{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 18: ELECTRICAL MEASURING INSTRUMENTS\n", "\n", "\n", "\n" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.1,Page number: 598\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Finding the deflecting torque in Newton-metres for a PMMC instrument.\"\"\"\n", "\n", "#Variable Declaration:\n", "I=15e-03 #Current flowing through the coil(in Amperes) \n", "B=0.2 #Flux density in the air gap(in Tesla)\n", "l=2e-02 #Length of the magnetic field(in m)\n", "d=2.5e-02 #Mean width of the coil(in m) \n", "r=d/2 #Radius of the coil(in cm) \n", "n1=42 #Number of turns(lower limit) \n", "n2=43 #Number of turns(upper limit)\n", "\n", "\n", "#Calculations:\n", "F1=I*B*l*n1\n", "F2=I*B*l*n2\n", "net_torque=(F1+F2)*r\n", "\n", "\n", "#Result:\n", "print \"The deflecting torque is %e Nm.\" %(net_torque)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The deflecting torque is 6.375000e-05 Nm.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.2,Page Number: 604\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Finding the shunt resistance for measuring a maximum current of 10 mA.\"\"\" \n", "\n", "#Variable Declaration:\n", "Ifsd=10e-03 #Maximum current(in Amperes)\n", "Im=100e-06 #Full-scale deflection current(in Amperes) \n", "Rm=100 #Meter Resistance(in Ohms) \n", "\n", "\n", "#Calculations:\n", "Ish=Ifsd-Im\n", "Rsh=(Im*Rm)/Ish\n", "\n", "\n", "#Result:\n", "print \"The shunt resistance needed is %.6f Ohms.\" %(Rsh)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The shunt resistance needed is 1.010101 Ohms.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.3,Page number: 605" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Designing an universal shunt for a multi-range ammeter.\"\"\"\n", "\n", "#Variable Declaration:\n", "Im=100e-06 #Full-scale deflection current(in Amperes)\n", "Rm=100.0 #Internal resistance(in Ohms)\n", "\n", "\n", "#Calculations:\n", "\"\"\"For 1-mA range,the required shunt can be calculated as follows.\"\"\"\n", "Ifsd=1e-03\n", "Rsh=(Im*Rm)/(Ifsd-Im)\n", "\n", "Rm=900.0\n", "R=100.0\n", "\"\"\"(a)Range-switch at 1 mA:\"\"\"\n", "Rm1=Rm\n", "Ish1=(1e-03)-(0.1e-03)\n", "Rsh1=(Rm1*Im)/(Ish1)\n", "\n", "\"\"\"(b)Range-switch at 10 mA:\"\"\"\n", "\"\"\"Rm2=Rm+R1\"\"\"\n", "Ish2=(10e-03)-(0.1e-03)\n", "\"\"\"Rsh2=R2+R3+R4+R5=R-R1=100-R1;\"\"\"\n", "\"\"\"Rsh2=(Rm2*Im)/Ish2;\"\"\"\n", "R1=(9900.0-900.0)/100.0\n", "\n", "\"\"\"(c)Range-switch at 100 mA:\"\"\"\n", "\"\"\"Rm3=Rm+R1+R2\"\"\"\n", "Ish3=(100e-03)-(0.1e-03)\n", "\"\"\"Rsh3=R3+R4+R5=R-R1-R2=100-90-R2=90-R2;\"\"\"\n", "\"\"\"Rsh3=(Rm3*Im)/Ish3;\"\"\"\n", "R2=(9990.0-990.0)/1000.0\n", "\n", "\"\"\"(d)Range-switch at 500 mA:\"\"\"\n", "\"\"\"Rm4=Rm+R1+R2+R3\"\"\"\n", "Ish3=(500e-03)-(0.1e-03)\n", "\"\"\"Rsh4=R4+R5=R-R1-R2-R3=100-90-9-R3=1-R3;\"\"\"\n", "\"\"\"Rsh4=(Rm4*Im)/Ish4;\"\"\"\n", "R3=(4999.0-999.0)/5000.0\n", "\n", "\n", "\"\"\"(e)Range-switch at 1 A:\"\"\"\n", "\"\"\"Rm5=Rm+R1+R2+R3+R4\"\"\"\n", "Ish3=(1000e-03)-(0.1e-03)\n", "\"\"\"Rsh5=R5=R-R1-R2-R3-R4=100-90-9-0.8-R4=0.2-R4;\"\"\"\n", "\"\"\"Rsh5=(Rm5*Im)/Ish5;\"\"\"\n", "R4=(1999.8-999.8)/10000.0\n", "R5=R-R1-R2-R3-R4\n", "\n", "\n", "#Result:\n", "print \"The resistor values are: \"\n", "print \"R1=%.2f Ohms.\" %(R1)\n", "print \"R2=%.2f Ohms.\" %(R2)\n", "print \"R3=%.2f Ohms.\" %(R3)\n", "print \"R4=%.2f Ohms.\" %(R4)\n", "print \"R5=%.2f Ohms.\" %(R5)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resistor values are: \n", "R1=90.00 Ohms.\n", "R2=9.00 Ohms.\n", "R3=0.80 Ohms.\n", "R4=0.10 Ohms.\n", "R5=0.10 Ohms.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.4,Page number: 609" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"To convert a d'Arsonval meter movement into a voltmeter.\"\"\" \n", "\n", "#Variable Declaration:\n", "Im=100e-06 #Current sensitivity(in Amperes)\n", "Rm=100 #Resistance of the coil(in Ohms)\n", "Vfsd=100 #Full-scale deflection of voltmeter(in Volts) \n", "\n", "\n", "#Calculations:\n", "Rs=(Vfsd/Im)-Rm\n", "\n", "\n", "#Result:\n", "print \"To convert the d'Arsonval meter movement into a voltmeter of range 100V, we connect a resistor Rs in series.\"\n", "print \"Rs = %.3f kilo Ohms. \" %(Rs/1000)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "To convert the d'Arsonval meter movement into a voltmeter of range 100V, we connect a resistor Rs in series.\n", "Rs = 999.900 kilo Ohms. \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.5,Page number: 609\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Finding the multipiler resistance and the voltage mutiplyiing factor of a dc voltmeter.\"\"\"\n", "\n", "#Variable Declaration:\n", "Im=50e-06 #Full-scale deflection current(in Amperes) \n", "Rm=1e03 #Meter Resistance(in Ohms) \n", "Vfsd=50 #Full-scale deflection of voltmeter(in Volts) \n", "\n", "\n", "#Calculations:\n", "Rs=(Vfsd/Im)-Rm\n", "n=Vfsd/(Im*Rm)\n", "\n", "#Result:\n", "print \"(a)The multiplier resistance needed is %.2f kilo Ohms.\" %(Rs/1000)\n", "print \"(b)The voltage multiplying factor is %d.\" %(round(n,0))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)The multiplier resistance needed is 999.00 kilo Ohms.\n", "(b)The voltage multiplying factor is 1000.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.6,Page number: 612" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Finding the reading and error in measurement of voltmeter.\"\"\"\n", " \n", "\"\"\" NOTE: All resistances expressed in kilo Ohms.\"\"\"\n", "\n", "#Variable Declaration:\n", "range_A=50 #Range of voltmeter-A(in Volts)\n", "range_B=50 #Range of voltmeter-B(in Volts)\n", "sens_A=1000 #Sensitivity of voltmeter-A(in Ohm/Volts) \n", "sens_B=20000 #Sensitivity of voltmeter-B(in Ohm/Volts)\n", "\n", "\n", "#Calculations:\n", "Vt=150.0*(50.0/(100.0+50.0))\n", "R_i1=(range_A*sens_A)/1000.0\n", "Req=1/((1/R_i1)+(1.0/50))\n", "V1=(150.0)*(Req/(100+Req))\n", "R_i2=(range_B*sens_B)/1000.0\n", "Req=1/((1/R_i2)+(1.0/50))\n", "V2=(150.0)*(Req/(Req+100))\n", "err_A=((Vt-V1)/Vt)*100.0\n", "err_B=((Vt-V2)/Vt)*100.0\n", "\n", "\n", "#Result:\n", "print \"The reading of voltmeter-A is %.2f V\\nThe reading of voltmeter-B is %.2f V.\" %(V1,V2)\n", "print \"\\nThe error in the reading of voltmeter-A is %.2f percent.\" %(err_A)\n", "print \"The error in the reading of voltmeter-B is %.2f percent.\" %(err_B)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reading of voltmeter-A is 30.00 V\n", "The reading of voltmeter-B is 48.39 V.\n", "\n", "The error in the reading of voltmeter-A is 40.00 percent.\n", "The error in the reading of voltmeter-B is 3.23 percent.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.7,Page number: 617" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Finding the deflection in an ammeter.\"\"\"\n", "\n", "from math import sin,asin,degrees,pow\n", "\n", "#Variable Declaration:\n", "I1=20.0 #Initial current(in Amperes) \n", "I2=12.0 #Final current(in Amperes)\n", "angle1=60 #Initial deflection(in degrees)\n", "\"\"\" Given: Deflecting torque is directly proportional to the current.\"\"\"\n", "\n", "\n", "#Calculations:\n", "\"\"\"For spring control: Controlling torque is directly proportional to deflection.\n", " For steady state deflection, controlling torque=deflecting torque.\n", " Therefore,deflection is directly proportional to current. \"\"\"\n", "angle2_a=(I2/I1)*angle1\n", "\"\"\"For gravity control: Controlling torque is directly proportional to sine of the deflection angle.\n", " For steady state deflection, controlling torque=deflecting torque.\n", " Therefore,sine of the angle of deflection is directly proportional to the current. \"\"\" \n", "angle2_b=asin((I2/I1)*sin(radians(angle1)))\n", "\n", "\n", "#Result:\n", "print \"(a)The deflection for a current of 12A when the instrument is spring controlled is %.2f degrees.\" %(angle2_a) \n", "print \"(b)The deflection for a current of 12A when the instrument is gravity controlled is %.2f degrees.\" %(degrees(angle2_b)) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)The deflection for a current of 12A when the instrument is spring controlled is 36.00 degrees.\n", "(b)The deflection for a current of 12A when the instrument is gravity controlled is 31.31 degrees.\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.8,Page number: 618" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Finding the deflection in degrees in a gravity-controlled instrument.\"\"\"\n", "\n", "from math import asin,degrees\n", "\n", "#Variable Declaration:\n", "W=0.005 #Controlling weight(in kilograms)\n", "l=2.4e-02 #Distance of controlling weight from the axis(in metres)\n", "torque=1.05e-04 #Deflecting torque(in kg-m)\n", "\n", "\n", "#Calculations:\n", "angle=asin(torque/(W*l))\n", "\n", "\n", "#Result:\n", "print \"The deflection corresponding to a deflecting torque of 1.05e-04 kg-m is %.2f degrees.\" %(degrees(angle))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The deflection corresponding to a deflecting torque of 1.05e-04 kg-m is 61.04 degrees.\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.9,Page number: 618" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Finding the deflection in an ammeter.\"\"\"\n", "\n", "from math import sin,asin,degrees,pow\n", "\n", "#Variable Declaration:\n", "I1=10.0 #Initial current(in Amperes) \n", "I2=5.0 #Final current(in Amperes)\n", "angle1=90 #Initial deflection(in degrees)\n", "\"\"\" Given: Deflecting torque is directly proportional to square of the current.\"\"\"\n", "\n", "\n", "#Calculations:\n", "\"\"\"For spring control: Controlling torque is directly proportional to deflection.\n", " For steady state deflection, controlling torque=deflecting torque.\n", " Therefore,deflection is directly proportional to square of the current. \"\"\"\n", "angle2_a=pow((I2/I1),2)*angle1\n", "\"\"\"For gravity control: Controlling torque is directly proportional to sine of the deflection angle.\n", " For steady state deflection, controlling torque=deflecting torque.\n", " Therefore,sine of the angle of deflection is directly proportional to square of the current. \"\"\" \n", "angle2_b=asin((pow((I2/I1),2))*sin(radians(angle1)))\n", "\n", "\n", "#Result:\n", "print \"(a)The deflection for a current of 5A when the instrument is spring controlled is %.2f degrees.\" %(angle2_a) \n", "print \"(b)The deflection for a current of 5A when the instrument is gravity controlled is %.2f degrees.\" %(degrees(angle2_b)) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)The deflection for a current of 5A when the instrument is spring controlled is 22.50 degrees.\n", "(b)The deflection for a current of 5A when the instrument is gravity controlled is 14.48 degrees.\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.10,Page number: 619 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Question:\n", "\"\"\"Finding the current required to produce a deflection of 60 degrees in a moving coil instrument.\"\"\"\n", "\n", "#Variable Declaration:\n", "w=4e-02 #Width of the coil(in metres)\n", "l=5e-02 #Length of the coil(in metres)\n", "N=80.0 #Number of turns in the coil\n", "torque_control=0.5e-07 #Controlling torque per degree deflection of the coil(in Nm)\n", "B=0.1 #Magnetic flux density in the air gap(in Wb per square-metre)\n", "\n", "\n", "#Calculations:\n", "A=w*l\n", "torque_c=torque_control*60.0\n", "I=torque_c/(B*N*A)\n", "\n", "\n", "#Result:\n", "print \"The current required to give a deflection of 60 degrees is %e A.\" %(I)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The current required to give a deflection of 60 degrees is 1.875000e-04 A.\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }