{ "metadata": { "name": "", "signature": "sha256:b89c31a3eb13c71dc64b90ec9c5fad56707d91451229ae687a102dc5e6c2ee23" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 14: Airframe loads" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.1 Pg.No.407" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "W=45 #weight of aircraft (kN)\n", "m=45/9.8 #mass of aircraft(k-kg)\n", "a=3*9.8 #deceleration due to cable (ms^-2)\n", "m1=4.5/9.8 #weight of aircraft after AA in Diagram (k-kg)\n", "v0=25 #touch down speed (m/s)\n", "alpha=10 #center line angle with ground (degree)\n", "\n", "T=m*a/math.cos(math.radians(alpha))\n", "print \"tension in cable = %3.1f kN\\n\"%(T)\n", "\n", "R=W+T*math.sin(math.radians(alpha))\n", "print \"load on each undercarriage strut = %2.1f kN\\n\"%(R/2/math.cos(math.radians(20)))\n", "\n", "N=T+m1*9.8*math.sin(math.radians(alpha))-m1*a*math.cos(math.radians(alpha))\n", "S=m1*a*math.sin(math.radians(alpha))+m1*9.8*math.cos(math.radians(alpha))\n", "print \"N and S forces are shown in Fig 14.4 N=%2.2f kN S=%2.2f kN\\n\"%(N,S)\n", "\n", "s=v0**2/2/a\n", "print \"length of deck covered = %2.2f m\\n\"%(s)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "tension in cable = 137.1 kN\n", "\n", "load on each undercarriage strut = 36.6 kN\n", "\n", "N and S forces are shown in Fig 14.4 N=124.57 kN S=6.78 kN\n", "\n", "length of deck covered = 10.63 m\n", "\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.2 Pg.No.409" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "g=9.8\n", "W=250 #weight of aircraft(kN)\n", "m=250/g #mass of aircraft (K-kg)\n", "I_CG=5.65*10**8 #inertia about center of mass(N.s^2.mm)\n", "v0=3.7 #vertical velocity of undercarriage(m/s)\n", "R_h=400 #horizontal reaction (kN)\n", "R_v=1200 #vertical reaction (kN)\n", "l=1 # nose wheel distance from ground (m)\n", "d=2.5 # distance of CG from ground (m)\n", "\n", "#horizontal equilibrium\n", "ax=R_h/m\n", "\n", "#vertical equilibrium\n", "ay=(R_v-W)/m\n", "\n", "\n", "alpha=(R_v*l+R_h*d)*10**6/I_CG\n", "print \"angular acceleration of aircraft = %2.1f rad/s^2 \\n\"%(alpha)\n", "\n", "#v=v0+ay*t\n", "t=v0/ay\n", "print \"time taken for vertical velocity to become zero = %1.3f s\\n\"%(t)\n", "\n", "#w=w0+a*t\n", "w=a*t\n", "print \"angular velocity of aircraft = %1.2f rad/s \\n\"%(w)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "angular acceleration of aircraft = 3.9 rad/s^2 \n", "\n", "time taken for vertical velocity to become zero = 0.099 s\n", "\n", "angular velocity of aircraft = 0.39 rad/s \n", "\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.3 Pg.No.414" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "W=8000 #weight of aircraft (N)\n", "n=4.5 # wing loading\n", "S=14.5 #wing area (m^2)\n", "V=60 #speed (m/s)\n", "rho=1.223 #density (kg/m^3)\n", "alpha=13.75 #from Fig 14.8 (a)\n", "C_Mcg=0.075 #from Fig 14.8 (a)\n", "c=1.35 #mean chord (m)\n", "\n", "\n", "L=n*W\n", "C_L=L/(0.5*rho*V**2*S)\n", "print \"lift coefficient of aircraft = %1.3f \\n\"%(C_L)\n", "\n", "#from Fig 14.8 (b)\n", "l=4.18*math.cos(math.radians(alpha-2))+0.31*math.sin(math.radians(alpha-2))\n", "print \"length of tail arm = %1.3f m \\n\"%(l)\n", "\n", "\n", "C_L=C_L-c/l*C_Mcg\n", "print \"lift coefficient =%1.3f \\n\"%(C_L)\n", "\n", "alpha=13.3\n", "l=4.18*math.cos(math.radians(alpha-2))+0.31*math.sin(math.radians(alpha-2))\n", "print \"Now tail arm length = %2.3f m\\n\"%(l)\n", "\n", "L=0.5*rho*V**2*S*C_L\n", "print \"Lift = %5.1f N\\n\"%(L)\n", "\n", "P=n*W-35000\n", "print \"Tail Load = %5.1f N\\n\"%(P)\n", "\n", "D=0.5*rho*V**2*S*0.0875\n", "print \"Drag = %5.1f N\\n\"%(D)\n", "print \"Forward inertia force = %5.1f N\\n\"%(D) #eqn 14.13" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lift coefficient of aircraft = 1.128 \n", "\n", "length of tail arm = 4.156 m \n", "\n", "lift coefficient =1.103 \n", "\n", "Now tail arm length = 4.160 m\n", "\n", "Lift = 35222.3 N\n", "\n", "Tail Load = 1000.0 N\n", "\n", "Drag = 2793.0 N\n", "\n", "Forward inertia force = 2793.0 N\n", "\n" ] } ], "prompt_number": 31 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }