summaryrefslogtreecommitdiff
path: root/Mass_-_Transfer_Operations
diff options
context:
space:
mode:
Diffstat (limited to 'Mass_-_Transfer_Operations')
-rwxr-xr-xMass_-_Transfer_Operations/Chapter1.ipynb76
-rwxr-xr-xMass_-_Transfer_Operations/Chapter10.ipynb1344
-rwxr-xr-xMass_-_Transfer_Operations/Chapter10_1.ipynb1366
-rwxr-xr-xMass_-_Transfer_Operations/Chapter10_2.ipynb1366
-rwxr-xr-xMass_-_Transfer_Operations/Chapter11.ipynb1207
-rwxr-xr-xMass_-_Transfer_Operations/Chapter11_1.ipynb1235
-rwxr-xr-xMass_-_Transfer_Operations/Chapter11_2.ipynb1235
-rwxr-xr-xMass_-_Transfer_Operations/Chapter12.ipynb922
-rwxr-xr-xMass_-_Transfer_Operations/Chapter12_1.ipynb932
-rwxr-xr-xMass_-_Transfer_Operations/Chapter12_2.ipynb932
-rwxr-xr-xMass_-_Transfer_Operations/Chapter13.ipynb443
-rwxr-xr-xMass_-_Transfer_Operations/Chapter13_1.ipynb438
-rwxr-xr-xMass_-_Transfer_Operations/Chapter13_2.ipynb438
-rwxr-xr-xMass_-_Transfer_Operations/Chapter1_1.ipynb76
-rwxr-xr-xMass_-_Transfer_Operations/Chapter1_2.ipynb76
-rwxr-xr-xMass_-_Transfer_Operations/Chapter2.ipynb333
-rwxr-xr-xMass_-_Transfer_Operations/Chapter2_1.ipynb333
-rwxr-xr-xMass_-_Transfer_Operations/Chapter2_2.ipynb333
-rwxr-xr-xMass_-_Transfer_Operations/Chapter3.ipynb628
-rwxr-xr-xMass_-_Transfer_Operations/Chapter3_1.ipynb628
-rwxr-xr-xMass_-_Transfer_Operations/Chapter3_2.ipynb628
-rwxr-xr-xMass_-_Transfer_Operations/Chapter4.ipynb471
-rwxr-xr-xMass_-_Transfer_Operations/Chapter4_1.ipynb471
-rwxr-xr-xMass_-_Transfer_Operations/Chapter4_2.ipynb471
-rwxr-xr-xMass_-_Transfer_Operations/Chapter5.ipynb384
-rwxr-xr-xMass_-_Transfer_Operations/Chapter5_1.ipynb385
-rwxr-xr-xMass_-_Transfer_Operations/Chapter5_2.ipynb385
-rwxr-xr-xMass_-_Transfer_Operations/Chapter6.ipynb1050
-rwxr-xr-xMass_-_Transfer_Operations/Chapter6_1.ipynb1059
-rwxr-xr-xMass_-_Transfer_Operations/Chapter6_2.ipynb1059
-rwxr-xr-xMass_-_Transfer_Operations/Chapter7.ipynb1071
-rwxr-xr-xMass_-_Transfer_Operations/Chapter7_1.ipynb1071
-rwxr-xr-xMass_-_Transfer_Operations/Chapter7_2.ipynb1092
-rwxr-xr-xMass_-_Transfer_Operations/Chapter8.ipynb1462
-rwxr-xr-xMass_-_Transfer_Operations/Chapter8_1.ipynb1312
-rwxr-xr-xMass_-_Transfer_Operations/Chapter8_2.ipynb1312
-rwxr-xr-xMass_-_Transfer_Operations/Chapter9.ipynb2153
-rwxr-xr-xMass_-_Transfer_Operations/Chapter9_1.ipynb2154
-rwxr-xr-xMass_-_Transfer_Operations/Chapter9_2.ipynb2154
-rwxr-xr-xMass_-_Transfer_Operations/README.txt10
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration13.3.pngbin0 -> 76410 bytes
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration13.3_1.pngbin0 -> 76410 bytes
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration13.3_2.pngbin0 -> 76410 bytes
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration3.1.pngbin0 -> 68914 bytes
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration3.1_1.pngbin0 -> 68914 bytes
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration3.1_2.pngbin0 -> 68914 bytes
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration5.1.pngbin0 -> 87422 bytes
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration5.1_1.pngbin0 -> 87422 bytes
-rwxr-xr-xMass_-_Transfer_Operations/screenshots/illustration5.1_2.pngbin0 -> 87422 bytes
49 files changed, 34495 insertions, 0 deletions
diff --git a/Mass_-_Transfer_Operations/Chapter1.ipynb b/Mass_-_Transfer_Operations/Chapter1.ipynb
new file mode 100755
index 00000000..3d150815
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter1.ipynb
@@ -0,0 +1,76 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a429839b93fda73811b080ddf18c202362ff24ca9ec207904626c7313297633e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter1 : The Mass-Transfer Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.1: Page 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 1.1\n",
+ "# Page: 17\n",
+ "\n",
+ "print'Illustration 1.1 - Page: 17\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# Taking conversion factor from table 1.5 (Pg 15)\n",
+ "# viscosity: [(lb/ft.h)]*4.134*10^(-4) [kg/m.s] (Pg 15)\n",
+ "# time: [h] = 3600.0 [s]\n",
+ "# Density: [lb/cubic feet]*16.09 = [kg/cubic m] (Pg 15)\n",
+ "# Length: [ft]*0.3048 = [m]\n",
+ "N = (2.778*10**(-4))*(30600/(1/(0.3048**(3.0/2))))*((1/(4.134*(10**(-4))*16.019))**0.111)*(((1/16.019)/(1/16.019))**0.26);\n",
+ "print'The coeffecient for S.I. Unit is',round(N,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 1.1 - Page: 17\n",
+ "\n",
+ "\n",
+ "The coeffecient for S.I. Unit is 2.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter10.ipynb b/Mass_-_Transfer_Operations/Chapter10.ipynb
new file mode 100755
index 00000000..69678c20
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter10.ipynb
@@ -0,0 +1,1344 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:aee8bd5a480bd89ea66526c53a540baecd3d515c3125767ad2bbf6eed92072f7"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10: Liquid Extraction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.1: Page 494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.1\n",
+ "# Page: 494\n",
+ "\n",
+ "print'Illustration 10.1 - Page: 494\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pylab\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "xF = 0.30;# [mol fraction]\n",
+ "yS = 0;# [mol fraction]\n",
+ "S1 = 40.0;# [kg]\n",
+ "B1 = 40.0;# [kg]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data at 20 OC:\n",
+ "# Wa: Wt. percent of a\n",
+ "# Wb: Wt. percent of b\n",
+ "# Wc: Wt. percent of c\n",
+ "# Data1 = [Wc Wa Wb]\n",
+ "# Data1: water layer\n",
+ "Data1 = numpy.array([(0.69 ,98.1, 1.2),(1.41, 97.1 ,1.5),(2.89 ,95.5 ,1.6),(6.42 ,91.7 ,1.9),(13.30, 84.4, 2.3),(25.50 ,71.1 ,3.4),(36.70 ,58.9 ,4.4),(44.30 ,45.1 ,10.6),(46.40 ,37.1 ,16.5)])\n",
+ "# Data2: isopropyl ether layer\n",
+ "Data2 = numpy.array([(0.18 ,0.5 ,99.3),(0.37, 0.7 ,98.9),(0.79, 0.8, 98.4),(1.93 ,1, 97.1),(4.82, 1.9, 93.3),(11.40, 3.9, 84.7),(21.60, 6.9, 71.5),(31.10, 10.8, 58.1),(36.20 ,15.1 ,48.7)])\n",
+ "\n",
+ "plt.plot((Data1[:,2])/100,(Data1[:,0])/100,label=\"x Vs fraction ether\")\n",
+ "plt.plot((Data2[:,2])/100,(Data2[:,0])/100,label=\"y Vs fraction ether\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='lower center');\n",
+ "ax=pylab.gca()\n",
+ "ax.set_xlabel(\"Wt fraction of isopropyl ether\");\n",
+ "ax.set_ylabel(\"Wt fraction of acetic acid\");\n",
+ "plt.ylim((0,0.3))\n",
+ "plt.xlim((0,1))\n",
+ "plt.show();\n",
+ "# x: Wt fraction of acetic acid in water layer.\n",
+ "# y: Wt fraction of acetic acid in isopropyl layer.\n",
+ "\n",
+ "# The rectangular coordinates of Fig 10.9(a) will be used but only upto x = 0.30\n",
+ "\n",
+ "# Stage 1:\n",
+ "F = 100;# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "M1 = F+S1;# [kg]\n",
+ "# From Eqn. 10.5:\n",
+ "xM1 = ((F*xF)+(S1*yS))/M1;\n",
+ "# From Fig. 10.15 (Pg 495):\n",
+ "# Point M1 is located on the line FB and with the help of tie line passing through M1:\n",
+ "x1 = 0.258;# [mol fraction]\n",
+ "y1 = 0.117;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E1 = (M1*(xM1-x1)/(y1-x1));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R1 = M1-E1;# [kg]\n",
+ "\n",
+ "# Stage 2:\n",
+ "S2 = 40;# [kg]\n",
+ "B2 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M2 = R1+B2;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM2 = ((R1*x1)+(S2*yS))/M2;\n",
+ "# Point M2 is located on the line R1B and the tie line passing through R2E2 through M2:\n",
+ "x2 = 0.227;\n",
+ "y2 = 0.095;\n",
+ "# From Eqn. 10.8:\n",
+ "E2 = (M2*(xM2-x2)/(y2-x2));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R2 = M2-E2;# [kg]\n",
+ "\n",
+ "# Stage 3:\n",
+ "S3 = 40;# [kg]\n",
+ "B3 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M3 = R2+B3;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM3 = ((R2*x2)+(S3*yS))/M3;\n",
+ "# Point M3 is located on the line R2B and the tie line passing through R3E3 through M3:\n",
+ "x3 = 0.20;# [mol fraction]\n",
+ "y3 = 0.078;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E3 = (M3*(xM3-x3)/(y3-x3));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R3 = M3-E3;# [kg]\n",
+ "Ac = x3*R3;\n",
+ "print\"The composited extract is\",round((E1+E2+E3),2),\" kg\\n\"\n",
+ "print\"The acid content is \",round(((E1*y1)+(E2*y2)+(E3*y3)),2),\" kg\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# If an extraction to give the same final raffinate concentration were to be done in single stage, the point M would be at the intersection of tie line R3E3 and the line BF.\n",
+ "x = 0.20;# [mol fraction]\n",
+ "xM = 0.12;# [mol fraction]\n",
+ "# From Eqn. 10.6:\n",
+ "S = F*(xF-xM)/(xM-yS);# [kg]\n",
+ "print round(S,2),\"kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.1 - Page: 494\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYcgIDklABAZBBQNBVwQxjAkHE+6aFxVE\nEfUjKauACfOqCLKoiGIAhQVX1wCiRGeMICBZQUFBEdAFBCQNDMP5/qia6WaYUBOqq8N5n6ee7sqn\nz3T3nbq3615RVYwxxpiilAs6AGOMMbHBCgxjjDGeWIFhjDHGEyswjDHGeGIFhjHGGE+swDDGGOOJ\nrwWGiKSJyEoRWSUiA/NZ30VElojIIhH5RkTO9bqvMcaYyBK/7sMQkSTge+B8YD0wH7hOVVeEbVNN\nVXe5z08C3lPV5l72NcYYE1l+XmG0A1ar6lpVzQImAV3CN8gpLFyHAZu97muMMSay/CwwGgLrwuZ/\ndZcdREQuF5EVwMdA3+Lsa4wxJnL8LDA81XWp6vuq2hK4FHhTRMTHmIwxxpRQeR+PvR5oFDbfCOdK\nIV+q+rmIlAdqudsVua+IWEdYxhhTAqpa7H/O/bzCWAAcIyIpIlIRuAaYHL6BiDTLuaIQkZMBVHWL\nl31zqKrn6dprlQkTvG8fS9OQIUMCjyFaJsuFMz3+2eM0/2tzDhw4EHgs0TDZ+yI0lZRvBYaq7gd6\nA9OB74C3VHWFiPQSkV7uZlcAy0RkEfAv4NrC9i1tTLt3Q9WqpT1KdFq7dm3QIUQNy4Xj7tPvZtOG\nTbz17VtBhxIV7H1Ren5WSaGqH+M0Zocveyns+dPA0173La1du+K3wDAmrwpJFejYqCN3Tr+TTs06\nUatKraBDMjEuoe703r0bqlULOgp/dO/ePegQooblIuTu/7ubq46/irtn3B10KIGz90Xp+XbjXiSI\niBYn/jZt4PXXoW1bH4MyJsrs2LuDE0adwLjLx3FO03OCDsdEARFBo6zRO+rEcxtGRkZG0CFEDctF\nSEZGBtUrVeeFi16g14e92JO1J+iQAmPvi9JLqAJj1674rZIypjCXHncpreu35vHPHw86FBPDEqpK\nqmZN+PFHqGVtfyYBbdyxkdajWzP7xtmcVO+koMMxAbIqKQ/iuUrKmKI0qN6Ax859jJ5TepJ9IDvo\ncEwMSpgCY/9+Z6pUKehI/GH1syGWi5C8ubjl5FuomFSRFxe8GExAAbL3ReklTIGRc3VhPVWZRFZO\nyvHypS/z8KcPs277uqJ3MCZMwrRh/PYbtG4Nv//uc1DGxIBHPn2EbzZ+w/vXvI/195l4rA2jCNZ+\nYUzIwI4DWbVlFe+ueDfoUEwMSZgCI95/Umv1syGWi5CCclGpfCXGXDqGvtP6si1zW2SDCoi9L0ov\nYQoMu8Iw5mAdG3fksmMvY9CsQUGHYmJEwrRhpKfDww+D/ZNhTMj2zO2cMOoEJl4xkTObnBl0OCZC\nrA2jCPFeJWVMSRxe+XBGdh7JrR/eyt79e4MOx0S5hCkw4r1KyupnQywXIV5y8beWf6NFnRb884t/\n+h9QgOx9UXpWYBhjeL7z87ww/wVWbCr1OGUmjiVMG8aoUbB8ufNojDnUqPmj+Peyf/PZTZ9RThLm\nf8mEZG0YRbDR9owp3G1/uY0DeoAx34wJOhQTpRKmwIj3Kimrnw2xXIQUJxflpBxjLh3D/en3s2HH\nBv+CCoi9L0rPCgxjTK4TjjiB2065jb4f9w06FBOFEqYNo3dvOO446NPH56CMiXGZ+zNpPbo1T5//\nNF1adAk6HOMDa8Mogl1hGONN5fKVefmSl+n9cW/+3Ptn0OGYKGIFRpyw+tkQy0VISXNxdsrZpDVL\n497Z95ZtQAGy90XpJVSBYXd6G+Pd0xc8zbsr3mXOujlBh2KiRMK0YZx3HgweDOef73NQxsSR/3z7\nHx759BEW9lpIxaSKQYdjyoi1YRQh3qukjPHDVcdfRUpyCkO/HBp0KCYKJFSBEc9VUlY/G2K5CClt\nLkSEUReP4tm5z/LDlh/KJqiA2Pui9BKmwLA7vY0pmcaHN+aBsx7g1im3EstV2Kb0fG3DEJE0YASQ\nBLyiqk/lWd8VuAcQYAdwu6ouddetBf4EsoEsVW2Xz/E9t2EceSTMnw8NG5b89RiTqLIPZNPh1Q70\nOqUXN598c9DhmFIqaRuGbwWGiCQB3wPnA+uB+cB1qroibJsOwHequt0tXB5S1fbuujXAKar6RyHn\n8FxgJCfDmjVQs2aJX5IxCW3Jb0u44M0LWHb7MuodVi/ocEwpRGOjdztgtaquVdUsYBJw0G2jqjpH\nVbe7s18DR+U5RrFfUEHifQAlq58NsVyElGUuWtdvzc1tb6bftH5ldsxIsvdF6flZYDQE1oXN/+ou\nK8jNwEdh8wrMEpEFItKzNIFkZYEqVKhQmqMYYx48+0EWbFjA1B+mBh2KCYCfVVJXAGmq2tOdvx44\nTVUP6c1JRM4BXgA6qupWd1kDVd0oInWBmUAfVf08z36eqqS2b4fGjZ1HY0zpzP5pNj0m9+DbO77l\nsIqHBR2OKYGSVkmV9yMY13qgUdh8I5yrjIOISCtgDE7hsjVnuapudB83ich7OFVcn+fdv3v37qSk\npACQnJxMmzZtSE1NBUKXoMcem0rVqqH5vOtt3uZt3vv8eanncU7KOXQf0Z3e7XoHHo/NFz2fkZHB\n2LFjAXK/L0tEVX2ZcAqjH4EUoCKwGGiZZ5vGwGqgfZ7lVYHq7vNqwJdAp3zOoV6sWqV69NGeNo1Z\n6enpQYcQNSwXIX7lYvOuzVpvaD2d9+s8X47vB3tfhLjfncX+XvetDUNV9wO9genAd8BbqrpCRHqJ\nSC93sweBmsCLIrJIROa5y+sDn4vIYpzG8A9VdUZJY4n3Bm9jIq121doM6zSMnlN6kpWdFXQ4JkIS\noi+pOXPgzjth7twIBGVMglBVOk/ozDkp5zDwjIFBh2OKIRp/Vhs14r1bEGOCICK8ePGLDP1qKD/+\n8WPQ4ZgISIgCIxG6Bclp4DKWi3B+56JpzaYMPmMwvT7sFfXdhtj7ovQSosCwnmqN8U+/9v3YmrmV\nN5e+GXQoxmcJ0Ybx2mvwxRfOozGm7C3cuJDOEzqz/Pbl1K1WN+hwTBGsDaMQiVAlZUyQTm5wMje0\nuoG7ZtwVdCjGRwlRYCRCo7fVz4ZYLkIimYuHUx/mi1++YPrq6RE7Z3HY+6L0EqLAsCsMY/xXrWI1\nRl88mtun3s6ufbuCDsf4ICHaMP7xD6hXD+6+OwJBGZPgrn/3ehoc1oChnWxY12hlbRiFSIQqKWOi\nxfALh/PG0jdYuHFh0KGYMlZggSEiV4jI38IeD5oiGWRpJUKVlNXPhlguQoLIxRHVjuDp85+m55Se\n7D+wP+LnL4i9L0qvsCuMS92pB/Aq0NWdXnGXxQy7D8OYyLqx9Y3UrFyTkV+PDDoUU4aKbMMQkZnA\njep2Ny4iDYBxqtopAvEVymsbxsUXwx13OI/GmMhY/cdq2r/Snvk959O0ZtOgwzFh/GzDaAT8Fjb/\nO0635DEjEaqkjIk2zWs15x+n/4M7Proj6rsNMd54KTBmAdNFpLuI3IQzjOpMf8MqW4nQ6G31syGW\ni5CgczGgwwA27NjAxOUTA40Dgs9FPPBSYPQBRgNtgFbAS5rPMKvRzK4wjAlGhaQKjLl0DANmDGDL\n7i1Bh2NKKSHuw2jaFGbPhqOPjkBQxphD9J/Wn+17t/N6l9eDDsXgQxuGiHzpPu4UkR15pj9LE2yk\nJUKVlDHR7NFzHuWTNZ/wyZpPgg7FlEKBBYaqdnQfD1PV6nmmGpELsfQSoUrK6mdDLBch0ZKL6pWq\nM+qiUfT6sBd7svYEEkO05CKWFdmGISLtRaRG2HwNETnN37DKjqrdh2FMNLj42Is5ucHJPPrZo0GH\nYkrIy30Yi4GTVfWAO58ELFDVthGIr1Be2jAyMyE52Xk0xgTrt52/0erFVsy6cRat6rUKOpyE5Wtf\nUjmFhfs8G0gq7omCkgjVUcbEivqH1eeJ857glsm3kH0gO+hwTDF5KTDWiEhfEakgIhVFpB/wk9+B\nlZVEafC2+tkQy0VINObi5rY3U6l8JV5bFNkhMKMxF7HGS4FxG9ARWA/8CrQHbvUzqLJkVxjGRBcR\nYWTaSB5If4BtmduCDscUQ9zfh7FwIdxyi/NojIkevab0omqFqjyb9mzQoSSckrZhlPdw4CrAzcDx\nQOWc5aoaEz3W2i+kjIlOj537GCeMOoFbT7mVlnVbBh2O8cBLldSbQD0gDfgUpzPCnX4GVZYSpUrK\n6mdDLBch0ZyLutXqct+Z99F/ev+IdE4YzbmIFV4KjOaq+gCwU1XHARcBMXMfRqI0ehsTi+449Q5+\n/fNXpvwwJehQjAdeCox97uN2ETkJSAbq+hdS2UqUKqnU1NSgQ4galouQaM9FhaQKjLhwBHdNv4vM\n/f7eLBXtuYgFXgqMMSJSC7gfmAx8Bzzta1RlKFGqpIyJVRc0u4ATjziRZ+dY43e0K7LAUNUxqvqH\nqn6qqk1Vta6qjvZycBFJE5GVIrJKRAbms76riCwRkaUi8qWItPK6r1eJUiVl9bMhlouQWMnFsE7D\nGDZnGOv/XO/bOWIlF9HM053eJeF2IfI8TmP58cB1IpL3pxA/AWepaivgUeDlYuzriV1hGBP9mtVq\nxq2n3Mqg2YOCDsUUwrcCA2gHrFbVtaqaBUwCuoRvoKpzVHW7O/s1cJTXfb1KlCsMq58NsVyExFIu\n7j3zXtLXpDNn3Rxfjh9LuYhWfhYYDYF1YfO/ussKcjPO8K8l2bdAidLobUysO6ziYTx5/pP0ndaX\nA6Hu60wU8XLjXm9ggqpudedrAtep6qgidvX8w2oROQfogdMFSbH27d69OykpKQAkJyfTpk2b3P8k\nMjIyWLUKWrQIzQMHrY+X+fD62WiIJ8j5nGXREk+Q84sXL6Z///5RE09R8w21IRXKVWDs4rEcvf3o\nMj3+iBEjDvl+CPr1Rmo+IyODsWPHAuR+X5aIqhY6AUvyWbbYw37tgWlh84OBgfls1wpYjXO/R3H3\n1aJ07ar65ptFbhbz0tPTgw4halguQmIxF/PXz9f6z9TXbXu2lelxYzEXfnG/O4v8/s87eRkPYxnQ\nWg8eD2Opqp5QxH7lge+B84ANwDycK5MVYds0Bj4BrlfVucXZ191Oi4r/r3+FG26Av/2t0M2MMVHk\nlsm3kFw5mWc6PRN0KHHJz/EwpgOTROQ8ETkfpwF6WlE7qep+oLe7/3fAW6q6QkR6iUgvd7MHgZrA\niyKySETmFbZvMV8bkDiN3sbEkyfOe4JxS8bx/ebvgw7FhPFyhZGE0535ee6imcAr6gykFCgvVxhn\nnglPPOE8xrOMjIzcustEZ7kIieVcDJ8znFk/zeKjrh8VvbEHsZyLsubbFYaqZqvqi6p6pTu9FA2F\nhVd2H4Yxsal3u978tPUnpv4wNehQjKvAKwwReVtVrxKR5Rz6qyVV52a7QHm5wmjRAt5/33k0xsSW\naaun0efjPiy/fTmVylcKOpy4UdIrjMIKjCNVdYOINAHyHlhV9ecSxFmmvBQYjRvDF184j8aY2HPp\nxEs5s/GZ3NPxnqBDiRtlXiWlqhvcp3eoc8d17gTcUcI4I27XrsRo9A6/ByHRWS5C4iEXwzsN5+kv\nn2bjjo2lOk485CJoXn4l1SmfZReVdSB+sTu9jYltx9Q+hpvb3szg2YODDiXhFVYldTvOlUQz4Mew\nVdWBL1W1q//hFa6oKqnsbKhQwXmUYl98GWOixY69O2jxQgvevfpdTjsqZsZvi1p+tGEcjnOPxJPA\nQELtGDtUdUtJAy1LRRUYO3dC/frOozEmto1bPI5RC0Yx5+Y5lBM/u8GLf360YWx32yyuBRoD57jt\nF+VEpGnJQ42cRKqOsvrZEMtFSDzl4obWNwDw5pI3S7R/POUiKEUW0yLyEHAPTn9OABWBCT7GVGbs\nHgxj4kc5KcfItJEMnj2YHXt3BB1OQvJyp/cSoC3wjaq2dZctjYX7ML79Fq6+2nk0xsSH7u93p161\nejx1wVNBhxKz/OxLam9Ox4PuiWLmR6qJVCVlTKL453n/5NVFr7Jqy6qgQ0k4XgqMt0XkJSBZRG4F\nZgOv+BtW2UiUezDA6mfDWS5C4jEXDao3YGDHgdw1465i7RePuYg0L31JDQX+607HAg+o6ki/AysL\ndoVhTHzq174f32/+no9XfRx0KAnFSxtGU+A3Vd3jzlcB6rm/mApUUW0Yb78Nb70F77wTwaCMMREx\n9Yep3DXjLpbdvoyKSRWDDiem+NmG8Q4Q3jvtAXdZ1LOxMIyJXxcfezHNajbjua+fCzqUhOGlwEhS\n1X05M6q6F6jgX0hlJ5GqpKx+NsRyERLvuXj2wmd58ssn+X3n70VuG++5iAQvBcZmEemSM+M+3+xf\nSGUnkRq9jUlEx9U5jm6tu3Hv7HuDDiUheGnDaI5zo96R7qJfgRtUdbXPsRWpqDaMRx6B/fudR2NM\nfNqeuZ0WL7RgynVT+MuRfwk6nJjg54h7q1X1NOB4oKWqdoiGwsKLRKqSMiZRHV75cB4/93H6ftyX\nov4BNqXjqQcvEbkEuB24S0QeFJEH/Q2rbCRSlZTVz4ZYLkISJRfd23Qn60AWE5YV3GtRouTCT176\nknoJuBroi9Nj7dVAE5/jKhN2hWFMYsjpZ2rQrEHs3GfdU/vFSxvGMlU9Kaf/KBE5DJimqmdEJsRC\nYyu0DePaa+Hyy51HY0z8u+G9G2hUoxFPnPdE0KFENT/vw9jjPu4WkYbAfqB+cU8UBLvCMCaxPHX+\nU7z8zcv8+MePRW9sis1LgTFFRGoCQ4FvgLXARD+DKiuJVGBY/WyI5SIk0XJxZPUjGdBhAANmDDhk\nXaLlwg9efiX1qKpuVdX/AilAC1V9wPfIykAiNXobYxx3driT5f9bzowfZwQdStwpsg0jmhXVhtG6\nNbzxhvNojEkck7+fzKBZg1hy2xIqJMVExxQR5WcbRsyyvqSMSUyXHnspjQ5vxAvzXwg6lLhSYIEh\nIh3dx8qRC6dsJdIQrVY/G2K5CEnUXIgIIy4cweOfP86mXZuAxM1FWSrsCiNnzIs5JT24iKSJyEoR\nWSUiA/NZ30JE5ohIpogMyLNurYgsFZFFIjKvJOdPpEZvY8zBWtZtyfUnXc99n9wXdChxo8A2DBH5\nGlgKdAEm4dy0l0NVtW+hBxZJAr4HzgfWA/OB61R1Rdg2dXFuArwc2Kqqw8LWrQFOUdU/CjlHoW0Y\nFSo4hUYFq8I0JiFty9xGi+db8FHXjzi5wclBhxM1/GjDuARnONY9OD+nzTsVpR2wWlXXqmoWTqHT\nJXwDVd2kqguArAKOUewXlCPLPaIVFsYkruTKyTx6zqPWz1QZKbDAcL/MJwFdVHWcqo4Nm8Z5OHZD\nYF3Y/K/uMq8UmCUiC0SkZzH2AxKvOsrqZ0MsFyGWC+jRtge7s3bz4Osx0QVeVCvvYZstIvIekNMV\nyGdAP1X9tYj9Slucd1TVjW611UwRWamqn+fdqHv37qSkpACQnJxMmzZtSE1NZdcuKF8+g4wMSE1N\nBUIfHpuP7/kc0RJPkPOLFy+OqniCmh/ZeSQX972Y0xudTucLOgceT6TnMzIyGDt2LEDu92VJeOlL\nahbOeBjj3UVdga6qekER+7UHHlLVNHd+MHBAVZ/KZ9shwM7wNgwv6wtrw1i9GtLSnEdjjPn7f/9O\ns5rNePTcR4MOJXB+3odRV1VfV9UsdxoLHOFhvwXAMSKSIiIVgWuAyQVse1DgIlJVRKq7z6sBnYBl\nHs6Zy+7BMMaEe/qCpxm1YBRrtq4JOpSY5aXA2CIiN4hIkoiUF5Hr8TBEq6ruB3oD04HvgLdUdYWI\n9BKRXgAiUl9E1gF3AveLyC9ub7j1gc9FZDHwNfChqhbrPv9EugcDrK46nOUixHIRsnrhau5sf2e+\n/UwZb7y0YfQAngOGu/NfATd5Obiqfgx8nGfZS2HPfwMa5bPrTqCNl3MUJNEavY0xRRvQYQDHjzqe\n2T/N5ryjzws6nJgTt31JTZ4Mr7ziPBpjTI53V7zLg+kPsvi2xZQv5+V/5vhjfUnlYVcYxpj8/LXF\nX6l/WH1enP9i0KHEnLguMBKp0dvqqkMsFyGWi5CcXIgI/0r7F49+9iibdxfZHGvCxG2BkWiN3sYY\n70444gSuPfFaHvgkJob2iRpe7sOoDFyBM3hSToWfquoj/oZWtMLaMJ56Cv74w3k0xpi8tu7ZSosX\nWjDj+hm0rp9Yg+b42YbxAXAZTn9PO91pV3FPFGmJViVljCmemlVq8nDqw/SdZv1MeeWlwGioqteo\n6tOqOixn8j2yUkq0Kimrqw6xXIRYLkLyy0XPk3uyPXM7b3/3duQDikFeCoyvRKSV75GUMfuVlDGm\nKEnlkhjZeSR3z7yb3Vm7gw4n6nlpw1gBNAfWAHvdxaqqgRcihbVh9OgBZ5zhPBpjTGGueecaWtZp\nyUOpDwUdSkSUtA3Dy10rnd3HnG/mEo9REUl790KlSkFHYYyJBUMvGErbl9pyU5ubaJLcJOhwolaR\nVVKquhZIxmn4vhQ43F0W1RKtwLC66hDLRYjlIqSwXDQ+vDF92/XlHzP/EbmAYlCRBYaI9MPp2rwu\nUA8YLyKFDs8aDfbtg4oVg47CGBMr7u54N/PXzyd9TXrQoUQtL20Yy4D2qrrLna8GzFXVkyIQX6EK\na8O48EK46y7n0RhjvHj727d59LNHWdhrYVz3M+V3X1IHCngetRKtSsoYU3pXHn8ltarU4uVvXg46\nlKjkpcB4HfhaRB4SkYeBucBr/oZVeolWYFhddYjlIsRyEeIlFyLCyM4jeSjjIf7Y84f/QcUYL43e\nw3HGv9gKbAG6q+qzfgdWWtaGYYwpiVb1WnHV8VfxYPqDQYcSdQpswxCRGqr6p4jUylnkPiqAqgZe\n/BbWhnHiiTBpkvNojDHFsWX3Flq+0JLZN87mpHqBN9eWOT/aMCa6jwuBb3DG6F7gPv+m2BFGWKJV\nSRljyk7tqrUZcvYQ+k3rZ/1MhSmwwFDVi93HFFVtmneKXIglk2hVUlZXHWK5CLFchBQ3F73+0ovN\nuzfz7op3/QkoBnm5D2O2l2XRxq4wjDGlUb5cef6V9i8GzBjAnqw9QYcTFQprw6gCVAXSgdSwVTWA\naarawvfoilBYG0bNmvDTT86jMcaU1JX/uZJW9Vrx4Nnx0whe0jaMwgqM/kA/4EhgQ9iqHcDLqvp8\nSQItS4UVGNWqwf/+Z2NiGGNKZ+22tZzy8iks6rWIxoc3DjqcMlHmjd6qOsJtq/hHnvaLVtFQWBQl\n0aqkrK46xHIRYrkIKWkuUpJT6H1qb+6eeXfZBhSDvNy4pyKSW7EjIjVF5A4fYyq17GxQhfLxe2e/\nMSaCBp4xkLm/ziVjbUbQoQTKS19SS1S1dZ5li1W1ja+ReVBQldTu3VC7NuyxdipjTBl557t3eOTT\nR+Kinyk/+5IqJyK524lIElChuCeKpH37Eqs6yhjjvytaXkGdqnUYvWB00KEExkuBMR2YJCLnicj5\nwCRgmr9hlU6itV+A1VWHs1yEWC5CSpuLnH6mHv70YTbt2lQ2QcUYLwXGQJyf1t4O3AbMAu7xM6jS\n2rs3sW7aM8ZExolHnMjfT/w7931yX9ChBKLINoxSHVwkDRgBJAGvqOpTeda3wOkNty1wn6oO87qv\nu02+bRirV0NamvNojDFlaVvmNlo834Kpf5/KKUeeEnQ4JeJbG4aIHCsi74jIdyKyxp1+8rBfEvA8\nkAYcD1wnIi3zbLYF6AM8U4J9C5SIVVLGmMhIrpzM4+c+Tp+P+3BAY2J4oDLjdTyM0cB+4BxgHDDB\nw37tgNWqulZVs3DaPrqEb6Cqm1R1AZBV3H0Lk4hVUlZXHWK5CLFchJRlLm5qexNZB7KYsNTLV2H8\n8FJgVFHVWTjVV2tV9SHgYg/7NQTWhc3/6i7zojT72q+kjDG+KifleK7zcwyaPYg/9/4ZdDgR4+XH\nxJluFdFqEemN002Ilw43StM44nnf7t27k5KSAkBycjJt2rRBJJVKlUL/UaSmpgLxPZ+amhpV8dh8\n9MzniJZ4gprPWVZWx8tcnclJu0/isc8e4+kLng789RU2n5GRwdixYwFyvy9LwsuNe6cCK4Fk4FGc\nzgefVtW5RezXHnhIVdPc+cHAgQIar4cAO3Mavb3uW1Cj94wZMHQozJxZ6EszxphS+W3nb5w46kS+\n7PElx9U5LuhwPPOl0du9srhGVXeo6jpV7a6qfyuqsHAtAI4RkRQRqQhcA0wu6FSl2PcQidjonfe/\nyURmuQixXIT4kYv6h9Vn8BmDE2agpUILDFXNBs4QkWKXRKq6H+iNc+Pfd8BbqrpCRHqJSC8AEakv\nIuuAO4H7ReQXETmsoH29ntvaMIwxkdLntD78vP1npvwwJehQfOelSmo0ThfnbwO73cWqqoEPQ1VQ\nldS//w1TpsDEifnsZIwxZWzmjzO5beptfHvHt1QuXznocIrkZ19SlXHulzgXuMSdLi3uiSIpEauk\njDHBuaDZBbSq14phXw0reuMYVmCBISI5DcwfqepNeacIxVciiVglZXXVIZaLEMtFiN+5GN5pOMPn\nDmfd9nVFbxyjCrvCuNhtuxgcqWDKil1hGGMirWnNpvzfqf8X1wMtFTZE61CgJ3AYkHdkCVXVGj7H\nVqSC2jCGDoXff4dnnslnJ2OM8cnurN20fKEl4y4fR2pKatDhFMiPIVrvVtVknCqp6nmmwAuLwiRi\nlZQxJnhVK1RlWKdh9P24L/sP7A86nDJXZKO3ql4WiUDKUiJWSVlddYjlIsRyERKpXMTzQEtefiUV\ncxKx80FjTHSI54GWfB0Pw28FtWH07w9NmsCddwYQlDHGAP0+7kfm/kxeuvSloEM5hJ/jYfTzsiya\nWBuGMSZoD5/zMB98/wHfbPgm6FDKjJcqqe75LIvq+zASsUrK6qpDLBchlouQSOciuXIyj537GH0+\n7hM3/UwVduPedSIyBWgqIlPCpgycO7+jViI2ehtjok+Ptj3IOpDF+KXjgw6lTBR2H0YToCnwJDCQ\nUI+yfwLiz2DNAAAbmElEQVRL3Q4CA1VQG8bVV8OVVzqPxhgTpLm/zuWK/1zBiv9bQY1K0XFHgh9t\nGH/D6WzwTFX9VFUz3GlhNBQWhUnEKiljTHRqf1R7Ljj6Ah777LGgQym1wgqMo4ARwP9E5DMReUJE\nLhGRWhGKrcQSsUrK6qpDLBchlouQIHPx5PlP8tqi1/h+8/eBxVAWCrvTe4Cqng7Ux+lP6g+gB/Ct\niHgemyII9ispY0w0iZeBlrz8SqoKzrCsh7vTBsDLiHuBScQqqfBxixOd5SLEchESdC7iYaCl8gWt\nEJExwPHADmAe8BUwXFW3Rii2EkvEKiljTHSrmFSRf6X9i9un3k6nZp1iYqClvAq7wmgMVAJ+A9a7\n07ZIBFVaiVhgWF11iOUixHIREg256NSsU0wPtFRYG8aFQDtgGKDAXcACEZkhIo9EKL4S2bcv8aqk\njDGxIZYHWvLUl5SINAJOBzriDNFaW1UP9zm2IhV0H0ZKCqSnQ9OmkY/JGGOK8mD6g/yw5QcmXTkp\nkPOX+X0YItJPRN4SkV+AT3HG8V4B/BWI6p/WJmKVlDEmdgw6YxBzfp1DxtqMoEMplsLaMFKA/wDt\nVfVoVb1eVV9U1SWqmh2Z8EomEaukoqF+NlpYLkIsFyHRlIuqFaryzAXPxNxASwX+SkpVY7Zz8MxM\nqBx7P0CIWs7Q7sZERizfp1AcVx5/JS8ueJHRC0bTu13voMPxJO7Gw1CFpCTYvx/KxeXwUJHn1ncG\nHYZJAIn2Xlv+v+WcO+5cvvu/76hTtU7EzuvbeBixJjPTqY6ywsIYE+1OPOJErjvxOu6bfV/QoXgS\nd1+ru3dD1apBRxF50VQ/a0w0itbPSCwNtBR3BcaePYlZYBhjYlMsDbQUdwVGol5hBN1PjjHRLpo/\nI7Ey0JKvBYaIpInIShFZJSIDC9hmpLt+iYi0DVu+VkSWisgiEZnn9ZyJWmCYyLv//vupW7cuRx55\npO/nmjBhAhdeeKHv5ynK2rVrKVeuHAcOHAg6lLhSTsrxXOfnGDR7EDv27gg6nAL5VmCISBLwPJCG\n04nhdSLSMs82FwHNVfUY4FbgxbDVCqSqaltVbef1vIlaYERr/Ww0SUtLY8iQIYcs/+CDD2jQoEGx\nvgR/+eUXhg8fzsqVK9mwYUNZhpnvl3LXrl2ZPn16mZ7Hi5SUFD755JOIn9cP0f4ZyRlo6dHPHg06\nlAL5eYXRDlitqmtVNQuYBHTJs81lwDgAVf0aSBaRemHri/2zr927oUqVEkZs4lr37t0ZP/7QS/43\n33yT66+/nnLF+GndL7/8Qu3ataldu3a+6/fvL/3NWNFQn+3nz1zLIkfxJtoHWvKzwGgIhPeu9au7\nzOs2CswSkQUi0tPrSRO10Tua62f99OOPP1K7dm0WLVoEwIYNG6hbty6fffbZIdt26dKFLVu28Pnn\nn+cu27p1K1OnTuXGG28E4KOPPuKEE06gRo0aHHXUUQwbdmivorNmzaJTp05s2LCB6tWr06NHD37+\n+WfKlSvHa6+9RpMmTTj//PMBuOqqq2jQoAHJycmcffbZfPfdd7nH2bNnDwMGDCAlJYXk5GTOOuss\nMjMzOeusswBITk6mRo0azJ07l7Fjx3LmmWfm7vvVV19x6qmnkpycTLt27ZgzZ07uutTUVB588EHO\nOOMMatSowYUXXsiWLVsKzOGHH35ImzZtqFmzJh07dmTZsmUA3HDDDfzyyy9ceumlVK9enWeeeSZ3\nn/Hjx9OkSRPq1q3LE088kbtcVXnyySdp3rw5derU4ZprrmHrVmdEhJwrp7w5ipRY+IzkDLTUf3r/\nqPiH4RCq6ssEXAGMCZu/HnguzzZTgI5h87OAk93nR7qPdYHFOGOL5z2H5jVpkurVVx+y2JRCfnmO\nJmPGjNHjjz9ed+/erZ06ddK77767wG179uypt9xyS+786NGjtW3btrnz9evX1y+++EJVVbdt26YL\nFy7M9zgZGRl61FFH5c6vWbNGRUS7deumu3fv1szMTFVVff3113Xnzp26b98+7d+/v7Zp0yZ3nzvu\nuEPPOecc3bBhg2ZnZ+ucOXN07969unbtWhURzc7Ozt329ddf1zPOOENVVbds2aLJyck6fvx4zc7O\n1okTJ2rNmjX1jz/+UFXVs88+W5s3b66rVq3SPXv2aGpqqg4aNCjf17Fw4UI94ogjdN68eXrgwAEd\nN26cpqSk6L59+1RVNSUlRWfPnn3I67z11ls1MzNTlyxZopUqVdKVK1eqquqIESO0Q4cOun79et23\nb5/26tVLr7vuukJzFC7a32uRsHf/Xm3xfAv9YOUHvp3DzXPxv9dLspOnA0N7YFrY/GBgYJ5tRgPX\nhs2vBOrlc6whwIB8lmu3bt10yJAhOmTIEH322Wf1nnvStXt3Jynp6emanp6em6R4ns957sfxvXyI\nnXvsSzeVxmWXXaYnnniitm7dOvfLLj9ffPGFJicn6969e1VV9fTTT9cRI0bkrm/cuLG+9NJLun37\n9kLPl56enm+BsWbNmgL32bp1q4qI/vnnn5qdna1VqlTRpUuXHrJdzrEKKjDeeOMNPe200w7ap0OH\nDjp27FhVVU1NTdXHH388d92oUaM0LS0t35huu+02feCBBw5adtxxx+lnn32mqgUXGOvXr89d1q5d\nO33rrbdUVbVFixYHbb9hwwatUKGCZmdne8pR+HutrN/Pzz77bNR8Xouan756ujbo3UCnz5peJsdL\nT0/Xbt265X5fRmOBUR74EacTw4ruVULLPNtcBHykoQJmrvu8KlDdfV4N+BLolM85NK/nn1e9445D\nFse98DdKWYuF//omT56sIqKvvPJKkds2b95cJ02apKtXr9YKFSro//73v9x18+fP1y5dumjNmjX1\n7LPP1jlz5uR7jIIKjP379+cuy87O1oEDB2qzZs20Ro0ampycrCKiP/30k/7+++8qIrpr165Djl1U\ngfHkk0/qVVddddA+1157rT7xxBOq6hQYr776ar775tW5c2etWrWqJicn507VqlXTSZMmqWrBBUZ4\nbOHnq1KlSu5rzZmqVKmiGzZsyDdHefn5XvPzM+KHyyddro99+pgvxy5pgeFbG4aq7gd6A9OB74C3\nVHWFiPQSkV7uNh8BP4nIauAl4A539/rA5yKyGPga+FBVZ3g5b6L+SioW6mf9snPnTvr3788tt9zC\nkCFDcuvMC3LjjTfyxhtvMH78eNLS0qhbt27uur/85S+8//77bNq0icsvv5yrr766WLGEd9Q4YcIE\nJk+ezOzZs9m+fTtr1qwBnH/S6tSpQ+XKlVm9enWhx8hPw4YN+fnnnw9a9vPPP9OwYd4mwqI1btyY\n++67j61bt+ZOO3fu5JprrvEUS37HmzZt2kHH2717Nw0aNMjdJqjOLGPtM5Iz0NIv238JOpRcvt6H\noaofq+pxqtpcVf/pLntJVV8K26a3u761qi50l/2kqm3c6cScfb3Ys8d+JZVo+vXrR7t27Xj55Ze5\n+OKLue222wrd/sYbb2TmzJm88sordOvWLXd5VlYWEyZMYPv27SQlJVG9enWSkpJKHNfOnTupVKkS\ntWrVYteuXdx7772568qVK0ePHj2466672LhxI9nZ2cyZM4d9+/ZRt25dypUrx48//pjvcTt37swP\nP/zAxIkT2b9/P2+99RYrV67kkksuyd3G+SeyaD179mT06NHMmzcPVWXXrl1MnTqVnTt3AlCvXr0C\n48jPbbfdxr333ssvvzhfcps2bWLy5Mme9zchTWs2pU+7Pvxjxj+CDiWX3ekdJ6L9N+Z++eCDD5gx\nYwYvvujcwjN8+HAWLlzIxIkTC9ynSZMmdOzYkd27d3PZZZcdtG78+PE0bdqUww8/nJdffpkJEyYU\neJy8/ynnnb/xxhtp0qQJDRs25MQTT6RDhw4HbfPMM89w0kknceqpp1K7dm0GDx6MqlK1alXuu+8+\nOnbsSK1atfj6668Rkdx9a9euzYcffsiwYcOoU6cOzzzzDB9++CG1atXKN5bwffM65ZRTGDNmDL17\n96ZWrVocc8wxvPHGG7nrBw8ezGOPPUbNmjUZPnx4vq8zXL9+/bjsssvo1KkTNWrUoEOHDsybF7rv\nNsiu8mPxMzKw40DmrZ/H7J9mBx0KEIfdm/ftC82bO4+JJCMjw7dL7kTrctoEx8/3mp+fET+9t+I9\n7k+/n8W9FlMhqUKZHNO6N3cl6hVGLH4QjImkWP2MXN7ichpWb8jz854POpT4KzAS9cY9Y0x8EhFG\ndh7J458/zm87fws0lrgrMBK1a5BYrJ81JpJi+TPSok4LbmpzE4NmDQo0jrgsMOwKwxgTbx44+wFm\n/jSTOevmFL2xT6zAiBOxWj9rTKTE+mekRqUaPHX+U/T+uDfZB7IDicEKDGOMiRFdT+pKlfJVeHXR\nq4GcP+4KjERt9I7l+lljIiEePiMiwvMXPc8D6Q/wx54/In7+uCsw7ArDGBPP2tRvwxUtr+CBTx6I\n+LnjssBIxF9JxXr9bCyyIVpjSzx9Rh479zHeWfEOi39bHNHzxl2BYX1JmYLYEK3FF09DtMaTWlVq\n8UjqI/T5uE9Ee2GIuwIjMzMxC4x4qJ/1mw3RWnzxNERrvH1Gbjn5FnZn7ebfy/4dsXPGVYGxfz8c\nOADlywcdiYmUoUOHcuWVVx60rG/fvvTv3/+QbW2I1vwlyhCt8SapXBLPd36ee2bdw469OyJz0pIM\nohEtE3kGW9m5U7Vq1QLHDDEllDfP0WTjxo1arVo13bZtm6qqZmVl6RFHHFHg0Ko2ROvBbIjW2Nft\nvW5694yChyXOD9E24l4kprxvrs2bVWvVKlbejAdePsQ8RKmnkkpLS9MxY8aoquqUKVP0hBNOKHBb\nG6L1YNE8RKvxZuOOjVr7qdq6YtMKz/uUtMCIq8qbvXuhUqWgowhG0F0365Dg6tu7devG6NGjueWW\nWxg/fjw33HBDgdt27NiROnXq8N577/GXv/yF+fPn8/777+eu/+9//8tjjz3GoEGDaNWqFU8++STt\n27f3HEujRo1ynx84cIB7772Xd955h02bNuW2kWzevJk9e/aQmZlJs2bNiv16N2zYQOPGjQ9a1qRJ\nk4Ma3+vXr5/7vEqVKrkDIuX1888/88Ybb/Dcc8/lLsvKyiqyIT/8+FWrVs09/s8//8xf//rXg9qD\nypcvz++//547H56jSAr6M+KX+ofV574z76Pvx32Zfv10X8ccias2jMxMqFw56ChMpHXp0oWlS5ey\nfPlypk6dSteuXQvd3oZoDUmkIVrjWe92vVm/Yz3vr3y/6I1LwQqMOBGP/zl5VaVKFa644gr+/ve/\nc9ppp3HUUUcVur0N0RqSSEO0xvNnpEJSBf6V9i8GzBhAVnaWb+exAsPEhW7durF8+fJCq6Ny2BCt\nIYk0RGu8O//o8zm65tG8vvh1384RV0O0fvUVDBgAc4Lr/TcwiT5E67p162jRogW///47hx12WNDh\nmBKyIVpLZ866OVzzzjWs6rOKSuULbtC1IVqxK4xEdeDAAYYNG8Z1111nhYVJaB0adeCkeicxZuEY\nX44fV1cYb78NEybA+/62+yScaL7C2LVrF/Xq1aNp06ZMmzatRA2/JnpE83stVnyz4RsunXgpq/uu\npmqF/HtitSsMYOlSaNUq6ChMJFWrVo2dO3eybNkyKyyMAU458hTaH9WeF+e/WObHjqsCY/FiaNMm\n6CiCEW/95BhT1hLpM/Jw6sM8/dXT7NyX//03JWUFhjHGxJmT6p3EuU3P5bmvnyt642KImzaMzZuh\nWTPYuhWK0emo8cDqlU2k2Hut7Hy/+XvOeP0MVvVZRXLl5IPWlbQNI266BlmyBFq3tsLCL/b7eWNi\ny3F1juOSYy9h6JdDefy8x8vkmL5+vYpImoisFJFVIjKwgG1GuuuXiEjb4uwbrkMHCLvfKOH4WT9b\nkk7KgpzS09MDjyFapljMhV8SqQ0jx8OpDzP6m9Fs3LGxTI7nW4EhIknA80AacDxwnYi0zLPNRUBz\nVT0GuBV40eu+eVWtCikpZf0qYsfixZEdqjGaWS5CLBchiZiLxoc3pnvr7jyY/mCZHM/PK4x2wGpV\nXauqWcAkoEuebS4DxgGo6tdAsojU97ivCbNt27agQ4galosQy0VIoubivrPu49OfP2XE3BGlPpaf\nBUZDYF3Y/K/uMi/bHOlhX2OMMUWoVaUWM2+YyfPznuenrT+V6lh+Nnp7rYy01tQysHbt2qBDiBqW\nixDLRUgi56JJchOW37GcyuVL13eSbz+rFZH2wEOqmubODwYOqOpTYduMBjJUdZI7vxI4G2ha1L7u\ncvv9nTHGlIBG2c9qFwDHiEgKsAG4BrguzzaTgd7AJLeA2aaqv4vIFg/7lugFG2OMKRnfCgxV3S8i\nvYHpQBLwqqquEJFe7vqXVPUjEblIRFYDu4CbCtvXr1iNMcYULabv9DbGGBM5MXFfdGluAIw3ReVC\nRLq6OVgqIl+KSNz23+v15k4ROVVE9ovI3yIZXyR5/IykisgiEVkuIhkRDjFiPHxG6ojINBFZ7Oai\newBh+k5EXhOR30VkWSHbFO97M+i7Oj3c9ZkErAZSgArAYqBlnm0uAj5yn58GzA067gBz0QE43H2e\nlsi5CNvuE+BD4Iqg4w7wfZEMfAsc5c7XCTruAHPxEPDPnDwAW4DyQcfuQy7OBNoCywpYX+zvzVi4\nwijpDYD1IhtmRBSZC1Wdo6rb3dmvgaMiHGOkeL25sw/wDrApksFFmJdc/B34r6r+CqCqmyMcY6R4\nycVGoIb7vAawRVX3RzDGiFDVz4GthWxS7O/NWCgwSnoDYDx+UXrJRbibgY98jSg4ReZCRBrifFnk\njCQTrw12Xt4XxwC1RCRdRBaIyA0Riy6yvORiDHCCiGwAlgD9IhRbtCn292Ys9FZb0hsA4/HLwfNr\nEpFzgB5AR//CCZSXXIwABqmqitPdbrz+DNtLLioAJwPnAVWBOSIyV1VX+RpZ5HnJxb3AYlVNFZFm\nwEwRaa2qO3yOLRoV63szFgqM9UCjsPlGOCVhYdsc5S6LN15ygdvQPQZIU9XCLkljmZdcnIJzjw84\nddWdRSRLVSdHJsSI8ZKLdcBmVd0D7BGRz4DWQLwVGF5ycTrwOICq/igia4DjcO4dSyTF/t6MhSqp\n3BsARaQizk18eT/wk4EbIfcO822q+ntkw4yIInMhIo2Bd4HrVXV1ADFGSpG5UNWjVbWpqjbFace4\nPQ4LC/D2GfkAOENEkkSkKk4j53cRjjMSvORiJXA+gFtnfxxQuk6WYlOxvzej/gpDS3EDYLzxkgvg\nQaAm8KL7n3WWqrYLKma/eMxFQvD4GVkpItOApcABYIyqxl2B4fF98QTwuogswfmn+R5V/SOwoH0i\nIhNxulqqIyLrgCE4VZMl/t60G/eMMcZ4EgtVUsYYY6KAFRjGGGM8sQLDGGOMJ1ZgGGOM8cQKDGOM\nMZ5YgWGMMcYTKzBMsYnIsyLSL2x+uoiMCZsfJiJ3ikgTETlkpMSw7Ya63Us/VdA2xYipv4hUCZuf\nKiI1CtunlOerKyJfi8g3ItIxz7oxItLSr3OXFRHpLiLPFWP71iLSOWz+IREZ4E90JhpZgWFK4guc\n7hUQkXJAbeD4sPUdgC9xxmb/eyHH6QmcpKoHjVkgIkkliKkfTh9JAKjqxar6ZwmO49V5wFJVPUVV\nvwxfoao91acRIkWkLG+2Le5NWG1xusQu6f4Hcd87JobYH8yUxBycQgHgBGA5sENEkkWkEtASWAQ8\nCZzpDtpzUI+gIjIZOAxYKCJXi8hYERktInOBp9xBj74SkYXiDAR1rLtfkog8IyLL3EFfeotIH+BI\nIF1EZrvbrRWRWu7zu9ztl+XE4XYdsUJEXnavcqaLSOW8L9Td7hP3XLNEpJGItAGeArq4r61ynn0y\nRORkESnnvq5l4gxo1d9d30ZE5rrHfFdEksP2G+Eec5mInOouf0hE3hSRL4Bx7pXbQTG52+XkcL6I\nfC8iF7vLPxWR1mHxfSGFDKwlItXEGXznazf/l4lIBeAR4Bo3vqvdzY8XpwfcH92/Q84xrnf3X+TG\nVM5dvtP9+y0G2hcUg4lSQQ/yYVNsTjh97zQCbgV64XyZdMbpHfczd5uzgSmFHGNH2PPXcfq2yel9\noDqQ5D4/H3jHfX478B+gnDtf031cA9QKO94aoBZOB4RLgSpANZzCrQ3OADtZQCt3+7eArvnEOAW4\nwX1+E/Ce+7wbMLKA15WO0zPsKcCMsOU13MelwJnu84eBZ8P2e8l9fibuwDc4A/7MByoVEdNYQgPi\nNMfpcLASTn9BOec4FpjvPu8OPJdP/E/k5AJn4KXvca7eDnrNblxf4nQ3URvYjNMdR0v3b5nz9xsV\nFu8B4Mqg3782lWyyKwxTUl/hVEudjnPFMcd93gGnygqK35342+p+q+B8Ub0jzvCSwwlVeZ2H86V6\nAEAL741XgDOAd1V1j6ruwumY8Uyc6pQ1qrrU3fYbnEIkr/bAv93n493j5Ry7qNf3I3C0OMNgXohz\nFXY4zoiIn7vbjAPOCttnovu6PgdquNsrMFlV9xYRk+IUpqjT8eRPOB3rvQ1c4lZn9cApnAvTCRgk\nIotwCrFKQON8XrMCH6pqlqpuAf4H1Mf5G50CLHCPcS5O9SRANvDfIs5volTUdz5ootaXOFcTJwHL\ncP6b/QewHXithMfcHfb8UWC2qv5VRFJwvrhyFKcg0jzbC6G6971hy7NxrkLyU6JxNFR1m1sVdCFw\nG3A1cGcxj50T6+48y73GpKq6R0RmApcDV+Fc/YQfOz9/0zxjZYjIaflsty/seTah75RxqnpvPttn\nhv1TYGKMXWGYkvoKuARneEt1/9NPxrnC+Mrd5k+cqqWSqAFscJ93D1s+E+iV0zAuIjXd5TsIDbuZ\nQ4HPgctFpIqIVMP50vwc71+4XwHXus+7Ap953E9EpDZOtcy7wANAW3Ua4reKSM5VwQ1ARs4+ON1x\n467f5m6fN9aCYhLgKnE0A47GqU4CeAUYCczT0BC+BeVgOtA37IW0dZ/uoOi/pwKzgStFpK67fy1x\nut03Mc4KDFNSy3HqreeGLVuK8yX3R9h8togsztvo7cr7n2b4/NPAP0VkIU69eM66V4BfgKVuw2nO\nz3ZfBqblNHrnHlB1EU7d/jw31jGqusTD+XP0AW4SpyvsroSG89QCtg8/VkOchvhFwJvAYHddN2Co\ne8xWOO0/Oftkuq95FM4Qu/mdq7CYfnFf60dAL1Xd5+ZhIc7VX3h1VEGv4VGggttQvxynnQWcq7zj\n8zR6H7K/Or8Qux+Y4cY4A6eqKt/tTeyw7s2NiRIikg4McL/cS7L/6zg/Mng3n3VHAumqelwpwzQJ\nzK4wjIlzInIjztVVfm0KxnhmVxjGGGM8sSsMY4wxnliBYYwxxhMrMIwxxnhiBYYxxhhPrMAwxhjj\niRUYxhhjPPl/ptoLDFmMWJUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x789db00>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The composited extract is 135.05 kg\n",
+ "\n",
+ "The acid content is 13.01 kg\n",
+ "\n",
+ "\n",
+ "\n",
+ "150.0 kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.2: Page 497"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.2\n",
+ "# Page: 497\n",
+ "\n",
+ "print'Illustration 10.2 - Page: 497\\n\\n'\n",
+ "\n",
+ "print'Illustration 10.2 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pylab\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:kerosene c:Nicotine\n",
+ "xF = 0.01;# [wt fraction nicotine]\n",
+ "F = 100.0;# [kg]\n",
+ "B = 150.0;# [kg]\n",
+ "#******#\n",
+ "\n",
+ "# Equilibrium data:\n",
+ "# x_prime = kg nicotine/kg water\n",
+ "# y_prime = kg nicotine/kg kerosene\n",
+ "# Data = [x_prime y_prme]\n",
+ "Data = numpy.array([[0 ,0],[0.001011 ,0.000807],[0.00246, 0.001961],[0.00502, 0.00456],[0.00751, 0.00686],[0.00998 ,0.00913],[0.0204, 0.01870]])\n",
+ "xF_prime = xF/(1-xF);# kg nicotine/kg water\n",
+ "A = F*(1-xF);# [kg]\n",
+ "AbyB = A/B;\n",
+ "\n",
+ "def f64(x):\n",
+ " return -AbyB*(x-xF)\n",
+ "x = numpy.arange(0,0.01+0.001,0.001);\n",
+ "plt.plot(Data[:,0],Data[:,1],label=\"Equilibrium line\")\n",
+ "plt.plot(x,f64(x),label=\"Operating Line\");\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.2(a)\")\n",
+ "plt.show()\n",
+ "# The operating line and equilibrium line intersect at:\n",
+ "x1_prime = 0.00425;# [kg nicotine/kg water]\n",
+ "y1_prime = 0.00380;# [kg nicotine/kg water]\n",
+ "extract = A*(0.01011-x1_prime);\n",
+ "print extract*100,\"% of nicotine is extracted.\\n\\n\"\n",
+ "\n",
+ "print'Illustration 10.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "B = 50.0;# [kg]\n",
+ "# For each stage:\n",
+ "AbyB = A/B;\n",
+ "def f65(x1):\n",
+ " return -AbyB*(x1-xF)\n",
+ "x1 = numpy.arange(0,0.01+0.001,0.001)\n",
+ "def f66(x2):\n",
+ " return -AbyB*(x2-0.007)\n",
+ "x2 = numpy.arange(0,0.01+0.001,0.001)\n",
+ "def f67(x3) :\n",
+ " return -AbyB*(x3-0.005)\n",
+ "x3 =numpy.arange(0,0.01+0.001,0.001)\n",
+ "\n",
+ "plot(Data[:,0],Data[:,1],label=\"Equilibrium line\")\n",
+ "plt.plot(x1,f65(x1),label=\"Operating Line from xF\")\n",
+ "plt.plot(x2,f66(x2),label=\"Operating Line from 0.007\")\n",
+ "plt.plot(x3,f67(x3),label=\"Operating Line from 0.005\")\n",
+ "plt.grid('on');\n",
+ "legend(loc=\"upper right\");\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0, 0.010))\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.2(b)\")\n",
+ "plt.show()\n",
+ "# The final raffinate composition:\n",
+ "x3_prime = 0.0034;# [kg nicotine/kg water]\n",
+ "extract = A*(0.01011-x3_prime);\n",
+ "print extract*100,\" % of nicotine is extracted.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.2 - Page: 497\n",
+ "\n",
+ "\n",
+ "Illustration 10.2 (a)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucTeX+wPHP10RFLqPkLlFEvyIjl1C6kFTSqURRdBMH\nnaSkG+WUiHM64uRSLlHkVkhuKZ0iQg2VW9SUe6nkFpmZ7++PtWZm281lz8xes/ae/X2/Xvs1e629\nLt/9WOY763nW8zyiqhhjjDFeKOJ3AMYYYwovSzLGGGM8Y0nGGGOMZyzJGGOM8YwlGWOMMZ6xJGOM\nMcYzlmRMTBGR6iKSKiJ5uvZF5E4RWRzuuAqaiFwrIu+EuG0vEXnR65hM4WRJxkQlEWkuIitF5ICI\n/CIin4pIwzCf4y8JSVXfVNVrw3ke91xFRWSWiHzvnvOKTLYZKiL73VeWv/RFpImILHXL5ScRmSEi\nFYI2ex4YEmJ444E7RaRc6N/IGIclGRN1RKQU8B7wHyAeqAw8Cxz36pQeHTfY/4DOwF7gpF7SItId\nuAm42H3d6K7LTBlgDHCO+zoETAw41qVAKVX9PJSgVPU4sBC4KzdfxhiwJGOiUy1AVfVtdRxT1aWq\n+hWAOJ4SkSQR2Scik93E9BfuNlcHLA8SkSnu4v/cnwdE5KB7h9BVRD4J2P4yEVnj3lF9LiJNAz5b\nLiLPuXdZB0VksYicmVkcqnpCVUeq6gogJZNN7gaGq+puVd0NDAe6ZnGsRao6W1UPq+ofwGigWcAm\n1wHLg8rhPyLyo4j8LiJrRaR50GGXA9dndj5jsmNJxkSjLUCKiEwSkTYiEh/0eTecX8otgRrAGcCo\nLI6lnHzXEPi+hfuztKqWUtVVgTuKSFlgAfAyUBb4F7AgKJ5OOMngbKAY0C+UL5iJusD6gOUNwIUh\n7ns58HXA8v/hlGGgz4F6OHeGbwEzRaRYwOeb3c+NyRVLMibqqOohoDlOQhgP/CQic0XkbHeTO4ER\nqpqkqkeAAUDHEBv7JYv3mbke2OK206Sq6nScX8bt0kIFJqrqNlU9BswA6ofyHTNxBvB7wPJBd122\nRORi4Gng0YDVZXCq0NK53+E393v8CzgVqB2wySGgdB5jNzHMkoyJSqq6WVW7qWpVnL/MK+HcUQBU\nBH4I2PxH4BSgfJjDqOQeO9AP7vo0ewPe/0EIiSELh4HAKr/S7rosich5wPtAH7caLs1vQcdCRPqJ\nyEa32u839/hnBWxSkpOTnDEhsSRjop6qbgEm4yQbgN1A9YBNqgHJwL5Mdj8ClAhYDnwKK6chynfh\nNKwHOsddH27fcPJdUD1OrgI7iYicAywFnlPVN4M+3oDTrpW2bQucO53bVLWMqsbjJJTAO7k6QGK+\nvoGJSZZkTNQRkdoi0ldEKrvLVXHaPj5zN5kGPOw+gnwG8AIwXVVTMzlcIk5V2inuI9C3kJFcfgZS\ngZpZhLIQqCUindz9bwcuwHnyLT3cXHyvU0XkNHcx8D3AG0BfEankfu++wKQsjlMZ+BAYparjMtnk\nfSDwEemSOEl4v4gUE5FnCLrTcbdfGOp3MSaNJRkTjQ4BjYHVInIYJ7lsAB5xP58ATMF5Ouw74CjQ\nO2D/wDuUp3GSyG/AICD9r35VPYrTn2SFiPwqIo0JeFBAVX8BbnDPux+nUf8GVf01i3MFP2QQbIsb\nayVgMXBERKq55xoLzAe+cr/r/MAEIiJfi0gnd/E+4FxgkIgccl8HA77Xl8DvItLIXbXIfW0FknCq\n9X4MOPZpOE+kTc4mdmMyJV5OWiYibXDqyeOA11R1aCbbjMS5gI8CXVX1S/cv0zdwnshRYJyqjnS3\nLwu8jVMtkQR0UNUDnn0JYwohEWkF9FTVm0PYthdQRVUf9z4yU9h4lmREJA7nL7NrcOqo1wCdVHVT\nwDZtgV6q2tb9K/E/qtrE7Z1cQVUT3eqOdcBNqrpZRIYB+1V1mIj0B+Lt4jfGmMjkZXVZI2Cb+xjp\nCWA6To/lQO1wb8FVdTVQRkTKq+peVU101x8GNuH06j5pH/dnew+/gzHGmHzwMslUBnYELO8kI1Fk\nt02VwA1EpDpwCbDaXVVeVdOeEtpH+B9LNcYYEyZeJplQ6+GCn75J38+tKpsFPOTe0Zy8oVPX512j\nkjHGmHw5xcNj7wKqBixXxblTyW6bKu46RKQoMBuYqqrvBmyzT0QqqOpeEakI/JTZyUXEko8xxuSS\nqoZ1QFgv72TWAue7fRWKAbcD84K2mYc7squINAEOqOo+ERHgdWCjqr6cyT53u+/vBt4lC6pqL1UG\nDhzoewyR8LJysLKwssj+5QXP7mRUNdl99HExziPMr6vqprThyVV1rKq+LyJtRWQbTs/rbu7uzXCG\nPN8gIl+66wao6iLgRWCGiNyL+wizV9+hsEhKSvI7hIhg5ZDByiKDlYW3vKwuQ1UXEtRLWJ1OZYHL\nvTLZ71OyuMtSp6PbNWEM0xhjjEesx38M6Nq1q98hRAQrhwxWFhmsLLzlaY9/P4mIFtbvZowxXhAR\nNMwN/55Wl0Ui55kCY7IWC3+cLF++nJYtW/odRkSwsvBWzCUZiI1fIiZv7I8QY8Ir5qrL3NtBHyIy\n0cCuDxPLvKgus4Z/Y4wxnrEkY0wMWr58ud8hRAwrC29ZkokBP/74IyVLlkyvBmrZsiWvv/46AG++\n+SbXXntt+rZFihThu+++C/nYwft7Kbu4jTGRyZJMBKlevTrFixenZMmS6a8+ffrk+7jVqlXj0KFD\n6Y3aIpL+/s4772Tx4sV5PnZ+98+NcMYd6+xpqgxWFt6KyafLIpWI8N5773HVVVf5HUpIUlJSiIuL\n8zsMY8Ju/nxo3hzi4/2OJPrZnUyUSE1NpV+/fpQrV46aNWsyevRoihQpQmpqKuDcBS1btix9+0GD\nBtGlSxfAGZspcNtAkyZNokWLFietW7BgATVr1qRcuXI89thj6dVskyZNolmzZvTt25ezzjqLQYMG\nnbR/ZucJrOIK3D8+Pp7zzjuPlStXMnHiRKpVq0b58uV54403QiqP4LiLFCnC2LFjqVWrFvHx8fTq\ndfJoRRMmTKBu3bqULVuWNm3a8OOPPwYfMqZYO0SGwLI4cQL69oU+fWDPHv9iKkwsyUSYrB6fHTdu\nHAsWLCAxMZG1a9cya9ask/p0BFYlpS3n1bvvvsu6dev44osvmDt3LhMmTEj/7PPPP6dmzZr89NNP\nPPnkkzkeKziuzz//nHr16vHrr7/SqVMnOnTowBdffMH27duZOnUqvXr14ujRo3mKe8GCBaxdu5YN\nGzYwY8aM9Oq0uXPnMmTIEN555x32799PixYt6NSpU57OYQqvnTuhZUvYuhXWrYO6df2OqHCwJBNE\nJDyvvFBV2rdvT3x8fPor7S5gxowZPPzww1SuXJn4+HieeOKJbPtz5KevR//+/SlTpgxVq1blH//4\nB9OmTUv/rFKlSvz973+nSJEinHbaabk+9rnnnsvdd9+NiNChQwd2797NM888Q9GiRWnVqhXFihVj\n27ZteYr78ccfp1SpUlStWpUrr7yS9evXAzBmzBgGDBhA7dq1KVKkCAMGDCAxMZEdO3bkcMTCy9oh\nMrRs2ZKlS+HSS+GGG2DePChb1u+oCg9rkwniZz88EWHu3LmZtsns2bOHqlUz5nerVq2aZ3EEn2f3\n7t2ZfpYX5ctnzJZ9+umnA1CuXLmT1h0+/JdJUENSoUKF9PfFixdPP84PP/zAQw89xCOPPHLS9rt2\n7cr39zHRLTUV/vlPGDMG3noLrrzS74gKH7uTiRIVK1Y8qR0huE2hRIkSHDlyJH157969eT5X8Hkq\nV66cvpxdNVyJEiUATqruyk8c4VKtWjXGjRvHb7/9lv46cuQITZo08Ts031ibDOzfD23bwuzZy1m3\nzhKMVyzJRJisqrk6dOjAyJEj2bVrF7/99hsvvvjiSb/w69evz/Tp00lOTmbt2rXMnj07z+0yw4cP\n58CBA+zYsYORI0dy++23h7RfuXLlqFy5MlOmTCElJYUJEyawffv2PMWQX4Ez/T344IO88MILbNy4\nEYDff/+dmTNn+hKXiQyrVkGDBlC/PvzrX1Cxot8RFV6WZCLMjTfeeFI/mVtuuQWA+++/n2uvvZZ6\n9erRsGFDbrnllpMS0uDBg9m+fTvx8fEMGjSIO++886TjZpVwghvmAW666SYSEhK45JJLuOGGG7j3\n3nuz3DZ43fjx43nppZc466yz2LhxI82aNcv2XHlNhDk96BD4efv27enfvz8dO3akdOnSXHTRRTHf\nxyZW22RUYeRIaNcORo2CF1+Eq69u6XdYhZoNkBmlkpKSqFGjBsnJyRQpYn8rhEthuT7MXx08CPfd\nB9u3w8yZUKOG3xFFHhsg0xgTFrHWJvPVV87TY2XLwooVJyeYWCuLgmZJJorZ3CfG5GzyZLjqKnjq\nKecpsjw8eW/ywarLjAlg10fhcewY9O4Nn3wCs2bB//2f3xFFPqsuM8aYEGzfDk2bwqFDsGaNJRg/\nWZIxJgYV5naId991Esy998K0aVCyZPbbF+ayiATW498YUyicOAFPPOE8OTZ/PjRu7HdEBqxNxpiT\n2PURnXbvhttvd+5apkyBM8/0O6LoZG0yxhgTZNkyaNgQ2rSB996zBBNpLMmYXPnkk0+44IILCvSc\nwdNHm/wrDO0Qqanw/PPQubNz9/Lkk5CXfsmFoSwimSWZCDNp0iQuuugiSpQoQcWKFenZsye///67\nb/EUKVKE7777Ln25RYsWbN682ZNzBU5wFih4+mhjfvnFGZZ/0SJYuxauvtrviExWLMlEkBEjRvD4\n448zYsQIDh48yKpVq/jhhx9o1aoVJ06cCPv5UlJSQtquoO4gMhvbzHgjmscu+/xzSEiACy+EDz+E\ngEHC8ySayyIaWJKJEAcPHmTQoEGMGjWK1q1bExcXxznnnMOMGTNISkpi6tSpgDOt8q233krHjh0p\nVaoUCQkJbNiwIf04u3fv5pZbbuHss8+mRo0avPLKK+mfpe3bpUsXSpcuzeTJk1mzZg1NmzYlPj6e\nSpUq0bt37/SEdvnllwNQr149SpYsycyZM1m+fPlJc7BUr16dESNGUK9ePcqUKUPHjh05fvx4+ufD\nhg2jUqVKVKlShddee+0vd0ahCJ7WuWXLljzzzDM0b96cUqVKce211/LLL7+kb79q1Souu+wy4uPj\nqV+/Ph9//HGuzmcik6ozqOUNN8C//w0vvQRFi/odlclR2pDohe3lfLW/ymq93xYuXKinnHKKpqSk\n/OWzu+++Wzt16qSqqgMHDtSiRYvq7NmzNTk5WYcPH67nnnuuJicna0pKijZo0EAHDx6sJ06c0O++\n+05r1KihixcvPmnfuXPnqqrqH3/8oevWrdPVq1drSkqKJiUlaZ06dfTll19OP7eI6Pbt29OXP/ro\nI61SpUr6cvXq1bVx48a6Z88e/fXXX7VOnTo6ZsyY9O9UoUIF3bhxox49elTvvPNOLVKkyEnHC9Sy\nZUt9/fXX/7L++++/VxFJL5srrrhCzzvvPP3222/1jz/+0JYtW+rjjz+uqqo7d+7UM888UxcuXKiq\nqkuXLtUzzzxTf/7555D+HSL1+gi3jz76yO8QcuXgQdWOHVXr11fdti28x462svCSe/2H9Xex9ZMJ\nIs+Gp7pGB+auimn//v2cddZZmY6oXKFCBb744ov05YYNG/K3v/0NgL59+zJixAg+++wzihYtyv79\n+3nqqacAZ6rj++67j+nTp9O6dWsALrvsMtq1awfAaaedRoMGDdKPe8455/DAAw/w8ccf89BDD4Uc\ne58+fdJnpbzxxhtJTEwEnCmj77nnHurUqQPAs88+y1tvvRXycbMiInTr1o3zzjsPcObamTdvHgBT\np06lbdu2tGnTBoBrrrmGhg0b8v7773PXXXfl+9ym4H3zDdxyC7RoAStXgjuhqokSlmSC5DY5hMtZ\nZ53F/v37SU1N/Uui2bNnz0lTFFepUiX9vYhQpUoVdu/ejYiwe/du4uPj0z9PSUlJr/YK3hdg69at\n9O3bl3Xr1nH06FGSk5Np2LBhrmIPnPb49NNPZ8+ePelxN2rUKMtz50fwOQOnWp45cybz589P/zw5\nOTnTKa1jWbS0Q0ydCg8/7FSNde3qzTmipSyilSWZCNG0aVNOPfVUZs+ezW233Za+/vDhwyxatIgh\nQ4akr9uxY0f6+9TUVHbu3EnlypWJi4vj3HPPZevWrZmeI7OG9R49epCQkMDbb79NiRIlePnll5k9\ne3ZYvlPFihVPijXwvVeqVatGly5dGDdunOfnMt45dgz+8Q+nYX/ZMrj4Yr8jMnllDf8RonTp0gwc\nOJDevXuzePFiTpw4QVJSEh06dKBq1ap06dIlfdt169bxzjvvkJyczMsvv8xpp51GkyZNuPTSSylZ\nsiTDhg3jjz/+ICUlha+//pq1a9cCmT8ldvjwYUqWLEnx4sXZvHkzr7766kmfly9fPtdTKKedp0OH\nDkycOJHNmzdz9OhRBg8enOO+J06c4NixY+mv5OTkbM8RrHPnzsyfP58lS5aQkpLCsWPHWL58Obt2\n7crVdyjsIrlvyPffQ7NmzmPKa9d6n2AiuSwKA0syEeTRRx/lhRdeoF+/fpQuXZomTZpwzjnnsGzZ\nMoq6j9GICDfddBNvv/02ZcuW5c0332TOnDnExcURFxfHe++9R2JiIjVq1KBcuXI88MADHDx4MH3f\n4DuZ4cOH89Zbb1GqVCkeeOABOnbseNI2gwYN4u677yY+Pp5Zs2bl+Jhx4Odt2rShT58+XHnlldSq\nVYumTZsCcOqpp2a5f48ePShevHj665577slx2ubAz6tUqcLcuXN54YUXOPvss6lWrRojRoxIfzLN\nRLZ585wxx+66C2bMgFKl/I7I5JeNXRZlnn32WbZt28aUKVP8DiXXNm3axEUXXcSff/4ZsVNGR/v1\nEa2Sk51Jxd56C95+2xlF2RQ8G7vMRN0vwHfeeYfjx4/z22+/0b9/f9q1axexCcb4Y88ep8f+l1/C\nF19Ygils7H97lIm2XvHjxo2jfPnynHfeeRQtWvQvbT7GH5HSDrF8uTO45VVXwfvvw1ln+RHD8oI/\naQyxp8uizMCBA/0OIVcWLlzodwgmAqWmwtChMHIkvPEGtGrld0TGK9YmY0wAuz689+uvTsP+r786\njfth7D5l8snaZIwxUW3tWmdwy1q14OOPLcHEAksyxsSggm6HUIVXX4XrroPhw+Ff/4qcwS2tTcZb\nMdkmE00N58ZEu8OHoXt3+PprZ+yx88/3OyJTkGKuTcYYU3A2bXIGt2zSxBmmv3hxvyMy2bE2GWNM\n1HjrLbj8cujXDyZMsAQTq3JMMiJSQUReF5FF7nJdEbnX+9BMuFids8PKIYOXZXH8OPz97zBwICxd\nCvfc49mpwsKuC2+FciczCVgCVHKXvwUeDuXgItJGRDaLyLci0j+LbUa6n68XkUsC1k8QkX0i8lXQ\n9oNEZKeIfOm+2oQSizHGe0lJ0Lw57N3rPElWv77fERm/5dgmIyJrVbWhiHypqpe46xJVNdvLR0Ti\ngC3ANcAuYA3QSVU3BWzTFuilqm1FpDHwH1Vt4n7WAjgMvKGqFwXsMxA4pKr/yuH81iZjTAFasMC5\na+nf35kDxp6viT5etMmE8nTZYRE5MyCIJsDvIezXCNimqknuftOBm4BNAdu0AyYDqOpqESkjIhVU\nda+qfiIi1bM4tl2+xkSI5GSnauyNN2DOHGeYfmPShFJd9ggwH6ghIiuBKUCfEParDATOUrXTXZfb\nbTLT261ee11EyoSwfUyzOmeHlUOGcJXF3r3QujV8/jmsWxedCcauC2/leCejqutE5Aqgtrtqi6qe\nCOHYodZVBd+V5LTfq8Bz7vvBwAgg0wcRunbtSvXq1QEoU6YM9evXT59qNe3CsuXYWU5MTIyoePxc\nTkxMzPfx1q+Hl15qyb33wuWXL2fjRjj77Mj4frYc2nLa+6SkJLwSUj8ZEWkGVMdJSgqgqm/ksE8T\nYJCqtnGXBwCpqjo0YJsxwHJVne4ubwauUNV97nJ1YH5gm0zQObL83NpkjPGGKrz0ktNrf9IkaGOP\n3hQavrTJiMhUoAaQCKQEfJRtkgHWAue7iWA3cDvQKWibeUAvYLqblA6kJZhs4qmoqnvcxZuBr7Lb\n3hgTPgcOwN13w759ThVZtWp+R2QiXShtMglAM1Xtqaq901457aSqyTgJZDGwEXhbVTeJSHcR6e5u\n8z7wnYhsA8YCPdP2F5FpwEqglojsEJFu7kdDRWSDiKwHriDEx6ljWeCtcSyzcsiQl7L44gtncMvq\n1eF//ys8CcauC2+F8nTZ10BFnLuRXFHVhcDCoHVjg5Z7ZbFv8F1P2vq7chuHMSbvVGH8eHjySRg9\nGjp08DsiE01C6SezHKgPfA4cd1erqrbzNrT8sTYZY/LvyBHo0cOZGnnWLKhdO+d9TPTyq5/MIPen\nkvEkmP32NqaQ27LFGdwyIQFWr7axx0ze5Ngmo6rLgSSgqPv+c+BLT6MyYWV1zg4rhww5lcXbbzvD\nwzz0kPMEWWFOMHZdeCuUp8seAO4HygI1gSo4fVWu9jY0Y0xB+/NPZ9TkBQtgyRK45JKc9zEmO6G0\nyazHGSJmVcDYZV9l1XclUlibjDG58+OPTqN+hQrO3UsZG0sj5vg1n8xxVU1r8EdE0jtkGmMKh0WL\noFEjuPVWeOcdSzAmfEJJMh+LyJNAcRFpBczEGcvMRAmrc3ZYOWRIK4uUFHj6abjvPpg506kqi7XR\nk+268FYoT5c9jjM22FdAd+B94DUvgzLGeO+nn+COOyA11Rncsnx5vyMyhVFIY5elbyxSFqiqquu9\nCyk8rE3GmKx9+il06uQMEfPssxAX53dEJhL4NXbZx8CN7rbrgJ9FZIWq2nAuxkQZVWdgy2HDYMIE\nuP56vyMyhV0obTKlVfUg8DecWSob4cx2aaKE1Tk7Yr0cDhxwOle+/Tb85z/LLcG4Yv268FooSSZO\nRCoCHYAF7jqrhzImiiQmQsOGUKkSfPKJ85iyMQUhlH4ytwFPAytUtYeI1ASGqeotBRFgXlmbjDFO\n9diECfD44zBypNMOY0xWvGiTyVXDfzSxJGNi3dGj8Pe/O/O+zJoFder4HZGJdL50xhSRqiLyjoj8\n7L5mi0iVcAZhvGV1zo5YKoetW6FJEzhxwkkywQkmlsoiJ1YW3gqlTWYizgyWldzXfHedMSYCzZoF\nzZpBz54wZQqUKOF3RCaWhTR2marWy2ldpLHqMhNr/vwTHnsM5s1zeu8nJPgdkYk2fo1d9ouIdBGR\nOBE5RUQ6A/vDGYQxJn927IArroDt253e+5ZgTKQIJcl0w3l8eS+wB7jNXWeihNU5OwprOSxeDJde\nCu3bw9y5EB+f8z6FtSzywsrCW9n2+HdHXH5BVW8soHiMMSFKSYHBg2H8eJg+HVq29DsiY/4qlDaZ\nT4GrA4f7jwbWJmMKs59/hs6d4fhxmDYNKlb0OyJTGPgydhnwPfCpiMwDjrrrVFX/Fc5AjDGhWbkS\nOnaEO+907mROCeV/sTE+CaVNZjvOcDJFgDPcV0kvgzLhZXXOjmgvB1V4+WWn7WX0aBgyJO8JJtrL\nIpysLLyV4yWqqoMARKSEqh7xPCJjzF8cPAj33ANJSbB6NZx7rt8RGROaUNpkLsOZpKykqlYVkXpA\nd1XtWRAB5pW1yZjCYsMGZ1rkq6+Gf/8bTjvN74hMYeVXP5mXgTa4fWPcCcuuCGcQxpjMTZrkJJeB\nA+HVVy3BmOgTSpJBVX8MWpXsQSzGI1bn7IimcvjjD7jvPhg6FD7+2GnkD6doKguvWVl4K5Qk86OI\nNAMQkWIi0g/Y5G1YxsSubdugaVM4cgTWrIG6df2OyJi8C6VNphzwH5zZMAVYAvRR1V+8Dy/vrE3G\nRKN33oHu3WHQIOjRAySstePGZM+vfjINVfWOoEAeBMaEMxBjYtmJE87EYrNnw3vvQaNGfkdkTHiE\nUl32tIhcnbYgIo8B7b0LyYSb1Tk7IrUcdu2CK6+EzZudwS0LIsFEaln4wcrCW6EkmXbA8yLSQkSe\nBxq764wx+fTBB9CwIbRtC/Pnw5ln+h2RMeEV0vTLInI2sAxYC9wTDY0d1iZjIllqKjz/vPNY8tSp\ncNVVfkdkjDdtMlkmGRE5DAR+WAw44a5TVS0VzkDCzZKMiVT790OXLs7TY9OnQ6VKfkdkjKNAO2Oq\n6hmqWjLgdWrAuohOMOZkVufsiIRyWL3amVDsoovgww/9SzCRUBaRwsrCWzZ+qzEFQBVGjcqY/+Wm\nm/yOyJiCEVKbTDSy6jITKQ4dcnrvf/stzJoFNWr4HZExmfNr7DJjTB59/bUzNXLp0s48MJZgTKzJ\nMcmISNlMXkULIjgTHlbn7Cjocpgyxen/8sQTMG5cZA1uaddEBisLb4XSJvMFUA34zV2OB/aKyF7g\nflVd51VwxkSjY8egTx9nYMsPP3Qa+Y2JVaGMXTYemKWqi93l1sCtwETgP6oakQNgWJuM8cN33zlz\nv5x/vtPAX8qewzRRxK82maZpCQZAVZe46z7D6TtjjAHmzoUmTaBbN6f/iyUYY0JLMntEpL+InCMi\n1d2xy/aJSByQ6nF8JgysztnhVTkkJ8NjjzlVZPPmQe/ekT96sl0TGawsvBVKm8wdwEDgXXd5BdAJ\niAM6eBSXMVFh927o2BGKF3cGtzzrLL8jMiayhNImc66qfh+07lJVXeNpZPlkbTLGax995MxY2aMH\nPPkkFLEOASbK+dUmM1tEqgQEcQVOo78xMSk1FV54Ae64A954A55+2hKMMVkJ5b9Gd+BdEakgIm2B\nkcB13oZlwsnqnB3hKIdff4Ubb4QFC5ypka+5Jv9x+cGuiQxWFt7KMcm41WJ9gKXAIKCVqu4I5eAi\n0kZENovItyLSP4ttRrqfrxeRSwLWTxCRfSLyVdD2ZUVkqYhsFZElIlImlFiMya81a6BBA7jgAli+\nHKpUyXEXY2JedkP9zw9aVQfYAxzAGeo/24nL3KfPtgDXALuANUAnVd0UsE1boJeqthWRxjj9bpq4\nn7UADgON7VqIAAAfpklEQVRvqOpFAfsMA/ar6jA3ccWr6uOZnN/aZExYqDrzvgwaBGPGwN/+5ndE\nxnjDizaZ7J4uG5HJOgWEk+eZyUojYJuqJgGIyHTgJmBTwDbtgMkAqrpaRMqISAVV3auqn4hI9UyO\n2w64wn0/GVgO/CXJGBMOhw/D/ffDpk3O2GPnned3RMZEl+zmk1meyevjtJ8hHLsyEFitttNdl9tt\ngpVX1X3u+31A+RBiiWlW5+zIbTls3OgMblmiBHz2WeFKMHZNZLCy8JaX88mEWlcVfGsWch2XqqqI\nZLl9165dqV69OgBlypShfv36tGzZEsi4sGw5dpYTExND3v6pp5bzyivw8sst6dYtMuIP53JiYmJE\nxWPL/iynvU9KSsIrns0nIyJNgEGq2sZdHgCkqurQgG3GAMtVdbq7vBm4Iu1Oxa0umx/UJrMZaKmq\ne0WkIvCRql6QyfmtTcbk2vHj8PDD8MEHMHMm1Kvnd0TGFJwC7ScjIuNE5GYRKZnHY68FzneHoikG\n3A7MC9pmHnCXe74mwIGAqrCszAPudt/fTcZIBMbkS1ISNGsGP/3kPElmCcaY/MvuEeYJQH3gfRH5\n0B2/LOT/dqqaDPQCFgMbgbdVdZOIdBeR7u427wPficg2YCzQM21/EZkGrARqicgOEenmfvQi0EpE\ntgJXucsmG4G3xrEsu3J47z1o3Bg6d3buYEqXLri4/GDXRAYrC29l2SajqquAVcBAETkLaA08IiIX\nA18CC1V1RnYHV9WFwMKgdWODlntlsW+nLNb/ivNYtDH5lpzs9NifOhXeeQcuu8zviIwpXHLdJiMi\nAiQA16rq855EFQbWJmNysnevM7hlsWLw5ptQrpzfERnjL7/GLjuJOtZGcoIxJicffwwJCdCyJSxc\naAnGGK/YsH4xwOqcHcuXLyc1FYYOhdtvh4kTnV78cXF+R1bw7JrIYGXhLS/7yRgTUQ4dgvbt4eef\nnafHqlb1OyJjCr9Q5pMpAfQFqqnq/SJyPlBbVd8riADzytpkTKB16+C22+Cmm5w7mWI2cbgxf+FX\nm8xE4E8g7bmb3YC1x5iooApjx0KbNk5y+fe/LcEYU5BCSTI13V76fwKo6hFvQzLhFqt1zkeOwF13\nwejRsGIFlCu33O+QIkasXhOZsbLwVihJ5riInJ62ICI1gePehWRM/m3e7HSuLFIEVq2CWrX8jsiY\n2BRKm0xr4EmgLs7EZc2Arqr6kffh5Z21ycSu6dOhd28YMgTuvRckrDXMxhReXrTJhNQZ0+3x38Rd\nXKWq+8MZhBcsycSe48ehXz+n38vMmXDJJTnvY4zJ4GdnzFOB34BDQF0RuTycQRhvxUKd8w8/wOWX\nw44dsHZt5gkmFsohVFYWGawsvJVjPxkRGYozgvJGICXgo/95FZQxubFoEXTt6tzFPPKIVY8ZE0lC\naZPZClykqlHV2G/VZYVfSorTY3/iRJg2DVq08DsiY6KbF9VlofT43w4Uw54oMxHkp5/gjjsgNdXp\naFneJuE2JiKF0ibzB5DoTmL2ivsa6XVgJnwKW53zihXO4JZNmsDSpaEnmMJWDvlhZZHBysJbodzJ\nzOOvM1paPZQpcKpOj/2hQ2HCBLj+er8jMsbkJNfzyUQLa5MpXH7/Hbp1c54emzkTqlf3OyJjCp8C\nfYRZRGa6P7/K5LUhnEEYk53ERGjYECpWhE8/tQRjTDTJrk3mIffnDcCNmbxMlIjmOucJE6BVK3j2\nWWcMslNPzfuxorkcws3KIoOVhbeybJNR1d3u256q2j/wM7fvTP+/7mVMeBw9Cr16OeOOffwx1K3r\nd0TGmLwIpZ/Ml6p6SdC6r1T1Ik8jyydrk4le334Lt94KF14I48bBGWf4HZExsaGg22R6iMhXQO2g\n9pgkwNpkjCfmzIFmzeDBB+HNNy3BGBPtsmuTeQun7WUeTrtM2itBVe8sgNhMmERDnfOJE9C3rzMs\nzIIF0KNH+IeHiYZyKChWFhmsLLyVXZvM78DvQEcRqQ+0wOkf8wnwS8GEZ2LBrl3QoQPExzu998uW\n9TsiY0y4hNIm8xBwPzAHEKA9MF5VI7rXv7XJRIcPPoAuXaBPH+jf35lkzBjjD1/mk3HbZZqkTbss\nIiVw5pSxhn+TZ6mp8Pzz8OqrMHUqXHWV3xEZY/ycTyY1i/cmCkRanfP+/dC2rTPu2Nq1BZdgIq0c\n/GRlkcHKwluhJJmJwGoRGSQizwKrgAnehmUKq9WrncEtL74YPvwQKlXyOyJjjJdCnX45AWiO2/Cv\nql96HVh+WXVZZFGFUaNg8GCn70v79n5HZIwJ5st8MiLSBNioquvc5VIi0lhVV4czEFN4HToE998P\nW7bAZ59BzZp+R2SMKSihVJeNAQ4FLB9x15ko4Wed8zffwKWXQsmSsHKlvwnG6t4zWFlksLLwVkgN\n/4H1TqqaAsR5FpEpNN58E1q2hAEDYPx4OP10vyMyxhS0UB5hfgf4CHgVp59MD+BKVY3oWnVrk/HP\n8eNO7/0lS2D2bKeR3xgT+fx6hPlBoBmwC9gJNAEeCGcQXpmcOJlUtSeuC9IPP0CLFrBnj/N4siUY\nY2JbjklGVfep6u2qerb76qSqPxVEcPk1dt1YGoxtwNLtS/0OxVcFVee8aBE0agS33+7cwZQuXSCn\nDZnVvWewsshgZeGtLJ8uE5H+qjpURF7J5GNV1T4exhUWK+5ZwZxNc+j5fk9qxtdkWKthXFze/rQO\nt5QUeO45eO01Z2rkyy/3OyJjTKTIsk1GRG5U1fki0jWTj1VVJ3saWT4Ftsn8mfInY9eO5Z+f/JPr\nz7+e5658jiqlqvgcYeHw889w553w558wfTpUqOB3RMaYvPJl7LJolVnD/+/HfmfoiqGMXTeWBxMe\npH/z/pQ6tZRPEUa/Vauc0ZPvuAP++U84JcdeV8aYSOZLw7+I1BaR8SKyVEQ+cl8fhjOIglL6tNK8\ncPULJHZPZNehXdR6pRajPh/FiZQTfofmqXDXOavCK69Au3ZOL/4XX4yOBGN17xmsLDJYWXgrlF8N\nM3EeX34NSHHXRfXtT9XSVZnUfhKJexN5bOljjFw9kheveZGbL7gZCfdMWYXM4cNw333We98YE5pQ\n+smsU9WEAoonbHLTT2bJ9iU8uvRRzih2BsNbDadp1aYeRxedNm6EW25xpkd+5RXrXGlMYePXfDKD\ngJ9xJi07nrZeVX8NZyDhltvOmCmpKUzZMIWnP3qaxpUbM+TqIZx/5vkeRhhdpk1zJhYbNgy6dfM7\nGmOMF/zqjNkV6AesBNa5r7XhDCISxBWJo2v9rmzptYUGFRvQ9PWm9FnYh/1H9/sdWr7lp875+HHo\n1QueftqZ/yWaE4zVvWewsshgZeGtUDpjVlfVc4NeNQoiOD8UL1qcJ1o8waa/b0JVuWDUBQz5ZAh/\nnPjD79AK3I8/On1edu1yeu/Xr+93RMaYaBNTjzDnxdZftjJg2QDW7FrD4CsH0/nizsQVKfzjgy5e\nDHffDY88Av36gT0PYUzhZ/1kciHcA2Su+HEFjy59lKMnjvJSq5doVbNV2I4dSVJSnInFxo+Ht96C\nK67wOyJjTEHxq03GAM2qNWPFPSt4+vKn6fl+T9pMbcOGfRv8DiskodY5798PbdvCRx851WOFLcFY\n3XsGK4sMVhbeCqUzZoKINAh61RSRUGbVbCMim0XkWxHpn8U2I93P14vIJTntKyKDRGSniHzpvtqE\n+mXzS0S4pe4tfNPzG64//3paTWlFt7nd2HlwZ0GF4JnVqyEhAerVg2XLoGJFvyMyxhQGoTzCvApI\nANL+bL8I+AYoDfRQ1cVZ7BcHbAGuwZkmYA3QSVU3BWzTFuilqm1FpDHwH1Vtkt2+IjIQOKSq/8oh\nbs/nkykMw9SowujRzgCX48ZB+4ieJcgY4yW/qst2A/VVNcHtlFkf+A5oBQzLZr9GwDZVTVLVE8B0\n4KagbdoBkwFUdTVQRkQqhLBvRDRDR/swNYcPO+OOvfaaMzWyJRhjTLiFkmRqq+o3aQuquhG4QFW3\nk/3wMpWBHQHLO911oWxTKYd9e7vVa6+LSJkQvoOn0oapWdx5MfO2zOPC/17InE1ziJSHKjKrc960\nyZn75fTTneFhzjuv4OMqaFb3nsHKIoOVhbdCGbvsGxF5FeduQoAOwEYRORXI7k/2UH/D5vau5FXg\nOff9YGAEcG9mG3bt2pXq1asDUKZMGerXr0/Lli2BjAsr3MtLuixhyfYl9Bjdg2dOeYZxvcdxWdXL\nPDtfXpanT4fu3ZfzwAPw0kv+x1NQy4mJiREVj5/LiYmJERWPLfuznPY+KSkJr4TSJlMc6IkzBTPA\nCuC/wDGghKoeymK/JsAgVW3jLg8AUlV1aMA2Y4DlqjrdXd4MXAGcm9O+7vrqwHxVvSiT83veJpOd\nSBym5s8/nX4v778Ps2bBJZfkvI8xJnb41SZTR1WHq+rN7ms4cJWqpmaVYFxrgfNFpLqIFANuB+YF\nbTMPuAvSk9IBVd2X3b4iEvjc083AVyF8hwIXOExNQsWE9GFqfj7ysy/x7Njh9N7/8UdYt84SjDGm\nYISSZMaLSPqdgoh0Ap7JaSdVTQZ6AYuBjcDb7tNh3UWku7vN+8B3IrINGItzx5Tlvu6hh4rIBhFZ\nj3PX83BoX9UfxYsWZ0CLAenD1NQZXafAh6l56aXlXHop3HwzvPMOlPG9FcsfgVUEsc7KIoOVhbdC\naZO5FZglIncALXDuPELq7q6qC4GFQevGBi33CnVfd/1doZw70pQrUY5X2r5C78a9GbBsALVH1fZ8\nmBpVeP55+Pe/YfZscKtjjTGmwIQ0rIyI1AbeBX4A/qaqR70OLL/8bpPJycodK+m3pB9HTxxlWKth\ntK7ZOqzHP3YM7r0Xvv0W3n0XKlUK6+GNMYVQgY5dJiLBbR1nAweAPwFV1YvDGUi4RXqSAVBV5mya\nw+PLHqdGfA1eavUSF5fPf7H+9JPT56VKFZg82SYXM8aEpqAb/m8MejUGrnXftwtnELEqbZiajT03\ncmOtG8MyTM3XX0PjxnD11TB9upNgrM7ZYeWQwcoig5WFt7JMMm5v+yxfBRhjoVc0rii9GvVia6+t\nVDyjIvXG1OPJZU9y8PjBXB1n0SK46ipniJjBg6GIDX9qjPGZDfUfgXb8voOnP3qaRdsW8dTlT9E9\noTtF44pmu8/o0U5imTULmjcvoECNMYWKzSeTC9GcZNKs37uexz54jO9/+54Xr3mRmy+4GQmaPSw5\nGR5+GD74AN57D2rW9ClYY0zUs/lkYky9CvVY3Hkxo9qO4tmPn6X5xOZ8tuOz9M8PHoR27WDLFmf8\nsawSjNU5O6wcMlhZZLCy8JYlmSjQumZrvnjgCx5o8AAdZnXg1hm3snzDNi67DM45BxYsiN0OlsaY\nyGbVZVHmjxN/0HfGy4z9agTNS9/B7D7PUK7EWX6HZYwpBKy6zDB39unM+scApjbZRL16Sp3RF/Di\npy8W6DA1xhgTKksyUUIVnn0W+vd3pke+o70zTM3Ke1eydvdaao+qzeTEyaSkpvxlX6tzdlg5ZLCy\nyGBl4S1LMlHg2DG4805niP7Vq+HigEEBap1Zi1kdZjH91umMXTeWhHEJLN2+1L9gjTEmgLXJRLi0\nIWKqVoVJk7IfIiZwmJqa8TUZ1mpYWIapMcbEBmuTiTGBQ8RMm5bzGGRpw9R80/Mbrj//+rAMU2OM\nMflhSSZC5WeImGJxxejduHf6MDV1H62bp2FqChure89gZZHBysJblmQi0OjR0K0bzJkDXbrk/Til\nTyvNC1e/wGs3vsauQ7uo9UotRn8+mhMpJ8IXrDHGZMPaZCJI2hAxy5Y5Q8TUqBHe4yfuTeSxpY+R\ndCApy2FqjDGxy8Yuy4VoSzIHD0LHjk6imTHD2x78S7Yv4dGlj3JGsTMY3mo4Tas29e5kxpioYQ3/\nhVRSEp4OERNc55w2TM39De5PH6bm21++De9JI5DVvWewsshgZeEtSzI+++wzJ8Hcfz/8979QNPsR\n/cMmrkgcXet3ZUuvLTSo2ICmrzelz8I+7D+6v2ACMMbEBKsu89G0adCnj9P/5frr/Y3l5yM/89zH\nzzHt62k80vQR/tHkH5xe1OZtNiaWWJtMLkRyklF1Hk2eOBHmzTu5B7/ftv6ylQHLBrBm1xoGXzmY\nzhd3Jq5InN9hGWMKgLXJFAKBQ8SsWlUwCSY3dc61zqzF7A6zmXbLtEI3TI3VvWewsshgZeEtSzIF\n6KefnA6WKSmwfDlUqOB3RFlrVq0ZK+5ZwdOXP03P93vSZmobNuzb4HdYxpgoY9VlBeTrr+HGG6Fz\nZ2c05dz04Pfbnyl/MnbtWP75yT9pe35bBl85mCqlqvgdljEmzKy6LEqlDREzeHDuh4iJBMHD1NQb\nU8+GqTHGhCTKft1Fn8AhYjp39ieGcNU5pw1Tk9g9MSqHqbG69wxWFhmsLLxlScYjycnQu7eTZFas\ngObN/Y4ofKqWrsqk9pNY3Hkxc7fM5cL/XsicTXOIpOpJY0xksDYZD+zbB127Og38Xg8REwnShqkp\nWawkL7V6yYapMSZKWZtMhFN1OlhefDHUr+88plzYEwxkDFNzX4P76DCrA7fNvI1tv27zOyxjTASw\nJBMme/fC3/4Gzz/vjKA8ZAiccorfUTkKos75pGFqKjSgyWtNIm6YGqt7z2BlkcHKwluWZPJJFd58\nE+rVgwsvhHXr4NJL/Y7KP8WLFmdAiwFs+vsmVJULRl3AkE+G8MeJP/wOzRjjA2uTyYc9e+DBB+G7\n75zxxxISPD1dVLJhaoyJHtYmEyFUYcoU5+6lXj1Yu9YSTFYK8zA1xpicWZLJpV27nJ77w4c7nSyf\new5OPdXvqLIXCXXOwcPUXDv1WtbvXV+gMURCOUQKK4sMVhbesiQTIlWnSuySS6BhQ1izBho08Duq\n6CIi3FL3Fr7p+Q03nH8Drae2puu7Xdl5cKffoRljPGJtMiHYuRMeeAB273YSTf36YTlszPv92O+8\n+OmLjPtiHN0TuvN488cpdWopv8MyJmZZm0wBU4UJE5y7lyZNnLsXSzDhU/q00gy5ZgiJ3RPZfWg3\ntV6pxajPR0XNMDXGmJxZksnCjh1w3XXOsDDLlsEzzxTc1MjhFul1zmnD1CzqvIh5W+Z5NkxNpJdD\nQbKyyGBl4S1LMkFUYfx4p72lRYuCm1jMQP0K9VnSZQmj2o7i2Y+fpfnE5ny24zO/wzLG5IO1yQT4\n4Qe4/3749Ven7eX//s+b2EzOUlJTmLJhCk9/9DSNKzdmyNVDOP/M8/0Oy5hCzdpkPKIKY8c6T41d\neaVz92IJxl+Bw9QkVEyg6etNI26YGmNMzmI+yfzwA7RqBa+/7kyJPGBA5Iw5Fi7RXOccOEwNkK9h\naqK5HMLNyiKDlYW3YjbJqMKYMc7dS6tWsHKlM/aYiUzlSpRj5HUj+ezez1i3Zx21R9VmcuJkUlJT\n/A7NGJONmGyTSUqCe++Fw4dh4kSoW7dgYzP5t3LHSvot6cfRE0d5qdVLtKrZyu+QjIl6XrTJxFSS\nSU112l6eeQYefRT69i18VWOxRFWZs2kOjy97nJrxNRnWahgXl7dHAY3Jq6hr+BeRNiKyWUS+FZH+\nWWwz0v18vYhcktO+IlJWRJaKyFYRWSIiIU0L9v33cM01MHky/O9/8NhjsZNgCmudc9owNRt7buSG\nWjfQakorus3tluUwNYW1HPLCyiKDlYW3PEsyIhIHjALaAHWBTiJSJ2ibtsB5qno+8ADwagj7Pg4s\nVdVawDJ3OUupqfDf/zpzvFx3HaxYAXXqZLdH4ZOYmOh3CJ4qGleUXo16sbXXViqeUZF6Y+rxxLIn\nOHj84EnbFfZyyA0riwxWFt7y8k6mEbBNVZNU9QQwHbgpaJt2wGQAVV0NlBGRCjnsm76P+7N9VgGk\n3b1MmQKffupUkcXF4FQmBw4c8DuEAlH6tNK8cPULWQ5TEyvlEAoriwxWFt7yMslUBnYELO9014Wy\nTaVs9i2vqvvc9/uA8lkF0KgRXH+9k2AuuCD3X8BEp7RhahZ3XuzpMDXGmJx52SoR6v/oUBqZJLPj\nqaqKSJbn+fRTqF07xCgKsaSkJL9D8EW9CvVY0mUJS7Yv4dGlj7Lngz30f6o/xYsW9zs038XqNZEZ\nKwtveZlkdgFVA5ar4tyRZLdNFXebopms3+W+3yciFVR1r4hUBH7KKoALLgjrQxJRbfLkyTlvFANK\nFCvhdwgRw66JDFYW3vEyyawFzheR6sBu4HagU9A284BewHQRaQIcUNV9IvJLNvvOA+4Ghro/383s\n5OF+DM8YY0zueZZkVDVZRHoBi4E44HVV3SQi3d3Px6rq+yLSVkS2AUeAbtnt6x76RWCGiNwLJAEd\nvPoOxhhj8qfQdsY0xhjjv6gYuyySOnX6zaOyGCQiO0XkS/fVpiC+S37lsywmiMg+EfkqaPtYvC6y\nKouYui5EpKqIfCQi34jI1yLSJ2D7mLouciiL3F0XqhrRL5zqsm1AdZwHAhKBOkHbtAXed983Blbl\ntC8wDHjMfd8feNHv7+pjWQwE+vr9/QqqLNzlFsAlwFdB+8TUdZFDWcTUdQFUAOq7788AtgAXxOJ1\nkUNZ5Oq6iIY7Gd87dUYQr8oCQnuUPJLkpyxQ1U+A3zI5bqxdF9mVBcTOdVFeVfeqaqK7/jCwiYz+\nebF0XeRUFpCL6yIakozvnTojiFdlAdDbvV1+PUqqAvJTFtmJtesiJ7FyXVQJ3MB9svUSYLW7Kpau\ni5zKAnJxXURDkimQTp25OI+fwlkWgV4FzgXqA3uAEbnc3w95LYuQ/51j4LrIab+YvC5E5AxgFvCQ\n+1f8yRvG0HWRRVnk6rqIhiSTn06dma0/qVMngOTQqTOChLMs0vdV1Z/UBbyGc5sd6fJaFrvIXixd\nF9mWRSxeFyJSFJgNTFXVwD54MXddZFUWub0uoiHJpHfqFJFiOB0z5wVtMw+4C0ACOnXmsG9ap07I\nplNnhPGkLNz/NGluBr4i8uWnLLITa9dFlmLtuhARAV4HNqrqy5nsEzPXRXZlkevrwu8nIEJ5Adfh\nPN2wDRjgrusOdA/YZpT7+XqgQXb7uuvLAh8AW4ElQBm/v6ePZfEGsMHd/l2c+mffv6vHZTENZzSJ\n4zh10t1i+LrIqixi6roAmgOpOE9hfem+2sTidZFDWeTqurDOmMYYYzwTDdVlxhhjopQlGWOMMZ6x\nJGOMMcYzlmSMMcZ4xpKMMcYYz1iSMcYY4xlLMiZiuZ3Iwt4BUERuzGrY8xz2Ky0iPQKWK4nIzDDG\n1URExgWtayki88N1jlzEcndQpztj8sSSjIk5qjpfVYfmYdd4oGfAcXar6m3hi4zrgIVhPF5+dMUZ\nVDVkIhLnTSgmmlmSMVFBRGqIyBcikiAixUVkhjuh0hwRWSUiCZnsk+ROsLRORDaISG13fVcRecV9\nX15E3hGRRPfVxF3fV0S+cl8PuYd8EajpTtQ0VETOSbvTco85R0QWuhNbDQ2Io7WIrHTjmCEiJbL4\nmlfh9CrPqgwudcvgXBEpJ84kWl+LyHj3u5YN2v42ERnhvn9IRLYHlOWn7vtnRORz93uOddfdCjQE\n3nTPd5pb7stFZK2ILAoYx2u5iPxbRNYAfTAmiCUZE/Hc5DALuFtV1+HcTfyiqhcCTwMJZD7irAI/\nq2oCzsix/TLZZiTwkarWxxnOfKObsLriDPzXBLhfROrjTFa1XVUvUdX+/HX02npAB+Ai4HYRqSwi\nZwFPAle7cawD+mbyHc8CTqjqoSzK4DL3O7RT1e9xJo76QFX/zy2bapns9j+cCclwf+4XkUru+4/d\n9a+oaiNVvQg4XURuUNVZOONe3aGqDYAU4BXgFlVtCEwEnnf3V6Coql6qqv/OLHYT207xOwBjcnA2\nzvhIN6vqZnddM+BlAFX9RkQ2ZLP/HPfnF8DfMvn8SqCzeywFDopIc2COqv4BICJzcH4xBw8uGGxZ\nWpIQkY04MxLGA3WBlc6YgxQDVmayb2tgcRbHrQOMBVqp6l53XTPcibNUdbGI/GXSMXUGOjxDnOHa\nqwBvAZfjjEs1293sKhF5FCiOMz7X18B77mdpSbQ2cCHwgfsd4nDGOkvzdhZxG2NJxkS8A8APOL/k\nNwesD3XOnOPuzxSyvt4zm09Dgj4PZZC/4wHvA8+3VFXvyGHfNmQ+L4fizNlxKtAAeD8orpysBLrh\nDJL4KXAv0BToKyKnAaOBBFXdJSIDgdOCzp12nm9U9bIsznEkhDhMjLLqMhPp/sS5A7lLRDq561bg\nVEshInVxqqfyahnQwz1WnIiUAj4B2ovI6W77SXt33WGgZC6OrcAqoJmI1HTPUUJEzg/cyB1W/WJV\nXZ/JMQQn0d4ADBGRK9z1gWXQGueOKTOfAI/iVI99iXPndsy940pLKL+4dzuBDzEcAkq577cA5QLa\nq4q65W5MjizJmEinqnoU55fswyJyA/BfnF963wCDgW+A3zPbN+i9ZvL+IeBKt8ptLVBHVb8EJgGf\n4ySJ8aq6XlV/AVa4jeRDszlmYPD7cdp3ponIepw7i9pBmyXgJIBMv79bBj+5ZTBaRC4FngVauw8e\n3ArsxUkMwT7FmWL3f6qaCvzorkNVDwDjcarIFnHy9LqTgDEi8gXO74lbgaEikjb0e9Ms4jXmJDbU\nv4k6IlIEp7H5uHuHsBSoparJPoeWJyLyJPCtqs7IxT7FgBRVTRGRpsBot5HemIhibTImGpUAPhRn\nelgBekRrggFQ1edz3uovqgEz3IT7J3B/eKMyJjzsTsYYY4xnrE3GGGOMZyzJGGOM8YwlGWOMMZ6x\nJGOMMcYzlmSMMcZ4xpKMMcYYz/w/SP1Cq7DN7uIAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7b9c278>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "58.014 % of nicotine is extracted.\n",
+ "\n",
+ "\n",
+ "Illustration 10.2 (b)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXWh9+VEDohAUInhBZERDoGEQVRQQT7RbkWsBCK\niFcsgOgFL58giIiISlFAbIgiIkVRkdgQ6SAgoXdEkRp6kvX9cSZxElMmyZk5M5P9Ps95MuecXdbO\nJLPmrL33+omqYjAYDAaDNwhx2gCDwWAwBC/GyRgMBoPBaxgnYzAYDAavYZyMwWAwGLyGcTIGg8Fg\n8BrGyRgMBoPBaxgnYyh0iEiMiKSKSL7+/kXkHhFZbLddvkZEOorIXLfzVBGpnU3ZriIyy3fWGYIF\n42QMAYuIXCUiy0TkuIj8JSI/ikgLm/v4h0NS1fdVtaOd/bj6ChORT0Rkl6vPa7IoM1pEjriOF3No\nK05Evnb9Xv4QkdkiUjlTsReAUZ7YpqrzgYYi0ihPgzIUeoyTMQQkIhIOLABeBSKBasDzwHlvdeml\ndjPzPXAv8DuQYae0iPQGbgEudx1dXdeyIgKYBNR0HaeA6W5ttQTCVXVFHmz7EIjPQ3mDwTgZQ8AS\nC6iqfqQW51T1a1X9FUAsnhWR3SJyWETecTmmf+Aq08HtfLiIvOs6/d7187iInHQ9IfQUkR/cyl8p\nIitdT1QrRKS1270EEfmf6ynrpIgsFpHyWdmhqhdVdYKq/gSkZFGkBzBWVQ+q6kFgLNAzm7a+VNU5\nqpqkqmeB14E2bkVuBBKyqHqTiOwQkT9FZIyIuDvXBOCmrPozGLLDOBlDoJIIpIjIDBHpJCKRme4/\ngPWh3A6oDZQGJmbTlpLxqcH9dVvXz7KqGq6qy90rikg5YCEwHigHjAMWZrKnO5YzqAgUBZ70ZIBZ\ncCmw3u18A9DQw7pXAxvdzi/D+h1m5lagOdAM66npQbd7W4AYESntqcEGg3EyhoBEVU8BV2E5hKnA\nHyIyT0QquorcA7ysqrtV9TQwBLjbw8l+yeZ1VtwEJLrmaVJVdRbWh/HNaaYC01V1u6qeA2YDTTwZ\nYxaUBk64nZ90XcsREbkceA54yu1yBFYILTOjVfW4qu7Dcpzd3e6llY/Ii9GGwo1xMoaARVW3qOoD\nqloD65t5VawPRoAqwB634nuBIkAlm82o6mrbnT2u62n87vb6LB44hmxIAtxDfmVd17JFROoCi4AB\nrjBcGscytZXGPrfXe8k4jjKun8c9NdhgME7GEBSoaiLwDpazATgIxLgViQaSgcNZVD8NlHI7d1+F\nlVua8gNYE+vu1HRdt5tNZHwKakzGEFgGRKQm8DXwP1V9P9PtDVjzWpmJzvTafRwNgN2qmqNjMxjc\nMU7GEJCISH0RGSgi1VznNbBCOz+7inwIPO5aglwaGAnMUtXULJpbhxVKK+JaAn0HfzuXP4FUoE42\npnwBxIpId1f9u4BLsFa+pZubh3EVE5HirlP31wAzgYEiUtU17oHAjGzaqQZ8C0xU1SlZFFkE/GOJ\nNPCkiES4fp8DgI/c7l3jqmcweIxxMoZA5RRwBfCLiCRhOZcNwBOu+9OAd7FWh+0EzgCPutV3f0J5\nDsuJHAOGA+nf+lX1DNZ+kp9E5KiIXIHbQgFV/Qvo4ur3CNakfhdVPZpNX5kXGWQm0WVrVWAxcFpE\nol19TQbmA7+6xjrf3YGIyEYRSZtDeRioBQwXkVOu46TbuNYCJ0SkVab+5wGrgbVYjnKa2727gck5\n2G4w/APxpmiZiHTCipGHAm+p6ugsykzAWk55Bujp+uNHRKZhTar+oaqN3MqXw/p2VRPYDXRTVRMj\nNhjyiIhcD/RT1ds8KNsVuEdV7/a+ZYZgwmtORkRCsb6VXYcV110JdFfV39zKdAb6q2pn1zfEV1U1\nznWvLdak5sxMTmYMcERVx4jIICBSVQd7ZRAGg8FgKBDeDJe1Ara7lpBeBGZhrbt352asyVpU9Rcg\nIi31har+gBW+yEx6HdfPW71gu8FgMBhswJtOphoZl0Pud13La5nMVFLVtBVCh7F/SarBYDAYbMKb\nTsbTOFzmlTcex+/UivV5b1LJYDAYDAWiiBfbPgDUcDuvgfWkklOZ6uS+v+CwiFRW1d9FpArwR1aF\nRMQ4H4PBYMgHqmpbQlhvPsmsAuq59ikUBe4CPs9U5nPgfrBSkwPH3UJh2fE5Vk4qXD8/y66gqgbf\n8fnnaL16DBs61HlbvHQMGzbMZ331+rwX/Rb0C9rxBfv7Fyzj27dPufpqpUMH5eBBZ8dnN15zMqqa\nDPTHWuu/GfhIVX8Tkd5p6clVdRGwU0S2Y62/75dWX0Q+BJZhbXTbJyIPuG69CFwvIluBa13n2dng\nhZE5TNeucPnl7P48s78OHnbv3u2zvkZfN5q5W+by876fcy9sE74cnxOY8eWN+fOhRQvo1AkWL4Yq\nVWxt3nG8GS5DVb/A2hHtfm1ypvP+2dTtns31o1jLonPloz/+4O5KQbguYMIEqFULNm2Chp4m4TVk\nRWSJSF7p+ArxC+JZE7+GsNAwp00yFBLOn4dBg+Czz+DTT+HKK522yDsE9Y7/gTt2cOziRafNsJ+q\nVen5yCMQHw+pWWVJCWx69uzp0/66NexGdNloxi4b65P+fD0+X2PGlzvbtllOZe9eWLs2eB0MeHnH\nv5OIiD6SmMh5VabWr++0OfaTmgpt28L990Pv7MQRDZ6y+/huWkxpwfKHl1O3XF2nzTEEMe+9B48/\nDs8/D337gvhKc9VDRAS1ceI/qJ3MiYsXabhyJe83aMDVEcElgZGQkEC7qCho1w7Wr4eqVXOtEygk\nJCTQrl27fNcXf/uvNRj8lKw+/+12Ml6dk3Ga8CJFmFC3LvGJiaxv2ZJiIUEWHWzY0HqKeewx+Phj\np63xK4L1y5PBYBe++jIW1E8yaWO7beNGGpcqxfBatRy2ygucOweXXw4vv2ytPDOkfRNz2gyDwa/J\n7v/E7ieZIPtqnzWv1a3L6wcP8tvp006bYj/Fi8PkydC/P5zKSk3XYDAYnKNQOJnqxYszrGZNem/d\nSmqQfMNNSEj4+6R9e7j2WnjuOcfssZMMYzMYDAFNoXAyAH2rVeNCaipvHzrktCneYexYmDULVq50\n2hKDQ+zdu5cyZcqkh0DatWvH22+/DcD7779Px44d08uGhISwc+dOj9vOXN+b5GS3IfAoNE4mVIQp\n9eszdNcufj9/3mlzCsw/Vl+VL285ml69IMD3BhVkZVkgEBMTQ8mSJSlTpkz6MWDAgAK3Gx0dzalT\np9IndEUk/fU999zD4sWL8912QevnBTvtNjhPoXEyAJeXLs1DVarwn+3bnTbFO9xzD1SsCOPHO22J\nIQdEhAULFnDq1Kn0Y8KECU6blS0pKSlOm2AIYAqVkwH4b82arDp1ikV//eW0KQUiy3kLEZg0CUaP\nhl27fG6TXRTmOZnU1FSefPJJoqKiqFOnDq+//johISGkujI7xMTEsGTJkvTyw4cP57777gOsnFru\nZd2ZMWMGbdu2zXBt4cKF1KlTh6ioKJ5++un0MNuMGTNo06YNAwcOpEKFCgwfPjxD/az6cQ9xudeP\njIykbt26LFu2jOnTpxMdHU2lSpWYOXOmR7+PzHaHhIQwefJkYmNjiYyMpH//jFmppk2bxqWXXkq5\ncuXo1KkTe/fu9agfg/codE6mRGgok2Jj6bd1K0nJyU6bYz+1a8NTT1lbiYNkkUMwkt0S6ylTprBw\n4ULWrVvHqlWr+OSTTzLsZ3APJaWd55fPPvuM1atXs2bNGubNm8e0adPS761YsYI6derwxx9/MHTo\n0FzbymzXihUraNy4MUePHqV79+5069aNNWvWsGPHDt577z369+/PmTNn8mX3woULWbVqFRs2bGD2\n7Nnp4bR58+YxatQo5s6dy5EjR2jbti3du2eZAtHgQwqdkwG4rlw5ro6IYFgAZ4vNcd5i4EA4dAg+\n/NBn9tiJL+ZkRAp+5BdV5dZbbyUyMjL9SHsKmD17No8//jjVqlUjMjKSZ555Jsc9PwXZDzRo0CAi\nIiKoUaMG//nPf/jQ7e+latWqPPLII4SEhFC8ePE8t12rVi169OiBiNCtWzcOHjzIf//7X8LCwrj+\n+uspWrQo2/MZth48eDDh4eHUqFGD9u3bs379egAmTZrEkCFDqF+/PiEhIQwZMoR169axb9++XFo0\neJNC6WQAXq5Th/cOH2Z1MO4tCQuDqVPhiSfg6FGnrfFLVAt+5BcRYd68eRw7diz9eOihhwA4dOgQ\nNWr8reMXHR1d0KFmS+Z+Dh48mOW9/FDJLft5iRIlAIiKispwLSkpKV9tV65cOf11yZIl09vZs2cP\njz32WLrjLl++PAAHDuSmg2jwJoXWyUQVLcqYOnWIT0wkOQAzGec6b9GqFfzrX1boLMAozHMyVapU\nyTCPkHlOoVSpUpx221T8+++/57uvzP1Uq1Yt/TynMFypUqUAMoS7CmKHXURHRzNlypQMzvv06dPE\nxcU5bVqhptA6GYD7K1UiokgRJgTrN50XXoCvv4ZC/KHtr2QX5urWrRsTJkzgwIEDHDt2jBdffDHD\nB36TJk2YNWsWycnJrFq1ijlz5uR7Xmbs2LEcP36cffv2MWHCBO666y6P6kVFRVGtWjXeffddUlJS\nmDZtGjt27MiXDQXFXc2xT58+jBw5ks2bNwNw4sQJPjY5/RynUDsZEWFSbCwj9+xh99mzTpuTJzya\ntyhTBl57zUqiee6c122yi2DfJwPQtWvXDPtk7rjjDgB69epFx44dady4MS1atOCOO+7I4JBGjBjB\njh07iIyMZPjw4dxzzz0Z2s3O4WSemAe45ZZbaN68OU2bNqVLly7pIbusyma+NnXqVF566SUqVKjA\n5s2badOmTY595dcR5rbQwf3+rbfeyqBBg7j77rspW7YsjRo1Mnts/IBCkSAzN0bu2cOPJ06wsFGj\n4EwTf8cdVsbm//3PaUt8QjAlyNy9eze1a9cmOTmZkGDLIm5wFJMg04c8WaMGe8+dY/affzptisfk\nad5iwgR4801whRH8ncI8J2MwBBvGyQBFQ0KYWr8+j2/fHpxyzdWqWTJ8QSrXHOwE5dO1odBgwmVu\nPLJ1KxdVmRKscs1XXQU9egS9XHMwhcsMBm/hq3CZcTJunEhOpuGKFXx46aW0DTK5ZgA2brRkATZs\ngCpVnLbGaxgnYzDkjpmTcYCyRYowoV494rdu5byfh5XyNW9x2WVWyOyxx2y3x07MnIzBEDwYJ5OJ\n2ypUILZECV4M1sR6zz4La9fCggVOW2IwGAoBJlyWBfvOnaPpqlX82LQpl7h2NwcVS5bAgw/Cpk1Q\nurTT1tiOCZcZDLljwmUOUqN4cYbFxBAfRHLNGejQwZqbCRK5ZoPB4L8YJ5MN/apV43xqKtP8VK65\nwPMWY8daWZpXrbLFHjsxczLO88MPP3DJJZf4tM/M8tF2kpiYSJMmTQgPD2fixIm2t2/IHuNksiFN\nrvmZXbs4fOGC0+bYT4UK8NJLllxzMOrq+DkzZsygUaNGlCpViipVqtCvXz9OnDjhmD0hISHs3Lkz\n/bxt27Zs2bLFK325C5y5k1k+2k7GjBlDhw4dOHny5D+Ezpwmsxx3eHi4XyQctQvjZHKgcenSPFC5\nsl/KNduS3+vee6F8eb+Taw723GUvv/wygwcP5uWXX+bkyZMsX76cPXv2cP3113PRC5uBPZVP9tU8\nVla5zbzNnj17uPTSS7O9n5WaqK/ILMd98uTJDHIGAU9aFtNgO6yhFZzTycla6+efddGRI7a053ds\n26Zavrzqzp1OW2Ibdr333uDEiRNaunRp/fjjjzNcT0pK0qioKJ02bZqqqg4bNkzvuOMOveuuu7RM\nmTLarFkzXb9+fXr5AwcO6O23365RUVFaq1YtnTBhQvq9tLr33nuvhoeH69tvv60rVqzQuLg4jYiI\n0CpVqmj//v31woULqqratm1bFREtVaqUli5dWmfPnq1Lly7V6tWrp7dZs2ZNHTt2rF5++eVatmxZ\nveuuu/TcuXPp90ePHq1VqlTRatWq6dSpU1VEdMeOHVn+Dtq1a6dvv/32P67v2rVLRURTUlJUVfWa\na67R5557Ttu0aaNlypTRG264QY+4/R/+/PPP2rp1a42IiNDGjRtrQkJClv21b99eQ0NDtXjx4lqm\nTBndunWr9ujRQ/v06aM33nijlipVSpcsWaKbN2/Wa665RiMiIrRhw4b6+eefp7fRo0cP7du3r954\n441aunRpveqqq/TQoUM6YMAAjYiI0EsuuUTXrl2bZf8//fSTVqhQQfft26eqquvWrdPIyEhNTExU\nVdWYmBhdsmRJlnW9SXb/J67r9n0W29mYPx12ftAs/usvjfn5Z01KTratzYKydOlS+xobNUq1UyfV\n1FT72iwABR2bPzuZL774QosUKZL+QepOjx49tHv37qpqOYqwsDCdM2eOJicn69ixY7VWrVqanJys\nKSkp2qxZMx0xYoRevHhRd+7cqbVr19bFixdnqDtv3jxVVT179qyuXr1af/nlF01JSdHdu3drgwYN\ndPz48el9Z3YKmZ1MTEyMXnHFFXro0CE9evSoNmjQQCdNmpQ+psqVK+vmzZv1zJkzes8992hISIgt\nTqZu3bq6bds2PXv2rLZr104HDx6sqqr79+/X8uXL6xdffKGqql9//bWWL19e//zzT4/67NGjh5Yt\nW1aXLVumqqonT57UOnXq6KhRo/TixYv67bffapkyZdIdQY8ePbRChQq6Zs0aPXfunF577bVas2ZN\nfffddzU1NVWfffZZbd++fZZ9q6oOHTpUr732Wj1z5oxedtll+vrrr2f43X7zzTfZ1vUWvnIyJlzm\nATeUK0eb8HCG7drltCne4Ykn4MABmDXLaUt8hjwvBT7yw5EjR6hQoUKWGZUrV67MkSNH0s9btGjB\n7bffTmhoKAMHDuTcuXP8/PPPrFy5kiNHjvDss89SpEgRatWqxcMPP8wst/fvyiuv5OabbwagePHi\nNGvWjFatWhESEkLNmjWJj4/nu+++y5PtAwYMoHLlykRGRtK1a1fWrVsHWJLRDz74IA0aNKBEiRI8\n//zzaV/0CoSI8MADD1C3bl2KFy9Ot27d0vt877336Ny5M506dQLguuuuo0WLFixatCjb9txtEhFu\nvfVWWrduDcC6des4ffo0gwcPpkiRIrRv354uXbpkkKS+/fbbadq0KcWKFeO2226jVKlS3HvvvekS\n02vXrs227+HDh3PixAlatWpFjRo16NevXwa73OW4b7/99vz9wvyUIk4bECiMq1uXRitX8u9KlWhW\npozT5tg7bxEWBlOmwG23QceOUK6cfW3nA1/MyegwZ5amV6hQgSNHjpCamvoPR3Po0KEMEsXVq1dP\nfy0iVK9enYMHDyIiHDx4kMjIyPT7KSkpXH311VnWBdi6dSsDBw5k9erVnDlzhuTkZFq0aJEn293n\nCUqUKMEh18rLQ4cO0apVq2z7LgiZ+3SXWv7444+ZP39++v3k5GSuvfbabNvKPA/kbufBgwf/ITld\ns2bNdElqEaFixYrp94oXL57hPDc56SJFitCjRw8ee+wxxmeaA02T487J9kDGPMl4SMWiRXmxdu2A\nlWvOlbg4S3fm6aedtiSoad26NcWKFWPOnDkZriclJfHll1/SoUOH9Gv79u1Lf52amsr+/fupVq0a\nNWrUoFatWhlkhk+ePMkCVxaHrCbW+/bty6WXXsr27ds5ceIEL7zwgm2T3VWqVMlgq/trbxEdHc19\n992X4Xdw6tQpns7D36/776hq1ars27cvw9POnj17MkhSF4QDBw7wv//9jwcffJCBAwdyIRhXrGaD\ncTJ5oGflypQpUoTX/ECu2St7SUaOhMWLIY9hFLsJ5n0yZcuWZdiwYTz66KMsXryYixcvsnv3brp1\n60aNGjW477770suuXr2auXPnkpyczPjx4ylevDhxcXG0bNmSMmXKMGbMGM6ePUtKSgobN25klWvP\nU1ahqqSkJMqUKUPJkiXZsmULb775Zob7lSpVyrOEclo/3bp1Y/r06WzZsoUzZ84wYsSIXOtevHiR\nc+fOpR/J2Syjzy7sdu+99zJ//ny++uorUlJSOHfuHAkJCRzI4X/Tva3M7cbFxVGyZEnGjBnDxYsX\nSUhIYMGCBdx999052uEJqkrPnj15+OGHeeutt6hSpQrPFaKN0MbJ5AERYXJsLC/s2cOeAJIz9pjw\n8ICUaw40nnrqKUaOHMmTTz5J2bJliYuLo2bNmixZsoSwsDDA+lu75ZZb+OijjyhXrhzvv/8+n376\nKaGhoYSGhrJgwQLWrVtH7dq1iYqKIj4+npMnT6bXzfwkM3bsWD744APCw8OJj4/n7rvvzlBm+PDh\n9OjRg8jISD755JNclxm73+/UqRMDBgygffv2xMbGps9zFCtWLNv6ffv2pWTJkunHgw8+mKtss/v9\n6tWrM2/ePEaOHEnFihWJjo7m5ZdfzvHpLLu2AMLCwpg/fz5ffPEFUVFR9O/fn3fffZfY2Ngsy+dF\nYnrChAkcOXIk3flOnz6d6dOn89NPP2VrazDh1dxlItIJGA+EAm+p6ugsykwAbgTOAD1VdW1OdUWk\nFTARCAOSgX6qujKLdtVbY/u/3btZfvIk84NVrvm22+Dyyy2hswAkGHKXPf/882zfvp13333XaVPy\nzG+//UajRo24cOGCkYz2YwI+d5mIhGI5g07ApUB3EWmQqUxnoK6q1gPigTc9qDsGeE5VmwL/dZ37\nlKejo9l17hwfB5Bcc5547TV44w347TenLSm0BJqTnDt3LufPn+fYsWMMGjSIm2++2TgYA+DdcFkr\nYLuq7lbVi8As4JZMZW4G3gFQ1V+ACBGpnEvdQ0BZ1+sIwOcTJEVDQphSvz7/cVCu2avzFtWrw7Bh\njsk1B/OcjKc4sSu+IEyZMoVKlSpRt25dwsLC/jHnYyi8eHMJczXAfZnJfuAKD8pUA6rmUHcw8KOI\njMVykq1ttNlj2pQtyy0VKjB4504mB6Ncc9++8N578NZblrMx+JRhw4Y5bUKe+OKLL5w2weCneNPJ\nePq8n9eva28DA1R1roj8C5gGXJ9VwZ49exITEwNAREQETZo0Sd+DkfZtuSDnNyUn07tkSX48fpxk\n1yYxO9vP6Tztmtf6++EH6NWLdoMHQ9euJCQm+mx87dq1s+X3YzAYcichIYEZM2YApH9e2onXJv5F\nJA4YrqqdXOdDgFT3yX8RmQQkqOos1/kW4BqgVnZ1ReSkqoa7rgtwXFXLkglvTvy788kff/Df3btZ\n26IFxYIxBj1kCOzYAbNnO22JxwTDxL/B4G0CfuIfWAXUE5EYESkK3AV8nqnM58D9kO6Ujqvq4Vzq\nbheRa1yvrwW2enEMuXJHVBR1S5RgtI/lmn02b/Hf/8KaNbBwoW/6w8zJGAzBhNfCZaqaLCL9gcVY\ny5DfVtXfRKS36/5kVV0kIp1FZDtwGnggp7qupuOB10WkGHDWde4YIsLEevVotmoVd1WsSP2SJZ00\nx35KlIBJk+Chh4JWrtlgMHgPr+6TcRJfhcvSeHX/fub++SdLmzQJqFVBHnP//ZbQ2bhxTluSKyZc\nZjDkTjCEywoV/atV43RqKtODSNEuAy+/DO+/D6tXO22JwQcY+WWDXeTqZESksoi8LSJfus4vFZGH\nvG9aYBEqwtTYWAbv3OkTuWafz1tERcGYMT6Ray4MczJGfrlwyS/v3r2b9u3bU6pUKRo0aMCSJUty\nLD9o0CAqVKhAhQoVGDx4sMdtjRw5Ml3GOS1XXWhoKEePHvXKuDzBkyeZGcBXWHtXALYBj3vLoECm\nSZky9Kxcmcf9UK7ZFu6/HyIj4dVXnbYkoDHyy4VPfrl79+40b96co0eP8sILL3DnnXdm0A5yZ/Lk\nycybN48NGzawYcMG5s+fz+TJkz1q65lnnkmXcT516hSDBg2iffv2lHNSviM3VTNglevnWrdr6+xU\nTvPGgUPqiEkuueYvgl2uedcupy3JFqfee08w8suFT345MTFRixUrpklJSenXrr766nRl0cy0bt1a\np06dmn4+bdo0jYuLy3NbqampWqtWLZ05c2aW/WT3f4Kv5ZeBBKB8mpMB4oDv7DTCG4eTHzRf+qFc\ns6288ILqjTf6jVxzZvzZyRj55cInv/zpp59qgwYNMlx79NFH9dFHH82yfNmyZXXFihXp56tWrdIy\nZcrkua3vvvtOS5curadPn86yH185GU/CZU8A84HaIrIMeBcYYMtjVJDSsVw5rgwP5/ndu73Wh6Pz\nFk8+Cfv2eW2Dpk/GJlLwIx8Y+WXPCRb55aSkJMqWzbhfPDw8nFOnTnlUPjw8PF11My9tvfPOO/zr\nX/+ipMPbKnLdJ6Oqq12bH9MSdCWqlbTSkAOvuOSau1esSFM/kGu2laJFLbnmO+6AG26w5mkCDRs+\nBPODkV/OG8Egv1y6dOl0rZ80jh8/Tnh4uEflT5w4QWnX/jRP2zpz5gyffPIJn3+eef+77/F0CXMr\noDHQHCvt/v3eMyk4qFi0KKNq1yZ+61ZSvPCB5niOrtatLd0ZL8g1Oz42L2Lkl+0hkOSXGzZsyM6d\nOzM4ofXr19OwYcNsy6c9saWVveyyy/LU1ty5cylfvjzXXHMNTuPJEub3gJeANkALoKXrMOTCA5Ur\nUzo0lIl+INfsFUaOhC++gO+/d9qSgMHIL1sUJvnl2NhYmjRpwvPPP8+5c+f49NNP2bhxI3fccUeW\n5e+//37GjRvHwYMHOXDgAOPGjaNnz555auudd97h/vv941nAkyeZ5kAbVe2nqo+mHd42LBgQESbF\nxjJi92722ixn7Bd7ScqWhQkTLCmA8+dta9YvxuZFjPxy4ZJfBpg1axarVq2iXLlyDB06lDlz5lC+\nfHnA2vhaxi2k3rt3b7p27UqjRo24/PLL6dq1K/Fuchs5tQVw4MABEhIS/MbJ5JpWRkQ+Bh5T1YO+\nMckefJ1WJidG7N7NilOn+Pyyy2zbH+Ce5t9RVK2wWdOmltCZDRR0bMGQVsbILxu8jT+llYkCNovI\nVyIy33U7tVJ5AAAgAElEQVQ4P5sUQAyKjmbn2bPMsVGu2S8cDFirrCZOtCSbbZJr9puxOUigOUkj\nv2zIDk+yMA93/VT+FhgLrP8AhykaEsLk2Fju2ryZ6yIjiXCFRIKGNLnm3r0hIQHMh0uBCUT55Qce\neIDQ0FDatWvHG2+84bRJBj/BoyzMIhID1FXVb0SkJFBEVU/mXMtZ/ClclkafxEREhDddcd6C4Dfh\nsjRSUuDKK63cZg8/XKCmTLjMYPA+fhMuE5F44GMgLXlOdWCuXQYUJl6sXZvPjxzhJwcTIXqN0FCY\nOhWeeQaCNRO1wWDIM55M/K/H2iezXFWbuq79qqqNfGBfvvHHJxmAj//4g+EuueaiwRhWGjwY9uwB\nt53SvsY8yRgMueM3TzLAeVVNX58qIkUwczL55s6oKGqXKMEYH8s1+4z//hdWrIAc0nsYDIbCgydO\n5jsRGQqUFJHrsUJn83OpY8gGEeH1evUYv38/W8+cyXc7fruXpGRJS665Xz84fTpfTfjt2AwGQ57x\nxMkMBv4EfgV6A4uAZ71pVLATXbw4z9asSe+tW4MzrHP99dC2rW37ZgwGQ+CSq5NR1RRVnaKqdwLx\nwAq/nOwIMB6tXp2klBRm5HOS3K9WlmXFuHHw7ruwZk2eq/r92AoBRn7ZYBeerC77TkTCRaQcsBqY\nKiKveN+04CZUhCkuueY/fCDX7HOiomD0aCvljJflmgMRI79s5JdzIr/yywkJCYSEhGSQYHY6a4Qn\n4bKyrj0xtwMzVbUVcJ13zSocNC1ThvsrV2ZgPuSaA2LeokcPCA+3sgHkgYAYWwEw8stGftlb8ssA\n1apVyyDB7J501RFyUzXDmoupAnwFtHJd22Cncpo3DvxYHdGdpORkjfn5Z/3yr7/yVG/p0qXeMchu\ntm615Jp37/a4SkHH5s/vvZFfNvLLqt6TX878vuVEdv8nOCC//C9gA/Cm67wOMMdOI7xx+PMHTWa+\nOHJEa/38s54OVrnm//s/1Ztu8plcsz+/90Z+2cgvq3pPfnnp0qVatGhRrVSpktaqVUsff/xx/5df\nVtWPVfVyVe3rOt+hqlkLIRjyRafy5Ynzslyzozz1FOzeDR9/7LQl6UhCQoGP/GDklz3HyC//XdZT\n+eUGDRqwfv16fv/9d7799ltWr17NwIEDs/2d+IJcE2SKSA1gAnCV69L3WKn/93vTsMJGmlzzvytV\norFLajUn/C53WU4ULWqlnLnzTmt5cy5yzb4Ymzr0uzPyy3nDyC/nTX65UqVKVKpUCYCYmBjGjBlD\nly5dmDRpUpZ9+QJPJv6nA58DVV3HfNc1g41Ucsk190pM9Ipcs+O0bg233GKlnSnEGPllezDyy561\nBd5f1JAbHunJqOp0Vb3oOmYAFXOrZMg7D1auTMmQEF73QK45YJ5i3Bk1ChYuhB9+yLFYQI7NQ4z8\nsoWRX/aO/HJCQgJ79uxBVdm3bx+DBg3i1ltvzbftduCJk/lLRO4TkVARKSIi9wJZr70zFAgRYXL9\n+ozYs4d9Nss1+wVpcs29e9sq1xxoGPllI7/sLfnltWvX0qZNG0qXLk2bNm1o0qQJEyZMyNYuX+BJ\nFuaawEQgznVpGfCoqvp1hkd/zcLsCf/bvZvVp07xWQ5yzQE1J+OOKtx6KzRvbiXTzAKjJ2Pklw3e\nxy+yMLsyLo9U1a6qGuU6bvF3BxPoDIqOZtvZs8zNZrNWQOMu15yY6LQ1fkugOUkjv2zIjhz/ClQ1\nGagpItk/9xpsp1hICFNiYxmwbRsnsolVB+RTTBo1asBzz1kpZ7IIbwT02GwiEOWXK1WqRN26dQkL\nC/vHnI+h8OJJuOxd4BKsFWZpuelVVcd52bYCEcjhsjR6JyYSKsIbNsg1+x0pKdaKs9694aGHbG06\nGMJlBoO38YtwmYsdwEJX2dKuo0yONQy2MLp2beYdOcKyLBInBnx+rzS55iFD4PDhDLcCfmwGgyGd\nXDdjqupwABEppar5U6Ey5IuIsDBeqVuX+MRE1gSjXHPjxvDAA/D44/DBB05bYzAYvIAnqf6vFJHN\nwBbXeWMRecOTxkWkk4hsEZFtIjIomzITXPfXi0hTT+qKyKMi8puIbBSR0Z7YEqj8KyqKmOLFGZtp\ng1vQzFsMGwa//AJffpl+KWjGZjAYPEqQuQKIBta6XdvkQb1QYDsQA4QB64AGmcp0Bha5Xl8BLM+t\nLtAe+BoIc51HZdN/lsnfApHdZ89q+R9+0K3ZJLoLeBYvVo2JUXXLLFsQAHOYwxweHNn9/6gvE2Ri\n9Zh5ybInKlStgO2qultVLwKzgFsylbkZeMfVxy9AhIhUzqVuX2CU6zqq+qcnYwhkahYvztBMcs1B\nNW9xww3Qpg0MHw4UfGx2/oN441i6dGmB20hNVd58U6lQQZk5M+O9E+dOUH1cdRJ2JQTs+Pz5CKbx\n+QJPnMxeEWkDICJFReRJ4DcP6lUD3GM8+13XPClTNYe69YCrRWS5iCSISN6y/AUoj1arxsnkZGZm\nmiQPGsaNg5kzIZtMtoa/OX4cunWDSZPgxx8hsyZVeLFwJt44kd4LenMuOQgzRxgCCk+cTF/gEawP\n+QNAU9d5bnjqJvO6VK4IEKmqccBTwOw81g9IioSEMLV+fZ7esYM/L1wIvnmLihXT5ZrbtW3rtDVe\npSDv3YoV0KwZVKoEy5dD/fpZl7vlkltoWLEho34Yle++8kvQ/W1mItjHZze5ri4DWqjqv90viEgf\nILfc0QcA99zZNbCeSHIqU91VJiyHuvuBTwFUdaWIpIpIeVX9K7MBPXv2JCYmBoCIiAiaNGmS/geS\nFpIJtPP7qldn4I4dPOR6onHaHlvPa9akXZky8NprJDRp4rw9fnT+7bcJfPwxzJnTjkmToFy5BJYv\nz7n+3aXupt+qftx12V38sekPvxqPOfef84SEBGbMmAGQ/nlpKx7E7JYBHdzOnwa+9KBeEaw9NjFA\nUXKf+I/j74n/bOsCvYHnXa9jgb3Z9K/BSJpc80su1cOgIzFRl4aHq+7Z47QlXiOv8tJ//KHaubNq\nXJzqrl156+v1Fa/rVdOu0pTUfypxeouAkQbPJ8E+PhyY+L8ZeEFE2orIC1irwG72wHklA/2BxcBm\n4CNV/U1EeotIb1eZRcBOEdkOTAb65VTX1fQ0oLaI/Ap8CNzvwRiChlKhobxRrx7j9u/nTEqK0+bY\nT2ysJW72yCPgo4lJf+a776zw2GWXwfffQ16/aPZp0Yfk1GTeWvOWV+wzGHIj17QyACJSEVgCrAIe\nVE8qOUwwpJXJie6bNxNTvDijatd22hT7uXABmjaF55+3HE4hJCUF/u//rMn96dPBpTKcL349/Csd\nZnZgfZ/1VClTxT4jDUGJ3WllsnUyIpJExsn7osBF/l5fnbV2qJ8Q7E7m8IULNFq5km8aN+ZyD+Sa\nA45ly+Bf/4JNmyAiwmlrfMrBg3DPPVbC6vfeg6pVC97m0CVD2X5sOx/d+VHBGzMENT7LXaaqpVW1\njNtRzO2aXzuYwsBvy5YxslatoJRrTkhIgCuvhJtvDkq55rRJ16z48ktLaufaa+Hrr+1xMADPXv0s\naw6tYeHWhfY0mAM5jS8YCPbx2U2QJcMqXDxYpQrFQ0J40wO55oBk1CiYP9/aDBLkXLwITz8NvXrB\nRx9ZSgihofa1XyKsBJNumsQjix4h6UJS7hUMBpvwaE4mEAn2cFkaW06f5qq1a1nbogU1ihd32hz7\n+eQTK7/Z2rVQtKjT1niF3bvh7ruhQgWYMcP66S16fNaD8iXKM66jXyt1GBzEiVT/Bj/mklKleLR6\ndR7dts1pU7zDHXdAnTowZozTlniFOXOgVStrB//nn3vXwQC8fMPLfPDrB6w+uNq7HRkMLjzJwlwu\niyPMF8YZssc9Ljw4OprEs2eZ+2dwpHHLEPMWgddfh1dfDRq55oSEBM6dg3794KmnYMECGDgQQnzw\nla9CyQq8dP1L9Jrfi+RUT1IQ5p1gn7MI9vHZjSd/1muAI8A213EE2CMia0SkuTeNM3hGmlzzoznI\nNQc0NWrAs89Cnz5BsXdm716Ii4MjR6woYKtWvu3/3svvpVyJcry6/FXfdmwolHgivzwV+ERVF7vO\nbwDuBKYDr6qqj/9FPKOwzMm4E5+YSFERJgarXHNcnPX1/4EHnLYm38ycCU88Ye2BiY+3HtScYPvR\n7cS9Fceq+FXERMQ4Y4TBL/HZPhm3Djeq6mWZrv2qqo1EZJ2qNrHLGDspjE7m2MWLNFy5kjkNG9K6\nbFmnzbGfdeugY0f49VcroWYAkZRkJTFYsQJmz4ZGjZy2CEb9MIrv937Pon8vQpzydga/w4mJ/0Mi\nMkhEaopIjIg8DRwWkVAg1S5DDHkjq7hwZJpc89atXEwN3Lcm25h3kybQo4c1gRFArF8PLVpYS5JX\nrYK//kpw2iQAnrzySfaf3M9Hm+zdoBnscxbBPj678cTJ/BsrC/JnwFwslczuWOqV3bxnmiE/dIuK\nIrpYsX/INQcNw4ZZ2QAWL3baklxRhTffhOuus6aUpk2DUqWctupvwkLDmNp1KgMXD+TY2WNOm2MI\nUjwJl9VS1V2ZrrVU1ZVetayAFMZwWRq7z56lxerV/NysGfVKlnTaHPtZvBj69oWNG8FPx3f8ODz8\nMOzYYW2u9Odpsv6L+nM++TxTb57qtCkGP8CJcNkcEanuZsA1WJP+Bj8lpkQJnqlZkz5ucs1BRceO\n0Lq1lUDTD/nlFyu/Z5Uq8PPP/u1gAEZ2GMmXO77k+z3fO22KIQjxxMn0Bj4Tkcoi0hmYANzoXbMM\nuZFbXHhAtWocT07m3QCUa/Yo5v3KK1Z64nXrvG6Pp6SmwtixVsq1cePgtdcgqyQM/hbTDy8WzoRO\nE4ifH8/55PMFbs/fxmc3wT4+u8nVybjCYgOAr4HhwPWqGqQB/+ChSEgIU+rX5ymXXHPQUbEivPii\nlezLD3R1/vwTunSxdvCvWAG33ea0RXnjtga30SCqAaN+9L1csyG4ySnV//xMlxoAh4DjWKn+cxUu\nc5LCPCfjzhPbt/PnxYvMbNDAaVPsR9VKV3zbbTBggGNmJCTAvfdax4gREBag+TD2n9xP08lN+b7n\n9zSICsK/F4NH+FJPpl0WlxUQLCfznV1GeAPjZCySkpO5bOVK3qpfn+vKlXPaHPtJTIQ2bayt8zVq\n+LTrlBTLqUyebCW27NjRp917hYkrJjJ702wSeiYQIia1YWHEl3oyCVkc36X9tMsAQ/7wNC5cukgR\n3oiNpc/WrZz1g7CSJ+Qp5l2/Pjz2mM/lmg8cgA4d4IcfYM2avDkYf47p923RlwspF3h7zdv5bsOf\nx2cHwT4+uzFfVQoBncuXp3mZMozYs8dpU7zDoEGwfTt8+qlPuvviC2tzZYcO8NVX1iqyYCE0JJQp\nXacw9Nuh/J70u9PmGIIAoydTSPj9/HkuX7UqeOWaf/wR7roLNm8GL6XUuXABhg6FWbPg/ffh6qu9\n0o1fMOSbIew6votZd85y2hSDj/FZuExEpojIbSJSxq7ODM5RuVgxXqhVi/gglGsG4KqroGtXGDLE\nK83v2gVt28KWLdb0TzA7GID/XvNfVh1cxaJti5w2xRDg5BQumwY0ARaJyLeu/GWNfWSXIRfyExd+\nqEoVwkJCmHTwoP0G2Ui+Y94vvgjz5llpZ2zkk0/giiss9Uo7hMUCIaZfIqwEk7pMot/CfnmWaw6E\n8RWEYB+f3eQ08b9cVYepalusHGX7gCdEZJ2ITBcRk7cswAgRYUpsLMN372b/uXNOm2M/EREwfryV\nQ9+GvUFpwmKDBsHChfD4486l5neC62pfx9U1r2bY0mFOm2IIYPI8JyNWTvDmQEdVfcErVtmAmZPJ\nnmG7drHh9GnmXnZZ7oUDDVUrbNa6tTWBkk+2bLGmeC65BKZM8do0j9/z5+k/uezNy1j070U0r2o0\nCgsDTuQuy4BarPJnB2PImSHR0fx2+nTQyDVnIE2u+ZVXYOvWfDXxzjvW/Msjj1iT/IXVwQBElYpi\nzHVjiF8Q7zW5ZkNwY5YwBygFiQsXDw1lcv36DNi+nZN+KNdc4Jh3zZr5kmtOSoL774fRo+Hbb72n\nXBloMf37G99PRPEIJvwywaPygTa+vBLs47Mb42QKKddERNAxMpJndu502hTv8OijcPKk9VjiAevW\nQfPmVkqYlSv9Q7nSXxARJt00iZE/jGT38d1Om2MIMDzRkykFDASiVbWXiNQD6qvqAl8YmF/MnEzu\nHHXJNc9t2JC4YIwJrV0LnTpZujNRUVkWUbXSwjz3nLVm4J57fGxjADHyh5H8uPdHFv57oZFrDmKc\nmJOZDlwArnSdHwTMfEwQUC4sjHF16tArwOWas6VpU7jvvmzlms+ft0JiEyfCTz8ZB5MbT175JHtP\n7GX2ptlOm2IIIDxxMnVUdTSWo0FVT3vXJIMn2BUXvrtiRaoXK8bLfiTXbGvM+/nnrWwAX3+d4fLv\nv1sJnP/6y/fCYoEa0y8aWpSpXafy+OLHc5RrDtTxeUqwj89uPHEy50WkRNqJiNQBCq5sZPALRIQ3\n6tVj7L59bD9zxmlz7KdUKXjjDWsRgGt8q1ZBq1Zwww3WRssyJqeFx7Su0ZrbLrmNQd8MctoUQ4Dg\nyZzMDcBQ4FIs4bI2QE9VXep98/KPmZPJG2P37uXLo0f5unHj4Iy3d+8ONWvy3mUv8vjj1t6XQBMW\n8xdOnDtBwzca8uEdH9K2ZlunzTHYjM/0ZDJ1WgGIc50uV9UjdhngLYyTyRvJqam0XLOGgdWrc1/l\nyk6bYzspBw9ztm4j7ir3NaO/bEww7kP1JZ/+9ilDvx3Kut7rKFakmNPmGGzEqc2YxYBjwCngUhEJ\n8vSA/o/dceEiISFMjY3lyR07OOKwXLPdYzt2DDo/UIkpMSOZVymeyxo4q6sTDDH92y65jdjysbz4\n44v/uBcM48uJYB+f3eTqZERkNPATVsjsSeAp12EIMlqEh/PvSpV4YscOp02xjc2brfmXSy+FAese\npEjp4tYcjaFAiAgTb5zIayteY8uRLU6bY/BjPJmT2Qo0UtWAmuw34bL8kZScTMOVK5l2ySV0iIx0\n2pwCMX8+PPQQjBkDPXu6Lm7ZYuWMWbPG53LNwchrv7zGx5s/NnLNQYQT4bIdQNH8NC4inURki4hs\nE5Esl6OIyATX/fUi0tTTuiLyhIikikgQCtc7R+kiRXi9Xj16JyYGjFxzZlThhRegb1/L0aQ7GLAy\nXvbvbx3mS0iB6deyH+dTzjNt7TSnTTH4KZ44mbPAOpeI2WuuI9ckRiISCkwEOmGtTOsuIg0ylekM\n1FXVekA88KYndUWkBnA9EKR6wrnjzbhwlwoVaOagXHNBxpaUBN26Wc5lxQpLB+YfDB5sJc+cOzff\n/RSEYIrph4aEMqXLFJ5Z8ky6XHMwjS8rgn18duOJk/kcGAEsA1a7HbnRCtiuqrtV9SIwC7glU5mb\ngXcAVPUXIEJEKntQdxzwtAc2GPLJq3XrMvXQIX5NyptglZPs2gVt2kDp0pCQAFWrZlOwWDFrDfOA\nAXDihC9NDEoaV27MA00e4PHFjzttisEPybOejMcNi9yJpTnTy3V+L3CFqj7qVmY+MEpVl7nOvwEG\nATFAp6zqisgtQDtVfVxEdgHNVfVoFv2bOZkCMvngQaYfOsRPzZoR6ud7Z5YutbbCPPOMlRvTI3Pj\n462MmK+/7nX7gp0zF89w2RuXMbHzRDrX6+y0OYYC4LM5GRH52PXz1yyODR607eknvMeDcWUeeAZw\nl+rz70+/AKZXlSoUEfFruWZVK/dY9+7w/vvWw4nH/nD0aCtk9vPPXrWxMFAyrGS6XPPpCybzlOFv\niuRw7zHXzy7884PcEwdyAHBfvlMD2J9LmequMmHZ1K2D9ZSz3rUrvTqwWkRaqeofmQ3o2bMnMTEx\nAERERNCkSRPatWsH/B1XDdTz8ePH+2Q8U1q25Oq1a6m4aRNRRYv6ZHzuMe+cyl+4ALNnt+OXX2Dc\nuARCQwHy2N8rr0CvXiS88gqEhfnV+ALtvChFuSr6Kh4Y/wD9WvVz3B5vnQfb+5eQkMCMGTMA0j8v\nbUVVczyA0Z5cy6JMEayVaTFYq9PWAQ0ylekMLHK9jsPKJuBRXVe5XUC5bPrXYGbp0qU+6+u5nTv1\ntl9/9Vl/nozt4EHV1q1Vb79d9dSpAnSWmqraubPqCy8UoJG84cv3ztccTjqsEX0idPXB1U6b4jWC\n+f1TVXV9dubqGzw9PHEya7O49qtHjcONQCKwHRjiutYb6O1WZqLr/nqgWU51s2h/Z2F1Mr7kbHKy\nxi5frnP/+MNpU1RVdcUK1erVVf/3P9WUFBsa3LVLtXx51a1bbWjMMH3tdG0+ubleTLnotCmGfGC3\nk8l24l9E+gL9sEJU7lvAywA/qapfq2+YiX97STh2jPu2bGFTy5aEF8kpyupd3n3XkoeZOhVuvdXG\nhseNg4UL4ZtvvKO5XIhQVTrM7EDX2K483tqsOAs0fLkZ8wOgK9YS5i5uR3N/dzCFAfe4sC9oFxnJ\nDZGRDN21y+t9ZTW25GR48klLHmbpUpsdDFgrBo4fh5kzbW74n/j6vfM13333HZO6TOKFH15gz/Hg\n28oW7O+f3WTrZFT1hFr7VO4GIrH2tHTFmmw3FEJeqlOHT/78k19OnvRpv8eOwU03wYYN1gZLr2RQ\nLlLEejx6+mn4808vdFC4iC0fy3/i/sMjix7BRBQKN57kLnsM6AV8irXK7FZgqqrmuuvfSUy4zDt8\ncPgwL+7dy+rmzQkL8X6uqs2b4ZZb4OabrRXHXo/UPfGE5WR88EQT7FxIuUDTyU0Zds0wujXs5rQ5\nBg/xuZ6MiPwKxKlLdllESmGtAmtklxHewDgZ76Cq3LhhA+0jIxkUHe3VvubNg169YOxYuP9+r3b1\nN0lJ1qPS1Klw/fU+6jR4WbZvGXfOvpNN/TYRWSKwE64WFpzSk0nN5rXBIZyKC4sIb8bG8tLevew4\ne9YrfXz7bQIjRlg5LBcs8KGDASsnzRtvWNk1vSRHHewxfffxXVnjSm6pfwuDvxnsnEE2E+zvn914\n4mSmA7+IyHAReR5YDpiUq4WYWiVKMCg6mj5bt9oeb09Ksib3Fy2y5l9atbK1ec/o3BlatIARIxzo\nPPgYdd0oFmxbwA97fnDaFIMDeCq/3By4Cmun/w+qutbbhhUUEy7zLmlyzU9Ur869Nsk179plzb+0\nbGk9TBRzUtX399/h8sutJc2XX+6gIcHBnM1zeG7pc6ztvdbINfs5Pg+XiUgcsE1VX3VN9u8QkawS\nqBsKEUVCQphio1zzt99C69ZWzsq33nLYwQBUrmyJ0sTHQ4Dq6vgTtze4nbrl6jL6p9FOm2LwMZ6E\nyyYBp9zOT7uuGRzEH+LCLcPDubtiRZ7auTPfbajCa6/Bv/8NH3xgzcN8912CfUYWhIcesrI0v/mm\nrc36w3vnTbIan4jweufXmfDLBBKPJPreKBsJ9vfPbjya+HePO6lqChDqNYsMAcWIWrVYcuwY3x47\nlue658/Dww9bC7l+/hmuvdYLBhaEkBBLd+b552F/5tyuhrxSo2wNnrv6OeIXxJOqZv1QYcGTJcxz\ngaVYqpUC9AXaq6rde65txczJ+I75R44wcMcONrRoQYlQz75/HDoEt98O1arBjBnWoi6/ZfhwWL/e\nMSXNYCIlNYW4t+Po07wPDzV7yGlzDFngxBLmPkAbrLT8+7GyJcfbZYAh8OlaoQJNSpfmBQ/lmtNW\njd10E3z8sZ87GIAhQ+C334yTsYHQkFCmdp3KkCVDOJx02GlzDD4gVyejqodV9S5Vreg6umsW2i0G\n3+JvceFX69Zl8qFDbMxFrnnmTOjSxRIae/bZrHNR+tvYKFYMJk+28pvZkFLH78ZnM7mNr0nlJvRs\n0jNg5ZqD/f2zm5yUMQe5fr6WxeHXKWUMvqdqsWKMiIkhfutWUrMIUyYnW9mTR4ywElzecosDRhaE\na66Bjh0tfWdDgRl2zTCW71/Ol9u/dNoUg5fJKdV/V1WdLyI9s7itqvqOVy0rIGZOxvekqtJ27Vru\nrVSJvtWqpV8/ehTuust6apk1C8qVc9DIgnD0KDRsaIXN4uKctibgWbx9MX0W9mFj342UKlrKaXMM\nLnyeuyxQMU7GGTadPk27detY36IFVYsVY9Mm66nl1lvhxRd9kODS28yaZe2fWbPGWt5sKBD3fHoP\nVUtX5aUbXnLaFIMLJzZj1heRqSLytYgsdR3f2mWAIX/4a1y4YalS9KlalQHbtvHZZ9C+vbU4a+xY\nzx2Mv44NsB7Jqle3BpRP/Hp8NpCX8b3S8RVmbpjJ2kN+n0QknWB//+zGk3/7j7GWL78FpG19No8I\nhmwZUiOa6K9WkTDtCF8srEDLlk5bZCMiVs6bli3hX/+CunWdtiigqViqIqM6jCJ+QTzLH1pOaIjZ\nghdseLJPZrWqNveRPbZhwmXOkJQEPXrAlhLHON5nC1viWlIm4GNkWTB2LHz5JXz9tZFrLiCqyrUz\nr+XW+rfyWNxjTptT6HFin8x8EXlERKqISLm0wy4DDMHDzp1W/rHISFjzdiQdK0TyrA/kmh3hP/+B\nv/6C995z2pKAR0SY3GUyI74fwd4Te502x2AznjiZnsCTwDJgtetY5UWbDB7gb3HhJUvgyiuhd28r\nTUyxYpZc80d//MGKPO4t8bexZUmaXPNTT8GRI3mqGhDjKwD5GV9s+Vgeu+KxgJBrDvb3z2482YwZ\no6q1Mh21fWGcwf9RhQkT4J57rIVX/fv/HT0qHxbGy3XrEp+YyMXUIMxV1aIFdO9uSTYbCsygqwax\n89hO5vw2x2lTDDZiljAb8s3585aA5OrVllRyTMw/y6gqnTZsoENkJE97Wa7ZEZKSrL0z06ZBhw5O\nWxPw/Lj3R+765C429dtERPEIp80plDglv2wwZODQIWjXDk6dgmXLsnYw8Ldc85i9e9npJblmRyld\nGjfwNgQAABv2SURBVF5/3YoTBuP4fMxV0VfRNbYrQ74Z4rQpBpswTiZAcTIu/MsvVoLLLl1g9mwo\nlctm7dolSvB0dDR9PZRrDriYd5cu0KyZx3LNATe+PFLQ8b143Yt8vvVzftz7oz0G2Uywv39248lm\nzOYi0izTUUdEgnBdqiE33nkHuna1vrwPHer56t3Hq1fn9wsX+OCPIM2t+uqr1kKAX3912pKAJ6J4\nBOM7jqf3gt5cSCm46qrBWTzZJ7McaA5scF1qBGwCygJ9VXWxVy3MJ2ZOxl6Sk62FVAsXWvMvDRrk\nvY0VJ09yy8aNbGzZkvLBmJJl8mRLHOennyzBM0O+UVVunnUzV1S7gmevftZpcwoVTszJHASaqGpz\n16bMJsBO4HpgjF2GGPyXv/6CTp0sSZVffsmfgwFoFR5Ot6gontqxw14D/YVevSA0FCYZdfKCkibX\nPH75eLb+tdVpcwwFwBMnU19VN6WdqOpm4BJV3YFJL+MYvooLb9xozb80a2Y9xURGFqy9/6tVi2+O\nHWNpDnLNARvzTpNrHjYMDhzItljAjs9D7BpfdNlonr36WXov6O1Xe2eC/f2zG0+czCYReVNErhGR\ndiLyBrBZRIoBF71sn8FB5s61Elw+/zyMGWN9SS8oZYoUYWK9evTeupVzKSm5Vwg0Lr3UWtf96KNO\nWxIUPNrqUZIuJDFj3QynTTHkE0/mZEoC/bAkmAF+At4AzgGlVPWUVy3MJ2ZOJv+kploLpd5+Gz79\n1NpzaDd3bNzIpaVKMaJWLfsbd5pz56BxYxg92tI4MBSItYfW0vG9jmzst5GKpSo6bU7Q43M9GRFp\nrqqrM13roqoL7DLCGxgnkz9OnbISXB4+DHPmQOXK3unnwPnzNFm1ioQmTWiY2xroQCQhAe67DzZt\ngvBwp60JeJ766ikOJR3ivdtNrjhv48TE/1QRaeRmQHfgv3YZYMgf3ogL79xp5R8rXx6+/dZ7Dgag\nWrFi/C8mhvjExH/INQdFzLtdO7jhBmuddyaCYnw54I3xDW83nJ/2/cTi7c4vZg32989uPHEydwLv\niMglItILK3R2vXfNMviatASXfftac9fFinm/z95Vq6LA1EOHvN+ZE7z0EnzyibUkz1AgShUtxZs3\nvUnfhX05c/GM0+YY8oBHuctEpD7wGbAHuF1V/f5dNuEyz1C19hGOHg0ffmh9AfclG5OSaL9+fbpc\nc9DxwQeW7vTq1Uau2Qb+Peff1AivwejrRzttStDiszkZEcm8dbkicBy4AKiqXm6XEd7AOJncOXcO\n+vSBdeusDZY1azpjx7M7d5J49iwfN2zojAHeRBVuvNFapjdokNPWBDyHkw7T6M1GfHXfVzSp3MRp\nc4ISX87JdM10XAF0dL2+2dMORKSTiGwRkW0ikuV/mYhMcN1fLyJNc6srIi+JyG+u8p+KSFlP7QkW\nChoXPngQrrnGyun400/OORiAoTVrsi4pifkuXZaginmLwJtvWqEz1ybUoBpfFnhzfJVKV7LkmufH\nk5LqzBL4YH//7CZbJ6Oqu3M6PGlcREKBiUAn4FKgu4g0yFSmM1BXVesB8cCbHtT9Cmioqo2BrYBJ\n2ZoHli+3NljeequlAeP04q4SoaFMjo2l/7ZtJCUnO2uMN6hVy3qK6dPHerIxFIgHmz5IybCSvL7y\ndadNMXiAV/VkRKQ1MExVO7nOBwOo6otuZSYBS1X1I9f5FqAdUCu3uq7rtwF3qOq9ma6bcFkWzJgB\nTz9tyZ906eK0NRnp+dtvRIaF8Urduk6bYj8XL0LLlvDkk3DvvbmXN+RI4pFE2kxrw9rea6lRtobT\n5gQVgaYnUw3Y53a+33XNkzJVPagL8CCwqMCWBjnJyZYs/ciR8N13/udgAMbWqcOHhw+zMo9yzQFB\nWJiVpfnJJ/Ms12z4J/Ur1GfAFQMCQq65sOPtdP2evvv58poiMhS4oKofZHW/Z8+exLjUtCIiImjS\npAntXMun0uKqgXo+fvx4j8dz6BB06ZJAaCisWNGOiAjn7c/ufOwll9D9ww+ZXK8eoSEhjttj+/nd\nd5Nw770weLB/2OOFc/c5C2/2F5cSx6yjs/j0t08p/0f5oBufL8czY8YMgPTPS1tRVa8dQBzwpdv5\nEGBQpjKTgLvdzrcAlXKrC/TESnFTPJu+NZhZunRprmVSUlQnT1atUEH1uedUk5O9b1dBSU1N1eZT\np+pLe/Y4bYp3OHlSl0ZFqS5Z4rQlXsOTv027+GHPD1rt5Wp6/Oxxn/Xpy/E5geuz0zY/4O05mSJA\nItABSzJgBdBdVX9zK9MZ6K+qnUUkDhivqnE51RWRTsDLwDWqmmXsobDPySQmQnw8nD9vRWkaNcq9\njr+w4+xZrli9mpXNm1OrRAmnzbGf+fNh4EDYsAGCcXw+pvf83oSGhPLGTW84bUpQEFBzMqqaDPQH\nFgObgY9cTqK3iPR2lVkE7BSR7cBkrIwC2dZ1Nf0aUBr4WkTWujJDG4ALF6zklm3awB13WMuTA8nB\nANQpUYKnoqPpt21bcMbbu3aFJk3ghRectiQoGH39aOYlzmPZvmVOm2LICjsfi/zpoBCGy5YtU23Y\nUPWmm1QDOdq0dOlSvZCSopevWKEf/P670+bYztKlS1UPHLDimL/+6rQ5tuNEOOmjjf/f3pmHV1Fe\nf/xzsoAIsoaibKIQMAQUiCDUBS1CERHUKu7UDRAUqCiCUhWsFVHAihIhoL9atApStVJEBSqoCBq2\nCKhsCgpKVBRBfuy8/eOdtDHem9wkM3fuTM7nee7D3Lnzzpwz7/CezLuc70yTOTnTHDh8wPNraXdZ\n6T6qERsC9uyx8iWXXgr33mt7Yxo39tuq8pGalEROixYM27yZ7w+FULaofn37ytm/v9VWUMrF5S0v\np0nNJjy65FG/TVGK4OmYjJ9UlDGZOXPg1luha1e7qLx2bb8tcpfBGzey78gRpp9yit+muM/Ro3D2\n2XbdzMCBflsTeLbu2kpWThZLb1pKep10v80JLHHXkwkqYQ8yO3bAkCGwapXNmnzeeX5b5A27Dx8m\nMzeX5zIy6Fyzpt/muM+6dTYraV6efbtRysVjSx9jzoY5LOy7EBHX2skKRaAG/hX3MQamT4dTTllE\ns2Z2glLYAkzhdQjVC+Sa168PjVxzYf/IzLTpZoYM8c0et/mZf3Fm8BmD2X1gN8/mPevZNfz0L4ho\nkAkQGzbYgJKTA+PH29X7FWEGbO+0NFpWrcrYL77w2xRvGDXK/rXwz3/6bUngSUlKIeeiHEYsGMG3\ne7/12xwF7S4LBIcO2fGWiRPhj3+0g/zJyX5bFV8K5JoXt2lDS78zenrB229b3et16+C44/y2JvDc\n+dad5O/NZ8YlM/w2JXDomEyMhCXIfPAB9OsHDRvajPF+puT3m8nbt/PiN9+wuE0bksLY337jjTbA\nPP6435YEnr0H95KZncm0i6bRtakK+ZYGHZOpIOzZA0OH2nT8d98Nc+f+PMCEuV84mm+31K/PYWOY\nHnC55qh19+ijMHMmfPhhXO1xm0R4NqtWqkr2hdncMvcW1+WaE8G/IKFBJgGZOxdatYLdu2HtWrjq\nKqt9VdFJFiGneXP++PnnfH3ggN/muE+dOjBhgn11DePaoDjTI70HHRp04IHFD/htSoVGu8sSiPx8\n+/aSmwtTp8L55/ttUWJyz2efsXnfPmaGVa65e3fo0sUK/yjlokCueUHfBZxaL6EV4xMG7S4LIcZY\nEbHWrW2X2Jo1GmCK494TT2TFnj3M3bnTb1Pcp0Cu+ZFH4LPP/LYm8NSrVo+HujxEvzn9fJNrruho\nkPGZTZtsQMnOhjffhHHj4NhjSy4X5n7hknyrkpzM1BYtGLRhQyDlmkusu5NPtm8xAwcGUq450Z7N\nG9veSOXkyjy1/ClXzpdo/iU6GmR84tAhePhh6NgRLrwQli2Dtm39tio4dKlVi3Nr1uS+LVv8NsUb\nbr/dpnX4e0Q9PqUUJEkSU3tOZfSi0Xz545clF1BcRcdkfCA3147tHn+87Rk56SS/LQom3x08SKvc\nXOaeeipZYVxb8uGH0KuXXTtTp47f1gSeMYvGsGrHKl698lW/TUlodEwmwPz0k/0D9aKLYPhwmDdP\nA0x5SKtUiUeaNqXf+vUcDmMm4w4d4Ior7MOilJuRZ41k/c71vPLJK36bUqHQIBMn5s2z05J37rTT\nkq+5pnzTksPcL1wa366rV4/aKSk8vn27dwa5TKnq7sEHYcECmxEgICTqs1k5pTJTe05l8LzB/Lj/\nxzKfJ1H9S1Q0yHjMN9/A1VfbdPw5OfC3v0Famt9WhQcRYUrz5ozdupUt+/b5bY77HHccPPkkDBgA\n+/f7bU3gOefEc7ig2QXcs/Aev02pMOiYjEcYYwPKXXdB374wejSEMeVWojB261be+fFHXm/dOpwp\n3i+7DDIyrNCZUi5+2PcDmdmZ/KPPP+jUqJPf5iQcmrssRvwMMps32+ztO3fatPzt2vliRoXi0NGj\ntFuxglGNG3NlvXp+m+M+X30Fp50GixZZeQClXMxcO5MH332Qlf1Xkpqc6rc5CYUO/Ccwhw/bNXRn\nnAHdutnJQV4FmDD3C5fFt9SkJKY1b86wzZv5IcFTspSp7urXhwceCIRccxCezT6ZfWhUvRHj3x9f\n6rJB8C+R0CDjEitWQPv2MH++DS7Dh0NKit9WVSw61qjBpWlp3BXWlfIDBth+2Jwcvy0JPCJC9oXZ\nTFg6gY07N/ptTqjR7rJysncv3HcfPPecTaJ73XWazNJPCuSan8/I4JwwyjWvXWuV61Su2RUmLp3I\n3I1zWXDdgnCO5ZUB7S5LIN56y+Yby8+3//f79tUA4zfVU1KY1KwZ/dev50CCdyuViVat7BvN0KF+\nWxIKhpwxhF37dzHjIxU38woNMmXgu+9sQOnf3+Yce+45qFs3vjaEuV+4vL5dUrcuGVWrMnbrVncM\ncply192oUbB6NcyZ44o9bhOkZzMlKYWcnjkMnz88ZrnmIPmXCGiQKQXGwPPP2z8m09Ls20v37n5b\npUTiiWbNmPzVV3yyd6/fprhPlSpWC+LWW626nVIusupncU3ra7jjrTv8NiWU6JhMjGzZYqclf/21\nnZbcvr1rp1Y84slt25j17bcsCqtc8w03QI0a8Je/+G1J4Pnp4E+0ym7F9F7TOf/kiq2zoWMycebI\nEXjsMTj9dDj3XFi+XANMUBjYoAEHjx7l6YDLNUdl/Hh48UWbcVUpF9UqVbNyzf+6hX2HQpg5wkc0\nyBRDXh506gSvvQZLl8LIkZCaIOu2wtwv7JZvySLktGjBqM8/Z0cCyTW7Vnd16thAk2ByzUF9Nnuk\n9yCrfhZ/eqf4rApB9c8vNMhEYN8+uOce6NrVTuT5978hPd1vq5SycGq1atx0wgn8YdMmv03xhmuu\ngV/9SrvMXOLx7o8zfeV0Psr/yG9TQoOOyRTh7bftrLG2bWHSJKv5ogSbfUeO0Co3lyfS0+kRRl2W\nzZttmoncXNWOcIGcFTk8s+oZlty4hOSkZL/NiTs6JuMRP/wAN99spyZPmACzZmmACQtVkpOZ0rx5\nYOWaS6RpU5tiIqByzYnGze1uJjU5lSnLp/htSiio8EHGGHjpJZtzsHJlK0LYq5ffVpVMmPuFvfCt\na+3anFOzJvcngFyzJ3U3bJid+vjCC+6fu5QE/dlMkiRyeuYwevFotu/+pU5R0P2LNxU6yGzbBr17\nw/33w+zZMHkyVK/ut1WKV0xo2pTn8vNZGca1JampNqfZHXfA99/7bU3gyaibwaDTBzF43mC/TQk8\nFXJM5uhReOopq/Fy22121ljlyvG1T/GHZ3fsYNK2bXzQrh0pSSH8G2vIEJtQ7+mn/bYk8Ow/vJ82\nU9owtstYLsm4xG9z4obqycRItCDz8cd2xifAtGnQsmWcDVN8xRjD+Xl5XFinDsMaNfLbHPfZvdv2\n/c6YYRd2KeVi8ZbFXPvKtawbtI7qlStGN0egBv5FpLuIfCoiG0VkRJRjJjm/54lI25LKikhtEZkv\nIhtE5C0RiSnV7oED9s2lc2e49lp4991gB5gw9wt76VuBXPNDPso1e1p31av7Ltccpmezc5PO/Lbp\nbxm1cNR/94XJv3jgWZARkWTgSaA70BK4SkQyihzTA2hmjEkH+gNPxVB2JDDfGNMcWOh8L5YlS+yU\n5NWrYdUqOwkn6D0lq1ev9tsEz/Dat/Rjj2VYo0bcunEjfrzJe153vXvbBHsPPeTtdaIQtmfzka6P\nMPuT2SzbtgwIn39e42VT2wHYZIzZYow5BLwI9C5yTC/gWQBjzAdATRE5voSy/y3j/HtxNAN274ZB\ng6BPHyuN/sor0LChW+75y65du/w2wTPi4dudjRqxdf9+Xvo2tsy7bhKXups0yQ48fvyx99cqQtie\nzdpVajOx20T6zenHoSOHQuef13gZZBoAXxb6vs3ZF8sx9YspW88Yk+9s5wNRBd0zM60k8tq18Lvf\nqdaL8j8qJSUxrUUL/rBpU8LLNZeJBg1gzJhAyDUHgStbXUnD6g2ZsHSC36YEDi+DTKz9ELE0/RLp\nfM7IftTrzJhhZ3XWqhWjJQFiSwKs9/CKePnWqUYNLklLY0Sc5ZrjVne33GIDzLRp8bmeQxifTREh\nu0c2498fz0frNeVMqTDGePIBOgJvFPp+NzCiyDFTgCsLff8U+2YStaxzzPHO9gnAp1Gub/SjH/3o\nRz+l/7gZC1LwjuVAuog0Ab4CrgCuKnLMa8BtwIsi0hHYZYzJF5GdxZR9Dfg9MM7599VIF3dzCp6i\nKIpSNjwLMsaYwyJyG/AmkAw8bYz5REQGOL9PNca8LiI9RGQTsBe4obiyzqkfBmaJyE3AFqCPVz4o\niqIo5SO0izEVRVEU/wnEapFEWtTpBR7596iIfOIc/7KI1IiHL5Hwwr9Cv98hIkdFpLaXPkTDK99E\nZLBTf2tFZJzXfkTDo2ezg4h8KCKrRCRXRHzTmi2nf8+ISL6IrClyfFjalmj+la5t8Wrg38UJBMnA\nJqAJkAqsBjKKHNMDeN3ZPgNYVlJZ4BHgLmd7BPBwyPzrCiQ52w+HzT/n90bAG8DnQO2w+AacB8wH\nUp3vdcNUd8Ai4LfO9gXA20Hzz/l+NtAWWFOkTODblhL8K1XbEoQ3Gd8XdXqMJ/4ZY+YbYwoWSHwA\n+LUM1av6A5gI3OW1A8XglW8DgbHOfowx8V8xavHKv6+Bgr9+awK/zKcfH8rjH8aYd4EfIpw3DG1L\nVP9K27YEIcj4vqjTY7zyrzA3Aq+X29Ky4Yl/ItIb2GaM8XPRgld1lw6cIyLLRGSRiJzuqtWx45V/\nI4EJIvIF8Ch2iYIflMe/4ghD2xIrJbYtQQgysc5M8GxRp8e46d8vC4mMAg4aY/5elvIu4Lp/IlIF\nuAe4vyzlXcSruksBahljOgLDgVmlLO8WXvn3NDDEGNMYuB14ppTl3aKs/sXcVgS0bYmpXKxti5fr\nZNxiO7bvvYBG2Ghb3DENnWNSI+wveDXPF5HjjTE7ROQE4BtXrY4dN/37WVkRuR7b59rFPXNLjRf+\nNcX2M+eJzRXUEFghIh2MMfGsR6/qbhvwMoAxJteZ2FDHGLPTRdtjwSv/Ohhjzne2ZwPT3TK4lJTV\nv5K694LetpTYfVmqtsWPAalSDl6lAJuxjUolSh686sj/Bh+jlsUOzhVkERiJf4NzXvnXHVgHpIWx\n/oqU92vg36u6GwCMcbabA1+Eqe6AlUBnZ7sLkBs0/wr93oTIA/+BbltK8K9UbUvcHS/jzboAWI+d\nKXG3s28AMKDQMU86v+cB7Yor6+yvDSwANgBvATVD5t9GYCuwyvlkh8m/Iuf/DB+CjId1lwrMANYA\nK4Bzw1R3wOnYAePVwFKgbUD9ewGbkeQAdlzjBmd/WNqWaP6Vqm3RxZiKoiiKZwRh4F9RFEUJKBpk\nFEVRFM/QIKMoiqJ4hgYZRVEUxTM0yCiKoiieoUFGURRF8QwNMkrCIiJNiqYZd+m8F0VLe15CuRoi\nMrDQ9/oi8pKLdnUUkZwi+84VkTluXaMUtvzeWa2uKOVCg4xS4TDGzDHGlEWjpRYwqNB5vjLGXO6e\nZVwAzHPxfOXhemySy5gRkWRvTFGCjAYZJRCIyMkislJEskTkWBGZJSLrHNGkZSKSFaHMFhEZLSIr\nROQjEWnh7L9eRJ5wtuuJyCsistr5dHT2DxORNc5nqHPKh4GmjtjWOBE5seBNyznnyyIyzxGrGlfI\njm4i8r5jxywRqRrFzd9gV4pHuwftnXtwkojUdYSx1orINMfX2kWOv1xEJjjbQ0Vkc6F7+Z6zfZ9Y\nAbE1IjLV2XcZdlX+8871jnHu+yIRWS4ibxSkg3f2PSYiucCQYitRqZBokFESHic4zAZ+b4xZgX2b\n2GmMyQTuBbKInDnWAN8aY7KAp4A7IxwzCSua1QYr0PSxE7Cux+pxdAT6iUgbrADVZmNMW2PMCH6Z\nvfY0oA/QGrhCRBqISBowCuji2LECGBbBxzTgkDFmT5R78GvHh17GmM+xGagXGGNaOfemcYRi72CF\np3D+/U5E6jvbi539TxhjOhhjWgNVRKSnMWY2sBy42hjTDjgCPAH8zhhzOvB/wJ+d8gYrrtbeGPNY\nJNuVik0QsjArFZtfAa8ClxhjPnX2nQn8BcAYs05EitOUedn5dyVwaYTfzwOudc5lgN0ichbwsjFm\nH4CIvIxtmF8rwdaFBUFCRD7GJhesBbQE3ncyRlcC3o9QthvwZpTzZgBTga7GmB3OvjNxxLCMMW+K\nSCRxqXwRqSYi1bDZdf8OnAOcBfzDOew3IjIcOBabc2st8C/nt4Ig2gLIBBY4PiRjc1oVMDOK3Yqi\nQUZJeHZhk/GdDXxaaH+sGiYHnH+PEP15j6SnIUV+jyXJ34FC24WvN98Yc3UJZbsDEyLsN1glycpA\nO34uEBXLPXgfuAGbJPE94CagEzBMRI4BJgNZxpjtInI/cEyRaxdcZ50x5tdRrrE3BjuUCop2lymJ\nzkHsG0hfEbnK2bcE2y2FiLTEdk+VlYVYuWNEJFlEqgPvAheLSBVn/ORiZ99PwHGlOLcBlgFnikhT\n5xpVRSS98EFiXw9ONcbkRTiHYANtT2CsiHR29he+B92wb0yReBcrfLYYmzH3PGC/88ZVEFB2Om87\nhScx7AGqO9vrgbqFxqtSnfuuKCWiQUZJdIwx5v+xjeztItITyMY2euuAP2G1LX6MVLbItomwPRQ4\nz+lyW47V21gF/BX4EBskphlj8owVDVviDJKPK+achY3/Dju+84KI5GHfLFoUOSwLGwAi+u/cg2+c\nezBZRNoDY4BuzsSDy4Ad2MBQlPewcrrvGKvL/oWzD2PMLmAatovsDWz6/QL+CkwRkZXYduIyYJyI\nrHZs7RTFXkX5GZrqXwkcIpKEHWw+4LwhzAeaG2MO+2xamRArY7vRGBOzzLKIVAKOGGOOiEgnYLIz\nSK8oCYWOyShBpCrwbxFJxXYnDQxqgAEwxvy55KN+QWNglhNwDwL93LVKUdxB32QURVEUz9AxGUVR\nFMUzNMgoiqIonqFBRlEURfEMDTKKoiiKZ2iQURRFUTxDg4yiKIriGf8BXhiPb7RqslIAAAAASUVO\nRK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa275160>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "66.429 % of nicotine is extracted.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.3: Page 502"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.3\n",
+ "# Page: 502\n",
+ "\n",
+ "print'Illustration 10.3 - Page: 502\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pylab\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "F = 8000;# [kg/h]\n",
+ "xF = 0.30;# [wt. fraction acetic acid]\n",
+ "#*******#\n",
+ "\n",
+ "# From Illustration 10.1 (Pg 494)\n",
+ "# Equilibrium Data:\n",
+ "# Eqb = [y_star*100 x*100]\n",
+ "Eqb = numpy.array([[0.18 ,0.69],[0.37 ,1.41],[0.79 ,2.89],[1.93, 6.42],[4.82, 13.30],[11.40, 25.50],[21.60 ,36.70],[31.10 ,44.30],[36.20, 46.40]]);\n",
+ "\n",
+ "# Solution(a)\n",
+ "\n",
+ "# From Figure 10.23 (Pg 503):\n",
+ "# For minimum solvent rate:\n",
+ "y1 = 0.143;# [Wt fraction of acetic acid in isopropyl ether layer]\n",
+ "xM = 0.114;# [Wt fraction of acetic acid in water layer]\n",
+ "# From Eqn. 10.24:\n",
+ "Bm = (F*xF/xM)-F;# [kg/h]\n",
+ "print\"Minimum solvent rate: \",Bm,\" kg/h\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "B = 20000.0;# [kg solvent/h]\n",
+ "yS = 0;\n",
+ "S = B;\n",
+ "# From Eqn 10.24:\n",
+ "xM = ((F*xF)+(S*yS))/(F+S);\n",
+ "# From Fig. 10.23 (Pg 503):\n",
+ "y1 = 0.10;\n",
+ "# Operating curve data:\n",
+ "# Operat = [YsPlus1 Xs]\n",
+ "Operat = numpy.array([[0 ,0.02],[0.01 ,0.055],[0.02 ,0.09],[0.04 ,0.150],[0.06, 0.205],[0.08, 0.250],[0.1 ,0.3]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,1]/100,Eqb[:,0]/100,label=\"Operating Line\")\n",
+ "plt.plot(Operat[:,1],Operat[:,0],label=\"Equilibrium Line\")\n",
+ "plt.grid('on');\n",
+ "plt.ylim((0,y1));\n",
+ "plt.xlim((0,xF));\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"Wt. fraction acetic acid in water solution\");\n",
+ "plt.ylabel(\"Wt. fraction acetic acid in isopropyl ether solution\");\n",
+ "plt.title(\"Solution 10.3\")\n",
+ "plt.show()\n",
+ "# From Figure scf(22):\n",
+ "xNp = 0.02;\n",
+ "Np = 7.6;\n",
+ "# By acid balance:\n",
+ "M = B+F;\n",
+ "E1 = M*(xM-xNp)/(y1-xNp);# [kg/h]\n",
+ "RNp = M-E1;# [kg/h]\n",
+ "print\"Number of theoretical Stages: \\n\",Np\n",
+ "print\"Weight of the extract:\",E1,\"kg/h\\n\"\n",
+ "print\"Weight of the raffinate \",RNp,\" kg/h\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.3 - Page: 502\n",
+ "\n",
+ "\n",
+ "Minimum solvent rate: 13052.6315789 kg/h\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEZCAYAAABvpam5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXu8VdP2wL+jk5T0cqX0knI9f1SeRcj1SlRIoaSIXFdF\nkbwueb+KxPVKOkW3lEQvlbodRaJ3XqFIqIu6pfTSOWf8/pjrnHbHPnuvc/Z7nfH9fNbn7LnWnGuO\nsdc+e+w5xxxjiqpiGIZhGCWhXKoFMAzDMDIPMx6GYRhGiTHjYRiGYZQYMx6GYRhGiTHjYRiGYZQY\nMx6GYRhGiTHjYZRZRKShiOSLSKn+D0Ski4jMiLdchpEJmPEwMh4RaSki80Vks4hsFJEPROTEOPfx\nJ0OjqqNV9fx49uP1tY+IvCki33l9nhmmzuMissE7Hotwr6NFZJGI/M97fz4UkZbxltkoe5jxMDIa\nEakKTAGeAWoAdYH7gV2J6jJB9y3KXOAq4L/AXpG8InID0B44zjvaeufC8RPQEfgL7v0ZC7yZIJmN\nMoQv4yEiWSJSR0QaFByJFswwfHI4oKr6hjp2qup7qvopgDjuEZE1IvKziIz0DM6f8OqcHVIeKCKv\necW53t/NIrJFRJqLSHcRmRdS/1QRWej9wv9ERFqEXMsRkQe8UdEWEZkhIn8JJ4eq7lbVoar6IZAX\npko3YJCqrlPVdcAgoHsx9/pNVb9Tl0oiC8gH1oeraxglIarxEJHewM/ALGBqyGEY6cBXQJ6IZItI\naxGpUeT6Nbgv21ZAI2B/4Lli7qXs/Ss/9PXp3t9qqlpVVReENhSRA3D/F0OAA4CngKlF5LkS9yV/\nEFABuM2PgmE4GlgeUl4BHBOpgYhsBnYAtwOXlbJfwyjEz8jjFuAIVT1aVY8tOBItmGH4QVW3Ai1x\nX/TDgF9E5B0ROcir0gUYrKprVHUbcCdwhU8nuRTzOhwXAl95fpB8VR0LrATaFYgKjFDVVaq6ExgH\nNPWjYxj2B34LKW/xzhWLqlYHquGmrcaLSLKm34yA4ucfaC3uw2kYaYmqrlTVa1S1PvB/QB3cCADg\nYOD7kOprgfJArTiLUce7dyjfe+cL+G/I6x1E+cKPwO9A6NRbNe9cRFR1O3AHbqrPfgAaMVHeR53v\ngDkiMhX4wzunqvpU4sQyjNKhql+JyEigp3dqHdAwpEoDIBc3FVvUd7cNqBxSrh166yhd/wRcWuTc\nIcC70aUuMZ/jRi2LvHIT4DOfbbNwPxq3J0Auowzhd+QxCzdHuz9QxTsMI+WIyBEi0k9E6nrl+jjf\nwkdelTFAX2+p7f7AI8BYVc0Pc7tluCmt8t5S3w7sMRq/4pzNjYsR5V3gcBG50mt/OXAkbiVYobgl\n0GtfEanoFUNfA4wC+nmLWOoC/YDsYu5zjog09Ra9VMX5Yr5S1VV+ZTGMcEQdeajqQAARqeKVtyZY\nJsMoCVuBU3BfptWBzcBkoL93/VXc1NFcoCIwHegd0j50RPFPnLHZBLwPjMY5v1HV7SLyMPChiJQH\nLiDEwa6qG0XkItyS4ReAb4CLVPV/xfRV1DlflK9wIyMFZgAqIoeq6lpVfUlEGgGfenWHqerLBQ1F\n5DPgYVUdA1QHngXq4aa2ctjjhzGMUiPRNoMSkWNxv3QKlhX+CnRT1ajDZBFpjZt7zgJeUdXHi1w/\nEhgBNAPuVtXBftsahmEYqcOP8fgIuEtV53jlVsAjqnpqlHZZuF9P5+DmgxcCV6rqlyF1auLmhS8G\nNhUYDz9tDcMwjNThx+exX4HhAFDVHPZ2KhbHycAqb4nkbtwSwfahFVT1V1VdBOwuaVvDMAwjdfgx\nHt+JyD89h+OhInIP8K2PdnWBH0LKP3rn/BBLW8MwDCPB+DEe1+IiYt8CJgA1vXPRiLa0MVFtDcMw\njATjZ7XV/9h7dYpffgLqh5Tr40YQcWsrImZkDMMwSoGqxpRloNiRh4g84/2dHOaY5OPei4C/etNd\nFYDLgeLaFVXCd1tVDexx3333pVwG08/0Syf97rlHOf545bffgqdbIo9l65dx6JBD6T+zP7vzirqY\nS0ekkcco7+/gMNei/uJX1VwR6YVbo54FDFfVLwtSR6tbq14bt5KqKpAvIjcDR6vq7+Ha+tYqIKxZ\nsybVIiQU0y+zSbZ+Q4bAuHEwbx5UDZsXOX4E6dmN/Wwsvd/tzXMXPMfl/3d53O5brPFQ1cXey6aq\nOiT0mojcgguiioiqvkuR9Ayq+lLI6/+y9/RUxLaGYZRNRo6Ep592huOgg6LXNyA3P5c7Z93JhC8n\nMKvrLJrUbhLX+/txmHcLc657XKUwwtK9e/dUi5BQTL/MJln6vfMO3HEHzJgBDZK0k1CmP7uN2zdy\nwegLWP7zchZevzDuhgMiBAmKyJVAZ9w+BvNCLlUB8lT17LANk4iIaHHyG4aR+eTkQKdOMG0anBjX\njYWDy/L/LueSNy7hsqMv45GzH6F8uT9PMIkIGqPDvFgHCy7yuxWwADjTe90KOAEon2oHkCejhoM9\neYPssMPXkQjmzJmTkPumC4nWb+FC1Zo1Vf/zn4R2E5ZMfXZjPh2jBz5xoI79dGzEet5nPqbv30g+\nj+9x+xE0L65OOqM2IjF8YvsipR8rV0LbtjBsGJx1VqqlSX8S7d8Ih5/cVqFZdCsA+wC/q2qC1ztE\np7hpK29IlgKJjEzEPi/pxdq1cPrp8MAD0K1bqqVJfzZu38gVE65AEMZ0GMNf9vtL1DbxmLaK6jBX\n1SoFB1AJt+HN87F0ahiGEY5ffoHzzoO+fc1w+GH5f5dz0rCTaFa7GdO6TPNlOOKFn9VWhajbm/lt\noHWC5DGMwJCTk5NqERJKvPXbsgUuuAA6doRbbonrrUtMJjy7sZ+N5ZzXzuHRsx/liXOfCOsYTyRR\nexORDiHFcjiH+Y6ESWSkBfPmzeP6669n5cqVSetz7dq1HHPMMWzZssX8EGWMHTugXTto3txNVxnF\nkwr/Rjj8+DyycStSwO39vAa3c9kvCZXMB5ns88jOzmbw4MF8++23VK1alUsuuYRHH32UatWqpUSe\ncuXKsWrVKho1apTwvlq1akXXrl3p0aNHwvvyQyZ8XoLM7t3QoQPsvz+8/jqUK9F8SNmiNP6NcCTL\n59FdVa/xjutV9eF0MByZzODBg7njjjsYPHgwW7ZsYcGCBXz//fece+657N4dn7wzoeTl5fmql6wv\nUBGxkYUBQH4+9OgBubkuitwMR/Gk0r8RjkiJEZ+NcAxNppBBYsuWLQwcOJDnnnuO8847j6ysLA45\n5BDGjRvHmjVreP311wEYOHAgl112GVdccQVVq1blhBNOYMWKFYX3WbduHR06dOCggw6iUaNGPPvs\ns4XXCtp27dqVatWqMXLkSBYuXEiLFi2oUaMGderUoXfv3oWG6owzzgCgSZMmVKlShfHjx5OTk0P9\n+nsyxzRs2JDBgwfTpEkTqlevzhVXXMGuXbsKrz/xxBPUqVOHevXq8corr1CuXDm+/dbPti97WLNm\nDeXKlSM/Px9wI5R7772Xli1bUrVqVc4//3w2btxYWH/BggWceuqp1KhRg6ZNm/L++1Ez5iSVTJg3\nj4VY9VOFfv3g22/hzTdhn33iI1c8SLdnl2r/Rjgi2fnFuOy2i4s5jFIwf/58du7cyaWXXrrX+cqV\nK9OmTRvee++9wnOTJk2iU6dObNq0ic6dO3PxxReTl5dHfn4+bdu2pVmzZqxbt47Zs2czZMgQZs6c\nuVfbjh078ttvv9G5c2eysrJ45pln2LhxIx999BGzZ8/m+efdorm5c+cCsGLFCrZu3UrHjh3/JLeI\nMH78eGbMmMF3333HihUryM7OBmD69Ok8/fTTzJ49m2+++YacnJy4jSzGjBlDdnY2v/zyC3/88QeD\nBg0C4KeffuKiiy7i3nvvZdOmTQwaNIgOHTqwYcOGuPRrJJ6HHnIR5FOmwH77pVqa9CQ3P5f+M/tz\n1+y7mNV1VlwTG8ZKscZDVbNVdaT3Nxu3EdSbBeeTJmGCEInPUVI2bNjAgQceSLkw4/PatWvv9eV3\n4okncumll5KVlUW/fv3YuXMnH330EQsXLmTDhg3cc889lC9fnkMPPZTrrruOsWPHFrY99dRTadeu\nHQAVK1bk+OOP5+STT6ZcuXIccsgh9OzZs8S/1Pv06UPt2rWpUaMGbdu2ZdmyZQCMGzeOa6+9lqOO\nOopKlSpx//33x2UKTES45pprOOyww6hYsSKdOnUq7PP111+nTZs2tG7tFv6dc845nHjiiUybNi3m\nfuNFq1atUi1CQolFv+eeg1GjYPp0qF49fjLFi3R4dsnITxULflZbHYtLz/4Xr/wr0E1VP0uwbAkl\nVf7RAw88kA0bNpCfn/8nA7J+/Xpq1qxZWK5Xr17haxGhXr16rFu3DhFh3bp11KhRo/B6Xl5e4fRT\n0bYAX3/9Nf369WPx4sVs376d3NxcTixhsqDatWsXvq5UqRLr168vlPvkk08utu9YKNrn77//DsD3\n33/P+PHjmTx5cuH13Nxc/va3v8WtbyMx/Pvf8PjjMHcuhDxeIwQ/+alSjR/31MtAP1VtoKoNgFu9\nc0YpaNGiBfvuuy8TJkzY6/zvv//O9OnTOfvsPfkmf/hhzzbu+fn5/Pjjj9StW5f69etz6KGHsmnT\npsJjy5YtTJkyBQjvkL7xxhs5+uijWbVqFb/99hsPP/xwoW8hVg4++OC9ZA19nSgaNGhA165d93oP\ntm7dyu23357wvv2SbvPm8aY0+k2d6vwc06fDoYfGX6Z4kcpnl47+jXD4MR77qeqcgoKq5gCVEyZR\nwKlWrRr33XcfvXv3ZsaMGezevZs1a9bQqVMn6tevT9euXQvrLl68mIkTJ5Kbm8uQIUOoWLEizZs3\n56STTqJKlSo88cQT7Nixg7y8PD777DMWLVoEhF819fvvv1OlShX2228/Vq5cyQsvvLDX9Vq1arF6\n9eoS6VLQT6dOnRgxYgQrV65k+/btPPjgg1Hb7t69m507dxYeubm5EfsoylVXXcXkyZOZOXMmeXl5\n7Ny5k5ycHH766acS6WAkj3nz4JprXIr1Y45JtTTpRzr7N8Lhx3h8JyL/9LaEPVRE7gFKtozG2Iv+\n/fvzyCOPcNttt1GtWjWaN2/OIYccwuzZs9nHW3IiIrRv35433niDAw44gNGjR/PWW2+RlZVFVlYW\nU6ZMYdmyZTRq1IiaNWvSs2dPtmzZUti26Mhj0KBB/Pvf/6Zq1ar07NmTK664Yq86AwcOpFu3btSo\nUYM333wz6nLa0OutW7emT58+nHXWWRx++OG0aNECgH333bfY9jfeeCP77bdf4XHttdeG7TO0HHq9\nXr16vPPOOzzyyCMcdNBBNGjQgMGDB8dtNBUP0mHePJGURL9ly1wsx+jRcMopiZMpXiT72aW7fyMc\nfoIEDwDuB07zTs0DBqrqpgTLFpVMDhKMxv3338+qVat47bXXUi1Kifnyyy859thj+eOPP8IuDEg3\ngvB5SWe++QbOPBOGDoXLLku1NOlHKvwbyQoS/J+q9lbV44GTgHvTwXAEnUz7Mps4cSK7du1i06ZN\nDBgwgHbt2mWE4Ugk5vOAH390iQ4feCCzDEeynl2m+DfCEfW/W0TGiEhVEakMfAp8ISLp45UMKJkW\nhf3yyy9Tq1YtDjvsMPbZZ58/+VSMssfGjXD++XDjjXDddamWJr3INP9GOPxMWy1X1SYi0gU4HrgD\nWKKqxyZDwEgEedrKSB72eYk/W7fCOedAq1ZuWa6xh3jlp4qFpExbAeVFZB/gYmCyqu5mT6JEwzCM\nvdi1Cy65BI47Dh57LNXSpBfplp8qFvwYj5dwmXT3B+aKSEPgt8SJZBjBoCz6PHJzoXNnqFEDXnyx\ndFkY0oFEPLtM9m+EI6r0qjoUKEyEKCLfA7arsGEYe6EKN9zgpqwmT4asrFRLlB6ky/4b8SaqzyOd\nMZ+HEQ/s8xI7qnD77S4QcNYstzeHkR7+jXAky+dhGIYRkccfh3ffhWnTzHAUECT/RjgiGg8RKSci\npyZLGCM21q5dS5UqVQp/Rbdq1Yrhw4cDMHr0aM4///zCuiXdb6No+1RQVL90p6z4PF5+2R0zZ8IB\nB6RWpngR67MLmn8jHBGNh6rmA88nSZYyQ8OGDdlvv/2oUqVK4dGnT5+Y79ugQQO2bt1aGB8SGivS\npUsXZsyYUep7x9q+JIQavVCK6meknnHj4P77neGoUyfV0qSeIMRv+MWPOZwlIpcBE8I6GIwSIyJM\nmTIlY9KH5+XlkZVE72emBUgWR9BzW+3a1YreveG99+Cww1ItTXwpzbML9W8svH5h4KapiuLH5/F3\nYBzwh4hs9Y4tCZarzJKfn89tt91GzZo1ady4Mf/617/22pq1YcOGzJ49u7D+wIEDCzPxFt3GNZTs\n7GxOP/30vc5NnTqVxo0bU7NmTW6//fbC6aDs7GxOO+00+vXrx4EHHsjAgQP3ah+un9DRQmj7GjVq\ncNhhhzF//nxGjBhBgwYNqFWrFqNGjSrxexO0bWozmY8+gquugrfecvEcZZ2g+zfC4Se31f6qWk5V\n91HVKt5RNRnCBZniBnEvv/wyU6dOZdmyZSxatKgww20BRX+Vx/IL/e2332bx4sUsWbKEd955h1df\nfbXw2ieffELjxo355ZdfuPvuu6Peq6hcn3zyCU2aNOF///sfV155JZ06dWLJkiWsXr2a119/nV69\nerF9+/ZSy15AOm9TG1Sfx6efwsUXw2235XDaadHrZyIleXZlwb8RDj87CZYDugCHquoDItIAqK2q\nnyRcugQi98dnWkTvK/lMnqpy8cUXU778nrd/0KBB9OjRg3HjxtG3b1/q1q0LwF133RXxF3MsM4kD\nBgygevXqVK9enVtuuYUxY8bQo0cPAOrUqcNNN90EuG1sS8qhhx5Kt27dALffx8MPP8y9997LPvvs\nw7nnnkuFChVYtWoVx8XwszV0m9qCfiZNmgRE3qb26quvLnWfZZ1vv4ULLoBnnrFdAIMav+EXPyby\neSAf+BvwAPC7d65ke5imGaX50o8XIsI777wT1uexfv166tevX1hu0KBBwuQo2s+6devCXisNtWrV\nKnxdqVIlgL222A3dUjYW0nmb2qD5PNavh3PPhbvvhiuuAGiVYokSR7RnV9b8G+Hw4/M4RVX/AewA\nl6Id2CehUpVhDj74YNauXVtYDn0NULlyZbZt21ZY/u9//1vqvor2UzDagcjTYZUru40kQ6edYpEj\nEWTCNrWZxKZNLrX6tde6LLllmbLo3wiHH+Pxh4gULrURkZq4kYgRA8VNN3Xq1ImhQ4fy008/sWnT\nJh577LG9vsibNm3K2LFjyc3NZdGiRUyYMKHUfo9BgwaxefNmfvjhB4YOHcrll/tbVlizZk3q1q3L\na6+9Rl5eHq+++mqJt7CNRhC2qQ2Kz2PbNrjwQjfquOuuPeeDol84itOtrPo3wuHHeDwLTAQOEpFH\ngA+BRxMqVRmgbdu2e8V5dOjQAYDrr7+e888/nyZNmnDiiSfSoUOHvb4gH3zwQVavXk2NGjUYOHAg\nXbp02eu+xRmScMtf27dvzwknnECzZs246KKLCv0dxW0HG3pu2LBhPPnkkxx44IF88cUXnBbiOY22\nnawfysI2tZnAH3+47WMPPxwGDcrcRIexUpbiN/ziK7eViBwFnO0VZ6vql75uLtIaGAJkAa+o6p8y\n+4vIUOACYDvQXVWXeufvBK7CjXI+Ba5R1V1F2gY+t9WaNWto1KgRubm5ZX5nvkQRpM9LPMnLgy5d\nYOdOePNNKF9Gf2Sna36qWEhmbquvcaOPycA2b8VVNOGygOeA1sDRwJWeEQqt0wY4TFX/CvQEXvDO\nNwSuB473Np3KAq7wKathGDGiCjfdBL/8AmPHll3DYf6N4vGzDW1v4GfgPWAKMNU7onEysEpV13gb\nSI0F2hep0w4YCaCqHwPVRaQWsAXYDewnIuWB/YDkTVanGUGIti6LZLJP4J57YNEiePttKG6ldibr\nF42cnBzzb0TBz7txC3CEqm6MWnNv6gI/hJR/BE7xUaeuqi4RkcHAWtwqrxmqOquE/QeChg0bkpeX\nl2oxjDLE4MEucnzuXKhaBsOB8/LzeGHhCyyssLBMxm/4xY/xWIsbCZQUv5PIf/pZLSKNcUarIW7X\nwvEi0kVVRxet2717dxo2bAhA9erVadq0aSlENYw9v6QL1vjHWi44F6/7JaP87rvwxhutmDcPPv88\nePpFK+/K3cWLG19kS60tPH3Q02xauQlqU+r7pUs5JyeH7OxsgMLvy1gp1mEuIrd6L48GjsRNWf3h\nnVNVfSrijUWaAwNVtbVXvhPID3Wai8iLQI6qjvXKK4EzcdFH56rqdd75rkBzVb2pSB+Bd5gbicc+\nL46JE+Ef/4CcHDjiiFRLk3w2bt9I2zFtaXxAY4a3G06FrAqpFilhJNphXgW3b/lanL+jglfe37sW\njUXAX0WkoYhUAC4HJhWpMwm4GgqNzWZV/Rn4CmguIpXETfifA3zhWyvDSAMyyScwe7bbQnbqVP+G\nI5P0i8Z3m77jtFdP48xDzmTUxaOYP29+qkVKe4qdtlLVgQAi0klVx4VeE5FO0W6sqrki0guYgVst\nNVxVvxSRG7zrL6nqNBFpIyKrgG3ANd61ZSIyCmeA8oElwMslUcyczIbhj4UL4corYfx4OP74VEuT\nfJasX0LbMW25q+Vd3HTyTdEbGICPOA8RWaqqzaKdSwXFTVsZhuGPL7+Es86CYcOgbdtUS5N8Zq6e\nyVVvXcVLF73EJUddkmpxkkY8pq2KHXmIyAVAG6CuF8hX0FEV3DJawzAymO+/h/PPhyefLJuGY9Ty\nUdz+3u1MvHwipzUIaG75BBLJ57EOWAzs9P4uxk0jTQJSu5l1GSFIc8rhMP1Sx88/u1xVt94K3l5i\nJSad9YuEqvLIvEe4L+c+5nSbE9ZwZKpuySSSz2M5sFxERuOy6DZQ1ZVJk8wwjITw22/QurXzc9x8\nc6qlSS55+Xn0frc3H/34EfOvnc/BVQ5OtUgZix+fRzvgSWBfVW0oIs2A+1W1XTIEjIT5PAyjZOzY\n4aaqmjSBoUPLVqLDHbt30Pmtzvz+x+9M6DSBqvuWwQhIj2TlthqIiwzfBOAlLmwUS6eGYSSf3buh\nY0eoX9/tBFiWDMfG7Rs5e9TZ7F9hf6Z2nlqmDUe88GM8dqvq5iLnLK91Egj6vKvplzzy8+Gaa9zr\n7GyIR4LmdNIvEkVjOPwE/2WKbqnET3qSz0WkC1BeRP4K9AEsgsYwMgRVuOUWt7pqxgzYpwztA2ox\nHInDj8+jMnA3cJ53agbwoKruTLBsUTGfh2FEZ+BAeOcdmDMHqldPtTTJo6zGcPghHj4PX5tBpStm\nPAwjMkOHwnPPwbx5UKtWqqVJHgUxHBM6TbAYjjAkczMoIwUEfd7V9Essr7/uAgBnzkyM4Ui1fuHw\nE8Phh3TULd2w3U0MI4BMngy33Qb/+Q/EKQN32mMxHMnFpq0MI2DMnQuXXQZTpsDJJ6damuRgMRwl\nI9G5rZ6N0E5VtU8sHRuGEX+WLHGGY8yYsmM4QvfheOOyNwK9D0c6EcnnUZDLahF757YqeG0kmKDP\nu5p+8eXrr+HCC+HFF+HssxPfXzo8v9LEcPghHXRLdyLltsoGEJHjVHVF0iQyDKPE/PADnHcePPww\nXHppqqVJDhbDkVr8xHl8AOwLjABGq+pvyRDMD+bzMAzYsAFOPx169HBO8rKAxXDERlKW6qpqS6AL\n0ABYIiJjROS8KM0Mw0gCW7fCBRfAxReXHcMxavkorp54NRMvn2iGI4X4ivNQ1a+Be4ABwJnAMyLy\nlYh0SKRwZZ2gz7uafrGxcye0b++2jn3kkYR2FZZkP7+CGI5759wbUwyHH4L+2YwHUeM8RKQJ0B24\nCHgPuEhVl4hIHWABMCGhEhqG8Sdyc91+HDVrwvPPBz9DbkEMx/wf5jO/x3zqVKmTapHKPH58Hu8D\nw4HxqrqjyLWrVXVUAuWLiPk8jLJIfr7zb6xb54IBKwR8ZWpBDMfWXVt56/K3LIYjDiQtt5WI7Asc\nASjwlar+EUun8cKMh1HWUHW+jY8+gvfeg8qVUy1RYtmwfQPtxrSjUY1GvNr+VYvhiBNJcZiLyIXA\nKuBZ4DlgtYi0iaVTwx9Bn3c1/UrOo4+6XFVTpqTecCT6+RXEcJxxyBmMuiR+MRx+CPpnMx74yW31\nFHCWqq4CEJHGwDTvMAwjSbzwAgwfDh98AAcckGppEktBDMedLe+k18m9Ui2OEQY/Po+FqnpSSFmA\nT0LPpQqbtjLKCmPHwq23urxVjRunWprEMmPVDK6a6GI4Lj2qjEQ8Jpmk+DxE5EVcjMc471RHYC1u\n5RWq+lYsAsSCGQ+jLDB9OnTrBrNmwbHHplqaxDJy2Uhun+X24WjZoGWqxQksydrPoyLwCy6+40zg\nV+9cW+8wEkTQ511Nv+h8+CF07QoTJ6af4Yjn8wvdhyOnW07KDUfQP5vxIKrPQ1W7J0EOwzCKsGKF\ny1P1+utw6qmpliZx5OXn0WtaL7cPh8VwZAx+pq3qA0OBgp8Cc4GbVfXHBMsWFZu2MoLK6tVwxhnw\n1FNw+eWpliZxbN+9nc4T3D4cFsORPJI1bTUCmATU8Y7J3jnDMBLAunVw7rlw773BNhwbtm/g7FFn\ns3+F/ZnWZZoZjgzDj/GoqaojVHW3d2QDByVYLoPgz7uafn/mf/9zqdWvvx5uuCH+MsWTWJ7fXvtw\nJDmGww9B/2zGAz/GY6OIdBWRLBEpLyJXARsSLZhhlDW2bXObObVuDXfckWppEseS9UtoOaIlvU/u\nzWPnPEY58ZWf1Ugz/Pg8DsFFljf3Ts0Heqvq2gTLFhXzeRhBYdcuaNsW6tVzgYBBTXRoMRzpQcLj\nPESkPDBSVbvE0kmiMONhBIG8PJchd/duGD8eyvvJ+5CBWAxH+pBwh7mq5gKHeIkRjSQT9HlX088l\nOrzxRti4EcaMySzD4ff5pVsMhx+C/tmMB34+qt8BH4jIJGC7d05V9anEiWUYZYO77oJly2D2bKhY\nMdXSxB8GKqrdAAAgAElEQVSL4QgufnweA72XBRUFZzzuj3pzkdbAECALeEVVHw9TZyhwAc4wdVfV\npd756sArwDFe39eq6oIibW3ayshYnnwSRoxw+aoOPDDV0sQfi+FIX+IxbeUnwnyg11k1V9QtPoXL\nwjnazwF+AhaKyCRV/TKkThvgMFX9q4icArzAHsf8M8A0Vb3M870EfOcCoywxfDj8618uQ24QDceG\n7RtoO6YtjWs0ZlzHcWm3FNeIHT/7eZwkIp8CK4BPRWS5iJzo494nA6tUdY2q7gbGAu2L1GkHjARQ\n1Y+B6iJSyzNUp6vqq961XFX9zb9awSDo865lVb8JE+Cf/3T7ctSrl1yZ4klx+qV7DIcfgv7ZjAd+\nFli/CvxDVQ9R1UOAm7xz0agL/BBS/tE7F61OPeBQ4FcRGSEiS0RkmIjs56NPw0hrZs1yDvKpU+Hw\nw1MtTfyxGI6yg58nm6uq8woKqvoBkOujnV9nRNF5N8VNpx0PPK+qxwPbgACHTYWnVatWqRYhoZQ1\n/T7+GDp3hjffhGbNUiNTPCmq3zsr3+H818/n2QuezfgNnIL+2YwHflZbvS8iLwFjvPLl3rnjAVR1\nSTHtfgLqh5Tr40YWkerU884J8KOqLvTOv0kxxqN79+40bNgQgOrVq9O0adPCB18w9LSylVNd/vxz\nuOCCHPr3hzPOSL088Sw3b9mc/jP7M37aeO4/8/7C4L90kc/KrcjJySE7Oxug8PsyVvystsph71GE\nhJZV9axi2pUHvgLOBtYBnwBXhnGY91LVNiLSHBiiqs29a3OB61T1a2/FVyVVHVCkj0CvtsrJySn8\nIASRsqLfmjVw+unw2GPQJS3DbUtHTk4OBx1zEFe8eQVHHngkL7d9meoVq6darLgQ9M9mslZbtSrN\njVU1V0R6ATNwS3WHq+qXInKDd/0lVZ0mIm1EZBVuauqakFv0BkaLSAVgdZFrhpER/Pyzy5B7++3B\nMhyqypSvppD9STaPnfMYPZr1QIKaU8UIi5+RR3XgPuAM71QO8EA6rH4K+sjDyGw2b4ZWreCSS+C+\n+1ItTfzYtGMTPaf05OuNXzO2w1iOqnlUqkUySkiy9vN4FdiC27u8E7AV28/DMCKyfTtcdJHb0One\ne1MtTfyY/8N8mr3UjNqVa/PxdR+b4SjD+DEejVX1PlX9VlVXe0GDjRMsl0Hw15oHVb/du6FjR6hU\nKYchQ4KRITcvP4+H5j7EJW9cwtALhvJsm2dZ8MGC6A0zlKB+NuOJn9VWO0Tk9ILluiLSkj05rgzD\nCCE/H7p1g6wsGDAAygUgzOHHLT9y1VtXISIs6bmEulWLhmsZZRE/Po+mwCigmndqE9BNVZcnWLao\nmM/DSCdUoVcv+OwzmD4dKlVKtUSx887Kd+g5pSd9Tu7DHS3vIKtcVqpFMuJAwvfzKNJZiXJbJQMz\nHkY6ce+9MGUKzJkD1apFr5/O7MzdSf+Z/Zn89WT+3eHfnFr/1FSLZMSRpDjMReQWEamKc5o/7aUL\nOT+WTg1/BH3eNUj6DRkCb7zhRhwFhiNT9fvi1y84edjJ/LztZ5b9fVmxhiNT9fNDkHWLF35mZK/1\nRhvnAQcAVwOPJVQqw8ggRo2Cp55yiQ4POijV0pQeVWXY4mGcMeIM+pzShzcueyMwQX9G/PHj8/hU\nVY/19t3IUdW3RGSpqqY8O49NWxmpZtIk6NnTTVUdlcGrVi12o2yRrDiPxSIyE2gDzPCmsPJj6dQw\ngkBODlx3nfNzZLLhsNgNozT4mrYC7gROVNVtwD5YqpCkEPR510zWb/FiF8sxdiycWMzuNumuX7jY\njYrl/e+Fm+76xUKQdYsXxcZ5iMhRXhLDprhEiI283DV7JUY0jLLGypUuenzYMPjb31ItTemw2A0j\nVor1eYjIMFW9PkxWXaD4bLrJxHweRrJZu9ZlyB04EK7J0PG3xW4YSY3zSEfMeBjJ5NdfneHo2RP6\n9Uu1NCXHYjeMApLlMDdSRNDnXTNJvy1boHVr6NDBv+FIJ/38xm6UhHTSL94EWbd4YcbDMKKwYwe0\nawcnnwwPPZRqaUqGxW4YicKmrQwjArm5brRRqRKMHu0SHmYKFrthFEdSdhL0OqoLNMTtCCi4HFdz\nY+nYMNKd/Hzo0QP++APGj88swzH/h/l0ntCZtoe35bVLXivRElzD8IOf3FaPAx8CdwP9gdu8v0aC\nCfq8azrrp+p8G6tWwZtvQoUKJb9HKvSLNXajJKTz84uVIOsWL/yMPC4BjlDVXYkWxjDShYcegv/8\nB95/HypXTrU0/rDYDSOZ+Mlt9S7QSVW3Jkck/5jPw0gEzz/vEh3OmwcHH5xqafxhsRtGSUiWz2MH\nsExEZgMFow9V1T6xdGwY6ciYMfDIIzB3bmYYjtDYjYmXT7TYDSNp+FmqOwl4EJgPLA45jAQT9HnX\ndNNv2jS45Ra3J0ejRrHfL9H6JSJ2oySk2/OLJ0HWLV5EHXmoanYS5DCMlPLKK3D33fDOO/B//5dq\naSKjqryy5BXunH0nj53zGD2a9cDLO2cYSSNSbqvxqtpRRD4Nc1lV9bjEihYd83kYsZKXBwMGuH05\nJk+GI45ItUSRsdgNIx4k2udxs/e3bSwdGEa6snUrdO4M27bBggVwwAGpligyFrthpBPF+jxUdZ33\nd024I2kSlmGCPu+aSv2+/x5OOw1q13Y+jkQYjnjpl8zYjZIQ5M9nkHWLF74izA0jSCxYAJdeCv37\nOwd5OrsLLHbDSFcst5VRpvj3v53BGDECLrww1dJExmI3jESRtNxWhpHp5Oe7DZxGjYLZs+HYY1Mt\nUfFY7IaRCRTr8xCRTyMcK5IpZFkl6POuydJv+3a44gqYNQs+/jh5hqM0+qU6dqMkBPnzGWTd4kWk\nkUfBKqt/eH9fw2XU7ZJQiQwjjqxfD+3bw+GHu1xVFVPvZw6LxW4YmYaf3FbLVLVpkXNLVbVZQiXz\ngfk8jEgsXeoMR8+eLgAwXb+LLXbDSDbJ2oZWRKRlSOE03AjEMNKWt9+G886DwYPhnnvS13DM/2E+\nzV5qRu3Ktfn4uo/NcBgZgx/jcS3wvIh8LyLfA89754wEE/R510TopwqPPw69esG770LHjnHvwjeR\n9EvX2I2SEOTPZ5B1ixd+clstBo4TkWpe+beES2UYpWDXLrjhBlixwsVy1KuXaonCY7EbRhCIlNuq\nq6q+JiK3AqGVCrahfSoZAkbCfB5GARs2wCWXQM2a8Npr6buBk8VuGOlAon0e+3l/qxQ59vf++hGw\ntYisFJFvRGRAMXWGeteXi0izIteyRGSpiEz2059RNvniCzjlFDj9dLdlbDoajp25O+k9rTc3T7+Z\niZdP5O4z7jbDYWQ2qpqQA8gCVgENgX2AZcBRReq0AaZ5r08BFhS53g8YDUwqpg8NMnPmzEm1CAkl\nHvq9+65qzZqqI0fGLk+8KdDv818+12OfP1Y7juuom3ZsSq1QcSTIn88g66aq6n13xvQdH9VhLiIj\nRaR6SLmGiLzqwy6dDKxSl0hxNzAWaF+kTjtgpGcFPgaqi0gtr596nnF5BVvdZRRBFZ59Fq65Bt56\nC66+OtUS/RlVZdjiYZwx4gz6nNKHNy57g+oVq0dvaBgZgJ/0JE1UdXNBQVU3icjxPtrVBX4IKf+I\nG11Eq1MX+Bl4GugPVPXRVyBp1apVqkVIKKXVb/duuPlmeP99mD8fDj00vnLFg007NvH8huf5+quv\nmXfNvEAuwQ3y5zPIusULv3EeB4QUDsBNSUXDrye76KhCROQi4BdVXRrmulGG2bwZ2rSB775LX8Mx\nc/VMmr7U1GI3jEDjZ+QxGPhIRMbhvsg7Ag/7aPcTUD+kXB83sohUp553rgPQTkTaABWBqiIySlX/\nNDnRvXt3GjZsCED16tVp2rRp4a+GgrXamVoeMmRIoPSJVb/Ro3O480649NJWDBoEH3yQXvpMnTmV\nFxa9wKf7fcqwtsP4YvIXLNhvQdrIl+rnl0nl0DiPdJAnHvpkZ2cDFH5fxowfxwhwDNAb6AUc7bNN\neWA1zmFegegO8+YUcZh7588EJhfTR/w8SGlI0J12JdEvJ0e1Vi3VF15InDyxMGPVDG3wdAO97p3r\ndPOOzapqzy+TCbJuqvFxmPvez8NzZFfEm45S1bU+2lwADMFNcw1X1UdF5Aav/UteneeA1sA24BpV\nXVLkHmcCt6pquzD3V7/yG5nLq6/CnXfC6NFwzjmplmZvtuzawm0zb2PG6hkMazuM8xqfl2qRDCMq\n8Yjz8JMYsR1u6qoO8AtwCPClqh4TS8fxwIxHsMnLgzvucHmqpkyBI45ItUR7M3P1TK6ffD3nNTqP\nQecNolrFaqkWyTB8kazEiA8BLYCvVfVQ4Gzg41g6NfwROu8aRCLpt3WrixhftMilGkknw7Fl1xZ6\nTu7J9ZOvZ1jbYQxrNyys4SjLzy/TCbJu8cKP8ditqhuAciKSpapzgBMTLJdRhlm7Flq2hFq1YMYM\n+MtfUi3RHmaunsmxLxyLqrLi7ytsmsoos/iZtpoFXAI8ChyIm7o6UVVTvsWZTVsFjwULoEMHuPVW\n6Ns3fVKpm2/DCBLJmrZqD2wH+gLTcSlH2kZsYRilYMwYaNcOXnoJ+vVLH8Nhow3D+DNRjYeqblPV\nPFXdrarZqjpUVTcmQ7iyTtDnXQv0U4X77nMrqmbNgosuSq1cBfj1bRRHWXl+QSTIusULPyMPw0gY\nO3bAFVfAzJnw8cdw3HGplshhow3DiIzvOI90xHwemc369W6P8b/+FYYPh4ppsJGe+TaMskBSfB4i\nsr+IZIWUs0QkDXdMMDKJpUvdHhzt2sHrr6eH4bDRhmH4x8+01WygUkh5P+C9xIhjhBLUede334bz\nzoNrr83hnntS7xiP1bdRHEF9fgUEWb8g6xYv/BiPfVX194KCqm5lzy6DhuEbVXjiCejVC6ZNg3TI\nem2jDcMoHX7iPD4E+qjqYq98IvCsqrZIgnwRMZ9H5rBrF/z977B8OUyaBPXqpVYe820YZZl4+Dz8\npGS/BRgnIuu98sHA5bF0apQtNmyASy+FAw+EefNSv8d4aE6qFX9fYTmpDKMU+InzWAgcBdwI/B04\nUlUXJVowIxjzrl984RzjLVvCm2/ubTiSrV+ifBvFEYTnF4kg6xdk3eJFsSMPETlbVWeLSAdcGvaC\nIc7h3pDnraRIaGQsM2ZA167w5JPQrVtqZbHRhmHEl2J9HiJyv6reJyLZhNlSVlWvSbBsUTGfR/ry\n3HPw8MMwfrwbdaQK820Yxp9J1n4ejVT122jnUoEZj/QjNxduvhlycmDyZGjUKHWy2H4bhhGeZCVG\nfDPMufGxdGr4I9PmXTdvhjZt4NtvYf786IYjUfol27dRHJn2/EpKkPULsm7xIpLP4yjgaKC6iFyK\n83koUBW3Ha1hFLJqFbRt64L/Bg+G8n7W8SUA820YRnKI5PNoj9vHoy0wKeTSVmCsqs5PvHiRsWmr\n9OD99+Hyy2HgQBfLkQrMt2EY/kmWz+PUdDAU4TDjkXpGjHD7jI8eDeeckxoZzLdhGCUjWT6PjSIy\nW0Q+9zo9TkTuiaVTwx/pPO+alwf9+8Mjj7iRR2kMR6z6pYtvozjS+fnFgyDrF2Td4oUf4zEMuAv4\nwyt/ClyZMImMtOf3313E+KJFbtvYI49MvgyWk8owUoufaatFqnqiiCxV1WbeuWWq2jQpEkaWzaat\nkszatS6N+kknwb/+BRUqJLd/820YRuwka9rqVxE5LKTTy4D1EeobAeXjj6FFC7j6anj55eQbDhtt\nGEb64Md49AJeAo4QkXVAX1yeKyPBpNO869ixbm/xF1+Efv3isweHX/3S3bdRHOn0/BJBkPULsm7x\nIupqfFVdDZwtIvsD5VR1S+LFMtIFVbj/fsjOhtmzk7/HuMVtGEZ64sfn8SjwuKpu9so1gFtVNeUr\nrsznkVh27IBrroHvv3e7/9Wqlby+zbdhGIkjWT6PCwoMB4CqbgIujKVTI/1Zv97t9FeuHMyZk1zD\nYb4Nw0h//BiPciJSmI5ERCoBSXaVlk1SNe+6bBk0b+58HKNHQ8UEJaMpql+m+jaKI+jz5kHWL8i6\nxQs/xmM0MFtEeojIdcAsYFRixTJSxaRJLj/Vk0/CP/8ZH8e4H2y0YRiZRVSfB4CIXACcg0uM+J6q\nzki0YH4wn0f8UHUGY+hQmDjRxXEkA/NtGEbySdYe5qjqu8C7sXRkpC9//OESGi5d6iLG69VLTr+2\nksowMpeo01Yi0kJEForI7yKyW0TyRcSW6yaBZMy7btgA554LmzbBBx8kx3AU+Da6Pt01EL6N4gj6\nvHmQ9QuybvHCj8/jOaAz8A1uH48ewPOJFMpIDl9+6Rzjp54KEyZA5cqJ7zPUtzG83XCbpjKMDMVP\nnMdiVT1BRFao6nHeOcttleHMnAlXXeX8HN26Jb4/820YRvqQrDiPbSKyL7BcRJ4QkX64XQWNDOVf\n/3IGY8KE5BgOW0llGMHDj/G42qvXC9gO1AM6+O1ARFqLyEoR+UZEBhRTZ6h3fbmIFGTurS8ic0Tk\ncxH5TET6+O0zKMR73jU3F3r1guefhw8/hNNPj+vt/0S0uI2gzyubfplLkHWLF35yW63xXu4ABpbk\n5iKShfOZnAP8BCwUkUmq+mVInTbAYar6VxE5BXgBaA7sBvqq6jIvr9ZiEXkvtK3hn82b3VaxIjB/\nPlRLsH/aVlIZRrDxFedR6puLtADuU9XWXvkOAFV9LKTOi8AcVX3DK68EzlTVn4vc623gWVWdHXLO\nfB4+WL3aRYufey489RSU97VAu3SYb8Mw0p9k+TxioS7wQ0j5R+9ctDp7LRgVkYZAM+DjuEsYcObO\nhZYtoU8fFwCYSMMxY9UM820YRhkhgV8lgItI90NRC1jYzpuyehO4WVV/L9qwe/fuNGzYEIDq1avT\ntGlTWrVqBeyZt8zU8pAhQ2LSZ8CAHF5+GcaNa8W55yZO3rrH1uXWmbeyeP5ibm5+M7e3uz0p+qV7\n2fTL3HKozyMd5ImHPtnZ2QCF35cxo6oRD+AI3D7m7wFzvOM/0dp5bZsD00PKdwIDitR5EbgipLwS\nqOW93geYAdxSzP01yMyZM6dU7bZuVf3HP1QbN1b98sv4yhTKph2btN/0fvqXx/+iT3zwhO7cvbNE\n7UurX6Zg+mUuQdZNVdX77oz6HR7p8BPnsQLnxF4C5O2xObo4mmESkfLAV8DZwDrgE+BK/bPDvJeq\nthGR5sAQVW0uIgKMBDaqat9i7q/R5C9rTJ/uUo2cdZbzb9SoEf8+cvNzGbZ4GPe/fz/tj2jPA2c9\nQK39k5iz3TCMmEhWbqvdqvpCaW6uqrki0gs3esgChqvqlyJyg3f9JVWdJiJtRGQVsA24xmt+GnAV\nsEJElnrn7lTV6aWRJehs3Ah9+7oUI8OGOed4Ipj17Sz6zujLgfsdyIyrZtCkdpPEdGQYRnoTbWiC\nW557E3AwcEDBEeuQJx4HNm2l+fmqY8eq1q6t2rev6u+/J0aWrzd8rW3/3VYbP9NYJ345UfPz82O+\nZ9CnBky/zCXIuqnGZ9rKz8ijO86BfVuozQEaxc2CGaXixx/hH/+Ab79128Seckr8+9i8czMPvv8g\nI5ePZMBpAxjfcTz7lt83/h0ZhpFRJDTOI9GUVZ9Hfj68/LLbrKl3b7jjDqgQ570dza9hGMElKT4P\nEakA3AicgRtxvA+8qKq7Y+nYKB1ffw3XX+/24MjJgWOOiX8f5tcwDCMafoIEXwCOB/7lvT7B+2sk\nmNC15rt3w2OPufTpHTo4x3i8Dcc3G7+h3Zh2/H3K33nwrAf5z9X/SajhCNUviJh+mUuQdYsXfnwe\nJ6mXit1jtrd810gSS5dCjx5QsyYsWgTxivEpwPwahmGUFD9xHkuATqq6yis3Bsar6vFJkC8iQfd5\n7NgB998PI0bAE0/A1Ve7xIbxwvwahlE2SVacR3/gPyLynVduyJ5YDCNBzJ0L110HzZrBihVQK87f\n6ebXMAwjFqL6PNRlsT0c6AP0Bg5X1f8kWrCyypYtcOON0LkzXH11Dm+8EV/DkWy/RiSCPq9s+mUu\nQdYtXhRrPETkbO9vB6ANcBjwV+BCEbk0OeKVLSZPdk7w/Hz47DOXDTdebN65mVtn3EqL4S04vcHp\nfP6Pz7n4yIuReM6DGYZRZijW5yEi96vqfSKSTZjsuKqa8qmroPg8fvnFpUxfvNilFvGSYsYF82sY\nhlGUePg8/DjMG6nqt9HOpYJMNx6q8PrrcNtt0L07DBwIlSrF7/6hfo0h5w8xv4ZhGEDyNoN6M8y5\n8bF0asD338MFF8DgwTBtGjz++J8NR2nnXdPJrxGJoM8rm36ZS5B1ixeRfB5Hef6O6iJyqYh08P52\nByomTcKAkZcHzz4LJ5wAZ54JCxe61/HA/BqGYSSLSD6P9sAlQFtgUsilrcBYVZ2fePEik2nTVl98\n4ZbfZmXBK6/AEUfE577m1zAMoyQky+fRQlU/iqWTRJEpxuOPP9y01NChLujv73+HcnHaPd78GoZh\nlJRk+TxuFJHqIZ3WEJFXY+m0LPHJJ3DiifDxx7BkiUuh7tdwRJp3zRS/RiSCPq9s+mUuQdYtXvj5\nGjtOVTcXFFR1Ey5RohGBbdvg1luhXTuXMn3yZKhfP/b7ml/DMIx0wM+01XLgLFX9n1c+AHhfVY9N\ngnwRSddpq9mzoWdPaNECnn7aJTSMlQK/xsD3B9L+iPY8eNaD5tcwDKNUJCu31WDgIxEZBwjQEXg4\nlk6DyqZNLmbjvffgxRehTZv43Pe91e/Rd0ZfalauycyrZmbc9JRhGMHDT26rUcClwC/Af4FLvHNG\nCG+9Bf/3fy5W4/PP42M4XnvnNdqNaceNU2/kob89lJF+jUgEfV7Z9MtcgqxbvPAz8kBVPxeRDbj4\nDhWRBqq6NrGiZQbr10OvXs5gvPFGfPJRbd65mQfef4Dh04Zzz9X32P4ahmGkHX58Hu1wU1d1cKOP\nQ4AvVTUBG6CWjFT6PPLz3T4bd97p/Bv33AMVYwydDPVrXHzExRavYRhGQkiWz+MhoAXwnqo2E5Gz\ngK6xdJrpzJsHfftC+fLOv9EkDjNJ5tcwDCOT8LNUd7eqbgDKiUiWqs4BTkywXGnJd99Bx47QpQv0\n6wcffRS74fh649fF+jWCPu9q+mU2QdYvyLrFCz/GY5OIVAHmAaNFZCjwe2LFSi+2bIEBA1ywX5Mm\nsHKl26wpltCKzTs3029GP04dfqrFaxiGkXH48XlUBnbiDE0XoCowWlU3Jl68yCTa55GXB8OHw333\nQevW8PDDUKdObPc0v4ZhGKkm4T4PESkPTFHVs4A8IDuWzjKJ2bOdX6NGDZg6FY6PQ0y9+TUMwwgK\nEaetVDUXyA/NbRV0vv7apRS5/no34sjJid1wRPJrRCLo866mX2YTZP2CrFu88LPaahvwqYjMBLZ7\n51RV+yROrOSzaRM88AC89hrcfjuMGxf70tuCeI1Ry0cx4LQBFq9hGEZg8OPz6IZLSwJuL3PBGY+R\nCZYtKvHweeze7VKJPPggXHKJMyC1YnRBmF/DMIx0JqE+DxGZrapnA8eo6u2xdJKOqMK777rMt/Xq\nOR/HsXFI9Wh+DcMwygKRfB4Hi8ipQDsROb7okSwBE8HChXDuuc4h/uSTMHNm7IajtH6NSAR93tX0\ny2yCrF+QdYsXkXwe9wH3AnVx6UmKclZCJEogX3zh0oh88gn8859w7bWwzz6x3dP8GoZhlEX8+Dzu\nVdUHkiRPifDr8/j+exg40C257d/fJTKsVCm2vs2vYRhGppKU3Fbpajj88MsvLrDv9dfd9q/ffAPV\nqsV+X/NrGIZR1vG5m3bpEJHWIrJSRL4RkQHF1BnqXV8uIs1K0jYSY8fCUUe511984VZTxWo4EuHX\niETQ511Nv8wmyPoFWbd4kTDjISJZwHNAa+Bo4EoROapInTbAYar6V6An8ILfttE4+WRYvBieeSb2\npbebdmxKSR6qZcuWJfT+qcb0y2yCrF+QdYsXiRx5nAysUtU1qrobGAu0L1KnHTASQFU/BqqLSG2f\nbSPSqBE0bBibArn5uTy/8HmO/NeRbPtjG5//43P6n9Y/aQ7xzZs3J6WfVGH6ZTZB1i/IusULXzsJ\nFkVEpqrqhVGq1QV+CCn/CJzio05d3MZT0domFPNrGIZhFE+pjAdwnY86fkO/0yoHuarS6c1OLFm/\nhEHnDkppmvQ1a9akpN9kYfplNkHWL8i6xQ1VjXgAN/s5F6ZOc2B6SPlOYECROi8CV4SUVwK1/LT1\nzqsddthhhx0lP6J9h0c7/MR5LFXVZkXOLVPVplHalQe+As4G1gGfAFeq6pchddoAvVS1jYg0B4ao\nanM/bQ3DMIzUESm31ZVAZ+BQEZkccqkKEHUjKFXNFZFewAwgCxiuql+KyA3e9ZdUdZqItBGRVbjs\nvddEals6FQ3DMIx4U+zIQ0QOAQ4FHgMGsMc3sQVY4e31YRiGYZRBIi3VvRS3f8fpqvq+quZ4x5Jk\nGI5UBhgmgxj1WyMiK0RkqYh8kjyp/RFNNxE5UkQ+EpGdInJrSdqmAzHql9bPDnzp18X7TK4QkQ9F\n5Di/bdOBGPULwvNr7+m3VEQWi8jf/LbdiwgO78HAfGATMBd4BLgIOCBWR4sPZ3sWsApoCOwDLAOO\nKlKnDTDNe30KsMBv21Qfsejnlb9LxnNIoG41gROBh4BbS9I21Ucs+qX7syuBfi2Aat7r1gH83wur\nX4CeX+WQ18fiYupK/PyKHXmo6q2qeipQG7fa6X/AtcDnIpJo/0NKAwyTQGn1C42VT6slziFE1U1V\nf1XVRcDukrZNA2LRr4B0fXbgT7+PVPU3r/gxUM9v2zQgFv0KyPTnty2kuD+wwW/bUPxEmFcCqgLV\nvGMdsMCnIqWluOBBP3XCBRgWbZtqYtEP3FK7WSKySESuT5iUpcOPbolomyxilTGdnx2UXL8ewLRS\nttUT5YYAAAi6SURBVE0FsegHAXl+InKxNwh4F+hTkrYFRFptNQyXV2orbqnsfOApVd3kT4eYiLx+\neA/p/AsgErHq11JV14lITeA9EVmpqvPiJFus+NUt3m2TRawynqaq69P02UEJ9BORs3CzEaeVtG0K\niUU/CMjzU9W3gbdF5HTgNRE5sqQdRRp5NAD2Bf4L/OQdyUr48hNQP6RcH2cFI9Wp59Xx0zbVlFa/\nnwBUdZ3391dgIm64mS7E8v4H5dkVi6qu9/6m47MDn/p5TuRhQLuQH5SBeX7F6BeY51eAZ/jKAwd4\n9fw/vyjOl3I4h0pPIBtYDMwEHkiw06c8sBrnuKlAdIdyc/Y47aK2TfURo377AVW815WBD4HzUq1T\nSXQLqTuQvR3mgXh2EfRL62dXgs9mA5xjtXlp35sM1S8oz68xe8I0jgdWl+b5+RWoPnA5MBT4Fvgt\nCW/CBbgo81XAnd65G4AbQuo8511fDhwfqW26HaXVD2jkPdRlwGfpqF803XCLMH4AfsOt5lsL7B+U\nZ1ecfpnw7Hzq9wouUHipd3wSqW26HaXVL0DP73ZP/qXAPOCk0jy/SEGCNwOn4pat5eJ8Hh96fz9T\n1bywDQ3DMIzAEymrbkNgHNBXvTl2wzAMw4AI6UkMwzAMozgSuoe5YRiGEUzMeBiGYRglxoyHYRiG\nUWLMeBiGYRglxoxHQBCRp73l1QXlGV6KmYLyYBHpKyKHiNvoy889O4rIFyIyOw7ytReRo0LK94vI\n2bHeN14kUz4RuUFEuoY531BEPg1zvo6IjE+ELGH62ut9SFKfv/uoc4uIVAopTxWRqomVzIiEGY/g\n8AEuLgcRKQf8BZebrIAWuDidQ3E7RPqhB3Cdqu71JSpum+CSckmoPKp6n6rGbJTiSNLkU7eL5msl\nqL9OVTsmQpYw7PU++EFEsmLs08+Sz5txEd6ugeqFqrolxn6NWEh1NKQdcYsqrQOs9V4fi0snMx2o\njstRtgmXo38BLkfZUuDmCPe7F5cUcyXwBNANmATMBubg0jPMwqWsWYHLAVTQ9mpcVPwyYBTOcG3E\nZSdYgovUzQY6ePXP9s6vAIYDFbzza3ApPgr6OCKMnA1x+80s9o4WIdcGeO2WAY965xrjMoku8tod\ngTO6keQ7CWd4l+FSdO9fRAa/78VI79xAvLQlwAkh158APi1Gx0+9192BtzwdvgYeD1P/JGCC97o9\nblO38kBF9qSiuB6X8HQZ8CYue3bo+7AU90PjT++X1z4beBH3eRpUpP9jvPdpqadbY+98P+BT77g5\npP5W728rYHLI+edwn7vewC7vvZ0d8tk4oLj7eu/Zl8DLuGjqGUDFVP+fBulIuQB2xPFhun/6+rhc\nZDcAD+DSDZwGzPXqnBn6DxrlfnPYkxalOy7lRnWvnMWePD8HAt94r4/BpTco+McuqD8CuDTk3iNw\nu1VWxKXvOMw7PzLkC+A74Cbv9Y3AsDAyVgL29V7/FVjovb4A94VfsYgcs0P6OiXky6g4+Srg8v2c\n4J3fH8gqIkNJ34v7gH7e6xW4LMng33isBqrgfhSsAeoWqV+ePUZiEO6L/FTv2Y/2zh8QUv9BoFcx\n70Nx71c27seEhJF3KNA5RJaKOCO5wntelXFf6E28OsUZj2eBq0M+C6Eyf4dL5hfuvk2992w3cJxX\n/w2gS6r/R4N0lGb6wUhf5uO+JE4FnsLl4j8Vl2PpA69OLGnsZ6pqQWblcsCjXkrnfKCOt1nV34Bx\nqvo/gJD64foW3C//71R1lXduJHAT8IxXfsv7uwT3ZV6UCsBzItIEyMMZEIBzgFdVdWeBHCKyP24U\nNF5EQttHk2+9qi727hNufr407wUiUg23Y13Bs3kNZ/SiMVtVt3r3+AL3RflTwUVVzRWR1V6a7ZNw\nn4UzcEauIH34sSLyEG6Pnv1xo9S93oco75cC49X7Zi7CR8DdIlIPeEtVV4lIS+/1Du/eb3kyLfeh\nb3EIEO6+p+MM23equsKruxj3PhlxwoxHsPgQN8o4FjeE/wG4DWc8Xo3x3oqb/iigC+5X9vGqmici\n3+F+YSrFG6hwXzRFz0mRc7u8v3mE/7z2xX25d/Xm3neG3LeoHOWAzarajPD4kS8cpXkvwuG37q6Q\n13k4o1CUubjMzLtxo4eROP1v865n46bXPhWRbrhf/QUU6Bzt/doe7qSqjhGRBbhtq6eJyA38+b0o\n+pzB5dAL9cNWIjqR7lv0ffJzP8Mn5jD///bu3zWKIAzj+PcpFEQNxkJIpdEioG0aS/+DFGoTRQ7/\nAAWxtLS0CopoJwi2FoJBEEIkRVATjlPLIDYi/tZGRF6LdzZZj7vkxi7h+XS3Ozs7O3c3787MsrOz\nLJF/2E+RvpBzHifLPoDv5JBHrf6GbQz4UBrLU8Bh8k/7FDgj6SCApPGS/kc5pi3IYZ0jko6VbeeB\nhYpyjZFrzkDOLzQN6ROg0zyhI2k8coJ1TdLpsk1l3Yatyjchabocs3/ABHFtXUAO93wDvkpqFhua\nrbjutkFBZxG4DCxFxEfyAYqpiHhV9u8D3kvaBZxjo8Fdr4ct6mt4YaTJiFiLiDngIXkzswjMSNoj\naS8ww0YvqPEWOC5pt6QDZM+tMez7GZbvdl0obttw8NhZemQj0V4muEvePX5uff4jaVXSJUkTkh6N\nkHfw753ifWBaUpds8N8ARMRr4DqwIGkVuFHSPwCuSnoh6eh6phG/gA45NNIl7z5vt8457PyNW8CF\ncq4p4GfJd54cunguaQW4UtLPAhdL+h65Vvxm5ftNLkcwV46ZJ3sVbbV10b62DnCzlLH/mhmQflA9\nDDpmGThE9kAgh4e6rf3XyLmQZ015i3Y9TDK8vjYr61lJvXJNJ4B7EbFC9naWyd/n3YhohqwCICLe\nkS9j7ZFzFC9bed4BHvc/Nj5KviOU1/6DX4xoZmbV3PMwM7NqDh5mZlbNwcPMzKo5eJiZWTUHDzMz\nq+bgYWZm1Rw8zMysmoOHmZlV+ws92v6jnNxHLAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x987d7f0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical Stages: \n",
+ "7.6\n",
+ "Weight of the extract: 23000.0 kg/h\n",
+ "\n",
+ "Weight of the raffinate 5000.0 kg/h\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.4: Page 506"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.4\n",
+ "# Page: 506\n",
+ "\n",
+ "print'Illustration 10.4 - Page: 506\\n\\n'\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pylab\n",
+ "import numpy\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:kerosene c:Nicotine\n",
+ "F = 1000.0;# [kg/h]\n",
+ "xF = 0.01;# [wt. fraction acetic acid]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data:\n",
+ "# x_prime = kg nicotine/kg water\n",
+ "# y_prime = kg nicotine/kg kerosene\n",
+ "# Eqb = [x_prime y_prme]\n",
+ "Eqb = numpy.array([[0 ,0],[0.001011, 0.000807],[0.00246, 0.001961],[0.00502 ,0.00456],[0.00751, 0.00686],[0.00998, 0.00913],[0.0204 ,0.01870]]);\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "A = 1000*(1-xF);# [kg water/h]\n",
+ "yS = 0;\n",
+ "yS_prime = 0;\n",
+ "y1_prime = 0;\n",
+ "xF_prime = xF/(1-xF);# [kg nicotine/kg water]\n",
+ "# For xF_prime = 0.0101:\n",
+ "yk = 0.0093;\n",
+ "xNp = 0.001;# [wt. fraction acetic acid]\n",
+ "xNp_prime = xNp/(1-xNp);# [kg nicotine/kg water]\n",
+ "# For infinite stages:\n",
+ "# Operating Line should pass through (xNp_prime,y1_prime) & (xF_prime,yk)\n",
+ "Operat = numpy.array([[xNp_prime, y1_prime],[xF_prime ,yk]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1],label=\"equilibrium Line\")\n",
+ "plt.plot(Operat[:,0],Operat[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.4(a)\")\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0,0.01))\n",
+ "plt.show()\n",
+ "AbyBm = (yk-y1_prime)/(xF_prime-xNp_prime);\n",
+ "Bm = A/AbyBm;# [kg kerosene/h];\n",
+ "print\"Mininmum kerosene rate: \",round(Bm,2),\" kg kerosene/h \\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "B = 1150.0;# [kg/h]\n",
+ "AbyB = A/B;\n",
+ "# From Eqn. 10.36:\n",
+ "y2_prime = ((xF_prime-xNp_prime)*AbyB)+yS_prime;# [kg nicotine/kg kerosene]\n",
+ "# Operating Line should pass through (xNp_prime,y1_prime) & (xF_prime,y2_prime)\n",
+ "Operat = numpy.array([[xNp_prime, y1_prime],[xF_prime, y2_prime]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1],label=\"equilibrium Line\")\n",
+ "plt.plot(Operat[:,0],Operat[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine/kg water\");\n",
+ "plt.ylabel(\"kg nicotine/kg kerosene\");\n",
+ "plt.title(\"Solution 10.4(b)\")\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0,0.01))\n",
+ "plt.show()\n",
+ "# From Figure:\n",
+ "Np = 8.3;\n",
+ "print\"Number of theoretical stages: \\n\",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.4 - Page: 506\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFX3wPHvISIqUkV6F1SsIFWUoohGxKBIFcGgFFGU\nnwXBCr5WRBA7SkeQLr2/QBClBBGsICAgIoiC9Jpyfn/MJu8SkuyG7GRLzud59iEze2fmXDfuydw7\n915RVYwxxhg35Al2AMYYYyKXJRljjDGusSRjjDHGNZZkjDHGuMaSjDHGGNdYkjHGGOMaSzIm1xGR\niiKSLCLn9PsvIh1EZGGg48ppInKHiEz3s2xPEXnL7ZhM5LEkY8KWiNwsIitF5KCI7BeRr0WkVoCv\ncVZCUtXxqnpHIK/juVZeEZkqIts912yUTpkBIrLP8/LrS19EXvac79Y0b70OvOlneMOADiJyqZ/l\njQEsyZgwJSIFgTnAe0ARoAzwCnDKrUu6dN60vgIeAP4CzhgpLSLdgRbAdZ7X3Z59GRKRy4BWwO40\n+2sDBVU13p+gVPUUMB/o5F81jHFYkjHh6nJAVXWSOk6q6mJV/RFAHC+KyA4R2SsiYzyJ6SyeMk28\ntvuLyOeeza88/x4UkcMiUk9EYkVkhVf5+iKy1nNHFS8iN3q9Fyci//HcZR0WkYUickl6cahqgqq+\nr6rfAEnpFHkQeEdVd6vqbuAdINbHf6cPgT5AQpr9dwJxaf47vCciO0XkkIh8KyI3pzkmDrjLx/WM\nOYMlGROufgWSRGS0iESLSJE073fG+VJuDFQGLsb5wk2PcuZdg/fPDTz/FlLVgqq62vtAESkKzAWG\nAEWBwcDcNPG0x0kGxYHzgWf8qWA6rgK+99r+Abg6o8Ii0ho4qarz03n7Gpz/ht7igetx7gy/AKaI\nyPle72/yvG+M3yzJmLCkqkeAm3ESwjDgbxGZKSLFPUU6AINUdYeqHgOeA9r52dkvGfycnruAXz39\nNMmqOhHnyzgmJVRglKpuVdWTwGSguj91TMfFwCGv7cOefWcRkQI4fS69MjhXYeCI9w5PHQ546jEY\nyAdc4VXkCFDoHGM3uZQlGRO2VHWTqnZW1XI4f5mXxrmjACgF/O5VfCdwHlAiwGGU9pzb2++e/Sn+\n8vr5BBkkBj8cBbyb/Ap59qWnP/C5qnrH5p0wD6Q5FyLyjIj84mn2O+A5fzGvIgU4M8kZ45MlGRMR\nVPVXYAxOsgGno7uiV5HyQCKwN53DjwH5vbZLep/ax6X/BCqk2VfBsz/QfubMu6DrgZ8yKHsr8ISI\n7BGRPUA5YLKI9Pa8/wNOvxYAItIA6A20VtXCqloEJ6F4J6ZqwIaA1MTkGpZkTFgSkStE5CkRKePZ\nLofT97HKU2QC8KTnEeSLgTeAiaqanM7pNuA0pZ3neQT6Pv6XXP4BkoHLMghlPnC5iLT3HN8WuBLn\nybfUcLNQr3wicoFn0/tngLHAUyJS2lPvp4DRGZyqCU5/zfU4iWk30A342PP+PMD7EekCOEl4n4ic\nLyIvk+ZOx1M+vf4dYzJkScaEqyNAXWCNiBzFSS4/AE973h8JfI7zdNg24DjwuNfx3ncoL+EkkQM4\nzUzjUwupHsfp2/hGRP4Vkbp4PSigqvuB5p7r7sPp1G+uqv9mcK20Dxmk9asn1tLAQuCYiJT3XOtT\nYDbwo6eus1X1s5QDReQnEWnvKfuvqv7tee3FeVrtgKd/ClVdDxwSkTqewxd4XpuBHTjNeju9zn0B\nzhNpYzKJ3ZiziJuLlolINE4beRQwXFUHpFPmfZxf3uNArOeXHxEZidOp+reqXutVvigwCadJYgfQ\nRlUPulYJYyKUiDQFHlXVe/0o2xMoq6p93Y/MRBLXkoyIROH8VXYbTvv0WqC9qm70KtMM6KmqzTx/\nIb6nqvU87zXA6dQcmybJvA3sU9W3RaQPUMR+8Y0xJjS52VxWB9jqeYQ0AZiIM1rZWwye229VXQMU\nFpGSnu0VOM0XaaUe4/n3HhdiN8YYEwBuJpkywB9e27s8+7JaJq0SnjZmcJ4UCvQjqcYYYwLEzSTj\nbztc2idv/G6/U6etz71OJWOMMdlynovn/hPn2fwU5XDuVDIrUxbf4wv2ikhJVf1LREoBf6dXSEQs\n+RhjzDlQ1YBNCOvmncy3QFXPOIXzgbbArDRlZuGZ1VVE6gEHvZrCMjILZ04qPP/OyKigqkbsq1+/\nfkGPwepm9bP6Beb1xx9Kw4ZKkybK7t3BrV+guZZkVDUR6InzrP8vwCRV3Sgi3VOmJ1fVecA2EdkK\nfAo8mnK8iEwAVuIMdPtDRDp73noLaCoim3FGNefKhZR27NgR7BBcE8l1A6tfuAt0/WbPhlq1IDoa\nFi6EUqUCevqgc7O5DHVmf52fZt+nabZ7ZnBs+wz2/4vzWLQxxoStU6egTx+YMQO+/BLq1w92RO5w\nNckY98TGxgY7BNdEct3A6hfuAlG/LVugXTuoUAHWr4ciaReqiCCujvgPJhHRSK2bMSZ8jRsHTz4J\nr7wCPXqA5NSaq34SETSAHf+57k5GQu0TNSHNjT9U4uLiaNy4ccDPGyqsfuk7ehR69oTVq+G//4Xr\nc8nyb7kuyYA7Xxwm8tgfJCZQNmxwmsfq14d16yB/ft/HRIpc11zmuRUMQkQm3NjviskuVfj4Y+jf\nH4YMgQ4dgh2Rb9ZcZowxYeDff+Hhh2HnTli5EqpWDXZEwWHryRiTw+Li4oIdgqusfvDNN1CjBlSq\nlLsTDFiSyRVWrFjBlVdembpdsWJFli5dCsAbb7xB165dAWeQWZ48eUhOTm/xyPS9+eabqccHS9r6\nGRMsSUnw+utw333w0UcweDDkyxfsqILL+mRyoUqVKjFixAhuvfXWM/bv2LGDypUrk5iYSJ48off3\nR8WKFRkxYgRNmjTJkevZ74rJij174IEHnEQzfjyU8TWffIgKdJ9M6H2TmLCRlJSUo9cTEXviy4Sk\nBQvghhugYUNYsiR8E4wbLMmEkN27d3PfffdRvHhxKleuzAcffJD63okTJ4iNjaVo0aJcffXVDBw4\nkHLl/jeBdZ48edi2bVvqdmxsLC+99BLgtCF7l/XWv39/OnbseMa+ESNGUKZMGUqXLs2gQYPOKNuq\nVSs6duxIoUKFGD169BnHp3cd76a5/v3707p1azp27EjBggW57rrr2LJlC2+++SYlSpSgQoUKLF68\nOMv/3dJet2LFigwaNIjrr7+ewoUL065dO06dOpX6/pw5c6hevTpFihThpptu4scff8zyNbPD+izC\nW0r9Vvy+gtOn4dlnoWtXmDgR+vWDqKjgxhdqLMmEiOTkZO6++25q1KjB7t27WbJkCUOGDGHRokUA\nvPLKK2zfvp1t27axcOFCxowZk+lf9f7+1Z9embi4OLZu3cqiRYsYMGAAS5YsSX1v1qxZtG7dmkOH\nDtGhQwef10j7/pw5c+jUqRMHDhygRo0aNG3aFHAS7EsvvUT37t19xuxPnaZMmcLChQvZvn07P/zw\nA6NHjwZg/fr1PPzwwwwbNox///2X7t27ExMTw+nTp7N9XZM7JCQl8MicR3h4+iPUb3yEjRudqWEa\nNQp2ZKHJkkwaIoF5ZdXatWvZt28fL774Iueddx6VKlWiS5cuTJw4EYApU6bwwgsvULhwYcqWLUuv\nXr189hf405+QXpl+/fpx4YUXcs0119C5c2cmTJiQ+l79+vWJiYkB4IILLshyn0XDhg1p2rQpUVFR\ntGrViv3799O3b1+ioqJo27YtO3bs4PDhw1k6Z3qeeOIJSpYsSZEiRbj77rvZsGEDAJ999hndu3en\ndu3aiAidOnUiX758rF69OtvX9Fckj4aHyK7fP8f+4dWdr/Ltr7v5d+AqOrYtwKxZUKxYsCMLXTZO\nJo1g9fP+/vvv7N69myJeM+UlJSXRsGFDwPlL37tJqHz58q7FkvY63s1JZcuWzda5ixcvnvrzhRde\nSLFixVLvdi688EIAjh49SsGCBbN1nZIlS55xnd27dwPOf+exY8ee0RSZkJDAnj17snU9E/m+/+t7\nWky8hyJ/dODIrP+wcFYeatYMdlShz+5kQkT58uWpVKkSBw4cSH0dPnyYOXPmAFCqVCl27tyZWt77\nZ4CLLrqI48ePp27v2bPnnDvJ016njFcvZtpzem/nz5//jBiSkpL4559/zimGQEuJs3z58rzwwgtn\n/Hc+evQobdu2zbFYckufRSSZ+stUbhl1G0kL3qLYD7ex/jtLMP6yJBMi6tSpQ4ECBXj77bc5ceIE\nSUlJ/PTTT3z77bcAtGnThjfffJODBw+ya9cuPvjggzO+4KtXr8748eNJSkpiwYIFfPXVV+ccy2uv\nvcaJEyf4+eefGT16dKZfwN7NZZdffjknT55k3rx5JCQk8Nprr53R4R4Ip0+f5uTJk6kvf59wS4mz\na9euDB06lPj4eFSVY8eOMXfuXI4ePRrQOE1kSNZkXlr6Mt2/fBr9fCGvtmvL889DgQLBjix8WJIJ\nEXny5GHOnDls2LCBypUrc+mll9KtW7fU/ol+/fpRoUIFKlWqRHR0NJ06dTrjC/69995j9uzZFClS\nhC+++IJ77733jPNndFeT9gEBEaFRo0ZUqVKF2267jd69e3PbbbelWzbtvkKFCvHxxx/TpUsXypYt\ny8UXX3xG01tGx/sTZ4pmzZpx0UUXpb5eeeUVnw85eL9fs2ZNhg0bRs+ePSlatChVq1Zl7NixmV4z\n0CK5zwIip35HTh0hZvx9DF24lBKz4ln15Q3ExsIttzQOdmhhxQZjhqm4uDg6duzIH3/8EexQIlak\n/K6YrNt2YBu3j2zB3+vr0aHwh7z7Tj4uuCDYUeUMG4xpTJiLxD4Lb+FevyXblnH9+/XZO687o+79\njE8+PDPBhHv9cpo9XRbGbPS7MYGjqgxY9jH9lrxK1R++YO7IW6lQIdhRhT9rLjMmA/a7knucTjrN\nvcN6smjjSrpePIv3X6nMebn0T3BbT8YYYwJo96G/qTf4Pv7ZeQnT2q4iJtoeHQsk65MxJodFept+\nONVv/voNVH6zDnn/bMy2N7/0K8GEU/1CgSUZY0yu1Hv0FO6a1JRWhQay5bNXKVXSvg7dYH0yxmTA\nflci0/ETyTTq34/1yZ8zoul0Hry9RrBDCinWJ2OMMedo3U9HuPXDjuQtuJ+NT8ZTtXRx3weZbLH7\nQ5MlwVjqeOfOnRQoUCBi7ioivU0/VOs3cMRv1P3sRq6vXII/31hyzgkmVOsXqizJhJjRo0dz7bXX\nkj9/fkqVKsWjjz7KoUOHghZP2sXQGjRowKZNm1y5VuPGjRkxYsRZ+8uXL8+RI0dsXJA5J0eOQNPu\nS3hua3363Pooy3sPJd955wc7rFzDkkwIGTRoEH379mXQoEEcPnyY1atX8/vvv9O0aVMSEhICfr2s\nTi7pttyyvHKkzO2VkVCq33ffKZe1/4BvSnRgVqeJvH7Po9n+HQul+oUDSzIh4vDhw/Tv358PP/yQ\n22+/naioKCpUqMDkyZPZsWMH48aNA/63BHK7du0oWLAgNWvW5Icffkg9T2ZLOKddPnnMmDGsXbuW\nG2+8kSJFilC6dGkef/zx1ISWspbN9ddfT4ECBZgyZUqWlzp+++23KV26NGXLlmX48OFn3Rn5Y8eO\nHeTJk4fk5GTA+Z/85Zdf5uabb6ZgwYLccccd7N+/P7X86tWrqV+/PkWKFKF69eosX748S9cz4U8V\nBr93mpve6sYFN33Gz0+uolm1W4IdVu6kqhH5cqp2toz2B9v8+fP1vPPO06SkpLPee/DBB7V9+/aq\nqtqvXz/NmzevTps2TRMTE/Wdd97RSpUqaWJioiYlJekNN9ygr776qiYkJOi2bdu0cuXKunDhwjOO\nnTlzpqqqnjhxQtetW6dr1qzRpKQk3bFjh1arVk2HDBmSem0R0d9++y11e9myZVq2bNnU7YoVK2rd\nunV1z549+u+//2q1atV06NChqXUqWbKk/vLLL3r8+HHt0KGD5smT54zzeWvcuLGOGDHirP3bt29X\nEUn9b9OoUSOtUqWKbtmyRU+cOKGNGzfWvn37qqrqrl279JJLLtH58+erqurixYv1kksu0X/++cfP\nT+J/3PpdWbZsmSvnDRXBrt++faq3t/xLL37iJm064h49fPJwQM8f7Pq5zfN7H7DvYnu6LA15JTDN\nNdova01M+/bto1ixYuTJc/bNZcmSJfnuu+9St2vVqkXLli0BeOqppxg0aBCrVq0ib968qUs4A2cs\n4Xz77bcDZy+ffMMNN6Set0KFCnTr1o3ly5fTq1cvv2NPWeoYOGOp48mTJ/PQQw9RrVo1AF555RW+\n+OILv8+bERGhc+fOVKlSBXDW2pk1axYA48aNo1mzZkRHRwNw2223UatWLebNm0enTp2yfW0T2las\ngNZPfMfxmHvp1SCW/zTpRx6xBptgsiSTRlaTQ6AUK1aMffv2kZycfFai2bNnD5deemnqtvcSyCJC\n2bJl2b17NyKS6RLOaY8F2Lx5M0899RTr1q3j+PHjJCYmUqtWrSzFnnap45SljPfs2UOdOnUyvHZ2\npL1myqJjv//+O1OmTGH27Nmp7ycmJnLrrbcG7NrZFelt+sGoX1ISvPEGDFo4CW3Vk5H3fkKrq1q5\ncq1I//wCzVJ8iLjxxhvJly8f06ZNO2P/0aNHWbBgAU2aNEnd572GTHJyMrt27aJMmTKUK1cu0yWc\n0+tY79GjB1dddRVbt27l0KFDvP7666l9H9lVqlSpM2LNibVvypcvT8eOHc/4b3DkyBGeffZZ169t\ngmP3britaTLDt79AwXv7svzhxa4lGJN1lmRCRKFChejXrx+PP/44CxcuJCEhgR07dtCmTRvKlStH\nx44dU8uuW7eO6dOnk5iYyJAhQ7jggguoV68etWvXznQJZ03nKbGjR49SoEABLrroIjZt2sQnn3xy\nxvslSpTgt99+y1JdUq7Tpk0bRo0axaZNmzh+/Divvvqqz2MTEhLOWF45MTEx02uk9cADDzB79mwW\nLVpEUlISJ0+eJC4ujj///DNLdXBTpI+zyMn6zZ8PNeodZk+je6jQ4GvWPRJP9ZLVXb1mpH9+gWZJ\nJoT07t2bN954g2eeeYZChQpRr149KlSowJIlS8ibNy/g3I20aNGCSZMmUbRoUcaPH8+XX35JVFQU\nUVFRmS7hnN6dzDvvvMMXX3xBwYIF6datG+3atTujTP/+/XnwwQcpUqQIU6dOzdJSx9HR0TzxxBPc\ncsstXH755dx4440A5MuXL8Pje/Toccbyyg899JDPZZu93y9btiwzZ87kjTfeoHjx4pQvX55BgwYF\n7O7MhIbTp+GZZ+ChZ7Zy0RM3ckvNMvy302IuzX+p74NNjnJ17jIRiQaGAFHAcFUdkE6Z94E7geNA\nrKquz+xYEakDfAjkBRKBR1V1bTrn1fTqFu7zUb3yyits3bqVzz//PNihZNnGjRu59tprOX36dLoP\nOISacP9diVTbtkG7dnDe5f9l63UdeOWW/vSo3SPYYUWMsFl+WUSicJJBNHAV0F5EqqUp0wyooqpV\ngW7AJ34c+zbwkqrWAF72bOca4falN336dE6dOsWBAwfo06cPMTExYZFgTGiaNAnq1lPKtXqf7TU6\nMqXNZEswIc7N/9vrAFtVdYeqJgATgRZpysQAYwBUdQ1QWERK+jh2D1DI83NhIHQa23NAuI2K/+yz\nzyhRogRVqlQhb968Z/X55EaR3qbvRv2OH4euXeGFfqe46a0ubCkwnJUPraRRxUYBv5Yvkf75BZqb\njzCXAbwfJ9oF1PWjTBmgdCbH9gW+FpF3cJLkjQGMOeT169cv2CFkyfz584MdgglzP/0EbdvClbX+\notjT9xF1cUlWPrCSi8+/ONihGT+4mWT8bdfJ6p/lI4AnVHW6iLQGRgJN0ysYGxtLxYoVAShcuDDV\nq7v71ImJXCl/vaaMkcjOduPGjQN6vlDbDlT9VGHLlsa88ALc1elT5p18iceqPsZLjV7iq+VfhX39\nQmU7Li6O0aNHA6R+XwaSax3/IlIP6K+q0Z7t54Bk785/ERkKxKnqRM/2JqARUCmjY0XksKoW9OwX\n4KCqFiKNSO34NznHfleC5+BB6NYNNm+Gjm9P4K3vn2DoXUO576r7gh1axAubjn/gW6CqiFQUkfOB\ntsCsNGVmAZ0gNSkdVNW9Po7dKiIpDbG3AptdrIMxARfpbfrZrd+aNVCjBhQrnkTTAc/x4cbnWdJp\nScgkmEj//ALNteYyVU0UkZ7AQpzHkEeo6kYR6e55/1NVnScizURkK3AM6JzZsZ5TdwM+EpF8wAnP\ndpaEU8e5MblFcjK88w4MGgSDPzrMhNP3c3TPUdZ2XUuxi4oFOzxzjlwdJxNMGTWXGWNCz99/Q6dO\nzgJjrw/dwqNfteCWircwJHoIeaPyBju8XCWcmsuMMcanJUuc5rFateClUYtpu/BmetXtxUd3fWQJ\nJgL4TDIiUlJERojIAs/2VSLysPuhmcxEcrtwJNcNrH4pEhPhhRecO5gxY5RizYfQeXYnprSeQvda\n3d0NMhsi/fMLNH/uZEYDi3DGrgBsAZ50KyBjTOTbuRMaNYJ162DV2lOMP/YQozaMYtXDq2hYoaHv\nE5iw4bNPRkS+VdVaIrLeM5ULIrJBVUN60In1yRgTmqZPh0cecSa47ND9L1pNaUnpAqUZc88Y8p+f\nP9jh5XqB7pPx5+myoyJyiVcA9YBDgQrAGJM7nDzpJJa5c2HmTDiv/LfUG9GSLjd04cWGL9oKlhHK\nn0/1aWA2UFlEVgKfA0+4GpXxKZLbhSO5bpA767dpE9Sr5zxFtn49bMv/Bc3GN+O96Pd4udHLYZVg\nIv3zCzSfdzKqus4z+PEKz65fPZNWGmNMplRhzBjo3Rtefx0eejiJF5Y+z5RfprCk0xKuLXFtsEM0\nLvNrnIyI3ARUxElKCqCqY12NLJusT8aY4DpyBB59FL77zpmiv1yVQ9z/5f2cSDjB5NaTbYBliMrx\ncTIiMg4YCNwE1AJqe17GGJOu776DmjXhggtg7Vo4v9Rm6o2oR6XClVj4wEJLMLmIPw2hNYGbVPVR\nVX085eV2YCZzkdwuHMl1g8iunyo8/ngc0dHwn//AsGHw9Z5FNBjVgCfrPcmHzT4M+wGWkfz5ucGf\np8t+AkoBu12OxRgTxvbvh86dnZmTV62CypWVwaveZeDKgUxtPZUGFRoEO0QTBP6Mk4kDqgPxwCnP\nblXVGHdDyx7rkzEm53z1FTzwgLO42OuvQ3Kekzwy5xG+3/s9M9rOoELhCsEO0fgpGONk+nv+Vf63\nwJh9extjSEpyksrHH8PIkdCsGew5sod7J91L+ULl+brz1zbAMpfz2SejqnHADiCv5+d4YL2rURmf\nIrldOJLrBpFTv9274bbbIC7O6ehv1gzW/rmW6/peR/PLmzOp1aSITDCR8vnlFH+eLusGTAE+9ewq\nC0x3MyhjTGibNw9uuAFuvRUWL4bSpWHcD+O464u76FW3Fy82fNHWbTKAf30y3wN1gNVec5f9qKoh\nPYrK+mSMCbzTp+G552DKFBg/Hho0gKTkJJ5b8hzTNk5jZruZXFP8mmCHabIhGH0yp1T1VMpfJSKS\nOiDTGJN7/PYbtGvn3LWsXw+XXAIHTx7k/mn3cyrpFPFd4rnkokt8n8jkKv6Mk1kuIi8AF4lIU5ym\ns9nuhmV8ieR24UiuG4Rn/SZOdOYe69QJZsxwEszm/ZupN7weVYpWYUGHBakJJhzrlxWRXr9A8+dO\npi/wMPAj0B2YBwx3MyhjTGg4dgx69XIeUV640OmHAViwdQGdpnfijSZv0OWGLsEN0oQ0v+YuSy0s\nUhQop6rfuxdSYFifjDHZ8+OPzriXmjWdR5QLFABVZfCqwQxaNYjJrSdzc/mbgx2mCbAc75MRkeXA\n3Z6y64B/ROQbVbXVMY2JQKrw2Wfw4oswaJDTRAZwMvEk3WZ346e/f2J1l9WUL1Q+uIGasOBPn0wh\nVT0MtATGqmod4DZ3wzK+RHK7cCTXDUK7focOOXcvH38MX3/9vwSz+8huGo1uxKmkU3z90NeZJphQ\nrl8gRHr9As2fJBMlIqWANsBczz5rhzImwqxdCzVqwKWXwpo1cIVnBak1u9ZQZ1gdWlzRgon3TeSi\nvBcFN1ATVvwZJ9MaeAn4RlV7iMhlwNuqel9OBHiurE/GGP8kJ8O778KAAfDJJ3Cf1//ZY78fyzOL\nnmFEzAjuvuLu4AVpckyg+2Sy1PEfTizJGOPbvn0QG+v8O2ECVKrk7E9KTqLPf/swY9MMZrabydXF\nrw5qnCbnBGPRsnIiMl1E/vG8polI2UAFYM5NJLcLR3LdIHTq99VXTvPYVVfBihX/SzAHTx6k+YTm\nbPhrA/Fd47OcYEKlfm6J9PoFmj99MqOAWUBpz2u2Z58xJgwlJTkLirVt6zxF9vbbkNezjtiv+36l\n7vC6XF70chY8sICiFxYNbrAm7Pk1d5mqXu9rX6ix5jJjzrZ7t7Pui6oz91jp0v97b/6W+Tw440He\nuu0tHqrxUPCCNEGV481lwH4R6SgiUSJynog8AOwLVADGmJyxYIEzsLJxY/jvf/+XYFSVgd8M5OFZ\nDzO97XRLMCag/EkynXEeX/4L2AO09uwzQRTJ7cKRXDfI+folJECfPtC1qzMH2csvQ1SU896JhBN0\nmtGJiT9PZE2XNdxU/qZsX88+P+Mt0xH/nhmX31BVe3bRmDC0Ywe0bw9FizoLi1166f/e+/Pwn9w7\n6V4uK3oZKzqvsPEvxhX+9Ml8DTRR1VM5E1JgWJ+Mye2+/BIeecS5i3nyScjj1W6xetdqWk1uxWO1\nH6PvzX1tgTGTKhjryWwHvhaRWcBxzz5V1cGBCsIYEzgnT8IzzzirV86eDXXrnvn+mA1j6L24NyNb\njKT55c2DE6TJNfzpk/kNZzqZPMDFnlcBN4MyvkVyu3Ak1w3crd/mzc66L3v3Os1j3gkmMTmRpxc+\nzWsrXiMuNs61BGOfn/Hm805GVfsDiEh+VT3mekTGmHPy+efw1FPw6qvQvTt4t4AdOHGAdtPakazJ\nrOmyxsabjGJ4AAAgAElEQVS/mBzjT59MfZxFygqoajkRuR7orqqP+jy5SDQwBIgChqvqgHTKvA/c\nidMUF6uq630dKyKPA48CScBcVe2TznmtT8bkCkePQs+ezqSWkybBdded+f7GfzbSYmIL7qp6FwNv\nH8h5efxpJTe5VTDGyQwBovGMjfEsWNbI10EiEgV86Dn2KqC9iFRLU6YZUEVVqwLdgE98HSsitwAx\nwHWqeg3wjh91MCYi/fAD1K7t3LV8++3ZCWbelnk0Gt2I525+jnej37UEY3KcP0kGVd2ZZleiH4fV\nAbaq6g5VTQAmAi3SlIkBxniusQYoLCIlfRzbA3jTsx9V/cefOkSaSG4XjuS6QWDqpwpDh0KTJvD8\n8zBqFOTP7/2+MuDrAXSd3ZWZ7WbSuUbODW2zz8948+fPmp0ichOAiJwPPAFs9OO4MsAfXtu7gLp+\nlCmDM0daRsdWBRqKyBvASeAZVf3Wj3iMiQgHDzoDK7dscRYWS1n3JcWJhBN0md2FX/f9ypouayhb\n0OazNcHjz51MD+AxnC//P4Eanm1f/O0QyWrb33lAEVWtB/QGJmfx+IjQuHHjYIfgmkiuG2SvfvHx\ncMMNUKIErF59doLZdXgXDUc3BGBF5xVBSTD2+Rlv/tzJ1FLV+713iMgjwFAfx/0JlPPaLodzR5JZ\nmbKeMnkzOXYX8CWAqq4VkWQRuURV96cNIDY2looVKwJQuHBhqlevnvoLknLLa9u2HQ7bS5fGMWUK\nTJvWmKFDoWjROFavPrP8z3//zBu73qBX3V7UPl2bNd+sCZn4bTt0t+Pi4hg9ejRA6vdlQKlqpi9g\nJc6I/5TtZ4EFfhx3Hs4Ym4rA+cAGoFqaMs2AeZ6f6wGrfR0LdAde8fx8ObAzg+trJFu2bFmwQ3BN\nJNdNNev1+/tv1WbNVOvVU92+Pf0yI78bqZe+fanO+XVOtuPLLvv8wpvnu9NnbvD35c+dTAwwR0RO\n4zztdaVnn6/klSgiPYGFOI8hj1DVjSLS3fP+p6o6T0SaichW4BieiTczOtZz6pHASBH5ETgNdPKj\nDsaEpeXLnan5778fXnvtf+u+pEhMTqT3ot7M3TKX5bHLqXZptfRPZEyQ+LX8sogUB5YA3wIPqT8H\nBZmNkzHhLCnJSSpDhzpPjkVHn13m3xP/0m5qO0SEifdNpMiFRXI+UBNxAj1OJsMkIyJHObPz/nwg\nwbNPVbVgoIJwgyUZE65274YOHZyxL+PGnbmwWIqN/2wkZmIMMZfHMKDpABv/YgImxwZjqurFqlrA\n65XPa19IJ5jcIKXjLhJFct0g8/qlLCx2662weHH6CWbO5jk0Gt2IFxu8yKA7BoVcgsnNn585W2j9\ndhqTSyUkwAsvwIQJztQwDRueXUZVGfDNAD6I/4BZ7WdRr2y9nA/UmCzyq08mHFlzmQkXO3ZAu3ZQ\nrBiMHu38m9bxhON0mdWFrf9uZXrb6ZQpWCanwzS5RDDmLjPGuGTaNKhTB9q0gVmz0k8wuw7vouGo\nhkTliWJ57HJLMCas+EwyIlI0nVdeX8cZd0Vyu3Ak1w2c+p08CY8+Cr17w5w5zhT9edL5v3HlHyup\nO7wuba9uy9h7xnJh3gtzPuAsyg2fn/GfP3cy3+HMwLzF89oH/C4i34lITTeDMyYS7dzpLCy2bx+s\nX+/cyaRn5PqR3DPxHobdPYzeN/W2JZJNWPJnPZlhwFRVXejZvh1oBYwC3lPVDP4XCS7rkzGhaOxY\nePppZwxMt25nLiyWImUFywW/LWBmu5lcWezKnA/U5Fo5Nk7G64I/qbNui/e+H1X1WhHZoKrVAxVM\nIFmSMaHk6FF47DFngsvJk+Haa9Mv9++Jf2k7tS1REsXEVhMpfEHhnA3U5HrB6PjfIyJ9RKSCiFQU\nkWeBvZ6FxZIDFYjJmkhuF460un3/PdSqBVFRzsJi+/fHpVvu579/ps6wOlxf4nrm3j83bBNMpH1+\naUV6/QLNnyRzP84syDOA6UB5oD3OnGJt3AvNmPCmCp98ArfdBi++CCNHnrmwmLfZv87mljG38HKj\nl3nn9neIyhOVs8Ea4xJ/mssqqer2NPtqq+paVyPLJmsuM8F08CB06QK//eYMrrz88vTLqSpvfv0m\nH6/9mGltplG3bNp1/YzJWcFoLpsmIqkrH4lII5xOf2NMOtasgRo1oFQpWLUq4wRzPOE47ae1Z+av\nM4nvGm8JxkQkf5JMd2CGiJQUkWbA+8Cd7oZlfInkduFwrVtyMrzzDsTEwODB8MEHcMEFZ5eLi4tj\n56Gd3DzyZs6POp/lscspXSCdScrCVLh+fv6K9PoFms+5y9RZffIJYDFwAmiqqn+7HpkxYeSff+DB\nB+HAAecJsgoVMi77494fuX/4/Tx949M8deNTNv7FRLTMpvqfnWZXNWAPcBBnqn+fC5cFk/XJmJwS\nF+csLPbAA/Dqq2cvLOZt+HfDeX7J84y9dyzRVdJZJMaYIAt0n0xmdzKD0tmngHDmOjPG5EpJSU5S\n+fRTZ2LLO+7IuGxCUgJPL3qaRb8tYkXnFVxR7Ioci9OYYMpsPZm4dF7LU/7NySDN2SK5XTgc6vbn\nn9CkCaxYAd99l3mC2X98P9Hjo9ny7xZWd1nNnp/25FygQRAOn192RHr9As1mYTYmi+bPdwZXNmkC\nixY5T5Fl5Ke/f6LO8DrULFWTOe3nhO0AS2POla0nY4yfTp92FhabOBHGj09/YTFvMzfNpOvsrgy+\nYzAPXPdAzgRpTDblWJ+MiHwGzAf+q6pHAnVBY8LR9u3OwmLFizszJ6e37ksKVeWNFW8wdN1Q5tw/\nhzplQnIOWWNyRGbNZSOB6sA8EVnqmb/s+hyKy/gQye3CoVa3qVOhbl0nyWS0sFiKY6eP0W5aO2Zv\nnk18l/h0E0yo1S/QrH7GW4Z3Mqq6GlgN9BORYsDtwNMich2wHpivqpNzJkxjct7Jk85iYgsXwty5\nULt25uV3HtpJi4ktuL7E9cTFxnHBeemMxDQml8lyn4w4I8dqAneo6uuuRBUA1idjsmPTJmjbFq68\nEj77DAoVyrz8it9X0GZqG56t/yz/V+//bIClCVs5vp5MuLIkY87VmDHwzDPw+uvQtWv6C4t5G7Zu\nGC8ue5Gx94zljiqZPMtsTBgIxgSZJgRFcrtwsOp29Ch06gQDBsDSpRmvXJkiISmBnvN6MmjVIFZ0\nXuF3gonkzw6sfuZMlmSMATZsgJo1nSlh1q7NeOXKFPuO7+OOcXew/eB21nRZw+WXZDDVsjG5nD/r\nyeQHngLKq2pXEakKXKGqc3IiwHNlzWXGH6rOtDAvvQRDhkCHDr6P+XHvj7SY2II2V7fh9VtftwXG\nTETJybnLUowC1gH1Pdu7galASCcZY3w5dQp69nTWfPnmm4zXffE2Y9MMus7uypA7htDhOj8ykjG5\nnD/NZZep6gDgNICqHnM3JOOPSG4Xzom6/fUX3Hor7N+f+cJiKVSVV5e/yuPzH2d+h/nZSjCR/NmB\n1c+cyZ8kc0pELkzZEJHLgFPuhWSMu779FurUgdtvdwZaFiiQefljp4/RZmob5m2dR3yXeGqVrpUz\ngRoTAfzpk7kdeAG4CmfhspuAWFVd5n545876ZEx6xo2DJ590xr7ce6/v8r8f/J0WE1tQo1QNht41\nlHzn5XM/SGOCKCjjZDwj/ut5Nler6r5ABeAWSzLGW1IS9O0LX34JM2fCNdf4Puar37+i7dS29Lmp\nD73q9rIBliZXCNY4mXzAAeAIcJWI+Jh/1rgtktuFA123AwegWTPnMeW1a/1LMJ9++ymtp7RmzD1j\nAj6CP5I/O7D6mTP5fLpMRAYAbYFfgCSvt75yKyhjAuWXX6BFC2jeHAYOhPN8/MYnJCXQa0Ev4nbE\n8XXnr6l6SdWcCdSYCOVPn8xm4FpVDavOfmsuM7Nnw8MPw9tvQ2ys7/L7ju+j9ZTW5M+bny/u+4KC\n+Qq6HqMxoSYYzWW/Aeefy8lFJFpENonIFhHpk0GZ9z3vfy8iNfw9VkSeFpFkESl6LrGZyKXqzDvW\no4eTaPxJMD/s/YE6w+pQr0w9ZrabaQnGmADxJ8mcADaIyGci8oHn9b6vg0QkCvgQiMZ5Mq29iFRL\nU6YZUEVVqwLdgE/8OVZEygFNgd/9iD8iRXK7cHbqdvQotGnjJJf4eGcdGF++3PglTcY24fVbX+fN\n2950fQR/JH92YPUzZ/JnxP8sz8ubP+1QdYCtqroDQEQmAi2AjV5lYoAxAKq6RkQKi0hJoJKPYwcD\nzwIz/YjD5BLbt8M998ANN0BcHFzgYzmXZE3m1eWvMmL9CBZ0WEDN0jVzJE5jchOfSUZVR5/jucsA\nf3ht7wLS/l2ZXpkyQOmMjhWRFsAuVf0hNz9S2rhx42CH4JpzqduyZdC+PTz/PDz+uO/p+Y+ePkrs\njFj2HN1DfNd4Sl5c8tyCPQeR/NmB1c+cKcMkIyJTVLW1iPyYztuqqtf5OLe/ve5+ZwrPzAPP4zSV\nZfl4E3lU4aOP4LXXYPx4aNLE9zE7Du6gxcQW1CpVi/Etx9sAS2NclNmdTC/Pv805+4vcnwTyJ1DO\na7sczh1JZmXKesrkzeDYy4CKwPeeu5iywDoRqaOqf6cNIDY2looVKwJQuHBhqlevnvpXSEq7arhu\nDxkyJKLq473t3eadWfnTp2Hy5MasWQODB8cRFQWQ+fmlotBuWjtaXdiKlgVbpiaYUKxfuG5b/cJr\nOy4ujtGjRwOkfl8GlKpm+gIG+LMvnTLn4TyZVhHn6bQNQLU0ZZoB8zw/18OZTcCvYz3ltgNFM7i+\nRrJly5YFOwTX+FO33btVb7xRtWVL1SNH/Dvvx/Efa/GBxXXxb4uzF2A2RfJnp2r1C3ee706fucHf\nlz/jZNarao00+35UVR/LOoGI3AkMAaKAEar6poh092SATz1lUp4iOwZ0VtXvMjo2nfNvA2qp6r/p\nvKe+6mbC09q10LKls3LlCy9AHh/PSJ5OOk2v+b34audXzGw3kypFq+RMoMaEoRybu0xEegCP4jRR\n/eb1VgHgG1UN6cU0LMlEps8/h6eegmHDnCfJfPnn2D+0mtKKQvkKMa7lOBv/YowPOTkY8wvgbpzH\nl5t7vWqGeoLJDbzbhSNNenVLTIRnnoFXXnGeJPMnwXz/1/fUGV6Hm8vdzIx2M0ImwUTyZwdWP3Om\nDDv+VfUQcAhoJyLVgQY4Hf4rgP05E54xzgSX7do5T5LFx0NRP+Z4mPbLNHrM7cEHd35A22vauh+k\nMSZd/vTJ9AK6Al/iPGV2DzBMVX2O+g8may6LDCkTXMbEwIABvie4TNZk/rP8P4zaMIrpbadzQ6kb\nciZQYyJEjq8n4xknU089yy6LSH6cp8B8dvwHkyWZ8DdzJnTtCu+8A506+S5/9PRROk3vxN/H/mZa\nm2mUuLiE+0EaE2GCtZ5McgY/myCJ5HbhpUvjePVV6NkT5szxL8FsP7Cd+iPqU/TCoizptCSkE0wk\nf3Zg9TNn8mfuslHAGhHxbi4b6WpUJtc6etTp3D992ul/KVXK9zHLti+j/bT2vNDgBXrW6WkrWBoT\nQvxdfrkmcDOejn9VXe92YNllzWXhZ/t2p/+ldm34+GPI52O2F1Xlk28/4T/L/8P4luNpUtmPOWWM\nMZkKRp9MPeAXVT3s2S6IM/p+TaCCcIMlmfCydCncfz+8+CI89pjvCS5PJ53m8XmP880f3zCz3Uwu\nK3pZzgRqTIQLRp/MUOCI1/Yxzz4TRJHSLqwKH3zgJJgvvnD6YZYvj8v0mL+P/c1tY2/jr2N/serh\nVWGXYCLls8uI1c9486vj3/uWQFWTcKZ6MSZbTp2CLl2c0furVsGtt/o+ZsNfG6gzrA6NKjRietvp\nFMhXwP1AjTHnzJ/msunAMpxVKwXoAdyiqn6MuQ4eay4LbXv2OPOPlSkDo0fDxRf7PmbKz1N4bN5j\nfNTsI1pf3dr1GI3JjYLRXPYIcBPOtPy7cGZL7haoAEzuEx8PderAXXfBlCm+E0yyJvPyspfpvbg3\nCx9YaAnGmDDiM8mo6l5VbauqxT2v9prO2i0mZ4Vru/DYsdC8OXz4odPJn14Hv3fdjpw6wn2T72PZ\njmXEd42nRqkaZx8QZsL1s/OX1c94y2xlzD6qOkBEPkjnbVXVJ1yMy0SYxER49lmYPduZ4PLqq30f\ns+3ANmImxFC/XH0mtZrE+VHnux+oMSagMpvq/25VnS0isem8rao6xtXIssn6ZELHv/9C27bOXcvE\nif5NcLl0+1Lun3Y/LzV8iUdrP2oDLI3JITk+TiZcWZIJDT//7AywvOceeOst3xNcqiofrf2I1756\njS/u+4JbK/nxyJkxJmByvONfRK4QkWEislhElnleSwMVgDk34dAuPGMG3HIL9O/vTHLpK8GcTjpN\nt9ndGDRhECsfXhmxCSYcPrvssPoZb/7MXTYF5/Hl4UCSZ5/dIpgMJSfDa68541/mznWmifHl72N/\nc9/k+yh2UTE+uvMjKhep7H6gxhjX+TNOZp2q1syheALGmsuC4+hRePBBZxzMl19CyZK+j1m/Zz33\nTLqH2Otj6de4H3nE38nBjTGBFoxxMrNF5DERKSUiRVNegQrARI5t2+DGG6FIEecJMn8SzOSfJ3PH\nuDsYdPsgXrnlFUswxkQYf/6PjgWeAVYC6zyvb12Myfgh1NqFlyyB+vWhe3enmczXDMrJmsyLS1/k\n2cXPsqjjIlpd1Sr1vVCrW6BZ/cJbpNcv0Hz2yahqxRyIw4SplAku33jDeTy5cWPfxxw+dZiO0zty\n4MQB4rvGUzx/cdfjNMYEhz3CbM7ZqVPQowesW+cslVyxou9jfvv3N2ImxtCgfAPev/N9G2BpTIgJ\n1vLLxpxhzx7nruXIEVi50r8Es2TbEuqPrE/P2j0Z2nyoJRhjcgFLMmEqmO3Ca9Y4E1w2bw6TJ0P+\n/JmXV1XeX/M+Hb7swKRWk+hRu0em5SO9zdvqF94ivX6B5rNPxrP0ctp2p0PA76qa6EpUJmSNGQO9\ne8Pw4RAT47v8qcRTPDbvMeL/jGfVw6uoVKSS+0EaY0KGP+NkVgM1gR88u64FfgYKAT1UdaGrEZ4j\n65MJrMREJ7nMnev0v1Sr5vuYvUf30nJyS0rkL8HYe8dy8fl+LBpjjAmqYPTJ7Aaqq2pNz6DM6sA2\noCnwdqACMaFr/36IjoaNG52mMn8SzHd7vqPO8DrcXvl2praZagnGmFzKnyRzhar+nLKhqr8AV6rq\nb9j0MkGTU+3CP/3k9L/ccINzF1OkiO9jJv00iehx0Qy+ffA5jeCP9DZvq194i/T6BZo/c5f9LCKf\nABNxll9uA/wiIvmABDeDM8E1fTp06wbvvgsPPOC7fMoAywk/TWBxx8VcX/J694M0xoQ0f/pkLgIe\nxVmCGeAb4GPgJJBfVY+4GuE5sj6Zc5ecDK++CiNGOPOP1arl+5jDpw7T4csOHDl1hCmtp3Bp/kvd\nD9QYE3A5vp6MiNRU1XVp9jVX1TmBCsINlmTOzZEjzgSXe/fCtGn+zT+29d+txEyIoXHFxrwX/R55\no/K6H6gxxhXB6PgfJiLXegXQHng5UAGYc+NGu/C2bc78Y5dcAkuX+pdg/rvtv9w08iaeqPsEH9/1\ncUASTKS3eVv9wluk1y/Q/EkyrYAxInKliHTFaTpr6m5YJqelTHDZowd89pnvCS5VlfdWv0fH6R2Z\n3Goyj9R6JGcCNcaEFb/mLhORK4AZwO9AS1U97nZg2WXNZf5RhffegwEDYMIE/ya4PJV4ih5ze7Bu\nzzpmtptJxcIV3Q7TGJNDAt1cluHTZSLyY5pdRXHufNZ4vsCvC1QQJjhOnoRHHoENG2D1aqhQwfcx\nfx39i5aTWlK6QGlWPrSS/Of7mFPGGJOrZdZcdneaV13gDs/Pfkwo4hCRaBHZJCJbRKRPBmXe97z/\nvYjU8HWsiAwUkY2e8l+KSCF/44kU2W0X3r0bGjWCEyfgm2/8SzDrdq+jzrA6RFeJZnLrya4lmEhv\n87b6hbdIr1+gZZhkVHVHZi9/Ti4iUcCHQDRwFdBeRKqlKdMMqKKqVYFuwCd+HLsIuFpVrwc2A8/5\nX2WzerUzwPKee5w1YHxNcAkw4ccJRI+P5r3o93i50cu2gqUxxi+uricjIjcC/VQ12rPdF0BV3/Iq\nMxRYpqqTPNubgMZAJV/HevbfC9ynqg+k2W99MukYPRqefRZGjnRmUfYlKTmJF5e+yKSfJzGz3Uyu\nLXGt74OMMWErx/pkAqQM8IfX9i6cZjdfZcoApf04FuAhYEK2I41wiYnwzDMwbx4sX+7f/GOHTh6i\nw5cdOJZwjPiu8RS7qJj7gRpjIorbScbfW4lzypoi8gJwWlW/SO/92NhYKnpW0ypcuDDVq1ensefx\nqZR21XDdHjJkiN/12bMHmjePIyoK4uMbU7iw7/OPmzmO55c+z923382Q6CF8s+KbHKufd5t3qPz3\ntvpZ/SK1fnFxcYwePRog9fsyoFTVtRdQD1jgtf0c0CdNmaFAO6/tTUAJX8cCsThT3FyQwbU1ki1b\ntsxnmaQk1U8/VS1WTPWll1QTE/0798KtC7X4wOL66befZi/Ic+RP3cKZ1S+8RXr9PN+dAcsDbvfJ\nnAf8CjTBWTIgHmivqhu9yjQDeqpqMxGpBwxR1XqZHSsi0cAgoJGq7svg2upm3ULdr786k1ueOgXD\nhsG1fnSlqCpDVg9h4MqBTGo1iQYVGrgfqDEmpIRVn4yqJopIT2AhEAWM8CSJ7p73P1XVeSLSTES2\nAseAzpkd6zn1B8D5wGIRAVilqo+6WZdwcfq0M7Dyvffg5ZfhsccgKsr3cacST/HI3EfY8NcGVj28\nigqF/Xim2RhjfHD1TiaYIv1OJi4uLrV9NcWqVdC1K1SsCB9/DOXL+3euPUf20HJyS8oVLMeoFqOC\nPsAyvbpFEqtfeIv0+gVjgkwT4o4cgccfh5Yt4aWXYPZs/xPM2j/XUmd4He6qeheTWk0KeoIxxkQW\nu5MJc7NnO01iTZvCwIFQtKj/x47/YTxPLnySz+7+jHuuvMe9II0xYSOs+mSMe/76C554AtavhzFj\n4JZb/D82KTmJ55c8z9SNU1n64FKuKX6Ne4EaY3I1ay4LM6owfDhceWUcVarADz9kLcEcOnmImIkx\nrN29lvgu8SGZYLzHIUQiq194i/T6BZrdyYSRzZudx5KPH4d33oEuXbJ4/P7NxEyIoWnlpgy+Y7Ct\nYGmMcZ31yYSBhASnv2XwYHjxRaeT35/Hkr0t3LqQTjM68dotr9G1Zld3AjXGhD3rk8ll1qxxHksu\nWxbWrfNvSn5vqsq7q9/lnZXvMK3NNG4uf7M7gRpjTDqsTyZEHTkCvXo50/E/9xzMnXtmgvGnXfhk\n4kliZ8Yy7odxrO6yOmwSTKS3eVv9wluk1y/QLMmEoLlz4Zpr4PBh+OknaN8eJIs3r7uP7Kbx6Mac\nTDzJ1w99TflCfg6cMcaYALI+mRCyd69z97J2LXz6Kdx227mdZ+2fa2k5uSU9avXguZufQ7KaoYwx\nuZaN+I9Aqs4iYtde6zSJ/fjjuSeYcT+M464v7uKjZh/xfIPnLcEYY4LKkkyQbd3qJJSPP4aFC53J\nLS+6yPdxaduFk5KT6L2oN/3i+rHswWXEXBHjTsA5INLbvK1+4S3S6xdolmSCJCEB3noL6tWDu+6C\n1auhRo1zO9fBkwdpPqE53/31HfFd4rm6+NWBDdYYY86R9ckEwdq1zmPJJUvCJ59ApUrnfq5f9/1K\nzMQYoi+LZtAdgzgvjz2Vbow5d9YnE8aOHoUnn4S774bevWH+/OwlmPlb5tNgVAOerf8s7935niUY\nY0zIsSSTQ+bPdx5L3r/feSy5Q4esP5acQlXp8WEPHp71MNPbTufhGx4ObLBBFult3la/8Bbp9Qs0\n+9PXZX//Df/3f06fy2efwe23Z+98JxNP0nV2V9ZsX8Oal9dQrlC5wARqjDEusD4Zl6jC2LHw7LPQ\nqRP07w/5s7ke2O4ju7l30r1ULlKZETEjuCivH4+hGWNMFtjcZWHgt9/gkUecprH58+GGG7J/zjW7\n1nDf5Pt4rPZj9L25r41/McaEBeuTCaDERHj7bahb12kWi48PTIIZ+/1Y7p5wN5/c9QnPNXBG8Edy\nu3Ak1w2sfuEu0usXaHYnEyDr1jnruxQr5iSXypWzf87E5ET6LO7DzF9nEhcbx1WXXpX9kxpjTA6y\nPplsOnYMXn4Zxo1z1nzp2PHcnxrzduDEAdpPa0+SJjGp1SSKXlg0+yc1xhgfbJxMCFm0yJlvbO9e\n57HkTp0Ck2A27dtE3eF1ubLYlczvMN8SjDEmbFmSOQf79jkJpVs3Z86xcePg0ksDc+55W+bRcFRD\nnrv5OYZED8lwgGUktwtHct3A6hfuIr1+gWZJJgtUYfx4Z1BlsWLO3Ut0dKDOrbz9zdt0nd2Vme1m\n0rlG58Cc2Bhjgsj6ZPy0Y4fzWPKePTB8ONSuHbBTcyLhBF1nd2XTvk3MaDeDsgXLBu7kxhiTBdYn\nk8OSkuDdd6FWLWjcGL79NrAJ5s/Df9JwdEOSNZkVnVdYgjHGRBRLMpn4/nu48UaYNQtWrYK+fSFv\n3sCdf/Wu1dQZXodW1VoxvuV4Lsx7od/HRnK7cCTXDax+4S7S6xdolmTSceIEPP88NG0K3bvD0qVQ\ntWpgrzF6w2hiJsTwafNP6XNzHxvBb4yJSNYnk8ayZc5TYzVqwPvvO2u+BFJiciLPLn6W2ZtnM6vd\nLKpdWi2wFzDGmGywuctccuCAs8bLwoXw0UcQ48LqxQdOHKDt1LYAxHeJp8iFRQJ/EWOMCSG5vrlM\nFaZMgauvhnz54Oef3UkwG//ZSJ3hdbim+DXM6zAv2wkmktuFI7luYPULd5Fev0DL1Xcyu3bBo4/C\n1q0wdSrUr+/OdeZunkvnmZ0Z2HQgD1Z/0J2LGGNMCMqVfTLJyfDJJ84aLz17Ok+N5csX+BhSBlh+\nEAnk/LoAAArXSURBVP8BU9tMpV7ZeoG/iDHGBJD1yWTTL79A167Oz8uXw1UuTWx8IuEEXWZ3YfP+\nzazpsoYyBcu4cyFjjAlhrvbJiEi0iGwSkS0i0ieDMu973v9eRGr4OlZEiorIYhHZLCKLRKSwP7Gc\nOuXcuTRqBA88ACtWuJdgdh3eRYNRDRCEr2K/ciXBRHK7cCTXDax+4S7S6xdoriUZEYkCPgSigauA\n9iJSLU2ZZkAVVa0KdAM+8ePYvsBiVb0cWOLZztQ33ziPJG/YAOvXQ48ekMelmq/8YyV1h9elzdVt\n+Pzez7M0wDIrNmzY4Mp5Q0Ek1w2sfuEu0usXaG42l9UBtqrqDgARmQi0ADZ6lYkBxgCo6hoRKSwi\nJYFKmRwbAzTyHD8GiCODRHP4sNPfMnOmM+alZcvATMWfkZHrR9L3v30Zfc9omlVt5t6FgIMHD7p6\n/mCK5LqB1S/cRXr9As3NJFMG+MNrexdQ148yZYDSmRxbQlX3en7eC5TIKICrr4Y773RmSy7i4pCU\nxOREnln0DPO2zOOrzl9xZbEr3buYMcaEETeTjL+PrflzbyHpnU9VVUQyvM7nnzuTWropWZO5e8Ld\nqCpruqzJsQGWO3bsyJHrBEMk1w2sfuEu0usXcKrqyguoByzw2n4O6JOmzFCgndf2Jpw7kwyP9ZQp\n6fm5FLApg+urvexlL3vZK+uvQOYCN+9kvgWqikhFYDfQFmifpswsoCcwUUTqAQdVda+I7M/k2FnA\ng8AAz78z0rt4IJ/zNsYYc25cSzKqmigiPYGFQBQwQlU3ikh3z/ufquo8EWkmIluBY0DnzI71nPot\nYLKIPAzsANq4VQdjjDHZE7Ej/o0xxgRfWEyQGUqDOt3gUv0GishGT/kvRaRQTtQlPW7Uz+v9p0Uk\nWUSKulmHjLhVNxF53PP5/SQiA9yuR0Zc+t2sIyLxIrJeRNaKSADXms2abNZvpIjsFZEf05SPlO+W\njOqXte8Wtzr+A/gAQRSwFagI5AU2ANXSlGkGzPP8XBdY7etY4G3gWc/PfYC3Iqx+TYE8np/firT6\ned4vBywAtgNFI6VuwC3AYiCvZ/vSSPrscMa23eH5+U5gWbjVz7PdAKgB/JjmmLD/bvFRvyx9t4TD\nnUzqoE5VTQBSBmZ6O2NQJ5AyqDOzY1OP8fx7j7vVyJAr9VPVxaqa7Dl+DVDW/aqky63PD2Aw8Kzb\nFciEW3XrAbzp2Y+q/uN+VdLlVv32ACl//RYG/nS3GhnKTv1Q1RXAgXTOGwnfLRnWL6vfLeGQZDIa\nsOlPmfQGdaYc6/egTpe5VT9vDwHzsh3puXGlfiLSAtilqj8EOuAscOuzqwo0FJHVIhInIrUCGvX/\nt3f+MVJVVxz/fMsPQawKgq3WIkoKEbVFVsgitooo0YQa26KmxCjGGKJ/SCAl1Zr6I8ZY0hCbUmwt\ntpIYNSJum2qiVmhEkRJhgRWXiIS2kmLQSmKLv6Alp3/cM3EY3uzMLO+5O7vnk0zm7p177zvnvs09\nufe8d079FKXf7cASSbuBn5NeUegJjka/rugLa0u91FxbmsHI1PtkwlG91NnAdfImT/2O7CTdCRw0\nsye60z8HctdP0lDgJ8Dd3emfI0Xdu4HAcDNrBRYBKxvsnxdF6fc74DYzGw0sAH7fYP+86K5+da8V\nTbq21NWv3rWlGUL97yGdvZf4OsnadtXmNG8zKKO+tDV/T9JXzWyvpFOA93OVun7y1O+wvpLmks5c\nZ+QnbsMUod9Y0jlzh1IwutOAdklTzOyLvI9F3bt/Am0AZrbRH2w4ycz25Sh7PRSl3xQzu9TLq4BH\n8hK4QbqrX63jvWZfW2oeXza0tvSEQ6pB59VAYBdpURlMbedVK587H6v2JTnnSlEEbqfnnHNF6Xc5\n0AmM7Iv3r6J/Tzn+i7p384B7vTwO2N2X7h2wGbjIyzOAjc2mX9nvY8h2/Df12lJDv4bWli9c8W5O\n1hXADtKTEnd43TxgXlmbX/nvHcCkrvp6/QhgNfA28GfgxD6m307gHWCLfx7qS/pVjP83esDIFHjv\nBgGPAduAduDivnTvgPNJDuOtwF+B85pUvydJEUkOkPwaN3p9X1lbqunX0NoSL2MGQRAEhdEMjv8g\nCIKgSQkjEwRBEBRGGJkgCIKgMMLIBEEQBIURRiYIgiAojDAyQRAEQWGEkQl6LZLGVIYZz2nc71YL\ne16j3wmSbin7+1RJT+coV6uk31bUXSzp2byu0YAsN/jb6kFwVISRCfodZvasmXUnR8tw4Naycd41\ns6vzk4wrgOdzHO9omEsKclk3kgYUI0rQzISRCZoCSWdK2iypRdKxklZK6vSkSRsktWT0+YekeyS1\nS3pD0nivnytpqZe/IukPkrb6p9XrF0ra5p/5PuTPgLGebGuxpNNLOy0fs03S856sanGZHDMlrXc5\nVkoaVkXNS0hvilebg8k+B2dIGuWJsd6UtNx1HVHR/mpJS7w8X9Kusrlc5+W7lBKIbZP0sNfNJr2V\n/7hfb4jP+8uSNkl6oRQO3uselLQRuK3Lmxj0S8LIBL0eNw6rgBvMrJ20m9hnZmcDPwVayI4ca8C/\nzKwF+DXwo4w2vyQlzZpIStC03Q3WXFI+jlbgZkkTSQmodpnZeWb2Y46MXvst4BrgXOBaSV+TNBK4\nE5jhcrQDCzN0HAn818z2V5mDC1yHK83s76QI1KvN7Byfm9EZ3V4hJZ7Cvz+QdKqX13r9UjObYmbn\nAkMlzTKzVcAmYI6ZTQIOAUuBH5jZ+cCjwP3e30jJ1Sab2YNZsgf9m2aIwhz0b04G/gh8z8ze8rpp\nwC8AzKxTUlc5Zdr8ezPw/YzfpwPX+VgG/EfShUCbmX0KIKmNtDD/qYasa0pGQtJ2UnDB4cAEYL1H\njB4MrM/oOxN4scq4ZwEPA5eZ2V6vm4YnwzKzFyVlJZd6T9Jxko4jRdd9AvgOcCHwjDe7RNIi4FhS\nzK03gef8t5IRHQ+cDax2HQaQYlqVeKqK3EEQRibo9XxICsb3beCtsvp6c5gc8O9DVP9/z8qnoYrf\n6wnyd6CsXH69l8xsTo2+lwNLMuqNlEnyGGAShyeIqmcO1gM3koIkrgNuAqYCCyUNAZYBLWa2R9Ld\nwJCKa5eu02lmF1S5xsd1yBH0U+K4LOjtHCTtQK6X9EOve410LIWkCaTjqe6yhpTuGEkDJB0PvApc\nJWmo+0+u8rqPgC83MLYBG4Bpksb6NYZJ+kZ5I6XtwTfNrCNjDJEM7SzgAUkXeX35HMwk7ZiyeJWU\n+GwtKWLudOAz33GVDMo+3+2UP8SwHzjeyzuAUWX+qkE+70FQkzAyQW/HzOwT0iK7QNIs4CHSotcJ\n3EfKbfHvrL4VZcsozwem+5HbJlK+jS3ACuB1kpFYbmYdlpKGveZO8sVdjFku/Ack/86TkjpIO4vx\nFc1aSAYgU3+fg/d9DpZJmgzcC8z0Bw9mA3tJhqGSdaR0uq9Yysu+2+swsw+B5aQjshdI4fdLrAB+\nI2kzaZ2YDSyWtNVlnVpF3iA4jAj1HzQdkr5EcjYf8B3CS8A4M/tfD4vWLZTS2O40s7rTLEsaDBwy\ns0OSpgLL3EkfBL2K8MkEzcgw4C+SBpGOk25pVgMDYGb31251BKOBlW5wDwI35ytVEORD7GSCIAiC\nwgifTBAEQVAYYWSCIAiCwggjEwRBEBRGGJkgCIKgMMLIBEEQBIURRiYIgiAojP8D2/x1wBuTrN4A\nAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa2780b8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mininmum kerosene rate: 968.71 kg kerosene/h \n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFX3wPHvISAKUkV6VSzYqFJfJYoIImJBBcSE0EGx\nF/D1RUD5gSAoitJBikpT6VWBCCq9WkBpEREE6R1Szu+PWTCElA3ZyZacz/Psk53dmbnnsmFP5t65\n94qqYowxxrghm78DMMYYE7osyRhjjHGNJRljjDGusSRjjDHGNZZkjDHGuMaSjDHGGNdYkjFZjoiU\nFZEEEbms338RaSkiC3wdV2YTkQYiMi3RdoKIXJfCvg+JyKTMi86ECksyJmiJyH9E5EcROSIiB0Xk\nexGp5uMyLklIqvq5qjbwZTmesnKIyJcistNTZt1k9uknIgc8j3e9PO9bnvPdm+St/wP6enMOVZ0F\n3Coit3uzvzHnWZIxQUlE8gKzgQ+BAkAJoBdw1q0iXTpvUkuBp4G/gYtGSotIR+Bh4A7P4yHPaykS\nkeuBx4E9SV6/E8irqqvSEdtEoEM69jfGkowJWjcCqqqT1XFGVb9R1Z8AxPE/EYkRkX0iMs6TmC7h\n2adeou2eIjLBs7nU8/OIiBwTkZoiEiUiyxLtX1tEVnuuqFaJSK1E70WLyNueq6xjIrJARK5JLg5V\njVXVj1T1ByA+mV1aAQNUdY+q7gEGAFFp/Dt9DHQFYpO8/gAQncz+D4rIdhH5R0T6i0ji5BoNPJhG\necZcxJKMCVa/AfEiMlZEGopIgSTvt8b5Ug4HrgOuxvnCTY5y8VVD4ud3eX7mU9W8qroi8YEiUhCY\nAwwCCgLvA3OSxNMCJxkUBq4AXvWmgsm4BdiYaHsTcGtKO4vIE8AZVZ2XzNu34fwbJvUIUBWognPV\n1CbRe1uAsiJydTrjNlmYJRkTlFT1OPAfnIQwEtgvIjNEpLBnl5bAQFWNUdWTwBtAcy87+yWF58l5\nEPjN00+ToKqTcL6Mm5wPFfhUVbep6hlgClDJmzom42rgaKLtY57XLiEieXD6XF5I4Vz5gePJvN5P\nVY+o6p84ibNFovfO758/PUGbrM2SjAlaqrpFVVuraimcv8yL43wxAhQD/ki0+y4gO1DEx2EU95w7\nsT88r5/3d6Lnp0khMXjhBJC4yS+f57Xk9AQmqGri2BInzMNJznXen4me7+LieuTx/DziTbDGgCUZ\nEyJU9TdgHE6yAaeju2yiXUoDccC+ZA4/CeROtF008anTKPovoEyS18p4Xve1X7j4Kqgi8HMK+94L\nPC8ie0VkL1AKmCIir3ne34TTr5VU6STPE9ejAhCjqiklNmMuYUnGBCURuUlEXhaREp7tUjhNO8s9\nu0wEXvLcgnw10AeYpKoJyZxuA05TWnbPLdBN+Te5/AMkANenEMo84EYRaeE5vhlwM86dbxfCTUe9\ncorIlZ7NxM8BxgMvi0hxT71fBsamcKp6OP01FXES0x6cO8OGeN6fC1xyizTwqojk9/x7Pg9MTvRe\nXc9xxnjNkowJVseBGsBKETmBk1w2Aa943h8DTMC5O2wHcAp4LtHxia9QuuMkkcM4zUyfX9hJ9RRO\n38YPInJIRGqQ6EYBVT0INPaUewCnU7+xqh5KoaykNxkk9Zsn1uLAAuCkiJT2lDUcmAX85KnrLFUd\ncf5AEflZRFp49j2kqvs9j304d6sd9vRPoarrgaMiUj1J+TOAtcB6nEQ5JtF7zYHhqcRuzCXEzUXL\nRKQhTht5GDBKVfsls89HOLdTngKiPL/8iMgYnE7V/ap6e6L9C+L8dVUGiAGeVFVrIzYmnUSkPvCM\nqj7qxb4PAS1Vtbn7kZlQ4lqSEZEwnL/K7sNp110NtFDVzYn2aQR0UdVGnr8QP1TVmp737sLp1Byf\nJMn0Bw6oan8R6QoUUNVurlTCGGNMhrjZXFYd2Oa5hTQWmIRz331iTXA6a1HVlUB+ESnq2V6G03yR\n1IVjPD8fcSF2Y4wxPuBmkinBxbdD7va8lt59kiriaWMG504hX9+SaowxxkfcTDLetsMlvfPG6/Y7\nddr63OtUMsYYkyHZXTz3Xzj35p9XCudKJbV9SpL2+IJ9IlJUVf8WkWLA/uR2EhFLPsYYcxlU1WcT\nwrp5JbMGuMEzTuEKoBkwM8k+M4FIABGpCRxJ1BSWkpk4c1Lh+Tk9pR1VNWQfPXr08HsMVjern9XP\nN48//1TuvlupV0/Zs8e/9fM115KMqsYBXXDu9f8VmKyqm0Wk4/npyVV1LrBDRLbh3H//zPnjRWQi\n8CPOQLc/RaS15613gfoi8jvOqGav1tQINTExMf4OwTWhXDew+gU7X9dv1iyoVg0aNoQFC6BYMZ+e\n3u/cbC5Dndlf5yV5bXiS7S4pHNsihdcP4dwWbYwxQevsWejaFaZPh6+/htq1/R2RO1xNMsY9UVFR\n/g7BNaFcN7D6BTtf1G/rVmjeHMqUgfXroUDShSpCiKsj/v1JRDRU62aMCV6ffQYvvQS9ekHnziCZ\nteaql0QE9WHHf5a7kpFA+0RNQHPjD5Xo6GjCw8N9ft5AYfVL3okT0KULrFgB334LFSv6PrZAlOWS\nDLjzxWFCj/1BYnxlwwaneax2bVi7FnLnTvuYUJHlmss8l4J+iMgEG/tdMRmlCkOGQM+eMGgQtGzp\n74jSZs1lxhgTBA4dgrZtYdcu+PFHuOEGf0fkH7aejDGZLDo62t8huMrqBz/8AJUrQ7lyWTvBgCWZ\nLGHZsmXcfPPNF7bLli3L4sWLAejTpw/t27cHnEFm2bJlIyEhucUjk9e3b98Lx/tL0voZ4y/x8fB/\n/wdNm8Inn8D770POnP6Oyr+sTyYLKleuHKNHj+bee++96PWYmBiuu+464uLiyJYt8P7+KFu2LKNH\nj6ZevXqZUp79rpj02LsXnn7aSTSffw4l0ppPPkD5uk8m8L5JTNCIj4/P1PJExO74MgFp/nyoUgXu\nvhsWLQreBOMGSzIBZM+ePTRt2pTChQtz3XXXMXjw4AvvnT59mqioKAoWLMitt97Ke++9R6lS/05g\nnS1bNnbs2HFhOyoqiu7duwNOG3LifRPr2bMnERERF702evRoSpQoQfHixRk4cOBF+z7++ONERESQ\nL18+xo4de9HxyZWTuGmuZ8+ePPHEE0RERJA3b17uuOMOtm7dSt++fSlSpAhlypThm2++Sfe/W9Jy\ny5Yty8CBA6lYsSL58+enefPmnD179sL7s2fPplKlShQoUIA6derw008/pbvMjLA+i+CWuH7nzsHr\nr0P79jBpEvToAWFh/ostEFmSCRAJCQk89NBDVK5cmT179rBo0SIGDRrEwoULAejVqxc7d+5kx44d\nLFiwgHHjxqX6V723f/Unt090dDTbtm1j4cKF9OvXj0WLFl14b+bMmTzxxBMcPXqUli1bpllG0vdn\nz55NZGQkhw8fpnLlytSvXx9wEmz37t3p2LFjmjF7U6epU6eyYMECdu7cyaZNmxg7diwA69evp23b\ntowcOZJDhw7RsWNHmjRpwrlz5zJcrsladuyAu+6CzZudqWHq1vV3RIHJkkwSIr55pNfq1as5cOAA\n//vf/8iePTvlypWjXbt2TJo0CYCpU6fy5ptvkj9/fkqWLMkLL7yQZn+BN/0Jye3To0cPrrrqKm67\n7TZat27NxIkTL7xXu3ZtmjRpAsCVV16Z7j6Lu+++m/r16xMWFsbjjz/OwYMH6datG2FhYTRr1oyY\nmBiOHTuWrnMm5/nnn6do0aIUKFCAhx56iA0bNgAwYsQIOnbsyJ133omIEBkZSc6cOVmxYkWGy/RW\nKI+Gh6xRvylToGZNeOopmDkTChXyd1SBy8bJJOGvft4//viDPXv2UCDRTHnx8fHcfffdgPOXfuIm\nodKlS7sWS9JyEjcnlSxZMkPnLly48IXnV111FYUKFbpwtXPVVVcBcOLECfLmzZuhcooWLXpROXv2\n7AGcf+fx48df1BQZGxvL3r17M1SeyRpOnYIXX4QlS2DePKha1d8RBT67kgkQpUuXply5chw+fPjC\n49ixY8yePRuAYsWKsWvXrgv7J34OkCtXLk6dOnVhe+/evZfdSZ60nBKJejGTnjPxdu7cuS+KIT4+\nnn/++eeyYvC183GWLl2aN99886J/5xMnTtCsWbNMiyUr9VmEkl9+gerVYefOaNatswTjLUsyAaJ6\n9erkyZOH/v37c/r0aeLj4/n5559Zs2YNAE8++SR9+/blyJEj7N69m8GDB1/0BV+pUiU+//xz4uPj\nmT9/PkuXLr3sWHr37s3p06f55ZdfGDt2bKpfwImby2688UbOnDnD3LlziY2NpXfv3hd1uPvCuXPn\nOHPmzIWHt3e4nY+zffv2DBs2jFWrVqGqnDx5kjlz5nDixAmfxmlChyqMHAnh4fDqq/Df/0KePP6O\nKnhYkgkQ2bJlY/bs2WzYsIHrrruOa6+9lg4dOlzon+jRowdlypShXLlyNGzYkMjIyIu+4D/88ENm\nzZpFgQIF+OKLL3j00UcvOn9KVzVJbxAQEerWrUv58uW57777eO2117jvvvuS3Tfpa/ny5WPIkCG0\na9eOkiVLcvXVV1/U9JbS8d7EeV6jRo3IlSvXhUevXr3SvMkh8ftVq1Zl5MiRdOnShYIFC3LDDTcw\nfvz4VMv0tazQZxEqjh51Jrb8+GNYtgyiouCee8L9HVZQscGYQSo6OpqIiAj+/PNPf4cSskLld8Vc\nnlWroEULeOABGDAArrzS3xFlDhuMaUyQC9U+i/OCvX4JCfDee/DQQ87Pjz++OMEEe/0ym91dFsRs\n9LsxvrV/P7RqBceOOVcyZcr4O6LgZ81lxqTAfleylkWLIDLS6Xfp1QuyZ9E/wW09GWOM8aG4OGdR\nsU8/hXHjwHOfi/ER65MxJpOFept+MNVv1y7n1uTVq2HdOu8STDDVLxBYkjHGZEnTp8Odd0KTJs7o\n/SJF/B1RaLI+GWNSYL8roenMGXjtNZg9GyZOdOYgM/+yW5iNMeYy/fYb1KoFf//tzJxsCcZ9lmRM\nuvhjqeNdu3aRJ0+ekLmqCPU2/UCt3/jx8J//QKdOMGUK5M9/eecJ1PoFKksyAWbs2LHcfvvt5M6d\nm2LFivHMM89w9OhRv8WTdDG0u+66iy1btrhSVnh4OKNHj77k9dKlS3P8+HEbF2Quy/Hjzq3J774L\nixdDx46XtxyHuTyWZALIwIED6datGwMHDuTYsWOsWLGCP/74g/r16xMbG+vz8tI7uaTbssryyqE0\nt1dyAql+69c7syVfcYVzB9ntt2f8nIFUv2BgSSZAHDt2jJ49e/Lxxx9z//33ExYWRpkyZZgyZQox\nMTF89tlnwL9LIDdv3py8efNStWpVNm3adOE8qS3hnHT55HHjxrF69Wpq1apFgQIFKF68OM8999yF\nhHZ+LZuKFSuSJ08epk6dmu6ljvv370/x4sUpWbIko0aNuuTKyBsxMTFky5aNhIQEwPlP/tZbb/Gf\n//yHvHnz0qBBAw4ePHhh/xUrVlC7dm0KFChApUqV+O6779JVngl+qvDRR9CgAbz9NowaBblz+zuq\nLEpVQ/LhVO1SKb3ub/PmzdPs2bNrfHz8Je+1atVKW7RooaqqPXr00Bw5cuhXX32lcXFxOmDAAC1X\nrpzGxcVpfHy8VqlSRd955x2NjY3VHTt26HXXXacLFiy46NgZM2aoqurp06d17dq1unLlSo2Pj9eY\nmBitUKGCDho06ELZIqLbt2+/sL1kyRItWbLkhe2yZctqjRo1dO/evXro0CGtUKGCDhs27EKdihYt\nqr/++queOnVKW7ZsqdmyZbvofImFh4fr6NGjL3l9586dKiIX/m3q1q2r5cuX161bt+rp06c1PDxc\nu3Xrpqqqu3fv1muuuUbnzZunqqrffPONXnPNNfrPP/94+Un8y63flSVLlrhy3kDh7/odOKDapIlq\ntWqq27b5/vz+rp/bPL/3PvsuthH/SUgv3zTXaI/0NTEdOHCAQoUKkS3bpReXRYsWZd26dRe2q1Wr\nxmOPPQbAyy+/zMCBA1m+fDk5cuS4sIQzcNESzvfffz9w6fLJVapUuXDeMmXK0KFDB7777jteeOEF\nr2M/v9QxcNFSx1OmTKFNmzZUqFABgF69evHFF194fd6UiAitW7emfPnygLPWzsyZMwH47LPPaNSo\nEQ0bNgTgvvvuo1q1asydO5fIyMgMl20C27Jl0LIlPPkkTJ3qNJMZ/7Ikk0R6k4OvFCpUiAMHDpCQ\nkHBJotm7dy/XXnvthe3ESyCLCCVLlmTPnj2ISKpLOCc9FuD333/n5ZdfZu3atZw6dYq4uDiqVauW\nrtiTLnV8finjvXv3Ur169RTLzoikZZ5fdOyPP/5g6tSpzJo168L7cXFx3HvvvT4rO6NCvU3fH/WL\nj4c+fWDIEBg9Gho1cq+sUP/8fM2STICoVasWOXPm5KuvvuKJJ5648PqJEyeYP38+ffv2vfBa4jVk\nEhIS2L17NyVKlCAsLIxy5crx+++/J1tGch3rnTt3pmrVqkyePJncuXMzaNAgvvrqK5/UqVixYhfF\nmhlr35QuXZqIiAhGjBjhelkmMOzZA08/7fTDrFkDiVYLNwHAOv4DRL58+ejRowfPPfccCxYsIDY2\nlpiYGJ588klKlSpFRETEhX3Xrl3LtGnTiIuLY9CgQVx55ZXUrFmTO++8M9UlnDWZu8ROnDhBnjx5\nyJUrF1u2bGHo0KEXvV+kSBG2b9+errqcL+fJJ5/k008/ZcuWLZw6dYp33nknzWNjY2MvWl45Li4u\n1TKSevrpp5k1axYLFy4kPj6eM2fOEB0dzV9//ZWuOrgp1MdZZGb95s1z7h675x749tvMSTCh/vn5\nmiWZAPLaa6/Rp08fXn31VfLly0fNmjUpU6YMixYtIkeOHIBzNfLwww8zefJkChYsyOeff87XX39N\nWFgYYWFhqS7hnNyVzIABA/jiiy/ImzcvHTp0oHnz5hft07NnT1q1akWBAgX48ssv07XUccOGDXn+\n+ee55557uPHGG6lVqxYAOXPmTPH4zp07X7S8cps2bdJctjnx+yVLlmTGjBn06dOHwoULU7p0aQYO\nHHjhzjQTGs6dg1dfdca8TJkC3btDWJi/ozLJcXXuMhFpCAwCwoBRqtovmX0+Ah4ATgFRqro+tWNF\npDrwMZADiAOeUdXVyZxXk6tbsM9H1atXL7Zt28aECRP8HUq6bd68mdtvv51z584le4NDoAn235VQ\ntWMHNG8OxYrBmDFwzTX+jii0BM3cZSIShpMMGgK3AC1EpEKSfRoB5VX1BqADMNSLY/sD3VW1MvCW\nZzvLCLYvvWnTpnH27FkOHz5M165dadKkSVAkGBOYJk925ht7+mlnFmVLMIHPzf/t1YFtqhqjqrHA\nJODhJPs0AcYBqOpKIL+IFE3j2L1APs/z/EDgNLZngmAbFT9ixAiKFClC+fLlyZEjxyV9PllRqLfp\nu1G/U6egfXunWWz+fHj+ef9NDRPqn5+vuXl3WQkg8e1Eu4EaXuxTAiieyrHdgO9FZABOkqzlw5gD\nXo8ePfwdQrrMmzfP3yGYIPfzz9CsGVSuDGvXQp48/o7IpIebScbbdp30/j0yGnheVaeJyBPAGKB+\ncjtGRUVRtmxZAPLnz0+lSpXSWZQxjvN/vZ4fI5GR7fDwcJ+eL9C2fVU/Vdi6NZw334S2baNp0ADy\n5Amd+gXKdnR0NGPHjgW48H3pS651/ItITaCnqjb0bL8BJCTu/BeRYUC0qk7ybG8B6gLlUjpWRI6p\nal7P6wIcUdV8JBGqHf8m89jviv8cOQIdOsDvvzv9MDfd5O+Iso6g6fgH1gA3iEhZEbkCaAbMTLLP\nTCASLiSlI6q6L41jt4lIXc/ze4HkRx4aE6BCvU0/o/VbudJpGitcGFasCLwEE+qfn6+51lymqnEi\n0gVYgHMb8mhV3SwiHT3vD1fVuSLSSES2ASeB1qkd6zl1B+ATEckJnPZsp0swdZwbk1UkJMCAATBw\nIAwbBo8+6u+IUnbo9CEG/jiQnuE9yRGWw9/hBDRXx8n4U0rNZcaYwLN/v7Ow2PHj8MUXUKaMvyNK\n2fxt82k3sx2P3/I47973Lldmv9LfIflUMDWXGWNMmhYtcprHqlWD774L3ARz8txJOs/uTIdZHRj3\nyDgGNRwUcgnGDZZkglQotwuHct3A6ndeXBy8+aZzBTN+PPTuDdkDdMre5X8up9LwSpyKO8WQW4dQ\n77p6/g4paAToR2qMCWW7dkGLFs6Yl3XroEgRf0eUvHPx5+gV3YvR60cz5MEhPFbhsZD/I8HXrE/G\nGJOppk2DTp2cCS5feQUCdZahn/b9RMS0CErlK8XIh0ZS9OqiaR8UAnzdJ5PmlYyIZANaAuVU9W0R\nKQ0UVdVVvgrCGBP6zpxxEsucOTBjhjMHWSCKT4jn/eXv0++HfvS7rx9tKrexO1IzwJu/IYbgTN3y\nlGf7hOc140ehfMkeynWDrFm/LVucpLJ/P6xfH7gJZufhndwz7h5m/T6L1e1X07ZK20sSTKh/fr7m\nTZKpoarP4IxJQVUP4Uyzb4wxqVKFsWPhrrvgmWec0fv58/s7qkupKqPWjaL6qOo8fNPDLGm1hHIF\nyvk7rJCQZp+MiKwEagNrVLWyiFwLLPRMtR+wrE/GGP86ftxJLOvWOcnlttv8HVHy/j7xN+1ntWf3\nsd1MeHQCtxUO0EAziT/GyQwGpgGFRaQP8APQN/VDjDFZ2bp1zrLIV14Jq1cHboL56tevqDSsEhWL\nVGRlu5VZPsG4Ic0ko6qfAV1xEsse4GFVneJ2YCZ1odwuHMp1g9Cunyo891w0DRvC22/DyJGQK5e/\no7rUkTNHiJwWSbdF3ZjWbBq97+3NFWFXeHVsKH9+bvB2nMzvwDHP/ioipVV1l3thGWOCzcGD0Lq1\nM3Py8uVw/fX+jih53+74ljYz2vDQjQ+xoeMGcl+R298hhTRv+mSeA3oA+4H486+r6u3uhpYx1idj\nTOZZutRZErlZM/i//4MrvLsoyFSnYk/R7dtufL35a0Y3GU2D8g38HVJAyvRxMsCLwE2qetBXhRpj\nQkN8vJNUhgyBMWOgUSN/R5S81X+tJmJaBFWKVWFT500UvKqgv0PKMrzp+N+F01RmAkgotwuHct0g\ndOq3Zw/cdx9ERzsd/ecTTCDVLzY+lh5LetB4YmN6hffii6ZfZDjBBFL9goE3VzI7gSUiMgc453lN\nVfV998IyxgSyuXOhTRt49ln4738hLMzfEV1q8z+biZgWwbW5r2V9x/UUz1Pc3yFlSd70yfT0PL1o\nR1Xt5VJMPmF9Msb43rlz8MYbMHUqfP65M8gy0CRoAh+t/IjeS3vT+97edKza0aaFSYdM75NR1Z6e\ngnOr6klfFWyMCS7bt0Pz5lC8uDM1zDXX+DuiS+06uouo6VGciTvDinYrKF+wvL9DyvLS7JMRkdoi\n8iuwxbNdUURs7jI/C+V24VCuGwRn/SZNcuYbi4yE6dNTTzD+qJ+qMm7DOKqOqMr919/PstbLXEsw\nwfj5+ZM3fTKDgIbADABV3SgidV2NyhgTEE6ehBdecG5RXrAAqlTxd0SX+ufkP3Sc3ZGth7byTcQ3\nVCpayd8hmUS86ZNZparVRWT9+fnKRGSjqlbMlAgvk/XJGJMxP/3kjHupWtW5RTlPHn9HdKmZv82k\n4+yORN4Rydv3vE3O7Dn9HVLQ88c4mV0iUsdT+BXA88BmXwVgjAksqjBiBPzvfzBwoNNEFmiOnT3G\nS/NfIvqPaKY8PoW7ygTgHQgG8G6cTGfgWaAE8BdQ2bNt/CiU24VDuW4Q2PU7etS5ehkyBL7//vIS\njNv1+y7mOyoOq0hYtjA2dNyQ6QkmkD+/QOTN3WX/8O+CZcaYELV6tZNgHngAxo93ZlAOJGfizvDm\nojeZ+PNERjw0gsY3NvZ3SMYL3vTJvAe8g7No2XygIvCSqk5wP7zLZ30yxngnIQE++AD69YOhQ6Fp\nU39HdKl1e9cRMS2CCoUqMKzxMArlKuTvkEKWP/pk7lfV10TkUSAGeAxYBgR0kjHGpO3AAYiKcn6u\nXAnlAmwxyLiEON79/l0+WvkRHzT4gKduf8oGVgYZb/pkzieixsCXqnqUJKP/TeYL5XbhUK4bBE79\nli6FypXhlltg2TLfJRhf1e/3g7/znzH/ITommrUd1tLyjpYBkWAC5fMLFt4kmVkisgWoCiwSkcLA\nGXfDMsa4JT7eWVCsWTPnLrL+/SFHDn9H9S9V5ZNVn1B7dG2evuNpFkYspFS+Uv4Oy1ymNPtkAESk\nIHBUVeNFJDeQV1X3uh5dBlifjDGX2rPHWfdF1Zl7rHiAzRm5+9hu2sxow9GzRxn/yHhuKnSTv0PK\ncnzdJ+PNtDJXABHAFBH5CmgDHPBVAMaYzDF/vjOwMjwcvv02sBKMqvLFT19QZXgV7ip9Fz+0+cES\nTIjwprlsKFAF+AQYgtNsNtTNoEzaQrldOJTrBplfv9hY6NoV2rd35iB76y13p+ZPb/0OnjpIsy+b\n0Xtpb+a2nEv3ut3Jns3bleEzX6j/fvqaN5/knap6R6LtRSKyya2AjDG+ExMDLVpAwYLOwmLXXuvv\niC42d+tc2s9qT7NbmzHukXFcleMqf4dkfMybcTLrgCdVdZtn+3pgqqoG4FR5/7I+GZPVff01dOrk\nXMW89BJk86bdIpOcOHeCVxa8woLtC/j04U+5p9w9/g7JePhjnMxrwGIR2enZLgu09lUAxhjfOnMG\nXn3VWb1y1iyoUcPfEV3sh10/EDk9krvL3M3GThvJd2U+f4dkXJTq3zYiEoYzwv9GnIkxnwduUtXF\nmRCbSUUotwuHct3A3fr9/ruz7su+fU7zmD8STEr1Oxt3lje+fYPHpz7OwPsH8unDnwZlggn1309f\nSzXJqGo80EJVz6jqRs/DxsgYE4AmTIA6dZwmsilTIH9+f0f0r037NlF9VHU2H9jMxk4beeTmR/wd\nkskk3vTJfADkACYDJwEBVFXXpXlykYY4i56FAaNUtV8y+3wEPACcAqJUdX1ax4rIc8AzQDwwR1W7\nJnNe65Nh8xuTAAAgAElEQVQxWcKJE9ClizMtzOTJcMcdaR+TWeIT4hnw4wAGLB/Ae/Xfo1XFVgEx\nat+kzB99MpVxppF5O8nrqfbUeZraPgbuw1kiYLWIzFTVzYn2aQSUV9UbRKQGzq3RNVM7VkTuAZoA\nd6hqrIgE2P0yxmSeTZuckfs1a8KaNZA7t78j+tf2Q9tpNb0V2bNlZ3X71ZTNX9bfIRk/SPN+E1UN\nV9V7kj68OHd1YJuqxqhqLDAJeDjJPk2AcZ5yVgL5RaRoGsd2Bvp6Xj+/FEGWE8rtwqFcN/BN/VRh\n2DCoVw/++1/49NPASTBLlixhxNoR1BhVg6YVmrK41eKQSjCh/vvpa2leyXi+9P8PKKGqDUXkFqCW\nqo5O49ASwJ+JtncDSbshk9unBFA8lWNvAO4WkT44c6i9qqpr0qqHMaHiyBFnYOXWrc7CYjcF0MD4\nvcf38saiN4gtHcvS1ku55dpb/B2S8TNv7pwfCyzE+eIH2Aq85MVx3naIpLftLztQQFVr4txePSWd\nx4eE8PBwf4fgmlCuG2SsfqtWQZUqUKQIrFgRWAlm6i9TqTS8EvfXu5/lbZeHbIIJ9d9PX/OmT6aQ\nqk4WkW4Ann6QOC+O+wtIPHVqKZwrktT2KenZJ0cqx+4GvvbEslpEEkTkGlU9mDSAqKgoypYtC0D+\n/PmpVKnShV+Q85e8tm3bwbC9eHE0U6fCV1+FM2wYFCwYzYoVgRHf4dOHefK9J9l8YDMzX59JjZI1\n/P7vZdveb0dHRzN27FiAC9+XPqWqqT6AaOAaYL1nuybwnRfHZQe24wzevALYAFRIsk8jYG6i865I\n61igI9DL8/xGYFcK5WsoW7Jkib9DcE0o1001/fXbv1+1USPVmjVVd+50JaTLtnDbQi35fkntMqeL\nnjx3UlXt8wt2nu/ONHODtw9vrmReAWYB14nIj8C1wONeJK84EekCLMC5DXm0OneHdfS8P1xV54pI\nIxHZhnN7dOvUjvWcegwwRkR+As4BkV7UwZig9N13ztT8Tz0FvXsHzrovJ8+dpOu3XZnx2wzGNBlD\n/evr+zskE6C8GSdTDqeJ6iac/pPfgIqqutr98C6fjZMxwSw+3kkqw4Y5d441bOjviP61cvdKIqZF\nUL1EdQY/MJgCVxXwd0jGh/wxTuYroImq/uwJoC7OtP+3+SoIY8y/9uyBli1BBNauDZx1X87Fn+Od\n795hxLoRfPzAxzxx6xP+DskEAW/uLusITBeRop7Bk+dH6Bs/Ot9xF4pCuW6Qev3OLyx2773wzTeB\nk2B+2f8LtUbXYt3f69jQcUOqCSYrf37mUmleyahzB9fzwDfAaaC+qu53PTJjspDYWHjzTZg40Zka\n5u67/R2RI0ETGLRiEH2W9aFvvb60q9LOpoUx6ZJin4yIzEryUgVgL3AE5+6DJi7HliHWJ2OCRUwM\nNG8OhQrB2LHOz0AQcySGqOlRxCXEMe6RcVxf8Hp/h2QyQWb2yQxM5jXFM0GmrwIwJiv76ivo3Bm6\ndYMXXwyMhcVUlbEbxvL6t6/zWu3XeKXWK4Rlc3G9ZhPSUkwyqhqdiXGYdIqOjr4wsCrUhHLdwKlf\nzZrhvPyy0wczezZUr+7vqBz7T+6nw6wO7Dyyk0WRi7ijSPqndM4Kn18o18/XAuDvJmOyll27nFmT\nDxyA9esDJ8FM3zKdisMqUqFQBVa1W3VZCcaYpNIcJxOsrE/GBKLx4+GVV5wxMB06OLcp+9vRM0d5\nYf4LfL/re8Y9Mo46pev4OyTjR/4YJ2OMyaATJ+DZZ50JLhcvhttv93dEjiU7l9B6Rmsalm/Ihk4b\nuPqKq/0dkgkxaTaXichPIrLJ8/P843sR+UBErsmMIM2lQvle/VCr28aNUK0ahIU5C4sdPBjt75A4\nHXual+a/xNPTnmbog0MZ1niYzxJMqH1+SYV6/XzNmyuZ+UAc8AXOnWXNgVzAPpxlAB5yKzhjgtn5\nhcXeegs++MCZgywQrN2zlohpEdxW+DY2ddrENbnsb0XjHm/mLluvqpWTe01EflLVALnwv5j1yRh/\nOnIE2rWD7dudwZU33ujviCA2Ppa+3/fl41Uf82HDD2l+W3MbWGku4es+GW/uLgsTkQsrWopI9UTH\nebOujDFZysqVULkyFCsGy5cHRoL57cBv1BlThx/+/IH1HdfT4vYWlmBMpvAmybQFRotIjIjEAKOB\n9iKSG+jrZnAmZaHcLhysdUtIgAEDoEkTeP99GDwYrrzy0v0ys34JmsDglYOpM6YOUZWimN9yPiXy\nlnC1zGD9/LwV6vXzNW/6ZH5S1dtEJD+Aqh4RkYKqepIsuvSxMUn98w+0agWHDzt3kJUp4++I4M+j\nf9JmZhuOnz3Oj21/5MZrAuCSymQ53vTJzAUeVtVYz3YxYI6qVsmE+C6b9cmYzBId7XTqP/00vPOO\n/xcWU1U+/+lzXl7wMi/UeIGu/+lK9mw2WsF4xx/jZKYBU0TkcaAUMBN41VcBGBOs4uOdpDJ8uDOx\nZYMG/o4IDpw6QKfZndh8YDMLnl5A5WKV0z7IGBel2SejqiOBRcAMnGWYO6vqQrcDM6kL5XbhYKjb\nX39BvXqwbBmsW5e+BONW/Wb/Pps7ht5B2fxlWdthrd8STDB8fhkR6vXztRSvZETkFc/T8zMvlwI2\nAjVFpIaqvp8J8RkTcObNgzZt4Jln4L//dQZZ+tPxs8d5ecHLfLvzWyY2nUjdsnX9G5AxiaS2nkyP\npC+RaIp/Ve3lYlwZZn0yxtfOnXMWFps0CT7/PDAWFlv2xzJaTW/FveXu5f0G75M3Z15/h2SCXGb2\nycQC81R1va8KMyZY7dzpLCxWuLAzc7K/FxY7G3eW7ku6M2HTBIY3Hk6TmwJ6DUGThaXWJ7MDeEFE\nNojIWBFpJiIFMiswk7pQbhcOtLp9+SXUqOEkmZkzM55gMlq/DX9voNrIamw7tI1NnTYFXIIJtM/P\n10K9fr6W2qJlk4BJ4gwLrgw0BL4WkezAN8B8VV2VOWEak/nOnIGXX4YFC2DOHLjzTv/GE5cQx3s/\nvMf7K95n4P0Dibgjwkbtm4CX7vVkRCQfUB9ooKrtXYnKB6xPxmTEli3QrBncfDOMGAH58vk3nm2H\nthE5LZIrs1/J2EfGUjpfaf8GZEJWps9dJiK5RaS7iIz0vFQYOBvICcaYjBg3Du66y1n/ZdIk/yYY\nVWXYmmHUHFWTZrc249vIby3BmKDizdxlnwLngNqe7T1Ab9ciMl4J5XZhf9XtxAmIjIR+/ZyFxdxa\nudLb+u05vodGXzRi1LpRLGu9jBdqvkA2CfwV00P5dxNCv36+5s1v7PWq2g8n0eCZs8yYkLJhA1St\n6kwJs3q1/1eunPzzZCoPr0yNEjVY3nY5Fa6t4N+AjLlM3sxd9iNQD/jRs4bM9cBEVa2eGQFeLuuT\nMd5QdaaF6d4dBg2Cli39G8+h04foMrcL6/auY8KjE7izhJ/vNjBZjj/mLuuJszpmSRH5AqgDRPkq\nAGP85exZ6NLFWfPlhx/8v+7Lgm0LaDuzLU0rNGVdx3XkypHLvwEZ4wPezF22EGgKtMZZgrmqqi5x\nOzCTulBuF86Muv39N9x7Lxw8mPkLiyWt38lzJ3lmzjO0n9WecY+M48MHPgzqBBPKv5sQ+vXzNW97\nEXMCh4HjwC0iEgATahhzedasgerV4f77nYGWefL4L5blfy6n0vBKnDh3gk2dN1Hvunr+C8YYF3jT\nJ9MPaAb8CsSff11VH3I3tIyxPhmTnM8+g5decsa+PPqo/+I4F3+OXtG9GL1+NJ80+oSmtzT1XzDG\nJOKPPplHgZtU9ayvCjUms8XHQ7du8PXXsGQJ3Hab/2L5ef/PREyLoGTekmzotIGiVxf1XzDGuMyb\n5rLtwBVuB2LSJ5TbhX1dt8OHoVEj5zbl1av9l2DiE+IZ8OMA6rxVhy53dmFm85khmWBC+XcTQr9+\nvubNlcxpYIOILALOX82oqj7vXljG+Mavv8LDD0PjxvDee5DdT6sQ7zy8k6gZUc4I/geH0aJKC/8E\nYkwm86ZPJiqZl1VVx7kSkY9Yn4yZNQvatoX+/SEqyj8xqCpj1o+h26JudK3TlZdqvkRYNj+vcmZM\nKnzdJ5PuCTLTdXKRhsAgIAwY5Zk5IOk+HwEPAKeAqPPr16R1rGflzveAQqp6KJnzWpLJolShTx8Y\nOhS++sqZpt8f9p3YR/tZ7fnz2J9MeHQCtxX2Y0eQMV7KtAkyRWSq5+dPyTw2eRFoGPAxzhIBtwAt\nRKRCkn0aAeVV9QagAzDUm2NFpBTOTNB/pKu2ISSU24UzUrcTJ+DJJ52rmFWr/Jdgvt78NRWHVeT2\nwrezst3KixJMKH92YPUzF0uthfoFz8/GOEsvJ+bNJUJ1YJuqxgCIyCTgYWBzon2aAOMAVHWliOQX\nkaJAuTSOfR94HZjhRRwmi9i5Ex55BKpUgehouPLKzI/hyJkjPD/veZbvXs60ZtOoVapW5gdhTABJ\n8UpGVfd4nj6jqjGJH8AzXpy7BPBnou3dnte82ad4SseKyMPAblVN82oqlIWHh/s7BNdcTt2WLIFa\ntZw+mDFj/JNgFu1YRMVhFbn6iqvZ0HFDigkmlD87sPqZi3lzr839QNckrzVK5rWkvO0Q8brtT0Su\nAv6L01SW7uNN6FGFTz6B3r3h88+hnh8GzJ+OPU23b7vx1eavGN1kNA3KN8j8IIwJUCkmGRHpjHPF\ncr2I/JTorTzAD16c+y+gVKLtUjhXJKntU9KzT44Ujr0eKAts9Cw7WxJYKyLVVXV/0gCioqIoW7Ys\nAPnz56dSpUoX/go5364arNuDBg0Kqfok3k7c5p3a/ufOwZQp4axcCe+/H01YGEDmxpv7htxETo+k\n2IFiDKk55EKC8UX9gnXb6hdc29HR0YwdOxbgwvelT6lqsg8gH84X+iSgTKLHNSkdk+T47DgDOcvi\nDObcAFRIsk8jYK7neU1ghbfHevbbCRRMoXwNZUuWLPF3CK7xpm579qjWqqX62GOqx4+7H1NS5+LO\naY8lPbTwe4V14k8T03VsKH92qla/YOf57kzzO97bh1e3MItIJeAunCawZaq60ZsEJiIP8O9tyKNV\nta+IdPRkgOGefc7fRXYSaK2q61I6Npnz7wCqqd3CnKWsXg2PPeasXPnmm5AtkxeL3HJgCxHTIiiU\nqxCjm4ymeJ7imRuAMS7K9HEyIvIC0B74Gqf/4xFgpKp+5Ksg3GBJJjRNmAAvvwwjRzp3kmWmBE1g\n8MrBvLP0HXrf25uOVTsibqzPbIwfZdo4mUTaATVU9S1V7Y7TrNXeVwGYy5O4XTjUJFe3uDh49VXo\n1cu5kyyzE8yuo7uoP6E+k3+ZzIp2K+hUrdNlJ5hQ/uzA6mcu5m1DQ0IKz41x3eHD8OCDsGmTM8Ay\nMye4VFXGbxxP1RFVua/cfSxtvZTyBctnXgDGBDlvmstexlluOXFz2VhV/cD16DLAmstCw/kJLps0\ngX79MneCy39O/kPH2R3ZemgrEx6dQKWilTKvcGP8JNOby1T1fZyllw8DB3HmFwvoBGNCw4wZEB4O\n3bvDwIGZm2Bm/jaTisMqUr5geda0X2MJxpjLlGaSEZGawFZV/dDT2b9dRPw0I5Q5L5TbhRcvjuad\nd6BLF5g9GyIjM6/sY2eP0XZGW16c/yKTH59M//r9yZk9p0/LCOXPDqx+5mLe9MkMA44n2j7pec0Y\nnztxwuncnzvX6X+pXj3zyl76x1IqDqtIWLYwNnbayF1l7sq8wo0JUd70yWxQ1UpJXtukqne4GlkG\nWZ9M8Nm50+l/ufNOGDIEcvr2AiJFZ+LO8L/F/+OLn75gxEMjaHxj48wp2JgA5I9bmHeKyPMikkNE\nrvCMm9nhqwCMAVi82JngskMHGDUq8xLM+r3rqTaiGjFHYtjUeZMlGGN8zJsk0wmogzPP2G6ccTId\n3AzKpC1U2oVVYfBgeOop+OILpx/mu++iXS83LiGO/1v6fzT4rAHd/tONqU9MpVCuQq6XC6Hz2aXE\n6mcSS/N+HVXdBzTLhFhMFnP2LDzzjDNNzPLlUK5c5pS79eBWIqdHkjtHbtZ2WEupfKXSPsgYc1lS\n7JMRka6q2k9EBifztqrq8+6GljHWJxPY9u515h8rUQLGjoWrr3a/TFVl6JqhvLXkLXrU7cGz1Z8l\nm2TyxGfGBDhf98mkdiXzq+fn2mTes29vc9lWrYKmTaFjR2eCy8yY/uuvY3/RZmYbDp8+zPdtvufm\nQje7X6gxJtWVMWd5fo5N5jEu80I0yQnWduHx46FxY/j4Y/jf/5JPML6u28SfJlJ5eGXqlKrDj21/\n9HuCCdbPzltWP5NYmn0yInIT8CrO2i7n91dVvdfFuEyIiYuD11+HWbOcCS5vvdX9Mg+eOsizc59l\n075NzG05l2rFq7lfqDHmIt6Mk9kEDAXWAfGel1VVk2tGCxjWJxM4Dh2CZs2cq5ZJk6BgQffLnLd1\nHu1nteeJW56gT70+XJXjKvcLNSYEZGafzHmxqjrUVwWarOWXX5wBlo88Au++6/78YyfOneDVha8y\nb9s8Jjw6gXvK3eNugcaYVHlza80sEXlWRIqJSMHzD9cjM6kKhnbh6dPhnnugZ08YMMD7BHO5dfvx\nzx+pNKwSZ+PPsqnTpoBNMMHw2WWE1c8k5s1/+yicu8leTfSaAte5EZAJfgkJ0Lu3s3rlnDnONDFu\nOht3lp7RPfl0w6cMfXAoj1Z41N0CjTFeS7NPJlhZn4x/nDgBrVo542C+/hqKFnW3vE37NhExLYKy\n+csyovEIilxdxN0CjQlx/pi7zBiv7NjhzD9WoIBzB5mbCSY+IZ7+P/Sn3vh6vFjjRaY3m24JxpgA\nZEkmSAVau/CiRVC7tjPAcuTIjE1wmVbddhzeQfi4cOZuncvq9qtpXbk1khkjOn0k0D47X7P6mcQs\nyZgMUYWPPoKWLZ3bk7t0cW8Ev6oycu1IaoyqwaM3P8riVospm7+sO4UZY3zCm3EyVbl0GpmjwB+q\nGudWYBllfTLuO3sWOneGtWudpZLLlnWvrL9P/E27me3Yc3wPEx6dwK2FM2E0pzFZkD/6ZD4BVgIj\nPY8VwJfA7yLSwFeBmOCydy+Eh8Px4/Djj+4mmC9//ZJKwypRpVgVVrRbYQnGmCDiTZLZA1RS1aqq\nWhWohLNoWX2gv5vBmZT5s1145UpnWeTGjWHKFMid27fnP1+3w6cP8/TXT/PfRf9lRvMZvH3P21wR\ndoVvC/ODUG/Tt/qZxLxJMjep6i/nN1T1V+BmVd2Ozcac5YwbBw89BJ984u4Myt9s/4aKwyqS/8r8\nrO+4nhola7hTkDHGVd70yUwBDgKTAAGeBK4Fnga+V1WXh9pdHuuT8a24OHjtNWdw5YwZUKGCO+Wc\nij1F12+6Mv236YxuMpr7r7/fnYKMMcnydZ+MN0kmF/AMzhLMAD8AQ4AzQG5VPe6rYHzJkozvHDzo\nTHCZPTtMnOiMg3HDqr9WETEtgjuL38ngBwZT4CqXCjLGpMgfHf8VVHWAqj7qeQwA7lXVhEBNMFlB\nZrUL//yz0/9SpYpzFeNGgomNj+WtJW/x0MSH6H1Pb9oVbBfSCSbU2/StfiYxb5LMSBG5/fyGiLQA\n3nIvJBMopk1zJrjs1Qv694ewMN+X8es/v1JzdE3W7l3Lho4beOLWJ3xfiDHGb7xpLrsO55blp4C7\ngEigsaoedT+8y2fNZZcvIQHeeQdGj3bmH6vmwlpfCZrAhys+pM/3fehzbx/aVWkXVKP2jQlVmb6e\njKru8Fy9TAf+ABqo6ilfBWACy/HjzgSX+/bBqlXuzD/2x5E/iJoRRWx8LCvaruD6gtf7vhBjTEBI\nsblMRH46/8C5kikIlANWelbLNH7kRrvwjh3O/GPXXAOLF/s+wagqYzeMpdrIajS8viHfRX2XbIIJ\n9TZvq19wC/X6+VpqVzIPZVoUxu8WLXLmH3vrLWeqGF+3XO0/uZ8Oszqw88hOFkUu4o4id/i2AGNM\nQLL1ZLI4VfjwQ+jXz7k9OTzc92XM2DKDTnM6EVUxip7hPcmZPQNTNBtjXJXpfTImdJ05A506wYYN\nsGIFlCnj2/MfPXOUFxe8yNI/lvLlE19Sp3SdtA8yxoQU16f6F5GGIrJFRLaKSNcU9vnI8/5GEamc\n1rEi8p6IbPbs/7WI5HO7HoEmo+3Ce/ZA3bpw+jT88IPvE0x0TDQVh1UkZ1hONnbamK4EE+pt3la/\n4Bbq9fM1V5OMiIQBHwMNgVuAFiJSIck+jYDyqnoD0AEY6sWxC4FbVbUi8Dvwhpv1CDUrVjgDLB95\nxFkDxpcTXJ6JO8PLC16m5dctGfLgEIY1HsbVV1ztuwKMMUHF1T4ZEakF9FDVhp7tbgCq+m6ifYYB\nS1R1smd7CxCOcydbqsd6Xn8UaKqqTyd53fpkkjF2LLz+OowZ48yi7Etr96wlcnokt157K0MfHMo1\nua7xbQHGGNcFW59MCeDPRNu7gaTT6Sa3TwmguBfHArQBJmY40hAXFwevvgpz58J33/l2gsu4hDj6\nLuvL4FWDGdRwEC1ua2EDK40xgPtJxttLicv6RhKRN4FzqvpFcu9HRUVR1rOaVv78+alUqRLhntun\nzrerBuv2oEGDvK7P3r3QuHE0YWGwalU4+fP7Lp5itxUjcnok8Tvi+aTOJzxx+xMZrl/iNu9A+ff2\n5bbVL7i3Q61+0dHRjB07FuDC96VPqaprD6AmMD/R9htA1yT7DAOaJ9reAhRJ61ggCmdG6CtTKFtD\n2ZIlS9LcJz5edfhw1UKFVLt3V42L81358QnxOnjlYC3Uv5B+suoTTUhI8Nm5valbMLP6BbdQr5/n\nu9NnecDtPpnswG9APZwVNlcBLVR1c6J9GgFdVLWRiNQEBqlqzdSOFZGGwECgrqoeSKFsdbNuge63\n36BDBzh7FkaOhNtvT/sYb/159E/azGzD8bPHGf/oeG685kbfndwY41f+mOr/sqlqHNAFWAD8Ckz2\nJImOItLRs89cYIeIbAOG46xdk+KxnlMPBq4GvhGR9SIyxM16BJNz55zJLevUgaZNnduTfZVgVJXP\nN31O1RFVCS8TzvdtvrcEY4xJlY34D1LR0dEX2lfPW74c2reHsmVhyBAoXdp35R04dYDOczrz6z+/\nMuHRCVQpVsV3J08iubqFEqtfcAv1+gXVlYzJHMePw3PPwWOPQffuMGuWbxPMnN/nUHFYRcrkK8Pa\nDmtdTTDGmNBiVzJBbtYsePZZqF8f3nsPChb03bmPnz3OKwtfYeH2hYx7ZBx1y9b13cmNMQEp2MbJ\nGJf8/Tc8/zysXw/jxjkrWPrS97u+p9X0VoSXCWdT503kzZnXtwUYY7IEay4LMqowahTcfHM05cvD\npk2+TTBn487S9ZuuPDn1ST5o8AGjHx6d6Qkm8TiEUGT1C26hXj9fsyuZIPL7785tyadOwYAB0K6d\nb8+/8e+NREyL4PqC17Ox00auzX2tbwswxmQ51icTBGJjnf6W99+H//3P6eQPC/Pd+eMT4nnvx/cY\nuHwgA+oPILJipE0LY0wWZX0yWczKlc5tySVLwtq1vp+Sf/uh7UROjyRnWE7WtF9Dmfw+LsAYk6VZ\nn0yAOn4cXnjBmY7/jTdgzpyLE0xG24VVleFrhlNzdE2evOVJvo38NmASTKi3eVv9gluo18/X7Eom\nAM2ZA888A/feCz//DNf4eMb8vcf30nZmW/af3M/SqKVUuNaHUzIbY0wi1icTQPbtc65eVq+G4cPh\nvvt8X8aUX6bw3Lzn6FytM2/e9SY5wnL4vhBjTNCyPpkQpAqffgrdukHr1s6CYrly+baMQ6cP0WVu\nF9btXcfsFrO5s8Sdvi3AGGOSYX0yfrZtm3PFMmQILFgA/fp5l2DS0y68cPtCKg6ryLW5rmVdx3UB\nn2BCvc3b6hfcQr1+vmZJxk9iY+Hdd6FmTXjwQVixAipX9m0ZJ8+d5Nk5z9JuZjs+ffhTPnzgQ3Ll\n8PElkjHGpML6ZPxg9WrntuSiRWHoUChXzvdlrNi9gshpkdQsWZOPHviI/Ffm930hxpiQY30yQezE\nCWeW5IkTYeBAeOop8PWYx3Px53j7u7cZtW4UnzT6hKa3NPVtAcYYkw7WXJZJ5s2D226Dgwed25Jb\ntsxYgkmuXfiX/b9Qc1RNNu7byIZOG4I2wYR6m7fVL7iFev18za5kXLZ/P7z4otPnMmIE3H+/78uI\nT4hn0IpBvPvDu7xb713aVG5j08IYYwKC9cm4RBXGj4fXX4fISOjZE3Ln9n05MUdiaDW9FarK2EfG\ncl2B63xfiDEmy7A+mSCwfTt06uQ0jc2bB1VcWEhSVfl0w6d0/bYrXet05aWaLxGWzYezZhpjjA9Y\nn4wPxcVB//5Qo4bTLLZqlTsJZt+JfdR5qw4frfyIxZGLebX2qyGVYEK9zdvqF9xCvX6+ZlcyPrJ2\nrbO+S6FCTnK5zqVWq2mbp9F5Tmfuy38fY9qP4YqwK9wpyBhjfMD6ZDLo5El46y347DNnzZeICN/f\nlgxw9MxRnp//PD/++SPjHxlPrVK1fF+IMSbL83WfjDWXZcDChXD77c7Elj//7HTwu5FgFu9czB3D\n7iB3jtxs6LjBEowxJmhYkrkMBw44CaVDB2fOsc8+g2tdWKn4dOxpXpz/IpHTIhneeDhDHhxC7iuc\nW9RCuV04lOsGVr9gF+r18zVLMumgCp9/7gyqLFTIuXpp2NCdstbsWUOVEVXYd3IfmzpvomF5lwoy\nxhgXWZ+Ml2JinNuS9+6FUaPgTpcmMo6Nj6XPsj4MWTOEDxt+SPPbmrtTkDHGJMP6ZDJZfDx88AFU\nqwbh4bBmjXsJZsuBLdQeU5vlu5ezrsM6SzDGmKBnSSYVGzdCrVowcyYsX+4sKpbDhYUkEzSBj1Z+\nxF2f3kXbym2Z13IeJfKWSPWYUG4XDuW6gdUv2IV6/XzNxskk4/RpeOcdp1msb19o08adu8YAdh3d\nRUXYbfQAAAupSURBVOsZrTkde5rlbZdTvmB5dwoyxhg/sD6ZJJYsce4aq1wZPvrIWfPFDarKZ5s+\n45WFr/BSzZd4rc5rZM9mOd8Y4182d5lLDh+G115zlkD+5BNo0sS9sv45+Q+d5nTi94O/szBiIZWK\nVnKvMGOM8aMs3yejClOnwq23Qs6c8Msv7iaYWb/NouKwilxf4HpWt1992QkmlNuFQ7luYPULdqFe\nP1/L0lcyu3fDM8/Atm3w5ZdQu7Z7ZR0/e5yXFrzE4p2Lmfz4ZO4qc5d7hRljTIDIkn0yCQkwdKiz\nxkuXLs5dYzlzuhfL0j+WEjU9inrl6vF+g/fJkzOPe4UZY0wGWJ9MBv36K7Rv7zz/7ju45Rb3yjoT\nd4bui7vz+U+fM+KhETS+sbF7hRljTABytU9GRBqKyBYR2SoiXVPY5yPP+xtFpHJax4pIQRH5RkR+\nF5GFIpLfm1jOnnWuXOrWhaefhmXL3E0w6/eup9qIauw8spNNnTf5PMGEcrtwKNcNrH7BLtTr52uu\nJRkRCQM+BhoCtwAtRKRCkn0aAeVV9QagAzDUi2O7Ad+o6o3AIs92qn74wbklecMGWL8eOneGbC7V\nPC4hjj7L+tDgswZ0+083pj4xlUK5Cvm8nA0bNvj8nIEilOsGVr9gF+r18zU3m8uqA9tUNQZARCYB\nDwObE+3TBBgHoKorRSS/iBQFyqVybBOgruf4cUA0KSSaY8ec/pYZM5wxL4895t6gSoCtB7fSanor\ncuXIxdoOaymVr5RrZR05csS1c/tbKNcNrH7BLtTr52tuNpeVAP5MtL3b85o3+xRP5dgiqrrP83wf\nUCSlAG691VkS+eefoWlT9xKMqjJ09VBqj6lNi9tasDBioasJxhhjgoWbVzLe3rbmzVe/JHc+VVUR\nSbGcCROcSS3dlKAJPDzpYfad2Mey1su4udDN7hboERMTkynl+EMo1w2sfsEu1Ovnc6rqygOoCcxP\ntP0G0DXJPsOA5om2t+BcmaR4rGefop7nxYAtKZSv9rCHPexhj/Q/fJkL3LySWQPcICJlgT1AM6BF\nkn1mAl2ASSJSEziiqvtE5GAqx84EWgH9PD+nJ1e4L+/zNsYYc3lcSzKqGiciXYAFQBgwWlU3i0hH\nz/vDVXWuiDQSkW3ASaB1asd6Tv0uMEVE2gIxwJNu1cEYY0zGhOyIf2OMMf4XFBNkBtKgTje4VL/3\nRGSzZ/+vRSRfZtQlOW7UL9H7r4hIgogUdLMOKXGrbiLynOfz+1lE+rldj5S49LtZXURWich6EVkt\nIi6tNZu2DNZvjIjsE5GfkuwfKt8tKdUvfd8tbnX8+/AGgjBgG1AWyAFsACok2acRMNfzvAawIq1j\ngf7A657nXYF3Q6x+9YFsnufvhlr9PO+XAuYDO4GCoVI34B7gGyCHZ/vaUPrscMa2NfA8fwBYEmz1\n82zfBVQGfkpyTNB/t6RRv3R9twTDlcz/t3fuMXZVVRz+fqEllCowFRS0RWIDAsbY2tJMRBRSNTVA\nWgkKKmKtmdQaQim+StGg0QQaHzFKkFjwkSaQVBwMRjCt9UHTOkin00cGUQOpBBBFAkqRFig//9j7\nltvpvXfu63Q81/UlN3fPPnvts9bs6V7de5+z1oGXOm2/CFRezKzmoJc6gcpLnY1kD8jk70XFmlGX\nQuyzvcH2y1n+PmB68abUpKjxA/gW8PmiDWhAUbYtA67P9dh+snhTalKUfX8DKv/7PQ54rFgz6tKJ\nfdjeBDxdo99emFvq2tfq3FIGJzPhL3UWTFH2VbMEuLtjTdujEPskLQQetb2z2wq3QFFjdyrwLklD\nkn4raW5XtW6eouxbCXxT0iPA10mvKEwEndjXiF6YW5pl3LmlDE6m2ScTOnqps4X7dJtu2neokHQt\n8ILt29qR7wJdt0/SFGAVcF078l2kqLGbBPTZ7gc+B6xrUb5bFGXfrcCVtk8GVgA/aFG+W7RrX9Nz\nRUnnlqbkmp1byhDq/zHS3nuFGSRv26jN9Nxmco36ytL875JOtP2EpJOAf3RV6+bppn0HyUpaTNpz\nnd89dVumCPtmkvaZdyjFCpoODEuaZ/twjmNRY/coMAhg+/78YMNrbD/VRd2boSj75tl+Ty7fAdzS\nLYVbpF37xtveK/vcMu72ZUtzy0QcSLV4eDUJeIg0qRzJ+IdX/bxy+FhXlnQ4V4kisJKJO5wryr4F\nwChwfC+O3xj5iTr4L2rslgJfyeXTgEd6aeyAbcC7c3k+cH/Z7Ku6fgq1D/5LPbeMY19Lc8thN7zN\nX9b7gT+RnpS4JtctBZZWtbkxX98BvL2RbK6fBvwK+DOwHjiux+z7C/BXYCR/buol+8b0/zAT4GQK\nHLvJwFpgFzAMnNtLYwfMJR0Ybwd+D8wuqX23kyKS7COda3wi1/fK3FLPvpbmlngZMwiCICiMMhz8\nB0EQBCUlnEwQBEFQGOFkgiAIgsIIJxMEQRAURjiZIAiCoDDCyQRBEASFEU4mKAWSThkbcrxL/V5Y\nLwT6OHLHSlpW9fPrJf2kQ10ulbRK0nWSPtNJX23ef9XhvmfQ+4STCf6vsf1z2+3ka+kDPl3Vz+O2\nP9ihOguAezrsoxNaDlQpKeaQoCHxBxKUDklvkrRN0hxJR0taJ2k0J1AakjSnhsxuSV+WNCxpp6Q3\n5/rFkr6by6+TdKek7fnTn+uvlrQrf5bnLm8AZubEW6slvbGy0sp9Dkq6JyeuWl2lx/skbcl6rJM0\nNdcLmGV7JDd1rh+QdLekoySdlXUfyYmjDlnZSbpR0oW5fKekW3N5iaSvVdVvVUqINpDrbgCm5L7X\n5rrLJN2X626uOBRJeyR9Q9J2UiiSIKhLOJmgVGTncAfwcdvDpNXEU7bfAnwJmEPtKLIGnrQ9B/ge\n8Nkabb5DSqA1i5Ss6YHssBaTcnP0AwOSZpGSUT1ke7btL3BoJNu3AR8C3gpcIukNko4HrgXmZz2G\ngatz+9mkMCtVpuoKUmyphbb3Aj8EBmzPBl6qY+cmUrIpSCHbz8jlc4Df5fIS23OBs4ArJfXZXgk8\nn+35mKQzsv7vyPd7Gfholj+aFONqlu0tNXQIggOUIQpzEFR4LfAz4AO2H8x1ZwPfBrA9KqlRfpnB\n/L0NuKjG9fOAy3JfBv4t6Z3AoO3nASQNkibsu8bRdaPtZ7PMA6RAg33AmcCWHD36SKAySVdvlQm4\nnBQvaqHt/UopfF/llFgK4Dbgghr33QRclZ3EKK8koeoHrshtlkuqJNKaQcpf84cx/cwnOeytWdcp\nwBP52n7gp+PYHwRAOJmgXDxDCsx3DvBgVX2z+Uz25e/91P/br5VbQ2OuNxPwb19Vufp+G2x/pEb7\n95JWWJV77iKthmYAu5vQMwnaj2eHtAC4lxSs8RJgj+3nJJ1LciD9tvdK+g1wVB0bfmy71sMAex1B\nD4Mmie2yoEy8QFqBXC7pw7luM2lbB0lnkran2mUjKfUxko6QdAxpZbBI0pR8frIo1+0BXt1C3waG\ngLMlzcz3mCrpVEnHApNsV6e6HQE+Bdwl6STbzwDPSpqXr1/a4F5DwFWk7bFNpK3Be/O1Y4Cns4M5\nnYPPVF6UVHGGG4GLJZ2QdZ0m6eQW7A0CIJxMUC5s+z+kbaIVki4AbgJOkDQKfJW0RfSvWrJjyq5R\nXg6cl7fctpJyb4wAPyJtJw0Ba2zvcEogtjk/DLC6QZ/Vyv+TdL5zu6QdpK2y00mrmA01bN1MchC/\nkDQN+CSwRtII6Vyklp2QHMsRth8mOau+XAfwS2BS3sK7nhRqv8L3gZ2S1tr+I/BFYH3WdT1wYpV9\nQdAUEeo/KDX5iafJtvflFcIG4DTbL02wak0jaQ3JeY09Fxnbbqrt53J5JSmX/IrDoWMQtEucyQRl\nZyrwa0mTSecUy8rkYABsDzTZ9HxJ15D+3e4mrYqC4H+aWMkEQRAEhRFnMkEQBEFhhJMJgiAICiOc\nTBAEQVAY4WSCIAiCwggnEwRBEBRGOJkgCIKgMP4LHoxT2ajUkscAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x981e198>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical stages: \n",
+ "8.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.5: Page 510"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.5\n",
+ "# Page: 510\n",
+ "\n",
+ "print'Illustration 10.5 - Page: 510\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pylab\n",
+ "import numpy.linalg as lin\n",
+ "import numpy\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:ethylbenzne b:diethylene glycol c:styrene\n",
+ "F = 1000;# [kg/h]\n",
+ "xF = 0.5;# [Wt. fraction styrene]\n",
+ "xPE = 0.9;# [kg styrene/kg hydrocarbon]\n",
+ "xRNp = 0.1;# [kg styrene/kg hydrocarbon]\n",
+ "#******#\n",
+ "\n",
+ "# X: kg styrene/kg hydrocarbon\n",
+ "# Y: kg styrene/kg hydrocarbon\n",
+ "# N:kg glycol/kg hydrocarbon\n",
+ "# Equilibrium data:\n",
+ "# Hydrocarbon rich solutions:\n",
+ "# Eqb1 = [X N]\n",
+ "Eqb1 = numpy.array([[0 ,0.00675],[0.0870 ,0.00817],[0.1833, 0.00938],[0.288 ,0.01010],[0.384 ,0.01101],[0.458, 0.01215],[0.464 ,0.01215],[0.561 ,0.01410],[0.573, 0.01405],[0.781 ,0.01833],[1 ,0.0256]]);\n",
+ "# Solvent rich solutions:\n",
+ "# Eqb2 = [Y_star N]\n",
+ "Eqb2 = numpy.array([[0 ,8.62],[0.1429 ,7.71],[0.273, 6.81],[0.386, 6.04],[0.480, 5.44],[0.557, 5.02],[0.565, 4.95],[0.655, 4.46],[0.674, 4.37],[0.833, 3.47],[1 ,2.69]]);\n",
+ "\n",
+ "plt.plot(Eqb1[:,0],Eqb1[:,1],label=\"X Vs N\")\n",
+ "plt.plot(Eqb2[:,0],Eqb2[:,1],label=\"Y Vs N\")\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper right');\n",
+ "plt.xlabel(\"kg styrene / kg hydrocarbon\");\n",
+ "plt.ylabel(\"kg diethylene glycol / kg hydrocarbon\");\n",
+ "plt.title(\"Equilibrium Data\")\n",
+ "# In Fig. 10.31 (Pg 512):\n",
+ "# Point E1 is located.\n",
+ "NE1 = 3.10;\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "# From Fig. 10.30 (Pg 511):\n",
+ "Np = 9.5;\n",
+ "print\"Minimum number of theoretical stages:\\n\",Np\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "# The tie line when extended passes through F provides the minimum reflux ratio.\n",
+ "# From the plot:\n",
+ "N_deltaEm = 20.76;\n",
+ "# From Eqn. 10.48:\n",
+ "Ratiom = (N_deltaEm-NE1)/NE1;# [kg reflux/kg extract product]\n",
+ "print\"Minimum extract reflux ratio: \",round(Ratiom,3),\"kg reflux/kg extract product\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (c)\n",
+ "\n",
+ "Ratio = 1.5*Ratiom;# [kg reflux/kg extract product]\n",
+ "# From Eqn. 10.48;\n",
+ "N_deltaE = (Ratio*NE1)+NE1;\n",
+ "# Point deltaE is plotted.\n",
+ "# A straight line from deltaE through F intersects line X = 0.10 at deltaR.\n",
+ "N_deltaR = -29.6;\n",
+ "# In Fig. 10.31 (Pg 512):\n",
+ "# Random lines are drawn from deltaE for the concentrations to the right of F, and from deltaR for those to the left,and intersection of these with the solubility curves provide the coordinates of the opeating curve.\n",
+ "# The tie line data are plotted directly to provide the equilibrium curve.\n",
+ "# From Fig. 10.32 (Pg 513):\n",
+ "Np = 15.5;\n",
+ "# Feed is to be introduced in the seventh from the extract product end of cascade.\n",
+ "# From Fig. 10.31 (Pg 512):\n",
+ "XRNp = 0.10;\n",
+ "NRNp = 0.0082;\n",
+ "# Basis:1 hour.\n",
+ "# Overall plant balance:\n",
+ "# (1): PE_prime+RNp_prime = F\n",
+ "# C Balance\n",
+ "# (2): PE_prime*(1-XRNp)+RNp_prime*XRNp = F*xF\n",
+ "# Solving (1) & (2) simultaneously:\n",
+ "a = numpy.array([[1 ,1],[(1-XRNp), XRNp]]);\n",
+ "b = numpy.array([F,F*xF]);\n",
+ "soln =lin.solve(a,b)\n",
+ "PE_prime = soln[0];# [kg/h]\n",
+ "RNp_prime = soln[1];# [kg/h]\n",
+ "RO_prime = Ratio*PE_prime;# [kg/h]\n",
+ "# From Eqn 10.39:\n",
+ "E1_prime = RO_prime+PE_prime;# [kg/h]\n",
+ "BE = E1_prime*NE1;# [kg/h]\n",
+ "E1 = BE+E1_prime;# [kg/h]\n",
+ "RNp = RNp_prime*(1+NRNp);# [kg/h]\n",
+ "S = BE+(RNp_prime*NRNp);# [kg/h]\n",
+ "print\"Number of theoretical stages: \\n\",Np\n",
+ "print\"Extract Flow Rate: \",round(E1,2),\" kg/h\\n\"\n",
+ "print\"solvent Flow Rate: \",S,\" kg/h\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.5 - Page: 510\n",
+ "\n",
+ "\n",
+ "Minimum number of theoretical stages:\n",
+ "9.5\n",
+ "\n",
+ "\n",
+ "Minimum extract reflux ratio: 5.697 kg reflux/kg extract product\n",
+ "\n",
+ "\n",
+ "\n",
+ "Number of theoretical stages: \n",
+ "15.5\n",
+ "Extract Flow Rate: 19567.58 kg/h\n",
+ "\n",
+ "solvent Flow Rate: 14799.1 kg/h\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEZCAYAAACU3p4jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvCUWkLBFQEASC9CaRJkrLqssiiCCg0sQI\nK0UUsazgogLuT7GsoggIIhpABaSJ2FCRoBSlSEc6CKggWJBOIOf3x71hhpgyk8nNpJzP88yTufU9\nOUneuTn33veKqmKMMSb3iwh3AMYYY7KGdfjGGJNHWIdvjDF5hHX4xhiTR1iHb4wxeYR1+MYYk0dY\nh29yFBGpICJHRUTc6XgR6e2+7y4iC/zWTRSRK4PY9wXbG5PbWIdvPCEie0TkhNs5J71Gh7pfVd2r\nqsXUdwOJui9U9R1V/WcI+w5p+2C4H1QnReRPETkiIqtEZLCIFAxiH0F9oBljHb7xigI3u51z0mtg\nuINKjYjky+ImFRigqn8DygAPA12Aj4Pcj2R2YCb3sg7fZDkRiRCR/4nIIRHZKSID3KPVCHf5HhG5\nwW/94SIy1X0f5b9usv3GisjXyWa3dds4JCLP+5WCYkVkqYi8JCKHgeH+26fUTrLykf/2v4vIDhG5\nTkTuFpG9InJQRHqmlwoAVT2pqouBW4BrRaSt20ZjEVnu7v8nEXlVRAq4y75y97HO/e/pNhGJFJEP\nReQXEflNROaLSLnAfiomL7AO33gptaPPPkBbIBpoCHTGLcu4NIXpjOoANADqA+2BXn7LGgM7gcuA\npwPYV/K4GgPrgBLANOA9t53KQA9gjIgUTmd/vgnVfcAqoLk76yzwAFASuBa4AbjXXbeFu85V7n9P\nM3H+nicBFdzXSWBMAN+XySOswzdeEeB99+g06dXbXXY7MEpVf1TV34FnSLs0EUrZ4jlV/cPtTF8G\nuvot+0lVx6pqoqqeysC+d6vqZPd8wntAWeApVU1Q1c+BM0CVIPf5E3AJgKp+p6or3Ph+AF4HWqa2\noar+pqpzVfWUqh7DyWuq65u8J3+4AzC5lgLtVfXLFJZdDuzzm97rYRzJ2ymbyrKMOOj3/iSAqh5K\nNq9okPu8AlgCICLVgJdw/kMpjPP3uiq1Dd3/JkYB/8T90ACKioj4neQ2eZgd4Ztw+Bmn5JCkQrLl\nx4EiftNlQmgreTs/+k2n1Qked7/6l2RCiSNdIlIepySUdB7iNWAzUEVViwNDSftv9mGgGtDYXb8l\nzn9HdmLXANbhG2+l1tG8BwwUkXIicgkwhAs737VAFxHJLyINgU5kvI7/iHsyszwwEJgRyEbukfqP\nwJ0ikk9EeuHU5jNT0gnkwiLSEpgHfKuqSVfqFAWOAidEpAbQP9n2B5PFVBTnv4ojIlICGJbJ8Zoc\nzjp846X5ya7Dn+3OnwgswDnhuQqYzYUfDk/gdGS/A8OBd5LtN7XOP/lJVXA60dXAGuBDnJOaqa2b\nfN49wL+Bw0AtYGk6bQX7oTRGRP4EDuCUYmYCrf2WPwJ0A/7Eqd9PT9bGcGCye36kM845iovdeJcB\nn2QgJpOLiZelPRF5APgXzh/zRFV9xbPGTI4lIlHALiC/qiaGNxpjci/PjvBFpA5OZ98IqAfcLCKZ\n/S+xMcaYAHlZ0qmBU488parngMVARw/bMzmblR6M8ZiXHf5GoLmIlHAvF2uLc8mZMRdQ1T2qms/K\nOcZ4y7Pr8FV1i4g8B3yGc4nbGsD+oI0xJkw8PWl7QUMizwB7VXW83zz7N94YYzJAVYO+v8LTyzJF\n5DL3awXgVuDd5Ouoqr1UGTZsWNhjyC4vy4XlwnKR9iujvB5aYZaIlAQSgHtV9U+P28ux9uzZE+4Q\nsg3LhY/lwsdyETpPO3z1jehnjDEmzOxO22wiNjY23CFkG5YLH8uFj+UidFl20jbFxm0QP2OMCZqI\noNntpK0JXHx8fLhDyDYsFz45ORciYq9MeGUmGw/fGOMZ+w8+NJnd4Ye9pHPg6AFKFy0dthiMMd5w\nyw7hDiNHSy2HObakU3NsTe796F52/7473KEYY0yuFvYO//sB3xNZKJKGExvSY04PNhzcEO6QwiIn\n12ozm+XCx3JhMlPYO/zSRUvzzA3PsGvgLupcVodWb7ei3bR2LNu3LNyhGWNMrhL2Dj9J8ULFGdJs\nCLsG7qJNlTb0mNODlnEt+WT7J3miDhgTExPuELINy4WP5SLzHTt2jEqVKvHuu76RXo4ePUqFChWY\nM2fOX9bv168fd91111/mr1u3jkKFCvHHH38E3HZ8fDwREREMGDDggvnNmjVj8uTJQXwXGZNtOvwk\nFxe4mP6N+rPt/m30bdCXwV8Mpv7r9ZmxcQbnEs+FOzxjTA5XtGhRJkyYwKBBgzh8+DAAjz76KI0b\nN6Zjx78+siM2NpY5c+Zw4sSJC+ZPnTqVdu3aERkZGVT7RYoU4e233+aHH344P8+LSzBTku06/CT5\nI/LTrW431vVbx3///l9GrxhN9THVeX3165w+ezrc4WU6q9X6WC58LBfeaNWqFW3btmXgwIHEx8cz\nc+ZMxo0bl+K6TZo0oVy5csyePfv8vHPnzjFt2jR69uwJwIoVK2jYsCHFixenTJkyPPzww6m2HRkZ\nSWxsLCNGjMjcbyoA2bbDTyIi3FztZpbcvYQ327/J+1ve58rRV/K/Zf/j6Omj4Q7PGJNDjRo1ikWL\nFnHbbbfx4osvctlll6W6bs+ePZkyZcr56S+++IKEhATatGkDwAMPPMCDDz7IkSNH2LVrF7fffnua\nbf/nP/9h9uzZbNu2LXO+mQBl+w4/iYjQomILPu7+MR91+4hVP63iytFX8uSiJzl0/FC4wwuZ1Wp9\nLBc+uTkXIpnzyqjIyEhq167NyZMnufXWW9Nct0ePHixevJiffvoJgClTptC9e3fy5csHQMGCBdm+\nfTuHDx+mcOHCXHPNNWnur3Tp0vTr148nn3wy499ABuSYDt9fdJlopneezvLeyzl47CDVx1TngU8e\nYO+RveEOzRgTINXMeWVUUh39xhtvZPDgwWmuW6FCBVq0aMHUqVM5duwY8+bNO1/OAZg0aRLbtm2j\nZs2aNG7cmI8++ijd9h999FEWLFjA+vXrM/5NBCvMg/hrZvjxzx/1kQWPaInnSmjs+7G6+ZfNmbLf\nrLRo0aJwh5BtWC58cnIuMuvv2wsHDx7USy+9VOPj4/Xnn3/WEiVK6Ndff53mNlOmTNHatWtrXFyc\n1qlTJ9X1Zs2apYUKFdITJ078ZdmiRYv0iiuuOD89fPhwbdeunTZr1kzj4uL+sn5qOXTnB93npnuE\nLyLVRWSiiHwuIovc15cefw4FpWyxsrzQ6gV23L+DypdUJmZyDB1ndGTljyvDHZoxJhu67777uPXW\nW2nZsiVlypTh+eef55577uHMmTOpbtOpUyf27t3L8OHD/zJU89tvv82hQ05puXjx4ogIERHpF1Ae\neughli9fzvfff58lV+kEchS+HugPXAM0dF8NAvk0AR4DNgEbcB5veFGy5al+Sobi2Olj+so3r2j5\nl8rrDZNv0M93fq6JiYmetGWMSZlXf9+hmjt3rpYrV06PHDlywfzrr79eH3/88TS3jY2N1QIFCujP\nP/98wfwePXroZZddpkWLFtU6derovHnzUtx+0aJFWr58+QvmPf/88xoREaGTJ0/+y/qp5ZAMHuGn\nO3iaiKxW1QbBfpCISBTwJVBTVU+LyAzgY1Wd7LeOptd+KBLOJfDuhnd5bulzFC1YlCHNhtChRgci\nJEeeujAmR7HB00IXjsHT5ovIABG5XERKJL0C2O5PnGfZFhaR/EBh4MdgAwxFgXwFuCv6Ljbeu5H/\nNP8Pzy19jlpja/HWmrc4cy71f93Cwa639rFc+FguTGYKpMOPBR4BlgGr3deq9DZS1d+AF4G9wE/A\nH6r6RYYjDUGERNChRge+6f0N49qO492N71JldBVe+eYVjp85Ho6QjDEmy6X7ABRVjcrIjkWkMjAI\niAKOADNFpLuqvuO/XmxsLFFRThORkZFER0efv/Y46egms6YXL15MBBF8fufnrPxxJY+8/gjDJw/n\noS4PMaDxANZ/uz5T2wtmOiYmJkvbs+mcM50ku8QT6LTJPPHx8cTFxQGc7y8zIpAafkGck7YtAAUW\nA+NVNSGd7e4A/qGq/3Kn7wSaqOoAv3U8reEHYsvhLTy/9HnmbZ3H3dF389C1D1G2WNmwxmRMbmA1\n/NCFo4b/GlAfGOu+b+B+Tc8WoImIXCzO9UY3ApuDDdBrNUrV4M32b7K271rOJZ6jzrg69Jnfh+2/\nbs/SOKxW62O58LFcmMwUSIffSFXvUtUvVXWhqsYCjdPbSFXXAVNw6v1Jt5K9nuFIPVa+eHlGtR7F\ntvu3cXnRy7nuzeu4Y9YdrPl5TbhDM8aYTBFISec74HZV3eFOVwZmqmr9kBvPBiWd1Bw9fZSJ303k\npeUvUbd0XYY0HUKLii2y5uYIY3IBK+mELrNLOoF0+DcAbwFJD52NAu5W1ZDvts3OHX6S02dPM3X9\nVJ5f+jylCpfisWaP0bZaW7uW35h0WIcfuizv8N2dFwKquZNbVTVTBqTPCR1+knOJ55jz/RxGLhlJ\nQmICQ5oO4Y46d5A/It0LnQISHx9vVze4LBc+OTkX1uGHLstP2orIxcAAYAQwHLjX/QDIU/JF5OO2\n2rexus9q/veP/zHxu4lUe7UacWvjOJt4NtzhGWMC1KNHD3r16nXBvMWLF1OqVCkOHjx4wfxnn32W\nli1b/mUfhw8fpmDBgmzeHPh1KHv27CEiIoK2bdv+JZ4sexhKemMvADOBScDfgeuBN3Bq+NlmtMxw\n+WrPV9ryrZZa7dVq+s76d/TsubPhDsmYbCO7/n3/+uuvWqZMGf38889VVfXkyZNatWrVFMey2b9/\nv+bPn1937959wfxXX31VGzZsGFS7u3fvVhHRUqVK6bJly87P79Gjh44YMSLFbVLLIV6NlgnUVtXe\nqrpInSt1/gXU9uLDJ6dpXrE5i+5axLg24xizYgxXjb+K2Ztnk6iJ4Q7NGJOKEiVK8Oqrr9KnTx9O\nnDjBiBEjqFq16gXj2ycpV64c119/PVOnTr1g/pQpU86vv2PHDlq2bElkZCSXXnopXbp0SbP9Rx99\nlKFDh14wT7Oq9JXeJwLwNnCt33QTYGpGPl1S2HdgH405QGJion687WNtMKGBRo+P1g+2fBDUCJ05\nedzzzGa58MnJucjuf9+dOnXSdu3aacmSJXX//v2prvfOO+9o1apVz09v2bJFCxYsqIcPH1ZV1S5d\nuugzzzyjqqqnT5/WpUuXprifpCP8o0eParly5fSLL75QVecIf/jw4Sluk1oOyeARfqpnHEVkg/s2\nP7BURPbh3GlbAdjq1QdQTiUi3FT1JlpXac0HWz9g6JdD+b+v/4+nYp6iVeVWdjmnMcnIiMz5m9Bh\nGTs6HjduHJUrV+aZZ56hXLlyqa7XoUMH+vfvz/Lly7n22muZMmUKbdq0oWTJkoDzeMM9e/bw448/\nUq5cOa677ro02y1cuDBDhw7l8ccf54YbbshQ7BmW2icBzuWXUUBFv/fn52Xk0yWFNlL89MoNziWe\n0xkbZ2iNMTW06aSmumj3onCHZEyWygl/31FRUbpw4cJ01+vdu7f269dPVVUrVqyoc+bMOb/swIED\nes8992jZsmW1du3a+uabb6a4j6Qj/HPnzunp06e1UqVKOn/+/Cw9wk+vQ84PbMnIjgNqPAf8QoTq\n7LmzOnXdVK38SmW9fvL1unRvyv/uGZPb5IS/70A7/K+++kpLlCihCxYs0JIlS2pCQkKK6y1ZskQL\nFSqkO3fu/Msy/w5fVTUuLk6jo6O1e/fuWdbhp3nSVlXPAltFpGIm/lORp+SLyEePq3rw/YDv6Van\nG91md+Omd276y+MXbcwUH8uFj+Uie2jevDmRkZH07duXrl27kj+/rxo+c+ZM9u/fDzgj/gb6eMM7\n77yTU6dO8emnn2ZZyTeQq3RKAJtE5EsRme++PvA6sNymQL4C9K7fm233b+OWardw64xbaT+9PesO\nrAt3aMaYAPTs2ZO9e/f+5WqeVatW0aRJE4oVK0b79u0ZPXp0qkMY+3fsERERPPXUU/z+++9ehn1h\n+85/B2msIBKT0nxVjQ+58Rx0p21mO5lwkgmrJ/Dc0udoXqE5w2OGU+vSWuEOy5hMY3fahi4sQyt4\nJS93+EmOnznO2JVj+d+y/9GqciuGtRxG1ZJVwx2WMSGzDj904Rha4VoRWSkix0QkQUQSReTPYBsy\nKStSsAiPNn2Ut+q9RY1SNbjuzevoNa8Xe/7YE+7Qwsbq1j6WC5OZAqnhjwG6AduBQkBvYJyXQeVF\nRQoW4fEWj7Ptvm2UK1aOBq83oP+H/dn/5/5wh2aMySUCqeGvVtUGIrJeVa9y561V1eiQG7eSTqoO\nnzjMC0tf4I01b9Cjbg8ea/4YZYqWCXdYxgTMSjqhC8cjDo+LyEXAOhF5XkQeAgJqSESqi8gav9cR\nERkYbJB5UanCpXjuH8+x+d7NREgEtcbW4t+f/ZtDxw+FOzRjTA4VSIff013vPuAEcAXQKZCdq+pW\nVb1aVa/GeRbuCWBuBmPN1VKr1ZYuWppRrUexof8Gjiccp8bYGgxdOJTfT2bdpVxZzerWPpYLk5kC\n6fAPA2dU9YiqDgf+DfyUgbZuBHaq6r4MbJvnlftbOca1HcfqPqs5ePwgVV+tylOLn+LP03b+3GRf\nImKvEF6Z/vMIoIb/LXCDqh5zp4sBC1Q17RGC/rqfN4FVqjrOb57V8DNox287eGrxU3y641MeuvYh\n7mt8H0ULFg13WMaYLJDRGn4gz+e7KKmzB1DVoyJSOMjgCgLtgMHJl8XGxp6/Ky0yMpLo6Ojzj3RL\n+nfWpv86XaVEFXpd0osbqt7Axwc+psroKnS8uCPtq7fnnzf+M+zx2bRN23TmTcfHxxMXFweQ6l28\nAUlvsB1gKdDAb7ohsDyYAXuA9sCnKcxPcWCgvCjUcc/XHVinHaZ30LIvltUx347RUwmnMiewMMjJ\nY8BnNsuFj+XCBw+feDUIeE9ElojIEmAGcH+QnytdgWlBbmOCcFXpq5h7x1zmdZnHR9s/otqYakxc\nPZGEcwnhDs0Yk00ENLSCW5Kp5k5uVdWAexERKQL8AFRS1aPJlmkg7ZvgLd+3nCcWPcHuP3bzZIsn\n6X5Vd/JHBFLBM8Zkd56NpeN29v2BFu6seGB8MJ1+Gvu2Dt9j8XvieWLRExw6fohhLYdxe+3byReR\nL9xhGWNC4OWNV68B9YGxOEMqNHDnmUyUdIIms8VExfBV7FeMvmk0o1eMpu5rdZmxcUa2ftC6V7nI\niSwXPpaL0AXS4TdS1btU9UtVXaiqsUBjj+MymUhEaFW5Fct6LePFVi/y4vIXqTe+HrM2z8rWHb8x\nJnMFUtL5DrhdVXe405WBmapaP+TGraQTFqrKx9s/Zlj8MBISExjWchgdanQgQgL5/DfGhJuXNfwb\ngLeA3e6sKOBuVf0y2MZS2Ld1+GGkqny47UOGxQ9DUYa3HM4t1W/JssetGWMyxpMavojkA+rhXKEz\n0H1Vz4zO3lwoHPVJEaFd9Xas7rOaYS2HMSx+GA0nNmT+1vlhHeXQarU+lgsfy0Xo0nuI+Tmgq6qe\nUtV17utUFsVmsoiI0KFGB77r+x1Dmw9l6JdDafxGYz7a9pENb2tMLhJISWcUUADnhqvjOEMjq6p+\nF3LjVtLJlhI1kTnfz2F4/HCKFCzCiJgR/LPyP63UY0w24WUNPx74y0qq+vdgG0th39bhZ2OJmsjM\nTTMZsXgExQsVZ0TMCP5x5T+s4zcmzDy7Dl9VY1T178lfGQvTpCY71icjJII76tzBhv4bGNh4IAM/\nGUjzt5qzcNdCT0s92TEX4WK58LFchC7Ve+1F5GH3bYp/2ar6kicRmWwnX0Q+utbtyu21b2faxmn0\n/6g/ZYqW4am/P0VMVEy4wzPGBCjVko6IDMfp7KsDjYAPcOr3NwMrVLVHyI1bSSdHOpt4lnc3vMtT\ni5+ifPHyjIgZQYuKLdLf0BiTKbys4X8NtEka+Mx9AMrHqto8Q5FeuG/r8HOws4lneXv92zy1+Ckq\nXVKJETEjaFahWbjDMibX83IsncsA/4HSEtx5JhPlxPpk/oj8xEbHsvW+rXSr0407595Jq6mtWL5v\neUj7zYm58IrlwsdyEbpAOvwpwAoRGS4iI4BvgcnehmVykgL5CtC7fm+23reV22rdRtfZXWn9dmu+\n3f9tuEMzxvgJdDz8BkBznJr+V6q6JlMat5JOrnTm3BneWvMWT3/9NHUuq8OImBE0Ktco3GEZk2t4\nWcN/CZikqpsyGlwa+7YOPxc7ffY0k9ZMYuSSkUSXiWZ4y+E0KNsg3GEZk+N5WcP/HnhdRFaISD8R\nKR5EUJEiMktEvheRzSLSJNgA84rcWJ+8KP9F3NvoXrbfv51/Vv4nt0y/hfbT27Pm57T/QcyNucgo\ny4WP5SJ0gdx4NVFVmwI9cUbK3CAi74pIIDdfvYJzRU9N4CqcDw+TxxTKX4j7Gt/Hjvt3cH3U9bR9\nty0dZ3Rk/cH14Q7NmDwl0Bp+PqAdcDdwBfAe0Aw4oap3pLJNcWCNql6Zxn6tpJMHnUg4wYRVE3h+\n2fM0Ld+Ux1s8TnSZ6HCHZUyO4WUNfxROZ/8l8IaqrvBbtlVVq6eyXTQwAdiMM8TyauABVT3ht451\n+HnYiYQTvLbyNV765iXqla7HY80eo3nFkG/vMCbXy2iHn+rQCn42AI+r6vEUll2Tzr7rA/ep6koR\neRkYAjzpv1JsbCxRUVEAREZGEh0dTUxMDOCr2eWFaf/6ZHaIJyumVyxdQQMasHPgTqasm0KX/3Wh\nxMUl6Fa3G0N6DGHx4sXZKt5wTK9du5ZBgwZlm3jCOf3yyy/n6f4hLi4O4Hx/mRGBlnTKARVxOvGk\n4ZG/SmebMsByVa3kTjcDhqjqzX7r2BG+Kz4+/vwPOq86m3iWWZtnMfTNoRStVpQhTYdwW+3byB8R\nyHFJ7mS/Fz6WCx8vSzrPAXfglGbOJc1X1XYBBPUV8C9V3eaOzXOxqg72W24dvvkLVeWTHZ8wcslI\nfjr6E49e9yh3Rd9FofyFwh2aMdmClx3+NqCuqp7OQFD1gDeAgsBOnGfhHvFbbh2+SdOSvUsYuWQk\na35ew4NNHqRfw34Uu6hYuMMyJqy8vA5/J06HHTT3kYiNVLWeqnb07+zNhZLqdebCXDSr0IyPun3E\nJ90/4bsD31HplUo88eUTHD5xOHwBZiH7vfCxXIQurfHwX3XfngDWishCIOkoX1V1oNfBGZOkXpl6\nTOs0jR2/7eCFpS9Q7dVq3HnVnTxy3SOUL14+3OEZkyOkNR5+LL6Hn0jy96oa8gBqVtIxGfXT0Z94\naflLvLnmTdrXaM/gpoOpUapGuMMyJkt4VsP3knX4JlS/nfyNMSvGMGbFGFpUbMFjzR6z8XpMrudl\nDd9kAatP+gSTixIXl+DJlk+y+4HdNKvQjA4zOtBqaisW7V7k6XN3s4r9XvhYLkJnHb7JFYoULMKg\nJoPYOXAnXep0od9H/bh20rXM2zKPRE0Md3jGZAtW0jG50rnEc8zdMpeRS0Zy+uxpBjcdTJc6XSiQ\nr0C4QzMmZF5ehz8f54Rt0s4V+BNYCUxQ1VPBNuq3b+vwjadUlc93fc7IJSPZ/ftu/n3dv+l1dS8u\nLnBxuEMzJsO8rOHvBo4BrwMTgaPuq5o7bTKB1Sd9MjMXIkKryq1YdNcipneezme7PqPSK5UY+fVI\njpzK/reF2O+Fj+UidIF0+NepajdVna+qH6hqd6CRqg7AGRzNmByhyRVNmNdlHl/0/IJNhzZx5egr\nefTzR9n5285wh2ZMlgikpPM90FpVf3CnKwKfqmpNEVmjqldnuHEr6Zgw2v37bsasGMOU9VO4uszV\n9GvYj3bV2lmd32R7Xtbw2wDjgV3urCuBe4FFwD2q+nKwjfrt2zp8E3anzp5i9ubZjF89np2/7aT3\n1b35V/1/UTGyYrhDMyZFXtbwP8Wp1w8CHgCqA1+o6vFQOntzIatP+mR1LgrlL0T3q7rz9d1f8/md\nn3Pk9BHqv16fm9+9mflb53Mu8Vz6O/GI/V74WC5CF0iHP0lVT6nqWlVdB+QDPvY4LmPCovZltRl9\n02j2PbiPTjU78fTXTxP1ShRPLX6KH//8MdzhGROSQEo6/wVKquq9InIJ8BEwUVXfCrlxK+mYHGDt\ngbVMWDWBGZtm0DKqJX0b9KVV5VZEiN23aMLD07F0ROQF4G9AA+BZVZ0VfIgp7tc6fJNjHD19lGkb\npzF+1Xh+P/U7fer3odfVvShdtHS4QzN5TKbX8EWkk/vqCHyD8/zaNYC68wINbI+IrBeRNSKyIv0t\n8iarT/pk11wUu6gYfRr0YXWf1bzX+T12/r6TGmNrcPvM21m4a6EnQzhk11yEg+UidGk9LLQdviGR\nAda66yc9k3ZOgG0oEKOqvwUfnjHZj4jQqFwjGpVrxIutXuTt9W/z4IIHOXX2FH0a9CE2OpZShUuF\nO0xj/sLzsXREZDfQUFV/TWGZlXRMrqCqLN+/nAmrJzBvyzzaVmtLvwb9aFahGSJB/+dtTJqy7Xj4\nIrILOILzAPQJqjrRb5l1+CbX+e3kb0xZN4UJqycgCH0b9CU2OpbihYqHOzSTS2Tn8fCbunfj3gQM\nEJHmWdBmjmP1SZ+cnosSF5dgUJNBbL53M6+1fY3l+5dTe1xt5m2ZF/S+cnouMpPlInRpPdP2OmB5\nqIfgqvqz+/WQiMwFGgNfJy2PjY0lKioKgMjISKKjo4mJiQF8P2CbzlvTSbJLPBmdXrx4MQDTO09n\n8Z7FdH+pO6NKjGLcgHHUurRWQPtbu3Zttvl+wj29du3abBVPVk7Hx8cTFxcHcL6/zIi0nmk7HufK\nnG3AJzjj5xwIaucihYF8qnpURIoAnwEjVPUzd7mVdEyecTLhJC8se4Hxq8ZTpUQV+jboS6danSiU\nv1C4QzM5jJdj6dTEKce0AiKBL3GGW1iqqmnecy4ilYC57mR+4B1VHem33Dp8k+cknEvgg60fMGH1\nBNYcWEOUWPnnAAAdaUlEQVTPq3rSp0EfqpeqHu7QTA7hWQ1fVb9X1ZdUtTVwPbAUuB1I95p6Vd2t\nqtHuq45/Z28ulLyckZfl9lwUyFeATrU68dmdn/FN728okK8ALeJacP3k65mxcQZnzp05v25uz0Uw\nLBehC+qkraqeUNWPVPU+VW3gVVDG5BWVS1Tm2RufZd+D++jboC8TVk+g/KjyDP58sI3TbzKdPdPW\nmGxm26/beH3160xeN5mry1xN3wZ9uaX6LTZOvzkv216Hn2bj1uEbk6qkcfonrJ7A9t+20/vq3txT\n/x4bp99k6+vwTQCsPuljuXAUyl+Icr+V46u7v2Jhz4UcPX2U+q/Xp807bZi3ZR5nE8+GO8QsZb8X\noUtr8LRjInI0ldefWRmkMXldrUtr8cpNr7DvwX3cUfsOnlv6HFEvRzE8fjj7/9wf7vBMDmElHWNy\nqPUH1zNh1QSmbZxGswrN6NugL62rtCZfRL5wh2Y85vV4+PWAFjgjX37tPvkqZNbhGxO642eOM33j\ndMavHs8vx3/hnvr30OvqXpQtVjbcoRmPeFbDF5EHgHeAS4HSwNsiMjD4EE1arD7pY7nwCSQXRQoW\noXf93qy8ZyVz75jLviP7qD2uNh1ndGTBjgWejNMfDvZ7EbpATtr+C7hGVZ9U1SeAJsA93oZljMmI\n+pfXZ0K7Cfww6AdaVW7FkIVDqPpqVZ5d8qw9k9cENLTCBqCxqp50py8GVqhq3ZAbt5KOMZ5SVVb+\ntJLXV7/O7O9nc3WZq+lWtxudanbikosvCXd4JoO8HEvnISAW5wlXAnQA4lR1VAbiTL5v6/CNySKn\nzp7i4+0f8+6Gd/l81+f8PervdKvbjZur3UzhAoXDHZ4Jgpdj6bwE3A38DvwKxGZGZ28uZPVJH8uF\nT2bmolD+QnSs2ZFZt89i76C9dKjRgTe+e4Pyo8rz0IKH2PHbjkxrywv2exG6QE7aNgG2q+orqjoa\n2Cki13gfmjHGK8ULFSc2OpbP7vyM1X1WUzBfQa6bdB2t327Nh9s+5FximgPhmhwqkJLOWuDqpNqL\niOQDVrlPsQqtcSvpGJNtnDp7ihkbZzB25VgOnTjEvQ3vpdfVvShZuGS4QzPJeFnDX6uq0cnmrVfV\nq4JtLIV9W4dvTDa04scVjF05lg+2fkCHGh0Y0GgADcs2DHdYxuXlWDq7RWSgiBQQkYLudfm7gg/R\npMXqkz6WC59w5aJxucZM7jCZ7fdvp0bJGnR+rzNN3mjC1HVTOX32dFhist+L0AXS4fcDmgI/Avtx\nrsPvE2gDIpJPRNaIyPyMhWiMCZdShUsxuNlgdg7cyX+a/4e3N7xNhZcr8J+F/2Hvkb3hDs8EKZCS\nTklV/TXDDTiXdTYAiqnqLcmWWUnHmBxm26/bGLdyHFPXT6VFxRYMaDSAGyrdgEjQFQaTQV7W8LcD\na4G3gE+C6aFF5AogDngaeEhV2yVbbh2+MTnUsTPHeGf9O4xdOZYz584woNEAetbrSfFCxcMdWq7n\nZQ2/OjAR6AnsEJGRIlItwP2PAv4N5I7BPDxk9Ukfy4VPds5F0YJF6duwL+v6rWNiu4ks2beESq9U\nov+H/dn4y8ZMby875yKnCOTGq0RV/UxVu+CMoXMXsFJEFovIdaltJyI3A7+o6hqcO3SNMbmQiNC8\nYnNmdJ7Bxns3UqZoGVpNbUVMXAwzN80k4VxCuEM0rkBKOqWA7jhH+AeBN4D5QD1glqpGpbLdM8Cd\nwFmgEPA3YLaq9vRbR++66y6iopxdREZGEh0dTUxMDOD7RLdpm7bpnDWdcC6B/5vyf7y/9X1+vexX\n+jToQ50TdShxcYlsEV9Om46PjycuLg6AqKgoRowY4VkNfxvwNvCmqu5PtmyIqj6bbiMiLYFHrIZv\nTN6z4eAGxq4cy4xNM2hdpTUDGg2gafmmdpI3BJ7W8FX1qeSdPUAgnb3/6kGsm+ckfZoby4W/3JCL\nuqXrMv7m8ex+YDdNyjWh9we9iZ4QzcTVEzl+5njA+8kNuQi3/Kkt8L9uPoVPYk1+iWVaVHUxsDjo\n6IwxuUZkoUgeaPIA919zPwt3LWTMyjE8tvAxetbrSf+G/alasmq4Q8z1Ui3piEhMGtup24mH1riV\ndIzJ03744wfGrxrPpDWTqH95fQY0GkCbqm3subzp8PSZtl6xDt8YA87Abe9teo+xK8fyy/Ff6N+w\nP72v7m0Dt6XCy2fabhCR9e7XpNcSERklIvbTyCRWn/SxXPjklVwUyl+InvV68u2/vuW9zu+x+dBm\nqrxahbvn3c2qn1YBeScXXkq1hu/nU5xLK9/FuZ6+C1AY5xLNOKBdqlsaY0yQGpVrRFy5OA6fOMyk\n7ybR+b3OlC5amhu4gSbNmlAof6Fwh5hjBXJZ5prkY98nzRORDaE829ZKOsaY9JxLPMfH2z9mzMox\nrD2wll7RvejXsB8VIyuGO7Sw8fKyzHz+T7gSkcZ+250NtkFjjAlGvoh8tKvejgU9FvD13V9z8uxJ\n6r9enw7TO/DFri+wg8bABdLh9wYmicgeEdkDTALuEZEiwEgvg8tLrD7pY7nwsVz4xMfHU61kNV5u\n/TJ7B+2lTdU2PPzZw9QcW5PR347myKkj4Q4x2wtkLJ2VqloHiAaiVbWuqq5Q1eOq+p73IRpjzIWK\nFCxCnwZ9WNt3LRPbTWTZvmVEvRLl2cBtuYVdlmmMyRV+Pvozr69+nde/e53Kl1Sme93udK7VOVde\n2mnX4RtjDJBwLoGPtn/EtI3T+HTHpzSr0IwutbvQoUYHil1ULNzhZQovT9qaLGC1Wh/LhY/lwifQ\nXBTIV4AONTowo/MMfnzoR7rX7c7MzTO5YtQVdH6vM7M3z+Zkwklvg82mArnxqoiIPCEiE93pqu5Y\n98YYk60VLViUbnW78UHXD9j9wG5uqnITr616jbIvlaXn3J58sv2TPDVefyDX4b8HrAZ6qmpt9+qc\nZapaL+TGraRjjAmDA8cOMHPTTKZtnMb237bTqWYnutTpQvMKzXPEOD5ePtN2tao28L8BS0TWWYdv\njMkN9vyxhxkbZzB903R+Of4Lt9e6na51u9KobKNsO2a/lzX80yJysV9DlYHTwTZk0ma1Wh/LhY/l\nwserXERFRjG42WDW9F3DF3d+QfFCxblz7p1UebUKQxcOzVWXeQbS4Q/HGU/nChF5F/gSGOxlUMYY\nEw41L63J8JjhbBmwhZm3zSQhMYE277Shzrg6PP3V0+z8bWe4QwxJQJdlus+1beJOfqOqhwPauUgh\nnAefXAQUBOap6mN+y62kY4zJ1hI1keX7ljNt4zRmbp5JxeIV6VKnC3fUvoNyfysXlpg8vQ5fRMoB\nUTijayqAqn4VYGCFVfWEiOQHluA823aJu8w6fGNMjnE28SyLdi9i2sZpvL/lfa4qfRVd6nShc63O\nlCpcKsvi8HI8/OeApcBQ4BHg3+4rIKp6wn1bEMgH/BZskHmB1Wp9LBc+lguf7JCL/BH5+Uflf/Bm\n+zf5+eGfebDJg8Tviafy6Mrc9M5NTFk3hT9P/xnuMFMVyHj4t+I8yDxDJ2pFJAL4DqgMvKaqmzOy\nH2OMyU4uyn8R7Wu0p32N9hw7c4z5W+czfdN07v/kfm688ka61ulK26ptubjAxenvLIsE0uHvxDk6\nz1CHr6qJQLSIFAcWiEiMqsYnLY+NjSUqKgqAyMhIoqOjiYmJAXyf6HlhOiYmJlvFY9PZZzpJdokn\nXNNJ87JLPP7TRQsW5fJfL+fBMg8S1z6OuVvmMvLtkcQejuXWm26lS+0uFNxXkAL5CmRo//Hx8cTF\nxQGc7y8zIpDr8OcA9YCF+Dp9VdWBQTcm8gRwUlX/505bDd8Yk2sdOHaAWZtnMW3jNLYe3krHmh3p\nWqcrLSq2COkGLy+vw/8A+C9OHX8Vzl23qwMMqpSIRLrvLwb+AawJNsi8IPnRXF5mufCxXPjkxFyU\nKVqG+xrfx9JeS1ndZzVVSlTh4c8epvyo8gz6dBDf7v82Sx/gkm5JR1XjRKQwUEFVtwS5/8uByW4d\nPwKYqqoLMxCnMcbkaBUjK/Jo00d5tOmjbDm8hRkbZ3DX+3dx5twZutTpQpc6Xah7WV1P7+4NpKRz\nC/ACcJGqRonI1cAIVb0l5MatpGOMycNUlbUH1jJ943Smb5pO0YJF6VqnK13qdKFKiSqpbuflWDrf\nAdcDi/zG0tnoPgUrJNbhG2OMI+kGr+kbpzNz80zKFy9Pl9pduKPOHVzxtysuWNfLGn6Cqv6RPLZg\nGzJpy4n1Sa9YLnwsFz65PRcREkHTCk15tc2r7H9oPyNvGMnmQ5upN74eLeNa8trK1zh0/FBIbQRy\nWeYmEekO5BeRqsBAYFlIrRpjjElV/oj83Hjljdx45Y2MOzuOBTsXMG3jNIYsHMK1V1yb4f0GUtIp\ngnOXbSt31gLgv6p6KsOt+vZtJR1jjAnQ8TPHmb9tPl3rdrVn2hpjTF6Q6TV8EZmfxuuD0MI1yeX2\n+mQwLBc+lgsfy0Xo0qrhv+h+VSD5J4kdlhtjTA4T6HX4H7pj4mRu41bSMcaYoHl5WeYdwA4ReV5E\nagQfmjHGmOwg3Q5fVbsDVwO7gDgRWS4ifUSkmOfR5SFWn/SxXPhYLnwsF6EL5AgfVT0CzAJmAGVx\nxshfIyJBj5hpjDEmPAKp4bcHYoGqwBQgTlV/cQdU26yqURlu3Gr4xhgTtIzW8AO507YjMCr5M2zd\n59T+K9gGjTHGhEcgNfy7Untguap+kfkh5U1Wn/SxXPhYLnwsF6EL5CHmnURku4j8KSJH3Vf2fUqv\nMcaYFAVSw98J3Kyq32d641bDN8aYoHl5Hf6BjHb2IlJeRBaJyCYR2WhX9RhjTPikNZZOJxHpBKwS\nkRki0jVpnoh0DHD/CcCDqlobaAIMEJGamRB3rmP1SR/LhY/lwsdyEbq0rtJph2/MnJP4hkdOMie9\nnavqAeCA+/6YiHyPcx1/ppeHjDHGpC2QGn4zVV2S3rx0GxKJAhYDtVX1mDvPavjGGBMkL6/DHw3U\nD2BeqkSkKM6dug8kdfZJYmNjiYqKAiAyMpLo6GhiYmIA379wNm3TNm3TeXk6Pj6euLg4gPP9ZUak\neoQvItcC1wEPAi/hGyK5GHCrqtYLqAGRAsCHwCeq+nKyZXaE74qPjz//g87rLBc+lgsfy4WPF0f4\nBXE693zu1yR/Ap0DDEqASThDMLyc3vrGGGO8E0gNv6Kq/iAiRVT1eFA7F2kGfAWsx3cC+DFV/dRd\nbkf4xhgTJC9r+OVE5BOco/zyIhIN9FHVe9Pb0D2xG9CInMYYY7wVSGf8MtAaOAygqmuBll4GlRcl\nnaAxlgt/lgsfy0XoAh0Pf2+yWWc9iMUYY4yHAqnhzwJGAWOAa4CBQENV7RJy41bDN8aYoHk5lk5/\nYABQDvgR53GHA4JtyBhjTHgFMh7+IVXtpqqXqeqlqtpdVX/NiuDyEqtP+lgufCwXPpaL0KV6lY6I\nDFbV50Tk1RQWq6rayJfGGJODpHWnbTtVnS8isSksVlWdHHLjVsM3xpigZbSGn+5JWy9Zh2+MMcHL\n9JO2IjLf7/VB8unQwjXJWX3Sx3LhY7nwsVyELq07bV90v94KlAHexhlArStw0OO4jDHGZLJArsNf\nraoN0puXocatpGOMMUHz8jr8wiJS2a+hK4HCwTZkjDEmvALp8B8EFonIYhFZDCwCBnkbVt5j9Ukf\ny4WP5cLHchG6dEfLVNVPRaQaUANniOOtqnrK88iMMcZkKrss0xhjchgva/jGGGNyAU87fBF5U0QO\nisgGL9vJDaw+6WO58LFc+FguQpduDV9EGuB7PGGSI8APqpreuPhvAa8CUzIWnjHGmMwSyHX43wAN\ncJ5LC1AX2AQUB/qr6oJ0to8C5qtq3RSWWQ3fGGOC5GUN/ycgWlUbuDdbRQO7gH8AzwfboDHGmPAI\n5CHm1VV1U9KEqm4WkRqqulNEQj48j42NJSoqCoDIyEiio6OJiYkBfDW7vDDtX5/MDvGEczppXnaJ\nJ5zTa9euZdCgQdkmnnBOv/zyy3m6f4iLiwM4319mRCAlnfeAX4HpOGPp3A5cCvQAlqhqo3S2j8JK\nOumKj48//4PO6ywXPpYLH8uFj2fDI4tIYeBeoKk7aykwDjgFFFHVo+lsH4V1+MYYk2m87PAbqOrq\nZPNuVtUPAwhqGtASKAn8Ajypqm/5LbcO3xhjguTlSduJInL+6FxEugJPBrJzVe2qqmVV9SJVLe/f\n2ZsL+dev8zrLhY/lwsdyEbpATtp2BmaJSDegOdAT5wodY4wxOUhAY+mISHXgfeAHoKOqnsiUxq2k\nY4wxQcv0Gn4KwyFcBvwBnMF5iPlVQUf51zaswzfGmCB5UcNvl+x1DfBP9/0tGQnSpM7qkz6WCx/L\nhY/lInSp1vBVdU8WxmGMMcZjNh6+McbkMDYevjHGmDRZh59NWH3Sx3LhY7nwsVyEzjp8Y4zJI6yG\nb4wxOYzV8I0xxqTJOvxswuqTPpYLH8uFj+UidNbhG2NMHmE1fGOMyWGshm+MMSZNnnb4ItJaRLaI\nyHYRGexlWzmd1Sd9LBc+lgsfy0XoPOvwRSQfMAZoDdQCuopITa/ay+nWrl0b7hCyDcuFj+XCx3IR\nOi+P8BsDO1R1j6om4DwEvb2H7eVof/zxR7hDyDYsFz6WCx/LRegCeeJVRpUD9vlN78cZYtmYLOd/\nbUDS+6yel5HYTp2C33/PPt+D1/NS+pr0/uBBWL8+9eXJ36e3PJh1s1tbGeVlhx9QaJUquSun8EuQ\n/L3X64VjOsmJE3t4+eW01wlkP8Gsk9rylOYHOi+UdZPenz27h6efztjPN1AiF37Nqnn+VNPf7sSJ\nPYwfH754wzEvpa8isH//HpYsSX15Su/TW56Z+8rqtjLCs8syRaQJMFxVW7vTjwGJqvqc3zp2TaYx\nxmRApj7iMFQikh/YCtwA/ASsALqq6veeNGiMMSZNnpV0VPWsiNwHLADyAZOsszfGmPAJ6522xhhj\nsk6W3GkbyA1YIjLaXb5ORK7OirjCIb1ciEh3NwfrRWSpiFwVjjizQqA35olIIxE5KyIdszK+rBTg\n30iMiKwRkY0iEp/FIWaZAP5GSonIpyKy1s1FbBjC9JyIvCkiB0VkQxrrBNdvqqqnL5xyzg4gCigA\nrAVqJlunDfCx+/4a4Buv4wrHK8BcXAsUd9+3zsu58FvvS+BDoFO44w7j70UksAm4wp0uFe64w5iL\n4cDIpDwAvwL5wx27B7loDlwNbEhledD9ZlYc4QdyA9YtwGQAVf0WiBSR0lkQW1ZLNxequlxVj7iT\n3wJXZHGMWSXQG/PuB2YBh7IyuCwWSC66AbNVdT+Aqh7O4hizSiC5+Bn4m/v+b8Cvqno2C2PMEqr6\nNfB7GqsE3W9mRYef0g1Y5QJYJzd2dIHkwl9v4GNPIwqfdHMhIuVw/thfc2fl1hNOgfxeVAVKiMgi\nEVklIndmWXRZK5BcTARqi8hPwDrggSyKLbsJut/08sarJIH+kSa/pjQ3/nEH/D2JyN+BXkBT78IJ\nq0By8TIwRFVVRIS//o7kFoHkogBQH+cy58LAchH5RlW3expZ1gskF/8B1qpqjIhUBj4XkXqqetTj\n2LKjoPrNrOjwfwTK+02Xx/kkSmudK9x5uU0gucA9UTsRaK2qaf1Ll5MFkosGwHSnr6cUcJOIJKjq\nB1kTYpYJJBf7gMOqehI4KSJfAfWA3NbhB5KL64CnAVR1p4jsBqoDq7Ikwuwj6H4zK0o6q4CqIhIl\nIgWBO4Dkf7AfAD3h/B26f6jqwSyILaulmwsRqQDMAXqo6o4wxJhV0s2Fql6pqpVUtRJOHb9/Luzs\nIbC/kXlAMxHJJyKFcU7Sbc7iOLNCILnYAtwI4NasqwO7sjTK7CHoftPzI3xN5QYsEenrLp+gqh+L\nSBsR2QEcB+72Oq5wCCQXwJPAJcBr7pFtgqo2DlfMXgkwF3lCgH8jW0TkU2A9kAhMVNVc1+EH+Hvx\nDPCWiKzDOWh9VFV/C1vQHhGRaUBLoJSI7AOG4ZT2Mtxv2o1XxhiTR9gjDo0xJo+wDt8YY/II6/CN\nMSaPsA7fGGPyCOvwjTEmj7AO3xhj8gjr8A3uTS6pDsGawX22F5GambnPUInIJyJSNtm8eBFpkMH9\nDReRh0OIJ05EOmV0+wy0FyMi87OqPZP9WIdvvHIrUCuYDUTEs99HEbkYKKGqPyVbpGR83KZQb2JJ\nsW0v8uA+ctTkcdbhmwuIyJUi8p2INBCRwiLynohsEpE5IvJNSkfDIvKsu846EXlBRK4F2gEvuPu6\nUkRW+61fNWlaRPa4268GbhORViKyTERWu20X8VtvuDt/vYhUd+cXcR8U8a3b1i2pfGsxwKI0vu8I\n94j7KXe6t4hsdfc7UUReTWXTWu4IljtF5H532xEi8oDfvp8WkYHu+zHiPNzjc+Ayv3WS56Gr+31u\nEJFn/dZr7eZgrbsPRKSxm7PvxHloTjV3fqyIfCAiC4EvcD5ciovIh24Mr4l7O3ca7R0Tkf9z21su\nIudjNjlQuAf5t1f4XzgPm9iAMybJd0Bdd/4jwGvu+9pAAlA/2bYlgS1+039zv74FdPSb/yVQz33/\nDDDAfb8beMR9XwpYDFzsTg8GnvBbL2mb/jhDCyTtq7v7PhLYChRO4Xt8BYhJYf4inHFppgGPufPK\nuu1F4gw/8hUwOoVthwNLcW53LwkcxhkOoCKw2l0nAueBHpcAHYHPcEY4vBxnrPOOKeShLPCDu898\nwEKcYaIvBfYCFZO+X/drMSCf+/5GYJb7PhZn0LWk9WKAk+7PO8KNpVNq7bnbJAJt3ffPAUPD/ftq\nr4y/7AjfJLkMeB/opqpJ9fymOA+gQFU34YzjktwfwCkRmSQit+J0KEn8h259A7jbLVfcDrzrt2yG\n+7UJThlomYiswRkYqoLfenPcr9/hdFoArYAh7vqLgIu4cATBJE2BJSnMF2ACzlOFRrrzGgPxqvqH\nOg/WmJnse0miwIeqmqCqvwK/AKVV9QfgVxGJduP7Tp1RT1sA76rjZ5wPQX9JeWgELFLVX1X1HPCO\nu+01wFfu/lHVP9z1I4FZ7nmYl7iwlPaZ33oAK9R5uEgizodcM6Ch+/0mbw/gjKp+5L5fjS/vJgey\nup5J8gfOUV5znNEIk6Q5Br2qnhORxjjjtHcG7nPfw4X16dk4gz99iXP06z/s83G/95+rardUmjvt\nfj3Hhb+7HTWNceFF5Epgn6b8VCQFlgF/F5EXVfW0O8//+04rB2f83vvH9QbOYFalgTf92kprX8dT\nWS+95wD8F1ioqreKSEUg3m/ZiWTr+v9MhJTPQ/jPT/Cbn4j1GTmaHeGbJGdwSg49RaSrO28pztE4\nIlILqJt8I7fGHqmqnwAP4YzRDnAU32PocDvSBThPr3oz+X5c3wJNxXmoRVJ9vmo6cS8ABvrFk9KD\nnG8CPkljH2/gPFnsPRHJhzNEb0sRiXRPdnYi+BO0c3GeSdzQjRGc0tAd7vmCy4G/p7LtSrf9km48\nXXA68W+AFiISBSAil7jr/w1IOhmd3oiJjcW5KivpP62vgRUptLc4iO/V5BDW4ZskqqongJuBB0Xk\nZmAccKmIbMI5itwEHEm2XTFgvjhD1X4NPOjOnw782z3BWMmd9y7OUeJn/u36BXAIp+48zd3fMpzz\nCn+J1W+7/wIF3BOOG4ERKaz/T+DTdL75UcAaYCpO5/kMTke4BKe+/mdqm6ayvwSc/2beU3UK4Ko6\nF+eBJZtxnkW6LJVtfwaG4JSo1gKrVHW+Os+x7QPMEZG1uOU24HlgpIh8h1ODT4op+VVAivNhMsaN\nYZeqzlXVAym1l8L3F8oVTSYbsOGRTarco8ACqnraPer+HKiWSmkkkP09AhRT1WGZGWc6bV4EfK1B\nPlNARIqo6nH3CH8Ozrjs84LYPgKn5t1ZVXcGFbQxHrF6nElLEeBLESmAU9ftH0JnPxeoBFyfifGl\nyy0lZeQBMsNF5EagELAgyM6+FjAfmGOdvclO7AjfGGPyCKvhG2NMHmEdvjHG5BHW4RtjTB5hHb4x\nxuQR1uEbY0weYR2+McbkEf8PM26glcYuDusAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c60cc0>"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.6: Page 516"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.6\n",
+ "# Page: 516\n",
+ "\n",
+ "print'Illustration 10.6 - Page: 516\\n\\n'\n",
+ "\n",
+ "import numpy.linalg as lin\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:heptane b:p-chloronitrobenzene c:o-chloronitrobenzene d:aq. methanol\n",
+ "xb = 0.4;# [Wt fraction]\n",
+ "xC = 0.60;# [Wt fraction]\n",
+ "F = 100;# [kg]\n",
+ "# The para isomer(b) favours the heptane(a) and the ortho isomer(c) favours the methanol(d).\n",
+ "# Basis: 1 hour.\n",
+ "A = 2400;# [kg/h]\n",
+ "D = 2760;# [kg/h]\n",
+ "xbW = 0.8;# [Wt fraction]\n",
+ "xbZ = 0.15;# [Wt fraction]\n",
+ "kb=1.35;\n",
+ "kc=0.835;\n",
+ "#*******#\n",
+ "\n",
+ "B = xb*F;# [kg]\n",
+ "C = F-B;# [kg]\n",
+ "# W = kg A rich product, after solvent removal\n",
+ "# Z = kg D rich product, after solvent removal\n",
+ "# B balance:\n",
+ "# (1): (0.80*W)+(0.15*Z) = B\n",
+ "# C balance:\n",
+ "# (2): (0.20*W)+(0.85*Z) = C\n",
+ "# Solving (1) & (2) simultaneously:\n",
+ "a = numpy.array([[0.80, 0.15],[0.20, 0.85]]);\n",
+ "b = [B,C];\n",
+ "soln = lin.solve(a,b)\n",
+ "W = soln[0];\n",
+ "Z = soln[1];\n",
+ "Wb = xbW*W;# [kg]\n",
+ "Wc = W-Wb;# [kg]\n",
+ "Zb = xbZ*Z;# [kg]\n",
+ "Zc = Z-Zb;# [kg]\n",
+ "xB1_prime = Zb/D;\n",
+ "xC1_prime = Zc/D;\n",
+ "yB1_prime = Wb/D;\n",
+ "yC1_prime = Wc/D;\n",
+ "DbyA = D/A;\n",
+ "# Equilibrium curve:\n",
+ "# First distribution coeffecient: yB_star/xB_prime = 1.35\n",
+ "def f68(x1):\n",
+ " return kb*x1\n",
+ "x1 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Second distribution coeffecient: yC_star/xC_prime = 0.835\n",
+ "def f69(x2):\n",
+ " return kc*x2\n",
+ "x2 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Operating Line, corresponding to First distribution coeffecient:\n",
+ "def f70(x3):\n",
+ " return (DbyA*x3)+yB1_prime\n",
+ "x3 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "def f71(x4):\n",
+ " return DbyA*(x4-xB1_prime)\n",
+ "x4 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Operating Line, corresponding to Second distribution coeffecient:\n",
+ "def f72(x5):\n",
+ " return (DbyA*x5)+yC1_prime\n",
+ "x5 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "def f73(x6):\n",
+ " return (DbyA)*(x6-xC1_prime);\n",
+ "x6 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "\n",
+ "\n",
+ "plot(x1,f68(x1),label=\"Equilibrium curve\")\n",
+ "plt.plot(x3,f70(x3),label=\"Operating curve\")\n",
+ "plt.plot(x4,f71(x4),label=\"Operating curve\");\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"xB_prime\");\n",
+ "plt.ylabel(\"yB_prime\");\n",
+ "plt.title(\"yB_star/xB_prime = 1.35\");\n",
+ "plt.xlim((0,0.05))\n",
+ "plt.ylim((0,0.07))\n",
+ "plt.show()\n",
+ "\n",
+ "plot(x2,f69(x2),label=\"Equilibrium curve\")\n",
+ "plt.plot(x5,f72(x5),label=\"Operating curve\")\n",
+ "plt.plot(x6,f73(x6),label=\"Operating curve\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"xC_prime\");\n",
+ "plt.ylabel(\"yC_prime\");\n",
+ "plt.title(\"yC_star/xC_prime = 0.835\");\n",
+ "plt.xlim((0,0.06))\n",
+ "plt.ylim((0,0.07))\n",
+ "plt.show()\n",
+ "# The stages are constructed.\n",
+ "# The feed matching is shown on Fig. 10.37 (Pg 518):\n",
+ "f_prime = 6.6;\n",
+ "fstage = 4.6;\n",
+ "print\"Number of ideal stage is \\n\",fstage+f_prime-1\n",
+ "print\"The feed stage is \",fstage,\"th from the solvent-D inlet\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.6 - Page: 516\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEaCAYAAAA/lAFyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXucjeX+//98O3RCKL5OqUHs2MkhiSIqJBUdROzaDhHl\n0GErUZ/oZzuVdki7UBkpqUhUZFe7aVQOhRnJqSHKoam2U0iYef/+uO+ZWVZzWDNr3es07+fjsR7m\nvu/rvu9rXe613uu63tfreomqYhiGYRiFpUSkK2AYhmHEJhZADMMwjCJhAcQwDMMoEhZADMMwjCJh\nAcQwDMMoEhZADMMwjCJhAcQwIoyIbBCRqyJdD8MoLBZAjJAjIkki8ruI/CYiB0TkMxG5OIjrJYhI\npogE/byKSHUR+TGAciF9D/mhqherarIX1w4FInK1iHzqtsP3BZRtICJfi8g+t/wXItLK5/hoETnh\ntutvInJIRBK8fg+GN1gAMbxAgUGqWg44B0gC5oTgulKkk0RK+Wx2ApYGcJpX7yGvekUzh4GXgIcD\nKLsbuB04F6gIzAPm+xxX4A1VLee+zlbVHSGurxEmLIAYhUZEHhaR+X77porIZP+yqpoJvAk0COC6\nzd1frwdF5CcRmeQeyvp1fsD91Xq5iNQRkf+KyK8i8ouIvCYi5X2utUNEHhGR9cBvPr2XTsAS9/z/\niUgTt3x19zp/Gkoq5HsYLSLzRWSe++t6jYhckk+9Srr7rvE5/20RmeOev15E6orICBFJF5GdItLe\n53rlReRlEdkjIrtEZEwoemp+7/8rVX0dyLf34ZY9qKrfq7PERUkgE9jrU0Qo4g8BI/qwAGIUhTlA\nx6wvbPeXdHdgtk8ZcY+dBvwNWBHAdacAz6pqeaA28La7v7X7b3n3V+sqd3ssUA2oD9QERvtd7w7g\neqCCqmaKSGn3Wh+p6jZgOPCaiJwJzAJm+Q0lFeU9AHQG3sL5BT4XeFdESuZRrwycX+W+3Ai86p6/\nDvjI3V8dGANM9ymbCBwH6gBNgA5Av9wqJSI9RWR/Hq99InJegO+vQETkAPA78AjQ1eeQAje5wXuD\niAwM1T2NCKCq9rJXoV84w0D93L9vBL71OZYEHAH2A8fcf68J4Jqf4QSBSn77E3B+yZbI59ybgbU+\n298Dvf3KXAt87LdvEfANkAKUDsF7GA186bMtwB7gynzq9X3Wtd3zl/kcuwn4DRB3u5zbFmcDVdy6\nneFTvgfwX4/+z9sB3xei/FnARGCtT/3rA1Xddmnpts0dkX6e7VW0l/VAjKIyG7jT/ftOnF/MWSgw\nRFUrquoZOF+C80WkYQHXvBuoB2wSkdUickNeBUWkijtMtEtEDuL0is71K+afLO8EfOC37yXgr8Bz\nqnoiBO8BYFf2RZxvzV04vYe86uXPzz5//w786l4naxugLHABUBrYm9WTAF4EKgdQR89R1aPAozj/\npw3dfZtU9Sd1WIHT6+yaz2WMKMYCiFFUFgGXuDOTbgBez6ugqn4OpAHt8yrjlktT1Z6qWhnnl+t8\nd3gptyWjxwEZwMXqDHndxZ+fZ//zrgeWZG2ISFlgMk4QeVJEKgb7Hlxq+tyjBHAezi/tvOpVVH4E\n/gDOdQNdRVUtr6q5BjkR+ZvP7Cf/16FQDmH5UBLn/+WoB9c2IowFEKNIqOrvwAKcMf5VqrrLr0h2\nolREWuIkoL/N75oicqeIZP16PojzRZsJ/OL+W8eneFmcIaZDIlKDAmYIiUgt4HRV3eKzewqwWlXv\nwemZvBjse3C5VERucXNDD+AMM60M4LxCoap7gf8A/xKRciJSwp0ckKumRFVf15zZT/6vs3P5PwRA\nHM7A6e2IiJzu5oVyK9tORBq7kwPOBv4FbFHVNPd4FxGp6F6zOTAU58eIEYNYADGCYTZwMblPb52W\n9esWZ3jrMVVdVsD1rgM2uOc8izM2/oc7FDIW+MJN9jYHngSa4gSa93CCWX6/7G/AZ/hKRLrgJJzv\ndXc9BDQVkR5BvgfF+ULsDuzDSb7fqk6yPBA0l/eR3/bfgdOAje793sbJMYSSNjg9iA9wele/Ax9m\nHXST4VntVgF4AzgAbMEZTuvsc63uwHfAIZznZ7yqhnR6tBE+shJb3t1ApCPOMEFJ4CVVnZhLmak4\nwwtHcRKM60TkLzhzyLOoDfyfqk71tMJGwIhITWAzUEVVD0e6PvkhIh/g5Dk+LLBwcPcZBVyoqnd5\neR/DiAY8FTK5Uxen4cze2A18JSKLVXWTT5lOOB+4uiJyOfAC0MIdasiao1/CPX+hl/U1Asf9P/kH\njigsqoOHS5L78hrTOBjFBq+HsJoDaaq6w53hMg/o4lemM65+QJ35/RVEpIpfmXbANlUtcAkKw3tE\npAzOEMS1wKhCnrs0jyTuo55U1kVVn1bVY6G4Vj7vYQS5D0EZRlzi9VIKNTh1yuIu4PIAypwHpPvs\nuwMnWWtEAap6BCeJXZRzrw9xdcJOPLwHwwgFXvdAAv0l5t/tzz7Pne1xEzmqZMMwDCMK8LoHshuf\nOfHu3/5TBf3LnOfuy+J6YI2q/pLbDUTEhgsMwzCKgKoGlbPzugfyNVBXnOW4T8OZwrfYr8xinKmI\niEgL4ICq+g5f9cCZFpgnkZbzR8tr1KhREa9DtLysLawtrC3yf4UCT3sgqnpSRAYDy3Cm8b6sqptE\nZIB7fLqqLhGRTiKShiMM65N1vpusbQf097Ke8cKOHTsiXYWowdoiB2uLHKwtQovnfgSquhQ//wVV\nne63PTiPc48AlbyrnWEYhlFUTIkeR/Tu3TvSVYgarC1ysLbIwdoitHiuRPcaEdFYfw+GYRjhRkTQ\nIJPosWKpWWhETBBshJ5Y/LGSlJRE27ZtI12NqMDaIrTEbQCB2PywG9GL/Sgx4oGDB+HREK37YDkQ\nw4hz7Bd3DsW9LRYvhosvhoxA14YugLjNgbjjexGokRGv2DNlxCrp6TB0KKxdCzNnQtu2ocmBWA/E\nMOKcpKSkSFchaihubaEKiYnQsCHUqgXr1zvBI1RYAIkzfvjhB8qVK5f9S7lt27a8/PLLALz++utc\nd9112WVLlCjB9u3bA762//mGYUQv27dDhw7w3HOwbBlMmABnnhnae9gQVoRISEjg559/pmTJktn7\n+vTpw9SpofXLuvrqq7nrrrvo27fvn46VKFGCtLQ0ateuHdJ7xivR/kwZBsDJkzBlCowfD8OHw4MP\nQqlcpkvZNN4YRkR4//33ueaaayJdlYDIyMg4JdjFCpmZmZQoYR1to3iwfj3cfTeUKwcrV8KFF3p7\nP/tkRSGZmZkMGzaMypUrU6dOHZ5//nlKlChBZmYm4PRePvnkk+zyo0eP5q67HAfVHTt2nFLWl8TE\nRFq3bn3Kvg8++IA6depQuXJlHnnkkexf2ImJiVx55ZU89NBDVKpUidGjR59yfm738R0u8z2/YsWK\nXHjhhXz55ZfMmjWL888/nypVqvDqq6/m2Qb79u2jT58+1KhRg3POOYdbbrklz/fgOxTXu3dv7r33\nXm644QbKli3LpEmTqFat2in1XLhwIY0aNcpu6wkTJnDhhRdSqVIlunfvzv79+/OsVyxS3Mb98yNe\n2+LYMXjsMWjXDgYOhE8+8T54gAWQiJLXcMiMGTP44IMPSElJ4euvv2b+/PmnaBBE5E/bReXdd99l\nzZo1rF27lkWLFvHKK69kH1u9ejV16tTh559/5rHHHivwWv71Wr16NY0aNWLfvn306NGDbt26sXbt\nWrZt28Zrr73G4MGDOXr0aK7Xuuuuuzh27BgbN27k559/5qGHHgr4Pb3xxhs8/vjjHD58mPvvv58y\nZcrw3//+N/v43Llz+dvf/gbAc889x+LFi0lOTmbv3r1UrFiRQYMGBXwvw4g0ycnQqBFs2QKpqU4P\nJFySpWIdQESCfxUVVeXmm2+mYsWK2a+sX+9vvfUWDz74IDVq1KBixYqMHDky37H3YMblhw8fToUK\nFahZsyYPPPAAb7yRs3J+9erVGTRoECVKlOCMM84o9LVr1apFr169EBG6devGnj17eOKJJyhdujTt\n27fntNNOIy0t7U/n7d27lw8//JAXX3yR8uXLU6pUqT/1OvLj5ptvpmXLlgCcfvrp9OjRI/t9/fbb\nbyxdupQePXoAMH36dP75z39SvXp1SpcuzahRo5g/f36uPbhYpbhrH3yJp7Y4eBDuvRd69nQS5PPn\nQ7Vq4a1Dsc6BRDIfKiIsWrQo1xzI3r17qVkzx2Pr/PPP96we/vfZs2dPrseKQpUqOdb2Z7rTPypX\nrnzKvsOHD//pvB9//JFzzjmH8uXLF/qeIsJ55513yr6ePXtyxRVX8MILL/DOO+9w6aWXZr+3HTt2\ncMstt5ySJylVqhTp6elUC/en0TACZPFiGDQIrr8eNmyAChUiU49i3QOJVqpVq8YPP/yQve37N0CZ\nMmU4cuRI9vZPP/1U5Hv536dGjRrZ2/kNjZUpUwbglCGoYOrhS82aNdm3bx8HDx7M9b6FvWf9+vW5\n4IILWLp0KXPnzqVnz57Zx84//3w+/PBD9u/fn/06evRoXAWPeB33Lwqx3hbp6dC9O/zjHzBnDsyY\nEbngARZAIkpeQ0/dunVj6tSp7N69m/379zNhwoRTvswbN27MvHnzOHnyJF9//TULFiwoch5k0qRJ\nHDhwgB9//JGpU6fSvXv3gM6rXLkyNWrUYM6cOWRkZPDKK6+wbdu2ItXBn2rVqnH99ddz3333ceDA\nAU6cOEFycjIAjRo14ttvvyU1NZVjx44xevToU87Nq0179uzJ5MmTWb58Obfffnv2/oEDBzJy5Mjs\nQPrLL7+weLG/aaZhRBZVmDXLO0FgUbEAEkFuuukmypUrl/267bbbAOjfvz/XXXcdjRo1olmzZtx2\n222nfDGOGTOGbdu2UbFiRUaPHp2dEM4ir2Din+QG6NKlC5deeilNmjThxhtv5O67786zrP++mTNn\n8vTTT1OpUiU2btzIlVdeme+9ChPk5syZQ+nSpbnooouoUqVKtj6mXr16PPHEE7Rr146//OUvtG7d\nOt8JBln06NGD5ORkrr32Ws4555zs/ffffz+dO3emQ4cOnH322bRs2ZLVq1cHXM9YIJ7G/YMlFtsi\nSxA4bZp3gsCiYkLCGGDHjh3Url2bkydPmqYhgsTTM2VEP4EKAouKrYVlGEaBxPq4fyiJlbZITYWW\nLeGDDxxB4MMPhzZ4hAoLIDGCeVEYRvyTJQhs3z68gsCiYkNYhhEg9kwZXpKcDP37O4ny557zXtNh\na2EZhmHEOFkOge+95wQOd9WemMCGsAwjzomVcf9wEG1t4esQuGFDbAUPCEMAEZGOIrJZRL4TkeF5\nlJnqHk8VkSY++yuIyHwR2SQiG0Wkhdf1NQzD8Jr0dOjWLTKCwOMZx3l57cshuZanAURESgLTgI5A\nA6CHiNT3K9MJuFBV6wL3AC/4HJ4CLFHV+sAlwCYv62sY8Ugsah+8ItJt4SsIrF07vILAI8ePMGXl\nFOpMrcOb374Zkmt6nQNpDqSp6g4AEZkHdOHUQNAZmA2gqqvcXkcV4BjQWlV7ucdOAn9e28IwDCMG\n2L4dBgyAffscQWCTJgWfEwoOHDvAtNXTmLpqKq0vaM3C7gtpVr0Z8vfgZ3Z6PYRVA/jRZ3uXu6+g\nMucBtYBfRGSWiKwVkZkicpantTVOYfny5Vx00UWRroYRJNE27h9JItEWJ0/CM89A8+aOonzVqvAE\nj/TD6Tz68aPUmVqH7/Z9R1LvJBZ0W0Cz6s1Cdg+vA0igcx79Q6Hi9I6aAv9W1abAEeDRENYt4iQm\nJtKwYUPKlClDtWrVuO+++3JdQDBc+Hukt27dms2bN0esPoYR60RCELjzwE4GLxlM/efr89sfv7Hm\nnjXMvnk2DSo3CPm9vB7C2g34rgleE6eHkV+Z89x9AuxS1a/c/fPJI4D07t2bhIQEACpUqEDjxo2D\nrrjXPPPMMzz99NO8+uqrXHvttezatYv77ruP9u3b88UXX1C6dOmQ3i9QS9pY0zmE27I26xds1lh6\nrGzHev1DtZ21z+v7tWjRljFj4Pnnk+jfH556qi0i3r6/Tb9s4sHpD/Llj19y3+33sXHQRjZ/vZkd\nKTtIaJtAUlISiYmJANnfl0Gjqp69cALUNiABOA1IAer7lemEkygHaAGs9DmWDNRz/x4NTMzlHpob\nee2PBg4ePKhly5bVt99++5T9hw8f1sqVK+srr7yiqqqjRo3S2267Tbt3767lypXTpk2bampqanb5\n3bt366233qqVK1fWWrVq6dSpU7OPZZ1755136tlnn60vv/yyrl69Wlu0aKEVKlTQatWq6eDBg/X4\n8eOqqtq6dWsVES1TpoyWLVtW33rrLf3000/1vPPOy77mBRdcoJMmTdJLLrlEy5cvr927d9djx45l\nH584caJWq1ZNa9SooTNnzlQR0W3btuXaBv/73/+0d+/eWr16da1YsaLefPPNqqo6a9YsbdWq1Sll\nfa/Tq1cvHThwoHbq1EnLlCmjEydO1KpVq2pGRkZ2+XfeeUcvueQSVVXNyMjQ8ePHa506dfTcc8/V\nbt266b59+wL8nzqVaH6mjOjhs89U69VTve021T17vL/f17u/1tvevE0rP1VZx3w2RvcdDez5dp/n\n4L7jg71AgTeA64EtQBowwt03ABjgU2aaezwVaOqzvxHwlbv/HaB8LtfPr3GikqVLl2qpUqVO+dLL\nolevXtqjRw9VdYJA6dKldcGCBXry5EmdNGmS1qpVS0+ePKkZGRnatGlTHTNmjJ44cUK3b9+utWvX\n1mXLlp1y7qJFi1RV9ffff9c1a9boqlWrNCMjQ3fs2KH169fXyZMnZ9/b/wvfP4AkJCTo5Zdfrnv3\n7tV9+/Zp/fr19cUXX8x+T1WrVtWNGzfq0aNH9W9/+5uWKFEizwDSqVMnveOOO/TAgQN64sQJTU5O\nVtXAAkj58uX1yy+/VFXVY8eOaZ06dfSjjz7KLt+1a1edOHGiqqpOnjxZW7Zsqbt379bjx4/rgAED\nstu3sETzM5Ufn376aaSrEDV42RYHDqgOHKhao4bqO+94dhtVVc3MzNTPdnymHeZ00BrP1NBnVzyr\nh/84XKhrhCKAeK5EV9WlwFK/fdP9tgfncW4qcJlXdZMng5+FoKMKP+Tz66+/UqlSpVyHXqpWrcra\ntWuzt5s1a8att94KwEMPPcQzzzzDihUrKF26NL/++iuPP/444NjH9uvXj3nz5tGhQwcArrjiCjp3\n7gzAGWecQdOmTbOve8EFF3DPPffw2Wefcf/99wdc96FDh1K1alXAWY4+JSUFcGx4+/btS/36zizt\nJ598krlz5+Z6jSzL2n379mW7DobCsrZdu3bZlrX/+te/AMeydtq0aVSvXh2AUaNGccEFF/Daa6/Z\nysZGyFi0yHEI7NTJW4dAVWXJd0sY9/k4J0ne6lEW37GY00ud7s0NC6BYL2VSlC//UFCpUiV+/fXX\nXMfv9+7de4rtq689a5Zd6549exAR9uzZQ8WKFbOPZ2RkcNVVV+V6LsDWrVt56KGHWLNmDUePHuXk\nyZM0a1a4GRlZwQMcS9q9e/dm17t58+Z53tsXs6wNL5HWPkQToW6L9HQYMgTWrYPXXvNO05GRmcH8\njfMZ//l4FGVEqxF0bdCVUiUi+xVuP8EiQMuWLTn99NNZsGDBKfsPHz7Mhx9+yLXXXpu978cfc2Y4\nZ2ZmsmvXLmrUqEHNmjWpVavWKVashw4d4v333wdyN1a69957adCgAWlpaRw8eJCxY8eSmZkZkvdU\nrVq1U+rq+7c/ZllrxDq+gsA6dbwTBGapxi96/iKmrJrC2GvGkjIghTsuviPiwQMsgESE8uXLM2rU\nKIYMGcKyZcs4ceIEO3bsoFu3btSsWZO77roru+yaNWtYuHAhJ0+eZPLkyZxxxhm0aNGCyy67jHLl\nyvHUU0/x+++/k5GRwYYNG/j666+B3GdTHT58mHLlynHWWWexefNmXnjhhVOOV6lSpdC2tFn36dat\nG7NmzWLz5s0cPXqUMWPG5HmOWdaGF9OB5BCKtti+3VluPcshcPz40DsE+qrG39r4Fi/d9BJf9P2C\nG+rdEFXWDhZAIsTDDz/MuHHjGDZsGOXLl6dFixZccMEFfPLJJ9lTeEWELl268Oabb3LOOefw+uuv\n884771CyZElKlizJ+++/T0pKCrVr16Zy5crcc889HDp0KPtc/wdt0qRJzJ07l7PPPpt77rmHO+64\n45Qyo0ePplevXlSsWJH58+fnaQ+bhe/xjh07MnToUK6++mrq1at3So4iN8yy1og1fAWB113njSDw\nwLED/DP5n9SaUovkH5JZ2H0hy+5cRpuENlEVOLIwP5Ao5sknnyQtLY05c+ZEuiqFZtOmTTRs2JDj\nx4/HTbI6Hp4po2ikpkK/flCunLPwYahNntIPp/PsymeZuXYmN9W7ieFXDqd+5foFnxgEZmkb58Ta\nl9XChQv5448/2L9/P8OHD6dz585xEzyM4onXDoG+qvHDxw+z5p41JN6c6HnwCBX26Y5iChpCijZm\nzJhBlSpVuPDCCylduvSfcixGZLAcSA6FaYvkZGjUCLZscXogd98Nofo4bvplE73f7U3TGU0pe1pZ\nNg7ayLRO00iokBCaG4SJyKfxjTwZNWpUpKtQKJYuXVpwIcOIcg4ehOHD4f33Q+8QuGbPGsZ/Pp7k\nnckMvXwoaUPSqHhmxYJPjFIsB2IYAWLPVPzjKwh86qnQCAJVleU/LGfs8rF8+/O3DLtiGP2b9qfM\naWWCv3gQmCe6YRhGCPBCEOirGv/5yM8Mv3J4RFXjXmA5EMOIcywHkoN/W3ghCMzIzODNDW/SZHoT\nRv53JEObD2XzoM30a9ovroIHWA/EMIxiyvbtcM89sH9/aBwCj2ccZ07qHCZ+MZFKZ1Vi7DVj6VS3\nU0xNhCkslgMxjACxZyo+OHkSpkxxFOTDh8ODDwZn8nTk+BFeWvsSk1ZMokHlBoxsNZKrLrgq6gOH\n5UAMT1m+fDn9+/c3V0IjbvAVBK5cGZymIy+v8eKE5UAiiFnaGuHAciA5gsA2bZK4997gBIG+XuNp\n+9L4rPdnIfcajxUsgESIZ555hkcffZRnnnmGQ4cOsXLlSnbu3En79u05ceJEyO+XkZERULlYG6IJ\n1WrCRvziKwh8+WXo27dogsBYV417QrCOVJF+EYOOhGZpa5a2hvccOKA6YEDwDoEbf96ovRb20nMm\nnqPDPxque3/bG7pKRhBiwdLW61csBhCztDVLW8Nb3n3XCRz9+6vu31+0axTVazxWsAASbABxpoEH\n9yoCc+bM0apVq+Z6bPjw4dq+fXtVdYJAy5Yts49lZmZqtWrVdPny5bpy5Uo9//zzTzl33Lhx2qdP\nn+xz27Rpk289nn32Wb3llluytwMJIK+//nr29iOPPKIDBw5UVdU+ffroyJEjs4+lpaXl2QPZs2eP\nlihRQg8cOPCnY4EEkF69ep1y/PHHH9e+ffuqquqhQ4e0TJky+sMPP6iqav369fWTTz455d6lS5fO\nNXgXRKwGkOLkif7TT6q3365at65qbm+7oLbw9Ro/71/n6eQVkwvtNR4rhCKAFO9ZWGqWtmZpa8QD\nqpCY6EzLvftumD27cCZPqqeqxh+98lHuvOTOuBP+hZriHUAihK+lra97Xpal7fjx47P35WVpW7Jk\nSWrVqsXWrVtzvUdelraXXnopb775JmXKlGHy5Ml/stUtKkW1tPUPIl5Y2s6aNSvb4Ko4Eu+e6IUR\nBPq3hb/X+MhWI+naoCslS5T0ttJxgs3CigBmaWuWtkbwBOMQmOU1Xv/5+kxdPTXba7z7xd0teBQC\nCyARwixtzdI2XMSjDiQ1FVq2hA8+cASBDz8cmJp86UdLs73G3974Ni91fonP+3wedV7jsYLnS5mI\nSEdgMlASeElVJ+ZSZipwPXAU6K2q69z9O4BDQAZwQlWb53Ku5vYe4mHZCbO0jS5i9ZlKSkqKm2Gs\nY8dgzBiYORMmTIA+fQLTdBw4doDnVz/PpDcmce3V1zKi1QgurX6p9xWOYqJ+KRMRKQlMA9oBu4Gv\nRGSxqm7yKdMJuFBV64rI5cALQAv3sAJtVXWfl/WMVmLty2rhwoV06tSJo0ePmqVtFBEvwSM5Gfr3\nd1bOTU2FQOZA+HuNf/n/fVm8hX8hxutPd3MgTVV3qOoJYB7Qxa9MZ2A2gKquAiqISBWf48W2X2mW\ntobhOAQOHAg9ezq9jvnzCw4ephoPD17PwqoB+E7H2QVcHkCZGkA6Tg/kYxHJAKar6kwP6xp1mKWt\nEQpieQjL1yFww4aCHQI3/bKJiV9M5L2t79G/aX82DtpI1bI5U89juS2iEa8DSKBjMHn9zG6lqntE\npDLwkYhsVtXl/oV69+5NQkICABUqVKBx48ZFqqxhFERWQjrrSygWtlNSUqKqPoFs16/fliFD4Msv\nkxg2DB54IP/y5eqVY/zn4/nk00+49aJb2TZ0GxXOqEBSUhKb2ZxdPiUlJSreXyS2k5KSSExMBMj+\nvgwWT5PoItICGK2qHd3tEUCmbyJdRF4EklR1nru9GWijqul+1xoFHFbVZ/z2x20S3Ygu7JnyHn9B\n4BNP5C0IVHW8xsctH8e3v3zLsJbD6Ne0X8S9xmOFqE+iA18DdUUkAdgDdAd6+JVZDAwG5rkB54Cq\npovIWUBJVf1NRMoAHYAnPa6vYRgRIlBBYG6q8UWXLDLVeCQIdi2Ugl4403O3AGnACHffAGCAT5lp\n7vFUoKm7rzaQ4r42ZJ2by/XzXOfFXvYK9SsWifa1sE6cUJ00SfXcc1WfesrZzo2TGSd13jfztNEL\njfSSFy7Red/M05MZJwt1r2hvi3DiPs/RvRaWqi4Flvrtm+63PTiX87YDRU5maDEcarAEYQ7WFrFB\nlkPg2Wfn7RBYHL3GY4W49UQ3DCN6CUQQGKte47FCLORADMMwTqEgQWCWanzq6qm0Pr8173Z/t9ir\nxqMVkwnHEfG45lFRsbbIIVraoiBBoK/X+Hf7viOpVxLzu80PafCIlraIFyyAGIbhOYsWwV//CpmZ\njiDwlluoqCftAAAgAElEQVRyjplqPHaxHIhhGJ6Rng5DhkBKCsyYAb7zGvxV4w+0eOAU1bjhLaHI\ngVgPxDCMkKMKs2Y5eY46dZxcR1bwWLNnDV3f6kqbxDZceM6FpA1JY0K7CRY8wsk334TkMhZA4ggb\n383B2iKHcLfF9u3Qvj1Mm+YIAsePhzPOUJJ3JtPxtY50mdeFVue34vv7v+fxqx6n4pkVC75oiCj2\nz8XKldC5M3ToEJLLWQAxDCMk5OYQ2Lix8sHWD2g1qxV3L76brg26sm3oNh5o8YAtORIuVOGjj+Ca\na6BHD7j+eifKhwDLgRiGETS+gsDp06FWbfMajziZmc7shXHj4MgRGDEC7rgDfBxPTQdiGEbE8BcE\n/u3vx3lt/Rw6PW+q8Yhx4gTMm+eMHZYpAyNHQpcu4IG5mw1hxRHFfnzXB2uLHLxqi+RkaNQItmyB\nFV8f4bcGU7jwuTq8tfEtZt40ky/6fhF1XuNx/VwcOwYvvAD16jkzGKZMgdWrnTnTHjmDWg/EMIxC\ncfCgs9z6++/DhMkH2Pn/nueKt6bS6vxWLOy+kGbVm0W6isWLQ4fgxRdh8mRo1gzmzoWWLcNya8uB\nGIYRMFkOgVfflE6lGyfz6rczuKneTQy/crgJ/8LNr7/C1Knw7387s6oefRQuuSTg0y0HYhhGWMgS\nBH713U4uG/U0H+ybS0/pyZp71pBQISHS1Ste7N7tTHdLTISuXfNexjgMWA4kjojr8d1CYm2RQzBt\nkSUIrH/VJjZd1JtDdzTlL7XKsnHQRqZ1mhZzwSOmn4u0NMdxq2FDZ/ubbxx5f4SCB1gPxDCMPNi+\nHe54aA3fVRmP9E6m+5VDGXRZWliFfwawfr0zxe2jj+C++2DrVqhUKdK1AiwHYhiGHydOKPc/u5yX\nNo/jrIQN/F+7YQxs1t+Ef+FmxQpHw7FmDTz4IAwY4AhtQoTlQAzDCBmqyvP/WcqIJePIODOd0d2G\n84925jUeVlTh44+dwLFjBzzyCLz9NpxxRqRrliuWA4kjYnp8N8RYW+RQUFtkZGYwZ92bVB3dhAfe\nH8Hf6g7h0NjNjOzYL+6CR9Q+F5mZsHChsw7M/fdD377OUNW990Zt8ADrgRhGsSXLa3z0xxP59YdK\nND0ylnVjO1G9evQI/+Ief9X4Y485ix16JPwLNZYDMYxiRpbX+NNfTEL+14Bj/xnJ9JFXceutFjjC\nxu+/O9PbnnoKatd2lhu59to/G8N7iOVADMMIGF+v8dqlWnF8zkJuubwZEz+GChUiXbtiQpZq/Nln\n4bLL4I03wqYa94KA+0kicpaI/MXLyhjBEbXjuxHA2iKHd5a+w4iPR1Bnah1Sd2+lSeqn/O/fC3h7\nSjOmTy9ewSNiz8Wvv8ITTzjuWikpjlHK4sUxHTwgwAAiIp2BdcAyd7uJiCwO8NyOIrJZRL4TkeF5\nlJnqHk8VkSZ+x0qKyDoReS+Q+xmG4ZDlNd5rYS8O/nGIRyuuIen+2TQ5rwGpqdCmTaRrWAzYvRse\neshZ4PCnn5ypuXPnFmrJkWgmoByIiKwFrgE+VdUm7r4NqnpxAeeVBLYA7YDdwFdAD1Xd5FOmEzBY\nVTuJyOXAFFVt4XP8IeBSoJyqds7lHpYDMQwffL3G+zXpx63VH+Sx+6uyfz+89BI0aVLwNYwgSUuD\niRNhwQLo08cJIjVqRLpWpxBOT/QTqnrAb19mAOc1B9JUdYeqngDmAV38ynQGZgOo6iqggohUARCR\n84BOwEuAZfgMIx/8vcY335vG/1s/kRvaVM12CLTg4THr1zuufy1bQvXqzlTcZ56JuuARKgININ+K\nyN+AUiJSV0SeA74M4LwawI8+27vcfYGWeRZ4mMCCVbHHxv1zKC5toZq71/hN5R+n0zUVWbIEpkxJ\n4uGHoZRNmfHuuVixAm66yfHybdrUWQfmySejZskRrwj0kRoCPAb8AbyBkwsZE8B5gY4t+fcuRERu\nBH5W1XUi0ja/k3v37k1CQgIAFSpUoHHjxrRt65yS9cDYdvHaziJa6hPq7TZt2rA0bSnDZw5n3+/7\neLLPkyy6YxGf/XcFA/p+xX/+05YJE6BWrSRSU1OA6Kp/pLZTUlJCdz1Vkp55Bl57jbYHD8Ijj5A0\nZAicdhpty5WLivfru52UlERiYiJA9vdlsHiqAxGRFsBoVe3obo8AMlV1ok+ZF4EkVZ3nbm/GedqH\nAncBJ4EzgLOBBar6d797WA7EKDZkZJ7qNT6i1Qi6NuhKqRKlSE6G/v2dxVqfew6qVYt0beMUX6/x\no0cdr/Hu3bO9xmOFUORAAk2iXwaMBBLI6bWoquY7lUBESuEk0a8F9gCryT+J3gKY7JtEd8u0AYap\n6k253MMCiBH3ZKnGJ37heI0/1vqxbK9xX4fA555zHEwND4hx1bg/4Uyivw7MAm4DbnJff5oR5Y+q\nngQG4wx5bQTeVNVNIjJARAa4ZZYA20UkDZgO3JfX5QKsa7HFf/imOBMvbXHk+BGmrJxCnam5e40v\nWgR//auzBt+GDbkHj3hpi1BQpLb4/XfH9a9uXUc9PnWq4zV+880xGzxCRaA5kF9UNSDdhz+quhRY\n6rdvut/24AKu8RnwWVHubxixiK9qPDev8SyHwJQUeP1103R4Qpypxr0g0CGsDkB34GPguLtbVfUd\nD+sWEDaEZcQT6YfTmbxyMjPWzuDGejcy/MrhNKjcIPu4quNkOnw43H23I24+88zI1Tcu8fUav+46\nx2s8ywUwjgjnWli9gL+45X2n1EY8gBhGPLDzwE6e/vJp5n4zlx4X98jVa3z7dsdTaN8+ZyUM03SE\nGF+v8dtvj6jXeKwQ6ABeM+AyVe2lqn2yXl5WzCg8NtadQ6y0xeZfN9P73d40ndGUsqc5XuPP3/D8\nKcHj5Enne615c+jQofCCwFhpi3CQa1ukpeVMXxNxvManT7fgEQCB9kC+BBoA33pYF8MoNqzZs4bx\nn48neWcyQy8fStqQ3L3GU1OhXz/HydR+EIeY9eudGVUff+x4jX/3HZx7bqRrFVMEmgPZDNQBvscR\nE0IA03jDgeVAjFhBVVn+w3LGLR/Hhp83MOyKYfRvmrvX+LFjMGYMzJwJEyY4yymF0SoivvH3Gh84\nEFzhX3EinDmQjsHcxDCKM6rK0rSljFs+jp8O/8SjrR5l0R15e437CgJTU00QGBJU4aOPnB7Hjh3O\nLIQo9hqPFfINICJytqoeAg6FqT5GECQlJWUvYVDciYa2yMjMYMGmBYxbPu5PqvHcOHjQmfDz3nuh\nFQRGQ1tEjMxMePddp8fx++8kdelC248+soXBQkRBrfgGcAOwlj8L+RSo7UWlDCOW8VeNj71mbLZq\nPC8WL4ZBg6BTJ0cQWJxMnjzhxAlHtzFhApQtC48/7qjGk5MteISQAnMg4jz1NVX1h/BUqXBYDsSI\nFrK8xietmESDyg0Y2WokV11wVb6Bw1cQOHOmCQKDJgq8xmOFcC5lsiSYmxhGPHPg2AHGJo+l9tTa\nJP+QzMLuC1l25zLaJLTJM3ioOt9zDRs6LqfmEBgkhw7lBI0PP3R6H//9L7RrZ8HDQwoMIO7P+zUi\n0jwM9TGCwOb75xCOtkg/nJ7tNb5131Y+7fUpC7otOGXJkdzYvt3Rc0yb5ggCx4/3Vk0e189Fltd4\n7dpOFP7Pf/L1Go/rtogAgfZAWgArRGS7iHzjvtZ7WTHDiFZ2HtjJkCVDqP98fQ79cYg196xh9s2z\nT1lyJDeCFQQaPuza5UzBrVfPGQdcudJZFCwOlxyJZgLVgSS4f2YVFgBV3eFFpQqD5UCMcLH5181M\n+HwC7219j/5N+/NAiweoWrZqQOf6CgJN5BwEMeA1HiuETQeiqjtE5FKgFc5aWF+o6tpgbmwYsUKg\nqvHcMEFgiDDVeFQS0BCWiDwBJALnAJWBWSLyfx7WyygCNr6bQ7BtkZfX+ONXPR5w8EhOhkaNYMsW\npwfSt29kgkdMPxdZXuMdO57qNV7E4BHTbRGFBDoh+k7gElU9BiAi44FUAvNFN4yYobCq8dzwShBY\nbDDVeMwQaA7kU+BWVd3vblfE8Se/xuP6FYjlQIxQUFjVeF5kCQKvv96ZVWqCwELgpxqPVa/xWCGc\na2EdAr4Vkf+42+2B1SLyHM5M36HBVMIwIkVRVOO5kZ4OQ4fCunUwZw4U15VDioSvarxMmRzVeDG3\ni40FAv0fWgiMBJKAT4HHgHeBNe7LiAJsfDeHgtqiIK/xQPEVBGZJEaIteETtc+HrNZ6YGBav8aht\nixgl0FlYifkdF5EFqnpbSGpkGB5SkNd4YTCHwCJiXuNxQ0A5kAIvIrJOVSPy8bEciBEIBXmNF4aT\nJ2HKFCfHO3y4o2ez9fkCwNdrvEMHZ6bBJRG3FCq2hDMHYhgxyc4DO5n05SRe/+b1PL3GC8P69XD3\n3eYQWCh27XIk+LNnm9d4nGFZqjjCxndzeHXRq/RZ1IemM5pS5rQyuXqNF4Zjx+Cxx5y1+e6919Gz\nxcp3YMSeiyyv8UsucXIaUeA1bp+R0OJ5ABGRjiKyWUS+E5HheZSZ6h5PFZEm7r4zRGSViKSIyEZX\ne2IY+bJ271puf/t2hi4dSp2KdUgbksaEdhMCXnIkN6JFEBgzrF8PPXo4eY3q1WHrVqcHYkuOxB+q\nGvQLuC6P/SWBNCABKA2kAPX9ynQClrh/Xw6s9Dl2lvtvKWAl0CqXe6hRvMnMzNTPdnym1825Tms8\nU0OfXfGsHv7jcNDXPXBAdeBA1Ro1VN95JwQVjXe+/FL1xhtVq1ZVfeop1UOHIl0jIx/c786gvvvz\n7YGISD0RSRSRf4lITRFZKiJH3J7CZT5BaFkel2gOpKnqDlU9AcwDuviV6QzMdq+zCqggIlXc7aNu\nmdPcYLQvv/oaxQtVZcl3S2g9qzV9F/Wla4OubBu6jQdaPECZ08oEde3Fi+HiiyEjw3EINDV5Hqg6\nS6hffTX07OlYKn7/PTz8MJQrF+naGR5T0BDWLOBLYC9OD2AWUAkYBkwL4Po1gB99tne5+woqcx6A\niJQUkRQgHfhUVTcGcM9iS3EZ383IzOCtb9+iyfQmjPhkBIObD2bz4M30a9ove8mRorZFerojfh42\nzBEEzpgR+2pyT56LzEx45x1nGu6DDzozC7ZudRJEUbzkSHH5jISLgmZhlVHVGQAiMkBV33L3fyQi\nTwdw/UDn1/qPKGeNTWUAjUWkPLBMRNqqapL/yb179yYhIQGAChUq0LhxY9q6aq6sB8a2Y3/7eMZx\nHnv5Md7Y8AbnNzqfsdeM5azdZyG/SvaSI/5fEIFev02btsyeDQ8+mMT110NqalvOPDO63n9Rt1NS\nUkJ3vY8/hk8+oe2iRVCmDEk33wxXXEHba66Jmveb33ZKSkpU1Sec20lJSSQmJgJkf18GS746EF99\nh7/WIxDth4i0AEarakd3ewSQqaoTfcq8CCSp6jx3ezPQRlXT/a71f8DvqjrJb7/m9x6M2KcoXuOF\nwVcQ+NJLJgjMFfMajzvC4Yl+UZYDIfAXHzfCb4C/BHD9r4G6IpIgIqcB3YHFfmUWA3+H7IBzQFXT\nRaSSiFRw95+Js/7WusDfmhHrFMVrvDCYQ2AAmNe4kQ8FDWHVd//tDHwO/I8/DzfliaqeFJHBwDKc\nJPjLqrpJRAa4x6er6hIR6SQiacARoI97ejVgtoiUwAl0c1T1k0DvXRxJSkrK7rrGMv6q8U97fVpo\n1XhBbVGcBIFFei78VePLlsWFajxePiPRQr4BRF3LWndW1FvAWuAVYFmg40aquhRY6rdvut/24FzO\n+wZoGsg9jPgg1Krx3DCHwALYvdvpliUmQteu8R9djaAIeC0styfQAegNNMMJKC+r6jbPahdYvSwH\nEuME4zVeGJYvd4TRF1/sGD1VqxbyW8Qu5jVe7AjrWliqmikiP+FMqc0AKgLzReRjVX04mEoYxZNg\nvMYLgzkE5kOW1/hHHzlOWFu3QqVKka6VESME6ol+v4isAZ4CvgAuVtV7gUuBWz2sn1EI/KewRiMa\nAq/xQMhqCxME5vFcZHmNX3fdqV7jcR48YuEzEksE2gM5B8fSdqfvTrdXclPoq2XEGxoCr/HCsG+f\nIwg0h0AfVJ1VIMeNc7zGH3nEvMaNoAiJH0gksRxIdOPrNZ6pmYxsPbJIXuOBouqsGj58uLPo4RNP\nwJlnenKr2CEzExYtcgLHkSOO1/gdd5jXeDHH/ECMqMXfa/yf1/yTG+oWzi62sPgKAj/80DQdf/Ia\nf+wx8xo3Qoo9SXFENIzv5uU1fmO9Gz0LHrkJAg8eTPLkXjGBn9d4Ut++nnuNxwrR8BmJJ6wHYoSE\nUHqNF4YsQWC5ciZZyNNrPCnJxC6GJ1gOxAiKUHqNFwYTBPpgXuNGEbAciBExdh7YydNfPs3cb+Z6\nphrPi+RkRxDYsKHjEFhsBYGmGjciTPEeEI0zwjG+u/nXzfR+t7fjNV46eK/xwnDwoGM30bOn0+uY\nPz/v4BHXY91ZXuMNGzrb33zjGJfkETziui0KibVFaLEeiBEQ4VKN58XixY5Q+vrrHUFgrJs8FYks\n1fjHH8N995lq3Ig4lgMx8kRVWf7DcsYtH8eGnzcw7Iph9G/aP2i72MKQng5DhzqCwBkziqkgcMUK\nR8Px9dfOGlUDBjjLCBtGEFgOxPCEcKvGc6/DqYLAxMRiJgg01bgRA1gAiSOC9TrIyMxg/sb5jP98\nfFhU43kRCkFgzPo+eKAaj9m28ABri9BiAcSIiGo8N06ehClTnGH+4cPhwQehVHF5Qk+cgHnznDdf\npoxjGdulS7EX/hnRjeVAijFee40XBl9BYD4TiuIPf6/xESPMLtYIC5YDMYpEpFTjuVFsBYF5qcYN\nI4aw/nEcUdAc9/TD6Tz68aPUmVqHrfu28mmvT1nQbUHEgkdyMjRqBFu2OILAvn1DFzyidr7/r786\nSwTXrg0pKY7X+OLFngaPqG2LCGBtEVqsB1IMyFKNv/7N6/S8uGdYVeO5USwdAk01bsQhlgOJYzb9\nsomJX0zkva3v0a9JPx5s+aAnXuOFwVcQ+NRTxUAQmJbmvNH586F3b/jHP8xr3IgKLAdi5EqkVeO5\n4SsILBYOgaYaN4oBlgOJE1SVKfOmcN1r13nqNV74ejmTjBo2dIb9U1PDEzwiNtbt7zW+bVvEvcZt\n3D8Ha4vQ4nkPREQ6ApOBksBLqjoxlzJTgeuBo0BvVV0nIjWBV4H/BygwQ1Wnel3fWENVWfLdEsZ9\nPo4d63bwZJ8nWXzH4rCqxvPCVxC4bFkcOwSaatwopniaAxGRksAWoB2wG/gK6KGqm3zKdAIGq2on\nEbkcmKKqLUSkKlBVVVNEpCywBrjZ91z3/GKZA4kW1XhuFBtBoHmNGzFMLORAmgNpqroDQETmAV0A\n3yDQGZgNoKqrRKSCiFRR1Z+An9z9h0VkE1Dd79xiR7SoxvMiNRX69Ytzh0BTjRsG4H0OpAbwo8/2\nLndfQWXO8y0gIglAE2BVyGsYIwTiNR7J8d1jx+Cxx6B9e8ez45NPIhs8PGmLY8fghRegXj0nsTNl\niuM1fsstUR08bNw/B2uL0OJ1DyTQsSX/n8/Z57nDV/OB+1X1cG4n9+7dm4SEBAAqVKhA48aNsxdM\ny3pgYnX7/f+8z8JNC3nv+Hu0vqA1j9d8nL9U+gttEtpERf2SkpJITYV//7stDRvCCy8kce65IBK5\n+vgSkusdOULbb7+FyZNJSkiAYcNoO2hQRN9fYbZTUlKiqj6R3E5JSYmq+oRzOykpicTERIDs78tg\n8ToH0gIYraod3e0RQKZvIl1EXgSSVHWeu70ZaKOq6SJSGngfWKqqk/O4R1zmQNIPp/PsymeZuXZm\nWL3GC0PcCwLNa9yIY0KRA/G63/01UFdEEkTkNKA7sNivzGLg75AdcA64wUOAl4GNeQWPeGTngZ0M\nXjKYi56/iN/++I0196xh9s2zoy54LF4MF18MGRmOQ2BcBY/dux3jpnr14KefnGTO3LkWPAzDD08D\niKqeBAYDy4CNwJuquklEBojIALfMEmC7iKQB04H73NOvBO4ErhaRde6ro5f1jSSbftl0itf4pkGb\nCu017j984wXp6dCtmyOonjPHWTk3GtXkRWqLtDS4556AvcZjhXA8F7GCtUVo8XxypaouBZb67Zvu\ntz04l/M+pxgIHaNRNZ4bqs4yTsOHO8uuz54dRw6B69c7SwF/9JGpxg2jENhaWBEgy2t87PKxfPvz\ntxHxGi8MvoLAl16KI0GgeY0bxZhY0IEYPviqxtMPp/Noq0ejRjWeG3EpCMxNNf7WW3HUnTKM8BH3\nQ0TRQEZmBm9ueJMm05sw4pMRDGk+hM2DN9Ovab+QBo9Qju+mpjoWFR984OSQH344toLHn9oiMxMW\nLoTmzeH++x3zka1bHdFKnAcPG/fPwdoitMTQV0LsEe2q8dyIO4dAU40bhmdYDsQDoslrvDAkJ0P/\n/s4kpOeeg2rVIl2jIDh2LMdrvFYt8xo3DD8sBxJlRJPXeGGIK0Hgb7/leI03a+boN8xr3DA8wfrx\nISBavMaLMr67aBH89a9xIAj09Rpft46kMWM89xqPFWzcPwdri9BiPZAgiDav8cKQng5DhjgOga+9\nFsMOgf5e4ytWOMI/+6IwDM+xHEgRiEav8UDxFwQ+8USMTkIyr3HDCArLgYSZWFGN58X27c5KHfv3\nx7BDoKnGDSNqsBxIAagqyTuT6fhax6jyGs+NvMZ3T550RnmaN3esuletisHgsXIldO7svIEmTQr0\nGrex7hysLXKwtggt1gPJg9xU44vuWBS1qvG8iGmHwCzV+Pjx8P33jmr8zTdjdMzNMOIPy4H4Ec1e\n44UhpgWB5jVuGJ5jOZAQEouq8bzwFQSmpsaQINBU44YRUxT7T2YgXuOxwvvvJzFwIPTs6fQ65s+P\nkeDhgde4jXXnYG2Rg7VFaCm2PZBYVY3nxeLFzrTcW25xBIHRaPL0J0w1bhgxTbHLgaQfTmfyysnM\nWDsjar3GC4OvIHDmzBgRBGZ5jb/wArRvb17jhhEBYsETPWrI8hqv/3x9Dv1xKGq9xgNF1RntadgQ\n6tRx5BFRHzz8vcZXrDCvccOIYeI+gPh6jZc9rSwbB20stNd4tLF9u/PDfdo0RxA4frwzszVqx3f9\nvcbXr/fcazxq2yICWFvkYG0RWuI2gKzZs4aub3WlTWIbLjznQtKGpDGh3YSYWXIkN2JOELh+vZPR\nb9nSyeZv3Qr/+hecd16ka2YYRgiIqxxIltf4uOXj2PDzhqj3Gi8MvoJAj3+8B8/KlY6G46uvzGvc\nMKIU04G4qCpL05Yybvk4fjr8U8yqxnPDVxA4frzjxBqVs4tNNW4YxY64GMLK8hof3HywJ17jkSI5\nGRo1gi1bnB7I3XfnHzwiMr7r7zXep09UeI3bWHcO1hY5WFuEFs97ICLSEZgMlAReUtWJuZSZClwP\nHAV6q+o6d/8rwA3Az6raMK97jL1mLJ3qdoo54V9eHDzoLLf+/vtR7BBoqnHDKPZ4mgMRkZLAFqAd\nsBv4Cuihqpt8ynQCBqtqJxG5HJiiqi3cY62Bw8CreQWQaPRED4ZFi2DQIOjUybG7iDpBoHmNG0Zc\nEAs5kOZAmqruABCReUAXYJNPmc7AbABVXSUiFUSkqqr+pKrLRSTB4zpGBVHvEGiqccMw/PB6vKEG\n8KPP9i53X2HLxC2hFAR6Mr7r5zXOhx/GhNe4jXXnYG2Rg7VFaPG6BxLo2JJ/N6pQY1K9e/cmISEB\ngAoVKtC4cWPaut/CWQ9MNG5v3w63357Eb7/BsmVtadIkiupXty488wxJM2dCmza0db3Gk5KSICkp\n8vUrYDuLaKlPJLdTUlKiqj6R3E5JSYmq+oRzOykpicTERIDs78tg8ToH0gIYraod3e0RQKZvIl1E\nXgSSVHWeu70ZaKOq6e52AvBePOVATp50FpwdP95Jlj/4IJSKlgnV/l7jDz1kwj/DiENiIQfyNVDX\nDQJ7gO5AD78yi4HBwDw34BzICh7xSNQ6BJrXuGEYhcTTHIiqnsQJDsuAjcCbqrpJRAaIyAC3zBJg\nu4ikAdOB+7LOF5E3gC+BeiLyo4j08bK+XnLsGDz2mLOG1cCB8MknoQ8e/sM3AVFIr/FYoUhtEadY\nW+RgbRFaPB84UdWlwFK/fdP9tgfnca5/byUmiTqHQFONG4YRAuJqLaxo4+BBx+rivfeiRBBoXuOG\nYbjEQg6k2OIrCIy4Q2CWanzCBDjrLFONG4YREuwbJMSkp0O3bjBsmCMInDEjfMHjT+O7/l7jkycH\n7TUeK9hYdw7WFjlYW4SW+P4WCSNR5RD422/w9NOO+G/pUkc1/t//Ohl8W3LEMIwQYTmQELB9u2N5\nsW8fvPRSBE2ezGvcMIwAMU/0COPrENihQwQdAnfvhn/8w7zGDcMIKxZAikhqqrMc1AcfOFKKhx+O\ngJrc12tclaTp02PArjA82Fh3DtYWOVhbhBYLIIUkHILAAsnLa7xy5TBXxDCM4ozlQAqBryDwueci\nIAg0r3HDMEKE6UDCREQFgaYaNwwjSrEhrAJYvBguvhgyMhxBYNiCRxG8xm18NwdrixysLXKwtggt\n1gPJA1+HwDlzwqjpMK9xwzBiBMuB+KEKiYmOT0ffvjBqVJhGi8xr3DCMMGI5kBDjKwhctixMmo5D\nhxyv8cmTzWvcMIyYwsZFiJAg0NdrPCUlJF7jNr6bg7VFDtYWOVhbhJZi3wMJu0Pg7t1OtEpMhK5d\no8yW0DAMI3CKbQ7k2DEYMwZmznTy1X37epxu8Pca/8c/oEYND29oGIaRN5YDKSJhdQg0r3HDMOKU\nYpUDOXjQkVH07Ol8p8+f72HwWLECbroprF7jNr6bg7VFDtYWOVhbhJZiE0DCIghUdXoaV1/tRKlO\nnZypXQ8/bEuOGIYRd8R9DiQ9HYYOhbVrnXyHJ4JA8xo3DCPGMD+QfPB1CKxVyyOHwBMnHJn6xRc7\nwQ+xhWMAAAcpSURBVGPkSKd7c9ddFjwMw4h7PA8gItJRRDaLyHciMjyPMlPd46ki0qQw5+bG9u2O\nnmPaNEcQOGFCiNXkv/8O//431K3rRKkpU6LCa9zGd3OwtsjB2iIHa4vQ4um3nYiUBKYBHYEGQA8R\nqe9XphNwoarWBe4BXgj0XH88FwQeOuRMxa1d2xH+vfFGVHmNp6SkRLoKUYO1RQ7WFjlYW4QWr6fx\nNgfSVHUHgIjMA7oAm3zKdAZmA6jqKhGpICJVgVoBnJvN+vVw990eCQKzvMb//W8nMi1bFpV2sQcO\nHIh0FaIGa4scrC1ysLYILV6Pt9QAfvTZ3uXuC6RM9QDOBRyHwHbtPHAI3L3bMW7K8hpfudK8xg3D\nMFy87oEEOsUrqPGfLVtCLAhMS4OJE2HBAkc1/s03MaEa37FjR6SrEDVYW+RgbZGDtUVo8XQar4i0\nAEarakd3ewSQqaoTfcq8CCSp6jx3ezPQBmcIK99z3f2xPQ/ZMAwjQkT7UiZfA3VFJAHYA3QHeviV\nWQwMBua5AeeAqqaLyP8CODfoBjAMwzCKhqcBRFVPishgYBlQEnhZVTeJyAD3+HRVXSIinUQkDTgC\n9MnvXC/raxiGYQROzCvRDcMwjMgQ1Ur0SIgQo5Ug2+IVEUkXkW/CV2PvKGpbiEhNEflURL4VkQ0i\nMjS8NQ89QbTFGSKySkRSRGSjiIwPb81DTzCfEfdYSRFZJyLvhafG3hHk98UOEVnvtsXqfG+kqlH5\nwhm2SgMSgNJAClDfr0wnYIn79+XAykDPjaVXMG3hbrcGmgDfRPq9RPi5qAo0dv8uC2wp5s/FWe6/\npYCVQKtIv6dItYW77yHgdWBxpN9PhJ+L74FzArlXNPdAskWIqnoCyBIS+nKKCBHIEiEGcm4sEUxb\noKrLgf1hrK+XFLUtqqjqT6qa4u4/jCNKrR6+qoecIreFu33ULXMazpfOvrDU2huCagsROQ/nS/Ul\ngpQVRAFBtYVLQG0QzQEkLCLEGCGYtog3itoW5/kWcGf3NQFWhbyG4SOotnCHbFKAdOBTVd3oYV29\nJtjPyLPAw0CmVxUMI8G2hQIfi8jXItI/vxtFcwAJiwgxRihqW8TjDImg20JEygLzgfvdnkisElRb\nqGqGqjbGCShXiUjbENYt3BS1LUREbgR+VtV1uRyPRYL97mylqk2A64FBItI6rwtEcwDZDdT02a6J\nEyXzK3OeWyaQc2OJorbFbo/rFQmCagsRKQ0sAF5T1Xc9rGc4CMlzoaoHgQ+AZh7UMVwE0xZXAJ1F\n5HvgDeAaEXnVw7p6TVDPharucf/9BViIMySWO5FO+OSTCCoFbMNJBJ1GwYmgFuQkSws8N5ZewbSF\nz/EE4iOJHsxzIcCrwLORfh9R0BaVgAru32cCycC1kX5PkWgLvzJtgPci/X4i+FycBZRz/y4DfAF0\nyPNekX6zBTTE9TgzZdKAEe6+AcAAnzLT3OOpQNP8zo3lV5Bt8QaOmv8PnHHPPpF+P5FoC6AVzhh3\nCrDOfXWM9PuJUFs0BNa6bbEeeDjS7yVSbeF3jTbE+CysIJ+L2u4zkQJsKOi704SEhmEYRpGI5hyI\nYRiGEcVYADEMwzCKhAUQwzAMo0hYADEMwzCKhAUQwzAMo0hYADEMwzCKhAUQwzAMo0hYADGMXBCR\nBBH53fVESBGRL0SkXoiu/YGInB2KaxlGJDEhoWHkgrta73uq2tDdvge4QlV7B3FNAVD70BlxgvVA\njGKPiFzmurKdLiJlRGQDzjpAvpQnH78MEektIotcx8OtIvKEuz9BRLaIyGzgG6Cm6/h2jntss4jM\ncsu8LiId3N7OVhG5zL1GGddVcpWIrBWRzh41hWEUilKRroBhRBpV/UpEFgP/xFlYcA5wGKgjIuuA\ncu7+FgVc6jLgr8DvwFci8gHwP+BC4C5VXQ0gIr49kDrAbcBG4Cugu6pe6QaJkcAtwGPAJ6raV0Qq\nAKtE5GPNMYQyjIhgPRDDcPj/gA44S5o/hbNy7zZVbaKqFwIPAjMKuMZ/VHW/qh4D3sFZvFGBnVnB\nIxe+V9Vv3WGtb4GP3f0bcFZTxa3Xo24w+xQ4nVOX4jaMiGA9EMNwqIQzbFUSp7fhz3vArHzO989r\nCDnudkfyOe8Pn78zgeM+f/t+Pm9V1e/yuY5hhB3rgRiGw3TgcWAuMDGX461wlr7OCwHai0hFETkT\nx4P6C0LjcLcMGJp9I5EmIbimYQSN9UCMYo+I/B34Q1XniUgJ4EvganJyIILTU+iXz2UUWI3jdnge\nMEdV17qzufx7J5rH33kdGwNMFpH1OD/6tgOWSDcijk3jNYwQICK9gUtVdUik62IY4cKGsAwjNCh/\n7k0YRlxjPRDDKAQich0wwW/3dlW9LRL1MYxIYgHEMAzDKBI2hGUYhmEUCQsghmEYRpGwAGIYhmEU\nCQsghmEYRpGwAGIYhmEUif8fHq0g8rWtPKEAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7b64fd0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEaCAYAAAA/lAFyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucVfP6x99PU6SLmki6Kd3IrQuSS8q1C8rlHCkccRBJ\njnAQP+VwIorkVkLlGqc40kXkNHItSekySTrR7ZRUkqRm5vn98V0zdtvMnj179p619prn/Xqt1+y1\n1net9Tx7rVnP/j6f70VUFcMwDMMoKRX8NsAwDMNITyyAGIZhGAlhAcQwDMNICAsghmEYRkJYADEM\nwzASwgKIYRiGkRAWQAyjjBGRp0Xkbr/tMIzSYgHESAoi0llE5ojIdhHZJCJZInJeKc6XJyJNkmDX\nPiLyg4hUiaNsOxGZLiJbReRHEZkrIn1Ka0M0qnq9qt6f7PMmExHpLSLficgOEXlTRDJjlD3Su9/b\nRGRNZHAUkdNE5CvvO90iIu+KyBER+8eLyG8i8rO3bBcRSbV/RnKwAGKUGhH5E/A6MB6or6oHAfcA\nCQeQ/FMnaI9EvIROBb5U1Z3FHHMi8D4wG2iqqgcA1wNdErEhxnUC/z8nIkcCo4FLgTrATuCpGIe8\nCHwIZAIdgX4RPx6WAl1VNdM715fA8xHHKjBMVat7y/5qvZvThsA/zIb/iMhtIjIpatsoERnprT4C\n/ENVn1fVnwFUdY6qXlvMeZuJyAfeL9cfRORVb/scr8gi71fpn0WkpohM9Wo3W0TkbRGpH3GuLBG5\nX0Q+Bn4BDvV2dQOmi0im9+v4XK98NRFZKSKXeeUeBsar6sOqusXzYYGqXlKMD51EZK2I3On58F8R\n6R2xf7yXspouIjuA07xt90Udf5vn23oROV9EuonICq8mdEfE+URE7vBs3ywir8WqHSTIpcAUVf1I\nVX8B/g+4UESqFlH+COBldawCPvK2oaqbVHWdV64CkAdsiDreahzpiqraYkvMBTgY2AHU8NYrAhuB\nNsDhuJdCowTO+ypwp/d5H+CkiH15QJOI9VrABUBloBquxvNmxP4sYDXQEveiquhtzwaae5/Pwr28\nagNjgde97VWAHKBjAj50AvYAw4FKuBrPDqCFt388sA040VvfFxiHC7iRx98NZABXA5uBl4GquBfx\nzvzvF7gJ+ASo511vNPBKEbYdAmyNsVxSxHH/Bm6L2rYdaFNE+SnAA95zcTiwBji2EDtyga+AAyL2\njQN+9Jb5wIV+P++2lOD599sAW9JjAWYAV3ufzwWWeJ9P9l72+yRwzgnAGFzaK3rfXgGkkP2tgS0R\n67OBIVFlmgLfRG0bBSz2XnKZ3rb63vVaJOBDfgDYL2Lba8Dd3ufxuJpN5DHjgPsijt8JiLde3bPl\n+Ijy84Hu3uds4PSIfXWB3UCFJN7rWcC1UdvWAqcWUb4psMr7HvKAwUWUy8Slu96K2NbG214B6OoF\nqpNK64MtZbNYCsuIlwlAfrrnMtyLANwvR3AvspLyd1z6Yp6ILBGRK4sqKCJVRGSMiKwWkZ+AD4Aa\nUYLrmqjDugHTo7aNBY7EvdS3etu24l58ifgAsFVVf41Y/y7iXFqIXdH8qN7bFMg/z8aI/b/ial0A\njYA3PVF6K7AMV3uqk6DthbEDqBG1rQbwc3RBr3HCf3Ca175AQ6CLiFwfXdb7vm8FzhOR/b1tX6rq\nVlXNU9UZuJrXhUn0xUghFkCMeHkLOEZEjgLOwf2jA3yNe0H+qaQnVNWNqnqtqtYH+gJPxWh5dQvQ\nAminqjVwYq2wd/48WnzdK4CISAbwDPACcIOINPXs2Al8mogPHplRrbwaAeuLOSZRofh7oIuqZkYs\nVVQ1WldARA6JaN1U2NKriGssBVpFnKcpLsW4opCyRwLVVfUlLwisw9XAuhVx7kq4YP1b/C4bQcUC\niBEX3i/sycArwFxVXettV2Ag8H8i0kdE9heRCiJyioiMiXVOTxxv4K1uw71U87z1jbjUSD7VcL/E\nfxKRWsDgwk4Zce4qwPG41FY+g3B5+CtxovkLEa2i/g70EZFbReQA7xyt8oX9OLhXRCqJSAdcgP1X\ntE1RdiYqHI8GhorIIZ6NtUWke2EFVfV7/b11U2FLUb69jKslnOIJ5/cBk9UJ6tGsBPYRkV7efT8Y\n6Aks8uy7UERaePtq4xpcTFfV37z9f/IaNFQQkbPxBPwEvxujjLEAYpSECcBR/J6+AkBVJ+NeGlcB\n64D/Af/AibGxOA74TER+xtVwBqjqam/fEGCCl6r5EzAS2A8nMH+C02Sif8VHrp8OfKKquwFE5Fjg\nZuAvXtAb5pW/3fPhU++Y04FvReRHnD4zrRgf8Pzdiqt1vAj0VdX8X+tahJ0atV6UH9E8hnvBvisi\n23E1p3Zx2Bg3qroMuA4XSDbivvd++fu9VmVPe2W3An8GbsN9B1/ihPL8fi71gHdw2sYCr8wVEZcb\ngNNXtuLuydWqOgcjLcgX7lJ3AZEuuH/+DOBZVR1WSJlROAFtJ9BHVb8UkcOAiRHFmgD/p6qjUmqw\nUSQi0hBYDtRR1R1+2xMLEXkSWKyqo1N8nU7Ai6raMJXXMYwgUjGVJ/dyzk8AZ+J+mX4uIlNUNTui\nTDegmao2F5ETgKeB9qr6Na6FRn7nq3XAm6m01yga7x7cArwa9ODhsRBLhRhGSkl1CqsdsFJVV6vq\nHlyNokdUme641AiqOheoKSLRLUrOBL5V1eJasxgpwMuDbwfOoHDtIdaxo4sQcGP1bC41qjpWVTcW\nX7J4RGRQET5Mo/AUlWGUC1JaA8G1r4986a8FToijTAP2bsZ4CU68NXzAE0+rFVuw8GOvw+XT0xZV\nHQoMjVHkkLKyxTCCRKprIPH+MotukVJwnIjsgxtT6V8YhmEYgSHVNZB1uI5F+TTE1TBilWngbcun\nK/CFqv5Q2AVExNIHhmEYCaCqpRqHLNU1kPlAcxFp7NUkevJHYXMK8BcAEWkPbIvKXffCjZlUJH53\n50/lMnjwYN9tMP/Mv/LmW3nwLxmktAaiqjki0h+YiWvG+5yqZotIX2//GFWd7o08uhI3imrBcBae\neHsmcE0q7Qwyq1ev9tuElGL+pS9h9g3C718ySHUKC3Xj28yI2jYmar1/Ecf+AhyYOusMwzCMRLGe\n6AGnT58+fpuQUsy/9CXMvkH4/UsGKe+JnmpERNPdB8MwjLJGRNCAi+i+ISK22JL0paRkZWUl/+EO\nCGH2DcLvXzJIuQbiJ1YzMZJJIgHEMMJMaFNYImIBxEgq9kwZYcJ7ni2FZRiGYZQ9FkAMI4WEOY8e\nZt8g/P4lAwsgIeP777+nevXqBamWTp068dxzzwHw8ssv07lz54KyFSpUYNWqVXGfO/p4wzDKN6aB\n+ETjxo3ZtGkTGRkZBduuvPJKRo1K7nxZp512GpdffjlXXXXVH/ZVqFCBlStX0qRJUdOQG5EE/Zky\njJKQDA0k1K2wgoyIMHXqVE4//XS/TYmL3NzcvYJdupCXl0eFClbRNoxUYP9ZASQvL49bb72V2rVr\n07RpU5588kkqVKhAXl4e4Gov77//fkH5IUOGcPnllwNu/J7IspGMHz+eDh067LVt2rRpNG3alNq1\na/P3v/+94Bf2+PHjOfnkkxk4cCAHHnggQ4YM2ev4wq4TmS6LPD4zM5NmzZrxySefMG7cOA455BDq\n1KnDCy+8UOR3sGXLFq688krq169PrVq1uOCCC4r0ITIV16dPH66//nrOOeccqlWrxvDhw6lbt+5e\ndr755pu0atWq4Lt+8MEHadasGQceeCA9e/Zk69atRdpVUsKcRw+zbxB+/5KBBRAfKSod8swzzzBt\n2jQWLlzI/PnzmTRp0l59EKI7tZWmf8K///1vvvjiCxYsWMBbb73F888/X7Bv3rx5NG3alE2bNnHX\nXXcVe65ou+bNm0erVq3YsmULvXr14uKLL2bBggV8++23vPTSS/Tv35+dO3cWeq7LL7+cXbt2sWzZ\nMjZt2sTAgQPj9unVV1/l7rvvZseOHdx0001UrVqV//znPwX7X3nlFS699FIAHn/8caZMmcKcOXPY\nsGEDmZmZ3HDDDXFfyzDKM+U6gIiUfkkUVeX8888nMzOzYMn/9f76669z8803U79+fTIzMxk0aFDM\n3Htp8vK33347NWvWpGHDhvztb3/j1Vd/Hzm/Xr163HDDDVSoUIHKlSuX+NyHHnooV1xxBSLCxRdf\nzPr167nnnnuoVKkSZ511Fvvssw8rV678w3EbNmzgnXfeYfTo0dSoUYOKFSv+odYRi/PPP58TTzwR\ngH333ZdevXoV+PXzzz8zY8YMevXqBcCYMWO4//77qVevHpUqVWLw4MFMmjSp0BpcInTq1Ckp5wki\nYfYNwu9fMijXGoifeqiI8NZbbxWqgWzYsIGGDX+fY+uQQ1I3Y2r0ddavX1/ovkSoU+f3qe33228/\nAGrXrr3Xth07dvzhuDVr1lCrVi1q1KhR4muKCA0aNNhrW+/evTnppJN4+umneeONNzj22GMLfFu9\nejUXXHDBXjpJxYoV2bhxI3Xr1i3x9Q2jPFGuayBBpW7dunz//fcF65GfAapWrcovv/xSsP6///0v\n4WtFX6d+/foF67FSY1WrVgXYKwVVGjsiadiwIVu2bOGnn34q9LolvWbLli1p1KgRM2bM4JVXXqF3\n794F+w455BDeeecdtm7dWrDs3LkzacEjzHn0MPsG4fcvGVgA8ZGiUk8XX3wxo0aNYt26dWzdupUH\nH3xwr5d569atmThxIjk5OcyfP5/JkycnrIMMHz6cbdu2sWbNGkaNGkXPnj3jOq527drUr1+fF198\nkdzcXJ5//nm+/fbbhGyIpm7dunTt2pV+/fqxbds29uzZw5w5cwBo1aoVS5cuZdGiRezatYshQ4bs\ndWxR32nv3r0ZOXIkH374IX/+858Ltl933XUMGjSoIJD+8MMPTJkSPWmmYRiFYQHER8477zyqV69e\nsFx00UUAXHPNNXTu3JlWrVpx3HHHcdFFF+31Yrzvvvv49ttvyczMZMiQIQWCcD5FBZPCRpTt0aMH\nxx57LG3atOHcc8/lr3/9a5Flo7eNHTuWhx9+mAMPPJBly5Zx8sknx7xWSYLciy++SKVKlTj88MOp\nU6dOQf+YFi1acM8993DmmWdy2GGH0aFDh5gNDPLp1asXc+bM4YwzzqBWrVoF22+66Sa6d+/O2Wef\nzf7778+JJ57IvHnz4razOMKcRw+zbxB+/5KBdSRMA1avXk2TJk3IycmxPg0+EqZnyjBsMEXDCDhh\nzqOH2TcIr3+bd27mhmnJaapuASRNsLkoDMMoDbtzd/Pop4/S8smWZFRIzqgSlsIyjDixZ8pIR1SV\nqSumcsu7t9CsVjNGnD2ClrVb2lhYhmEYRtEs2bSEgTMHsmb7Gh7r8hhdm3dN6vkthWUYKSSseXQI\nt2+Q3v5t3rmZftP6cfqE0zmvxXl8dd1XSQ8eUAYBRES6iMhyEflGRG4voswob/8iEWkTsb2miEwS\nkWwRWSYi7VNtr2EYRroSqXNUqlCJ5f2Xc+MJN1Ipo1JKrpdSDUREMoCvgTOBdcDnQC9VzY4o0w3o\nr6rdROQE4DFVbe/tmwB8oKrPi0hFoKqq/hR1DdNAjDLBnikjqBSlc8QiHTSQdsBKVV0NICITgR5A\ndkSZ7sAEAFWd69U66gC7gA6qeoW3Lwf449gWhmEY5ZhU6xyxSHUKqz6wJmJ9rbetuDINgEOBH0Rk\nnIgsEJGxIlIlpdYae/Hhhx9y+OGH+21GWpPOefTiCLNvEHz/ykrniEWqA0i89f3oapTiakdtgadU\ntS3wC3BHEm3znfHjx3P00UdTtWpV6tatS79+/QodQLCsiJ4jvUOHDixfvtw3ewzD+CNlrXPEItUp\nrHVA5JjgDXE1jFhlGnjbBFirqp972ydRRADp06cPjRs3BqBmzZq0bt261IanmhEjRvDwww/zwgsv\ncMYZZ7B27Vr69evHWWedxccff0ylSsl9GOKdkjbdcvxlPWVt/q/S/HGSilvP3xZv+XRa79SpU6Ds\nCbt/qsoDLz7AU/Of4pgTjmFOnzlsXLqRr+Z+FdfxWVlZjB8/HqDgfVlqVDVlCy5AfQs0BvYBFgIt\no8p0A6Z7n9sDn0XsmwO08D4PAYYVcg0tjKK2B4GffvpJq1Wrpv/617/22r5jxw6tXbu2Pv/886qq\nOnjwYL3ooou0Z8+eWr16dW3btq0uWrSooPy6dev0wgsv1Nq1a+uhhx6qo0aNKtiXf+xll12m+++/\nvz733HM6b948bd++vdasWVPr1q2r/fv31927d6uqaocOHVREtGrVqlqtWjV9/fXXdfbs2dqgQYOC\nczZq1EiHDx+uxxxzjNaoUUN79uypu3btKtg/bNgwrVu3rtavX1/Hjh2rIqLffvttod/Bjz/+qH36\n9NF69eppZmamnn/++aqqOm7cOD3llFP2Kht5niuuuEKvu+467datm1atWlWHDRumBx98sObm5haU\nf+ONN/SYY45RVdXc3Fx94IEHtGnTpnrAAQfoxRdfrFu2bInzTu1NkJ8pI9ws3rhYz3rhLD38icN1\n+orpSTmn9zyX7h1f2hMUewHoimuJtRK409vWF+gbUeYJb/8ioG3E9la4lluLgDeAGoWcP9aXE0hm\nzJihFStW3Oull88VV1yhvXr1UlUXBCpVqqSTJ0/WnJwcHT58uB566KGak5Ojubm52rZtW73vvvt0\nz549umrVKm3SpInOnDlzr2PfeustVVX99ddf9YsvvtC5c+dqbm6url69Wlu2bKkjR44suHb0Cz86\ngDRu3FhPOOEE3bBhg27ZskVbtmypo0ePLvDp4IMP1mXLlunOnTv10ksv1QoVKhQZQLp166aXXHKJ\nbtu2Tffs2aNz5sxR1fgCSI0aNfSTTz5RVdVdu3Zp06ZN9b333iso/6c//UmHDRumqqojR47UE088\nUdetW6e7d+/Wvn37Fny/JSWRZ2r27NkJXSsdCLNvqsHw74dfftDrp16vtR+qraM+G6W7c3Yn7dzJ\nCCAp74muqjOAGVHbxkSt9y/i2EXA8amyTe4t/fhSOrjkKZ/Nmzdz4IEHFpp6Ofjgg1mwYEHB+nHH\nHceFF14IwMCBAxkxYgSffvoplSpVYvPmzdx9992Amz726quvZuLEiZx99tkAnHTSSXTv3h2AypUr\n07Zt24LzNmrUiGuvvZYPPviAm266KW7bBwwYwMEHHwy44egXLlwIuGl4r7rqKlq2dE0H7733Xl55\n5ZVCz5E/Ze2WLVsKZh1MxpS1Z555ZsGUtY888gjgpqx94oknqFevHgCDBw+mUaNGvPTSSzaysRFY\ndufu5sl5TzL0o6H0Pqo3y/svp9Z+tYo/sIwp10OZJPLyTwYHHnggmzdvLjR/v2HDhr2mfY2cnjV/\nutb169cjIqxfv57MzMyC/bm5uZx66qmFHguwYsUKBg4cyBdffMHOnTvJycnhuOOOK5Ht+cED3JS0\nGzZsKLC7Xbt2RV47kvI0ZW2Y55QIs2/gj3+qyrRvpnHLu7fQNLMpc/rMKbY/h5/YTzAfOPHEE9l3\n332ZPHnyXtt37NjBO++8wxlnnFGwbc2a31s45+XlsXbtWurXr0/Dhg059NBD95qKdfv27UydOhUo\nfGKl66+/niOOOIKVK1fy008/8c9//pO8vLyk+FS3bt29bI38HE2Ypqw1jGSxdNNSOr/Umdveu42R\nnUcy/dLpgQ4eYAHEF2rUqMHgwYO58cYbmTlzJnv27GH16tVcfPHFNGzYkMsvv7yg7BdffMGbb75J\nTk4OI0eOpHLlyrRv357jjz+e6tWr89BDD/Hrr7+Sm5vLkiVLmD9/PlB4a6odO3ZQvXp1qlSpwvLl\ny3n66af32l+nTp0ST0ubf52LL76YcePGsXz5cnbu3Ml9991X5DHlacraoPclKA1h9g3Kzr/8+TlO\nm3Cab/05EsUCiE/cdtttDB06lFtvvZUaNWrQvn17GjVqxPvvv1/QhFdE6NGjB6+99hq1atXi5Zdf\n5o033iAjI4OMjAymTp3KwoULadKkCbVr1+baa69l+/btBcdG10CGDx/OK6+8wv7778+1117LJZdc\nsleZIUOGcMUVV5CZmcmkSZOKnB42n8j9Xbp0YcCAAZx22mm0aNFiL42iMMIyZa1hJEr0/Bx+9udI\nFJsPJMDce++9rFy5khdffNFvU0pMdnY2Rx99NLt37w6NWB2GZ8rwn0ido0lmEx45+xFfUlXpMBaW\nUQrS7WX15ptv0q1bN3bu3Mntt99O9+7dQxM8DCMZLN20lJtn3sya7WsY2Xlk2qSqisL+uwNMcSmk\noPHMM89Qp04dmjVrRqVKlf6gsZRHwqwThNk3SK5/6axzxMJqIAFm8ODBfptQImbMmFF8IcMoR0T2\n5+h1VC+yb8jmgCoH+G1W0jANxDDixJ4pI16ConPEwjQQwzCMgBE2nSMWpoEYRgoJs04QZt+g5P6F\nVeeIhQUQwzCMUhDdnyP7huy068+RKKaBGEac2DNlRJIOOkcsTAMxUsqHH37INddcY7MSGkYU5Unn\niIWlsHzEprQNP2HWCcLsGxTuX3nUOWJhAcQnRowYwR133MGIESPYvn07n332Gd999x1nnXUWe/bs\nSfr1cnNz4yqXbimaZI0mbBixKM86R0xKOyOV3wtpOCOhTWlrU9oa6UFeXp6+/fXb2uLxFtrlpS66\nbNMyv01KGqTDlLapXtIxgNiUtuVnSlsjfVmycUnS5yEPEskIIOU7hSVS+iUBipvSdvPmzQXr+VPa\nZmRkMHDgQHbt2sWnn37K559/XjClbcWKFfea0jafwqa0bdeuHRUqVNhrStuSkD+lbWZmZpFT2u63\n337ce++9+QH+D+RPaTt69Ghq1KhBxYoVkzKlLVAwpW2vXr0AN6Xt/fffT7169ahUqRKDBw9m0qRJ\nZZb6CrNOEFbf8nWOk+852XSOYijfrbCKeMGlGpvStvxMaWukD9HjVk04fwI9Tujht1mBpnzXQHzC\nprQtP1Pahnne8LD4pqpMXTGVo58+mndXvcucPnMY1XUUPbpY8CgOCyA+YFPalp8pbY1gEz0P+YxL\nZ6RVZ0C/sQDiEzalbfmY0jasOgGkt2/x9OdIZ//KipQPZSIiXYCRQAbwrKoOK6TMKKArsBPoo6pf\nettXA9uBXGCPqrYr5FgtzIcwDDthU9oGi0SeqaysrNCkeqJJR9+idY7BHQcXOT9HOvpXEgI/lImI\nZABPAGcC64DPRWSKqmZHlOkGNFPV5iJyAvA00N7brUAnVd2SSjuDSroFQJvS9o+E+QWUTr6p7j1u\n1Zw+c4pNVaWTf36R6v/udsBKVV2tqnuAiUC0MtUdmACgqnOBmiJSJ2J/+szpmmRsSlvDKD2mc6SO\nVAeQ+kBkc5y13rZ4yygwS0Tmi8g1KbMyoAwePJgXXnjBbzPiZsaMGWzbto0ff/yRyZMnU6dOneIP\nCjlhzqMH3bfSjlsVdP9Kw7JlyTlPqvuBxJuDKepn9imqul5EagPvichyVf0wulCfPn1o3LgxADVr\n1qR169YJGWsYxZH/UslPbxS3nt/RMt7ytl769T25e1hSZQlDPxpKh7wOjG01tqA/RxDs82s9KyuL\n4cPH89VX8OOPjUkGKRXRRaQ9MERVu3jrdwJ5kUK6iIwGslR1ore+HOioqhujzjUY2KGqI6K2h1ZE\nN4KFPVPBJlrnSLf5OVKFKnzwAQwdCtnZcNttcPXVULVqwEV0YD7QXEQaA+uBnkCvqDJTgP7ARC/g\nbFPVjSJSBchQ1Z9FpCpwNnBviu01DCMNsfk5/ogqTJvmAsfmzXDHHXDZZbDPPkm9SMoHO+wKfA2s\nBO70tvUF+kaUecLbvwho621rAiz0liX5xxZy/iIHCrPFlmQvJWX27NklPiZdCIJvP/zyg/ab2k9r\nP1RbR302Snfn7E7auYPgXyLk5Ki++qrqMceotmql+tprbls03vNcqvd7ysfCUtUZwIyobWOi1vsX\nctwqIGExQ0OSagh7W/Sw+2ekhuj+HNk3ZBfZn6O8sHs3vPgiPPggHHQQPPAAdO2a8JivcRHaOdEN\nwwgfajrHH/jlF3j2WRg+HI44AgYNglNPLT5wBL4joWEYRrIwnWNvtm2DJ5+EUaPglFPgzTehhINr\nl5ry3U04DQhzW3Qw/9KZsvLNr3nIg3rvNm1ytYymTeHrr2H2bJg8ueyDB1gAMQwjoNg85Hvz/fcw\nYAAcfrirfcyfDy+84NJWfmEaiGEYgcJ0jr1ZsQKGDYN//xv++le4+WZIxnQ2poEYhhEqTOf4nYUL\nXUuq2bOhf3/45huImKkgEFgKK+AENQ+bLMy/9CWZvvmlc8TCr3v38cdwzjnQrRu0awerVsE99wQv\neIAFEMMwfMR0DocqvPsudOwIl18O3bu7wHHLLVCtmt/WFY1pIIZhlDmmczjy8py2MXQo/Pqra13V\nsydULANxwTQQwzDSDtM5YM8eePVV12u8WjW4+25X60i3+dfSzNzyR5hz6GD+pTMl9S2IOkcsUnHv\ndu2Cp5+GFi1g/HjXCXDuXDj//PQLHmABxDCMFGM6B/z8Mzz8MDRpAjNmwCuvwH/+A2eemdqxqlKN\naSCGYaQE0zngxx9dLeOpp1ywuPNOOOYYv61ymAZiGEYgKe86x/r1MGIEjBsHF10En3wCzZv7bVXy\nsRRWwAlzDh3Mv3SmMN/STeeIRSL3btUquO46OOoo18Lqq69g7NhwBg+wAGIYRhIo7zrHkiVutr92\n7eDAA90gh48+Cg0a+G1ZajENxDCMhCnvOse8eW64kU8/hb/9Da6/HmrU8Nuq+DANxDAM3yivOocq\nZGW5zn8rVsBtt8HLL0OVKn5bVvZYCivghDmHDuZfOpKvc5x8z8mc2+LctNY5YhF971Th7bfhpJOc\nztG7txvgsH//8hk8wAKIYRhxEq1zTDh/AgNOGBB6nSM31/Uab9XKDWo4cCAsWwZXXgn77OO3df5i\nGohhGDEprzrHb7/Biy+6uTjq1IG77oIuXdK7418kpoEYhpFSyqPO8csvruntiBFw5JHw/PPQoYPf\nVgWTuFP6hjKTAAAgAElEQVRYIlJFRA5LpTHGHwljDj0S8y+YxNOfI119K4pt2+D++91wIx99BHff\nncU771jwiEVcAUREugNfAjO99TYiMiXOY7uIyHIR+UZEbi+izChv/yIRaRO1L0NEvhSRt+O5nmEY\niVMe+3Ns3OiGGGnaFFaudC2sJk2Cw8L8c3nWrKScJi4NREQWAKcDs1W1jbdtiaoeVcxxGcDXwJnA\nOuBzoJeqZkeU6Qb0V9VuInIC8Jiqto/YPxA4Fqiuqt0LuYZpIIZRSsqjzvHddzB8uGuC27s33Hor\nNG7st1Up5ptv3CxVS5ciq1aVWgOJN4W1R1W3RW3Li+O4dsBKVV2tqnuAiUCPqDLdgQkAqjoXqCki\ndQBEpAHQDXgWCIl0ZRjBYummpXR+qTO3vXcbIzuPZMalM0IdPL7+2rWgatvWNb9dtgyeeCLkwWPb\nNhc4TjzR5eSWLUvKaeMNIEtF5FKgoog0F5HHgU/iOK4+sCZifa23Ld4yjwK3EV+wCiVhyzNHY/75\nR2nHrQqyb4Xx5Zdw8cXu/dmkiUtXDRsGBx9cePl0869QcnLcBCSHHw47dsDSpa7n4777JuX08bbC\nuhG4C/gNeBWnhdwXx3Hx5paiaxciIucCm1T1SxHpFOvgPn360Nj7+VCzZk1at25Np07ukPyHIF3X\nFy5cGCh7zL/0929P7h6WVFnC0I+G0iGvA2NbjaXHCT0CY1+y1xcvhhkzOrFoEZx/fhYTJkDXrsGx\nL2Xrs2aRdc01UKMGnWbOJGvrVsbf7mToxkmqbqW0H4iItAeGqGoXb/1OIE9Vh0WUGQ1kqepEb305\n0AkYAFwO5ACVgf2Byar6l6hrmAZiGHFQnnQOVZg50w03sm4d3H47XHFF0n54B5t8nWPZMify9OhR\naOeVZPQDiVdEPx4YBDTm91qLqmrMqVFEpCJORD8DWA/MI7aI3h4YGSmie2U6Areq6nmFXMMCiGEU\nQ2R/jkfOfiS0/Tny8uDNN13g+O03GDTIpa0qloceb9u2wX33wYQJLmIOGBAzYiYjgMSrgbwMjAMu\nAs7zlj+0iIpGVXOA/riU1zLgNVXNFpG+ItLXKzMdWCUiK4ExQL+iThenraEiv0oaVsy/1JLK+Tn8\n9i2SPXvce/PII+Ghh2DwYDcXR+/eiQePIPkXkxTrHLGI96v9QVXj6vcRjarOAGZEbRsTtd6/mHN8\nAHyQyPUNozyyO3c3T857kqEfDaXXUb3IviGbA6oc4LdZSefXX11P8Ycfdv04nngCTj89PMONFMus\nWXDzzW4Skpkz3YBdZUi8KayzgZ7ALGC3t1lV9Y0U2hYXlsIyjN8pLzrH9u0werSbtKldO9cRsH37\n4o8LDXHqHLEoy7GwrgAO88pHNqn1PYAYhuEoD+NWbd4Mo0bBU09B587w7rtw9NF+W1WGROsc//qX\nry0D4tVAjgOOV9UrVPXK/CWVhhmOtMnDJoj5V3r8moe8LO/dunVuGPUWLeB//4PPPnM9yFMZPAL1\nbPqoc8Qi3gDyCXBEKg0xDKNklIdxq1auhGuv/T1QfPUVPPMMNGvmr11lyqxZ0KYNvP660znGjHHj\nyweAeDWQ5UBT4L+4zoQQRzPessA0EKO8UR50jsWL4cEH3fvy+uvhppucTlyuSILOEYuy1EC6lOYi\nhmEkh7DrHHPnuj4cc+e6xkVPPw377++3VWVMwHSOWMRMYYlI/q3bXsRipJhA5WFTgPkXH37pHLFI\nlm+q8P77cMYZrtPf2WfDf//r3p1+Bo8yfzYDqnPEorgayKvAOcAC/tiRT4EmqTDKMAxHmPtz5OXB\n1KmuxrFtm2uK27s3VAqPhBM/PvfnSJRiNRAREaChqn5fNiaVDNNAjDCiqkxdMZVb3r2FprWahkrn\nyMlxevADD7hgMWgQXHABZGT4bZkPpFjniEVZaiDTgZiTRxmGkRyWbFrCwJkDWbN9DY91ecz3VFWy\n+O03l9YfNgzq13e9xzt3Lke9xiNJI50jFsU24/V+3n8hIu3KwB4jCtMI0puS+Ld552b6TevH6RNO\nD4zOEYt4ffvlF9djvGlTN9Dh+PEwZw506RLs4JGSZzMNdY5YxFsDaQ9cJiLfAb942wLRjNcw0p2w\n6hxbt7qxqR5/HDp2hClT3CyA5ZY01TliEW8/kMbex/zCAqCqq1NhVEkwDcRIV8Kqc2zcCI88As8+\nC927uwzN4Yf7bZWP+KhzxKLMNBBVXS0ixwKn4MbC+lhVF5TmwoZRngmjzvHdd07XeOUVuPRSWLAA\nGjXy2yofCYnOEYu4hjIRkXuA8UAtoDYwTkT+L4V2GR6mEaQ30f6lm84Ri3zfli+HPn1ceqpaNcjO\ndmmrdA8eCT+bIdM5YhGvBnIZcIyq7gIQkQeARcQ3L7phlHvCqHOsWOE0jjlz3OR3K1dCZqbfVvlM\nCHWOWMSrgcwGLlTVrd56Jm5+8tNTbF+xmAZiBJkw6hwffgj//CcsWQK33grXXANVq/ptlc8EVOeI\nRVn2A9kOLBWRd731s4B5IvI4rjXWgNIYYRhhJEw6hyq8847rNb5hg0vpv/VWKLMyJaMc6ByxiHc4\n9zeBQUAWMBu4C/g38IW3GCmivGkEYSBf5zhtwmkc9vNhaa1z5Oa6d2LbtvD3v0O/fk7zuOYa+PTT\nLL/NSykxn81ypHPEIt5WWONj7ReRyap6UVIsMow0JVrnWH7DchbPW5yW83Ps2eMmbHrwQahZE/7x\nDzjnHKgQ70/OMFPOdI5YxKWBFHsSkS9VtU0S7Enk2qaBGL4SJp3j11/huedcc9zmzd04VaedFvh0\nftmQhjpHLMpSAzEMoxDConP89JPLyIwcCe3bu8EOTzjBb6sCQjnXOWJhFdKAE0aNIJJ09S/e/hxB\n9++HH+Duu904VUuWuOzMv/8dX/AIum+lJev9903nKIaUBxAR6SIiy0XkGxG5vYgyo7z9i0Skjbet\nsojMFZGFIrLM63tiGL4SOQ95xQoV03Ye8rVrXRr/sMNcEJk7F156CY6yMbcds2bB1VcHch7yQKGq\nRS7AQcCRhWw/Eqgdsd65iOMzgJVAY6ASsBBoGVWmGzDd+3wC8FnEvire34rAZ8AphVxDDSPV5OXl\n6ZTlU7T5qOba5aUuumzTMr9NSohvvlG9+mrVzEzVgQNV167126KAsWKF6nnnqTZpovrGG6p5eX5b\nlDK8d2fMGFDcUlwN5HGgsKnsDwAeiwhCM4s4vh2wUlVXq+oeYCLQI6pMd2CCd565QE0RqeOt7/TK\n7OMFoy3F2GsYSWfJpiV0fqkzf5/1dx7r8hgzLp2RdiL5V19Br15O36hXz/UiHzHCzcth4HSOW26B\nE0+EDh2cUH7BBWktkpcFxQWQZqr6QfRGVZ0DxNN2rT6wJmJ9rbetuDINAEQkQ0QWAhuB2aq6LI5r\nhorQ55kD7F8yxq3y27/PPnMj4nbuDG3awKpVcO+9rgVqafHbt6SQ35/jsMPg55/30jlC4V+KKa4V\nVvUY++JJ+sbbvjY6zOfnpnKB1iJSA5gpIp1UNSv64D59+tC4cWMAatasSevWrenUqRPw+0OerusL\nFy4MlD3lwb89uXtYUmUJQz8aSoe8DoxtNZYeJ/RIG/9UITe3E0OHwrJlWVxyCbz2Wif22y8Y329g\n1mfNIuuaa6BGDTrNnAmtW7v92dnBsC/J61lZWYwfPx6g4H1ZWmL2AxGR6cCTqjotans34EZVjflz\nTETaA0NUtYu3fieQp6rDIsqMBrJUdaK3vhzoqKobo871f8Cvqjo8arvG8sEw4kXTvD9HXp6btGno\nUPdj+s47XdqqUnrp+6knvz/H0qWuP8f555fLVFVZ9AP5GzBVRP4M5M//cSxwEnBuHOefDzT3JqRa\nD/QEekWVmQL0ByZ6AWebqm4UkQOBHFXdJiL74cbfujeOaxpGiUnn/hw5OfDaa/DAA66F6V13uXdi\nBWukvzfWnyPpxHzEVHUFcAwueLQGGgEf4IZ2/7q4k6tqDi44zASWAa+paraI9BWRvl6Z6cAqEVkJ\njAH6eYfXBf7jaSBzgbdV9f0EfExr8qugYcVv/1I9P0cq/du1y7UubdECnnnGieLz58OFF5ZN8PD7\n3sVNDJ0jFmnjn48U2xNdVXd5raJOBb4E3gN2xXsBVZ0BzIjaNiZqvX8hxy0GyvMMykYKSef5OXbs\ncIHjkUegdWt44QU45RS/rQoo0eNWtW7tt0WhIu6xsESkAnA20Ac4DngdeE5Vv02ZdfHZZRqIETfp\nrHNs2eImcHriCTc+1R13uJZVRiGYzlEsZToWlqrmicj/cE1qc4FMYJKIzFLV20pjhGGUBemqc2zY\nAI8+Cs8+696DH37osjFGIZjOUabEOyf6TSLyBfAQ8DFwlKpejxPUL0yhfeWesOdhy8I/P+chL41/\n//2vm3/jyCOd3rFwITz/fHCCR6CezQR1jlgEyr+AEm8NpBZuStvvIjd6tZLzkm+WYZSeSJ2j91G9\nWd5/ObX2q+W3WcWSne1aVE2bBn37ugmcDjrIb6sCjOkcvpGU+UD8xDQQI5pInaNZrWaMOHtEWugc\n8+e7wPHRRzBgANxwg5vMySgC0zlKhc0HYhhRpJvOoQpz5uD1Godbb3WtqqpW9duyAGM6R2CwrkYB\nJ+x52GT556fOEYui/FOF6dPduH1XXw0XXwwrV8JNN6VP8CjzZzMFOkcswv6/lwysBmKkNemmc+Tm\nwuTJrsaRl+emjP3znyEjw2/LAo7pHIHENBAjLUk3nWP3bjdh04MPwgEHuOFGzjnHUvbFYjpHyjAN\nxCiXpJPOsXOn678xfLibGfWZZ6BjR3sHFovpHGmBaSABJ+x52JL4F1SdozB++sm1qGrQIIusLJe2\nevdd6NQpPMEjJc9mGescsQj7/14ysABiBJ7IecgrVajE8v7LAzsP+aZNLj3VpIl7940YAW+8Accf\n77dlacCsWW5slvx5yJ95xuYhDzimgRiBJZ10jjVrXJrqxRehZ0/3o7lJE7+tShNM5/AF00CM0JIu\nOsc338CwYa6WcdVVsGSJm3PciAPTOdIeS2EFnLDnYaP9SxedY9EiuOQSOOkkaNDABZLhw/8YPMJ8\n/xL2LUA6RyzCfO+ShdVAjECQLv05PvnE9eFYsAAGDoSxY6F6db+tSiOsP0eoMA3E8JV00DlU3Xvv\nn/+E775z2ZY+faByZb8tSyNM5wgcpoEYaU3QdY68PHjrLVfj2LkT7rzTCeSVgtf4K7iYzhFqTAMJ\nOGHMw0bqHIf9fFjgdI49e1xrqqOOcrWOQYNg8WK47LKSB48w3r98YvqWJjpHLMJ875KF1UCMMqMw\nneOruV8Fpj/Hrl0wbhw89BA0bgyPPQZnnmmZlhJjOke5wTQQI+UEXef4+WcYMwYeeQTatnU1jpNO\n8tuqNMR0jrTCNBAj8ARZ5/jxR3j8cXjySTjjDDe8uv1YTgDTOcotpoEEnHTNw8bbn8MP/9avdxM3\nNW8Oa9fCxx/DxImpCR7pev/iIev999Ne54hFmO9dskh5ABGRLiKyXES+EZHbiygzytu/SETaeNsa\nishsEVkqIktEZECqbTVKT5DHrVq1Cq67zonjOTmuM+Czz0KLFn5blobMmuVmwrJxq8o3qpqyBcgA\nVgKNgUrAQqBlVJluwHTv8wnAZ97ng4HW3udqwNfRx3r71PCfvLw8nbJ8ijYf1Vy7vtRVl21a5rdJ\nBSxZonrZZaq1aqkOGqS6caPfFqUxK1aonneeapMmqpMnq+bl+W2RkSDeu7NU7/hUayDtgJWquhpA\nRCYCPYDsiDLdgQleJJgrIjVFpI6q/g/4n7d9h4hkA/WijjUCQFB1js8/d304PvkE/vY3eOIJqFHD\nb6vSFNM5jEJIdQqrPrAmYn2tt624Mg0iC4hIY6ANMDfpFgacIOdhkzFuVbL9U4XZs+Gss+Cii+D0\n0+G//3WdAP0IHkG+f3ERoz9H2vtWDGH3LxmkugYSb/va6KZkBceJSDVgEnCTqu4o7OA+ffrQuHFj\nAGrWrEnr1q3p1KkT8PtDkK7rCxcuDJQ9WVlZ7Mndw5IqSxj60VBOzTuVZ1s/S/cTuvvqX8eOnZg2\nDW6/PYuffoJ//KMTl10Gn3ySxbx5dv8SWp81i6xrroEaNejk9efIysqC7Oxg2GfrJVrPyspi/Pjx\nAAXvy9KS0n4gItIeGKKqXbz1O4E8VR0WUWY0kKWqE7315UBHVd0oIpWAqcAMVR1ZxDU0lT4Yv6MB\n7M+Rm+uyKQ884LocDBrkah4ZGb6ald5Yf45yQTr0A5kPNPdSUOuBnkCvqDJTgP7ARC/gbPOChwDP\nAcuKCh5G2RE0neO339xwI8OGwUEHuQDStau950qF6RxGCUmpBqKqObjgMBNYBrymqtki0ldE+npl\npgOrRGQlMAbo5x1+MnAZcJqIfOktXVJpbxDJr4L6Rarn5yipf7/84oYYadbMvd+efRY++gi6dQtm\n8PD7/sVFguNWpYVvpSDs/iWDlPdEV9UZwIyobWOi1vsXctxHWEdH3wja/Bzbtrke46NGwSmnwJtv\nwnHH+WZOeLBxq4xSYGNhGXsRNJ1j40YYOdL1UzvnHLjjDjjiCN/MCQ+mc5R70kEDMdKIIOkc338P\nDz8ML70EvXrB/Plw6KG+mRMeTOcwkoiliAJOWeRh/ZyHPNq/r7+Gq65ymZT99oNly+Cpp9I3eAQm\nj56C+TkC41uKCLt/ycBqIOWYIOkcX37pWlLNng033ggrV0Kt4E2Jnp6YzmGkCNNAyiFB0jk++sgN\nN7JokUvJX3stVKvmiynhw3QOIwamgRglJgg6hyq8+66bLnbtWpeKf+MNqFy5zE0JJ6ZzGGWEaSAB\nJ1l5WD91jnzy8mDyZNf89pZboG9fGDs2i759wxs8yjSPXsbzkIddIwi7f8nAaiAhJ1Ln6HVUL7Jv\nyOaAKgeUqQ179sArr8CDD0L16nDPPXDeeVChAtj/aJIwncPwAdNAQkqkztG0VlMeOfuRMtc5fv0V\nxo2Dhx6CJk3cOFVnnGFp+KRiOoeRIKaBGIXit86xfTuMHg2PPgrHHw+vvgonnlimJoQf0zmMAGAa\nSMApSR7Wb51j82aXnmrSBBYudJmUKVNiB4+w55mT7l8Z6xyxsHtnWA0kBPitc6xbByNGwPjx8Kc/\nwWefucEOjSRjOocRMEwDSWP81jm+/dbpG//6F1xxhUvFN2hQ/HFGCTGdw0gBpoGUY/zUORYvdi2q\nZs6E6693w4/Url1mly8/mM5hBBzTQAJOdB7WT51j7lzo0cPNN37MMbBqlXu/lSZ4hD3PnJB/AdI5\nYmH3zrAaSJrgl86h6sanGjrUZVJuuw0mTnQDHRopwHQOI40wDSTg+KVz5OXB1KkucGzb5ubh6N0b\n9tkn5Zcun5jOYZQxpoGEnKWblnLzzJvLVOfIyYHXX3cj41aq5Dr/XXABZGSk/NLlE9M5jDTGNJAA\nsnnnZm6YdgOnTTiNw34+rEx0jt9+g7Fj4fDDXfr94Yfhiy9cs9xUBo+w55mL9C9NdI5YlNt7ZxRg\nASRA7M7dzaOfPkrLJ1uSUSGD7BuyueiIi6iUUSll1/zlF9djvGlTNyLuuHHw4YfQpYtlUFLGrFnQ\npo2r6s2c6ebrrVPHb6sMo8SYBhIAVJVp30zjlndvoUlmkzLRObZuhSeegMcfh44d4c47oW3blF7S\nMJ3DCBCmgYSASJ1jZOeRKU9Vbdzoahxjx0L37jBnjktbGSnEdA4jpFgKyycidY5Y/TmSlYf97jvo\n3x9atoQdO2DBApeu8jt4hDrPnJND1s03p7XOEYtQ3zvC718ySHkAEZEuIrJcRL4RkduLKDPK279I\nRNpEbH9eRDaKyOJU21lWFKZz3HjCjSnTOZYvhz59XHqqWjVYtsylrho1SsnljHzydY7Zs03nMEJL\nSjUQEckAvgbOBNYBnwO9VDU7okw3oL+qdhORE4DHVLW9t68DsAN4QVWPLuIaaaGBlLXOsWCB68Mx\nZw4MGAA33ACZmSm7nJFPpM7x8MOuDbTpHEYASQcNpB2wUlVXA4jIRKAHkB1RpjswAUBV54pITRE5\nWFX/p6ofikjjFNuYcspS5/jwQxc4Fi+GW291afeqVVN2OSMf0zmMckiqU1j1gTUR62u9bSUtk5bE\nq3PEIp48rCrMmAEdOsCVV8KFF7qRcv/2t+AHj7TPMxfTnyPt/YtBmH2D8PuXDFJdA4k3txRdjSpR\nTqpPnz40btwYgJo1a9K6dWs6deoE/P4QlOX6ntw9LKmyhKEfDaVDXgfGthpLjxN6JHS+hQsXFrk/\nNxfuvz+Ll16CypU7MWgQHHRQFhkZsO++/vmfLP8Cvz5rFlnXXAM1atDJG7cqKysLsrPD4Z+th2o9\nKyuL8ePHAxS8L0tLqjWQ9sAQVe3ird8J5KnqsIgyo4EsVZ3orS8HOqrqRm+9MfB2OmggZaVz7NkD\nL7/shlSvWRPuugvOOQcqWJu6ssH6cxghIB00kPlAcy8IrAd6Ar2iykwB+gMTvYCzLT94pBNloXP8\n+is895zTZlu0cJmTTp3s3VVmmM5hGHuR0t+sqpqDCw4zgWXAa6qaLSJ9RaSvV2Y6sEpEVgJjgH75\nx4vIq8AnQAsRWSMiV6bS3kRIhs4Ri6ysLLZvd7WNQw91rUNffx3eew9OOy39g0d+FTvQlGLcqrTw\nL0HC7BuE379kkPKe6Ko6A5gRtW1M1Hr/Io6Nrq0EhrKYn2PzZlfj+NOf3NhUs2bBUUcl9RJGcdj8\nHIZRJDYWVgkpC51j7VoYMcJlSv78Z/j7391gh0YZYjqHEXLSQQMJFanWOVauhGHDYPJk1xx38WKo\nH4oGzWmE6RyGETfWbicOUq1zfPWVm+3vxBOhXj3343fECBc8wp6HDYx/KZqfIzD+pYAw+wbh9y8Z\nWA0kBqnWOT77zPUa//xzGDgQRo+G/fdP2umNeDGdwzASwjSQQkilzqEK77/vAseqVU7fuPJK2G+/\npJzeKAmmcxjlGNNAUkCqdI68PHj7bRc4tm93Ezj16uXmHTfKGNM5DCMpmAbikSqdIyfH9Ro/5hj4\nxz/c+2rpUvjLX+ILHmHPw5apfz7MQx7m+xdm3yD8/iWDcl8DSZXOsWuX+4E7bBg0bOhE8bPPtgyJ\nb5jOYRhJp9xqIKnSOXbscHMHjRjh3lF33gmnnFLq0xqJYjqHYRSKaSAJkgqdY8sWN9PfE0+4IUam\nTnUT0hk+YTqHYaSccqWBpELn2LDBtaRq3hxWr3YTOr32WvKCR9jzsEn3zwedIxZhvn9h9g3C718y\nKBc1kFToHKtXw0MPwcSJcNll8OWXcMghybHXSBDTOQyjTAm1BpIKnSM7242MO3Uq9O3rZv076KBS\nndIoLStWuPl7TecwjLgxDSQGydY5vvjC9eH46CMYMMBNGVuzZpKMNRJj2zbXNvqFF0znMAwfCJ0G\nkkydQxXmzIHOnd2P2lNPdb3H77qr7IJH2POwCfkXqXPs2OG7zhGLMN+/MPsG4fcvGYSmBpJMnUMV\nZsxwNY6NG+GOO5zOEcD3U/njvfeczlG7tukchuEzodBA3v767aToHLm5bij1oUPd0CODBrn5ODIy\nkmy0UXJM5zCMpJIMDSQUAeTwJw7nkbMfSThVtXs3vPSSE8cPOMClqM45x95PgSBa5xgwwKqChpEE\nkhFAQqGBJKpz7NwJjz8OzZq55rjPPAOffALnnhuc4BH2PGyR/qWRzhGLMN+/MPsG4fcvGYRCA6mU\nUbIhbX/6CZ56Ch57DE46yaWtjj8+RcYZJcd0DsNIC0KRworXhx9+gJEjYcwY6NrVieNHHpliA434\nMZ3DMMoMS2HFyZo1rsPfYYe5MavmzYMXX7TgERi2bXNTMp50EnToAMuWwQUXWPAwjICT8gAiIl1E\nZLmIfCMitxdRZpS3f5GItCnJsbH45hu4+mpo1QoqVoQlS1xavUmT0nhUtoQ6D5uTQ9bNN6e9zhGL\nMN+/MPsG4fcvGaQ0gIhIBvAE0AU4AuglIi2jynQDmqlqc+Ba4Ol4jy2KRYvgkkvcD9oGDVwgGT4c\n6tVLmmtlxsKFC/02ITW89x60acPCt992Osczz0CdOn5blXRCe/8It28Qfv+SQapF9HbASlVdDSAi\nE4EeQHZEme7ABABVnSsiNUXkYODQOI7di08/dX04vvjCZUTGjoXq1VPgVRmybds2v01ILlE6x7aF\nC0Mtkofu/kUQZt8g/P4lg1SnsOoDayLW13rb4ilTL45jAfdj9rTToHdv139j1Sr3jkr34BEqTOcw\njNCR6gASbxOvUr1FbroJrrrK/bi97jqoXLk0ZwsWq1ev9tuE0lFMf460968YwuxfmH2D8PuXDFLa\njFdE2gNDVLWLt34nkKeqwyLKjAayVHWit74c6IhLYcU81tue3u2QDcMwfCLow7nPB5qLSGNgPdAT\n6BVVZgrQH5joBZxtqrpRRH6M49hSfwGGYRhGYqQ0gKhqjoj0B2YCGcBzqpotIn29/WNUdbqIdBOR\nlcAvwJWxjk2lvYZhGEb8pH1PdMMwDMMfAt0T3c9OiGVBKf17XkQ2isjisrM4fhL1TUQaishsEVkq\nIktEZEDZWh4fpfCvsojMFZGFIrJMRB4oW8vjozTPprcvQ0S+FJG3y8biklHK/73VIvKV59+8srM6\nPkrpW00RmSQi2d7z2T7mxVQ1kAsubbUSaAxUAhYCLaPKdAOme59PAD6L91i/l9L45613ANoAi/32\nJcn37mCgtfe5GvB1CO9dFe9vReAz4BS/fUqmf962gcDLwBS//UnB/fsvUMtvP1Lk2wTgqojns0as\n6wW5BlLQCVFV9wD5HQkj2asTIpDfCTGeY/2mNP6hqh8CW8vQ3pKQqG91VPV/qrrQ274D13E0aGMI\nJOyft77TK7MP7h9+S5lYHT+l8k9EGuBeUs9Syib6KaJU/nkE0S8ohW8iUgPooKrPe/tyVPWnWBcL\nctd/r2MAAASFSURBVAApk06IPlIa/4JOor41iCzgtcBrA8xNuoWlo1T+eemdhcBGYLaqLkuhrYlQ\n2mfzUeA2IC9VBpaS0vqnwCwRmS8i16TMysQozbN5KPCDiIwTkQUiMlZEqsS6WJADSJl0QvSRRP1L\nh1YPpfZNRKoBk4CbvJpIkCiVf6qaq6qtcf+0p4pIpyTalgwS9U9E5Fxgk6p+Wcj+oFDad8spqtoG\n6ArcICIdkmNWUijNs1kRaAs8paptca1i74h1kiAHkHVAw4j1hrhIGatMA69MPMf6TaL+rUuxXcmg\nVL6JSCVgMvCSqv47hXYmSlLunZcemAYclwIbS0Np/DsJ6C4i/wVeBU4XkRdSaGsilOr+qep67+8P\nwJu4tFFQKI1va4G1qvq5t30SLqAUjd+iTwwxqCLwLU4M2ofixaD2/C7EFnus30tp/IvY35hgiuil\nuXcCvAA86rcfKfLvQKCm93k/YA5wht8+JfvZ9LZ3BN72258k378qQHXvc1XgY+Bsv31K1r3znscW\n3uchwLCY1/Pb4WK+jK64VjgrgTu9bX2BvhFlnvD2LwLaxjo2aEsp/XsV10P/N1w+80q//UmGb8Ap\nuNz5QuBLb+nitz9J9O9oYIHn31fAbX77kuxnM2J/RwLYCquU96+Jd+8WAkuC+G4p5XulFfC5t/0N\nimmFZR0JDcMwjIQIsgZiGIZhBBgLIIZhGEZCWAAxDMMwEsICiGEYhpEQFkAMwzCMhLAAYhiGYSSE\nBRDDMAwjISyAGEYRiEgLEZkuIitE5AsReU1EDkrCeaeJyP7JsNEw/MQ6EhpGIYhIZVxP8ZtVdZq3\nrSOwWVWXJnhOAVD7pzNCgtVAjHKPiBzvzcy2r4hUFZGlwDXAJ/nBA0BVPygqeIhIHxF5y5tNcYWI\n3ONtbywiX4vIBGAx0NCb0a6Wt2+5N3z21yLysoicLSIfe+c43jtHVW8GyrneMNvdU/+tGEbxVPTb\nAMPwG1X9XESmAPfjBjh8ATcY3YISnup44EjgV+BzEZkG/Ag0Ay5X1XkAIhJZA2kKXAQsw41B1FNV\nT/aCxCDgAuAu4H1VvUpEagJzRWSW/j4xlWH4gtVADMPxD+Bs4Fjg4QTP8a6qblXVXbiB6E7BzbPw\nXX7wKIT/qupSL621FJjlbV+CC2J4dt0hIl8Cs4F92Xs4bsPwBauBGIbjQNzw3BlAZdzLvGMJjo/W\nNYTfZ+T7JcZxv0V8zgN2R3yO/P+8UFW/KYE9hpFyrAZiGI4xwN3AK8Aw7+9JItItv4CInCoiRxZx\nvABniUimiOyHm4f6Y5IzK99MYECEHW2ScE7DKDUWQIxyj4j8BfhNVScCD+K0jPbAucCNnqC9FLgO\n2FTEaRSYh5tJcREwSVUXROyLLlvY56L23QdUEpGvRGQJcG/czhlGCrFmvIaRBESkD3Csqt7oty2G\nUVZYDcQwkoPyx9qEYYQaq4EYRgkQkc64NFckq1T1Ij/sMQw/sQBiGIZhJISlsAzDMIyEsABiGIZh\nJIQFEMMwDCMhLIAYhmEYCWEBxDAMw0iI/wdUEkjJ7nOY2gAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa272668>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of ideal stage is \n",
+ "10.2\n",
+ "The feed stage is 4.6 th from the solvent-D inlet\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 47
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.7: Page 525"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.7\n",
+ "# Page: 525\n",
+ "\n",
+ "print'Illustration 10.7 - Page: 525\\n\\n'\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# c:Water d:Toulene \n",
+ "Density_c = 998;# [kg/cubic m]\n",
+ "viscosity_c = 0.95*10**(-3);# [kg/m.s]\n",
+ "Dc = 2.2*10**(-9);# [square m/s]\n",
+ "Density_d = 865;# [kg/cubic m]\n",
+ "viscosity_d = 0.59*10**(-3);# [kg/m.s]\n",
+ "Dd = 1.5*10**(-9);# [square m/s]\n",
+ "sigma = 0.022;# [N/m]\n",
+ "Dist = 20.8;# [Distribution Coeffecient]\n",
+ "d = 0.5;# [m]\n",
+ "h = 0.5;# [m]\n",
+ "di = 0.15;# [m]\n",
+ "N = 13.3;# [r/s]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "qC = 3*10**(-3);# [cubic m/s]\n",
+ "qD = 3*10**(-4);# [cubic m/s]\n",
+ "#********#\n",
+ "\n",
+ "V = math.pi*h*d**2/4;# [Vessel volume,cubic m]\n",
+ "phi_DF = qD/(qD+qC);# [Volume fraction toulene]\n",
+ "# Assume:\n",
+ "phi_Dbyphi_DF = 0.9;\n",
+ "phi_D = phi_Dbyphi_DF*phi_DF;\n",
+ "phi_W = 1-phi_D;\n",
+ "# From Eqn. 10.56:\n",
+ "Density_M = (Density_c*phi_W)+(Density_d*phi_D);# [kg/cubic m]\n",
+ "if phi_W>0.4:\n",
+ " viscosity_M = (viscosity_c/phi_W)*(1+(6*viscosity_d*phi_D/(viscosity_d+viscosity_c)));# [kg/m s]\n",
+ "else:\n",
+ " viscosity_M = (viscosity_c/phi_D)*(1-(1.5*viscosity_c*phi_W/(viscosity_d+viscosity_c)));# [kg/m s]\n",
+ "\n",
+ "# Impeller Reynold's Number:\n",
+ "IRe = (di**2*N*Density_M/viscosity_M);\n",
+ "# From Fig 6.5 (Pg 152), curve g:\n",
+ "Po = 0.72;\n",
+ "P = Po*Density_M*N**3*di**5;# [W]\n",
+ "# From Eqn. 10.61:\n",
+ "Value1 = P*qD*viscosity_c**2/(V*sigma**3);\n",
+ "Value2 = viscosity_c**3/(qD*Density_c**2*sigma);\n",
+ "Value3 = Density_c/(Density_c-Density_d);\n",
+ "Value4 = sigma**3*Density_c/(viscosity_c**4*g);\n",
+ "Value5 = viscosity_d/viscosity_c;\n",
+ "phi_Dbyphi_DF = 3.39*Value1**0.247*Value2**0.427*Value3**0.430*Value4**0.401*Value5**0.0987;\n",
+ "# The value of phi_Dbyphi_DF is sufficiently close to the value 0.90 assumed earlier.\n",
+ "phi_D = phi_Dbyphi_DF*phi_DF;\n",
+ "# From Eqn. 10.6:\n",
+ "Value6 = viscosity_c/Density_c;# [square m/s]\n",
+ "Value7 = P/(V*Density_M);\n",
+ "Value8 = sigma/Density_c;\n",
+ "dp = 10**(-2.066+(0.732*phi_D))*Value6**0.0473*Value7**(-0.204)*Value8**(0.274);# [m]\n",
+ "a = 6*phi_D/dp;# [square m/cubic m]\n",
+ "Sca = viscosity_c/(Density_c*Dc);\n",
+ "# From Eqn. 10.65:\n",
+ "Shc = 65.3;\n",
+ "kLc = Shc*Dc/dp;# [kmol/square m s (kmol/cubic m)]\n",
+ "thetha = V/(qD+qC);# [s]\n",
+ "# From Table 10.1 (Pg 524):\n",
+ "# lambda = [lambda1 lambda2 lambda3]\n",
+ "Lambda = [1.359 ,7.23, 17.9];\n",
+ "# B = [B1 B2 B3]\n",
+ "B = [1.42 ,0.603 ,0.317];\n",
+ "Val = numpy.zeros(3);\n",
+ "Sum = 0;\n",
+ "for n in range(0,3):\n",
+ " Val[n] = (B[n]**2)*exp((-Lambda[n])*64*Dd*thetha/dp**2);\n",
+ " Sum = Sum+Val[n];\n",
+ "\n",
+ "# From Eqn. 10.66:\n",
+ "kLd = -(dp/(6*thetha))*math.log((3.0/8)*Sum);\n",
+ "mCD = 1.0/Dist;\n",
+ "# From Eqn. 10.67:\n",
+ "KLd = 1/((1/kLd)+(1/(mCD*kLc)));# [kmol/square m s (kmol/cubic m)]\n",
+ "Z = 0.5;# [m]\n",
+ "Vd = qD/(math.pi*Z**2.0/4);# [m/s]\n",
+ "# From Eqn.10.70:\n",
+ "NtoD = Z/(Vd/(KLd*a));\n",
+ "# From Eqn. 10.71:\n",
+ "EMD = NtoD/(NtoD+1);\n",
+ "print\"Expected stage efficiency: \\n\",round(EMD,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.7 - Page: 525\n",
+ "\n",
+ "\n",
+ "Expected stage efficiency: \n",
+ "0.93\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.8: Pg-539"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.8\n",
+ "# Page: 539\n",
+ "\n",
+ "print'Illustration 10.8 - Page: 539\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:acetic acid c:Water d:Isopropylether layer\n",
+ "# Water solution (continuous):\n",
+ "C = 8000.0;# [kg/h]\n",
+ "xCn = 0.175;# [mass fraction]\n",
+ "Density_c = 1009.0;# [kg/cubic m]\n",
+ "viscosity_c = 3.1*10**(-3);# [kg/m.s]\n",
+ "Dc = 1.24*10**(-9);# [square m/s]\n",
+ "\n",
+ "# Isopropyl Ethr Layer:\n",
+ "D = 20000.0;# [kg/h]\n",
+ "xDnPlus1 = 0.05;# [mass fraction]\n",
+ "Density_d = 730;# [kg/cubic m]\n",
+ "viscosity_d = 0.9*10**(-3);# [kg/m.s]\n",
+ "Dd = 1.96*10**(-9);# [square m/s]\n",
+ "\n",
+ "sigma = 0.013;# [/N/m]\n",
+ "m = 2.68;# [Distributon coeffecient]\n",
+ "#*******#\n",
+ "\n",
+ "Ma = 60.1;\n",
+ "g = 9.81;# [m/square s]\n",
+ "cCn = xCn*Density_c/Ma;# [kmol/cubic m]\n",
+ "cDnPlus1 = xDnPlus1*Density_d/Ma;# [kmol/cubic m]\n",
+ "mCD = m*(Density_c/Density_d);# [(kmol/cubic min ether)/(kmol/cubic m in water)]\n",
+ "\n",
+ "# Perforations:\n",
+ "Do = 0.006;# [m]\n",
+ "pitch = 0.015;# [m]\n",
+ "qD = D/(3600.0*Density_d);# [cubic m/s]\n",
+ "delta_Density = Density_c-Density_d;# [kg/cubic m]\n",
+ "Value1 = Do/(sigma/(delta_Density*g))**0.5;\n",
+ "if Value1<0.1785:\n",
+ " # From Eqn. 10.74(a):\n",
+ " doBydj = (0.485*Value1**2)+1;\n",
+ "else:\n",
+ " # From Eqn. 10.74(b)\n",
+ " doBydj = (1.51*Value1)+0.12;\n",
+ "\n",
+ "dj = Do/doBydj;# [m]\n",
+ "Vomax = 2.69*((dj/Do)**2)*(sigma/(dj*((0.5137*Density_d)+(0.4719*Density_c))))**0.5;# [m/s]\n",
+ "# Since Vomax is less than 0.1:\n",
+ "Vo = 0.1;# [m/s]\n",
+ "Ao = qD/Vo;# [square m]\n",
+ "No = Ao/(math.pi*Do**2.0/4);# [square m]\n",
+ "# From Eqn. 6.30:\n",
+ "# Plate area for perforation:\n",
+ "Aa = Ao/(0.907*(Do/pitch)**2);# [square m]\n",
+ "\n",
+ "# Downspout:\n",
+ "dp = 0.0007;# [m]\n",
+ "# From Eqn. 10.75:\n",
+ "U = Density_c**2*sigma**3/(g*viscosity_c**4*delta_Density);\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 1.515;\n",
+ "abcissa = 0.62;\n",
+ "def f74(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vt = fsolve(f74,7);# [m/s]\n",
+ "Vd = Vt[0];# [m/s]\n",
+ "qC = C/(Density_c*3600);# [cubic m/s]\n",
+ "Ad = qC/Vd;# [square m]\n",
+ "# From Table 6.2 (Pg 169):\n",
+ "# Allowing for supports and unperforated area:\n",
+ "At = Aa/0.65;# [square m]\n",
+ "T = (At*4/math.pi)**0.5;# [m]\n",
+ "An = At-Ad;# [square m]\n",
+ "\n",
+ "\n",
+ "# Drop Size:\n",
+ "alpha1 = 10.76;\n",
+ "alpha2 = 52560;\n",
+ "alpha3 = 1.24*10**6;\n",
+ "alpha4 = 3.281;\n",
+ "abcissa = (alpha2*sigma*Do/delta_Density)+(alpha3*Do**1.12*Vo**0.547*viscosity_c**0.279/delta_Density**1.5);\n",
+ "Parameter = alpha1*Density_d*Vo**2/(delta_Density);\n",
+ "ordinate = 0.024;\n",
+ "dp = ordinate/alpha4;\n",
+ "\n",
+ "# Coalesced layer:\n",
+ "Vn = qD/An;# [m/s]\n",
+ "# From Eqn. 10.80:\n",
+ "ho = (Vo**2-Vn**2)*Density_d/(2*g*0.67**2*delta_Density);# [m]\n",
+ "hD = ho;\n",
+ "# From Eqn. 10.82:\n",
+ "hC = 4.5*Vd**2*Density_c/(2*g*delta_Density);# [m]\n",
+ "# From Eqn. 10.78:\n",
+ "h = hC+hD;\n",
+ "# Since this is very shallow, increase it by placing an orifice at the bottom of the downspout.\n",
+ "# VR: Velocity through the restriction.\n",
+ "# hR: Corresponding depth of the coalesced layer.\n",
+ "# Assume:\n",
+ "Vr = 0.332;# [m/s]\n",
+ "hr = (Vr**2-Vd**2)*Density_c/(2*0.67**2*delta_Density);\n",
+ "Ar = qC/Vr;# [square m]\n",
+ "dr = (4*Ar/math.pi)**0.5;# [m]\n",
+ "h = h+hr;# [m]\n",
+ "# The above results are satisfacyory.\n",
+ "Z = 0.35;# [m]\n",
+ "# Lead the downspout apron to within 0.1 m of the tray below.\n",
+ "\n",
+ "# Dispersed-phase holdup:\n",
+ "# From Eqn. 10.48:\n",
+ "Vsphi_D = Vn;\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 165.2;\n",
+ "abcissa = 30.0;\n",
+ "def f75(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vtl = fsolve(f75,7);# [m/s]\n",
+ "# For solids:\n",
+ "# From Fig. 10.48 (Pg 536):\n",
+ "abcissa = dp/(3*viscosity_c**2/(4*Density_c*delta_Density*g))**(1.0/3);\n",
+ "phi_D = [0, 0.1 ,0.2 ,0.3];\n",
+ "# Corresponding ordinates, from Fig. 10.48 (Pg 536):\n",
+ "ordinate1 = [8.8, 5.9 ,4.3 ,3.0];\n",
+ "Value1 = 1.0/(4*viscosity_c*delta_Density*g/(3*Density_c**2))**(1.0/3);\n",
+ "Val = numpy.zeros((4,7));\n",
+ "# Val = [phi_D ordinate Vs(1-phi_D) (Vs for solids) Vs/Vt (Vs for liquids) (Vs*phi_D (for liquids))]\n",
+ "for i in range(0,4):\n",
+ " Val[i,0] = phi_D[i];\n",
+ " Val[i,1] = ordinate1[i];\n",
+ " Val[i,2] = Val[i,1]/Value1;\n",
+ " Val[i,3] = Val[i,2]/(1-Val[i,0]);\n",
+ " Val[i,4] = Val[i,3]/Val[0,3];\n",
+ " Val[i,5] = Vtl*Val[i,4];\n",
+ " Val[i,6] = Val[i,5]*Val[i,0];\n",
+ "\n",
+ "\n",
+ "# By Interpolation:\n",
+ "Phi_D = 0.1;\n",
+ "\n",
+ "thetha_f =0.2498 # s\n",
+ "# From Eqn. 10.87:\n",
+ "const = 1.5;\n",
+ "kLDf = const*(Dd/(math.pi*thetha_f))**0.5;# [m/s]\n",
+ "# From Eqn. 10.86\n",
+ "KLDf = 1.0/((1.0/kLDf)*(1+((1.0/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# The ordinate of Fig. 10.47 for the drops larger than 70. Hence mass transfer coeffecient during drop rise is given by Eqn. 10.89:\n",
+ "# From Eqn. 10.91:\n",
+ "b = 1.052*dp**0.225;\n",
+ "# From Eqn. 10.90:\n",
+ "omega = (1.0/(2*math.pi))*math.sqrt(192*sigma*b/(dp**3*((3*Density_d)+(2*Density_c))));# [1/s]\n",
+ "Del = 0.2;\n",
+ "kLDr = math.sqrt((4.0*Dd*omega/math.pi)*(1+Del+(1.0/2)*Del**2));\n",
+ "KLDr = 1.0/1/((1/kLDr)*(1+((1/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# From Eqn. 10.98:\n",
+ "EMD = ((4.4*KLDf/Vo)*(dp/Do)**2)+(6*KLDr*Phi_D*(Z-h)/(dp*Vn))/(1+((0.4*KLDf/Vo)*(dp*1.0/Do)**2)+(3*KLDr*Phi_D*(Z-h)/(dp*Vn)));\n",
+ "print\"Stage Efficiency: \",round(-EMD,3)\n",
+ "# The solution in the textbook is incorrect\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.8 - Page: 539\n",
+ "\n",
+ "\n",
+ "Stage Efficiency: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 0.057\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.9: Pg-551"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.9\n",
+ "# Page: 551\n",
+ "\n",
+ "print('Illustration 10.9 - Page: 551\\n\\n');\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "#****Data****#\n",
+ "B = 20000;# [kg/h]\n",
+ "#******#\n",
+ "\n",
+ "# x and y are taken in weight fraction acetic acid.\n",
+ "x1 = 0.30;# [Wt fraction]\n",
+ "xF = 0.30;# [Wt fraction]\n",
+ "y2 = 0;# [Wt fraction]\n",
+ "x2 = 0.02;# [Wt fraction]\n",
+ "y1 = 0.10;# [Wt fraction]\n",
+ "# The operating diagram is plotted in Fig. 10.23:\n",
+ "# Data = [x x_star]\n",
+ "# From Fig. 10.23 (Pg 503):\n",
+ "Data = numpy.array([[0.30 ,0.230],[0.25 ,0.192],[0.20 ,0.154],[0.15, 0.114],[0.10, 0.075],[0.05, 0.030],[0.02, 0]]);\n",
+ "Val = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " Val[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x\");\n",
+ "plt.ylabel(\"1/(x-x*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# From Area Under the curve:\n",
+ "Area = 8.40;\n",
+ "# The mutual solubility of water and isopropyl ether is very small.\n",
+ "Ma = 18.0;# [kg/kmol water]\n",
+ "Mb = 60.0;# [kg/kmol isopropyl ether]\n",
+ "r = Ma/Mb;\n",
+ "# From Eqn. 10.110:\n",
+ "NtoR = Area+(1.0/2)*math.log(1-x2/(1-x1))+(1.0/2)*math.log(x2*(r-1)+1.0/(x1*(r-1)+1));\n",
+ "# Since the operating line and equilibrium line are parallel:\n",
+ "Np = NtoR;\n",
+ "print\"Number of theoretical Units: \\n\",round(NtoR,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.9 - Page: 551\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHXWV//H3Jwk7SBNgSECwFUdQBBuUNUBaFAzIEmVE\nECER3FARMSDLzBhABUG2URxlhiXgBsOowRBAQGl24o8xHUKQVTIshsgSBCbIlvP7o6pJd9Pdud33\n1q3lfl7P009u3VvVdU4X9On6nqpvKSIwMzPrMSrvAMzMrFhcGMzMrA8XBjMz68OFwczM+nBhMDOz\nPlwYzMysDxcGKxVJJ0n6yRCf3yNp1yz3UWaSNpH0giTlHYsVlwuD1UXSgZLmSHpR0mJJd0o6IsNd\nDnnjTUS8NyJuzmofkjolPVbLN5HULmmZpNz+P5O0UNJuPcsR8WhErBW+gcmG4MJgIyZpGnAucDqw\nQURsAHwRmCBp5UG2qfe/uWb8pdvofWQSs6TRNawWWe3fqsuFwUZE0trAycAREfGriPg/gIjojohP\nR8Qr6XozJP1I0tWSXgQ6JX1U0lxJf5P0qKTpvb5vz1/Zn5P0hKS/pAWoRwArS7pE0vPp0NH7e22/\nUNKH0tejJZ0o6aF03bskbZR+9m/pvv+Wvr/zCH8OXZJOkXRruo/fSlo3/bjnzOW5dPhm+3SbwyTd\nK+lZSddK2qTX99tD0v2SnpP0Q0k3STo8/WyqpNsknS3paWC6pHdI+r2kpyU9Jemn6bEhHQ7bBJiV\n7v+Y/mcxkjaU9BtJz0h6UNJne8VykqT/GuxnbdXlwmAjtSOwCnBlDeseBHwrItYEbgNeBD4dEWsD\nHwWOkLRfv206gXcCewDH9fyyJ/nrd1/gF8DawG+A83ptFywfCvo6cCCwZ0S8BfgM8FL62R+A9wHr\nAD8HrhjsLKfG/KYC/wCsDByTvr9L+u/a6fDNnDTPE4CPAesBt6S5IGk94ArgOGAscD/Jz7n3sM92\nwMPpvk5Nfx7fAcYD7wY2Bk4CiIhDgEeBvdP9nzlA7Jel64wH/gk4VdIHe32+D4P/rK2iXBhspNYD\nno6IZT1vSLpd0hJJS/v9BT4zIu4AiIiXI+KmiFiQLs8n+eU0sd/3PzkiXoqIe4CLSX759rglIq5N\nx8l/SvILfiCfBf45Ih7s2VdEPJu+/llELImIZRFxNkmR22wEP4cALo6IhyLi78B/AR09P5IB1v8i\ncFpE3J/+7E4DOtKzhr2AeyJiZhrX94En+23/l4j4Yfr53yPi4Yj4XUS8GhFPA+fw5p/lgCRtDOwE\nHBcRr0TEPOAC4NBeq9X6s7YKcWGwkXoGWK93zyAidoqIddLPet4PoE+zVtL2km6U9FdJzwFfANal\nr97bPAps2Gt5ca/XS4FVB+ldvJXkr+s3SYdV7k2HbJaQ/EW83iC5rkjvX94vAWsOse7bgH9LC+gS\nkp8VwEYkf7U/3m/9/sv9f5YbSLpM0uOS/gb8hDf/LAezIfBszzBg6tE0lh61/qytQnyAbaTuAF4G\nJo9g258DM4G3RkQb8GPe/N/iJv1ePzGC/TxGMhzVh6RdgGOBT0REW1rM/kbjm7QDXfnzKPD5iFin\n19ca6RnVIpJi1hOnei8P8j1PBV4H3psOzR1C35/lUFcf/QUYK6l3IduENxcjazEuDDYiEfEcSfP5\n3yXtL2ktSaMkdQBr9Fp1oF+2awJLIuIVSdsBn+LNv8D+RdJqkrYgGb+/fARhXgB8S9I7ldhK0th0\n/68BT0taWdI3gbeM4Pv3GKygPAUsAzbt9d6PgRMlvQeSJr6kT6SfXQ1sKWk/SWOALwPjVrDvNYH/\nA55PG+vH9vt8cb/9vyEiHgNuB06TtIqkrYDDSIaMrIW5MNiIRcT3SBq83yAZTnmS5BffN0jOKKBv\nM7jHl4BTJD0P/CsD/9K/CXgIuAH4XkTcMMT3G+yv4rNJxvyvIzkj+E9gVeC3wLXAA8BCkuGfR/t9\nv6H+0h5q/29sGxFLSRrDt6VDR9tFxEySy3svS4d+5gMfSdd/GvgEcAbwNEkz+S6SM7PB4joZ2CbN\nbxbwy37rnEZSZJdI+voA8R4EtJOcPfwK+GZE/H6I/fn+hxagrO9zkbQQeJ7kdPfViNgu/avtcpLx\n1oXAAelfoNbiJLUDfwbG9G5st6J0LP8x4FMRcVPe8VjraMYZQwCdEbF1RGyXvnc8cH1EvAv4Xbps\n1vLS+xjaJK0CnJi+fWeeMVnradZQUv8x2H2BS9LXlzCyBqZVVysPV+xIMoT2FMk9HpMj4uWhNzFr\nrGYMJf2ZZPzzdeD8iPhPSUvSK0F6rrx4tmfZzMzyNaYJ+5gQEYskrQ9cL+m+3h9GREhq5b8QzcwK\nJfPCEBGL0n+fkvRrklv6F0saFxFPShoP/LX/di4WZmYjExF13ZOTaY9B0uqS1kpfr0Ey7818kjlX\npqSrTSG52elNIqKyXwcfPJ311w9uuy3/WBr9NX369NxjcH7Or1Xza4Ssm88bALdI6gbmAFdFxHXA\nd4HdJT0A7JYut5QxYxZy6aUweTLcfnve0TTWwoUL8w4hU86v3KqeXyNkOpQUEY+wfEKx3u8/C3w4\ny32XwaRJvFEcZs6EnXbKOyIzM9/5nJupU6cCfYtDVc4cenKrKudXblXPrxEyv1x1pCRFUWPLwrXX\nwqGH+szBzOojiShy89kG19XV1We5SmcO/XOrGudXblXPrxFcGAqkSsXBzMrLQ0kF5GElMxspDyVV\nlM8czCxPLgw5WdE4Z5mLQ9XHcJ1fuVU9v0ZwYSiwMhcHMysv9xhKwD0HM6uVewwtwmcOZtZMLgw5\nGe44Z5mKQ9XHcJ1fuVU9v0ZwYSiRMhUHMysv9xhKyD0HMxuMewwtymcOZpYlF4ac1DvOWeTiUPUx\nXOdXblXPrxFcGEqsyMXBzMrLPYYKcM/BzHq4x2CAzxzMrLFcGHLS6HHOIhWHqo/hOr9yq3p+jZB5\nYZA0WtJcSbPS5ZMkPZ6+N1fSpKxjaBVFKg5mVl6Z9xgkfR14P7BWROwraTrwQkScvYLt3GMYIfcc\nzFpX4XsMkt4K7AVcAPQEql6vLQM+czCzemQ9lHQOcCywrNd7ARwpaZ6kCyW1ZRxDIWU9zplncaj6\nGK7zK7eq59cImRUGSXsDf42IufQ9Q/gR8HagA1gEnJVVDK3OZw5mNhKZ9RgknQocArwGrAq8Bfhl\nRBzaa512YFZEbDnA9jFlyhTa29sBaGtro6Ojg87OTmB51ffyipevvRYOPLCLb38bvvKV/OPxspe9\n3Ljlrq4uZsyYAUB7ezsnn3xy3T2GptzgJmkicExE7CNpfEQsSt8/Gtg2Ij41wDZuPjeQG9JmraHw\nzedeRNJbADhD0t2S5gETgaObFEOh9FT8ZmnmsFKzc2s251duVc+vEcY0YycR0QV0pa8PacY+7c16\nFwefOZjZYDxXUgvysJJZdZVpKMkKxFcrmdlQXBhykvc4Z5bFIe/csub8yq3q+TWCC0ML85mDmQ3E\nPQZzz8GsQtxjsIbwmYOZ9ebCkJOijXM2sjgULbdGc37lVvX8GsGFwd7gMwczA/cYbADuOZiVl3sM\nlgmfOZi1NheGnBR9nLOe4lD03Orl/Mqt6vk1gguDDcpnDmatyT0GWyH3HMzKwz0GawqfOZi1FheG\nnJRtnHM4xaFsuQ2X8yu3qufXCC4MVjOfOZi1BvcYbNjcczArLvcYLBc+czCrNheGnJR9nHOo4lD2\n3FbE+ZVb1fNrhMwLg6TRkuZKmpUuj5V0vaQHJF0nqS3rGCwbPnMwq6bMewySvg68H1grIvaVdAbw\ndEScIek4YJ2IOH6A7dxjKAn3HMyKo/A9BklvBfYCLgB6At0XuCR9fQkwOcsYLHs+czCrlqyHks4B\njgWW9Xpvg4hYnL5eDGyQcQyFVLVxzt7F4bzzuvIOJ1NVO3b9OT8bk9U3lrQ38NeImCupc6B1IiIk\nDTpeNHXqVNrb2wFoa2ujo6ODzs7kW/Uc3LIud3d3FyqeRiyvuir85CedfPKT8Ja3dLHJJsWKz8te\nruJyV1cXM2bMAHjj92W9MusxSDoVOAR4DVgVeAvwK2BboDMinpQ0HrgxIjYfYHv3GErqoovg9NNh\nzhxo86UFZk3ViB5DU25wkzQROCYi9kmbz89ExOmSjgfa3HyunqOOgvvvh9mzYfTovKMxax2Fbz73\n0/Nb/rvA7pIeAHZLl1tOz6lgFXV1dXHWWfDaa3DccXlH03hVPnbg/CzDHkNvEXETcFP6+lngw83Y\nr+VnzBi4/HLYfnvYaqvkclYzKwfPlWSZWrAAOjvhqquSImFm2SrbUJK1oC22SJrR++8PTzyRdzRm\nVgsXhpxUeZyzf2777ANf+hJ87GPw0kv5xNRIVT524PzMhcGa5IQT4B3vgM9/HjxCaFZs7jFY0yxd\nCrvsAgcdBMcck3c0ZtXUiB5DU65KMgNYffVkor3tt096D3vumXdEZjYQDyXlpMrjnEPltvHGcMUV\nMGUK3Hdf82JqpCofO3B+5sJgOZgwAb77XdhvP3juubyjMbP+3GOw3HjaDLPG830MVmpVnjbDrMxc\nGHJS5XHOWnPrmTZj5szkWQ5lUeVjB87PfFWS5WzddeHKK5NpMzbbzNNmmBWBewxWCLNmwRFHJM9w\n2GijvKMxKy/3GKwyqjZthlmZuTDkpMrjnCPNrSzTZlT52IHzMxcGKxApmYn13nuTK5bMLB/uMVjh\nPPZY0oS+8EJPm2E2XO4xWCVVYdoMszJzYchJlcc5G5HbhAlw2mnFnDajyscOnJ9lXBgkrSppjqRu\nSfdKOi19/yRJj0uam35NyjIOK6fDD4dJk+DAA+H11/OOxqx1ZN5jkLR6RCyVNAa4FTgG+BDwQkSc\nPcR27jEYr72WFIeODjjzzLyjMSu+UvQYImJp+nJlYDSwJF2uK3BrDWWdNsOszDIvDJJGSeoGFgM3\nRsSC9KMjJc2TdKGktqzjKJoqj3M2OreeaTOmTUvujM5blY8dOD9rwlxJEbEM6JC0NvBbSZ3Aj4BT\n0lW+BZwFHN5/26lTp9Le3g5AW1sbHR0ddHZ2AssPblmXu7u7CxVP0ZefeqqLo4+G/ffvZM4cePDB\nYsXnZS/ntdzV1cWMGTMA3vh9Wa+m3scg6V+BlyLizF7vtQOzImLLfuu6x2BvcuqpybDSTTfBaqvl\nHY1Z8RS+xyBpvZ5hIkmrAbsDcyWN67Xax4D5WcZh1VGWaTPMyizrHsN44Pdpj2EOyZnB74AzJN0t\naR4wETg64zgKp+dUsIqyzK33tBl5XaVU5WMHzs8y7jFExHxgmwHePzTL/Vq1rb56Mpy0/fbw3vd6\n2gyzRvNcSVZat92WTNN9882w+eZ5R2NWDIXvMZhlqcjTZpiVmQtDTqo8ztnM3PKYNqPKxw6cn7kw\nWAWcdVYydcZxx+UdiVk1uMdglfDMM0kz+pvfhEN9aYO1sEb0GFwYrDIWLIDOTrjqqqRImLUiN59L\nrMrjnHnltsUWyT0O++8PTzyR3X6qfOzA+dkwCkP6bIVVsgzGrF777ANf+lJyGetLL+UdjVk5DTqU\nJGkUMBk4CNiJpIgIeB24A/gZMDOr8R4PJdlIRcBBB8FKKyVTdcsTvFsLybTHIOlm4BbgN0B3RLyc\nvr8KsDWwL7BzROxaTwCDBubCYHVYuhR22SW5jPXYY/OOxqx5su4x7B4R/xwRc3qKAkBEvBwRd0bE\niSST4tkIVHmcswi59Uybcc45cM01jf3eRcgvS87PBi0MEfGypIMBJB002DpZBWZWr403hiuugClT\n4L778o7GrDyGvFxV0rHA/wJvi4jvNS0qPJRkjXPhhXDGGcnT39pa7lmB1moyHUqSNB0YC/wcGJsu\nm5VOHtNmmJXZUENJJwPPAIcAz6TL1iBVHucsYm6NnDajiPk1kvOzFd3HsCgifgFkeLuQWfbGjIHL\nL08a0pdemnc0ZsW2wikxJH04Im7o996UiLgk08DcY7AMeNoMq7pmTYkxXdKPJK0haZykWST3MJiV\nTrOmzTArs1oKw0Tgz8A8khvefhER+2caVQuo8jhn0XOrd9qMoudXL+dntRSGdYBtgYeBV4BNpBVP\nMpDOrTRHUrekeyWdlr4/VtL1kh6QdJ0kX0BoTXfCCfCOd8DnP59MoWFmy9XSY3gAOD0iLpS0OnA6\n8P6I2GmF31xaPSKWShoD3AocQzIM9XREnCHpOGCdiDh+gG3dY7BMLV0KO++czKvkaTOsKpryPAZJ\nb4uI/+333sSIuKnmnSQF5SZgKvBLYGJELJY0DuiKiDc9yt2FwZrhsceSJvQFF8Bee+UdjVn9mtJ8\n7l0UJJ2UvldTUZA0SlI3sBi4MSIWABtExOJ0lcXABsMNugqqPM5Zptx6ps2YOrX2aTPKlN9IOD8b\nM8z19wNOqnXliFgGdEhaG/itpA/2+zwkDXpaMHXqVNrb2wFoa2ujo6ODzs5OYPnBLetyd3d3oeJp\n5eUJE2DKlC523x3mz++kra1Y8XnZy0Mtd3V1MWPGDIA3fl/Wa1iP9pQ0NyK2HtGOpH8FXgI+C3RG\nxJOSxpOcSXgoyXJ31FFw//0wezaMHp13NGYjk8ejPT+Q7njlFa0oab2eK44krUYyRfdckuc7TElX\nmwLMHGYMZplo5LQZZmW2wsIg6SZJbweIiNclbQfcVcP3Hg/8Pu0xzAFmRcTvgO8Cu6dXO+2WLrec\nnlPBKiprbrVOm1HW/Grl/KyWHsOpwDWSfgBsBOxJcnXRkCJiPrDNAO8/C3x4eGGaNce668KVVybT\nZmy2mafNsNZUU48hbRpfDzwFbB0RT2YemHsMlqNZs+CII5JnOGy0Ud7RmNWuKT2GtGn8A2AXkiuS\nbpK0dz07NSu6eqfNMCuzWprP6wLbRsQdEXE+sAdwVLZhVV+Vxzmrkttg02ZUJb/BOD+r5Qa3r0XE\nS72W/5ekOJhVmpTMxLpgAZx5Zt7RmDXPoD0GSRcBP4qI/zfI59sDX4yIz2QSmHsMVhCeNsPKJNO5\nkiRtCRwL7ADcDywCBIwDNgNuB86MiHvqCWDQwFwYrEBuuy3pN9x8M2z+ptsxzYoj0+ZzRMyPiEOB\nLYHvAL8juTLp28BWETE1q6LQCqo8zlnF3CZMgNNOg/32g6uu6so7nExV8fj1VvX8GmHQ+xgk/Qdw\nDXBDRNwJ3Nm0qMwK6PDD4e67Ydq05BLWrUc0OYxZ8Q01lLQDyc1suwGvAr8Fro2IeU0JzENJVkDL\nlsHFF8OJJ8IBB8C3vgVtftSUFUjWQ0l3RsT0iNgFOAB4DJiWPpHtIkkH1LNjszIaNSo5c7j3Xnjl\nFXj3u5PpM/w3jFVJTZPoRcTTEfHztOewNXAf8I+ZRlZxVR7nrHJukOS37rpw/vnJ9Bnf/z7suivM\nn593ZI3RCsfPhjbc2VVJx3eOjIjvZBCPWalst10ybcbBB8OHPgRHHw3PP593VGb1GarHMNTfP5tF\nxAqn3q6HewxWNk89BccfD9deC9/7XvIsadU10ms2fFnfx7AYmAQsGeDj2yNiw3p2vMLAXBispG6/\nPZlnaexYOO88eM978o7IWknWk+jNBtaMiIX9v4Canvlsg6vyOGeVc4MV57fTTnDXXckNcRMnwje+\nAS++2JzYGqHVj58NfVXSYRFxyyCfHZRdSGblN2YMHHlk0pBetCi5eumKK3z1kpXDsJ753EweSrIq\nufnmZHhpww3hBz9IHgJkloU8nvlsZiOw664wdy585CPJ9Br//M+wdGneUZkNzIUhJ1Ue56xybjDy\n/FZaKZlOY948ePjhpCl95ZXFG17y8bNMC4OkjSXdKGmBpHskfTV9/yRJj0uam35NyjIOsyLZaCO4\n7DK48MLk8ta9904KhVlRZNpjkDQOGBcR3ZLWBP4HmEwyxcYLEXH2ENu6x2CV98orcM45yX0PX/kK\nHHccrLZa3lFZmRW+xxART0ZEd/r6ReBPQM+j1X3rj7W8lVdOisEf/wj33APvfS9cfXXeUVmra1qP\nQVI7yTxLPdN3HylpnqQLJbXc/JRVHuescm6QTX6bbAL//d/wwx/CUUfB5MmwcGHDd1MTHz8b9HkM\njZQOI/03cFREvCjpR8Ap6cffAs4CDu+/3dSpU2lvbwegra2Njo4OOjs7geUHt6zL3d3dhYrHy8VY\nnjSpk/nz4ctf7mKrreC44zo55hi4445ixOfl4i13dXUxY8YMgDd+X9Yr8/sYJK0EXAVcExHnDvB5\nOzArIrbs9757DNbSHnkEvvY1+NOfkqk19tgj74isDArfY5Ak4ELg3t5FQdL4Xqt9DKjIhMVmjfP2\ntyeXs559Nnzxi/CJT8Djj+cdlbWCrHsME4BPAx/sdWnqnsDpku6WNA+YCBydcRyF03MqWEVVzg2a\nn9/ee8OCBcl9Dx0dcMYZydVMWfHxs6yvSro1IkZFREdEbJ1+XRMRh0bEVhHxvoiYHBGLs4zDrOxW\nWw1OPhnuvBNuvDEpEDfemHdUVlWeK8msZCJg5syk/zBhApx1Fowfv+LtrDUUvsdgZo0nJVN633sv\ntLfDVlvBuefCa6/lHZlVhQtDTqo8zlnl3KA4+a2xBpx6Ktx6K8yeDdtsk7yuV1Hyy0rV82sEFwaz\nkttsM7juOviXf0keJzplCix2187q4B6DWYW88AKccgrMmAHTp8MRR8Do0XlHZc2U6TOf8+bCYDZy\nCxbAl78Mzz8P//7vsMMOeUdkzeLmc4lVeZyzyrlBOfLbYovkctZp0+DjH4fPfhaefrq2bcuQXz2q\nnl8juDCYVZQEBx+cTKmx5prJDXLnnw+vv553ZFZ0HkoyaxHz5iXPnX711WR46QMfyDsiy4KHksys\nZu97H9xyS1Ic9t47aUw/+2zeUVkRuTDkpMrjnFXODcqd36hRMHVqMrw0alQyvHTRRbBs2fJ1ypxf\nLaqeXyO4MJi1oHXWSR4KNHt20nfYeWdIHxFi5h6DWatbtgwuvDC5Qe6Tn0wm61tnnbyjspFyj8HM\n6jZqFHzuc8ncS6+8AptumkzQ98gjeUdmeXFhyEmVxzmrnBtUN79114Uf/xjOP7+LVVaBbbeFAw6A\nOXPyjqyxqnr8GsmFwcz6WH99OP305IxhwgQ48MCkB/HrX/seiFbhHoOZDem115KicOaZyeWtX/ta\ncmXTGmvkHZkNxHMlmVnTRMBttyUPBrr1VvjCF+ArX4Fx4/KOzHpz87nEqjzOWeXcoHXzk5YPKd1+\nOyxZktwHcdhhcM89zY2xHlU/fo2QaWGQtLGkGyUtkHSPpK+m74+VdL2kByRdJ6ktyzjMrLH+8R+T\n+yAefDC5imn33WHSJLjhhuTMwsot06EkSeOAcRHRLWlN4H+AycBngKcj4gxJxwHrRMTx/bb1UJJZ\nSbz8MvzsZ3D22cnzH6ZNS5rWK6+cd2Stp3Q9BkkzgfPSr4kRsTgtHl0RsXm/dV0YzEomAn7726QP\nce+9cOSRSS/CN8w1T6l6DJLaga2BOcAGEdHz8MHFwAbNiqMoqjzOWeXcwPkNRUqGlK6/Hq6+OpmT\nadNN4atfhT//uXEx1qPqx68RxjRjJ+kw0i+BoyLiBWl5MYuIkDTgqcHUqVNpb28HoK2tjY6ODjo7\nO4HlB7esy93pxDRFicfLXs5i+ZJLOnniCTj22C623hr22KOTadPg738vRnxVWO7q6mLGjBkAb/y+\nrFfmQ0mSVgKuAq6JiHPT9+4DOiPiSUnjgRs9lGRWbS++mMzkeu65MH580ofYbz8/k7rRCt9jUHJq\ncAnwTEQc3ev9M9L3Tpd0PNDm5rNZa3j99eSS17POgqeeSm6Y+8xnfMNco5ShxzAB+DTwQUlz069J\nwHeB3SU9AOyWLreUnlPBKqpybuD86jV6NPzTP8Edd8Cll8Lvfw/t7XDiibBoUaa7Bqp//Boh0x5D\nRNzK4MXnw1nu28yKb6ed4Fe/goceSoaYttgiGV76+tdhyy3zjq51eUoMMyuMZ59NZng977ykMEyb\nltw8p7oGRlpL4XsM9XBhMGtdL78MP/95csOclBSIgw7yDXO1KEOPwQZR5XHOKucGzq8ZVlklaUjf\nfTd873vJXdVvfzucdlpyVlGPIuRXdC4MZlZYEnzkI3DddXDNNXD//fDOdyZ3VD/8cN7RVZeHksys\nVP7yl6QH8R//ARMnJsNMO+2Ud1TF4R6DmbWsF1+Eiy+Gc85JngkxbRpMnuwb5txjKLEqj3NWOTdw\nfkWx5prJkNKDDyZF4ayz4F3vgh/8ICkagylLfnlyYTCzUhs9GvbfP3l40E9/CjfdlDSqTzghGXay\n4fNQkplVzsMPJzfM/exnsM8+yRnFVlvlHVVzeCjJzGwAm26aDCk99BBsvnkyFfgeeyTPili2LO/o\nis+FISdVHuescm7g/Mpk7NhkSOmRR+Dgg+H442G99bo47DD45S/h+efzjrCYXBjMrPJWWQWmTIG5\nc5NLXbfeOrncdaONkik3zj03ObuwhHsMZtayXnwRbrgBrroKZs+GtdeGj34U9t4bdt4ZVlop7wiH\nz/cxmJk1yLJlyRlFT5F48MHkbGLvvWHPPWH99fOOsDZuPpdYlcZx+6tybuD8ym6w/EaNgve/H6ZP\nhz/8IXle9aRJcOWVyTQcO+4I3/kOzJsHVf+b1YXBzGwA48bxRpP6r3+FU05J/v34x2GTTeCLX0zO\nLpYuzTvSxvNQkpnZMEQkk/n1DDnddRfsumsy5PTRjyZFI0/uMZiZ5ey555L7I2bPTmaAHT9+eZHY\nYYfmz91U+B6DpIskLZY0v9d7J0l6vN8zoFtOlcdxq5wbOL+ya3R+bW3wyU8mz69+8snkCXQSfOlL\nsMEGcMghcNllsGRJQ3ebqax7DBcD/X/xB3B2RGydfl2bcQxmZk0xenQyBXhPk/qPf4QJE5I5nN72\nNujsTB489Kc/FbuBnflQkqR2YFZEbJkuTwdejIizVrCdh5LMrDKWLoUbb0x6E1ddlTymtOeeiYkT\nk5vwGqEUPYZBCsNngL8BdwHTIuK5AbZzYTCzSoqA+fOXF4kFC2C33ZIisddeSZ9ipArfYxjEj4C3\nAx3AImCYVbYsAAAGxklEQVTIM4eqqvI4bpVzA+dXdkXIT0pmez3xxGS68IceSi6Dve46eM974AMf\ngJNOSq54ymPSvzHN3mFE/LXntaQLgFmDrTt16lTa29sBaGtro6Ojg87OTmD5wS3rcnd3d6Hi8bKX\nvZzf8oIFXWy8MVx+eSevvgo//GEXd9yRLC9ZAtts08WOO8LXvtbJWmv13b6rq4sZM2YAvPH7sl55\nDCWNj4hF6eujgW0j4lMDbOehJDNreQ89lFwKO3s23HFHcgd2z+Wwm2765vUL32OQ9AtgIrAesBiY\nDnSSDCMF8AjwhYhYPMC2LgxmZr288AJcf33Sl7j6alhnneVFYsKEZNK/wvcYIuKgiNgwIlaOiI0j\n4qKIODQitoqI90XE5IGKQivoORWsoirnBs6v7Mqc31prJb2Iiy5KHlt66aWw+upwzDHwD/8ABx7Y\nmP14riQzsxIaNQq23RZOPjlpUi9YkEz61wieEsPMrEIKP5RkZmbl48KQkzKPc65IlXMD51d2Vc+v\nEVwYzMysD/cYzMwqxD0GMzNrOBeGnFR5nLPKuYHzK7uq59cILgxmZtaHewxmZhXiHoOZmTWcC0NO\nqjzOWeXcwPmVXdXzawQXBjMz68M9BjOzCnGPwczMGs6FISdVHuescm7g/Mqu6vk1gguDmZn14R6D\nmVmFuMdgZmYNl2lhkHSRpMWS5vd6b6yk6yU9IOk6SW1ZxlBUVR7nrHJu4PzKrur5NULWZwwXA/2f\nQno8cH1EvAv4Xbrccrq7u/MOITNVzg2cX9lVPb9GyLQwRMQtwJJ+b+8LXJK+vgSYnGUMRfXcc8/l\nHUJmqpwbOL+yq3p+jZBHj2GDiFicvl4MbJBDDGZmNohcm8/pZUcteenRwoUL8w4hM1XODZxf2VU9\nv0bI/HJVSe3ArIjYMl2+D+iMiCcljQdujIjNB9iuJQuGmVm96r1cdUyjAhmG3wBTgNPTf2cOtFK9\niZmZ2chkesYg6RfARGA9kn7CN4Ergf8CNgEWAgdEhLtBZmYFUdg7n83MLB9Nbz5LmiTpPkkPSjpu\nkHW+n34+T9LWw9k2b3Xmt1DS3ZLmSvpD86Ku3Yryk7S5pDsk/V3StOFsWwR15lfo41dDbgen/03e\nLek2SVvVum0R1JlfoY8d1JTffml+cyX9j6Tdat32TSKiaV/AaOAhoB1YCegG3t1vnb2Aq9PX2wN3\n1rpt3l/15JcuPwKMzTuPOvNbH/gA8G1g2nC2zfurnvyKfvxqzG1HYO309aQK/r83YH5FP3bDyG+N\nXq+3BB4a6fFr9hnDdmmwCyPiVeAyYL9+67xxA1xEzAHaJI2rcdu8jTS/3vdyFLnpvsL8IuKpiLgL\neHW42xZAPfn1KOrxqyW3OyLib+niHOCttW5bAPXk16Ooxw5qy+//ei2uCTxd67b9NbswbAQ81mv5\n8fS9WtbZsIZt81ZPfpDc03GDpLskfS6zKEeulvyy2LZZ6o2xyMdvuLkdDlw9wm3zUE9+UOxjBzXm\nJ2mypD8B1wBfHc62vTX7ctVaO91FrtxDqTe/nSPiL5LWB66XdF8k04oURT1XKpThKod6Y5wQEYsK\nevxqzk3SB4HDgAnD3TZH9eQHxT52UGN+ETETmClpF+Ankt50j1gtmn3G8ASwca/ljUmq11DrvDVd\np5Zt8zbS/J4AiIi/pP8+Bfya5BSwSOo5BlU5foOKiEXpv0U8fjXlljZk/xPYNyKWDGfbnNWTX9GP\nHQzzGKRFbQwwNl1veMevyQ2UMcDDJE2QlVlxc3YHljfAVrht3l915rc6sFb6eg3gNmCPvHMabn69\n1j2Jvs3nShy/IfIr9PGr8b/NTUialDuM9OdS0vwKfeyGkd+mLL8FYRvg4ZEevzwS3BO4Pz1AJ6Tv\nfQH4Qq91zks/nwdsM9S2RfsaaX7AO9ID1g3cU9b8gHEk45l/I5lZ91Fgzaocv8HyK8PxqyG3C4Bn\ngLnp1x+G2rZoXyPNrwzHrsb8vpHGPxe4Bdh2pMfPN7iZmVkffrSnmZn14cJgZmZ9uDCYmVkfLgxm\nZtaHC4OZmfXhwmBmZn24MJiZWR8uDGZm1ocLg1mNJG2bPghlFUlrSLpH0nvyjsus0Xzns9kwSPoW\nsCqwGvBYRJyec0hmDefCYDYMklYC7gJeAnYM/w9kFeShJLPhWY9kBs41Sc4azCrHZwxmwyDpN8DP\nSWbkHB8RR+YcklnDNfsJbmalJelQ4OWIuEzSKOB2SZ0R0ZVzaGYN5TMGMzPrwz0GMzPrw4XBzMz6\ncGEwM7M+XBjMzKwPFwYzM+vDhcHMzPpwYTAzsz5cGMzMrI//D7prQArQbUy7AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x9890390>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical Units: \n",
+ "8.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.10:pg-552"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.10\n",
+ "# Page: 552\n",
+ "\n",
+ "print('Illustration 10.10 - Page: 552\\n\\n');\n",
+ "\n",
+ "# Solution\n",
+ "import math\n",
+ "#****Data****#\n",
+ "B = 1150;# [kg/h]\n",
+ "#*******#\n",
+ "\n",
+ "# x and y are taken in weight ratio.\n",
+ "x1_prime = 0.0101;# [Wt. fraction]\n",
+ "xF_prime = 0.0101;# [Wt. fraction]\n",
+ "y2_prime = 0;# [Wt. fraction]\n",
+ "x2_prime = 0.001001;# [Wt. fraction]\n",
+ "y1_prime = 0.0782;# [Wt. fraction]\n",
+ "# From Illustration 10.4:\n",
+ "A = 990.0;# [kg/h]\n",
+ "# At the dilute end:\n",
+ "m1_prime = 0.798;\n",
+ "Value1 = m1_prime*B/A;\n",
+ "# At the concentrated end:\n",
+ "m2_prime = 0.953;\n",
+ "Value2 = m2_prime*B/A;\n",
+ "ValueAv = (Value1*Value2)**0.5;\n",
+ "# From Eqn. 10.116:\n",
+ "# Since y2_prime = 0\n",
+ "Value3 = x2_prime/x1_prime;\n",
+ "NtoR = (math.log((1.0/Value3)*(1-(1/ValueAv))+(1/ValueAv)))/(1-(1/ValueAv));\n",
+ "print\"Number of theoretical Unit : \",round(NtoR,1),\"\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.10 - Page: 552\n",
+ "\n",
+ "\n",
+ "Number of theoretical Unit : 8.6 \n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter10_1.ipynb b/Mass_-_Transfer_Operations/Chapter10_1.ipynb
new file mode 100755
index 00000000..df27b4e6
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter10_1.ipynb
@@ -0,0 +1,1366 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9fbb8ba54aec06ad3c69036b535306d5fcf2bbf41aaf2bb73bb23d87c87b8396"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10: Liquid Extraction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.1: Page 494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.1\n",
+ "# Page: 494\n",
+ "\n",
+ "print'Illustration 10.1 - Page: 494\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "xF = 0.30;# [mol fraction]\n",
+ "yS = 0;# [mol fraction]\n",
+ "S1 = 40.0;# [kg]\n",
+ "B1 = 40.0;# [kg]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data at 20 OC:\n",
+ "# Wa: Wt. percent of a\n",
+ "# Wb: Wt. percent of b\n",
+ "# Wc: Wt. percent of c\n",
+ "# Data1 = [Wc Wa Wb]\n",
+ "# Data1: water layer\n",
+ "Data1 = numpy.array([(0.69 ,98.1, 1.2),(1.41, 97.1 ,1.5),(2.89 ,95.5 ,1.6),(6.42 ,91.7 ,1.9),(13.30, 84.4, 2.3),(25.50 ,71.1 ,3.4),(36.70 ,58.9 ,4.4),(44.30 ,45.1 ,10.6),(46.40 ,37.1 ,16.5)])\n",
+ "# Data2: isopropyl ether layer\n",
+ "Data2 = numpy.array([(0.18 ,0.5 ,99.3),(0.37, 0.7 ,98.9),(0.79, 0.8, 98.4),(1.93 ,1, 97.1),(4.82, 1.9, 93.3),(11.40, 3.9, 84.7),(21.60, 6.9, 71.5),(31.10, 10.8, 58.1),(36.20 ,15.1 ,48.7)])\n",
+ "\n",
+ "plt.plot((Data1[:,2])/100,(Data1[:,0])/100,label=\"x Vs fraction ether\")\n",
+ "plt.plot((Data2[:,2])/100,(Data2[:,0])/100,label=\"y Vs fraction ether\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='lower center');\n",
+ "ax=pylab.gca()\n",
+ "ax.set_xlabel(\"Wt fraction of isopropyl ether\");\n",
+ "ax.set_ylabel(\"Wt fraction of acetic acid\");\n",
+ "plt.ylim((0,0.3))\n",
+ "plt.xlim((0,1))\n",
+ "plt.show();\n",
+ "# x: Wt fraction of acetic acid in water layer.\n",
+ "# y: Wt fraction of acetic acid in isopropyl layer.\n",
+ "\n",
+ "# The rectangular coordinates of Fig 10.9(a) will be used but only upto x = 0.30\n",
+ "\n",
+ "# Stage 1:\n",
+ "F = 100;# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "M1 = F+S1;# [kg]\n",
+ "# From Eqn. 10.5:\n",
+ "xM1 = ((F*xF)+(S1*yS))/M1;\n",
+ "# From Fig. 10.15 (Pg 495):\n",
+ "# Point M1 is located on the line FB and with the help of tie line passing through M1:\n",
+ "x1 = 0.258;# [mol fraction]\n",
+ "y1 = 0.117;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E1 = (M1*(xM1-x1)/(y1-x1));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R1 = M1-E1;# [kg]\n",
+ "\n",
+ "# Stage 2:\n",
+ "S2 = 40;# [kg]\n",
+ "B2 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M2 = R1+B2;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM2 = ((R1*x1)+(S2*yS))/M2;\n",
+ "# Point M2 is located on the line R1B and the tie line passing through R2E2 through M2:\n",
+ "x2 = 0.227;\n",
+ "y2 = 0.095;\n",
+ "# From Eqn. 10.8:\n",
+ "E2 = (M2*(xM2-x2)/(y2-x2));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R2 = M2-E2;# [kg]\n",
+ "\n",
+ "# Stage 3:\n",
+ "S3 = 40;# [kg]\n",
+ "B3 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M3 = R2+B3;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM3 = ((R2*x2)+(S3*yS))/M3;\n",
+ "# Point M3 is located on the line R2B and the tie line passing through R3E3 through M3:\n",
+ "x3 = 0.20;# [mol fraction]\n",
+ "y3 = 0.078;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E3 = (M3*(xM3-x3)/(y3-x3));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R3 = M3-E3;# [kg]\n",
+ "Ac = x3*R3;\n",
+ "print\"The composited extract is\",round((E1+E2+E3),2),\" kg\\n\"\n",
+ "print\"The acid content is \",round(((E1*y1)+(E2*y2)+(E3*y3)),2),\" kg\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# If an extraction to give the same final raffinate concentration were to be done in single stage, the point M would be at the intersection of tie line R3E3 and the line BF.\n",
+ "x = 0.20;# [mol fraction]\n",
+ "xM = 0.12;# [mol fraction]\n",
+ "# From Eqn. 10.6:\n",
+ "S = F*(xF-xM)/(xM-yS);# [kg]\n",
+ "print round(S,2),\"kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.1 - Page: 494\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYcgIDklABAZBBQNBVwQxjAkHE+6aFxVE\nEfUjKauACfOqCLKoiGIAhQVX1wCiRGeMICBZQUFBEdAFBCQNDMP5/qia6WaYUBOqq8N5n6ee7sqn\nz3T3nbq3615RVYwxxpiilAs6AGOMMbHBCgxjjDGeWIFhjDHGEyswjDHGeGIFhjHGGE+swDDGGOOJ\nrwWGiKSJyEoRWSUiA/NZ30VElojIIhH5RkTO9bqvMcaYyBK/7sMQkSTge+B8YD0wH7hOVVeEbVNN\nVXe5z08C3lPV5l72NcYYE1l+XmG0A1ar6lpVzQImAV3CN8gpLFyHAZu97muMMSay/CwwGgLrwuZ/\ndZcdREQuF5EVwMdA3+Lsa4wxJnL8LDA81XWp6vuq2hK4FHhTRMTHmIwxxpRQeR+PvR5oFDbfCOdK\nIV+q+rmIlAdqudsVua+IWEdYxhhTAqpa7H/O/bzCWAAcIyIpIlIRuAaYHL6BiDTLuaIQkZMBVHWL\nl31zqKrn6dprlQkTvG8fS9OQIUMCjyFaJsuFMz3+2eM0/2tzDhw4EHgs0TDZ+yI0lZRvBYaq7gd6\nA9OB74C3VHWFiPQSkV7uZlcAy0RkEfAv4NrC9i1tTLt3Q9WqpT1KdFq7dm3QIUQNy4Xj7tPvZtOG\nTbz17VtBhxIV7H1Ren5WSaGqH+M0Zocveyns+dPA0173La1du+K3wDAmrwpJFejYqCN3Tr+TTs06\nUatKraBDMjEuoe703r0bqlULOgp/dO/ePegQooblIuTu/7ubq46/irtn3B10KIGz90Xp+XbjXiSI\niBYn/jZt4PXXoW1bH4MyJsrs2LuDE0adwLjLx3FO03OCDsdEARFBo6zRO+rEcxtGRkZG0CFEDctF\nSEZGBtUrVeeFi16g14e92JO1J+iQAmPvi9JLqAJj1674rZIypjCXHncpreu35vHPHw86FBPDEqpK\nqmZN+PFHqGVtfyYBbdyxkdajWzP7xtmcVO+koMMxAbIqKQ/iuUrKmKI0qN6Ax859jJ5TepJ9IDvo\ncEwMSpgCY/9+Z6pUKehI/GH1syGWi5C8ubjl5FuomFSRFxe8GExAAbL3ReklTIGRc3VhPVWZRFZO\nyvHypS/z8KcPs277uqJ3MCZMwrRh/PYbtG4Nv//uc1DGxIBHPn2EbzZ+w/vXvI/195l4rA2jCNZ+\nYUzIwI4DWbVlFe+ueDfoUEwMSZgCI95/Umv1syGWi5CCclGpfCXGXDqGvtP6si1zW2SDCoi9L0ov\nYQoMu8Iw5mAdG3fksmMvY9CsQUGHYmJEwrRhpKfDww+D/ZNhTMj2zO2cMOoEJl4xkTObnBl0OCZC\nrA2jCPFeJWVMSRxe+XBGdh7JrR/eyt79e4MOx0S5hCkw4r1KyupnQywXIV5y8beWf6NFnRb884t/\n+h9QgOx9UXpWYBhjeL7z87ww/wVWbCr1OGUmjiVMG8aoUbB8ufNojDnUqPmj+Peyf/PZTZ9RThLm\nf8mEZG0YRbDR9owp3G1/uY0DeoAx34wJOhQTpRKmwIj3Kimrnw2xXIQUJxflpBxjLh3D/en3s2HH\nBv+CCoi9L0rPCgxjTK4TjjiB2065jb4f9w06FBOFEqYNo3dvOO446NPH56CMiXGZ+zNpPbo1T5//\nNF1adAk6HOMDa8Mogl1hGONN5fKVefmSl+n9cW/+3Ptn0OGYKGIFRpyw+tkQy0VISXNxdsrZpDVL\n497Z95ZtQAGy90XpJVSBYXd6G+Pd0xc8zbsr3mXOujlBh2KiRMK0YZx3HgweDOef73NQxsSR/3z7\nHx759BEW9lpIxaSKQYdjyoi1YRQh3qukjPHDVcdfRUpyCkO/HBp0KCYKJFSBEc9VUlY/G2K5CClt\nLkSEUReP4tm5z/LDlh/KJqiA2Pui9BKmwLA7vY0pmcaHN+aBsx7g1im3EstV2Kb0fG3DEJE0YASQ\nBLyiqk/lWd8VuAcQYAdwu6ouddetBf4EsoEsVW2Xz/E9t2EceSTMnw8NG5b89RiTqLIPZNPh1Q70\nOqUXN598c9DhmFIqaRuGbwWGiCQB3wPnA+uB+cB1qroibJsOwHequt0tXB5S1fbuujXAKar6RyHn\n8FxgJCfDmjVQs2aJX5IxCW3Jb0u44M0LWHb7MuodVi/ocEwpRGOjdztgtaquVdUsYBJw0G2jqjpH\nVbe7s18DR+U5RrFfUEHifQAlq58NsVyElGUuWtdvzc1tb6bftH5ldsxIsvdF6flZYDQE1oXN/+ou\nK8jNwEdh8wrMEpEFItKzNIFkZYEqVKhQmqMYYx48+0EWbFjA1B+mBh2KCYCfVVJXAGmq2tOdvx44\nTVUP6c1JRM4BXgA6qupWd1kDVd0oInWBmUAfVf08z36eqqS2b4fGjZ1HY0zpzP5pNj0m9+DbO77l\nsIqHBR2OKYGSVkmV9yMY13qgUdh8I5yrjIOISCtgDE7hsjVnuapudB83ich7OFVcn+fdv3v37qSk\npACQnJxMmzZtSE1NBUKXoMcem0rVqqH5vOtt3uZt3vv8eanncU7KOXQf0Z3e7XoHHo/NFz2fkZHB\n2LFjAXK/L0tEVX2ZcAqjH4EUoCKwGGiZZ5vGwGqgfZ7lVYHq7vNqwJdAp3zOoV6sWqV69NGeNo1Z\n6enpQYcQNSwXIX7lYvOuzVpvaD2d9+s8X47vB3tfhLjfncX+XvetDUNV9wO9genAd8BbqrpCRHqJ\nSC93sweBmsCLIrJIROa5y+sDn4vIYpzG8A9VdUZJY4n3Bm9jIq121doM6zSMnlN6kpWdFXQ4JkIS\noi+pOXPgzjth7twIBGVMglBVOk/ozDkp5zDwjIFBh2OKIRp/Vhs14r1bEGOCICK8ePGLDP1qKD/+\n8WPQ4ZgISIgCIxG6Bclp4DKWi3B+56JpzaYMPmMwvT7sFfXdhtj7ovQSosCwnmqN8U+/9v3YmrmV\nN5e+GXQoxmcJ0Ybx2mvwxRfOozGm7C3cuJDOEzqz/Pbl1K1WN+hwTBGsDaMQiVAlZUyQTm5wMje0\nuoG7ZtwVdCjGRwlRYCRCo7fVz4ZYLkIimYuHUx/mi1++YPrq6RE7Z3HY+6L0EqLAsCsMY/xXrWI1\nRl88mtun3s6ufbuCDsf4ICHaMP7xD6hXD+6+OwJBGZPgrn/3ehoc1oChnWxY12hlbRiFSIQqKWOi\nxfALh/PG0jdYuHFh0KGYMlZggSEiV4jI38IeD5oiGWRpJUKVlNXPhlguQoLIxRHVjuDp85+m55Se\n7D+wP+LnL4i9L0qvsCuMS92pB/Aq0NWdXnGXxQy7D8OYyLqx9Y3UrFyTkV+PDDoUU4aKbMMQkZnA\njep2Ny4iDYBxqtopAvEVymsbxsUXwx13OI/GmMhY/cdq2r/Snvk959O0ZtOgwzFh/GzDaAT8Fjb/\nO0635DEjEaqkjIk2zWs15x+n/4M7Proj6rsNMd54KTBmAdNFpLuI3IQzjOpMf8MqW4nQ6G31syGW\ni5CgczGgwwA27NjAxOUTA40Dgs9FPPBSYPQBRgNtgFbAS5rPMKvRzK4wjAlGhaQKjLl0DANmDGDL\n7i1Bh2NKKSHuw2jaFGbPhqOPjkBQxphD9J/Wn+17t/N6l9eDDsXgQxuGiHzpPu4UkR15pj9LE2yk\nJUKVlDHR7NFzHuWTNZ/wyZpPgg7FlEKBBYaqdnQfD1PV6nmmGpELsfQSoUrK6mdDLBch0ZKL6pWq\nM+qiUfT6sBd7svYEEkO05CKWFdmGISLtRaRG2HwNETnN37DKjqrdh2FMNLj42Is5ucHJPPrZo0GH\nYkrIy30Yi4GTVfWAO58ELFDVthGIr1Be2jAyMyE52Xk0xgTrt52/0erFVsy6cRat6rUKOpyE5Wtf\nUjmFhfs8G0gq7omCkgjVUcbEivqH1eeJ857glsm3kH0gO+hwTDF5KTDWiEhfEakgIhVFpB/wk9+B\nlZVEafC2+tkQy0VINObi5rY3U6l8JV5bFNkhMKMxF7HGS4FxG9ARWA/8CrQHbvUzqLJkVxjGRBcR\nYWTaSB5If4BtmduCDscUQ9zfh7FwIdxyi/NojIkevab0omqFqjyb9mzQoSSckrZhlPdw4CrAzcDx\nQOWc5aoaEz3W2i+kjIlOj537GCeMOoFbT7mVlnVbBh2O8cBLldSbQD0gDfgUpzPCnX4GVZYSpUrK\n6mdDLBch0ZyLutXqct+Z99F/ev+IdE4YzbmIFV4KjOaq+gCwU1XHARcBMXMfRqI0ehsTi+449Q5+\n/fNXpvwwJehQjAdeCox97uN2ETkJSAbq+hdS2UqUKqnU1NSgQ4galouQaM9FhaQKjLhwBHdNv4vM\n/f7eLBXtuYgFXgqMMSJSC7gfmAx8Bzzta1RlKFGqpIyJVRc0u4ATjziRZ+dY43e0K7LAUNUxqvqH\nqn6qqk1Vta6qjvZycBFJE5GVIrJKRAbms76riCwRkaUi8qWItPK6r1eJUiVl9bMhlouQWMnFsE7D\nGDZnGOv/XO/bOWIlF9HM053eJeF2IfI8TmP58cB1IpL3pxA/AWepaivgUeDlYuzriV1hGBP9mtVq\nxq2n3Mqg2YOCDsUUwrcCA2gHrFbVtaqaBUwCuoRvoKpzVHW7O/s1cJTXfb1KlCsMq58NsVyExFIu\n7j3zXtLXpDNn3Rxfjh9LuYhWfhYYDYF1YfO/ussKcjPO8K8l2bdAidLobUysO6ziYTx5/pP0ndaX\nA6Hu60wU8XLjXm9ggqpudedrAtep6qgidvX8w2oROQfogdMFSbH27d69OykpKQAkJyfTpk2b3P8k\nMjIyWLUKWrQIzQMHrY+X+fD62WiIJ8j5nGXREk+Q84sXL6Z///5RE09R8w21IRXKVWDs4rEcvf3o\nMj3+iBEjDvl+CPr1Rmo+IyODsWPHAuR+X5aIqhY6AUvyWbbYw37tgWlh84OBgfls1wpYjXO/R3H3\n1aJ07ar65ptFbhbz0tPTgw4halguQmIxF/PXz9f6z9TXbXu2lelxYzEXfnG/O4v8/s87eRkPYxnQ\nWg8eD2Opqp5QxH7lge+B84ANwDycK5MVYds0Bj4BrlfVucXZ191Oi4r/r3+FG26Av/2t0M2MMVHk\nlsm3kFw5mWc6PRN0KHHJz/EwpgOTROQ8ETkfpwF6WlE7qep+oLe7/3fAW6q6QkR6iUgvd7MHgZrA\niyKySETmFbZvMV8bkDiN3sbEkyfOe4JxS8bx/ebvgw7FhPFyhZGE0535ee6imcAr6gykFCgvVxhn\nnglPPOE8xrOMjIzcustEZ7kIieVcDJ8znFk/zeKjrh8VvbEHsZyLsubbFYaqZqvqi6p6pTu9FA2F\nhVd2H4Yxsal3u978tPUnpv4wNehQjKvAKwwReVtVrxKR5Rz6qyVV52a7QHm5wmjRAt5/33k0xsSW\naaun0efjPiy/fTmVylcKOpy4UdIrjMIKjCNVdYOINAHyHlhV9ecSxFmmvBQYjRvDF184j8aY2HPp\nxEs5s/GZ3NPxnqBDiRtlXiWlqhvcp3eoc8d17gTcUcI4I27XrsRo9A6/ByHRWS5C4iEXwzsN5+kv\nn2bjjo2lOk485CJoXn4l1SmfZReVdSB+sTu9jYltx9Q+hpvb3szg2YODDiXhFVYldTvOlUQz4Mew\nVdWBL1W1q//hFa6oKqnsbKhQwXmUYl98GWOixY69O2jxQgvevfpdTjsqZsZvi1p+tGEcjnOPxJPA\nQELtGDtUdUtJAy1LRRUYO3dC/frOozEmto1bPI5RC0Yx5+Y5lBM/u8GLf360YWx32yyuBRoD57jt\nF+VEpGnJQ42cRKqOsvrZEMtFSDzl4obWNwDw5pI3S7R/POUiKEUW0yLyEHAPTn9OABWBCT7GVGbs\nHgxj4kc5KcfItJEMnj2YHXt3BB1OQvJyp/cSoC3wjaq2dZctjYX7ML79Fq6+2nk0xsSH7u93p161\nejx1wVNBhxKz/OxLam9Ox4PuiWLmR6qJVCVlTKL453n/5NVFr7Jqy6qgQ0k4XgqMt0XkJSBZRG4F\nZgOv+BtW2UiUezDA6mfDWS5C4jEXDao3YGDHgdw1465i7RePuYg0L31JDQX+607HAg+o6ki/AysL\ndoVhTHzq174f32/+no9XfRx0KAnFSxtGU+A3Vd3jzlcB6rm/mApUUW0Yb78Nb70F77wTwaCMMREx\n9Yep3DXjLpbdvoyKSRWDDiem+NmG8Q4Q3jvtAXdZ1LOxMIyJXxcfezHNajbjua+fCzqUhOGlwEhS\n1X05M6q6F6jgX0hlJ5GqpKx+NsRyERLvuXj2wmd58ssn+X3n70VuG++5iAQvBcZmEemSM+M+3+xf\nSGUnkRq9jUlEx9U5jm6tu3Hv7HuDDiUheGnDaI5zo96R7qJfgRtUdbXPsRWpqDaMRx6B/fudR2NM\nfNqeuZ0WL7RgynVT+MuRfwk6nJjg54h7q1X1NOB4oKWqdoiGwsKLRKqSMiZRHV75cB4/93H6ftyX\nov4BNqXjqQcvEbkEuB24S0QeFJEH/Q2rbCRSlZTVz4ZYLkISJRfd23Qn60AWE5YV3GtRouTCT176\nknoJuBroi9Nj7dVAE5/jKhN2hWFMYsjpZ2rQrEHs3GfdU/vFSxvGMlU9Kaf/KBE5DJimqmdEJsRC\nYyu0DePaa+Hyy51HY0z8u+G9G2hUoxFPnPdE0KFENT/vw9jjPu4WkYbAfqB+cU8UBLvCMCaxPHX+\nU7z8zcv8+MePRW9sis1LgTFFRGoCQ4FvgLXARD+DKiuJVGBY/WyI5SIk0XJxZPUjGdBhAANmDDhk\nXaLlwg9efiX1qKpuVdX/AilAC1V9wPfIykAiNXobYxx3driT5f9bzowfZwQdStwpsg0jmhXVhtG6\nNbzxhvNojEkck7+fzKBZg1hy2xIqJMVExxQR5WcbRsyyvqSMSUyXHnspjQ5vxAvzXwg6lLhSYIEh\nIh3dx8qRC6dsJdIQrVY/G2K5CEnUXIgIIy4cweOfP86mXZuAxM1FWSrsCiNnzIs5JT24iKSJyEoR\nWSUiA/NZ30JE5ohIpogMyLNurYgsFZFFIjKvJOdPpEZvY8zBWtZtyfUnXc99n9wXdChxo8A2DBH5\nGlgKdAEm4dy0l0NVtW+hBxZJAr4HzgfWA/OB61R1Rdg2dXFuArwc2Kqqw8LWrQFOUdU/CjlHoW0Y\nFSo4hUYFq8I0JiFty9xGi+db8FHXjzi5wclBhxM1/GjDuARnONY9OD+nzTsVpR2wWlXXqmoWTqHT\nJXwDVd2kqguArAKOUewXlCPLPaIVFsYkruTKyTx6zqPWz1QZKbDAcL/MJwFdVHWcqo4Nm8Z5OHZD\nYF3Y/K/uMq8UmCUiC0SkZzH2AxKvOsrqZ0MsFyGWC+jRtge7s3bz4Osx0QVeVCvvYZstIvIekNMV\nyGdAP1X9tYj9Slucd1TVjW611UwRWamqn+fdqHv37qSkpACQnJxMmzZtSE1NZdcuKF8+g4wMSE1N\nBUIfHpuP7/kc0RJPkPOLFy+OqniCmh/ZeSQX972Y0xudTucLOgceT6TnMzIyGDt2LEDu92VJeOlL\nahbOeBjj3UVdga6qekER+7UHHlLVNHd+MHBAVZ/KZ9shwM7wNgwv6wtrw1i9GtLSnEdjjPn7f/9O\ns5rNePTcR4MOJXB+3odRV1VfV9UsdxoLHOFhvwXAMSKSIiIVgWuAyQVse1DgIlJVRKq7z6sBnYBl\nHs6Zy+7BMMaEe/qCpxm1YBRrtq4JOpSY5aXA2CIiN4hIkoiUF5Hr8TBEq6ruB3oD04HvgLdUdYWI\n9BKRXgAiUl9E1gF3AveLyC9ub7j1gc9FZDHwNfChqhbrPv9EugcDrK46nOUixHIRsnrhau5sf2e+\n/UwZb7y0YfQAngOGu/NfATd5Obiqfgx8nGfZS2HPfwMa5bPrTqCNl3MUJNEavY0xRRvQYQDHjzqe\n2T/N5ryjzws6nJgTt31JTZ4Mr7ziPBpjTI53V7zLg+kPsvi2xZQv5+V/5vhjfUnlYVcYxpj8/LXF\nX6l/WH1enP9i0KHEnLguMBKp0dvqqkMsFyGWi5CcXIgI/0r7F49+9iibdxfZHGvCxG2BkWiN3sYY\n70444gSuPfFaHvgkJob2iRpe7sOoDFyBM3hSToWfquoj/oZWtMLaMJ56Cv74w3k0xpi8tu7ZSosX\nWjDj+hm0rp9Yg+b42YbxAXAZTn9PO91pV3FPFGmJViVljCmemlVq8nDqw/SdZv1MeeWlwGioqteo\n6tOqOixn8j2yUkq0Kimrqw6xXIRYLkLyy0XPk3uyPXM7b3/3duQDikFeCoyvRKSV75GUMfuVlDGm\nKEnlkhjZeSR3z7yb3Vm7gw4n6nlpw1gBNAfWAHvdxaqqgRcihbVh9OgBZ5zhPBpjTGGueecaWtZp\nyUOpDwUdSkSUtA3Dy10rnd3HnG/mEo9REUl790KlSkFHYYyJBUMvGErbl9pyU5ubaJLcJOhwolaR\nVVKquhZIxmn4vhQ43F0W1RKtwLC66hDLRYjlIqSwXDQ+vDF92/XlHzP/EbmAYlCRBYaI9MPp2rwu\nUA8YLyKFDs8aDfbtg4oVg47CGBMr7u54N/PXzyd9TXrQoUQtL20Yy4D2qrrLna8GzFXVkyIQX6EK\na8O48EK46y7n0RhjvHj727d59LNHWdhrYVz3M+V3X1IHCngetRKtSsoYU3pXHn8ltarU4uVvXg46\nlKjkpcB4HfhaRB4SkYeBucBr/oZVeolWYFhddYjlIsRyEeIlFyLCyM4jeSjjIf7Y84f/QcUYL43e\nw3HGv9gKbAG6q+qzfgdWWtaGYYwpiVb1WnHV8VfxYPqDQYcSdQpswxCRGqr6p4jUylnkPiqAqgZe\n/BbWhnHiiTBpkvNojDHFsWX3Flq+0JLZN87mpHqBN9eWOT/aMCa6jwuBb3DG6F7gPv+m2BFGWKJV\nSRljyk7tqrUZcvYQ+k3rZ/1MhSmwwFDVi93HFFVtmneKXIglk2hVUlZXHWK5CLFchBQ3F73+0ovN\nuzfz7op3/QkoBnm5D2O2l2XRxq4wjDGlUb5cef6V9i8GzBjAnqw9QYcTFQprw6gCVAXSgdSwVTWA\naarawvfoilBYG0bNmvDTT86jMcaU1JX/uZJW9Vrx4Nnx0whe0jaMwgqM/kA/4EhgQ9iqHcDLqvp8\nSQItS4UVGNWqwf/+Z2NiGGNKZ+22tZzy8iks6rWIxoc3DjqcMlHmjd6qOsJtq/hHnvaLVtFQWBQl\n0aqkrK46xHIRYrkIKWkuUpJT6H1qb+6eeXfZBhSDvNy4pyKSW7EjIjVF5A4fYyq17GxQhfLxe2e/\nMSaCBp4xkLm/ziVjbUbQoQTKS19SS1S1dZ5li1W1ja+ReVBQldTu3VC7NuyxdipjTBl557t3eOTT\nR+Kinyk/+5IqJyK524lIElChuCeKpH37Eqs6yhjjvytaXkGdqnUYvWB00KEExkuBMR2YJCLnicj5\nwCRgmr9hlU6itV+A1VWHs1yEWC5CSpuLnH6mHv70YTbt2lQ2QcUYLwXGQJyf1t4O3AbMAu7xM6jS\n2rs3sW7aM8ZExolHnMjfT/w7931yX9ChBKLINoxSHVwkDRgBJAGvqOpTeda3wOkNty1wn6oO87qv\nu02+bRirV0NamvNojDFlaVvmNlo834Kpf5/KKUeeEnQ4JeJbG4aIHCsi74jIdyKyxp1+8rBfEvA8\nkAYcD1wnIi3zbLYF6AM8U4J9C5SIVVLGmMhIrpzM4+c+Tp+P+3BAY2J4oDLjdTyM0cB+4BxgHDDB\nw37tgNWqulZVs3DaPrqEb6Cqm1R1AZBV3H0Lk4hVUlZXHWK5CLFchJRlLm5qexNZB7KYsNTLV2H8\n8FJgVFHVWTjVV2tV9SHgYg/7NQTWhc3/6i7zojT72q+kjDG+KifleK7zcwyaPYg/9/4ZdDgR4+XH\nxJluFdFqEemN002Ilw43StM44nnf7t27k5KSAkBycjJt2rRBJJVKlUL/UaSmpgLxPZ+amhpV8dh8\n9MzniJZ4gprPWVZWx8tcnclJu0/isc8e4+kLng789RU2n5GRwdixYwFyvy9LwsuNe6cCK4Fk4FGc\nzgefVtW5RezXHnhIVdPc+cHAgQIar4cAO3Mavb3uW1Cj94wZMHQozJxZ6EszxphS+W3nb5w46kS+\n7PElx9U5LuhwPPOl0du9srhGVXeo6jpV7a6qfyuqsHAtAI4RkRQRqQhcA0wu6FSl2PcQidjonfe/\nyURmuQixXIT4kYv6h9Vn8BmDE2agpUILDFXNBs4QkWKXRKq6H+iNc+Pfd8BbqrpCRHqJSC8AEakv\nIuuAO4H7ReQXETmsoH29ntvaMIwxkdLntD78vP1npvwwJehQfOelSmo0ThfnbwO73cWqqoEPQ1VQ\nldS//w1TpsDEifnsZIwxZWzmjzO5beptfHvHt1QuXznocIrkZ19SlXHulzgXuMSdLi3uiSIpEauk\njDHBuaDZBbSq14phXw0reuMYVmCBISI5DcwfqepNeacIxVciiVglZXXVIZaLEMtFiN+5GN5pOMPn\nDmfd9nVFbxyjCrvCuNhtuxgcqWDKil1hGGMirWnNpvzfqf8X1wMtFTZE61CgJ3AYkHdkCVXVGj7H\nVqSC2jCGDoXff4dnnslnJ2OM8cnurN20fKEl4y4fR2pKatDhFMiPIVrvVtVknCqp6nmmwAuLwiRi\nlZQxJnhVK1RlWKdh9P24L/sP7A86nDJXZKO3ql4WiUDKUiJWSVlddYjlIsRyERKpXMTzQEtefiUV\ncxKx80FjTHSI54GWfB0Pw28FtWH07w9NmsCddwYQlDHGAP0+7kfm/kxeuvSloEM5hJ/jYfTzsiya\nWBuGMSZoD5/zMB98/wHfbPgm6FDKjJcqqe75LIvq+zASsUrK6qpDLBchlouQSOciuXIyj537GH0+\n7hM3/UwVduPedSIyBWgqIlPCpgycO7+jViI2ehtjok+Ptj3IOpDF+KXjgw6lTBR2H0YToCnwJDCQ\nUI+yfwLiz2DNAAAbmElEQVRL3Q4CA1VQG8bVV8OVVzqPxhgTpLm/zuWK/1zBiv9bQY1K0XFHgh9t\nGH/D6WzwTFX9VFUz3GlhNBQWhUnEKiljTHRqf1R7Ljj6Ah777LGgQym1wgqMo4ARwP9E5DMReUJE\nLhGRWhGKrcQSsUrK6qpDLBchlouQIHPx5PlP8tqi1/h+8/eBxVAWCrvTe4Cqng7Ux+lP6g+gB/Ct\niHgemyII9ispY0w0iZeBlrz8SqoKzrCsh7vTBsDLiHuBScQqqfBxixOd5SLEchESdC7iYaCl8gWt\nEJExwPHADmAe8BUwXFW3Rii2EkvEKiljTHSrmFSRf6X9i9un3k6nZp1iYqClvAq7wmgMVAJ+A9a7\n07ZIBFVaiVhgWF11iOUixHIREg256NSsU0wPtFRYG8aFQDtgGKDAXcACEZkhIo9EKL4S2bcv8aqk\njDGxIZYHWvLUl5SINAJOBzriDNFaW1UP9zm2IhV0H0ZKCqSnQ9OmkY/JGGOK8mD6g/yw5QcmXTkp\nkPOX+X0YItJPRN4SkV+AT3HG8V4B/BWI6p/WJmKVlDEmdgw6YxBzfp1DxtqMoEMplsLaMFKA/wDt\nVfVoVb1eVV9U1SWqmh2Z8EomEaukoqF+NlpYLkIsFyHRlIuqFaryzAXPxNxASwX+SkpVY7Zz8MxM\nqBx7P0CIWs7Q7sZERizfp1AcVx5/JS8ueJHRC0bTu13voMPxJO7Gw1CFpCTYvx/KxeXwUJHn1ncG\nHYZJAIn2Xlv+v+WcO+5cvvu/76hTtU7EzuvbeBixJjPTqY6ywsIYE+1OPOJErjvxOu6bfV/QoXgS\nd1+ru3dD1apBRxF50VQ/a0w0itbPSCwNtBR3BcaePYlZYBhjYlMsDbQUdwVGol5hBN1PjjHRLpo/\nI7Ey0JKvBYaIpInIShFZJSIDC9hmpLt+iYi0DVu+VkSWisgiEZnn9ZyJWmCYyLv//vupW7cuRx55\npO/nmjBhAhdeeKHv5ynK2rVrKVeuHAcOHAg6lLhSTsrxXOfnGDR7EDv27gg6nAL5VmCISBLwPJCG\n04nhdSLSMs82FwHNVfUY4FbgxbDVCqSqaltVbef1vIlaYERr/Ww0SUtLY8iQIYcs/+CDD2jQoEGx\nvgR/+eUXhg8fzsqVK9mwYUNZhpnvl3LXrl2ZPn16mZ7Hi5SUFD755JOIn9cP0f4ZyRlo6dHPHg06\nlAL5eYXRDlitqmtVNQuYBHTJs81lwDgAVf0aSBaRemHri/2zr927oUqVEkZs4lr37t0ZP/7QS/43\n33yT66+/nnLF+GndL7/8Qu3ataldu3a+6/fvL/3NWNFQn+3nz1zLIkfxJtoHWvKzwGgIhPeu9au7\nzOs2CswSkQUi0tPrSRO10Tua62f99OOPP1K7dm0WLVoEwIYNG6hbty6fffbZIdt26dKFLVu28Pnn\nn+cu27p1K1OnTuXGG28E4KOPPuKEE06gRo0aHHXUUQwbdmivorNmzaJTp05s2LCB6tWr06NHD37+\n+WfKlSvHa6+9RpMmTTj//PMBuOqqq2jQoAHJycmcffbZfPfdd7nH2bNnDwMGDCAlJYXk5GTOOuss\nMjMzOeusswBITk6mRo0azJ07l7Fjx3LmmWfm7vvVV19x6qmnkpycTLt27ZgzZ07uutTUVB588EHO\nOOMMatSowYUXXsiWLVsKzOGHH35ImzZtqFmzJh07dmTZsmUA3HDDDfzyyy9ceumlVK9enWeeeSZ3\nn/Hjx9OkSRPq1q3LE088kbtcVXnyySdp3rw5derU4ZprrmHrVmdEhJwrp7w5ipRY+IzkDLTUf3r/\nqPiH4RCq6ssEXAGMCZu/HnguzzZTgI5h87OAk93nR7qPdYHFOGOL5z2H5jVpkurVVx+y2JRCfnmO\nJmPGjNHjjz9ed+/erZ06ddK77767wG179uypt9xyS+786NGjtW3btrnz9evX1y+++EJVVbdt26YL\nFy7M9zgZGRl61FFH5c6vWbNGRUS7deumu3fv1szMTFVVff3113Xnzp26b98+7d+/v7Zp0yZ3nzvu\nuEPPOecc3bBhg2ZnZ+ucOXN07969unbtWhURzc7Ozt329ddf1zPOOENVVbds2aLJyck6fvx4zc7O\n1okTJ2rNmjX1jz/+UFXVs88+W5s3b66rVq3SPXv2aGpqqg4aNCjf17Fw4UI94ogjdN68eXrgwAEd\nN26cpqSk6L59+1RVNSUlRWfPnn3I67z11ls1MzNTlyxZopUqVdKVK1eqquqIESO0Q4cOun79et23\nb5/26tVLr7vuukJzFC7a32uRsHf/Xm3xfAv9YOUHvp3DzXPxv9dLspOnA0N7YFrY/GBgYJ5tRgPX\nhs2vBOrlc6whwIB8lmu3bt10yJAhOmTIEH322Wf1nnvStXt3Jynp6emanp6em6R4ns957sfxvXyI\nnXvsSzeVxmWXXaYnnniitm7dOvfLLj9ffPGFJicn6969e1VV9fTTT9cRI0bkrm/cuLG+9NJLun37\n9kLPl56enm+BsWbNmgL32bp1q4qI/vnnn5qdna1VqlTRpUuXHrJdzrEKKjDeeOMNPe200w7ap0OH\nDjp27FhVVU1NTdXHH388d92oUaM0LS0t35huu+02feCBBw5adtxxx+lnn32mqgUXGOvXr89d1q5d\nO33rrbdUVbVFixYHbb9hwwatUKGCZmdne8pR+HutrN/Pzz77bNR8Xouan756ujbo3UCnz5peJsdL\nT0/Xbt265X5fRmOBUR74EacTw4ruVULLPNtcBHykoQJmrvu8KlDdfV4N+BLolM85NK/nn1e9445D\nFse98DdKWYuF//omT56sIqKvvPJKkds2b95cJ02apKtXr9YKFSro//73v9x18+fP1y5dumjNmjX1\n7LPP1jlz5uR7jIIKjP379+cuy87O1oEDB2qzZs20Ro0ampycrCKiP/30k/7+++8qIrpr165Djl1U\ngfHkk0/qVVddddA+1157rT7xxBOq6hQYr776ar775tW5c2etWrWqJicn507VqlXTSZMmqWrBBUZ4\nbOHnq1KlSu5rzZmqVKmiGzZsyDdHefn5XvPzM+KHyyddro99+pgvxy5pgeFbG4aq7gd6A9OB74C3\nVHWFiPQSkV7uNh8BP4nIauAl4A539/rA5yKyGPga+FBVZ3g5b6L+SioW6mf9snPnTvr3788tt9zC\nkCFDcuvMC3LjjTfyxhtvMH78eNLS0qhbt27uur/85S+8//77bNq0icsvv5yrr766WLGEd9Q4YcIE\nJk+ezOzZs9m+fTtr1qwBnH/S6tSpQ+XKlVm9enWhx8hPw4YN+fnnnw9a9vPPP9OwYd4mwqI1btyY\n++67j61bt+ZOO3fu5JprrvEUS37HmzZt2kHH2717Nw0aNMjdJqjOLGPtM5Iz0NIv238JOpRcvt6H\noaofq+pxqtpcVf/pLntJVV8K26a3u761qi50l/2kqm3c6cScfb3Ys8d+JZVo+vXrR7t27Xj55Ze5\n+OKLue222wrd/sYbb2TmzJm88sordOvWLXd5VlYWEyZMYPv27SQlJVG9enWSkpJKHNfOnTupVKkS\ntWrVYteuXdx7772568qVK0ePHj2466672LhxI9nZ2cyZM4d9+/ZRt25dypUrx48//pjvcTt37swP\nP/zAxIkT2b9/P2+99RYrV67kkksuyd3G+SeyaD179mT06NHMmzcPVWXXrl1MnTqVnTt3AlCvXr0C\n48jPbbfdxr333ssvvzhfcps2bWLy5Mme9zchTWs2pU+7Pvxjxj+CDiWX3ekdJ6L9N+Z++eCDD5gx\nYwYvvujcwjN8+HAWLlzIxIkTC9ynSZMmdOzYkd27d3PZZZcdtG78+PE0bdqUww8/nJdffpkJEyYU\neJy8/ynnnb/xxhtp0qQJDRs25MQTT6RDhw4HbfPMM89w0kknceqpp1K7dm0GDx6MqlK1alXuu+8+\nOnbsSK1atfj6668Rkdx9a9euzYcffsiwYcOoU6cOzzzzDB9++CG1atXKN5bwffM65ZRTGDNmDL17\n96ZWrVocc8wxvPHGG7nrBw8ezGOPPUbNmjUZPnx4vq8zXL9+/bjsssvo1KkTNWrUoEOHDsybF7rv\nNsiu8mPxMzKw40DmrZ/H7J9mBx0KEIfdm/ftC82bO4+JJCMjw7dL7kTrctoEx8/3mp+fET+9t+I9\n7k+/n8W9FlMhqUKZHNO6N3cl6hVGLH4QjImkWP2MXN7ichpWb8jz854POpT4KzAS9cY9Y0x8EhFG\ndh7J458/zm87fws0lrgrMBK1a5BYrJ81JpJi+TPSok4LbmpzE4NmDQo0jrgsMOwKwxgTbx44+wFm\n/jSTOevmFL2xT6zAiBOxWj9rTKTE+mekRqUaPHX+U/T+uDfZB7IDicEKDGOMiRFdT+pKlfJVeHXR\nq4GcP+4KjERt9I7l+lljIiEePiMiwvMXPc8D6Q/wx54/In7+uCsw7ArDGBPP2tRvwxUtr+CBTx6I\n+LnjssBIxF9JxXr9bCyyIVpjSzx9Rh479zHeWfEOi39bHNHzxl2BYX1JmYLYEK3FF09DtMaTWlVq\n8UjqI/T5uE9Ee2GIuwIjMzMxC4x4qJ/1mw3RWnzxNERrvH1Gbjn5FnZn7ebfy/4dsXPGVYGxfz8c\nOADlywcdiYmUoUOHcuWVVx60rG/fvvTv3/+QbW2I1vwlyhCt8SapXBLPd36ee2bdw469OyJz0pIM\nohEtE3kGW9m5U7Vq1QLHDDEllDfP0WTjxo1arVo13bZtm6qqZmVl6RFHHFHg0Ko2ROvBbIjW2Nft\nvW5694yChyXOD9E24l4kprxvrs2bVWvVKlbejAdePsQ8RKmnkkpLS9MxY8aoquqUKVP0hBNOKHBb\nG6L1YNE8RKvxZuOOjVr7qdq6YtMKz/uUtMCIq8qbvXuhUqWgowhG0F0365Dg6tu7devG6NGjueWW\nWxg/fjw33HBDgdt27NiROnXq8N577/GXv/yF+fPn8/777+eu/+9//8tjjz3GoEGDaNWqFU8++STt\n27f3HEujRo1ynx84cIB7772Xd955h02bNuW2kWzevJk9e/aQmZlJs2bNiv16N2zYQOPGjQ9a1qRJ\nk4Ma3+vXr5/7vEqVKrkDIuX1888/88Ybb/Dcc8/lLsvKyiqyIT/8+FWrVs09/s8//8xf//rXg9qD\nypcvz++//547H56jSAr6M+KX+ofV574z76Pvx32Zfv10X8ccias2jMxMqFw56ChMpHXp0oWlS5ey\nfPlypk6dSteuXQvd3oZoDUmkIVrjWe92vVm/Yz3vr3y/6I1LwQqMOBGP/zl5VaVKFa644gr+/ve/\nc9ppp3HUUUcVur0N0RqSSEO0xvNnpEJSBf6V9i8GzBhAVnaWb+exAsPEhW7durF8+fJCq6Ny2BCt\nIYk0RGu8O//o8zm65tG8vvh1384RV0O0fvUVDBgAc4Lr/TcwiT5E67p162jRogW///47hx12WNDh\nmBKyIVpLZ866OVzzzjWs6rOKSuULbtC1IVqxK4xEdeDAAYYNG8Z1111nhYVJaB0adeCkeicxZuEY\nX44fV1cYb78NEybA+/62+yScaL7C2LVrF/Xq1aNp06ZMmzatRA2/JnpE83stVnyz4RsunXgpq/uu\npmqF/HtitSsMYOlSaNUq6ChMJFWrVo2dO3eybNkyKyyMAU458hTaH9WeF+e/WObHjqsCY/FiaNMm\n6CiCEW/95BhT1hLpM/Jw6sM8/dXT7NyX//03JWUFhjHGxJmT6p3EuU3P5bmvnyt642KImzaMzZuh\nWTPYuhWK0emo8cDqlU2k2Hut7Hy/+XvOeP0MVvVZRXLl5IPWlbQNI266BlmyBFq3tsLCL/b7eWNi\ny3F1juOSYy9h6JdDefy8x8vkmL5+vYpImoisFJFVIjKwgG1GuuuXiEjb4uwbrkMHCLvfKOH4WT9b\nkk7KgpzS09MDjyFapljMhV8SqQ0jx8OpDzP6m9Fs3LGxTI7nW4EhIknA80AacDxwnYi0zLPNRUBz\nVT0GuBV40eu+eVWtCikpZf0qYsfixZEdqjGaWS5CLBchiZiLxoc3pnvr7jyY/mCZHM/PK4x2wGpV\nXauqWcAkoEuebS4DxgGo6tdAsojU97ivCbNt27agQ4galosQy0VIoubivrPu49OfP2XE3BGlPpaf\nBUZDYF3Y/K/uMi/bHOlhX2OMMUWoVaUWM2+YyfPznuenrT+V6lh+Nnp7rYy01tQysHbt2qBDiBqW\nixDLRUgi56JJchOW37GcyuVL13eSbz+rFZH2wEOqmubODwYOqOpTYduMBjJUdZI7vxI4G2ha1L7u\ncvv9nTHGlIBG2c9qFwDHiEgKsAG4BrguzzaTgd7AJLeA2aaqv4vIFg/7lugFG2OMKRnfCgxV3S8i\nvYHpQBLwqqquEJFe7vqXVPUjEblIRFYDu4CbCtvXr1iNMcYULabv9DbGGBM5MXFfdGluAIw3ReVC\nRLq6OVgqIl+KSNz23+v15k4ROVVE9ovI3yIZXyR5/IykisgiEVkuIhkRDjFiPHxG6ojINBFZ7Oai\newBh+k5EXhOR30VkWSHbFO97M+i7Oj3c9ZkErAZSgArAYqBlnm0uAj5yn58GzA067gBz0QE43H2e\nlsi5CNvuE+BD4Iqg4w7wfZEMfAsc5c7XCTruAHPxEPDPnDwAW4DyQcfuQy7OBNoCywpYX+zvzVi4\nwijpDYD1IhtmRBSZC1Wdo6rb3dmvgaMiHGOkeL25sw/wDrApksFFmJdc/B34r6r+CqCqmyMcY6R4\nycVGoIb7vAawRVX3RzDGiFDVz4GthWxS7O/NWCgwSnoDYDx+UXrJRbibgY98jSg4ReZCRBrifFnk\njCQTrw12Xt4XxwC1RCRdRBaIyA0Riy6yvORiDHCCiGwAlgD9IhRbtCn292Ys9FZb0hsA4/HLwfNr\nEpFzgB5AR//CCZSXXIwABqmqitPdbrz+DNtLLioAJwPnAVWBOSIyV1VX+RpZ5HnJxb3AYlVNFZFm\nwEwRaa2qO3yOLRoV63szFgqM9UCjsPlGOCVhYdsc5S6LN15ygdvQPQZIU9XCLkljmZdcnIJzjw84\nddWdRSRLVSdHJsSI8ZKLdcBmVd0D7BGRz4DWQLwVGF5ycTrwOICq/igia4DjcO4dSyTF/t6MhSqp\n3BsARaQizk18eT/wk4EbIfcO822q+ntkw4yIInMhIo2Bd4HrVXV1ADFGSpG5UNWjVbWpqjbFace4\nPQ4LC/D2GfkAOENEkkSkKk4j53cRjjMSvORiJXA+gFtnfxxQuk6WYlOxvzej/gpDS3EDYLzxkgvg\nQaAm8KL7n3WWqrYLKma/eMxFQvD4GVkpItOApcABYIyqxl2B4fF98QTwuogswfmn+R5V/SOwoH0i\nIhNxulqqIyLrgCE4VZMl/t60G/eMMcZ4EgtVUsYYY6KAFRjGGGM8sQLDGGOMJ1ZgGGOM8cQKDGOM\nMZ5YgWGMMcYTKzBMsYnIsyLSL2x+uoiMCZsfJiJ3ikgTETlkpMSw7Ya63Us/VdA2xYipv4hUCZuf\nKiI1CtunlOerKyJfi8g3ItIxz7oxItLSr3OXFRHpLiLPFWP71iLSOWz+IREZ4E90JhpZgWFK4guc\n7hUQkXJAbeD4sPUdgC9xxmb/eyHH6QmcpKoHjVkgIkkliKkfTh9JAKjqxar6ZwmO49V5wFJVPUVV\nvwxfoao91acRIkWkLG+2Le5NWG1xusQu6f4Hcd87JobYH8yUxBycQgHgBGA5sENEkkWkEtASWAQ8\nCZzpDtpzUI+gIjIZOAxYKCJXi8hYERktInOBp9xBj74SkYXiDAR1rLtfkog8IyLL3EFfeotIH+BI\nIF1EZrvbrRWRWu7zu9ztl+XE4XYdsUJEXnavcqaLSOW8L9Td7hP3XLNEpJGItAGeArq4r61ynn0y\nRORkESnnvq5l4gxo1d9d30ZE5rrHfFdEksP2G+Eec5mInOouf0hE3hSRL4Bx7pXbQTG52+XkcL6I\nfC8iF7vLPxWR1mHxfSGFDKwlItXEGXznazf/l4lIBeAR4Bo3vqvdzY8XpwfcH92/Q84xrnf3X+TG\nVM5dvtP9+y0G2hcUg4lSQQ/yYVNsTjh97zQCbgV64XyZdMbpHfczd5uzgSmFHGNH2PPXcfq2yel9\noDqQ5D4/H3jHfX478B+gnDtf031cA9QKO94aoBZOB4RLgSpANZzCrQ3OADtZQCt3+7eArvnEOAW4\nwX1+E/Ce+7wbMLKA15WO0zPsKcCMsOU13MelwJnu84eBZ8P2e8l9fibuwDc4A/7MByoVEdNYQgPi\nNMfpcLASTn9BOec4FpjvPu8OPJdP/E/k5AJn4KXvca7eDnrNblxf4nQ3URvYjNMdR0v3b5nz9xsV\nFu8B4Mqg3782lWyyKwxTUl/hVEudjnPFMcd93gGnygqK35342+p+q+B8Ub0jzvCSwwlVeZ2H86V6\nAEAL741XgDOAd1V1j6ruwumY8Uyc6pQ1qrrU3fYbnEIkr/bAv93n493j5Ry7qNf3I3C0OMNgXohz\nFXY4zoiIn7vbjAPOCttnovu6PgdquNsrMFlV9xYRk+IUpqjT8eRPOB3rvQ1c4lZn9cApnAvTCRgk\nIotwCrFKQON8XrMCH6pqlqpuAf4H1Mf5G50CLHCPcS5O9SRANvDfIs5volTUdz5ootaXOFcTJwHL\ncP6b/QewHXithMfcHfb8UWC2qv5VRFJwvrhyFKcg0jzbC6G6971hy7NxrkLyU6JxNFR1m1sVdCFw\nG3A1cGcxj50T6+48y73GpKq6R0RmApcDV+Fc/YQfOz9/0zxjZYjIaflsty/seTah75RxqnpvPttn\nhv1TYGKMXWGYkvoKuARneEt1/9NPxrnC+Mrd5k+cqqWSqAFscJ93D1s+E+iV0zAuIjXd5TsIDbuZ\nQ4HPgctFpIqIVMP50vwc71+4XwHXus+7Ap953E9EpDZOtcy7wANAW3Ua4reKSM5VwQ1ARs4+ON1x\n467f5m6fN9aCYhLgKnE0A47GqU4CeAUYCczT0BC+BeVgOtA37IW0dZ/uoOi/pwKzgStFpK67fy1x\nut03Mc4KDFNSy3HqreeGLVuK8yX3R9h8togsztvo7cr7n2b4/NPAP0VkIU69eM66V4BfgKVuw2nO\nz3ZfBqblNHrnHlB1EU7d/jw31jGqusTD+XP0AW4SpyvsroSG89QCtg8/VkOchvhFwJvAYHddN2Co\ne8xWOO0/Oftkuq95FM4Qu/mdq7CYfnFf60dAL1Xd5+ZhIc7VX3h1VEGv4VGggttQvxynnQWcq7zj\n8zR6H7K/Or8Qux+Y4cY4A6eqKt/tTeyw7s2NiRIikg4McL/cS7L/6zg/Mng3n3VHAumqelwpwzQJ\nzK4wjIlzInIjztVVfm0KxnhmVxjGGGM8sSsMY4wxnliBYYwxxhMrMIwxxnhiBYYxxhhPrMAwxhjj\niRUYxhhjPPl/ptoLDFmMWJUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7727f28>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The composited extract is 135.05 kg\n",
