summaryrefslogtreecommitdiff
path: root/BASIC_ELECTRICAL_ENGINEERING_by_D_C_KULSHRESHTHA/Chapter18.ipynb
blob: 99017984b64ad00077775033c4f0e64d31c7ff95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 18: ELECTRICAL MEASURING INSTRUMENTS\n",
      "\n",
      "\n",
      "\n"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.1,Page number: 598\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the deflecting torque in Newton-metres for a PMMC instrument.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "I=15e-03              #Current flowing through the coil(in Amperes) \n",
      "B=0.2                 #Flux density in the air gap(in Tesla)\n",
      "l=2e-02               #Length of the magnetic field(in m)\n",
      "d=2.5e-02             #Mean width of the coil(in m) \n",
      "r=d/2                 #Radius of the coil(in cm) \n",
      "n1=42                 #Number of turns(lower limit) \n",
      "n2=43                 #Number of turns(upper limit)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "F1=I*B*l*n1\n",
      "F2=I*B*l*n2\n",
      "net_torque=(F1+F2)*r\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The deflecting torque is %e Nm.\" %(net_torque)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The deflecting torque is 6.375000e-05 Nm.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.2,Page Number: 604\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the shunt resistance for measuring a maximum current of 10 mA.\"\"\"     \n",
      "\n",
      "#Variable Declaration:\n",
      "Ifsd=10e-03           #Maximum current(in Amperes)\n",
      "Im=100e-06            #Full-scale deflection current(in Amperes)  \n",
      "Rm=100                #Meter Resistance(in Ohms)  \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Ish=Ifsd-Im\n",
      "Rsh=(Im*Rm)/Ish\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The shunt resistance needed is %.6f Ohms.\" %(Rsh)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The shunt resistance needed is 1.010101 Ohms.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.3,Page number: 605"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Designing an universal shunt for a multi-range ammeter.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "Im=100e-06            #Full-scale deflection current(in Amperes)\n",
      "Rm=100.0              #Internal resistance(in Ohms)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "\"\"\"For 1-mA range,the required shunt can be calculated as follows.\"\"\"\n",
      "Ifsd=1e-03\n",
      "Rsh=(Im*Rm)/(Ifsd-Im)\n",
      "\n",
      "Rm=900.0\n",
      "R=100.0\n",
      "\"\"\"(a)Range-switch at 1 mA:\"\"\"\n",
      "Rm1=Rm\n",
      "Ish1=(1e-03)-(0.1e-03)\n",
      "Rsh1=(Rm1*Im)/(Ish1)\n",
      "\n",
      "\"\"\"(b)Range-switch at 10 mA:\"\"\"\n",
      "\"\"\"Rm2=Rm+R1\"\"\"\n",
      "Ish2=(10e-03)-(0.1e-03)\n",
      "\"\"\"Rsh2=R2+R3+R4+R5=R-R1=100-R1;\"\"\"\n",
      "\"\"\"Rsh2=(Rm2*Im)/Ish2;\"\"\"\n",
      "R1=(9900.0-900.0)/100.0\n",
      "\n",
      "\"\"\"(c)Range-switch at 100 mA:\"\"\"\n",
      "\"\"\"Rm3=Rm+R1+R2\"\"\"\n",
      "Ish3=(100e-03)-(0.1e-03)\n",
      "\"\"\"Rsh3=R3+R4+R5=R-R1-R2=100-90-R2=90-R2;\"\"\"\n",
      "\"\"\"Rsh3=(Rm3*Im)/Ish3;\"\"\"\n",
      "R2=(9990.0-990.0)/1000.0\n",
      "\n",
      "\"\"\"(d)Range-switch at 500 mA:\"\"\"\n",
      "\"\"\"Rm4=Rm+R1+R2+R3\"\"\"\n",
      "Ish3=(500e-03)-(0.1e-03)\n",
      "\"\"\"Rsh4=R4+R5=R-R1-R2-R3=100-90-9-R3=1-R3;\"\"\"\n",
      "\"\"\"Rsh4=(Rm4*Im)/Ish4;\"\"\"\n",
      "R3=(4999.0-999.0)/5000.0\n",
      "\n",
      "\n",
      "\"\"\"(e)Range-switch at 1 A:\"\"\"\n",
      "\"\"\"Rm5=Rm+R1+R2+R3+R4\"\"\"\n",
      "Ish3=(1000e-03)-(0.1e-03)\n",
      "\"\"\"Rsh5=R5=R-R1-R2-R3-R4=100-90-9-0.8-R4=0.2-R4;\"\"\"\n",
      "\"\"\"Rsh5=(Rm5*Im)/Ish5;\"\"\"\n",
      "R4=(1999.8-999.8)/10000.0\n",
      "R5=R-R1-R2-R3-R4\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The resistor values are: \"\n",
      "print \"R1=%.2f Ohms.\" %(R1)\n",
      "print \"R2=%.2f Ohms.\" %(R2)\n",
      "print \"R3=%.2f Ohms.\" %(R3)\n",
      "print \"R4=%.2f Ohms.\" %(R4)\n",
      "print \"R5=%.2f Ohms.\" %(R5)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The resistor values are: \n",
        "R1=90.00 Ohms.\n",
        "R2=9.00 Ohms.\n",
        "R3=0.80 Ohms.\n",
        "R4=0.10 Ohms.\n",
        "R5=0.10 Ohms.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.4,Page number: 609"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"To convert a d'Arsonval meter movement into a voltmeter.\"\"\" \n",
