{ "metadata": { "name": "Ch 4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4:Semiconductor Diode" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.1 Page No.85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.1\n", "# Assuming the diode resistance to be zero \n", "#Determine DC Voltage across the load and PIV of the Diode\n", "\n", "#Given Circuit Data\n", "Vrms=220 #Volts, power supply\n", "n2=1 #Assumption\n", "n1=12*n2 #Turns Ratio\n", "\n", "#Calculation\n", "import math\n", "Vp=math.sqrt(2)*Vrms #Maximum(Peak) Primary Voltage\n", "Vm=n2*Vp/n1 #Maximum Secondary Voltage\n", "Vdc=Vm/math.pi #DC load Voltage \n", "# Results \n", "print \"The DC load Voltage is = \",round(Vdc,2),\"V\"\n", "print \"The Peak Inverse Voltage(PIV) is = \",round(Vm,1),\"V\"" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.2 Page No.90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.2\n", "#Determine DC Voltage across the load and \n", "#PIV of the \n", "#Centre Tap Rectifier and Bridge Rectifier\n", "\n", "#Given Circuit Data\n", "Vrms=220 #Volts, power supply rms voltage\n", "n2=1 #Assumption\n", "n1=12*n2 #Turns Ratio\n", "\n", "#Calculation\n", "import math\n", "Vp=math.sqrt(2)*Vrms #Maximum(Peak Primary Voltage\n", "Vm=n2*Vp/n1 #Maximum Secondary Voltage\n", "Vdc=2*Vm/math.pi #DC load Voltage \n", "\n", "# Results \n", "print \"The DC load Voltage is = \",round(Vdc,1),\"V\"\n", "print \"The Peak Inverse Voltage(PIV of Bridge Rectifier is = \",round(Vm,1),\"V\"\n", "print \"The Peak Inverse Voltage(PIV of Centre-tap Rectifier is = \",round(2*Vm,1),\"v\"" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.3 Page No.95" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.3(a\n", "# determine the Peak Value of Current\n", "\n", "#Given Circuit Data\n", "import math\n", "Rl=1000.0 #Ohms, load resistance\n", "rd=10.0 #Ohms forward base dynamic resistance\n", "Vm=220.0 #Volts(Peak Value of Voltage)\n", "#Calculation\n", "Im=Vm/(rd+Rl) #Peak Value of Current\n", "\n", "# Result\n", "print \"The Peak Value of Current is = \",round(Im*1000,1),\"mA\"\n", "\n", "#(b) dc or av value of current\n", "\n", "Idc=2*Im/math.pi #DC Value of Current\n", "# Results \n", "print \"The DC or Average Value of Current is \",round(Idc*1000,2),\"mA\"\n", "\n", "#(c)\n", "Irms=Im/math.sqrt(2) #RMS Value of Current\n", "# Results \n", "print \"The RMS Value of Current is = \",round(Irms*1000,1),\"mA\"\n", "\n", "#(d)\n", "r=math.sqrt((Irms/Idc)**2-1) #Ripple Factor\n", "# Results i\n", "print \" The Ripple Factor r = \",round(r,3)\n", "\n", "#(e)\n", "Pdc=Idc**2*Rl\n", "Pac=Irms**2*(rd+Rl)\n", "n=Pdc/Pac #Rectification Efficiency\n", "# Results\n", "print \"The Rectification EFficiency n(eeta) = percent.\",round(n*100,2)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.4 Page No.103" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.4\n", "# determine Maximum Current the Given Zener Diode can handle\n", "\n", "#Given Circuit Data\n", "Vz=9.1 #Volts\n", "P=0.364 #Watts\n", "#Calculation\n", "Iz=P/Vz\n", "#Result\n", "print \" The Maximum permissible Current is \",Iz*1000,\"mA\"" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4.5 Page No.105" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.5\n", "# determine Capacitance of Varactor Diode if the\n", "#Reverse-Bias Voltage is increased from 4V to 8V \n", "\n", "#Given Circuit Data\n", "Ci=18*10**(-12) #i.e. 18 pF, capacitance of diode\n", "Vi=4 #volt, initial voltage\n", "Vf=8 #v, final voltage\n", "\n", "#Calculation\n", "import math\n", "Vf=8 \n", "K=Ci*math.sqrt(Vi)\n", "Cf=K/math.sqrt(Vf)\n", "#Result\n", "print \" The Final Value of Capacitance is C = \",round(Cf/10**(-12),3),\"pF\"" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }