summaryrefslogtreecommitdiff
path: root/Applied_Physics-II/chapter4.ipynb
blob: 11b66b2f6dce543b559a217b89e5498a4f8e209a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
{
 "metadata": {
  "celltoolbar": "Raw Cell Format",
  "name": "",
  "signature": "sha256:e413b3bea25c7729b7ae1f595bf0f843336be8c682782f6b92de1c93aa46ed9d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4: Laser"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1,Page number 4-27"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "lamda=694.3*10**-9         #Wavelength in meter\n",
      "T=300                   #Temperature in Kelvin\n",
      "\n",
      "h=6.63*10**-34           #Planck's Constant\n",
      "c=3*10**8                #Velocity of light\n",
      "K=1.38*10**-21           #Boltzmann Constant\n",
      "\n",
      "#Calculations:\n",
      "delE= h*c/lamda           #Energy difference between two energy states N and N0\n",
      "\n",
      "#N=N0*e^-delE/(K*T)\n",
      "R=math.e**(-delE/(K*T))      #R=Ratio of N and N0 i.e.(R=N/N0)\n",
      "\n",
      "#(Printing mistake in textbook)\n",
      "#instead of e^-.692, it has taken e^-69.2\n",
      "\n",
      "print\"The ratio of population of two energy states is = \",R\n",
      "print\" (calculation mistake in book)\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ratio of population of two energy states is =  0.500588928485\n",
        " (calculation mistake in book)\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2,Page number 4-28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "#Given Data:\n",
      "lamda=6328*10**-10        #Wavelength in meter\n",
      "P=4.5*10**-3              #Power in watts\n",
      "h=6.63*10**-34           #Planck's Constant\n",
      "c=3*10**8                 #Velocity of light\n",
      "\n",
      "#Calculations:\n",
      "delE= h*c/lamda           #Energy difference\n",
      "#N*delE=P\n",
      "N=P/delE                #number of photons emitted per second\n",
      "\n",
      "print\"Number of photons emitted per second is =\",N\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of photons emitted per second is = 1.43167420814e+16\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3,Page number 4-29"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given Data:\n",
      "lamda=780*10**-9           #Wavelength of photon in meter\n",
      "P=20*10**-3              #Power of each pulse in watts\n",
      "t=10*10**-9              #Duration of each pulse\n",
      "h=6.63*10**-34           #Planck's Constant\n",
      "c=3*10**8                #Velocity of light\n",
      "\n",
      "#Calculations:\n",
      "delE= h*c/lamda           #Energy of each photon\n",
      "E=P*t                   #Energy of each pulse\n",
      "\n",
      "N=E/delE                #Number of photons in each pulse\n",
      "print\"Number of photons in each pulse is =\",N\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of photons in each pulse is = 784313725.49\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}