      "\n",
      "#Variable Declaration:\n",
      "Im=100e-06            #Current sensitivity(in Amperes)\n",
      "Rm=100                #Resistance of the coil(in Ohms)\n",
      "Vfsd=100              #Full-scale deflection of voltmeter(in Volts) \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Rs=(Vfsd/Im)-Rm\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"To convert the d'Arsonval meter movement into a voltmeter of range 100V, we connect a resistor Rs in series.\"\n",
      "print \"Rs = %.3f kilo Ohms. \" %(Rs/1000)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "To convert the d'Arsonval meter movement into a voltmeter of range 100V, we connect a resistor Rs in series.\n",
        "Rs = 999.900 kilo Ohms. \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.5,Page number: 609\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the multipiler resistance and the voltage mutiplyiing factor of a dc voltmeter.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "Im=50e-06             #Full-scale deflection current(in Amperes)  \n",
      "Rm=1e03               #Meter Resistance(in Ohms) \n",
      "Vfsd=50               #Full-scale deflection of voltmeter(in Volts)     \n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Rs=(Vfsd/Im)-Rm\n",
      "n=Vfsd/(Im*Rm)\n",
      "\n",
      "#Result:\n",
      "print \"(a)The multiplier resistance needed is %.2f kilo Ohms.\" %(Rs/1000)\n",
      "print \"(b)The voltage multiplying factor is %d.\" %(round(n,0))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The multiplier resistance needed is 999.00 kilo Ohms.\n",
        "(b)The voltage multiplying factor is 1000.\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.6,Page number: 612"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the reading and error in measurement of voltmeter.\"\"\"\n",
      "    \n",
      "\"\"\" NOTE: All resistances expressed in kilo Ohms.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "range_A=50            #Range of voltmeter-A(in Volts)\n",
      "range_B=50            #Range of voltmeter-B(in Volts)\n",
      "sens_A=1000           #Sensitivity of voltmeter-A(in Ohm/Volts)  \n",
      "sens_B=20000          #Sensitivity of voltmeter-B(in Ohm/Volts)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "Vt=150.0*(50.0/(100.0+50.0))\n",
      "R_i1=(range_A*sens_A)/1000.0\n",
      "Req=1/((1/R_i1)+(1.0/50))\n",
      "V1=(150.0)*(Req/(100+Req))\n",
      "R_i2=(range_B*sens_B)/1000.0\n",
      "Req=1/((1/R_i2)+(1.0/50))\n",
      "V2=(150.0)*(Req/(Req+100))\n",
      "err_A=((Vt-V1)/Vt)*100.0\n",
      "err_B=((Vt-V2)/Vt)*100.0\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The reading of voltmeter-A is %.2f V\\nThe reading of voltmeter-B is %.2f V.\" %(V1,V2)\n",
      "print \"\\nThe error in the reading of voltmeter-A is %.2f percent.\" %(err_A)\n",
      "print \"The error in the reading of voltmeter-B is %.2f percent.\" %(err_B)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The reading of voltmeter-A is 30.00 V\n",
        "The reading of voltmeter-B is 48.39 V.\n",
        "\n",
        "The error in the reading of voltmeter-A is 40.00 percent.\n",
        "The error in the reading of voltmeter-B is 3.23 percent.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.7,Page number: 617"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the deflection in an ammeter.\"\"\"\n",
      "\n",
      "from math import sin,asin,degrees,pow\n",
      "\n",
      "#Variable Declaration:\n",
      "I1=20.0               #Initial current(in Amperes) \n",
      "I2=12.0               #Final current(in Amperes)\n",
      "angle1=60             #Initial deflection(in degrees)\n",
      "\"\"\" Given: Deflecting torque is directly proportional to the current.\"\"\"\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "\"\"\"For spring control:  Controlling torque is directly proportional to deflection.\n",
      "                        For steady state deflection, controlling torque=deflecting torque.\n",
      "                        Therefore,deflection is directly proportional to current. \"\"\"\n",
      "angle2_a=(I2/I1)*angle1\n",
      "\"\"\"For gravity control: Controlling torque is directly proportional to sine of the deflection angle.\n",
      "                        For steady state deflection, controlling torque=deflecting torque.\n",
      "                        Therefore,sine of the angle of deflection is directly proportional to the current. \"\"\"  \n",
