summaryrefslogtreecommitdiff
path: root/Applied_Physics-II/chapter4.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Applied_Physics-II/chapter4.ipynb')
-rwxr-xr-xApplied_Physics-II/chapter4.ipynb163
1 files changed, 163 insertions, 0 deletions
diff --git a/Applied_Physics-II/chapter4.ipynb b/Applied_Physics-II/chapter4.ipynb
new file mode 100755
index 00000000..11b66b2f
--- /dev/null
+++ b/Applied_Physics-II/chapter4.ipynb
@@ -0,0 +1,163 @@
+{
+ "metadata": {
+ "celltoolbar": "Raw Cell Format",
+ "name": "",
+ "signature": "sha256:e413b3bea25c7729b7ae1f595bf0f843336be8c682782f6b92de1c93aa46ed9d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4: Laser"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.1,Page number 4-27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data:\n",
+ "lamda=694.3*10**-9 #Wavelength in meter\n",
+ "T=300 #Temperature in Kelvin\n",
+ "\n",
+ "h=6.63*10**-34 #Planck's Constant\n",
+ "c=3*10**8 #Velocity of light\n",
+ "K=1.38*10**-21 #Boltzmann Constant\n",
+ "\n",
+ "#Calculations:\n",
+ "delE= h*c/lamda #Energy difference between two energy states N and N0\n",
+ "\n",
+ "#N=N0*e^-delE/(K*T)\n",
+ "R=math.e**(-delE/(K*T)) #R=Ratio of N and N0 i.e.(R=N/N0)\n",
+ "\n",
+ "#(Printing mistake in textbook)\n",
+ "#instead of e^-.692, it has taken e^-69.2\n",
+ "\n",
+ "print\"The ratio of population of two energy states is = \",R\n",
+ "print\" (calculation mistake in book)\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ratio of population of two energy states is = 0.500588928485\n",
+ " (calculation mistake in book)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2,Page number 4-28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Given Data:\n",
+ "lamda=6328*10**-10 #Wavelength in meter\n",
+ "P=4.5*10**-3 #Power in watts\n",
+ "h=6.63*10**-34 #Planck's Constant\n",
+ "c=3*10**8 #Velocity of light\n",
+ "\n",
+ "#Calculations:\n",
+ "delE= h*c/lamda #Energy difference\n",
+ "#N*delE=P\n",
+ "N=P/delE #number of photons emitted per second\n",
+ "\n",
+ "print\"Number of photons emitted per second is =\",N\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of photons emitted per second is = 1.43167420814e+16\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.3,Page number 4-29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given Data:\n",
+ "lamda=780*10**-9 #Wavelength of photon in meter\n",
+ "P=20*10**-3 #Power of each pulse in watts\n",
+ "t=10*10**-9 #Duration of each pulse\n",
+ "h=6.63*10**-34 #Planck's Constant\n",
+ "c=3*10**8 #Velocity of light\n",
+ "\n",
+ "#Calculations:\n",
+ "delE= h*c/lamda #Energy of each photon\n",
+ "E=P*t #Energy of each pulse\n",
+ "\n",
+ "N=E/delE #Number of photons in each pulse\n",
+ "print\"Number of photons in each pulse is =\",N\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of photons in each pulse is = 784313725.49\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file