n5l2gA3Aj8E7E/hDWBHU41sSUCRyMUlwnAp2x5qhMYG8UX1skbg3C/upagv1jOxKoCkwDVmGldpU8\nx68GVmCluEisdAJ+wJp67ijkuOnAAQ4d7dQD+47uweZOPEfBf3yVtLI4CQgDO9zYPgcaleB8kcCp\ng5X6OZ157wG9gCeBf7v77gGGuNspwHdAeffcNaj6ERHxXax/iHdhZfTRWOff0dg4807AaPeY0UAX\nd7szMNY9Zz2WLFrGOEYRESlCrJPFL8Aw4EcsSezAmp+qYe3FuPfV3O0aQEbE+RlAzRjHKOKXPVh/\nR97b+X4GJZKfgob6RUs9bDRJHWyS0fvAP/Mc47i3ghT2nEiQ/cnvAESKK9bJogXwNfCz+/hDoBXW\nIXiSe18d2Oo+vxGb4ZqjlrvvEPXq1XPWrl0bo5BFRBLWWqB+aU6MdTPUCuBcbBZqOaAdkI6tx9PL\nPaYX8JG7PQEbZVIBqIstdzAv74uuXbsWx3F0i9Jt8ODBvseQKDd9lvo84/lG0UPFCxTrymIR8CYw\nH8gGFgKvYmvojAP6Yh3Z3dzj09396UAW0B81Q4mI+C7WyQJsmOyTefb9glUZ+XncvYmISJzQHAYh\nFAr5HULC0GcZXfo844cXF36JBcdtfxMRkWIqV64clPJ3X5WFiIgUSclCRCQJjB9ftvO96OAWERGf\nbNsGAwZAWlrZXkeVhYhIgnr/fWjSBGrXhu++K9trqbIQEUkwW7fCv/4FS5da89O555b9NVVZiIgk\nCMeB996zaqJePWt6ikaiAFUWIiIJYfNm6N8fVq6ECROgZZQv7qDKQkQkwBwH3nkHmjaF00+HhQuj\nnyhAlYWISGBt2gQ33gjffw+ffgpnnx2791JlISISMI4Db71l1UTTpjB/fmwTBaiyEBEJlI0b4YYb\nYMMGmDIFzjrLm/dVZSEiEgCOA2+8Ac2bQ4sW8O233iUKUGUhIhL3MjLg+uutj2LqVGjWzPsYVFmI\niMQpx4FRo6yaOO88mDfPn0QBqixEROLSjz9Cv37w00/w+efQuLG/8aiyEBGJI44Dr75qo5tat4Y5\nc/xPFKDKQkQkbqxfb9XEzp0QDsMZZ/gdUa5YVxanAWkRt53ArUAqkBGx/+KIcwYBq4EVQPsYxyci\n4rvsbBg+3EY5tWsHX38dX4kCvL2s6mHARqAl0AfYDTyT55gU4B3gL0BNYDrQEMjOc5wuqyoiCWHd\nOujbF/btg9deg5SU2L1XUC6r2g5YA2zAgs0v4M7AWCATWO8eH4NVTkRE/JWdDS+/bOs4XXIJfPVV\nbBNFWXnZZ9EDSwQADjAAuAaYD9wJ7ABqAHMizsnAKgwRkYSxdq1VE5mZ8OWXcNppfkdUNK8qiwrA\n5cD77uPhQF2gGbAJGFbIuWpvEpGEkJ0Nzz8P55wDnTvDF18EI1GAd5XFxcACYJv7eGvEcyOBie72\nRqB2xHO13H1/kJqa+vt2KBQiFApFJ1IRkRhYvRr69LHtb76BBg1i/57hcJhwOByV1/Kqg/tdYDIw\n2n1cHasoAG7HOrR7ktvB3ZLcDu76/LG6UAe3iATCwYPwwgvw2GPw4INw881wmE8z3MrSwe1FZVEJ\n69zuF7FvKNYE5QDrgBvc/enAOPc+C+iPmqFEJKBWroTevaF8eZtcV7++3xGVnpdDZ6NJlYWIxK2D\nB+HZZ2HoUBg82C536lc1ESneKwsRkaSxfLn1TRx1FMydC6ee6ndE0REHuU5EJPiysqySuPBC6NUL\npk9PnEQBqixERMps2TLrmzjmGLsoUZ06fkcUfaosRERKKSsLHn8cQiG47jqYNi0xEwWoshARKZUl\nS6yaOP54WLAATj7Z74hiS5WFiEgJZGbCI49AmzZw000wZUriJwpQZSEiUmyLFlk1cdJJsHAh1K5d\n9DmJQpWFiEgRDhyA1FS46CK45RaYNCm5EgWoshARKVRaGlx7rSWHtDSomaTrYKuyEBHJx/798MAD\n0KED3HUXTJyYvIkCVFmIiPzB/PnWN3HqqdZPUb263xH5T5WFiIhr/3647z649FIYNAg++kiJIocq\nCxERbOb1tdfaxYgWLbIRT5JLyUJEktpvv9lIpzfesKvYdesG5YK6HncMKVmISNKaM8f6Js48ExYv\nhhNP9Dui+KVkISJJ59df7ap1b79tV7G76iq/I4p/6uAWkaTy9dfQrBls2GDVhBJF8aiyEJGksG8f\n3H8/jB0LL70EXbv6HVGwqLIQkYQ3ezY0bQpbtthqsUoUJRfrZHEakBZx2wncAlQFpgGrgKlAlYhz\nBgGrgRVA+xjHJyIJbO9euPVW6NEDnnoKxoyBP//Z76iCKdbJYiXQ3L2dDewDxgMDsWTREJjhPgZI\nAbq79x2BVzyIUUQS0KxZ0KQJbN9u1USXLn5HFGxe/hC3A9YAG4BOwGh3/2gg539jZ2AskAmsd49v\n6WGMIhJwe/bAzTfD1VfDc8/Bm29C1ap+RxV8XiaLHlgiAKgGbHG3t7iPAWoAGRHnZABJvHSXiJTE\n559bNbF3r1UTl1/ud0SJw6vRUBWAy4F78nnOcW8Fyfe51NTU37dDoRChUKj00YlIoO3eDffcYyvD\n/ve/cMklfkcUH8LhMOFwOCqv5dWk9s7ATVg/BFjndQjYDFQHZgKNyO27GOLeTwEGA3PzvJ7jOIXl\nFxFJFtOnw3XXQdu2MGwYVKlS9DnJqpytY1Kq332vmqH+QW4TFMAEoJe73Qv4KGJ/D6wSqQs0AOZ5\nFKOIBMiuXXDDDdCnD/znPzBqlBJFLHmRLCphndsfRuwbAlyEDZ1tQ24lkQ6Mc+8nA/0pvIlKRJLQ\nZ59B48a2vXQpdOxY+PFSdkFdW1HNUCJJaOdOuPNOa3oaMcKuiS3FF4RmKBGRMvn0U1sdtnx5G+mk\nROEtrQ0lInFt+3a44w4Ih2H0aGjTxu+IkpMqCxGJW598Yn0TlSpZNaFE4R9VFiISd375BW67Db76\nyq45oWlU/lNlISJx5eOPrZo47ji73oQSRXxQZSEiceHnn+GWW2DePHj3XfjrX/2OSCKpshAR3334\noVUT1arBokVKFPFIlYWI+GbbNhgwABYuhPffh/PP9zsiKYgqCxHxxQcf2AqxtWpZNaFEEd9UWYiI\np7ZutetNLF5szU+tWvkdkRSHKgsR8YTjwHvvWTVRty6kpSlRBIkqCxGJuc2boX9/WLkSJkyAlrr+\nZeCoshCRmHEceOcdaNoUGjWCBQuUKIJKlYWIxMSmTXDTTbB2LUyaBC1a+B2RlIUqCxGJKseBt96y\naqJxY5g/X4kiEaiyEJGo+d//7Op1P/4IU6bAWWf5HZFEiyoLESkzx4E33oBmzeDss+Hbb5UoEo0q\nCxEpk4wMuP5666OYOtUShiQeVRYiUiqOA6NGQfPmNl9i3jwlikTmRWVRBRgJnAE4QB+gI3AdsM09\n5l5gsrs9yD3mIHALMNWDGEWkBH78Efr1g59+ghkzbKKdJDYvKovngU+B04EmwHIsaTwDNHdvOYki\nBeju3ncEXvEoRhEpBseBESOsX6J1a5gzR4kiWcS6sjgW+CvQy32cBex0t8vlc3xnYCyQCawH1gAt\ngTkxjVJEivTDD3DddbBjB8ycCWee6XdE4qVY/9VeF2tqeh1YCIwAjnafGwAsAkZhTVUANYCMiPMz\ngJoxjlFECpGdDcOH21yJtm3hm2+UKJJRrCuLI4CzgJuBb4HngIHAi8DD7jGPAMOAvgW8hpPfztTU\n1N+3Q6EQIV17USTq1q2Dvn1h3z6YNQtSUvyOSEoiHA4TDoej8lr5NQVF00nAN1iFAXABliwuizim\nDjARaOw+BzDEvZ8CDAbm5nldx3HyzSEiEgU51cTgwTBwINx+Oxx+uN9RSVmVK1cOSvm7H+vKYjOw\nAWgIrALaAcuwJLLZPeYKYIm7PQF4B+v8rgk0AObFOEYRibB2rVUTBw7Al1/aAoAiXow0GgCMwfon\nmgBPAE8Ci919rYHb3WPTgXHu/WSgPwU0Q4lIdGVnwwsvwDnnQKdOMHu2EoXkinUzVKyoGUokilav\ntmoiOxteew0aNvQ7IomFsjRDaQ6DSBI7eBCefdZmYHftap3YShSSH60NJZKkVq6E3r2hfHmbXFe/\nvt8RSTxTZSGSZA4ehKefhvPPh549bYKdEoUURZWFSBJZvhz69IGKFW3hv1NP9TsiCQpVFiJJICsL\nhg6FCy+Ea66xxf+UKKQkVFmIJLhly6xvonJluyhRnTp+RyRBpMpCJEFlZcETT0AoZAsATp+uRCGl\np8pCJAEtWWLVRNWqMH8+nHKK3xFJ0KmyEEkgmZnwyCPQpg3ceCN89pkShUSHKguRBLFokVUT1arB\nwoVQu7bfEUkiUWUhEnAHDsBDD8FFF8Ett8CnnypRSPSpshAJsLQ0qyZq1bLtmrpUmMSIKguRADpw\nAB58EDp0gDvugIkTlSgktlRZiATMggVWTdSpA999BzVq+B2RJANVFiIBsX8/3HcfXHIJ3HMPfPyx\nEoV4R5WFSAB8+y1ce60tH75oEZx0kt8RSbJRshCJY7/9Bqmp8Prr8Pzz0L07lAvqJcsk0IrbDNUN\nOMbdfgAYD5wVk4hEBLBrTDRvDmvWwOLF0KOHEoX4p7jJ4gFgF3AB0BYYBQyPVVAiyezXX+Huu6FL\nF3j4YfjgA5toJ+Kn4iaLg+79ZcAI4BOgQjHPrQJ8ACwH0oFzgKrANGAVMNU9JscgYDWwAmhfzPcQ\nSQhffw3NmsGPP9r6Tldd5XdEIqa4yWIj8CrQHZgEVCzBuc8DnwKnA02wJDAQSxYNgRnuY4AU9z1S\ngI7AKyV4H5HA2rfP5kt07QqPPw7vvQcnnOB3VCK5StJn8Rn2l/4O4Djg7ojnqxZw3rHAX4HX3MdZ\nwE6gEzDa3Tca6OJudwbGApnAemAN0LKYMYoE0uzZ0LQpbN5s1UTXrn5HJPJHxR0NtRf4v4jHm9xb\njhlA83zOqwtsA14HmgILgNuAasAW95gt7mOAGsCciPMzAM1LlYS0dy/cey+8/z688or1UYjEq1gP\nnT0CGzV1M/At8By5TU45HPdWkHyfS01N/X07FAoRCoXKEKaIt2bNgr59oVUrWLrUrjshEm3hcJhw\nOByV14rWQLw08q8sTgK+wSoMsNFUg4BTgb8Bm4HqwEygEbmJZIh7PwUYDMzN87qO4xSWX0Ti0549\nMGgQjB8Pw4fD5Zf7HZEkk3I29rpUv/ux7jzeDGzAOrIB2gHLgIlAL3dfL+Ajd3sC0AMbaVUXaADM\ni3GMIp74/HNo0gR277a+CSUKCRIvZnAPAMZgCWAt0Bs4HBgH9MU6sru5x6a7+9OxzvD+FN5EJRL3\ndu+2tZwmTID//hcuvdTviERKrqhy5CjgRqA+sBibjJeVz3HHAz9HN7RCqRlKAmH6dLjuOmjbFoYN\ngypVij5HJFbK0gxV1EnjgAPAl8DFWBVwa2neKMqULCSu7dpls7AnT4ZXX4WOHf2OSKRsyaKoZqjT\ngcbu9khsRJOIFGLqVOjXzy5MtGQJHHus3xGJlF1RySKrgG0RyWPLFps3MX06jBgB7bVYjSSQokZD\nNQF2R9waR2zvim1oIsGwfbtdlCglBSpXtmpCiUISTVGVxeGeRCESQHv2wAsvwLPPQufOkJYGJ5/s\nd1QisaFF+kRK6Lff7EJEDRrYdSa+/BJGjlSikMSmK+WJFFNWFoweDQ89ZAv/TZ5sy4mLJAMlC5Ei\nZGfDuHHw4INQs6YtH96qld9RiXhLyUKkAI4Dn3wC998PRx5pK8O2batLm0pyUrIQycfMmTYMds8e\nePRR6NRJSUKSm5KFSIS5c20Y7Pr11jfRowccrjGBIhoNJQI2N6JLF/j736FbN1i+HK6+WolCJIeS\nhSS1NWssKbRrB61bw+rVcP31UL6835GJxBclC0lKGzZYUjj3XDj9dEsat98OFSv6HZlIfFKykKSy\nbRvccYfNj6haFVatstFOlSv7HZlIfFOykKSwYwc88AA0agSZmXbd6yFDdO1rkeJSspCEtnevJYUG\nDWDjRliwAF58EapX9zsykWDR0FlJSPv32zLhjz8OF1wAs2dbVSEipaNkIQklKwveesvmSJxxBkya\nBM2b+x2VSPB50Qy1Hrt+dxowz92XCmS4+9KwS7bmGASsBlYAuiqAFEvO+k1nnglvvAFjxihRiEST\nF5WFA4SAX/Lse8a9RUoBurv3NYHpQEMgO+ZRSiA5jq3+et99NoHuhRfgoou0NIdItHnVDJXfP938\n9nUGxgKZWEWyBmgJzIlZZBJYs2bZ+k07dsAjj8AVVyhJiMSKF81QDlYhzAf6RewfACwCRgFV3H01\nsOapHBlYhSHyu/nzoUMH6N0bbrzRLkB05ZVKFCKx5EVlcT6wCTgBmIb1RQwHHnaffwQYBvQt4Hwn\nv52pqam/b4dCIUKhUFSClfi1bJnNlZg71+779IEKFfyOSiR+hcNhwuFwVF7L67/FBgN7sOSQow4w\nEWgMDHT3DXHvp7jnzM3zOo7j5JtDJAGtXQupqTB1Ktx9N/zrX3DUUX5HJRI85az8LtXvfqyboY4G\nchZSqISNbloCnBRxzBXuPoAJQA+gAlAXaEDuCCpJMhs3wk03wTnnQP36tsjfXXcpUYj4IdbNUNWA\n8RHvNQaYCrwJNMOamNYBN7jHpAPj3PssoD8FNENJ4vrpJ5t1/frr0LcvrFwJxx/vd1QiyS2oXYJq\nhkpAO3fCM8/ASy/ZRYfuuw9q1PA7KpHEEc/NUCJF2rcPnnrK1m9avx6+/RZeflmJQiSeaLkP8c2B\nAzByJDz2GLRqBeEwpKT4HZWI5EfJQjx38CC8/bat39SwIXz8MbRo4XdUIlIYJQvxjOPAhx/aHInj\nj7c1nC680O+oRKQ4lCwk5hwHPvvMrkiXnW2d2B06aMa1SJAoWUhMzZ5to5q2bbP1m668Eg7TsAqR\nwFGykJhYsMAqiRUrbPb11VfDEfq2iQSW/saTqFq+HK66Ci6/3G4rV0KvXkoUIkGnZCFRsW4dXHst\ntG4Nf/kLrFkD/ftroT+RRKFkIWWyaZMt7NeiBZxyiq3f9O9/w9FH+x2ZiESTkoWUys8/W1I480xb\n2G/FCps3ceyxfkcmIrGgZCElsns3PPwwnHYa7NoFixbB00/DCSf4HZmIxJKShRTLr7/CsGG5S4XP\nnQv/+Q/UquV3ZCLiBY1RkUJlZsKoUfDoo9CyJcyYYU1PIpJclCwkXwcPwtixMHgw1KsH48fbKCcR\nSU5KFnIIx4GPPrL1m4491qoKXd5cRJQsBLAkMW2azbrOzIShQ+GSS7R+k4gYJQvhq69s/aZNm2z9\npr//Xes3icih9JOQxL77Di67DHr2tCU5li2Dbt2UKETkj7z4WVgPLAbSgHnuvqrANGAVMBWoEnH8\nIGA1sAJo70F8SWflSujeHS6+2JYKX7UKevfW+k0iUjAvkoUDhIDmQEt330AsWTQEZriPAVKA7u59\nR+AVj2JMCj/8AH36wAUXQPPmtn7TgAFw5JF+RyYi8c6rH+K83aSdgNHu9migi7vdGRgLZGIVyRpy\nE4yU0ubNcMstcNZZULOmTaobOBAqVfI7MhEJCq8qi+nAfKCfu68asMXd3uI+BqgBZEScmwHU9CDG\nhPTLLzBoEJxxBhx+uC0f/sgjUKVK0eeKiETyopX6fGATcALW9LQiz/OOeytIvs+lpqb+vh0KhQhp\nMsDvdu+G55+32xVXWEd27dp+RyUiXguHw4TD4ai8ltej6AcDe7AKIwRsBqoDM4FG5PZdDHHvp7jn\nzM3zOo7jFJZfktNvv9l6TUOGQNu2doW6Bg38jkpE4kU5mzhVqt/9WDdDHQ1UdrcrYaOblgATgF7u\n/l7AR+72BKAHUAGoCzQgdwSVFCAzE0aMsMQwcyZMnQpjxihRiEj0xLoZqhowPuK9xmBDZecD44C+\nWEd2N/eYdHd/OpAF9KfwJqqklp0N770HDz5oFx764AM45xy/oxKRRBTUxRySuhnKcWDiRFuao1Il\neOwxaNPG76hEJN6VpRlK07ACZsYMuPde65947DGbga31m0Qk1pQsAmLOHFu/acMGu1KdluUQES/p\n5ybOLV4MnTpZcujZE9LToUcPJQoR8ZZ+cuLUqlXwj39A+/Y2DHbVKujbV+s3iYg/lCzizIYN0K8f\nnH8+NG5s6zfdeitUrOh3ZCKSzJQs4sTWrXDbbdCsGZx4olUS994Lf/qT35GJiChZ+G77duu4Pv10\nGxKbnm6jnI47zu/IRERyKVn4ZO9eeOIJaNgQtmyBtDRby6lataLPFRHxmpKFx/bvhxdegPr1baTT\nV1/ByJFw8sl+RyYiUjCNrfFIVhaMHm1zJJo0gcmTrX9CRCQIlCxiLDsb3n/f1m+qUQPefRdatfI7\nKhGRklGyiBHHgUmTbP2mI4+El1+2+RJamkNEgkjJIgbCYRv2uns3PPqozcBWkhCRIFOyiKJ582wY\n7Lp11jfRvbtdzlREJOg0GioKliyBLl2ga1e46iq71nXPnkoUIpI4lCzKYM0a+Oc/oV07aN0aVq+G\n66+H8uX9jkxEJLqULEohIwNuuAHOPRcaNbKkcfvtWr9JRBKXkkUJbNsGd9wBTZvachyrVtlop8qV\niz5XRCTIvEoWhwNpwET3cSqQ4e5LAy6OOHYQsBpYAbT3KL5C7dxp8yQaNYLMTFi6FIYMgapV/Y5M\nRMQbXo2GuhVIB3L+BneAZ9xbpBSgu3tfE5gONASyvQnzUPv2wYsvwrBhdvnSBQugTh0/IhER8ZcX\nlUUt4BJgJLkXCi9H/hcN7wyMBTKB9cAaoGXsQzzU/v3w0ku2ftOCBfDFF/Daa0oUIpK8vEgWzwJ3\nc2h14AADgEXAKKCKu78G1jyVIwOrMDyRlQVvvAGnnWZrN02aBOPGWfOTiEgyi3WyuAzYivVLRFYS\nw4G6QDNgEzCskNdwYhadK2f9psaN4fXXYcwYSxTNm8f6nUVEgiHWfRbnAZ2wZqiKwDHAm8A1EceM\nJLfjeyNQO+K5Wu6+P0hNTf19OxQKEQqFShyc48CUKTbr+rDD7HoSF12kpTlEJDGEw2HC4XBUXsvL\nn8XWwF3A5UB1rKIAuB34C9AT69h+B+unyOngrs8fqwvHccpWcHzxha3ftH27rd/UpYuShIgktnL2\nI1eqXzov14YqR+6P/pNAU/fxOuAGd386MM69zwL6E+VmqPnzrZJYvRoeekjLcoiIFEdQ/5YucWWR\nng4PPABz59pEuj59oEKFGEUnIhKHylJZJPwM7u+/h2uugb/9Dc47zyqKG29UohARKYmETRYbN8JN\nN0HLllCvniWJO++Eo47yOzIRkeBJuGTx009w9912nevKlWHlShg8GI45xu/IRESCK2GSxa5dkJpq\nE+j27bNrTDz5JBx/vN+RiYgEX+CTxb598NRT0KCBXaFu3jy73nWNGn5HJiKSOAJ7WdUDB2DUKJsj\n0aoVzJwJKSl+RyUikpgCmywaNbI1nCZMgLPP9jsaEZHEFth5FrNmOVx4od9hiIgER1nmWQQ2WZR1\nuQ8RkWSjSXkiIhJTShYiIlIkJQsRESmSkoWIiBRJyUJERIqkZCEiIkVSshARkSIpWYiISJGULERE\npEhKFiIiUiSvksXhQBow0X1cFZgGrAKmAlUijh0ErAZWAO09ik9ERArhVbK4FUgHchZ0Gogli4bA\nDPcxQArQ3b3vCLziYYxJKxwO+x1CwtBnGV36POOHFz/EtYBLgJHkLmDVCRjtbo8GurjbnYGxQCaw\nHlgDtPQgxqSmf5DRo88yuvR5xg8vksWzwN1AdsS+asAWd3uL+xigBpARcVwGUDPWAYqISOFinSwu\nA7Zi/RUFLYvrkNs8VdDzIiKSwB4HNgDrgE3AXuAtrPP6JPeY6u5jsL6LgRHnTwHOyed115CbZHTT\nTTfddCvebQ0B0Jrc0VBPAve42wOBIe52CvAdUAGoC6wluBdoEhGRUmgNTHC3qwLTyX/o7L1Y9lsB\ndPAyQBERERERSWC3AkuApe42FD6pTwqX3+eZio08S3NvHX2JLBhew0bwLYnYp0mmpVeSz7MO8Cu5\n39NXPIsyGPL7LK8ClgEHgbPyHJ9Q380zsf/witgs8GlAPazP49/uMfeQ2+chhSvo8xwM3OFjXEHy\nV6A5h/6DLOj7mNMHVx77oVuDJpnmVZLPs06e4+RQ+X2WjbDJzzM5NFmU+LsZ71/cRsBc4DcsM84C\nulLwpD4pXH6f55XucxpIUDyzge159mmSaemV5POUwuX3Wa7AKrS8SvzdjPdksRTLllWBo7GZ4LUo\neFKfFC6/z7O2+9wAYBEwCjXrlZQmmUZXYf++62JNUGHgAm/DSigl/m7Ge7JYAQzF2i0nY2XTwTzH\n5IwflqIp4mTnAAABnUlEQVQV9Hm+gv0jbIbNhxnmV4AJoKjvo76rJRP5ef4P++OmOdZs+g5Q2ae4\nElGh3814TxZgnTYtsKG327GSaguHTurb6k9ogRT5ee4AVgLbyP1HORI1lZRUQd/HjeRWbmBV8UYP\n4wqqgj7PA+Q2syzE5mE18Da0hFHi72YQksWJ7v3JWPv6O9h8jV7u/l7ARz7EFVSRn+cV2OdZPeL5\nK1AnYkkV9H2cAPQgd5JpA2Ce59EFT0Gf55+xgRkAp2Kf5/fehhZokf2SCfnd/AIb+vUd8Dd3X2GT\n+qRw+X2ebwKLsT6Lj1AfUGHGYs0hB7ClbHqjSaZlUZLP80qs3y0NWABc6nWwcS7vZ9kHGxywARty\nvBlrfs6h76aIiIiIiIiIiIiIiIiIiIiIiIiIiIiIxNKxwE1+ByEiIvGtDpr9LiIiRXgX2IfNMB7q\ncywiIhKnTkGVhSSoICwkKBIUuoCUJCwlCxERKZKShUj07EYX45EEpWQhEj0/A19h/Rbq4BYRERER\nERERERERERERERERERERERERERERERFJRv8P69Cq8Xr1R48AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1057dc4d0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "2)The bubble point is 105.029855 deg cel\n",
+ " The vapour composition of toluene is 0.901898\n",
+ " The vapour composition of 1,(2-dichloroethane is 0.098102\n",
+ " The percentage error is 1.107696 percent\n",
+ "3)The free energy of mixing is -132.756668 Kcal/Kgmole\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.8 Page No : 252"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "#Consider the diagram shown in page no 263\n",
+ "w1 = 100.0;#weight of LiBr entered as feed in the evaporator per hour in Kg\n",
+ "x1 = 0.45;#weight fraction of LiBr entered as feed\n",
+ "x2 = 0.0;#weight fraction of steam in the LiBr soln\n",
+ "x3 = 0.65;#weight fraction of LiBr formed as product\n",
+ "H1 = -39.0;#Enthalpy of 45% solution at 25 deg cel in Kcal/Kg\n",
+ "H3 = -4.15;#Enthalpy of 65% solution at 114.4 deg cel in Kcal/Kg\n",
+ "H2 = 649.0;#Enthalpy of superheated steam at 100 mmHg and 114.4 deg cel in Kcal/Kg\n",
+ "\n",
+ "#To Calculate the heating load required for the process\n",
+ "#According to material balance\n",
+ "w3 = (w1*x1)/x3;#weight of LiBr solution formed after evaporation per hour in Kg\n",
+ "w2 = w1-w3;# weight of steam formed in Kg/hr\n",
+ "#According to energy balance\n",
+ "Q = (w2*H2)+(w3*H3)-(w1*H1);\n",
+ "print 'The heat that has to be supplied for this concentration process is %f Kcal/hr'%(Q);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The heat that has to be supplied for this concentration process is 23581.923077 Kcal/hr\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.12 Page No : 253"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "\n",
+ "#Given\n",
+ "x_A = [0.0, 0.0435, 0.0942, 0.1711, 0.2403, 0.3380, 0.5981];#mole fraction of acetic acid\n",
+ "p_A = [0.0, 17.2, 30.5, 46.5, 57.8, 69.3, 95.7];#partial pressure of acetic acid in mmHg\n",
+ "P_T1 = 202.0;#vapour pressure of toulene in mmHg\n",
+ "P_T2_ex = 167.3;#experimental partial pressure in mmmHg\n",
+ "\n",
+ "#To Calculate the partial pressure of toulene in the solution and check with the experimental value\n",
+ "#From the equation 13.95,\n",
+ "#ln(P_T2/P_T1) = -intg(x_A/((1-x_A)*p_A))\n",
+ "x = []\n",
+ "for i in range(0,7):\n",
+ " if (p_A[i] != 0):\n",
+ " x.append((x_A[i]/((1-x_A[i])*p_A[i]))*10**4)\n",
+ " else:\n",
+ " x.append(0)\n",
+ "\n",
+ "\n",
+ "plt.plot(x,p_A)\n",
+ "plt.title(\" \")\n",
+ "plt.xlabel(\"(x_A/((1-x_A)*p_A))*10**4\")\n",
+ "plt.ylabel(\"p_A\")\n",
+ "plt.show()\n",
+ " \n",
+ "#Area of the graph drawn is\n",
+ "A = -0.138;\n",
+ "P_T2 = (math.e**A)*P_T1;\n",
+ "e = ((P_T2-P_T2_ex)*100)/P_T2_ex;\n",
+ "print 'The partial pressure of toulene is %f mmHg'%(P_T2);\n",
+ "print ' This deviates %i percent from the reported value'%(e);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH/NJREFUeJzt3X2clXP+x/FX0n3UxnajG6UkcptINzQiKoSKpsXWsotF\n2EU3rJXdnyX8JJLdxbYtfo1ulO50R4coSneiErpRbkZlE92Z6vz++FzjnJnmfs453+u6zvv5eMxj\nzrnmzLk+NTPncz7f7/f6fEFERERERERERERERERERERERERERERK6F9ANrAq7lgdYC6wDpgD1I77\n2lDgU2AtcFGKYhQREYfOBc4gb6J4FBjk3R4MPOLdPglYAVQCmgKfAYelJEoREXGqKXkTxVqgnne7\nvncfrJoYHPe4WcA5yQ5ORESK5uIdez1sOArvc27SOAbYEve4LUDDFMYlIiIFcD20E/U+ivq6iIg4\ndLiDc2ZjQ07fAA2Ab73jXwKN4x7XyDuWR/PmzaOff/55smMUEQmbz4EWZflGFxXFVKC/d7s/MCXu\neCZQGWgGHA8szv/Nn3/+OdFo1PcfDzzwgPMYFKfiDHKcQYgxSHECzcv6op3simIc0Bk4GtgM/Blb\n5TQeuAHYCFztPXa1d3w1sB+4BQ09iYg4l+xE0a+Q4xcWcvxv3oeIiPiE68ns0MrIyHAdQokozsRS\nnIkThBghOHGWRwXXAZRB1BtvExGREqpQoQKU8TVfFYWIiBRJiUJERIqkRCEiEmBr18KuXck9hxKF\niEjAbNwIw4fDGWdAly7wySfJPZ8ShYhIAHz1FYwcCe3bw1lnwYYNMGIEbN4Mbdok99xa9SQi4lPb\ntsGkSZCVBStWwOWXQ2YmXHABVKpUuucqz6onJQoRER/5/nt47TUYNw4WLoTu3S05dOsGVauW/XmV\nKEREAmz3bpg+3SqHN96A88+35HDppVCzZmLOoUQhIhIw+/bB7NmWHGbOhHbtLDlceSXUrl3895eW\nEoWISADs3w9vvmnJYcoUOOUUSw69e0Pdusk9txKFiIhPHTwI775rcw4TJ0LTptCvH1x1FTRqlLo4\nypMoXGxcJCISatEofPCBVQ6vvAJ16ljlsGgRNC/zrhDuKFGIiCTIqlWWHLKy4LDDrHKYPRtat3Yd\nWfkoUYiIlMOnn1rVkJUFO3da5TBhgl01XSGIg/sFCOI/Q3MUIuLUF1/A+PGWHLZsgauvtgRxzjlW\nSfiRJrNFRJIsO9sqhawsWLMGevWy5NC5MxwegLEZJQoRkST47jt49VVLDh98AJddZsmha1eoXNl1\ndKWjRCEikiA//ABTp1pyePttuOgiSw49ekC1aq6jKzslChGRctizx66OzsqCOXPg3HNtxVLPnnDE\nEa6jSwwlChGRUvrpJ5g715LD9Olw5plWOfTqZdc9hI0ShYhICRw4AJGIJYfJk6FVK0sOffpA/fqu\no0suXZktIlKIgwfhvfcsOUyYAA0bWnJYtgyaNHEdXTAoUYhI6ESjsHx5rIVGjRo25/D223D88a6j\nCx4lChEJjdWrYy00DhywymH6dDj55PBcJe2CEoWIBNr69bEWGtu3Q9++8PLL0LatkkOiBPG/UZPZ\nImnuyy9jLTQ2bLDJ6H79oGNH/7bQcE2rnkQk9LZutf0csrKsS+sVV9jQUpcuwWih4ZoShYiE0o4d\ntow1Kwvef9+ujs7MhIsvhipVXEcXLEoUIhIau3bBtGmWHObPhwsusORwySW2eknKRolCRAJt716Y\nNcuSw+uvQ4cOlhyuuAJq1XIdXTgoUYhI4OTkwBtvWHKYOhVOO82SQ+/ecPTRrqMLHyUKEQmEAwdg\nwQJLDpMmQYsWlhyuugqOOcZ1dOGmFh4i4lvRKCxebMlh/HioW9eSw+LF0KyZ6+ikJJQoRCTholH4\n8MPYVdJVqlhyeOMNa8QnweIyUQwFrgUOAquA3wA1gFeAY4GNwNXADkfxiUgpffJJLDns2WPJYfJk\nm3/QVdLB5epH1xR4EzgR2Iclh5lAa2Ab8CgwGPgFMCTf92qOQsRHNm2yFhrjxtm+0ldfbQmiXTsl\nBz8J4hzFTiAHqA4c8D5/hVUZnb3HjAUiHJooRMSxr7+2lt1ZWbBuna1UGjHCdoarWNF1dJJoLvP9\njcD/AnuA2cB1wH+xKgIstu/i7udSRSHiwPbttlIpK8taePfsaZXDhRdCpUquo5PiBLGiaA7ciQ1B\nfQ9MwOYr4kW9j0MMGzbs59sZGRlkZGQkIUQR2bkTXnvNhpXefRe6dYOBA6F7d6ha1XV0UpRIJEIk\nEknIc7mqKPoCXYHfevevA84BugDnA98ADYD5QP41EqooRJJo926YMcMqh3nzICPDKofLLoOaNV1H\nJ2UVxIpiLXA/UA3YC1wILAZ2Af2B4d7nKY7iE0kr+/bBnDmWHGbMgLPPtuTw/PPwi/yDv5J2XM5R\nDMKSwUFgGVZdHAGMB5pQ+PJYVRQiCbB/vzXdy8qCKVOgdWtLDn362EVxEi5q4SEiJXLwICxcaMlh\nwgQ49thYC43GjV1HJ8kUxKEnEUmRaBSWLrXk8MorNpSUmWkJo3lz19FJEChRiITURx/FrpKuUMGS\nw6xZNsQkUhpKFCIh8tlnseSwcyf07WtVRJs2ukpayi6IvzqaoxCJs3mzdWUdNw62bLH5hsxMaN8e\nDjvMdXTiF5rMFkkz2dkwcaJVDqtXQ69elhw6d4bDNU4gBVCiEEkD//0vvPqqJYclS+DSSy05XHQR\nVK7sOjrxOyUKkZD68UfbJjQrC956C7p2teTQowdUr+46OgkSJQqRENmzB15/3ZLD7NnQqRP062dN\n+I480nV0ElRKFCIBl5MDc+dacpg2zVYpZWba3MNRR7mOTsJAiUIkgA4csOGkrCybezjhhFgLjQYN\nXEcnYaMrs0UCIhqF996z5DB+PBxzjCWHpUutnYaIHylRiCRZNAorVsRaaFSvbnMOb70FLVu6jk6k\neEoUIkmyZk3sKumcHKscpk6FU07RVdISLEH8ddUchfjW+vVWNWRlwbZt1kIjMxPOOkvJQdzSZLaI\nQ19+aS27s7IsUfTpY8mhUye10BD/UKIQSbGtW2HSJEsOH34Il19u8w5duqiFhviTEoVICnz/PUye\nbMlh0SK7OjozE7p1gypVXEcnUjQlCpEk2bULpk+35PDmm1YxZGZan6UaNVxHJ1JyShQiCRSNwsyZ\n8NJL1kqjfXtLDldcAbVquY5OpGyUKEQSZONGuOkm+PpruOUW6N0bfvlL11GJlF95EoXWZIhg7TSe\nfhratoXzz7crpW++WUlCBHTBnQhr1sANN0DFivDuu9ZzSURiVFFI2vrpJ/if/4HzzoPrrrOWGkoS\nIodSRSFp6YMPrIpo1MiGmZo0cR2RiH+popC0sns33HOPLW8dPNiWvipJiBRNiULSxvz5cOqp1nJj\n1Sr41a/Uf0mkJDT0JKG3YwcMGmTXRDz7rFUTIlJyqigk1KZOhZNPthVNH32kJCFSFqooJJSys+H2\n22H5cnj5Zejc2XVEIsGlikJCJRqFF1+0uYhmzWDlSiUJkfJSRSGhsWmTtd/45hvr1XTmma4jEgkH\nVRQSeAcPwqhRlhg6d4YlS5QkRBJJFYUE2tq18Nvf2u133oFWrdzGIxJGqigkkHJy4KGH4Nxz7XqI\nt99WkhBJFlUUEjhLl8L110PDhmq/IZIKLiuK2sBEYA2wGmgH1AHmAuuAOd5jRABrvzFokG1Bes89\nMGOGkoRIKrhMFCOBmcCJwKnAWmAIlihaAm9490WIROC002DzZmu/ce21ar8hkiqu/tRqAcuB4/Id\nXwt0BrKB+kAEyD/yrB3u0sj331sVMXMmPPMM9OzpOiKRYAriDnfNgK3AGGAZ8BxQA6iHJQm8z/Wc\nRCe+MG2atd+oUMHabyhJiLjhajL7cKANcBuwBHiSQ4eZot6HpJlvv7X2G0uX2lXWGRmuIxJJb64S\nxRbvY4l3fyIwFPgGG3L6BmgAfFvQNw8bNuzn2xkZGWTolSQUolHry3TXXTBgAIwZA9WquY5KJJgi\nkQiRSCQhz+VyOvBt4LfYCqdhQHXv+HZgOFZh1KaASkNzFOHzxRdw8822V8QLL0Dbtq4jEgmXIM5R\nAAwEXgZWYqueHgIeAbpiyaOLd19C7OBBm6Q+80zo2NG2KFWSEPGXIC4wVEUREmvXwu9+Z8nihRd0\nZbVIMgW1opA09ve/Q6dO0LcvLFigJCHiZ2rhISk3caL1aVq8GI7LfyWNiPiOhp4kpd57Dy67DObO\nhdNPdx2NSPrQ0JMEwoYN0KuXLXtVkhAJDiUKSYkdO+CSS2DoULj0UtfRiEhpaOhJki4nB7p3h9at\nYeRI19GIpKfyDD0pUUhSRaO2BDY7G6ZMgYoVXUckkp7Kkyi06kmS6tFHYdky24FOSUIkmJQoJGkm\nTIBRo2ylU82arqMRkbLS0JMkhZbBiviLlseKr2zYAFdeqWWwImFRlkTRArgf+DjBsUgI5C6Dvfde\nLYMVCYuSJoqGwB+x/SM+AioCmckKSoIpJwf69IGuXWHgQNfRiEiiFDdedRPQD6iLbS40AZiKbWXq\niuYofEjLYEX8LZnLY0cBs4A7sH0jRAo0fLiWwYqEVXGJogFwFfAUsaqiUrKDkmCZMME2H9IyWJFw\nKk0Z0hjoiw1F1QBeBe5NRlDF0NCTj2gZrEgwpGp57GbgceBMoCewN+5rXctycgm23GWw//63koRI\nmCXqgrvlwBkJeq7iqKLwgR07oH17uPVWuO0219GISHF0wZ2k1E8/Qe/ecNFFShIi6UCJQkolGoXf\n/x5q1IAnnnAdjYikgpoCSqkMHw7Ll2sZrEg6KWmiqAbcAnQCosAC4FliE9obEh+a+M348TB6NCxa\npGWwIumkpBMbE4CdwEve9/wKqIVdY5Fqmsx2YNEi6NlTy2BFgioVO9ytBk4qwbFUUKJIsfXroWNH\neP55a/gnIsGTilVPy4D2cffPAZaW5YQSLN9/b11g77tPSUIkXZU0u6wFWmIX3UWBJsAnwH7v/qlJ\nia5gqihS6LbbYM8eeOEF15GISHmkYs/sbmV5cgm2Zctg4kRYvdp1JCLikrZClQIdPAgdOsCNN8L1\n17uORkTKS1dmS8L9619w2GEwYIDrSETENVUUcojt2+Gkk2DWLDgjVR28RCSpUrE81k+UKJLs5puh\nUiV4+mnXkYhIoqRiMlvSxJIl8NprsGaN60hExC80RyE/O3AAbrnF+jnVru06GhHxCyUK+dlzz0HV\nqnDdda4jERE/0RyFALB1K7RuDfPmwampvHxSRFIiyMtjK2K7403z7tcB5gLrgDmABkBSZMgQuOYa\nJQkROZTrRHEH1lwwt0QYgiWKlsAb3n1JskWLbCnssGGuIxERP3KZKBoBPYDniZVDPYGx3u2xwBUO\n4koruRPYjz0GtWq5jkZE/MhlohgB3AMcjDtWD8j2bmd79yWJnn3WVjj16+c6EhHxK1fXUVwKfIvN\nT2QU8pgosSEpSYLsbHjwQYhEoEIQlzWISEq4ShQdsGGmHkBV4EjgRayKqA98AzTAkskhhsUNpmdk\nZJCRkZHUYMNq0CDr5dS6tetIRCTRIpEIkUgkIc/lh/eRnYG7gcuAR4HtwHBsIrs2h05oa3lsAixY\nYMNNa9bAEUe4jkZEki3Iy2Nz5b7yPwJ0xZbHdvHuS4Lt3w+33gpPPKEkISLF80NFUVqqKMrpySdh\nxgyYM0dzEyLpQt1jpcS+/hpOOQXeeQdatXIdjYikihKFlNg110CTJvDww64jEZFUUptxKZFIxCoJ\n7YEtIqXhl8lsSbKcHJvAHjECatRwHY2IBIkSRZoYORIaN4Yrr3QdiYgEjeYo0sCWLXD66db87/jj\nXUcjIi5oMluK1LcvtGwJf/2r60hExBVNZkuh5s2DxYthzBjXkYhIUGmOIsT27YPbbrP5ierVXUcj\nIkGlRBFiI0ZAixZw2WWuIxGRINMcRUh98QW0aQPvvw/Nm7uORkRcC0NTQEmwP/wBBg5UkhCR8tNk\ndgjNmgUrVsBLL7mORETCQBVFyOzda5XEU09BtWquoxGRMFCiCJnHH7cd6y65xHUkIhIWmswOkY0b\n4cwzYelSaNrUdTQi4ieazBbAJrD/+EclCRFJLE1mh8SCBbBsGYwb5zoSEQkbVRQhEI3C4MHWy6lq\nVdfRiEjYKFGEwGuvwa5dtnudiEiiaTI74Pbvtz2wn3gCund3HY2I+JUms9PYmDFQvz506+Y6EhEJ\nK1UUAbZ7t21ENHkynH2262hExM9UUaSpkSOhQwclCRFJLlUUAbV9O5xwAixcaLvXiYgURVuhpqG7\n7oI9e2D0aNeRiEgQKFGkmU2bbK+Jjz+2iWwRkeIoUaSZX//a2nT85S+uIxGRoChPolALj4BZuRJm\nz4ZPP3UdiYikC616CpihQ+G+++DII11HIiLpQhVFgMyfD2vX2nUTIiKpoooiIHIb/z30EFSp4joa\nEUknShQBMWmS9XXq29d1JCKSbrTqKQBycmx702eega5dXUcjIkGkFh4h9/zzcOyxShIi4oYqCp/7\n8Udr/Dd9uu2HLSJSFkGsKBoD84GPgY+A273jdYC5wDpgDlDbSXQ+MmIEZGQoSYiIO64qivrexwqg\nJrAUuAL4DbANeBQYDPwCGJLve9Omoti6FU48ERYvhuOOcx2NiARZGFp4TAFGeR+dgWwskUSAVvke\nmzaJ4o47bFnsU0+5jkREgi7oiaIp8BZwMvAFVkWAxfZd3P1caZEo1q+Hs86CNWugbl3X0YhI0AW5\n11NNYBJwB/BDvq9FvY9DDBs27OfbGRkZZGRkJCc6h/70J6solCREpCwikQiRSCQhz+WyoqgETAde\nB570jq0FMoBvgAbYhHfaDT0tWwaXXGKN/2rWdB2NiIRBEFc9VQBeAFYTSxIAU4H+3u3+2NxF2hky\nBO6/X0lCRPzBVUXRCXgb+JDY8NJQYDEwHmgCbASuBnbk+95QVxRz58Itt8Dq1VCpkutoRCQsgj6Z\nXVqhTRQHD9oE9pAhcNVVrqMRkTAJ4tCTFGD8eKhYEfr0cR2JiEiM61VP4pk5E+68E7KyoEIQ6zwR\nCS0lCsd+/BHuvhtmzYJXXoHOnV1HJCKSl4aeHHrvPTjjDNi71/bCVpIQET9SReFATg785S/w3HMw\nejT06uU6IhGRwilRpNiaNXDttVC/PqxYYZ9FRPxMQ08pcvCgNfc77zy46SbbX0JJQkSCQBVFCmzZ\nAgMGwK5dsGgRtGjhOiIRkZJTRZFk48ZBmzZw/vmwYIGShIgEjyqKJPnuO2vF8eGH8Prr2qFORIJL\nFUUSzJkDp51mcxBLlypJiEiwqaJIoN27YfBgmDIFxoyBCy90HZGISPmpokiQJUtsLmL7dhtuUpIQ\nkbBQRVFO+/fD3/4Go0bZ8tfMTNcRiYgklhJFOaxbB9ddB7VqwfLl0LCh64hERBJPQ09lEI3Cs89C\nhw6WKGbNUpIQkfBSRVFKX30FN9wA27bBO+9Aq/w7eouIhIwqilKYMMG6vZ59NixcqCQhIulBFUUJ\n7NgBAwfC++/D1KnQrp3riEREUkcVRTHmz7eL5444wiaslSREJN2ooijE3r1w772269zzz0P37q4j\nEhFxQ4miAMuX22qmE0+0i+eOOsp1RCIi7mjoKc6BA/Dww3DxxTBkCIwfryQhIqKKwrN+Pfz611C5\nMnzwATRp4joiERF/SPuKIhq1OYh27aB3b5g3T0lCRCReWlcU2dnwu9/B5s0QiUDr1q4jEhHxn7St\nKKZMgdNPh5NPtusjlCRERAqWdhXFzp3whz9YBTFxInTs6DoiERF/S6uKYsECqyIOOwxWrFCSEBEp\nibSoKPbtgz//Gf7zH/jHP6BnT9cRiYgER+gTxapVcO210KwZrFwJdeu6jkhEJFhCO/R04AA8/jh0\n6QJ33AGTJytJiIiURSgrik2boH9/SxaLF1s1ISIiZROqiiIahbFjoW1b6NHDVjYpSYiIlE9oKopt\n2+Cmm2wf63nzrDW4iIiUnx8rim7AWuBTYHBJvmHGDDj1VDjuOFiyRElCRCSR/JYoKgKjsGRxEtAP\nOLGwB//4o1URt94K48bBY49B1aopirQYkUjEdQglojgTS3EmThBihODEWR5+SxRnA58BG4EcIAu4\nvKAHLlpkF8/t22fLXjt3Tl2QJRGUXx7FmViKM3GCECMEJ87y8NscRUNgc9z9LcAhm4/efz889xyM\nHg29eqUsNhGRtOS3RBEtyYOWLbMWHPXrJzscERGp4DqAfM4BhmFzFABDgYPA8LjHfAY0T21YIiKB\n9znQwnUQiXA49o9pClQGVlDEZLaIiKSn7sAnWOUw1HEsIiIiIiISJqW+GC9FGgPzgY+Bj4DbveN1\ngLnAOmAOUNtJdHlVBJYD07z7foyxNjARWAOsxla++THOodjPfBXwf0AV/BHnv4BsL65cRcU1FPub\nWgtclKIYoeA4H8N+7iuBV4FacV/zU5y57sLmUevEHfNbnAOx/9OPyDvf6yrOpKqIDUc1BSrhr/mL\n+sDp3u2a2NDZicCjwCDv+GDgkdSHdog/Ai8DU737foxxLHC9d/tw7MXCb3E2BdZjyQHgFaA//ojz\nXOAM8r5gFBbXSdjfUiXs3/QZqbu+qqA4u8ad/xH8GyfYG8RZwAZiicJvcZ6PvUGo5N3/pffZZZxJ\n1R77oeQa4n340RTgQixT1/OO1ffuu9QImIf98uRWFH6LsRb2Apyf3+Ksg70h+AWWzKZhL3J+ibMp\neV8wCotrKHmr81nY6sNUaUrB79QBrgRe8m77Mc4JwKnkTRR+i3M80KWAx5UqziBlkIIuxmvoKJai\nNMWy+vvYH2a2dzyb2B+qKyOAe7BSOZffYmwGbAXGAMuA54Aa+C/O74D/Bb4AvgJ2YO/c/BZnrsLi\nOgb7W8rlp7+r64GZ3m2/xXm5F8OH+Y77Lc7jgfOA94AI0NY7Xqo4g5QoSnQxnmM1gUnAHcAP+b4W\nxe2/4VLgW2x+orDrZ1zHCPbuvA0w2vu8i0MrRz/E2Ry4E3tjcAz2s78232P8EGdBiovLDzHfB/yE\nzf0UxlWc1YF7gQfijhV1TZrL/8/Dsar3HOxN4vgiHltonEFKFF9iY4K5GpM3I7pWCUsSL2JDT2Dv\n3HKvH2+AvVC70gHoiZXJ47By9EX8FSPYz3QLsMS7PxFLGN/grzjbAguB7cB+bOK1Pf6LM1dhP+f8\nf1eNvGMuDQB6ANfEHfNTnM2xNwgrsb+nRsBSrErzU5xgf0uvereXYKMJR+O/OBPGzxfjVQD+gw3t\nxHuU2DjgENxPwObqTGyOwo8xvg209G4Pw2L0W5ynYatIqmE//7HArfgnzqYcOpldUFy5k5qVsWG/\nz0ltx4am5I2zG7aS7Oh8j/NbnPEKmsz2S5w3AQ96t1tiQ6XgPs6k8uvFeJ2wTL0CG9pZjv3C18Em\nj/20pBMsUeSuevJjjKdh737il0j6Mc5BxJbHjsWqSj/EOQ6bN/kJm9f7TTFx3Yv9Ta0FLnYY5/XY\ncs1NxP6ORvsozn3E/j/jrSfv8lg/xVkJGzlYhVU9GT6IU0RERERERERERERERERERERERERERERE\nRCStVAHeomxXej6JtR3I/72VsAuGCnr+usAM7/ZR2N4gPwBPl+H8RZkCLMp37HbgunzH+gPHpuBc\nT2CtpeM9kO/+bdhFVfn3TAB4CrvAbSXWyLKo5ynsWP79TSSEgtTrSYLjGmA6pW+GdhjWj2o1dvV4\nvE7AO4U8/23Av73be4A/AXeX8tzFqQ2cTKzlQa4x2MYwYM0Bn8N66JwL/D2J5wJ4Fmv0BrYfykgs\nGVwOPOQdfwe4ALvaOV4PoAXWXfRG77nA/m/vBqp6z31NIcdy3YH9vPzQSFBEAmQu1lfmSqxtBFgj\nuk+wd/+F6QJMBjKBf+T72nCsLUr88+dajXX0jDeAoiuKO4EXvNunYC0Oqhbx+OuxXl5DOLR9zOtA\na+92Paz3z9S4r0ewSmm5d56zijhPac4F1uY6tx1HK6z9+TMFPGd8PyKwJNY37n78fhX9sEaHV8d9\nvaBjBe1vIiGkikISrSL2bngd9qL/NfaO/5/Anym6m2o/bKe4adg73sPjvpaBveDGPz9YR9QDwO58\nz1XcO9yR2DvqK7EtJG8E9hbx+EwvtvFenPEWYz3/GwB/xRLQeGJ9iqJY88AzgFu88xWlJOfKtRzr\nWnsacDPW12eOF0dRCtrfpZF3vobYlqTHevcLOgYF728iIlKsesRexMHe7X6J7QZWlMrYi1UN7/5E\n4BLvdkPsnXRBz98Oe2HMrz/Fz1E0A37EXgCLUo+8u+59QN539TeRdy/i/HMU88nbjG0TcGSCzvUw\n8Pu4+wXNI8ChFcU0oGPc/XlYO/einif+2KXEKpcMVFGEmioKSYb4iejG2Dv+ehQ9uX0xllQ+wl7U\nziX2zrUbebfBzf88JZk0v4JYR9LcF8SW2KR3cTuQXY29yG7wPpqS951+BfJWMGM5dE4gv8IqntKe\nK//9BymZ4vYjKOh54o8VtL/Jf0p4bhFJcxWx4SawoaPF2IvKP4G7ivi+/yPvmHl1bLOdatgQTO6c\nRPzzgw09FbRPwACKrihqYePyLYDZQO8iHrsQq1xyNcVWEuV6EBv2Kcx8YpPFnbBVRok611hiczdF\n2YCtCMvVg9g2o+dgW2WWVfz+JiIiJTIXOAG4H3jcO1YTWOMdz686tlNczXzHJ2LvsJcV8vy51hAb\nsgLY6D3fD9hGLa0KOOcL2NwJ2LvpTzl0sxywF+rNBRxfSmxSOv8Ec37zsfH8Zdjkc9tCHleWc32I\nJb3C3O49509YxfDPuK+NwpLQSvIOO5VW/P4mIiIlMoDYbmrl1ZG8m9cU9PzDyFuNpNKRxLZtLcx8\nyvdCXNi5WqIXaBEJqMrYdqbJmgPLff7cuYlfEhtGSbXbgWuLeUyiEkX+cz2BDWWJJFVo9kiVwLiY\nQ/eRXk/RcwSpMgC7gCzeO+S9yC2I5xIRERERERERERERERERERERERFJI/8PWAkS6uYdzjkAAAAA\nSUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x10654c750>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The partial pressure of toulene is 175.961936 mmHg\n",
+ " This deviates 5 percent from the reported value\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.13 Page No : 254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "from numpy.linalg import solve\n",
+ "\n",
+ "#Given\n",
+ "P = 760.0;#pressure at maximum boiling azeotrope of A and B in mmHg\n",
+ "x_A = 0.6;#mole fraction of A in liquid phase\n",
+ "x_B = 0.4;#mole fraction of B in liquid phase\n",
+ "p_A = 600.0;#vapour pressure of A at 90 deg cel\n",
+ "p_B = 300.0;#vapour pressure of B at 90 deg cel\n",
+ "\n",
+ "#To Check whether the activity coefficient of the solution can be represented by the Margules equation\n",
+ "y_A = P/p_A;#Activity coefficient of A\n",
+ "y_B = P/p_B;#Activity coefficient of B\n",
+ "#From the Margules equation or equation (a) & (b)\n",
+ "U = [[((x_B**2)-(2*(x_B**2)*x_A)), (2*(x_B**2)*x_A)], [(2*(x_A**2)*x_B), ((x_A**2)-(2*(x_A**2)*x_B))]];\n",
+ "V = [math.log(y_A), math.log(y_B)];\n",
+ "W = solve(U,V);\n",
+ "#Now the value of consmath.tants A and B in equations(a)&(b) are given as\n",
+ "\n",
+ "A = W[0];\n",
+ "B = W[1];\n",
+ "#let us assume \n",
+ "x_A = [0.0,0.2,0.4,0.6,0.8,1.0];\n",
+ "x_B = [1.0,0.8,0.6,0.4,0.2,0.0];\n",
+ "#C = lny_A; D = lny_B; E = ln(y_A/y_B)\n",
+ "C = []\n",
+ "D = []\n",
+ "E = []\n",
+ "for i in range(6):\n",
+ " C.append((x_B[i]**2)*(2*(B-A)*x_A[i]+A));\n",
+ " D.append((x_A[i]**2)*(2*(A-B)*x_B[i]+B));\n",
+ " E.append(C[i]-D[i]);\n",
+ " \n",
+ "plt.plot(x_A,E)\n",
+ "plt.title(\" \")\n",
+ "plt.xlabel(\"x_A\")\n",
+ "plt.ylabel(\"ln(y_A/y_B)\")\n",
+ "plt.show()\n",
+ "#Since the graph drawn is approximately symmetrical.Thus it satisfies the Redlich-Kister Test\n",
+ "print 'The actvity coefficients of the system can be represented by Margules equation';\n",