+ "\n",
+ "The acid content is 13.01 kg\n",
+ "\n",
+ "\n",
+ "\n",
+ "150.0 kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.2: Page 497"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.2\n",
+ "# Page: 497\n",
+ "\n",
+ "print'Illustration 10.2 - Page: 497\\n\\n'\n",
+ "\n",
+ "print'Illustration 10.2 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:kerosene c:Nicotine\n",
+ "xF = 0.01;# [wt fraction nicotine]\n",
+ "F = 100.0;# [kg]\n",
+ "B = 150.0;# [kg]\n",
+ "#******#\n",
+ "\n",
+ "# Equilibrium data:\n",
+ "# x_prime = kg nicotine/kg water\n",
+ "# y_prime = kg nicotine/kg kerosene\n",
+ "# Data = [x_prime y_prme]\n",
+ "Data = numpy.array([[0 ,0],[0.001011 ,0.000807],[0.00246, 0.001961],[0.00502, 0.00456],[0.00751, 0.00686],[0.00998 ,0.00913],[0.0204, 0.01870]])\n",
+ "xF_prime = xF/(1-xF);# kg nicotine/kg water\n",
+ "A = F*(1-xF);# [kg]\n",
+ "AbyB = A/B;\n",
+ "\n",
+ "def f64(x):\n",
+ " return -AbyB*(x-xF)\n",
+ "x = numpy.arange(0,0.01+0.001,0.001);\n",
+ "plt.plot(Data[:,0],Data[:,1],label=\"Equilibrium line\")\n",
+ "plt.plot(x,f64(x),label=\"Operating Line\");\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.2(a)\")\n",
+ "plt.show()\n",
+ "# The operating line and equilibrium line intersect at:\n",
+ "x1_prime = 0.00425;# [kg nicotine/kg water]\n",
+ "y1_prime = 0.00380;# [kg nicotine/kg water]\n",
+ "extract = A*(0.01011-x1_prime);\n",
+ "print extract*100,\"% of nicotine is extracted.\\n\\n\"\n",
+ "\n",
+ "print'Illustration 10.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "B = 50.0;# [kg]\n",
+ "# For each stage:\n",
+ "AbyB = A/B;\n",
+ "def f65(x1):\n",
+ " return -AbyB*(x1-xF)\n",
+ "x1 = numpy.arange(0,0.01+0.001,0.001)\n",
+ "def f66(x2):\n",
+ " return -AbyB*(x2-0.007)\n",
+ "x2 = numpy.arange(0,0.01+0.001,0.001)\n",
+ "def f67(x3) :\n",
+ " return -AbyB*(x3-0.005)\n",
+ "x3 =numpy.arange(0,0.01+0.001,0.001)\n",
+ "\n",
+ "plot(Data[:,0],Data[:,1],label=\"Equilibrium line\")\n",
+ "plt.plot(x1,f65(x1),label=\"Operating Line from xF\")\n",
+ "plt.plot(x2,f66(x2),label=\"Operating Line from 0.007\")\n",
+ "plt.plot(x3,f67(x3),label=\"Operating Line from 0.005\")\n",
+ "plt.grid('on');\n",
+ "legend(loc=\"upper right\");\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0, 0.010))\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.2(b)\")\n",
+ "plt.show()\n",
+ "# The final raffinate composition:\n",
+ "x3_prime = 0.0034;# [kg nicotine/kg water]\n",
+ "extract = A*(0.01011-x3_prime);\n",
+ "print extract*100,\" % of nicotine is extracted.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.2 - Page: 497\n",
+ "\n",
+ "\n",
+ "Illustration 10.2 (a)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucTeX+wPHP10RFLqPkLlFEvyIjl1C6kFTSqURRdBMH\nnaSkG+WUiHM64uRSLlHkVkhuKZ0iQg2VW9SUe6nkFpmZ7++PtWZm281lz8xes/ae/X2/Xvs1e629\nLt/9WOY763nW8zyiqhhjjDFeKOJ3AMYYYwovSzLGGGM8Y0nGGGOMZyzJGGOM8YwlGWOMMZ6xJGOM\nMcYzlmRMTBGR6iKSKiJ5uvZF5E4RWRzuuAqaiFwrIu+EuG0vEXnR65hM4WRJxkQlEWkuIitF5ICI\n/CIin4pIwzCf4y8JSVXfVNVrw3ke91xFRWSWiHzvnvOKTLYZKiL73VeWv/RFpImILHXL5ScRmSEi\nFYI2ex4YEmJ444E7RaRc6N/IGIclGRN1RKQU8B7wHyAeqAw8Cxz36pQeHTfY/4DOwF7gpF7SItId\nuAm42H3d6K7LTBlgDHCO+zoETAw41qVAKVX9PJSgVPU4sBC4KzdfxhiwJGOiUy1AVfVtdRxT1aWq\n+hWAOJ4SkSQR2Scik93E9BfuNlcHLA8SkSnu4v/cnwdE5KB7h9BVRD4J2P4yEVnj3lF9LiJNAz5b\nLiLPuXdZB0VksYicmVkcqnpCVUeq6gogJZNN7gaGq+puVd0NDAe6ZnGsRao6W1UPq+ofwGigWcAm\n1wHLg8rhPyLyo4j8LiJrRaR50GGXA9dndj5jsmNJxkSjLUCKiEwSkTYiEh/0eTecX8otgRrAGcCo\nLI6lnHzXEPi+hfuztKqWUtVVgTuKSFlgAfAyUBb4F7AgKJ5OOMngbKAY0C+UL5iJusD6gOUNwIUh\n7ns58HXA8v/hlGGgz4F6OHeGbwEzRaRYwOeb3c+NyRVLMibqqOohoDlOQhgP/CQic0XkbHeTO4ER\nqpqkqkeAAUDHEBv7JYv3mbke2OK206Sq6nScX8bt0kIFJqrqNlU9BswA6ofyHTNxBvB7wPJBd122\nRORi4Gng0YDVZXCq0NK53+E393v8CzgVqB2wySGgdB5jNzHMkoyJSqq6WVW7qWpVnL/MK+HcUQBU\nBH4I2PxH4BSgfJjDqOQeO9AP7vo0ewPe/0EIiSELh4HAKr/S7rosich5wPtAH7caLs1vQcdCRPqJ\nyEa32u839/hnBWxSkpOTnDEhsSRjop6qbgEm4yQbgN1A9YBNqgHJwL5Mdj8ClAhYDnwKK6chynfh\nNKwHOsddH27fcPJdUD1OrgI7iYicAywFnlPVN4M+3oDTrpW2bQucO53bVLWMqsbjJJTAO7k6QGK+\nvoGJSZZkTNQRkdoi0ldEKrvLVXHaPj5zN5kGPOw+gnwG8AIwXVVTMzlcIk5V2inuI9C3kJFcfgZS\ngZpZhLIQqCUindz9bwcuwHnyLT3cXHyvU0XkNHcx8D3AG0BfEankfu++wKQsjlMZ+BAYparjMtnk\nfSDwEemSOEl4v4gUE5FnCLrTcbdfGOp3MSaNJRkTjQ4BjYHVInIYJ7lsAB5xP58ATMF5Ouw74CjQ\nO2D/wDuUp3GSyG/AICD9r35VPYrTn2SFiPwqIo0JeFBAVX8BbnDPux+nUf8GVf01i3MFP2QQbIsb\nayVgMXBERKq55xoLzAe+cr/r/MAEIiJfi0gnd/E+4FxgkIgccl8HA77Xl8DvItLIXbXIfW0FknCq\n9X4MOPZpOE+kTc4mdmMyJV5OWiYibXDqyeOA11R1aCbbjMS5gI8CXVX1S/cv0zdwnshRYJyqjnS3\nLwu8jVMtkQR0UNUDnn0JYwohEWkF9FTVm0PYthdQRVUf9z4yU9h4lmREJA7nL7NrcOqo1wCdVHVT\nwDZtgV6q2tb9K/E/qtrE7Z1cQVUT3eqOdcBNqrpZRIYB+1V1mIj0B+Lt4jfGmMjkZXVZI2Cb+xjp\nCWA6To/lQO1wb8FVdTVQRkTKq+peVU101x8GNuH06j5pH/dnew+/gzHGmHzwMslUBnYELO8kI1Fk\nt02VwA1EpDpwCbDaXVVeVdOeEtpH+B9LNcYYEyZeJplQ6+GCn75J38+tKpsFPOTe0Zy8oVPX512j\nkjHGmHw5xcNj7wKqBixXxblTyW6bKu46RKQoMBuYqqrvBmyzT0QqqOpeEakI/JTZyUXEko8xxuSS\nqoZ1QFgv72TWAue7fRWKAbcD84K2mYc7squINAEOqOo+ERHgdWCjqr6cyT53u+/vBt4lC6pqL1UG\nDhzoewyR8LJysLKwssj+5QXP7mRUNdl99HExziPMr6vqprThyVV1rKq+LyJtRWQbTs/rbu7uzXCG\nPN8gIl+66wao6iLgRWCGiNyL+wizV9+hsEhKSvI7hIhg5ZDByiKDlYW3vKwuQ1UXEtRLWJ1OZYHL\nvTLZ71OyuMtSp6PbNWEM0xhjjEesx38M6Nq1q98hRAQrhwxWFhmsLLzlaY9/P4mIFtbvZowxXhAR\nNMwN/55Wl0Ui55kCY7IWC3+cLF++nJYtW/odRkSwsvBWzCUZiI1fIiZv7I8QY8Ir5qrL3NtBHyIy\n0cCuDxPLvKgus4Z/Y4wxnrEkY0wMWr58ud8hRAwrC29ZkokBP/74IyVLlkyvBmrZsiWvv/46AG++\n+SbXXntt+rZFihThu+++C/nYwft7Kbu4jTGRyZJMBKlevTrFixenZMmS6a8+ffrk+7jVqlXj0KFD\n6Y3aIpL+/s4772Tx4sV5PnZ+98+NcMYd6+xpqgxWFt6KyafLIpWI8N5773HVVVf5HUpIUlJSiIuL\n8zsMY8Ju/nxo3hzi4/2OJPrZnUyUSE1NpV+/fpQrV46aNWsyevRoihQpQmpqKuDcBS1btix9+0GD\nBtGlSxfAGZspcNtAkyZNokWLFietW7BgATVr1qRcuXI89thj6dVskyZNolmzZvTt25ezzjqLQYMG\nnbR/ZucJrOIK3D8+Pp7zzjuPlStXMnHiRKpVq0b58uV54403QiqP4LiLFCnC2LFjqVWrFvHx8fTq\ndfJoRRMmTKBu3bqULVuWNm3a8OOPPwYfMqZYO0SGwLI4cQL69oU+fWDPHv9iKkwsyUSYrB6fHTdu\nHAsWLCAxMZG1a9cya9ask/p0BFYlpS3n1bvvvsu6dev44osvmDt3LhMmTEj/7PPPP6dmzZr89NNP\nPPnkkzkeKziuzz//nHr16vHrr7/SqVMnOnTowBdffMH27duZOnUqvXr14ujRo3mKe8GCBaxdu5YN\nGzYwY8aM9Oq0uXPnMmTIEN555x32799PixYt6NSpU57OYQqvnTuhZUvYuhXWrYO6df2OqHCwJBNE\nJDyvvFBV2rdvT3x8fPor7S5gxowZPPzww1SuXJn4+HieeOKJbPtz5KevR//+/SlTpgxVq1blH//4\nB9OmTUv/rFKlSvz973+nSJEinHbaabk+9rnnnsvdd9+NiNChQwd2797NM888Q9GiRWnVqhXFihVj\n27ZteYr78ccfp1SpUlStWpUrr7yS9evXAzBmzBgGDBhA7dq1KVKkCAMGDCAxMZEdO3bkcMTCy9oh\nMrRs2ZKlS+HSS+GGG2DePChb1u+oCg9rkwniZz88EWHu3LmZtsns2bOHqlUz5nerVq2aZ3EEn2f3\n7t2ZfpYX5ctnzJZ9+umnA1CuXLmT1h0+/JdJUENSoUKF9PfFixdPP84PP/zAQw89xCOPPHLS9rt2\n7cr39zHRLTUV/vlPGDMG3noLrrzS74gKH7uTiRIVK1Y8qR0huE2hRIkSHDlyJH157969eT5X8Hkq\nV66cvpxdNVyJEiUATqruyk8c4VKtWjXGjRvHb7/9lv46cuQITZo08Ts031ibDOzfD23bwuzZy1m3\nzhKMVyzJRJisqrk6dOjAyJEj2bVrF7/99hsvvvjiSb/w69evz/Tp00lOTmbt2rXMnj07z+0yw4cP\n58CBA+zYsYORI0dy++23h7RfuXLlqFy5MlOmTCElJYUJEyawffv2PMWQX4Ez/T344IO88MILbNy4\nEYDff/+dmTNn+hKXiQyrVkGDBlC/PvzrX1Cxot8RFV6WZCLMjTfeeFI/mVtuuQWA+++/n2uvvZZ6\n9erRsGFDbrnllpMS0uDBg9m+fTvx8fEMGjSIO++886TjZpVwghvmAW666SYSEhK45JJLuOGGG7j3\n3nuz3DZ43fjx43nppZc466yz2LhxI82aNcv2XHlNhDk96BD4efv27enfvz8dO3akdOnSXHTRRTHf\nxyZW22RUYeRIaNcORo2CF1+Eq69u6XdYhZoNkBmlkpKSqFGjBsnJyRQpYn8rhEthuT7MXx08CPfd\nB9u3w8yZUKOG3xFFHhsg0xgTFrHWJvPVV87TY2XLwooVJyeYWCuLgmZJJorZ3CfG5GzyZLjqKnjq\nKecpsjw8eW/ywarLjAlg10fhcewY9O4Nn3wCs2bB//2f3xFFPqsuM8aYEGzfDk2bwqFDsGaNJRg/\nWZIxJgYV5naId991Esy998K0aVCyZPbbF+ayiATW498YUyicOAFPPOE8OTZ/PjRu7HdEBqxNxpiT\n2PURnXbvhttvd+5apkyBM8/0O6LoZG0yxhgTZNkyaNgQ2rSB996zBBNpLMmYXPnkk0+44IILCvSc\nwdNHm/wrDO0Qqanw/PPQubNz9/Lkk5CXfsmFoSwimSWZCDNp0iQuuugiSpQoQcWKFenZsye///67\nb/EUKVKE7777Ln25RYsWbN682ZNzBU5wFih4+mhjfvnFGZZ/0SJYuxauvtrviExWLMlEkBEjRvD4\n448zYsQIDh48yKpVq/jhhx9o1aoVJ06cCPv5UlJSQtquoO4gMhvbzHgjmscu+/xzSEiACy+EDz+E\ngEHC8ySayyIaWJKJEAcPHmTQoEGMGjWK1q1bExcXxznnnMOMGTNISkpi6tSpgDOt8q233krHjh0p\nVaoUCQkJbNiwIf04u3fv5pZbbuHss8+mRo0avPLKK+mfpe3bpUsXSpcuzeTJk1mzZg1NmzYlPj6e\nSpUq0bt37/SEdvnllwNQr149SpYsycyZM1m+fPlJc7BUr16dESNGUK9ePcqUKUPHjh05fvx4+ufD\nhg2jUqVKVKlShddee+0vd0ahCJ7WuWXLljzzzDM0b96cUqVKce211/LLL7+kb79q1Souu+wy4uPj\nqV+/Ph9//HGuzmcik6ozqOUNN8C//w0vvQRFi/odlclR2pDohe3lfLW/ymq93xYuXKinnHKKpqSk\n/OWzu+++Wzt16qSqqgMHDtSiRYvq7NmzNTk5WYcPH67nnnuuJicna0pKijZo0EAHDx6sJ06c0O++\n+05r1KihixcvPmnfuXPnqqrqH3/8oevWrdPVq1drSkqKJiUlaZ06dfTll19OP7eI6Pbt29OXP/ro\nI61SpUr6cvXq1bVx48a6Z88e/fXXX7VOnTo6ZsyY9O9UoUIF3bhxox49elTvvPNOLVKkyEnHC9Sy\nZUt9/fXX/7L++++/VxFJL5srrrhCzzvvPP3222/1jz/+0JYtW+rjjz+uqqo7d+7UM888UxcuXKiq\nqkuXLtUzzzxTf/7555D+HSL1+gi3jz76yO8QcuXgQdWOHVXr11fdti28x462svCSe/2H9Xex9ZMJ\nIs+Gp7pGB+auimn//v2cddZZmY6oXKFCBb744ov05YYNG/K3v/0NgL59+zJixAg+++wzihYtyv79\n+3nqqacAZ6rj++67j+nTp9O6dWsALrvsMtq1awfAaaedRoMGDdKPe8455/DAAw/w8ccf89BDD4Uc\ne58+fdJnpbzxxhtJTEwEnCmj77nnHurUqQPAs88+y1tvvRXycbMiInTr1o3zzjsPcObamTdvHgBT\np06lbdu2tGnTBoBrrrmGhg0b8v7773PXXXfl+9ym4H3zDdxyC7RoAStXgjuhqokSlmSC5DY5hMtZ\nZ53F/v37SU1N/Uui2bNnz0lTFFepUiX9vYhQpUoVdu/ejYiwe/du4uPj0z9PSUlJr/YK3hdg69at\n9O3bl3Xr1nH06FGSk5Np2LBhrmIPnPb49NNPZ8+ePelxN2rUKMtz50fwOQOnWp45cybz589P/zw5\nOTnTKa1jWbS0Q0ydCg8/7FSNde3qzTmipSyilSWZCNG0aVNOPfVUZs+ezW233Za+/vDhwyxatIgh\nQ4akr9uxY0f6+9TUVHbu3EnlypWJi4vj3HPPZevWrZmeI7OG9R49epCQkMDbb79NiRIlePnll5k9\ne3ZYvlPFihVPijXwvVeqVatGly5dGDdunOfnMt45dgz+8Q+nYX/ZMrj4Yr8jMnllDf8RonTp0gwc\nOJDevXuzePFiTpw4QVJSEh06dKBq1ap06dIlfdt169bxzjvvkJyczMsvv8xpp51GkyZNuPTSSylZ\nsiTDhg3jjz/+ICUlha+//pq1a9cCmT8ldvjwYUqWLEnx4sXZvHkzr7766kmfly9fPtdTKKedp0OH\nDkycOJHNmzdz9OhRBg8enOO+J06c4NixY+mv5OTkbM8RrHPnzsyfP58lS5aQkpLCsWPHWL58Obt2\n7crVdyjsIrlvyPffQ7NmzmPKa9d6n2AiuSwKA0syEeTRRx/lhRdeoF+/fpQuXZomTZpwzjnnsGzZ\nMoq6j9GICDfddBNvv/02ZcuW5c0332TOnDnExcURFxfHe++9R2JiIjVq1KBcuXI88MADHDx4MH3f\n4DuZ4cOH89Zbb1GqVCkeeOABOnbseNI2gwYN4u677yY+Pp5Zs2bl+Jhx4Odt2rShT58+XHnlldSq\nVYumTZsCcOqpp2a5f48ePShevHj665577slx2ubAz6tUqcLcuXN54YUXOPvss6lWrRojRoxIfzLN\nRLZ585wxx+66C2bMgFKl/I7I5JeNXRZlnn32WbZt28aUKVP8DiXXNm3axEUXXcSff/4ZsVNGR/v1\nEa2Sk51Jxd56C95+2xlF2RQ8G7vMRN0vwHfeeYfjx4/z22+/0b9/f9q1axexCcb4Y88ep8f+l1/C\nF19Ygils7H97lIm2XvHjxo2jfPnynHfeeRQtWvQvbT7GH5HSDrF8uTO45VVXwfvvw1ln+RHD8oI/\naQyxp8uizMCBA/0OIVcWLlzodwgmAqWmwtChMHIkvPEGtGrld0TGK9YmY0wAuz689+uvTsP+r786\njfth7D5l8snaZIwxUW3tWmdwy1q14OOPLcHEAksyxsSggm6HUIVXX4XrroPhw+Ff/4qcwS2tTcZb\nMdkmE00N58ZEu8OHoXt3+PprZ+yx88/3OyJTkGKuTcYYU3A2bXIGt2zSxBmmv3hxvyMy2bE2GWNM\n1HjrLbj8cujXDyZMsAQTq3JMMiJSQUReF5FF7nJdEbnX+9BMuFids8PKIYOXZXH8OPz97zBwICxd\nCvfc49mpwsKuC2+FciczCVgCVHKXvwUeDuXgItJGRDaLyLci0j+LbUa6n68XkUsC1k8QkX0i8lXQ\n9oNEZKeIfOm+2oQSizHGe0lJ0Lw57N3rPElWv77fERm/5dgmIyJrVbWhiHypqpe46xJVNdvLR0Ti\ngC3ANcAuYA3QSVU3BWzTFuilqm1FpDHwH1Vt4n7WAjgMvKGqFwXsMxA4pKr/yuH81iZjTAFasMC5\na+nf35kDxp6viT5etMmE8nTZYRE5MyCIJsDvIezXCNimqknuftOBm4BNAdu0AyYDqOpqESkjIhVU\nda+qfiIi1bM4tl2+xkSI5GSnauyNN2DOHGeYfmPShFJd9ggwH6ghIiuBKUCfEParDATOUrXTXZfb\nbTLT261ee11EyoSwfUyzOmeHlUOGcJXF3r3QujV8/jmsWxedCcauC2/leCejqutE5Aqgtrtqi6qe\nCOHYodZVBd+V5LTfq8Bz7vvBwAgg0wcRunbtSvXq1QEoU6YM9evXT59qNe3CsuXYWU5MTIyoePxc\nTkxMzPfx1q+Hl15qyb33wuWXL2fjRjj77Mj4frYc2nLa+6SkJLwSUj8ZEWkGVMdJSgqgqm/ksE8T\nYJCqtnGXBwCpqjo0YJsxwHJVne4ubwauUNV97nJ1YH5gm0zQObL83NpkjPGGKrz0ktNrf9IkaGOP\n3hQavrTJiMhUoAaQCKQEfJRtkgHWAue7iWA3cDvQKWibeUAvYLqblA6kJZhs4qmoqnvcxZuBr7Lb\n3hgTPgcOwN13w759ThVZtWp+R2QiXShtMglAM1Xtqaq901457aSqyTgJZDGwEXhbVTeJSHcR6e5u\n8z7wnYhsA8YCPdP2F5FpwEqglojsEJFu7kdDRWSDiKwHriDEx6ljWeCtcSyzcsiQl7L44gtncMvq\n1eF//ys8CcauC2+F8nTZ10BFnLuRXFHVhcDCoHVjg5Z7ZbFv8F1P2vq7chuHMSbvVGH8eHjySRg9\nGjp08DsiE01C6SezHKgPfA4cd1erqrbzNrT8sTYZY/LvyBHo0cOZGnnWLKhdO+d9TPTyq5/MIPen\nkvEkmP32NqaQ27LFGdwyIQFWr7axx0ze5Ngmo6rLgSSgqPv+c+BLT6MyYWV1zg4rhww5lcXbbzvD\nwzz0kPMEWWFOMHZdeCuUp8seAO4HygI1gSo4fVWu9jY0Y0xB+/NPZ9TkBQtgyRK45JKc9zEmO6G0\nyazHGSJmVcDYZV9l1XclUlibjDG58+OPTqN+hQrO3UsZG0sj5vg1n8xxVU1r8EdE0jtkGmMKh0WL\noFEjuPVWeOcdSzAmfEJJMh+LyJNAcRFpBczEGcvMRAmrc3ZYOWRIK4uUFHj6abjvPpg506kqi7XR\nk+268FYoT5c9jjM22FdAd+B94DUvgzLGeO+nn+COOyA11Rncsnx5vyMyhVFIY5elbyxSFqiqquu9\nCyk8rE3GmKx9+il06uQMEfPssxAX53dEJhL4NXbZx8CN7rbrgJ9FZIWq2nAuxkQZVWdgy2HDYMIE\nuP56vyMyhV0obTKlVfUg8DecWSob4cx2aaKE1Tk7Yr0cDhxwOle+/Tb85z/LLcG4Yv268FooSSZO\nRCoCHYAF7jqrhzImiiQmQsOGUKkSfPKJ85iyMQUhlH4ytwFPAytUtYeI1ASGqeotBRFgXlmbjDFO\n9diECfD44zBypNMOY0xWvGiTyVXDfzSxJGNi3dGj8Pe/O/O+zJoFder4HZGJdL50xhSRqiLyjoj8\n7L5mi0iVcAZhvGV1zo5YKoetW6FJEzhxwkkywQkmlsoiJ1YW3gqlTWYizgyWldzXfHedMSYCzZoF\nzZpBz54wZQqUKOF3RCaWhTR2marWy2ldpLHqMhNr/vwTHnsM5s1zeu8nJPgdkYk2fo1d9ouIdBGR\nOBE5RUQ6A/vDGYQxJn927IArroDt253e+5ZgTKQIJcl0w3l8eS+wB7jNXWeihNU5OwprOSxeDJde\nCu3bw9y5EB+f8z6FtSzywsrCW9n2+HdHXH5BVW8soHiMMSFKSYHBg2H8eJg+HVq29DsiY/4qlDaZ\nT4GrA4f7jwbWJmMKs59/hs6d4fhxmDYNKlb0OyJTGPgydhnwPfCpiMwDjrrrVFX/Fc5AjDGhWbkS\nOnaEO+907mROCeV/sTE+CaVNZjvOcDJFgDPcV0kvgzLhZXXOjmgvB1V4+WWn7WX0aBgyJO8JJtrL\nIpysLLyV4yWqqoMARKSEqh7xPCJjzF8cPAj33ANJSbB6NZx7rt8RGROaUNpkLsOZpKykqlYVkXpA\nd1XtWRAB5pW1yZjCYsMGZ1rkq6+Gf/8bTjvN74hMYeVXP5mXgTa4fWPcCcuuCGcQxpjMTZrkJJeB\nA+HVVy3BmOgTSpJBVX8MWpXsQSzGI1bn7IimcvjjD7jvPhg6FD7+2GnkD6doKguvWVl4K5Qk86OI\nNAMQkWIi0g/Y5G1YxsSubdugaVM4cgTWrIG6df2OyJi8C6VNphzwH5zZMAVYAvRR1V+8Dy/vrE3G\nRKN33oHu3WHQIOjRAySstePGZM+vfjINVfWOoEAeBMaEMxBjYtmJE87EYrNnw3vvQaNGfkdkTHiE\nUl32tIhcnbYgIo8B7b0LyYSb1Tk7IrUcdu2CK6+EzZudwS0LIsFEaln4wcrCW6EkmXbA8yLSQkSe\nBxq764wx+fTBB9CwIbRtC/Pnw5ln+h2RMeEV0vTLInI2sAxYC9wTDY0d1iZjIllqKjz/vPNY8tSp\ncNVVfkdkjDdtMlkmGRE5DAR+WAw44a5TVS0VzkDCzZKMiVT790OXLs7TY9OnQ6VKfkdkjKNAO2Oq\n6hmqWjLgdWrAuohOMOZkVufsiIRyWL3amVDsoovgww/9SzCRUBaRwsrCWzZ+qzEFQBVGjcqY/+Wm\nm/yOyJiCEVKbTDSy6jITKQ4dcnrvf/stzJoFNWr4HZExmfNr7DJjTB59/bUzNXLp0s48MJZgTKzJ\nMcmISNlMXkULIjgTHlbn7Cjocpgyxen/8sQTMG5cZA1uaddEBisLb4XSJvMFUA34zV2OB/aKyF7g\nflVd51VwxkSjY8egTx9nYMsPP3Qa+Y2JVaGMXTYemKWqi93l1sCtwETgP6oakQNgWJuM8cN33zlz\nv5x/vtPAX8qewzRRxK82maZpCQZAVZe46z7D6TtjjAHmzoUmTaBbN6f/iyUYY0JLMntEpL+InCMi\n1d2xy/aJSByQ6nF8JgysztnhVTkkJ8NjjzlVZPPmQe/ekT96sl0TGawsvBVKm8wdwEDgXXd5BdAJ\niAM6eBSXMVFh927o2BGKF3cGtzzrLL8jMiayhNImc66qfh+07lJVXeNpZPlkbTLGax995MxY2aMH\nPPkkFLEOASbK+dUmM1tEqgQEcQVOo78xMSk1FV54Ae64A954A55+2hKMMVkJ5b9Gd+BdEakgIm2B\nkcB13oZlwsnqnB3hKIdff4Ubb4QFC5ypka+5Jv9x+cGuiQxWFt7KMcm41WJ9gKXAIKCVqu4I5eAi\n0kZENovItyLSP4ttRrqfrxeRSwLWTxCRfSLyVdD2ZUVkqYhsFZElIlImlFiMya81a6BBA7jgAli+\nHKpUyXEXY2JedkP9zw9aVQfYAxzAGeo/24nL3KfPtgDXALuANUAnVd0UsE1boJeqthWRxjj9bpq4\nn7UADgON7VqIAAAfpklEQVRvqOpFAfsMA/ar6jA3ccWr6uOZnN/aZExYqDrzvgwaBGPGwN/+5ndE\nxnjDizaZ7J4uG5HJOgWEk+eZyUojYJuqJgGIyHTgJmBTwDbtgMkAqrpaRMqISAVV3auqn4hI9UyO\n2w64wn0/GVgO/CXJGBMOhw/D/ffDpk3O2GPnned3RMZEl+zmk1meyevjtJ8hHLsyEFitttNdl9tt\ngpVX1X3u+31A+RBiiWlW5+zIbTls3OgMblmiBHz2WeFKMHZNZLCy8JaX88mEWlcVfGsWch2XqqqI\nZLl9165dqV69OgBlypShfv36tGzZEsi4sGw5dpYTExND3v6pp5bzyivw8sst6dYtMuIP53JiYmJE\nxWPL/iynvU9KSsIrns0nIyJNgEGq2sZdHgCkqurQgG3GAMtVdbq7vBm4Iu1Oxa0umx/UJrMZaKmq\ne0WkIvCRql6QyfmtTcbk2vHj8PDD8MEHMHMm1Kvnd0TGFJwC7ScjIuNE5GYRKZnHY68FzneHoikG\n3A7MC9pmHnCXe74mwIGAqrCszAPudt/fTcZIBMbkS1ISNGsGP/3kPElmCcaY/MvuEeYJQH3gfRH5\n0B2/LOT/dqqaDPQCFgMbgbdVdZOIdBeR7u427wPficg2YCzQM21/EZkGrARqicgOEenmfvQi0EpE\ntgJXucsmG4G3xrEsu3J47z1o3Bg6d3buYEqXLri4/GDXRAYrC29l2SajqquAVcBAETkLaA08IiIX\nA18CC1V1RnYHV9WFwMKgdWODlntlsW+nLNb/ivNYtDH5lpzs9NifOhXeeQcuu8zviIwpXHLdJiMi\nAiQA16rq855EFQbWJmNysnevM7hlsWLw5ptQrpzfERnjL7/GLjuJOtZGcoIxJicffwwJCdCyJSxc\naAnGGK/YsH4xwOqcHcuXLyc1FYYOhdtvh4kTnV78cXF+R1bw7JrIYGXhLS/7yRgTUQ4dgvbt4eef\nnafHqlb1OyJjCr9Q5pMpAfQFqqnq/SJyPlBbVd8riADzytpkTKB16+C22+Cmm5w7mWI2cbgxf+FX\nm8xE4E8g7bmb3YC1x5iooApjx0KbNk5y+fe/LcEYU5BCSTI13V76fwKo6hFvQzLhFqt1zkeOwF13\nwejRsGIFlCu33O+QIkasXhOZsbLwVihJ5riInJ62ICI1gePehWRM/m3e7HSuLFIEVq2CWrX8jsiY\n2BRKm0xr4EmgLs7EZc2Arqr6kffh5Z21ycSu6dOhd28YMgTuvRckrDXMxhReXrTJhNQZ0+3x38Rd\nXKWq+8MZhBcsycSe48ehXz+n38vMmXDJJTnvY4zJ4GdnzFOB34BDQF0RuTycQRhvxUKd8w8/wOWX\nw44dsHZt5gkmFsohVFYWGawsvJVjPxkRGYozgvJGICXgo/95FZQxubFoEXTt6tzFPPKIVY8ZE0lC\naZPZClykqlHV2G/VZYVfSorTY3/iRJg2DVq08DsiY6KbF9VlofT43w4Uw54oMxHkp5/gjjsgNdXp\naFneJuE2JiKF0ibzB5DoTmL2ivsa6XVgJnwKW53zihXO4JZNmsDSpaEnmMJWDvlhZZHBysJbodzJ\nzOOvM1paPZQpcKpOj/2hQ2HCBLj+er8jMsbkJNfzyUQLa5MpXH7/Hbp1c54emzkTqlf3OyJjCp8C\nfYRZRGa6P7/K5LUhnEEYk53ERGjYECpWhE8/tQRjTDTJrk3mIffnDcCNmbxMlIjmOucJE6BVK3j2\nWWcMslNPzfuxorkcws3KIoOVhbeybJNR1d3u256q2j/wM7fvTP+/7mVMeBw9Cr16OeOOffwx1K3r\nd0TGmLwIpZ/Ml6p6SdC6r1T1Ik8jyydrk4le334Lt94KF14I48bBGWf4HZExsaGg22R6iMhXQO2g\n9pgkwNpkjCfmzIFmzeDBB+HNNy3BGBPtsmuTeQun7WUeTrtM2itBVe8sgNhMmERDnfOJE9C3rzMs\nzIIF0KNH+IeHiYZyKChWFhmsLLyVXZvM78DvQEcRqQ+0wOkf8wnwS8GEZ2LBrl3QoQPExzu998uW\n9TsiY0y4hNIm8xBwPzAHEKA9MF5VI7rXv7XJRIcPPoAuXaBPH+jf35lkzBjjD1/mk3HbZZqkTbss\nIiVw5pSxhn+TZ6mp8Pzz8OqrMHUqXHWV3xEZY/ycTyY1i/cmCkRanfP+/dC2rTPu2Nq1BZdgIq0c\n/GRlkcHKwluhJJmJwGoRGSQizwKrgAnehmUKq9WrncEtL74YPvwQKlXyOyJjjJdCnX45AWiO2/Cv\nql96HVh+WXVZZFGFUaNg8GCn70v79n5HZIwJ5st8MiLSBNioquvc5VIi0lhVV4czEFN4HToE998P\nW7bAZ59BzZp+R2SMKSihVJeNAQ4FLB9x15ko4Wed8zffwKWXQsmSsHKlvwnG6t4zWFlksLLwVkgN\n/4H1TqqaAsR5FpEpNN58E1q2hAEDYPx4OP10vyMyxhS0UB5hfgf4CHgVp59MD+BKVY3oWnVrk/HP\n8eNO7/0lS2D2bKeR3xgT+fx6hPlBoBmwC9gJNAEeCGcQXpmcOJlUtSeuC9IPP0CLFrBnj/N4siUY\nY2JbjklGVfep6u2qerb76qSqPxVEcPk1dt1YGoxtwNLtS/0OxVcFVee8aBE0agS33+7cwZQuXSCn\nDZnVvWewsshgZeGtLJ8uE5H+qjpURF7J5GNV1T4exhUWK+5ZwZxNc+j5fk9qxtdkWKthXFze/rQO\nt5QUeO45eO01Z2rkyy/3OyJjTKTIsk1GRG5U1fki0jWTj1VVJ3saWT4Ftsn8mfInY9eO5Z+f/JPr\nz7+e5658jiqlqvgcYeHw889w553w558wfTpUqOB3RMaYvPJl7LJolVnD/+/HfmfoiqGMXTeWBxMe\npH/z/pQ6tZRPEUa/Vauc0ZPvuAP++U84JcdeV8aYSOZLw7+I1BaR8SKyVEQ+cl8fhjOIglL6tNK8\ncPULJHZPZNehXdR6pRajPh/FiZQTfofmqXDXOavCK69Au3ZOL/4XX4yOBGN17xmsLDJYWXgrlF8N\nM3EeX34NSHHXRfXtT9XSVZnUfhKJexN5bOljjFw9kheveZGbL7gZCfdMWYXM4cNw333We98YE5pQ\n+smsU9WEAoonbHLTT2bJ9iU8uvRRzih2BsNbDadp1aYeRxedNm6EW25xpkd+5RXrXGlMYePXfDKD\ngJ9xJi07nrZeVX8NZyDhltvOmCmpKUzZMIWnP3qaxpUbM+TqIZx/5vkeRhhdpk1zJhYbNgy6dfM7\nGmOMF/zqjNkV6AesBNa5r7XhDCISxBWJo2v9rmzptYUGFRvQ9PWm9FnYh/1H9/sdWr7lp875+HHo\n1QueftqZ/yWaE4zVvWewsshgZeGtUDpjVlfVc4NeNQoiOD8UL1qcJ1o8waa/b0JVuWDUBQz5ZAh/\nnPjD79AK3I8/On1edu1yeu/Xr+93RMaYaBNTjzDnxdZftjJg2QDW7FrD4CsH0/nizsQVKfzjgy5e\nDHffDY88Av36gT0PYUzhZ/1kciHcA2Su+HEFjy59lKMnjvJSq5doVbNV2I4dSVJSnInFxo+Ht96C\nK67wOyJjTEHxq03GAM2qNWPFPSt4+vKn6fl+T9pMbcOGfRv8DiskodY5798PbdvCRx851WOFLcFY\n3XsGK4sMVhbeCqUzZoKINAh61RSRUGbVbCMim0XkWxHpn8U2I93P14vIJTntKyKDRGSniHzpvtqE\n+mXzS0S4pe4tfNPzG64//3paTWlFt7nd2HlwZ0GF4JnVqyEhAerVg2XLoGJFvyMyxhQGoTzCvApI\nANL+bL8I+AYoDfRQ1cVZ7BcHbAGuwZkmYA3QSVU3BWzTFuilqm1FpDHwH1Vtkt2+IjIQOKSq/8oh\nbs/nkykMw9SowujRzgCX48ZB+4ieJcgY4yW/qst2A/VVNcHtlFkf+A5oBQzLZr9GwDZVTVLVE8B0\n4KagbdoBkwFUdTVQRkQqhLBvRDRDR/swNYcPO+OOvfaaMzWyJRhjTLiFkmRqq+o3aQuquhG4QFW3\nk/3wMpWBHQHLO911oWxTKYd9e7vVa6+LSJkQvoOn0oapWdx5MfO2zOPC/17InE1ziJSHKjKrc960\nyZn75fTTneFhzjuv4OMqaFb3nsHKIoOVhbdCGbvsGxF5FeduQoAOwEYRORXI7k/2UH/D5vau5FXg\nOff9YGAEcG9mG3bt2pXq1asDUKZMGerXr0/Lli2BjAsr3MtLuixhyfYl9Bjdg2dOeYZxvcdxWdXL\nPDtfXpanT4fu3ZfzwAPw0kv+x1NQy4mJiREVj5/LiYmJERWPLfuznPY+KSkJr4TSJlMc6IkzBTPA\nCuC/wDGghKoeymK/JsAgVW3jLg8AUlV1aMA2Y4DlqjrdXd4MXAGcm9O+7vrqwHxVvSiT83veJpOd\nSBym5s8/nX4v778Ps2bBJZfkvI8xJnb41SZTR1WHq+rN7ms4cJWqpmaVYFxrgfNFpLqIFANuB+YF\nbTMPuAvSk9IBVd2X3b4iEvjc083AVyF8hwIXOExNQsWE9GFqfj7ysy/x7Njh9N7/8UdYt84SjDGm\nYISSZMaLSPqdgoh0Ap7JaSdVTQZ6AYuBjcDb7tNh3UWku7vN+8B3IrINGItzx5Tlvu6hh4rIBhFZ\nj3PX83BoX9UfxYsWZ0CLAenD1NQZXafAh6l56aXlXHop3HwzvPMOlPG9FcsfgVUEsc7KIoOVhbdC\naZO5FZglIncALXDuPELq7q6qC4GFQevGBi33CnVfd/1doZw70pQrUY5X2r5C78a9GbBsALVH1fZ8\nmBpVeP55+Pe/YfZscKtjjTGmwIQ0rIyI1AbeBX4A/qaqR70OLL/8bpPJycodK+m3pB9HTxxlWKth\ntK7ZOqzHP3YM7r0Xvv0W3n0XKlUK6+GNMYVQgY5dJiLBbR1nAweAPwFV1YvDGUi4RXqSAVBV5mya\nw+PLHqdGfA1eavUSF5fPf7H+9JPT56VKFZg82SYXM8aEpqAb/m8MejUGrnXftwtnELEqbZiajT03\ncmOtG8MyTM3XX0PjxnD11TB9upNgrM7ZYeWQwcoig5WFt7JMMm5v+yxfBRhjoVc0rii9GvVia6+t\nVDyjIvXG1OPJZU9y8PjBXB1n0SK46ipniJjBg6GIDX9qjPGZDfUfgXb8voOnP3qaRdsW8dTlT9E9\noTtF44pmu8/o0U5imTULmjcvoECNMYWKzSeTC9GcZNKs37uexz54jO9/+54Xr3mRmy+4GQmaPSw5\nGR5+GD74AN57D2rW9ClYY0zUs/lkYky9CvVY3Hkxo9qO4tmPn6X5xOZ8tuOz9M8PHoR27WDLFmf8\nsawSjNU5O6wcMlhZZLCy8JYlmSjQumZrvnjgCx5o8AAdZnXg1hm3snzDNi67DM45BxYsiN0OlsaY\nyGbVZVHmjxN/0HfGy4z9agTNS9/B7D7PUK7EWX6HZYwpBKy6zDB39unM+scApjbZRL16Sp3RF/Di\npy8W6DA1xhgTKksyUUIVnn0W+vd3pke+o70zTM3Ke1eydvdaao+qzeTEyaSkpvxlX6tzdlg5ZLCy\nyGBl4S1LMlHg2DG4805niP7Vq+HigEEBap1Zi1kdZjH91umMXTeWhHEJLN2+1L9gjTEmgLXJRLi0\nIWKqVoVJk7IfIiZwmJqa8TUZ1mpYWIapMcbEBmuTiTGBQ8RMm5bzGGRpw9R80/Mbrj//+rAMU2OM\nMflhSSZC5WeImGJxxejduHf6MDV1H62bp2FqChure89gZZHBysJblmQi0OjR0K0bzJkDXbrk/Til\nTyvNC1e/wGs3vsauQ7uo9UotRn8+mhMpJ8IXrDHGZMPaZCJI2hAxy5Y5Q8TUqBHe4yfuTeSxpY+R\ndCApy2FqjDGxy8Yuy4VoSzIHD0LHjk6imTHD2x78S7Yv4dGlj3JGsTMY3mo4Tas29e5kxpioYQ3/\nhVRSEp4OERNc55w2TM39De5PH6bm21++De9JI5DVvWewsshgZeEtSzI+++wzJ8Hcfz/8979QNPsR\n/cMmrkgcXet3ZUuvLTSo2ICmrzelz8I+7D+6v2ACMMbEBKsu89G0adCnj9P/5frr/Y3l5yM/89zH\nzzHt62k80vQR/tHkH5xe1OZtNiaWWJtMLkRyklF1Hk2eOBHmzTu5B7/ftv6ylQHLBrBm1xoGXzmY\nzhd3Jq5InN9hGWMKgLXJFAKBQ8SsWlUwCSY3dc61zqzF7A6zmXbLtEI3TI3VvWewsshgZeEtSzIF\n6KefnA6WKSmwfDlUqOB3RFlrVq0ZK+5ZwdOXP03P93vSZmobNuzb4HdYxpgoY9VlBeTrr+HGG6Fz\nZ2c05dz04Pfbnyl/MnbtWP75yT9pe35bBl85mCqlqvgdljEmzKy6LEqlDREzeHDuh4iJBMHD1NQb\nU8+GqTHGhCTKft1Fn8AhYjp39ieGcNU5pw1Tk9g9MSqHqbG69wxWFhmsLLxlScYjycnQu7eTZFas\ngObN/Y4ofKqWrsqk9pNY3Hkxc7fM5cL/XsicTXOIpOpJY0xksDYZD+zbB127Og38Xg8REwnShqkp\nWawkL7V6yYapMSZKWZtMhFN1OlhefDHUr+88plzYEwxkDFNzX4P76DCrA7fNvI1tv27zOyxjTASw\nJBMme/fC3/4Gzz/vjKA8ZAiccorfUTkKos75pGFqKjSgyWtNIm6YGqt7z2BlkcHKwluWZPJJFd58\nE+rVgwsvhHXr4NJL/Y7KP8WLFmdAiwFs+vsmVJULRl3AkE+G8MeJP/wOzRjjA2uTyYc9e+DBB+G7\n75zxxxISPD1dVLJhaoyJHtYmEyFUYcoU5+6lXj1Yu9YSTFYK8zA1xpicWZLJpV27nJ77w4c7nSyf\new5OPdXvqLIXCXXOwcPUXDv1WtbvXV+gMURCOUQKK4sMVhbesiQTIlWnSuySS6BhQ1izBho08Duq\n6CIi3FL3Fr7p+Q03nH8Drae2puu7Xdl5cKffoRljPGJtMiHYuRMeeAB273YSTf36YTlszPv92O+8\n+OmLjPtiHN0TuvN488cpdWopv8MyJmZZm0wBU4UJE5y7lyZNnLsXSzDhU/q00gy5ZgiJ3RPZfWg3\ntV6pxajPR0XNMDXGmJxZksnCjh1w3XXOsDDLlsEzzxTc1MjhFul1zmnD1CzqvIh5W+Z5NkxNpJdD\nQbKyyGBl4S1LMkFUYfx4p72lRYuCm1jMQP0K9VnSZQmj2o7i2Y+fpfnE5ny24zO/wzLG5IO1yQT4\n4Qe4/3749Ven7eX//s+b2EzOUlJTmLJhCk9/9DSNKzdmyNVDOP/M8/0Oy5hCzdpkPKIKY8c6T41d\neaVz92IJxl+Bw9QkVEyg6etNI26YGmNMzmI+yfzwA7RqBa+/7kyJPGBA5Iw5Fi7RXOccOEwNkK9h\naqK5HMLNyiKDlYW3YjbJqMKYMc7dS6tWsHKlM/aYiUzlSpRj5HUj+ezez1i3Zx21R9VmcuJkUlJT\n/A7NGJONmGyTSUqCe++Fw4dh4kSoW7dgYzP5t3LHSvot6cfRE0d5qdVLtKrZyu+QjIl6XrTJxFSS\nSU112l6eeQYefRT69i18VWOxRFWZs2kOjy97nJrxNRnWahgXl7dHAY3Jq6hr+BeRNiKyWUS+FZH+\nWWwz0v18vYhcktO+IlJWRJaKyFYRWSIiIU0L9v33cM01MHky/O9/8NhjsZNgCmudc9owNRt7buSG\nWjfQakorus3tluUwNYW1HPLCyiKDlYW3PEsyIhIHjALaAHWBTiJSJ2ibtsB5qno+8ADwagj7Pg4s\nVdVawDJ3OUupqfDf/zpzvFx3HaxYAXXqZLdH4ZOYmOh3CJ4qGleUXo16sbXXViqeUZF6Y+rxxLIn\nOHj84EnbFfZyyA0riwxWFt7y8k6mEbBNVZNU9QQwHbgpaJt2wGQAVV0NlBGRCjnsm76P+7N9VgGk\n3b1MmQKffupUkcXF4FQmBw4c8DuEAlH6tNK8cPULWQ5TEyvlEAoriwxWFt7yMslUBnYELO9014Wy\nTaVs9i2vqvvc9/uA8lkF0KgRXH+9k2AuuCD3X8BEp7RhahZ3XuzpMDXGmJx52SoR6v/oUBqZJLPj\nqaqKSJbn+fRTqF07xCgKsaSkJL9D8EW9CvVY0mUJS7Yv4dGlj7Lngz30f6o/xYsW9zs038XqNZEZ\nKwtveZlkdgFVA5ar4tyRZLdNFXebopms3+W+3yciFVR1r4hUBH7KKoALLgjrQxJRbfLkyTlvFANK\nFCvhdwgRw66JDFYW3vEyyawFzheR6sBu4HagU9A284BewHQRaQIcUNV9IvJLNvvOA+4Ghro/383s\n5OF+DM8YY0zueZZkVDVZRHoBi4E44HVV3SQi3d3Px6rq+yLSVkS2AUeAbtnt6x76RWCGiNwLJAEd\nvPoOxhhj8qfQdsY0xhjjv6gYuyySOnX6zaOyGCQiO0XkS/fVpiC+S37lsywmiMg+EfkqaPtYvC6y\nKouYui5EpKqIfCQi34jI1yLSJ2D7mLouciiL3F0XqhrRL5zqsm1AdZwHAhKBOkHbtAXed983Blbl\ntC8wDHjMfd8feNHv7+pjWQwE+vr9/QqqLNzlFsAlwFdB+8TUdZFDWcTUdQFUAOq7788AtgAXxOJ1\nkUNZ5Oq6iIY7Gd87dUYQr8oCQnuUPJLkpyxQ1U+A3zI5bqxdF9mVBcTOdVFeVfeqaqK7/jCwiYz+\nebF0XeRUFpCL6yIakozvnTojiFdlAdDbvV1+PUqqAvJTFtmJtesiJ7FyXVQJ3MB9svUSYLW7Kpau\ni5zKAnJxXURDkimQTp25OI+fwlkWgV4FzgXqA3uAEbnc3w95LYuQ/51j4LrIab+YvC5E5AxgFvCQ\n+1f8yRvG0HWRRVnk6rqIhiSTn06dma0/qVMngOTQqTOChLMs0vdV1Z/UBbyGc5sd6fJaFrvIXixd\nF9mWRSxeFyJSFJgNTFXVwD54MXddZFUWub0uoiHJpHfqFJFiOB0z5wVtMw+4C0ACOnXmsG9ap07I\nplNnhPGkLNz/NGluBr4i8uWnLLITa9dFlmLtuhARAV4HNqrqy5nsEzPXRXZlkevrwu8nIEJ5Adfh\nPN2wDRjgrusOdA/YZpT7+XqgQXb7uuvLAh8AW4ElQBm/v6ePZfEGsMHd/l2c+mffv6vHZTENZzSJ\n4zh10t1i+LrIqixi6roAmgOpOE9hfem+2sTidZFDWeTqurDOmMYYYzwTDdVlxhhjopQlGWOMMZ6x\nJGOMMcYzlmSMMcZ4xpKMMcYYz1iSMcYY4xlLMiZiuZ3Iwt4BUERuzGrY8xz2Ky0iPQKWK4nIzDDG\n1URExgWtayki88N1jlzEcndQpztj8sSSjIk5qjpfVYfmYdd4oGfAcXar6m3hi4zrgIVhPF5+dMUZ\nVDVkIhLnTSgmmlmSMVFBRGqIyBcikiAixUVkhjuh0hwRWSUiCZnsk+ROsLRORDaISG13fVcRecV9\nX15E3hGRRPfVxF3fV0S+cl8PuYd8EajpTtQ0VETOSbvTco85R0QWuhNbDQ2Io7WIrHTjmCEiJbL4\nmlfh9CrPqgwudcvgXBEpJ84kWl+LyHj3u5YN2v42ERnhvn9IRLYHlOWn7vtnRORz93uOddfdCjQE\n3nTPd5pb7stFZK2ILAoYx2u5iPxbRNYAfTAmiCUZE/Hc5DALuFtV1+HcTfyiqhcCTwMJZD7irAI/\nq2oCzsix/TLZZiTwkarWxxnOfKObsLriDPzXBLhfROrjTFa1XVUvUdX+/HX02npAB+Ai4HYRqSwi\nZwFPAle7cawD+mbyHc8CTqjqoSzK4DL3O7RT1e9xJo76QFX/zy2bapns9j+cCclwf+4XkUru+4/d\n9a+oaiNVvQg4XURuUNVZOONe3aGqDYAU4BXgFlVtCEwEnnf3V6Coql6qqv/OLHYT207xOwBjcnA2\nzvhIN6vqZnddM+BlAFX9RkQ2ZLP/HPfnF8DfMvn8SqCzeywFDopIc2COqv4BICJzcH4xBw8uGGxZ\nWpIQkY04MxLGA3WBlc6YgxQDVmayb2tgcRbHrQOMBVqp6l53XTPcibNUdbGI/GXSMXUGOjxDnOHa\nqwBvAZfjjEs1293sKhF5FCiOMz7X18B77mdpSbQ2cCHwgfsd4nDGOkvzdhZxG2NJxkS8A8APOL/k\nNwesD3XOnOPuzxSyvt4zm09Dgj4PZZC/4wHvA8+3VFXvyGHfNmQ+L4fizNlxKtAAeD8orpysBLrh\nDJL4KXAv0BToKyKnAaOBBFXdJSIDgdOCzp12nm9U9bIsznEkhDhMjLLqMhPp/sS5A7lLRDq561bg\nVEshInVxqqfyahnQwz1WnIiUAj4B2ovI6W77SXt33WGgZC6OrcAqoJmI1HTPUUJEzg/cyB1W/WJV\nXZ/JMQQn0d4ADBGRK9z1gWXQGueOKTOfAI/iVI99iXPndsy940pLKL+4dzuBDzEcAkq577cA5QLa\nq4q65W5MjizJmEinqnoU55fswyJyA/BfnF963wCDgW+A3zPbN+i9ZvL+IeBKt8ptLVBHVb8EJgGf\n4ySJ8aq6XlV/AVa4jeRDszlmYPD7cdp3ponIepw7i9pBmyXgJIBMv79bBj+5ZTBaRC4FngVauw8e\n3ArsxUkMwT7FmWL3f6qaCvzorkNVDwDjcarIFnHy9LqTgDEi8gXO74lbgaEikjb0e9Ms4jXmJDbU\nv4k6IlIEp7H5uHuHsBSoparJPoeWJyLyJPCtqs7IxT7FgBRVTRGRpsBot5HemIhibTImGpUAPhRn\nelgBekRrggFQ1edz3uovqgEz3IT7J3B/eKMyJjzsTsYYY4xnrE3GGGOMZyzJGGOM8YwlGWOMMZ6x\nJGOMMcYzlmSMMcZ4xpKMMcYYz/w/SP1Cq7DN7uIAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x77359b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "58.014 % of nicotine is extracted.\n",
+ "\n",
+ "\n",
+ "Illustration 10.2 (b)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXWh9+VEDohAUInhBZERDoGEQVRQQT7RbkWsBCK\niFcsgOgFL58giIiISlFAbIgiIkVRkdgQ6SAgoXdEkRp6kvX9cSZxElMmyZk5M5P9Ps95MuecXdbO\nJLPmrL33+omqYjAYDAaDNwhx2gCDwWAwBC/GyRgMBoPBaxgnYzAYDAavYZyMwWAwGLyGcTIGg8Fg\n8BrGyRgMBoPBaxgnYyh0iEiMiKSKSL7+/kXkHhFZbLddvkZEOorIXLfzVBGpnU3ZriIyy3fWGYIF\n42QMAYuIXCUiy0TkuIj8JSI/ikgLm/v4h0NS1fdVtaOd/bj6ChORT0Rkl6vPa7IoM1pEjriOF3No\nK05Evnb9Xv4QkdkiUjlTsReAUZ7YpqrzgYYi0ihPgzIUeoyTMQQkIhIOLABeBSKBasDzwHlvdeml\ndjPzPXAv8DuQYae0iPQGbgEudx1dXdeyIgKYBNR0HaeA6W5ttQTCVXVFHmz7EIjPQ3mDwTgZQ8AS\nC6iqfqQW51T1a1X9FUAsnhWR3SJyWETecTmmf+Aq08HtfLiIvOs6/d7187iInHQ9IfQUkR/cyl8p\nIitdT1QrRKS1270EEfmf6ynrpIgsFpHyWdmhqhdVdYKq/gSkZFGkBzBWVQ+q6kFgLNAzm7a+VNU5\nqpqkqmeB14E2bkVuBBKyqHqTiOwQkT9FZIyIuDvXBOCmrPozGLLDOBlDoJIIpIjIDBHpJCKRme4/\ngPWh3A6oDZQGJmbTlpLxqcH9dVvXz7KqGq6qy90rikg5YCEwHigHjAMWZrKnO5YzqAgUBZ70ZIBZ\ncCmw3u18A9DQw7pXAxvdzi/D+h1m5lagOdAM66npQbd7W4AYESntqcEGg3EyhoBEVU8BV2E5hKnA\nHyIyT0QquorcA7ysqrtV9TQwBLjbw8l+yeZ1VtwEJLrmaVJVdRbWh/HNaaYC01V1u6qeA2YDTTwZ\nYxaUBk64nZ90XcsREbkceA54yu1yBFYILTOjVfW4qu7Dcpzd3e6llY/Ii9GGwo1xMoaARVW3qOoD\nqloD65t5VawPRoAqwB634nuBIkAlm82o6mrbnT2u62n87vb6LB44hmxIAtxDfmVd17JFROoCi4AB\nrjBcGscytZXGPrfXe8k4jjKun8c9NdhgME7GEBSoaiLwDpazATgIxLgViQaSgcNZVD8NlHI7d1+F\nlVua8gNYE+vu1HRdt5tNZHwKakzGEFgGRKQm8DXwP1V9P9PtDVjzWpmJzvTafRwNgN2qmqNjMxjc\nMU7GEJCISH0RGSgi1VznNbBCOz+7inwIPO5aglwaGAnMUtXULJpbhxVKK+JaAn0HfzuXP4FUoE42\npnwBxIpId1f9u4BLsFa+pZubh3EVE5HirlP31wAzgYEiUtU17oHAjGzaqQZ8C0xU1SlZFFkE/GOJ\nNPCkiES4fp8DgI/c7l3jqmcweIxxMoZA5RRwBfCLiCRhOZcNwBOu+9OAd7FWh+0EzgCPutV3f0J5\nDsuJHAOGA+nf+lX1DNZ+kp9E5KiIXIHbQgFV/Qvo4ur3CNakfhdVPZpNX5kXGWQm0WVrVWAxcFpE\nol19TQbmA7+6xjrf3YGIyEYRSZtDeRioBQwXkVOu46TbuNYCJ0SkVab+5wGrgbVYjnKa2727gck5\n2G4w/APxpmiZiHTCipGHAm+p6ugsykzAWk55Bujp+uNHRKZhTar+oaqN3MqXw/p2VRPYDXRTVRMj\nNhjyiIhcD/RT1ds8KNsVuEdV7/a+ZYZgwmtORkRCsb6VXYcV110JdFfV39zKdAb6q2pn1zfEV1U1\nznWvLdak5sxMTmYMcERVx4jIICBSVQd7ZRAGg8FgKBDeDJe1Ara7lpBeBGZhrbt352asyVpU9Rcg\nIi31har+gBW+yEx6HdfPW71gu8FgMBhswJtOphoZl0Pud13La5nMVFLVtBVCh7F/SarBYDAYbMKb\nTsbTOFzmlTcex+/UivV5b1LJYDAYDAWiiBfbPgDUcDuvgfWkklOZ6uS+v+CwiFRW1d9FpArwR1aF\nRMQ4H4PBYMgHqmpbQlhvPsmsAuq59ikUBe4CPs9U5nPgfrBSkwPH3UJh2fE5Vk4qXD8/y66gqgbf\n8fnnaL16DBs61HlbvHQMGzbMZ331+rwX/Rb0C9rxBfv7Fyzj27dPufpqpUMH5eBBZ8dnN15zMqqa\nDPTHWuu/GfhIVX8Tkd5p6clVdRGwU0S2Y62/75dWX0Q+BJZhbXTbJyIPuG69CFwvIluBa13n2dng\nhZE5TNeucPnl7P48s78OHnbv3u2zvkZfN5q5W+by876fcy9sE74cnxOY8eWN+fOhRQvo1AkWL4Yq\nVWxt3nG8GS5DVb/A2hHtfm1ypvP+2dTtns31o1jLonPloz/+4O5KQbguYMIEqFULNm2Chp4m4TVk\nRWSJSF7p+ArxC+JZE7+GsNAwp00yFBLOn4dBg+Czz+DTT+HKK522yDsE9Y7/gTt2cOziRafNsJ+q\nVen5yCMQHw+pWWVJCWx69uzp0/66NexGdNloxi4b65P+fD0+X2PGlzvbtllOZe9eWLs2eB0MeHnH\nv5OIiD6SmMh5VabWr++0OfaTmgpt28L990Pv7MQRDZ6y+/huWkxpwfKHl1O3XF2nzTEEMe+9B48/\nDs8/D337gvhKc9VDRAS1ceI/qJ3MiYsXabhyJe83aMDVEcElgZGQkEC7qCho1w7Wr4eqVXOtEygk\nJCTQrl27fNcXf/uvNRj8lKw+/+12Ml6dk3Ga8CJFmFC3LvGJiaxv2ZJiIUEWHWzY0HqKeewx+Phj\np63xK4L1y5PBYBe++jIW1E8yaWO7beNGGpcqxfBatRy2ygucOweXXw4vv2ytPDOkfRNz2gyDwa/J\n7v/E7ieZIPtqnzWv1a3L6wcP8tvp006bYj/Fi8PkydC/P5zKSk3XYDAYnKNQOJnqxYszrGZNem/d\nSmqQfMNNSEj4+6R9e7j2WnjuOcfssZMMYzMYDAFNoXAyAH2rVeNCaipvHzrktCneYexYmDULVq50\n2hKDQ+zdu5cyZcqkh0DatWvH22+/DcD7779Px44d08uGhISwc+dOj9vOXN+b5GS3IfAoNE4mVIQp\n9eszdNcufj9/3mlzCsw/Vl+VL285ml69IMD3BhVkZVkgEBMTQ8mSJSlTpkz6MWDAgAK3Gx0dzalT\np9IndEUk/fU999zD4sWL8912QevnBTvtNjhPoXEyAJeXLs1DVarwn+3bnTbFO9xzD1SsCOPHO22J\nIQdEhAULFnDq1Kn0Y8KECU6blS0pKSlOm2AIYAqVkwH4b82arDp1ikV//eW0KQUiy3kLEZg0CUaP\nhl27fG6TXRTmOZnU1FSefPJJoqKiqFOnDq+//johISGkujI7xMTEsGTJkvTyw4cP57777gOsnFru\nZd2ZMWMGbdu2zXBt4cKF1KlTh6ioKJ5++un0MNuMGTNo06YNAwcOpEKFCgwfPjxD/az6cQ9xudeP\njIykbt26LFu2jOnTpxMdHU2lSpWYOXOmR7+PzHaHhIQwefJkYmNjiYyMpH//jFmppk2bxqWXXkq5\ncuXo1KkTe/fu9agfg/codE6mRGgok2Jj6bd1K0nJyU6bYz+1a8NTT1lbiYNkkUMwkt0S6ylTprBw\n4ULWrVvHqlWr+OSTTzLsZ3APJaWd55fPPvuM1atXs2bNGubNm8e0adPS761YsYI6derwxx9/MHTo\n0FzbymzXihUraNy4MUePHqV79+5069aNNWvWsGPHDt577z369+/PmTNn8mX3woULWbVqFRs2bGD2\n7Nnp4bR58+YxatQo5s6dy5EjR2jbti3du2eZAtHgQwqdkwG4rlw5ro6IYFgAZ4vNcd5i4EA4dAg+\n/NBn9tiJL+ZkRAp+5BdV5dZbbyUyMjL9SHsKmD17No8//jjVqlUjMjKSZ555Jsc9PwXZDzRo0CAi\nIiKoUaMG//nPf/jQ7e+latWqPPLII4SEhFC8ePE8t12rVi169OiBiNCtWzcOHjzIf//7X8LCwrj+\n+uspWrQo2/MZth48eDDh4eHUqFGD9u3bs379egAmTZrEkCFDqF+/PiEhIQwZMoR169axb9++XFo0\neJNC6WQAXq5Th/cOH2Z1MO4tCQuDqVPhiSfg6FGnrfFLVAt+5BcRYd68eRw7diz9eOihhwA4dOgQ\nNWr8reMXHR1d0KFmS+Z+Dh48mOW9/FDJLft5iRIlAIiKispwLSkpKV9tV65cOf11yZIl09vZs2cP\njz32WLrjLl++PAAHDuSmg2jwJoXWyUQVLcqYOnWIT0wkOQAzGec6b9GqFfzrX1boLMAozHMyVapU\nyTCPkHlOoVSpUpx221T8+++/57uvzP1Uq1Yt/TynMFypUqUAMoS7CmKHXURHRzNlypQMzvv06dPE\nxcU5bVqhptA6GYD7K1UiokgRJgTrN50XXoCvv4ZC/KHtr2QX5urWrRsTJkzgwIEDHDt2jBdffDHD\nB36TJk2YNWsWycnJrFq1ijlz5uR7Xmbs2LEcP36cffv2MWHCBO666y6P6kVFRVGtWjXeffddUlJS\nmDZtGjt27MiXDQXFXc2xT58+jBw5ks2bNwNw4sQJPjY5/RynUDsZEWFSbCwj9+xh99mzTpuTJzya\ntyhTBl57zUqiee6c122yi2DfJwPQtWvXDPtk7rjjDgB69epFx44dady4MS1atOCOO+7I4JBGjBjB\njh07iIyMZPjw4dxzzz0Z2s3O4WSemAe45ZZbaN68OU2bNqVLly7pIbusyma+NnXqVF566SUqVKjA\n5s2badOmTY595dcR5rbQwf3+rbfeyqBBg7j77rspW7YsjRo1Mnts/IBCkSAzN0bu2cOPJ06wsFGj\n4EwTf8cdVsbm//3PaUt8QjAlyNy9eze1a9cmOTmZkGDLIm5wFJMg04c8WaMGe8+dY/affzptisfk\nad5iwgR4801whRH8ncI8J2MwBBvGyQBFQ0KYWr8+j2/fHpxyzdWqWTJ8QSrXHOwE5dO1odBgwmVu\nPLJ1KxdVmRKscs1XXQU9egS9XHMwhcsMBm/hq3CZcTJunEhOpuGKFXx46aW0DTK5ZgA2brRkATZs\ngCpVnLbGaxgnYzDkjpmTcYCyRYowoV494rdu5byfh5XyNW9x2WVWyOyxx2y3x07MnIzBEDwYJ5OJ\n2ypUILZECV4M1sR6zz4La9fCggVOW2IwGAoBJlyWBfvOnaPpqlX82LQpl7h2NwcVS5bAgw/Cpk1Q\nurTT1tiOCZcZDLljwmUOUqN4cYbFxBAfRHLNGejQwZqbCRK5ZoPB4L8YJ5MN/apV43xqKtP8VK65\nwPMWY8daWZpXrbLFHjsxczLO88MPP3DJJZf4tM/M8tF2kpiYSJMmTQgPD2fixIm2t2/IHuNksiFN\nrvmZXbs4fOGC0+bYT4UK8NJLllxzMOrq+DkzZsygUaNGlCpViipVqtCvXz9OnDjhmD0hISHs3Lkz\n/bxt27Zs2bLFK325C5y5k1k+2k7GjBlDhw4dOHny5D+Ezpwmsxx3eHi4XyQctQvjZHKgcenSPFC5\nsl/KNduS3+vee6F8eb+Taw723GUvv/wygwcP5uWXX+bkyZMsX76cPXv2cP3113PRC5uBPZVP9tU8\nVla5zbzNnj17uPTSS7O9n5WaqK/ILMd98uTJDHIGAU9aFtNgO6yhFZzTycla6+efddGRI7a053ds\n26Zavrzqzp1OW2Ibdr333uDEiRNaunRp/fjjjzNcT0pK0qioKJ02bZqqqg4bNkzvuOMOveuuu7RM\nmTLarFkzXb9+fXr5AwcO6O23365RUVFaq1YtnTBhQvq9tLr33nuvhoeH69tvv60rVqzQuLg4jYiI\n0CpVqmj//v31woULqqratm1bFREtVaqUli5dWmfPnq1Lly7V6tWrp7dZs2ZNHTt2rF5++eVatmxZ\nveuuu/TcuXPp90ePHq1VqlTRatWq6dSpU1VEdMeOHVn+Dtq1a6dvv/32P67v2rVLRURTUlJUVfWa\na67R5557Ttu0aaNlypTRG264QY+4/R/+/PPP2rp1a42IiNDGjRtrQkJClv21b99eQ0NDtXjx4lqm\nTBndunWr9ujRQ/v06aM33nijlipVSpcsWaKbN2/Wa665RiMiIrRhw4b6+eefp7fRo0cP7du3r954\n441aunRpveqqq/TQoUM6YMAAjYiI0EsuuUTXrl2bZf8//fSTVqhQQfft26eqquvWrdPIyEhNTExU\nVdWYmBhdsmRJlnW9SXb/J67r9n0W29mYPx12ftAs/usvjfn5Z01KTratzYKydOlS+xobNUq1UyfV\n1FT72iwABR2bPzuZL774QosUKZL+QepOjx49tHv37qpqOYqwsDCdM2eOJicn69ixY7VWrVqanJys\nKSkp2qxZMx0xYoRevHhRd+7cqbVr19bFixdnqDtv3jxVVT179qyuXr1af/nlF01JSdHdu3drgwYN\ndPz48el9Z3YKmZ1MTEyMXnHFFXro0CE9evSoNmjQQCdNmpQ+psqVK+vmzZv1zJkzes8992hISIgt\nTqZu3bq6bds2PXv2rLZr104HDx6sqqr79+/X8uXL6xdffKGqql9//bWWL19e//zzT4/67NGjh5Yt\nW1aXLVumqqonT57UOnXq6KhRo/TixYv67bffapkyZdIdQY8ePbRChQq6Zs0aPXfunF577bVas2ZN\nfffddzU1NVWfffZZbd++fZZ9q6oOHTpUr732Wj1z5oxedtll+vrrr2f43X7zzTfZ1vUWvnIyJlzm\nATeUK0eb8HCG7drltCne4Ykn4MABmDXLaUt8hjwvBT7yw5EjR6hQoUKWGZUrV67MkSNH0s9btGjB\n7bffTmhoKAMHDuTcuXP8/PPPrFy5kiNHjvDss89SpEgRatWqxcMPP8wst/fvyiuv5OabbwagePHi\nNGvWjFatWhESEkLNmjWJj4/nu+++y5PtAwYMoHLlykRGRtK1a1fWrVsHWJLRDz74IA0aNKBEiRI8\n//zzaV/0CoSI8MADD1C3bl2KFy9Ot27d0vt877336Ny5M506dQLguuuuo0WLFixatCjb9txtEhFu\nvfVWWrduDcC6des4ffo0gwcPpkiRIrRv354uXbpkkKS+/fbbadq0KcWKFeO2226jVKlS3HvvvekS\n02vXrs227+HDh3PixAlatWpFjRo16NevXwa73OW4b7/99vz9wvyUIk4bECiMq1uXRitX8u9KlWhW\npozT5tg7bxEWBlOmwG23QceOUK6cfW3nA1/MyegwZ5amV6hQgSNHjpCamvoPR3Po0KEMEsXVq1dP\nfy0iVK9enYMHDyIiHDx4kMjIyPT7KSkpXH311VnWBdi6dSsDBw5k9erVnDlzhuTkZFq0aJEn293n\nCUqUKMEh18rLQ4cO0apVq2z7LgiZ+3SXWv7444+ZP39++v3k5GSuvfbabNvKPA/kbufBgwf/ITld\ns2bNdElqEaFixYrp94oXL57hPDc56SJFitCjRw8ee+wxxmeaA02T487J9kDGPMl4SMWiRXmxdu2A\nlWvOlbg4S3fm6aedtiSoad26NcWKFWPOnDkZriclJfHll1/SoUOH9Gv79u1Lf52amsr+/fupVq0a\nNWrUoFatWhlkhk+ePMkCVxaHrCbW+/bty6WXXsr27ds5ceIEL7zwgm2T3VWqVMlgq/trbxEdHc19\n992X4Xdw6tQpns7D36/776hq1ars27cvw9POnj17MkhSF4QDBw7wv//9jwcffJCBAwdyIRhXrGaD\ncTJ5oGflypQpUoTX/ECu2St7SUaOhMWLIY9hFLsJ5n0yZcuWZdiwYTz66KMsXryYixcvsnv3brp1\n60aNGjW477770suuXr2auXPnkpyczPjx4ylevDhxcXG0bNmSMmXKMGbMGM6ePUtKSgobN25klWvP\nU1ahqqSkJMqUKUPJkiXZsmULb775Zob7lSpVyrOEclo/3bp1Y/r06WzZsoUzZ84wYsSIXOtevHiR\nc+fOpR/J2Syjzy7sdu+99zJ//ny++uorUlJSOHfuHAkJCRzI4X/Tva3M7cbFxVGyZEnGjBnDxYsX\nSUhIYMGCBdx999052uEJqkrPnj15+OGHeeutt6hSpQrPFaKN0MbJ5AERYXJsLC/s2cOeAJIz9pjw\n8ICUaw40nnrqKUaOHMmTTz5J2bJliYuLo2bNmixZsoSwsDDA+lu75ZZb+OijjyhXrhzvv/8+n376\nKaGhoYSGhrJgwQLWrVtH7dq1iYqKIj4+npMnT6bXzfwkM3bsWD744APCw8OJj4/n7rvvzlBm+PDh\n9OjRg8jISD755JNclxm73+/UqRMDBgygffv2xMbGps9zFCtWLNv6ffv2pWTJkunHgw8+mKtss/v9\n6tWrM2/ePEaOHEnFihWJjo7m5ZdfzvHpLLu2AMLCwpg/fz5ffPEFUVFR9O/fn3fffZfY2Ngsy+dF\nYnrChAkcOXIk3flOnz6d6dOn89NPP2VrazDh1dxlItIJGA+EAm+p6ugsykwAbgTOAD1VdW1OdUWk\nFTARCAOSgX6qujKLdtVbY/u/3btZfvIk84NVrvm22+Dyyy2hswAkGHKXPf/882zfvp13333XaVPy\nzG+//UajRo24cOGCkYz2YwI+d5mIhGI5g07ApUB3EWmQqUxnoK6q1gPigTc9qDsGeE5VmwL/dZ37\nlKejo9l17hwfB5Bcc5547TV44w347TenLSm0BJqTnDt3LufPn+fYsWMMGjSIm2++2TgYA+DdcFkr\nYLuq7lbVi8As4JZMZW4G3gFQ1V+ACBGpnEvdQ0BZ1+sIwOcTJEVDQphSvz7/cVCu2avzFtWrw7Bh\njsk1B/OcjKc4sSu+IEyZMoVKlSpRt25dwsLC/jHnYyi8eHMJczXAfZnJfuAKD8pUA6rmUHcw8KOI\njMVykq1ttNlj2pQtyy0VKjB4504mB6Ncc9++8N578NZblrMx+JRhw4Y5bUKe+OKLL5w2weCneNPJ\nePq8n9eva28DA1R1roj8C5gGXJ9VwZ49exITEwNAREQETZo0Sd+DkfZtuSDnNyUn07tkSX48fpxk\n1yYxO9vP6Tztmtf6++EH6NWLdoMHQ9euJCQm+mx87dq1s+X3YzAYcichIYEZM2YApH9e2onXJv5F\nJA4YrqqdXOdDgFT3yX8RmQQkqOos1/kW4BqgVnZ1ReSkqoa7rgtwXFXLkglvTvy788kff/Df3btZ\n26IFxYIxBj1kCOzYAbNnO22JxwTDxL/B4G0CfuIfWAXUE5EYESkK3AV8nqnM58D9kO6Ujqvq4Vzq\nbheRa1yvrwW2enEMuXJHVBR1S5RgtI/lmn02b/Hf/8KaNbBwoW/6w8zJGAzBhNfCZaqaLCL9gcVY\ny5DfVtXfRKS36/5kVV0kIp1FZDtwGnggp7qupuOB10WkGHDWde4YIsLEevVotmoVd1WsSP2SJZ00\nx35KlIBJk+Chh4JWrtlgMHgPr+6TcRJfhcvSeHX/fub++SdLmzQJqFVBHnP//ZbQ2bhxTluSKyZc\nZjDkTjCEywoV/atV43RqKtODSNEuAy+/DO+/D6tXO22JwQcY+WWDXeTqZESksoi8LSJfus4vFZGH\nvG9aYBEqwtTYWAbv3OkTuWafz1tERcGYMT6Ray4MczJGfrlwyS/v3r2b9u3bU6pUKRo0aMCSJUty\nLD9o0CAqVKhAhQoVGDx4sMdtjRw5Ml3GOS1XXWhoKEePHvXKuDzBkyeZGcBXWHtXALYBj3vLoECm\nSZky9Kxcmcf9UK7ZFu6/HyIj4dVXnbYkoDHyy4VPfrl79+40b96co0eP8sILL3DnnXdm0A5yZ/Lk\nycybN48NGzawYcMG5s+fz+TJkz1q65lnnkmXcT516hSDBg2iffv2lHNSviM3VTNglevnWrdr6+xU\nTvPGgUPqiEkuueYvgl2uedcupy3JFqfee08w8suFT345MTFRixUrpklJSenXrr766nRl0cy0bt1a\np06dmn4+bdo0jYuLy3NbqampWqtWLZ05c2aW/WT3f4Kv5ZeBBKB8mpMB4oDv7DTCG4eTHzRf+qFc\ns6288ILqjTf6jVxzZvzZyRj55cInv/zpp59qgwYNMlx79NFH9dFHH82yfNmyZXXFihXp56tWrdIy\nZcrkua3vvvtOS5curadPn86yH185GU/CZU8A84HaIrIMeBcYYMtjVJDSsVw5rgwP5/ndu73Wh6Pz\nFk8+Cfv2eW2Dpk/GJlLwIx8Y+WXPCRb55aSkJMqWzbhfPDw8nFOnTnlUPjw8PF11My9tvfPOO/zr\nX/+ipMPbKnLdJ6Oqq12bH9MSdCWqlbTSkAOvuOSau1esSFM/kGu2laJFLbnmO+6AG26w5mkCDRs+\nBPODkV/OG8Egv1y6dOl0rZ80jh8/Tnh4uEflT5w4QWnX/jRP2zpz5gyffPIJn3+eef+77/F0CXMr\noDHQHCvt/v3eMyk4qFi0KKNq1yZ+61ZSvPCB5niOrtatLd0ZL8g1Oz42L2Lkl+0hkOSXGzZsyM6d\nOzM4ofXr19OwYcNsy6c9saWVveyyy/LU1ty5cylfvjzXXHMNTuPJEub3gJeANkALoKXrMOTCA5Ur\nUzo0lIl+INfsFUaOhC++gO+/d9qSgMHIL1sUJvnl2NhYmjRpwvPPP8+5c+f49NNP2bhxI3fccUeW\n5e+//37GjRvHwYMHOXDgAOPGjaNnz555auudd97h/vv941nAkyeZ5kAbVe2nqo+mHd42LBgQESbF\nxjJi92722ixn7Bd7ScqWhQkTLCmA8+dta9YvxuZFjPxy4ZJfBpg1axarVq2iXLlyDB06lDlz5lC+\nfHnA2vhaxi2k3rt3b7p27UqjRo24/PLL6dq1K/Fuchs5tQVw4MABEhIS/MbJ5JpWRkQ+Bh5T1YO+\nMckefJ1WJidG7N7NilOn+Pyyy2zbH+Ce5t9RVK2wWdOmltCZDRR0bMGQVsbILxu8jT+llYkCNovI\nVyIy33U7tVJ5AAAgAElEQVQ4P5sUQAyKjmbn2bPMsVGu2S8cDFirrCZOtCSbbZJr9puxOUigOUkj\nv2zIDk+yMA93/VT+FhgLrP8AhykaEsLk2Fju2ryZ6yIjiXCFRIKGNLnm3r0hIQHMh0uBCUT55Qce\neIDQ0FDatWvHG2+84bRJBj/BoyzMIhID1FXVb0SkJFBEVU/mXMtZ/ClclkafxEREhDddcd6C4Dfh\nsjRSUuDKK63cZg8/XKCmTLjMYPA+fhMuE5F44GMgLXlOdWCuXQYUJl6sXZvPjxzhJwcTIXqN0FCY\nOhWeeQaCNRO1wWDIM55M/K/H2iezXFWbuq79qqqNfGBfvvHHJxmAj//4g+EuueaiwRhWGjwY9uwB\nt53SvsY8yRgMueM3TzLAeVVNX58qIkUwczL55s6oKGqXKMEYH8s1+4z//hdWrIAc0nsYDIbCgydO\n5jsRGQqUFJHrsUJn83OpY8gGEeH1evUYv38/W8+cyXc7fruXpGRJS665Xz84fTpfTfjt2AwGQ57x\nxMkMBv4EfgV6A4uAZ71pVLATXbw4z9asSe+tW4MzrHP99dC2rW37ZgwGQ+CSq5NR1RRVnaKqdwLx\nwAq/nOwIMB6tXp2klBRm5HOS3K9WlmXFuHHw7ruwZk2eq/r92AoBRn7ZYBeerC77TkTCRaQcsBqY\nKiKveN+04CZUhCkuueY/fCDX7HOiomD0aCvljJflmgMRI79s5JdzIr/yywkJCYSEhGSQYHY6a4Qn\n4bKyrj0xtwMzVbUVcJ13zSocNC1ThvsrV2ZgPuSaA2LeokcPCA+3sgHkgYAYWwEw8stGftlb8ssA\n1apVyyDB7J501RFyUzXDmoupAnwFtHJd22Cncpo3DvxYHdGdpORkjfn5Z/3yr7/yVG/p0qXeMchu\ntm615Jp37/a4SkHH5s/vvZFfNvLLqt6TX878vuVEdv8nOCC//C9gA/Cm67wOMMdOI7xx+PMHTWa+\nOHJEa/38s54OVrnm//s/1Ztu8plcsz+/90Z+2cgvq3pPfnnp0qVatGhRrVSpktaqVUsff/xx/5df\nVtWPVfVyVe3rOt+hqlkLIRjyRafy5Ynzslyzozz1FOzeDR9/7LQl6UhCQoGP/GDklz3HyC//XdZT\n+eUGDRqwfv16fv/9d7799ltWr17NwIEDs/2d+IJcE2SKSA1gAnCV69L3WKn/93vTsMJGmlzzvytV\norFLajUn/C53WU4ULWqlnLnzTmt5cy5yzb4Ymzr0uzPyy3nDyC/nTX65UqVKVKpUCYCYmBjGjBlD\nly5dmDRpUpZ9+QJPJv6nA58DVV3HfNc1g41Ucsk190pM9Ipcs+O0bg233GKlnSnEGPllezDyy561\nBd5f1JAbHunJqOp0Vb3oOmYAFXOrZMg7D1auTMmQEF73QK45YJ5i3Bk1ChYuhB9+yLFYQI7NQ4z8\nsoWRX/aO/HJCQgJ79uxBVdm3bx+DBg3i1ltvzbftduCJk/lLRO4TkVARKSIi9wJZr70zFAgRYXL9\n+ozYs4d9Nss1+wVpcs29e9sq1xxoGPllI7/sLfnltWvX0qZNG0qXLk2bNm1o0qQJEyZMyNYuX+BJ\nFuaawEQgznVpGfCoqvp1hkd/zcLsCf/bvZvVp07xWQ5yzQE1J+OOKtx6KzRvbiXTzAKjJ2Pklw3e\nxy+yMLsyLo9U1a6qGuU6bvF3BxPoDIqOZtvZs8zNZrNWQOMu15yY6LQ1fkugOUkjv2zIjhz/ClQ1\nGagpItk/9xpsp1hICFNiYxmwbRsnsolVB+RTTBo1asBzz1kpZ7IIbwT02GwiEOWXK1WqRN26dQkL\nC/vHnI+h8OJJuOxd4BKsFWZpuelVVcd52bYCEcjhsjR6JyYSKsIbNsg1+x0pKdaKs9694aGHbG06\nGMJlBoO38YtwmYsdwEJX2dKuo0yONQy2MLp2beYdOcKyLBInBnx+rzS55iFD4PDhDLcCfmwGgyGd\nXDdjqupwABEppar5U6Ey5IuIsDBeqVuX+MRE1gSjXHPjxvDAA/D44/DBB05bYzAYvIAnqf6vFJHN\nwBbXeWMRecOTxkWkk4hsEZFtIjIomzITXPfXi0hTT+qKyKMi8puIbBSR0Z7YEqj8KyqKmOLFGZtp\ng1vQzFsMGwa//AJffpl+KWjGZjAYPEqQuQKIBta6XdvkQb1QYDsQA4QB64AGmcp0Bha5Xl8BLM+t\nLtAe+BoIc51HZdN/lsnfApHdZ89q+R9+0K3ZJLoLeBYvVo2JUXXLLFsQAHOYwxweHNn9/6gvE2Ri\n9Zh5ybInKlStgO2qultVLwKzgFsylbkZeMfVxy9AhIhUzqVuX2CU6zqq+qcnYwhkahYvztBMcs1B\nNW9xww3Qpg0MHw4UfGx2/oN441i6dGmB20hNVd58U6lQQZk5M+O9E+dOUH1cdRJ2JQTs+Pz5CKbx\n+QJPnMxeEWkDICJFReRJ4DcP6lUD3GM8+13XPClTNYe69YCrRWS5iCSISN6y/AUoj1arxsnkZGZm\nmiQPGsaNg5kzIZtMtoa/OX4cunWDSZPgxx8hsyZVeLFwJt44kd4LenMuOQgzRxgCCk+cTF/gEawP\n+QNAU9d5bnjqJvO6VK4IEKmqccBTwOw81g9IioSEMLV+fZ7esYM/L1wIvnmLihXT5ZrbtW3rtDVe\npSDv3YoV0KwZVKoEy5dD/fpZl7vlkltoWLEho34Yle++8kvQ/W1mItjHZze5ri4DWqjqv90viEgf\nILfc0QcA99zZNbCeSHIqU91VJiyHuvuBTwFUdaWIpIpIeVX9K7MBPXv2JCYmBoCIiAiaNGmS/geS\nFpIJtPP7qldn4I4dPOR6onHaHlvPa9akXZky8NprJDRp4rw9fnT+7bcJfPwxzJnTjkmToFy5BJYv\nz7n+3aXupt+qftx12V38sekPvxqPOfef84SEBGbMmAGQ/nlpKx7E7JYBHdzOnwa+9KBeEaw9NjFA\nUXKf+I/j74n/bOsCvYHnXa9jgb3Z9K/BSJpc80su1cOgIzFRl4aHq+7Z47QlXiOv8tJ//KHaubNq\nXJzqrl156+v1Fa/rVdOu0pTUfypxeouAkQbPJ8E+PhyY+L8ZeEFE2orIC1irwG72wHklA/2BxcBm\n4CNV/U1EeotIb1eZRcBOEdkOTAb65VTX1fQ0oLaI/Ap8CNzvwRiChlKhobxRrx7j9u/nTEqK0+bY\nT2ysJW72yCPgo4lJf+a776zw2GWXwfffQ16/aPZp0Yfk1GTeWvOWV+wzGHIj17QyACJSEVgCrAIe\nVE8qOUwwpJXJie6bNxNTvDijatd22hT7uXABmjaF55+3HE4hJCUF/u//rMn96dPBpTKcL349/Csd\nZnZgfZ/1VClTxT4jDUGJ3WllsnUyIpJExsn7osBF/l5fnbV2qJ8Q7E7m8IULNFq5km8aN+ZyD+Sa\nA45ly+Bf/4JNmyAiwmlrfMrBg3DPPVbC6vfeg6pVC97m0CVD2X5sOx/d+VHBGzMENT7LXaaqpVW1\njNtRzO2aXzuYwsBvy5YxslatoJRrTkhIgCuvhJtvDkq55rRJ16z48ktLaufaa+Hrr+1xMADPXv0s\naw6tYeHWhfY0mAM5jS8YCPbx2U2QJcMqXDxYpQrFQ0J40wO55oBk1CiYP9/aDBLkXLwITz8NvXrB\nRx9ZSgihofa1XyKsBJNumsQjix4h6UJS7hUMBpvwaE4mEAn2cFkaW06f5qq1a1nbogU1ihd32hz7\n+eQTK7/Z2rVQtKjT1niF3bvh7ruhQgWYMcP66S16fNaD8iXKM66jXyt1GBzEiVT/Bj/mklKleLR6\ndR7dts1pU7zDHXdAnTowZozTlniFOXOgVStrB//nn3vXwQC8fMPLfPDrB6w+uNq7HRkMLjzJwlwu\niyPMF8YZssc9Ljw4OprEs2eZ+2dwpHHLEPMWgddfh1dfDRq55oSEBM6dg3794KmnYMECGDgQQnzw\nla9CyQq8dP1L9Jrfi+RUT1IQ5p1gn7MI9vHZjSd/1muAI8A213EE2CMia0SkuTeNM3hGmlzzoznI\nNQc0NWrAs89Cnz5BsXdm716Ii4MjR6woYKtWvu3/3svvpVyJcry6/FXfdmwolHgivzwV+ERVF7vO\nbwDuBKYDr6qqj/9FPKOwzMm4E5+YSFERJgarXHNcnPX1/4EHnLYm38ycCU88Ye2BiY+3HtScYPvR\n7cS9Fceq+FXERMQ4Y4TBL/HZPhm3Djeq6mWZrv2qqo1EZJ2qNrHLGDspjE7m2MWLNFy5kjkNG9K6\nbFmnzbGfdeugY0f49VcroWYAkZRkJTFYsQJmz4ZGjZy2CEb9MIrv937Pon8vQpzydga/w4mJ/0Mi\nMkhEaopIjIg8DRwWkVAg1S5DDHkjq7hwZJpc89atXEwN3Lcm25h3kybQo4c1gRFArF8PLVpYS5JX\nrYK//kpw2iQAnrzySfaf3M9Hm+zdoBnscxbBPj678cTJ/BsrC/JnwFwslczuWOqV3bxnmiE/dIuK\nIrpYsX/INQcNw4ZZ2QAWL3baklxRhTffhOuus6aUpk2DUqWctupvwkLDmNp1KgMXD+TY2WNOm2MI\nUjwJl9VS1V2ZrrVU1ZVetayAFMZwWRq7z56lxerV/NysGfVKlnTaHPtZvBj69oWNG8FPx3f8ODz8\nMOzYYW2u9Odpsv6L+nM++TxTb57qtCkGP8CJcNkcEanuZsA1WJP+Bj8lpkQJnqlZkz5ucs1BRceO\n0Lq1lUDTD/nlFyu/Z5Uq8PPP/u1gAEZ2GMmXO77k+z3fO22KIQjxxMn0Bj4Tkcoi0hmYANzoXbMM\nuZFbXHhAtWocT07m3QCUa/Yo5v3KK1Z64nXrvG6Pp6SmwtixVsq1cePgtdcgqyQM/hbTDy8WzoRO\nE4ifH8/55PMFbs/fxmc3wT4+u8nVybjCYgOAr4HhwPWqGqQB/+ChSEgIU+rX5ymXXHPQUbEivPii\nlezLD3R1/vwTunSxdvCvWAG33ea0RXnjtga30SCqAaN+9L1csyG4ySnV//xMlxoAh4DjWKn+cxUu\nc5LCPCfjzhPbt/PnxYvMbNDAaVPsR9VKV3zbbTBggGNmJCTAvfdax4gREBag+TD2n9xP08lN+b7n\n9zSICsK/F4NH+FJPpl0WlxUQLCfznV1GeAPjZCySkpO5bOVK3qpfn+vKlXPaHPtJTIQ2bayt8zVq\n+LTrlBTLqUyebCW27NjRp917hYkrJjJ702wSeiYQIia1YWHEl3oyCVkc36X9tMsAQ/7wNC5cukgR\n3oiNpc/WrZz1g7CSJ+Qp5l2/Pjz2mM/lmg8cgA4d4IcfYM2avDkYf47p923RlwspF3h7zdv5bsOf\nx2cHwT4+uzFfVQoBncuXp3mZMozYs8dpU7zDoEGwfTt8+qlPuvviC2tzZYcO8NVX1iqyYCE0JJQp\nXacw9Nuh/J70u9PmGIIAoydTSPj9/HkuX7UqeOWaf/wR7roLNm8GL6XUuXABhg6FWbPg/ffh6qu9\n0o1fMOSbIew6votZd85y2hSDj/FZuExEpojIbSJSxq7ODM5RuVgxXqhVi/gglGsG4KqroGtXGDLE\nK83v2gVt28KWLdb0TzA7GID/XvNfVh1cxaJti5w2xRDg5BQumwY0ARaJyLeu/GWNfWSXIRfyExd+\nqEoVwkJCmHTwoP0G2Ui+Y94vvgjz5llpZ2zkk0/giiss9Uo7hMUCIaZfIqwEk7pMot/CfnmWaw6E\n8RWEYB+f3eQ08b9cVYepalusHGX7gCdEZJ2ITBcRk7cswAgRYUpsLMN372b/uXNOm2M/EREwfryV\nQ9+GvUFpwmKDBsHChfD4486l5neC62pfx9U1r2bY0mFOm2IIYPI8JyNWTvDmQEdVfcErVtmAmZPJ\nnmG7drHh9GnmXnZZ7oUDDVUrbNa6tTWBkk+2bLGmeC65BKZM8do0j9/z5+k/uezNy1j070U0r2o0\nCgsDTuQuy4BarPJnB2PImSHR0fx2+nTQyDVnIE2u+ZVXYOvWfDXxzjvW/Msjj1iT/IXVwQBElYpi\nzHVjiF8Q7zW5ZkNwY5YwBygFiQsXDw1lcv36DNi+nZN+KNdc4Jh3zZr5kmtOSoL774fRo+Hbb72n\nXBloMf37G99PRPEIJvwywaPygTa+vBLs47Mb42QKKddERNAxMpJndu502hTv8OijcPKk9VjiAevW\nQfPmVkqYlSv9Q7nSXxARJt00iZE/jGT38d1Om2MIMDzRkykFDASiVbWXiNQD6qvqAl8YmF/MnEzu\nHHXJNc9t2JC4YIwJrV0LnTpZujNRUVkWUbXSwjz3nLVm4J57fGxjADHyh5H8uPdHFv57oZFrDmKc\nmJOZDlwArnSdHwTMfEwQUC4sjHF16tArwOWas6VpU7jvvmzlms+ft0JiEyfCTz8ZB5MbT175JHtP\n7GX2ptlOm2IIIDxxMnVUdTSWo0FVT3vXJIMn2BUXvrtiRaoXK8bLfiTXbGvM+/nnrWwAX3+d4fLv\nv1sJnP/6y/fCYoEa0y8aWpSpXafy+OLHc5RrDtTxeUqwj89uPHEy50WkRNqJiNQBCq5sZPALRIQ3\n6tVj7L59bD9zxmlz7KdUKXjjDWsRgGt8q1ZBq1Zwww3WRssyJqeFx7Su0ZrbLrmNQd8MctoUQ4Dg\nyZzMDcBQ4FIs4bI2QE9VXep98/KPmZPJG2P37uXLo0f5unHj4Iy3d+8ONWvy3mUv8vjj1t6XQBMW\n8xdOnDtBwzca8uEdH9K2ZlunzTHYjM/0ZDJ1WgGIc50uV9UjdhngLYyTyRvJqam0XLOGgdWrc1/l\nyk6bYzspBw9ztm4j7ir3NaO/bEww7kP1JZ/+9ilDvx3Kut7rKFakmNPmGGzEqc2YxYBjwCngUhEJ\n8vSA/o/dceEiISFMjY3lyR07OOKwXLPdYzt2DDo/UIkpMSOZVymeyxo4q6sTDDH92y65jdjysbz4\n44v/uBcM48uJYB+f3eTqZERkNPATVsjsSeAp12EIMlqEh/PvSpV4YscOp02xjc2brfmXSy+FAese\npEjp4tYcjaFAiAgTb5zIayteY8uRLU6bY/BjPJmT2Qo0UtWAmuw34bL8kZScTMOVK5l2ySV0iIx0\n2pwCMX8+PPQQjBkDPXu6Lm7ZYuWMWbPG53LNwchrv7zGx5s/NnLNQYQT4bIdQNH8NC4inURki4hs\nE5Esl6OIyATX/fUi0tTTuiLyhIikikgQCtc7R+kiRXi9Xj16JyYGjFxzZlThhRegb1/L0aQ7GLAy\nXvbvbx3mS0iB6deyH+dTzjNt7TSnTTH4KZ44mbPAOpeI2WuuI9ckRiISCkwEOmGtTOsuIg0ylekM\n1FXVekA88KYndUWkBnA9EKR6wrnjzbhwlwoVaOagXHNBxpaUBN26Wc5lxQpLB+YfDB5sJc+cOzff\n/RSEYIrph4aEMqXLFJ5Z8ky6XHMwjS8rgn18duOJk/kcGAEsA1a7HbnRCtiuqrtV9SIwC7glU5mb\ngXcAVPUXIEJEKntQdxzwtAc2GPLJq3XrMvXQIX5NyptglZPs2gVt2kDp0pCQAFWrZlOwWDFrDfOA\nAXDihC9NDEoaV27MA00e4PHFjzttisEPybOejMcNi9yJpTnTy3V+L3CFqj7qVmY+MEpVl7nOvwEG\nATFAp6zqisgtQDtVfVxEdgHNVfVoFv2bOZkCMvngQaYfOsRPzZoR6ud7Z5YutbbCPPOMlRvTI3Pj\n462MmK+/7nX7gp0zF89w2RuXMbHzRDrX6+y0OYYC4LM5GRH52PXz1yyODR607eknvMeDcWUeeAZw\nl+rz70+/AKZXlSoUEfFruWZVK/dY9+7w/vvWw4nH/nD0aCtk9vPPXrWxMFAyrGS6XPPpCybzlOFv\niuRw7zHXzy7884PcEwdyAHBfvlMD2J9LmequMmHZ1K2D9ZSz3rUrvTqwWkRaqeofmQ3o2bMnMTEx\nAERERNCkSRPatWsH/B1XDdTz8ePH+2Q8U1q25Oq1a6m4aRNRRYv6ZHzuMe+cyl+4ALNnt+OXX2Dc\nuARCQwHy2N8rr0CvXiS88gqEhfnV+ALtvChFuSr6Kh4Y/wD9WvVz3B5vnQfb+5eQkMCMGTMA0j8v\nbUVVczyA0Z5cy6JMEayVaTFYq9PWAQ0ylekMLHK9jsPKJuBRXVe5XUC5bPrXYGbp0qU+6+u5nTv1\ntl9/9Vl/nozt4EHV1q1Vb79d9dSpAnSWmqraubPqCy8UoJG84cv3ztccTjqsEX0idPXB1U6b4jWC\n+f1TVXV9dubqGzw9PHEya7O49qtHjcONQCKwHRjiutYb6O1WZqLr/nqgWU51s2h/Z2F1Mr7kbHKy\nxi5frnP/+MNpU1RVdcUK1erVVf/3P9WUFBsa3LVLtXx51a1bbWjMMH3tdG0+ubleTLnotCmGfGC3\nk8l24l9E+gL9sEJU7lvAywA/qapfq2+YiX97STh2jPu2bGFTy5aEF8kpyupd3n3XkoeZOhVuvdXG\nhseNg4UL4ZtvvKO5XIhQVTrM7EDX2K483tqsOAs0fLkZ8wOgK9YS5i5uR3N/dzCFAfe4sC9oFxnJ\nDZGRDN21y+t9ZTW25GR48klLHmbpUpsdDFgrBo4fh5kzbW74n/j6vfM13333HZO6TOKFH15gz/Hg\n28oW7O+f3WTrZFT1hFr7VO4GIrH2tHTFmmw3FEJeqlOHT/78k19OnvRpv8eOwU03wYYN1gZLr2RQ\nLlLEejx6+mn4808vdFC4iC0fy3/i/sMjix7BRBQKN57kLnsM6AV8irXK7FZgqqrmuuvfSUy4zDt8\ncPgwL+7dy+rmzQkL8X6uqs2b4ZZb4OabrRXHXo/UPfGE5WR88EQT7FxIuUDTyU0Zds0wujXs5rQ5\nBg/xuZ6MiPwKxKlLdllESmGtAmtklxHewDgZ76Cq3LhhA+0jIxkUHe3VvubNg169YOxYuP9+r3b1\nN0lJ1qPS1Klw/fU+6jR4WbZvGXfOvpNN/TYRWSKwE64WFpzSk0nN5rXBIZyKC4sIb8bG8tLevew4\ne9YrfXz7bQIjRlg5LBcs8KGDASsnzRtvWNk1vSRHHewxfffxXVnjSm6pfwuDvxnsnEE2E+zvn914\n4mSmA7+IyHAReR5YDpiUq4WYWiVKMCg6mj5bt9oeb09Ksib3Fy2y5l9atbK1ec/o3BlatIARIxzo\nPPgYdd0oFmxbwA97fnDaFIMDeCq/3By4Cmun/w+qutbbhhUUEy7zLmlyzU9Ur869Nsk179plzb+0\nbGk9TBRzUtX399/h8sutJc2XX+6gIcHBnM1zeG7pc6ztvdbINfs5Pg+XiUgcsE1VX3VN9u8QkawS\nqBsKEUVCQphio1zzt99C69ZWzsq33nLYwQBUrmyJ0sTHQ4Dq6vgTtze4nbrl6jL6p9FOm2LwMZ6E\nyyYBp9zOT7uuGRzEH+LCLcPDubtiRZ7auTPfbajCa6/Bv/8NH3xgzcN8912CfUYWhIcesrI0v/mm\nrc36w3vnTbIan4jweufXmfDLBBKPJPreKBsJ9vfPbjya+HePO6lqChDqNYsMAcWIWrVYcuwY3x47\nlue658/Dww9bC7l+/hmuvdYLBhaEkBBLd+b552F/5tyuhrxSo2wNnrv6OeIXxJOqZv1QYcGTJcxz\ngaVYqpUC9AXaq6rde65txczJ+I75R44wcMcONrRoQYlQz75/HDoEt98O1arBjBnWoi6/ZfhwWL/e\nMSXNYCIlNYW4t+Po07wPDzV7yGlzDFngxBLmPkAbrLT8+7GyJcfbZYAh8OlaoQJNSpfmBQ/lmtNW\njd10E3z8sZ87GIAhQ+C334yTsYHQkFCmdp3KkCVDOJx02GlzDD4gVyejqodV9S5Vreg6umsW2i0G\n3+JvceFX69Zl8qFDbMxFrnnmTOjSxRIae/bZrHNR+tvYKFYMJk+28pvZkFLH78ZnM7mNr0nlJvRs\n0jNg5ZqD/f2zm5yUMQe5fr6WxeHXKWUMvqdqsWKMiIkhfutWUrMIUyYnW9mTR4ywElzecosDRhaE\na66Bjh0tfWdDgRl2zTCW71/Ol9u/dNoUg5fJKdV/V1WdLyI9s7itqvqOVy0rIGZOxvekqtJ27Vru\nrVSJvtWqpV8/ehTuust6apk1C8qVc9DIgnD0KDRsaIXN4uKctibgWbx9MX0W9mFj342UKlrKaXMM\nLnyeuyxQMU7GGTadPk27detY36IFVYsVY9Mm66nl1lvhxRd9kODS28yaZe2fWbPGWt5sKBD3fHoP\nVUtX5aUbXnLaFIMLJzZj1heRqSLytYgsdR3f2mWAIX/4a1y4YalS9KlalQHbtvHZZ9C+vbU4a+xY\nzx2Mv44NsB7Jqle3BpRP/Hp8NpCX8b3S8RVmbpjJ2kN+n0QknWB//+zGk3/7j7GWL78FpG19No8I\nhmwZUiOa6K9WkTDtCF8srEDLlk5bZCMiVs6bli3hX/+CunWdtiigqViqIqM6jCJ+QTzLH1pOaIjZ\nghdseLJPZrWqNveRPbZhwmXOkJQEPXrAlhLHON5nC1viWlIm4GNkWTB2LHz5JXz9tZFrLiCqyrUz\nr+XW+rfyWNxjTptT6HFin8x8EXlERKqISLm0wy4DDMHDzp1W/rHISFjzdiQdK0TyrA/kmh3hP/+B\nv/6C995z2pKAR0SY3GUyI74fwd4Te502x2AznjiZnsCTwDJgtetY5UWbDB7gb3HhJUvgyiuhd28r\nTUyxYpZc80d//MGKPO4t8bexZUmaXPNTT8GRI3mqGhDjKwD5GV9s+Vgeu+KxgJBrDvb3z2482YwZ\no6q1Mh21fWGcwf9RhQkT4J57rIVX/fv/HT0qHxbGy3XrEp+YyMXUIMxV1aIFdO9uSTYbCsygqwax\n89hO5vw2x2lTDDZiljAb8s3585aA5OrVllRyTMw/y6gqnTZsoENkJE97Wa7ZEZKSrL0z06ZBhw5O\nWxPw/Lj3R+765C429dtERPEIp80plDglv2wwZODQIWjXDk6dgmXLsnYw8Ldc85i9e9npJblmRyld\nGjfwNgQAABv2SURBVF5/3YoTBuP4fMxV0VfRNbYrQ74Z4rQpBpswTiZAcTIu/MsvVoLLLl1g9mwo\nlctm7dolSvB0dDR9PZRrDriYd5cu0KyZx3LNATe+PFLQ8b143Yt8vvVzftz7oz0G2Uywv39248lm\nzOYi0izTUUdEgnBdqiE33nkHuna1vrwPHer56t3Hq1fn9wsX+OCPIM2t+uqr1kKAX3912pKAJ6J4\nBOM7jqf3gt5cSCm46qrBWTzZJ7McaA5scF1qBGwCygJ9VXWxVy3MJ2ZOxl6Sk62FVAsXWvMvDRrk\nvY0VJ09yy8aNbGzZkvLBmJJl8mRLHOennyzBM0O+UVVunnUzV1S7gmevftZpcwoVTszJHASaqGpz\n16bMJsBO4HpgjF2GGPyXv/6CTp0sSZVffsmfgwFoFR5Ot6gontqxw14D/YVevSA0FCYZdfKCkibX\nPH75eLb+tdVpcwwFwBMnU19VN6WdqOpm4BJV3YFJL+MYvooLb9xozb80a2Y9xURGFqy9/6tVi2+O\nHWNpDnLNARvzTpNrHjYMDhzItljAjs9D7BpfdNlonr36WXov6O1Xe2eC/f2zG0+czCYReVNErhGR\ndiLyBrBZRIoBF71sn8FB5s61Elw+/zyMGWN9SS8oZYoUYWK9evTeupVzKSm5Vwg0Lr3UWtf96KNO\nWxIUPNrqUZIuJDFj3QynTTHkE0/mZEoC/bAkmAF+At4AzgGlVPWUVy3MJ2ZOJv+kploLpd5+Gz79\n1NpzaDd3bNzIpaVKMaJWLfsbd5pz56BxYxg92tI4MBSItYfW0vG9jmzst5GKpSo6bU7Q43M9GRFp\nrqqrM13roqoL7DLCGxgnkz9OnbISXB4+DHPmQOXK3unnwPnzNFm1ioQmTWiY2xroQCQhAe67DzZt\ngvBwp60JeJ766ikOJR3ivdtNrjhv48TE/1QRaeRmQHfgv3YZYMgf3ogL79xp5R8rXx6+/dZ7Dgag\nWrFi/C8mhvjExH/INQdFzLtdO7jhBmuddyaCYnw54I3xDW83nJ/2/cTi7c4vZg32989uPHEydwLv\niMglItILK3R2vXfNMviatASXfftac9fFinm/z95Vq6LA1EOHvN+ZE7z0EnzyibUkz1AgShUtxZs3\nvUnfhX05c/GM0+YY8oBHuctEpD7wGbAHuF1V/f5dNuEyz1C19hGOHg0ffmh9AfclG5OSaL9+fbpc\nc9DxwQeW7vTq1Uau2Qb+Peff1AivwejrRzttStDiszkZEcm8dbkicBy4AKiqXm6XEd7AOJncOXcO\n+vSBdeusDZY1azpjx7M7d5J49iwfN2zojAHeRBVuvNFapjdokNPWBDyHkw7T6M1GfHXfVzSp3MRp\nc4ISX87JdM10XAF0dL2+2dMORKSTiGwRkW0ikuV/mYhMcN1fLyJNc6srIi+JyG+u8p+KSFlP7QkW\nChoXPngQrrnGyun400/OORiAoTVrsi4pifkuXZaginmLwJtvWqEz1ybUoBpfFnhzfJVKV7LkmufH\nk5LqzBL4YH//7CZbJ6Oqu3M6PGlcREKBiUAn4FKgu4g0yFSmM1BXVesB8cCbHtT9Cmioqo2BrYBJ\n2ZoHli+3NljeequlAeP04q4SoaFMjo2l/7ZtJCUnO2uMN6hVy3qK6dPHerIxFIgHmz5IybCSvL7y\ndadNMXiAV/VkRKQ1MExVO7nOBwOo6otuZSYBS1X1I9f5FqAdUCu3uq7rtwF3qOq9ma6bcFkWzJgB\nTz9tyZ906eK0NRnp+dtvRIaF8Urduk6bYj8XL0LLlvDkk3DvvbmXN+RI4pFE2kxrw9rea6lRtobT\n5gQVgaYnUw3Y53a+33XNkzJVPagL8CCwqMCWBjnJyZYs/ciR8N13/udgAMbWqcOHhw+zMo9yzQFB\nWJiVpfnJJ/Ms12z4J/Ur1GfAFQMCQq65sOPtdP2evvv58poiMhS4oKofZHW/Z8+exLjUtCIiImjS\npAntXMun0uKqgXo+fvx4j8dz6BB06ZJAaCisWNGOiAjn7c/ufOwll9D9ww+ZXK8eoSEhjttj+/nd\nd5Nw770weLB/2OOFc/c5C2/2F5cSx6yjs/j0t08p/0f5oBufL8czY8YMgPTPS1tRVa8dQBzwpdv5\nEGBQpjKTgLvdzrcAlXKrC/TESnFTPJu+NZhZunRprmVSUlQnT1atUEH1uedUk5O9b1dBSU1N1eZT\np+pLe/Y4bYp3OHlSl0ZFqS5Z4rQlXsOTv027+GHPD1rt5Wp6/Oxxn/Xpy/E5geuz0zY/4O05mSJA\nItABSzJgBdBdVX9zK9MZ6K+qnUUkDhivqnE51RWRTsDLwDWqmmXsobDPySQmQnw8nD9vRWkaNcq9\njr+w4+xZrli9mpXNm1OrRAmnzbGf+fNh4EDYsAGCcXw+pvf83oSGhPLGTW84bUpQEFBzMqqaDPQH\nFgObgY9cTqK3iPR2lVkE7BSR7cBkrIwC2dZ1Nf0aUBr4WkTWujJDG4ALF6zklm3awB13WMuTA8nB\nANQpUYKnoqPpt21bcMbbu3aFJk3ghRectiQoGH39aOYlzmPZvmVOm2LICjsfi/zpoBCGy5YtU23Y\nUPWmm1QDOdq0dOlSvZCSopevWKEf/P670+bYztKlS1UPHLDimL/+6rQ5tuNEOOmjjf/f3pmHV1Fe\nf/xzsoAIsoaibKIQMAQUiCDUBS1CERHUKu7UDRAUqCiCUhWsFVHAihIhoL9atApStVJEBSqoCBq2\nCKhsCgpKVBRBfuy8/eOdtDHem9wkM3fuTM7nee7D3Lnzzpwz7/CezLuc70yTOTnTHDh8wPNraXdZ\n6T6qERsC9uyx8iWXXgr33mt7Yxo39tuq8pGalEROixYM27yZ7w+FULaofn37ytm/v9VWUMrF5S0v\np0nNJjy65FG/TVGK4OmYjJ9UlDGZOXPg1luha1e7qLx2bb8tcpfBGzey78gRpp9yit+muM/Ro3D2\n2XbdzMCBflsTeLbu2kpWThZLb1pKep10v80JLHHXkwkqYQ8yO3bAkCGwapXNmnzeeX5b5A27Dx8m\nMzeX5zIy6Fyzpt/muM+6dTYraV6efbtRysVjSx9jzoY5LOy7EBHX2skKRaAG/hX3MQamT4dTTllE\ns2Z2glLYAkzhdQjVC+Sa168PjVxzYf/IzLTpZoYM8c0et/mZf3Fm8BmD2X1gN8/mPevZNfz0L4ho\nkAkQGzbYgJKTA+PH29X7FWEGbO+0NFpWrcrYL77w2xRvGDXK/rXwz3/6bUngSUlKIeeiHEYsGMG3\ne7/12xwF7S4LBIcO2fGWiRPhj3+0g/zJyX5bFV8K5JoXt2lDS78zenrB229b3et16+C44/y2JvDc\n+dad5O/NZ8YlM/w2JXDomEyMhCXIfPAB9OsHDRvajPF+puT3m8nbt/PiN9+wuE0bksLY337jjTbA\nPP6435YEnr0H95KZncm0i6bRtakK+ZYGHZOpIOzZA0OH2nT8d98Nc+f+PMCEuV84mm+31K/PYWOY\nHnC55qh19+ijMHMmfPhhXO1xm0R4NqtWqkr2hdncMvcW1+WaE8G/IKFBJgGZOxdatYLdu2HtWrjq\nKqt9VdFJFiGneXP++PnnfH3ggN/muE+dOjBhgn11DePaoDjTI70HHRp04IHFD/htSoVGu8sSiPx8\n+/aSmwtTp8L55/ttUWJyz2efsXnfPmaGVa65e3fo0sUK/yjlokCueUHfBZxaL6EV4xMG7S4LIcZY\nEbHWrW2X2Jo1GmCK494TT2TFnj3M3bnTb1Pcp0Cu+ZFH4LPP/LYm8NSrVo+HujxEvzn9fJNrruho\nkPGZTZtsQMnOhjffhHHj4NhjSy4X5n7hknyrkpzM1BYtGLRhQyDlmkusu5NPtm8xAwcGUq450Z7N\nG9veSOXkyjy1/ClXzpdo/iU6GmR84tAhePhh6NgRLrwQli2Dtm39tio4dKlVi3Nr1uS+LVv8NsUb\nbr/dpnX4e0Q9PqUUJEkSU3tOZfSi0Xz545clF1BcRcdkfCA3147tHn+87Rk56SS/LQom3x08SKvc\nXOaeeipZYVxb8uGH0KuXXTtTp47f1gSeMYvGsGrHKl698lW/TUlodEwmwPz0k/0D9aKLYPhwmDdP\nA0x5SKtUiUeaNqXf+vUcDmMm4w4d4Ior7MOilJuRZ41k/c71vPLJK36bUqHQIBMn5s2z05J37rTT\nkq+5pnzTksPcL1wa366rV4/aKSk8vn27dwa5TKnq7sEHYcECmxEgICTqs1k5pTJTe05l8LzB/Lj/\nxzKfJ1H9S1Q0yHjMN9/A1VfbdPw5OfC3v0Famt9WhQcRYUrz5ozdupUt+/b5bY77HHccPPkkDBgA\n+/f7bU3gOefEc7ig2QXcs/Aev02pMOiYjEcYYwPKXXdB374wejSEMeVWojB261be+fFHXm/dOpwp\n3i+7DDIyrNCZUi5+2PcDmdmZ/KPPP+jUqJPf5iQcmrssRvwMMps32+ztO3fatPzt2vliRoXi0NGj\ntFuxglGNG3NlvXp+m+M+X30Fp50GixZZeQClXMxcO5MH332Qlf1Xkpqc6rc5CYUO/Ccwhw/bNXRn\nnAHdutnJQV4FmDD3C5fFt9SkJKY1b86wzZv5IcFTspSp7urXhwceCIRccxCezT6ZfWhUvRHj3x9f\n6rJB8C+R0CDjEitWQPv2MH++DS7Dh0NKit9WVSw61qjBpWlp3BXWlfIDBth+2Jwcvy0JPCJC9oXZ\nTFg6gY07N/ptTqjR7rJysncv3HcfPPecTaJ73XWazNJPCuSan8/I4JwwyjWvXWuV61Su2RUmLp3I\n3I1zWXDdgnCO5ZUB7S5LIN56y+Yby8+3//f79tUA4zfVU1KY1KwZ/dev50CCdyuViVat7BvN0KF+\nWxIKhpwxhF37dzHjIxU38woNMmXgu+9sQOnf3+Yce+45qFs3vjaEuV+4vL5dUrcuGVWrMnbrVncM\ncply192oUbB6NcyZ44o9bhOkZzMlKYWcnjkMnz88ZrnmIPmXCGiQKQXGwPPP2z8m09Ls20v37n5b\npUTiiWbNmPzVV3yyd6/fprhPlSpWC+LWW626nVIusupncU3ra7jjrTv8NiWU6JhMjGzZYqclf/21\nnZbcvr1rp1Y84slt25j17bcsCqtc8w03QI0a8Je/+G1J4Pnp4E+0ym7F9F7TOf/kiq2zoWMycebI\nEXjsMTj9dDj3XFi+XANMUBjYoAEHjx7l6YDLNUdl/Hh48UWbcVUpF9UqVbNyzf+6hX2HQpg5wkc0\nyBRDXh506gSvvQZLl8LIkZCaIOu2wtwv7JZvySLktGjBqM8/Z0cCyTW7Vnd16thAk2ByzUF9Nnuk\n9yCrfhZ/eqf4rApB9c8vNMhEYN8+uOce6NrVTuT5978hPd1vq5SycGq1atx0wgn8YdMmv03xhmuu\ngV/9SrvMXOLx7o8zfeV0Psr/yG9TQoOOyRTh7bftrLG2bWHSJKv5ogSbfUeO0Co3lyfS0+kRRl2W\nzZttmoncXNWOcIGcFTk8s+oZlty4hOSkZL/NiTs6JuMRP/wAN99spyZPmACzZmmACQtVkpOZ0rx5\nYOWaS6RpU5tiIqByzYnGze1uJjU5lSnLp/htSiio8EHGGHjpJZtzsHJlK0LYq5ffVpVMmPuFvfCt\na+3anFOzJvcngFyzJ3U3bJid+vjCC+6fu5QE/dlMkiRyeuYwevFotu/+pU5R0P2LNxU6yGzbBr17\nw/33w+zZMHkyVK/ut1WKV0xo2pTn8vNZGca1JampNqfZHXfA99/7bU3gyaibwaDTBzF43mC/TQk8\nFXJM5uhReOopq/Fy22121ljlyvG1T/GHZ3fsYNK2bXzQrh0pSSH8G2vIEJtQ7+mn/bYk8Ow/vJ82\nU9owtstYLsm4xG9z4obqycRItCDz8cd2xifAtGnQsmWcDVN8xRjD+Xl5XFinDsMaNfLbHPfZvdv2\n/c6YYRd2KeVi8ZbFXPvKtawbtI7qlStGN0egBv5FpLuIfCoiG0VkRJRjJjm/54lI25LKikhtEZkv\nIhtE5C0RiSnV7oED9s2lc2e49lp4991gB5gw9wt76VuBXPNDPso1e1p31av7Ltccpmezc5PO/Lbp\nbxm1cNR/94XJv3jgWZARkWTgSaA70BK4SkQyihzTA2hmjEkH+gNPxVB2JDDfGNMcWOh8L5YlS+yU\n5NWrYdUqOwkn6D0lq1ev9tsEz/Dat/Rjj2VYo0bcunEjfrzJe153vXvbBHsPPeTtdaIQtmfzka6P\nMPuT2SzbtgwIn39e42VT2wHYZIzZYow5BLwI9C5yTC/gWQBjzAdATRE5voSy/y3j/HtxNAN274ZB\ng6BPHyuN/sor0LChW+75y65du/w2wTPi4dudjRqxdf9+Xvo2tsy7bhKXups0yQ48fvyx99cqQtie\nzdpVajOx20T6zenHoSOHQuef13gZZBoAXxb6vs3ZF8sx9YspW88Yk+9s5wNRBd0zM60k8tq18Lvf\nqdaL8j8qJSUxrUUL/rBpU8LLNZeJBg1gzJhAyDUHgStbXUnD6g2ZsHSC36YEDi+DTKz9ELE0/RLp\nfM7IftTrzJhhZ3XWqhWjJQFiSwKs9/CKePnWqUYNLklLY0Sc5ZrjVne33GIDzLRp8bmeQxifTREh\nu0c2498fz0frNeVMqTDGePIBOgJvFPp+NzCiyDFTgCsLff8U+2YStaxzzPHO9gnAp1Gub/SjH/3o\nRz+l/7gZC1LwjuVAuog0Ab4CrgCuKnLMa8BtwIsi0hHYZYzJF5GdxZR9Dfg9MM7599VIF3dzCp6i\nKIpSNjwLMsaYwyJyG/AmkAw8bYz5REQGOL9PNca8LiI9RGQTsBe4obiyzqkfBmaJyE3AFqCPVz4o\niqIo5SO0izEVRVEU/wnEapFEWtTpBR7596iIfOIc/7KI1IiHL5Hwwr9Cv98hIkdFpLaXPkTDK99E\nZLBTf2tFZJzXfkTDo2ezg4h8KCKrRCRXRHzTmi2nf8+ISL6IrClyfFjalmj+la5t8Wrg38UJBMnA\nJqAJkAqsBjKKHNMDeN3ZPgNYVlJZ4BHgLmd7BPBwyPzrCiQ52w+HzT/n90bAG8DnQO2w+AacB8wH\nUp3vdcNUd8Ai4LfO9gXA20Hzz/l+NtAWWFOkTODblhL8K1XbEoQ3Gd8XdXqMJ/4ZY+YbYwoWSHwA\n+LUM1av6A5gI3OW1A8XglW8DgbHOfowx8V8xavHKv6+Bgr9+awK/zKcfH8rjH8aYd4EfIpw3DG1L\nVP9K27YEIcj4vqjTY7zyrzA3Aq+X29Ky4Yl/ItIb2GaM8XPRgld1lw6cIyLLRGSRiJzuqtWx45V/\nI4EJIvIF8Ch2iYIflMe/4ghD2xIrJbYtQQgysc5M8GxRp8e46d8vC4mMAg4aY/5elvIu4Lp/IlIF\nuAe4vyzlXcSruksBahljOgLDgVmlLO8WXvn3NDDEGNMYuB14ppTl3aKs/sXcVgS0bYmpXKxti5fr\nZNxiO7bvvYBG2Ghb3DENnWNSI+wveDXPF5HjjTE7ROQE4BtXrY4dN/37WVkRuR7b59rFPXNLjRf+\nNcX2M+eJzRXUEFghIh2MMfGsR6/qbhvwMoAxJteZ2FDHGLPTRdtjwSv/Ohhjzne2ZwPT3TK4lJTV\nv5K694LetpTYfVmqtsWPAalSDl6lAJuxjUolSh686sj/Bh+jlsUOzhVkERiJf4NzXvnXHVgHpIWx\n/oqU92vg36u6GwCMcbabA1+Eqe6AlUBnZ7sLkBs0/wr93oTIA/+BbltK8K9UbUvcHS/jzboAWI+d\nKXG3s28AMKDQMU86v+cB7Yor6+yvDSwANgBvATVD5t9GYCuwyvlkh8m/Iuf/DB+CjId1lwrMANYA\nK4Bzw1R3wOnYAePVwFKgbUD9ewGbkeQAdlzjBmd/WNqWaP6Vqm3RxZiKoiiKZwRh4F9RFEUJKBpk\nFEVRFM/QIKMoiqJ4hgYZRVEUxTM0yCiKoiieoUFGURRF8QwNMkrCIiJNiqYZd+m8F0VLe15CuRoi\nMrDQ9/oi8pKLdnUUkZwi+84VkTluXaMUtvzeWa2uKOVCg4xS4TDGzDHGlEWjpRYwqNB5vjLGXO6e\nZVwAzHPxfOXhemySy5gRkWRvTFGCjAYZJRCIyMkislJEskTkWBGZJSLrHNGkZSKSFaHMFhEZLSIr\nROQjEWnh7L9eRJ5wtuuJyCsistr5dHT2DxORNc5nqHPKh4GmjtjWOBE5seBNyznnyyIyzxGrGlfI\njm4i8r5jxywRqRrFzd9gV4pHuwftnXtwkojUdYSx1orINMfX2kWOv1xEJjjbQ0Vkc6F7+Z6zfZ9Y\nAbE1IjLV2XcZdlX+8871jnHu+yIRWS4ibxSkg3f2PSYiucCQYitRqZBokFESHic4zAZ+b4xZgX2b\n2GmMyQTuBbKInDnWAN8aY7KAp4A7IxwzCSua1QYr0PSxE7Cux+pxdAT6iUgbrADVZmNMW2PMCH6Z\nvfY0oA/QGrhCRBqISBowCuji2LECGBbBxzTgkDFmT5R78GvHh17GmM+xGagXGGNaOfemcYRi72CF\np3D+/U5E6jvbi539TxhjOhhjWgNVRKSnMWY2sBy42hjTDjgCPAH8zhhzOvB/wJ+d8gYrrtbeGPNY\nJNuVik0QsjArFZtfAa8ClxhjPnX2nQn8BcAYs05EitOUedn5dyVwaYTfzwOudc5lgN0ichbwsjFm\nH4CIvIxtmF8rwdaFBUFCRD7GJhesBbQE3ncyRlcC3o9QthvwZpTzZgBTga7GmB3OvjNxxLCMMW+K\nSCRxqXwRqSYi1bDZdf8OnAOcBfzDOew3IjIcOBabc2st8C/nt4Ig2gLIBBY4PiRjc1oVMDOK3Yqi\nQUZJeHZhk/GdDXxaaH+sGiYHnH+PEP15j6SnIUV+jyXJ34FC24WvN98Yc3UJZbsDEyLsN1glycpA\nO34uEBXLPXgfuAGbJPE94CagEzBMRI4BJgNZxpjtInI/cEyRaxdcZ50x5tdRrrE3BjuUCop2lymJ\nzkHsG0hfEbnK2bcE2y2FiLTEdk+VlYVYuWNEJFlEqgPvAheLSBVn/ORiZ99PwHGlOLcBlgFnikhT\n5xpVRSS98EFiXw9ONcbkRTiHYANtT2CsiHR29he+B92wb0yReBcrfLYYmzH3PGC/88ZVEFB2Om87\nhScx7AGqO9vrgbqFxqtSnfuuKCWiQUZJdIwx5v+xjeztItITyMY2euuAP2G1LX6MVLbItomwPRQ4\nz+lyW47V21gF/BX4EBskphlj8owVDVviDJKPK+achY3/Dju+84KI5GHfLFoUOSwLGwAi+u/cg2+c\nezBZRNoDY4BuzsSDy4Ad2MBQlPewcrrvGKvL/oWzD2PMLmAatovsDWz6/QL+CkwRkZXYduIyYJyI\nrHZs7RTFXkX5GZrqXwkcIpKEHWw+4LwhzAeaG2MO+2xamRArY7vRGBOzzLKIVAKOGGOOiEgnYLIz\nSK8oCYWOyShBpCrwbxFJxXYnDQxqgAEwxvy55KN+QWNglhNwDwL93LVKUdxB32QURVEUz9AxGUVR\nFMUzNMgoiqIonqFBRlEURfEMDTKKoiiKZ2iQURRFUTxDg4yiKIriGf8BXhiPb7RqslIAAAAASUVO\nRK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x79b5f28>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "66.429 % of nicotine is extracted.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.3: Page 502"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.3\n",
+ "# Page: 502\n",
+ "\n",
+ "print'Illustration 10.3 - Page: 502\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "F = 8000;# [kg/h]\n",
+ "xF = 0.30;# [wt. fraction acetic acid]\n",
+ "#*******#\n",
+ "\n",
+ "# From Illustration 10.1 (Pg 494)\n",
+ "# Equilibrium Data:\n",
+ "# Eqb = [y_star*100 x*100]\n",
+ "Eqb = numpy.array([[0.18 ,0.69],[0.37 ,1.41],[0.79 ,2.89],[1.93, 6.42],[4.82, 13.30],[11.40, 25.50],[21.60 ,36.70],[31.10 ,44.30],[36.20, 46.40]]);\n",
+ "\n",
+ "# Solution(a)\n",
+ "\n",
+ "# From Figure 10.23 (Pg 503):\n",
+ "# For minimum solvent rate:\n",
+ "y1 = 0.143;# [Wt fraction of acetic acid in isopropyl ether layer]\n",
+ "xM = 0.114;# [Wt fraction of acetic acid in water layer]\n",
+ "# From Eqn. 10.24:\n",
+ "Bm = (F*xF/xM)-F;# [kg/h]\n",
+ "print\"Minimum solvent rate: \",Bm,\" kg/h\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "B = 20000.0;# [kg solvent/h]\n",
+ "yS = 0;\n",
+ "S = B;\n",
+ "# From Eqn 10.24:\n",
+ "xM = ((F*xF)+(S*yS))/(F+S);\n",
+ "# From Fig. 10.23 (Pg 503):\n",
+ "y1 = 0.10;\n",
+ "# Operating curve data:\n",
+ "# Operat = [YsPlus1 Xs]\n",
+ "Operat = numpy.array([[0 ,0.02],[0.01 ,0.055],[0.02 ,0.09],[0.04 ,0.150],[0.06, 0.205],[0.08, 0.250],[0.1 ,0.3]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,1]/100,Eqb[:,0]/100,label=\"Operating Line\")\n",
+ "plt.plot(Operat[:,1],Operat[:,0],label=\"Equilibrium Line\")\n",
+ "plt.grid('on');\n",
+ "plt.ylim((0,y1));\n",
+ "plt.xlim((0,xF));\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"Wt. fraction acetic acid in water solution\");\n",
+ "plt.ylabel(\"Wt. fraction acetic acid in isopropyl ether solution\");\n",
+ "plt.title(\"Solution 10.3\")\n",
+ "plt.show()\n",
+ "# From Figure scf(22):\n",
+ "xNp = 0.02;\n",
+ "Np = 7.6;\n",
+ "# By acid balance:\n",
+ "M = B+F;\n",
+ "E1 = M*(xM-xNp)/(y1-xNp);# [kg/h]\n",
+ "RNp = M-E1;# [kg/h]\n",
+ "print\"Number of theoretical Stages: \\n\",Np\n",
+ "print\"Weight of the extract:\",E1,\"kg/h\\n\"\n",
+ "print\"Weight of the raffinate \",RNp,\" kg/h\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.3 - Page: 502\n",
+ "\n",
+ "\n",
+ "Minimum solvent rate: 13052.6315789 kg/h\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEZCAYAAABvpam5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXu8VdP2wL+jk5T0cqX0knI9f1SeRcj1SlRIoaSIXFdF\nkbwueb+KxPVKOkW3lEQvlbodRaJ3XqFIqIu6pfTSOWf8/pjrnHbHPnuvc/Z7nfH9fNbn7LnWnGuO\nsdc+e+w5xxxjiqpiGIZhGCWhXKoFMAzDMDIPMx6GYRhGiTHjYRiGYZQYMx6GYRhGiTHjYRiGYZQY\nMx6GYRhGiTHjYZRZRKShiOSLSKn+D0Ski4jMiLdchpEJmPEwMh4RaSki80Vks4hsFJEPROTEOPfx\nJ0OjqqNV9fx49uP1tY+IvCki33l9nhmmzuMissE7Hotwr6NFZJGI/M97fz4UkZbxltkoe5jxMDIa\nEakKTAGeAWoAdYH7gV2J6jJB9y3KXOAq4L/AXpG8InID0B44zjvaeufC8RPQEfgL7v0ZC7yZIJmN\nMoQv4yEiWSJSR0QaFByJFswwfHI4oKr6hjp2qup7qvopgDjuEZE1IvKziIz0DM6f8OqcHVIeKCKv\necW53t/NIrJFRJqLSHcRmRdS/1QRWej9wv9ERFqEXMsRkQe8UdEWEZkhIn8JJ4eq7lbVoar6IZAX\npko3YJCqrlPVdcAgoHsx9/pNVb9Tl0oiC8gH1oeraxglIarxEJHewM/ALGBqyGEY6cBXQJ6IZItI\naxGpUeT6Nbgv21ZAI2B/4Lli7qXs/Ss/9PXp3t9qqlpVVReENhSRA3D/F0OAA4CngKlF5LkS9yV/\nEFABuM2PgmE4GlgeUl4BHBOpgYhsBnYAtwOXlbJfwyjEz8jjFuAIVT1aVY8tOBItmGH4QVW3Ai1x\nX/TDgF9E5B0ROcir0gUYrKprVHUbcCdwhU8nuRTzOhwXAl95fpB8VR0LrATaFYgKjFDVVaq6ExgH\nNPWjYxj2B34LKW/xzhWLqlYHquGmrcaLSLKm34yA4ucfaC3uw2kYaYmqrlTVa1S1PvB/QB3cCADg\nYOD7kOprgfJArTiLUce7dyjfe+cL+G/I6x1E+cKPwO9A6NRbNe9cRFR1O3AHbqrPfgAaMVHeR53v\ngDkiMhX4wzunqvpU4sQyjNKhql+JyEigp3dqHdAwpEoDIBc3FVvUd7cNqBxSrh166yhd/wRcWuTc\nIcC70aUuMZ/jRi2LvHIT4DOfbbNwPxq3J0Auowzhd+QxCzdHuz9QxTsMI+WIyBEi0k9E6nrl+jjf\nwkdelTFAX2+p7f7AI8BYVc0Pc7tluCmt8t5S3w7sMRq/4pzNjYsR5V3gcBG50mt/OXAkbiVYobgl\n0GtfEanoFUNfA4wC+nmLWOoC/YDsYu5zjog09Ra9VMX5Yr5S1VV+ZTGMcEQdeajqQAARqeKVtyZY\nJsMoCVuBU3BfptWBzcBkoL93/VXc1NFcoCIwHegd0j50RPFPnLHZBLwPjMY5v1HV7SLyMPChiJQH\nLiDEwa6qG0XkItyS4ReAb4CLVPV/xfRV1DlflK9wIyMFZgAqIoeq6lpVfUlEGgGfenWHqerLBQ1F\n5DPgYVUdA1QHngXq4aa2ctjjhzGMUiPRNoMSkWNxv3QKlhX+CnRT1ajDZBFpjZt7zgJeUdXHi1w/\nEhgBNAPuVtXBftsahmEYqcOP8fgIuEtV53jlVsAjqnpqlHZZuF9P5+DmgxcCV6rqlyF1auLmhS8G\nNhUYDz9tDcMwjNThx+exX4HhAFDVHPZ2KhbHycAqb4nkbtwSwfahFVT1V1VdBOwuaVvDMAwjdfgx\nHt+JyD89h+OhInIP8K2PdnWBH0LKP3rn/BBLW8MwDCPB+DEe1+IiYt8CJgA1vXPRiLa0MVFtDcMw\njATjZ7XV/9h7dYpffgLqh5Tr40YQcWsrImZkDMMwSoGqxpRloNiRh4g84/2dHOaY5OPei4C/etNd\nFYDLgeLaFVXCd1tVDexx3333pVwG08/0Syf97rlHOf545bffgqdbIo9l65dx6JBD6T+zP7vzirqY\nS0ekkcco7+/gMNei/uJX1VwR6YVbo54FDFfVLwtSR6tbq14bt5KqKpAvIjcDR6vq7+Ha+tYqIKxZ\nsybVIiQU0y+zSbZ+Q4bAuHEwbx5UDZsXOX4E6dmN/Wwsvd/tzXMXPMfl/3d53O5brPFQ1cXey6aq\nOiT0mojcgguiioiqvkuR9Ayq+lLI6/+y9/RUxLaGYZRNRo6Ep592huOgg6LXNyA3P5c7Z93JhC8n\nMKvrLJrUbhLX+/txmHcLc657XKUwwtK9e/dUi5BQTL/MJln6vfMO3HEHzJgBDZK0k1CmP7uN2zdy\nwegLWP7zchZevzDuhgMiBAmKyJVAZ9w+BvNCLlUB8lT17LANk4iIaHHyG4aR+eTkQKdOMG0anBjX\njYWDy/L/LueSNy7hsqMv45GzH6F8uT9PMIkIGqPDvFgHCy7yuxWwADjTe90KOAEon2oHkCejhoM9\neYPssMPXkQjmzJmTkPumC4nWb+FC1Zo1Vf/zn4R2E5ZMfXZjPh2jBz5xoI79dGzEet5nPqbv30g+\nj+9x+xE0L65OOqM2IjF8YvsipR8rV0LbtjBsGJx1VqqlSX8S7d8Ih5/cVqFZdCsA+wC/q2qC1ztE\np7hpK29IlgKJjEzEPi/pxdq1cPrp8MAD0K1bqqVJfzZu38gVE65AEMZ0GMNf9vtL1DbxmLaK6jBX\n1SoFB1AJt+HN87F0ahiGEY5ffoHzzoO+fc1w+GH5f5dz0rCTaFa7GdO6TPNlOOKFn9VWhajbm/lt\noHWC5DGMwJCTk5NqERJKvPXbsgUuuAA6doRbbonrrUtMJjy7sZ+N5ZzXzuHRsx/liXOfCOsYTyRR\nexORDiHFcjiH+Y6ESWSkBfPmzeP6669n5cqVSetz7dq1HHPMMWzZssX8EGWMHTugXTto3txNVxnF\nkwr/Rjj8+DyycStSwO39vAa3c9kvCZXMB5ns88jOzmbw4MF8++23VK1alUsuuYRHH32UatWqpUSe\ncuXKsWrVKho1apTwvlq1akXXrl3p0aNHwvvyQyZ8XoLM7t3QoQPsvz+8/jqUK9F8SNmiNP6NcCTL\n59FdVa/xjutV9eF0MByZzODBg7njjjsYPHgwW7ZsYcGCBXz//fece+657N4dn7wzoeTl5fmql6wv\nUBGxkYUBQH4+9OgBubkuitwMR/Gk0r8RjkiJEZ+NcAxNppBBYsuWLQwcOJDnnnuO8847j6ysLA45\n5BDGjRvHmjVreP311wEYOHAgl112GVdccQVVq1blhBNOYMWKFYX3WbduHR06dOCggw6iUaNGPPvs\ns4XXCtp27dqVatWqMXLkSBYuXEiLFi2oUaMGderUoXfv3oWG6owzzgCgSZMmVKlShfHjx5OTk0P9\n+nsyxzRs2JDBgwfTpEkTqlevzhVXXMGuXbsKrz/xxBPUqVOHevXq8corr1CuXDm+/dbPti97WLNm\nDeXKlSM/Px9wI5R7772Xli1bUrVqVc4//3w2btxYWH/BggWceuqp1KhRg6ZNm/L++1Ez5iSVTJg3\nj4VY9VOFfv3g22/hzTdhn33iI1c8SLdnl2r/Rjgi2fnFuOy2i4s5jFIwf/58du7cyaWXXrrX+cqV\nK9OmTRvee++9wnOTJk2iU6dObNq0ic6dO3PxxReTl5dHfn4+bdu2pVmzZqxbt47Zs2czZMgQZs6c\nuVfbjh078ttvv9G5c2eysrJ45pln2LhxIx999BGzZ8/m+efdorm5c+cCsGLFCrZu3UrHjh3/JLeI\nMH78eGbMmMF3333HihUryM7OBmD69Ok8/fTTzJ49m2+++YacnJy4jSzGjBlDdnY2v/zyC3/88QeD\nBg0C4KeffuKiiy7i3nvvZdOmTQwaNIgOHTqwYcOGuPRrJJ6HHnIR5FOmwH77pVqa9CQ3P5f+M/tz\n1+y7mNV1VlwTG8ZKscZDVbNVdaT3Nxu3EdSbBeeTJmGCEInPUVI2bNjAgQceSLkw4/PatWvv9eV3\n4okncumll5KVlUW/fv3YuXMnH330EQsXLmTDhg3cc889lC9fnkMPPZTrrruOsWPHFrY99dRTadeu\nHQAVK1bk+OOP5+STT6ZcuXIccsgh9OzZs8S/1Pv06UPt2rWpUaMGbdu2ZdmyZQCMGzeOa6+9lqOO\nOopKlSpx//33x2UKTES45pprOOyww6hYsSKdOnUq7PP111+nTZs2tG7tFv6dc845nHjiiUybNi3m\nfuNFq1atUi1CQolFv+eeg1GjYPp0qF49fjLFi3R4dsnITxULflZbHYtLz/4Xr/wr0E1VP0uwbAkl\nVf7RAw88kA0bNpCfn/8nA7J+/Xpq1qxZWK5Xr17haxGhXr16rFu3DhFh3bp11KhRo/B6Xl5e4fRT\n0bYAX3/9Nf369WPx4sVs376d3NxcTixhsqDatWsXvq5UqRLr168vlPvkk08utu9YKNrn77//DsD3\n33/P+PHjmTx5cuH13Nxc/va3v8WtbyMx/Pvf8PjjMHcuhDxeIwQ/+alSjR/31MtAP1VtoKoNgFu9\nc0YpaNGiBfvuuy8TJkzY6/zvv//O9OnTOfvsPfkmf/hhzzbu+fn5/Pjjj9StW5f69etz6KGHsmnT\npsJjy5YtTJkyBQjvkL7xxhs5+uijWbVqFb/99hsPP/xwoW8hVg4++OC9ZA19nSgaNGhA165d93oP\ntm7dyu23357wvv2SbvPm8aY0+k2d6vwc06fDoYfGX6Z4kcpnl47+jXD4MR77qeqcgoKq5gCVEyZR\nwKlWrRr33XcfvXv3ZsaMGezevZs1a9bQqVMn6tevT9euXQvrLl68mIkTJ5Kbm8uQIUOoWLEizZs3\n56STTqJKlSo88cQT7Nixg7y8PD777DMWLVoEhF819fvvv1OlShX2228/Vq5cyQsvvLDX9Vq1arF6\n9eoS6VLQT6dOnRgxYgQrV65k+/btPPjgg1Hb7t69m507dxYeubm5EfsoylVXXcXkyZOZOXMmeXl5\n7Ny5k5ycHH766acS6WAkj3nz4JprXIr1Y45JtTTpRzr7N8Lhx3h8JyL/9LaEPVRE7gFKtozG2Iv+\n/fvzyCOPcNttt1GtWjWaN2/OIYccwuzZs9nHW3IiIrRv35433niDAw44gNGjR/PWW2+RlZVFVlYW\nU6ZMYdmyZTRq1IiaNWvSs2dPtmzZUti26Mhj0KBB/Pvf/6Zq1ar07NmTK664Yq86AwcOpFu3btSo\nUYM333wz6nLa0OutW7emT58+nHXWWRx++OG0aNECgH333bfY9jfeeCP77bdf4XHttdeG7TO0HHq9\nXr16vPPOOzzyyCMcdNBBNGjQgMGDB8dtNBUP0mHePJGURL9ly1wsx+jRcMopiZMpXiT72aW7fyMc\nfoIEDwDuB07zTs0DBqrqpgTLFpVMDhKMxv3338+qVat47bXXUi1Kifnyyy859thj+eOPP8IuDEg3\ngvB5SWe++QbOPBOGDoXLLku1NOlHKvwbyQoS/J+q9lbV44GTgHvTwXAEnUz7Mps4cSK7du1i06ZN\nDBgwgHbt2mWE4Ugk5vOAH390iQ4feCCzDEeynl2m+DfCEfW/W0TGiEhVEakMfAp8ISLp45UMKJkW\nhf3yyy9Tq1YtDjvsMPbZZ58/+VSMssfGjXD++XDjjXDddamWJr3INP9GOPxMWy1X1SYi0gU4HrgD\nWKKqxyZDwEgEedrKSB72eYk/W7fCOedAq1ZuWa6xh3jlp4qFpExbAeVFZB/gYmCyqu5mT6JEwzCM\nvdi1Cy65BI47Dh57LNXSpBfplp8qFvwYj5dwmXT3B+aKSEPgt8SJZBjBoCz6PHJzoXNnqFEDXnyx\ndFkY0oFEPLtM9m+EI6r0qjoUKEyEKCLfA7arsGEYe6EKN9zgpqwmT4asrFRLlB6ky/4b8SaqzyOd\nMZ+HEQ/s8xI7qnD77S4QcNYstzeHkR7+jXAky+dhGIYRkccfh3ffhWnTzHAUECT/RjgiGg8RKSci\npyZLGCM21q5dS5UqVQp/Rbdq1Yrhw4cDMHr0aM4///zCuiXdb6No+1RQVL90p6z4PF5+2R0zZ8IB\nB6RWpngR67MLmn8jHBGNh6rmA88nSZYyQ8OGDdlvv/2oUqVK4dGnT5+Y79ugQQO2bt1aGB8SGivS\npUsXZsyYUep7x9q+JIQavVCK6meknnHj4P77neGoUyfV0qSeIMRv+MWPOZwlIpcBE8I6GIwSIyJM\nmTIlY9KH5+XlkZVE72emBUgWR9BzW+3a1YreveG99+Cww1ItTXwpzbML9W8svH5h4KapiuLH5/F3\nYBzwh4hs9Y4tCZarzJKfn89tt91GzZo1ady4Mf/617/22pq1YcOGzJ49u7D+wIEDCzPxFt3GNZTs\n7GxOP/30vc5NnTqVxo0bU7NmTW6//fbC6aDs7GxOO+00+vXrx4EHHsjAgQP3ah+un9DRQmj7GjVq\ncNhhhzF//nxGjBhBgwYNqFWrFqNGjSrxexO0bWozmY8+gquugrfecvEcZZ2g+zfC4Se31f6qWk5V\n91HVKt5RNRnCBZniBnEvv/wyU6dOZdmyZSxatKgww20BRX+Vx/IL/e2332bx4sUsWbKEd955h1df\nfbXw2ieffELjxo355ZdfuPvuu6Peq6hcn3zyCU2aNOF///sfV155JZ06dWLJkiWsXr2a119/nV69\nerF9+/ZSy15AOm9TG1Sfx6efwsUXw2235XDaadHrZyIleXZlwb8RDj87CZYDugCHquoDItIAqK2q\nnyRcugQi98dnWkTvK/lMnqpy8cUXU778nrd/0KBB9OjRg3HjxtG3b1/q1q0LwF133RXxF3MsM4kD\nBgygevXqVK9enVtuuYUxY8bQo0cPAOrUqcNNN90EuG1sS8qhhx5Kt27dALffx8MPP8y9997LPvvs\nw7nnnkuFChVYtWoVx8XwszV0m9qCfiZNmgRE3qb26quvLnWfZZ1vv4ULLoBnnrFdAIMav+EXPyby\neSAf+BvwAPC7d65ke5imGaX50o8XIsI777wT1uexfv166tevX1hu0KBBwuQo2s+6devCXisNtWrV\nKnxdqVIlgL222A3dUjYW0nmb2qD5PNavh3PPhbvvhiuuAGiVYokSR7RnV9b8G+Hw4/M4RVX/AewA\nl6Id2CehUpVhDj74YNauXVtYDn0NULlyZbZt21ZY/u9//1vqvor2UzDagcjTYZUru40kQ6edYpEj\nEWTCNrWZxKZNLrX6tde6LLllmbLo3wiHH+Pxh4gULrURkZq4kYgRA8VNN3Xq1ImhQ4fy008/sWnT\nJh577LG9vsibNm3K2LFjyc3NZdGiRUyYMKHUfo9BgwaxefNmfvjhB4YOHcrll/tbVlizZk3q1q3L\na6+9Rl5eHq+++mqJt7CNRhC2qQ2Kz2PbNrjwQjfquOuuPeeDol84itOtrPo3wuHHeDwLTAQOEpFH\ngA+BRxMqVRmgbdu2e8V5dOjQAYDrr7+e888/nyZNmnDiiSfSoUOHvb4gH3zwQVavXk2NGjUYOHAg\nXbp02eu+xRmScMtf27dvzwknnECzZs246KKLCv0dxW0HG3pu2LBhPPnkkxx44IF88cUXnBbiOY22\nnawfysI2tZnAH3+47WMPPxwGDcrcRIexUpbiN/ziK7eViBwFnO0VZ6vql75uLtIaGAJkAa+o6p8y\n+4vIUOACYDvQXVWXeufvBK7CjXI+Ba5R1V1F2gY+t9WaNWto1KgRubm5ZX5nvkQRpM9LPMnLgy5d\nYOdOePNNKF9Gf2Sna36qWEhmbquvcaOPycA2b8VVNOGygOeA1sDRwJWeEQqt0wY4TFX/CvQEXvDO\nNwSuB473Np3KAq7wKathGDGiCjfdBL/8AmPHll3DYf6N4vGzDW1v4GfgPWAKMNU7onEysEpV13gb\nSI0F2hep0w4YCaCqHwPVRaQWsAXYDewnIuWB/YDkTVanGUGIti6LZLJP4J57YNEiePttKG6ldibr\nF42cnBzzb0TBz7txC3CEqm6MWnNv6gI/hJR/BE7xUaeuqi4RkcHAWtwqrxmqOquE/QeChg0bkpeX\nl2oxjDLE4MEucnzuXKhaBsOB8/LzeGHhCyyssLBMxm/4xY/xWIsbCZQUv5PIf/pZLSKNcUarIW7X\nwvEi0kVVRxet2717dxo2bAhA9erVadq0aSlENYw9v6QL1vjHWi44F6/7JaP87rvwxhutmDcPPv88\nePpFK+/K3cWLG19kS60tPH3Q02xauQlqU+r7pUs5JyeH7OxsgMLvy1gp1mEuIrd6L48GjsRNWf3h\nnVNVfSrijUWaAwNVtbVXvhPID3Wai8iLQI6qjvXKK4EzcdFH56rqdd75rkBzVb2pSB+Bd5gbicc+\nL46JE+Ef/4CcHDjiiFRLk3w2bt9I2zFtaXxAY4a3G06FrAqpFilhJNphXgW3b/lanL+jglfe37sW\njUXAX0WkoYhUAC4HJhWpMwm4GgqNzWZV/Rn4CmguIpXETfifA3zhWyvDSAMyyScwe7bbQnbqVP+G\nI5P0i8Z3m77jtFdP48xDzmTUxaOYP29+qkVKe4qdtlLVgQAi0klVx4VeE5FO0W6sqrki0guYgVst\nNVxVvxSRG7zrL6nqNBFpIyKrgG3ANd61ZSIyCmeA8oElwMslUcyczIbhj4UL4corYfx4OP74VEuT\nfJasX0LbMW25q+Vd3HTyTdEbGICPOA8RWaqqzaKdSwXFTVsZhuGPL7+Es86CYcOgbdtUS5N8Zq6e\nyVVvXcVLF73EJUddkmpxkkY8pq2KHXmIyAVAG6CuF8hX0FEV3DJawzAymO+/h/PPhyefLJuGY9Ty\nUdz+3u1MvHwipzUIaG75BBLJ57EOWAzs9P4uxk0jTQJSu5l1GSFIc8rhMP1Sx88/u1xVt94K3l5i\nJSad9YuEqvLIvEe4L+c+5nSbE9ZwZKpuySSSz2M5sFxERuOy6DZQ1ZVJk8wwjITw22/QurXzc9x8\nc6qlSS55+Xn0frc3H/34EfOvnc/BVQ5OtUgZix+fRzvgSWBfVW0oIs2A+1W1XTIEjIT5PAyjZOzY\n4aaqmjSBoUPLVqLDHbt30Pmtzvz+x+9M6DSBqvuWwQhIj2TlthqIiwzfBOAlLmwUS6eGYSSf3buh\nY0eoX9/tBFiWDMfG7Rs5e9TZ7F9hf6Z2nlqmDUe88GM8dqvq5iLnLK91Egj6vKvplzzy8+Gaa9zr\n7GyIR4LmdNIvEkVjOPwE/2WKbqnET3qSz0WkC1BeRP4K9AEsgsYwMgRVuOUWt7pqxgzYpwztA2ox\nHInDj8+jMnA3cJ53agbwoKruTLBsUTGfh2FEZ+BAeOcdmDMHqldPtTTJo6zGcPghHj4PX5tBpStm\nPAwjMkOHwnPPwbx5UKtWqqVJHgUxHBM6TbAYjjAkczMoIwUEfd7V9Essr7/uAgBnzkyM4Ui1fuHw\nE8Phh3TULd2w3U0MI4BMngy33Qb/+Q/EKQN32mMxHMnFpq0MI2DMnQuXXQZTpsDJJ6damuRgMRwl\nI9G5rZ6N0E5VtU8sHRuGEX+WLHGGY8yYsmM4QvfheOOyNwK9D0c6EcnnUZDLahF757YqeG0kmKDP\nu5p+8eXrr+HCC+HFF+HssxPfXzo8v9LEcPghHXRLdyLltsoGEJHjVHVF0iQyDKPE/PADnHcePPww\nXHppqqVJDhbDkVr8xHl8AOwLjABGq+pvyRDMD+bzMAzYsAFOPx169HBO8rKAxXDERlKW6qpqS6AL\n0ABYIiJjROS8KM0Mw0gCW7fCBRfAxReXHcMxavkorp54NRMvn2iGI4X4ivNQ1a+Be4ABwJnAMyLy\nlYh0SKRwZZ2gz7uafrGxcye0b++2jn3kkYR2FZZkP7+CGI5759wbUwyHH4L+2YwHUeM8RKQJ0B24\nCHgPuEhVl4hIHWABMCGhEhqG8Sdyc91+HDVrwvPPBz9DbkEMx/wf5jO/x3zqVKmTapHKPH58Hu8D\nw4HxqrqjyLWrVXVUAuWLiPk8jLJIfr7zb6xb54IBKwR8ZWpBDMfWXVt56/K3LIYjDiQtt5WI7Asc\nASjwlar+EUun8cKMh1HWUHW+jY8+gvfeg8qVUy1RYtmwfQPtxrSjUY1GvNr+VYvhiBNJcZiLyIXA\nKuBZ4DlgtYi0iaVTwx9Bn3c1/UrOo4+6XFVTpqTecCT6+RXEcJxxyBmMuiR+MRx+CPpnMx74yW31\nFHCWqq4CEJHGwDTvMAwjSbzwAgwfDh98AAcckGppEktBDMedLe+k18m9Ui2OEQY/Po+FqnpSSFmA\nT0LPpQqbtjLKCmPHwq23urxVjRunWprEMmPVDK6a6GI4Lj2qjEQ8Jpmk+DxE5EVcjMc471RHYC1u\n5RWq+lYsAsSCGQ+jLDB9OnTrBrNmwbHHplqaxDJy2Uhun+X24WjZoGWqxQksydrPoyLwCy6+40zg\nV+9cW+8wEkTQ511Nv+h8+CF07QoTJ6af4Yjn8wvdhyOnW07KDUfQP5vxIKrPQ1W7J0EOwzCKsGKF\ny1P1+utw6qmpliZx5OXn0WtaL7cPh8VwZAx+pq3qA0OBgp8Cc4GbVfXHBMsWFZu2MoLK6tVwxhnw\n1FNw+eWpliZxbN+9nc4T3D4cFsORPJI1bTUCmATU8Y7J3jnDMBLAunVw7rlw773BNhwbtm/g7FFn\ns3+F/ZnWZZoZjgzDj/GoqaojVHW3d2QDByVYLoPgz7uafn/mf/9zqdWvvx5uuCH+MsWTWJ7fXvtw\nJDmGww9B/2zGAz/GY6OIdBWRLBEpLyJXARsSLZhhlDW2bXObObVuDXfckWppEseS9UtoOaIlvU/u\nzWPnPEY58ZWf1Ugz/Pg8DsFFljf3Ts0Heqvq2gTLFhXzeRhBYdcuaNsW6tVzgYBBTXRoMRzpQcLj\nPESkPDBSVbvE0kmiMONhBIG8PJchd/duGD8eyvvJ+5CBWAxH+pBwh7mq5gKHeIkRjSQT9HlX088l\nOrzxRti4EcaMySzD4ff5pVsMhx+C/tmMB34+qt8BH4jIJGC7d05V9anEiWUYZYO77oJly2D2bKhY\nMdXSxB8GKqrdAAAgAElEQVSL4QgufnweA72XBRUFZzzuj3pzkdbAECALeEVVHw9TZyhwAc4wdVfV\npd756sArwDFe39eq6oIibW3ayshYnnwSRoxw+aoOPDDV0sQfi+FIX+IxbeUnwnyg11k1V9QtPoXL\nwjnazwF+AhaKyCRV/TKkThvgMFX9q4icArzAHsf8M8A0Vb3M870EfOcCoywxfDj8618uQ24QDceG\n7RtoO6YtjWs0ZlzHcWm3FNeIHT/7eZwkIp8CK4BPRWS5iJzo494nA6tUdY2q7gbGAu2L1GkHjARQ\n1Y+B6iJSyzNUp6vqq961XFX9zb9awSDo865lVb8JE+Cf/3T7ctSrl1yZ4klx+qV7DIcfgv7ZjAd+\nFli/CvxDVQ9R1UOAm7xz0agL/BBS/tE7F61OPeBQ4FcRGSEiS0RkmIjs56NPw0hrZs1yDvKpU+Hw\nw1MtTfyxGI6yg58nm6uq8woKqvoBkOujnV9nRNF5N8VNpx0PPK+qxwPbgACHTYWnVatWqRYhoZQ1\n/T7+GDp3hjffhGbNUiNTPCmq3zsr3+H818/n2QuezfgNnIL+2YwHflZbvS8iLwFjvPLl3rnjAVR1\nSTHtfgLqh5Tr40YWkerU884J8KOqLvTOv0kxxqN79+40bNgQgOrVq9O0adPCB18w9LSylVNd/vxz\nuOCCHPr3hzPOSL088Sw3b9mc/jP7M37aeO4/8/7C4L90kc/KrcjJySE7Oxug8PsyVvystsph71GE\nhJZV9axi2pUHvgLOBtYBnwBXhnGY91LVNiLSHBiiqs29a3OB61T1a2/FVyVVHVCkj0CvtsrJySn8\nIASRsqLfmjVw+unw2GPQJS3DbUtHTk4OBx1zEFe8eQVHHngkL7d9meoVq6darLgQ9M9mslZbtSrN\njVU1V0R6ATNwS3WHq+qXInKDd/0lVZ0mIm1EZBVuauqakFv0BkaLSAVgdZFrhpER/Pyzy5B7++3B\nMhyqypSvppD9STaPnfMYPZr1QIKaU8UIi5+RR3XgPuAM71QO8EA6rH4K+sjDyGw2b4ZWreCSS+C+\n+1ItTfzYtGMTPaf05OuNXzO2w1iOqnlUqkUySkiy9vN4FdiC27u8E7AV28/DMCKyfTtcdJHb0One\ne1MtTfyY/8N8mr3UjNqVa/PxdR+b4SjD+DEejVX1PlX9VlVXe0GDjRMsl0Hw15oHVb/du6FjR6hU\nKYchQ4KRITcvP4+H5j7EJW9cwtALhvJsm2dZ8MGC6A0zlKB+NuOJn9VWO0Tk9ILluiLSkj05rgzD\nCCE/H7p1g6wsGDAAygUgzOHHLT9y1VtXISIs6bmEulWLhmsZZRE/Po+mwCigmndqE9BNVZcnWLao\nmM/DSCdUoVcv+OwzmD4dKlVKtUSx887Kd+g5pSd9Tu7DHS3vIKtcVqpFMuJAwvfzKNJZiXJbJQMz\nHkY6ce+9MGUKzJkD1apFr5/O7MzdSf+Z/Zn89WT+3eHfnFr/1FSLZMSRpDjMReQWEamKc5o/7aUL\nOT+WTg1/BH3eNUj6DRkCb7zhRhwFhiNT9fvi1y84edjJ/LztZ5b9fVmxhiNT9fNDkHWLF35mZK/1\nRhvnAQcAVwOPJVQqw8ggRo2Cp55yiQ4POijV0pQeVWXY4mGcMeIM+pzShzcueyMwQX9G/PHj8/hU\nVY/19t3IUdW3RGSpqqY8O49NWxmpZtIk6NnTTVUdlcGrVi12o2yRrDiPxSIyE2gDzPCmsPJj6dQw\ngkBODlx3nfNzZLLhsNgNozT4mrYC7gROVNVtwD5YqpCkEPR510zWb/FiF8sxdiycWMzuNumuX7jY\njYrl/e+Fm+76xUKQdYsXxcZ5iMhRXhLDprhEiI283DV7JUY0jLLGypUuenzYMPjb31ItTemw2A0j\nVor1eYjIMFW9PkxWXaD4bLrJxHweRrJZu9ZlyB04EK7J0PG3xW4YSY3zSEfMeBjJ5NdfneHo2RP6\n9Uu1NCXHYjeMApLlMDdSRNDnXTNJvy1boHVr6NDBv+FIJ/38xm6UhHTSL94EWbd4YcbDMKKwYwe0\nawcnnwwPPZRqaUqGxW4YicKmrQwjArm5brRRqRKMHu0SHmYKFrthFEdSdhL0OqoLNMTtCCi4HFdz\nY+nYMNKd/Hzo0QP++APGj88swzH/h/l0ntCZtoe35bVLXivRElzD8IOf3FaPAx8CdwP9gdu8v0aC\nCfq8azrrp+p8G6tWwZtvQoUKJb9HKvSLNXajJKTz84uVIOsWL/yMPC4BjlDVXYkWxjDShYcegv/8\nB95/HypXTrU0/rDYDSOZ+Mlt9S7QSVW3Jkck/5jPw0gEzz/vEh3OmwcHH5xqafxhsRtGSUiWz2MH\nsExEZgMFow9V1T6xdGwY6ciYMfDIIzB3bmYYjtDYjYmXT7TYDSNp+FmqOwl4EJgPLA45jAQT9HnX\ndNNv2jS45Ra3J0ejRrHfL9H6JSJ2oySk2/OLJ0HWLV5EHXmoanYS5DCMlPLKK3D33fDOO/B//5dq\naSKjqryy5BXunH0nj53zGD2a9cDLO2cYSSNSbqvxqtpRRD4Nc1lV9bjEihYd83kYsZKXBwMGuH05\nJk+GI45ItUSRsdgNIx4k2udxs/e3bSwdGEa6snUrdO4M27bBggVwwAGpligyFrthpBPF+jxUdZ33\nd024I2kSlmGCPu+aSv2+/x5OOw1q13Y+jkQYjnjpl8zYjZIQ5M9nkHWLF74izA0jSCxYAJdeCv37\nOwd5OrsLLHbDSFcst5VRpvj3v53BGDECLrww1dJExmI3jESRtNxWhpHp5Oe7DZxGjYLZs+HYY1Mt\nUfFY7IaRCRTr8xCRTyMcK5IpZFkl6POuydJv+3a44gqYNQs+/jh5hqM0+qU6dqMkBPnzGWTd4kWk\nkUfBKqt/eH9fw2XU7ZJQiQwjjqxfD+3bw+GHu1xVFVPvZw6LxW4YmYaf3FbLVLVpkXNLVbVZQiXz\ngfk8jEgsXeoMR8+eLgAwXb+LLXbDSDbJ2oZWRKRlSOE03AjEMNKWt9+G886DwYPhnnvS13DM/2E+\nzV5qRu3Ktfn4uo/NcBgZgx/jcS3wvIh8LyLfA89754wEE/R510TopwqPPw69esG770LHjnHvwjeR\n9EvX2I2SEOTPZ5B1ixd+clstBo4TkWpe+beES2UYpWDXLrjhBlixwsVy1KuXaonCY7EbRhCIlNuq\nq6q+JiK3AqGVCrahfSoZAkbCfB5GARs2wCWXQM2a8Npr6buBk8VuGOlAon0e+3l/qxQ59vf++hGw\ntYisFJFvRGRAMXWGeteXi0izIteyRGSpiEz2059RNvniCzjlFDj9dLdlbDoajp25O+k9rTc3T7+Z\niZdP5O4z7jbDYWQ2qpqQA8gCVgENgX2AZcBRReq0AaZ5r08BFhS53g8YDUwqpg8NMnPmzEm1CAkl\nHvq9+65qzZqqI0fGLk+8KdDv818+12OfP1Y7juuom3ZsSq1QcSTIn88g66aq6n13xvQdH9VhLiIj\nRaR6SLmGiLzqwy6dDKxSl0hxNzAWaF+kTjtgpGcFPgaqi0gtr596nnF5BVvdZRRBFZ59Fq65Bt56\nC66+OtUS/RlVZdjiYZwx4gz6nNKHNy57g+oVq0dvaBgZgJ/0JE1UdXNBQVU3icjxPtrVBX4IKf+I\nG11Eq1MX+Bl4GugPVPXRVyBp1apVqkVIKKXVb/duuPlmeP99mD8fDj00vnLFg007NvH8huf5+quv\nmXfNvEAuwQ3y5zPIusULv3EeB4QUDsBNSUXDrye76KhCROQi4BdVXRrmulGG2bwZ2rSB775LX8Mx\nc/VMmr7U1GI3jEDjZ+QxGPhIRMbhvsg7Ag/7aPcTUD+kXB83sohUp553rgPQTkTaABWBqiIySlX/\nNDnRvXt3GjZsCED16tVp2rRp4a+GgrXamVoeMmRIoPSJVb/Ro3O480649NJWDBoEH3yQXvpMnTmV\nFxa9wKf7fcqwtsP4YvIXLNhvQdrIl+rnl0nl0DiPdJAnHvpkZ2cDFH5fxowfxwhwDNAb6AUc7bNN\neWA1zmFegegO8+YUcZh7588EJhfTR/w8SGlI0J12JdEvJ0e1Vi3VF15InDyxMGPVDG3wdAO97p3r\ndPOOzapqzy+TCbJuqvFxmPvez8NzZFfEm45S1bU+2lwADMFNcw1X1UdF5Aav/UteneeA1sA24BpV\nXVLkHmcCt6pquzD3V7/yG5nLq6/CnXfC6NFwzjmplmZvtuzawm0zb2PG6hkMazuM8xqfl2qRDCMq\n8Yjz8JMYsR1u6qoO8AtwCPClqh4TS8fxwIxHsMnLgzvucHmqpkyBI45ItUR7M3P1TK6ffD3nNTqP\nQecNolrFaqkWyTB8kazEiA8BLYCvVfVQ4Gzg41g6NfwROu8aRCLpt3WrixhftMilGkknw7Fl1xZ6\nTu7J9ZOvZ1jbYQxrNyys4SjLzy/TCbJu8cKP8ditqhuAciKSpapzgBMTLJdRhlm7Flq2hFq1YMYM\n+MtfUi3RHmaunsmxLxyLqrLi7ytsmsoos/iZtpoFXAI8ChyIm7o6UVVTvsWZTVsFjwULoEMHuPVW\n6Ns3fVKpm2/DCBLJmrZqD2wH+gLTcSlH2kZsYRilYMwYaNcOXnoJ+vVLH8Nhow3D+DNRjYeqblPV\nPFXdrarZqjpUVTcmQ7iyTtDnXQv0U4X77nMrqmbNgosuSq1cBfj1bRRHWXl+QSTIusULPyMPw0gY\nO3bAFVfAzJnw8cdw3HGplshhow3DiIzvOI90xHwemc369W6P8b/+FYYPh4ppsJGe+TaMskBSfB4i\nsr+IZIWUs0QkDXdMMDKJpUvdHhzt2sHrr6eH4bDRhmH4x8+01WygUkh5P+C9xIhjhBLUede334bz\nzoNrr83hnntS7xiP1bdRHEF9fgUEWb8g6xYv/BiPfVX194KCqm5lzy6DhuEbVXjiCejVC6ZNg3TI\nem2jDcMoHX7iPD4E+qjqYq98IvCsqrZIgnwRMZ9H5rBrF/z977B8OUyaBPXqpVYe820YZZl4+Dz8\npGS/BRgnIuu98sHA5bF0apQtNmyASy+FAw+EefNSv8d4aE6qFX9fYTmpDKMU+InzWAgcBdwI/B04\nUlUXJVowIxjzrl984RzjLVvCm2/ubTiSrV+ifBvFEYTnF4kg6xdk3eJFsSMPETlbVWeLSAdcGvaC\nIc7h3pDnraRIaGQsM2ZA167w5JPQrVtqZbHRhmHEl2J9HiJyv6reJyLZhNlSVlWvSbBsUTGfR/ry\n3HPw8MMwfrwbdaQK820Yxp9J1n4ejVT122jnUoEZj/QjNxduvhlycmDyZGjUKHWy2H4bhhGeZCVG\nfDPMufGxdGr4I9PmXTdvhjZt4NtvYf786IYjUfol27dRHJn2/EpKkPULsm7xIpLP4yjgaKC6iFyK\n83koUBW3Ha1hFLJqFbRt64L/Bg+G8n7W8SUA820YRnKI5PNoj9vHoy0wKeTSVmCsqs5PvHiRsWmr\n9OD99+Hyy2HgQBfLkQrMt2EY/kmWz+PUdDAU4TDjkXpGjHD7jI8eDeeckxoZzLdhGCUjWT6PjSIy\nW0Q+9zo9TkTuiaVTwx/pPO+alwf9+8Mjj7iRR2kMR6z6pYtvozjS+fnFgyDrF2Td4oUf4zEMuAv4\nwyt/ClyZMImMtOf3313E+KJFbtvYI49MvgyWk8owUoufaatFqnqiiCxV1WbeuWWq2jQpEkaWzaat\nkszatS6N+kknwb/+BRUqJLd/820YRuwka9rqVxE5LKTTy4D1EeobAeXjj6FFC7j6anj55eQbDhtt\nGEb64Md49AJeAo4QkXVAX1yeKyPBpNO869ixbm/xF1+Efv3isweHX/3S3bdRHOn0/BJBkPULsm7x\nIupqfFVdDZwtIvsD5VR1S+LFMtIFVbj/fsjOhtmzk7/HuMVtGEZ64sfn8SjwuKpu9so1gFtVNeUr\nrsznkVh27IBrroHvv3e7/9Wqlby+zbdhGIkjWT6PCwoMB4CqbgIujKVTI/1Zv97t9FeuHMyZk1zD\nYb4Nw0h//BiPciJSmI5ERCoBSXaVlk1SNe+6bBk0b+58HKNHQ8UEJaMpql+m+jaKI+jz5kHWL8i6\nxQs/xmM0MFtEeojIdcAsYFRixTJSxaRJLj/Vk0/CP/8ZH8e4H2y0YRiZRVSfB4CIXACcg0uM+J6q\nzki0YH4wn0f8UHUGY+hQmDjRxXEkA/NtGEbySdYe5qjqu8C7sXRkpC9//OESGi5d6iLG69VLTr+2\nksowMpeo01Yi0kJEForI7yKyW0TyRcSW6yaBZMy7btgA554LmzbBBx8kx3AU+Da6Pt01EL6N4gj6\nvHmQ9QuybvHCj8/jOaAz8A1uH48ewPOJFMpIDl9+6Rzjp54KEyZA5cqJ7zPUtzG83XCbpjKMDMVP\nnMdiVT1BRFao6nHeOcttleHMnAlXXeX8HN26Jb4/820YRvqQrDiPbSKyL7BcRJ4QkX64XQWNDOVf\n/3IGY8KE5BgOW0llGMHDj/G42qvXC9gO1AM6+O1ARFqLyEoR+UZEBhRTZ6h3fbmIFGTurS8ic0Tk\ncxH5TET6+O0zKMR73jU3F3r1guefhw8/hNNPj+vt/0S0uI2gzyubfplLkHWLF35yW63xXu4ABpbk\n5iKShfOZnAP8BCwUkUmq+mVInTbAYar6VxE5BXgBaA7sBvqq6jIvr9ZiEXkvtK3hn82b3VaxIjB/\nPlRLsH/aVlIZRrDxFedR6puLtADuU9XWXvkOAFV9LKTOi8AcVX3DK68EzlTVn4vc623gWVWdHXLO\nfB4+WL3aRYufey489RSU97VAu3SYb8Mw0p9k+TxioS7wQ0j5R+9ctDp7LRgVkYZAM+DjuEsYcObO\nhZYtoU8fFwCYSMMxY9UM820YRhkhgV8lgItI90NRC1jYzpuyehO4WVV/L9qwe/fuNGzYEIDq1avT\ntGlTWrVqBeyZt8zU8pAhQ2LSZ8CAHF5+GcaNa8W55yZO3rrH1uXWmbeyeP5ibm5+M7e3uz0p+qV7\n2fTL3HKozyMd5ImHPtnZ2QCF35cxo6oRD+AI3D7m7wFzvOM/0dp5bZsD00PKdwIDitR5EbgipLwS\nqOW93geYAdxSzP01yMyZM6dU7bZuVf3HP1QbN1b98sv4yhTKph2btN/0fvqXx/+iT3zwhO7cvbNE\n7UurX6Zg+mUuQdZNVdX77oz6HR7p8BPnsQLnxF4C5O2xObo4mmESkfLAV8DZwDrgE+BK/bPDvJeq\nthGR5sAQVW0uIgKMBDaqat9i7q/R5C9rTJ/uUo2cdZbzb9SoEf8+cvNzGbZ4GPe/fz/tj2jPA2c9\nQK39k5iz3TCMmEhWbqvdqvpCaW6uqrki0gs3esgChqvqlyJyg3f9JVWdJiJtRGQVsA24xmt+GnAV\nsEJElnrn7lTV6aWRJehs3Ah9+7oUI8OGOed4Ipj17Sz6zujLgfsdyIyrZtCkdpPEdGQYRnoTbWiC\nW557E3AwcEDBEeuQJx4HNm2l+fmqY8eq1q6t2rev6u+/J0aWrzd8rW3/3VYbP9NYJ345UfPz82O+\nZ9CnBky/zCXIuqnGZ9rKz8ijO86BfVuozQEaxc2CGaXixx/hH/+Ab79128Seckr8+9i8czMPvv8g\nI5ePZMBpAxjfcTz7lt83/h0ZhpFRJDTOI9GUVZ9Hfj68/LLbrKl3b7jjDqgQ570dza9hGMElKT4P\nEakA3AicgRtxvA+8qKq7Y+nYKB1ffw3XX+/24MjJgWOOiX8f5tcwDCMafoIEXwCOB/7lvT7B+2sk\nmNC15rt3w2OPufTpHTo4x3i8Dcc3G7+h3Zh2/H3K33nwrAf5z9X/SajhCNUviJh+mUuQdYsXfnwe\nJ6mXit1jtrd810gSS5dCjx5QsyYsWgTxivEpwPwahmGUFD9xHkuATqq6yis3Bsar6vFJkC8iQfd5\n7NgB998PI0bAE0/A1Ve7xIbxwvwahlE2SVacR3/gPyLynVduyJ5YDCNBzJ0L110HzZrBihVQK87f\n6ebXMAwjFqL6PNRlsT0c6AP0Bg5X1f8kWrCyypYtcOON0LkzXH11Dm+8EV/DkWy/RiSCPq9s+mUu\nQdYtXhRrPETkbO9vB6ANcBjwV+BCEbk0OeKVLSZPdk7w/Hz47DOXDTdebN65mVtn3EqL4S04vcHp\nfP6Pz7n4yIuReM6DGYZRZijW5yEi96vqfSKSTZjsuKqa8qmroPg8fvnFpUxfvNilFvGSYsYF82sY\nhlGUePg8/DjMG6nqt9HOpYJMNx6q8PrrcNtt0L07DBwIlSrF7/6hfo0h5w8xv4ZhGEDyNoN6M8y5\n8bF0asD338MFF8DgwTBtGjz++J8NR2nnXdPJrxGJoM8rm36ZS5B1ixeRfB5Hef6O6iJyqYh08P52\nByomTcKAkZcHzz4LJ5wAZ54JCxe61/HA/BqGYSSLSD6P9sAlQFtgUsilrcBYVZ2fePEik2nTVl98\n4ZbfZmXBK6/AEUfE577m1zAMoyQky+fRQlU/iqWTRJEpxuOPP9y01NChLujv73+HcnHaPd78GoZh\nlJRk+TxuFJHqIZ3WEJFXY+m0LPHJJ3DiifDxx7BkiUuh7tdwRJp3zRS/RiSCPq9s+mUuQdYtXvj5\nGjtOVTcXFFR1Ey5RohGBbdvg1luhXTuXMn3yZKhfP/b7ml/DMIx0wM+01XLgLFX9n1c+AHhfVY9N\ngnwRSddpq9mzoWdPaNECnn7aJTSMlQK/xsD3B9L+iPY8eNaD5tcwDKNUJCu31WDgIxEZBwjQEXg4\nlk6DyqZNLmbjvffgxRehTZv43Pe91e/Rd0ZfalauycyrZmbc9JRhGMHDT26rUcClwC/Af4FLvHNG\nCG+9Bf/3fy5W4/PP42M4XnvnNdqNaceNU2/kob89lJF+jUgEfV7Z9MtcgqxbvPAz8kBVPxeRDbj4\nDhWRBqq6NrGiZQbr10OvXs5gvPFGfPJRbd65mQfef4Dh04Zzz9X32P4ahmGkHX58Hu1wU1d1cKOP\nQ4AvVTUBG6CWjFT6PPLz3T4bd97p/Bv33AMVYwydDPVrXHzExRavYRhGQkiWz+MhoAXwnqo2E5Gz\ngK6xdJrpzJsHfftC+fLOv9EkDjNJ5tcwDCOT8LNUd7eqbgDKiUiWqs4BTkywXGnJd99Bx47QpQv0\n6wcffRS74fh649fF+jWCPu9q+mU2QdYvyLrFCz/GY5OIVAHmAaNFZCjwe2LFSi+2bIEBA1ywX5Mm\nsHKl26wpltCKzTs3029GP04dfqrFaxiGkXH48XlUBnbiDE0XoCowWlU3Jl68yCTa55GXB8OHw333\nQevW8PDDUKdObPc0v4ZhGKkm4T4PESkPTFHVs4A8IDuWzjKJ2bOdX6NGDZg6FY6PQ0y9+TUMwwgK\nEaetVDUXyA/NbRV0vv7apRS5/no34sjJid1wRPJrRCLo866mX2YTZP2CrFu88LPaahvwqYjMBLZ7\n51RV+yROrOSzaRM88AC89hrcfjuMGxf70tuCeI1Ry0cx4LQBFq9hGEZg8OPz6IZLSwJuL3PBGY+R\nCZYtKvHweeze7VKJPPggXHKJMyC1YnRBmF/DMIx0JqE+DxGZrapnA8eo6u2xdJKOqMK777rMt/Xq\nOR/HsXFI9Wh+DcMwygKRfB4Hi8ipQDsROb7okSwBE8HChXDuuc4h/uSTMHNm7IajtH6NSAR93tX0\ny2yCrF+QdYsXkXwe9wH3AnVx6UmKclZCJEogX3zh0oh88gn8859w7bWwzz6x3dP8GoZhlEX8+Dzu\nVdUHkiRPifDr8/j+exg40C257d/fJTKsVCm2vs2vYRhGppKU3Fbpajj88MsvLrDv9dfd9q/ffAPV\nqsV+X/NrGIZR1vG5m3bpEJHWIrJSRL4RkQHF1BnqXV8uIs1K0jYSY8fCUUe511984VZTxWo4EuHX\niETQ511Nv8wmyPoFWbd4kTDjISJZwHNAa+Bo4EoROapInTbAYar6V6An8ILfttE4+WRYvBieeSb2\npbebdmxKSR6qZcuWJfT+qcb0y2yCrF+QdYsXiRx5nAysUtU1qrobGAu0L1KnHTASQFU/BqqLSG2f\nbSPSqBE0bBibArn5uTy/8HmO/NeRbPtjG5//43P6n9Y/aQ7xzZs3J6WfVGH6ZTZB1i/IusULXzsJ\nFkVEpqrqhVGq1QV+CCn/CJzio05d3MZT0domFPNrGIZhFE+pjAdwnY86fkO/0yoHuarS6c1OLFm/\nhEHnDkppmvQ1a9akpN9kYfplNkHWL8i6xQ1VjXgAN/s5F6ZOc2B6SPlOYECROi8CV4SUVwK1/LT1\nzqsddthhhx0lP6J9h0c7/MR5LFXVZkXOLVPVplHalQe+As4G1gGfAFeq6pchddoAvVS1jYg0B4ao\nanM/bQ3DMIzUESm31ZVAZ+BQEZkccqkKEHUjKFXNFZFewAwgCxiuql+KyA3e9ZdUdZqItBGRVbjs\nvddEals6FQ3DMIx4U+zIQ0QOAQ4FHgMGsMc3sQVY4e31YRiGYZRBIi3VvRS3f8fpqvq+quZ4x5Jk\nGI5UBhgmgxj1WyMiK0RkqYh8kjyp/RFNNxE5UkQ+EpGdInJrSdqmAzHql9bPDnzp18X7TK4QkQ9F\n5Di/bdOBGPULwvNr7+m3VEQWi8jf/LbdiwgO78HAfGATMBd4BLgIOCBWR4sPZ3sWsApoCOwDLAOO\nKlKnDTDNe30KsMBv21Qfsejnlb9LxnNIoG41gROBh4BbS9I21Ucs+qX7syuBfi2Aat7r1gH83wur\nX4CeX+WQ18fiYupK/PyKHXmo6q2qeipQG7fa6X/AtcDnIpJo/0NKAwyTQGn1C42VT6slziFE1U1V\nf1XVRcDukrZNA2LRr4B0fXbgT7+PVPU3r/gxUM9v2zQgFv0KyPTnty2kuD+wwW/bUPxEmFcCqgLV\nvGMdsMCnIqWluOBBP3XCBRgWbZtqYtEP3FK7WSKySESuT5iUpcOPbolomyxilTGdnx2UXL8ewLRS\nttUT5YYAAAi6SURBVE0FsegHAXl+InKxNwh4F+hTkrYFRFptNQyXV2orbqnsfOApVd3kT4eYiLx+\neA/p/AsgErHq11JV14lITeA9EVmpqvPiJFus+NUt3m2TRawynqaq69P02UEJ9BORs3CzEaeVtG0K\niUU/CMjzU9W3gbdF5HTgNRE5sqQdRRp5NAD2Bf4L/OQdyUr48hNQP6RcH2cFI9Wp59Xx0zbVlFa/\nnwBUdZ3391dgIm64mS7E8v4H5dkVi6qu9/6m47MDn/p5TuRhQLuQH5SBeX7F6BeY51eAZ/jKAwd4\n9fw/vyjOl3I4h0pPIBtYDMwEHkiw06c8sBrnuKlAdIdyc/Y47aK2TfURo377AVW815WBD4HzUq1T\nSXQLqTuQvR3mgXh2EfRL62dXgs9mA5xjtXlp35sM1S8oz68xe8I0jgdWl+b5+RWoPnA5MBT4Fvgt\nCW/CBbgo81XAnd65G4AbQuo8511fDhwfqW26HaXVD2jkPdRlwGfpqF803XCLMH4AfsOt5lsL7B+U\nZ1ecfpnw7Hzq9wouUHipd3wSqW26HaXVL0DP73ZP/qXAPOCk0jy/SEGCNwOn4pat5eJ8Hh96fz9T\n1bywDQ3DMIzAEymrbkNgHNBXvTl2wzAMw4AI6UkMwzAMozgSuoe5YRiGEUzMeBiGYRglxoyHYRiG\nUWLMeBiGYRglxoxHQBCRp73l1QXlGV6KmYLyYBHpKyKHiNvoy889O4rIFyIyOw7ytReRo0LK94vI\n2bHeN14kUz4RuUFEuoY531BEPg1zvo6IjE+ELGH62ut9SFKfv/uoc4uIVAopTxWRqomVzIiEGY/g\n8AEuLgcRKQf8BZebrIAWuDidQ3E7RPqhB3Cdqu71JSpum+CSckmoPKp6n6rGbJTiSNLkU7eL5msl\nqL9OVTsmQpYw7PU++EFEsmLs08+Sz5txEd6ugeqFqrolxn6NWEh1NKQdcYsqrQOs9V4fi0snMx2o\njstRtgmXo38BLkfZUuDmCPe7F5cUcyXwBNANmATMBubg0jPMwqWsWYHLAVTQ9mpcVPwyYBTOcG3E\nZSdYgovUzQY6ePXP9s6vAIYDFbzza3ApPgr6OCKMnA1x+80s9o4WIdcGeO2WAY965xrjMoku8tod\ngTO6keQ7CWd4l+FSdO9fRAa/78VI79xAvLQlwAkh158APi1Gx0+9192BtzwdvgYeD1P/JGCC97o9\nblO38kBF9qSiuB6X8HQZ8CYue3bo+7AU90PjT++X1z4beBH3eRpUpP9jvPdpqadbY+98P+BT77g5\npP5W728rYHLI+edwn7vewC7vvZ0d8tk4oLj7eu/Zl8DLuGjqGUDFVP+fBulIuQB2xPFhun/6+rhc\nZDcAD+DSDZwGzPXqnBn6DxrlfnPYkxalOy7lRnWvnMWePD8HAt94r4/BpTco+McuqD8CuDTk3iNw\nu1VWxKXvOMw7PzLkC+A74Cbv9Y3AsDAyVgL29V7/FVjovb4A94VfsYgcs0P6OiXky6g4+Srg8v2c\n4J3fH8gqIkNJ34v7gH7e6xW4LMng33isBqrgfhSsAeoWqV+ePUZiEO6L/FTv2Y/2zh8QUv9BoFcx\n70Nx71c27seEhJF3KNA5RJaKOCO5wntelXFf6E28OsUZj2eBq0M+C6Eyf4dL5hfuvk2992w3cJxX\n/w2gS6r/R4N0lGb6wUhf5uO+JE4FnsLl4j8Vl2PpA69OLGnsZ6pqQWblcsCjXkrnfKCOt1nV34Bx\nqvo/gJD64foW3C//71R1lXduJHAT8IxXfsv7uwT3ZV6UCsBzItIEyMMZEIBzgFdVdWeBHCKyP24U\nNF5EQttHk2+9qi727hNufr407wUiUg23Y13Bs3kNZ/SiMVtVt3r3+AL3RflTwUVVzRWR1V6a7ZNw\nn4UzcEauIH34sSLyEG6Pnv1xo9S93oco75cC49X7Zi7CR8DdIlIPeEtVV4lIS+/1Du/eb3kyLfeh\nb3EIEO6+p+MM23equsKruxj3PhlxwoxHsPgQN8o4FjeE/wG4DWc8Xo3x3oqb/iigC+5X9vGqmici\n3+F+YSrFG6hwXzRFz0mRc7u8v3mE/7z2xX25d/Xm3neG3LeoHOWAzarajPD4kS8cpXkvwuG37q6Q\n13k4o1CUubjMzLtxo4eROP1v865n46bXPhWRbrhf/QUU6Bzt/doe7qSqjhGRBbhtq6eJyA38+b0o\n+pzB5dAL9cNWIjqR7lv0ffJzP8Mn5jD///bu3zWKIAzj+PcpFEQNxkJIpdEioG0aS/+DFGoTRQ7/\nAAWxtLS0CopoJwi2FoJBEEIkRVATjlPLIDYi/tZGRF6LdzZZj7vkxi7h+XS3Ozs7O3c3787MsrOz\nLJF/2E+RvpBzHifLPoDv5JBHrf6GbQz4UBrLU8Bh8k/7FDgj6SCApPGS/kc5pi3IYZ0jko6VbeeB\nhYpyjZFrzkDOLzQN6ROg0zyhI2k8coJ1TdLpsk1l3Yatyjchabocs3/ABHFtXUAO93wDvkpqFhua\nrbjutkFBZxG4DCxFxEfyAYqpiHhV9u8D3kvaBZxjo8Fdr4ct6mt4YaTJiFiLiDngIXkzswjMSNoj\naS8ww0YvqPEWOC5pt6QDZM+tMez7GZbvdl0obttw8NhZemQj0V4muEvePX5uff4jaVXSJUkTkh6N\nkHfw753ifWBaUpds8N8ARMRr4DqwIGkVuFHSPwCuSnoh6eh6phG/gA45NNIl7z5vt8457PyNW8CF\ncq4p4GfJd54cunguaQW4UtLPAhdL+h65Vvxm5ftNLkcwV46ZJ3sVbbV10b62DnCzlLH/mhmQflA9\nDDpmGThE9kAgh4e6rf3XyLmQZ015i3Y9TDK8vjYr61lJvXJNJ4B7EbFC9naWyd/n3YhohqwCICLe\nkS9j7ZFzFC9bed4BHvc/Nj5KviOU1/6DX4xoZmbV3PMwM7NqDh5mZlbNwcPMzKo5eJiZWTUHDzMz\nq+bgYWZm1Rw8zMysmoOHmZlV+ws92v6jnNxHLAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x78da7f0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical Stages: \n",
+ "7.6\n",
+ "Weight of the extract: 23000.0 kg/h\n",
+ "\n",
+ "Weight of the raffinate 5000.0 kg/h\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.4: Page 506"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.4\n",
+ "# Page: 506\n",
+ "\n",
+ "print'Illustration 10.4 - Page: 506\\n\\n'\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "import numpy\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:kerosene c:Nicotine\n",
+ "F = 1000.0;# [kg/h]\n",
+ "xF = 0.01;# [wt. fraction acetic acid]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data:\n",
+ "# x_prime = kg nicotine/kg water\n",
+ "# y_prime = kg nicotine/kg kerosene\n",
+ "# Eqb = [x_prime y_prme]\n",
+ "Eqb = numpy.array([[0 ,0],[0.001011, 0.000807],[0.00246, 0.001961],[0.00502 ,0.00456],[0.00751, 0.00686],[0.00998, 0.00913],[0.0204 ,0.01870]]);\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "A = 1000*(1-xF);# [kg water/h]\n",
+ "yS = 0;\n",
+ "yS_prime = 0;\n",
+ "y1_prime = 0;\n",
+ "xF_prime = xF/(1-xF);# [kg nicotine/kg water]\n",
+ "# For xF_prime = 0.0101:\n",
+ "yk = 0.0093;\n",
+ "xNp = 0.001;# [wt. fraction acetic acid]\n",
+ "xNp_prime = xNp/(1-xNp);# [kg nicotine/kg water]\n",
+ "# For infinite stages:\n",
+ "# Operating Line should pass through (xNp_prime,y1_prime) & (xF_prime,yk)\n",
+ "Operat = numpy.array([[xNp_prime, y1_prime],[xF_prime ,yk]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1],label=\"equilibrium Line\")\n",
+ "plt.plot(Operat[:,0],Operat[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.4(a)\")\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0,0.01))\n",
+ "plt.show()\n",
+ "AbyBm = (yk-y1_prime)/(xF_prime-xNp_prime);\n",
+ "Bm = A/AbyBm;# [kg kerosene/h];\n",
+ "print\"Mininmum kerosene rate: \",round(Bm,2),\" kg kerosene/h \\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "B = 1150.0;# [kg/h]\n",
+ "AbyB = A/B;\n",
+ "# From Eqn. 10.36:\n",
+ "y2_prime = ((xF_prime-xNp_prime)*AbyB)+yS_prime;# [kg nicotine/kg kerosene]\n",
+ "# Operating Line should pass through (xNp_prime,y1_prime) & (xF_prime,y2_prime)\n",
+ "Operat = numpy.array([[xNp_prime, y1_prime],[xF_prime, y2_prime]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1],label=\"equilibrium Line\")\n",
+ "plt.plot(Operat[:,0],Operat[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine/kg water\");\n",
+ "plt.ylabel(\"kg nicotine/kg kerosene\");\n",
+ "plt.title(\"Solution 10.4(b)\")\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0,0.01))\n",
+ "plt.show()\n",
+ "# From Figure:\n",
+ "Np = 8.3;\n",
+ "print\"Number of theoretical stages: \\n\",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.4 - Page: 506\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFX3wPHvISIqUkV6F1SsIFWUoohGxKBIFcGgFFGU\nnwXBCr5WRBA7SkeQLr2/QBClBBGsICAgIoiC9Jpyfn/MJu8SkuyG7GRLzud59iEze2fmXDfuydw7\n915RVYwxxhg35Al2AMYYYyKXJRljjDGusSRjjDHGNZZkjDHGuMaSjDHGGNdYkjHGGOMaSzIm1xGR\niiKSLCLn9PsvIh1EZGGg48ppInKHiEz3s2xPEXnL7ZhM5LEkY8KWiNwsIitF5KCI7BeRr0WkVoCv\ncVZCUtXxqnpHIK/juVZeEZkqIts912yUTpkBIrLP8/LrS19EXvac79Y0b70OvOlneMOADiJyqZ/l\njQEsyZgwJSIFgTnAe0ARoAzwCnDKrUu6dN60vgIeAP4CzhgpLSLdgRbAdZ7X3Z59GRKRy4BWwO40\n+2sDBVU13p+gVPUUMB/o5F81jHFYkjHh6nJAVXWSOk6q6mJV/RFAHC+KyA4R2SsiYzyJ6SyeMk28\ntvuLyOeeza88/x4UkcMiUk9EYkVkhVf5+iKy1nNHFS8iN3q9Fyci//HcZR0WkYUickl6cahqgqq+\nr6rfAEnpFHkQeEdVd6vqbuAdINbHf6cPgT5AQpr9dwJxaf47vCciO0XkkIh8KyI3pzkmDrjLx/WM\nOYMlGROufgWSRGS0iESLSJE073fG+VJuDFQGLsb5wk2PcuZdg/fPDTz/FlLVgqq62vtAESkKzAWG\nAEWBwcDcNPG0x0kGxYHzgWf8qWA6rgK+99r+Abg6o8Ii0ho4qarz03n7Gpz/ht7igetx7gy/AKaI\nyPle72/yvG+M3yzJmLCkqkeAm3ESwjDgbxGZKSLFPUU6AINUdYeqHgOeA9r52dkvGfycnruAXz39\nNMmqOhHnyzgmJVRglKpuVdWTwGSguj91TMfFwCGv7cOefWcRkQI4fS69MjhXYeCI9w5PHQ546jEY\nyAdc4VXkCFDoHGM3uZQlGRO2VHWTqnZW1XI4f5mXxrmjACgF/O5VfCdwHlAiwGGU9pzb2++e/Sn+\n8vr5BBkkBj8cBbyb/Ap59qWnP/C5qnrH5p0wD6Q5FyLyjIj84mn2O+A5fzGvIgU4M8kZ45MlGRMR\nVPVXYAxOsgGno7uiV5HyQCKwN53DjwH5vbZLep/ax6X/BCqk2VfBsz/QfubMu6DrgZ8yKHsr8ISI\n7BGRPUA5YLKI9Pa8/wNOvxYAItIA6A20VtXCqloEJ6F4J6ZqwIaA1MTkGpZkTFgSkStE5CkRKePZ\nLofT97HKU2QC8KTnEeSLgTeAiaqanM7pNuA0pZ3neQT6Pv6XXP4BkoHLMghlPnC5iLT3HN8WuBLn\nybfUcLNQr3wicoFn0/tngLHAUyJS2lPvp4DRGZyqCU5/zfU4iWk30A342PP+PMD7EekCOEl4n4ic\nLyIvk+ZOx1M+vf4dYzJkScaEqyNAXWCNiBzFSS4/AE973h8JfI7zdNg24DjwuNfx3ncoL+EkkQM4\nzUzjUwupHsfp2/hGRP4Vkbp4PSigqvuB5p7r7sPp1G+uqv9mcK20Dxmk9asn1tLAQuCYiJT3XOtT\nYDbwo6eus1X1s5QDReQnEWnvKfuvqv7tee3FeVrtgKd/ClVdDxwSkTqewxd4XpuBHTjNeju9zn0B\nzhNpYzKJ3ZiziJuLlolINE4beRQwXFUHpFPmfZxf3uNArOeXHxEZidOp+reqXutVvigwCadJYgfQ\nRlUPulYJYyKUiDQFHlXVe/0o2xMoq6p93Y/MRBLXkoyIROH8VXYbTvv0WqC9qm70KtMM6KmqzTx/\nIb6nqvU87zXA6dQcmybJvA3sU9W3RaQPUMR+8Y0xJjS52VxWB9jqeYQ0AZiIM1rZWwye229VXQMU\nFpGSnu0VOM0XaaUe4/n3HhdiN8YYEwBuJpkywB9e27s8+7JaJq0SnjZmcJ4UCvQjqcYYYwLEzSTj\nbztc2idv/G6/U6etz71OJWOMMdlynovn/hPn2fwU5XDuVDIrUxbf4wv2ikhJVf1LREoBf6dXSEQs\n+RhjzDlQ1YBNCOvmncy3QFXPOIXzgbbArDRlZuGZ1VVE6gEHvZrCMjILZ04qPP/OyKigqkbsq1+/\nfkGPwepm9bP6Beb1xx9Kw4ZKkybK7t3BrV+guZZkVDUR6InzrP8vwCRV3Sgi3VOmJ1fVecA2EdkK\nfAo8mnK8iEwAVuIMdPtDRDp73noLaCoim3FGNefKhZR27NgR7BBcE8l1A6tfuAt0/WbPhlq1IDoa\nFi6EUqUCevqgc7O5DHVmf52fZt+nabZ7ZnBs+wz2/4vzWLQxxoStU6egTx+YMQO+/BLq1w92RO5w\nNckY98TGxgY7BNdEct3A6hfuAlG/LVugXTuoUAHWr4ciaReqiCCujvgPJhHRSK2bMSZ8jRsHTz4J\nr7wCPXqA5NSaq34SETSAHf+57k5GQu0TNSHNjT9U4uLiaNy4ccDPGyqsfuk7ehR69oTVq+G//4Xr\nc8nyb7kuyYA7Xxwm8tgfJCZQNmxwmsfq14d16yB/ft/HRIpc11zmuRUMQkQm3NjviskuVfj4Y+jf\nH4YMgQ4dgh2Rb9ZcZowxYeDff+Hhh2HnTli5EqpWDXZEwWHryRiTw+Li4oIdgqusfvDNN1CjBlSq\nlLsTDFiSyRVWrFjBlVdembpdsWJFli5dCsAbb7xB165dAWeQWZ48eUhOTm/xyPS9+eabqccHS9r6\nGRMsSUnw+utw333w0UcweDDkyxfsqILL+mRyoUqVKjFixAhuvfXWM/bv2LGDypUrk5iYSJ48off3\nR8WKFRkxYgRNmjTJkevZ74rJij174IEHnEQzfjyU8TWffIgKdJ9M6H2TmLCRlJSUo9cTEXviy4Sk\nBQvghhugYUNYsiR8E4wbLMmEkN27d3PfffdRvHhxKleuzAcffJD63okTJ4iNjaVo0aJcffXVDBw4\nkHLl/jeBdZ48edi2bVvqdmxsLC+99BLgtCF7l/XWv39/OnbseMa+ESNGUKZMGUqXLs2gQYPOKNuq\nVSs6duxIoUKFGD169BnHp3cd76a5/v3707p1azp27EjBggW57rrr2LJlC2+++SYlSpSgQoUKLF68\nOMv/3dJet2LFigwaNIjrr7+ewoUL065dO06dOpX6/pw5c6hevTpFihThpptu4scff8zyNbPD+izC\nW0r9Vvy+gtOn4dlnoWtXmDgR+vWDqKjgxhdqLMmEiOTkZO6++25q1KjB7t27WbJkCUOGDGHRokUA\nvPLKK2zfvp1t27axcOFCxowZk+lf9f7+1Z9embi4OLZu3cqiRYsYMGAAS5YsSX1v1qxZtG7dmkOH\nDtGhQwef10j7/pw5c+jUqRMHDhygRo0aNG3aFHAS7EsvvUT37t19xuxPnaZMmcLChQvZvn07P/zw\nA6NHjwZg/fr1PPzwwwwbNox///2X7t27ExMTw+nTp7N9XZM7JCQl8MicR3h4+iPUb3yEjRudqWEa\nNQp2ZKHJkkwaIoF5ZdXatWvZt28fL774Iueddx6VKlWiS5cuTJw4EYApU6bwwgsvULhwYcqWLUuv\nXr189hf405+QXpl+/fpx4YUXcs0119C5c2cmTJiQ+l79+vWJiYkB4IILLshyn0XDhg1p2rQpUVFR\ntGrViv3799O3b1+ioqJo27YtO3bs4PDhw1k6Z3qeeOIJSpYsSZEiRbj77rvZsGEDAJ999hndu3en\ndu3aiAidOnUiX758rF69OtvX9Fckj4aHyK7fP8f+4dWdr/Ltr7v5d+AqOrYtwKxZUKxYsCMLXTZO\nJo1g9fP+/vvv7N69myJeM+UlJSXRsGFDwPlL37tJqHz58q7FkvY63s1JZcuWzda5ixcvnvrzhRde\nSLFixVLvdi688EIAjh49SsGCBbN1nZIlS55xnd27dwPOf+exY8ee0RSZkJDAnj17snU9E/m+/+t7\nWky8hyJ/dODIrP+wcFYeatYMdlShz+5kQkT58uWpVKkSBw4cSH0dPnyYOXPmAFCqVCl27tyZWt77\nZ4CLLrqI48ePp27v2bPnnDvJ016njFcvZtpzem/nz5//jBiSkpL4559/zimGQEuJs3z58rzwwgtn\n/Hc+evQobdu2zbFYckufRSSZ+stUbhl1G0kL3qLYD7ex/jtLMP6yJBMi6tSpQ4ECBXj77bc5ceIE\nSUlJ/PTTT3z77bcAtGnThjfffJODBw+ya9cuPvjggzO+4KtXr8748eNJSkpiwYIFfPXVV+ccy2uv\nvcaJEyf4+eefGT16dKZfwN7NZZdffjknT55k3rx5JCQk8Nprr53R4R4Ip0+f5uTJk6kvf59wS4mz\na9euDB06lPj4eFSVY8eOMXfuXI4ePRrQOE1kSNZkXlr6Mt2/fBr9fCGvtmvL889DgQLBjix8WJIJ\nEXny5GHOnDls2LCBypUrc+mll9KtW7fU/ol+/fpRoUIFKlWqRHR0NJ06dTrjC/69995j9uzZFClS\nhC+++IJ77733jPNndFeT9gEBEaFRo0ZUqVKF2267jd69e3PbbbelWzbtvkKFCvHxxx/TpUsXypYt\ny8UXX3xG01tGx/sTZ4pmzZpx0UUXpb5eeeUVnw85eL9fs2ZNhg0bRs+ePSlatChVq1Zl7NixmV4z\n0CK5zwIip35HTh0hZvx9DF24lBKz4ln15Q3ExsIttzQOdmhhxQZjhqm4uDg6duzIH3/8EexQIlak\n/K6YrNt2YBu3j2zB3+vr0aHwh7z7Tj4uuCDYUeUMG4xpTJiLxD4Lb+FevyXblnH9+/XZO687o+79\njE8+PDPBhHv9cpo9XRbGbPS7MYGjqgxY9jH9lrxK1R++YO7IW6lQIdhRhT9rLjMmA/a7knucTjrN\nvcN6smjjSrpePIv3X6nMebn0T3BbT8YYYwJo96G/qTf4Pv7ZeQnT2q4iJtoeHQsk65MxJodFept+\nONVv/voNVH6zDnn/bMy2N7/0K8GEU/1CgSUZY0yu1Hv0FO6a1JRWhQay5bNXKVXSvg7dYH0yxmTA\nflci0/ETyTTq34/1yZ8zoul0Hry9RrBDCinWJ2OMMedo3U9HuPXDjuQtuJ+NT8ZTtXRx3weZbLH7\nQ5MlwVjqeOfOnRQoUCBi7ioivU0/VOs3cMRv1P3sRq6vXII/31hyzgkmVOsXqizJhJjRo0dz7bXX\nkj9/fkqVKsWjjz7KoUOHghZP2sXQGjRowKZNm1y5VuPGjRkxYsRZ+8uXL8+RI0dsXJA5J0eOQNPu\nS3hua3363Pooy3sPJd955wc7rFzDkkwIGTRoEH379mXQoEEcPnyY1atX8/vvv9O0aVMSEhICfr2s\nTi7pttyyvHKkzO2VkVCq33ffKZe1/4BvSnRgVqeJvH7Po9n+HQul+oUDSzIh4vDhw/Tv358PP/yQ\n22+/naioKCpUqMDkyZPZsWMH48aNA/63BHK7du0oWLAgNWvW5Icffkg9T2ZLOKddPnnMmDGsXbuW\nG2+8kSJFilC6dGkef/zx1ISWspbN9ddfT4ECBZgyZUqWlzp+++23KV26NGXLlmX48OFn3Rn5Y8eO\nHeTJk4fk5GTA+Z/85Zdf5uabb6ZgwYLccccd7N+/P7X86tWrqV+/PkWKFKF69eosX748S9cz4U8V\nBr93mpve6sYFN33Gz0+uolm1W4IdVu6kqhH5cqp2toz2B9v8+fP1vPPO06SkpLPee/DBB7V9+/aq\nqtqvXz/NmzevTps2TRMTE/Wdd97RSpUqaWJioiYlJekNN9ygr776qiYkJOi2bdu0cuXKunDhwjOO\nnTlzpqqqnjhxQtetW6dr1qzRpKQk3bFjh1arVk2HDBmSem0R0d9++y11e9myZVq2bNnU7YoVK2rd\nunV1z549+u+//2q1atV06NChqXUqWbKk/vLLL3r8+HHt0KGD5smT54zzeWvcuLGOGDHirP3bt29X\nEUn9b9OoUSOtUqWKbtmyRU+cOKGNGzfWvn37qqrqrl279JJLLtH58+erqurixYv1kksu0X/++cfP\nT+J/3PpdWbZsmSvnDRXBrt++faq3t/xLL37iJm064h49fPJwQM8f7Pq5zfN7H7DvYnu6LA15JTDN\nNdova01M+/bto1ixYuTJc/bNZcmSJfnuu+9St2vVqkXLli0BeOqppxg0aBCrVq0ib968qUs4A2cs\n4Xz77bcDZy+ffMMNN6Set0KFCnTr1o3ly5fTq1cvv2NPWeoYOGOp48mTJ/PQQw9RrVo1AF555RW+\n+OILv8+bERGhc+fOVKlSBXDW2pk1axYA48aNo1mzZkRHRwNw2223UatWLebNm0enTp2yfW0T2las\ngNZPfMfxmHvp1SCW/zTpRx6xBptgsiSTRlaTQ6AUK1aMffv2kZycfFai2bNnD5deemnqtvcSyCJC\n2bJl2b17NyKS6RLOaY8F2Lx5M0899RTr1q3j+PHjJCYmUqtWrSzFnnap45SljPfs2UOdOnUyvHZ2\npL1myqJjv//+O1OmTGH27Nmp7ycmJnLrrbcG7NrZFelt+sGoX1ISvPEGDFo4CW3Vk5H3fkKrq1q5\ncq1I//wCzVJ8iLjxxhvJly8f06ZNO2P/0aNHWbBgAU2aNEnd572GTHJyMrt27aJMmTKUK1cu0yWc\n0+tY79GjB1dddRVbt27l0KFDvP7666l9H9lVqlSpM2LNibVvypcvT8eOHc/4b3DkyBGeffZZ169t\ngmP3britaTLDt79AwXv7svzhxa4lGJN1lmRCRKFChejXrx+PP/44CxcuJCEhgR07dtCmTRvKlStH\nx44dU8uuW7eO6dOnk5iYyJAhQ7jggguoV68etWvXznQJZ03nKbGjR49SoEABLrroIjZt2sQnn3xy\nxvslSpTgt99+y1JdUq7Tpk0bRo0axaZNmzh+/Divvvqqz2MTEhLOWF45MTEx02uk9cADDzB79mwW\nLVpEUlISJ0+eJC4ujj///DNLdXBTpI+zyMn6zZ8PNeodZk+je6jQ4GvWPRJP9ZLVXb1mpH9+gWZJ\nJoT07t2bN954g2eeeYZChQpRr149KlSowJIlS8ibNy/g3I20aNGCSZMmUbRoUcaPH8+XX35JVFQU\nUVFRmS7hnN6dzDvvvMMXX3xBwYIF6datG+3atTujTP/+/XnwwQcpUqQIU6dOzdJSx9HR0TzxxBPc\ncsstXH755dx4440A5MuXL8Pje/Toccbyyg899JDPZZu93y9btiwzZ87kjTfeoHjx4pQvX55BgwYF\n7O7MhIbTp+GZZ+ChZ7Zy0RM3ckvNMvy302IuzX+p74NNjnJ17jIRiQaGAFHAcFUdkE6Z94E7geNA\nrKquz+xYEakDfAjkBRKBR1V1bTrn1fTqFu7zUb3yyits3bqVzz//PNihZNnGjRu59tprOX36dLoP\nOISacP9diVTbtkG7dnDe5f9l63UdeOWW/vSo3SPYYUWMsFl+WUSicJJBNHAV0F5EqqUp0wyooqpV\ngW7AJ34c+zbwkqrWAF72bOca4falN336dE6dOsWBAwfo06cPMTExYZFgTGiaNAnq1lPKtXqf7TU6\nMqXNZEswIc7N/9vrAFtVdYeqJgATgRZpysQAYwBUdQ1QWERK+jh2D1DI83NhIHQa23NAuI2K/+yz\nzyhRogRVqlQhb968Z/X55EaR3qbvRv2OH4euXeGFfqe46a0ubCkwnJUPraRRxUYBv5Yvkf75BZqb\njzCXAbwfJ9oF1PWjTBmgdCbH9gW+FpF3cJLkjQGMOeT169cv2CFkyfz584MdgglzP/0EbdvClbX+\notjT9xF1cUlWPrCSi8+/ONihGT+4mWT8bdfJ6p/lI4AnVHW6iLQGRgJN0ysYGxtLxYoVAShcuDDV\nq7v71ImJXCl/vaaMkcjOduPGjQN6vlDbDlT9VGHLlsa88ALc1elT5p18iceqPsZLjV7iq+VfhX39\nQmU7Li6O0aNHA6R+XwaSax3/IlIP6K+q0Z7t54Bk785/ERkKxKnqRM/2JqARUCmjY0XksKoW9OwX\n4KCqFiKNSO34NznHfleC5+BB6NYNNm+Gjm9P4K3vn2DoXUO576r7gh1axAubjn/gW6CqiFQUkfOB\ntsCsNGVmAZ0gNSkdVNW9Po7dKiIpDbG3AptdrIMxARfpbfrZrd+aNVCjBhQrnkTTAc/x4cbnWdJp\nScgkmEj//ALNteYyVU0UkZ7AQpzHkEeo6kYR6e55/1NVnScizURkK3AM6JzZsZ5TdwM+EpF8wAnP\ndpaEU8e5MblFcjK88w4MGgSDPzrMhNP3c3TPUdZ2XUuxi4oFOzxzjlwdJxNMGTWXGWNCz99/Q6dO\nzgJjrw/dwqNfteCWircwJHoIeaPyBju8XCWcmsuMMcanJUuc5rFateClUYtpu/BmetXtxUd3fWQJ\nJgL4TDIiUlJERojIAs/2VSLysPuhmcxEcrtwJNcNrH4pEhPhhRecO5gxY5RizYfQeXYnprSeQvda\n3d0NMhsi/fMLNH/uZEYDi3DGrgBsAZ50KyBjTOTbuRMaNYJ162DV2lOMP/YQozaMYtXDq2hYoaHv\nE5iw4bNPRkS+VdVaIrLeM5ULIrJBVUN60In1yRgTmqZPh0cecSa47ND9L1pNaUnpAqUZc88Y8p+f\nP9jh5XqB7pPx5+myoyJyiVcA9YBDgQrAGJM7nDzpJJa5c2HmTDiv/LfUG9GSLjd04cWGL9oKlhHK\nn0/1aWA2UFlEVgKfA0+4GpXxKZLbhSO5bpA767dpE9Sr5zxFtn49bMv/Bc3GN+O96Pd4udHLYZVg\nIv3zCzSfdzKqus4z+PEKz65fPZNWGmNMplRhzBjo3Rtefx0eejiJF5Y+z5RfprCk0xKuLXFtsEM0\nLvNrnIyI3ARUxElKCqCqY12NLJusT8aY4DpyBB59FL77zpmiv1yVQ9z/5f2cSDjB5NaTbYBliMrx\ncTIiMg4YCNwE1AJqe17GGJOu776DmjXhggtg7Vo4v9Rm6o2oR6XClVj4wEJLMLmIPw2hNYGbVPVR\nVX085eV2YCZzkdwuHMl1g8iunyo8/ngc0dHwn//AsGHw9Z5FNBjVgCfrPcmHzT4M+wGWkfz5ucGf\np8t+AkoBu12OxRgTxvbvh86dnZmTV62CypWVwaveZeDKgUxtPZUGFRoEO0QTBP6Mk4kDqgPxwCnP\nblXVGHdDyx7rkzEm53z1FTzwgLO42OuvQ3Kekzwy5xG+3/s9M9rOoELhCsEO0fgpGONk+nv+Vf63\nwJh9extjSEpyksrHH8PIkdCsGew5sod7J91L+ULl+brz1zbAMpfz2SejqnHADiCv5+d4YL2rURmf\nIrldOJLrBpFTv9274bbbIC7O6ehv1gzW/rmW6/peR/PLmzOp1aSITDCR8vnlFH+eLusGTAE+9ewq\nC0x3MyhjTGibNw9uuAFuvRUWL4bSpWHcD+O464u76FW3Fy82fNHWbTKAf30y3wN1gNVec5f9qKoh\nPYrK+mSMCbzTp+G552DKFBg/Hho0gKTkJJ5b8hzTNk5jZruZXFP8mmCHabIhGH0yp1T1VMpfJSKS\nOiDTGJN7/PYbtGvn3LWsXw+XXAIHTx7k/mn3cyrpFPFd4rnkokt8n8jkKv6Mk1kuIi8AF4lIU5ym\ns9nuhmV8ieR24UiuG4Rn/SZOdOYe69QJZsxwEszm/ZupN7weVYpWYUGHBakJJhzrlxWRXr9A8+dO\npi/wMPAj0B2YBwx3MyhjTGg4dgx69XIeUV640OmHAViwdQGdpnfijSZv0OWGLsEN0oQ0v+YuSy0s\nUhQop6rfuxdSYFifjDHZ8+OPzriXmjWdR5QLFABVZfCqwQxaNYjJrSdzc/mbgx2mCbAc75MRkeXA\n3Z6y64B/ROQbVbXVMY2JQKrw2Wfw4oswaJDTRAZwMvEk3WZ346e/f2J1l9WUL1Q+uIGasOBPn0wh\nVT0MtATGqmod4DZ3wzK+RHK7cCTXDUK7focOOXcvH38MX3/9vwSz+8huGo1uxKmkU3z90NeZJphQ\nrl8gRHr9As2fJBMlIqWANsBczz5rhzImwqxdCzVqwKWXwpo1cIVnBak1u9ZQZ1gdWlzRgon3TeSi\nvBcFN1ATVvwZJ9MaeAn4RlV7iMhlwNuqel9OBHiurE/GGP8kJ8O778KAAfDJJ3Cf1//ZY78fyzOL\nnmFEzAjuvuLu4AVpckyg+2Sy1PEfTizJGOPbvn0QG+v8O2ECVKrk7E9KTqLPf/swY9MMZrabydXF\nrw5qnCbnBGPRsnIiMl1E/vG8polI2UAFYM5NJLcLR3LdIHTq99VXTvPYVVfBihX/SzAHTx6k+YTm\nbPhrA/Fd47OcYEKlfm6J9PoFmj99MqOAWUBpz2u2Z58xJgwlJTkLirVt6zxF9vbbkNezjtiv+36l\n7vC6XF70chY8sICiFxYNbrAm7Pk1d5mqXu9rX6ix5jJjzrZ7t7Pui6oz91jp0v97b/6W+Tw440He\nuu0tHqrxUPCCNEGV481lwH4R6SgiUSJynog8AOwLVADGmJyxYIEzsLJxY/jvf/+XYFSVgd8M5OFZ\nDzO97XRLMCag/EkynXEeX/4L2AO09uwzQRTJ7cKRXDfI+folJECfPtC1qzMH2csvQ1SU896JhBN0\nmtGJiT9PZE2XNdxU/qZsX88+P+Mt0xH/nhmX31BVe3bRmDC0Ywe0bw9FizoLi1166f/e+/Pwn9w7\n6V4uK3oZKzqvsPEvxhX+9Ml8DTRR1VM5E1JgWJ+Mye2+/BIeecS5i3nyScjj1W6xetdqWk1uxWO1\nH6PvzX1tgTGTKhjryWwHvhaRWcBxzz5V1cGBCsIYEzgnT8IzzzirV86eDXXrnvn+mA1j6L24NyNb\njKT55c2DE6TJNfzpk/kNZzqZPMDFnlcBN4MyvkVyu3Ak1w3crd/mzc66L3v3Os1j3gkmMTmRpxc+\nzWsrXiMuNs61BGOfn/Hm805GVfsDiEh+VT3mekTGmHPy+efw1FPw6qvQvTt4t4AdOHGAdtPakazJ\nrOmyxsabjGJ4AAAgAElEQVS/mBzjT59MfZxFygqoajkRuR7orqqP+jy5SDQwBIgChqvqgHTKvA/c\nidMUF6uq630dKyKPA48CScBcVe2TznmtT8bkCkePQs+ezqSWkybBdded+f7GfzbSYmIL7qp6FwNv\nH8h5efxpJTe5VTDGyQwBovGMjfEsWNbI10EiEgV86Dn2KqC9iFRLU6YZUEVVqwLdgE98HSsitwAx\nwHWqeg3wjh91MCYi/fAD1K7t3LV8++3ZCWbelnk0Gt2I525+jnej37UEY3KcP0kGVd2ZZleiH4fV\nAbaq6g5VTQAmAi3SlIkBxniusQYoLCIlfRzbA3jTsx9V/cefOkSaSG4XjuS6QWDqpwpDh0KTJvD8\n8zBqFOTP7/2+MuDrAXSd3ZWZ7WbSuUbODW2zz8948+fPmp0ichOAiJwPPAFs9OO4MsAfXtu7gLp+\nlCmDM0daRsdWBRqKyBvASeAZVf3Wj3iMiQgHDzoDK7dscRYWS1n3JcWJhBN0md2FX/f9ypouayhb\n0OazNcHjz51MD+AxnC//P4Eanm1f/O0QyWrb33lAEVWtB/QGJmfx+IjQuHHjYIfgmkiuG2SvfvHx\ncMMNUKIErF59doLZdXgXDUc3BGBF5xVBSTD2+Rlv/tzJ1FLV+713iMgjwFAfx/0JlPPaLodzR5JZ\nmbKeMnkzOXYX8CWAqq4VkWQRuURV96cNIDY2looVKwJQuHBhqlevnvoLknLLa9u2HQ7bS5fGMWUK\nTJvWmKFDoWjROFavPrP8z3//zBu73qBX3V7UPl2bNd+sCZn4bTt0t+Pi4hg9ejRA6vdlQKlqpi9g\nJc6I/5TtZ4EFfhx3Hs4Ym4rA+cAGoFqaMs2AeZ6f6wGrfR0LdAde8fx8ObAzg+trJFu2bFmwQ3BN\nJNdNNev1+/tv1WbNVOvVU92+Pf0yI78bqZe+fanO+XVOtuPLLvv8wpvnu9NnbvD35c+dTAwwR0RO\n4zztdaVnn6/klSgiPYGFOI8hj1DVjSLS3fP+p6o6T0SaichW4BieiTczOtZz6pHASBH5ETgNdPKj\nDsaEpeXLnan5778fXnvtf+u+pEhMTqT3ot7M3TKX5bHLqXZptfRPZEyQ+LX8sogUB5YA3wIPqT8H\nBZmNkzHhLCnJSSpDhzpPjkVHn13m3xP/0m5qO0SEifdNpMiFRXI+UBNxAj1OJsMkIyJHObPz/nwg\nwbNPVbVgoIJwgyUZE65274YOHZyxL+PGnbmwWIqN/2wkZmIMMZfHMKDpABv/YgImxwZjqurFqlrA\n65XPa19IJ5jcIKXjLhJFct0g8/qlLCx2662weHH6CWbO5jk0Gt2IFxu8yKA7BoVcgsnNn585W2j9\ndhqTSyUkwAsvwIQJztQwDRueXUZVGfDNAD6I/4BZ7WdRr2y9nA/UmCzyq08mHFlzmQkXO3ZAu3ZQ\nrBiMHu38m9bxhON0mdWFrf9uZXrb6ZQpWCanwzS5RDDmLjPGuGTaNKhTB9q0gVmz0k8wuw7vouGo\nhkTliWJ57HJLMCas+EwyIlI0nVdeX8cZd0Vyu3Ak1w2c+p08CY8+Cr17w5w5zhT9edL5v3HlHyup\nO7wuba9uy9h7xnJh3gtzPuAsyg2fn/GfP3cy3+HMwLzF89oH/C4i34lITTeDMyYS7dzpLCy2bx+s\nX+/cyaRn5PqR3DPxHobdPYzeN/W2JZJNWPJnPZlhwFRVXejZvh1oBYwC3lPVDP4XCS7rkzGhaOxY\nePppZwxMt25nLiyWImUFywW/LWBmu5lcWezKnA/U5Fo5Nk7G64I/qbNui/e+H1X1WhHZoKrVAxVM\nIFmSMaHk6FF47DFngsvJk+Haa9Mv9++Jf2k7tS1REsXEVhMpfEHhnA3U5HrB6PjfIyJ9RKSCiFQU\nkWeBvZ6FxZIDFYjJmkhuF460un3/PdSqBVFRzsJi+/fHpVvu579/ps6wOlxf4nrm3j83bBNMpH1+\naUV6/QLNnyRzP84syDOA6UB5oD3OnGJt3AvNmPCmCp98ArfdBi++CCNHnrmwmLfZv87mljG38HKj\nl3nn9neIyhOVs8Ea4xJ/mssqqer2NPtqq+paVyPLJmsuM8F08CB06QK//eYMrrz88vTLqSpvfv0m\nH6/9mGltplG3bNp1/YzJWcFoLpsmIqkrH4lII5xOf2NMOtasgRo1oFQpWLUq4wRzPOE47ae1Z+av\nM4nvGm8JxkQkf5JMd2CGiJQUkWbA+8Cd7oZlfInkduFwrVtyMrzzDsTEwODB8MEHcMEFZ5eLi4tj\n56Gd3DzyZs6POp/lscspXSCdScrCVLh+fv6K9PoFms+5y9RZffIJYDFwAmiqqn+7HpkxYeSff+DB\nB+HAAecJsgoVMi77494fuX/4/Tx949M8deNTNv7FRLTMpvqfnWZXNWAPcBBnqn+fC5cFk/XJmJwS\nF+csLPbAA/Dqq2cvLOZt+HfDeX7J84y9dyzRVdJZJMaYIAt0n0xmdzKD0tmngHDmOjPG5EpJSU5S\n+fRTZ2LLO+7IuGxCUgJPL3qaRb8tYkXnFVxR7Ioci9OYYMpsPZm4dF7LU/7NySDN2SK5XTgc6vbn\nn9CkCaxYAd99l3mC2X98P9Hjo9ny7xZWd1nNnp/25FygQRAOn192RHr9As1mYTYmi+bPdwZXNmkC\nixY5T5Fl5Ke/f6LO8DrULFWTOe3nhO0AS2POla0nY4yfTp92FhabOBHGj09/YTFvMzfNpOvsrgy+\nYzAPXPdAzgRpTDblWJ+MiHwGzAf+q6pHAnVBY8LR9u3OwmLFizszJ6e37ksKVeWNFW8wdN1Q5tw/\nhzplQnIOWWNyRGbNZSOB6sA8EVnqmb/s+hyKy/gQye3CoVa3qVOhbl0nyWS0sFiKY6eP0W5aO2Zv\nnk18l/h0E0yo1S/QrH7GW4Z3Mqq6GlgN9BORYsDtwNMich2wHpivqpNzJkxjct7Jk85iYgsXwty5\nULt25uV3HtpJi4ktuL7E9cTFxnHBeemMxDQml8lyn4w4I8dqAneo6uuuRBUA1idjsmPTJmjbFq68\nEj77DAoVyrz8it9X0GZqG56t/yz/V+//bIClCVs5vp5MuLIkY87VmDHwzDPw+uvQtWv6C4t5G7Zu\nGC8ue5Gx94zljiqZPMtsTBgIxgSZJgRFcrtwsOp29Ch06gQDBsDSpRmvXJkiISmBnvN6MmjVIFZ0\nXuF3gonkzw6sfuZMlmSMATZsgJo1nSlh1q7NeOXKFPuO7+OOcXew/eB21nRZw+WXZDDVsjG5nD/r\nyeQHngLKq2pXEakKXKGqc3IiwHNlzWXGH6rOtDAvvQRDhkCHDr6P+XHvj7SY2II2V7fh9VtftwXG\nTETJybnLUowC1gH1Pdu7galASCcZY3w5dQp69nTWfPnmm4zXffE2Y9MMus7uypA7htDhOj8ykjG5\nnD/NZZep6gDgNICqHnM3JOOPSG4Xzom6/fUX3Hor7N+f+cJiKVSVV5e/yuPzH2d+h/nZSjCR/NmB\n1c+cyZ8kc0pELkzZEJHLgFPuhWSMu779FurUgdtvdwZaFiiQefljp4/RZmob5m2dR3yXeGqVrpUz\ngRoTAfzpk7kdeAG4CmfhspuAWFVd5n545876ZEx6xo2DJ590xr7ce6/v8r8f/J0WE1tQo1QNht41\nlHzn5XM/SGOCKCjjZDwj/ut5Nler6r5ABeAWSzLGW1IS9O0LX34JM2fCNdf4Puar37+i7dS29Lmp\nD73q9rIBliZXCNY4mXzAAeAIcJWI+Jh/1rgtktuFA123AwegWTPnMeW1a/1LMJ9++ymtp7RmzD1j\nAj6CP5I/O7D6mTP5fLpMRAYAbYFfgCSvt75yKyhjAuWXX6BFC2jeHAYOhPN8/MYnJCXQa0Ev4nbE\n8XXnr6l6SdWcCdSYCOVPn8xm4FpVDavOfmsuM7Nnw8MPw9tvQ2ys7/L7ju+j9ZTW5M+bny/u+4KC\n+Qq6HqMxoSYYzWW/Aeefy8lFJFpENonIFhHpk0GZ9z3vfy8iNfw9VkSeFpFkESl6LrGZyKXqzDvW\no4eTaPxJMD/s/YE6w+pQr0w9ZrabaQnGmADxJ8mcADaIyGci8oHn9b6vg0QkCvgQiMZ5Mq29iFRL\nU6YZUEVVqwLdgE/8OVZEygFNgd/9iD8iRXK7cHbqdvQotGnjJJf4eGcdGF++3PglTcY24fVbX+fN\n2950fQR/JH92YPUzZ/JnxP8sz8ubP+1QdYCtqroDQEQmAi2AjV5lYoAxAKq6RkQKi0hJoJKPYwcD\nzwIz/YjD5BLbt8M998ANN0BcHFzgYzmXZE3m1eWvMmL9CBZ0WEDN0jVzJE5jchOfSUZVR5/jucsA\nf3ht7wLS/l2ZXpkyQOmMjhWRFsAuVf0hNz9S2rhx42CH4JpzqduyZdC+PTz/PDz+uO/p+Y+ePkrs\njFj2HN1DfNd4Sl5c8tyCPQeR/NmB1c+cKcMkIyJTVLW1iPyYztuqqtf5OLe/ve5+ZwrPzAPP4zSV\nZfl4E3lU4aOP4LXXYPx4aNLE9zE7Du6gxcQW1CpVi/Etx9sAS2NclNmdTC/Pv805+4vcnwTyJ1DO\na7sczh1JZmXKesrkzeDYy4CKwPeeu5iywDoRqaOqf6cNIDY2looVKwJQuHBhqlevnvpXSEq7arhu\nDxkyJKLq473t3eadWfnTp2Hy5MasWQODB8cRFQWQ+fmlotBuWjtaXdiKlgVbpiaYUKxfuG5b/cJr\nOy4ujtGjRwOkfl8GlKpm+gIG+LMvnTLn4TyZVhHn6bQNQLU0ZZoB8zw/18OZTcCvYz3ltgNFM7i+\nRrJly5YFOwTX+FO33btVb7xRtWVL1SNH/Dvvx/Efa/GBxXXxb4uzF2A2RfJnp2r1C3ee706fucHf\nlz/jZNarao00+35UVR/LOoGI3AkMAaKAEar6poh092SATz1lUp4iOwZ0VtXvMjo2nfNvA2qp6r/p\nvKe+6mbC09q10LKls3LlCy9AHh/PSJ5OOk2v+b34audXzGw3kypFq+RMoMaEoRybu0xEegCP4jRR\n/eb1VgHgG1UN6cU0LMlEps8/h6eegmHDnCfJfPnn2D+0mtKKQvkKMa7lOBv/YowPOTkY8wvgbpzH\nl5t7vWqGeoLJDbzbhSNNenVLTIRnnoFXXnGeJPMnwXz/1/fUGV6Hm8vdzIx2M0ImwUTyZwdWP3Om\nDDv+VfUQcAhoJyLVgQY4Hf4rgP05E54xzgSX7do5T5LFx0NRP+Z4mPbLNHrM7cEHd35A22vauh+k\nMSZd/vTJ9AK6Al/iPGV2DzBMVX2O+g8may6LDCkTXMbEwIABvie4TNZk/rP8P4zaMIrpbadzQ6kb\nciZQYyJEjq8n4xknU089yy6LSH6cp8B8dvwHkyWZ8DdzJnTtCu+8A506+S5/9PRROk3vxN/H/mZa\nm2mUuLiE+0EaE2GCtZ5McgY/myCJ5HbhpUvjePVV6NkT5szxL8FsP7Cd+iPqU/TCoizptCSkE0wk\nf3Zg9TNn8mfuslHAGhHxbi4b6WpUJtc6etTp3D992ul/KVXK9zHLti+j/bT2vNDgBXrW6WkrWBoT\nQvxdfrkmcDOejn9VXe92YNllzWXhZ/t2p/+ldm34+GPI52O2F1Xlk28/4T/L/8P4luNpUtmPOWWM\nMZkKRp9MPeAXVT3s2S6IM/p+TaCCcIMlmfCydCncfz+8+CI89pjvCS5PJ53m8XmP880f3zCz3Uwu\nK3pZzgRqTIQLRp/MUOCI1/Yxzz4TRJHSLqwKH3zgJJgvvnD6YZYvj8v0mL+P/c1tY2/jr2N/serh\nVWGXYCLls8uI1c9486vj3/uWQFWTcKZ6MSZbTp2CLl2c0furVsGtt/o+ZsNfG6gzrA6NKjRietvp\nFMhXwP1AjTHnzJ/msunAMpxVKwXoAdyiqn6MuQ4eay4LbXv2OPOPlSkDo0fDxRf7PmbKz1N4bN5j\nfNTsI1pf3dr1GI3JjYLRXPYIcBPOtPy7cGZL7haoAEzuEx8PderAXXfBlCm+E0yyJvPyspfpvbg3\nCx9YaAnGmDDiM8mo6l5VbauqxT2v9prO2i0mZ4Vru/DYsdC8OXz4odPJn14Hv3fdjpw6wn2T72PZ\njmXEd42nRqkaZx8QZsL1s/OX1c94y2xlzD6qOkBEPkjnbVXVJ1yMy0SYxER49lmYPduZ4PLqq30f\ns+3ANmImxFC/XH0mtZrE+VHnux+oMSagMpvq/25VnS0isem8rao6xtXIssn6ZELHv/9C27bOXcvE\nif5NcLl0+1Lun3Y/LzV8iUdrP2oDLI3JITk+TiZcWZIJDT//7AywvOceeOst3xNcqiofrf2I1756\njS/u+4JbK/nxyJkxJmByvONfRK4QkWEislhElnleSwMVgDk34dAuPGMG3HIL9O/vTHLpK8GcTjpN\nt9ndGDRhECsfXhmxCSYcPrvssPoZb/7MXTYF5/Hl4UCSZ5/dIpgMJSfDa68541/mznWmifHl72N/\nc9/k+yh2UTE+uvMjKhep7H6gxhjX+TNOZp2q1syheALGmsuC4+hRePBBZxzMl19CyZK+j1m/Zz33\nTLqH2Otj6de4H3nE38nBjTGBFoxxMrNF5DERKSUiRVNegQrARI5t2+DGG6FIEecJMn8SzOSfJ3PH\nuDsYdPsgXrnlFUswxkQYf/6PjgWeAVYC6zyvb12Myfgh1NqFlyyB+vWhe3enmczXDMrJmsyLS1/k\n2cXPsqjjIlpd1Sr1vVCrW6BZ/cJbpNcv0Hz2yahqxRyIw4SplAku33jDeTy5cWPfxxw+dZiO0zty\n4MQB4rvGUzx/cdfjNMYEhz3CbM7ZqVPQowesW+cslVyxou9jfvv3N2ImxtCgfAPev/N9G2BpTIgJ\n1vLLxpxhzx7nruXIEVi50r8Es2TbEuqPrE/P2j0Z2nyoJRhjcgFLMmEqmO3Ca9Y4E1w2bw6TJ0P+\n/JmXV1XeX/M+Hb7swKRWk+hRu0em5SO9zdvqF94ivX6B5rNPxrP0ctp2p0PA76qa6EpUJmSNGQO9\ne8Pw4RAT47v8qcRTPDbvMeL/jGfVw6uoVKSS+0EaY0KGP+NkVgM1gR88u64FfgYKAT1UdaGrEZ4j\n65MJrMREJ7nMnev0v1Sr5vuYvUf30nJyS0rkL8HYe8dy8fl+LBpjjAmqYPTJ7Aaqq2pNz6DM6sA2\noCnwdqACMaFr/36IjoaNG52mMn8SzHd7vqPO8DrcXvl2praZagnGmFzKnyRzhar+nLKhqr8AV6rq\nb9j0MkGTU+3CP/3k9L/ccINzF1OkiO9jJv00iehx0Qy+ffA5jeCP9DZvq194i/T6BZo/c5f9LCKf\nABNxll9uA/wiIvmABDeDM8E1fTp06wbvvgsPPOC7fMoAywk/TWBxx8VcX/J694M0xoQ0f/pkLgIe\nxVmCGeAb4GPgJJBfVY+4GuE5sj6Zc5ecDK++CiNGOPOP1arl+5jDpw7T4csOHDl1hCmtp3Bp/kvd\nD9QYE3A5vp6MiNRU1XVp9jVX1TmBCsINlmTOzZEjzgSXe/fCtGn+zT+29d+txEyIoXHFxrwX/R55\no/K6H6gxxhXB6PgfJiLXegXQHng5UAGYc+NGu/C2bc78Y5dcAkuX+pdg/rvtv9w08iaeqPsEH9/1\ncUASTKS3eVv9wluk1y/Q/EkyrYAxInKliHTFaTpr6m5YJqelTHDZowd89pnvCS5VlfdWv0fH6R2Z\n3Goyj9R6JGcCNcaEFb/mLhORK4AZwO9AS1U97nZg2WXNZf5RhffegwEDYMIE/ya4PJV4ih5ze7Bu\nzzpmtptJxcIV3Q7TGJNDAt1cluHTZSLyY5pdRXHufNZ4vsCvC1QQJjhOnoRHHoENG2D1aqhQwfcx\nfx39i5aTWlK6QGlWPrSS/Of7mFPGGJOrZdZcdneaV13gDs/Pfkwo4hCRaBHZJCJbRKRPBmXe97z/\nvYjU8HWsiAwUkY2e8l+KSCF/44kU2W0X3r0bGjWCEyfgm2/8SzDrdq+jzrA6RFeJZnLrya4lmEhv\n87b6hbdIr1+gZZhkVHVHZi9/Ti4iUcCHQDRwFdBeRKqlKdMMqKKqVYFuwCd+HLsIuFpVrwc2A8/5\nX2WzerUzwPKee5w1YHxNcAkw4ccJRI+P5r3o93i50cu2gqUxxi+uricjIjcC/VQ12rPdF0BV3/Iq\nMxRYpqqTPNubgMZAJV/HevbfC9ynqg+k2W99MukYPRqefRZGjnRmUfYlKTmJF5e+yKSfJzGz3Uyu\nLXGt74OMMWErx/pkAqQM8IfX9i6cZjdfZcoApf04FuAhYEK2I41wiYnwzDMwbx4sX+7f/GOHTh6i\nw5cdOJZwjPiu8RS7qJj7gRpjIorbScbfW4lzypoi8gJwWlW/SO/92NhYKnpW0ypcuDDVq1ensefx\nqZR21XDdHjJkiN/12bMHmjePIyoK4uMbU7iw7/OPmzmO55c+z923382Q6CF8s+KbHKufd5t3qPz3\ntvpZ/SK1fnFxcYwePRog9fsyoFTVtRdQD1jgtf0c0CdNmaFAO6/tTUAJX8cCsThT3FyQwbU1ki1b\ntsxnmaQk1U8/VS1WTPWll1QTE/0798KtC7X4wOL66befZi/Ic+RP3cKZ1S+8RXr9PN+dAcsDbvfJ\nnAf8CjTBWTIgHmivqhu9yjQDeqpqMxGpBwxR1XqZHSsi0cAgoJGq7svg2upm3ULdr786k1ueOgXD\nhsG1fnSlqCpDVg9h4MqBTGo1iQYVGrgfqDEmpIRVn4yqJopIT2AhEAWM8CSJ7p73P1XVeSLSTES2\nAseAzpkd6zn1B8D5wGIRAVilqo+6WZdwcfq0M7Dyvffg5ZfhsccgKsr3cacST/HI3EfY8NcGVj28\nigqF/Xim2RhjfHD1TiaYIv1OJi4uLrV9NcWqVdC1K1SsCB9/DOXL+3euPUf20HJyS8oVLMeoFqOC\nPsAyvbpFEqtfeIv0+gVjgkwT4o4cgccfh5Yt4aWXYPZs/xPM2j/XUmd4He6qeheTWk0KeoIxxkQW\nu5MJc7NnO01iTZvCwIFQtKj/x47/YTxPLnySz+7+jHuuvMe9II0xYSOs+mSMe/76C554AtavhzFj\n4JZb/D82KTmJ55c8z9SNU1n64FKuKX6Ne4EaY3I1ay4LM6owfDhceWUcVarADz9kLcEcOnmImIkx\nrN29lvgu8SGZYLzHIUQiq194i/T6BZrdyYSRzZudx5KPH4d33oEuXbJ4/P7NxEyIoWnlpgy+Y7Ct\nYGmMcZ31yYSBhASnv2XwYHjxRaeT35/Hkr0t3LqQTjM68dotr9G1Zld3AjXGhD3rk8ll1qxxHksu\nWxbWrfNvSn5vqsq7q9/lnZXvMK3NNG4uf7M7gRpjTDqsTyZEHTkCvXo50/E/9xzMnXtmgvGnXfhk\n4kliZ8Yy7odxrO6yOmwSTKS3eVv9wluk1y/QLMmEoLlz4Zpr4PBh+OknaN8eJIs3r7uP7Kbx6Mac\nTDzJ1w99TflCfg6cMcaYALI+mRCyd69z97J2LXz6Kdx227mdZ+2fa2k5uSU9avXguZufQ7KaoYwx\nuZaN+I9Aqs4iYtde6zSJ/fjjuSeYcT+M464v7uKjZh/xfIPnLcEYY4LKkkyQbd3qJJSPP4aFC53J\nLS+6yPdxaduFk5KT6L2oN/3i+rHswWXEXBHjTsA5INLbvK1+4S3S6xdolmSCJCEB3noL6tWDu+6C\n1auhRo1zO9fBkwdpPqE53/31HfFd4rm6+NWBDdYYY86R9ckEwdq1zmPJJUvCJ59ApUrnfq5f9/1K\nzMQYoi+LZtAdgzgvjz2Vbow5d9YnE8aOHoUnn4S774bevWH+/OwlmPlb5tNgVAOerf8s7935niUY\nY0zIsSSTQ+bPdx5L3r/feSy5Q4esP5acQlXp8WEPHp71MNPbTufhGx4ObLBBFult3la/8Bbp9Qs0\n+9PXZX//Df/3f06fy2efwe23Z+98JxNP0nV2V9ZsX8Oal9dQrlC5wARqjDEusD4Zl6jC2LHw7LPQ\nqRP07w/5s7ke2O4ju7l30r1ULlKZETEjuCivH4+hGWNMFtjcZWHgt9/gkUecprH58+GGG7J/zjW7\n1nDf5Pt4rPZj9L25r41/McaEBeuTCaDERHj7bahb12kWi48PTIIZ+/1Y7p5wN5/c9QnPNXBG8Edy\nu3Ak1w2sfuEu0usXaHYnEyDr1jnruxQr5iSXypWzf87E5ET6LO7DzF9nEhcbx1WXXpX9kxpjTA6y\nPplsOnYMXn4Zxo1z1nzp2PHcnxrzduDEAdpPa0+SJjGp1SSKXlg0+yc1xhgfbJxMCFm0yJlvbO9e\n57HkTp0Ck2A27dtE3eF1ubLYlczvMN8SjDEmbFmSOQf79jkJpVs3Z86xcePg0ksDc+55W+bRcFRD\nnrv5OYZED8lwgGUktwtHct3A6hfuIr1+gWZJJgtUYfx4Z1BlsWLO3Ut0dKDOrbz9zdt0nd2Vme1m\n0rlG58Cc2Bhjgsj6ZPy0Y4fzWPKePTB8ONSuHbBTcyLhBF1nd2XTvk3MaDeDsgXLBu7kxhiTBdYn\nk8OSkuDdd6FWLWjcGL79NrAJ5s/Df9JwdEOSNZkVnVdYgjHGRBRLMpn4/nu48UaYNQtWrYK+fSFv\n3sCdf/Wu1dQZXodW1VoxvuV4Lsx7od/HRnK7cCTXDax+4S7S6xdolmTSceIEPP88NG0K3bvD0qVQ\ntWpgrzF6w2hiJsTwafNP6XNzHxvBb4yJSNYnk8ayZc5TYzVqwPvvO2u+BFJiciLPLn6W2ZtnM6vd\nLKpdWi2wFzDGmGywuctccuCAs8bLwoXw0UcQ48LqxQdOHKDt1LYAxHeJp8iFRQJ/EWOMCSG5vrlM\nFaZMgauvhnz54Oef3UkwG//ZSJ3hdbim+DXM6zAv2wkmktuFI7luYPULd5Fev0DL1Xcyu3bBo4/C\n1q0wdSrUr+/OdeZunkvnmZ0Z2HQgD1Z/0J2LGGNMCMqVfTLJyfDJJ84aLz17Ok+N5csX+BhSBlh+\nEAnk/LoAAArXSURBVP8BU9tMpV7ZeoG/iDHGBJD1yWTTL79A167Oz8uXw1UuTWx8IuEEXWZ3YfP+\nzazpsoYyBcu4cyFjjAlhrvbJiEi0iGwSkS0i0ieDMu973v9eRGr4OlZEiorIYhHZLCKLRKSwP7Gc\nOuXcuTRqBA88ACtWuJdgdh3eRYNRDRCEr2K/ciXBRHK7cCTXDax+4S7S6xdoriUZEYkCPgSigauA\n9iJSLU2ZZkAVVa0KdAM+8ePYvsBiVb0cWOLZztQ33ziPJG/YAOvXQ48ekMelmq/8YyV1h9elzdVt\n+Pzez7M0wDIrNmzY4Mp5Q0Ek1w2sfuEu0usXaG42l9UBtqrqDgARmQi0ADZ6lYkBxgCo6hoRKSwi\nJYFKmRwbAzTyHD8GiCODRHP4sNPfMnOmM+alZcvATMWfkZHrR9L3v30Zfc9omlVt5t6FgIMHD7p6\n/mCK5LqB1S/cRXr9As3NJFMG+MNrexdQ148yZYDSmRxbQlX3en7eC5TIKICrr4Y773RmSy7i4pCU\nxOREnln0DPO2zOOrzl9xZbEr3buYMcaEETeTjL+PrflzbyHpnU9VVUQyvM7nnzuTWropWZO5e8Ld\nqCpruqzJsQGWO3bsyJHrBEMk1w2sfuEu0usXcKrqyguoByzw2n4O6JOmzFCgndf2Jpw7kwyP9ZQp\n6fm5FLApg+urvexlL3vZK+uvQOYCN+9kvgWqikhFYDfQFmifpswsoCcwUUTqAQdVda+I7M/k2FnA\ng8AAz78z0rt4IJ/zNsYYc25cSzKqmigiPYGFQBQwQlU3ikh3z/ufquo8EWkmIluBY0DnzI71nPot\nYLKIPAzsANq4VQdjjDHZE7Ej/o0xxgRfWEyQGUqDOt3gUv0GishGT/kvRaRQTtQlPW7Uz+v9p0Uk\nWUSKulmHjLhVNxF53PP5/SQiA9yuR0Zc+t2sIyLxIrJeRNaKSADXms2abNZvpIjsFZEf05SPlO+W\njOqXte8Wtzr+A/gAQRSwFagI5AU2ANXSlGkGzPP8XBdY7etY4G3gWc/PfYC3Iqx+TYE8np/firT6\ned4vBywAtgNFI6VuwC3AYiCvZ/vSSPrscMa23eH5+U5gWbjVz7PdAKgB/JjmmLD/bvFRvyx9t4TD\nnUzqoE5VTQBSBmZ6O2NQJ5AyqDOzY1OP8fx7j7vVyJAr9VPVxaqa7Dl+DVDW/aqky63PD2Aw8Kzb\nFciEW3XrAbzp2Y+q/uN+VdLlVv32ACl//RYG/nS3GhnKTv1Q1RXAgXTOGwnfLRnWL6vfLeGQZDIa\nsOlPmfQGdaYc6/egTpe5VT9vDwHzsh3puXGlfiLSAtilqj8EOuAscOuzqwo0FJHVIhInIrUCGvX/\nt3f+MVJVVxz/fMsPQawKgq3WIkoKEbVFVsgitooo0YQa26KmxCjGGKJ/SCAl1Zr6I8ZY0hCbUmwt\ntpIYNSJum2qiVmhEkRJhgRWXiIS2kmLQSmKLv6Alp3/cM3EY3uzMLO+5O7vnk0zm7p177zvnvs09\nufe8d079FKXf7cASSbuBn5NeUegJjka/rugLa0u91FxbmsHI1PtkwlG91NnAdfImT/2O7CTdCRw0\nsye60z8HctdP0lDgJ8Dd3emfI0Xdu4HAcDNrBRYBKxvsnxdF6fc74DYzGw0sAH7fYP+86K5+da8V\nTbq21NWv3rWlGUL97yGdvZf4OsnadtXmNG8zKKO+tDV/T9JXzWyvpFOA93OVun7y1O+wvpLmks5c\nZ+QnbsMUod9Y0jlzh1IwutOAdklTzOyLvI9F3bt/Am0AZrbRH2w4ycz25Sh7PRSl3xQzu9TLq4BH\n8hK4QbqrX63jvWZfW2oeXza0tvSEQ6pB59VAYBdpURlMbedVK587H6v2JTnnSlEEbqfnnHNF6Xc5\n0AmM7Iv3r6J/Tzn+i7p384B7vTwO2N2X7h2wGbjIyzOAjc2mX9nvY8h2/Df12lJDv4bWli9c8W5O\n1hXADtKTEnd43TxgXlmbX/nvHcCkrvp6/QhgNfA28GfgxD6m307gHWCLfx7qS/pVjP83esDIFHjv\nBgGPAduAduDivnTvgPNJDuOtwF+B85pUvydJEUkOkPwaN3p9X1lbqunX0NoSL2MGQRAEhdEMjv8g\nCIKgSQkjEwRBEBRGGJkgCIKgMMLIBEEQBIURRiYIgiAojDAyQRAEQWGEkQl6LZLGVIYZz2nc71YL\ne16j3wmSbin7+1RJT+coV6uk31bUXSzp2byu0YAsN/jb6kFwVISRCfodZvasmXUnR8tw4Naycd41\ns6vzk4wrgOdzHO9omEsKclk3kgYUI0rQzISRCZoCSWdK2iypRdKxklZK6vSkSRsktWT0+YekeyS1\nS3pD0nivnytpqZe/IukPkrb6p9XrF0ra5p/5PuTPgLGebGuxpNNLOy0fs03S856sanGZHDMlrXc5\nVkoaVkXNS0hvilebg8k+B2dIGuWJsd6UtNx1HVHR/mpJS7w8X9Kusrlc5+W7lBKIbZP0sNfNJr2V\n/7hfb4jP+8uSNkl6oRQO3uselLQRuK3Lmxj0S8LIBL0eNw6rgBvMrJ20m9hnZmcDPwVayI4ca8C/\nzKwF+DXwo4w2vyQlzZpIStC03Q3WXFI+jlbgZkkTSQmodpnZeWb2Y46MXvst4BrgXOBaSV+TNBK4\nE5jhcrQDCzN0HAn818z2V5mDC1yHK83s76QI1KvN7Byfm9EZ3V4hJZ7Cvz+QdKqX13r9UjObYmbn\nAkMlzTKzVcAmYI6ZTQIOAUuBH5jZ+cCjwP3e30jJ1Sab2YNZsgf9m2aIwhz0b04G/gh8z8ze8rpp\nwC8AzKxTUlc5Zdr8ezPw/YzfpwPX+VgG/EfShUCbmX0KIKmNtDD/qYasa0pGQtJ2UnDB4cAEYL1H\njB4MrM/oOxN4scq4ZwEPA5eZ2V6vm4YnwzKzFyVlJZd6T9Jxko4jRdd9AvgOcCHwjDe7RNIi4FhS\nzK03gef8t5IRHQ+cDax2HQaQYlqVeKqK3EEQRibo9XxICsb3beCtsvp6c5gc8O9DVP9/z8qnoYrf\n6wnyd6CsXH69l8xsTo2+lwNLMuqNlEnyGGAShyeIqmcO1gM3koIkrgNuAqYCCyUNAZYBLWa2R9Ld\nwJCKa5eu02lmF1S5xsd1yBH0U+K4LOjtHCTtQK6X9EOve410LIWkCaTjqe6yhpTuGEkDJB0PvApc\nJWmo+0+u8rqPgC83MLYBG4Bpksb6NYZJ+kZ5I6XtwTfNrCNjDJEM7SzgAUkXeX35HMwk7ZiyeJWU\n+GwtKWLudOAz33GVDMo+3+2UP8SwHzjeyzuAUWX+qkE+70FQkzAyQW/HzOwT0iK7QNIs4CHSotcJ\n3EfKbfHvrL4VZcsozwem+5HbJlK+jS3ACuB1kpFYbmYdlpKGveZO8sVdjFku/Ack/86TkjpIO4vx\nFc1aSAYgU3+fg/d9DpZJmgzcC8z0Bw9mA3tJhqGSdaR0uq9Yysu+2+swsw+B5aQjshdI4fdLrAB+\nI2kzaZ2YDSyWtNVlnVpF3iA4jAj1HzQdkr5EcjYf8B3CS8A4M/tfD4vWLZTS2O40s7rTLEsaDBwy\ns0OSpgLL3EkfBL2K8MkEzcgw4C+SBpGOk25pVgMDYGb31251BKOBlW5wDwI35ytVEORD7GSCIAiC\nwgifTBAEQVAYYWSCIAiCwggjEwRBEBRGGJkgCIKgMMLIBEEQBIURRiYIgiAojP8D2/x1wBuTrN4A\nAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x78b2e48>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mininmum kerosene rate: 968.71 kg kerosene/h \n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFX3wPHvISAKUkV6VSzYqFJfJYoIImJBBcSE0EGx\nF/D1RUD5gSAoitJBikpT6VWBCCq9WkBpEREE6R1Szu+PWTCElA3ZyZacz/Psk53dmbnnsmFP5t65\n94qqYowxxrghm78DMMYYE7osyRhjjHGNJRljjDGusSRjjDHGNZZkjDHGuMaSjDHGGNdYkjFZjoiU\nFZEEEbms338RaSkiC3wdV2YTkQYiMi3RdoKIXJfCvg+JyKTMi86ECksyJmiJyH9E5EcROSIiB0Xk\nexGp5uMyLklIqvq5qjbwZTmesnKIyJcistNTZt1k9uknIgc8j3e9PO9bnvPdm+St/wP6enMOVZ0F\n3Coit3uzvzHnWZIxQUlE8gKzgQ+BAkAJoBdw1q0iXTpvUkuBp4G/gYtGSotIR+Bh4A7P4yHPaykS\nkeuBx4E9SV6/E8irqqvSEdtEoEM69jfGkowJWjcCqqqT1XFGVb9R1Z8AxPE/EYkRkX0iMs6TmC7h\n2adeou2eIjLBs7nU8/OIiBwTkZoiEiUiyxLtX1tEVnuuqFaJSK1E70WLyNueq6xjIrJARK5JLg5V\njVXVj1T1ByA+mV1aAQNUdY+q7gEGAFFp/Dt9DHQFYpO8/gAQncz+D4rIdhH5R0T6i0ji5BoNPJhG\necZcxJKMCVa/AfEiMlZEGopIgSTvt8b5Ug4HrgOuxvnCTY5y8VVD4ud3eX7mU9W8qroi8YEiUhCY\nAwwCCgLvA3OSxNMCJxkUBq4AXvWmgsm4BdiYaHsTcGtKO4vIE8AZVZ2XzNu34fwbJvUIUBWognPV\n1CbRe1uAsiJydTrjNlmYJRkTlFT1OPAfnIQwEtgvIjNEpLBnl5bAQFWNUdWTwBtAcy87+yWF58l5\nEPjN00+ToKqTcL6Mm5wPFfhUVbep6hlgClDJmzom42rgaKLtY57XLiEieXD6XF5I4Vz5gePJvN5P\nVY+o6p84ibNFovfO758/PUGbrM2SjAlaqrpFVVuraimcv8yL43wxAhQD/ki0+y4gO1DEx2EU95w7\nsT88r5/3d6Lnp0khMXjhBJC4yS+f57Xk9AQmqGri2BInzMNJznXen4me7+LieuTx/DziTbDGgCUZ\nEyJU9TdgHE6yAaeju2yiXUoDccC+ZA4/CeROtF008anTKPovoEyS18p4Xve1X7j4Kqgi8HMK+94L\nPC8ie0VkL1AKmCIir3ne34TTr5VU6STPE9ejAhCjqiklNmMuYUnGBCURuUlEXhaREp7tUjhNO8s9\nu0wEXvLcgnw10AeYpKoJyZxuA05TWnbPLdBN+Te5/AMkANenEMo84EYRaeE5vhlwM86dbxfCTUe9\ncorIlZ7NxM8BxgMvi0hxT71fBsamcKp6OP01FXES0x6cO8OGeN6fC1xyizTwqojk9/x7Pg9MTvRe\nXc9xxnjNkowJVseBGsBKETmBk1w2Aa943h8DTMC5O2wHcAp4LtHxia9QuuMkkcM4zUyfX9hJ9RRO\n38YPInJIRGqQ6EYBVT0INPaUewCnU7+xqh5KoaykNxkk9Zsn1uLAAuCkiJT2lDUcmAX85KnrLFUd\ncf5AEflZRFp49j2kqvs9j304d6sd9vRPoarrgaMiUj1J+TOAtcB6nEQ5JtF7zYHhqcRuzCXEzUXL\nRKQhTht5GDBKVfsls89HOLdTngKiPL/8iMgYnE7V/ap6e6L9C+L8dVUGiAGeVFVrIzYmnUSkPvCM\nqj7qxb4PAS1Vtbn7kZlQ4lqSEZEwnL/K7sNp110NtFDVzYn2aQR0UdVGnr8QP1TVmp737sLp1Byf\nJMn0Bw6oan8R6QoUUNVurlTCGGNMhrjZXFYd2Oa5hTQWmIRz331iTXA6a1HVlUB+ESnq2V6G03yR\n1IVjPD8fcSF2Y4wxPuBmkinBxbdD7va8lt59kiriaWMG504hX9+SaowxxkfcTDLetsMlvfPG6/Y7\nddr63OtUMsYYkyHZXTz3Xzj35p9XCudKJbV9SpL2+IJ9IlJUVf8WkWLA/uR2EhFLPsYYcxlU1WcT\nwrp5JbMGuMEzTuEKoBkwM8k+M4FIABGpCRxJ1BSWkpk4c1Lh+Tk9pR1VNWQfPXr08HsMVjern9XP\nN48//1TuvlupV0/Zs8e/9fM115KMqsYBXXDu9f8VmKyqm0Wk4/npyVV1LrBDRLbh3H//zPnjRWQi\n8CPOQLc/RaS15613gfoi8jvOqGav1tQINTExMf4OwTWhXDew+gU7X9dv1iyoVg0aNoQFC6BYMZ+e\n3u/cbC5Dndlf5yV5bXiS7S4pHNsihdcP4dwWbYwxQevsWejaFaZPh6+/htq1/R2RO1xNMsY9UVFR\n/g7BNaFcN7D6BTtf1G/rVmjeHMqUgfXroUDShSpCiKsj/v1JRDRU62aMCV6ffQYvvQS9ekHnziCZ\nteaql0QE9WHHf5a7kpFA+0RNQHPjD5Xo6GjCw8N9ft5AYfVL3okT0KULrFgB334LFSv6PrZAlOWS\nDLjzxWFCj/1BYnxlwwaneax2bVi7FnLnTvuYUJHlmss8l4J+iMgEG/tdMRmlCkOGQM+eMGgQtGzp\n74jSZs1lxhgTBA4dgrZtYdcu+PFHuOEGf0fkH7aejDGZLDo62t8huMrqBz/8AJUrQ7lyWTvBgCWZ\nLGHZsmXcfPPNF7bLli3L4sWLAejTpw/t27cHnEFm2bJlIyEhucUjk9e3b98Lx/tL0voZ4y/x8fB/\n/wdNm8Inn8D770POnP6Oyr+sTyYLKleuHKNHj+bee++96PWYmBiuu+464uLiyJYt8P7+KFu2LKNH\nj6ZevXqZUp79rpj02LsXnn7aSTSffw4l0ppPPkD5uk8m8L5JTNCIj4/P1PJExO74MgFp/nyoUgXu\nvhsWLQreBOMGSzIBZM+ePTRt2pTChQtz3XXXMXjw4AvvnT59mqioKAoWLMitt97Ke++9R6lS/05g\nnS1bNnbs2HFhOyoqiu7duwNOG3LifRPr2bMnERERF702evRoSpQoQfHixRk4cOBF+z7++ONERESQ\nL18+xo4de9HxyZWTuGmuZ8+ePPHEE0RERJA3b17uuOMOtm7dSt++fSlSpAhlypThm2++Sfe/W9Jy\ny5Yty8CBA6lYsSL58+enefPmnD179sL7s2fPplKlShQoUIA6derw008/pbvMjLA+i+CWuH7nzsHr\nr0P79jBpEvToAWFh/ostEFmSCRAJCQk89NBDVK5cmT179rBo0SIGDRrEwoULAejVqxc7d+5kx44d\nLFiwgHHjxqX6V723f/Unt090dDTbtm1j4cKF9OvXj0WLFl14b+bMmTzxxBMcPXqUli1bpllG0vdn\nz55NZGQkhw8fpnLlytSvXx9wEmz37t3p2LFjmjF7U6epU6eyYMECdu7cyaZNmxg7diwA69evp23b\ntowcOZJDhw7RsWNHmjRpwrlz5zJcrsladuyAu+6CzZudqWHq1vV3RIHJkkwSIr55pNfq1as5cOAA\n//vf/8iePTvlypWjXbt2TJo0CYCpU6fy5ptvkj9/fkqWLMkLL7yQZn+BN/0Jye3To0cPrrrqKm67\n7TZat27NxIkTL7xXu3ZtmjRpAsCVV16Z7j6Lu+++m/r16xMWFsbjjz/OwYMH6datG2FhYTRr1oyY\nmBiOHTuWrnMm5/nnn6do0aIUKFCAhx56iA0bNgAwYsQIOnbsyJ133omIEBkZSc6cOVmxYkWGy/RW\nKI+Gh6xRvylToGZNeOopmDkTChXyd1SBy8bJJOGvft4//viDPXv2UCDRTHnx8fHcfffdgPOXfuIm\nodKlS7sWS9JyEjcnlSxZMkPnLly48IXnV111FYUKFbpwtXPVVVcBcOLECfLmzZuhcooWLXpROXv2\n7AGcf+fx48df1BQZGxvL3r17M1SeyRpOnYIXX4QlS2DePKha1d8RBT67kgkQpUuXply5chw+fPjC\n49ixY8yePRuAYsWKsWvXrgv7J34OkCtXLk6dOnVhe+/evZfdSZ60nBKJejGTnjPxdu7cuS+KIT4+\nnn/++eeyYvC183GWLl2aN99886J/5xMnTtCsWbNMiyUr9VmEkl9+gerVYefOaNatswTjLUsyAaJ6\n9erkyZOH/v37c/r0aeLj4/n5559Zs2YNAE8++SR9+/blyJEj7N69m8GDB1/0BV+pUiU+//xz4uPj\nmT9/PkuXLr3sWHr37s3p06f55ZdfGDt2bKpfwImby2688UbOnDnD3LlziY2NpXfv3hd1uPvCuXPn\nOHPmzIWHt3e4nY+zffv2DBs2jFWrVqGqnDx5kjlz5nDixAmfxmlChyqMHAnh4fDqq/Df/0KePP6O\nKnhYkgkQ2bJlY/bs2WzYsIHrrruOa6+9lg4dOlzon+jRowdlypShXLlyNGzYkMjIyIu+4D/88ENm\nzZpFgQIF+OKLL3j00UcvOn9KVzVJbxAQEerWrUv58uW57777eO2117jvvvuS3Tfpa/ny5WPIkCG0\na9eOkiVLcvXVV1/U9JbS8d7EeV6jRo3IlSvXhUevXr3SvMkh8ftVq1Zl5MiRdOnShYIFC3LDDTcw\nfvz4VMv0tazQZxEqjh51Jrb8+GNYtgyiouCee8L9HVZQscGYQSo6OpqIiAj+/PNPf4cSskLld8Vc\nnlWroEULeOABGDAArrzS3xFlDhuMaUyQC9U+i/OCvX4JCfDee/DQQ87Pjz++OMEEe/0ym91dFsRs\n9LsxvrV/P7RqBceOOVcyZcr4O6LgZ81lxqTAfleylkWLIDLS6Xfp1QuyZ9E/wW09GWOM8aG4OGdR\nsU8/hXHjwHOfi/ER65MxJpOFept+MNVv1y7n1uTVq2HdOu8STDDVLxBYkjHGZEnTp8Odd0KTJs7o\n/SJF/B1RaLI+GWNSYL8roenMGXjtNZg9GyZOdOYgM/+yW5iNMeYy/fYb1KoFf//tzJxsCcZ9lmRM\nuvhjqeNdu3aRJ0+ekLmqCPU2/UCt3/jx8J//QKdOMGUK5M9/eecJ1PoFKksyAWbs2LHcfvvt5M6d\nm2LFivHMM89w9OhRv8WTdDG0u+66iy1btrhSVnh4OKNHj77k9dKlS3P8+HEbF2Quy/Hjzq3J774L\nixdDx46XtxyHuTyWZALIwIED6datGwMHDuTYsWOsWLGCP/74g/r16xMbG+vz8tI7uaTbssryyqE0\nt1dyAql+69c7syVfcYVzB9ntt2f8nIFUv2BgSSZAHDt2jJ49e/Lxxx9z//33ExYWRpkyZZgyZQox\nMTF89tlnwL9LIDdv3py8efNStWpVNm3adOE8qS3hnHT55HHjxrF69Wpq1apFgQIFKF68OM8999yF\nhHZ+LZuKFSuSJ08epk6dmu6ljvv370/x4sUpWbIko0aNuuTKyBsxMTFky5aNhIQEwPlP/tZbb/Gf\n//yHvHnz0qBBAw4ePHhh/xUrVlC7dm0KFChApUqV+O6779JVngl+qvDRR9CgAbz9NowaBblz+zuq\nLEpVQ/LhVO1SKb3ub/PmzdPs2bNrfHz8Je+1atVKW7RooaqqPXr00Bw5cuhXX32lcXFxOmDAAC1X\nrpzGxcVpfHy8VqlSRd955x2NjY3VHTt26HXXXacLFiy46NgZM2aoqurp06d17dq1unLlSo2Pj9eY\nmBitUKGCDho06ELZIqLbt2+/sL1kyRItWbLkhe2yZctqjRo1dO/evXro0CGtUKGCDhs27EKdihYt\nqr/++queOnVKW7ZsqdmyZbvofImFh4fr6NGjL3l9586dKiIX/m3q1q2r5cuX161bt+rp06c1PDxc\nu3Xrpqqqu3fv1muuuUbnzZunqqrffPONXnPNNfrPP/94+Un8y63flSVLlrhy3kDh7/odOKDapIlq\ntWqq27b5/vz+rp/bPL/3PvsuthH/SUgv3zTXaI/0NTEdOHCAQoUKkS3bpReXRYsWZd26dRe2q1Wr\nxmOPPQbAyy+/zMCBA1m+fDk5cuS4sIQzcNESzvfffz9w6fLJVapUuXDeMmXK0KFDB7777jteeOEF\nr2M/v9QxcNFSx1OmTKFNmzZUqFABgF69evHFF194fd6UiAitW7emfPnygLPWzsyZMwH47LPPaNSo\nEQ0bNgTgvvvuo1q1asydO5fIyMgMl20C27Jl0LIlPPkkTJ3qNJMZ/7Ikk0R6k4OvFCpUiAMHDpCQ\nkHBJotm7dy/XXnvthe3ESyCLCCVLlmTPnj2ISKpLOCc9FuD333/n5ZdfZu3atZw6dYq4uDiqVauW\nrtiTLnV8finjvXv3Ur169RTLzoikZZ5fdOyPP/5g6tSpzJo168L7cXFx3HvvvT4rO6NCvU3fH/WL\nj4c+fWDIEBg9Gho1cq+sUP/8fM2STICoVasWOXPm5KuvvuKJJ5648PqJEyeYP38+ffv2vfBa4jVk\nEhIS2L17NyVKlCAsLIxy5crx+++/J1tGch3rnTt3pmrVqkyePJncuXMzaNAgvvrqK5/UqVixYhfF\nmhlr35QuXZqIiAhGjBjhelkmMOzZA08/7fTDrFkDiVYLNwHAOv4DRL58+ejRowfPPfccCxYsIDY2\nlpiYGJ588klKlSpFRETEhX3Xrl3LtGnTiIuLY9CgQVx55ZXUrFmTO++8M9UlnDWZu8ROnDhBnjx5\nyJUrF1u2bGHo0KEXvV+kSBG2b9+errqcL+fJJ5/k008/ZcuWLZw6dYp33nknzWNjY2MvWl45Li4u\n1TKSevrpp5k1axYLFy4kPj6eM2fOEB0dzV9//ZWuOrgp1MdZZGb95s1z7h675x749tvMSTCh/vn5\nmiWZAPLaa6/Rp08fXn31VfLly0fNmjUpU6YMixYtIkeOHIBzNfLwww8zefJkChYsyOeff87XX39N\nWFgYYWFhqS7hnNyVzIABA/jiiy/ImzcvHTp0oHnz5hft07NnT1q1akWBAgX48ssv07XUccOGDXn+\n+ee55557uPHGG6lVqxYAOXPmTPH4zp07X7S8cps2bdJctjnx+yVLlmTGjBn06dOHwoULU7p0aQYO\nHHjhzjQTGs6dg1dfdca8TJkC3btDWJi/ozLJcXXuMhFpCAwCwoBRqtovmX0+Ah4ATgFRqro+tWNF\npDrwMZADiAOeUdXVyZxXk6tbsM9H1atXL7Zt28aECRP8HUq6bd68mdtvv51z584le4NDoAn235VQ\ntWMHNG8OxYrBmDFwzTX+jii0BM3cZSIShpMMGgK3AC1EpEKSfRoB5VX1BqADMNSLY/sD3VW1MvCW\nZzvLCLYvvWnTpnH27FkOHz5M165dadKkSVAkGBOYJk925ht7+mlnFmVLMIHPzf/t1YFtqhqjqrHA\nJODhJPs0AcYBqOpKIL+IFE3j2L1APs/z/EDgNLZngmAbFT9ixAiKFClC+fLlyZEjxyV9PllRqLfp\nu1G/U6egfXunWWz+fHj+ef9NDRPqn5+vuXl3WQkg8e1Eu4EaXuxTAiieyrHdgO9FZABOkqzlw5gD\nXo8ePfwdQrrMmzfP3yGYIPfzz9CsGVSuDGvXQp48/o7IpIebScbbdp30/j0yGnheVaeJyBPAGKB+\ncjtGRUVRtmxZAPLnz0+lSpXSWZQxjvN/vZ4fI5GR7fDwcJ+eL9C2fVU/Vdi6NZw334S2baNp0ADy\n5Amd+gXKdnR0NGPHjgW48H3pS651/ItITaCnqjb0bL8BJCTu/BeRYUC0qk7ybG8B6gLlUjpWRI6p\nal7P6wIcUdV8JBGqHf8m89jviv8cOQIdOsDvvzv9MDfd5O+Iso6g6fgH1gA3iEhZEbkCaAbMTLLP\nTCASLiSlI6q6L41jt4lIXc/ze4HkRx4aE6BCvU0/o/VbudJpGitcGFasCLwEE+qfn6+51lymqnEi\n0gVYgHMb8mhV3SwiHT3vD1fVuSLSSES2ASeB1qkd6zl1B+ATEckJnPZsp0swdZwbk1UkJMCAATBw\nIAwbBo8+6u+IUnbo9CEG/jiQnuE9yRGWw9/hBDRXx8n4U0rNZcaYwLN/v7Ow2PHj8MUXUKaMvyNK\n2fxt82k3sx2P3/I47973Lldmv9LfIflUMDWXGWNMmhYtcprHqlWD774L3ARz8txJOs/uTIdZHRj3\nyDgGNRwUcgnGDZZkglQotwuHct3A6ndeXBy8+aZzBTN+PPTuDdkDdMre5X8up9LwSpyKO8WQW4dQ\n77p6/g4paAToR2qMCWW7dkGLFs6Yl3XroEgRf0eUvHPx5+gV3YvR60cz5MEhPFbhsZD/I8HXrE/G\nGJOppk2DTp2cCS5feQUCdZahn/b9RMS0CErlK8XIh0ZS9OqiaR8UAnzdJ5PmlYyIZANaAuVU9W0R\nKQ0UVdVVvgrCGBP6zpxxEsucOTBjhjMHWSCKT4jn/eXv0++HfvS7rx9tKrexO1IzwJu/IYbgTN3y\nlGf7hOc140ehfMkeynWDrFm/LVucpLJ/P6xfH7gJZufhndwz7h5m/T6L1e1X07ZK20sSTKh/fr7m\nTZKpoarP4IxJQVUP4Uyzb4wxqVKFsWPhrrvgmWec0fv58/s7qkupKqPWjaL6qOo8fNPDLGm1hHIF\nyvk7rJCQZp+MiKwEagNrVLWyiFwLLPRMtR+wrE/GGP86ftxJLOvWOcnlttv8HVHy/j7xN+1ntWf3\nsd1MeHQCtxUO0EAziT/GyQwGpgGFRaQP8APQN/VDjDFZ2bp1zrLIV14Jq1cHboL56tevqDSsEhWL\nVGRlu5VZPsG4Ic0ko6qfAV1xEsse4GFVneJ2YCZ1odwuHMp1g9Cunyo891w0DRvC22/DyJGQK5e/\no7rUkTNHiJwWSbdF3ZjWbBq97+3NFWFXeHVsKH9+bvB2nMzvwDHP/ioipVV1l3thGWOCzcGD0Lq1\nM3Py8uVw/fX+jih53+74ljYz2vDQjQ+xoeMGcl+R298hhTRv+mSeA3oA+4H486+r6u3uhpYx1idj\nTOZZutRZErlZM/i//4MrvLsoyFSnYk/R7dtufL35a0Y3GU2D8g38HVJAyvRxMsCLwE2qetBXhRpj\nQkN8vJNUhgyBMWOgUSN/R5S81X+tJmJaBFWKVWFT500UvKqgv0PKMrzp+N+F01RmAkgotwuHct0g\ndOq3Zw/cdx9ERzsd/ecTTCDVLzY+lh5LetB4YmN6hffii6ZfZDjBBFL9goE3VzI7gSUiMgc453lN\nVfV998IyxgSyuXOhTRt49ln4738hLMzfEV1q8z+biZgWwbW5r2V9x/UUz1Pc3yFlSd70yfT0PL1o\nR1Xt5VJMPmF9Msb43rlz8MYbMHUqfP65M8gy0CRoAh+t/IjeS3vT+97edKza0aaFSYdM75NR1Z6e\ngnOr6klfFWyMCS7bt0Pz5lC8uDM1zDXX+DuiS+06uouo6VGciTvDinYrKF+wvL9DyvLS7JMRkdoi\n8iuwxbNdUURs7jI/C+V24VCuGwRn/SZNcuYbi4yE6dNTTzD+qJ+qMm7DOKqOqMr919/PstbLXEsw\nwfj5+ZM3fTKDgIbADABV3SgidV2NyhgTEE6ehBdecG5RXrAAqlTxd0SX+ufkP3Sc3ZGth7byTcQ3\nVCpayd8hmUS86ZNZparVRWT9+fnKRGSjqlbMlAgvk/XJGJMxP/3kjHupWtW5RTlPHn9HdKmZv82k\n4+yORN4Rydv3vE3O7Dn9HVLQ88c4mV0iUsdT+BXA88BmXwVgjAksqjBiBPzvfzBwoNNEFmiOnT3G\nS/NfIvqPaKY8PoW7ygTgHQgG8G6cTGfgWaAE8BdQ2bNt/CiU24VDuW4Q2PU7etS5ehkyBL7//vIS\njNv1+y7mOyoOq0hYtjA2dNyQ6QkmkD+/QOTN3WX/8O+CZcaYELV6tZNgHngAxo93ZlAOJGfizvDm\nojeZ+PNERjw0gsY3NvZ3SMYL3vTJvAe8g7No2XygIvCSqk5wP7zLZ30yxngnIQE++AD69YOhQ6Fp\nU39HdKl1e9cRMS2CCoUqMKzxMArlKuTvkEKWP/pk7lfV10TkUSAGeAxYBgR0kjHGpO3AAYiKcn6u\nXAnlAmwxyLiEON79/l0+WvkRHzT4gKduf8oGVgYZb/pkzieixsCXqnqUJKP/TeYL5XbhUK4bBE79\nli6FypXhlltg2TLfJRhf1e/3g7/znzH/ITommrUd1tLyjpYBkWAC5fMLFt4kmVkisgWoCiwSkcLA\nGXfDMsa4JT7eWVCsWTPnLrL+/SFHDn9H9S9V5ZNVn1B7dG2evuNpFkYspFS+Uv4Oy1ymNPtkAESk\nIHBUVeNFJDeQV1X3uh5dBlifjDGX2rPHWfdF1Zl7rHiAzRm5+9hu2sxow9GzRxn/yHhuKnSTv0PK\ncnzdJ+PNtDJXABHAFBH5CmgDHPBVAMaYzDF/vjOwMjwcvv02sBKMqvLFT19QZXgV7ip9Fz+0+cES\nTIjwprlsKFAF+AQYgtNsNtTNoEzaQrldOJTrBplfv9hY6NoV2rd35iB76y13p+ZPb/0OnjpIsy+b\n0Xtpb+a2nEv3ut3Jns3bleEzX6j/fvqaN5/knap6R6LtRSKyya2AjDG+ExMDLVpAwYLOwmLXXuvv\niC42d+tc2s9qT7NbmzHukXFcleMqf4dkfMybcTLrgCdVdZtn+3pgqqoG4FR5/7I+GZPVff01dOrk\nXMW89BJk86bdIpOcOHeCVxa8woLtC/j04U+5p9w9/g7JePhjnMxrwGIR2enZLgu09lUAxhjfOnMG\nXn3VWb1y1iyoUcPfEV3sh10/EDk9krvL3M3GThvJd2U+f4dkXJTq3zYiEoYzwv9GnIkxnwduUtXF\nmRCbSUUotwuHct3A3fr9/ruz7su+fU7zmD8STEr1Oxt3lje+fYPHpz7OwPsH8unDnwZlggn1309f\nSzXJqGo80EJVz6jqRs/DxsgYE4AmTIA6dZwmsilTIH9+f0f0r037NlF9VHU2H9jMxk4beeTmR/wd\nkskk3vTJfADkACYDJwEBVFXXpXlykYY4i56FAaNUtV8y+3wEPACcAqJUdX1ax4rIc8AzQDwwR1W7\nJnNe65Nh8xuTAAAgAElEQVQxWcKJE9ClizMtzOTJcMcdaR+TWeIT4hnw4wAGLB/Ae/Xfo1XFVgEx\nat+kzB99MpVxppF5O8nrqfbUeZraPgbuw1kiYLWIzFTVzYn2aQSUV9UbRKQGzq3RNVM7VkTuAZoA\nd6hqrIgE2P0yxmSeTZuckfs1a8KaNZA7t78j+tf2Q9tpNb0V2bNlZ3X71ZTNX9bfIRk/SPN+E1UN\nV9V7kj68OHd1YJuqxqhqLDAJeDjJPk2AcZ5yVgL5RaRoGsd2Bvp6Xj+/FEGWE8rtwqFcN/BN/VRh\n2DCoVw/++1/49NPASTBLlixhxNoR1BhVg6YVmrK41eKQSjCh/vvpa2leyXi+9P8PKKGqDUXkFqCW\nqo5O49ASwJ+JtncDSbshk9unBFA8lWNvAO4WkT44c6i9qqpr0qqHMaHiyBFnYOXWrc7CYjcF0MD4\nvcf38saiN4gtHcvS1ku55dpb/B2S8TNv7pwfCyzE+eIH2Aq85MVx3naIpLftLztQQFVr4txePSWd\nx4eE8PBwf4fgmlCuG2SsfqtWQZUqUKQIrFgRWAlm6i9TqTS8EvfXu5/lbZeHbIIJ9d9PX/OmT6aQ\nqk4WkW4Ann6QOC+O+wtIPHVqKZwrktT2KenZJ0cqx+4GvvbEslpEEkTkGlU9mDSAqKgoypYtC0D+\n/PmpVKnShV+Q85e8tm3bwbC9eHE0U6fCV1+FM2wYFCwYzYoVgRHf4dOHefK9J9l8YDMzX59JjZI1\n/P7vZdveb0dHRzN27FiAC9+XPqWqqT6AaOAaYL1nuybwnRfHZQe24wzevALYAFRIsk8jYG6i865I\n61igI9DL8/xGYFcK5WsoW7Jkib9DcE0o1001/fXbv1+1USPVmjVVd+50JaTLtnDbQi35fkntMqeL\nnjx3UlXt8wt2nu/ONHODtw9vrmReAWYB14nIj8C1wONeJK84EekCLMC5DXm0OneHdfS8P1xV54pI\nIxHZhnN7dOvUjvWcegwwRkR+As4BkV7UwZig9N13ztT8Tz0FvXsHzrovJ8+dpOu3XZnx2wzGNBlD\n/evr+zskE6C8GSdTDqeJ6iac/pPfgIqqutr98C6fjZMxwSw+3kkqw4Y5d441bOjviP61cvdKIqZF\nUL1EdQY/MJgCVxXwd0jGh/wxTuYroImq/uwJoC7OtP+3+SoIY8y/9uyBli1BBNauDZx1X87Fn+Od\n795hxLoRfPzAxzxx6xP+DskEAW/uLusITBeRop7Bk+dH6Bs/Ot9xF4pCuW6Qev3OLyx2773wzTeB\nk2B+2f8LtUbXYt3f69jQcUOqCSYrf37mUmleyahzB9fzwDfAaaC+qu53PTJjspDYWHjzTZg40Zka\n5u67/R2RI0ETGLRiEH2W9aFvvb60q9LOpoUx6ZJin4yIzEryUgVgL3AE5+6DJi7HliHWJ2OCRUwM\nNG8OhQrB2LHOz0AQcySGqOlRxCXEMe6RcVxf8Hp/h2QyQWb2yQxM5jXFM0GmrwIwJiv76ivo3Bm6\ndYMXXwyMhcVUlbEbxvL6t6/zWu3XeKXWK4Rlc3G9ZhPSUkwyqhqdiXGYdIqOjr4wsCrUhHLdwKlf\nzZrhvPyy0wczezZUr+7vqBz7T+6nw6wO7Dyyk0WRi7ijSPqndM4Kn18o18/XAuDvJmOyll27nFmT\nDxyA9esDJ8FM3zKdisMqUqFQBVa1W3VZCcaYpNIcJxOsrE/GBKLx4+GVV5wxMB06OLcp+9vRM0d5\nYf4LfL/re8Y9Mo46pev4OyTjR/4YJ2OMyaATJ+DZZ50JLhcvhttv93dEjiU7l9B6Rmsalm/Ihk4b\nuPqKq/0dkgkxaTaXichPIrLJ8/P843sR+UBErsmMIM2lQvle/VCr28aNUK0ahIU5C4sdPBjt75A4\nHXual+a/xNPTnmbog0MZ1niYzxJMqH1+SYV6/XzNmyuZ+UAc8AXOnWXNgVzAPpxlAB5yKzhjgtn5\nhcXeegs++MCZgywQrN2zlohpEdxW+DY2ddrENbnsb0XjHm/mLluvqpWTe01EflLVALnwv5j1yRh/\nOnIE2rWD7dudwZU33ujviCA2Ppa+3/fl41Uf82HDD2l+W3MbWGku4es+GW/uLgsTkQsrWopI9UTH\nebOujDFZysqVULkyFCsGy5cHRoL57cBv1BlThx/+/IH1HdfT4vYWlmBMpvAmybQFRotIjIjEAKOB\n9iKSG+jrZnAmZaHcLhysdUtIgAEDoEkTeP99GDwYrrzy0v0ys34JmsDglYOpM6YOUZWimN9yPiXy\nlnC1zGD9/LwV6vXzNW/6ZH5S1dtEJD+Aqh4RkYKqepIsuvSxMUn98w+0agWHDzt3kJUp4++I4M+j\nf9JmZhuOnz3Oj21/5MZrAuCSymQ53vTJzAUeVtVYz3YxYI6qVsmE+C6b9cmYzBId7XTqP/00vPOO\n/xcWU1U+/+lzXl7wMi/UeIGu/+lK9mw2WsF4xx/jZKYBU0TkcaAUMBN41VcBGBOs4uOdpDJ8uDOx\nZYMG/o4IDpw6QKfZndh8YDMLnl5A5WKV0z7IGBel2SejqiOBRcAMnGWYO6vqQrcDM6kL5XbhYKjb\nX39BvXqwbBmsW5e+BONW/Wb/Pps7ht5B2fxlWdthrd8STDB8fhkR6vXztRSvZETkFc/T8zMvlwI2\nAjVFpIaqvp8J8RkTcObNgzZt4Jln4L//dQZZ+tPxs8d5ecHLfLvzWyY2nUjdsnX9G5AxiaS2nkyP\npC+RaIp/Ve3lYlwZZn0yxtfOnXMWFps0CT7/PDAWFlv2xzJaTW/FveXu5f0G75M3Z15/h2SCXGb2\nycQC81R1va8KMyZY7dzpLCxWuLAzc7K/FxY7G3eW7ku6M2HTBIY3Hk6TmwJ6DUGThaXWJ7MDeEFE\nNojIWBFpJiIFMiswk7pQbhcOtLp9+SXUqOEkmZkzM55gMlq/DX9voNrIamw7tI1NnTYFXIIJtM/P\n10K9fr6W2qJlk4BJ4gwLrgw0BL4WkezAN8B8VV2VOWEak/nOnIGXX4YFC2DOHLjzTv/GE5cQx3s/\nvMf7K95n4P0Dibgjwkbtm4CX7vVkRCQfUB9ooKrtXYnKB6xPxmTEli3QrBncfDOMGAH58vk3nm2H\nthE5LZIrs1/J2EfGUjpfaf8GZEJWps9dJiK5RaS7iIz0vFQYOBvICcaYjBg3Du66y1n/ZdIk/yYY\nVWXYmmHUHFWTZrc249vIby3BmKDizdxlnwLngNqe7T1Ab9ciMl4J5XZhf9XtxAmIjIR+/ZyFxdxa\nudLb+u05vodGXzRi1LpRLGu9jBdqvkA2CfwV00P5dxNCv36+5s1v7PWq2g8n0eCZs8yYkLJhA1St\n6kwJs3q1/1eunPzzZCoPr0yNEjVY3nY5Fa6t4N+AjLlM3sxd9iNQD/jRs4bM9cBEVa2eGQFeLuuT\nMd5QdaaF6d4dBg2Cli39G8+h04foMrcL6/auY8KjE7izhJ/vNjBZjj/mLuuJszpmSRH5AqgDRPkq\nAGP85exZ6NLFWfPlhx/8v+7Lgm0LaDuzLU0rNGVdx3XkypHLvwEZ4wPezF22EGgKtMZZgrmqqi5x\nOzCTulBuF86Muv39N9x7Lxw8mPkLiyWt38lzJ3lmzjO0n9WecY+M48MHPgzqBBPKv5sQ+vXzNW97\nEXMCh4HjwC0iEgATahhzedasgerV4f77nYGWefL4L5blfy6n0vBKnDh3gk2dN1Hvunr+C8YYF3jT\nJ9MPaAb8CsSff11VH3I3tIyxPhmTnM8+g5decsa+PPqo/+I4F3+OXtG9GL1+NJ80+oSmtzT1XzDG\nJOKPPplHgZtU9ayvCjUms8XHQ7du8PXXsGQJ3Hab/2L5ef/PREyLoGTekmzotIGiVxf1XzDGuMyb\n5rLtwBVuB2LSJ5TbhX1dt8OHoVEj5zbl1av9l2DiE+IZ8OMA6rxVhy53dmFm85khmWBC+XcTQr9+\nvubNlcxpYIOILALOX82oqj7vXljG+Mavv8LDD0PjxvDee5DdT6sQ7zy8k6gZUc4I/geH0aJKC/8E\nYkwm86ZPJiqZl1VVx7kSkY9Yn4yZNQvatoX+/SEqyj8xqCpj1o+h26JudK3TlZdqvkRYNj+vcmZM\nKnzdJ5PuCTLTdXKRhsAgIAwY5Zk5IOk+HwEPAKeAqPPr16R1rGflzveAQqp6KJnzWpLJolShTx8Y\nOhS++sqZpt8f9p3YR/tZ7fnz2J9MeHQCtxX2Y0eQMV7KtAkyRWSq5+dPyTw2eRFoGPAxzhIBtwAt\nRKRCkn0aAeVV9QagAzDUm2NFpBTOTNB/pKu2ISSU24UzUrcTJ+DJJ52rmFWr/Jdgvt78NRWHVeT2\nwrezst3KixJMKH92YPUzF0uthfoFz8/GOEsvJ+bNJUJ1YJuqxgCIyCTgYWBzon2aAOMAVHWliOQX\nkaJAuTSOfR94HZjhRRwmi9i5Ex55BKpUgehouPLKzI/hyJkjPD/veZbvXs60ZtOoVapW5gdhTABJ\n8UpGVfd4nj6jqjGJH8AzXpy7BPBnou3dnte82ad4SseKyMPAblVN82oqlIWHh/s7BNdcTt2WLIFa\ntZw+mDFj/JNgFu1YRMVhFbn6iqvZ0HFDigkmlD87sPqZi3lzr839QNckrzVK5rWkvO0Q8brtT0Su\nAv6L01SW7uNN6FGFTz6B3r3h88+hnh8GzJ+OPU23b7vx1eavGN1kNA3KN8j8IIwJUCkmGRHpjHPF\ncr2I/JTorTzAD16c+y+gVKLtUjhXJKntU9KzT44Ujr0eKAts9Cw7WxJYKyLVVXV/0gCioqIoW7Ys\nAPnz56dSpUoX/go5364arNuDBg0Kqfok3k7c5p3a/ufOwZQp4axcCe+/H01YGEDmxpv7htxETo+k\n2IFiDKk55EKC8UX9gnXb6hdc29HR0YwdOxbgwvelT6lqsg8gH84X+iSgTKLHNSkdk+T47DgDOcvi\nDObcAFRIsk8jYK7neU1ghbfHevbbCRRMoXwNZUuWLPF3CK7xpm579qjWqqX62GOqx4+7H1NS5+LO\naY8lPbTwe4V14k8T03VsKH92qla/YOf57kzzO97bh1e3MItIJeAunCawZaq60ZsEJiIP8O9tyKNV\nta+IdPRkgOGefc7fRXYSaK2q61I6Npnz7wCqqd3CnKWsXg2PPeasXPnmm5AtkxeL3HJgCxHTIiiU\nqxCjm4ymeJ7imRuAMS7K9HEyIvIC0B74Gqf/4xFgpKp+5Ksg3GBJJjRNmAAvvwwjRzp3kmWmBE1g\n8MrBvLP0HXrf25uOVTsibqzPbIwfZdo4mUTaATVU9S1V7Y7TrNXeVwGYy5O4XTjUJFe3uDh49VXo\n1cu5kyyzE8yuo7uoP6E+k3+ZzIp2K+hUrdNlJ5hQ/uzA6mcu5m1DQ0IKz41x3eHD8OCDsGmTM8Ay\nMye4VFXGbxxP1RFVua/cfSxtvZTyBctnXgDGBDlvmstexlluOXFz2VhV/cD16DLAmstCw/kJLps0\ngX79MneCy39O/kPH2R3ZemgrEx6dQKWilTKvcGP8JNOby1T1fZyllw8DB3HmFwvoBGNCw4wZEB4O\n3bvDwIGZm2Bm/jaTisMqUr5geda0X2MJxpjLlGaSEZGawFZV/dDT2b9dRPw0I5Q5L5TbhRcvjuad\nd6BLF5g9GyIjM6/sY2eP0XZGW16c/yKTH59M//r9yZk9p0/LCOXPDqx+5mLe9MkMA44n2j7pec0Y\nnztxwuncnzvX6X+pXj3zyl76x1IqDqtIWLYwNnbayF1l7sq8wo0JUd70yWxQ1UpJXtukqne4GlkG\nWZ9M8Nm50+l/ufNOGDIEcvr2AiJFZ+LO8L/F/+OLn75gxEMjaHxj48wp2JgA5I9bmHeKyPMikkNE\nrvCMm9nhqwCMAVi82JngskMHGDUq8xLM+r3rqTaiGjFHYtjUeZMlGGN8zJsk0wmogzPP2G6ccTId\n3AzKpC1U2oVVYfBgeOop+OILpx/mu++iXS83LiGO/1v6fzT4rAHd/tONqU9MpVCuQq6XC6Hz2aXE\n6mcSS/N+HVXdBzTLhFhMFnP2LDzzjDNNzPLlUK5c5pS79eBWIqdHkjtHbtZ2WEupfKXSPsgYc1lS\n7JMRka6q2k9EBifztqrq8+6GljHWJxPY9u515h8rUQLGjoWrr3a/TFVl6JqhvLXkLXrU7cGz1Z8l\nm2TyxGfGBDhf98mkdiXzq+fn2mTes29vc9lWrYKmTaFjR2eCy8yY/uuvY3/RZmYbDp8+zPdtvufm\nQje7X6gxJtWVMWd5fo5N5jEu80I0yQnWduHx46FxY/j4Y/jf/5JPML6u28SfJlJ5eGXqlKrDj21/\n9HuCCdbPzltWP5NYmn0yInIT8CrO2i7n91dVvdfFuEyIiYuD11+HWbOcCS5vvdX9Mg+eOsizc59l\n075NzG05l2rFq7lfqDHmIt6Mk9kEDAXWAfGel1VVk2tGCxjWJxM4Dh2CZs2cq5ZJk6BgQffLnLd1\nHu1nteeJW56gT70+XJXjKvcLNSYEZGafzHmxqjrUVwWarOWXX5wBlo88Au++6/78YyfOneDVha8y\nb9s8Jjw6gXvK3eNugcaYVHlza80sEXlWRIqJSMHzD9cjM6kKhnbh6dPhnnugZ08YMMD7BHO5dfvx\nzx+pNKwSZ+PPsqnTpoBNMMHw2WWE1c8k5s1/+yicu8leTfSaAte5EZAJfgkJ0Lu3s3rlnDnONDFu\nOht3lp7RPfl0w6cMfXAoj1Z41N0CjTFeS7NPJlhZn4x/nDgBrVo542C+/hqKFnW3vE37NhExLYKy\n+csyovEIilxdxN0CjQlx/pi7zBiv7NjhzD9WoIBzB5mbCSY+IZ7+P/Sn3vh6vFjjRaY3m24JxpgA\nZEkmSAVau/CiRVC7tjPAcuTIjE1wmVbddhzeQfi4cOZuncvq9qtpXbk1khkjOn0k0D47X7P6mcQs\nyZgMUYWPPoKWLZ3bk7t0cW8Ev6oycu1IaoyqwaM3P8riVospm7+sO4UZY3zCm3EyVbl0GpmjwB+q\nGudWYBllfTLuO3sWOneGtWudpZLLlnWvrL9P/E27me3Yc3wPEx6dwK2FM2E0pzFZkD/6ZD4BVgIj\nPY8VwJfA7yLSwFeBmOCydy+Eh8Px4/Djj+4mmC9//ZJKwypRpVgVVrRbYQnGmCDiTZLZA1RS1aqq\nWhWohLNoWX2gv5vBmZT5s1145UpnWeTGjWHKFMid27fnP1+3w6cP8/TXT/PfRf9lRvMZvH3P21wR\ndoVvC/ODUG/Tt/qZxLxJMjep6i/nN1T1V+BmVd2Ozcac5YwbBw89BJ984u4Myt9s/4aKwyqS/8r8\nrO+4nhola7hTkDHGVd70yUwBDgKTAAGeBK4Fnga+V1WXh9pdHuuT8a24OHjtNWdw5YwZUKGCO+Wc\nij1F12+6Mv236YxuMpr7r7/fnYKMMcnydZ+MN0kmF/AMzhLMAD8AQ4AzQG5VPe6rYHzJkozvHDzo\nTHCZPTtMnOiMg3HDqr9WETEtgjuL38ngBwZT4CqXCjLGpMgfHf8VVHWAqj7qeQwA7lXVhEBNMFlB\nZrUL//yz0/9SpYpzFeNGgomNj+WtJW/x0MSH6H1Pb9oVbBfSCSbU2/StfiYxb5LMSBG5/fyGiLQA\n3nIvJBMopk1zJrjs1Qv694ewMN+X8es/v1JzdE3W7l3Lho4beOLWJ3xfiDHGb7xpLrsO55blp4C7\ngEigsaoedT+8y2fNZZcvIQHeeQdGj3bmH6vmwlpfCZrAhys+pM/3fehzbx/aVWkXVKP2jQlVmb6e\njKru8Fy9TAf+ABqo6ilfBWACy/HjzgSX+/bBqlXuzD/2x5E/iJoRRWx8LCvaruD6gtf7vhBjTEBI\nsblMRH46/8C5kikIlANWelbLNH7kRrvwjh3O/GPXXAOLF/s+wagqYzeMpdrIajS8viHfRX2XbIIJ\n9TZvq19wC/X6+VpqVzIPZVoUxu8WLXLmH3vrLWeqGF+3XO0/uZ8Oszqw88hOFkUu4o4id/i2AGNM\nQLL1ZLI4VfjwQ+jXz7k9OTzc92XM2DKDTnM6EVUxip7hPcmZPQNTNBtjXJXpfTImdJ05A506wYYN\nsGIFlCnj2/MfPXOUFxe8yNI/lvLlE19Sp3SdtA8yxoQU16f6F5GGIrJFRLaKSNcU9vnI8/5GEamc\n1rEi8p6IbPbs/7WI5HO7HoEmo+3Ce/ZA3bpw+jT88IPvE0x0TDQVh1UkZ1hONnbamK4EE+pt3la/\n4Bbq9fM1V5OMiIQBHwMNgVuAFiJSIck+jYDyqnoD0AEY6sWxC4FbVbUi8Dvwhpv1CDUrVjgDLB95\nxFkDxpcTXJ6JO8PLC16m5dctGfLgEIY1HsbVV1ztuwKMMUHF1T4ZEakF9FDVhp7tbgCq+m6ifYYB\nS1R1smd7CxCOcydbqsd6Xn8UaKqqTyd53fpkkjF2LLz+OowZ48yi7Etr96wlcnokt157K0MfHMo1\nua7xbQHGGNcFW59MCeDPRNu7gaTT6Sa3TwmguBfHArQBJmY40hAXFwevvgpz58J33/l2gsu4hDj6\nLuvL4FWDGdRwEC1ua2EDK40xgPtJxttLicv6RhKRN4FzqvpFcu9HRUVR1rOaVv78+alUqRLhntun\nzrerBuv2oEGDvK7P3r3QuHE0YWGwalU4+fP7Lp5itxUjcnok8Tvi+aTOJzxx+xMZrl/iNu9A+ff2\n5bbVL7i3Q61+0dHRjB07FuDC96VPqaprD6AmMD/R9htA1yT7DAOaJ9reAhRJ61ggCmdG6CtTKFtD\n2ZIlS9LcJz5edfhw1UKFVLt3V42L81358QnxOnjlYC3Uv5B+suoTTUhI8Nm5valbMLP6BbdQr5/n\nu9NnecDtPpnswG9APZwVNlcBLVR1c6J9GgFdVLWRiNQEBqlqzdSOFZGGwECgrqoeSKFsdbNuge63\n36BDBzh7FkaOhNtvT/sYb/159E/azGzD8bPHGf/oeG685kbfndwY41f+mOr/sqlqHNAFWAD8Ckz2\nJImOItLRs89cYIeIbAOG46xdk+KxnlMPBq4GvhGR9SIyxM16BJNz55zJLevUgaZNnduTfZVgVJXP\nN31O1RFVCS8TzvdtvrcEY4xJlY34D1LR0dEX2lfPW74c2reHsmVhyBAoXdp35R04dYDOczrz6z+/\nMuHRCVQpVsV3J08iubqFEqtfcAv1+gXVlYzJHMePw3PPwWOPQffuMGuWbxPMnN/nUHFYRcrkK8Pa\nDmtdTTDGmNBiVzJBbtYsePZZqF8f3nsPChb03bmPnz3OKwtfYeH2hYx7ZBx1y9b13cmNMQEp2MbJ\nGJf8/Tc8/zysXw/jxjkrWPrS97u+p9X0VoSXCWdT503kzZnXtwUYY7IEay4LMqowahTcfHM05cvD\npk2+TTBn487S9ZuuPDn1ST5o8AGjHx6d6Qkm8TiEUGT1C26hXj9fsyuZIPL7785tyadOwYAB0K6d\nb8+/8e+NREyL4PqC17Ox00auzX2tbwswxmQ51icTBGJjnf6W99+H//3P6eQPC/Pd+eMT4nnvx/cY\nuHwgA+oPILJipE0LY0wWZX0yWczKlc5tySVLwtq1vp+Sf/uh7UROjyRnWE7WtF9Dmfw+LsAYk6VZ\nn0yAOn4cXnjBmY7/jTdgzpyLE0xG24VVleFrhlNzdE2evOVJvo38NmASTKi3eVv9gluo18/X7Eom\nAM2ZA888A/feCz//DNf4eMb8vcf30nZmW/af3M/SqKVUuNaHUzIbY0wi1icTQPbtc65eVq+G4cPh\nvvt8X8aUX6bw3Lzn6FytM2/e9SY5wnL4vhBjTNCyPpkQpAqffgrdukHr1s6CYrly+baMQ6cP0WVu\nF9btXcfsFrO5s8Sdvi3AGGOSYX0yfrZtm3PFMmQILFgA/fp5l2DS0y68cPtCKg6ryLW5rmVdx3UB\nn2BCvc3b6hfcQr1+vmZJxk9iY+Hdd6FmTXjwQVixAipX9m0ZJ8+d5Nk5z9JuZjs+ffhTPnzgQ3Ll\n8PElkjHGpML6ZPxg9WrntuSiRWHoUChXzvdlrNi9gshpkdQsWZOPHviI/Ffm930hxpiQY30yQezE\nCWeW5IkTYeBAeOop8PWYx3Px53j7u7cZtW4UnzT6hKa3NPVtAcYYkw7WXJZJ5s2D226Dgwed25Jb\ntsxYgkmuXfiX/b9Qc1RNNu7byIZOG4I2wYR6m7fVL7iFev18za5kXLZ/P7z4otPnMmIE3H+/78uI\nT4hn0IpBvPvDu7xb713aVG5j08IYYwKC9cm4RBXGj4fXX4fISOjZE3Ln9n05MUdiaDW9FarK2EfG\ncl2B63xfiDEmy7A+mSCwfTt06uQ0jc2bB1VcWEhSVfl0w6d0/bYrXet05aWaLxGWzYezZhpjjA9Y\nn4wPxcVB//5Qo4bTLLZqlTsJZt+JfdR5qw4frfyIxZGLebX2qyGVYEK9zdvqF9xCvX6+ZlcyPrJ2\nrbO+S6FCTnK5zqVWq2mbp9F5Tmfuy38fY9qP4YqwK9wpyBhjfMD6ZDLo5El46y347DNnzZeICN/f\nlgxw9MxRnp//PD/++SPjHxlPrVK1fF+IMSbL83WfjDWXZcDChXD77c7Elj//7HTwu5FgFu9czB3D\n7iB3jtxs6LjBEowxJmhYkrkMBw44CaVDB2fOsc8+g2tdWKn4dOxpXpz/IpHTIhneeDhDHhxC7iuc\nW9RCuV04lOsGVr9gF+r18zVLMumgCp9/7gyqLFTIuXpp2NCdstbsWUOVEVXYd3IfmzpvomF5lwoy\nxhgXWZ+Ml2JinNuS9+6FUaPgTpcmMo6Nj6XPsj4MWTOEDxt+SPPbmrtTkDHGJMP6ZDJZfDx88AFU\nqwbh4bBmjXsJZsuBLdQeU5vlu5ezrsM6SzDGmKBnSSYVGzdCrVowcyYsX+4sKpbDhYUkEzSBj1Z+\nxF2f3kXbym2Z13IeJfKWSPWYUG4XDuW6gdUv2IV6/XzNxskk4/RpeOcdp1msb19o08adu8YAdh3d\nRUXYbfQAAAupSURBVOsZrTkde5rlbZdTvmB5dwoyxhg/sD6ZJJYsce4aq1wZPvrIWfPFDarKZ5s+\n45WFr/BSzZd4rc5rZM9mOd8Y4182d5lLDh+G115zlkD+5BNo0sS9sv45+Q+d5nTi94O/szBiIZWK\nVnKvMGOM8aMs3yejClOnwq23Qs6c8Msv7iaYWb/NouKwilxf4HpWt1992QkmlNuFQ7luYPULdqFe\nP1/L0lcyu3fDM8/Atm3w5ZdQu7Z7ZR0/e5yXFrzE4p2Lmfz4ZO4qc5d7hRljTIDIkn0yCQkwdKiz\nxkuXLs5dYzlzuhfL0j+WEjU9inrl6vF+g/fJkzOPe4UZY0wGWJ9MBv36K7Rv7zz/7ju45Rb3yjoT\nd4bui7vz+U+fM+KhETS+sbF7hRljTABytU9GRBqKyBYR2SoiXVPY5yPP+xtFpHJax4pIQRH5RkR+\nF5GFIpLfm1jOnnWuXOrWhaefhmXL3E0w6/eup9qIauw8spNNnTf5PMGEcrtwKNcNrH7BLtTr52uu\nJRkRCQM+BhoCtwAtRKRCkn0aAeVV9QagAzDUi2O7Ad+o6o3AIs92qn74wbklecMGWL8eOneGbC7V\nPC4hjj7L+tDgswZ0+083pj4xlUK5Cvm8nA0bNvj8nIEilOsGVr9gF+r18zU3m8uqA9tUNQZARCYB\nDwObE+3TBBgHoKorRSS/iBQFyqVybBOgruf4cUA0KSSaY8ec/pYZM5wxL4895t6gSoCtB7fSanor\ncuXIxdoOaymVr5RrZR05csS1c/tbKNcNrH7BLtTr52tuNpeVAP5MtL3b85o3+xRP5dgiqrrP83wf\nUCSlAG691VkS+eefoWlT9xKMqjJ09VBqj6lNi9tasDBioasJxhhjgoWbVzLe3rbmzVe/JHc+VVUR\nSbGcCROcSS3dlKAJPDzpYfad2Mey1su4udDN7hboERMTkynl+EMo1w2sfsEu1Ovnc6rqygOoCcxP\ntP0G0DXJPsOA5om2t+BcmaR4rGefop7nxYAtKZSv9rCHPexhj/Q/fJkL3LySWQPcICJlgT1AM6BF\nkn1mAl2ASSJSEziiqvtE5GAqx84EWgH9PD+nJ1e4L+/zNsYYc3lcSzKqGiciXYAFQBgwWlU3i0hH\nz/vDVXWuiDQSkW3ASaB1asd6Tv0uMEVE2gIxwJNu1cEYY0zGhOyIf2OMMf4XFBNkBtKgTje4VL/3\nRGSzZ/+vRSRfZtQlOW7UL9H7r4hIgogUdLMOKXGrbiLynOfz+1lE+rldj5S49LtZXURWich6EVkt\nIi6tNZu2DNZvjIjsE5GfkuwfKt8tKdUvfd8tbnX8+/AGgjBgG1AWyAFsACok2acRMNfzvAawIq1j\ngf7A657nXYF3Q6x+9YFsnufvhlr9PO+XAuYDO4GCoVI34B7gGyCHZ/vaUPrscMa2NfA8fwBYEmz1\n82zfBVQGfkpyTNB/t6RRv3R9twTDlcz/t3fuMXZVVRz+fqEllCowFRS0RWIDAsbY2tJMRBRSNTVA\nWgkKKmKtmdQaQim+StGg0QQaHzFKkFjwkSaQVBwMRjCt9UHTOkin00cGUQOpBBBFAkqRFig//9j7\nltvpvXfu63Q81/UlN3fPPnvts9bs6V7de5+z1oGXOm2/CFRezKzmoJc6gcpLnY1kD8jk70XFmlGX\nQuyzvcH2y1n+PmB68abUpKjxA/gW8PmiDWhAUbYtA67P9dh+snhTalKUfX8DKv/7PQ54rFgz6tKJ\nfdjeBDxdo99emFvq2tfq3FIGJzPhL3UWTFH2VbMEuLtjTdujEPskLQQetb2z2wq3QFFjdyrwLklD\nkn4raW5XtW6eouxbCXxT0iPA10mvKEwEndjXiF6YW5pl3LmlDE6m2ScTOnqps4X7dJtu2neokHQt\n8ILt29qR7wJdt0/SFGAVcF078l2kqLGbBPTZ7gc+B6xrUb5bFGXfrcCVtk8GVgA/aFG+W7RrX9Nz\nRUnnlqbkmp1byhDq/zHS3nuFGSRv26jN9Nxmco36ytL875JOtP2EpJOAf3RV6+bppn0HyUpaTNpz\nnd89dVumCPtmkvaZdyjFCpoODEuaZ/twjmNRY/coMAhg+/78YMNrbD/VRd2boSj75tl+Ty7fAdzS\nLYVbpF37xtveK/vcMu72ZUtzy0QcSLV4eDUJeIg0qRzJ+IdX/bxy+FhXlnQ4V4kisJKJO5wryr4F\nwChwfC+O3xj5iTr4L2rslgJfyeXTgEd6aeyAbcC7c3k+cH/Z7Ku6fgq1D/5LPbeMY19Lc8thN7zN\nX9b7gT+RnpS4JtctBZZWtbkxX98BvL2RbK6fBvwK+DOwHjiux+z7C/BXYCR/buol+8b0/zAT4GQK\nHLvJwFpgFzAMnNtLYwfMJR0Ybwd+D8wuqX23kyKS7COda3wi1/fK3FLPvpbmlngZMwiCICiMMhz8\nB0EQBCUlnEwQBEFQGOFkgiAIgsIIJxMEQRAURjiZIAiCoDDCyQRBEASFEU4mKAWSThkbcrxL/V5Y\nLwT6OHLHSlpW9fPrJf2kQ10ulbRK0nWSPtNJX23ef9XhvmfQ+4STCf6vsf1z2+3ka+kDPl3Vz+O2\nP9ihOguAezrsoxNaDlQpKeaQoCHxBxKUDklvkrRN0hxJR0taJ2k0J1AakjSnhsxuSV+WNCxpp6Q3\n5/rFkr6by6+TdKek7fnTn+uvlrQrf5bnLm8AZubEW6slvbGy0sp9Dkq6JyeuWl2lx/skbcl6rJM0\nNdcLmGV7JDd1rh+QdLekoySdlXUfyYmjDlnZSbpR0oW5fKekW3N5iaSvVdVvVUqINpDrbgCm5L7X\n5rrLJN2X626uOBRJeyR9Q9J2UiiSIKhLOJmgVGTncAfwcdvDpNXEU7bfAnwJmEPtKLIGnrQ9B/ge\n8Nkabb5DSqA1i5Ss6YHssBaTcnP0AwOSZpGSUT1ke7btL3BoJNu3AR8C3gpcIukNko4HrgXmZz2G\ngatz+9mkMCtVpuoKUmyphbb3Aj8EBmzPBl6qY+cmUrIpSCHbz8jlc4Df5fIS23OBs4ArJfXZXgk8\nn+35mKQzsv7vyPd7Gfholj+aFONqlu0tNXQIggOUIQpzEFR4LfAz4AO2H8x1ZwPfBrA9KqlRfpnB\n/L0NuKjG9fOAy3JfBv4t6Z3AoO3nASQNkibsu8bRdaPtZ7PMA6RAg33AmcCWHD36SKAySVdvlQm4\nnBQvaqHt/UopfF/llFgK4Dbgghr33QRclZ3EKK8koeoHrshtlkuqJNKaQcpf84cx/cwnOeytWdcp\nwBP52n7gp+PYHwRAOJmgXDxDCsx3DvBgVX2z+Uz25e/91P/br5VbQ2OuNxPwb19Vufp+G2x/pEb7\n95JWWJV77iKthmYAu5vQMwnaj2eHtAC4lxSs8RJgj+3nJJ1LciD9tvdK+g1wVB0bfmy71sMAex1B\nD4Mmie2yoEy8QFqBXC7pw7luM2lbB0lnkran2mUjKfUxko6QdAxpZbBI0pR8frIo1+0BXt1C3waG\ngLMlzcz3mCrpVEnHApNsV6e6HQE+Bdwl6STbzwDPSpqXr1/a4F5DwFWk7bFNpK3Be/O1Y4Cns4M5\nnYPPVF6UVHGGG4GLJZ2QdZ0m6eQW7A0CIJxMUC5s+z+kbaIVki4AbgJOkDQKfJW0RfSvWrJjyq5R\nXg6cl7fctpJyb4wAPyJtJw0Ba2zvcEogtjk/DLC6QZ/Vyv+TdL5zu6QdpK2y00mrmA01bN1MchC/\nkDQN+CSwRtII6Vyklp2QHMsRth8mOau+XAfwS2BS3sK7nhRqv8L3gZ2S1tr+I/BFYH3WdT1wYpV9\nQdAUEeo/KDX5iafJtvflFcIG4DTbL02wak0jaQ3JeY09Fxnbbqrt53J5JSmX/IrDoWMQtEucyQRl\nZyrwa0mTSecUy8rkYABsDzTZ9HxJ15D+3e4mrYqC4H+aWMkEQRAEhRFnMkEQBEFhhJMJgiAICiOc\nTBAEQVAY4WSCIAiCwggnEwRBEBRGOJkgCIKgMP4LHoxT2ajUkscAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c37160>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical stages: \n",
+ "8.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.5: Page 510"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.5\n",
+ "# Page: 510\n",
+ "\n",
+ "print'Illustration 10.5 - Page: 510\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "import numpy.linalg as lin\n",
+ "import numpy\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:ethylbenzne b:diethylene glycol c:styrene\n",
+ "F = 1000;# [kg/h]\n",
+ "xF = 0.5;# [Wt. fraction styrene]\n",
+ "xPE = 0.9;# [kg styrene/kg hydrocarbon]\n",
+ "xRNp = 0.1;# [kg styrene/kg hydrocarbon]\n",
+ "#******#\n",
+ "\n",
+ "# X: kg styrene/kg hydrocarbon\n",
+ "# Y: kg styrene/kg hydrocarbon\n",
+ "# N:kg glycol/kg hydrocarbon\n",
+ "# Equilibrium data:\n",
+ "# Hydrocarbon rich solutions:\n",
+ "# Eqb1 = [X N]\n",
+ "Eqb1 = numpy.array([[0 ,0.00675],[0.0870 ,0.00817],[0.1833, 0.00938],[0.288 ,0.01010],[0.384 ,0.01101],[0.458, 0.01215],[0.464 ,0.01215],[0.561 ,0.01410],[0.573, 0.01405],[0.781 ,0.01833],[1 ,0.0256]]);\n",
+ "# Solvent rich solutions:\n",
+ "# Eqb2 = [Y_star N]\n",
+ "Eqb2 = numpy.array([[0 ,8.62],[0.1429 ,7.71],[0.273, 6.81],[0.386, 6.04],[0.480, 5.44],[0.557, 5.02],[0.565, 4.95],[0.655, 4.46],[0.674, 4.37],[0.833, 3.47],[1 ,2.69]]);\n",
+ "\n",
+ "plt.plot(Eqb1[:,0],Eqb1[:,1],label=\"X Vs N\")\n",
+ "plt.plot(Eqb2[:,0],Eqb2[:,1],label=\"Y Vs N\")\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper right');\n",
+ "plt.xlabel(\"kg styrene / kg hydrocarbon\");\n",
+ "plt.ylabel(\"kg diethylene glycol / kg hydrocarbon\");\n",
+ "plt.title(\"Equilibrium Data\")\n",
+ "# In Fig. 10.31 (Pg 512):\n",
+ "# Point E1 is located.\n",
+ "NE1 = 3.10;\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "# From Fig. 10.30 (Pg 511):\n",
+ "Np = 9.5;\n",
+ "print\"Minimum number of theoretical stages:\\n\",Np\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "# The tie line when extended passes through F provides the minimum reflux ratio.\n",
+ "# From the plot:\n",
+ "N_deltaEm = 20.76;\n",
+ "# From Eqn. 10.48:\n",
+ "Ratiom = (N_deltaEm-NE1)/NE1;# [kg reflux/kg extract product]\n",
+ "print\"Minimum extract reflux ratio: \",round(Ratiom,3),\"kg reflux/kg extract product\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (c)\n",
+ "\n",
+ "Ratio = 1.5*Ratiom;# [kg reflux/kg extract product]\n",
+ "# From Eqn. 10.48;\n",
+ "N_deltaE = (Ratio*NE1)+NE1;\n",
+ "# Point deltaE is plotted.\n",
+ "# A straight line from deltaE through F intersects line X = 0.10 at deltaR.\n",
+ "N_deltaR = -29.6;\n",
+ "# In Fig. 10.31 (Pg 512):\n",
+ "# Random lines are drawn from deltaE for the concentrations to the right of F, and from deltaR for those to the left,and intersection of these with the solubility curves provide the coordinates of the opeating curve.\n",
+ "# The tie line data are plotted directly to provide the equilibrium curve.\n",
+ "# From Fig. 10.32 (Pg 513):\n",
+ "Np = 15.5;\n",
+ "# Feed is to be introduced in the seventh from the extract product end of cascade.\n",
+ "# From Fig. 10.31 (Pg 512):\n",
+ "XRNp = 0.10;\n",
+ "NRNp = 0.0082;\n",
+ "# Basis:1 hour.\n",
+ "# Overall plant balance:\n",
+ "# (1): PE_prime+RNp_prime = F\n",
+ "# C Balance\n",
+ "# (2): PE_prime*(1-XRNp)+RNp_prime*XRNp = F*xF\n",
+ "# Solving (1) & (2) simultaneously:\n",
+ "a = numpy.array([[1 ,1],[(1-XRNp), XRNp]]);\n",
+ "b = numpy.array([F,F*xF]);\n",
+ "soln =lin.solve(a,b)\n",
+ "PE_prime = soln[0];# [kg/h]\n",
+ "RNp_prime = soln[1];# [kg/h]\n",
+ "RO_prime = Ratio*PE_prime;# [kg/h]\n",
+ "# From Eqn 10.39:\n",
+ "E1_prime = RO_prime+PE_prime;# [kg/h]\n",
+ "BE = E1_prime*NE1;# [kg/h]\n",
+ "E1 = BE+E1_prime;# [kg/h]\n",
+ "RNp = RNp_prime*(1+NRNp);# [kg/h]\n",
+ "S = BE+(RNp_prime*NRNp);# [kg/h]\n",
+ "print\"Number of theoretical stages: \\n\",Np\n",
+ "print\"Extract Flow Rate: \",round(E1,2),\" kg/h\\n\"\n",
+ "print\"solvent Flow Rate: \",S,\" kg/h\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.5 - Page: 510\n",
+ "\n",
+ "\n",
+ "Minimum number of theoretical stages:\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "9.5\n",
+ "\n",
+ "\n",
+ "Minimum extract reflux ratio: 5.697 kg reflux/kg extract product\n",
+ "\n",
+ "\n",
+ "\n",
+ "Number of theoretical stages: \n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "15.5\n",
+ "Extract Flow Rate: 19567.58 kg/h\n",
+ "\n",
