1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 8: Semiconductor Physics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example number 1, Page number 8.19"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of electron hole pairs is 2.32 *10**16 per cubic metre\n",
"answer varies due to rounding off errors\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"ni1=2.5*10**19; #number of electron hole pairs\n",
"T1=300; #temperature(K)\n",
"Eg1=0.72*1.6*10**-19; #energy gap(J)\n",
"k=1.38*10**-23; #boltzmann constant\n",
"T2=310; #temperature(K)\n",
"Eg2=1.12*1.6*10**-19; #energy gap(J)\n",
"\n",
"#Calculation\n",
"x1=-Eg1/(2*k*T1);\n",
"y1=(T1**(3/2))*math.exp(x1);\n",
"x2=-Eg2/(2*k*T2);\n",
"y2=(T2**(3/2))*math.exp(x2);\n",
"ni=ni1*(y2/y1); #number of electron hole pairs\n",
"\n",
"#Result\n",
"print \"number of electron hole pairs is\",round(ni/10**16,2),\"*10**16 per cubic metre\"\n",
"print \"answer varies due to rounding off errors\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example number 2, Page number 8.20"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"intrinsic conductivity is 2.016 ohm-1 metre-1\n",
"intrinsic resistivity is 0.496 ohm metre\n",
"number of germanium atoms per m**3 is 4.5 *10**28\n",
"new value of conductivity is 1.434 *10**4 ohm-1 metre-1\n",
"new value of resistivity is 0.697 *10**-4 ohm metre\n",
"answer for new values given in the book varies due to rounding off errors\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"w=72.6; #atomic weight\n",
"d=5400; #density(kg/m**3)\n",
"Na=6.025*10**26; #avagadro number\n",
"mew_e=0.4; #mobility of electron(m**2/Vs)\n",
"mew_h=0.2; #mobility of holes(m**2/Vs)\n",
"e=1.6*10**-19;\n",
"m=9.108*10**-31; #mass(kg)\n",
"ni=2.1*10**19; #number of electron hole pairs\n",
"Eg=0.7; #band gap(eV)\n",
"k=1.38*10**-23; #boltzmann constant\n",
"h=6.625*10**-34; #plancks constant\n",
"T=300; #temperature(K)\n",
"\n",
"#Calculation\n",
"sigma=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n",
"rho=1/sigma; #resistivity(ohm m)\n",
"n=Na*d/w; #number of germanium atoms per m**3\n",
"p=n/10**5; #boron density\n",
"sigman=p*e*mew_h; #new value of conductivity(ohm-1 metre-1)\n",
"rhon=1/sigman; #new value of resistivity(ohm metre)\n",
"\n",
"#Result\n",
"print \"intrinsic conductivity is\",sigma,\"ohm-1 metre-1\"\n",
"print \"intrinsic resistivity is\",round(rho,3),\"ohm metre\"\n",
"print \"number of germanium atoms per m**3 is\",round(n/10**28,1),\"*10**28\"\n",
"print \"new value of conductivity is\",round(sigman/10**4,3),\"*10**4 ohm-1 metre-1\"\n",
"print \"new value of resistivity is\",round(rhon*10**4,3),\"*10**-4 ohm metre\"\n",
"print \"answer for new values given in the book varies due to rounding off errors\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example number 3, Page number 8.21"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"charge carrier density is 2 *10**22 per m**3\n",
"electron mobility is 0.035 m**2/Vs\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e=1.6*10**-19;\n",
"RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n",
"sigma=112; #conductivity(ohm-1 m-1)\n",
"\n",
"#Calculation\n",
"ne=3*math.pi/(8*RH*e); #charge carrier density(per m**3)\n",
"mew_e=sigma/(e*ne); #electron mobility(m**2/Vs)\n",
"\n",
"#Result\n",
"print \"charge carrier density is\",int(ne/10**22),\"*10**22 per m**3\"\n",
"print \"electron mobility is\",round(mew_e,3),\"m**2/Vs\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example number 4, Page number 8.21"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"intrinsic conductivity is 0.432 *10**-3 ohm-1 m-1\n",
"conductivity during donor impurity is 10.4 ohm-1 m-1\n",
"conductivity during acceptor impurity is 4 ohm-1 m-1\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"mew_e=0.13; #mobility of electron(m**2/Vs)\n",
"mew_h=0.05; #mobility of holes(m**2/Vs)\n",
"e=1.6*10**-19;\n",
"ni=1.5*10**16; #number of electron hole pairs\n",
"N=5*10**28;\n",
"\n",
"#Calculation\n",
"sigma1=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n",
"ND=N/10**8;\n",
"n=ni**2/ND;\n",
"sigma2=ND*e*mew_e; #conductivity(ohm-1 m-1)\n",
"sigma3=ND*e*mew_h; #conductivity(ohm-1 m-1)\n",
"\n",
"#Result\n",
"print \"intrinsic conductivity is\",round(sigma1*10**3,3),\"*10**-3 ohm-1 m-1\"\n",
"print \"conductivity during donor impurity is\",sigma2,\"ohm-1 m-1\"\n",
"print \"conductivity during acceptor impurity is\",int(sigma3),\"ohm-1 m-1\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example number 5, Page number 8.22"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"conductivity is 4.97 mho m-1\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e=1.6*10**-19;\n",
"Eg=0.72; #band gap(eV)\n",
"k=1.38*10**-23; #boltzmann constant\n",
"T1=293; #temperature(K)\n",
"T2=313; #temperature(K)\n",
"sigma1=2; #conductivity(mho m-1)\n",
"\n",
"#Calculation\n",
"x=(Eg*e/(2*k))*((1/T1)-(1/T2));\n",
"y=round(x/2.303,3);\n",
"z=round(math.log10(sigma1),3);\n",
"log_sigma2=y+z;\n",
"sigma2=10**log_sigma2; #conductivity(mho m-1)\n",
"\n",
"#Result\n",
"print \"conductivity is\",round(sigma2,2),\"mho m-1\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|