summaryrefslogtreecommitdiff
path: root/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb')
-rw-r--r--Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb405
1 files changed, 405 insertions, 0 deletions
diff --git a/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb
new file mode 100644
index 00000000..d50d131a
--- /dev/null
+++ b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb
@@ -0,0 +1,405 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Power Conversation and Motor Drive Operations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 9.1,Page 457"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "peak voltage is 37.6 V\n",
+ "load voltage is 35.7 V\n",
+ "ripple voltage is 3.96 V\n",
+ "approx. load voltage is 35.62 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding peak,load,ripple voltages\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V=28.0;#V\n",
+ "C=4700.0;#microF\n",
+ "R=16.0;#load\n",
+ "f=120.0;#hertz\n",
+ "\n",
+ "#calculation\n",
+ "Vp=V*2**.5-2;\n",
+ "Vd=0.95*Vp;\n",
+ "Id=Vd/R;\n",
+ "v=Id/f/C;\n",
+ "#approximation\n",
+ "Vd1=Vp-v*1e6/2;\n",
+ "\n",
+ "#result\n",
+ "print \"peak voltage is\",round(Vp,2), \"V\"\n",
+ "print \"load voltage is\",round(Vd,1), \"V\"\n",
+ "print \"ripple voltage is\",round(v*1e6,2), \"V\"\n",
+ "print \"approx. load voltage is\",round(Vd1,2), \"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2,Page 459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Zth is 1.0 + 1.0 in ohm\n",
+ "inductor is 2.65 mH\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding inductor,Zth\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V1=120.0;#pri voltage\n",
+ "V2=28.0;#sec voltage\n",
+ "I=2.0;#pri current\n",
+ "f=60.0;#Hz\n",
+ "Vth=28.8;#open voltage\n",
+ "V3=12.1;#pri-short voltage\n",
+ "Is=2.0;#short current at 45 degree\n",
+ "\n",
+ "#calculation\n",
+ "Zi=(V2*V3)/V1/Is*cos(45*pi/180);\n",
+ "Zj=(V2*V3)/V1/Is*sin(45*pi/180);\n",
+ "L=Zi/(2*pi*f);\n",
+ "\n",
+ "#result\n",
+ "print'Zth is',round(Zi),'+',round(Zj),'in ohm'\n",
+ "print \"inductor is\",round(L*1000,2), \"mH\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 9.4,Page 463"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "power factor is 0.32\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding power factor\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "I1=1.8;#current\n",
+ "R=16.0;#resistance\n",
+ "I2=5.7;#A\n",
+ "V=28.8;#Voltage\n",
+ "\n",
+ "#calculation\n",
+ "P=I1**2*R;\n",
+ "S=I2*V;\n",
+ "Pf=P/S;\n",
+ "\n",
+ "#result\n",
+ "print \"power factor is\",round(Pf,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 9.5, Page 468"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "aparrent power is 8.14 kVA\n",
+ "dissipated power is 7.84 kW\n",
+ "power factor is 0.96\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding power factor\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "I=22.6;#current\n",
+ "I2=28.00;\n",
+ "V=120.0;#Voltage\n",
+ "V2=280.0;\n",
+ "\n",
+ "#calculation\n",
+ "Pt=3*I*V;\n",
+ "Pl=I2*V2;\n",
+ "Pf=Pl/Pt;\n",
+ "\n",
+ "#result\n",
+ "print \"aparrent power is\",round(Pt/1000,2),\"kVA\"\n",
+ "print \"dissipated power is\",round(Pl/1000,2),\"kW\"\n",
+ "print \"power factor is\",round(Pl/Pt,2)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 9.6,Page 474"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio is 0.72\n",
+ "firing angle is 58 degrees\n",
+ "dc voltage is 148.85 V\n",
+ "time delay is 2.69 ms\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding firing angle, time delay,Vd\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V=208.0;#voltage\n",
+ "R=100.0;#load\n",
+ "Vd=150.0;#V\n",
+ "\n",
+ "#calculation\n",
+ "r=Vd/V;\n",
+ "a=58;#degree\n",
+ "Vd=3*2**.5*208*(cos(pi/3+a*pi/180)-cos(2*pi/3+a*pi/180))/pi;\n",
+ "t=a*16.7/360;\n",
+ "\n",
+ "#result\n",
+ "print \"ratio is\",round(r,2)\n",
+ "print('firing angle is 58 degrees');\n",
+ "print \"dc voltage is\",round(Vd,2), \"V\"\n",
+ "print \"time delay is\",round(t,2), \"ms\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 9.7,Page 480"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "max. current is 41.67 A\n",
+ "dissipated power is 8.68 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding maximum current and power dissipated\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "P=150.0;#power\n",
+ "V=8.0;#voltage\n",
+ "R=.01;#resistance\n",
+ "D=.5;#duty cycle\n",
+ "\n",
+ "#calculation\n",
+ "I=P/.9/D/V;\n",
+ "Ir=I*D**.5;\n",
+ "Pq=Ir**2*R;\n",
+ "\n",
+ "#result\n",
+ "print \"max. current is\",round(I,2), \"A\"\n",
+ "print \"dissipated power is\",round(Pq,2),\"W\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 9.8,Page 489"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "pwm fundamental frequency is 30.72 kHz\n",
+ "output voltage is 9.46 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding fundamental frequency and output voltage\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "f1=60.0;#frequency\n",
+ "V=150.0;#voltage\n",
+ "f2=31.0;#kHz\n",
+ "\n",
+ "#calculation\n",
+ "f3=f1*4;\n",
+ "Vo=V*10**(-4.2);\n",
+ "\n",
+ "#result\n",
+ "print \"pwm fundamental frequency is\",round(f3*2**7/1000,2), \"kHz\"\n",
+ "print \"output voltage is\",round(Vo*1000,2), \"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Example 9.9,Page 491"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average voltage is 127.32 V\n",
+ "\n",
+ "Va-d @ 200Vin=4.2V\n",
+ "\n",
+ "\n",
+ "pick R1=47kohm\n",
+ "current through dividers is 2.62 mA\n",
+ "R2 is 1.6 kohm\n",
+ "capacitor is 27.01 microF\n"
+ ]
+ }
+ ],
+ "source": [
+ "#finding resistances,capacitor,average voltage\n",
+ "\n",
+ "#initialisation of variable\n",
+ "from math import pi,tan,sqrt,sin,cos,acos,atan\n",
+ "V=120.0;#load voltage\n",
+ "f=60.0;#Hz\n",
+ "Vp=200.0;#V\n",
+ "Vd=5.0;#V\n",
+ "\n",
+ "\n",
+ "#calculation\n",
+ "Vdc=2*Vp/pi;\n",
+ "Va=4.2;\n",
+ "R1=47.0;\n",
+ "I=(Vdc-Va)/R1;\n",
+ "R2=Va/I;\n",
+ "K=1.0/(1/R1+1/R2)# R1 \\\\ R2\n",
+ "C=1.0/2/pi/3.8/K;\n",
+ "\n",
+ "#result\n",
+ "print \"average voltage is\",round(Vdc,2), \"V\"\n",
+ "print('\\nVa-d @ 200Vin=4.2V')\n",
+ "print('\\n\\npick R1=47kohm')\n",
+ "print \"current through dividers is\",round(I,2), \"mA\"\n",
+ "print \"R2 is\",round(R2,2), \"kohm\"\n",
+ "print \"capacitor is\",round(C*1000,2), \"microF\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}