summaryrefslogtreecommitdiff
path: root/Optical_fiber_communication_by_gerd_keiser/chapter2_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Optical_fiber_communication_by_gerd_keiser/chapter2_1.ipynb')
-rwxr-xr-xOptical_fiber_communication_by_gerd_keiser/chapter2_1.ipynb231
1 files changed, 0 insertions, 231 deletions
diff --git a/Optical_fiber_communication_by_gerd_keiser/chapter2_1.ipynb b/Optical_fiber_communication_by_gerd_keiser/chapter2_1.ipynb
deleted file mode 100755
index 5cd59824..00000000
--- a/Optical_fiber_communication_by_gerd_keiser/chapter2_1.ipynb
+++ /dev/null
@@ -1,231 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:161f2af28057c1d070e2d9170a764b41538f5b5faa1a2af8f60c6674471beb1e"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 2: Optical fibers: Structures, Waveguiding, and Fabrication"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.1, Page Number: 37"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "n1 = 1.48 #core refractive index for glass n1\n",
- "n2 = 1.00 #core refractive index for air n2\n",
- "\n",
- "#calculation\n",
- "phic = math.asin(n2/n1) #Interflaction reflaction angle(degree)\n",
- "\n",
- "#result\n",
- "print \"Total Interflaction reflaction angle = \",round(phic*57.3,1),\"degree\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Total Interflaction reflaction angle = 42.5 degree\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.2, Page Number: 45"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "n1=1.48 #core refractive index\n",
- "n2=1.46 #cladding refractive index\n",
- "\n",
- "#calculation\n",
- "phiC=math.degrees(math.asin(n2/n1)) #critical angle (degree)\n",
- "NA=math.sqrt((n1*n1)-(n2*n2)) #numerical apperture\n",
- "phiO=math.degrees(math.asin(NA)) #maximum entrance angle (degree)\n",
- "\n",
- "#result\n",
- "print \"Critical angle =\" ,round(phiC,1),\"degree\"\n",
- "print \"Numerical apperture =\" ,round(NA,3)\n",
- "print \"Acceptance angle =\" ,int(phiO),\"degree\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Critical angle = 80.6 degree\n",
- "Numerical apperture = 0.242\n",
- "Acceptance angle = 14 degree\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.3 , Page Number: 58"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "V=26.6 #normalized frequency\n",
- "lamda=1300*1e-9 #wavelength(nm)\n",
- "a=25*1e-6 #core radius(um)\n",
- "\n",
- "\n",
- "#caculation\n",
- "NA=(V*lamda)/(2*math.pi*a) #numerical aperture\n",
- "\n",
- "#result\n",
- "print \"Numerical aperture =\",round(NA,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Numerical aperture = 0.22\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.4 , Page Number: 62"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math \n",
- " \n",
- "#variable declaration\n",
- "V2 = 22 #normalized frequency2\n",
- "V1=39 #normalized frequency1\n",
- "p=1.4 \n",
- "\n",
- "#calculation\n",
- "M1=(V1**2)/2 #modes in fiber1\n",
- "M2=V2**2/2 #modes in fiber2\n",
- "Pcladd_P1 = (4/3)*(M1**(-0.5))*p\n",
- "Pcore_P1= 1-Pcladd_P1\n",
- "Pcladd_P2 = (4/3)*(M2**(-0.5))*p\n",
- "Pcore_P2= 1-Pcladd_P2 \n",
- "\n",
- "#result\n",
- "print 'case1 : Total number of modes',M1\n",
- "print 'case1 : Percent age of power propagates in the cladding',int(Pcladd_P1 *100)\n",
- "print 'case2 : Total number of modes',M2\n",
- "print 'case2 : Percent age of power propagates in the cladding',int(round(Pcladd_P2 *100,0)) "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "case1 : Total number of modes 760\n",
- "case1 : Percent age of power propagates in the cladding 5\n",
- "case2 : Total number of modes 242\n",
- "case2 : Percent age of power propagates in the cladding 9\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.5 , Page Number: 65"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- " \n",
- "#variable declaration\n",
- "lamda=1300*1e-9 #wavelength(nm)\n",
- "Lp=8*1e-2 #beat length(cm)\n",
- "\n",
- "#calculation\n",
- "Bf=lamda/Lp #modal birefringence\n",
- "bita=(2*math.pi)/Lp #birefringence(1/m)\n",
- "\n",
- "#result\n",
- "print \"Modal birefringence =\",round(Bf,7)\n",
- "print \"Birefringence Bita =\",bita,\"1/m\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Modal birefringence = 1.62e-05\n",
- "Birefringence Bita = 78.5398163397 1/m\n"
- ]
- }
- ],
- "prompt_number": 15
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file