summaryrefslogtreecommitdiff
path: root/Basic_Electronics_and_Linear_Circuits/ch4.ipynb
blob: efe67026bbd37019714d88180087d38d8d66656f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
{
 "metadata": {
  "name": "Ch 4"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4:Semiconductor Diode"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.1 Page No.85"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 4.1\n",
      "# Assuming the diode resistance to be zero \n",
      "#Determine DC Voltage across the load and PIV of the Diode\n",
      "\n",
      "#Given Circuit Data\n",
      "Vrms=220             #Volts, power supply\n",
      "n2=1                     #Assumption\n",
      "n1=12*n2            #Turns Ratio\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "Vp=math.sqrt(2)*Vrms     #Maximum(Peak) Primary Voltage\n",
      "Vm=n2*Vp/n1                  #Maximum Secondary Voltage\n",
      "Vdc=Vm/math.pi                   #DC load Voltage \n",
      "# Results \n",
      "print \"The DC load Voltage is = \",round(Vdc,2),\"V\"\n",
      "print \"The Peak Inverse Voltage(PIV) is = \",round(Vm,1),\"V\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.2 Page No.90"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 4.2\n",
      "#Determine DC Voltage across the load and \n",
      "#PIV of the \n",
      "#Centre Tap Rectifier and Bridge Rectifier\n",
      "\n",
      "#Given Circuit Data\n",
      "Vrms=220                   #Volts, power supply  rms voltage\n",
      "n2=1                           #Assumption\n",
      "n1=12*n2                 #Turns Ratio\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "Vp=math.sqrt(2)*Vrms  #Maximum(Peak Primary Voltage\n",
      "Vm=n2*Vp/n1                #Maximum Secondary Voltage\n",
      "Vdc=2*Vm/math.pi              #DC load Voltage \n",
      "\n",
      "# Results \n",
      "print \"The DC load Voltage is = \",round(Vdc,1),\"V\"\n",
      "print \"The Peak Inverse Voltage(PIV of Bridge Rectifier is =  \",round(Vm,1),\"V\"\n",
      "print \"The Peak Inverse Voltage(PIV of Centre-tap Rectifier is = \",round(2*Vm,1),\"v\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.3 Page No.95"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 4.3(a\n",
      "# determine the Peak Value of Current\n",
      "\n",
      "#Given Circuit Data\n",
      "import math\n",
      "Rl=1000.0                     #Ohms, load resistance\n",
      "rd=10.0                          #Ohms   forward base dynamic resistance\n",
      "Vm=220.0                     #Volts(Peak Value of Voltage)\n",
      "#Calculation\n",
      "Im=Vm/(rd+Rl)                       #Peak Value of Current\n",
      "\n",
      "# Result\n",
      "print \"The Peak Value of Current is =  \",round(Im*1000,1),\"mA\"\n",
      "\n",
      "#(b) dc or av value of current\n",
      "\n",
      "Idc=2*Im/math.pi                        #DC Value of Current\n",
      "# Results \n",
      "print \"The DC or Average Value of Current is \",round(Idc*1000,2),\"mA\"\n",
      "\n",
      "#(c)\n",
      "Irms=Im/math.sqrt(2)              #RMS Value of Current\n",
      "# Results \n",
      "print \"The RMS Value of Current is = \",round(Irms*1000,1),\"mA\"\n",
      "\n",
      "#(d)\n",
      "r=math.sqrt((Irms/Idc)**2-1)     #Ripple Factor\n",
      "# Results i\n",
      "print \" The Ripple Factor r = \",round(r,3)\n",
      "\n",
      "#(e)\n",
      "Pdc=Idc**2*Rl\n",
      "Pac=Irms**2*(rd+Rl)\n",
      "n=Pdc/Pac                                  #Rectification Efficiency\n",
      "# Results\n",
      "print \"The Rectification EFficiency n(eeta) =  percent.\",round(n*100,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.4 Page No.103"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 4.4\n",
      "# determine Maximum Current the Given Zener Diode can handle\n",
      "\n",
      "#Given Circuit Data\n",
      "Vz=9.1                #Volts\n",
      "P=0.364              #Watts\n",
      "#Calculation\n",
      "Iz=P/Vz\n",
      "#Result\n",
      "print \" The Maximum permissible Current is \",Iz*1000,\"mA\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4.5 Page No.105"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Example 4.5\n",
      "# determine Capacitance of Varactor Diode if the\n",
      "#Reverse-Bias Voltage is increased from 4V to 8V \n",
      "\n",
      "#Given Circuit Data\n",
      "Ci=18*10**(-12)            #i.e. 18 pF,  capacitance of diode\n",
      "Vi=4                                 #volt, initial  voltage\n",
      "Vf=8                               #v, final voltage\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "Vf=8                             \n",
      "K=Ci*math.sqrt(Vi)\n",
      "Cf=K/math.sqrt(Vf)\n",
      "#Result\n",
      "print \" The Final Value of Capacitance is C = \",round(Cf/10**(-12),3),\"pF\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}