      "angle2_b=asin((I2/I1)*sin(radians(angle1)))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The deflection for a current of 12A when the instrument is spring controlled is %.2f degrees.\" %(angle2_a) \n",
      "print \"(b)The deflection for a current of 12A when the instrument is gravity controlled is %.2f degrees.\" %(degrees(angle2_b)) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The deflection for a current of 12A when the instrument is spring controlled is 36.00 degrees.\n",
        "(b)The deflection for a current of 12A when the instrument is gravity controlled is 31.31 degrees.\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.8,Page number: 618"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the deflection in degrees in a gravity-controlled instrument.\"\"\"\n",
      "\n",
      "from math import asin,degrees\n",
      "\n",
      "#Variable Declaration:\n",
      "W=0.005               #Controlling weight(in kilograms)\n",
      "l=2.4e-02             #Distance of controlling weight from the axis(in metres)\n",
      "torque=1.05e-04       #Deflecting torque(in kg-m)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "angle=asin(torque/(W*l))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The deflection corresponding to a deflecting torque of 1.05e-04 kg-m is %.2f degrees.\" %(degrees(angle))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The deflection corresponding to a deflecting torque of 1.05e-04 kg-m is 61.04 degrees.\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.9,Page number: 618"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the deflection in an ammeter.\"\"\"\n",
      "\n",
      "from math import sin,asin,degrees,pow\n",
      "\n",
      "#Variable Declaration:\n",
      "I1=10.0               #Initial current(in Amperes) \n",
      "I2=5.0                #Final current(in Amperes)\n",
      "angle1=90             #Initial deflection(in degrees)\n",
      "\"\"\" Given: Deflecting torque is directly proportional to square of the current.\"\"\"\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "\"\"\"For spring control:  Controlling torque is directly proportional to deflection.\n",
      "                        For steady state deflection, controlling torque=deflecting torque.\n",
      "                        Therefore,deflection is directly proportional to square of the current. \"\"\"\n",
      "angle2_a=pow((I2/I1),2)*angle1\n",
      "\"\"\"For gravity control: Controlling torque is directly proportional to sine of the deflection angle.\n",
      "                        For steady state deflection, controlling torque=deflecting torque.\n",
      "                        Therefore,sine of the angle of deflection is directly proportional to square of the current. \"\"\"  \n",
      "angle2_b=asin((pow((I2/I1),2))*sin(radians(angle1)))\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"(a)The deflection for a current of 5A when the instrument is spring controlled is %.2f degrees.\" %(angle2_a) \n",
      "print \"(b)The deflection for a current of 5A when the instrument is gravity controlled is %.2f degrees.\" %(degrees(angle2_b))   "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The deflection for a current of 5A when the instrument is spring controlled is 22.50 degrees.\n",
        "(b)The deflection for a current of 5A when the instrument is gravity controlled is 14.48 degrees.\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 18.10,Page number: 619 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Question:\n",
      "\"\"\"Finding the current required to produce a deflection of 60 degrees in a moving coil instrument.\"\"\"\n",
      "\n",
      "#Variable Declaration:\n",
      "w=4e-02                 #Width of the coil(in metres)\n",
      "l=5e-02                 #Length of the coil(in metres)\n",
      "N=80.0                  #Number of turns in the coil\n",
      "torque_control=0.5e-07  #Controlling torque per degree deflection of the coil(in Nm)\n",
      "B=0.1                   #Magnetic flux density in the air gap(in Wb per square-metre)\n",
      "\n",
      "\n",
      "#Calculations:\n",
      "A=w*l\n",
      "torque_c=torque_control*60.0\n",
      "I=torque_c/(B*N*A)\n",
      "\n",
      "\n",
      "#Result:\n",
      "print \"The current required to give a deflection of 60 degrees is %e A.\" %(I)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The current required to give a deflection of 60 degrees is 1.875000e-04 A.\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}