+ "solvent Flow Rate: 14799.1 kg/h\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEZCAYAAACU3p4jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvCUWkLBFQEASC9CaRJkrLqssiiCCg0sQI\nK0UUsazgogLuT7GsoggIIhpABaSJ2FCRoBSlSEc6CKggWJBOIOf3x71hhpgyk8nNpJzP88yTufU9\nOUneuTn33veKqmKMMSb3iwh3AMYYY7KGdfjGGJNHWIdvjDF5hHX4xhiTR1iHb4wxeYR1+MYYk0dY\nh29yFBGpICJHRUTc6XgR6e2+7y4iC/zWTRSRK4PY9wXbG5PbWIdvPCEie0TkhNs5J71Gh7pfVd2r\nqsXUdwOJui9U9R1V/WcI+w5p+2C4H1QnReRPETkiIqtEZLCIFAxiH0F9oBljHb7xigI3u51z0mtg\nuINKjYjky+ImFRigqn8DygAPA12Aj4Pcj2R2YCb3sg7fZDkRiRCR/4nIIRHZKSID3KPVCHf5HhG5\nwW/94SIy1X0f5b9usv3GisjXyWa3dds4JCLP+5WCYkVkqYi8JCKHgeH+26fUTrLykf/2v4vIDhG5\nTkTuFpG9InJQRHqmlwoAVT2pqouBW4BrRaSt20ZjEVnu7v8nEXlVRAq4y75y97HO/e/pNhGJFJEP\nReQXEflNROaLSLnAfiomL7AO33gptaPPPkBbIBpoCHTGLcu4NIXpjOoANADqA+2BXn7LGgM7gcuA\npwPYV/K4GgPrgBLANOA9t53KQA9gjIgUTmd/vgnVfcAqoLk76yzwAFASuBa4AbjXXbeFu85V7n9P\nM3H+nicBFdzXSWBMAN+XySOswzdeEeB99+g06dXbXXY7MEpVf1TV34FnSLs0EUrZ4jlV/cPtTF8G\nuvot+0lVx6pqoqqeysC+d6vqZPd8wntAWeApVU1Q1c+BM0CVIPf5E3AJgKp+p6or3Ph+AF4HWqa2\noar+pqpzVfWUqh7DyWuq65u8J3+4AzC5lgLtVfXLFJZdDuzzm97rYRzJ2ymbyrKMOOj3/iSAqh5K\nNq9okPu8AlgCICLVgJdw/kMpjPP3uiq1Dd3/JkYB/8T90ACKioj4neQ2eZgd4Ztw+Bmn5JCkQrLl\nx4EiftNlQmgreTs/+k2n1Qked7/6l2RCiSNdIlIepySUdB7iNWAzUEVViwNDSftv9mGgGtDYXb8l\nzn9HdmLXANbhG2+l1tG8BwwUkXIicgkwhAs737VAFxHJLyINgU5kvI7/iHsyszwwEJgRyEbukfqP\nwJ0ikk9EeuHU5jNT0gnkwiLSEpgHfKuqSVfqFAWOAidEpAbQP9n2B5PFVBTnv4ojIlICGJbJ8Zoc\nzjp846X5ya7Dn+3OnwgswDnhuQqYzYUfDk/gdGS/A8OBd5LtN7XOP/lJVXA60dXAGuBDnJOaqa2b\nfN49wL+Bw0AtYGk6bQX7oTRGRP4EDuCUYmYCrf2WPwJ0A/7Eqd9PT9bGcGCye36kM845iovdeJcB\nn2QgJpOLiZelPRF5APgXzh/zRFV9xbPGTI4lIlHALiC/qiaGNxpjci/PjvBFpA5OZ98IqAfcLCKZ\n/S+xMcaYAHlZ0qmBU488parngMVARw/bMzmblR6M8ZiXHf5GoLmIlHAvF2uLc8mZMRdQ1T2qms/K\nOcZ4y7Pr8FV1i4g8B3yGc4nbGsD+oI0xJkw8PWl7QUMizwB7VXW83zz7N94YYzJAVYO+v8LTyzJF\n5DL3awXgVuDd5Ouoqr1UGTZsWNhjyC4vy4XlwnKR9iujvB5aYZaIlAQSgHtV9U+P28ux9uzZE+4Q\nsg3LhY/lwsdyETpPO3z1jehnjDEmzOxO22wiNjY23CFkG5YLH8uFj+UidFl20jbFxm0QP2OMCZqI\noNntpK0JXHx8fLhDyDYsFz45ORciYq9MeGUmGw/fGOMZ+w8+NJnd4Ye9pHPg6AFKFy0dthiMMd5w\nyw7hDiNHSy2HObakU3NsTe796F52/7473KEYY0yuFvYO//sB3xNZKJKGExvSY04PNhzcEO6QwiIn\n12ozm+XCx3JhMlPYO/zSRUvzzA3PsGvgLupcVodWb7ei3bR2LNu3LNyhGWNMrhL2Dj9J8ULFGdJs\nCLsG7qJNlTb0mNODlnEt+WT7J3miDhgTExPuELINy4WP5SLzHTt2jEqVKvHuu76RXo4ePUqFChWY\nM2fOX9bv168fd91111/mr1u3jkKFCvHHH38E3HZ8fDwREREMGDDggvnNmjVj8uTJQXwXGZNtOvwk\nFxe4mP6N+rPt/m30bdCXwV8Mpv7r9ZmxcQbnEs+FOzxjTA5XtGhRJkyYwKBBgzh8+DAAjz76KI0b\nN6Zjx78+siM2NpY5c+Zw4sSJC+ZPnTqVdu3aERkZGVT7RYoU4e233+aHH344P8+LSzBTku06/CT5\nI/LTrW431vVbx3///l9GrxhN9THVeX3165w+ezrc4WU6q9X6WC58LBfeaNWqFW3btmXgwIHEx8cz\nc+ZMxo0bl+K6TZo0oVy5csyePfv8vHPnzjFt2jR69uwJwIoVK2jYsCHFixenTJkyPPzww6m2HRkZ\nSWxsLCNGjMjcbyoA2bbDTyIi3FztZpbcvYQ327/J+1ve58rRV/K/Zf/j6Omj4Q7PGJNDjRo1ikWL\nFnHbbbfx4osvctlll6W6bs+ePZkyZcr56S+++IKEhATatGkDwAMPPMCDDz7IkSNH2LVrF7fffnua\nbf/nP/9h9uzZbNu2LXO+mQBl+w4/iYjQomILPu7+MR91+4hVP63iytFX8uSiJzl0/FC4wwuZ1Wp9\nLBc+uTkXIpnzyqjIyEhq167NyZMnufXWW9Nct0ePHixevJiffvoJgClTptC9e3fy5csHQMGCBdm+\nfTuHDx+mcOHCXHPNNWnur3Tp0vTr148nn3wy499ABuSYDt9fdJlopneezvLeyzl47CDVx1TngU8e\nYO+RveEOzRgTINXMeWVUUh39xhtvZPDgwWmuW6FCBVq0aMHUqVM5duwY8+bNO1/OAZg0aRLbtm2j\nZs2aNG7cmI8++ijd9h999FEWLFjA+vXrM/5NBCvMg/hrZvjxzx/1kQWPaInnSmjs+7G6+ZfNmbLf\nrLRo0aJwh5BtWC58cnIuMuvv2wsHDx7USy+9VOPj4/Xnn3/WEiVK6Ndff53mNlOmTNHatWtrXFyc\n1qlTJ9X1Zs2apYUKFdITJ078ZdmiRYv0iiuuOD89fPhwbdeunTZr1kzj4uL+sn5qOXTnB93npnuE\nLyLVRWSiiHwuIovc15cefw4FpWyxsrzQ6gV23L+DypdUJmZyDB1ndGTljyvDHZoxJhu67777uPXW\nW2nZsiVlypTh+eef55577uHMmTOpbtOpUyf27t3L8OHD/zJU89tvv82hQ05puXjx4ogIERHpF1Ae\neughli9fzvfff58lV+kEchS+HugPXAM0dF8NAvk0AR4DNgEbcB5veFGy5al+Sobi2Olj+so3r2j5\nl8rrDZNv0M93fq6JiYmetGWMSZlXf9+hmjt3rpYrV06PHDlywfzrr79eH3/88TS3jY2N1QIFCujP\nP/98wfwePXroZZddpkWLFtU6derovHnzUtx+0aJFWr58+QvmPf/88xoREaGTJ0/+y/qp5ZAMHuGn\nO3iaiKxW1QbBfpCISBTwJVBTVU+LyAzgY1Wd7LeOptd+KBLOJfDuhnd5bulzFC1YlCHNhtChRgci\nJEeeujAmR7HB00IXjsHT5ovIABG5XERKJL0C2O5PnGfZFhaR/EBh4MdgAwxFgXwFuCv6Ljbeu5H/\nNP8Pzy19jlpja/HWmrc4cy71f93Cwa639rFc+FguTGYKpMOPBR4BlgGr3deq9DZS1d+AF4G9wE/A\nH6r6RYYjDUGERNChRge+6f0N49qO492N71JldBVe+eYVjp85Ho6QjDEmy6X7ABRVjcrIjkWkMjAI\niAKOADNFpLuqvuO/XmxsLFFRThORkZFER0efv/Y46egms6YXL15MBBF8fufnrPxxJY+8/gjDJw/n\noS4PMaDxANZ/uz5T2wtmOiYmJkvbs+mcM50ku8QT6LTJPPHx8cTFxQGc7y8zIpAafkGck7YtAAUW\nA+NVNSGd7e4A/qGq/3Kn7wSaqOoAv3U8reEHYsvhLTy/9HnmbZ3H3dF389C1D1G2WNmwxmRMbmA1\n/NCFo4b/GlAfGOu+b+B+Tc8WoImIXCzO9UY3ApuDDdBrNUrV4M32b7K271rOJZ6jzrg69Jnfh+2/\nbs/SOKxW62O58LFcmMwUSIffSFXvUtUvVXWhqsYCjdPbSFXXAVNw6v1Jt5K9nuFIPVa+eHlGtR7F\ntvu3cXnRy7nuzeu4Y9YdrPl5TbhDM8aYTBFISec74HZV3eFOVwZmqmr9kBvPBiWd1Bw9fZSJ303k\npeUvUbd0XYY0HUKLii2y5uYIY3IBK+mELrNLOoF0+DcAbwFJD52NAu5W1ZDvts3OHX6S02dPM3X9\nVJ5f+jylCpfisWaP0bZaW7uW35h0WIcfuizv8N2dFwKquZNbVTVTBqTPCR1+knOJ55jz/RxGLhlJ\nQmICQ5oO4Y46d5A/It0LnQISHx9vVze4LBc+OTkX1uGHLstP2orIxcAAYAQwHLjX/QDIU/JF5OO2\n2rexus9q/veP/zHxu4lUe7UacWvjOJt4NtzhGWMC1KNHD3r16nXBvMWLF1OqVCkOHjx4wfxnn32W\nli1b/mUfhw8fpmDBgmzeHPh1KHv27CEiIoK2bdv+JZ4sexhKemMvADOBScDfgeuBN3Bq+NlmtMxw\n+WrPV9ryrZZa7dVq+s76d/TsubPhDsmYbCO7/n3/+uuvWqZMGf38889VVfXkyZNatWrVFMey2b9/\nv+bPn1937959wfxXX31VGzZsGFS7u3fvVhHRUqVK6bJly87P79Gjh44YMSLFbVLLIV6NlgnUVtXe\nqrpInSt1/gXU9uLDJ6dpXrE5i+5axLg24xizYgxXjb+K2Ztnk6iJ4Q7NGJOKEiVK8Oqrr9KnTx9O\nnDjBiBEjqFq16gXj2ycpV64c119/PVOnTr1g/pQpU86vv2PHDlq2bElkZCSXXnopXbp0SbP9Rx99\nlKFDh14wT7Oq9JXeJwLwNnCt33QTYGpGPl1S2HdgH405QGJion687WNtMKGBRo+P1g+2fBDUCJ05\nedzzzGa58MnJucjuf9+dOnXSdu3aacmSJXX//v2prvfOO+9o1apVz09v2bJFCxYsqIcPH1ZV1S5d\nuugzzzyjqqqnT5/WpUuXprifpCP8o0eParly5fSLL75QVecIf/jw4Sluk1oOyeARfqpnHEVkg/s2\nP7BURPbh3GlbAdjq1QdQTiUi3FT1JlpXac0HWz9g6JdD+b+v/4+nYp6iVeVWdjmnMcnIiMz5m9Bh\nGTs6HjduHJUrV+aZZ56hXLlyqa7XoUMH+vfvz/Lly7n22muZMmUKbdq0oWTJkoDzeMM9e/bw448/\nUq5cOa677ro02y1cuDBDhw7l8ccf54YbbshQ7BmW2icBzuWXUUBFv/fn52Xk0yWFNlL89MoNziWe\n0xkbZ2iNMTW06aSmumj3onCHZEyWygl/31FRUbpw4cJ01+vdu7f269dPVVUrVqyoc+bMOb/swIED\nes8992jZsmW1du3a+uabb6a4j6Qj/HPnzunp06e1UqVKOn/+/Cw9wk+vQ84PbMnIjgNqPAf8QoTq\n7LmzOnXdVK38SmW9fvL1unRvyv/uGZPb5IS/70A7/K+++kpLlCihCxYs0JIlS2pCQkKK6y1ZskQL\nFSqkO3fu/Msy/w5fVTUuLk6jo6O1e/fuWdbhp3nSVlXPAltFpGIm/lORp+SLyEePq3rw/YDv6Van\nG91md+Omd276y+MXbcwUH8uFj+Uie2jevDmRkZH07duXrl27kj+/rxo+c+ZM9u/fDzgj/gb6eMM7\n77yTU6dO8emnn2ZZyTeQq3RKAJtE5EsRme++PvA6sNymQL4C9K7fm233b+OWardw64xbaT+9PesO\nrAt3aMaYAPTs2ZO9e/f+5WqeVatW0aRJE4oVK0b79u0ZPXp0qkMY+3fsERERPPXUU/z+++9ehn1h\n+85/B2msIBKT0nxVjQ+58Rx0p21mO5lwkgmrJ/Dc0udoXqE5w2OGU+vSWuEOy5hMY3fahi4sQyt4\nJS93+EmOnznO2JVj+d+y/9GqciuGtRxG1ZJVwx2WMSGzDj904Rha4VoRWSkix0QkQUQSReTPYBsy\nKStSsAiPNn2Ut+q9RY1SNbjuzevoNa8Xe/7YE+7Qwsbq1j6WC5OZAqnhjwG6AduBQkBvYJyXQeVF\nRQoW4fEWj7Ptvm2UK1aOBq83oP+H/dn/5/5wh2aMySUCqeGvVtUGIrJeVa9y561V1eiQG7eSTqoO\nnzjMC0tf4I01b9Cjbg8ea/4YZYqWCXdYxgTMSjqhC8cjDo+LyEXAOhF5XkQeAgJqSESqi8gav9cR\nERkYbJB5UanCpXjuH8+x+d7NREgEtcbW4t+f/ZtDxw+FOzRjTA4VSIff013vPuAEcAXQKZCdq+pW\nVb1aVa/GeRbuCWBuBmPN1VKr1ZYuWppRrUexof8Gjiccp8bYGgxdOJTfT2bdpVxZzerWPpYLk5kC\n6fAPA2dU9YiqDgf+DfyUgbZuBHaq6r4MbJvnlftbOca1HcfqPqs5ePwgVV+tylOLn+LP03b+3GRf\nImKvEF6Z/vMIoIb/LXCDqh5zp4sBC1Q17RGC/rqfN4FVqjrOb57V8DNox287eGrxU3y641MeuvYh\n7mt8H0ULFg13WMaYLJDRGn4gz+e7KKmzB1DVoyJSOMjgCgLtgMHJl8XGxp6/Ky0yMpLo6Ojzj3RL\n+nfWpv86XaVEFXpd0osbqt7Axwc+psroKnS8uCPtq7fnnzf+M+zx2bRN23TmTcfHxxMXFweQ6l28\nAUlvsB1gKdDAb7ohsDyYAXuA9sCnKcxPcWCgvCjUcc/XHVinHaZ30LIvltUx347RUwmnMiewMMjJ\nY8BnNsuFj+XCBw+feDUIeE9ElojIEmAGcH+QnytdgWlBbmOCcFXpq5h7x1zmdZnHR9s/otqYakxc\nPZGEcwnhDs0Yk00ENLSCW5Kp5k5uVdWAexERKQL8AFRS1aPJlmkg7ZvgLd+3nCcWPcHuP3bzZIsn\n6X5Vd/JHBFLBM8Zkd56NpeN29v2BFu6seGB8MJ1+Gvu2Dt9j8XvieWLRExw6fohhLYdxe+3byReR\nL9xhGWNC4OWNV68B9YGxOEMqNHDnmUyUdIIms8VExfBV7FeMvmk0o1eMpu5rdZmxcUa2ftC6V7nI\niSwXPpaL0AXS4TdS1btU9UtVXaiqsUBjj+MymUhEaFW5Fct6LePFVi/y4vIXqTe+HrM2z8rWHb8x\nJnMFUtL5DrhdVXe405WBmapaP+TGraQTFqrKx9s/Zlj8MBISExjWchgdanQgQgL5/DfGhJuXNfwb\ngLeA3e6sKOBuVf0y2MZS2Ld1+GGkqny47UOGxQ9DUYa3HM4t1W/JssetGWMyxpMavojkA+rhXKEz\n0H1Vz4zO3lwoHPVJEaFd9Xas7rOaYS2HMSx+GA0nNmT+1vlhHeXQarU+lgsfy0Xo0nuI+Tmgq6qe\nUtV17utUFsVmsoiI0KFGB77r+x1Dmw9l6JdDafxGYz7a9pENb2tMLhJISWcUUADnhqvjOEMjq6p+\nF3LjVtLJlhI1kTnfz2F4/HCKFCzCiJgR/LPyP63UY0w24WUNPx74y0qq+vdgG0th39bhZ2OJmsjM\nTTMZsXgExQsVZ0TMCP5x5T+s4zcmzDy7Dl9VY1T178lfGQvTpCY71icjJII76tzBhv4bGNh4IAM/\nGUjzt5qzcNdCT0s92TEX4WK58LFchC7Ve+1F5GH3bYp/2ar6kicRmWwnX0Q+utbtyu21b2faxmn0\n/6g/ZYqW4am/P0VMVEy4wzPGBCjVko6IDMfp7KsDjYAPcOr3NwMrVLVHyI1bSSdHOpt4lnc3vMtT\ni5+ifPHyjIgZQYuKLdLf0BiTKbys4X8NtEka+Mx9AMrHqto8Q5FeuG/r8HOws4lneXv92zy1+Ckq\nXVKJETEjaFahWbjDMibX83IsncsA/4HSEtx5JhPlxPpk/oj8xEbHsvW+rXSr0407595Jq6mtWL5v\neUj7zYm58IrlwsdyEbpAOvwpwAoRGS4iI4BvgcnehmVykgL5CtC7fm+23reV22rdRtfZXWn9dmu+\n3f9tuEMzxvgJdDz8BkBznJr+V6q6JlMat5JOrnTm3BneWvMWT3/9NHUuq8OImBE0Ktco3GEZk2t4\nWcN/CZikqpsyGlwa+7YOPxc7ffY0k9ZMYuSSkUSXiWZ4y+E0KNsg3GEZk+N5WcP/HnhdRFaISD8R\nKR5EUJEiMktEvheRzSLSJNgA84rcWJ+8KP9F3NvoXrbfv51/Vv4nt0y/hfbT27Pm57T/QcyNucgo\ny4WP5SJ0gdx4NVFVmwI9cUbK3CAi74pIIDdfvYJzRU9N4CqcDw+TxxTKX4j7Gt/Hjvt3cH3U9bR9\nty0dZ3Rk/cH14Q7NmDwl0Bp+PqAdcDdwBfAe0Aw4oap3pLJNcWCNql6Zxn6tpJMHnUg4wYRVE3h+\n2fM0Ld+Ux1s8TnSZ6HCHZUyO4WUNfxROZ/8l8IaqrvBbtlVVq6eyXTQwAdiMM8TyauABVT3ht451\n+HnYiYQTvLbyNV765iXqla7HY80eo3nFkG/vMCbXy2iHn+rQCn42AI+r6vEUll2Tzr7rA/ep6koR\neRkYAjzpv1JsbCxRUVEAREZGEh0dTUxMDOCr2eWFaf/6ZHaIJyumVyxdQQMasHPgTqasm0KX/3Wh\nxMUl6Fa3G0N6DGHx4sXZKt5wTK9du5ZBgwZlm3jCOf3yyy/n6f4hLi4O4Hx/mRGBlnTKARVxOvGk\n4ZG/SmebMsByVa3kTjcDhqjqzX7r2BG+Kz4+/vwPOq86m3iWWZtnMfTNoRStVpQhTYdwW+3byB8R\nyHFJ7mS/Fz6WCx8vSzrPAXfglGbOJc1X1XYBBPUV8C9V3eaOzXOxqg72W24dvvkLVeWTHZ8wcslI\nfjr6E49e9yh3Rd9FofyFwh2aMdmClx3+NqCuqp7OQFD1gDeAgsBOnGfhHvFbbh2+SdOSvUsYuWQk\na35ew4NNHqRfw34Uu6hYuMMyJqy8vA5/J06HHTT3kYiNVLWeqnb07+zNhZLqdebCXDSr0IyPun3E\nJ90/4bsD31HplUo88eUTHD5xOHwBZiH7vfCxXIQurfHwX3XfngDWishCIOkoX1V1oNfBGZOkXpl6\nTOs0jR2/7eCFpS9Q7dVq3HnVnTxy3SOUL14+3OEZkyOkNR5+LL6Hn0jy96oa8gBqVtIxGfXT0Z94\naflLvLnmTdrXaM/gpoOpUapGuMMyJkt4VsP3knX4JlS/nfyNMSvGMGbFGFpUbMFjzR6z8XpMrudl\nDd9kAatP+gSTixIXl+DJlk+y+4HdNKvQjA4zOtBqaisW7V7k6XN3s4r9XvhYLkJnHb7JFYoULMKg\nJoPYOXAnXep0od9H/bh20rXM2zKPRE0Md3jGZAtW0jG50rnEc8zdMpeRS0Zy+uxpBjcdTJc6XSiQ\nr0C4QzMmZF5ehz8f54Rt0s4V+BNYCUxQ1VPBNuq3b+vwjadUlc93fc7IJSPZ/ftu/n3dv+l1dS8u\nLnBxuEMzJsO8rOHvBo4BrwMTgaPuq5o7bTKB1Sd9MjMXIkKryq1YdNcipneezme7PqPSK5UY+fVI\njpzK/reF2O+Fj+UidIF0+NepajdVna+qH6hqd6CRqg7AGRzNmByhyRVNmNdlHl/0/IJNhzZx5egr\nefTzR9n5285wh2ZMlgikpPM90FpVf3CnKwKfqmpNEVmjqldnuHEr6Zgw2v37bsasGMOU9VO4uszV\n9GvYj3bV2lmd32R7Xtbw2wDjgV3urCuBe4FFwD2q+nKwjfrt2zp8E3anzp5i9ubZjF89np2/7aT3\n1b35V/1/UTGyYrhDMyZFXtbwP8Wp1w8CHgCqA1+o6vFQOntzIatP+mR1LgrlL0T3q7rz9d1f8/md\nn3Pk9BHqv16fm9+9mflb53Mu8Vz6O/GI/V74WC5CF0iHP0lVT6nqWlVdB+QDPvY4LmPCovZltRl9\n02j2PbiPTjU78fTXTxP1ShRPLX6KH//8MdzhGROSQEo6/wVKquq9InIJ8BEwUVXfCrlxK+mYHGDt\ngbVMWDWBGZtm0DKqJX0b9KVV5VZEiN23aMLD07F0ROQF4G9AA+BZVZ0VfIgp7tc6fJNjHD19lGkb\npzF+1Xh+P/U7fer3odfVvShdtHS4QzN5TKbX8EWkk/vqCHyD8/zaNYC68wINbI+IrBeRNSKyIv0t\n8iarT/pk11wUu6gYfRr0YXWf1bzX+T12/r6TGmNrcPvM21m4a6EnQzhk11yEg+UidGk9LLQdviGR\nAda66yc9k3ZOgG0oEKOqvwUfnjHZj4jQqFwjGpVrxIutXuTt9W/z4IIHOXX2FH0a9CE2OpZShUuF\nO0xj/sLzsXREZDfQUFV/TWGZlXRMrqCqLN+/nAmrJzBvyzzaVmtLvwb9aFahGSJB/+dtTJqy7Xj4\nIrILOILzAPQJqjrRb5l1+CbX+e3kb0xZN4UJqycgCH0b9CU2OpbihYqHOzSTS2Tn8fCbunfj3gQM\nEJHmWdBmjmP1SZ+cnosSF5dgUJNBbL53M6+1fY3l+5dTe1xt5m2ZF/S+cnouMpPlInRpPdP2OmB5\nqIfgqvqz+/WQiMwFGgNfJy2PjY0lKioKgMjISKKjo4mJiQF8P2CbzlvTSbJLPBmdXrx4MQDTO09n\n8Z7FdH+pO6NKjGLcgHHUurRWQPtbu3Zttvl+wj29du3abBVPVk7Hx8cTFxcHcL6/zIi0nmk7HufK\nnG3AJzjj5xwIaucihYF8qnpURIoAnwEjVPUzd7mVdEyecTLhJC8se4Hxq8ZTpUQV+jboS6danSiU\nv1C4QzM5jJdj6dTEKce0AiKBL3GGW1iqqmnecy4ilYC57mR+4B1VHem33Dp8k+cknEvgg60fMGH1\nBNYcWEOUWPnnAAAdaUlEQVTPq3rSp0EfqpeqHu7QTA7hWQ1fVb9X1ZdUtTVwPbAUuB1I95p6Vd2t\nqtHuq45/Z28ulLyckZfl9lwUyFeATrU68dmdn/FN728okK8ALeJacP3k65mxcQZnzp05v25uz0Uw\nLBehC+qkraqeUNWPVPU+VW3gVVDG5BWVS1Tm2RufZd+D++jboC8TVk+g/KjyDP58sI3TbzKdPdPW\nmGxm26/beH3160xeN5mry1xN3wZ9uaX6LTZOvzkv216Hn2bj1uEbk6qkcfonrJ7A9t+20/vq3txT\n/x4bp99k6+vwTQCsPuljuXAUyl+Icr+V46u7v2Jhz4UcPX2U+q/Xp807bZi3ZR5nE8+GO8QsZb8X\noUtr8LRjInI0ldefWRmkMXldrUtr8cpNr7DvwX3cUfsOnlv6HFEvRzE8fjj7/9wf7vBMDmElHWNy\nqPUH1zNh1QSmbZxGswrN6NugL62rtCZfRL5wh2Y85vV4+PWAFjgjX37tPvkqZNbhGxO642eOM33j\ndMavHs8vx3/hnvr30OvqXpQtVjbcoRmPeFbDF5EHgHeAS4HSwNsiMjD4EE1arD7pY7nwCSQXRQoW\noXf93qy8ZyVz75jLviP7qD2uNh1ndGTBjgWejNMfDvZ7EbpATtr+C7hGVZ9U1SeAJsA93oZljMmI\n+pfXZ0K7Cfww6AdaVW7FkIVDqPpqVZ5d8qw9k9cENLTCBqCxqp50py8GVqhq3ZAbt5KOMZ5SVVb+\ntJLXV7/O7O9nc3WZq+lWtxudanbikosvCXd4JoO8HEvnISAW5wlXAnQA4lR1VAbiTL5v6/CNySKn\nzp7i4+0f8+6Gd/l81+f8PervdKvbjZur3UzhAoXDHZ4Jgpdj6bwE3A38DvwKxGZGZ28uZPVJH8uF\nT2bmolD+QnSs2ZFZt89i76C9dKjRgTe+e4Pyo8rz0IKH2PHbjkxrywv2exG6QE7aNgG2q+orqjoa\n2Cki13gfmjHGK8ULFSc2OpbP7vyM1X1WUzBfQa6bdB2t327Nh9s+5FximgPhmhwqkJLOWuDqpNqL\niOQDVrlPsQqtcSvpGJNtnDp7ihkbZzB25VgOnTjEvQ3vpdfVvShZuGS4QzPJeFnDX6uq0cnmrVfV\nq4JtLIV9W4dvTDa04scVjF05lg+2fkCHGh0Y0GgADcs2DHdYxuXlWDq7RWSgiBQQkYLudfm7gg/R\npMXqkz6WC59w5aJxucZM7jCZ7fdvp0bJGnR+rzNN3mjC1HVTOX32dFhist+L0AXS4fcDmgI/Avtx\nrsPvE2gDIpJPRNaIyPyMhWiMCZdShUsxuNlgdg7cyX+a/4e3N7xNhZcr8J+F/2Hvkb3hDs8EKZCS\nTklV/TXDDTiXdTYAiqnqLcmWWUnHmBxm26/bGLdyHFPXT6VFxRYMaDSAGyrdgEjQFQaTQV7W8LcD\na4G3gE+C6aFF5AogDngaeEhV2yVbbh2+MTnUsTPHeGf9O4xdOZYz584woNEAetbrSfFCxcMdWq7n\nZQ2/OjAR6AnsEJGRIlItwP2PAv4N5I7BPDxk9Ukfy4VPds5F0YJF6duwL+v6rWNiu4ks2beESq9U\nov+H/dn4y8ZMby875yKnCOTGq0RV/UxVu+CMoXMXsFJEFovIdaltJyI3A7+o6hqcO3SNMbmQiNC8\nYnNmdJ7Bxns3UqZoGVpNbUVMXAwzN80k4VxCuEM0rkBKOqWA7jhH+AeBN4D5QD1glqpGpbLdM8Cd\nwFmgEPA3YLaq9vRbR++66y6iopxdREZGEh0dTUxMDOD7RLdpm7bpnDWdcC6B/5vyf7y/9X1+vexX\n+jToQ50TdShxcYlsEV9Om46PjycuLg6AqKgoRowY4VkNfxvwNvCmqu5PtmyIqj6bbiMiLYFHrIZv\nTN6z4eAGxq4cy4xNM2hdpTUDGg2gafmmdpI3BJ7W8FX1qeSdPUAgnb3/6kGsm+ckfZoby4W/3JCL\nuqXrMv7m8ex+YDdNyjWh9we9iZ4QzcTVEzl+5njA+8kNuQi3/Kkt8L9uPoVPYk1+iWVaVHUxsDjo\n6IwxuUZkoUgeaPIA919zPwt3LWTMyjE8tvAxetbrSf+G/alasmq4Q8z1Ui3piEhMGtup24mH1riV\ndIzJ03744wfGrxrPpDWTqH95fQY0GkCbqm3subzp8PSZtl6xDt8YA87Abe9teo+xK8fyy/Ff6N+w\nP72v7m0Dt6XCy2fabhCR9e7XpNcSERklIvbTyCRWn/SxXPjklVwUyl+InvV68u2/vuW9zu+x+dBm\nqrxahbvn3c2qn1YBeScXXkq1hu/nU5xLK9/FuZ6+C1AY5xLNOKBdqlsaY0yQGpVrRFy5OA6fOMyk\n7ybR+b3OlC5amhu4gSbNmlAof6Fwh5hjBXJZ5prkY98nzRORDaE829ZKOsaY9JxLPMfH2z9mzMox\nrD2wll7RvejXsB8VIyuGO7Sw8fKyzHz+T7gSkcZ+250NtkFjjAlGvoh8tKvejgU9FvD13V9z8uxJ\n6r9enw7TO/DFri+wg8bABdLh9wYmicgeEdkDTALuEZEiwEgvg8tLrD7pY7nwsVz4xMfHU61kNV5u\n/TJ7B+2lTdU2PPzZw9QcW5PR347myKkj4Q4x2wtkLJ2VqloHiAaiVbWuqq5Q1eOq+p73IRpjzIWK\nFCxCnwZ9WNt3LRPbTWTZvmVEvRLl2cBtuYVdlmmMyRV+Pvozr69+nde/e53Kl1Sme93udK7VOVde\n2mnX4RtjDJBwLoGPtn/EtI3T+HTHpzSr0IwutbvQoUYHil1ULNzhZQovT9qaLGC1Wh/LhY/lwifQ\nXBTIV4AONTowo/MMfnzoR7rX7c7MzTO5YtQVdH6vM7M3z+Zkwklvg82mArnxqoiIPCEiE93pqu5Y\n98YYk60VLViUbnW78UHXD9j9wG5uqnITr616jbIvlaXn3J58sv2TPDVefyDX4b8HrAZ6qmpt9+qc\nZapaL+TGraRjjAmDA8cOMHPTTKZtnMb237bTqWYnutTpQvMKzXPEOD5ePtN2tao28L8BS0TWWYdv\njMkN9vyxhxkbZzB903R+Of4Lt9e6na51u9KobKNsO2a/lzX80yJysV9DlYHTwTZk0ma1Wh/LhY/l\nwserXERFRjG42WDW9F3DF3d+QfFCxblz7p1UebUKQxcOzVWXeQbS4Q/HGU/nChF5F/gSGOxlUMYY\nEw41L63J8JjhbBmwhZm3zSQhMYE277Shzrg6PP3V0+z8bWe4QwxJQJdlus+1beJOfqOqhwPauUgh\nnAefXAQUBOap6mN+y62kY4zJ1hI1keX7ljNt4zRmbp5JxeIV6VKnC3fUvoNyfysXlpg8vQ5fRMoB\nUTijayqAqn4VYGCFVfWEiOQHluA823aJu8w6fGNMjnE28SyLdi9i2sZpvL/lfa4qfRVd6nShc63O\nlCpcKsvi8HI8/OeApcBQ4BHg3+4rIKp6wn1bEMgH/BZskHmB1Wp9LBc+lguf7JCL/BH5+Uflf/Bm\n+zf5+eGfebDJg8Tviafy6Mrc9M5NTFk3hT9P/xnuMFMVyHj4t+I8yDxDJ2pFJAL4DqgMvKaqmzOy\nH2OMyU4uyn8R7Wu0p32N9hw7c4z5W+czfdN07v/kfm688ka61ulK26ptubjAxenvLIsE0uHvxDk6\nz1CHr6qJQLSIFAcWiEiMqsYnLY+NjSUqKgqAyMhIoqOjiYmJAXyf6HlhOiYmJlvFY9PZZzpJdokn\nXNNJ87JLPP7TRQsW5fJfL+fBMg8S1z6OuVvmMvLtkcQejuXWm26lS+0uFNxXkAL5CmRo//Hx8cTF\nxQGc7y8zIpDr8OcA9YCF+Dp9VdWBQTcm8gRwUlX/505bDd8Yk2sdOHaAWZtnMW3jNLYe3krHmh3p\nWqcrLSq2COkGLy+vw/8A+C9OHX8Vzl23qwMMqpSIRLrvLwb+AawJNsi8IPnRXF5mufCxXPjkxFyU\nKVqG+xrfx9JeS1ndZzVVSlTh4c8epvyo8gz6dBDf7v82Sx/gkm5JR1XjRKQwUEFVtwS5/8uByW4d\nPwKYqqoLMxCnMcbkaBUjK/Jo00d5tOmjbDm8hRkbZ3DX+3dx5twZutTpQpc6Xah7WV1P7+4NpKRz\nC/ACcJGqRonI1cAIVb0l5MatpGOMycNUlbUH1jJ943Smb5pO0YJF6VqnK13qdKFKiSqpbuflWDrf\nAdcDi/zG0tnoPgUrJNbhG2OMI+kGr+kbpzNz80zKFy9Pl9pduKPOHVzxtysuWNfLGn6Cqv6RPLZg\nGzJpy4n1Sa9YLnwsFz65PRcREkHTCk15tc2r7H9oPyNvGMnmQ5upN74eLeNa8trK1zh0/FBIbQRy\nWeYmEekO5BeRqsBAYFlIrRpjjElV/oj83Hjljdx45Y2MOzuOBTsXMG3jNIYsHMK1V1yb4f0GUtIp\ngnOXbSt31gLgv6p6KsOt+vZtJR1jjAnQ8TPHmb9tPl3rdrVn2hpjTF6Q6TV8EZmfxuuD0MI1yeX2\n+mQwLBc+lgsfy0Xo0qrhv+h+VSD5J4kdlhtjTA4T6HX4H7pj4mRu41bSMcaYoHl5WeYdwA4ReV5E\nagQfmjHGmOwg3Q5fVbsDVwO7gDgRWS4ifUSkmOfR5SFWn/SxXPhYLnwsF6EL5AgfVT0CzAJmAGVx\nxshfIyJBj5hpjDEmPAKp4bcHYoGqwBQgTlV/cQdU26yqURlu3Gr4xhgTtIzW8AO507YjMCr5M2zd\n59T+K9gGjTHGhEcgNfy7Untguap+kfkh5U1Wn/SxXPhYLnwsF6EL5CHmnURku4j8KSJH3Vf2fUqv\nMcaYFAVSw98J3Kyq32d641bDN8aYoHl5Hf6BjHb2IlJeRBaJyCYR2WhX9RhjTPikNZZOJxHpBKwS\nkRki0jVpnoh0DHD/CcCDqlobaAIMEJGamRB3rmP1SR/LhY/lwsdyEbq0rtJph2/MnJP4hkdOMie9\nnavqAeCA+/6YiHyPcx1/ppeHjDHGpC2QGn4zVV2S3rx0GxKJAhYDtVX1mDvPavjGGBMkL6/DHw3U\nD2BeqkSkKM6dug8kdfZJYmNjiYqKAiAyMpLo6GhiYmIA379wNm3TNm3TeXk6Pj6euLg4gPP9ZUak\neoQvItcC1wEPAi/hGyK5GHCrqtYLqAGRAsCHwCeq+nKyZXaE74qPjz//g87rLBc+lgsfy4WPF0f4\nBXE693zu1yR/Ap0DDEqASThDMLyc3vrGGGO8E0gNv6Kq/iAiRVT1eFA7F2kGfAWsx3cC+DFV/dRd\nbkf4xhgTJC9r+OVE5BOco/zyIhIN9FHVe9Pb0D2xG9CInMYYY7wVSGf8MtAaOAygqmuBll4GlRcl\nnaAxlgt/lgsfy0XoAh0Pf2+yWWc9iMUYY4yHAqnhzwJGAWOAa4CBQENV7RJy41bDN8aYoHk5lk5/\nYABQDvgR53GHA4JtyBhjTHgFMh7+IVXtpqqXqeqlqtpdVX/NiuDyEqtP+lgufCwXPpaL0KV6lY6I\nDFbV50Tk1RQWq6rayJfGGJODpHWnbTtVnS8isSksVlWdHHLjVsM3xpigZbSGn+5JWy9Zh2+MMcHL\n9JO2IjLf7/VB8unQwjXJWX3Sx3LhY7nwsVyELq07bV90v94KlAHexhlArStw0OO4jDHGZLJArsNf\nraoN0puXocatpGOMMUHz8jr8wiJS2a+hK4HCwTZkjDEmvALp8B8EFonIYhFZDCwCBnkbVt5j9Ukf\ny4WP5cLHchG6dEfLVNVPRaQaUANniOOtqnrK88iMMcZkKrss0xhjchgva/jGGGNyAU87fBF5U0QO\nisgGL9vJDaw+6WO58LFc+FguQpduDV9EGuB7PGGSI8APqpreuPhvAa8CUzIWnjHGmMwSyHX43wAN\ncJ5LC1AX2AQUB/qr6oJ0to8C5qtq3RSWWQ3fGGOC5GUN/ycgWlUbuDdbRQO7gH8AzwfboDHGmPAI\n5CHm1VV1U9KEqm4WkRqqulNEQj48j42NJSoqCoDIyEiio6OJiYkBfDW7vDDtX5/MDvGEczppXnaJ\nJ5zTa9euZdCgQdkmnnBOv/zyy3m6f4iLiwM4319mRCAlnfeAX4HpOGPp3A5cCvQAlqhqo3S2j8JK\nOumKj48//4PO6ywXPpYLH8uFj2fDI4tIYeBeoKk7aykwDjgFFFHVo+lsH4V1+MYYk2m87PAbqOrq\nZPNuVtUPAwhqGtASKAn8Ajypqm/5LbcO3xhjguTlSduJInL+6FxEugJPBrJzVe2qqmVV9SJVLe/f\n2ZsL+dev8zrLhY/lwsdyEbpATtp2BmaJSDegOdAT5wodY4wxOUhAY+mISHXgfeAHoKOqnsiUxq2k\nY4wxQcv0Gn4KwyFcBvwBnMF5iPlVQUf51zaswzfGmCB5UcNvl+x1DfBP9/0tGQnSpM7qkz6WCx/L\nhY/lInSp1vBVdU8WxmGMMcZjNh6+McbkMDYevjHGmDRZh59NWH3Sx3LhY7nwsVyEzjp8Y4zJI6yG\nb4wxOYzV8I0xxqTJOvxswuqTPpYLH8uFj+UidNbhG2NMHmE1fGOMyWGshm+MMSZNnnb4ItJaRLaI\nyHYRGexlWzmd1Sd9LBc+lgsfy0XoPOvwRSQfMAZoDdQCuopITa/ay+nWrl0b7hCyDcuFj+XCx3IR\nOi+P8BsDO1R1j6om4DwEvb2H7eVof/zxR7hDyDYsFz6WCx/LRegCeeJVRpUD9vlN78cZYtmYLOd/\nbUDS+6yel5HYTp2C33/PPt+D1/NS+pr0/uBBWL8+9eXJ36e3PJh1s1tbGeVlhx9QaJUquSun8EuQ\n/L3X64VjOsmJE3t4+eW01wlkP8Gsk9rylOYHOi+UdZPenz27h6efztjPN1AiF37Nqnn+VNPf7sSJ\nPYwfH754wzEvpa8isH//HpYsSX15Su/TW56Z+8rqtjLCs8syRaQJMFxVW7vTjwGJqvqc3zp2TaYx\nxmRApj7iMFQikh/YCtwA/ASsALqq6veeNGiMMSZNnpV0VPWsiNwHLADyAZOsszfGmPAJ6522xhhj\nsk6W3GkbyA1YIjLaXb5ORK7OirjCIb1ciEh3NwfrRWSpiFwVjjizQqA35olIIxE5KyIdszK+rBTg\n30iMiKwRkY0iEp/FIWaZAP5GSonIpyKy1s1FbBjC9JyIvCkiB0VkQxrrBNdvqqqnL5xyzg4gCigA\nrAVqJlunDfCx+/4a4Buv4wrHK8BcXAsUd9+3zsu58FvvS+BDoFO44w7j70UksAm4wp0uFe64w5iL\n4cDIpDwAvwL5wx27B7loDlwNbEhledD9ZlYc4QdyA9YtwGQAVf0WiBSR0lkQW1ZLNxequlxVj7iT\n3wJXZHGMWSXQG/PuB2YBh7IyuCwWSC66AbNVdT+Aqh7O4hizSiC5+Bn4m/v+b8Cvqno2C2PMEqr6\nNfB7GqsE3W9mRYef0g1Y5QJYJzd2dIHkwl9v4GNPIwqfdHMhIuVw/thfc2fl1hNOgfxeVAVKiMgi\nEVklIndmWXRZK5BcTARqi8hPwDrggSyKLbsJut/08sarJIH+kSa/pjQ3/nEH/D2JyN+BXkBT78IJ\nq0By8TIwRFVVRIS//o7kFoHkogBQH+cy58LAchH5RlW3expZ1gskF/8B1qpqjIhUBj4XkXqqetTj\n2LKjoPrNrOjwfwTK+02Xx/kkSmudK9x5uU0gucA9UTsRaK2qaf1Ll5MFkosGwHSnr6cUcJOIJKjq\nB1kTYpYJJBf7gMOqehI4KSJfAfWA3NbhB5KL64CnAVR1p4jsBqoDq7Ikwuwj6H4zK0o6q4CqIhIl\nIgWBO4Dkf7AfAD3h/B26f6jqwSyILaulmwsRqQDMAXqo6o4wxJhV0s2Fql6pqpVUtRJOHb9/Luzs\nIbC/kXlAMxHJJyKFcU7Sbc7iOLNCILnYAtwI4NasqwO7sjTK7CHoftPzI3xN5QYsEenrLp+gqh+L\nSBsR2QEcB+72Oq5wCCQXwJPAJcBr7pFtgqo2DlfMXgkwF3lCgH8jW0TkU2A9kAhMVNVc1+EH+Hvx\nDPCWiKzDOWh9VFV/C1vQHhGRaUBLoJSI7AOG4ZT2Mtxv2o1XxhiTR9gjDo0xJo+wDt8YY/II6/CN\nMSaPsA7fGGPyCOvwjTEmj7AO3xhj8gjr8A3uTS6pDsGawX22F5GambnPUInIJyJSNtm8eBFpkMH9\nDReRh0OIJ05EOmV0+wy0FyMi87OqPZP9WIdvvHIrUCuYDUTEs99HEbkYKKGqPyVbpGR83KZQb2JJ\nsW0v8uA+ctTkcdbhmwuIyJUi8p2INBCRwiLynohsEpE5IvJNSkfDIvKsu846EXlBRK4F2gEvuPu6\nUkRW+61fNWlaRPa4268GbhORViKyTERWu20X8VtvuDt/vYhUd+cXcR8U8a3b1i2pfGsxwKI0vu8I\n94j7KXe6t4hsdfc7UUReTWXTWu4IljtF5H532xEi8oDfvp8WkYHu+zHiPNzjc+Ayv3WS56Gr+31u\nEJFn/dZr7eZgrbsPRKSxm7PvxHloTjV3fqyIfCAiC4EvcD5ciovIh24Mr4l7O3ca7R0Tkf9z21su\nIudjNjlQuAf5t1f4XzgPm9iAMybJd0Bdd/4jwGvu+9pAAlA/2bYlgS1+039zv74FdPSb/yVQz33/\nDDDAfb8beMR9XwpYDFzsTg8GnvBbL2mb/jhDCyTtq7v7PhLYChRO4Xt8BYhJYf4inHFppgGPufPK\nuu1F4gw/8hUwOoVthwNLcW53LwkcxhkOoCKw2l0nAueBHpcAHYHPcEY4vBxnrPOOKeShLPCDu898\nwEKcYaIvBfYCFZO+X/drMSCf+/5GYJb7PhZn0LWk9WKAk+7PO8KNpVNq7bnbJAJt3ffPAUPD/ftq\nr4y/7AjfJLkMeB/opqpJ9fymOA+gQFU34YzjktwfwCkRmSQit+J0KEn8h259A7jbLVfcDrzrt2yG\n+7UJThlomYiswRkYqoLfenPcr9/hdFoArYAh7vqLgIu4cATBJE2BJSnMF2ACzlOFRrrzGgPxqvqH\nOg/WmJnse0miwIeqmqCqvwK/AKVV9QfgVxGJduP7Tp1RT1sA76rjZ5wPQX9JeWgELFLVX1X1HPCO\nu+01wFfu/lHVP9z1I4FZ7nmYl7iwlPaZ33oAK9R5uEgizodcM6Ch+/0mbw/gjKp+5L5fjS/vJgey\nup5J8gfOUV5znNEIk6Q5Br2qnhORxjjjtHcG7nPfw4X16dk4gz99iXP06z/s83G/95+rardUmjvt\nfj3Hhb+7HTWNceFF5Epgn6b8VCQFlgF/F5EXVfW0O8//+04rB2f83vvH9QbOYFalgTf92kprX8dT\nWS+95wD8F1ioqreKSEUg3m/ZiWTr+v9MhJTPQ/jPT/Cbn4j1GTmaHeGbJGdwSg49RaSrO28pztE4\nIlILqJt8I7fGHqmqnwAP4YzRDnAU32PocDvSBThPr3oz+X5c3wJNxXmoRVJ9vmo6cS8ABvrFk9KD\nnG8CPkljH2/gPFnsPRHJhzNEb0sRiXRPdnYi+BO0c3GeSdzQjRGc0tAd7vmCy4G/p7LtSrf9km48\nXXA68W+AFiISBSAil7jr/w1IOhmd3oiJjcW5KivpP62vgRUptLc4iO/V5BDW4ZskqqongJuBB0Xk\nZmAccKmIbMI5itwEHEm2XTFgvjhD1X4NPOjOnw782z3BWMmd9y7OUeJn/u36BXAIp+48zd3fMpzz\nCn+J1W+7/wIF3BOOG4ERKaz/T+DTdL75UcAaYCpO5/kMTke4BKe+/mdqm6ayvwSc/2beU3UK4Ko6\nF+eBJZtxnkW6LJVtfwaG4JSo1gKrVHW+Os+x7QPMEZG1uOU24HlgpIh8h1ODT4op+VVAivNhMsaN\nYZeqzlXVAym1l8L3F8oVTSYbsOGRTarco8ACqnraPer+HKiWSmkkkP09AhRT1WGZGWc6bV4EfK1B\nPlNARIqo6nH3CH8Ozrjs84LYPgKn5t1ZVXcGFbQxHrF6nElLEeBLESmAU9ftH0JnPxeoBFyfifGl\nyy0lZeQBMsNF5EagELAgyM6+FjAfmGOdvclO7AjfGGPyCKvhG2NMHmEdvjHG5BHW4RtjTB5hHb4x\nxuQR1uEbY0weYR2+McbkEf8PM26glcYuDusAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7e76ac8>"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.6: Page 516"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.6\n",
+ "# Page: 516\n",
+ "\n",
+ "print'Illustration 10.6 - Page: 516\\n\\n'\n",
+ "\n",
+ "import numpy.linalg as lin\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:heptane b:p-chloronitrobenzene c:o-chloronitrobenzene d:aq. methanol\n",
+ "xb = 0.4;# [Wt fraction]\n",
+ "xC = 0.60;# [Wt fraction]\n",
+ "F = 100;# [kg]\n",
+ "# The para isomer(b) favours the heptane(a) and the ortho isomer(c) favours the methanol(d).\n",
+ "# Basis: 1 hour.\n",
+ "A = 2400;# [kg/h]\n",
+ "D = 2760;# [kg/h]\n",
+ "xbW = 0.8;# [Wt fraction]\n",
+ "xbZ = 0.15;# [Wt fraction]\n",
+ "kb=1.35;\n",
+ "kc=0.835;\n",
+ "#*******#\n",
+ "\n",
+ "B = xb*F;# [kg]\n",
+ "C = F-B;# [kg]\n",
+ "# W = kg A rich product, after solvent removal\n",
+ "# Z = kg D rich product, after solvent removal\n",
+ "# B balance:\n",
+ "# (1): (0.80*W)+(0.15*Z) = B\n",
+ "# C balance:\n",
+ "# (2): (0.20*W)+(0.85*Z) = C\n",
+ "# Solving (1) & (2) simultaneously:\n",
+ "a = numpy.array([[0.80, 0.15],[0.20, 0.85]]);\n",
+ "b = [B,C];\n",
+ "soln = lin.solve(a,b)\n",
+ "W = soln[0];\n",
+ "Z = soln[1];\n",
+ "Wb = xbW*W;# [kg]\n",
+ "Wc = W-Wb;# [kg]\n",
+ "Zb = xbZ*Z;# [kg]\n",
+ "Zc = Z-Zb;# [kg]\n",
+ "xB1_prime = Zb/D;\n",
+ "xC1_prime = Zc/D;\n",
+ "yB1_prime = Wb/D;\n",
+ "yC1_prime = Wc/D;\n",
+ "DbyA = D/A;\n",
+ "# Equilibrium curve:\n",
+ "# First distribution coeffecient: yB_star/xB_prime = 1.35\n",
+ "def f68(x1):\n",
+ " return kb*x1\n",
+ "x1 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Second distribution coeffecient: yC_star/xC_prime = 0.835\n",
+ "def f69(x2):\n",
+ " return kc*x2\n",
+ "x2 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Operating Line, corresponding to First distribution coeffecient:\n",
+ "def f70(x3):\n",
+ " return (DbyA*x3)+yB1_prime\n",
+ "x3 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "def f71(x4):\n",
+ " return DbyA*(x4-xB1_prime)\n",
+ "x4 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Operating Line, corresponding to Second distribution coeffecient:\n",
+ "def f72(x5):\n",
+ " return (DbyA*x5)+yC1_prime\n",
+ "x5 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "def f73(x6):\n",
+ " return (DbyA)*(x6-xC1_prime);\n",
+ "x6 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "\n",
+ "\n",
+ "plot(x1,f68(x1),label=\"Equilibrium curve\")\n",
+ "plt.plot(x3,f70(x3),label=\"Operating curve\")\n",
+ "plt.plot(x4,f71(x4),label=\"Operating curve\");\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"xB_prime\");\n",
+ "plt.ylabel(\"yB_prime\");\n",
+ "plt.title(\"yB_star/xB_prime = 1.35\");\n",
+ "plt.xlim((0,0.05))\n",
+ "plt.ylim((0,0.07))\n",
+ "plt.show()\n",
+ "\n",
+ "plot(x2,f69(x2),label=\"Equilibrium curve\")\n",
+ "plt.plot(x5,f72(x5),label=\"Operating curve\")\n",
+ "plt.plot(x6,f73(x6),label=\"Operating curve\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"xC_prime\");\n",
+ "plt.ylabel(\"yC_prime\");\n",
+ "plt.title(\"yC_star/xC_prime = 0.835\");\n",
+ "plt.xlim((0,0.06))\n",
+ "plt.ylim((0,0.07))\n",
+ "plt.show()\n",
+ "# The stages are constructed.\n",
+ "# The feed matching is shown on Fig. 10.37 (Pg 518):\n",
+ "f_prime = 6.6;\n",
+ "fstage = 4.6;\n",
+ "print\"Number of ideal stage is \\n\",fstage+f_prime-1\n",
+ "print\"The feed stage is \",fstage,\"th from the solvent-D inlet\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.6 - Page: 516\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEaCAYAAAA/lAFyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXucjeX+//98O3RCKL5OqUHs2MkhiSIqJBUdROzaDhHl\n0GErUZ/oZzuVdki7UBkpqUhUZFe7aVQOhRnJqSHKoam2U0iYef/+uO+ZWVZzWDNr3es07+fjsR7m\nvu/rvu9rXe613uu63tfreomqYhiGYRiFpUSkK2AYhmHEJhZADMMwjCJhAcQwDMMoEhZADMMwjCJh\nAcQwDMMoEhZADMMwjCJhAcQwIoyIbBCRqyJdD8MoLBZAjJAjIkki8ruI/CYiB0TkMxG5OIjrJYhI\npogE/byKSHUR+TGAciF9D/mhqherarIX1w4FInK1iHzqtsP3BZRtICJfi8g+t/wXItLK5/hoETnh\ntutvInJIRBK8fg+GN1gAMbxAgUGqWg44B0gC5oTgulKkk0RK+Wx2ApYGcJpX7yGvekUzh4GXgIcD\nKLsbuB04F6gIzAPm+xxX4A1VLee+zlbVHSGurxEmLIAYhUZEHhaR+X77porIZP+yqpoJvAk0COC6\nzd1frwdF5CcRmeQeyvp1fsD91Xq5iNQRkf+KyK8i8ouIvCYi5X2utUNEHhGR9cBvPr2XTsAS9/z/\niUgTt3x19zp/Gkoq5HsYLSLzRWSe++t6jYhckk+9Srr7rvE5/20RmeOev15E6orICBFJF5GdItLe\n53rlReRlEdkjIrtEZEwoemp+7/8rVX0dyLf34ZY9qKrfq7PERUkgE9jrU0Qo4g8BI/qwAGIUhTlA\nx6wvbPeXdHdgtk8ZcY+dBvwNWBHAdacAz6pqeaA28La7v7X7b3n3V+sqd3ssUA2oD9QERvtd7w7g\neqCCqmaKSGn3Wh+p6jZgOPCaiJwJzAJm+Q0lFeU9AHQG3sL5BT4XeFdESuZRrwycX+W+3Ai86p6/\nDvjI3V8dGANM9ymbCBwH6gBNgA5Av9wqJSI9RWR/Hq99InJegO+vQETkAPA78AjQ1eeQAje5wXuD\niAwM1T2NCKCq9rJXoV84w0D93L9vBL71OZYEHAH2A8fcf68J4Jqf4QSBSn77E3B+yZbI59ybgbU+\n298Dvf3KXAt87LdvEfANkAKUDsF7GA186bMtwB7gynzq9X3Wtd3zl/kcuwn4DRB3u5zbFmcDVdy6\nneFTvgfwX4/+z9sB3xei/FnARGCtT/3rA1Xddmnpts0dkX6e7VW0l/VAjKIyG7jT/ftOnF/MWSgw\nRFUrquoZOF+C80WkYQHXvBuoB2wSkdUickNeBUWkijtMtEtEDuL0is71K+afLO8EfOC37yXgr8Bz\nqnoiBO8BYFf2RZxvzV04vYe86uXPzz5//w786l4naxugLHABUBrYm9WTAF4EKgdQR89R1aPAozj/\npw3dfZtU9Sd1WIHT6+yaz2WMKMYCiFFUFgGXuDOTbgBez6ugqn4OpAHt8yrjlktT1Z6qWhnnl+t8\nd3gptyWjxwEZwMXqDHndxZ+fZ//zrgeWZG2ISFlgMk4QeVJEKgb7Hlxq+tyjBHAezi/tvOpVVH4E\n/gDOdQNdRVUtr6q5BjkR+ZvP7Cf/16FQDmH5UBLn/+WoB9c2IowFEKNIqOrvwAKcMf5VqrrLr0h2\nolREWuIkoL/N75oicqeIZP16PojzRZsJ/OL+W8eneFmcIaZDIlKDAmYIiUgt4HRV3eKzewqwWlXv\nwemZvBjse3C5VERucXNDD+AMM60M4LxCoap7gf8A/xKRciJSwp0ckKumRFVf15zZT/6vs3P5PwRA\nHM7A6e2IiJzu5oVyK9tORBq7kwPOBv4FbFHVNPd4FxGp6F6zOTAU58eIEYNYADGCYTZwMblPb52W\n9esWZ3jrMVVdVsD1rgM2uOc8izM2/oc7FDIW+MJN9jYHngSa4gSa93CCWX6/7G/AZ/hKRLrgJJzv\ndXc9BDQVkR5BvgfF+ULsDuzDSb7fqk6yPBA0l/eR3/bfgdOAje793sbJMYSSNjg9iA9wele/Ax9m\nHXST4VntVgF4AzgAbMEZTuvsc63uwHfAIZznZ7yqhnR6tBE+shJb3t1ApCPOMEFJ4CVVnZhLmak4\nwwtHcRKM60TkLzhzyLOoDfyfqk71tMJGwIhITWAzUEVVD0e6PvkhIh/g5Dk+LLBwcPcZBVyoqnd5\neR/DiAY8FTK5Uxen4cze2A18JSKLVXWTT5lOOB+4uiJyOfAC0MIdasiao1/CPX+hl/U1Asf9P/kH\njigsqoOHS5L78hrTOBjFBq+HsJoDaaq6w53hMg/o4lemM65+QJ35/RVEpIpfmXbANlUtcAkKw3tE\npAzOEMS1wKhCnrs0jyTuo55U1kVVn1bVY6G4Vj7vYQS5D0EZRlzi9VIKNTh1yuIu4PIAypwHpPvs\nuwMnWWtEAap6BCeJXZRzrw9xdcJOPLwHwwgFXvdAAv0l5t/tzz7Pne1xEzmqZMMwDCMK8LoHshuf\nOfHu3/5TBf3LnOfuy+J6YI2q/pLbDUTEhgsMwzCKgKoGlbPzugfyNVBXnOW4T8OZwrfYr8xinKmI\niEgL4ICq+g5f9cCZFpgnkZbzR8tr1KhREa9DtLysLawtrC3yf4UCT3sgqnpSRAYDy3Cm8b6sqptE\nZIB7fLqqLhGRTiKShiMM65N1vpusbQf097Ke8cKOHTsiXYWowdoiB2uLHKwtQovnfgSquhQ//wVV\nne63PTiPc48AlbyrnWEYhlFUTIkeR/Tu3TvSVYgarC1ysLbIwdoitHiuRPcaEdFYfw+GYRjhRkTQ\nIJPosWKpWWhETBBshJ5Y/LGSlJRE27ZtI12NqMDaIrTEbQCB2PywG9GL/Sgx4oGDB+HREK37YDkQ\nw4hz7Bd3DsW9LRYvhosvhoxA14YugLjNgbjjexGokRGv2DNlxCrp6TB0KKxdCzNnQtu2ocmBWA/E\nMOKcpKSkSFchaihubaEKiYnQsCHUqgXr1zvBI1RYAIkzfvjhB8qVK5f9S7lt27a8/PLLALz++utc\nd9112WVLlCjB9u3bA762//mGYUQv27dDhw7w3HOwbBlMmABnnhnae9gQVoRISEjg559/pmTJktn7\n+vTpw9SpofXLuvrqq7nrrrvo27fvn46VKFGCtLQ0ateuHdJ7xivR/kwZBsDJkzBlCowfD8OHw4MP\nQqlcpkvZNN4YRkR4//33ueaaayJdlYDIyMg4JdjFCpmZmZQoYR1to3iwfj3cfTeUKwcrV8KFF3p7\nP/tkRSGZmZkMGzaMypUrU6dOHZ5//nlKlChBZmYm4PRePvnkk+zyo0eP5q67HAfVHTt2nFLWl8TE\nRFq3bn3Kvg8++IA6depQuXJlHnnkkexf2ImJiVx55ZU89NBDVKpUidGjR59yfm738R0u8z2/YsWK\nXHjhhXz55ZfMmjWL888/nypVqvDqq6/m2Qb79u2jT58+1KhRg3POOYdbbrklz/fgOxTXu3dv7r33\nXm644QbKli3LpEmTqFat2in1XLhwIY0aNcpu6wkTJnDhhRdSqVIlunfvzv79+/OsVyxS3Mb98yNe\n2+LYMXjsMWjXDgYOhE8+8T54gAWQiJLXcMiMGTP44IMPSElJ4euvv2b+/PmnaBBE5E/bReXdd99l\nzZo1rF27lkWLFvHKK69kH1u9ejV16tTh559/5rHHHivwWv71Wr16NY0aNWLfvn306NGDbt26sXbt\nWrZt28Zrr73G4MGDOXr0aK7Xuuuuuzh27BgbN27k559/5qGHHgr4Pb3xxhs8/vjjHD58mPvvv58y\nZcrw3//+N/v43Llz+dvf/gbAc889x+LFi0lOTmbv3r1UrFiRQYMGBXwvw4g0ycnQqBFs2QKpqU4P\nJFySpWIdQESCfxUVVeXmm2+mYsWK2a+sX+9vvfUWDz74IDVq1KBixYqMHDky37H3YMblhw8fToUK\nFahZsyYPPPAAb7yRs3J+9erVGTRoECVKlOCMM84o9LVr1apFr169EBG6devGnj17eOKJJyhdujTt\n27fntNNOIy0t7U/n7d27lw8//JAXX3yR8uXLU6pUqT/1OvLj5ptvpmXLlgCcfvrp9OjRI/t9/fbb\nbyxdupQePXoAMH36dP75z39SvXp1SpcuzahRo5g/f36uPbhYpbhrH3yJp7Y4eBDuvRd69nQS5PPn\nQ7Vq4a1Dsc6BRDIfKiIsWrQo1xzI3r17qVkzx2Pr/PPP96we/vfZs2dPrseKQpUqOdb2Z7rTPypX\nrnzKvsOHD//pvB9//JFzzjmH8uXLF/qeIsJ55513yr6ePXtyxRVX8MILL/DOO+9w6aWXZr+3HTt2\ncMstt5ySJylVqhTp6elUC/en0TACZPFiGDQIrr8eNmyAChUiU49i3QOJVqpVq8YPP/yQve37N0CZ\nMmU4cuRI9vZPP/1U5Hv536dGjRrZ2/kNjZUpUwbglCGoYOrhS82aNdm3bx8HDx7M9b6FvWf9+vW5\n4IILWLp0KXPnzqVnz57Zx84//3w+/PBD9u/fn/06evRoXAWPeB33Lwqx3hbp6dC9O/zjHzBnDsyY\nEbngARZAIkpeQ0/dunVj6tSp7N69m/379zNhwoRTvswbN27MvHnzOHnyJF9//TULFiwoch5k0qRJ\nHDhwgB9//JGpU6fSvXv3gM6rXLkyNWrUYM6cOWRkZPDKK6+wbdu2ItXBn2rVqnH99ddz3333ceDA\nAU6cOEFycjIAjRo14ttvvyU1NZVjx44xevToU87Nq0179uzJ5MmTWb58Obfffnv2/oEDBzJy5Mjs\nQPrLL7+weLG/aaZhRBZVmDXLO0FgUbEAEkFuuukmypUrl/267bbbAOjfvz/XXXcdjRo1olmzZtx2\n222nfDGOGTOGbdu2UbFiRUaPHp2dEM4ir2Din+QG6NKlC5deeilNmjThxhtv5O67786zrP++mTNn\n8vTTT1OpUiU2btzIlVdeme+9ChPk5syZQ+nSpbnooouoUqVKtj6mXr16PPHEE7Rr146//OUvtG7d\nOt8JBln06NGD5ORkrr32Ws4555zs/ffffz+dO3emQ4cOnH322bRs2ZLVq1cHXM9YIJ7G/YMlFtsi\nSxA4bZp3gsCiYkLCGGDHjh3Url2bkydPmqYhgsTTM2VEP4EKAouKrYVlGEaBxPq4fyiJlbZITYWW\nLeGDDxxB4MMPhzZ4hAoLIDGCeVEYRvyTJQhs3z68gsCiYkNYhhEg9kwZXpKcDP37O4ny557zXtNh\na2EZhmHEOFkOge+95wQOd9WemMCGsAwjzomVcf9wEG1t4esQuGFDbAUPCEMAEZGOIrJZRL4TkeF5\nlJnqHk8VkSY++yuIyHwR2SQiG0Wkhdf1NQzD8Jr0dOjWLTKCwOMZx3l57cshuZanAURESgLTgI5A\nA6CHiNT3K9MJuFBV6wL3AC/4HJ4CLFHV+sAlwCYv62sY8Ugsah+8ItJt4SsIrF07vILAI8ePMGXl\nFOpMrcOb374Zkmt6nQNpDqSp6g4AEZkHdOHUQNAZmA2gqqvcXkcV4BjQWlV7ucdOAn9e28IwDCMG\n2L4dBgyAffscQWCTJgWfEwoOHDvAtNXTmLpqKq0vaM3C7gtpVr0Z8vfgZ3Z6PYRVA/jRZ3uXu6+g\nMucBtYBfRGSWiKwVkZkicpantTVOYfny5Vx00UWRroYRJNE27h9JItEWJ0/CM89A8+aOonzVqvAE\nj/TD6Tz68aPUmVqH7/Z9R1LvJBZ0W0Cz6s1Cdg+vA0igcx79Q6Hi9I6aAv9W1abAEeDRENYt4iQm\nJtKwYUPKlClDtWrVuO+++3JdQDBc+Hukt27dms2bN0esPoYR60RCELjzwE4GLxlM/efr89sfv7Hm\nnjXMvnk2DSo3CPm9vB7C2g34rgleE6eHkV+Z89x9AuxS1a/c/fPJI4D07t2bhIQEACpUqEDjxo2D\nrrjXPPPMMzz99NO8+uqrXHvttezatYv77ruP9u3b88UXX1C6dOmQ3i9QS9pY0zmE27I26xds1lh6\nrGzHev1DtZ21z+v7tWjRljFj4Pnnk+jfH556qi0i3r6/Tb9s4sHpD/Llj19y3+33sXHQRjZ/vZkd\nKTtIaJtAUlISiYmJANnfl0Gjqp69cALUNiABOA1IAer7lemEkygHaAGs9DmWDNRz/x4NTMzlHpob\nee2PBg4ePKhly5bVt99++5T9hw8f1sqVK+srr7yiqqqjRo3S2267Tbt3767lypXTpk2bampqanb5\n3bt366233qqVK1fWWrVq6dSpU7OPZZ1755136tlnn60vv/yyrl69Wlu0aKEVKlTQatWq6eDBg/X4\n8eOqqtq6dWsVES1TpoyWLVtW33rrLf3000/1vPPOy77mBRdcoJMmTdJLLrlEy5cvr927d9djx45l\nH584caJWq1ZNa9SooTNnzlQR0W3btuXaBv/73/+0d+/eWr16da1YsaLefPPNqqo6a9YsbdWq1Sll\nfa/Tq1cvHThwoHbq1EnLlCmjEydO1KpVq2pGRkZ2+XfeeUcvueQSVVXNyMjQ8ePHa506dfTcc8/V\nbt266b59+wL8nzqVaH6mjOjhs89U69VTve021T17vL/f17u/1tvevE0rP1VZx3w2RvcdDez5dp/n\n4L7jg71AgTeA64EtQBowwt03ABjgU2aaezwVaOqzvxHwlbv/HaB8LtfPr3GikqVLl2qpUqVO+dLL\nolevXtqjRw9VdYJA6dKldcGCBXry5EmdNGmS1qpVS0+ePKkZGRnatGlTHTNmjJ44cUK3b9+utWvX\n1mXLlp1y7qJFi1RV9ffff9c1a9boqlWrNCMjQ3fs2KH169fXyZMnZ9/b/wvfP4AkJCTo5Zdfrnv3\n7tV9+/Zp/fr19cUXX8x+T1WrVtWNGzfq0aNH9W9/+5uWKFEizwDSqVMnveOOO/TAgQN64sQJTU5O\nVtXAAkj58uX1yy+/VFXVY8eOaZ06dfSjjz7KLt+1a1edOHGiqqpOnjxZW7Zsqbt379bjx4/rgAED\nstu3sETzM5Ufn376aaSrEDV42RYHDqgOHKhao4bqO+94dhtVVc3MzNTPdnymHeZ00BrP1NBnVzyr\nh/84XKhrhCKAeK5EV9WlwFK/fdP9tgfncW4qcJlXdZMng5+FoKMKP+Tz66+/UqlSpVyHXqpWrcra\ntWuzt5s1a8att94KwEMPPcQzzzzDihUrKF26NL/++iuPP/444NjH9uvXj3nz5tGhQwcArrjiCjp3\n7gzAGWecQdOmTbOve8EFF3DPPffw2Wefcf/99wdc96FDh1K1alXAWY4+JSUFcGx4+/btS/36zizt\nJ598krlz5+Z6jSzL2n379mW7DobCsrZdu3bZlrX/+te/AMeydtq0aVSvXh2AUaNGccEFF/Daa6/Z\nysZGyFi0yHEI7NTJW4dAVWXJd0sY9/k4J0ne6lEW37GY00ud7s0NC6BYL2VSlC//UFCpUiV+/fXX\nXMfv9+7de4rtq689a5Zd6549exAR9uzZQ8WKFbOPZ2RkcNVVV+V6LsDWrVt56KGHWLNmDUePHuXk\nyZM0a1a4GRlZwQMcS9q9e/dm17t58+Z53tsXs6wNL5HWPkQToW6L9HQYMgTWrYPXXvNO05GRmcH8\njfMZ//l4FGVEqxF0bdCVUiUi+xVuP8EiQMuWLTn99NNZsGDBKfsPHz7Mhx9+yLXXXpu978cfc2Y4\nZ2ZmsmvXLmrUqEHNmjWpVavWKVashw4d4v333wdyN1a69957adCgAWlpaRw8eJCxY8eSmZkZkvdU\nrVq1U+rq+7c/ZllrxDq+gsA6dbwTBGapxi96/iKmrJrC2GvGkjIghTsuviPiwQMsgESE8uXLM2rU\nKIYMGcKyZcs4ceIEO3bsoFu3btSsWZO77roru+yaNWtYuHAhJ0+eZPLkyZxxxhm0aNGCyy67jHLl\nyvHUU0/x+++/k5GRwYYNG/j666+B3GdTHT58mHLlynHWWWexefNmXnjhhVOOV6lSpdC2tFn36dat\nG7NmzWLz5s0cPXqUMWPG5HmOWdaGF9OB5BCKtti+3VluPcshcPz40DsE+qrG39r4Fi/d9BJf9P2C\nG+rdEFXWDhZAIsTDDz/MuHHjGDZsGOXLl6dFixZccMEFfPLJJ9lTeEWELl268Oabb3LOOefw+uuv\n884771CyZElKlizJ+++/T0pKCrVr16Zy5crcc889HDp0KPtc/wdt0qRJzJ07l7PPPpt77rmHO+64\n45Qyo0ePplevXlSsWJH58+fnaQ+bhe/xjh07MnToUK6++mrq1at3So4iN8yy1og1fAWB113njSDw\nwLED/DP5n9SaUovkH5JZ2H0hy+5cRpuENlEVOLIwP5Ao5sknnyQtLY05c+ZEuiqFZtOmTTRs2JDj\nx4/HTbI6Hp4po2ikpkK/flCunLPwYahNntIPp/PsymeZuXYmN9W7ieFXDqd+5foFnxgEZmkb58Ta\nl9XChQv5448/2L9/P8OHD6dz585xEzyM4onXDoG+qvHDxw+z5p41JN6c6HnwCBX26Y5iChpCijZm\nzJhBlSpVuPDCCylduvSfcixGZLAcSA6FaYvkZGjUCLZscXogd98Nofo4bvplE73f7U3TGU0pe1pZ\nNg7ayLRO00iokBCaG4SJyKfxjTwZNWpUpKtQKJYuXVpwIcOIcg4ehOHD4f33Q+8QuGbPGsZ/Pp7k\nnckMvXwoaUPSqHhmxYJPjFIsB2IYAWLPVPzjKwh86qnQCAJVleU/LGfs8rF8+/O3DLtiGP2b9qfM\naWWCv3gQmCe6YRhGCPBCEOirGv/5yM8Mv3J4RFXjXmA5EMOIcywHkoN/W3ghCMzIzODNDW/SZHoT\nRv53JEObD2XzoM30a9ovroIHWA/EMIxiyvbtcM89sH9/aBwCj2ccZ07qHCZ+MZFKZ1Vi7DVj6VS3\nU0xNhCkslgMxjACxZyo+OHkSpkxxFOTDh8ODDwZn8nTk+BFeWvsSk1ZMokHlBoxsNZKrLrgq6gOH\n5UAMT1m+fDn9+/c3V0IjbvAVBK5cGZymIy+v8eKE5UAiiFnaGuHAciA5gsA2bZK4997gBIG+XuNp\n+9L4rPdnIfcajxUsgESIZ555hkcffZRnnnmGQ4cOsXLlSnbu3En79u05ceJEyO+XkZERULlYG6IJ\n1WrCRvziKwh8+WXo27dogsBYV417QrCOVJF+EYOOhGZpa5a2hvccOKA6YEDwDoEbf96ovRb20nMm\nnqPDPxque3/bG7pKRhBiwdLW61csBhCztDVLW8Nb3n3XCRz9+6vu31+0axTVazxWsAASbABxpoEH\n9yoCc+bM0apVq+Z6bPjw4dq+fXtVdYJAy5Yts49lZmZqtWrVdPny5bpy5Uo9//zzTzl33Lhx2qdP\nn+xz27Rpk289nn32Wb3llluytwMJIK+//nr29iOPPKIDBw5UVdU+ffroyJEjs4+lpaXl2QPZs2eP\nlihRQg8cOPCnY4EEkF69ep1y/PHHH9e+ffuqquqhQ4e0TJky+sMPP6iqav369fWTTz455d6lS5fO\nNXgXRKwGkOLkif7TT6q3365at65qbm+7oLbw9Ro/71/n6eQVkwvtNR4rhCKAFO9ZWGqWtmZpa8QD\nqpCY6EzLvftumD27cCZPqqeqxh+98lHuvOTOuBP+hZriHUAihK+lra97Xpal7fjx47P35WVpW7Jk\nSWrVqsXWrVtzvUdelraXXnopb775JmXKlGHy5Ml/stUtKkW1tPUPIl5Y2s6aNSvb4Ko4Eu+e6IUR\nBPq3hb/X+MhWI+naoCslS5T0ttJxgs3CigBmaWuWtkbwBOMQmOU1Xv/5+kxdPTXba7z7xd0teBQC\nCyARwixtzdI2XMSjDiQ1FVq2hA8+cASBDz8cmJp86UdLs73G3974Ni91fonP+3wedV7jsYLnS5mI\nSEdgMlASeElVJ+ZSZipwPXAU6K2q69z9O4BDQAZwQlWb53Ku5vYe4mHZCbO0jS5i9ZlKSkqKm2Gs\nY8dgzBiYORMmTIA+fQLTdBw4doDnVz/PpDcmce3V1zKi1QgurX6p9xWOYqJ+KRMRKQlMA9oBu4Gv\nRGSxqm7yKdMJuFBV64rI5cALQAv3sAJtVXWfl/WMVmLty2rhwoV06tSJo0ePmqVtFBEvwSM5Gfr3\nd1bOTU2FQOZA+HuNf/n/fVm8hX8hxutPd3MgTVV3qOoJYB7Qxa9MZ2A2gKquAiqISBWf48W2X2mW\ntobhOAQOHAg9ezq9jvnzCw4ephoPD17PwqoB+E7H2QVcHkCZGkA6Tg/kYxHJAKar6kwP6xp1mKWt\nEQpieQjL1yFww4aCHQI3/bKJiV9M5L2t79G/aX82DtpI1bI5U89juS2iEa8DSKBjMHn9zG6lqntE\npDLwkYhsVtXl/oV69+5NQkICABUqVKBx48ZFqqxhFERWQjrrSygWtlNSUqKqPoFs16/fliFD4Msv\nkxg2DB54IP/y5eqVY/zn4/nk00+49aJb2TZ0GxXOqEBSUhKb2ZxdPiUlJSreXyS2k5KSSExMBMj+\nvgwWT5PoItICGK2qHd3tEUCmbyJdRF4EklR1nru9GWijqul+1xoFHFbVZ/z2x20S3Ygu7JnyHn9B\n4BNP5C0IVHW8xsctH8e3v3zLsJbD6Ne0X8S9xmOFqE+iA18DdUUkAdgDdAd6+JVZDAwG5rkB54Cq\npovIWUBJVf1NRMoAHYAnPa6vYRgRIlBBYG6q8UWXLDLVeCQIdi2Ugl4403O3AGnACHffAGCAT5lp\n7vFUoKm7rzaQ4r42ZJ2by/XzXOfFXvYK9SsWifa1sE6cUJ00SfXcc1WfesrZzo2TGSd13jfztNEL\njfSSFy7Red/M05MZJwt1r2hvi3DiPs/RvRaWqi4Flvrtm+63PTiX87YDRU5maDEcarAEYQ7WFrFB\nlkPg2Wfn7RBYHL3GY4W49UQ3DCN6CUQQGKte47FCLORADMMwTqEgQWCWanzq6qm0Pr8173Z/t9ir\nxqMVkwnHEfG45lFRsbbIIVraoiBBoK/X+Hf7viOpVxLzu80PafCIlraIFyyAGIbhOYsWwV//CpmZ\njiDwlluoqCftAAAgAElEQVRyjplqPHaxHIhhGJ6Rng5DhkBKCsyYAb7zGvxV4w+0eOAU1bjhLaHI\ngVgPxDCMkKMKs2Y5eY46dZxcR1bwWLNnDV3f6kqbxDZceM6FpA1JY0K7CRY8wsk334TkMhZA4ggb\n383B2iKHcLfF9u3Qvj1Mm+YIAsePhzPOUJJ3JtPxtY50mdeFVue34vv7v+fxqx6n4pkVC75oiCj2\nz8XKldC5M3ToEJLLWQAxDCMk5OYQ2Lix8sHWD2g1qxV3L76brg26sm3oNh5o8YAtORIuVOGjj+Ca\na6BHD7j+eifKhwDLgRiGETS+gsDp06FWbfMajziZmc7shXHj4MgRGDEC7rgDfBxPTQdiGEbE8BcE\n/u3vx3lt/Rw6PW+q8Yhx4gTMm+eMHZYpAyNHQpcu4IG5mw1hxRHFfnzXB2uLHLxqi+RkaNQItmyB\nFV8f4bcGU7jwuTq8tfEtZt40ky/6fhF1XuNx/VwcOwYvvAD16jkzGKZMgdWrnTnTHjmDWg/EMIxC\ncfCgs9z6++/DhMkH2Pn/nueKt6bS6vxWLOy+kGbVm0W6isWLQ4fgxRdh8mRo1gzmzoWWLcNya8uB\nGIYRMFkOgVfflE6lGyfz6rczuKneTQy/crgJ/8LNr7/C1Knw7387s6oefRQuuSTg0y0HYhhGWMgS\nBH713U4uG/U0H+ybS0/pyZp71pBQISHS1Ste7N7tTHdLTISuXfNexjgMWA4kjojr8d1CYm2RQzBt\nkSUIrH/VJjZd1JtDdzTlL7XKsnHQRqZ1mhZzwSOmn4u0NMdxq2FDZ/ubbxx5f4SCB1gPxDCMPNi+\nHe54aA3fVRmP9E6m+5VDGXRZWliFfwawfr0zxe2jj+C++2DrVqhUKdK1AiwHYhiGHydOKPc/u5yX\nNo/jrIQN/F+7YQxs1t+Ef+FmxQpHw7FmDTz4IAwY4AhtQoTlQAzDCBmqyvP/WcqIJePIODOd0d2G\n84925jUeVlTh44+dwLFjBzzyCLz9NpxxRqRrliuWA4kjYnp8N8RYW+RQUFtkZGYwZ92bVB3dhAfe\nH8Hf6g7h0NjNjOzYL+6CR9Q+F5mZsHChsw7M/fdD377OUNW990Zt8ADrgRhGsSXLa3z0xxP59YdK\nND0ylnVjO1G9evQI/+Ief9X4Y485ix16JPwLNZYDMYxiRpbX+NNfTEL+14Bj/xnJ9JFXceutFjjC\nxu+/O9PbnnoKatd2lhu59to/G8N7iOVADMMIGF+v8dqlWnF8zkJuubwZEz+GChUiXbtiQpZq/Nln\n4bLL4I03wqYa94KA+0kicpaI/MXLyhjBEbXjuxHA2iKHd5a+w4iPR1Bnah1Sd2+lSeqn/O/fC3h7\nSjOmTy9ewSNiz8Wvv8ITTzjuWikpjlHK4sUxHTwgwAAiIp2BdcAyd7uJiCwO8NyOIrJZRL4TkeF5\nlJnqHk8VkSZ+x0qKyDoReS+Q+xmG4ZDlNd5rYS8O/nGIRyuuIen+2TQ5rwGpqdCmTaRrWAzYvRse\neshZ4PCnn5ypuXPnFmrJkWgmoByIiKwFrgE+VdUm7r4NqnpxAeeVBLYA7YDdwFdAD1Xd5FOmEzBY\nVTuJyOXAFFVt4XP8IeBSoJyqds7lHpYDMQwffL3G+zXpx63VH+Sx+6uyfz+89BI0aVLwNYwgSUuD\niRNhwQLo08cJIjVqRLpWpxBOT/QTqnrAb19mAOc1B9JUdYeqngDmAV38ynQGZgOo6iqggohUARCR\n84BOwEuAZfgMIx/8vcY335vG/1s/kRvaVM12CLTg4THr1zuufy1bQvXqzlTcZ56JuuARKgININ+K\nyN+AUiJSV0SeA74M4LwawI8+27vcfYGWeRZ4mMCCVbHHxv1zKC5toZq71/hN5R+n0zUVWbIEpkxJ\n4uGHoZRNmfHuuVixAm66yfHybdrUWQfmySejZskRrwj0kRoCPAb8AbyBkwsZE8B5gY4t+fcuRERu\nBH5W1XUi0ja/k3v37k1CQgIAFSpUoHHjxrRt65yS9cDYdvHaziJa6hPq7TZt2rA0bSnDZw5n3+/7\neLLPkyy6YxGf/XcFA/p+xX/+05YJE6BWrSRSU1OA6Kp/pLZTUlJCdz1Vkp55Bl57jbYHD8Ijj5A0\nZAicdhpty5WLivfru52UlERiYiJA9vdlsHiqAxGRFsBoVe3obo8AMlV1ok+ZF4EkVZ3nbm/GedqH\nAncBJ4EzgLOBBar6d797WA7EKDZkZJ7qNT6i1Qi6NuhKqRKlSE6G/v2dxVqfew6qVYt0beMUX6/x\no0cdr/Hu3bO9xmOFUORAAk2iXwaMBBLI6bWoquY7lUBESuEk0a8F9gCryT+J3gKY7JtEd8u0AYap\n6k253MMCiBH3ZKnGJ37heI0/1vqxbK9xX4fA555zHEwND4hx1bg/4Uyivw7MAm4DbnJff5oR5Y+q\nngQG4wx5bQTeVNVNIjJARAa4ZZYA20UkDZgO3JfX5QKsa7HFf/imOBMvbXHk+BGmrJxCnam5e40v\nWgR//auzBt+GDbkHj3hpi1BQpLb4/XfH9a9uXUc9PnWq4zV+880xGzxCRaA5kF9UNSDdhz+quhRY\n6rdvut/24AKu8RnwWVHubxixiK9qPDev8SyHwJQUeP1103R4Qpypxr0g0CGsDkB34GPguLtbVfUd\nD+sWEDaEZcQT6YfTmbxyMjPWzuDGejcy/MrhNKjcIPu4quNkOnw43H23I24+88zI1Tcu8fUav+46\nx2s8ywUwjgjnWli9gL+45X2n1EY8gBhGPLDzwE6e/vJp5n4zlx4X98jVa3z7dsdTaN8+ZyUM03SE\nGF+v8dtvj6jXeKwQ6ABeM+AyVe2lqn2yXl5WzCg8NtadQ6y0xeZfN9P73d40ndGUsqc5XuPP3/D8\nKcHj5Enne615c+jQofCCwFhpi3CQa1ukpeVMXxNxvManT7fgEQCB9kC+BBoA33pYF8MoNqzZs4bx\nn48neWcyQy8fStqQ3L3GU1OhXz/HydR+EIeY9eudGVUff+x4jX/3HZx7bqRrFVMEmgPZDNQBvscR\nE0IA03jDgeVAjFhBVVn+w3LGLR/Hhp83MOyKYfRvmrvX+LFjMGYMzJwJEyY4yymF0SoivvH3Gh84\nEFzhX3EinDmQjsHcxDCKM6rK0rSljFs+jp8O/8SjrR5l0R15e437CgJTU00QGBJU4aOPnB7Hjh3O\nLIQo9hqPFfINICJytqoeAg6FqT5GECQlJWUvYVDciYa2yMjMYMGmBYxbPu5PqvHcOHjQmfDz3nuh\nFQRGQ1tEjMxMePddp8fx++8kdelC248+soXBQkRBrfgGcAOwlj8L+RSo7UWlDCOW8VeNj71mbLZq\nPC8WL4ZBg6BTJ0cQWJxMnjzhxAlHtzFhApQtC48/7qjGk5MteISQAnMg4jz1NVX1h/BUqXBYDsSI\nFrK8xietmESDyg0Y2WokV11wVb6Bw1cQOHOmCQKDJgq8xmOFcC5lsiSYmxhGPHPg2AHGJo+l9tTa\nJP+QzMLuC1l25zLaJLTJM3ioOt9zDRs6LqfmEBgkhw7lBI0PP3R6H//9L7RrZ8HDQwoMIO7P+zUi\n0jwM9TGCwOb75xCOtkg/nJ7tNb5131Y+7fUpC7otOGXJkdzYvt3Rc0yb5ggCx4/3Vk0e189Fltd4\n7dpOFP7Pf/L1Go/rtogAgfZAWgArRGS7iHzjvtZ7WTHDiFZ2HtjJkCVDqP98fQ79cYg196xh9s2z\nT1lyJDeCFQQaPuza5UzBrVfPGQdcudJZFCwOlxyJZgLVgSS4f2YVFgBV3eFFpQqD5UCMcLH5181M\n+HwC7219j/5N+/NAiweoWrZqQOf6CgJN5BwEMeA1HiuETQeiqjtE5FKgFc5aWF+o6tpgbmwYsUKg\nqvHcMEFgiDDVeFQS0BCWiDwBJALnAJWBWSLyfx7WyygCNr6bQ7BtkZfX+ONXPR5w8EhOhkaNYMsW\npwfSt29kgkdMPxdZXuMdO57qNV7E4BHTbRGFBDoh+k7gElU9BiAi44FUAvNFN4yYobCq8dzwShBY\nbDDVeMwQaA7kU+BWVd3vblfE8Se/xuP6FYjlQIxQUFjVeF5kCQKvv96ZVWqCwELgpxqPVa/xWCGc\na2EdAr4Vkf+42+2B1SLyHM5M36HBVMIwIkVRVOO5kZ4OQ4fCunUwZw4U15VDioSvarxMmRzVeDG3\ni40FAv0fWgiMBJKAT4HHgHeBNe7LiAJsfDeHgtqiIK/xQPEVBGZJEaIteETtc+HrNZ6YGBav8aht\nixgl0FlYifkdF5EFqnpbSGpkGB5SkNd4YTCHwCJiXuNxQ0A5kAIvIrJOVSPy8bEciBEIBXmNF4aT\nJ2HKFCfHO3y4o2ez9fkCwNdrvEMHZ6bBJRG3FCq2hDMHYhgxyc4DO5n05SRe/+b1PL3GC8P69XD3\n3eYQWCh27XIk+LNnm9d4nGFZqjjCxndzeHXRq/RZ1IemM5pS5rQyuXqNF4Zjx+Cxx5y1+e6919Gz\nxcp3YMSeiyyv8UsucXIaUeA1bp+R0OJ5ABGRjiKyWUS+E5HheZSZ6h5PFZEm7r4zRGSViKSIyEZX\ne2IY+bJ271puf/t2hi4dSp2KdUgbksaEdhMCXnIkN6JFEBgzrF8PPXo4eY3q1WHrVqcHYkuOxB+q\nGvQLuC6P/SWBNCABKA2kAPX9ynQClrh/Xw6s9Dl2lvtvKWAl0CqXe6hRvMnMzNTPdnym1825Tms8\nU0OfXfGsHv7jcNDXPXBAdeBA1Ro1VN95JwQVjXe+/FL1xhtVq1ZVfeop1UOHIl0jIx/c786gvvvz\n7YGISD0RSRSRf4lITRFZKiJH3J7CZT5BaFkel2gOpKnqDlU9AcwDuviV6QzMdq+zCqggIlXc7aNu\nmdPcYLQvv/oaxQtVZcl3S2g9qzV9F/Wla4OubBu6jQdaPECZ08oEde3Fi+HiiyEjw3EINDV5Hqg6\nS6hffTX07OlYKn7/PTz8MJQrF+naGR5T0BDWLOBLYC9OD2AWUAkYBkwL4Po1gB99tne5+woqcx6A\niJQUkRQgHfhUVTcGcM9iS3EZ383IzOCtb9+iyfQmjPhkBIObD2bz4M30a9ove8mRorZFerojfh42\nzBEEzpgR+2pyT56LzEx45x1nGu6DDzozC7ZudRJEUbzkSHH5jISLgmZhlVHVGQAiMkBV33L3fyQi\nTwdw/UDn1/qPKGeNTWUAjUWkPLBMRNqqapL/yb179yYhIQGAChUq0LhxY9q6aq6sB8a2Y3/7eMZx\nHnv5Md7Y8AbnNzqfsdeM5azdZyG/SvaSI/5fEIFev02btsyeDQ8+mMT110NqalvOPDO63n9Rt1NS\nUkJ3vY8/hk8+oe2iRVCmDEk33wxXXEHba66Jmveb33ZKSkpU1Sec20lJSSQmJgJkf18GS746EF99\nh7/WIxDth4i0AEarakd3ewSQqaoTfcq8CCSp6jx3ezPQRlXT/a71f8DvqjrJb7/m9x6M2KcoXuOF\nwVcQ+NJLJgjMFfMajzvC4Yl+UZYDIfAXHzfCb4C/BHD9r4G6IpIgIqcB3YHFfmUWA3+H7IBzQFXT\nRaSSiFRw95+Js/7WusDfmhHrFMVrvDCYQ2AAmNe4kQ8FDWHVd//tDHwO/I8/DzfliaqeFJHBwDKc\nJPjLqrpJRAa4x6er6hIR6SQiacARoI97ejVgtoiUwAl0c1T1k0DvXRxJSkrK7rrGMv6q8U97fVpo\n1XhBbVGcBIFFei78VePLlsWFajxePiPRQr4BRF3LWndW1FvAWuAVYFmg40aquhRY6rdvut/24FzO\n+wZoGsg9jPgg1Krx3DCHwALYvdvpliUmQteu8R9djaAIeC0styfQAegNNMMJKC+r6jbPahdYvSwH\nEuME4zVeGJYvd4TRF1/sGD1VqxbyW8Qu5jVe7AjrWliqmikiP+FMqc0AKgLzReRjVX04mEoYxZNg\nvMYLgzkE5kOW1/hHHzlOWFu3QqVKka6VESME6ol+v4isAZ4CvgAuVtV7gUuBWz2sn1EI/KewRiMa\nAq/xQMhqCxME5vFcZHmNX3fdqV7jcR48YuEzEksE2gM5B8fSdqfvTrdXclPoq2XEGxoCr/HCsG+f\nIwg0h0AfVJ1VIMeNc7zGH3nEvMaNoAiJH0gksRxIdOPrNZ6pmYxsPbJIXuOBouqsGj58uLPo4RNP\nwJlnenKr2CEzExYtcgLHkSOO1/gdd5jXeDHH/ECMqMXfa/yf1/yTG+oWzi62sPgKAj/80DQdf/Ia\nf+wx8xo3Qoo9SXFENIzv5uU1fmO9Gz0LHrkJAg8eTPLkXjGBn9d4Ut++nnuNxwrR8BmJJ6wHYoSE\nUHqNF4YsQWC5ciZZyNNrPCnJxC6GJ1gOxAiKUHqNFwYTBPpgXuNGEbAciBExdh7YydNfPs3cb+Z6\nphrPi+RkRxDYsKHjEFhsBYGmGjciTPEeEI0zwjG+u/nXzfR+t7fjNV46eK/xwnDwoGM30bOn0+uY\nPz/v4BHXY91ZXuMNGzrb33zjGJfkETziui0KibVFaLEeiBEQ4VKN58XixY5Q+vrrHUFgrJs8FYks\n1fjHH8N995lq3Ig4lgMx8kRVWf7DcsYtH8eGnzcw7Iph9G/aP2i72MKQng5DhzqCwBkziqkgcMUK\nR8Px9dfOGlUDBjjLCBtGEFgOxPCEcKvGc6/DqYLAxMRiJgg01bgRA1gAiSOC9TrIyMxg/sb5jP98\nfFhU43kRCkFgzPo+eKAaj9m28ABri9BiAcSIiGo8N06ehClTnGH+4cPhwQehVHF5Qk+cgHnznDdf\npoxjGdulS7EX/hnRjeVAijFee40XBl9BYD4TiuIPf6/xESPMLtYIC5YDMYpEpFTjuVFsBYF5qcYN\nI4aw/nEcUdAc9/TD6Tz68aPUmVqHrfu28mmvT1nQbUHEgkdyMjRqBFu2OILAvn1DFzyidr7/r786\nSwTXrg0pKY7X+OLFngaPqG2LCGBtEVqsB1IMyFKNv/7N6/S8uGdYVeO5USwdAk01bsQhlgOJYzb9\nsomJX0zkva3v0a9JPx5s+aAnXuOFwVcQ+NRTxUAQmJbmvNH586F3b/jHP8xr3IgKLAdi5EqkVeO5\n4SsILBYOgaYaN4oBlgOJE1SVKfOmcN1r13nqNV74ejmTjBo2dIb9U1PDEzwiNtbt7zW+bVvEvcZt\n3D8Ha4vQ4nkPREQ6ApOBksBLqjoxlzJTgeuBo0BvVV0nIjWBV4H/BygwQ1Wnel3fWENVWfLdEsZ9\nPo4d63bwZJ8nWXzH4rCqxvPCVxC4bFkcOwSaatwopniaAxGRksAWoB2wG/gK6KGqm3zKdAIGq2on\nEbkcmKKqLUSkKlBVVVNEpCywBrjZ91z3/GKZA4kW1XhuFBtBoHmNGzFMLORAmgNpqroDQETmAV0A\n3yDQGZgNoKqrRKSCiFRR1Z+An9z9h0VkE1Dd79xiR7SoxvMiNRX69Ytzh0BTjRsG4H0OpAbwo8/2\nLndfQWXO8y0gIglAE2BVyGsYIwTiNR7J8d1jx+Cxx6B9e8ez45NPIhs8PGmLY8fghRegXj0nsTNl\niuM1fsstUR08bNw/B2uL0OJ1DyTQsSX/n8/Z57nDV/OB+1X1cG4n9+7dm4SEBAAqVKhA48aNsxdM\ny3pgYnX7/f+8z8JNC3nv+Hu0vqA1j9d8nL9U+gttEtpERf2SkpJITYV//7stDRvCCy8kce65IBK5\n+vgSkusdOULbb7+FyZNJSkiAYcNoO2hQRN9fYbZTUlKiqj6R3E5JSYmq+oRzOykpicTERIDs78tg\n8ToH0gIYraod3e0RQKZvIl1EXgSSVHWeu70ZaKOq6SJSGngfWKqqk/O4R1zmQNIPp/PsymeZuXZm\nWL3GC0PcCwLNa9yIY0KRA/G63/01UFdEEkTkNKA7sNivzGLg75AdcA64wUOAl4GNeQWPeGTngZ0M\nXjKYi56/iN/++I0196xh9s2zoy54LF4MF18MGRmOQ2BcBY/dux3jpnr14KefnGTO3LkWPAzDD08D\niKqeBAYDy4CNwJuquklEBojIALfMEmC7iKQB04H73NOvBO4ErhaRde6ro5f1jSSbftl0itf4pkGb\nCu017j984wXp6dCtmyOonjPHWTk3GtXkRWqLtDS4556AvcZjhXA8F7GCtUVo8XxypaouBZb67Zvu\ntz04l/M+pxgIHaNRNZ4bqs4yTsOHO8uuz54dRw6B69c7SwF/9JGpxg2jENhaWBEgy2t87PKxfPvz\ntxHxGi8MvoLAl16KI0GgeY0bxZhY0IEYPviqxtMPp/Noq0ejRjWeG3EpCMxNNf7WW3HUnTKM8BH3\nQ0TRQEZmBm9ueJMm05sw4pMRDGk+hM2DN9Ovab+QBo9Qju+mpjoWFR984OSQH344toLHn9oiMxMW\nLoTmzeH++x3zka1bHdFKnAcPG/fPwdoitMTQV0LsEe2q8dyIO4dAU40bhmdYDsQDoslrvDAkJ0P/\n/s4kpOeeg2rVIl2jIDh2LMdrvFYt8xo3DD8sBxJlRJPXeGGIK0Hgb7/leI03a+boN8xr3DA8wfrx\nISBavMaLMr67aBH89a9xIAj09Rpft46kMWM89xqPFWzcPwdri9BiPZAgiDav8cKQng5DhjgOga+9\nFsMOgf5e4ytWOMI/+6IwDM+xHEgRiEav8UDxFwQ+8USMTkIyr3HDCArLgYSZWFGN58X27c5KHfv3\nx7BDoKnGDSNqsBxIAagqyTuT6fhax6jyGs+NvMZ3T550RnmaN3esuletisHgsXIldO7svIEmTQr0\nGrex7hysLXKwtggt1gPJg9xU44vuWBS1qvG8iGmHwCzV+Pjx8P33jmr8zTdjdMzNMOIPy4H4Ec1e\n44UhpgWB5jVuGJ5jOZAQEouq8bzwFQSmpsaQINBU44YRUxT7T2YgXuOxwvvvJzFwIPTs6fQ65s+P\nkeDhgde4jXXnYG2Rg7VFaCm2PZBYVY3nxeLFzrTcW25xBIHRaPL0J0w1bhgxTbHLgaQfTmfyysnM\nWDsjar3GC4OvIHDmzBgRBGZ5jb/wArRvb17jhhEBYsETPWrI8hqv/3x9Dv1xKGq9xgNF1RntadgQ\n6tRx5BFRHzz8vcZXrDCvccOIYeI+gPh6jZc9rSwbB20stNd4tLF9u/PDfdo0RxA4frwzszVqx3f9\nvcbXr/fcazxq2yICWFvkYG0RWuI2gKzZs4aub3WlTWIbLjznQtKGpDGh3YSYWXIkN2JOELh+vZPR\nb9nSyeZv3Qr/+hecd16ka2YYRgiIqxxIltf4uOXj2PDzhqj3Gi8MvoJAj3+8B8/KlY6G46uvzGvc\nMKIU04G4qCpL05Yybvk4fjr8U8yqxnPDVxA4frzjxBqVs4tNNW4YxY64GMLK8hof3HywJ17jkSI5\nGRo1gi1bnB7I3XfnHzwiMr7r7zXep09UeI3bWHcO1hY5WFuEFs97ICLSEZgMlAReUtWJuZSZClwP\nHAV6q+o6d/8rwA3Az6raMK97jL1mLJ3qdoo54V9eHDzoLLf+/vtR7BBoqnHDKPZ4mgMRkZLAFqAd\nsBv4Cuihqpt8ynQCBqtqJxG5HJiiqi3cY62Bw8CreQWQaPRED4ZFi2DQIOjUybG7iDpBoHmNG0Zc\nEAs5kOZAmqruABCReUAXYJNPmc7AbABVXSUiFUSkqqr+pKrLRSTB4zpGBVHvEGiqccMw/PB6vKEG\n8KPP9i53X2HLxC2hFAR6Mr7r5zXOhx/GhNe4jXXnYG2Rg7VFaPG6BxLo2JJ/N6pQY1K9e/cmISEB\ngAoVKtC4cWPaut/CWQ9MNG5v3w63357Eb7/BsmVtadIkiupXty488wxJM2dCmza0db3Gk5KSICkp\n8vUrYDuLaKlPJLdTUlKiqj6R3E5JSYmq+oRzOykpicTERIDs78tg8ToH0gIYraod3e0RQKZvIl1E\nXgSSVHWeu70ZaKOq6e52AvBePOVATp50FpwdP95Jlj/4IJSKlgnV/l7jDz1kwj/DiENiIQfyNVDX\nDQJ7gO5AD78yi4HBwDw34BzICh7xSNQ6BJrXuGEYhcTTHIiqnsQJDsuAjcCbqrpJRAaIyAC3zBJg\nu4ikAdOB+7LOF5E3gC+BeiLyo4j08bK+XnLsGDz2mLOG1cCB8MknoQ8e/sM3AVFIr/FYoUhtEadY\nW+RgbRFaPB84UdWlwFK/fdP9tgfnca5/byUmiTqHQFONG4YRAuJqLaxo4+BBx+rivfeiRBBoXuOG\nYbjEQg6k2OIrCIy4Q2CWanzCBDjrLFONG4YREuwbJMSkp0O3bjBsmCMInDEjfMHjT+O7/l7jkycH\n7TUeK9hYdw7WFjlYW4SW+P4WCSNR5RD422/w9NOO+G/pUkc1/t//Ohl8W3LEMIwQYTmQELB9u2N5\nsW8fvPRSBE2ezGvcMIwAMU/0COPrENihQwQdAnfvhn/8w7zGDcMIKxZAikhqqrMc1AcfOFKKhx+O\ngJrc12tclaTp02PArjA82Fh3DtYWOVhbhBYLIIUkHILAAsnLa7xy5TBXxDCM4ozlQAqBryDwueci\nIAg0r3HDMEKE6UDCREQFgaYaNwwjSrEhrAJYvBguvhgyMhxBYNiCRxG8xm18NwdrixysLXKwtggt\n1gPJA1+HwDlzwqjpMK9xwzBiBMuB+KEKiYmOT0ffvjBqVJhGi8xr3DCMMGI5kBDjKwhctixMmo5D\nhxyv8cmTzWvcMIyYwsZFiJAg0NdrPCUlJF7jNr6bg7VFDtYWOVhbhJZi3wMJu0Pg7t1OtEpMhK5d\no8yW0DAMI3CKbQ7k2DEYMwZmznTy1X37epxu8Pca/8c/oEYND29oGIaRN5YDKSJhdQg0r3HDMOKU\nYpUDOXjQkVH07Ol8p8+f72HwWLECbroprF7jNr6bg7VFDtYWOVhbhJZiE0DCIghUdXoaV1/tRKlO\nnZypXQ8/bEuOGIYRd8R9DiQ9HYYOhbVrnXyHJ4JA8xo3DCPGMD+QfPB1CKxVyyOHwBMnHJn6xRc7\nwQ+xhWMAAAcpSURBVGPkSKd7c9ddFjwMw4h7PA8gItJRRDaLyHciMjyPMlPd46ki0qQw5+bG9u2O\nnmPaNEcQOGFCiNXkv/8O//431K3rRKkpU6LCa9zGd3OwtsjB2iIHa4vQ4um3nYiUBKYBHYEGQA8R\nqe9XphNwoarWBe4BXgj0XH88FwQeOuRMxa1d2xH+vfFGVHmNp6SkRLoKUYO1RQ7WFjlYW4QWr6fx\nNgfSVHUHgIjMA7oAm3zKdAZmA6jqKhGpICJVgVoBnJvN+vVw990eCQKzvMb//W8nMi1bFpV2sQcO\nHIh0FaIGa4scrC1ysLYILV6Pt9QAfvTZ3uXuC6RM9QDOBRyHwHbtPHAI3L3bMW7K8hpfudK8xg3D\nMFy87oEEOsUrqPGfLVtCLAhMS4OJE2HBAkc1/s03MaEa37FjR6SrEDVYW+RgbZGDtUVo8XQar4i0\nAEarakd3ewSQqaoTfcq8CCSp6jx3ezPQBmcIK99z3f2xPQ/ZMAwjQkT7UiZfA3VFJAHYA3QHeviV\nWQwMBua5AeeAqqaLyP8CODfoBjAMwzCKhqcBRFVPishgYBlQEnhZVTeJyAD3+HRVXSIinUQkDTgC\n9MnvXC/raxiGYQROzCvRDcMwjMgQ1Ur0SIgQo5Ug2+IVEUkXkW/CV2PvKGpbiEhNEflURL4VkQ0i\nMjS8NQ89QbTFGSKySkRSRGSjiIwPb81DTzCfEfdYSRFZJyLvhafG3hHk98UOEVnvtsXqfG+kqlH5\nwhm2SgMSgNJAClDfr0wnYIn79+XAykDPjaVXMG3hbrcGmgDfRPq9RPi5qAo0dv8uC2wp5s/FWe6/\npYCVQKtIv6dItYW77yHgdWBxpN9PhJ+L74FzArlXNPdAskWIqnoCyBIS+nKKCBHIEiEGcm4sEUxb\noKrLgf1hrK+XFLUtqqjqT6qa4u4/jCNKrR6+qoecIreFu33ULXMazpfOvrDU2huCagsROQ/nS/Ul\ngpQVRAFBtYVLQG0QzQEkLCLEGCGYtog3itoW5/kWcGf3NQFWhbyG4SOotnCHbFKAdOBTVd3oYV29\nJtjPyLPAw0CmVxUMI8G2hQIfi8jXItI/vxtFcwAJiwgxRihqW8TjDImg20JEygLzgfvdnkisElRb\nqGqGqjbGCShXiUjbENYt3BS1LUREbgR+VtV1uRyPRYL97mylqk2A64FBItI6rwtEcwDZDdT02a6J\nEyXzK3OeWyaQc2OJorbFbo/rFQmCagsRKQ0sAF5T1Xc9rGc4CMlzoaoHgQ+AZh7UMVwE0xZXAJ1F\n5HvgDeAaEXnVw7p6TVDPharucf/9BViIMySWO5FO+OSTCCoFbMNJBJ1GwYmgFuQkSws8N5ZewbSF\nz/EE4iOJHsxzIcCrwLORfh9R0BaVgAru32cCycC1kX5PkWgLvzJtgPci/X4i+FycBZRz/y4DfAF0\nyPNekX6zBTTE9TgzZdKAEe6+AcAAnzLT3OOpQNP8zo3lV5Bt8QaOmv8PnHHPPpF+P5FoC6AVzhh3\nCrDOfXWM9PuJUFs0BNa6bbEeeDjS7yVSbeF3jTbE+CysIJ+L2u4zkQJsKOi704SEhmEYRpGI5hyI\nYRiGEcVYADEMwzCKhAUQwzAMo0hYADEMwzCKhAUQwzAMo0hYADEMwzCKhAUQwzAMo0hYADGMXBCR\nBBH53fVESBGRL0SkXoiu/YGInB2KaxlGJDEhoWHkgrta73uq2tDdvge4QlV7B3FNAVD70BlxgvVA\njGKPiFzmurKdLiJlRGQDzjpAvpQnH78MEektIotcx8OtIvKEuz9BRLaIyGzgG6Cm6/h2jntss4jM\ncsu8LiId3N7OVhG5zL1GGddVcpWIrBWRzh41hWEUilKRroBhRBpV/UpEFgP/xFlYcA5wGKgjIuuA\ncu7+FgVc6jLgr8DvwFci8gHwP+BC4C5VXQ0gIr49kDrAbcBG4Cugu6pe6QaJkcAtwGPAJ6raV0Qq\nAKtE5GPNMYQyjIhgPRDDcPj/gA44S5o/hbNy7zZVbaKqFwIPAjMKuMZ/VHW/qh4D3sFZvFGBnVnB\nIxe+V9Vv3WGtb4GP3f0bcFZTxa3Xo24w+xQ4nVOX4jaMiGA9EMNwqIQzbFUSp7fhz3vArHzO989r\nCDnudkfyOe8Pn78zgeM+f/t+Pm9V1e/yuY5hhB3rgRiGw3TgcWAuMDGX461wlr7OCwHai0hFETkT\nx4P6C0LjcLcMGJp9I5EmIbimYQSN9UCMYo+I/B34Q1XniUgJ4EvganJyIILTU+iXz2UUWI3jdnge\nMEdV17qzufx7J5rH33kdGwNMFpH1OD/6tgOWSDcijk3jNYwQICK9gUtVdUik62IY4cKGsAwjNCh/\n7k0YRlxjPRDDKAQich0wwW/3dlW9LRL1MYxIYgHEMAzDKBI2hGUYhmEUCQsghmEYRpGwAGIYhmEU\nCQsghmEYRpGwAGIYhmEUif8fHq0g8rWtPKEAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7e76a20>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEaCAYAAAA/lAFyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucVfP6x99PU6SLmki6Kd3IrQuSS8q1C8rlHCkccRBJ\njnAQP+VwIorkVkLlGqc40kXkNHItSekySTrR7ZRUkqRm5vn98V0zdtvMnj179p619prn/Xqt1+y1\n1net9Tx7rVnP/j6f70VUFcMwDMMoKRX8NsAwDMNITyyAGIZhGAlhAcQwDMNICAsghmEYRkJYADEM\nwzASwgKIYRiGkRAWQAyjjBGRp0Xkbr/tMIzSYgHESAoi0llE5ojIdhHZJCJZInJeKc6XJyJNkmDX\nPiLyg4hUiaNsOxGZLiJbReRHEZkrIn1Ka0M0qnq9qt6f7PMmExHpLSLficgOEXlTRDJjlD3Su9/b\nRGRNZHAUkdNE5CvvO90iIu+KyBER+8eLyG8i8rO3bBcRSbV/RnKwAGKUGhH5E/A6MB6or6oHAfcA\nCQeQ/FMnaI9EvIROBb5U1Z3FHHMi8D4wG2iqqgcA1wNdErEhxnUC/z8nIkcCo4FLgTrATuCpGIe8\nCHwIZAIdgX4RPx6WAl1VNdM715fA8xHHKjBMVat7y/5qvZvThsA/zIb/iMhtIjIpatsoERnprT4C\n/ENVn1fVnwFUdY6qXlvMeZuJyAfeL9cfRORVb/scr8gi71fpn0WkpohM9Wo3W0TkbRGpH3GuLBG5\nX0Q+Bn4BDvV2dQOmi0im9+v4XK98NRFZKSKXeeUeBsar6sOqusXzYYGqXlKMD51EZK2I3On58F8R\n6R2xf7yXspouIjuA07xt90Udf5vn23oROV9EuonICq8mdEfE+URE7vBs3ywir8WqHSTIpcAUVf1I\nVX8B/g+4UESqFlH+COBldawCPvK2oaqbVHWdV64CkAdsiDreahzpiqraYkvMBTgY2AHU8NYrAhuB\nNsDhuJdCowTO+ypwp/d5H+CkiH15QJOI9VrABUBloBquxvNmxP4sYDXQEveiquhtzwaae5/Pwr28\nagNjgde97VWAHKBjAj50AvYAw4FKuBrPDqCFt388sA040VvfFxiHC7iRx98NZABXA5uBl4GquBfx\nzvzvF7gJ+ASo511vNPBKEbYdAmyNsVxSxHH/Bm6L2rYdaFNE+SnAA95zcTiwBji2EDtyga+AAyL2\njQN+9Jb5wIV+P++2lOD599sAW9JjAWYAV3ufzwWWeJ9P9l72+yRwzgnAGFzaK3rfXgGkkP2tgS0R\n67OBIVFlmgLfRG0bBSz2XnKZ3rb63vVaJOBDfgDYL2Lba8Dd3ufxuJpN5DHjgPsijt8JiLde3bPl\n+Ijy84Hu3uds4PSIfXWB3UCFJN7rWcC1UdvWAqcWUb4psMr7HvKAwUWUy8Slu96K2NbG214B6OoF\nqpNK64MtZbNYCsuIlwlAfrrnMtyLANwvR3AvspLyd1z6Yp6ILBGRK4sqKCJVRGSMiKwWkZ+AD4Aa\nUYLrmqjDugHTo7aNBY7EvdS3etu24l58ifgAsFVVf41Y/y7iXFqIXdH8qN7bFMg/z8aI/b/ial0A\njYA3PVF6K7AMV3uqk6DthbEDqBG1rQbwc3RBr3HCf3Ca175AQ6CLiFwfXdb7vm8FzhOR/b1tX6rq\nVlXNU9UZuJrXhUn0xUghFkCMeHkLOEZEjgLOwf2jA3yNe0H+qaQnVNWNqnqtqtYH+gJPxWh5dQvQ\nAminqjVwYq2wd/48WnzdK4CISAbwDPACcIOINPXs2Al8mogPHplRrbwaAeuLOSZRofh7oIuqZkYs\nVVQ1WldARA6JaN1U2NKriGssBVpFnKcpLsW4opCyRwLVVfUlLwisw9XAuhVx7kq4YP1b/C4bQcUC\niBEX3i/sycArwFxVXettV2Ag8H8i0kdE9heRCiJyioiMiXVOTxxv4K1uw71U87z1jbjUSD7VcL/E\nfxKRWsDgwk4Zce4qwPG41FY+g3B5+CtxovkLEa2i/g70EZFbReQA7xyt8oX9OLhXRCqJSAdcgP1X\ntE1RdiYqHI8GhorIIZ6NtUWke2EFVfV7/b11U2FLUb69jKslnOIJ5/cBk9UJ6tGsBPYRkV7efT8Y\n6Aks8uy7UERaePtq4xpcTFfV37z9f/IaNFQQkbPxBPwEvxujjLEAYpSECcBR/J6+AkBVJ+NeGlcB\n64D/Af/AibGxOA74TER+xtVwBqjqam/fEGCCl6r5EzAS2A8nMH+C02Sif8VHrp8OfKKquwFE5Fjg\nZuAvXtAb5pW/3fPhU++Y04FvReRHnD4zrRgf8Pzdiqt1vAj0VdX8X+tahJ0atV6UH9E8hnvBvisi\n23E1p3Zx2Bg3qroMuA4XSDbivvd++fu9VmVPe2W3An8GbsN9B1/ihPL8fi71gHdw2sYCr8wVEZcb\ngNNXtuLuydWqOgcjLcgX7lJ3AZEuuH/+DOBZVR1WSJlROAFtJ9BHVb8UkcOAiRHFmgD/p6qjUmqw\nUSQi0hBYDtRR1R1+2xMLEXkSWKyqo1N8nU7Ai6raMJXXMYwgUjGVJ/dyzk8AZ+J+mX4uIlNUNTui\nTDegmao2F5ETgKeB9qr6Na6FRn7nq3XAm6m01yga7x7cArwa9ODhsRBLhRhGSkl1CqsdsFJVV6vq\nHlyNokdUme641AiqOheoKSLRLUrOBL5V1eJasxgpwMuDbwfOoHDtIdaxo4sQcGP1bC41qjpWVTcW\nX7J4RGRQET5Mo/AUlWGUC1JaA8G1r4986a8FToijTAP2bsZ4CU68NXzAE0+rFVuw8GOvw+XT0xZV\nHQoMjVHkkLKyxTCCRKprIPH+MotukVJwnIjsgxtT6V8YhmEYgSHVNZB1uI5F+TTE1TBilWngbcun\nK/CFqv5Q2AVExNIHhmEYCaCqpRqHLNU1kPlAcxFp7NUkevJHYXMK8BcAEWkPbIvKXffCjZlUJH53\n50/lMnjwYN9tMP/Mv/LmW3nwLxmktAaiqjki0h+YiWvG+5yqZotIX2//GFWd7o08uhI3imrBcBae\neHsmcE0q7Qwyq1ev9tuElGL+pS9h9g3C718ySHUKC3Xj28yI2jYmar1/Ecf+AhyYOusMwzCMRLGe\n6AGnT58+fpuQUsy/9CXMvkH4/UsGKe+JnmpERNPdB8MwjLJGRNCAi+i+ISK22JL0paRkZWUl/+EO\nCGH2DcLvXzJIuQbiJ1YzMZJJIgHEMMJMaFNYImIBxEgq9kwZYcJ7ni2FZRiGYZQ9FkAMI4WEOY8e\nZt8g/P4lAwsgIeP777+nevXqBamWTp068dxzzwHw8ssv07lz54KyFSpUYNWqVXGfO/p4wzDKN6aB\n+ETjxo3ZtGkTGRkZBduuvPJKRo1K7nxZp512GpdffjlXXXXVH/ZVqFCBlStX0qRJUdOQG5EE/Zky\njJKQDA0k1K2wgoyIMHXqVE4//XS/TYmL3NzcvYJdupCXl0eFClbRNoxUYP9ZASQvL49bb72V2rVr\n07RpU5588kkqVKhAXl4e4Gov77//fkH5IUOGcPnllwNu/J7IspGMHz+eDh067LVt2rRpNG3alNq1\na/P3v/+94Bf2+PHjOfnkkxk4cCAHHnggQ4YM2ev4wq4TmS6LPD4zM5NmzZrxySefMG7cOA455BDq\n1KnDCy+8UOR3sGXLFq688krq169PrVq1uOCCC4r0ITIV16dPH66//nrOOeccqlWrxvDhw6lbt+5e\ndr755pu0atWq4Lt+8MEHadasGQceeCA9e/Zk69atRdpVUsKcRw+zbxB+/5KBBRAfKSod8swzzzBt\n2jQWLlzI/PnzmTRp0l59EKI7tZWmf8K///1vvvjiCxYsWMBbb73F888/X7Bv3rx5NG3alE2bNnHX\nXXcVe65ou+bNm0erVq3YsmULvXr14uKLL2bBggV8++23vPTSS/Tv35+dO3cWeq7LL7+cXbt2sWzZ\nMjZt2sTAgQPj9unVV1/l7rvvZseOHdx0001UrVqV//znPwX7X3nlFS699FIAHn/8caZMmcKcOXPY\nsGEDmZmZ3HDDDXFfyzDKM+U6gIiUfkkUVeX8888nMzOzYMn/9f76669z8803U79+fTIzMxk0aFDM\n3Htp8vK33347NWvWpGHDhvztb3/j1Vd/Hzm/Xr163HDDDVSoUIHKlSuX+NyHHnooV1xxBSLCxRdf\nzPr167nnnnuoVKkSZ511Fvvssw8rV678w3EbNmzgnXfeYfTo0dSoUYOKFSv+odYRi/PPP58TTzwR\ngH333ZdevXoV+PXzzz8zY8YMevXqBcCYMWO4//77qVevHpUqVWLw4MFMmjSp0BpcInTq1Ckp5wki\nYfYNwu9fMijXGoifeqiI8NZbbxWqgWzYsIGGDX+fY+uQQ1I3Y2r0ddavX1/ovkSoU+f3qe33228/\nAGrXrr3Xth07dvzhuDVr1lCrVi1q1KhR4muKCA0aNNhrW+/evTnppJN4+umneeONNzj22GMLfFu9\nejUXXHDBXjpJxYoV2bhxI3Xr1i3x9Q2jPFGuayBBpW7dunz//fcF65GfAapWrcovv/xSsP6///0v\n4WtFX6d+/foF67FSY1WrVgXYKwVVGjsiadiwIVu2bOGnn34q9LolvWbLli1p1KgRM2bM4JVXXqF3\n794F+w455BDeeecdtm7dWrDs3LkzacEjzHn0MPsG4fcvGVgA8ZGiUk8XX3wxo0aNYt26dWzdupUH\nH3xwr5d569atmThxIjk5OcyfP5/JkycnrIMMHz6cbdu2sWbNGkaNGkXPnj3jOq527drUr1+fF198\nkdzcXJ5//nm+/fbbhGyIpm7dunTt2pV+/fqxbds29uzZw5w5cwBo1aoVS5cuZdGiRezatYshQ4bs\ndWxR32nv3r0ZOXIkH374IX/+858Ltl933XUMGjSoIJD+8MMPTJkSPWmmYRiFYQHER8477zyqV69e\nsFx00UUAXHPNNXTu3JlWrVpx3HHHcdFFF+31Yrzvvvv49ttvyczMZMiQIQWCcD5FBZPCRpTt0aMH\nxx57LG3atOHcc8/lr3/9a5Flo7eNHTuWhx9+mAMPPJBly5Zx8sknx7xWSYLciy++SKVKlTj88MOp\nU6dOQf+YFi1acM8993DmmWdy2GGH0aFDh5gNDPLp1asXc+bM4YwzzqBWrVoF22+66Sa6d+/O2Wef\nzf7778+JJ57IvHnz4razOMKcRw+zbxB+/5KBdSRMA1avXk2TJk3IycmxPg0+EqZnyjBsMEXDCDhh\nzqOH2TcIr3+bd27mhmnJaapuASRNsLkoDMMoDbtzd/Pop4/S8smWZFRIzqgSlsIyjDixZ8pIR1SV\nqSumcsu7t9CsVjNGnD2ClrVb2lhYhmEYRtEs2bSEgTMHsmb7Gh7r8hhdm3dN6vkthWUYKSSseXQI\nt2+Q3v5t3rmZftP6cfqE0zmvxXl8dd1XSQ8eUAYBRES6iMhyEflGRG4voswob/8iEWkTsb2miEwS\nkWwRWSYi7VNtr2EYRroSqXNUqlCJ5f2Xc+MJN1Ipo1JKrpdSDUREMoCvgTOBdcDnQC9VzY4o0w3o\nr6rdROQE4DFVbe/tmwB8oKrPi0hFoKqq/hR1DdNAjDLBnikjqBSlc8QiHTSQdsBKVV0NICITgR5A\ndkSZ7sAEAFWd69U66gC7gA6qeoW3Lwf449gWhmEY5ZhU6xyxSHUKqz6wJmJ9rbetuDINgEOBH0Rk\nnIgsEJGxIlIlpdYae/Hhhx9y+OGH+21GWpPOefTiCLNvEHz/ykrniEWqA0i89f3oapTiakdtgadU\ntS3wC3BHEm3znfHjx3P00UdTtWpV6tatS79+/QodQLCsiJ4jvUOHDixfvtw3ewzD+CNlrXPEItUp\nrHVA5JjgDXE1jFhlGnjbBFirqp972ydRRADp06cPjRs3BqBmzZq0bt261IanmhEjRvDwww/zwgsv\ncMYZZ7B27Vr69evHWWedxccff0ylSsl9GOKdkjbdcvxlPWVt/q/S/HGSilvP3xZv+XRa79SpU6Ds\nCbt/qsoDLz7AU/Of4pgTjmFOnzlsXLqRr+Z+FdfxWVlZjB8/HqDgfVlqVDVlCy5AfQs0BvYBFgIt\no8p0A6Z7n9sDn0XsmwO08D4PAYYVcg0tjKK2B4GffvpJq1Wrpv/617/22r5jxw6tXbu2Pv/886qq\nOnjwYL3ooou0Z8+eWr16dW3btq0uWrSooPy6dev0wgsv1Nq1a+uhhx6qo0aNKtiXf+xll12m+++/\nvz733HM6b948bd++vdasWVPr1q2r/fv31927d6uqaocOHVREtGrVqlqtWjV9/fXXdfbs2dqgQYOC\nczZq1EiHDx+uxxxzjNaoUUN79uypu3btKtg/bNgwrVu3rtavX1/Hjh2rIqLffvttod/Bjz/+qH36\n9NF69eppZmamnn/++aqqOm7cOD3llFP2Kht5niuuuEKvu+467datm1atWlWHDRumBx98sObm5haU\nf+ONN/SYY45RVdXc3Fx94IEHtGnTpnrAAQfoxRdfrFu2bInzTu1NkJ8pI9ws3rhYz3rhLD38icN1\n+orpSTmn9zyX7h1f2hMUewHoimuJtRK409vWF+gbUeYJb/8ioG3E9la4lluLgDeAGoWcP9aXE0hm\nzJihFStW3Oull88VV1yhvXr1UlUXBCpVqqSTJ0/WnJwcHT58uB566KGak5Ojubm52rZtW73vvvt0\nz549umrVKm3SpInOnDlzr2PfeustVVX99ddf9YsvvtC5c+dqbm6url69Wlu2bKkjR44suHb0Cz86\ngDRu3FhPOOEE3bBhg27ZskVbtmypo0ePLvDp4IMP1mXLlunOnTv10ksv1QoVKhQZQLp166aXXHKJ\nbtu2Tffs2aNz5sxR1fgCSI0aNfSTTz5RVdVdu3Zp06ZN9b333iso/6c//UmHDRumqqojR47UE088\nUdetW6e7d+/Wvn37Fny/JSWRZ2r27NkJXSsdCLNvqsHw74dfftDrp16vtR+qraM+G6W7c3Yn7dzJ\nCCAp74muqjOAGVHbxkSt9y/i2EXA8amyTe4t/fhSOrjkKZ/Nmzdz4IEHFpp6Ofjgg1mwYEHB+nHH\nHceFF14IwMCBAxkxYgSffvoplSpVYvPmzdx9992Amz726quvZuLEiZx99tkAnHTSSXTv3h2AypUr\n07Zt24LzNmrUiGuvvZYPPviAm266KW7bBwwYwMEHHwy44egXLlwIuGl4r7rqKlq2dE0H7733Xl55\n5ZVCz5E/Ze2WLVsKZh1MxpS1Z555ZsGUtY888gjgpqx94oknqFevHgCDBw+mUaNGvPTSSzaysRFY\ndufu5sl5TzL0o6H0Pqo3y/svp9Z+tYo/sIwp10OZJPLyTwYHHnggmzdvLjR/v2HDhr2mfY2cnjV/\nutb169cjIqxfv57MzMyC/bm5uZx66qmFHguwYsUKBg4cyBdffMHOnTvJycnhuOOOK5Ht+cED3JS0\nGzZsKLC7Xbt2RV47kvI0ZW2Y55QIs2/gj3+qyrRvpnHLu7fQNLMpc/rMKbY/h5/YTzAfOPHEE9l3\n332ZPHnyXtt37NjBO++8wxlnnFGwbc2a31s45+XlsXbtWurXr0/Dhg059NBD95qKdfv27UydOhUo\nfGKl66+/niOOOIKVK1fy008/8c9//pO8vLyk+FS3bt29bI38HE2Ypqw1jGSxdNNSOr/Umdveu42R\nnUcy/dLpgQ4eYAHEF2rUqMHgwYO58cYbmTlzJnv27GH16tVcfPHFNGzYkMsvv7yg7BdffMGbb75J\nTk4OI0eOpHLlyrRv357jjz+e6tWr89BDD/Hrr7+Sm5vLkiVLmD9/PlB4a6odO3ZQvXp1qlSpwvLl\ny3n66af32l+nTp0ST0ubf52LL76YcePGsXz5cnbu3Ml9991X5DHlacraoPclKA1h9g3Kzr/8+TlO\nm3Cab/05EsUCiE/cdtttDB06lFtvvZUaNWrQvn17GjVqxPvvv1/QhFdE6NGjB6+99hq1atXi5Zdf\n5o033iAjI4OMjAymTp3KwoULadKkCbVr1+baa69l+/btBcdG10CGDx/OK6+8wv7778+1117LJZdc\nsleZIUOGcMUVV5CZmcmkSZOKnB42n8j9Xbp0YcCAAZx22mm0aNFiL42iMMIyZa1hJEr0/Bx+9udI\nFJsPJMDce++9rFy5khdffNFvU0pMdnY2Rx99NLt37w6NWB2GZ8rwn0ido0lmEx45+xFfUlXpMBaW\nUQrS7WX15ptv0q1bN3bu3Mntt99O9+7dQxM8DCMZLN20lJtn3sya7WsY2Xlk2qSqisL+uwNMcSmk\noPHMM89Qp04dmjVrRqVKlf6gsZRHwqwThNk3SK5/6axzxMJqIAFm8ODBfptQImbMmFF8IcMoR0T2\n5+h1VC+yb8jmgCoH+G1W0jANxDDixJ4pI16ConPEwjQQwzCMgBE2nSMWpoEYRgoJs04QZt+g5P6F\nVeeIhQUQwzCMUhDdnyP7huy068+RKKaBGEac2DNlRJIOOkcsTAMxUsqHH37INddcY7MSGkYU5Unn\niIWlsHzEprQNP2HWCcLsGxTuX3nUOWJhAcQnRowYwR133MGIESPYvn07n332Gd999x1nnXUWe/bs\nSfr1cnNz4yqXbimaZI0mbBixKM86R0xKOyOV3wtpOCOhTWlrU9oa6UFeXp6+/fXb2uLxFtrlpS66\nbNMyv01KGqTDlLapXtIxgNiUtuVnSlsjfVmycUnS5yEPEskIIOU7hSVS+iUBipvSdvPmzQXr+VPa\nZmRkMHDgQHbt2sWnn37K559/XjClbcWKFfea0jafwqa0bdeuHRUqVNhrStuSkD+lbWZmZpFT2u63\n337ce++9+QH+D+RPaTt69Ghq1KhBxYoVkzKlLVAwpW2vXr0AN6Xt/fffT7169ahUqRKDBw9m0qRJ\nZZb6CrNOEFbf8nWOk+852XSOYijfrbCKeMGlGpvStvxMaWukD9HjVk04fwI9Tujht1mBpnzXQHzC\nprQtP1Pahnne8LD4pqpMXTGVo58+mndXvcucPnMY1XUUPbpY8CgOCyA+YFPalp8pbY1gEz0P+YxL\nZ6RVZ0C/sQDiEzalbfmY0jasOgGkt2/x9OdIZ//KipQPZSIiXYCRQAbwrKoOK6TMKKArsBPoo6pf\nettXA9uBXGCPqrYr5FgtzIcwDDthU9oGi0SeqaysrNCkeqJJR9+idY7BHQcXOT9HOvpXEgI/lImI\nZABPAGcC64DPRWSKqmZHlOkGNFPV5iJyAvA00N7brUAnVd2SSjuDSroFQJvS9o+E+QWUTr6p7j1u\n1Zw+c4pNVaWTf36R6v/udsBKVV2tqnuAiUC0MtUdmACgqnOBmiJSJ2J/+szpmmRsSlvDKD2mc6SO\nVAeQ+kBkc5y13rZ4yygwS0Tmi8g1KbMyoAwePJgXXnjBbzPiZsaMGWzbto0ff/yRyZMnU6dOneIP\nCjlhzqMH3bfSjlsVdP9Kw7JlyTlPqvuBxJuDKepn9imqul5EagPvichyVf0wulCfPn1o3LgxADVr\n1qR169YJGWsYxZH/UslPbxS3nt/RMt7ytl769T25e1hSZQlDPxpKh7wOjG01tqA/RxDs82s9KyuL\n4cPH89VX8OOPjUkGKRXRRaQ9MERVu3jrdwJ5kUK6iIwGslR1ore+HOioqhujzjUY2KGqI6K2h1ZE\nN4KFPVPBJlrnSLf5OVKFKnzwAQwdCtnZcNttcPXVULVqwEV0YD7QXEQaA+uBnkCvqDJTgP7ARC/g\nbFPVjSJSBchQ1Z9FpCpwNnBviu01DCMNsfk5/ogqTJvmAsfmzXDHHXDZZbDPPkm9SMoHO+wKfA2s\nBO70tvUF+kaUecLbvwho621rAiz0liX5xxZy/iIHCrPFlmQvJWX27NklPiZdCIJvP/zyg/ab2k9r\nP1RbR302Snfn7E7auYPgXyLk5Ki++qrqMceotmql+tprbls03vNcqvd7ysfCUtUZwIyobWOi1vsX\nctwqIGExQ0OSagh7W/Sw+2ekhuj+HNk3ZBfZn6O8sHs3vPgiPPggHHQQPPAAdO2a8JivcRHaOdEN\nwwgfajrHH/jlF3j2WRg+HI44AgYNglNPLT5wBL4joWEYRrIwnWNvtm2DJ5+EUaPglFPgzTehhINr\nl5ry3U04DQhzW3Qw/9KZsvLNr3nIg3rvNm1ytYymTeHrr2H2bJg8ueyDB1gAMQwjoNg85Hvz/fcw\nYAAcfrirfcyfDy+84NJWfmEaiGEYgcJ0jr1ZsQKGDYN//xv++le4+WZIxnQ2poEYhhEqTOf4nYUL\nXUuq2bOhf3/45huImKkgEFgKK+AENQ+bLMy/9CWZvvmlc8TCr3v38cdwzjnQrRu0awerVsE99wQv\neIAFEMMwfMR0DocqvPsudOwIl18O3bu7wHHLLVCtmt/WFY1pIIZhlDmmczjy8py2MXQo/Pqra13V\nsydULANxwTQQwzDSDtM5YM8eePVV12u8WjW4+25X60i3+dfSzNzyR5hz6GD+pTMl9S2IOkcsUnHv\ndu2Cp5+GFi1g/HjXCXDuXDj//PQLHmABxDCMFGM6B/z8Mzz8MDRpAjNmwCuvwH/+A2eemdqxqlKN\naSCGYaQE0zngxx9dLeOpp1ywuPNOOOYYv61ymAZiGEYgKe86x/r1MGIEjBsHF10En3wCzZv7bVXy\nsRRWwAlzDh3Mv3SmMN/STeeIRSL3btUquO46OOoo18Lqq69g7NhwBg+wAGIYRhIo7zrHkiVutr92\n7eDAA90gh48+Cg0a+G1ZajENxDCMhCnvOse8eW64kU8/hb/9Da6/HmrU8Nuq+DANxDAM3yivOocq\nZGW5zn8rVsBtt8HLL0OVKn5bVvZYCivghDmHDuZfOpKvc5x8z8mc2+LctNY5YhF971Th7bfhpJOc\nztG7txvgsH//8hk8wAKIYRhxEq1zTDh/AgNOGBB6nSM31/Uab9XKDWo4cCAsWwZXXgn77OO3df5i\nGohhGDEprzrHb7/Biy+6uTjq1IG77oIuXdK7418kpoEYhpFSyqPO8csvruntiBFw5JHw/PPQoYPf\nVgWTuFP6hjKTAAAgAElEQVRYIlJFRA5LpTHGHwljDj0S8y+YxNOfI119K4pt2+D++91wIx99BHff\nncU771jwiEVcAUREugNfAjO99TYiMiXOY7uIyHIR+UZEbi+izChv/yIRaRO1L0NEvhSRt+O5nmEY\niVMe+3Ns3OiGGGnaFFaudC2sJk2Cw8L8c3nWrKScJi4NREQWAKcDs1W1jbdtiaoeVcxxGcDXwJnA\nOuBzoJeqZkeU6Qb0V9VuInIC8Jiqto/YPxA4Fqiuqt0LuYZpIIZRSsqjzvHddzB8uGuC27s33Hor\nNG7st1Up5ptv3CxVS5ciq1aVWgOJN4W1R1W3RW3Li+O4dsBKVV2tqnuAiUCPqDLdgQkAqjoXqCki\ndQBEpAHQDXgWCIl0ZRjBYummpXR+qTO3vXcbIzuPZMalM0IdPL7+2rWgatvWNb9dtgyeeCLkwWPb\nNhc4TjzR5eSWLUvKaeMNIEtF5FKgoog0F5HHgU/iOK4+sCZifa23Ld4yjwK3EV+wCiVhyzNHY/75\nR2nHrQqyb4Xx5Zdw8cXu/dmkiUtXDRsGBx9cePl0869QcnLcBCSHHw47dsDSpa7n4777JuX08bbC\nuhG4C/gNeBWnhdwXx3Hx5paiaxciIucCm1T1SxHpFOvgPn360Nj7+VCzZk1at25Np07ukPyHIF3X\nFy5cGCh7zL/0929P7h6WVFnC0I+G0iGvA2NbjaXHCT0CY1+y1xcvhhkzOrFoEZx/fhYTJkDXrsGx\nL2Xrs2aRdc01UKMGnWbOJGvrVsbf7mToxkmqbqW0H4iItAeGqGoXb/1OIE9Vh0WUGQ1kqepEb305\n0AkYAFwO5ACVgf2Byar6l6hrmAZiGHFQnnQOVZg50w03sm4d3H47XHFF0n54B5t8nWPZMify9OhR\naOeVZPQDiVdEPx4YBDTm91qLqmrMqVFEpCJORD8DWA/MI7aI3h4YGSmie2U6Areq6nmFXMMCiGEU\nQ2R/jkfOfiS0/Tny8uDNN13g+O03GDTIpa0qloceb9u2wX33wYQJLmIOGBAzYiYjgMSrgbwMjAMu\nAs7zlj+0iIpGVXOA/riU1zLgNVXNFpG+ItLXKzMdWCUiK4ExQL+iThenraEiv0oaVsy/1JLK+Tn8\n9i2SPXvce/PII+Ghh2DwYDcXR+/eiQePIPkXkxTrHLGI96v9QVXj6vcRjarOAGZEbRsTtd6/mHN8\nAHyQyPUNozyyO3c3T857kqEfDaXXUb3IviGbA6oc4LdZSefXX11P8Ycfdv04nngCTj89PMONFMus\nWXDzzW4Skpkz3YBdZUi8KayzgZ7ALGC3t1lV9Y0U2hYXlsIyjN8pLzrH9u0werSbtKldO9cRsH37\n4o8LDXHqHLEoy7GwrgAO88pHNqn1PYAYhuEoD+NWbd4Mo0bBU09B587w7rtw9NF+W1WGROsc//qX\nry0D4tVAjgOOV9UrVPXK/CWVhhmOtMnDJoj5V3r8moe8LO/dunVuGPUWLeB//4PPPnM9yFMZPAL1\nbPqoc8Qi3gDyCXBEKg0xDKNklIdxq1auhGuv/T1QfPUVPPMMNGvmr11lyqxZ0KYNvP660znGjHHj\nyweAeDWQ5UBT4L+4zoQQRzPessA0EKO8UR50jsWL4cEH3fvy+uvhppucTlyuSILOEYuy1EC6lOYi\nhmEkh7DrHHPnuj4cc+e6xkVPPw377++3VWVMwHSOWMRMYYlI/q3bXsRipJhA5WFTgPkXH37pHLFI\nlm+q8P77cMYZrtPf2WfDf//r3p1+Bo8yfzYDqnPEorgayKvAOcAC/tiRT4EmqTDKMAxHmPtz5OXB\n1KmuxrFtm2uK27s3VAqPhBM/PvfnSJRiNRAREaChqn5fNiaVDNNAjDCiqkxdMZVb3r2FprWahkrn\nyMlxevADD7hgMWgQXHABZGT4bZkPpFjniEVZaiDTgZiTRxmGkRyWbFrCwJkDWbN9DY91ecz3VFWy\n+O03l9YfNgzq13e9xzt3Lke9xiNJI50jFsU24/V+3n8hIu3KwB4jCtMI0puS+Ld552b6TevH6RNO\nD4zOEYt4ffvlF9djvGlTN9Dh+PEwZw506RLs4JGSZzMNdY5YxFsDaQ9cJiLfAb942wLRjNcw0p2w\n6hxbt7qxqR5/HDp2hClT3CyA5ZY01TliEW8/kMbex/zCAqCqq1NhVEkwDcRIV8Kqc2zcCI88As8+\nC927uwzN4Yf7bZWP+KhzxKLMNBBVXS0ixwKn4MbC+lhVF5TmwoZRngmjzvHdd07XeOUVuPRSWLAA\nGjXy2yofCYnOEYu4hjIRkXuA8UAtoDYwTkT+L4V2GR6mEaQ30f6lm84Ri3zfli+HPn1ceqpaNcjO\ndmmrdA8eCT+bIdM5YhGvBnIZcIyq7gIQkQeARcQ3L7phlHvCqHOsWOE0jjlz3OR3K1dCZqbfVvlM\nCHWOWMSrgcwGLlTVrd56Jm5+8tNTbF+xmAZiBJkw6hwffgj//CcsWQK33grXXANVq/ptlc8EVOeI\nRVn2A9kOLBWRd731s4B5IvI4rjXWgNIYYRhhJEw6hyq8847rNb5hg0vpv/VWKLMyJaMc6ByxiHc4\n9zeBQUAWMBu4C/g38IW3GCmivGkEYSBf5zhtwmkc9vNhaa1z5Oa6d2LbtvD3v0O/fk7zuOYa+PTT\nLL/NSykxn81ypHPEIt5WWONj7ReRyap6UVIsMow0JVrnWH7DchbPW5yW83Ps2eMmbHrwQahZE/7x\nDzjnHKgQ70/OMFPOdI5YxKWBFHsSkS9VtU0S7Enk2qaBGL4SJp3j11/huedcc9zmzd04VaedFvh0\nftmQhjpHLMpSAzEMoxDConP89JPLyIwcCe3bu8EOTzjBb6sCQjnXOWJhFdKAE0aNIJJ09S/e/hxB\n9++HH+Duu904VUuWuOzMv/8dX/AIum+lJev9903nKIaUBxAR6SIiy0XkGxG5vYgyo7z9i0Skjbet\nsojMFZGFIrLM63tiGL4SOQ95xQoV03Ye8rVrXRr/sMNcEJk7F156CY6yMbcds2bB1VcHch7yQKGq\nRS7AQcCRhWw/Eqgdsd65iOMzgJVAY6ASsBBoGVWmGzDd+3wC8FnEvire34rAZ8AphVxDDSPV5OXl\n6ZTlU7T5qOba5aUuumzTMr9NSohvvlG9+mrVzEzVgQNV167126KAsWKF6nnnqTZpovrGG6p5eX5b\nlDK8d2fMGFDcUlwN5HGgsKnsDwAeiwhCM4s4vh2wUlVXq+oeYCLQI6pMd2CCd565QE0RqeOt7/TK\n7OMFoy3F2GsYSWfJpiV0fqkzf5/1dx7r8hgzLp2RdiL5V19Br15O36hXz/UiHzHCzcth4HSOW26B\nE0+EDh2cUH7BBWktkpcFxQWQZqr6QfRGVZ0DxNN2rT6wJmJ9rbetuDINAEQkQ0QWAhuB2aq6LI5r\nhorQ55kD7F8yxq3y27/PPnMj4nbuDG3awKpVcO+9rgVqafHbt6SQ35/jsMPg55/30jlC4V+KKa4V\nVvUY++JJ+sbbvjY6zOfnpnKB1iJSA5gpIp1UNSv64D59+tC4cWMAatasSevWrenUqRPw+0OerusL\nFy4MlD3lwb89uXtYUmUJQz8aSoe8DoxtNZYeJ/RIG/9UITe3E0OHwrJlWVxyCbz2Wif22y8Y329g\n1mfNIuuaa6BGDTrNnAmtW7v92dnBsC/J61lZWYwfPx6g4H1ZWmL2AxGR6cCTqjotans34EZVjflz\nTETaA0NUtYu3fieQp6rDIsqMBrJUdaK3vhzoqKobo871f8Cvqjo8arvG8sEw4kXTvD9HXp6btGno\nUPdj+s47XdqqUnrp+6knvz/H0qWuP8f555fLVFVZ9AP5GzBVRP4M5M//cSxwEnBuHOefDzT3JqRa\nD/QEekWVmQL0ByZ6AWebqm4UkQOBHFXdJiL74cbfujeOaxpGiUnn/hw5OfDaa/DAA66F6V13uXdi\nBWukvzfWnyPpxHzEVHUFcAwueLQGGgEf4IZ2/7q4k6tqDi44zASWAa+paraI9BWRvl6Z6cAqEVkJ\njAH6eYfXBf7jaSBzgbdV9f0EfExr8qugYcVv/1I9P0cq/du1y7UubdECnnnGieLz58OFF5ZN8PD7\n3sVNDJ0jFmnjn48U2xNdVXd5raJOBb4E3gN2xXsBVZ0BzIjaNiZqvX8hxy0GyvMMykYKSef5OXbs\ncIHjkUegdWt44QU45RS/rQoo0eNWtW7tt0WhIu6xsESkAnA20Ac4DngdeE5Vv02ZdfHZZRqIETfp\nrHNs2eImcHriCTc+1R13uJZVRiGYzlEsZToWlqrmicj/cE1qc4FMYJKIzFLV20pjhGGUBemqc2zY\nAI8+Cs8+696DH37osjFGIZjOUabEOyf6TSLyBfAQ8DFwlKpejxPUL0yhfeWesOdhy8I/P+chL41/\n//2vm3/jyCOd3rFwITz/fHCCR6CezQR1jlgEyr+AEm8NpBZuStvvIjd6tZLzkm+WYZSeSJ2j91G9\nWd5/ObX2q+W3WcWSne1aVE2bBn37ugmcDjrIb6sCjOkcvpGU+UD8xDQQI5pInaNZrWaMOHtEWugc\n8+e7wPHRRzBgANxwg5vMySgC0zlKhc0HYhhRpJvOoQpz5uD1Godbb3WtqqpW9duyAGM6R2CwrkYB\nJ+x52GT556fOEYui/FOF6dPduH1XXw0XXwwrV8JNN6VP8CjzZzMFOkcswv6/lwysBmKkNemmc+Tm\nwuTJrsaRl+emjP3znyEjw2/LAo7pHIHENBAjLUk3nWP3bjdh04MPwgEHuOFGzjnHUvbFYjpHyjAN\nxCiXpJPOsXOn678xfLibGfWZZ6BjR3sHFovpHGmBaSABJ+x52JL4F1SdozB++sm1qGrQIIusLJe2\nevdd6NQpPMEjJc9mGescsQj7/14ysABiBJ7IecgrVajE8v7LAzsP+aZNLj3VpIl7940YAW+8Accf\n77dlacCsWW5slvx5yJ95xuYhDzimgRiBJZ10jjVrXJrqxRehZ0/3o7lJE7+tShNM5/AF00CM0JIu\nOsc338CwYa6WcdVVsGSJm3PciAPTOdIeS2EFnLDnYaP9SxedY9EiuOQSOOkkaNDABZLhw/8YPMJ8\n/xL2LUA6RyzCfO+ShdVAjECQLv05PvnE9eFYsAAGDoSxY6F6db+tSiOsP0eoMA3E8JV00DlU3Xvv\nn/+E775z2ZY+faByZb8tSyNM5wgcpoEYaU3QdY68PHjrLVfj2LkT7rzTCeSVgtf4K7iYzhFqTAMJ\nOGHMw0bqHIf9fFjgdI49e1xrqqOOcrWOQYNg8WK47LKSB48w3r98YvqWJjpHLMJ875KF1UCMMqMw\nneOruV8Fpj/Hrl0wbhw89BA0bgyPPQZnnmmZlhJjOke5wTQQI+UEXef4+WcYMwYeeQTatnU1jpNO\n8tuqNMR0jrTCNBAj8ARZ5/jxR3j8cXjySTjjDDe8uv1YTgDTOcotpoEEnHTNw8bbn8MP/9avdxM3\nNW8Oa9fCxx/DxImpCR7pev/iIev999Ne54hFmO9dskh5ABGRLiKyXES+EZHbiygzytu/SETaeNsa\nishsEVkqIktEZECqbTVKT5DHrVq1Cq67zonjOTmuM+Czz0KLFn5blobMmuVmwrJxq8o3qpqyBcgA\nVgKNgUrAQqBlVJluwHTv8wnAZ97ng4HW3udqwNfRx3r71PCfvLw8nbJ8ijYf1Vy7vtRVl21a5rdJ\nBSxZonrZZaq1aqkOGqS6caPfFqUxK1aonneeapMmqpMnq+bl+W2RkSDeu7NU7/hUayDtgJWquhpA\nRCYCPYDsiDLdgQleJJgrIjVFpI6q/g/4n7d9h4hkA/WijjUCQFB1js8/d304PvkE/vY3eOIJqFHD\nb6vSFNM5jEJIdQqrPrAmYn2tt624Mg0iC4hIY6ANMDfpFgacIOdhkzFuVbL9U4XZs+Gss+Cii+D0\n0+G//3WdAP0IHkG+f3ERoz9H2vtWDGH3LxmkugYSb/va6KZkBceJSDVgEnCTqu4o7OA+ffrQuHFj\nAGrWrEnr1q3p1KkT8PtDkK7rCxcuDJQ9WVlZ7Mndw5IqSxj60VBOzTuVZ1s/S/cTuvvqX8eOnZg2\nDW6/PYuffoJ//KMTl10Gn3ySxbx5dv8SWp81i6xrroEaNejk9efIysqC7Oxg2GfrJVrPyspi/Pjx\nAAXvy9KS0n4gItIeGKKqXbz1O4E8VR0WUWY0kKWqE7315UBHVd0oIpWAqcAMVR1ZxDU0lT4Yv6MB\n7M+Rm+uyKQ884LocDBrkah4ZGb6ald5Yf45yQTr0A5kPNPdSUOuBnkCvqDJTgP7ARC/gbPOChwDP\nAcuKCh5G2RE0neO339xwI8OGwUEHuQDStau950qF6RxGCUmpBqKqObjgMBNYBrymqtki0ldE+npl\npgOrRGQlMAbo5x1+MnAZcJqIfOktXVJpbxDJr4L6Rarn5yipf7/84oYYadbMvd+efRY++gi6dQtm\n8PD7/sVFguNWpYVvpSDs/iWDlPdEV9UZwIyobWOi1vsXctxHWEdH3wja/Bzbtrke46NGwSmnwJtv\nwnHH+WZOeLBxq4xSYGNhGXsRNJ1j40YYOdL1UzvnHLjjDjjiCN/MCQ+mc5R70kEDMdKIIOkc338P\nDz8ML70EvXrB/Plw6KG+mRMeTOcwkoiliAJOWeRh/ZyHPNq/r7+Gq65ymZT99oNly+Cpp9I3eAQm\nj56C+TkC41uKCLt/ycBqIOWYIOkcX37pWlLNng033ggrV0Kt4E2Jnp6YzmGkCNNAyiFB0jk++sgN\nN7JokUvJX3stVKvmiynhw3QOIwamgRglJgg6hyq8+66bLnbtWpeKf+MNqFy5zE0JJ6ZzGGWEaSAB\nJ1l5WD91jnzy8mDyZNf89pZboG9fGDs2i759wxs8yjSPXsbzkIddIwi7f8nAaiAhJ1Ln6HVUL7Jv\nyOaAKgeUqQ179sArr8CDD0L16nDPPXDeeVChAtj/aJIwncPwAdNAQkqkztG0VlMeOfuRMtc5fv0V\nxo2Dhx6CJk3cOFVnnGFp+KRiOoeRIKaBGIXit86xfTuMHg2PPgrHHw+vvgonnlimJoQf0zmMAGAa\nSMApSR7Wb51j82aXnmrSBBYudJmUKVNiB4+w55mT7l8Z6xyxsHtnWA0kBPitc6xbByNGwPjx8Kc/\nwWefucEOjSRjOocRMEwDSWP81jm+/dbpG//6F1xxhUvFN2hQ/HFGCTGdw0gBpoGUY/zUORYvdi2q\nZs6E6693w4/Url1mly8/mM5hBBzTQAJOdB7WT51j7lzo0cPNN37MMbBqlXu/lSZ4hD3PnJB/AdI5\nYmH3zrAaSJrgl86h6sanGjrUZVJuuw0mTnQDHRopwHQOI40wDSTg+KVz5OXB1KkucGzb5ubh6N0b\n9tkn5Zcun5jOYZQxpoGEnKWblnLzzJvLVOfIyYHXX3cj41aq5Dr/XXABZGSk/NLlE9M5jDTGNJAA\nsnnnZm6YdgOnTTiNw34+rEx0jt9+g7Fj4fDDXfr94Yfhiy9cs9xUBo+w55mL9C9NdI5YlNt7ZxRg\nASRA7M7dzaOfPkrLJ1uSUSGD7BuyueiIi6iUUSll1/zlF9djvGlTNyLuuHHw4YfQpYtlUFLGrFnQ\npo2r6s2c6ebrrVPHb6sMo8SYBhIAVJVp30zjlndvoUlmkzLRObZuhSeegMcfh44d4c47oW3blF7S\nMJ3DCBCmgYSASJ1jZOeRKU9Vbdzoahxjx0L37jBnjktbGSnEdA4jpFgKyycidY5Y/TmSlYf97jvo\n3x9atoQdO2DBApeu8jt4hDrPnJND1s03p7XOEYtQ3zvC718ySHkAEZEuIrJcRL4RkduLKDPK279I\nRNpEbH9eRDaKyOJU21lWFKZz3HjCjSnTOZYvhz59XHqqWjVYtsylrho1SsnljHzydY7Zs03nMEJL\nSjUQEckAvgbOBNYBnwO9VDU7okw3oL+qdhORE4DHVLW9t68DsAN4QVWPLuIaaaGBlLXOsWCB68Mx\nZw4MGAA33ACZmSm7nJFPpM7x8MOuDbTpHEYASQcNpB2wUlVXA4jIRKAHkB1RpjswAUBV54pITRE5\nWFX/p6ofikjjFNuYcspS5/jwQxc4Fi+GW291afeqVVN2OSMf0zmMckiqU1j1gTUR62u9bSUtk5bE\nq3PEIp48rCrMmAEdOsCVV8KFF7qRcv/2t+AHj7TPMxfTnyPt/YtBmH2D8PuXDFJdA4k3txRdjSpR\nTqpPnz40btwYgJo1a9K6dWs6deoE/P4QlOX6ntw9LKmyhKEfDaVDXgfGthpLjxN6JHS+hQsXFrk/\nNxfuvz+Ll16CypU7MWgQHHRQFhkZsO++/vmfLP8Cvz5rFlnXXAM1atDJG7cqKysLsrPD4Z+th2o9\nKyuL8ePHAxS8L0tLqjWQ9sAQVe3ird8J5KnqsIgyo4EsVZ3orS8HOqrqRm+9MfB2OmggZaVz7NkD\nL7/shlSvWRPuugvOOQcqWJu6ssH6cxghIB00kPlAcy8IrAd6Ar2iykwB+gMTvYCzLT94pBNloXP8\n+is895zTZlu0cJmTTp3s3VVmmM5hGHuR0t+sqpqDCw4zgWXAa6qaLSJ9RaSvV2Y6sEpEVgJjgH75\nx4vIq8AnQAsRWSMiV6bS3kRIhs4Ri6ysLLZvd7WNQw91rUNffx3eew9OOy39g0d+FTvQlGLcqrTw\nL0HC7BuE379kkPKe6Ko6A5gRtW1M1Hr/Io6Nrq0EhrKYn2PzZlfj+NOf3NhUs2bBUUcl9RJGcdj8\nHIZRJDYWVgkpC51j7VoYMcJlSv78Z/j7391gh0YZYjqHEXLSQQMJFanWOVauhGHDYPJk1xx38WKo\nH4oGzWmE6RyGETfWbicOUq1zfPWVm+3vxBOhXj3343fECBc8wp6HDYx/KZqfIzD+pYAw+wbh9y8Z\nWA0kBqnWOT77zPUa//xzGDgQRo+G/fdP2umNeDGdwzASwjSQQkilzqEK77/vAseqVU7fuPJK2G+/\npJzeKAmmcxjlGNNAUkCqdI68PHj7bRc4tm93Ezj16uXmHTfKGNM5DCMpmAbikSqdIyfH9Ro/5hj4\nxz/c+2rpUvjLX+ILHmHPw5apfz7MQx7m+xdm3yD8/iWDcl8DSZXOsWuX+4E7bBg0bOhE8bPPtgyJ\nb5jOYRhJp9xqIKnSOXbscHMHjRjh3lF33gmnnFLq0xqJYjqHYRSKaSAJkgqdY8sWN9PfE0+4IUam\nTnUT0hk+YTqHYaSccqWBpELn2LDBtaRq3hxWr3YTOr32WvKCR9jzsEn3zwedIxZhvn9h9g3C718y\nKBc1kFToHKtXw0MPwcSJcNll8OWXcMghybHXSBDTOQyjTAm1BpIKnSM7242MO3Uq9O3rZv076KBS\nndIoLStWuPl7TecwjLgxDSQGydY5vvjC9eH46CMYMMBNGVuzZpKMNRJj2zbXNvqFF0znMAwfCJ0G\nkkydQxXmzIHOnd2P2lNPdb3H77qr7IJH2POwCfkXqXPs2OG7zhGLMN+/MPsG4fcvGYSmBpJMnUMV\nZsxwNY6NG+GOO5zOEcD3U/njvfeczlG7tukchuEzodBA3v767aToHLm5bij1oUPd0CODBrn5ODIy\nkmy0UXJM5zCMpJIMDSQUAeTwJw7nkbMfSThVtXs3vPSSE8cPOMClqM45x95PgSBa5xgwwKqChpEE\nkhFAQqGBJKpz7NwJjz8OzZq55rjPPAOffALnnhuc4BH2PGyR/qWRzhGLMN+/MPsG4fcvGYRCA6mU\nUbIhbX/6CZ56Ch57DE46yaWtjj8+RcYZJcd0DsNIC0KRworXhx9+gJEjYcwY6NrVieNHHpliA434\nMZ3DMMoMS2HFyZo1rsPfYYe5MavmzYMXX7TgERi2bXNTMp50EnToAMuWwQUXWPAwjICT8gAiIl1E\nZLmIfCMitxdRZpS3f5GItCnJsbH45hu4+mpo1QoqVoQlS1xavUmT0nhUtoQ6D5uTQ9bNN6e9zhGL\nMN+/MPsG4fcvGaQ0gIhIBvAE0AU4AuglIi2jynQDmqlqc+Ba4Ol4jy2KRYvgkkvcD9oGDVwgGT4c\n6tVLmmtlxsKFC/02ITW89x60acPCt992Osczz0CdOn5blXRCe/8It28Qfv+SQapF9HbASlVdDSAi\nE4EeQHZEme7ABABVnSsiNUXkYODQOI7di08/dX04vvjCZUTGjoXq1VPgVRmybds2v01ILlE6x7aF\nC0Mtkofu/kUQZt8g/P4lg1SnsOoDayLW13rb4ilTL45jAfdj9rTToHdv139j1Sr3jkr34BEqTOcw\njNCR6gASbxOvUr1FbroJrrrK/bi97jqoXLk0ZwsWq1ev9tuE0lFMf460968YwuxfmH2D8PuXDFLa\njFdE2gNDVLWLt34nkKeqwyLKjAayVHWit74c6IhLYcU81tue3u2QDcMwfCLow7nPB5qLSGNgPdAT\n6BVVZgrQH5joBZxtqrpRRH6M49hSfwGGYRhGYqQ0gKhqjoj0B2YCGcBzqpotIn29/WNUdbqIdBOR\nlcAvwJWxjk2lvYZhGEb8pH1PdMMwDMMfAt0T3c9OiGVBKf17XkQ2isjisrM4fhL1TUQaishsEVkq\nIktEZEDZWh4fpfCvsojMFZGFIrJMRB4oW8vjozTPprcvQ0S+FJG3y8biklHK/73VIvKV59+8srM6\nPkrpW00RmSQi2d7z2T7mxVQ1kAsubbUSaAxUAhYCLaPKdAOme59PAD6L91i/l9L45613ANoAi/32\nJcn37mCgtfe5GvB1CO9dFe9vReAz4BS/fUqmf962gcDLwBS//UnB/fsvUMtvP1Lk2wTgqojns0as\n6wW5BlLQCVFV9wD5HQkj2asTIpDfCTGeY/2mNP6hqh8CW8vQ3pKQqG91VPV/qrrQ274D13E0aGMI\nJOyft77TK7MP7h9+S5lYHT+l8k9EGuBeUs9Syib6KaJU/nkE0S8ohW8iUgPooKrPe/tyVPWnWBcL\nctd/r2MAAASFSURBVAApk06IPlIa/4JOor41iCzgtcBrA8xNuoWlo1T+eemdhcBGYLaqLkuhrYlQ\n2mfzUeA2IC9VBpaS0vqnwCwRmS8i16TMysQozbN5KPCDiIwTkQUiMlZEqsS6WJADSJl0QvSRRP1L\nh1YPpfZNRKoBk4CbvJpIkCiVf6qaq6qtcf+0p4pIpyTalgwS9U9E5Fxgk6p+Wcj+oFDad8spqtoG\n6ArcICIdkmNWUijNs1kRaAs8paptca1i74h1kiAHkHVAw4j1hrhIGatMA69MPMf6TaL+rUuxXcmg\nVL6JSCVgMvCSqv47hXYmSlLunZcemAYclwIbS0Np/DsJ6C4i/wVeBU4XkRdSaGsilOr+qep67+8P\nwJu4tFFQKI1va4G1qvq5t30SLqAUjd+iTwwxqCLwLU4M2ofixaD2/C7EFnus30tp/IvY35hgiuil\nuXcCvAA86rcfKfLvQKCm93k/YA5wht8+JfvZ9LZ3BN72258k378qQHXvc1XgY+Bsv31K1r3znscW\n3uchwLCY1/Pb4WK+jK64VjgrgTu9bX2BvhFlnvD2LwLaxjo2aEsp/XsV10P/N1w+80q//UmGb8Ap\nuNz5QuBLb+nitz9J9O9oYIHn31fAbX77kuxnM2J/RwLYCquU96+Jd+8WAkuC+G4p5XulFfC5t/0N\nimmFZR0JDcMwjIQIsgZiGIZhBBgLIIZhGEZCWAAxDMMwEsICiGEYhpEQFkAMwzCMhLAAYhiGYSSE\nBRDDMAwjISyAGEYRiEgLEZkuIitE5AsReU1EDkrCeaeJyP7JsNEw/MQ6EhpGIYhIZVxP8ZtVdZq3\nrSOwWVWXJnhOAVD7pzNCgtVAjHKPiBzvzcy2r4hUFZGlwDXAJ/nBA0BVPygqeIhIHxF5y5tNcYWI\n3ONtbywiX4vIBGAx0NCb0a6Wt2+5N3z21yLysoicLSIfe+c43jtHVW8GyrneMNvdU/+tGEbxVPTb\nAMPwG1X9XESmAPfjBjh8ATcY3YISnup44EjgV+BzEZkG/Ag0Ay5X1XkAIhJZA2kKXAQsw41B1FNV\nT/aCxCDgAuAu4H1VvUpEagJzRWSW/j4xlWH4gtVADMPxD+Bs4Fjg4QTP8a6qblXVXbiB6E7BzbPw\nXX7wKIT/qupSL621FJjlbV+CC2J4dt0hIl8Cs4F92Xs4bsPwBauBGIbjQNzw3BlAZdzLvGMJjo/W\nNYTfZ+T7JcZxv0V8zgN2R3yO/P+8UFW/KYE9hpFyrAZiGI4xwN3AK8Aw7+9JItItv4CInCoiRxZx\nvABniUimiOyHm4f6Y5IzK99MYECEHW2ScE7DKDUWQIxyj4j8BfhNVScCD+K0jPbAucCNnqC9FLgO\n2FTEaRSYh5tJcREwSVUXROyLLlvY56L23QdUEpGvRGQJcG/czhlGCrFmvIaRBESkD3Csqt7oty2G\nUVZYDcQwkoPyx9qEYYQaq4EYRgkQkc64NFckq1T1Ij/sMQw/sQBiGIZhJISlsAzDMIyEsABiGIZh\nJIQFEMMwDCMhLIAYhmEYCWEBxDAMw0iI/wdUEkjJ7nOY2gAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c385c0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of ideal stage is \n",
+ "10.2\n",
+ "The feed stage is 4.6 th from the solvent-D inlet\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.7: Page 525"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.7\n",
+ "# Page: 525\n",
+ "\n",
+ "print'Illustration 10.7 - Page: 525\\n\\n'\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# c:Water d:Toulene \n",
+ "Density_c = 998;# [kg/cubic m]\n",
+ "viscosity_c = 0.95*10**(-3);# [kg/m.s]\n",
+ "Dc = 2.2*10**(-9);# [square m/s]\n",
+ "Density_d = 865;# [kg/cubic m]\n",
+ "viscosity_d = 0.59*10**(-3);# [kg/m.s]\n",
+ "Dd = 1.5*10**(-9);# [square m/s]\n",
+ "sigma = 0.022;# [N/m]\n",
+ "Dist = 20.8;# [Distribution Coeffecient]\n",
+ "d = 0.5;# [m]\n",
+ "h = 0.5;# [m]\n",
+ "di = 0.15;# [m]\n",
+ "N = 13.3;# [r/s]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "qC = 3*10**(-3);# [cubic m/s]\n",
+ "qD = 3*10**(-4);# [cubic m/s]\n",
+ "#********#\n",
+ "\n",
+ "V = math.pi*h*d**2/4;# [Vessel volume,cubic m]\n",
+ "phi_DF = qD/(qD+qC);# [Volume fraction toulene]\n",
+ "# Assume:\n",
+ "phi_Dbyphi_DF = 0.9;\n",
+ "phi_D = phi_Dbyphi_DF*phi_DF;\n",
+ "phi_W = 1-phi_D;\n",
+ "# From Eqn. 10.56:\n",
+ "Density_M = (Density_c*phi_W)+(Density_d*phi_D);# [kg/cubic m]\n",
+ "if phi_W>0.4:\n",
+ " viscosity_M = (viscosity_c/phi_W)*(1+(6*viscosity_d*phi_D/(viscosity_d+viscosity_c)));# [kg/m s]\n",
+ "else:\n",
+ " viscosity_M = (viscosity_c/phi_D)*(1-(1.5*viscosity_c*phi_W/(viscosity_d+viscosity_c)));# [kg/m s]\n",
+ "\n",
+ "# Impeller Reynold's Number:\n",
+ "IRe = (di**2*N*Density_M/viscosity_M);\n",
+ "# From Fig 6.5 (Pg 152), curve g:\n",
+ "Po = 0.72;\n",
+ "P = Po*Density_M*N**3*di**5;# [W]\n",
+ "# From Eqn. 10.61:\n",
+ "Value1 = P*qD*viscosity_c**2/(V*sigma**3);\n",
+ "Value2 = viscosity_c**3/(qD*Density_c**2*sigma);\n",
+ "Value3 = Density_c/(Density_c-Density_d);\n",
+ "Value4 = sigma**3*Density_c/(viscosity_c**4*g);\n",
+ "Value5 = viscosity_d/viscosity_c;\n",
+ "phi_Dbyphi_DF = 3.39*Value1**0.247*Value2**0.427*Value3**0.430*Value4**0.401*Value5**0.0987;\n",
+ "# The value of phi_Dbyphi_DF is sufficiently close to the value 0.90 assumed earlier.\n",
+ "phi_D = phi_Dbyphi_DF*phi_DF;\n",
+ "# From Eqn. 10.6:\n",
+ "Value6 = viscosity_c/Density_c;# [square m/s]\n",
+ "Value7 = P/(V*Density_M);\n",
+ "Value8 = sigma/Density_c;\n",
+ "dp = 10**(-2.066+(0.732*phi_D))*Value6**0.0473*Value7**(-0.204)*Value8**(0.274);# [m]\n",
+ "a = 6*phi_D/dp;# [square m/cubic m]\n",
+ "Sca = viscosity_c/(Density_c*Dc);\n",
+ "# From Eqn. 10.65:\n",
+ "Shc = 65.3;\n",
+ "kLc = Shc*Dc/dp;# [kmol/square m s (kmol/cubic m)]\n",
+ "thetha = V/(qD+qC);# [s]\n",
+ "# From Table 10.1 (Pg 524):\n",
+ "# lambda = [lambda1 lambda2 lambda3]\n",
+ "Lambda = [1.359 ,7.23, 17.9];\n",
+ "# B = [B1 B2 B3]\n",
+ "B = [1.42 ,0.603 ,0.317];\n",
+ "Val = numpy.zeros(3);\n",
+ "Sum = 0;\n",
+ "for n in range(0,3):\n",
+ " Val[n] = (B[n]**2)*exp((-Lambda[n])*64*Dd*thetha/dp**2);\n",
+ " Sum = Sum+Val[n];\n",
+ "\n",
+ "# From Eqn. 10.66:\n",
+ "kLd = -(dp/(6*thetha))*math.log((3.0/8)*Sum);\n",
+ "mCD = 1.0/Dist;\n",
+ "# From Eqn. 10.67:\n",
+ "KLd = 1/((1/kLd)+(1/(mCD*kLc)));# [kmol/square m s (kmol/cubic m)]\n",
+ "Z = 0.5;# [m]\n",
+ "Vd = qD/(math.pi*Z**2.0/4);# [m/s]\n",
+ "# From Eqn.10.70:\n",
+ "NtoD = Z/(Vd/(KLd*a));\n",
+ "# From Eqn. 10.71:\n",
+ "EMD = NtoD/(NtoD+1);\n",
+ "print\"Expected stage efficiency: \\n\",round(EMD,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.7 - Page: 525\n",
+ "\n",
+ "\n",
+ "Expected stage efficiency: \n",
+ "0.93\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.8: Pg-539"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.8\n",
+ "# Page: 539\n",
+ "\n",
+ "print'Illustration 10.8 - Page: 539\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:acetic acid c:Water d:Isopropylether layer\n",
+ "# Water solution (continuous):\n",
+ "C = 8000.0;# [kg/h]\n",
+ "xCn = 0.175;# [mass fraction]\n",
+ "Density_c = 1009.0;# [kg/cubic m]\n",
+ "viscosity_c = 3.1*10**(-3);# [kg/m.s]\n",
+ "Dc = 1.24*10**(-9);# [square m/s]\n",
+ "\n",
+ "# Isopropyl Ethr Layer:\n",
+ "D = 20000.0;# [kg/h]\n",
+ "xDnPlus1 = 0.05;# [mass fraction]\n",
+ "Density_d = 730;# [kg/cubic m]\n",
+ "viscosity_d = 0.9*10**(-3);# [kg/m.s]\n",
+ "Dd = 1.96*10**(-9);# [square m/s]\n",
+ "\n",
+ "sigma = 0.013;# [/N/m]\n",
+ "m = 2.68;# [Distributon coeffecient]\n",
+ "#*******#\n",
+ "\n",
+ "Ma = 60.1;\n",
+ "g = 9.81;# [m/square s]\n",
+ "cCn = xCn*Density_c/Ma;# [kmol/cubic m]\n",
+ "cDnPlus1 = xDnPlus1*Density_d/Ma;# [kmol/cubic m]\n",
+ "mCD = m*(Density_c/Density_d);# [(kmol/cubic min ether)/(kmol/cubic m in water)]\n",
+ "\n",
+ "# Perforations:\n",
+ "Do = 0.006;# [m]\n",
+ "pitch = 0.015;# [m]\n",
+ "qD = D/(3600.0*Density_d);# [cubic m/s]\n",
+ "delta_Density = Density_c-Density_d;# [kg/cubic m]\n",
+ "Value1 = Do/(sigma/(delta_Density*g))**0.5;\n",
+ "if Value1<0.1785:\n",
+ " # From Eqn. 10.74(a):\n",
+ " doBydj = (0.485*Value1**2)+1;\n",
+ "else:\n",
+ " # From Eqn. 10.74(b)\n",
+ " doBydj = (1.51*Value1)+0.12;\n",
+ "\n",
+ "dj = Do/doBydj;# [m]\n",
+ "Vomax = 2.69*((dj/Do)**2)*(sigma/(dj*((0.5137*Density_d)+(0.4719*Density_c))))**0.5;# [m/s]\n",
+ "# Since Vomax is less than 0.1:\n",
+ "Vo = 0.1;# [m/s]\n",
+ "Ao = qD/Vo;# [square m]\n",
+ "No = Ao/(math.pi*Do**2.0/4);# [square m]\n",
+ "# From Eqn. 6.30:\n",
+ "# Plate area for perforation:\n",
+ "Aa = Ao/(0.907*(Do/pitch)**2);# [square m]\n",
+ "\n",
+ "# Downspout:\n",
+ "dp = 0.0007;# [m]\n",
+ "# From Eqn. 10.75:\n",
+ "U = Density_c**2*sigma**3/(g*viscosity_c**4*delta_Density);\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 1.515;\n",
+ "abcissa = 0.62;\n",
+ "def f74(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vt = fsolve(f74,7);# [m/s]\n",
+ "Vd = Vt[0];# [m/s]\n",
+ "qC = C/(Density_c*3600);# [cubic m/s]\n",
+ "Ad = qC/Vd;# [square m]\n",
+ "# From Table 6.2 (Pg 169):\n",
+ "# Allowing for supports and unperforated area:\n",
+ "At = Aa/0.65;# [square m]\n",
+ "T = (At*4/math.pi)**0.5;# [m]\n",
+ "An = At-Ad;# [square m]\n",
+ "\n",
+ "\n",
+ "# Drop Size:\n",
+ "alpha1 = 10.76;\n",
+ "alpha2 = 52560;\n",
+ "alpha3 = 1.24*10**6;\n",
+ "alpha4 = 3.281;\n",
+ "abcissa = (alpha2*sigma*Do/delta_Density)+(alpha3*Do**1.12*Vo**0.547*viscosity_c**0.279/delta_Density**1.5);\n",
+ "Parameter = alpha1*Density_d*Vo**2/(delta_Density);\n",
+ "ordinate = 0.024;\n",
+ "dp = ordinate/alpha4;\n",
+ "\n",
+ "# Coalesced layer:\n",
+ "Vn = qD/An;# [m/s]\n",
+ "# From Eqn. 10.80:\n",
+ "ho = (Vo**2-Vn**2)*Density_d/(2*g*0.67**2*delta_Density);# [m]\n",
+ "hD = ho;\n",
+ "# From Eqn. 10.82:\n",
+ "hC = 4.5*Vd**2*Density_c/(2*g*delta_Density);# [m]\n",
+ "# From Eqn. 10.78:\n",
+ "h = hC+hD;\n",
+ "# Since this is very shallow, increase it by placing an orifice at the bottom of the downspout.\n",
+ "# VR: Velocity through the restriction.\n",
+ "# hR: Corresponding depth of the coalesced layer.\n",
+ "# Assume:\n",
+ "Vr = 0.332;# [m/s]\n",
+ "hr = (Vr**2-Vd**2)*Density_c/(2*0.67**2*delta_Density);\n",
+ "Ar = qC/Vr;# [square m]\n",
+ "dr = (4*Ar/math.pi)**0.5;# [m]\n",
+ "h = h+hr;# [m]\n",
+ "# The above results are satisfacyory.\n",
+ "Z = 0.35;# [m]\n",
+ "# Lead the downspout apron to within 0.1 m of the tray below.\n",
+ "\n",
+ "# Dispersed-phase holdup:\n",
+ "# From Eqn. 10.48:\n",
+ "Vsphi_D = Vn;\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 165.2;\n",
+ "abcissa = 30.0;\n",
+ "def f75(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vtl = fsolve(f75,7);# [m/s]\n",
+ "# For solids:\n",
+ "# From Fig. 10.48 (Pg 536):\n",
+ "abcissa = dp/(3*viscosity_c**2/(4*Density_c*delta_Density*g))**(1.0/3);\n",
+ "phi_D = [0, 0.1 ,0.2 ,0.3];\n",
+ "# Corresponding ordinates, from Fig. 10.48 (Pg 536):\n",
+ "ordinate1 = [8.8, 5.9 ,4.3 ,3.0];\n",
+ "Value1 = 1.0/(4*viscosity_c*delta_Density*g/(3*Density_c**2))**(1.0/3);\n",
+ "Val = numpy.zeros((4,7));\n",
+ "# Val = [phi_D ordinate Vs(1-phi_D) (Vs for solids) Vs/Vt (Vs for liquids) (Vs*phi_D (for liquids))]\n",
+ "for i in range(0,4):\n",
+ " Val[i,0] = phi_D[i];\n",
+ " Val[i,1] = ordinate1[i];\n",
+ " Val[i,2] = Val[i,1]/Value1;\n",
+ " Val[i,3] = Val[i,2]/(1-Val[i,0]);\n",
+ " Val[i,4] = Val[i,3]/Val[0,3];\n",
+ " Val[i,5] = Vtl*Val[i,4];\n",
+ " Val[i,6] = Val[i,5]*Val[i,0];\n",
+ "\n",
+ "\n",
+ "# By Interpolation:\n",
+ "Phi_D = 0.1;\n",
+ "\n",
+ "thetha_f =0.2498 # s\n",
+ "# From Eqn. 10.87:\n",
+ "const = 1.5;\n",
+ "kLDf = const*(Dd/(math.pi*thetha_f))**0.5;# [m/s]\n",
+ "# From Eqn. 10.86\n",
+ "KLDf = 1.0/((1.0/kLDf)*(1+((1.0/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# The ordinate of Fig. 10.47 for the drops larger than 70. Hence mass transfer coeffecient during drop rise is given by Eqn. 10.89:\n",
+ "# From Eqn. 10.91:\n",
+ "b = 1.052*dp**0.225;\n",
+ "# From Eqn. 10.90:\n",
+ "omega = (1.0/(2*math.pi))*math.sqrt(192*sigma*b/(dp**3*((3*Density_d)+(2*Density_c))));# [1/s]\n",
+ "Del = 0.2;\n",
+ "kLDr = math.sqrt((4.0*Dd*omega/math.pi)*(1+Del+(1.0/2)*Del**2));\n",
+ "KLDr = 1.0/1/((1/kLDr)*(1+((1/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# From Eqn. 10.98:\n",
+ "EMD = ((4.4*KLDf/Vo)*(dp/Do)**2)+(6*KLDr*Phi_D*(Z-h)/(dp*Vn))/(1+((0.4*KLDf/Vo)*(dp*1.0/Do)**2)+(3*KLDr*Phi_D*(Z-h)/(dp*Vn)));\n",
+ "print\"Stage Efficiency: \",round(-EMD,3)\n",
+ "# The solution in the textbook is incorrect\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.8 - Page: 539\n",
+ "\n",
+ "\n",
+ "Stage Efficiency: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 0.057\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.9: Pg-551"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.9\n",
+ "# Page: 551\n",
+ "\n",
+ "print('Illustration 10.9 - Page: 551\\n\\n');\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#****Data****#\n",
+ "B = 20000;# [kg/h]\n",
+ "#******#\n",
+ "\n",
+ "# x and y are taken in weight fraction acetic acid.\n",
+ "x1 = 0.30;# [Wt fraction]\n",
+ "xF = 0.30;# [Wt fraction]\n",
+ "y2 = 0;# [Wt fraction]\n",
+ "x2 = 0.02;# [Wt fraction]\n",
+ "y1 = 0.10;# [Wt fraction]\n",
+ "# The operating diagram is plotted in Fig. 10.23:\n",
+ "# Data = [x x_star]\n",
+ "# From Fig. 10.23 (Pg 503):\n",
+ "Data = numpy.array([[0.30 ,0.230],[0.25 ,0.192],[0.20 ,0.154],[0.15, 0.114],[0.10, 0.075],[0.05, 0.030],[0.02, 0]]);\n",
+ "Val = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " Val[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x\");\n",
+ "plt.ylabel(\"1/(x-x*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# From Area Under the curve:\n",
+ "Area = 8.40;\n",
+ "# The mutual solubility of water and isopropyl ether is very small.\n",
+ "Ma = 18.0;# [kg/kmol water]\n",
+ "Mb = 60.0;# [kg/kmol isopropyl ether]\n",
+ "r = Ma/Mb;\n",
+ "# From Eqn. 10.110:\n",
+ "NtoR = Area+(1.0/2)*math.log(1-x2/(1-x1))+(1.0/2)*math.log(x2*(r-1)+1.0/(x1*(r-1)+1));\n",
+ "# Since the operating line and equilibrium line are parallel:\n",
+ "Np = NtoR;\n",
+ "print\"Number of theoretical Units: \\n\",round(NtoR,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.9 - Page: 551\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHXWV//H3Jwk7SBNgSECwFUdQBBuUNUBaFAzIEmVE\nECER3FARMSDLzBhABUG2URxlhiXgBsOowRBAQGl24o8xHUKQVTIshsgSBCbIlvP7o6pJd9Pdud33\n1q3lfl7P009u3VvVdU4X9On6nqpvKSIwMzPrMSrvAMzMrFhcGMzMrA8XBjMz68OFwczM+nBhMDOz\nPlwYzMysDxcGKxVJJ0n6yRCf3yNp1yz3UWaSNpH0giTlHYsVlwuD1UXSgZLmSHpR0mJJd0o6IsNd\nDnnjTUS8NyJuzmofkjolPVbLN5HULmmZpNz+P5O0UNJuPcsR8WhErBW+gcmG4MJgIyZpGnAucDqw\nQURsAHwRmCBp5UG2qfe/uWb8pdvofWQSs6TRNawWWe3fqsuFwUZE0trAycAREfGriPg/gIjojohP\nR8Qr6XozJP1I0tWSXgQ6JX1U0lxJf5P0qKTpvb5vz1/Zn5P0hKS/pAWoRwArS7pE0vPp0NH7e22/\nUNKH0tejJZ0o6aF03bskbZR+9m/pvv+Wvr/zCH8OXZJOkXRruo/fSlo3/bjnzOW5dPhm+3SbwyTd\nK+lZSddK2qTX99tD0v2SnpP0Q0k3STo8/WyqpNsknS3paWC6pHdI+r2kpyU9Jemn6bEhHQ7bBJiV\n7v+Y/mcxkjaU9BtJz0h6UNJne8VykqT/GuxnbdXlwmAjtSOwCnBlDeseBHwrItYEbgNeBD4dEWsD\nHwWOkLRfv206gXcCewDH9fyyJ/nrd1/gF8DawG+A83ptFywfCvo6cCCwZ0S8BfgM8FL62R+A9wHr\nAD8HrhjsLKfG/KYC/wCsDByTvr9L+u/a6fDNnDTPE4CPAesBt6S5IGk94ArgOGAscD/Jz7n3sM92\nwMPpvk5Nfx7fAcYD7wY2Bk4CiIhDgEeBvdP9nzlA7Jel64wH/gk4VdIHe32+D4P/rK2iXBhspNYD\nno6IZT1vSLpd0hJJS/v9BT4zIu4AiIiXI+KmiFiQLs8n+eU0sd/3PzkiXoqIe4CLSX759rglIq5N\nx8l/SvILfiCfBf45Ih7s2VdEPJu+/llELImIZRFxNkmR22wEP4cALo6IhyLi78B/AR09P5IB1v8i\ncFpE3J/+7E4DOtKzhr2AeyJiZhrX94En+23/l4j4Yfr53yPi4Yj4XUS8GhFPA+fw5p/lgCRtDOwE\nHBcRr0TEPOAC4NBeq9X6s7YKcWGwkXoGWK93zyAidoqIddLPet4PoE+zVtL2km6U9FdJzwFfANal\nr97bPAps2Gt5ca/XS4FVB+ldvJXkr+s3SYdV7k2HbJaQ/EW83iC5rkjvX94vAWsOse7bgH9LC+gS\nkp8VwEYkf7U/3m/9/sv9f5YbSLpM0uOS/gb8hDf/LAezIfBszzBg6tE0lh61/qytQnyAbaTuAF4G\nJo9g258DM4G3RkQb8GPe/N/iJv1ePzGC/TxGMhzVh6RdgGOBT0REW1rM/kbjm7QDXfnzKPD5iFin\n19ca6RnVIpJi1hOnei8P8j1PBV4H3psOzR1C35/lUFcf/QUYK6l3IduENxcjazEuDDYiEfEcSfP5\n3yXtL2ktSaMkdQBr9Fp1oF+2awJLIuIVSdsBn+LNv8D+RdJqkrYgGb+/fARhXgB8S9I7ldhK0th0\n/68BT0taWdI3gbeM4Pv3GKygPAUsAzbt9d6PgRMlvQeSJr6kT6SfXQ1sKWk/SWOALwPjVrDvNYH/\nA55PG+vH9vt8cb/9vyEiHgNuB06TtIqkrYDDSIaMrIW5MNiIRcT3SBq83yAZTnmS5BffN0jOKKBv\nM7jHl4BTJD0P/CsD/9K/CXgIuAH4XkTcMMT3G+yv4rNJxvyvIzkj+E9gVeC3wLXAA8BCkuGfR/t9\nv6H+0h5q/29sGxFLSRrDt6VDR9tFxEySy3svS4d+5gMfSdd/GvgEcAbwNEkz+S6SM7PB4joZ2CbN\nbxbwy37rnEZSZJdI+voA8R4EtJOcPfwK+GZE/H6I/fn+hxagrO9zkbQQeJ7kdPfViNgu/avtcpLx\n1oXAAelfoNbiJLUDfwbG9G5st6J0LP8x4FMRcVPe8VjraMYZQwCdEbF1RGyXvnc8cH1EvAv4Xbps\n1vLS+xjaJK0CnJi+fWeeMVnradZQUv8x2H2BS9LXlzCyBqZVVysPV+xIMoT2FMk9HpMj4uWhNzFr\nrGYMJf2ZZPzzdeD8iPhPSUvSK0F6rrx4tmfZzMzyNaYJ+5gQEYskrQ9cL+m+3h9GREhq5b8QzcwK\nJfPCEBGL0n+fkvRrklv6F0saFxFPShoP/LX/di4WZmYjExF13ZOTaY9B0uqS1kpfr0Ey7818kjlX\npqSrTSG52elNIqKyXwcfPJ311w9uuy3/WBr9NX369NxjcH7Or1Xza4Ssm88bALdI6gbmAFdFxHXA\nd4HdJT0A7JYut5QxYxZy6aUweTLcfnve0TTWwoUL8w4hU86v3KqeXyNkOpQUEY+wfEKx3u8/C3w4\ny32XwaRJvFEcZs6EnXbKOyIzM9/5nJupU6cCfYtDVc4cenKrKudXblXPrxEyv1x1pCRFUWPLwrXX\nwqGH+szBzOojiShy89kG19XV1We5SmcO/XOrGudXblXPrxFcGAqkSsXBzMrLQ0kF5GElMxspDyVV\nlM8czCxPLgw5WdE4Z5mLQ9XHcJ1fuVU9v0ZwYSiwMhcHMysv9xhKwD0HM6uVewwtwmcOZtZMLgw5\nGe44Z5mKQ9XHcJ1fuVU9v0ZwYSiRMhUHMysv9xhKyD0HMxuMewwtymcOZpYlF4ac1DvOWeTiUPUx\nXOdXblXPrxFcGEqsyMXBzMrLPYYKcM/BzHq4x2CAzxzMrLFcGHLS6HHOIhWHqo/hOr9yq3p+jZB5\nYZA0WtJcSbPS5ZMkPZ6+N1fSpKxjaBVFKg5mVl6Z9xgkfR14P7BWROwraTrwQkScvYLt3GMYIfcc\nzFpX4XsMkt4K7AVcAPQEql6vLQM+czCzemQ9lHQOcCywrNd7ARwpaZ6kCyW1ZRxDIWU9zplncaj6\nGK7zK7eq59cImRUGSXsDf42IufQ9Q/gR8HagA1gEnJVVDK3OZw5mNhKZ9RgknQocArwGrAq8Bfhl\nRBzaa512YFZEbDnA9jFlyhTa29sBaGtro6Ojg87OTmB51ffyipevvRYOPLCLb38bvvKV/OPxspe9\n3Ljlrq4uZsyYAUB7ezsnn3xy3T2GptzgJmkicExE7CNpfEQsSt8/Gtg2Ij41wDZuPjeQG9JmraHw\nzedeRNJbADhD0t2S5gETgaObFEOh9FT8ZmnmsFKzc2s251duVc+vEcY0YycR0QV0pa8PacY+7c16\nFwefOZjZYDxXUgvysJJZdZVpKMkKxFcrmdlQXBhykvc4Z5bFIe/csub8yq3q+TWCC0ML85mDmQ3E\nPQZzz8GsQtxjsIbwmYOZ9ebCkJOijXM2sjgULbdGc37lVvX8GsGFwd7gMwczA/cYbADuOZiVl3sM\nlgmfOZi1NheGnBR9nLOe4lD03Orl/Mqt6vk1gguDDcpnDmatyT0GWyH3HMzKwz0GawqfOZi1FheG\nnJRtnHM4xaFsuQ2X8yu3qufXCC4MVjOfOZi1BvcYbNjcczArLvcYLBc+czCrNheGnJR9nHOo4lD2\n3FbE+ZVb1fNrhMwLg6TRkuZKmpUuj5V0vaQHJF0nqS3rGCwbPnMwq6bMewySvg68H1grIvaVdAbw\ndEScIek4YJ2IOH6A7dxjKAn3HMyKo/A9BklvBfYCLgB6At0XuCR9fQkwOcsYLHs+czCrlqyHks4B\njgWW9Xpvg4hYnL5eDGyQcQyFVLVxzt7F4bzzuvIOJ1NVO3b9OT8bk9U3lrQ38NeImCupc6B1IiIk\nDTpeNHXqVNrb2wFoa2ujo6ODzs7kW/Uc3LIud3d3FyqeRiyvuir85CedfPKT8Ja3dLHJJsWKz8te\nruJyV1cXM2bMAHjj92W9MusxSDoVOAR4DVgVeAvwK2BboDMinpQ0HrgxIjYfYHv3GErqoovg9NNh\nzhxo86UFZk3ViB5DU25wkzQROCYi9kmbz89ExOmSjgfa3HyunqOOgvvvh9mzYfTovKMxax2Fbz73\n0/Nb/rvA7pIeAHZLl1tOz6lgFXV1dXHWWfDaa3DccXlH03hVPnbg/CzDHkNvEXETcFP6+lngw83Y\nr+VnzBi4/HLYfnvYaqvkclYzKwfPlWSZWrAAOjvhqquSImFm2SrbUJK1oC22SJrR++8PTzyRdzRm\nVgsXhpxUeZyzf2777ANf+hJ87GPw0kv5xNRIVT524PzMhcGa5IQT4B3vgM9/HjxCaFZs7jFY0yxd\nCrvsAgcdBMcck3c0ZtXUiB5DU65KMgNYffVkor3tt096D3vumXdEZjYQDyXlpMrjnEPltvHGcMUV\nMGUK3Hdf82JqpCofO3B+5sJgOZgwAb77XdhvP3juubyjMbP+3GOw3HjaDLPG830MVmpVnjbDrMxc\nGHJS5XHOWnPrmTZj5szkWQ5lUeVjB87PfFWS5WzddeHKK5NpMzbbzNNmmBWBewxWCLNmwRFHJM9w\n2GijvKMxKy/3GKwyqjZthlmZuTDkpMrjnCPNrSzTZlT52IHzMxcGKxApmYn13nuTK5bMLB/uMVjh\nPPZY0oS+8EJPm2E2XO4xWCVVYdoMszJzYchJlcc5G5HbhAlw2mnFnDajyscOnJ9lXBgkrSppjqRu\nSfdKOi19/yRJj0uam35NyjIOK6fDD4dJk+DAA+H11/OOxqx1ZN5jkLR6RCyVNAa4FTgG+BDwQkSc\nPcR27jEYr72WFIeODjjzzLyjMSu+UvQYImJp+nJlYDSwJF2uK3BrDWWdNsOszDIvDJJGSeoGFgM3\nRsSC9KMjJc2TdKGktqzjKJoqj3M2OreeaTOmTUvujM5blY8dOD9rwlxJEbEM6JC0NvBbSZ3Aj4BT\n0lW+BZwFHN5/26lTp9Le3g5AW1sbHR0ddHZ2AssPblmXu7u7CxVP0ZefeqqLo4+G/ffvZM4cePDB\nYsXnZS/ntdzV1cWMGTMA3vh9Wa+m3scg6V+BlyLizF7vtQOzImLLfuu6x2BvcuqpybDSTTfBaqvl\nHY1Z8RS+xyBpvZ5hIkmrAbsDcyWN67Xax4D5WcZh1VGWaTPMyizrHsN44Pdpj2EOyZnB74AzJN0t\naR4wETg64zgKp+dUsIqyzK33tBl5XaVU5WMHzs8y7jFExHxgmwHePzTL/Vq1rb56Mpy0/fbw3vd6\n2gyzRvNcSVZat92WTNN9882w+eZ5R2NWDIXvMZhlqcjTZpiVmQtDTqo8ztnM3PKYNqPKxw6cn7kw\nWAWcdVYydcZxx+UdiVk1uMdglfDMM0kz+pvfhEN9aYO1sEb0GFwYrDIWLIDOTrjqqqRImLUiN59L\nrMrjnHnltsUWyT0O++8PTzyR3X6qfOzA+dkwCkP6bIVVsgzGrF777ANf+lJyGetLL+UdjVk5DTqU\nJGkUMBk4CNiJpIgIeB24A/gZMDOr8R4PJdlIRcBBB8FKKyVTdcsTvFsLybTHIOlm4BbgN0B3RLyc\nvr8KsDWwL7BzROxaTwCDBubCYHVYuhR22SW5jPXYY/OOxqx5su4x7B4R/xwRc3qKAkBEvBwRd0bE\niSST4tkIVHmcswi59Uybcc45cM01jf3eRcgvS87PBi0MEfGypIMBJB002DpZBWZWr403hiuugClT\n4L778o7GrDyGvFxV0rHA/wJvi4jvNS0qPJRkjXPhhXDGGcnT39pa7lmB1moyHUqSNB0YC/wcGJsu\nm5VOHtNmmJXZUENJJwPPAIcAz6TL1iBVHucsYm6NnDajiPk1kvOzFd3HsCgifgFkeLuQWfbGjIHL\nL08a0pdemnc0ZsW2wikxJH04Im7o996UiLgk08DcY7AMeNoMq7pmTYkxXdKPJK0haZykWST3MJiV\nTrOmzTArs1oKw0Tgz8A8khvefhER+2caVQuo8jhn0XOrd9qMoudXL+dntRSGdYBtgYeBV4BNpBVP\nMpDOrTRHUrekeyWdlr4/VtL1kh6QdJ0kX0BoTXfCCfCOd8DnP59MoWFmy9XSY3gAOD0iLpS0OnA6\n8P6I2GmF31xaPSKWShoD3AocQzIM9XREnCHpOGCdiDh+gG3dY7BMLV0KO++czKvkaTOsKpryPAZJ\nb4uI/+333sSIuKnmnSQF5SZgKvBLYGJELJY0DuiKiDc9yt2FwZrhsceSJvQFF8Bee+UdjVn9mtJ8\n7l0UJJ2UvldTUZA0SlI3sBi4MSIWABtExOJ0lcXABsMNugqqPM5Zptx6ps2YOrX2aTPKlN9IOD8b\nM8z19wNOqnXliFgGdEhaG/itpA/2+zwkDXpaMHXqVNrb2wFoa2ujo6ODzs5OYPnBLetyd3d3oeJp\n5eUJE2DKlC523x3mz++kra1Y8XnZy0Mtd3V1MWPGDIA3fl/Wa1iP9pQ0NyK2HtGOpH8FXgI+C3RG\nxJOSxpOcSXgoyXJ31FFw//0wezaMHp13NGYjk8ejPT+Q7njlFa0oab2eK44krUYyRfdckuc7TElX\nmwLMHGYMZplo5LQZZmW2wsIg6SZJbweIiNclbQfcVcP3Hg/8Pu0xzAFmRcTvgO8Cu6dXO+2WLrec\nnlPBKiprbrVOm1HW/Grl/KyWHsOpwDWSfgBsBOxJcnXRkCJiPrDNAO8/C3x4eGGaNce668KVVybT\nZmy2mafNsNZUU48hbRpfDzwFbB0RT2YemHsMlqNZs+CII5JnOGy0Ud7RmNWuKT2GtGn8A2AXkiuS\nbpK0dz07NSu6eqfNMCuzWprP6wLbRsQdEXE+sAdwVLZhVV+Vxzmrkttg02ZUJb/BOD+r5Qa3r0XE\nS72W/5ekOJhVmpTMxLpgAZx5Zt7RmDXPoD0GSRcBP4qI/zfI59sDX4yIz2QSmHsMVhCeNsPKJNO5\nkiRtCRwL7ADcDywCBIwDNgNuB86MiHvqCWDQwFwYrEBuuy3pN9x8M2z+ptsxzYoj0+ZzRMyPiEOB\nLYHvAL8juTLp28BWETE1q6LQCqo8zlnF3CZMgNNOg/32g6uu6so7nExV8fj1VvX8GmHQ+xgk/Qdw\nDXBDRNwJ3Nm0qMwK6PDD4e67Ydq05BLWrUc0OYxZ8Q01lLQDyc1suwGvAr8Fro2IeU0JzENJVkDL\nlsHFF8OJJ8IBB8C3vgVtftSUFUjWQ0l3RsT0iNgFOAB4DJiWPpHtIkkH1LNjszIaNSo5c7j3Xnjl\nFXj3u5PpM/w3jFVJTZPoRcTTEfHztOewNXAf8I+ZRlZxVR7nrHJukOS37rpw/vnJ9Bnf/z7suivM\nn593ZI3RCsfPhjbc2VVJx3eOjIjvZBCPWalst10ybcbBB8OHPgRHHw3PP593VGb1GarHMNTfP5tF\nxAqn3q6HewxWNk89BccfD9deC9/7XvIsadU10ms2fFnfx7AYmAQsGeDj2yNiw3p2vMLAXBispG6/\nPZlnaexYOO88eM978o7IWknWk+jNBtaMiIX9v4Canvlsg6vyOGeVc4MV57fTTnDXXckNcRMnwje+\nAS++2JzYGqHVj58NfVXSYRFxyyCfHZRdSGblN2YMHHlk0pBetCi5eumKK3z1kpXDsJ753EweSrIq\nufnmZHhpww3hBz9IHgJkloU8nvlsZiOw664wdy585CPJ9Br//M+wdGneUZkNzIUhJ1Ue56xybjDy\n/FZaKZlOY948ePjhpCl95ZXFG17y8bNMC4OkjSXdKGmBpHskfTV9/yRJj0uam35NyjIOsyLZaCO4\n7DK48MLk8ta9904KhVlRZNpjkDQOGBcR3ZLWBP4HmEwyxcYLEXH2ENu6x2CV98orcM45yX0PX/kK\nHHccrLZa3lFZmRW+xxART0ZEd/r6ReBPQM+j1X3rj7W8lVdOisEf/wj33APvfS9cfXXeUVmra1qP\nQVI7yTxLPdN3HylpnqQLJbXc/JRVHuescm6QTX6bbAL//d/wwx/CUUfB5MmwcGHDd1MTHz8b9HkM\njZQOI/03cFREvCjpR8Ap6cffAs4CDu+/3dSpU2lvbwegra2Njo4OOjs7geUHt6zL3d3dhYrHy8VY\nnjSpk/nz4ctf7mKrreC44zo55hi4445ixOfl4i13dXUxY8YMgDd+X9Yr8/sYJK0EXAVcExHnDvB5\nOzArIrbs9757DNbSHnkEvvY1+NOfkqk19tgj74isDArfY5Ak4ELg3t5FQdL4Xqt9DKjIhMVmjfP2\ntyeXs559Nnzxi/CJT8Djj+cdlbWCrHsME4BPAx/sdWnqnsDpku6WNA+YCBydcRyF03MqWEVVzg2a\nn9/ee8OCBcl9Dx0dcMYZydVMWfHxs6yvSro1IkZFREdEbJ1+XRMRh0bEVhHxvoiYHBGLs4zDrOxW\nWw1OPhnuvBNuvDEpEDfemHdUVlWeK8msZCJg5syk/zBhApx1Fowfv+LtrDUUvsdgZo0nJVN633sv\ntLfDVlvBuefCa6/lHZlVhQtDTqo8zlnl3KA4+a2xBpx6Ktx6K8yeDdtsk7yuV1Hyy0rV82sEFwaz\nkttsM7juOviXf0keJzplCix2187q4B6DWYW88AKccgrMmAHTp8MRR8Do0XlHZc2U6TOf8+bCYDZy\nCxbAl78Mzz8P//7vsMMOeUdkzeLmc4lVeZyzyrlBOfLbYovkctZp0+DjH4fPfhaefrq2bcuQXz2q\nnl8juDCYVZQEBx+cTKmx5prJDXLnnw+vv553ZFZ0HkoyaxHz5iXPnX711WR46QMfyDsiy4KHksys\nZu97H9xyS1Ic9t47aUw/+2zeUVkRuTDkpMrjnFXODcqd36hRMHVqMrw0alQyvHTRRbBs2fJ1ypxf\nLaqeXyO4MJi1oHXWSR4KNHt20nfYeWdIHxFi5h6DWatbtgwuvDC5Qe6Tn0wm61tnnbyjspFyj8HM\n6jZqFHzuc8ncS6+8AptumkzQ98gjeUdmeXFhyEmVxzmrnBtUN79114Uf/xjOP7+LVVaBbbeFAw6A\nOXPyjqyxqnr8GsmFwcz6WH99OP305IxhwgQ48MCkB/HrX/seiFbhHoOZDem115KicOaZyeWtX/ta\ncmXTGmvkHZkNxHMlmVnTRMBttyUPBrr1VvjCF+ArX4Fx4/KOzHpz87nEqjzOWeXcoHXzk5YPKd1+\nOyxZktwHcdhhcM89zY2xHlU/fo2QaWGQtLGkGyUtkHSPpK+m74+VdL2kByRdJ6ktyzjMrLH+8R+T\n+yAefDC5imn33WHSJLjhhuTMwsot06EkSeOAcRHRLWlN4H+AycBngKcj4gxJxwHrRMTx/bb1UJJZ\nSbz8MvzsZ3D22cnzH6ZNS5rWK6+cd2Stp3Q9BkkzgfPSr4kRsTgtHl0RsXm/dV0YzEomAn7726QP\nce+9cOSRSS/CN8w1T6l6DJLaga2BOcAGEdHz8MHFwAbNiqMoqjzOWeXcwPkNRUqGlK6/Hq6+OpmT\nadNN4atfhT//uXEx1qPqx68RxjRjJ+kw0i+BoyLiBWl5MYuIkDTgqcHUqVNpb28HoK2tjY6ODjo7\nO4HlB7esy93pxDRFicfLXs5i+ZJLOnniCTj22C623hr22KOTadPg738vRnxVWO7q6mLGjBkAb/y+\nrFfmQ0mSVgKuAq6JiHPT9+4DOiPiSUnjgRs9lGRWbS++mMzkeu65MH580ofYbz8/k7rRCt9jUHJq\ncAnwTEQc3ev9M9L3Tpd0PNDm5rNZa3j99eSS17POgqeeSm6Y+8xnfMNco5ShxzAB+DTwQUlz069J\nwHeB3SU9AOyWLreUnlPBKqpybuD86jV6NPzTP8Edd8Cll8Lvfw/t7XDiibBoUaa7Bqp//Boh0x5D\nRNzK4MXnw1nu28yKb6ed4Fe/goceSoaYttgiGV76+tdhyy3zjq51eUoMMyuMZ59NZng977ykMEyb\nltw8p7oGRlpL4XsM9XBhMGtdL78MP/95csOclBSIgw7yDXO1KEOPwQZR5XHOKucGzq8ZVlklaUjf\nfTd873vJXdVvfzucdlpyVlGPIuRXdC4MZlZYEnzkI3DddXDNNXD//fDOdyZ3VD/8cN7RVZeHksys\nVP7yl6QH8R//ARMnJsNMO+2Ud1TF4R6DmbWsF1+Eiy+Gc85JngkxbRpMnuwb5txjKLEqj3NWOTdw\nfkWx5prJkNKDDyZF4ayz4F3vgh/8ICkagylLfnlyYTCzUhs9GvbfP3l40E9/CjfdlDSqTzghGXay\n4fNQkplVzsMPJzfM/exnsM8+yRnFVlvlHVVzeCjJzGwAm26aDCk99BBsvnkyFfgeeyTPili2LO/o\nis+FISdVHuescm7g/Mpk7NhkSOmRR+Dgg+H442G99bo47DD45S/h+efzjrCYXBjMrPJWWQWmTIG5\nc5NLXbfeOrncdaONkik3zj03ObuwhHsMZtayXnwRbrgBrroKZs+GtdeGj34U9t4bdt4ZVlop7wiH\nz/cxmJk1yLJlyRlFT5F48MHkbGLvvWHPPWH99fOOsDZuPpdYlcZx+6tybuD8ym6w/EaNgve/H6ZP\nhz/8IXle9aRJcOWVyTQcO+4I3/kOzJsHVf+b1YXBzGwA48bxRpP6r3+FU05J/v34x2GTTeCLX0zO\nLpYuzTvSxvNQkpnZMEQkk/n1DDnddRfsumsy5PTRjyZFI0/uMZiZ5ey555L7I2bPTmaAHT9+eZHY\nYYfmz91U+B6DpIskLZY0v9d7J0l6vN8zoFtOlcdxq5wbOL+ya3R+bW3wyU8mz69+8snkCXQSfOlL\nsMEGcMghcNllsGRJQ3ebqax7DBcD/X/xB3B2RGydfl2bcQxmZk0xenQyBXhPk/qPf4QJE5I5nN72\nNujsTB489Kc/FbuBnflQkqR2YFZEbJkuTwdejIizVrCdh5LMrDKWLoUbb0x6E1ddlTymtOeeiYkT\nk5vwGqEUPYZBCsNngL8BdwHTIuK5AbZzYTCzSoqA+fOXF4kFC2C33ZIisddeSZ9ipArfYxjEj4C3\nAx3AImCYVbYsAAAGxklEQVTIM4eqqvI4bpVzA+dXdkXIT0pmez3xxGS68IceSi6Dve46eM974AMf\ngJNOSq54ymPSvzHN3mFE/LXntaQLgFmDrTt16lTa29sBaGtro6Ojg87OTmD5wS3rcnd3d6Hi8bKX\nvZzf8oIFXWy8MVx+eSevvgo//GEXd9yRLC9ZAtts08WOO8LXvtbJWmv13b6rq4sZM2YAvPH7sl55\nDCWNj4hF6eujgW0j4lMDbOehJDNreQ89lFwKO3s23HFHcgd2z+Wwm2765vUL32OQ9AtgIrAesBiY\nDnSSDCMF8AjwhYhYPMC2LgxmZr288AJcf33Sl7j6alhnneVFYsKEZNK/wvcYIuKgiNgwIlaOiI0j\n4qKIODQitoqI90XE5IGKQivoORWsoirnBs6v7Mqc31prJb2Iiy5KHlt66aWw+upwzDHwD/8ABx7Y\nmP14riQzsxIaNQq23RZOPjlpUi9YkEz61wieEsPMrEIKP5RkZmbl48KQkzKPc65IlXMD51d2Vc+v\nEVwYzMysD/cYzMwqxD0GMzNrOBeGnFR5nLPKuYHzK7uq59cILgxmZtaHewxmZhXiHoOZmTWcC0NO\nqjzOWeXcwPmVXdXzawQXBjMz68M9BjOzCnGPwczMGs6FISdVHuescm7g/Mqu6vk1gguDmZn14R6D\nmVmFuMdgZmYNl2lhkHSRpMWS5vd6b6yk6yU9IOk6SW1ZxlBUVR7nrHJu4PzKrur5NULWZwwXA/2f\nQno8cH1EvAv4Xbrccrq7u/MOITNVzg2cX9lVPb9GyLQwRMQtwJJ+b+8LXJK+vgSYnGUMRfXcc8/l\nHUJmqpwbOL+yq3p+jZBHj2GDiFicvl4MbJBDDGZmNohcm8/pZUcteenRwoUL8w4hM1XODZxf2VU9\nv0bI/HJVSe3ArIjYMl2+D+iMiCcljQdujIjNB9iuJQuGmVm96r1cdUyjAhmG3wBTgNPTf2cOtFK9\niZmZ2chkesYg6RfARGA9kn7CN4Ergf8CNgEWAgdEhLtBZmYFUdg7n83MLB9Nbz5LmiTpPkkPSjpu\nkHW+n34+T9LWw9k2b3Xmt1DS3ZLmSvpD86Ku3Yryk7S5pDsk/V3StOFsWwR15lfo41dDbgen/03e\nLek2SVvVum0R1JlfoY8d1JTffml+cyX9j6Tdat32TSKiaV/AaOAhoB1YCegG3t1vnb2Aq9PX2wN3\n1rpt3l/15JcuPwKMzTuPOvNbH/gA8G1g2nC2zfurnvyKfvxqzG1HYO309aQK/r83YH5FP3bDyG+N\nXq+3BB4a6fFr9hnDdmmwCyPiVeAyYL9+67xxA1xEzAHaJI2rcdu8jTS/3vdyFLnpvsL8IuKpiLgL\neHW42xZAPfn1KOrxqyW3OyLib+niHOCttW5bAPXk16Ooxw5qy+//ei2uCTxd67b9NbswbAQ81mv5\n8fS9WtbZsIZt81ZPfpDc03GDpLskfS6zKEeulvyy2LZZ6o2xyMdvuLkdDlw9wm3zUE9+UOxjBzXm\nJ2mypD8B1wBfHc62vTX7ctVaO91FrtxDqTe/nSPiL5LWB66XdF8k04oURT1XKpThKod6Y5wQEYsK\nevxqzk3SB4HDgAnD3TZH9eQHxT52UGN+ETETmClpF+Ankt50j1gtmn3G8ASwca/ljUmq11DrvDVd\np5Zt8zbS/J4AiIi/pP8+Bfya5BSwSOo5BlU5foOKiEXpv0U8fjXlljZk/xPYNyKWDGfbnNWTX9GP\nHQzzGKRFbQwwNl1veMevyQ2UMcDDJE2QlVlxc3YHljfAVrht3l915rc6sFb6eg3gNmCPvHMabn69\n1j2Jvs3nShy/IfIr9PGr8b/NTUialDuM9OdS0vwKfeyGkd+mLL8FYRvg4ZEevzwS3BO4Pz1AJ6Tv\nfQH4Qq91zks/nwdsM9S2RfsaaX7AO9ID1g3cU9b8gHEk45l/I5lZ91Fgzaocv8HyK8PxqyG3C4Bn\ngLnp1x+G2rZoXyPNrwzHrsb8vpHGPxe4Bdh2pMfPN7iZmVkffrSnmZn14cJgZmZ9uDCYmVkfLgxm\nZtaHC4OZmfXhwmBmZn24MJiZWR8uDGZm1ocLg1mNJG2bPghlFUlrSLpH0nvyjsus0Xzns9kwSPoW\nsCqwGvBYRJyec0hmDefCYDYMklYC7gJeAnYM/w9kFeShJLPhWY9kBs41Sc4azCrHZwxmwyDpN8DP\nSWbkHB8RR+YcklnDNfsJbmalJelQ4OWIuEzSKOB2SZ0R0ZVzaGYN5TMGMzPrwz0GMzPrw4XBzMz6\ncGEwM7M+XBjMzKwPFwYzM+vDhcHMzPpwYTAzsz5cGMzMrI//D7prQArQbUy7AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x78c3a58>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical Units: \n",
+ "8.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.10:pg-552"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.10\n",
+ "# Page: 552\n",
+ "\n",
+ "print('Illustration 10.10 - Page: 552\\n\\n');\n",
+ "\n",
+ "# Solution\n",
+ "import math\n",
+ "#****Data****#\n",
+ "B = 1150;# [kg/h]\n",
+ "#*******#\n",
+ "\n",
+ "# x and y are taken in weight ratio.\n",
+ "x1_prime = 0.0101;# [Wt. fraction]\n",
+ "xF_prime = 0.0101;# [Wt. fraction]\n",
+ "y2_prime = 0;# [Wt. fraction]\n",
+ "x2_prime = 0.001001;# [Wt. fraction]\n",
+ "y1_prime = 0.0782;# [Wt. fraction]\n",
+ "# From Illustration 10.4:\n",
+ "A = 990.0;# [kg/h]\n",
+ "# At the dilute end:\n",
+ "m1_prime = 0.798;\n",
+ "Value1 = m1_prime*B/A;\n",
+ "# At the concentrated end:\n",
+ "m2_prime = 0.953;\n",
+ "Value2 = m2_prime*B/A;\n",
+ "ValueAv = (Value1*Value2)**0.5;\n",
+ "# From Eqn. 10.116:\n",
+ "# Since y2_prime = 0\n",
+ "Value3 = x2_prime/x1_prime;\n",
+ "NtoR = (math.log((1.0/Value3)*(1-(1/ValueAv))+(1/ValueAv)))/(1-(1/ValueAv));\n",
+ "print\"Number of theoretical Unit : \",round(NtoR,1),\"\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.10 - Page: 552\n",
+ "\n",
+ "\n",
+ "Number of theoretical Unit : 8.6 \n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter10_2.ipynb b/Mass_-_Transfer_Operations/Chapter10_2.ipynb
new file mode 100755
index 00000000..df27b4e6
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter10_2.ipynb
@@ -0,0 +1,1366 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9fbb8ba54aec06ad3c69036b535306d5fcf2bbf41aaf2bb73bb23d87c87b8396"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10: Liquid Extraction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.1: Page 494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.1\n",
+ "# Page: 494\n",
+ "\n",
+ "print'Illustration 10.1 - Page: 494\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "xF = 0.30;# [mol fraction]\n",
+ "yS = 0;# [mol fraction]\n",
+ "S1 = 40.0;# [kg]\n",
+ "B1 = 40.0;# [kg]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data at 20 OC:\n",
+ "# Wa: Wt. percent of a\n",
+ "# Wb: Wt. percent of b\n",
+ "# Wc: Wt. percent of c\n",
+ "# Data1 = [Wc Wa Wb]\n",
+ "# Data1: water layer\n",
+ "Data1 = numpy.array([(0.69 ,98.1, 1.2),(1.41, 97.1 ,1.5),(2.89 ,95.5 ,1.6),(6.42 ,91.7 ,1.9),(13.30, 84.4, 2.3),(25.50 ,71.1 ,3.4),(36.70 ,58.9 ,4.4),(44.30 ,45.1 ,10.6),(46.40 ,37.1 ,16.5)])\n",
+ "# Data2: isopropyl ether layer\n",
+ "Data2 = numpy.array([(0.18 ,0.5 ,99.3),(0.37, 0.7 ,98.9),(0.79, 0.8, 98.4),(1.93 ,1, 97.1),(4.82, 1.9, 93.3),(11.40, 3.9, 84.7),(21.60, 6.9, 71.5),(31.10, 10.8, 58.1),(36.20 ,15.1 ,48.7)])\n",
+ "\n",
+ "plt.plot((Data1[:,2])/100,(Data1[:,0])/100,label=\"x Vs fraction ether\")\n",
+ "plt.plot((Data2[:,2])/100,(Data2[:,0])/100,label=\"y Vs fraction ether\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='lower center');\n",
+ "ax=pylab.gca()\n",
+ "ax.set_xlabel(\"Wt fraction of isopropyl ether\");\n",
+ "ax.set_ylabel(\"Wt fraction of acetic acid\");\n",
+ "plt.ylim((0,0.3))\n",
+ "plt.xlim((0,1))\n",
+ "plt.show();\n",
+ "# x: Wt fraction of acetic acid in water layer.\n",
+ "# y: Wt fraction of acetic acid in isopropyl layer.\n",
+ "\n",
+ "# The rectangular coordinates of Fig 10.9(a) will be used but only upto x = 0.30\n",
+ "\n",
+ "# Stage 1:\n",
+ "F = 100;# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "M1 = F+S1;# [kg]\n",
+ "# From Eqn. 10.5:\n",
+ "xM1 = ((F*xF)+(S1*yS))/M1;\n",
+ "# From Fig. 10.15 (Pg 495):\n",
+ "# Point M1 is located on the line FB and with the help of tie line passing through M1:\n",
+ "x1 = 0.258;# [mol fraction]\n",
+ "y1 = 0.117;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E1 = (M1*(xM1-x1)/(y1-x1));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R1 = M1-E1;# [kg]\n",
+ "\n",
+ "# Stage 2:\n",
+ "S2 = 40;# [kg]\n",
+ "B2 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M2 = R1+B2;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM2 = ((R1*x1)+(S2*yS))/M2;\n",
+ "# Point M2 is located on the line R1B and the tie line passing through R2E2 through M2:\n",
+ "x2 = 0.227;\n",
+ "y2 = 0.095;\n",
+ "# From Eqn. 10.8:\n",
+ "E2 = (M2*(xM2-x2)/(y2-x2));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R2 = M2-E2;# [kg]\n",
+ "\n",
+ "# Stage 3:\n",
+ "S3 = 40;# [kg]\n",
+ "B3 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M3 = R2+B3;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM3 = ((R2*x2)+(S3*yS))/M3;\n",
+ "# Point M3 is located on the line R2B and the tie line passing through R3E3 through M3:\n",
+ "x3 = 0.20;# [mol fraction]\n",
+ "y3 = 0.078;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E3 = (M3*(xM3-x3)/(y3-x3));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R3 = M3-E3;# [kg]\n",
+ "Ac = x3*R3;\n",
+ "print\"The composited extract is\",round((E1+E2+E3),2),\" kg\\n\"\n",
+ "print\"The acid content is \",round(((E1*y1)+(E2*y2)+(E3*y3)),2),\" kg\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# If an extraction to give the same final raffinate concentration were to be done in single stage, the point M would be at the intersection of tie line R3E3 and the line BF.\n",
+ "x = 0.20;# [mol fraction]\n",
+ "xM = 0.12;# [mol fraction]\n",
+ "# From Eqn. 10.6:\n",
+ "S = F*(xF-xM)/(xM-yS);# [kg]\n",
+ "print round(S,2),\"kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.1 - Page: 494\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYcgIDklABAZBBQNBVwQxjAkHE+6aFxVE\nEfUjKauACfOqCLKoiGIAhQVX1wCiRGeMICBZQUFBEdAFBCQNDMP5/qia6WaYUBOqq8N5n6ee7sqn\nz3T3nbq3615RVYwxxpiilAs6AGOMMbHBCgxjjDGeWIFhjDHGEyswjDHGeGIFhjHGGE+swDDGGOOJ\nrwWGiKSJyEoRWSUiA/NZ30VElojIIhH5RkTO9bqvMcaYyBK/7sMQkSTge+B8YD0wH7hOVVeEbVNN\nVXe5z08C3lPV5l72NcYYE1l+XmG0A1ar6lpVzQImAV3CN8gpLFyHAZu97muMMSay/CwwGgLrwuZ/\ndZcdREQuF5EVwMdA3+Lsa4wxJnL8LDA81XWp6vuq2hK4FHhTRMTHmIwxxpRQeR+PvR5oFDbfCOdK\nIV+q+rmIlAdqudsVua+IWEdYxhhTAqpa7H/O/bzCWAAcIyIpIlIRuAaYHL6BiDTLuaIQkZMBVHWL\nl31zqKrn6dprlQkTvG8fS9OQIUMCjyFaJsuFMz3+2eM0/2tzDhw4EHgs0TDZ+yI0lZRvBYaq7gd6\nA9OB74C3VHWFiPQSkV7uZlcAy0RkEfAv4NrC9i1tTLt3Q9WqpT1KdFq7dm3QIUQNy4Xj7tPvZtOG\nTbz17VtBhxIV7H1Ren5WSaGqH+M0Zocveyns+dPA0173La1du+K3wDAmrwpJFejYqCN3Tr+TTs06\nUatKraBDMjEuoe703r0bqlULOgp/dO/ePegQooblIuTu/7ubq46/irtn3B10KIGz90Xp+XbjXiSI\niBYn/jZt4PXXoW1bH4MyJsrs2LuDE0adwLjLx3FO03OCDsdEARFBo6zRO+rEcxtGRkZG0CFEDctF\nSEZGBtUrVeeFi16g14e92JO1J+iQAmPvi9JLqAJj1674rZIypjCXHncpreu35vHPHw86FBPDEqpK\nqmZN+PFHqGVtfyYBbdyxkdajWzP7xtmcVO+koMMxAbIqKQ/iuUrKmKI0qN6Ax859jJ5TepJ9IDvo\ncEwMSpgCY/9+Z6pUKehI/GH1syGWi5C8ubjl5FuomFSRFxe8GExAAbL3ReklTIGRc3VhPVWZRFZO\nyvHypS/z8KcPs277uqJ3MCZMwrRh/PYbtG4Nv//uc1DGxIBHPn2EbzZ+w/vXvI/195l4rA2jCNZ+\nYUzIwI4DWbVlFe+ueDfoUEwMSZgCI95/Umv1syGWi5CCclGpfCXGXDqGvtP6si1zW2SDCoi9L0ov\nYQoMu8Iw5mAdG3fksmMvY9CsQUGHYmJEwrRhpKfDww+D/ZNhTMj2zO2cMOoEJl4xkTObnBl0OCZC\nrA2jCPFeJWVMSRxe+XBGdh7JrR/eyt79e4MOx0S5hCkw4r1KyupnQywXIV5y8beWf6NFnRb884t/\n+h9QgOx9UXpWYBhjeL7z87ww/wVWbCr1OGUmjiVMG8aoUbB8ufNojDnUqPmj+Peyf/PZTZ9RThLm\nf8mEZG0YRbDR9owp3G1/uY0DeoAx34wJOhQTpRKmwIj3Kimrnw2xXIQUJxflpBxjLh3D/en3s2HH\nBv+CCoi9L0rPCgxjTK4TjjiB2065jb4f9w06FBOFEqYNo3dvOO446NPH56CMiXGZ+zNpPbo1T5//\nNF1adAk6HOMDa8Mogl1hGONN5fKVefmSl+n9cW/+3Ptn0OGYKGIFRpyw+tkQy0VISXNxdsrZpDVL\n497Z95ZtQAGy90XpJVSBYXd6G+Pd0xc8zbsr3mXOujlBh2KiRMK0YZx3HgweDOef73NQxsSR/3z7\nHx759BEW9lpIxaSKQYdjyoi1YRQh3qukjPHDVcdfRUpyCkO/HBp0KCYKJFSBEc9VUlY/G2K5CClt\nLkSEUReP4tm5z/LDlh/KJqiA2Pui9BKmwLA7vY0pmcaHN+aBsx7g1im3EstV2Kb0fG3DEJE0YASQ\nBLyiqk/lWd8VuAcQYAdwu6ouddetBf4EsoEsVW2Xz/E9t2EceSTMnw8NG5b89RiTqLIPZNPh1Q70\nOqUXN598c9DhmFIqaRuGbwWGiCQB3wPnA+uB+cB1qroibJsOwHequt0tXB5S1fbuujXAKar6RyHn\n8FxgJCfDmjVQs2aJX5IxCW3Jb0u44M0LWHb7MuodVi/ocEwpRGOjdztgtaquVdUsYBJw0G2jqjpH\nVbe7s18DR+U5RrFfUEHifQAlq58NsVyElGUuWtdvzc1tb6bftH5ldsxIsvdF6flZYDQE1oXN/+ou\nK8jNwEdh8wrMEpEFItKzNIFkZYEqVKhQmqMYYx48+0EWbFjA1B+mBh2KCYCfVVJXAGmq2tOdvx44\nTVUP6c1JRM4BXgA6qupWd1kDVd0oInWBmUAfVf08z36eqqS2b4fGjZ1HY0zpzP5pNj0m9+DbO77l\nsIqHBR2OKYGSVkmV9yMY13qgUdh8I5yrjIOISCtgDE7hsjVnuapudB83ich7OFVcn+fdv3v37qSk\npACQnJxMmzZtSE1NBUKXoMcem0rVqqH5vOtt3uZt3vv8eanncU7KOXQf0Z3e7XoHHo/NFz2fkZHB\n2LFjAXK/L0tEVX2ZcAqjH4EUoCKwGGiZZ5vGwGqgfZ7lVYHq7vNqwJdAp3zOoV6sWqV69NGeNo1Z\n6enpQYcQNSwXIX7lYvOuzVpvaD2d9+s8X47vB3tfhLjfncX+XvetDUNV9wO9genAd8BbqrpCRHqJ\nSC93sweBmsCLIrJIROa5y+sDn4vIYpzG8A9VdUZJY4n3Bm9jIq121doM6zSMnlN6kpWdFXQ4JkIS\noi+pOXPgzjth7twIBGVMglBVOk/ozDkp5zDwjIFBh2OKIRp/Vhs14r1bEGOCICK8ePGLDP1qKD/+\n8WPQ4ZgISIgCIxG6Bclp4DKWi3B+56JpzaYMPmMwvT7sFfXdhtj7ovQSosCwnmqN8U+/9v3YmrmV\nN5e+GXQoxmcJ0Ybx2mvwxRfOozGm7C3cuJDOEzqz/Pbl1K1WN+hwTBGsDaMQiVAlZUyQTm5wMje0\nuoG7ZtwVdCjGRwlRYCRCo7fVz4ZYLkIimYuHUx/mi1++YPrq6RE7Z3HY+6L0EqLAsCsMY/xXrWI1\nRl88mtun3s6ufbuCDsf4ICHaMP7xD6hXD+6+OwJBGZPgrn/3ehoc1oChnWxY12hlbRiFSIQqKWOi\nxfALh/PG0jdYuHFh0KGYMlZggSEiV4jI38IeD5oiGWRpJUKVlNXPhlguQoLIxRHVjuDp85+m55Se\n7D+wP+LnL4i9L0qvsCuMS92pB/Aq0NWdXnGXxQy7D8OYyLqx9Y3UrFyTkV+PDDoUU4aKbMMQkZnA\njep2Ny4iDYBxqtopAvEVymsbxsUXwx13OI/GmMhY/cdq2r/Snvk959O0ZtOgwzFh/GzDaAT8Fjb/\nO0635DEjEaqkjIk2zWs15x+n/4M7Proj6rsNMd54KTBmAdNFpLuI3IQzjOpMf8MqW4nQ6G31syGW\ni5CgczGgwwA27NjAxOUTA40Dgs9FPPBSYPQBRgNtgFbAS5rPMKvRzK4wjAlGhaQKjLl0DANmDGDL\n7i1Bh2NKKSHuw2jaFGbPhqOPjkBQxphD9J/Wn+17t/N6l9eDDsXgQxuGiHzpPu4UkR15pj9LE2yk\nJUKVlDHR7NFzHuWTNZ/wyZpPgg7FlEKBBYaqdnQfD1PV6nmmGpELsfQSoUrK6mdDLBch0ZKL6pWq\nM+qiUfT6sBd7svYEEkO05CKWFdmGISLtRaRG2HwNETnN37DKjqrdh2FMNLj42Is5ucHJPPrZo0GH\nYkrIy30Yi4GTVfWAO58ELFDVthGIr1Be2jAyMyE52Xk0xgTrt52/0erFVsy6cRat6rUKOpyE5Wtf\nUjmFhfs8G0gq7omCkgjVUcbEivqH1eeJ857glsm3kH0gO+hwTDF5KTDWiEhfEakgIhVFpB/wk9+B\nlZVEafC2+tkQy0VINObi5rY3U6l8JV5bFNkhMKMxF7HGS4FxG9ARWA/8CrQHbvUzqLJkVxjGRBcR\nYWTaSB5If4BtmduCDscUQ9zfh7FwIdxyi/NojIkevab0omqFqjyb9mzQoSSckrZhlPdw4CrAzcDx\nQOWc5aoaEz3W2i+kjIlOj537GCeMOoFbT7mVlnVbBh2O8cBLldSbQD0gDfgUpzPCnX4GVZYSpUrK\n6mdDLBch0ZyLutXqct+Z99F/ev+IdE4YzbmIFV4KjOaq+gCwU1XHARcBMXMfRqI0ehsTi+449Q5+\n/fNXpvwwJehQjAdeCox97uN2ETkJSAbq+hdS2UqUKqnU1NSgQ4galouQaM9FhaQKjLhwBHdNv4vM\n/f7eLBXtuYgFXgqMMSJSC7gfmAx8Bzzta1RlKFGqpIyJVRc0u4ATjziRZ+dY43e0K7LAUNUxqvqH\nqn6qqk1Vta6qjvZycBFJE5GVIrJKRAbms76riCwRkaUi8qWItPK6r1eJUiVl9bMhlouQWMnFsE7D\nGDZnGOv/XO/bOWIlF9HM053eJeF2IfI8TmP58cB1IpL3pxA/AWepaivgUeDlYuzriV1hGBP9mtVq\nxq2n3Mqg2YOCDsUUwrcCA2gHrFbVtaqaBUwCuoRvoKpzVHW7O/s1cJTXfb1KlCsMq58NsVyExFIu\n7j3zXtLXpDNn3Rxfjh9LuYhWfhYYDYF1YfO/ussKcjPO8K8l2bdAidLobUysO6ziYTx5/pP0ndaX\nA6Hu60wU8XLjXm9ggqpudedrAtep6qgidvX8w2oROQfogdMFSbH27d69OykpKQAkJyfTpk2b3P8k\nMjIyWLUKWrQIzQMHrY+X+fD62WiIJ8j5nGXREk+Q84sXL6Z///5RE09R8w21IRXKVWDs4rEcvf3o\nMj3+iBEjDvl+CPr1Rmo+IyODsWPHAuR+X5aIqhY6AUvyWbbYw37tgWlh84OBgfls1wpYjXO/R3H3\n1aJ07ar65ptFbhbz0tPTgw4halguQmIxF/PXz9f6z9TXbXu2lelxYzEXfnG/O4v8/s87eRkPYxnQ\nWg8eD2Opqp5QxH7lge+B84ANwDycK5MVYds0Bj4BrlfVucXZ191Oi4r/r3+FG26Av/2t0M2MMVHk\nlsm3kFw5mWc6PRN0KHHJz/EwpgOTROQ8ETkfpwF6WlE7qep+oLe7/3fAW6q6QkR6iUgvd7MHgZrA\niyKySETmFbZvMV8bkDiN3sbEkyfOe4JxS8bx/ebvgw7FhPFyhZGE0535ee6imcAr6gykFCgvVxhn\nnglPPOE8xrOMjIzcustEZ7kIieVcDJ8znFk/zeKjrh8VvbEHsZyLsubbFYaqZqvqi6p6pTu9FA2F\nhVd2H4Yxsal3u978tPUnpv4wNehQjKvAKwwReVtVrxKR5Rz6qyVV52a7QHm5wmjRAt5/33k0xsSW\naaun0efjPiy/fTmVylcKOpy4UdIrjMIKjCNVdYOINAHyHlhV9ecSxFmmvBQYjRvDF184j8aY2HPp\nxEs5s/GZ3NPxnqBDiRtlXiWlqhvcp3eoc8d17gTcUcI4I27XrsRo9A6/ByHRWS5C4iEXwzsN5+kv\nn2bjjo2lOk485CJoXn4l1SmfZReVdSB+sTu9jYltx9Q+hpvb3szg2YODDiXhFVYldTvOlUQz4Mew\nVdWBL1W1q//hFa6oKqnsbKhQwXmUYl98GWOixY69O2jxQgvevfpdTjsqZsZvi1p+tGEcjnOPxJPA\nQELtGDtUdUtJAy1LRRUYO3dC/frOozEmto1bPI5RC0Yx5+Y5lBM/u8GLf360YWx32yyuBRoD57jt\nF+VEpGnJQ42cRKqOsvrZEMtFSDzl4obWNwDw5pI3S7R/POUiKEUW0yLyEHAPTn9OABWBCT7GVGbs\nHgxj4kc5KcfItJEMnj2YHXt3BB1OQvJyp/cSoC3wjaq2dZctjYX7ML79Fq6+2nk0xsSH7u93p161\nejx1wVNBhxKz/OxLam9Ox4PuiWLmR6qJVCVlTKL453n/5NVFr7Jqy6qgQ0k4XgqMt0XkJSBZRG4F\nZgOv+BtW2UiUezDA6mfDWS5C4jEXDao3YGDHgdw1465i7RePuYg0L31JDQX+607HAg+o6ki/AysL\ndoVhTHzq174f32/+no9XfRx0KAnFSxtGU+A3Vd3jzlcB6rm/mApUUW0Yb78Nb70F77wTwaCMMREx\n9Yep3DXjLpbdvoyKSRWDDiem+NmG8Q4Q3jvtAXdZ1LOxMIyJXxcfezHNajbjua+fCzqUhOGlwEhS\n1X05M6q6F6jgX0hlJ5GqpKx+NsRyERLvuXj2wmd58ssn+X3n70VuG++5iAQvBcZmEemSM+M+3+xf\nSGUnkRq9jUlEx9U5jm6tu3Hv7HuDDiUheGnDaI5zo96R7qJfgRtUdbXPsRWpqDaMRx6B/fudR2NM\nfNqeuZ0WL7RgynVT+MuRfwk6nJjg54h7q1X1NOB4oKWqdoiGwsKLRKqSMiZRHV75cB4/93H6ftyX\nov4BNqXjqQcvEbkEuB24S0QeFJEH/Q2rbCRSlZTVz4ZYLkISJRfd23Qn60AWE5YV3GtRouTCT176\nknoJuBroi9Nj7dVAE5/jKhN2hWFMYsjpZ2rQrEHs3GfdU/vFSxvGMlU9Kaf/KBE5DJimqmdEJsRC\nYyu0DePaa+Hyy51HY0z8u+G9G2hUoxFPnPdE0KFENT/vw9jjPu4WkYbAfqB+cU8UBLvCMCaxPHX+\nU7z8zcv8+MePRW9sis1LgTFFRGoCQ4FvgLXARD+DKiuJVGBY/WyI5SIk0XJxZPUjGdBhAANmDDhk\nXaLlwg9efiX1qKpuVdX/AilAC1V9wPfIykAiNXobYxx3driT5f9bzowfZwQdStwpsg0jmhXVhtG6\nNbzxhvNojEkck7+fzKBZg1hy2xIqJMVExxQR5WcbRsyyvqSMSUyXHnspjQ5vxAvzXwg6lLhSYIEh\nIh3dx8qRC6dsJdIQrVY/G2K5CEnUXIgIIy4cweOfP86mXZuAxM1FWSrsCiNnzIs5JT24iKSJyEoR\nWSUiA/NZ30JE5ohIpogMyLNurYgsFZFFIjKvJOdPpEZvY8zBWtZtyfUnXc99n9wXdChxo8A2DBH5\nGlgKdAEm4dy0l0NVtW+hBxZJAr4HzgfWA/OB61R1Rdg2dXFuArwc2Kqqw8LWrQFOUdU/CjlHoW0Y\nFSo4hUYFq8I0JiFty9xGi+db8FHXjzi5wclBhxM1/GjDuARnONY9OD+nzTsVpR2wWlXXqmoWTqHT\nJXwDVd2kqguArAKOUewXlCPLPaIVFsYkruTKyTx6zqPWz1QZKbDAcL/MJwFdVHWcqo4Nm8Z5OHZD\nYF3Y/K/uMq8UmCUiC0SkZzH2AxKvOsrqZ0MsFyGWC+jRtge7s3bz4Osx0QVeVCvvYZstIvIekNMV\nyGdAP1X9tYj9Slucd1TVjW611UwRWamqn+fdqHv37qSkpACQnJxMmzZtSE1NZdcuKF8+g4wMSE1N\nBUIfHpuP7/kc0RJPkPOLFy+OqniCmh/ZeSQX972Y0xudTucLOgceT6TnMzIyGDt2LEDu92VJeOlL\nahbOeBjj3UVdga6qekER+7UHHlLVNHd+MHBAVZ/KZ9shwM7wNgwv6wtrw1i9GtLSnEdjjPn7f/9O\ns5rNePTcR4MOJXB+3odRV1VfV9UsdxoLHOFhvwXAMSKSIiIVgWuAyQVse1DgIlJVRKq7z6sBnYBl\nHs6Zy+7BMMaEe/qCpxm1YBRrtq4JOpSY5aXA2CIiN4hIkoiUF5Hr8TBEq6ruB3oD04HvgLdUdYWI\n9BKRXgAiUl9E1gF3AveLyC9ub7j1gc9FZDHwNfChqhbrPv9EugcDrK46nOUixHIRsnrhau5sf2e+\n/UwZb7y0YfQAngOGu/NfATd5Obiqfgx8nGfZS2HPfwMa5bPrTqCNl3MUJNEavY0xRRvQYQDHjzqe\n2T/N5ryjzws6nJgTt31JTZ4Mr7ziPBpjTI53V7zLg+kPsvi2xZQv5+V/5vhjfUnlYVcYxpj8/LXF\nX6l/WH1enP9i0KHEnLguMBKp0dvqqkMsFyGWi5CcXIgI/0r7F49+9iibdxfZHGvCxG2BkWiN3sYY\n70444gSuPfFaHvgkJob2iRpe7sOoDFyBM3hSToWfquoj/oZWtMLaMJ56Cv74w3k0xpi8tu7ZSosX\nWjDj+hm0rp9Yg+b42YbxAXAZTn9PO91pV3FPFGmJViVljCmemlVq8nDqw/SdZv1MeeWlwGioqteo\n6tOqOixn8j2yUkq0Kimrqw6xXIRYLkLyy0XPk3uyPXM7b3/3duQDikFeCoyvRKSV75GUMfuVlDGm\nKEnlkhjZeSR3z7yb3Vm7gw4n6nlpw1gBNAfWAHvdxaqqgRcihbVh9OgBZ5zhPBpjTGGueecaWtZp\nyUOpDwUdSkSUtA3Dy10rnd3HnG/mEo9REUl790KlSkFHYYyJBUMvGErbl9pyU5ubaJLcJOhwolaR\nVVKquhZIxmn4vhQ43F0W1RKtwLC66hDLRYjlIqSwXDQ+vDF92/XlHzP/EbmAYlCRBYaI9MPp2rwu\nUA8YLyKFDs8aDfbtg4oVg47CGBMr7u54N/PXzyd9TXrQoUQtL20Yy4D2qrrLna8GzFXVkyIQX6EK\na8O48EK46y7n0RhjvHj727d59LNHWdhrYVz3M+V3X1IHCngetRKtSsoYU3pXHn8ltarU4uVvXg46\nlKjkpcB4HfhaRB4SkYeBucBr/oZVeolWYFhddYjlIsRyEeIlFyLCyM4jeSjjIf7Y84f/QcUYL43e\nw3HGv9gKbAG6q+qzfgdWWtaGYYwpiVb1WnHV8VfxYPqDQYcSdQpswxCRGqr6p4jUylnkPiqAqgZe\n/BbWhnHiiTBpkvNojDHFsWX3Flq+0JLZN87mpHqBN9eWOT/aMCa6jwuBb3DG6F7gPv+m2BFGWKJV\nSRljyk7tqrUZcvYQ+k3rZ/1MhSmwwFDVi93HFFVtmneKXIglk2hVUlZXHWK5CLFchBQ3F73+0ovN\nuzfz7op3/QkoBnm5D2O2l2XRxq4wjDGlUb5cef6V9i8GzBjAnqw9QYcTFQprw6gCVAXSgdSwVTWA\naarawvfoilBYG0bNmvDTT86jMcaU1JX/uZJW9Vrx4Nnx0whe0jaMwgqM/kA/4EhgQ9iqHcDLqvp8\nSQItS4UVGNWqwf/+Z2NiGGNKZ+22tZzy8iks6rWIxoc3DjqcMlHmjd6qOsJtq/hHnvaLVtFQWBQl\n0aqkrK46xHIRYrkIKWkuUpJT6H1qb+6eeXfZBhSDvNy4pyKSW7EjIjVF5A4fYyq17GxQhfLxe2e/\nMSaCBp4xkLm/ziVjbUbQoQTKS19SS1S1dZ5li1W1ja+ReVBQldTu3VC7NuyxdipjTBl557t3eOTT\nR+Kinyk/+5IqJyK524lIElChuCeKpH37Eqs6yhjjvytaXkGdqnUYvWB00KEExkuBMR2YJCLnicj5\nwCRgmr9hlU6itV+A1VWHs1yEWC5CSpuLnH6mHv70YTbt2lQ2QcUYLwXGQJyf1t4O3AbMAu7xM6jS\n2rs3sW7aM8ZExolHnMjfT/w7931yX9ChBKLINoxSHVwkDRgBJAGvqOpTeda3wOkNty1wn6oO87qv\nu02+bRirV0NamvNojDFlaVvmNlo834Kpf5/KKUeeEnQ4JeJbG4aIHCsi74jIdyKyxp1+8rBfEvA8\nkAYcD1wnIi3zbLYF6AM8U4J9C5SIVVLGmMhIrpzM4+c+Tp+P+3BAY2J4oDLjdTyM0cB+4BxgHDDB\nw37tgNWqulZVs3DaPrqEb6Cqm1R1AZBV3H0Lk4hVUlZXHWK5CLFchJRlLm5qexNZB7KYsNTLV2H8\n8FJgVFHVWTjVV2tV9SHgYg/7NQTWhc3/6i7zojT72q+kjDG+KifleK7zcwyaPYg/9/4ZdDgR4+XH\nxJluFdFqEemN002Ilw43StM44nnf7t27k5KSAkBycjJt2rRBJJVKlUL/UaSmpgLxPZ+amhpV8dh8\n9MzniJZ4gprPWVZWx8tcnclJu0/isc8e4+kLng789RU2n5GRwdixYwFyvy9LwsuNe6cCK4Fk4FGc\nzgefVtW5RezXHnhIVdPc+cHAgQIar4cAO3Mavb3uW1Cj94wZMHQozJxZ6EszxphS+W3nb5w46kS+\n7PElx9U5LuhwPPOl0du9srhGVXeo6jpV7a6qfyuqsHAtAI4RkRQRqQhcA0wu6FSl2PcQidjonfe/\nyURmuQixXIT4kYv6h9Vn8BmDE2agpUILDFXNBs4QkWKXRKq6H+iNc+Pfd8BbqrpCRHqJSC8AEakv\nIuuAO4H7ReQXETmsoH29ntvaMIwxkdLntD78vP1npvwwJehQfOelSmo0ThfnbwO73cWqqoEPQ1VQ\nldS//w1TpsDEifnsZIwxZWzmjzO5beptfHvHt1QuXznocIrkZ19SlXHulzgXuMSdLi3uiSIpEauk\njDHBuaDZBbSq14phXw0reuMYVmCBISI5DcwfqepNeacIxVciiVglZXXVIZaLEMtFiN+5GN5pOMPn\nDmfd9nVFbxyjCrvCuNhtuxgcqWDKil1hGGMirWnNpvzfqf8X1wMtFTZE61CgJ3AYkHdkCVXVGj7H\nVqSC2jCGDoXff4dnnslnJ2OM8cnurN20fKEl4y4fR2pKatDhFMiPIVrvVtVknCqp6nmmwAuLwiRi\nlZQxJnhVK1RlWKdh9P24L/sP7A86nDJXZKO3ql4WiUDKUiJWSVlddYjlIsRyERKpXMTzQEtefiUV\ncxKx80FjTHSI54GWfB0Pw28FtWH07w9NmsCddwYQlDHGAP0+7kfm/kxeuvSloEM5hJ/jYfTzsiya\nWBuGMSZoD5/zMB98/wHfbPgm6FDKjJcqqe75LIvq+zASsUrK6qpDLBchlouQSOciuXIyj537GH0+\n7hM3/UwVduPedSIyBWgqIlPCpgycO7+jViI2ehtjok+Ptj3IOpDF+KXjgw6lTBR2H0YToCnwJDCQ\nUI+yfwLiz2DNAAAbmElEQVRL3Q4CA1VQG8bVV8OVVzqPxhgTpLm/zuWK/1zBiv9bQY1K0XFHgh9t\nGH/D6WzwTFX9VFUz3GlhNBQWhUnEKiljTHRqf1R7Ljj6Ah777LGgQym1wgqMo4ARwP9E5DMReUJE\nLhGRWhGKrcQSsUrK6qpDLBchlouQIHPx5PlP8tqi1/h+8/eBxVAWCrvTe4Cqng7Ux+lP6g+gB/Ct\niHgemyII9ispY0w0iZeBlrz8SqoKzrCsh7vTBsDLiHuBScQqqfBxixOd5SLEchESdC7iYaCl8gWt\nEJExwPHADmAe8BUwXFW3Rii2EkvEKiljTHSrmFSRf6X9i9un3k6nZp1iYqClvAq7wmgMVAJ+A9a7\n07ZIBFVaiVhgWF11iOUixHIREg256NSsU0wPtFRYG8aFQDtgGKDAXcACEZkhIo9EKL4S2bcv8aqk\njDGxIZYHWvLUl5SINAJOBzriDNFaW1UP9zm2IhV0H0ZKCqSnQ9OmkY/JGGOK8mD6g/yw5QcmXTkp\nkPOX+X0YItJPRN4SkV+AT3HG8V4B/BWI6p/WJmKVlDEmdgw6YxBzfp1DxtqMoEMplsLaMFKA/wDt\nVfVoVb1eVV9U1SWqmh2Z8EomEaukoqF+NlpYLkIsFyHRlIuqFaryzAXPxNxASwX+SkpVY7Zz8MxM\nqBx7P0CIWs7Q7sZERizfp1AcVx5/JS8ueJHRC0bTu13voMPxJO7Gw1CFpCTYvx/KxeXwUJHn1ncG\nHYZJAIn2Xlv+v+WcO+5cvvu/76hTtU7EzuvbeBixJjPTqY6ywsIYE+1OPOJErjvxOu6bfV/QoXgS\nd1+ru3dD1apBRxF50VQ/a0w0itbPSCwNtBR3BcaePYlZYBhjYlMsDbQUdwVGol5hBN1PjjHRLpo/\nI7Ey0JKvBYaIpInIShFZJSIDC9hmpLt+iYi0DVu+VkSWisgiEZnn9ZyJWmCYyLv//vupW7cuRx55\npO/nmjBhAhdeeKHv5ynK2rVrKVeuHAcOHAg6lLhSTsrxXOfnGDR7EDv27gg6nAL5VmCISBLwPJCG\n04nhdSLSMs82FwHNVfUY4FbgxbDVCqSqaltVbef1vIlaYERr/Ww0SUtLY8iQIYcs/+CDD2jQoEGx\nvgR/+eUXhg8fzsqVK9mwYUNZhpnvl3LXrl2ZPn16mZ7Hi5SUFD755JOIn9cP0f4ZyRlo6dHPHg06\nlAL5eYXRDlitqmtVNQuYBHTJs81lwDgAVf0aSBaRemHri/2zr927oUqVEkZs4lr37t0ZP/7QS/43\n33yT66+/nnLF+GndL7/8Qu3ataldu3a+6/fvL/3NWNFQn+3nz1zLIkfxJtoHWvKzwGgIhPeu9au7\nzOs2CswSkQUi0tPrSRO10Tua62f99OOPP1K7dm0WLVoEwIYNG6hbty6fffbZIdt26dKFLVu28Pnn\nn+cu27p1K1OnTuXGG28E4KOPPuKEE06gRo0aHHXUUQwbdmivorNmzaJTp05s2LCB6tWr06NHD37+\n+WfKlSvHa6+9RpMmTTj//PMBuOqqq2jQoAHJycmcffbZfPfdd7nH2bNnDwMGDCAlJYXk5GTOOuss\nMjMzOeusswBITk6mRo0azJ07l7Fjx3LmmWfm7vvVV19x6qmnkpycTLt27ZgzZ07uutTUVB588EHO\nOOMMatSowYUXXsiWLVsKzOGHH35ImzZtqFmzJh07dmTZsmUA3HDDDfzyyy9ceumlVK9enWeeeSZ3\nn/Hjx9OkSRPq1q3LE088kbtcVXnyySdp3rw5derU4ZprrmHrVmdEhJwrp7w5ipRY+IzkDLTUf3r/\nqPiH4RCq6ssEXAGMCZu/HnguzzZTgI5h87OAk93nR7qPdYHFOGOL5z2H5jVpkurVVx+y2JRCfnmO\nJmPGjNHjjz9ed+/erZ06ddK77767wG179uypt9xyS+786NGjtW3btrnz9evX1y+++EJVVbdt26YL\nFy7M9zgZGRl61FFH5c6vWbNGRUS7deumu3fv1szMTFVVff3113Xnzp26b98+7d+/v7Zp0yZ3nzvu\nuEPPOecc3bBhg2ZnZ+ucOXN07969unbtWhURzc7Ozt329ddf1zPOOENVVbds2aLJyck6fvx4zc7O\n1okTJ2rNmjX1jz/+UFXVs88+W5s3b66rVq3SPXv2aGpqqg4aNCjf17Fw4UI94ogjdN68eXrgwAEd\nN26cpqSk6L59+1RVNSUlRWfPnn3I67z11ls1MzNTlyxZopUqVdKVK1eqquqIESO0Q4cOun79et23\nb5/26tVLr7vuukJzFC7a32uRsHf/Xm3xfAv9YOUHvp3DzXPxv9dLspOnA0N7YFrY/GBgYJ5tRgPX\nhs2vBOrlc6whwIB8lmu3bt10yJAhOmTIEH322Wf1nnvStXt3Jynp6emanp6em6R4ns957sfxvXyI\nnXvsSzeVxmWXXaYnnniitm7dOvfLLj9ffPGFJicn6969e1VV9fTTT9cRI0bkrm/cuLG+9NJLun37\n9kLPl56enm+BsWbNmgL32bp1q4qI/vnnn5qdna1VqlTRpUuXHrJdzrEKKjDeeOMNPe200w7ap0OH\nDjp27FhVVU1NTdXHH388d92oUaM0LS0t35huu+02feCBBw5adtxxx+lnn32mqgUXGOvXr89d1q5d\nO33rrbdUVbVFixYHbb9hwwatUKGCZmdne8pR+HutrN/Pzz77bNR8Xouan756ujbo3UCnz5peJsdL\nT0/Xbt265X5fRmOBUR74EacTw4ruVULLPNtcBHykoQJmrvu8KlDdfV4N+BLolM85NK/nn1e9445D\nFse98DdKWYuF//omT56sIqKvvPJKkds2b95cJ02apKtXr9YKFSro//73v9x18+fP1y5dumjNmjX1\n7LPP1jlz5uR7jIIKjP379+cuy87O1oEDB2qzZs20Ro0ampycrCKiP/30k/7+++8qIrpr165Djl1U\ngfHkk0/qVVddddA+1157rT7xxBOq6hQYr776ar775tW5c2etWrWqJicn507VqlXTSZMmqWrBBUZ4\nbOHnq1KlSu5rzZmqVKmiGzZsyDdHefn5XvPzM+KHyyddro99+pgvxy5pgeFbG4aq7gd6A9OB74C3\nVHWFiPQSkV7uNh8BP4nIauAl4A539/rA5yKyGPga+FBVZ3g5b6L+SioW6mf9snPnTvr3788tt9zC\nkCFDcuvMC3LjjTfyxhtvMH78eNLS0qhbt27uur/85S+8//77bNq0icsvv5yrr766WLGEd9Q4YcIE\nJk+ezOzZs9m+fTtr1qwBnH/S6tSpQ+XKlVm9enWhx8hPw4YN+fnnnw9a9vPPP9OwYd4mwqI1btyY\n++67j61bt+ZOO3fu5JprrvEUS37HmzZt2kHH2717Nw0aNMjdJqjOLGPtM5Iz0NIv238JOpRcvt6H\noaofq+pxqtpcVf/pLntJVV8K26a3u761qi50l/2kqm3c6cScfb3Ys8d+JZVo+vXrR7t27Xj55Ze5\n+OKLue222wrd/sYbb2TmzJm88sordOvWLXd5VlYWEyZMYPv27SQlJVG9enWSkpJKHNfOnTupVKkS\ntWrVYteuXdx7772568qVK0ePHj2466672LhxI9nZ2cyZM4d9+/ZRt25dypUrx48//pjvcTt37swP\nP/zAxIkT2b9/P2+99RYrV67kkksuyd3G+SeyaD179mT06NHMmzcPVWXXrl1MnTqVnTt3AlCvXr0C\n48jPbbfdxr333ssvvzhfcps2bWLy5Mme9zchTWs2pU+7Pvxjxj+CDiWX3ekdJ6L9N+Z++eCDD5gx\nYwYvvujcwjN8+HAWLlzIxIkTC9ynSZMmdOzYkd27d3PZZZcdtG78+PE0bdqUww8/nJdffpkJEyYU\neJy8/ynnnb/xxhtp0qQJDRs25MQTT6RDhw4HbfPMM89w0kknceqpp1K7dm0GDx6MqlK1alXuu+8+\nOnbsSK1atfj6668Rkdx9a9euzYcffsiwYcOoU6cOzzzzDB9++CG1atXKN5bwffM65ZRTGDNmDL17\n96ZWrVocc8wxvPHGG7nrBw8ezGOPPUbNmjUZPnx4vq8zXL9+/bjsssvo1KkTNWrUoEOHDsybF7rv\nNsiu8mPxMzKw40DmrZ/H7J9mBx0KEIfdm/ftC82bO4+JJCMjw7dL7kTrctoEx8/3mp+fET+9t+I9\n7k+/n8W9FlMhqUKZHNO6N3cl6hVGLH4QjImkWP2MXN7ichpWb8jz854POpT4KzAS9cY9Y0x8EhFG\ndh7J458/zm87fws0lrgrMBK1a5BYrJ81JpJi+TPSok4LbmpzE4NmDQo0jrgsMOwKwxgTbx44+wFm\n/jSTOevmFL2xT6zAiBOxWj9rTKTE+mekRqUaPHX+U/T+uDfZB7IDicEKDGOMiRFdT+pKlfJVeHXR\nq4GcP+4KjERt9I7l+lljIiEePiMiwvMXPc8D6Q/wx54/In7+uCsw7ArDGBPP2tRvwxUtr+CBTx6I\n+LnjssBIxF9JxXr9bCyyIVpjSzx9Rh479zHeWfEOi39bHNHzxl2BYX1JmYLYEK3FF09DtMaTWlVq\n8UjqI/T5uE9Ee2GIuwIjMzMxC4x4qJ/1mw3RWnzxNERrvH1Gbjn5FnZn7ebfy/4dsXPGVYGxfz8c\nOADlywcdiYmUoUOHcuWVVx60rG/fvvTv3/+QbW2I1vwlyhCt8SapXBLPd36ee2bdw469OyJz0pIM\nohEtE3kGW9m5U7Vq1QLHDDEllDfP0WTjxo1arVo13bZtm6qqZmVl6RFHHFHg0Ko2ROvBbIjW2Nft\nvW5694yChyXOD9E24l4kprxvrs2bVWvVKlbejAdePsQ8RKmnkkpLS9MxY8aoquqUKVP0hBNOKHBb\nG6L1YNE8RKvxZuOOjVr7qdq6YtMKz/uUtMCIq8qbvXuhUqWgowhG0F0365Dg6tu7devG6NGjueWW\nWxg/fjw33HBDgdt27NiROnXq8N577/GXv/yF+fPn8/777+eu/+9//8tjjz3GoEGDaNWqFU8++STt\n27f3HEujRo1ynx84cIB7772Xd955h02bNuW2kWzevJk9e/aQmZlJs2bNiv16N2zYQOPGjQ9a1qRJ\nk4Ma3+vXr5/7vEqVKrkDIuX1888/88Ybb/Dcc8/lLsvKyiqyIT/8+FWrVs09/s8//8xf//rXg9qD\nypcvz++//547H56jSAr6M+KX+ofV574z76Pvx32Zfv10X8ccias2jMxMqFw56ChMpHXp0oWlS5ey\nfPlypk6dSteuXQvd3oZoDUmkIVrjWe92vVm/Yz3vr3y/6I1LwQqMOBGP/zl5VaVKFa644gr+/ve/\nc9ppp3HUUUcVur0N0RqSSEO0xvNnpEJSBf6V9i8GzBhAVnaWb+exAsPEhW7durF8+fJCq6Ny2BCt\nIYk0RGu8O//o8zm65tG8vvh1384RV0O0fvUVDBgAc4Lr/TcwiT5E67p162jRogW///47hx12WNDh\nmBKyIVpLZ866OVzzzjWs6rOKSuULbtC1IVqxK4xEdeDAAYYNG8Z1111nhYVJaB0adeCkeicxZuEY\nX44fV1cYb78NEybA+/62+yScaL7C2LVrF/Xq1aNp06ZMmzatRA2/JnpE83stVnyz4RsunXgpq/uu\npmqF/HtitSsMYOlSaNUq6ChMJFWrVo2dO3eybNkyKyyMAU458hTaH9WeF+e/WObHjqsCY/FiaNMm\n6CiCEW/95BhT1hLpM/Jw6sM8/dXT7NyX//03JWUFhjHGxJmT6p3EuU3P5bmvnyt642KImzaMzZuh\nWTPYuhWK0emo8cDqlU2k2Hut7Hy/+XvOeP0MVvVZRXLl5IPWlbQNI266BlmyBFq3tsLCL/b7eWNi\ny3F1juOSYy9h6JdDefy8x8vkmL5+vYpImoisFJFVIjKwgG1GuuuXiEjb4uwbrkMHCLvfKOH4WT9b\nkk7KgpzS09MDjyFapljMhV8SqQ0jx8OpDzP6m9Fs3LGxTI7nW4EhIknA80AacDxwnYi0zLPNRUBz\nVT0GuBV40eu+eVWtCikpZf0qYsfixZEdqjGaWS5CLBchiZiLxoc3pnvr7jyY/mCZHM/PK4x2wGpV\nXauqWcAkoEuebS4DxgGo6tdAsojU97ivCbNt27agQ4galosQy0VIoubivrPu49OfP2XE3BGlPpaf\nBUZDYF3Y/K/uMi/bHOlhX2OMMUWoVaUWM2+YyfPznuenrT+V6lh+Nnp7rYy01tQysHbt2qBDiBqW\nixDLRUgi56JJchOW37GcyuVL13eSbz+rFZH2wEOqmubODwYOqOpTYduMBjJUdZI7vxI4G2ha1L7u\ncvv9nTHGlIBG2c9qFwDHiEgKsAG4BrguzzaTgd7AJLeA2aaqv4vIFg/7lugFG2OMKRnfCgxV3S8i\nvYHpQBLwqqquEJFe7vqXVPUjEblIRFYDu4CbCtvXr1iNMcYULabv9DbGGBM5MXFfdGluAIw3ReVC\nRLq6OVgqIl+KSNz23+v15k4ROVVE9ovI3yIZXyR5/IykisgiEVkuIhkRDjFiPHxG6ojINBFZ7Oai\newBh+k5EXhOR30VkWSHbFO97M+i7Oj3c9ZkErAZSgArAYqBlnm0uAj5yn58GzA067gBz0QE43H2e\nlsi5CNvuE+BD4Iqg4w7wfZEMfAsc5c7XCTruAHPxEPDPnDwAW4DyQcfuQy7OBNoCywpYX+zvzVi4\nwijpDYD1IhtmRBSZC1Wdo6rb3dmvgaMiHGOkeL25sw/wDrApksFFmJdc/B34r6r+CqCqmyMcY6R4\nycVGoIb7vAawRVX3RzDGiFDVz4GthWxS7O/NWCgwSnoDYDx+UXrJRbibgY98jSg4ReZCRBrifFnk\njCQTrw12Xt4XxwC1RCRdRBaIyA0Riy6yvORiDHCCiGwAlgD9IhRbtCn292Ys9FZb0hsA4/HLwfNr\nEpFzgB5AR//CCZSXXIwABqmqitPdbrz+DNtLLioAJwPnAVWBOSIyV1VX+RpZ5HnJxb3AYlVNFZFm\nwEwRaa2qO3yOLRoV63szFgqM9UCjsPlGOCVhYdsc5S6LN15ygdvQPQZIU9XCLkljmZdcnIJzjw84\nddWdRSRLVSdHJsSI8ZKLdcBmVd0D7BGRz4DWQLwVGF5ycTrwOICq/igia4DjcO4dSyTF/t6MhSqp\n3BsARaQizk18eT/wk4EbIfcO822q+ntkw4yIInMhIo2Bd4HrVXV1ADFGSpG5UNWjVbWpqjbFace4\nPQ4LC/D2GfkAOENEkkSkKk4j53cRjjMSvORiJXA+gFtnfxxQuk6WYlOxvzej/gpDS3EDYLzxkgvg\nQaAm8KL7n3WWqrYLKma/eMxFQvD4GVkpItOApcABYIyqxl2B4fF98QTwuogswfmn+R5V/SOwoH0i\nIhNxulqqIyLrgCE4VZMl/t60G/eMMcZ4EgtVUsYYY6KAFRjGGGM8sQLDGGOMJ1ZgGGOM8cQKDGOM\nMZ5YgWGMMcYTKzBMsYnIsyLSL2x+uoiMCZsfJiJ3ikgTETlkpMSw7Ya63Us/VdA2xYipv4hUCZuf\nKiI1CtunlOerKyJfi8g3ItIxz7oxItLSr3OXFRHpLiLPFWP71iLSOWz+IREZ4E90JhpZgWFK4guc\n7hUQkXJAbeD4sPUdgC9xxmb/eyHH6QmcpKoHjVkgIkkliKkfTh9JAKjqxar6ZwmO49V5wFJVPUVV\nvwxfoao91acRIkWkLG+2Le5NWG1xusQu6f4Hcd87JobYH8yUxBycQgHgBGA5sENEkkWkEtASWAQ8\nCZzpDtpzUI+gIjIZOAxYKCJXi8hYERktInOBp9xBj74SkYXiDAR1rLtfkog8IyLL3EFfeotIH+BI\nIF1EZrvbrRWRWu7zu9ztl+XE4XYdsUJEXnavcqaLSOW8L9Td7hP3XLNEpJGItAGeArq4r61ynn0y\nRORkESnnvq5l4gxo1d9d30ZE5rrHfFdEksP2G+Eec5mInOouf0hE3hSRL4Bx7pXbQTG52+XkcL6I\nfC8iF7vLPxWR1mHxfSGFDKwlItXEGXznazf/l4lIBeAR4Bo3vqvdzY8XpwfcH92/Q84xrnf3X+TG\nVM5dvtP9+y0G2hcUg4lSQQ/yYVNsTjh97zQCbgV64XyZdMbpHfczd5uzgSmFHGNH2PPXcfq2yel9\noDqQ5D4/H3jHfX478B+gnDtf031cA9QKO94aoBZOB4RLgSpANZzCrQ3OADtZQCt3+7eArvnEOAW4\nwX1+E/Ce+7wbMLKA15WO0zPsKcCMsOU13MelwJnu84eBZ8P2e8l9fibuwDc4A/7MByoVEdNYQgPi\nNMfpcLASTn9BOec4FpjvPu8OPJdP/E/k5AJn4KXvca7eDnrNblxf4nQ3URvYjNMdR0v3b5nz9xsV\nFu8B4Mqg3782lWyyKwxTUl/hVEudjnPFMcd93gGnygqK35342+p+q+B8Ub0jzvCSwwlVeZ2H86V6\nAEAL741XgDOAd1V1j6ruwumY8Uyc6pQ1qrrU3fYbnEIkr/bAv93n493j5Ry7qNf3I3C0OMNgXohz\nFXY4zoiIn7vbjAPOCttnovu6PgdquNsrMFlV9xYRk+IUpqjT8eRPOB3rvQ1c4lZn9cApnAvTCRgk\nIotwCrFKQON8XrMCH6pqlqpuAf4H1Mf5G50CLHCPcS5O9SRANvDfIs5volTUdz5ootaXOFcTJwHL\ncP6b/QewHXithMfcHfb8UWC2qv5VRFJwvrhyFKcg0jzbC6G6971hy7NxrkLyU6JxNFR1m1sVdCFw\nG3A1cGcxj50T6+48y73GpKq6R0RmApcDV+Fc/YQfOz9/0zxjZYjIaflsty/seTah75RxqnpvPttn\nhv1TYGKMXWGYkvoKuARneEt1/9NPxrnC+Mrd5k+cqqWSqAFscJ93D1s+E+iV0zAuIjXd5TsIDbuZ\nQ4HPgctFpIqIVMP50vwc71+4XwHXus+7Ap953E9EpDZOtcy7wANAW3Ua4reKSM5VwQ1ARs4+ON1x\n467f5m6fN9aCYhLgKnE0A47GqU4CeAUYCczT0BC+BeVgOtA37IW0dZ/uoOi/pwKzgStFpK67fy1x\nut03Mc4KDFNSy3HqreeGLVuK8yX3R9h8togsztvo7cr7n2b4/NPAP0VkIU69eM66V4BfgKVuw2nO\nz3ZfBqblNHrnHlB1EU7d/jw31jGqusTD+XP0AW4SpyvsroSG89QCtg8/VkOchvhFwJvAYHddN2Co\ne8xWOO0/Oftkuq95FM4Qu/mdq7CYfnFf60dAL1Xd5+ZhIc7VX3h1VEGv4VGggttQvxynnQWcq7zj\n8zR6H7K/Or8Qux+Y4cY4A6eqKt/tTeyw7s2NiRIikg4McL/cS7L/6zg/Mng3n3VHAumqelwpwzQJ\nzK4wjIlzInIjztVVfm0KxnhmVxjGGGM8sSsMY4wxnliBYYwxxhMrMIwxxnhiBYYxxhhPrMAwxhjj\niRUYxhhjPPl/ptoLDFmMWJUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7727f28>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The composited extract is 135.05 kg\n",
+ "\n",
+ "The acid content is 13.01 kg\n",
+ "\n",
+ "\n",
+ "\n",
+ "150.0 kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.2: Page 497"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.2\n",
+ "# Page: 497\n",
+ "\n",
+ "print'Illustration 10.2 - Page: 497\\n\\n'\n",
+ "\n",
+ "print'Illustration 10.2 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:kerosene c:Nicotine\n",
+ "xF = 0.01;# [wt fraction nicotine]\n",
+ "F = 100.0;# [kg]\n",
+ "B = 150.0;# [kg]\n",
+ "#******#\n",
+ "\n",
+ "# Equilibrium data:\n",
+ "# x_prime = kg nicotine/kg water\n",
+ "# y_prime = kg nicotine/kg kerosene\n",
+ "# Data = [x_prime y_prme]\n",
+ "Data = numpy.array([[0 ,0],[0.001011 ,0.000807],[0.00246, 0.001961],[0.00502, 0.00456],[0.00751, 0.00686],[0.00998 ,0.00913],[0.0204, 0.01870]])\n",
+ "xF_prime = xF/(1-xF);# kg nicotine/kg water\n",
+ "A = F*(1-xF);# [kg]\n",
+ "AbyB = A/B;\n",
+ "\n",
+ "def f64(x):\n",
+ " return -AbyB*(x-xF)\n",
+ "x = numpy.arange(0,0.01+0.001,0.001);\n",
+ "plt.plot(Data[:,0],Data[:,1],label=\"Equilibrium line\")\n",
+ "plt.plot(x,f64(x),label=\"Operating Line\");\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.2(a)\")\n",
+ "plt.show()\n",
+ "# The operating line and equilibrium line intersect at:\n",
+ "x1_prime = 0.00425;# [kg nicotine/kg water]\n",
+ "y1_prime = 0.00380;# [kg nicotine/kg water]\n",
+ "extract = A*(0.01011-x1_prime);\n",
+ "print extract*100,\"% of nicotine is extracted.\\n\\n\"\n",
+ "\n",
+ "print'Illustration 10.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "B = 50.0;# [kg]\n",
+ "# For each stage:\n",
+ "AbyB = A/B;\n",
+ "def f65(x1):\n",
+ " return -AbyB*(x1-xF)\n",
+ "x1 = numpy.arange(0,0.01+0.001,0.001)\n",
+ "def f66(x2):\n",
+ " return -AbyB*(x2-0.007)\n",
+ "x2 = numpy.arange(0,0.01+0.001,0.001)\n",
+ "def f67(x3) :\n",
+ " return -AbyB*(x3-0.005)\n",
+ "x3 =numpy.arange(0,0.01+0.001,0.001)\n",
+ "\n",
+ "plot(Data[:,0],Data[:,1],label=\"Equilibrium line\")\n",
+ "plt.plot(x1,f65(x1),label=\"Operating Line from xF\")\n",
+ "plt.plot(x2,f66(x2),label=\"Operating Line from 0.007\")\n",
+ "plt.plot(x3,f67(x3),label=\"Operating Line from 0.005\")\n",
+ "plt.grid('on');\n",
+ "legend(loc=\"upper right\");\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0, 0.010))\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.2(b)\")\n",
+ "plt.show()\n",
+ "# The final raffinate composition:\n",
+ "x3_prime = 0.0034;# [kg nicotine/kg water]\n",
+ "extract = A*(0.01011-x3_prime);\n",
+ "print extract*100,\" % of nicotine is extracted.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.2 - Page: 497\n",
+ "\n",
+ "\n",
+ "Illustration 10.2 (a)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucTeX+wPHP10RFLqPkLlFEvyIjl1C6kFTSqURRdBMH\nnaSkG+WUiHM64uRSLlHkVkhuKZ0iQg2VW9SUe6nkFpmZ7++PtWZm281lz8xes/ae/X2/Xvs1e629\nLt/9WOY763nW8zyiqhhjjDFeKOJ3AMYYYwovSzLGGGM8Y0nGGGOMZyzJGGOM8YwlGWOMMZ6xJGOM\nMcYzlmRMTBGR6iKSKiJ5uvZF5E4RWRzuuAqaiFwrIu+EuG0vEXnR65hM4WRJxkQlEWkuIitF5ICI\n/CIin4pIwzCf4y8JSVXfVNVrw3ke91xFRWSWiHzvnvOKTLYZKiL73VeWv/RFpImILHXL5ScRmSEi\nFYI2ex4YEmJ444E7RaRc6N/IGIclGRN1RKQU8B7wHyAeqAw8Cxz36pQeHTfY/4DOwF7gpF7SItId\nuAm42H3d6K7LTBlgDHCO+zoETAw41qVAKVX9PJSgVPU4sBC4KzdfxhiwJGOiUy1AVfVtdRxT1aWq\n+hWAOJ4SkSQR2Scik93E9BfuNlcHLA8SkSnu4v/cnwdE5KB7h9BVRD4J2P4yEVnj3lF9LiJNAz5b\nLiLPuXdZB0VksYicmVkcqnpCVUeq6gogJZNN7gaGq+puVd0NDAe6ZnGsRao6W1UPq+ofwGigWcAm\n1wHLg8rhPyLyo4j8LiJrRaR50GGXA9dndj5jsmNJxkSjLUCKiEwSkTYiEh/0eTecX8otgRrAGcCo\nLI6lnHzXEPi+hfuztKqWUtVVgTuKSFlgAfAyUBb4F7AgKJ5OOMngbKAY0C+UL5iJusD6gOUNwIUh\n7ns58HXA8v/hlGGgz4F6OHeGbwEzRaRYwOeb3c+NyRVLMibqqOohoDlOQhgP/CQic0XkbHeTO4ER\nqpqkqkeAAUDHEBv7JYv3mbke2OK206Sq6nScX8bt0kIFJqrqNlU9BswA6ofyHTNxBvB7wPJBd122\nRORi4Gng0YDVZXCq0NK53+E393v8CzgVqB2wySGgdB5jNzHMkoyJSqq6WVW7qWpVnL/MK+HcUQBU\nBH4I2PxH4BSgfJjDqOQeO9AP7vo0ewPe/0EIiSELh4HAKr/S7rosich5wPtAH7caLs1vQcdCRPqJ\nyEa32u839/hnBWxSkpOTnDEhsSRjop6qbgEm4yQbgN1A9YBNqgHJwL5Mdj8ClAhYDnwKK6chynfh\nNKwHOsddH27fcPJdUD1OrgI7iYicAywFnlPVN4M+3oDTrpW2bQucO53bVLWMqsbjJJTAO7k6QGK+\nvoGJSZZkTNQRkdoi0ldEKrvLVXHaPj5zN5kGPOw+gnwG8AIwXVVTMzlcIk5V2inuI9C3kJFcfgZS\ngZpZhLIQqCUindz9bwcuwHnyLT3cXHyvU0XkNHcx8D3AG0BfEankfu++wKQsjlMZ+BAYparjMtnk\nfSDwEemSOEl4v4gUE5FnCLrTcbdfGOp3MSaNJRkTjQ4BjYHVInIYJ7lsAB5xP58ATMF5Ouw74CjQ\nO2D/wDuUp3GSyG/AICD9r35VPYrTn2SFiPwqIo0JeFBAVX8BbnDPux+nUf8GVf01i3MFP2QQbIsb\nayVgMXBERKq55xoLzAe+cr/r/MAEIiJfi0gnd/E+4FxgkIgccl8HA77Xl8DvItLIXbXIfW0FknCq\n9X4MOPZpOE+kTc4mdmMyJV5OWiYibXDqyeOA11R1aCbbjMS5gI8CXVX1S/cv0zdwnshRYJyqjnS3\nLwu8jVMtkQR0UNUDnn0JYwohEWkF9FTVm0PYthdQRVUf9z4yU9h4lmREJA7nL7NrcOqo1wCdVHVT\nwDZtgV6q2tb9K/E/qtrE7Z1cQVUT3eqOdcBNqrpZRIYB+1V1mIj0B+Lt4jfGmMjkZXVZI2Cb+xjp\nCWA6To/lQO1wb8FVdTVQRkTKq+peVU101x8GNuH06j5pH/dnew+/gzHGmHzwMslUBnYELO8kI1Fk\nt02VwA1EpDpwCbDaXVVeVdOeEtpH+B9LNcYYEyZeJplQ6+GCn75J38+tKpsFPOTe0Zy8oVPX512j\nkjHGmHw5xcNj7wKqBixXxblTyW6bKu46RKQoMBuYqqrvBmyzT0QqqOpeEakI/JTZyUXEko8xxuSS\nqoZ1QFgv72TWAue7fRWKAbcD84K2mYc7squINAEOqOo+ERHgdWCjqr6cyT53u+/vBt4lC6pqL1UG\nDhzoewyR8LJysLKwssj+5QXP7mRUNdl99HExziPMr6vqprThyVV1rKq+LyJtRWQbTs/rbu7uzXCG\nPN8gIl+66wao6iLgRWCGiNyL+wizV9+hsEhKSvI7hIhg5ZDByiKDlYW3vKwuQ1UXEtRLWJ1OZYHL\nvTLZ71OyuMtSp6PbNWEM0xhjjEesx38M6Nq1q98hRAQrhwxWFhmsLLzlaY9/P4mIFtbvZowxXhAR\nNMwN/55Wl0Ui55kCY7IWC3+cLF++nJYtW/odRkSwsvBWzCUZiI1fIiZv7I8QY8Ir5qrL3NtBHyIy\n0cCuDxPLvKgus4Z/Y4wxnrEkY0wMWr58ud8hRAwrC29ZkokBP/74IyVLlkyvBmrZsiWvv/46AG++\n+SbXXntt+rZFihThu+++C/nYwft7Kbu4jTGRyZJMBKlevTrFixenZMmS6a8+ffrk+7jVqlXj0KFD\n6Y3aIpL+/s4772Tx4sV5PnZ+98+NcMYd6+xpqgxWFt6KyafLIpWI8N5773HVVVf5HUpIUlJSiIuL\n8zsMY8Ju/nxo3hzi4/2OJPrZnUyUSE1NpV+/fpQrV46aNWsyevRoihQpQmpqKuDcBS1btix9+0GD\nBtGlSxfAGZspcNtAkyZNokWLFietW7BgATVr1qRcuXI89thj6dVskyZNolmzZvTt25ezzjqLQYMG\nnbR/ZucJrOIK3D8+Pp7zzjuPlStXMnHiRKpVq0b58uV54403QiqP4LiLFCnC2LFjqVWrFvHx8fTq\ndfJoRRMmTKBu3bqULVuWNm3a8OOPPwYfMqZYO0SGwLI4cQL69oU+fWDPHv9iKkwsyUSYrB6fHTdu\nHAsWLCAxMZG1a9cya9ask/p0BFYlpS3n1bvvvsu6dev44osvmDt3LhMmTEj/7PPPP6dmzZr89NNP\nPPnkkzkeKziuzz//nHr16vHrr7/SqVMnOnTowBdffMH27duZOnUqvXr14ujRo3mKe8GCBaxdu5YN\nGzYwY8aM9Oq0uXPnMmTIEN555x32799PixYt6NSpU57OYQqvnTuhZUvYuhXWrYO6df2OqHCwJBNE\nJDyvvFBV2rdvT3x8fPor7S5gxowZPPzww1SuXJn4+HieeOKJbPtz5KevR//+/SlTpgxVq1blH//4\nB9OmTUv/rFKlSvz973+nSJEinHbaabk+9rnnnsvdd9+NiNChQwd2797NM888Q9GiRWnVqhXFihVj\n27ZteYr78ccfp1SpUlStWpUrr7yS9evXAzBmzBgGDBhA7dq1KVKkCAMGDCAxMZEdO3bkcMTCy9oh\nMrRs2ZKlS+HSS+GGG2DePChb1u+oCg9rkwniZz88EWHu3LmZtsns2bOHqlUz5nerVq2aZ3EEn2f3\n7t2ZfpYX5ctnzJZ9+umnA1CuXLmT1h0+/JdJUENSoUKF9PfFixdPP84PP/zAQw89xCOPPHLS9rt2\n7cr39zHRLTUV/vlPGDMG3noLrrzS74gKH7uTiRIVK1Y8qR0huE2hRIkSHDlyJH157969eT5X8Hkq\nV66cvpxdNVyJEiUATqruyk8c4VKtWjXGjRvHb7/9lv46cuQITZo08Ts031ibDOzfD23bwuzZy1m3\nzhKMVyzJRJisqrk6dOjAyJEj2bVrF7/99hsvvvjiSb/w69evz/Tp00lOTmbt2rXMnj07z+0yw4cP\n58CBA+zYsYORI0dy++23h7RfuXLlqFy5MlOmTCElJYUJEyawffv2PMWQX4Ez/T344IO88MILbNy4\nEYDff/+dmTNn+hKXiQyrVkGDBlC/PvzrX1Cxot8RFV6WZCLMjTfeeFI/mVtuuQWA+++/n2uvvZZ6\n9erRsGFDbrnllpMS0uDBg9m+fTvx8fEMGjSIO++886TjZpVwghvmAW666SYSEhK45JJLuOGGG7j3\n3nuz3DZ43fjx43nppZc466yz2LhxI82aNcv2XHlNhDk96BD4efv27enfvz8dO3akdOnSXHTRRTHf\nxyZW22RUYeRIaNcORo2CF1+Eq69u6XdYhZoNkBmlkpKSqFGjBsnJyRQpYn8rhEthuT7MXx08CPfd\nB9u3w8yZUKOG3xFFHhsg0xgTFrHWJvPVV87TY2XLwooVJyeYWCuLgmZJJorZ3CfG5GzyZLjqKnjq\nKecpsjw8eW/ywarLjAlg10fhcewY9O4Nn3wCs2bB//2f3xFFPqsuM8aYEGzfDk2bwqFDsGaNJRg/\nWZIxJgYV5naId991Esy998K0aVCyZPbbF+ayiATW498YUyicOAFPPOE8OTZ/PjRu7HdEBqxNxpiT\n2PURnXbvhttvd+5apkyBM8/0O6LoZG0yxhgTZNkyaNgQ2rSB996zBBNpLMmYXPnkk0+44IILCvSc\nwdNHm/wrDO0Qqanw/PPQubNz9/Lkk5CXfsmFoSwimSWZCDNp0iQuuugiSpQoQcWKFenZsye///67\nb/EUKVKE7777Ln25RYsWbN682ZNzBU5wFih4+mhjfvnFGZZ/0SJYuxauvtrviExWLMlEkBEjRvD4\n448zYsQIDh48yKpVq/jhhx9o1aoVJ06cCPv5UlJSQtquoO4gMhvbzHgjmscu+/xzSEiACy+EDz+E\ngEHC8ySayyIaWJKJEAcPHmTQoEGMGjWK1q1bExcXxznnnMOMGTNISkpi6tSpgDOt8q233krHjh0p\nVaoUCQkJbNiwIf04u3fv5pZbbuHss8+mRo0avPLKK+mfpe3bpUsXSpcuzeTJk1mzZg1NmzYlPj6e\nSpUq0bt37/SEdvnllwNQr149SpYsycyZM1m+fPlJc7BUr16dESNGUK9ePcqUKUPHjh05fvx4+ufD\nhg2jUqVKVKlShddee+0vd0ahCJ7WuWXLljzzzDM0b96cUqVKce211/LLL7+kb79q1Souu+wy4uPj\nqV+/Ph9//HGuzmcik6ozqOUNN8C//w0vvQRFi/odlclR2pDohe3lfLW/ymq93xYuXKinnHKKpqSk\n/OWzu+++Wzt16qSqqgMHDtSiRYvq7NmzNTk5WYcPH67nnnuuJicna0pKijZo0EAHDx6sJ06c0O++\n+05r1KihixcvPmnfuXPnqqrqH3/8oevWrdPVq1drSkqKJiUlaZ06dfTll19OP7eI6Pbt29OXP/ro\nI61SpUr6cvXq1bVx48a6Z88e/fXXX7VOnTo6ZsyY9O9UoUIF3bhxox49elTvvPNOLVKkyEnHC9Sy\nZUt9/fXX/7L++++/VxFJL5srrrhCzzvvPP3222/1jz/+0JYtW+rjjz+uqqo7d+7UM888UxcuXKiq\nqkuXLtUzzzxTf/7555D+HSL1+gi3jz76yO8QcuXgQdWOHVXr11fdti28x462svCSe/2H9Xex9ZMJ\nIs+Gp7pGB+auimn//v2cddZZmY6oXKFCBb744ov05YYNG/K3v/0NgL59+zJixAg+++wzihYtyv79\n+3nqqacAZ6rj++67j+nTp9O6dWsALrvsMtq1awfAaaedRoMGDdKPe8455/DAAw/w8ccf89BDD4Uc\ne58+fdJnpbzxxhtJTEwEnCmj77nnHurUqQPAs88+y1tvvRXycbMiInTr1o3zzjsPcObamTdvHgBT\np06lbdu2tGnTBoBrrrmGhg0b8v7773PXXXfl+9ym4H3zDdxyC7RoAStXgjuhqokSlmSC5DY5hMtZ\nZ53F/v37SU1N/Uui2bNnz0lTFFepUiX9vYhQpUoVdu/ejYiwe/du4uPj0z9PSUlJr/YK3hdg69at\n9O3bl3Xr1nH06FGSk5Np2LBhrmIPnPb49NNPZ8+ePelxN2rUKMtz50fwOQOnWp45cybz589P/zw5\nOTnTKa1jWbS0Q0ydCg8/7FSNde3qzTmipSyilSWZCNG0aVNOPfVUZs+ezW233Za+/vDhwyxatIgh\nQ4akr9uxY0f6+9TUVHbu3EnlypWJi4vj3HPPZevWrZmeI7OG9R49epCQkMDbb79NiRIlePnll5k9\ne3ZYvlPFihVPijXwvVeqVatGly5dGDdunOfnMt45dgz+8Q+nYX/ZMrj4Yr8jMnllDf8RonTp0gwc\nOJDevXuzePFiTpw4QVJSEh06dKBq1ap06dIlfdt169bxzjvvkJyczMsvv8xpp51GkyZNuPTSSylZ\nsiTDhg3jjz/+ICUlha+//pq1a9cCmT8ldvjwYUqWLEnx4sXZvHkzr7766kmfly9fPtdTKKedp0OH\nDkycOJHNmzdz9OhRBg8enOO+J06c4NixY+mv5OTkbM8RrHPnzsyfP58lS5aQkpLCsWPHWL58Obt2\n7crVdyjsIrlvyPffQ7NmzmPKa9d6n2AiuSwKA0syEeTRRx/lhRdeoF+/fpQuXZomTZpwzjnnsGzZ\nMoq6j9GICDfddBNvv/02ZcuW5c0332TOnDnExcURFxfHe++9R2JiIjVq1KBcuXI88MADHDx4MH3f\n4DuZ4cOH89Zbb1GqVCkeeOABOnbseNI2gwYN4u677yY+Pp5Zs2bl+Jhx4Odt2rShT58+XHnlldSq\nVYumTZsCcOqpp2a5f48ePShevHj665577slx2ubAz6tUqcLcuXN54YUXOPvss6lWrRojRoxIfzLN\nRLZ585wxx+66C2bMgFKl/I7I5JeNXRZlnn32WbZt28aUKVP8DiXXNm3axEUXXcSff/4ZsVNGR/v1\nEa2Sk51Jxd56C95+2xlF2RQ8G7vMRN0vwHfeeYfjx4/z22+/0b9/f9q1axexCcb4Y88ep8f+l1/C\nF19Ygils7H97lIm2XvHjxo2jfPnynHfeeRQtWvQvbT7GH5HSDrF8uTO45VVXwfvvw1ln+RHD8oI/\naQyxp8uizMCBA/0OIVcWLlzodwgmAqWmwtChMHIkvPEGtGrld0TGK9YmY0wAuz689+uvTsP+r786\njfth7D5l8snaZIwxUW3tWmdwy1q14OOPLcHEAksyxsSggm6HUIVXX4XrroPhw+Ff/4qcwS2tTcZb\nMdkmE00N58ZEu8OHoXt3+PprZ+yx88/3OyJTkGKuTcYYU3A2bXIGt2zSxBmmv3hxvyMy2bE2GWNM\n1HjrLbj8cujXDyZMsAQTq3JMMiJSQUReF5FF7nJdEbnX+9BMuFids8PKIYOXZXH8OPz97zBwICxd\nCvfc49mpwsKuC2+FciczCVgCVHKXvwUeDuXgItJGRDaLyLci0j+LbUa6n68XkUsC1k8QkX0i8lXQ\n9oNEZKeIfOm+2oQSizHGe0lJ0Lw57N3rPElWv77fERm/5dgmIyJrVbWhiHypqpe46xJVNdvLR0Ti\ngC3ANcAuYA3QSVU3BWzTFuilqm1FpDHwH1Vt4n7WAjgMvKGqFwXsMxA4pKr/yuH81iZjTAFasMC5\na+nf35kDxp6viT5etMmE8nTZYRE5MyCIJsDvIezXCNimqknuftOBm4BNAdu0AyYDqOpqESkjIhVU\nda+qfiIi1bM4tl2+xkSI5GSnauyNN2DOHGeYfmPShFJd9ggwH6ghIiuBKUCfEParDATOUrXTXZfb\nbTLT261ee11EyoSwfUyzOmeHlUOGcJXF3r3QujV8/jmsWxedCcauC2/leCejqutE5Aqgtrtqi6qe\nCOHYodZVBd+V5LTfq8Bz7vvBwAgg0wcRunbtSvXq1QEoU6YM9evXT59qNe3CsuXYWU5MTIyoePxc\nTkxMzPfx1q+Hl15qyb33wuWXL2fjRjj77Mj4frYc2nLa+6SkJLwSUj8ZEWkGVMdJSgqgqm/ksE8T\nYJCqtnGXBwCpqjo0YJsxwHJVne4ubwauUNV97nJ1YH5gm0zQObL83NpkjPGGKrz0ktNrf9IkaGOP\n3hQavrTJiMhUoAaQCKQEfJRtkgHWAue7iWA3cDvQKWibeUAvYLqblA6kJZhs4qmoqnvcxZuBr7Lb\n3hgTPgcOwN13w759ThVZtWp+R2QiXShtMglAM1Xtqaq901457aSqyTgJZDGwEXhbVTeJSHcR6e5u\n8z7wnYhsA8YCPdP2F5FpwEqglojsEJFu7kdDRWSDiKwHriDEx6ljWeCtcSyzcsiQl7L44gtncMvq\n1eF//ys8CcauC2+F8nTZ10BFnLuRXFHVhcDCoHVjg5Z7ZbFv8F1P2vq7chuHMSbvVGH8eHjySRg9\nGjp08DsiE01C6SezHKgPfA4cd1erqrbzNrT8sTYZY/LvyBHo0cOZGnnWLKhdO+d9TPTyq5/MIPen\nkvEkmP32NqaQ27LFGdwyIQFWr7axx0ze5Ngmo6rLgSSgqPv+c+BLT6MyYWV1zg4rhww5lcXbbzvD\nwzz0kPMEWWFOMHZdeCuUp8seAO4HygI1gSo4fVWu9jY0Y0xB+/NPZ9TkBQtgyRK45JKc9zEmO6G0\nyazHGSJmVcDYZV9l1XclUlibjDG58+OPTqN+hQrO3UsZG0sj5vg1n8xxVU1r8EdE0jtkGmMKh0WL\noFEjuPVWeOcdSzAmfEJJMh+LyJNAcRFpBczEGcvMRAmrc3ZYOWRIK4uUFHj6abjvPpg506kqi7XR\nk+268FYoT5c9jjM22FdAd+B94DUvgzLGeO+nn+COOyA11Rncsnx5vyMyhVFIY5elbyxSFqiqquu9\nCyk8rE3GmKx9+il06uQMEfPssxAX53dEJhL4NXbZx8CN7rbrgJ9FZIWq2nAuxkQZVWdgy2HDYMIE\nuP56vyMyhV0obTKlVfUg8DecWSob4cx2aaKE1Tk7Yr0cDhxwOle+/Tb85z/LLcG4Yv268FooSSZO\nRCoCHYAF7jqrhzImiiQmQsOGUKkSfPKJ85iyMQUhlH4ytwFPAytUtYeI1ASGqeotBRFgXlmbjDFO\n9diECfD44zBypNMOY0xWvGiTyVXDfzSxJGNi3dGj8Pe/O/O+zJoFder4HZGJdL50xhSRqiLyjoj8\n7L5mi0iVcAZhvGV1zo5YKoetW6FJEzhxwkkywQkmlsoiJ1YW3gqlTWYizgyWldzXfHedMSYCzZoF\nzZpBz54wZQqUKOF3RCaWhTR2marWy2ldpLHqMhNr/vwTHnsM5s1zeu8nJPgdkYk2fo1d9ouIdBGR\nOBE5RUQ6A/vDGYQxJn927IArroDt253e+5ZgTKQIJcl0w3l8eS+wB7jNXWeihNU5OwprOSxeDJde\nCu3bw9y5EB+f8z6FtSzywsrCW9n2+HdHXH5BVW8soHiMMSFKSYHBg2H8eJg+HVq29DsiY/4qlDaZ\nT4GrA4f7jwbWJmMKs59/hs6d4fhxmDYNKlb0OyJTGPgydhnwPfCpiMwDjrrrVFX/Fc5AjDGhWbkS\nOnaEO+907mROCeV/sTE+CaVNZjvOcDJFgDPcV0kvgzLhZXXOjmgvB1V4+WWn7WX0aBgyJO8JJtrL\nIpysLLyV4yWqqoMARKSEqh7xPCJjzF8cPAj33ANJSbB6NZx7rt8RGROaUNpkLsOZpKykqlYVkXpA\nd1XtWRAB5pW1yZjCYsMGZ1rkq6+Gf/8bTjvN74hMYeVXP5mXgTa4fWPcCcuuCGcQxpjMTZrkJJeB\nA+HVVy3BmOgTSpJBVX8MWpXsQSzGI1bn7IimcvjjD7jvPhg6FD7+2GnkD6doKguvWVl4K5Qk86OI\nNAMQkWIi0g/Y5G1YxsSubdugaVM4cgTWrIG6df2OyJi8C6VNphzwH5zZMAVYAvRR1V+8Dy/vrE3G\nRKN33oHu3WHQIOjRAySstePGZM+vfjINVfWOoEAeBMaEMxBjYtmJE87EYrNnw3vvQaNGfkdkTHiE\nUl32tIhcnbYgIo8B7b0LyYSb1Tk7IrUcdu2CK6+EzZudwS0LIsFEaln4wcrCW6EkmXbA8yLSQkSe\nBxq764wx+fTBB9CwIbRtC/Pnw5ln+h2RMeEV0vTLInI2sAxYC9wTDY0d1iZjIllqKjz/vPNY8tSp\ncNVVfkdkjDdtMlkmGRE5DAR+WAw44a5TVS0VzkDCzZKMiVT790OXLs7TY9OnQ6VKfkdkjKNAO2Oq\n6hmqWjLgdWrAuohOMOZkVufsiIRyWL3amVDsoovgww/9SzCRUBaRwsrCWzZ+qzEFQBVGjcqY/+Wm\nm/yOyJiCEVKbTDSy6jITKQ4dcnrvf/stzJoFNWr4HZExmfNr7DJjTB59/bUzNXLp0s48MJZgTKzJ\nMcmISNlMXkULIjgTHlbn7Cjocpgyxen/8sQTMG5cZA1uaddEBisLb4XSJvMFUA34zV2OB/aKyF7g\nflVd51VwxkSjY8egTx9nYMsPP3Qa+Y2JVaGMXTYemKWqi93l1sCtwETgP6oakQNgWJuM8cN33zlz\nv5x/vtPAX8qewzRRxK82maZpCQZAVZe46z7D6TtjjAHmzoUmTaBbN6f/iyUYY0JLMntEpL+InCMi\n1d2xy/aJSByQ6nF8JgysztnhVTkkJ8NjjzlVZPPmQe/ekT96sl0TGawsvBVKm8wdwEDgXXd5BdAJ\niAM6eBSXMVFh927o2BGKF3cGtzzrLL8jMiayhNImc66qfh+07lJVXeNpZPlkbTLGax995MxY2aMH\nPPkkFLEOASbK+dUmM1tEqgQEcQVOo78xMSk1FV54Ae64A954A55+2hKMMVkJ5b9Gd+BdEakgIm2B\nkcB13oZlwsnqnB3hKIdff4Ubb4QFC5ypka+5Jv9x+cGuiQxWFt7KMcm41WJ9gKXAIKCVqu4I5eAi\n0kZENovItyLSP4ttRrqfrxeRSwLWTxCRfSLyVdD2ZUVkqYhsFZElIlImlFiMya81a6BBA7jgAli+\nHKpUyXEXY2JedkP9zw9aVQfYAxzAGeo/24nL3KfPtgDXALuANUAnVd0UsE1boJeqthWRxjj9bpq4\nn7UADgON7VqIAAAfpklEQVRvqOpFAfsMA/ar6jA3ccWr6uOZnN/aZExYqDrzvgwaBGPGwN/+5ndE\nxnjDizaZ7J4uG5HJOgWEk+eZyUojYJuqJgGIyHTgJmBTwDbtgMkAqrpaRMqISAVV3auqn4hI9UyO\n2w64wn0/GVgO/CXJGBMOhw/D/ffDpk3O2GPnned3RMZEl+zmk1meyevjtJ8hHLsyEFitttNdl9tt\ngpVX1X3u+31A+RBiiWlW5+zIbTls3OgMblmiBHz2WeFKMHZNZLCy8JaX88mEWlcVfGsWch2XqqqI\nZLl9165dqV69OgBlypShfv36tGzZEsi4sGw5dpYTExND3v6pp5bzyivw8sst6dYtMuIP53JiYmJE\nxWPL/iynvU9KSsIrns0nIyJNgEGq2sZdHgCkqurQgG3GAMtVdbq7vBm4Iu1Oxa0umx/UJrMZaKmq\ne0WkIvCRql6QyfmtTcbk2vHj8PDD8MEHMHMm1Kvnd0TGFJwC7ScjIuNE5GYRKZnHY68FzneHoikG\n3A7MC9pmHnCXe74mwIGAqrCszAPudt/fTcZIBMbkS1ISNGsGP/3kPElmCcaY/MvuEeYJQH3gfRH5\n0B2/LOT/dqqaDPQCFgMbgbdVdZOIdBeR7u427wPficg2YCzQM21/EZkGrARqicgOEenmfvQi0EpE\ntgJXucsmG4G3xrEsu3J47z1o3Bg6d3buYEqXLri4/GDXRAYrC29l2SajqquAVcBAETkLaA08IiIX\nA18CC1V1RnYHV9WFwMKgdWODlntlsW+nLNb/ivNYtDH5lpzs9NifOhXeeQcuu8zviIwpXHLdJiMi\nAiQA16rq855EFQbWJmNysnevM7hlsWLw5ptQrpzfERnjL7/GLjuJOtZGcoIxJicffwwJCdCyJSxc\naAnGGK/YsH4xwOqcHcuXLyc1FYYOhdtvh4kTnV78cXF+R1bw7JrIYGXhLS/7yRgTUQ4dgvbt4eef\nnafHqlb1OyJjCr9Q5pMpAfQFqqnq/SJyPlBbVd8riADzytpkTKB16+C22+Cmm5w7mWI2cbgxf+FX\nm8xE4E8g7bmb3YC1x5iooApjx0KbNk5y+fe/LcEYU5BCSTI13V76fwKo6hFvQzLhFqt1zkeOwF13\nwejRsGIFlCu33O+QIkasXhOZsbLwVihJ5riInJ62ICI1gePehWRM/m3e7HSuLFIEVq2CWrX8jsiY\n2BRKm0xr4EmgLs7EZc2Arqr6kffh5Z21ycSu6dOhd28YMgTuvRckrDXMxhReXrTJhNQZ0+3x38Rd\nXKWq+8MZhBcsycSe48ehXz+n38vMmXDJJTnvY4zJ4GdnzFOB34BDQF0RuTycQRhvxUKd8w8/wOWX\nw44dsHZt5gkmFsohVFYWGawsvJVjPxkRGYozgvJGICXgo/95FZQxubFoEXTt6tzFPPKIVY8ZE0lC\naZPZClykqlHV2G/VZYVfSorTY3/iRJg2DVq08DsiY6KbF9VlofT43w4Uw54oMxHkp5/gjjsgNdXp\naFneJuE2JiKF0ibzB5DoTmL2ivsa6XVgJnwKW53zihXO4JZNmsDSpaEnmMJWDvlhZZHBysJbodzJ\nzOOvM1paPZQpcKpOj/2hQ2HCBLj+er8jMsbkJNfzyUQLa5MpXH7/Hbp1c54emzkTqlf3OyJjCp8C\nfYRZRGa6P7/K5LUhnEEYk53ERGjYECpWhE8/tQRjTDTJrk3mIffnDcCNmbxMlIjmOucJE6BVK3j2\nWWcMslNPzfuxorkcws3KIoOVhbeybJNR1d3u256q2j/wM7fvTP+/7mVMeBw9Cr16OeOOffwx1K3r\nd0TGmLwIpZ/Ml6p6SdC6r1T1Ik8jyydrk4le334Lt94KF14I48bBGWf4HZExsaGg22R6iMhXQO2g\n9pgkwNpkjCfmzIFmzeDBB+HNNy3BGBPtsmuTeQun7WUeTrtM2itBVe8sgNhMmERDnfOJE9C3rzMs\nzIIF0KNH+IeHiYZyKChWFhmsLLyVXZvM78DvQEcRqQ+0wOkf8wnwS8GEZ2LBrl3QoQPExzu998uW\n9TsiY0y4hNIm8xBwPzAHEKA9MF5VI7rXv7XJRIcPPoAuXaBPH+jf35lkzBjjD1/mk3HbZZqkTbss\nIiVw5pSxhn+TZ6mp8Pzz8OqrMHUqXHWV3xEZY/ycTyY1i/cmCkRanfP+/dC2rTPu2Nq1BZdgIq0c\n/GRlkcHKwluhJJmJwGoRGSQizwKrgAnehmUKq9WrncEtL74YPvwQKlXyOyJjjJdCnX45AWiO2/Cv\nql96HVh+WXVZZFGFUaNg8GCn70v79n5HZIwJ5st8MiLSBNioquvc5VIi0lhVV4czEFN4HToE998P\nW7bAZ59BzZp+R2SMKSihVJeNAQ4FLB9x15ko4Wed8zffwKWXQsmSsHKlvwnG6t4zWFlksLLwVkgN\n/4H1TqqaAsR5FpEpNN58E1q2hAEDYPx4OP10vyMyxhS0UB5hfgf4CHgVp59MD+BKVY3oWnVrk/HP\n8eNO7/0lS2D2bKeR3xgT+fx6hPlBoBmwC9gJNAEeCGcQXpmcOJlUtSeuC9IPP0CLFrBnj/N4siUY\nY2JbjklGVfep6u2qerb76qSqPxVEcPk1dt1YGoxtwNLtS/0OxVcFVee8aBE0agS33+7cwZQuXSCn\nDZnVvWewsshgZeGtLJ8uE5H+qjpURF7J5GNV1T4exhUWK+5ZwZxNc+j5fk9qxtdkWKthXFze/rQO\nt5QUeO45eO01Z2rkyy/3OyJjTKTIsk1GRG5U1fki0jWTj1VVJ3saWT4Ftsn8mfInY9eO5Z+f/JPr\nz7+e5658jiqlqvgcYeHw889w553w558wfTpUqOB3RMaYvPJl7LJolVnD/+/HfmfoiqGMXTeWBxMe\npH/z/pQ6tZRPEUa/Vauc0ZPvuAP++U84JcdeV8aYSOZLw7+I1BaR8SKyVEQ+cl8fhjOIglL6tNK8\ncPULJHZPZNehXdR6pRajPh/FiZQTfofmqXDXOavCK69Au3ZOL/4XX4yOBGN17xmsLDJYWXgrlF8N\nM3EeX34NSHHXRfXtT9XSVZnUfhKJexN5bOljjFw9kheveZGbL7gZCfdMWYXM4cNw333We98YE5pQ\n+smsU9WEAoonbHLTT2bJ9iU8uvRRzih2BsNbDadp1aYeRxedNm6EW25xpkd+5RXrXGlMYePXfDKD\ngJ9xJi07nrZeVX8NZyDhltvOmCmpKUzZMIWnP3qaxpUbM+TqIZx/5vkeRhhdpk1zJhYbNgy6dfM7\nGmOMF/zqjNkV6AesBNa5r7XhDCISxBWJo2v9rmzptYUGFRvQ9PWm9FnYh/1H9/sdWr7lp875+HHo\n1QueftqZ/yWaE4zVvWewsshgZeGtUDpjVlfVc4NeNQoiOD8UL1qcJ1o8waa/b0JVuWDUBQz5ZAh/\nnPjD79AK3I8/On1edu1yeu/Xr+93RMaYaBNTjzDnxdZftjJg2QDW7FrD4CsH0/nizsQVKfzjgy5e\nDHffDY88Av36gT0PYUzhZ/1kciHcA2Su+HEFjy59lKMnjvJSq5doVbNV2I4dSVJSnInFxo+Ht96C\nK67wOyJjTEHxq03GAM2qNWPFPSt4+vKn6fl+T9pMbcOGfRv8DiskodY5798PbdvCRx851WOFLcFY\n3XsGK4sMVhbeCqUzZoKINAh61RSRUGbVbCMim0XkWxHpn8U2I93P14vIJTntKyKDRGSniHzpvtqE\n+mXzS0S4pe4tfNPzG64//3paTWlFt7nd2HlwZ0GF4JnVqyEhAerVg2XLoGJFvyMyxhQGoTzCvApI\nANL+bL8I+AYoDfRQ1cVZ7BcHbAGuwZkmYA3QSVU3BWzTFuilqm1FpDHwH1Vtkt2+IjIQOKSq/8oh\nbs/nkykMw9SowujRzgCX48ZB+4ieJcgY4yW/qst2A/VVNcHtlFkf+A5oBQzLZr9GwDZVTVLVE8B0\n4KagbdoBkwFUdTVQRkQqhLBvRDRDR/swNYcPO+OOvfaaMzWyJRhjTLiFkmRqq+o3aQuquhG4QFW3\nk/3wMpWBHQHLO911oWxTKYd9e7vVa6+LSJkQvoOn0oapWdx5MfO2zOPC/17InE1ziJSHKjKrc960\nyZn75fTTneFhzjuv4OMqaFb3nsHKIoOVhbdCGbvsGxF5FeduQoAOwEYRORXI7k/2UH/D5vau5FXg\nOff9YGAEcG9mG3bt2pXq1asDUKZMGerXr0/Lli2BjAsr3MtLuixhyfYl9Bjdg2dOeYZxvcdxWdXL\nPDtfXpanT4fu3ZfzwAPw0kv+x1NQy4mJiREVj5/LiYmJERWPLfuznPY+KSkJr4TSJlMc6IkzBTPA\nCuC/wDGghKoeymK/JsAgVW3jLg8AUlV1aMA2Y4DlqjrdXd4MXAGcm9O+7vrqwHxVvSiT83veJpOd\nSBym5s8/nX4v778Ps2bBJZfkvI8xJnb41SZTR1WHq+rN7ms4cJWqpmaVYFxrgfNFpLqIFANuB+YF\nbTMPuAvSk9IBVd2X3b4iEvjc083AVyF8hwIXOExNQsWE9GFqfj7ysy/x7Njh9N7/8UdYt84SjDGm\nYISSZMaLSPqdgoh0Ap7JaSdVTQZ6AYuBjcDb7tNh3UWku7vN+8B3IrINGItzx5Tlvu6hh4rIBhFZ\nj3PX83BoX9UfxYsWZ0CLAenD1NQZXafAh6l56aXlXHop3HwzvPMOlPG9FcsfgVUEsc7KIoOVhbdC\naZO5FZglIncALXDuPELq7q6qC4GFQevGBi33CnVfd/1doZw70pQrUY5X2r5C78a9GbBsALVH1fZ8\nmBpVeP55+Pe/YfZscKtjjTGmwIQ0rIyI1AbeBX4A/qaqR70OLL/8bpPJycodK+m3pB9HTxxlWKth\ntK7ZOqzHP3YM7r0Xvv0W3n0XKlUK6+GNMYVQgY5dJiLBbR1nAweAPwFV1YvDGUi4RXqSAVBV5mya\nw+PLHqdGfA1eavUSF5fPf7H+9JPT56VKFZg82SYXM8aEpqAb/m8MejUGrnXftwtnELEqbZiajT03\ncmOtG8MyTM3XX0PjxnD11TB9upNgrM7ZYeWQwcoig5WFt7JMMm5v+yxfBRhjoVc0rii9GvVia6+t\nVDyjIvXG1OPJZU9y8PjBXB1n0SK46ipniJjBg6GIDX9qjPGZDfUfgXb8voOnP3qaRdsW8dTlT9E9\noTtF44pmu8/o0U5imTULmjcvoECNMYWKzSeTC9GcZNKs37uexz54jO9/+54Xr3mRmy+4GQmaPSw5\nGR5+GD74AN57D2rW9ClYY0zUs/lkYky9CvVY3Hkxo9qO4tmPn6X5xOZ8tuOz9M8PHoR27WDLFmf8\nsawSjNU5O6wcMlhZZLCy8JYlmSjQumZrvnjgCx5o8AAdZnXg1hm3snzDNi67DM45BxYsiN0OlsaY\nyGbVZVHmjxN/0HfGy4z9agTNS9/B7D7PUK7EWX6HZYwpBKy6zDB39unM+scApjbZRL16Sp3RF/Di\npy8W6DA1xhgTKksyUUIVnn0W+vd3pke+o70zTM3Ke1eydvdaao+qzeTEyaSkpvxlX6tzdlg5ZLCy\nyGBl4S1LMlHg2DG4805niP7Vq+HigEEBap1Zi1kdZjH91umMXTeWhHEJLN2+1L9gjTEmgLXJRLi0\nIWKqVoVJk7IfIiZwmJqa8TUZ1mpYWIapMcbEBmuTiTGBQ8RMm5bzGGRpw9R80/Mbrj//+rAMU2OM\nMflhSSZC5WeImGJxxejduHf6MDV1H62bp2FqChure89gZZHBysJblmQi0OjR0K0bzJkDXbrk/Til\nTyvNC1e/wGs3vsauQ7uo9UotRn8+mhMpJ8IXrDHGZMPaZCJI2hAxy5Y5Q8TUqBHe4yfuTeSxpY+R\ndCApy2FqjDGxy8Yuy4VoSzIHD0LHjk6imTHD2x78S7Yv4dGlj3JGsTMY3mo4Tas29e5kxpioYQ3/\nhVRSEp4OERNc55w2TM39De5PH6bm21++De9JI5DVvWewsshgZeEtSzI+++wzJ8Hcfz/8979QNPsR\n/cMmrkgcXet3ZUuvLTSo2ICmrzelz8I+7D+6v2ACMMbEBKsu89G0adCnj9P/5frr/Y3l5yM/89zH\nzzHt62k80vQR/tHkH5xe1OZtNiaWWJtMLkRyklF1Hk2eOBHmzTu5B7/ftv6ylQHLBrBm1xoGXzmY\nzhd3Jq5InN9hGWMKgLXJFAKBQ8SsWlUwCSY3dc61zqzF7A6zmXbLtEI3TI3VvWewsshgZeEtSzIF\n6KefnA6WKSmwfDlUqOB3RFlrVq0ZK+5ZwdOXP03P93vSZmobNuzb4HdYxpgoY9VlBeTrr+HGG6Fz\nZ2c05dz04Pfbnyl/MnbtWP75yT9pe35bBl85mCqlqvgdljEmzKy6LEqlDREzeHDuh4iJBMHD1NQb\nU8+GqTHGhCTKft1Fn8AhYjp39ieGcNU5pw1Tk9g9MSqHqbG69wxWFhmsLLxlScYjycnQu7eTZFas\ngObN/Y4ofKqWrsqk9pNY3Hkxc7fM5cL/XsicTXOIpOpJY0xksDYZD+zbB127Og38Xg8REwnShqkp\nWawkL7V6yYapMSZKWZtMhFN1OlhefDHUr+88plzYEwxkDFNzX4P76DCrA7fNvI1tv27zOyxjTASw\nJBMme/fC3/4Gzz/vjKA8ZAiccorfUTkKos75pGFqKjSgyWtNIm6YGqt7z2BlkcHKwluWZPJJFd58\nE+rVgwsvhHXr4NJL/Y7KP8WLFmdAiwFs+vsmVJULRl3AkE+G8MeJP/wOzRjjA2uTyYc9e+DBB+G7\n75zxxxISPD1dVLJhaoyJHtYmEyFUYcoU5+6lXj1Yu9YSTFYK8zA1xpicWZLJpV27nJ77w4c7nSyf\new5OPdXvqLIXCXXOwcPUXDv1WtbvXV+gMURCOUQKK4sMVhbesiQTIlWnSuySS6BhQ1izBho08Duq\n6CIi3FL3Fr7p+Q03nH8Drae2puu7Xdl5cKffoRljPGJtMiHYuRMeeAB273YSTf36YTlszPv92O+8\n+OmLjPtiHN0TuvN488cpdWopv8MyJmZZm0wBU4UJE5y7lyZNnLsXSzDhU/q00gy5ZgiJ3RPZfWg3\ntV6pxajPR0XNMDXGmJxZksnCjh1w3XXOsDDLlsEzzxTc1MjhFul1zmnD1CzqvIh5W+Z5NkxNpJdD\nQbKyyGBl4S1LMkFUYfx4p72lRYuCm1jMQP0K9VnSZQmj2o7i2Y+fpfnE5ny24zO/wzLG5IO1yQT4\n4Qe4/3749Ven7eX//s+b2EzOUlJTmLJhCk9/9DSNKzdmyNVDOP/M8/0Oy5hCzdpkPKIKY8c6T41d\neaVz92IJxl+Bw9QkVEyg6etNI26YGmNMzmI+yfzwA7RqBa+/7kyJPGBA5Iw5Fi7RXOccOEwNkK9h\naqK5HMLNyiKDlYW3YjbJqMKYMc7dS6tWsHKlM/aYiUzlSpRj5HUj+ezez1i3Zx21R9VmcuJkUlJT\n/A7NGJONmGyTSUqCe++Fw4dh4kSoW7dgYzP5t3LHSvot6cfRE0d5qdVLtKrZyu+QjIl6XrTJxFSS\nSU112l6eeQYefRT69i18VWOxRFWZs2kOjy97nJrxNRnWahgXl7dHAY3Jq6hr+BeRNiKyWUS+FZH+\nWWwz0v18vYhcktO+IlJWRJaKyFYRWSIiIU0L9v33cM01MHky/O9/8NhjsZNgCmudc9owNRt7buSG\nWjfQakorus3tluUwNYW1HPLCyiKDlYW3PEsyIhIHjALaAHWBTiJSJ2ibtsB5qno+8ADwagj7Pg4s\nVdVawDJ3OUupqfDf/zpzvFx3HaxYAXXqZLdH4ZOYmOh3CJ4qGleUXo16sbXXViqeUZF6Y+rxxLIn\nOHj84EnbFfZyyA0riwxWFt7y8k6mEbBNVZNU9QQwHbgpaJt2wGQAVV0NlBGRCjnsm76P+7N9VgGk\n3b1MmQKffupUkcXF4FQmBw4c8DuEAlH6tNK8cPULWQ5TEyvlEAoriwxWFt7yMslUBnYELO9014Wy\nTaVs9i2vqvvc9/uA8lkF0KgRXH+9k2AuuCD3X8BEp7RhahZ3XuzpMDXGmJx52SoR6v/oUBqZJLPj\nqaqKSJbn+fRTqF07xCgKsaSkJL9D8EW9CvVY0mUJS7Yv4dGlj7Lngz30f6o/xYsW9zs038XqNZEZ\nKwtveZlkdgFVA5ar4tyRZLdNFXebopms3+W+3yciFVR1r4hUBH7KKoALLgjrQxJRbfLkyTlvFANK\nFCvhdwgRw66JDFYW3vEyyawFzheR6sBu4HagU9A284BewHQRaQIcUNV9IvJLNvvOA+4Ghro/383s\n5OF+DM8YY0zueZZkVDVZRHoBi4E44HVV3SQi3d3Px6rq+yLSVkS2AUeAbtnt6x76RWCGiNwLJAEd\nvPoOxhhj8qfQdsY0xhjjv6gYuyySOnX6zaOyGCQiO0XkS/fVpiC+S37lsywmiMg+EfkqaPtYvC6y\nKouYui5EpKqIfCQi34jI1yLSJ2D7mLouciiL3F0XqhrRL5zqsm1AdZwHAhKBOkHbtAXed983Blbl\ntC8wDHjMfd8feNHv7+pjWQwE+vr9/QqqLNzlFsAlwFdB+8TUdZFDWcTUdQFUAOq7788AtgAXxOJ1\nkUNZ5Oq6iIY7Gd87dUYQr8oCQnuUPJLkpyxQ1U+A3zI5bqxdF9mVBcTOdVFeVfeqaqK7/jCwiYz+\nebF0XeRUFpCL6yIakozvnTojiFdlAdDbvV1+PUqqAvJTFtmJtesiJ7FyXVQJ3MB9svUSYLW7Kpau\ni5zKAnJxXURDkimQTp25OI+fwlkWgV4FzgXqA3uAEbnc3w95LYuQ/51j4LrIab+YvC5E5AxgFvCQ\n+1f8yRvG0HWRRVnk6rqIhiSTn06dma0/qVMngOTQqTOChLMs0vdV1Z/UBbyGc5sd6fJaFrvIXixd\nF9mWRSxeFyJSFJgNTFXVwD54MXddZFUWub0uoiHJpHfqFJFiOB0z5wVtMw+4C0ACOnXmsG9ap07I\nplNnhPGkLNz/NGluBr4i8uWnLLITa9dFlmLtuhARAV4HNqrqy5nsEzPXRXZlkevrwu8nIEJ5Adfh\nPN2wDRjgrusOdA/YZpT7+XqgQXb7uuvLAh8AW4ElQBm/v6ePZfEGsMHd/l2c+mffv6vHZTENZzSJ\n4zh10t1i+LrIqixi6roAmgOpOE9hfem+2sTidZFDWeTqurDOmMYYYzwTDdVlxhhjopQlGWOMMZ6x\nJGOMMcYzlmSMMcZ4xpKMMcYYz1iSMcYY4xlLMiZiuZ3Iwt4BUERuzGrY8xz2Ky0iPQKWK4nIzDDG\n1URExgWtayki88N1jlzEcndQpztj8sSSjIk5qjpfVYfmYdd4oGfAcXar6m3hi4zrgIVhPF5+dMUZ\nVDVkIhLnTSgmmlmSMVFBRGqIyBcikiAixUVkhjuh0hwRWSUiCZnsk+ROsLRORDaISG13fVcRecV9\nX15E3hGRRPfVxF3fV0S+cl8PuYd8EajpTtQ0VETOSbvTco85R0QWuhNbDQ2Io7WIrHTjmCEiJbL4\nmlfh9CrPqgwudcvgXBEpJ84kWl+LyHj3u5YN2v42ERnhvn9IRLYHlOWn7vtnRORz93uOddfdCjQE\n3nTPd5pb7stFZK2ILAoYx2u5iPxbRNYAfTAmiCUZE/Hc5DALuFtV1+HcTfyiqhcCTwMJZD7irAI/\nq2oCzsix/TLZZiTwkarWxxnOfKObsLriDPzXBLhfROrjTFa1XVUvUdX+/HX02npAB+Ai4HYRqSwi\nZwFPAle7cawD+mbyHc8CTqjqoSzK4DL3O7RT1e9xJo76QFX/zy2bapns9j+cCclwf+4XkUru+4/d\n9a+oaiNVvQg4XURuUNVZOONe3aGqDYAU4BXgFlVtCEwEnnf3V6Coql6qqv/OLHYT207xOwBjcnA2\nzvhIN6vqZnddM+BlAFX9RkQ2ZLP/HPfnF8DfMvn8SqCzeywFDopIc2COqv4BICJzcH4xBw8uGGxZ\nWpIQkY04MxLGA3WBlc6YgxQDVmayb2tgcRbHrQOMBVqp6l53XTPcibNUdbGI/GXSMXUGOjxDnOHa\nqwBvAZfjjEs1293sKhF5FCiOMz7X18B77mdpSbQ2cCHwgfsd4nDGOkvzdhZxG2NJxkS8A8APOL/k\nNwesD3XOnOPuzxSyvt4zm09Dgj4PZZC/4wHvA8+3VFXvyGHfNmQ+L4fizNlxKtAAeD8orpysBLrh\nDJL4KXAv0BToKyKnAaOBBFXdJSIDgdOCzp12nm9U9bIsznEkhDhMjLLqMhPp/sS5A7lLRDq561bg\nVEshInVxqqfyahnQwz1WnIiUAj4B2ovI6W77SXt33WGgZC6OrcAqoJmI1HTPUUJEzg/cyB1W/WJV\nXZ/JMQQn0d4ADBGRK9z1gWXQGueOKTOfAI/iVI99iXPndsy940pLKL+4dzuBDzEcAkq577cA5QLa\nq4q65W5MjizJmEinqnoU55fswyJyA/BfnF963wCDgW+A3zPbN+i9ZvL+IeBKt8ptLVBHVb8EJgGf\n4ySJ8aq6XlV/AVa4jeRDszlmYPD7cdp3ponIepw7i9pBmyXgJIBMv79bBj+5ZTBaRC4FngVauw8e\n3ArsxUkMwT7FmWL3f6qaCvzorkNVDwDjcarIFnHy9LqTgDEi8gXO74lbgaEikjb0e9Ms4jXmJDbU\nv4k6IlIEp7H5uHuHsBSoparJPoeWJyLyJPCtqs7IxT7FgBRVTRGRpsBot5HemIhibTImGpUAPhRn\nelgBekRrggFQ1edz3uovqgEz3IT7J3B/eKMyJjzsTsYYY4xnrE3GGGOMZyzJGGOM8YwlGWOMMZ6x\nJGOMMcYzlmSMMcZ4xpKMMcYYz/w/SP1Cq7DN7uIAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x77359b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "58.014 % of nicotine is extracted.\n",