+ "#end\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEQCAYAAACwSgOGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG3ZJREFUeJzt3XeY1OW58PHvsoA0kWAjiUYi2LsI0hkEEdFIQI2KJYr1\noLzm1eSK5U0gJx6j8VhOwJKg8bUbCxoVwaBhQREpigUUC6ghMSCKDVEB2fPHM+usS9nZMvPM/Ob7\nua65mJ39OXP7sPzufe6ngSRJkiRJkiRJkiRJkiRJklTwWgCzgReBV4HfxQ1HkhRTq/SfTYHngN4R\nY5GkktUkdgDA6vSfzYFyYGXEWCSpZBVCQmhCKBktB6YRSkeSpBK2FaFklIochySVpKaxA6jmE2AS\ncBBQUfVip06dKhcvXhwrJkkqVouBznX5D2KXjLYB2qWftwQOBeZXv2Dx4sVUVlb6qKxkzJgx0WMo\nlIdtYVvYFpt/AJ3qekOO3UP4LnAbITE1Ae4AnooakSSVqNgJ4RXgwMgxSJKIXzJSHaRSqdghFAzb\nIsO2yLAtGqYsdgBZqEzXwyRJWSorK4M63uPtIUiSABOCJCmtKBKCFSNJyr2iSAijRsH69bGjkKRk\nK4qEsHAhnHoqrFsXOxJJSq6iSAhTpsDy5XD88bBmTexoJCmZiiIhtGoFjzwSegjDhsEXX8SOSJKS\npygSAsAWW8D998NWW8ERR8CqVbEjkqRkKZqEANCsGdxxB3TqBIMGwccfx45IkpKjqBICQHk5/OlP\n0K0b9O8PK1bEjkiSkqHoEgJAWRlce20oHfXrB++9FzsiSSp+sXc7rbeyMrjsMmjdGvr2hSefhI4d\nY0clScWraBNClYsvhjZtQk9h6lTYddfYEUlScSr6hAAwenToKaRS8MQTsM8+sSOSpOKTiIQAMHJk\nWK9w6KHw2GNw0EGxI5Kk4pKYhABhJXPLljBkCEycCL17x45IkopHUc4y2pyhQ+Guu8KK5qlTY0cj\nScUjcQkBQtlo4kQ48cSw5YUkqXaJKhlV16cPPP44HHkkrF4dykmSpE1LbEKAMLA8dSoMHhySwsiR\nsSOSpMKV6IQAYQrqtGmhjPT552GKqiRpQ4lPCBAWq02fDgMHhl1SL744dkSSVHhKIiFA2NZixoxM\nUrjssrD9hSQpKIZbYmVlZWWjvdmKFXDYYWH/o2uvNSlISqaycHOr0x2uGG6HjZoQIJyjMGQI7LUX\n3HRT2FJbkpLEhFAHq1bBUUdBhw5w223h8B1JSor6JIRELkzLRps2MGkSfPIJHHssfPVV7IgkKa6S\nTQgQ9j166CFo2jT0Flavjh2RJMVT0gkBoHlzuPfeUDoaPBg+/TR2RJIUR8knBAg9hFtvDYPMAwfC\nypWxI5Kk/DMhpDVpAjfcEE5eS6Vg+fLYEUlSfpXMwrRslJXB738fBpz79oWnnoIddogdlSTlhwmh\nhrIyGDMmkxSmToVOnWJHJUm5Z0LYhAsvzJzT/Le/wR57xI5IknIrdkLYEbgd2A6oBP4E/CFqRNWc\nc044p/mQQ2DyZNh//9gRSVLuxF6p3CH9eBFoAzwP/Bh4rdo1OVmpXBcPPgijRsFf/wrdu0cNRZKy\nUowrlZcRkgHAKkIi+F68cDbu6KPDtNQf/QgqKmJHI0m5ETshVNcROACYHTmOjRoyBO67L2xzMXly\n7GgkqfHFHkOo0gZ4ADif0FP4lrFjx37zPJVKkUql8hXXt/TvD488AkOHwo03hp6DJBWCiooKKhpY\nwog9hgDQDHgMmAxct5HvRx9DqGn+/NBj+P3v4eSTY0cjSRuqzxhC7B5CGXAL8CobTwYF6YADwqK1\nQYPChnhnnx07IklquNg9hN7ADOBlwrRTgIuBKdWuKbgeQpXFi8PeR6NHwwUXxI5GkjI8ICeCpUth\nwAA46ST41a88klNSYTAhRLJsGRx6KBx+OFx5pUlBUnwmhIg+/DCcp9CtG4wbF3ZPlaRYTAiRffop\nHHFE2Azv5pvDOQuSFEMxrlROlLZtYcoUeO89GDEC1qyJHZEkZc+E0Mhatw6L1776CoYPhy++iB2R\nJGXHhJADLVrAAw/AllvCkUfCqg3WXktS4TEh5EizZnDnndCxY1jA9vHHsSOSpM0zIeRQeTlMmABd\nu4YzFT74IHZEkrRpJoQca9IErrsuTEnt1y8MOEtSIXJiZB6UlcHll2fOaX7qKdhpp9hRSdK3mRDy\n6JJLwiykvn3hySdhl11iRyRJGSaEPDv//NBTSKXgiSdg771jRyRJgQkhgtNPh1atwk6pkyZBly6x\nI5IkE0I0J5wQksLhh8PEidC7d+yIJJU6ZxlFNHRoWKswbFgYU5CkmEwIkQ0aFHoII0bAo4/GjkZS\nKTMhFIA+fcJYwhlnwF/+EjsaSaXKMYQC0bUrTJ0aFrCtXg2nnRY7IkmlxoRQQPbdF6ZNC6evff45\nnHde7IgklRITQoHZbTeYMSOc07xqFVx0UeyIJJUKE0IB6tgxJIWBA0NS+O1vPadZUu4Vw22maI7Q\nbGwrVoRZSKkUXHONSUFS9jxTOYE++giGDIF99oEbbwxbaktSbUwICfXZZ/DjH0Pz5mEh29Zbx45I\nUqGrT0JwHUIR2HJLmDIF9twz7Hs0b17siCQlkQmhSDRrBldfDVddFfY/mjABSrzjJKmRWTIqQosW\nwfDh0L07XH89tGwZOyJJhcaSUYnYfXeYMyesaO7VC5YsiR2RpCQwIRSpNm3gnnvgpz8NPYVJk2JH\nJKnYWTJKgGeegeOPh5EjYcwYp6ZKctppSVu2LCSFLbaAu+6CbbaJHZGkmBxDKGEdOoRDdvbdFw46\nCObOjR2RpGJjQkiQpk3DtNSrrw6rm//4R6emSsqeJaOEev31MDW1a1e44YZwfrOk0mHJSN/YbTeY\nPRvWrIGePWHx4tgRSSp0sRPCn4HlwCuR40ikNm3CAPPpp0OPHp7ZLGnz6loyagFUAl810uf3AVYB\ntwP7bOIaS0aN4Nln4Sc/gVNPhd/8xqmpUtLlomTUBBgO3A/8C3gbeDf9/AFgWF0/sIangY8a8N8r\nSz17wvPPw8yZ4dzmFStiRySp0NSWECqALsB/AzsD3wU6pJ//N9AVmJ7D+NSItt8epk6FAw8Mu6bO\nmRM7IkmFpLbf7reg9vJQNtdsTkfgUSwZ5dVDD8FZZ8F//iecc46nsUlJU5+SUW1nKte80bcG9iCU\njVZs4ppGN3bs2G+ep1IpUqlUrj8y8YYNg732gqOPhlmz4KabnJoqFbOKigoqKioa9B61ZY+jgD8A\nK4H/B1xPmBX0Q+CXwP9v0KcHHbGHEM3nn4eewoIF8OCD0Llz7IgkNYZcDCpfBgwCziYMLA8AuhNu\n3j+ve4gbuAd4FtgVWAqc1gjvqTpo3Tocy3nWWWHg+ZFHYkckKZbassd84ID081f49m/x1b+XS/YQ\n8uS55+DYY+Hkk8PYQtPaCoqSClYuegjlQHtga8L6g/bVvnYme8J07x6mps6eDYcdBu+/HzsiSflU\nW/Z4h5AIqq6t+av6Dxs7oI2wh5Bn69bBr34VVjnfd19IFJKKS8zzEPYCFjbSe9VkQojkr3+FM88M\nh+6MGuXUVKmYxEwIuRxPMCFE9NZbYdfU/fYLU1Nbt44dkaRsuNupGl3nzmGwuawslI7efDN2RJJy\nxYSgWrVqBbfdFspGvXrBww/HjkhSLlgyUp3Mnh2mpo4YAZdd5tRUqVDFLBnlfPsKFYaDDw5TU59/\nHgYNguXLY0ckqbFkmxAmAkds5nonJpaQbbeFKVPCyuaDDgp7IUkqftkmhBuBE4G3gCuA3XIWkYpC\neXkoGd1wAwwdCuPGgZU9qbjVdQyhHXA8YaO7fwATgDuBtY0cV3WOIRS4xYvDrql77gkTJjg1VSoE\nuR5D2Bo4FTgDeIGwC2oXYGpdPlDJ06lTOKKzefMwxvDGG7EjklQf2SaEh4BngFbAjwjbYt8LnAds\nmZvQVExatYJbb4XRo8PU1IkTY0ckqa5q6058D3gP6A9My304G2XJqMjMnQvHHAPHHQeXX+7UVCmG\nXGxdMZmwu2lF+vkzwLp6xNYQJoQi9MEHYa3C2rVw773hPGdJ+ZOLMYTDgRQhIQwHniOUj84CflDX\nAFU6ttkGJk+GPn3C1NRnn40dkaTa1Gel8s6ERHEY0AHo1qgRbcgeQpGbNAlGjoRLLw1jDO6aKuVe\nPnc77QOcAPwMWFPP98iWCSEBliwJU1N33z1MTW3TJnZEUrLletrpgcBVwLvAb4HXyH0yUELsvHMo\nG7VsGaamLloUOyJJNdWWEHYDxhJu/tcRFqOVEcYVxuUyMCVPy5Zwyy3ws5+FsYUHH4wdkaTqautO\nrAceI6w3+Ef6tbfJz9GZVSwZJdC8eWFq6jHHwBVXODVVamy5KBkNB74AZgA3AQPq+gHSxhx0UNgx\ndcECGDAAli2LHZGk2hLCw8BxwN7A08D/BbYlbHY3KLehKem23jrMQOrfPySIZ56JHZFU2urz2357\n4BjCJneHVHttZWMFVYMloxLw+ONw2mlw8cVw/vlOTZUaKp/TTmvyxDQ12NtvhzGFzp3h5pthS3fJ\nkuot5olpUoP98Icwc2ZIBAcfDK+9FjsiqbSYEFRQWrQIvYMLL4S+feH++2NHJJUOS0YqWM8/H0pI\nw4bBlVdCs2axI5KKhyUjJUqXLiEpLFoUpqb++9+xI5KSLduEcA2w12a+P7ARYpE20L49PPYYDBwY\npqY+/XTsiKTkyjYhvAb8CZgDnANsVeP7HzZmUFJ1TZrAr38dtr045hi45hqwiig1vrqOIexOOFd5\nBOGwnAnk/iQ1xxD0jXfeCSextWgB118Pe+8dOyKpMOV6DKGckBD2AFYALwEXAH+pywdKDdGxY9g1\n9bjj4JBD4IIL4NNPY0clJUO2CeFa4HVgCPBfQBfgSuBHwP65CU3auPJyGDUKFi6ETz4JZyzcdZdl\nJKmhsu1OjCT0BD7fyPfaAR83WkQbsmSkzZo1C849Nyxos4wkBbkoGXVK//lnNp4MIOxjJEXTowfM\nnRvKSP37W0aS6qu2hHA54TyEswgnpn0X+B6hZHQ2MCl9TUMMBhYBbwK/bOB7qUTVLCPtsYdlJKmu\nsulOdCbsbNoL2Cn92ruEWUb3AEsa8PnlhLGJgcC/gLmEs5qr72JjyUh1NmtWSBBt21pGUmmKudtp\nffUAxhB6CQAXpf+8oto1JgTVy9dfwx//CGPHwkknhT/bto0dlZQfuZ522ouw/uCUao+G+j6wtNrX\n/0y/JjVYVRlpwYJMGenuuy0jSZuSbUK4E7gK6A10rfZoKP9pKue22y6scn7gAbjqqjDwvGBB7Kik\nwpPt0eZdgD1p/Bv4v4Adq329I6GX8C1jx4795nkqlSKVSjVyGCoFPXrAvHmhjHTIIXDyyTBmjGUk\nJUNFRQUVFRUNeo9s60v3A+cD7zXo0zbUlDCoPCD93nNwUFl58P77cNFF8MQToddwwgke26lkyeWg\ncgVhRfIc4Kv0a5XAUXX5sE04HLiOMOPoFuB3Nb5vQlDOVM1G2mqrMBtpr83t6SsVkVwmhNQmXq+o\ny4fVkwlBOfX113DTTWEW0imnWEZSMhTjtNNsmBCUF5aRlCS5SAir2PRAciWQj9+jTAjKK8tISoJc\nrENoA2y5iYedaiVS1WykY4+FVAouvNC9kVQaPFNZ2ojy8rCD6sKF8NFHLmpTaSiGCqklI0VnGUnF\nJtdbV0glyzKSSoEJQcrSxspI99xjGUnJYclIqqdnnw0JwjKSCpElIymPevb8dhnp5z+Hzz6LHZVU\nfyYEqQGql5E+/BB2390ykoqXJSOpEVWVkdq1g/HjLSMpHktGUmQ9e8LcuXD00ZaRVHxMCFIja9oU\nzjsvU0ZyNpKKhSUjKccsIykGS0ZSAbKMpGJhQpDywDKSioElIykCy0jKNUtGUpGwjKRCZEKQIqkq\nIy1YkCkj3XuvZSTFY8lIKhAzZ4YyUvv2MG6cZSQ1jCUjqYj16hX2Rho+PJSRfvELy0jKLxOCVECq\nl5E++MAykvLLkpFUwKqXkcaPhz33jB2RioUlIylhqpeR+vWzjKTcMiFIBc4ykvLFkpFUZCwjKRuW\njKQSULOMNGIEzJplj0ENZw9BKmIffwy33hrOdN5qKxg9Go47Dlq2jB2ZYqtPD8GEICXA+vUwZUoo\nIc2bByNHwn/8B+y0U+zIFIslI6lENWkCQ4bA44+HMYavvoIDD4Rhw+Dvf7ecpOzYQ5ASatUquPPO\n0GuorAwzlU4+Gdq0iR2Z8sGSkaQNVFbC9Olhf6SKCjjppDBLadddY0emXLJkJGkDZWVhb6QHH4T5\n86F1a+jdGwYPhkmTwviDBPYQpJL05Zdw332h17ByZegxnHYafOc7sSNTY7GHICkrLVrAKafAnDlw\n993wwguw885w1lnw8suxo1MsJgSphJWVwcEHh8HnRYvgBz8Is5X69YP774e1a2NHqHyKWTI6FhgL\n7A50BV7YxHWWjKQ8WrsWHn44lJOWLIFzzgk9h+22ix2Z6qLYSkavAMOAGRFjkFRDs2Zw7LEwY0YY\ndH73XdhttzBldfbs2NEpl2ImhEXAGxE/X1It9tsPJkyAxYth//3hhBOgWze4/fYwMK1kcQxBUq3a\nt4cLL4Q334Rf/xruuitsi3HppbB0aezo1Fia5vj9pwIdNvL6JcCj2b7J2LFjv3meSqVIpVINjUtS\nPZSXw5FHhsfrr4dN9fbbDw45JKyE7tcvDFQr/yoqKqioqGjQexTCX9004EIcVJaK0mefwR13hC0y\nystDYjjppLAATvEU26BydYWQmCTVw5ZbwqhRsHAhXHcdTJ4cpq9ecAG89Vbs6FQXMRPCMGAp0B2Y\nBEyOGIukBiorgwEDwpTV55+H5s2hRw844oiQJNwio/AVw2/mloykIvXFF+H853HjQmnp3HPh1FOh\nXbvYkSWfu51KKkiVleGYz/HjQ2/h+ONDcth779iRJVcxjyFISrCyMujZM+yb9Oqr0KEDDBoE/fvD\nxImwbl3sCAX2ECRFsmZNSAbjx8M//hGO/DzjDNh229iRJYM9BElFo3nzUDp65pkwEP3WW+HQnp/+\nNJwLrfyzhyCpYHz4IdxyC9xwQygrjR4NxxwDW2wRO7Li46CypET4+mt47LEwO2nBAjjzzLDr6ve/\nHzuy4mHJSFIilJfD0KHw5JMwbRp89BHssw/85Cfw9NNh1pIanz0ESUXh00/httvCIHSLFmGLjBNP\nhFatYkdWmCwZSUq89etDz2H8eHj22bDQbdSocASoMkwIkkrKkiVw441w663QvTscdVTYcXXXXd11\n1YQgqSStXg0PPBB6DtOnhzUOffuG5JBKwR57lF6CMCFIEvDOO1BREZLD9OmwalUmQfTrF7bMaJLw\nKTUmBEnaiKVLQ2KoShIrV0KfPqH30K8f7LtvmNmUJCYEScrCe+9leg/Tp8OyZdC7d6YHccAB0DTX\n50nmmAlBkuph2TKYMSOTIJYuhV69MgmiSxdo1ix2lHVjQpCkRrBiRVgAV1VmevvtMIupapC6a9ew\nF1MhMyFIUg6sXJlJENOnwxtvQLdumR7EwQeHxXKFxIQgSXnw8cdhl9aqBPHqq6GsVDVI3b17/BXU\nJgRJiuCzz2DmzEyJ6ZVXYP/9Mz2Inj2hTZv8xmRCkKQC8PnnYVuNqh7E/Plhc76qBNGrF7Rtm9sY\nTAiSVIBWr4bnnsskiHnzwurpqkHq3r2hXbvG/UwTgiQVgS+/hDlzMiWmOXNgl10yPYi+faF9+4Z9\nhglBkorQmjUwd26mBzFrFnTsmBmk7tu37mdNmxAkKQHWroUXXshstTFzJuywQ6YH0a9fOGJ0c0wI\nkpRA69bBiy9mehBPPw3bb//tBFHzeFETgiSVgK+/hpdfziSIGTPgO9/JDFL36wc77WRCkKSSs349\nLFjw7QSxYoUJQZJKXmUlNGlS94SQ8CMiJKn01Pd0OBOCJAkwIUiS0kwIkiTAhCBJSjMhSJIAE4Ik\nKS1mQrgKeA14CZgIbBUxFkkqeTETwt+AvYD9gDeAiyPGUhQqKipih1AwbIsM2yLDtmiYmAlhKrA+\n/Xw2sEPEWIqCP+wZtkWGbZFhWzRMoYwhjAQejx2EJJWypjl+/6nAxnbtvgR4NP38UmANcHeOY5Ek\nbUbsze1OBc4EBgBfbuKat4BO+QpIkhJiMdA5dhDZGgwsBLaJHYgkKW4P4U2gObAy/fUsYFS8cCRJ\nkiQVjMHAIkKv4ZebuOYP6e+/BByQp7hiqa09TiS0w8vATGDf/IWWV9n8XAB0BdYBw/MRVCTZtEUK\nmA8sACryElUctbXFNsAU4EVCW5yat8jy78/AcuCVzVxTVPfOcsLAcUegGeEvcY8a1wwhMy31YOC5\nfAUXQTbt0YPMyu7BJLM9smmHquv+DjwGHJ2v4PIsm7ZoRxiTq1rPk9SxuWzaYizwu/TzbYAPyf2M\nylj6EG7ym0oIdbp3FsI6hG6Ev+B3gLXAvcDQGtccBdyWfj6b8MO/fZ7iy7ds2mMW8En6eVIX9WXT\nDgCjgQeAFXmLLP+yaYsRwIPAP9Nff5Cv4PIsm7b4N9A2/bwtISGsy1N8+fY08NFmvl+ne2chJITv\nA0urff3P9Gu1XZPEmyBk1x7VnU4yF/Vl+3MxFLgx/XVSD9/Opi12AdoD04B5wMn5CS3vsmmLCYRt\ncd4jlEnOz09oBalO985C6EZl+4+45oyopP7jr8v/V3/CKu9eOYolpmza4TrgovS1ZcRfV5Mr2bRF\nM+BAwpqeVoRe5HOE2nGSZNMWlxBKSSnCGqaphD3TPstdWAUt63tnISSEfwE7Vvt6RzLd3k1ds0P6\ntSTKpj0gDCRPIIwhbK7LWKyyaYcuhJIBhFrx4YQywiM5jy6/smmLpYQy0RfpxwzCTTBpCSGbtugJ\n/Ff6+WLgbWA3Qs+p1BTdvbMp4S+tI2FdQm2Dyt1J5iBqlWza4weEOmr3vEaWX9m0Q3W3ktxZRtm0\nxe7Ak4RB11aEQcY98xdi3mTTFtcAY9LPtyckjPZ5ii+GjmQ3qFw0987DgdcJN7mqbbDPTj+qjE9/\n/yVC1zjJamuPmwkDZfPTjzn5DjBPsvm5qJLkhADZtcXPCTONXgH+T16jy6/a2mIbwl5pLxHaYkS+\nA8yjewhjJWsIvcSRlPa9U5IkSZIkSZIkSZIkSZIkSZIkSSo6PyNsG9G2tgulQlQeOwApQf6HcGgR\nhC0VJEkJ0ZWw3H8LoDXh9K1N7Q/UCXiBsF/ME3mJTmpkSd0uWGosvwVaAC0Je8VcuYnrLgW+Bq4g\nbL7WA3g/HwFKkvKjGaGX8Byb/wXqFUIvAeBq4NwcxyVJyrPvEnaKXEDYVnpj9gG+JOy7/zZhv/ln\n8hKdJClvHgGOJ5zCNW4T11wO/LLGa0sI51ZIkhLgFOD+9PMmhLJRaiPXLQZ2rfHa1cAvchaZJEmS\nJEk55bRTKXv7ALfXeO1LwhRTSZIkSZIkSZIkSZIkSZIS7n8B02y2CVc2t6IAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x10654cdd0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The actvity coefficients of the system can be represented by Margules equation\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.14 Page No : 259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "\n",
+ "#Given\n",
+ "P = 760.0#Total pressure of the mixture in mmHg\n",
+ "T = [80, 90, 95, 100];#Temperature in deg celsius\n",
+ "P1 = [87.4, 129.0, 162.0, 187.0];#vapour pressure of 1,1,2,2-tetrachloroethane in mmHg\n",
+ "P2 = [356, 526, 648, 760];#Vapour pressure of water in mmHg\n",
+ "\n",
+ "#To Calculate the composition of the vapour evolved\n",
