summaryrefslogtreecommitdiff
path: root/Aircraft_Structures_for_Engineering_Students/Chapter14.ipynb
blob: f9eb3f9d0cb02b3cef729804366814df52abad0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
{
 "metadata": {
  "name": "",
  "signature": "sha256:b89c31a3eb13c71dc64b90ec9c5fad56707d91451229ae687a102dc5e6c2ee23"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14: Airframe loads"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.1 Pg.No.407"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "W=45             #weight of aircraft (kN)\n",
      "m=45/9.8          #mass of aircraft(k-kg)\n",
      "a=3*9.8           #deceleration due to cable (ms^-2)\n",
      "m1=4.5/9.8        #weight of aircraft after AA in Diagram (k-kg)\n",
      "v0=25             #touch down speed (m/s)\n",
      "alpha=10             #center line angle with ground (degree)\n",
      "\n",
      "T=m*a/math.cos(math.radians(alpha))\n",
      "print \"tension in cable = %3.1f kN\\n\"%(T)\n",
      "\n",
      "R=W+T*math.sin(math.radians(alpha))\n",
      "print \"load on each undercarriage strut = %2.1f kN\\n\"%(R/2/math.cos(math.radians(20)))\n",
      "\n",
      "N=T+m1*9.8*math.sin(math.radians(alpha))-m1*a*math.cos(math.radians(alpha))\n",
      "S=m1*a*math.sin(math.radians(alpha))+m1*9.8*math.cos(math.radians(alpha))\n",
      "print \"N and S forces are shown in Fig 14.4 N=%2.2f kN  S=%2.2f kN\\n\"%(N,S)\n",
      "\n",
      "s=v0**2/2/a\n",
      "print \"length of deck covered = %2.2f m\\n\"%(s)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "tension in cable = 137.1 kN\n",
        "\n",
        "load on each undercarriage strut = 36.6 kN\n",
        "\n",
        "N and S forces are shown in Fig 14.4 N=124.57 kN  S=6.78 kN\n",
        "\n",
        "length of deck covered = 10.63 m\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2 Pg.No.409"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "g=9.8\n",
      "W=250           #weight of aircraft(kN)\n",
      "m=250/g        #mass of aircraft (K-kg)\n",
      "I_CG=5.65*10**8     #inertia about center of mass(N.s^2.mm)\n",
      "v0=3.7            #vertical velocity of undercarriage(m/s)\n",
      "R_h=400          #horizontal reaction (kN)\n",
      "R_v=1200         #vertical reaction (kN)\n",
      "l=1             # nose wheel distance from ground (m)\n",
      "d=2.5           # distance of CG from ground (m)\n",
      "\n",
      "#horizontal equilibrium\n",
      "ax=R_h/m\n",
      "\n",
      "#vertical equilibrium\n",
      "ay=(R_v-W)/m\n",
      "\n",
      "\n",
      "alpha=(R_v*l+R_h*d)*10**6/I_CG\n",
      "print \"angular acceleration of aircraft = %2.1f rad/s^2 \\n\"%(alpha)\n",
      "\n",
      "#v=v0+ay*t\n",
      "t=v0/ay\n",
      "print \"time taken for vertical velocity to become zero = %1.3f s\\n\"%(t)\n",
      "\n",
      "#w=w0+a*t\n",
      "w=a*t\n",
      "print \"angular velocity of aircraft = %1.2f rad/s \\n\"%(w)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "angular acceleration of aircraft = 3.9 rad/s^2 \n",
        "\n",
        "time taken for vertical velocity to become zero = 0.099 s\n",
        "\n",
        "angular velocity of aircraft = 0.39 rad/s \n",
        "\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3 Pg.No.414"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "W=8000             #weight of aircraft (N)\n",
      "n=4.5              # wing loading\n",
      "S=14.5              #wing area (m^2)\n",
      "V=60                #speed (m/s)\n",
      "rho=1.223           #density (kg/m^3)\n",
      "alpha=13.75          #from Fig 14.8 (a)\n",
      "C_Mcg=0.075           #from Fig 14.8 (a)\n",
      "c=1.35                #mean chord (m)\n",
      "\n",
      "\n",
      "L=n*W\n",
      "C_L=L/(0.5*rho*V**2*S)\n",
      "print \"lift coefficient of aircraft = %1.3f \\n\"%(C_L)\n",
      "\n",
      "#from Fig 14.8 (b)\n",
      "l=4.18*math.cos(math.radians(alpha-2))+0.31*math.sin(math.radians(alpha-2))\n",
      "print \"length of tail arm = %1.3f m \\n\"%(l)\n",
      "\n",
      "\n",
      "C_L=C_L-c/l*C_Mcg\n",
      "print \"lift coefficient =%1.3f \\n\"%(C_L)\n",
      "\n",
      "alpha=13.3\n",
      "l=4.18*math.cos(math.radians(alpha-2))+0.31*math.sin(math.radians(alpha-2))\n",
      "print \"Now tail arm length =  %2.3f m\\n\"%(l)\n",
      "\n",
      "L=0.5*rho*V**2*S*C_L\n",
      "print \"Lift = %5.1f N\\n\"%(L)\n",
      "\n",
      "P=n*W-35000\n",
      "print \"Tail Load = %5.1f N\\n\"%(P)\n",
      "\n",
      "D=0.5*rho*V**2*S*0.0875\n",
      "print \"Drag = %5.1f N\\n\"%(D)\n",
      "print \"Forward inertia force = %5.1f N\\n\"%(D)  #eqn 14.13"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "lift coefficient of aircraft = 1.128 \n",
        "\n",
        "length of tail arm = 4.156 m \n",
        "\n",
        "lift coefficient =1.103 \n",
        "\n",
        "Now tail arm length =  4.160 m\n",
        "\n",
        "Lift = 35222.3 N\n",
        "\n",
        "Tail Load = 1000.0 N\n",
        "\n",
        "Drag = 2793.0 N\n",
        "\n",
        "Forward inertia force = 2793.0 N\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 31
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}