+ "\n",
+ "\n",
+ "Illustration 10.2 (b)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXWh9+VEDohAUInhBZERDoGEQVRQQT7RbkWsBCK\niFcsgOgFL58giIiISlFAbIgiIkVRkdgQ6SAgoXdEkRp6kvX9cSZxElMmyZk5M5P9Ps95MuecXdbO\nJLPmrL33+omqYjAYDAaDNwhx2gCDwWAwBC/GyRgMBoPBaxgnYzAYDAavYZyMwWAwGLyGcTIGg8Fg\n8BrGyRgMBoPBaxgnYyh0iEiMiKSKSL7+/kXkHhFZbLddvkZEOorIXLfzVBGpnU3ZriIyy3fWGYIF\n42QMAYuIXCUiy0TkuIj8JSI/ikgLm/v4h0NS1fdVtaOd/bj6ChORT0Rkl6vPa7IoM1pEjriOF3No\nK05Evnb9Xv4QkdkiUjlTsReAUZ7YpqrzgYYi0ihPgzIUeoyTMQQkIhIOLABeBSKBasDzwHlvdeml\ndjPzPXAv8DuQYae0iPQGbgEudx1dXdeyIgKYBNR0HaeA6W5ttQTCVXVFHmz7EIjPQ3mDwTgZQ8AS\nC6iqfqQW51T1a1X9FUAsnhWR3SJyWETecTmmf+Aq08HtfLiIvOs6/d7187iInHQ9IfQUkR/cyl8p\nIitdT1QrRKS1270EEfmf6ynrpIgsFpHyWdmhqhdVdYKq/gSkZFGkBzBWVQ+q6kFgLNAzm7a+VNU5\nqpqkqmeB14E2bkVuBBKyqHqTiOwQkT9FZIyIuDvXBOCmrPozGLLDOBlDoJIIpIjIDBHpJCKRme4/\ngPWh3A6oDZQGJmbTlpLxqcH9dVvXz7KqGq6qy90rikg5YCEwHigHjAMWZrKnO5YzqAgUBZ70ZIBZ\ncCmw3u18A9DQw7pXAxvdzi/D+h1m5lagOdAM66npQbd7W4AYESntqcEGg3EyhoBEVU8BV2E5hKnA\nHyIyT0QquorcA7ysqrtV9TQwBLjbw8l+yeZ1VtwEJLrmaVJVdRbWh/HNaaYC01V1u6qeA2YDTTwZ\nYxaUBk64nZ90XcsREbkceA54yu1yBFYILTOjVfW4qu7Dcpzd3e6llY/Ii9GGwo1xMoaARVW3qOoD\nqloD65t5VawPRoAqwB634nuBIkAlm82o6mrbnT2u62n87vb6LB44hmxIAtxDfmVd17JFROoCi4AB\nrjBcGscytZXGPrfXe8k4jjKun8c9NdhgME7GEBSoaiLwDpazATgIxLgViQaSgcNZVD8NlHI7d1+F\nlVua8gNYE+vu1HRdt5tNZHwKakzGEFgGRKQm8DXwP1V9P9PtDVjzWpmJzvTafRwNgN2qmqNjMxjc\nMU7GEJCISH0RGSgi1VznNbBCOz+7inwIPO5aglwaGAnMUtXULJpbhxVKK+JaAn0HfzuXP4FUoE42\npnwBxIpId1f9u4BLsFa+pZubh3EVE5HirlP31wAzgYEiUtU17oHAjGzaqQZ8C0xU1SlZFFkE/GOJ\nNPCkiES4fp8DgI/c7l3jqmcweIxxMoZA5RRwBfCLiCRhOZcNwBOu+9OAd7FWh+0EzgCPutV3f0J5\nDsuJHAOGA+nf+lX1DNZ+kp9E5KiIXIHbQgFV/Qvo4ur3CNakfhdVPZpNX5kXGWQm0WVrVWAxcFpE\nol19TQbmA7+6xjrf3YGIyEYRSZtDeRioBQwXkVOu46TbuNYCJ0SkVab+5wGrgbVYjnKa2727gck5\n2G4w/APxpmiZiHTCipGHAm+p6ugsykzAWk55Bujp+uNHRKZhTar+oaqN3MqXw/p2VRPYDXRTVRMj\nNhjyiIhcD/RT1ds8KNsVuEdV7/a+ZYZgwmtORkRCsb6VXYcV110JdFfV39zKdAb6q2pn1zfEV1U1\nznWvLdak5sxMTmYMcERVx4jIICBSVQd7ZRAGg8FgKBDeDJe1Ara7lpBeBGZhrbt352asyVpU9Rcg\nIi31har+gBW+yEx6HdfPW71gu8FgMBhswJtOphoZl0Pud13La5nMVFLVtBVCh7F/SarBYDAYbMKb\nTsbTOFzmlTcex+/UivV5b1LJYDAYDAWiiBfbPgDUcDuvgfWkklOZ6uS+v+CwiFRW1d9FpArwR1aF\nRMQ4H4PBYMgHqmpbQlhvPsmsAuq59ikUBe4CPs9U5nPgfrBSkwPH3UJh2fE5Vk4qXD8/y66gqgbf\n8fnnaL16DBs61HlbvHQMGzbMZ331+rwX/Rb0C9rxBfv7Fyzj27dPufpqpUMH5eBBZ8dnN15zMqqa\nDPTHWuu/GfhIVX8Tkd5p6clVdRGwU0S2Y62/75dWX0Q+BJZhbXTbJyIPuG69CFwvIluBa13n2dng\nhZE5TNeucPnl7P48s78OHnbv3u2zvkZfN5q5W+by876fcy9sE74cnxOY8eWN+fOhRQvo1AkWL4Yq\nVWxt3nG8GS5DVb/A2hHtfm1ypvP+2dTtns31o1jLonPloz/+4O5KQbguYMIEqFULNm2Chp4m4TVk\nRWSJSF7p+ArxC+JZE7+GsNAwp00yFBLOn4dBg+Czz+DTT+HKK522yDsE9Y7/gTt2cOziRafNsJ+q\nVen5yCMQHw+pWWVJCWx69uzp0/66NexGdNloxi4b65P+fD0+X2PGlzvbtllOZe9eWLs2eB0MeHnH\nv5OIiD6SmMh5VabWr++0OfaTmgpt28L990Pv7MQRDZ6y+/huWkxpwfKHl1O3XF2nzTEEMe+9B48/\nDs8/D337gvhKc9VDRAS1ceI/qJ3MiYsXabhyJe83aMDVEcElgZGQkEC7qCho1w7Wr4eqVXOtEygk\nJCTQrl27fNcXf/uvNRj8lKw+/+12Ml6dk3Ga8CJFmFC3LvGJiaxv2ZJiIUEWHWzY0HqKeewx+Phj\np63xK4L1y5PBYBe++jIW1E8yaWO7beNGGpcqxfBatRy2ygucOweXXw4vv2ytPDOkfRNz2gyDwa/J\n7v/E7ieZIPtqnzWv1a3L6wcP8tvp006bYj/Fi8PkydC/P5zKSk3XYDAYnKNQOJnqxYszrGZNem/d\nSmqQfMNNSEj4+6R9e7j2WnjuOcfssZMMYzMYDAFNoXAyAH2rVeNCaipvHzrktCneYexYmDULVq50\n2hKDQ+zdu5cyZcqkh0DatWvH22+/DcD7779Px44d08uGhISwc+dOj9vOXN+b5GS3IfAoNE4mVIQp\n9eszdNcufj9/3mlzCsw/Vl+VL285ml69IMD3BhVkZVkgEBMTQ8mSJSlTpkz6MWDAgAK3Gx0dzalT\np9IndEUk/fU999zD4sWL8912QevnBTvtNjhPoXEyAJeXLs1DVarwn+3bnTbFO9xzD1SsCOPHO22J\nIQdEhAULFnDq1Kn0Y8KECU6blS0pKSlOm2AIYAqVkwH4b82arDp1ikV//eW0KQUiy3kLEZg0CUaP\nhl27fG6TXRTmOZnU1FSefPJJoqKiqFOnDq+//johISGkujI7xMTEsGTJkvTyw4cP57777gOsnFru\nZd2ZMWMGbdu2zXBt4cKF1KlTh6ioKJ5++un0MNuMGTNo06YNAwcOpEKFCgwfPjxD/az6cQ9xudeP\njIykbt26LFu2jOnTpxMdHU2lSpWYOXOmR7+PzHaHhIQwefJkYmNjiYyMpH//jFmppk2bxqWXXkq5\ncuXo1KkTe/fu9agfg/codE6mRGgok2Jj6bd1K0nJyU6bYz+1a8NTT1lbiYNkkUMwkt0S6ylTprBw\n4ULWrVvHqlWr+OSTTzLsZ3APJaWd55fPPvuM1atXs2bNGubNm8e0adPS761YsYI6derwxx9/MHTo\n0FzbymzXihUraNy4MUePHqV79+5069aNNWvWsGPHDt577z369+/PmTNn8mX3woULWbVqFRs2bGD2\n7Nnp4bR58+YxatQo5s6dy5EjR2jbti3du2eZAtHgQwqdkwG4rlw5ro6IYFgAZ4vNcd5i4EA4dAg+\n/NBn9tiJL+ZkRAp+5BdV5dZbbyUyMjL9SHsKmD17No8//jjVqlUjMjKSZ555Jsc9PwXZDzRo0CAi\nIiKoUaMG//nPf/jQ7e+latWqPPLII4SEhFC8ePE8t12rVi169OiBiNCtWzcOHjzIf//7X8LCwrj+\n+uspWrQo2/MZth48eDDh4eHUqFGD9u3bs379egAmTZrEkCFDqF+/PiEhIQwZMoR169axb9++XFo0\neJNC6WQAXq5Th/cOH2Z1MO4tCQuDqVPhiSfg6FGnrfFLVAt+5BcRYd68eRw7diz9eOihhwA4dOgQ\nNWr8reMXHR1d0KFmS+Z+Dh48mOW9/FDJLft5iRIlAIiKispwLSkpKV9tV65cOf11yZIl09vZs2cP\njz32WLrjLl++PAAHDuSmg2jwJoXWyUQVLcqYOnWIT0wkOQAzGec6b9GqFfzrX1boLMAozHMyVapU\nyTCPkHlOoVSpUpx221T8+++/57uvzP1Uq1Yt/TynMFypUqUAMoS7CmKHXURHRzNlypQMzvv06dPE\nxcU5bVqhptA6GYD7K1UiokgRJgTrN50XXoCvv4ZC/KHtr2QX5urWrRsTJkzgwIEDHDt2jBdffDHD\nB36TJk2YNWsWycnJrFq1ijlz5uR7Xmbs2LEcP36cffv2MWHCBO666y6P6kVFRVGtWjXeffddUlJS\nmDZtGjt27MiXDQXFXc2xT58+jBw5ks2bNwNw4sQJPjY5/RynUDsZEWFSbCwj9+xh99mzTpuTJzya\ntyhTBl57zUqiee6c122yi2DfJwPQtWvXDPtk7rjjDgB69epFx44dady4MS1atOCOO+7I4JBGjBjB\njh07iIyMZPjw4dxzzz0Z2s3O4WSemAe45ZZbaN68OU2bNqVLly7pIbusyma+NnXqVF566SUqVKjA\n5s2badOmTY595dcR5rbQwf3+rbfeyqBBg7j77rspW7YsjRo1Mnts/IBCkSAzN0bu2cOPJ06wsFGj\n4EwTf8cdVsbm//3PaUt8QjAlyNy9eze1a9cmOTmZkGDLIm5wFJMg04c8WaMGe8+dY/affzptisfk\nad5iwgR4801whRH8ncI8J2MwBBvGyQBFQ0KYWr8+j2/fHpxyzdWqWTJ8QSrXHOwE5dO1odBgwmVu\nPLJ1KxdVmRKscs1XXQU9egS9XHMwhcsMBm/hq3CZcTJunEhOpuGKFXx46aW0DTK5ZgA2brRkATZs\ngCpVnLbGaxgnYzDkjpmTcYCyRYowoV494rdu5byfh5XyNW9x2WVWyOyxx2y3x07MnIzBEDwYJ5OJ\n2ypUILZECV4M1sR6zz4La9fCggVOW2IwGAoBJlyWBfvOnaPpqlX82LQpl7h2NwcVS5bAgw/Cpk1Q\nurTT1tiOCZcZDLljwmUOUqN4cYbFxBAfRHLNGejQwZqbCRK5ZoPB4L8YJ5MN/apV43xqKtP8VK65\nwPMWY8daWZpXrbLFHjsxczLO88MPP3DJJZf4tM/M8tF2kpiYSJMmTQgPD2fixIm2t2/IHuNksiFN\nrvmZXbs4fOGC0+bYT4UK8NJLllxzMOrq+DkzZsygUaNGlCpViipVqtCvXz9OnDjhmD0hISHs3Lkz\n/bxt27Zs2bLFK325C5y5k1k+2k7GjBlDhw4dOHny5D+Ezpwmsxx3eHi4XyQctQvjZHKgcenSPFC5\nsl/KNduS3+vee6F8eb+Taw723GUvv/wygwcP5uWXX+bkyZMsX76cPXv2cP3113PRC5uBPZVP9tU8\nVla5zbzNnj17uPTSS7O9n5WaqK/ILMd98uTJDHIGAU9aFtNgO6yhFZzTycla6+efddGRI7a053ds\n26Zavrzqzp1OW2Ibdr333uDEiRNaunRp/fjjjzNcT0pK0qioKJ02bZqqqg4bNkzvuOMOveuuu7RM\nmTLarFkzXb9+fXr5AwcO6O23365RUVFaq1YtnTBhQvq9tLr33nuvhoeH69tvv60rVqzQuLg4jYiI\n0CpVqmj//v31woULqqratm1bFREtVaqUli5dWmfPnq1Lly7V6tWrp7dZs2ZNHTt2rF5++eVatmxZ\nveuuu/TcuXPp90ePHq1VqlTRatWq6dSpU1VEdMeOHVn+Dtq1a6dvv/32P67v2rVLRURTUlJUVfWa\na67R5557Ttu0aaNlypTRG264QY+4/R/+/PPP2rp1a42IiNDGjRtrQkJClv21b99eQ0NDtXjx4lqm\nTBndunWr9ujRQ/v06aM33nijlipVSpcsWaKbN2/Wa665RiMiIrRhw4b6+eefp7fRo0cP7du3r954\n441aunRpveqqq/TQoUM6YMAAjYiI0EsuuUTXrl2bZf8//fSTVqhQQfft26eqquvWrdPIyEhNTExU\nVdWYmBhdsmRJlnW9SXb/J67r9n0W29mYPx12ftAs/usvjfn5Z01KTratzYKydOlS+xobNUq1UyfV\n1FT72iwABR2bPzuZL774QosUKZL+QepOjx49tHv37qpqOYqwsDCdM2eOJicn69ixY7VWrVqanJys\nKSkp2qxZMx0xYoRevHhRd+7cqbVr19bFixdnqDtv3jxVVT179qyuXr1af/nlF01JSdHdu3drgwYN\ndPz48el9Z3YKmZ1MTEyMXnHFFXro0CE9evSoNmjQQCdNmpQ+psqVK+vmzZv1zJkzes8992hISIgt\nTqZu3bq6bds2PXv2rLZr104HDx6sqqr79+/X8uXL6xdffKGqql9//bWWL19e//zzT4/67NGjh5Yt\nW1aXLVumqqonT57UOnXq6KhRo/TixYv67bffapkyZdIdQY8ePbRChQq6Zs0aPXfunF577bVas2ZN\nfffddzU1NVWfffZZbd++fZZ9q6oOHTpUr732Wj1z5oxedtll+vrrr2f43X7zzTfZ1vUWvnIyJlzm\nATeUK0eb8HCG7drltCne4Ykn4MABmDXLaUt8hjwvBT7yw5EjR6hQoUKWGZUrV67MkSNH0s9btGjB\n7bffTmhoKAMHDuTcuXP8/PPPrFy5kiNHjvDss89SpEgRatWqxcMPP8wst/fvyiuv5OabbwagePHi\nNGvWjFatWhESEkLNmjWJj4/nu+++y5PtAwYMoHLlykRGRtK1a1fWrVsHWJLRDz74IA0aNKBEiRI8\n//zzaV/0CoSI8MADD1C3bl2KFy9Ot27d0vt877336Ny5M506dQLguuuuo0WLFixatCjb9txtEhFu\nvfVWWrduDcC6des4ffo0gwcPpkiRIrRv354uXbpkkKS+/fbbadq0KcWKFeO2226jVKlS3HvvvekS\n02vXrs227+HDh3PixAlatWpFjRo16NevXwa73OW4b7/99vz9wvyUIk4bECiMq1uXRitX8u9KlWhW\npozT5tg7bxEWBlOmwG23QceOUK6cfW3nA1/MyegwZ5amV6hQgSNHjpCamvoPR3Po0KEMEsXVq1dP\nfy0iVK9enYMHDyIiHDx4kMjIyPT7KSkpXH311VnWBdi6dSsDBw5k9erVnDlzhuTkZFq0aJEn293n\nCUqUKMEh18rLQ4cO0apVq2z7LgiZ+3SXWv7444+ZP39++v3k5GSuvfbabNvKPA/kbufBgwf/ITld\ns2bNdElqEaFixYrp94oXL57hPDc56SJFitCjRw8ee+wxxmeaA02T487J9kDGPMl4SMWiRXmxdu2A\nlWvOlbg4S3fm6aedtiSoad26NcWKFWPOnDkZriclJfHll1/SoUOH9Gv79u1Lf52amsr+/fupVq0a\nNWrUoFatWhlkhk+ePMkCVxaHrCbW+/bty6WXXsr27ds5ceIEL7zwgm2T3VWqVMlgq/trbxEdHc19\n992X4Xdw6tQpns7D36/776hq1ars27cvw9POnj17MkhSF4QDBw7wv//9jwcffJCBAwdyIRhXrGaD\ncTJ5oGflypQpUoTX/ECu2St7SUaOhMWLIY9hFLsJ5n0yZcuWZdiwYTz66KMsXryYixcvsnv3brp1\n60aNGjW477770suuXr2auXPnkpyczPjx4ylevDhxcXG0bNmSMmXKMGbMGM6ePUtKSgobN25klWvP\nU1ahqqSkJMqUKUPJkiXZsmULb775Zob7lSpVyrOEclo/3bp1Y/r06WzZsoUzZ84wYsSIXOtevHiR\nc+fOpR/J2Syjzy7sdu+99zJ//ny++uorUlJSOHfuHAkJCRzI4X/Tva3M7cbFxVGyZEnGjBnDxYsX\nSUhIYMGCBdx999052uEJqkrPnj15+OGHeeutt6hSpQrPFaKN0MbJ5AERYXJsLC/s2cOeAJIz9pjw\n8ICUaw40nnrqKUaOHMmTTz5J2bJliYuLo2bNmixZsoSwsDDA+lu75ZZb+OijjyhXrhzvv/8+n376\nKaGhoYSGhrJgwQLWrVtH7dq1iYqKIj4+npMnT6bXzfwkM3bsWD744APCw8OJj4/n7rvvzlBm+PDh\n9OjRg8jISD755JNclxm73+/UqRMDBgygffv2xMbGps9zFCtWLNv6ffv2pWTJkunHgw8+mKtss/v9\n6tWrM2/ePEaOHEnFihWJjo7m5ZdfzvHpLLu2AMLCwpg/fz5ffPEFUVFR9O/fn3fffZfY2Ngsy+dF\nYnrChAkcOXIk3flOnz6d6dOn89NPP2VrazDh1dxlItIJGA+EAm+p6ugsykwAbgTOAD1VdW1OdUWk\nFTARCAOSgX6qujKLdtVbY/u/3btZfvIk84NVrvm22+Dyyy2hswAkGHKXPf/882zfvp13333XaVPy\nzG+//UajRo24cOGCkYz2YwI+d5mIhGI5g07ApUB3EWmQqUxnoK6q1gPigTc9qDsGeE5VmwL/dZ37\nlKejo9l17hwfB5Bcc5547TV44w347TenLSm0BJqTnDt3LufPn+fYsWMMGjSIm2++2TgYA+DdcFkr\nYLuq7lbVi8As4JZMZW4G3gFQ1V+ACBGpnEvdQ0BZ1+sIwOcTJEVDQphSvz7/cVCu2avzFtWrw7Bh\njsk1B/OcjKc4sSu+IEyZMoVKlSpRt25dwsLC/jHnYyi8eHMJczXAfZnJfuAKD8pUA6rmUHcw8KOI\njMVykq1ttNlj2pQtyy0VKjB4504mB6Ncc9++8N578NZblrMx+JRhw4Y5bUKe+OKLL5w2weCneNPJ\nePq8n9eva28DA1R1roj8C5gGXJ9VwZ49exITEwNAREQETZo0Sd+DkfZtuSDnNyUn07tkSX48fpxk\n1yYxO9vP6Tztmtf6++EH6NWLdoMHQ9euJCQm+mx87dq1s+X3YzAYcichIYEZM2YApH9e2onXJv5F\nJA4YrqqdXOdDgFT3yX8RmQQkqOos1/kW4BqgVnZ1ReSkqoa7rgtwXFXLkglvTvy788kff/Df3btZ\n26IFxYIxBj1kCOzYAbNnO22JxwTDxL/B4G0CfuIfWAXUE5EYESkK3AV8nqnM58D9kO6Ujqvq4Vzq\nbheRa1yvrwW2enEMuXJHVBR1S5RgtI/lmn02b/Hf/8KaNbBwoW/6w8zJGAzBhNfCZaqaLCL9gcVY\ny5DfVtXfRKS36/5kVV0kIp1FZDtwGnggp7qupuOB10WkGHDWde4YIsLEevVotmoVd1WsSP2SJZ00\nx35KlIBJk+Chh4JWrtlgMHgPr+6TcRJfhcvSeHX/fub++SdLmzQJqFVBHnP//ZbQ2bhxTluSKyZc\nZjDkTjCEywoV/atV43RqKtODSNEuAy+/DO+/D6tXO22JwQcY+WWDXeTqZESksoi8LSJfus4vFZGH\nvG9aYBEqwtTYWAbv3OkTuWafz1tERcGYMT6Ray4MczJGfrlwyS/v3r2b9u3bU6pUKRo0aMCSJUty\nLD9o0CAqVKhAhQoVGDx4sMdtjRw5Ml3GOS1XXWhoKEePHvXKuDzBkyeZGcBXWHtXALYBj3vLoECm\nSZky9Kxcmcf9UK7ZFu6/HyIj4dVXnbYkoDHyy4VPfrl79+40b96co0eP8sILL3DnnXdm0A5yZ/Lk\nycybN48NGzawYcMG5s+fz+TJkz1q65lnnkmXcT516hSDBg2iffv2lHNSviM3VTNglevnWrdr6+xU\nTvPGgUPqiEkuueYvgl2uedcupy3JFqfee08w8suFT345MTFRixUrpklJSenXrr766nRl0cy0bt1a\np06dmn4+bdo0jYuLy3NbqampWqtWLZ05c2aW/WT3f4Kv5ZeBBKB8mpMB4oDv7DTCG4eTHzRf+qFc\ns6288ILqjTf6jVxzZvzZyRj55cInv/zpp59qgwYNMlx79NFH9dFHH82yfNmyZXXFihXp56tWrdIy\nZcrkua3vvvtOS5curadPn86yH185GU/CZU8A84HaIrIMeBcYYMtjVJDSsVw5rgwP5/ndu73Wh6Pz\nFk8+Cfv2eW2Dpk/GJlLwIx8Y+WXPCRb55aSkJMqWzbhfPDw8nFOnTnlUPjw8PF11My9tvfPOO/zr\nX/+ipMPbKnLdJ6Oqq12bH9MSdCWqlbTSkAOvuOSau1esSFM/kGu2laJFLbnmO+6AG26w5mkCDRs+\nBPODkV/OG8Egv1y6dOl0rZ80jh8/Tnh4uEflT5w4QWnX/jRP2zpz5gyffPIJn3+eef+77/F0CXMr\noDHQHCvt/v3eMyk4qFi0KKNq1yZ+61ZSvPCB5niOrtatLd0ZL8g1Oz42L2Lkl+0hkOSXGzZsyM6d\nOzM4ofXr19OwYcNsy6c9saWVveyyy/LU1ty5cylfvjzXXHMNTuPJEub3gJeANkALoKXrMOTCA5Ur\nUzo0lIl+INfsFUaOhC++gO+/d9qSgMHIL1sUJvnl2NhYmjRpwvPPP8+5c+f49NNP2bhxI3fccUeW\n5e+//37GjRvHwYMHOXDgAOPGjaNnz555auudd97h/vv941nAkyeZ5kAbVe2nqo+mHd42LBgQESbF\nxjJi92722ixn7Bd7ScqWhQkTLCmA8+dta9YvxuZFjPxy4ZJfBpg1axarVq2iXLlyDB06lDlz5lC+\nfHnA2vhaxi2k3rt3b7p27UqjRo24/PLL6dq1K/Fuchs5tQVw4MABEhIS/MbJ5JpWRkQ+Bh5T1YO+\nMckefJ1WJidG7N7NilOn+Pyyy2zbH+Ce5t9RVK2wWdOmltCZDRR0bMGQVsbILxu8jT+llYkCNovI\nVyIy33U7tVJ5AAAgAElEQVQ4P5sUQAyKjmbn2bPMsVGu2S8cDFirrCZOtCSbbZJr9puxOUigOUkj\nv2zIDk+yMA93/VT+FhgLrP8AhykaEsLk2Fju2ryZ6yIjiXCFRIKGNLnm3r0hIQHMh0uBCUT55Qce\neIDQ0FDatWvHG2+84bRJBj/BoyzMIhID1FXVb0SkJFBEVU/mXMtZ/ClclkafxEREhDddcd6C4Dfh\nsjRSUuDKK63cZg8/XKCmTLjMYPA+fhMuE5F44GMgLXlOdWCuXQYUJl6sXZvPjxzhJwcTIXqN0FCY\nOhWeeQaCNRO1wWDIM55M/K/H2iezXFWbuq79qqqNfGBfvvHHJxmAj//4g+EuueaiwRhWGjwY9uwB\nt53SvsY8yRgMueM3TzLAeVVNX58qIkUwczL55s6oKGqXKMEYH8s1+4z//hdWrIAc0nsYDIbCgydO\n5jsRGQqUFJHrsUJn83OpY8gGEeH1evUYv38/W8+cyXc7fruXpGRJS665Xz84fTpfTfjt2AwGQ57x\nxMkMBv4EfgV6A4uAZ71pVLATXbw4z9asSe+tW4MzrHP99dC2rW37ZgwGQ+CSq5NR1RRVnaKqdwLx\nwAq/nOwIMB6tXp2klBRm5HOS3K9WlmXFuHHw7ruwZk2eq/r92AoBRn7ZYBeerC77TkTCRaQcsBqY\nKiKveN+04CZUhCkuueY/fCDX7HOiomD0aCvljJflmgMRI79s5JdzIr/yywkJCYSEhGSQYHY6a4Qn\n4bKyrj0xtwMzVbUVcJ13zSocNC1ThvsrV2ZgPuSaA2LeokcPCA+3sgHkgYAYWwEw8stGftlb8ssA\n1apVyyDB7J501RFyUzXDmoupAnwFtHJd22Cncpo3DvxYHdGdpORkjfn5Z/3yr7/yVG/p0qXeMchu\ntm615Jp37/a4SkHH5s/vvZFfNvLLqt6TX878vuVEdv8nOCC//C9gA/Cm67wOMMdOI7xx+PMHTWa+\nOHJEa/38s54OVrnm//s/1Ztu8plcsz+/90Z+2cgvq3pPfnnp0qVatGhRrVSpktaqVUsff/xx/5df\nVtWPVfVyVe3rOt+hqlkLIRjyRafy5Ynzslyzozz1FOzeDR9/7LQl6UhCQoGP/GDklz3HyC//XdZT\n+eUGDRqwfv16fv/9d7799ltWr17NwIEDs/2d+IJcE2SKSA1gAnCV69L3WKn/93vTsMJGmlzzvytV\norFLajUn/C53WU4ULWqlnLnzTmt5cy5yzb4Ymzr0uzPyy3nDyC/nTX65UqVKVKpUCYCYmBjGjBlD\nly5dmDRpUpZ9+QJPJv6nA58DVV3HfNc1g41Ucsk190pM9Ipcs+O0bg233GKlnSnEGPllezDyy561\nBd5f1JAbHunJqOp0Vb3oOmYAFXOrZMg7D1auTMmQEF73QK45YJ5i3Bk1ChYuhB9+yLFYQI7NQ4z8\nsoWRX/aO/HJCQgJ79uxBVdm3bx+DBg3i1ltvzbftduCJk/lLRO4TkVARKSIi9wJZr70zFAgRYXL9\n+ozYs4d9Nss1+wVpcs29e9sq1xxoGPllI7/sLfnltWvX0qZNG0qXLk2bNm1o0qQJEyZMyNYuX+BJ\nFuaawEQgznVpGfCoqvp1hkd/zcLsCf/bvZvVp07xWQ5yzQE1J+OOKtx6KzRvbiXTzAKjJ2Pklw3e\nxy+yMLsyLo9U1a6qGuU6bvF3BxPoDIqOZtvZs8zNZrNWQOMu15yY6LQ1fkugOUkjv2zIjhz/ClQ1\nGagpItk/9xpsp1hICFNiYxmwbRsnsolVB+RTTBo1asBzz1kpZ7IIbwT02GwiEOWXK1WqRN26dQkL\nC/vHnI+h8OJJuOxd4BKsFWZpuelVVcd52bYCEcjhsjR6JyYSKsIbNsg1+x0pKdaKs9694aGHbG06\nGMJlBoO38YtwmYsdwEJX2dKuo0yONQy2MLp2beYdOcKyLBInBnx+rzS55iFD4PDhDLcCfmwGgyGd\nXDdjqupwABEppar5U6Ey5IuIsDBeqVuX+MRE1gSjXHPjxvDAA/D44/DBB05bYzAYvIAnqf6vFJHN\nwBbXeWMRecOTxkWkk4hsEZFtIjIomzITXPfXi0hTT+qKyKMi8puIbBSR0Z7YEqj8KyqKmOLFGZtp\ng1vQzFsMGwa//AJffpl+KWjGZjAYPEqQuQKIBta6XdvkQb1QYDsQA4QB64AGmcp0Bha5Xl8BLM+t\nLtAe+BoIc51HZdN/lsnfApHdZ89q+R9+0K3ZJLoLeBYvVo2JUXXLLFsQAHOYwxweHNn9/6gvE2Ri\n9Zh5ybInKlStgO2qultVLwKzgFsylbkZeMfVxy9AhIhUzqVuX2CU6zqq+qcnYwhkahYvztBMcs1B\nNW9xww3Qpg0MHw4UfGx2/oN441i6dGmB20hNVd58U6lQQZk5M+O9E+dOUH1cdRJ2JQTs+Pz5CKbx\n+QJPnMxeEWkDICJFReRJ4DcP6lUD3GM8+13XPClTNYe69YCrRWS5iCSISN6y/AUoj1arxsnkZGZm\nmiQPGsaNg5kzIZtMtoa/OX4cunWDSZPgxx8hsyZVeLFwJt44kd4LenMuOQgzRxgCCk+cTF/gEawP\n+QNAU9d5bnjqJvO6VK4IEKmqccBTwOw81g9IioSEMLV+fZ7esYM/L1wIvnmLihXT5ZrbtW3rtDVe\npSDv3YoV0KwZVKoEy5dD/fpZl7vlkltoWLEho34Yle++8kvQ/W1mItjHZze5ri4DWqjqv90viEgf\nILfc0QcA99zZNbCeSHIqU91VJiyHuvuBTwFUdaWIpIpIeVX9K7MBPXv2JCYmBoCIiAiaNGmS/geS\nFpIJtPP7qldn4I4dPOR6onHaHlvPa9akXZky8NprJDRp4rw9fnT+7bcJfPwxzJnTjkmToFy5BJYv\nz7n+3aXupt+qftx12V38sekPvxqPOfef84SEBGbMmAGQ/nlpKx7E7JYBHdzOnwa+9KBeEaw9NjFA\nUXKf+I/j74n/bOsCvYHnXa9jgb3Z9K/BSJpc80su1cOgIzFRl4aHq+7Z47QlXiOv8tJ//KHaubNq\nXJzqrl156+v1Fa/rVdOu0pTUfypxeouAkQbPJ8E+PhyY+L8ZeEFE2orIC1irwG72wHklA/2BxcBm\n4CNV/U1EeotIb1eZRcBOEdkOTAb65VTX1fQ0oLaI/Ap8CNzvwRiChlKhobxRrx7j9u/nTEqK0+bY\nT2ysJW72yCPgo4lJf+a776zw2GWXwfffQ16/aPZp0Yfk1GTeWvOWV+wzGHIj17QyACJSEVgCrAIe\nVE8qOUwwpJXJie6bNxNTvDijatd22hT7uXABmjaF55+3HE4hJCUF/u//rMn96dPBpTKcL349/Csd\nZnZgfZ/1VClTxT4jDUGJ3WllsnUyIpJExsn7osBF/l5fnbV2qJ8Q7E7m8IULNFq5km8aN+ZyD+Sa\nA45ly+Bf/4JNmyAiwmlrfMrBg3DPPVbC6vfeg6pVC97m0CVD2X5sOx/d+VHBGzMENT7LXaaqpVW1\njNtRzO2aXzuYwsBvy5YxslatoJRrTkhIgCuvhJtvDkq55rRJ16z48ktLaufaa+Hrr+1xMADPXv0s\naw6tYeHWhfY0mAM5jS8YCPbx2U2QJcMqXDxYpQrFQ0J40wO55oBk1CiYP9/aDBLkXLwITz8NvXrB\nRx9ZSgihofa1XyKsBJNumsQjix4h6UJS7hUMBpvwaE4mEAn2cFkaW06f5qq1a1nbogU1ihd32hz7\n+eQTK7/Z2rVQtKjT1niF3bvh7ruhQgWYMcP66S16fNaD8iXKM66jXyt1GBzEiVT/Bj/mklKleLR6\ndR7dts1pU7zDHXdAnTowZozTlniFOXOgVStrB//nn3vXwQC8fMPLfPDrB6w+uNq7HRkMLjzJwlwu\niyPMF8YZssc9Ljw4OprEs2eZ+2dwpHHLEPMWgddfh1dfDRq55oSEBM6dg3794KmnYMECGDgQQnzw\nla9CyQq8dP1L9Jrfi+RUT1IQ5p1gn7MI9vHZjSd/1muAI8A213EE2CMia0SkuTeNM3hGmlzzoznI\nNQc0NWrAs89Cnz5BsXdm716Ii4MjR6woYKtWvu3/3svvpVyJcry6/FXfdmwolHgivzwV+ERVF7vO\nbwDuBKYDr6qqj/9FPKOwzMm4E5+YSFERJgarXHNcnPX1/4EHnLYm38ycCU88Ye2BiY+3HtScYPvR\n7cS9Fceq+FXERMQ4Y4TBL/HZPhm3Djeq6mWZrv2qqo1EZJ2qNrHLGDspjE7m2MWLNFy5kjkNG9K6\nbFmnzbGfdeugY0f49VcroWYAkZRkJTFYsQJmz4ZGjZy2CEb9MIrv937Pon8vQpzydga/w4mJ/0Mi\nMkhEaopIjIg8DRwWkVAg1S5DDHkjq7hwZJpc89atXEwN3Lcm25h3kybQo4c1gRFArF8PLVpYS5JX\nrYK//kpw2iQAnrzySfaf3M9Hm+zdoBnscxbBPj678cTJ/BsrC/JnwFwslczuWOqV3bxnmiE/dIuK\nIrpYsX/INQcNw4ZZ2QAWL3baklxRhTffhOuus6aUpk2DUqWctupvwkLDmNp1KgMXD+TY2WNOm2MI\nUjwJl9VS1V2ZrrVU1ZVetayAFMZwWRq7z56lxerV/NysGfVKlnTaHPtZvBj69oWNG8FPx3f8ODz8\nMOzYYW2u9Odpsv6L+nM++TxTb57qtCkGP8CJcNkcEanuZsA1WJP+Bj8lpkQJnqlZkz5ucs1BRceO\n0Lq1lUDTD/nlFyu/Z5Uq8PPP/u1gAEZ2GMmXO77k+z3fO22KIQjxxMn0Bj4Tkcoi0hmYANzoXbMM\nuZFbXHhAtWocT07m3QCUa/Yo5v3KK1Z64nXrvG6Pp6SmwtixVsq1cePgtdcgqyQM/hbTDy8WzoRO\nE4ifH8/55PMFbs/fxmc3wT4+u8nVybjCYgOAr4HhwPWqGqQB/+ChSEgIU+rX5ymXXHPQUbEivPii\nlezLD3R1/vwTunSxdvCvWAG33ea0RXnjtga30SCqAaN+9L1csyG4ySnV//xMlxoAh4DjWKn+cxUu\nc5LCPCfjzhPbt/PnxYvMbNDAaVPsR9VKV3zbbTBggGNmJCTAvfdax4gREBag+TD2n9xP08lN+b7n\n9zSICsK/F4NH+FJPpl0WlxUQLCfznV1GeAPjZCySkpO5bOVK3qpfn+vKlXPaHPtJTIQ2bayt8zVq\n+LTrlBTLqUyebCW27NjRp917hYkrJjJ702wSeiYQIia1YWHEl3oyCVkc36X9tMsAQ/7wNC5cukgR\n3oiNpc/WrZz1g7CSJ+Qp5l2/Pjz2mM/lmg8cgA4d4IcfYM2avDkYf47p923RlwspF3h7zdv5bsOf\nx2cHwT4+uzFfVQoBncuXp3mZMozYs8dpU7zDoEGwfTt8+qlPuvviC2tzZYcO8NVX1iqyYCE0JJQp\nXacw9Nuh/J70u9PmGIIAoydTSPj9/HkuX7UqeOWaf/wR7roLNm8GL6XUuXABhg6FWbPg/ffh6qu9\n0o1fMOSbIew6votZd85y2hSDj/FZuExEpojIbSJSxq7ODM5RuVgxXqhVi/gglGsG4KqroGtXGDLE\nK83v2gVt28KWLdb0TzA7GID/XvNfVh1cxaJti5w2xRDg5BQumwY0ARaJyLeu/GWNfWSXIRfyExd+\nqEoVwkJCmHTwoP0G2Ui+Y94vvgjz5llpZ2zkk0/giiss9Uo7hMUCIaZfIqwEk7pMot/CfnmWaw6E\n8RWEYB+f3eQ08b9cVYepalusHGX7gCdEZJ2ITBcRk7cswAgRYUpsLMN372b/uXNOm2M/EREwfryV\nQ9+GvUFpwmKDBsHChfD4486l5neC62pfx9U1r2bY0mFOm2IIYPI8JyNWTvDmQEdVfcErVtmAmZPJ\nnmG7drHh9GnmXnZZ7oUDDVUrbNa6tTWBkk+2bLGmeC65BKZM8do0j9/z5+k/uezNy1j070U0r2o0\nCgsDTuQuy4BarPJnB2PImSHR0fx2+nTQyDVnIE2u+ZVXYOvWfDXxzjvW/Msjj1iT/IXVwQBElYpi\nzHVjiF8Q7zW5ZkNwY5YwBygFiQsXDw1lcv36DNi+nZN+KNdc4Jh3zZr5kmtOSoL774fRo+Hbb72n\nXBloMf37G99PRPEIJvwywaPygTa+vBLs47Mb42QKKddERNAxMpJndu502hTv8OijcPKk9VjiAevW\nQfPmVkqYlSv9Q7nSXxARJt00iZE/jGT38d1Om2MIMDzRkykFDASiVbWXiNQD6qvqAl8YmF/MnEzu\nHHXJNc9t2JC4YIwJrV0LnTpZujNRUVkWUbXSwjz3nLVm4J57fGxjADHyh5H8uPdHFv57oZFrDmKc\nmJOZDlwArnSdHwTMfEwQUC4sjHF16tArwOWas6VpU7jvvmzlms+ft0JiEyfCTz8ZB5MbT175JHtP\n7GX2ptlOm2IIIDxxMnVUdTSWo0FVT3vXJIMn2BUXvrtiRaoXK8bLfiTXbGvM+/nnrWwAX3+d4fLv\nv1sJnP/6y/fCYoEa0y8aWpSpXafy+OLHc5RrDtTxeUqwj89uPHEy50WkRNqJiNQBCq5sZPALRIQ3\n6tVj7L59bD9zxmlz7KdUKXjjDWsRgGt8q1ZBq1Zwww3WRssyJqeFx7Su0ZrbLrmNQd8MctoUQ4Dg\nyZzMDcBQ4FIs4bI2QE9VXep98/KPmZPJG2P37uXLo0f5unHj4Iy3d+8ONWvy3mUv8vjj1t6XQBMW\n8xdOnDtBwzca8uEdH9K2ZlunzTHYjM/0ZDJ1WgGIc50uV9UjdhngLYyTyRvJqam0XLOGgdWrc1/l\nyk6bYzspBw9ztm4j7ir3NaO/bEww7kP1JZ/+9ilDvx3Kut7rKFakmNPmGGzEqc2YxYBjwCngUhEJ\n8vSA/o/dceEiISFMjY3lyR07OOKwXLPdYzt2DDo/UIkpMSOZVymeyxo4q6sTDDH92y65jdjysbz4\n44v/uBcM48uJYB+f3eTqZERkNPATVsjsSeAp12EIMlqEh/PvSpV4YscOp02xjc2brfmXSy+FAese\npEjp4tYcjaFAiAgTb5zIayteY8uRLU6bY/BjPJmT2Qo0UtWAmuw34bL8kZScTMOVK5l2ySV0iIx0\n2pwCMX8+PPQQjBkDPXu6Lm7ZYuWMWbPG53LNwchrv7zGx5s/NnLNQYQT4bIdQNH8NC4inURki4hs\nE5Esl6OIyATX/fUi0tTTuiLyhIikikgQCtc7R+kiRXi9Xj16JyYGjFxzZlThhRegb1/L0aQ7GLAy\nXvbvbx3mS0iB6deyH+dTzjNt7TSnTTH4KZ44mbPAOpeI2WuuI9ckRiISCkwEOmGtTOsuIg0ylekM\n1FXVekA88KYndUWkBnA9EKR6wrnjzbhwlwoVaOagXHNBxpaUBN26Wc5lxQpLB+YfDB5sJc+cOzff\n/RSEYIrph4aEMqXLFJ5Z8ky6XHMwjS8rgn18duOJk/kcGAEsA1a7HbnRCtiuqrtV9SIwC7glU5mb\ngXcAVPUXIEJEKntQdxzwtAc2GPLJq3XrMvXQIX5NyptglZPs2gVt2kDp0pCQAFWrZlOwWDFrDfOA\nAXDihC9NDEoaV27MA00e4PHFjzttisEPybOejMcNi9yJpTnTy3V+L3CFqj7qVmY+MEpVl7nOvwEG\nATFAp6zqisgtQDtVfVxEdgHNVfVoFv2bOZkCMvngQaYfOsRPzZoR6ud7Z5YutbbCPPOMlRvTI3Pj\n462MmK+/7nX7gp0zF89w2RuXMbHzRDrX6+y0OYYC4LM5GRH52PXz1yyODR607eknvMeDcWUeeAZw\nl+rz70+/AKZXlSoUEfFruWZVK/dY9+7w/vvWw4nH/nD0aCtk9vPPXrWxMFAyrGS6XPPpCybzlOFv\niuRw7zHXzy7884PcEwdyAHBfvlMD2J9LmequMmHZ1K2D9ZSz3rUrvTqwWkRaqeofmQ3o2bMnMTEx\nAERERNCkSRPatWsH/B1XDdTz8ePH+2Q8U1q25Oq1a6m4aRNRRYv6ZHzuMe+cyl+4ALNnt+OXX2Dc\nuARCQwHy2N8rr0CvXiS88gqEhfnV+ALtvChFuSr6Kh4Y/wD9WvVz3B5vnQfb+5eQkMCMGTMA0j8v\nbUVVczyA0Z5cy6JMEayVaTFYq9PWAQ0ylekMLHK9jsPKJuBRXVe5XUC5bPrXYGbp0qU+6+u5nTv1\ntl9/9Vl/nozt4EHV1q1Vb79d9dSpAnSWmqraubPqCy8UoJG84cv3ztccTjqsEX0idPXB1U6b4jWC\n+f1TVXV9dubqGzw9PHEya7O49qtHjcONQCKwHRjiutYb6O1WZqLr/nqgWU51s2h/Z2F1Mr7kbHKy\nxi5frnP/+MNpU1RVdcUK1erVVf/3P9WUFBsa3LVLtXx51a1bbWjMMH3tdG0+ubleTLnotCmGfGC3\nk8l24l9E+gL9sEJU7lvAywA/qapfq2+YiX97STh2jPu2bGFTy5aEF8kpyupd3n3XkoeZOhVuvdXG\nhseNg4UL4ZtvvKO5XIhQVTrM7EDX2K483tqsOAs0fLkZ8wOgK9YS5i5uR3N/dzCFAfe4sC9oFxnJ\nDZGRDN21y+t9ZTW25GR48klLHmbpUpsdDFgrBo4fh5kzbW74n/j6vfM13333HZO6TOKFH15gz/Hg\n28oW7O+f3WTrZFT1hFr7VO4GIrH2tHTFmmw3FEJeqlOHT/78k19OnvRpv8eOwU03wYYN1gZLr2RQ\nLlLEejx6+mn4808vdFC4iC0fy3/i/sMjix7BRBQKN57kLnsM6AV8irXK7FZgqqrmuuvfSUy4zDt8\ncPgwL+7dy+rmzQkL8X6uqs2b4ZZb4OabrRXHXo/UPfGE5WR88EQT7FxIuUDTyU0Zds0wujXs5rQ5\nBg/xuZ6MiPwKxKlLdllESmGtAmtklxHewDgZ76Cq3LhhA+0jIxkUHe3VvubNg169YOxYuP9+r3b1\nN0lJ1qPS1Klw/fU+6jR4WbZvGXfOvpNN/TYRWSKwE64WFpzSk0nN5rXBIZyKC4sIb8bG8tLevew4\ne9YrfXz7bQIjRlg5LBcs8KGDASsnzRtvWNk1vSRHHewxfffxXVnjSm6pfwuDvxnsnEE2E+zvn914\n4mSmA7+IyHAReR5YDpiUq4WYWiVKMCg6mj5bt9oeb09Ksib3Fy2y5l9atbK1ec/o3BlatIARIxzo\nPPgYdd0oFmxbwA97fnDaFIMDeCq/3By4Cmun/w+qutbbhhUUEy7zLmlyzU9Ur869Nsk179plzb+0\nbGk9TBRzUtX399/h8sutJc2XX+6gIcHBnM1zeG7pc6ztvdbINfs5Pg+XiUgcsE1VX3VN9u8QkawS\nqBsKEUVCQphio1zzt99C69ZWzsq33nLYwQBUrmyJ0sTHQ4Dq6vgTtze4nbrl6jL6p9FOm2LwMZ6E\nyyYBp9zOT7uuGRzEH+LCLcPDubtiRZ7auTPfbajCa6/Bv/8NH3xgzcN8912CfUYWhIcesrI0v/mm\nrc36w3vnTbIan4jweufXmfDLBBKPJPreKBsJ9vfPbjya+HePO6lqChDqNYsMAcWIWrVYcuwY3x47\nlue658/Dww9bC7l+/hmuvdYLBhaEkBBLd+b552F/5tyuhrxSo2wNnrv6OeIXxJOqZv1QYcGTJcxz\ngaVYqpUC9AXaq6rde65txczJ+I75R44wcMcONrRoQYlQz75/HDoEt98O1arBjBnWoi6/ZfhwWL/e\nMSXNYCIlNYW4t+Po07wPDzV7yGlzDFngxBLmPkAbrLT8+7GyJcfbZYAh8OlaoQJNSpfmBQ/lmtNW\njd10E3z8sZ87GIAhQ+C334yTsYHQkFCmdp3KkCVDOJx02GlzDD4gVyejqodV9S5Vreg6umsW2i0G\n3+JvceFX69Zl8qFDbMxFrnnmTOjSxRIae/bZrHNR+tvYKFYMJk+28pvZkFLH78ZnM7mNr0nlJvRs\n0jNg5ZqD/f2zm5yUMQe5fr6WxeHXKWUMvqdqsWKMiIkhfutWUrMIUyYnW9mTR4ywElzecosDRhaE\na66Bjh0tfWdDgRl2zTCW71/Ol9u/dNoUg5fJKdV/V1WdLyI9s7itqvqOVy0rIGZOxvekqtJ27Vru\nrVSJvtWqpV8/ehTuust6apk1C8qVc9DIgnD0KDRsaIXN4uKctibgWbx9MX0W9mFj342UKlrKaXMM\nLnyeuyxQMU7GGTadPk27detY36IFVYsVY9Mm66nl1lvhxRd9kODS28yaZe2fWbPGWt5sKBD3fHoP\nVUtX5aUbXnLaFIMLJzZj1heRqSLytYgsdR3f2mWAIX/4a1y4YalS9KlalQHbtvHZZ9C+vbU4a+xY\nzx2Mv44NsB7Jqle3BpRP/Hp8NpCX8b3S8RVmbpjJ2kN+n0QknWB//+zGk3/7j7GWL78FpG19No8I\nhmwZUiOa6K9WkTDtCF8srEDLlk5bZCMiVs6bli3hX/+CunWdtiigqViqIqM6jCJ+QTzLH1pOaIjZ\nghdseLJPZrWqNveRPbZhwmXOkJQEPXrAlhLHON5nC1viWlIm4GNkWTB2LHz5JXz9tZFrLiCqyrUz\nr+XW+rfyWNxjTptT6HFin8x8EXlERKqISLm0wy4DDMHDzp1W/rHISFjzdiQdK0TyrA/kmh3hP/+B\nv/6C995z2pKAR0SY3GUyI74fwd4Te502x2AznjiZnsCTwDJgtetY5UWbDB7gb3HhJUvgyiuhd28r\nTUyxYpZc80d//MGKPO4t8bexZUmaXPNTT8GRI3mqGhDjKwD5GV9s+Vgeu+KxgJBrDvb3z2482YwZ\no6q1Mh21fWGcwf9RhQkT4J57rIVX/fv/HT0qHxbGy3XrEp+YyMXUIMxV1aIFdO9uSTYbCsygqwax\n89hO5vw2x2lTDDZiljAb8s3585aA5OrVllRyTMw/y6gqnTZsoENkJE97Wa7ZEZKSrL0z06ZBhw5O\nWxPw/Lj3R+765C429dtERPEIp80plDglv2wwZODQIWjXDk6dgmXLsnYw8Ldc85i9e9npJblmRyld\nGjfwNgQAABv2SURBVF5/3YoTBuP4fMxV0VfRNbYrQ74Z4rQpBpswTiZAcTIu/MsvVoLLLl1g9mwo\nlctm7dolSvB0dDR9PZRrDriYd5cu0KyZx3LNATe+PFLQ8b143Yt8vvVzftz7oz0G2Uywv39248lm\nzOYi0izTUUdEgnBdqiE33nkHuna1vrwPHer56t3Hq1fn9wsX+OCPIM2t+uqr1kKAX3912pKAJ6J4\nBOM7jqf3gt5cSCm46qrBWTzZJ7McaA5scF1qBGwCygJ9VXWxVy3MJ2ZOxl6Sk62FVAsXWvMvDRrk\nvY0VJ09yy8aNbGzZkvLBmJJl8mRLHOennyzBM0O+UVVunnUzV1S7gmevftZpcwoVTszJHASaqGpz\n16bMJsBO4HpgjF2GGPyXv/6CTp0sSZVffsmfgwFoFR5Ot6gontqxw14D/YVevSA0FCYZdfKCkibX\nPH75eLb+tdVpcwwFwBMnU19VN6WdqOpm4BJV3YFJL+MYvooLb9xozb80a2Y9xURGFqy9/6tVi2+O\nHWNpDnLNARvzTpNrHjYMDhzItljAjs9D7BpfdNlonr36WXov6O1Xe2eC/f2zG0+czCYReVNErhGR\ndiLyBrBZRIoBF71sn8FB5s61Elw+/zyMGWN9SS8oZYoUYWK9evTeupVzKSm5Vwg0Lr3UWtf96KNO\nWxIUPNrqUZIuJDFj3QynTTHkE0/mZEoC/bAkmAF+At4AzgGlVPWUVy3MJ2ZOJv+kploLpd5+Gz79\n1NpzaDd3bNzIpaVKMaJWLfsbd5pz56BxYxg92tI4MBSItYfW0vG9jmzst5GKpSo6bU7Q43M9GRFp\nrqqrM13roqoL7DLCGxgnkz9OnbISXB4+DHPmQOXK3unnwPnzNFm1ioQmTWiY2xroQCQhAe67DzZt\ngvBwp60JeJ766ikOJR3ivdtNrjhv48TE/1QRaeRmQHfgv3YZYMgf3ogL79xp5R8rXx6+/dZ7Dgag\nWrFi/C8mhvjExH/INQdFzLtdO7jhBmuddyaCYnw54I3xDW83nJ/2/cTi7c4vZg32989uPHEydwLv\niMglItILK3R2vXfNMviatASXfftac9fFinm/z95Vq6LA1EOHvN+ZE7z0EnzyibUkz1AgShUtxZs3\nvUnfhX05c/GM0+YY8oBHuctEpD7wGbAHuF1V/f5dNuEyz1C19hGOHg0ffmh9AfclG5OSaL9+fbpc\nc9DxwQeW7vTq1Uau2Qb+Peff1AivwejrRzttStDiszkZEcm8dbkicBy4AKiqXm6XEd7AOJncOXcO\n+vSBdeusDZY1azpjx7M7d5J49iwfN2zojAHeRBVuvNFapjdokNPWBDyHkw7T6M1GfHXfVzSp3MRp\nc4ISX87JdM10XAF0dL2+2dMORKSTiGwRkW0ikuV/mYhMcN1fLyJNc6srIi+JyG+u8p+KSFlP7QkW\nChoXPngQrrnGyun400/OORiAoTVrsi4pifkuXZaginmLwJtvWqEz1ybUoBpfFnhzfJVKV7LkmufH\nk5LqzBL4YH//7CZbJ6Oqu3M6PGlcREKBiUAn4FKgu4g0yFSmM1BXVesB8cCbHtT9Cmioqo2BrYBJ\n2ZoHli+3NljeequlAeP04q4SoaFMjo2l/7ZtJCUnO2uMN6hVy3qK6dPHerIxFIgHmz5IybCSvL7y\ndadNMXiAV/VkRKQ1MExVO7nOBwOo6otuZSYBS1X1I9f5FqAdUCu3uq7rtwF3qOq9ma6bcFkWzJgB\nTz9tyZ906eK0NRnp+dtvRIaF8Urduk6bYj8XL0LLlvDkk3DvvbmXN+RI4pFE2kxrw9rea6lRtobT\n5gQVgaYnUw3Y53a+33XNkzJVPagL8CCwqMCWBjnJyZYs/ciR8N13/udgAMbWqcOHhw+zMo9yzQFB\nWJiVpfnJJ/Ms12z4J/Ur1GfAFQMCQq65sOPtdP2evvv58poiMhS4oKofZHW/Z8+exLjUtCIiImjS\npAntXMun0uKqgXo+fvx4j8dz6BB06ZJAaCisWNGOiAjn7c/ufOwll9D9ww+ZXK8eoSEhjttj+/nd\nd5Nw770weLB/2OOFc/c5C2/2F5cSx6yjs/j0t08p/0f5oBufL8czY8YMgPTPS1tRVa8dQBzwpdv5\nEGBQpjKTgLvdzrcAlXKrC/TESnFTPJu+NZhZunRprmVSUlQnT1atUEH1uedUk5O9b1dBSU1N1eZT\np+pLe/Y4bYp3OHlSl0ZFqS5Z4rQlXsOTv027+GHPD1rt5Wp6/Oxxn/Xpy/E5geuz0zY/4O05mSJA\nItABSzJgBdBdVX9zK9MZ6K+qnUUkDhivqnE51RWRTsDLwDWqmmXsobDPySQmQnw8nD9vRWkaNcq9\njr+w4+xZrli9mpXNm1OrRAmnzbGf+fNh4EDYsAGCcXw+pvf83oSGhPLGTW84bUpQEFBzMqqaDPQH\nFgObgY9cTqK3iPR2lVkE7BSR7cBkrIwC2dZ1Nf0aUBr4WkTWujJDG4ALF6zklm3awB13WMuTA8nB\nANQpUYKnoqPpt21bcMbbu3aFJk3ghRectiQoGH39aOYlzmPZvmVOm2LICjsfi/zpoBCGy5YtU23Y\nUPWmm1QDOdq0dOlSvZCSopevWKEf/P670+bYztKlS1UPHLDimL/+6rQ5tuNEOOmjjf/f3pmHV1Fe\nf/xzsoAIsoaibKIQMAQUiCDUBS1CERHUKu7UDRAUqCiCUhWsFVHAihIhoL9atApStVJEBSqoCBq2\nCKhsCgpKVBRBfuy8/eOdtDHem9wkM3fuTM7nee7D3Lnzzpwz7/CezLuc70yTOTnTHDh8wPNraXdZ\n6T6qERsC9uyx8iWXXgr33mt7Yxo39tuq8pGalEROixYM27yZ7w+FULaofn37ytm/v9VWUMrF5S0v\np0nNJjy65FG/TVGK4OmYjJ9UlDGZOXPg1luha1e7qLx2bb8tcpfBGzey78gRpp9yit+muM/Ro3D2\n2XbdzMCBflsTeLbu2kpWThZLb1pKep10v80JLHHXkwkqYQ8yO3bAkCGwapXNmnzeeX5b5A27Dx8m\nMzeX5zIy6Fyzpt/muM+6dTYraV6efbtRysVjSx9jzoY5LOy7EBHX2skKRaAG/hX3MQamT4dTTllE\ns2Z2glLYAkzhdQjVC+Sa168PjVxzYf/IzLTpZoYM8c0et/mZf3Fm8BmD2X1gN8/mPevZNfz0L4ho\nkAkQGzbYgJKTA+PH29X7FWEGbO+0NFpWrcrYL77w2xRvGDXK/rXwz3/6bUngSUlKIeeiHEYsGMG3\ne7/12xwF7S4LBIcO2fGWiRPhj3+0g/zJyX5bFV8K5JoXt2lDS78zenrB229b3et16+C44/y2JvDc\n+dad5O/NZ8YlM/w2JXDomEyMhCXIfPAB9OsHDRvajPF+puT3m8nbt/PiN9+wuE0bksLY337jjTbA\nPP6435YEnr0H95KZncm0i6bRtakK+ZYGHZOpIOzZA0OH2nT8d98Nc+f+PMCEuV84mm+31K/PYWOY\nHnC55qh19+ijMHMmfPhhXO1xm0R4NqtWqkr2hdncMvcW1+WaE8G/IKFBJgGZOxdatYLdu2HtWrjq\nKqt9VdFJFiGneXP++PnnfH3ggN/muE+dOjBhgn11DePaoDjTI70HHRp04IHFD/htSoVGu8sSiPx8\n+/aSmwtTp8L55/ttUWJyz2efsXnfPmaGVa65e3fo0sUK/yjlokCueUHfBZxaL6EV4xMG7S4LIcZY\nEbHWrW2X2Jo1GmCK494TT2TFnj3M3bnTb1Pcp0Cu+ZFH4LPP/LYm8NSrVo+HujxEvzn9fJNrruho\nkPGZTZtsQMnOhjffhHHj4NhjSy4X5n7hknyrkpzM1BYtGLRhQyDlmkusu5NPtm8xAwcGUq450Z7N\nG9veSOXkyjy1/ClXzpdo/iU6GmR84tAhePhh6NgRLrwQli2Dtm39tio4dKlVi3Nr1uS+LVv8NsUb\nbr/dpnX4e0Q9PqUUJEkSU3tOZfSi0Xz545clF1BcRcdkfCA3147tHn+87Rk56SS/LQom3x08SKvc\nXOaeeipZYVxb8uGH0KuXXTtTp47f1gSeMYvGsGrHKl698lW/TUlodEwmwPz0k/0D9aKLYPhwmDdP\nA0x5SKtUiUeaNqXf+vUcDmMm4w4d4Ior7MOilJuRZ41k/c71vPLJK36bUqHQIBMn5s2z05J37rTT\nkq+5pnzTksPcL1wa366rV4/aKSk8vn27dwa5TKnq7sEHYcECmxEgICTqs1k5pTJTe05l8LzB/Lj/\nxzKfJ1H9S1Q0yHjMN9/A1VfbdPw5OfC3v0Famt9WhQcRYUrz5ozdupUt+/b5bY77HHccPPkkDBgA\n+/f7bU3gOefEc7ig2QXcs/Aev02pMOiYjEcYYwPKXXdB374wejSEMeVWojB261be+fFHXm/dOpwp\n3i+7DDIyrNCZUi5+2PcDmdmZ/KPPP+jUqJPf5iQcmrssRvwMMps32+ztO3fatPzt2vliRoXi0NGj\ntFuxglGNG3NlvXp+m+M+X30Fp50GixZZeQClXMxcO5MH332Qlf1Xkpqc6rc5CYUO/Ccwhw/bNXRn\nnAHdutnJQV4FmDD3C5fFt9SkJKY1b86wzZv5IcFTspSp7urXhwceCIRccxCezT6ZfWhUvRHj3x9f\n6rJB8C+R0CDjEitWQPv2MH++DS7Dh0NKit9WVSw61qjBpWlp3BXWlfIDBth+2Jwcvy0JPCJC9oXZ\nTFg6gY07N/ptTqjR7rJysncv3HcfPPecTaJ73XWazNJPCuSan8/I4JwwyjWvXWuV61Su2RUmLp3I\n3I1zWXDdgnCO5ZUB7S5LIN56y+Yby8+3//f79tUA4zfVU1KY1KwZ/dev50CCdyuViVat7BvN0KF+\nWxIKhpwxhF37dzHjIxU38woNMmXgu+9sQOnf3+Yce+45qFs3vjaEuV+4vL5dUrcuGVWrMnbrVncM\ncply192oUbB6NcyZ44o9bhOkZzMlKYWcnjkMnz88ZrnmIPmXCGiQKQXGwPPP2z8m09Ls20v37n5b\npUTiiWbNmPzVV3yyd6/fprhPlSpWC+LWW626nVIusupncU3ra7jjrTv8NiWU6JhMjGzZYqclf/21\nnZbcvr1rp1Y84slt25j17bcsCqtc8w03QI0a8Je/+G1J4Pnp4E+0ym7F9F7TOf/kiq2zoWMycebI\nEXjsMTj9dDj3XFi+XANMUBjYoAEHjx7l6YDLNUdl/Hh48UWbcVUpF9UqVbNyzf+6hX2HQpg5wkc0\nyBRDXh506gSvvQZLl8LIkZCaIOu2wtwv7JZvySLktGjBqM8/Z0cCyTW7Vnd16thAk2ByzUF9Nnuk\n9yCrfhZ/eqf4rApB9c8vNMhEYN8+uOce6NrVTuT5978hPd1vq5SycGq1atx0wgn8YdMmv03xhmuu\ngV/9SrvMXOLx7o8zfeV0Psr/yG9TQoOOyRTh7bftrLG2bWHSJKv5ogSbfUeO0Co3lyfS0+kRRl2W\nzZttmoncXNWOcIGcFTk8s+oZlty4hOSkZL/NiTs6JuMRP/wAN99spyZPmACzZmmACQtVkpOZ0rx5\nYOWaS6RpU5tiIqByzYnGze1uJjU5lSnLp/htSiio8EHGGHjpJZtzsHJlK0LYq5ffVpVMmPuFvfCt\na+3anFOzJvcngFyzJ3U3bJid+vjCC+6fu5QE/dlMkiRyeuYwevFotu/+pU5R0P2LNxU6yGzbBr17\nw/33w+zZMHkyVK/ut1WKV0xo2pTn8vNZGca1JampNqfZHXfA99/7bU3gyaibwaDTBzF43mC/TQk8\nFXJM5uhReOopq/Fy22121ljlyvG1T/GHZ3fsYNK2bXzQrh0pSSH8G2vIEJtQ7+mn/bYk8Ow/vJ82\nU9owtstYLsm4xG9z4obqycRItCDz8cd2xifAtGnQsmWcDVN8xRjD+Xl5XFinDsMaNfLbHPfZvdv2\n/c6YYRd2KeVi8ZbFXPvKtawbtI7qlStGN0egBv5FpLuIfCoiG0VkRJRjJjm/54lI25LKikhtEZkv\nIhtE5C0RiSnV7oED9s2lc2e49lp4991gB5gw9wt76VuBXPNDPso1e1p31av7Ltccpmezc5PO/Lbp\nbxm1cNR/94XJv3jgWZARkWTgSaA70BK4SkQyihzTA2hmjEkH+gNPxVB2JDDfGNMcWOh8L5YlS+yU\n5NWrYdUqOwkn6D0lq1ev9tsEz/Dat/Rjj2VYo0bcunEjfrzJe153vXvbBHsPPeTtdaIQtmfzka6P\nMPuT2SzbtgwIn39e42VT2wHYZIzZYow5BLwI9C5yTC/gWQBjzAdATRE5voSy/y3j/HtxNAN274ZB\ng6BPHyuN/sor0LChW+75y65du/w2wTPi4dudjRqxdf9+Xvo2tsy7bhKXups0yQ48fvyx99cqQtie\nzdpVajOx20T6zenHoSOHQuef13gZZBoAXxb6vs3ZF8sx9YspW88Yk+9s5wNRBd0zM60k8tq18Lvf\nqdaL8j8qJSUxrUUL/rBpU8LLNZeJBg1gzJhAyDUHgStbXUnD6g2ZsHSC36YEDi+DTKz9ELE0/RLp\nfM7IftTrzJhhZ3XWqhWjJQFiSwKs9/CKePnWqUYNLklLY0Sc5ZrjVne33GIDzLRp8bmeQxifTREh\nu0c2498fz0frNeVMqTDGePIBOgJvFPp+NzCiyDFTgCsLff8U+2YStaxzzPHO9gnAp1Gub/SjH/3o\nRz+l/7gZC1LwjuVAuog0Ab4CrgCuKnLMa8BtwIsi0hHYZYzJF5GdxZR9Dfg9MM7599VIF3dzCp6i\nKIpSNjwLMsaYwyJyG/AmkAw8bYz5REQGOL9PNca8LiI9RGQTsBe4obiyzqkfBmaJyE3AFqCPVz4o\niqIo5SO0izEVRVEU/wnEapFEWtTpBR7596iIfOIc/7KI1IiHL5Hwwr9Cv98hIkdFpLaXPkTDK99E\nZLBTf2tFZJzXfkTDo2ezg4h8KCKrRCRXRHzTmi2nf8+ISL6IrClyfFjalmj+la5t8Wrg38UJBMnA\nJqAJkAqsBjKKHNMDeN3ZPgNYVlJZ4BHgLmd7BPBwyPzrCiQ52w+HzT/n90bAG8DnQO2w+AacB8wH\nUp3vdcNUd8Ai4LfO9gXA20Hzz/l+NtAWWFOkTODblhL8K1XbEoQ3Gd8XdXqMJ/4ZY+YbYwoWSHwA\n+LUM1av6A5gI3OW1A8XglW8DgbHOfowx8V8xavHKv6+Bgr9+awK/zKcfH8rjH8aYd4EfIpw3DG1L\nVP9K27YEIcj4vqjTY7zyrzA3Aq+X29Ky4Yl/ItIb2GaM8XPRgld1lw6cIyLLRGSRiJzuqtWx45V/\nI4EJIvIF8Ch2iYIflMe/4ghD2xIrJbYtQQgysc5M8GxRp8e46d8vC4mMAg4aY/5elvIu4Lp/IlIF\nuAe4vyzlXcSruksBahljOgLDgVmlLO8WXvn3NDDEGNMYuB14ppTl3aKs/sXcVgS0bYmpXKxti5fr\nZNxiO7bvvYBG2Ghb3DENnWNSI+wveDXPF5HjjTE7ROQE4BtXrY4dN/37WVkRuR7b59rFPXNLjRf+\nNcX2M+eJzRXUEFghIh2MMfGsR6/qbhvwMoAxJteZ2FDHGLPTRdtjwSv/Ohhjzne2ZwPT3TK4lJTV\nv5K694LetpTYfVmqtsWPAalSDl6lAJuxjUolSh686sj/Bh+jlsUOzhVkERiJf4NzXvnXHVgHpIWx\n/oqU92vg36u6GwCMcbabA1+Eqe6AlUBnZ7sLkBs0/wr93oTIA/+BbltK8K9UbUvcHS/jzboAWI+d\nKXG3s28AMKDQMU86v+cB7Yor6+yvDSwANgBvATVD5t9GYCuwyvlkh8m/Iuf/DB+CjId1lwrMANYA\nK4Bzw1R3wOnYAePVwFKgbUD9ewGbkeQAdlzjBmd/WNqWaP6Vqm3RxZiKoiiKZwRh4F9RFEUJKBpk\nFEVRFM/QIKMoiqJ4hgYZRVEUxTM0yCiKoiieoUFGURRF8QwNMkrCIiJNiqYZd+m8F0VLe15CuRoi\nMrDQ9/oi8pKLdnUUkZwi+84VkTluXaMUtvzeWa2uKOVCg4xS4TDGzDHGlEWjpRYwqNB5vjLGXO6e\nZVwAzHPxfOXhemySy5gRkWRvTFGCjAYZJRCIyMkislJEskTkWBGZJSLrHNGkZSKSFaHMFhEZLSIr\nROQjEWnh7L9eRJ5wtuuJyCsistr5dHT2DxORNc5nqHPKh4GmjtjWOBE5seBNyznnyyIyzxGrGlfI\njm4i8r5jxywRqRrFzd9gV4pHuwftnXtwkojUdYSx1orINMfX2kWOv1xEJjjbQ0Vkc6F7+Z6zfZ9Y\nAbE1IjLV2XcZdlX+8871jnHu+yIRWS4ibxSkg3f2PSYiucCQYitRqZBokFESHic4zAZ+b4xZgX2b\n2GmMyQTuBbKInDnWAN8aY7KAp4A7IxwzCSua1QYr0PSxE7Cux+pxdAT6iUgbrADVZmNMW2PMCH6Z\nvfY0oA/QGrhCRBqISBowCuji2LECGBbBxzTgkDFmT5R78GvHh17GmM+xGagXGGNaOfemcYRi72CF\np3D+/U5E6jvbi539TxhjOhhjWgNVRKSnMWY2sBy42hjTDjgCPAH8zhhzOvB/wJ+d8gYrrtbeGPNY\nJNuVik0QsjArFZtfAa8ClxhjPnX2nQn8BcAYs05EitOUedn5dyVwaYTfzwOudc5lgN0ichbwsjFm\nH4CIvIxtmF8rwdaFBUFCRD7GJhesBbQE3ncyRlcC3o9QthvwZpTzZgBTga7GmB3OvjNxxLCMMW+K\nSCRxqXwRqSYi1bDZdf8OnAOcBfzDOew3IjIcOBabc2st8C/nt4Ig2gLIBBY4PiRjc1oVMDOK3Yqi\nQUZJeHZhk/GdDXxaaH+sGiYHnH+PEP15j6SnIUV+jyXJ34FC24WvN98Yc3UJZbsDEyLsN1glycpA\nO34uEBXLPXgfuAGbJPE94CagEzBMRI4BJgNZxpjtInI/cEyRaxdcZ50x5tdRrrE3BjuUCop2lymJ\nzkHsG0hfEbnK2bcE2y2FiLTEdk+VlYVYuWNEJFlEqgPvAheLSBVn/ORiZ99PwHGlOLcBlgFnikhT\n5xpVRSS98EFiXw9ONcbkRTiHYANtT2CsiHR29he+B92wb0yReBcrfLYYmzH3PGC/88ZVEFB2Om87\nhScx7AGqO9vrgbqFxqtSnfuuKCWiQUZJdIwx5v+xjeztItITyMY2euuAP2G1LX6MVLbItomwPRQ4\nz+lyW47V21gF/BX4EBskphlj8owVDVviDJKPK+achY3/Dju+84KI5GHfLFoUOSwLGwAi+u/cg2+c\nezBZRNoDY4BuzsSDy4Ad2MBQlPewcrrvGKvL/oWzD2PMLmAatovsDWz6/QL+CkwRkZXYduIyYJyI\nrHZs7RTFXkX5GZrqXwkcIpKEHWw+4LwhzAeaG2MO+2xamRArY7vRGBOzzLKIVAKOGGOOiEgnYLIz\nSK8oCYWOyShBpCrwbxFJxXYnDQxqgAEwxvy55KN+QWNglhNwDwL93LVKUdxB32QURVEUz9AxGUVR\nFMUzNMgoiqIonqFBRlEURfEMDTKKoiiKZ2iQURRFUTxDg4yiKIriGf8BXhiPb7RqslIAAAAASUVO\nRK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x79b5f28>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "66.429 % of nicotine is extracted.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.3: Page 502"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.3\n",
+ "# Page: 502\n",
+ "\n",
+ "print'Illustration 10.3 - Page: 502\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "F = 8000;# [kg/h]\n",
+ "xF = 0.30;# [wt. fraction acetic acid]\n",
+ "#*******#\n",
+ "\n",
+ "# From Illustration 10.1 (Pg 494)\n",
+ "# Equilibrium Data:\n",
+ "# Eqb = [y_star*100 x*100]\n",
+ "Eqb = numpy.array([[0.18 ,0.69],[0.37 ,1.41],[0.79 ,2.89],[1.93, 6.42],[4.82, 13.30],[11.40, 25.50],[21.60 ,36.70],[31.10 ,44.30],[36.20, 46.40]]);\n",
+ "\n",
+ "# Solution(a)\n",
+ "\n",
+ "# From Figure 10.23 (Pg 503):\n",
+ "# For minimum solvent rate:\n",
+ "y1 = 0.143;# [Wt fraction of acetic acid in isopropyl ether layer]\n",
+ "xM = 0.114;# [Wt fraction of acetic acid in water layer]\n",
+ "# From Eqn. 10.24:\n",
+ "Bm = (F*xF/xM)-F;# [kg/h]\n",
+ "print\"Minimum solvent rate: \",Bm,\" kg/h\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "B = 20000.0;# [kg solvent/h]\n",
+ "yS = 0;\n",
+ "S = B;\n",
+ "# From Eqn 10.24:\n",
+ "xM = ((F*xF)+(S*yS))/(F+S);\n",
+ "# From Fig. 10.23 (Pg 503):\n",
+ "y1 = 0.10;\n",
+ "# Operating curve data:\n",
+ "# Operat = [YsPlus1 Xs]\n",
+ "Operat = numpy.array([[0 ,0.02],[0.01 ,0.055],[0.02 ,0.09],[0.04 ,0.150],[0.06, 0.205],[0.08, 0.250],[0.1 ,0.3]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,1]/100,Eqb[:,0]/100,label=\"Operating Line\")\n",
+ "plt.plot(Operat[:,1],Operat[:,0],label=\"Equilibrium Line\")\n",
+ "plt.grid('on');\n",
+ "plt.ylim((0,y1));\n",
+ "plt.xlim((0,xF));\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"Wt. fraction acetic acid in water solution\");\n",
+ "plt.ylabel(\"Wt. fraction acetic acid in isopropyl ether solution\");\n",
+ "plt.title(\"Solution 10.3\")\n",
+ "plt.show()\n",
+ "# From Figure scf(22):\n",
+ "xNp = 0.02;\n",
+ "Np = 7.6;\n",
+ "# By acid balance:\n",
+ "M = B+F;\n",
+ "E1 = M*(xM-xNp)/(y1-xNp);# [kg/h]\n",
+ "RNp = M-E1;# [kg/h]\n",
+ "print\"Number of theoretical Stages: \\n\",Np\n",
+ "print\"Weight of the extract:\",E1,\"kg/h\\n\"\n",
+ "print\"Weight of the raffinate \",RNp,\" kg/h\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.3 - Page: 502\n",
+ "\n",
+ "\n",
+ "Minimum solvent rate: 13052.6315789 kg/h\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEZCAYAAABvpam5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXu8VdP2wL+jk5T0cqX0knI9f1SeRcj1SlRIoaSIXFdF\nkbwueb+KxPVKOkW3lEQvlbodRaJ3XqFIqIu6pfTSOWf8/pjrnHbHPnuvc/Z7nfH9fNbn7LnWnGuO\nsdc+e+w5xxxjiqpiGIZhGCWhXKoFMAzDMDIPMx6GYRhGiTHjYRiGYZQYMx6GYRhGiTHjYRiGYZQY\nMx6GYRhGiTHjYZRZRKShiOSLSKn+D0Ski4jMiLdchpEJmPEwMh4RaSki80Vks4hsFJEPROTEOPfx\nJ0OjqqNV9fx49uP1tY+IvCki33l9nhmmzuMissE7Hotwr6NFZJGI/M97fz4UkZbxltkoe5jxMDIa\nEakKTAGeAWoAdYH7gV2J6jJB9y3KXOAq4L/AXpG8InID0B44zjvaeufC8RPQEfgL7v0ZC7yZIJmN\nMoQv4yEiWSJSR0QaFByJFswwfHI4oKr6hjp2qup7qvopgDjuEZE1IvKziIz0DM6f8OqcHVIeKCKv\necW53t/NIrJFRJqLSHcRmRdS/1QRWej9wv9ERFqEXMsRkQe8UdEWEZkhIn8JJ4eq7lbVoar6IZAX\npko3YJCqrlPVdcAgoHsx9/pNVb9Tl0oiC8gH1oeraxglIarxEJHewM/ALGBqyGEY6cBXQJ6IZItI\naxGpUeT6Nbgv21ZAI2B/4Lli7qXs/Ss/9PXp3t9qqlpVVReENhSRA3D/F0OAA4CngKlF5LkS9yV/\nEFABuM2PgmE4GlgeUl4BHBOpgYhsBnYAtwOXlbJfwyjEz8jjFuAIVT1aVY8tOBItmGH4QVW3Ai1x\nX/TDgF9E5B0ROcir0gUYrKprVHUbcCdwhU8nuRTzOhwXAl95fpB8VR0LrATaFYgKjFDVVaq6ExgH\nNPWjYxj2B34LKW/xzhWLqlYHquGmrcaLSLKm34yA4ucfaC3uw2kYaYmqrlTVa1S1PvB/QB3cCADg\nYOD7kOprgfJArTiLUce7dyjfe+cL+G/I6x1E+cKPwO9A6NRbNe9cRFR1O3AHbqrPfgAaMVHeR53v\ngDkiMhX4wzunqvpU4sQyjNKhql+JyEigp3dqHdAwpEoDIBc3FVvUd7cNqBxSrh166yhd/wRcWuTc\nIcC70aUuMZ/jRi2LvHIT4DOfbbNwPxq3J0Auowzhd+QxCzdHuz9QxTsMI+WIyBEi0k9E6nrl+jjf\nwkdelTFAX2+p7f7AI8BYVc0Pc7tluCmt8t5S3w7sMRq/4pzNjYsR5V3gcBG50mt/OXAkbiVYobgl\n0GtfEanoFUNfA4wC+nmLWOoC/YDsYu5zjog09Ra9VMX5Yr5S1VV+ZTGMcEQdeajqQAARqeKVtyZY\nJsMoCVuBU3BfptWBzcBkoL93/VXc1NFcoCIwHegd0j50RPFPnLHZBLwPjMY5v1HV7SLyMPChiJQH\nLiDEwa6qG0XkItyS4ReAb4CLVPV/xfRV1DlflK9wIyMFZgAqIoeq6lpVfUlEGgGfenWHqerLBQ1F\n5DPgYVUdA1QHngXq4aa2ctjjhzGMUiPRNoMSkWNxv3QKlhX+CnRT1ajDZBFpjZt7zgJeUdXHi1w/\nEhgBNAPuVtXBftsahmEYqcOP8fgIuEtV53jlVsAjqnpqlHZZuF9P5+DmgxcCV6rqlyF1auLmhS8G\nNhUYDz9tDcMwjNThx+exX4HhAFDVHPZ2KhbHycAqb4nkbtwSwfahFVT1V1VdBOwuaVvDMAwjdfgx\nHt+JyD89h+OhInIP8K2PdnWBH0LKP3rn/BBLW8MwDCPB+DEe1+IiYt8CJgA1vXPRiLa0MVFtDcMw\njATjZ7XV/9h7dYpffgLqh5Tr40YQcWsrImZkDMMwSoGqxpRloNiRh4g84/2dHOaY5OPei4C/etNd\nFYDLgeLaFVXCd1tVDexx3333pVwG08/0Syf97rlHOf545bffgqdbIo9l65dx6JBD6T+zP7vzirqY\nS0ekkcco7+/gMNei/uJX1VwR6YVbo54FDFfVLwtSR6tbq14bt5KqKpAvIjcDR6vq7+Ha+tYqIKxZ\nsybVIiQU0y+zSbZ+Q4bAuHEwbx5UDZsXOX4E6dmN/Wwsvd/tzXMXPMfl/3d53O5brPFQ1cXey6aq\nOiT0mojcgguiioiqvkuR9Ayq+lLI6/+y9/RUxLaGYZRNRo6Ep592huOgg6LXNyA3P5c7Z93JhC8n\nMKvrLJrUbhLX+/txmHcLc657XKUwwtK9e/dUi5BQTL/MJln6vfMO3HEHzJgBDZK0k1CmP7uN2zdy\nwegLWP7zchZevzDuhgMiBAmKyJVAZ9w+BvNCLlUB8lT17LANk4iIaHHyG4aR+eTkQKdOMG0anBjX\njYWDy/L/LueSNy7hsqMv45GzH6F8uT9PMIkIGqPDvFgHCy7yuxWwADjTe90KOAEon2oHkCejhoM9\neYPssMPXkQjmzJmTkPumC4nWb+FC1Zo1Vf/zn4R2E5ZMfXZjPh2jBz5xoI79dGzEet5nPqbv30g+\nj+9x+xE0L65OOqM2IjF8YvsipR8rV0LbtjBsGJx1VqqlSX8S7d8Ih5/cVqFZdCsA+wC/q2qC1ztE\np7hpK29IlgKJjEzEPi/pxdq1cPrp8MAD0K1bqqVJfzZu38gVE65AEMZ0GMNf9vtL1DbxmLaK6jBX\n1SoFB1AJt+HN87F0ahiGEY5ffoHzzoO+fc1w+GH5f5dz0rCTaFa7GdO6TPNlOOKFn9VWhajbm/lt\noHWC5DGMwJCTk5NqERJKvPXbsgUuuAA6doRbbonrrUtMJjy7sZ+N5ZzXzuHRsx/liXOfCOsYTyRR\nexORDiHFcjiH+Y6ESWSkBfPmzeP6669n5cqVSetz7dq1HHPMMWzZssX8EGWMHTugXTto3txNVxnF\nkwr/Rjj8+DyycStSwO39vAa3c9kvCZXMB5ns88jOzmbw4MF8++23VK1alUsuuYRHH32UatWqpUSe\ncuXKsWrVKho1apTwvlq1akXXrl3p0aNHwvvyQyZ8XoLM7t3QoQPsvz+8/jqUK9F8SNmiNP6NcCTL\n59FdVa/xjutV9eF0MByZzODBg7njjjsYPHgwW7ZsYcGCBXz//fece+657N4dn7wzoeTl5fmql6wv\nUBGxkYUBQH4+9OgBubkuitwMR/Gk0r8RjkiJEZ+NcAxNppBBYsuWLQwcOJDnnnuO8847j6ysLA45\n5BDGjRvHmjVreP311wEYOHAgl112GVdccQVVq1blhBNOYMWKFYX3WbduHR06dOCggw6iUaNGPPvs\ns4XXCtp27dqVatWqMXLkSBYuXEiLFi2oUaMGderUoXfv3oWG6owzzgCgSZMmVKlShfHjx5OTk0P9\n+nsyxzRs2JDBgwfTpEkTqlevzhVXXMGuXbsKrz/xxBPUqVOHevXq8corr1CuXDm+/dbPti97WLNm\nDeXKlSM/Px9wI5R7772Xli1bUrVqVc4//3w2btxYWH/BggWceuqp1KhRg6ZNm/L++1Ez5iSVTJg3\nj4VY9VOFfv3g22/hzTdhn33iI1c8SLdnl2r/Rjgi2fnFuOy2i4s5jFIwf/58du7cyaWXXrrX+cqV\nK9OmTRvee++9wnOTJk2iU6dObNq0ic6dO3PxxReTl5dHfn4+bdu2pVmzZqxbt47Zs2czZMgQZs6c\nuVfbjh078ttvv9G5c2eysrJ45pln2LhxIx999BGzZ8/m+efdorm5c+cCsGLFCrZu3UrHjh3/JLeI\nMH78eGbMmMF3333HihUryM7OBmD69Ok8/fTTzJ49m2+++YacnJy4jSzGjBlDdnY2v/zyC3/88QeD\nBg0C4KeffuKiiy7i3nvvZdOmTQwaNIgOHTqwYcOGuPRrJJ6HHnIR5FOmwH77pVqa9CQ3P5f+M/tz\n1+y7mNV1VlwTG8ZKscZDVbNVdaT3Nxu3EdSbBeeTJmGCEInPUVI2bNjAgQceSLkw4/PatWvv9eV3\n4okncumll5KVlUW/fv3YuXMnH330EQsXLmTDhg3cc889lC9fnkMPPZTrrruOsWPHFrY99dRTadeu\nHQAVK1bk+OOP5+STT6ZcuXIccsgh9OzZs8S/1Pv06UPt2rWpUaMGbdu2ZdmyZQCMGzeOa6+9lqOO\nOopKlSpx//33x2UKTES45pprOOyww6hYsSKdOnUq7PP111+nTZs2tG7tFv6dc845nHjiiUybNi3m\nfuNFq1atUi1CQolFv+eeg1GjYPp0qF49fjLFi3R4dsnITxULflZbHYtLz/4Xr/wr0E1VP0uwbAkl\nVf7RAw88kA0bNpCfn/8nA7J+/Xpq1qxZWK5Xr17haxGhXr16rFu3DhFh3bp11KhRo/B6Xl5e4fRT\n0bYAX3/9Nf369WPx4sVs376d3NxcTixhsqDatWsXvq5UqRLr168vlPvkk08utu9YKNrn77//DsD3\n33/P+PHjmTx5cuH13Nxc/va3v8WtbyMx/Pvf8PjjMHcuhDxeIwQ/+alSjR/31MtAP1VtoKoNgFu9\nc0YpaNGiBfvuuy8TJkzY6/zvv//O9OnTOfvsPfkmf/hhzzbu+fn5/Pjjj9StW5f69etz6KGHsmnT\npsJjy5YtTJkyBQjvkL7xxhs5+uijWbVqFb/99hsPP/xwoW8hVg4++OC9ZA19nSgaNGhA165d93oP\ntm7dyu23357wvv2SbvPm8aY0+k2d6vwc06fDoYfGX6Z4kcpnl47+jXD4MR77qeqcgoKq5gCVEyZR\nwKlWrRr33XcfvXv3ZsaMGezevZs1a9bQqVMn6tevT9euXQvrLl68mIkTJ5Kbm8uQIUOoWLEizZs3\n56STTqJKlSo88cQT7Nixg7y8PD777DMWLVoEhF819fvvv1OlShX2228/Vq5cyQsvvLDX9Vq1arF6\n9eoS6VLQT6dOnRgxYgQrV65k+/btPPjgg1Hb7t69m507dxYeubm5EfsoylVXXcXkyZOZOXMmeXl5\n7Ny5k5ycHH766acS6WAkj3nz4JprXIr1Y45JtTTpRzr7N8Lhx3h8JyL/9LaEPVRE7gFKtozG2Iv+\n/fvzyCOPcNttt1GtWjWaN2/OIYccwuzZs9nHW3IiIrRv35433niDAw44gNGjR/PWW2+RlZVFVlYW\nU6ZMYdmyZTRq1IiaNWvSs2dPtmzZUti26Mhj0KBB/Pvf/6Zq1ar07NmTK664Yq86AwcOpFu3btSo\nUYM333wz6nLa0OutW7emT58+nHXWWRx++OG0aNECgH333bfY9jfeeCP77bdf4XHttdeG7TO0HHq9\nXr16vPPOOzzyyCMcdNBBNGjQgMGDB8dtNBUP0mHePJGURL9ly1wsx+jRcMopiZMpXiT72aW7fyMc\nfoIEDwDuB07zTs0DBqrqpgTLFpVMDhKMxv3338+qVat47bXXUi1Kifnyyy859thj+eOPP8IuDEg3\ngvB5SWe++QbOPBOGDoXLLku1NOlHKvwbyQoS/J+q9lbV44GTgHvTwXAEnUz7Mps4cSK7du1i06ZN\nDBgwgHbt2mWE4Ugk5vOAH390iQ4feCCzDEeynl2m+DfCEfW/W0TGiEhVEakMfAp8ISLp45UMKJkW\nhf3yyy9Tq1YtDjvsMPbZZ58/+VSMssfGjXD++XDjjXDddamWJr3INP9GOPxMWy1X1SYi0gU4HrgD\nWKKqxyZDwEgEedrKSB72eYk/W7fCOedAq1ZuWa6xh3jlp4qFpExbAeVFZB/gYmCyqu5mT6JEwzCM\nvdi1Cy65BI47Dh57LNXSpBfplp8qFvwYj5dwmXT3B+aKSEPgt8SJZBjBoCz6PHJzoXNnqFEDXnyx\ndFkY0oFEPLtM9m+EI6r0qjoUKEyEKCLfA7arsGEYe6EKN9zgpqwmT4asrFRLlB6ky/4b8SaqzyOd\nMZ+HEQ/s8xI7qnD77S4QcNYstzeHkR7+jXAky+dhGIYRkccfh3ffhWnTzHAUECT/RjgiGg8RKSci\npyZLGCM21q5dS5UqVQp/Rbdq1Yrhw4cDMHr0aM4///zCuiXdb6No+1RQVL90p6z4PF5+2R0zZ8IB\nB6RWpngR67MLmn8jHBGNh6rmA88nSZYyQ8OGDdlvv/2oUqVK4dGnT5+Y79ugQQO2bt1aGB8SGivS\npUsXZsyYUep7x9q+JIQavVCK6meknnHj4P77neGoUyfV0qSeIMRv+MWPOZwlIpcBE8I6GIwSIyJM\nmTIlY9KH5+XlkZVE72emBUgWR9BzW+3a1YreveG99+Cww1ItTXwpzbML9W8svH5h4KapiuLH5/F3\nYBzwh4hs9Y4tCZarzJKfn89tt91GzZo1ady4Mf/617/22pq1YcOGzJ49u7D+wIEDCzPxFt3GNZTs\n7GxOP/30vc5NnTqVxo0bU7NmTW6//fbC6aDs7GxOO+00+vXrx4EHHsjAgQP3ah+un9DRQmj7GjVq\ncNhhhzF//nxGjBhBgwYNqFWrFqNGjSrxexO0bWozmY8+gquugrfecvEcZZ2g+zfC4Se31f6qWk5V\n91HVKt5RNRnCBZniBnEvv/wyU6dOZdmyZSxatKgww20BRX+Vx/IL/e2332bx4sUsWbKEd955h1df\nfbXw2ieffELjxo355ZdfuPvuu6Peq6hcn3zyCU2aNOF///sfV155JZ06dWLJkiWsXr2a119/nV69\nerF9+/ZSy15AOm9TG1Sfx6efwsUXw2235XDaadHrZyIleXZlwb8RDj87CZYDugCHquoDItIAqK2q\nnyRcugQi98dnWkTvK/lMnqpy8cUXU778nrd/0KBB9OjRg3HjxtG3b1/q1q0LwF133RXxF3MsM4kD\nBgygevXqVK9enVtuuYUxY8bQo0cPAOrUqcNNN90EuG1sS8qhhx5Kt27dALffx8MPP8y9997LPvvs\nw7nnnkuFChVYtWoVx8XwszV0m9qCfiZNmgRE3qb26quvLnWfZZ1vv4ULLoBnnrFdAIMav+EXPyby\neSAf+BvwAPC7d65ke5imGaX50o8XIsI777wT1uexfv166tevX1hu0KBBwuQo2s+6devCXisNtWrV\nKnxdqVIlgL222A3dUjYW0nmb2qD5PNavh3PPhbvvhiuuAGiVYokSR7RnV9b8G+Hw4/M4RVX/AewA\nl6Id2CehUpVhDj74YNauXVtYDn0NULlyZbZt21ZY/u9//1vqvor2UzDagcjTYZUru40kQ6edYpEj\nEWTCNrWZxKZNLrX6tde6LLllmbLo3wiHH+Pxh4gULrURkZq4kYgRA8VNN3Xq1ImhQ4fy008/sWnT\nJh577LG9vsibNm3K2LFjyc3NZdGiRUyYMKHUfo9BgwaxefNmfvjhB4YOHcrll/tbVlizZk3q1q3L\na6+9Rl5eHq+++mqJt7CNRhC2qQ2Kz2PbNrjwQjfquOuuPeeDol84itOtrPo3wuHHeDwLTAQOEpFH\ngA+BRxMqVRmgbdu2e8V5dOjQAYDrr7+e888/nyZNmnDiiSfSoUOHvb4gH3zwQVavXk2NGjUYOHAg\nXbp02eu+xRmScMtf27dvzwknnECzZs246KKLCv0dxW0HG3pu2LBhPPnkkxx44IF88cUXnBbiOY22\nnawfysI2tZnAH3+47WMPPxwGDcrcRIexUpbiN/ziK7eViBwFnO0VZ6vql75uLtIaGAJkAa+o6p8y\n+4vIUOACYDvQXVWXeufvBK7CjXI+Ba5R1V1F2gY+t9WaNWto1KgRubm5ZX5nvkQRpM9LPMnLgy5d\nYOdOePNNKF9Gf2Sna36qWEhmbquvcaOPycA2b8VVNOGygOeA1sDRwJWeEQqt0wY4TFX/CvQEXvDO\nNwSuB473Np3KAq7wKathGDGiCjfdBL/8AmPHll3DYf6N4vGzDW1v4GfgPWAKMNU7onEysEpV13gb\nSI0F2hep0w4YCaCqHwPVRaQWsAXYDewnIuWB/YDkTVanGUGIti6LZLJP4J57YNEiePttKG6ldibr\nF42cnBzzb0TBz7txC3CEqm6MWnNv6gI/hJR/BE7xUaeuqi4RkcHAWtwqrxmqOquE/QeChg0bkpeX\nl2oxjDLE4MEucnzuXKhaBsOB8/LzeGHhCyyssLBMxm/4xY/xWIsbCZQUv5PIf/pZLSKNcUarIW7X\nwvEi0kVVRxet2717dxo2bAhA9erVadq0aSlENYw9v6QL1vjHWi44F6/7JaP87rvwxhutmDcPPv88\nePpFK+/K3cWLG19kS60tPH3Q02xauQlqU+r7pUs5JyeH7OxsgMLvy1gp1mEuIrd6L48GjsRNWf3h\nnVNVfSrijUWaAwNVtbVXvhPID3Wai8iLQI6qjvXKK4EzcdFH56rqdd75rkBzVb2pSB+Bd5gbicc+\nL46JE+Ef/4CcHDjiiFRLk3w2bt9I2zFtaXxAY4a3G06FrAqpFilhJNphXgW3b/lanL+jglfe37sW\njUXAX0WkoYhUAC4HJhWpMwm4GgqNzWZV/Rn4CmguIpXETfifA3zhWyvDSAMyyScwe7bbQnbqVP+G\nI5P0i8Z3m77jtFdP48xDzmTUxaOYP29+qkVKe4qdtlLVgQAi0klVx4VeE5FO0W6sqrki0guYgVst\nNVxVvxSRG7zrL6nqNBFpIyKrgG3ANd61ZSIyCmeA8oElwMslUcyczIbhj4UL4corYfx4OP74VEuT\nfJasX0LbMW25q+Vd3HTyTdEbGICPOA8RWaqqzaKdSwXFTVsZhuGPL7+Es86CYcOgbdtUS5N8Zq6e\nyVVvXcVLF73EJUddkmpxkkY8pq2KHXmIyAVAG6CuF8hX0FEV3DJawzAymO+/h/PPhyefLJuGY9Ty\nUdz+3u1MvHwipzUIaG75BBLJ57EOWAzs9P4uxk0jTQJSu5l1GSFIc8rhMP1Sx88/u1xVt94K3l5i\nJSad9YuEqvLIvEe4L+c+5nSbE9ZwZKpuySSSz2M5sFxERuOy6DZQ1ZVJk8wwjITw22/QurXzc9x8\nc6qlSS55+Xn0frc3H/34EfOvnc/BVQ5OtUgZix+fRzvgSWBfVW0oIs2A+1W1XTIEjIT5PAyjZOzY\n4aaqmjSBoUPLVqLDHbt30Pmtzvz+x+9M6DSBqvuWwQhIj2TlthqIiwzfBOAlLmwUS6eGYSSf3buh\nY0eoX9/tBFiWDMfG7Rs5e9TZ7F9hf6Z2nlqmDUe88GM8dqvq5iLnLK91Egj6vKvplzzy8+Gaa9zr\n7GyIR4LmdNIvEkVjOPwE/2WKbqnET3qSz0WkC1BeRP4K9AEsgsYwMgRVuOUWt7pqxgzYpwztA2ox\nHInDj8+jMnA3cJ53agbwoKruTLBsUTGfh2FEZ+BAeOcdmDMHqldPtTTJo6zGcPghHj4PX5tBpStm\nPAwjMkOHwnPPwbx5UKtWqqVJHgUxHBM6TbAYjjAkczMoIwUEfd7V9Essr7/uAgBnzkyM4Ui1fuHw\nE8Phh3TULd2w3U0MI4BMngy33Qb/+Q/EKQN32mMxHMnFpq0MI2DMnQuXXQZTpsDJJ6damuRgMRwl\nI9G5rZ6N0E5VtU8sHRuGEX+WLHGGY8yYsmM4QvfheOOyNwK9D0c6EcnnUZDLahF757YqeG0kmKDP\nu5p+8eXrr+HCC+HFF+HssxPfXzo8v9LEcPghHXRLdyLltsoGEJHjVHVF0iQyDKPE/PADnHcePPww\nXHppqqVJDhbDkVr8xHl8AOwLjABGq+pvyRDMD+bzMAzYsAFOPx169HBO8rKAxXDERlKW6qpqS6AL\n0ABYIiJjROS8KM0Mw0gCW7fCBRfAxReXHcMxavkorp54NRMvn2iGI4X4ivNQ1a+Be4ABwJnAMyLy\nlYh0SKRwZZ2gz7uafrGxcye0b++2jn3kkYR2FZZkP7+CGI5759wbUwyHH4L+2YwHUeM8RKQJ0B24\nCHgPuEhVl4hIHWABMCGhEhqG8Sdyc91+HDVrwvPPBz9DbkEMx/wf5jO/x3zqVKmTapHKPH58Hu8D\nw4HxqrqjyLWrVXVUAuWLiPk8jLJIfr7zb6xb54IBKwR8ZWpBDMfWXVt56/K3LIYjDiQtt5WI7Asc\nASjwlar+EUun8cKMh1HWUHW+jY8+gvfeg8qVUy1RYtmwfQPtxrSjUY1GvNr+VYvhiBNJcZiLyIXA\nKuBZ4DlgtYi0iaVTwx9Bn3c1/UrOo4+6XFVTpqTecCT6+RXEcJxxyBmMuiR+MRx+CPpnMx74yW31\nFHCWqq4CEJHGwDTvMAwjSbzwAgwfDh98AAcckGppEktBDMedLe+k18m9Ui2OEQY/Po+FqnpSSFmA\nT0LPpQqbtjLKCmPHwq23urxVjRunWprEMmPVDK6a6GI4Lj2qjEQ8Jpmk+DxE5EVcjMc471RHYC1u\n5RWq+lYsAsSCGQ+jLDB9OnTrBrNmwbHHplqaxDJy2Uhun+X24WjZoGWqxQksydrPoyLwCy6+40zg\nV+9cW+8wEkTQ511Nv+h8+CF07QoTJ6af4Yjn8wvdhyOnW07KDUfQP5vxIKrPQ1W7J0EOwzCKsGKF\ny1P1+utw6qmpliZx5OXn0WtaL7cPh8VwZAx+pq3qA0OBgp8Cc4GbVfXHBMsWFZu2MoLK6tVwxhnw\n1FNw+eWpliZxbN+9nc4T3D4cFsORPJI1bTUCmATU8Y7J3jnDMBLAunVw7rlw773BNhwbtm/g7FFn\ns3+F/ZnWZZoZjgzDj/GoqaojVHW3d2QDByVYLoPgz7uafn/mf/9zqdWvvx5uuCH+MsWTWJ7fXvtw\nJDmGww9B/2zGAz/GY6OIdBWRLBEpLyJXARsSLZhhlDW2bXObObVuDXfckWppEseS9UtoOaIlvU/u\nzWPnPEY58ZWf1Ugz/Pg8DsFFljf3Ts0Heqvq2gTLFhXzeRhBYdcuaNsW6tVzgYBBTXRoMRzpQcLj\nPESkPDBSVbvE0kmiMONhBIG8PJchd/duGD8eyvvJ+5CBWAxH+pBwh7mq5gKHeIkRjSQT9HlX088l\nOrzxRti4EcaMySzD4ff5pVsMhx+C/tmMB34+qt8BH4jIJGC7d05V9anEiWUYZYO77oJly2D2bKhY\nMdXSxB8GKqrdAAAgAElEQVSL4QgufnweA72XBRUFZzzuj3pzkdbAECALeEVVHw9TZyhwAc4wdVfV\npd756sArwDFe39eq6oIibW3ayshYnnwSRoxw+aoOPDDV0sQfi+FIX+IxbeUnwnyg11k1V9QtPoXL\nwjnazwF+AhaKyCRV/TKkThvgMFX9q4icArzAHsf8M8A0Vb3M870EfOcCoywxfDj8618uQ24QDceG\n7RtoO6YtjWs0ZlzHcWm3FNeIHT/7eZwkIp8CK4BPRWS5iJzo494nA6tUdY2q7gbGAu2L1GkHjARQ\n1Y+B6iJSyzNUp6vqq961XFX9zb9awSDo865lVb8JE+Cf/3T7ctSrl1yZ4klx+qV7DIcfgv7ZjAd+\nFli/CvxDVQ9R1UOAm7xz0agL/BBS/tE7F61OPeBQ4FcRGSEiS0RkmIjs56NPw0hrZs1yDvKpU+Hw\nw1MtTfyxGI6yg58nm6uq8woKqvoBkOujnV9nRNF5N8VNpx0PPK+qxwPbgACHTYWnVatWqRYhoZQ1\n/T7+GDp3hjffhGbNUiNTPCmq3zsr3+H818/n2QuezfgNnIL+2YwHflZbvS8iLwFjvPLl3rnjAVR1\nSTHtfgLqh5Tr40YWkerU884J8KOqLvTOv0kxxqN79+40bNgQgOrVq9O0adPCB18w9LSylVNd/vxz\nuOCCHPr3hzPOSL088Sw3b9mc/jP7M37aeO4/8/7C4L90kc/KrcjJySE7Oxug8PsyVvystsph71GE\nhJZV9axi2pUHvgLOBtYBnwBXhnGY91LVNiLSHBiiqs29a3OB61T1a2/FVyVVHVCkj0CvtsrJySn8\nIASRsqLfmjVw+unw2GPQJS3DbUtHTk4OBx1zEFe8eQVHHngkL7d9meoVq6darLgQ9M9mslZbtSrN\njVU1V0R6ATNwS3WHq+qXInKDd/0lVZ0mIm1EZBVuauqakFv0BkaLSAVgdZFrhpER/Pyzy5B7++3B\nMhyqypSvppD9STaPnfMYPZr1QIKaU8UIi5+RR3XgPuAM71QO8EA6rH4K+sjDyGw2b4ZWreCSS+C+\n+1ItTfzYtGMTPaf05OuNXzO2w1iOqnlUqkUySkiy9vN4FdiC27u8E7AV28/DMCKyfTtcdJHb0One\ne1MtTfyY/8N8mr3UjNqVa/PxdR+b4SjD+DEejVX1PlX9VlVXe0GDjRMsl0Hw15oHVb/du6FjR6hU\nKYchQ4KRITcvP4+H5j7EJW9cwtALhvJsm2dZ8MGC6A0zlKB+NuOJn9VWO0Tk9ILluiLSkj05rgzD\nCCE/H7p1g6wsGDAAygUgzOHHLT9y1VtXISIs6bmEulWLhmsZZRE/Po+mwCigmndqE9BNVZcnWLao\nmM/DSCdUoVcv+OwzmD4dKlVKtUSx887Kd+g5pSd9Tu7DHS3vIKtcVqpFMuJAwvfzKNJZiXJbJQMz\nHkY6ce+9MGUKzJkD1apFr5/O7MzdSf+Z/Zn89WT+3eHfnFr/1FSLZMSRpDjMReQWEamKc5o/7aUL\nOT+WTg1/BH3eNUj6DRkCb7zhRhwFhiNT9fvi1y84edjJ/LztZ5b9fVmxhiNT9fNDkHWLF35mZK/1\nRhvnAQcAVwOPJVQqw8ggRo2Cp55yiQ4POijV0pQeVWXY4mGcMeIM+pzShzcueyMwQX9G/PHj8/hU\nVY/19t3IUdW3RGSpqqY8O49NWxmpZtIk6NnTTVUdlcGrVi12o2yRrDiPxSIyE2gDzPCmsPJj6dQw\ngkBODlx3nfNzZLLhsNgNozT4mrYC7gROVNVtwD5YqpCkEPR510zWb/FiF8sxdiycWMzuNumuX7jY\njYrl/e+Fm+76xUKQdYsXxcZ5iMhRXhLDprhEiI283DV7JUY0jLLGypUuenzYMPjb31ItTemw2A0j\nVor1eYjIMFW9PkxWXaD4bLrJxHweRrJZu9ZlyB04EK7J0PG3xW4YSY3zSEfMeBjJ5NdfneHo2RP6\n9Uu1NCXHYjeMApLlMDdSRNDnXTNJvy1boHVr6NDBv+FIJ/38xm6UhHTSL94EWbd4YcbDMKKwYwe0\nawcnnwwPPZRqaUqGxW4YicKmrQwjArm5brRRqRKMHu0SHmYKFrthFEdSdhL0OqoLNMTtCCi4HFdz\nY+nYMNKd/Hzo0QP++APGj88swzH/h/l0ntCZtoe35bVLXivRElzD8IOf3FaPAx8CdwP9gdu8v0aC\nCfq8azrrp+p8G6tWwZtvQoUKJb9HKvSLNXajJKTz84uVIOsWL/yMPC4BjlDVXYkWxjDShYcegv/8\nB95/HypXTrU0/rDYDSOZ+Mlt9S7QSVW3Jkck/5jPw0gEzz/vEh3OmwcHH5xqafxhsRtGSUiWz2MH\nsExEZgMFow9V1T6xdGwY6ciYMfDIIzB3bmYYjtDYjYmXT7TYDSNp+FmqOwl4EJgPLA45jAQT9HnX\ndNNv2jS45Ra3J0ejRrHfL9H6JSJ2oySk2/OLJ0HWLV5EHXmoanYS5DCMlPLKK3D33fDOO/B//5dq\naSKjqryy5BXunH0nj53zGD2a9cDLO2cYSSNSbqvxqtpRRD4Nc1lV9bjEihYd83kYsZKXBwMGuH05\nJk+GI45ItUSRsdgNIx4k2udxs/e3bSwdGEa6snUrdO4M27bBggVwwAGpligyFrthpBPF+jxUdZ33\nd024I2kSlmGCPu+aSv2+/x5OOw1q13Y+jkQYjnjpl8zYjZIQ5M9nkHWLF74izA0jSCxYAJdeCv37\nOwd5OrsLLHbDSFcst5VRpvj3v53BGDECLrww1dJExmI3jESRtNxWhpHp5Oe7DZxGjYLZs+HYY1Mt\nUfFY7IaRCRTr8xCRTyMcK5IpZFkl6POuydJv+3a44gqYNQs+/jh5hqM0+qU6dqMkBPnzGWTd4kWk\nkUfBKqt/eH9fw2XU7ZJQiQwjjqxfD+3bw+GHu1xVFVPvZw6LxW4YmYaf3FbLVLVpkXNLVbVZQiXz\ngfk8jEgsXeoMR8+eLgAwXb+LLXbDSDbJ2oZWRKRlSOE03AjEMNKWt9+G886DwYPhnnvS13DM/2E+\nzV5qRu3Ktfn4uo/NcBgZgx/jcS3wvIh8LyLfA89754wEE/R510TopwqPPw69esG770LHjnHvwjeR\n9EvX2I2SEOTPZ5B1ixd+clstBo4TkWpe+beES2UYpWDXLrjhBlixwsVy1KuXaonCY7EbRhCIlNuq\nq6q+JiK3AqGVCrahfSoZAkbCfB5GARs2wCWXQM2a8Npr6buBk8VuGOlAon0e+3l/qxQ59vf++hGw\ntYisFJFvRGRAMXWGeteXi0izIteyRGSpiEz2059RNvniCzjlFDj9dLdlbDoajp25O+k9rTc3T7+Z\niZdP5O4z7jbDYWQ2qpqQA8gCVgENgX2AZcBRReq0AaZ5r08BFhS53g8YDUwqpg8NMnPmzEm1CAkl\nHvq9+65qzZqqI0fGLk+8KdDv818+12OfP1Y7juuom3ZsSq1QcSTIn88g66aq6n13xvQdH9VhLiIj\nRaR6SLmGiLzqwy6dDKxSl0hxNzAWaF+kTjtgpGcFPgaqi0gtr596nnF5BVvdZRRBFZ59Fq65Bt56\nC66+OtUS/RlVZdjiYZwx4gz6nNKHNy57g+oVq0dvaBgZgJ/0JE1UdXNBQVU3icjxPtrVBX4IKf+I\nG11Eq1MX+Bl4GugPVPXRVyBp1apVqkVIKKXVb/duuPlmeP99mD8fDj00vnLFg007NvH8huf5+quv\nmXfNvEAuwQ3y5zPIusULv3EeB4QUDsBNSUXDrye76KhCROQi4BdVXRrmulGG2bwZ2rSB775LX8Mx\nc/VMmr7U1GI3jEDjZ+QxGPhIRMbhvsg7Ag/7aPcTUD+kXB83sohUp553rgPQTkTaABWBqiIySlX/\nNDnRvXt3GjZsCED16tVp2rRp4a+GgrXamVoeMmRIoPSJVb/Ro3O480649NJWDBoEH3yQXvpMnTmV\nFxa9wKf7fcqwtsP4YvIXLNhvQdrIl+rnl0nl0DiPdJAnHvpkZ2cDFH5fxowfxwhwDNAb6AUc7bNN\neWA1zmFegegO8+YUcZh7588EJhfTR/w8SGlI0J12JdEvJ0e1Vi3VF15InDyxMGPVDG3wdAO97p3r\ndPOOzapqzy+TCbJuqvFxmPvez8NzZFfEm45S1bU+2lwADMFNcw1X1UdF5Aav/UteneeA1sA24BpV\nXVLkHmcCt6pquzD3V7/yG5nLq6/CnXfC6NFwzjmplmZvtuzawm0zb2PG6hkMazuM8xqfl2qRDCMq\n8Yjz8JMYsR1u6qoO8AtwCPClqh4TS8fxwIxHsMnLgzvucHmqpkyBI45ItUR7M3P1TK6ffD3nNTqP\nQecNolrFaqkWyTB8kazEiA8BLYCvVfVQ4Gzg41g6NfwROu8aRCLpt3WrixhftMilGkknw7Fl1xZ6\nTu7J9ZOvZ1jbYQxrNyys4SjLzy/TCbJu8cKP8ditqhuAciKSpapzgBMTLJdRhlm7Flq2hFq1YMYM\n+MtfUi3RHmaunsmxLxyLqrLi7ytsmsoos/iZtpoFXAI8ChyIm7o6UVVTvsWZTVsFjwULoEMHuPVW\n6Ns3fVKpm2/DCBLJmrZqD2wH+gLTcSlH2kZsYRilYMwYaNcOXnoJ+vVLH8Nhow3D+DNRjYeqblPV\nPFXdrarZqjpUVTcmQ7iyTtDnXQv0U4X77nMrqmbNgosuSq1cBfj1bRRHWXl+QSTIusULPyMPw0gY\nO3bAFVfAzJnw8cdw3HGplshhow3DiIzvOI90xHwemc369W6P8b/+FYYPh4ppsJGe+TaMskBSfB4i\nsr+IZIWUs0QkDXdMMDKJpUvdHhzt2sHrr6eH4bDRhmH4x8+01WygUkh5P+C9xIhjhBLUede334bz\nzoNrr83hnntS7xiP1bdRHEF9fgUEWb8g6xYv/BiPfVX194KCqm5lzy6DhuEbVXjiCejVC6ZNg3TI\nem2jDcMoHX7iPD4E+qjqYq98IvCsqrZIgnwRMZ9H5rBrF/z977B8OUyaBPXqpVYe820YZZl4+Dz8\npGS/BRgnIuu98sHA5bF0apQtNmyASy+FAw+EefNSv8d4aE6qFX9fYTmpDKMU+InzWAgcBdwI/B04\nUlUXJVowIxjzrl984RzjLVvCm2/ubTiSrV+ifBvFEYTnF4kg6xdk3eJFsSMPETlbVWeLSAdcGvaC\nIc7h3pDnraRIaGQsM2ZA167w5JPQrVtqZbHRhmHEl2J9HiJyv6reJyLZhNlSVlWvSbBsUTGfR/ry\n3HPw8MMwfrwbdaQK820Yxp9J1n4ejVT122jnUoEZj/QjNxduvhlycmDyZGjUKHWy2H4bhhGeZCVG\nfDPMufGxdGr4I9PmXTdvhjZt4NtvYf786IYjUfol27dRHJn2/EpKkPULsm7xIpLP4yjgaKC6iFyK\n83koUBW3Ha1hFLJqFbRt64L/Bg+G8n7W8SUA820YRnKI5PNoj9vHoy0wKeTSVmCsqs5PvHiRsWmr\n9OD99+Hyy2HgQBfLkQrMt2EY/kmWz+PUdDAU4TDjkXpGjHD7jI8eDeeckxoZzLdhGCUjWT6PjSIy\nW0Q+9zo9TkTuiaVTwx/pPO+alwf9+8Mjj7iRR2kMR6z6pYtvozjS+fnFgyDrF2Td4oUf4zEMuAv4\nwyt/ClyZMImMtOf3313E+KJFbtvYI49MvgyWk8owUoufaatFqnqiiCxV1WbeuWWq2jQpEkaWzaat\nkszatS6N+kknwb/+BRUqJLd/820YRuwka9rqVxE5LKTTy4D1EeobAeXjj6FFC7j6anj55eQbDhtt\nGEb64Md49AJeAo4QkXVAX1yeKyPBpNO869ixbm/xF1+Efv3isweHX/3S3bdRHOn0/BJBkPULsm7x\nIupqfFVdDZwtIvsD5VR1S+LFMtIFVbj/fsjOhtmzk7/HuMVtGEZ64sfn8SjwuKpu9so1gFtVNeUr\nrsznkVh27IBrroHvv3e7/9Wqlby+zbdhGIkjWT6PCwoMB4CqbgIujKVTI/1Zv97t9FeuHMyZk1zD\nYb4Nw0h//BiPciJSmI5ERCoBSXaVlk1SNe+6bBk0b+58HKNHQ8UEJaMpql+m+jaKI+jz5kHWL8i6\nxQs/xmM0MFtEeojIdcAsYFRixTJSxaRJLj/Vk0/CP/8ZH8e4H2y0YRiZRVSfB4CIXACcg0uM+J6q\nzki0YH4wn0f8UHUGY+hQmDjRxXEkA/NtGEbySdYe5qjqu8C7sXRkpC9//OESGi5d6iLG69VLTr+2\nksowMpeo01Yi0kJEForI7yKyW0TyRcSW6yaBZMy7btgA554LmzbBBx8kx3AU+Da6Pt01EL6N4gj6\nvHmQ9QuybvHCj8/jOaAz8A1uH48ewPOJFMpIDl9+6Rzjp54KEyZA5cqJ7zPUtzG83XCbpjKMDMVP\nnMdiVT1BRFao6nHeOcttleHMnAlXXeX8HN26Jb4/820YRvqQrDiPbSKyL7BcRJ4QkX64XQWNDOVf\n/3IGY8KE5BgOW0llGMHDj/G42qvXC9gO1AM6+O1ARFqLyEoR+UZEBhRTZ6h3fbmIFGTurS8ic0Tk\ncxH5TET6+O0zKMR73jU3F3r1guefhw8/hNNPj+vt/0S0uI2gzyubfplLkHWLF35yW63xXu4ABpbk\n5iKShfOZnAP8BCwUkUmq+mVInTbAYar6VxE5BXgBaA7sBvqq6jIvr9ZiEXkvtK3hn82b3VaxIjB/\nPlRLsH/aVlIZRrDxFedR6puLtADuU9XWXvkOAFV9LKTOi8AcVX3DK68EzlTVn4vc623gWVWdHXLO\nfB4+WL3aRYufey489RSU97VAu3SYb8Mw0p9k+TxioS7wQ0j5R+9ctDp7LRgVkYZAM+DjuEsYcObO\nhZYtoU8fFwCYSMMxY9UM820YRhkhgV8lgItI90NRC1jYzpuyehO4WVV/L9qwe/fuNGzYEIDq1avT\ntGlTWrVqBeyZt8zU8pAhQ2LSZ8CAHF5+GcaNa8W55yZO3rrH1uXWmbeyeP5ibm5+M7e3uz0p+qV7\n2fTL3HKozyMd5ImHPtnZ2QCF35cxo6oRD+AI3D7m7wFzvOM/0dp5bZsD00PKdwIDitR5EbgipLwS\nqOW93geYAdxSzP01yMyZM6dU7bZuVf3HP1QbN1b98sv4yhTKph2btN/0fvqXx/+iT3zwhO7cvbNE\n7UurX6Zg+mUuQdZNVdX77oz6HR7p8BPnsQLnxF4C5O2xObo4mmESkfLAV8DZwDrgE+BK/bPDvJeq\nthGR5sAQVW0uIgKMBDaqat9i7q/R5C9rTJ/uUo2cdZbzb9SoEf8+cvNzGbZ4GPe/fz/tj2jPA2c9\nQK39k5iz3TCMmEhWbqvdqvpCaW6uqrki0gs3esgChqvqlyJyg3f9JVWdJiJtRGQVsA24xmt+GnAV\nsEJElnrn7lTV6aWRJehs3Ah9+7oUI8OGOed4Ipj17Sz6zujLgfsdyIyrZtCkdpPEdGQYRnoTbWiC\nW557E3AwcEDBEeuQJx4HNm2l+fmqY8eq1q6t2rev6u+/J0aWrzd8rW3/3VYbP9NYJ345UfPz82O+\nZ9CnBky/zCXIuqnGZ9rKz8ijO86BfVuozQEaxc2CGaXixx/hH/+Ab79128Seckr8+9i8czMPvv8g\nI5ePZMBpAxjfcTz7lt83/h0ZhpFRJDTOI9GUVZ9Hfj68/LLbrKl3b7jjDqgQ570dza9hGMElKT4P\nEakA3AicgRtxvA+8qKq7Y+nYKB1ffw3XX+/24MjJgWOOiX8f5tcwDCMafoIEXwCOB/7lvT7B+2sk\nmNC15rt3w2OPufTpHTo4x3i8Dcc3G7+h3Zh2/H3K33nwrAf5z9X/SajhCNUviJh+mUuQdYsXfnwe\nJ6mXit1jtrd810gSS5dCjx5QsyYsWgTxivEpwPwahmGUFD9xHkuATqq6yis3Bsar6vFJkC8iQfd5\n7NgB998PI0bAE0/A1Ve7xIbxwvwahlE2SVacR3/gPyLynVduyJ5YDCNBzJ0L110HzZrBihVQK87f\n6ebXMAwjFqL6PNRlsT0c6AP0Bg5X1f8kWrCyypYtcOON0LkzXH11Dm+8EV/DkWy/RiSCPq9s+mUu\nQdYtXhRrPETkbO9vB6ANcBjwV+BCEbk0OeKVLSZPdk7w/Hz47DOXDTdebN65mVtn3EqL4S04vcHp\nfP6Pz7n4yIuReM6DGYZRZijW5yEi96vqfSKSTZjsuKqa8qmroPg8fvnFpUxfvNilFvGSYsYF82sY\nhlGUePg8/DjMG6nqt9HOpYJMNx6q8PrrcNtt0L07DBwIlSrF7/6hfo0h5w8xv4ZhGEDyNoN6M8y5\n8bF0asD338MFF8DgwTBtGjz++J8NR2nnXdPJrxGJoM8rm36ZS5B1ixeRfB5Hef6O6iJyqYh08P52\nByomTcKAkZcHzz4LJ5wAZ54JCxe61/HA/BqGYSSLSD6P9sAlQFtgUsilrcBYVZ2fePEik2nTVl98\n4ZbfZmXBK6/AEUfE577m1zAMoyQky+fRQlU/iqWTRJEpxuOPP9y01NChLujv73+HcnHaPd78GoZh\nlJRk+TxuFJHqIZ3WEJFXY+m0LPHJJ3DiifDxx7BkiUuh7tdwRJp3zRS/RiSCPq9s+mUuQdYtXvj5\nGjtOVTcXFFR1Ey5RohGBbdvg1luhXTuXMn3yZKhfP/b7ml/DMIx0wM+01XLgLFX9n1c+AHhfVY9N\ngnwRSddpq9mzoWdPaNECnn7aJTSMlQK/xsD3B9L+iPY8eNaD5tcwDKNUJCu31WDgIxEZBwjQEXg4\nlk6DyqZNLmbjvffgxRehTZv43Pe91e/Rd0ZfalauycyrZmbc9JRhGMHDT26rUcClwC/Af4FLvHNG\nCG+9Bf/3fy5W4/PP42M4XnvnNdqNaceNU2/kob89lJF+jUgEfV7Z9MtcgqxbvPAz8kBVPxeRDbj4\nDhWRBqq6NrGiZQbr10OvXs5gvPFGfPJRbd65mQfef4Dh04Zzz9X32P4ahmGkHX58Hu1wU1d1cKOP\nQ4AvVTUBG6CWjFT6PPLz3T4bd97p/Bv33AMVYwydDPVrXHzExRavYRhGQkiWz+MhoAXwnqo2E5Gz\ngK6xdJrpzJsHfftC+fLOv9EkDjNJ5tcwDCOT8LNUd7eqbgDKiUiWqs4BTkywXGnJd99Bx47QpQv0\n6wcffRS74fh649fF+jWCPu9q+mU2QdYvyLrFCz/GY5OIVAHmAaNFZCjwe2LFSi+2bIEBA1ywX5Mm\nsHKl26wpltCKzTs3029GP04dfqrFaxiGkXH48XlUBnbiDE0XoCowWlU3Jl68yCTa55GXB8OHw333\nQevW8PDDUKdObPc0v4ZhGKkm4T4PESkPTFHVs4A8IDuWzjKJ2bOdX6NGDZg6FY6PQ0y9+TUMwwgK\nEaetVDUXyA/NbRV0vv7apRS5/no34sjJid1wRPJrRCLo866mX2YTZP2CrFu88LPaahvwqYjMBLZ7\n51RV+yROrOSzaRM88AC89hrcfjuMGxf70tuCeI1Ry0cx4LQBFq9hGEZg8OPz6IZLSwJuL3PBGY+R\nCZYtKvHweeze7VKJPPggXHKJMyC1YnRBmF/DMIx0JqE+DxGZrapnA8eo6u2xdJKOqMK777rMt/Xq\nOR/HsXFI9Wh+DcMwygKRfB4Hi8ipQDsROb7okSwBE8HChXDuuc4h/uSTMHNm7IajtH6NSAR93tX0\ny2yCrF+QdYsXkXwe9wH3AnVx6UmKclZCJEogX3zh0oh88gn8859w7bWwzz6x3dP8GoZhlEX8+Dzu\nVdUHkiRPifDr8/j+exg40C257d/fJTKsVCm2vs2vYRhGppKU3Fbpajj88MsvLrDv9dfd9q/ffAPV\nqsV+X/NrGIZR1vG5m3bpEJHWIrJSRL4RkQHF1BnqXV8uIs1K0jYSY8fCUUe511984VZTxWo4EuHX\niETQ511Nv8wmyPoFWbd4kTDjISJZwHNAa+Bo4EoROapInTbAYar6V6An8ILfttE4+WRYvBieeSb2\npbebdmxKSR6qZcuWJfT+qcb0y2yCrF+QdYsXiRx5nAysUtU1qrobGAu0L1KnHTASQFU/BqqLSG2f\nbSPSqBE0bBibArn5uTy/8HmO/NeRbPtjG5//43P6n9Y/aQ7xzZs3J6WfVGH6ZTZB1i/IusULXzsJ\nFkVEpqrqhVGq1QV+CCn/CJzio05d3MZT0domFPNrGIZhFE+pjAdwnY86fkO/0yoHuarS6c1OLFm/\nhEHnDkppmvQ1a9akpN9kYfplNkHWL8i6xQ1VjXgAN/s5F6ZOc2B6SPlOYECROi8CV4SUVwK1/LT1\nzqsddthhhx0lP6J9h0c7/MR5LFXVZkXOLVPVplHalQe+As4G1gGfAFeq6pchddoAvVS1jYg0B4ao\nanM/bQ3DMIzUESm31ZVAZ+BQEZkccqkKEHUjKFXNFZFewAwgCxiuql+KyA3e9ZdUdZqItBGRVbjs\nvddEals6FQ3DMIx4U+zIQ0QOAQ4FHgMGsMc3sQVY4e31YRiGYZRBIi3VvRS3f8fpqvq+quZ4x5Jk\nGI5UBhgmgxj1WyMiK0RkqYh8kjyp/RFNNxE5UkQ+EpGdInJrSdqmAzHql9bPDnzp18X7TK4QkQ9F\n5Di/bdOBGPULwvNr7+m3VEQWi8jf/LbdiwgO78HAfGATMBd4BLgIOCBWR4sPZ3sWsApoCOwDLAOO\nKlKnDTDNe30KsMBv21Qfsejnlb9LxnNIoG41gROBh4BbS9I21Ucs+qX7syuBfi2Aat7r1gH83wur\nX4CeX+WQ18fiYupK/PyKHXmo6q2qeipQG7fa6X/AtcDnIpJo/0NKAwyTQGn1C42VT6slziFE1U1V\nf1XVRcDukrZNA2LRr4B0fXbgT7+PVPU3r/gxUM9v2zQgFv0KyPTnty2kuD+wwW/bUPxEmFcCqgLV\nvGMdsMCnIqWluOBBP3XCBRgWbZtqYtEP3FK7WSKySESuT5iUpcOPbolomyxilTGdnx2UXL8ewLRS\nttUT5YYAAAi6SURBVE0FsegHAXl+InKxNwh4F+hTkrYFRFptNQyXV2orbqnsfOApVd3kT4eYiLx+\neA/p/AsgErHq11JV14lITeA9EVmpqvPiJFus+NUt3m2TRawynqaq69P02UEJ9BORs3CzEaeVtG0K\niUU/CMjzU9W3gbdF5HTgNRE5sqQdRRp5NAD2Bf4L/OQdyUr48hNQP6RcH2cFI9Wp59Xx0zbVlFa/\nnwBUdZ3391dgIm64mS7E8v4H5dkVi6qu9/6m47MDn/p5TuRhQLuQH5SBeX7F6BeY51eAZ/jKAwd4\n9fw/vyjOl3I4h0pPIBtYDMwEHkiw06c8sBrnuKlAdIdyc/Y47aK2TfURo377AVW815WBD4HzUq1T\nSXQLqTuQvR3mgXh2EfRL62dXgs9mA5xjtXlp35sM1S8oz68xe8I0jgdWl+b5+RWoPnA5MBT4Fvgt\nCW/CBbgo81XAnd65G4AbQuo8511fDhwfqW26HaXVD2jkPdRlwGfpqF803XCLMH4AfsOt5lsL7B+U\nZ1ecfpnw7Hzq9wouUHipd3wSqW26HaXVL0DP73ZP/qXAPOCk0jy/SEGCNwOn4pat5eJ8Hh96fz9T\n1bywDQ3DMIzAEymrbkNgHNBXvTl2wzAMw4AI6UkMwzAMozgSuoe5YRiGEUzMeBiGYRglxoyHYRiG\nUWLMeBiGYRglxoxHQBCRp73l1QXlGV6KmYLyYBHpKyKHiNvoy889O4rIFyIyOw7ytReRo0LK94vI\n2bHeN14kUz4RuUFEuoY531BEPg1zvo6IjE+ELGH62ut9SFKfv/uoc4uIVAopTxWRqomVzIiEGY/g\n8AEuLgcRKQf8BZebrIAWuDidQ3E7RPqhB3Cdqu71JSpum+CSckmoPKp6n6rGbJTiSNLkU7eL5msl\nqL9OVTsmQpYw7PU++EFEsmLs08+Sz5txEd6ugeqFqrolxn6NWEh1NKQdcYsqrQOs9V4fi0snMx2o\njstRtgmXo38BLkfZUuDmCPe7F5cUcyXwBNANmATMBubg0jPMwqWsWYHLAVTQ9mpcVPwyYBTOcG3E\nZSdYgovUzQY6ePXP9s6vAIYDFbzza3ApPgr6OCKMnA1x+80s9o4WIdcGeO2WAY965xrjMoku8tod\ngTO6keQ7CWd4l+FSdO9fRAa/78VI79xAvLQlwAkh158APi1Gx0+9192BtzwdvgYeD1P/JGCC97o9\nblO38kBF9qSiuB6X8HQZ8CYue3bo+7AU90PjT++X1z4beBH3eRpUpP9jvPdpqadbY+98P+BT77g5\npP5W728rYHLI+edwn7vewC7vvZ0d8tk4oLj7eu/Zl8DLuGjqGUDFVP+fBulIuQB2xPFhun/6+rhc\nZDcAD+DSDZwGzPXqnBn6DxrlfnPYkxalOy7lRnWvnMWePD8HAt94r4/BpTco+McuqD8CuDTk3iNw\nu1VWxKXvOMw7PzLkC+A74Cbv9Y3AsDAyVgL29V7/FVjovb4A94VfsYgcs0P6OiXky6g4+Srg8v2c\n4J3fH8gqIkNJ34v7gH7e6xW4LMng33isBqrgfhSsAeoWqV+ePUZiEO6L/FTv2Y/2zh8QUv9BoFcx\n70Nx71c27seEhJF3KNA5RJaKOCO5wntelXFf6E28OsUZj2eBq0M+C6Eyf4dL5hfuvk2992w3cJxX\n/w2gS6r/R4N0lGb6wUhf5uO+JE4FnsLl4j8Vl2PpA69OLGnsZ6pqQWblcsCjXkrnfKCOt1nV34Bx\nqvo/gJD64foW3C//71R1lXduJHAT8IxXfsv7uwT3ZV6UCsBzItIEyMMZEIBzgFdVdWeBHCKyP24U\nNF5EQttHk2+9qi727hNufr407wUiUg23Y13Bs3kNZ/SiMVtVt3r3+AL3RflTwUVVzRWR1V6a7ZNw\nn4UzcEauIH34sSLyEG6Pnv1xo9S93oco75cC49X7Zi7CR8DdIlIPeEtVV4lIS+/1Du/eb3kyLfeh\nb3EIEO6+p+MM23equsKruxj3PhlxwoxHsPgQN8o4FjeE/wG4DWc8Xo3x3oqb/iigC+5X9vGqmici\n3+F+YSrFG6hwXzRFz0mRc7u8v3mE/7z2xX25d/Xm3neG3LeoHOWAzarajPD4kS8cpXkvwuG37q6Q\n13k4o1CUubjMzLtxo4eROP1v865n46bXPhWRbrhf/QUU6Bzt/doe7qSqjhGRBbhtq6eJyA38+b0o\n+pzB5dAL9cNWIjqR7lv0ffJzP8Mn5jD///bu3zWKIAzj+PcpFEQNxkJIpdEioG0aS/+DFGoTRQ7/\nAAWxtLS0CopoJwi2FoJBEEIkRVATjlPLIDYi/tZGRF6LdzZZj7vkxi7h+XS3Ozs7O3c3787MsrOz\nLJF/2E+RvpBzHifLPoDv5JBHrf6GbQz4UBrLU8Bh8k/7FDgj6SCApPGS/kc5pi3IYZ0jko6VbeeB\nhYpyjZFrzkDOLzQN6ROg0zyhI2k8coJ1TdLpsk1l3Yatyjchabocs3/ABHFtXUAO93wDvkpqFhua\nrbjutkFBZxG4DCxFxEfyAYqpiHhV9u8D3kvaBZxjo8Fdr4ct6mt4YaTJiFiLiDngIXkzswjMSNoj\naS8ww0YvqPEWOC5pt6QDZM+tMez7GZbvdl0obttw8NhZemQj0V4muEvePX5uff4jaVXSJUkTkh6N\nkHfw753ifWBaUpds8N8ARMRr4DqwIGkVuFHSPwCuSnoh6eh6phG/gA45NNIl7z5vt8457PyNW8CF\ncq4p4GfJd54cunguaQW4UtLPAhdL+h65Vvxm5ftNLkcwV46ZJ3sVbbV10b62DnCzlLH/mhmQflA9\nDDpmGThE9kAgh4e6rf3XyLmQZ015i3Y9TDK8vjYr61lJvXJNJ4B7EbFC9naWyd/n3YhohqwCICLe\nkS9j7ZFzFC9bed4BHvc/Nj5KviOU1/6DX4xoZmbV3PMwM7NqDh5mZlbNwcPMzKo5eJiZWTUHDzMz\nq+bgYWZm1Rw8zMysmoOHmZlV+ws92v6jnNxHLAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x78da7f0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical Stages: \n",
+ "7.6\n",
+ "Weight of the extract: 23000.0 kg/h\n",
+ "\n",
+ "Weight of the raffinate 5000.0 kg/h\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.4: Page 506"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.4\n",
+ "# Page: 506\n",
+ "\n",
+ "print'Illustration 10.4 - Page: 506\\n\\n'\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "import numpy\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:kerosene c:Nicotine\n",
+ "F = 1000.0;# [kg/h]\n",
+ "xF = 0.01;# [wt. fraction acetic acid]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data:\n",
+ "# x_prime = kg nicotine/kg water\n",
+ "# y_prime = kg nicotine/kg kerosene\n",
+ "# Eqb = [x_prime y_prme]\n",
+ "Eqb = numpy.array([[0 ,0],[0.001011, 0.000807],[0.00246, 0.001961],[0.00502 ,0.00456],[0.00751, 0.00686],[0.00998, 0.00913],[0.0204 ,0.01870]]);\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "A = 1000*(1-xF);# [kg water/h]\n",
+ "yS = 0;\n",
+ "yS_prime = 0;\n",
+ "y1_prime = 0;\n",
+ "xF_prime = xF/(1-xF);# [kg nicotine/kg water]\n",
+ "# For xF_prime = 0.0101:\n",
+ "yk = 0.0093;\n",
+ "xNp = 0.001;# [wt. fraction acetic acid]\n",
+ "xNp_prime = xNp/(1-xNp);# [kg nicotine/kg water]\n",
+ "# For infinite stages:\n",
+ "# Operating Line should pass through (xNp_prime,y1_prime) & (xF_prime,yk)\n",
+ "Operat = numpy.array([[xNp_prime, y1_prime],[xF_prime ,yk]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1],label=\"equilibrium Line\")\n",
+ "plt.plot(Operat[:,0],Operat[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine / kg water\");\n",
+ "plt.ylabel(\"kg nicotine / kg kerosene\");\n",
+ "plt.title(\"Solution 10.4(a)\")\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0,0.01))\n",
+ "plt.show()\n",
+ "AbyBm = (yk-y1_prime)/(xF_prime-xNp_prime);\n",
+ "Bm = A/AbyBm;# [kg kerosene/h];\n",
+ "print\"Mininmum kerosene rate: \",round(Bm,2),\" kg kerosene/h \\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "B = 1150.0;# [kg/h]\n",
+ "AbyB = A/B;\n",
+ "# From Eqn. 10.36:\n",
+ "y2_prime = ((xF_prime-xNp_prime)*AbyB)+yS_prime;# [kg nicotine/kg kerosene]\n",
+ "# Operating Line should pass through (xNp_prime,y1_prime) & (xF_prime,y2_prime)\n",
+ "Operat = numpy.array([[xNp_prime, y1_prime],[xF_prime, y2_prime]]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1],label=\"equilibrium Line\")\n",
+ "plt.plot(Operat[:,0],Operat[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"kg nicotine/kg water\");\n",
+ "plt.ylabel(\"kg nicotine/kg kerosene\");\n",
+ "plt.title(\"Solution 10.4(b)\")\n",
+ "plt.xlim((0,0.012))\n",
+ "plt.ylim((0,0.01))\n",
+ "plt.show()\n",
+ "# From Figure:\n",
+ "Np = 8.3;\n",
+ "print\"Number of theoretical stages: \\n\",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.4 - Page: 506\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFX3wPHvISIqUkV6F1SsIFWUoohGxKBIFcGgFFGU\nnwXBCr5WRBA7SkeQLr2/QBClBBGsICAgIoiC9Jpyfn/MJu8SkuyG7GRLzud59iEze2fmXDfuydw7\n915RVYwxxhg35Al2AMYYYyKXJRljjDGusSRjjDHGNZZkjDHGuMaSjDHGGNdYkjHGGOMaSzIm1xGR\niiKSLCLn9PsvIh1EZGGg48ppInKHiEz3s2xPEXnL7ZhM5LEkY8KWiNwsIitF5KCI7BeRr0WkVoCv\ncVZCUtXxqnpHIK/juVZeEZkqIts912yUTpkBIrLP8/LrS19EXvac79Y0b70OvOlneMOADiJyqZ/l\njQEsyZgwJSIFgTnAe0ARoAzwCnDKrUu6dN60vgIeAP4CzhgpLSLdgRbAdZ7X3Z59GRKRy4BWwO40\n+2sDBVU13p+gVPUUMB/o5F81jHFYkjHh6nJAVXWSOk6q6mJV/RFAHC+KyA4R2SsiYzyJ6SyeMk28\ntvuLyOeeza88/x4UkcMiUk9EYkVkhVf5+iKy1nNHFS8iN3q9Fyci//HcZR0WkYUickl6cahqgqq+\nr6rfAEnpFHkQeEdVd6vqbuAdINbHf6cPgT5AQpr9dwJxaf47vCciO0XkkIh8KyI3pzkmDrjLx/WM\nOYMlGROufgWSRGS0iESLSJE073fG+VJuDFQGLsb5wk2PcuZdg/fPDTz/FlLVgqq62vtAESkKzAWG\nAEWBwcDcNPG0x0kGxYHzgWf8qWA6rgK+99r+Abg6o8Ii0ho4qarz03n7Gpz/ht7igetx7gy/AKaI\nyPle72/yvG+M3yzJmLCkqkeAm3ESwjDgbxGZKSLFPUU6AINUdYeqHgOeA9r52dkvGfycnruAXz39\nNMmqOhHnyzgmJVRglKpuVdWTwGSguj91TMfFwCGv7cOefWcRkQI4fS69MjhXYeCI9w5PHQ546jEY\nyAdc4VXkCFDoHGM3uZQlGRO2VHWTqnZW1XI4f5mXxrmjACgF/O5VfCdwHlAiwGGU9pzb2++e/Sn+\n8vr5BBkkBj8cBbyb/Ap59qWnP/C5qnrH5p0wD6Q5FyLyjIj84mn2O+A5fzGvIgU4M8kZ45MlGRMR\nVPVXYAxOsgGno7uiV5HyQCKwN53DjwH5vbZLep/ax6X/BCqk2VfBsz/QfubMu6DrgZ8yKHsr8ISI\n7BGRPUA5YLKI9Pa8/wNOvxYAItIA6A20VtXCqloEJ6F4J6ZqwIaA1MTkGpZkTFgSkStE5CkRKePZ\nLofT97HKU2QC8KTnEeSLgTeAiaqanM7pNuA0pZ3neQT6Pv6XXP4BkoHLMghlPnC5iLT3HN8WuBLn\nybfUcLNQr3wicoFn0/tngLHAUyJS2lPvp4DRGZyqCU5/zfU4iWk30A342PP+PMD7EekCOEl4n4ic\nLyIvk+ZOx1M+vf4dYzJkScaEqyNAXWCNiBzFSS4/AE973h8JfI7zdNg24DjwuNfx3ncoL+EkkQM4\nzUzjUwupHsfp2/hGRP4Vkbp4PSigqvuB5p7r7sPp1G+uqv9mcK20Dxmk9asn1tLAQuCYiJT3XOtT\nYDbwo6eus1X1s5QDReQnEWnvKfuvqv7tee3FeVrtgKd/ClVdDxwSkTqewxd4XpuBHTjNeju9zn0B\nzhNpYzKJ3ZiziJuLlolINE4beRQwXFUHpFPmfZxf3uNArOeXHxEZidOp+reqXutVvigwCadJYgfQ\nRlUPulYJYyKUiDQFHlXVe/0o2xMoq6p93Y/MRBLXkoyIROH8VXYbTvv0WqC9qm70KtMM6KmqzTx/\nIb6nqvU87zXA6dQcmybJvA3sU9W3RaQPUMR+8Y0xJjS52VxWB9jqeYQ0AZiIM1rZWwye229VXQMU\nFpGSnu0VOM0XaaUe4/n3HhdiN8YYEwBuJpkywB9e27s8+7JaJq0SnjZmcJ4UCvQjqcYYYwLEzSTj\nbztc2idv/G6/U6etz71OJWOMMdlynovn/hPn2fwU5XDuVDIrUxbf4wv2ikhJVf1LREoBf6dXSEQs\n+RhjzDlQ1YBNCOvmncy3QFXPOIXzgbbArDRlZuGZ1VVE6gEHvZrCMjILZ04qPP/OyKigqkbsq1+/\nfkGPwepm9bP6Beb1xx9Kw4ZKkybK7t3BrV+guZZkVDUR6InzrP8vwCRV3Sgi3VOmJ1fVecA2EdkK\nfAo8mnK8iEwAVuIMdPtDRDp73noLaCoim3FGNefKhZR27NgR7BBcE8l1A6tfuAt0/WbPhlq1IDoa\nFi6EUqUCevqgc7O5DHVmf52fZt+nabZ7ZnBs+wz2/4vzWLQxxoStU6egTx+YMQO+/BLq1w92RO5w\nNckY98TGxgY7BNdEct3A6hfuAlG/LVugXTuoUAHWr4ciaReqiCCujvgPJhHRSK2bMSZ8jRsHTz4J\nr7wCPXqA5NSaq34SETSAHf+57k5GQu0TNSHNjT9U4uLiaNy4ccDPGyqsfuk7ehR69oTVq+G//4Xr\nc8nyb7kuyYA7Xxwm8tgfJCZQNmxwmsfq14d16yB/ft/HRIpc11zmuRUMQkQm3NjviskuVfj4Y+jf\nH4YMgQ4dgh2Rb9ZcZowxYeDff+Hhh2HnTli5EqpWDXZEwWHryRiTw+Li4oIdgqusfvDNN1CjBlSq\nlLsTDFiSyRVWrFjBlVdembpdsWJFli5dCsAbb7xB165dAWeQWZ48eUhOTm/xyPS9+eabqccHS9r6\nGRMsSUnw+utw333w0UcweDDkyxfsqILL+mRyoUqVKjFixAhuvfXWM/bv2LGDypUrk5iYSJ48off3\nR8WKFRkxYgRNmjTJkevZ74rJij174IEHnEQzfjyU8TWffIgKdJ9M6H2TmLCRlJSUo9cTEXviy4Sk\nBQvghhugYUNYsiR8E4wbLMmEkN27d3PfffdRvHhxKleuzAcffJD63okTJ4iNjaVo0aJcffXVDBw4\nkHLl/jeBdZ48edi2bVvqdmxsLC+99BLgtCF7l/XWv39/OnbseMa+ESNGUKZMGUqXLs2gQYPOKNuq\nVSs6duxIoUKFGD169BnHp3cd76a5/v3707p1azp27EjBggW57rrr2LJlC2+++SYlSpSgQoUKLF68\nOMv/3dJet2LFigwaNIjrr7+ewoUL065dO06dOpX6/pw5c6hevTpFihThpptu4scff8zyNbPD+izC\nW0r9Vvy+gtOn4dlnoWtXmDgR+vWDqKjgxhdqLMmEiOTkZO6++25q1KjB7t27WbJkCUOGDGHRokUA\nvPLKK2zfvp1t27axcOFCxowZk+lf9f7+1Z9embi4OLZu3cqiRYsYMGAAS5YsSX1v1qxZtG7dmkOH\nDtGhQwef10j7/pw5c+jUqRMHDhygRo0aNG3aFHAS7EsvvUT37t19xuxPnaZMmcLChQvZvn07P/zw\nA6NHjwZg/fr1PPzwwwwbNox///2X7t27ExMTw+nTp7N9XZM7JCQl8MicR3h4+iPUb3yEjRudqWEa\nNQp2ZKHJkkwaIoF5ZdXatWvZt28fL774Iueddx6VKlWiS5cuTJw4EYApU6bwwgsvULhwYcqWLUuv\nXr189hf405+QXpl+/fpx4YUXcs0119C5c2cmTJiQ+l79+vWJiYkB4IILLshyn0XDhg1p2rQpUVFR\ntGrViv3799O3b1+ioqJo27YtO3bs4PDhw1k6Z3qeeOIJSpYsSZEiRbj77rvZsGEDAJ999hndu3en\ndu3aiAidOnUiX758rF69OtvX9Fckj4aHyK7fP8f+4dWdr/Ltr7v5d+AqOrYtwKxZUKxYsCMLXTZO\nJo1g9fP+/vvv7N69myJeM+UlJSXRsGFDwPlL37tJqHz58q7FkvY63s1JZcuWzda5ixcvnvrzhRde\nSLFixVLvdi688EIAjh49SsGCBbN1nZIlS55xnd27dwPOf+exY8ee0RSZkJDAnj17snU9E/m+/+t7\nWky8hyJ/dODIrP+wcFYeatYMdlShz+5kQkT58uWpVKkSBw4cSH0dPnyYOXPmAFCqVCl27tyZWt77\nZ4CLLrqI48ePp27v2bPnnDvJ016njFcvZtpzem/nz5//jBiSkpL4559/zimGQEuJs3z58rzwwgtn\n/Hc+evQobdu2zbFYckufRSSZ+stUbhl1G0kL3qLYD7ex/jtLMP6yJBMi6tSpQ4ECBXj77bc5ceIE\nSUlJ/PTTT3z77bcAtGnThjfffJODBw+ya9cuPvjggzO+4KtXr8748eNJSkpiwYIFfPXVV+ccy2uv\nvcaJEyf4+eefGT16dKZfwN7NZZdffjknT55k3rx5JCQk8Nprr53R4R4Ip0+f5uTJk6kvf59wS4mz\na9euDB06lPj4eFSVY8eOMXfuXI4ePRrQOE1kSNZkXlr6Mt2/fBr9fCGvtmvL889DgQLBjix8WJIJ\nEXny5GHOnDls2LCBypUrc+mll9KtW7fU/ol+/fpRoUIFKlWqRHR0NJ06dTrjC/69995j9uzZFClS\nhC+++IJ77733jPNndFeT9gEBEaFRo0ZUqVKF2267jd69e3PbbbelWzbtvkKFCvHxxx/TpUsXypYt\ny8UXX3xG01tGx/sTZ4pmzZpx0UUXpb5eeeUVnw85eL9fs2ZNhg0bRs+ePSlatChVq1Zl7NixmV4z\n0CK5zwIip35HTh0hZvx9DF24lBKz4ln15Q3ExsIttzQOdmhhxQZjhqm4uDg6duzIH3/8EexQIlak\n/K6YrNt2YBu3j2zB3+vr0aHwh7z7Tj4uuCDYUeUMG4xpTJiLxD4Lb+FevyXblnH9+/XZO687o+79\njE8+PDPBhHv9cpo9XRbGbPS7MYGjqgxY9jH9lrxK1R++YO7IW6lQIdhRhT9rLjMmA/a7knucTjrN\nvcN6smjjSrpePIv3X6nMebn0T3BbT8YYYwJo96G/qTf4Pv7ZeQnT2q4iJtoeHQsk65MxJodFept+\nONVv/voNVH6zDnn/bMy2N7/0K8GEU/1CgSUZY0yu1Hv0FO6a1JRWhQay5bNXKVXSvg7dYH0yxmTA\nflci0/ETyTTq34/1yZ8zoul0Hry9RrBDCinWJ2OMMedo3U9HuPXDjuQtuJ+NT8ZTtXRx3weZbLH7\nQ5MlwVjqeOfOnRQoUCBi7ioivU0/VOs3cMRv1P3sRq6vXII/31hyzgkmVOsXqizJhJjRo0dz7bXX\nkj9/fkqVKsWjjz7KoUOHghZP2sXQGjRowKZNm1y5VuPGjRkxYsRZ+8uXL8+RI0dsXJA5J0eOQNPu\nS3hua3363Pooy3sPJd955wc7rFzDkkwIGTRoEH379mXQoEEcPnyY1atX8/vvv9O0aVMSEhICfr2s\nTi7pttyyvHKkzO2VkVCq33ffKZe1/4BvSnRgVqeJvH7Po9n+HQul+oUDSzIh4vDhw/Tv358PP/yQ\n22+/naioKCpUqMDkyZPZsWMH48aNA/63BHK7du0oWLAgNWvW5Icffkg9T2ZLOKddPnnMmDGsXbuW\nG2+8kSJFilC6dGkef/zx1ISWspbN9ddfT4ECBZgyZUqWlzp+++23KV26NGXLlmX48OFn3Rn5Y8eO\nHeTJk4fk5GTA+Z/85Zdf5uabb6ZgwYLccccd7N+/P7X86tWrqV+/PkWKFKF69eosX748S9cz4U8V\nBr93mpve6sYFN33Gz0+uolm1W4IdVu6kqhH5cqp2toz2B9v8+fP1vPPO06SkpLPee/DBB7V9+/aq\nqtqvXz/NmzevTps2TRMTE/Wdd97RSpUqaWJioiYlJekNN9ygr776qiYkJOi2bdu0cuXKunDhwjOO\nnTlzpqqqnjhxQtetW6dr1qzRpKQk3bFjh1arVk2HDBmSem0R0d9++y11e9myZVq2bNnU7YoVK2rd\nunV1z549+u+//2q1atV06NChqXUqWbKk/vLLL3r8+HHt0KGD5smT54zzeWvcuLGOGDHirP3bt29X\nEUn9b9OoUSOtUqWKbtmyRU+cOKGNGzfWvn37qqrqrl279JJLLtH58+erqurixYv1kksu0X/++cfP\nT+J/3PpdWbZsmSvnDRXBrt++faq3t/xLL37iJm064h49fPJwQM8f7Pq5zfN7H7DvYnu6LA15JTDN\nNdova01M+/bto1ixYuTJc/bNZcmSJfnuu+9St2vVqkXLli0BeOqppxg0aBCrVq0ib968qUs4A2cs\n4Xz77bcDZy+ffMMNN6Set0KFCnTr1o3ly5fTq1cvv2NPWeoYOGOp48mTJ/PQQw9RrVo1AF555RW+\n+OILv8+bERGhc+fOVKlSBXDW2pk1axYA48aNo1mzZkRHRwNw2223UatWLebNm0enTp2yfW0T2las\ngNZPfMfxmHvp1SCW/zTpRx6xBptgsiSTRlaTQ6AUK1aMffv2kZycfFai2bNnD5deemnqtvcSyCJC\n2bJl2b17NyKS6RLOaY8F2Lx5M0899RTr1q3j+PHjJCYmUqtWrSzFnnap45SljPfs2UOdOnUyvHZ2\npL1myqJjv//+O1OmTGH27Nmp7ycmJnLrrbcG7NrZFelt+sGoX1ISvPEGDFo4CW3Vk5H3fkKrq1q5\ncq1I//wCzVJ8iLjxxhvJly8f06ZNO2P/0aNHWbBgAU2aNEnd572GTHJyMrt27aJMmTKUK1cu0yWc\n0+tY79GjB1dddRVbt27l0KFDvP7666l9H9lVqlSpM2LNibVvypcvT8eOHc/4b3DkyBGeffZZ169t\ngmP3britaTLDt79AwXv7svzhxa4lGJN1lmRCRKFChejXrx+PP/44CxcuJCEhgR07dtCmTRvKlStH\nx44dU8uuW7eO6dOnk5iYyJAhQ7jggguoV68etWvXznQJZ03nKbGjR49SoEABLrroIjZt2sQnn3xy\nxvslSpTgt99+y1JdUq7Tpk0bRo0axaZNmzh+/Divvvqqz2MTEhLOWF45MTEx02uk9cADDzB79mwW\nLVpEUlISJ0+eJC4ujj///DNLdXBTpI+zyMn6zZ8PNeodZk+je6jQ4GvWPRJP9ZLVXb1mpH9+gWZJ\nJoT07t2bN954g2eeeYZChQpRr149KlSowJIlS8ibNy/g3I20aNGCSZMmUbRoUcaPH8+XX35JVFQU\nUVFRmS7hnN6dzDvvvMMXX3xBwYIF6datG+3atTujTP/+/XnwwQcpUqQIU6dOzdJSx9HR0TzxxBPc\ncsstXH755dx4440A5MuXL8Pje/Toccbyyg899JDPZZu93y9btiwzZ87kjTfeoHjx4pQvX55BgwYF\n7O7MhIbTp+GZZ+ChZ7Zy0RM3ckvNMvy302IuzX+p74NNjnJ17jIRiQaGAFHAcFUdkE6Z94E7geNA\nrKquz+xYEakDfAjkBRKBR1V1bTrn1fTqFu7zUb3yyits3bqVzz//PNihZNnGjRu59tprOX36dLoP\nOISacP9diVTbtkG7dnDe5f9l63UdeOWW/vSo3SPYYUWMsFl+WUSicJJBNHAV0F5EqqUp0wyooqpV\ngW7AJ34c+zbwkqrWAF72bOca4falN336dE6dOsWBAwfo06cPMTExYZFgTGiaNAnq1lPKtXqf7TU6\nMqXNZEswIc7N/9vrAFtVdYeqJgATgRZpysQAYwBUdQ1QWERK+jh2D1DI83NhIHQa23NAuI2K/+yz\nzyhRogRVqlQhb968Z/X55EaR3qbvRv2OH4euXeGFfqe46a0ubCkwnJUPraRRxUYBv5Yvkf75BZqb\njzCXAbwfJ9oF1PWjTBmgdCbH9gW+FpF3cJLkjQGMOeT169cv2CFkyfz584MdgglzP/0EbdvClbX+\notjT9xF1cUlWPrCSi8+/ONihGT+4mWT8bdfJ6p/lI4AnVHW6iLQGRgJN0ysYGxtLxYoVAShcuDDV\nq7v71ImJXCl/vaaMkcjOduPGjQN6vlDbDlT9VGHLlsa88ALc1elT5p18iceqPsZLjV7iq+VfhX39\nQmU7Li6O0aNHA6R+XwaSax3/IlIP6K+q0Z7t54Bk785/ERkKxKnqRM/2JqARUCmjY0XksKoW9OwX\n4KCqFiKNSO34NznHfleC5+BB6NYNNm+Gjm9P4K3vn2DoXUO576r7gh1axAubjn/gW6CqiFQUkfOB\ntsCsNGVmAZ0gNSkdVNW9Po7dKiIpDbG3AptdrIMxARfpbfrZrd+aNVCjBhQrnkTTAc/x4cbnWdJp\nScgkmEj//ALNteYyVU0UkZ7AQpzHkEeo6kYR6e55/1NVnScizURkK3AM6JzZsZ5TdwM+EpF8wAnP\ndpaEU8e5MblFcjK88w4MGgSDPzrMhNP3c3TPUdZ2XUuxi4oFOzxzjlwdJxNMGTWXGWNCz99/Q6dO\nzgJjrw/dwqNfteCWircwJHoIeaPyBju8XCWcmsuMMcanJUuc5rFateClUYtpu/BmetXtxUd3fWQJ\nJgL4TDIiUlJERojIAs/2VSLysPuhmcxEcrtwJNcNrH4pEhPhhRecO5gxY5RizYfQeXYnprSeQvda\n3d0NMhsi/fMLNH/uZEYDi3DGrgBsAZ50KyBjTOTbuRMaNYJ162DV2lOMP/YQozaMYtXDq2hYoaHv\nE5iw4bNPRkS+VdVaIrLeM5ULIrJBVUN60In1yRgTmqZPh0cecSa47ND9L1pNaUnpAqUZc88Y8p+f\nP9jh5XqB7pPx5+myoyJyiVcA9YBDgQrAGJM7nDzpJJa5c2HmTDiv/LfUG9GSLjd04cWGL9oKlhHK\nn0/1aWA2UFlEVgKfA0+4GpXxKZLbhSO5bpA767dpE9Sr5zxFtn49bMv/Bc3GN+O96Pd4udHLYZVg\nIv3zCzSfdzKqus4z+PEKz65fPZNWGmNMplRhzBjo3Rtefx0eejiJF5Y+z5RfprCk0xKuLXFtsEM0\nLvNrnIyI3ARUxElKCqCqY12NLJusT8aY4DpyBB59FL77zpmiv1yVQ9z/5f2cSDjB5NaTbYBliMrx\ncTIiMg4YCNwE1AJqe17GGJOu776DmjXhggtg7Vo4v9Rm6o2oR6XClVj4wEJLMLmIPw2hNYGbVPVR\nVX085eV2YCZzkdwuHMl1g8iunyo8/ngc0dHwn//AsGHw9Z5FNBjVgCfrPcmHzT4M+wGWkfz5ucGf\np8t+AkoBu12OxRgTxvbvh86dnZmTV62CypWVwaveZeDKgUxtPZUGFRoEO0QTBP6Mk4kDqgPxwCnP\nblXVGHdDyx7rkzEm53z1FTzwgLO42OuvQ3Kekzwy5xG+3/s9M9rOoELhCsEO0fgpGONk+nv+Vf63\nwJh9extjSEpyksrHH8PIkdCsGew5sod7J91L+ULl+brz1zbAMpfz2SejqnHADiCv5+d4YL2rURmf\nIrldOJLrBpFTv9274bbbIC7O6ehv1gzW/rmW6/peR/PLmzOp1aSITDCR8vnlFH+eLusGTAE+9ewq\nC0x3MyhjTGibNw9uuAFuvRUWL4bSpWHcD+O464u76FW3Fy82fNHWbTKAf30y3wN1gNVec5f9qKoh\nPYrK+mSMCbzTp+G552DKFBg/Hho0gKTkJJ5b8hzTNk5jZruZXFP8mmCHabIhGH0yp1T1VMpfJSKS\nOiDTGJN7/PYbtGvn3LWsXw+XXAIHTx7k/mn3cyrpFPFd4rnkokt8n8jkKv6Mk1kuIi8AF4lIU5ym\ns9nuhmV8ieR24UiuG4Rn/SZOdOYe69QJZsxwEszm/ZupN7weVYpWYUGHBakJJhzrlxWRXr9A8+dO\npi/wMPAj0B2YBwx3MyhjTGg4dgx69XIeUV640OmHAViwdQGdpnfijSZv0OWGLsEN0oQ0v+YuSy0s\nUhQop6rfuxdSYFifjDHZ8+OPzriXmjWdR5QLFABVZfCqwQxaNYjJrSdzc/mbgx2mCbAc75MRkeXA\n3Z6y64B/ROQbVbXVMY2JQKrw2Wfw4oswaJDTRAZwMvEk3WZ346e/f2J1l9WUL1Q+uIGasOBPn0wh\nVT0MtATGqmod4DZ3wzK+RHK7cCTXDUK7focOOXcvH38MX3/9vwSz+8huGo1uxKmkU3z90NeZJphQ\nrl8gRHr9As2fJBMlIqWANsBczz5rhzImwqxdCzVqwKWXwpo1cIVnBak1u9ZQZ1gdWlzRgon3TeSi\nvBcFN1ATVvwZJ9MaeAn4RlV7iMhlwNuqel9OBHiurE/GGP8kJ8O778KAAfDJJ3Cf1//ZY78fyzOL\nnmFEzAjuvuLu4AVpckyg+2Sy1PEfTizJGOPbvn0QG+v8O2ECVKrk7E9KTqLPf/swY9MMZrabydXF\nrw5qnCbnBGPRsnIiMl1E/vG8polI2UAFYM5NJLcLR3LdIHTq99VXTvPYVVfBihX/SzAHTx6k+YTm\nbPhrA/Fd47OcYEKlfm6J9PoFmj99MqOAWUBpz2u2Z58xJgwlJTkLirVt6zxF9vbbkNezjtiv+36l\n7vC6XF70chY8sICiFxYNbrAm7Pk1d5mqXu9rX6ix5jJjzrZ7t7Pui6oz91jp0v97b/6W+Tw440He\nuu0tHqrxUPCCNEGV481lwH4R6SgiUSJynog8AOwLVADGmJyxYIEzsLJxY/jvf/+XYFSVgd8M5OFZ\nDzO97XRLMCag/EkynXEeX/4L2AO09uwzQRTJ7cKRXDfI+folJECfPtC1qzMH2csvQ1SU896JhBN0\nmtGJiT9PZE2XNdxU/qZsX88+P+Mt0xH/nhmX31BVe3bRmDC0Ywe0bw9FizoLi1166f/e+/Pwn9w7\n6V4uK3oZKzqvsPEvxhX+9Ml8DTRR1VM5E1JgWJ+Mye2+/BIeecS5i3nyScjj1W6xetdqWk1uxWO1\nH6PvzX1tgTGTKhjryWwHvhaRWcBxzz5V1cGBCsIYEzgnT8IzzzirV86eDXXrnvn+mA1j6L24NyNb\njKT55c2DE6TJNfzpk/kNZzqZPMDFnlcBN4MyvkVyu3Ak1w3crd/mzc66L3v3Os1j3gkmMTmRpxc+\nzWsrXiMuNs61BGOfn/Hm805GVfsDiEh+VT3mekTGmHPy+efw1FPw6qvQvTt4t4AdOHGAdtPakazJ\nrOmyxsabjGJ4AAAgAElEQVS/mBzjT59MfZxFygqoajkRuR7orqqP+jy5SDQwBIgChqvqgHTKvA/c\nidMUF6uq630dKyKPA48CScBcVe2TznmtT8bkCkePQs+ezqSWkybBdded+f7GfzbSYmIL7qp6FwNv\nH8h5efxpJTe5VTDGyQwBovGMjfEsWNbI10EiEgV86Dn2KqC9iFRLU6YZUEVVqwLdgE98HSsitwAx\nwHWqeg3wjh91MCYi/fAD1K7t3LV8++3ZCWbelnk0Gt2I525+jnej37UEY3KcP0kGVd2ZZleiH4fV\nAbaq6g5VTQAmAi3SlIkBxniusQYoLCIlfRzbA3jTsx9V/cefOkSaSG4XjuS6QWDqpwpDh0KTJvD8\n8zBqFOTP7/2+MuDrAXSd3ZWZ7WbSuUbODW2zz8948+fPmp0ichOAiJwPPAFs9OO4MsAfXtu7gLp+\nlCmDM0daRsdWBRqKyBvASeAZVf3Wj3iMiQgHDzoDK7dscRYWS1n3JcWJhBN0md2FX/f9ypouayhb\n0OazNcHjz51MD+AxnC//P4Eanm1f/O0QyWrb33lAEVWtB/QGJmfx+IjQuHHjYIfgmkiuG2SvfvHx\ncMMNUKIErF59doLZdXgXDUc3BGBF5xVBSTD2+Rlv/tzJ1FLV+713iMgjwFAfx/0JlPPaLodzR5JZ\nmbKeMnkzOXYX8CWAqq4VkWQRuURV96cNIDY2looVKwJQuHBhqlevnvoLknLLa9u2HQ7bS5fGMWUK\nTJvWmKFDoWjROFavPrP8z3//zBu73qBX3V7UPl2bNd+sCZn4bTt0t+Pi4hg9ejRA6vdlQKlqpi9g\nJc6I/5TtZ4EFfhx3Hs4Ym4rA+cAGoFqaMs2AeZ6f6wGrfR0LdAde8fx8ObAzg+trJFu2bFmwQ3BN\nJNdNNev1+/tv1WbNVOvVU92+Pf0yI78bqZe+fanO+XVOtuPLLvv8wpvnu9NnbvD35c+dTAwwR0RO\n4zztdaVnn6/klSgiPYGFOI8hj1DVjSLS3fP+p6o6T0SaichW4BieiTczOtZz6pHASBH5ETgNdPKj\nDsaEpeXLnan5778fXnvtf+u+pEhMTqT3ot7M3TKX5bHLqXZptfRPZEyQ+LX8sogUB5YA3wIPqT8H\nBZmNkzHhLCnJSSpDhzpPjkVHn13m3xP/0m5qO0SEifdNpMiFRXI+UBNxAj1OJsMkIyJHObPz/nwg\nwbNPVbVgoIJwgyUZE65274YOHZyxL+PGnbmwWIqN/2wkZmIMMZfHMKDpABv/YgImxwZjqurFqlrA\n65XPa19IJ5jcIKXjLhJFct0g8/qlLCx2662weHH6CWbO5jk0Gt2IFxu8yKA7BoVcgsnNn585W2j9\ndhqTSyUkwAsvwIQJztQwDRueXUZVGfDNAD6I/4BZ7WdRr2y9nA/UmCzyq08mHFlzmQkXO3ZAu3ZQ\nrBiMHu38m9bxhON0mdWFrf9uZXrb6ZQpWCanwzS5RDDmLjPGuGTaNKhTB9q0gVmz0k8wuw7vouGo\nhkTliWJ57HJLMCas+EwyIlI0nVdeX8cZd0Vyu3Ak1w2c+p08CY8+Cr17w5w5zhT9edL5v3HlHyup\nO7wuba9uy9h7xnJh3gtzPuAsyg2fn/GfP3cy3+HMwLzF89oH/C4i34lITTeDMyYS7dzpLCy2bx+s\nX+/cyaRn5PqR3DPxHobdPYzeN/W2JZJNWPJnPZlhwFRVXejZvh1oBYwC3lPVDP4XCS7rkzGhaOxY\nePppZwxMt25nLiyWImUFywW/LWBmu5lcWezKnA/U5Fo5Nk7G64I/qbNui/e+H1X1WhHZoKrVAxVM\nIFmSMaHk6FF47DFngsvJk+Haa9Mv9++Jf2k7tS1REsXEVhMpfEHhnA3U5HrB6PjfIyJ9RKSCiFQU\nkWeBvZ6FxZIDFYjJmkhuF460un3/PdSqBVFRzsJi+/fHpVvu579/ps6wOlxf4nrm3j83bBNMpH1+\naUV6/QLNnyRzP84syDOA6UB5oD3OnGJt3AvNmPCmCp98ArfdBi++CCNHnrmwmLfZv87mljG38HKj\nl3nn9neIyhOVs8Ea4xJ/mssqqer2NPtqq+paVyPLJmsuM8F08CB06QK//eYMrrz88vTLqSpvfv0m\nH6/9mGltplG3bNp1/YzJWcFoLpsmIqkrH4lII5xOf2NMOtasgRo1oFQpWLUq4wRzPOE47ae1Z+av\nM4nvGm8JxkQkf5JMd2CGiJQUkWbA+8Cd7oZlfInkduFwrVtyMrzzDsTEwODB8MEHcMEFZ5eLi4tj\n56Gd3DzyZs6POp/lscspXSCdScrCVLh+fv6K9PoFms+5y9RZffIJYDFwAmiqqn+7HpkxYeSff+DB\nB+HAAecJsgoVMi77494fuX/4/Tx949M8deNTNv7FRLTMpvqfnWZXNWAPcBBnqn+fC5cFk/XJmJwS\nF+csLPbAA/Dqq2cvLOZt+HfDeX7J84y9dyzRVdJZJMaYIAt0n0xmdzKD0tmngHDmOjPG5EpJSU5S\n+fRTZ2LLO+7IuGxCUgJPL3qaRb8tYkXnFVxR7Ioci9OYYMpsPZm4dF7LU/7NySDN2SK5XTgc6vbn\nn9CkCaxYAd99l3mC2X98P9Hjo9ny7xZWd1nNnp/25FygQRAOn192RHr9As1mYTYmi+bPdwZXNmkC\nixY5T5Fl5Ke/f6LO8DrULFWTOe3nhO0AS2POla0nY4yfTp92FhabOBHGj09/YTFvMzfNpOvsrgy+\nYzAPXPdAzgRpTDblWJ+MiHwGzAf+q6pHAnVBY8LR9u3OwmLFizszJ6e37ksKVeWNFW8wdN1Q5tw/\nhzplQnIOWWNyRGbNZSOB6sA8EVnqmb/s+hyKy/gQye3CoVa3qVOhbl0nyWS0sFiKY6eP0W5aO2Zv\nnk18l/h0E0yo1S/QrH7GW4Z3Mqq6GlgN9BORYsDtwNMich2wHpivqpNzJkxjct7Jk85iYgsXwty5\nULt25uV3HtpJi4ktuL7E9cTFxnHBeemMxDQml8lyn4w4I8dqAneo6uuuRBUA1idjsmPTJmjbFq68\nEj77DAoVyrz8it9X0GZqG56t/yz/V+//bIClCVs5vp5MuLIkY87VmDHwzDPw+uvQtWv6C4t5G7Zu\nGC8ue5Gx94zljiqZPMtsTBgIxgSZJgRFcrtwsOp29Ch06gQDBsDSpRmvXJkiISmBnvN6MmjVIFZ0\nXuF3gonkzw6sfuZMlmSMATZsgJo1nSlh1q7NeOXKFPuO7+OOcXew/eB21nRZw+WXZDDVsjG5nD/r\nyeQHngLKq2pXEakKXKGqc3IiwHNlzWXGH6rOtDAvvQRDhkCHDr6P+XHvj7SY2II2V7fh9VtftwXG\nTETJybnLUowC1gH1Pdu7galASCcZY3w5dQp69nTWfPnmm4zXffE2Y9MMus7uypA7htDhOj8ykjG5\nnD/NZZep6gDgNICqHnM3JOOPSG4Xzom6/fUX3Hor7N+f+cJiKVSVV5e/yuPzH2d+h/nZSjCR/NmB\n1c+cyZ8kc0pELkzZEJHLgFPuhWSMu779FurUgdtvdwZaFiiQefljp4/RZmob5m2dR3yXeGqVrpUz\ngRoTAfzpk7kdeAG4CmfhspuAWFVd5n545876ZEx6xo2DJ590xr7ce6/v8r8f/J0WE1tQo1QNht41\nlHzn5XM/SGOCKCjjZDwj/ut5Nler6r5ABeAWSzLGW1IS9O0LX34JM2fCNdf4Puar37+i7dS29Lmp\nD73q9rIBliZXCNY4mXzAAeAIcJWI+Jh/1rgtktuFA123AwegWTPnMeW1a/1LMJ9++ymtp7RmzD1j\nAj6CP5I/O7D6mTP5fLpMRAYAbYFfgCSvt75yKyhjAuWXX6BFC2jeHAYOhPN8/MYnJCXQa0Ev4nbE\n8XXnr6l6SdWcCdSYCOVPn8xm4FpVDavOfmsuM7Nnw8MPw9tvQ2ys7/L7ju+j9ZTW5M+bny/u+4KC\n+Qq6HqMxoSYYzWW/Aeefy8lFJFpENonIFhHpk0GZ9z3vfy8iNfw9VkSeFpFkESl6LrGZyKXqzDvW\no4eTaPxJMD/s/YE6w+pQr0w9ZrabaQnGmADxJ8mcADaIyGci8oHn9b6vg0QkCvgQiMZ5Mq29iFRL\nU6YZUEVVqwLdgE/8OVZEygFNgd/9iD8iRXK7cHbqdvQotGnjJJf4eGcdGF++3PglTcY24fVbX+fN\n2950fQR/JH92YPUzZ/JnxP8sz8ubP+1QdYCtqroDQEQmAi2AjV5lYoAxAKq6RkQKi0hJoJKPYwcD\nzwIz/YjD5BLbt8M998ANN0BcHFzgYzmXZE3m1eWvMmL9CBZ0WEDN0jVzJE5jchOfSUZVR5/jucsA\nf3ht7wLS/l2ZXpkyQOmMjhWRFsAuVf0hNz9S2rhx42CH4JpzqduyZdC+PTz/PDz+uO/p+Y+ePkrs\njFj2HN1DfNd4Sl5c8tyCPQeR/NmB1c+cKcMkIyJTVLW1iPyYztuqqtf5OLe/ve5+ZwrPzAPP4zSV\nZfl4E3lU4aOP4LXXYPx4aNLE9zE7Du6gxcQW1CpVi/Etx9sAS2NclNmdTC/Pv805+4vcnwTyJ1DO\na7sczh1JZmXKesrkzeDYy4CKwPeeu5iywDoRqaOqf6cNIDY2looVKwJQuHBhqlevnvpXSEq7arhu\nDxkyJKLq473t3eadWfnTp2Hy5MasWQODB8cRFQWQ+fmlotBuWjtaXdiKlgVbpiaYUKxfuG5b/cJr\nOy4ujtGjRwOkfl8GlKpm+gIG+LMvnTLn4TyZVhHn6bQNQLU0ZZoB8zw/18OZTcCvYz3ltgNFM7i+\nRrJly5YFOwTX+FO33btVb7xRtWVL1SNH/Dvvx/Efa/GBxXXxb4uzF2A2RfJnp2r1C3ee706fucHf\nlz/jZNarao00+35UVR/LOoGI3AkMAaKAEar6poh092SATz1lUp4iOwZ0VtXvMjo2nfNvA2qp6r/p\nvKe+6mbC09q10LKls3LlCy9AHh/PSJ5OOk2v+b34audXzGw3kypFq+RMoMaEoRybu0xEegCP4jRR\n/eb1VgHgG1UN6cU0LMlEps8/h6eegmHDnCfJfPnn2D+0mtKKQvkKMa7lOBv/YowPOTkY8wvgbpzH\nl5t7vWqGeoLJDbzbhSNNenVLTIRnnoFXXnGeJPMnwXz/1/fUGV6Hm8vdzIx2M0ImwUTyZwdWP3Om\nDDv+VfUQcAhoJyLVgQY4Hf4rgP05E54xzgSX7do5T5LFx0NRP+Z4mPbLNHrM7cEHd35A22vauh+k\nMSZd/vTJ9AK6Al/iPGV2DzBMVX2O+g8may6LDCkTXMbEwIABvie4TNZk/rP8P4zaMIrpbadzQ6kb\nciZQYyJEjq8n4xknU089yy6LSH6cp8B8dvwHkyWZ8DdzJnTtCu+8A506+S5/9PRROk3vxN/H/mZa\nm2mUuLiE+0EaE2GCtZ5McgY/myCJ5HbhpUvjePVV6NkT5szxL8FsP7Cd+iPqU/TCoizptCSkE0wk\nf3Zg9TNn8mfuslHAGhHxbi4b6WpUJtc6etTp3D992ul/KVXK9zHLti+j/bT2vNDgBXrW6WkrWBoT\nQvxdfrkmcDOejn9VXe92YNllzWXhZ/t2p/+ldm34+GPI52O2F1Xlk28/4T/L/8P4luNpUtmPOWWM\nMZkKRp9MPeAXVT3s2S6IM/p+TaCCcIMlmfCydCncfz+8+CI89pjvCS5PJ53m8XmP880f3zCz3Uwu\nK3pZzgRqTIQLRp/MUOCI1/Yxzz4TRJHSLqwKH3zgJJgvvnD6YZYvj8v0mL+P/c1tY2/jr2N/serh\nVWGXYCLls8uI1c9486vj3/uWQFWTcKZ6MSZbTp2CLl2c0furVsGtt/o+ZsNfG6gzrA6NKjRietvp\nFMhXwP1AjTHnzJ/msunAMpxVKwXoAdyiqn6MuQ4eay4LbXv2OPOPlSkDo0fDxRf7PmbKz1N4bN5j\nfNTsI1pf3dr1GI3JjYLRXPYIcBPOtPy7cGZL7haoAEzuEx8PderAXXfBlCm+E0yyJvPyspfpvbg3\nCx9YaAnGmDDiM8mo6l5VbauqxT2v9prO2i0mZ4Vru/DYsdC8OXz4odPJn14Hv3fdjpw6wn2T72PZ\njmXEd42nRqkaZx8QZsL1s/OX1c94y2xlzD6qOkBEPkjnbVXVJ1yMy0SYxER49lmYPduZ4PLqq30f\ns+3ANmImxFC/XH0mtZrE+VHnux+oMSagMpvq/25VnS0isem8rao6xtXIssn6ZELHv/9C27bOXcvE\nif5NcLl0+1Lun3Y/LzV8iUdrP2oDLI3JITk+TiZcWZIJDT//7AywvOceeOst3xNcqiofrf2I1756\njS/u+4JbK/nxyJkxJmByvONfRK4QkWEislhElnleSwMVgDk34dAuPGMG3HIL9O/vTHLpK8GcTjpN\nt9ndGDRhECsfXhmxCSYcPrvssPoZb/7MXTYF5/Hl4UCSZ5/dIpgMJSfDa68541/mznWmifHl72N/\nc9/k+yh2UTE+uvMjKhep7H6gxhjX+TNOZp2q1syheALGmsuC4+hRePBBZxzMl19CyZK+j1m/Zz33\nTLqH2Otj6de4H3nE38nBjTGBFoxxMrNF5DERKSUiRVNegQrARI5t2+DGG6FIEecJMn8SzOSfJ3PH\nuDsYdPsgXrnlFUswxkQYf/6PjgWeAVYC6zyvb12Myfgh1NqFlyyB+vWhe3enmczXDMrJmsyLS1/k\n2cXPsqjjIlpd1Sr1vVCrW6BZ/cJbpNcv0Hz2yahqxRyIw4SplAku33jDeTy5cWPfxxw+dZiO0zty\n4MQB4rvGUzx/cdfjNMYEhz3CbM7ZqVPQowesW+cslVyxou9jfvv3N2ImxtCgfAPev/N9G2BpTIgJ\n1vLLxpxhzx7nruXIEVi50r8Es2TbEuqPrE/P2j0Z2nyoJRhjcgFLMmEqmO3Ca9Y4E1w2bw6TJ0P+\n/JmXV1XeX/M+Hb7swKRWk+hRu0em5SO9zdvqF94ivX6B5rNPxrP0ctp2p0PA76qa6EpUJmSNGQO9\ne8Pw4RAT47v8qcRTPDbvMeL/jGfVw6uoVKSS+0EaY0KGP+NkVgM1gR88u64FfgYKAT1UdaGrEZ4j\n65MJrMREJ7nMnev0v1Sr5vuYvUf30nJyS0rkL8HYe8dy8fl+LBpjjAmqYPTJ7Aaqq2pNz6DM6sA2\noCnwdqACMaFr/36IjoaNG52mMn8SzHd7vqPO8DrcXvl2praZagnGmFzKnyRzhar+nLKhqr8AV6rq\nb9j0MkGTU+3CP/3k9L/ccINzF1OkiO9jJv00iehx0Qy+ffA5jeCP9DZvq194i/T6BZo/c5f9LCKf\nABNxll9uA/wiIvmABDeDM8E1fTp06wbvvgsPPOC7fMoAywk/TWBxx8VcX/J694M0xoQ0f/pkLgIe\nxVmCGeAb4GPgJJBfVY+4GuE5sj6Zc5ecDK++CiNGOPOP1arl+5jDpw7T4csOHDl1hCmtp3Bp/kvd\nD9QYE3A5vp6MiNRU1XVp9jVX1TmBCsINlmTOzZEjzgSXe/fCtGn+zT+29d+txEyIoXHFxrwX/R55\no/K6H6gxxhXB6PgfJiLXegXQHng5UAGYc+NGu/C2bc78Y5dcAkuX+pdg/rvtv9w08iaeqPsEH9/1\ncUASTKS3eVv9wluk1y/Q/EkyrYAxInKliHTFaTpr6m5YJqelTHDZowd89pnvCS5VlfdWv0fH6R2Z\n3Goyj9R6JGcCNcaEFb/mLhORK4AZwO9AS1U97nZg2WXNZf5RhffegwEDYMIE/ya4PJV4ih5ze7Bu\nzzpmtptJxcIV3Q7TGJNDAt1cluHTZSLyY5pdRXHufNZ4vsCvC1QQJjhOnoRHHoENG2D1aqhQwfcx\nfx39i5aTWlK6QGlWPrSS/Of7mFPGGJOrZdZcdneaV13gDs/Pfkwo4hCRaBHZJCJbRKRPBmXe97z/\nvYjU8HWsiAwUkY2e8l+KSCF/44kU2W0X3r0bGjWCEyfgm2/8SzDrdq+jzrA6RFeJZnLrya4lmEhv\n87b6hbdIr1+gZZhkVHVHZi9/Ti4iUcCHQDRwFdBeRKqlKdMMqKKqVYFuwCd+HLsIuFpVrwc2A8/5\nX2WzerUzwPKee5w1YHxNcAkw4ccJRI+P5r3o93i50cu2gqUxxi+uricjIjcC/VQ12rPdF0BV3/Iq\nMxRYpqqTPNubgMZAJV/HevbfC9ynqg+k2W99MukYPRqefRZGjnRmUfYlKTmJF5e+yKSfJzGz3Uyu\nLXGt74OMMWErx/pkAqQM8IfX9i6cZjdfZcoApf04FuAhYEK2I41wiYnwzDMwbx4sX+7f/GOHTh6i\nw5cdOJZwjPiu8RS7qJj7gRpjIorbScbfW4lzypoi8gJwWlW/SO/92NhYKnpW0ypcuDDVq1ensefx\nqZR21XDdHjJkiN/12bMHmjePIyoK4uMbU7iw7/OPmzmO55c+z923382Q6CF8s+KbHKufd5t3qPz3\ntvpZ/SK1fnFxcYwePRog9fsyoFTVtRdQD1jgtf0c0CdNmaFAO6/tTUAJX8cCsThT3FyQwbU1ki1b\ntsxnmaQk1U8/VS1WTPWll1QTE/0798KtC7X4wOL66befZi/Ic+RP3cKZ1S+8RXr9PN+dAcsDbvfJ\nnAf8CjTBWTIgHmivqhu9yjQDeqpqMxGpBwxR1XqZHSsi0cAgoJGq7svg2upm3ULdr786k1ueOgXD\nhsG1fnSlqCpDVg9h4MqBTGo1iQYVGrgfqDEmpIRVn4yqJopIT2AhEAWM8CSJ7p73P1XVeSLSTES2\nAseAzpkd6zn1B8D5wGIRAVilqo+6WZdwcfq0M7Dyvffg5ZfhsccgKsr3cacST/HI3EfY8NcGVj28\nigqF/Xim2RhjfHD1TiaYIv1OJi4uLrV9NcWqVdC1K1SsCB9/DOXL+3euPUf20HJyS8oVLMeoFqOC\nPsAyvbpFEqtfeIv0+gVjgkwT4o4cgccfh5Yt4aWXYPZs/xPM2j/XUmd4He6qeheTWk0KeoIxxkQW\nu5MJc7NnO01iTZvCwIFQtKj/x47/YTxPLnySz+7+jHuuvMe9II0xYSOs+mSMe/76C554AtavhzFj\n4JZb/D82KTmJ55c8z9SNU1n64FKuKX6Ne4EaY3I1ay4LM6owfDhceWUcVarADz9kLcEcOnmImIkx\nrN29lvgu8SGZYLzHIUQiq194i/T6BZrdyYSRzZudx5KPH4d33oEuXbJ4/P7NxEyIoWnlpgy+Y7Ct\nYGmMcZ31yYSBhASnv2XwYHjxRaeT35/Hkr0t3LqQTjM68dotr9G1Zld3AjXGhD3rk8ll1qxxHksu\nWxbWrfNvSn5vqsq7q9/lnZXvMK3NNG4uf7M7gRpjTDqsTyZEHTkCvXo50/E/9xzMnXtmgvGnXfhk\n4kliZ8Yy7odxrO6yOmwSTKS3eVv9wluk1y/QLMmEoLlz4Zpr4PBh+OknaN8eJIs3r7uP7Kbx6Mac\nTDzJ1w99TflCfg6cMcaYALI+mRCyd69z97J2LXz6Kdx227mdZ+2fa2k5uSU9avXguZufQ7KaoYwx\nuZaN+I9Aqs4iYtde6zSJ/fjjuSeYcT+M464v7uKjZh/xfIPnLcEYY4LKkkyQbd3qJJSPP4aFC53J\nLS+6yPdxaduFk5KT6L2oN/3i+rHswWXEXBHjTsA5INLbvK1+4S3S6xdolmSCJCEB3noL6tWDu+6C\n1auhRo1zO9fBkwdpPqE53/31HfFd4rm6+NWBDdYYY86R9ckEwdq1zmPJJUvCJ59ApUrnfq5f9/1K\nzMQYoi+LZtAdgzgvjz2Vbow5d9YnE8aOHoUnn4S774bevWH+/OwlmPlb5tNgVAOerf8s7935niUY\nY0zIsSSTQ+bPdx5L3r/feSy5Q4esP5acQlXp8WEPHp71MNPbTufhGx4ObLBBFult3la/8Bbp9Qs0\n+9PXZX//Df/3f06fy2efwe23Z+98JxNP0nV2V9ZsX8Oal9dQrlC5wARqjDEusD4Zl6jC2LHw7LPQ\nqRP07w/5s7ke2O4ju7l30r1ULlKZETEjuCivH4+hGWNMFtjcZWHgt9/gkUecprH58+GGG7J/zjW7\n1nDf5Pt4rPZj9L25r41/McaEBeuTCaDERHj7bahb12kWi48PTIIZ+/1Y7p5wN5/c9QnPNXBG8Edy\nu3Ak1w2sfuEu0usXaHYnEyDr1jnruxQr5iSXypWzf87E5ET6LO7DzF9nEhcbx1WXXpX9kxpjTA6y\nPplsOnYMXn4Zxo1z1nzp2PHcnxrzduDEAdpPa0+SJjGp1SSKXlg0+yc1xhgfbJxMCFm0yJlvbO9e\n57HkTp0Ck2A27dtE3eF1ubLYlczvMN8SjDEmbFmSOQf79jkJpVs3Z86xcePg0ksDc+55W+bRcFRD\nnrv5OYZED8lwgGUktwtHct3A6hfuIr1+gWZJJgtUYfx4Z1BlsWLO3Ut0dKDOrbz9zdt0nd2Vme1m\n0rlG58Cc2Bhjgsj6ZPy0Y4fzWPKePTB8ONSuHbBTcyLhBF1nd2XTvk3MaDeDsgXLBu7kxhiTBdYn\nk8OSkuDdd6FWLWjcGL79NrAJ5s/Df9JwdEOSNZkVnVdYgjHGRBRLMpn4/nu48UaYNQtWrYK+fSFv\n3sCdf/Wu1dQZXodW1VoxvuV4Lsx7od/HRnK7cCTXDax+4S7S6xdolmTSceIEPP88NG0K3bvD0qVQ\ntWpgrzF6w2hiJsTwafNP6XNzHxvBb4yJSNYnk8ayZc5TYzVqwPvvO2u+BFJiciLPLn6W2ZtnM6vd\nLKpdWi2wFzDGmGywuctccuCAs8bLwoXw0UcQ48LqxQdOHKDt1LYAxHeJp8iFRQJ/EWOMCSG5vrlM\nFaZMgauvhnz54Oef3UkwG//ZSJ3hdbim+DXM6zAv2wkmktuFI7luYPULd5Fev0DL1Xcyu3bBo4/C\n1q0wdSrUr+/OdeZunkvnmZ0Z2HQgD1Z/0J2LGGNMCMqVfTLJyfDJJ84aLz17Ok+N5csX+BhSBlh+\nEAnk/LoAAArXSURBVP8BU9tMpV7ZeoG/iDHGBJD1yWTTL79A167Oz8uXw1UuTWx8IuEEXWZ3YfP+\nzazpsoYyBcu4cyFjjAlhrvbJiEi0iGwSkS0i0ieDMu973v9eRGr4OlZEiorIYhHZLCKLRKSwP7Gc\nOuXcuTRqBA88ACtWuJdgdh3eRYNRDRCEr2K/ciXBRHK7cCTXDax+4S7S6xdoriUZEYkCPgSigauA\n9iJSLU2ZZkAVVa0KdAM+8ePYvsBiVb0cWOLZztQ33ziPJG/YAOvXQ48ekMelmq/8YyV1h9elzdVt\n+Pzez7M0wDIrNmzY4Mp5Q0Ek1w2sfuEu0usXaG42l9UBtqrqDgARmQi0ADZ6lYkBxgCo6hoRKSwi\nJYFKmRwbAzTyHD8GiCODRHP4sNPfMnOmM+alZcvATMWfkZHrR9L3v30Zfc9omlVt5t6FgIMHD7p6\n/mCK5LqB1S/cRXr9As3NJFMG+MNrexdQ148yZYDSmRxbQlX3en7eC5TIKICrr4Y773RmSy7i4pCU\nxOREnln0DPO2zOOrzl9xZbEr3buYMcaEETeTjL+PrflzbyHpnU9VVUQyvM7nnzuTWropWZO5e8Ld\nqCpruqzJsQGWO3bsyJHrBEMk1w2sfuEu0usXcKrqyguoByzw2n4O6JOmzFCgndf2Jpw7kwyP9ZQp\n6fm5FLApg+urvexlL3vZK+uvQOYCN+9kvgWqikhFYDfQFmifpswsoCcwUUTqAQdVda+I7M/k2FnA\ng8AAz78z0rt4IJ/zNsYYc25cSzKqmigiPYGFQBQwQlU3ikh3z/ufquo8EWkmIluBY0DnzI71nPot\nYLKIPAzsANq4VQdjjDHZE7Ej/o0xxgRfWEyQGUqDOt3gUv0GishGT/kvRaRQTtQlPW7Uz+v9p0Uk\nWUSKulmHjLhVNxF53PP5/SQiA9yuR0Zc+t2sIyLxIrJeRNaKSADXms2abNZvpIjsFZEf05SPlO+W\njOqXte8Wtzr+A/gAQRSwFagI5AU2ANXSlGkGzPP8XBdY7etY4G3gWc/PfYC3Iqx+TYE8np/firT6\ned4vBywAtgNFI6VuwC3AYiCvZ/vSSPrscMa23eH5+U5gWbjVz7PdAKgB/JjmmLD/bvFRvyx9t4TD\nnUzqoE5VTQBSBmZ6O2NQJ5AyqDOzY1OP8fx7j7vVyJAr9VPVxaqa7Dl+DVDW/aqky63PD2Aw8Kzb\nFciEW3XrAbzp2Y+q/uN+VdLlVv32ACl//RYG/nS3GhnKTv1Q1RXAgXTOGwnfLRnWL6vfLeGQZDIa\nsOlPmfQGdaYc6/egTpe5VT9vDwHzsh3puXGlfiLSAtilqj8EOuAscOuzqwo0FJHVIhInIrUCGvX/\nt3f+MVJVVxz/fMsPQawKgq3WIkoKEbVFVsgitooo0YQa26KmxCjGGKJ/SCAl1Zr6I8ZY0hCbUmwt\ntpIYNSJum2qiVmhEkRJhgRWXiIS2kmLQSmKLv6Alp3/cM3EY3uzMLO+5O7vnk0zm7p177zvnvs09\nufe8d079FKXf7cASSbuBn5NeUegJjka/rugLa0u91FxbmsHI1PtkwlG91NnAdfImT/2O7CTdCRw0\nsye60z8HctdP0lDgJ8Dd3emfI0Xdu4HAcDNrBRYBKxvsnxdF6fc74DYzGw0sAH7fYP+86K5+da8V\nTbq21NWv3rWlGUL97yGdvZf4OsnadtXmNG8zKKO+tDV/T9JXzWyvpFOA93OVun7y1O+wvpLmks5c\nZ+QnbsMUod9Y0jlzh1IwutOAdklTzOyLvI9F3bt/Am0AZrbRH2w4ycz25Sh7PRSl3xQzu9TLq4BH\n8hK4QbqrX63jvWZfW2oeXza0tvSEQ6pB59VAYBdpURlMbedVK587H6v2JTnnSlEEbqfnnHNF6Xc5\n0AmM7Iv3r6J/Tzn+i7p384B7vTwO2N2X7h2wGbjIyzOAjc2mX9nvY8h2/Df12lJDv4bWli9c8W5O\n1hXADtKTEnd43TxgXlmbX/nvHcCkrvp6/QhgNfA28GfgxD6m307gHWCLfx7qS/pVjP83esDIFHjv\nBgGPAduAduDivnTvgPNJDuOtwF+B85pUvydJEUkOkPwaN3p9X1lbqunX0NoSL2MGQRAEhdEMjv8g\nCIKgSQkjEwRBEBRGGJkgCIKgMMLIBEEQBIURRiYIgiAojDAyQRAEQWGEkQl6LZLGVIYZz2nc71YL\ne16j3wmSbin7+1RJT+coV6uk31bUXSzp2byu0YAsN/jb6kFwVISRCfodZvasmXUnR8tw4Naycd41\ns6vzk4wrgOdzHO9omEsKclk3kgYUI0rQzISRCZoCSWdK2iypRdKxklZK6vSkSRsktWT0+YekeyS1\nS3pD0nivnytpqZe/IukPkrb6p9XrF0ra5p/5PuTPgLGebGuxpNNLOy0fs03S856sanGZHDMlrXc5\nVkoaVkXNS0hvilebg8k+B2dIGuWJsd6UtNx1HVHR/mpJS7w8X9Kusrlc5+W7lBKIbZP0sNfNJr2V\n/7hfb4jP+8uSNkl6oRQO3uselLQRuK3Lmxj0S8LIBL0eNw6rgBvMrJ20m9hnZmcDPwVayI4ca8C/\nzKwF+DXwo4w2vyQlzZpIStC03Q3WXFI+jlbgZkkTSQmodpnZeWb2Y46MXvst4BrgXOBaSV+TNBK4\nE5jhcrQDCzN0HAn818z2V5mDC1yHK83s76QI1KvN7Byfm9EZ3V4hJZ7Cvz+QdKqX13r9UjObYmbn\nAkMlzTKzVcAmYI6ZTQIOAUuBH5jZ+cCjwP3e30jJ1Sab2YNZsgf9m2aIwhz0b04G/gh8z8ze8rpp\nwC8AzKxTUlc5Zdr8ezPw/YzfpwPX+VgG/EfShUCbmX0KIKmNtDD/qYasa0pGQtJ2UnDB4cAEYL1H\njB4MrM/oOxN4scq4ZwEPA5eZ2V6vm4YnwzKzFyVlJZd6T9Jxko4jRdd9AvgOcCHwjDe7RNIi4FhS\nzK03gef8t5IRHQ+cDax2HQaQYlqVeKqK3EEQRibo9XxICsb3beCtsvp6c5gc8O9DVP9/z8qnoYrf\n6wnyd6CsXH69l8xsTo2+lwNLMuqNlEnyGGAShyeIqmcO1gM3koIkrgNuAqYCCyUNAZYBLWa2R9Ld\nwJCKa5eu02lmF1S5xsd1yBH0U+K4LOjtHCTtQK6X9EOve410LIWkCaTjqe6yhpTuGEkDJB0PvApc\nJWmo+0+u8rqPgC83MLYBG4Bpksb6NYZJ+kZ5I6XtwTfNrCNjDJEM7SzgAUkXeX35HMwk7ZiyeJWU\n+GwtKWLudOAz33GVDMo+3+2UP8SwHzjeyzuAUWX+qkE+70FQkzAyQW/HzOwT0iK7QNIs4CHSotcJ\n3EfKbfHvrL4VZcsozwem+5HbJlK+jS3ACuB1kpFYbmYdlpKGveZO8sVdjFku/Ack/86TkjpIO4vx\nFc1aSAYgU3+fg/d9DpZJmgzcC8z0Bw9mA3tJhqGSdaR0uq9Yysu+2+swsw+B5aQjshdI4fdLrAB+\nI2kzaZ2YDSyWtNVlnVpF3iA4jAj1HzQdkr5EcjYf8B3CS8A4M/tfD4vWLZTS2O40s7rTLEsaDBwy\ns0OSpgLL3EkfBL2K8MkEzcgw4C+SBpGOk25pVgMDYGb31251BKOBlW5wDwI35ytVEORD7GSCIAiC\nwgifTBAEQVAYYWSCIAiCwggjEwRBEBRGGJkgCIKgMMLIBEEQBIURRiYIgiAojP8D2/x1wBuTrN4A\nAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x78b2e48>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mininmum kerosene rate: 968.71 kg kerosene/h \n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFX3wPHvISAKUkV6VSzYqFJfJYoIImJBBcSE0EGx\nF/D1RUD5gSAoitJBikpT6VWBCCq9WkBpEREE6R1Szu+PWTCElA3ZyZacz/Psk53dmbnnsmFP5t65\n94qqYowxxrghm78DMMYYE7osyRhjjHGNJRljjDGusSRjjDHGNZZkjDHGuMaSjDHGGNdYkjFZjoiU\nFZEEEbms338RaSkiC3wdV2YTkQYiMi3RdoKIXJfCvg+JyKTMi86ECksyJmiJyH9E5EcROSIiB0Xk\nexGp5uMyLklIqvq5qjbwZTmesnKIyJcistNTZt1k9uknIgc8j3e9PO9bnvPdm+St/wP6enMOVZ0F\n3Coit3uzvzHnWZIxQUlE8gKzgQ+BAkAJoBdw1q0iXTpvUkuBp4G/gYtGSotIR+Bh4A7P4yHPaykS\nkeuBx4E9SV6/E8irqqvSEdtEoEM69jfGkowJWjcCqqqT1XFGVb9R1Z8AxPE/EYkRkX0iMs6TmC7h\n2adeou2eIjLBs7nU8/OIiBwTkZoiEiUiyxLtX1tEVnuuqFaJSK1E70WLyNueq6xjIrJARK5JLg5V\njVXVj1T1ByA+mV1aAQNUdY+q7gEGAFFp/Dt9DHQFYpO8/gAQncz+D4rIdhH5R0T6i0ji5BoNPJhG\necZcxJKMCVa/AfEiMlZEGopIgSTvt8b5Ug4HrgOuxvnCTY5y8VVD4ud3eX7mU9W8qroi8YEiUhCY\nAwwCCgLvA3OSxNMCJxkUBq4AXvWmgsm4BdiYaHsTcGtKO4vIE8AZVZ2XzNu34fwbJvUIUBWognPV\n1CbRe1uAsiJydTrjNlmYJRkTlFT1OPAfnIQwEtgvIjNEpLBnl5bAQFWNUdWTwBtAcy87+yWF58l5\nEPjN00+ToKqTcL6Mm5wPFfhUVbep6hlgClDJmzom42rgaKLtY57XLiEieXD6XF5I4Vz5gePJvN5P\nVY+o6p84ibNFovfO758/PUGbrM2SjAlaqrpFVVuraimcv8yL43wxAhQD/ki0+y4gO1DEx2EU95w7\nsT88r5/3d6Lnp0khMXjhBJC4yS+f57Xk9AQmqGri2BInzMNJznXen4me7+LieuTx/DziTbDGgCUZ\nEyJU9TdgHE6yAaeju2yiXUoDccC+ZA4/CeROtF008anTKPovoEyS18p4Xve1X7j4Kqgi8HMK+94L\nPC8ie0VkL1AKmCIir3ne34TTr5VU6STPE9ejAhCjqiklNmMuYUnGBCURuUlEXhaREp7tUjhNO8s9\nu0wEXvLcgnw10AeYpKoJyZxuA05TWnbPLdBN+Te5/AMkANenEMo84EYRaeE5vhlwM86dbxfCTUe9\ncorIlZ7NxM8BxgMvi0hxT71fBsamcKp6OP01FXES0x6cO8OGeN6fC1xyizTwqojk9/x7Pg9MTvRe\nXc9xxnjNkowJVseBGsBKETmBk1w2Aa943h8DTMC5O2wHcAp4LtHxia9QuuMkkcM4zUyfX9hJ9RRO\n38YPInJIRGqQ6EYBVT0INPaUewCnU7+xqh5KoaykNxkk9Zsn1uLAAuCkiJT2lDUcmAX85KnrLFUd\ncf5AEflZRFp49j2kqvs9j304d6sd9vRPoarrgaMiUj1J+TOAtcB6nEQ5JtF7zYHhqcRuzCXEzUXL\nRKQhTht5GDBKVfsls89HOLdTngKiPL/8iMgYnE7V/ap6e6L9C+L8dVUGiAGeVFVrIzYmnUSkPvCM\nqj7qxb4PAS1Vtbn7kZlQ4lqSEZEwnL/K7sNp110NtFDVzYn2aQR0UdVGnr8QP1TVmp737sLp1Byf\nJMn0Bw6oan8R6QoUUNVurlTCGGNMhrjZXFYd2Oa5hTQWmIRz331iTXA6a1HVlUB+ESnq2V6G03yR\n1IVjPD8fcSF2Y4wxPuBmkinBxbdD7va8lt59kiriaWMG504hX9+SaowxxkfcTDLetsMlvfPG6/Y7\nddr63OtUMsYYkyHZXTz3Xzj35p9XCudKJbV9SpL2+IJ9IlJUVf8WkWLA/uR2EhFLPsYYcxlU1WcT\nwrp5JbMGuMEzTuEKoBkwM8k+M4FIABGpCRxJ1BSWkpk4c1Lh+Tk9pR1VNWQfPXr08HsMVjern9XP\nN48//1TuvlupV0/Zs8e/9fM115KMqsYBXXDu9f8VmKyqm0Wk4/npyVV1LrBDRLbh3H//zPnjRWQi\n8CPOQLc/RaS15613gfoi8jvOqGav1tQINTExMf4OwTWhXDew+gU7X9dv1iyoVg0aNoQFC6BYMZ+e\n3u/cbC5Dndlf5yV5bXiS7S4pHNsihdcP4dwWbYwxQevsWejaFaZPh6+/htq1/R2RO1xNMsY9UVFR\n/g7BNaFcN7D6BTtf1G/rVmjeHMqUgfXroUDShSpCiKsj/v1JRDRU62aMCV6ffQYvvQS9ekHnziCZ\nteaql0QE9WHHf5a7kpFA+0RNQHPjD5Xo6GjCw8N9ft5AYfVL3okT0KULrFgB334LFSv6PrZAlOWS\nDLjzxWFCj/1BYnxlwwaneax2bVi7FnLnTvuYUJHlmss8l4J+iMgEG/tdMRmlCkOGQM+eMGgQtGzp\n74jSZs1lxhgTBA4dgrZtYdcu+PFHuOEGf0fkH7aejDGZLDo62t8huMrqBz/8AJUrQ7lyWTvBgCWZ\nLGHZsmXcfPPNF7bLli3L4sWLAejTpw/t27cHnEFm2bJlIyEhucUjk9e3b98Lx/tL0voZ4y/x8fB/\n/wdNm8Inn8D770POnP6Oyr+sTyYLKleuHKNHj+bee++96PWYmBiuu+464uLiyJYt8P7+KFu2LKNH\nj6ZevXqZUp79rpj02LsXnn7aSTSffw4l0ppPPkD5uk8m8L5JTNCIj4/P1PJExO74MgFp/nyoUgXu\nvhsWLQreBOMGSzIBZM+ePTRt2pTChQtz3XXXMXjw4AvvnT59mqioKAoWLMitt97Ke++9R6lS/05g\nnS1bNnbs2HFhOyoqiu7duwNOG3LifRPr2bMnERERF702evRoSpQoQfHixRk4cOBF+z7++ONERESQ\nL18+xo4de9HxyZWTuGmuZ8+ePPHEE0RERJA3b17uuOMOtm7dSt++fSlSpAhlypThm2++Sfe/W9Jy\ny5Yty8CBA6lYsSL58+enefPmnD179sL7s2fPplKlShQoUIA6derw008/pbvMjLA+i+CWuH7nzsHr\nr0P79jBpEvToAWFh/ostEFmSCRAJCQk89NBDVK5cmT179rBo0SIGDRrEwoULAejVqxc7d+5kx44d\nLFiwgHHjxqX6V723f/Unt090dDTbtm1j4cKF9OvXj0WLFl14b+bMmTzxxBMcPXqUli1bpllG0vdn\nz55NZGQkhw8fpnLlytSvXx9wEmz37t3p2LFjmjF7U6epU6eyYMECdu7cyaZNmxg7diwA69evp23b\ntowcOZJDhw7RsWNHmjRpwrlz5zJcrsladuyAu+6CzZudqWHq1vV3RIHJkkwSIr55pNfq1as5cOAA\n//vf/8iePTvlypWjXbt2TJo0CYCpU6fy5ptvkj9/fkqWLMkLL7yQZn+BN/0Jye3To0cPrrrqKm67\n7TZat27NxIkTL7xXu3ZtmjRpAsCVV16Z7j6Lu+++m/r16xMWFsbjjz/OwYMH6datG2FhYTRr1oyY\nmBiOHTuWrnMm5/nnn6do0aIUKFCAhx56iA0bNgAwYsQIOnbsyJ133omIEBkZSc6cOVmxYkWGy/RW\nKI+Gh6xRvylToGZNeOopmDkTChXyd1SBy8bJJOGvft4//viDPXv2UCDRTHnx8fHcfffdgPOXfuIm\nodKlS7sWS9JyEjcnlSxZMkPnLly48IXnV111FYUKFbpwtXPVVVcBcOLECfLmzZuhcooWLXpROXv2\n7AGcf+fx48df1BQZGxvL3r17M1SeyRpOnYIXX4QlS2DePKha1d8RBT67kgkQpUuXply5chw+fPjC\n49ixY8yePRuAYsWKsWvXrgv7J34OkCtXLk6dOnVhe+/evZfdSZ60nBKJejGTnjPxdu7cuS+KIT4+\nnn/++eeyYvC183GWLl2aN99886J/5xMnTtCsWbNMiyUr9VmEkl9+gerVYefOaNatswTjLUsyAaJ6\n9erkyZOH/v37c/r0aeLj4/n5559Zs2YNAE8++SR9+/blyJEj7N69m8GDB1/0BV+pUiU+//xz4uPj\nmT9/PkuXLr3sWHr37s3p06f55ZdfGDt2bKpfwImby2688UbOnDnD3LlziY2NpXfv3hd1uPvCuXPn\nOHPmzIWHt3e4nY+zffv2DBs2jFWrVqGqnDx5kjlz5nDixAmfxmlChyqMHAnh4fDqq/Df/0KePP6O\nKnhYkgkQ2bJlY/bs2WzYsIHrrruOa6+9lg4dOlzon+jRowdlypShXLlyNGzYkMjIyIu+4D/88ENm\nzZpFgQIF+OKLL3j00UcvOn9KVzVJbxAQEerWrUv58uW57777eO2117jvvvuS3Tfpa/ny5WPIkCG0\na9eOkiVLcvXVV1/U9JbS8d7EeV6jRo3IlSvXhUevXr3SvMkh8ftVq1Zl5MiRdOnShYIFC3LDDTcw\nfvz4VMv0tazQZxEqjh51Jrb8+GNYtgyiouCee8L9HVZQscGYQSo6OpqIiAj+/PNPf4cSskLld8Vc\nnlWroEULeOABGDAArrzS3xFlDhuMaUyQC9U+i/OCvX4JCfDee/DQQ87Pjz++OMEEe/0ym91dFsRs\n9LsxvrV/P7RqBceOOVcyZcr4O6LgZ81lxqTAfleylkWLIDLS6Xfp1QuyZ9E/wW09GWOM8aG4OGdR\nsU8/hXHjwHOfi/ER65MxJpOFept+MNVv1y7n1uTVq2HdOu8STDDVLxBYkjHGZEnTp8Odd0KTJs7o\n/SJF/B1RaLI+GWNSYL8roenMGXjtNZg9GyZOdOYgM/+yW5iNMeYy/fYb1KoFf//tzJxsCcZ9lmRM\nuvhjqeNdu3aRJ0+ekLmqCPU2/UCt3/jx8J//QKdOMGUK5M9/eecJ1PoFKksyAWbs2LHcfvvt5M6d\nm2LFivHMM89w9OhRv8WTdDG0u+66iy1btrhSVnh4OKNHj77k9dKlS3P8+HEbF2Quy/Hjzq3J774L\nixdDx46XtxyHuTyWZALIwIED6datGwMHDuTYsWOsWLGCP/74g/r16xMbG+vz8tI7uaTbssryyqE0\nt1dyAql+69c7syVfcYVzB9ntt2f8nIFUv2BgSSZAHDt2jJ49e/Lxxx9z//33ExYWRpkyZZgyZQox\nMTF89tlnwL9LIDdv3py8efNStWpVNm3adOE8qS3hnHT55HHjxrF69Wpq1apFgQIFKF68OM8999yF\nhHZ+LZuKFSuSJ08epk6dmu6ljvv370/x4sUpWbIko0aNuuTKyBsxMTFky5aNhIQEwPlP/tZbb/Gf\n//yHvHnz0qBBAw4ePHhh/xUrVlC7dm0KFChApUqV+O6779JVngl+qvDRR9CgAbz9NowaBblz+zuq\nLEpVQ/LhVO1SKb3ub/PmzdPs2bNrfHz8Je+1atVKW7RooaqqPXr00Bw5cuhXX32lcXFxOmDAAC1X\nrpzGxcVpfHy8VqlSRd955x2NjY3VHTt26HXXXacLFiy46NgZM2aoqurp06d17dq1unLlSo2Pj9eY\nmBitUKGCDho06ELZIqLbt2+/sL1kyRItWbLkhe2yZctqjRo1dO/evXro0CGtUKGCDhs27EKdihYt\nqr/++queOnVKW7ZsqdmyZbvofImFh4fr6NGjL3l9586dKiIX/m3q1q2r5cuX161bt+rp06c1PDxc\nu3Xrpqqqu3fv1muuuUbnzZunqqrffPONXnPNNfrPP/94+Un8y63flSVLlrhy3kDh7/odOKDapIlq\ntWqq27b5/vz+rp/bPL/3PvsuthH/SUgv3zTXaI/0NTEdOHCAQoUKkS3bpReXRYsWZd26dRe2q1Wr\nxmOPPQbAyy+/zMCBA1m+fDk5cuS4sIQzcNESzvfffz9w6fLJVapUuXDeMmXK0KFDB7777jteeOEF\nr2M/v9QxcNFSx1OmTKFNmzZUqFABgF69evHFF194fd6UiAitW7emfPnygLPWzsyZMwH47LPPaNSo\nEQ0bNgTgvvvuo1q1asydO5fIyMgMl20C27Jl0LIlPPkkTJ3qNJMZ/7Ikk0R6k4OvFCpUiAMHDpCQ\nkHBJotm7dy/XXnvthe3ESyCLCCVLlmTPnj2ISKpLOCc9FuD333/n5ZdfZu3atZw6dYq4uDiqVauW\nrtiTLnV8finjvXv3Ur169RTLzoikZZ5fdOyPP/5g6tSpzJo168L7cXFx3HvvvT4rO6NCvU3fH/WL\nj4c+fWDIEBg9Gho1cq+sUP/8fM2STICoVasWOXPm5KuvvuKJJ5648PqJEyeYP38+ffv2vfBa4jVk\nEhIS2L17NyVKlCAsLIxy5crx+++/J1tGch3rnTt3pmrVqkyePJncuXMzaNAgvvrqK5/UqVixYhfF\nmhlr35QuXZqIiAhGjBjhelkmMOzZA08/7fTDrFkDiVYLNwHAOv4DRL58+ejRowfPPfccCxYsIDY2\nlpiYGJ588klKlSpFRETEhX3Xrl3LtGnTiIuLY9CgQVx55ZXUrFmTO++8M9UlnDWZu8ROnDhBnjx5\nyJUrF1u2bGHo0KEXvV+kSBG2b9+errqcL+fJJ5/k008/ZcuWLZw6dYp33nknzWNjY2MvWl45Li4u\n1TKSevrpp5k1axYLFy4kPj6eM2fOEB0dzV9//ZWuOrgp1MdZZGb95s1z7h675x749tvMSTCh/vn5\nmiWZAPLaa6/Rp08fXn31VfLly0fNmjUpU6YMixYtIkeOHIBzNfLwww8zefJkChYsyOeff87XX39N\nWFgYYWFhqS7hnNyVzIABA/jiiy/ImzcvHTp0oHnz5hft07NnT1q1akWBAgX48ssv07XUccOGDXn+\n+ee55557uPHGG6lVqxYAOXPmTPH4zp07X7S8cps2bdJctjnx+yVLlmTGjBn06dOHwoULU7p0aQYO\nHHjhzjQTGs6dg1dfdca8TJkC3btDWJi/ozLJcXXuMhFpCAwCwoBRqtovmX0+Ah4ATgFRqro+tWNF\npDrwMZADiAOeUdXVyZxXk6tbsM9H1atXL7Zt28aECRP8HUq6bd68mdtvv51z584le4NDoAn235VQ\ntWMHNG8OxYrBmDFwzTX+jii0BM3cZSIShpMMGgK3AC1EpEKSfRoB5VX1BqADMNSLY/sD3VW1MvCW\nZzvLCLYvvWnTpnH27FkOHz5M165dadKkSVAkGBOYJk925ht7+mlnFmVLMIHPzf/t1YFtqhqjqrHA\nJODhJPs0AcYBqOpKIL+IFE3j2L1APs/z/EDgNLZngmAbFT9ixAiKFClC+fLlyZEjxyV9PllRqLfp\nu1G/U6egfXunWWz+fHj+ef9NDRPqn5+vuXl3WQkg8e1Eu4EaXuxTAiieyrHdgO9FZABOkqzlw5gD\nXo8ePfwdQrrMmzfP3yGYIPfzz9CsGVSuDGvXQp48/o7IpIebScbbdp30/j0yGnheVaeJyBPAGKB+\ncjtGRUVRtmxZAPLnz0+lSpXSWZQxjvN/vZ4fI5GR7fDwcJ+eL9C2fVU/Vdi6NZw334S2baNp0ADy\n5Amd+gXKdnR0NGPHjgW48H3pS651/ItITaCnqjb0bL8BJCTu/BeRYUC0qk7ybG8B6gLlUjpWRI6p\nal7P6wIcUdV8JBGqHf8m89jviv8cOQIdOsDvvzv9MDfd5O+Iso6g6fgH1gA3iEhZEbkCaAbMTLLP\nTCASLiSlI6q6L41jt4lIXc/ze4HkRx4aE6BCvU0/o/VbudJpGitcGFasCLwEE+qfn6+51lymqnEi\n0gVYgHMb8mhV3SwiHT3vD1fVuSLSSES2ASeB1qkd6zl1B+ATEckJnPZsp0swdZwbk1UkJMCAATBw\nIAwbBo8+6u+IUnbo9CEG/jiQnuE9yRGWw9/hBDRXx8n4U0rNZcaYwLN/v7Ow2PHj8MUXUKaMvyNK\n2fxt82k3sx2P3/I47973Lldmv9LfIflUMDWXGWNMmhYtcprHqlWD774L3ARz8txJOs/uTIdZHRj3\nyDgGNRwUcgnGDZZkglQotwuHct3A6ndeXBy8+aZzBTN+PPTuDdkDdMre5X8up9LwSpyKO8WQW4dQ\n77p6/g4paAToR2qMCWW7dkGLFs6Yl3XroEgRf0eUvHPx5+gV3YvR60cz5MEhPFbhsZD/I8HXrE/G\nGJOppk2DTp2cCS5feQUCdZahn/b9RMS0CErlK8XIh0ZS9OqiaR8UAnzdJ5PmlYyIZANaAuVU9W0R\nKQ0UVdVVvgrCGBP6zpxxEsucOTBjhjMHWSCKT4jn/eXv0++HfvS7rx9tKrexO1IzwJu/IYbgTN3y\nlGf7hOc140ehfMkeynWDrFm/LVucpLJ/P6xfH7gJZufhndwz7h5m/T6L1e1X07ZK20sSTKh/fr7m\nTZKpoarP4IxJQVUP4Uyzb4wxqVKFsWPhrrvgmWec0fv58/s7qkupKqPWjaL6qOo8fNPDLGm1hHIF\nyvk7rJCQZp+MiKwEagNrVLWyiFwLLPRMtR+wrE/GGP86ftxJLOvWOcnlttv8HVHy/j7xN+1ntWf3\nsd1MeHQCtxUO0EAziT/GyQwGpgGFRaQP8APQN/VDjDFZ2bp1zrLIV14Jq1cHboL56tevqDSsEhWL\nVGRlu5VZPsG4Ic0ko6qfAV1xEsse4GFVneJ2YCZ1odwuHMp1g9Cunyo891w0DRvC22/DyJGQK5e/\no7rUkTNHiJwWSbdF3ZjWbBq97+3NFWFXeHVsKH9+bvB2nMzvwDHP/ioipVV1l3thGWOCzcGD0Lq1\nM3Py8uVw/fX+jih53+74ljYz2vDQjQ+xoeMGcl+R298hhTRv+mSeA3oA+4H486+r6u3uhpYx1idj\nTOZZutRZErlZM/i//4MrvLsoyFSnYk/R7dtufL35a0Y3GU2D8g38HVJAyvRxMsCLwE2qetBXhRpj\nQkN8vJNUhgyBMWOgUSN/R5S81X+tJmJaBFWKVWFT500UvKqgv0PKMrzp+N+F01RmAkgotwuHct0g\ndOq3Zw/cdx9ERzsd/ecTTCDVLzY+lh5LetB4YmN6hffii6ZfZDjBBFL9goE3VzI7gSUiMgc453lN\nVfV998IyxgSyuXOhTRt49ln4738hLMzfEV1q8z+biZgWwbW5r2V9x/UUz1Pc3yFlSd70yfT0PL1o\nR1Xt5VJMPmF9Msb43rlz8MYbMHUqfP65M8gy0CRoAh+t/IjeS3vT+97edKza0aaFSYdM75NR1Z6e\ngnOr6klfFWyMCS7bt0Pz5lC8uDM1zDXX+DuiS+06uouo6VGciTvDinYrKF+wvL9DyvLS7JMRkdoi\n8iuwxbNdUURs7jI/C+V24VCuGwRn/SZNcuYbi4yE6dNTTzD+qJ+qMm7DOKqOqMr919/PstbLXEsw\nwfj5+ZM3fTKDgIbADABV3SgidV2NyhgTEE6ehBdecG5RXrAAqlTxd0SX+ufkP3Sc3ZGth7byTcQ3\nVCpayd8hmUS86ZNZparVRWT9+fnKRGSjqlbMlAgvk/XJGJMxP/3kjHupWtW5RTlPHn9HdKmZv82k\n4+yORN4Rydv3vE3O7Dn9HVLQ88c4mV0iUsdT+BXA88BmXwVgjAksqjBiBPzvfzBwoNNEFmiOnT3G\nS/NfIvqPaKY8PoW7ygTgHQgG8G6cTGfgWaAE8BdQ2bNt/CiU24VDuW4Q2PU7etS5ehkyBL7//vIS\njNv1+y7mOyoOq0hYtjA2dNyQ6QkmkD+/QOTN3WX/8O+CZcaYELV6tZNgHngAxo93ZlAOJGfizvDm\nojeZ+PNERjw0gsY3NvZ3SMYL3vTJvAe8g7No2XygIvCSqk5wP7zLZ30yxngnIQE++AD69YOhQ6Fp\nU39HdKl1e9cRMS2CCoUqMKzxMArlKuTvkEKWP/pk7lfV10TkUSAGeAxYBgR0kjHGpO3AAYiKcn6u\nXAnlAmwxyLiEON79/l0+WvkRHzT4gKduf8oGVgYZb/pkzieixsCXqnqUJKP/TeYL5XbhUK4bBE79\nli6FypXhlltg2TLfJRhf1e/3g7/znzH/ITommrUd1tLyjpYBkWAC5fMLFt4kmVkisgWoCiwSkcLA\nGXfDMsa4JT7eWVCsWTPnLrL+/SFHDn9H9S9V5ZNVn1B7dG2evuNpFkYspFS+Uv4Oy1ymNPtkAESk\nIHBUVeNFJDeQV1X3uh5dBlifjDGX2rPHWfdF1Zl7rHiAzRm5+9hu2sxow9GzRxn/yHhuKnSTv0PK\ncnzdJ+PNtDJXABHAFBH5CmgDHPBVAMaYzDF/vjOwMjwcvv02sBKMqvLFT19QZXgV7ip9Fz+0+cES\nTIjwprlsKFAF+AQYgtNsNtTNoEzaQrldOJTrBplfv9hY6NoV2rd35iB76y13p+ZPb/0OnjpIsy+b\n0Xtpb+a2nEv3ut3Jns3bleEzX6j/fvqaN5/knap6R6LtRSKyya2AjDG+ExMDLVpAwYLOwmLXXuvv\niC42d+tc2s9qT7NbmzHukXFcleMqf4dkfMybcTLrgCdVdZtn+3pgqqoG4FR5/7I+GZPVff01dOrk\nXMW89BJk86bdIpOcOHeCVxa8woLtC/j04U+5p9w9/g7JePhjnMxrwGIR2enZLgu09lUAxhjfOnMG\nXn3VWb1y1iyoUcPfEV3sh10/EDk9krvL3M3GThvJd2U+f4dkXJTq3zYiEoYzwv9GnIkxnwduUtXF\nmRCbSUUotwuHct3A3fr9/ruz7su+fU7zmD8STEr1Oxt3lje+fYPHpz7OwPsH8unDnwZlggn1309f\nSzXJqGo80EJVz6jqRs/DxsgYE4AmTIA6dZwmsilTIH9+f0f0r037NlF9VHU2H9jMxk4beeTmR/wd\nkskk3vTJfADkACYDJwEBVFXXpXlykYY4i56FAaNUtV8y+3wEPACcAqJUdX1ax4rIc8AzQDwwR1W7\nJnNe65Nh8xuTAAAgAElEQVQxWcKJE9ClizMtzOTJcMcdaR+TWeIT4hnw4wAGLB/Ae/Xfo1XFVgEx\nat+kzB99MpVxppF5O8nrqfbUeZraPgbuw1kiYLWIzFTVzYn2aQSUV9UbRKQGzq3RNVM7VkTuAZoA\nd6hqrIgE2P0yxmSeTZuckfs1a8KaNZA7t78j+tf2Q9tpNb0V2bNlZ3X71ZTNX9bfIRk/SPN+E1UN\nV9V7kj68OHd1YJuqxqhqLDAJeDjJPk2AcZ5yVgL5RaRoGsd2Bvp6Xj+/FEGWE8rtwqFcN/BN/VRh\n2DCoVw/++1/49NPASTBLlixhxNoR1BhVg6YVmrK41eKQSjCh/vvpa2leyXi+9P8PKKGqDUXkFqCW\nqo5O49ASwJ+JtncDSbshk9unBFA8lWNvAO4WkT44c6i9qqpr0qqHMaHiyBFnYOXWrc7CYjcF0MD4\nvcf38saiN4gtHcvS1ku55dpb/B2S8TNv7pwfCyzE+eIH2Aq85MVx3naIpLftLztQQFVr4txePSWd\nx4eE8PBwf4fgmlCuG2SsfqtWQZUqUKQIrFgRWAlm6i9TqTS8EvfXu5/lbZeHbIIJ9d9PX/OmT6aQ\nqk4WkW4Ann6QOC+O+wtIPHVqKZwrktT2KenZJ0cqx+4GvvbEslpEEkTkGlU9mDSAqKgoypYtC0D+\n/PmpVKnShV+Q85e8tm3bwbC9eHE0U6fCV1+FM2wYFCwYzYoVgRHf4dOHefK9J9l8YDMzX59JjZI1\n/P7vZdveb0dHRzN27FiAC9+XPqWqqT6AaOAaYL1nuybwnRfHZQe24wzevALYAFRIsk8jYG6i865I\n61igI9DL8/xGYFcK5WsoW7Jkib9DcE0o1001/fXbv1+1USPVmjVVd+50JaTLtnDbQi35fkntMqeL\nnjx3UlXt8wt2nu/ONHODtw9vrmReAWYB14nIj8C1wONeJK84EekCLMC5DXm0OneHdfS8P1xV54pI\nIxHZhnN7dOvUjvWcegwwRkR+As4BkV7UwZig9N13ztT8Tz0FvXsHzrovJ8+dpOu3XZnx2wzGNBlD\n/evr+zskE6C8GSdTDqeJ6iac/pPfgIqqutr98C6fjZMxwSw+3kkqw4Y5d441bOjviP61cvdKIqZF\nUL1EdQY/MJgCVxXwd0jGh/wxTuYroImq/uwJoC7OtP+3+SoIY8y/9uyBli1BBNauDZx1X87Fn+Od\n795hxLoRfPzAxzxx6xP+DskEAW/uLusITBeRop7Bk+dH6Bs/Ot9xF4pCuW6Qev3OLyx2773wzTeB\nk2B+2f8LtUbXYt3f69jQcUOqCSYrf37mUmleyahzB9fzwDfAaaC+qu53PTJjspDYWHjzTZg40Zka\n5u67/R2RI0ETGLRiEH2W9aFvvb60q9LOpoUx6ZJin4yIzEryUgVgL3AE5+6DJi7HliHWJ2OCRUwM\nNG8OhQrB2LHOz0AQcySGqOlRxCXEMe6RcVxf8Hp/h2QyQWb2yQxM5jXFM0GmrwIwJiv76ivo3Bm6\ndYMXXwyMhcVUlbEbxvL6t6/zWu3XeKXWK4Rlc3G9ZhPSUkwyqhqdiXGYdIqOjr4wsCrUhHLdwKlf\nzZrhvPyy0wczezZUr+7vqBz7T+6nw6wO7Dyyk0WRi7ijSPqndM4Kn18o18/XAuDvJmOyll27nFmT\nDxyA9esDJ8FM3zKdisMqUqFQBVa1W3VZCcaYpNIcJxOsrE/GBKLx4+GVV5wxMB06OLcp+9vRM0d5\nYf4LfL/re8Y9Mo46pev4OyTjR/4YJ2OMyaATJ+DZZ50JLhcvhttv93dEjiU7l9B6Rmsalm/Ihk4b\nuPqKq/0dkgkxaTaXichPIrLJ8/P843sR+UBErsmMIM2lQvle/VCr28aNUK0ahIU5C4sdPBjt75A4\nHXual+a/xNPTnmbog0MZ1niYzxJMqH1+SYV6/XzNmyuZ+UAc8AXOnWXNgVzAPpxlAB5yKzhjgtn5\nhcXeegs++MCZgywQrN2zlohpEdxW+DY2ddrENbnsb0XjHm/mLluvqpWTe01EflLVALnwv5j1yRh/\nOnIE2rWD7dudwZU33ujviCA2Ppa+3/fl41Uf82HDD2l+W3MbWGku4es+GW/uLgsTkQsrWopI9UTH\nebOujDFZysqVULkyFCsGy5cHRoL57cBv1BlThx/+/IH1HdfT4vYWlmBMpvAmybQFRotIjIjEAKOB\n9iKSG+jrZnAmZaHcLhysdUtIgAEDoEkTeP99GDwYrrzy0v0ys34JmsDglYOpM6YOUZWimN9yPiXy\nlnC1zGD9/LwV6vXzNW/6ZH5S1dtEJD+Aqh4RkYKqepIsuvSxMUn98w+0agWHDzt3kJUp4++I4M+j\nf9JmZhuOnz3Oj21/5MZrAuCSymQ53vTJzAUeVtVYz3YxYI6qVsmE+C6b9cmYzBId7XTqP/00vPOO\n/xcWU1U+/+lzXl7wMi/UeIGu/+lK9mw2WsF4xx/jZKYBU0TkcaAUMBN41VcBGBOs4uOdpDJ8uDOx\nZYMG/o4IDpw6QKfZndh8YDMLnl5A5WKV0z7IGBel2SejqiOBRcAMnGWYO6vqQrcDM6kL5XbhYKjb\nX39BvXqwbBmsW5e+BONW/Wb/Pps7ht5B2fxlWdthrd8STDB8fhkR6vXztRSvZETkFc/T8zMvlwI2\nAjVFpIaqvp8J8RkTcObNgzZt4Jln4L//dQZZ+tPxs8d5ecHLfLvzWyY2nUjdsnX9G5AxiaS2nkyP\npC+RaIp/Ve3lYlwZZn0yxtfOnXMWFps0CT7/PDAWFlv2xzJaTW/FveXu5f0G75M3Z15/h2SCXGb2\nycQC81R1va8KMyZY7dzpLCxWuLAzc7K/FxY7G3eW7ku6M2HTBIY3Hk6TmwJ6DUGThaXWJ7MDeEFE\nNojIWBFpJiIFMiswk7pQbhcOtLp9+SXUqOEkmZkzM55gMlq/DX9voNrIamw7tI1NnTYFXIIJtM/P\n10K9fr6W2qJlk4BJ4gwLrgw0BL4WkezAN8B8VV2VOWEak/nOnIGXX4YFC2DOHLjzTv/GE5cQx3s/\nvMf7K95n4P0Dibgjwkbtm4CX7vVkRCQfUB9ooKrtXYnKB6xPxmTEli3QrBncfDOMGAH58vk3nm2H\nthE5LZIrs1/J2EfGUjpfaf8GZEJWps9dJiK5RaS7iIz0vFQYOBvICcaYjBg3Du66y1n/ZdIk/yYY\nVWXYmmHUHFWTZrc249vIby3BmKDizdxlnwLngNqe7T1Ab9ciMl4J5XZhf9XtxAmIjIR+/ZyFxdxa\nudLb+u05vodGXzRi1LpRLGu9jBdqvkA2CfwV00P5dxNCv36+5s1v7PWq2g8n0eCZs8yYkLJhA1St\n6kwJs3q1/1eunPzzZCoPr0yNEjVY3nY5Fa6t4N+AjLlM3sxd9iNQD/jRs4bM9cBEVa2eGQFeLuuT\nMd5QdaaF6d4dBg2Cli39G8+h04foMrcL6/auY8KjE7izhJ/vNjBZjj/mLuuJszpmSRH5AqgDRPkq\nAGP85exZ6NLFWfPlhx/8v+7Lgm0LaDuzLU0rNGVdx3XkypHLvwEZ4wPezF22EGgKtMZZgrmqqi5x\nOzCTulBuF86Muv39N9x7Lxw8mPkLiyWt38lzJ3lmzjO0n9WecY+M48MHPgzqBBPKv5sQ+vXzNW97\nEXMCh4HjwC0iEgATahhzedasgerV4f77nYGWefL4L5blfy6n0vBKnDh3gk2dN1Hvunr+C8YYF3jT\nJ9MPaAb8CsSff11VH3I3tIyxPhmTnM8+g5decsa+PPqo/+I4F3+OXtG9GL1+NJ80+oSmtzT1XzDG\nJOKPPplHgZtU9ayvCjUms8XHQ7du8PXXsGQJ3Hab/2L5ef/PREyLoGTekmzotIGiVxf1XzDGuMyb\n5rLtwBVuB2LSJ5TbhX1dt8OHoVEj5zbl1av9l2DiE+IZ8OMA6rxVhy53dmFm85khmWBC+XcTQr9+\nvubNlcxpYIOILALOX82oqj7vXljG+Mavv8LDD0PjxvDee5DdT6sQ7zy8k6gZUc4I/geH0aJKC/8E\nYkwm86ZPJiqZl1VVx7kSkY9Yn4yZNQvatoX+/SEqyj8xqCpj1o+h26JudK3TlZdqvkRYNj+vcmZM\nKnzdJ5PuCTLTdXKRhsAgIAwY5Zk5IOk+HwEPAKeAqPPr16R1rGflzveAQqp6KJnzWpLJolShTx8Y\nOhS++sqZpt8f9p3YR/tZ7fnz2J9MeHQCtxX2Y0eQMV7KtAkyRWSq5+dPyTw2eRFoGPAxzhIBtwAt\nRKRCkn0aAeVV9QagAzDUm2NFpBTOTNB/pKu2ISSU24UzUrcTJ+DJJ52rmFWr/Jdgvt78NRWHVeT2\nwrezst3KixJMKH92YPUzF0uthfoFz8/GOEsvJ+bNJUJ1YJuqxgCIyCTgYWBzon2aAOMAVHWliOQX\nkaJAuTSOfR94HZjhRRwmi9i5Ex55BKpUgehouPLKzI/hyJkjPD/veZbvXs60ZtOoVapW5gdhTABJ\n8UpGVfd4nj6jqjGJH8AzXpy7BPBnou3dnte82ad4SseKyMPAblVN82oqlIWHh/s7BNdcTt2WLIFa\ntZw+mDFj/JNgFu1YRMVhFbn6iqvZ0HFDigkmlD87sPqZi3lzr839QNckrzVK5rWkvO0Q8brtT0Su\nAv6L01SW7uNN6FGFTz6B3r3h88+hnh8GzJ+OPU23b7vx1eavGN1kNA3KN8j8IIwJUCkmGRHpjHPF\ncr2I/JTorTzAD16c+y+gVKLtUjhXJKntU9KzT44Ujr0eKAts9Cw7WxJYKyLVVXV/0gCioqIoW7Ys\nAPnz56dSpUoX/go5364arNuDBg0Kqfok3k7c5p3a/ufOwZQp4axcCe+/H01YGEDmxpv7htxETo+k\n2IFiDKk55EKC8UX9gnXb6hdc29HR0YwdOxbgwvelT6lqsg8gH84X+iSgTKLHNSkdk+T47DgDOcvi\nDObcAFRIsk8jYK7neU1ghbfHevbbCRRMoXwNZUuWLPF3CK7xpm579qjWqqX62GOqx4+7H1NS5+LO\naY8lPbTwe4V14k8T03VsKH92qla/YOf57kzzO97bh1e3MItIJeAunCawZaq60ZsEJiIP8O9tyKNV\nta+IdPRkgOGefc7fRXYSaK2q61I6Npnz7wCqqd3CnKWsXg2PPeasXPnmm5AtkxeL3HJgCxHTIiiU\nqxCjm4ymeJ7imRuAMS7K9HEyIvIC0B74Gqf/4xFgpKp+5Ksg3GBJJjRNmAAvvwwjRzp3kmWmBE1g\n8MrBvLP0HXrf25uOVTsibqzPbIwfZdo4mUTaATVU9S1V7Y7TrNXeVwGYy5O4XTjUJFe3uDh49VXo\n1cu5kyyzE8yuo7uoP6E+k3+ZzIp2K+hUrdNlJ5hQ/uzA6mcu5m1DQ0IKz41x3eHD8OCDsGmTM8Ay\nMye4VFXGbxxP1RFVua/cfSxtvZTyBctnXgDGBDlvmstexlluOXFz2VhV/cD16DLAmstCw/kJLps0\ngX79MneCy39O/kPH2R3ZemgrEx6dQKWilTKvcGP8JNOby1T1fZyllw8DB3HmFwvoBGNCw4wZEB4O\n3bvDwIGZm2Bm/jaTisMqUr5geda0X2MJxpjLlGaSEZGawFZV/dDT2b9dRPw0I5Q5L5TbhRcvjuad\nd6BLF5g9GyIjM6/sY2eP0XZGW16c/yKTH59M//r9yZk9p0/LCOXPDqx+5mLe9MkMA44n2j7pec0Y\nnztxwuncnzvX6X+pXj3zyl76x1IqDqtIWLYwNnbayF1l7sq8wo0JUd70yWxQ1UpJXtukqne4GlkG\nWZ9M8Nm50+l/ufNOGDIEcvr2AiJFZ+LO8L/F/+OLn75gxEMjaHxj48wp2JgA5I9bmHeKyPMikkNE\nrvCMm9nhqwCMAVi82JngskMHGDUq8xLM+r3rqTaiGjFHYtjUeZMlGGN8zJsk0wmogzPP2G6ccTId\n3AzKpC1U2oVVYfBgeOop+OILpx/mu++iXS83LiGO/1v6fzT4rAHd/tONqU9MpVCuQq6XC6Hz2aXE\n6mcSS/N+HVXdBzTLhFhMFnP2LDzzjDNNzPLlUK5c5pS79eBWIqdHkjtHbtZ2WEupfKXSPsgYc1lS\n7JMRka6q2k9EBifztqrq8+6GljHWJxPY9u515h8rUQLGjoWrr3a/TFVl6JqhvLXkLXrU7cGz1Z8l\nm2TyxGfGBDhf98mkdiXzq+fn2mTes29vc9lWrYKmTaFjR2eCy8yY/uuvY3/RZmYbDp8+zPdtvufm\nQje7X6gxJtWVMWd5fo5N5jEu80I0yQnWduHx46FxY/j4Y/jf/5JPML6u28SfJlJ5eGXqlKrDj21/\n9HuCCdbPzltWP5NYmn0yInIT8CrO2i7n91dVvdfFuEyIiYuD11+HWbOcCS5vvdX9Mg+eOsizc59l\n075NzG05l2rFq7lfqDHmIt6Mk9kEDAXWAfGel1VVk2tGCxjWJxM4Dh2CZs2cq5ZJk6BgQffLnLd1\nHu1nteeJW56gT70+XJXjKvcLNSYEZGafzHmxqjrUVwWarOWXX5wBlo88Au++6/78YyfOneDVha8y\nb9s8Jjw6gXvK3eNugcaYVHlza80sEXlWRIqJSMHzD9cjM6kKhnbh6dPhnnugZ08YMMD7BHO5dfvx\nzx+pNKwSZ+PPsqnTpoBNMMHw2WWE1c8k5s1/+yicu8leTfSaAte5EZAJfgkJ0Lu3s3rlnDnONDFu\nOht3lp7RPfl0w6cMfXAoj1Z41N0CjTFeS7NPJlhZn4x/nDgBrVo542C+/hqKFnW3vE37NhExLYKy\n+csyovEIilxdxN0CjQlx/pi7zBiv7NjhzD9WoIBzB5mbCSY+IZ7+P/Sn3vh6vFjjRaY3m24JxpgA\nZEkmSAVau/CiRVC7tjPAcuTIjE1wmVbddhzeQfi4cOZuncvq9qtpXbk1khkjOn0k0D47X7P6mcQs\nyZgMUYWPPoKWLZ3bk7t0cW8Ev6oycu1IaoyqwaM3P8riVospm7+sO4UZY3zCm3EyVbl0GpmjwB+q\nGudWYBllfTLuO3sWOneGtWudpZLLlnWvrL9P/E27me3Yc3wPEx6dwK2FM2E0pzFZkD/6ZD4BVgIj\nPY8VwJfA7yLSwFeBmOCydy+Eh8Px4/Djj+4mmC9//ZJKwypRpVgVVrRbYQnGmCDiTZLZA1RS1aqq\nWhWohLNoWX2gv5vBmZT5s1145UpnWeTGjWHKFMid27fnP1+3w6cP8/TXT/PfRf9lRvMZvH3P21wR\ndoVvC/ODUG/Tt/qZxLxJMjep6i/nN1T1V+BmVd2Ozcac5YwbBw89BJ984u4Myt9s/4aKwyqS/8r8\nrO+4nhola7hTkDHGVd70yUwBDgKTAAGeBK4Fnga+V1WXh9pdHuuT8a24OHjtNWdw5YwZUKGCO+Wc\nij1F12+6Mv236YxuMpr7r7/fnYKMMcnydZ+MN0kmF/AMzhLMAD8AQ4AzQG5VPe6rYHzJkozvHDzo\nTHCZPTtMnOiMg3HDqr9WETEtgjuL38ngBwZT4CqXCjLGpMgfHf8VVHWAqj7qeQwA7lXVhEBNMFlB\nZrUL//yz0/9SpYpzFeNGgomNj+WtJW/x0MSH6H1Pb9oVbBfSCSbU2/StfiYxb5LMSBG5/fyGiLQA\n3nIvJBMopk1zJrjs1Qv694ewMN+X8es/v1JzdE3W7l3Lho4beOLWJ3xfiDHGb7xpLrsO55blp4C7\ngEigsaoedT+8y2fNZZcvIQHeeQdGj3bmH6vmwlpfCZrAhys+pM/3fehzbx/aVWkXVKP2jQlVmb6e\njKru8Fy9TAf+ABqo6ilfBWACy/HjzgSX+/bBqlXuzD/2x5E/iJoRRWx8LCvaruD6gtf7vhBjTEBI\nsblMRH46/8C5kikIlANWelbLNH7kRrvwjh3O/GPXXAOLF/s+wagqYzeMpdrIajS8viHfRX2XbIIJ\n9TZvq19wC/X6+VpqVzIPZVoUxu8WLXLmH3vrLWeqGF+3XO0/uZ8Oszqw88hOFkUu4o4id/i2AGNM\nQLL1ZLI4VfjwQ+jXz7k9OTzc92XM2DKDTnM6EVUxip7hPcmZPQNTNBtjXJXpfTImdJ05A506wYYN\nsGIFlCnj2/MfPXOUFxe8yNI/lvLlE19Sp3SdtA8yxoQU16f6F5GGIrJFRLaKSNcU9vnI8/5GEamc\n1rEi8p6IbPbs/7WI5HO7HoEmo+3Ce/ZA3bpw+jT88IPvE0x0TDQVh1UkZ1hONnbamK4EE+pt3la/\n4Bbq9fM1V5OMiIQBHwMNgVuAFiJSIck+jYDyqnoD0AEY6sWxC4FbVbUi8Dvwhpv1CDUrVjgDLB95\nxFkDxpcTXJ6JO8PLC16m5dctGfLgEIY1HsbVV1ztuwKMMUHF1T4ZEakF9FDVhp7tbgCq+m6ifYYB\nS1R1smd7CxCOcydbqsd6Xn8UaKqqTyd53fpkkjF2LLz+OowZ48yi7Etr96wlcnokt157K0MfHMo1\nua7xbQHGGNcFW59MCeDPRNu7gaTT6Sa3TwmguBfHArQBJmY40hAXFwevvgpz58J33/l2gsu4hDj6\nLuvL4FWDGdRwEC1ua2EDK40xgPtJxttLicv6RhKRN4FzqvpFcu9HRUVR1rOaVv78+alUqRLhntun\nzrerBuv2oEGDvK7P3r3QuHE0YWGwalU4+fP7Lp5itxUjcnok8Tvi+aTOJzxx+xMZrl/iNu9A+ff2\n5bbVL7i3Q61+0dHRjB07FuDC96VPqaprD6AmMD/R9htA1yT7DAOaJ9reAhRJ61ggCmdG6CtTKFtD\n2ZIlS9LcJz5edfhw1UKFVLt3V42L81358QnxOnjlYC3Uv5B+suoTTUhI8Nm5valbMLP6BbdQr5/n\nu9NnecDtPpnswG9APZwVNlcBLVR1c6J9GgFdVLWRiNQEBqlqzdSOFZGGwECgrqoeSKFsdbNuge63\n36BDBzh7FkaOhNtvT/sYb/159E/azGzD8bPHGf/oeG685kbfndwY41f+mOr/sqlqHNAFWAD8Ckz2\nJImOItLRs89cYIeIbAOG46xdk+KxnlMPBq4GvhGR9SIyxM16BJNz55zJLevUgaZNnduTfZVgVJXP\nN31O1RFVCS8TzvdtvrcEY4xJlY34D1LR0dEX2lfPW74c2reHsmVhyBAoXdp35R04dYDOczrz6z+/\nMuHRCVQpVsV3J08iubqFEqtfcAv1+gXVlYzJHMePw3PPwWOPQffuMGuWbxPMnN/nUHFYRcrkK8Pa\nDmtdTTDGmNBiVzJBbtYsePZZqF8f3nsPChb03bmPnz3OKwtfYeH2hYx7ZBx1y9b13cmNMQEp2MbJ\nGJf8/Tc8/zysXw/jxjkrWPrS97u+p9X0VoSXCWdT503kzZnXtwUYY7IEay4LMqowahTcfHM05cvD\npk2+TTBn487S9ZuuPDn1ST5o8AGjHx6d6Qkm8TiEUGT1C26hXj9fsyuZIPL7785tyadOwYAB0K6d\nb8+/8e+NREyL4PqC17Ox00auzX2tbwswxmQ51icTBGJjnf6W99+H//3P6eQPC/Pd+eMT4nnvx/cY\nuHwgA+oPILJipE0LY0wWZX0yWczKlc5tySVLwtq1vp+Sf/uh7UROjyRnWE7WtF9Dmfw+LsAYk6VZ\nn0yAOn4cXnjBmY7/jTdgzpyLE0xG24VVleFrhlNzdE2evOVJvo38NmASTKi3eVv9gluo18/X7Eom\nAM2ZA888A/feCz//DNf4eMb8vcf30nZmW/af3M/SqKVUuNaHUzIbY0wi1icTQPbtc65eVq+G4cPh\nvvt8X8aUX6bw3Lzn6FytM2/e9SY5wnL4vhBjTNCyPpkQpAqffgrdukHr1s6CYrly+baMQ6cP0WVu\nF9btXcfsFrO5s8Sdvi3AGGOSYX0yfrZtm3PFMmQILFgA/fp5l2DS0y68cPtCKg6ryLW5rmVdx3UB\nn2BCvc3b6hfcQr1+vmZJxk9iY+Hdd6FmTXjwQVixAipX9m0ZJ8+d5Nk5z9JuZjs+ffhTPnzgQ3Ll\n8PElkjHGpML6ZPxg9WrntuSiRWHoUChXzvdlrNi9gshpkdQsWZOPHviI/Ffm930hxpiQY30yQezE\nCWeW5IkTYeBAeOop8PWYx3Px53j7u7cZtW4UnzT6hKa3NPVtAcYYkw7WXJZJ5s2D226Dgwed25Jb\ntsxYgkmuXfiX/b9Qc1RNNu7byIZOG4I2wYR6m7fVL7iFev18za5kXLZ/P7z4otPnMmIE3H+/78uI\nT4hn0IpBvPvDu7xb713aVG5j08IYYwKC9cm4RBXGj4fXX4fISOjZE3Ln9n05MUdiaDW9FarK2EfG\ncl2B63xfiDEmy7A+mSCwfTt06uQ0jc2bB1VcWEhSVfl0w6d0/bYrXet05aWaLxGWzYezZhpjjA9Y\nn4wPxcVB//5Qo4bTLLZqlTsJZt+JfdR5qw4frfyIxZGLebX2qyGVYEK9zdvqF9xCvX6+ZlcyPrJ2\nrbO+S6FCTnK5zqVWq2mbp9F5Tmfuy38fY9qP4YqwK9wpyBhjfMD6ZDLo5El46y347DNnzZeICN/f\nlgxw9MxRnp//PD/++SPjHxlPrVK1fF+IMSbL83WfjDWXZcDChXD77c7Elj//7HTwu5FgFu9czB3D\n7iB3jtxs6LjBEowxJmhYkrkMBw44CaVDB2fOsc8+g2tdWKn4dOxpXpz/IpHTIhneeDhDHhxC7iuc\nW9RCuV04lOsGVr9gF+r18zVLMumgCp9/7gyqLFTIuXpp2NCdstbsWUOVEVXYd3IfmzpvomF5lwoy\nxhgXWZ+Ml2JinNuS9+6FUaPgTpcmMo6Nj6XPsj4MWTOEDxt+SPPbmrtTkDHGJMP6ZDJZfDx88AFU\nqwbh4bBmjXsJZsuBLdQeU5vlu5ezrsM6SzDGmKBnSSYVGzdCrVowcyYsX+4sKpbDhYUkEzSBj1Z+\nxF2f3kXbym2Z13IeJfKWSPWYUG4XDuW6gdUv2IV6/XzNxskk4/RpeOcdp1msb19o08adu8YAdh3d\nRUXYbfQAAAupSURBVOsZrTkde5rlbZdTvmB5dwoyxhg/sD6ZJJYsce4aq1wZPvrIWfPFDarKZ5s+\n45WFr/BSzZd4rc5rZM9mOd8Y4182d5lLDh+G115zlkD+5BNo0sS9sv45+Q+d5nTi94O/szBiIZWK\nVnKvMGOM8aMs3yejClOnwq23Qs6c8Msv7iaYWb/NouKwilxf4HpWt1992QkmlNuFQ7luYPULdqFe\nP1/L0lcyu3fDM8/Atm3w5ZdQu7Z7ZR0/e5yXFrzE4p2Lmfz4ZO4qc5d7hRljTIDIkn0yCQkwdKiz\nxkuXLs5dYzlzuhfL0j+WEjU9inrl6vF+g/fJkzOPe4UZY0wGWJ9MBv36K7Rv7zz/7ju45Rb3yjoT\nd4bui7vz+U+fM+KhETS+sbF7hRljTABytU9GRBqKyBYR2SoiXVPY5yPP+xtFpHJax4pIQRH5RkR+\nF5GFIpLfm1jOnnWuXOrWhaefhmXL3E0w6/eup9qIauw8spNNnTf5PMGEcrtwKNcNrH7BLtTr52uu\nJRkRCQM+BhoCtwAtRKRCkn0aAeVV9QagAzDUi2O7Ad+o6o3AIs92qn74wbklecMGWL8eOneGbC7V\nPC4hjj7L+tDgswZ0+083pj4xlUK5Cvm8nA0bNvj8nIEilOsGVr9gF+r18zU3m8uqA9tUNQZARCYB\nDwObE+3TBBgHoKorRSS/iBQFyqVybBOgruf4cUA0KSSaY8ec/pYZM5wxL4895t6gSoCtB7fSanor\ncuXIxdoOaymVr5RrZR05csS1c/tbKNcNrH7BLtTr52tuNpeVAP5MtL3b85o3+xRP5dgiqrrP83wf\nUCSlAG691VkS+eefoWlT9xKMqjJ09VBqj6lNi9tasDBioasJxhhjgoWbVzLe3rbmzVe/JHc+VVUR\nSbGcCROcSS3dlKAJPDzpYfad2Mey1su4udDN7hboERMTkynl+EMo1w2sfsEu1Ovnc6rqygOoCcxP\ntP0G0DXJPsOA5om2t+BcmaR4rGefop7nxYAtKZSv9rCHPexhj/Q/fJkL3LySWQPcICJlgT1AM6BF\nkn1mAl2ASSJSEziiqvtE5GAqx84EWgH9PD+nJ1e4L+/zNsYYc3lcSzKqGiciXYAFQBgwWlU3i0hH\nz/vDVXWuiDQSkW3ASaB1asd6Tv0uMEVE2gIxwJNu1cEYY0zGhOyIf2OMMf4XFBNkBtKgTje4VL/3\nRGSzZ/+vRSRfZtQlOW7UL9H7r4hIgogUdLMOKXGrbiLynOfz+1lE+rldj5S49LtZXURWich6EVkt\nIi6tNZu2DNZvjIjsE5GfkuwfKt8tKdUvfd8tbnX8+/AGgjBgG1AWyAFsACok2acRMNfzvAawIq1j\ngf7A657nXYF3Q6x+9YFsnufvhlr9PO+XAuYDO4GCoVI34B7gGyCHZ/vaUPrscMa2NfA8fwBYEmz1\n82zfBVQGfkpyTNB/t6RRv3R9twTDlcz/t3fuMXZVVRz+fqEllCowFRS0RWIDAsbY2tJMRBRSNTVA\nWgkKKmKtmdQaQim+StGg0QQaHzFKkFjwkSaQVBwMRjCt9UHTOkin00cGUQOpBBBFAkqRFig//9j7\nltvpvXfu63Q81/UlN3fPPnvts9bs6V7de5+z1oGXOm2/CFRezKzmoJc6gcpLnY1kD8jk70XFmlGX\nQuyzvcH2y1n+PmB68abUpKjxA/gW8PmiDWhAUbYtA67P9dh+snhTalKUfX8DKv/7PQ54rFgz6tKJ\nfdjeBDxdo99emFvq2tfq3FIGJzPhL3UWTFH2VbMEuLtjTdujEPskLQQetb2z2wq3QFFjdyrwLklD\nkn4raW5XtW6eouxbCXxT0iPA10mvKEwEndjXiF6YW5pl3LmlDE6m2ScTOnqps4X7dJtu2neokHQt\n8ILt29qR7wJdt0/SFGAVcF078l2kqLGbBPTZ7gc+B6xrUb5bFGXfrcCVtk8GVgA/aFG+W7RrX9Nz\nRUnnlqbkmp1byhDq/zHS3nuFGSRv26jN9Nxmco36ytL875JOtP2EpJOAf3RV6+bppn0HyUpaTNpz\nnd89dVumCPtmkvaZdyjFCpoODEuaZ/twjmNRY/coMAhg+/78YMNrbD/VRd2boSj75tl+Ty7fAdzS\nLYVbpF37xtveK/vcMu72ZUtzy0QcSLV4eDUJeIg0qRzJ+IdX/bxy+FhXlnQ4V4kisJKJO5wryr4F\nwChwfC+O3xj5iTr4L2rslgJfyeXTgEd6aeyAbcC7c3k+cH/Z7Ku6fgq1D/5LPbeMY19Lc8thN7zN\nX9b7gT+RnpS4JtctBZZWtbkxX98BvL2RbK6fBvwK+DOwHjiux+z7C/BXYCR/buol+8b0/zAT4GQK\nHLvJwFpgFzAMnNtLYwfMJR0Ybwd+D8wuqX23kyKS7COda3wi1/fK3FLPvpbmlngZMwiCICiMMhz8\nB0EQBCUlnEwQBEFQGOFkgiAIgsIIJxMEQRAURjiZIAiCoDDCyQRBEASFEU4mKAWSThkbcrxL/V5Y\nLwT6OHLHSlpW9fPrJf2kQ10ulbRK0nWSPtNJX23ef9XhvmfQ+4STCf6vsf1z2+3ka+kDPl3Vz+O2\nP9ihOguAezrsoxNaDlQpKeaQoCHxBxKUDklvkrRN0hxJR0taJ2k0J1AakjSnhsxuSV+WNCxpp6Q3\n5/rFkr6by6+TdKek7fnTn+uvlrQrf5bnLm8AZubEW6slvbGy0sp9Dkq6JyeuWl2lx/skbcl6rJM0\nNdcLmGV7JDd1rh+QdLekoySdlXUfyYmjDlnZSbpR0oW5fKekW3N5iaSvVdVvVUqINpDrbgCm5L7X\n5rrLJN2X626uOBRJeyR9Q9J2UiiSIKhLOJmgVGTncAfwcdvDpNXEU7bfAnwJmEPtKLIGnrQ9B/ge\n8Nkabb5DSqA1i5Ss6YHssBaTcnP0AwOSZpGSUT1ke7btL3BoJNu3AR8C3gpcIukNko4HrgXmZz2G\ngatz+9mkMCtVpuoKUmyphbb3Aj8EBmzPBl6qY+cmUrIpSCHbz8jlc4Df5fIS23OBs4ArJfXZXgk8\nn+35mKQzsv7vyPd7Gfholj+aFONqlu0tNXQIggOUIQpzEFR4LfAz4AO2H8x1ZwPfBrA9KqlRfpnB\n/L0NuKjG9fOAy3JfBv4t6Z3AoO3nASQNkibsu8bRdaPtZ7PMA6RAg33AmcCWHD36SKAySVdvlQm4\nnBQvaqHt/UopfF/llFgK4Dbgghr33QRclZ3EKK8koeoHrshtlkuqJNKaQcpf84cx/cwnOeytWdcp\nwBP52n7gp+PYHwRAOJmgXDxDCsx3DvBgVX2z+Uz25e/91P/br5VbQ2OuNxPwb19Vufp+G2x/pEb7\n95JWWJV77iKthmYAu5vQMwnaj2eHtAC4lxSs8RJgj+3nJJ1LciD9tvdK+g1wVB0bfmy71sMAex1B\nD4Mmie2yoEy8QFqBXC7pw7luM2lbB0lnkran2mUjKfUxko6QdAxpZbBI0pR8frIo1+0BXt1C3waG\ngLMlzcz3mCrpVEnHApNsV6e6HQE+Bdwl6STbzwDPSpqXr1/a4F5DwFWk7bFNpK3Be/O1Y4Cns4M5\nnYPPVF6UVHGGG4GLJZ2QdZ0m6eQW7A0CIJxMUC5s+z+kbaIVki4AbgJOkDQKfJW0RfSvWrJjyq5R\nXg6cl7fctpJyb4wAPyJtJw0Ba2zvcEogtjk/DLC6QZ/Vyv+TdL5zu6QdpK2y00mrmA01bN1MchC/\nkDQN+CSwRtII6Vyklp2QHMsRth8mOau+XAfwS2BS3sK7nhRqv8L3gZ2S1tr+I/BFYH3WdT1wYpV9\nQdAUEeo/KDX5iafJtvflFcIG4DTbL02wak0jaQ3JeY09Fxnbbqrt53J5JSmX/IrDoWMQtEucyQRl\nZyrwa0mTSecUy8rkYABsDzTZ9HxJ15D+3e4mrYqC4H+aWMkEQRAEhRFnMkEQBEFhhJMJgiAICiOc\nTBAEQVAY4WSCIAiCwggnEwRBEBRGOJkgCIKgMP4LHoxT2ajUkscAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c37160>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical stages: \n",
+ "8.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.5: Page 510"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.5\n",
+ "# Page: 510\n",
+ "\n",
+ "print'Illustration 10.5 - Page: 510\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import pylab\n",
+ "import numpy.linalg as lin\n",
+ "import numpy\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:ethylbenzne b:diethylene glycol c:styrene\n",
+ "F = 1000;# [kg/h]\n",
+ "xF = 0.5;# [Wt. fraction styrene]\n",
+ "xPE = 0.9;# [kg styrene/kg hydrocarbon]\n",
+ "xRNp = 0.1;# [kg styrene/kg hydrocarbon]\n",
+ "#******#\n",
+ "\n",
+ "# X: kg styrene/kg hydrocarbon\n",
+ "# Y: kg styrene/kg hydrocarbon\n",
+ "# N:kg glycol/kg hydrocarbon\n",
+ "# Equilibrium data:\n",
+ "# Hydrocarbon rich solutions:\n",
+ "# Eqb1 = [X N]\n",
+ "Eqb1 = numpy.array([[0 ,0.00675],[0.0870 ,0.00817],[0.1833, 0.00938],[0.288 ,0.01010],[0.384 ,0.01101],[0.458, 0.01215],[0.464 ,0.01215],[0.561 ,0.01410],[0.573, 0.01405],[0.781 ,0.01833],[1 ,0.0256]]);\n",
+ "# Solvent rich solutions:\n",
+ "# Eqb2 = [Y_star N]\n",
+ "Eqb2 = numpy.array([[0 ,8.62],[0.1429 ,7.71],[0.273, 6.81],[0.386, 6.04],[0.480, 5.44],[0.557, 5.02],[0.565, 4.95],[0.655, 4.46],[0.674, 4.37],[0.833, 3.47],[1 ,2.69]]);\n",
+ "\n",
+ "plt.plot(Eqb1[:,0],Eqb1[:,1],label=\"X Vs N\")\n",
+ "plt.plot(Eqb2[:,0],Eqb2[:,1],label=\"Y Vs N\")\n",
+ "plt.grid('on');\n",
+ "legend(loc='upper right');\n",
+ "plt.xlabel(\"kg styrene / kg hydrocarbon\");\n",
+ "plt.ylabel(\"kg diethylene glycol / kg hydrocarbon\");\n",
+ "plt.title(\"Equilibrium Data\")\n",
+ "# In Fig. 10.31 (Pg 512):\n",
+ "# Point E1 is located.\n",
+ "NE1 = 3.10;\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "# From Fig. 10.30 (Pg 511):\n",
+ "Np = 9.5;\n",
+ "print\"Minimum number of theoretical stages:\\n\",Np\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "# The tie line when extended passes through F provides the minimum reflux ratio.\n",
+ "# From the plot:\n",
+ "N_deltaEm = 20.76;\n",
+ "# From Eqn. 10.48:\n",
+ "Ratiom = (N_deltaEm-NE1)/NE1;# [kg reflux/kg extract product]\n",
+ "print\"Minimum extract reflux ratio: \",round(Ratiom,3),\"kg reflux/kg extract product\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (c)\n",
+ "\n",
+ "Ratio = 1.5*Ratiom;# [kg reflux/kg extract product]\n",
+ "# From Eqn. 10.48;\n",
+ "N_deltaE = (Ratio*NE1)+NE1;\n",
+ "# Point deltaE is plotted.\n",
+ "# A straight line from deltaE through F intersects line X = 0.10 at deltaR.\n",
+ "N_deltaR = -29.6;\n",
+ "# In Fig. 10.31 (Pg 512):\n",
+ "# Random lines are drawn from deltaE for the concentrations to the right of F, and from deltaR for those to the left,and intersection of these with the solubility curves provide the coordinates of the opeating curve.\n",
+ "# The tie line data are plotted directly to provide the equilibrium curve.\n",
+ "# From Fig. 10.32 (Pg 513):\n",
+ "Np = 15.5;\n",
+ "# Feed is to be introduced in the seventh from the extract product end of cascade.\n",
+ "# From Fig. 10.31 (Pg 512):\n",
+ "XRNp = 0.10;\n",
+ "NRNp = 0.0082;\n",
+ "# Basis:1 hour.\n",
+ "# Overall plant balance:\n",
+ "# (1): PE_prime+RNp_prime = F\n",
+ "# C Balance\n",
+ "# (2): PE_prime*(1-XRNp)+RNp_prime*XRNp = F*xF\n",
+ "# Solving (1) & (2) simultaneously:\n",
+ "a = numpy.array([[1 ,1],[(1-XRNp), XRNp]]);\n",
+ "b = numpy.array([F,F*xF]);\n",
+ "soln =lin.solve(a,b)\n",
+ "PE_prime = soln[0];# [kg/h]\n",
+ "RNp_prime = soln[1];# [kg/h]\n",
+ "RO_prime = Ratio*PE_prime;# [kg/h]\n",
+ "# From Eqn 10.39:\n",
+ "E1_prime = RO_prime+PE_prime;# [kg/h]\n",
+ "BE = E1_prime*NE1;# [kg/h]\n",
+ "E1 = BE+E1_prime;# [kg/h]\n",
+ "RNp = RNp_prime*(1+NRNp);# [kg/h]\n",
+ "S = BE+(RNp_prime*NRNp);# [kg/h]\n",
+ "print\"Number of theoretical stages: \\n\",Np\n",
+ "print\"Extract Flow Rate: \",round(E1,2),\" kg/h\\n\"\n",
+ "print\"solvent Flow Rate: \",S,\" kg/h\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.5 - Page: 510\n",
+ "\n",
+ "\n",
+ "Minimum number of theoretical stages:\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "9.5\n",
+ "\n",
+ "\n",
+ "Minimum extract reflux ratio: 5.697 kg reflux/kg extract product\n",
+ "\n",
+ "\n",
+ "\n",
+ "Number of theoretical stages: \n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "15.5\n",
+ "Extract Flow Rate: 19567.58 kg/h\n",
+ "\n",
+ "solvent Flow Rate: 14799.1 kg/h\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEZCAYAAACU3p4jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvCUWkLBFQEASC9CaRJkrLqssiiCCg0sQI\nK0UUsazgogLuT7GsoggIIhpABaSJ2FCRoBSlSEc6CKggWJBOIOf3x71hhpgyk8nNpJzP88yTufU9\nOUneuTn33veKqmKMMSb3iwh3AMYYY7KGdfjGGJNHWIdvjDF5hHX4xhiTR1iHb4wxeYR1+MYYk0dY\nh29yFBGpICJHRUTc6XgR6e2+7y4iC/zWTRSRK4PY9wXbG5PbWIdvPCEie0TkhNs5J71Gh7pfVd2r\nqsXUdwOJui9U9R1V/WcI+w5p+2C4H1QnReRPETkiIqtEZLCIFAxiH0F9oBljHb7xigI3u51z0mtg\nuINKjYjky+ImFRigqn8DygAPA12Aj4Pcj2R2YCb3sg7fZDkRiRCR/4nIIRHZKSID3KPVCHf5HhG5\nwW/94SIy1X0f5b9usv3GisjXyWa3dds4JCLP+5WCYkVkqYi8JCKHgeH+26fUTrLykf/2v4vIDhG5\nTkTuFpG9InJQRHqmlwoAVT2pqouBW4BrRaSt20ZjEVnu7v8nEXlVRAq4y75y97HO/e/pNhGJFJEP\nReQXEflNROaLSLnAfiomL7AO33gptaPPPkBbIBpoCHTGLcu4NIXpjOoANADqA+2BXn7LGgM7gcuA\npwPYV/K4GgPrgBLANOA9t53KQA9gjIgUTmd/vgnVfcAqoLk76yzwAFASuBa4AbjXXbeFu85V7n9P\nM3H+nicBFdzXSWBMAN+XySOswzdeEeB99+g06dXbXXY7MEpVf1TV34FnSLs0EUrZ4jlV/cPtTF8G\nuvot+0lVx6pqoqqeysC+d6vqZPd8wntAWeApVU1Q1c+BM0CVIPf5E3AJgKp+p6or3Ph+AF4HWqa2\noar+pqpzVfWUqh7DyWuq65u8J3+4AzC5lgLtVfXLFJZdDuzzm97rYRzJ2ymbyrKMOOj3/iSAqh5K\nNq9okPu8AlgCICLVgJdw/kMpjPP3uiq1Dd3/JkYB/8T90ACKioj4neQ2eZgd4Ztw+Bmn5JCkQrLl\nx4EiftNlQmgreTs/+k2n1Qked7/6l2RCiSNdIlIepySUdB7iNWAzUEVViwNDSftv9mGgGtDYXb8l\nzn9HdmLXANbhG2+l1tG8BwwUkXIicgkwhAs737VAFxHJLyINgU5kvI7/iHsyszwwEJgRyEbukfqP\nwJ0ikk9EeuHU5jNT0gnkwiLSEpgHfKuqSVfqFAWOAidEpAbQP9n2B5PFVBTnv4ojIlICGJbJ8Zoc\nzjp846X5ya7Dn+3OnwgswDnhuQqYzYUfDk/gdGS/A8OBd5LtN7XOP/lJVXA60dXAGuBDnJOaqa2b\nfN49wL+Bw0AtYGk6bQX7oTRGRP4EDuCUYmYCrf2WPwJ0A/7Eqd9PT9bGcGCye36kM845iovdeJcB\nn2QgJpOLiZelPRF5APgXzh/zRFV9xbPGTI4lIlHALiC/qiaGNxpjci/PjvBFpA5OZ98IqAfcLCKZ\n/S+xMcaYAHlZ0qmBU488parngMVARw/bMzmblR6M8ZiXHf5GoLmIlHAvF2uLc8mZMRdQ1T2qms/K\nOcZ4y7Pr8FV1i4g8B3yGc4nbGsD+oI0xJkw8PWl7QUMizwB7VXW83zz7N94YYzJAVYO+v8LTyzJF\n5DL3awXgVuDd5Ouoqr1UGTZsWNhjyC4vy4XlwnKR9iujvB5aYZaIlAQSgHtV9U+P28ux9uzZE+4Q\nsg3LhY/lwsdyETpPO3z1jehnjDEmzOxO22wiNjY23CFkG5YLH8uFj+UidFl20jbFxm0QP2OMCZqI\noNntpK0JXHx8fLhDyDYsFz45ORciYq9MeGUmGw/fGOMZ+w8+NJnd4Ye9pHPg6AFKFy0dthiMMd5w\nyw7hDiNHSy2HObakU3NsTe796F52/7473KEYY0yuFvYO//sB3xNZKJKGExvSY04PNhzcEO6QwiIn\n12ozm+XCx3JhMlPYO/zSRUvzzA3PsGvgLupcVodWb7ei3bR2LNu3LNyhGWNMrhL2Dj9J8ULFGdJs\nCLsG7qJNlTb0mNODlnEt+WT7J3miDhgTExPuELINy4WP5SLzHTt2jEqVKvHuu76RXo4ePUqFChWY\nM2fOX9bv168fd91111/mr1u3jkKFCvHHH38E3HZ8fDwREREMGDDggvnNmjVj8uTJQXwXGZNtOvwk\nFxe4mP6N+rPt/m30bdCXwV8Mpv7r9ZmxcQbnEs+FOzxjTA5XtGhRJkyYwKBBgzh8+DAAjz76KI0b\nN6Zjx78+siM2NpY5c+Zw4sSJC+ZPnTqVdu3aERkZGVT7RYoU4e233+aHH344P8+LSzBTku06/CT5\nI/LTrW431vVbx3///l9GrxhN9THVeX3165w+ezrc4WU6q9X6WC58LBfeaNWqFW3btmXgwIHEx8cz\nc+ZMxo0bl+K6TZo0oVy5csyePfv8vHPnzjFt2jR69uwJwIoVK2jYsCHFixenTJkyPPzww6m2HRkZ\nSWxsLCNGjMjcbyoA2bbDTyIi3FztZpbcvYQ327/J+1ve58rRV/K/Zf/j6Omj4Q7PGJNDjRo1ikWL\nFnHbbbfx4osvctlll6W6bs+ePZkyZcr56S+++IKEhATatGkDwAMPPMCDDz7IkSNH2LVrF7fffnua\nbf/nP/9h9uzZbNu2LXO+mQBl+w4/iYjQomILPu7+MR91+4hVP63iytFX8uSiJzl0/FC4wwuZ1Wp9\nLBc+uTkXIpnzyqjIyEhq167NyZMnufXWW9Nct0ePHixevJiffvoJgClTptC9e3fy5csHQMGCBdm+\nfTuHDx+mcOHCXHPNNWnur3Tp0vTr148nn3wy499ABuSYDt9fdJlopneezvLeyzl47CDVx1TngU8e\nYO+RveEOzRgTINXMeWVUUh39xhtvZPDgwWmuW6FCBVq0aMHUqVM5duwY8+bNO1/OAZg0aRLbtm2j\nZs2aNG7cmI8++ijd9h999FEWLFjA+vXrM/5NBCvMg/hrZvjxzx/1kQWPaInnSmjs+7G6+ZfNmbLf\nrLRo0aJwh5BtWC58cnIuMuvv2wsHDx7USy+9VOPj4/Xnn3/WEiVK6Ndff53mNlOmTNHatWtrXFyc\n1qlTJ9X1Zs2apYUKFdITJ078ZdmiRYv0iiuuOD89fPhwbdeunTZr1kzj4uL+sn5qOXTnB93npnuE\nLyLVRWSiiHwuIovc15cefw4FpWyxsrzQ6gV23L+DypdUJmZyDB1ndGTljyvDHZoxJhu67777uPXW\nW2nZsiVlypTh+eef55577uHMmTOpbtOpUyf27t3L8OHD/zJU89tvv82hQ05puXjx4ogIERHpF1Ae\neughli9fzvfff58lV+kEchS+HugPXAM0dF8NAvk0AR4DNgEbcB5veFGy5al+Sobi2Olj+so3r2j5\nl8rrDZNv0M93fq6JiYmetGWMSZlXf9+hmjt3rpYrV06PHDlywfzrr79eH3/88TS3jY2N1QIFCujP\nP/98wfwePXroZZddpkWLFtU6derovHnzUtx+0aJFWr58+QvmPf/88xoREaGTJ0/+y/qp5ZAMHuGn\nO3iaiKxW1QbBfpCISBTwJVBTVU+LyAzgY1Wd7LeOptd+KBLOJfDuhnd5bulzFC1YlCHNhtChRgci\nJEeeujAmR7HB00IXjsHT5ovIABG5XERKJL0C2O5PnGfZFhaR/EBh4MdgAwxFgXwFuCv6Ljbeu5H/\nNP8Pzy19jlpja/HWmrc4cy71f93Cwa639rFc+FguTGYKpMOPBR4BlgGr3deq9DZS1d+AF4G9wE/A\nH6r6RYYjDUGERNChRge+6f0N49qO492N71JldBVe+eYVjp85Ho6QjDEmy6X7ABRVjcrIjkWkMjAI\niAKOADNFpLuqvuO/XmxsLFFRThORkZFER0efv/Y46egms6YXL15MBBF8fufnrPxxJY+8/gjDJw/n\noS4PMaDxANZ/uz5T2wtmOiYmJkvbs+mcM50ku8QT6LTJPPHx8cTFxQGc7y8zIpAafkGck7YtAAUW\nA+NVNSGd7e4A/qGq/3Kn7wSaqOoAv3U8reEHYsvhLTy/9HnmbZ3H3dF389C1D1G2WNmwxmRMbmA1\n/NCFo4b/GlAfGOu+b+B+Tc8WoImIXCzO9UY3ApuDDdBrNUrV4M32b7K271rOJZ6jzrg69Jnfh+2/\nbs/SOKxW62O58LFcmMwUSIffSFXvUtUvVXWhqsYCjdPbSFXXAVNw6v1Jt5K9nuFIPVa+eHlGtR7F\ntvu3cXnRy7nuzeu4Y9YdrPl5TbhDM8aYTBFISec74HZV3eFOVwZmqmr9kBvPBiWd1Bw9fZSJ303k\npeUvUbd0XYY0HUKLii2y5uYIY3IBK+mELrNLOoF0+DcAbwFJD52NAu5W1ZDvts3OHX6S02dPM3X9\nVJ5f+jylCpfisWaP0bZaW7uW35h0WIcfuizv8N2dFwKquZNbVTVTBqTPCR1+knOJ55jz/RxGLhlJ\nQmICQ5oO4Y46d5A/It0LnQISHx9vVze4LBc+OTkX1uGHLstP2orIxcAAYAQwHLjX/QDIU/JF5OO2\n2rexus9q/veP/zHxu4lUe7UacWvjOJt4NtzhGWMC1KNHD3r16nXBvMWLF1OqVCkOHjx4wfxnn32W\nli1b/mUfhw8fpmDBgmzeHPh1KHv27CEiIoK2bdv+JZ4sexhKemMvADOBScDfgeuBN3Bq+NlmtMxw\n+WrPV9ryrZZa7dVq+s76d/TsubPhDsmYbCO7/n3/+uuvWqZMGf38889VVfXkyZNatWrVFMey2b9/\nv+bPn1937959wfxXX31VGzZsGFS7u3fvVhHRUqVK6bJly87P79Gjh44YMSLFbVLLIV6NlgnUVtXe\nqrpInSt1/gXU9uLDJ6dpXrE5i+5axLg24xizYgxXjb+K2Ztnk6iJ4Q7NGJOKEiVK8Oqrr9KnTx9O\nnDjBiBEjqFq16gXj2ycpV64c119/PVOnTr1g/pQpU86vv2PHDlq2bElkZCSXXnopXbp0SbP9Rx99\nlKFDh14wT7Oq9JXeJwLwNnCt33QTYGpGPl1S2HdgH405QGJion687WNtMKGBRo+P1g+2fBDUCJ05\nedzzzGa58MnJucjuf9+dOnXSdu3aacmSJXX//v2prvfOO+9o1apVz09v2bJFCxYsqIcPH1ZV1S5d\nuugzzzyjqqqnT5/WpUuXprifpCP8o0eParly5fSLL75QVecIf/jw4Sluk1oOyeARfqpnHEVkg/s2\nP7BURPbh3GlbAdjq1QdQTiUi3FT1JlpXac0HWz9g6JdD+b+v/4+nYp6iVeVWdjmnMcnIiMz5m9Bh\nGTs6HjduHJUrV+aZZ56hXLlyqa7XoUMH+vfvz/Lly7n22muZMmUKbdq0oWTJkoDzeMM9e/bw448/\nUq5cOa677ro02y1cuDBDhw7l8ccf54YbbshQ7BmW2icBzuWXUUBFv/fn52Xk0yWFNlL89MoNziWe\n0xkbZ2iNMTW06aSmumj3onCHZEyWygl/31FRUbpw4cJ01+vdu7f269dPVVUrVqyoc+bMOb/swIED\nes8992jZsmW1du3a+uabb6a4j6Qj/HPnzunp06e1UqVKOn/+/Cw9wk+vQ84PbMnIjgNqPAf8QoTq\n7LmzOnXdVK38SmW9fvL1unRvyv/uGZPb5IS/70A7/K+++kpLlCihCxYs0JIlS2pCQkKK6y1ZskQL\nFSqkO3fu/Msy/w5fVTUuLk6jo6O1e/fuWdbhp3nSVlXPAltFpGIm/lORp+SLyEePq3rw/YDv6Van\nG91md+Omd276y+MXbcwUH8uFj+Uie2jevDmRkZH07duXrl27kj+/rxo+c+ZM9u/fDzgj/gb6eMM7\n77yTU6dO8emnn2ZZyTeQq3RKAJtE5EsRme++PvA6sNymQL4C9K7fm233b+OWardw64xbaT+9PesO\nrAt3aMaYAPTs2ZO9e/f+5WqeVatW0aRJE4oVK0b79u0ZPXp0qkMY+3fsERERPPXUU/z+++9ehn1h\n+85/B2msIBKT0nxVjQ+58Rx0p21mO5lwkgmrJ/Dc0udoXqE5w2OGU+vSWuEOy5hMY3fahi4sQyt4\nJS93+EmOnznO2JVj+d+y/9GqciuGtRxG1ZJVwx2WMSGzDj904Rha4VoRWSkix0QkQUQSReTPYBsy\nKStSsAiPNn2Ut+q9RY1SNbjuzevoNa8Xe/7YE+7Qwsbq1j6WC5OZAqnhjwG6AduBQkBvYJyXQeVF\nRQoW4fEWj7Ptvm2UK1aOBq83oP+H/dn/5/5wh2aMySUCqeGvVtUGIrJeVa9y561V1eiQG7eSTqoO\nnzjMC0tf4I01b9Cjbg8ea/4YZYqWCXdYxgTMSjqhC8cjDo+LyEXAOhF5XkQeAgJqSESqi8gav9cR\nERkYbJB5UanCpXjuH8+x+d7NREgEtcbW4t+f/ZtDxw+FOzRjTA4VSIff013vPuAEcAXQKZCdq+pW\nVb1aVa/GeRbuCWBuBmPN1VKr1ZYuWppRrUexof8Gjiccp8bYGgxdOJTfT2bdpVxZzerWPpYLk5kC\n6fAPA2dU9YiqDgf+DfyUgbZuBHaq6r4MbJvnlftbOca1HcfqPqs5ePwgVV+tylOLn+LP03b+3GRf\nImKvEF6Z/vMIoIb/LXCDqh5zp4sBC1Q17RGC/rqfN4FVqjrOb57V8DNox287eGrxU3y641MeuvYh\n7mt8H0ULFg13WMaYLJDRGn4gz+e7KKmzB1DVoyJSOMjgCgLtgMHJl8XGxp6/Ky0yMpLo6Ojzj3RL\n+nfWpv86XaVEFXpd0osbqt7Axwc+psroKnS8uCPtq7fnnzf+M+zx2bRN23TmTcfHxxMXFweQ6l28\nAUlvsB1gKdDAb7ohsDyYAXuA9sCnKcxPcWCgvCjUcc/XHVinHaZ30LIvltUx347RUwmnMiewMMjJ\nY8BnNsuFj+XCBw+feDUIeE9ElojIEmAGcH+QnytdgWlBbmOCcFXpq5h7x1zmdZnHR9s/otqYakxc\nPZGEcwnhDs0Yk00ENLSCW5Kp5k5uVdWAexERKQL8AFRS1aPJlmkg7ZvgLd+3nCcWPcHuP3bzZIsn\n6X5Vd/JHBFLBM8Zkd56NpeN29v2BFu6seGB8MJ1+Gvu2Dt9j8XvieWLRExw6fohhLYdxe+3byReR\nL9xhGWNC4OWNV68B9YGxOEMqNHDnmUyUdIIms8VExfBV7FeMvmk0o1eMpu5rdZmxcUa2ftC6V7nI\niSwXPpaL0AXS4TdS1btU9UtVXaiqsUBjj+MymUhEaFW5Fct6LePFVi/y4vIXqTe+HrM2z8rWHb8x\nJnMFUtL5DrhdVXe405WBmapaP+TGraQTFqrKx9s/Zlj8MBISExjWchgdanQgQgL5/DfGhJuXNfwb\ngLeA3e6sKOBuVf0y2MZS2Ld1+GGkqny47UOGxQ9DUYa3HM4t1W/JssetGWMyxpMavojkA+rhXKEz\n0H1Vz4zO3lwoHPVJEaFd9Xas7rOaYS2HMSx+GA0nNmT+1vlhHeXQarU+lgsfy0Xo0nuI+Tmgq6qe\nUtV17utUFsVmsoiI0KFGB77r+x1Dmw9l6JdDafxGYz7a9pENb2tMLhJISWcUUADnhqvjOEMjq6p+\nF3LjVtLJlhI1kTnfz2F4/HCKFCzCiJgR/LPyP63UY0w24WUNPx74y0qq+vdgG0th39bhZ2OJmsjM\nTTMZsXgExQsVZ0TMCP5x5T+s4zcmzDy7Dl9VY1T178lfGQvTpCY71icjJII76tzBhv4bGNh4IAM/\nGUjzt5qzcNdCT0s92TEX4WK58LFchC7Ve+1F5GH3bYp/2ar6kicRmWwnX0Q+utbtyu21b2faxmn0\n/6g/ZYqW4am/P0VMVEy4wzPGBCjVko6IDMfp7KsDjYAPcOr3NwMrVLVHyI1bSSdHOpt4lnc3vMtT\ni5+ifPHyjIgZQYuKLdLf0BiTKbys4X8NtEka+Mx9AMrHqto8Q5FeuG/r8HOws4lneXv92zy1+Ckq\nXVKJETEjaFahWbjDMibX83IsncsA/4HSEtx5JhPlxPpk/oj8xEbHsvW+rXSr0407595Jq6mtWL5v\neUj7zYm58IrlwsdyEbpAOvwpwAoRGS4iI4BvgcnehmVykgL5CtC7fm+23reV22rdRtfZXWn9dmu+\n3f9tuEMzxvgJdDz8BkBznJr+V6q6JlMat5JOrnTm3BneWvMWT3/9NHUuq8OImBE0Ktco3GEZk2t4\nWcN/CZikqpsyGlwa+7YOPxc7ffY0k9ZMYuSSkUSXiWZ4y+E0KNsg3GEZk+N5WcP/HnhdRFaISD8R\nKR5EUJEiMktEvheRzSLSJNgA84rcWJ+8KP9F3NvoXrbfv51/Vv4nt0y/hfbT27Pm57T/QcyNucgo\ny4WP5SJ0gdx4NVFVmwI9cUbK3CAi74pIIDdfvYJzRU9N4CqcDw+TxxTKX4j7Gt/Hjvt3cH3U9bR9\nty0dZ3Rk/cH14Q7NmDwl0Bp+PqAdcDdwBfAe0Aw4oap3pLJNcWCNql6Zxn6tpJMHnUg4wYRVE3h+\n2fM0Ld+Ux1s8TnSZ6HCHZUyO4WUNfxROZ/8l8IaqrvBbtlVVq6eyXTQwAdiMM8TyauABVT3ht451\n+HnYiYQTvLbyNV765iXqla7HY80eo3nFkG/vMCbXy2iHn+rQCn42AI+r6vEUll2Tzr7rA/ep6koR\neRkYAjzpv1JsbCxRUVEAREZGEh0dTUxMDOCr2eWFaf/6ZHaIJyumVyxdQQMasHPgTqasm0KX/3Wh\nxMUl6Fa3G0N6DGHx4sXZKt5wTK9du5ZBgwZlm3jCOf3yyy/n6f4hLi4O4Hx/mRGBlnTKARVxOvGk\n4ZG/SmebMsByVa3kTjcDhqjqzX7r2BG+Kz4+/vwPOq86m3iWWZtnMfTNoRStVpQhTYdwW+3byB8R\nyHFJ7mS/Fz6WCx8vSzrPAXfglGbOJc1X1XYBBPUV8C9V3eaOzXOxqg72W24dvvkLVeWTHZ8wcslI\nfjr6E49e9yh3Rd9FofyFwh2aMdmClx3+NqCuqp7OQFD1gDeAgsBOnGfhHvFbbh2+SdOSvUsYuWQk\na35ew4NNHqRfw34Uu6hYuMMyJqy8vA5/J06HHTT3kYiNVLWeqnb07+zNhZLqdebCXDSr0IyPun3E\nJ90/4bsD31HplUo88eUTHD5xOHwBZiH7vfCxXIQurfHwX3XfngDWishCIOkoX1V1oNfBGZOkXpl6\nTOs0jR2/7eCFpS9Q7dVq3HnVnTxy3SOUL14+3OEZkyOkNR5+LL6Hn0jy96oa8gBqVtIxGfXT0Z94\naflLvLnmTdrXaM/gpoOpUapGuMMyJkt4VsP3knX4JlS/nfyNMSvGMGbFGFpUbMFjzR6z8XpMrudl\nDd9kAatP+gSTixIXl+DJlk+y+4HdNKvQjA4zOtBqaisW7V7k6XN3s4r9XvhYLkJnHb7JFYoULMKg\nJoPYOXAnXep0od9H/bh20rXM2zKPRE0Md3jGZAtW0jG50rnEc8zdMpeRS0Zy+uxpBjcdTJc6XSiQ\nr0C4QzMmZF5ehz8f54Rt0s4V+BNYCUxQ1VPBNuq3b+vwjadUlc93fc7IJSPZ/ftu/n3dv+l1dS8u\nLnBxuEMzJsO8rOHvBo4BrwMTgaPuq5o7bTKB1Sd9MjMXIkKryq1YdNcipneezme7PqPSK5UY+fVI\njpzK/reF2O+Fj+UidIF0+NepajdVna+qH6hqd6CRqg7AGRzNmByhyRVNmNdlHl/0/IJNhzZx5egr\nefTzR9n5285wh2ZMlgikpPM90FpVf3CnKwKfqmpNEVmjqldnuHEr6Zgw2v37bsasGMOU9VO4uszV\n9GvYj3bV2lmd32R7Xtbw2wDjgV3urCuBe4FFwD2q+nKwjfrt2zp8E3anzp5i9ubZjF89np2/7aT3\n1b35V/1/UTGyYrhDMyZFXtbwP8Wp1w8CHgCqA1+o6vFQOntzIatP+mR1LgrlL0T3q7rz9d1f8/md\nn3Pk9BHqv16fm9+9mflb53Mu8Vz6O/GI/V74WC5CF0iHP0lVT6nqWlVdB+QDPvY4LmPCovZltRl9\n02j2PbiPTjU78fTXTxP1ShRPLX6KH//8MdzhGROSQEo6/wVKquq9InIJ8BEwUVXfCrlxK+mYHGDt\ngbVMWDWBGZtm0DKqJX0b9KVV5VZEiN23aMLD07F0ROQF4G9AA+BZVZ0VfIgp7tc6fJNjHD19lGkb\npzF+1Xh+P/U7fer3odfVvShdtHS4QzN5TKbX8EWkk/vqCHyD8/zaNYC68wINbI+IrBeRNSKyIv0t\n8iarT/pk11wUu6gYfRr0YXWf1bzX+T12/r6TGmNrcPvM21m4a6EnQzhk11yEg+UidGk9LLQdviGR\nAda66yc9k3ZOgG0oEKOqvwUfnjHZj4jQqFwjGpVrxIutXuTt9W/z4IIHOXX2FH0a9CE2OpZShUuF\nO0xj/sLzsXREZDfQUFV/TWGZlXRMrqCqLN+/nAmrJzBvyzzaVmtLvwb9aFahGSJB/+dtTJqy7Xj4\nIrILOILzAPQJqjrRb5l1+CbX+e3kb0xZN4UJqycgCH0b9CU2OpbihYqHOzSTS2Tn8fCbunfj3gQM\nEJHmWdBmjmP1SZ+cnosSF5dgUJNBbL53M6+1fY3l+5dTe1xt5m2ZF/S+cnouMpPlInRpPdP2OmB5\nqIfgqvqz+/WQiMwFGgNfJy2PjY0lKioKgMjISKKjo4mJiQF8P2CbzlvTSbJLPBmdXrx4MQDTO09n\n8Z7FdH+pO6NKjGLcgHHUurRWQPtbu3Zttvl+wj29du3abBVPVk7Hx8cTFxcHcL6/zIi0nmk7HufK\nnG3AJzjj5xwIaucihYF8qnpURIoAnwEjVPUzd7mVdEyecTLhJC8se4Hxq8ZTpUQV+jboS6danSiU\nv1C4QzM5jJdj6dTEKce0AiKBL3GGW1iqqmnecy4ilYC57mR+4B1VHem33Dp8k+cknEvgg60fMGH1\nBNYcWEOUWPnnAAAdaUlEQVTPq3rSp0EfqpeqHu7QTA7hWQ1fVb9X1ZdUtTVwPbAUuB1I95p6Vd2t\nqtHuq45/Z28ulLyckZfl9lwUyFeATrU68dmdn/FN728okK8ALeJacP3k65mxcQZnzp05v25uz0Uw\nLBehC+qkraqeUNWPVPU+VW3gVVDG5BWVS1Tm2RufZd+D++jboC8TVk+g/KjyDP58sI3TbzKdPdPW\nmGxm26/beH3160xeN5mry1xN3wZ9uaX6LTZOvzkv216Hn2bj1uEbk6qkcfonrJ7A9t+20/vq3txT\n/x4bp99k6+vwTQCsPuljuXAUyl+Icr+V46u7v2Jhz4UcPX2U+q/Xp807bZi3ZR5nE8+GO8QsZb8X\noUtr8LRjInI0ldefWRmkMXldrUtr8cpNr7DvwX3cUfsOnlv6HFEvRzE8fjj7/9wf7vBMDmElHWNy\nqPUH1zNh1QSmbZxGswrN6NugL62rtCZfRL5wh2Y85vV4+PWAFjgjX37tPvkqZNbhGxO642eOM33j\ndMavHs8vx3/hnvr30OvqXpQtVjbcoRmPeFbDF5EHgHeAS4HSwNsiMjD4EE1arD7pY7nwCSQXRQoW\noXf93qy8ZyVz75jLviP7qD2uNh1ndGTBjgWejNMfDvZ7EbpATtr+C7hGVZ9U1SeAJsA93oZljMmI\n+pfXZ0K7Cfww6AdaVW7FkIVDqPpqVZ5d8qw9k9cENLTCBqCxqp50py8GVqhq3ZAbt5KOMZ5SVVb+\ntJLXV7/O7O9nc3WZq+lWtxudanbikosvCXd4JoO8HEvnISAW5wlXAnQA4lR1VAbiTL5v6/CNySKn\nzp7i4+0f8+6Gd/l81+f8PervdKvbjZur3UzhAoXDHZ4Jgpdj6bwE3A38DvwKxGZGZ28uZPVJH8uF\nT2bmolD+QnSs2ZFZt89i76C9dKjRgTe+e4Pyo8rz0IKH2PHbjkxrywv2exG6QE7aNgG2q+orqjoa\n2Cki13gfmjHGK8ULFSc2OpbP7vyM1X1WUzBfQa6bdB2t327Nh9s+5FximgPhmhwqkJLOWuDqpNqL\niOQDVrlPsQqtcSvpGJNtnDp7ihkbZzB25VgOnTjEvQ3vpdfVvShZuGS4QzPJeFnDX6uq0cnmrVfV\nq4JtLIV9W4dvTDa04scVjF05lg+2fkCHGh0Y0GgADcs2DHdYxuXlWDq7RWSgiBQQkYLudfm7gg/R\npMXqkz6WC59w5aJxucZM7jCZ7fdvp0bJGnR+rzNN3mjC1HVTOX32dFhist+L0AXS4fcDmgI/Avtx\nrsPvE2gDIpJPRNaIyPyMhWiMCZdShUsxuNlgdg7cyX+a/4e3N7xNhZcr8J+F/2Hvkb3hDs8EKZCS\nTklV/TXDDTiXdTYAiqnqLcmWWUnHmBxm26/bGLdyHFPXT6VFxRYMaDSAGyrdgEjQFQaTQV7W8LcD\na4G3gE+C6aFF5AogDngaeEhV2yVbbh2+MTnUsTPHeGf9O4xdOZYz584woNEAetbrSfFCxcMdWq7n\nZQ2/OjAR6AnsEJGRIlItwP2PAv4N5I7BPDxk9Ukfy4VPds5F0YJF6duwL+v6rWNiu4ks2beESq9U\nov+H/dn4y8ZMby875yKnCOTGq0RV/UxVu+CMoXMXsFJEFovIdaltJyI3A7+o6hqcO3SNMbmQiNC8\nYnNmdJ7Bxns3UqZoGVpNbUVMXAwzN80k4VxCuEM0rkBKOqWA7jhH+AeBN4D5QD1glqpGpbLdM8Cd\nwFmgEPA3YLaq9vRbR++66y6iopxdREZGEh0dTUxMDOD7RLdpm7bpnDWdcC6B/5vyf7y/9X1+vexX\n+jToQ50TdShxcYlsEV9Om46PjycuLg6AqKgoRowY4VkNfxvwNvCmqu5PtmyIqj6bbiMiLYFHrIZv\nTN6z4eAGxq4cy4xNM2hdpTUDGg2gafmmdpI3BJ7W8FX1qeSdPUAgnb3/6kGsm+ckfZoby4W/3JCL\nuqXrMv7m8ex+YDdNyjWh9we9iZ4QzcTVEzl+5njA+8kNuQi3/Kkt8L9uPoVPYk1+iWVaVHUxsDjo\n6IwxuUZkoUgeaPIA919zPwt3LWTMyjE8tvAxetbrSf+G/alasmq4Q8z1Ui3piEhMGtup24mH1riV\ndIzJ03744wfGrxrPpDWTqH95fQY0GkCbqm3subzp8PSZtl6xDt8YA87Abe9teo+xK8fyy/Ff6N+w\nP72v7m0Dt6XCy2fabhCR9e7XpNcSERklIvbTyCRWn/SxXPjklVwUyl+InvV68u2/vuW9zu+x+dBm\nqrxahbvn3c2qn1YBeScXXkq1hu/nU5xLK9/FuZ6+C1AY5xLNOKBdqlsaY0yQGpVrRFy5OA6fOMyk\n7ybR+b3OlC5amhu4gSbNmlAof6Fwh5hjBXJZ5prkY98nzRORDaE829ZKOsaY9JxLPMfH2z9mzMox\nrD2wll7RvejXsB8VIyuGO7Sw8fKyzHz+T7gSkcZ+250NtkFjjAlGvoh8tKvejgU9FvD13V9z8uxJ\n6r9enw7TO/DFri+wg8bABdLh9wYmicgeEdkDTALuEZEiwEgvg8tLrD7pY7nwsVz4xMfHU61kNV5u\n/TJ7B+2lTdU2PPzZw9QcW5PR347myKkj4Q4x2wtkLJ2VqloHiAaiVbWuqq5Q1eOq+p73IRpjzIWK\nFCxCnwZ9WNt3LRPbTWTZvmVEvRLl2cBtuYVdlmmMyRV+Pvozr69+nde/e53Kl1Sme93udK7VOVde\n2mnX4RtjDJBwLoGPtn/EtI3T+HTHpzSr0IwutbvQoUYHil1ULNzhZQovT9qaLGC1Wh/LhY/lwifQ\nXBTIV4AONTowo/MMfnzoR7rX7c7MzTO5YtQVdH6vM7M3z+Zkwklvg82mArnxqoiIPCEiE93pqu5Y\n98YYk60VLViUbnW78UHXD9j9wG5uqnITr616jbIvlaXn3J58sv2TPDVefyDX4b8HrAZ6qmpt9+qc\nZapaL+TGraRjjAmDA8cOMHPTTKZtnMb237bTqWYnutTpQvMKzXPEOD5ePtN2tao28L8BS0TWWYdv\njMkN9vyxhxkbZzB903R+Of4Lt9e6na51u9KobKNsO2a/lzX80yJysV9DlYHTwTZk0ma1Wh/LhY/l\nwserXERFRjG42WDW9F3DF3d+QfFCxblz7p1UebUKQxcOzVWXeQbS4Q/HGU/nChF5F/gSGOxlUMYY\nEw41L63J8JjhbBmwhZm3zSQhMYE277Shzrg6PP3V0+z8bWe4QwxJQJdlus+1beJOfqOqhwPauUgh\nnAefXAQUBOap6mN+y62kY4zJ1hI1keX7ljNt4zRmbp5JxeIV6VKnC3fUvoNyfysXlpg8vQ5fRMoB\nUTijayqAqn4VYGCFVfWEiOQHluA823aJu8w6fGNMjnE28SyLdi9i2sZpvL/lfa4qfRVd6nShc63O\nlCpcKsvi8HI8/OeApcBQ4BHg3+4rIKp6wn1bEMgH/BZskHmB1Wp9LBc+lguf7JCL/BH5+Uflf/Bm\n+zf5+eGfebDJg8Tviafy6Mrc9M5NTFk3hT9P/xnuMFMVyHj4t+I8yDxDJ2pFJAL4DqgMvKaqmzOy\nH2OMyU4uyn8R7Wu0p32N9hw7c4z5W+czfdN07v/kfm688ka61ulK26ptubjAxenvLIsE0uHvxDk6\nz1CHr6qJQLSIFAcWiEiMqsYnLY+NjSUqKgqAyMhIoqOjiYmJAXyf6HlhOiYmJlvFY9PZZzpJdokn\nXNNJ87JLPP7TRQsW5fJfL+fBMg8S1z6OuVvmMvLtkcQejuXWm26lS+0uFNxXkAL5CmRo//Hx8cTF\nxQGc7y8zIpDr8OcA9YCF+Dp9VdWBQTcm8gRwUlX/505bDd8Yk2sdOHaAWZtnMW3jNLYe3krHmh3p\nWqcrLSq2COkGLy+vw/8A+C9OHX8Vzl23qwMMqpSIRLrvLwb+AawJNsi8IPnRXF5mufCxXPjkxFyU\nKVqG+xrfx9JeS1ndZzVVSlTh4c8epvyo8gz6dBDf7v82Sx/gkm5JR1XjRKQwUEFVtwS5/8uByW4d\nPwKYqqoLMxCnMcbkaBUjK/Jo00d5tOmjbDm8hRkbZ3DX+3dx5twZutTpQpc6Xah7WV1P7+4NpKRz\nC/ACcJGqRonI1cAIVb0l5MatpGOMycNUlbUH1jJ943Smb5pO0YJF6VqnK13qdKFKiSqpbuflWDrf\nAdcDi/zG0tnoPgUrJNbhG2OMI+kGr+kbpzNz80zKFy9Pl9pduKPOHVzxtysuWNfLGn6Cqv6RPLZg\nGzJpy4n1Sa9YLnwsFz65PRcREkHTCk15tc2r7H9oPyNvGMnmQ5upN74eLeNa8trK1zh0/FBIbQRy\nWeYmEekO5BeRqsBAYFlIrRpjjElV/oj83Hjljdx45Y2MOzuOBTsXMG3jNIYsHMK1V1yb4f0GUtIp\ngnOXbSt31gLgv6p6KsOt+vZtJR1jjAnQ8TPHmb9tPl3rdrVn2hpjTF6Q6TV8EZmfxuuD0MI1yeX2\n+mQwLBc+lgsfy0Xo0qrhv+h+VSD5J4kdlhtjTA4T6HX4H7pj4mRu41bSMcaYoHl5WeYdwA4ReV5E\nagQfmjHGmOwg3Q5fVbsDVwO7gDgRWS4ifUSkmOfR5SFWn/SxXPhYLnwsF6EL5AgfVT0CzAJmAGVx\nxshfIyJBj5hpjDEmPAKp4bcHYoGqwBQgTlV/cQdU26yqURlu3Gr4xhgTtIzW8AO507YjMCr5M2zd\n59T+K9gGjTHGhEcgNfy7Untguap+kfkh5U1Wn/SxXPhYLnwsF6EL5CHmnURku4j8KSJH3Vf2fUqv\nMcaYFAVSw98J3Kyq32d641bDN8aYoHl5Hf6BjHb2IlJeRBaJyCYR2WhX9RhjTPikNZZOJxHpBKwS\nkRki0jVpnoh0DHD/CcCDqlobaAIMEJGamRB3rmP1SR/LhY/lwsdyEbq0rtJph2/MnJP4hkdOMie9\nnavqAeCA+/6YiHyPcx1/ppeHjDHGpC2QGn4zVV2S3rx0GxKJAhYDtVX1mDvPavjGGBMkL6/DHw3U\nD2BeqkSkKM6dug8kdfZJYmNjiYqKAiAyMpLo6GhiYmIA379wNm3TNm3TeXk6Pj6euLg4gPP9ZUak\neoQvItcC1wEPAi/hGyK5GHCrqtYLqAGRAsCHwCeq+nKyZXaE74qPjz//g87rLBc+lgsfy4WPF0f4\nBXE693zu1yR/Ap0DDEqASThDMLyc3vrGGGO8E0gNv6Kq/iAiRVT1eFA7F2kGfAWsx3cC+DFV/dRd\nbkf4xhgTJC9r+OVE5BOco/zyIhIN9FHVe9Pb0D2xG9CInMYYY7wVSGf8MtAaOAygqmuBll4GlRcl\nnaAxlgt/lgsfy0XoAh0Pf2+yWWc9iMUYY4yHAqnhzwJGAWOAa4CBQENV7RJy41bDN8aYoHk5lk5/\nYABQDvgR53GHA4JtyBhjTHgFMh7+IVXtpqqXqeqlqtpdVX/NiuDyEqtP+lgufCwXPpaL0KV6lY6I\nDFbV50Tk1RQWq6rayJfGGJODpHWnbTtVnS8isSksVlWdHHLjVsM3xpigZbSGn+5JWy9Zh2+MMcHL\n9JO2IjLf7/VB8unQwjXJWX3Sx3LhY7nwsVyELq07bV90v94KlAHexhlArStw0OO4jDHGZLJArsNf\nraoN0puXocatpGOMMUHz8jr8wiJS2a+hK4HCwTZkjDEmvALp8B8EFonIYhFZDCwCBnkbVt5j9Ukf\ny4WP5cLHchG6dEfLVNVPRaQaUANniOOtqnrK88iMMcZkKrss0xhjchgva/jGGGNyAU87fBF5U0QO\nisgGL9vJDaw+6WO58LFc+FguQpduDV9EGuB7PGGSI8APqpreuPhvAa8CUzIWnjHGmMwSyHX43wAN\ncJ5LC1AX2AQUB/qr6oJ0to8C5qtq3RSWWQ3fGGOC5GUN/ycgWlUbuDdbRQO7gH8AzwfboDHGmPAI\n5CHm1VV1U9KEqm4WkRqqulNEQj48j42NJSoqCoDIyEiio6OJiYkBfDW7vDDtX5/MDvGEczppXnaJ\nJ5zTa9euZdCgQdkmnnBOv/zyy3m6f4iLiwM4319mRCAlnfeAX4HpOGPp3A5cCvQAlqhqo3S2j8JK\nOumKj48//4PO6ywXPpYLH8uFj2fDI4tIYeBeoKk7aykwDjgFFFHVo+lsH4V1+MYYk2m87PAbqOrq\nZPNuVtUPAwhqGtASKAn8Ajypqm/5LbcO3xhjguTlSduJInL+6FxEugJPBrJzVe2qqmVV9SJVLe/f\n2ZsL+dev8zrLhY/lwsdyEbpATtp2BmaJSDegOdAT5wodY4wxOUhAY+mISHXgfeAHoKOqnsiUxq2k\nY4wxQcv0Gn4KwyFcBvwBnMF5iPlVQUf51zaswzfGmCB5UcNvl+x1DfBP9/0tGQnSpM7qkz6WCx/L\nhY/lInSp1vBVdU8WxmGMMcZjNh6+McbkMDYevjHGmDRZh59NWH3Sx3LhY7nwsVyEzjp8Y4zJI6yG\nb4wxOYzV8I0xxqTJOvxswuqTPpYLH8uFj+UidNbhG2NMHmE1fGOMyWGshm+MMSZNnnb4ItJaRLaI\nyHYRGexlWzmd1Sd9LBc+lgsfy0XoPOvwRSQfMAZoDdQCuopITa/ay+nWrl0b7hCyDcuFj+XCx3IR\nOi+P8BsDO1R1j6om4DwEvb2H7eVof/zxR7hDyDYsFz6WCx/LRegCeeJVRpUD9vlN78cZYtmYLOd/\nbUDS+6yel5HYTp2C33/PPt+D1/NS+pr0/uBBWL8+9eXJ36e3PJh1s1tbGeVlhx9QaJUquSun8EuQ\n/L3X64VjOsmJE3t4+eW01wlkP8Gsk9rylOYHOi+UdZPenz27h6efztjPN1AiF37Nqnn+VNPf7sSJ\nPYwfH754wzEvpa8isH//HpYsSX15Su/TW56Z+8rqtjLCs8syRaQJMFxVW7vTjwGJqvqc3zp2TaYx\nxmRApj7iMFQikh/YCtwA/ASsALqq6veeNGiMMSZNnpV0VPWsiNwHLADyAZOsszfGmPAJ6522xhhj\nsk6W3GkbyA1YIjLaXb5ORK7OirjCIb1ciEh3NwfrRWSpiFwVjjizQqA35olIIxE5KyIdszK+rBTg\n30iMiKwRkY0iEp/FIWaZAP5GSonIpyKy1s1FbBjC9JyIvCkiB0VkQxrrBNdvqqqnL5xyzg4gCigA\nrAVqJlunDfCx+/4a4Buv4wrHK8BcXAsUd9+3zsu58FvvS+BDoFO44w7j70UksAm4wp0uFe64w5iL\n4cDIpDwAvwL5wx27B7loDlwNbEhledD9ZlYc4QdyA9YtwGQAVf0WiBSR0lkQW1ZLNxequlxVj7iT\n3wJXZHGMWSXQG/PuB2YBh7IyuCwWSC66AbNVdT+Aqh7O4hizSiC5+Bn4m/v+b8Cvqno2C2PMEqr6\nNfB7GqsE3W9mRYef0g1Y5QJYJzd2dIHkwl9v4GNPIwqfdHMhIuVw/thfc2fl1hNOgfxeVAVKiMgi\nEVklIndmWXRZK5BcTARqi8hPwDrggSyKLbsJut/08sarJIH+kSa/pjQ3/nEH/D2JyN+BXkBT78IJ\nq0By8TIwRFVVRIS//o7kFoHkogBQH+cy58LAchH5RlW3expZ1gskF/8B1qpqjIhUBj4XkXqqetTj\n2LKjoPrNrOjwfwTK+02Xx/kkSmudK9x5uU0gucA9UTsRaK2qaf1Ll5MFkosGwHSnr6cUcJOIJKjq\nB1kTYpYJJBf7gMOqehI4KSJfAfWA3NbhB5KL64CnAVR1p4jsBqoDq7Ikwuwj6H4zK0o6q4CqIhIl\nIgWBO4Dkf7AfAD3h/B26f6jqwSyILaulmwsRqQDMAXqo6o4wxJhV0s2Fql6pqpVUtRJOHb9/Luzs\nIbC/kXlAMxHJJyKFcU7Sbc7iOLNCILnYAtwI4NasqwO7sjTK7CHoftPzI3xN5QYsEenrLp+gqh+L\nSBsR2QEcB+72Oq5wCCQXwJPAJcBr7pFtgqo2DlfMXgkwF3lCgH8jW0TkU2A9kAhMVNVc1+EH+Hvx\nDPCWiKzDOWh9VFV/C1vQHhGRaUBLoJSI7AOG4ZT2Mtxv2o1XxhiTR9gjDo0xJo+wDt8YY/II6/CN\nMSaPsA7fGGPyCOvwjTEmj7AO3xhj8gjr8A3uTS6pDsGawX22F5GambnPUInIJyJSNtm8eBFpkMH9\nDReRh0OIJ05EOmV0+wy0FyMi87OqPZP9WIdvvHIrUCuYDUTEs99HEbkYKKGqPyVbpGR83KZQb2JJ\nsW0v8uA+ctTkcdbhmwuIyJUi8p2INBCRwiLynohsEpE5IvJNSkfDIvKsu846EXlBRK4F2gEvuPu6\nUkRW+61fNWlaRPa4268GbhORViKyTERWu20X8VtvuDt/vYhUd+cXcR8U8a3b1i2pfGsxwKI0vu8I\n94j7KXe6t4hsdfc7UUReTWXTWu4IljtF5H532xEi8oDfvp8WkYHu+zHiPNzjc+Ayv3WS56Gr+31u\nEJFn/dZr7eZgrbsPRKSxm7PvxHloTjV3fqyIfCAiC4EvcD5ciovIh24Mr4l7O3ca7R0Tkf9z21su\nIudjNjlQuAf5t1f4XzgPm9iAMybJd0Bdd/4jwGvu+9pAAlA/2bYlgS1+039zv74FdPSb/yVQz33/\nDDDAfb8beMR9XwpYDFzsTg8GnvBbL2mb/jhDCyTtq7v7PhLYChRO4Xt8BYhJYf4inHFppgGPufPK\nuu1F4gw/8hUwOoVthwNLcW53LwkcxhkOoCKw2l0nAueBHpcAHYHPcEY4vBxnrPOOKeShLPCDu898\nwEKcYaIvBfYCFZO+X/drMSCf+/5GYJb7PhZn0LWk9WKAk+7PO8KNpVNq7bnbJAJt3ffPAUPD/ftq\nr4y/7AjfJLkMeB/opqpJ9fymOA+gQFU34YzjktwfwCkRmSQit+J0KEn8h259A7jbLVfcDrzrt2yG\n+7UJThlomYiswRkYqoLfenPcr9/hdFoArYAh7vqLgIu4cATBJE2BJSnMF2ACzlOFRrrzGgPxqvqH\nOg/WmJnse0miwIeqmqCqvwK/AKVV9QfgVxGJduP7Tp1RT1sA76rjZ5wPQX9JeWgELFLVX1X1HPCO\nu+01wFfu/lHVP9z1I4FZ7nmYl7iwlPaZ33oAK9R5uEgizodcM6Ch+/0mbw/gjKp+5L5fjS/vJgey\nup5J8gfOUV5znNEIk6Q5Br2qnhORxjjjtHcG7nPfw4X16dk4gz99iXP06z/s83G/95+rardUmjvt\nfj3Hhb+7HTWNceFF5Epgn6b8VCQFlgF/F5EXVfW0O8//+04rB2f83vvH9QbOYFalgTf92kprX8dT\nWS+95wD8F1ioqreKSEUg3m/ZiWTr+v9MhJTPQ/jPT/Cbn4j1GTmaHeGbJGdwSg49RaSrO28pztE4\nIlILqJt8I7fGHqmqnwAP4YzRDnAU32PocDvSBThPr3oz+X5c3wJNxXmoRVJ9vmo6cS8ABvrFk9KD\nnG8CPkljH2/gPFnsPRHJhzNEb0sRiXRPdnYi+BO0c3GeSdzQjRGc0tAd7vmCy4G/p7LtSrf9km48\nXXA68W+AFiISBSAil7jr/w1IOhmd3oiJjcW5KivpP62vgRUptLc4iO/V5BDW4ZskqqongJuBB0Xk\nZmAccKmIbMI5itwEHEm2XTFgvjhD1X4NPOjOnw782z3BWMmd9y7OUeJn/u36BXAIp+48zd3fMpzz\nCn+J1W+7/wIF3BOOG4ERKaz/T+DTdL75UcAaYCpO5/kMTke4BKe+/mdqm6ayvwSc/2beU3UK4Ko6\nF+eBJZtxnkW6LJVtfwaG4JSo1gKrVHW+Os+x7QPMEZG1uOU24HlgpIh8h1ODT4op+VVAivNhMsaN\nYZeqzlXVAym1l8L3F8oVTSYbsOGRTarco8ACqnraPer+HKiWSmkkkP09AhRT1WGZGWc6bV4EfK1B\nPlNARIqo6nH3CH8Ozrjs84LYPgKn5t1ZVXcGFbQxHrF6nElLEeBLESmAU9ftH0JnPxeoBFyfifGl\nyy0lZeQBMsNF5EagELAgyM6+FjAfmGOdvclO7AjfGGPyCKvhG2NMHmEdvjHG5BHW4RtjTB5hHb4x\nxuQR1uEbY0weYR2+McbkEf8PM26glcYuDusAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7e76ac8>"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.6: Page 516"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.6\n",
+ "# Page: 516\n",
+ "\n",
+ "print'Illustration 10.6 - Page: 516\\n\\n'\n",
+ "\n",
+ "import numpy.linalg as lin\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:heptane b:p-chloronitrobenzene c:o-chloronitrobenzene d:aq. methanol\n",
+ "xb = 0.4;# [Wt fraction]\n",
+ "xC = 0.60;# [Wt fraction]\n",
+ "F = 100;# [kg]\n",
+ "# The para isomer(b) favours the heptane(a) and the ortho isomer(c) favours the methanol(d).\n",
+ "# Basis: 1 hour.\n",
+ "A = 2400;# [kg/h]\n",
+ "D = 2760;# [kg/h]\n",
+ "xbW = 0.8;# [Wt fraction]\n",
+ "xbZ = 0.15;# [Wt fraction]\n",
+ "kb=1.35;\n",
+ "kc=0.835;\n",
+ "#*******#\n",
+ "\n",
+ "B = xb*F;# [kg]\n",
+ "C = F-B;# [kg]\n",
+ "# W = kg A rich product, after solvent removal\n",
+ "# Z = kg D rich product, after solvent removal\n",
+ "# B balance:\n",
+ "# (1): (0.80*W)+(0.15*Z) = B\n",
+ "# C balance:\n",
+ "# (2): (0.20*W)+(0.85*Z) = C\n",
+ "# Solving (1) & (2) simultaneously:\n",
+ "a = numpy.array([[0.80, 0.15],[0.20, 0.85]]);\n",
+ "b = [B,C];\n",
+ "soln = lin.solve(a,b)\n",
+ "W = soln[0];\n",
+ "Z = soln[1];\n",
+ "Wb = xbW*W;# [kg]\n",
+ "Wc = W-Wb;# [kg]\n",
+ "Zb = xbZ*Z;# [kg]\n",
+ "Zc = Z-Zb;# [kg]\n",
+ "xB1_prime = Zb/D;\n",
+ "xC1_prime = Zc/D;\n",
+ "yB1_prime = Wb/D;\n",
+ "yC1_prime = Wc/D;\n",
+ "DbyA = D/A;\n",
+ "# Equilibrium curve:\n",
+ "# First distribution coeffecient: yB_star/xB_prime = 1.35\n",
+ "def f68(x1):\n",
+ " return kb*x1\n",
+ "x1 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Second distribution coeffecient: yC_star/xC_prime = 0.835\n",
+ "def f69(x2):\n",
+ " return kc*x2\n",
+ "x2 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Operating Line, corresponding to First distribution coeffecient:\n",
+ "def f70(x3):\n",
+ " return (DbyA*x3)+yB1_prime\n",
+ "x3 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "def f71(x4):\n",
+ " return DbyA*(x4-xB1_prime)\n",
+ "x4 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "# Operating Line, corresponding to Second distribution coeffecient:\n",
+ "def f72(x5):\n",
+ " return (DbyA*x5)+yC1_prime\n",
+ "x5 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "def f73(x6):\n",
+ " return (DbyA)*(x6-xC1_prime);\n",
+ "x6 = numpy.arange(0,0.06+0.01,0.01)\n",
+ "\n",
+ "\n",
+ "plot(x1,f68(x1),label=\"Equilibrium curve\")\n",
+ "plt.plot(x3,f70(x3),label=\"Operating curve\")\n",
+ "plt.plot(x4,f71(x4),label=\"Operating curve\");\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"xB_prime\");\n",
+ "plt.ylabel(\"yB_prime\");\n",
+ "plt.title(\"yB_star/xB_prime = 1.35\");\n",
+ "plt.xlim((0,0.05))\n",
+ "plt.ylim((0,0.07))\n",
+ "plt.show()\n",
+ "\n",
+ "plot(x2,f69(x2),label=\"Equilibrium curve\")\n",
+ "plt.plot(x5,f72(x5),label=\"Operating curve\")\n",
+ "plt.plot(x6,f73(x6),label=\"Operating curve\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.xlabel(\"xC_prime\");\n",
+ "plt.ylabel(\"yC_prime\");\n",
+ "plt.title(\"yC_star/xC_prime = 0.835\");\n",
+ "plt.xlim((0,0.06))\n",
+ "plt.ylim((0,0.07))\n",
+ "plt.show()\n",
+ "# The stages are constructed.\n",
+ "# The feed matching is shown on Fig. 10.37 (Pg 518):\n",
+ "f_prime = 6.6;\n",
+ "fstage = 4.6;\n",
+ "print\"Number of ideal stage is \\n\",fstage+f_prime-1\n",
+ "print\"The feed stage is \",fstage,\"th from the solvent-D inlet\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.6 - Page: 516\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEaCAYAAAA/lAFyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXucjeX+//98O3RCKL5OqUHs2MkhiSIqJBUdROzaDhHl\n0GErUZ/oZzuVdki7UBkpqUhUZFe7aVQOhRnJqSHKoam2U0iYef/+uO+ZWVZzWDNr3es07+fjsR7m\nvu/rvu9rXe613uu63tfreomqYhiGYRiFpUSkK2AYhmHEJhZADMMwjCJhAcQwDMMoEhZADMMwjCJh\nAcQwDMMoEhZADMMwjCJhAcQwIoyIbBCRqyJdD8MoLBZAjJAjIkki8ruI/CYiB0TkMxG5OIjrJYhI\npogE/byKSHUR+TGAciF9D/mhqherarIX1w4FInK1iHzqtsP3BZRtICJfi8g+t/wXItLK5/hoETnh\ntutvInJIRBK8fg+GN1gAMbxAgUGqWg44B0gC5oTgulKkk0RK+Wx2ApYGcJpX7yGvekUzh4GXgIcD\nKLsbuB04F6gIzAPm+xxX4A1VLee+zlbVHSGurxEmLIAYhUZEHhaR+X77porIZP+yqpoJvAk0COC6\nzd1frwdF5CcRmeQeyvp1fsD91Xq5iNQRkf+KyK8i8ouIvCYi5X2utUNEHhGR9cBvPr2XTsAS9/z/\niUgTt3x19zp/Gkoq5HsYLSLzRWSe++t6jYhckk+9Srr7rvE5/20RmeOev15E6orICBFJF5GdItLe\n53rlReRlEdkjIrtEZEwoemp+7/8rVX0dyLf34ZY9qKrfq7PERUkgE9jrU0Qo4g8BI/qwAGIUhTlA\nx6wvbPeXdHdgtk8ZcY+dBvwNWBHAdacAz6pqeaA28La7v7X7b3n3V+sqd3ssUA2oD9QERvtd7w7g\neqCCqmaKSGn3Wh+p6jZgOPCaiJwJzAJm+Q0lFeU9AHQG3sL5BT4XeFdESuZRrwycX+W+3Ai86p6/\nDvjI3V8dGANM9ymbCBwH6gBNgA5Av9wqJSI9RWR/Hq99InJegO+vQETkAPA78AjQ1eeQAje5wXuD\niAwM1T2NCKCq9rJXoV84w0D93L9vBL71OZYEHAH2A8fcf68J4Jqf4QSBSn77E3B+yZbI59ybgbU+\n298Dvf3KXAt87LdvEfANkAKUDsF7GA186bMtwB7gynzq9X3Wtd3zl/kcuwn4DRB3u5zbFmcDVdy6\nneFTvgfwX4/+z9sB3xei/FnARGCtT/3rA1Xddmnpts0dkX6e7VW0l/VAjKIyG7jT/ftOnF/MWSgw\nRFUrquoZOF+C80WkYQHXvBuoB2wSkdUickNeBUWkijtMtEtEDuL0is71K+afLO8EfOC37yXgr8Bz\nqnoiBO8BYFf2RZxvzV04vYe86uXPzz5//w786l4naxugLHABUBrYm9WTAF4EKgdQR89R1aPAozj/\npw3dfZtU9Sd1WIHT6+yaz2WMKMYCiFFUFgGXuDOTbgBez6ugqn4OpAHt8yrjlktT1Z6qWhnnl+t8\nd3gptyWjxwEZwMXqDHndxZ+fZ//zrgeWZG2ISFlgMk4QeVJEKgb7Hlxq+tyjBHAezi/tvOpVVH4E\n/gDOdQNdRVUtr6q5BjkR+ZvP7Cf/16FQDmH5UBLn/+WoB9c2IowFEKNIqOrvwAKcMf5VqrrLr0h2\nolREWuIkoL/N75oicqeIZP16PojzRZsJ/OL+W8eneFmcIaZDIlKDAmYIiUgt4HRV3eKzewqwWlXv\nwemZvBjse3C5VERucXNDD+AMM60M4LxCoap7gf8A/xKRciJSwp0ckKumRFVf15zZT/6vs3P5PwRA\nHM7A6e2IiJzu5oVyK9tORBq7kwPOBv4FbFHVNPd4FxGp6F6zOTAU58eIEYNYADGCYTZwMblPb52W\n9esWZ3jrMVVdVsD1rgM2uOc8izM2/oc7FDIW+MJN9jYHngSa4gSa93CCWX6/7G/AZ/hKRLrgJJzv\ndXc9BDQVkR5BvgfF+ULsDuzDSb7fqk6yPBA0l/eR3/bfgdOAje793sbJMYSSNjg9iA9wele/Ax9m\nHXST4VntVgF4AzgAbMEZTuvsc63uwHfAIZznZ7yqhnR6tBE+shJb3t1ApCPOMEFJ4CVVnZhLmak4\nwwtHcRKM60TkLzhzyLOoDfyfqk71tMJGwIhITWAzUEVVD0e6PvkhIh/g5Dk+LLBwcPcZBVyoqnd5\neR/DiAY8FTK5Uxen4cze2A18JSKLVXWTT5lOOB+4uiJyOfAC0MIdasiao1/CPX+hl/U1Asf9P/kH\njigsqoOHS5L78hrTOBjFBq+HsJoDaaq6w53hMg/o4lemM65+QJ35/RVEpIpfmXbANlUtcAkKw3tE\npAzOEMS1wKhCnrs0jyTuo55U1kVVn1bVY6G4Vj7vYQS5D0EZRlzi9VIKNTh1yuIu4PIAypwHpPvs\nuwMnWWtEAap6BCeJXZRzrw9xdcJOPLwHwwgFXvdAAv0l5t/tzz7Pne1xEzmqZMMwDCMK8LoHshuf\nOfHu3/5TBf3LnOfuy+J6YI2q/pLbDUTEhgsMwzCKgKoGlbPzugfyNVBXnOW4T8OZwrfYr8xinKmI\niEgL4ICq+g5f9cCZFpgnkZbzR8tr1KhREa9DtLysLawtrC3yf4UCT3sgqnpSRAYDy3Cm8b6sqptE\nZIB7fLqqLhGRTiKShiMM65N1vpusbQf097Ke8cKOHTsiXYWowdoiB2uLHKwtQovnfgSquhQ//wVV\nne63PTiPc48AlbyrnWEYhlFUTIkeR/Tu3TvSVYgarC1ysLbIwdoitHiuRPcaEdFYfw+GYRjhRkTQ\nIJPosWKpWWhETBBshJ5Y/LGSlJRE27ZtI12NqMDaIrTEbQCB2PywG9GL/Sgx4oGDB+HREK37YDkQ\nw4hz7Bd3DsW9LRYvhosvhoxA14YugLjNgbjjexGokRGv2DNlxCrp6TB0KKxdCzNnQtu2ocmBWA/E\nMOKcpKSkSFchaihubaEKiYnQsCHUqgXr1zvBI1RYAIkzfvjhB8qVK5f9S7lt27a8/PLLALz++utc\nd9112WVLlCjB9u3bA762//mGYUQv27dDhw7w3HOwbBlMmABnnhnae9gQVoRISEjg559/pmTJktn7\n+vTpw9SpofXLuvrqq7nrrrvo27fvn46VKFGCtLQ0ateuHdJ7xivR/kwZBsDJkzBlCowfD8OHw4MP\nQqlcpkvZNN4YRkR4//33ueaaayJdlYDIyMg4JdjFCpmZmZQoYR1to3iwfj3cfTeUKwcrV8KFF3p7\nP/tkRSGZmZkMGzaMypUrU6dOHZ5//nlKlChBZmYm4PRePvnkk+zyo0eP5q67HAfVHTt2nFLWl8TE\nRFq3bn3Kvg8++IA6depQuXJlHnnkkexf2ImJiVx55ZU89NBDVKpUidGjR59yfm738R0u8z2/YsWK\nXHjhhXz55ZfMmjWL888/nypVqvDqq6/m2Qb79u2jT58+1KhRg3POOYdbbrklz/fgOxTXu3dv7r33\nXm644QbKli3LpEmTqFat2in1XLhwIY0aNcpu6wkTJnDhhRdSqVIlunfvzv79+/OsVyxS3Mb98yNe\n2+LYMXjsMWjXDgYOhE8+8T54gAWQiJLXcMiMGTP44IMPSElJ4euvv2b+/PmnaBBE5E/bReXdd99l\nzZo1rF27lkWLFvHKK69kH1u9ejV16tTh559/5rHHHivwWv71Wr16NY0aNWLfvn306NGDbt26sXbt\nWrZt28Zrr73G4MGDOXr0aK7Xuuuuuzh27BgbN27k559/5qGHHgr4Pb3xxhs8/vjjHD58mPvvv58y\nZcrw3//+N/v43Llz+dvf/gbAc889x+LFi0lOTmbv3r1UrFiRQYMGBXwvw4g0ycnQqBFs2QKpqU4P\nJFySpWIdQESCfxUVVeXmm2+mYsWK2a+sX+9vvfUWDz74IDVq1KBixYqMHDky37H3YMblhw8fToUK\nFahZsyYPPPAAb7yRs3J+9erVGTRoECVKlOCMM84o9LVr1apFr169EBG6devGnj17eOKJJyhdujTt\n27fntNNOIy0t7U/n7d27lw8//JAXX3yR8uXLU6pUqT/1OvLj5ptvpmXLlgCcfvrp9OjRI/t9/fbb\nbyxdupQePXoAMH36dP75z39SvXp1SpcuzahRo5g/f36uPbhYpbhrH3yJp7Y4eBDuvRd69nQS5PPn\nQ7Vq4a1Dsc6BRDIfKiIsWrQo1xzI3r17qVkzx2Pr/PPP96we/vfZs2dPrseKQpUqOdb2Z7rTPypX\nrnzKvsOHD//pvB9//JFzzjmH8uXLF/qeIsJ55513yr6ePXtyxRVX8MILL/DOO+9w6aWXZr+3HTt2\ncMstt5ySJylVqhTp6elUC/en0TACZPFiGDQIrr8eNmyAChUiU49i3QOJVqpVq8YPP/yQve37N0CZ\nMmU4cuRI9vZPP/1U5Hv536dGjRrZ2/kNjZUpUwbglCGoYOrhS82aNdm3bx8HDx7M9b6FvWf9+vW5\n4IILWLp0KXPnzqVnz57Zx84//3w+/PBD9u/fn/06evRoXAWPeB33Lwqx3hbp6dC9O/zjHzBnDsyY\nEbngARZAIkpeQ0/dunVj6tSp7N69m/379zNhwoRTvswbN27MvHnzOHnyJF9//TULFiwoch5k0qRJ\nHDhwgB9//JGpU6fSvXv3gM6rXLkyNWrUYM6cOWRkZPDKK6+wbdu2ItXBn2rVqnH99ddz3333ceDA\nAU6cOEFycjIAjRo14ttvvyU1NZVjx44xevToU87Nq0179uzJ5MmTWb58Obfffnv2/oEDBzJy5Mjs\nQPrLL7+weLG/aaZhRBZVmDXLO0FgUbEAEkFuuukmypUrl/267bbbAOjfvz/XXXcdjRo1olmzZtx2\n222nfDGOGTOGbdu2UbFiRUaPHp2dEM4ir2Din+QG6NKlC5deeilNmjThxhtv5O67786zrP++mTNn\n8vTTT1OpUiU2btzIlVdeme+9ChPk5syZQ+nSpbnooouoUqVKtj6mXr16PPHEE7Rr146//OUvtG7d\nOt8JBln06NGD5ORkrr32Ws4555zs/ffffz+dO3emQ4cOnH322bRs2ZLVq1cHXM9YIJ7G/YMlFtsi\nSxA4bZp3gsCiYkLCGGDHjh3Url2bkydPmqYhgsTTM2VEP4EKAouKrYVlGEaBxPq4fyiJlbZITYWW\nLeGDDxxB4MMPhzZ4hAoLIDGCeVEYRvyTJQhs3z68gsCiYkNYhhEg9kwZXpKcDP37O4ny557zXtNh\na2EZhmHEOFkOge+95wQOd9WemMCGsAwjzomVcf9wEG1t4esQuGFDbAUPCEMAEZGOIrJZRL4TkeF5\nlJnqHk8VkSY++yuIyHwR2SQiG0Wkhdf1NQzD8Jr0dOjWLTKCwOMZx3l57cshuZanAURESgLTgI5A\nA6CHiNT3K9MJuFBV6wL3AC/4HJ4CLFHV+sAlwCYv62sY8Ugsah+8ItJt4SsIrF07vILAI8ePMGXl\nFOpMrcOb374Zkmt6nQNpDqSp6g4AEZkHdOHUQNAZmA2gqqvcXkcV4BjQWlV7ucdOAn9e28IwDCMG\n2L4dBgyAffscQWCTJgWfEwoOHDvAtNXTmLpqKq0vaM3C7gtpVr0Z8vfgZ3Z6PYRVA/jRZ3uXu6+g\nMucBtYBfRGSWiKwVkZkicpantTVOYfny5Vx00UWRroYRJNE27h9JItEWJ0/CM89A8+aOonzVqvAE\nj/TD6Tz68aPUmVqH7/Z9R1LvJBZ0W0Cz6s1Cdg+vA0igcx79Q6Hi9I6aAv9W1abAEeDRENYt4iQm\nJtKwYUPKlClDtWrVuO+++3JdQDBc+Hukt27dms2bN0esPoYR60RCELjzwE4GLxlM/efr89sfv7Hm\nnjXMvnk2DSo3CPm9vB7C2g34rgleE6eHkV+Z89x9AuxS1a/c/fPJI4D07t2bhIQEACpUqEDjxo2D\nrrjXPPPMMzz99NO8+uqrXHvttezatYv77ruP9u3b88UXX1C6dOmQ3i9QS9pY0zmE27I26xds1lh6\nrGzHev1DtZ21z+v7tWjRljFj4Pnnk+jfH556qi0i3r6/Tb9s4sHpD/Llj19y3+33sXHQRjZ/vZkd\nKTtIaJtAUlISiYmJANnfl0Gjqp69cALUNiABOA1IAer7lemEkygHaAGs9DmWDNRz/x4NTMzlHpob\nee2PBg4ePKhly5bVt99++5T9hw8f1sqVK+srr7yiqqqjRo3S2267Tbt3767lypXTpk2bampqanb5\n3bt366233qqVK1fWWrVq6dSpU7OPZZ1755136tlnn60vv/yyrl69Wlu0aKEVKlTQatWq6eDBg/X4\n8eOqqtq6dWsVES1TpoyWLVtW33rrLf3000/1vPPOy77mBRdcoJMmTdJLLrlEy5cvr927d9djx45l\nH584caJWq1ZNa9SooTNnzlQR0W3btuXaBv/73/+0d+/eWr16da1YsaLefPPNqqo6a9YsbdWq1Sll\nfa/Tq1cvHThwoHbq1EnLlCmjEydO1KpVq2pGRkZ2+XfeeUcvueQSVVXNyMjQ8ePHa506dfTcc8/V\nbt266b59+wL8nzqVaH6mjOjhs89U69VTve021T17vL/f17u/1tvevE0rP1VZx3w2RvcdDez5dp/n\n4L7jg71AgTeA64EtQBowwt03ABjgU2aaezwVaOqzvxHwlbv/HaB8LtfPr3GikqVLl2qpUqVO+dLL\nolevXtqjRw9VdYJA6dKldcGCBXry5EmdNGmS1qpVS0+ePKkZGRnatGlTHTNmjJ44cUK3b9+utWvX\n1mXLlp1y7qJFi1RV9ffff9c1a9boqlWrNCMjQ3fs2KH169fXyZMnZ9/b/wvfP4AkJCTo5Zdfrnv3\n7tV9+/Zp/fr19cUXX8x+T1WrVtWNGzfq0aNH9W9/+5uWKFEizwDSqVMnveOOO/TAgQN64sQJTU5O\nVtXAAkj58uX1yy+/VFXVY8eOaZ06dfSjjz7KLt+1a1edOHGiqqpOnjxZW7Zsqbt379bjx4/rgAED\nstu3sETzM5Ufn376aaSrEDV42RYHDqgOHKhao4bqO+94dhtVVc3MzNTPdnymHeZ00BrP1NBnVzyr\nh/84XKhrhCKAeK5EV9WlwFK/fdP9tgfncW4qcJlXdZMng5+FoKMKP+Tz66+/UqlSpVyHXqpWrcra\ntWuzt5s1a8att94KwEMPPcQzzzzDihUrKF26NL/++iuPP/444NjH9uvXj3nz5tGhQwcArrjiCjp3\n7gzAGWecQdOmTbOve8EFF3DPPffw2Wefcf/99wdc96FDh1K1alXAWY4+JSUFcGx4+/btS/36zizt\nJ598krlz5+Z6jSzL2n379mW7DobCsrZdu3bZlrX/+te/AMeydtq0aVSvXh2AUaNGccEFF/Daa6/Z\nysZGyFi0yHEI7NTJW4dAVWXJd0sY9/k4J0ne6lEW37GY00ud7s0NC6BYL2VSlC//UFCpUiV+/fXX\nXMfv9+7de4rtq689a5Zd6549exAR9uzZQ8WKFbOPZ2RkcNVVV+V6LsDWrVt56KGHWLNmDUePHuXk\nyZM0a1a4GRlZwQMcS9q9e/dm17t58+Z53tsXs6wNL5HWPkQToW6L9HQYMgTWrYPXXvNO05GRmcH8\njfMZ//l4FGVEqxF0bdCVUiUi+xVuP8EiQMuWLTn99NNZsGDBKfsPHz7Mhx9+yLXXXpu978cfc2Y4\nZ2ZmsmvXLmrUqEHNmjWpVavWKVashw4d4v333wdyN1a69957adCgAWlpaRw8eJCxY8eSmZkZkvdU\nrVq1U+rq+7c/ZllrxDq+gsA6dbwTBGapxi96/iKmrJrC2GvGkjIghTsuviPiwQMsgESE8uXLM2rU\nKIYMGcKyZcs4ceIEO3bsoFu3btSsWZO77roru+yaNWtYuHAhJ0+eZPLkyZxxxhm0aNGCyy67jHLl\nyvHUU0/x+++/k5GRwYYNG/j666+B3GdTHT58mHLlynHWWWexefNmXnjhhVOOV6lSpdC2tFn36dat\nG7NmzWLz5s0cPXqUMWPG5HmOWdaGF9OB5BCKtti+3VluPcshcPz40DsE+qrG39r4Fi/d9BJf9P2C\nG+rdEFXWDhZAIsTDDz/MuHHjGDZsGOXLl6dFixZccMEFfPLJJ9lTeEWELl268Oabb3LOOefw+uuv\n884771CyZElKlizJ+++/T0pKCrVr16Zy5crcc889HDp0KPtc/wdt0qRJzJ07l7PPPpt77rmHO+64\n45Qyo0ePplevXlSsWJH58+fnaQ+bhe/xjh07MnToUK6++mrq1at3So4iN8yy1og1fAWB113njSDw\nwLED/DP5n9SaUovkH5JZ2H0hy+5cRpuENlEVOLIwP5Ao5sknnyQtLY05c+ZEuiqFZtOmTTRs2JDj\nx4/HTbI6Hp4po2ikpkK/flCunLPwYahNntIPp/PsymeZuXYmN9W7ieFXDqd+5foFnxgEZmkb58Ta\nl9XChQv5448/2L9/P8OHD6dz585xEzyM4onXDoG+qvHDxw+z5p41JN6c6HnwCBX26Y5iChpCijZm\nzJhBlSpVuPDCCylduvSfcixGZLAcSA6FaYvkZGjUCLZscXogd98Nofo4bvplE73f7U3TGU0pe1pZ\nNg7ayLRO00iokBCaG4SJyKfxjTwZNWpUpKtQKJYuXVpwIcOIcg4ehOHD4f33Q+8QuGbPGsZ/Pp7k\nnckMvXwoaUPSqHhmxYJPjFIsB2IYAWLPVPzjKwh86qnQCAJVleU/LGfs8rF8+/O3DLtiGP2b9qfM\naWWCv3gQmCe6YRhGCPBCEOirGv/5yM8Mv3J4RFXjXmA5EMOIcywHkoN/W3ghCMzIzODNDW/SZHoT\nRv53JEObD2XzoM30a9ovroIHWA/EMIxiyvbtcM89sH9/aBwCj2ccZ07qHCZ+MZFKZ1Vi7DVj6VS3\nU0xNhCkslgMxjACxZyo+OHkSpkxxFOTDh8ODDwZn8nTk+BFeWvsSk1ZMokHlBoxsNZKrLrgq6gOH\n5UAMT1m+fDn9+/c3V0IjbvAVBK5cGZymIy+v8eKE5UAiiFnaGuHAciA5gsA2bZK4997gBIG+XuNp\n+9L4rPdnIfcajxUsgESIZ555hkcffZRnnnmGQ4cOsXLlSnbu3En79u05ceJEyO+XkZERULlYG6IJ\n1WrCRvziKwh8+WXo27dogsBYV417QrCOVJF+EYOOhGZpa5a2hvccOKA6YEDwDoEbf96ovRb20nMm\nnqPDPxque3/bG7pKRhBiwdLW61csBhCztDVLW8Nb3n3XCRz9+6vu31+0axTVazxWsAASbABxpoEH\n9yoCc+bM0apVq+Z6bPjw4dq+fXtVdYJAy5Yts49lZmZqtWrVdPny5bpy5Uo9//zzTzl33Lhx2qdP\nn+xz27Rpk289nn32Wb3llluytwMJIK+//nr29iOPPKIDBw5UVdU+ffroyJEjs4+lpaXl2QPZs2eP\nlihRQg8cOPCnY4EEkF69ep1y/PHHH9e+ffuqquqhQ4e0TJky+sMPP6iqav369fWTTz455d6lS5fO\nNXgXRKwGkOLkif7TT6q3365at65qbm+7oLbw9Ro/71/n6eQVkwvtNR4rhCKAFO9ZWGqWtmZpa8QD\nqpCY6EzLvftumD27cCZPqqeqxh+98lHuvOTOuBP+hZriHUAihK+lra97Xpal7fjx47P35WVpW7Jk\nSWrVqsXWrVtzvUdelraXXnopb775JmXKlGHy5Ml/stUtKkW1tPUPIl5Y2s6aNSvb4Ko4Eu+e6IUR\nBPq3hb/X+MhWI+naoCslS5T0ttJxgs3CigBmaWuWtkbwBOMQmOU1Xv/5+kxdPTXba7z7xd0teBQC\nCyARwixtzdI2XMSjDiQ1FVq2hA8+cASBDz8cmJp86UdLs73G3974Ni91fonP+3wedV7jsYLnS5mI\nSEdgMlASeElVJ+ZSZipwPXAU6K2q69z9O4BDQAZwQlWb53Ku5vYe4mHZCbO0jS5i9ZlKSkqKm2Gs\nY8dgzBiYORMmTIA+fQLTdBw4doDnVz/PpDcmce3V1zKi1QgurX6p9xWOYqJ+KRMRKQlMA9oBu4Gv\nRGSxqm7yKdMJuFBV64rI5cALQAv3sAJtVXWfl/WMVmLty2rhwoV06tSJo0ePmqVtFBEvwSM5Gfr3\nd1bOTU2FQOZA+HuNf/n/fVm8hX8hxutPd3MgTVV3qOoJYB7Qxa9MZ2A2gKquAiqISBWf48W2X2mW\ntobhOAQOHAg9ezq9jvnzCw4ephoPD17PwqoB+E7H2QVcHkCZGkA6Tg/kYxHJAKar6kwP6xp1mKWt\nEQpieQjL1yFww4aCHQI3/bKJiV9M5L2t79G/aX82DtpI1bI5U89juS2iEa8DSKBjMHn9zG6lqntE\npDLwkYhsVtXl/oV69+5NQkICABUqVKBx48ZFqqxhFERWQjrrSygWtlNSUqKqPoFs16/fliFD4Msv\nkxg2DB54IP/y5eqVY/zn4/nk00+49aJb2TZ0GxXOqEBSUhKb2ZxdPiUlJSreXyS2k5KSSExMBMj+\nvgwWT5PoItICGK2qHd3tEUCmbyJdRF4EklR1nru9GWijqul+1xoFHFbVZ/z2x20S3Ygu7JnyHn9B\n4BNP5C0IVHW8xsctH8e3v3zLsJbD6Ne0X8S9xmOFqE+iA18DdUUkAdgDdAd6+JVZDAwG5rkB54Cq\npovIWUBJVf1NRMoAHYAnPa6vYRgRIlBBYG6q8UWXLDLVeCQIdi2Ugl4403O3AGnACHffAGCAT5lp\n7vFUoKm7rzaQ4r42ZJ2by/XzXOfFXvYK9SsWifa1sE6cUJ00SfXcc1WfesrZzo2TGSd13jfztNEL\njfSSFy7Red/M05MZJwt1r2hvi3DiPs/RvRaWqi4Flvrtm+63PTiX87YDRU5maDEcarAEYQ7WFrFB\nlkPg2Wfn7RBYHL3GY4W49UQ3DCN6CUQQGKte47FCLORADMMwTqEgQWCWanzq6qm0Pr8173Z/t9ir\nxqMVkwnHEfG45lFRsbbIIVraoiBBoK/X+Hf7viOpVxLzu80PafCIlraIFyyAGIbhOYsWwV//CpmZ\njiDwlluoqCftAAAgAElEQVRyjplqPHaxHIhhGJ6Rng5DhkBKCsyYAb7zGvxV4w+0eOAU1bjhLaHI\ngVgPxDCMkKMKs2Y5eY46dZxcR1bwWLNnDV3f6kqbxDZceM6FpA1JY0K7CRY8wsk334TkMhZA4ggb\n383B2iKHcLfF9u3Qvj1Mm+YIAsePhzPOUJJ3JtPxtY50mdeFVue34vv7v+fxqx6n4pkVC75oiCj2\nz8XKldC5M3ToEJLLWQAxDCMk5OYQ2Lix8sHWD2g1qxV3L76brg26sm3oNh5o8YAtORIuVOGjj+Ca\na6BHD7j+eifKhwDLgRiGETS+gsDp06FWbfMajziZmc7shXHj4MgRGDEC7rgDfBxPTQdiGEbE8BcE\n/u3vx3lt/Rw6PW+q8Yhx4gTMm+eMHZYpAyNHQpcu4IG5mw1hxRHFfnzXB2uLHLxqi+RkaNQItmyB\nFV8f4bcGU7jwuTq8tfEtZt40ky/6fhF1XuNx/VwcOwYvvAD16jkzGKZMgdWrnTnTHjmDWg/EMIxC\ncfCgs9z6++/DhMkH2Pn/nueKt6bS6vxWLOy+kGbVm0W6isWLQ4fgxRdh8mRo1gzmzoWWLcNya8uB\nGIYRMFkOgVfflE6lGyfz6rczuKneTQy/crgJ/8LNr7/C1Knw7387s6oefRQuuSTg0y0HYhhGWMgS\nBH713U4uG/U0H+ybS0/pyZp71pBQISHS1Ste7N7tTHdLTISuXfNexjgMWA4kjojr8d1CYm2RQzBt\nkSUIrH/VJjZd1JtDdzTlL7XKsnHQRqZ1mhZzwSOmn4u0NMdxq2FDZ/ubbxx5f4SCB1gPxDCMPNi+\nHe54aA3fVRmP9E6m+5VDGXRZWliFfwawfr0zxe2jj+C++2DrVqhUKdK1AiwHYhiGHydOKPc/u5yX\nNo/jrIQN/F+7YQxs1t+Ef+FmxQpHw7FmDTz4IAwY4AhtQoTlQAzDCBmqyvP/WcqIJePIODOd0d2G\n84925jUeVlTh44+dwLFjBzzyCLz9NpxxRqRrliuWA4kjYnp8N8RYW+RQUFtkZGYwZ92bVB3dhAfe\nH8Hf6g7h0NjNjOzYL+6CR9Q+F5mZsHChsw7M/fdD377OUNW990Zt8ADrgRhGsSXLa3z0xxP59YdK\nND0ylnVjO1G9evQI/+Ief9X4Y485ix16JPwLNZYDMYxiRpbX+NNfTEL+14Bj/xnJ9JFXceutFjjC\nxu+/O9PbnnoKatd2lhu59to/G8N7iOVADMMIGF+v8dqlWnF8zkJuubwZEz+GChUiXbtiQpZq/Nln\n4bLL4I03wqYa94KA+0kicpaI/MXLyhjBEbXjuxHA2iKHd5a+w4iPR1Bnah1Sd2+lSeqn/O/fC3h7\nSjOmTy9ewSNiz8Wvv8ITTzjuWikpjlHK4sUxHTwgwAAiIp2BdcAyd7uJiCwO8NyOIrJZRL4TkeF5\nlJnqHk8VkSZ+x0qKyDoReS+Q+xmG4ZDlNd5rYS8O/nGIRyuuIen+2TQ5rwGpqdCmTaRrWAzYvRse\neshZ4PCnn5ypuXPnFmrJkWgmoByIiKwFrgE+VdUm7r4NqnpxAeeVBLYA7YDdwFdAD1Xd5FOmEzBY\nVTuJyOXAFFVt4XP8IeBSoJyqds7lHpYDMQwffL3G+zXpx63VH+Sx+6uyfz+89BI0aVLwNYwgSUuD\niRNhwQLo08cJIjVqRLpWpxBOT/QTqnrAb19mAOc1B9JUdYeqngDmAV38ynQGZgOo6iqggohUARCR\n84BOwEuAZfgMIx/8vcY335vG/1s/kRvaVM12CLTg4THr1zuufy1bQvXqzlTcZ56JuuARKgININ+K\nyN+AUiJSV0SeA74M4LwawI8+27vcfYGWeRZ4mMCCVbHHxv1zKC5toZq71/hN5R+n0zUVWbIEpkxJ\n4uGHoZRNmfHuuVixAm66yfHybdrUWQfmySejZskRrwj0kRoCPAb8AbyBkwsZE8B5gY4t+fcuRERu\nBH5W1XUi0ja/k3v37k1CQgIAFSpUoHHjxrRt65yS9cDYdvHaziJa6hPq7TZt2rA0bSnDZw5n3+/7\neLLPkyy6YxGf/XcFA/p+xX/+05YJE6BWrSRSU1OA6Kp/pLZTUlJCdz1Vkp55Bl57jbYHD8Ijj5A0\nZAicdhpty5WLivfru52UlERiYiJA9vdlsHiqAxGRFsBoVe3obo8AMlV1ok+ZF4EkVZ3nbm/GedqH\nAncBJ4EzgLOBBar6d797WA7EKDZkZJ7qNT6i1Qi6NuhKqRKlSE6G/v2dxVqfew6qVYt0beMUX6/x\no0cdr/Hu3bO9xmOFUORAAk2iXwaMBBLI6bWoquY7lUBESuEk0a8F9gCryT+J3gKY7JtEd8u0AYap\n6k253MMCiBH3ZKnGJ37heI0/1vqxbK9xX4fA555zHEwND4hx1bg/4Uyivw7MAm4DbnJff5oR5Y+q\nngQG4wx5bQTeVNVNIjJARAa4ZZYA20UkDZgO3JfX5QKsa7HFf/imOBMvbXHk+BGmrJxCnam5e40v\nWgR//auzBt+GDbkHj3hpi1BQpLb4/XfH9a9uXUc9PnWq4zV+880xGzxCRaA5kF9UNSDdhz+quhRY\n6rdvut/24AKu8RnwWVHubxixiK9qPDev8SyHwJQUeP1103R4Qpypxr0g0CGsDkB34GPguLtbVfUd\nD+sWEDaEZcQT6YfTmbxyMjPWzuDGejcy/MrhNKjcIPu4quNkOnw43H23I24+88zI1Tcu8fUav+46\nx2s8ywUwjgjnWli9gL+45X2n1EY8gBhGPLDzwE6e/vJp5n4zlx4X98jVa3z7dsdTaN8+ZyUM03SE\nGF+v8dtvj6jXeKwQ6ABeM+AyVe2lqn2yXl5WzCg8NtadQ6y0xeZfN9P73d40ndGUsqc5XuPP3/D8\nKcHj5Enne615c+jQofCCwFhpi3CQa1ukpeVMXxNxvManT7fgEQCB9kC+BBoA33pYF8MoNqzZs4bx\nn48neWcyQy8fStqQ3L3GU1OhXz/HydR+EIeY9eudGVUff+x4jX/3HZx7bqRrFVMEmgPZDNQBvscR\nE0IA03jDgeVAjFhBVVn+w3LGLR/Hhp83MOyKYfRvmrvX+LFjMGYMzJwJEyY4yymF0SoivvH3Gh84\nEFzhX3EinDmQjsHcxDCKM6rK0rSljFs+jp8O/8SjrR5l0R15e437CgJTU00QGBJU4aOPnB7Hjh3O\nLIQo9hqPFfINICJytqoeAg6FqT5GECQlJWUvYVDciYa2yMjMYMGmBYxbPu5PqvHcOHjQmfDz3nuh\nFQRGQ1tEjMxMePddp8fx++8kdelC248+soXBQkRBrfgGcAOwlj8L+RSo7UWlDCOW8VeNj71mbLZq\nPC8WL4ZBg6BTJ0cQWJxMnjzhxAlHtzFhApQtC48/7qjGk5MteISQAnMg4jz1NVX1h/BUqXBYDsSI\nFrK8xietmESDyg0Y2WokV11wVb6Bw1cQOHOmCQKDJgq8xmOFcC5lsiSYmxhGPHPg2AHGJo+l9tTa\nJP+QzMLuC1l25zLaJLTJM3ioOt9zDRs6LqfmEBgkhw7lBI0PP3R6H//9L7RrZ8HDQwoMIO7P+zUi\n0jwM9TGCwOb75xCOtkg/nJ7tNb5131Y+7fUpC7otOGXJkdzYvt3Rc0yb5ggCx4/3Vk0e189Fltd4\n7dpOFP7Pf/L1Go/rtogAgfZAWgArRGS7iHzjvtZ7WTHDiFZ2HtjJkCVDqP98fQ79cYg196xh9s2z\nT1lyJDeCFQQaPuza5UzBrVfPGQdcudJZFCwOlxyJZgLVgSS4f2YVFgBV3eFFpQqD5UCMcLH5181M\n+HwC7219j/5N+/NAiweoWrZqQOf6CgJN5BwEMeA1HiuETQeiqjtE5FKgFc5aWF+o6tpgbmwYsUKg\nqvHcMEFgiDDVeFQS0BCWiDwBJALnAJWBWSLyfx7WyygCNr6bQ7BtkZfX+ONXPR5w8EhOhkaNYMsW\npwfSt29kgkdMPxdZXuMdO57qNV7E4BHTbRGFBDoh+k7gElU9BiAi44FUAvNFN4yYobCq8dzwShBY\nbDDVeMwQaA7kU+BWVd3vblfE8Se/xuP6FYjlQIxQUFjVeF5kCQKvv96ZVWqCwELgpxqPVa/xWCGc\na2EdAr4Vkf+42+2B1SLyHM5M36HBVMIwIkVRVOO5kZ4OQ4fCunUwZw4U15VDioSvarxMmRzVeDG3\ni40FAv0fWgiMBJKAT4HHgHeBNe7LiAJsfDeHgtqiIK/xQPEVBGZJEaIteETtc+HrNZ6YGBav8aht\nixgl0FlYifkdF5EFqnpbSGpkGB5SkNd4YTCHwCJiXuNxQ0A5kAIvIrJOVSPy8bEciBEIBXmNF4aT\nJ2HKFCfHO3y4o2ez9fkCwNdrvEMHZ6bBJRG3FCq2hDMHYhgxyc4DO5n05SRe/+b1PL3GC8P69XD3\n3eYQWCh27XIk+LNnm9d4nGFZqjjCxndzeHXRq/RZ1IemM5pS5rQyuXqNF4Zjx+Cxx5y1+e6919Gz\nxcp3YMSeiyyv8UsucXIaUeA1bp+R0OJ5ABGRjiKyWUS+E5HheZSZ6h5PFZEm7r4zRGSViKSIyEZX\ne2IY+bJ271puf/t2hi4dSp2KdUgbksaEdhMCXnIkN6JFEBgzrF8PPXo4eY3q1WHrVqcHYkuOxB+q\nGvQLuC6P/SWBNCABKA2kAPX9ynQClrh/Xw6s9Dl2lvtvKWAl0CqXe6hRvMnMzNTPdnym1825Tms8\nU0OfXfGsHv7jcNDXPXBAdeBA1Ro1VN95JwQVjXe+/FL1xhtVq1ZVfeop1UOHIl0jIx/c786gvvvz\n7YGISD0RSRSRf4lITRFZKiJH3J7CZT5BaFkel2gOpKnqDlU9AcwDuviV6QzMdq+zCqggIlXc7aNu\nmdPcYLQvv/oaxQtVZcl3S2g9qzV9F/Wla4OubBu6jQdaPECZ08oEde3Fi+HiiyEjw3EINDV5Hqg6\nS6hffTX07OlYKn7/PTz8MJQrF+naGR5T0BDWLOBLYC9OD2AWUAkYBkwL4Po1gB99tne5+woqcx6A\niJQUkRQgHfhUVTcGcM9iS3EZ383IzOCtb9+iyfQmjPhkBIObD2bz4M30a9ove8mRorZFerojfh42\nzBEEzpgR+2pyT56LzEx45x1nGu6DDzozC7ZudRJEUbzkSHH5jISLgmZhlVHVGQAiMkBV33L3fyQi\nTwdw/UDn1/qPKGeNTWUAjUWkPLBMRNqqapL/yb179yYhIQGAChUq0LhxY9q6aq6sB8a2Y3/7eMZx\nHnv5Md7Y8AbnNzqfsdeM5azdZyG/SvaSI/5fEIFev02btsyeDQ8+mMT110NqalvOPDO63n9Rt1NS\nUkJ3vY8/hk8+oe2iRVCmDEk33wxXXEHba66Jmveb33ZKSkpU1Sec20lJSSQmJgJkf18GS746EF99\nh7/WIxDth4i0AEarakd3ewSQqaoTfcq8CCSp6jx3ezPQRlXT/a71f8DvqjrJb7/m9x6M2KcoXuOF\nwVcQ+NJLJgjMFfMajzvC4Yl+UZYDIfAXHzfCb4C/BHD9r4G6IpIgIqcB3YHFfmUWA3+H7IBzQFXT\nRaSSiFRw95+Js/7WusDfmhHrFMVrvDCYQ2AAmNe4kQ8FDWHVd//tDHwO/I8/DzfliaqeFJHBwDKc\nJPjLqrpJRAa4x6er6hIR6SQiacARoI97ejVgtoiUwAl0c1T1k0DvXRxJSkrK7rrGMv6q8U97fVpo\n1XhBbVGcBIFFei78VePLlsWFajxePiPRQr4BRF3LWndW1FvAWuAVYFmg40aquhRY6rdvut/24FzO\n+wZoGsg9jPgg1Krx3DCHwALYvdvpliUmQteu8R9djaAIeC0styfQAegNNMMJKC+r6jbPahdYvSwH\nEuME4zVeGJYvd4TRF1/sGD1VqxbyW8Qu5jVe7AjrWliqmikiP+FMqc0AKgLzReRjVX04mEoYxZNg\nvMYLgzkE5kOW1/hHHzlOWFu3QqVKka6VESME6ol+v4isAZ4CvgAuVtV7gUuBWz2sn1EI/KewRiMa\nAq/xQMhqCxME5vFcZHmNX3fdqV7jcR48YuEzEksE2gM5B8fSdqfvTrdXclPoq2XEGxoCr/HCsG+f\nIwg0h0AfVJ1VIMeNc7zGH3nEvMaNoAiJH0gksRxIdOPrNZ6pmYxsPbJIXuOBouqsGj58uLPo4RNP\nwJlnenKr2CEzExYtcgLHkSOO1/gdd5jXeDHH/ECMqMXfa/yf1/yTG+oWzi62sPgKAj/80DQdf/Ia\nf+wx8xo3Qoo9SXFENIzv5uU1fmO9Gz0LHrkJAg8eTPLkXjGBn9d4Ut++nnuNxwrR8BmJJ6wHYoSE\nUHqNF4YsQWC5ciZZyNNrPCnJxC6GJ1gOxAiKUHqNFwYTBPpgXuNGEbAciBExdh7YydNfPs3cb+Z6\nphrPi+RkRxDYsKHjEFhsBYGmGjciTPEeEI0zwjG+u/nXzfR+t7fjNV46eK/xwnDwoGM30bOn0+uY\nPz/v4BHXY91ZXuMNGzrb33zjGJfkETziui0KibVFaLEeiBEQ4VKN58XixY5Q+vrrHUFgrJs8FYks\n1fjHH8N995lq3Ig4lgMx8kRVWf7DcsYtH8eGnzcw7Iph9G/aP2i72MKQng5DhzqCwBkziqkgcMUK\nR8Px9dfOGlUDBjjLCBtGEFgOxPCEcKvGc6/DqYLAxMRiJgg01bgRA1gAiSOC9TrIyMxg/sb5jP98\nfFhU43kRCkFgzPo+eKAaj9m28ABri9BiAcSIiGo8N06ehClTnGH+4cPhwQehVHF5Qk+cgHnznDdf\npoxjGdulS7EX/hnRjeVAijFee40XBl9BYD4TiuIPf6/xESPMLtYIC5YDMYpEpFTjuVFsBYF5qcYN\nI4aw/nEcUdAc9/TD6Tz68aPUmVqHrfu28mmvT1nQbUHEgkdyMjRqBFu2OILAvn1DFzyidr7/r786\nSwTXrg0pKY7X+OLFngaPqG2LCGBtEVqsB1IMyFKNv/7N6/S8uGdYVeO5USwdAk01bsQhlgOJYzb9\nsomJX0zkva3v0a9JPx5s+aAnXuOFwVcQ+NRTxUAQmJbmvNH586F3b/jHP8xr3IgKLAdi5EqkVeO5\n4SsILBYOgaYaN4oBlgOJE1SVKfOmcN1r13nqNV74ejmTjBo2dIb9U1PDEzwiNtbt7zW+bVvEvcZt\n3D8Ha4vQ4nkPREQ6ApOBksBLqjoxlzJTgeuBo0BvVV0nIjWBV4H/BygwQ1Wnel3fWENVWfLdEsZ9\nPo4d63bwZJ8nWXzH4rCqxvPCVxC4bFkcOwSaatwopniaAxGRksAWoB2wG/gK6KGqm3zKdAIGq2on\nEbkcmKKqLUSkKlBVVVNEpCywBrjZ91z3/GKZA4kW1XhuFBtBoHmNGzFMLORAmgNpqroDQETmAV0A\n3yDQGZgNoKqrRKSCiFRR1Z+An9z9h0VkE1Dd79xiR7SoxvMiNRX69Ytzh0BTjRsG4H0OpAbwo8/2\nLndfQWXO8y0gIglAE2BVyGsYIwTiNR7J8d1jx+Cxx6B9e8ez45NPIhs8PGmLY8fghRegXj0nsTNl\niuM1fsstUR08bNw/B2uL0OJ1DyTQsSX/n8/Z57nDV/OB+1X1cG4n9+7dm4SEBAAqVKhA48aNsxdM\ny3pgYnX7/f+8z8JNC3nv+Hu0vqA1j9d8nL9U+gttEtpERf2SkpJITYV//7stDRvCCy8kce65IBK5\n+vgSkusdOULbb7+FyZNJSkiAYcNoO2hQRN9fYbZTUlKiqj6R3E5JSYmq+oRzOykpicTERIDs78tg\n8ToH0gIYraod3e0RQKZvIl1EXgSSVHWeu70ZaKOq6SJSGngfWKqqk/O4R1zmQNIPp/PsymeZuXZm\nWL3GC0PcCwLNa9yIY0KRA/G63/01UFdEEkTkNKA7sNivzGLg75AdcA64wUOAl4GNeQWPeGTngZ0M\nXjKYi56/iN/++I0196xh9s2zoy54LF4MF18MGRmOQ2BcBY/dux3jpnr14KefnGTO3LkWPAzDD08D\niKqeBAYDy4CNwJuquklEBojIALfMEmC7iKQB04H73NOvBO4ErhaRde6ro5f1jSSbftl0itf4pkGb\nCu017j984wXp6dCtmyOonjPHWTk3GtXkRWqLtDS4556AvcZjhXA8F7GCtUVo8XxypaouBZb67Zvu\ntz04l/M+pxgIHaNRNZ4bqs4yTsOHO8uuz54dRw6B69c7SwF/9JGpxg2jENhaWBEgy2t87PKxfPvz\ntxHxGi8MvoLAl16KI0GgeY0bxZhY0IEYPviqxtMPp/Noq0ejRjWeG3EpCMxNNf7WW3HUnTKM8BH3\nQ0TRQEZmBm9ueJMm05sw4pMRDGk+hM2DN9Ovab+QBo9Qju+mpjoWFR984OSQH344toLHn9oiMxMW\nLoTmzeH++x3zka1bHdFKnAcPG/fPwdoitMTQV0LsEe2q8dyIO4dAU40bhmdYDsQDoslrvDAkJ0P/\n/s4kpOeeg2rVIl2jIDh2LMdrvFYt8xo3DD8sBxJlRJPXeGGIK0Hgb7/leI03a+boN8xr3DA8wfrx\nISBavMaLMr67aBH89a9xIAj09Rpft46kMWM89xqPFWzcPwdri9BiPZAgiDav8cKQng5DhjgOga+9\nFsMOgf5e4ytWOMI/+6IwDM+xHEgRiEav8UDxFwQ+8USMTkIyr3HDCArLgYSZWFGN58X27c5KHfv3\nx7BDoKnGDSNqsBxIAagqyTuT6fhax6jyGs+NvMZ3T550RnmaN3esuletisHgsXIldO7svIEmTQr0\nGrex7hysLXKwtggt1gPJg9xU44vuWBS1qvG8iGmHwCzV+Pjx8P33jmr8zTdjdMzNMOIPy4H4Ec1e\n44UhpgWB5jVuGJ5jOZAQEouq8bzwFQSmpsaQINBU44YRUxT7T2YgXuOxwvvvJzFwIPTs6fQ65s+P\nkeDhgde4jXXnYG2Rg7VFaCm2PZBYVY3nxeLFzrTcW25xBIHRaPL0J0w1bhgxTbHLgaQfTmfyysnM\nWDsjar3GC4OvIHDmzBgRBGZ5jb/wArRvb17jhhEBYsETPWrI8hqv/3x9Dv1xKGq9xgNF1RntadgQ\n6tRx5BFRHzz8vcZXrDCvccOIYeI+gPh6jZc9rSwbB20stNd4tLF9u/PDfdo0RxA4frwzszVqx3f9\nvcbXr/fcazxq2yICWFvkYG0RWuI2gKzZs4aub3WlTWIbLjznQtKGpDGh3YSYWXIkN2JOELh+vZPR\nb9nSyeZv3Qr/+hecd16ka2YYRgiIqxxIltf4uOXj2PDzhqj3Gi8MvoJAj3+8B8/KlY6G46uvzGvc\nMKIU04G4qCpL05Yybvk4fjr8U8yqxnPDVxA4frzjxBqVs4tNNW4YxY64GMLK8hof3HywJ17jkSI5\nGRo1gi1bnB7I3XfnHzwiMr7r7zXep09UeI3bWHcO1hY5WFuEFs97ICLSEZgMlAReUtWJuZSZClwP\nHAV6q+o6d/8rwA3Az6raMK97jL1mLJ3qdoo54V9eHDzoLLf+/vtR7BBoqnHDKPZ4mgMRkZLAFqAd\nsBv4Cuihqpt8ynQCBqtqJxG5HJiiqi3cY62Bw8CreQWQaPRED4ZFi2DQIOjUybG7iDpBoHmNG0Zc\nEAs5kOZAmqruABCReUAXYJNPmc7AbABVXSUiFUSkqqr+pKrLRSTB4zpGBVHvEGiqccMw/PB6vKEG\n8KPP9i53X2HLxC2hFAR6Mr7r5zXOhx/GhNe4jXXnYG2Rg7VFaPG6BxLo2JJ/N6pQY1K9e/cmISEB\ngAoVKtC4cWPaut/CWQ9MNG5v3w63357Eb7/BsmVtadIkiupXty488wxJM2dCmza0db3Gk5KSICkp\n8vUrYDuLaKlPJLdTUlKiqj6R3E5JSYmq+oRzOykpicTERIDs78tg8ToH0gIYraod3e0RQKZvIl1E\nXgSSVHWeu70ZaKOq6e52AvBePOVATp50FpwdP95Jlj/4IJSKlgnV/l7jDz1kwj/DiENiIQfyNVDX\nDQJ7gO5AD78yi4HBwDw34BzICh7xSNQ6BJrXuGEYhcTTHIiqnsQJDsuAjcCbqrpJRAaIyAC3zBJg\nu4ikAdOB+7LOF5E3gC+BeiLyo4j08bK+XnLsGDz2mLOG1cCB8MknoQ8e/sM3AVFIr/FYoUhtEadY\nW+RgbRFaPB84UdWlwFK/fdP9tgfnca5/byUmiTqHQFONG4YRAuJqLaxo4+BBx+rivfeiRBBoXuOG\nYbjEQg6k2OIrCIy4Q2CWanzCBDjrLFONG4YREuwbJMSkp0O3bjBsmCMInDEjfMHjT+O7/l7jkycH\n7TUeK9hYdw7WFjlYW4SW+P4WCSNR5RD422/w9NOO+G/pUkc1/t//Ohl8W3LEMIwQYTmQELB9u2N5\nsW8fvPRSBE2ezGvcMIwAMU/0COPrENihQwQdAnfvhn/8w7zGDcMIKxZAikhqqrMc1AcfOFKKhx+O\ngJrc12tclaTp02PArjA82Fh3DtYWOVhbhBYLIIUkHILAAsnLa7xy5TBXxDCM4ozlQAqBryDwueci\nIAg0r3HDMEKE6UDCREQFgaYaNwwjSrEhrAJYvBguvhgyMhxBYNiCRxG8xm18NwdrixysLXKwtggt\n1gPJA1+HwDlzwqjpMK9xwzBiBMuB+KEKiYmOT0ffvjBqVJhGi8xr3DCMMGI5kBDjKwhctixMmo5D\nhxyv8cmTzWvcMIyYwsZFiJAg0NdrPCUlJF7jNr6bg7VFDtYWOVhbhJZi3wMJu0Pg7t1OtEpMhK5d\no8yW0DAMI3CKbQ7k2DEYMwZmznTy1X37epxu8Pca/8c/oEYND29oGIaRN5YDKSJhdQg0r3HDMOKU\nYpUDOXjQkVH07Ol8p8+f72HwWLECbroprF7jNr6bg7VFDtYWOVhbhJZiE0DCIghUdXoaV1/tRKlO\nnZypXQ8/bEuOGIYRd8R9DiQ9HYYOhbVrnXyHJ4JA8xo3DCPGMD+QfPB1CKxVyyOHwBMnHJn6xRc7\nwQ+xhWMAAAcpSURBVGPkSKd7c9ddFjwMw4h7PA8gItJRRDaLyHciMjyPMlPd46ki0qQw5+bG9u2O\nnmPaNEcQOGFCiNXkv/8O//431K3rRKkpU6LCa9zGd3OwtsjB2iIHa4vQ4um3nYiUBKYBHYEGQA8R\nqe9XphNwoarWBe4BXgj0XH88FwQeOuRMxa1d2xH+vfFGVHmNp6SkRLoKUYO1RQ7WFjlYW4QWr6fx\nNgfSVHUHgIjMA7oAm3zKdAZmA6jqKhGpICJVgVoBnJvN+vVw990eCQKzvMb//W8nMi1bFpV2sQcO\nHIh0FaIGa4scrC1ysLYILV6Pt9QAfvTZ3uXuC6RM9QDOBRyHwHbtPHAI3L3bMW7K8hpfudK8xg3D\nMFy87oEEOsUrqPGfLVtCLAhMS4OJE2HBAkc1/s03MaEa37FjR6SrEDVYW+RgbZGDtUVo8XQar4i0\nAEarakd3ewSQqaoTfcq8CCSp6jx3ezPQBmcIK99z3f2xPQ/ZMAwjQkT7UiZfA3VFJAHYA3QHeviV\nWQwMBua5AeeAqqaLyP8CODfoBjAMwzCKhqcBRFVPishgYBlQEnhZVTeJyAD3+HRVXSIinUQkDTgC\n9MnvXC/raxiGYQROzCvRDcMwjMgQ1Ur0SIgQo5Ug2+IVEUkXkW/CV2PvKGpbiEhNEflURL4VkQ0i\nMjS8NQ89QbTFGSKySkRSRGSjiIwPb81DTzCfEfdYSRFZJyLvhafG3hHk98UOEVnvtsXqfG+kqlH5\nwhm2SgMSgNJAClDfr0wnYIn79+XAykDPjaVXMG3hbrcGmgDfRPq9RPi5qAo0dv8uC2wp5s/FWe6/\npYCVQKtIv6dItYW77yHgdWBxpN9PhJ+L74FzArlXNPdAskWIqnoCyBIS+nKKCBHIEiEGcm4sEUxb\noKrLgf1hrK+XFLUtqqjqT6qa4u4/jCNKrR6+qoecIreFu33ULXMazpfOvrDU2huCagsROQ/nS/Ul\ngpQVRAFBtYVLQG0QzQEkLCLEGCGYtog3itoW5/kWcGf3NQFWhbyG4SOotnCHbFKAdOBTVd3oYV29\nJtjPyLPAw0CmVxUMI8G2hQIfi8jXItI/vxtFcwAJiwgxRihqW8TjDImg20JEygLzgfvdnkisElRb\nqGqGqjbGCShXiUjbENYt3BS1LUREbgR+VtV1uRyPRYL97mylqk2A64FBItI6rwtEcwDZDdT02a6J\nEyXzK3OeWyaQc2OJorbFbo/rFQmCagsRKQ0sAF5T1Xc9rGc4CMlzoaoHgQ+AZh7UMVwE0xZXAJ1F\n5HvgDeAaEXnVw7p6TVDPharucf/9BViIMySWO5FO+OSTCCoFbMNJBJ1GwYmgFuQkSws8N5ZewbSF\nz/EE4iOJHsxzIcCrwLORfh9R0BaVgAru32cCycC1kX5PkWgLvzJtgPci/X4i+FycBZRz/y4DfAF0\nyPNekX6zBTTE9TgzZdKAEe6+AcAAnzLT3OOpQNP8zo3lV5Bt8QaOmv8PnHHPPpF+P5FoC6AVzhh3\nCrDOfXWM9PuJUFs0BNa6bbEeeDjS7yVSbeF3jTbE+CysIJ+L2u4zkQJsKOi704SEhmEYRpGI5hyI\nYRiGEcVYADEMwzCKhAUQwzAMo0hYADEMwzCKhAUQwzAMo0hYADEMwzCKhAUQwzAMo0hYADGMXBCR\nBBH53fVESBGRL0SkXoiu/YGInB2KaxlGJDEhoWHkgrta73uq2tDdvge4QlV7B3FNAVD70BlxgvVA\njGKPiFzmurKdLiJlRGQDzjpAvpQnH78MEektIotcx8OtIvKEuz9BRLaIyGzgG6Cm6/h2jntss4jM\ncsu8LiId3N7OVhG5zL1GGddVcpWIrBWRzh41hWEUilKRroBhRBpV/UpEFgP/xFlYcA5wGKgjIuuA\ncu7+FgVc6jLgr8DvwFci8gHwP+BC4C5VXQ0gIr49kDrAbcBG4Cugu6pe6QaJkcAtwGPAJ6raV0Qq\nAKtE5GPNMYQyjIhgPRDDcPj/gA44S5o/hbNy7zZVbaKqFwIPAjMKuMZ/VHW/qh4D3sFZvFGBnVnB\nIxe+V9Vv3WGtb4GP3f0bcFZTxa3Xo24w+xQ4nVOX4jaMiGA9EMNwqIQzbFUSp7fhz3vArHzO989r\nCDnudkfyOe8Pn78zgeM+f/t+Pm9V1e/yuY5hhB3rgRiGw3TgcWAuMDGX461wlr7OCwHai0hFETkT\nx4P6C0LjcLcMGJp9I5EmIbimYQSN9UCMYo+I/B34Q1XniUgJ4EvganJyIILTU+iXz2UUWI3jdnge\nMEdV17qzufx7J5rH33kdGwNMFpH1OD/6tgOWSDcijk3jNYwQICK9gUtVdUik62IY4cKGsAwjNCh/\n7k0YRlxjPRDDKAQich0wwW/3dlW9LRL1MYxIYgHEMAzDKBI2hGUYhmEUCQsghmEYRpGwAGIYhmEU\nCQsghmEYRpGwAGIYhmEUif8fHq0g8rWtPKEAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7e76a20>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEaCAYAAAA/lAFyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucVfP6x99PU6SLmki6Kd3IrQuSS8q1C8rlHCkccRBJ\njnAQP+VwIorkVkLlGqc40kXkNHItSekySTrR7ZRUkqRm5vn98V0zdtvMnj179p619prn/Xqt1+y1\n1net9Tx7rVnP/j6f70VUFcMwDMMoKRX8NsAwDMNITyyAGIZhGAlhAcQwDMNICAsghmEYRkJYADEM\nwzASwgKIYRiGkRAWQAyjjBGRp0Xkbr/tMIzSYgHESAoi0llE5ojIdhHZJCJZInJeKc6XJyJNkmDX\nPiLyg4hUiaNsOxGZLiJbReRHEZkrIn1Ka0M0qnq9qt6f7PMmExHpLSLficgOEXlTRDJjlD3Su9/b\nRGRNZHAUkdNE5CvvO90iIu+KyBER+8eLyG8i8rO3bBcRSbV/RnKwAGKUGhH5E/A6MB6or6oHAfcA\nCQeQ/FMnaI9EvIROBb5U1Z3FHHMi8D4wG2iqqgcA1wNdErEhxnUC/z8nIkcCo4FLgTrATuCpGIe8\nCHwIZAIdgX4RPx6WAl1VNdM715fA8xHHKjBMVat7y/5qvZvThsA/zIb/iMhtIjIpatsoERnprT4C\n/ENVn1fVnwFUdY6qXlvMeZuJyAfeL9cfRORVb/scr8gi71fpn0WkpohM9Wo3W0TkbRGpH3GuLBG5\nX0Q+Bn4BDvV2dQOmi0im9+v4XK98NRFZKSKXeeUeBsar6sOqusXzYYGqXlKMD51EZK2I3On58F8R\n6R2xf7yXspouIjuA07xt90Udf5vn23oROV9EuonICq8mdEfE+URE7vBs3ywir8WqHSTIpcAUVf1I\nVX8B/g+4UESqFlH+COBldawCPvK2oaqbVHWdV64CkAdsiDreahzpiqraYkvMBTgY2AHU8NYrAhuB\nNsDhuJdCowTO+ypwp/d5H+CkiH15QJOI9VrABUBloBquxvNmxP4sYDXQEveiquhtzwaae5/Pwr28\nagNjgde97VWAHKBjAj50AvYAw4FKuBrPDqCFt388sA040VvfFxiHC7iRx98NZABXA5uBl4GquBfx\nzvzvF7gJ+ASo511vNPBKEbYdAmyNsVxSxHH/Bm6L2rYdaFNE+SnAA95zcTiwBji2EDtyga+AAyL2\njQN+9Jb5wIV+P++2lOD599sAW9JjAWYAV3ufzwWWeJ9P9l72+yRwzgnAGFzaK3rfXgGkkP2tgS0R\n67OBIVFlmgLfRG0bBSz2XnKZ3rb63vVaJOBDfgDYL2Lba8Dd3ufxuJpN5DHjgPsijt8JiLde3bPl\n+Ijy84Hu3uds4PSIfXWB3UCFJN7rWcC1UdvWAqcWUb4psMr7HvKAwUWUy8Slu96K2NbG214B6OoF\nqpNK64MtZbNYCsuIlwlAfrrnMtyLANwvR3AvspLyd1z6Yp6ILBGRK4sqKCJVRGSMiKwWkZ+AD4Aa\nUYLrmqjDugHTo7aNBY7EvdS3etu24l58ifgAsFVVf41Y/y7iXFqIXdH8qN7bFMg/z8aI/b/ial0A\njYA3PVF6K7AMV3uqk6DthbEDqBG1rQbwc3RBr3HCf3Ca175AQ6CLiFwfXdb7vm8FzhOR/b1tX6rq\nVlXNU9UZuJrXhUn0xUghFkCMeHkLOEZEjgLOwf2jA3yNe0H+qaQnVNWNqnqtqtYH+gJPxWh5dQvQ\nAminqjVwYq2wd/48WnzdK4CISAbwDPACcIOINPXs2Al8mogPHplRrbwaAeuLOSZRofh7oIuqZkYs\nVVQ1WldARA6JaN1U2NKriGssBVpFnKcpLsW4opCyRwLVVfUlLwisw9XAuhVx7kq4YP1b/C4bQcUC\niBEX3i/sycArwFxVXettV2Ag8H8i0kdE9heRCiJyioiMiXVOTxxv4K1uw71U87z1jbjUSD7VcL/E\nfxKRWsDgwk4Zce4qwPG41FY+g3B5+CtxovkLEa2i/g70EZFbReQA7xyt8oX9OLhXRCqJSAdcgP1X\ntE1RdiYqHI8GhorIIZ6NtUWke2EFVfV7/b11U2FLUb69jKslnOIJ5/cBk9UJ6tGsBPYRkV7efT8Y\n6Aks8uy7UERaePtq4xpcTFfV37z9f/IaNFQQkbPxBPwEvxujjLEAYpSECcBR/J6+AkBVJ+NeGlcB\n64D/Af/AibGxOA74TER+xtVwBqjqam/fEGCCl6r5EzAS2A8nMH+C02Sif8VHrp8OfKKquwFE5Fjg\nZuAvXtAb5pW/3fPhU++Y04FvReRHnD4zrRgf8Pzdiqt1vAj0VdX8X+tahJ0atV6UH9E8hnvBvisi\n23E1p3Zx2Bg3qroMuA4XSDbivvd++fu9VmVPe2W3An8GbsN9B1/ihPL8fi71gHdw2sYCr8wVEZcb\ngNNXtuLuydWqOgcjLcgX7lJ3AZEuuH/+DOBZVR1WSJlROAFtJ9BHVb8UkcOAiRHFmgD/p6qjUmqw\nUSQi0hBYDtRR1R1+2xMLEXkSWKyqo1N8nU7Ai6raMJXXMYwgUjGVJ/dyzk8AZ+J+mX4uIlNUNTui\nTDegmao2F5ETgKeB9qr6Na6FRn7nq3XAm6m01yga7x7cArwa9ODhsRBLhRhGSkl1CqsdsFJVV6vq\nHlyNokdUme641AiqOheoKSLRLUrOBL5V1eJasxgpwMuDbwfOoHDtIdaxo4sQcGP1bC41qjpWVTcW\nX7J4RGRQET5Mo/AUlWGUC1JaA8G1r4986a8FToijTAP2bsZ4CU68NXzAE0+rFVuw8GOvw+XT0xZV\nHQoMjVHkkLKyxTCCRKprIPH+MotukVJwnIjsgxtT6V8YhmEYgSHVNZB1uI5F+TTE1TBilWngbcun\nK/CFqv5Q2AVExNIHhmEYCaCqpRqHLNU1kPlAcxFp7NUkevJHYXMK8BcAEWkPbIvKXffCjZlUJH53\n50/lMnjwYN9tMP/Mv/LmW3nwLxmktAaiqjki0h+YiWvG+5yqZotIX2//GFWd7o08uhI3imrBcBae\neHsmcE0q7Qwyq1ev9tuElGL+pS9h9g3C718ySHUKC3Xj28yI2jYmar1/Ecf+AhyYOusMwzCMRLGe\n6AGnT58+fpuQUsy/9CXMvkH4/UsGKe+JnmpERNPdB8MwjLJGRNCAi+i+ISK22JL0paRkZWUl/+EO\nCGH2DcLvXzJIuQbiJ1YzMZJJIgHEMMJMaFNYImIBxEgq9kwZYcJ7ni2FZRiGYZQ9FkAMI4WEOY8e\nZt8g/P4lAwsgIeP777+nevXqBamWTp068dxzzwHw8ssv07lz54KyFSpUYNWqVXGfO/p4wzDKN6aB\n+ETjxo3ZtGkTGRkZBduuvPJKRo1K7nxZp512GpdffjlXXXXVH/ZVqFCBlStX0qRJUdOQG5EE/Zky\njJKQDA0k1K2wgoyIMHXqVE4//XS/TYmL3NzcvYJdupCXl0eFClbRNoxUYP9ZASQvL49bb72V2rVr\n07RpU5588kkqVKhAXl4e4Gov77//fkH5IUOGcPnllwNu/J7IspGMHz+eDh067LVt2rRpNG3alNq1\na/P3v/+94Bf2+PHjOfnkkxk4cCAHHnggQ4YM2ev4wq4TmS6LPD4zM5NmzZrxySefMG7cOA455BDq\n1KnDCy+8UOR3sGXLFq688krq169PrVq1uOCCC4r0ITIV16dPH66//nrOOeccqlWrxvDhw6lbt+5e\ndr755pu0atWq4Lt+8MEHadasGQceeCA9e/Zk69atRdpVUsKcRw+zbxB+/5KBBRAfKSod8swzzzBt\n2jQWLlzI/PnzmTRp0l59EKI7tZWmf8K///1vvvjiCxYsWMBbb73F888/X7Bv3rx5NG3alE2bNnHX\nXXcVe65ou+bNm0erVq3YsmULvXr14uKLL2bBggV8++23vPTSS/Tv35+dO3cWeq7LL7+cXbt2sWzZ\nMjZt2sTAgQPj9unVV1/l7rvvZseOHdx0001UrVqV//znPwX7X3nlFS699FIAHn/8caZMmcKcOXPY\nsGEDmZmZ3HDDDXFfyzDKM+U6gIiUfkkUVeX8888nMzOzYMn/9f76669z8803U79+fTIzMxk0aFDM\n3Htp8vK33347NWvWpGHDhvztb3/j1Vd/Hzm/Xr163HDDDVSoUIHKlSuX+NyHHnooV1xxBSLCxRdf\nzPr167nnnnuoVKkSZ511Fvvssw8rV678w3EbNmzgnXfeYfTo0dSoUYOKFSv+odYRi/PPP58TTzwR\ngH333ZdevXoV+PXzzz8zY8YMevXqBcCYMWO4//77qVevHpUqVWLw4MFMmjSp0BpcInTq1Ckp5wki\nYfYNwu9fMijXGoifeqiI8NZbbxWqgWzYsIGGDX+fY+uQQ1I3Y2r0ddavX1/ovkSoU+f3qe33228/\nAGrXrr3Xth07dvzhuDVr1lCrVi1q1KhR4muKCA0aNNhrW+/evTnppJN4+umneeONNzj22GMLfFu9\nejUXXHDBXjpJxYoV2bhxI3Xr1i3x9Q2jPFGuayBBpW7dunz//fcF65GfAapWrcovv/xSsP6///0v\n4WtFX6d+/foF67FSY1WrVgXYKwVVGjsiadiwIVu2bOGnn34q9LolvWbLli1p1KgRM2bM4JVXXqF3\n794F+w455BDeeecdtm7dWrDs3LkzacEjzHn0MPsG4fcvGVgA8ZGiUk8XX3wxo0aNYt26dWzdupUH\nH3xwr5d569atmThxIjk5OcyfP5/JkycnrIMMHz6cbdu2sWbNGkaNGkXPnj3jOq527drUr1+fF198\nkdzcXJ5//nm+/fbbhGyIpm7dunTt2pV+/fqxbds29uzZw5w5cwBo1aoVS5cuZdGiRezatYshQ4bs\ndWxR32nv3r0ZOXIkH374IX/+858Ltl933XUMGjSoIJD+8MMPTJkSPWmmYRiFYQHER8477zyqV69e\nsFx00UUAXHPNNXTu3JlWrVpx3HHHcdFFF+31Yrzvvvv49ttvyczMZMiQIQWCcD5FBZPCRpTt0aMH\nxx57LG3atOHcc8/lr3/9a5Flo7eNHTuWhx9+mAMPPJBly5Zx8sknx7xWSYLciy++SKVKlTj88MOp\nU6dOQf+YFi1acM8993DmmWdy2GGH0aFDh5gNDPLp1asXc+bM4YwzzqBWrVoF22+66Sa6d+/O2Wef\nzf7778+JJ57IvHnz4razOMKcRw+zbxB+/5KBdSRMA1avXk2TJk3IycmxPg0+EqZnyjBsMEXDCDhh\nzqOH2TcIr3+bd27mhmnJaapuASRNsLkoDMMoDbtzd/Pop4/S8smWZFRIzqgSlsIyjDixZ8pIR1SV\nqSumcsu7t9CsVjNGnD2ClrVb2lhYhmEYRtEs2bSEgTMHsmb7Gh7r8hhdm3dN6vkthWUYKSSseXQI\nt2+Q3v5t3rmZftP6cfqE0zmvxXl8dd1XSQ8eUAYBRES6iMhyEflGRG4voswob/8iEWkTsb2miEwS\nkWwRWSYi7VNtr2EYRroSqXNUqlCJ5f2Xc+MJN1Ipo1JKrpdSDUREMoCvgTOBdcDnQC9VzY4o0w3o\nr6rdROQE4DFVbe/tmwB8oKrPi0hFoKqq/hR1DdNAjDLBnikjqBSlc8QiHTSQdsBKVV0NICITgR5A\ndkSZ7sAEAFWd69U66gC7gA6qeoW3Lwf449gWhmEY5ZhU6xyxSHUKqz6wJmJ9rbetuDINgEOBH0Rk\nnIgsEJGxIlIlpdYae/Hhhx9y+OGH+21GWpPOefTiCLNvEHz/ykrniEWqA0i89f3oapTiakdtgadU\ntS3wC3BHEm3znfHjx3P00UdTtWpV6tatS79+/QodQLCsiJ4jvUOHDixfvtw3ewzD+CNlrXPEItUp\nrHVA5JjgDXE1jFhlGnjbBFirqp972ydRRADp06cPjRs3BqBmzZq0bt261IanmhEjRvDwww/zwgsv\ncMYZZ7B27Vr69evHWWedxccff0ylSsl9GOKdkjbdcvxlPWVt/q/S/HGSilvP3xZv+XRa79SpU6Ds\nCbt/qsoDLz7AU/Of4pgTjmFOnzlsXLqRr+Z+FdfxWVlZjB8/HqDgfVlqVDVlCy5AfQs0BvYBFgIt\no8p0A6Z7n9sDn0XsmwO08D4PAYYVcg0tjKK2B4GffvpJq1Wrpv/617/22r5jxw6tXbu2Pv/886qq\nOnjwYL3ooou0Z8+eWr16dW3btq0uWrSooPy6dev0wgsv1Nq1a+uhhx6qo0aNKtiXf+xll12m+++/\nvz733HM6b948bd++vdasWVPr1q2r/fv31927d6uqaocOHVREtGrVqlqtWjV9/fXXdfbs2dqgQYOC\nczZq1EiHDx+uxxxzjNaoUUN79uypu3btKtg/bNgwrVu3rtavX1/Hjh2rIqLffvttod/Bjz/+qH36\n9NF69eppZmamnn/++aqqOm7cOD3llFP2Kht5niuuuEKvu+467datm1atWlWHDRumBx98sObm5haU\nf+ONN/SYY45RVdXc3Fx94IEHtGnTpnrAAQfoxRdfrFu2bInzTu1NkJ8pI9ws3rhYz3rhLD38icN1\n+orpSTmn9zyX7h1f2hMUewHoimuJtRK409vWF+gbUeYJb/8ioG3E9la4lluLgDeAGoWcP9aXE0hm\nzJihFStW3Oull88VV1yhvXr1UlUXBCpVqqSTJ0/WnJwcHT58uB566KGak5Ojubm52rZtW73vvvt0\nz549umrVKm3SpInOnDlzr2PfeustVVX99ddf9YsvvtC5c+dqbm6url69Wlu2bKkjR44suHb0Cz86\ngDRu3FhPOOEE3bBhg27ZskVbtmypo0ePLvDp4IMP1mXLlunOnTv10ksv1QoVKhQZQLp166aXXHKJ\nbtu2Tffs2aNz5sxR1fgCSI0aNfSTTz5RVdVdu3Zp06ZN9b333iso/6c//UmHDRumqqojR47UE088\nUdetW6e7d+/Wvn37Fny/JSWRZ2r27NkJXSsdCLNvqsHw74dfftDrp16vtR+qraM+G6W7c3Yn7dzJ\nCCAp74muqjOAGVHbxkSt9y/i2EXA8amyTe4t/fhSOrjkKZ/Nmzdz4IEHFpp6Ofjgg1mwYEHB+nHH\nHceFF14IwMCBAxkxYgSffvoplSpVYvPmzdx9992Amz726quvZuLEiZx99tkAnHTSSXTv3h2AypUr\n07Zt24LzNmrUiGuvvZYPPviAm266KW7bBwwYwMEHHwy44egXLlwIuGl4r7rqKlq2dE0H7733Xl55\n5ZVCz5E/Ze2WLVsKZh1MxpS1Z555ZsGUtY888gjgpqx94oknqFevHgCDBw+mUaNGvPTSSzaysRFY\ndufu5sl5TzL0o6H0Pqo3y/svp9Z+tYo/sIwp10OZJPLyTwYHHnggmzdvLjR/v2HDhr2mfY2cnjV/\nutb169cjIqxfv57MzMyC/bm5uZx66qmFHguwYsUKBg4cyBdffMHOnTvJycnhuOOOK5Ht+cED3JS0\nGzZsKLC7Xbt2RV47kvI0ZW2Y55QIs2/gj3+qyrRvpnHLu7fQNLMpc/rMKbY/h5/YTzAfOPHEE9l3\n332ZPHnyXtt37NjBO++8wxlnnFGwbc2a31s45+XlsXbtWurXr0/Dhg059NBD95qKdfv27UydOhUo\nfGKl66+/niOOOIKVK1fy008/8c9//pO8vLyk+FS3bt29bI38HE2Ypqw1jGSxdNNSOr/Umdveu42R\nnUcy/dLpgQ4eYAHEF2rUqMHgwYO58cYbmTlzJnv27GH16tVcfPHFNGzYkMsvv7yg7BdffMGbb75J\nTk4OI0eOpHLlyrRv357jjz+e6tWr89BDD/Hrr7+Sm5vLkiVLmD9/PlB4a6odO3ZQvXp1qlSpwvLl\ny3n66af32l+nTp0ST0ubf52LL76YcePGsXz5cnbu3Ml9991X5DHlacraoPclKA1h9g3Kzr/8+TlO\nm3Cab/05EsUCiE/cdtttDB06lFtvvZUaNWrQvn17GjVqxPvvv1/QhFdE6NGjB6+99hq1atXi5Zdf\n5o033iAjI4OMjAymTp3KwoULadKkCbVr1+baa69l+/btBcdG10CGDx/OK6+8wv7778+1117LJZdc\nsleZIUOGcMUVV5CZmcmkSZOKnB42n8j9Xbp0YcCAAZx22mm0aNFiL42iMMIyZa1hJEr0/Bx+9udI\nFJsPJMDce++9rFy5khdffNFvU0pMdnY2Rx99NLt37w6NWB2GZ8rwn0ido0lmEx45+xFfUlXpMBaW\nUQrS7WX15ptv0q1bN3bu3Mntt99O9+7dQxM8DCMZLN20lJtn3sya7WsY2Xlk2qSqisL+uwNMcSmk\noPHMM89Qp04dmjVrRqVKlf6gsZRHwqwThNk3SK5/6axzxMJqIAFm8ODBfptQImbMmFF8IcMoR0T2\n5+h1VC+yb8jmgCoH+G1W0jANxDDixJ4pI16ConPEwjQQwzCMgBE2nSMWpoEYRgoJs04QZt+g5P6F\nVeeIhQUQwzCMUhDdnyP7huy068+RKKaBGEac2DNlRJIOOkcsTAMxUsqHH37INddcY7MSGkYU5Unn\niIWlsHzEprQNP2HWCcLsGxTuX3nUOWJhAcQnRowYwR133MGIESPYvn07n332Gd999x1nnXUWe/bs\nSfr1cnNz4yqXbimaZI0mbBixKM86R0xKOyOV3wtpOCOhTWlrU9oa6UFeXp6+/fXb2uLxFtrlpS66\nbNMyv01KGqTDlLapXtIxgNiUtuVnSlsjfVmycUnS5yEPEskIIOU7hSVS+iUBipvSdvPmzQXr+VPa\nZmRkMHDgQHbt2sWnn37K559/XjClbcWKFfea0jafwqa0bdeuHRUqVNhrStuSkD+lbWZmZpFT2u63\n337ce++9+QH+D+RPaTt69Ghq1KhBxYoVkzKlLVAwpW2vXr0AN6Xt/fffT7169ahUqRKDBw9m0qRJ\nZZb6CrNOEFbf8nWOk+852XSOYijfrbCKeMGlGpvStvxMaWukD9HjVk04fwI9Tujht1mBpnzXQHzC\nprQtP1Pahnne8LD4pqpMXTGVo58+mndXvcucPnMY1XUUPbpY8CgOCyA+YFPalp8pbY1gEz0P+YxL\nZ6RVZ0C/sQDiEzalbfmY0jasOgGkt2/x9OdIZ//KipQPZSIiXYCRQAbwrKoOK6TMKKArsBPoo6pf\nettXA9uBXGCPqrYr5FgtzIcwDDthU9oGi0SeqaysrNCkeqJJR9+idY7BHQcXOT9HOvpXEgI/lImI\nZABPAGcC64DPRWSKqmZHlOkGNFPV5iJyAvA00N7brUAnVd2SSjuDSroFQJvS9o+E+QWUTr6p7j1u\n1Zw+c4pNVaWTf36R6v/udsBKVV2tqnuAiUC0MtUdmACgqnOBmiJSJ2J/+szpmmRsSlvDKD2mc6SO\nVAeQ+kBkc5y13rZ4yygwS0Tmi8g1KbMyoAwePJgXXnjBbzPiZsaMGWzbto0ff/yRyZMnU6dOneIP\nCjlhzqMH3bfSjlsVdP9Kw7JlyTlPqvuBxJuDKepn9imqul5EagPvichyVf0wulCfPn1o3LgxADVr\n1qR169YJGWsYxZH/UslPbxS3nt/RMt7ytl769T25e1hSZQlDPxpKh7wOjG01tqA/RxDs82s9KyuL\n4cPH89VX8OOPjUkGKRXRRaQ9MERVu3jrdwJ5kUK6iIwGslR1ore+HOioqhujzjUY2KGqI6K2h1ZE\nN4KFPVPBJlrnSLf5OVKFKnzwAQwdCtnZcNttcPXVULVqwEV0YD7QXEQaA+uBnkCvqDJTgP7ARC/g\nbFPVjSJSBchQ1Z9FpCpwNnBviu01DCMNsfk5/ogqTJvmAsfmzXDHHXDZZbDPPkm9SMoHO+wKfA2s\nBO70tvUF+kaUecLbvwho621rAiz0liX5xxZy/iIHCrPFlmQvJWX27NklPiZdCIJvP/zyg/ab2k9r\nP1RbR302Snfn7E7auYPgXyLk5Ki++qrqMceotmql+tprbls03vNcqvd7ysfCUtUZwIyobWOi1vsX\nctwqIGExQ0OSagh7W/Sw+2ekhuj+HNk3ZBfZn6O8sHs3vPgiPPggHHQQPPAAdO2a8JivcRHaOdEN\nwwgfajrHH/jlF3j2WRg+HI44AgYNglNPLT5wBL4joWEYRrIwnWNvtm2DJ5+EUaPglFPgzTehhINr\nl5ry3U04DQhzW3Qw/9KZsvLNr3nIg3rvNm1ytYymTeHrr2H2bJg8ueyDB1gAMQwjoNg85Hvz/fcw\nYAAcfrirfcyfDy+84NJWfmEaiGEYgcJ0jr1ZsQKGDYN//xv++le4+WZIxnQ2poEYhhEqTOf4nYUL\nXUuq2bOhf3/45huImKkgEFgKK+AENQ+bLMy/9CWZvvmlc8TCr3v38cdwzjnQrRu0awerVsE99wQv\neIAFEMMwfMR0DocqvPsudOwIl18O3bu7wHHLLVCtmt/WFY1pIIZhlDmmczjy8py2MXQo/Pqra13V\nsydULANxwTQQwzDSDtM5YM8eePVV12u8WjW4+25X60i3+dfSzNzyR5hz6GD+pTMl9S2IOkcsUnHv\ndu2Cp5+GFi1g/HjXCXDuXDj//PQLHmABxDCMFGM6B/z8Mzz8MDRpAjNmwCuvwH/+A2eemdqxqlKN\naSCGYaQE0zngxx9dLeOpp1ywuPNOOOYYv61ymAZiGEYgKe86x/r1MGIEjBsHF10En3wCzZv7bVXy\nsRRWwAlzDh3Mv3SmMN/STeeIRSL3btUquO46OOoo18Lqq69g7NhwBg+wAGIYRhIo7zrHkiVutr92\n7eDAA90gh48+Cg0a+G1ZajENxDCMhCnvOse8eW64kU8/hb/9Da6/HmrU8Nuq+DANxDAM3yivOocq\nZGW5zn8rVsBtt8HLL0OVKn5bVvZYCivghDmHDuZfOpKvc5x8z8mc2+LctNY5YhF971Th7bfhpJOc\nztG7txvgsH//8hk8wAKIYRhxEq1zTDh/AgNOGBB6nSM31/Uab9XKDWo4cCAsWwZXXgn77OO3df5i\nGohhGDEprzrHb7/Biy+6uTjq1IG77oIuXdK7418kpoEYhpFSyqPO8csvruntiBFw5JHw/PPQoYPf\nVgWTuFP6hjKTAAAgAElEQVRYIlJFRA5LpTHGHwljDj0S8y+YxNOfI119K4pt2+D++91wIx99BHff\nncU771jwiEVcAUREugNfAjO99TYiMiXOY7uIyHIR+UZEbi+izChv/yIRaRO1L0NEvhSRt+O5nmEY\niVMe+3Ns3OiGGGnaFFaudC2sJk2Cw8L8c3nWrKScJi4NREQWAKcDs1W1jbdtiaoeVcxxGcDXwJnA\nOuBzoJeqZkeU6Qb0V9VuInIC8Jiqto/YPxA4Fqiuqt0LuYZpIIZRSsqjzvHddzB8uGuC27s33Hor\nNG7st1Up5ptv3CxVS5ciq1aVWgOJN4W1R1W3RW3Li+O4dsBKVV2tqnuAiUCPqDLdgQkAqjoXqCki\ndQBEpAHQDXgWCIl0ZRjBYummpXR+qTO3vXcbIzuPZMalM0IdPL7+2rWgatvWNb9dtgyeeCLkwWPb\nNhc4TjzR5eSWLUvKaeMNIEtF5FKgoog0F5HHgU/iOK4+sCZifa23Ld4yjwK3EV+wCiVhyzNHY/75\nR2nHrQqyb4Xx5Zdw8cXu/dmkiUtXDRsGBx9cePl0869QcnLcBCSHHw47dsDSpa7n4777JuX08bbC\nuhG4C/gNeBWnhdwXx3Hx5paiaxciIucCm1T1SxHpFOvgPn360Nj7+VCzZk1at25Np07ukPyHIF3X\nFy5cGCh7zL/0929P7h6WVFnC0I+G0iGvA2NbjaXHCT0CY1+y1xcvhhkzOrFoEZx/fhYTJkDXrsGx\nL2Xrs2aRdc01UKMGnWbOJGvrVsbf7mToxkmqbqW0H4iItAeGqGoXb/1OIE9Vh0WUGQ1kqepEb305\n0AkYAFwO5ACVgf2Byar6l6hrmAZiGHFQnnQOVZg50w03sm4d3H47XHFF0n54B5t8nWPZMify9OhR\naOeVZPQDiVdEPx4YBDTm91qLqmrMqVFEpCJORD8DWA/MI7aI3h4YGSmie2U6Areq6nmFXMMCiGEU\nQ2R/jkfOfiS0/Tny8uDNN13g+O03GDTIpa0qloceb9u2wX33wYQJLmIOGBAzYiYjgMSrgbwMjAMu\nAs7zlj+0iIpGVXOA/riU1zLgNVXNFpG+ItLXKzMdWCUiK4ExQL+iThenraEiv0oaVsy/1JLK+Tn8\n9i2SPXvce/PII+Ghh2DwYDcXR+/eiQePIPkXkxTrHLGI96v9QVXj6vcRjarOAGZEbRsTtd6/mHN8\nAHyQyPUNozyyO3c3T857kqEfDaXXUb3IviGbA6oc4LdZSefXX11P8Ycfdv04nngCTj89PMONFMus\nWXDzzW4Skpkz3YBdZUi8KayzgZ7ALGC3t1lV9Y0U2hYXlsIyjN8pLzrH9u0werSbtKldO9cRsH37\n4o8LDXHqHLEoy7GwrgAO88pHNqn1PYAYhuEoD+NWbd4Mo0bBU09B587w7rtw9NF+W1WGROsc//qX\nry0D4tVAjgOOV9UrVPXK/CWVhhmOtMnDJoj5V3r8moe8LO/dunVuGPUWLeB//4PPPnM9yFMZPAL1\nbPqoc8Qi3gDyCXBEKg0xDKNklIdxq1auhGuv/T1QfPUVPPMMNGvmr11lyqxZ0KYNvP660znGjHHj\nyweAeDWQ5UBT4L+4zoQQRzPessA0EKO8UR50jsWL4cEH3fvy+uvhppucTlyuSILOEYuy1EC6lOYi\nhmEkh7DrHHPnuj4cc+e6xkVPPw377++3VWVMwHSOWMRMYYlI/q3bXsRipJhA5WFTgPkXH37pHLFI\nlm+q8P77cMYZrtPf2WfDf//r3p1+Bo8yfzYDqnPEorgayKvAOcAC/tiRT4EmqTDKMAxHmPtz5OXB\n1KmuxrFtm2uK27s3VAqPhBM/PvfnSJRiNRAREaChqn5fNiaVDNNAjDCiqkxdMZVb3r2FprWahkrn\nyMlxevADD7hgMWgQXHABZGT4bZkPpFjniEVZaiDTgZiTRxmGkRyWbFrCwJkDWbN9DY91ecz3VFWy\n+O03l9YfNgzq13e9xzt3Lke9xiNJI50jFsU24/V+3n8hIu3KwB4jCtMI0puS+Ld552b6TevH6RNO\nD4zOEYt4ffvlF9djvGlTN9Dh+PEwZw506RLs4JGSZzMNdY5YxFsDaQ9cJiLfAb942wLRjNcw0p2w\n6hxbt7qxqR5/HDp2hClT3CyA5ZY01TliEW8/kMbex/zCAqCqq1NhVEkwDcRIV8Kqc2zcCI88As8+\nC927uwzN4Yf7bZWP+KhzxKLMNBBVXS0ixwKn4MbC+lhVF5TmwoZRngmjzvHdd07XeOUVuPRSWLAA\nGjXy2yofCYnOEYu4hjIRkXuA8UAtoDYwTkT+L4V2GR6mEaQ30f6lm84Ri3zfli+HPn1ceqpaNcjO\ndmmrdA8eCT+bIdM5YhGvBnIZcIyq7gIQkQeARcQ3L7phlHvCqHOsWOE0jjlz3OR3K1dCZqbfVvlM\nCHWOWMSrgcwGLlTVrd56Jm5+8tNTbF+xmAZiBJkw6hwffgj//CcsWQK33grXXANVq/ptlc8EVOeI\nRVn2A9kOLBWRd731s4B5IvI4rjXWgNIYYRhhJEw6hyq8847rNb5hg0vpv/VWKLMyJaMc6ByxiHc4\n9zeBQUAWMBu4C/g38IW3GCmivGkEYSBf5zhtwmkc9vNhaa1z5Oa6d2LbtvD3v0O/fk7zuOYa+PTT\nLL/NSykxn81ypHPEIt5WWONj7ReRyap6UVIsMow0JVrnWH7DchbPW5yW83Ps2eMmbHrwQahZE/7x\nDzjnHKgQ70/OMFPOdI5YxKWBFHsSkS9VtU0S7Enk2qaBGL4SJp3j11/huedcc9zmzd04VaedFvh0\nftmQhjpHLMpSAzEMoxDConP89JPLyIwcCe3bu8EOTzjBb6sCQjnXOWJhFdKAE0aNIJJ09S/e/hxB\n9++HH+Duu904VUuWuOzMv/8dX/AIum+lJev9903nKIaUBxAR6SIiy0XkGxG5vYgyo7z9i0Skjbet\nsojMFZGFIrLM63tiGL4SOQ95xQoV03Ye8rVrXRr/sMNcEJk7F156CY6yMbcds2bB1VcHch7yQKGq\nRS7AQcCRhWw/Eqgdsd65iOMzgJVAY6ASsBBoGVWmGzDd+3wC8FnEvire34rAZ8AphVxDDSPV5OXl\n6ZTlU7T5qOba5aUuumzTMr9NSohvvlG9+mrVzEzVgQNV167126KAsWKF6nnnqTZpovrGG6p5eX5b\nlDK8d2fMGFDcUlwN5HGgsKnsDwAeiwhCM4s4vh2wUlVXq+oeYCLQI6pMd2CCd565QE0RqeOt7/TK\n7OMFoy3F2GsYSWfJpiV0fqkzf5/1dx7r8hgzLp2RdiL5V19Br15O36hXz/UiHzHCzcth4HSOW26B\nE0+EDh2cUH7BBWktkpcFxQWQZqr6QfRGVZ0DxNN2rT6wJmJ9rbetuDINAEQkQ0QWAhuB2aq6LI5r\nhorQ55kD7F8yxq3y27/PPnMj4nbuDG3awKpVcO+9rgVqafHbt6SQ35/jsMPg55/30jlC4V+KKa4V\nVvUY++JJ+sbbvjY6zOfnpnKB1iJSA5gpIp1UNSv64D59+tC4cWMAatasSevWrenUqRPw+0OerusL\nFy4MlD3lwb89uXtYUmUJQz8aSoe8DoxtNZYeJ/RIG/9UITe3E0OHwrJlWVxyCbz2Wif22y8Y329g\n1mfNIuuaa6BGDTrNnAmtW7v92dnBsC/J61lZWYwfPx6g4H1ZWmL2AxGR6cCTqjotans34EZVjflz\nTETaA0NUtYu3fieQp6rDIsqMBrJUdaK3vhzoqKobo871f8Cvqjo8arvG8sEw4kXTvD9HXp6btGno\nUPdj+s47XdqqUnrp+6knvz/H0qWuP8f555fLVFVZ9AP5GzBVRP4M5M//cSxwEnBuHOefDzT3JqRa\nD/QEekWVmQL0ByZ6AWebqm4UkQOBHFXdJiL74cbfujeOaxpGiUnn/hw5OfDaa/DAA66F6V13uXdi\nBWukvzfWnyPpxHzEVHUFcAwueLQGGgEf4IZ2/7q4k6tqDi44zASWAa+paraI9BWRvl6Z6cAqEVkJ\njAH6eYfXBf7jaSBzgbdV9f0EfExr8qugYcVv/1I9P0cq/du1y7UubdECnnnGieLz58OFF5ZN8PD7\n3sVNDJ0jFmnjn48U2xNdVXd5raJOBb4E3gN2xXsBVZ0BzIjaNiZqvX8hxy0GyvMMykYKSef5OXbs\ncIHjkUegdWt44QU45RS/rQoo0eNWtW7tt0WhIu6xsESkAnA20Ac4DngdeE5Vv02ZdfHZZRqIETfp\nrHNs2eImcHriCTc+1R13uJZVRiGYzlEsZToWlqrmicj/cE1qc4FMYJKIzFLV20pjhGGUBemqc2zY\nAI8+Cs8+696DH37osjFGIZjOUabEOyf6TSLyBfAQ8DFwlKpejxPUL0yhfeWesOdhy8I/P+chL41/\n//2vm3/jyCOd3rFwITz/fHCCR6CezQR1jlgEyr+AEm8NpBZuStvvIjd6tZLzkm+WYZSeSJ2j91G9\nWd5/ObX2q+W3WcWSne1aVE2bBn37ugmcDjrIb6sCjOkcvpGU+UD8xDQQI5pInaNZrWaMOHtEWugc\n8+e7wPHRRzBgANxwg5vMySgC0zlKhc0HYhhRpJvOoQpz5uD1Godbb3WtqqpW9duyAGM6R2CwrkYB\nJ+x52GT556fOEYui/FOF6dPduH1XXw0XXwwrV8JNN6VP8CjzZzMFOkcswv6/lwysBmKkNemmc+Tm\nwuTJrsaRl+emjP3znyEjw2/LAo7pHIHENBAjLUk3nWP3bjdh04MPwgEHuOFGzjnHUvbFYjpHyjAN\nxCiXpJPOsXOn678xfLibGfWZZ6BjR3sHFovpHGmBaSABJ+x52JL4F1SdozB++sm1qGrQIIusLJe2\nevdd6NQpPMEjJc9mGescsQj7/14ysABiBJ7IecgrVajE8v7LAzsP+aZNLj3VpIl7940YAW+8Accf\n77dlacCsWW5slvx5yJ95xuYhDzimgRiBJZ10jjVrXJrqxRehZ0/3o7lJE7+tShNM5/AF00CM0JIu\nOsc338CwYa6WcdVVsGSJm3PciAPTOdIeS2EFnLDnYaP9SxedY9EiuOQSOOkkaNDABZLhw/8YPMJ8\n/xL2LUA6RyzCfO+ShdVAjECQLv05PvnE9eFYsAAGDoSxY6F6db+tSiOsP0eoMA3E8JV00DlU3Xvv\nn/+E775z2ZY+faByZb8tSyNM5wgcpoEYaU3QdY68PHjrLVfj2LkT7rzTCeSVgtf4K7iYzhFqTAMJ\nOGHMw0bqHIf9fFjgdI49e1xrqqOOcrWOQYNg8WK47LKSB48w3r98YvqWJjpHLMJ875KF1UCMMqMw\nneOruV8Fpj/Hrl0wbhw89BA0bgyPPQZnnmmZlhJjOke5wTQQI+UEXef4+WcYMwYeeQTatnU1jpNO\n8tuqNMR0jrTCNBAj8ARZ5/jxR3j8cXjySTjjDDe8uv1YTgDTOcotpoEEnHTNw8bbn8MP/9avdxM3\nNW8Oa9fCxx/DxImpCR7pev/iIev999Ne54hFmO9dskh5ABGRLiKyXES+EZHbiygzytu/SETaeNsa\nishsEVkqIktEZECqbTVKT5DHrVq1Cq67zonjOTmuM+Czz0KLFn5blobMmuVmwrJxq8o3qpqyBcgA\nVgKNgUrAQqBlVJluwHTv8wnAZ97ng4HW3udqwNfRx3r71PCfvLw8nbJ8ijYf1Vy7vtRVl21a5rdJ\nBSxZonrZZaq1aqkOGqS6caPfFqUxK1aonneeapMmqpMnq+bl+W2RkSDeu7NU7/hUayDtgJWquhpA\nRCYCPYDsiDLdgQleJJgrIjVFpI6q/g/4n7d9h4hkA/WijjUCQFB1js8/d304PvkE/vY3eOIJqFHD\nb6vSFNM5jEJIdQqrPrAmYn2tt624Mg0iC4hIY6ANMDfpFgacIOdhkzFuVbL9U4XZs+Gss+Cii+D0\n0+G//3WdAP0IHkG+f3ERoz9H2vtWDGH3LxmkugYSb/va6KZkBceJSDVgEnCTqu4o7OA+ffrQuHFj\nAGrWrEnr1q3p1KkT8PtDkK7rCxcuDJQ9WVlZ7Mndw5IqSxj60VBOzTuVZ1s/S/cTuvvqX8eOnZg2\nDW6/PYuffoJ//KMTl10Gn3ySxbx5dv8SWp81i6xrroEaNejk9efIysqC7Oxg2GfrJVrPyspi/Pjx\nAAXvy9KS0n4gItIeGKKqXbz1O4E8VR0WUWY0kKWqE7315UBHVd0oIpWAqcAMVR1ZxDU0lT4Yv6MB\n7M+Rm+uyKQ884LocDBrkah4ZGb6ald5Yf45yQTr0A5kPNPdSUOuBnkCvqDJTgP7ARC/gbPOChwDP\nAcuKCh5G2RE0neO339xwI8OGwUEHuQDStau950qF6RxGCUmpBqKqObjgMBNYBrymqtki0ldE+npl\npgOrRGQlMAbo5x1+MnAZcJqIfOktXVJpbxDJr4L6Rarn5yipf7/84oYYadbMvd+efRY++gi6dQtm\n8PD7/sVFguNWpYVvpSDs/iWDlPdEV9UZwIyobWOi1vsXctxHWEdH3wja/Bzbtrke46NGwSmnwJtv\nwnHH+WZOeLBxq4xSYGNhGXsRNJ1j40YYOdL1UzvnHLjjDjjiCN/MCQ+mc5R70kEDMdKIIOkc338P\nDz8ML70EvXrB/Plw6KG+mRMeTOcwkoiliAJOWeRh/ZyHPNq/r7+Gq65ymZT99oNly+Cpp9I3eAQm\nj56C+TkC41uKCLt/ycBqIOWYIOkcX37pWlLNng033ggrV0Kt4E2Jnp6YzmGkCNNAyiFB0jk++sgN\nN7JokUvJX3stVKvmiynhw3QOIwamgRglJgg6hyq8+66bLnbtWpeKf+MNqFy5zE0JJ6ZzGGWEaSAB\nJ1l5WD91jnzy8mDyZNf89pZboG9fGDs2i759wxs8yjSPXsbzkIddIwi7f8nAaiAhJ1Ln6HVUL7Jv\nyOaAKgeUqQ179sArr8CDD0L16nDPPXDeeVChAtj/aJIwncPwAdNAQkqkztG0VlMeOfuRMtc5fv0V\nxo2Dhx6CJk3cOFVnnGFp+KRiOoeRIKaBGIXit86xfTuMHg2PPgrHHw+vvgonnlimJoQf0zmMAGAa\nSMApSR7Wb51j82aXnmrSBBYudJmUKVNiB4+w55mT7l8Z6xyxsHtnWA0kBPitc6xbByNGwPjx8Kc/\nwWefucEOjSRjOocRMEwDSWP81jm+/dbpG//6F1xxhUvFN2hQ/HFGCTGdw0gBpoGUY/zUORYvdi2q\nZs6E6693w4/Url1mly8/mM5hBBzTQAJOdB7WT51j7lzo0cPNN37MMbBqlXu/lSZ4hD3PnJB/AdI5\nYmH3zrAaSJrgl86h6sanGjrUZVJuuw0mTnQDHRopwHQOI40wDSTg+KVz5OXB1KkucGzb5ubh6N0b\n9tkn5Zcun5jOYZQxpoGEnKWblnLzzJvLVOfIyYHXX3cj41aq5Dr/XXABZGSk/NLlE9M5jDTGNJAA\nsnnnZm6YdgOnTTiNw34+rEx0jt9+g7Fj4fDDXfr94Yfhiy9cs9xUBo+w55mL9C9NdI5YlNt7ZxRg\nASRA7M7dzaOfPkrLJ1uSUSGD7BuyueiIi6iUUSll1/zlF9djvGlTNyLuuHHw4YfQpYtlUFLGrFnQ\npo2r6s2c6ebrrVPHb6sMo8SYBhIAVJVp30zjlndvoUlmkzLRObZuhSeegMcfh44d4c47oW3blF7S\nMJ3DCBCmgYSASJ1jZOeRKU9Vbdzoahxjx0L37jBnjktbGSnEdA4jpFgKyycidY5Y/TmSlYf97jvo\n3x9atoQdO2DBApeu8jt4hDrPnJND1s03p7XOEYtQ3zvC718ySHkAEZEuIrJcRL4RkduLKDPK279I\nRNpEbH9eRDaKyOJU21lWFKZz3HjCjSnTOZYvhz59XHqqWjVYtsylrho1SsnljHzydY7Zs03nMEJL\nSjUQEckAvgbOBNYBnwO9VDU7okw3oL+qdhORE4DHVLW9t68DsAN4QVWPLuIaaaGBlLXOsWCB68Mx\nZw4MGAA33ACZmSm7nJFPpM7x8MOuDbTpHEYASQcNpB2wUlVXA4jIRKAHkB1RpjswAUBV54pITRE5\nWFX/p6ofikjjFNuYcspS5/jwQxc4Fi+GW291afeqVVN2OSMf0zmMckiqU1j1gTUR62u9bSUtk5bE\nq3PEIp48rCrMmAEdOsCVV8KFF7qRcv/2t+AHj7TPMxfTnyPt/YtBmH2D8PuXDFJdA4k3txRdjSpR\nTqpPnz40btwYgJo1a9K6dWs6deoE/P4QlOX6ntw9LKmyhKEfDaVDXgfGthpLjxN6JHS+hQsXFrk/\nNxfuvz+Ll16CypU7MWgQHHRQFhkZsO++/vmfLP8Cvz5rFlnXXAM1atDJG7cqKysLsrPD4Z+th2o9\nKyuL8ePHAxS8L0tLqjWQ9sAQVe3ird8J5KnqsIgyo4EsVZ3orS8HOqrqRm+9MfB2OmggZaVz7NkD\nL7/shlSvWRPuugvOOQcqWJu6ssH6cxghIB00kPlAcy8IrAd6Ar2iykwB+gMTvYCzLT94pBNloXP8\n+is895zTZlu0cJmTTp3s3VVmmM5hGHuR0t+sqpqDCw4zgWXAa6qaLSJ9RaSvV2Y6sEpEVgJjgH75\nx4vIq8AnQAsRWSMiV6bS3kRIhs4Ri6ysLLZvd7WNQw91rUNffx3eew9OOy39g0d+FTvQlGLcqrTw\nL0HC7BuE379kkPKe6Ko6A5gRtW1M1Hr/Io6Nrq0EhrKYn2PzZlfj+NOf3NhUs2bBUUcl9RJGcdj8\nHIZRJDYWVgkpC51j7VoYMcJlSv78Z/j7391gh0YZYjqHEXLSQQMJFanWOVauhGHDYPJk1xx38WKo\nH4oGzWmE6RyGETfWbicOUq1zfPWVm+3vxBOhXj3343fECBc8wp6HDYx/KZqfIzD+pYAw+wbh9y8Z\nWA0kBqnWOT77zPUa//xzGDgQRo+G/fdP2umNeDGdwzASwjSQQkilzqEK77/vAseqVU7fuPJK2G+/\npJzeKAmmcxjlGNNAUkCqdI68PHj7bRc4tm93Ezj16uXmHTfKGNM5DCMpmAbikSqdIyfH9Ro/5hj4\nxz/c+2rpUvjLX+ILHmHPw5apfz7MQx7m+xdm3yD8/iWDcl8DSZXOsWuX+4E7bBg0bOhE8bPPtgyJ\nb5jOYRhJp9xqIKnSOXbscHMHjRjh3lF33gmnnFLq0xqJYjqHYRSKaSAJkgqdY8sWN9PfE0+4IUam\nTnUT0hk+YTqHYaSccqWBpELn2LDBtaRq3hxWr3YTOr32WvKCR9jzsEn3zwedIxZhvn9h9g3C718y\nKBc1kFToHKtXw0MPwcSJcNll8OWXcMghybHXSBDTOQyjTAm1BpIKnSM7242MO3Uq9O3rZv076KBS\nndIoLStWuPl7TecwjLgxDSQGydY5vvjC9eH46CMYMMBNGVuzZpKMNRJj2zbXNvqFF0znMAwfCJ0G\nkkydQxXmzIHOnd2P2lNPdb3H77qr7IJH2POwCfkXqXPs2OG7zhGLMN+/MPsG4fcvGYSmBpJMnUMV\nZsxwNY6NG+GOO5zOEcD3U/njvfeczlG7tukchuEzodBA3v767aToHLm5bij1oUPd0CODBrn5ODIy\nkmy0UXJM5zCMpJIMDSQUAeTwJw7nkbMfSThVtXs3vPSSE8cPOMClqM45x95PgSBa5xgwwKqChpEE\nkhFAQqGBJKpz7NwJjz8OzZq55rjPPAOffALnnhuc4BH2PGyR/qWRzhGLMN+/MPsG4fcvGYRCA6mU\nUbIhbX/6CZ56Ch57DE46yaWtjj8+RcYZJcd0DsNIC0KRworXhx9+gJEjYcwY6NrVieNHHpliA434\nMZ3DMMoMS2HFyZo1rsPfYYe5MavmzYMXX7TgERi2bXNTMp50EnToAMuWwQUXWPAwjICT8gAiIl1E\nZLmIfCMitxdRZpS3f5GItCnJsbH45hu4+mpo1QoqVoQlS1xavUmT0nhUtoQ6D5uTQ9bNN6e9zhGL\nMN+/MPsG4fcvGaQ0gIhIBvAE0AU4AuglIi2jynQDmqlqc+Ba4Ol4jy2KRYvgkkvcD9oGDVwgGT4c\n6tVLmmtlxsKFC/02ITW89x60acPCt992Osczz0CdOn5blXRCe/8It28Qfv+SQapF9HbASlVdDSAi\nE4EeQHZEme7ABABVnSsiNUXkYODQOI7di08/dX04vvjCZUTGjoXq1VPgVRmybds2v01ILlE6x7aF\nC0Mtkofu/kUQZt8g/P4lg1SnsOoDayLW13rb4ilTL45jAfdj9rTToHdv139j1Sr3jkr34BEqTOcw\njNCR6gASbxOvUr1FbroJrrrK/bi97jqoXLk0ZwsWq1ev9tuE0lFMf460968YwuxfmH2D8PuXDFLa\njFdE2gNDVLWLt34nkKeqwyLKjAayVHWit74c6IhLYcU81tue3u2QDcMwfCLow7nPB5qLSGNgPdAT\n6BVVZgrQH5joBZxtqrpRRH6M49hSfwGGYRhGYqQ0gKhqjoj0B2YCGcBzqpotIn29/WNUdbqIdBOR\nlcAvwJWxjk2lvYZhGEb8pH1PdMMwDMMfAt0T3c9OiGVBKf17XkQ2isjisrM4fhL1TUQaishsEVkq\nIktEZEDZWh4fpfCvsojMFZGFIrJMRB4oW8vjozTPprcvQ0S+FJG3y8biklHK/73VIvKV59+8srM6\nPkrpW00RmSQi2d7z2T7mxVQ1kAsubbUSaAxUAhYCLaPKdAOme59PAD6L91i/l9L45613ANoAi/32\nJcn37mCgtfe5GvB1CO9dFe9vReAz4BS/fUqmf962gcDLwBS//UnB/fsvUMtvP1Lk2wTgqojns0as\n6wW5BlLQCVFV9wD5HQkj2asTIpDfCTGeY/2mNP6hqh8CW8vQ3pKQqG91VPV/qrrQ274D13E0aGMI\nJOyft77TK7MP7h9+S5lYHT+l8k9EGuBeUs9Syib6KaJU/nkE0S8ohW8iUgPooKrPe/tyVPWnWBcL\nctd/r2MAAASFSURBVAApk06IPlIa/4JOor41iCzgtcBrA8xNuoWlo1T+eemdhcBGYLaqLkuhrYlQ\n2mfzUeA2IC9VBpaS0vqnwCwRmS8i16TMysQozbN5KPCDiIwTkQUiMlZEqsS6WJADSJl0QvSRRP1L\nh1YPpfZNRKoBk4CbvJpIkCiVf6qaq6qtcf+0p4pIpyTalgwS9U9E5Fxgk6p+Wcj+oFDad8spqtoG\n6ArcICIdkmNWUijNs1kRaAs8paptca1i74h1kiAHkHVAw4j1hrhIGatMA69MPMf6TaL+rUuxXcmg\nVL6JSCVgMvCSqv47hXYmSlLunZcemAYclwIbS0Np/DsJ6C4i/wVeBU4XkRdSaGsilOr+qep67+8P\nwJu4tFFQKI1va4G1qvq5t30SLqAUjd+iTwwxqCLwLU4M2ofixaD2/C7EFnus30tp/IvY35hgiuil\nuXcCvAA86rcfKfLvQKCm93k/YA5wht8+JfvZ9LZ3BN72258k378qQHXvc1XgY+Bsv31K1r3znscW\n3uchwLCY1/Pb4WK+jK64VjgrgTu9bX2BvhFlnvD2LwLaxjo2aEsp/XsV10P/N1w+80q//UmGb8Ap\nuNz5QuBLb+nitz9J9O9oYIHn31fAbX77kuxnM2J/RwLYCquU96+Jd+8WAkuC+G4p5XulFfC5t/0N\nimmFZR0JDcMwjIQIsgZiGIZhBBgLIIZhGEZCWAAxDMMwEsICiGEYhpEQFkAMwzCMhLAAYhiGYSSE\nBRDDMAwjISyAGEYRiEgLEZkuIitE5AsReU1EDkrCeaeJyP7JsNEw/MQ6EhpGIYhIZVxP8ZtVdZq3\nrSOwWVWXJnhOAVD7pzNCgtVAjHKPiBzvzcy2r4hUFZGlwDXAJ/nBA0BVPygqeIhIHxF5y5tNcYWI\n3ONtbywiX4vIBGAx0NCb0a6Wt2+5N3z21yLysoicLSIfe+c43jtHVW8GyrneMNvdU/+tGEbxVPTb\nAMPwG1X9XESmAPfjBjh8ATcY3YISnup44EjgV+BzEZkG/Ag0Ay5X1XkAIhJZA2kKXAQsw41B1FNV\nT/aCxCDgAuAu4H1VvUpEagJzRWSW/j4xlWH4gtVADMPxD+Bs4Fjg4QTP8a6qblXVXbiB6E7BzbPw\nXX7wKIT/qupSL621FJjlbV+CC2J4dt0hIl8Cs4F92Xs4bsPwBauBGIbjQNzw3BlAZdzLvGMJjo/W\nNYTfZ+T7JcZxv0V8zgN2R3yO/P+8UFW/KYE9hpFyrAZiGI4xwN3AK8Aw7+9JItItv4CInCoiRxZx\nvABniUimiOyHm4f6Y5IzK99MYECEHW2ScE7DKDUWQIxyj4j8BfhNVScCD+K0jPbAucCNnqC9FLgO\n2FTEaRSYh5tJcREwSVUXROyLLlvY56L23QdUEpGvRGQJcG/czhlGCrFmvIaRBESkD3Csqt7oty2G\nUVZYDcQwkoPyx9qEYYQaq4EYRgkQkc64NFckq1T1Ij/sMQw/sQBiGIZhJISlsAzDMIyEsABiGIZh\nJIQFEMMwDCMhLIAYhmEYCWEBxDAMw0iI/wdUEkjJ7nOY2gAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c385c0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of ideal stage is \n",
+ "10.2\n",
+ "The feed stage is 4.6 th from the solvent-D inlet\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.7: Page 525"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.7\n",
+ "# Page: 525\n",
+ "\n",
+ "print'Illustration 10.7 - Page: 525\\n\\n'\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# c:Water d:Toulene \n",
+ "Density_c = 998;# [kg/cubic m]\n",
+ "viscosity_c = 0.95*10**(-3);# [kg/m.s]\n",
+ "Dc = 2.2*10**(-9);# [square m/s]\n",
+ "Density_d = 865;# [kg/cubic m]\n",
+ "viscosity_d = 0.59*10**(-3);# [kg/m.s]\n",
+ "Dd = 1.5*10**(-9);# [square m/s]\n",
+ "sigma = 0.022;# [N/m]\n",
+ "Dist = 20.8;# [Distribution Coeffecient]\n",
+ "d = 0.5;# [m]\n",
+ "h = 0.5;# [m]\n",
+ "di = 0.15;# [m]\n",
+ "N = 13.3;# [r/s]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "qC = 3*10**(-3);# [cubic m/s]\n",
+ "qD = 3*10**(-4);# [cubic m/s]\n",
+ "#********#\n",
+ "\n",
+ "V = math.pi*h*d**2/4;# [Vessel volume,cubic m]\n",
+ "phi_DF = qD/(qD+qC);# [Volume fraction toulene]\n",
+ "# Assume:\n",
+ "phi_Dbyphi_DF = 0.9;\n",
+ "phi_D = phi_Dbyphi_DF*phi_DF;\n",
+ "phi_W = 1-phi_D;\n",
+ "# From Eqn. 10.56:\n",
+ "Density_M = (Density_c*phi_W)+(Density_d*phi_D);# [kg/cubic m]\n",
+ "if phi_W>0.4:\n",
+ " viscosity_M = (viscosity_c/phi_W)*(1+(6*viscosity_d*phi_D/(viscosity_d+viscosity_c)));# [kg/m s]\n",
+ "else:\n",
+ " viscosity_M = (viscosity_c/phi_D)*(1-(1.5*viscosity_c*phi_W/(viscosity_d+viscosity_c)));# [kg/m s]\n",
+ "\n",
+ "# Impeller Reynold's Number:\n",
+ "IRe = (di**2*N*Density_M/viscosity_M);\n",
+ "# From Fig 6.5 (Pg 152), curve g:\n",
+ "Po = 0.72;\n",
+ "P = Po*Density_M*N**3*di**5;# [W]\n",
+ "# From Eqn. 10.61:\n",
+ "Value1 = P*qD*viscosity_c**2/(V*sigma**3);\n",
+ "Value2 = viscosity_c**3/(qD*Density_c**2*sigma);\n",
+ "Value3 = Density_c/(Density_c-Density_d);\n",
+ "Value4 = sigma**3*Density_c/(viscosity_c**4*g);\n",
+ "Value5 = viscosity_d/viscosity_c;\n",
+ "phi_Dbyphi_DF = 3.39*Value1**0.247*Value2**0.427*Value3**0.430*Value4**0.401*Value5**0.0987;\n",
+ "# The value of phi_Dbyphi_DF is sufficiently close to the value 0.90 assumed earlier.\n",
+ "phi_D = phi_Dbyphi_DF*phi_DF;\n",
+ "# From Eqn. 10.6:\n",
+ "Value6 = viscosity_c/Density_c;# [square m/s]\n",
+ "Value7 = P/(V*Density_M);\n",
+ "Value8 = sigma/Density_c;\n",
+ "dp = 10**(-2.066+(0.732*phi_D))*Value6**0.0473*Value7**(-0.204)*Value8**(0.274);# [m]\n",
+ "a = 6*phi_D/dp;# [square m/cubic m]\n",
+ "Sca = viscosity_c/(Density_c*Dc);\n",
+ "# From Eqn. 10.65:\n",
+ "Shc = 65.3;\n",
+ "kLc = Shc*Dc/dp;# [kmol/square m s (kmol/cubic m)]\n",
+ "thetha = V/(qD+qC);# [s]\n",
+ "# From Table 10.1 (Pg 524):\n",
+ "# lambda = [lambda1 lambda2 lambda3]\n",
+ "Lambda = [1.359 ,7.23, 17.9];\n",
+ "# B = [B1 B2 B3]\n",
+ "B = [1.42 ,0.603 ,0.317];\n",
+ "Val = numpy.zeros(3);\n",
+ "Sum = 0;\n",
+ "for n in range(0,3):\n",
+ " Val[n] = (B[n]**2)*exp((-Lambda[n])*64*Dd*thetha/dp**2);\n",
+ " Sum = Sum+Val[n];\n",
+ "\n",
+ "# From Eqn. 10.66:\n",
+ "kLd = -(dp/(6*thetha))*math.log((3.0/8)*Sum);\n",
+ "mCD = 1.0/Dist;\n",
+ "# From Eqn. 10.67:\n",
+ "KLd = 1/((1/kLd)+(1/(mCD*kLc)));# [kmol/square m s (kmol/cubic m)]\n",
+ "Z = 0.5;# [m]\n",
+ "Vd = qD/(math.pi*Z**2.0/4);# [m/s]\n",
+ "# From Eqn.10.70:\n",
+ "NtoD = Z/(Vd/(KLd*a));\n",
+ "# From Eqn. 10.71:\n",
+ "EMD = NtoD/(NtoD+1);\n",
+ "print\"Expected stage efficiency: \\n\",round(EMD,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.7 - Page: 525\n",
+ "\n",
+ "\n",
+ "Expected stage efficiency: \n",
+ "0.93\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.8: Pg-539"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.8\n",
+ "# Page: 539\n",
+ "\n",
+ "print'Illustration 10.8 - Page: 539\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:acetic acid c:Water d:Isopropylether layer\n",
+ "# Water solution (continuous):\n",
+ "C = 8000.0;# [kg/h]\n",
+ "xCn = 0.175;# [mass fraction]\n",
+ "Density_c = 1009.0;# [kg/cubic m]\n",
+ "viscosity_c = 3.1*10**(-3);# [kg/m.s]\n",
+ "Dc = 1.24*10**(-9);# [square m/s]\n",
+ "\n",
+ "# Isopropyl Ethr Layer:\n",
+ "D = 20000.0;# [kg/h]\n",
+ "xDnPlus1 = 0.05;# [mass fraction]\n",
+ "Density_d = 730;# [kg/cubic m]\n",
+ "viscosity_d = 0.9*10**(-3);# [kg/m.s]\n",
+ "Dd = 1.96*10**(-9);# [square m/s]\n",
+ "\n",
+ "sigma = 0.013;# [/N/m]\n",
+ "m = 2.68;# [Distributon coeffecient]\n",
+ "#*******#\n",
+ "\n",
+ "Ma = 60.1;\n",
+ "g = 9.81;# [m/square s]\n",
+ "cCn = xCn*Density_c/Ma;# [kmol/cubic m]\n",
+ "cDnPlus1 = xDnPlus1*Density_d/Ma;# [kmol/cubic m]\n",
+ "mCD = m*(Density_c/Density_d);# [(kmol/cubic min ether)/(kmol/cubic m in water)]\n",
+ "\n",
+ "# Perforations:\n",
+ "Do = 0.006;# [m]\n",
+ "pitch = 0.015;# [m]\n",
+ "qD = D/(3600.0*Density_d);# [cubic m/s]\n",
+ "delta_Density = Density_c-Density_d;# [kg/cubic m]\n",
+ "Value1 = Do/(sigma/(delta_Density*g))**0.5;\n",
+ "if Value1<0.1785:\n",
+ " # From Eqn. 10.74(a):\n",
+ " doBydj = (0.485*Value1**2)+1;\n",
+ "else:\n",
+ " # From Eqn. 10.74(b)\n",
+ " doBydj = (1.51*Value1)+0.12;\n",
+ "\n",
+ "dj = Do/doBydj;# [m]\n",
+ "Vomax = 2.69*((dj/Do)**2)*(sigma/(dj*((0.5137*Density_d)+(0.4719*Density_c))))**0.5;# [m/s]\n",
+ "# Since Vomax is less than 0.1:\n",
+ "Vo = 0.1;# [m/s]\n",
+ "Ao = qD/Vo;# [square m]\n",
+ "No = Ao/(math.pi*Do**2.0/4);# [square m]\n",
+ "# From Eqn. 6.30:\n",
+ "# Plate area for perforation:\n",
+ "Aa = Ao/(0.907*(Do/pitch)**2);# [square m]\n",
+ "\n",
+ "# Downspout:\n",
+ "dp = 0.0007;# [m]\n",
+ "# From Eqn. 10.75:\n",
+ "U = Density_c**2*sigma**3/(g*viscosity_c**4*delta_Density);\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 1.515;\n",
+ "abcissa = 0.62;\n",
+ "def f74(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vt = fsolve(f74,7);# [m/s]\n",
+ "Vd = Vt[0];# [m/s]\n",
+ "qC = C/(Density_c*3600);# [cubic m/s]\n",
+ "Ad = qC/Vd;# [square m]\n",
+ "# From Table 6.2 (Pg 169):\n",
+ "# Allowing for supports and unperforated area:\n",
+ "At = Aa/0.65;# [square m]\n",
+ "T = (At*4/math.pi)**0.5;# [m]\n",
+ "An = At-Ad;# [square m]\n",
+ "\n",
+ "\n",
+ "# Drop Size:\n",
+ "alpha1 = 10.76;\n",
+ "alpha2 = 52560;\n",
+ "alpha3 = 1.24*10**6;\n",
+ "alpha4 = 3.281;\n",
+ "abcissa = (alpha2*sigma*Do/delta_Density)+(alpha3*Do**1.12*Vo**0.547*viscosity_c**0.279/delta_Density**1.5);\n",
+ "Parameter = alpha1*Density_d*Vo**2/(delta_Density);\n",
+ "ordinate = 0.024;\n",
+ "dp = ordinate/alpha4;\n",
+ "\n",
+ "# Coalesced layer:\n",
+ "Vn = qD/An;# [m/s]\n",
+ "# From Eqn. 10.80:\n",
+ "ho = (Vo**2-Vn**2)*Density_d/(2*g*0.67**2*delta_Density);# [m]\n",
+ "hD = ho;\n",
+ "# From Eqn. 10.82:\n",
+ "hC = 4.5*Vd**2*Density_c/(2*g*delta_Density);# [m]\n",
+ "# From Eqn. 10.78:\n",
+ "h = hC+hD;\n",
+ "# Since this is very shallow, increase it by placing an orifice at the bottom of the downspout.\n",
+ "# VR: Velocity through the restriction.\n",
+ "# hR: Corresponding depth of the coalesced layer.\n",
+ "# Assume:\n",
+ "Vr = 0.332;# [m/s]\n",
+ "hr = (Vr**2-Vd**2)*Density_c/(2*0.67**2*delta_Density);\n",
+ "Ar = qC/Vr;# [square m]\n",
+ "dr = (4*Ar/math.pi)**0.5;# [m]\n",
+ "h = h+hr;# [m]\n",
+ "# The above results are satisfacyory.\n",
+ "Z = 0.35;# [m]\n",
+ "# Lead the downspout apron to within 0.1 m of the tray below.\n",
+ "\n",
+ "# Dispersed-phase holdup:\n",
+ "# From Eqn. 10.48:\n",
+ "Vsphi_D = Vn;\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 165.2;\n",
+ "abcissa = 30.0;\n",
+ "def f75(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vtl = fsolve(f75,7);# [m/s]\n",
+ "# For solids:\n",
+ "# From Fig. 10.48 (Pg 536):\n",
+ "abcissa = dp/(3*viscosity_c**2/(4*Density_c*delta_Density*g))**(1.0/3);\n",
+ "phi_D = [0, 0.1 ,0.2 ,0.3];\n",
+ "# Corresponding ordinates, from Fig. 10.48 (Pg 536):\n",
+ "ordinate1 = [8.8, 5.9 ,4.3 ,3.0];\n",
+ "Value1 = 1.0/(4*viscosity_c*delta_Density*g/(3*Density_c**2))**(1.0/3);\n",
+ "Val = numpy.zeros((4,7));\n",
+ "# Val = [phi_D ordinate Vs(1-phi_D) (Vs for solids) Vs/Vt (Vs for liquids) (Vs*phi_D (for liquids))]\n",
+ "for i in range(0,4):\n",
+ " Val[i,0] = phi_D[i];\n",
+ " Val[i,1] = ordinate1[i];\n",
+ " Val[i,2] = Val[i,1]/Value1;\n",
+ " Val[i,3] = Val[i,2]/(1-Val[i,0]);\n",
+ " Val[i,4] = Val[i,3]/Val[0,3];\n",
+ " Val[i,5] = Vtl*Val[i,4];\n",
+ " Val[i,6] = Val[i,5]*Val[i,0];\n",
+ "\n",
+ "\n",
+ "# By Interpolation:\n",
+ "Phi_D = 0.1;\n",
+ "\n",
+ "thetha_f =0.2498 # s\n",
+ "# From Eqn. 10.87:\n",
+ "const = 1.5;\n",
+ "kLDf = const*(Dd/(math.pi*thetha_f))**0.5;# [m/s]\n",
+ "# From Eqn. 10.86\n",
+ "KLDf = 1.0/((1.0/kLDf)*(1+((1.0/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# The ordinate of Fig. 10.47 for the drops larger than 70. Hence mass transfer coeffecient during drop rise is given by Eqn. 10.89:\n",
+ "# From Eqn. 10.91:\n",
+ "b = 1.052*dp**0.225;\n",
+ "# From Eqn. 10.90:\n",
+ "omega = (1.0/(2*math.pi))*math.sqrt(192*sigma*b/(dp**3*((3*Density_d)+(2*Density_c))));# [1/s]\n",
+ "Del = 0.2;\n",
+ "kLDr = math.sqrt((4.0*Dd*omega/math.pi)*(1+Del+(1.0/2)*Del**2));\n",
+ "KLDr = 1.0/1/((1/kLDr)*(1+((1/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# From Eqn. 10.98:\n",
+ "EMD = ((4.4*KLDf/Vo)*(dp/Do)**2)+(6*KLDr*Phi_D*(Z-h)/(dp*Vn))/(1+((0.4*KLDf/Vo)*(dp*1.0/Do)**2)+(3*KLDr*Phi_D*(Z-h)/(dp*Vn)));\n",
+ "print\"Stage Efficiency: \",round(-EMD,3)\n",
+ "# The solution in the textbook is incorrect\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.8 - Page: 539\n",
+ "\n",
+ "\n",
+ "Stage Efficiency: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 0.057\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.9: Pg-551"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.9\n",
+ "# Page: 551\n",
+ "\n",
+ "print('Illustration 10.9 - Page: 551\\n\\n');\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#****Data****#\n",
+ "B = 20000;# [kg/h]\n",
+ "#******#\n",
+ "\n",
+ "# x and y are taken in weight fraction acetic acid.\n",
+ "x1 = 0.30;# [Wt fraction]\n",
+ "xF = 0.30;# [Wt fraction]\n",
+ "y2 = 0;# [Wt fraction]\n",
+ "x2 = 0.02;# [Wt fraction]\n",
+ "y1 = 0.10;# [Wt fraction]\n",
+ "# The operating diagram is plotted in Fig. 10.23:\n",
+ "# Data = [x x_star]\n",
+ "# From Fig. 10.23 (Pg 503):\n",
+ "Data = numpy.array([[0.30 ,0.230],[0.25 ,0.192],[0.20 ,0.154],[0.15, 0.114],[0.10, 0.075],[0.05, 0.030],[0.02, 0]]);\n",
+ "Val = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " Val[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x\");\n",
+ "plt.ylabel(\"1/(x-x*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# From Area Under the curve:\n",
+ "Area = 8.40;\n",
+ "# The mutual solubility of water and isopropyl ether is very small.\n",
+ "Ma = 18.0;# [kg/kmol water]\n",
+ "Mb = 60.0;# [kg/kmol isopropyl ether]\n",
+ "r = Ma/Mb;\n",
+ "# From Eqn. 10.110:\n",
+ "NtoR = Area+(1.0/2)*math.log(1-x2/(1-x1))+(1.0/2)*math.log(x2*(r-1)+1.0/(x1*(r-1)+1));\n",
+ "# Since the operating line and equilibrium line are parallel:\n",
+ "Np = NtoR;\n",
+ "print\"Number of theoretical Units: \\n\",round(NtoR,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.9 - Page: 551\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHXWV//H3Jwk7SBNgSECwFUdQBBuUNUBaFAzIEmVE\nECER3FARMSDLzBhABUG2URxlhiXgBsOowRBAQGl24o8xHUKQVTIshsgSBCbIlvP7o6pJd9Pdud33\n1q3lfl7P009u3VvVdU4X9On6nqpvKSIwMzPrMSrvAMzMrFhcGMzMrA8XBjMz68OFwczM+nBhMDOz\nPlwYzMysDxcGKxVJJ0n6yRCf3yNp1yz3UWaSNpH0giTlHYsVlwuD1UXSgZLmSHpR0mJJd0o6IsNd\nDnnjTUS8NyJuzmofkjolPVbLN5HULmmZpNz+P5O0UNJuPcsR8WhErBW+gcmG4MJgIyZpGnAucDqw\nQURsAHwRmCBp5UG2qfe/uWb8pdvofWQSs6TRNawWWe3fqsuFwUZE0trAycAREfGriPg/gIjojohP\nR8Qr6XozJP1I0tWSXgQ6JX1U0lxJf5P0qKTpvb5vz1/Zn5P0hKS/pAWoRwArS7pE0vPp0NH7e22/\nUNKH0tejJZ0o6aF03bskbZR+9m/pvv+Wvr/zCH8OXZJOkXRruo/fSlo3/bjnzOW5dPhm+3SbwyTd\nK+lZSddK2qTX99tD0v2SnpP0Q0k3STo8/WyqpNsknS3paWC6pHdI+r2kpyU9Jemn6bEhHQ7bBJiV\n7v+Y/mcxkjaU9BtJz0h6UNJne8VykqT/GuxnbdXlwmAjtSOwCnBlDeseBHwrItYEbgNeBD4dEWsD\nHwWOkLRfv206gXcCewDH9fyyJ/nrd1/gF8DawG+A83ptFywfCvo6cCCwZ0S8BfgM8FL62R+A9wHr\nAD8HrhjsLKfG/KYC/wCsDByTvr9L+u/a6fDNnDTPE4CPAesBt6S5IGk94ArgOGAscD/Jz7n3sM92\nwMPpvk5Nfx7fAcYD7wY2Bk4CiIhDgEeBvdP9nzlA7Jel64wH/gk4VdIHe32+D4P/rK2iXBhspNYD\nno6IZT1vSLpd0hJJS/v9BT4zIu4AiIiXI+KmiFiQLs8n+eU0sd/3PzkiXoqIe4CLSX759rglIq5N\nx8l/SvILfiCfBf45Ih7s2VdEPJu+/llELImIZRFxNkmR22wEP4cALo6IhyLi78B/AR09P5IB1v8i\ncFpE3J/+7E4DOtKzhr2AeyJiZhrX94En+23/l4j4Yfr53yPi4Yj4XUS8GhFPA+fw5p/lgCRtDOwE\nHBcRr0TEPOAC4NBeq9X6s7YKcWGwkXoGWK93zyAidoqIddLPet4PoE+zVtL2km6U9FdJzwFfANal\nr97bPAps2Gt5ca/XS4FVB+ldvJXkr+s3SYdV7k2HbJaQ/EW83iC5rkjvX94vAWsOse7bgH9LC+gS\nkp8VwEYkf7U/3m/9/sv9f5YbSLpM0uOS/gb8hDf/LAezIfBszzBg6tE0lh61/qytQnyAbaTuAF4G\nJo9g258DM4G3RkQb8GPe/N/iJv1ePzGC/TxGMhzVh6RdgGOBT0REW1rM/kbjm7QDXfnzKPD5iFin\n19ca6RnVIpJi1hOnei8P8j1PBV4H3psOzR1C35/lUFcf/QUYK6l3IduENxcjazEuDDYiEfEcSfP5\n3yXtL2ktSaMkdQBr9Fp1oF+2awJLIuIVSdsBn+LNv8D+RdJqkrYgGb+/fARhXgB8S9I7ldhK0th0\n/68BT0taWdI3gbeM4Pv3GKygPAUsAzbt9d6PgRMlvQeSJr6kT6SfXQ1sKWk/SWOALwPjVrDvNYH/\nA55PG+vH9vt8cb/9vyEiHgNuB06TtIqkrYDDSIaMrIW5MNiIRcT3SBq83yAZTnmS5BffN0jOKKBv\nM7jHl4BTJD0P/CsD/9K/CXgIuAH4XkTcMMT3G+yv4rNJxvyvIzkj+E9gVeC3wLXAA8BCkuGfR/t9\nv6H+0h5q/29sGxFLSRrDt6VDR9tFxEySy3svS4d+5gMfSdd/GvgEcAbwNEkz+S6SM7PB4joZ2CbN\nbxbwy37rnEZSZJdI+voA8R4EtJOcPfwK+GZE/H6I/fn+hxagrO9zkbQQeJ7kdPfViNgu/avtcpLx\n1oXAAelfoNbiJLUDfwbG9G5st6J0LP8x4FMRcVPe8VjraMYZQwCdEbF1RGyXvnc8cH1EvAv4Xbps\n1vLS+xjaJK0CnJi+fWeeMVnradZQUv8x2H2BS9LXlzCyBqZVVysPV+xIMoT2FMk9HpMj4uWhNzFr\nrGYMJf2ZZPzzdeD8iPhPSUvSK0F6rrx4tmfZzMzyNaYJ+5gQEYskrQ9cL+m+3h9GREhq5b8QzcwK\nJfPCEBGL0n+fkvRrklv6F0saFxFPShoP/LX/di4WZmYjExF13ZOTaY9B0uqS1kpfr0Ey7818kjlX\npqSrTSG52elNIqKyXwcfPJ311w9uuy3/WBr9NX369NxjcH7Or1Xza4Ssm88bALdI6gbmAFdFxHXA\nd4HdJT0A7JYut5QxYxZy6aUweTLcfnve0TTWwoUL8w4hU86v3KqeXyNkOpQUEY+wfEKx3u8/C3w4\ny32XwaRJvFEcZs6EnXbKOyIzM9/5nJupU6cCfYtDVc4cenKrKudXblXPrxEyv1x1pCRFUWPLwrXX\nwqGH+szBzOojiShy89kG19XV1We5SmcO/XOrGudXblXPrxFcGAqkSsXBzMrLQ0kF5GElMxspDyVV\nlM8czCxPLgw5WdE4Z5mLQ9XHcJ1fuVU9v0ZwYSiwMhcHMysv9xhKwD0HM6uVewwtwmcOZtZMLgw5\nGe44Z5mKQ9XHcJ1fuVU9v0ZwYSiRMhUHMysv9xhKyD0HMxuMewwtymcOZpYlF4ac1DvOWeTiUPUx\nXOdXblXPrxFcGEqsyMXBzMrLPYYKcM/BzHq4x2CAzxzMrLFcGHLS6HHOIhWHqo/hOr9yq3p+jZB5\nYZA0WtJcSbPS5ZMkPZ6+N1fSpKxjaBVFKg5mVl6Z9xgkfR14P7BWROwraTrwQkScvYLt3GMYIfcc\nzFpX4XsMkt4K7AVcAPQEql6vLQM+czCzemQ9lHQOcCywrNd7ARwpaZ6kCyW1ZRxDIWU9zplncaj6\nGK7zK7eq59cImRUGSXsDf42IufQ9Q/gR8HagA1gEnJVVDK3OZw5mNhKZ9RgknQocArwGrAq8Bfhl\nRBzaa512YFZEbDnA9jFlyhTa29sBaGtro6Ojg87OTmB51ffyipevvRYOPLCLb38bvvKV/OPxspe9\n3Ljlrq4uZsyYAUB7ezsnn3xy3T2GptzgJmkicExE7CNpfEQsSt8/Gtg2Ij41wDZuPjeQG9JmraHw\nzedeRNJbADhD0t2S5gETgaObFEOh9FT8ZmnmsFKzc2s251duVc+vEcY0YycR0QV0pa8PacY+7c16\nFwefOZjZYDxXUgvysJJZdZVpKMkKxFcrmdlQXBhykvc4Z5bFIe/csub8yq3q+TWCC0ML85mDmQ3E\nPQZzz8GsQtxjsIbwmYOZ9ebCkJOijXM2sjgULbdGc37lVvX8GsGFwd7gMwczA/cYbADuOZiVl3sM\nlgmfOZi1NheGnBR9nLOe4lD03Orl/Mqt6vk1gguDDcpnDmatyT0GWyH3HMzKwz0GawqfOZi1FheG\nnJRtnHM4xaFsuQ2X8yu3qufXCC4MVjOfOZi1BvcYbNjcczArLvcYLBc+czCrNheGnJR9nHOo4lD2\n3FbE+ZVb1fNrhMwLg6TRkuZKmpUuj5V0vaQHJF0nqS3rGCwbPnMwq6bMewySvg68H1grIvaVdAbw\ndEScIek4YJ2IOH6A7dxjKAn3HMyKo/A9BklvBfYCLgB6At0XuCR9fQkwOcsYLHs+czCrlqyHks4B\njgWW9Xpvg4hYnL5eDGyQcQyFVLVxzt7F4bzzuvIOJ1NVO3b9OT8bk9U3lrQ38NeImCupc6B1IiIk\nDTpeNHXqVNrb2wFoa2ujo6ODzs7kW/Uc3LIud3d3FyqeRiyvuir85CedfPKT8Ja3dLHJJsWKz8te\nruJyV1cXM2bMAHjj92W9MusxSDoVOAR4DVgVeAvwK2BboDMinpQ0HrgxIjYfYHv3GErqoovg9NNh\nzhxo86UFZk3ViB5DU25wkzQROCYi9kmbz89ExOmSjgfa3HyunqOOgvvvh9mzYfTovKMxax2Fbz73\n0/Nb/rvA7pIeAHZLl1tOz6lgFXV1dXHWWfDaa3DccXlH03hVPnbg/CzDHkNvEXETcFP6+lngw83Y\nr+VnzBi4/HLYfnvYaqvkclYzKwfPlWSZWrAAOjvhqquSImFm2SrbUJK1oC22SJrR++8PTzyRdzRm\nVgsXhpxUeZyzf2777ANf+hJ87GPw0kv5xNRIVT524PzMhcGa5IQT4B3vgM9/HjxCaFZs7jFY0yxd\nCrvsAgcdBMcck3c0ZtXUiB5DU65KMgNYffVkor3tt096D3vumXdEZjYQDyXlpMrjnEPltvHGcMUV\nMGUK3Hdf82JqpCofO3B+5sJgOZgwAb77XdhvP3juubyjMbP+3GOw3HjaDLPG830MVmpVnjbDrMxc\nGHJS5XHOWnPrmTZj5szkWQ5lUeVjB87PfFWS5WzddeHKK5NpMzbbzNNmmBWBewxWCLNmwRFHJM9w\n2GijvKMxKy/3GKwyqjZthlmZuTDkpMrjnCPNrSzTZlT52IHzMxcGKxApmYn13nuTK5bMLB/uMVjh\nPPZY0oS+8EJPm2E2XO4xWCVVYdoMszJzYchJlcc5G5HbhAlw2mnFnDajyscOnJ9lXBgkrSppjqRu\nSfdKOi19/yRJj0uam35NyjIOK6fDD4dJk+DAA+H11/OOxqx1ZN5jkLR6RCyVNAa4FTgG+BDwQkSc\nPcR27jEYr72WFIeODjjzzLyjMSu+UvQYImJp+nJlYDSwJF2uK3BrDWWdNsOszDIvDJJGSeoGFgM3\nRsSC9KMjJc2TdKGktqzjKJoqj3M2OreeaTOmTUvujM5blY8dOD9rwlxJEbEM6JC0NvBbSZ3Aj4BT\n0lW+BZwFHN5/26lTp9Le3g5AW1sbHR0ddHZ2AssPblmXu7u7CxVP0ZefeqqLo4+G/ffvZM4cePDB\nYsXnZS/ntdzV1cWMGTMA3vh9Wa+m3scg6V+BlyLizF7vtQOzImLLfuu6x2BvcuqpybDSTTfBaqvl\nHY1Z8RS+xyBpvZ5hIkmrAbsDcyWN67Xax4D5WcZh1VGWaTPMyizrHsN44Pdpj2EOyZnB74AzJN0t\naR4wETg64zgKp+dUsIqyzK33tBl5XaVU5WMHzs8y7jFExHxgmwHePzTL/Vq1rb56Mpy0/fbw3vd6\n2gyzRvNcSVZat92WTNN9882w+eZ5R2NWDIXvMZhlqcjTZpiVmQtDTqo8ztnM3PKYNqPKxw6cn7kw\nWAWcdVYydcZxx+UdiVk1uMdglfDMM0kz+pvfhEN9aYO1sEb0GFwYrDIWLIDOTrjqqqRImLUiN59L\nrMrjnHnltsUWyT0O++8PTzyR3X6qfOzA+dkwCkP6bIVVsgzGrF777ANf+lJyGetLL+UdjVk5DTqU\nJGkUMBk4CNiJpIgIeB24A/gZMDOr8R4PJdlIRcBBB8FKKyVTdcsTvFsLybTHIOlm4BbgN0B3RLyc\nvr8KsDWwL7BzROxaTwCDBubCYHVYuhR22SW5jPXYY/OOxqx5su4x7B4R/xwRc3qKAkBEvBwRd0bE\niSST4tkIVHmcswi59Uybcc45cM01jf3eRcgvS87PBi0MEfGypIMBJB002DpZBWZWr403hiuugClT\n4L778o7GrDyGvFxV0rHA/wJvi4jvNS0qPJRkjXPhhXDGGcnT39pa7lmB1moyHUqSNB0YC/wcGJsu\nm5VOHtNmmJXZUENJJwPPAIcAz6TL1iBVHucsYm6NnDajiPk1kvOzFd3HsCgifgFkeLuQWfbGjIHL\nL08a0pdemnc0ZsW2wikxJH04Im7o996UiLgk08DcY7AMeNoMq7pmTYkxXdKPJK0haZykWST3MJiV\nTrOmzTArs1oKw0Tgz8A8khvefhER+2caVQuo8jhn0XOrd9qMoudXL+dntRSGdYBtgYeBV4BNpBVP\nMpDOrTRHUrekeyWdlr4/VtL1kh6QdJ0kX0BoTXfCCfCOd8DnP59MoWFmy9XSY3gAOD0iLpS0OnA6\n8P6I2GmF31xaPSKWShoD3AocQzIM9XREnCHpOGCdiDh+gG3dY7BMLV0KO++czKvkaTOsKpryPAZJ\nb4uI/+333sSIuKnmnSQF5SZgKvBLYGJELJY0DuiKiDc9yt2FwZrhsceSJvQFF8Bee+UdjVn9mtJ8\n7l0UJJ2UvldTUZA0SlI3sBi4MSIWABtExOJ0lcXABsMNugqqPM5Zptx6ps2YOrX2aTPKlN9IOD8b\nM8z19wNOqnXliFgGdEhaG/itpA/2+zwkDXpaMHXqVNrb2wFoa2ujo6ODzs5OYPnBLetyd3d3oeJp\n5eUJE2DKlC523x3mz++kra1Y8XnZy0Mtd3V1MWPGDIA3fl/Wa1iP9pQ0NyK2HtGOpH8FXgI+C3RG\nxJOSxpOcSXgoyXJ31FFw//0wezaMHp13NGYjk8ejPT+Q7njlFa0oab2eK44krUYyRfdckuc7TElX\nmwLMHGYMZplo5LQZZmW2wsIg6SZJbweIiNclbQfcVcP3Hg/8Pu0xzAFmRcTvgO8Cu6dXO+2WLrec\nnlPBKiprbrVOm1HW/Grl/KyWHsOpwDWSfgBsBOxJcnXRkCJiPrDNAO8/C3x4eGGaNce668KVVybT\nZmy2mafNsNZUU48hbRpfDzwFbB0RT2YemHsMlqNZs+CII5JnOGy0Ud7RmNWuKT2GtGn8A2AXkiuS\nbpK0dz07NSu6eqfNMCuzWprP6wLbRsQdEXE+sAdwVLZhVV+Vxzmrkttg02ZUJb/BOD+r5Qa3r0XE\nS72W/5ekOJhVmpTMxLpgAZx5Zt7RmDXPoD0GSRcBP4qI/zfI59sDX4yIz2QSmHsMVhCeNsPKJNO5\nkiRtCRwL7ADcDywCBIwDNgNuB86MiHvqCWDQwFwYrEBuuy3pN9x8M2z+ptsxzYoj0+ZzRMyPiEOB\nLYHvAL8juTLp28BWETE1q6LQCqo8zlnF3CZMgNNOg/32g6uu6so7nExV8fj1VvX8GmHQ+xgk/Qdw\nDXBDRNwJ3Nm0qMwK6PDD4e67Ydq05BLWrUc0OYxZ8Q01lLQDyc1suwGvAr8Fro2IeU0JzENJVkDL\nlsHFF8OJJ8IBB8C3vgVtftSUFUjWQ0l3RsT0iNgFOAB4DJiWPpHtIkkH1LNjszIaNSo5c7j3Xnjl\nFXj3u5PpM/w3jFVJTZPoRcTTEfHztOewNXAf8I+ZRlZxVR7nrHJukOS37rpw/vnJ9Bnf/z7suivM\nn593ZI3RCsfPhjbc2VVJx3eOjIjvZBCPWalst10ybcbBB8OHPgRHHw3PP593VGb1GarHMNTfP5tF\nxAqn3q6HewxWNk89BccfD9deC9/7XvIsadU10ms2fFnfx7AYmAQsGeDj2yNiw3p2vMLAXBispG6/\nPZlnaexYOO88eM978o7IWknWk+jNBtaMiIX9v4Canvlsg6vyOGeVc4MV57fTTnDXXckNcRMnwje+\nAS++2JzYGqHVj58NfVXSYRFxyyCfHZRdSGblN2YMHHlk0pBetCi5eumKK3z1kpXDsJ753EweSrIq\nufnmZHhpww3hBz9IHgJkloU8nvlsZiOw664wdy585CPJ9Br//M+wdGneUZkNzIUhJ1Ue56xybjDy\n/FZaKZlOY948ePjhpCl95ZXFG17y8bNMC4OkjSXdKGmBpHskfTV9/yRJj0uam35NyjIOsyLZaCO4\n7DK48MLk8ta9904KhVlRZNpjkDQOGBcR3ZLWBP4HmEwyxcYLEXH2ENu6x2CV98orcM45yX0PX/kK\nHHccrLZa3lFZmRW+xxART0ZEd/r6ReBPQM+j1X3rj7W8lVdOisEf/wj33APvfS9cfXXeUVmra1qP\nQVI7yTxLPdN3HylpnqQLJbXc/JRVHuescm6QTX6bbAL//d/wwx/CUUfB5MmwcGHDd1MTHz8b9HkM\njZQOI/03cFREvCjpR8Ap6cffAs4CDu+/3dSpU2lvbwegra2Njo4OOjs7geUHt6zL3d3dhYrHy8VY\nnjSpk/nz4ctf7mKrreC44zo55hi4445ixOfl4i13dXUxY8YMgDd+X9Yr8/sYJK0EXAVcExHnDvB5\nOzArIrbs9757DNbSHnkEvvY1+NOfkqk19tgj74isDArfY5Ak4ELg3t5FQdL4Xqt9DKjIhMVmjfP2\ntyeXs559Nnzxi/CJT8Djj+cdlbWCrHsME4BPAx/sdWnqnsDpku6WNA+YCBydcRyF03MqWEVVzg2a\nn9/ee8OCBcl9Dx0dcMYZydVMWfHxs6yvSro1IkZFREdEbJ1+XRMRh0bEVhHxvoiYHBGLs4zDrOxW\nWw1OPhnuvBNuvDEpEDfemHdUVlWeK8msZCJg5syk/zBhApx1Fowfv+LtrDUUvsdgZo0nJVN633sv\ntLfDVlvBuefCa6/lHZlVhQtDTqo8zlnl3KA4+a2xBpx6Ktx6K8yeDdtsk7yuV1Hyy0rV82sEFwaz\nkttsM7juOviXf0keJzplCix2187q4B6DWYW88AKccgrMmAHTp8MRR8Do0XlHZc2U6TOf8+bCYDZy\nCxbAl78Mzz8P//7vsMMOeUdkzeLmc4lVeZyzyrlBOfLbYovkctZp0+DjH4fPfhaefrq2bcuQXz2q\nnl8juDCYVZQEBx+cTKmx5prJDXLnnw+vv553ZFZ0HkoyaxHz5iXPnX711WR46QMfyDsiy4KHksys\nZu97H9xyS1Ic9t47aUw/+2zeUVkRuTDkpMrjnFXODcqd36hRMHVqMrw0alQyvHTRRbBs2fJ1ypxf\nLaqeXyO4MJi1oHXWSR4KNHt20nfYeWdIHxFi5h6DWatbtgwuvDC5Qe6Tn0wm61tnnbyjspFyj8HM\n6jZqFHzuc8ncS6+8AptumkzQ98gjeUdmeXFhyEmVxzmrnBtUN79114Uf/xjOP7+LVVaBbbeFAw6A\nOXPyjqyxqnr8GsmFwcz6WH99OP305IxhwgQ48MCkB/HrX/seiFbhHoOZDem115KicOaZyeWtX/ta\ncmXTGmvkHZkNxHMlmVnTRMBttyUPBrr1VvjCF+ArX4Fx4/KOzHpz87nEqjzOWeXcoHXzk5YPKd1+\nOyxZktwHcdhhcM89zY2xHlU/fo2QaWGQtLGkGyUtkHSPpK+m74+VdL2kByRdJ6ktyzjMrLH+8R+T\n+yAefDC5imn33WHSJLjhhuTMwsot06EkSeOAcRHRLWlN4H+AycBngKcj4gxJxwHrRMTx/bb1UJJZ\nSbz8MvzsZ3D22cnzH6ZNS5rWK6+cd2Stp3Q9BkkzgfPSr4kRsTgtHl0RsXm/dV0YzEomAn7726QP\nce+9cOSRSS/CN8w1T6l6DJLaga2BOcAGEdHz8MHFwAbNiqMoqjzOWeXcwPkNRUqGlK6/Hq6+OpmT\nadNN4atfhT//uXEx1qPqx68RxjRjJ+kw0i+BoyLiBWl5MYuIkDTgqcHUqVNpb28HoK2tjY6ODjo7\nO4HlB7esy93pxDRFicfLXs5i+ZJLOnniCTj22C623hr22KOTadPg738vRnxVWO7q6mLGjBkAb/y+\nrFfmQ0mSVgKuAq6JiHPT9+4DOiPiSUnjgRs9lGRWbS++mMzkeu65MH580ofYbz8/k7rRCt9jUHJq\ncAnwTEQc3ev9M9L3Tpd0PNDm5rNZa3j99eSS17POgqeeSm6Y+8xnfMNco5ShxzAB+DTwQUlz069J\nwHeB3SU9AOyWLreUnlPBKqpybuD86jV6NPzTP8Edd8Cll8Lvfw/t7XDiibBoUaa7Bqp//Boh0x5D\nRNzK4MXnw1nu28yKb6ed4Fe/goceSoaYttgiGV76+tdhyy3zjq51eUoMMyuMZ59NZng977ykMEyb\nltw8p7oGRlpL4XsM9XBhMGtdL78MP/95csOclBSIgw7yDXO1KEOPwQZR5XHOKucGzq8ZVlklaUjf\nfTd873vJXdVvfzucdlpyVlGPIuRXdC4MZlZYEnzkI3DddXDNNXD//fDOdyZ3VD/8cN7RVZeHksys\nVP7yl6QH8R//ARMnJsNMO+2Ud1TF4R6DmbWsF1+Eiy+Gc85JngkxbRpMnuwb5txjKLEqj3NWOTdw\nfkWx5prJkNKDDyZF4ayz4F3vgh/8ICkagylLfnlyYTCzUhs9GvbfP3l40E9/CjfdlDSqTzghGXay\n4fNQkplVzsMPJzfM/exnsM8+yRnFVlvlHVVzeCjJzGwAm26aDCk99BBsvnkyFfgeeyTPili2LO/o\nis+FISdVHuescm7g/Mpk7NhkSOmRR+Dgg+H442G99bo47DD45S/h+efzjrCYXBjMrPJWWQWmTIG5\nc5NLXbfeOrncdaONkik3zj03ObuwhHsMZtayXnwRbrgBrroKZs+GtdeGj34U9t4bdt4ZVlop7wiH\nz/cxmJk1yLJlyRlFT5F48MHkbGLvvWHPPWH99fOOsDZuPpdYlcZx+6tybuD8ym6w/EaNgve/H6ZP\nhz/8IXle9aRJcOWVyTQcO+4I3/kOzJsHVf+b1YXBzGwA48bxRpP6r3+FU05J/v34x2GTTeCLX0zO\nLpYuzTvSxvNQkpnZMEQkk/n1DDnddRfsumsy5PTRjyZFI0/uMZiZ5ey555L7I2bPTmaAHT9+eZHY\nYYfmz91U+B6DpIskLZY0v9d7J0l6vN8zoFtOlcdxq5wbOL+ya3R+bW3wyU8mz69+8snkCXQSfOlL\nsMEGcMghcNllsGRJQ3ebqax7DBcD/X/xB3B2RGydfl2bcQxmZk0xenQyBXhPk/qPf4QJE5I5nN72\nNujsTB489Kc/FbuBnflQkqR2YFZEbJkuTwdejIizVrCdh5LMrDKWLoUbb0x6E1ddlTymtOeeiYkT\nk5vwGqEUPYZBCsNngL8BdwHTIuK5AbZzYTCzSoqA+fOXF4kFC2C33ZIisddeSZ9ipArfYxjEj4C3\nAx3AImCYVbYsAAAGxklEQVTIM4eqqvI4bpVzA+dXdkXIT0pmez3xxGS68IceSi6Dve46eM974AMf\ngJNOSq54ymPSvzHN3mFE/LXntaQLgFmDrTt16lTa29sBaGtro6Ojg87OTmD5wS3rcnd3d6Hi8bKX\nvZzf8oIFXWy8MVx+eSevvgo//GEXd9yRLC9ZAtts08WOO8LXvtbJWmv13b6rq4sZM2YAvPH7sl55\nDCWNj4hF6eujgW0j4lMDbOehJDNreQ89lFwKO3s23HFHcgd2z+Wwm2765vUL32OQ9AtgIrAesBiY\nDnSSDCMF8AjwhYhYPMC2LgxmZr288AJcf33Sl7j6alhnneVFYsKEZNK/wvcYIuKgiNgwIlaOiI0j\n4qKIODQitoqI90XE5IGKQivoORWsoirnBs6v7Mqc31prJb2Iiy5KHlt66aWw+upwzDHwD/8ABx7Y\nmP14riQzsxIaNQq23RZOPjlpUi9YkEz61wieEsPMrEIKP5RkZmbl48KQkzKPc65IlXMD51d2Vc+v\nEVwYzMysD/cYzMwqxD0GMzNrOBeGnFR5nLPKuYHzK7uq59cILgxmZtaHewxmZhXiHoOZmTWcC0NO\nqjzOWeXcwPmVXdXzawQXBjMz68M9BjOzCnGPwczMGs6FISdVHuescm7g/Mqu6vk1gguDmZn14R6D\nmVmFuMdgZmYNl2lhkHSRpMWS5vd6b6yk6yU9IOk6SW1ZxlBUVR7nrHJu4PzKrur5NULWZwwXA/2f\nQno8cH1EvAv4Xbrccrq7u/MOITNVzg2cX9lVPb9GyLQwRMQtwJJ+b+8LXJK+vgSYnGUMRfXcc8/l\nHUJmqpwbOL+yq3p+jZBHj2GDiFicvl4MbJBDDGZmNohcm8/pZUcteenRwoUL8w4hM1XODZxf2VU9\nv0bI/HJVSe3ArIjYMl2+D+iMiCcljQdujIjNB9iuJQuGmVm96r1cdUyjAhmG3wBTgNPTf2cOtFK9\niZmZ2chkesYg6RfARGA9kn7CN4Ergf8CNgEWAgdEhLtBZmYFUdg7n83MLB9Nbz5LmiTpPkkPSjpu\nkHW+n34+T9LWw9k2b3Xmt1DS3ZLmSvpD86Ku3Yryk7S5pDsk/V3StOFsWwR15lfo41dDbgen/03e\nLek2SVvVum0R1JlfoY8d1JTffml+cyX9j6Tdat32TSKiaV/AaOAhoB1YCegG3t1vnb2Aq9PX2wN3\n1rpt3l/15JcuPwKMzTuPOvNbH/gA8G1g2nC2zfurnvyKfvxqzG1HYO309aQK/r83YH5FP3bDyG+N\nXq+3BB4a6fFr9hnDdmmwCyPiVeAyYL9+67xxA1xEzAHaJI2rcdu8jTS/3vdyFLnpvsL8IuKpiLgL\neHW42xZAPfn1KOrxqyW3OyLib+niHOCttW5bAPXk16Ooxw5qy+//ei2uCTxd67b9NbswbAQ81mv5\n8fS9WtbZsIZt81ZPfpDc03GDpLskfS6zKEeulvyy2LZZ6o2xyMdvuLkdDlw9wm3zUE9+UOxjBzXm\nJ2mypD8B1wBfHc62vTX7ctVaO91FrtxDqTe/nSPiL5LWB66XdF8k04oURT1XKpThKod6Y5wQEYsK\nevxqzk3SB4HDgAnD3TZH9eQHxT52UGN+ETETmClpF+Ankt50j1gtmn3G8ASwca/ljUmq11DrvDVd\np5Zt8zbS/J4AiIi/pP8+Bfya5BSwSOo5BlU5foOKiEXpv0U8fjXlljZk/xPYNyKWDGfbnNWTX9GP\nHQzzGKRFbQwwNl1veMevyQ2UMcDDJE2QlVlxc3YHljfAVrht3l915rc6sFb6eg3gNmCPvHMabn69\n1j2Jvs3nShy/IfIr9PGr8b/NTUialDuM9OdS0vwKfeyGkd+mLL8FYRvg4ZEevzwS3BO4Pz1AJ6Tv\nfQH4Qq91zks/nwdsM9S2RfsaaX7AO9ID1g3cU9b8gHEk45l/I5lZ91Fgzaocv8HyK8PxqyG3C4Bn\ngLnp1x+G2rZoXyPNrwzHrsb8vpHGPxe4Bdh2pMfPN7iZmVkffrSnmZn14cJgZmZ9uDCYmVkfLgxm\nZtaHC4OZmfXhwmBmZn24MJiZWR8uDGZm1ocLg1mNJG2bPghlFUlrSLpH0nvyjsus0Xzns9kwSPoW\nsCqwGvBYRJyec0hmDefCYDYMklYC7gJeAnYM/w9kFeShJLPhWY9kBs41Sc4azCrHZwxmwyDpN8DP\nSWbkHB8RR+YcklnDNfsJbmalJelQ4OWIuEzSKOB2SZ0R0ZVzaGYN5TMGMzPrwz0GMzPrw4XBzMz6\ncGEwM7M+XBjMzKwPFwYzM+vDhcHMzPpwYTAzsz5cGMzMrI//D7prQArQbUy7AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x78c3a58>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of theoretical Units: \n",
+ "8.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.10:pg-552"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.10\n",
+ "# Page: 552\n",
+ "\n",
+ "print('Illustration 10.10 - Page: 552\\n\\n');\n",
+ "\n",
+ "# Solution\n",
+ "import math\n",
+ "#****Data****#\n",
+ "B = 1150;# [kg/h]\n",
+ "#*******#\n",
+ "\n",
+ "# x and y are taken in weight ratio.\n",
+ "x1_prime = 0.0101;# [Wt. fraction]\n",
+ "xF_prime = 0.0101;# [Wt. fraction]\n",
+ "y2_prime = 0;# [Wt. fraction]\n",
+ "x2_prime = 0.001001;# [Wt. fraction]\n",
+ "y1_prime = 0.0782;# [Wt. fraction]\n",
+ "# From Illustration 10.4:\n",
+ "A = 990.0;# [kg/h]\n",
+ "# At the dilute end:\n",
+ "m1_prime = 0.798;\n",
+ "Value1 = m1_prime*B/A;\n",
+ "# At the concentrated end:\n",
+ "m2_prime = 0.953;\n",
+ "Value2 = m2_prime*B/A;\n",
+ "ValueAv = (Value1*Value2)**0.5;\n",
+ "# From Eqn. 10.116:\n",
+ "# Since y2_prime = 0\n",
+ "Value3 = x2_prime/x1_prime;\n",
+ "NtoR = (math.log((1.0/Value3)*(1-(1/ValueAv))+(1/ValueAv)))/(1-(1/ValueAv));\n",
+ "print\"Number of theoretical Unit : \",round(NtoR,1),\"\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.10 - Page: 552\n",
+ "\n",
+ "\n",
+ "Number of theoretical Unit : 8.6 \n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter11.ipynb b/Mass_-_Transfer_Operations/Chapter11.ipynb
new file mode 100755
index 00000000..061424be
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter11.ipynb
@@ -0,0 +1,1207 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:8fb22aace15e10e38e42ea742c8ed08180c4384c86b8595f798fa8d94958571f"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11: Absorption And Ion Exchange"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.1: Page 575"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.1\n",
+ "# Page: 575\n",
+ "\n",
+ "print'Illustration 11.1 - Page: 575\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "#*****Data*****#\n",
+ "Temp = 30.0;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# From Fig. 11.5 (Pg 572)\n",
+ "# The isosteres for various concentrations are straight and their slopes are measured with the help of milimeter rule.\n",
+ "# Data = [X(kg acetone/kg carbon) lambda(slope of isostere)]\n",
+ "Data = numpy.array([[0.05 ,1.170],[0.10, 1.245],[0.15 ,1.3],[0.20 ,1.310],[0.25 ,1.340],[0.30 ,1.327]]);# [kg acetone/kg carbon]\n",
+ "lambdar = 551.0;# [reference at 30 OC,kJ/kg]\n",
+ "Val = numpy.zeros(shape=(6,5));\n",
+ "for i in range(0,6):\n",
+ " Val[i,0] = Data[i,0];# [kg acetone/kg carbon]\n",
+ " Val[i,1] = Data[i,1];# [slope of isostere]\n",
+ " Val[i,2] = -Data[i,1]*lambdar;# [kJ/kg acetone]\n",
+ "\n",
+ "\n",
+ "plt.plot(Val[:,0],Val[:,2])\n",
+ "plt.grid();\n",
+ "xlabel(\"X (kg carbon / kg acetone)\");\n",
+ "ylabel(\"Differential heat of adsorption (kJ / kg acetone)\");\n",
+ "title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area: The area under the curve between X = 0 to X = X\n",
+ "# Corresponding to Data(:,1):\n",
+ "Area = numpy.array([-29.8 ,-63.0, -97.9 ,-134.0, -170.5, -207.5]);\n",
+ "for i in range(0,6):\n",
+ " Val[i,3] = Area[i];\n",
+ " Val[i,4] = Area[i]+(lambdar*Val[i,0]);\n",
+ "print \" (1) = X(kg acetone/kg carbon) \\n (2)= Slope of isostere \\n (3)= Differential heat of adsorption(kJ/kg acetone) \\n (4)=deltaH_prime(vapour(kJ/kg carbon)) \\n (5)=deltaH(liquid(kJ/kg carbon)\"\n",
+ "print\"(1) \\t \\t \\t \\t (2) \\t \\t \\t \\t (3) \\t \\t \\t \\t \\t \\t \\t \\t (4) \\t \\t \\t \\t \\t \\t (5) \" \n",
+ "for i in range(0,6):\n",
+ " print Val[i,0],\" \\t \\t \\t \",Val[i,1],\" \\t \\t \",Val[i,2],\" \\t \\t \\t \\t \\t \",Val[i,3],\" \\t \\t \\t \\t\",Val[i,4]\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.1 - Page: 575\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEZCAYAAACw69OmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XnclXP+x/HXu1JRERNCCJG1VQsqd7LEECZmCpF9GWQZ\n+tm3sW9jH2PLFoOJEcnanSyJFIUxpOxMUZSt1Of3x/c6rtPdfe773PfZ7/N5Ph7ncZ9zneu6vp/7\n2+l87uv7vb7fr8wM55xzLlONCh2Ac865hsETinPOuazwhOKccy4rPKE455zLCk8ozjnnssITinPO\nuazwhOLKgqTzJd1bw/szJfXLZRmlTNIGkhZKUqFjccXLE4orCElDJL0maZGkryVNlnRsDousccCV\nmW1tZi/mqgxJFZI+TeckktpLWiapYP8/Jc2RtFPitZl9YmatzAeuuRp4QnF5J+lU4G/A5cDaZrY2\ncAywg6SmKY7J9LOaj7+ss11GTmKW1DiN3SxX5buGyxOKyytJqwEXAMea2Rgz+wHAzKab2UFmtjja\nb5SkWySNk7QIqJD0e0nTJH0n6RNJ5yWdN/FX/ZGSPpf0RZS4EgxoKuluSd9HTVzdk46fI2lA9Lyx\npDMlfRjt+4ak9aL3rovK/i7a3qee9VAp6UJJL0VlPC3pd9HbiSulBVEzU6/omMMkvSvpW0njJW2Q\ndL5dJb0vaYGkmyRNlHR49N5wSS9LukbSPOA8SRtLekHSPElzJd0X/dsQNdttAIyNyv9L1asmSetK\nelzSN5I+kHREUiznS3ooVV27hssTisu37YBmwL/T2HcocJGZtQReBhYBB5nZasDvgWMl7V3lmAqg\nA7ArMDKRJAh/bQ8CHgBWAx4Hbkw6zoibrE4BhgC7m9mqwKHAT9F7U4DOwOrAaODhVFdVaf5+w4G1\ngKbAX6LtfaOfq0XNTK9Fv+cZwL5AG2BS9LsgqQ3wMDASWAN4n1DPyc1TPYFZUVmXRPVxMbAOsAWw\nPnA+gJkNAz4B9ozKv6qa2B+M9lkH2A+4RFL/pPf3InVduwbKE4rLtzbAPDNbltgg6RVJ8yX9WOUv\n/sfM7FUAM/vFzCaa2TvR6xmEL7Udq5z/AjP7ycxmAncRvrQTJpnZ+Kgf4D5CYqjOEcBZZvZBoiwz\n+zZ6fr+ZzTezZWZ2DSE5dqxHPRhwl5l9aGY/Aw8BXRJVUs3+xwCXmtn7Ud1dCnSJrlL2AGaa2WNR\nXNcDX1U5/gszuyl6/2czm2Vmz5vZEjObB1zLinVZLUnrA9sDI81ssZm9BdwOHJy0W7p17RoQTygu\n374B2iT3iZjZ9ma2evReYrsBy3ViS+olaYKk/0laABwN/I7lJR/zCbBu0uuvk57/CDRP0TfTjvDX\n/Aqi5p93o6al+YS/wNuk+F1rk/yl/xPQsoZ9NwSuixLvfEJdAaxHuEr4rMr+VV9Xrcu1JT0o6TNJ\n3wH3smJdprIu8G2iuTLySRRLQrp17RoQ/wd2+fYq8AuwTz2OHQ08BrQzs9bA31nxM7xBleef16Oc\nTwnNZsuR1Bc4DdjfzFpHSfA7st95Xd2dVJ8AR5nZ6kmPFtEV3JeEJJiIU8mvU5zzEmApsHXUhDiM\n5euypru5vgDWkJScADdgxSTmyownFJdXZraA0Cl/s6TBklpJaiSpC9AiadfqvqRbAvPNbLGknsAB\nrPjFd7aklSVtReif+Gc9wrwduEhSBwWdJK0Rlf8rME9SU0nnAqvW4/wJqRLRXGAZsEnStr8DZ0ra\nEsLNDZL2j94bB2wjaW9JTYA/A21rKbsl8APwfXTDwWlV3v+6Svm/MbNPgVeASyU1k9QJOIzQtOXK\nmCcUl3dmdiWh4/t0QrPPV4QvzNMJVzCwfCd5wnHAhZK+B86h+mQxEfgQeA640syeq+F8qf4Kv4bQ\np/EM4QrkNqA58DQwHvgvMIfQTPVJlfPV9Jd9TeX/dqyZ/UjoMH85auLqaWaPEW6zfjBqopoB7Bbt\nPw/YH7gCmEfoZH+DcCWYKq4LgG7R7zcW+FeVfS4lJOf5kk6pJt6hQHvC1coY4Fwze6GG8nz8ShlQ\nbeOUor/0+hE+PEb4jzQp0Tla74KlEwhfEEuBJ81sZNJ7GwDvAueZ2dXRtu7AKMJ/7HFmNiKT8l3D\nIqk98BHQJLnDvxxFfRWfAgeY2cRCx+PKR8orFEnDJE0BriJcPn9ESCbrAFdJel3SQfUpNLq9cBDQ\nycy2jspIdg3wZJVttwCHm9mmwKaSBtanbOcaomgcSmtJzYAzo82TCxmTKz9NanhvdWCAmS2s7k1J\nqxLaqOvjWMItkEsAzGxu0nn3ISSvH5K2rQO0MrMp0aZ7CJ264+tZvmuYyrlZZTvCTQtNgXeAfczs\nl5oPcS67Ul6hmNn1qZJJ9P730f3u9bEp0E9h/qZKSdsCRHeNnE40wCrJeix/B8nnLH+LoitzZjbH\nzBqXa3OXmV1gZm3MbFUz287MXi90TK781HSFAoCkjsDNQFsz20pSZ2AvM/trLcc9S/V3mpwVlbu6\nmfWW1IPQAboxIZFca2Y/Rrc+OuecKxG1JhTCHS6nEe7CAXibcGldY0Ixs11Svacwq+yYaL/XozmC\n2hCmhxgs6QqgNbBM0k/Rvsn31bcjxfgCSeXc7OGcc/VmZhn9IZ/ObcOrmNlrSQUasCSTQgmD03YC\nkLQZ0NTM5plZPzPbyMw2IsxGe7GZ3WxmXxHul+8VXbkMi85RLTPzhxnnnXdewWMolofXhdeF10XN\nj2xI5wplrqTfRg1L2o8wMjcTdwJ3SpoBLGb5OYBSOY5w2/DKhNuGvUO+FnPmzCl0CEXD6yLmdRHz\nusiudBLK8cA/gM0lfQHMBg7MpFALd3cNq2WfC6q8ngpsk0m5zjnncqfWhGJms4ABkloAjayGO79c\ncRk+fHihQygaXhcxr4uY10V2pTNSvjkwmDBSvjFh/iEzswtzHl09SLJstQc651y5kITloVP+34RR\n7UsIgw0XkTTo0BWvysrKQodQNLwuYl4XMa+L7EqnD2U9M9st55E455wraek0ef0DuNHM3s5PSJnx\nJi/nnKu7bDR5pZNQ3iMsNjSbpOmwzaxTJgXniicU55yru3z1oexOmHtrF2BPYC9Cn0rRWry40BEU\nB28fjnldxLwuYl4X2VVrQjGzOYRpUAYRkslq0baide65hY7AOefKTzpNXiOAIwnzaYkwbfxtVv+Z\nhnNKkq27rnH33bDzzoWOxjnnSkO++lBmAL3N7IfodQtgspkV5ah1Sfbcc8bBB8P06bDmmoWOyDnn\nil+++lAAlqV4XpQGDIBhw2D4cCjn/nlvH455XcS8LmJeF9mVTkK5C3hN0vmSLiAsK3pnbsPK3EUX\nwbx5cH1RNsw551zDU2uTF4Ck7kAfwhKrk8xsWq4Dq6/k24ZnzYLeveGZZ6Br1wIH5pxzRSxffSj3\nmtmw2rYVi6rjUEaPhgsvhKlToUWLAgbmnHNFLF99KFtXKbQJ0D2TQvPpgAPCVcqIEYWOJP+8fTjm\ndRHzuoh5XWRXyoQi6UxJC4FtJC1MPID/AY/nLcIsuOEGePFF+Oc/Cx2Jc841XOk0eV1mZv+Xp3gy\nlmrqlalTYffd4bXXYKONChCYc84VsXz1oTQirNC4kZldKGkDoK2ZTcmk4FypaS6vq6+GRx4JVysr\nrZTnwJxzrojlqw/lZmA74IDo9aJoW8k5+WRYbTW44ILa920IvH045nUR87qIeV1kVzoJpZeZHQf8\nBGBm3wIl+fd9o0Zw991w550wYUKho3HOuYYlnSav14DtgTfMrKukNYFnzKwoR3akM33900/DEUfA\ntGnQpk2eAnPOuSKWryavG4BHgbUkXQK8DFyaSaGFtttuMGQIHH54eU/N4pxz2ZTO9PX3ASMJSeQL\nYG8zeyjXgeXaxRfD55/DzSXZG5Qebx+OeV3EvC5iXhfZVeua8pJ6A++a2Y3R61Ul9TKz13IeXQ41\nbQoPPADbbw99+0Knolx/0jnnSkc6fSjTga6JjglJjYn6U/IQX53VdQnge+6Byy6DN96AVVbJYWDO\nOVfE8jZ9ffI3tJktBRpnUmgxGTYMunULtxQ755yrv3QSymxJJ0paSVLTaAXHj3IdWL5IoR/luefC\noMeGxNuHY14XMa+LmNdFdqWTUI4BdgA+Bz4DegNH5TKofFt11dCf8uc/wyefFDoa55wrTWmth1JK\n6tqHkuyKK2Ds2DDosUmttys451zDka+5vFYGDge2BJontpvZYZkUnCuZJJRly8IYlR12gPPPz25c\nzjlXzPLVKX8vsDYwEJgIrE+Yz6vBadQo3PV1661hAslS5+3DMa+LmNdFzOsiu9JJKB3M7BxgkZnd\nDewB9MptWIWzzjpwxx1w0EHw7beFjsY550pHOk1eU8ysp6RJwHHAV8BrZrZxPgKsq0yavJKdfDJ8\n/DH861/hTjDnnGvI8tXkdZukNYCzCSs1vgtckUmhpeCyy2D2bPjHPwodiXPOlYZ05vK6zcy+NbOJ\nZraRma1pZn/PR3CF1KwZPPggnH02vPNOoaOpH28fjnldxLwuYl4X2ZXWSPly1bEjXH55mJn4p58K\nHY1zzhW3go1DkXQCoU9mKfCkmY2MtncCbgVaAcuAbc1ssaTuwCjCrcvjzGxEivNmpQ8lwQyGDoXf\n/Q5uuilrp3XOuaKSt7m8sk1Sf2AQ0MnMtgauirY3IdymfFS0fUfg1+iwW4DDzWxTYFNJA/MTK/z9\n7zBuHDz2WD5KdM650lRrQpE0WNIfqjwGSForg3KPBS41syUAZjY32r4r8LaZzYi2zzezZZLWAVqZ\n2ZRov3uAfTIov05at4bRo+Hoo+Gzz/JVaua8fTjmdRHzuoh5XWRXOlcohwG3AwdGj9uA/wNekXRw\nPcvdFOgnabKkSknbJm03SeMlTZV0WrR9PcI8YgmfR9vyZrvtYMSIMD5l6dJ8luycc6UhnRmrVgK2\nMLOvASStTWiW6gW8SLhaWIGkZ4G21bx1VlTu6mbWW1IP4CFg46isPsC2wE/A85KmAt/V5ZcaPnw4\n7du3B6B169Z06dKFiooKIP6LpD6vR46Ehx+u5Kij4I47Mj9frl9XVFQUVTz+unheJxRLPIV6ndhW\nLPHk83VlZSWjRo0C+O37MlPpDGx8z8y2SHotwgqOW0iaVp+FtiQ9BVxmZhOj1x8SZjEeAOxuZsOj\n7WcDPwP3ARMScUgaCuxoZsdUc+6sdspX9fnn0L17GPC4ww45K8Y55/IqX53yEyQ9KekQScMJgxsr\nJbUAFtSz3MeAnQAkbQY0NbN5wDPANpJWjjrodwTeMbOvgO8l9YoS2rDoHHm33nphsOOBB8KC+v72\neVL1r9Fy5nUR87qIeV1kVzoJ5c/AXUAXoDNwN3Ccmf1gZv3rWe6dwMaSZgAPAAdD6IQHrgFeB6YB\nU83sqeiY4wh9OR8AH5rZ+HqWnbFBg2CvveCoo8Jtxc4559Jr8to96Us9se2YYh0tn+smr4Sff4ae\nPeHEE+GII3JenHPO5VS+mrzOkTQgqdDTyeMtu8WqefMwNcsZZ8B77xU6GuecK7x0Esog4GJJfSVd\nTLi7a1BuwyoNW24Jl1wSRtL//HOho1mRtw/HvC5iXhcxr4vsSmdyyHmEBHIzsC6wn5ktznVgpeKI\nI6BDBxg5stCROOdcYaXsQ5G0CEh+symwJNpmZrZq7sOru3z1oSSbPx+6dIEbbwyd9c45V2rysqZ8\nqSlEQgF46SXYbz94801Yd928F++ccxkp2ckhG6I+feC444prahZvH455XcS8LmJeF9nlCSWLzjor\nJJMrGvx6ls45tyJv8sqyTz+FbbeFf/8bevcuWBjOOVcnOW3yimb7vU7SQEnNMymknKy/flg/5YAD\n4Ls6TWnpnHOlraYmr96E+bL6AxMlPSVpRDT3lqvBvvvCbrvBMccUdmoWbx+OeV3EvC5iXhfZlTKh\nmNkSM5tgZiPNrBdwBLAI+KukNyXdnLcoS9A118CMGXD33YWOxDnn8qNefSiSGgO9zezl7IeUmUL3\noSSbORP69w+3FHfsWOhonHMuNR+HUo1iSigAt9wCt90Gr74KzZoVOhrnnKuej0MpAcccAxtuCGee\nmf+yvX045nUR87qIeV1klyeUHJPgjjvg4Yfhqadq398550pVTXN53VDDcb8AHwL3m9nCXARWX8XW\n5JUwcSIMGQLTpkHbtoWOxjnnlpfTPpRoud9U38xNgK2Brc1sl0wCyLZiTSgA554LkyfD+PHQyK8N\nnXNFJKd9KGY2yszuBiaZ2d3JD+BtMzsZ+DWTwsvNuefCDz/A1VfnpzxvH455XcS8LmJeF9mVzt/J\nj0hql3ghaUfCGvOY2e65CqwhatIERo+GK6+E118vdDTOOZdd6awp3wO4BdgT6AZcCuxpZp/mPry6\nK+Ymr4SHHw5LB0+bBq1aFToa55zL4zgUSdsDtwI/EZLJ/zIpNJdKIaEAHHVUWDb4nnsKHYlzzuV+\ncsixiQdwBrAy4e6uOyQ9nkmhDq69NjR73Xtv7srw9uGY10XM6yLmdZFdTWp4r7quYwNE6ru/XJpa\ntIAHH4Sdd4bttgvr0jvnXCmr6bbhRma2rMaDi7B9qQhDqtENN4Rmr5dfhqZNCx2Nc65c5XrqlQmS\nTqtuunpJHSWNBCZmUriD448PAx3PPrvQkTjnXGZqSii7At8AN0n6UtJ/JX0g6UvgRuBrYOd8BNmQ\nSXDXXeF24meeye65vX045nUR87qIeV1kV8o+FDP7BbgTuDOarr5N9NY8M1uaj+DKRZs2odlr2LBw\nK/FaaxU6Iuecqzufvr6InHlmSChPPulTszjn8sunr29gLrgA5s+H664rdCTOOVd3nlCKyEorwQMP\nwCWXwJtvZn4+bx+OeV3EvC5iXhfZ5QmlyGy0EVx/fZjqftGiQkfjnHPpS2cur8HAZcDahEGNAGZm\nq+Y4tnop5T6UZIcdBmbhDjDnnMu1vMzlJWkWYf6u9zIpKF8aSkJZtAi6d4fzz4ehQwsdjXOuoctX\np/xXpZJMGpKWLUN/yoknwkcf1e8c3j4c87qIeV3EvC6yq6a5vBLekPRP4DFgcbTNzGxM7sJyAN26\nhVuJDzgAJk0KnfbOOVes0mnyGhU9XW5HMzs0o4KlE4DjgKXAk2Y2UlJzwuJdWxGS3T1mdlm0f3dg\nFNAcGGdmI1Kct0E0eSUsWwZ77glduoS7v5xzLhey0eRV6xWKmQ3PpIDqSOoPDAI6mdkSSWtGbw2J\nyuwkaWXgXUmjzewTwiJfh5vZFEnjJA00s/HZjq3YNGoEo0ZB164wYEB4OOdcMaq1D0XS+pIelTQ3\nevwreUngejoWuNTMlgCY2dxo+5dAi2iqlxaEJrbvJa0DtDKzKdF+9wD7ZBhDyVhrrZBUDjkE5s6t\ndfffePtwzOsi5nUR87rIrnQ65e8CHgfWjR5jo22Z2BToJ2mypEpJ2wKY2dPA94TEMge40swWAOsB\nnyUd/3m0rWzssgsceCAcemi4ndg554pNOn0ob5lZ59q2VXPcs0Dbat46C7gYeMHMRkRr1v/TzDaW\ndBCwL/BHYA1gErA78DvCFc0u0bn7Aqeb2V7VlNug+lCSLV4MffqESSRPOKHQ0TjnGpK89KEA30ga\nBowmDGwcAsyr7aDEl391JB0LjIn2e13SMkltgO2BR6PZjOdKehnoDrwEJDeztSNcpVRr+PDhtG/f\nHoDWrVvTpUsXKioqgPgStxRfN20KI0ZUctxx0K9fBZ07F1d8/tpf++vSeV1ZWcmoUaMAfvu+zJiZ\n1fgA2hOaueZGj38DG9R2XC3nPBq4IHq+GfBx9PxE4M7oeQvgHWDr6PVrQC9CUhsHDExxbmvo7r3X\nbPPNzRYtqnm/CRMm5CWeUuB1EfO6iHldxKLvznp/r5tZ7X0oZjbHzPYyszWjx94W7rrKxJ3AxpJm\nAA8Ah0TbbwWaRtunRMllZvTeccDtwAfAh1YGd3ilctBB0KMHnHRSoSNxzrlYTWvKjzSzyyXdUM3b\nZmYn5ja0+mnIfSjJFi4MAx8vvhj++MdCR+OcK3W57kN5N/o5leUHNarKa1cArVqFqVn22AN69oRs\nNYE651x9pWzyMrOx0dMfzezupMco4Ke8ROdqtO22cPrp4XbiX39d8f1EB5zzukjmdRHzusiudMah\nnJHmNlcAp5wSJpK88MJCR+KcK3c19aHsDuwB/Al4kHgtlFbAlmbWMy8R1lG59KEk++qrMDXLAw9A\ndHegc87VSa6nr/+C0H/yc/TzjejxOLBbJoW67GrbFu68Mwx4/OabQkfjnCtXNfWhvBX1l2xCuEKZ\nDkwDnjCz+fkJz6Vr993D3V6HHx5PzeLtwzGvi5jXRczrIrvS6UPZFfgQuB64AZglaY+cRuXq5ZJL\n4NNP4ZZbCh2Jc64cpTOX1/vA783sw+j1JoT1SDrmIb46K8c+lGT//S/ssAO88AJss02ho3HOlYp8\nLQH8fSKZRD4izAjsitBmm8GVV8KQIfDjj4WOxjlXTtJJKFOjBa2GSxoOPEFYFvgPkv6Q2/BcfRxy\nSJiapaKikp9/LnQ0xcHbymNeFzGvi+xKJ6E0A74GdowecwnL8O4VPVyRkeD222GVVWDwYPjll0JH\n5JwrBzX2oUQrJ44ws2vyF1Jmyr0PJdmSJTB0aEgojzwCzZoVOiLnXLHKeR+KhXVJhmZSgCuclVYK\ngx1XWincUrx4caEjcs41ZOk0eb0k6UZJfSV1k9RdUrecR+YyVllZyUorwYMPhmawIUPCVUs58rby\nmNdFzOsiu9JJKF2BrYALgauBq6KfrkQ0bQoPPRQmkBw6tHyTinMut2odh1JqvA8ltV9+CZ30q6wC\no0dDk3QWgHbOlYW8jEOR1FrStZKmRo+rJa2WSaGuMJo1C53zCxeGVR+rm/LeOefqK50mrzsJAxn3\nB/4ILATuymVQLjuqax9u3hwefRTmz4eDDy6fpOJt5TGvi5jXRXalk1A2MbPzzOwjM5tlZucTJox0\nJap5c3jsMZg3D4YPh6VLCx2Rc64hSGcur8nAaWY2KXrdB7jSzLbLQ3x15n0o6fvxRxg0CNZdF+66\nCxo3LnREzrlCyUYfSjoJpQtwD5DoN5kPHGJmb2VScK54QqmbH3+EPfeEDTeEO+6ARulcszrnGpy8\ndMqb2XQz6wR0ArYxsy7Fmkzc8tJpH15lFRg7FmbPhiOPhGXLch9XIXhbeczrIuZ1kV3p3OV1kqRV\nCR3z10p6U5Kv2NiAtGgBTz4JH3wARx/dcJOKcy630mnyetvMOkVJ5BjgHOBeM+uajwDrypu86m/R\nIhg4ELbaKizS5c1fzpWPfK2Hkijg94REMjOTAl3xatkSnnoKZs6E44+PlxJ2zrl0pLseyjPAHsDT\nUfOXN4qUgPq0D7dqFZLKtGlwwgkNJ6l4W3nM6yLmdZFd6SSUw4AzgG3N7AdgJeDQnEblCmrVVWH8\neHj9dRgxouEkFedcbqXsQ5HUHUj5VWJmb+YqqEx4H0r2LFgAu+wCffrANdeEGYudcw1TTsehSKok\nJJSVge7A29FbnYA3fGBjeZg/PySVHXeEq67ypOJcQ5XTTnkzqzCz/sAXQDcz625m3QnT2X+RSaEu\nP7LRPrz66vDMMzBhAowcWbrNX95WHvO6iHldZFc6fSibm9mMxIvoLq8tcheSKzZrrAHPPhsSyxln\nlG5Scc7lVjrjUB4EFgH3EW4hPgBoaWZFuTSwN3nlzrx5MGBAmKrlr3/15i/nGpJ8zeW1MnAs0Dfa\n9CJwi5n9nEnBueIJJbfmzoWddoJ994ULLyx0NM65bMnXXF4/mdk1ZrZv9Li2WJOJW14u2ofXXBOe\nfx7GjIELLsj66XPG28pjXhcxr4vsqnURWEmbAZcAWxLu+AIwM9s4l4G54rXWWiGp9O8fpmc555xC\nR+ScKwbpNHm9DJwHXAMMAoYDjc2sKL9GvMkrf776KiSVgw6Cs84qdDTOuUzkay6vlc3sOULymROt\n2Pj7TAqV9KCkadFjtqRpSe+dIekDSf+RtGvS9u6SZkTvXZdJ+S472raFF16Ae++Fyy4rdDTOuUJL\nJ6H8LKkx8KGk4yX9AWiRSaFmNsTMukYzFv8reiBpS+BPhOa1gcDN0m/3Et0CHG5mmwKbShqYSQzl\nIB/tw+usE5LKnXfCFVfkvLh687bymNdFzOsiu2rtQwFOAlYBTgQuAlYFDslG4VGy+CPQP9q0N/CA\nmS0B5kj6EOgl6WOglZlNifa7B9gHGJ+NOFxm1l03DHysqAjLCJ96aqEjcs4VQq19KDktXOoHXG1m\nPaLXNwCTzez+6PXtwFPAHOAyM9sl2t4XON3M9qrmnN6HUiCffRaSyp//DCefXOhonHN1kY0+lHSu\nUOpF0rNA22reOtPMxkbPhwKjcxWDy6927ULzV//+4UrlxBMLHZFzLp9yllASVxOpSGoC7At0S9r8\nObB+0ut2wGfR9nZVtn+e6tzDhw+nffv2ALRu3ZouXbpQUVEBxG2m5fA6uX04X+V/9FElF18MZ5xR\nQaNGsPXWxVEfiW3F9O9TqNfTp0/npJNOKpp4Cvn6b3/7W1l/P4waNQrgt+/LjJlZtQ/g8ujnH1Pt\nk8mD0Ok+ocq2LYHpQFNgI2AWcbPca0AvwvQv44CBKc5rLpgwYULByp4922zDDc1uuqlgISynkHVR\nbLwuYl4Xsei7M6Pv9Zqmr58JbAO8aTlYP17SXcCrZvaPKtvPJCzq9SswwsyejrZ3B0YRBleOM7Nq\nG1S8D6V4zJ4d+lTOPBOOPrrQ0TjnapLr9VCuBI4EWgI/VXnbzGzVTArOFU8oxWXWrNCncs45cOSR\nhY7GOZdKrtdDOc3MWhOuBlpVeRRlMnHLS+4/KJRNNgkd9RdeCHfcUbg4iqEuioXXRczrIrtq7ZQ3\ns0GS1gZ6RJummNn/chuWa0g6dFj+7q/hwwsdkXMuF9KZy+uPwJXAREKHeF/gNDN7OPfh1Z03eRWv\n998P66lccgkcfHCho3HOJcvXOJSzgR6JqxJJawLPA0WZUFzx6tgRnnsuJJVGjcKkks65hiOdubwE\nzE16/U0MILaSAAAaI0lEQVS0zRW5Ymwf3nzzsJzw6afD6DwOaS3GuigUr4uY10V2pXOFMh54WtJo\nQiL5E2E6FOfqZcstQ1LZeedwpTJkSKEjcs5lQ1pzeUkaDOwQvZxkZo/mNKoMeB9K6ZgxA3bdFa6/\nHvbfv9DROFfe8rKmfKnxhFJa3noLdtsNbroJBg8udDTOla98LbDlSlQptA937gzjx4cZih/N4XVv\nKdRFvnhdxLwusitnk0M6l64uXWDcONh999CnsvfehY7IOVcf6YxDGWFm19W2rVh4k1fpmjoV9tgD\nbr8d9lphpRvnXC7lq8lreDXbDs2kUOeq0707PPEEHHFE+OmcKy0pE4qkoZLGAhtJGpv0qCSMRXFF\nrhTbh3v0gLFj4bDDQjNYtpRiXeSK10XM6yK7aupDeQX4ElgTuIp4MONC4K0cx+XKWM+e8PjjMGgQ\n3HtvuAvMOVf8/LZhV7ReeQX22Qfuuy+MV3HO5U5e+lAkbSfpdUmLJC2RtEzS95kU6lw6tt8exoyB\nAw8Mc4A554pbOp3yNwIHAB8AzYHDgZtzGZTLjobQPtynT0gqBxwQpsCvr4ZQF9nidRHzusiutAY2\nmtkHQGMzW2pmdxHWg3cuL/r2hYcfhj/9Cfz/v3PFK51xKC8CuwC3EzrpvwIOMbPOuQ+v7rwPpeGa\nMCEklUcegX79Ch2Ncw1LvsahHBztdzzwI9AO8FmXXN717w8PPBDm/Jo0qdDROOeqqjWhmNkcwi3D\nbc3sfDM7xcw+zHlkLmMNsX14wICwjsrgwfDyy+kf1xDror68LmJeF9mVzl1eg4BpwNPR666SHs91\nYM6lsssuYXzKvvvCq68WOhrnXEI6fShvAjsBE8ysa7RtppltnYf46sz7UMrH+PFhbfqxY6FXr0JH\n41xpy1cfyhIzW1Bl27JMCnUuGwYOhFGjwkSSU6YUOhrnXDoJ5R1JBwJNJG0q6QbCtCyuyJVD+/Ae\ne8Cdd4ak8sYbqfcrh7pIl9dFzOsiu9JJKCcAWwG/AA8A3wMn5TIo5+pizz3httvg97+HN98sdDTO\nlS+fy8s1GI89BkcfHfpWunYtdDTOlZZs9KHUumKjpI7AX4D2Sfubme2UScHOZds++8DSpWHlx6ef\nDssLO+fyJ50mr4eBN4GzgdOSHq7IlWP78ODBcMMNocP+7bfj7eVYF6l4XcS8LrIrnTXll5jZLTmP\nxLks2X9/WLYsrKPy7LOwdVHe4O5cw5OyD0XSGoQR8icAc4ExhI55AMzs23wEWFfeh+ISHngATj01\nJJWttip0NM4Vt2z0odSUUOYAqb6Zzcw2zqTgXPGE4pLdfz+cdhocf3zoU+ncGdZbD5TRfxvnGp6c\nJpRS5QklVllZSUVFRaHDKLgXXoBbb63k228reOut0BzWqVOcYDp3hi23hGbNCh1pfvjnIuZ1EcvL\nXV7OlbqddoJGjaCiAszgq6/grbfC45ln4Mor4aOPYNNNl08ynTvDWmsVOnrnSodfoTgH/PwzvPNO\nnGgSj+bNV0wyHTtCE/9TzDUw3uRVDU8oLlvM4NNPV0wyn30GW2yxYqJZffVCR+xc/eW6U747qTvl\nMbN6T3Ih6UGgY/SyNbDAzLpK2gW4FGgKLAZOM7MJSfGMIqxrP87MRqQ4tyeUiLcPx7JZF4sWwcyZ\nyyeZGTOgdesVk8wmm0DjxlkpNmv8cxHzuojlug/lampIKED/+hZqZkMSzyVdBSRmM54L7GlmX0na\nirAGS7vovVuAw81siqRxkgaa2fj6xuBcfbVsCb17h0fCsmUwe3acYO6/H04/HebODeNgkpNMp07Q\nqlXh4ncuVwra5CVJwMdAfzObVc1784C2QBvgBTPbInpvCFBhZsdUc06/QnFF47vvwoj95KuZd96B\ntm1XvJpp395vZ3aFk7e7vCRtA2xBaG4CwMzuyaTgSF/g66rJJDIYmGpmSyStB3yW9N7nwHpZKN+5\nnFptNejbNzwSli6FDz6IE8xtt4WfCxeueDvz1lvDKqsULn7n6iKdySHPB3YkTGH/JLA78BJQY0KR\n9Czh6qKqM81sbPR8KDC6mmO3Ai4DdqktvuoMHz6c9u3bA9C6dWu6dOnyWztpYu6ecnidPE9RMcRT\nyNeJbcUST0VFBZtvDmuvXcmuu4bX8+bBPfdUMmsWvPxyBTfdBO++W0nbtrDddhV07gxSJR06wH77\nVSDVr/zp06dz0kknFfz3L4bXf/vb38r6+2HUqFEAv31fZiqdJYBnAp2BN82ss6S1gfvNbOeMCpaa\nEK46upnZF0nb2wHPA8PN7NVo2zos3+Q1FNjRm7xqVukdjr8p1bpYvBj+858V7zRbunTFJrN0B2eW\nal3kgtdFLC+3DUt63cx6SJpKWFv+e+A/ZtaxxgNrK1gaCIw0s/5J21oDE4HzzOyxKvu/BpwITCFc\nKV1fXae8JxTX0FUdnJl4fPQRdOiwYqJZe+1CR+xKQb4Sys3AWcCfgFOBH4BpZnZoRgVLdwGvmtk/\nkradDfwf8EHSrruY2byk24ZXJtw2fGKK83pCcWUp1eDMZs3i5NKlC+y9N7RoUehoXbHJ+8BGSRsB\nq5rZW5kUmkueUGJ+OR8r17qoOjhz8mSYPLmSSy+t4NBDfcR/uX4uqpPTu7wkbWFm70nqVs173TIZ\n2Oicyw8JNtggPPbaK2z7+9/DOJnrroMrrggrXPrtyi4bahopf5uZHSmpkmoGOCb3fRQTv0JxrnZm\n8MQTYfDluuuGCTK7rfCnoysn+epDaW5mP9e2rVh4QnEufb/+CnfcARdcAAMGwF//ChtuWOioXCFk\nI6Gks6b8K2luc0UmeQxGufO6iCXXRZMmcPTR8P77sPHG4Spl5EhYsCD18Q2Jfy6yK2VCkbROdGfV\nKpK6Seoe/awAfOyucw1Iq1bhKmXGDPj22zBF/3XXhXEwzqWrpj6UQ4DhwLbAG0lvLQRGmdmYnEdX\nD97k5VzmZs4M/Sv//S9ceinst5933Dd0+epD2c/MHsmkkHzyhOJc9jz/PPzlL2Ghsauugh12KHRE\nLlfy1YfyhKQDJZ0l6VxJ50k6N5NCXX54+3DM6yJWl7oYMACmToXjjoMDDoA//CFctTQU/rnIrnQS\nyr+BQcASwij5RdFP51wZaNQIhg0Lc4r16hWuUo4/Pqz14lyytCaHNLOt8xRPxrzJy7ncmjcPLroo\nDI485RQ46SSfYr8hyNttw5I6ZVKIc67haNMm3AE2eTJMmxbuCBs1KsyA7MpbOgmlLzBV0n8lzYge\nb+c6MJc5bx+OeV3EslUXHTrAww/DQw+FRcK6d4dnn83KqfPGPxfZlc7UcLvnPArnXMnabjt46SUY\nMyZ03m+ySZgjrJO3a5SdtGYbltQX6GBmd0laE2hpZrNzHl09eB+Kc4WzZAncemuYwmWPPUJfy3q+\nWHdJyEsfSrQE8OnAGdGmpsB9mRTqnGuYVlop3AH2/vthYa9OneDss+H77wsdmcuHdPpQ9gX2JrpV\n2Mw+B1rlMiiXHd4+HPO6iOWjLlZbLYywnz49rMfSsSPcfHO4gikm/rnIrnQSyi9mtizxQpKv9eac\nS8v668Pdd8NTT8Gjj8LWW8Njj4Xp813Dk844lNOADsCuwKXAYcBoM7s+9+HVnfehOFeczODpp+G0\n06B16zCVS69ehY7KJeR8Li9JAtYHNickFICnzaxobw70hOJccVu6NFy1nHtuGHV/6aVh6nxXWPka\n2DjOzJ4xs79Ej6JNJm553j4c87qIFbouGjeGww4LHffbbAM9e8LJJ8M33+Q/lkLXRaGZwaxZYWBq\nNtSYUKI/9adK6pmd4pxzLmjRItwB9s478MsvsPnmYSnin4tyLdiGYelSeOstuPFG+NOfwi3d/frB\n+PHZOX86fSjvE/pQPiaeFNLMrCiHLXmTl3Ol6T//gf/7v3Bn2MUXw9ChYWJKV3+LF8Mbb8CLL8Kk\nSfDKK7DWWtC3b/zYaKOw1k2+1kNpX912M5uTScG54gnFudL24othDZZly8IVS//+hY6odCxcCK++\nGpLHpEkhmWy2WbgK6dsX+vQJ44Oqk5c+lChxrA/0j57/APjabSWg3NuHk3ldxIq9Lvr1CxNP/uUv\ncPjhsNde8O67uSmr2OuiNnPnhtuxTz4Ztt0W1lknzFKwbFm42vviC3jzTfjb32Dw4NTJJFtqncsr\nGinfHegI3EU8Ut7XbnPO5USjRjBkCOy7L9x0E1RUhOfnnx++NMuRGXz8cXz1MWkSfPllmEutX7+Q\nNLbdNqyuWSjpNHm9BXQFpppZ12jb296H4pzLl/nzQ7/KXXfBiSfCqadCy5aFjiq3li2D996L+z8m\nTQozDST3f3TqFO6ay4Z89aFMMbOekqaZWddopPyrnlCcc/k2ezacdRZMnBiuVg49FJqkM2d6CViy\nJDRPJZLHSy+FAaB9+8Z9IB06hA70XMjXOJSHJd0KtJZ0FPA8cHsmhbr8KPX24WzyuoiVcl1stBGM\nHh2mb7n/fujcGZ58sv5TuRSyLn78EV54AS64AAYMgDXWgKOOgjlz4IADYMaMeIzIYYfBppvmLplk\nS8rcLqm5mf1sZldK2hVYCGwGnOODG51zhdSjB0yYAE88ETrvr746TOXSrVuhI0vt22/DVUfiCmTG\njJAQ+/YNSylvvz2svnqho8xMyiYvSW+aWTdJ95rZsDzHVW/e5OVcefn1V7jjjtAENmBA6GvZcMNC\nRxVmWU7uQP/kE+jdO+7/6NkTVlml0FHGctqHIukd4BLgIuAvhFuFLfHTzMZkUnCueEJxrjwtXBiu\nUm68MdxufOaZoQ8iH8zCVDLJCWTRojDuI9EH0qVLcff35LoP5RjCevKrAXsBe1b56YpcKbeVZ5vX\nRayh1kWrVqE/YsaMcFfYZpuFW2kXL059TH3r4tdfw6DBa6+FP/whjO8YODDckdWnD4wbB//7Xxgj\ncsop4XbeYk4m2VLTr9jWzI6Jmr7+kbeInHMuA+uuC7fdBiNGwOmnww03hBmN99+//p3aP/0EU6bE\nVx+TJ0O7duHqY/DgkLg22CC7v0cpqqnJK3Gb8LTE+JNS4E1ezrlkzz8fOu6bNQtNYn361H7MggVh\n3qvEGJDp08PiYIn+jx12gDZtch97PuW6D+U5Qp9JD2BSlbfNzAZlUnCueEJxzlW1bFm4zfiss6B7\nd7j88tAklvDll8v3f8yaFe4kSySQ3r0b/kDKXCeUZoQR8vcBh7P8/F1mZhPrXaj0IGEqF4DWwILk\nqyBJGwDvAueZ2dXRtu7AKKA5YY2WESnO7QklUllZSUVFRaHDKApeF7FyrouffoLrrw+TTu67L3z6\naSUffljBt9+Gq47EAMJu3aBp00JHm1857ZQ3s1/MbDKwnZlNNLPKpEe9k0l07iFm1jVKIv+KHsmu\nAZ6ssu0W4HAz2xTYVNLATGIoB9OnTy90CEXD6yJWznWx8sowcmSYKr9dO2jZcjqPPgrz5sHYsWF5\n4t69yy+ZZEtNAxuvi64C7tSKPVlZafKKlhj+I9A/ads+wEfEa68gaR2glZlNiTbdA+wDZGlZmIZp\nwYIFhQ6haHhdxLwuQv/HeefB+ecvYJttCh1Nw1HTXV73RD+vrua9bLUp9QW+NrNZAJJaAqcDOwOn\nJe23HvBZ0uvPo23OOeeKRMqEYmZTo5+VktaMns9N98SSngXaVvPWmWY2Nno+FBid9N75wLVm9qOq\nuSxydTNnzpxCh1A0vC5iXhcxr4vsqqlTXsB5wPFAYoLkpcANZnZBxgVLTQhXHd3M7Ito24uExbwg\ndNYvA84BxgATzGyLaL+hwI5mdkw15/Ueeeecq4dMO+VravI6mbCIVg8zmw0gaWPg75JOMbNrMimY\n0Kz1XiKZAJhZv8RzSecBC83s5uj195J6AVOAYcD11Z000wpxzjlXPzVNvXIwcEAimQCY2UfAgdF7\nmfoT8EAd9j+OMG3+B8CHZuYd8s45V0RqavKaaWZb1/U955xz5ammK5Ql9XwvJyQNlPQfSR9IGpli\nn+uj99+SlDxQco6ktyVNkzSlumNLSW11IWlzSa9K+lnSqXU5ttRkWBfl9rk4MPq/8baklyV1SvfY\nUpNhXZTb52LvqC6mSZoqaad0j12BmVX7IHTAL0zx+DXVcbl4EG4K+BBoD6wETAe2qLLPHoQR9AC9\ngMlJ780G1shnzAWuizWBbYG/AqfW5dhSemRSF2X6udgOWC16PjDxf6RMPxfV1kWZfi5aJD3fhtCl\nUK/PRU0j5RubWasUj3xPxNyT8EvOMbMlwIPA3lX2GQTcHcX+GmHJ4rWT3m8onfW11oWZzTWzN1jx\nSjKdeiwlmdRFQjl9Ll41s++il68B7dI9tsRkUhcJ5fS5+CHpZUtgXrrHVpXOmvLFYD3g06TXn7Hi\nwMaa9jHgOUlvSDoyZ1HmRzp1kYtji1Gmv085fy4OB8bV89hil0ldQBl+LiTtI+k94CngxLocm6xU\nlnxJd2xJqr8q+pjZF9EAzWcl/cfMqs6gXCoyGWfT0MboZPr77GBmX5bb50JSf+AwwrCAOh1bIjKp\nCyjDz4WZPQY8JqkvcK+kzetTWKlcoXxOPOCR6PlntezTLtqGRWNdLIz0f5RwKVeq0qmLXBxbjDL6\nfczsy+hn2Xwuos7n24BBZja/LseWkEzqoiw/FwlR4mwCrBHtV6fPRakklDcIMwy3l9SUMIbl8Sr7\nPE40PkZSb8KU+F9LWkVSq2h7C2BXYEb+Qs+6dOoioeoVW12OLQX1roty/FwoLAsxBjjIzD6sy7El\npt51Uaafi02kMNWVpG4AZvZNOseuoNB3IdThboXdgfcJdx2cEW07Gjg6aZ8bo/ffIkzpArAx4e6E\n6cDMxLGl/KitLghzqH0KfAfMBz4BWqY6tpQf9a2LMv1c3A58A0yLHlNqOraUH/WtizL9XJwe/a7T\nCIsp9qjv5yLlwEbnnHOuLkqlycs551yR84TinHMuKzyhOOecywpPKM4557LCE4pzzrms8ITinHMu\nKzyhuJyTtL6kjyStHr1ePXq9QTX7NpM0UVIjSRWSxuY/Yshl2ZJWkjS1mu2LclFeXUg6M0fnPVHS\nsFyc2xUPTygu58zsU+AW4LJo02XArWb2STW7Hwg8YWbL8hVfVZJyPcddH+ClarYXw6CwM3J03ruA\nE3J0blckPKG4fLkW6C3pJGB74KoU+w0F/l11o6Qekt6UtJGkNSU9K2mmpNuiBZHWqOaYgdGCQdMl\nPRtt6ynplehcL0vaLNo+XNLjkp4HniN8ua8m6YlogaFbkqanGBotwDRD0mVJ5S2S9NeovFclrZXi\ndxxImNW1WpLaRDHuruBmSe9JekbSk5IGV3PMkZKmRGU/ImnlaPvakh6Ntk+PpiVC0kGSXlNYVOnv\n0RXhZcDK0bZ7o/1OiX7PGZJGRNvaR/H8I/o3eFpS8+i9TSQ9pTBT74uSOgKY2ULgG0lbpfq9XQNQ\n6GkB/FE+D2A3YBkwIMX7jYEvk15XAGMJCegNoF20/UZgZJVzrlHlXGsSplnZMHrdOvrZCmgcPd8Z\neCR6PpwwRUvrpLJ/Iiwu1Ah4BhgMrAt8DPwuivd5YO/omGXA76PnlwNnpfg9XwOaV7N9IbAWMDlR\nR8B+wJPR87WBb4E/VHPsGknPLwKOj57/Ezgxei5gVWALwpxMiXq4GRiWiCHpPN2Bt4GVgRaE6Tm6\nRHWyBOiUVMaB0fPngQ7R817A80nnuwA4ttCfQ3/k7lEq09e7hmF34AvCqnDPV/N+G8KXarItgFuB\nXczsq2jbDsA+AGb2tKT5rKg3MNHMPo72WxBtbw3cI6kD4Sok+f/AM0n7QZjfaQ6ApAcITVVLgEoL\nk+ch6X6gH+GqarGZPRkdOxXYpWpQktYDvjWzn6uJuSmhXo6zeLr0HYCHot/ha0kTqjkOYBtJfwVW\nI8xVNj7a3h84KDregO8lHUxIFm9EF10rA1+tcMbw+44xs5+i2McAfQnJaLaZvZ30u7aPJlPcHng4\nOm/id0r4gjBXlmugPKG4vJDUhXBFsB3wkqQHkxLEcrsmPTfgS6AZ0I3lF0GqbUU9S7HPRYS/mveV\ntCFQmfTej9WcI7m86vo4krcnrwq5jOr/fw0k/rKvagnhSmwgYZK+5DJqM4owDfsMSYcAO9Zy/N1m\nVlsHfNU6TP5df0navhRoTriSm29mXVOcL1UdugbC+1BczkV9D7cAIyx00F9J9X0o8wh/Xf92KLAA\n2BO4VFLiS/Jl4I/RuXcFVq/mXK8B/SS1j/ZL7LMq4S9lgENrCb1n1F/QKCpvEjAF2FHS7yQ1BoYA\nE2s5T7LdSN1/YoTFnjaXdHq07WVgcNSXsjahKa46LYGvJK1EdEUSeR44FkBSY0mrRtv2U1hACklr\nKL7jbknSTQmTgH0krRxdfewTbasuQclCP8lsSftF55Wkzkn7rAPMSRG/awA8obh8OBKYY2aJZq6b\ngS0UVof7jZktBWYmOnIJX7BmZv8jJJWbJPUgtMXvKmkGoY/hK6o0lVlYHOkoYIyk6YT1sAGuICSn\nNwl9IIm/mI3l/3o24HVCf827wEdm9mh0VfV/wATCFOdvmNnYpGNIcT6iBNTBzP6bop4sapYaCuwk\n6RjgX4RFjd4F7gXeJEzFX9U5hCT6EvBe0vYRQH9JbxOufrYws/eAs4FnJL1F6B9qG+3/D+BtSfea\n2TTClc8UQr/ObWb2VjW/a/LrA4HDozqfCeyVtE9Plr/ycg2MT1/vioqk4cDaZnZ5Dfs0BZaa2VJJ\n2wE3mVm3fMVYX5J2IHReH1fH41qY2Q+SfkdIGttHSbZkJK6MzKxHoWNxueMJxRWVKFk8B+xoKT6c\nUYf6Q4Qr7MWEO4dWGCjYUEQd8a0JHdyXm9k9BQ6pziSdSLgZ4b5Cx+JyxxOKc865rPA+FOecc1nh\nCcU551xWeEJxzjmXFZ5QnHPOZYUnFOecc1nhCcU551xW/D+xKBVCe8dDPQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7df0da0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " (1) = X(kg acetone/kg carbon) \n",
+ " (2)= Slope of isostere \n",
+ " (3)= Differential heat of adsorption(kJ/kg acetone) \n",
+ " (4)=deltaH_prime(vapour(kJ/kg carbon)) \n",
+ " (5)=deltaH(liquid(kJ/kg carbon)\n",
+ "(1) \t \t \t \t (2) \t \t \t \t (3) \t \t \t \t \t \t \t \t (4) \t \t \t \t \t \t (5) \n",
+ "0.05 \t \t \t 1.17 \t \t -644.67 \t \t \t \t \t -29.8 \t \t \t \t-2.25\n",
+ "0.1 \t \t \t 1.245 \t \t -685.995 \t \t \t \t \t -63.0 \t \t \t \t-7.9\n",
+ "0.15 \t \t \t 1.3 \t \t -716.3 \t \t \t \t \t -97.9 \t \t \t \t-15.25\n",
+ "0.2 \t \t \t 1.31 \t \t -721.81 \t \t \t \t \t -134.0 \t \t \t \t-23.8\n",
+ "0.25 \t \t \t 1.34 \t \t -738.34 \t \t \t \t \t -170.5 \t \t \t \t-32.75\n",
+ "0.3 \t \t \t 1.327 \t \t -731.177 \t \t \t \t \t -207.5 \t \t \t \t-42.2\n"
+ ]
+ }
+ ],
+ "prompt_number": 66
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.2: Page 596"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.2\n",
+ "# Page: 596\n",
+ "\n",
+ "print'Illustration 11.2 - Page: 596\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "#*****Data*****#\n",
+ "# x:kg carbon/kg soln\n",
+ "# y_star: Equilibrium colour, units/kg soln.\n",
+ "# X:adsorbate concentration, units/kg carbon\n",
+ "# Data = [x Y_star]\n",
+ "Data =numpy.array([[0, 9.6],[0.001, 8.6],[0.004 ,6.3],[0.008, 4.3],[0.02 ,1.7],[0.04, 0.7]]);\n",
+ "Yo = 9.6;# [units of colour/kg soln]\n",
+ "Y1 = 0.1*Yo;# [units of colour/kg soln]\n",
+ "Ls = 1000.0;# [kg soln]\n",
+ "#****************#\n",
+ "\n",
+ "\n",
+ "n = 1.66;# [slope of line]\n",
+ "# At X = 663, Y_star = 4.3\n",
+ "# From eqn. 11.5\n",
+ "X = 663;\n",
+ "Y_star = 4.3;\n",
+ "m = Y_star/X**n;\n",
+ "# Freundlich Equation:\n",
+ "def f76(X):\n",
+ " return m*X**n\n",
+ "X = numpy.arange(0,1000,1);\n",
+ "\n",
+ "plt.plot(X,f76(X));\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "title(\"Equilibium Data(on arithmetic scale)\");\n",
+ "plt.show()\n",
+ "# Single Stage Operation:\n",
+ "# Since fresh carbn is used:\n",
+ "Xo = 0;# [units/kg carbon]\n",
+ "# From scf(30):\n",
+ "X1 = 270;# [units/kg carbon]\n",
+ "Data2 =numpy.array([[Xo, Yo],[X1, Y1]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data2[:,0],Data2[:,1],label=\"Operating line curve\")\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Single stage operation\");\n",
+ "plt.show()\n",
+ "# From Eqn. 11.4:\n",
+ "Ss = Ls*((Yo-Y1)/(X1-Xo));# [kg carbon/kg soln]\n",
+ "print\"Quantity of fresh carbon recquired for single stage operation: \",Ss,\" kg carbon/1000 kg solution\\n\"\n",
+ "\n",
+ "# Two stage cross current operation:\n",
+ "# For the minimumamount of carbon:\n",
+ "X1 = 565;# [units/kg carbon]\n",
+ "Y1 = 3.30;# [units of colour/kg soln]\n",
+ "X2 = 270;# [units/kg carbon]\n",
+ "Y2 = 0.96;# [units of colour/kg soln]\n",
+ "Data3 = numpy.array([[Xo ,Yo],[X1 ,Y1]]);\n",
+ "Data4 = numpy.array([[0 ,Y1],[X2 ,Y2]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data3[:,0],Data3[:,1],label=\"First of two Cocurrent\")\n",
+ "plt.plot(Data4[:,0],Data4[:,1],label=\"Second of two Cocurrent\")\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Two stage Cross current operation\");\n",
+ "plt.show()\n",
+ "# From Eqn. 11.8:\n",
+ "Ss1 = Ls*(Yo-Y1)/(X1-Xo);# [kg]\n",
+ "Ss2 = Ls*(Y1-Y2)/(X2-Xo);# [kg]\n",
+ "Ss = Ss1+Ss2;# [kg]\n",
+ "print\"Quantity of fresh carbon recquired for two stage crosscurrent operation: \",Ss,\" kg carbon/1000 kg solution\\n\"\n",
+ "\n",
+ "# Two Stage counter current operation:\n",
+ "Yo = 9.6;\n",
+ "Y2 = 0.96;\n",
+ "# By trial and error:\n",
+ "XNpPlus1 = 0;\n",
+ "X1 = 675;\n",
+ "Data5 = numpy.array([[X1 ,Yo],[XNpPlus1 ,Y2]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data5[:,0],Data5[:,1],label=\"Two stage Counter Current\");\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Two stage Counter Current operation\");\n",
+ "# By eqn 11.14:\n",
+ "Ss = Ls*(Yo-Y2)/(X1-XNpPlus1);\n",
+ "print\"Quantity of fresh carbon recquired for two stage Counter Current operation: \",Ss,\" kg carbon/1000 kg solution\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.2 - Page: 596\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX5x/HPVxQVC6tib2uMiSZG1wKoAVkUa+wV+9o1\nRuxRYy+JYm+/xC6JoqioIAbFuqhYAQEVMVFBsAAKokRAyj6/P84dZhi3zO7OnTuz87xfr3nt3jt3\n7jnz7Ox95p5z7zkyM5xzzpWnpZKugHPOueR4EnDOuTLmScA558qYJwHnnCtjngScc66MeRJwzrky\n5kmgxEnaQNJsSYqWayUdH/1+hKRhGdvWSfpFA/tZYtu2SNLJkm5Ouh4Akj6QtGMjzy/+OxaapO6S\nJiRRdlY9KqPPbJPHKUl7SxpQiHq1NZ4ECkTSJElzogN26nFba/drZpPNbCVL3/Bh0QMz629mu+W4\nn5y3ba3oADdX0g+Svpc0UtL5kto3Yx8NJrQGtm8PXARc15I655uZbW5mrwJIulzSg9mbRI/YZcfS\nzF4zs00LUXa+mNkQ4LeSfpd0XUqNJ4HCMWCv6ICdevRJulIJMeA0M1sZWAs4B+gNDG3mftSMbfcF\nPjKzr5tZRl5JWjrJ8hvRnFgWq0eAk5KuRKnxJFAEJC0l6QZJ30j6VNJpmafB0VnEzhnbL/7m2Ngp\ns6QaSa9lrf5DVMY3kq7LaEZavG19+8xqZqqRNELSTZK+k/SJpB0kHStpsqRpko5u6m0DmNlcMxsO\n7ANsL+kPURldJL0Z7f8rSbdLWiZ67tVoH2OjM6qDJVVIekbSdEkzJQ2RtG5GeXsAw7Pis4+kD6My\nXpG0acZzkySdI2mspFmSBkhatt43Im0s6WVJ30ZxfUhSx6x9/VnSOGC2pHapv6mk3YELgUOj9/Je\nxq4rJb0enTENk7Ra1t+nJor3DEmnSOosaVz0fm7PquNxksZHsXlO0gaNxLJa0pSM164v6ckott9m\n7ztjuy7RWd33kqZKujHjuW6S3ojqNlnSMdH6P0h6L3rNZEmX1bfvaNuOku6LPg9fSLoq63NfC/yh\node7+nkSKKyGvm2dRPjwVgHbAgexZFNAdtNAa5oJ9gO2AbYmfDs+LsfXZdehCzAWWJXwDeyxaJ8b\nA0cCd0jq0MT+0gtmU4CRQPdo1ULgDGA1YHtgZ+CP0baptvQtojOqxwmf5fuADaLHXOCOjCI2Bz5O\nLUj6FfAw0AfoRDgLGaL0N3UDDgZ2AzYCtgBqGnk/fwXWBjYD1gcuz3q+NyERVZjZomj/ZmbPAX8D\nBkTvZatUFYHDozLXANoD52btswvwy2jftwJ/AXYCfgscoqjPQdK+hESzf/ReXyP8zRqK5WKS2gHP\nABOBDYF1gYba3m8FbjazjsAvCJ8JJG1IiO+tUflVwJjoNf8Djoxe8wfg1Ki+9ekHzCd8xrYCdgVO\nyHh+AiFxrtjA6109PAkUjoBB0Teh1CPV8XcI4Z/nSzP7jnBQaOz0vDWn7n3NbFZ00L0FOKyF+5lo\nZv+M+iIeA9YBrjSzBWb2AuGf9ZfN3OdXwCoAZjbazN4xszoz+xy4G+jR0AvNbKaZPWVm88zsf4QY\nZm5fAczOWD4UeMbMXooOyjcAywM7ZGxzm5lNjf4mQwgHr/rK/jTazwIz+xa4Oatsi/b1pZn9VM8u\nxM//pgbcb2afmNk8Qoyzy7/KzOZH8Z4NPGxm35rZV4QDfWr7U4BrzOxjM6sDrgGqJK1f3/vJ0oWQ\n3M6Lztp+MrMRDWw7H9hEUiczm2Nmb0frDwdeMLNHzWxR9LcaC2Bmw83sw+j39wkJ5md/Z0lrEpLo\nWVE9viF8fntnbJb6+1bk8L5cxJNA4Riwr5mtkvG4L3pubWBKxraTY6xHdjnrtHA/0zJ+nwsQ/WNm\nrmvuN7L1gJkQvqlHzTtfS/qe8E17tYZeKKmDpLuiZpbvCU0/HSWlDq7fAStnvGRtMuIcJbMphG+6\nKVNzeT+S1oyai76Iyn6wnrpOqeelTWmq/Oy/QfZyavsNgVtTXz6AGdH6zPfakPWBz6Pk0ZTjgV8B\nH0l6J9W0R/i7flbfCyR1jZripkuaBZxM/X/nDYFlgK8z3sedwOoZ26wU/ZyVQ11dxJNAcfia0ISR\nskHW8z8CK2Qsr9WKsrLL+bKebX6MfmY257SmzCZF30q3JnyDBfgHMB74ZdRUcBGNf17PIRyAukTb\n92DJb9jjoudTviIcWFLli3DAqy8e0HgT3N+ARcDmUdlH1VPXxl4f91VAk4GTsr6ArGBmb+Xw2inA\nBlGzUKOis5bDzWx1oC8wMGoSnEJowqnPw8AgYD0zqyAc2Ov7O08BfgJWy3gPHc0s82qgzYBJ0Zmg\ny5EngcJqqBnnMaCPpHUlrQJcwJIHhjFAb0lLS9oWOJCWHzjOVehEXZ/QHv5o9gbRN/ovgaOiTszj\naPifuKVSHdIdJPUABgNvm1nqCqEVCaf3c6IO21OzXj8tq04rEr79fi9pVSC7g3EoSzYzPEboJN9J\nocP5HGAe8EZj9W3AioTE+YNCZ/R5jWxbn6mEtuzsMlp7xU7q9XcCf5H0G1jcwXpwxnbZscz0DuFL\nyrXR32o5STvUt6GkIyWlvpl/T/iMLiIc6HtFnc5LS1pN0pbRdisC35nZfEldCE1HP/tsR1d1PQ/c\nJGklhYspNtaS91r0oPlXmJU9TwKFNURL3ifwRLT+HmAYoaN1JPAESx4ALiH8k35H6HDsn7XfhhJC\nfdeaDwZGAe8ROvzua2DbEwkHs2+B3wCZ7cD17be5SekOST8QDoA3A48Du2c8fy7hgPADoT9gQFYZ\nlwP/jJoGDiK0Dy8f1fcN4Nms7Z8BNpW0NoCZ/YfQgX078A2hU3JvM1vYQH0bu27/CsJZzPeEvoMn\nGtm2PqnO2BmSRmaV2VD5uew/db/IIMI38wFRc9X7hA7vlMtZMpaZ95osAvYm9O9MJnwjP6SB8nYD\nPpA0m/A37R31IUwG9iQk2hmEz94W0Wv+CFwZfRYu4edfSjLf59GEDvLxhGbDx1nyDLU3cFfjIXHZ\nFOekMpLOIPTeC7jHzG6NrbA2RFIloQ116RzbYl0OJJ0I/MbMzkq6Li6/JO0NHGFmvZvc2C0htiQg\naXPCZWidgQXAc8ApZvZpLAW2IZ4EnHOFEmdz0KaENt550SnlcOCAGMtra3zeT+dc7OJMAh8A3SWt\nGl0h8AfCpWKuCWY2ycza+VmAcy5usY1jYmYTJPUl9Oj/SOgM8oOac84VkVg7hpcoSPobMNnM7sxY\n500ezjnXAmaWl0H/Yr1EVNIa0c8NCOOWPJy9jZn5w4zLLrss8ToUy8Nj4bHwWDT+yKe4h7UdqDDy\n4QLgj2b2Q8zllaxJkyYlXYWi4bFI81ikeSziEWsSsPQIhc4554qQ3zFcJGpqapKuQtHwWKR5LNI8\nFvEoWMdwvYVLlmT5zjlXiiRhpdAx7HJXW1ubdBWKhscizWOR5rGIhycB55wrY94c5JxzJcabg5xz\nzuWFJ4Ei4e2daR6LNI9FmsciHp4EnHOuhEyYkN/9eZ+Ac86ViP/+F3r2hC+/9D4B55wrKxMnQq9e\ncFn27Nmt5EmgSHh7Z5rHIs1jkVbOsZgyBXbeGc47D048Mb/79iTgnHNF7OuvQwI47TT405/yv3/v\nE3DOuSL1zTdQXQ2HHQYXX5xe7/cJOOdcGzdzJuyyC+y//5IJIN88CRSJcm7vzOaxSPNYpJVTLL7/\nHnbbLXQEX3VVvGV5EnDOuSIyezbssQd07QrXXw/KS6NPw2LtE5B0IXAkYYL594FjzeynjOe9T8A5\n5yJz5sCee8Imm8Bdd8FSDXxNL4k+AUmVwInA1mb2O6Ad0Duu8pxzrpTNmwf77Qfrrw933tlwAsi3\nOIv5gTC3cAdJSwMdgC9jLK+klVN7Z1M8Fmkei7S2HIv58+Hgg6GiAh54ANq1K1zZsSUBM5sJ3AhM\nBr4CZpnZi3GV55xzpWjhQjj88HDg798flo515vefi604SRsDZwKVwPfA45KOMLP+mdvV1NRQWVkJ\nQEVFBVVVVVRXVwPpzF8Oy9XV1UVVH18unuWUYqlPUsupdcVSn3wsL1oE99xTzY8/wlln1TJiRP3b\n19bW0q9fP4DFx8t8ia1jWNKhwC5mdkK0fBSwnZmdlrGNdww758rSwoVw1FHhfoDBg2G55XJ/bUl0\nDAMTgO0kLS9JQC9gfIzllbTsb33lzGOR5rFIa0uxWLQIjjkGZsyAQYOalwDyLc4+gbHAv4CRwLho\n9d1xleecc6Vg0SKoqYHp08MZwPLLJ1sfHzvIOecKZNEiOO44+OILGDIEOnRo2X7y2RxU4H5o55wr\nT3V1cMIJMHky/PvfLU8A+ebDRhSJttTe2VoeizSPRVopx6KuLswD8Nln8MwzxZMAwM8EnHMuVnV1\ncPLJYWrIoUNhhRWSrtGSvE/AOediUlcHp54K48fDs8/CiivmZ7/eJ+Ccc0XOLMwG9sEH8Nxz+UsA\n+eZ9AkWilNs7881jkeaxSCulWJiFqSDHjg1nACutlHSNGuZnAs45l0dm0KcPjB4Nw4bByisnXaPG\neZ+Ac87lSSoBvPMOPP88dOwYTzneJ+Ccc0Wmri70AYwdG28CyDfvEygSpdTeGTePRZrHIq2YY5G6\nDPSDD0ITUKkkAPAzAeeca5VFi8KdwBMn5vcy0ELxPgHnnGuhhQvh2GPhq6/g6acLdyOY9wk451zC\nUvMBzJjRusHgkuZ9AkWimNs7C81jkeaxSCumWCxYAIcdBrNmhTOAUk0A4GcCzjnXLPPnQ+/e4eeg\nQbDssknXqHW8T8A553L0009w8MGw1FLw6KPJJYBSmV4SSb+W9F7G43tJfeIs0znn4jBvHhxwACyz\nDDz2WOmfAaTEmgTM7GMz28rMtgK2AeYAT8VZZqkqpvbOpHks0jwWaUnGYu5c2HffcPnngAHQvn1i\nVcm7QnYM9wI+NbMpBSzTOedaZc4c2Htv6NQJ+vcPZwJtSZN9ApK6AZcBlaQ7ks3MftGsgqT7gZFm\n9veMdd4n4JwrWj/8AHvtBRttBPffD+3aJV2joND3CdwHnAmMBha1pBBJ7YG9gfOzn6upqaGyshKA\niooKqqqqqK6uBtKnf77sy77sy4VefvrpWs4/H3r0qObvf4dXX02uPrW1tfTr1w9g8fEyX3I5E3jb\nzLq2qhBpX+BUM9s9a72fCURqa2sX//HLnccizWORVshYTJ8Ou+4KO+0EN94Iyst37vwp9JnAK5Ku\nB54EfkqtNLPRzSjnMOCRZtbNOecK7ssvoVevcCnoFVcUXwLIt1zOBGqBn21kZj1zKkBaAfgc2MjM\nZmc952cCzrmiMWlSSAAnnAAXXJB0bRqWzzMBv1nMOeeA//wHdtkFzj0XTj896do0rqA3i0mqkHSz\npFHR40ZJJTRadmlIdQI5j0Umj0VanLH44APo2RMuvbT4E0C+5XKfwP3AD8DBwCHAbOCBOCvlnHOF\nMmpUaAK64QY4/vika1N4ufQJjDWzLZta16LCvTnIOZegN96A/faDu+8OP0tFoccOmiupe0bh3QjD\nPzjnXMl6+eVw4H/wwdJKAPmWSxI4Bfg/SZ9L+hy4I1rn8sjbftM8Fmkei7R8xmLo0DAc9OOPw267\n5W23JanJ+wTMbAywhaSVo+UfYq+Vc87FZOBAOO20MBnMdtslXZvkNdgnIOkoM3tQ0jkseZ+ACGMH\n3dTqwr1PwDlXQPfdB5dcEs4EqqqSrk3LFeqO4dSEaStRz81izjlXSm68EW6/HWpr4Ve/Sro2xaPB\nPgEzuyv69UUzuyLzAbxUmOqVD2/7TfNYpHks0loaCzO46CK49154/XVPANly6Ri+vZ51t+W7Is45\nl291daH9f9gwePVVWG+9pGtUfBrrE9ge2AE4C7iJ0BcAoXlof79PwDlXzBYsgGOOga++Cp3AK6+c\ndI3yp1B9Au0JB/x20c+UH4CD8lG4c87FYc6cMApou3bw7LOw/PJJ16h4NdYnMNzMLge2y+oTuMnM\n/lu4KpYHb/tN81ikeSzSco3F99/D7rvDqqvCE094AmhKLvMJ9NPPB9Q2M9sphvo451yLTZ8ebv7q\n1g1uvRWWKuQs6iUql7GDts1YXA44EFhoZue1unDvE3DO5cnkyWEo6N694fLL2/ZkMInPJyDpXTPr\n3OrCPQk45/JgwoRwBnDWWXDmmUnXJn6Fnk9g1YxHJ0m7Azn1s0dzEQyU9JGk8ZL8Ju0GeNtvmsci\nzWOR1lAsRo4McwFccUV5JIB8y6VPYDTpO4YXApOAXEfdvhUYamYHSVoaWKHZNXTOuQa88AIcfjjc\nc095jwTaGrFNLxnNPvaemf2ikW28Ocg51yKPPBK++Q8cCN27N719W1KQ+wQkHUgjYwaZ2ZNN7Hsj\n4BtJDwBbAqOAM8zM5yJwzrXKLbeEsYBeegk23zzp2pS2xpqD9qbxgeOaSgJLA1sDfzKzdyXdAlwA\nXJq5UU1NDZWVlQBUVFRQVVVFdXU1kG4DLIflzPbOYqhPksupdcVSnySXx4wZw5lRQ3cx1CfJ5Vtu\nuYUtt6xi2LBqBg+G66+v5dtvAYqjfnEfH/r16wew+HiZL3E2B60FvGlmG0XL3YALzGyvjG28OShS\nW1u7+I9f7jwWaR6LtBdfrKV//2o++gieeQY6dUq6Rskp6CWikiqAy4Ado1W1wJVm9n2TO5deBU4w\ns/9IuhxY3szOz3jek4Bzrklz5sAhh4QB4R5/HFYo80tMCj3H8P2E8YIOBg4BZgMP5Lj/04H+ksYC\nWwB/a0klnXPla8YM2HlnWG01GDzYE0C+5ZIENjazy8zsMzP7NBpPaONcdm5mY82ss5ltaWYH5HL2\nUK4y28PLnccirdxjMXlyGAJixx2hpqaWZZZJukZtTy5JYK6kxRdgRW37foWPcy5WH34YEsCJJ0Lf\nvm17GIgk5dInUAX8C+gYrfoOOMbMxra6cO8TcM7VY8QIOOAAuOkmOOKIpGtTfBIZOyi6+cvM7Id8\nFBzt05OAc24JTz4JJ58MDz0UxgNyP1fosYPOlLQyoXP4ZkmjJfmfJs/Kve03k8cirdxiceutcPrp\n8NxzP08A5RaLQsmlT+C46Nv/rsCqwNHAtbHWyjlXVurq4Oyz4c47Q1PQNtskXaPykUufwPtm9jtJ\ntwG1ZvakpPfMbKtWF+7NQc6VvXnz4OijYdo0GDQIVlkl6RoVv0LfJzBK0vPAnsBzUdNQXT4Kd86V\nt5kzw0QwEgwb5gkgCbkkgeOBC4Fto8HflgGOjbVWZcjbO9M8FmltORYTJ8IOO8B224URQZdbrvHt\n23IsktTkfAJmtogwAmhqeQYwI85KOefatpEjYZ994C9/gT/9KenalLfYBpDLqXDvE3Cu7Pz731BT\nA3ffDfvvn3RtSlOh+wSccy4v7r4bjj8enn7aE0CxaO4cw6mHj+CRZ97emeaxSGsrsTCDiy6C666D\n116D7bdv/j7aSiyKTa5zDG9AGC4CYBVgqqSpwIlmNqrBVzrnyt68eXDccfDZZ/Dmm7D66knXyGXK\n5T6Be4CBZjYsWt4VOIgwnPStZtalxYV7n4Bzbdo334Rmn3XWgX/+E5ZfPukatQ2F7hPYPpUAAMzs\n+Wjdm0D7fFTCOdf2TJgQLv/ccUcYMMATQLHKJQl8Lel8SRtKqpT0Z2CapHbkcNOYpEmSxkl6T9I7\nra5xG+XtnWkei7RSjcXLL0OPHnDxxfC3v8FSebgEpVRjUexy6RM4nDC95KBoeQRwGNCOMNNYUwyo\nNrOZLaqhc66kPPAAXHBB+Pbfs2fStXFNyaVPYCMzm5i1rrOZvZtTAdJEwt3GP7vBzPsEnGs76urC\nFUCPPx7uBfj1r5OuUdtV6D6BJyStl1F4D3KfYxjCmcCLkkZKOrG5FXTOFb+5c+HQQ8Pln2+95Qmg\nlOSSBE4GBklaS9KewG3AHs0o4/fRiKN7AKdlTlXp0ry9M81jkVYKsZg2DaqroX17eOkl6NQpnnJK\nIRalKJexg96V1Ad4AZgL7GJm03MtwMy+jn5+I+kpoAvwWur5mpoaKisrAaioqKCqqorq6mog/Uf3\n5fJaTimW+iS5PGbMmKKqT/byxIlw5ZXVHHMM9OhRy5tvxlfemDFjEn+/SS3X1tbSr18/gMXHy3xp\nsE9A0pCsVZsBXwOzCNNM7tPkzqUOQDszmy1pBeB54IroMlPvE3CuhD3/PBx5JNx8s88DXGj57BNo\n7EzghlR5GessWs71yL0m8JSkVFn9UwnAOVeazOD22+Gaa+CJJ6C7N/CWtMb6BP4CbA1MNbPa6DE8\n9TOXnZvZRDOrih6bm9k1eal1G5TdFFLOPBZpxRaL+fPDJPD33BOGgChkAii2WLQVjSWBGkLTz+XR\njV53Sto3atZxzpWZb78Ns4BNmwZvvAF5bpp2CclpPoHo7uCuhCt8dgLmAcPM7LpWFe59As6VhA8+\nCJPA9O4NV1+dnzuAXcvls0+g0SQQHfz7mNnNWetXB3Y1s/6tKtyTgHNFb8iQMAeAdwAXj4LdLBZN\nLXl4Peu/aW0CcEvy9s40j0VakrEwC+P/n3JKSARJJwD/XMQjl7GDXpd0B/Ao8CPR1UFmNjrWmjnn\nEjNvHpx0Enz4Ibz9Nqy3XtOvcaUpl7GDaqnnklAza/XQUN4c5FzxmToV9tsPNtwwDAbXoUPSNXLZ\nCtYnEDdPAs4Vl9GjQwI48cQwDLTycphx+VbQAeQkXSbp0oyfl0q6NB+FuzRv70zzWKQVMhYPPwy7\n7QY33QSXXFJ8CcA/F/HIpU/gR9LNQcsDewHjY6uRc66gFi6E88+HQYPCAHBbbJF0jVwhNbs5SNKy\nwPNm1qPVhXtzkHOJ+vbbcO1/u3bwyCOw6qpJ18jlotDzCWRbAVg3H4U755Izdix06QLbbANDh3oC\nKFe59Am8n/H4EPgYuDX+qpUXb+9M81ikxRWLAQOgV68w/2/fvuFMoNj55yIeufQJ7B39NGAhMN3M\nFsRXJedcXBYuhAsvDKN/vvgibLll0jVySct17KAqoDshEbxmZmPzUrj3CThXMDNmhPZ/CGcCq62W\nbH1cyxX6EtEzgIeA1QnzAzwUzTTmnCsRY8dC585QVQXPPusJwKXl0jF8AtDVzC41s0uA7QCfMD7P\nvL0zzWORlo9YPPpoaP+/+mq4/npYOpdG4CLkn4t45PpxqGvg9yZFI5GOBL4ws72b2t45lx8LFsCf\n/wyDB4epILfaKukauWKUy9hBZxMmmHmSMHjcfkC/7OGlm3j9NsBK2fMSe5+Ac/H46is45BDo2BEe\nfNAv/2xrCtonYGY3AccC3wEzgJpmJID1gD2Be1lyrmLnXEyGD4dttw1DQAwZ4gnANa7BJCBp1dQD\nmEjoHO4PfB6ty8XNwHk0swmpHHl7Z5rHIq05sTCDG26AQw+Ffv3C+D9taQYw/1zEo7E+gdHUM4R0\nxIBfNLZjSXsR7il4T1J1y6rnnMvFDz/AscfClClh/P8NN0y6Rq5UNJgEzKyylfveAdhH0p7AcsDK\nkv5lZkdnblRTU0NlNGN1RUUFVVVVVFdXA+nMXw7L1dXVRVUfXy6e5ZSGnu/UqZoDD4Rf/7qWq6+G\nDTcsrvrnazm1rljqU8jl2tpa+vXrB7D4eJkvud4sti+wI+EMYLiZDWlWIVIP4Nzsq4O8Y9i51nn4\nYTjjDLjxRjj66Ka3d21DoW8WuxboA3wIfAT0kXRNC8ryo30jsr/1lTOPRVpDsZg/H04/HS69NAz/\nUA4JwD8X8cjlPoE/AFXRpPNI6geMAS7MtRAzGw4Mb0kFnXNLmjQpdP6utRaMHAkVFUnXyJWyXO4T\nGAf0NLMZ0fJqwCtm1uqpJ7w5yLnmGTw4TAB//vlw1lnFN/uXK4x8NgflciZwDTBa0iuEa/17ABfk\no3DnXG7mz4cLLoAnnwyJYLvtkq6RaytyuVnsEWB74CngCWA7MxsQd8XKjbd3pnks0mpra5k0Cbp3\nh08+CRPBl2sC8M9FPHLpGN4fmGNmg83saWCepP3ir5pz7vXXw+xfhx4azgD87l+Xb7n0CYw1sy2z\n1o0xs6pWF+59As7Va/780O7/1FNh7P9y/fbv6lfoPoH6CiqByeicK02TJoXB39ZaKzT/+Ld/F6dc\nRhYZJekmSRtL+qWkm4FRcVes3Hh7Z1o5x2LQoND807t3aP4ZN6426SoVjXL+XMQplzOB04FLgEej\n5ReA02KrkXNlaN48OO88ePrpcPDffvuka+TKRU7DRsRWuPcJOMf48eGb/69/DXffDausknSNXLEr\n6LARzrl4mMFdd0GPHtCnDzz2mCcAV3ieBIqEt3emlUMsZs6Egw6Cf/wDXnsNTjih/rt/yyEWufJY\nxKOxSWX6Rj8PKVx1nGv7Xn0Vqqpg/fXhrbdg002TrpErZw32CUj6APgdMNrMYpmi2vsEXDlZuBCu\nvBLuuQfuuw/23DPpGrlSVaj7BJ4lzCu8oqTZWc+Zma2cjwo4Vw4mTYIjjoAVVgjX/q+9dtI1ci5o\nsDnIzM4zswpgqJmtlPXwBJBn3t6Z1tZi8eij4dr//feH555rXgJoa7FoDY9FPJq8T8DM9pG0JtA5\nWvWOmU2Pt1rOlb5Zs+BPf4J334WhQ2HbbZOukXM/l8vYQYcA1xMmhRHQHTjPzB5vcufSctHrlgXa\nA4PN7MKM571PwLVJr7wCNTWw995w3XXQoUPSNXJtST77BHKdVKZX6tu/pNWBl3KdVEZSBzObI2lp\n4HXCXMOvR895EnBtyrx5cPHF8MgjofN3992TrpFriwp9s5iAbzKWZ1D/oHL1MrM50a/tCQPPzcy5\ndmXE2zvTSjUW48aFtv+JE2Hs2PwkgFKNRRw8FvHIJQk8BwyTVCPpWGAo4cqhnEhaStIYYBphWsrx\nLauqc8Wprg5uuAF23hnOOQcGDoROnZKulXO5yaVj+DxJBwK/j1bdZWZP5VqAmdUBVZI6EpJJtZnV\npp6vqamhsrISgIqKCqqqqqiurgbSmb8clqurq4uqPr6c2/LUqXDXXdUsWgS3317LWmuBlN/yUorh\n/Sa5nFrfA29dAAAUZ0lEQVRXLPUp5HJtbS39+vUDWHy8zJeCDiAn6RJgrpndEC17n4ArSWbQvz+c\nfTace244A2jns2y4AimZAeQkdZJUEf2+PLAL8F6cZZaq7G995azYYzFtGhxwAFx7LTz/PPz5z/El\ngGKPRSF5LOIR9wByawMvR30CbwNDzOylmMt0LhZm4cavLbeE3/wGRo0KYwA5V8qa1RwkaVVgPTMb\nl5fCvTnIlYjp0+GPfwxj///zn9C5c9OvcS4uBW0OkjRc0spRAhgF3BtNMelcWRg4ELbYAjbeOIz7\n4wnAtSW5NAd1NLMfgAOAf5lZF6BXvNUqP97emVYssfj22zDj10UXwVNPQd++sNxyha1DscSiGHgs\n4pFLEmgnaW3gEODf0Tpvw3Ft2lNPhW//664LY8b4nL+u7cpl2IiDCRPNjzCzUyVtDFxnZge2unDv\nE3BF5ttv4Ywz4J134IEHoFu3pGvk3M8V+hLRr81sCzM7FcDMPgW8T8C1KWZhvJ/NN4c11gjf/j0B\nuHKQSxK4vZ51t+W7IuXO2zvTCh2LKVNgn33gr3+FwYPh5pvD5C/FwD8XaR6LeDQ4bISk7YEdgNUl\nnU160LiVCAPBOVfS6urgrrvg0kvh9NPhiSegffuka+VcYTU2x3APoCdwMnBnxlOzCTd9/bfVhXuf\ngEvIxx/DiSfCggVw773w298mXSPnclfo+QQ2NLPP81FYPfv2JOAKasECuP56uOmmcAZw2mk+5o8r\nPQXpGJZ0a/TrHZKGZD2ezkfhLs3bO9PiisWoUeFGr1dfhZEjoU+f4k8A/rlI81jEo7GhpP8V/byx\nEBVxLi6zZ4dv/Q8/HM4CjjoKlJfvUM6VvoIOJf2zwr05yMXILNz0dcYZ0KtXmOt39dWTrpVzrZfP\n5qAmJ5WR1A24DKjM2N7M7Bf5qIBzcZg0KVzx8+mn8NBD0KNH0jVyrjjlcp/AfcBNQDegc/ToEmel\nypG3d6a1JhYLFoQxfrbdNgz1MGZMaScA/1ykeSzi0eSZADDLzHKeU9i5pIwYAaecEsb7efvtMOqn\nc65xuVwiei3h5rAngZ9S681sdKsL9z4BlwczZ8L558PQoeFu34MP9o5f17YVtE8A2I4waui2Wet7\nNvVCSesTrjJaI9rH3WbmQ064vFi0CO6/Hy6+GA45JEz40rFj0rVyrrQ02SdgZtVm1jP7keP+FwBn\nmdlvCcnkNEmbtabCbZW3d6blEou33oKuXcMsX8OGwe23t80E4J+LNI9FPHK5Ougywrd4kTGPgJld\n2dRrzWwqMDX6/X+SPgLWAT5qaYVdeZs2DS68MBz4+/aFI47wph/nWiOXPoFzSR/8lwf2Asab2XHN\nKkiqBIYDvzWz/0XrvE/A5WTBAvj73+Hqq+GYY8LNXyuvnHStnEtGQfsEzOyGrMKvB55vTiGSVgQG\nAmekEkBKTU0NlZWVAFRUVFBVVUV1dTWQPv3z5fJeNqvm9NNh2WVrueEGOOaY4qqfL/ty3Mu1tbX0\n69cPYPHxMl+afcdwNOH8O2b2yxy3XwZ4BnjWzG7Jes7PBCK1tbWL//jlLhWLKVPgvPPgzTfDgG8H\nHFB+TT/+uUjzWKQVdGYxSe9nPD4EPgZubep10WtFuNlsfHYCcK4hc+fCJZdAVRVssgl89BEceGD5\nJQDnCiGXPoHKjMWFwDQzW5DTzsOQE68C40j3K1xoZs9Fz/uZgFusri5c7XPxxVBdDddcAxtskHSt\nnCs+BZ1PIE6eBFzK8OFw1lmw3HLhhq+uXZOukXPFq9ATzbsCSHUClZtPPglt/cccE+76HTEC5s6t\nTbpaRaNcPxf18VjEw5OAS8SsWXDOObDddtClC0yYAIce6u3+zhWaNwe5gpo3L1zv37cv7LsvXHUV\nrLlm0rVyrrQUeuwg51pt0SLo3z991c/LL/vk7s4VA28OKhJttb3TLIzuudVWcNddIREMHtx4Amir\nsWgJj0WaxyIefibgYvP226Gzd/r0cLnnPvt4m79zxcb7BFzeffwxXHRRGOnziivClT9L+9cN5/LG\nLxF1RWnSJDj+eOjWDTp3hv/8Jyx7AnCueHkSKBKl3N75xRdw6qmwzTaw9trh4H/++dChQ8v2V8qx\nyDePRZrHIh6eBFyLTZ0KZ5wBW2wBK60UmoGuvhpWWSXpmjnncuV9Aq7ZvvkGrrsO7rsPjj4aLrgA\n1lor6Vo5Vz68T8AlYubMMLjbppvCjz/CuHFwyy2eAJwrZZ4EikQxt3dOmxba+DfZJPw+alS463e9\n9eIpr5hjUWgeizSPRTw8CbgGffFFaPPfbDOYMwfeew/uuQfyPLGRcy5B3ifgfuazz8LYPgMHwnHH\nwdlnh6t+nHPFwfsEXCwmTAg3dnXpAmusEa72uf56TwDOtWWxJgFJ90uaJun9OMtpC5Js73zrrTB9\n4447wq9+Fcb4v+oq6NQpmfp422+axyLNYxGPuM8EHgB2j7kM1wJ1dWEgt27d4PDDoWdPmDgxDPdQ\nUZF07ZxzhRJ7n0A0R/EQM/tdPc95n0CBzZsHDz4IN94YbvA677wws5cP7eBc6fD5BFyzzZwJ//gH\n3H57GN7hzjuhRw8f1dO5cpd4EqipqaEyuuawoqKCqqoqqqurgXQbYDksZ7Z35nP/kybB229XM2AA\ndO1ayzXXwLHHJv9+G1tOrSuW+iS5PGbMGM4888yiqU+Sy7fccktZHx/69esHsPh4mS/eHFQkamtr\nF//xW2vRIvj3v+G22+DDD+GUU+Dkk0vnzt58xqLUeSzSPBZp+WwO8iTQhsyaBfffD3fcAauvDn36\nwMEHQ/v2SdfMOZdPJXOfgKRHgDeAX0maIunYOMsrV+PHwx//CL/4BYweDY88Emb1OuIITwDOucbF\nmgTM7DAzW8fMljWz9c3sgTjLK2WZ7eG5mDs3XOXTvTv06hW++X/4ITz0EHTtGk8dC6W5sWjLPBZp\nHot4JN4x7Jpn/Hi4++5wsO/cOQzpsNdesMwySdfMOVeKfOygEjB3bhjH5+674dNPw3g+J5zgA7k5\nV65KqmO40cI9CTTIDN59F/r1g8ceC9/6TzrJv/U750qoY9jlLtXe+eWXcO218JvfhI7dddYJ4/c/\n+yzsv395JABv+03zWKR5LOLhfQJFYM4cePFFuOaa8O3/oIPg3nthhx38jl7nXLy8OSghCxaEA/+A\nATBkSBi+uaYG9t0Xll8+6do554qZ9wmUqEWL4NVXw4H/ySfDdI29e4cbunzMfudcrrxPoITU1cEb\nb4RpGtdbD849FzbeODT7vPFGuKt37bW9vTOTxyLNY5HmsYiH9wnEYP58eOUVGDQojNm/6qpw6KEw\nfHiYtMU554qFNwflyezZ4QqeQYPCz802C1fz7LdfaPZxzrl88T6BIvHJJ+GA/+yz8Prr8PvfhwP/\n3nt7G79zLj7eJ5CQOXNg6FA4/fTw7X7HHeG99+DYY+GLL0IyOOmkliUAb+9M81ikeSzSPBbx8D6B\nRixaFA7yr7wCL70EI0bA1lvDHnuEYRy22MKv43fOlTZvDspQVwfjxoWD/iuvwGuvhTt2e/aEnXaC\nnXeGjh2TrqVzrtx5n0Ce/PgjjBwJb74ZHq+/Dp06hYN+z55QXQ1rrplY9Zxzrl4l0ycgaXdJEyT9\nV9L5cZbVlLo6+PjjMATzaaeFZp011oALLoBp08I4PePGhW3uvDNc0lnIBODtnWkeizSPRZrHIh6x\n9QlIagfcAfQCvgTelfS0mX0UV5kp8+bBBx+E9vwxY8LP998PE69ssw1svz0ceSRstRUst1zctcnN\nmDFjfP7UiMcizWOR5rGIR5wdw12AT8xsEoCkAcC+QN6SwIwZMGFC+PY+YUL698mTw01ZW20FVVVw\nyCGw5ZZQUZGvkvNv1qxZSVehaHgs0jwWaR6LeMSZBNYFpmQsfwHkNPFhXR189x18+214fPklfP55\nOLhn/qyrg003TT9qasLPjTeGZZeN4y0551zbEmcSyKnHd+edw8xZ8+aF6/BnzAgJYOWVQ/PNaqvB\nuuvCBhvAL38Ztt9gg/BYbbW2c4nmpEmTkq5C0fBYpHks0jwW8Yjt6iBJ2wGXm9nu0fKFQJ2Z9c3Y\npniuD3XOuRJS9JeISloa+BjYGfgKeAc4rBAdw84553ITW3OQmS2U9CdgGNAOuM8TgHPOFZdEbxZz\nzjmXrMQGkCumG8kKQdL6kl6R9KGkDyT1idavKukFSf+R9LykiozXXBjFZ4KkXZOrff5JaifpPUlD\nouWyjAOApApJAyV9JGm8pK7lGI/ofX0o6X1JD0tatlziIOl+SdMkvZ+xrtnvXdI2Ufz+K+nWnAo3\ns4I/CM1DnwCVwDLAGGCzJOpSwPe8FlAV/b4iob9kM+A64M/R+vOBa6PffxPFZZkoTp8ASyX9PvIY\nj7OB/sDT0XJZxiF6j/8Ejot+XxroWG7xiN7LZ8Cy0fKjwDHlEgegO7AV8H7Guua891SrzjtAl+j3\nocDuTZWd1JnA4hvJzGwBkLqRrM0ys6lmNib6/X+Em+bWBfYhHASIfu4X/b4v8IiZLbBww90nhLiV\nPEnrAXsC9wKpKxzKLg4AkjoC3c3sfgh9aWb2PeUXjx+ABUCH6KKSDoQLSsoiDmb2GvBd1urmvPeu\nktYGVjKzd6Lt/pXxmgYllQTqu5Fs3YTqUnCSKglZ/21gTTObFj01DUiNWLQOIS4pbSlGNwPnAXUZ\n68oxDgAbAd9IekDSaEn3SFqBMouHmc0EbgQmEw7+s8zsBcosDlma+96z139JDjFJKgmUbW+0pBWB\nJ4AzzGx25nMWzuEai03Jx03SXsB0M3uP9FnAEsohDhmWBrYG/m5mWwM/AhdkblAO8ZC0MXAmoXlj\nHWBFSUdmblMOcWhIDu+9xZJKAl8C62csr8+SGaxNkrQMIQE8aGaDotXTJK0VPb82MD1anx2j9aJ1\npW4HYB9JE4FHgJ0kPUj5xSHlC+ALM3s3Wh5ISApTyywe2wJvmNkMM1sIPAlsT/nFIVNz/ie+iNav\nl7W+yZgklQRGAptIqpTUHjgUeDqhuhSEJAH3AePN7JaMp54mdIAR/RyUsb63pPaSNgI2IXT6lDQz\n+4uZrW9mGwG9gZfN7CjKLA4pZjYVmCLpV9GqXsCHwBDKKx4TgO0kLR/9r/QCxlN+ccjUrP+J6LP0\nQ3R1mYCjMl7TsAR7w/cgXCHzCXBh0r3zBXi/3Qht4GOA96LH7sCqwIvAf4DngYqM1/wlis8EYLek\n30MMMelB+uqgco7DlsC7wFjCN+CO5RgP4M+EBPg+oSN0mXKJA+Gs+CtgPqG/9NiWvHdgmyh+nwC3\n5VK23yzmnHNlLLGbxZxzziXPk4BzzpUxTwLOOVfGPAk451wZ8yTgnHNlzJOAc86VMU8CLhbRkLa3\nRr/3kLR9nvZ7fTQUd9+mt250P5MkrZqPOkX7W1vSsOi9DsnXfptZh+qkynalK86J5l0ZM7NRwKho\nsScwG3gzD7s+EVjFWn+DS15ukJHUzswWEW78ey4f+2xhPfx/2bWInwm4JkXDe2ROdnGupMui32sl\nXSvpbUkfS+oWra+WNETShsDJwFkKk8h0k3RwNPHFGEnDGyjz+mibcZIOidY9TZiLYXRqXcb2K0Yj\ncY6TNFbS/tH6w6J170u6toGyzo6ef1/SGTm+55slvQv0iTbZDXiWjEHxJHWORgbdSNLq0QQhH0Qj\nhdZ7JqIw2dKoKDYvROu6SHoj2teI1BATkmokPS3pJcKdpQZ0lPSMwmQj/4iGD2gwDpL+J+nqqLw3\nJa1RX4xc2+XfHlxLZI5oaEA7M+sqaQ/gMmCXxRuafS7pTmC2md0EIGkcsKuZfS1p5eydSzqQMJTC\nFsDqwLuShpvZPpJmm9lW9dTpEuA7M9si2keFpHWAawkDss0Cnpe0r5kNzihrG6CGMBb9UsDbUWKa\n1cR7XsbMOkf7aAf82swmKD3g1w7AbcA+ZvaFpDuAF82sr6TdgOPred+rA3cT5hf4XOmZpD6K1i2S\n1Av4G3BQ9NxWwO/MbJakaqAzYbKiyYQzkwMkvdlIHDoAb5rZxVET24nAX+uJr2uj/EzAtVTmMNBP\nRj9HE4YCbmr7EcA/JZ1A/V9Efg88bMF0YDjh4NaYnYH/Sy2Y2azoNa9YGJlyEWEmsx2z6tQNeNLM\n5prZj9F76U79zUWZ7+HRjN+7EuaGSNkMuAvYy8xSo+P+njB5EmY2jJ9PIAKwHTDczD7PeA8AFcDA\n6MzkJsLMUinPZ2wHYSCxSWZWRxiPphthhM7aBuIw38z+Hf0+iob/fq6N8iTgcrGQJT8ry7PkQfKn\n6Ocicji7NLNTgYsJw+GOaqCDVg383pjs7aye/WQf3Bvapqn3/GPG73sQmoJS+/samEv45t1Y/bJl\n1yXlKuAlM/sdsHdUl5Q59ewjs7yGkllq/YKM9XV460DZ8STgcjENWENh4utlgb2a+frZwEqpBUkb\nm9k7ZnYZ8A1LjoEO8BpwqKSloiaS7jQ9TPALwGkZZVREr+khabWoyaY34awixaKy9lMYwngFwnR8\nrxHGbm/sPWcerHcitMmn1s+Ktr9GUo9o/Qgg1bexK7BKPe/hbWBHhZnnkJTaZmXCCJMQRpdsTJeo\nP2OpqLzXcoiDK2OeBFyTLMwDfSXhYPI8YZz3Bjev5/chwP5Rx2Y34LpUJyUwwszGZZX3FDCOMLTy\nS8B5UbNQ9v4zXQ2skupwBqotjK9+AfAKYQjvkWY2JHM/FmY46xe9t7eAe8xsbA7v2WBxO/68qCkp\ntT7VjLUX8H+SOgNXALtG7/kgYCohOWa+72+Ak4Ano/cwIHrqOkJCGQ20Y8m+iex4vwvcEdX3MzN7\nKpc4NLA/VwZ8KGnnWkHSEcC6ZnZdE9u1BxZFnbvbA/9nYTpJ5xLlScC5ApD0S+Axwtn3fODU6F4K\n5xLlScA558qY9wk451wZ8yTgnHNlzJOAc86VMU8CzjlXxjwJOOdcGfMk4JxzZez/Acgjx2hK49AY\nAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa1a8c88>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYUgiGQkicVAQFUFFJAqiYFiCyoogC4IY\n1s9VEAPoqphBVwQxJ6IZRTGgKOiAopIk6AqriAxBRMkioMzM+f641dM944Qeprure/q8z1PPdFVX\n1z19afp03Vt1r6gqxhhjTEApvwMwxhgTXywxGGOMycESgzHGmBwsMRhjjMnBEoMxxpgcLDEYY4zJ\nwRKDKTYRGSAicyJ0rDQRGRqJY5mCiUgDEflNRMTvWEx8scRgwiIiHUXkcxHZJSLbReQzEWkNoKov\nqurZESpKvSViLNk4IrJeRLoG1lV1g6pWUruZyeRS2u8ATPwTkcrAu8BVwGtAOaAT8IefcRVBif/i\nE5EUVc0sZDcF7OzAFMrOGEw4mgKqqq+qc0BVP1LVrwFEZLCIfBrYWUSyROQqEflORHaKyGMhz5US\nkXEi8quIrBORf3n75/lZFJHLRORbEdkhIh+ISIN89isvIi+IyDavzMUiUktE7sMlsce8ZpOJ3v6P\niMgGEdktIktFpGPIsQ4Tkalemd+KyM0isjHk+boi8oaI/OK9h2vzqzgRqSIi07x914vIvwNNN169\nLRSRR70zsdWhv+i91z4vIj+JyCYRuSdQTyGvfVhEtgGjRSRVRD726uBXrz6qePtPBxoA73j1cKOI\nNAqte+99ve2dEX4vIpeHxHKniLzm1cseEflGRE7J732bBKeqtthS4AJUArYBU4BzgGq5nh8MfBqy\nngW8DVQG6gO/AGd7z/0T+C9QF6gKzAUygVLe858Al3mPewPfA81wP2L+DSzMJ8arvDLL434VnwRU\nyn3MkP0HANW8444AtgBlvefGeq+pAhwFrAI2eM+VApYBt+HOuBsDPwDd84lrGvAmcDjQEPhfyPsb\nDBwEhgEpQF9gF1DVe/5N4EngMKAmsAi4Mtdrr/FiKg80Ac4EygBHAPOB8SGx/Ah0DVlv5P1bBep+\nAfAYUBZo6f27neE9dyew3/v3F+B+4Au/P5u2RGfxPQBbEmMBjgUmAxu9L6RZQC3vubwSQ/uQ9VeB\nm73HHwNXhDx3Zq4vp9DE8H7oF7r3Bfg7UD+P+IYAC4EWeTz3CTC0kPe3I/Ba74u+W8hzQ4GN3uPT\ngPRcr70FmJTHMVNwzW3Hhmy7EvgkpN4253rNIuAfQG3gAFA+5Ln+wMchr00v5D2dD3wVsp5vYsAl\n8Azg8JDn7wcme4/vBD4Mee44YJ/fn0tborNYU5IJi6quUdUhqlofOAH3i39CAS/5OeTxPqCi9/hI\nXHIJ2FTAMRoCj3hNQzuB7d72o/LYdzowB3hFRDaLyAMiEtqHlqOfwWtK+dZrwtmJOzs4wnu6bgEx\nNgTqBmLyXnsLUCuPmI7A/XpPD9m2IVf8m3O9Jt0rv4H32i0h5TyFO3MICI0REaktIq94zU67vTqp\nkUdceakL7FDV3wuIdWvI431A+fyaAE1is39UU2Sq+j9gKi5BFNUW3K/TgPr57Yj7YrpSVauFLIer\n6pd5xJShqner6vFAe6AHMCjwdOi+ItIJuAm4SFWrqmo1YDfBjtmCYtwI/Jgrpsqq2iOP+Lfhzq4a\nhWxrQM5EkzvJNcQli424s40aIeVUUdUWoW8712vvxzXLnaCqVYCB5Pw/XlAn/E9AdRGpGLItd6wm\nSVhiMIUSkWYiMkJEjvLW6+OaNb4I9xAEv3RfA4Z5HZ1VgZHk/4X1FHCriBznlVtFRC7KJ8YuItJC\nRFKA33BfyIGrdLbi2t8DKuGaTbaJSFkRuQPXHxLwGnCLiFT13vO/QmJcDPzmdUgfJiIpInKCeJfu\nhlJ3ldBrwH0iUlFEGgLXAy+E7FZLRK4TkTLeezsWmK2qPwMfAg+LSCVxnfZNROT0fOoK3FnZ78Ae\nL+6bcj2fux5CY90IfA6MEZFyInIicFmuWE2SsMRgwvEbrm19kYjsxSWEVcAN3vO57z3I/UUf+vyz\nuC+8VbhO3PeATFXNyl2oqr4FPIBrHtoNfA3kd79EHWAG7pf/t0AarikF4BHg795VRhOAD7zlO2A9\nrlN1Q8ix7sb9Uv7Ri3UG8KcXUybubKQVsA74FXiGnIkl1LW4L+t1wKfAi7i+moBFwDHece4B+qjq\nTu+5QbiO4G9xfSAzvPcJed/vcRdwslcH7wBv5NpnDHCb1zQ1IuQ4Af1xZzc/ATOBO1T14wLKK/GX\nAScrUY3Ov62ITAL+BvwSOP0Vkeq4jsiGuP+QfVV1V1QCMAlBRM4FnlTVRn7Hkh8RuRr3WT0jwscd\njOsU7xTJ4xpTXNE8Y5iMu7Qt1CjgI1VtCszz1k0SEXe/wXkiUtpr7hiN+3UaN0Skjoh08JpvmuEu\nZ33T77iMiZWoJQZV/RTYmWtzL1ynJd7f86NVvolbgrv0cQfwFe6ehjv8DCgPZXH9G3twP2DeAp6I\nQjkRH/7DmEiIWlMSgIg0At4JaUra6V0Bgnf3547AujHGmPjgW+ezuoxkv5aMMSbOxHoQva0iUkdV\nfxaRI3G33P+FiFjCMMaYQ6CqxR4oMdZnDG8Dl3qPL8W13ebJ71vC42UZPXq07zHEy2J1YXVhdVHw\nEilRSwwi8jLuhplmIrJRRIbgBifrJiLfAV29dVOA9evX+x1C3LC6CLK6CLK6iLyoNSWpav98njor\nWmUaY4wpPrvzOc4NHjzY7xDihtVFkNVFkNVF5EX1ctVDJSIaj3EZY0w8ExE0Ap3PCTW1p9ic5SZO\nxfqHTFpaGl26dIlpmfHK6iLyEioxQOz/AxpTGPvBYkqahGpK8k6TfIjImPzZ59LEi0g1JcVt5/Om\nPTY/iDHG+CFuE8P4L8b7HYIxcSstLc3vEOKG1UXkxW1imLxiMjv27/A7DN9t2LCBSpUqZTdVdOnS\nheeffx6AKVOm0KlT0YbyP++885g+fXrhOxpjklbcJobzjz2fxxc/7ncYYWvUqBEVKlSgUqVK2ct1\n111X7OM2aNCA3377LbuDU0SK1dk5e/ZsBg4cWOy4jL/sKpwgq4vIi9urkm5qfxOdp3RmRLsRHF72\ncL/DKZSI8O6779K1a1e/Q8lT4Iwj0a6gycjIoHTpuP2YGlMixe0ZQ/OazenYoCOTlk/yO5Riy8rK\n4sYbb6RmzZo0adKExx9/nFKlSpGV5aY5btSoEfPmzcve/84778z+Vb9+/foc++amqlx77bVUrVqV\n5s2b8/HHH2c/16VLF2677TY6dOhAxYoVWbduXY6mqNBy8iqrS5cu3H777XTo0IFKlSrRq1cvtm3b\nxoABA6hSpQpt2rQhPT093/f92Wef0b59e6pVq0aDBg2YNm1a9nEDMcBfm8RKlSrFE088QdOmTWna\ntCn/93//x0035ZzXvnfv3owf7/qhfvrpJ/r06UOtWrVITU3l0UcfzTemksLa1YOsLiIvbhMDwMgO\nI3noi4c4mHnQ71DCkt8li8888wzvvfceK1asYOnSpbz++us5frnnbh4qyq/6RYsWcfTRR7N9+3bu\nuusuLrzwQnbtCk6j/cILL/Dcc8/x22+/0bBhwxxlhVPOq6++ygsvvMDmzZv54YcfaNeuHUOHDmXH\njh00b96cu+66K8/Xpaenc9555zFs2DC2bdvGihUraNmyZZ7vNy+zZs1i8eLFrF69mv79+/Pqq69m\nP7dz504++ugj+vfvT1ZWFj179uSkk07ip59+Yt68eUyYMIEPP/yw0PdmjMlbXCeG0+qdRpNqTXjl\nm1fC2l8kMsuhUFXOP/98qlWrlr0EfhW/9tprXH/99Rx11FFUq1aNW2+9tcDr3otyTXytWrUYNmwY\nKSkp9O3bl2bNmvHuu+969SEMHjyY5s2bU6pUqb80yRRWjogwZMgQGjduTOXKlTn33HNp2rQpXbt2\nJSUlhYsuuojly5fn+dqXXnqJbt26cfHFF5OSkkL16tWzE0M4brnlFqpWrUq5cuXo2LEjIsKnn34K\nwOuvv0779u2pU6cOS5YsYdu2bdx2222ULl2axo0bc/nll/PKK+F9ZhKVtasHWV1EXtw33o7qOIoR\nc0Yw4MQBhe7r5z1GIsKsWbPy7GPYsmUL9evXz15v0KBBxMo96qijcqw3bNiQLVu2ZK+Hlnsoateu\nnf24fPny1KpVK8f63r1783zdpk2bSE1NPeRyQ+MWEfr168fLL79Mp06deOmllxg0aBDgzkx++ukn\nqlULzhCbmZnJ6aeffshlG5Ps4vqMAaBbajfKppTlve/e8zuUQ3bkkUeyYcOG7PXQxwCHH344v//+\ne/b6zz//HPaxN2/enGM9PT2dunXrZq8X1GRTsWJF9u3bF3a5RWniql+/Pj/88EOez4XzfnOX1b9/\nf15//XXS09NZvHgxffr0AVySbdy4MTt37sxe9uzZk33WVFJZu3qQ1UXkxX1iEBFGdRzFmM/G+B1K\nofJrmunbty8TJ05k8+bN7Ny5k7Fjx+b44mvVqhWvvPIKGRkZLF26lDfeeCPsL+FffvmFiRMncvDg\nQWbMmMGaNWs477zzCo0pUO6CBQvYuHEju3fvZsyYv9Zx6OuL0sQ1YMAA5s6dy4wZM8jIyGD79u2s\nXLkyu9yZM2eyf/9+1q5dm6MjuqBYjzjiCC6//HLOOeccKleuDECbNm2oVKkSDz74IPv37yczM5Nv\nvvmGpUuXhh2rMSanuE8MAH2a9+GX3/OcHjqu9OzZM8d9DIFftVdccQVnn302LVu2pHXr1vTp0yfH\nl+w999zDDz/8QLVq1bjzzjsZMCBns1l+SUJEaNu2Ld9//z01a9bk9ttv54033sjRrFJQgjnrrLO4\n+OKLOfHEEzn11FPp2bPnX/YvqJO8oOPXr1+f2bNnM27cOGrUqMFJJ53EqlWrALj++uspW7YstWvX\nZsiQIfzjH/8Iq/P9kksu4eOPP+aSSy7J3laqVCneffddVqxYQWpqKjVr1uTKK69kz549+b7vksDa\n1YOsLiIvYQbRe2bZM1zV+qoSMVjZ+vXrSU1NJSMjg1KlEiI3mwLYIHomXpT4QfRyG9RykN8hGBM3\nrF09yOoi8hImMZQvXd7vECIq0e5ANsYkj4RpSvK22ym7iTv2uTTxIumakowxxsSGJQZjEpC1qwdZ\nXUSeJQZjjDE5WB+DMcVkn0sTL6yPwRhjTFRYYkgin376Kccee2xUjh06x8KLL77I2WefHZVyjGPt\n6kFWF5FniSGCpkyZQosWLTj88MM58sgj+b//+z92797tWzylSpVi3bp12eudOnVizZo1USkrdLiM\nAQMGMGfOnKiUY4yJPksMETJu3DhGjRrFuHHj2LNnD19++SXp6el069aNgwcjP9FQZmZmWPtZ2/df\nZWRk+B1Csdn4QEFWF87ixZE7liWGCNizZw933nknjz32GN27dyclJYWGDRvy2muvsX79el544QXA\nTaX597//nX79+lG5cmVOOeWU7IHloOApKgOvHThwIFWqVGHq1KksWbKEdu3aUa1aNerWrcu1116b\nnYQC8xG0bNmSSpUqMWPGDNLS0nLMc9CoUSPGjRtHy5YtqVq1Kv369eOPP/7Ifv7BBx+kbt261KtX\nj+eee+4vZyD5yWuqzqeffpqmTZtSrVo1/vWvf+XYf9KkSRx33HFUr16dc8455y/Dkoey6UKN+aux\nY6FfvwgeUFXjbnFh/VV+2/32/vvva+nSpTUzM/Mvz1166aXav39/VVUdPXq0lilTRt944w3NyMjQ\nhx56SBs3bqwZGRmamZmpJ598st5zzz168OBBXbdunaampuqcOXNyvHbWrFmqqrp//35dtmyZLlq0\nSDMzM3X9+vXavHlznTBhQnbZIqI//PBD9vonn3yi9erVy15v1KiRnnbaabplyxbdsWOHNm/eXJ96\n6qns91SnTh399ttvdd++fTpgwAAtVapUjuOF6tKliz7//POqqjp58mTt2LFjjjh69uypu3fv1g0b\nNmjNmjX1gw8+UFXVt956S48++mhds2aNZmZm6r333qvt27fPs4z169drpUqV9JVXXtGMjAzdvn27\nrlix4i/l5xdD9+7ddefOnXrgwAFdsGCB1q9fP/v5HTt26GGHHaZbtmwp9N8iNz8+l5988knMy4xX\nyVwXWVmqN9+setxxqps3Z38Wi/0dHPczuBWF3BWZ8Yd0dNGaX7Zt28YRRxyR50ipderU4auvvspe\nb926NRdeeCEAI0aMYNy4cXzxxReUKVMme4pKIMcUld27dwegffv29OrVC3Czp5188snZx23YsCFX\nXnkl8+fPZ9iwYWHHft1111GnTh3ADRu+YsUKwE1Hetlll9G8eXMA7rrrLl566aWwj5vbqFGjqFy5\nMpUrV+aMM85g5cqVnH322Tz11FPccsstNGvWDHBTet5///1s3LjxL7PPhU4XClC9enWqV68edgyB\n6UKBHNOFdurUKcd0oYsWLSr038IYv2VmwtVXw8qVsGAB1KgRuWOXqMRQ1C/0SDniiCPYtm0bWVlZ\nf0kOW7ZsoWbNmtnr9erVy34sItSrV4+ffvoJESl0isrQ1wJ89913jBgxgmXLlrFv3z4yMjJo3bp1\nkWIPJAWAww47LHta0C1bttCmTZt8yy6q0HIqVKiQPSVoeno6w4YN44Ybbsix/+bNm/+SGGy60CBr\nVw9Kxrr4808YOBC2bYO5c6FSpcge3/oYIqBdu3aUK1eON954I8f2vXv38sEHH3DmmWdmb9u4cWP2\n46ysLDZt2sRRRx1F/fr1C5yiMq9Jcq6++mqOO+441q5dy+7du7nvvvvIysqKyHs68sgjc8Qa+jiS\nGjRowDPPPJPjff/++++0bdv2L/vadKHGwL590Lu3Sw7vvRf5pACWGCKiSpUqjB49mmuvvZY5c+Zw\n8OBB1q9fT9++falfvz4DBw7M3nfZsmW8+eabZGRkMGHCBMqXL0/btm059dRTC5yiUvO4umjv3r1U\nqlSJChUqsGbNGp588skcz9euXTvfL9L8BMrp27cvkydPZs2aNezbt4977rmnqNVSYBmBcv75z39y\n//338+233wKwe/duZsyYkefrbLrQILt2PyiZ6mLXLujeHWrVghkzoHyUZiOwxBAhN910E/fffz83\n3ngjVapUoW3btjRs2JB58+ZRpkwZwP1i7d27N6+++irVq1fnxRdfZObMmaSkpJCSklLgFJV5nTE8\n9NBDvPTSS1SuXJkrr7ySfv365djnzjvv5NJLL6VatWq8/vrreR4jVOjz55xzDtdddx1nnHEGTZs2\npV27dgCUK1eu0LrIXU5e04EGtp1//vmMHDmSfv36UaVKFVq0aJHvPRA2XahJZlu3QpcucMopMHky\nlI5iR4AvYyWJyC3AP4As4GtgiKr+EfK85hVXoo9Jc9ddd7F27VqmT5/udyhFtnr1alq0aMGff/5p\n05HmkuifSxP/0tOhWzcYMADuuAPy+32XsGMliUgj4ArgZFVtAaQAkbwCN24l2pfHm2++yR9//MHO\nnTsZOXIkvXr1sqRgTIz997/QqRNccw2MHp1/UogkP/6X7wEOAhVEpDRQAdjsQxwxV1hTTrx55pln\nqF27NkcffTRlypT5Sx+G8U8ytasXpiTXxeefQ9euMGYMFOEq9GKL+eWqqrpDRMYBG4D9wBxVnRvr\nOPwwevRov0Mokvfff9/vEIxJWrNnw6WXwvTpcM45sS075olBRJoAw4FGwG5ghogMUNUXQ/cbPHgw\njRo1AqBq1aq0atUqxpEaE760tLTs6+kDv2CjvR5adizKi9f1wLZ4iScS6x9+CJMmdeGdd+DAgTTS\n0vLePy0tjSlTpgBkf19GQsw7n0XkYqCbql7urQ8E2qrqNSH7lMjOZ1My2efSRNLDD8OECTBnDngD\nD4QtYTufgTVAWxE5TFyD+1nAtz7EYUzCKsnt6kVVUupCFUaOhGefhYULi54UIsmPPoaVIjINWIq7\nXPUr4JlwX59InbfGGBOOjAy48kr49lv47LPIjnt0KAptShKRjsBoXJ9AIJGoqh76oDWFBZVPU1JR\ndZ3alSGthjCw5cDCdzbGGB/s3++GzP7jD3jjDTj88EM/VqSaksJJDP/DdRZ/BWTPDqOq24pbeAFl\nRiQxfPjDh4yYM4JVV6+ilNj198aY+LJzJ/TqBQ0auLuZy5Yt3vFi2cewS1XfV9WtqrotsBS34Fjo\nltqNsillee+79/wO5ZCVlPbTSLC6CLK6CErUuvjpJ+jc2Q1xMX168ZNCJIWTGD4Rkf+ISDsROTmw\nRD2yCBARRnUcxZjPxthVI8aYuPHdd9ChA/TvD+PHQ7wNKBBOU1Ia8JedVPWMKMUUsaYkgMysTJo9\n1ozJvSfTqWGnwl9gjDFRtGwZ9OgB99wDl18e2WPHrI/BD5FMDADPLHuGWf+bxXuXJG6TkjEm8X3w\ngZtg59ln4fzzI3/8mPUxiEhVERkvIsu8ZZyIVCluwbE0qOUglm9Zzqqtq/wOpcgStf00Gqwugqwu\nghKlLqZMgcGDYdas6CSFSAqnZWsSbuC7i4C+wG/A5GgGFWnlS5dneNvhPLDwAb9DMcYkGVW49164\n6y5IS4P27f2OqHDh9DGsVNWWhW2LaFARbkoC2PPHHlIfSWXxFYtJrRa1WzCMMSZbRoYbLnvJEjcN\n55FHRre8WF6uul9EsnttvRve9hW34FirXK4yV55yJeM+H+d3KMaYJPD773DhhbB+PcyfH/2kEEnh\nJIZ/Ao+LSLqIpAOPedsSzrDThvHyNy+zde9Wv0MJW6K0n8aC1UWQ1UVQPNbFr7/CmWdCtWrwzjtQ\nqZLfERVNoYlBVVeo6olAC6CFqrZS1ZXRDy3yalesTb8T+jFx0US/QzHGlFA//ODuUTjzTNfhHE83\nroUr3z4GERmoqtNF5AZy3scguLGSHo5aUFHoYwhYt3MdbZ5tw7ph66hcrnJUyjDGJKelS90QF7ff\nDldfHfvyY9HHUMH7WynXUtH7m5BSq6XSvUl3nl76tN+hGGNKkPffh3PPhSee8CcpRFK+iUFVA9+c\nc1X1rtAFmBeb8KJjZIeRjP9yPAcyDvgdSqHisf3UL1YXQVYXQfFQF5Mnw5AhiXGPQjjC6Xx+NI9t\nCd1I37JOS1rVacX0ldP9DsUYk8BU3dAWd9/trjxKhHsUwlFQH0M7oD1wPfAwrm8BXDPSBYl2H0Nu\nC9IXMPTtoay5Zg0ppVKiWpYxpuT580+46ipYtQrefTc+LkeNRR9DWVwSSCHYt1ARdxf034tbsN86\nNehEzQo1mbl6pt+hGGMSzK5drj9h+/bEu0chHAX1McxX1TuBtrn6GB5W1e9jF2J0BIbkHrtwbFwP\nyR0P7afxwuoiyOoiKNZ1kZ7uLkc9/nh4802oWDGmxcdEOH0MU0Tkk1zLx1GPLAZ6NO3BgYwDzF03\n1+9QjDEJYOlS149w5ZUwcSKklNBW6HDGSmodsloe6ANkqOpNUQsqBn0MAdNWTmPqyqnMG5TQF1oZ\nY6Js1iw3f0K0hsyOBF/nYxCRJap6anELL+D4MUsMBzMPcvSjRzPjohm0OapNTMo0xiSWRx6BBx5w\nyeHUqH3zFV8s52OoHrIcISLnACXmluEyKWW4od0NcTskt7UlB1ldBFldBEWzLjIzYdgwePpp+Pzz\n+E4KkVQ6jH2+IjgkRgawHhgarYD8MPSkody74F7WbFvDsUcc63c4xpg48PvvcMkl8NtvLilUrep3\nRLGTFFN7huPu+XeTviud53s/H9NyjTHx5+ef3bzMxx/v+hQSZSC8qPcxiEgfcg6el4OqRu0GAD8S\nw/Z92znm0WNYdfUq6lWuF9OyjTHx47//hb/9DS67zA2GJ8X+mo2dWPQx9CxkKVFqVKjB4FaDGf/F\neL9DycHakoOsLoKsLoIiWRcffQRnnOGGubjjjsRKCpGUbx+Dqg6OYRxxYUS7EZz45In8+/R/U/2w\n6n6HY4yJoSeecGMezZgBnTv7HY2/wrmPoSowGjjd25QG3K2qu6MWlA9NSQGXzbqMxlUbc3vn230p\n3xgTWxkZMGKEO1t4911o0sTviA5dzO5jEJGZwNfAVNxAegOBE1X1wuIWXkCZviWG1b+upvOUzvw4\n7EcOL3u4LzEYY2Jj9264+GLIyoLXXkv8K49idh8D0ERVR6vqOlX9wRs/KYFzasGa12xOxwYdmbR8\nkt+hANaWHMrqIsjqIuhQ62LdOje8RZMmMHt24ieFSAonMewXkU6BFRHpCOyLXkj+G9lhJA998RAH\nMw/6HYoxJgo++8wNhHf11fD441A6nDu6kkg4TUmtgGlAFW/TTuBSVV0ZtaB8bEoK6Dq1K0NaDWFg\ny4G+xmGMiaxp0+DGG93fc87xO5rIivlYSSJSBVBV3VPcQsMoy/fE8OEPHzJizghWXb2KUhLOiZUx\nJp5lZcG//w2vvuo6mY87zu+IIi+WYyUNF5HKuAl6xovIVyJydnELjnfdUrtRNqUs7333nq9xWFty\nkNVFkNVFUDh18fvvcNFFrglp0aKSmRQiKZyfwpd5ZwndgerAIGBsVKOKA4GJfMZ8NiauJ/IxxhRs\n82Y4/XQ3oc7cuVCzpt8Rxb9w+hi+VtUWIjIRSFPVmSKyXFVPOuRC3b0RzwHH44bduExVvwx53vem\nJIDMrEyaPdaMyb0n06lhp8JfYIyJK0uWwAUXwL/+BSNHlvw7mWN5ueoyEfkQOA/4wGtWyipmuY8A\ns1W1OXAisLqYx4uKlFIp3NzhZsYuLPEnSMaUOC++COedB48+CqNGlfykEEnhJIahwC1Aa1XdB5QB\nhhxqgV4ndidVnQSgqhnRvIu6uAa1HMTyLctZtXWVL+VbW3KQ1UWQ1UVQ7rrIzHRnB7ffDh9/7M4Y\nTNEUmhhUNVNVl6nqLm99u6oW51uyMfCriEz2OrKfFZEKxTheVJUvXZ7hbYfH7UQ+xpigXbugZ0/X\nhLR4MbRo4XdEiSnm8zF4c0h/AbRX1SUiMgHYo6p3hOwTF30MAXv+2EPqI6ksvmIxqdVS/Q7HGJOH\n776DXr2VHRL3AAAgAElEQVSgWzd4+GEoU8bviGIvUn0MftzvtwnYpKpLvPXXgVG5dxo8eDCNGjUC\noGrVqrRq1YouXboAwVPHWK1/9cVXnJ1yNuM+H8fjf3s85uXbuq3besHrixfDQw914b774Jhj0li4\nML7ii9Z6WloaU6ZMAcj+voyEcK5Kymv86d9U9ZDHixCRBcDlqvqdiNwJHKaqI0Oej6szBoCte7fS\n/PHmrL5mNbUr1o5ZuWlpadkfiGRndRFkdeGowv/9XxqzZnXhtdegY0e/I/JXLK9K+grYBnzvLduA\ndK9/4JRDLPda4EURWYm7Kun+QzxOzNSuWJt+J/Rj4qKJfodijAEOHIBBg9y9CV9+aUkhksI5Y3gW\neF1V53jr3YG/A5OBR1S1TcSDisMzBoB1O9fR5tk2rBu2jsrlKvsdjjFJ66ef3NVGjRvDpElQIW4v\nX4mtWJ4xtAskBQBV/dDb9gWQIFNkR0ZqtVS6N+nO00uf9jsUY5LWokXQpg307g0vv2xJIRrCSQxb\nRGSkiDQUkUYicjOwVURSKP6NbglnZIeRjP9yPAcyDsSkvEBHk7G6CJWsdTFlirsc9ckn4dZb3U1r\nyVoX0RROYrgEqA+8BbwJNAD6AylA3+iFFp9a1mlJqzqtmL5yut+hGJM0/vwTrrkGxoyBtDSXHEz0\nhNPH0FhVf8y17dSQy00jH1Sc9jEELEhfwNC3h7LmmjWklErxOxxjSrQtW9zIqDVquDkUqlQp/DXJ\nKpZ9DG+ISL2QgjvjOp6TVqcGnahZoSYzV8/0OxRjSrTPP4dTT4Wzz4Y337SkECvhJIargLdEpI6I\nnAdMBM6NbljxLTAk99iFY6M+JLe1nwZZXQSV9LpQdf0IF1wAzzzjxj0qlc+3VUmvCz+EM1bSEuA6\n4CPgTqCbqm6Mclxxr0fTHhzIOMDcdXP9DsWYEuXAARg6FJ54AhYudCOkmtjKt49BRN7Jtak5sAXY\nhZvis1fUgorzPoaAaSunMXXlVOYNmud3KMaUCBs2QJ8+kJoKzz/vJtcx4Yv6nM9eXwJAaCHqrauq\nzi9u4fkGlSCJ4WDmQY5+9GhmXDSDNkdF/D4/Y5LKJ5/AJZfADTe4xeZPKLpYdD7fCpwM/Kyqad4y\nP/C3uAWXBGVSynBDuxuiOiS3tZ8GWV0ElaS6UHWjofbvDy+8ADfeWLSkUJLqIl4UlBgG45qN7hSR\n5SLylIj0FpHDYxNaYhh60lA+Tf+UNdvW+B2KMQnn999hwACXEBYtgjPP9DsiA2HOx+Dd5Xwa7mqk\nrsABYI6qPhiVoBKkKSng7vl3k74rned7P+93KMYkjDVrXH9Cmzauo/mww/yOKPFFvY/BKyQFuE5V\nx+faXhPorqovFjeAfMpNqMSwfd92jnn0GFZdvYp6lesV/gJjktxrrwXvZB461PoTIiUmN7ipaiZu\nSIzc23+NVlJIRDUq1GBwq8GM/2J84TsXkbWfBlldBCVqXfz5JwwbBrfcAnPmwOWXFz8pJGpdxLNw\nbnD7TEQeE5FOInKyiJwiIidHPbIEM6LdCCavmMyO/Tv8DsWYuLRpE3TpAuvXw9KlcLJ9i8StcMZK\nSsNdppqDqp4RpZgSrikp4LJZl9G4amNu73y736EYE1c++shNqjN8ONx0U/53MZviiUkfg18SNTGs\n/nU1nad05sdhP3J4Wbt4y5isLLjvPje8xYsvwhlR+zlpIIaD6InIaBG5I+TvHSJyR3ELLoma12xO\nxwYdmbR8UsSOae2nQVYXQYlQF9u3Q48e7mxh6dLoJYVEqItEE84J3e/eshc3Mc95QKMoxpTQRnYY\nyUNfPMTBzIN+h2KMb5YsgVNOgeOPh3nzoG5dvyMyRVHkpiQRKQd8qKqdC935ECVqU1JA16ldGdJq\nCANbDvQ7FGNiShWeegpGj4ann3ajo5rYieV8DLkdDhxV3IJLslEdR/HAwgfI0qSb+dQksd274eKL\nXUJYuNCSQiILp4/h65Dlv8D/gEeiH1ri6pbajbIpZXnvu/eKfSxrPw2yugiKt7oIXH5asyZ8+SUc\nc0zsyo63uigJSoexT2B2VQUygF9U1RrQCxCYyGfMZ2Po0bQHYrd1mhJKFR59FO69Fx5/3E3BaRJf\nuGMltQI64ZLDp6q6MqpBJXgfA0BmVibNHmvG5N6T6dSwk9/hGBNxO3e64Sw2bIBXX4UmTfyOyMTy\nctVhwAtATaA28IKIXFfcgku6lFIp3NzhZsYuHOt3KMZE3KJFrumoQQPXn2BJoWQJp/P5cuA0Vb1D\nVW8H2gJXRDeskmFQy0Es37KcVVtXHfIxrP00yOoiyK+6UIVx46BXLxg/HiZMgHLlfAklm30uIi/c\nq5Ky8nlsClC+dHmGtx0e1Yl8jImV7dtdQpgxw50xnH++3xGZaAlnrKQRuEl7ZuKm9TwfmJJ7KO6I\nBlUC+hgC9vyxh9RHUll8xWJSq6X6HY4xh2ThQjft5kUXwf33Q9myfkdk8hLTsZJE5BSgI8HO5+XF\nLbiQ8kpMYgC4dd6t7D6wm8f/9rjfoRhTJJmZMHasu/LouefcEBcmfkW981lEqgcW4EdcB/SLQLq3\nzYRp2GnDePmbl9m6d2uRX2vtp0FWF0GxqIuNG91Um3PnuvsU4jUp2Oci8grqY/gKWBayLPWWwGMT\nptoVa9PvhH5MXDTR71CMCcvMmdC6NZx9tksM9WxiwqRiw27HyLqd62jzbBvWDVtH5XKV/Q7HmDzt\n2wfXX++SwUsvwWmn+R2RKYqYjpUkIr1FZJyIPCQiPQt/hckttVoq3Zt05+mlT/sdijF5WrnSjYi6\nbx8sX25JIZmFc4PbWOA64L/AauA6ERkT7cBKopEdRjL+y/EcyDgQ9mus/TTI6iIoknWhCo88Amed\nBf/+N0yfDpUT6KTWPheRF85YSX8DWqlqJoCITAFWALdEMa4SqWWdlrSq04rpK6dzxSl2j6Dx3y+/\nwODB7h6FL7+0O5iNE859DKuAM1R1u7deA/hEVU+MWlAlsI8hYEH6Aoa+PZQ116whpVSK3+GYJDZn\nDgwZ4hLDXXdBmTJ+R2SKK1J9DOGcMYwBvhKRT3A3uHUGRhW3YBFJwV3dtElVk6bfolODTtSsUJOZ\nq2dy0fE2FKWJvQMH4NZb3R3ML7wAXbv6HZGJN4X2Majqy0A74E3gDaCtqr4SgbKHAd/ibppLGoEh\nuccuHEs4Z0XWfhpkdRF0qHWxYoW7DHXDBve4JCQF+1xEXjidzxcA+1R1lqq+DRwQkWKNkiIi9XBz\nRz+HOwtJKj2a9uBAxgHmrpvrdygmSWRmwgMPQLduMHKkO1uoUcPvqEy8CqePYaWqtsy1bYWqtjrk\nQkVmAPcDlYEbczclleQ+hoBpK6cxdeVU5g2a53copoRbvx4GDQIRmDYNGjb0OyITLbG8jyGvQg65\n11REeuBmgVuez7GTQv8T+rN2x1oWb17sdyimhFKFqVPh1FOhZ0/4+GNLCiY84XQ+LxORh4HHcV/k\n1+CGxThU7YFeInIeUB6oLCLTVHVQ6E6DBw+mUaNGAFStWpVWrVrRpUsXINimmOjrN7S7gQcWPsC1\nta7Nd//Q9lO/4/V7PbAtXuLxc33FihUMHz483+d374bp07vwv//BmDFpHH00pKTET/yRXJ8wYUKJ\n/H4IZz0tLY0pU6YAZH9fRoSqFrgAFYEHCI6VNAY4vLDXhbPgrnB6J4/tmgz2/rFXaz5YU1f/ujrf\nfT755JPYBRTnrC6CCqqL999XrVtX9YYbVPfvj11MfrHPRZD33Vns72Zfx0oSkc7ADaraK9d29TOu\nWLp7/t2k70rn+d7P+x2KSXD79sFNN8G778KUKXDGGX5HZGItpmMlRYuqzs+dFJLNNadew5tr3mTT\nnk1+h2IS2OefQ6tWsHu3G/PIkoIpDl8Tg4EaFWowuNVgxn+R94R4oe3ryc7qIihQF/v3u7OEPn3c\nhDovvABVq/obW6zZ5yLyCpqo5wHvb9/YhZOcRrQbweQVk9mxf4ffoZgEsmgRnHwypKfDqlVw4YV+\nR2RKinz7GETkG6AF8JWqnhTToJKojyHgslmX0bhqY27vfLvfoZg498cfbmyjSZNg4kToaz/djCcW\nfQzvAzuBFiLyW65lT3ELNjnd1P4mHl38KL//+bvfoZg49tVXbkiL1atdX4IlBRMN+SYGVb1JVasC\ns1W1Uq4lgUZrTwzNazanY4OOTFo+Kcd2az8NSua6+PNPGD0azj0XRo2C665Lo3Ztv6OKD8n8uYiW\ncAbR6yUitUWkh7fUikVgyWhkh5E89MVDHMw86HcoJo6sXOlmU1u2zM2sNmCAG97CmGgJZ6ykvsB/\ngPm4O587ATep6oyoBZWEfQwBXad2ZUirIQxsOdDvUIzP/vzTDXz36KPw4INw6aWWEEzBItXHEO5E\nPWep6i/eek1gntpEPVHx4Q8fMmLOCFZdvYpSYlcTJ6slS2DoUGjQAJ58EurX9zsikwhiPYjeryHr\n20niwe+irVtqN8qmlOW9794DrP00VDLUReDu5Z49XV/CO+/knRSSoS7CZXUReeEkhg+AOSIyWESG\nALNxVyyZKAhM5DPmszFhTeRjSo60NDjxRNi8Gb7+Gi65xJqOjD/CGitJRPoAHbzVT1X1zagGlcRN\nSQCZWZk0e6wZk3tPplPDTn6HY6Js9264+WaYPRueeMKdLRhzKGI6VpKqvqGqI7wlqknBQEqpFG7u\ncDNjF471OxQTZe+8Ayec4M4MvvnGkoKJD9a7GacGtRzE8i3LeX6mjboaUJLakn/91TUVXX+9m1Xt\nqaegSpXwX1+S6qK4rC4izxJDnCpfujzD2w7n5W9e9jsUE0GqMH06tGgBRx3lxjiykVBNvCnSfAwi\nUh2op6qroheS9TEE7PljD6mPpLL4isWkVkv1OxxTTN99B1dfDTt3wtNPuyk3jYmkmPUxiMh8Eans\nJYVlwHMikvcY0SaiKperzJWnXMm4z8f5HYophj/+gHvugfbtoUcPWLzYkoKJb+E0JVVR1T3AhcA0\nVW0DnBXdsExA6z9b8/I3L7N171a/Q/FdIrYlL1jgJtBZssQNgHf99VA6nJnWC5GIdREtVheRF05i\nSBGRI4G+wHveNmvniZHqh1Wn3wn9mLhoot+hmCLYvt3duTxgANx/P8ya5e5iNiYRhDMkxkXA7cBC\nVb1aRJoAD6pqn6gFZX0MOazbuY42z7Zh3bB1VC5nA9vGs0Dn8s03Q79+rgmpUiW/ozLJIpZjJXVU\n1c8K2xZJlhj+6pI3LuGkOidxU4eb/A7F5CPQubxrl+tcbt3a74hMsonlDW6P5rHN2jViJNB+OrLD\nSMZ/OZ4DGQf8DchH8dqWvG8f3HGH61zu2dNNuRntpBCvdeEHq4vIy7cbTETaAe2BmiIyguDAeZWA\nlBjEZkK0rNOSVnVaMX3ldK445Qq/wzG4ZqO334bhw918CStWQL16fkdlTPEVNOdzZ+AM4CrgqZCn\nfgPeUdXvoxaUNSXlaUH6Aoa+PZQ116whpZTlZj+tXQvDhsGPP7r5Es480++IjIltH0NDVU0vbkFF\nYYkhb6pKh0kduL7t9Vx0/EV+h5OU9u2DsWPdYHcjR7rkULas31EZ40S9j0FEHvEePiYi7+Ra3i5u\nwSY8oe2ngSG5xy4cm5RDcvvZlqzqLjk9/njXybxihZs3wa+kYO3qQVYXkVfQrTbTvL92220c6dG0\nB7fMu4W56+bSrUk3v8NJCoFmo3Xr4LnnrNnIlHxFGispVqwpqWDTVk5j6sqpzBs0z+9QSrS9e2HM\nGHfpqTUbmUQQy7GSOorIRyLyvYj86C3riluwOXT9T+jP2h1rWbx5sd+hlEhZWW4o7GOPhQ0b/G82\nMibWwrmP4XngYaAjcKq3tIlmUCYor/bTMilluKHdDTyw8IHYB+SjWLQlf/EFtGsHjz8Or7/u7mKO\nx0tQrV09yOoi8sJJDLtU9X1V3aqq2wJL1CMzBRp60lA+Tf+UNdvW+B1KibBpE/zjH3DRRfCvf7kE\n0bat31EZ449wLlcdi7uhbSbwR2C7qn4VtaCsjyEsd8+/m/Rd6Tzf22Z5O1T79sFDD8Ejj7jhLEaN\ngooV/Y7KmEMTy/sY0shjNFVVjdq8U5YYwrN933aOefQYVl29inqV47C9I46pwmuvucHuTjsNHnwQ\nGjXyOypjiidmnc+q2kVVz8i9FLdgE56C2k9rVKjB4FaDGf9FcsybFKm25C+/hE6d3I1q06e7BJFo\nScHa1YOsLiKv0ClDRGQ07oxBCDlzUNW7oxiXCdOIdiM48ckT+ffp/6b6YdX9Dieu/fAD3HILfP65\nGw570CBIsZFFjPmLcJqSbiSYEA4DegDfquplUQvKmpKK5LJZl9G4amNu73y736HEpe3bXSJ44QU3\ng9r110OFCn5HZUzkxayPIY+CywEfqmrn4hZeQBmWGIpg9a+r6TylMz8O+5HDyx7udzhx48ABmDgR\n/vMf6NsXRo+GWrX8jsqY6InlfAy5HQ4cdagFikh9EflERP4rIt+IyHWHeqxkEE77afOazenYoCOT\nlk+KfkA+CrctOSvLnR00a+YuO/3sM3dfQklKCtauHmR1EXnh9DF8HbJaCqgFFKd/4SBwvaquEJGK\nwDIR+UhVVxfjmElvZIeR9H29L/9s/U/KpJTxOxzffPyxu0u5TBmXHDp18jsiYxJPOH0MjUJWM4Ct\nqnowYgGIvAU8qqrzQrZZU9Ih6Dq1K0NaDWFgy4F+hxJzS5bArbe6+RHuv9/dqCbFPqE2JrHE8nLV\n9SHLpggnhUbAScCiSB0zmY3qOIoHFj5Almb5HUrMfPst9OkDF1wAf/87rF7t+hMsKRhz6AptSooW\nrxnpdWCYqu7N/fzgwYNp5F1cXrVqVVq1akWXLl2AYJtiMqyHtp8Wtn+3zt0om1KWsdPH0r5B+7iI\nP5LrgW1paWn8/DN88EEXZs+GPn3SeP55OPvs+Io3musrVqxg+PDhcROPn+sTJkxI6u+HKVOmAGR/\nX0aCL8Nui0gZ4F3gfVWdkMfz1pTkSUtLy/5AhOO1/77GhC8nsPCyhUgJ+9mclpbGscd24b774KWX\n4Jpr4IYboEoVvyOLvaJ+Lkoyq4sg3y5XLXaB7ttqKrBdVa/PZx9LDIcoMyuTZo81Y3LvyXRqWHJ6\nXnfudJedPv20uzHtlltK1lVGxkSCn5erFlcH4B/AGSKy3FvO8SGOEimlVAo3d7iZsQvH+h1KROze\nDXffDU2bwi+/wPLlMH68JQVjoinmiUFVP1PVUqraSlVP8pYPYh1HoghtXw/XoJaDWL5lOau2rop8\nQDESSAhHH+2m1Pz8c/jHP9Jo0MDvyOLDoXwuSiqri8jz44zBRFn50uUZ3nZ4Qk7ks3u3G77i6KPd\n2Eaffw5TpsAxx/gdmTHJw+Z8LqH2/LGH1EdSWXzFYlKrpfodTqF273bDV0ycCOedB7fdZsnAmKJK\n5D4GEwOVy1XmylOuZNzn4/wOpUC7d8O997ozhO+/h4ULYepUSwrG+MkSQ5wrTvvpsNOG8fI3L7N1\n79bIBRQhv/7qzgqaNIH//c8lhGnTXCdzfqwtOcjqIsjqIvIsMZRgtSvWpt8J/Zi4aKLfoWTbuBGG\nDXMD3G3bBosWuclyCkoIxpjYsj6GEm7dznW0ebYN64ato3K5yr7F8d138MAD8OabMHSomxOhbl3f\nwjGmRLI+BhOW1GqpdG/SnaeXPu1L+cuXu7GLOnSABg1cP8J//mNJwZh4ZokhzkWi/XRkh5GM/3I8\nBzIOFD+gMKhCWpq7uuhvf4PTTnP3IoweDTVqHPpxrS05yOoiyOoi8iwxJIGWdVrSqk4rpq+cHtVy\nDh6El1+G1q3hqqugd2+XEG64ASpVimrRxpgIsj6GJLEgfQFD3x7KmmvWkFIqJaLH3rMHnnsOJkyA\nxo1dIujRA0rZzw5jYsr6GEyRdGrQiZoVajJz9cyIHXPjRrjxRpcMliyBmTNh/nzo1cuSgjGJzP77\nxrlItZ+KCKM6jmLswrEU92xs2TIYMABatXLzK3/1VbAJKZqsLTnI6iLI6iLyLDEkkR5Ne3Ag4wBz\n180t8mv//NPNgdC+PVx4IZx0kus/ePhhaNgwCsEaY3xjfQxJZtrKaUxdOZV5g+YVvjPw00/wzDNu\nad4crr0WevaElMh2UxhjIsD6GMwh6X9Cf9buWMvizYvz3UfVDVHRvz8cf7ybB2HuXJg3D84/35KC\nMSWdJYY4F+n20zIpZbih3Q15Dsm9bx9MngynnAKDB0PbtvDjj/DEE3DccREN45BYW3KQ1UWQ1UXk\nWWJIQkNPGsqn6Z+yZtsaAFatgn/9C+rXh9dfh/vucwPbDRsGVav6HKwxJuasjyFJ3fbR3cxfmc7B\n159n82Y3ftFll2EzpBmTwCLVx2CJIcksX+46kl+etR0d2JUpHRbT87xylC7td2TGmOKyzuckEYn2\n0x07XD/Bqae6zuO6deGbxTXYNXYFF/RKnKRgbclBVhdBVheRlyBfCaaoDh6EDz5ws6F99BGcey7c\nfTd07x56VVGxf1gYY0oga0oqYVaudMngxRfddJmXXuqGvbZOZGNKvkg1JdkZQwmweTO89ppLCDt2\nwKBB8OmnNiuaMebQWB9DnMuv/XTbNnjqKejSBVq0cJecPvwwrF8P995bMpOCtSUHWV0EWV1Enp0x\nJJA9e+Ctt9yAdZ9/7voNhg+Hc86B8uX9js4YU1JYH0Oc++03mD3bNRXNnevOEPr1c+MVVazod3TG\nmHhi9zGUYL/+Cm+/DW++CQsWQMeO0KePG9W0WjW/ozPGxCu7j6GE2bABHnnEnREcfTTMmePmPHjp\npTRmz3Z3Jid7UrC25CCriyCri8izPgafZGW5Wc9mz4b33nOdxj17umkxzzoLDjvM7WefeWNMrFlT\nUgzt3OnOBGbPdjef1aoF553nlo4dSZg7kI0x8cn6GBJAZiasWOHuPH7vPXfzWefOwWRgM58ZYyLJ\n+hjikKobrvqJJ1xnca1aMHCgmwXt3/92E9688w5cfXX4ScHaT4OsLoKsLoKsLiLPGi+KQdV1Gs+f\n72Y3mzcPSpWCM8+ECy6ARx91A9YZY0wisaakIsjMdHcYL1wIn33mlowM6NTJJYMzz3RXFImNTWeM\n8YH1McTAL7/A0qXu6qGFC2HRIjjqKNdR3KGD+5uaaonAGBMfErqPQUTOEZE1IvK9iIz0I4bctm+H\nDz+E++93N5I1aADNmrnxh/bvh2uvhXXr4Ntv3UQ3l14KTZpEPylY+2mQ1UWQ1UWQ1UXkxbyPQURS\ngMeAs4DNwBIReVtVV8ei/P37YfVq+Oab4PL117B7N5x8MrRu7YapfvDB2HzxF2bFihV06dLF3yDi\nhNVFkNVFkNVF5PnR+dwGWKuq6wFE5BWgNxCxxJCR4TqF167NuaxZAxs3wjHHwAknuOWf/3R/GzVy\nHcfxZteuXX6HEDesLoKsLoKsLiLPj8RwFLAxZH0TcFo4L8zKcr/sd+xww05v3hxcNm1yfzdudMuR\nR7qO4MBy+ukuITRtCmXKROV9GWNMieBHYgirV/mMM+DAAbfs3euSwe7dbkTRGjWgenXXERxYund3\nf+vVc7/+y5WL8ruIkfXr1/sdQtywugiyugiyuoi8mF+VJCJtgTtV9Rxv/RYgS1UfCNnH/0uSjDEm\nASXk5aoiUhr4H3Am8BOwGOgfq85nY4wxBYt5U5KqZojIv4A5QArwvCUFY4yJH3F5g5sxxhj/xN0F\nmvF481u0iEh9EflERP4rIt+IyHXe9uoi8pGIfCciH4pI1ZDX3OLVzRoR6e5f9NEhIikislxE3vHW\nk7IuRKSqiLwuIqtF5FsROS2J6+IW7//I1yLykoiUS5a6EJFJIrJVRL4O2Vbk9y4ip3j1972IPFJo\nwaoaNwuuaWkt0AgoA6wAmvsdVxTfbx2glfe4Iq7vpTnwIHCzt30kMNZ7fJxXJ2W8OloLlPL7fUS4\nTkYALwJve+tJWRfAVOAy73FpoEoy1oX3ftYB5bz1V4FLk6UugE7AScDXIduK8t4DrUKLgTbe49nA\nOQWVG29nDNk3v6nqQSBw81uJpKo/q+oK7/Fe3E1+RwG9cF8MeH/P9x73Bl5W1YPqbhBci6uzEkFE\n6gHnAc8BgSsrkq4uRKQK0ElVJ4Hrl1PV3SRhXQB7gINABe/ClQq4i1aSoi5U9VNgZ67NRXnvp4nI\nkUAlVV3s7Tct5DV5irfEkNfNb0f5FEtMiUgj3C+DRUBtVd3qPbUVqO09rourk4CSVj/jgZuArJBt\nyVgXjYFfRWSyiHwlIs+KyOEkYV2o6g5gHLABlxB2qepHJGFdhCjqe8+9fTOF1Em8JYak7AkXkYrA\nG8AwVf0t9Dl1534F1UuJqDMR6QH8oqrLCZ4t5JAsdYFrOjoZeEJVTwZ+B0aF7pAsdSEiTYDhuKaR\nukBFEflH6D7JUhd5CeO9H5J4Swybgfoh6/XJmelKHBEpg0sK01X1LW/zVhGp4z1/JPCLtz13/dTz\ntpUE7YFeIvIj8DLQVUSmk5x1sQnYpKpLvPXXcYni5ySsi9bA56q6XVUzgJlAO5KzLgKK8n9ik7e9\nXq7tBdZJvCWGpcAxItJIRMoCFwNv+xxT1IiIAM8D36rqhJCn3sZ1sOH9fStkez8RKSsijYFjcJ1K\nCU9Vb1XV+qraGOgHfKyqA0nOuvgZ2CgiTb1NZwH/Bd4hyeoCWAO0FZHDvP8vZwHfkpx1EVCk/xPe\n52mPd2WbAANDXpM3v3vd8+iFPxd3dc5a4Ba/44nye+2Ia09fASz3lnOA6sBc4DvgQ6BqyGtu9epm\nDXC23+8hSvXSmeBVSUlZF0BLYAmwEvcruUoS18XNuMT4Na6ztUyy1AXu7Pkn4E9c/+uQQ3nvwCle\n/a0FJhZWrt3gZowxJod4a0oyxhjjM0sMxhhjcrDEYIwxJgdLDMYYY3KwxGCMMSYHSwzGGGNysMRg\nYsGZ6gUAAAS7SURBVMob/vcR73FnEWkXoeP+xxu6/IHC9y7wOOtFpHokYvKOd6SIzPHe6zuROm4R\nY+jiV9kmMcV8BjeT3FR1GbDMWz0D+A34IgKHvgKopsW/MSciN/aISIqqZuJuWPwgEsc8xDjs/7gp\nMjtjMIfMG7okdAKRG0VktPc4TUTGisgiEfmfiHT0tncRkXdEpCFwFXC9uIl5OorIRd5kIitEZH4+\nZf7H22eViPT1tr2Nm8/iq8C2kP0reqOUrhKRlSJygbe9v7ftaxEZm09ZI7znvxaRYWG+5/EisgS4\nztvlbOB9QgYGFJFTvVFTG4tITW/SlW+8UVTzPGMRN4HVMq9uPvK2tRGRz71jLQwMoSEig0XkbRGZ\nh7tDVoEqIvKuuAlcnvSGRsi3HkRkr4jc65X3hYjUyquOTMlkvyZMJIWO9KhAiqqeJiLnAqOBbtk7\nqqaLyFPAb6r6MICIrAK6q+oWEamc++Ai0gc3VMSJQE1giYjMV9VeIvKbqp6UR0y3AztV9UTvGFVF\npC4wFjcw3S7gQxHpraqzQso6BRiMG8u/FLDIS1a7CnnPZVT1VO8YKUAzVV0jwUHP2gMTgV6quklE\nHgPmquoDInI2MDSP910TeAY3R0O6BGfsWu1tyxSRs4D7gb97z50EtFDVXSLSBTgVNwnUBtwZzIUi\n8kUB9VAB+EJVb/Oa564A7sujfk0JZGcMJtJCh8ye6f39CjdscmH7LwSmisjl5P2jpQPwkjq/APNx\nX3gFORN4PLCiqru813yibsTOTNyMcafniqkjMFNV96vq79576UTeTU2h7+HVkMen4ebXCGgOPA30\nUNXAqMEdcBNSoapz+OukLABtgfmqmh7yHgCqAq97ZzAP42bwCvgwZD9wg6mtV9Us3Pg7HXEjl6bl\nUw9/qup73uNl5P/vZ0ogSwymODLI+Rk6jJxfnH94fzMJ4+xUVa8GbsMNHbwsn05gyedxQXLvp3kc\nJ/cXfn77FPaefw95fC6uGSlwvC3Aftwv9ILiyy13LAH3APNUtQXQ04slYF8exwgtL78EF9h+MGR7\nFta6kFQsMZji2ArUEjc5eTmgRxFf/xtQKbAiIk1UdbGqjgZ+JecY8gCfAheLSCmveaUThQ+p/BFw\nTUgZVb3XdBaRGl5zTz/c2UeAemWdL26458NxUyF+ihv7vqD3HPoF3hXXxh/Yvsvbf4yIdPa2LwQC\nfSXdgWp5vIdFwOniZvlDRAL7VMaNvAlu1M2CtPH6R0p55X0aRj2YJGWJwRwydfNy3437gvkQN05+\nvrvn8fgd4AKv87Qj8GCgIxRYqKqrcpX3JrAKNxT1POAmr0kp9/FD3QtUC3RqA13UjU8/CvgEN+T5\nUlV9J/Q46maSm+K9ty+BZ1V1ZRjvWSG7X+CA1wwV2B5oAusBPC4ipwJ3Ad299/x34Gdcwgx9378C\nVwIzvffwivfUg7gk8xWQQs6+jtz1vQR4zIt3naq+GU495HM8U8LZsNvGRIGIDACOUtUHC9mvLJDp\ndSC3Ax5XN52nMb6xxGCMj0TkaOA13Nn7n8DV3r0exvjGEoMxxpgcrI/BGGNMDpYYjDHG5GCJwRhj\nTA6WGIwxxuRgicEYY0wOlhiMMcbk8P+dWPmzYQm/hQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7d412e8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Quantity of fresh carbon recquired for single stage operation: 32.0 kg carbon/1000 kg solution\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VcXTgN8loRNIwNATICBSPnoPLQiiIiCC9F7saECw\nIQgiilioPxQQpCsdkWKjBASkg4ooCEpClQ6B0JLM98feJDch5ZLcmuz7POdJTt25c889c3Zmd0aJ\nCAaDwWAwxJHN1QIYDAaDwb0whsFgMBgMiTCGwWAwGAyJMIbBYDAYDIkwhsFgMBgMiTCGwWAwGAyJ\nMIbBYDC4HKVUY6XUX66Ww6AxhsFNUUpdV0pFWpZYpVSU5f9rSqmuTpKhtKVtl9wnSvOKUup3iz5O\nKKWWKKX+zxXyuDNKqT5KqZ9dLYetWO6roLh1EflZRCq4UiZDAt6uFsCQPCKSL+5/pdS/QH8R2egi\ncZSL2p0EtAIGANvQ9+tTwBPAwaQHK6WyiUisUyVMB0opbxGJTmubp6KU8hKRGFsOdbgwhvQhImZx\n8wX4F3gYyAXcBApatr8N3AXyWdbfAyZY/i8AzAPOAcctx6oUrl8X2ANcBc4Cn1i2RwCxQKRlqQeU\nBTYCF4DzwAKggNW1agL7gWvAEmAx8J7V/tbAAeAy+mFfJQWZHgSigdqp6GUO8DmwDrhu0VFFIMxy\n/YNAG6vjWwF/WGQ7CQyxbH8AWGM55yKwJRVdVQZ+shx3FnjTShbrzxkCnLBaPw68Dvxm+Q7LWnTb\nDwgHwizH9QMOAZeA74FAq2vEAs8BRyyy/s+yvaLlmtGW7+lSCrIXB761yP43MMBq3yhgGbDIop+9\nQNUk5y633E//AC8nc+58yz3UD6gD/GKR8zQwBchuOX6L5bNct8jbMRl9pfY9zgGmWr6za8AOIMjV\nv9PMtLhcALPY8CVZDIPl/81Ae8v/P1p+4I9Z1rcAT1r+nwesBPICpYDDQL8Urv8L0N3yfx6gnuX/\nUpYfcDarY8sCzYHs6AfqZhKMUQ7LQ+5lwAv9dn8bGG3ZXwP4z/LQUEAvy2fLkYxMzwP/pqGXOcAV\noIFl3Qc4CryJ7l00szw4HrTsPwM0tPxfAKhh+X8s2sB4WZaGKbTnY7nGYMtnzQfUseybHfc5LetJ\nH3THgX1ACSAnUNqi2zlAbrTRf9LyfT6EdvO+DWyzukYs+sGeHwhAP6QftezrDfychr62AP+zyF7N\ncn4zy75RwB2gvUUHQ9AGwMsiy15guEWvZYBjQMsk57a1rOdCvyDUtZxbCm3sQpN8lqDk9IW+t5L7\nHstbfe8XgNoW+RYAX7v6d5qZFhNj8Dw2A02VUl5AFWCyZT0X+oeyxbKvM/CWiNwQkXDgU6BnCte8\nAzyolHpARKJEZKdl+z1dfRE5JiIbROSuiFwAJgBNLbvrA14iMkVEYkRkJbDL6vRngekisls089CG\no34yMhVCv5GnhgDfiMgvlvXqQF4R+VBEokVkE/qtspvV56yslMovIldFZL/V9mJAaYvc21JorzVw\nWkQmiMgdEbkuIrut9qfmGhFgsoicEpHbVttHichNEbmFNoZjReSwaJfYWKC6UirA6vgPReSaiJwA\nNlk+c1ptY7lGMPCGRfZfgZlo4xzHHhFZIdoNNB79gG+ANuQPiMgYi17/tZzbxerc7SLyLYCI3BKR\nfSKyS0RiLfffDBLuk7SoT/Lfo3VsbYWI7LHIutBKDwY7YAyD57EZ/XZVE/gdWI/+wdUDjorIZfSb\nfHb023scEei31eToD5QH/lRK7VJKPZFS40qpIkqpRUqpk0qpq2j3QSHL7uLAqSSnnLD6vxQwRCl1\nOW4BSqIfykm5mML2pJy0+r94kvZA6yDuc3dAu5OOK6XClFJxBulj9Bvqj0qpY0qpN1JoKwD9Fp1e\nksqWdFspYJKVbi5atlt/b9bGMgrdI7SF4mgX0w2rbUnviXhdiohY1osDgUDxJN/bW0Dh5M4FUEqV\nV0qtUUqdsdwn75Nwn9gia3LfY/E48dA9zzhuontvBjthDIPn8Qva1fAU2i/9J/qH2wrtkwXdzb6L\ndlfEEUiSH28cInJURLqJiD8wDlimlMqN/gEm5QMgBvg/ESmA7oXE3UdnuNf4BFr9HwG8LyJ+Vks+\nEVmcTDsbgJJKqVrJyWwtvtX/p4EApZT123MpLJ/b8obZDvAHvkHHQLC8+Q8VkbJAW+BVpdTDybQV\nAQQlsx3gBtoNF0fRNGRNblsE8GwS/eQVkR0ptJnWta05DRRUSlk/QJPeE/E9E8tItJJoQ38C7daz\nliu/iLS2ajtp+5+j3UflLPfJ29j+vEnpe0z60mFwEMYweBgiEoX2976E7j0AbEe7ITZbjolBP/Te\nV0rlU0qVQvvFFyR3TaVUD6WUv2X1KvpHHosOLsei4wpx5EM/BK8ppUoAr1nt+wWIUUoNVEp5K6We\nRLsh4vgCeF4pVdcyFDWvUuqJJA+ruM/5N/AZ8LVSqqlSKodSKpdSqovVG31S98kO9Fv060qp7Eqp\nELT7Z5FlvbtSqoBFP5FoA4dSqrVSqpzlQXTNsj25UTVrgGJKqVClVE6llI9Sqq5l3wGglVLKTylV\nFBiUzPlpMQ0YppSqZJGrgFKqYyrHKysd/Ic2pNmTO9DietoOjLXIXhUdJLa+J2oppZ5SSnlb5L+F\n1uluIFIp9bpSKrdSyksp9X9KqdpWciQlH1rHUUqpCsALSfb/R+L7ypqdpPA9ptKewY4Yw+CZbEYH\n5XZZredDBxfjeBn9AP8H+Bnth52dwvUeBQ4qpSLRMYMuInLbYoTeB7YppS5ZHoLvot1YV4HV6JEq\nAiAiccHL/ujRJN3RD9M7lv17gWfQAdBL6ECrtY87ESLyiuXYqZbrHUUHaL+NOwSrN1URuQu0AR5H\nG7X/AT1F5IjlkB7AvxbXxrMW+QDKoUcaRaIfnlNFJM7oWstzHXjE0sYZ9OigEMvu+cCv6CDz9+iH\nWFpv8Yn2i8g36B7bIouMv6O/m2SPT/L5N6BHXJ1VSp1Lob2u6F7kaWAF8I4kDIEWYBU6NnUJrZv2\nlphLDPrBXB19P51HxwzyJyNHHEPRsZ1rlmOT6mMUMNfimnra+hqW+yi17zG59kxhGTuitCvRARdW\n6kv0ePNzIlLFsq0gevhiKfQPqJOIXHGIAAa3QCm1E/hMROa6WhZDyiilRqLdPikNUDBkIRzZY5gN\nPJZk25vATyJSHv2G86YD2ze4AKVUE6VUUYsrqTfwf+g3aIN7Y9wzhngcZhhE5Gd099+atkDcm+Nc\noJ2j2je4jIdImMA2GHhaRP5L/RSDG5Cce8aQRXGYKwl0rh1gtZUr6bKI+Fn+V+jhc34OE8BgMBgM\n943Lgs+WcdLmDcVgMBjcDGcn0ftPKVVURM4qpYqhp+Tfg1LKGAyDwWBIByKS4XiRs3sM36JzumD5\n+01KB6aUwyOrLSNHjnS5DO6yGF0YXRhdpL7YC4cZBqXU1+gx4Q9Z8uj3BT4EHlFKHUFnwvzQUe1n\nFo4fP+5qEdwGo4sEjC4SMLqwPw5zJYlISsVkWjiqTYPBYDBkHDPz2c3p06ePq0VwG4wuEjC6SMDo\nwv44dLhqelFKiTvKZTAYDO6MUgqxQ/DZo0p7Jk62aDBkLaxflsLCwggJCXGdMG6E0YX98SjDANg1\n8m4weArmpcjgTNzWlRRxJYKAAgFJtxvDYMiSmHvfYAv2ciW5bfC5zhd1WH14tavFMBgMhiyH2xqG\nFZ1XMPC7gQz5YQh3Yu64WhyDwa0ICwtztQhug9GF/XFbwxAcEMy+Z/fx96W/aTy7Mf9e/tfVIrmE\niIgIfHx84t0IISEhzJo1C4A5c+bQuHHj+7peq1atmD9/vt3lNBgMmQe3Dj4XylOIVV1WMWnnJOrN\nrOdqcVKldOnSnDt3Di8vr/htffv2ZfLkyRm6bmBgIJGRkfHrSqkMBSLXrVuXIXkM7oEZhZOA0YX9\ncWvDAPpBOKj+IBoGNKTu63XTPsFFKKVYs2YNDz+cXA151xPX4/C00S3R0dF4e7v9bWowZCrc1pWU\nlDol6qR9kJsSGxvL0KFD8ff3p2zZskydOpVs2bIRGxsL6N7Ghg0b4o8fNWoUPXvqCovHjx9PdGxS\nRISXX34ZX19fKlasyMaNG+P3hYSEMHz4cBo2bEi+fPn4559/ErmirNtJrq2QkBBGjBhBw4YN8fHx\noW3btly4cIHu3btToEAB6tatS3h4eIqfe+vWrQQHB+Pn50dgYCDz5s2Lv26cDHCvSyxbtmx89tln\nlC9fnvLly/Piiy/y2muvJbr2k08+yYQJEwA4ffo0HTp0oHDhwgQFBTFlypQUZcosGL96AkYX9sdj\nDIMnkNJwwhkzZrB27VoOHDjAnj17WLZsWaI396Tuoft5q9+5cyflypXj4sWLvPvuu7Rv354rVxLK\naC9YsICZM2cSGRlJqVKlErVlSzuLFy9mwYIFnDp1imPHjtGgQQP69+/PpUuXqFixIu+++26y54WH\nh9OqVStCQ0O5cOECBw4coFq1asl+3uRYtWoVu3bt4s8//6Rr164sXrw4ft/ly5f56aef6Nq1K7Gx\nsbRp04YaNWpw+vRpNmzYwMSJE/nxxx/T/GwGgyF5MpVhUMo+S3oQEdq1a4efn1/8EvdWvGTJEgYP\nHkyJEiXw8/Nj2LBhqY5Jv5/x6oULFyY0NBQvLy86derEQw89xJo1ayz6UPTp04eKFSuSLVu2e1wy\nabWjlKJv376UKVOG/Pnz8/jjj1O+fHkefvhhvLy86NixI/v370/23K+++opHHnmEzp074+XlRcGC\nBeMNgy289dZb+Pr6kjNnTho1aoRSip9//hmAZcuWERwcTNGiRdm9ezcXLlxg+PDheHt7U6ZMGQYM\nGMCiRYtsbssTMX71BIwu7E+mct66cv6PUopVq1YlG2M4c+YMAQEJk/UCAwPt1m6JEiUSrZcqVYoz\nZ87Er1u3mx6KFCkS/3+uXLkoXLhwovXr168ne97JkycJCgpKd7vWciul6NKlC19//TWNGzfmq6++\nolevXoDumZw+fRo/v4QKsTExMTRp0iTdbRsMWZ1M1WNwV4oVK0ZERET8uvX/AHnz5uXGjRvx62fP\nnrX52qdOnUq0Hh4eTvHixePXU3PZ5MuXj6ioKJvbvR8XV0BAAMeOHUt2ny2fN2lbXbt2ZdmyZYSH\nh7Nr1y46dOgAaCNbpkwZLl++HL9cu3YtvteUWTF+9QSMLuyPMQx2JCXXTKdOnZg8eTKnTp3i8uXL\nfPjhh4kefNWrV2fRokVER0ezZ88eli9fbvND+Ny5c0yePJm7d++ydOlS/vrrL1q1apWmTHHtbtmy\nhRMnTnD16lXGjh2b6me6HxdX9+7dWb9+PUuXLiU6OpqLFy/y66+/xre7YsUKbt68ydGjRxMFolOT\n9YEHHmDAgAE89thj5M+fH4C6devi4+PDRx99xM2bN4mJieHgwYPs2bPHZlkNBkNijGGwI23atMHH\nxyd+iXurfeaZZ3j00UepVq0atWvXpkOHDokesu+99x7Hjh3Dz8+PUaNG0b1790TXTclIKKWoX78+\nf//9N/7+/owYMYLly5cncqukZmBatGhB586dqVq1KnXq1KFNmzb3HJ9akDy16wcEBLBu3To+/fRT\nChUqRI0aNfjtt98AGDx4MDly5KBIkSL07duXHj162BR879atGxs3bqRbt27x27Jly8aaNWs4cOAA\nQUFB+Pv78+yzz3Lt2rUUP3dmwPjVEzC6sD9um0QvObkySyKx48ePExQURHR0NNmyGdtsSJvMcu8b\nHEumT6JnMBhSxvjVEzC6sD/GMLgIT5uBbDAYsg7GlWQweADm3jfYgnElGQwGg8EhGMNgMHggxq+e\ngNGF/TGGwWAwGAyJMDEGg8EDMPe+wRZMjMFgMBgMDsEYBgfj4+PD8ePHXdL28OHD8ff3T5Q7yZA5\nMH71BIwu7I8xDHaidOnS5MmTJz4dRv78+Tl79iyRkZGULl36vq8XFhaWocyoERERjB8/nr/++ovT\np0/b/fr3w5EjR+jYsSP+/v74+vpSrVo1JkyYkGLxIU/AmfozGJyNMQx2Iq60Z2RkJJGRkVy7do2i\nRYumeo4jH4wREREUKlSIQoUKOawNWzh27Bj16tWjVKlSHDx4kCtXrrB06VL27t2bqJa1IxGRe/zz\n0dHRTmnbUZj8QAkYXWh27bLjxeJ+NO60aLHuJaXt7kDp0qVlw4YN92xXSsmxY8dERKR3797y/PPP\ny+OPPy558+aVDRs2yNq1a6VixYri4+MjJUqUkE8//VRu3LghuXLlkmzZskm+fPnEx8dHzpw5c8+1\nr1y5Ij179hR/f38pVaqUjBkzRmJjY+Wnn36S3Llzx5/ft2/fROddv379nuufPn1acuXKJRcvXhQR\nkTFjxoi3t7dERkaKiMjw4cNl0KBBqbabHN27d5fWrVunqrtVq1ZJpUqVxNfXV0JCQuTPP/+M3xcR\nESFPPfWU+Pv7S6FChWTgwIEiIjJy5Ejp0aNH/HH//vuvKKUkJiZGRESaNm0qb7/9tgQHB0uePHnk\n6NGjopSSqVOnSrly5SQoKEhERFavXi3VqlUTX19fCQ4Olt9++y3+mqVKlZJPPvlEqlatKgUKFJDO\nnTvLrVu3ktVfct+PPXHne9/gesaOFSlTJv4+yfgz2B4XsffiqYZh/fr192xPahgKFCgg27dvFxGR\nmzdvStGiRWXr1q0ioh+4+/btExGRsLAwKVmyZKpt9uzZU9q1ayfXr1+X48ePS/ny5WXWrFk2nZ/c\n/iZNmsjy5ctFROSRRx6RcuXKyXfffSciIo0bN5ZvvvkmzXaTUrRoUZkzZ06Kchw+fFjy5s0r69ev\nl+joaPnoo4+kXLlycvfuXYmOjpaqVavKq6++KlFRUXLr1i3Ztm2biIiMGjUqTcNQqlQpOXTokMTE\nxMidO3dEKSUtW7aUy5cvy61bt2Tfvn1SuHBh2bVrl8TGxsrcuXOldOnScufOHRHR32m9evXkzJkz\ncunSJalYsaJMmzbNJv3am6T3/qZNm5zWtruTlXURGyvy+usilSqJnDplP8OQqSq4qXftk39IRt7/\nsEARXdozrnxms2bNWLFixT3HtWvXjgYNGgC6AlqOHDn4448/qFKlCgUKFKBGjRrx10uNmJgYFi9e\nzK+//krevHnJmzcvQ4YMYf78+fTr1y/N85Pb37RpUzZv3syTTz7J77//zrBhw9i8eTMhISHs2bOH\nJk2apNluUi5evEixYsVSlGPx4sW0bt2a5s2bAzB06FAmTZrEtm3byJEjB2fOnOHjjz+Oz0IbHBxs\nk36sy5oC8efHlQwFXYv7ueeeo06dOgD06tWLDz74gB07dtC4cWMAXnnllXiXYJs2bThw4IBN7RsM\njiYmBl54AX79FbZsAXt6jTOVYUjPA91epFba0/qYkiVLJtq2fPlyxowZw5tvvknVqlX58MMPqV+/\nfprtXbhwgbt371KqVKn4bYGBgfdUdLsfmjZtyquvvsq+ffuoUqUKLVq0oH///uzcuZNy5crh5+fH\nf//9d1/tFipUKNngdxxnzpxJVOpUKUVAQACnTp0ie/bslCpVKt2pyZMLDltvCw8PZ968eUyZMiV+\n2927dxPJax0nyp07d6qfxZkYv3oCWVEXd+5Az55w4QKsXw8+Pva9vgk+u5jatWvzzTffcP78edq1\na0enTp2AtLOvPvDAA2TPnj3RUNiIiIh7DE9KJHf9Bg0acPjwYVauXElISAgVK1YkIiKCdevWxf/4\n7rfdFi1asHz58hTlKF68OOHh4fHrIsKJEycoWbIkAQEBREREEBMTc895tpQlTe4zWm8LDAzk7bff\nTlQW9Pr163Tu3DlFeVO7tsHgDKKi4MkntXFYu9b+RgGMYXAqSd0Pd+/eZeHChVy9ehUvLy98fHzw\n8vICoEiRIly8eDHFSmReXl506tSJt99+m+vXrxMeHs6ECRPo0aOHTbIkd/08efJQq1Ytpk6dStOm\nTQHtupk2bVr8+v22++6777J9+3Zef/11/vvvPwCOHj1Kz549uXbtGp06dWLt2rVs3LiRu3fv8umn\nn5IrVy6Cg4OpU6cOxYoV48033yQqKopbt26xfft24P7LkibHM888w7Rp09i1axciwo0bN1i7di3X\nr19Pl/6ciRm7n0BW0sWVK9CyJRQuDEuXQq5cjmnHGAYHk1ZpzAULFlCmTBkKFCjAjBkzWLhwIQAV\nKlSga9euBAUFUbBgwWTfiKdMmULevHkJCgqicePGdO/enb59+ybbdlJSun7Tpk2Jjo6mbt268evX\nr1+nSZMmNrdrTVBQEL/88gvHjx+ncuXK+Pr68vTTT1OnTh3y5ctH+fLlWbBgAS+//DL+/v6sXbuW\n1atX4+3tjZeXF6tXr+bo0aMEBgYSEBDAkiVLgPsvS5rceq1atfjiiy8YOHAgBQsW5MEHH2TevHmp\nllKN22fL92Mw2JP//oOQEKhVC2bPBm8HBgJckitJKfUW0AOIBX4H+orIbav9kpxcJl+MIati7v2s\nTXg4PPIIdO8O77wDKb3zeWyuJKVUaeAZoKaIVAG8gC7OlsNgMBg8gT/+gMaN4aWXYOTIlI2CPXGF\nK+kacBfIo5TyBvIA6R9KYzBkQbKSXz0tMrMutm+Hhx+GsWMhNNR57TrdMIjIJeBTIAI4DVwRkfXO\nlsNgMBjcmXXr9OijuXO1C8mZOH0eg1KqLDAIKA1cBZYqpbqLyELr4/r06ROffM7X15fq1as7WVKD\nwT1J+oYctx43pDirrcdtcxd57LH+44/w5ZchrF4Nt26FERaW/PFhYWHMmTMHIF3JOlPC6cFnpVRn\n4BERGWBZ7wnUF5GXrI4xwWeDwQpz72cdxo+HiRPhhx/AMnHfZjw2+Az8BdRXSuVWeuxfC+CQC+Qw\nGDyWzOxXv18yiy5E4I034IsvYNu2+zcK9sTpriQR+VUpNQ/Ygx6uug+Y4Ww5DAaDwV2IjoZnn4VD\nh2DrVvvmPUoPabqSlFKNgJHomECcIRERCXKYUMaVZDAkwtz7mZebN6FLF7h9G5Yvh7x5038tZ7qS\nZgHjgUZAHctSN6MNG5zLnDlz4jOG3i+HDx+mevXq5M+fn//97392lsxgyLpcvqxTXOTLB99+mzGj\nYE9sMQxXROQ7EflPRC7ELQ6XzMPYunUrwcHB+Pr6UqhQIRo1asSePXtcLZZd+Oijj2jevDnXrl1j\n4MCB9+wPCQlh1qxZDpdDRJg8eTJVqlQhX758BAQE0KlTJw4ePOjwth1JevSXWfzq9sBTdXH6NDRt\nqlNczJ8POXK4WqIEbDEMm5RSHyulGiilasYtDpfMg7h27RqtW7cmNDSUy5cvc+rUKUaOHEnOnDld\nLZpdCA8Pp1KlSinud1am0dDQUCZPnsyUKVO4fPkyR44coV27dqxdu9Yp7UPyJUGTy/56P5hMrVmP\nI0egYUPo2hUmTIB0ZpZ3HGlV8gHCgE1JF3tUCUqlzWSrFaW03dXs3r1bfH19Uz1m1qxZUrFiRfHz\n85NHH31UwsPD4/cdPHhQWrRoIQULFpQiRYrIBx98ICIit27dktDQUClevLgUL15cBg0aJLdv3xYR\nXbUqrhRo4cKFpVixYjJ79uz4a164cEHatGkj+fPnl7p168rw4cOlUaNGKcqXUnnNZs2aiZeXl+TK\nlUt8fHzk77//TnTesGHD4vfny5dPBg4cKCNHjpSXX35ZRETu3LkjefLkkddee01ERKKioiRnzpxy\n+fLlVNtNypEjR8TLy0t2796d4mdIq+TojBkz4suoVqpUSfbv3y8iiavsiehKe8OHD0+k53HjxknR\nokWlZ8+eMmrUKOnQoYP06NFD8ufPL7NmzZIrV65Iv379pFixYlKiRAkZPnx4fDW52bNnS8OGDWXo\n0KHi5+cnZcqUia+Ml1R/cXpLirve+4b7Z88ekaJFRb74wv7XxpT2dB+uXbsmhQoVkt69e8t3330n\nly5dSrT/m2++kXLlyslff/0lMTExMmbMGAkODo4/t2jRojJ+/Hi5ffu2REZGys6dO0VEZMSIEdKg\nQQM5f/68nD9/XoKDg2XEiBEioh9Y3t7eMnLkSImOjpZ169ZJnjx55MqVKyIi0rlzZ+ncubNERUXJ\nwYMHpUSJEtK4ceNk5U+tvKaISEhISIqlO5Pbv3HjRqlSpYqIiGzbtk3Kli0r9erVExGRDRs2SPXq\n1VNtN660pjWff/65lC5dOtXvIbWSo0uWLJESJUrInj17RETk6NGj8cY5qWHo06fPPXp+88035c6d\nO3Lz5k0ZOXKkZM+eXVatWiUiukRru3bt5Pnnn5eoqCg5d+6c1K1bV6ZPny4i2jBkz55dZs6cKbGx\nsfL5559L8eLFU9RfcrjrvW+4P777TuSBB0RWrnTM9Z1mGABfYAKw17J8ChSwR+OptJnah05NK/ZZ\n0sGff/4pffr0kZIlS4q3t7e0bdtW/vvvPxEReeyxxxL98GNiYiRPnjwSHh4uX331ldSsWTPZa5Yt\nWzb+zVJE5Icffoh/OG7atEly584d/1YqIlK4cGHZuXOnREdHS/bs2eXw4cPx+4YNG5Zij2H06NHS\nuXPn+PXY2FgpUaKEbN68WUT0g2vmzJkpfvak+6OioiRXrlxy8eJF+fDDD+WDDz6QkiVLyvXr1+Wd\nd96R0NDQVNsNCwu7p40xY8ZI/fr1U5QhOjpacuTIkajHMX36dAkJCRERkZYtW8rkyZOTPTc5w2Dd\nY8iRI0d8T01EZOTIkdK0adP49bNnz0rOnDnl5s2b8du++uoradasmYhow1CuXLn4fTdu3BClVPz9\nkZZ+Re6997NyneOkeIouZs8WKVJExFK23CHYyzDY4tn6Ep34riPQCYgEZmfMgeUg7GUa0kGFChWY\nPXs2J06c4ODBg5w+fZpBgwYB2kcfGhqKn58ffn5+FLIMUj516hQnT54kKCj5kb+nT5++p4SmdWnJ\nQoUKJSp7mSdPHq5fv8758+eJjo5OVMbSunxmUlIrr2m9LTWs9+fOnZvatWuzefNmtmzZQtOmTQkO\nDmbbtm168N8hAAAgAElEQVTx66m1m1z5zEKFCnHmzJkU20+r1OnJkycpW7Zsqp8hJfz9/cmRJDJo\nXbEuPDycu3fvUqxYsfjv+Pnnn+f8+fPxx1iXCM2TJw9AooJAJs6QeRGBMWPg3XchLAwsZcvdGlsM\nQ1kRGSki/4jIMREZBaTvF5ZFeOihh+jdu3f8aJnAwEBmzJiRqITkjRs3aNCgAQEBAfzzzz/JXqd4\n8eL3lNAsXrx4mu37+/vj7e1NREREonNTIqXymiVKlEizLUj+oda0aVM2bNjA/v37qVOnDk2bNuX7\n779n165d8UV/7qfd5s2bc/LkSfbu3ZusDGmVHA0ICODo0aPJnpsnT55EZULPnDlzT4GlpJ/XeltA\nQAA5c+bk4sWL8d/v1atX+f3335NtLynpMQpZsc5xSrizLqKj4fnnYcUKnSm1QgVXS2QbthiGm0qp\n+AHwlglvUakcn+U4fPgw48ePj387PXHiBF9//TUNGjQA4Pnnn+eDDz7g0CGd+ePq1assXboUgNat\nW3PmzBkmTZrE7du3iYyMZNeuXQB07dqVMWPGcOHCBS5cuMDo0aPp2bNnmvJ4eXnRvn17Ro0axc2b\nNzl06BBz585N8QGUWnnNOCSVnlSRIkU4duxYom1NmzZl3rx5VK5cmezZsxMSEsLMmTMJCgqK7zHZ\n0m4cDz74IC+++CJdu3Zl8+bN3Llzh1u3brFo0SLGjRuXZsnRAQMG8Mknn7Bv3z5EhKNHj8Yby+rV\nq7Nw4UJiYmL4/vvv2bJlS6r6TaqLYsWK0bJlS1599VUiIyOJjY3l2LFjaV4nNf0ZPJ8bN6B9ezh+\nHDZvhmLFXC3RfZCWrwmoDvwGhFuWA0A1e/ixUmkzNf+Z23Hq1Cnp1KmTlChRQvLmzSslSpSQ559/\nXiIjI+OPmT9/vlSpUkXy588vAQEB0r9///h9Bw8elObNm4ufn58ULVpUxo0bJyJ6VNIrr7wixYoV\nk2LFikloaGiiUUkBAQGJ5ChdurRs2LBBRETOnz8vrVu3lvz580u9evVkxIgRKQafRURWrlwplSpV\nkgIFCkhISIgcOnQofl9awdFffvlFypcvL35+fvHxg8jISMmePbuMHj1aRHT8oHDhwvLiiy/a3G5y\nTJo0SSpXrix58uSREiVKSJcuXeLPuXz5svTo0UP8/f0lICBA3nvvvUSjkqZNmyYPPfSQ5MuXT6pU\nqSIHDhwQEZE9e/ZI5cqVxcfHR3r27CndunVLFHxOqudRo0ZJz549E227evWqvPDCC1KyZEkpUKCA\n1KhRQxYvXiwiInPmzLlH99myZYuPaySnv6Qkvfc9xa/uDNxRF+fOidSrJ9Krl4hVeMrhYKcYg83Z\nVZVS+S1PbIdXPzcpMQyGxCS9963TTGd13E0Xx47B449Dx446tuDM8JG9UmKkaBiUUj1FZL5Saghg\nfZBCW6XxGW08RaGMYTAYEmHufc9gzx5o2xZGjIAXXnB++/YyDKllV81j+etDYsNgMBgMhiR89x30\n6qXTZrdr52ppMoZN2VVFZGta2+wqlOkxGAyJMK6klHEHXcyeDW+9pUcfuXI4qjOzq05JZtvkjDZs\nMBgMno4IvPcejB6tRx55whwFW0gtxtAACAYGo9Nux1khH+ApEanmMKFMj8FgSIS5992PO3fguefg\nt99gzRr3GI7qjBhDDrQR8LL8jeMa8HRGGzYYDAZP5coV6NBB10/YvFnXU8hM2BJjKCUi4akeZGdS\n6zEYDFkVE2NIHmfrIjwcWrWC5s11ymwvL6c1nSbOjDHMUUptSrJszGjD6cEeEzc8bdm0aZNNx8XE\nxvDJtk/w/8iflX+udLncrtRFZl0MrmfPHh1HePZZmDzZvYyCPbGlx1DbajUX0AGIFpHXHCZUCj0G\nQ9rsPLmTLsu70LZ8Wz565CNyemeOYkEGg6tZtQoGDHDv4agOn+CWRuO7RaRORhtP5frGMGSAyzcv\n0//b/oRfDWfx04spV7Ccq0UyGDyaSZNg3DhtHOo47MmXcZzmSlJKFbRaHlBKPQbkz2jDBttITz1b\nv9x+LO+0nL7V+9JgVgMWH1xsf8FcgKfW9nUERhcJOFIXMTEQGgrTp+vsqO5sFOxJaqOS4thHwszn\naOA40N9RAhnsg1KKgXUHEhwQTOdlndn470YmPjaR3Nlzu1o0g8EjuHEDunWDyEhtFHx9XS2R80iX\nK8nRGFeSfbl2+xrPrn6WQ+cPsaTjEio84CFJ4Q0GF3H2LLRuDZUr65hCkjpNboszkuh1IJUcSSKy\nIqONpyiUMQx2R0SYuW8mwzYOY3zL8fSslnZdB4MhK/LHH/DEE9Cvn06G50mj5J0RY2iTxmJwAvby\nnyqleKbWM2zstZEPtn5A31V9uXHnhl2u7SyMXz0Bo4sE7KmLn36CZs10mot33vEso2BPUowxiEgf\nJ8phcBJVilRh9zO7eWndS9T5og5LOi7h/wr/n6vFMhhczmef6ZxHS5eCpSx5lsWWeQy+wEigiWVT\nGDBaRK46TCjjSnIKcw/MZehPQxnbfCz9a/Q3M8sNWZLoaHj1Vd1bWLMGynpwRXunzWNQSq0Afgfm\nohPp9QSqikj7jDaeSpvGMDiJP8//SadlnahSuArTW0/HJ6dP2icZDJmEq1ehc2eIjYUlSzx/5JEz\nU2KUFZGRIvKPiBwTkVGAB9tUz8LRvuSK/hXZNWAXPjl8qDWjFvvP7HdoexnB+NUTMLpIIL26+Ocf\nnd6ibFlYt87zjYI9scUw3FRKNY5bUUo1AqIcJ5LB2eTOnpvpbaYzutloWi5oydRdU01uHkOmZutW\naNhQl9+cOhW8bZnRlYWwxZVUHZgHFLBsugz0FpFfHSaUcSW5jL8v/k3nZZ0J8gtiZtuZ+OYyr1GG\nzMW8eTB0qP772GOulsa+OD1XklKqACAici2jjdrQljEMLuR29G1e++k11hxZw6KnF1G3RF1Xi2Qw\nZJjYWHj7bVi8WAeZK1VytUT2x5m5kgYppfKjC/RMUErtU0o9mtGGDbbhCl9yTu+cTH58Mp+0/ITW\nX7Vm/C/j3cK1ZPzqCRhdJGCLLm7cgI4dtQtp587MaRTsiS0xhn6WXkJLoCDQC/jQoVIZ3IL2Fduz\nc8BOFv+xmLaL2nIx6qKrRTIY7ptTp6BJE11lbf168Pd3tUTujy0xht9FpIpSajIQJiIrlFL7RaRG\nuhvVcyNmApXRaTf6icgOq/3GleRG3Im5w7ANw1jyxxK+7vA1DQMbulokg8Emdu+Gp56CgQPhjTcy\n/0xmZ85jmAMUB4KAqujZ0ptEpFa6G1VqLrBZRL5USnkDea0nzBnD4J6sObKGAd8OILReKG80eoNs\nypYOp8HgGhYuhEGDYMYMbRyyAs6cx9AfeAuoLSJRQHagb3obtASxG4vIlwAiEu3IWdSejjv5kluX\nb83uZ3az7ug6Hl/4OOdunHNq++6kC1djdJFAUl3ExOjewYgRsHFj1jEK9iRNwyAiMSKyV0SuWNYv\nishvGWizDHBeKTXbEsj+QimVJwPXMziRgAIBbOq9idrFalNjeg02/bvJ1SIZDPFcuQJt2mgX0q5d\nUKWKqyXyTJxej8FSQ/oXIFhEdiulJgLXROQdq2OMK8kD+PHYj/T5pg/P1XqO4U2G45Utk1ZGN3gE\nR45A27bwyCMwfjxkz+5qiZyPS2s+Z6hBpYoCv4hIGct6I+BNEWltdYz07t2b0qVLA+Dr60v16tUJ\nCQkBErqOZt3162ciz9Dq/VYArH17LcV9iruVfGY9a6zv2gWffBLC++/Dgw+6Xh5nrYeFhTFnzhwA\nSpcuzbvvvuu04HPBZDZHisjddDeq1BZggIgcUUqNAnKLyBtW+02PwUJYWFj8DeGuxMTG8P7P7/P5\nns+Z224uLcu2dEg7nqALZ2F0oRGBF18MY9WqEJYsgUaNXC2Ra7FXj8HWms+B6FQYAH7AWaXUWeAZ\nEdmbjnZfBhYqpXIAx8hAMNvgeryyefFO03doUqoJPVb0oFe1XoxuNhrvbCYBjcFx3LoFzzwDO3bo\nJTDQ1RJlHmzpMXwBLBORHyzrLYGngdnAJBGxe74E02PwXM7dOEevlb24fuc6X3f4moACAa4WyZAJ\nOX1ajzYqUwa+/BLymOErgHOHqzaIMwoAIvKjZdsvgIeUyDY4i8J5C7Ou+zpal29N7S9qs+bIGleL\nZMhk7NwJdevCk0/C118bo+AIbDEMZ5RSbyilSimlSiulXgf+U0p5AbEOli/LExdo8iSyqWy82ehN\nVnRawUvrXmLID0O4E3Mnw9f1RF04iqyqizlz9HDUzz+HYcP0TOasqgtHYoth6AYEAN8AK9Hxhq6A\nF9DJcaIZPJ2GgQ3Z9+w+/r70N41nN+bfy/+6WiSDh3LnDrz0EowdC2Fh2jgYHIctMYYyIvJvkm11\nRGS3w4QyMYZMhYgwccdExm4dy7TW02hf0WFVYQ2ZkDNndGbUQoV0DYUCBdI+J6vizBjDcqVUSauG\nm6IDzwaDTSilGNxgMGu6rWHoj0N5ed3L3Iq+5WqxDB7A9u1Qpw48+iisXGmMgrOwxTA8B3yjlCqq\nlGoFTAYed6xYhjgyk/+0bom67HtuH2eunyF4VjB/X/z7vs7PTLrIKJldFyI6jvDUUzoJ3ogRkC2F\np1Vm14UrsCVX0m7gFeAnYBTwiIiccLBchkyKby5flnZcyoCaAwj+Mpivf//a1SIZ3Ixbt6B/f/js\nM9i2DVq1crVEWY8UYwxKqdVJNlUEzgBX0CU+2zpMKBNjyBLsP7Ofzss6E1I6hImPTSRPdjPuMKsT\nEQEdOkBQEMyapYvrGGzH4bmSLLEEAOtGxLIuIrI5o42nKJQxDFmGyNuRPL/2eX777zeWPL2Eiv4V\nXS2SwUVs2gTdusGQIXrJ7EV1HIEzgs/DgJrAWREJsyyb4/5mtGGDbWR2/6lPTh8WPLWAQfUG0WRO\nE+YemJvisZldF/dDZtKFiM6G2rUrLFgAQ4fen1HITLpwF1JLZtMHeAwYpZR6CNgJfAesF5EbTpDN\nkEVQStG/Zn/qlaxHp6Wd2Hh8I1NbTSVfDuNHyOzcuKHzHf31l57RXKqUqyUygI1pty2znOuhRyM9\nDNwCfhCRjxwilHElZVlu3LnBy9+9zC8nf2Hx04upWqSqq0UyOIi//tLxhLp1daA5d25XS+T5OGUe\ng1LKSyk12FLFbbuIjBCRhkAX4FRGGzcYkpI3R16+fPJLhjUaRvN5zZmxdwbmJSHzsWQJNG4Mgwfr\nJHjGKLgXqRoGEYlBp8RIuv28iCx0mFSGeLKq/7RntZ783Pdnpu6eStflXbl2+1qW1UVyeKou7tyB\n0FB46y344QcYMCDjQWZP1YU7Y8sEt61Kqf8ppRorpWoqpWoppWo6XDJDlqfCAxXY0X8Hvrl8qTm9\nJkcuHnG1SIYMcPIkhITA8eOwZw/UNE8Rt8WWXElh6GGqiRCRZg6SycQYDPew+OBiXv7uZUY0GcHA\nugNRZiyjR/HTT9CrFwwaBK+9lvIsZkPG8Niaz7ZgDIMhOY5dOkbnZZ0JLBDIrLaz8Mvt52qRDGkQ\nGwvvv6/TWyxcCM0c9jppACcm0VNKjVRKvWP19x2l1DsZbdhgG8Z/msCJ306wrd82AgsEUnNGTXae\n3OlqkVyGJ9wXFy9C69a6t7Bnj+OMgifowtOwpUN3w7JcRxfmaQWUdqBMBkOK5PTOycTHJjLh0Qm0\nXdSWT7Z/QqyYelHuxu7dUKsWVK4MGzZA8eKulshwP9y3K0kplRP4UUSapnlwOjGuJIMthF8Jp8vy\nLhTKXYg57ebwQJ4HXC1SlkcEpk2DkSNh+nSdHdXgPJxZjyEpeYESGW3YYMgopXxLsaXPFir5V6Lm\n9Jr8HP6zq0XK0ly9Cp07a4OwbZsxCp6MLTGG362WP4DDwCTHi2YA4z+1JjldZPfKzkePfMS01tPo\nuLQj7295P0u4ltztvogbfurvDzt2wIMPOq9td9NFZiC1XElxxFVXFSAaOCcidx0nksFw/7R6sBV7\nnt1Dt+Xd2By+mflPzadIviKuFivTIwJTpsCYMTB1qi7BafB8bM2VVB1ojDYOP4vIrw4VysQYDOkk\nOjaad8Pe5csDXzKv3TyaBzV3tUiZlsuXdUGdiAhYvBjKlnW1RAZnDlcNBRYA/kARYIFS6pWMNmww\nOALvbN689/B7zG03l54rezJy00hiYmNcLVamY+dO7ToKDNTxBGMUMhe2BJ8HAPVE5B0RGQHUB55x\nrFiGOIz/NIH70UWLoBbse24f205so/m85pyOPO04wVyAq+4LEfj0U2jbFiZMgIkTIWdOl4gSj/mN\n2B9bRyXFpvC/weC2FM1XlB96/ECLoBbUmlGL749+72qRPJqLF7VBWLpU9xjatXO1RAZHYUuupFfR\nRXtWoMt6tgPmiMgEhwllYgwGO7P5+Ga6r+hOj6o9eK/Ze2T3yu5qkTyKbdt02c2OHeGDDyBHDldL\nZEgOp+ZKUkrVAhqREHzen9GG02jPGAaD3Tl/4zy9v+nNlVtXWPT0IgILBLpaJLcnJgY+/FCPPJo5\nU6e4MLgvDg8+K6UKxi3Av+gA9EIg3LLN4ASM/zSBjOrCP68/a7qt4akKT1Hnizp8e/hb+wjmApxx\nX5w4Ac2bw/r1ep6CuxoF8xuxP6nNY9hHMum2LQgQZH9xDAbHkk1l47WGr9EosBFdl3dl07+bGPfI\nOHJ4Gd+INStWwAsv6DTZr78OXl6ulsjgTEzabUOW5dLNS/Rb1Y9TkadY/PRigvzMu05UlC63uX49\nfPUV1KvnaokM94NTcyUppZ5USn2qlPpEKdUm7TMMBvenYO6CrOy8kh5VelB/Zn2WHVrmapFcyq+/\n6oyoUVGwf78xClkZWya4fQi8AvwB/Am8opQa62jBDBrjP03AEbpQShFaP5R13dfxxvo3eHHti9yK\nvmX3duyNPXUhApMmQYsW8PbbMH8+5M9vt8s7HPMbsT+29BieAFqKyJciMgt4DHDTMJTBkD5qF6/N\nvmf3cSHqAvVn1s8y9aXPnYMnntBuox07oEcPV0tkcAdsmcfwG9BMRC5a1gsBm0SkqsOEMjEGg4sQ\nEabvnc6ITSOY+OhEulft7mqRHMYPP0DfvtCnD7z7LmQ3Uzs8HqfNY1BKdQU+BDahJ7g1Bd4UkUUZ\nalgpL2APcFJE2iTZZwyDwaX8evZXOi3rROPAxkx+fDJ5sudxtUh249YtGDZMz2CeOxceftjVEhns\nhdOCzyLyNdAAWAksB+pn1ChYCAUOkfKQWAPGf2qNM3VRrWg19j67l9sxt6nzRR3+OPeH09q2hfTq\n4sABqF1bZ0Q9cCBzGAXzG7E/tgSfnwKiRGSViHwL3FJKZShLilKqJLp29Ex0L8RgcDvy5cjHvHbz\nGNpgKCFzQ5i9fzae2pONiYFx4+CRR+CNN3RvoVAhV0tlcFdscSX9KiLVkmw7ICLV092oUkuBD4D8\nwFDjSjK4O4fOH6LT0k7UKFaDz1p9hk9OH1eLZDPHj0OvXqAUzJsHpUq5WiKDo3DmPIbkGkn3PEil\nVGt0Fbj9KVzbYHA7KvlXYtczu8jplZPaX9Tm17MOrVVlF0R0DKFOHWjTBjZuNEbBYBu2lPbcq5Qa\nD0xFP8hfAvZmoM1goK1SqhWQC8ivlJonIr2sD+rTpw+lS5cGwNfXl+rVqxMSEgIk+BSzwrq1/9Qd\n5HHletw2V8ozs+1M3p71Nk1GNWHcgHE8V+s5Nm/e7HR5Dhw4wKBBg1Lcf/UqzJ8fwuHDMHZsGOXK\ngZeX8/XljPWJEydm6efDnDlzAOKfl3ZBRFJdgHzAOPQIoj3AWCBvWufZsqBHOK1OZrsYNJs2bXK1\nCG6DO+ni8IXDUu3zatJxSUe5cvOK09tPTRfffSdSvLjIkCEiN286TyZX4U73hauxPDsz/Gx2aa4k\npVRTYIiItE2yXVwpl8FgC7eibzHkhyF8f+x7Fj+9mNrFa7tUnqgoeO01WLMG5syBZs1cKo7BBTg1\nV5KjEJHNSY2CweAp5PLOxdQnpjKuxThaLWzFpB2TXDZqaft2qF4drl7VOY+MUTBkBJcaBkPaWPvX\nszruqounKz3NjgE7WPD7Atotbselm5cc3macLm7e1L2EDh10QZ0FC8DX1+HNuxXuel94MqkV6hln\n+dvJeeIYDJ5JkF8Q2/pto6xfWWpOr8kvJ35xeJs7d0LNmhAeDr/9Bu3bO7xJQxYhxRiDUuogUAXY\nJyI1nCqUiTEYPJhvD3/LM6ufYUiDIQwNHko2Zd+O+e3bOrfRl1/C5MnQyby6GSw4PFeSUupj4Bn0\nqKSbSXaLiDgsMa8xDAZPJ+JqBF2WdcE3ly9z283FP6+/Xa67bx/07g3lysG0aVCkiF0ua8gkODz4\nLCKviYgvsE5EfJIsHpSt3bMx/tMEPEkXgQUC2dxnM9WKVKPmjJpsCd+SoevduQMjR8Ljj8Obb8Ir\nr4QZo2DBk+4LT8GWJHptlVJFlFKtLUthZwhmMHg62b2yM7bFWL5o8wWdl3VmzJYxxMTG3Pd1fv1V\nV1Pbu1dXVuveXae3MBgchS25kjoBHwOb0TOfGwOvichShwllXEmGTMbpyNN0W94N72zeLGi/gKL5\niqZ5zp07OvHdlCnw0UfahWQMgiE1nFmP4TeghYics6z7AxvEFOoxGO6L6Nho3tv8Hl/s+4J5T82j\nRVCLFI/dvRv694fAQPj8cwgIcKKgBo/F2Un0zlutX8Qkv3Maxn+agKfrwjubN+82e5cF7RfQ+5ve\nDN84nOjY6ETHxM1ebtNGxxJWr07eKHi6LuyJ0YX9scUwfA/8oJTqo5TqC6wDvnOsWAZD5uXhMg+z\n79l97Dq1i4fnPszJaycBCAuDqlXh1Cn4/Xfo1s24jgyuwaZcSUqpDkBDy+rPIrLSoUIZV5IhCxAr\nsXy49UMm7ZhMzRNfcnBlKz77TPcWDIb04NRcSSKyXERetSwONQrx9O8PZ886pSmDwRVkU9mocmUY\nsngp53Ls4OBBYxQM7oH75kry84P/+z/4+GM91TOLYvynCWQmXZw/r11FgwfD4o8bs/eT0RQoYPv5\nmUkXGcXowv64r2H45BOdMnLLFm0gVq/WJakMBg9GBObPhypVoEQJnePIZEI1uBv3VY9BKVUQKCki\nvzlOpGRiDN9/r1+tAgNhwgSoVMmRzRsMDuHIEXjhBbh8GaZP1yU3DQZ74rQYg1Jqs1Iqv8Uo7AVm\nKqUmZLTh++Kxx/SrVatW0LQphIbqX5fB4AHcvg3vvQfBwdC6NezaZYyCwb2xxZVUQESuAe2BeSJS\nF0h5Zo6jyJ5dG4RDh/SU0AoV9Myf6Oi0z/VgjP80AU/UxZYtuoDO7t06Ad7gweBtS6X1NPBEXTgK\nowv7Y4th8FJKFQM6AWst21zn7Pf31wbhxx9hyRKdkH7jRpeJYzAkx8WLemBd9+7wwQewapX2hBoM\nnoAtKTE6AiOAbSLyglKqLPCRiHRwmFC2zmMQgRUrYOhQbSA+/hiCghwllsGQJnHB5ddfhy5dtAvJ\nx8fVUhmyCs7MldRIRLamtc2e3PcEt5s3Yfx4vTz/PLz1FuTL5yjxDIZkiQsuX7mig8u1a7taIkNW\nw5kT3KYks21yRhu2K7lzw9tv6wD1iRPw0EMwbx7Exrpasgxj/KcJuKsuoqLgnXd0cLlNG11y09FG\nwV114QqMLuxPimEwpVQDIBjwV0q9SkLiPB/Aywmy3T8lSmiDsGOHDlRPnaprH9ar52rJDJkQEfj2\nWxg0SN9iBw5AyZKulspgyDiplfZsCjQDngOmWe2KBFaLyN8OE8oeuZJiY2HBAu1Wat4cPvwQihe3\nj4CGLM/Ro/rd499/db2E5s1dLZHB4NwYQykRCc9oQ/eDXZPoRUbC2LEwYwa8+qpecuWyz7UNWY6o\nKP2O8dln8MYb2jjkyOFqqQwGjcNjDEqpSZZ//6eUWp1k+TajDTsNHx89XnDXLl0bsVIlPZLJQ9Jr\nGP9pAq7UhYgeclq5sg4yHzig6ya4yiiY+yIBowv7k9pUm3mWv586QxCHExQEy5frOQ+hofC//8HE\niToBvsGQCnFuo3/+gZkzjdvIkPm5r1xJzsLh9Riio+GLL2DUKGjfXg82f+ABx7Vn8EiuX9deyOnT\njdvI4Bk4M1dSI6XUT0qpv5VS/1qWfzLasEvx9tYDzv/8U//SK1aESZPg7l1XS2ZwA2Jj9eC2ChUg\nIsL1biODwdnYMo9hFjAeaATUsSx1HSmU0yhYUBuEzZth7VrtVvrhB1dLlQjjP03AGbr45Rdo0ECP\ndF62TM9idschqOa+SMDowv7Yks7riohk7hrPlSppg7BmDQwcqF8VP/0Uypd3tWQGJ3HyJLz5pq67\nPHasznGUzX2rlRgMDsWW4aofoie0rQDiS6mJyD6HCeXKms+3b+tJcePGQd++MHw491Vay+BRREXp\nmlCTJmnv4ptvmmwqBs/FmfMYwkgmm6qIOKzulEsNQxxnz+o0G+vWwZgx0KcPeLnnhG/D/SOik/O+\n/rqetfzRR1C6tKulMhgyhtOCzyISIiLNki4ZbdjtKVoUZs3SJUW//BLq1oWtDssbmCLGf5qAvXSx\nYwc0bqwnqs2frw2EpxkFc18kYHRhf9KMMSilRqJ7DAqrnoOIjHagXO5D7draICxapKu3Bwfr10uT\nXN/jOHZMZ0jZvl2PUO7Vy3QCDYbksMWVNJQEg5AbaA0cEpF+DhPKHVxJyXHjhq75MGUKvPyy9kPk\nyeNqqQxpcPGiNgQLFugKaoMHm6/NkDlxWowhmYZzAj+KSNOMNp5KG+5pGOKIiNBGYft23Xvo3BlU\nhr8Lg525dUuPI/j4Y+jUCUaOhMKFXS2VweA4nFmPISl5gRLpbVApFaCU2qSU+kMpdVAp9Up6r+Uy\nAgO1a2nhQm0YGjfWeZgcgPGfJmCrLuIS6z70kJ6XsHWrnpeQmYyCuS8SMLqwP7bEGH63Ws0GFAYy\nEuhZUxsAABH5SURBVF+4CwwWkQNKqXzAXqXUTyLyZwau6RoaN9ZV3mfPhtat4Ykn4P33oUgRV0uW\nZdm4Uc9Szp5dG4fGjV0tkcHgedgSYyhttRoN/CcidssdoZT6BpgiIhustrm3Kyk5rl7Vw1pnz9aD\n4V95xeRQcCK7d8OwYbo+wgcfQMeOxrtnyHq4LMZgTyxGZzNQWUSuW233PMMQx5EjMGQIHD6sa1A/\n8YR5QjmQQ4dgxAhdTnPECOjXT/cWDIasiL0Mgy0pMRyCxY20DAi1Ngpx9OnTh9KWweW+vr5Ur16d\nkJAQIMGn6Jbr5csTNmQI7NpFyGuvwf/+R1jXrlCqVLquZ+0/dYvP58L1uG1hYWGcPQvffx/CunXQ\noUMYs2bBo4+6l7yOXD9w4ACDBg1yG3lcuT5x4kTPeT7YeT0sLIw5c+YAxD8v7YKIOH0BsgM/AINS\n2C+Zgjt3RCZOFHngAZHQUJFLl+77Eps2bbK/XB7Kpk2b5MwZkYEDRQoWFBkxQuTKFVdL5RrMfZGA\n0UUClmdnhp/RTnclKaUUMBe4KCKDUzhGnC2XQzl/Ht55R1eOGzUKnnlGp/422Mzly3rY6fTpemLa\nW29lrlFGBoM9cOVw1YzSEOgBNFNK7bcsj7lADufh7w+ffw4//qjzL9SsqYfPGNLk6lUYPVonuj13\nDvbvhwkTjFEwGByJ0w2DiGwVkWwiUl1EaliW750th0uoVk0bhJEjoX9/6NBB14tMBWv/elYiziCU\nK6dVtH079OgRZjKRWMiq90VyGF3YH5Nx3tkopQ3CoUO651C3rs7iev2e+HuW5OpVnb6iXDmd22j7\ndpgzBx580NWSGQxZh6xZ89mdOHVKO8w3bNAVYnr0yJIVYq5e1ekrJk+GVq10GQxjDAyG+yNTzGNI\niSxlGOLYsUNXmwf9dKxXz7XyOImrV3VOwkmT4PHHtUEwhfMMhvThycFnQ3LUr68T+7z0ErRvr4fe\nnD6daf2n589rI1C2rJ4LuG0bzJuXulHIrLpID0YXCRhd2B9jGNyJbNm0QfjrL12BvmpVnfDn1i1X\nS2Y3TpzQHaOHHoILF/SM5fnzTS/BYHAnjCvJnfnnH50Rbv9+XZj4qac8Nr3GkSO6jPbKlXpA1uDB\nULy4q6UyGDIXJsaQldi4Ub9m+/vDxIm6J+Eh7N+vY+qbNsHAgXopVMjVUhkMmRMTY8gihIWFwcMP\n6ydsx47wyCPw4ovaD+OmiEBYmB5d9MQTOo7+zz96+kZGjILxJSdgdJGA0YX9MYbBU/D2hhdegD//\n1OlDK1XSo5fu2i0Deoa5exe+/lqXyX7uOXjySW0QhgwBHx9XS2cwGGzFuJI8lUOHYNAgOHlS54h4\n9FGXiXLtGsycqb1cZcpoQ9C6dZacjmEwuBQTYzBon82aNfDqq1Chgq7/4MRZYSdO6PkHs2dDy5ba\nINSu7bTmDQZDEkyMIYuQqv9UKWjTBg4ehKZNoUEDPYrp6lWHyrR3L3TvDtWr6/rK+/YluJAcifEl\nJ2B0kYDRhf0xhiEzkDMnDB0Kf/yh81NXqACzZkFMjN2auHMHvvoKgoP1/LsaNXT8YPx4KFXKbs0Y\nDAY3wLiSMiN79+rhrTdval9Po0bpvtTp0zBjhl4qVoSXX9adFC8vO8prMBjsgnElGVKmVi34+Wft\nVurWDbp2hYgIm08X0SkqunaFypV1HYT163Wev3btjFEwGDI7xjC4Oen2nyoFXbro9BoPPaR9P6NG\nQVRUiqdERelAcq1a0KePTt/077/w2Wd6dKyrMb7kBIwuEjC6sD/GMGR28uTRBmH/fm0kKlSARYt0\nt8DCb7/pGckBAbBsGbz/vk5sFxoKvr6uE91gMLgGE2PIavz8M4SGEpMrD2taTGLsj7U4dUrnL+rX\nD1MhzWDwYMw8BkO62L8fvpgWQ/YFsxnkPYU/5+yiZZuceHu7WjKDwZBRTPA5i2AP/+mlSzpOUKeO\nDh4XK+nFa4cHUObKAVo95TlGwfiSEzC6SMDowv54yCPBcL/cvQvffw9z58JPP+nqaKNH6xnKCaOK\nPDOFt8FgcCzGlZTJ+PVXbQwWLoRy5aB3b+jUyQSRDYasgL1cSabHkAk4dQqWLNEG4dIlXQTu559N\nVTSDwZA+TIzBzUnJf3rhAkybBiEhUKWKHnI6fjwcPw5jxmROo2B8yQkYXSRgdGF/TI/Bg7h2Db75\nRies275dxw0GDYLHHoNcuVwtncFgyCyYGIObExkJ69ZpV9H69f/f3rkHWVFccfj7gUihKA9LlJcB\nCaZMqYkooLLAKgTRQpRoIlZCxTxMpBI1seIDNWUexihWMD6TaDQxVlBTBsxuIAEkirgSWMCVRUDd\nIshDeZSyCAYj7J780X29czf7hLt7L3vPVzU1Mz09Pd2/3Ttnps/06fCGMHlyiFfUtWuua+c4Tj7h\n4xjaMTt2QEkJzJ4NL70UYuBdemmIatqjR65r5zhOvuLjGNoZGzeGQKjFxeFronnzwpwHM2e+yNy5\nYWRyoRsF70tO41qkcS2yj/sYckRtLZSXh26iOXOC0/iii8IsaGPHQpcuIZ//zzuO09Z4V1IbsnNn\neBOYOzcMPuvVCy68MCxFRRwyI5Adx8lP3MdwCFBTAxUVYeTxnDlh8Nno0Wlj4DOfOY6TTdzHkIeY\nhXDVDz8cnMW9esGUKWEWtFtvDRPelJbC1KnNNwref5rGtUjjWqRxLbKPd14cBGbBabxoUZjdbOFC\n6NABxoyBSZPggQegT59c19JxHKdleFdSC6ipCSOMy8rg5ZfDsn8/jBwZjMGYMeGLInlsOsdxcoD7\nGNqA7dth+fLw9VBZGSxdCn37BkfxiBFhfeKJbggcx8kPDmkfg6TxktZJekvSTbmoQ13eew/mz4c7\n7wwDyU44IUyVPGMG7N0L11wD69fDmjXwyCMhaumgQa1vFLz/NI1rkca1SONaZJ829zFI6gg8CIwF\ntgDlkkrMbG1bXH/vXli7FlavTi+VlbBrFwwZAmeeGcJUT5/eNjf+pqioqKC4uDi3lcgTXIs0rkUa\n1yL75ML5PAyoMrMNAJKeBi4GsmYY9u8PTuGqqsxl3TrYtAkGD4ZTTgnL1VeH9YABwXGcb1RXV+e6\nCnmDa5HGtUjjWmSfXBiGvsCmxP5mYHhzTqytDU/2778fwk5v2ZJeNm8O602bwtK7d3AEp5ZRo4JB\nOOkk6NSpVdrlOI7TLsiFYWiWV/ncc+Gjj8KyZ08wBrt2hYiixxwDPXsGR3BqGTcurPv1C0//nTu3\ncivaiA0bNuS6CnmDa5HGtUjjWmSfNv8qSdJZwI/NbHzcnwbUmtndiTy5/yTJcRznEOSQ/FxV0mHA\nG8AY4B1gGXBFWzmfHcdxnMZp864kM9sv6XvAPKAj8JgbBcdxnPwhLwe4OY7jOLkj7z7QzMfBb62F\npP6SXpD0uqTVkq6N6T0lLZD0pqT5kronzpkWtVknaVzuat86SOoo6VVJpXG/ILWQ1F3Ss5LWSloj\naXgBazEt/kYqJc2U1LlQtJD0uKRtkioTaS1uu6Qzon5vSbqvyQubWd4shK6lKmAA0AmoAE7Odb1a\nsb3HA5+P210JvpeTgenAjTH9JuCuuP3ZqEmnqFEV0CHX7ciyJtcDfwJK4n5BagE8AXwjbh8GdCtE\nLWJ71gOd4/4zwNcKRQtgJHA6UJlIa0nbU71Cy4BhcXsuML6x6+bbG8Mng9/MbB+QGvzWLjGzrWZW\nEbf3EAb59QUmEm4MxPUlcfti4Ckz22dhgGAVQbN2gaR+wIXA74DUlxUFp4WkbsBIM3scgl/OzHZR\ngFoAHwD7gCPihytHED5aKQgtzGwxsLNOckvaPlxSb+AoM1sW8/0xcU695JthqG/wW98c1aVNkTSA\n8GSwFDjOzLbFQ9uA4+J2H4ImKdqbPvcCNwC1ibRC1GIgsEPS7yWtlPSopCMpQC3M7H3gl8BGgkGo\nNrMFFKAWCVra9rrpW2hCk3wzDAXpCZfUFfgLcJ2Z7U4es/Du15gu7UIzSROA7Wb2Kum3hQwKRQtC\n19EQ4GEzGwJ8CNyczFAoWkgaBHyf0DXSB+gq6avJPIWiRX00o+0HRL4Zhi1A/8R+fzItXbtDUieC\nUXjSzJ6LydskHR+P9wa2x/S6+vSLae2Bc4CJkv4NPAWcJ+lJClOLzcBmMyuP+88SDMXWAtTiTOAV\nM3vPzPYDs4CzKUwtUrTkN7E5pverk96oJvlmGJYDgyUNkHQ4cDlQkuM6tRqSBDwGrDGzXyUOlRAc\nbMT1c4n0yZIOlzQQGExwKh3ymNktZtbfzAYCk4F/mtkUClOLrcAmSSfFpLHA60ApBaYFsA44S1KX\n+HsZC6yhMLVI0aLfRPx/+iB+2SZgSuKc+sm1170eL/wFhK9zqoBpua5PK7e1iNCfXgG8GpfxQE/g\neeBNYD7QPXHOLVGbdcD5uW5DK+kymvRXSQWpBfA5oBx4jfCU3K2AtbiRYBgrCc7WToWiBeHt+R3g\nY4L/9esH0nbgjKhfFXB/U9f1AW6O4zhOBvnWleQ4juPkGDcMjuM4TgZuGBzHcZwM3DA4juM4Gbhh\ncBzHcTJww+A4juNk4IbBaVNi+N/74vZoSWdnqdx7Yujyu5vO3Wg5GyT1zEadYnm9Jc2LbS3NVrkt\nrENxrq7tHJq0+QxuTmFjZiuAFXH3XGA3sCQLRV8F9LCDH5iTlYE9kjqaWQ1hwOI/slHmAdbDf+NO\ni/E3BueAiaFLkhOI/FDS7XH7RUl3SVoq6Q1JRTG9WFKppE8B3wF+oDAxT5GkL8XJRCokLWrgmvfE\nPKskfTmmlRDms1iZSkvk7xqjlK6S9JqkSTH9iphWKemuBq51fTxeKem6Zrb5XknlwLUxy/nA30kE\nBpQ0NEZNHSjp2DjpyuoYRbXeNxaFCaxWRG0WxLRhkl6JZZWlQmhIulJSiaSFhBGyBnST9DeFCVx+\nHUMjNKiDpD2S7ojXWyKpV30aOe0Tf5pwskky0qMBHc1suKQLgNuBL3yS0extSb8BdpvZDABJq4Bx\nZvaupKPrFi7pUkKoiNOAY4FySYvMbKKk3WZ2ej11+hGw08xOi2V0l9QHuIsQmK4amC/pYjP7a+Ja\nZwBXEmL5dwCWRmNV3USbO5nZ0FhGR+AzZrZO6aBn5wD3AxPNbLOkB4HnzexuSecD36yn3ccCjxDm\naHhb6Rm71sa0GkljgTuBy+Kx04FTzaxaUjEwlDAJ1EbCG8wXJS1pRIcjgCVmdlvsnrsK+Hk9+jrt\nEH9jcLJNMmT2rLheSQib3FT+MuAJSd+i/oeWEcBMC2wHFhFueI0xBngotWNm1fGcFyxE7KwhzBg3\nqk6dioBZZrbXzD6MbRlJ/V1NyTY8k9geTphfI8XJwG+BCWaWiho8gjAhFWY2j/+flAXgLGCRmb2d\naANAd+DZ+AYzgzCDV4r5iXwQgqltMLNaQvydIkLk0hcb0OFjM5sTt1fQ8N/PaYe4YXAOhv1k/g91\nIfPG+d+4rqEZb6dmNhW4jRA6eEUDTmA1sN0YdfNZPeXUveE3lKepNn+Y2L6A0I2UKu9dYC/hCb2x\n+tWlbl1S/AxYaGanAhfFuqT4Tz1lJK/XkIFLpe9LpNfivQsFhRsG52DYBvRSmJy8MzChhefvBo5K\n7UgaZGbLzOx2YAeZMeQBFgOXS+oQu1dG0nRI5QXAdxPX6B7PGS3pmNjdM5nw9pHC4rUuUQj3fCRh\nKsTFhNj3jbU5eQM/j9DHn0qvjvl/IWl0TC8DUr6ScUCPetqwFBilMMsfklJ5jiZE3oQQdbMxhkX/\nSId4vcXN0MEpUNwwOAeMhXm5f0q4wcwnxMlvMHs926XApOg8LQKmpxyhQJmZrapzvdnAKkIo6oXA\nDbFLqW75Se4AeqSc2kCxhfj0NwMvEEKeLzez0mQ5FmaS+0Ns27+AR83stWa02eATv8BHsRsqlZ7q\nApsAPCRpKPATYFxs82XAVoLBTLZ7B/BtYFZsw9Px0HSCkVkJdCTT11FX73LgwVjf9WY2uzk6NFCe\n087xsNuO0wpI+grQ18ymN5HvcKAmOpDPBh6yMJ2n4+QMNwyOk0MkfRr4M+Ht/WNgahzr4Tg5ww2D\n4ziOk4H7GBzHcZwM3DA4juM4GbhhcBzHcTJww+A4juNk4IbBcRzHycANg+M4jpPB/wDUY3ZeZNgB\nEwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x997fbe0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Quantity of fresh carbon recquired for two stage crosscurrent operation: 19.8171091445 kg carbon/1000 kg solution\n",
