summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb')
-rw-r--r--Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb280
1 files changed, 0 insertions, 280 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb
deleted file mode 100644
index 8d27e900..00000000
--- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter8_D7glvQg.ipynb
+++ /dev/null
@@ -1,280 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Semiconductor Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 8.19"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of electron hole pairs is 2.32 *10**16 per cubic metre\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "ni1=2.5*10**19; #number of electron hole pairs\n",
- "T1=300; #temperature(K)\n",
- "Eg1=0.72*1.6*10**-19; #energy gap(J)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "T2=310; #temperature(K)\n",
- "Eg2=1.12*1.6*10**-19; #energy gap(J)\n",
- "\n",
- "#Calculation\n",
- "x1=-Eg1/(2*k*T1);\n",
- "y1=(T1**(3/2))*math.exp(x1);\n",
- "x2=-Eg2/(2*k*T2);\n",
- "y2=(T2**(3/2))*math.exp(x2);\n",
- "ni=ni1*(y2/y1); #number of electron hole pairs\n",
- "\n",
- "#Result\n",
- "print \"number of electron hole pairs is\",round(ni/10**16,2),\"*10**16 per cubic metre\"\n",
- "print \"answer varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 8.20"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "intrinsic conductivity is 2.016 ohm-1 metre-1\n",
- "intrinsic resistivity is 0.496 ohm metre\n",
- "number of germanium atoms per m**3 is 4.5 *10**28\n",
- "new value of conductivity is 1.434 *10**4 ohm-1 metre-1\n",
- "new value of resistivity is 0.697 *10**-4 ohm metre\n",
- "answer for new values given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "w=72.6; #atomic weight\n",
- "d=5400; #density(kg/m**3)\n",
- "Na=6.025*10**26; #avagadro number\n",
- "mew_e=0.4; #mobility of electron(m**2/Vs)\n",
- "mew_h=0.2; #mobility of holes(m**2/Vs)\n",
- "e=1.6*10**-19;\n",
- "m=9.108*10**-31; #mass(kg)\n",
- "ni=2.1*10**19; #number of electron hole pairs\n",
- "Eg=0.7; #band gap(eV)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "h=6.625*10**-34; #plancks constant\n",
- "T=300; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "sigma=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n",
- "rho=1/sigma; #resistivity(ohm m)\n",
- "n=Na*d/w; #number of germanium atoms per m**3\n",
- "p=n/10**5; #boron density\n",
- "sigman=p*e*mew_h; #new value of conductivity(ohm-1 metre-1)\n",
- "rhon=1/sigman; #new value of resistivity(ohm metre)\n",
- "\n",
- "#Result\n",
- "print \"intrinsic conductivity is\",sigma,\"ohm-1 metre-1\"\n",
- "print \"intrinsic resistivity is\",round(rho,3),\"ohm metre\"\n",
- "print \"number of germanium atoms per m**3 is\",round(n/10**28,1),\"*10**28\"\n",
- "print \"new value of conductivity is\",round(sigman/10**4,3),\"*10**4 ohm-1 metre-1\"\n",
- "print \"new value of resistivity is\",round(rhon*10**4,3),\"*10**-4 ohm metre\"\n",
- "print \"answer for new values given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 8.21"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "charge carrier density is 2 *10**22 per m**3\n",
- "electron mobility is 0.035 m**2/Vs\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19;\n",
- "RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n",
- "sigma=112; #conductivity(ohm-1 m-1)\n",
- "\n",
- "#Calculation\n",
- "ne=3*math.pi/(8*RH*e); #charge carrier density(per m**3)\n",
- "mew_e=sigma/(e*ne); #electron mobility(m**2/Vs)\n",
- "\n",
- "#Result\n",
- "print \"charge carrier density is\",int(ne/10**22),\"*10**22 per m**3\"\n",
- "print \"electron mobility is\",round(mew_e,3),\"m**2/Vs\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 8.21"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "intrinsic conductivity is 0.432 *10**-3 ohm-1 m-1\n",
- "conductivity during donor impurity is 10.4 ohm-1 m-1\n",
- "conductivity during acceptor impurity is 4 ohm-1 m-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mew_e=0.13; #mobility of electron(m**2/Vs)\n",
- "mew_h=0.05; #mobility of holes(m**2/Vs)\n",
- "e=1.6*10**-19;\n",
- "ni=1.5*10**16; #number of electron hole pairs\n",
- "N=5*10**28;\n",
- "\n",
- "#Calculation\n",
- "sigma1=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n",
- "ND=N/10**8;\n",
- "n=ni**2/ND;\n",
- "sigma2=ND*e*mew_e; #conductivity(ohm-1 m-1)\n",
- "sigma3=ND*e*mew_h; #conductivity(ohm-1 m-1)\n",
- "\n",
- "#Result\n",
- "print \"intrinsic conductivity is\",round(sigma1*10**3,3),\"*10**-3 ohm-1 m-1\"\n",
- "print \"conductivity during donor impurity is\",sigma2,\"ohm-1 m-1\"\n",
- "print \"conductivity during acceptor impurity is\",int(sigma3),\"ohm-1 m-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 8.22"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "conductivity is 4.97 mho m-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19;\n",
- "Eg=0.72; #band gap(eV)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "T1=293; #temperature(K)\n",
- "T2=313; #temperature(K)\n",
- "sigma1=2; #conductivity(mho m-1)\n",
- "\n",
- "#Calculation\n",
- "x=(Eg*e/(2*k))*((1/T1)-(1/T2));\n",
- "y=round(x/2.303,3);\n",
- "z=round(math.log10(sigma1),3);\n",
- "log_sigma2=y+z;\n",
- "sigma2=10**log_sigma2; #conductivity(mho m-1)\n",
- "\n",
- "#Result\n",
- "print \"conductivity is\",round(sigma2,2),\"mho m-1\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}