+ "plt.plot(T,P1,\"green\",T,P2,\"red\")\n",
+ "plt.title(\" \")\n",
+ "plt.xlabel(\"Temp in deg cel\")\n",
+ "plt.ylabel(\"Vapour pressure in mmHg\")\n",
+ "plt.show()\n",
+ "#From the graph we conclude that at 93.8 deg cel\n",
+ "P1 = 155.0;#in mm Hg\n",
+ "P2 = 605.0;#in mm Hg\n",
+ "y_1 = P1/P;\n",
+ "y_2 = P2/P;\n",
+ "print 'Mole fraction of 1,(1,(2,(2-tetrachloroethane in vapour is %f'%(y_1);\n",
+ "print ' Mole fraction of water in vapour is %f'%(y_2);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcU/X97/HXsA8wwEyFYVgUFIEi1q1wtdUSFRFcQGuv\nS12g2sV6rfror61if/0xffS2Cvdaa3t/ilUrQ6sj1KJoKwi2RK3WjV1xVEAqAzLsOwOz5P7xOSGZ\nkMmcZHJyksz7+XjkMclJcvLlPMJ557uc7xdERERERERERERERERERERERERERETEpanAB8Bq4Gmg\nM1ACLAY+BhYBvWJe/wlQBYzLaElFRCTjBgHrsXAAmANMBmYAP3G23Q3c79wfAawAOjrvXQu0y0xR\nRUSkOV6eiPcCdUBXoIPzdzMwEahwXlMBXOHcnwRUOu/ZgAXFaA/LJyIiLngZFDuBB4DPsIDYjTU5\nlQI1zmtqnMcA/YDqqPdXA/09LJ+IiLjgZVCcBNyFNSP1A7oDN8S8JuTcmpPoORERyYAOHu77y8Cb\nwA7n8TzgHGAL0Nf5WwZsdZ7fBAyMev8AZ1sTJ510UmjdunUeFVlEJG+tA4ak8kYvaxRVwNlAIVAA\njAXWAC9indo4f5937r8AXAt0AgYDJwPvxO503bp1hEIh3dJ0mzZtmu9lyKebjqeOZbbesFaelHhZ\no1gJzAbeAxqBZcDvgSJgLnAL1ml9tfP6Nc72NUA9cBtqehIR8Z2XQQE2FHZGzLadWO0inl85NxER\nyRK6TqGNCwQCfhchr+h4po+OZfYo8LsAKQg57W0iIuJSQUEBpHjOV41CREQSUlCIiEhCCgoREUlI\nQSEiIgl5PTxWRET8EgrB669DRUXLr01AQSEikm82bIDZsy0gCgth8uQW35KIhseKiOSD/fvh2Wct\nHFavhuuus4A46ywoKGjV8FgFhYhIrmpshFdftXCYPx/OOw+mTIFLL4XOnZu8VEEhItKWrFtn4TB7\nNvTsaeHwzW9CaWmzb2lNUKiPQkQkF+zdC3/+M8yaBR99ZMHw/PNw+umef7RqFCIi2aqhAZYssXD4\n61/hggus32HCBOjUKaldqelJRCSffPxxpGmpTx9rWrruOjjuuJR3qaYnEZFct3s3zJljAbF+Pdxw\nA7z0Epx6qt8lU41CRMQ3DQ2weLGFw4IFcNFFVnu4+GLokN7f8Wp6EhHJJWvWWDj86U/Qv7+Fw7XX\nQkmJZx+ppicRkWy3cyc884x1TG/aZE1LixfDiBF+l6xFqlGIiHilvh5eftnCYfFiG600eTKMHZv2\npqWWZPPCRcOA5VG3PcAdQAmwGPgYWAT0inrPVOAToAoY53H5RETSb/Vq+NGPYOBA+OUvLRg2bIDK\nShg/PuMh0VqZrFG0AzYBo4EfANuBGcDdQDFwDzACeBoYBfQHXgGGAo1R+1GNQkSyz/btFgSzZsHW\nrXDTTXYbNszvkgG500cxFlgLbAQmAmOc7RVAEAuKSUAlUAdscF4/Gngrg+UUEXGnrs6GsFZUwD/+\nAZddBtOnw/nnQ/v2fpcubTIZFNdiIQBQCtQ492ucxwD9aBoK1VjNQkQke6xYYeHw9NMwdKiNWpo1\nC3r08LtknshUUHQCLseamWKFnFtz1M4kIv7buhWeesoCYtcu65R+4w0YMsTvknkuU0ExAVgKbHMe\n1wB9gS1AGbDV2b4JGBj1vgHOtibKy8uP3g8EAgQCgXSXV0QEjhyxOZZmzYLXXoNJk+DBB2HMGGiX\n3StJB4NBgsFgWvaVqc7sZ4AFWH8EWCf2DmA61jfRi6ad2aOJdGYPoWmtQp3ZIuKdUAiWLbNweOYZ\nGDnSag9XXQVFRX6XLmXZfmV2N+DfwGBgn7OtBJgLHI91Wl8N7Haeuxe4GagH7gRejtmfgkJE0u/z\nz61padYsOHjQ+h1uvBEGD/a7ZGmR7UGRbgoKEUmP2lp48UULhzffhK9/3WoP556b9U1LyVJQiIi4\nFQrBO+9Yp/Tcubbwz5QpcOWV0K2b36XzTK5cRyEi4p9Nm+CPf7SAaGiwmsOyZXD88X6XLOspKEQk\nfx06ZMuFVlRYLeIb34AnnoBzzoGCXGxQ8YeCQkTySygE//qX9Ts8+yyMHm21h+eeg8JCv0uXkxQU\nIpIfPvss0rTUvr2Fw6pVMGCA3yXLeQoKEcldBw5YTWHWLFi+HK65xsJi9Gg1LaVRLh5JjXoSactC\nIXj9das5zJsHX/mK1R4mToQuXfwuXdbSqCcRyX8bNsDs2RYQhYU2pHXNGigr87tkeU9BISLZa/9+\n65CuqID337d1pefOhTPPVNNSBuXikVbTk0g+C4VsVtbHH4f58+G886z2cOml0Lmz36XLWboyW0Ry\n35491hE9c6atNf3d78L110NpacvvlRYpKEQkdy1dCo88An/5C1x8Mdx6q03jraaltFJntojklgMH\nbArvmTNtrenvfQ+qqlR7yFK5GNmqUYjkqvffh0cftSVEzz3Xag/jxuXV+tLZSjUKEcletbXWrDRz\nJqxfD9/+tq05PXBgy++VrKAahYh4Y+1aqz1UVMAZZ1jt4bLLoGNHv0vWJrWmRuFmZY59cW7VwHPA\nial8qIjkqbo6u1p63Di7YrqgwBYEevllW+9BIZGT3DQ9PQRsBCqdx9cCJwHLgT8AAU9KJiK5Y+NG\neOwxu/ZhyBCrPVx1la57yBNuqiGrgC/FbFsBnA6sBE5Ld6FaoKYnkWzQ0GA1hZkz7QK566+30Uun\nnOJ3ySQOr5ueDgLXOK9tB1wN1DrPuTlj9wKeBT4E1gD/AygBFgMfA4uc14RNBT4BqoBxLvYvIplU\nUwP33Wc1h/JyuOIKm+L7t79VSOQpN0FxPXAjsNW53QTcABQCt7t4/0PAS8AXsZpJFXAPFhRDgb87\njwFGYKE0AhgPPOyyjCLipVAIliyxabyHD7fRS88+a6vG3XxzXq81Ld6PeuqJ9WXEdnpXAWOAGqAv\nEASGY7WJRmC687qFQDnwVtR71fQkkik7d9qopUcftY7oW2+FG26Anj39LpkkyavrKH4XdT8U8wEh\n4A4X+x8MbAOexPoylgJ3AaVYSOD8DV+O2Y+moVAN9HfxOSKSLqEQvP22Tasxfz5cfrmtMx0exSRt\nTqKgWEokIH4O/BeRsHD7k74DcCbWRPUu8BsizUxhoRb2d8xz5eXlR+8HAgECgYDL4ohIs/btg6ee\nss7pAwes9vDAA3DccX6XTFIQDAYJBoNp2ZfbnwfLgTNS2H9f4F9YzQLgXKx56UTgfGALUAYswZqe\nwiFyv/N3ITANeDtqn2p6EkmnFSssHObMgQsvtIC44AJop+7BfOL1qKfW2IJdgzHUeTwW+AB4EZjs\nbJsMPO/cfwG7TqMTFi4nA+94XEaRtufgQVtn+uyzbQnRAQPggw+sg3rsWIWENJGJuZ5+ADyFnfzX\nAd8C2gNzgVuADdiQW7Dhs3Odv/XAbbhv5hKRllRVWcf0H/9oIfGf/wkTJmhSPkkoUTVkP5GTdCFw\nKOq5ENDDq0K1QE1PIsk4cgSee86al6qq4JZbbGK+QYP8LplkkBYuEpFjffop/P738OSTdiHcrbfC\npEnQqZPfJRMfZGKa8WJgYMzrl6XygSLiofp6+NvfrPbw3ntw003w6qswbJjfJZMc5iYofgFMAdZj\nF8OFne9FgUQkBZs22bUOjz0Gxx9vtYd586Cw0O+SSR5wExTXYLPFHvG4LCKSjMZGeOUVqz0Eg3Dd\ndVab+FLsHJ4ireMmKD7Amp5qWnqhiGTAtm3W7/Doo9CjB3z/+zbNRlGR3yWTPOWmY2MUMB94Hzjs\nbAsBE70qVAvUmS1tTygE//yn1R5eeskWAbr1Vhg1StNqiCtej3r6EHgEC4pwH0UIeDWVD0wDBYW0\nHbt32zUPM2daWNx6K9x4IxQX+10yyTFeB8W7WK0iWygoJL+FQjZiaeZM65AeP96al847T7UHSZnX\nw2NfB+7Dptc4HLVdw2NF0mn/fqistIDYtctWi/voI+jTx++SSRvnJl2CxJ9Gw6/hsapRSH5Zvdo6\npisr4Wtfs+aliy7SfEuSVl7XKAKp7FhEEqittQn4Zs6EDRvgO9+BlSttcj6RLOMmXYqx5U8HEQkW\ntwsXeUE1Csldn3xitYeKCjjrLKs9XHYZdMjE/JzSlnldo3gJW1NiFTbqqQDN6CriXl2drRQ3c6Y1\nM33rW7aC3ImxKwSLZCc36bIMW6UuW6hGIbnhs89sSo0nnoChQ632cOWV0Lmz3yWTNsjrhYueBr6L\nrURXEnUTkVgNDTaNxuWXw5ln2vKif/+7TbFx7bUKCclJbpqeaoH/A/yUphfcqd4sAnbdw+rV1rz0\n+OPQt6/VHubMga5d/S6dSKu5qYZ8il1wt93jsrilpifx3+7dsHgxLFxot8JCuOQSmDLFahIiWcbr\nzuxPaLq6nUjb09gIy5dbKCxYAKtW2ZXS48fD1KkwZIjfJRTxjJt0eR44BVhC00kBNTxW8tv27VZr\nWLAAXn4ZSkosGCZMsJDQWg+SQ7ye62mK8zd8dg4Pj61w+RkbgL1AA1AHjMY6w+cAJzjPXw3sdl4/\nFbjZef0dwKKY/SkoxBsNDTbH0oIFVnP48EMIBCwYLr4YBg/2u4QiKcv2NbM/Bc4CdkZtm4H1ecwA\n7sYu6rsHGIGNshoF9AdeAYbSdGU9BYWkT00NLFpk4bBoEZSVRWoNX/2qRilJ3siFoPgysCNqWxUw\nBlsMqS82n9RwrDbRCEx3XrcQKAfeinqvgkJSV19vF7uFaw1r18KFF0ZqDQMH+l1CEU943ZndWiGs\nZtAAPAo8BpQSWTGvxnkM0I+moVCN1SxEUrd5c2R00iuvwAknWDD8+tdwzjnQsaPfJRTJapkIiq8C\nnwO9gcVYbSJaiMRTghzzXHl5+dH7gUCAQCDQ2jJKPqmrgzfeiIxQqq622VgvuQQeesial0TyXDAY\nJBgMpmVfbqohw4AfceykgBek8HnTgP3Ad7BZabdgV3wvwZqe7nFed7/zd6Hznrej9qGmJznWZ59F\ngmHJEjj5ZKs1jB8Po0dr0j1p87zuo1iFLYW6DGs+AguKpS7e2xVoD+wDumEjmH4OjMX6LKZj4dCL\npp3Zo4l0Zg+haa1CQSFw+DC8/nokHLZutT6G8eNh3Dgt9iMSw+s+ijosKFJRCjwX9VlPYWHxHjAX\nuIXI8FiANc72NUA9cBuaqVbC1q+PBMOrr8LIkRYMs2bZ1dDt2/tdQpG85CZdyoFtwDyaLoW6M+6r\nvacaRVtx6JAFQniE0p49kaGrY8fCF77gdwlFcobXTU8biP+r3q+rjxQU+SoUsoV9wsHwxhtw+umR\ncDjtNC0PKpKibL+OIt0UFPnkwAHrfA6Hw+HDkWC48ELo1cvvEorkBa+C4kLg78BVxK9RzEvlA9NA\nQZHLQiGbGiMcDG+9BaNGRUYojRwJBbn4+0Uku3nVmf01LCguJ7uCQnLN3r22eE/4oreCAguG22+H\nefOgqMjvEopIArn40001imwXCtk03OERSkuX2hXQ4VrD8OGqNYhkmPooxH/hhXzCTUpdu0aCIRCA\nbt38LqFIm6agkMxLtJDPhAlayEckyygoJDNiF/IpLrZQ0EI+IlnP66DoBvwQOB6bo+lkbP6nv6by\ngWmgoMiU5hbyGT/eblrIRyRneB0Uc7F5nW7ClkTtBrwJnJbKB6aBgsJLWshHJC95HRRLsRXqlgNn\nONtWoqDID1rIR6RN8HpSwMNAdOPzSTSd80lyjRbyEZEkuEmXccBPsSnAF2MLEU3B1pDwg2oUyYpd\nyGfjRlvIJ1xr0EI+InnPy6andsD/xK7QPtvZ9jY2m6xfFBRuaCEfEYmSqT6KbKGgiEcL+YhIAl4H\nxf3AdmAOcCBqu9aj8FvsQj6nnBK5rkEL+YhIFK1H0VY0t5DP+PHW56CFfESkGboyO19pIR8RSROv\ng2Iy8WsUs1P5wDTI76CIXshnwQI4ckQL+YhIq3l9HcUoIkFRCFwALMN9ULQH3gOqsbUtSrD+jhOw\nZq2rgd3Oa6cCNwMNwB3AIpefkbsSLeQzf74W8hER36VyBuqFnegvdvn6H2KjpoqAicAMrHN8BnA3\nUAzcg12n8TQWTP2BV4ChQGPM/nK/RtHcQj7jx8MFF2ghHxFJO69rFLEO4r4jewBwCfBLLDDAwmKM\nc78CCGJBMQmoBOqwmsZaYDTwVgplzC6JFvK56y4t5CMiWc1NULwYdb8d9st/rsv9Pwj8GOgRta0U\nqHHu1ziPAfrRNBSqsZpFbmpuIZ8f/1gL+YhITnETFA9E3a8D/o2dxFtyGbAVm0ww0MxrQsTvKI9+\n/hjl5eVH7wcCAQKB5nafQYkW8rn3Xi3kIyIZFQwGCQaDadmXm/aO7sAhrIN5mHNbgIVGIr8CbgTq\ngS5YrWIe1gcRALYAZdicUcOx5iewC/wAFgLTsClDomVPH4UW8hGRHOH18NhlwLlYp/MbwLvAEeD6\nJD5nDPAjbNTTDGAHMB0Lh1407cweTaQzewjH1ir8Cwot5CMiOcrrzuwCrAP7FuBh7ES/MoXPCp/d\n78f6OG4hMjwWYI2zfQ1WC7mNxM1SmVFTY7WFhQubLuTzq19pIR8RaRPcpMty7KT9IHZy/wBYDZzq\nYbkS8bZGEb2Qz4IFsG6dFvIRkZzndY3iLuxCuOewkDgJ/9ai8EZzC/k8+KAW8hGRNi/ZdGmHdW7v\n9aAsbrW+RqGFfESkjfG6M7sS+B426uldoCfwENZX4YfUgkIL+YhIG+Z1UKwETsNGOZ2JjVBaRrb3\nUYQX8gmPUNJCPiLShnndR9EB6AhcAfw3dv2E/6OR4mluIZ9Zs7SQj4hIitwExaPYMNZVwGvAIGCP\nd0VKQnML+Vx/vYWDFvIREWm1VKohBdjU4fVpLotbodBvfqOFfEREkuB101NfbPbX/sB44IvAOcAT\nqXxgWqxeDd/+NlRWaiEfERGPuUmXhcCTwE+BL2H9FcuBkR6WK5HsmetJRCRHtKZG4aad5jhsoaIG\n53Ed/jU7iYhIhrkJiv1AdK/w2WRLZ7aIiHjOTR/Ff2CLF50IvAn0Br7hZaFERCR7tBQU7YGvObfh\nWPvWR9g04yIi0ga46dh4F1tsKFuoM1tEJEleT+HxIDbSaQ5wwHlPCJvGww8KChGRJHkdFEHiT9lx\nfiofmAYKChGRJHkdFNlGQSEikqRMXEfxO+wiu2XYFOOaRElEpI1wExTPAFuBr2PDYrdh/RUiItIG\nuAmKvsAvgE+B9cD/BkpdvK8L8DawAlgD3OdsLwEWAx8Di4DoyZqmAp8AVcA4F58hIiIecxMUi4Dr\nnNe2A65xtrWkFuvwPh2bI+p84Fxs4aPFwFDg785jgBHOvkdgkw8+7LJ8IiLiITcdG/uBrkCj87gd\nNkwWbDRUDxf76Aq8CkwB/gKMAWqw2koQu5hvqvMZ0533LATKgbdi9qXObBGRJHndmd3deV0H59YO\nKHJuLYVEO6zpqQZYAnyANVvVOM/XEGnG6gdUR723GpvaXEREfORmrqfWaMSannoCL3PstRchEi+r\nGve58vLyo/cDgQCBQKA1ZRQRyTvBYJBgMJiWfWXyOoqfAYeAbwMBYAtQhtU0hhPpq7jf+bsQmIZ1\niEdT05OISJK8bnpK1XFERjQVAhdh12K8AEx2tk8GnnfuvwBcC3QCBgMnA+94WD4REXGhpaanDli/\nwrAU9l0GVBAZLfVHbJTTcmAucAuwAbjaef0aZ/sabGGk20jcLCUiIhngphoyH7gD+LfHZXFLTU8i\nIklqTdOTm87sEqxW8Q5Nh8VOTOUDRUQkt7gJip95XgoREclamj1WRKQN8LrpaT+RTuVO2CJG+3F3\nRbaIiOQ4N0HRPep+O6xv4mxviiMiItkm1aanFdgV135Q05OISJK8bnq6Kup+O+As7AprERFpA9wE\nxeVE+ijqsYvkJnlVIBERyS4a9SQi0gZ4PdfTQOA5bAnUbdh6EgNS+TAREck9boLiSWzCvn7O7UVn\nm4iItAFuqiErgdNcbMsUNT2JiCTJ66anHcCNQHus8/sGYHsqHyYiIrnHTboMAn5H5CK7N4EfAJ95\nVKaWqEYhIpKk1tQoNOpJRKQN8Lrp6SSsA3s7NuppPnBiKh8mIiK5x01QPI2tPFeGjXr6M1DpZaFE\nRCR7uKmGrAK+FLNNo55ERHKI130U04HdRGoR1wDFwAzn8c5UPrgVFBQiIknyOig2EJnrKVaIxP0V\nA4HZQB/ntb8HfostrzoHOMHZ/9VYGAFMBW4GGrC1uhfFfqaCQkQkOdk86qmvc1uBrWuxFLgC+BbW\nOT4DuBurodwDjMD6REYB/YFXgKFAY9Q+FRQiIknyeppxgJHYSbxL1LbZLt63xbmBrYr3IRYAE4Ex\nzvYKIIgFxSSsiasOq2msBUYDb7ksp4iIpJmboCjHTuqnAH8DJgD/xF1QRBsEnAG8DZQCNc72Gucx\n2Kiq6FCoxoJFRER84iYovoGNcFqGNRmVAk8l+TndsVln7wT2xTwXovk+EOI9V15efvR+IBAgEAgk\nWRwRkfwWDAYJBoNp2Zeb9qp3sT6DpcAFwF6gChjm8jM6An8FFgC/cbZVAQGsWaoMWAIMx5qfAO53\n/i4EpmG1kDD1UYiIJMnrK7PfwzqbH3PuL8fme3JVNuAJYA2RkACbtnyyc38y8HzU9muBTsBg4GTg\nHZefJSIiHkiULg9jI5D+GbVtMNADu+DOjXOB17CL9sLVgKnYyX8ucDzHDo+9FxseW481Vb0cs0/V\nKEREgPrGenYc3MG2g9vYemAr2w5si3//4Daqbq8CD4bH3oVdXNcPu+ahEqtN+E1BISJ5KZkT/7YD\n29hdu5viwmL6dOtD76696d2tN3269qF3t9707trbtjv3R5aOBA+voxiENQddA3TFahmVwMepfGAa\nKChEJCd4eeLv060PJYUltG/X3lVZMnnB3RnYMqinYgsZ+UFBISK+yKYTf7K8DooOwCVYreJCbIRS\nJTbduB8UFCKSFrl84k+WV0ExDguHS7HO50psVNL+VD4ojRQUIhJXWzrxJ8uroPgHFg5/IfMzxCai\noBBpI3TiT59snhTQCwoKkTyw7/A+qvdWU723mo17Nx69H75t3rdZJ/40UlCISNYIhULsObznmBN/\nbCDUN9YzoMcABvYYyIAeA4659SvqxxcKv6ATf5ooKEQkI0KhELtqd9lJf09ULWBf00AAjgmA2Me9\nuvQKn7wkAxQUItJqoVCI7Qe3J6wFVO+tplP7Tgzs6Zz0i5rWAsLbe3Tu4fc/R2IoKEQkocZQI9sO\nbIvbFxB969apW+TEXxQ58Ydv/Yv6U9S5yO9/jqRAQSHShjU0NlBzoKZpLWDPxibNQZv3baZn555x\n+wLCTUL9e/Sna8eufv9zxCMKCpE8Vd9Yz5b9W5r2B0T1CWzcs5Et+7dQUljSbF9AOAS6dOjS8gdK\n3lJQiOSguoY6Nu/bnLA/YOuBrfTu1rtJc1Bsf0C/on50at/J73+OZDkFhUiWOVx/mM37NjfbJ7Bx\n70Z2HNxBaffShENEy7qX0bF9R7//OZIHFBQiHmoMNbKndg87D+1k56Gd7KrddfT+zkM72XVoFztr\nd7Lj4A427dtE9d5qdtfupqx7WbP9AQN6DKC0eykd2rlZjVik9RQUIi4crj/c/Ik+/Lg25vGhnew9\nvJfunbpTUlhCSWEJxYXFdr9LzOPCEvoX9T8aAu0K3CwgKZIZCgppM0KhEPuO7Gv+RB8vCJzHdQ11\nx57snRN+k8eFJRR3iTzu2aWnfvlLzlNQSM6pa6hrckJ3e7LfdWgXXTt2TXhij/u4sJhuHbvpSmBp\nsxQU4otQKMSBugNJnejDt0N1h5qc7N2c6MPb1bkrkrxsDoo/YOtZbMVWxQMowdbgPgHYAFwN7Hae\nmwrcDDQAdwCL4uxTQZFm9Y317K7dnfBk31y7fsf2HZM60YdvRZ2K9OteJIOyOSjOwxY6mk0kKGYA\n252/dwPFwD3ACGw97lFAf+AVYCjQGLNPBUUzDtUdSvyr3hmdE3uy339kPz069zj2xN6l+RN9cZdi\niguLdRGXSI5oTVB43UP3OjAoZttEYIxzvwIIYkExCVsoqQ6raawFRgNveVzGrBI9FLPZ0Tm18dv1\ngfi/4p3O2gE9BjTbWasROiLSHD+GcpQCNc79GucxQD+ahkI1VrPISW6GYsZrx99Tu+foUMx4I3PK\niso4pc8pcZt3CjsW+v3PFpE85PeYv5BzS/T8McrLy4/eDwQCBAKBtBbq6Ie3cihmopE5X+z9xbjt\n+L269NJQTBFptWAwSDAYTMu+MtGbOAh4kUgfRRUQALYAZcASYDjW/ARwv/N3ITANeDtmf0n3UUQP\nxUxmdM6uQ7so7FiY9MicksISDcUUkaySzZ3ZcGxQzAB2ANOxcOhF087s0UQ6s4dwbK0itOLzFa6H\nYe46tIuDdQcpLixOemROry69NNmaiOSFbA6KSqzj+jisP+K/gPnAXOB4jh0eey82PLYeuBN4Oc4+\nQ6c+fKrrk31xl2KKOheps1ZE2rRsDgovaHisiEiSWhMU+pktIiIJKShERCQhBYWIiCSkoBARkYQU\nFCIikpCCQkREElJQiIhIQgoKERFJSEEhIiIJKShERCQhBYWIiCSkoBARkYQUFCIikpCCQkREElJQ\niIhIQgoKERFJSEEhIiIJKShERCShbAyK8UAV8Alwt89lERFp87ItKNoD/w8LixHAdcAXfS1RngsG\ng34XIa/oeKaPjmX2yLagGA2sBTYAdcAzwCQ/C5Tv9J8xvXQ800fHMntkW1D0BzZGPa52tomIiE+y\nLShCfhdARESaKvC7ADHOBsqxPgqAqUAjMD3qNWuBkzJbLBGRnLcOGOJ3IdKhA/aPGQR0AlagzmwR\nEYkxAfgIqzlM9bksIiIiIiKSy6YCHwCrgaeBzkAJsBj4GFgE9PKtdLkn3vEsx0aXLXdu45t7sxzj\nTuxYvu/cB30/WyPe8SxH3083/gDUYMcvLNF3cSp2UXMVMC5DZfTEIGA9djIDmANMBmYAP3G23Q3c\nn/GS5aYw8JczAAAE1UlEQVRBxD+e04Af+lSmXDYS+0/ZBbtQdDE2yELfz9Q0dzz1/XTnPOAMmgZF\nc9/FEVj/b0fsvLCWFkbAZtvw2Gh7sYvuumKd3F2BzcBEoMJ5TQVwhS+lyz3xjucm57lsG/2WC4YD\nbwO1QAPwKnAV+n6mKt7x/LrznL6fLXsd2BWzrbnv4iSgEjsfbMCCYnSinWdzUOwEHgA+wwJiN/Yr\noxSrYuH8LfWldLkn3vF8xXnuB8BK4AnUVOLW+9ivuBIsdC8BBqDvZ6riHc+BznP6fqamue9iP6w5\nL6zFC5uzOShOAu7Cqkb9gO7ADTGvCaGL9NyKdzyvBx4BBgOnA59jYSItq8Ku71kELMCq8g0xr9H3\n073mjufD6PuZDi19FxN+T7M5KL4MvAnsAOqBecA5wBagr/OaMmCrL6XLPfGO51ew4xf+Ej1OC1VQ\naeIP2HEdg1X7P8Z+uen7mZro47kbGya/DX0/U9Xcd3ETkdoaWE14Ewlkc1BUYVdqF2JtlGOBNcCL\nWCcszt/nfSld7mnuePaNes2VNO0Mk8T6OH+Px9rTnwZeQN/PVEUfzyux41kW9by+n8lp7rv4AnAt\ndlHzYOBk4J2Mly6NfkJkOGcF1ktfgrWta/hh8mKPZydgNrAKawN+HrWpJ+M17HiuAM53tun7mbp4\nx1PfT3cqsb7HI9jEqt8i8XfxXqwTuwq4OKMlFREREREREREREREREREREREREREREZFkfYHItNOf\nE5mGehk24aFXfg5c2Ir3B4Gz0lOUpMzCJiwUSYmX/6lEvLIDm1IZbBrqfcCvM/C501r5fr/mftKc\nU9Iq2TyFh4hbBdgv9SDwHrCQyNQkQSxE3gU+BEYBz2FXq/7Cec0g7ArVP2HTmvwZm+ok1iwiv8w3\nYIvqLMWuHB4W5/WFwDPOPufF7HMcNvfWUmAu0M3ZfolTzveA32JT1sRqD/xf7Ar7lcDtzvbmjgFo\nqm4RacOmAT8C3gCOc7Zdg01JDbAEuM+5fwc2zUEpNn3JRqAYC4pGbNJJnPf+R5zPepLIGgmfAv/L\nuf994LE4r/8hNpEdwKnY/P9nOuV8lUhw3A38DFu05zPgBGd7eO6oWN/HwiX8Q68Ym97mTaxZDpoe\ngydR05O0gpqeJB90xlZIW+w8bo8FQlj4ZPu+cwvP0b8em0VzLxYa/3K2/wkLlZamtJ7n/F1GJECi\nnQc85NxfjdU8wCZnHIGd2MFC602sVrIe+LezvRL4bpz9XohND9/oPN6F/ftPIbLGSOwxEEmZgkLy\nQQE2mdxXmnn+sPO3Mep++HH4/0B0G34B7tr0w/tqoPn/S7FNPuHHi4Fvxjx3WgvvbWm/iY6BSMrU\nRyH54DDQG/ulDtYMMyLJfRwf9f5vYktLttZrRMJgJPAlLIDeAr6KLSYF1j9xMrb+wolEmp6uIX5g\nLQa+h9UawJqeqmj9MRCJS0Eh+aAB+Aa2QtoKbKjsOXFel2j0z0dYn8MaoCfWtONWc/t9BFtJcA02\ntPY9Z/t2YArWtLSSSLNTLXAb1hH9HtYktjfOfh/H+jJWYf/e67D+j0THQKOeRERaYRDZsyBOt6j7\n/w3c6VdBRMJUoxAx2fKL+ztYbeADoAfwqL/FEREREREREREREREREREREREREREREckr/x/T5jgr\n3MaCOwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x106604950>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mole fraction of 1,(1,(2,(2-tetrachloroethane in vapour is 0.203947\n",
+ " Mole fraction of water in vapour is 0.796053\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.15 Page No : 263"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "\n",
+ "#Given\n",
+ "T = [146.2, 142.3, 126.1, 115.9, 95.0, 98.0, 100.0];#Temperature in deg cel\n",
+ "P1 = [760.0, 685.0, 450.3, 313.0];#Vapour pressure of 1,1,2,2-tetrachloroethane at the coressponding temperature in mm Hg\n",
+ "P2_5 = 648.0;#Vapour pressure of water at 95 deg cel in mm Hg\n",
+ "P2_6 = 711.0;#Vapour pressure of water at 98 deg cel in mm Hg\n",
+ "P = 760.0;#Total pressure of mixture in mm Hg\n",
+ "\n",
+ "x1 = [0, 0, 0, 0, 0, 0, 0];\n",
+ "#To plot a graph between temperature and vapour phase composition\n",
+ "for i in range(0,4):\n",
+ " x1[i] = P1[i]/P;#mole fraction of 1,1,2,2-tetrachloroethane\n",
+ "x2_5 = P2_5/P;#mole fraction of water at 95 deg cel\n",
+ "x2_6 = P2_6/P;#mole fraction of water at 98 deg cel\n",
+ "x1[4] = 1-x2_5;\n",
+ "x1[5] = 1-x2_6;\n",
+ "\n",
+ "plt.plot(x1,T)\n",
+ "plt.title(\"\")\n",
+ "plt.xlabel(\"mole fraction of 1,1,2,2-tetrachloroethane\")\n",
+ "plt.ylabel(\"Temperature in deg cel\")\n",
+ "plt.show()\n",
+ "print 'The required graph has been ploted in the graphic window';\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2clPP+x/FXUo4kRaQUiyTlNoTurLsUupObHDpSEjly\nk7tynPYc/A7qIBwUyQktuTtKhNJWSkWlNkk3yil0d066r93a+f3xuebMNM3OXrM711xz834+HvuY\na665Zuaz1+xen/neg4iIiIiIiIiIiIiIiIiIiIiIiIiISFZ5FVgLFIbtywNWA/Ocn/Zhjw0AlgKL\ngbbJCVFERPzQGjiDvRPEIOCeKMc2Ab4FqgA5wDJgP4/jExGRGLy8CE8DNkbZXynKvk5APlAMrMQS\nRHPPIhMRkTL58S39DmA+MAKo6eyrh1U9Ba0GjkpyXCIiEibZCeJF4FjgdOBX4O8xjg0kJSIREYlq\n/yS/37qw7VeAcc72z0CDsMfqO/v2cvzxxweWL1/uXXQiIplpOdAw3icluwRRN2y7C6EG7LFAN6Aq\nVsI4AZgd+eTly5cTCAT0EwgwaNAg32NIlR+dC50LnYvYP8Dx5blge1mCyAfOB2oDq7AeTLlY9VIA\nWAH0cY5dBIxxbncDfVEVk4iIr7xMENdF2fdqjOP/z/kREZEUoLEGaSo3N9fvEFKGzkWIzkWIzkXF\nRRuTkMoCTn2aiIi4VKlSJSjH9V4lCBERiUoJQkREolKCEBGRqJQgREQkKiUIERGJSglCRESiUoIQ\nEZGokj1Zn4iIJMmGDTBsWPmfrxKEiEiG+e476N0bTjgBVqwo/+soQYiIZICSEvj4Y2jbFi65BI45\nBpYsgVdeKf9rqopJRCSNbdsGo0bB0KFQrRrcfTdccw0ccEDFX1sJQkQkDa1aBf/4h5UQWreG4cPt\ntlICZ9hTFZOISBqZNQu6dYPTToOdO2H2bPjgA2jTJrHJATSbq4hIytu9G95/H55+GtasgX79oGdP\nOOQQd88v72yuShAiIilq40Z4+WV4/nnIybH2hY4doXLl+F6nvAlCbRAiIilmyRJrdB49Gq64wqqQ\nzjwz+XEoQYiIpIBAAL74wqqRZs+GPn1sPEO9ev7FpAQhIuKjnTvhzTfhmWcsSdx1F7zzDhx4oN+R\nKUGIiPhizRp44QWbCuOss+Cpp+DiixPfE6ki1M1VRCSJ5s2DG2+Ek06yuZKmTIHx4230cyolB1CC\nEBHx3J498K9/wfnnWy+kJk1g+XIrQTRu7Hd0pVMVk4iIR7Zvt26qzz4LtWtbN9WuXaFKFb8jc0cJ\nQkQkwQIBePttuP9+a1944w0499zUq0IqixKEiEgCffutjXTevNkSQ5s2fkdUfmqDEBFJgA0b4NZb\n4dJL4frrYc6c9E4OoAQhIlIhxcXWxtCkiU2xvXixDXKLdzqMVORlgngVWAsURnmsP1ACHBq2bwCw\nFFgMtPUwLhGRhJg4EU4/HcaOhcmTbXqMWrX8jipxvGyDGAk8B4yK2N8AuAT4KWxfE+Ba5/YoYCLQ\nCEsiIiIpZcUK6N/f2hv+/nfo3Dn9GqDd8LIEMQ3YGGX/U8D9Efs6AflAMbASWAY09zA2EZG4bdsG\nDz9sPZPOPBMWLYIuXTIzOUDy2yA6AauBBRH76zn7g1ZjJQkREd8FApCfb4Pali+H+fPhoYfgd7/z\nOzJvJbObazVgIFa9FBQr72rhBxHx3bx51m112zZLEq1a+R1R8iQzQRwP5ADznfv1gTnAOcDPWNsE\nYY/9HO1F8vLy/redm5tLbm5uwgMVEVm/3koJY8fCI4/YCm7p0jOpoKCAgoKCCr+O1zVnOcA44JQo\nj60AzgT+izVOj8baHYKN1A3ZtxShFeVExFPFxTZH0qOP2niGQYPSv2dSKq4olw+cDxwGrAL+jPVs\nCgq/0i8Cxji3u4G+qIpJRJLs889tPYZ69WyW1SZN/I7IX+nW9q4ShIgk3I8/WrfV+fNtXYZOnTKr\nZ1J5SxAaSS0iWWvrVmtnaN4czj7buq1m6piG8lCCEJGsEwjYMp+NG8NPP1nJYeDAzO+2Gi/N5ioi\nWWXuXOu2umOHTcndsqXfEaUulSBEJCusWwe9e8Nll0GPHjB7tpJDWZQgRCSjFRfDM89A06ZQvbrN\ntnrzzekzpsFPqmISkYz12WfWbbVBA5g6FU46ye+I0osShIhknOXL4Z574LvvrNtqhw7qmVQeqmIS\nkYyxdav1Rmre3NaAXrgQOnZUcigvJQgRSXuBgK3/3LgxrFoFCxbAgAHqtlpRqmISkbT2zTfWbbWo\nCMaMgRYt/I4oc6gEISJpad06643UoQP06mXdVpUcEksJQkTSSlGRNTw3bQqHHGLdVnv1gv10NUs4\nVTGJSNqYMMG6rebkwLRp1uYg3lGCEJGUt2yZdVtdtAiefhquuEI9k5JBhTIRSVlbtsCDD1qX1ZYt\nbVyDxjQkT6wSxFZKX7QnANRIfDgiIlBSYrOtPvggXHSRdVutV8/vqLJPrARRPWlRiIg4vv7auq3u\n3g3vvWelB/GH2yqm1sBNzvbhwLHehCMi2WrtWujZ00Y+33ILzJql5OA3NwkiD3gAGODcrwq86VVA\nIpJdiorg73+3bquHHmrdVm+6Sd1WU4GbXkxdgDOAOc79n1H1k4gkwCefwN13w7HHwvTpcOKJfkck\n4dwkiF1ASdj9gzyKRUSyxNKl1m118WLrtnr55eqZlIrcFOLeAYYBNYFbgEnAK14GJSKZacsWeOAB\nOO88aN3aZlvVmIbU5aYEMRhoC2wBGgEPA597GZSIZJaSEnj9dZthtW1bKCyEunX9jkrK4iZvHwus\nAXY49w8E6gArPYoplkAgUNrQDBFJRbNnW7fVkhJ47jk45xy/I8o+layIFnc5zU0V07vAnrD7Jc4+\nEZFSrVljvZE6d4Zbb4WZM5Uc0o2bBFEZKAq7vwuo4k04IpLuiopgyBA4+WQ4/HBriO7RQ91W05Gb\nNogNQCfgQ+d+J2efiMhePv7Yuq02bAgzZkCjRn5HJBXhpk6qITYwLjgTymqgO7DMq6BiUBuESApa\nssQSw9Kl8MwzcNllfkck4crbBhHPEw52brfE+yYJpAQhkkI2b4ZHH4VXX7WJ9fr1g6pV/Y5KInnZ\nSB20hfiSw6vAWqAwbN8jwHzgW2w8RYOwxwYAS4HFWLdaEUlRJSXw2mu2YM/69Tae4d57lRwyjZfD\nU1pjU4aPAk5x9h1MKMncAZwG3Aw0AUYDZwNHAROxMRfhI7hBJQgR382aZSWFSpXg2WeheXO/I5Ky\nJKMEEa9pwMaIfeElkOqEGrs7AflAMTa+YhmgPzuRFPLrr9YbqUsXuP12a4RWcshsbnoxdWXfhYM2\nYVVH68rxno9hjdw7CCWBesDMsGNWYyUJEfHZrl0wdCg8+ST06gU//AAHH1z28yT9uUkQPYHzgMnO\n/VxgLjbC+q9YFVI8HnJ+HgSeIbTORKSodUl5eXn/287NzSU3NzfOtxcRt8aPh7vusraGr76CE07w\nOyJxo6CggIKCggq/jps6qc+wb/xrnft1gNeB64CpQNMYz80BxhFqgwh3NPAxcDKWLAAed24nAIOA\nWRHPURuESBL88IN1W12+3Lqttm/vd0RSEV62QTQglBzAqpUaAP9h7xHWboR//+gEzHO2xwLdsMWI\njnWOmx3na4tIBW3ebL2RWra0taALC5UcspmbKqbJwHhgDJaBugIF2LoQv8V4Xj5wPlAbWIWVCC4D\nTsTmdloO3OYcu8h5/UXAbqAvpVQxiUjiBbutPvSQDXL77juoU8fvqMRvbooc+wFXAi2d+9OB9/Dn\nAq4qJpEEmznTuq1WrmzdVs8+2++IJNG8Hkmdg1X7fA5Uwybw82NEtRKESIL88ouNfp40CR5/HK6/\nXhPqZSov2yBuwVaVe8m5Xx/4V7xvJCKpYdcueOIJOPVUqFfPZlvt3l3JQfblpg3idmy8QnCcwhLg\nCM8iEhFPBALw0Ue2FvRJJ1nVUsOGfkclqcxNgtjl/IQ/R/U8Imlk8WIbz7ByJTz/PFx6qd8RSTpw\nU6icgg1sqwZcglU3jfMyKBFJjE2boH9/aNXK1oJesEDJQdxzkyAeBNZjU2v0wQa3/cnLoESkYkpK\nYMQIGwG9aZN1W73nHs22KvHxcjZXL6gXk0gZZswIrcvw7LNw1ll+RyR+K28vplhtEIUxHgsAp8b7\nZiLinV9+gQcegMmTQ91WK6XbV0BJKbESRAfntq9z+zqWga73NCIRicuuXfD00zBkCNxyizVIV6/u\nd1SSCdx8v/gWOD1i3zzgjMSHUyZVMYmEmTQJbrvNuq0+9RQcf7zfEUkq8qKK6X+vDbQCvnTutyzP\nG4lI4qxfb5PqFRRYt9UOHcp8ikjc3PRi6gm8APzk/Lzg7BORJAsEbFK9k0+Gww6z3klKDuKVeEoC\nNZ3bWDO4ek1VTJK1fvgBbr0VtmyB4cOhWTO/I5J0kYw1qX/D3+QgkpV27YK//tXWaOjUyabIUHKQ\nZHDTBiEiPpk6Ffr0gUaNYN48aNDA74gkmyhBiKSg//4X7rsPPvvMBrt17qwxDZJ8bhNES2xNiODx\nAWCUFwGJZLNAAN5803ooXXONNULXqOF3VJKt3CSIN4DjsPEQe8L2K0GIJNCyZTamYf16GDsWmjf3\nOyLJdm4Krd8DTUiNKb7Vi0kyTlGRjYJ+6ilb4e2uu2B/Vf5KAnk5UG4hUBf4Jd4XF5HYpk+3Ruij\nj4ZvvoGcHL8jEglxkyAOBxYBswktHBQAOnoVlEim++03Ky2MHQvPPANXX61GaEk9bhJEntdBiGSL\nQADGjIG777YxDYsWQc2aZT9PxA/p9p1FbRCStlasgNtvh3//20ZCt2jhd0SSLbwYST3dud0KbIn4\n2RzvG4lkq+JiGDwYzj4bWreGuXOVHCQ9xKpiauncamZ5kXKaPdvWaDjiCJg1S9NxS3qJZy4mEXFp\n82a44w5rZ7jvPvj0UyUHST9KECIJFAjA++9Dkyawc6eNhNbSn5KuNBxHJEH+/W/44x9h6VIYPRra\ntPE7IpGKcVuCyAEudrarAW5mh3kVWAsUhu0bjI3Mng+8DxwS9tgAYCmwGGjrMi4R3+3ebWMZmjWz\nhuhvv1VykMzgJkHcArwDDHPu1wc+cPG8kUC7iH2fAU2B04AlWFIAm8rjWue2HbZqnaq/JOXNmQPn\nnGMD3mbMgIcfhgMO8DsqkcRwcxG+HVuTOti1dQlwhIvnTQM2Ruz7HChxtmdhyQagE5APFAMrgWWA\npiqTlLV1qw12u+wy6NcPJk2yNRtEMombBLGL0BQbYO0WiRit1hP42NmuB6wOe2w1cFQC3kMk4caN\ng6ZNYeNGa4S+8UY1QktmctNIPQV4CGt7uAToC4yr4Ps+BBQBo2McEzUJ5eXl/W87NzeX3NzcCoYi\n4s7PP1tpobAQRo6ECy/0OyKR6AoKCigoKKjw67j53rMfcDOhhuNPgVdwV4rIwZLJKWH7egC9gYuA\nnc6+B53bx53bCcAgrBoqnKbakKTbswdeegny8my9hoED4Xe/8zsqEfe8mu57f2y678bA8PjD2kc7\n4D7gfELJAWAsVpp4CqtaOgGbPVbEV/Pn23TcVarAlCk2vkEkW5TVBrEb+AE4phyvnQ/MAE4EVmFt\nDs9hU3d8DszDeiuBTSc+xrn9BKvGUlFBfLNtG9x/P1xyCdx8s5KDZCc3RY5pwBnYN/ptzj6/1oNQ\nFZN4bsIE6NsXzjvPVnmrU8fviEQqxssV5R6OOxqRNLRmjS33+fXX8OKLcOmlfkck4q9065ynEoQk\nXEkJvPwy/OlPVp308MNQrZrfUYkkjpcliK2E2gOqAlWcfW6m2xBJaQsXWiN0IABffAGnnFL2c0Sy\nhZuBctWBg52fA4ErCTUui6SlHTvgoYfgggvghhvgyy+VHEQixTvfUQnwL/adY0kkbUycaMlg6VJY\nsMDGNuynmb9E9uGmiqlr2PZ+wJnADm/CEfHOunXQvz9Mmwb/+AdcfrnfEYmkNjcJogOhNojd2GR6\nnbwKSCTRAgGbGmPAAOje3eZPOuggv6MSSX1uEsQrwJcR+1oC6xIfjkhiLV5sjdDbt9v4hjPO8Dsi\nkfThpub12Sj7nk90ICKJtHOnzZ3UqhV07QozZyo5iMQrVgniPKAFtvbDPYT60B6MFvORFFZQYKWG\nJk1sdbf69ct8iohEEStBVMWSQWXnNmgzcJWXQYmURyAAjz1mM68+/zx07ux3RCLpzc3IuhysYToV\naCS1RFVcbPMnzZ0LH30Edev6HZFI6vByJPV2YAi2XvSBzr4AoOVSJCVs3QpXX22ruk2ZAtWr+x2R\nSGZw05bwJrAYOA7Iw0oT33gXkoh7v/4K559v7Qxjxyo5iCSSmwRxGNbVtQhbfvQmVHqQFPD999Ci\nBVx5JQwfDvu7KQ+LiGtu/qWKnNs1wBXAL0AtzyIScWHqVKtWGjLEBr+JSOK5SRCPAjWB/tiKcDWA\nu70MSiSWt96Cfv0gPx8uusjvaEQyV1kJojLQCPgI+A3I9TogkdIEAjB4sHVhnTRJs6+KeM1Nt6ev\ngbO9DsQldXPNUnv2WKnhyy9h/HgNfhOJh5fdXL/EptZ4G1uTuhLWzXVuvG8mUh7bt8N119nt1Klw\nyCF+RySSHdxklAJCs7mGuyCxobiiEkSWWbcOOnSAxo1tWdCqVf2OSCT9lLcEoTWpJWUtWQLt29uK\nb3l5NhBOROJX3gThZhzEkcAIYIJzvwnQK943EonHjBnQpg0MHAh/+YuSg4gf3CSI14DPgHrO/aWo\nm6t46P33baK9116DXvoqIuIbNwmiNtZAvce5X4ytLCeScEOHWm+lTz+Fdlr5XMRXbnoxbcWm2wg6\nF9jkTTiSrUpKbL3oTz+F6dPhmGP8jkhE3CSI/sA4bLK+GcDhaD0ISaAdO2y6jA0bLDnU0kQuIinB\nbdPf/sCJzvE/YNVMflAvpgyzYQN06mQlhpEj4YAD/I5IJPN42YvpQOBObE6mvwJ/BH7n4nmvAmuB\nwrB9VwPfYe0ZzSKOH4A1gC8G2rp4fUlzP/4ILVtC69bwxhtKDiKpxk2CGIV1bX0WG1HdFHjdxfNG\nApHNjIVAF2BqxP4mwLXObTvgBZexSZqaPRtatYK77oLHH4f99GmLpBw3bRBNsQt30BfAIhfPm4Yt\nVxpucSnHdgLysaqrlcAyoDkw08X7SJoZN866r44YYaOkRSQ1ufneNhc4L+z+ucCcBMdRD1gddn81\ncFSC30NSwIsvQp8+NuGekoNIanNTgjgLmA6swuZkOhprqC507p/qUWxRW6Pz8vL+t52bm0tubq5H\nby+JVFJio6I/+MBmZD3uOL8jEslcBQUFFBQUVPh13LRq55Tx+MoynjsOiJy5fzLWfTY4I+yDzu3j\nzu0EYBAwK+J56sWUhnbtgptugp9+snWjDzus7OeISOJ42YtpJTYwrgZwaNjPSmInh7KEBzsW6AZU\nBY4FTgBmV+C1JUVs3AiXXgpFRTBxopKDSDpxU8X0CNAD+BEoCdtf1nTf+cD52FQdq7ASwX+xZUtr\nA+OBeUB7rNF7jHO7G+hLKVVMkj5++slmY23XztaOVk8lkfTipsixBDgZKPI4FjdUxZQm5s6Fjh3h\nvvvgzjv9jkYku3m5otx3QC1s0JtImSZMgD/8wXosde3qdzQiUl5uMsrZwIfAQmCXsy8AdPQqqBhU\ngkhxI0bAQw/ZlN0tWvgdjYiAtyWIUVjvooWE2iB0lZa9BAIwaBCMHm3rRjdq5HdEIlJRbqf7ftbr\nQCR9FRVB796weLGtBHfEEX5HJCKJ4KbI8RRWtTSWUBUThMYwJJOqmFLMpk1w1VVQrRrk59utiKSW\n8lYxuXlCAdGrlMrq5uoFJYgUsno1XH65zcY6dChUrux3RCISjZcJIpUoQaSIBQvgiivgjjvg3nuh\nUrr9JYlkES9HUh8JjMCmvwCb2VVLyWexSZPg4ovhySdtnIOSg0hmcpMgXgM+w2ZcBVvU526vApLU\nNmoU/P738O670K2b39GIiJdiJYhgD6fawNvYKnBgazbs9jIoST2BADz6qHVlLSiANm38jkhEvBar\nm+tsbFnQrViSCDoXm7xPskRxMfTta9NnzJgBdev6HZGIJEOsBBGsWe6PjaQ+DpgBHA5c5XFckiK2\nboWrr7Z2hilToHp1vyMSkWSJ1by4GhsDUcn5OcC53YVVNz3leXT7Ui+mJPr1V+up1KyZzau0v5th\nlSKScrzoxVQZOBioDhyElTYqA9Wc/ZLBvv/e5lK68koYPlzJQSQbxcoo84AzkhWISypBJMHUqVat\nNGQIdO/udzQiUlFeTtYnWeStt6BfP5s246KL/I5GRPwUK6McBvwnWYG4pBKERwIBGDwYnn8exo+H\nUyJXEReRtOVFCSLVkoN4ZM8eKzV8+aV1Y61f3++IRCQVqIopy23fDtddZ7dTp8Ihh/gdkYikCi0j\nn8XWrYMLLoBataxaSclBRMIpQWSpJUvgvPOgXTsYORKqVvU7IhFJNapiykIzZtj4hsceg16al1dE\nSqEEkWXefx9uvdVmZW3Xzu9oRCSVKUFkkaFDrSvrp5/CGak2BFJEUo4SRBYoKYH+/S0xTJ8Oxxzj\nd0Qikg6UIDLcjh02XcaGDZYcatXyOyIRSRfqxZTBNmywpUGrVrXSg5KDiMRDCSJD/fgjtGxpK7+9\n8QYccIDfEYlIuvEyQbwKrAUKw/YdCnwOLMHWua4Z9tgAbL3rxUBbD+PKeLNnQ6tWcNdd8Le/wX76\nGiAi5eDlpWMkENmR8kEsQTQCJjn3AZoA1zq37YAXPI4tY40bZ4v8DBsGt93mdzQiks68vAhPAzZG\n7OsI/NPZ/ifQ2dnuBOQDxcBKYBnQ3MPYMtKLL0KfPjZtRocOfkcjIuku2b2Y6mDVTji3dZztesDM\nsONWA0clMa60VlICAwfCBx/YjKzHHed3RCKSCfysxgk4P7Ee30e/fvDVV7Z+gcCuXXDDDTBtmk2h\noeQgIomS7BLEWuBIYA1QF1jn7P8ZaBB2XH1n3z4KC/PIz4fiYmjfPpf778/l9NOhUtxLYaS/jRuh\nSxeoXRsmToQDD/Q7IhFJBQUFBRQUFFT4dby+rOYA44Dg+mRPYgsRPYE1UNd0bpsAo7F2h6OAiUBD\n9i1FBAKBAIEAFBba8phvvWX9/Lt1s5/GjT3+jVLETz9B+/Y2n9KQIeqpJCKlK++Kcl4miHzgfKA2\nVnL4M/AhMAY4GmuMvgb4zTl+INAT2A3cCXwa5TX3WXI0EICvv7Y1lMeMgcMPtwVwrr0WcnIS/jul\nhLlzoWNHuO8+uPNOv6MRkVSXignCCzHXpN6zxxpp33oL3n0XGja0UsXVV0O9ekmM0kMTJsAf/gAv\nvWRTdouIlEUJIkJxMUyaZMniww9t9tJu3aBrVzjsMI+j9MiIEfCnP8F770GLFn5HIyLpQgkihp07\n4ZNPLFlMmGBTUHTrBp07Q40aHkSZYIEADBoEo0fDxx9Do0Z+RyQi6UQJwqWtW220cX4+TJlik9nd\ncIONPq5SJUFRJlBREfTuDYsXW9xHHOF3RCKSbpQgymHjRlthbeRIWLECevaEm29OnfUSNm2Cq66C\natUsoVWr5ndEIpKOypsgsrpzZK1atibzl1/adNibNkGzZnD55TB2LOze7V9sq1fbTKwnnmhJTMlB\nRJItq0sQ0Wzfbt1lhw2zi3SvXvbToEHZz02UBQusyqtfP1sJLhsHAYpI4qgEkSDVqkGPHjadx/jx\nsH49nHaajTsYP9660npp0iRrFxk8GO69V8lBRPyTbpcfz0sQ0WzbZj2ghg2DNWusnaJXLzgqwdMJ\njhplg9/eeceql0REEkGN1Ekybx4MHw5vv20X8T59oG1bqFy5/K8ZCMBjj9k4h48/hpNOSly8IiJK\nEEm2dav1LBo2zNZ+7t3bekHVrRvf6xQXQ9++Nn3GRx/F/3wRkbIoQfhozhxLFO+8AxdeaKWKiy8u\newK9rVttGpBKlaxhvHr15MQrItlFCSIFbN5so52HDbPt3r3hppugTp19j/31V+up1KyZrQS3f7In\nXheRrKFeTCmgRg249VarLsrPh6VLbfrxa66x3kklJXbc99/bXEpdu1p7hpKDiKQilSA8tmkTvPGG\nlSp27LBk8cortoZD9+5+Ryci2UBVTCkuEICZM+HNN22a7gsv9DsiEckWShAiIhKV2iBERCShlCBE\nRCQqJQgREYlKCUJERKJSghARkaiUIEREJColCBERiUoJQkREolKCEBGRqJQgREQkKiUIERGJSglC\nRESi8itB3AkUAgudbYBDgc+BJcBnQE1/QhMREfAnQZwM3AycDZwGXAEcDzyIJYhGwCTnvpSioKDA\n7xBShs5FiM5FiM5FxfmRIBoDs4CdwB5gCtAV6Aj80znmn0BnH2JLG/rjD9G5CNG5CNG5qDg/EsRC\noDVWpVQNuAyoD9QB1jrHrHXui4iIT/xYDXkx8ATWzrAN+BYrSYQLOD8iIuKTVFhR7jFgNdZYnQus\nAeoCk7HqqHDLsPYKERFxbznQ0O8g3DrCuT0a+B44BHgSeMDZ/yDwuA9xiYiIz6YC32HVSxc4+w4F\nJqJuriIiIiIiEq92WGP2UkLVTpGedR6fD5yRpLj8UNa5uB47BwuA6cCpyQst6dz8XYCNsdkNXJmM\noHzi5lzkAvOwnoMFSYnKH2Wdi9rABKzGYiHQI2mRJderWA/QwhjHpP11szLWGJ0DVME+1JMijrkM\n+NjZPgeYmazgkszNuTgPa8MB+0fJ5nMRPO4L4CNsfE0mcnMuamLVuPWd+7WTFVySuTkXecDfnO3a\nwH/wpwen11pjF/3SEkTc181UnIupOfaBrwSKgbeAThHHhA+qm4X9M2TiuAk35+IrYJOzPYvQBSHT\nuDkXAHcA7wLrkxZZ8rk5F78H3sN6CAJsSFZwSebmXPwK1HC2a2AJYneS4kumacDGGI/Hfd1MxQRx\nFLAq7P5qZ19Zx2TihdHNuQjXi9A3hEzj9u+iE/Cicz9Tx9K4ORcnYB0/JgPfAN2TE1rSuTkXLwNN\ngV+wqpXaJf1UAAAHjklEQVQ7yU5xXzdTsZjl9p86cgxHJl4M4vmdLgB6Ai09isVvbs7FM1gX6QD2\n95EK43y84OZcVAGaARdhMxZ8hVUpLPUwLj+4ORcDsaqnXGwc1efYPHBbvAsrZcV13UzFBPEz0CDs\nfgNCxeTSjqnv7Ms0bs4FWMP0y1gbRKwiZjpzcy7OxKoYwOqa22PVDmM9jy653JyLVVi10g7nZyp2\nUcy0BOHmXLTABuSCDRhbAZyIlayySUZcN/fHPsQcoCplN1KfS+Y2zLo5F0djdbDnJjWy5HNzLsKN\nJHN7Mbk5F42xcUWVsRJEIdAkeSEmjZtz8RQwyNmugyWQQ5MUX7Ll4K6ROq2vm+2BH7AL3wBnXx/n\nJ+h55/H5WFE6U5V1Ll7BGt3mOT+zkx1gErn5uwjK5AQB7s7FvVhPpkKgX1KjS66yzkVtYBx2rSjE\nGvAzUT7WzlKElSB7kr3XTREREREREREREREREREREREREREREUl/PYDn4nxOPombu2ZgxP3pCXjN\nWBpjg6bmAMdGPPYY8G9iT7XQGJueYifQv5RjDgTGY6siLiQ0Y2gkt1Oyn4/NzlsWt8e5tZLoA8d6\nEP/fTLw6sffAtgJsRLykgFScrE+8Ee9cVUcCZ2HTMwyNeKxyOd5/QMR9r+eM6gy8g11sVkQ89iE2\nC2gs/8Fmhh1SxnFPYhe4M7DfqV2UY34E2mCJ4RFgeCmvdQE2LURZYh1Xns8mOHdVtP3xKM97d2Hv\nEd6ZOKeaiOdysEVRRmKjRt8E2mLfSJdgi+SAfRP8F/aN9SvgFGf/jYS+DR6OTYk92/mJdrFZAGzH\nRme3wr7ZPQ18DdwDXIEN1Z+LTX4WXGe8uhPjAieGK7Fv1rud13rdOW6rc1sJGIyNcF0AXOPsz3Xe\n8x3sG/obpZyX05045gPvY1MYX4ZN8bwaWxuiNG4maxtE6SWISM9gM+rGUovo82nlEIp5HpZson1O\nx4QdNxf7bF4DXsLOwxDsb2GG8/h0oJHzHpWdxwux83W7s38FtmbCHOwzONHZH/43k4Ody/nYFB7B\nOX0i3zva5wE2Sd4n2PxHU533aIEl4h+dWI/DZp99HJuO+gfn9wu+/1QnxjmESlC5lP53cqbz2DfY\ngkFHIpKhcrCJ55piF9VvgBHOYx2BD5zt54CHne0LsIsN7F1dMJrQN/ijgUVR3u8Y9p7TZTI2TD8o\nfM3wmwl9034Cm/sm8rjIi3HwfldsDfJKWJL5CftHzgV+A+o5j80geqljAbZQCsBfsCQGdmG/J8rx\n0WKIxW2CqEloTqBY7qX0EkRkzKV9TpHHjcQmJAyWAg4m9G3+YizJANwGjCFUc1DLuV1BKFnchk38\nCHv/zYwjNGX4TYT+3l6LeO/SPo9JQENn+xznfjD28ClRJmNfGMCm0Pjc2T4QOMDZPgH7ogKl/51U\ncbYPc467ltD/i7iUirO5SulWYHPr4NxOdLYXErowtST0DzcZ+wc5OOJ1Lmbvet+DsQndtofti1bl\n8HbYdgPsYnMkNknaj87+i7B/xqDfSvtlHK2wC2EAWAdMwb4Bb8a+Nf/iHPct9juGt10c4vxMc+7/\nE/smGYw/WdN974+11wzF6vNL42ZK9vCYo31OB0U5Duz3DlbP1ARGYRfkAKH/84uwtTJKnPvhM/++\n79zOJfocVudi1XZg39KfdLYDYe9d2udxEFZaCH42YH8zQZG/S3gsOWHHP49Vee7BkkRQtL+TTdiX\nqeD/SOWwY8QlJYj0sitsuwSblCu4Hf5ZljXneyXsW1wR8dkWtv0cVmr4CGs0zYvx/rFEq/8Oxhv+\n++6h7L/X8NdJZl32cKw65NkYx0Sbkr0v0BuL9fIoz4nncwpP7o9g39C7YBfLyRGvGU3wXMc6z6U9\nd3sp+4PH74f9zqWtgRz5WUWL5W6saq07drHfGeX4yOd8h7s2HSmFGqkzzzSs1wxY8Xs9ofr+oM/Y\ne3bP012+dvgFogahb2Q9wvZ/Tqi6AkJVTMVEv/BMw0oc+2F17m2wb4Rukswm7MITrKfujtU5R8bq\nVhfg/yL2RXudSUBdZ/tR7FzcHeO1jsa+Fd+AzaQZ9AJ20WyGXfy2sHdpr7TPKfK4SLE+mz6Eqp9q\n4d4MoJuzfT3WHhCptM9jC1b6vcrZX4lQT64thJYDjaUGsMbZ/gOxG8QDWMI+nNA0+FXIzOnOPaUE\nkV4iv2kFomznYY1z87EL1I1hjweP6Yf1UJqPfcu6pRzvl4dVGXyDJaHgY49iF55CQqt4gX3LXkCo\nkTp4/AeEGrQnAfdhVU3h8ZYWD87vN9h5/qnAX8OOLa0U8SQ2HfKBzu2fnf3HE1rf+0jnsbuBP2Hd\nYqtj/zPHA//FFlwZiFUDzcXae3pGea0/Y+fkRWJPyT4OSyzBRurSPqfgccFG6uDvG/77/c15vHLY\nY684v8cC7LO5LkoM4ectfPsOrO1hPpYg7ox4TlBpn8f1WAP+t1iVaEdn/1vYZz4Ha6SOFg9YMr3R\nef6J7P2lJ9rnXIwlpCec58wjsV2DRSTLvE6oUbM0TSm766vb1xIRERERERERERERERERERERERER\nERERERGRBPh/OQohdiTCkTUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1064ce750>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required graph has been ploted in the graphic window\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.16 Page No : 266"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "#B = -(1.203*10**10)*(T**2.7); second virial coefficient, T is in K\n",