+ "\n",
+ "Quantity of fresh carbon recquired for two stage Counter Current operation: 12.8 kg carbon/1000 kg solution\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FOX2xz8voRNKKKIiHfHHVa4oSBWICkpHQJqAhmIX\nAVG5oAh6FewoWFCkCEhHDE0RkID0jnIREJEu0kPoJDm/P95NskASFrK7s7s5n+eZJzuzM/N+5+xk\nzrznvMWICIqiKIqSRBanBSiKoiiBhToGRVEU5RLUMSiKoiiXoI5BURRFuQR1DIqiKMolqGNQFEVR\nLkEdg6IoQYExpq8xZoTTOjID6hgcwhhzyhgT51oSjTFnXJ9PGmPa+0lDKVfZjtwHxvKCMeY3lz32\nGmOmGGPu8HG5PrluY0x2Y8xAY8x21/X8ZYwZaYwp6c1yrhdjzBhjzH+d1uEJxphIY8xe920iMlhE\nnnBKU2ZCHYNDiEi4iOQVkbzAbqCJaz2fiEz0sxzj5/KS+AR4AegORADlge+Bxn4q/7qu2xiTNY2v\npgFNgPZAPuBOYC3wgDfKMMaEXet5AhHXC4FT95ziCSKii8ML8BdwP5ATOAsUdG1/FbgIhLvW/wsM\ncX3OD4wFDgG7XPuaNM5fFfuAigUOAh+4tu8BEoE411INKAv8DBwBDgPjgfxu57ob2ACcBKYAk4H/\nun3fBNgIHAeWARXT0HQrEA9USccuaV4jMBAY57ZvKde1ZHGtxwBvAktdWucBhdK6btf2LsAW4Bjw\nI1DC7fyJwLPAH8CfqWitB5wBiqVzPbuAB9zWk6/BTX8X7IvCYuBxlw0/cv0ebwLZgQ9c+xwEvgBy\nus4RCewDXgT+AQ4AUa7vngQuAOdd1xydhsaawBrgBLAaqOH2XQwwGFiFvZe+ByLcvq8OLHf99huB\nupcd+5bres5g77POLnufBP4EnnTtmwf7f5Dg0noSuCmV37wZ8D9XeYuA/7vM1r2BTa5rmQTkcPp/\nPVgWxwXokuIYXJ8XAy1dn39yPYgauNaXAM1dn8cCM1z/RCWBbUCXNM6/Aujg+pyblAdhSdwepq5t\nZbFvuNmAwi49Sc4ou+uB1B0IA1q4HjRvur6/y/VAugf7Nv6Y69qyp6LpaeCvq9glzWsEBnB1x/AH\nUA7rcBcBg9O57uau/W/D1qRfBZa5fZ+IdS4FUnvAAO8Aizz9nS+/Bjf9Y4BcLs1R2BeD51yacgJD\nsA/kAkA4MBMY5DpHpGv/ga7fpyFwGpdjB0Yn/VZp6CuIfch2cJXXDuskI9xsug/4l+s+muamvxjW\neSXdq/Vc64Xcjt0FVHCdOyvQCCjt+r6OS+tdrvW6wN7L9LnbqzxwCnuvhgEvu36/rG62XgnciK2N\nbgGecvp/PVgWDSUFHouBuq6wQUVgqGs9J1AFWOL6ri3QV0ROi8hu4EOgUxrnvADcaowpLCJnRGSV\na/sV1XkR+VNEForIRRE5gn0Q1XV9XR0IE5FhIpIgIjOwb5VJPAl8KSJrxDIW6ziqp6KpEPaNN1U8\nuMarhSIEGC0iO0TkHLZ2UymdY5/GOo5tIpKIfTOuZIwp7rbPYBE5ISLnr/V60iA1HQNF5KxLM8AB\nEfnMpek88ATwokvHKZfOdm7HX8Q+/BNE5Afsw/O2q5SZRGNgm4h8KyKJIjIJ2Ip9Mwdr07EiskVE\nzgD9gTauXE1HYK6I/AggIguwtdTGbseOEZHfXeeOF5G5IvKXa/8l2Beh2unodN/WFpjtulcTsLWo\nXNgaTxJDReSgiBwHZpHy+ytXQR1D4LEY++Z3N/AbsAD7YK4G7HDd5IWxb/S73Y7bg31rS42u2Des\n340xq40xacbwjTFFjTGTjDH7jDGxwDjsQw/gZmD/ZYe4JwhLAr2NMceTFuAWbBjgco6msT2Ja73G\n1HB/UJ/FvmGnRUngEzfdR13b3cvbe+VhyRwh/evxlMvLcF8vgn1TX+em8wesrZI46nIiSZwh/et2\n52asjd3Z7dqemp49pNQsSwKtL/vta2Hf2FM7FmNMQ2PMSmPMUdf+jUi5165Jq4iI6/zuv9e1/P6K\nG+oYAo8V2De8FkCMiPwOlMD+08S49jmCfTMs5XZcCWw1/wpcb82PikgR4F1gmjEmF/Yt7nIGYWO7\nd4hIfuwbetJ98jdXPphLuH3eA7wtIhFuS7iITE6lnIXALcaYyqlp9uAaT2Mfkkm4P4CuRmrXvQcb\n43bXnkdEVl7luCQWAFWNMek5rtPYsFgSqWm+vAz39SPYB9y/3DQWEJF86ZSZ3rkvZz/2Ae9OSS59\nGShx2eeL2FzUHmyYx91+eUXkvdTKN8bkAKYD7wE3iEgEMJeUWsE1aXUls4tz5YvLFWUrV0cdQ4Dh\nqqKvw8aVF7s2L8eGOha79knAhkbeNsaEu5pD9sImiq/AGNPRGFPEtRqL/SdJxP5DJ2LzCkmEYx9g\nJ10PuZfdvlsBJBhjnjfGZDXGNMfmE5IYATxtjKnqaniSxxjT2BhzxZuaiPwBfA5MNMbUdTX1zGmM\naWeM6ePBNW4A6hhjihtj8gN9U7v01OyRxnUPB/oZY/7lsll+Y0zrNI6/AhFZCMwHZhhj7nbZJ68x\n5mljTGfXbhuBdq7vqgCtuIYHlqsmMAL4OOn3NMYUM8Y86OEp/gHKpPP9XKC8Maa9S2Nb4P+A2a7v\nDdDRGFPBGJMbmwyf6npbHw80NcY8aIwJc/2WkZc5SvffI7trOQIkGmMaAu7X8Q9QyBiTltObCjQ2\nxtxvjMmGTTSfw/6vpIa2groG1DEEJouxybnVbuvh2ORzEt2xD/CdwC/At9jkYmo8BGw2xsRhcwbt\nROS8ywm9DSwzxhwzxlQF3sCGsWKxcdnpuB5eInIBaIkNTSUlKWdjcxiIyDpsDPxTbNLyD2wCOlVE\n5AXXvp+5zrcDmwSeebVrdMWwJwO/YlvRzCL9t21xuw736z5ujKkqIt9ja1OTXCG031x2S+1cafEI\n9uE6GdsS5jesLee7vu+PdUbHsQnib9PRe4lmN/pg7bTSpXM+Nkzoic6RwL9c1/zd5V+KyDFsq7Le\n2Af2S9hm1Mfczj0OmyD/G/tgf8F17D7sb9cP24psj+s87g/kZG0iEuc6dgr2XmkPRLt9vxWYCOx0\n3Zs3celvuA2b1xiGdfSNgaYiEp/GtadmSyUNkpr+ef/ExozC/liHRKSia1tB7D9NSWwLhTYicsIn\nAhS/YIxZBXwuIt84rUXxLcaYRdhw0SintSi+xZc1htFAg8u2/QeYLyLlsTHm//iwfMUHGGPqGGNu\ndIUaHgfuwLb5VzIHGpLJBPjMMYjIL9gqszvNgKQ3y2+Ah31VvuIzbiOlA1sv4BER+cdZSYof0XBM\nJsBnoSSwY9IAs9xCScddrQ+SWhEcS1pXFEVRAgPHks+ulgz69qEoihJgpDUYmK/4xxhzo4gcdLUy\nOJTaTsYYdRiKoijXgYhkOA/k7xrDTOzAYLj+fp/Wjp6M55EZlgEDBjiuIVAWtYXaQm2R/uItfOYY\njDETsZ1NbjN2nP3O2IHG6htjtmNHE33HV+WHCrt27XJaQsCgtkhBbZGC2sL7+CyUJCJpTTZTz1dl\nKoqiKBlHez4HOFFRUU5LCBjUFimoLVJQW3gfnzZXvV6MMRKIuhRFUQIZYwziheSzv1slZQidDVBR\nro3M8IIVExNDZGSk0zJCiqByDJA5bnRF8QYZeZESEc4nnCdn1pxeVKQEC0EVSnJVkxxQpCjBx/X+\nv5yLP0eX6C6UKlCKQQ8M8oEyxVd4K5SkyWdFUZI5fPow9cbWI0ES6F+nv9NyFIdQx6AoCgBbj2yl\n+sjqRJaKZGKrieTKlstpSR4RExPjtISQQx1DgLNnzx7y5s2bHBKIjIxk5MiRAIwZM4batWund/gV\nNGrUiHHjxnldpxLc/PzXz9QdU5fX67zOW/e/RRajj4bMTNAlnwOVUqVKcejQIcLCwpK3de7cmaFD\nh2bovCVKlCAuLi553RiToaTi3LlzM6RHCT1GbRhFv4X9mPzIZCJLRTot55rRFkneRx2DlzDGMHv2\nbO6//36npaRKUo0j2Jr8xsfHkzWr3qa+IFES6bewH9N/n86SzksoX6j81Q9SMgVaX/QDiYmJvPTS\nSxQpUoSyZcvy2WefkSVLFhITEwFb21i4cGHy/gMHDqRTp06AHQfGfd/LERG6d+9OgQIFqFChAj//\n/HPyd5GRkbz22mvUqlWL8PBwdu7ceUkoyr2c1MqKjIykf//+1KpVi7x589KsWTOOHDlChw4dyJ8/\nP1WrVmX37t1pXvfSpUupWbMmERERlChRgrFjxyafN0kDXBkSy5IlC59//jnly5enfPnyPPvss7z8\n8suXnLt58+YMGTIEgAMHDtCqVStuuOEGypQpw7Bhw9LUpFjOXDxDm6ltWL53OSu6rghqp6A5Bu+j\njsGLpNU08KuvvmLOnDls3LiRtWvXMm3atEve3C8PD13LW/2qVasoV64cR48e5Y033qBly5acOJEy\njfb48eP5+uuviYuLo2TJkpeU5Uk5kydPZvz48ezfv58///yTGjVq0LVrV44dO0aFChV44403Uj1u\n9+7dNGrUiB49enDkyBE2btzInXfemer1pkZ0dDSrV6/m999/p3379kyePDn5u+PHjzN//nzat29P\nYmIiTZs25a677uLAgQMsXLiQjz/+mJ9++umq15ZZOXjqIPd9cx+5suVifqf5FM5d2GlJSoARUo7B\nGO8s14OI8PDDDxMREZG8JL0VT5kyhV69elGsWDEiIiLo169fuu3Lr6Xt+Q033ECPHj0ICwujTZs2\n3HbbbcyePdtlD0NUVBQVKlQgS5YsV4RkrlaOMYbOnTtTunRp8uXLR8OGDSlfvjz3338/YWFhtG7d\nmg0bNqR67IQJE6hfvz5t27YlLCyMggULJjsGT+jbty8FChQgR44c3HvvvRhj+OWXXwCYNm0aNWvW\n5MYbb2TNmjUcOXKE1157jaxZs1K6dGm6devGpEmTPC4rM7H50Gaqf12dJrc2YezDY8mRNYfTkjKM\n5hi8T0gFb53s+2aMITo6OtUcw99//03x4sWT10uUKOG1cosVK3bJesmSJfn777+T193LvR6KFi2a\n/DlnzpzccMMNl6yfOnUq1eP27dtHmTJlrrtcd93GGNq1a8fEiROpXbs2EyZM4LHHHgNszeTAgQNE\nRKTMEJuQkECdOnWuu+xQZd6OeXSa0YlPGnxC+4ppDX6sKCFWYwhUbrrpJvbs2ZO87v4ZIE+ePJw+\nfTp5/eDBgx6fe//+/Zes7969m5tvvjl5Pb2QTXh4OGfOnPG43GsJcRUvXpw///wz1e88ud7Ly2rf\nvj3Tpk1j9+7drF69mlatWgHWyZYuXZrjx48nLydPnkyuNSmWL9Z8QVR0FDPazgg5p6A5Bu+jjsGL\npBWaadOmDUOHDmX//v0cP36cd95555IHX6VKlZg0aRLx8fGsXbuW6dOne/wQPnToEEOHDuXixYtM\nnTqVrVu30qhRo6tqSip3yZIl7N27l9jYWAYPHpzuNV1LiKtDhw4sWLCAqVOnEh8fz9GjR9m0aVNy\nud999x1nz55lx44dlySi09NauHBhunXrRoMGDciXLx8AVatWJW/evLz33nucPXuWhIQENm/ezNq1\naz3WGsokJCbw4rwXGbp6KEs7L6VWiVpOS1KCAHUMXqRp06bkzZs3eUl6q33iiSd46KGHuPPOO6lS\npQqtWrW65CH73//+lz///JOIiAgGDhxIhw4dLjlvWk7CGEP16tX5448/KFKkCP3792f69OmXhFXS\nczD16tWjbdu2/Pvf/+aee+6hadOmV+yfXpI8vfMXL16cuXPn8uGHH1KoUCHuuusufv31VwB69epF\n9uzZKVq0KJ07d6Zjx44eJd8fffRRfv75Zx599NHkbVmyZGH27Nls3LiRMmXKUKRIEZ588klOnjyZ\n5nVnJlpOacmmfzaxvMtyyhYs67Qcn6A5Bu+jg+g5wK5duyhTpgzx8fFkyaK+WfENxhi6Rnfli8Zf\nkC0sm9NyFD+gg+gpinJVRjQdEfJOQXMM3kcdg0MEWw9kJTjR+0y5HjSUpCghiv6/ZD40lKQoiqL4\nBHUMiqIENZpj8D7qGBRFUZRL0ByDooQo+v+S+dAcg6IoiuIT1DEoihLUaI7B+6hj8ALh4eHJw2Bk\nyZKF3LlzkzdvXvLly8fEiRP9ouFqE/r4GhFh6NChVKxYkfDwcIoXL06bNm3YvHmzT8v11XVfuHCB\ngQMHUr58ecLDwyldujRdu3ZNd2IifxIVFUX//v2dlqGEKOoYvMCpU6eIi4tLngxn9uzZxMXFcfLk\nSdq39+9Ilk7FlHv06MHQoUMZNmwYx48fZ/v27Tz88MPMmTPHL+Vf73XHx8enuv2RRx5h9uzZTJw4\nkZMnT7Jp0yaqVKlyyUx7GSkjISHhms+jpI6OlWRZvdqLJxORgFusrCtJa3sgUapUKVm4cKGcPXtW\ncubMKUePHhURkbfeekuyZs0qcXFxIiLy2muvSc+ePUVE5MSJE9KpUycpUqSIlCxZUt566y1JTExM\n9fyrVq2SypUrS758+aRo0aLSu3dvEREpXry4GGMkPDxcwsPDZeXKlbJjxw657777pFChQlK4cGHp\n0KGDnDhxIvlc69atk0qVKknevHmldevW0qZNG3nttdeSv581a5bceeedUqBAAalZs6b8+uuvqWra\nvn27hIWFyZo1a9K0S3rXOGDAAOnYsWPyvn/99ZcYYyQhIUFEROrWrSv9+/eXWrVqSd68eeXBBx+U\nI0eOpHndIiIjR46UChUqSEREhDz00EOye/fu5PMbY+Szzz6TcuXKSZkyZa7QOn/+fMmVK5fs27cv\nzespWbKkLFiwIHnd/RqS9I8cOVJKlCghderUkTFjxkjNmjWlV69eUqhQIenfv7+cP39eevfuLSVK\nlJCiRYvK008/LWfPnhURkUWLFkmxYsXkww8/lBtuuEFuuukmGT16tIiIfPnll5ItWzbJnj27hIeH\nS7NmzVLVGAz/L4p3GDxYpHTp5N88w89grTH4iJw5c1K1atXk+OfixYspVaoUS5cuTV5PetPp3r07\ncXFx/PXXXyxevJixY8cyevToVM/bo0cPevXqRWxsLDt37qR169YAybObxcbGEhcXR7Vq1QB49dVX\n+fvvv/n999/Zu3cvAwcOBGyopEWLFnTp0oXjx4/Tvn17vv/+++QhFDZs2EDXrl0ZMWIEx44d46mn\nnqJZs2ZcuHDhCk0LFy6kePHiVKlSJU17pHeNngzbMHHiRMaMGcOhQ4e4cOECH3zwQZrXHR0dzeDB\ng5kxYwZHjhyhdu3aV9TcoqOjWbNmDVu2bLmirAULFlCtWrUrJkFyx5PpWJcsWcLWrVuZN28eIsLq\n1aspW7Yshw4dol+/fvTp04cdO3awadMmduzYwf79+3nzzTeTj//nn384efIkBw4cYOTIkTz33HPE\nxsby5JNP0qFDB/r06UNcXBzR0dFXtV8ok5lzDCLQpw+MGweuR4tXCKkZ3Mwb3hkXRgZ4JxxTt25d\nFi9eTPPmzfntt9/o169fskNYu3YtderUISEhgcmTJ7Np0yby5MlDnjx56N27N+PGjaNLly5XnDN7\n9uz88ccfHDlyhMKFCyc7AEkllFK2bFnKlrVDLRcuXJhevXolP3hWrlxJQkIC3bt3B6BFixZUrVo1\n+divvvqKp556invuuQeAxx57jEGDBrFy5corZkc7evQoN954Y5p2uNo1pqbdnaQpRsuVKwfY+S1m\nzpyZ5nUPHz6cvn37cttttwF2mtBBgwaxd+/e5JnhkqYOTY2rXU9qpKZj4MCB5MqVK3n95ptv5rnn\nngMgR44cjBgxgl9//TVZR9++fenQoQODBg0CIFu2bLz++utkyZKFhg0bEh4ezrZt25J/p6vZTQlt\nEhLgmWdg0yZYsgQKFfLeuUPKMXjrge4t6taty4svvsj69eupWLEi9erVo2vXrqxatYpy5coRERHB\nP//8w8WLFylZsmTycSVKlLhiZrYkRo4cyeuvv06FChUoXbo0AwYMoHHjxqnu+88//9CjRw+WLl1K\nXFwciYmJFCxYEIADBw5c8UbsPp3m7t27GTt2LMOGDUvedvHixUumDU2iUKFCqW5P4siRI9d0janh\n/qDOlStXmlOKJmnv0aMHvXv3vmT7/v37k68xvSlPCxcuzB9//OGxtrS4vAz39cOHD3PmzBkqV66c\nvE1ELkmiFypU6JJh2XPnzp3udWdWMmOO4cIF6NQJjhyBBQsgb17vnl9DST6kRo0abNu2jRkzZhAZ\nGUmFChXYs2cPc+fOTb6ZCxcuTLZs2di1a1fycXv27OGWW25J9ZzlypVjwoQJHD58mD59+vDII49w\n9uzZVEMZ/fr1IywsjM2bNxMbG8u4ceOSHzw33XTTFQ9m9ylHS5QowauvvnrJlJmnTp2ibdu2V5Tz\nwAMPsG/fPtatW5eq5qtdY548ea5pilF3UrvuEiVK8NVXX12i/fTp01SvXj3d45KoV68eq1evTtdx\nXc/0pO7rhQsXJleuXGzZsiVZ44kTJzyeYEhHTc28nDkDzZtb5zBnjvedAqhj8Cm5c+emcuXKfPbZ\nZ9StWxeAmjVrMnz48OT1sLAw2rRpw6uvvsqpU6fYvXs3Q4YMoWPHjqmec/z48Rw+fBiA/PnzY4wh\nS5YsFClShCxZslwyz/KpU6fIkycP+fLlY//+/bz//vvJ39WoUYOwsDA+/fRT4uPjk2PuSTzxxBMM\nHz6c1atXIyKcPn2aOXPmpPrGeuutt/Lss8/Svn17Fi9ezIULFzh37hyTJk3i3Xffveo13nXXXdc0\nxag7qV33008/zaBBg5LzB7GxsUydOjXV41PjgQceoH79+rRo0YL169cTHx9PXFwcw4cPT86LZGQ6\nVrAzzz3xxBP07Nkz+ffcv38/P/30k0fHFy1alJ07d3pcXiiTmXIMJ07Agw/CDTfA1KmQM6dvylHH\n4GPq1q1LfHx8cly4bt26nDp16pI4/bBhw8iTJw9lypShdu3adOjQgc6dO6d6vnnz5nHHHXeQN29e\nevXqxaRJk8iRIwe5c+fm1VdfpVatWhQsWJDVq1czYMAA1q9fT/78+WnatCmtWrVKfnhlz56d7777\njpEjRxIREcG3335LkyZNyJ49OwCVK1dmxIgRPP/88xQsWJBbb72VsWPHpnmdQ4cO5fnnn+e5554j\nIiKCcuXKER0dTbNmza56jRmZYtT9uiMiIli9ejUPP/wwffr0oV27duTPn5+KFSsyb968VM+VFtOm\nTaNRo0a0bduWAgUKULFiRdavX0/9+vWBa5+ONbVpUd99913KlStH9erVyZ8/P/Xr12f79u0e6eza\ntStbtmwhIiKCli1bXvV6lODnn38gMhIqV4bRoyGrDxMBjoyVZIzpC3QEEoHfgM4ict7te0lNl479\n4luqVavGs88+y+OPP+60FMUL6P9L6LB7N9SvDx06wOuvQ1rvDEE7VpIxphTwBHC3iFQEwoB2/tah\n2OaUBw8eJD4+nm+++YbNmzfToEEDp2UpiuLG//4HtWvDc8/BgAFpOwVv4kQo6SRwEchtjMkK5AY8\nb56ieI1t27ZRqVIlIiIiGDJkCNOmTaNo0aJOy1KUayKUcwzLl8P998PgwdCjh//KdSqU9CTwIXAW\nmCcinS77XkNJipJBMsv/S0xMTEg2WZ07Fx5/3HZe87Qi761Qkt/7MRhjygI9gVJALDDVGNNBRL51\n3y8qKopSpUoBUKBAASpVquRnpYoSGiS9USc9PENtPWlboOjxxvpPP8GoUZHMmgXnzsUQE5P6/jEx\nMYwZMwYg+XnpDfxeYzDGtAXqi0g313onoLqIPOe2j9YYFCWD6P9LcPLRR/DxxzBvHlSocG3HBm3y\nGdgKVDfG5DK2PV494MoBaxRFUTwgVHIMSeMejRgBy5Zdu1PwJn4PJYnIJmPMWGAttrnqeuArT4/X\nHp+KooQa8fHw5JOwZYsdDM+b4x5dD1cNJRlj7gUGYHMCSY5ERKSMz0SlEUpSlGAhURLpM78PM7fP\nZM6jcyhXsJzTkpQA5exZaNcOzp+H6dMhT57rP5c/k88jscni9YDOLqIoV+H0hdN0nNGRE+dOsKLr\nCgrmKui0JCVAOX4cmjWDEiXsEBeugQccx5McwwkR+UFE/hGRI0mLz5UpQOjET71BMNjiQNwB6o6p\nS/4c+ZnXcZ7PnEIw2MJfBKstDhyAunXtEBfjxgWOUwDPHMMiY8z7xpgaxpi7kxafK1OUIGPTwU3U\nGFmDlhVaMrr5aLKHBdB/uhJQbN8OtWpB+/YwZAhkcaIZUDp4kmOIAa7YSUTu85EmzTEoQcfcP+YS\n9X0Unzb6lDa3t3FajhLArFsHTZrAf/8L3bp599zeyjE40vP5aqhjUIKJT1d/yqBfBvFd2++ofkv1\nqx+gZFp+/NFOsDNiBDz8sPfP77d+DMaYAsaYIcaYda7lQ2NM/owWrHhGsMZPfUGg2SIhMYEXfniB\nL9Z+wbIuy/zqFALNFk4SLLYYMwaioiA62jdOwZt40ippFHZo7NaAAToBowEdBF7JtMSdj6P99PZc\nSLjAsi7LKJAz9fmjFUUE3n4bRo6EmBj4v/9zWtHV8STHsElE7rzaNq+K0lCSEsDsjd1L04lNqVas\nGp82+pRsYdmclqQEKPHxdrjsNWvsNJw33eTb8vw5JMZZY0xtt4LvBc6ks7+ihCzrDqyjxsgadPp3\nJ4Y3Ga5OQUmT06ehZUvYtQsWL/a9U/AmnjiGp4HPjDG7jTG7gU9d2xQ/ECzxU3/gtC2+3/o9Db9t\nyKeNPqV3zd6ODs/itC0CiUC0xeHD8MADEBEBs2ZB3rxOK7o2rppjEJGNwL+NMflc6yd9rkpRAggR\n4aMVHzFk5RB+6PADlW+u7LQkJYD5809o2BBat4a33vLPjGveJs0cgzGmk4iMM8b05tJ+DAY7VtJH\nPhOlOQYlQLiYcJHuP3Rnxb4VzG4/m+L5izstSQlg1q61Q1z07w/PPOP/8v0xVlJu19+8pNLBTVFC\nndhzsbSroqPPAAAgAElEQVSe2ppsYdlY2nkpeXMEWTxA8Ss//ACPPea7Pgr+JM0cg4h86fq4QETe\ncF+Ahf6RpwRi/NQp/GmLXSd2UXNUTf6v8P8R3S464JyC3hcpBIItRo+Gzp2Do4+CJ3iSfB6Wyrah\n3haiKIHCyn0rqTmyJk9XfpqhDYeSNYvfpy1RggQRO7TFm2/alkc1azqtyDukl2OoAdQEegEfYXML\nYENLLbQfgxKKTPnfFJ6f+zyjm4+mcfnGTstRApgLF+Cpp+DXX2H27MBojuqPHEN2rBMIc/1N4iTw\nSEYLVpRAQkQYvHQwX677kvmd5nPnjT5771FCgBMnoFUrO6nO4sUQHu60Iu+SXo5hsYgMBKpflmP4\nSET+8J/EzE0gxE8DBV/Z4kLCBbrM7MJ3v3/Hyq4rg8Ip6H2Rgr9tsXu3HTL79tthxozQcwrg2VhJ\nY1LpyCMicr8P9CiKXzl29hgtJ7ckIlcEi6MWkyd7BuZVVEKetWuheXN45RXo0cNpNb7Dk7GSqrit\n5gRaAfEi8rLPRGmOQfEDO47toPGExjQr34x3679LFhNgs6UoAUV0tJ0/IZCbozo6H4MxZo2I3JPR\nwtM5vzoGxaf8svsXWk9tzZv3vcmTlZ90Wo4S4HzyCbz7rnUO9/jsyZdx/DkfQ0G3pbAxpgGQL6MF\nK56hseQUvGWL8b+Op9WUVoxrMS5onYLeFyn40hYJCTZk9OWXsHx5YDsFb+JJjmE9KT2f44FdQFdf\nCVIUXyEiDIwZyLhfxxETFcO/ivzLaUlKAHP6NDz6KMTFWadQIBNNuaFTeyqZgnPx5+gS3YW/TvzF\n922/p2h4UaclKQHMwYN2Xubbb7c5hezZnVbkGT7vx2CMaUU6YySJyHcZLVxR/MHh04dpMbkFxfIV\n4+fHfiZXtlxOS1ICmP/9Dxo3hi5d7GB4wTg6akZJL8fQ9CqL4gc0lpzC9dhi65GtVB9ZnchSkUxs\nNTFknILeFyl40xbz58N999lhLl5/PXM6BUinxiAiUX7UoShe5+e/fqb99Pa8V+89Hq/0uNNylADn\n88/tmEdTp0Lduk6rcRZP+jEUAAYAdVybYoA3RSTWZ6I0x6BkkFEbRtFvYT8mPTKJyFKRTstRApj4\neHjxRVtbmD0bypZ1WtH144+xkpIYBfwGtMYOpNcJGA20zGjhiuJtEiWRfgv7Mf336SzpvITyhco7\nLUkJYGJjoW1bSEyEFSsyV8uj9PCkq2dZERkgIjtF5E/X+ElB7FODC40lp3A1W5y5eIY2U9uwfO9y\nVnRdEdJOQe+LFK7XFjt32mGyy5aFuXPVKbjjiWM4a4ypnbRijLkXOOM7SYpy7Rw8dZD7vrmPXNly\nMb/TfArnLuy0JCWAWbrUDoT3zDPw2WeQVafcuARPcgyVgLFAftem48DjIrLJZ6I0x6BcA5sPbabJ\nhCZ0vasrr9V5jVQGfVSUZMaOhZdesn8bNHBajXfx+1hJxpj82FFVT2a0UA/KUsegeMS8HfPoNKMT\nnzT4hPYV2zstRwlgEhPh1Vdh8mSbZP5XCHZ89+dYST2NMfmwE/QMMcasN8Y8lNGCFc/QWHIKl9vi\nizVfEBUdxYy2MzKdU9D7IgVPbHH6NLRubUNIq1aFplPwJp7kGLq4agkPAgWBx4B3fKpKUdIhITGB\nF+e9yNDVQ1naeSm1StRyWpISwOzfD3Xq2Al1FiyAIkWcVhT4eJJj+E1EKhpjhgIxIvKdMWaDiNx1\n3YXavhFfA7djh93oIiIr3b7XUJKSKqcunKLDdx04deEU01pPIyJXhNOSlABmzRpo0QKefx769An9\nnsx+CyUB64wxPwGNgB9dYaXEDJb7CTBXRCoA/wZ+z+D5lEzA/pP7qTO6DkVyF+HHDj+qU1DS5dtv\noVEjGDYM/vOf0HcK3sQTx9AV6AtUEZEzQDag8/UW6Epi1xaRUQAiEu/LXtTBjsaSLRv+3kClvpVo\nd0c7RjQdQbawbE5LchS9L1K43BYJCbZ20L8//PyzrTEo18ZVW++KSAKwzm39KHA0A2WWBg4bY0YD\nd7rO3cPldBTlCmZtm0XXmV15/p7neaXWK07LUQKYEyfsHArnzsHq1VBYu7NcF36fj8E1h/QKoKaI\nrDHGfAycFJHX3fbRHIOCiPDJqk94f/n7zGg7g6rFqjotSQlgtm+HZs2gfn346CPIlgkrlf4cK8nb\n7AP2icga1/o04D+X7xQVFUWpUqUAKFCgAJUqVSIyMhJIqTrqeuiuJyQm8N3Z71iyZwkflv+QM3+c\ngWIEjD5dD6z11avhgw8iefttuPXWGJYtCyx9vlqPiYlhzJgxAMnPS2/gSaukgqlsjhORi9ddqDFL\ngG4ist0YMxDIJSJ93L7XGoOLmJiY5Bsis3Dy/EnaTmsLwORHJpMvh51iPDPaIi3UFhYRePbZGKKj\nI5kyBe6912lFzuLPGsN6oAR2KAyACOCgMeYg8ISIrEvzyLTpDnxrjMkO/EkGktlKaLH7xG6aTGxC\n7RK1GdpwKFmz6CA2SuqcOwdPPAErV9qlRAmnFYUOntQYRgDTRGSea/1B4BHs0NufiIjXA79aY8ic\nrNm/hocnP8zLNV+mR7UeOuaRkiYHDtjWRqVLw6hRkDu304oCA3/2Y6iR5BQAROQn17YVQJBMka0E\nOtO3TKfxhMYMbzycntV7qlNQ0mTVKqhaFZo3h4kT1Sn4Ak8cw9/GmD7GmJLGmFLGmFeAf4wxYWS8\no5tyFZISTaGKiPDesvfoOa8n8zrOo+ltaU8nHuq2uBYyqy3GjIGmTeGLL6BfP9tpLbPawpd4EsB9\nFDu15/eu9WVAeyAMaOMjXUom4GLCRZ6Z8wzr/17Pyq4rKZavmNOSlADlwgXo1cuOdRQTo4Pg+RpP\ncgylReSvy7bd49bc1PuiNMcQ8hw/e5xHpj5Cnmx5mNBqAuHZw52WpAQof/9tR0YtVMjOoZA//9WP\nyaz4M8cw3Rhzi1vBdbGJZ0W5LnYe30nNUTW5s+idzGg7Q52CkibLl8M998BDD8GMGeoU/IUnjuEp\n4HtjzI3GmEbAUKChb2UpSYRa/HT53uXUGlWLF6q+wEcPfURYljCPjw01W2SEULeFiM0jtGgBX31l\nxz3KksbTKtRt4QSejJW0xhjzAjAfOAvUF5FDPlemhBwTf5tIjx97MLbFWBqUC7E5FRWvce4cPPus\nHTJ72TIoV85pRZmPNHMMxphZl22qAPwNnMBO8dnMZ6I0xxBSiAhvLXmLkRtGMqv9LCoWrei0JCVA\n2bMHWrWCMmVg5Eg7uY7iOf7o+fxBUllu28S1rk9txSPOx5/niVlPsPXIVlZ2W8mN4Tc6LUkJUBYt\nsiOj9u5tF+3K4hzp5Rj6AXcDB0UkxrUsTvrrJ32ZnmCOnx49c5T64+pz5uIZYqJiMuwUgtkW3iaU\nbCFiR0Nt3x7Gj4eXXro2pxBKtggU0nMMUdiw0UBjzAZjzHBjTHNjTB7/SFOCme1Ht1N9ZHVqFq/J\nlNZTyJ1Nu6cqV3L6NHToYB3CqlXwwANOK1LAw/kYXL2cq2FbI90PnAPmich7PhGlOYagZvGuxbSZ\n1oa373+bbnd3c1qOEqBs3WrzCVWrwuefQ65cTisKfvzSj8EYE2aM6SUiCSKyXET6i0gtoB2wP6OF\nK6HHNxu/oc20NkxoOUGdgpImU6ZA7dq2N/OoUeoUAo10HYNrWs9HU9l+WES+9ZkqJZlgiZ8mSiKv\n/fwaby55k5jHY3igjPdjAsFiC38QrLa4cAF69IC+fWHePOjWLeNJ5mC1RSDjyVhJS40xnwKTgdO4\nWiWJyHqfKlOChrMXz9I5ujN7T+5lZdeVFMlTxGlJSgCybx+0aQNFisDatRAR4bQiJS08GSsphlSa\np4rIfT7SpDmGIOLQ6UM0n9ScUgVKMbr5aHJmzem0JCUAmT8fHnsMevaEl19OuxezkjG8lWPwKPns\nb9QxBAdbDm+hyYQmdPp3JwZGDtQ5FJQrSEyEt9+2w1t8+y3c57PXSQX8OIieMWaAMeZ1t7+vG2Ne\nz2jBimcEavx0/p/ziRwTyRuRb/DGfW/4xSkEqi2cIBhscfQoNGliawtr1/rOKQSDLYINTyp0p13L\nKezEPI2AUj7UpAQ4I9aNoNOMTkxrM41Od3ZyWo4SgKxZA5Urw+23w8KFcPPNTitSroVrDiUZY3IA\nP4lIXd9I0lBSoJIoifSZ34fobdHMeXQOtxa61WlJSoAhAsOHw4AB8OWXdnRUxX/4Y6yktMgD6FRb\nmYzTF07TcUZHjp89zspuKymYq6DTkpQAIzYWnngCtm+3o6Lequ8NQYsnOYbf3Jb/AduAT3wvTYHA\niJ8eiDtA3TF1yZ8jPz91+skxpxAItggUAs0Wa9fC3XfbpqgrV/rXKQSaLUIBT2oMSbOzCxAPHBKR\ni76TpAQSmw5uotmkZjx595P0q91PWx4plyACw4bBW2/BZ5/ZKTiV4MfTsZIqAbWxzuEXEdnkU1Ga\nYwgI5v4xl6jvoxjWcBht72jrtBwlwDh+HLp2tXMoTJ4MZcs6rUjxZ3PVHsB4oAhQFBjvmtFNCWE+\nXf0pXWd2JbpdtDoF5QpWrbKhoxIlbD5BnUJo4Ulz1W5ANRF5XUT6A9WBJ3wrS0nC3/HThMQEXvjh\nBT5f8znLuyynRvEafi0/PTSWnIJTthCBDz+EZs1gyBD4+GPIkcMRKcnofeF9PG2VlJjGZyWEiDsf\nR/vp7TmfcJ7lXZdTIGcBpyUpAcTRoxAVBYcP2xpDqVJOK1J8hSdjJb2InbTnO+wAeg8DY0RkiM9E\naY7B7+yN3UvTiU2pWqwqnzX6jGxh2ZyWpAQQy5bZaTdbt4ZBgyB7dqcVKanh17GSjDGVgXtJST5v\nyGjBVylPHYMfWXdgHc0nNadn9Z70rtFbWx4pySQkwDvv2JZHX39th7hQAhefJ5+NMQWTFuAvbAL6\nW2C3a5viB3wdP/1+6/c0+LYBwxoO46WaLwW0U9BYcgr+sMXevXaqzQULbD+FQHUKel94n/RyDOtJ\nZbhtFwKU8b4cxV+ICB+t+IghK4fwQ4cfqHJzFaclKQHEd9/BM8/YYbJfeQXCwpxWpPgTHXY7E3Ix\n4SLdf+jOin0rmN1+NsXzF3dakhIgnDljp9tcsAAmTIBq1ZxWpFwLfh0ryRjTHKiDrSksFpFZGS1Y\ncYbYc7G0ntqarFmysrTzUvLmyOu0JCVA2LQJ2rWDKlVgwwbIl89pRYpTeNLB7R3gBeB/wO/AC8aY\nwb4Wpli8GT/ddWIXNUfV5LZCtzGz/cygcwoaS07Bm7YQgU8+gXr14NVXYdy44HIKel94H09qDI2B\nSiKSAGCMGQNsBPr6UJfiZVbuW0nLyS3pe29fulfr7rQcJUA4dMj2TTh61A5+pz2YFfCsH8OvwH0i\nctS1XghYJCL/9pkozTF4lSn/m8Lzc59ndPPRNC7f2Gk5SoAwbx507mwdwxtvQDbtuhL0+DPHMBhY\nb4xZhO3gVhf4T0YLNsaEAWuBfSLS9Gr7K9eOiDB46WCGrx3O/E7zufPGO52WpAQA585Bv34wdSqM\nHw/33++0IiXQuGqOQUQmAjWAGcB0oLqITPJC2T2ALaTdJFbh+uOnFxIu0GVmF6b/Pp2V3VaGhFPQ\nWHIK12uLjRttcnnPHvs5FJyC3hfex5PkcwvgjIhEi8hM4Jwx5uGMFGqMuQU7d/TX2FqI4kWOnT3G\ng+Me5PjZ4yyJWsLNeXXC3cxOQgK8+y7Urw99+tjaQqFCTqtSAhVPcgybROTOy7ZtFJFK112oMVOB\nQUA+4KXLQ0maY7h+dhzbQeMJjWlavinv1nuXsCzaMymzs2sXPPYYGANjx0LJkk4rUnyF3+ZjIPU3\n+ut+2hhjmmBngduQxrmV6+SX3b9w76h7ebH6i3zw4AfqFDI5IvDNN3DPPdC0Kfz8szoFxTM8ST6v\nM8Z8BHyGfZA/B6zLQJk1gWbGmEZATiCfMWasiDzmvlNUVBSlXOP6FihQgEqVKhEZGQmkxBQzw7p7\n/DS9/ef/OZ8Rx0YwvuV4su/NTkxMTEDo9+b65TZxWo+T6xs3bqRnz55pfh8bC+PGRbJtGwweHEO5\nchAWFjj6vbn+8ccfZ+rnw5gxYwCSn5deQUTSXYBw4F1sC6K12FZKea52nCcLtoXTrFS2i2JZtGhR\nut8nJibK6z+/LqU+LiWb/9nsH1EOcTVbZCbSs8UPP4jcfLNI794iZ8/6T5NT6H2RguvZmeFns6Nj\nJRlj6gK9RaTZZdvFSV3Bwrn4c3SJ7sLO4zuJbhdN0fCiTktSHOTMGXj5ZZg9G8aMgfvuc1qR4m/8\nmWPwGSKy+HKnoHjG4dOHqTe2HvGJ8Sx6fJE6hUzO8uVQqRLExtoxj9QpKBnBUcegXB33+HoSW49s\npfrI6tQtWZdJj0wiV7Zc/hfmAKnZIrOSZIuzZ20toVUrO6HO+PFQIJPNyKr3hfdJb6Ked11/2/hP\njnI1fv7rZ+qOqUv/Ov15+4G3yWLUt2dWVq2Cu++G3bvh11+hZUunFSmhQpo5BmPMZqAisF5E7vKr\nKM0xpMqoDaPou7Avkx+ZTGSpSKflKA5x/rwd22jUKBg6FNroq5viwh9jJf0AHAfCjTFxl30nIhJE\nA/MGN4mSSL+F/Zj++3SWRC3htsK3OS1JcYj16+Hxx6FcOZtLKKqpJcUHpBmHEJGXRaQAMFdE8l62\nqFPwEz8u+JE2U9uwbO8yVnRdkamdQmaOJV+4AAMGQMOG8J//wAsvxKhTcJGZ7wtf4ckges2MMUWN\nMU1cyw3+EKbAwVMH6TWvF7my5WJBpwUUzl3YaUmKA2zaZKfYXLfOzqzWoYMd3kJRfIUnYyW1Ad4H\nFmN7PtcGXhaRqT4TpTkGNh/aTJMJTehyVxf61+mP0SdBpuPCBTvw3bBh8N57NoSkt4GSHv6cj+E1\n4B4ROeQquAiwEPCZY8jszNsxj04zOvFxg495tOKjTstRHGDNGujaFUqUsDWF4sWdVqRkJjwdRO+w\n2/pRdPA7n/HFmi+Iio5iRtsZPFrxUY2fupEZbJHUe7lpU5tLmDUrdaeQGWzhKWoL7+NJjeFHYJ4x\nZgLWIbTFtlhSvEhCYgIvz3+ZuX/MZWnnpZQtqJPvZjZiYqBbN6haFX77DYoUcVqRklnxaKwkY0wr\noJZr9RcRmeFTUZksx3Dqwik6fNeBuPNxTG8znYhcEU5LUvxIbCy88grMnQuff25rC4pyPfgzx4CI\nTMdO66l4mf0n99N0YlPuuvEupraeSvaw7E5LUvzIrFnw7LPQuDFs3gz58zutSFF0rCRH2fD3BqqP\nrE7b29vydbOvU3UKGj9NIZRscfgwPPoo9OplZ1UbPvzanEIo2SKjqC28jzoGh5i1bRYPjn+QIQ8N\noc+9fbQ5aiZBBMaNg4oVoVgxO8aRjoSqBBrXNB+DMaYgcIuI/Oo7SaGdYxARPln1Ce8vf58ZbWdQ\ntVhVpyUpfmL7dnjmGTh+HL780k65qSjexG/zMRhjFhtj8rmcwjrga2PMkIwWnBmJT4zn+bnP8/X6\nr1neZbk6hUzC+fPw3/9CzZrQpAmsXq1OQQlsPAkl5ReRk0BLYKyIVAXq+VZW6HHy/EmaTmzKn8f/\nZFmXZZQs4Nms7Bo/TSEYbbFkiZ1AZ80aOwBer16Q1aMmH+kTjLbwFWoL7+OJYwgzxtwEtAHmuLaF\nZpzHR+w+sZtao2pRukBpZj86m/w5telJqHP0qO253KEDDBoE0dG2F7OiBAOejJXUGugPLBORZ4wx\nZYH3RKSVz0SFUI5hzf41PDz5YV6u+TI9qvXQJHOIk5RcfuUVaNfOhpDy5nValZJZ8Gc/hr9F5N9J\nKyLyp+YYPGP6luk8PedpRjYbSbPbdGrrUCcpuXziBMyeDVWqOK1IUa4PT0JJw1LZNtTbQkIJEeG9\nZe/Rc15P5nWclyGnoPHTFALVFmfOwOuv2+Ry06Z2yk1fO4VAtYUTqC28T5o1BmNMDaAmUMQY8yIp\nA+flBcL8oC0ouZhwkWfmPMO6v9exousKbsl3i9OSFB8hAjNnQs+edr6EjRvhFv25lRAgvTmf6wL3\nAU8Bw92+igNmicgfPhMVpDmG42eP88jUR8iTLQ8TWk0gPHu405IUH7FjB/ToAX/9ZedLeOABpxUp\nivdyDJ4kn0uKyO6MFnQtBKNj2Hl8J40nNKZB2QZ88OAHhGXRSlUocuYMvPOOHeyuTx/rHLLr8FZK\ngODzDm7GmE9cHz81xsy6bJmZ0YJDieV7l1NrVC26V+3OkAZDvOoUNH6agpO2ELFNTm+/3SaZN260\n8yY45RT0vkhBbeF90muVNNb190N/CAlWJv42kR4/9mBsi7E0KNfAaTmKD0gKG+3cCV9/rWEjJfS5\nprGS/EUwhJJEhLeWvMXIDSOZ1X4WFYtWdFqS4mVOnYLBg+24Rho2UoIBv/VjMMbcCwwASrntLyJS\nJqOFByvn48/zxKwn2HpkKyu7reTG8BudlqR4kcREGD8e+vWzI59qayMls+FJP4aRwEfAvcA9riXT\njv529MxR6o+rz5mLZ4iJivG5U9D4aQr+sMWKFVCjBnz2GUybZnsxB6JT0PsiBbWF9/HEMZwQkR9E\n5B8ROZK0+FxZALL96Haqj6xOzeI1mdJ6Crmz5XZakuIl9u2Djh2hdWt4/nnrIKpXd1qVojiDJ81V\n38F2aPsOOJ+0XUTW+0xUAOYYFu9aTJtpbXj7/rfpdnc3p+UoXuLMGfjgA/jkEzucxX/+A+Ha/UQJ\nUvw5VlJ17Giql3fyzzTzTn2z8RteWfAKE1pO4IEy2iQlFBCBKVPsYHfVqsG6dVCqlNOqFCUwuGoo\nSUQiReS+yxd/iHOaREnktZ9f480lbxLzeIwjTkHjpyl4yxYrV0Lt2raj2rhx1kEEm1PQ+yIFtYX3\n8aRV0gBsjcHgNg+DiLzpQ12Oc/biWTpHd2bvyb2s7LqSInmKOC1JySB//gl9+8Ly5XY47McegzDt\noK4oV+BJjuElUhxCLqAJsEVEuvhMlMM5hkOnD9F8UnNKFSjF6OajyZk1p2NalIxz9Kh1BOPH2xnU\nevWC3NpuQAlB/JZjEJEPLiv4feCnjBYcqGw5vIUmE5rQ6d+dGBg5UCfWCWLOnYOhQ+H996FNG9iy\nBW64wWlVihL4eNJc9XLyAMWut0BjTHFjzCJjzP+MMZuNMS9c77m8zfw/5xM5JpI3It/gjfveCAin\noPHTFDy1RVIHtdtus81Oly61/RJCySnofZGC2sL7eJJj+M1tNQtwA5CR/MJFoJeIbDTGhAPrjDHz\nReT3DJwzw4xYN4L+i/ozrc006pSs46QUJQP8/LMd3C5bNuscatd2WpGiBB+e5BhKua3GA/+IyEWv\nCTDme2CYiCx02+a3HEOiJNJnfh+it0Uz59E53FroVr+Uq3iXNWvsEBZ//QWDBtmOagFQ4VMUv+LP\nHMOujBaSFi6ncxewyldlpMfpC6fpOKMjx88eZ2W3lRTMVdAJGUoG2LIF+ve302n27w9dutjagqIo\n148nHdx8giuMNA3oISKnLv8+KiqKUq7G5QUKFKBSpUpERkYCKTHFjKwfOXOEd/a9wx033MGzhZ/l\n11W/evX83lp3j58Ggh4n15O2xcTEcPAg/PhjJHPnQqtWMYwcCQ89FFh6fbm+ceNGevbsGTB6nFz/\n+OOPvf58CJb1mJgYxowZA5D8vPQGjgy7bYzJBswGfhCRj1P53qehpE0HN9FsUjOevPtJ+tXuFxBJ\n5rSIiYlJviEyOzExMfzf/0Xy9tswYQI89xz07g358zutzP/ofZGC2iIFv03t6W2MfQp/AxwVkV5p\n7OMzxzD3j7lEfR/FsIbDaHtHW5+UoXif48dts9Mvv7Qd0/r2Da1WRoriDXw+tacPqQV0BO4zxmxw\nLX6Z+uzT1Z/SdWZXottFq1MIEmJj4c03oXx5OHQINmyAIUPUKSiKL/G7YxCRpSKSRUQqichdruVH\nX5aZkJjACz+8wOdrPmd5l+XUKF7Dl8V5Fff4emYiySGUK2en1Fy+HDp2jKFECaeVBQaZ9b5IDbWF\n93Es+ewv4s7H0X56e84nnGd51+UUyFnAaUlKOsTG2t7KQ4dCo0bWIdzqakG8f7+z2hQlsxDScz7v\njd1L04lNqVqsKp81+oxsYdqOMVC53CG89lqKQ1AUxTOCOcfgF9YdWEeNkTXo+O+OfNnkS3UKAUps\nLLz1lg0Z/fEHLFsG33yjTkFRnCQkHcP3W7+nwbcNGNZwGC/VfCmgm6NejVCNnx4+bGsFZcvCtm3W\nIYwda5PMaRGqtrge1BYpqC28T0jlGESEj1Z8xJCVQ/ihww9UufnySecUp9m7106lOW6cHfF01Srr\nHBRFCRxCJsdwMeEi3X/ozop9K5jdfjbF8xf3kTrleti+Hd59F2bMgK5d7ZwIN9/stCpFCS38Oedz\nwBN7LpbWU1uTNUtWlnZeSt4ceZ2WpLjYsAEGD4ZFi+D5520eoVAhp1UpipIeQZ9j2HViFzVH1eS2\nQrcxs/3MkHMKwRg/FYGYGNu6qHFjqFbN9kUYMCBjTiEYbeEr1BYpqC28T1DXGFbuW0nLyS3pe29f\nulfr7rScTM/FizBtms0hnDoFL74I330HOXVmVEUJKoI2xzDlf1N4fu7zjG4+msblG/tJmZIaJ0/C\n11/Dxx9D6dJ2YLsmTSBL0NdHFSW4yLQ5BhFh8NLBDF87nPmd5nPnjXc6LSnTsncvfPIJjB4NDz5o\nawdVtCGYogQ9QfVOdyHhAl1mdmH679NZ2W1lpnAKgRg/XbcOOnSASpXs/Mrr18PEib53CoFoC6dQ\nW6SgtvA+QVNjOHb2GC0nt6RAzgIsiVpCnux5nJaUqbhwweYPPv3UjlnUvTt8/nnmnAtBUUKdoMgx\n7Di2g8YTGtO0fFPerfcuYVnCHFSXuThwAL76yi4VKliH0LQphOlPoCgBR6YZK+mX3b9w76h7ebH6\nizICaVAAAA01SURBVHzw4AfqFPyAiB2ion17uP12Ow/CggWwcCE8/LA6BUUJdQLaMYz/dTytprRi\nbIuxPFXlKaflOII/46dnzthEcuXKEBUF1avDX3/ZkNG//uU3GWmiseQU1BYpqC28T8DmGAYsGsDY\nX8ey6PFF3H7D7U7LCWl+/dWGiiZOtM7g7bfhoYe0uamiZFYCNsdQbUQ1ottFUzS8qNNyQpLTp2Hy\nZOsQ9u+34xd16YLOkKYoQYy3cgwB6xjOXDhDrmy5nJYScmzYYJ3B5Mlw773w5JPQoAFkDdi6o6Io\nnhLyyWd1ChZvxE+PHbN5gnvuscnjm2+24aOZM20P5WBxChpLTkFtkYLawvsEySNBuVYuXoQff7Sz\noc2fDw0bwptv2h7K2qpIUZT0CNhQUiDqCgY2bbLO4Ntv7XSZjz9uJ8QpUMBpZYqi+JpMO1aSciX7\n98OUKdYhHDsGjz0Gv/yS/jSZiqIoaRGwOQbFklb89MgRGD4cIiOhYkWbM/joI9i1C956KzSdgsaS\nU1BbpKC28D5aYwgiTp6E77+3/Q2WL7d5g549basinfNAURRvoTmGACcuDubOtaGiBQtsDaFdOzte\nUXi40+oURQkkQr4fQyDq8heHD9umpDNmwJIltr9Bq1bQsiVERDitTlGUQCXk+zFkNvbssZPeREba\n1kTz5tk5DyZMiGHuXNszObM7BY0lp6C2SEFt4X00x+AQiYmwZo0NE82ZY5PGTZvaaTHr1YNcrv59\nes8riuJvNJTkR44ftzWBuXNt57MbboBGjexy773B0wNZUZTARHMMQUBCAmzcaHsez5ljO5/VrZvi\nDEqWdFqhoiihhOYYAhAR2LbNjkvUqpWtEXTqZGdBe/VVO+HNrFnwzDOeOwWNn6agtkhBbZGC2sL7\naPAiA4jYpPHixXZ2s4UL7RwGDzwALVrAsGF2wDpFUZRgQkNJ10BCgu1hvGwZLF1ql/h4qF3bOoMH\nHrAtikyGK3KKoijXjuYY/MChQ7B2rW09tGwZrFoFxYrZRHGtWvZvmTLqCBRFCQyCOsdgjGlgjNlq\njPnDGNPHCQ2Xc/Qo/PQTDBpkO5KVKAG33WbHHzp7Frp3h507YcsWO9HN449D2bK+dwoaP01BbZGC\n2iIFtYX38XuOwRgTBnwK1AP2A2uMMTNF5Hd/lH/2LPz+O2zenLL89hvExsLdd0OVKnaY6vfe88+D\n/2ps3LiRyMhIZ0UECGqLFNQWKagtvI8TyeeqwA4R2QVgjJkENAe85hji421SeMeOS5etW2HvXrj1\nVrjjDrs8/bT9W6qUTRwHGidOnHBaQsCgtkhBbZGC2sL7OOEYigF73db3AdU8OTAx0b7ZHztmh53e\nvz9l2bfP/t271y433WQTwUlLnTrWIZQvD9my+eS6FEVRQgInHINHWeX77oNz5+xy6pR1BrGxdkTR\nQoWgYEGbCE5aHnzQ/r3lFvv2nyOHj6/CT+zatctpCQGD2iIFtUUKagvv4/dWScaY6sBAEWngWu8L\nJIrIu277ON8kSVEUJQgJyuaqxpiswDbgAeAAsBpo76/ks6IoipI+fg8liUi8MeZ5YB4QBoxUp6Ao\nihI4BGQHN0VRFMU5Aq6BZiB2fvMVxpjixphFxpj/GWM2G2NecG0vaIyZb4zZboz5yRhTwO2Yvi7b\nbDXGPOicet9gjAkzxmwwxsxyrWdKWxhjChhjphljfjfGbDHGVMvEtujr+h/5zRgzwRiTI7PYwhgz\nyhjzjzHmN7dt13ztxpjKLvv9YYz55KoFi0jALNjQ0g6gFJAN2AhUcFqXD6/3RqCS63M4NvdSAXgP\neMW1vQ/wjuvzv1w2yeay0Q4gi9PX4WWbvAh8C8x0rWdKWwDfAF1cn7MC+TOjLVzXsxPI4VqfDDye\nWWwB1AbuAn5z23Yt154UFVoNVHV9ngs0SK/cQKsxJHd+E5GLQFLnt5BERA6KyEbX51PYTn7FgGbY\nBwOuvw+7PjcHJorIRbEdBHdgbRYSGGNuARoBXwNJLSsynS2MMfmB2iIyCmxeTkRiyYS2AE4CF4Hc\nroYrubGNVjKFLUTkF+D4ZZuv5dqrGWNuAvKK/H975x9jR1XF8c+3TWuQCi2mIIVGGgTjH2AACxQW\nWrG2NilVEKVGSTCKhpiIGjFIMI2KWkoEJdRfxKiQ+INAwa5GaanQNKWWZQvdKlZDlGKR/oi6ca1o\nZfv1j3uHzjzf21/d9i0755Ns3syZO/fec/bNnLn3vjnHj+dyd5fOacpYcwzNXn47qU19OaJIOoX0\nZLAZOMH27nxoN3BC3p5BsknBeLPP7cD1wIGSrI62mAXslfQ9SVsk3SXpaGpoC9t/A74KPEdyCL22\n11JDW5QYru6N8ucZxCZjzTHUciVc0hTgfuA6233lY05jv4HsMi5sJmkxsMf2kxwcLVSoiy1IU0dn\nA9+wfTawD7ihXKAutpB0KvAJ0tTIDGCKpA+Uy9TFFs0Ygu4jYqw5hueBmaX9mVQ93bhD0iSSU7jH\n9oNZvFvS6/LxE4E9Wd5on5OzbDxwAbBE0p+AHwGXSLqHetpiJ7DTdlfev4/kKHbV0BZvAR6z/Vfb\nLwGrgDnU0xYFw7kmdmb5yQ3yAW0y1hzDE8Bpkk6RNBm4Eljd5j4dNiQJ+C7wtO2vlQ6tJi2wkT8f\nLMmXSposaRZwGmlR6RWP7Rttz7Q9C1gK/Mr2VdTTFruAP0s6PYvmA78FOqmZLYDtwPmSjsrXy3zg\naeppi4JhXRP5+/SP/Ms2AVeVzmlOu1fdm6zCLyL9OucZ4LPt7s9h1rWDNJ/+FPBk/nsHcBzwMPAH\nYA0wtXTOjdk224GF7dbhMNllLgd/lVRLWwBvBrqAraSn5GNrbIvPkBzjNtJi66S62II0ev4LsJ+0\n/vrBkegOnJPt9wxwx2DtxgtuQRAEQYWxNpUUBEEQtJlwDEEQBEGFcAxBEARBhXAMQRAEQYVwDEEQ\nBEGFcAxBEARBhXAMwRElh//9et6eK2nOKNV7aw5dfsvgpQes51lJx41Gn3J9J0p6KOvaOVr1DrMP\n89rVdvDK5IhncAvqje1uoDvvvhXoAzaNQtXXANN86C/mjMqLPZIm2u4nvbD4y9Goc4T9iGs8GDYx\nYghGTA5dUk4g8mlJy/L2o5KWS9os6feSOrJ8nqROSa8HPgp8UikxT4ek9+RkIk9JWt+izVtzmR5J\n782y1aR8FlsKWan8lByltEfSVkmXZfn7smybpOUt2vpUPr5N0nVD1Pl2SV3Ax3ORhcAvKAUGlDQ7\nR02dJWl6TrrymxxFtemIRSmBVXe2zdosO1fSY7mujUUIDUlXS1otaR3pDVkDx0r6mVICl2/m0Agt\n7SDpn5Juzu1tknR8MxsF45N4mghGk3KkRwMTbZ8naRGwDHj7ywXtHZK+BfTZvg1AUg+wwPYLko5p\nrFzSu0mhIs4EpgNdktbbXiKpz/ZZTfr0OeDvts/MdUyVNANYTgpM1wuskfRO2z8ttXUOcDUplv8E\nYHN2Vr2D6DzJ9uxcx0Tgjba362DQswuAO4AltndKuhN42PYtkhYCH2qi93TgO6QcDTt0MGPX77Ks\nX9J84MvAFfnYWcAZtnslzQNmk5JAPUcawVwuadMAdng1sMn2TXl67hrgS03sG4xDYsQQjDblkNmr\n8ucWUtjkwcpvBH4g6cM0f2i5EPihE3uA9aQb3kC8DVhZ7Njuzec84hSxs5+UMe7ihj51AKtsv2h7\nX9blIppPNZV1+Elp+zxSfo2CNwHfBhbbLqIGX0hKSIXth/j/pCwA5wPrbe8o6QAwFbgvj2BuI2Xw\nKlhTKgcpmNqztg+Q4u90kCKXPtrCDvtt/zxvd9P6/xeMQ8IxBIfCS1S/Q0dRvXH+J3/2M4TRqe1r\ngZtIoYO7WywCq8X2QDSWc5N6Gm/4rcoMpvO+0vYi0jRSUd8LwIukJ/SB+tdIY18Kvgiss30GcGnu\nS8G/mtRRbq+Vgyvk/y3JDxCzC7UiHENwKOwGjldKTv4qYPEwz+8DXlPsSDrV9uO2lwF7qcaQB9gA\nXClpQp5euYjBQyqvBT5WamNqPmeupNfm6Z6lpNFHgXNb71IK93w0KRXiBlLs+4F0Lt/ALyHN8Rfy\n3lz+K5LmZvlGoFgrWQBMa6LDZuBipSx/SCrKHEOKvAkp6uZAnJvXRybk9jYMwQ5BTQnHEIwYp7zc\nXyDdYNaQ4uS3LN5kuxO4LC+edgArioVQYKPtnob2HgB6SKGo1wHX5ymlxvrL3AxMKxa1gXlO8elv\nAB4hhTx/wnZnuR6nTHLfz7r9GrjL9tYh6Gx4eV3g33kaqpAXU2CLgZWSZgOfBxZkna8AdpEcZlnv\nvcBHgFVZhx/nQytITmYLMJHqWkejvbuAO3N//2j7gaHYoUV9wTgnwm4HwWFA0vuBk2yvGKTcZKA/\nLyDPAVY6pfMMgrYRjiEI2oikNwD3kkbv+4Fr87seQdA2wjEEQRAEFWKNIQiCIKgQjiEIgiCoEI4h\nCIIgqBCOIQiCIKgQjiEIgiCoEI4hCIIgqPA/GiyMJzijEt8AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7928278>"
+ ]
+ }
+ ],
+ "prompt_number": 63
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.3: Page 602"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.3\n",
+ "# Page: 602\n",
+ "\n",
+ "print'Illustration 11.3 - Page: 602\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#***Data***#\n",
+ "T = 1.0; #[m]\n",
+ "di = 0.203;# [m]\n",
+ "n = 1;# [for one impeller]\n",
+ "Density_S = 2300.0;# [kg/cubic m]\n",
+ "Density_p = 2300.0;# [kg/cubic m]\n",
+ "C = 0.150;# [m]\n",
+ "S = 50.0;# [kg]\n",
+ "g = 9.807;# [m/s]\n",
+ "dp = 8*10**(-4);# [m]\n",
+ "N = 8.33; #[r/s]\n",
+ "Temp=25;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# Assume:\n",
+ "Po = 5;\n",
+ "viscosity_L = 8.94*10**(-4);# [kg/m.s]\n",
+ "Density_L = 998.0;# [kg/cubic m]\n",
+ "delta_Density = Density_S-Density_L;# [kg/cubic m]\n",
+ "# By Eqn. 11.23:\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_L);# [m/s]\n",
+ "# By defn. of power number:\n",
+ "# P = Po*Density_m*di**5*Ni**3\n",
+ "# vm = math.pi*T**2*(Z+C)/4\n",
+ "# Solid Volume = S/Density_p;\n",
+ "# If these are substituted in Eqn. 11.22\n",
+ "def f(Z):\n",
+ " return (((Z+C)**(1.3/3))*math.exp(4.35*Z/(T-0.1)))-((1.0839*Po*di**(11.0/2)*N**3*Density_p**(2.0/3))/(g*Vts*T**(7.0/6)*S**(2.0/3)))\n",
+ "Z = fsolve(f,7);# [m]\n",
+ "phi_Sm = 4*S/(math.pi*T**2*(Z+C)*Density_p);\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_L);# [kg/cubic m]\n",
+ "phi_Ss = 0.6;\n",
+ "viscosity_m = viscosity_L/(1-(phi_Sm/phi_Ss))**1.8;# [kg/m.s]\n",
+ "Re = di**2*N*Density_m/viscosity_m;\n",
+ "P = Po*Density_m*N**3*di**5;# [W]\n",
+ "print \"Agitator Power required: \",round(P),\" W\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.3 - Page: 602\n",
+ "\n",
+ "\n",
+ "Agitator Power required: 1113.0 W\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 65
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.4: Page 604"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.4\n",
+ "# Page: 604\n",
+ "\n",
+ "print'Illustration 11.4 - Page: 604\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "#****Data*****#\n",
+ "# b: kerosene c:water\n",
+ "# c:kg water/cubic m liquid\n",
+ "Density_l = 783;# [kg/cubic m]\n",
+ "viscosity_l = 1.7*10**(-3);# [kg/m.s]\n",
+ "Mb = 200;# [kg/kmol]\n",
+ "Density_p = 881;# [kg/cubic m]\n",
+ "m = 0.522;# [(kg water/cubic m kerosene)/(kg water/kg gel)]\n",
+ "Xo = 0;# [kg H2O/kg gel]\n",
+ "#**************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "co = Density_l*4*10**(-5);# [kg water/cubic m]\n",
+ "c1 = Density_l*5*10**(-6);# [kg water/cubic m]\n",
+ "# For Ss minimum:\n",
+ "X1 = c1/m;# [kg H2O/kg gel]\n",
+ "# By Water Balance:\n",
+ "SsminByVl = (co-c1)/(X1-Xo);# [kg gel/cubic m kerosene]\n",
+ "print\"Minimum Solid/Liquid ratio used:\",SsminByVl,\" kg gel/cubic m kerosene\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "# Basis: 1 batch,1.7 cubic m kerosene\n",
+ "Vl = 1.7;# [cubic m]\n",
+ "Ss = 16*1.7;# [kg gel]\n",
+ "V = Ss/Density_p;# [Xol. solid, cubic m]\n",
+ "Vt = 1.7+V;# [Total batch volume, cubic m]\n",
+ "# Take Z = T\n",
+ "T = (Vt*4/math.pi)**(1.0/3);# [m]\n",
+ "# To allow for the adequate free board:\n",
+ "h = 1.75;# [Vessel height,m]\n",
+ "# Use a six-blade disk impeller.\n",
+ "# From Fig. 11.26:\n",
+ "# dp corresponding to 14 mesh:\n",
+ "dp = 1.4/1000;# [m]\n",
+ "TBydi1 = 2.0;\n",
+ "Value1 = (Density_p-Density_l)/Density_l;\n",
+ "# From Fig. 11.26:\n",
+ "TBydi2 = 4.4;\n",
+ "TBydiAv = (TBydi1+TBydi2)/2.0;\n",
+ "di = T/TBydiAv;# [m]\n",
+ "fr = 0.6;# [settled volume fraction of solids]\n",
+ "Vs = V/fr;# [cubic m]\n",
+ "depth = Vs/((math.pi*(T**2))/4);# [m]\n",
+ "# The depth of settled solid is negligible.\n",
+ "# Locate the turbine 150mm from the bottom of the tank.\n",
+ "C = 0.150;# [m]\n",
+ "\n",
+ "# Power:\n",
+ "# Use the sufficient agitator power to lift the solids to 0.6 m above the bottom of the vessel.\n",
+ "Z_prime = 0.6-C;# [m]\n",
+ "# The properties of the slurry in 0.6 m above the bottom of the vessel.\n",
+ "Vm = 0.6*math.pi*T**2.0/4;# [square m]\n",
+ "phi_Sm = V/Vm;# [vol fraction solid]\n",
+ "# From Eqn. 11.24:\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_l);# [kg/cubic m]\n",
+ "# From Eqn. 11.25:\n",
+ "phi_Ss = 0.8;\n",
+ "viscosity_m = viscosity_l/(1-(phi_Sm/phi_Ss))**1.8;# [kg/m.s]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "# From Eqn. 11.23:\n",
+ "delta_Density = Density_p-Density_l;# [kg/cubic m]\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_l);# [m/s]\n",
+ "# From Eqn. 11.22:\n",
+ "n = 1.0;\n",
+ "P = (g*n*Density_m*Vm*Vts)*(phi_Sm**(2.0/3))*(TBydiAv**(1.0/2))*math.exp((4.35*Z_prime/T)-0.1);# [W]\n",
+ "# Assume:\n",
+ "Po = 5.0;\n",
+ "N = (P/(Po*Density_m*di**5))**(1.0/3);# [r/s]\n",
+ "# Use:\n",
+ "N1 = 2.0;# [r/s]\n",
+ "Re = di**2.0*N1*Density_m/viscosity_m;\n",
+ "# From fig. 6.5: Po = 5\n",
+ "# Hence our assumption was right.\n",
+ "print\"Power delivered to the slurry: \",round((P*(N1/N)**3),2),\" W\\n\",\n",
+ "print\"Power to the motor will be larger, depending on the efficiency of the motor and speed reducer.\\n\"\n",
+ "\n",
+ "# Mass transfer: \n",
+ "# From Eqn. 11.28:\n",
+ "Rep = (dp**(4.0/3))*(P/Vl)**(1.0/3)*(Density_l**(2.0/3)/viscosity_l);\n",
+ "# From Eqn. 2.44:\n",
+ "Temp = 298;# [K]\n",
+ "phi = 1.0;\n",
+ "Va = 0.0756;# [Chapter 2 notation]\n",
+ "Dl = ((117.3*10**(-18))*((phi*Mb)**0.5)*Temp)/(viscosity_l*(Va**(0.6)));\n",
+ "ScL = viscosity_l/(Density_l*Dl);\n",
+ "if dp<(2.0/1000):\n",
+ " # From Eqn. 11.29:\n",
+ " ShL = 2+(0.47*Rep**0.62*(1/TBydiAv**0.17)*ScL**0.36);\n",
+ "else:\n",
+ " # From Eqn. 11.30:\n",
+ " ShL = 0.222*Rep**(3.0/4)*ScL**(1.0/3);\n",
+ "\n",
+ "kL = ShL*Dl/dp;# [m/s]\n",
+ "apS = (math.pi*dp**2)/(math.pi*dp**3*Density_p/6.0);\n",
+ "apL = apS*16;# [square m/cubic m liquid]\n",
+ "Ratio = Ss/(Vl*m);\n",
+ "# From Eqn. 11.40:\n",
+ "thetha = math.log((co/c1)/(1+(1/Ratio)-(1/Ratio)*(co/c1)))/((1+(1/Ratio))*kL*apL);\n",
+ "print\"Contacting Time required: \",round(thetha/60,2),\" min\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.4 - Page: 604\n",
+ "\n",
+ "\n",
+ "Minimum Solid/Liquid ratio used: 3.654 kg gel/cubic m kerosene\n",
+ "\n",
+ "\n",
+ "Power delivered to the slurry: 350.05 W\n",
+ "Power to the motor will be larger, depending on the efficiency of the motor and speed reducer.\n",
+ "\n",
+ "Contacting Time required: 8.3 min\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 69
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.5: Page 606"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.5\n",
+ "# Page: 606\n",
+ "\n",
+ "print'Illustration 11.5 - Page: 606\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "import numpy.linalg as lin\n",
+ "#*****Data******#\n",
+ "Vl = 1.1*10**(-4);# [cubic m/s]\n",
+ "Ss = 0.0012;# [kg/s]\n",
+ "Density_p = 1120;# [kg/cubic m]\n",
+ "dp = 8*10**(-4);# [m]\n",
+ "Ds = 2*10**(-11);# [square m/s]\n",
+ "Dl = 7.3*10**(-10);# [square m/s]\n",
+ "m = 0.2;# [(kg Cu2+/cubic m soln)/(kg Cu2+/kg resin)]\n",
+ "T = 1;# [m]\n",
+ "#********************#\n",
+ "\n",
+ "Z = T;# [m]\n",
+ "# The particles will be lifted to the top of the vessel.\n",
+ "Z_prime = 0.5;# [m]\n",
+ "viscosity_l = 8.94*10**(-4);# [kg/m.s]\n",
+ "Density_l = 998;# [kg/cubic m]\n",
+ "delta_Density = Density_p-Density_l;# [kg/cubic m]\n",
+ "g = 9.80;# [m/square s]\n",
+ "# From Eqn. 11.23:\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_l);\n",
+ "Vm = math.pi*T**2*Z/4.0;# [cubic m]\n",
+ "Vs = Ss/Density_p;# [cubic m/s]\n",
+ "phi_Sm = Vs/(Vs+Vl);# [vol fraction]\n",
+ "# From eqn. 11.24:\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_l);# [kg/cubic m]\n",
+ "# From Eqn. 11.22:\n",
+ "n = 1.0;\n",
+ "di = 0.3;# [m]\n",
+ "P = (g*n*Density_m*Vm*Vts)*(phi_Sm**(2.0/3))*((T/di)**(1.0/2))*math.exp((4.35*Z_prime/T)-0.1);# [W]\n",
+ "# To estimate the impeller speed:\n",
+ "# Assume:\n",
+ "Po = 5;\n",
+ "N = (P/(Po*Density_m*di**5))**(1.0/3);# [r/s]\n",
+ "Re = di**2*N*Density_m/viscosity_l;\n",
+ "# From fig. 6.5: Assumption of Po was correct.\n",
+ "print\"Speed of the impeller:\",round(N,2),\" r/s\\n\"\n",
+ "vT = (math.pi/4.0)*T**2*Z;# [cubic m]\n",
+ "vL = vT*(1-phi_Sm);\n",
+ "# From Eqn. 11.28:\n",
+ "Rep = (dp**(4.0/3))*(P/vL)**(1.0/3)*(Density_l**(2.0/3)/viscosity_l);\n",
+ "ScL = viscosity_l/(Density_l*Dl);\n",
+ "if dp<(2.0/1000):\n",
+ " # From Eqn. 11.29:\n",
+ " ShL = 2+(0.47*Rep**0.62*((di/T)**0.17)*ScL**0.36);\n",
+ "else:\n",
+ " # From Eqn. 11.30:\n",
+ " ShL = 0.222*Rep**(3.0/4)*ScL**(1.0/3);\n",
+ "\n",
+ "ShL = 130.3;# Value wrong in book\n",
+ "kL = ShL*Dl/dp;# [m/s]\n",
+ "# Since the dispersion is uniform throughout the vessel, the residence time for both liquid and solid is same.\n",
+ "thetha = vL*(1-phi_Sm)/Vl;# [s]\n",
+ "# From Fig. 11.27:\n",
+ "abcissa = m*kL*dp/(2*Ds*Density_p);\n",
+ "Parameter = 2*m*kL*thetha/(dp*Density_p);\n",
+ "co = 100*Density_l/10.0**6;# [kg/cubic m]\n",
+ "EMS = 0.63;\n",
+ "Xo = 0;\n",
+ "# From Eqn. 11.44:\n",
+ "# (1): X1-(EMS/m)*c1 = 0\n",
+ "# Solute balance:\n",
+ "# (2): (Ss*X1)+(vL*c1) = (vL*co)+(Xo*Ss)\n",
+ "a = [[1 ,-(EMS/m)],[Ss ,Vl]];\n",
+ "b = [0,(Vl*co)+(Xo*Ss)];\n",
+ "soln =lin.solve(a,b);\n",
+ "X1 = soln[0];\n",
+ "c1 = soln[1];\n",
+ "print\"Effluent Cu2+ conc. \",round(c1*10**(6)/Density_l,2),\" ppm\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.5 - Page: 606\n",
+ "\n",
+ "\n",
+ "Speed of the impeller: 2.71 r/s\n",
+ "\n",
+ "Effluent Cu2+ conc. 2.83 ppm\n"
+ ]
+ }
+ ],
+ "prompt_number": 78
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.6: Page 616"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.6\n",
+ "# Page: 616\n",
+ "\n",
+ "print'Illustration 11.6 - Page: 616\\n\\n'\n",
+ "from scipy.optimize import fsolve\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# a: air b:silica\n",
+ "Density_a = 1.181;# [kg/cubic m]\n",
+ "Density_b = 671.2;# [kg/cubic m]\n",
+ "kSap = 0.965;# [kg H2O/square m s]\n",
+ "Y1 = 0.005;# [kg H2O/kg dry air]\n",
+ "Y2 = 0.0001;# [kg H2O/kg dry air]\n",
+ "Ss = 0.680;# [square m/s]\n",
+ "Gs = 1.36;# [kg/square m.s]\n",
+ "X2 = 0;# [kg H2O/kg dry air]\n",
+ "# Equilibrium function:\n",
+ "m = 0.0185;\n",
+ "#************#\n",
+ "X1 = (Gs*(Y1-Y2)/Ss)+X2;# [kg H2O/kg dry air]\n",
+ "def f77(X):\n",
+ " return m*X \n",
+ "Y2_star = f77(X2);# [kg H2O/kg dry gel]\n",
+ "Y1_star = f77(X1);# [kg H2O/kg dry gel]\n",
+ "deltaY = ((Y1-Y1_star)-(Y2-Y2_star))/math.log((Y1-Y1_star)/(Y2-Y2_star));\n",
+ "NtoG = (Y1-Y2)/deltaY;\n",
+ "# If the fixed bed data are to be used for estimating the mass transfer coeffecient for a moving bed of solids\n",
+ "va = Ss/Density_b;# [m/s]\n",
+ "vb = Gs/Density_a;# [m/s]\n",
+ "rel_v = va+vb;# [relative velocity,m/s]\n",
+ "G_prime = rel_v*Density_a;# [relative mass velocity of air,kg/square m s]\n",
+ "HtG = Gs/(31.6*G_prime**0.55);# [m]\n",
+ "HtS = Ss/kSap;# [m]\n",
+ "# By Eqn. 11.52:\n",
+ "HtoG = HtG+(m*Gs/Ss)*HtS;# [m]\n",
+ "Z = NtoG*HtoG;# [m]\n",
+ "print\"Height of continuous countercurrent isothermal absorber for drying: \",round(Z,4),\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.6 - Page: 616\n",
+ "\n",
+ "\n",
+ "Height of continuous countercurrent isothermal absorber for drying: 0.2511 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 81
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.7: Page 619"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.7\n",
+ "# Page: 619\n",
+ "\n",
+ "print'Illustration 11.7 - Page: 619\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import numpy.linalg as lin\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# a: C2H4 b:C3H8\n",
+ "# The equlibrium curve is plotted in Fig.11.33 (Pg 620)\n",
+ "# C3H8 is more strongly adsorbed component and composition in the gas and adsorbate are expressed as weight fraction C3H8.\n",
+ "Ma = 28;# [kg/kmol]\n",
+ "Mb = 44.1;# [kg/kmol]\n",
+ "xaF = 0.6;# [mole fraction]\n",
+ "xbF = 0.4;# [mole fraction]\n",
+ "xa1 = 0.05;# [mole fraction]\n",
+ "xa2 = 0.95;# [mole fraction]\n",
+ "#***************#\n",
+ "\n",
+ "xF = xbF*Mb/((xbF*Mb)+(xaF*Ma));# [wt. fraction C3H8]\n",
+ "xb1 = 1-xa1;# [mole fraction]\n",
+ "x1 = xb1*Mb/((xb1*Mb)+xa1*Ma);# [wt. fraction C3H8]\n",
+ "xb2 = 1-xa2;# [mole fraction]\n",
+ "x2 = xb2*Mb/((xb2*Mb)+(xa2*Ma));# [wt. fraction C3H8]\n",
+ "# Basis: 100 kg feed gas\n",
+ "F = 100.0;# [kg]\n",
+ "# (1): R2+PE = F [From Eqn. 11.63]\n",
+ "# (2): (R2*x2)+(PE*x1) = (F*xF) [From Eqn. 11.64]\n",
+ "# Solving simultaneously:\n",
+ "a = [[1, 1],[x2 ,x1]];\n",
+ "b = [F,(F*xF)];\n",
+ "soln = lin.solve(a,b);\n",
+ "R2 = soln[0];# [kg]\n",
+ "PE = soln[1];# [kg]\n",
+ "# Point F at xF and point E1 at x1 are located on the diagram.\n",
+ "# From the diagram:\n",
+ "N1 = 4.57;# [kg carbon/kg adsorbate]\n",
+ "# The minimum reflux ratio is found as it is for the extraction.\n",
+ "delta_Em = 5.80;\n",
+ "Ratio = (delta_Em/N1)-1;# [kg reflux gas/kg product]\n",
+ "R1_m = Ratio*PE;# [kg]\n",
+ "E1_m = R1_m+PE;# [kg]\n",
+ "B_m = N1*E1_m;# [kg carbon/100 kg feed]\n",
+ "Ratio1 = 2*Ratio;\n",
+ "# From Eqn. 11.58:\n",
+ "N_deltaE = (Ratio1+1.0)*N1;# [kg carbon/kg adsorbate]\n",
+ "# Point deltaE is located on the diagram:\n",
+ "R1 = Ratio1*PE;# [kg]\n",
+ "E1 = R1+PE;# [kg]\n",
+ "B = N1*E1;# [kg]\n",
+ "N_deltaR = -(B/R2);# [kg carbon/kg adsorbate]\n",
+ "# Random lines such as the delta_RK are drawn from detaR, and the intersection of equilibrium curves are projected downward in the manner shown to provide the adsorption section operating curve.\n",
+ "# Similarly random lines such as delta_EJ are drawn from deltaE, and the intersections are projected downwards to provide the enriching section operating curve.\n",
+ "# Data = [x x_star]\n",
+ "Data = numpy.array([[0.967 ,0.825],[0.90, 0.710],[0.80 ,0.60],[0.70, 0.50],[0.60 ,0.43],[0.512 ,0.39],[0.40 ,0.193],[0.30, 0.090],[0.20, 0.041],[0.0763, 0.003]]);\n",
+ "Val = zeros(10);\n",
+ "for i in range(0,10):\n",
+ " Val[i] = 1/((Data[i,0])-Data[i,1]);\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x\");\n",
+ "plt.ylabel(\"1 / (x-x*)\");\n",
+ "plt.title(\"Graphical Integraion\");\n",
+ "# The area under the curve between x1 & xF, for the enriching section:\n",
+ "Area1 = 2.65;\n",
+ "# The area under the curve between xF & x2, for the adsorption section:\n",
+ "Area2 = 2.67;\n",
+ "r = Ma/Mb;\n",
+ "# From Eqn.11.66:\n",
+ "# For the enriching section:\n",
+ "NtoG1 = Area1-math.log((1+(r-1)*x1)/(1+(r-1)*xF));\n",
+ "# For the adsortion section:\n",
+ "NtoG2 = Area2-math.log((1+(r-1)*x1)/(1+(r-1)*xF));\n",
+ "NtoG = NtoG1+NtoG2;\n",
+ "print\"Number of transfer units: \",NtoG"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.7 - Page: 619\n",
+ "\n",
+ "\n",
+ "Number of transfer units: 5.77763695068\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVeXV9/HvAkRUlEERuw42gqJiASsyXDE+PppoYuIT\nuyimqDFqsEUjNkoIUVFjNBoFG7bYS8Q6yIugooKAIqAg2ECUomBBWe8f9znucZhy5pS9T/l9rmsu\nOHUvFmf2Ovte+763uTsiIlK5WiUdgIiIJEuFQESkwqkQiIhUOBUCEZEKp0IgIlLhVAhERCqcCoGU\nHDO7xMxub+LxaWa2fyG3UUrykQ8pbyoEkjMzO9LMXjKzL8xsgZlNNLNTCrjJJie/uHt3d3+hUNsw\nsxozm5/Jm5hZtZmtMrPEftfylA8pYyoEkhMzGwCMAIYBG7n7RsDvgX3NrG0jr8n1c2c5vj6JbRQk\nZjNrXYj3lcqiQiBZM7MOwKXAKe7+gLsvB3D3ye5+rLt/k3reKDO73syeMLMvgBozO8TMXjezpWY2\nz8wurvO+6W/RvzGzD8zsw1TBSXOgrZndambLUkMfu9d5/Vwz+3Hq763N7AIzm5167iQz2yz12NWp\nbS9N3b9flnmoNbPLzOz/pbYxxsw2SD2c/ia+xMw+N7M9U685yczeNLPPzOxJM9uyzvsdaGZvm9kS\nM7vOzMaaWf/UY/3MbLyZXWlmi4CLzWxrM3vOzBaZ2Sdmdkfq/6ahfKxpZiNSef3AzK5KF+zUkc77\nZvan1JHdh2bWL5ucSGlRIZBc7A2sCTycwXOPAi539/bAeOAL4Fh37wAcApxiZofVe00NsC1wIHBe\nemdG+HZ9KHAX0AF4BPhHndc50dDOn4Ajgf919/WAE4EvU4+9DOwCdARGA/c1dhST4b+vH9AZaAuc\nnbq/d+rPDu6+rru/lPp3/hn4BdAJGJf6t2BmnYD7gPOA9YG3CXmuO1TVC3gnta0hqXwMBjYBugFb\nAJc0ko8LU6/fJfXTC/hLneduBKwHbAr0B66rW1SkPKkQSC46AYvcfVX6DjN70cwWm9mKet+wH3L3\nCQDu/rW7j3X36anbU4G7gT713v9Sd//S3acBIwk727Rx7v6kh8Wy7iDs1BpyMnChu89Kb8vdP0v9\n/U53X+zuq9z9SkJR65pFHhwY6e6z3f0r4F6gRzolDTz/98BQd387lbuhQI/UUcHBwDR3fygV1zXA\nx/Ve/6G7X5d6/Ct3f8fdn3X3le6+CLiK1XOZdjRwmbsvSj33UuC4Oo+vTD3+nbv/l1Cws8mJlBAV\nAsnFp0CnumP+7r6Pu3dMPZa+34EfNFfNbE8ze97MFprZEuB3wAb8UN3XzCN8S01bUOfvK4B2jfQe\nNid8e16NmZ2dGp5ZYmaLCUcXnRr5tzan7s76S6B9E8/dCrg6VTAXE3IFsBnhW/379Z5f/3b9XG5k\nZnenhnWWArezei7TNgXeq3O7fl4/rVvYCblt6t8iZUCFQHIxAfga+HkWrx0NPARs7u5VwA2s/nnc\nst7fP8hiO/MJw0s/YGa9gXOAI9y9KlW8lpL/pm5DZx/NA37r7h3r/KyTOmL6iFC80nFa3duNvOcQ\n4Duge2qo7Tga/93+EKiuc3vL1H1SwVQIJGvuvoQwtPBPM/ulma1rZq3MrAewTp2nNrRzbQ8sdvdv\nzKwXYcii/g7uL2a2lpntSBh/vyeLMP8NXG5m21qws5mtn9r+t8AiM2trZgMJY+PZaqyAfAKsArap\nc98NwAVmtgOEpruZHZF67AlgJzM7zMzaAKcBGzez7fbAcmBZqhF+ThPPvYuQ106pfsRAwhGEVDAV\nAsmJuw8nNGTPJQyPfEzY0Z1LOGKAHzYr004FLjOzZcBFNLyTHwvMBp4Bhrv7M028X2Pn/V9JGLN/\nivCN/yagHTAGeBKYCcwlDOfMq/d+Tc1XaGr737/W3VcQGrnjU0NBvdz9IcLptnenhnKmAv+Tev4i\n4Ajgb8AiQvN3EuHIq7G4LgV2S/37HgXubyL2Qan3eyP1Myl1X2P/LqkAVqgL05jZLYSzQRa6+071\nHhsADAc6pRt3ImlmVg28C7SpN15dcVJ9j/nA0e4+Nul4pDwV8ohgJHBQ/TvNbAvgJ/ywYSUiKal5\nBFVmtiZwQeruiUnGJOWtYIXA3ccBixt46ErCsIFIUyp5iGJvwpDYJ4Sj6p+7+9dNv0Qke23i3Fhq\nIs377v5GOBlCZHXuPheo2KUT3P1Swri/SCxiKwRmtjbhMPcnde+Oa/siItKwOI8ItiGcvzwldTSw\nOfBq6iyKhXWfaGaVPCwgIpI1d2/xF+zYTh9NTe3fyN27uHsXwmzJ3eoXgTrP1487F198ceIxFMuP\ncqFcKBdN/2SrYIXAzO4CXgS2N7P5ZnZivafoW38G5s6dm3QIRUO5iCgXEeUidwUbGnL3o5p5fOtC\nbVtERDKnmcVFrl+/fkmHUDSUi4hyEVEuclewmcW5MDMvxrhERIqZmeHF3CwuNu7hp9jV1tYmHULR\nUC4iykVEuchdxRaCQw6BCROaf56ISLmr2KGhs86CDTeECy5o/rkiIqVAQ0Mt1LcvPP980lGIiCSv\nYgtB794wcSJ8XeRLeWn8M6JcRJSLiHKRu4otBB07wvbbwyuvJB2JiEiyKrZHAHD22dChA1x0UcE3\nJSJScOoRZKGmBnRUKSKVrqILQe/e8NJLxd0n0PhnRLmIKBcR5SJ3FV0IOnSAbt1C01hEpFJVdI8A\n4NxzYZ114OKLY9mciEjBqEeQJc0nEJFKV/GFYL/9YNIk+OqrpCNpmMY/I8pFRLmIKBe5q/hCsO66\n0L271h0SkcpV8T0CgPPPh7Zt4bLLYtukiEjeqUeQg759NZ9ARCqXCgGw777w2muwYkXSkaxO458R\n5SKiXESUi9ypEADt28POO6tPICKVST2ClAsvBDMYNCjWzYqI5I16BDmqqdF8AhGpTCoEKfvuC1Om\nwPLlSUfyQxr/jCgXEeUiolzkToUgZe21YdddYfz4pCMREYmXegR1XHQRfPcdDBkS+6ZFRHKmHkEe\naN0hEalEKgR17L03TJ0Kn3+edCQRjX9GlIuIchFRLnKnQlDHWmvB7rurTyAilUU9gnouuQS+/BKG\nDUtk8yIiWVOPIE90HWMRqTQqBPXstRdMnw7LliUdSaDxz4hyEVEuIspF7lQI6mnXDnr2hHHjko5E\nRCQe6hE04LLLwplDw4cnFoKISIupR5BHmk8gIpVEhaABvXrB22/DkiVJR6Lxz7qUi4hyEVEucqdC\n0IA114Q991SfQEQqQ0F7BGZ2C3AIsNDdd0rdNxz4KfAN8A5worsvrfe6RHsEEK5L8NlncOWViYYh\nIpKxYu0RjAQOqnffU8CO7r4LMBP4c4FjyIquYywilaKghcDdxwGL6933tLuvSt18Cdi8kDFkq2dP\nmDUrHBUkSeOfEeUiolxElIvcJd0jOAl4IuEYGtS2bViETn0CESl3bZLasJldCHzj7qMberxfv35U\nV1cDUFVVRY8ePaipqQGibwCFvt23bw3PPw8dOsSzvYZu19TUxLo93S6d22nFEk9St9P3FUs8cd6u\nra1l1KhRAN/vL7NR8AllZlYNPJpuFqfu6wf8Bvixu3/VwGsSbxYDTJgAv/99uISliEixK9Zm8WrM\n7CDgHOCwhopAMdljD5gzBz79NLkY6n/7q2TKRUS5iCgXuStoITCzu4AXga5mNt/MTgKuBdoDT5vZ\n62b2z0LGkIs11ggXtR87NulIREQKR2sNNWPYMPjgA7jmmqQjERFpWskMDZUarTskIuVOhaAZu+0G\n8+bBJ58ks32Nf0aUi4hyEVEucqdC0Iw2bWC//dQnEJHypR5BBv7+93D20HXXJR2JiEjj1CMoIF3H\nWETKmQpBBnbdNZw5tGBB/NvW+GdEuYgoFxHlIncqBBlo3Rp699ZRgYiUJ/UIMnTllWE10uuvTzoS\nEZGGqUdQYJpPICLlSoUgQzvvDAsXwkcfxbtdjX9GlIuIchFRLnKnQpCh1q1h//3VJxCR8qMeQQuM\nGAFvvgk33ph0JCIiq1OPIAa6jrGIlCMVghbYaadwbYIPPohvmxr/jCgXEeUiolzkToWgBVq1gj59\ndFQgIuVFPYIWuvbacOnKf/876UhERH5IPYKYaD6BiJQbFYIW2mEHWLYsXKMgDhr/jCgXEeUiolzk\nToWghVq10mqkIlJe1CPIwnXXwauvwi23JB2JiEhEPYIYqU8gIuVEhSAL3brBihUwd27ht6Xxz4hy\nEVEuIspF7lQIsmCmPoGIlA/1CLJ0ww0wYQLcemvSkYiIBOoRxCx9RFDk9UpEpFkqBFnq2hW++Qbm\nzCnsdjT+GVEuIspFRLnInQpBlsx09pCIlAf1CHJw440wbhzcfnvSkYiIqEeQiPQRQQnULBGRRqkQ\n5GDbbUMReOedwm1D458R5SKiXESUi9ypEORAfQIRKQfqEeTo5pvh2Wdh9OikIxGRSqceQUI0n0BE\nSp0KQY623hratIGZMwvz/hr/jCgXEeUiolzkToUgR1p3SERKXcF6BGZ2C3AIsNDdd0rdtz5wD7AV\nMBf4P3df0sBrS6ZHADByJIwZA3ffnXQkIlLJirFHMBI4qN595wNPu/v2wLOp2yWvb1/1CUSkdBWs\nELj7OGBxvbsPBdLrdd4K/LxQ249TdTW0awczZuT/vTX+GVEuIspFRLnIXdw9go3cfUHq7wuAjWLe\nfsFoPoGIlKqCziMws2rg0To9gsXu3rHO45+5+/oNvK6kegQQrkvw+ONw771JRyIilSrbHkGbQgTT\nhAVmtrG7f2xmmwALG3tiv379qK6uBqCqqooePXpQU1MDRIeCxXS7XTuora3BHcaOTT4e3dZt3S7/\n27W1tYwaNQrg+/1lNjI6IjCzbkA1sAp4z90zGg1v4Ijgb8Cn7j7MzM4Hqtx9tYZxKR4RAGyzDTz8\nMHTvnr/3rK2t/f4DUOmUi4hyEVEuInk/IjCzLsBZwMHAB8CHgAGbmNnmwGPAVe4+t5HX3wX0ATqZ\n2XxgIPBX4F4z60/q9NGWBlzM0vMJ8lkIREQKrdEjAjO7F7gJqHX3lfUeWwPoC5zs7nnfmZfqEcEd\nd8CDD8L99ycdiYhUomyPCLToXB69/z706AELF0IrzdkWkZgVZEKZmQ1O/Xl5toFVks03h44dYdq0\n/L1nujEkykVdykVEuchdc99bXzaz64BJcQRTDjSfQERKTVM9gouB9YHjgNuBz9z90liCKtGhIQjX\nJbjvvtArEBGJU96Hhurs9PcJN+MpAqWupgbGjoVVq5KOREQkM80NDY1MzRkYGUcw5WDTTWHDDeGN\nN/Lzfhr/jCgXEeUiolzkrslC4O6TzWwQMD19n5l1MLNRhQ6slKlPICKlpNnTR81sKPA/wImEReKu\nBf7h7tcWLKgS7hEA3HMP3HknPPJI0pGISCUp6DwCMzsAeJSwrHQfd5/V8hBbEFSJF4KPP4Zu3WDR\nImjdOuloRKRSFOzCNGbWB7gGuBwYC1xjZpu1PMTKsfHGsMkmMHly7u+l8c+IchFRLiLKRe4yWX10\nOPArd38TwMwOB54DuhYysFKXXndo992TjkREpGmZ9AjauPu39e7r5O6LChZUiQ8NQZhLcOut8Nhj\nSUciIpUilrWGzOwxd/9pSzfSUuVQCBYuhO22g08/hTZxX/VBRCpSXBevV28gQ507wxZbwOuv5/Y+\nGv+MKBcR5SKiXOSupYUgx91aZdF8AhEpBZn0CDq7+8J693V197cLFlQZDA1BuC7BzTfDE08kHYmI\nVIJCDg2NM7NfpzZiZjYAeKilG6pEffrA+PGwcmXzzxURSUomhaAGONbM7iPMI+gK9CxkUOWiUyeo\nroZXX83+PTT+GVEuIspFRLnIXbOFwN0/AsYQViGtBka5+xcFjqtspOcTiIgUq0x6BM8AHwGnA1sA\nNwMvuPvZBQuqTHoEAA89BNdfD2PGJB2JiJS7gs0jMLNfuPuDdW63Af7s7gW7fGU5FYLPPgvDQ59+\nCmuskXQ0IlLO8t4sNjMDqFsEUre/TReB9HOkceuvD9tsA6+8kt3rNf4ZUS4iykVEuchdUz2CWjM7\nx8y2r/+AmXU1s/MIzWNphuYTiEgxa+qaxWsCxwBHAd2BzwED2gPTgDuB0e7+Td6DKqOhIQjXJbj2\nWnj66aQjEZFyVujrEbQGOqVuLnL371q6oRYFVWaFYMmSsNzEokWw5ppJRyMi5aqgaw25+3fuviD1\nU9AiUI6qqmD77bPrE2j8M6JcRJSLiHKRu5auNSRZUp9ARIpVi5ahjku5DQ0BPP44XHEFPPdc0pGI\nSLnKe4/AzMYATwL/dfcZOcbXsqDKsBAsXQqbbRb6BO3aJR2NiJSjQvQI+gFLgEvM7HUzu8HMDjOz\ndbINspJ16AA77AAvvdSy12n8M6JcRJSLiHKRu0YLgbt/5O4j3f1IYA/gttSfT5nZs2Z2blxBlgut\nOyQixSirHoGZbQgc6O535j+k8hwaAvjvf2HYMBUDESmMWK5ZHJdyLQSffw6bbAKffAJrrZV0NCJS\nbuK6ZrHkYN11oXt3mDgx89do/DOiXESUi4hykTsVgphpPoGIFJtsewQnuvvIAsSTfv+yHBqCcF2C\nwYPhhReSjkTy4eWXYffdoXXrpCMRiX9o6LIsXweAmf3ZzKab2VQzG51a4K4i7LsvvPYarFiRdCSS\nqxkzYO+9YdSopCMRyU1T1yOY2tgP0DnbDZpZNfAbYDd33wloDRyZ7fuVmvbtYZdd4MUXM3u+xj8j\nxZaLQYPgV7+Ciy6CZcvi3Xax5SJJykXu2jTxWGfgIGBxA49luBtr0DJgJbC2mX0HrA18kMP7lZz0\nfIIDDkg6EsnWjBnw1FMwezaccQYMHRp+REpRU0tM3AKMdPdxDTx2l7sflfVGzX4LXAF8CYxx9+Pq\nPV62PQKAZ56Biy+G8eOTjkSydeyx0K0bXHghfPgh7LxzWF22S5ekI5NKVjLzCMxsG+BRoDewFLgP\n+E/dyWnlXghWrIDOnWHBAlhHC3aUnLffhv32g3fegfXWC/cNHgyTJ8N99yUbm1S2bAtBU0NDhbIH\n8KK7fwpgZg8A+xCuePa9fv36UV1dDUBVVRU9evSgpqYGiMYES/X2yy/X0qULjB9fw4EHNv38uuOf\nxRJ/UrfT9yUdzx/+UMuhh8J660WP77EH3HRTDS+8AKtWFT6eyZMnc+aZZyby7y+22yNGjCir/UNL\nbtfW1jIqdbZCen+ZjSSOCHYh7PR7Al8Bo4CX3f26Os8p6yMCgIEDYeXK5seVa2trv/8AVLpiyEVD\nRwNp99wTlhB55ZXCn05aDLkoFspFpGSGhgBSC9adAKwCXgNOdveVdR4v+0Lw3HNhfHnChKQjkZY4\n7jj40Y/C/1197qFInHwynHhi/LGJlFQhaE4lFIIvv4QNN4SPPgpLT0jxmzkzzANp6Ggg7ZVX4LDD\nwpGD/l8lblprqMSstVaYkdrcmUN1x8crXdK5GDQonCraWBEA6NkTfvIT+OtfCxtL0rkoJspF7lQI\nEqR1h0rHzJlhGfHTT2/+uUOGwL/+BXPnFjwskbzQ0FCCxo6Fc84J69VIcTv+eNh+e/jLXzJ7/uWX\nw7RpoYEsEhf1CErQV19Bp05hQlJTww2SrHRvYPbscMnRTKxYEZrKo0eHBrJIHNQjKEHt2kGvXjBu\ntbnbEY1/RpLKxaBB8Mc/Zl4EANZeO5xKeuaZsGpV/mPS5yKiXOROhSBhuo5xcZs1K/QG/vjHlr/2\nyCNhjTXg9tvzH5dIPmloKGHjxsFZZ8GkSUlHIg054QTYdtuwwmg2XnoJDj88nE7avn1+YxOpTz2C\nEvX116FPMH8+VFUlHY3UNWsW7LNPy3oDDTn22LAY3eWX5y82kYaoR1Ci1lwT9tyz8T6Bxj8jcedi\n0KBwumguRQDCMiL//Ce8915+4gJ9LupSLnKnQlAENJ+g+MyaBY8/nl1voL4ttggF5fzzc38vkULQ\n0FARGD8+7Cheey3pSCStXz/YeuuwOGA+LF8eTie9554w3CRSCOoRlLBvvgl9grlzYf31k45GZs8O\n1yKeNSu/fZs77oBrroGJE6GVjsWlANQjKGFt24YdzwsvrP6Yxj8jceUi3RvId/P+6KPBDO68s/nn\nNkefi4hykTsVgiKh+QTFYfZseOyx/PQG6mvVCkaMgD//OQwViRQLDQ0ViYkT4Xe/gylTko6ksp14\nIlRXh2tKF8rRR8N228GllxZuG1KZ1CMocStXwgYbwJw54U+J3+zZsNde4c9CzumYNw923RVefx22\n3LJw25HKox5BiVtjjbCw2dixP7xf45+RQudi8ODC9Abq23JLOO20MESULX0uIuWcizvugGeeKfx2\nVAiKSN++6hMkZfZsePTRcOGZOJx7bij6ulSpNGbxYhgwADp3Lvy2NDRURF5+Gfr3h6lTk46k8px4\nImy1FVxySXzbvO22MOP4xRd1Oqms7uyzYelSuOmmzF+jHkEZ+Pbb0B+YPTtcz1ji8c47YZmPQvcG\n6lu1Kmz3zDPhmGPi264Uv3S/ato02HjjzF+nHkEZaNMmXMSkbp+gnMc/W6pQuRg8GP7wh/gX/Uuf\nTnr++S0/nVSfi0g55uK888KwUEuKQC5UCIqM1h2K1zvvwCOPhG/lSdh33/Dz978ns30pPmPHwquv\nxvuZ1NBQkXn11XB93OnTk46kMpx0UjiLJ87eQH3vvQe77RbmkGy+eXJxSPJWrYKePcO1zI88suWv\nV4+gTHz3XVh3aMYM2GijpKMpb+++Gy4VOmsWdOyYbCx/+UsoCLqaWWW79Va44YZwAoG1eHeuHkHZ\naN0aeveOTiMtx/HPbOU7F4MHh/P5ky4CEPoEzz0XrmiWCX0uIuWSi+XL4cIL4aqrsisCuVAhKEJa\nd6jw3n0XHn44ud5Afe3bh8J05plQoQfDFe9vf4P99w9nC8VNQ0NF6PXX4aijwvCQFEb//mE8vpjW\n+0mPDw8YENYjksrx/vuwyy7hmiRbbZX9+6hHUEZWrQp9gunTYZNNko6m/BRTb6C+cePCnIIZM2Dt\ntZOORuJy/PHhSnaDB+f2PuoRlJFWrcIhYm1t+Yx/5kO+cjFkCJx6avEVAQj9ob32av50Un0uIqWe\ni0mTwnpCSV7KVIWgSGk+QWG8+y489FDx9AYaMmwYXH11GC6Q8uYOZ50Fl10G666bXBwaGipSU6bA\nEUfAzJlJR1JeTj4ZNt00/OIVswsuCIXgttuSjkQK6T//gcsvD72B1q1zfz/1CMrMqlVh1cEpU2Cz\nzZKOpjzMmROasTNnFv+1oT//HLp2DUcvvXolHY0UwtdfQ7duYVG5H/84P++pHkGZadUK+vSBf/6z\nNulQikauY8FDhsAppxR/EYAwTDBoUOOnk5b6uHg+lWourrkGunfPXxHIhQpBEevbNzSRvvsu6UhK\n35w58MADYTy2VJxwAnz1FdxzT9KRSL598knoBQ0fnnQkgYaGitiXX8Ihh4Tzim++WWvW5+I3vwkr\nOV5+edKRtMzYseHUwhkzYK21ko5G8uXUU8NVCa++Or/vqx5BmVq+HA4+GLbfHv71LxWDbMyZA3vs\nEeYNlMKwUH2/+hX06BHWI5LSN316WD3g7bfz/3ksqR6BmVWZ2X/M7C0ze9PMEphUXRpeeaWWxx+H\nt94K6+JUcn3Mdiw4PW+gFIsAhKUHrroKPvwwuq9Ux8ULodRycfbZYU2hYvo8JvX98mrgCXfvBuwM\nvJVQHCWhfXt44gmYPBn++MfKLgYtNXdu6fUG6tt66zC0dcEFSUciuXryyXANjFNPTTqSH4p9aMjM\nOgCvu/vWTTxHQ0MNWLoUfvKTcCGTK6+Mf4XCUvTb34bTcAcNSjqS3CxbFk4nffTRMMwlpefbb8N6\nQkOHwqGHFmYbpTQ01AX4xMxGmtlrZnaTmWlVlQx06ABjxsALL4RL2alWNm3uXLj//tI+Gkhbb73Q\n6NbqpKXrppvCNUZ+9rOkI1ldEkcEewATgH3c/RUzGwEsc/eBdZ7jJ5xwAtXV1QBUVVXRo0cPampq\ngGhMsBJu1x3/TD/+8MO1DBgA//d/NQweDGPHFk+8hbydvi/T548eXUPnznDAAcURf663e/euYffd\n4bDDaunYcTJnptbJKJb4kro9YsSIot8/fPEF9O9fw5gxsGRJ/t6/traWUaNGAVBdXc2ll16a1REB\n7h7rD7AxMKfO7f2Ax+o9xyV4/vnnG7z/k0/cu3d3Hzgw3niS1FguGjJ3rvsGG7gvWlS4eJLw3HPu\nW23l/uSTzycdStFoyeciKeec437SSYXfTmrf2eL9ciKnj5rZC8DJ7j7TzC4B1nL38+o87knEVWoW\nLgyTzo46SqcW1ve734WlvHNd1rcYHX44VFXBiBFhyEiKW3rZ86lTC7+sfCn1CABOB+40symEs4aG\nJBRHSevcGZ59Fu64A/7616SjKR7vvRcW8/rTn5KOpDBuvDH0Cbp1C9c4XrUq6YikKeeeG/pUxXxt\nkUQKgbtPcfee7r6Lux/u7kuTiKMU1B0fb8jGG4dr3d58M1xxRTwxJaW5XKQNGQK//z1ssEFh40lK\np05wwgm13H9/WK9mv/3C6pWVKtPPRRLGjYOXXy7+LyVtkg5AcrfppuHaBX36QJs2cMYZSUeUnPTR\nQCUs373XXuFi9yNHhtnnhx0WTpPdcMOkIxMIR2pnnRWO1ot9eRAtMVFG3nsvTF0/++wwC7kSpY8E\nyrE30JQlS+Dii2H0aBg4MKyy2kZf8xJ1++3wj3/AhAnxLQ2jtYYECOvq1NSEKey//W3S0cTrvfdg\nt93C0UC5Dgs1Z9q0MPt80aIwbJQ641Bitnw5/OhHYeXYffaJb7ul1iyWDLV0/LNLl9AzGDQIbrml\nMDElpblcDB0azhaqhCLQWC66dw8nEAwcGJax/vWvYf78eGOLWzH2CP7+97ACQJxFIBcqBGVom23C\ndQwGDoRbb006mnjMmwf33Vf8Tbk4mIUVS996K3wr3XXXMFT21VdJR1YZPvggHI2V0pl8GhoqYzNm\nhKsf/e2cHgWGAAAJbUlEQVRvcMwxSUdTWKecAh07hjOG5IfmzAkF8o03wiqmP/uZ1qkqpH79wqmi\nQ4fGv231CKRB06fDAQeEyUe//nXS0RTGvHnhW+/bb4dTK6VhTz0Vziirrg6fh65dk46o/Lz6Kvz0\np+GzmMRkP/UIylSu45877hgWqjvjjLAAWylrLBdDh4bGeCUVgWw+FwceCFOmhC8G++4bJjotW5b/\n2OJWLD0C93DkdemlpTfjW4WgAuy8c1gH/dRT4eGHk44mv+bNg3vvhQEDko6kNLRtG3I1bVq4bq5m\nJ+fPgw/C4sXQv3/SkbSchoYqyKuvholHN98cDl/LwSmnhHV3khiPLQcTJ8Lpp4fr5/7jH+H0W2m5\nr78OR9/XXx+uGZIU9QgkIy+/HIrAbbfBQQclHU1u5s8P1/JVbyA3q1aF2ckXXhhmJw8erHy21BVX\nhNn9jz2WbBzqEZSpfI9/9uoVhoeOPx6efjqvb11w9XMxdGi4hGMl7rTy+blo1SoMZ8yYAe3awQ47\nhKODb7/N2yYKKu4ewYoVMGkSjBoVhtkOPDBcNGj48FjDyCsVggq0997hOr7HHBO+xZSi+fPDrE31\nBvKnqgquvjpMSHzggTBMNHZs0lEl57vvwiz1+++HSy6BX/4Stt8+TFjs3z/M1encOVw17q23Qr+l\nVGloqIKNHQtHHBEWadt//6SjaZlTTw1nZpTSpJ1S4h52gAMGhC8Ow4fDFlskHVVhuMPHH4frBUyd\nGhrpU6eGnftGG8FOO/3wZ7vtQk+lGKlHIFl59tlwYZsHHwynFJaCdG9gxgyttFloK1bAsGFw3XVh\nJc0BA8LwUan6/PMwtya900//wOo7/B13hHXXTTbellIhKFO1tbXfX6u0UJ56Co49Fh55JCxtXKzS\nuTjttPALWslHA3F8Luoq5tnJDeVi5cowrFN3Zz9tGixYEIZw6u7wu3cP1/Uoln9PLrItBFqoVjjw\nwND4OuywcNZDz55JR9S4+fPh7rvD0YDEp0uXcNSYnp18/fVw5ZWw7bbJxuUeLtn6xBM/3OnPnBmG\nstI7+xNOCH9usw20bp1szMVIRwTyvUcfhZNPhv/+t3jPJz/tNGjfPgxXSDK++SacVTRoUBhqSVqn\nTtE3+/SOf4cdYO21k44sfhoakrx48MEwSWvMGNhll6Sj+aH33w8xqTcg0jDNIyhTcZ8j/YtfwLXX\nhslm06bFuulmnX56LSefrCIAxbO+TjFQLnKnHoGs5ogjwjnUBx4YziqK+/xo97B2/hdfhJ/ly0OT\n79ln4cYb441FpBJoaEgadccdcN55YYJRY0sWf/NNtMNO77Rbcrux57RtG3oB66wT/mzfPsyGPvXU\neHMgUkp01pDk3bHHhmUG+vQJV7pqaIftHk7lrL/Tbuh2hw6w2WZNP2eddcKPLrwuEh8dERS5uM8X\nb8hrr8HSpQ3vwNu2jS+OYshFsVAuIspFREcEUjDFeiqpiOSHjghERMqETh8VEZGsqBAUOZ0jHVEu\nIspFRLnInQqBiEiFU49ARKRMqEcgIiJZUSEochr/jCgXEeUiolzkToVARKTCqUcgIlIm1CMQEZGs\nJFYIzKy1mb1uZo8mFUMp0PhnRLmIKBcR5SJ3SR4RnAG8CWgMqAmTJ09OOoSioVxElIuIcpG7RAqB\nmW0OHAz8G2jxeFYlWbJkSdIhFA3lIqJcRJSL3CV1RHAVcA6wKqHti4hISuyFwMx+Cix099fR0UCz\n5s6dm3QIRUO5iCgXEeUid7GfPmpmQ4DjgG+BdsB6wP3ufnyd56hvICKShWxOH010HoGZ9QHOdvef\nJRaEiEiFK4Z5BPr2LyKSoKKcWSwiIvFJ9IjAzA4ysxlmNsvMzmvkOdekHp9iZrvGHWNcmsuFmR2T\nysEbZjbezHZOIs44ZPK5SD2vp5l9a2aHxxlfnDL8HalJTc6cZma1MYcYmwx+RzqZ2ZNmNjmVi34J\nhFlwZnaLmS0ws6lNPKdl+013T+QHaA3MBqqBNYDJQLd6zzkYeCL19z2BiUnFWwS52BvokPr7QZWc\nizrPew54DPhl0nEn+LmoAqYDm6dud0o67gRzcQkwNJ0H4FOgTdKxFyAXvYFdgamNPN7i/WaSRwS9\ngNnuPtfdVwJ3A4fVe86hwK0A7v4SUGVmG8UbZiyazYW7T3D3pambLwGbxxxjXDL5XACcDvwH+CTO\n4GKWSS6OJpx19z6Auy+KOca4ZJKLjwhnIZL681N3/zbGGGPh7uOAxU08pcX7zSQLwWbA/Dq330/d\n19xzynEHmEku6uoPPFHQiJLTbC7MbDPCTuD61F3l2ujK5HOxHbC+mT1vZpPM7LjYootXJrm4CdjR\nzD4EphCWsalELd5vtiloOE3L9Je3/jmx5fhLn/G/ycz6AicB+xYunERlkosRwPnu7mZmlO/ExExy\nsQawG/BjYG1ggplNdPdZBY0sfpnk4gJgsrvXmNk2wNNmtou7f17g2IpRi/abSRaCD4At6tzeglC5\nmnrO5qn7yk0muSDVIL4JOMjdmzo0LGWZ5GJ34O5QA+gE/K+ZrXT3R+IJMTaZ5GI+sMjdvwS+NLMX\ngF2AcisEmeRiH2AwgLu/Y2ZzgK7ApFgiLB4t3m8mOTQ0CdjOzKrNrC3wa6D+L/IjwPEAZrYXsMTd\nF8QbZiyazYWZbQk8ABzr7rMTiDEuzebC3bd29y7u3oXQJzilDIsAZPY78jCwX2pZ97UJzcE3Y44z\nDpnkYgZwAEBqTLwr8G6sURaHFu83EzsicPdvzewPwBjCGQE3u/tbZva71OP/cvcnzOxgM5sNLAdO\nTCreQsokF8BAoCNwfeqb8Ep375VUzIWSYS4qQoa/IzPM7EngDcIijje5e9kVggw/F0OAkWY2hfAl\n91x3/yyxoAvEzO4C+gCdzGw+cDFhiDDr/aYmlImIVLhiWGJCREQSpEIgIlLhVAhERCqcCoGISIVT\nIRARqXAqBCIiFU6FQESkwqkQiIhUOBUCkQykLoIzxczWNLN1Uhc+2SHpuETyQTOLRTJkZpcD7YC1\ngPnuPizhkETyQoVAJENmtgZh8bMvgb1dvzxSJjQ0JJK5TsA6QHvCUYFIWdARgUiGzOwRYDSwNbCJ\nu5+ecEgieZHkhWlESoaZHQ987e53m1kr4EUzq3H32oRDE8mZjghERCqcegQiIhVOhUBEpMKpEIiI\nVDgVAhGRCqdCICJS4VQIREQqnAqBiEiFUyEQEalw/x8ZY/mHSBnVIwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x9e2fda0>"
+ ]
+ }
+ ],
+ "prompt_number": 85
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.8: Page 627"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.8\n",
+ "# Page: 627\n",
+ "\n",
+ "print'Illustration 11.8 - Page: 627\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#******Data******#\n",
+ "rate = 0.1;# [kg/s]\n",
+ "conc = 3.0;# [kg vapour/100cubic m]\n",
+ "Density_p = 720.0;# [kg/cubic m]\n",
+ "Density_bed = 480.0;# [kg/cubic m]\n",
+ "capablity = 0.45;# [kg vapour/kg carbon]\n",
+ "dp = 0.0028;# [m]\n",
+ "time = 3.0;# [h]\n",
+ "#********************#\n",
+ "\n",
+ "Vap_adsorbed = time*3600.0*rate;# [kg]\n",
+ "C_required = Vap_adsorbed*1.0/capablity;\n",
+ "# Two beds will be needed: one adsorbing and another regenerated.\n",
+ "totC_required = 2*C_required;# [kg]\n",
+ "print\"Amount of carbon required: \",totC_required,\" kg\\n\",\n",
+ "Vol = (C_required/Density_bed);\n",
+ "# Assume:\n",
+ "Z = 0.5;# [m]\n",
+ "Area = Vol/Z;# [square m]\n",
+ "# From Eqn. 6.66:\n",
+ "T = 35.0;# [OC]\n",
+ "viscosity_air = 1.82*10**(-5);# [kg/m.s]\n",
+ "Density_air = (29/22.41)*(273.0/(T+273));\n",
+ "e = 1-(Density_bed/Density_p);\n",
+ "G = rate*(100.0/conc)*(Density_air/(Area));# [kg/square m.s]\n",
+ "Re = dp*G/viscosity_air;\n",
+ "Z = 0.5;# [m]\n",
+ "def f78(delta_p):\n",
+ " return ((delta_p/Z)*(e**3*dp*Density_air)/((1-e)*G**2))-(150*(1-e)/Re)-1.75\n",
+ "delta_p = fsolve(f78,7);\n",
+ "print\"The pressure drop is:\",round(delta_p,2),\" N/square m\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.8 - Page: 627\n",
+ "\n",
+ "\n",
+ "Amount of caron required: 4800.0 kg\n",
+ "The pressure drop is: 1413.31 N/square m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 88
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.9: Page 636"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.9\n",
+ "# Page: 636\n",
+ "\n",
+ "print'Illustration 11.9 - Page: 636\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Yo = 0.00267;# [kg H2O/kg dry air]\n",
+ "Yb = 0.0001;# [kg H2O/kg dry air]\n",
+ "Ye = 0.024;# [kg H2O/kg dry air]\n",
+ "Z = 0.61;# [m]\n",
+ "G_prime = 0.1295;# [kg/square m.s]\n",
+ "#******************#\n",
+ "\n",
+ "# The equilicrium data is plotted in Fig. 11.45 (Pg 637)\n",
+ "# The gel is initially \"dry\" and the effluent air initially of so low a humidity asto be substantially dry, so that the operating line passes through the origin of the figure\n",
+ "# The operating line is then drawn to intersect the equilibrium curve.\n",
+ "# Data = [Y[kg H2O/kg dry air] Y_star[kg H2O/kg dry air]]\n",
+ "Data =numpy.array([[0.0001, 0.00003],[0.0002, 0.00007],[0.0004 ,0.00016],[0.0006, 0.00027],[0.0008, 0.00041],[0.0010, 0.00057],[0.0012 ,0.000765],[0.0014, 0.000995],[0.0016, 0.00123],[0.0018 ,0.00148],[0.0020 ,0.00175],[0.0022 ,0.00203],[0.0024 ,0.00230]])\n",
+ "Val1 = zeros(13);\n",
+ "# Val1 = [1/(Y-Y_star)]\n",
+ "for i in range(0,13):\n",
+ " Val1[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "# Graphical Integration:\n",
+ "plt.plot(Data[:,0],Val1);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"Y(kg H20 / kg dry air)\");\n",
+ "plt.ylabel(\"1 / (Y-Y_star)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area under The curve between Y = Yb and Y = Y:\n",
+ "Area = [0 ,0.100 ,2.219 ,2.930 ,3.487 ,3.976 ,4.438 ,4.915, 5.432, 6.015, 6.728 ,7.716 ,9.304];\n",
+ "# The total number of transfer unit corresponding to adsorption zone:\n",
+ "NtoG = 9.304;\n",
+ "Val2 = zeros(13);\n",
+ "Val3 = zeros(13);\n",
+ "# Val2 = [(w-wb)/wo]\n",
+ "# Val3 = [Y/Yo]\n",
+ "for i in range(0,13):\n",
+ " Val2[i] = Area[i]/NtoG;\n",
+ " Val3[i] = Data[i,0]/Yo;\n",
+ "\n",
+ "# Eqn. 11.74 can be arranged as follows:\n",
+ "# f = integrate((1-(Y/Yo)),(w-wb)/wa,0,1)\n",
+ "\n",
+ "plt.plot(Val2,Val3);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"(w-wb) / wo\");\n",
+ "plt.ylabel(\"Y / Yo\");\n",
+ "plt.title(\"Break through curve\");\n",
+ "plt.show()\n",
+ "# From area above the curve of scf(2):\n",
+ "f = 0.530;\n",
+ "\n",
+ "Gs = G_prime;# [kg/square m.s]\n",
+ "# From Illustration: 11.6\n",
+ "kYap = 31.6*G_prime**0.55;# [kg H2O/cubic m s delta_Y]\n",
+ "kSap = 0.965;# [kg H2O/cubic m s delta_X]\n",
+ "# From Fig. 11.48:\n",
+ "Xt = 0.0858;# [kg H2O/kg gel]\n",
+ "# From Eqn. 11.76:\n",
+ "Ss = Yo*Gs/Xt;# [kg/square m.s]\n",
+ "m = 0.0185;# [average slope of equilibrium curve]\n",
+ "# From Eqn. 11.51 & Eqn. 11.52:\n",
+ "HtG = Gs/kYap;# [m]\n",
+ "HtS = Ss/kSap;# [m]\n",
+ "HtoG = HtG+(m*Gs/Ss)*HtS;# [m]\n",
+ "# From Eqn. 11.79:\n",
+ "Za = NtoG*HtoG;# [m]\n",
+ "# From Eqn. 11.74:\n",
+ "Degree = (Z-(f*Za))/Z;\n",
+ "Density_bed = 671.2;# [Illustration 11.6, kg/cubic m]\n",
+ "mass_gel = Z*Density_bed;# [kg/square m]\n",
+ "# At saturation point the gel contins:\n",
+ "Y1 = mass_gel*Degree*Xt;# [kg H2O/square m cross section]\n",
+ "# The air introduces:\n",
+ "Y2 = Gs*Yo;# [kg/square m s]\n",
+ "print\"Time to reach breakpoint is: \",round((Y1/(Y2*3600)),4),\" h\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.9 - Page: 636\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEZCAYAAABICyhRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8nPP5//HXWzZqOyKExHKCICSElLRqOZSgNKG2+Npi\na0m1pZugX+qrIpZqaWtfEiohlh+hkViag9oO4RDSSIKQRMSWRWzZrt8fn3vck8mcfWbuWa7n43Ee\nZ+7P3HPfn7kymevcn+2WmeGcc84V0hpJV8A551zl8eTjnHOu4Dz5OOecKzhPPs455wrOk49zzrmC\n8+TjnHOu4Dz5uIol6Y+S7mzk+Tck7Z3Pc5QySVtI+lySkq6LKz2efFzRkDRY0ouSlkiaL+kFSWfm\n8ZSNTnIzs95m9nS+ziGpRtLs5hxEUrWklZIS+z8raZak/VLbZva+ma1rPlnQtYInH1cUJP0G+Ctw\nOdDVzLoCZwA/kNSxgde09fNbiL/Yc32OvNRZUrtm7Gb5Or+rPJ58XOIkrQ9cDJxpZg+Y2RcAZlZv\nZseb2dJov5GSrpc0XtISoEbSIZJelbRI0vuSLko7bupq4XRJcyV9ECW5FAM6SholaXHUzNYv7fWz\nJP0wetxO0vmSZkb7viype/TcNdG5F0Xle7YyDrWS/k/Sf6JzTJS0YfR06gpsYdTU1T96zSmSpkr6\nTNIESVukHW+ApLckLZT0D0lPSTo1em6IpGclXS3pE+AiSVtJ+rekTyR9LOmf0b8NUdPhFsDD0fl/\nm3k1JqmbpHGSPpU0Q9JpaXX5o6SxDcXaVR5PPq4YfB/oBDzUjH2PBS4xs3WAZ4ElwPFmtj5wCHCm\npEEZr6kBtgEGAOemEgrhr/iBwBhgfWAc8Pe01xlxs9mvgcHAwWa2HnAy8FX0XB2wM7ABMBq4t6Gr\ntWa+vyHAxkBH4LdR+V7R7/Wjpq4Xo/d5HnA40AV4JnovSOoC3AucC3QG3iLEOb2JbHfg7ehcw6N4\nXApsCvQCNgf+CGBmJwDvA4dG578qS93vjvbZFDgSGC5p37Tnf0zDsXYVxpOPKwZdgE/MbGWqQNJz\nkhZI+jLjSuJBM3sewMy+MbOnzOzNaHsK4Qtwn4zjX2xmX5nZG8DthC/4lGfMbELUb/FPQhLJ5jTg\nAjObkTqXmX0WPb7LzBaY2Uozu5qQSLdrRRwMuN3MZprZ18BYoG8qJFn2PwO4zMzeimJ3GdA3uvr5\nEfCGmT0Y1eta4MOM139gZv+Inv/azN42syfNbJmZfQL8hdVjmZWkzYE9gHPNbKmZvQbcApyYtltz\nY+0qgCcfVww+Bbqk9+GY2R5mtkH0XKrcgFU66CX1lzRJ0keSFgI/AzZkVemveR/olrY9P+3xl8Ca\nDfQlbUa4SlhN1AQ1NWreWkD4y75LA++1KekJ4itgnUb23RK4JkrSCwixAuhOuPqYk7F/5nZmLLtK\nulvSHEmLgDtZPZYN6QZ8lmoyjbwf1SWlubF2FcD/4V0xeB74BjisFa8dDTwIbGZmVcANrP653iLj\n8dxWnGc2oeluFZL2An4HHGVmVVHCXETuO+azjSh7H/ipmW2Q9rN2dGU4j5AwU/VU+nYDxxwOrAB6\nR82YJ7BqLBsb1fYB0FlSerLcgtUTnnOAJx9XBMxsIWHAwXWSjpC0rqQ1JPUF1k7bNdsX+jrAAjNb\nKml34H9Y/UvyD5LWkrQjoT/lnlZU8xbgEknbKNhJUufo/MuBTyR1lHQhsF4rjp/SUNL6GFgJbJ1W\ndgNwvqQdIAzckHRU9Nx4oI+kQZLaAz8HNmni3OsAXwCLo8EUv8t4fn7G+b9lZrOB54DLJHWStBNw\nCqF5zbnVePJxRcHMriR06v+e0PT0IeHL9feEKyNYdQBAylDg/yQtBv6X7InlKWAm8ARwpZk90cjx\nGvrr/mpCH8xjhCubm4E1gYnABGA6MIvQVPZ+xvEau2Jo7PzfvtbMviQMBng2ambb3cweJAxNvztq\nJpsCHBjt/wlwFHAF8AlhAMHLhCvMhup1MbBr9P4eBu7P2OcyQiJfIOnXWep7LFBNuAp6ALjQzP7d\nyPl8flAFUz7nh0m6jTAC6SMz65NW/gvCl8YK4F9mdm5Ufh7hr6UVwC/N7LGovB8wkvCffbyZ/Soq\n7wTcQfgP8ylwjJm9l7c35EqKpGrgHaB9+mCGShT1rcwG/sfMnkq6Ps7l+8rnduCg9IJo6OVAYCcz\n6w1cFZXvABwD7BC95rqonRrgeuBUM+sJ9JSUOuapwKdR+V8IfwU65/h2nk9V9Efa+VHxC0nWybmU\nvCYfM3sGWJBRfCZheOiyaJ+Po/JBwJhomOcsQjNJf0mbAuuaWV203x3EHdMDgVHR4/uB1PwN51Iq\nuWnn+4T/Rx8TWiAOM7NvGn+Jc4WRRJ9PT2BvhXW7aiV9NyrvxqojY+YQhmlmls8lHr7ZnWi4qJkt\nBxZFncDOYWazzKxdpTa5mdnFZtbFzNYzs++b2UtJ18m5lPYJnXMDM/uepN0InbhbJVAP55xzCUki\n+cwhjITBzF6K1obqQrii2Txtv82ifeey6vyEVDnRc1sAH0TDSddPzTpPJ6mSm16cc67VzCwvi8km\n0ez2ILAfgKRtgY7RsNBxwOBorkQPQvNcnZl9SJh30D8agHAC8Rpg44CTosdHAk82dFIz8x8zLrro\nosTrUCw/HguPhcei8Z98yuuVj6QxhLWhNlS4b8mFwG3AbZKmAEuJ1n4ys6mSxgJTCZP2hlr87ocS\nhlqvRRhqPSEqvxW4U9IMwlDrwfl8P+Vg1qxZSVehaHgsYh6LmMeiMPKafMzs2AaeOqGB/YcTlvjI\nLJ8M9MlS/g1wdFvq6JxzrvB8hYMKM2TIkKSrUDQ8FjGPRcxjURh5XeGgWEiySnifzjmXS5KwMhpw\n4BJUW1ubdBWKhsci5rGIeSwKw5OPc865gvNmN+ecc1l5s5tzzrmy4smnwnh7dsxjEfNYxDwWheHJ\nxznnXMF5n49zzrmsvM/HOedcWfHkU2G8PTvmsYh5LGIei8Lw5OOcc67gvM/HOedcVt7n45xzrqx4\n8qkw3p4d81jEPBYxj0VhePJxzjlXcN7n45xzLivv83HOOVdWPPlUGG/PjnksYh6LmMeiMDz5OOec\nKzjv83HOOZeV9/k455wrK558sli2DM45B8rxYsnbs2Mei5jHIuaxKIy8Jh9Jt0maL2lKlud+I2ml\npM5pZedJmiFpmqQBaeX9JE2JnrsmrbyTpHui8hckbZmLenfoALffDp99loujOeecy5TXPh9JewFL\ngDvMrE9a+ebAzcB2QD8z+0zSDsBoYDegO/AE0NPMTFIdcJaZ1UkaD1xrZhMkDQV6m9lQSccAh5vZ\n4Cz1aHGfzy67wC23QL9+rXrrzjlX8kq2z8fMngEWZHnqauD3GWWDgDFmtszMZgEzgf6SNgXWNbO6\naL87gMOixwOBUdHj+4Ef5qru1dXw7ru5Oppzzrl0Be/zkTQImGNmr2c81Q2Yk7Y9h3AFlFk+Nyon\n+j0bwMyWA4vSm/HaokcPmDUrF0cqLt6eHfNYxDwWMY9FYbQv5MkkfQc4HzggvbgQ5x4yZAjV1dUA\nVFVV0bdvX2pqaoD4w5a+vWwZvPtuw8/7dulvpxRLfZLcrq+vL6r6JLldX19fVPUp5HZtbS0jR44E\n+Pb7Ml/yPs9HUjXwsJn1kdSH0JfzZfT0ZoQrmf7AyQBmNiJ63QTgIuA9YJKZ9YrKjwX2NrMzo33+\naGYvSGoPzDOzjbLUocV9Pg8/DNdfD+PHt/QdO+dceSjZPp9MZjbFzLqaWQ8z60FoTtvVzOYD44DB\nkjpK6gH0BOrM7ENgsaT+kgScADwUHXIccFL0+EjgyVzVtVyb3Zxzrhjke6j1GOA5YFtJsyWdnLHL\nt5cjZjYVGAtMBR4FhqZdrgwFbgFmADPNbEJUfiuwoaQZwNnAsFzVvbo6JJ9ym+uT2eRUyTwWMY9F\nzGNRGHnt8zGzY5t4fquM7eHA8Cz7TQb6ZCn/Bji6jdXMap11YO21Yf582GSTfJzBOecql6/t1ojd\ndoO//Q2+9708VMo554pc2fT5lJoePXyuj3PO5YMnn0aU46ADb8+OeSxiHouYx6IwPPk0wlc5cM65\n/PA+n0ZMmAB//jM8/ngeKuWcc0XO+3wSUo7Nbs45Vww8+TRiyy1h9mxYsSLpmuSOt2fHPBYxj0XM\nY1EYnnwaseaa0LkzzJuXdE2cc668eJ9PE/bYAy6/HPbaK8eVcs65Iud9PgnyuT7OOZd7nnyaUG6D\nDrw9O+axiHksYh6LwvDk0wSf6+Occ7nnfT5NePJJuOQS8D+GnHOVxvt8ElRuzW7OOVcMPPk0YfPN\nw1DrZcuSrklueHt2zGMR81jEPBaF4cmnCR06hPv5zJmTdE2cc658eJ9PM+yzD1x0Eey3Xw4r5Zxz\nRc77fBLmc32ccy63PPk0QzkNOvD27JjHIuaxiHksCsOTTzP4XB/nnMst7/NphqefhvPPh//8J4eV\ncs65Iud9PgnzKx/nnMstTz7N0L07fPIJfP110jVpO2/PjnksYh6LmMeiMPKafCTdJmm+pClpZVdK\n+q+k1yQ9IGn9tOfOkzRD0jRJA9LK+0maEj13TVp5J0n3ROUvSNoyH++jXbsw2fT99/NxdOecqzx5\n7fORtBewBLjDzPpEZQcAT5rZSkkjAMxsmKQdgNHAbkB34Amgp5mZpDrgLDOrkzQeuNbMJkgaCvQ2\ns6GSjgEON7PBWerRpj4fgP33h9/9Dg48sE2Hcc65klGyfT5m9gywIKPscTNbGW2+CGwWPR4EjDGz\nZWY2C5gJ9Je0KbCumdVF+90BHBY9HgiMih7fD/wwL28En+vjnHO5lHSfzynA+OhxNyB9EZs5hCug\nzPK5UTnR79kAZrYcWCSpcz4qWi5zfbw9O+axiHksYh6Lwmif1IklXQAsNbPRhTjfkCFDqK6uBqCq\nqoq+fftSU1MDxB+2xra//BLefbf5+/t28W+nFEt9ktyur68vqvokuV1fX19U9Snkdm1tLSNHjgT4\n9vsyX/I+z0dSNfBwqs8nKhsCnA780My+jsqGAZjZiGh7AnAR8B4wycx6ReXHAnub2ZnRPn80sxck\ntQfmmdlGWerQ5j6f55+Hs8+GF19s02Gcc65klGyfTzaSDgJ+BwxKJZ7IOGCwpI6SegA9gToz+xBY\nLKm/JAEnAA+lveak6PGRwJP5qrfP9XHOudzJ91DrMcBzwHaSZks6BfgbsA7wuKRXJV0HYGZTgbHA\nVOBRYGja5cpQ4BZgBjDTzCZE5bcCG0qaAZwNDMvXe9lkE1iyJPyUsswmp0rmsYh5LGIei8LIa5+P\nmR2bpfi2RvYfDgzPUj4Z6JOl/Bvg6LbUsbkk2HJLeO892HHHQpzROefKl6/t1gIHHww//zkcemgO\nKuWcc0WurPp8Slm5DLd2zrmkefJpgXKYaOrt2TGPRcxjEfNYFIYnnxbwEW/OOZcb3ufTAi+/DD/9\nKbzySg4q5ZxzRc77fIqEX/k451xuePJpgQ03hOXLYeHCpGvSet6eHfNYxDwWMY9FYXjyaQHJR7w5\n51wueJ9PCw0cCCefDIcfnpPDOedc0fI+nyLiVz7OOdd2nnxaqNQHHXh7dsxjEfNYxDwWheHJp4XK\nYaKpc84lzft8Wui11+D442HKlJwczjnnilY++3w8+bTQokXQvTt8/nkY/eacc+Uq0QEHkjpIOkTS\n5ZLukXR39PiQ6O6hFWX99aFjR/j006Rr0jrenh3zWMQ8FjGPRWE0mnwk/S/wEnAoMI1wL55RwFvA\nj4GXJf0h35UsNt7v45xzbdNos5ukgcDDDbVZSVoDONTMxuWpfjmRy2Y3gCOOgGOOgaMLchs755xL\nRmLNblFSWUPSVQ08v7LYE08++Fwf55xrmyb7fMxsBbCn5N3rKaU818fbs2Mei5jHIuaxKIzmDhio\nBx6SdC/wZVRmZvZAfqpV3Hr0gEceSboWzjlXupo11FrSyOjhKjub2cl5qFPO5brPZ+pU+MlPYNq0\nnB3SOeeKjs/zaaNcJ58vvoAuXcLvNXyNCOdcmUp8YVFJa0k6S9J1km6XdJuk2/JRoVKw9tqw3now\nf37SNWk5b8+OeSxiHouYx6Iwmvt3+51AV+AgoBbYHFjS1IuiJDVf0pS0ss6SHpc0XdJjkqrSnjtP\n0gxJ0yQNSCvvJ2lK9Nw1aeWdoomvMyS9IGnLZr6fNivlQQfOOZe05vb51JtZX0mvm9lOkjoA/zGz\n/k28bi9CkrrDzPpEZVcAn5jZFZLOBTYws2GSdgBGA7sB3YEngJ5mZpLqgLPMrE7SeOBaM5sgaSjQ\n28yGSjoGONzMBmepR06b3QAGD4Yf/xiOOy6nh3XOuaKReLMbsDT6vUhSH6AK2KipF5nZM8CCjOKB\nhFUSiH4fFj0eBIwxs2VmNguYCfSXtCmwrpnVRfvdkfaa9GPdD/ywme+nzXyuj3POtV5zk8/NkjoD\nfwDGAVOBK1p5zq5mluotmU9ozgPoBsxJ228O4Qoos3xuVE70ezaAmS0nJMfOraxXi5Rqs5u3Z8c8\nFjGPRawcY/HCC7BiRdK1WFVz5/k8aWafAU8BPQAkbdXWk0dNagUZbjdkyBCqq6sBqKqqom/fvtTU\n1ADxh60l24sXw6xZrX+9bye/nVIs9Ulyu76+vqjqk+R2fX19UdWnrdt33VXL0KEwf34N7do1vn9t\nbS0jR44E+Pb7Ml+a2+fzipntmlE22cz6NeO11YT14VJ9PtOAGjP7MGpSm2Rm20saBmBmI6L9JgAX\nAe9F+/SKyo8F9jazM6N9/mhmL0QrbM8zs9WaA/PR5zNjBhx0ELz9dk4P65xzOfX738PKlXBV1kXS\nGpfPPp9Gr3wk9QJ2AKok/QQQYaLpesCarTznOOAk4PLo94Np5aMlXU1oTusJ1EVXR4sl9QfqgBOA\nazOO9QJwJPBkK+vUYltsAXPmhEvZdu0KdVbnnGu+b76BkSPh2WeTrsnqmurz2ZZw64T1o9+HRr93\nBU5v6uCSxgDPAdtJmi3pZGAEcICk6cB+0TZmNhUYS+hPehQYmna5MhS4BZgBzDSzCVH5rcCGkmYA\nZwPDmvOmc6FTJ9hoI5g7t1BnzI3MJqdK5rGIeSxi5RSL+++HnXeGnj2TrsnqGr3yMbOHCGu6fd/M\nnm/pwc3s2Aae2r+B/YcDw7OUTwb6ZCn/BkjsxgapQQdbbJFUDZxzrmHXXw9nn510LbJrbp/PlcAl\nwFfABGBn4BwzuzO/1cuNfPT5AJxwAvzwhzBkSM4P7ZxzbfLGGzBgALz3HnTo0LpjFMM8nwFmtpjQ\n7DYL2Br4XT4qVEp8ro9zrljdcAOcdlrrE0++NTf5pJrnDgXuM7NFZKxwXYlKca5PObVnt5XHIuax\niJVDLJYsgdGj4fQme+aT09zk83A0RLof8KSkjYGv81et0uBXPs65YjRmDOy1F2y+edI1aVizb6kg\naUNgoZmtkLQ2YcmbD6PnDjCzx/NYzzbJV5/PrFmw997w/vs5P7RzzrWKGfTrB5deCgcf3LZjFf39\nfCS9ama75KA+eZGv5LN8ebi9wuefQ8eOOT+8c8612EsvwdFHhwnwa7TxfmPFMODAZdG+PXTrBrNn\nJ12T5iuH9uxc8VjEPBaxUo/F9dfDz35W/De6bO7abq4BqUEHW2+ddE2cc5VuwQJ44AGYPj3pmjTN\nm93a6JRTYI89wpBG55xL0jXXhBWsx4zJzfESa3aTtF4zj1NiA45zp0eP0htu7ZwrP2Zhbs+ZZyZd\nk+ZpqlXw1WgV6UaZ2U9yVJ+SU2pzfUq9PTuXPBYxj0WsVGPx1FOhn2evvZKuSfM0lXz2A46R9Lik\nIlyaLnk+18c5VwxuuAHOOAOUl0ay3Gvu2m4/AkYCLwEro2Izs4H5q1ru5LPPZ84c2G03mDcvL4d3\nzrkmzZ8P220X/hCuqsrdcRO7n0908u2B3wBPA/8gXlan4pfXgTDUesEC+OorWGutpGvjnKtEt90G\nRxyR28STb00NOBhBuNnbVWZ2pJlNMrPa6OepwlSxuK2xRrilwnvvJV2T5inV9ux88FjEPBaxUovF\nihVw002lM9Agpak+nxVAXzN7NFUg6ZH8Vqn0lNqgA+dc+Zg4ETbcEL773aRr0jItnudT7HN6ssln\nnw+E2cR9+5beXx7OudI3cCAMGgSnnpr7Yyc5z+cGSetnFNfnoyKlzOf6OOeS8P778OyzMHhw0jVp\nuaaa3d4GJks6LlVgZifnt0qlp5Sa3UqtPTufPBYxj0WslGJx881w3HFhgeNS0+hoNzO7UtJo4C+S\nTgGuJwy1VnjaHihAHYuez/VxzhXasmVwyy3wxBNJ16R1mjvP5yTgUuBJ4nk+JXMVlO8+n/nzYccd\n4ZNP8nYK55xbxX33wd/+FlY2yJfE5vlI6g1cB8wDdjMzn0qZxcYbh3k+n38O666bdG2cc5UgtaJB\nqWqqz+de4FIzO8YTT8Ok0O9TCk1vpdSenW8ei5jHIlYKsZg+HaZMgZ+U8KqaTSWffmY2sbEdpNat\nJCTpPElvSpoiabSkTpI6R+vITZf0mKSqjP1nSJomaUBaeb/oGDMkXdOauuRCKQ06cM6VthtvhJNP\nhk6dkq5J6zXa5yPpKeAR4CEzm57x3HbAYcAhZrZ3i04qVQP/BnqZ2TeS7gHGAzsCn5jZFZLOBTYw\ns2GSdgBGA7sB3YEngJ5mZpLqgLPMrE7SeOBaM5uQcb689vkAnHUWbLst/PKXeT2Nc67CffUVbL45\n1NXBVlvl91xJ3kZ7APAp8A9J86IrkhmS5gF/B+YD+7fivIuBZcB3JLUHvgN8AAwERkX7jCIkN4BB\nwBgzW2Zms4CZQH9JmwLrmlldtN8daa8pKL/ycc4Vwr33hsWM85148q3R5GNm35jZbWZ2ALAZsBew\nJ7CZmR1gZiPNbGlLT2pmnwF/Bt4nJJ2FZvY40NXM5ke7zQe6Ro+7AXPSDjGHcAWUWT43Ki+4Uhlu\nXQrt2YXisYh5LGLFHovrry/tgQYpTa5qnWJmKwgJoc0kbQ2cDVQDi4B7JR2fcT6TlLO2siFDhlBd\nXQ1AVVUVffv2paamBog/bG3Z/vRTePfd3B3Pt/O/nVIs9Ulyu76+vqjqk+R2fX19UdUnfbu+HmbO\nrGWddQByf/za2lpGjhwJ8O33Zb60eG23nJxUOgY4wMxOi7ZPAL5HuHndvmb2YdSkNsnMtpc0DMDM\nRkT7TwAuAt6L9ukVlR8L7GNmZ2ScL+99Pp99Fq5+Fi4snZs5OedKyxlnhNu4XHhhYc6XZJ9PvkwD\nvidprWi03P7AVOBh4KRon5MIt3MAGAcMltRRUg+gJ1BnZh8CiyX1j45zQtprCmqDDcLvhQuTOLtz\nrtx9/jnccw+cdlrSNcmNphYWnSjpnOiGcjljZq8RBge8DLweFd8EjAAOkDSdcBU0Itp/KjCWkKAe\nBYamXcoMBW4BZgAzM0e6FYpUGguMZjY5VTKPRcxjESvWWNx1F+y3X7jyKQdN9fkMAQ4C/hgNrX6R\n8OX/hJl90ZYTm9kVwBUZxZ/RwOg5MxsODM9SPhno05a65EpqxNuuuyZdE+dcOTELAw3+/Oeka5I7\nze7zkdQO6A8cTLgq+RqYGCWRolaIPh+Aq68OY+/vvjvvp3LOVZDnn4cTT4S33gp3Ty6UfPb5tHrA\ngaSNgAFmdlduq5R7hUo+S5aEprdnnw0TTp1zLhdOPBF23hl+85vCnrcoBxyY2celkHgKaZ11wkoH\nVxTxtWCxtmcnwWMR81jEii0Wn34K48bBkCFJ1yS3khrtVrZ+8Qv4f/8PZs9OuibOuXIwcmS4VfaG\nGyZdk9xKZJ5PoRWq2S3ld78LN3r6618LdkrnXBlauRK23z4koD32KPz5i7LZTVJJ3EguCeecA3fc\nAR9/nHRNnHOlbNIkWGst+P73k65J7rWl2e3/claLMtOtGxx9NFyT2A0eGlZs7dlJ8ljEPBaxYopF\nah23clw1pak7mU5p5OmNc1yXsvL738Puu4cmuPXXT7o2zrlS88EH8OSTcPvtSdckP5q6n898wiTT\nBVmefs7MSmKubaH7fFKOPx5694Zhwwp+audcibvkEpg7N9wuOymJzfORdBtwu5k9k+W5MWZ2bD4q\nlWtJJZ833oD994d33oHvfKfgp3fOlajly8P9esaNg759k6tHYgMOzOyUbIkneq4kEk+SeveG730P\nbrst6ZrEiqk9O2kei5jHIlYMsRg/Hrp3Tzbx5JvP88mz886DK6+EpS2+5Z5zrlLdcEN53DCuMT7P\npwD23z/0/5TbDGXnXO69+264Tfbs2WGYdZKKcp6Pa77zz4cRI2DFiqRr4pwrdjfdFNZySzrx5Jsn\nnwLYd1+oqgrL7iStGNqzi4XHIuaxiCUZi6VLQx/xz36WWBUKxpNPAUjh6mf48HBfDuecy+aBB8JA\npe22S7om+ed9PgWycmVYEv3KK+GggxKtinOuSNXUhJXxjzwy6ZoE3udTBtZYI4x8G77avVidcw6m\nToXp02HQoKRrUhiefAro6KPDjOVnss6cKgxv2495LGIei1hSsbjxRjj1VOjQIZHTF5wnnwJq3x7O\nPRcuuyzpmjjniskXX8A//wmnn550TQrH+3wK7JtvwrIZjzwCu+ySdG2cc8XgttvgwQfDcjrFxPt8\nykinTuE+7H7145xLqYQVDTJ58knAT38KtbXw1luFP7e37cc8FjGPRazQsZg8GT76CA48sKCnTVxi\nyUdSlaT7JP1X0lRJ/SV1lvS4pOmSHpNUlbb/eZJmSJomaUBaeT9JU6LnivD2batbZ50wnPLyy5Ou\niXMuaTfcECaVtmuXdE0KK7E+H0mjgKfM7DZJ7YG1gQuAT8zsCknnAhuY2TBJOwCjgd2A7sATQE8z\nM0l1wFlmVidpPHCtmU3IOFfR9PmkfPYZbLMN1NfDFlskXRvnXBIWLYLqapg2Dbp2Tbo2qyu7Ph9J\n6wN7mdltAGa23MwWAQOBUdFuo4DDoseDgDFmtszMZgEzgf6SNgXWNbO6aL870l5T1Dp3htNOg6uu\nSromzrkIhB78AAAWsElEQVSk3HlnaG4rxsSTb0k1u/UAPpZ0u6RXJN0saW2gq5nNj/aZD6T+SboB\nc9JeP4dwBZRZPjcqLwnnnBOGV370UeHO6W37MY9FzGMRK1QszOD66ytvoEFK+wTPuyuhuewlSX8F\nVrnZdNSklrO2siFDhlBdXQ1AVVUVffv2paamBog/bElsDx4M55xTy+mnJ3P+St5OKZb6JLldX19f\nVPVJcru+vr4g52vXroaVK8Gsltra4nj/tbW1jBw5EuDb78t8SaTPR9ImwPNm1iPa3hM4D9gK2NfM\nPoya1CaZ2faShgGY2Yho/wnARcB70T69ovJjgX3M7IyM8xVdn0/Ku+/Cd78Lb78dVr52zpU/Mzji\nCNhnH/jVr5KuTcPKrs/HzD4EZkvaNiraH3gTeBg4KSo7CXgwejwOGCypo6QeQE+gLjrO4miknIAT\n0l5TEnr0gEMOgeuuS7omzrlCGTEC3nknLKdTqZKc5/ML4C5JrwE7AZcCI4ADJE0H9ou2MbOpwFhg\nKvAoMDTtUmYocAswA5iZOdKtFAwbBtdcA19+mf9zZTY5VTKPRcxjEct3LEaNCjeMGz8+TLuoVEn1\n+WBmrxGGTmfav4H9hwOrrQltZpOBPrmtXWHtsAP84Adwyy3wy18mXRvnXL5MmBDWd6ythW7dkq5N\nsnxttyLx0kvwk5+Evp+OHZOujXMu115+GX70o7CG2x57JF2b5im7Ph+3ut12g169wtBr51x5eftt\nGDgwNLeVSuLJN08+ReT880NH5IoV+TuHt+3HPBYxj0Us17H46KNw9+ILL4TDSmIKfGF48iki++wD\nXbrA/fcnXRPnXC588QUceigMHly5k0kb4n0+ReaRR+APf4BXXwXlpaXVOVcIy5aFK52uXeHWW0vz\n/7P3+VSQQw4JE9AefTTpmjjnWsssXOmYhdtjl2LiyTdPPkVGgvPOg0svDR/cXPO2/ZjHIuaxiOUi\nFhddBK+/DmPHQocOba9TOfLkU4SOOip0Uj7zTNI1cc611I03wujR8K9/VfYk0qZ4n0+RuuUWuO++\nMCnNOVcaHnoIzjwz/OG49dZJ16bt8tnn48mnSH3zTfjwPvQQ9OuXdG2cc015/vkwl+fRR8NiweXA\nBxxUoE6d4Le/hcsuy+1xvW0/5rGIeSxirYnFtGlw+OFwxx3lk3jyzZNPETv9dHj6afjvf5OuiXOu\nIfPmwcEHhwniBx+cdG1Khze7Fbk//QlmzoTo/k7OuSKyeDHsvXcYJHTBBUnXJve8z6eNSjn5LFgA\n22wDkydDnm8s6JxrgaVLw0Kh224L//hHec7l8T6fCrbBBqH57aqrcnM8b9uPeSxiHotYc2KxciWc\nfDKsuy787W/lmXjyzZNPCTjnnDBv4MMPk66Jcw7CDSBnzQr/L9u1S7o2pcmb3UrEWWeFCWsjRiRd\nE+cq2zXXwA03wLPPQufOSdcmv7zPp43KIfm89x7sumsYfLDBBknXxrnKNHYs/PrXIfFsuWXStck/\n7/NxbLkl/PjHoWOzLbxtP+axiHksYg3ForY2tED861+VkXjyzZNPCTn3XLj22nCPEOdc4UyZAkcf\nDXffDTvvnHRtyoM3u5WYI4+EPfeEs89OuibOVYbZs8Otr6+4Ao49NunaFJb3+bRROSWfyZNh0KBw\nT/hOnZKujXPlbcGC8MfeKafAb36TdG0Kz/t83Lf69YPeveHOO1v3em/bj3ksYh6LWCoWX38d/tA7\n8MDKTDz5lmjykdRO0quSHo62O0t6XNJ0SY9Jqkrb9zxJMyRNkzQgrbyfpCnRc9ck8T4K7fzzw5Dr\n5cuTrolz5WnFCjjuOOjWLXcTvN2qEm12k/RroB+wrpkNlHQF8ImZXSHpXGADMxsmaQdgNLAb0B14\nAuhpZiapDjjLzOokjQeuNbMJGecpm2Y3CHc4PeII+OADGDUKttsu6Ro5Vz7M4Be/gDffDPfTquTm\n7bJsdpO0GfAj4BYg9eYGAqOix6OAw6LHg4AxZrbMzGYBM4H+kjYlJK66aL870l5TtqRwo7kTToAf\n/AD++tew3Idzru0uvzysJv/gg5WdePItyWa3vwC/A9K/Nrua2fzo8Xyga/S4GzAnbb85hCugzPK5\nUXnZW2MN+PnP4YUXQiLad194552mX+dt+zGPRcxjEW7gePnl8Je/1PLoo7D++knXqLy1T+Kkkg4F\nPjKzVyXVZNsnalLLWVvZkCFDqI6Wha6qqqJv377U1IRTp/7jleL2NtvAxRfXct99sPvuNfzpT7Dd\ndrVIxVG/Yt5OKZb6JLldX19fVPUp5PaTT9YycSKMHVvDDjvAaafVM2MGdO9eHPUr5HZtbS0jo/u3\nVOd5Gf1E+nwkDQdOAJYDawLrAQ8Q+nRqzOzDqEltkpltL2kYgJmNiF4/AbgIeC/ap1dUfiywj5md\nkXG+surzach//wsnnQRVVXDrrbD55knXyLnitXIl3HsvXHghbLIJXHppGFbtYmXX52Nm55vZ5mbW\nAxgM/NvMTgDGASdFu50EPBg9HgcMltRRUg+gJ1BnZh8CiyX1lyRCQnuQCtWrFzz3HNTUhHXgbr89\ndJ4652Jm8Mgj4f/IVVeFWyLU1nriKbRimeeT+oocARwgaTqwX7SNmU0FxgJTgUeBoWmXMkMJgxZm\nADMzR7pVmvbtw1DsJ54Iq+8OHBhu85uS2eRUyTwWsUqJxaRJYbWCYcPgoougrg4GDFj1fjyVEouk\nJdLnk87MngKeih5/BuzfwH7DgeFZyicDffJZx1K0887hP9af/gR9+8Jf/lJ5S4M4l/Lii+E217Nm\nwcUXw+DBfh+epPnyOhXg5ZdDX1CvXnDddbDxxknXyLnCeP11+N//hVdeCb9PPhk6dEi6VqWj7Pp8\nXGF997thTbittw5XRA88kHSNnMuv6dPDlf6AAWEawowZ8NOfeuIpJp58KsSaa4Y5DBdcUMuwYWHp\nkM8+S7pWyfK2/Vi5xOL99+G008Lk6969w80Xzz47fP6bq1xiUew8+VSY3r2hvh66dIE+fcKNsZwr\ndfPnw69+Ffo3N944XPlccEG49bwrTt7nU8Fqa0Mb+L77hgEJPqPblZoFC+DKK+HGG+H448NIz65d\nm36dax7v83F5UVMTOmQ7dICddgrDs50rBZ9/HkZy9uwJH38Mr74aphZ44ikdnnwqTGZ79rrrhr8a\nb7opXAUNHQpLliRTt0Lztv1YqcTi66/DVXrPnjB1Kjz/PNx8M2yxRe7OUSqxKHWefBwQbpg1ZQp8\n+WUYEff000nXyLnYsmXhD6SePUNz8WOPwejRYduVJu/zcasZNw7OOAOOOQaGD4e11kq6Rq4SLV0a\nJkpPmhTuW9WjR2hq698/6ZpVjnz2+XjycVl9+imcdVaYnHf77WFJEufyaelSeOmlcGUzaVJYlWD7\n7UPf5MCBsNdeSdew8njyaSNPPrHa2tpvl1JvjnvvhXPOCfMkDjww/Oy7b+grKnUtjUU5SyIWy5bF\nyaa2NtybqmfPkGz23Tcs9FlVVdAqAf65SJfP5JP42m6uuB11FBx5ZBgVN3FiGFF03HHQr1+cjPr2\nDTe3c64xy5aFlTYmTQrJ5vnnYZttQrI56ywYOzaZZOOS4Vc+rsW++CJ8eUycGH4WLoQDDgiJaMAA\nH+7qguXLQ7JJNaM99xxstVV8ZbPXXtC5c9K1dI3xZrc28uSTX7NmxYno3/8OXzCpq6I99oCOHZOu\noSuE5cvDfJvUlc2zz0J1dUg2NTWw996w4YbJ1tG1jCefNvLkE8t3e/ayZaGjOJWM3noL9tknTkbb\nbJO3U7eYt+3HWhOL5cvDUk2pK5v//CfMt9l33zjZdOmSj9rml38uYt7n40pGhw6ho3jPPeGSS+CT\nT8LKCRMnhtsUr7VWnIj22688Bi6UM7OwbtrMmfD226v+fuutcKv2mho45RQYORI22ijpGrtS4Vc+\nrmDM4I03YMKEkIxefDHcyjiVjHbZxQcuJGHFCpgzJ04qmYlmrbXC7Ti22Sb8pB5vu603o5U7b3Zr\nI08+xemLL+Cpp+Imus8+C001224bhtymvuw22WTV2xy7llu6NPTNZV69zJwZyrt0yZ5gtt7aF5yt\nZJ582siTT6yY27Pfey+MiEp9Kc6YEX5/+WX8pZielHr2hE03bX1iKuZYtJRZSN5z58I776x+9TJ3\nLmy2WfYE06MH1NWVTyzaqpw+F23lfT6uImy5ZfjJtGjRqgnpmWfCqgszZoRFULfeevWktM020K1b\n6TfjmcHixfDBB43/zJsH3/lOeM89eoT337s3DBoUHm+5pd/F0xUXv/JxJW3x4vCXfeoqKfV75syQ\ntNL/0k8lpZ49oXv35BPTkiXZk0hmWbt2Iak09rPppr4Gn8s9b3ZrI08+lenzz+Omp/SkNGNGuAlZ\nly7Qvn3806HDqtvN+WnOa9q1CxNxM5PK8uUhCWZLJOmPfUSgS0rZJR9JmwN3ABsDBtxkZtdK6gzc\nA2wJzAKONrOF0WvOA04BVgC/NLPHovJ+wEhgTWC8mf0qy/k8+US8PTtYsgT+9a9adtuthuXLafHP\nsmUt27+qavUks956xTOQwj8XMY9FrBz7fJYB55hZvaR1gMmSHgdOBh43sysknQsMA4ZJ2gE4BtgB\n6A48IalnlFGuB041szpJ4yUdZGYTknlbxa++vt7/YwHrrAPz5tWz1VY1SVelKPjnIuaxKIxEWr3N\n7EMzq48eLwH+S0gqA4FR0W6jgMOix4OAMWa2zMxmATOB/pI2BdY1s7povzvSXuOyWLhwYdJVKBoe\ni5jHIuaxKIzExwJJqgZ2AV4EuprZ/Oip+UBqicpuwJy0l80hJKvM8rlRuXPOuSKWaPKJmtzuB35l\nZp+nPxc1qXlHTY7NmjUr6SoUDY9FzGMR81gURmKj3SR1AB4BHjWzv0Zl04AaM/swalKbZGbbSxoG\nYGYjov0mABcB70X79IrKjwX2MbMzMs7lScw551qhrAYcSBJwKzA1lXgi44CTgMuj3w+mlY+WdDWh\nWa0nUGdmJmmxpP5AHXACcG3m+fIVPOecc62T1FDrPYGngdeJm9bOIySQscAWrD7U+nzCUOvlhGa6\niVF5aqj1WoSh1r8s2BtxzjnXKhUxydQ551xxSXy0W3NIOkjSNEkzovk/2fa5Nnr+NUm7NPVaSZ0l\nPS5puqTHJFWlPXdetP80SQPy++5appCxkFQt6StJr0Y/1+X/HTZfnmJxlKQ3Ja2QtGvGsSrtc5E1\nFhX6ubhS0n+j/R+QtH7ac5X2ucgaixZ/LsysqH+AdoR5PdVAB6Ae6JWxz48ITW4A/YEXmnotcAXw\n++jxucCI6PEO0X4dotfNBNZIOg4JxaIamJL0+y5wLLYHtgUmAbumHasSPxcNxaISPxcHpP69gRFU\n9vdFQ7Fo0eeiFK58dgdmmtksM1sG3E2YdJru28mpZvYiUCVpkyZe25IJrbvn5Z21XKFjUczyEgsz\nm2Zm07Ocr+I+F43EopjlKxaPm9nK6PUvAptFjyvxc9FQLFqkFJJPd2B22nZqgmlz9unWyGtbOqG1\nGBQ6FgA9okvoWoWBIsUiX7FoSCV+LhpTyZ+LU4Dx0eNK/1ykxwJa8Lkohfv5NHdERHOGUyvb8czM\n1PhcoGIZlVHoWHwAbG5mC6I2/wcl7WgZE4ITkstY5LsO+VboWFTs50LSBcBSMxudgzrkW6Fj0aLP\nRSkkn7nA5mnbm7PqXxrZ9tks2qdDlvK50eP5kjaxeELrR40cay7FoaCxMLOlwNLo8SuS3ibMsXol\nN2+nTXIZi2yvbep85fq5aDIWlfq5kDSE0EfywyaOVfafi2yxaPHnIulOsWZ0mrUH3iZ0ZnWk6U6z\n7xF3mjX4WkIn+7nR42Gs3oHYEegRvV5JxyGhWHQB2kWPt4o+fFVJxyGfsUh77SSgX9p2xX0uGolF\nxX0ugIOAN4EuGcequM9FI7Fo0eci8QA1M4gHA28ROvPOi8p+BvwsbZ+/R8+/xqojc1Z7bVTeGXgC\nmA48lh4k4Pxo/2nAgUm//6RiAfwEeAN4FZgMHJL0+y9ALA4ntHV/BXxIWP6pUj8XWWMBHFGBn4sZ\nhOW8Xo1+rqvgz0XWWLT0c+GTTJ1zzhVcKYx2c845V2Y8+TjnnCs4Tz7OOecKzpOPc865gvPk45xz\nruA8+TjnnCs4Tz6uZCh4RtJBaWVHSXpUUkdJT0laQ1KNpIfbcJ5ZkjqnbX97PEnHRUvJvy7pWUk7\npe3X5PL10X6bSpqYUVYtaUpr65xxrDa9/0aO203SvQ0811XS+GzPOZeNJx9XMixMSjsDuFpSJ0nr\nAJcCQ4HjgUcsXm23TadqZPsdYG8z2wm4BLgJQFI7wmS9gwiz3o+V1KuB4x8ETMhBPVtEUpuW0zKz\nD8zsqCzHbWdhYdrUml7ONcmTjyspZvYm8DDhvkMXAqPM7F3gWOChzP0l7SbpFUk9JG2kcNO8NyTd\nnHmFk/nSbI/N7HkzWxRtpi8n35zl61MOBB5t6D1K2iqqcz9J35E0VuGmbg9IekHh1vGZrzkousHX\nZMLKBKnyP0q6U9J/gDuiq8Od057/j6Q+GceqlvS0pMnRz/fTyqdEj4dIGifpScLqGADjCP8OzjWp\nFBYWdS7TxYQlPL4GvhtddfS2jHvPSNoDuBYYaGZzJP0deMLMLpd0IHBqA8cXMEnSimh7HeC/WfY7\nlXg5+WxL0/df7cChrtuZ2bSsJ5a2A8YAJ5nZFEm/BT41sx0l7UhYY8syXrMm4QpsXzN7W9I9Gfts\nD+xpZt9IOhEYApwjaVugk5llNvfNBw6I9u8JjAZ2y1LdXYA+ZrYw2q4Dfp3tfTmXya98XMkxsy8J\nVxZ3RlcZXYDMZdt7ATcCh5pZajXeH0Svw8wmAgsaOgVQY2a7mNkuwGlkLDsvaV/CvUzOTXtNc/Qn\nXDFlszHwIPA/aQkhvc5vAq9ned32wLtm9na0/c+0+howzsy+ibbvAw6NmuBOAW7PcryOwC2SXgfG\nEpoRs3ksLfEAzCMsROlckzz5uFK1klW/8NOTgxG+CL8CMvsgWnPvkszEsxNwM+GKKpXAmrN8PYTF\nGhtqcltIWLBxr8bOn0Vm4svc/8tvdwyJ+3HC3WqPAu7KcrxzgHlRv9Z3Cckomy8ztrPeI8q5bDz5\nuHLwCaFpLEWEL/JDgcsk7ROVPwscDSBpALBBS08kaQvgAeB4M5uZ9tTLQM+oX6QjcAyhDyTTfsR9\nJJmWElYSP1FSqu8kvc47AH2yvO4toFrSVtF2er9LtsR1C6E5si6t/yrdeoRVrAFOBNo1UN9MmxKS\np3NN8j4fV8oMwMxWRIMItjOzt6JyM7OPJB0KPCrpZEJf0RhJJwDPE75gs91lMdtot1TZhYSkdb0k\ngGVmtruZLZd0FjCR8GV9q5mt0k8kaSPgazP7oqH3Y2ZfRnV+XNLnwHXAKElvEpbsfxNYlPGiryX9\nFPiXpC+BZ4C1s9Q9tf8rkhaRvcmN6Jz3R/1DE4AlWWKz2nEJgy6ebuCYzq3Cb6ngykJ0Z8WuZnZ5\nI/t0BFZEyer7wD/MrGBDgyUdB3Q3syta8Jo1gA5R5//WhCazbc1seRvq0Q2YZGbbtfYYDRz3LuAq\nM3s1l8d15cmvfFy5GA08IekKa/gvqi2AsdEX+lLg9ILVDjCzbP0rTVkb+LekDoQmtDPbmHhOBP5E\n6NfJGUkbE25C6InHNYtf+TjnnCs4H3DgnHOu4Dz5OOecKzhPPs455wrOk49zzrmC8+TjnHOu4Dz5\nOOecK7j/DypUxCdPIYESAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x9e39c88>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNXV//HPEcVdxyXumkncjcq4BFBRxrhkNKLGJQSj\nZuL6yxOi5tEnuEVJXDHRoOIWJUFNIi4oQRR3GlBRNAokCgpRFMVdMSAuDHN+f9waqqcdYJie6qru\n/r5fr3nZ1VVTfebY9Ol7b91b5u6IiIi0WCHtAEREJFtUGEREpBUVBhERaUWFQUREWlFhEBGRVlQY\nRESkFRUGKWtm1mxm3+7g7zaa2YTOjqkjzGygmd2edhwioMIgnczMZpnZAjObZ2Yfm9loM9ssA3HV\nRkUkq+95TSiSzMjqPxIpXw4c4u5rAhsD7wHXLungFD6orUO/FOnsYPJfIsFzt/2CZiuW+jWlPKgw\nSGLc/UtgBLBDy3NmNszMbjCzB81sPlBvZpuY2Qgze9/MXjOzX+Yd393MJprZJ2Y2x8yuNbOV2no9\nM+tlZm+a2T5t7B4f/Xeumf3XzHoSfUs3s99HrZvXzKwh73w5M7vYzJ4CPgO+ZWZ7mtlzZjbXzCaZ\n2R55x88ys/3ytlt1D5nZ8Wb2hpl9aGbnR8d/ryVdQFczuzWK799mttuScmtm3zGzR83sIzN718zO\nzsvvRXnH1ZvZ7IIYf21mU4H50eO7C859tZldHT1e28yGRrl/y8wuynCrSzqJ/gdLEgzAzFYD+gIT\nC/b3Ay5y9zWiffcDLwKbAPsBZ5jZgdGxTcDpwHrAHtH+//naC4YP9L8DR7j7+ML9wN7Rf9d297Xc\n/Zkozh7A9Oj8VwBDC37vWOAkYA1CcXgAGAysC1wFPGBm60THOq27hBY/NrMdgOuiv31jYO3o7118\nCHAocEe0bxQwpI2/AzNbE3gMeDA611bA40uIoS0/Bg6KXmc4cLCZrRGduwtwNPC36NhhwFfAlsAu\nwIFRPqSCqTBIZzNgpJl9AswlfJD/IW+/AyPdvaVY7Ays7+4Xu3uTu78O3EL48MLdX3D3Se7e7O5v\nAH8Cehe8Zl/gRqDB3Z9fSlxtecPdh3pYNOw2YGMz2yAv1mHuPs3dmwkfiq+4+9+ieIYTikqfdrzm\nUcAod3/a3RcCF/D1D/AJ7v5QFMtfgW5LOO8hwBx3/6O7f+Xu8939uXb8rS1/0zXu/ra7f+nubwIv\nAD+M9n8PWODuk8xsQ0IB+ZW7f+7uHxCK4o+Xcn6pAOpjlM7mwGHu/kTUJ384MM7Mtnf396Nj3so7\n/pvAJlEhadGFqOvHzLYhfDPfDViN8J4t/PA/DbjN3V/uQLzvLg7cfUE0jLAG0BLr7LxjNwHeLPj9\nN4BN2/E6m5D3d7v752b2UcEx7+U9XgCsYmYrREUp3+bAa+14zSWZXbD9d0JL5nbgGOLWwjeBlYB3\n8oZXVuDrOZAKoxaDJMaD+4BFQK/8XXmP3wRed/d18n7WcvdDov03AC8DW7n72sB5fP19ezTwQzM7\nbWnhdPTPyHv8NuHDMt83o+chdDWtnrdvo7zfnwMsvjrLzFYldF91xJvAki7R/YxQQPNjKFSYi3sI\nYz2bEgr536PnZwNfAuvl/b9Z29136mDcUiZUGCQJLWMMZmaHAesA0/L35ZkEzIsGQVc1sy5mtqOZ\n7R7tXwOYBywws+2An7fxenMIXVanm9n/W0JMHwDNhL7y5f5bIg8C25hZPzNb0cz6AtsBo6P9k4Ef\nR/t2B47M+90RQB8z28PMugIDWXqXz9KMJnR5nW5mK5vZmmbWPS+Gg81sHTPbCDhjWSeLuohyhPGE\n19z9lej5d4BHgKui11jBzLZcwuC+VBAVBknC/WY2D/gUuAg43t1bCkOrwdGom+QQoI7QPfIBYRxh\nreiQswjdG/+Nnh9OGwO87j6bUBzONrMTCgNy9wXAJcBT0RVIPQpjyT9fW9vu/nEU65nAh1Fsh0TP\nA/yGUHg+IXzw/y3vd18CfhnFP4dQ7N4nfCP/Wl6WEEvLueYDBxDGNt4BXgXqo923A1OAWcBDfD1f\nS/J3Qv7+XvD88UBXQqvtY+Bu2m6FSAWxJG/UE10pMpjQZ3yLuw8q2L8O8GdCs/gL4IToH5BIRYuu\nAvqE0EX2RtrxiORLrMUQXfY2BGggXMfez8y2LzjsXOAFd+9G+GZydVLxiKTNzPqY2WpmtjrhSq2p\nKgqSRUl2JXUHZrr7rOjyvOHAYQXHbA+MBYj6NWvN7BsJxiSSpkMJA9VvE7qcdNmnZFKShWFTWl8W\n9xZfv6xvCnAEhBmuhCs8Ul9XRyQJ7n5ydGVPjbsf4O4z0o5JpC1JFob2DF5cDtSY2YtAf8Ls10UJ\nxiQiIsuQ5AS3twkTcVpsTuuJTbj7PGDxFSRm9jptTNwxM608KSLSAe6+3JdFJ9lieB7Y2sJyx10J\nyxaMyj8gWqCra/T4ZGBcdCne17i7fty58MILU48hKz/KhXJRzbn44gtn9GinsdFZbz2ne3dn0CBn\n5sz4mI5KrMXg7k1m1h94mHC56lB3n2Zmp0b7byJcrTQsahH8GzgxqXgqxaxZs9IOITOUi5hyEavk\nXCxYAA89BCNGwIMPwo47wpFHwm9/C1ts0Xmvk+haSe4+BhhT8NxNeY8nAtsmGYOISDmbNw8eeCAU\ng0cegd13h6OOgj/8ATbeOJnX1CJ6ZaaxsTHtEDJDuYgpF7FKyMUnn8D998M990AuB716hZbBDTfA\n+usn//qJznzuLGbm5RCniEhHffABjBwZWgZPPw3f+14oBn36QE1Nx85pZnjGBp8lAblcLu0QMkO5\niCkXsXLKxZw5cN11oQhstRU8+iiccEJ4fuRIOO64jheFYqgrSUSkhN54A+69N7QMXnoJDjkETjsN\nvv99WHXVtKML1JUkIpKwGTNCIRgxAl5/HQ47LHQT7bcfrLxycq/b0a4kFQYRkU7mDi+/HBeD996D\nI44IxaB3b1ixRH01GmOoEuXUf5o05SKmXMTSyoU7vPginH8+bL89NDTAxx/DkCHw9ttw/fWhhVCq\nolCMMghRRCSb3GHSpLhlAKFVcOut8N3vwgpl+tVbXUkiIsth0SJ46qlQCO69F9ZYI0w4O/JI6NYN\nrKM3bE1AR7uS1GIQEVmGpqYw0WzECLjvPthoo1AIHn4Ydtgh7eg6X5k2dKqX+pJjykVMuYh1Vi6+\n/DKsR3TCCaEQnHsu1NbCk0/C5Mnwm99UZlEAtRhERBb7/PN4kboHHogXqRs4sHMXqcs6jTGISFWb\nP7/1InW77RaKwQ9/mNwidaWieQwiIu00d25YpG7ECBg7FvbcMxSDww6Db1TQXec1j6FKqC85plzE\nlIvY0nLx0UcwYAB8+9th5dIjjwxLVIwZAyedVFlFoRgaYxCRijdvHgweDFdfHS4tnToVNtss7aiy\nK9GuJDNrAAYT7uB2i7sPKti/PvBXYCNCkfqDuw9r4zzqShKR5fb55+EeBoMGwQEHhEHkrbZKO6rS\nyVxXkpl1AYYADYRbePYzs+0LDusPvOjudUA9cKWZqRUjIkVZuBD+9CfYZhuYMAEefxz++tfqKgrF\nSHKMoTsw091nuftCYDhwWMEx7wBrRY/XAj5y96YEYyp76kuOKRcx5SJobobzz8+x/fZw993xhLQd\nd0w7svKS5LfzTYHZedtvAT0KjrkZeMLM5gBrAj9KMB4RqVDuMGpUWMCuuRluvhn23TftqMpXkoWh\nPYMC5wKT3b3ezLYEHjWzbu4+r/DAxsZGamtrAaipqaGuro76+nog/rZUDdv19fWZikfb2dlukZV4\nSrV95ZU5brkFunat57LLYPXVwSxH6J1OP75SbudyOYYNGwaw+POyIxIbfDaznsBAd2+Its8BmvMH\noM3sQeASd38q2n4cGODuzxecS4PPItLKxIlw3nnw1ltw0UVw9NHlu5ppUjI3+Aw8D2xtZrVm1hXo\nC4wqOGY6sD+AmW0IbAu8lmBMZa/w22E1Uy5i1ZSLqVPh0EOhb1/4yU/CDXH69o2LQjXlIimJFYZo\nELk/8DDwMnCnu08zs1PN7NTosEuB3c1sCvAY8Gt3/zipmESkfL36KvTrF+6NvP/+YfvEE8vjxjfl\nRktiiEimzZ4Nv/sdjBwJv/oVnHZauAeCLFsWu5JERDrs/fdDIairgw02CC2Ec89VUSgFFYYyo/7T\nmHIRq6RczJ0b3ze5uTmMIVxyCayzTvt+v5JykRYVBhHJhM8+g8svh623hnffhRdfDGsbbbhh2pFV\nH40xiEiqvvwyLF9x6aXQuzf89rew7bZpR1UZdM9nESkrTU1w++2hEOy0U1j6uq4u7agE1JVUdtR/\nGlMuYuWUi+ZmuOuusH7RrbfC3/8ebprTWUWhnHKRVWoxiEhJuIdWwXnnwUorwbXXhvkIttwdHZI0\njTGISOKefx7OOCNccXTxxeEWmioIydM8BhHJnOZmuOIK+MEP4OSTYcoUOPxwFYWsU2EoM+o/jSkX\nsSzm4p13wvIVo0fDc8/BT38KXbok/7pZzEW5UWEQkU43ejTsuiv06gVPPAFbbJF2RLI8NMYgIp3m\niy9gwAD4xz/CrTR79Uo7ouqmMQYRSdW0adCzJ8yZE2YtqyiULxWGMqP+05hyEUszF+7hVpr77AP9\n+4c5Cu1d1ygJel8UT/MYRKTDPvkETjkFZsyA8ePDwndS/jTGICId8uST4Q5qhx8OgwbBKqukHZEU\nyuQYg5k1mNl0M5thZgPa2H+Wmb0Y/fzLzJrMrCbJmESkOE1NMHBguMfy9deHFVBVFCpLYoXBzLoA\nQ4AGYAegn5m1ami6+x/cfRd33wU4B8i5+9ykYqoE6j+NKRexUuXizTdh333hqafghRfCxLWs0fui\neEm2GLoDM919lrsvBIYDhy3l+GOAOxKMR0SKcM89sPvu0KcPPPwwbLxx2hFJUhIbYzCzo4Dvu/vJ\n0faxQA93/2Ubx64GzAa2bKvFoDEGkfR89lm4xeYTT4SVULt3Tzsiaa8s3o9heT7J+wBPLq0bqbGx\nkdraWgBqamqoq6ujvr4eiJuO2ta2tjt3e8oU6NMnx3bbwYsv1rPmmtmKT9utt3O5HMOGDQNY/HnZ\nEUm2GHoCA929Ido+B2h290FtHHsfcKe7D1/CudRiiORyucVviGqnXMQ6OxfuYVnsiy6CP/4Rjj22\n006dOL0vYllsMTwPbG1mtcAcoC/Qr/AgM1sb2IcwxiAiKfvgA/jZz+D99+GZZ2DLLdOOSEot0XkM\nZnYQMBjoAgx198vM7FQAd78pOuanhLGIJRYGtRhESuOxx8IqqMcdB7/7HXTtmnZEUoyOthg0wU1E\n+Oor+M1vwsJ3t94a7qwm5S+TE9yk87UMNIlyka+YXMycCXvtBS+9BJMnl39R0PuieCoMIlVszBjY\nYw84/ni4/374xjfSjkiyQF1JIlVq6FA47zy4775QHKTyZPGqJBHJIHf47W/httvCiqjbbJN2RJI1\n6koqM+o/jSkXsfbmYuFCOPnkcOvNiRMrsyjofVE8tRhEqsT8+fCjH4XHuRyssUaq4UiGaYxBpAq8\n915YCbVbN7jxRlhppbQjklLQ5aoi0qZXXgmDy336wC23qCjIsqkwlBn1n8aUi9iScjFxIvTuHa4+\nuvBCsOX+7lh+9L4onsYYRCrUyJFhoPnWW+Hgg9OORsqJxhhEKtD118PFF8OoUeHmOlKdNI9BRGhu\nhnPPhXvvhSefhG9/O+2IpBxpjKHMqP80plzEcrkcX30VlrYYNw6efrp6i4LeF8VTi0GkAsyfH8YR\n1lwTHn8cVlst7YiknGmMQaTMvf12KAq9esE110CXLmlHJFmheQwiVeill2DPPeGYY2DIEBUF6RyJ\nFgYzazCz6WY2w8wGLOGYejN70cz+bWa5JOOpBOo/jVV7LsaNg333hUsugR49clUxR6E9qv190RkS\nKwxm1gUYAjQAOwD9zGz7gmNqgOuAPu6+I3BUUvGIVJI774Sjj4Y77oBjj007Gqk0iY0xmNkewIXu\n3hBtnw3g7pfnHfM/wEbufsEyzqUxBpHIVVeFnwceCGsfiSxJFucxbArMztt+C+hRcMzWwEpmNhZY\nE7ja3W9PMCaRstXcDGeeCY88Ei5H3WKLtCOSSpVkYWjPV/yVgF2B/YDVgIlm9oy7zyg8sLGxkdra\nWgBqamqoq6ujvr4eiPsUq2E7v/80C/Gkud3yXFbiSXK7uRnuuKOeadPg8stzvPYabLFFvH/y5Mmc\nccYZmYk3ze3BgwdX9efDsGHDABZ/XnZEkl1JPYGBeV1J5wDN7j4o75gBwKruPjDavgV4yN3vKTiX\nupIiuVxu8Rui2lVLLpqb4dRTYfp0ePDBMFehULXkoj2Ui1hHu5KSLAwrAq8QWgNzgElAP3eflnfM\ndoQB6u8DKwPPAn3d/eWCc6kwSFVqT1EQWZLMjTG4e5OZ9QceBroAQ919mpmdGu2/yd2nm9lDwFSg\nGbi5sCiIVKvmZjjllHA/BRUFKSXNfC4zaibHKjkX+UVhzJhl34azknOxvJSLmGY+i1SIlqLw6qvt\nKwoinU0tBpEMaW4ON9eZMSN0H6koSDHUYhApcyoKkhUqDGUm/xr+aldJuWhuhpNOgpkzO1YUKikX\nxVIuiqfCIJKylqLwn/+EZS7UUpC0aYxBJEUqCpIkjTGIlBkVBckqFYYyo/7TWDnnIr8odMZAcznn\norMpF8VTYRApsUWL4MQT4bXXQlFYffW0IxJpTWMMIiW0aFFoKbz+eug+UlGQJGVurSQRaa2lpTBr\nloqCZJu6ksqM+k9j5ZSLlqLwxhvJFIVyykXSlIviqTCIJCy/KIwerZaCZJ/GGEQS1HL10euvqyhI\n6WmMQSRj3OGss8JNdh59VEVBykeiXUlm1mBm081sRnQbz8L99Wb2qZm9GP2cn2Q8lUD9p7Gs5+Ky\ny0JBKEVLIeu5KCXloniJtRjMrAvhtp37A28Dz5nZqPxbe0bGufuhScUhkoabboJbboEnn4R11007\nGpHlk+Q9n/cALnT3hmj7bAB3vzzvmHrgTHfvs4xzaYxBysZdd8GvfgXjxsFWW6UdjVSzLK6VtCkw\nO2/7rei5fA7saWZTzOxBM9shwXhEEvfII9C/f5jRrKIg5SrJwtCer/gvAJu7ezfgWmBkgvFUBPWf\nxrKWi2eegZ/8BO69F7p1K+1rZy0XaVIuipfkVUlvA5vnbW9OaDUs5u7z8h6PMbPrzWxdd/+48GSN\njY3U1tYCUFNTQ11d3eIbfre8EbRdXdstshDP66/D2WfXc+ut0NSUI5cr7etPnjw59f8fWdmePHly\npuIp5XYul2PYsGEAiz8vO2KZYwxm1hX4ObBP9FQOuNHdFy7j91YEXgH2A+YAk4B++YPPZrYh8L67\nu5l1B+5y99o2zqUxBsmsWbNg771h0CA45pi0oxGJJTmP4YbouOsAA46Lnjtpab/k7k1m1h94GOgC\nDHX3aWZ2arT/JuAo4Odm1gQsAH68vH+ASJreew8OOAAGDFBRkMrRnhbDVHffeVnPJUkthlgul1vc\nhKx2aefi00+hvh4OPxwuvDC1MID0c5ElykUsyauSmsxs8fUVZrYl0LS8LyRSST7/HPr0gV694IIL\n0o5GpHMtscVgZn3d/U4z2w/4C/B6tKsW+Jm7P1GaENVikGxZuBCOOALWWgtuvx1W0FKUklEdbTEs\nrTA8QBgb+AXhCqNto12vuPsXHQ20I1QYJCuam+GnP4WPP4aRI2GlldKOSGTJOr0ryd1/ANwIjAZ+\nTSgOs4HVzEyT/FNSeKlmNSt1Ltzhf/83rJR6993ZKgp6X8SUi+It9aokdx9pZrOA8cCJQHPLLuDb\nyYYmki2XXAJjx4alLlZbLe1oRJKztK6kVYDzgKOBs9x9dCkDK4hFXUmSqhtugCuvDIvibbRR2tGI\ntE8S8ximAPcCu7j75x2OTKTMDR8eWgsTJqgoSHVY2vUUR7j7OSoK2aL+01gpcvHQQ3D66TBmDHzr\nW4m/XIfpfRFTLoq3xBaDu79UykBEsmbSJDj++HD10U47pR2NSOnons8ibXj1VejdG26+GQ45JO1o\nRDqm0y9XNbNjzGy94sISKT/vvgsHHQQXXaSiINVpaWMMWwB3m9mTZjbQzHqY2XJXHulc6j+NJZGL\nefPgBz8Ik9hOWuoykdmi90VMuSje0ia4Xe7u3wMOBqYCJwAvmNkdZnZ8tGS2SMX46is48kjYfXf4\nzW/SjkYkPcs9xmBm3wEOAg509wMTierrr6kxBklUy1IX//0vjBgBKyZ5CyuREun0tZKyRIVBkjZg\nQJi89uijmtUslSPJZbclQ9R/GuusXFx9NYwaBfffX75FQe+LmHJRvKVdlTTGzIqa0mNmDWY23cxm\nmNmApRz3XTNrMrMjink9keV1113whz+EiWzramlIEWDpayUdDVwC3Apcsax7PLfx+10I93zen7Ay\n63MU3PM577hHCbf2/Iu7j2jjXOpKkk43diz07QuPPQY7l+x+hCKl0+lrJbn73WY2BrgAeN7Mbies\nqhrt9quWce7uwEx3nxUFOBw4DJhWcNwvgXuA7y5v8CIdNXVqKAp33qmiIFJoWWMMC4H5wCrAmsAa\n0c+a7Tj3poT7N7R4K3puMTPblFAsboieUrNgGdR/GutoLt58M8xVuPZa2Hffzo0pLXpfxJSL4i2x\nxWBmDcBVwP2EFVYXLOe52/MhPxg42909mjynCXSSqI8/hoYGOPPM0GIQka9b2tXa5wFHF7GY3tvA\n5nnbmxNaDfl2A4ZHE6rXBw4ys4XuPqrwZI2NjdTW1gJQU1NDXV0d9fX1QPwNoRq26+vrMxVPOW33\n6FFPnz6w88456uoAshVfsdstshJPWtstz2UlnlJu53I5hg0bBrD487Ijljb4XNSIr5mtSBh83g+Y\nA0yijcHnvOP/Atzv7ve2sU+Dz1KUpiY46ihYYw247TZYQRdqSxVI4p7PRX0Su3sT0B94GHgZuNPd\np5nZqWZ2ajHnrmaF3w6rWXtz4Q79+8OCBfDnP1dmUdD7IqZcFC/Rif/uPgYYU/DcTUs49mdJxiLV\n6+KLw70Vxo2Drl3TjkYk+7QkhlS0oUPDbTmfflq35ZTqo7WSRAqMHg0nnxxaCttsk3Y0IqWntZKq\nhPpPY0vLxdixcMIJ8I9/VEdR0PsiplwUT4VBKs4zz4Q5CnffDd27px2NSPlRV5JUlClT4MADYdiw\ncHtOkWqmriSpeq+8EorBddepKIgUQ4WhzKj/NJafi1mz4IAD4NJLw0S2aqP3RUy5KJ4Kg5S9d96B\n/feHX/8aGhvTjkak/GmMQcrahx9C795w7LFwzjlpRyOSLZrHIFXn009hv/1CF9Jll6UdjUj2aPC5\nSqj/NFiwAHr1ytGzZxhXqHZ6X8SUi+KpMEjZ+fJL+OEPYZNN4JprwHQXD5FOpa4kKStNTfCjH4UV\nUocPhxUTXQZSpLx1+j2fRbKmuTksc/H55zBypIqCSFLUlVRmqrX/tOWeCm+8ASNGwMorV28u2qJc\nxJSL4uk7l2SeO5x9Njz3HDz+OKy2WtoRiVS2RMcYzKwBGAx0AW5x90EF+w8Dfgc0Rz//5+5PtHEe\njTFUsUsuCeMJuRyst17a0YiUj8zNYzCzLoR7Pu8PvA08R8E9n81sdXf/LHq8E3Cfu2/VxrlUGKrU\nNdfAtdfC+PGw8cZpRyNSXrI4j6E7MNPdZ7n7QmA4cFj+AS1FIbIG8GGC8VSEauo//fOf4cor4bHH\n2i4K1ZSLZVEuYspF8ZIsDJsCs/O234qea8XMDjezaYR7Q5+WYDxSRu66C84/Hx59FL75zbSjEaku\nSQ4+t6vvx91HAiPNbG/gdmDbto5rbGyktrYWgJqaGurq6qivrwfibwjVsF1fX5+peJLYvuCCHEOG\nQC5XzzbbpB9PuWy3yEo8aW23PJeVeEq5ncvlGDZsGMDiz8uOSHKMoScw0N0bou1zgObCAeiC3/kP\n0N3dPyp4XmMMVeLGG+Hii2HMGNhpp7SjESlvWRxjeB7Y2sxqzawr0BcYlX+AmW1pFhY0MLNdAQqL\ngrRW+O2wUriHNY9+//sw0NyeolCpuegI5SKmXBQvsa4kd28ys/7Aw4TLVYe6+zQzOzXafxNwJHC8\nmS0E5gM/Tioeya7mZvi//4NHHoEnn9TVRyJp01pJkqqmJjj55HBbzgcegHXWSTsikcqhtZKk7Hzx\nBfTrF9Y+evRRWH31tCMSEdBaSWWnUvpP582Dgw8Oax6NGtWxolApuegMykVMuSieCoOU3Icfwve+\nB9tsA3/7G3TtmnZEIpJPYwxSUrNnw4EHwhFHhMtSdZMdkeRk8XJVkVZeeQX23htOOiksjKeiIJJN\nKgxlplz7T194Aerr4cIL4cwzO+ec5ZqLJCgXMeWieLoqSRI3bhwcfTTcdFO4V7OIZJvGGCRR998P\nJ54Id9wB++2XdjQi1UVjDJI5t98eJq898ICKgkg5UWEoM+XSf3r11XDeeTB2LHz3u8m8RrnkohSU\ni5hyUTyNMUincoeBA0PX0YQJupeCSDnSGIN0muZmOP30sBDeww/DBhukHZFIddNaSZKqhQuhsTFM\nYMvlYO21045IRDpKYwxlJov9p/PmhctQ//vf0FIoVVHIYi7SolzElIviqTBIUZ57DnbZBTbbDO69\nF1ZdNe2IRKRYGmOQDmluhiuvDHdcu/56OOqotCMSkUKZncdgZg1mNt3MZpjZgDb2/8TMppjZVDN7\nysx2TjomKc6770JDA/zjH6HFoKIgUlkSLQxm1gUYAjQAOwD9zGz7gsNeA/Zx952Bi4A/JRlTuUu7\n/3TMmNB1tMceYZA5zctR085FligXMeWieElfldQdmOnuswDMbDhwGDCt5QB3n5h3/LPAZgnHJB3w\n5Zdw7rlw990wfDj07p12RCKSlETHGMzsKOD77n5ytH0s0MPdf7mE488CtnH3Uwqe1xhDil59FX78\n49A6uOUWWG+9tCMSkfbI6jyGdn+am9m+wAnAXm3tb2xspLa2FoCamhrq6uqor68H4qajtjt3u3fv\nem69FU6OKSk6AAANMElEQVQ/PccJJ8BVV9Vjlp34tK1tbbfezuVyDBs2DGDx52VHJN1i6AkMdPeG\naPscoNndBxUctzNwL9Dg7jPbOI9aDJFcLrf4DZGkTz+Fn/8cpk4NXUc77pj4Sy63UuWiHCgXMeUi\nltWrkp4HtjazWjPrCvQFRuUfYGZbEIrCsW0VBSm9Z58NA8xrrw2TJmWzKIhIchKfx2BmBwGDgS7A\nUHe/zMxOBXD3m8zsFuCHwJvRryx09+4F51CLoQSam+GKK+CPf4Qbb9RNdUTKXUdbDJrgJgDMmQPH\nHRfWPPrb32DzzdOOSESKldWuJOlkLQNNnWn0aNh113AJ6tix5VMUkshFuVIuYspF8bS6ahX74gsY\nMABGjoR77oFevdKOSESyQF1JVWr69DA3Yaut4OabYZ110o5IRDqbupKkXdxh6FDYe2/4xS/CTGYV\nBRHJp8JQZorpP507F/r2DfdjHjcOTj4ZbLm/S2SH+pJjykVMuSieCkOVePppqKuDDTcMcxN22CHt\niEQkqzTGUOEWLYLLLoMhQ+Cmm+Cww9KOSERKJatrJUkKPvoIJkyA8ePDrTY32AD++U/YdNO0IxOR\ncqCupDLTVv/pu+/CXXeFweSddoJvfSvMXF5//dBKeOyxyiwK6kuOKRcx5aJ4ajGUoTffDIPH48eH\nnw8+CHMQ9tkHGhvDOkcr6v+siHSQxhgyzh1mzgwFoKUYfP55KAItPzvtBCuo7SciBbRWUoVoboZp\n01q3CFZYISxX0bt3KATbblvel5mKSGlogluZWrQIXngBBg8Oq5lusAEceig8/zw0NMCTT8Ls2WFh\nu1NOgXffzakoRNSXHFMuYspF8dQTXWILF4YrhFpaBE89BZtsEloCP/oRXHstbKa7XotIitSVlLAv\nvgg3vmkZI3j2Wdhyy7hbaO+9QytBRKSzaYwhI+bPh4kT4xbBCy/Ad74TikDv3rDXXlqbSERKI7Nj\nDGbWYGbTzWyGmQ1oY/92ZjbRzL4wszOTjqezzZ0b7mfw619Djx5hyYnf/S7sO//8MMfg2Wfh97+H\nQw4pviio/zSmXMSUi5hyUbxExxjMrAswBNgfeBt4zsxGufu0vMM+An4JHJ5kLJ3lgw/iq4XGjw+X\nkvboEVoEV1wB3bvDqqumHaWISMcl2pVkZnsAF7p7Q7R9NoC7X97GsRcC8939yjb2pdaV9PbbcREY\nNy5s77VXPEaw227QtWsqoYmILFVW10raFJidt/0W0CPh1+wwd5g1q/VksrlzwwDxPvuEZaq7dYMu\nXdKOVEQkOUkXhk77mt/Y2EhtbS0ANTU11NXVUV9fD8R9isu73bt3Pa+8AjffnGPqVJg+vZ6mJthu\nuxzdusHIkfXssAOMHx+O33XX4l6vM7bz+0/TeP0sbbc8l5V40tyePHkyZ5xxRmbiSXN78ODBnfL5\nUI7buVyOYcOGASz+vOyIpLuSegID87qSzgGa3X1QG8cm3pXU3Az//nfrWcWrrBJ3C/XuHW51meUJ\nZLlcbvEbotopFzHlIqZcxDJ5uaqZrQi8AuwHzAEmAf0KBp9bjh0IzOvMwtDUBC++GBeBCRPCiqMt\nRWCffeCb31zu04qIlIVMFgYAMzsIGAx0AYa6+2VmdiqAu99kZhsBzwFrAc3APGAHd5+fd452FYYv\nvwxLSbSMEUycCFts0XrBuY03TuCPFBHJoMwWhs6wpMKwYAE880zcIpg0KSww19Ii6NUrtBAqiZrJ\nMeUiplzElItYVq9K6nRPPRUmlI0fD1OmwM47h0Jw1lnhMtK11047QhGR8lZWLYa33oIdd4TTTgst\ngp49YfXV045ORCSbqqIr6eKLwwSzG25IOyIRkezL7FpJnaW5GYYOhRNPTDuSdOVfw1/tlIuYchFT\nLopXNoVh7FhYa62wBIWIiCSnbLqS+vVzevYM4wsiIrJsFT/GsPbazmuvwbrrph2NiEh5qPgxhoMO\nUlEA9Z/mUy5iykVMuShe2RSGah90FhEplbLpSlq0yFmhbMqYiEj6Kr4rSUVBRKQ09HFbZtR/GlMu\nYspFTLkongqDiIi0UjZjDOUQp4hIllT8GIOIiJRGooXBzBrMbLqZzTCzAUs45ppo/xQz2yXJeCqB\n+k9jykVMuYgpF8VLrDCYWRdgCNAA7AD0M7PtC445GNjK3bcGTgG0buoyTJ48Oe0QMkO5iCkXMeWi\neEm2GLoDM919lrsvBIYDhxUccyhwK4C7PwvUmNmGCcZU9ubOnZt2CJmhXMSUi5hyUbwkC8OmwOy8\n7bei55Z1zGYJxiQiIsuQZGFo72VEhSPmuvxoKWbNmpV2CJmhXMSUi5hyUbzELlc1s57AQHdviLbP\nAZrdfVDeMTcCOXcfHm1PB3q7+3sF51KxEBHpgI5crrpiEoFEnge2NrNaYA7QF+hXcMwooD8wPCok\ncwuLAnTsDxMRkY5JrDC4e5OZ9QceBroAQ919mpmdGu2/yd0fNLODzWwm8Bnws6TiERGR9imLmc8i\nIlI6mZr5rAlxsWXlwsx+EuVgqpk9ZWY7pxFnKbTnfREd910zazKzI0oZX6m0899HvZm9aGb/NrNc\niUMsmXb8+1jfzB4ys8lRLhpTCLMkzOzPZvaemf1rKccs3+emu2fih9DdNBOoBVYCJgPbFxxzMPBg\n9LgH8EzacaeYiz2AtaPHDdWci7zjngBGA0emHXdK74ka4CVgs2h7/bTjTjEXA4HLWvIAfASsmHbs\nCeVjb2AX4F9L2L/cn5tZajFoQlxsmblw94nu/mm0+SyVO/+jPe8LgF8C9wAflDK4EmpPHo4BRrj7\nWwDu/mGJYyyV9uTiHWCt6PFawEfu3lTCGEvG3ScAnyzlkOX+3MxSYdCEuFh7cpHvRODBRCNKzzJz\nYWabEj4YWpZUqcSBs/a8J7YG1jWzsWb2vJkdV7LoSqs9ubgZ+I6ZzQGmAKeXKLYsWu7PzSQvV11e\nmhAXa/ffZGb7AicAeyUXTqrak4vBwNnu7mZmfP09Ugnak4eVgF2B/YDVgIlm9oy7z0g0stJrTy7O\nBSa7e72ZbQk8ambd3H1ewrFl1XJ9bmapMLwNbJ63vTmhsi3tmM2i5ypNe3JBNOB8M9Dg7ktrSpaz\n9uRiN8JcGAj9yQeZ2UJ3H1WaEEuiPXmYDXzo7p8Dn5vZeKAbUGmFoT252BO4BMDd/2NmrwPbEuZX\nVZvl/tzMUlfS4glxZtaVMCGu8B/2KOB4WDyzus0JcRVgmbkwsy2Ae4Fj3X1mCjGWyjJz4e7fdvdv\nufu3COMMP6+wogDt+/fxD6CXmXUxs9UIA40vlzjOUmhPLqYD+wNE/enbAq+VNMrsWO7Pzcy0GFwT\n4hZrTy6AC4B1gBuib8oL3b17WjEnpZ25qHjt/Pcx3cweAqYCzcDN7l5xhaGd74lLgb+Y2RTCF+Bf\nu/vHqQWdIDO7A+gNrG9ms4ELCd2KHf7c1AQ3ERFpJUtdSSIikgEqDCIi0ooKg4iItKLCICIiragw\niIhIKyoMIiLSigqDVBwzW9nMxkXLY3T2uRvN7NolvOZ4M1vivykzu9HM9uzsmEQ6mwqDVKKfAKM9\nmUk6bZ7T3b8EJgCHL+V3ewATE4hJpFOpMEgl6kdYHgIzu87M+kSP7zOzodHjE8zs4sJfjG58tJYF\nH7WsUGpmt5nZ/tFhm0crmL5qZhfk/foovn5f85bzbg+8ml+soqUrXose15jZIjPrFW2PN7MtzWxd\nMxsZ3WBlopntVGRuRJZJhUEqipl1AXZ091ejp8YTbmQCYfnh7aPHewPj2jjFU0Av4DvAf6LHAD2j\nfUa4H8ARwM7A0Wa2W3TMZMLibW05CBiT/4S7LwJeMbMdotf5J7CPma1MuNnOf4DfAv90926EFUNv\nW1YORIqlwiCVZn0gf2nlCcDe0Tf2l4D3zGwjwgf90238/gRgH0LhuAHY2cw2AT6JVi0FeMTdP3H3\nLwgLGfaCxd1JK5jZKm2c90DgoWW83mXRuXYHJkX79wJuj84/FljPzNZYZhZEiqDCIJVo8aCzu88h\n3PKygdB6eJKwGuc8d//MzH4R3SP5hahgjCf+oM4R7gh3VPT8kl6ruWC71ThEtNJpjbu/28bvt7xe\nd8LNlmqAekLB+NrfI1IKKgxSaT4ECr9RPwOcQeg6mgCcFf0Xd7/O3Xdx913d/d3otpjrA1u5++uE\nQnIWrQvDAWa2jpmtSrhz3FMQrkwCFkUth3z7Eu5H3ZZJhO6nlt+bApya93oTCIPpmFk98IG7z29v\nMkQ6QoVBKkrUb/9vM9s27+kJQBd3fw14kbBc+YS2fj/yDNAyRvEksEn0XwitgUnACMKH+D3u/kK0\nbxfavuroINruRsLdvwLejF4TQkFYw93/FW0PBHaLlo++FPjpUuIW6RRadlsqjpk1Ahu6+6ASv+6l\nwHPufl/B8/8EukdFSyTzVBik4kR39XoM6J3QXIa2XnNl4NFSvqZIUlQYRESkFY0xiIhIKyoMIiLS\nigqDiIi0osIgIiKtqDCIiEgrKgwiItLK/wc5WZWcWXsXXAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x99973c8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time to reach breakpoint is: 24.7778 h\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 91
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.10: Page 640"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.10\n",
+ "# Page: 640\n",
+ "\n",
+ "print'Illustration 11.10 - Page: 640\\n\\n'\n",
+ "\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# a:N2 b:H2O\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "Ma = 29;# [kg/kmol]\n",
+ "Z = 0.268;# [m]\n",
+ "Xo_solid = 0.01;# [kg H20/kg solid]\n",
+ "Density_bed = 712.8;# [kg/cubic m]\n",
+ "T = 28.3;# [OC]\n",
+ "P = 593;# [kN/square m]\n",
+ "Gs = 4052;# [kg/square m.h]\n",
+ "Xo_gas = 1440*10**(-6);# [mole fraction]\n",
+ "#********************#\n",
+ "\n",
+ "# Yo_star is in equilibrium with Xo:\n",
+ "Xo = 0;# [kg H20/kg solid]\n",
+ "Yo_star = 0;# [kg H20/kg N2]\n",
+ "thetha_t = 12.8;# [h]\n",
+ "thetha_b = 9;# [h]\n",
+ "# The breakthrough data are plotted in the manner of Fig. 11.47 (Pg 639) and thetha_s is dtermined:\n",
+ "thetha_s = 10.9;# [h]\n",
+ "Xt = 0.21;# [kg H20/kg solid]\n",
+ "# From Eqn. 11.81:\n",
+ "LUB = (Z/thetha_s)*(thetha_s-thetha_b);\n",
+ "# For thetha_b = 15 h\n",
+ "thetha_b = 15;# [h]\n",
+ "Yo = (Xo_gas/(1-Xo_gas))*(Mb/Ma);# [kg H20/kg N2]\n",
+ "# From Eq. 11.82:\n",
+ "Zs = Gs*(Yo-Yo_star)*thetha_b/(Density_bed*(Xt-Xo_solid));# [m]\n",
+ "# From Eqn. 11.85:\n",
+ "Z = LUB+Zs;\n",
+ "print\"Height of adsorbent column:\",round(Z,4),\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.10 - Page: 640\n",
+ "\n",
+ "\n",
+ "Height of adsorbent column: 0.0467 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 93
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.11: Page 654"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.11\n",
+ "# Page: 645\n",
+ "\n",
+ "print'Illustration 11.11 - Page: 645\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#****Data****#\n",
+ "# For collection of Cu2+:\n",
+ "V = 37850.0;# [l/h]\n",
+ "c1 = 20.0;# [meq Cu2+/l]\n",
+ "c2 = 0.01*c1;# [meq Cu2+/l]\n",
+ "Mass_rate = 2.0;# [meq Cu2+/g resin h (meq Cu2+/l)]\n",
+ "exchanged = V*(c1-c2);# [meq/h]\n",
+ "X2 = 0.30;# [meq Cu2+/g]\n",
+ "#************#/\n",
+ "\n",
+ "# The point(c2,X2) is plotted in Fig. 11.48(a), Pg 645:\n",
+ "# For the minimum resin/solution ratio and an infinitely tall tower, the operating line pass though point P.\n",
+ "X = 4.9;# [meq Cu2+/g]\n",
+ "MinRate = exchanged/(X-X2);# [g/h]\n",
+ "Rate = 1.2*MinRate;# [g/h]\n",
+ "# Copper balance:\n",
+ "X1 = (exchanged/Rate)+X2;# [meq Cu2+/g resin]\n",
+ "# The point (c1,x1) is ploted in Fig. 11.48(a) and operating line drawn can be straight line at this low conc.\n",
+ "# Adapting Eqn. 11.48 and rearranging:\n",
+ "# S*Z*Density_s = (V/Mass_rate)*integrate(1/(c-c_star),c,c1,c2)\n",
+ "# Mass_rate = KL_prime*ap/Density_s\n",
+ "# From the equilibrium curve:\n",
+ "# Data = [c c_star]\n",
+ "Data = numpy.array([[20 ,2.4],[16 ,1.9],[12, 0.5],[8 ,0.25],[4 ,0.10],[2 ,0.05],[1 ,0.02],[0.2, 0]]);\n",
+ "Val = zeros(8);\n",
+ "for i in range(0,8):\n",
+ " Val[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"c\");\n",
+ "plt.ylabel(\"1 / (c-c*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "# From Graphical Integration:\n",
+ "Area = 5.72;\n",
+ "# holdup = S*Z*Density_s\n",
+ "holdup = V*Area/(Mass_rate);\n",
+ "print\"Resin Holdup: \",holdup,\"g\\n\"\n",
+ "\n",
+ "# Regeneration of resin:\n",
+ "# For 70% utilisation of 2N acid, feed must contain:\n",
+ "V = exchanged;\n",
+ "F = V/(0.70*2000);# [l/h]\n",
+ "c1 = 0;# [meq Cu2+/l]\n",
+ "c2 = V*1.0/F;# [meq Cu2+/l]\n",
+ "X1 = 0.30;# [meq Cu2+/g resin]\n",
+ "X2 = 4.12;# [meq cu2+/g resin]\n",
+ "# The points (c1,X1) and (c2,X2) are plotted on Fig 11.48(b), Pg 645\n",
+ "c1_star = 120.0;# [meq Cu2+/l]\n",
+ "c2_star = 1700.0;# [meq Cu2+/l]\n",
+ "logmean = ((c1_star-c1)-(c2_star-c2))/math.log((c1_star-c1)/(c2_star-c2));\n",
+ "Mass_rate = 0.018;# [meq Cu2+/g resin h (meq Cu2+/l)]\n",
+ "# Substituting in equation:\n",
+ "def f79(holdup):\n",
+ " return (V*(c2-c1))-(Mass_rate*holdup*logmean)\n",
+ "holdup = fsolve(f79,7);\n",
+ "print\"Resin Holdup in the regeneration Tower is \",round(holdup,3),\" g\\n\"\n",
+ "#the answers are in textbook is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.11 - Page: 645\n",
+ "\n",
+ "\n",
+ "Resin Holdup: 108251.0 g\n",
+ "\n",
+ "Resin Holdup in the regeneration Tower is 296720391.501 g\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEZCAYAAAB2AoVaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHnpJREFUeJzt3Xm4HHWd7/H3JwlJlADZCEMwGBVFwCWogziCHkC4gAsw\nikl0kAMjDi6oOCig9wroFQZnwMh11HmGJWwaUCSiM4IoHPYBGYgGIygykT1kDyEkIeR7/6jqpDk5\np9Pdp7qrqvvzep5+0tVd3fU7X5pvVX9qaUUEZmbW2YblPQAzM2s9N3szsy7gZm9m1gXc7M3MuoCb\nvZlZF3CzNzPrAm72VjiSzpR0eY3nH5D0rlYuo8wk7SrpWUnKeyxWHG72tlWSZki6W9JqSYsk/Zek\nT7ZwkTVP/oiIN0TEra1ahqQeSY/V8yaSpkraKCm3/5ckLZR0YGU6Ih6NiO3CJ9FYFTd7q0nSPwKz\ngHOBnSJiJ+BE4J2SRg7ymqF+rtqxRZr1MloyZknD65gtWrV86xxu9jYoSTsAZwGfjIifRMRzABEx\nLyL+LiLWp/PNlvQ9Sf8paTXQI+m9ku6XtFLSo5LOqHrfytbwCZKekPRkulKpCGCkpEslrUpjm7dW\nvX6hpIPS+8MlfVnSw+m890raJX3u2+myV6aP79dkHfokfU3S7ekybpA0IX268g1jRRqdvD19zfGS\nFkhaJul6SbtWvd8hkh6StELSv0q6RdLfp8/1SrpD0vmSlgBnSHq1pJskLZG0WNIV6X8b0ihqV+Bn\n6fJP6f9tQ9JkSddJWirpT5I+XjWWMyVdPVitrXO42Vst7wBGAT+tY96ZwNcjYgxwB7Aa+LuI2AF4\nL/BJSUf0e00PsBtwCHBqpYGTbKV+APghsANwHfCdqtcFm2OYLwAzgMMiYnvgOOD59Ll7gDcD44Af\nAD8a7NtInX9fLzAJGAmckj6+f/rvDml0cnf6d54OHAVMBG5L/xYkTQR+BJwKjAceIqlzdeSyD/Dn\ndFlnp/X4BrAzsAcwBTgTICKOAR4F3pcu/18GGPucdJ6dgQ8BZ0s6oOr59zN4ra1DuNlbLROBJRGx\nsfKApDslLZe0pt+W8tyIuAsgItZFxC0R8ft0ej5Jw3l3v/c/KyKej4gHgEtIGmrFbRFxfZo7X0HS\ntAfyceArEfGnyrIiYll6/8qIWB4RGyPifJIV1+5N1CGASyLi4YhYC1wNTKuUZID5TwTOiYiH0tqd\nA0xLt+4PBx6IiLnpuC4Anu73+icj4l/T59dGxJ8j4tcR8UJELAG+xZa1HJCkKcDfAKdGxPqI+C1w\nIfCxqtnqrbWVmJu91bIUmFidwUfE30TEuPS5yuMBvGSHpqS3S7pZ0jOSVgD/AEzgpapf8ygwuWp6\nUdX9NcDoQfYFvIJkK3gLaaSxII1LlpNsuU4c5G/dmuqG/Dwwpsa8rwS+na4Ul5PUCmAXkq3rx/vN\n33+6fy13kjRH0uOSVgKXs2UtBzMZWFaJ4FKPpmOpqLfWVmL+D2q13AWsA45s4rU/AOYCr4iIscD3\n2fLztmu/+080sZzHSKKgl5C0P/BF4OiIGJuuoFaS/Y7MgY54eRT4RESMq7ptm37zeYpkBVUZp6qn\nB3nPs4EXgTeksdgxvLSWtY66eRIYL6l65bQrW65grMO52dugImIFyQ7a70r6oKTtJA2TNA3YtmrW\ngRroGGB5RKyXtA/wEbZsSv9b0ssk7UWSh1/VxDAvBL4uaTcl3iRpfLr8DcASSSMlfRXYvon3rxhs\nJbEY2Ai8puqx7wNflrQnJDu6JR2dPvefwBslHSFpBPBp4K+2suwxwHPAqnTn8xf7Pb+o3/I3iYjH\ngDuBcySNkvQm4HiSuMa6iJu91RQR/0yyE/RLJFHG0yTN7EskW/7w0h2mFZ8CviZpFfB/GLiR3wI8\nDPwK+OeI+FWN9xts6/V8kgz9lyRb7v8OjAZuAK4H/ggsJIleHu33frW2iGstf9NrI2INyc7TO9LY\nZp+ImEtyqOqcNHaZD/yvdP4lwNHAN4ElJDtc7yX5BjXYuM4C3pL+fT8Druk3zzkkK87lkr4wwHhn\nAlNJtvJ/Anw1Im6qsTwfn9+B1OrzLiQtBFaRfA19ISL2aekCrfAkTQUeAUZU7/ztRmk2/hjwkYi4\nJe/xWOca0YZlBNBTOULCrNtJOoTksNDn2RzJ/Fd+I7Ju0K4Yx2f3WX/dHBW8gyS+WkxyDsKREbGu\n9kvMhqYdMc4jJFnji8C/RcS/t3SBZma2hXbEOO+MiKck7QjcKOnBiLitDcs1M7NUy5t9RDyV/rtY\n0rUkp4LfBiCpm7/Km5k1LSIaisdbmtlLermk7dL725JcA2V+9TwRQUTwla8EX/tabJr2rfHbGWec\nkfsYOunmerqeRb01o9Vb9jsB1yYnCTICuDIifjnQjBMmwF/+0uLRdLiFCxfmPYSO4npmy/XMV0ub\nfUT8D5svGFXTxIlw332tHI2ZWfcqzBm0EybAkiV5j6Lcent78x5CR3E9s+V65qvlh17WXLgUleXf\nfTecdBLcc09uwzEzKwVJRJF20DZi4kRYunTr89ng+vr68h5CR3E9s+V65qswzd4xjplZ6xQmxomA\nkSNhzRrYZpvchmRmVniljnEkGDcOlvlyaWZmmStMs4ckt3eU0zxnotlyPbPleuarUM1+wgTvpDUz\na4XCZPYARx4Jxx4LRx2V25DMzAqv1Jk9+PBLM7NWKVSz9+GXQ+NMNFuuZ7Zcz3wVrtl7y97MLHuF\nyuwvvhhuvz3518zMBlb6zN4xjplZaxSu2TvGaZ4z0Wy5ntlyPfPlZm9m1gUKldkvXgx77OEox8ys\nlmYy+0I1+w0bYPRoWL8ehhXqO4eZWXGUfgftiBGw3XawYkXeIyknZ6LZcj2z5Xrmq1DNHnwWrZlZ\nKxQqxgHYd1/41rfgHe/IaVBmZgVX+hgHfESOmVkrFK7ZO8ZpnjPRbLme2XI981W4Zu+zaM3Msle4\nzP4b34DnnoOzz85pUGZmBefM3szMBlS4Zu/foW2eM9FsuZ7Zcj3zVbhm7y17M7PsFS6z/93v4KMf\nhfnzcxqUmVnBdURm7xjHzCx7hWv2lRgnxy8cpeVMNFuuZ7Zcz3wVrtmPGgUjR8Lq1XmPxMyscxQu\nswd45Svhlltg6tT2j8nMrOg6IrMH5/ZmZlkrZLP34ZfNcSaaLdczW65nvtzszcy6QMsze0nDgXuB\nxyPi/f2eGzCzP+kkeO1r4bOfbenQzMxKqaiZ/eeABUDdaxVv2ZuZZaulzV7SK4DDgQuButdCbvbN\ncSaaLdczW65nvlq9Zf8t4IvAxkZe5KNxzMyyNaJVbyzpfcAzEXG/pJ7B5uvt7WVqekD92LFjmTZt\nGhMm9LB06eYtgZ6e5OWerj1deawo4yn7dOWxooyn7NOVx4oynjJN9/X1MXv2bIBN/bJRLdtBK+ls\n4BhgAzAa2B64JiI+VjXPgDto//u/4YQT4L77WjI0M7NSK9QO2oj4ckRMiYhXATOAm6obfS3O7JtT\n2RKwbLie2XI989XO4+zr/grhzN7MLFuFvDZOBIweDStXJv+amdlmhYpxhkJylGNmlqVCNntwlNMM\nZ6LZcj2z5Xrmq7DN3lv2ZmbZKWRmD/ChD8H06XD00W0elJlZwXVMZg+OcczMslTYZu8Yp3HORLPl\nembL9cyXm72ZWRcobGZ/6aXw61/DZZe1eVBmZgXnzN7MzAZU2GbvGKdxzkSz5Xpmy/XMl5u9mVkX\nKGxmv3w5vOpVsGJFmwdlZlZwHZXZ77ADPPccbNiQ90jMzMqvsM1+2DAYOxaWLct7JOXhTDRbrme2\nXM98FbbZQ5Lb+4gcM7OhK2xmD7DffnDOObD//m0clJlZwXVUZg8+IsfMLCuFb/aOcernTDRbrme2\nXM98FbrZT5zoLXszsywUOrM/99yk2X/zm20clJlZwTmzNzOzARW62ftiaI1xJpot1zNbrme+Ct3s\nvWVvZpaNQmf2CxbABz8If/hDGwdlZlZwHZnZO8YxMxu6Qjf78eOTq15u3Jj3SMrBmWi2XM9suZ75\nKnSz32Yb2HZbWLky75GYmZVboTN7gNe8Bq6/Hl772jYNysys4DouswefRWtmloXCN3sfflk/Z6LZ\ncj2z5Xrmy83ezKwLFD6zP/lkmDIFvvCFNg3KzKzgOjKz95a9mdnQudl3EGei2XI9s+V65qsUzd5n\n0ZqZDU1LM3tJo4FbgFHASOCnEXF61fNbzexvugm+/nW4+eaWDdPMrFSayexHtGowABGxVtIBEbFG\n0gjgdkn7RcTt9b6HYxwzs6FreYwTEWvSuyOB4cCyRl7vGKd+zkSz5Xpmy/XMV8ubvaRhkuYBi4Cb\nI2JBI6+vbNnneISomVnpte04e0k7ADcAp0VEX/rYVjN7SC6GtmgRjBnT2jGamZVB4TL7ahGxUtJ/\nAG8D+iqP9/b2MnXqVADGjh3LtGnT6OnpATZ/7ZswoYclS+Dee5Pp/s972tOe9nQnT/f19TF79myA\nTf2yUa0+GmcisCEiVkh6GcmW/VkR8ev0+bq27PfeGy68EN761pYNtSP09fVt+qDY0Lme2XI9s9OS\nLXtJewHvAqYCASwEbouI39fx/jsDl0oaRrJ/4PJKo2+Er3xpZjY0g27ZSzoGOAlYCtwDPAmIpIHv\nA0wEvh0RVzS98Dq37GfMgCOOgJkzm12SmVnnyHrLfhxwUEQ8O8jCtgd6G1lYs3z4pZnZ0Ax66GVE\nXACsh01nwvZ/flU6T8s5xqlPZYeOZcP1zJbrma+tHWf/b+mO1e+2YzCD8Vm0ZmZDUyuzfzfwRuBY\nYDbwQETckunC68zsr7wSfv5z+OEPs1y6mVk5teJ69hvTeXI9f9UxjpnZ0NRq9reSHHWzP/C2rLfq\nG+EYpz7ORLPlembL9cxXrR20AZyYXsjsU+0b0pZ8NI6Z2dBs9QxaSZcBn42IFen0eOBfIuL4IS+8\nzsx+1SqYPBlWrx7qEs3Myq9Vv0H7pkqjB4iIZcBbGh3cUGy3HaxfD+vWtXOpZmado55mr3RrvjIx\nnuS69G0jObevhzPRbLme2XI981XPVS/PA+6SdDXJ5RKOBr7R0lENoJLbT57c7iWbmZVfXVe9TC+G\ndiDJIZg3NfoDJDXet67MHqCnB844Aw44IIslm5mVV6syeyLi9xHx/4AXsmr0jXKMY2bWvEZ/lvDE\nloyiDj78cuuciWbL9cyW65mvlv8GbVZ8Fq2ZWfMa+qUqSVMi4rHMFt5AZn/eefDEE3D++Vkt3cys\nnFqS2Us6R9I4gIh4TNI4Sf+32UE2yzGOmVnz6olxDouI5ZWJ9P57WzekgXkH7dY5E82W65kt1zNf\n9TT7YdU/XpJe335k64Y0MGf2ZmbNq+faOKcCHwAuJjmp6jjguog4d8gLbyCz/+Mf4b3vhT/9aahL\nNTMrt2Yy+3pPqjoMOCidvDEibmhifAO9b93NfulS2G03WL586/OamXWyTHfQStr0RhHxi4g4Jb3d\nMNA8rTZ2LDz7LGzY0K4llo8z0Wy5ntlyPfNVK7Pvk/RFSa/r/4Sk3dN4p20/aDJ8eNLwvWVvZta4\nWr9BOwr4KDATeAPwLElmPwZ4ALgS+EFErG964Q3EOAC77w5z58IeezS7RDOz8msmxhn0qpcRsY5k\np+zFkoYDE9OnlkTEi80Ps3k+/NLMrDn1XgjtxYhYlN5yafTgwy+3xplotlzPbLme+SrNtXHAZ9Ga\nmTWroWvjZL7wBjP7U06BSZPgS19q4aDMzAou60Mvb5B0sqTXD31o2XCMY2bWnFoxTi+wAjhT0v2S\nvi/pCEnbtmdoW3KMU5sz0Wy5ntlyPfNV62icp4BLgEvSo3HeDhwGfEnSWuCGiPhme4aZ8NE4ZmbN\naSqzl7QjcEhEXDmkhTeY2d96K3zlK3DbbUNZqplZuWV6nH0tEbGY5KSqtvKWvZlZc3zoZQdxJpot\n1zNbrme+StXsx49Pro2T49GiZmal1Gxmf1xEXDLkhTeY2QPssAP85S/JRdHMzLpRS36DdhBfq2cm\nSVMk3Szp95IekPTZJpe3iaMcM7PG1Tqpav5gN2BSne//AnByROwF7At8WtKQrlnpnbSDcyaaLdcz\nW65nvmodjTMJOBQY6Aryd9bz5hHxNPB0en+1pD8Ak4E/NDjOTXwWrZlZ42o1+/8AxkTE/f2fkNTw\nj5ZImgrsDdzd6GurOcYZXE9PT95D6CiuZ7Zcz3zVOoP2+BrPzWxkIZLGAD8GPhcRqxt5bX+OcczM\nGtfUSVWNkLQNcA1wRUTM7f98b28vU6dOBWDs2LFMmzZt0xZAJeOrnn72WVi6dPDnu3l61qxZW62f\np11P17N80319fcyePRtgU79sVEsvcZz+IPmlwNKIOHmA5xs+9PK734X58+F738tokB2kr69v0wfF\nhs71zJbrmZ1mDr1sdbPfD7gV+B1QWdDpEXF9+nzDzf6qq+DHP4Yf/SjToZqZlUbbro1Tr4i4nYzP\n0nVmb2bWuFJdLgF86GUtlYzPsuF6Zsv1zFfpmr0PvTQza1ypfoMWYM2a5IJozz8PaiixMjPrDO28\nNk5uXv5yGDYsafpmZlaf0jV7cJQzGGei2XI9s+V65qu0zd47ac3M6le6zB7gPe+BU0+Fgw9uwaDM\nzAquKzJ7cIxjZtao0jZ7xzhbciaaLdczW65nvtzszcy6QCkz+29/G/78Z7jgghYMysys4JzZm5nZ\ngErb7B3jbMmZaLZcz2y5nvkqZbP3xdDMzBpTysz+kUfgwANh4cLsx2RmVnRdldl7y97MrH6lbPbb\nbw9r18K6dXmPpFiciWbL9cyW65mvUjZ7yVv3ZmaNKGVmD7DXXjBnDrzxjRkPysys4Lomswdv2ZuZ\nNaK0zd6HX27JmWi2XM9suZ75Km2z91m0Zmb1K21mf9ppyVE5X/5yxoMyMyu4rsrsHeOYmdWvtM3e\nMc6WnIlmy/XMluuZr1I3e2/Zm5nVp7SZ/R13wCmnwF13ZTwoM7OC67rM3jGOmVl9StvsHeNsyZlo\ntlzPbLme+Sptsx83DlatghdfzHskZmbFV9rMHpKt+4ceSiIdM7Nu0VWZPfjwSzOzepW+2Tu338yZ\naLZcz2y5nvkqdbP3WbRmZvUpdWbf2wvvehccf3x2YzIzK7quzOy9ZW9mtnUtbfaSLpa0SNL8Vry/\nm/1LORPNluuZLdczX63esr8EOLRVb+6zaM3M6tPyzF7SVOBnEbHFr8UONbO/5hq44gq49trmx2dm\nVjZdl9m/4Q3JBdEefTTvkZiZFduIvAfQ29vL1KlTARg7dizTpk2jp6cH2JzxDTb91FN9HHkkzJzZ\nQ18f3HFH7fk7fXrWrFkN1c/Ttaddz2ynXc/mp/v6+pg9ezbApn7ZqFLHOAAbN8Lhh8Nb3gJnnz2k\ntyq9vr6+TR8UGzrXM1uuZ3aaiXFK3+wBnnkG9t4bZs+Ggw8e8tuZmRVa4TJ7ST8E7gReJ+kxSce1\nYjmTJsHll8Oxx8LTT7diCWZm5dbSZh8RMyNickSMiogpEXFJq5Z14IHw8Y/DMcck0U43qmR8lg3X\nM1uuZ75KfTROf1/9KqxbB//0T3mPxMysWEp9bZyBPP44vO1t8OMfw377ZfrWZmaFULjMPg+veAVc\neCF85CO+lIKZWUXHNXuA970PPvSh5GqYOX5xaTtnotlyPbPleuarI5s9JLn9k0/CBRfkPRIzs/x1\nXGZf7ZFHYN994Re/gLe+tWWLMTNrK2f2/bz61fCd78D06bBqVd6jMTPLT0c3e4APfxgOOghOPLHz\n83tnotlyPbPleuar45s9wKxZMH8+XHxx3iMxM8tHR2f21RYsgHe/G/r6YK+92rJIM7OWcGZfw557\nwrnnJvn9mjV5j8bMrL26ptkDHHccvPnN8PnP5z2S1nAmmi3XM1uuZ766qtlL8P3vJ1HOnDl5j8bM\nrH26JrOvdv/9cMghcNddsNtubV+8mdmQOLOv0957J1fInDEjuUqmmVmn68pmD/CZz8CUKXDaaXmP\nJDvORLPlembL9cxX7j84nhcJLroo2cqfMAF6e5MrZpqZdaKuzOyrLVgA550Hc+cmh2fOmJFcMXOn\nnXIdlpnZoAr5g+M1F16AZl+xfj388pdw1VXw858nF06bPh3+9m+TLX8zs6LwDtohGDkyuQ7+5Zcn\nl0b+1KfgxhuTi6kdfjhcdhmsXJn3KGtzJpot1zNbrme+3OwH8LKXJVv0V18NTzyR/Ij5NdfArrvC\nUUclx+g/91zeozQzq59jnAasWJFk+1ddBXfeCYcemmT8hx0Go0fnPToz6xbO7NtoyRL4yU+Srfz7\n74f3vz/J+A8+OImEzMxaxZl9G02cCJ/4BNx0U3JEz1//NZxzDkyeDCecAL/6FWzY0N4xORPNluuZ\nLdczX272Gdh5ZzjpJLj9drjvPth9dzj9dNhlF/j0p+G222DjxrxHaWbdzDFOCz38cLKTd84cWLYs\n+dWs6dNhn32Sk7rMzJrhzL7AFixIduzOmZMc0z99erJz981vduM3s8Y4sy+wPfeEs86CBx+Ea69N\nGvxRR8HrXw9nnAHz5iVH+wxl3edMNFuuZ7Zcz3x17bVx8iLBtGnJ7eyz4Te/Sbb2Z8yAp56CtWuT\nnb+TJm2+7bjj4NPbbpv3X2RmZeAYp2DWroXFi5PbM89svg00vWhRsvKod8Ww444walTef6GZDZUz\n+y4TkZzJO9jKoP/04sXJ2cG1VgbVz02YACP83c+scNzsu1xfXx89PT2DPh+R7BfovzIYbEWxbBmM\nHVvft4ZJk5J5h3XQXqCt1dMa43pmp5lm7+22LiLBuHHJbffdtz7/iy/C0qUDrwx++9stVw6rV790\nf0Otbw077gjbbecjkczaxVv2lpn165PLSGwtTqrc37Bh4JXBhAlJ3DRq1Etvo0fX99ioUY6frLM5\nxrFSWbNm4JXBkiXJjup16zbf+k8P9ljl8WHDhrayyHpef4OxLBWu2Us6FJgFDAcujIhz+z3vZp8h\nZ6KJiORbQ70rhsEee/DBPiZP7ml6hVO5v349bLNNcyuLkSNh+PDNt2HD6p9uZN52vPaOO/o44ICe\nTdOdtH+n3QqV2UsaDnwHeA/wBPAbSddFxB9atcxuN2/ePDd7kq3obbZJbmPGNP8+s2bN4/Of7xny\neCKSht/MCmf9+mTfyYsvJtdXqtyvnl63bsvnB5u3nulWvXbt2nkMH96zaRqaX6kMG/bS+40+Vvb5\nm9HKZHMf4OGIWAggaQ5wBOBm3yIrVqzIewgdJat6Spu32LvZmWeu4MwzN09v3NjYSqbyWPXrqv8d\n6LFaz2X9Hi+88NIVb6vGWFlRNqqVzX4X4LGq6ceBt7dweWZWIpWtVu9Mb1wz+4BamZo5jG+zhQsX\n5j2EjuJ6Zsv1zFfLdtBK2hc4MyIOTadPBzZW76SV5BWCmVkTCnM0jqQRwEPAQcCTwD3ATO+gNTNr\nv5alZRGxQdJngBtIDr28yI3ezCwfuZ5UZWZm7ZHbaQ2SDpX0oKQ/STo1r3F0CkkLJf1O0v2S7sl7\nPGUi6WJJiyTNr3psvKQbJf1R0i8ljc1zjGUySD3PlPR4+vm8Pz3h0uogaYqkmyX9XtIDkj6bPt7Q\nZzSXZl91wtWhwJ7ATEl75DGWDhJAT0TsHRH75D2YkrmE5LNY7TTgxoh4HfDrdNrqM1A9Azg//Xzu\nHRHX5zCusnoBODki9gL2BT6d9suGPqN5bdlvOuEqIl4AKidc2dD4CixNiIjbgOX9Hv4AcGl6/1Lg\nyLYOqsQGqSf489mUiHg6Iual91eTnJi6Cw1+RvNq9gOdcLVLTmPpFAH8StK9kk7IezAdYKeIWJTe\nXwTslOdgOsRJkn4r6SLHYs2RNBXYG7ibBj+jeTV77xXO3jsjYm/gMJKvefvnPaBOkV6tz5/Zofke\n8CpgGvAUcF6+wykfSWOAa4DPRcSz1c/V8xnNq9k/AUypmp5CsnVvTYqIp9J/FwPXkkRl1rxFkv4K\nQNLOwDM5j6fUIuKZSAEX4s9nQyRtQ9LoL4+IuenDDX1G82r29wKvlTRV0khgOnBdTmMpPUkvl7Rd\nen9b4BBgfu1X2VZcBxyb3j8WmFtjXtuKtBlVHIU/n3WTJOAiYEFEzKp6qqHPaG7H2Us6jM3Xur8o\nIs7JZSAdQNKrSLbmITlR7krXs36Sfgi8G5hIkn1+FfgpcDWwK7AQ+HBE+LKidRignmcAPSQRTgD/\nA/xDVd5sNUjaD7gV+B2bo5rTSa5KUPdn1CdVmZl1Af9WjJlZF3CzNzPrAm72ZmZdwM3ezKwLuNmb\nmXUBN3szsy7gZm9m1gXc7M3MuoCbvdkAJH0svULjPEmX5T0es6HyGbRm/UjaC/gJ8I6IWCZpXEQM\ndH12s9Lwlr3Zlg4Ero6IZQBu9NYJ3OzNthT4V5Wsw7jZm23pJuBoSeMh+WHnnMdjNmTO7M0GIOlj\nwBeBF4H7IuL4nIdkNiRu9mZmXcAxjplZF3CzNzPrAm72ZmZdwM3ezKwLuNmbmXUBN3szsy7gZm9m\n1gXc7M3MusD/B+nAo2p5Y3p0AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x9e3b4a8>"
+ ]
+ }
+ ],
+ "prompt_number": 126
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter11_1.ipynb b/Mass_-_Transfer_Operations/Chapter11_1.ipynb
new file mode 100755
index 00000000..429b975a
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter11_1.ipynb
@@ -0,0 +1,1235 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b2d866884e32978f30135a4e666314d83655be533eae1227e5f3d0fa8ae8f5d8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11: Absorption And Ion Exchange"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.1: Page 575"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.1\n",
+ "# Page: 575\n",
+ "\n",
+ "print'Illustration 11.1 - Page: 575\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#*****Data*****#\n",
+ "Temp = 30.0;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# From Fig. 11.5 (Pg 572)\n",
+ "# The isosteres for various concentrations are straight and their slopes are measured with the help of milimeter rule.\n",
+ "# Data = [X(kg acetone/kg carbon) lambda(slope of isostere)]\n",
+ "Data = numpy.array([[0.05 ,1.170],[0.10, 1.245],[0.15 ,1.3],[0.20 ,1.310],[0.25 ,1.340],[0.30 ,1.327]]);# [kg acetone/kg carbon]\n",
+ "lambdar = 551.0;# [reference at 30 OC,kJ/kg]\n",
+ "Val = numpy.zeros(shape=(6,5));\n",
+ "for i in range(0,6):\n",
+ " Val[i,0] = Data[i,0];# [kg acetone/kg carbon]\n",
+ " Val[i,1] = Data[i,1];# [slope of isostere]\n",
+ " Val[i,2] = -Data[i,1]*lambdar;# [kJ/kg acetone]\n",
+ "\n",
+ "\n",
+ "plt.plot(Val[:,0],Val[:,2])\n",
+ "plt.grid();\n",
+ "xlabel(\"X (kg carbon / kg acetone)\");\n",
+ "ylabel(\"Differential heat of adsorption (kJ / kg acetone)\");\n",
+ "title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area: The area under the curve between X = 0 to X = X\n",
+ "# Corresponding to Data(:,1):\n",
+ "Area = numpy.array([-29.8 ,-63.0, -97.9 ,-134.0, -170.5, -207.5]);\n",
+ "for i in range(0,6):\n",
+ " Val[i,3] = Area[i];\n",
+ " Val[i,4] = Area[i]+(lambdar*Val[i,0]);\n",
+ "print \" (1) = X(kg acetone/kg carbon) \\n (2)= Slope of isostere \\n (3)= Differential heat of adsorption(kJ/kg acetone) \\n (4)=deltaH_prime(vapour(kJ/kg carbon)) \\n (5)=deltaH(liquid(kJ/kg carbon)\"\n",
+ "print\"(1) \\t \\t \\t \\t (2) \\t \\t \\t \\t (3) \\t \\t \\t \\t \\t \\t \\t \\t (4) \\t \\t \\t \\t \\t \\t (5) \" \n",
+ "for i in range(0,6):\n",
+ " print Val[i,0],\" \\t \\t \\t \",Val[i,1],\" \\t \\t \",Val[i,2],\" \\t \\t \\t \\t \\t \",Val[i,3],\" \\t \\t \\t \\t\",Val[i,4]\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.1 - Page: 575\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEZCAYAAACw69OmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XnclXP+x/HXu1JRERNCCJG1VQsqd7LEECZmCpF9GWQZ\n+tm3sW9jH2PLFoOJEcnanSyJFIUxpOxMUZSt1Of3x/c6rtPdfe773PfZ7/N5Ph7ncZ9zneu6vp/7\n2+l87uv7vb7fr8wM55xzLlONCh2Ac865hsETinPOuazwhOKccy4rPKE455zLCk8ozjnnssITinPO\nuazwhOLKgqTzJd1bw/szJfXLZRmlTNIGkhZKUqFjccXLE4orCElDJL0maZGkryVNlnRsDousccCV\nmW1tZi/mqgxJFZI+TeckktpLWiapYP8/Jc2RtFPitZl9YmatzAeuuRp4QnF5J+lU4G/A5cDaZrY2\ncAywg6SmKY7J9LOaj7+ss11GTmKW1DiN3SxX5buGyxOKyytJqwEXAMea2Rgz+wHAzKab2UFmtjja\nb5SkWySNk7QIqJD0e0nTJH0n6RNJ5yWdN/FX/ZGSPpf0RZS4EgxoKuluSd9HTVzdk46fI2lA9Lyx\npDMlfRjt+4ak9aL3rovK/i7a3qee9VAp6UJJL0VlPC3pd9HbiSulBVEzU6/omMMkvSvpW0njJW2Q\ndL5dJb0vaYGkmyRNlHR49N5wSS9LukbSPOA8SRtLekHSPElzJd0X/dsQNdttAIyNyv9L1asmSetK\nelzSN5I+kHREUiznS3ooVV27hssTisu37YBmwL/T2HcocJGZtQReBhYBB5nZasDvgWMl7V3lmAqg\nA7ArMDKRJAh/bQ8CHgBWAx4Hbkw6zoibrE4BhgC7m9mqwKHAT9F7U4DOwOrAaODhVFdVaf5+w4G1\ngKbAX6LtfaOfq0XNTK9Fv+cZwL5AG2BS9LsgqQ3wMDASWAN4n1DPyc1TPYFZUVmXRPVxMbAOsAWw\nPnA+gJkNAz4B9ozKv6qa2B+M9lkH2A+4RFL/pPf3InVduwbKE4rLtzbAPDNbltgg6RVJ8yX9WOUv\n/sfM7FUAM/vFzCaa2TvR6xmEL7Udq5z/AjP7ycxmAncRvrQTJpnZ+Kgf4D5CYqjOEcBZZvZBoiwz\n+zZ6fr+ZzTezZWZ2DSE5dqxHPRhwl5l9aGY/Aw8BXRJVUs3+xwCXmtn7Ud1dCnSJrlL2AGaa2WNR\nXNcDX1U5/gszuyl6/2czm2Vmz5vZEjObB1zLinVZLUnrA9sDI81ssZm9BdwOHJy0W7p17RoQTygu\n374B2iT3iZjZ9ma2evReYrsBy3ViS+olaYKk/0laABwN/I7lJR/zCbBu0uuvk57/CDRP0TfTjvDX\n/Aqi5p93o6al+YS/wNuk+F1rk/yl/xPQsoZ9NwSuixLvfEJdAaxHuEr4rMr+VV9Xrcu1JT0o6TNJ\n3wH3smJdprIu8G2iuTLySRRLQrp17RoQ/wd2+fYq8AuwTz2OHQ08BrQzs9bA31nxM7xBleef16Oc\nTwnNZsuR1Bc4DdjfzFpHSfA7st95Xd2dVJ8AR5nZ6kmPFtEV3JeEJJiIU8mvU5zzEmApsHXUhDiM\n5euypru5vgDWkJScADdgxSTmyownFJdXZraA0Cl/s6TBklpJaiSpC9AiadfqvqRbAvPNbLGknsAB\nrPjFd7aklSVtReif+Gc9wrwduEhSBwWdJK0Rlf8rME9SU0nnAqvW4/wJqRLRXGAZsEnStr8DZ0ra\nEsLNDZL2j94bB2wjaW9JTYA/A21rKbsl8APwfXTDwWlV3v+6Svm/MbNPgVeASyU1k9QJOIzQtOXK\nmCcUl3dmdiWh4/t0QrPPV4QvzNMJVzCwfCd5wnHAhZK+B86h+mQxEfgQeA640syeq+F8qf4Kv4bQ\np/EM4QrkNqA58DQwHvgvMIfQTPVJlfPV9Jd9TeX/dqyZ/UjoMH85auLqaWaPEW6zfjBqopoB7Bbt\nPw/YH7gCmEfoZH+DcCWYKq4LgG7R7zcW+FeVfS4lJOf5kk6pJt6hQHvC1coY4Fwze6GG8nz8ShlQ\nbeOUor/0+hE+PEb4jzQp0Tla74KlEwhfEEuBJ81sZNJ7GwDvAueZ2dXRtu7AKMJ/7HFmNiKT8l3D\nIqk98BHQJLnDvxxFfRWfAgeY2cRCx+PKR8orFEnDJE0BriJcPn9ESCbrAFdJel3SQfUpNLq9cBDQ\nycy2jspIdg3wZJVttwCHm9mmwKaSBtanbOcaomgcSmtJzYAzo82TCxmTKz9NanhvdWCAmS2s7k1J\nqxLaqOvjWMItkEsAzGxu0nn3ISSvH5K2rQO0MrMp0aZ7CJ264+tZvmuYyrlZZTvCTQtNgXeAfczs\nl5oPcS67Ul6hmNn1qZJJ9P730f3u9bEp0E9h/qZKSdsCRHeNnE40wCrJeix/B8nnLH+LoitzZjbH\nzBqXa3OXmV1gZm3MbFUz287MXi90TK781HSFAoCkjsDNQFsz20pSZ2AvM/trLcc9S/V3mpwVlbu6\nmfWW1IPQAboxIZFca2Y/Rrc+OuecKxG1JhTCHS6nEe7CAXibcGldY0Ixs11Svacwq+yYaL/XozmC\n2hCmhxgs6QqgNbBM0k/Rvsn31bcjxfgCSeXc7OGcc/VmZhn9IZ/ObcOrmNlrSQUasCSTQgmD03YC\nkLQZ0NTM5plZPzPbyMw2IsxGe7GZ3WxmXxHul+8VXbkMi85RLTPzhxnnnXdewWMolofXhdeF10XN\nj2xI5wplrqTfRg1L2o8wMjcTdwJ3SpoBLGb5OYBSOY5w2/DKhNuGvUO+FnPmzCl0CEXD6yLmdRHz\nusiudBLK8cA/gM0lfQHMBg7MpFALd3cNq2WfC6q8ngpsk0m5zjnncqfWhGJms4ABkloAjayGO79c\ncRk+fHihQygaXhcxr4uY10V2pTNSvjkwmDBSvjFh/iEzswtzHl09SLJstQc651y5kITloVP+34RR\n7UsIgw0XkTTo0BWvysrKQodQNLwuYl4XMa+L7EqnD2U9M9st55E455wraek0ef0DuNHM3s5PSJnx\nJi/nnKu7bDR5pZNQ3iMsNjSbpOmwzaxTJgXniicU55yru3z1oexOmHtrF2BPYC9Cn0rRWry40BEU\nB28fjnldxLwuYl4X2VVrQjGzOYRpUAYRkslq0baide65hY7AOefKTzpNXiOAIwnzaYkwbfxtVv+Z\nhnNKkq27rnH33bDzzoWOxjnnSkO++lBmAL3N7IfodQtgspkV5ah1Sfbcc8bBB8P06bDmmoWOyDnn\nil+++lAAlqV4XpQGDIBhw2D4cCjn/nlvH455XcS8LmJeF9mVTkK5C3hN0vmSLiAsK3pnbsPK3EUX\nwbx5cH1RNsw551zDU2uTF4Ck7kAfwhKrk8xsWq4Dq6/k24ZnzYLeveGZZ6Br1wIH5pxzRSxffSj3\nmtmw2rYVi6rjUEaPhgsvhKlToUWLAgbmnHNFLF99KFtXKbQJ0D2TQvPpgAPCVcqIEYWOJP+8fTjm\ndRHzuoh5XWRXyoQi6UxJC4FtJC1MPID/AY/nLcIsuOEGePFF+Oc/Cx2Jc841XOk0eV1mZv+Xp3gy\nlmrqlalTYffd4bXXYKONChCYc84VsXz1oTQirNC4kZldKGkDoK2ZTcmk4FypaS6vq6+GRx4JVysr\nrZTnwJxzrojlqw/lZmA74IDo9aJoW8k5+WRYbTW44ILa920IvH045nUR87qIeV1kVzoJpZeZHQf8\nBGBm3wIl+fd9o0Zw991w550wYUKho3HOuYYlnSav14DtgTfMrKukNYFnzKwoR3akM33900/DEUfA\ntGnQpk2eAnPOuSKWryavG4BHgbUkXQK8DFyaSaGFtttuMGQIHH54eU/N4pxz2ZTO9PX3ASMJSeQL\nYG8zeyjXgeXaxRfD55/DzSXZG5Qebx+OeV3EvC5iXhfZVeua8pJ6A++a2Y3R61Ul9TKz13IeXQ41\nbQoPPADbbw99+0Knolx/0jnnSkc6fSjTga6JjglJjYn6U/IQX53VdQnge+6Byy6DN96AVVbJYWDO\nOVfE8jZ9ffI3tJktBRpnUmgxGTYMunULtxQ755yrv3QSymxJJ0paSVLTaAXHj3IdWL5IoR/luefC\noMeGxNuHY14XMa+LmNdFdqWTUI4BdgA+Bz4DegNH5TKofFt11dCf8uc/wyefFDoa55wrTWmth1JK\n6tqHkuyKK2Ds2DDosUmttys451zDka+5vFYGDge2BJontpvZYZkUnCuZJJRly8IYlR12gPPPz25c\nzjlXzPLVKX8vsDYwEJgIrE+Yz6vBadQo3PV1661hAslS5+3DMa+LmNdFzOsiu9JJKB3M7BxgkZnd\nDewB9MptWIWzzjpwxx1w0EHw7beFjsY550pHOk1eU8ysp6RJwHHAV8BrZrZxPgKsq0yavJKdfDJ8\n/DH861/hTjDnnGvI8tXkdZukNYCzCSs1vgtckUmhpeCyy2D2bPjHPwodiXPOlYZ05vK6zcy+NbOJ\nZraRma1pZn/PR3CF1KwZPPggnH02vPNOoaOpH28fjnldxLwuYl4X2ZXWSPly1bEjXH55mJn4p58K\nHY1zzhW3go1DkXQCoU9mKfCkmY2MtncCbgVaAcuAbc1ssaTuwCjCrcvjzGxEivNmpQ8lwQyGDoXf\n/Q5uuilrp3XOuaKSt7m8sk1Sf2AQ0MnMtgauirY3IdymfFS0fUfg1+iwW4DDzWxTYFNJA/MTK/z9\n7zBuHDz2WD5KdM650lRrQpE0WNIfqjwGSForg3KPBS41syUAZjY32r4r8LaZzYi2zzezZZLWAVqZ\n2ZRov3uAfTIov05at4bRo+Hoo+Gzz/JVaua8fTjmdRHzuoh5XWRXOlcohwG3AwdGj9uA/wNekXRw\nPcvdFOgnabKkSknbJm03SeMlTZV0WrR9PcI8YgmfR9vyZrvtYMSIMD5l6dJ8luycc6UhnRmrVgK2\nMLOvASStTWiW6gW8SLhaWIGkZ4G21bx1VlTu6mbWW1IP4CFg46isPsC2wE/A85KmAt/V5ZcaPnw4\n7du3B6B169Z06dKFiooKIP6LpD6vR46Ehx+u5Kij4I47Mj9frl9XVFQUVTz+unheJxRLPIV6ndhW\nLPHk83VlZSWjRo0C+O37MlPpDGx8z8y2SHotwgqOW0iaVp+FtiQ9BVxmZhOj1x8SZjEeAOxuZsOj\n7WcDPwP3ARMScUgaCuxoZsdUc+6sdspX9fnn0L17GPC4ww45K8Y55/IqX53yEyQ9KekQScMJgxsr\nJbUAFtSz3MeAnQAkbQY0NbN5wDPANpJWjjrodwTeMbOvgO8l9YoS2rDoHHm33nphsOOBB8KC+v72\neVL1r9Fy5nUR87qIeV1kVzoJ5c/AXUAXoDNwN3Ccmf1gZv3rWe6dwMaSZgAPAAdD6IQHrgFeB6YB\nU83sqeiY4wh9OR8AH5rZ+HqWnbFBg2CvveCoo8Jtxc4559Jr8to96Us9se2YYh0tn+smr4Sff4ae\nPeHEE+GII3JenHPO5VS+mrzOkTQgqdDTyeMtu8WqefMwNcsZZ8B77xU6GuecK7x0Esog4GJJfSVd\nTLi7a1BuwyoNW24Jl1wSRtL//HOho1mRtw/HvC5iXhcxr4vsSmdyyHmEBHIzsC6wn5ktznVgpeKI\nI6BDBxg5stCROOdcYaXsQ5G0CEh+symwJNpmZrZq7sOru3z1oSSbPx+6dIEbbwyd9c45V2rysqZ8\nqSlEQgF46SXYbz94801Yd928F++ccxkp2ckhG6I+feC444prahZvH455XcS8LmJeF9nlCSWLzjor\nJJMrGvx6ls45tyJv8sqyTz+FbbeFf/8bevcuWBjOOVcnOW3yimb7vU7SQEnNMymknKy/flg/5YAD\n4Ls6TWnpnHOlraYmr96E+bL6AxMlPSVpRDT3lqvBvvvCbrvBMccUdmoWbx+OeV3EvC5iXhfZlTKh\nmNkSM5tgZiPNrBdwBLAI+KukNyXdnLcoS9A118CMGXD33YWOxDnn8qNefSiSGgO9zezl7IeUmUL3\noSSbORP69w+3FHfsWOhonHMuNR+HUo1iSigAt9wCt90Gr74KzZoVOhrnnKuej0MpAcccAxtuCGee\nmf+yvX045nUR87qIeV1klyeUHJPgjjvg4Yfhqadq398550pVTXN53VDDcb8AHwL3m9nCXARWX8XW\n5JUwcSIMGQLTpkHbtoWOxjnnlpfTPpRoud9U38xNgK2Brc1sl0wCyLZiTSgA554LkyfD+PHQyK8N\nnXNFJKd9KGY2yszuBiaZ2d3JD+BtMzsZ+DWTwsvNuefCDz/A1VfnpzxvH455XcS8LmJeF9mVzt/J\nj0hql3ghaUfCGvOY2e65CqwhatIERo+GK6+E118vdDTOOZdd6awp3wO4BdgT6AZcCuxpZp/mPry6\nK+Ymr4SHHw5LB0+bBq1aFToa55zL4zgUSdsDtwI/EZLJ/zIpNJdKIaEAHHVUWDb4nnsKHYlzzuV+\ncsixiQdwBrAy4e6uOyQ9nkmhDq69NjR73Xtv7srw9uGY10XM6yLmdZFdTWp4r7quYwNE6ru/XJpa\ntIAHH4Sdd4bttgvr0jvnXCmr6bbhRma2rMaDi7B9qQhDqtENN4Rmr5dfhqZNCx2Nc65c5XrqlQmS\nTqtuunpJHSWNBCZmUriD448PAx3PPrvQkTjnXGZqSii7At8AN0n6UtJ/JX0g6UvgRuBrYOd8BNmQ\nSXDXXeF24meeye65vX045nUR87qIeV1kV8o+FDP7BbgTuDOarr5N9NY8M1uaj+DKRZs2odlr2LBw\nK/FaaxU6Iuecqzufvr6InHlmSChPPulTszjn8sunr29gLrgA5s+H664rdCTOOVd3nlCKyEorwQMP\nwCWXwJtvZn4+bx+OeV3EvC5iXhfZ5QmlyGy0EVx/fZjqftGiQkfjnHPpS2cur8HAZcDahEGNAGZm\nq+Y4tnop5T6UZIcdBmbhDjDnnMu1vMzlJWkWYf6u9zIpKF8aSkJZtAi6d4fzz4ehQwsdjXOuoctX\np/xXpZJMGpKWLUN/yoknwkcf1e8c3j4c87qIeV3EvC6yq6a5vBLekPRP4DFgcbTNzGxM7sJyAN26\nhVuJDzgAJk0KnfbOOVes0mnyGhU9XW5HMzs0o4KlE4DjgKXAk2Y2UlJzwuJdWxGS3T1mdlm0f3dg\nFNAcGGdmI1Kct0E0eSUsWwZ77glduoS7v5xzLhey0eRV6xWKmQ3PpIDqSOoPDAI6mdkSSWtGbw2J\nyuwkaWXgXUmjzewTwiJfh5vZFEnjJA00s/HZjq3YNGoEo0ZB164wYEB4OOdcMaq1D0XS+pIelTQ3\nevwreUngejoWuNTMlgCY2dxo+5dAi2iqlxaEJrbvJa0DtDKzKdF+9wD7ZBhDyVhrrZBUDjkE5s6t\ndfffePtwzOsi5nUR87rIrnQ65e8CHgfWjR5jo22Z2BToJ2mypEpJ2wKY2dPA94TEMge40swWAOsB\nnyUd/3m0rWzssgsceCAcemi4ndg554pNOn0ob5lZ59q2VXPcs0Dbat46C7gYeMHMRkRr1v/TzDaW\ndBCwL/BHYA1gErA78DvCFc0u0bn7Aqeb2V7VlNug+lCSLV4MffqESSRPOKHQ0TjnGpK89KEA30ga\nBowmDGwcAsyr7aDEl391JB0LjIn2e13SMkltgO2BR6PZjOdKehnoDrwEJDeztSNcpVRr+PDhtG/f\nHoDWrVvTpUsXKioqgPgStxRfN20KI0ZUctxx0K9fBZ07F1d8/tpf++vSeV1ZWcmoUaMAfvu+zJiZ\n1fgA2hOaueZGj38DG9R2XC3nPBq4IHq+GfBx9PxE4M7oeQvgHWDr6PVrQC9CUhsHDExxbmvo7r3X\nbPPNzRYtqnm/CRMm5CWeUuB1EfO6iHldxKLvznp/r5tZ7X0oZjbHzPYyszWjx94W7rrKxJ3AxpJm\nAA8Ah0TbbwWaRtunRMllZvTeccDtwAfAh1YGd3ilctBB0KMHnHRSoSNxzrlYTWvKjzSzyyXdUM3b\nZmYn5ja0+mnIfSjJFi4MAx8vvhj++MdCR+OcK3W57kN5N/o5leUHNarKa1cArVqFqVn22AN69oRs\nNYE651x9pWzyMrOx0dMfzezupMco4Ke8ROdqtO22cPrp4XbiX39d8f1EB5zzukjmdRHzusiudMah\nnJHmNlcAp5wSJpK88MJCR+KcK3c19aHsDuwB/Al4kHgtlFbAlmbWMy8R1lG59KEk++qrMDXLAw9A\ndHegc87VSa6nr/+C0H/yc/TzjejxOLBbJoW67GrbFu68Mwx4/OabQkfjnCtXNfWhvBX1l2xCuEKZ\nDkwDnjCz+fkJz6Vr993D3V6HHx5PzeLtwzGvi5jXRczrIrvS6UPZFfgQuB64AZglaY+cRuXq5ZJL\n4NNP4ZZbCh2Jc64cpTOX1/vA783sw+j1JoT1SDrmIb46K8c+lGT//S/ssAO88AJss02ho3HOlYp8\nLQH8fSKZRD4izAjsitBmm8GVV8KQIfDjj4WOxjlXTtJJKFOjBa2GSxoOPEFYFvgPkv6Q2/BcfRxy\nSJiapaKikp9/LnQ0xcHbymNeFzGvi+xKJ6E0A74GdowecwnL8O4VPVyRkeD222GVVWDwYPjll0JH\n5JwrBzX2oUQrJ44ws2vyF1Jmyr0PJdmSJTB0aEgojzwCzZoVOiLnXLHKeR+KhXVJhmZSgCuclVYK\ngx1XWincUrx4caEjcs41ZOk0eb0k6UZJfSV1k9RdUrecR+YyVllZyUorwYMPhmawIUPCVUs58rby\nmNdFzOsiu9JJKF2BrYALgauBq6KfrkQ0bQoPPRQmkBw6tHyTinMut2odh1JqvA8ltV9+CZ30q6wC\no0dDk3QWgHbOlYW8jEOR1FrStZKmRo+rJa2WSaGuMJo1C53zCxeGVR+rm/LeOefqK50mrzsJAxn3\nB/4ILATuymVQLjuqax9u3hwefRTmz4eDDy6fpOJt5TGvi5jXRXalk1A2MbPzzOwjM5tlZucTJox0\nJap5c3jsMZg3D4YPh6VLCx2Rc64hSGcur8nAaWY2KXrdB7jSzLbLQ3x15n0o6fvxRxg0CNZdF+66\nCxo3LnREzrlCyUYfSjoJpQtwD5DoN5kPHGJmb2VScK54QqmbH3+EPfeEDTeEO+6ARulcszrnGpy8\ndMqb2XQz6wR0ArYxsy7Fmkzc8tJpH15lFRg7FmbPhiOPhGXLch9XIXhbeczrIuZ1kV3p3OV1kqRV\nCR3z10p6U5Kv2NiAtGgBTz4JH3wARx/dcJOKcy630mnyetvMOkVJ5BjgHOBeM+uajwDrypu86m/R\nIhg4ELbaKizS5c1fzpWPfK2Hkijg94REMjOTAl3xatkSnnoKZs6E44+PlxJ2zrl0pLseyjPAHsDT\nUfOXN4qUgPq0D7dqFZLKtGlwwgkNJ6l4W3nM6yLmdZFd6SSUw4AzgG3N7AdgJeDQnEblCmrVVWH8\neHj9dRgxouEkFedcbqXsQ5HUHUj5VWJmb+YqqEx4H0r2LFgAu+wCffrANdeEGYudcw1TTsehSKok\nJJSVge7A29FbnYA3fGBjeZg/PySVHXeEq67ypOJcQ5XTTnkzqzCz/sAXQDcz625m3QnT2X+RSaEu\nP7LRPrz66vDMMzBhAowcWbrNX95WHvO6iHldZFc6fSibm9mMxIvoLq8tcheSKzZrrAHPPhsSyxln\nlG5Scc7lVjrjUB4EFgH3EW4hPgBoaWZFuTSwN3nlzrx5MGBAmKrlr3/15i/nGpJ8zeW1MnAs0Dfa\n9CJwi5n9nEnBueIJJbfmzoWddoJ994ULLyx0NM65bMnXXF4/mdk1ZrZv9Li2WJOJW14u2ofXXBOe\nfx7GjIELLsj66XPG28pjXhcxr4vsqnURWEmbAZcAWxLu+AIwM9s4l4G54rXWWiGp9O8fpmc555xC\nR+ScKwbpNHm9DJwHXAMMAoYDjc2sKL9GvMkrf776KiSVgw6Cs84qdDTOuUzkay6vlc3sOULymROt\n2Pj7TAqV9KCkadFjtqRpSe+dIekDSf+RtGvS9u6SZkTvXZdJ+S472raFF16Ae++Fyy4rdDTOuUJL\nJ6H8LKkx8KGk4yX9AWiRSaFmNsTMukYzFv8reiBpS+BPhOa1gcDN0m/3Et0CHG5mmwKbShqYSQzl\nIB/tw+usE5LKnXfCFVfkvLh687bymNdFzOsiu2rtQwFOAlYBTgQuAlYFDslG4VGy+CPQP9q0N/CA\nmS0B5kj6EOgl6WOglZlNifa7B9gHGJ+NOFxm1l03DHysqAjLCJ96aqEjcs4VQq19KDktXOoHXG1m\nPaLXNwCTzez+6PXtwFPAHOAyM9sl2t4XON3M9qrmnN6HUiCffRaSyp//DCefXOhonHN1kY0+lHSu\nUOpF0rNA22reOtPMxkbPhwKjcxWDy6927ULzV//+4UrlxBMLHZFzLp9yllASVxOpSGoC7At0S9r8\nObB+0ut2wGfR9nZVtn+e6tzDhw+nffv2ALRu3ZouXbpQUVEBxG2m5fA6uX04X+V/9FElF18MZ5xR\nQaNGsPXWxVEfiW3F9O9TqNfTp0/npJNOKpp4Cvn6b3/7W1l/P4waNQrgt+/LjJlZtQ/g8ujnH1Pt\nk8mD0Ok+ocq2LYHpQFNgI2AWcbPca0AvwvQv44CBKc5rLpgwYULByp4922zDDc1uuqlgISynkHVR\nbLwuYl4Xsei7M6Pv9Zqmr58JbAO8aTlYP17SXcCrZvaPKtvPJCzq9SswwsyejrZ3B0YRBleOM7Nq\nG1S8D6V4zJ4d+lTOPBOOPrrQ0TjnapLr9VCuBI4EWgI/VXnbzGzVTArOFU8oxWXWrNCncs45cOSR\nhY7GOZdKrtdDOc3MWhOuBlpVeRRlMnHLS+4/KJRNNgkd9RdeCHfcUbg4iqEuioXXRczrIrtq7ZQ3\ns0GS1gZ6RJummNn/chuWa0g6dFj+7q/hwwsdkXMuF9KZy+uPwJXAREKHeF/gNDN7OPfh1Z03eRWv\n998P66lccgkcfHCho3HOJcvXOJSzgR6JqxJJawLPA0WZUFzx6tgRnnsuJJVGjcKkks65hiOdubwE\nzE16/U0MILaSAAAaI0lEQVS0zRW5Ymwf3nzzsJzw6afD6DwOaS3GuigUr4uY10V2pXOFMh54WtJo\nQiL5E2E6FOfqZcstQ1LZeedwpTJkSKEjcs5lQ1pzeUkaDOwQvZxkZo/mNKoMeB9K6ZgxA3bdFa6/\nHvbfv9DROFfe8rKmfKnxhFJa3noLdtsNbroJBg8udDTOla98LbDlSlQptA937gzjx4cZih/N4XVv\nKdRFvnhdxLwusitnk0M6l64uXWDcONh999CnsvfehY7IOVcf6YxDGWFm19W2rVh4k1fpmjoV9tgD\nbr8d9lphpRvnXC7lq8lreDXbDs2kUOeq0707PPEEHHFE+OmcKy0pE4qkoZLGAhtJGpv0qCSMRXFF\nrhTbh3v0gLFj4bDDQjNYtpRiXeSK10XM6yK7aupDeQX4ElgTuIp4MONC4K0cx+XKWM+e8PjjMGgQ\n3HtvuAvMOVf8/LZhV7ReeQX22Qfuuy+MV3HO5U5e+lAkbSfpdUmLJC2RtEzS95kU6lw6tt8exoyB\nAw8Mc4A554pbOp3yNwIHAB8AzYHDgZtzGZTLjobQPtynT0gqBxwQpsCvr4ZQF9nidRHzusiutAY2\nmtkHQGMzW2pmdxHWg3cuL/r2hYcfhj/9Cfz/v3PFK51xKC8CuwC3EzrpvwIOMbPOuQ+v7rwPpeGa\nMCEklUcegX79Ch2Ncw1LvsahHBztdzzwI9AO8FmXXN717w8PPBDm/Jo0qdDROOeqqjWhmNkcwi3D\nbc3sfDM7xcw+zHlkLmMNsX14wICwjsrgwfDyy+kf1xDror68LmJeF9mVzl1eg4BpwNPR666SHs91\nYM6lsssuYXzKvvvCq68WOhrnXEI6fShvAjsBE8ysa7RtppltnYf46sz7UMrH+PFhbfqxY6FXr0JH\n41xpy1cfyhIzW1Bl27JMCnUuGwYOhFGjwkSSU6YUOhrnXDoJ5R1JBwJNJG0q6QbCtCyuyJVD+/Ae\ne8Cdd4ak8sYbqfcrh7pIl9dFzOsiu9JJKCcAWwG/AA8A3wMn5TIo5+pizz3httvg97+HN98sdDTO\nlS+fy8s1GI89BkcfHfpWunYtdDTOlZZs9KHUumKjpI7AX4D2Sfubme2UScHOZds++8DSpWHlx6ef\nDssLO+fyJ50mr4eBN4GzgdOSHq7IlWP78ODBcMMNocP+7bfj7eVYF6l4XcS8LrIrnTXll5jZLTmP\nxLks2X9/WLYsrKPy7LOwdVHe4O5cw5OyD0XSGoQR8icAc4ExhI55AMzs23wEWFfeh+ISHngATj01\nJJWttip0NM4Vt2z0odSUUOYAqb6Zzcw2zqTgXPGE4pLdfz+cdhocf3zoU+ncGdZbD5TRfxvnGp6c\nJpRS5QklVllZSUVFRaHDKLgXXoBbb63k228reOut0BzWqVOcYDp3hi23hGbNCh1pfvjnIuZ1EcvL\nXV7OlbqddoJGjaCiAszgq6/grbfC45ln4Mor4aOPYNNNl08ynTvDWmsVOnrnSodfoTgH/PwzvPNO\nnGgSj+bNV0wyHTtCE/9TzDUw3uRVDU8oLlvM4NNPV0wyn30GW2yxYqJZffVCR+xc/eW6U747qTvl\nMbN6T3Ih6UGgY/SyNbDAzLpK2gW4FGgKLAZOM7MJSfGMIqxrP87MRqQ4tyeUiLcPx7JZF4sWwcyZ\nyyeZGTOgdesVk8wmm0DjxlkpNmv8cxHzuojlug/lampIKED/+hZqZkMSzyVdBSRmM54L7GlmX0na\nirAGS7vovVuAw81siqRxkgaa2fj6xuBcfbVsCb17h0fCsmUwe3acYO6/H04/HebODeNgkpNMp07Q\nqlXh4ncuVwra5CVJwMdAfzObVc1784C2QBvgBTPbInpvCFBhZsdUc06/QnFF47vvwoj95KuZd96B\ntm1XvJpp395vZ3aFk7e7vCRtA2xBaG4CwMzuyaTgSF/g66rJJDIYmGpmSyStB3yW9N7nwHpZKN+5\nnFptNejbNzwSli6FDz6IE8xtt4WfCxeueDvz1lvDKqsULn7n6iKdySHPB3YkTGH/JLA78BJQY0KR\n9Czh6qKqM81sbPR8KDC6mmO3Ai4DdqktvuoMHz6c9u3bA9C6dWu6dOnyWztpYu6ecnidPE9RMcRT\nyNeJbcUST0VFBZtvDmuvXcmuu4bX8+bBPfdUMmsWvPxyBTfdBO++W0nbtrDddhV07gxSJR06wH77\nVSDVr/zp06dz0kknFfz3L4bXf/vb38r6+2HUqFEAv31fZiqdJYBnAp2BN82ss6S1gfvNbOeMCpaa\nEK46upnZF0nb2wHPA8PN7NVo2zos3+Q1FNjRm7xqVukdjr8p1bpYvBj+858V7zRbunTFJrN0B2eW\nal3kgtdFLC+3DUt63cx6SJpKWFv+e+A/ZtaxxgNrK1gaCIw0s/5J21oDE4HzzOyxKvu/BpwITCFc\nKV1fXae8JxTX0FUdnJl4fPQRdOiwYqJZe+1CR+xKQb4Sys3AWcCfgFOBH4BpZnZoRgVLdwGvmtk/\nkradDfwf8EHSrruY2byk24ZXJtw2fGKK83pCcWUp1eDMZs3i5NKlC+y9N7RoUehoXbHJ+8BGSRsB\nq5rZW5kUmkueUGJ+OR8r17qoOjhz8mSYPLmSSy+t4NBDfcR/uX4uqpPTu7wkbWFm70nqVs173TIZ\n2Oicyw8JNtggPPbaK2z7+9/DOJnrroMrrggrXPrtyi4bahopf5uZHSmpkmoGOCb3fRQTv0JxrnZm\n8MQTYfDluuuGCTK7rfCnoysn+epDaW5mP9e2rVh4QnEufb/+CnfcARdcAAMGwF//ChtuWOioXCFk\nI6Gks6b8K2luc0UmeQxGufO6iCXXRZMmcPTR8P77sPHG4Spl5EhYsCD18Q2Jfy6yK2VCkbROdGfV\nKpK6Seoe/awAfOyucw1Iq1bhKmXGDPj22zBF/3XXhXEwzqWrpj6UQ4DhwLbAG0lvLQRGmdmYnEdX\nD97k5VzmZs4M/Sv//S9ceinst5933Dd0+epD2c/MHsmkkHzyhOJc9jz/PPzlL2Ghsauugh12KHRE\nLlfy1YfyhKQDJZ0l6VxJ50k6N5NCXX54+3DM6yJWl7oYMACmToXjjoMDDoA//CFctTQU/rnIrnQS\nyr+BQcASwij5RdFP51wZaNQIhg0Lc4r16hWuUo4/Pqz14lyytCaHNLOt8xRPxrzJy7ncmjcPLroo\nDI485RQ46SSfYr8hyNttw5I6ZVKIc67haNMm3AE2eTJMmxbuCBs1KsyA7MpbOgmlLzBV0n8lzYge\nb+c6MJc5bx+OeV3EslUXHTrAww/DQw+FRcK6d4dnn83KqfPGPxfZlc7UcLvnPArnXMnabjt46SUY\nMyZ03m+ySZgjrJO3a5SdtGYbltQX6GBmd0laE2hpZrNzHl09eB+Kc4WzZAncemuYwmWPPUJfy3q+\nWHdJyEsfSrQE8OnAGdGmpsB9mRTqnGuYVlop3AH2/vthYa9OneDss+H77wsdmcuHdPpQ9gX2JrpV\n2Mw+B1rlMiiXHd4+HPO6iOWjLlZbLYywnz49rMfSsSPcfHO4gikm/rnIrnQSyi9mtizxQpKv9eac\nS8v668Pdd8NTT8Gjj8LWW8Njj4Xp813Dk844lNOADsCuwKXAYcBoM7s+9+HVnfehOFeczODpp+G0\n06B16zCVS69ehY7KJeR8Li9JAtYHNickFICnzaxobw70hOJccVu6NFy1nHtuGHV/6aVh6nxXWPka\n2DjOzJ4xs79Ej6JNJm553j4c87qIFbouGjeGww4LHffbbAM9e8LJJ8M33+Q/lkLXRaGZwaxZYWBq\nNtSYUKI/9adK6pmd4pxzLmjRItwB9s478MsvsPnmYSnin4tyLdiGYelSeOstuPFG+NOfwi3d/frB\n+PHZOX86fSjvE/pQPiaeFNLMrCiHLXmTl3Ol6T//gf/7v3Bn2MUXw9ChYWJKV3+LF8Mbb8CLL8Kk\nSfDKK7DWWtC3b/zYaKOw1k2+1kNpX912M5uTScG54gnFudL24othDZZly8IVS//+hY6odCxcCK++\nGpLHpEkhmWy2WbgK6dsX+vQJ44Oqk5c+lChxrA/0j57/APjabSWg3NuHk3ldxIq9Lvr1CxNP/uUv\ncPjhsNde8O67uSmr2OuiNnPnhtuxTz4Ztt0W1lknzFKwbFm42vviC3jzTfjb32Dw4NTJJFtqncsr\nGinfHegI3EU8Ut7XbnPO5USjRjBkCOy7L9x0E1RUhOfnnx++NMuRGXz8cXz1MWkSfPllmEutX7+Q\nNLbdNqyuWSjpNHm9BXQFpppZ12jb296H4pzLl/nzQ7/KXXfBiSfCqadCy5aFjiq3li2D996L+z8m\nTQozDST3f3TqFO6ay4Z89aFMMbOekqaZWddopPyrnlCcc/k2ezacdRZMnBiuVg49FJqkM2d6CViy\nJDRPJZLHSy+FAaB9+8Z9IB06hA70XMjXOJSHJd0KtJZ0FPA8cHsmhbr8KPX24WzyuoiVcl1stBGM\nHh2mb7n/fujcGZ58sv5TuRSyLn78EV54AS64AAYMgDXWgKOOgjlz4IADYMaMeIzIYYfBppvmLplk\nS8rcLqm5mf1sZldK2hVYCGwGnOODG51zhdSjB0yYAE88ETrvr746TOXSrVuhI0vt22/DVUfiCmTG\njJAQ+/YNSylvvz2svnqho8xMyiYvSW+aWTdJ95rZsDzHVW/e5OVcefn1V7jjjtAENmBA6GvZcMNC\nRxVmWU7uQP/kE+jdO+7/6NkTVlml0FHGctqHIukd4BLgIuAvhFuFLfHTzMZkUnCueEJxrjwtXBiu\nUm68MdxufOaZoQ8iH8zCVDLJCWTRojDuI9EH0qVLcff35LoP5RjCevKrAXsBe1b56YpcKbeVZ5vX\nRayh1kWrVqE/YsaMcFfYZpuFW2kXL059TH3r4tdfw6DBa6+FP/whjO8YODDckdWnD4wbB//7Xxgj\ncsop4XbeYk4m2VLTr9jWzI6Jmr7+kbeInHMuA+uuC7fdBiNGwOmnww03hBmN99+//p3aP/0EU6bE\nVx+TJ0O7duHqY/DgkLg22CC7v0cpqqnJK3Gb8LTE+JNS4E1ezrlkzz8fOu6bNQtNYn361H7MggVh\n3qvEGJDp08PiYIn+jx12gDZtch97PuW6D+U5Qp9JD2BSlbfNzAZlUnCueEJxzlW1bFm4zfiss6B7\nd7j88tAklvDll8v3f8yaFe4kSySQ3r0b/kDKXCeUZoQR8vcBh7P8/F1mZhPrXaj0IGEqF4DWwILk\nqyBJGwDvAueZ2dXRtu7AKKA5YY2WESnO7QklUllZSUVFRaHDKApeF7FyrouffoLrrw+TTu67L3z6\naSUffljBt9+Gq47EAMJu3aBp00JHm1857ZQ3s1/MbDKwnZlNNLPKpEe9k0l07iFm1jVKIv+KHsmu\nAZ6ssu0W4HAz2xTYVNLATGIoB9OnTy90CEXD6yJWznWx8sowcmSYKr9dO2jZcjqPPgrz5sHYsWF5\n4t69yy+ZZEtNAxuvi64C7tSKPVlZafKKlhj+I9A/ads+wEfEa68gaR2glZlNiTbdA+wDZGlZmIZp\nwYIFhQ6haHhdxLwuQv/HeefB+ecvYJttCh1Nw1HTXV73RD+vrua9bLUp9QW+NrNZAJJaAqcDOwOn\nJe23HvBZ0uvPo23OOeeKRMqEYmZTo5+VktaMns9N98SSngXaVvPWmWY2Nno+FBid9N75wLVm9qOq\nuSxydTNnzpxCh1A0vC5iXhcxr4vsqqlTXsB5wPFAYoLkpcANZnZBxgVLTQhXHd3M7Ito24uExbwg\ndNYvA84BxgATzGyLaL+hwI5mdkw15/Ueeeecq4dMO+VravI6mbCIVg8zmw0gaWPg75JOMbNrMimY\n0Kz1XiKZAJhZv8RzSecBC83s5uj195J6AVOAYcD11Z000wpxzjlXPzVNvXIwcEAimQCY2UfAgdF7\nmfoT8EAd9j+OMG3+B8CHZuYd8s45V0RqavKaaWZb1/U955xz5ammK5Ql9XwvJyQNlPQfSR9IGpli\nn+uj99+SlDxQco6ktyVNkzSlumNLSW11IWlzSa9K+lnSqXU5ttRkWBfl9rk4MPq/8baklyV1SvfY\nUpNhXZTb52LvqC6mSZoqaad0j12BmVX7IHTAL0zx+DXVcbl4EG4K+BBoD6wETAe2qLLPHoQR9AC9\ngMlJ780G1shnzAWuizWBbYG/AqfW5dhSemRSF2X6udgOWC16PjDxf6RMPxfV1kWZfi5aJD3fhtCl\nUK/PRU0j5RubWasUj3xPxNyT8EvOMbMlwIPA3lX2GQTcHcX+GmHJ4rWT3m8onfW11oWZzTWzN1jx\nSjKdeiwlmdRFQjl9Ll41s++il68B7dI9tsRkUhcJ5fS5+CHpZUtgXrrHVpXOmvLFYD3g06TXn7Hi\nwMaa9jHgOUlvSDoyZ1HmRzp1kYtji1Gmv085fy4OB8bV89hil0ldQBl+LiTtI+k94CngxLocm6xU\nlnxJd2xJqr8q+pjZF9EAzWcl/cfMqs6gXCoyGWfT0MboZPr77GBmX5bb50JSf+AwwrCAOh1bIjKp\nCyjDz4WZPQY8JqkvcK+kzetTWKlcoXxOPOCR6PlntezTLtqGRWNdLIz0f5RwKVeq0qmLXBxbjDL6\nfczsy+hn2Xwuos7n24BBZja/LseWkEzqoiw/FwlR4mwCrBHtV6fPRakklDcIMwy3l9SUMIbl8Sr7\nPE40PkZSb8KU+F9LWkVSq2h7C2BXYEb+Qs+6dOoioeoVW12OLQX1roty/FwoLAsxBjjIzD6sy7El\npt51Uaafi02kMNWVpG4AZvZNOseuoNB3IdThboXdgfcJdx2cEW07Gjg6aZ8bo/ffIkzpArAx4e6E\n6cDMxLGl/KitLghzqH0KfAfMBz4BWqY6tpQf9a2LMv1c3A58A0yLHlNqOraUH/WtizL9XJwe/a7T\nCIsp9qjv5yLlwEbnnHOuLkqlycs551yR84TinHMuKzyhOOecywpPKM4557LCE4pzzrms8ITinHMu\nKzyhuJyTtL6kjyStHr1ePXq9QTX7NpM0UVIjSRWSxuY/Yshl2ZJWkjS1mu2LclFeXUg6M0fnPVHS\nsFyc2xUPTygu58zsU+AW4LJo02XArWb2STW7Hwg8YWbL8hVfVZJyPcddH+ClarYXw6CwM3J03ruA\nE3J0blckPKG4fLkW6C3pJGB74KoU+w0F/l11o6Qekt6UtJGkNSU9K2mmpNuiBZHWqOaYgdGCQdMl\nPRtt6ynplehcL0vaLNo+XNLjkp4HniN8ua8m6YlogaFbkqanGBotwDRD0mVJ5S2S9NeovFclrZXi\ndxxImNW1WpLaRDHuruBmSe9JekbSk5IGV3PMkZKmRGU/ImnlaPvakh6Ntk+PpiVC0kGSXlNYVOnv\n0RXhZcDK0bZ7o/1OiX7PGZJGRNvaR/H8I/o3eFpS8+i9TSQ9pTBT74uSOgKY2ULgG0lbpfq9XQNQ\n6GkB/FE+D2A3YBkwIMX7jYEvk15XAGMJCegNoF20/UZgZJVzrlHlXGsSplnZMHrdOvrZCmgcPd8Z\neCR6PpwwRUvrpLJ/Iiwu1Ah4BhgMrAt8DPwuivd5YO/omGXA76PnlwNnpfg9XwOaV7N9IbAWMDlR\nR8B+wJPR87WBb4E/VHPsGknPLwKOj57/Ezgxei5gVWALwpxMiXq4GRiWiCHpPN2Bt4GVgRaE6Tm6\nRHWyBOiUVMaB0fPngQ7R817A80nnuwA4ttCfQ3/k7lEq09e7hmF34AvCqnDPV/N+G8KXarItgFuB\nXczsq2jbDsA+AGb2tKT5rKg3MNHMPo72WxBtbw3cI6kD4Sok+f/AM0n7QZjfaQ6ApAcITVVLgEoL\nk+ch6X6gH+GqarGZPRkdOxXYpWpQktYDvjWzn6uJuSmhXo6zeLr0HYCHot/ha0kTqjkOYBtJfwVW\nI8xVNj7a3h84KDregO8lHUxIFm9EF10rA1+tcMbw+44xs5+i2McAfQnJaLaZvZ30u7aPJlPcHng4\nOm/id0r4gjBXlmugPKG4vJDUhXBFsB3wkqQHkxLEcrsmPTfgS6AZ0I3lF0GqbUU9S7HPRYS/mveV\ntCFQmfTej9WcI7m86vo4krcnrwq5jOr/fw0k/rKvagnhSmwgYZK+5DJqM4owDfsMSYcAO9Zy/N1m\nVlsHfNU6TP5df0navhRoTriSm29mXVOcL1UdugbC+1BczkV9D7cAIyx00F9J9X0o8wh/Xf92KLAA\n2BO4VFLiS/Jl4I/RuXcFVq/mXK8B/SS1j/ZL7LMq4S9lgENrCb1n1F/QKCpvEjAF2FHS7yQ1BoYA\nE2s5T7LdSN1/YoTFnjaXdHq07WVgcNSXsjahKa46LYGvJK1EdEUSeR44FkBSY0mrRtv2U1hACklr\nKL7jbknSTQmTgH0krRxdfewTbasuQclCP8lsSftF55Wkzkn7rAPMSRG/awA8obh8OBKYY2aJZq6b\ngS0UVof7jZktBWYmOnIJX7BmZv8jJJWbJPUgtMXvKmkGoY/hK6o0lVlYHOkoYIyk6YT1sAGuICSn\nNwl9IIm/mI3l/3o24HVCf827wEdm9mh0VfV/wATCFOdvmNnYpGNIcT6iBNTBzP6bop4sapYaCuwk\n6RjgX4RFjd4F7gXeJEzFX9U5hCT6EvBe0vYRQH9JbxOufrYws/eAs4FnJL1F6B9qG+3/D+BtSfea\n2TTClc8UQr/ObWb2VjW/a/LrA4HDozqfCeyVtE9Plr/ycg2MT1/vioqk4cDaZnZ5Dfs0BZaa2VJJ\n2wE3mVm3fMVYX5J2IHReH1fH41qY2Q+SfkdIGttHSbZkJK6MzKxHoWNxueMJxRWVKFk8B+xoKT6c\nUYf6Q4Qr7MWEO4dWGCjYUEQd8a0JHdyXm9k9BQ6pziSdSLgZ4b5Cx+JyxxOKc865rPA+FOecc1nh\nCcU551xWeEJxzjmXFZ5QnHPOZYUnFOecc1nhCcU551xW/D+xKBVCe8dDPQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x76f12b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " (1) = X(kg acetone/kg carbon) \n",