+ "#math.log P = 6.95464-(1344.8/(219.482+t))...(a);Vapour pressure of toulene\n",
+ "t = 107.2;#Temperature in deg cel\n",
+ "T = t+273.16;#in K\n",
+ "H_ex = 7964.0;#experimental value of heat of vapourisation in Kcal/Kgmole\n",
+ "d = 800.0;#density of liquid toulene in Kg/cubic meter\n",
+ "R = 1.98;#gas consmath.tant in Kcal/Kgmole K\n",
+ "M = 92.14;#molecular weight of toulene\n",
+ "\n",
+ "#To Calculate the heat of vapourization of toulene by umath.sing ideal gas law, second virial coefficient but neglecting vl and including vl\n",
+ "#From equation (a), let K = dmath.logP/dT\n",
+ "K = 1344.8/(219.482+t)**2;\n",
+ "#(i)Umath.sing ideal gas behaviour\n",
+ "#From equation 13.112(page no 286)\n",
+ "H_c = (2.303*R*(T**2))*K;\n",
+ "print 'i)The heat of vapourization umath.sing ideal gas behaviour is %f Kcal/Kgmole'%(H_c);\n",
+ "D = ((H_c-H_ex)/H_c)*100;\n",
+ "print ' The deviation is %f percent'%(D);\n",
+ "\n",
+ "#(ii)Umath.sing second virial coeff but neglecting vl\n",
+ "#From equation(a)\n",
+ "P = 10**(6.95464-1344.8/(219.482+t));#in mm Hg\n",
+ "P1 = P*1.033*10**4/760;#in Kgf/sq m\n",
+ "B = -((1.203*10**10)/(T**2.7))*10**-3;#in cubic meter/Kgmole\n",
+ "#From equation 13.111 (page no 286) neglecting vl,\n",
+ "l = (R*T)+((B*P1)/427);#in Kcal/Kgmole\n",
+ "H_c = K*2.303*T*l;\n",
+ "print 'ii)The heat of vapourisation umath.sing second virial coefficient but neglecting vl is %f Kcal/Kgmole'%(H_c);\n",
+ "D = ((H_c-H_ex)/H_c)*100;\n",
+ "print ' The deviation in this case is %f percent'%(D);\n",
+ "\n",
+ "#(iii)Umath.sing second virial coeff including vl\n",
+ "vl = M/d;#Liquid specific volume in cubic meter/Kgmole\n",
+ "n = P1*vl/427;#in Kcal/Kgmole\n",
+ "H_c = K*2.303*T*(l-n);\n",
+ "print 'iii)The heat of vapourisation umath.sing second virial coefficient including vl is %f Kcal/Kgmole'%(H_c);\n",
+ "D = ((H_c-H_ex)/H_c)*100;\n",
+ "print ' The deviation in this case is %f'%(D);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The heat of vapourization umath.sing ideal gas behaviour is 8312.967730 Kcal/Kgmole\n",
+ " The deviation is 4.197872 percent\n",
+ "ii)The heat of vapourisation umath.sing second virial coefficient but neglecting vl is 7998.487742 Kcal/Kgmole\n",
+ " The deviation in this case is 0.431178 percent\n",
+ "iii)The heat of vapourisation umath.sing second virial coefficient including vl is 7970.612948 Kcal/Kgmole\n",
+ " The deviation in this case is 0.082967\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.17 Page No : 269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "H_ex = 539.0;#Heat of vapoization of water in Kcal/Kg\n",
+ "Tc = 647.0;#Critical temperature in K\n",
+ "Pc = 218.0;#Critical pressure in atm\n",
+ "Tb = 373.0;#Boiling point of water in K\n",
+ "t = 100.0;#temperature in deg cel\n",
+ "M = 18.0;#Molecular weight of water\n",
+ "P = 1.0;#pressure at boiling point in atm\n",
+ "P1 = 1.033*10**4;#pressure in Kgf/sq m\n",
+ "\n",
+ "#To Calculate the heat of vapourisation of water by Vishwanath and Kuloor method and by Riedel's method and compare with the experimental value\n",
+ "#(i) Umath.sing Vishwanath and Kuloor method\n",
+ "H_c = (4.7*Tc*((1-(P/Pc))**0.69)*math.log(P/Pc))/((1-(Tc/Tb))*18);\n",
+ "print 'i)The heat of vapourisation of water umath.sing Vishwanath and Kuloor method is %f Kcal/Kg'%(H_c);\n",
+ "D = (H_c-H_ex)*100/H_c;\n",
+ "print ' The deviation occurs umath.sing this method is %f percent'%(D);\n",
+ "\n",
+ "#(ii)Umath.sing Riedel's method\n",
+ "H_c = (Tb*2.17*(math.log(218)-1))/((0.93-(Tb/Tc))*18);\n",
+ "print 'ii)The heat of vapourisation of water umath.sing Riedel method is %f Kcal/Kg'%(H_c);\n",
+ "D = (H_c-H_ex)*100/H_c;\n",
+ "print ' The deviation occurs umath.sing this method is %f percent'%(D);\n",
+ "\n",
+ "#(iii)By umath.sing given vapour equation; math.logP = 8.2157-(2218.8537/(273.16+t)), t is in deg cel\n",
+ "#From steam table,\n",
+ "Vv = 1.673;#in cubic meter/Kg\n",
+ "Vl = 0.001;#in cubic meter/Kg\n",
+ "H_c = (2218.8/(273.16+t)**2)*(2.3*Tb*P1*(Vv-Vl)/427);\n",
+ "print 'iii)The heat of vapourisation umath.sing the given vapour equation is %f Kcal/Kg'%(H_c);\n",
+ "D = (H_c-H_ex)*100/H_c;\n",
+ "print ' The deviation occurs umath.sing this method is %f percent'%(D);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The heat of vapourisation of water umath.sing Vishwanath and Kuloor method is 1234.397750 Kcal/Kg\n",
+ " The deviation occurs umath.sing this method is 56.334982 percent\n",
+ "ii)The heat of vapourisation of water umath.sing Riedel method is 557.743828 Kcal/Kg\n",
+ " The deviation occurs umath.sing this method is 3.360652 percent\n",
+ "iii)The heat of vapourisation umath.sing the given vapour equation is 552.934102 Kcal/Kg\n",
+ " The deviation occurs umath.sing this method is 2.520029 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.18 Page No : 270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "T1 = 273-87.0;#temp in K\n",
+ "T2 = 273.0;#temp in K\n",
+ "H1 = 115.0;#Latent heat of saturated ethane at 1 atm and -87 deg cel in Kcal/Kg\n",
+ "H2_ex = 72.44;#Experimental value of latent heat at 0 deg cel in Kcal/Kg\n",
+ "Tc = 306.0;#Critical temperature in K\n",
+ "M = 30.0;#Molecular weight of ethane\n",
+ "\n",
+ "#To Calculate the latent heat of saturated ethane at 0 deg cel\n",
+ "Tr1 = T1/Tc;#reduced temp in K\n",
+ "Tr2 = T2/Tc;#reduced temp in K\n",
+ "#(i)Umath.sing Waton's method:\n",
+ "H2_c = H1*((1-Tr2)/(1-Tr1))**0.38;\n",
+ "print 'i)The latent heat of saturated ethane at 0 deg cel umath.sing Waton method is %f Kcal/Kg'%(H2_c);\n",
+ "D = (H2_ex-H2_c)*100/H2_ex;\n",
+ "print ' The deviation occurs umath.sing this method is %f percent'%(D);\n",
+ "\n",
+ "#(ii)Umath.sing Vishwanath and Kuloor method\n",
+ "#From equation 13.117 (page no 289)\n",
+ "n = (0.00133*(H1*M/T1)+0.8794)**(1/0.1);\n",
+ "H2_c = H1*((1-Tr2)/(1-Tr1))**n;\n",
+ "print 'ii)The latent heat of saturated ethane at 0 deg cel umath.sing Vishwanath and Kuloor method is %f Kcal/Kg'%(H2_c);\n",
+ "D = (H2_ex-H2_c)*100/H2_ex;\n",
+ "print ' The deviation occurs umath.sing this method is %f percent'%(D);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The latent heat of saturated ethane at 0 deg cel umath.sing Waton method is 70.411608 Kcal/Kg\n",
+ " The deviation occurs umath.sing this method is 2.800099 percent\n",
+ "ii)The latent heat of saturated ethane at 0 deg cel umath.sing Vishwanath and Kuloor method is 71.809846 Kcal/Kg\n",
+ " The deviation occurs umath.sing this method is 0.869898 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.19 Page No : 272"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "H_s_ex = 32.7;#experimental value of latent heat of the solution in KJ/mole\n",
+ "x1 = 0.536;#mole percent of toulene in the solution\n",
+ "x2 = 1-0.536;#mole percent of 1,1,1-trichloroethane in the solution\n",
+ "H1 = 33.34;#Latent heat of toulene in KJ/gmole\n",
+ "H2 = 29.72;#Latent heat of 1,1,1-trichloroethane in KJ/gmole\n",
+ "He = 0.0;#excess enthalpy is neglected\n",
+ "Cp1 = 39.55;#Specific heat of toulene in cal/gmole deg cel\n",
+ "Cp2 = 24.62;#Specific heat of 1,1,1-trichloroethane in cal/gmole deg cel\n",
+ "T_D = 100.0;#dew point temperature in deg cel\n",
+ "T_B = 92.6;#bubble point temperature in deg cel\n",
+ "\n",
+ "#To calculate the latent heat of the solution and compare it with the one which calculated from the given vapour pressure equation\n",
+ "#(i)Calculation of latent heat of the solution\n",
+ "#From equation 13.118 (page no 291)\n",
+ "H_s = H1*x1+H2*x2+He+(Cp1*x1+Cp2*x2)*10**-3*4.17*(T_D-T_B);\n",
+ "print 'i)The latent heat of the solution is %f KJ/gmole'%(H_s);\n",
+ "D = ((H_s_ex-H_s)*100)/H_s_ex;\n",
+ "print ' The deviation occurs using this method is %f percent'%(D);\n",
+ "\n",
+ "#(ii)Calculation of latent heat from the vapour pressure equation\n",
+ "#From equation (a) (page no 291)\n",
+ "K = 1657.599/((273.16+5)**2);\n",
+ "H_s = (K*2.303*8.314*(273.16+5)**2)*10**-3;\n",
+ "print 'ii)The latent heat of the solution is %f KJ/gmole'%(H_s);\n",
+ "D = ((H_s_ex-H_s)*100)/H_s_ex;\n",
+ "print ' The deviation occurs using this method is %f percent'%(D);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The latent heat of the solution is 32.666984 KJ/gmole\n",
+ " The deviation occurs using this method is 0.100965 percent\n",
+ "ii)The latent heat of the solution is 31.738283 KJ/gmole\n",
+ " The deviation occurs using this method is 2.941029 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file