+ " (2)= Slope of isostere \n",
+ " (3)= Differential heat of adsorption(kJ/kg acetone) \n",
+ " (4)=deltaH_prime(vapour(kJ/kg carbon)) \n",
+ " (5)=deltaH(liquid(kJ/kg carbon)\n",
+ "(1) \t \t \t \t (2) \t \t \t \t (3) \t \t \t \t \t \t \t \t (4) \t \t \t \t \t \t (5) \n",
+ "0.05 \t \t \t 1.17 \t \t -644.67 \t \t \t \t \t -29.8 \t \t \t \t-2.25\n",
+ "0.1 \t \t \t 1.245 \t \t -685.995 \t \t \t \t \t -63.0 \t \t \t \t-7.9\n",
+ "0.15 \t \t \t 1.3 \t \t -716.3 \t \t \t \t \t -97.9 \t \t \t \t-15.25\n",
+ "0.2 \t \t \t 1.31 \t \t -721.81 \t \t \t \t \t -134.0 \t \t \t \t-23.8\n",
+ "0.25 \t \t \t 1.34 \t \t -738.34 \t \t \t \t \t -170.5 \t \t \t \t-32.75\n",
+ "0.3 \t \t \t 1.327 \t \t -731.177 \t \t \t \t \t -207.5 \t \t \t \t-42.2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.2: Page 596"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.2\n",
+ "# Page: 596\n",
+ "\n",
+ "print'Illustration 11.2 - Page: 596\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#*****Data*****#\n",
+ "# x:kg carbon/kg soln\n",
+ "# y_star: Equilibrium colour, units/kg soln.\n",
+ "# X:adsorbate concentration, units/kg carbon\n",
+ "# Data = [x Y_star]\n",
+ "Data =numpy.array([[0, 9.6],[0.001, 8.6],[0.004 ,6.3],[0.008, 4.3],[0.02 ,1.7],[0.04, 0.7]]);\n",
+ "Yo = 9.6;# [units of colour/kg soln]\n",
+ "Y1 = 0.1*Yo;# [units of colour/kg soln]\n",
+ "Ls = 1000.0;# [kg soln]\n",
+ "#****************#\n",
+ "\n",
+ "\n",
+ "n = 1.66;# [slope of line]\n",
+ "# At X = 663, Y_star = 4.3\n",
+ "# From eqn. 11.5\n",
+ "X = 663;\n",
+ "Y_star = 4.3;\n",
+ "m = Y_star/X**n;\n",
+ "# Freundlich Equation:\n",
+ "def f76(X):\n",
+ " return m*X**n\n",
+ "X = numpy.arange(0,1000,1);\n",
+ "\n",
+ "plt.plot(X,f76(X));\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "title(\"Equilibium Data(on arithmetic scale)\");\n",
+ "plt.show()\n",
+ "# Single Stage Operation:\n",
+ "# Since fresh carbn is used:\n",
+ "Xo = 0;# [units/kg carbon]\n",
+ "# From scf(30):\n",
+ "X1 = 270;# [units/kg carbon]\n",
+ "Data2 =numpy.array([[Xo, Yo],[X1, Y1]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data2[:,0],Data2[:,1],label=\"Operating line curve\")\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Single stage operation\");\n",
+ "plt.show()\n",
+ "# From Eqn. 11.4:\n",
+ "Ss = Ls*((Yo-Y1)/(X1-Xo));# [kg carbon/kg soln]\n",
+ "print\"Quantity of fresh carbon recquired for single stage operation: \",Ss,\" kg carbon/1000 kg solution\\n\"\n",
+ "\n",
+ "# Two stage cross current operation:\n",
+ "# For the minimumamount of carbon:\n",
+ "X1 = 565;# [units/kg carbon]\n",
+ "Y1 = 3.30;# [units of colour/kg soln]\n",
+ "X2 = 270;# [units/kg carbon]\n",
+ "Y2 = 0.96;# [units of colour/kg soln]\n",
+ "Data3 = numpy.array([[Xo ,Yo],[X1 ,Y1]]);\n",
+ "Data4 = numpy.array([[0 ,Y1],[X2 ,Y2]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data3[:,0],Data3[:,1],label=\"First of two Cocurrent\")\n",
+ "plt.plot(Data4[:,0],Data4[:,1],label=\"Second of two Cocurrent\")\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Two stage Cross current operation\");\n",
+ "plt.show()\n",
+ "# From Eqn. 11.8:\n",
+ "Ss1 = Ls*(Yo-Y1)/(X1-Xo);# [kg]\n",
+ "Ss2 = Ls*(Y1-Y2)/(X2-Xo);# [kg]\n",
+ "Ss = Ss1+Ss2;# [kg]\n",
+ "print\"Quantity of fresh carbon recquired for two stage crosscurrent operation: \",Ss,\" kg carbon/1000 kg solution\\n\"\n",
+ "\n",
+ "# Two Stage counter current operation:\n",
+ "Yo = 9.6;\n",
+ "Y2 = 0.96;\n",
+ "# By trial and error:\n",
+ "XNpPlus1 = 0;\n",
+ "X1 = 675;\n",
+ "Data5 = numpy.array([[X1 ,Yo],[XNpPlus1 ,Y2]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data5[:,0],Data5[:,1],label=\"Two stage Counter Current\");\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Two stage Counter Current operation\");\n",
+ "# By eqn 11.14:\n",
+ "Ss = Ls*(Yo-Y2)/(X1-XNpPlus1);\n",
+ "print\"Quantity of fresh carbon recquired for two stage Counter Current operation: \",Ss,\" kg carbon/1000 kg solution\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.2 - Page: 596\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX5x/HPVxQVC6tib2uMiSZG1wKoAVkUa+wV+9o1\nRuxRYy+JYm+/xC6JoqioIAbFuqhYAQEVMVFBsAAKokRAyj6/P84dZhi3zO7OnTuz87xfr3nt3jt3\n7jnz7Ox95p5z7zkyM5xzzpWnpZKugHPOueR4EnDOuTLmScA558qYJwHnnCtjngScc66MeRJwzrky\n5kmgxEnaQNJsSYqWayUdH/1+hKRhGdvWSfpFA/tZYtu2SNLJkm5Ouh4Akj6QtGMjzy/+OxaapO6S\nJiRRdlY9KqPPbJPHKUl7SxpQiHq1NZ4ECkTSJElzogN26nFba/drZpPNbCVL3/Bh0QMz629mu+W4\nn5y3ba3oADdX0g+Svpc0UtL5kto3Yx8NJrQGtm8PXARc15I655uZbW5mrwJIulzSg9mbRI/YZcfS\nzF4zs00LUXa+mNkQ4LeSfpd0XUqNJ4HCMWCv6ICdevRJulIJMeA0M1sZWAs4B+gNDG3mftSMbfcF\nPjKzr5tZRl5JWjrJ8hvRnFgWq0eAk5KuRKnxJFAEJC0l6QZJ30j6VNJpmafB0VnEzhnbL/7m2Ngp\ns6QaSa9lrf5DVMY3kq7LaEZavG19+8xqZqqRNELSTZK+k/SJpB0kHStpsqRpko5u6m0DmNlcMxsO\n7ANsL+kPURldJL0Z7f8rSbdLWiZ67tVoH2OjM6qDJVVIekbSdEkzJQ2RtG5GeXsAw7Pis4+kD6My\nXpG0acZzkySdI2mspFmSBkhatt43Im0s6WVJ30ZxfUhSx6x9/VnSOGC2pHapv6mk3YELgUOj9/Je\nxq4rJb0enTENk7Ra1t+nJor3DEmnSOosaVz0fm7PquNxksZHsXlO0gaNxLJa0pSM164v6ckott9m\n7ztjuy7RWd33kqZKujHjuW6S3ojqNlnSMdH6P0h6L3rNZEmX1bfvaNuOku6LPg9fSLoq63NfC/yh\node7+nkSKKyGvm2dRPjwVgHbAgexZFNAdtNAa5oJ9gO2AbYmfDs+LsfXZdehCzAWWJXwDeyxaJ8b\nA0cCd0jq0MT+0gtmU4CRQPdo1ULgDGA1YHtgZ+CP0baptvQtojOqxwmf5fuADaLHXOCOjCI2Bz5O\nLUj6FfAw0AfoRDgLGaL0N3UDDgZ2AzYCtgBqGnk/fwXWBjYD1gcuz3q+NyERVZjZomj/ZmbPAX8D\nBkTvZatUFYHDozLXANoD52btswvwy2jftwJ/AXYCfgscoqjPQdK+hESzf/ReXyP8zRqK5WKS2gHP\nABOBDYF1gYba3m8FbjazjsAvCJ8JJG1IiO+tUflVwJjoNf8Djoxe8wfg1Ki+9ekHzCd8xrYCdgVO\nyHh+AiFxrtjA6109PAkUjoBB0Teh1CPV8XcI4Z/nSzP7jnBQaOz0vDWn7n3NbFZ00L0FOKyF+5lo\nZv+M+iIeA9YBrjSzBWb2AuGf9ZfN3OdXwCoAZjbazN4xszoz+xy4G+jR0AvNbKaZPWVm88zsf4QY\nZm5fAczOWD4UeMbMXooOyjcAywM7ZGxzm5lNjf4mQwgHr/rK/jTazwIz+xa4Oatsi/b1pZn9VM8u\nxM//pgbcb2afmNk8Qoyzy7/KzOZH8Z4NPGxm35rZV4QDfWr7U4BrzOxjM6sDrgGqJK1f3/vJ0oWQ\n3M6Lztp+MrMRDWw7H9hEUiczm2Nmb0frDwdeMLNHzWxR9LcaC2Bmw83sw+j39wkJ5md/Z0lrEpLo\nWVE9viF8fntnbJb6+1bk8L5cxJNA4Riwr5mtkvG4L3pubWBKxraTY6xHdjnrtHA/0zJ+nwsQ/WNm\nrmvuN7L1gJkQvqlHzTtfS/qe8E17tYZeKKmDpLuiZpbvCU0/HSWlDq7fAStnvGRtMuIcJbMphG+6\nKVNzeT+S1oyai76Iyn6wnrpOqeelTWmq/Oy/QfZyavsNgVtTXz6AGdH6zPfakPWBz6Pk0ZTjgV8B\nH0l6J9W0R/i7flbfCyR1jZripkuaBZxM/X/nDYFlgK8z3sedwOoZ26wU/ZyVQ11dxJNAcfia0ISR\nskHW8z8CK2Qsr9WKsrLL+bKebX6MfmY257SmzCZF30q3JnyDBfgHMB74ZdRUcBGNf17PIRyAukTb\n92DJb9jjoudTviIcWFLli3DAqy8e0HgT3N+ARcDmUdlH1VPXxl4f91VAk4GTsr6ArGBmb+Xw2inA\nBlGzUKOis5bDzWx1oC8wMGoSnEJowqnPw8AgYD0zqyAc2Ov7O08BfgJWy3gPHc0s82qgzYBJ0Zmg\ny5EngcJqqBnnMaCPpHUlrQJcwJIHhjFAb0lLS9oWOJCWHzjOVehEXZ/QHv5o9gbRN/ovgaOiTszj\naPifuKVSHdIdJPUABgNvm1nqCqEVCaf3c6IO21OzXj8tq04rEr79fi9pVSC7g3EoSzYzPEboJN9J\nocP5HGAe8EZj9W3AioTE+YNCZ/R5jWxbn6mEtuzsMlp7xU7q9XcCf5H0G1jcwXpwxnbZscz0DuFL\nyrXR32o5STvUt6GkIyWlvpl/T/iMLiIc6HtFnc5LS1pN0pbRdisC35nZfEldCE1HP/tsR1d1PQ/c\nJGklhYspNtaS91r0oPlXmJU9TwKFNURL3ifwRLT+HmAYoaN1JPAESx4ALiH8k35H6HDsn7XfhhJC\nfdeaDwZGAe8ROvzua2DbEwkHs2+B3wCZ7cD17be5SekOST8QDoA3A48Du2c8fy7hgPADoT9gQFYZ\nlwP/jJoGDiK0Dy8f1fcN4Nms7Z8BNpW0NoCZ/YfQgX078A2hU3JvM1vYQH0bu27/CsJZzPeEvoMn\nGtm2PqnO2BmSRmaV2VD5uew/db/IIMI38wFRc9X7hA7vlMtZMpaZ95osAvYm9O9MJnwjP6SB8nYD\nPpA0m/A37R31IUwG9iQk2hmEz94W0Wv+CFwZfRYu4edfSjLf59GEDvLxhGbDx1nyDLU3cFfjIXHZ\nFOekMpLOIPTeC7jHzG6NrbA2RFIloQ116RzbYl0OJJ0I/MbMzkq6Li6/JO0NHGFmvZvc2C0htiQg\naXPCZWidgQXAc8ApZvZpLAW2IZ4EnHOFEmdz0KaENt550SnlcOCAGMtra3zeT+dc7OJMAh8A3SWt\nGl0h8AfCpWKuCWY2ycza+VmAcy5usY1jYmYTJPUl9Oj/SOgM8oOac84VkVg7hpcoSPobMNnM7sxY\n500ezjnXAmaWl0H/Yr1EVNIa0c8NCOOWPJy9jZn5w4zLLrss8ToUy8Nj4bHwWDT+yKe4h7UdqDDy\n4QLgj2b2Q8zllaxJkyYlXYWi4bFI81ikeSziEWsSsPQIhc4554qQ3zFcJGpqapKuQtHwWKR5LNI8\nFvEoWMdwvYVLlmT5zjlXiiRhpdAx7HJXW1ubdBWKhscizWOR5rGIhycB55wrY94c5JxzJcabg5xz\nzuWFJ4Ei4e2daR6LNI9FmsciHp4EnHOuhEyYkN/9eZ+Ac86ViP/+F3r2hC+/9D4B55wrKxMnQq9e\ncFn27Nmt5EmgSHh7Z5rHIs1jkVbOsZgyBXbeGc47D048Mb/79iTgnHNF7OuvQwI47TT405/yv3/v\nE3DOuSL1zTdQXQ2HHQYXX5xe7/cJOOdcGzdzJuyyC+y//5IJIN88CRSJcm7vzOaxSPNYpJVTLL7/\nHnbbLXQEX3VVvGV5EnDOuSIyezbssQd07QrXXw/KS6NPw2LtE5B0IXAkYYL594FjzeynjOe9T8A5\n5yJz5sCee8Imm8Bdd8FSDXxNL4k+AUmVwInA1mb2O6Ad0Duu8pxzrpTNmwf77Qfrrw933tlwAsi3\nOIv5gTC3cAdJSwMdgC9jLK+klVN7Z1M8Fmkei7S2HIv58+Hgg6GiAh54ANq1K1zZsSUBM5sJ3AhM\nBr4CZpnZi3GV55xzpWjhQjj88HDg798flo515vefi604SRsDZwKVwPfA45KOMLP+mdvV1NRQWVkJ\nQEVFBVVVVVRXVwPpzF8Oy9XV1UVVH18unuWUYqlPUsupdcVSn3wsL1oE99xTzY8/wlln1TJiRP3b\n19bW0q9fP4DFx8t8ia1jWNKhwC5mdkK0fBSwnZmdlrGNdww758rSwoVw1FHhfoDBg2G55XJ/bUl0\nDAMTgO0kLS9JQC9gfIzllbTsb33lzGOR5rFIa0uxWLQIjjkGZsyAQYOalwDyLc4+gbHAv4CRwLho\n9d1xleecc6Vg0SKoqYHp08MZwPLLJ1sfHzvIOecKZNEiOO44+OILGDIEOnRo2X7y2RxU4H5o55wr\nT3V1cMIJMHky/PvfLU8A+ebDRhSJttTe2VoeizSPRVopx6KuLswD8Nln8MwzxZMAwM8EnHMuVnV1\ncPLJYWrIoUNhhRWSrtGSvE/AOediUlcHp54K48fDs8/CiivmZ7/eJ+Ccc0XOLMwG9sEH8Nxz+UsA\n+eZ9AkWilNs7881jkeaxSCulWJiFqSDHjg1nACutlHSNGuZnAs45l0dm0KcPjB4Nw4bByisnXaPG\neZ+Ac87lSSoBvPMOPP88dOwYTzneJ+Ccc0Wmri70AYwdG28CyDfvEygSpdTeGTePRZrHIq2YY5G6\nDPSDD0ITUKkkAPAzAeeca5VFi8KdwBMn5vcy0ELxPgHnnGuhhQvh2GPhq6/g6acLdyOY9wk451zC\nUvMBzJjRusHgkuZ9AkWimNs7C81jkeaxSCumWCxYAIcdBrNmhTOAUk0A4GcCzjnXLPPnQ+/e4eeg\nQbDssknXqHW8T8A553L0009w8MGw1FLw6KPJJYBSmV4SSb+W9F7G43tJfeIs0znn4jBvHhxwACyz\nDDz2WOmfAaTEmgTM7GMz28rMtgK2AeYAT8VZZqkqpvbOpHks0jwWaUnGYu5c2HffcPnngAHQvn1i\nVcm7QnYM9wI+NbMpBSzTOedaZc4c2Htv6NQJ+vcPZwJtSZN9ApK6AZcBlaQ7ks3MftGsgqT7gZFm\n9veMdd4n4JwrWj/8AHvtBRttBPffD+3aJV2joND3CdwHnAmMBha1pBBJ7YG9gfOzn6upqaGyshKA\niooKqqqqqK6uBtKnf77sy77sy4VefvrpWs4/H3r0qObvf4dXX02uPrW1tfTr1w9g8fEyX3I5E3jb\nzLq2qhBpX+BUM9s9a72fCURqa2sX//HLnccizWORVshYTJ8Ou+4KO+0EN94Iyst37vwp9JnAK5Ku\nB54EfkqtNLPRzSjnMOCRZtbNOecK7ssvoVevcCnoFVcUXwLIt1zOBGqBn21kZj1zKkBaAfgc2MjM\nZmc952cCzrmiMWlSSAAnnAAXXJB0bRqWzzMBv1nMOeeA//wHdtkFzj0XTj896do0rqA3i0mqkHSz\npFHR40ZJJTRadmlIdQI5j0Umj0VanLH44APo2RMuvbT4E0C+5XKfwP3AD8DBwCHAbOCBOCvlnHOF\nMmpUaAK64QY4/vika1N4ufQJjDWzLZta16LCvTnIOZegN96A/faDu+8OP0tFoccOmiupe0bh3QjD\nPzjnXMl6+eVw4H/wwdJKAPmWSxI4Bfg/SZ9L+hy4I1rn8sjbftM8Fmkei7R8xmLo0DAc9OOPw267\n5W23JanJ+wTMbAywhaSVo+UfYq+Vc87FZOBAOO20MBnMdtslXZvkNdgnIOkoM3tQ0jkseZ+ACGMH\n3dTqwr1PwDlXQPfdB5dcEs4EqqqSrk3LFeqO4dSEaStRz81izjlXSm68EW6/HWpr4Ve/Sro2xaPB\nPgEzuyv69UUzuyLzAbxUmOqVD2/7TfNYpHks0loaCzO46CK49154/XVPANly6Ri+vZ51t+W7Is45\nl291daH9f9gwePVVWG+9pGtUfBrrE9ge2AE4C7iJ0BcAoXlof79PwDlXzBYsgGOOga++Cp3AK6+c\ndI3yp1B9Au0JB/x20c+UH4CD8lG4c87FYc6cMApou3bw7LOw/PJJ16h4NdYnMNzMLge2y+oTuMnM\n/lu4KpYHb/tN81ikeSzSco3F99/D7rvDqqvCE094AmhKLvMJ9NPPB9Q2M9sphvo451yLTZ8ebv7q\n1g1uvRWWKuQs6iUql7GDts1YXA44EFhoZue1unDvE3DO5cnkyWEo6N694fLL2/ZkMInPJyDpXTPr\n3OrCPQk45/JgwoRwBnDWWXDmmUnXJn6Fnk9g1YxHJ0m7Azn1s0dzEQyU9JGk8ZL8Ju0GeNtvmsci\nzWOR1lAsRo4McwFccUV5JIB8y6VPYDTpO4YXApOAXEfdvhUYamYHSVoaWKHZNXTOuQa88AIcfjjc\nc095jwTaGrFNLxnNPvaemf2ikW28Ocg51yKPPBK++Q8cCN27N719W1KQ+wQkHUgjYwaZ2ZNN7Hsj\n4BtJDwBbAqOAM8zM5yJwzrXKLbeEsYBeegk23zzp2pS2xpqD9qbxgeOaSgJLA1sDfzKzdyXdAlwA\nXJq5UU1NDZWVlQBUVFRQVVVFdXU1kG4DLIflzPbOYqhPksupdcVSnySXx4wZw5lRQ3cx1CfJ5Vtu\nuYUtt6xi2LBqBg+G66+v5dtvAYqjfnEfH/r16wew+HiZL3E2B60FvGlmG0XL3YALzGyvjG28OShS\nW1u7+I9f7jwWaR6LtBdfrKV//2o++gieeQY6dUq6Rskp6CWikiqAy4Ado1W1wJVm9n2TO5deBU4w\ns/9IuhxY3szOz3jek4Bzrklz5sAhh4QB4R5/HFYo80tMCj3H8P2E8YIOBg4BZgMP5Lj/04H+ksYC\nWwB/a0klnXPla8YM2HlnWG01GDzYE0C+5ZIENjazy8zsMzP7NBpPaONcdm5mY82ss5ltaWYH5HL2\nUK4y28PLnccirdxjMXlyGAJixx2hpqaWZZZJukZtTy5JYK6kxRdgRW37foWPcy5WH34YEsCJJ0Lf\nvm17GIgk5dInUAX8C+gYrfoOOMbMxra6cO8TcM7VY8QIOOAAuOkmOOKIpGtTfBIZOyi6+cvM7Id8\nFBzt05OAc24JTz4JJ58MDz0UxgNyP1fosYPOlLQyoXP4ZkmjJfmfJs/Kve03k8cirdxiceutcPrp\n8NxzP08A5RaLQsmlT+C46Nv/rsCqwNHAtbHWyjlXVurq4Oyz4c47Q1PQNtskXaPykUufwPtm9jtJ\ntwG1ZvakpPfMbKtWF+7NQc6VvXnz4OijYdo0GDQIVlkl6RoVv0LfJzBK0vPAnsBzUdNQXT4Kd86V\nt5kzw0QwEgwb5gkgCbkkgeOBC4Fto8HflgGOjbVWZcjbO9M8FmltORYTJ8IOO8B224URQZdbrvHt\n23IsktTkfAJmtogwAmhqeQYwI85KOefatpEjYZ994C9/gT/9KenalLfYBpDLqXDvE3Cu7Pz731BT\nA3ffDfvvn3RtSlOh+wSccy4v7r4bjj8enn7aE0CxaO4cw6mHj+CRZ97emeaxSGsrsTCDiy6C666D\n116D7bdv/j7aSiyKTa5zDG9AGC4CYBVgqqSpwIlmNqrBVzrnyt68eXDccfDZZ/Dmm7D66knXyGXK\n5T6Be4CBZjYsWt4VOIgwnPStZtalxYV7n4Bzbdo334Rmn3XWgX/+E5ZfPukatQ2F7hPYPpUAAMzs\n+Wjdm0D7fFTCOdf2TJgQLv/ccUcYMMATQLHKJQl8Lel8SRtKqpT0Z2CapHbkcNOYpEmSxkl6T9I7\nra5xG+XtnWkei7RSjcXLL0OPHnDxxfC3v8FSebgEpVRjUexy6RM4nDC95KBoeQRwGNCOMNNYUwyo\nNrOZLaqhc66kPPAAXHBB+Pbfs2fStXFNyaVPYCMzm5i1rrOZvZtTAdJEwt3GP7vBzPsEnGs76urC\nFUCPPx7uBfj1r5OuUdtV6D6BJyStl1F4D3KfYxjCmcCLkkZKOrG5FXTOFb+5c+HQQ8Pln2+95Qmg\nlOSSBE4GBklaS9KewG3AHs0o4/fRiKN7AKdlTlXp0ry9M81jkVYKsZg2DaqroX17eOkl6NQpnnJK\nIRalKJexg96V1Ad4AZgL7GJm03MtwMy+jn5+I+kpoAvwWur5mpoaKisrAaioqKCqqorq6mog/Uf3\n5fJaTimW+iS5PGbMmKKqT/byxIlw5ZXVHHMM9OhRy5tvxlfemDFjEn+/SS3X1tbSr18/gMXHy3xp\nsE9A0pCsVZsBXwOzCNNM7tPkzqUOQDszmy1pBeB54IroMlPvE3CuhD3/PBx5JNx8s88DXGj57BNo\n7EzghlR5GessWs71yL0m8JSkVFn9UwnAOVeazOD22+Gaa+CJJ6C7N/CWtMb6BP4CbA1MNbPa6DE8\n9TOXnZvZRDOrih6bm9k1eal1G5TdFFLOPBZpxRaL+fPDJPD33BOGgChkAii2WLQVjSWBGkLTz+XR\njV53Sto3atZxzpWZb78Ns4BNmwZvvAF5bpp2CclpPoHo7uCuhCt8dgLmAcPM7LpWFe59As6VhA8+\nCJPA9O4NV1+dnzuAXcvls0+g0SQQHfz7mNnNWetXB3Y1s/6tKtyTgHNFb8iQMAeAdwAXj4LdLBZN\nLXl4Peu/aW0CcEvy9s40j0VakrEwC+P/n3JKSARJJwD/XMQjl7GDXpd0B/Ao8CPR1UFmNjrWmjnn\nEjNvHpx0Enz4Ibz9Nqy3XtOvcaUpl7GDaqnnklAza/XQUN4c5FzxmToV9tsPNtwwDAbXoUPSNXLZ\nCtYnEDdPAs4Vl9GjQwI48cQwDLTycphx+VbQAeQkXSbp0oyfl0q6NB+FuzRv70zzWKQVMhYPPwy7\n7QY33QSXXFJ8CcA/F/HIpU/gR9LNQcsDewHjY6uRc66gFi6E88+HQYPCAHBbbJF0jVwhNbs5SNKy\nwPNm1qPVhXtzkHOJ+vbbcO1/u3bwyCOw6qpJ18jlotDzCWRbAVg3H4U755Izdix06QLbbANDh3oC\nKFe59Am8n/H4EPgYuDX+qpUXb+9M81ikxRWLAQOgV68w/2/fvuFMoNj55yIeufQJ7B39NGAhMN3M\nFsRXJedcXBYuhAsvDKN/vvgibLll0jVySct17KAqoDshEbxmZmPzUrj3CThXMDNmhPZ/CGcCq62W\nbH1cyxX6EtEzgIeA1QnzAzwUzTTmnCsRY8dC585QVQXPPusJwKXl0jF8AtDVzC41s0uA7QCfMD7P\nvL0zzWORlo9YPPpoaP+/+mq4/npYOpdG4CLkn4t45PpxqGvg9yZFI5GOBL4ws72b2t45lx8LFsCf\n/wyDB4epILfaKukauWKUy9hBZxMmmHmSMHjcfkC/7OGlm3j9NsBK2fMSe5+Ac/H46is45BDo2BEe\nfNAv/2xrCtonYGY3AccC3wEzgJpmJID1gD2Be1lyrmLnXEyGD4dttw1DQAwZ4gnANa7BJCBp1dQD\nmEjoHO4PfB6ty8XNwHk0swmpHHl7Z5rHIq05sTCDG26AQw+Ffv3C+D9taQYw/1zEo7E+gdHUM4R0\nxIBfNLZjSXsR7il4T1J1y6rnnMvFDz/AscfClClh/P8NN0y6Rq5UNJgEzKyylfveAdhH0p7AcsDK\nkv5lZkdnblRTU0NlNGN1RUUFVVVVVFdXA+nMXw7L1dXVRVUfXy6e5ZSGnu/UqZoDD4Rf/7qWq6+G\nDTcsrvrnazm1rljqU8jl2tpa+vXrB7D4eJkvud4sti+wI+EMYLiZDWlWIVIP4Nzsq4O8Y9i51nn4\nYTjjDLjxRjj66Ka3d21DoW8WuxboA3wIfAT0kXRNC8ryo30jsr/1lTOPRVpDsZg/H04/HS69NAz/\nUA4JwD8X8cjlPoE/AFXRpPNI6geMAS7MtRAzGw4Mb0kFnXNLmjQpdP6utRaMHAkVFUnXyJWyXO4T\nGAf0NLMZ0fJqwCtm1uqpJ7w5yLnmGTw4TAB//vlw1lnFN/uXK4x8NgflciZwDTBa0iuEa/17ABfk\no3DnXG7mz4cLLoAnnwyJYLvtkq6RaytyuVnsEWB74CngCWA7MxsQd8XKjbd3pnks0mpra5k0Cbp3\nh08+CRPBl2sC8M9FPHLpGN4fmGNmg83saWCepP3ir5pz7vXXw+xfhx4azgD87l+Xb7n0CYw1sy2z\n1o0xs6pWF+59As7Va/780O7/1FNh7P9y/fbv6lfoPoH6CiqByeicK02TJoXB39ZaKzT/+Ld/F6dc\nRhYZJekmSRtL+qWkm4FRcVes3Hh7Z1o5x2LQoND807t3aP4ZN6426SoVjXL+XMQplzOB04FLgEej\n5ReA02KrkXNlaN48OO88ePrpcPDffvuka+TKRU7DRsRWuPcJOMf48eGb/69/DXffDausknSNXLEr\n6LARzrl4mMFdd0GPHtCnDzz2mCcAV3ieBIqEt3emlUMsZs6Egw6Cf/wDXnsNTjih/rt/yyEWufJY\nxKOxSWX6Rj8PKVx1nGv7Xn0Vqqpg/fXhrbdg002TrpErZw32CUj6APgdMNrMYpmi2vsEXDlZuBCu\nvBLuuQfuuw/23DPpGrlSVaj7BJ4lzCu8oqTZWc+Zma2cjwo4Vw4mTYIjjoAVVgjX/q+9dtI1ci5o\nsDnIzM4zswpgqJmtlPXwBJBn3t6Z1tZi8eij4dr//feH555rXgJoa7FoDY9FPJq8T8DM9pG0JtA5\nWvWOmU2Pt1rOlb5Zs+BPf4J334WhQ2HbbZOukXM/l8vYQYcA1xMmhRHQHTjPzB5vcufSctHrlgXa\nA4PN7MKM571PwLVJr7wCNTWw995w3XXQoUPSNXJtST77BHKdVKZX6tu/pNWBl3KdVEZSBzObI2lp\n4HXCXMOvR895EnBtyrx5cPHF8MgjofN3992TrpFriwp9s5iAbzKWZ1D/oHL1MrM50a/tCQPPzcy5\ndmXE2zvTSjUW48aFtv+JE2Hs2PwkgFKNRRw8FvHIJQk8BwyTVCPpWGAo4cqhnEhaStIYYBphWsrx\nLauqc8Wprg5uuAF23hnOOQcGDoROnZKulXO5yaVj+DxJBwK/j1bdZWZP5VqAmdUBVZI6EpJJtZnV\npp6vqamhsrISgIqKCqqqqqiurgbSmb8clqurq4uqPr6c2/LUqXDXXdUsWgS3317LWmuBlN/yUorh\n/Sa5nFrfA29dAAAUZ0lEQVRXLPUp5HJtbS39+vUDWHy8zJeCDiAn6RJgrpndEC17n4ArSWbQvz+c\nfTace244A2jns2y4AimZAeQkdZJUEf2+PLAL8F6cZZaq7G995azYYzFtGhxwAFx7LTz/PPz5z/El\ngGKPRSF5LOIR9wByawMvR30CbwNDzOylmMt0LhZm4cavLbeE3/wGRo0KYwA5V8qa1RwkaVVgPTMb\nl5fCvTnIlYjp0+GPfwxj///zn9C5c9OvcS4uBW0OkjRc0spRAhgF3BtNMelcWRg4ELbYAjbeOIz7\n4wnAtSW5NAd1NLMfgAOAf5lZF6BXvNUqP97emVYssfj22zDj10UXwVNPQd++sNxyha1DscSiGHgs\n4pFLEmgnaW3gEODf0Tpvw3Ft2lNPhW//664LY8b4nL+u7cpl2IiDCRPNjzCzUyVtDFxnZge2unDv\nE3BF5ttv4Ywz4J134IEHoFu3pGvk3M8V+hLRr81sCzM7FcDMPgW8T8C1KWZhvJ/NN4c11gjf/j0B\nuHKQSxK4vZ51t+W7IuXO2zvTCh2LKVNgn33gr3+FwYPh5pvD5C/FwD8XaR6LeDQ4bISk7YEdgNUl\nnU160LiVCAPBOVfS6urgrrvg0kvh9NPhiSegffuka+VcYTU2x3APoCdwMnBnxlOzCTd9/bfVhXuf\ngEvIxx/DiSfCggVw773w298mXSPnclfo+QQ2NLPP81FYPfv2JOAKasECuP56uOmmcAZw2mk+5o8r\nPQXpGJZ0a/TrHZKGZD2ezkfhLs3bO9PiisWoUeFGr1dfhZEjoU+f4k8A/rlI81jEo7GhpP8V/byx\nEBVxLi6zZ4dv/Q8/HM4CjjoKlJfvUM6VvoIOJf2zwr05yMXILNz0dcYZ0KtXmOt39dWTrpVzrZfP\n5qAmJ5WR1A24DKjM2N7M7Bf5qIBzcZg0KVzx8+mn8NBD0KNH0jVyrjjlcp/AfcBNQDegc/ToEmel\nypG3d6a1JhYLFoQxfrbdNgz1MGZMaScA/1ykeSzi0eSZADDLzHKeU9i5pIwYAaecEsb7efvtMOqn\nc65xuVwiei3h5rAngZ9S681sdKsL9z4BlwczZ8L558PQoeFu34MP9o5f17YVtE8A2I4waui2Wet7\nNvVCSesTrjJaI9rH3WbmQ064vFi0CO6/Hy6+GA45JEz40rFj0rVyrrQ02SdgZtVm1jP7keP+FwBn\nmdlvCcnkNEmbtabCbZW3d6blEou33oKuXcMsX8OGwe23t80E4J+LNI9FPHK5Ougywrd4kTGPgJld\n2dRrzWwqMDX6/X+SPgLWAT5qaYVdeZs2DS68MBz4+/aFI47wph/nWiOXPoFzSR/8lwf2Asab2XHN\nKkiqBIYDvzWz/0XrvE/A5WTBAvj73+Hqq+GYY8LNXyuvnHStnEtGQfsEzOyGrMKvB55vTiGSVgQG\nAmekEkBKTU0NlZWVAFRUVFBVVUV1dTWQPv3z5fJeNqvm9NNh2WVrueEGOOaY4qqfL/ty3Mu1tbX0\n69cPYPHxMl+afcdwNOH8O2b2yxy3XwZ4BnjWzG7Jes7PBCK1tbWL//jlLhWLKVPgvPPgzTfDgG8H\nHFB+TT/+uUjzWKQVdGYxSe9nPD4EPgZubep10WtFuNlsfHYCcK4hc+fCJZdAVRVssgl89BEceGD5\nJQDnCiGXPoHKjMWFwDQzW5DTzsOQE68C40j3K1xoZs9Fz/uZgFusri5c7XPxxVBdDddcAxtskHSt\nnCs+BZ1PIE6eBFzK8OFw1lmw3HLhhq+uXZOukXPFq9ATzbsCSHUClZtPPglt/cccE+76HTEC5s6t\nTbpaRaNcPxf18VjEw5OAS8SsWXDOObDddtClC0yYAIce6u3+zhWaNwe5gpo3L1zv37cv7LsvXHUV\nrLlm0rVyrrQUeuwg51pt0SLo3z991c/LL/vk7s4VA28OKhJttb3TLIzuudVWcNddIREMHtx4Amir\nsWgJj0WaxyIefibgYvP226Gzd/r0cLnnPvt4m79zxcb7BFzeffwxXHRRGOnziivClT9L+9cN5/LG\nLxF1RWnSJDj+eOjWDTp3hv/8Jyx7AnCueHkSKBKl3N75xRdw6qmwzTaw9trh4H/++dChQ8v2V8qx\nyDePRZrHIh6eBFyLTZ0KZ5wBW2wBK60UmoGuvhpWWSXpmjnncuV9Aq7ZvvkGrrsO7rsPjj4aLrgA\n1lor6Vo5Vz68T8AlYubMMLjbppvCjz/CuHFwyy2eAJwrZZ4EikQxt3dOmxba+DfZJPw+alS463e9\n9eIpr5hjUWgeizSPRTw8CbgGffFFaPPfbDOYMwfeew/uuQfyPLGRcy5B3ifgfuazz8LYPgMHwnHH\nwdlnh6t+nHPFwfsEXCwmTAg3dnXpAmusEa72uf56TwDOtWWxJgFJ90uaJun9OMtpC5Js73zrrTB9\n4447wq9+Fcb4v+oq6NQpmfp422+axyLNYxGPuM8EHgB2j7kM1wJ1dWEgt27d4PDDoWdPmDgxDPdQ\nUZF07ZxzhRJ7n0A0R/EQM/tdPc95n0CBzZsHDz4IN94YbvA677wws5cP7eBc6fD5BFyzzZwJ//gH\n3H57GN7hzjuhRw8f1dO5cpd4EqipqaEyuuawoqKCqqoqqqurgXQbYDksZ7Z35nP/kybB229XM2AA\ndO1ayzXXwLHHJv9+G1tOrSuW+iS5PGbMGM4888yiqU+Sy7fccktZHx/69esHsPh4mS/eHFQkamtr\nF//xW2vRIvj3v+G22+DDD+GUU+Dkk0vnzt58xqLUeSzSPBZp+WwO8iTQhsyaBfffD3fcAauvDn36\nwMEHQ/v2SdfMOZdPJXOfgKRHgDeAX0maIunYOMsrV+PHwx//CL/4BYweDY88Emb1OuIITwDOucbF\nmgTM7DAzW8fMljWz9c3sgTjLK2WZ7eG5mDs3XOXTvTv06hW++X/4ITz0EHTtGk8dC6W5sWjLPBZp\nHot4JN4x7Jpn/Hi4++5wsO/cOQzpsNdesMwySdfMOVeKfOygEjB3bhjH5+674dNPw3g+J5zgA7k5\nV65KqmO40cI9CTTIDN59F/r1g8ceC9/6TzrJv/U750qoY9jlLtXe+eWXcO218JvfhI7dddYJ4/c/\n+yzsv395JABv+03zWKR5LOLhfQJFYM4cePFFuOaa8O3/oIPg3nthhx38jl7nXLy8OSghCxaEA/+A\nATBkSBi+uaYG9t0Xll8+6do554qZ9wmUqEWL4NVXw4H/ySfDdI29e4cbunzMfudcrrxPoITU1cEb\nb4RpGtdbD849FzbeODT7vPFGuKt37bW9vTOTxyLNY5HmsYiH9wnEYP58eOUVGDQojNm/6qpw6KEw\nfHiYtMU554qFNwflyezZ4QqeQYPCz802C1fz7LdfaPZxzrl88T6BIvHJJ+GA/+yz8Prr8PvfhwP/\n3nt7G79zLj7eJ5CQOXNg6FA4/fTw7X7HHeG99+DYY+GLL0IyOOmkliUAb+9M81ikeSzSPBbx8D6B\nRixaFA7yr7wCL70EI0bA1lvDHnuEYRy22MKv43fOlTZvDspQVwfjxoWD/iuvwGuvhTt2e/aEnXaC\nnXeGjh2TrqVzrtx5n0Ce/PgjjBwJb74ZHq+/Dp06hYN+z55QXQ1rrplY9Zxzrl4l0ycgaXdJEyT9\nV9L5cZbVlLo6+PjjMATzaaeFZp011oALLoBp08I4PePGhW3uvDNc0lnIBODtnWkeizSPRZrHIh6x\n9QlIagfcAfQCvgTelfS0mX0UV5kp8+bBBx+E9vwxY8LP998PE69ssw1svz0ceSRstRUst1zctcnN\nmDFjfP7UiMcizWOR5rGIR5wdw12AT8xsEoCkAcC+QN6SwIwZMGFC+PY+YUL698mTw01ZW20FVVVw\nyCGw5ZZQUZGvkvNv1qxZSVehaHgs0jwWaR6LeMSZBNYFpmQsfwHkNPFhXR189x18+214fPklfP55\nOLhn/qyrg003TT9qasLPjTeGZZeN4y0551zbEmcSyKnHd+edw8xZ8+aF6/BnzAgJYOWVQ/PNaqvB\nuuvCBhvAL38Ztt9gg/BYbbW2c4nmpEmTkq5C0fBYpHks0jwW8Yjt6iBJ2wGXm9nu0fKFQJ2Z9c3Y\npniuD3XOuRJS9JeISloa+BjYGfgKeAc4rBAdw84553ITW3OQmS2U9CdgGNAOuM8TgHPOFZdEbxZz\nzjmXrMQGkCumG8kKQdL6kl6R9KGkDyT1idavKukFSf+R9LykiozXXBjFZ4KkXZOrff5JaifpPUlD\nouWyjAOApApJAyV9JGm8pK7lGI/ofX0o6X1JD0tatlziIOl+SdMkvZ+xrtnvXdI2Ufz+K+nWnAo3\ns4I/CM1DnwCVwDLAGGCzJOpSwPe8FlAV/b4iob9kM+A64M/R+vOBa6PffxPFZZkoTp8ASyX9PvIY\nj7OB/sDT0XJZxiF6j/8Ejot+XxroWG7xiN7LZ8Cy0fKjwDHlEgegO7AV8H7Guua891SrzjtAl+j3\nocDuTZWd1JnA4hvJzGwBkLqRrM0ys6lmNib6/X+Em+bWBfYhHASIfu4X/b4v8IiZLbBww90nhLiV\nPEnrAXsC9wKpKxzKLg4AkjoC3c3sfgh9aWb2PeUXjx+ABUCH6KKSDoQLSsoiDmb2GvBd1urmvPeu\nktYGVjKzd6Lt/pXxmgYllQTqu5Fs3YTqUnCSKglZ/21gTTObFj01DUiNWLQOIS4pbSlGNwPnAXUZ\n68oxDgAbAd9IekDSaEn3SFqBMouHmc0EbgQmEw7+s8zsBcosDlma+96z139JDjFJKgmUbW+0pBWB\nJ4AzzGx25nMWzuEai03Jx03SXsB0M3uP9FnAEsohDhmWBrYG/m5mWwM/AhdkblAO8ZC0MXAmoXlj\nHWBFSUdmblMOcWhIDu+9xZJKAl8C62csr8+SGaxNkrQMIQE8aGaDotXTJK0VPb82MD1anx2j9aJ1\npW4HYB9JE4FHgJ0kPUj5xSHlC+ALM3s3Wh5ISApTyywe2wJvmNkMM1sIPAlsT/nFIVNz/ie+iNav\nl7W+yZgklQRGAptIqpTUHjgUeDqhuhSEJAH3AePN7JaMp54mdIAR/RyUsb63pPaSNgI2IXT6lDQz\n+4uZrW9mGwG9gZfN7CjKLA4pZjYVmCLpV9GqXsCHwBDKKx4TgO0kLR/9r/QCxlN+ccjUrP+J6LP0\nQ3R1mYCjMl7TsAR7w/cgXCHzCXBh0r3zBXi/3Qht4GOA96LH7sCqwIvAf4DngYqM1/wlis8EYLek\n30MMMelB+uqgco7DlsC7wFjCN+CO5RgP4M+EBPg+oSN0mXKJA+Gs+CtgPqG/9NiWvHdgmyh+nwC3\n5VK23yzmnHNlLLGbxZxzziXPk4BzzpUxTwLOOVfGPAk451wZ8yTgnHNlzJOAc86VMU8CLhbRkLa3\nRr/3kLR9nvZ7fTQUd9+mt250P5MkrZqPOkX7W1vSsOi9DsnXfptZh+qkynalK86J5l0ZM7NRwKho\nsScwG3gzD7s+EVjFWn+DS15ukJHUzswWEW78ey4f+2xhPfx/2bWInwm4JkXDe2ROdnGupMui32sl\nXSvpbUkfS+oWra+WNETShsDJwFkKk8h0k3RwNPHFGEnDGyjz+mibcZIOidY9TZiLYXRqXcb2K0Yj\ncY6TNFbS/tH6w6J170u6toGyzo6ef1/SGTm+55slvQv0iTbZDXiWjEHxJHWORgbdSNLq0QQhH0Qj\nhdZ7JqIw2dKoKDYvROu6SHoj2teI1BATkmokPS3pJcKdpQZ0lPSMwmQj/4iGD2gwDpL+J+nqqLw3\nJa1RX4xc2+XfHlxLZI5oaEA7M+sqaQ/gMmCXxRuafS7pTmC2md0EIGkcsKuZfS1p5eydSzqQMJTC\nFsDqwLuShpvZPpJmm9lW9dTpEuA7M9si2keFpHWAawkDss0Cnpe0r5kNzihrG6CGMBb9UsDbUWKa\n1cR7XsbMOkf7aAf82swmKD3g1w7AbcA+ZvaFpDuAF82sr6TdgOPred+rA3cT5hf4XOmZpD6K1i2S\n1Av4G3BQ9NxWwO/MbJakaqAzYbKiyYQzkwMkvdlIHDoAb5rZxVET24nAX+uJr2uj/EzAtVTmMNBP\nRj9HE4YCbmr7EcA/JZ1A/V9Efg88bMF0YDjh4NaYnYH/Sy2Y2azoNa9YGJlyEWEmsx2z6tQNeNLM\n5prZj9F76U79zUWZ7+HRjN+7EuaGSNkMuAvYy8xSo+P+njB5EmY2jJ9PIAKwHTDczD7PeA8AFcDA\n6MzkJsLMUinPZ2wHYSCxSWZWRxiPphthhM7aBuIw38z+Hf0+iob/fq6N8iTgcrGQJT8ry7PkQfKn\n6Ocicji7NLNTgYsJw+GOaqCDVg383pjs7aye/WQf3Bvapqn3/GPG73sQmoJS+/samEv45t1Y/bJl\n1yXlKuAlM/sdsHdUl5Q59ewjs7yGkllq/YKM9XV460DZ8STgcjENWENh4utlgb2a+frZwEqpBUkb\nm9k7ZnYZ8A1LjoEO8BpwqKSloiaS7jQ9TPALwGkZZVREr+khabWoyaY34awixaKy9lMYwngFwnR8\nrxHGbm/sPWcerHcitMmn1s+Ktr9GUo9o/Qgg1bexK7BKPe/hbWBHhZnnkJTaZmXCCJMQRpdsTJeo\nP2OpqLzXcoiDK2OeBFyTLMwDfSXhYPI8YZz3Bjev5/chwP5Rx2Y34LpUJyUwwszGZZX3FDCOMLTy\nS8B5UbNQ9v4zXQ2skupwBqotjK9+AfAKYQjvkWY2JHM/FmY46xe9t7eAe8xsbA7v2WBxO/68qCkp\ntT7VjLUX8H+SOgNXALtG7/kgYCohOWa+72+Ak4Ano/cwIHrqOkJCGQ20Y8m+iex4vwvcEdX3MzN7\nKpc4NLA/VwZ8KGnnWkHSEcC6ZnZdE9u1BxZFnbvbA/9nYTpJ5xLlScC5ApD0S+Axwtn3fODU6F4K\n5xLlScA558qY9wk451wZ8yTgnHNlzJOAc86VMU8CzjlXxjwJOOdcGfMk4JxzZez/Acgjx2hK49AY\nAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x76f16d8>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYUgiGQkicVAQFUFFJAqiYFiCyoogC4IY\n1s9VEAPoqphBVwQxJ6IZRTGgKOiAopIk6AqriAxBRMkioMzM+f641dM944Qeprure/q8z1PPdFVX\n1z19afp03Vt1r6gqxhhjTEApvwMwxhgTXywxGGOMycESgzHGmBwsMRhjjMnBEoMxxpgcLDEYY4zJ\nwRKDKTYRGSAicyJ0rDQRGRqJY5mCiUgDEflNRMTvWEx8scRgwiIiHUXkcxHZJSLbReQzEWkNoKov\nqurZESpKvSViLNk4IrJeRLoG1lV1g6pWUruZyeRS2u8ATPwTkcrAu8BVwGtAOaAT8IefcRVBif/i\nE5EUVc0sZDcF7OzAFMrOGEw4mgKqqq+qc0BVP1LVrwFEZLCIfBrYWUSyROQqEflORHaKyGMhz5US\nkXEi8quIrBORf3n75/lZFJHLRORbEdkhIh+ISIN89isvIi+IyDavzMUiUktE7sMlsce8ZpOJ3v6P\niMgGEdktIktFpGPIsQ4Tkalemd+KyM0isjHk+boi8oaI/OK9h2vzqzgRqSIi07x914vIvwNNN169\nLRSRR70zsdWhv+i91z4vIj+JyCYRuSdQTyGvfVhEtgGjRSRVRD726uBXrz6qePtPBxoA73j1cKOI\nNAqte+99ve2dEX4vIpeHxHKniLzm1cseEflGRE7J732bBKeqtthS4AJUArYBU4BzgGq5nh8MfBqy\nngW8DVQG6gO/AGd7z/0T+C9QF6gKzAUygVLe858Al3mPewPfA81wP2L+DSzMJ8arvDLL434VnwRU\nyn3MkP0HANW8444AtgBlvefGeq+pAhwFrAI2eM+VApYBt+HOuBsDPwDd84lrGvAmcDjQEPhfyPsb\nDBwEhgEpQF9gF1DVe/5N4EngMKAmsAi4Mtdrr/FiKg80Ac4EygBHAPOB8SGx/Ah0DVlv5P1bBep+\nAfAYUBZo6f27neE9dyew3/v3F+B+4Au/P5u2RGfxPQBbEmMBjgUmAxu9L6RZQC3vubwSQ/uQ9VeB\nm73HHwNXhDx3Zq4vp9DE8H7oF7r3Bfg7UD+P+IYAC4EWeTz3CTC0kPe3I/Ba74u+W8hzQ4GN3uPT\ngPRcr70FmJTHMVNwzW3Hhmy7EvgkpN4253rNIuAfQG3gAFA+5Ln+wMchr00v5D2dD3wVsp5vYsAl\n8Azg8JDn7wcme4/vBD4Mee44YJ/fn0tborNYU5IJi6quUdUhqlofOAH3i39CAS/5OeTxPqCi9/hI\nXHIJ2FTAMRoCj3hNQzuB7d72o/LYdzowB3hFRDaLyAMiEtqHlqOfwWtK+dZrwtmJOzs4wnu6bgEx\nNgTqBmLyXnsLUCuPmI7A/XpPD9m2IVf8m3O9Jt0rv4H32i0h5TyFO3MICI0REaktIq94zU67vTqp\nkUdceakL7FDV3wuIdWvI431A+fyaAE1is39UU2Sq+j9gKi5BFNUW3K/TgPr57Yj7YrpSVauFLIer\n6pd5xJShqner6vFAe6AHMCjwdOi+ItIJuAm4SFWrqmo1YDfBjtmCYtwI/Jgrpsqq2iOP+Lfhzq4a\nhWxrQM5EkzvJNcQli424s40aIeVUUdUWoW8712vvxzXLnaCqVYCB5Pw/XlAn/E9AdRGpGLItd6wm\nSVhiMIUSkWYiMkJEjvLW6+OaNb4I9xAEv3RfA4Z5HZ1VgZHk/4X1FHCriBznlVtFRC7KJ8YuItJC\nRFKA33BfyIGrdLbi2t8DKuGaTbaJSFkRuQPXHxLwGnCLiFT13vO/QmJcDPzmdUgfJiIpInKCeJfu\nhlJ3ldBrwH0iUlFEGgLXAy+E7FZLRK4TkTLeezsWmK2qPwMfAg+LSCVxnfZNROT0fOoK3FnZ78Ae\nL+6bcj2fux5CY90IfA6MEZFyInIicFmuWE2SsMRgwvEbrm19kYjsxSWEVcAN3vO57z3I/UUf+vyz\nuC+8VbhO3PeATFXNyl2oqr4FPIBrHtoNfA3kd79EHWAG7pf/t0AarikF4BHg795VRhOAD7zlO2A9\nrlN1Q8ix7sb9Uv7Ri3UG8KcXUybubKQVsA74FXiGnIkl1LW4L+t1wKfAi7i+moBFwDHece4B+qjq\nTu+5QbiO4G9xfSAzvPcJed/vcRdwslcH7wBv5NpnDHCb1zQ1IuQ4Af1xZzc/ATOBO1T14wLKK/GX\nAScrUY3Ov62ITAL+BvwSOP0Vkeq4jsiGuP+QfVV1V1QCMAlBRM4FnlTVRn7Hkh8RuRr3WT0jwscd\njOsU7xTJ4xpTXNE8Y5iMu7Qt1CjgI1VtCszz1k0SEXe/wXkiUtpr7hiN+3UaN0Skjoh08JpvmuEu\nZ33T77iMiZWoJQZV/RTYmWtzL1ynJd7f86NVvolbgrv0cQfwFe6ehjv8DCgPZXH9G3twP2DeAp6I\nQjkRH/7DmEiIWlMSgIg0At4JaUra6V0Bgnf3547AujHGmPjgW+ezuoxkv5aMMSbOxHoQva0iUkdV\nfxaRI3G33P+FiFjCMMaYQ6CqxR4oMdZnDG8Dl3qPL8W13ebJ71vC42UZPXq07zHEy2J1YXVhdVHw\nEilRSwwi8jLuhplmIrJRRIbgBifrJiLfAV29dVOA9evX+x1C3LC6CLK6CLK6iLyoNSWpav98njor\nWmUaY4wpPrvzOc4NHjzY7xDihtVFkNVFkNVF5EX1ctVDJSIaj3EZY0w8ExE0Ap3PCTW1p9ic5SZO\nxfqHTFpaGl26dIlpmfHK6iLyEioxQOz/AxpTGPvBYkqahGpK8k6TfIjImPzZ59LEi0g1JcVt5/Om\nPTY/iDHG+CFuE8P4L8b7HYIxcSstLc3vEOKG1UXkxW1imLxiMjv27/A7DN9t2LCBSpUqZTdVdOnS\nheeffx6AKVOm0KlT0YbyP++885g+fXrhOxpjklbcJobzjz2fxxc/7ncYYWvUqBEVKlSgUqVK2ct1\n111X7OM2aNCA3377LbuDU0SK1dk5e/ZsBg4cWOy4jL/sKpwgq4vIi9urkm5qfxOdp3RmRLsRHF72\ncL/DKZSI8O6779K1a1e/Q8lT4Iwj0a6gycjIoHTpuP2YGlMixe0ZQ/OazenYoCOTlk/yO5Riy8rK\n4sYbb6RmzZo0adKExx9/nFKlSpGV5aY5btSoEfPmzcve/84778z+Vb9+/foc++amqlx77bVUrVqV\n5s2b8/HHH2c/16VLF2677TY6dOhAxYoVWbduXY6mqNBy8iqrS5cu3H777XTo0IFKlSrRq1cvtm3b\nxoABA6hSpQpt2rQhPT093/f92Wef0b59e6pVq0aDBg2YNm1a9nEDMcBfm8RKlSrFE088QdOmTWna\ntCn/93//x0035ZzXvnfv3owf7/qhfvrpJ/r06UOtWrVITU3l0UcfzTemksLa1YOsLiIvbhMDwMgO\nI3noi4c4mHnQ71DCkt8li8888wzvvfceK1asYOnSpbz++us5frnnbh4qyq/6RYsWcfTRR7N9+3bu\nuusuLrzwQnbtCk6j/cILL/Dcc8/x22+/0bBhwxxlhVPOq6++ygsvvMDmzZv54YcfaNeuHUOHDmXH\njh00b96cu+66K8/Xpaenc9555zFs2DC2bdvGihUraNmyZZ7vNy+zZs1i8eLFrF69mv79+/Pqq69m\nP7dz504++ugj+vfvT1ZWFj179uSkk07ip59+Yt68eUyYMIEPP/yw0PdmjMlbXCeG0+qdRpNqTXjl\nm1fC2l8kMsuhUFXOP/98qlWrlr0EfhW/9tprXH/99Rx11FFUq1aNW2+9tcDr3otyTXytWrUYNmwY\nKSkp9O3bl2bNmvHuu+969SEMHjyY5s2bU6pUqb80yRRWjogwZMgQGjduTOXKlTn33HNp2rQpXbt2\nJSUlhYsuuojly5fn+dqXXnqJbt26cfHFF5OSkkL16tWzE0M4brnlFqpWrUq5cuXo2LEjIsKnn34K\nwOuvv0779u2pU6cOS5YsYdu2bdx2222ULl2axo0bc/nll/PKK+F9ZhKVtasHWV1EXtw33o7qOIoR\nc0Yw4MQBhe7r5z1GIsKsWbPy7GPYsmUL9evXz15v0KBBxMo96qijcqw3bNiQLVu2ZK+Hlnsoateu\nnf24fPny1KpVK8f63r1783zdpk2bSE1NPeRyQ+MWEfr168fLL79Mp06deOmllxg0aBDgzkx++ukn\nqlULzhCbmZnJ6aeffshlG5Ps4vqMAaBbajfKppTlve/e8zuUQ3bkkUeyYcOG7PXQxwCHH344v//+\ne/b6zz//HPaxN2/enGM9PT2dunXrZq8X1GRTsWJF9u3bF3a5RWniql+/Pj/88EOez4XzfnOX1b9/\nf15//XXS09NZvHgxffr0AVySbdy4MTt37sxe9uzZk33WVFJZu3qQ1UXkxX1iEBFGdRzFmM/G+B1K\nofJrmunbty8TJ05k8+bN7Ny5k7Fjx+b44mvVqhWvvPIKGRkZLF26lDfeeCPsL+FffvmFiRMncvDg\nQWbMmMGaNWs477zzCo0pUO6CBQvYuHEju3fvZsyYv9Zx6OuL0sQ1YMAA5s6dy4wZM8jIyGD79u2s\nXLkyu9yZM2eyf/9+1q5dm6MjuqBYjzjiCC6//HLOOeccKleuDECbNm2oVKkSDz74IPv37yczM5Nv\nvvmGpUuXhh2rMSanuE8MAH2a9+GX3/OcHjqu9OzZM8d9DIFftVdccQVnn302LVu2pHXr1vTp0yfH\nl+w999zDDz/8QLVq1bjzzjsZMCBns1l+SUJEaNu2Ld9//z01a9bk9ttv54033sjRrFJQgjnrrLO4\n+OKLOfHEEzn11FPp2bPnX/YvqJO8oOPXr1+f2bNnM27cOGrUqMFJJ53EqlWrALj++uspW7YstWvX\nZsiQIfzjH/8Iq/P9kksu4eOPP+aSSy7J3laqVCneffddVqxYQWpqKjVr1uTKK69kz549+b7vksDa\n1YOsLiIvYQbRe2bZM1zV+qoSMVjZ+vXrSU1NJSMjg1KlEiI3mwLYIHomXpT4QfRyG9RykN8hGBM3\nrF09yOoi8hImMZQvXd7vECIq0e5ANsYkj4RpSvK22ym7iTv2uTTxIumakowxxsSGJQZjEpC1qwdZ\nXUSeJQZjjDE5WB+DMcVkn0sTL6yPwRhjTFRYYkgin376Kccee2xUjh06x8KLL77I2WefHZVyjGPt\n6kFWF5FniSGCpkyZQosWLTj88MM58sgj+b//+z92797tWzylSpVi3bp12eudOnVizZo1USkrdLiM\nAQMGMGfOnKiUY4yJPksMETJu3DhGjRrFuHHj2LNnD19++SXp6el069aNgwcjP9FQZmZmWPtZ2/df\nZWRk+B1Csdn4QEFWF87ixZE7liWGCNizZw933nknjz32GN27dyclJYWGDRvy2muvsX79el544QXA\nTaX597//nX79+lG5cmVOOeWU7IHloOApKgOvHThwIFWqVGHq1KksWbKEdu3aUa1aNerWrcu1116b\nnYQC8xG0bNmSSpUqMWPGDNLS0nLMc9CoUSPGjRtHy5YtqVq1Kv369eOPP/7Ifv7BBx+kbt261KtX\nj+eee+4vZyD5yWuqzqeffpqmTZtSrVo1/vWvf+XYf9KkSRx33HFUr16dc8455y/Dkoey6UKN+aux\nY6FfvwgeUFXjbnFh/VV+2/32/vvva+nSpTUzM/Mvz1166aXav39/VVUdPXq0lilTRt944w3NyMjQ\nhx56SBs3bqwZGRmamZmpJ598st5zzz168OBBXbdunaampuqcOXNyvHbWrFmqqrp//35dtmyZLlq0\nSDMzM3X9+vXavHlznTBhQnbZIqI//PBD9vonn3yi9erVy15v1KiRnnbaabplyxbdsWOHNm/eXJ96\n6qns91SnTh399ttvdd++fTpgwAAtVapUjuOF6tKliz7//POqqjp58mTt2LFjjjh69uypu3fv1g0b\nNmjNmjX1gw8+UFXVt956S48++mhds2aNZmZm6r333qvt27fPs4z169drpUqV9JVXXtGMjAzdvn27\nrlix4i/l5xdD9+7ddefOnXrgwAFdsGCB1q9fP/v5HTt26GGHHaZbtmwp9N8iNz8+l5988knMy4xX\nyVwXWVmqN9+setxxqps3Z38Wi/0dHPczuBWF3BWZ8Yd0dNGaX7Zt28YRRxyR50ipderU4auvvspe\nb926NRdeeCEAI0aMYNy4cXzxxReUKVMme4pKIMcUld27dwegffv29OrVC3Czp5188snZx23YsCFX\nXnkl8+fPZ9iwYWHHft1111GnTh3ADRu+YsUKwE1Hetlll9G8eXMA7rrrLl566aWwj5vbqFGjqFy5\nMpUrV+aMM85g5cqVnH322Tz11FPccsstNGvWDHBTet5///1s3LjxL7PPhU4XClC9enWqV68edgyB\n6UKBHNOFdurUKcd0oYsWLSr038IYv2VmwtVXw8qVsGAB1KgRuWOXqMRQ1C/0SDniiCPYtm0bWVlZ\nf0kOW7ZsoWbNmtnr9erVy34sItSrV4+ffvoJESl0isrQ1wJ89913jBgxgmXLlrFv3z4yMjJo3bp1\nkWIPJAWAww47LHta0C1bttCmTZt8yy6q0HIqVKiQPSVoeno6w4YN44Ybbsix/+bNm/+SGGy60CBr\nVw9Kxrr4808YOBC2bYO5c6FSpcge3/oYIqBdu3aUK1eON954I8f2vXv38sEHH3DmmWdmb9u4cWP2\n46ysLDZt2sRRRx1F/fr1C5yiMq9Jcq6++mqOO+441q5dy+7du7nvvvvIysqKyHs68sgjc8Qa+jiS\nGjRowDPPPJPjff/++++0bdv2L/vadKHGwL590Lu3Sw7vvRf5pACWGCKiSpUqjB49mmuvvZY5c+Zw\n8OBB1q9fT9++falfvz4DBw7M3nfZsmW8+eabZGRkMGHCBMqXL0/btm059dRTC5yiUvO4umjv3r1U\nqlSJChUqsGbNGp588skcz9euXTvfL9L8BMrp27cvkydPZs2aNezbt4977rmnqNVSYBmBcv75z39y\n//338+233wKwe/duZsyYkefrbLrQILt2PyiZ6mLXLujeHWrVghkzoHyUZiOwxBAhN910E/fffz83\n3ngjVapUoW3btjRs2JB58+ZRpkwZwP1i7d27N6+++irVq1fnxRdfZObMmaSkpJCSklLgFJV5nTE8\n9NBDvPTSS1SuXJkrr7ySfv365djnzjvv5NJLL6VatWq8/vrreR4jVOjz55xzDtdddx1nnHEGTZs2\npV27dgCUK1eu0LrIXU5e04EGtp1//vmMHDmSfv36UaVKFVq0aJHvPRA2XahJZlu3QpcucMopMHky\nlI5iR4AvYyWJyC3AP4As4GtgiKr+EfK85hVXoo9Jc9ddd7F27VqmT5/udyhFtnr1alq0aMGff/5p\n05HmkuifSxP/0tOhWzcYMADuuAPy+32XsGMliUgj4ArgZFVtAaQAkbwCN24l2pfHm2++yR9//MHO\nnTsZOXIkvXr1sqRgTIz997/QqRNccw2MHp1/UogkP/6X7wEOAhVEpDRQAdjsQxwxV1hTTrx55pln\nqF27NkcffTRlypT5Sx+G8U8ytasXpiTXxeefQ9euMGYMFOEq9GKL+eWqqrpDRMYBG4D9wBxVnRvr\nOPwwevRov0Mokvfff9/vEIxJWrNnw6WXwvTpcM45sS075olBRJoAw4FGwG5ghogMUNUXQ/cbPHgw\njRo1AqBq1aq0atUqxpEaE760tLTs6+kDv2CjvR5adizKi9f1wLZ4iScS6x9+CJMmdeGdd+DAgTTS\n0vLePy0tjSlTpgBkf19GQsw7n0XkYqCbql7urQ8E2qrqNSH7lMjOZ1My2efSRNLDD8OECTBnDngD\nD4QtYTufgTVAWxE5TFyD+1nAtz7EYUzCKsnt6kVVUupCFUaOhGefhYULi54UIsmPPoaVIjINWIq7\nXPUr4JlwX59InbfGGBOOjAy48kr49lv47LPIjnt0KAptShKRjsBoXJ9AIJGoqh76oDWFBZVPU1JR\ndZ3alSGthjCw5cDCdzbGGB/s3++GzP7jD3jjDTj88EM/VqSaksJJDP/DdRZ/BWTPDqOq24pbeAFl\nRiQxfPjDh4yYM4JVV6+ilNj198aY+LJzJ/TqBQ0auLuZy5Yt3vFi2cewS1XfV9WtqrotsBS34Fjo\nltqNsillee+79/wO5ZCVlPbTSLC6CLK6CErUuvjpJ+jc2Q1xMX168ZNCJIWTGD4Rkf+ISDsROTmw\nRD2yCBARRnUcxZjPxthVI8aYuPHdd9ChA/TvD+PHQ7wNKBBOU1Ia8JedVPWMKMUUsaYkgMysTJo9\n1ozJvSfTqWGnwl9gjDFRtGwZ9OgB99wDl18e2WPHrI/BD5FMDADPLHuGWf+bxXuXJG6TkjEm8X3w\ngZtg59ln4fzzI3/8mPUxiEhVERkvIsu8ZZyIVCluwbE0qOUglm9Zzqqtq/wOpcgStf00Gqwugqwu\nghKlLqZMgcGDYdas6CSFSAqnZWsSbuC7i4C+wG/A5GgGFWnlS5dneNvhPLDwAb9DMcYkGVW49164\n6y5IS4P27f2OqHDh9DGsVNWWhW2LaFARbkoC2PPHHlIfSWXxFYtJrRa1WzCMMSZbRoYbLnvJEjcN\n55FHRre8WF6uul9EsnttvRve9hW34FirXK4yV55yJeM+H+d3KMaYJPD773DhhbB+PcyfH/2kEEnh\nJIZ/Ao+LSLqIpAOPedsSzrDThvHyNy+zde9Wv0MJW6K0n8aC1UWQ1UVQPNbFr7/CmWdCtWrwzjtQ\nqZLfERVNoYlBVVeo6olAC6CFqrZS1ZXRDy3yalesTb8T+jFx0US/QzHGlFA//ODuUTjzTNfhHE83\nroUr3z4GERmoqtNF5AZy3scguLGSHo5aUFHoYwhYt3MdbZ5tw7ph66hcrnJUyjDGJKelS90QF7ff\nDldfHfvyY9HHUMH7WynXUtH7m5BSq6XSvUl3nl76tN+hGGNKkPffh3PPhSee8CcpRFK+iUFVA9+c\nc1X1rtAFmBeb8KJjZIeRjP9yPAcyDvgdSqHisf3UL1YXQVYXQfFQF5Mnw5AhiXGPQjjC6Xx+NI9t\nCd1I37JOS1rVacX0ldP9DsUYk8BU3dAWd9/trjxKhHsUwlFQH0M7oD1wPfAwrm8BXDPSBYl2H0Nu\nC9IXMPTtoay5Zg0ppVKiWpYxpuT580+46ipYtQrefTc+LkeNRR9DWVwSSCHYt1ARdxf034tbsN86\nNehEzQo1mbl6pt+hGGMSzK5drj9h+/bEu0chHAX1McxX1TuBtrn6GB5W1e9jF2J0BIbkHrtwbFwP\nyR0P7afxwuoiyOoiKNZ1kZ7uLkc9/nh4802oWDGmxcdEOH0MU0Tkk1zLx1GPLAZ6NO3BgYwDzF03\n1+9QjDEJYOlS149w5ZUwcSKklNBW6HDGSmodsloe6ANkqOpNUQsqBn0MAdNWTmPqyqnMG5TQF1oZ\nY6Js1iw3f0K0hsyOBF/nYxCRJap6anELL+D4MUsMBzMPcvSjRzPjohm0OapNTMo0xiSWRx6BBx5w\nyeHUqH3zFV8s52OoHrIcISLnACXmluEyKWW4od0NcTskt7UlB1ldBFldBEWzLjIzYdgwePpp+Pzz\n+E4KkVQ6jH2+IjgkRgawHhgarYD8MPSkody74F7WbFvDsUcc63c4xpg48PvvcMkl8NtvLilUrep3\nRLGTFFN7huPu+XeTviud53s/H9NyjTHx5+ef3bzMxx/v+hQSZSC8qPcxiEgfcg6el4OqRu0GAD8S\nw/Z92znm0WNYdfUq6lWuF9OyjTHx47//hb/9DS67zA2GJ8X+mo2dWPQx9CxkKVFqVKjB4FaDGf/F\neL9DycHakoOsLoKsLoIiWRcffQRnnOGGubjjjsRKCpGUbx+Dqg6OYRxxYUS7EZz45In8+/R/U/2w\n6n6HY4yJoSeecGMezZgBnTv7HY2/wrmPoSowGjjd25QG3K2qu6MWlA9NSQGXzbqMxlUbc3vn230p\n3xgTWxkZMGKEO1t4911o0sTviA5dzO5jEJGZwNfAVNxAegOBE1X1wuIWXkCZviWG1b+upvOUzvw4\n7EcOL3u4LzEYY2Jj9264+GLIyoLXXkv8K49idh8D0ERVR6vqOlX9wRs/KYFzasGa12xOxwYdmbR8\nkt+hANaWHMrqIsjqIuhQ62LdOje8RZMmMHt24ieFSAonMewXkU6BFRHpCOyLXkj+G9lhJA998RAH\nMw/6HYoxJgo++8wNhHf11fD441A6nDu6kkg4TUmtgGlAFW/TTuBSVV0ZtaB8bEoK6Dq1K0NaDWFg\ny4G+xmGMiaxp0+DGG93fc87xO5rIivlYSSJSBVBV3VPcQsMoy/fE8OEPHzJizghWXb2KUhLOiZUx\nJp5lZcG//w2vvuo6mY87zu+IIi+WYyUNF5HKuAl6xovIVyJydnELjnfdUrtRNqUs7333nq9xWFty\nkNVFkNVFUDh18fvvcNFFrglp0aKSmRQiKZyfwpd5ZwndgerAIGBsVKOKA4GJfMZ8NiauJ/IxxhRs\n82Y4/XQ3oc7cuVCzpt8Rxb9w+hi+VtUWIjIRSFPVmSKyXFVPOuRC3b0RzwHH44bduExVvwx53vem\nJIDMrEyaPdaMyb0n06lhp8JfYIyJK0uWwAUXwL/+BSNHlvw7mWN5ueoyEfkQOA/4wGtWyipmuY8A\ns1W1OXAisLqYx4uKlFIp3NzhZsYuLPEnSMaUOC++COedB48+CqNGlfykEEnhJIahwC1Aa1XdB5QB\nhhxqgV4ndidVnQSgqhnRvIu6uAa1HMTyLctZtXWVL+VbW3KQ1UWQ1UVQ7rrIzHRnB7ffDh9/7M4Y\nTNEUmhhUNVNVl6nqLm99u6oW51uyMfCriEz2OrKfFZEKxTheVJUvXZ7hbYfH7UQ+xpigXbugZ0/X\nhLR4MbRo4XdEiSnm8zF4c0h/AbRX1SUiMgHYo6p3hOwTF30MAXv+2EPqI6ksvmIxqdVS/Q7HGJOH\n776DXr2VHRL3AAAgAElEQVSgWzd4+GEoU8bviGIvUn0MftzvtwnYpKpLvPXXgVG5dxo8eDCNGjUC\noGrVqrRq1YouXboAwVPHWK1/9cVXnJ1yNuM+H8fjf3s85uXbuq3besHrixfDQw914b774Jhj0li4\nML7ii9Z6WloaU6ZMAcj+voyEcK5Kymv86d9U9ZDHixCRBcDlqvqdiNwJHKaqI0Oej6szBoCte7fS\n/PHmrL5mNbUr1o5ZuWlpadkfiGRndRFkdeGowv/9XxqzZnXhtdegY0e/I/JXLK9K+grYBnzvLduA\ndK9/4JRDLPda4EURWYm7Kun+QzxOzNSuWJt+J/Rj4qKJfodijAEOHIBBg9y9CV9+aUkhksI5Y3gW\neF1V53jr3YG/A5OBR1S1TcSDisMzBoB1O9fR5tk2rBu2jsrlKvsdjjFJ66ef3NVGjRvDpElQIW4v\nX4mtWJ4xtAskBQBV/dDb9gWQIFNkR0ZqtVS6N+nO00uf9jsUY5LWokXQpg307g0vv2xJIRrCSQxb\nRGSkiDQUkUYicjOwVURSKP6NbglnZIeRjP9yPAcyDsSkvEBHk7G6CJWsdTFlirsc9ckn4dZb3U1r\nyVoX0RROYrgEqA+8BbwJNAD6AylA3+iFFp9a1mlJqzqtmL5yut+hGJM0/vwTrrkGxoyBtDSXHEz0\nhNPH0FhVf8y17dSQy00jH1Sc9jEELEhfwNC3h7LmmjWklErxOxxjSrQtW9zIqDVquDkUqlQp/DXJ\nKpZ9DG+ISL2QgjvjOp6TVqcGnahZoSYzV8/0OxRjSrTPP4dTT4Wzz4Y337SkECvhJIargLdEpI6I\nnAdMBM6NbljxLTAk99iFY6M+JLe1nwZZXQSV9LpQdf0IF1wAzzzjxj0qlc+3VUmvCz+EM1bSEuA6\n4CPgTqCbqm6Mclxxr0fTHhzIOMDcdXP9DsWYEuXAARg6FJ54AhYudCOkmtjKt49BRN7Jtak5sAXY\nhZvis1fUgorzPoaAaSunMXXlVOYNmud3KMaUCBs2QJ8+kJoKzz/vJtcx4Yv6nM9eXwJAaCHqrauq\nzi9u4fkGlSCJ4WDmQY5+9GhmXDSDNkdF/D4/Y5LKJ5/AJZfADTe4xeZPKLpYdD7fCpwM/Kyqad4y\nP/C3uAWXBGVSynBDuxuiOiS3tZ8GWV0ElaS6UHWjofbvDy+8ADfeWLSkUJLqIl4UlBgG45qN7hSR\n5SLylIj0FpHDYxNaYhh60lA+Tf+UNdvW+B2KMQnn999hwACXEBYtgjPP9DsiA2HOx+Dd5Xwa7mqk\nrsABYI6qPhiVoBKkKSng7vl3k74rned7P+93KMYkjDVrXH9Cmzauo/mww/yOKPFFvY/BKyQFuE5V\nx+faXhPorqovFjeAfMpNqMSwfd92jnn0GFZdvYp6lesV/gJjktxrrwXvZB461PoTIiUmN7ipaiZu\nSIzc23+NVlJIRDUq1GBwq8GM/2J84TsXkbWfBlldBCVqXfz5JwwbBrfcAnPmwOWXFz8pJGpdxLNw\nbnD7TEQeE5FOInKyiJwiIidHPbIEM6LdCCavmMyO/Tv8DsWYuLRpE3TpAuvXw9KlcLJ9i8StcMZK\nSsNdppqDqp4RpZgSrikp4LJZl9G4amNu73y736EYE1c++shNqjN8ONx0U/53MZviiUkfg18SNTGs\n/nU1nad05sdhP3J4Wbt4y5isLLjvPje8xYsvwhlR+zlpIIaD6InIaBG5I+TvHSJyR3ELLoma12xO\nxwYdmbR8UsSOae2nQVYXQYlQF9u3Q48e7mxh6dLoJYVEqItEE84J3e/eshc3Mc95QKMoxpTQRnYY\nyUNfPMTBzIN+h2KMb5YsgVNOgeOPh3nzoG5dvyMyRVHkpiQRKQd8qKqdC935ECVqU1JA16ldGdJq\nCANbDvQ7FGNiShWeegpGj4ann3ajo5rYieV8DLkdDhxV3IJLslEdR/HAwgfI0qSb+dQksd274eKL\nXUJYuNCSQiILp4/h65Dlv8D/gEeiH1ri6pbajbIpZXnvu/eKfSxrPw2yugiKt7oIXH5asyZ8+SUc\nc0zsyo63uigJSoexT2B2VQUygF9U1RrQCxCYyGfMZ2Po0bQHYrd1mhJKFR59FO69Fx5/3E3BaRJf\nuGMltQI64ZLDp6q6MqpBJXgfA0BmVibNHmvG5N6T6dSwk9/hGBNxO3e64Sw2bIBXX4UmTfyOyMTy\nctVhwAtATaA28IKIXFfcgku6lFIp3NzhZsYuHOt3KMZE3KJFrumoQQPXn2BJoWQJp/P5cuA0Vb1D\nVW8H2gJXRDeskmFQy0Es37KcVVtXHfIxrP00yOoiyK+6UIVx46BXLxg/HiZMgHLlfAklm30uIi/c\nq5Ky8nlsClC+dHmGtx0e1Yl8jImV7dtdQpgxw50xnH++3xGZaAlnrKQRuEl7ZuKm9TwfmJJ7KO6I\nBlUC+hgC9vyxh9RHUll8xWJSq6X6HY4xh2ThQjft5kUXwf33Q9myfkdk8hLTsZJE5BSgI8HO5+XF\nLbiQ8kpMYgC4dd6t7D6wm8f/9rjfoRhTJJmZMHasu/LouefcEBcmfkW981lEqgcW4EdcB/SLQLq3\nzYRp2GnDePmbl9m6d2uRX2vtp0FWF0GxqIuNG91Um3PnuvsU4jUp2Oci8grqY/gKWBayLPWWwGMT\nptoVa9PvhH5MXDTR71CMCcvMmdC6NZx9tksM9WxiwqRiw27HyLqd62jzbBvWDVtH5XKV/Q7HmDzt\n2wfXX++SwUsvwWmn+R2RKYqYjpUkIr1FZJyIPCQiPQt/hckttVoq3Zt05+mlT/sdijF5WrnSjYi6\nbx8sX25JIZmFc4PbWOA64L/AauA6ERkT7cBKopEdRjL+y/EcyDgQ9mus/TTI6iIoknWhCo88Amed\nBf/+N0yfDpUT6KTWPheRF85YSX8DWqlqJoCITAFWALdEMa4SqWWdlrSq04rpK6dzxSl2j6Dx3y+/\nwODB7h6FL7+0O5iNE859DKuAM1R1u7deA/hEVU+MWlAlsI8hYEH6Aoa+PZQ116whpVSK3+GYJDZn\nDgwZ4hLDXXdBmTJ+R2SKK1J9DOGcMYwBvhKRT3A3uHUGRhW3YBFJwV3dtElVk6bfolODTtSsUJOZ\nq2dy0fE2FKWJvQMH4NZb3R3ML7wAXbv6HZGJN4X2Majqy0A74E3gDaCtqr4SgbKHAd/ibppLGoEh\nuccuHEs4Z0XWfhpkdRF0qHWxYoW7DHXDBve4JCQF+1xEXjidzxcA+1R1lqq+DRwQkWKNkiIi9XBz\nRz+HOwtJKj2a9uBAxgHmrpvrdygmSWRmwgMPQLduMHKkO1uoUcPvqEy8CqePYaWqtsy1bYWqtjrk\nQkVmAPcDlYEbczclleQ+hoBpK6cxdeVU5g2a53copoRbvx4GDQIRmDYNGjb0OyITLbG8jyGvQg65\n11REeuBmgVuez7GTQv8T+rN2x1oWb17sdyimhFKFqVPh1FOhZ0/4+GNLCiY84XQ+LxORh4HHcV/k\n1+CGxThU7YFeInIeUB6oLCLTVHVQ6E6DBw+mUaNGAFStWpVWrVrRpUsXINimmOjrN7S7gQcWPsC1\nta7Nd//Q9lO/4/V7PbAtXuLxc33FihUMHz483+d374bp07vwv//BmDFpHH00pKTET/yRXJ8wYUKJ\n/H4IZz0tLY0pU6YAZH9fRoSqFrgAFYEHCI6VNAY4vLDXhbPgrnB6J4/tmgz2/rFXaz5YU1f/ujrf\nfT755JPYBRTnrC6CCqqL999XrVtX9YYbVPfvj11MfrHPRZD33Vns72Zfx0oSkc7ADaraK9d29TOu\nWLp7/t2k70rn+d7P+x2KSXD79sFNN8G778KUKXDGGX5HZGItpmMlRYuqzs+dFJLNNadew5tr3mTT\nnk1+h2IS2OefQ6tWsHu3G/PIkoIpDl8Tg4EaFWowuNVgxn+R94R4oe3ryc7qIihQF/v3u7OEPn3c\nhDovvABVq/obW6zZ5yLyCpqo5wHvb9/YhZOcRrQbweQVk9mxf4ffoZgEsmgRnHwypKfDqlVw4YV+\nR2RKinz7GETkG6AF8JWqnhTToJKojyHgslmX0bhqY27vfLvfoZg498cfbmyjSZNg4kToaz/djCcW\nfQzvAzuBFiLyW65lT3ELNjnd1P4mHl38KL//+bvfoZg49tVXbkiL1atdX4IlBRMN+SYGVb1JVasC\ns1W1Uq4lgUZrTwzNazanY4OOTFo+Kcd2az8NSua6+PNPGD0azj0XRo2C665Lo3Ztv6OKD8n8uYiW\ncAbR6yUitUWkh7fUikVgyWhkh5E89MVDHMw86HcoJo6sXOlmU1u2zM2sNmCAG97CmGgJZ6ykvsB/\ngPm4O587ATep6oyoBZWEfQwBXad2ZUirIQxsOdDvUIzP/vzTDXz36KPw4INw6aWWEEzBItXHEO5E\nPWep6i/eek1gntpEPVHx4Q8fMmLOCFZdvYpSYlcTJ6slS2DoUGjQAJ58EurX9zsikwhiPYjeryHr\n20niwe+irVtqN8qmlOW9794DrP00VDLUReDu5Z49XV/CO+/knRSSoS7CZXUReeEkhg+AOSIyWESG\nALNxVyyZKAhM5DPmszFhTeRjSo60NDjxRNi8Gb7+Gi65xJqOjD/CGitJRPoAHbzVT1X1zagGlcRN\nSQCZWZk0e6wZk3tPplPDTn6HY6Js9264+WaYPRueeMKdLRhzKGI6VpKqvqGqI7wlqknBQEqpFG7u\ncDNjF471OxQTZe+8Ayec4M4MvvnGkoKJD9a7GacGtRzE8i3LeX6mjboaUJLakn/91TUVXX+9m1Xt\nqaegSpXwX1+S6qK4rC4izxJDnCpfujzD2w7n5W9e9jsUE0GqMH06tGgBRx3lxjiykVBNvCnSfAwi\nUh2op6qroheS9TEE7PljD6mPpLL4isWkVkv1OxxTTN99B1dfDTt3wtNPuyk3jYmkmPUxiMh8Eans\nJYVlwHMikvcY0SaiKperzJWnXMm4z8f5HYophj/+gHvugfbtoUcPWLzYkoKJb+E0JVVR1T3AhcA0\nVW0DnBXdsExA6z9b8/I3L7N171a/Q/FdIrYlL1jgJtBZssQNgHf99VA6nJnWC5GIdREtVheRF05i\nSBGRI4G+wHveNmvniZHqh1Wn3wn9mLhoot+hmCLYvt3duTxgANx/P8ya5e5iNiYRhDMkxkXA7cBC\nVb1aRJoAD6pqn6gFZX0MOazbuY42z7Zh3bB1VC5nA9vGs0Dn8s03Q79+rgmpUiW/ozLJIpZjJXVU\n1c8K2xZJlhj+6pI3LuGkOidxU4eb/A7F5CPQubxrl+tcbt3a74hMsonlDW6P5rHN2jViJNB+OrLD\nSMZ/OZ4DGQf8DchH8dqWvG8f3HGH61zu2dNNuRntpBCvdeEHq4vIy7cbTETaAe2BmiIyguDAeZWA\nlBjEZkK0rNOSVnVaMX3ldK445Qq/wzG4ZqO334bhw918CStWQL16fkdlTPEVNOdzZ+AM4CrgqZCn\nfgPeUdXvoxaUNSXlaUH6Aoa+PZQ116whpZTlZj+tXQvDhsGPP7r5Es480++IjIltH0NDVU0vbkFF\nYYkhb6pKh0kduL7t9Vx0/EV+h5OU9u2DsWPdYHcjR7rkULas31EZ40S9j0FEHvEePiYi7+Ra3i5u\nwSY8oe2ngSG5xy4cm5RDcvvZlqzqLjk9/njXybxihZs3wa+kYO3qQVYXkVfQrTbTvL92220c6dG0\nB7fMu4W56+bSrUk3v8NJCoFmo3Xr4LnnrNnIlHxFGispVqwpqWDTVk5j6sqpzBs0z+9QSrS9e2HM\nGHfpqTUbmUQQy7GSOorIRyLyvYj86C3riluwOXT9T+jP2h1rWbx5sd+hlEhZWW4o7GOPhQ0b/G82\nMibWwrmP4XngYaAjcKq3tIlmUCYor/bTMilluKHdDTyw8IHYB+SjWLQlf/EFtGsHjz8Or7/u7mKO\nx0tQrV09yOoi8sJJDLtU9X1V3aqq2wJL1CMzBRp60lA+Tf+UNdvW+B1KibBpE/zjH3DRRfCvf7kE\n0bat31EZ449wLlcdi7uhbSbwR2C7qn4VtaCsjyEsd8+/m/Rd6Tzf22Z5O1T79sFDD8Ejj7jhLEaN\ngooV/Y7KmEMTy/sY0shjNFVVjdq8U5YYwrN933aOefQYVl29inqV47C9I46pwmuvucHuTjsNHnwQ\nGjXyOypjiidmnc+q2kVVz8i9FLdgE56C2k9rVKjB4FaDGf9FcsybFKm25C+/hE6d3I1q06e7BJFo\nScHa1YOsLiKv0ClDRGQ07oxBCDlzUNW7oxiXCdOIdiM48ckT+ffp/6b6YdX9Dieu/fAD3HILfP65\nGw570CBIsZFFjPmLcJqSbiSYEA4DegDfquplUQvKmpKK5LJZl9G4amNu73y736HEpe3bXSJ44QU3\ng9r110OFCn5HZUzkxayPIY+CywEfqmrn4hZeQBmWGIpg9a+r6TylMz8O+5HDyx7udzhx48ABmDgR\n/vMf6NsXRo+GWrX8jsqY6InlfAy5HQ4cdagFikh9EflERP4rIt+IyHWHeqxkEE77afOazenYoCOT\nlk+KfkA+CrctOSvLnR00a+YuO/3sM3dfQklKCtauHmR1EXnh9DF8HbJaCqgFFKd/4SBwvaquEJGK\nwDIR+UhVVxfjmElvZIeR9H29L/9s/U/KpJTxOxzffPyxu0u5TBmXHDp18jsiYxJPOH0MjUJWM4Ct\nqnowYgGIvAU8qqrzQrZZU9Ih6Dq1K0NaDWFgy4F+hxJzS5bArbe6+RHuv9/dqCbFPqE2JrHE8nLV\n9SHLpggnhUbAScCiSB0zmY3qOIoHFj5Almb5HUrMfPst9OkDF1wAf/87rF7t+hMsKRhz6AptSooW\nrxnpdWCYqu7N/fzgwYNp5F1cXrVqVVq1akWXLl2AYJtiMqyHtp8Wtn+3zt0om1KWsdPH0r5B+7iI\nP5LrgW1paWn8/DN88EEXZs+GPn3SeP55OPvs+Io3musrVqxg+PDhcROPn+sTJkxI6u+HKVOmAGR/\nX0aCL8Nui0gZ4F3gfVWdkMfz1pTkSUtLy/5AhOO1/77GhC8nsPCyhUgJ+9mclpbGscd24b774KWX\n4Jpr4IYboEoVvyOLvaJ+Lkoyq4sg3y5XLXaB7ttqKrBdVa/PZx9LDIcoMyuTZo81Y3LvyXRqWHJ6\nXnfudJedPv20uzHtlltK1lVGxkSCn5erFlcH4B/AGSKy3FvO8SGOEimlVAo3d7iZsQvH+h1KROze\nDXffDU2bwi+/wPLlMH68JQVjoinmiUFVP1PVUqraSlVP8pYPYh1HoghtXw/XoJaDWL5lOau2rop8\nQDESSAhHH+2m1Pz8c/jHP9Jo0MDvyOLDoXwuSiqri8jz44zBRFn50uUZ3nZ4Qk7ks3u3G77i6KPd\n2Eaffw5TpsAxx/gdmTHJw+Z8LqH2/LGH1EdSWXzFYlKrpfodTqF273bDV0ycCOedB7fdZsnAmKJK\n5D4GEwOVy1XmylOuZNzn4/wOpUC7d8O997ozhO+/h4ULYepUSwrG+MkSQ5wrTvvpsNOG8fI3L7N1\n79bIBRQhv/7qzgqaNIH//c8lhGnTXCdzfqwtOcjqIsjqIvIsMZRgtSvWpt8J/Zi4aKLfoWTbuBGG\nDXMD3G3bBosWuclyCkoIxpjYsj6GEm7dznW0ebYN64ato3K5yr7F8d138MAD8OabMHSomxOhbl3f\nwjGmRLI+BhOW1GqpdG/SnaeXPu1L+cuXu7GLOnSABg1cP8J//mNJwZh4ZokhzkWi/XRkh5GM/3I8\nBzIOFD+gMKhCWpq7uuhvf4PTTnP3IoweDTVqHPpxrS05yOoiyOoi8iwxJIGWdVrSqk4rpq+cHtVy\nDh6El1+G1q3hqqugd2+XEG64ASpVimrRxpgIsj6GJLEgfQFD3x7KmmvWkFIqJaLH3rMHnnsOJkyA\nxo1dIujRA0rZzw5jYsr6GEyRdGrQiZoVajJz9cyIHXPjRrjxRpcMliyBmTNh/nzo1cuSgjGJzP77\nxrlItZ+KCKM6jmLswrEU92xs2TIYMABatXLzK3/1VbAJKZqsLTnI6iLI6iLyLDEkkR5Ne3Ag4wBz\n180t8mv//NPNgdC+PVx4IZx0kus/ePhhaNgwCsEaY3xjfQxJZtrKaUxdOZV5g+YVvjPw00/wzDNu\nad4crr0WevaElMh2UxhjIsD6GMwh6X9Cf9buWMvizYvz3UfVDVHRvz8cf7ybB2HuXJg3D84/35KC\nMSWdJYY4F+n20zIpZbih3Q15Dsm9bx9MngynnAKDB0PbtvDjj/DEE3DccREN45BYW3KQ1UWQ1UXk\nWWJIQkNPGsqn6Z+yZtsaAFatgn/9C+rXh9dfh/vucwPbDRsGVav6HKwxJuasjyFJ3fbR3cxfmc7B\n159n82Y3ftFll2EzpBmTwCLVx2CJIcksX+46kl+etR0d2JUpHRbT87xylC7td2TGmOKyzuckEYn2\n0x07XD/Bqae6zuO6deGbxTXYNXYFF/RKnKRgbclBVhdBVheRlyBfCaaoDh6EDz5ws6F99BGcey7c\nfTd07x56VVGxf1gYY0oga0oqYVaudMngxRfddJmXXuqGvbZOZGNKvkg1JdkZQwmweTO89ppLCDt2\nwKBB8OmnNiuaMebQWB9DnMuv/XTbNnjqKejSBVq0cJecPvwwrF8P995bMpOCtSUHWV0EWV1Enp0x\nJJA9e+Ctt9yAdZ9/7voNhg+Hc86B8uX9js4YU1JYH0Oc++03mD3bNRXNnevOEPr1c+MVVazod3TG\nmHhi9zGUYL/+Cm+/DW++CQsWQMeO0KePG9W0WjW/ozPGxCu7j6GE2bABHnnEnREcfTTMmePmPHjp\npTRmz3Z3Jid7UrC25CCriyCri8izPgafZGW5Wc9mz4b33nOdxj17umkxzzoLDjvM7WefeWNMrFlT\nUgzt3OnOBGbPdjef1aoF553nlo4dSZg7kI0x8cn6GBJAZiasWOHuPH7vPXfzWefOwWRgM58ZYyLJ\n+hjikKobrvqJJ1xnca1aMHCgmwXt3/92E9688w5cfXX4ScHaT4OsLoKsLoKsLiLPGi+KQdV1Gs+f\n72Y3mzcPSpWCM8+ECy6ARx91A9YZY0wisaakIsjMdHcYL1wIn33mlowM6NTJJYMzz3RXFImNTWeM\n8YH1McTAL7/A0qXu6qGFC2HRIjjqKNdR3KGD+5uaaonAGBMfErqPQUTOEZE1IvK9iIz0I4bctm+H\nDz+E++93N5I1aADNmrnxh/bvh2uvhXXr4Ntv3UQ3l14KTZpEPylY+2mQ1UWQ1UWQ1UXkxbyPQURS\ngMeAs4DNwBIReVtVV8ei/P37YfVq+Oab4PL117B7N5x8MrRu7YapfvDB2HzxF2bFihV06dLF3yDi\nhNVFkNVFkNVF5PnR+dwGWKuq6wFE5BWgNxCxxJCR4TqF167NuaxZAxs3wjHHwAknuOWf/3R/GzVy\nHcfxZteuXX6HEDesLoKsLoKsLiLPj8RwFLAxZH0TcFo4L8zKcr/sd+xww05v3hxcNm1yfzdudMuR\nR7qO4MBy+ukuITRtCmXKROV9GWNMieBHYgirV/mMM+DAAbfs3euSwe7dbkTRGjWgenXXERxYund3\nf+vVc7/+y5WL8ruIkfXr1/sdQtywugiyugiyuoi8mF+VJCJtgTtV9Rxv/RYgS1UfCNnH/0uSjDEm\nASXk5aoiUhr4H3Am8BOwGOgfq85nY4wxBYt5U5KqZojIv4A5QArwvCUFY4yJH3F5g5sxxhj/xN0F\nmvF481u0iEh9EflERP4rIt+IyHXe9uoi8pGIfCciH4pI1ZDX3OLVzRoR6e5f9NEhIikislxE3vHW\nk7IuRKSqiLwuIqtF5FsROS2J6+IW7//I1yLykoiUS5a6EJFJIrJVRL4O2Vbk9y4ip3j1972IPFJo\nwaoaNwuuaWkt0AgoA6wAmvsdVxTfbx2glfe4Iq7vpTnwIHCzt30kMNZ7fJxXJ2W8OloLlPL7fUS4\nTkYALwJve+tJWRfAVOAy73FpoEoy1oX3ftYB5bz1V4FLk6UugE7AScDXIduK8t4DrUKLgTbe49nA\nOQWVG29nDNk3v6nqQSBw81uJpKo/q+oK7/Fe3E1+RwG9cF8MeH/P9x73Bl5W1YPqbhBci6uzEkFE\n6gHnAc8BgSsrkq4uRKQK0ElVJ4Hrl1PV3SRhXQB7gINABe/ClQq4i1aSoi5U9VNgZ67NRXnvp4nI\nkUAlVV3s7Tct5DV5irfEkNfNb0f5FEtMiUgj3C+DRUBtVd3qPbUVqO09rourk4CSVj/jgZuArJBt\nyVgXjYFfRWSyiHwlIs+KyOEkYV2o6g5gHLABlxB2qepHJGFdhCjqe8+9fTOF1Em8JYak7AkXkYrA\nG8AwVf0t9Dl1534F1UuJqDMR6QH8oqrLCZ4t5JAsdYFrOjoZeEJVTwZ+B0aF7pAsdSEiTYDhuKaR\nukBFEflH6D7JUhd5CeO9H5J4Swybgfoh6/XJmelKHBEpg0sK01X1LW/zVhGp4z1/JPCLtz13/dTz\ntpUE7YFeIvIj8DLQVUSmk5x1sQnYpKpLvPXXcYni5ySsi9bA56q6XVUzgJlAO5KzLgKK8n9ik7e9\nXq7tBdZJvCWGpcAxItJIRMoCFwNv+xxT1IiIAM8D36rqhJCn3sZ1sOH9fStkez8RKSsijYFjcJ1K\nCU9Vb1XV+qraGOgHfKyqA0nOuvgZ2CgiTb1NZwH/Bd4hyeoCWAO0FZHDvP8vZwHfkpx1EVCk/xPe\n52mPd2WbAANDXpM3v3vd8+iFPxd3dc5a4Ba/44nye+2Ia09fASz3lnOA6sBc4DvgQ6BqyGtu9epm\nDXC23+8hSvXSmeBVSUlZF0BLYAmwEvcruUoS18XNuMT4Na6ztUyy1AXu7Pkn4E9c/+uQQ3nvwCle\n/a0FJhZWrt3gZowxJod4a0oyxhjjM0sMxhhjcrDEYIwxJgdLDMYYY3KwxGCMMSYHSwzGGGNysMRg\nYsGZ6gUAAAS7SURBVMob/vcR73FnEWkXoeP+xxu6/IHC9y7wOOtFpHokYvKOd6SIzPHe6zuROm4R\nY+jiV9kmMcV8BjeT3FR1GbDMWz0D+A34IgKHvgKopsW/MSciN/aISIqqZuJuWPwgEsc8xDjs/7gp\nMjtjMIfMG7okdAKRG0VktPc4TUTGisgiEfmfiHT0tncRkXdEpCFwFXC9uIl5OorIRd5kIitEZH4+\nZf7H22eViPT1tr2Nm8/iq8C2kP0reqOUrhKRlSJygbe9v7ftaxEZm09ZI7znvxaRYWG+5/EisgS4\nztvlbOB9QgYGFJFTvVFTG4tITW/SlW+8UVTzPGMRN4HVMq9uPvK2tRGRz71jLQwMoSEig0XkbRGZ\nh7tDVoEqIvKuuAlcnvSGRsi3HkRkr4jc65X3hYjUyquOTMlkvyZMJIWO9KhAiqqeJiLnAqOBbtk7\nqqaLyFPAb6r6MICIrAK6q+oWEamc++Ai0gc3VMSJQE1giYjMV9VeIvKbqp6UR0y3AztV9UTvGFVF\npC4wFjcw3S7gQxHpraqzQso6BRiMG8u/FLDIS1a7CnnPZVT1VO8YKUAzVV0jwUHP2gMTgV6quklE\nHgPmquoDInI2MDSP910TeAY3R0O6BGfsWu1tyxSRs4D7gb97z50EtFDVXSLSBTgVNwnUBtwZzIUi\n8kUB9VAB+EJVb/Oa564A7sujfk0JZGcMJtJCh8ye6f39CjdscmH7LwSmisjl5P2jpQPwkjq/APNx\nX3gFORN4PLCiqru813yibsTOTNyMcafniqkjMFNV96vq79576UTeTU2h7+HVkMen4ebXCGgOPA30\nUNXAqMEdcBNSoapz+OukLABtgfmqmh7yHgCqAq97ZzAP42bwCvgwZD9wg6mtV9Us3Pg7HXEjl6bl\nUw9/qup73uNl5P/vZ0ogSwymODLI+Rk6jJxfnH94fzMJ4+xUVa8GbsMNHbwsn05gyedxQXLvp3kc\nJ/cXfn77FPaefw95fC6uGSlwvC3Aftwv9ILiyy13LAH3APNUtQXQ04slYF8exwgtL78EF9h+MGR7\nFta6kFQsMZji2ArUEjc5eTmgRxFf/xtQKbAiIk1UdbGqjgZ+JecY8gCfAheLSCmveaUThQ+p/BFw\nTUgZVb3XdBaRGl5zTz/c2UeAemWdL26458NxUyF+ihv7vqD3HPoF3hXXxh/Yvsvbf4yIdPa2LwQC\nfSXdgWp5vIdFwOniZvlDRAL7VMaNvAlu1M2CtPH6R0p55X0aRj2YJGWJwRwydfNy3437gvkQN05+\nvrvn8fgd4AKv87Qj8GCgIxRYqKqrcpX3JrAKNxT1POAmr0kp9/FD3QtUC3RqA13UjU8/CvgEN+T5\nUlV9J/Q46maSm+K9ty+BZ1V1ZRjvWSG7X+CA1wwV2B5oAusBPC4ipwJ3Ad299/x34Gdcwgx9378C\nVwIzvffwivfUg7gk8xWQQs6+jtz1vQR4zIt3naq+GU495HM8U8LZsNvGRIGIDACOUtUHC9mvLJDp\ndSC3Ax5XN52nMb6xxGCMj0TkaOA13Nn7n8DV3r0exvjGEoMxxpgcrI/BGGNMDpYYjDHG5GCJwRhj\nTA6WGIwxxuRgicEYY0wOlhiMMcbk8P+dWPmzYQm/hQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7930c18>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Quantity of fresh carbon recquired for single stage operation: 32.0 kg carbon/1000 kg solution\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VcXTgN8loRNIwNATICBSPnoPLQiiIiCC9F7saECw\nIQgiilioPxQQpCsdkWKjBASkg4ooCEpClQ6B0JLM98feJDch5ZLcmuz7POdJTt25c889c3Zmd0aJ\nCAaDwWAwxJHN1QIYDAaDwb0whsFgMBgMiTCGwWAwGAyJMIbBYDAYDIkwhsFgMBgMiTCGwWAwGAyJ\nMIbBYDC4HKVUY6XUX66Ww6AxhsFNUUpdV0pFWpZYpVSU5f9rSqmuTpKhtKVtl9wnSvOKUup3iz5O\nKKWWKKX+zxXyuDNKqT5KqZ9dLYetWO6roLh1EflZRCq4UiZDAt6uFsCQPCKSL+5/pdS/QH8R2egi\ncZSL2p0EtAIGANvQ9+tTwBPAwaQHK6WyiUisUyVMB0opbxGJTmubp6KU8hKRGFsOdbgwhvQhImZx\n8wX4F3gYyAXcBApatr8N3AXyWdbfAyZY/i8AzAPOAcctx6oUrl8X2ANcBc4Cn1i2RwCxQKRlqQeU\nBTYCF4DzwAKggNW1agL7gWvAEmAx8J7V/tbAAeAy+mFfJQWZHgSigdqp6GUO8DmwDrhu0VFFIMxy\n/YNAG6vjWwF/WGQ7CQyxbH8AWGM55yKwJRVdVQZ+shx3FnjTShbrzxkCnLBaPw68Dvxm+Q7LWnTb\nDwgHwizH9QMOAZeA74FAq2vEAs8BRyyy/s+yvaLlmtGW7+lSCrIXB761yP43MMBq3yhgGbDIop+9\nQNUk5y633E//AC8nc+58yz3UD6gD/GKR8zQwBchuOX6L5bNct8jbMRl9pfY9zgGmWr6za8AOIMjV\nv9PMtLhcALPY8CVZDIPl/81Ae8v/P1p+4I9Z1rcAT1r+nwesBPICpYDDQL8Urv8L0N3yfx6gnuX/\nUpYfcDarY8sCzYHs6AfqZhKMUQ7LQ+5lwAv9dn8bGG3ZXwP4z/LQUEAvy2fLkYxMzwP/pqGXOcAV\noIFl3Qc4CryJ7l00szw4HrTsPwM0tPxfAKhh+X8s2sB4WZaGKbTnY7nGYMtnzQfUseybHfc5LetJ\nH3THgX1ACSAnUNqi2zlAbrTRf9LyfT6EdvO+DWyzukYs+sGeHwhAP6QftezrDfychr62AP+zyF7N\ncn4zy75RwB2gvUUHQ9AGwMsiy15guEWvZYBjQMsk57a1rOdCvyDUtZxbCm3sQpN8lqDk9IW+t5L7\nHstbfe8XgNoW+RYAX7v6d5qZFhNj8Dw2A02VUl5AFWCyZT0X+oeyxbKvM/CWiNwQkXDgU6BnCte8\nAzyolHpARKJEZKdl+z1dfRE5JiIbROSuiFwAJgBNLbvrA14iMkVEYkRkJbDL6vRngekisls089CG\no34yMhVCv5GnhgDfiMgvlvXqQF4R+VBEokVkE/qtspvV56yslMovIldFZL/V9mJAaYvc21JorzVw\nWkQmiMgdEbkuIrut9qfmGhFgsoicEpHbVttHichNEbmFNoZjReSwaJfYWKC6UirA6vgPReSaiJwA\nNlk+c1ptY7lGMPCGRfZfgZlo4xzHHhFZIdoNNB79gG+ANuQPiMgYi17/tZzbxerc7SLyLYCI3BKR\nfSKyS0RiLfffDBLuk7SoT/Lfo3VsbYWI7LHIutBKDwY7YAyD57EZ/XZVE/gdWI/+wdUDjorIZfSb\nfHb023scEei31eToD5QH/lRK7VJKPZFS40qpIkqpRUqpk0qpq2j3QSHL7uLAqSSnnLD6vxQwRCl1\nOW4BSqIfykm5mML2pJy0+r94kvZA6yDuc3dAu5OOK6XClFJxBulj9Bvqj0qpY0qpN1JoKwD9Fp1e\nksqWdFspYJKVbi5atlt/b9bGMgrdI7SF4mgX0w2rbUnviXhdiohY1osDgUDxJN/bW0Dh5M4FUEqV\nV0qtUUqdsdwn75Nwn9gia3LfY/E48dA9zzhuontvBjthDIPn8Qva1fAU2i/9J/qH2wrtkwXdzb6L\ndlfEEUiSH28cInJURLqJiD8wDlimlMqN/gEm5QMgBvg/ESmA7oXE3UdnuNf4BFr9HwG8LyJ+Vks+\nEVmcTDsbgJJKqVrJyWwtvtX/p4EApZT123MpLJ/b8obZDvAHvkHHQLC8+Q8VkbJAW+BVpdTDybQV\nAQQlsx3gBtoNF0fRNGRNblsE8GwS/eQVkR0ptJnWta05DRRUSlk/QJPeE/E9E8tItJJoQ38C7daz\nliu/iLS2ajtp+5+j3UflLPfJ29j+vEnpe0z60mFwEMYweBgiEoX2976E7j0AbEe7ITZbjolBP/Te\nV0rlU0qVQvvFFyR3TaVUD6WUv2X1KvpHHosOLsei4wpx5EM/BK8ppUoAr1nt+wWIUUoNVEp5K6We\nRLsh4vgCeF4pVdcyFDWvUuqJJA+ruM/5N/AZ8LVSqqlSKodSKpdSqovVG31S98kO9Fv060qp7Eqp\nELT7Z5FlvbtSqoBFP5FoA4dSqrVSqpzlQXTNsj25UTVrgGJKqVClVE6llI9Sqq5l3wGglVLKTylV\nFBiUzPlpMQ0YppSqZJGrgFKqYyrHKysd/Ic2pNmTO9DietoOjLXIXhUdJLa+J2oppZ5SSnlb5L+F\n1uluIFIp9bpSKrdSyksp9X9KqdpWciQlH1rHUUqpCsALSfb/R+L7ypqdpPA9ptKewY4Yw+CZbEYH\n5XZZredDBxfjeBn9AP8H+Bnth52dwvUeBQ4qpSLRMYMuInLbYoTeB7YppS5ZHoLvot1YV4HV6JEq\nAiAiccHL/ujRJN3RD9M7lv17gWfQAdBL6ECrtY87ESLyiuXYqZbrHUUHaL+NOwSrN1URuQu0AR5H\nG7X/AT1F5IjlkB7AvxbXxrMW+QDKoUcaRaIfnlNFJM7oWstzHXjE0sYZ9OigEMvu+cCv6CDz9+iH\nWFpv8Yn2i8g36B7bIouMv6O/m2SPT/L5N6BHXJ1VSp1Lob2u6F7kaWAF8I4kDIEWYBU6NnUJrZv2\nlphLDPrBXB19P51HxwzyJyNHHEPRsZ1rlmOT6mMUMNfimnra+hqW+yi17zG59kxhGTuitCvRARdW\n6kv0ePNzIlLFsq0gevhiKfQPqJOIXHGIAAa3QCm1E/hMROa6WhZDyiilRqLdPikNUDBkIRzZY5gN\nPJZk25vATyJSHv2G86YD2ze4AKVUE6VUUYsrqTfwf+g3aIN7Y9wzhngcZhhE5Gd099+atkDcm+Nc\noJ2j2je4jIdImMA2GHhaRP5L/RSDG5Cce8aQRXGYKwl0rh1gtZUr6bKI+Fn+V+jhc34OE8BgMBgM\n943Lgs+WcdLmDcVgMBjcDGcn0ftPKVVURM4qpYqhp+Tfg1LKGAyDwWBIByKS4XiRs3sM36JzumD5\n+01KB6aUwyOrLSNHjnS5DO6yGF0YXRhdpL7YC4cZBqXU1+gx4Q9Z8uj3BT4EHlFKHUFnwvzQUe1n\nFo4fP+5qEdwGo4sEjC4SMLqwPw5zJYlISsVkWjiqTYPBYDBkHDPz2c3p06ePq0VwG4wuEjC6SMDo\nwv44dLhqelFKiTvKZTAYDO6MUgqxQ/DZo0p7Jk62aDBkLaxflsLCwggJCXGdMG6E0YX98SjDANg1\n8m4weArmpcjgTNzWlRRxJYKAAgFJtxvDYMiSmHvfYAv2ciW5bfC5zhd1WH14tavFMBgMhiyH2xqG\nFZ1XMPC7gQz5YQh3Yu64WhyDwa0ICwtztQhug9GF/XFbwxAcEMy+Z/fx96W/aTy7Mf9e/tfVIrmE\niIgIfHx84t0IISEhzJo1C4A5c+bQuHHj+7peq1atmD9/vt3lNBgMmQe3Dj4XylOIVV1WMWnnJOrN\nrOdqcVKldOnSnDt3Di8vr/htffv2ZfLkyRm6bmBgIJGRkfHrSqkMBSLXrVuXIXkM7oEZhZOA0YX9\ncWvDAPpBOKj+IBoGNKTu63XTPsFFKKVYs2YNDz+cXA151xPX4/C00S3R0dF4e7v9bWowZCrc1pWU\nlDol6qR9kJsSGxvL0KFD8ff3p2zZskydOpVs2bIRGxsL6N7Ghg0b4o8fNWoUPXvqCovHjx9PdGxS\nRISXX34ZX19fKlasyMaNG+P3hYSEMHz4cBo2bEi+fPn4559/ErmirNtJrq2QkBBGjBhBw4YN8fHx\noW3btly4cIHu3btToEAB6tatS3h4eIqfe+vWrQQHB+Pn50dgYCDz5s2Lv26cDHCvSyxbtmx89tln\nlC9fnvLly/Piiy/y2muvJbr2k08+yYQJEwA4ffo0HTp0oHDhwgQFBTFlypQUZcosGL96AkYX9sdj\nDIMnkNJwwhkzZrB27VoOHDjAnj17WLZsWaI396Tuoft5q9+5cyflypXj4sWLvPvuu7Rv354rVxLK\naC9YsICZM2cSGRlJqVKlErVlSzuLFy9mwYIFnDp1imPHjtGgQQP69+/PpUuXqFixIu+++26y54WH\nh9OqVStCQ0O5cOECBw4coFq1asl+3uRYtWoVu3bt4s8//6Rr164sXrw4ft/ly5f56aef6Nq1K7Gx\nsbRp04YaNWpw+vRpNmzYwMSJE/nxxx/T/GwGgyF5MpVhUMo+S3oQEdq1a4efn1/8EvdWvGTJEgYP\nHkyJEiXw8/Nj2LBhqY5Jv5/x6oULFyY0NBQvLy86derEQw89xJo1ayz6UPTp04eKFSuSLVu2e1wy\nabWjlKJv376UKVOG/Pnz8/jjj1O+fHkefvhhvLy86NixI/v370/23K+++opHHnmEzp074+XlRcGC\nBeMNgy289dZb+Pr6kjNnTho1aoRSip9//hmAZcuWERwcTNGiRdm9ezcXLlxg+PDheHt7U6ZMGQYM\nGMCiRYtsbssTMX71BIwu7E+mct66cv6PUopVq1YlG2M4c+YMAQEJk/UCAwPt1m6JEiUSrZcqVYoz\nZ87Er1u3mx6KFCkS/3+uXLkoXLhwovXr168ne97JkycJCgpKd7vWciul6NKlC19//TWNGzfmq6++\nolevXoDumZw+fRo/v4QKsTExMTRp0iTdbRsMWZ1M1WNwV4oVK0ZERET8uvX/AHnz5uXGjRvx62fP\nnrX52qdOnUq0Hh4eTvHixePXU3PZ5MuXj6ioKJvbvR8XV0BAAMeOHUt2ny2fN2lbXbt2ZdmyZYSH\nh7Nr1y46dOgAaCNbpkwZLl++HL9cu3YtvteUWTF+9QSMLuyPMQx2JCXXTKdOnZg8eTKnTp3i8uXL\nfPjhh4kefNWrV2fRokVER0ezZ88eli9fbvND+Ny5c0yePJm7d++ydOlS/vrrL1q1apWmTHHtbtmy\nhRMnTnD16lXGjh2b6me6HxdX9+7dWb9+PUuXLiU6OpqLFy/y66+/xre7YsUKbt68ydGjRxMFolOT\n9YEHHmDAgAE89thj5M+fH4C6devi4+PDRx99xM2bN4mJieHgwYPs2bPHZlkNBkNijGGwI23atMHH\nxyd+iXurfeaZZ3j00UepVq0atWvXpkOHDokesu+99x7Hjh3Dz8+PUaNG0b1790TXTclIKKWoX78+\nf//9N/7+/owYMYLly5cncqukZmBatGhB586dqVq1KnXq1KFNmzb3HJ9akDy16wcEBLBu3To+/fRT\nChUqRI0aNfjtt98AGDx4MDly5KBIkSL07duXHj162BR879atGxs3bqRbt27x27Jly8aaNWs4cOAA\nQUFB+Pv78+yzz3Lt2rUUP3dmwPjVEzC6sD9um0QvObkySyKx48ePExQURHR0NNmyGdtsSJvMcu8b\nHEumT6JnMBhSxvjVEzC6sD/GMLgIT5uBbDAYsg7GlWQweADm3jfYgnElGQwGg8EhGMNgMHggxq+e\ngNGF/TGGwWAwGAyJMDEGg8EDMPe+wRZMjMFgMBgMDsEYBgfj4+PD8ePHXdL28OHD8ff3T5Q7yZA5\nMH71BIwu7I8xDHaidOnS5MmTJz4dRv78+Tl79iyRkZGULl36vq8XFhaWocyoERERjB8/nr/++ovT\np0/b/fr3w5EjR+jYsSP+/v74+vpSrVo1JkyYkGLxIU/AmfozGJyNMQx2Iq60Z2RkJJGRkVy7do2i\nRYumeo4jH4wREREUKlSIQoUKOawNWzh27Bj16tWjVKlSHDx4kCtXrrB06VL27t2bqJa1IxGRe/zz\n0dHRTmnbUZj8QAkYXWh27bLjxeJ+NO60aLHuJaXt7kDp0qVlw4YN92xXSsmxY8dERKR3797y/PPP\ny+OPPy558+aVDRs2yNq1a6VixYri4+MjJUqUkE8//VRu3LghuXLlkmzZskm+fPnEx8dHzpw5c8+1\nr1y5Ij179hR/f38pVaqUjBkzRmJjY+Wnn36S3Llzx5/ft2/fROddv379nuufPn1acuXKJRcvXhQR\nkTFjxoi3t7dERkaKiMjw4cNl0KBBqbabHN27d5fWrVunqrtVq1ZJpUqVxNfXV0JCQuTPP/+M3xcR\nESFPPfWU+Pv7S6FChWTgwIEiIjJy5Ejp0aNH/HH//vuvKKUkJiZGRESaNm0qb7/9tgQHB0uePHnk\n6NGjopSSqVOnSrly5SQoKEhERFavXi3VqlUTX19fCQ4Olt9++y3+mqVKlZJPPvlEqlatKgUKFJDO\nnTvLrVu3ktVfct+PPXHne9/gesaOFSlTJv4+yfgz2B4XsffiqYZh/fr192xPahgKFCgg27dvFxGR\nmzdvStGiRWXr1q0ioh+4+/btExGRsLAwKVmyZKpt9uzZU9q1ayfXr1+X48ePS/ny5WXWrFk2nZ/c\n/iZNmsjy5ctFROSRRx6RcuXKyXfffSciIo0bN5ZvvvkmzXaTUrRoUZkzZ06Kchw+fFjy5s0r69ev\nl+joaPnoo4+kXLlycvfuXYmOjpaqVavKq6++KlFRUXLr1i3Ztm2biIiMGjUqTcNQqlQpOXTokMTE\nxMidO3dEKSUtW7aUy5cvy61bt2Tfvn1SuHBh2bVrl8TGxsrcuXOldOnScufOHRHR32m9evXkzJkz\ncunSJalYsaJMmzbNJv3am6T3/qZNm5zWtruTlXURGyvy+usilSqJnDplP8OQqSq4qXftk39IRt7/\nsEARXdozrnxms2bNWLFixT3HtWvXjgYNGgC6AlqOHDn4448/qFKlCgUKFKBGjRrx10uNmJgYFi9e\nzK+//krevHnJmzcvQ4YMYf78+fTr1y/N85Pb37RpUzZv3syTTz7J77//zrBhw9i8eTMhISHs2bOH\nJk2apNluUi5evEixYsVSlGPx4sW0bt2a5s2bAzB06FAmTZrEtm3byJEjB2fOnOHjjz+Oz0IbHBxs\nk36sy5oC8efHlQwFXYv7ueeeo06dOgD06tWLDz74gB07dtC4cWMAXnnllXiXYJs2bThw4IBN7RsM\njiYmBl54AX79FbZsAXt6jTOVYUjPA91epFba0/qYkiVLJtq2fPlyxowZw5tvvknVqlX58MMPqV+/\nfprtXbhwgbt371KqVKn4bYGBgfdUdLsfmjZtyquvvsq+ffuoUqUKLVq0oH///uzcuZNy5crh5+fH\nf//9d1/tFipUKNngdxxnzpxJVOpUKUVAQACnTp0ie/bslCpVKt2pyZMLDltvCw8PZ968eUyZMiV+\n2927dxPJax0nyp07d6qfxZkYv3oCWVEXd+5Az55w4QKsXw8+Pva9vgk+u5jatWvzzTffcP78edq1\na0enTp2AtLOvPvDAA2TPnj3RUNiIiIh7DE9KJHf9Bg0acPjwYVauXElISAgVK1YkIiKCdevWxf/4\n7rfdFi1asHz58hTlKF68OOHh4fHrIsKJEycoWbIkAQEBREREEBMTc895tpQlTe4zWm8LDAzk7bff\nTlQW9Pr163Tu3DlFeVO7tsHgDKKi4MkntXFYu9b+RgGMYXAqSd0Pd+/eZeHChVy9ehUvLy98fHzw\n8vICoEiRIly8eDHFSmReXl506tSJt99+m+vXrxMeHs6ECRPo0aOHTbIkd/08efJQq1Ytpk6dStOm\nTQHtupk2bVr8+v22++6777J9+3Zef/11/vvvPwCOHj1Kz549uXbtGp06dWLt2rVs3LiRu3fv8umn\nn5IrVy6Cg4OpU6cOxYoV48033yQqKopbt26xfft24P7LkibHM888w7Rp09i1axciwo0bN1i7di3X\nr19Pl/6ciRm7n0BW0sWVK9CyJRQuDEuXQq5cjmnHGAYHk1ZpzAULFlCmTBkKFCjAjBkzWLhwIQAV\nKlSga9euBAUFUbBgwWTfiKdMmULevHkJCgqicePGdO/enb59+ybbdlJSun7Tpk2Jjo6mbt268evX\nr1+nSZMmNrdrTVBQEL/88gvHjx+ncuXK+Pr68vTTT1OnTh3y5ctH+fLlWbBgAS+//DL+/v6sXbuW\n1atX4+3tjZeXF6tXr+bo0aMEBgYSEBDAkiVLgPsvS5rceq1atfjiiy8YOHAgBQsW5MEHH2TevHmp\nllKN22fL92Mw2JP//oOQEKhVC2bPBm8HBgJckitJKfUW0AOIBX4H+orIbav9kpxcJl+MIati7v2s\nTXg4PPIIdO8O77wDKb3zeWyuJKVUaeAZoKaIVAG8gC7OlsNgMBg8gT/+gMaN4aWXYOTIlI2CPXGF\nK+kacBfIo5TyBvIA6R9KYzBkQbKSXz0tMrMutm+Hhx+GsWMhNNR57TrdMIjIJeBTIAI4DVwRkfXO\nlsNgMBjcmXXr9OijuXO1C8mZOH0eg1KqLDAIKA1cBZYqpbqLyELr4/r06ROffM7X15fq1as7WVKD\nwT1J+oYctx43pDirrcdtcxd57LH+44/w5ZchrF4Nt26FERaW/PFhYWHMmTMHIF3JOlPC6cFnpVRn\n4BERGWBZ7wnUF5GXrI4xwWeDwQpz72cdxo+HiRPhhx/AMnHfZjw2+Az8BdRXSuVWeuxfC+CQC+Qw\nGDyWzOxXv18yiy5E4I034IsvYNu2+zcK9sTpriQR+VUpNQ/Ygx6uug+Y4Ww5DAaDwV2IjoZnn4VD\nh2DrVvvmPUoPabqSlFKNgJHomECcIRERCXKYUMaVZDAkwtz7mZebN6FLF7h9G5Yvh7x5038tZ7qS\nZgHjgUZAHctSN6MNG5zLnDlz4jOG3i+HDx+mevXq5M+fn//97392lsxgyLpcvqxTXOTLB99+mzGj\nYE9sMQxXROQ7EflPRC7ELQ6XzMPYunUrwcHB+Pr6UqhQIRo1asSePXtcLZZd+Oijj2jevDnXrl1j\n4MCB9+wPCQlh1qxZDpdDRJg8eTJVqlQhX758BAQE0KlTJw4ePOjwth1JevSXWfzq9sBTdXH6NDRt\nqlNczJ8POXK4WqIEbDEMm5RSHyulGiilasYtDpfMg7h27RqtW7cmNDSUy5cvc+rUKUaOHEnOnDld\nLZpdCA8Pp1KlSinud1am0dDQUCZPnsyUKVO4fPkyR44coV27dqxdu9Yp7UPyJUGTy/56P5hMrVmP\nI0egYUPo2hUmTIB0ZpZ3HGlV8gHCgE1JF3tUCUqlzWSrFaW03dXs3r1bfH19Uz1m1qxZUrFiRfHz\n85NHH31UwsPD4/cdPHhQWrRoIQULFpQiRYrIBx98ICIit27dktDQUClevLgUL15cBg0aJLdv3xYR\nXbUqrhRo4cKFpVixYjJ79uz4a164cEHatGkj+fPnl7p168rw4cOlUaNGKcqXUnnNZs2aiZeXl+TK\nlUt8fHzk77//TnTesGHD4vfny5dPBg4cKCNHjpSXX35ZRETu3LkjefLkkddee01ERKKioiRnzpxy\n+fLlVNtNypEjR8TLy0t2796d4mdIq+TojBkz4suoVqpUSfbv3y8iiavsiehKe8OHD0+k53HjxknR\nokWlZ8+eMmrUKOnQoYP06NFD8ufPL7NmzZIrV65Iv379pFixYlKiRAkZPnx4fDW52bNnS8OGDWXo\n0KHi5+cnZcqUia+Ml1R/cXpLirve+4b7Z88ekaJFRb74wv7XxpT2dB+uXbsmhQoVkt69e8t3330n\nly5dSrT/m2++kXLlyslff/0lMTExMmbMGAkODo4/t2jRojJ+/Hi5ffu2REZGys6dO0VEZMSIEdKg\nQQM5f/68nD9/XoKDg2XEiBEioh9Y3t7eMnLkSImOjpZ169ZJnjx55MqVKyIi0rlzZ+ncubNERUXJ\nwYMHpUSJEtK4ceNk5U+tvKaISEhISIqlO5Pbv3HjRqlSpYqIiGzbtk3Kli0r9erVExGRDRs2SPXq\n1VNtN660pjWff/65lC5dOtXvIbWSo0uWLJESJUrInj17RETk6NGj8cY5qWHo06fPPXp+88035c6d\nO3Lz5k0ZOXKkZM+eXVatWiUiukRru3bt5Pnnn5eoqCg5d+6c1K1bV6ZPny4i2jBkz55dZs6cKbGx\nsfL5559L8eLFU9RfcrjrvW+4P777TuSBB0RWrnTM9Z1mGABfYAKw17J8ChSwR+OptJnah05NK/ZZ\n0sGff/4pffr0kZIlS4q3t7e0bdtW/vvvPxEReeyxxxL98GNiYiRPnjwSHh4uX331ldSsWTPZa5Yt\nWzb+zVJE5Icffoh/OG7atEly584d/1YqIlK4cGHZuXOnREdHS/bs2eXw4cPx+4YNG5Zij2H06NHS\nuXPn+PXY2FgpUaKEbN68WUT0g2vmzJkpfvak+6OioiRXrlxy8eJF+fDDD+WDDz6QkiVLyvXr1+Wd\nd96R0NDQVNsNCwu7p40xY8ZI/fr1U5QhOjpacuTIkajHMX36dAkJCRERkZYtW8rkyZOTPTc5w2Dd\nY8iRI0d8T01EZOTIkdK0adP49bNnz0rOnDnl5s2b8du++uoradasmYhow1CuXLn4fTdu3BClVPz9\nkZZ+Re6997NyneOkeIouZs8WKVJExFK23CHYyzDY4tn6Ep34riPQCYgEZmfMgeUg7GUa0kGFChWY\nPXs2J06c4ODBg5w+fZpBgwYB2kcfGhqKn58ffn5+FLIMUj516hQnT54kKCj5kb+nT5++p4SmdWnJ\nQoUKJSp7mSdPHq5fv8758+eJjo5OVMbSunxmUlIrr2m9LTWs9+fOnZvatWuzefNmtmzZQtOmTQkO\nDmbbtm168N8hAAAgAElEQVTx66m1m1z5zEKFCnHmzJkU20+r1OnJkycpW7Zsqp8hJfz9/cmRJDJo\nXbEuPDycu3fvUqxYsfjv+Pnnn+f8+fPxx1iXCM2TJw9AooJAJs6QeRGBMWPg3XchLAwsZcvdGlsM\nQ1kRGSki/4jIMREZBaTvF5ZFeOihh+jdu3f8aJnAwEBmzJiRqITkjRs3aNCgAQEBAfzzzz/JXqd4\n8eL3lNAsXrx4mu37+/vj7e1NREREonNTIqXymiVKlEizLUj+oda0aVM2bNjA/v37qVOnDk2bNuX7\n779n165d8UV/7qfd5s2bc/LkSfbu3ZusDGmVHA0ICODo0aPJnpsnT55EZULPnDlzT4GlpJ/XeltA\nQAA5c+bk4sWL8d/v1atX+f3335NtLynpMQpZsc5xSrizLqKj4fnnYcUKnSm1QgVXS2QbthiGm0qp\n+AHwlglvUakcn+U4fPgw48ePj387PXHiBF9//TUNGjQA4Pnnn+eDDz7g0CGd+ePq1assXboUgNat\nW3PmzBkmTZrE7du3iYyMZNeuXQB07dqVMWPGcOHCBS5cuMDo0aPp2bNnmvJ4eXnRvn17Ro0axc2b\nNzl06BBz585N8QGUWnnNOCSVnlSRIkU4duxYom1NmzZl3rx5VK5cmezZsxMSEsLMmTMJCgqK7zHZ\n0m4cDz74IC+++CJdu3Zl8+bN3Llzh1u3brFo0SLGjRuXZsnRAQMG8Mknn7Bv3z5EhKNHj8Yby+rV\nq7Nw4UJiYmL4/vvv2bJlS6r6TaqLYsWK0bJlS1599VUiIyOJjY3l2LFjaV4nNf0ZPJ8bN6B9ezh+\nHDZvhmLFXC3RfZCWrwmoDvwGhFuWA0A1e/ixUmkzNf+Z23Hq1Cnp1KmTlChRQvLmzSslSpSQ559/\nXiIjI+OPmT9/vlSpUkXy588vAQEB0r9///h9Bw8elObNm4ufn58ULVpUxo0bJyJ6VNIrr7wixYoV\nk2LFikloaGiiUUkBAQGJ5ChdurRs2LBBRETOnz8vrVu3lvz580u9evVkxIgRKQafRURWrlwplSpV\nkgIFCkhISIgcOnQofl9awdFffvlFypcvL35+fvHxg8jISMmePbuMHj1aRHT8oHDhwvLiiy/a3G5y\nTJo0SSpXrix58uSREiVKSJcuXeLPuXz5svTo0UP8/f0lICBA3nvvvUSjkqZNmyYPPfSQ5MuXT6pU\nqSIHDhwQEZE9e/ZI5cqVxcfHR3r27CndunVLFHxOqudRo0ZJz549E227evWqvPDCC1KyZEkpUKCA\n1KhRQxYvXiwiInPmzLlH99myZYuPaySnv6Qkvfc9xa/uDNxRF+fOidSrJ9Krl4hVeMrhYKcYg83Z\nVZVS+S1PbIdXPzcpMQyGxCS9963TTGd13E0Xx47B449Dx446tuDM8JG9UmKkaBiUUj1FZL5Saghg\nfZBCW6XxGW08RaGMYTAYEmHufc9gzx5o2xZGjIAXXnB++/YyDKllV81j+etDYsNgMBgMhiR89x30\n6qXTZrdr52ppMoZN2VVFZGta2+wqlOkxGAyJMK6klHEHXcyeDW+9pUcfuXI4qjOzq05JZtvkjDZs\nMBgMno4IvPcejB6tRx55whwFW0gtxtAACAYGo9Nux1khH+ApEanmMKFMj8FgSIS5992PO3fguefg\nt99gzRr3GI7qjBhDDrQR8LL8jeMa8HRGGzYYDAZP5coV6NBB10/YvFnXU8hM2BJjKCUi4akeZGdS\n6zEYDFkVE2NIHmfrIjwcWrWC5s11ymwvL6c1nSbOjDHMUUptSrJszGjD6cEeEzc8bdm0aZNNx8XE\nxvDJtk/w/8iflX+udLncrtRFZl0MrmfPHh1HePZZmDzZvYyCPbGlx1DbajUX0AGIFpHXHCZUCj0G\nQ9rsPLmTLsu70LZ8Wz565CNyemeOYkEGg6tZtQoGDHDv4agOn+CWRuO7RaRORhtP5frGMGSAyzcv\n0//b/oRfDWfx04spV7Ccq0UyGDyaSZNg3DhtHOo47MmXcZzmSlJKFbRaHlBKPQbkz2jDBttITz1b\nv9x+LO+0nL7V+9JgVgMWH1xsf8FcgKfW9nUERhcJOFIXMTEQGgrTp+vsqO5sFOxJaqOS4thHwszn\naOA40N9RAhnsg1KKgXUHEhwQTOdlndn470YmPjaR3Nlzu1o0g8EjuHEDunWDyEhtFHx9XS2R80iX\nK8nRGFeSfbl2+xrPrn6WQ+cPsaTjEio84CFJ4Q0GF3H2LLRuDZUr65hCkjpNboszkuh1IJUcSSKy\nIqONpyiUMQx2R0SYuW8mwzYOY3zL8fSslnZdB4MhK/LHH/DEE9Cvn06G50mj5J0RY2iTxmJwAvby\nnyqleKbWM2zstZEPtn5A31V9uXHnhl2u7SyMXz0Bo4sE7KmLn36CZs10mot33vEso2BPUowxiEgf\nJ8phcBJVilRh9zO7eWndS9T5og5LOi7h/wr/n6vFMhhczmef6ZxHS5eCpSx5lsWWeQy+wEigiWVT\nGDBaRK46TCjjSnIKcw/MZehPQxnbfCz9a/Q3M8sNWZLoaHj1Vd1bWLMGynpwRXunzWNQSq0Afgfm\nohPp9QSqikj7jDaeSpvGMDiJP8//SadlnahSuArTW0/HJ6dP2icZDJmEq1ehc2eIjYUlSzx/5JEz\nU2KUFZGRIvKPiBwTkVGAB9tUz8LRvuSK/hXZNWAXPjl8qDWjFvvP7HdoexnB+NUTMLpIIL26+Ocf\nnd6ibFlYt87zjYI9scUw3FRKNY5bUUo1AqIcJ5LB2eTOnpvpbaYzutloWi5oydRdU01uHkOmZutW\naNhQl9+cOhW8bZnRlYWwxZVUHZgHFLBsugz0FpFfHSaUcSW5jL8v/k3nZZ0J8gtiZtuZ+OYyr1GG\nzMW8eTB0qP772GOulsa+OD1XklKqACAici2jjdrQljEMLuR29G1e++k11hxZw6KnF1G3RF1Xi2Qw\nZJjYWHj7bVi8WAeZK1VytUT2x5m5kgYppfKjC/RMUErtU0o9mtGGDbbhCl9yTu+cTH58Mp+0/ITW\nX7Vm/C/j3cK1ZPzqCRhdJGCLLm7cgI4dtQtp587MaRTsiS0xhn6WXkJLoCDQC/jQoVIZ3IL2Fduz\nc8BOFv+xmLaL2nIx6qKrRTIY7ptTp6BJE11lbf168Pd3tUTujy0xht9FpIpSajIQJiIrlFL7RaRG\nuhvVcyNmApXRaTf6icgOq/3GleRG3Im5w7ANw1jyxxK+7vA1DQMbulokg8Emdu+Gp56CgQPhjTcy\n/0xmZ85jmAMUB4KAqujZ0ptEpFa6G1VqLrBZRL5USnkDea0nzBnD4J6sObKGAd8OILReKG80eoNs\nypYOp8HgGhYuhEGDYMYMbRyyAs6cx9AfeAuoLSJRQHagb3obtASxG4vIlwAiEu3IWdSejjv5kluX\nb83uZ3az7ug6Hl/4OOdunHNq++6kC1djdJFAUl3ExOjewYgRsHFj1jEK9iRNwyAiMSKyV0SuWNYv\nishvGWizDHBeKTXbEsj+QimVJwPXMziRgAIBbOq9idrFalNjeg02/bvJ1SIZDPFcuQJt2mgX0q5d\nUKWKqyXyTJxej8FSQ/oXIFhEdiulJgLXROQdq2OMK8kD+PHYj/T5pg/P1XqO4U2G45Utk1ZGN3gE\nR45A27bwyCMwfjxkz+5qiZyPS2s+Z6hBpYoCv4hIGct6I+BNEWltdYz07t2b0qVLA+Dr60v16tUJ\nCQkBErqOZt3162ciz9Dq/VYArH17LcV9iruVfGY9a6zv2gWffBLC++/Dgw+6Xh5nrYeFhTFnzhwA\nSpcuzbvvvuu04HPBZDZHisjddDeq1BZggIgcUUqNAnKLyBtW+02PwUJYWFj8DeGuxMTG8P7P7/P5\nns+Z224uLcu2dEg7nqALZ2F0oRGBF18MY9WqEJYsgUaNXC2Ra7FXj8HWms+B6FQYAH7AWaXUWeAZ\nEdmbjnZfBhYqpXIAx8hAMNvgeryyefFO03doUqoJPVb0oFe1XoxuNhrvbCYBjcFx3LoFzzwDO3bo\nJTDQ1RJlHmzpMXwBLBORHyzrLYGngdnAJBGxe74E02PwXM7dOEevlb24fuc6X3f4moACAa4WyZAJ\nOX1ajzYqUwa+/BLymOErgHOHqzaIMwoAIvKjZdsvgIeUyDY4i8J5C7Ou+zpal29N7S9qs+bIGleL\nZMhk7NwJdevCk0/C118bo+AIbDEMZ5RSbyilSimlSiulXgf+U0p5AbEOli/LExdo8iSyqWy82ehN\nVnRawUvrXmLID0O4E3Mnw9f1RF04iqyqizlz9HDUzz+HYcP0TOasqgtHYoth6AYEAN8AK9Hxhq6A\nF9DJcaIZPJ2GgQ3Z9+w+/r70N41nN+bfy/+6WiSDh3LnDrz0EowdC2Fh2jgYHIctMYYyIvJvkm11\nRGS3w4QyMYZMhYgwccdExm4dy7TW02hf0WFVYQ2ZkDNndGbUQoV0DYUCBdI+J6vizBjDcqVUSauG\nm6IDzwaDTSilGNxgMGu6rWHoj0N5ed3L3Iq+5WqxDB7A9u1Qpw48+iisXGmMgrOwxTA8B3yjlCqq\nlGoFTAYed6xYhjgyk/+0bom67HtuH2eunyF4VjB/X/z7vs7PTLrIKJldFyI6jvDUUzoJ3ogRkC2F\np1Vm14UrsCVX0m7gFeAnYBTwiIiccLBchkyKby5flnZcyoCaAwj+Mpivf//a1SIZ3Ixbt6B/f/js\nM9i2DVq1crVEWY8UYwxKqdVJNlUEzgBX0CU+2zpMKBNjyBLsP7Ofzss6E1I6hImPTSRPdjPuMKsT\nEQEdOkBQEMyapYvrGGzH4bmSLLEEAOtGxLIuIrI5o42nKJQxDFmGyNuRPL/2eX777zeWPL2Eiv4V\nXS2SwUVs2gTdusGQIXrJ7EV1HIEzgs/DgJrAWREJsyyb4/5mtGGDbWR2/6lPTh8WPLWAQfUG0WRO\nE+YemJvisZldF/dDZtKFiM6G2rUrLFgAQ4fen1HITLpwF1JLZtMHeAwYpZR6CNgJfAesF5EbTpDN\nkEVQStG/Zn/qlaxHp6Wd2Hh8I1NbTSVfDuNHyOzcuKHzHf31l57RXKqUqyUygI1pty2znOuhRyM9\nDNwCfhCRjxwilHElZVlu3LnBy9+9zC8nf2Hx04upWqSqq0UyOIi//tLxhLp1daA5d25XS+T5OGUe\ng1LKSyk12FLFbbuIjBCRhkAX4FRGGzcYkpI3R16+fPJLhjUaRvN5zZmxdwbmJSHzsWQJNG4Mgwfr\nJHjGKLgXqRoGEYlBp8RIuv28iCx0mFSGeLKq/7RntZ783Pdnpu6eStflXbl2+1qW1UVyeKou7tyB\n0FB46y344QcYMCDjQWZP1YU7Y8sEt61Kqf8ppRorpWoqpWoppWo6XDJDlqfCAxXY0X8Hvrl8qTm9\nJkcuHnG1SIYMcPIkhITA8eOwZw/UNE8Rt8WWXElh6GGqiRCRZg6SycQYDPew+OBiXv7uZUY0GcHA\nugNRZiyjR/HTT9CrFwwaBK+9lvIsZkPG8Niaz7ZgDIMhOY5dOkbnZZ0JLBDIrLaz8Mvt52qRDGkQ\nGwvvv6/TWyxcCM0c9jppACcm0VNKjVRKvWP19x2l1DsZbdhgG8Z/msCJ306wrd82AgsEUnNGTXae\n3OlqkVyGJ9wXFy9C69a6t7Bnj+OMgifowtOwpUN3w7JcRxfmaQWUdqBMBkOK5PTOycTHJjLh0Qm0\nXdSWT7Z/QqyYelHuxu7dUKsWVK4MGzZA8eKulshwP9y3K0kplRP4UUSapnlwOjGuJIMthF8Jp8vy\nLhTKXYg57ebwQJ4HXC1SlkcEpk2DkSNh+nSdHdXgPJxZjyEpeYESGW3YYMgopXxLsaXPFir5V6Lm\n9Jr8HP6zq0XK0ly9Cp07a4OwbZsxCp6MLTGG362WP4DDwCTHi2YA4z+1JjldZPfKzkePfMS01tPo\nuLQj7295P0u4ltztvogbfurvDzt2wIMPOq9td9NFZiC1XElxxFVXFSAaOCcidx0nksFw/7R6sBV7\nnt1Dt+Xd2By+mflPzadIviKuFivTIwJTpsCYMTB1qi7BafB8bM2VVB1ojDYOP4vIrw4VysQYDOkk\nOjaad8Pe5csDXzKv3TyaBzV3tUiZlsuXdUGdiAhYvBjKlnW1RAZnDlcNBRYA/kARYIFS6pWMNmww\nOALvbN689/B7zG03l54rezJy00hiYmNcLVamY+dO7ToKDNTxBGMUMhe2BJ8HAPVE5B0RGQHUB55x\nrFiGOIz/NIH70UWLoBbse24f205so/m85pyOPO04wVyAq+4LEfj0U2jbFiZMgIkTIWdOl4gSj/mN\n2B9bRyXFpvC/weC2FM1XlB96/ECLoBbUmlGL749+72qRPJqLF7VBWLpU9xjatXO1RAZHYUuupFfR\nRXtWoMt6tgPmiMgEhwllYgwGO7P5+Ga6r+hOj6o9eK/Ze2T3yu5qkTyKbdt02c2OHeGDDyBHDldL\nZEgOp+ZKUkrVAhqREHzen9GG02jPGAaD3Tl/4zy9v+nNlVtXWPT0IgILBLpaJLcnJgY+/FCPPJo5\nU6e4MLgvDg8+K6UKxi3Av+gA9EIg3LLN4ASM/zSBjOrCP68/a7qt4akKT1Hnizp8e/hb+wjmApxx\nX5w4Ac2bw/r1ep6CuxoF8xuxP6nNY9hHMum2LQgQZH9xDAbHkk1l47WGr9EosBFdl3dl07+bGPfI\nOHJ4Gd+INStWwAsv6DTZr78OXl6ulsjgTEzabUOW5dLNS/Rb1Y9TkadY/PRigvzMu05UlC63uX49\nfPUV1KvnaokM94NTcyUppZ5USn2qlPpEKdUm7TMMBvenYO6CrOy8kh5VelB/Zn2WHVrmapFcyq+/\n6oyoUVGwf78xClkZWya4fQi8AvwB/Am8opQa62jBDBrjP03AEbpQShFaP5R13dfxxvo3eHHti9yK\nvmX3duyNPXUhApMmQYsW8PbbMH8+5M9vt8s7HPMbsT+29BieAFqKyJciMgt4DHDTMJTBkD5qF6/N\nvmf3cSHqAvVn1s8y9aXPnYMnntBuox07oEcPV0tkcAdsmcfwG9BMRC5a1gsBm0SkqsOEMjEGg4sQ\nEabvnc6ITSOY+OhEulft7mqRHMYPP0DfvtCnD7z7LmQ3Uzs8HqfNY1BKdQU+BDahJ7g1Bd4UkUUZ\nalgpL2APcFJE2iTZZwyDwaX8evZXOi3rROPAxkx+fDJ5sudxtUh249YtGDZMz2CeOxceftjVEhns\nhdOCzyLyNdAAWAksB+pn1ChYCAUOkfKQWAPGf2qNM3VRrWg19j67l9sxt6nzRR3+OPeH09q2hfTq\n4sABqF1bZ0Q9cCBzGAXzG7E/tgSfnwKiRGSViHwL3FJKZShLilKqJLp29Ex0L8RgcDvy5cjHvHbz\nGNpgKCFzQ5i9fzae2pONiYFx4+CRR+CNN3RvoVAhV0tlcFdscSX9KiLVkmw7ICLV092oUkuBD4D8\nwFDjSjK4O4fOH6LT0k7UKFaDz1p9hk9OH1eLZDPHj0OvXqAUzJsHpUq5WiKDo3DmPIbkGkn3PEil\nVGt0Fbj9KVzbYHA7KvlXYtczu8jplZPaX9Tm17MOrVVlF0R0DKFOHWjTBjZuNEbBYBu2lPbcq5Qa\nD0xFP8hfAvZmoM1goK1SqhWQC8ivlJonIr2sD+rTpw+lS5cGwNfXl+rVqxMSEgIk+BSzwrq1/9Qd\n5HHletw2V8ozs+1M3p71Nk1GNWHcgHE8V+s5Nm/e7HR5Dhw4wKBBg1Lcf/UqzJ8fwuHDMHZsGOXK\ngZeX8/XljPWJEydm6efDnDlzAOKfl3ZBRFJdgHzAOPQIoj3AWCBvWufZsqBHOK1OZrsYNJs2bXK1\nCG6DO+ni8IXDUu3zatJxSUe5cvOK09tPTRfffSdSvLjIkCEiN286TyZX4U73hauxPDsz/Gx2aa4k\npVRTYIiItE2yXVwpl8FgC7eibzHkhyF8f+x7Fj+9mNrFa7tUnqgoeO01WLMG5syBZs1cKo7BBTg1\nV5KjEJHNSY2CweAp5PLOxdQnpjKuxThaLWzFpB2TXDZqaft2qF4drl7VOY+MUTBkBJcaBkPaWPvX\nszruqounKz3NjgE7WPD7Atotbselm5cc3macLm7e1L2EDh10QZ0FC8DX1+HNuxXuel94MqkV6hln\n+dvJeeIYDJ5JkF8Q2/pto6xfWWpOr8kvJ35xeJs7d0LNmhAeDr/9Bu3bO7xJQxYhxRiDUuogUAXY\nJyI1nCqUiTEYPJhvD3/LM6ufYUiDIQwNHko2Zd+O+e3bOrfRl1/C5MnQyby6GSw4PFeSUupj4Bn0\nqKSbSXaLiDgsMa8xDAZPJ+JqBF2WdcE3ly9z283FP6+/Xa67bx/07g3lysG0aVCkiF0ua8gkODz4\nLCKviYgvsE5EfJIsHpSt3bMx/tMEPEkXgQUC2dxnM9WKVKPmjJpsCd+SoevduQMjR8Ljj8Obb8Ir\nr4QZo2DBk+4LT8GWJHptlVJFlFKtLUthZwhmMHg62b2yM7bFWL5o8wWdl3VmzJYxxMTG3Pd1fv1V\nV1Pbu1dXVuveXae3MBgchS25kjoBHwOb0TOfGwOvichShwllXEmGTMbpyNN0W94N72zeLGi/gKL5\niqZ5zp07OvHdlCnw0UfahWQMgiE1nFmP4TeghYics6z7AxvEFOoxGO6L6Nho3tv8Hl/s+4J5T82j\nRVCLFI/dvRv694fAQPj8cwgIcKKgBo/F2Un0zlutX8Qkv3Maxn+agKfrwjubN+82e5cF7RfQ+5ve\nDN84nOjY6ETHxM1ebtNGxxJWr07eKHi6LuyJ0YX9scUwfA/8oJTqo5TqC6wDvnOsWAZD5uXhMg+z\n79l97Dq1i4fnPszJaycBCAuDqlXh1Cn4/Xfo1s24jgyuwaZcSUqpDkBDy+rPIrLSoUIZV5IhCxAr\nsXy49UMm7ZhMzRNfcnBlKz77TPcWDIb04NRcSSKyXERetSwONQrx9O8PZ886pSmDwRVkU9mocmUY\nsngp53Ls4OBBYxQM7oH75kry84P/+z/4+GM91TOLYvynCWQmXZw/r11FgwfD4o8bs/eT0RQoYPv5\nmUkXGcXowv64r2H45BOdMnLLFm0gVq/WJakMBg9GBObPhypVoEQJnePIZEI1uBv3VY9BKVUQKCki\nvzlOpGRiDN9/r1+tAgNhwgSoVMmRzRsMDuHIEXjhBbh8GaZP1yU3DQZ74rQYg1Jqs1Iqv8Uo7AVm\nKqUmZLTh++Kxx/SrVatW0LQphIbqX5fB4AHcvg3vvQfBwdC6NezaZYyCwb2xxZVUQESuAe2BeSJS\nF0h5Zo6jyJ5dG4RDh/SU0AoV9Myf6Oi0z/VgjP80AU/UxZYtuoDO7t06Ad7gweBtS6X1NPBEXTgK\nowv7Y4th8FJKFQM6AWst21zn7Pf31wbhxx9hyRKdkH7jRpeJYzAkx8WLemBd9+7wwQewapX2hBoM\nnoAtKTE6AiOAbSLyglKqLPCRiHRwmFC2zmMQgRUrYOhQbSA+/hiCghwllsGQJnHB5ddfhy5dtAvJ\nx8fVUhmyCs7MldRIRLamtc2e3PcEt5s3Yfx4vTz/PLz1FuTL5yjxDIZkiQsuX7mig8u1a7taIkNW\nw5kT3KYks21yRhu2K7lzw9tv6wD1iRPw0EMwbx7Exrpasgxj/KcJuKsuoqLgnXd0cLlNG11y09FG\nwV114QqMLuxPimEwpVQDIBjwV0q9SkLiPB/Aywmy3T8lSmiDsGOHDlRPnaprH9ar52rJDJkQEfj2\nWxg0SN9iBw5AyZKulspgyDiplfZsCjQDngOmWe2KBFaLyN8OE8oeuZJiY2HBAu1Wat4cPvwQihe3\nj4CGLM/Ro/rd499/db2E5s1dLZHB4NwYQykRCc9oQ/eDXZPoRUbC2LEwYwa8+qpecuWyz7UNWY6o\nKP2O8dln8MYb2jjkyOFqqQwGjcNjDEqpSZZ//6eUWp1k+TajDTsNHx89XnDXLl0bsVIlPZLJQ9Jr\nGP9pAq7UhYgeclq5sg4yHzig6ya4yiiY+yIBowv7k9pUm3mWv586QxCHExQEy5frOQ+hofC//8HE\niToBvsGQCnFuo3/+gZkzjdvIkPm5r1xJzsLh9Riio+GLL2DUKGjfXg82f+ABx7Vn8EiuX9deyOnT\njdvI4Bk4M1dSI6XUT0qpv5VS/1qWfzLasEvx9tYDzv/8U//SK1aESZPg7l1XS2ZwA2Jj9eC2ChUg\nIsL1biODwdnYMo9hFjAeaATUsSx1HSmU0yhYUBuEzZth7VrtVvrhB1dLlQjjP03AGbr45Rdo0ECP\ndF62TM9idschqOa+SMDowv7Yks7riohk7hrPlSppg7BmDQwcqF8VP/0Uypd3tWQGJ3HyJLz5pq67\nPHasznGUzX2rlRgMDsWW4aofoie0rQDiS6mJyD6HCeXKms+3b+tJcePGQd++MHw491Vay+BRREXp\nmlCTJmnv4ptvmmwqBs/FmfMYwkgmm6qIOKzulEsNQxxnz+o0G+vWwZgx0KcPeLnnhG/D/SOik/O+\n/rqetfzRR1C6tKulMhgyhtOCzyISIiLNki4ZbdjtKVoUZs3SJUW//BLq1oWtDssbmCLGf5qAvXSx\nYwc0bqwnqs2frw2EpxkFc18kYHRhf9KMMSilRqJ7DAqrnoOIjHagXO5D7draICxapKu3Bwfr10uT\nXN/jOHZMZ0jZvl2PUO7Vy3QCDYbksMWVNJQEg5AbaA0cEpF+DhPKHVxJyXHjhq75MGUKvPyy9kPk\nyeNqqQxpcPGiNgQLFugKaoMHm6/NkDlxWowhmYZzAj+KSNOMNp5KG+5pGOKIiNBGYft23Xvo3BlU\nhr8Lg525dUuPI/j4Y+jUCUaOhMKFXS2VweA4nFmPISl5gRLpbVApFaCU2qSU+kMpdVAp9Up6r+Uy\nAgO1a2nhQm0YGjfWeZgcgPGfJmCrLuIS6z70kJ6XsHWrnpeQmYyCuS8SMLqwP7bEGH63Ws0GFAYy\nEuhZUxsAABH5SURBVF+4CwwWkQNKqXzAXqXUTyLyZwau6RoaN9ZV3mfPhtat4Ykn4P33oUgRV0uW\nZdm4Uc9Szp5dG4fGjV0tkcHgedgSYyhttRoN/CcidssdoZT6BpgiIhustrm3Kyk5rl7Vw1pnz9aD\n4V95xeRQcCK7d8OwYbo+wgcfQMeOxrtnyHq4LMZgTyxGZzNQWUSuW233PMMQx5EjMGQIHD6sa1A/\n8YR5QjmQQ4dgxAhdTnPECOjXT/cWDIasiL0Mgy0pMRyCxY20DAi1Ngpx9OnTh9KWweW+vr5Ur16d\nkJAQIMGn6Jbr5csTNmQI7NpFyGuvwf/+R1jXrlCqVLquZ+0/dYvP58L1uG1hYWGcPQvffx/CunXQ\noUMYs2bBo4+6l7yOXD9w4ACDBg1yG3lcuT5x4kTPeT7YeT0sLIw5c+YAxD8v7YKIOH0BsgM/AINS\n2C+Zgjt3RCZOFHngAZHQUJFLl+77Eps2bbK/XB7Kpk2b5MwZkYEDRQoWFBkxQuTKFVdL5RrMfZGA\n0UUClmdnhp/RTnclKaUUMBe4KCKDUzhGnC2XQzl/Ht55R1eOGzUKnnlGp/422Mzly3rY6fTpemLa\nW29lrlFGBoM9cOVw1YzSEOgBNFNK7bcsj7lADufh7w+ffw4//qjzL9SsqYfPGNLk6lUYPVonuj13\nDvbvhwkTjFEwGByJ0w2DiGwVkWwiUl1EaliW750th0uoVk0bhJEjoX9/6NBB14tMBWv/elYiziCU\nK6dVtH079OgRZjKRWMiq90VyGF3YH5Nx3tkopQ3CoUO651C3rs7iev2e+HuW5OpVnb6iXDmd22j7\ndpgzBx580NWSGQxZh6xZ89mdOHVKO8w3bNAVYnr0yJIVYq5e1ekrJk+GVq10GQxjDAyG+yNTzGNI\niSxlGOLYsUNXmwf9dKxXz7XyOImrV3VOwkmT4PHHtUEwhfMMhvThycFnQ3LUr68T+7z0ErRvr4fe\nnD6daf2n589rI1C2rJ4LuG0bzJuXulHIrLpID0YXCRhd2B9jGNyJbNm0QfjrL12BvmpVnfDn1i1X\nS2Y3TpzQHaOHHoILF/SM5fnzTS/BYHAnjCvJnfnnH50Rbv9+XZj4qac8Nr3GkSO6jPbKlXpA1uDB\nULy4q6UyGDIXJsaQldi4Ub9m+/vDxIm6J+Eh7N+vY+qbNsHAgXopVMjVUhkMmRMTY8gihIWFwcMP\n6ydsx47wyCPw4ovaD+OmiEBYmB5d9MQTOo7+zz96+kZGjILxJSdgdJGA0YX9MYbBU/D2hhdegD//\n1OlDK1XSo5fu2i0Deoa5exe+/lqXyX7uOXjySW0QhgwBHx9XS2cwGGzFuJI8lUOHYNAgOHlS54h4\n9FGXiXLtGsycqb1cZcpoQ9C6dZacjmEwuBQTYzBon82aNfDqq1Chgq7/4MRZYSdO6PkHs2dDy5ba\nINSu7bTmDQZDEkyMIYuQqv9UKWjTBg4ehKZNoUEDPYrp6lWHyrR3L3TvDtWr6/rK+/YluJAcifEl\nJ2B0kYDRhf0xhiEzkDMnDB0Kf/yh81NXqACzZkFMjN2auHMHvvoKgoP1/LsaNXT8YPx4KFXKbs0Y\nDAY3wLiSMiN79+rhrTdval9Po0bpvtTp0zBjhl4qVoSXX9adFC8vO8prMBjsgnElGVKmVi34+Wft\nVurWDbp2hYgIm08X0SkqunaFypV1HYT163Wev3btjFEwGDI7xjC4Oen2nyoFXbro9BoPPaR9P6NG\nQVRUiqdERelAcq1a0KePTt/077/w2Wd6dKyrMb7kBIwuEjC6sD/GMGR28uTRBmH/fm0kKlSARYt0\nt8DCb7/pGckBAbBsGbz/vk5sFxoKvr6uE91gMLgGE2PIavz8M4SGEpMrD2taTGLsj7U4dUrnL+rX\nD1MhzWDwYMw8BkO62L8fvpgWQ/YFsxnkPYU/5+yiZZuceHu7WjKDwZBRTPA5i2AP/+mlSzpOUKeO\nDh4XK+nFa4cHUObKAVo95TlGwfiSEzC6SMDowv54yCPBcL/cvQvffw9z58JPP+nqaKNH6xnKCaOK\nPDOFt8FgcCzGlZTJ+PVXbQwWLoRy5aB3b+jUyQSRDYasgL1cSabHkAk4dQqWLNEG4dIlXQTu559N\nVTSDwZA+TIzBzUnJf3rhAkybBiEhUKWKHnI6fjwcPw5jxmROo2B8yQkYXSRgdGF/TI/Bg7h2Db75\nRies275dxw0GDYLHHoNcuVwtncFgyCyYGIObExkJ69ZpV9H69f/f3rkHWVFccfj7gUihKA9LlJcB\nCaZMqYkooLLAKgTRQpRoIlZCxTxMpBI1seIDNWUexihWMD6TaDQxVlBTBsxuIAEkirgSWMCVRUDd\nIshDeZSyCAYj7J780X29czf7hLt7L3vPVzU1Mz09Pd2/3Ttnps/06fCGMHlyiFfUtWuua+c4Tj7h\n4xjaMTt2QEkJzJ4NL70UYuBdemmIatqjR65r5zhOvuLjGNoZGzeGQKjFxeFronnzwpwHM2e+yNy5\nYWRyoRsF70tO41qkcS2yj/sYckRtLZSXh26iOXOC0/iii8IsaGPHQpcuIZ//zzuO09Z4V1IbsnNn\neBOYOzcMPuvVCy68MCxFRRwyI5Adx8lP3MdwCFBTAxUVYeTxnDlh8Nno0Wlj4DOfOY6TTdzHkIeY\nhXDVDz8cnMW9esGUKWEWtFtvDRPelJbC1KnNNwref5rGtUjjWqRxLbKPd14cBGbBabxoUZjdbOFC\n6NABxoyBSZPggQegT59c19JxHKdleFdSC6ipCSOMy8rg5ZfDsn8/jBwZjMGYMeGLInlsOsdxcoD7\nGNqA7dth+fLw9VBZGSxdCn37BkfxiBFhfeKJbggcx8kPDmkfg6TxktZJekvSTbmoQ13eew/mz4c7\n7wwDyU44IUyVPGMG7N0L11wD69fDmjXwyCMhaumgQa1vFLz/NI1rkca1SONaZJ829zFI6gg8CIwF\ntgDlkkrMbG1bXH/vXli7FlavTi+VlbBrFwwZAmeeGcJUT5/eNjf+pqioqKC4uDi3lcgTXIs0rkUa\n1yL75ML5PAyoMrMNAJKeBi4GsmYY9u8PTuGqqsxl3TrYtAkGD4ZTTgnL1VeH9YABwXGcb1RXV+e6\nCnmDa5HGtUjjWmSfXBiGvsCmxP5mYHhzTqytDU/2778fwk5v2ZJeNm8O602bwtK7d3AEp5ZRo4JB\nOOkk6NSpVdrlOI7TLsiFYWiWV/ncc+Gjj8KyZ08wBrt2hYiixxwDPXsGR3BqGTcurPv1C0//nTu3\ncivaiA0bNuS6CnmDa5HGtUjjWmSfNv8qSdJZwI/NbHzcnwbUmtndiTy5/yTJcRznEOSQ/FxV0mHA\nG8AY4B1gGXBFWzmfHcdxnMZp864kM9sv6XvAPKAj8JgbBcdxnPwhLwe4OY7jOLkj7z7QzMfBb62F\npP6SXpD0uqTVkq6N6T0lLZD0pqT5kronzpkWtVknaVzuat86SOoo6VVJpXG/ILWQ1F3Ss5LWSloj\naXgBazEt/kYqJc2U1LlQtJD0uKRtkioTaS1uu6Qzon5vSbqvyQubWd4shK6lKmAA0AmoAE7Odb1a\nsb3HA5+P210JvpeTgenAjTH9JuCuuP3ZqEmnqFEV0CHX7ciyJtcDfwJK4n5BagE8AXwjbh8GdCtE\nLWJ71gOd4/4zwNcKRQtgJHA6UJlIa0nbU71Cy4BhcXsuML6x6+bbG8Mng9/MbB+QGvzWLjGzrWZW\nEbf3EAb59QUmEm4MxPUlcfti4Ckz22dhgGAVQbN2gaR+wIXA74DUlxUFp4WkbsBIM3scgl/OzHZR\ngFoAHwD7gCPihytHED5aKQgtzGwxsLNOckvaPlxSb+AoM1sW8/0xcU695JthqG/wW98c1aVNkTSA\n8GSwFDjOzLbFQ9uA4+J2H4ImKdqbPvcCNwC1ibRC1GIgsEPS7yWtlPSopCMpQC3M7H3gl8BGgkGo\nNrMFFKAWCVra9rrpW2hCk3wzDAXpCZfUFfgLcJ2Z7U4es/Du15gu7UIzSROA7Wb2Kum3hQwKRQtC\n19EQ4GEzGwJ8CNyczFAoWkgaBHyf0DXSB+gq6avJPIWiRX00o+0HRL4Zhi1A/8R+fzItXbtDUieC\nUXjSzJ6LydskHR+P9wa2x/S6+vSLae2Bc4CJkv4NPAWcJ+lJClOLzcBmMyuP+88SDMXWAtTiTOAV\nM3vPzPYDs4CzKUwtUrTkN7E5pverk96oJvlmGJYDgyUNkHQ4cDlQkuM6tRqSBDwGrDGzXyUOlRAc\nbMT1c4n0yZIOlzQQGExwKh3ymNktZtbfzAYCk4F/mtkUClOLrcAmSSfFpLHA60ApBaYFsA44S1KX\n+HsZC6yhMLVI0aLfRPx/+iB+2SZgSuKc+sm1170eL/wFhK9zqoBpua5PK7e1iNCfXgG8GpfxQE/g\neeBNYD7QPXHOLVGbdcD5uW5DK+kymvRXSQWpBfA5oBx4jfCU3K2AtbiRYBgrCc7WToWiBeHt+R3g\nY4L/9esH0nbgjKhfFXB/U9f1AW6O4zhOBvnWleQ4juPkGDcMjuM4TgZuGBzHcZwM3DA4juM4Gbhh\ncBzHcTJww+A4juNk4IbBaVNi+N/74vZoSWdnqdx7Yujyu5vO3Wg5GyT1zEadYnm9Jc2LbS3NVrkt\nrENxrq7tHJq0+QxuTmFjZiuAFXH3XGA3sCQLRV8F9LCDH5iTlYE9kjqaWQ1hwOI/slHmAdbDf+NO\ni/E3BueAiaFLkhOI/FDS7XH7RUl3SVoq6Q1JRTG9WFKppE8B3wF+oDAxT5GkL8XJRCokLWrgmvfE\nPKskfTmmlRDms1iZSkvk7xqjlK6S9JqkSTH9iphWKemuBq51fTxeKem6Zrb5XknlwLUxy/nA30kE\nBpQ0NEZNHSjp2DjpyuoYRbXeNxaFCaxWRG0WxLRhkl6JZZWlQmhIulJSiaSFhBGyBnST9DeFCVx+\nHUMjNKiDpD2S7ojXWyKpV30aOe0Tf5pwskky0qMBHc1suKQLgNuBL3yS0extSb8BdpvZDABJq4Bx\nZvaupKPrFi7pUkKoiNOAY4FySYvMbKKk3WZ2ej11+hGw08xOi2V0l9QHuIsQmK4amC/pYjP7a+Ja\nZwBXEmL5dwCWRmNV3USbO5nZ0FhGR+AzZrZO6aBn5wD3AxPNbLOkB4HnzexuSecD36yn3ccCjxDm\naHhb6Rm71sa0GkljgTuBy+Kx04FTzaxaUjEwlDAJ1EbCG8wXJS1pRIcjgCVmdlvsnrsK+Hk9+jrt\nEH9jcLJNMmT2rLheSQib3FT+MuAJSd+i/oeWEcBMC2wHFhFueI0xBngotWNm1fGcFyxE7KwhzBg3\nqk6dioBZZrbXzD6MbRlJ/V1NyTY8k9geTphfI8XJwG+BCWaWiho8gjAhFWY2j/+flAXgLGCRmb2d\naANAd+DZ+AYzgzCDV4r5iXwQgqltMLNaQvydIkLk0hcb0OFjM5sTt1fQ8N/PaYe4YXAOhv1k/g91\nIfPG+d+4rqEZb6dmNhW4jRA6eEUDTmA1sN0YdfNZPeXUveE3lKepNn+Y2L6A0I2UKu9dYC/hCb2x\n+tWlbl1S/AxYaGanAhfFuqT4Tz1lJK/XkIFLpe9LpNfivQsFhRsG52DYBvRSmJy8MzChhefvBo5K\n7UgaZGbLzOx2YAeZMeQBFgOXS+oQu1dG0nRI5QXAdxPX6B7PGS3pmNjdM5nw9pHC4rUuUQj3fCRh\nKsTFhNj3jbU5eQM/j9DHn0qvjvl/IWl0TC8DUr6ScUCPetqwFBilMMsfklJ5jiZE3oQQdbMxhkX/\nSId4vcXN0MEpUNwwOAeMhXm5f0q4wcwnxMlvMHs926XApOg8LQKmpxyhQJmZrapzvdnAKkIo6oXA\nDbFLqW75Se4AeqSc2kCxhfj0NwMvEEKeLzez0mQ5FmaS+0Ns27+AR83stWa02eATv8BHsRsqlZ7q\nApsAPCRpKPATYFxs82XAVoLBTLZ7B/BtYFZsw9Px0HSCkVkJdCTT11FX73LgwVjf9WY2uzk6NFCe\n087xsNuO0wpI+grQ18ymN5HvcKAmOpDPBh6yMJ2n4+QMNwyOk0MkfRr4M+Ht/WNgahzr4Tg5ww2D\n4ziOk4H7GBzHcZwM3DA4juM4GbhhcBzHcTJww+A4juNk4IbBcRzHycANg+M4jpPB/wDUY3ZeZNgB\nEwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7938c88>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Quantity of fresh carbon recquired for two stage crosscurrent operation: 19.8171091445 kg carbon/1000 kg solution\n",
+ "\n",
+ "Quantity of fresh carbon recquired for two stage Counter Current operation: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 12.8 kg carbon/1000 kg solution\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FOX2xz8voRNKKKIiHfHHVa4oSBWICkpHQJqAhmIX\nAVG5oAh6FewoWFCkCEhHDE0RkID0jnIREJEu0kPoJDm/P95NskASFrK7s7s5n+eZJzuzM/N+5+xk\nzrznvMWICIqiKIqSRBanBSiKoiiBhToGRVEU5RLUMSiKoiiXoI5BURRFuQR1DIqiKMolqGNQFEVR\nLkEdg6IoQYExpq8xZoTTOjID6hgcwhhzyhgT51oSjTFnXJ9PGmPa+0lDKVfZjtwHxvKCMeY3lz32\nGmOmGGPu8HG5PrluY0x2Y8xAY8x21/X8ZYwZaYwp6c1yrhdjzBhjzH+d1uEJxphIY8xe920iMlhE\nnnBKU2ZCHYNDiEi4iOQVkbzAbqCJaz2fiEz0sxzj5/KS+AR4AegORADlge+Bxn4q/7qu2xiTNY2v\npgFNgPZAPuBOYC3wgDfKMMaEXet5AhHXC4FT95ziCSKii8ML8BdwP5ATOAsUdG1/FbgIhLvW/wsM\ncX3OD4wFDgG7XPuaNM5fFfuAigUOAh+4tu8BEoE411INKAv8DBwBDgPjgfxu57ob2ACcBKYAk4H/\nun3fBNgIHAeWARXT0HQrEA9USccuaV4jMBAY57ZvKde1ZHGtxwBvAktdWucBhdK6btf2LsAW4Bjw\nI1DC7fyJwLPAH8CfqWitB5wBiqVzPbuAB9zWk6/BTX8X7IvCYuBxlw0/cv0ebwLZgQ9c+xwEvgBy\nus4RCewDXgT+AQ4AUa7vngQuAOdd1xydhsaawBrgBLAaqOH2XQwwGFiFvZe+ByLcvq8OLHf99huB\nupcd+5bres5g77POLnufBP4EnnTtmwf7f5Dg0noSuCmV37wZ8D9XeYuA/7vM1r2BTa5rmQTkcPp/\nPVgWxwXokuIYXJ8XAy1dn39yPYgauNaXAM1dn8cCM1z/RCWBbUCXNM6/Aujg+pyblAdhSdwepq5t\nZbFvuNmAwi49Sc4ou+uB1B0IA1q4HjRvur6/y/VAugf7Nv6Y69qyp6LpaeCvq9glzWsEBnB1x/AH\nUA7rcBcBg9O57uau/W/D1qRfBZa5fZ+IdS4FUnvAAO8Aizz9nS+/Bjf9Y4BcLs1R2BeD51yacgJD\nsA/kAkA4MBMY5DpHpGv/ga7fpyFwGpdjB0Yn/VZp6CuIfch2cJXXDuskI9xsug/4l+s+muamvxjW\neSXdq/Vc64Xcjt0FVHCdOyvQCCjt+r6OS+tdrvW6wN7L9LnbqzxwCnuvhgEvu36/rG62XgnciK2N\nbgGecvp/PVgWDSUFHouBuq6wQUVgqGs9J1AFWOL6ri3QV0ROi8hu4EOgUxrnvADcaowpLCJnRGSV\na/sV1XkR+VNEForIRRE5gn0Q1XV9XR0IE5FhIpIgIjOwb5VJPAl8KSJrxDIW6ziqp6KpEPaNN1U8\nuMarhSIEGC0iO0TkHLZ2UymdY5/GOo5tIpKIfTOuZIwp7rbPYBE5ISLnr/V60iA1HQNF5KxLM8AB\nEfnMpek88ATwokvHKZfOdm7HX8Q+/BNE5Afsw/O2q5SZRGNgm4h8KyKJIjIJ2Ip9Mwdr07EiskVE\nzgD9gTauXE1HYK6I/AggIguwtdTGbseOEZHfXeeOF5G5IvKXa/8l2Beh2unodN/WFpjtulcTsLWo\nXNgaTxJDReSgiBwHZpHy+ytXQR1D4LEY++Z3N/AbsAD7YK4G7HDd5IWxb/S73Y7bg31rS42u2Des\n340xq40xacbwjTFFjTGTjDH7jDGxwDjsQw/gZmD/ZYe4JwhLAr2NMceTFuAWbBjgco6msT2Ja73G\n1HB/UJ/FvmGnRUngEzfdR13b3cvbe+VhyRwh/evxlMvLcF8vgn1TX+em8wesrZI46nIiSZwh/et2\n52asjd3Z7dqemp49pNQsSwKtL/vta2Hf2FM7FmNMQ2PMSmPMUdf+jUi5165Jq4iI6/zuv9e1/P6K\nG+oYAo8V2De8FkCMiPwOlMD+08S49jmCfTMs5XZcCWw1/wpcb82PikgR4F1gmjEmF/Yt7nIGYWO7\nd4hIfuwbetJ98jdXPphLuH3eA7wtIhFuS7iITE6lnIXALcaYyqlp9uAaT2Mfkkm4P4CuRmrXvQcb\n43bXnkdEVl7luCQWAFWNMek5rtPYsFgSqWm+vAz39SPYB9y/3DQWEJF86ZSZ3rkvZz/2Ae9OSS59\nGShx2eeL2FzUHmyYx91+eUXkvdTKN8bkAKYD7wE3iEgEMJeUWsE1aXUls4tz5YvLFWUrV0cdQ4Dh\nqqKvw8aVF7s2L8eGOha79knAhkbeNsaEu5pD9sImiq/AGNPRGFPEtRqL/SdJxP5DJ2LzCkmEYx9g\nJ10PuZfdvlsBJBhjnjfGZDXGNMfmE5IYATxtjKnqaniSxxjT2BhzxZuaiPwBfA5MNMbUdTX1zGmM\naWeM6ePBNW4A6hhjihtj8gN9U7v01OyRxnUPB/oZY/7lsll+Y0zrNI6/AhFZCMwHZhhj7nbZJ68x\n5mljTGfXbhuBdq7vqgCtuIYHlqsmMAL4OOn3NMYUM8Y86OEp/gHKpPP9XKC8Maa9S2Nb4P+A2a7v\nDdDRGFPBGJMbmwyf6npbHw80NcY8aIwJc/2WkZc5SvffI7trOQIkGmMaAu7X8Q9QyBiTltObCjQ2\nxtxvjMmGTTSfw/6vpIa2groG1DEEJouxybnVbuvh2ORzEt2xD/CdwC/At9jkYmo8BGw2xsRhcwbt\nROS8ywm9DSwzxhwzxlQF3sCGsWKxcdnpuB5eInIBaIkNTSUlKWdjcxiIyDpsDPxTbNLyD2wCOlVE\n5AXXvp+5zrcDmwSeebVrdMWwJwO/YlvRzCL9t21xuw736z5ujKkqIt9ja1OTXCG031x2S+1cafEI\n9uE6GdsS5jesLee7vu+PdUbHsQnib9PRe4lmN/pg7bTSpXM+Nkzoic6RwL9c1/zd5V+KyDFsq7Le\n2Af2S9hm1Mfczj0OmyD/G/tgf8F17D7sb9cP24psj+s87g/kZG0iEuc6dgr2XmkPRLt9vxWYCOx0\n3Zs3celvuA2b1xiGdfSNgaYiEp/GtadmSyUNkpr+ef/ExozC/liHRKSia1tB7D9NSWwLhTYicsIn\nAhS/YIxZBXwuIt84rUXxLcaYRdhw0SintSi+xZc1htFAg8u2/QeYLyLlsTHm//iwfMUHGGPqGGNu\ndIUaHgfuwLb5VzIHGpLJBPjMMYjIL9gqszvNgKQ3y2+Ah31VvuIzbiOlA1sv4BER+cdZSYof0XBM\nJsBnoSSwY9IAs9xCScddrQ+SWhEcS1pXFEVRAgPHks+ulgz69qEoihJgpDUYmK/4xxhzo4gcdLUy\nOJTaTsYYdRiKoijXgYhkOA/k7xrDTOzAYLj+fp/Wjp6M55EZlgEDBjiuIVAWtYXaQm2R/uItfOYY\njDETsZ1NbjN2nP3O2IHG6htjtmNHE33HV+WHCrt27XJaQsCgtkhBbZGC2sL7+CyUJCJpTTZTz1dl\nKoqiKBlHez4HOFFRUU5LCBjUFimoLVJQW3gfnzZXvV6MMRKIuhRFUQIZYwziheSzv1slZQidDVBR\nro3M8IIVExNDZGSk0zJCiqByDJA5bnRF8QYZeZESEc4nnCdn1pxeVKQEC0EVSnJVkxxQpCjBx/X+\nv5yLP0eX6C6UKlCKQQ8M8oEyxVd4K5SkyWdFUZI5fPow9cbWI0ES6F+nv9NyFIdQx6AoCgBbj2yl\n+sjqRJaKZGKrieTKlstpSR4RExPjtISQQx1DgLNnzx7y5s2bHBKIjIxk5MiRAIwZM4batWund/gV\nNGrUiHHjxnldpxLc/PzXz9QdU5fX67zOW/e/RRajj4bMTNAlnwOVUqVKcejQIcLCwpK3de7cmaFD\nh2bovCVKlCAuLi553RiToaTi3LlzM6RHCT1GbRhFv4X9mPzIZCJLRTot55rRFkneRx2DlzDGMHv2\nbO6//36npaRKUo0j2Jr8xsfHkzWr3qa+IFES6bewH9N/n86SzksoX6j81Q9SMgVaX/QDiYmJvPTS\nSxQpUoSyZcvy2WefkSVLFhITEwFb21i4cGHy/gMHDqRTp06AHQfGfd/LERG6d+9OgQIFqFChAj//\n/HPyd5GRkbz22mvUqlWL8PBwdu7ceUkoyr2c1MqKjIykf//+1KpVi7x589KsWTOOHDlChw4dyJ8/\nP1WrVmX37t1pXvfSpUupWbMmERERlChRgrFjxyafN0kDXBkSy5IlC59//jnly5enfPnyPPvss7z8\n8suXnLt58+YMGTIEgAMHDtCqVStuuOEGypQpw7Bhw9LUpFjOXDxDm6ltWL53OSu6rghqp6A5Bu+j\njsGLpNU08KuvvmLOnDls3LiRtWvXMm3atEve3C8PD13LW/2qVasoV64cR48e5Y033qBly5acOJEy\njfb48eP5+uuviYuLo2TJkpeU5Uk5kydPZvz48ezfv58///yTGjVq0LVrV44dO0aFChV44403Uj1u\n9+7dNGrUiB49enDkyBE2btzInXfemer1pkZ0dDSrV6/m999/p3379kyePDn5u+PHjzN//nzat29P\nYmIiTZs25a677uLAgQMsXLiQjz/+mJ9++umq15ZZOXjqIPd9cx+5suVifqf5FM5d2GlJSoARUo7B\nGO8s14OI8PDDDxMREZG8JL0VT5kyhV69elGsWDEiIiLo169fuu3Lr6Xt+Q033ECPHj0ICwujTZs2\n3HbbbcyePdtlD0NUVBQVKlQgS5YsV4RkrlaOMYbOnTtTunRp8uXLR8OGDSlfvjz3338/YWFhtG7d\nmg0bNqR67IQJE6hfvz5t27YlLCyMggULJjsGT+jbty8FChQgR44c3HvvvRhj+OWXXwCYNm0aNWvW\n5MYbb2TNmjUcOXKE1157jaxZs1K6dGm6devGpEmTPC4rM7H50Gaqf12dJrc2YezDY8mRNYfTkjKM\n5hi8T0gFb53s+2aMITo6OtUcw99//03x4sWT10uUKOG1cosVK3bJesmSJfn777+T193LvR6KFi2a\n/DlnzpzccMMNl6yfOnUq1eP27dtHmTJlrrtcd93GGNq1a8fEiROpXbs2EyZM4LHHHgNszeTAgQNE\nRKTMEJuQkECdOnWuu+xQZd6OeXSa0YlPGnxC+4ppDX6sKCFWYwhUbrrpJvbs2ZO87v4ZIE+ePJw+\nfTp5/eDBgx6fe//+/Zes7969m5tvvjl5Pb2QTXh4OGfOnPG43GsJcRUvXpw///wz1e88ud7Ly2rf\nvj3Tpk1j9+7drF69mlatWgHWyZYuXZrjx48nLydPnkyuNSmWL9Z8QVR0FDPazgg5p6A5Bu+jjsGL\npBWaadOmDUOHDmX//v0cP36cd95555IHX6VKlZg0aRLx8fGsXbuW6dOne/wQPnToEEOHDuXixYtM\nnTqVrVu30qhRo6tqSip3yZIl7N27l9jYWAYPHpzuNV1LiKtDhw4sWLCAqVOnEh8fz9GjR9m0aVNy\nud999x1nz55lx44dlySi09NauHBhunXrRoMGDciXLx8AVatWJW/evLz33nucPXuWhIQENm/ezNq1\naz3WGsokJCbw4rwXGbp6KEs7L6VWiVpOS1KCAHUMXqRp06bkzZs3eUl6q33iiSd46KGHuPPOO6lS\npQqtWrW65CH73//+lz///JOIiAgGDhxIhw4dLjlvWk7CGEP16tX5448/KFKkCP3792f69OmXhFXS\nczD16tWjbdu2/Pvf/+aee+6hadOmV+yfXpI8vfMXL16cuXPn8uGHH1KoUCHuuusufv31VwB69epF\n9uzZKVq0KJ07d6Zjx44eJd8fffRRfv75Zx599NHkbVmyZGH27Nls3LiRMmXKUKRIEZ588klOnjyZ\n5nVnJlpOacmmfzaxvMtyyhYs67Qcn6A5Bu+jg+g5wK5duyhTpgzx8fFkyaK+WfENxhi6Rnfli8Zf\nkC0sm9NyFD+gg+gpinJVRjQdEfJOQXMM3kcdg0MEWw9kJTjR+0y5HjSUpCghiv6/ZD40lKQoiqL4\nBHUMiqIENZpj8D7qGBRFUZRL0ByDooQo+v+S+dAcg6IoiuIT1DEoihLUaI7B+6hj8ALh4eHJw2Bk\nyZKF3LlzkzdvXvLly8fEiRP9ouFqE/r4GhFh6NChVKxYkfDwcIoXL06bNm3YvHmzT8v11XVfuHCB\ngQMHUr58ecLDwyldujRdu3ZNd2IifxIVFUX//v2dlqGEKOoYvMCpU6eIi4tLngxn9uzZxMXFcfLk\nSdq39+9Ilk7FlHv06MHQoUMZNmwYx48fZ/v27Tz88MPMmTPHL+Vf73XHx8enuv2RRx5h9uzZTJw4\nkZMnT7Jp0yaqVKlyyUx7GSkjISHhms+jpI6OlWRZvdqLJxORgFusrCtJa3sgUapUKVm4cKGcPXtW\ncubMKUePHhURkbfeekuyZs0qcXFxIiLy2muvSc+ePUVE5MSJE9KpUycpUqSIlCxZUt566y1JTExM\n9fyrVq2SypUrS758+aRo0aLSu3dvEREpXry4GGMkPDxcwsPDZeXKlbJjxw657777pFChQlK4cGHp\n0KGDnDhxIvlc69atk0qVKknevHmldevW0qZNG3nttdeSv581a5bceeedUqBAAalZs6b8+uuvqWra\nvn27hIWFyZo1a9K0S3rXOGDAAOnYsWPyvn/99ZcYYyQhIUFEROrWrSv9+/eXWrVqSd68eeXBBx+U\nI0eOpHndIiIjR46UChUqSEREhDz00EOye/fu5PMbY+Szzz6TcuXKSZkyZa7QOn/+fMmVK5fs27cv\nzespWbKkLFiwIHnd/RqS9I8cOVJKlCghderUkTFjxkjNmjWlV69eUqhQIenfv7+cP39eevfuLSVK\nlJCiRYvK008/LWfPnhURkUWLFkmxYsXkww8/lBtuuEFuuukmGT16tIiIfPnll5ItWzbJnj27hIeH\nS7NmzVLVGAz/L4p3GDxYpHTp5N88w89grTH4iJw5c1K1atXk+OfixYspVaoUS5cuTV5PetPp3r07\ncXFx/PXXXyxevJixY8cyevToVM/bo0cPevXqRWxsLDt37qR169YAybObxcbGEhcXR7Vq1QB49dVX\n+fvvv/n999/Zu3cvAwcOBGyopEWLFnTp0oXjx4/Tvn17vv/+++QhFDZs2EDXrl0ZMWIEx44d46mn\nnqJZs2ZcuHDhCk0LFy6kePHiVKlSJU17pHeNngzbMHHiRMaMGcOhQ4e4cOECH3zwQZrXHR0dzeDB\ng5kxYwZHjhyhdu3aV9TcoqOjWbNmDVu2bLmirAULFlCtWrUrJkFyx5PpWJcsWcLWrVuZN28eIsLq\n1aspW7Yshw4dol+/fvTp04cdO3awadMmduzYwf79+3nzzTeTj//nn384efIkBw4cYOTIkTz33HPE\nxsby5JNP0qFDB/r06UNcXBzR0dFXtV8ok5lzDCLQpw+MGweuR4tXCKkZ3Mwb3hkXRgZ4JxxTt25d\nFi9eTPPmzfntt9/o169fskNYu3YtderUISEhgcmTJ7Np0yby5MlDnjx56N27N+PGjaNLly5XnDN7\n9uz88ccfHDlyhMKFCyc7AEkllFK2bFnKlrVDLRcuXJhevXolP3hWrlxJQkIC3bt3B6BFixZUrVo1\n+divvvqKp556invuuQeAxx57jEGDBrFy5corZkc7evQoN954Y5p2uNo1pqbdnaQpRsuVKwfY+S1m\nzpyZ5nUPHz6cvn37cttttwF2mtBBgwaxd+/e5JnhkqYOTY2rXU9qpKZj4MCB5MqVK3n95ptv5rnn\nngMgR44cjBgxgl9//TVZR9++fenQoQODBg0CIFu2bLz++utkyZKFhg0bEh4ezrZt25J/p6vZTQlt\nEhLgmWdg0yZYsgQKFfLeuUPKMXjrge4t6taty4svvsj69eupWLEi9erVo2vXrqxatYpy5coRERHB\nP//8w8WLFylZsmTycSVKlLhiZrYkRo4cyeuvv06FChUoXbo0AwYMoHHjxqnu+88//9CjRw+WLl1K\nXFwciYmJFCxYEIADBw5c8UbsPp3m7t27GTt2LMOGDUvedvHixUumDU2iUKFCqW5P4siRI9d0janh\n/qDOlStXmlOKJmnv0aMHvXv3vmT7/v37k68xvSlPCxcuzB9//OGxtrS4vAz39cOHD3PmzBkqV66c\nvE1ELkmiFypU6JJh2XPnzp3udWdWMmOO4cIF6NQJjhyBBQsgb17vnl9DST6kRo0abNu2jRkzZhAZ\nGUmFChXYs2cPc+fOTb6ZCxcuTLZs2di1a1fycXv27OGWW25J9ZzlypVjwoQJHD58mD59+vDII49w\n9uzZVEMZ/fr1IywsjM2bNxMbG8u4ceOSHzw33XTTFQ9m9ylHS5QowauvvnrJlJmnTp2ibdu2V5Tz\nwAMPsG/fPtatW5eq5qtdY548ea5pilF3UrvuEiVK8NVXX12i/fTp01SvXj3d45KoV68eq1evTtdx\nXc/0pO7rhQsXJleuXGzZsiVZ44kTJzyeYEhHTc28nDkDzZtb5zBnjvedAqhj8Cm5c+emcuXKfPbZ\nZ9StWxeAmjVrMnz48OT1sLAw2rRpw6uvvsqpU6fYvXs3Q4YMoWPHjqmec/z48Rw+fBiA/PnzY4wh\nS5YsFClShCxZslwyz/KpU6fIkycP+fLlY//+/bz//vvJ39WoUYOwsDA+/fRT4uPjk2PuSTzxxBMM\nHz6c1atXIyKcPn2aOXPmpPrGeuutt/Lss8/Svn17Fi9ezIULFzh37hyTJk3i3Xffveo13nXXXdc0\nxag7qV33008/zaBBg5LzB7GxsUydOjXV41PjgQceoH79+rRo0YL169cTHx9PXFwcw4cPT86LZGQ6\nVrAzzz3xxBP07Nkz+ffcv38/P/30k0fHFy1alJ07d3pcXiiTmXIMJ07Agw/CDTfA1KmQM6dvylHH\n4GPq1q1LfHx8cly4bt26nDp16pI4/bBhw8iTJw9lypShdu3adOjQgc6dO6d6vnnz5nHHHXeQN29e\nevXqxaRJk8iRIwe5c+fm1VdfpVatWhQsWJDVq1czYMAA1q9fT/78+WnatCmtWrVKfnhlz56d7777\njpEjRxIREcG3335LkyZNyJ49OwCVK1dmxIgRPP/88xQsWJBbb72VsWPHpnmdQ4cO5fnnn+e5554j\nIiKCcuXKER0dTbNmza56jRmZYtT9uiMiIli9ejUPP/wwffr0oV27duTPn5+KFSsyb968VM+VFtOm\nTaNRo0a0bduWAgUKULFiRdavX0/9+vWBa5+ONbVpUd99913KlStH9erVyZ8/P/Xr12f79u0e6eza\ntStbtmwhIiKCli1bXvV6lODnn38gMhIqV4bRoyGrDxMBjoyVZIzpC3QEEoHfgM4ict7te0lNl479\n4luqVavGs88+y+OPP+60FMUL6P9L6LB7N9SvDx06wOuvQ1rvDEE7VpIxphTwBHC3iFQEwoB2/tah\n2OaUBw8eJD4+nm+++YbNmzfToEEDp2UpiuLG//4HtWvDc8/BgAFpOwVv4kQo6SRwEchtjMkK5AY8\nb56ieI1t27ZRqVIlIiIiGDJkCNOmTaNo0aJOy1KUayKUcwzLl8P998PgwdCjh//KdSqU9CTwIXAW\nmCcinS77XkNJipJBMsv/S0xMTEg2WZ07Fx5/3HZe87Qi761Qkt/7MRhjygI9gVJALDDVGNNBRL51\n3y8qKopSpUoBUKBAASpVquRnpYoSGiS9USc9PENtPWlboOjxxvpPP8GoUZHMmgXnzsUQE5P6/jEx\nMYwZMwYg+XnpDfxeYzDGtAXqi0g313onoLqIPOe2j9YYFCWD6P9LcPLRR/DxxzBvHlSocG3HBm3y\nGdgKVDfG5DK2PV494MoBaxRFUTwgVHIMSeMejRgBy5Zdu1PwJn4PJYnIJmPMWGAttrnqeuArT4/X\nHp+KooQa8fHw5JOwZYsdDM+b4x5dD1cNJRlj7gUGYHMCSY5ERKSMz0SlEUpSlGAhURLpM78PM7fP\nZM6jcyhXsJzTkpQA5exZaNcOzp+H6dMhT57rP5c/k88jscni9YDOLqIoV+H0hdN0nNGRE+dOsKLr\nCgrmKui0JCVAOX4cmjWDEiXsEBeugQccx5McwwkR+UFE/hGRI0mLz5UpQOjET71BMNjiQNwB6o6p\nS/4c+ZnXcZ7PnEIw2MJfBKstDhyAunXtEBfjxgWOUwDPHMMiY8z7xpgaxpi7kxafK1OUIGPTwU3U\nGFmDlhVaMrr5aLKHBdB/uhJQbN8OtWpB+/YwZAhkcaIZUDp4kmOIAa7YSUTu85EmzTEoQcfcP+YS\n9X0Unzb6lDa3t3FajhLArFsHTZrAf/8L3bp599zeyjE40vP5aqhjUIKJT1d/yqBfBvFd2++ofkv1\nqx+gZFp+/NFOsDNiBDz8sPfP77d+DMaYAsaYIcaYda7lQ2NM/owWrHhGsMZPfUGg2SIhMYEXfniB\nL9Z+wbIuy/zqFALNFk4SLLYYMwaioiA62jdOwZt40ippFHZo7NaAAToBowEdBF7JtMSdj6P99PZc\nSLjAsi7LKJAz9fmjFUUE3n4bRo6EmBj4v/9zWtHV8STHsElE7rzaNq+K0lCSEsDsjd1L04lNqVas\nGp82+pRsYdmclqQEKPHxdrjsNWvsNJw33eTb8vw5JMZZY0xtt4LvBc6ks7+ihCzrDqyjxsgadPp3\nJ4Y3Ga5OQUmT06ehZUvYtQsWL/a9U/AmnjiGp4HPjDG7jTG7gU9d2xQ/ECzxU3/gtC2+3/o9Db9t\nyKeNPqV3zd6ODs/itC0CiUC0xeHD8MADEBEBs2ZB3rxOK7o2rppjEJGNwL+NMflc6yd9rkpRAggR\n4aMVHzFk5RB+6PADlW+u7LQkJYD5809o2BBat4a33vLPjGveJs0cgzGmk4iMM8b05tJ+DAY7VtJH\nPhOlOQYlQLiYcJHuP3Rnxb4VzG4/m+L5izstSQlg1q61Q1z07w/PPOP/8v0xVlJu19+8pNLBTVFC\nndhzsbSroqPPAAAgAElEQVSe2ppsYdlY2nkpeXMEWTxA8Ss//ACPPea7Pgr+JM0cg4h86fq4QETe\ncF+Ahf6RpwRi/NQp/GmLXSd2UXNUTf6v8P8R3S464JyC3hcpBIItRo+Gzp2Do4+CJ3iSfB6Wyrah\n3haiKIHCyn0rqTmyJk9XfpqhDYeSNYvfpy1RggQRO7TFm2/alkc1azqtyDukl2OoAdQEegEfYXML\nYENLLbQfgxKKTPnfFJ6f+zyjm4+mcfnGTstRApgLF+Cpp+DXX2H27MBojuqPHEN2rBMIc/1N4iTw\nSEYLVpRAQkQYvHQwX677kvmd5nPnjT5771FCgBMnoFUrO6nO4sUQHu60Iu+SXo5hsYgMBKpflmP4\nSET+8J/EzE0gxE8DBV/Z4kLCBbrM7MJ3v3/Hyq4rg8Ip6H2Rgr9tsXu3HTL79tthxozQcwrg2VhJ\nY1LpyCMicr8P9CiKXzl29hgtJ7ckIlcEi6MWkyd7BuZVVEKetWuheXN45RXo0cNpNb7Dk7GSqrit\n5gRaAfEi8rLPRGmOQfEDO47toPGExjQr34x3679LFhNgs6UoAUV0tJ0/IZCbozo6H4MxZo2I3JPR\nwtM5vzoGxaf8svsXWk9tzZv3vcmTlZ90Wo4S4HzyCbz7rnUO9/jsyZdx/DkfQ0G3pbAxpgGQL6MF\nK56hseQUvGWL8b+Op9WUVoxrMS5onYLeFyn40hYJCTZk9OWXsHx5YDsFb+JJjmE9KT2f44FdQFdf\nCVIUXyEiDIwZyLhfxxETFcO/ivzLaUlKAHP6NDz6KMTFWadQIBNNuaFTeyqZgnPx5+gS3YW/TvzF\n922/p2h4UaclKQHMwYN2Xubbb7c5hezZnVbkGT7vx2CMaUU6YySJyHcZLVxR/MHh04dpMbkFxfIV\n4+fHfiZXtlxOS1ICmP/9Dxo3hi5d7GB4wTg6akZJL8fQ9CqL4gc0lpzC9dhi65GtVB9ZnchSkUxs\nNTFknILeFyl40xbz58N999lhLl5/PXM6BUinxiAiUX7UoShe5+e/fqb99Pa8V+89Hq/0uNNylADn\n88/tmEdTp0Lduk6rcRZP+jEUAAYAdVybYoA3RSTWZ6I0x6BkkFEbRtFvYT8mPTKJyFKRTstRApj4\neHjxRVtbmD0bypZ1WtH144+xkpIYBfwGtMYOpNcJGA20zGjhiuJtEiWRfgv7Mf336SzpvITyhco7\nLUkJYGJjoW1bSEyEFSsyV8uj9PCkq2dZERkgIjtF5E/X+ElB7FODC40lp3A1W5y5eIY2U9uwfO9y\nVnRdEdJOQe+LFK7XFjt32mGyy5aFuXPVKbjjiWM4a4ypnbRijLkXOOM7SYpy7Rw8dZD7vrmPXNly\nMb/TfArnLuy0JCWAWbrUDoT3zDPw2WeQVafcuARPcgyVgLFAftem48DjIrLJZ6I0x6BcA5sPbabJ\nhCZ0vasrr9V5jVQGfVSUZMaOhZdesn8bNHBajXfx+1hJxpj82FFVT2a0UA/KUsegeMS8HfPoNKMT\nnzT4hPYV2zstRwlgEhPh1Vdh8mSbZP5XCHZ89+dYST2NMfmwE/QMMcasN8Y8lNGCFc/QWHIKl9vi\nizVfEBUdxYy2MzKdU9D7IgVPbHH6NLRubUNIq1aFplPwJp7kGLq4agkPAgWBx4B3fKpKUdIhITGB\nF+e9yNDVQ1naeSm1StRyWpISwOzfD3Xq2Al1FiyAIkWcVhT4eJJj+E1EKhpjhgIxIvKdMWaDiNx1\n3YXavhFfA7djh93oIiIr3b7XUJKSKqcunKLDdx04deEU01pPIyJXhNOSlABmzRpo0QKefx769An9\nnsx+CyUB64wxPwGNgB9dYaXEDJb7CTBXRCoA/wZ+z+D5lEzA/pP7qTO6DkVyF+HHDj+qU1DS5dtv\noVEjGDYM/vOf0HcK3sQTx9AV6AtUEZEzQDag8/UW6Epi1xaRUQAiEu/LXtTBjsaSLRv+3kClvpVo\nd0c7RjQdQbawbE5LchS9L1K43BYJCbZ20L8//PyzrTEo18ZVW++KSAKwzm39KHA0A2WWBg4bY0YD\nd7rO3cPldBTlCmZtm0XXmV15/p7neaXWK07LUQKYEyfsHArnzsHq1VBYu7NcF36fj8E1h/QKoKaI\nrDHGfAycFJHX3fbRHIOCiPDJqk94f/n7zGg7g6rFqjotSQlgtm+HZs2gfn346CPIlgkrlf4cK8nb\n7AP2icga1/o04D+X7xQVFUWpUqUAKFCgAJUqVSIyMhJIqTrqeuiuJyQm8N3Z71iyZwkflv+QM3+c\ngWIEjD5dD6z11avhgw8iefttuPXWGJYtCyx9vlqPiYlhzJgxAMnPS2/gSaukgqlsjhORi9ddqDFL\ngG4ist0YMxDIJSJ93L7XGoOLmJiY5Bsis3Dy/EnaTmsLwORHJpMvh51iPDPaIi3UFhYRePbZGKKj\nI5kyBe6912lFzuLPGsN6oAR2KAyACOCgMeYg8ISIrEvzyLTpDnxrjMkO/EkGktlKaLH7xG6aTGxC\n7RK1GdpwKFmz6CA2SuqcOwdPPAErV9qlRAmnFYUOntQYRgDTRGSea/1B4BHs0NufiIjXA79aY8ic\nrNm/hocnP8zLNV+mR7UeOuaRkiYHDtjWRqVLw6hRkDu304oCA3/2Y6iR5BQAROQn17YVQJBMka0E\nOtO3TKfxhMYMbzycntV7qlNQ0mTVKqhaFZo3h4kT1Sn4Ak8cw9/GmD7GmJLGmFLGmFeAf4wxYWS8\no5tyFZISTaGKiPDesvfoOa8n8zrOo+ltaU8nHuq2uBYyqy3GjIGmTeGLL6BfP9tpLbPawpd4EsB9\nFDu15/eu9WVAeyAMaOMjXUom4GLCRZ6Z8wzr/17Pyq4rKZavmNOSlADlwgXo1cuOdRQTo4Pg+RpP\ncgylReSvy7bd49bc1PuiNMcQ8hw/e5xHpj5Cnmx5mNBqAuHZw52WpAQof/9tR0YtVMjOoZA//9WP\nyaz4M8cw3Rhzi1vBdbGJZ0W5LnYe30nNUTW5s+idzGg7Q52CkibLl8M998BDD8GMGeoU/IUnjuEp\n4HtjzI3GmEbAUKChb2UpSYRa/HT53uXUGlWLF6q+wEcPfURYljCPjw01W2SEULeFiM0jtGgBX31l\nxz3KksbTKtRt4QSejJW0xhjzAjAfOAvUF5FDPlemhBwTf5tIjx97MLbFWBqUC7E5FRWvce4cPPus\nHTJ72TIoV85pRZmPNHMMxphZl22qAPwNnMBO8dnMZ6I0xxBSiAhvLXmLkRtGMqv9LCoWrei0JCVA\n2bMHWrWCMmVg5Eg7uY7iOf7o+fxBUllu28S1rk9txSPOx5/niVlPsPXIVlZ2W8mN4Tc6LUkJUBYt\nsiOj9u5tF+3K4hzp5Rj6AXcDB0UkxrUsTvrrJ32ZnmCOnx49c5T64+pz5uIZYqJiMuwUgtkW3iaU\nbCFiR0Nt3x7Gj4eXXro2pxBKtggU0nMMUdiw0UBjzAZjzHBjTHNjTB7/SFOCme1Ht1N9ZHVqFq/J\nlNZTyJ1Nu6cqV3L6NHToYB3CqlXwwANOK1LAw/kYXL2cq2FbI90PnAPmich7PhGlOYagZvGuxbSZ\n1oa373+bbnd3c1qOEqBs3WrzCVWrwuefQ65cTisKfvzSj8EYE2aM6SUiCSKyXET6i0gtoB2wP6OF\nK6HHNxu/oc20NkxoOUGdgpImU6ZA7dq2N/OoUeoUAo10HYNrWs9HU9l+WES+9ZkqJZlgiZ8mSiKv\n/fwaby55k5jHY3igjPdjAsFiC38QrLa4cAF69IC+fWHePOjWLeNJ5mC1RSDjyVhJS40xnwKTgdO4\nWiWJyHqfKlOChrMXz9I5ujN7T+5lZdeVFMlTxGlJSgCybx+0aQNFisDatRAR4bQiJS08GSsphlSa\np4rIfT7SpDmGIOLQ6UM0n9ScUgVKMbr5aHJmzem0JCUAmT8fHnsMevaEl19OuxezkjG8lWPwKPns\nb9QxBAdbDm+hyYQmdPp3JwZGDtQ5FJQrSEyEt9+2w1t8+y3c57PXSQX8OIieMWaAMeZ1t7+vG2Ne\nz2jBimcEavx0/p/ziRwTyRuRb/DGfW/4xSkEqi2cIBhscfQoNGliawtr1/rOKQSDLYINTyp0p13L\nKezEPI2AUj7UpAQ4I9aNoNOMTkxrM41Od3ZyWo4SgKxZA5Urw+23w8KFcPPNTitSroVrDiUZY3IA\nP4lIXd9I0lBSoJIoifSZ34fobdHMeXQOtxa61WlJSoAhAsOHw4AB8OWXdnRUxX/4Y6yktMgD6FRb\nmYzTF07TcUZHjp89zspuKymYq6DTkpQAIzYWnngCtm+3o6Lequ8NQYsnOYbf3Jb/AduAT3wvTYHA\niJ8eiDtA3TF1yZ8jPz91+skxpxAItggUAs0Wa9fC3XfbpqgrV/rXKQSaLUIBT2oMSbOzCxAPHBKR\ni76TpAQSmw5uotmkZjx595P0q91PWx4plyACw4bBW2/BZ5/ZKTiV4MfTsZIqAbWxzuEXEdnkU1Ga\nYwgI5v4xl6jvoxjWcBht72jrtBwlwDh+HLp2tXMoTJ4MZcs6rUjxZ3PVHsB4oAhQFBjvmtFNCWE+\nXf0pXWd2JbpdtDoF5QpWrbKhoxIlbD5BnUJo4Ulz1W5ANRF5XUT6A9WBJ3wrS0nC3/HThMQEXvjh\nBT5f8znLuyynRvEafi0/PTSWnIJTthCBDz+EZs1gyBD4+GPIkcMRKcnofeF9PG2VlJjGZyWEiDsf\nR/vp7TmfcJ7lXZdTIGcBpyUpAcTRoxAVBYcP2xpDqVJOK1J8hSdjJb2InbTnO+wAeg8DY0RkiM9E\naY7B7+yN3UvTiU2pWqwqnzX6jGxh2ZyWpAQQy5bZaTdbt4ZBgyB7dqcVKanh17GSjDGVgXtJST5v\nyGjBVylPHYMfWXdgHc0nNadn9Z70rtFbWx4pySQkwDvv2JZHX39th7hQAhefJ5+NMQWTFuAvbAL6\nW2C3a5viB3wdP/1+6/c0+LYBwxoO46WaLwW0U9BYcgr+sMXevXaqzQULbD+FQHUKel94n/RyDOtJ\nZbhtFwKU8b4cxV+ICB+t+IghK4fwQ4cfqHJzFaclKQHEd9/BM8/YYbJfeQXCwpxWpPgTHXY7E3Ix\n4SLdf+jOin0rmN1+NsXzF3dakhIgnDljp9tcsAAmTIBq1ZxWpFwLfh0ryRjTHKiDrSksFpFZGS1Y\ncYbYc7G0ntqarFmysrTzUvLmyOu0JCVA2LQJ2rWDKlVgwwbIl89pRYpTeNLB7R3gBeB/wO/AC8aY\nwb4Wpli8GT/ddWIXNUfV5LZCtzGz/cygcwoaS07Bm7YQgU8+gXr14NVXYdy44HIKel94H09qDI2B\nSiKSAGCMGQNsBPr6UJfiZVbuW0nLyS3pe29fulfr7rQcJUA4dMj2TTh61A5+pz2YFfCsH8OvwH0i\nctS1XghYJCL/9pkozTF4lSn/m8Lzc59ndPPRNC7f2Gk5SoAwbx507mwdwxtvQDbtuhL0+DPHMBhY\nb4xZhO3gVhf4T0YLNsaEAWuBfSLS9Gr7K9eOiDB46WCGrx3O/E7zufPGO52WpAQA585Bv34wdSqM\nHw/33++0IiXQuGqOQUQmAjWAGcB0oLqITPJC2T2ALaTdJFbh+uOnFxIu0GVmF6b/Pp2V3VaGhFPQ\nWHIK12uLjRttcnnPHvs5FJyC3hfex5PkcwvgjIhEi8hM4Jwx5uGMFGqMuQU7d/TX2FqI4kWOnT3G\ng+Me5PjZ4yyJWsLNeXXC3cxOQgK8+y7Urw99+tjaQqFCTqtSAhVPcgybROTOy7ZtFJFK112oMVOB\nQUA+4KXLQ0maY7h+dhzbQeMJjWlavinv1nuXsCzaMymzs2sXPPYYGANjx0LJkk4rUnyF3+ZjIPU3\n+ut+2hhjmmBngduQxrmV6+SX3b9w76h7ebH6i3zw4AfqFDI5IvDNN3DPPdC0Kfz8szoFxTM8ST6v\nM8Z8BHyGfZA/B6zLQJk1gWbGmEZATiCfMWasiDzmvlNUVBSlXOP6FihQgEqVKhEZGQmkxBQzw7p7\n/DS9/ef/OZ8Rx0YwvuV4su/NTkxMTEDo9+b65TZxWo+T6xs3bqRnz55pfh8bC+PGRbJtGwweHEO5\nchAWFjj6vbn+8ccfZ+rnw5gxYwCSn5deQUTSXYBw4F1sC6K12FZKea52nCcLtoXTrFS2i2JZtGhR\nut8nJibK6z+/LqU+LiWb/9nsH1EOcTVbZCbSs8UPP4jcfLNI794iZ8/6T5NT6H2RguvZmeFns6Nj\nJRlj6gK9RaTZZdvFSV3Bwrn4c3SJ7sLO4zuJbhdN0fCiTktSHOTMGXj5ZZg9G8aMgfvuc1qR4m/8\nmWPwGSKy+HKnoHjG4dOHqTe2HvGJ8Sx6fJE6hUzO8uVQqRLExtoxj9QpKBnBUcegXB33+HoSW49s\npfrI6tQtWZdJj0wiV7Zc/hfmAKnZIrOSZIuzZ20toVUrO6HO+PFQIJPNyKr3hfdJb6Ked11/2/hP\njnI1fv7rZ+qOqUv/Ov15+4G3yWLUt2dWVq2Cu++G3bvh11+hZUunFSmhQpo5BmPMZqAisF5E7vKr\nKM0xpMqoDaPou7Avkx+ZTGSpSKflKA5x/rwd22jUKBg6FNroq5viwh9jJf0AHAfCjTFxl30nIhJE\nA/MGN4mSSL+F/Zj++3SWRC3htsK3OS1JcYj16+Hxx6FcOZtLKKqpJcUHpBmHEJGXRaQAMFdE8l62\nqFPwEz8u+JE2U9uwbO8yVnRdkamdQmaOJV+4AAMGQMOG8J//wAsvxKhTcJGZ7wtf4ckges2MMUWN\nMU1cyw3+EKbAwVMH6TWvF7my5WJBpwUUzl3YaUmKA2zaZKfYXLfOzqzWoYMd3kJRfIUnYyW1Ad4H\nFmN7PtcGXhaRqT4TpTkGNh/aTJMJTehyVxf61+mP0SdBpuPCBTvw3bBh8N57NoSkt4GSHv6cj+E1\n4B4ROeQquAiwEPCZY8jszNsxj04zOvFxg495tOKjTstRHGDNGujaFUqUsDWF4sWdVqRkJjwdRO+w\n2/pRdPA7n/HFmi+Iio5iRtsZPFrxUY2fupEZbJHUe7lpU5tLmDUrdaeQGWzhKWoL7+NJjeFHYJ4x\nZgLWIbTFtlhSvEhCYgIvz3+ZuX/MZWnnpZQtqJPvZjZiYqBbN6haFX77DYoUcVqRklnxaKwkY0wr\noJZr9RcRmeFTUZksx3Dqwik6fNeBuPNxTG8znYhcEU5LUvxIbCy88grMnQuff25rC4pyPfgzx4CI\nTMdO66l4mf0n99N0YlPuuvEupraeSvaw7E5LUvzIrFnw7LPQuDFs3gz58zutSFF0rCRH2fD3BqqP\nrE7b29vydbOvU3UKGj9NIZRscfgwPPoo9OplZ1UbPvzanEIo2SKjqC28jzoGh5i1bRYPjn+QIQ8N\noc+9fbQ5aiZBBMaNg4oVoVgxO8aRjoSqBBrXNB+DMaYgcIuI/Oo7SaGdYxARPln1Ce8vf58ZbWdQ\ntVhVpyUpfmL7dnjmGTh+HL780k65qSjexG/zMRhjFhtj8rmcwjrga2PMkIwWnBmJT4zn+bnP8/X6\nr1neZbk6hUzC+fPw3/9CzZrQpAmsXq1OQQlsPAkl5ReRk0BLYKyIVAXq+VZW6HHy/EmaTmzKn8f/\nZFmXZZQs4Nms7Bo/TSEYbbFkiZ1AZ80aOwBer16Q1aMmH+kTjLbwFWoL7+OJYwgzxtwEtAHmuLaF\nZpzHR+w+sZtao2pRukBpZj86m/w5telJqHP0qO253KEDDBoE0dG2F7OiBAOejJXUGugPLBORZ4wx\nZYH3RKSVz0SFUI5hzf41PDz5YV6u+TI9qvXQJHOIk5RcfuUVaNfOhpDy5nValZJZ8Gc/hr9F5N9J\nKyLyp+YYPGP6luk8PedpRjYbSbPbdGrrUCcpuXziBMyeDVWqOK1IUa4PT0JJw1LZNtTbQkIJEeG9\nZe/Rc15P5nWclyGnoPHTFALVFmfOwOuv2+Ry06Z2yk1fO4VAtYUTqC28T5o1BmNMDaAmUMQY8yIp\nA+flBcL8oC0ouZhwkWfmPMO6v9exousKbsl3i9OSFB8hAjNnQs+edr6EjRvhFv25lRAgvTmf6wL3\nAU8Bw92+igNmicgfPhMVpDmG42eP88jUR8iTLQ8TWk0gPHu405IUH7FjB/ToAX/9ZedLeOABpxUp\nivdyDJ4kn0uKyO6MFnQtBKNj2Hl8J40nNKZB2QZ88OAHhGXRSlUocuYMvPOOHeyuTx/rHLLr8FZK\ngODzDm7GmE9cHz81xsy6bJmZ0YJDieV7l1NrVC26V+3OkAZDvOoUNH6agpO2ELFNTm+/3SaZN260\n8yY45RT0vkhBbeF90muVNNb190N/CAlWJv42kR4/9mBsi7E0KNfAaTmKD0gKG+3cCV9/rWEjJfS5\nprGS/EUwhJJEhLeWvMXIDSOZ1X4WFYtWdFqS4mVOnYLBg+24Rho2UoIBv/VjMMbcCwwASrntLyJS\nJqOFByvn48/zxKwn2HpkKyu7reTG8BudlqR4kcREGD8e+vWzI59qayMls+FJP4aRwEfAvcA9riXT\njv529MxR6o+rz5mLZ4iJivG5U9D4aQr+sMWKFVCjBnz2GUybZnsxB6JT0PsiBbWF9/HEMZwQkR9E\n5B8ROZK0+FxZALL96Haqj6xOzeI1mdJ6Crmz5XZakuIl9u2Djh2hdWt4/nnrIKpXd1qVojiDJ81V\n38F2aPsOOJ+0XUTW+0xUAOYYFu9aTJtpbXj7/rfpdnc3p+UoXuLMGfjgA/jkEzucxX/+A+Ha/UQJ\nUvw5VlJ17Giql3fyzzTzTn2z8RteWfAKE1pO4IEy2iQlFBCBKVPsYHfVqsG6dVCqlNOqFCUwuGoo\nSUQiReS+yxd/iHOaREnktZ9f480lbxLzeIwjTkHjpyl4yxYrV0Lt2raj2rhx1kEEm1PQ+yIFtYX3\n8aRV0gBsjcHgNg+DiLzpQ12Oc/biWTpHd2bvyb2s7LqSInmKOC1JySB//gl9+8Ly5XY47McegzDt\noK4oV+BJjuElUhxCLqAJsEVEuvhMlMM5hkOnD9F8UnNKFSjF6OajyZk1p2NalIxz9Kh1BOPH2xnU\nevWC3NpuQAlB/JZjEJEPLiv4feCnjBYcqGw5vIUmE5rQ6d+dGBg5UCfWCWLOnYOhQ+H996FNG9iy\nBW64wWlVihL4eNJc9XLyAMWut0BjTHFjzCJjzP+MMZuNMS9c77m8zfw/5xM5JpI3It/gjfveCAin\noPHTFDy1RVIHtdtus81Oly61/RJCySnofZGC2sL7eJJj+M1tNQtwA5CR/MJFoJeIbDTGhAPrjDHz\nReT3DJwzw4xYN4L+i/ozrc006pSs46QUJQP8/LMd3C5bNuscatd2WpGiBB+e5BhKua3GA/+IyEWv\nCTDme2CYiCx02+a3HEOiJNJnfh+it0Uz59E53FroVr+Uq3iXNWvsEBZ//QWDBtmOagFQ4VMUv+LP\nHMOujBaSFi6ncxewyldlpMfpC6fpOKMjx88eZ2W3lRTMVdAJGUoG2LIF+ve302n27w9dutjagqIo\n148nHdx8giuMNA3oISKnLv8+KiqKUq7G5QUKFKBSpUpERkYCKTHFjKwfOXOEd/a9wx033MGzhZ/l\n11W/evX83lp3j58Ggh4n15O2xcTEcPAg/PhjJHPnQqtWMYwcCQ89FFh6fbm+ceNGevbsGTB6nFz/\n+OOPvf58CJb1mJgYxowZA5D8vPQGjgy7bYzJBswGfhCRj1P53qehpE0HN9FsUjOevPtJ+tXuFxBJ\n5rSIiYlJviEyOzExMfzf/0Xy9tswYQI89xz07g358zutzP/ofZGC2iIFv03t6W2MfQp/AxwVkV5p\n7OMzxzD3j7lEfR/FsIbDaHtHW5+UoXif48dts9Mvv7Qd0/r2Da1WRoriDXw+tacPqQV0BO4zxmxw\nLX6Z+uzT1Z/SdWZXottFq1MIEmJj4c03oXx5OHQINmyAIUPUKSiKL/G7YxCRpSKSRUQqichdruVH\nX5aZkJjACz+8wOdrPmd5l+XUKF7Dl8V5Fff4emYiySGUK2en1Fy+HDp2jKFECaeVBQaZ9b5IDbWF\n93Es+ewv4s7H0X56e84nnGd51+UUyFnAaUlKOsTG2t7KQ4dCo0bWIdzqakG8f7+z2hQlsxDScz7v\njd1L04lNqVqsKp81+oxsYdqOMVC53CG89lqKQ1AUxTOCOcfgF9YdWEeNkTXo+O+OfNnkS3UKAUps\nLLz1lg0Z/fEHLFsG33yjTkFRnCQkHcP3W7+nwbcNGNZwGC/VfCmgm6NejVCNnx4+bGsFZcvCtm3W\nIYwda5PMaRGqtrge1BYpqC28T0jlGESEj1Z8xJCVQ/ihww9UufnySecUp9m7106lOW6cHfF01Srr\nHBRFCRxCJsdwMeEi3X/ozop9K5jdfjbF8xf3kTrleti+Hd59F2bMgK5d7ZwIN9/stCpFCS38Oedz\nwBN7LpbWU1uTNUtWlnZeSt4ceZ2WpLjYsAEGD4ZFi+D5520eoVAhp1UpipIeQZ9j2HViFzVH1eS2\nQrcxs/3MkHMKwRg/FYGYGNu6qHFjqFbN9kUYMCBjTiEYbeEr1BYpqC28T1DXGFbuW0nLyS3pe29f\nulfr7rScTM/FizBtms0hnDoFL74I330HOXVmVEUJKoI2xzDlf1N4fu7zjG4+msblG/tJmZIaJ0/C\n11/Dxx9D6dJ2YLsmTSBL0NdHFSW4yLQ5BhFh8NLBDF87nPmd5nPnjXc6LSnTsncvfPIJjB4NDz5o\nawdVtCGYogQ9QfVOdyHhAl1mdmH679NZ2W1lpnAKgRg/XbcOOnSASpXs/Mrr18PEib53CoFoC6dQ\nW6SgtvA+QVNjOHb2GC0nt6RAzgIsiVpCnux5nJaUqbhwweYPPv3UjlnUvTt8/nnmnAtBUUKdoMgx\n7Di2g8YTGtO0fFPerfcuYVnCHFSXuThwAL76yi4VKliH0LQphOlPoCgBR6YZK+mX3b9w76h7ebH6\nizICaVAAAA01SURBVHzw4AfqFPyAiB2ion17uP12Ow/CggWwcCE8/LA6BUUJdQLaMYz/dTytprRi\nbIuxPFXlKaflOII/46dnzthEcuXKEBUF1avDX3/ZkNG//uU3GWmiseQU1BYpqC28T8DmGAYsGsDY\nX8ey6PFF3H7D7U7LCWl+/dWGiiZOtM7g7bfhoYe0uamiZFYCNsdQbUQ1ottFUzS8qNNyQpLTp2Hy\nZOsQ9u+34xd16YLOkKYoQYy3cgwB6xjOXDhDrmy5nJYScmzYYJ3B5Mlw773w5JPQoAFkDdi6o6Io\nnhLyyWd1ChZvxE+PHbN5gnvuscnjm2+24aOZM20P5WBxChpLTkFtkYLawvsEySNBuVYuXoQff7Sz\noc2fDw0bwptv2h7K2qpIUZT0CNhQUiDqCgY2bbLO4Ntv7XSZjz9uJ8QpUMBpZYqi+JpMO1aSciX7\n98OUKdYhHDsGjz0Gv/yS/jSZiqIoaRGwOQbFklb89MgRGD4cIiOhYkWbM/joI9i1C956KzSdgsaS\nU1BbpKC28D5aYwgiTp6E77+3/Q2WL7d5g549basinfNAURRvoTmGACcuDubOtaGiBQtsDaFdOzte\nUXi40+oURQkkQr4fQyDq8heHD9umpDNmwJIltr9Bq1bQsiVERDitTlGUQCXk+zFkNvbssZPeREba\n1kTz5tk5DyZMiGHuXNszObM7BY0lp6C2SEFt4X00x+AQiYmwZo0NE82ZY5PGTZvaaTHr1YNcrv59\nes8riuJvNJTkR44ftzWBuXNt57MbboBGjexy773B0wNZUZTARHMMQUBCAmzcaHsez5ljO5/VrZvi\nDEqWdFqhoiihhOYYAhAR2LbNjkvUqpWtEXTqZGdBe/VVO+HNrFnwzDOeOwWNn6agtkhBbZGC2sL7\naPAiA4jYpPHixXZ2s4UL7RwGDzwALVrAsGF2wDpFUZRgQkNJ10BCgu1hvGwZLF1ql/h4qF3bOoMH\nHrAtikyGK3KKoijXjuYY/MChQ7B2rW09tGwZrFoFxYrZRHGtWvZvmTLqCBRFCQyCOsdgjGlgjNlq\njPnDGNPHCQ2Xc/Qo/PQTDBpkO5KVKAG33WbHHzp7Frp3h507YcsWO9HN449D2bK+dwoaP01BbZGC\n2iIFtYX38XuOwRgTBnwK1AP2A2uMMTNF5Hd/lH/2LPz+O2zenLL89hvExsLdd0OVKnaY6vfe88+D\n/2ps3LiRyMhIZ0UECGqLFNQWKagtvI8TyeeqwA4R2QVgjJkENAe85hji421SeMeOS5etW2HvXrj1\nVrjjDrs8/bT9W6qUTRwHGidOnHBaQsCgtkhBbZGC2sL7OOEYigF73db3AdU8OTAx0b7ZHztmh53e\nvz9l2bfP/t271y433WQTwUlLnTrWIZQvD9my+eS6FEVRQgInHINHWeX77oNz5+xy6pR1BrGxdkTR\nQoWgYEGbCE5aHnzQ/r3lFvv2nyOHj6/CT+zatctpCQGD2iIFtUUKagvv4/dWScaY6sBAEWngWu8L\nJIrIu277ON8kSVEUJQgJyuaqxpiswDbgAeAAsBpo76/ks6IoipI+fg8liUi8MeZ5YB4QBoxUp6Ao\nihI4BGQHN0VRFMU5Aq6BZiB2fvMVxpjixphFxpj/GWM2G2NecG0vaIyZb4zZboz5yRhTwO2Yvi7b\nbDXGPOicet9gjAkzxmwwxsxyrWdKWxhjChhjphljfjfGbDHGVMvEtujr+h/5zRgzwRiTI7PYwhgz\nyhjzjzHmN7dt13ztxpjKLvv9YYz55KoFi0jALNjQ0g6gFJAN2AhUcFqXD6/3RqCS63M4NvdSAXgP\neMW1vQ/wjuvzv1w2yeay0Q4gi9PX4WWbvAh8C8x0rWdKWwDfAF1cn7MC+TOjLVzXsxPI4VqfDDye\nWWwB1AbuAn5z23Yt154UFVoNVHV9ngs0SK/cQKsxJHd+E5GLQFLnt5BERA6KyEbX51PYTn7FgGbY\nBwOuvw+7PjcHJorIRbEdBHdgbRYSGGNuARoBXwNJLSsynS2MMfmB2iIyCmxeTkRiyYS2AE4CF4Hc\nroYrubGNVjKFLUTkF+D4ZZuv5dqrGWNuAvKK/H975x9jR1XF8c+3TWuQCi2mIIVGGgTjH2AACxQW\nWrG2NilVEKVGSTCKhpiIGjFIMI2KWkoEJdRfxKiQ+INAwa5GaanQNKWWZQvdKlZDlGKR/oi6ca1o\nZfv1j3uHzjzf21/d9i0755Ns3syZO/fec/bNnLn3vjnHj+dyd5fOacpYcwzNXn47qU19OaJIOoX0\nZLAZOMH27nxoN3BC3p5BsknBeLPP7cD1wIGSrI62mAXslfQ9SVsk3SXpaGpoC9t/A74KPEdyCL22\n11JDW5QYru6N8ucZxCZjzTHUciVc0hTgfuA6233lY05jv4HsMi5sJmkxsMf2kxwcLVSoiy1IU0dn\nA9+wfTawD7ihXKAutpB0KvAJ0tTIDGCKpA+Uy9TFFs0Ygu4jYqw5hueBmaX9mVQ93bhD0iSSU7jH\n9oNZvFvS6/LxE4E9Wd5on5OzbDxwAbBE0p+AHwGXSLqHetpiJ7DTdlfev4/kKHbV0BZvAR6z/Vfb\nLwGrgDnU0xYFw7kmdmb5yQ3yAW0y1hzDE8Bpkk6RNBm4Eljd5j4dNiQJ+C7wtO2vlQ6tJi2wkT8f\nLMmXSposaRZwGmlR6RWP7Rttz7Q9C1gK/Mr2VdTTFruAP0s6PYvmA78FOqmZLYDtwPmSjsrXy3zg\naeppi4JhXRP5+/SP/Ms2AVeVzmlOu1fdm6zCLyL9OucZ4LPt7s9h1rWDNJ/+FPBk/nsHcBzwMPAH\nYA0wtXTOjdk224GF7dbhMNllLgd/lVRLWwBvBrqAraSn5GNrbIvPkBzjNtJi66S62II0ev4LsJ+0\n/vrBkegOnJPt9wxwx2DtxgtuQRAEQYWxNpUUBEEQtJlwDEEQBEGFcAxBEARBhXAMQRAEQYVwDEEQ\nBEGFcAxBEARBhXAMwRElh//9et6eK2nOKNV7aw5dfsvgpQes51lJx41Gn3J9J0p6KOvaOVr1DrMP\n89rVdvDK5IhncAvqje1uoDvvvhXoAzaNQtXXANN86C/mjMqLPZIm2u4nvbD4y9Goc4T9iGs8GDYx\nYghGTA5dUk4g8mlJy/L2o5KWS9os6feSOrJ8nqROSa8HPgp8UikxT4ek9+RkIk9JWt+izVtzmR5J\n782y1aR8FlsKWan8lByltEfSVkmXZfn7smybpOUt2vpUPr5N0nVD1Pl2SV3Ax3ORhcAvKAUGlDQ7\nR02dJWl6TrrymxxFtemIRSmBVXe2zdosO1fSY7mujUUIDUlXS1otaR3pDVkDx0r6mVICl2/m0Agt\n7SDpn5Juzu1tknR8MxsF45N4mghGk3KkRwMTbZ8naRGwDHj7ywXtHZK+BfTZvg1AUg+wwPYLko5p\nrFzSu0mhIs4EpgNdktbbXiKpz/ZZTfr0OeDvts/MdUyVNANYTgpM1wuskfRO2z8ttXUOcDUplv8E\nYHN2Vr2D6DzJ9uxcx0Tgjba362DQswuAO4AltndKuhN42PYtkhYCH2qi93TgO6QcDTt0MGPX77Ks\nX9J84MvAFfnYWcAZtnslzQNmk5JAPUcawVwuadMAdng1sMn2TXl67hrgS03sG4xDYsQQjDblkNmr\n8ucWUtjkwcpvBH4g6cM0f2i5EPihE3uA9aQb3kC8DVhZ7Njuzec84hSxs5+UMe7ihj51AKtsv2h7\nX9blIppPNZV1+Elp+zxSfo2CNwHfBhbbLqIGX0hKSIXth/j/pCwA5wPrbe8o6QAwFbgvj2BuI2Xw\nKlhTKgcpmNqztg+Q4u90kCKXPtrCDvtt/zxvd9P6/xeMQ8IxBIfCS1S/Q0dRvXH+J3/2M4TRqe1r\ngZtIoYO7WywCq8X2QDSWc5N6Gm/4rcoMpvO+0vYi0jRSUd8LwIukJ/SB+tdIY18Kvgiss30GcGnu\nS8G/mtRRbq+Vgyvk/y3JDxCzC7UiHENwKOwGjldKTv4qYPEwz+8DXlPsSDrV9uO2lwF7qcaQB9gA\nXClpQp5euYjBQyqvBT5WamNqPmeupNfm6Z6lpNFHgXNb71IK93w0KRXiBlLs+4F0Lt/ALyHN8Rfy\n3lz+K5LmZvlGoFgrWQBMa6LDZuBipSx/SCrKHEOKvAkp6uZAnJvXRybk9jYMwQ5BTQnHEIwYp7zc\nXyDdYNaQ4uS3LN5kuxO4LC+edgArioVQYKPtnob2HgB6SKGo1wHX5ymlxvrL3AxMKxa1gXlO8elv\nAB4hhTx/wnZnuR6nTHLfz7r9GrjL9tYh6Gx4eV3g33kaqpAXU2CLgZWSZgOfBxZkna8AdpEcZlnv\nvcBHgFVZhx/nQytITmYLMJHqWkejvbuAO3N//2j7gaHYoUV9wTgnwm4HwWFA0vuBk2yvGKTcZKA/\nLyDPAVY6pfMMgrYRjiEI2oikNwD3kkbv+4Fr87seQdA2wjEEQRAEFWKNIQiCIKgQjiEIgiCoEI4h\nCIIgqBCOIQiCIKgQjiEIgiCoEI4hCIIgqPA/GiyMJzijEt8AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7d9ad68>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.3: Page 602"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.3\n",
+ "# Page: 602\n",
+ "\n",
+ "print'Illustration 11.3 - Page: 602\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#***Data***#\n",
+ "T = 1.0; #[m]\n",
+ "di = 0.203;# [m]\n",
+ "n = 1;# [for one impeller]\n",
+ "Density_S = 2300.0;# [kg/cubic m]\n",
+ "Density_p = 2300.0;# [kg/cubic m]\n",
+ "C = 0.150;# [m]\n",
+ "S = 50.0;# [kg]\n",
+ "g = 9.807;# [m/s]\n",
+ "dp = 8*10**(-4);# [m]\n",
+ "N = 8.33; #[r/s]\n",
+ "Temp=25;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# Assume:\n",
+ "Po = 5;\n",
+ "viscosity_L = 8.94*10**(-4);# [kg/m.s]\n",
+ "Density_L = 998.0;# [kg/cubic m]\n",
+ "delta_Density = Density_S-Density_L;# [kg/cubic m]\n",
+ "# By Eqn. 11.23:\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_L);# [m/s]\n",
+ "# By defn. of power number:\n",
+ "# P = Po*Density_m*di**5*Ni**3\n",
+ "# vm = math.pi*T**2*(Z+C)/4\n",
+ "# Solid Volume = S/Density_p;\n",
+ "# If these are substituted in Eqn. 11.22\n",
+ "def f(Z):\n",
+ " return (((Z+C)**(1.3/3))*math.exp(4.35*Z/(T-0.1)))-((1.0839*Po*di**(11.0/2)*N**3*Density_p**(2.0/3))/(g*Vts*T**(7.0/6)*S**(2.0/3)))\n",
+ "Z = fsolve(f,7);# [m]\n",
+ "phi_Sm = 4*S/(math.pi*T**2*(Z+C)*Density_p);\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_L);# [kg/cubic m]\n",
+ "phi_Ss = 0.6;\n",
+ "viscosity_m = viscosity_L/(1-(phi_Sm/phi_Ss))**1.8;# [kg/m.s]\n",
+ "Re = di**2*N*Density_m/viscosity_m;\n",
+ "P = Po*Density_m*N**3*di**5;# [W]\n",
+ "print \"Agitator Power required: \",round(P),\" W\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.3 - Page: 602\n",
+ "\n",
+ "\n",
+ "Agitator Power required: 1113.0 W\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 65
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.4: Page 604"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.4\n",
+ "# Page: 604\n",
+ "\n",
+ "print'Illustration 11.4 - Page: 604\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "#****Data*****#\n",
+ "# b: kerosene c:water\n",
+ "# c:kg water/cubic m liquid\n",
+ "Density_l = 783;# [kg/cubic m]\n",
+ "viscosity_l = 1.7*10**(-3);# [kg/m.s]\n",
+ "Mb = 200;# [kg/kmol]\n",
+ "Density_p = 881;# [kg/cubic m]\n",
+ "m = 0.522;# [(kg water/cubic m kerosene)/(kg water/kg gel)]\n",
+ "Xo = 0;# [kg H2O/kg gel]\n",
+ "#**************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "co = Density_l*4*10**(-5);# [kg water/cubic m]\n",
+ "c1 = Density_l*5*10**(-6);# [kg water/cubic m]\n",
+ "# For Ss minimum:\n",
+ "X1 = c1/m;# [kg H2O/kg gel]\n",
+ "# By Water Balance:\n",
+ "SsminByVl = (co-c1)/(X1-Xo);# [kg gel/cubic m kerosene]\n",
+ "print\"Minimum Solid/Liquid ratio used:\",SsminByVl,\" kg gel/cubic m kerosene\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "# Basis: 1 batch,1.7 cubic m kerosene\n",
+ "Vl = 1.7;# [cubic m]\n",
+ "Ss = 16*1.7;# [kg gel]\n",
+ "V = Ss/Density_p;# [Xol. solid, cubic m]\n",
+ "Vt = 1.7+V;# [Total batch volume, cubic m]\n",
+ "# Take Z = T\n",
+ "T = (Vt*4/math.pi)**(1.0/3);# [m]\n",
+ "# To allow for the adequate free board:\n",
+ "h = 1.75;# [Vessel height,m]\n",
+ "# Use a six-blade disk impeller.\n",
+ "# From Fig. 11.26:\n",
+ "# dp corresponding to 14 mesh:\n",
+ "dp = 1.4/1000;# [m]\n",
+ "TBydi1 = 2.0;\n",
+ "Value1 = (Density_p-Density_l)/Density_l;\n",
+ "# From Fig. 11.26:\n",
+ "TBydi2 = 4.4;\n",
+ "TBydiAv = (TBydi1+TBydi2)/2.0;\n",
+ "di = T/TBydiAv;# [m]\n",
+ "fr = 0.6;# [settled volume fraction of solids]\n",
+ "Vs = V/fr;# [cubic m]\n",
+ "depth = Vs/((math.pi*(T**2))/4);# [m]\n",
+ "# The depth of settled solid is negligible.\n",
+ "# Locate the turbine 150mm from the bottom of the tank.\n",
+ "C = 0.150;# [m]\n",
+ "\n",
+ "# Power:\n",
+ "# Use the sufficient agitator power to lift the solids to 0.6 m above the bottom of the vessel.\n",
+ "Z_prime = 0.6-C;# [m]\n",
+ "# The properties of the slurry in 0.6 m above the bottom of the vessel.\n",
+ "Vm = 0.6*math.pi*T**2.0/4;# [square m]\n",
+ "phi_Sm = V/Vm;# [vol fraction solid]\n",
+ "# From Eqn. 11.24:\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_l);# [kg/cubic m]\n",
+ "# From Eqn. 11.25:\n",
+ "phi_Ss = 0.8;\n",
+ "viscosity_m = viscosity_l/(1-(phi_Sm/phi_Ss))**1.8;# [kg/m.s]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "# From Eqn. 11.23:\n",
+ "delta_Density = Density_p-Density_l;# [kg/cubic m]\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_l);# [m/s]\n",
+ "# From Eqn. 11.22:\n",
+ "n = 1.0;\n",
+ "P = (g*n*Density_m*Vm*Vts)*(phi_Sm**(2.0/3))*(TBydiAv**(1.0/2))*math.exp((4.35*Z_prime/T)-0.1);# [W]\n",
+ "# Assume:\n",
+ "Po = 5.0;\n",
+ "N = (P/(Po*Density_m*di**5))**(1.0/3);# [r/s]\n",
+ "# Use:\n",
+ "N1 = 2.0;# [r/s]\n",
+ "Re = di**2.0*N1*Density_m/viscosity_m;\n",
+ "# From fig. 6.5: Po = 5\n",
+ "# Hence our assumption was right.\n",
+ "print\"Power delivered to the slurry: \",round((P*(N1/N)**3),2),\" W\\n\",\n",
+ "print\"Power to the motor will be larger, depending on the efficiency of the motor and speed reducer.\\n\"\n",
+ "\n",
+ "# Mass transfer: \n",
+ "# From Eqn. 11.28:\n",
+ "Rep = (dp**(4.0/3))*(P/Vl)**(1.0/3)*(Density_l**(2.0/3)/viscosity_l);\n",
+ "# From Eqn. 2.44:\n",
+ "Temp = 298;# [K]\n",
+ "phi = 1.0;\n",
+ "Va = 0.0756;# [Chapter 2 notation]\n",
+ "Dl = ((117.3*10**(-18))*((phi*Mb)**0.5)*Temp)/(viscosity_l*(Va**(0.6)));\n",
+ "ScL = viscosity_l/(Density_l*Dl);\n",
+ "if dp<(2.0/1000):\n",
+ " # From Eqn. 11.29:\n",
+ " ShL = 2+(0.47*Rep**0.62*(1/TBydiAv**0.17)*ScL**0.36);\n",
+ "else:\n",
+ " # From Eqn. 11.30:\n",
+ " ShL = 0.222*Rep**(3.0/4)*ScL**(1.0/3);\n",
+ "\n",
+ "kL = ShL*Dl/dp;# [m/s]\n",
+ "apS = (math.pi*dp**2)/(math.pi*dp**3*Density_p/6.0);\n",
+ "apL = apS*16;# [square m/cubic m liquid]\n",
+ "Ratio = Ss/(Vl*m);\n",
+ "# From Eqn. 11.40:\n",
+ "thetha = math.log((co/c1)/(1+(1/Ratio)-(1/Ratio)*(co/c1)))/((1+(1/Ratio))*kL*apL);\n",
+ "print\"Contacting Time required: \",round(thetha/60,2),\" min\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.4 - Page: 604\n",
+ "\n",
+ "\n",
+ "Minimum Solid/Liquid ratio used: 3.654 kg gel/cubic m kerosene\n",
+ "\n",
+ "\n",
+ "Power delivered to the slurry: 350.05 W\n",
+ "Power to the motor will be larger, depending on the efficiency of the motor and speed reducer.\n",
+ "\n",
+ "Contacting Time required: 8.3 min\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 69
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.5: Page 606"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.5\n",
+ "# Page: 606\n",
+ "\n",
+ "print'Illustration 11.5 - Page: 606\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "import numpy.linalg as lin\n",
+ "#*****Data******#\n",
+ "Vl = 1.1*10**(-4);# [cubic m/s]\n",
+ "Ss = 0.0012;# [kg/s]\n",
+ "Density_p = 1120;# [kg/cubic m]\n",
+ "dp = 8*10**(-4);# [m]\n",
+ "Ds = 2*10**(-11);# [square m/s]\n",
+ "Dl = 7.3*10**(-10);# [square m/s]\n",
+ "m = 0.2;# [(kg Cu2+/cubic m soln)/(kg Cu2+/kg resin)]\n",
+ "T = 1;# [m]\n",
+ "#********************#\n",
+ "\n",
+ "Z = T;# [m]\n",
+ "# The particles will be lifted to the top of the vessel.\n",
+ "Z_prime = 0.5;# [m]\n",
+ "viscosity_l = 8.94*10**(-4);# [kg/m.s]\n",
+ "Density_l = 998;# [kg/cubic m]\n",
+ "delta_Density = Density_p-Density_l;# [kg/cubic m]\n",
+ "g = 9.80;# [m/square s]\n",
+ "# From Eqn. 11.23:\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_l);\n",
+ "Vm = math.pi*T**2*Z/4.0;# [cubic m]\n",
+ "Vs = Ss/Density_p;# [cubic m/s]\n",
+ "phi_Sm = Vs/(Vs+Vl);# [vol fraction]\n",
+ "# From eqn. 11.24:\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_l);# [kg/cubic m]\n",
+ "# From Eqn. 11.22:\n",
+ "n = 1.0;\n",
+ "di = 0.3;# [m]\n",
+ "P = (g*n*Density_m*Vm*Vts)*(phi_Sm**(2.0/3))*((T/di)**(1.0/2))*math.exp((4.35*Z_prime/T)-0.1);# [W]\n",
+ "# To estimate the impeller speed:\n",
+ "# Assume:\n",
+ "Po = 5;\n",
+ "N = (P/(Po*Density_m*di**5))**(1.0/3);# [r/s]\n",
+ "Re = di**2*N*Density_m/viscosity_l;\n",
+ "# From fig. 6.5: Assumption of Po was correct.\n",
+ "print\"Speed of the impeller:\",round(N,2),\" r/s\\n\"\n",
+ "vT = (math.pi/4.0)*T**2*Z;# [cubic m]\n",
+ "vL = vT*(1-phi_Sm);\n",
+ "# From Eqn. 11.28:\n",
+ "Rep = (dp**(4.0/3))*(P/vL)**(1.0/3)*(Density_l**(2.0/3)/viscosity_l);\n",
+ "ScL = viscosity_l/(Density_l*Dl);\n",
+ "if dp<(2.0/1000):\n",
+ " # From Eqn. 11.29:\n",
+ " ShL = 2+(0.47*Rep**0.62*((di/T)**0.17)*ScL**0.36);\n",
+ "else:\n",
+ " # From Eqn. 11.30:\n",
+ " ShL = 0.222*Rep**(3.0/4)*ScL**(1.0/3);\n",
+ "\n",
+ "ShL = 130.3;# Value wrong in book\n",
+ "kL = ShL*Dl/dp;# [m/s]\n",
+ "# Since the dispersion is uniform throughout the vessel, the residence time for both liquid and solid is same.\n",
+ "thetha = vL*(1-phi_Sm)/Vl;# [s]\n",
+ "# From Fig. 11.27:\n",
+ "abcissa = m*kL*dp/(2*Ds*Density_p);\n",
+ "Parameter = 2*m*kL*thetha/(dp*Density_p);\n",
+ "co = 100*Density_l/10.0**6;# [kg/cubic m]\n",
+ "EMS = 0.63;\n",
+ "Xo = 0;\n",
+ "# From Eqn. 11.44:\n",
+ "# (1): X1-(EMS/m)*c1 = 0\n",
+ "# Solute balance:\n",
+ "# (2): (Ss*X1)+(vL*c1) = (vL*co)+(Xo*Ss)\n",
+ "a = [[1 ,-(EMS/m)],[Ss ,Vl]];\n",
+ "b = [0,(Vl*co)+(Xo*Ss)];\n",
+ "soln =lin.solve(a,b);\n",
+ "X1 = soln[0];\n",
+ "c1 = soln[1];\n",
+ "print\"Effluent Cu2+ conc. \",round(c1*10**(6)/Density_l,2),\" ppm\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.5 - Page: 606\n",
+ "\n",
+ "\n",
+ "Speed of the impeller: 2.71 r/s\n",
+ "\n",
+ "Effluent Cu2+ conc. 2.83 ppm\n"
+ ]
+ }
+ ],
+ "prompt_number": 78
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.6: Page 616"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.6\n",
+ "# Page: 616\n",
+ "\n",
+ "print'Illustration 11.6 - Page: 616\\n\\n'\n",
+ "from scipy.optimize import fsolve\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# a: air b:silica\n",
+ "Density_a = 1.181;# [kg/cubic m]\n",
+ "Density_b = 671.2;# [kg/cubic m]\n",
+ "kSap = 0.965;# [kg H2O/square m s]\n",
+ "Y1 = 0.005;# [kg H2O/kg dry air]\n",
+ "Y2 = 0.0001;# [kg H2O/kg dry air]\n",
+ "Ss = 0.680;# [square m/s]\n",
+ "Gs = 1.36;# [kg/square m.s]\n",
+ "X2 = 0;# [kg H2O/kg dry air]\n",
+ "# Equilibrium function:\n",
+ "m = 0.0185;\n",
+ "#************#\n",
+ "X1 = (Gs*(Y1-Y2)/Ss)+X2;# [kg H2O/kg dry air]\n",
+ "def f77(X):\n",
+ " return m*X \n",
+ "Y2_star = f77(X2);# [kg H2O/kg dry gel]\n",
+ "Y1_star = f77(X1);# [kg H2O/kg dry gel]\n",
+ "deltaY = ((Y1-Y1_star)-(Y2-Y2_star))/math.log((Y1-Y1_star)/(Y2-Y2_star));\n",
+ "NtoG = (Y1-Y2)/deltaY;\n",
+ "# If the fixed bed data are to be used for estimating the mass transfer coeffecient for a moving bed of solids\n",
+ "va = Ss/Density_b;# [m/s]\n",
+ "vb = Gs/Density_a;# [m/s]\n",
+ "rel_v = va+vb;# [relative velocity,m/s]\n",
+ "G_prime = rel_v*Density_a;# [relative mass velocity of air,kg/square m s]\n",
+ "HtG = Gs/(31.6*G_prime**0.55);# [m]\n",
+ "HtS = Ss/kSap;# [m]\n",
+ "# By Eqn. 11.52:\n",
+ "HtoG = HtG+(m*Gs/Ss)*HtS;# [m]\n",
+ "Z = NtoG*HtoG;# [m]\n",
+ "print\"Height of continuous countercurrent isothermal absorber for drying: \",round(Z,4),\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.6 - Page: 616\n",
+ "\n",
+ "\n",
+ "Height of continuous countercurrent isothermal absorber for drying: 0.2511 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 81
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.7: Page 619"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.7\n",
+ "# Page: 619\n",
+ "\n",
+ "print'Illustration 11.7 - Page: 619\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import numpy.linalg as lin\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# a: C2H4 b:C3H8\n",
+ "# The equlibrium curve is plotted in Fig.11.33 (Pg 620)\n",
+ "# C3H8 is more strongly adsorbed component and composition in the gas and adsorbate are expressed as weight fraction C3H8.\n",
+ "Ma = 28;# [kg/kmol]\n",
+ "Mb = 44.1;# [kg/kmol]\n",
+ "xaF = 0.6;# [mole fraction]\n",
+ "xbF = 0.4;# [mole fraction]\n",
+ "xa1 = 0.05;# [mole fraction]\n",
+ "xa2 = 0.95;# [mole fraction]\n",
+ "#***************#\n",
+ "\n",
+ "xF = xbF*Mb/((xbF*Mb)+(xaF*Ma));# [wt. fraction C3H8]\n",
+ "xb1 = 1-xa1;# [mole fraction]\n",
+ "x1 = xb1*Mb/((xb1*Mb)+xa1*Ma);# [wt. fraction C3H8]\n",
+ "xb2 = 1-xa2;# [mole fraction]\n",
+ "x2 = xb2*Mb/((xb2*Mb)+(xa2*Ma));# [wt. fraction C3H8]\n",
+ "# Basis: 100 kg feed gas\n",
+ "F = 100.0;# [kg]\n",
+ "# (1): R2+PE = F [From Eqn. 11.63]\n",
+ "# (2): (R2*x2)+(PE*x1) = (F*xF) [From Eqn. 11.64]\n",
+ "# Solving simultaneously:\n",
+ "a = [[1, 1],[x2 ,x1]];\n",
+ "b = [F,(F*xF)];\n",
+ "soln = lin.solve(a,b);\n",
+ "R2 = soln[0];# [kg]\n",
+ "PE = soln[1];# [kg]\n",
+ "# Point F at xF and point E1 at x1 are located on the diagram.\n",
+ "# From the diagram:\n",
+ "N1 = 4.57;# [kg carbon/kg adsorbate]\n",
+ "# The minimum reflux ratio is found as it is for the extraction.\n",
+ "delta_Em = 5.80;\n",
+ "Ratio = (delta_Em/N1)-1;# [kg reflux gas/kg product]\n",
+ "R1_m = Ratio*PE;# [kg]\n",
+ "E1_m = R1_m+PE;# [kg]\n",
+ "B_m = N1*E1_m;# [kg carbon/100 kg feed]\n",
+ "Ratio1 = 2*Ratio;\n",
+ "# From Eqn. 11.58:\n",
+ "N_deltaE = (Ratio1+1.0)*N1;# [kg carbon/kg adsorbate]\n",
+ "# Point deltaE is located on the diagram:\n",
+ "R1 = Ratio1*PE;# [kg]\n",
+ "E1 = R1+PE;# [kg]\n",
+ "B = N1*E1;# [kg]\n",
+ "N_deltaR = -(B/R2);# [kg carbon/kg adsorbate]\n",
+ "# Random lines such as the delta_RK are drawn from detaR, and the intersection of equilibrium curves are projected downward in the manner shown to provide the adsorption section operating curve.\n",
+ "# Similarly random lines such as delta_EJ are drawn from deltaE, and the intersections are projected downwards to provide the enriching section operating curve.\n",
+ "# Data = [x x_star]\n",
+ "Data = numpy.array([[0.967 ,0.825],[0.90, 0.710],[0.80 ,0.60],[0.70, 0.50],[0.60 ,0.43],[0.512 ,0.39],[0.40 ,0.193],[0.30, 0.090],[0.20, 0.041],[0.0763, 0.003]]);\n",
+ "Val = zeros(10);\n",
+ "for i in range(0,10):\n",
+ " Val[i] = 1/((Data[i,0])-Data[i,1]);\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x\");\n",
+ "plt.ylabel(\"1 / (x-x*)\");\n",
+ "plt.title(\"Graphical Integraion\");\n",
+ "# The area under the curve between x1 & xF, for the enriching section:\n",
+ "Area1 = 2.65;\n",
+ "# The area under the curve between xF & x2, for the adsorption section:\n",
+ "Area2 = 2.67;\n",
+ "r = Ma/Mb;\n",
+ "# From Eqn.11.66:\n",
+ "# For the enriching section:\n",
+ "NtoG1 = Area1-math.log((1+(r-1)*x1)/(1+(r-1)*xF));\n",
+ "# For the adsortion section:\n",
+ "NtoG2 = Area2-math.log((1+(r-1)*x1)/(1+(r-1)*xF));\n",
+ "NtoG = NtoG1+NtoG2;\n",
+ "print\"Number of transfer units: \",NtoG"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.7 - Page: 619\n",
+ "\n",
+ "\n",
+ "Number of transfer units: 5.77763695068\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVeXV9/HvAkRUlEERuw42gqJiASsyXDE+PppoYuIT\nuyimqDFqsEUjNkoIUVFjNBoFG7bYS8Q6yIugooKAIqAg2ECUomBBWe8f9znucZhy5pS9T/l9rmsu\nOHUvFmf2Ovte+763uTsiIlK5WiUdgIiIJEuFQESkwqkQiIhUOBUCEZEKp0IgIlLhVAhERCqcCoGU\nHDO7xMxub+LxaWa2fyG3UUrykQ8pbyoEkjMzO9LMXjKzL8xsgZlNNLNTCrjJJie/uHt3d3+hUNsw\nsxozm5/Jm5hZtZmtMrPEftfylA8pYyoEkhMzGwCMAIYBG7n7RsDvgX3NrG0jr8n1c2c5vj6JbRQk\nZjNrXYj3lcqiQiBZM7MOwKXAKe7+gLsvB3D3ye5+rLt/k3reKDO73syeMLMvgBozO8TMXjezpWY2\nz8wurvO+6W/RvzGzD8zsw1TBSXOgrZndambLUkMfu9d5/Vwz+3Hq763N7AIzm5167iQz2yz12NWp\nbS9N3b9flnmoNbPLzOz/pbYxxsw2SD2c/ia+xMw+N7M9U685yczeNLPPzOxJM9uyzvsdaGZvm9kS\nM7vOzMaaWf/UY/3MbLyZXWlmi4CLzWxrM3vOzBaZ2Sdmdkfq/6ahfKxpZiNSef3AzK5KF+zUkc77\nZvan1JHdh2bWL5ucSGlRIZBc7A2sCTycwXOPAi539/bAeOAL4Fh37wAcApxiZofVe00NsC1wIHBe\nemdG+HZ9KHAX0AF4BPhHndc50dDOn4Ajgf919/WAE4EvU4+9DOwCdARGA/c1dhST4b+vH9AZaAuc\nnbq/d+rPDu6+rru/lPp3/hn4BdAJGJf6t2BmnYD7gPOA9YG3CXmuO1TVC3gnta0hqXwMBjYBugFb\nAJc0ko8LU6/fJfXTC/hLneduBKwHbAr0B66rW1SkPKkQSC46AYvcfVX6DjN70cwWm9mKet+wH3L3\nCQDu/rW7j3X36anbU4G7gT713v9Sd//S3acBIwk727Rx7v6kh8Wy7iDs1BpyMnChu89Kb8vdP0v9\n/U53X+zuq9z9SkJR65pFHhwY6e6z3f0r4F6gRzolDTz/98BQd387lbuhQI/UUcHBwDR3fygV1zXA\nx/Ve/6G7X5d6/Ct3f8fdn3X3le6+CLiK1XOZdjRwmbsvSj33UuC4Oo+vTD3+nbv/l1Cws8mJlBAV\nAsnFp0CnumP+7r6Pu3dMPZa+34EfNFfNbE8ze97MFprZEuB3wAb8UN3XzCN8S01bUOfvK4B2jfQe\nNid8e16NmZ2dGp5ZYmaLCUcXnRr5tzan7s76S6B9E8/dCrg6VTAXE3IFsBnhW/379Z5f/3b9XG5k\nZnenhnWWArezei7TNgXeq3O7fl4/rVvYCblt6t8iZUCFQHIxAfga+HkWrx0NPARs7u5VwA2s/nnc\nst7fP8hiO/MJw0s/YGa9gXOAI9y9KlW8lpL/pm5DZx/NA37r7h3r/KyTOmL6iFC80nFa3duNvOcQ\n4Duge2qo7Tga/93+EKiuc3vL1H1SwVQIJGvuvoQwtPBPM/ulma1rZq3MrAewTp2nNrRzbQ8sdvdv\nzKwXYcii/g7uL2a2lpntSBh/vyeLMP8NXG5m21qws5mtn9r+t8AiM2trZgMJY+PZaqyAfAKsArap\nc98NwAVmtgOEpruZHZF67AlgJzM7zMzaAKcBGzez7fbAcmBZqhF+ThPPvYuQ106pfsRAwhGEVDAV\nAsmJuw8nNGTPJQyPfEzY0Z1LOGKAHzYr004FLjOzZcBFNLyTHwvMBp4Bhrv7M028X2Pn/V9JGLN/\nivCN/yagHTAGeBKYCcwlDOfMq/d+Tc1XaGr737/W3VcQGrnjU0NBvdz9IcLptnenhnKmAv+Tev4i\n4Ajgb8AiQvN3EuHIq7G4LgV2S/37HgXubyL2Qan3eyP1Myl1X2P/LqkAVqgL05jZLYSzQRa6+071\nHhsADAc6pRt3ImlmVg28C7SpN15dcVJ9j/nA0e4+Nul4pDwV8ohgJHBQ/TvNbAvgJ/ywYSUiKal5\nBFVmtiZwQeruiUnGJOWtYIXA3ccBixt46ErCsIFIUyp5iGJvwpDYJ4Sj6p+7+9dNv0Qke23i3Fhq\nIs377v5GOBlCZHXuPheo2KUT3P1Swri/SCxiKwRmtjbhMPcnde+Oa/siItKwOI8ItiGcvzwldTSw\nOfBq6iyKhXWfaGaVPCwgIpI1d2/xF+zYTh9NTe3fyN27uHsXwmzJ3eoXgTrP1487F198ceIxFMuP\ncqFcKBdN/2SrYIXAzO4CXgS2N7P5ZnZivafoW38G5s6dm3QIRUO5iCgXEeUidwUbGnL3o5p5fOtC\nbVtERDKnmcVFrl+/fkmHUDSUi4hyEVEuclewmcW5MDMvxrhERIqZmeHF3CwuNu7hp9jV1tYmHULR\nUC4iykVEuchdxRaCQw6BCROaf56ISLmr2KGhs86CDTeECy5o/rkiIqVAQ0Mt1LcvPP980lGIiCSv\nYgtB794wcSJ8XeRLeWn8M6JcRJSLiHKRu4otBB07wvbbwyuvJB2JiEiyKrZHAHD22dChA1x0UcE3\nJSJScOoRZKGmBnRUKSKVrqILQe/e8NJLxd0n0PhnRLmIKBcR5SJ3FV0IOnSAbt1C01hEpFJVdI8A\n4NxzYZ114OKLY9mciEjBqEeQJc0nEJFKV/GFYL/9YNIk+OqrpCNpmMY/I8pFRLmIKBe5q/hCsO66\n0L271h0SkcpV8T0CgPPPh7Zt4bLLYtukiEjeqUeQg759NZ9ARCqXCgGw777w2muwYkXSkaxO458R\n5SKiXESUi9ypEADt28POO6tPICKVST2ClAsvBDMYNCjWzYqI5I16BDmqqdF8AhGpTCoEKfvuC1Om\nwPLlSUfyQxr/jCgXEeUiolzkToUgZe21YdddYfz4pCMREYmXegR1XHQRfPcdDBkS+6ZFRHKmHkEe\naN0hEalEKgR17L03TJ0Kn3+edCQRjX9GlIuIchFRLnKnQlDHWmvB7rurTyAilUU9gnouuQS+/BKG\nDUtk8yIiWVOPIE90HWMRqTQqBPXstRdMnw7LliUdSaDxz4hyEVEuIspF7lQI6mnXDnr2hHHjko5E\nRCQe6hE04LLLwplDw4cnFoKISIupR5BHmk8gIpVEhaABvXrB22/DkiVJR6Lxz7qUi4hyEVEucqdC\n0IA114Q991SfQEQqQ0F7BGZ2C3AIsNDdd0rdNxz4KfAN8A5worsvrfe6RHsEEK5L8NlncOWViYYh\nIpKxYu0RjAQOqnffU8CO7r4LMBP4c4FjyIquYywilaKghcDdxwGL6933tLuvSt18Cdi8kDFkq2dP\nmDUrHBUkSeOfEeUiolxElIvcJd0jOAl4IuEYGtS2bViETn0CESl3bZLasJldCHzj7qMberxfv35U\nV1cDUFVVRY8ePaipqQGibwCFvt23bw3PPw8dOsSzvYZu19TUxLo93S6d22nFEk9St9P3FUs8cd6u\nra1l1KhRAN/vL7NR8AllZlYNPJpuFqfu6wf8Bvixu3/VwGsSbxYDTJgAv/99uISliEixK9Zm8WrM\n7CDgHOCwhopAMdljD5gzBz79NLkY6n/7q2TKRUS5iCgXuStoITCzu4AXga5mNt/MTgKuBdoDT5vZ\n62b2z0LGkIs11ggXtR87NulIREQKR2sNNWPYMPjgA7jmmqQjERFpWskMDZUarTskIuVOhaAZu+0G\n8+bBJ58ks32Nf0aUi4hyEVEucqdC0Iw2bWC//dQnEJHypR5BBv7+93D20HXXJR2JiEjj1CMoIF3H\nWETKmQpBBnbdNZw5tGBB/NvW+GdEuYgoFxHlIncqBBlo3Rp699ZRgYiUJ/UIMnTllWE10uuvTzoS\nEZGGqUdQYJpPICLlSoUgQzvvDAsXwkcfxbtdjX9GlIuIchFRLnKnQpCh1q1h//3VJxCR8qMeQQuM\nGAFvvgk33ph0JCIiq1OPIAa6jrGIlCMVghbYaadwbYIPPohvmxr/jCgXEeUiolzkToWgBVq1gj59\ndFQgIuVFPYIWuvbacOnKf/876UhERH5IPYKYaD6BiJQbFYIW2mEHWLYsXKMgDhr/jCgXEeUiolzk\nToWghVq10mqkIlJe1CPIwnXXwauvwi23JB2JiEhEPYIYqU8gIuVEhSAL3brBihUwd27ht6Xxz4hy\nEVEuIspF7lQIsmCmPoGIlA/1CLJ0ww0wYQLcemvSkYiIBOoRxCx9RFDk9UpEpFkqBFnq2hW++Qbm\nzCnsdjT+GVEuIspFRLnInQpBlsx09pCIlAf1CHJw440wbhzcfnvSkYiIqEeQiPQRQQnULBGRRqkQ\n5GDbbUMReOedwm1D458R5SKiXESUi9ypEORAfQIRKQfqEeTo5pvh2Wdh9OikIxGRSqceQUI0n0BE\nSp0KQY623hratIGZMwvz/hr/jCgXEeUiolzkToUgR1p3SERKXcF6BGZ2C3AIsNDdd0rdtz5wD7AV\nMBf4P3df0sBrS6ZHADByJIwZA3ffnXQkIlLJirFHMBI4qN595wNPu/v2wLOp2yWvb1/1CUSkdBWs\nELj7OGBxvbsPBdLrdd4K/LxQ249TdTW0awczZuT/vTX+GVEuIspFRLnIXdw9go3cfUHq7wuAjWLe\nfsFoPoGIlKqCziMws2rg0To9gsXu3rHO45+5+/oNvK6kegQQrkvw+ONw771JRyIilSrbHkGbQgTT\nhAVmtrG7f2xmmwALG3tiv379qK6uBqCqqooePXpQU1MDRIeCxXS7XTuora3BHcaOTT4e3dZt3S7/\n27W1tYwaNQrg+/1lNjI6IjCzbkA1sAp4z90zGg1v4Ijgb8Cn7j7MzM4Hqtx9tYZxKR4RAGyzDTz8\nMHTvnr/3rK2t/f4DUOmUi4hyEVEuInk/IjCzLsBZwMHAB8CHgAGbmNnmwGPAVe4+t5HX3wX0ATqZ\n2XxgIPBX4F4z60/q9NGWBlzM0vMJ8lkIREQKrdEjAjO7F7gJqHX3lfUeWwPoC5zs7nnfmZfqEcEd\nd8CDD8L99ycdiYhUomyPCLToXB69/z706AELF0IrzdkWkZgVZEKZmQ1O/Xl5toFVks03h44dYdq0\n/L1nujEkykVdykVEuchdc99bXzaz64BJcQRTDjSfQERKTVM9gouB9YHjgNuBz9z90liCKtGhIQjX\nJbjvvtArEBGJU96Hhurs9PcJN+MpAqWupgbGjoVVq5KOREQkM80NDY1MzRkYGUcw5WDTTWHDDeGN\nN/Lzfhr/jCgXEeUiolzkrslC4O6TzWwQMD19n5l1MLNRhQ6slKlPICKlpNnTR81sKPA/wImEReKu\nBf7h7tcWLKgS7hEA3HMP3HknPPJI0pGISCUp6DwCMzsAeJSwrHQfd5/V8hBbEFSJF4KPP4Zu3WDR\nImjdOuloRKRSFOzCNGbWB7gGuBwYC1xjZpu1PMTKsfHGsMkmMHly7u+l8c+IchFRLiLKRe4yWX10\nOPArd38TwMwOB54DuhYysFKXXndo992TjkREpGmZ9AjauPu39e7r5O6LChZUiQ8NQZhLcOut8Nhj\nSUciIpUilrWGzOwxd/9pSzfSUuVQCBYuhO22g08/hTZxX/VBRCpSXBevV28gQ507wxZbwOuv5/Y+\nGv+MKBcR5SKiXOSupYUgx91aZdF8AhEpBZn0CDq7+8J693V197cLFlQZDA1BuC7BzTfDE08kHYmI\nVIJCDg2NM7NfpzZiZjYAeKilG6pEffrA+PGwcmXzzxURSUomhaAGONbM7iPMI+gK9CxkUOWiUyeo\nroZXX83+PTT+GVEuIspFRLnIXbOFwN0/AsYQViGtBka5+xcFjqtspOcTiIgUq0x6BM8AHwGnA1sA\nNwMvuPvZBQuqTHoEAA89BNdfD2PGJB2JiJS7gs0jMLNfuPuDdW63Af7s7gW7fGU5FYLPPgvDQ59+\nCmuskXQ0IlLO8t4sNjMDqFsEUre/TReB9HOkceuvD9tsA6+8kt3rNf4ZUS4iykVEuchdUz2CWjM7\nx8y2r/+AmXU1s/MIzWNphuYTiEgxa+qaxWsCxwBHAd2BzwED2gPTgDuB0e7+Td6DKqOhIQjXJbj2\nWnj66aQjEZFyVujrEbQGOqVuLnL371q6oRYFVWaFYMmSsNzEokWw5ppJRyMi5aqgaw25+3fuviD1\nU9AiUI6qqmD77bPrE2j8M6JcRJSLiHKRu5auNSRZUp9ARIpVi5ahjku5DQ0BPP44XHEFPPdc0pGI\nSLnKe4/AzMYATwL/dfcZOcbXsqDKsBAsXQqbbRb6BO3aJR2NiJSjQvQI+gFLgEvM7HUzu8HMDjOz\ndbINspJ16AA77AAvvdSy12n8M6JcRJSLiHKRu0YLgbt/5O4j3f1IYA/gttSfT5nZs2Z2blxBlgut\nOyQixSirHoGZbQgc6O535j+k8hwaAvjvf2HYMBUDESmMWK5ZHJdyLQSffw6bbAKffAJrrZV0NCJS\nbuK6ZrHkYN11oXt3mDgx89do/DOiXESUi4hykTsVgphpPoGIFJtsewQnuvvIAsSTfv+yHBqCcF2C\nwYPhhReSjkTy4eWXYffdoXXrpCMRiX9o6LIsXweAmf3ZzKab2VQzG51a4K4i7LsvvPYarFiRdCSS\nqxkzYO+9YdSopCMRyU1T1yOY2tgP0DnbDZpZNfAbYDd33wloDRyZ7fuVmvbtYZdd4MUXM3u+xj8j\nxZaLQYPgV7+Ciy6CZcvi3Xax5SJJykXu2jTxWGfgIGBxA49luBtr0DJgJbC2mX0HrA18kMP7lZz0\nfIIDDkg6EsnWjBnw1FMwezaccQYMHRp+REpRU0tM3AKMdPdxDTx2l7sflfVGzX4LXAF8CYxx9+Pq\nPV62PQKAZ56Biy+G8eOTjkSydeyx0K0bXHghfPgh7LxzWF22S5ekI5NKVjLzCMxsG+BRoDewFLgP\n+E/dyWnlXghWrIDOnWHBAlhHC3aUnLffhv32g3fegfXWC/cNHgyTJ8N99yUbm1S2bAtBU0NDhbIH\n8KK7fwpgZg8A+xCuePa9fv36UV1dDUBVVRU9evSgpqYGiMYES/X2yy/X0qULjB9fw4EHNv38uuOf\nxRJ/UrfT9yUdzx/+UMuhh8J660WP77EH3HRTDS+8AKtWFT6eyZMnc+aZZyby7y+22yNGjCir/UNL\nbtfW1jIqdbZCen+ZjSSOCHYh7PR7Al8Bo4CX3f26Os8p6yMCgIEDYeXK5seVa2trv/8AVLpiyEVD\nRwNp99wTlhB55ZXCn05aDLkoFspFpGSGhgBSC9adAKwCXgNOdveVdR4v+0Lw3HNhfHnChKQjkZY4\n7jj40Y/C/1197qFInHwynHhi/LGJlFQhaE4lFIIvv4QNN4SPPgpLT0jxmzkzzANp6Ggg7ZVX4LDD\nwpGD/l8lblprqMSstVaYkdrcmUN1x8crXdK5GDQonCraWBEA6NkTfvIT+OtfCxtL0rkoJspF7lQI\nEqR1h0rHzJlhGfHTT2/+uUOGwL/+BXPnFjwskbzQ0FCCxo6Fc84J69VIcTv+eNh+e/jLXzJ7/uWX\nw7RpoYEsEhf1CErQV19Bp05hQlJTww2SrHRvYPbscMnRTKxYEZrKo0eHBrJIHNQjKEHt2kGvXjBu\ntbnbEY1/RpLKxaBB8Mc/Zl4EANZeO5xKeuaZsGpV/mPS5yKiXOROhSBhuo5xcZs1K/QG/vjHlr/2\nyCNhjTXg9tvzH5dIPmloKGHjxsFZZ8GkSUlHIg054QTYdtuwwmg2XnoJDj88nE7avn1+YxOpTz2C\nEvX116FPMH8+VFUlHY3UNWsW7LNPy3oDDTn22LAY3eWX5y82kYaoR1Ci1lwT9tyz8T6Bxj8jcedi\n0KBwumguRQDCMiL//Ce8915+4gJ9LupSLnKnQlAENJ+g+MyaBY8/nl1voL4ttggF5fzzc38vkULQ\n0FARGD8+7Cheey3pSCStXz/YeuuwOGA+LF8eTie9554w3CRSCOoRlLBvvgl9grlzYf31k45GZs8O\n1yKeNSu/fZs77oBrroGJE6GVjsWlANQjKGFt24YdzwsvrP6Yxj8jceUi3RvId/P+6KPBDO68s/nn\nNkefi4hykTsVgiKh+QTFYfZseOyx/PQG6mvVCkaMgD//OQwViRQLDQ0ViYkT4Xe/gylTko6ksp14\nIlRXh2tKF8rRR8N228GllxZuG1KZ1CMocStXwgYbwJw54U+J3+zZsNde4c9CzumYNw923RVefx22\n3LJw25HKox5BiVtjjbCw2dixP7xf45+RQudi8ODC9Abq23JLOO20MESULX0uIuWcizvugGeeKfx2\nVAiKSN++6hMkZfZsePTRcOGZOJx7bij6ulSpNGbxYhgwADp3Lvy2NDRURF5+Gfr3h6lTk46k8px4\nImy1FVxySXzbvO22MOP4xRd1Oqms7uyzYelSuOmmzF+jHkEZ+Pbb0B+YPTtcz1ji8c47YZmPQvcG\n6lu1Kmz3zDPhmGPi264Uv3S/ato02HjjzF+nHkEZaNMmXMSkbp+gnMc/W6pQuRg8GP7wh/gX/Uuf\nTnr++S0/nVSfi0g55uK888KwUEuKQC5UCIqM1h2K1zvvwCOPhG/lSdh33/Dz978ns30pPmPHwquv\nxvuZ1NBQkXn11XB93OnTk46kMpx0UjiLJ87eQH3vvQe77RbmkGy+eXJxSPJWrYKePcO1zI88suWv\nV4+gTHz3XVh3aMYM2GijpKMpb+++Gy4VOmsWdOyYbCx/+UsoCLqaWWW79Va44YZwAoG1eHeuHkHZ\naN0aeveOTiMtx/HPbOU7F4MHh/P5ky4CEPoEzz0XrmiWCX0uIuWSi+XL4cIL4aqrsisCuVAhKEJa\nd6jw3n0XHn44ud5Afe3bh8J05plQoQfDFe9vf4P99w9nC8VNQ0NF6PXX4aijwvCQFEb//mE8vpjW\n+0mPDw8YENYjksrx/vuwyy7hmiRbbZX9+6hHUEZWrQp9gunTYZNNko6m/BRTb6C+cePCnIIZM2Dt\ntZOORuJy/PHhSnaDB+f2PuoRlJFWrcIhYm1t+Yx/5kO+cjFkCJx6avEVAQj9ob32av50Un0uIqWe\ni0mTwnpCSV7KVIWgSGk+QWG8+y489FDx9AYaMmwYXH11GC6Q8uYOZ50Fl10G666bXBwaGipSU6bA\nEUfAzJlJR1JeTj4ZNt00/OIVswsuCIXgttuSjkQK6T//gcsvD72B1q1zfz/1CMrMqlVh1cEpU2Cz\nzZKOpjzMmROasTNnFv+1oT//HLp2DUcvvXolHY0UwtdfQ7duYVG5H/84P++pHkGZadUK+vSBf/6z\nNulQikauY8FDhsAppxR/EYAwTDBoUOOnk5b6uHg+lWourrkGunfPXxHIhQpBEevbNzSRvvsu6UhK\n35w58MADYTy2VJxwAnz1FdxzT9KRSL598knoBQ0fnnQkgYaGitiXX8Ihh4Tzim++WWvW5+I3vwkr\nOV5+edKRtMzYseHUwhkzYK21ko5G8uXUU8NVCa++Or/vqx5BmVq+HA4+GLbfHv71LxWDbMyZA3vs\nEeYNlMKwUH2/+hX06BHWI5LSN316WD3g7bfz/3ksqR6BmVWZ2X/M7C0ze9PMEphUXRpeeaWWxx+H\nt94K6+JUcn3Mdiw4PW+gFIsAhKUHrroKPvwwuq9Ux8ULodRycfbZYU2hYvo8JvX98mrgCXfvBuwM\nvJVQHCWhfXt44gmYPBn++MfKLgYtNXdu6fUG6tt66zC0dcEFSUciuXryyXANjFNPTTqSH4p9aMjM\nOgCvu/vWTTxHQ0MNWLoUfvKTcCGTK6+Mf4XCUvTb34bTcAcNSjqS3CxbFk4nffTRMMwlpefbb8N6\nQkOHwqGHFmYbpTQ01AX4xMxGmtlrZnaTmWlVlQx06ABjxsALL4RL2alWNm3uXLj//tI+Gkhbb73Q\n6NbqpKXrppvCNUZ+9rOkI1ldEkcEewATgH3c/RUzGwEsc/eBdZ7jJ5xwAtXV1QBUVVXRo0cPampq\ngGhMsBJu1x3/TD/+8MO1DBgA//d/NQweDGPHFk+8hbydvi/T548eXUPnznDAAcURf663e/euYffd\n4bDDaunYcTJnptbJKJb4kro9YsSIot8/fPEF9O9fw5gxsGRJ/t6/traWUaNGAVBdXc2ll16a1REB\n7h7rD7AxMKfO7f2Ax+o9xyV4/vnnG7z/k0/cu3d3Hzgw3niS1FguGjJ3rvsGG7gvWlS4eJLw3HPu\nW23l/uSTzycdStFoyeciKeec437SSYXfTmrf2eL9ciKnj5rZC8DJ7j7TzC4B1nL38+o87knEVWoW\nLgyTzo46SqcW1ve734WlvHNd1rcYHX44VFXBiBFhyEiKW3rZ86lTC7+sfCn1CABOB+40symEs4aG\nJBRHSevcGZ59Fu64A/7616SjKR7vvRcW8/rTn5KOpDBuvDH0Cbp1C9c4XrUq6YikKeeeG/pUxXxt\nkUQKgbtPcfee7r6Lux/u7kuTiKMU1B0fb8jGG4dr3d58M1xxRTwxJaW5XKQNGQK//z1ssEFh40lK\np05wwgm13H9/WK9mv/3C6pWVKtPPRRLGjYOXXy7+LyVtkg5AcrfppuHaBX36QJs2cMYZSUeUnPTR\nQCUs373XXuFi9yNHhtnnhx0WTpPdcMOkIxMIR2pnnRWO1ot9eRAtMVFG3nsvTF0/++wwC7kSpY8E\nyrE30JQlS+Dii2H0aBg4MKyy2kZf8xJ1++3wj3/AhAnxLQ2jtYYECOvq1NSEKey//W3S0cTrvfdg\nt93C0UC5Dgs1Z9q0MPt80aIwbJQ641Bitnw5/OhHYeXYffaJb7ul1iyWDLV0/LNLl9AzGDQIbrml\nMDElpblcDB0azhaqhCLQWC66dw8nEAwcGJax/vWvYf78eGOLWzH2CP7+97ACQJxFIBcqBGVom23C\ndQwGDoRbb006mnjMmwf33Vf8Tbk4mIUVS996K3wr3XXXMFT21VdJR1YZPvggHI2V0pl8GhoqYzNm\nhKsf/e2cHgWGAAAJbUlEQVRvcMwxSUdTWKecAh07hjOG5IfmzAkF8o03wiqmP/uZ1qkqpH79wqmi\nQ4fGv231CKRB06fDAQeEyUe//nXS0RTGvHnhW+/bb4dTK6VhTz0Vziirrg6fh65dk46o/Lz6Kvz0\np+GzmMRkP/UIylSu45877hgWqjvjjLAAWylrLBdDh4bGeCUVgWw+FwceCFOmhC8G++4bJjotW5b/\n2OJWLD0C93DkdemlpTfjW4WgAuy8c1gH/dRT4eGHk44mv+bNg3vvhQEDko6kNLRtG3I1bVq4bq5m\nJ+fPgw/C4sXQv3/SkbSchoYqyKuvholHN98cDl/LwSmnhHV3khiPLQcTJ8Lpp4fr5/7jH+H0W2m5\nr78OR9/XXx+uGZIU9QgkIy+/HIrAbbfBQQclHU1u5s8P1/JVbyA3q1aF2ckXXhhmJw8erHy21BVX\nhNn9jz2WbBzqEZSpfI9/9uoVhoeOPx6efjqvb11w9XMxdGi4hGMl7rTy+blo1SoMZ8yYAe3awQ47\nhKODb7/N2yYKKu4ewYoVMGkSjBoVhtkOPDBcNGj48FjDyCsVggq0997hOr7HHBO+xZSi+fPDrE31\nBvKnqgquvjpMSHzggTBMNHZs0lEl57vvwiz1+++HSy6BX/4Stt8+TFjs3z/M1encOVw17q23Qr+l\nVGloqIKNHQtHHBEWadt//6SjaZlTTw1nZpTSpJ1S4h52gAMGhC8Ow4fDFlskHVVhuMPHH4frBUyd\nGhrpU6eGnftGG8FOO/3wZ7vtQk+lGKlHIFl59tlwYZsHHwynFJaCdG9gxgyttFloK1bAsGFw3XVh\nJc0BA8LwUan6/PMwtya900//wOo7/B13hHXXTTbellIhKFO1tbXfX6u0UJ56Co49Fh55JCxtXKzS\nuTjttPALWslHA3F8Luoq5tnJDeVi5cowrFN3Zz9tGixYEIZw6u7wu3cP1/Uoln9PLrItBFqoVjjw\nwND4OuywcNZDz55JR9S4+fPh7rvD0YDEp0uXcNSYnp18/fVw5ZWw7bbJxuUeLtn6xBM/3OnPnBmG\nstI7+xNOCH9usw20bp1szMVIRwTyvUcfhZNPhv/+t3jPJz/tNGjfPgxXSDK++SacVTRoUBhqSVqn\nTtE3+/SOf4cdYO21k44sfhoakrx48MEwSWvMGNhll6Sj+aH33w8xqTcg0jDNIyhTcZ8j/YtfwLXX\nhslm06bFuulmnX56LSefrCIAxbO+TjFQLnKnHoGs5ogjwjnUBx4YziqK+/xo97B2/hdfhJ/ly0OT\n79ln4cYb441FpBJoaEgadccdcN55YYJRY0sWf/NNtMNO77Rbcrux57RtG3oB66wT/mzfPsyGPvXU\neHMgUkp01pDk3bHHhmUG+vQJV7pqaIftHk7lrL/Tbuh2hw6w2WZNP2eddcKPLrwuEh8dERS5uM8X\nb8hrr8HSpQ3vwNu2jS+OYshFsVAuIspFREcEUjDFeiqpiOSHjghERMqETh8VEZGsqBAUOZ0jHVEu\nIspFRLnInQqBiEiFU49ARKRMqEcgIiJZUSEochr/jCgXEeUiolzkToVARKTCqUcgIlIm1CMQEZGs\nJFYIzKy1mb1uZo8mFUMp0PhnRLmIKBcR5SJ3SR4RnAG8CWgMqAmTJ09OOoSioVxElIuIcpG7RAqB\nmW0OHAz8G2jxeFYlWbJkSdIhFA3lIqJcRJSL3CV1RHAVcA6wKqHti4hISuyFwMx+Cix099fR0UCz\n5s6dm3QIRUO5iCgXEeUid7GfPmpmQ4DjgG+BdsB6wP3ufnyd56hvICKShWxOH010HoGZ9QHOdvef\nJRaEiEiFK4Z5BPr2LyKSoKKcWSwiIvFJ9IjAzA4ysxlmNsvMzmvkOdekHp9iZrvGHWNcmsuFmR2T\nysEbZjbezHZOIs44ZPK5SD2vp5l9a2aHxxlfnDL8HalJTc6cZma1MYcYmwx+RzqZ2ZNmNjmVi34J\nhFlwZnaLmS0ws6lNPKdl+013T+QHaA3MBqqBNYDJQLd6zzkYeCL19z2BiUnFWwS52BvokPr7QZWc\nizrPew54DPhl0nEn+LmoAqYDm6dud0o67gRzcQkwNJ0H4FOgTdKxFyAXvYFdgamNPN7i/WaSRwS9\ngNnuPtfdVwJ3A4fVe86hwK0A7v4SUGVmG8UbZiyazYW7T3D3pambLwGbxxxjXDL5XACcDvwH+CTO\n4GKWSS6OJpx19z6Auy+KOca4ZJKLjwhnIZL681N3/zbGGGPh7uOAxU08pcX7zSQLwWbA/Dq330/d\n19xzynEHmEku6uoPPFHQiJLTbC7MbDPCTuD61F3l2ujK5HOxHbC+mT1vZpPM7LjYootXJrm4CdjR\nzD4EphCWsalELd5vtiloOE3L9Je3/jmx5fhLn/G/ycz6AicB+xYunERlkosRwPnu7mZmlO/ExExy\nsQawG/BjYG1ggplNdPdZBY0sfpnk4gJgsrvXmNk2wNNmtou7f17g2IpRi/abSRaCD4At6tzeglC5\nmnrO5qn7yk0muSDVIL4JOMjdmzo0LGWZ5GJ34O5QA+gE/K+ZrXT3R+IJMTaZ5GI+sMjdvwS+NLMX\ngF2AcisEmeRiH2AwgLu/Y2ZzgK7ApFgiLB4t3m8mOTQ0CdjOzKrNrC3wa6D+L/IjwPEAZrYXsMTd\nF8QbZiyazYWZbQk8ABzr7rMTiDEuzebC3bd29y7u3oXQJzilDIsAZPY78jCwX2pZ97UJzcE3Y44z\nDpnkYgZwAEBqTLwr8G6sURaHFu83EzsicPdvzewPwBjCGQE3u/tbZva71OP/cvcnzOxgM5sNLAdO\nTCreQsokF8BAoCNwfeqb8Ep375VUzIWSYS4qQoa/IzPM7EngDcIijje5e9kVggw/F0OAkWY2hfAl\n91x3/yyxoAvEzO4C+gCdzGw+cDFhiDDr/aYmlImIVLhiWGJCREQSpEIgIlLhVAhERCqcCoGISIVT\nIRARqXAqBCIiFU6FQESkwqkQiIhUOBUCkQykLoIzxczWNLN1Uhc+2SHpuETyQTOLRTJkZpcD7YC1\ngPnuPizhkETyQoVAJENmtgZh8bMvgb1dvzxSJjQ0JJK5TsA6QHvCUYFIWdARgUiGzOwRYDSwNbCJ\nu5+ecEgieZHkhWlESoaZHQ987e53m1kr4EUzq3H32oRDE8mZjghERCqcegQiIhVOhUBEpMKpEIiI\nVDgVAhGRCqdCICJS4VQIREQqnAqBiEiFUyEQEalw/x8ZY/mHSBnVIwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7dc14a8>"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.8: Page 627"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.8\n",
+ "# Page: 627\n",
+ "\n",
+ "print'Illustration 11.8 - Page: 627\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#******Data******#\n",
+ "rate = 0.1;# [kg/s]\n",
+ "conc = 3.0;# [kg vapour/100cubic m]\n",
+ "Density_p = 720.0;# [kg/cubic m]\n",
+ "Density_bed = 480.0;# [kg/cubic m]\n",
+ "capablity = 0.45;# [kg vapour/kg carbon]\n",
+ "dp = 0.0028;# [m]\n",
+ "time = 3.0;# [h]\n",
+ "#********************#\n",
+ "\n",
+ "Vap_adsorbed = time*3600.0*rate;# [kg]\n",
+ "C_required = Vap_adsorbed*1.0/capablity;\n",
+ "# Two beds will be needed: one adsorbing and another regenerated.\n",
+ "totC_required = 2*C_required;# [kg]\n",
+ "print\"Amount of carbon required: \",totC_required,\" kg\\n\",\n",
+ "Vol = (C_required/Density_bed);\n",
+ "# Assume:\n",
+ "Z = 0.5;# [m]\n",
+ "Area = Vol/Z;# [square m]\n",
+ "# From Eqn. 6.66:\n",
+ "T = 35.0;# [OC]\n",
+ "viscosity_air = 1.82*10**(-5);# [kg/m.s]\n",
+ "Density_air = (29/22.41)*(273.0/(T+273));\n",
+ "e = 1-(Density_bed/Density_p);\n",
+ "G = rate*(100.0/conc)*(Density_air/(Area));# [kg/square m.s]\n",
+ "Re = dp*G/viscosity_air;\n",
+ "Z = 0.5;# [m]\n",
+ "def f78(delta_p):\n",
+ " return ((delta_p/Z)*(e**3*dp*Density_air)/((1-e)*G**2))-(150*(1-e)/Re)-1.75\n",
+ "delta_p = fsolve(f78,7);\n",
+ "print\"The pressure drop is:\",round(delta_p,2),\" N/square m\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.8 - Page: 627\n",
+ "\n",
+ "\n",
+ "Amount of caron required: 4800.0 kg\n",
+ "The pressure drop is: 1413.31 N/square m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 88
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.9: Page 636"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.9\n",
+ "# Page: 636\n",
+ "\n",
+ "print'Illustration 11.9 - Page: 636\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Yo = 0.00267;# [kg H2O/kg dry air]\n",
+ "Yb = 0.0001;# [kg H2O/kg dry air]\n",
+ "Ye = 0.024;# [kg H2O/kg dry air]\n",
+ "Z = 0.61;# [m]\n",
+ "G_prime = 0.1295;# [kg/square m.s]\n",
+ "#******************#\n",
+ "\n",
+ "# The equilicrium data is plotted in Fig. 11.45 (Pg 637)\n",
+ "# The gel is initially \"dry\" and the effluent air initially of so low a humidity asto be substantially dry, so that the operating line passes through the origin of the figure\n",
+ "# The operating line is then drawn to intersect the equilibrium curve.\n",
+ "# Data = [Y[kg H2O/kg dry air] Y_star[kg H2O/kg dry air]]\n",
+ "Data =numpy.array([[0.0001, 0.00003],[0.0002, 0.00007],[0.0004 ,0.00016],[0.0006, 0.00027],[0.0008, 0.00041],[0.0010, 0.00057],[0.0012 ,0.000765],[0.0014, 0.000995],[0.0016, 0.00123],[0.0018 ,0.00148],[0.0020 ,0.00175],[0.0022 ,0.00203],[0.0024 ,0.00230]])\n",
+ "Val1 = zeros(13);\n",
+ "# Val1 = [1/(Y-Y_star)]\n",
+ "for i in range(0,13):\n",
+ " Val1[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "# Graphical Integration:\n",
+ "plt.plot(Data[:,0],Val1);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"Y(kg H20 / kg dry air)\");\n",
+ "plt.ylabel(\"1 / (Y-Y_star)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area under The curve between Y = Yb and Y = Y:\n",
+ "Area = [0 ,0.100 ,2.219 ,2.930 ,3.487 ,3.976 ,4.438 ,4.915, 5.432, 6.015, 6.728 ,7.716 ,9.304];\n",
+ "# The total number of transfer unit corresponding to adsorption zone:\n",
+ "NtoG = 9.304;\n",
+ "Val2 = zeros(13);\n",
+ "Val3 = zeros(13);\n",
+ "# Val2 = [(w-wb)/wo]\n",
+ "# Val3 = [Y/Yo]\n",
+ "for i in range(0,13):\n",
+ " Val2[i] = Area[i]/NtoG;\n",
+ " Val3[i] = Data[i,0]/Yo;\n",
+ "\n",
+ "# Eqn. 11.74 can be arranged as follows:\n",
+ "# f = integrate((1-(Y/Yo)),(w-wb)/wa,0,1)\n",
+ "\n",
+ "plt.plot(Val2,Val3);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"(w-wb) / wo\");\n",
+ "plt.ylabel(\"Y / Yo\");\n",
+ "plt.title(\"Break through curve\");\n",
+ "plt.show()\n",
+ "# From area above the curve of scf(2):\n",
+ "f = 0.530;\n",
+ "\n",
+ "Gs = G_prime;# [kg/square m.s]\n",
+ "# From Illustration: 11.6\n",
+ "kYap = 31.6*G_prime**0.55;# [kg H2O/cubic m s delta_Y]\n",
+ "kSap = 0.965;# [kg H2O/cubic m s delta_X]\n",
+ "# From Fig. 11.48:\n",
+ "Xt = 0.0858;# [kg H2O/kg gel]\n",
+ "# From Eqn. 11.76:\n",
+ "Ss = Yo*Gs/Xt;# [kg/square m.s]\n",
+ "m = 0.0185;# [average slope of equilibrium curve]\n",
+ "# From Eqn. 11.51 & Eqn. 11.52:\n",
+ "HtG = Gs/kYap;# [m]\n",
+ "HtS = Ss/kSap;# [m]\n",
+ "HtoG = HtG+(m*Gs/Ss)*HtS;# [m]\n",
+ "# From Eqn. 11.79:\n",
+ "Za = NtoG*HtoG;# [m]\n",
+ "# From Eqn. 11.74:\n",
+ "Degree = (Z-(f*Za))/Z;\n",
+ "Density_bed = 671.2;# [Illustration 11.6, kg/cubic m]\n",
+ "mass_gel = Z*Density_bed;# [kg/square m]\n",
+ "# At saturation point the gel contins:\n",
+ "Y1 = mass_gel*Degree*Xt;# [kg H2O/square m cross section]\n",
+ "# The air introduces:\n",
+ "Y2 = Gs*Yo;# [kg/square m s]\n",
+ "print\"Time to reach breakpoint is: \",round((Y1/(Y2*3600)),4),\" h\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.9 - Page: 636\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEZCAYAAABICyhRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8nPP5//HXWzZqOyKExHKCICSElLRqOZSgNKG2+Npi\na0m1pZugX+qrIpZqaWtfEiohlh+hkViag9oO4RDSSIKQRMSWRWzZrt8fn3vck8mcfWbuWa7n43Ee\nZ+7P3HPfn7kymevcn+2WmeGcc84V0hpJV8A551zl8eTjnHOu4Dz5OOecKzhPPs455wrOk49zzrmC\n8+TjnHOu4Dz5uIol6Y+S7mzk+Tck7Z3Pc5QySVtI+lySkq6LKz2efFzRkDRY0ouSlkiaL+kFSWfm\n8ZSNTnIzs95m9nS+ziGpRtLs5hxEUrWklZIS+z8raZak/VLbZva+ma1rPlnQtYInH1cUJP0G+Ctw\nOdDVzLoCZwA/kNSxgde09fNbiL/Yc32OvNRZUrtm7Gb5Or+rPJ58XOIkrQ9cDJxpZg+Y2RcAZlZv\nZseb2dJov5GSrpc0XtISoEbSIZJelbRI0vuSLko7bupq4XRJcyV9ECW5FAM6SholaXHUzNYv7fWz\nJP0wetxO0vmSZkb7viype/TcNdG5F0Xle7YyDrWS/k/Sf6JzTJS0YfR06gpsYdTU1T96zSmSpkr6\nTNIESVukHW+ApLckLZT0D0lPSTo1em6IpGclXS3pE+AiSVtJ+rekTyR9LOmf0b8NUdPhFsDD0fl/\nm3k1JqmbpHGSPpU0Q9JpaXX5o6SxDcXaVR5PPq4YfB/oBDzUjH2PBS4xs3WAZ4ElwPFmtj5wCHCm\npEEZr6kBtgEGAOemEgrhr/iBwBhgfWAc8Pe01xlxs9mvgcHAwWa2HnAy8FX0XB2wM7ABMBq4t6Gr\ntWa+vyHAxkBH4LdR+V7R7/Wjpq4Xo/d5HnA40AV4JnovSOoC3AucC3QG3iLEOb2JbHfg7ehcw6N4\nXApsCvQCNgf+CGBmJwDvA4dG578qS93vjvbZFDgSGC5p37Tnf0zDsXYVxpOPKwZdgE/MbGWqQNJz\nkhZI+jLjSuJBM3sewMy+MbOnzOzNaHsK4Qtwn4zjX2xmX5nZG8DthC/4lGfMbELUb/FPQhLJ5jTg\nAjObkTqXmX0WPb7LzBaY2Uozu5qQSLdrRRwMuN3MZprZ18BYoG8qJFn2PwO4zMzeimJ3GdA3uvr5\nEfCGmT0Y1eta4MOM139gZv+Inv/azN42syfNbJmZfQL8hdVjmZWkzYE9gHPNbKmZvQbcApyYtltz\nY+0qgCcfVww+Bbqk9+GY2R5mtkH0XKrcgFU66CX1lzRJ0keSFgI/AzZkVemveR/olrY9P+3xl8Ca\nDfQlbUa4SlhN1AQ1NWreWkD4y75LA++1KekJ4itgnUb23RK4JkrSCwixAuhOuPqYk7F/5nZmLLtK\nulvSHEmLgDtZPZYN6QZ8lmoyjbwf1SWlubF2FcD/4V0xeB74BjisFa8dDTwIbGZmVcANrP653iLj\n8dxWnGc2oeluFZL2An4HHGVmVVHCXETuO+azjSh7H/ipmW2Q9rN2dGU4j5AwU/VU+nYDxxwOrAB6\nR82YJ7BqLBsb1fYB0FlSerLcgtUTnnOAJx9XBMxsIWHAwXWSjpC0rqQ1JPUF1k7bNdsX+jrAAjNb\nKml34H9Y/UvyD5LWkrQjoT/lnlZU8xbgEknbKNhJUufo/MuBTyR1lHQhsF4rjp/SUNL6GFgJbJ1W\ndgNwvqQdIAzckHRU9Nx4oI+kQZLaAz8HNmni3OsAXwCLo8EUv8t4fn7G+b9lZrOB54DLJHWStBNw\nCqF5zbnVePJxRcHMriR06v+e0PT0IeHL9feEKyNYdQBAylDg/yQtBv6X7InlKWAm8ARwpZk90cjx\nGvrr/mpCH8xjhCubm4E1gYnABGA6MIvQVPZ+xvEau2Jo7PzfvtbMviQMBng2ambb3cweJAxNvztq\nJpsCHBjt/wlwFHAF8AlhAMHLhCvMhup1MbBr9P4eBu7P2OcyQiJfIOnXWep7LFBNuAp6ALjQzP7d\nyPl8flAFUz7nh0m6jTAC6SMz65NW/gvCl8YK4F9mdm5Ufh7hr6UVwC/N7LGovB8wkvCffbyZ/Soq\n7wTcQfgP8ylwjJm9l7c35EqKpGrgHaB9+mCGShT1rcwG/sfMnkq6Ps7l+8rnduCg9IJo6OVAYCcz\n6w1cFZXvABwD7BC95rqonRrgeuBUM+sJ9JSUOuapwKdR+V8IfwU65/h2nk9V9Efa+VHxC0nWybmU\nvCYfM3sGWJBRfCZheOiyaJ+Po/JBwJhomOcsQjNJf0mbAuuaWV203x3EHdMDgVHR4/uB1PwN51Iq\nuWnn+4T/Rx8TWiAOM7NvGn+Jc4WRRJ9PT2BvhXW7aiV9NyrvxqojY+YQhmlmls8lHr7ZnWi4qJkt\nBxZFncDOYWazzKxdpTa5mdnFZtbFzNYzs++b2UtJ18m5lPYJnXMDM/uepN0InbhbJVAP55xzCUki\n+cwhjITBzF6K1obqQrii2Txtv82ifeey6vyEVDnRc1sAH0TDSddPzTpPJ6mSm16cc67VzCwvi8km\n0ez2ILAfgKRtgY7RsNBxwOBorkQPQvNcnZl9SJh30D8agHAC8Rpg44CTosdHAk82dFIz8x8zLrro\nosTrUCw/HguPhcei8Z98yuuVj6QxhLWhNlS4b8mFwG3AbZKmAEuJ1n4ys6mSxgJTCZP2hlr87ocS\nhlqvRRhqPSEqvxW4U9IMwlDrwfl8P+Vg1qxZSVehaHgsYh6LmMeiMPKafMzs2AaeOqGB/YcTlvjI\nLJ8M9MlS/g1wdFvq6JxzrvB8hYMKM2TIkKSrUDQ8FjGPRcxjURh5XeGgWEiySnifzjmXS5KwMhpw\n4BJUW1ubdBWKhsci5rGIeSwKw5OPc865gvNmN+ecc1l5s5tzzrmy4smnwnh7dsxjEfNYxDwWheHJ\nxznnXMF5n49zzrmsvM/HOedcWfHkU2G8PTvmsYh5LGIei8Lw5OOcc67gvM/HOedcVt7n45xzrqx4\n8qkw3p4d81jEPBYxj0VhePJxzjlXcN7n45xzLivv83HOOVdWPPlUGG/PjnksYh6LmMeiMDz5OOec\nKzjv83HOOZeV9/k455wrK558sli2DM45B8rxYsnbs2Mei5jHIuaxKIy8Jh9Jt0maL2lKlud+I2ml\npM5pZedJmiFpmqQBaeX9JE2JnrsmrbyTpHui8hckbZmLenfoALffDp99loujOeecy5TXPh9JewFL\ngDvMrE9a+ebAzcB2QD8z+0zSDsBoYDegO/AE0NPMTFIdcJaZ1UkaD1xrZhMkDQV6m9lQSccAh5vZ\n4Cz1aHGfzy67wC23QL9+rXrrzjlX8kq2z8fMngEWZHnqauD3GWWDgDFmtszMZgEzgf6SNgXWNbO6\naL87gMOixwOBUdHj+4Ef5qru1dXw7ru5Oppzzrl0Be/zkTQImGNmr2c81Q2Yk7Y9h3AFlFk+Nyon\n+j0bwMyWA4vSm/HaokcPmDUrF0cqLt6eHfNYxDwWMY9FYbQv5MkkfQc4HzggvbgQ5x4yZAjV1dUA\nVFVV0bdvX2pqaoD4w5a+vWwZvPtuw8/7dulvpxRLfZLcrq+vL6r6JLldX19fVPUp5HZtbS0jR44E\n+Pb7Ml/yPs9HUjXwsJn1kdSH0JfzZfT0ZoQrmf7AyQBmNiJ63QTgIuA9YJKZ9YrKjwX2NrMzo33+\naGYvSGoPzDOzjbLUocV9Pg8/DNdfD+PHt/QdO+dceSjZPp9MZjbFzLqaWQ8z60FoTtvVzOYD44DB\nkjpK6gH0BOrM7ENgsaT+kgScADwUHXIccFL0+EjgyVzVtVyb3Zxzrhjke6j1GOA5YFtJsyWdnLHL\nt5cjZjYVGAtMBR4FhqZdrgwFbgFmADPNbEJUfiuwoaQZwNnAsFzVvbo6JJ9ym+uT2eRUyTwWMY9F\nzGNRGHnt8zGzY5t4fquM7eHA8Cz7TQb6ZCn/Bji6jdXMap11YO21Yf582GSTfJzBOecql6/t1ojd\ndoO//Q2+9708VMo554pc2fT5lJoePXyuj3PO5YMnn0aU46ADb8+OeSxiHouYx6IwPPk0wlc5cM65\n/PA+n0ZMmAB//jM8/ngeKuWcc0XO+3wSUo7Nbs45Vww8+TRiyy1h9mxYsSLpmuSOt2fHPBYxj0XM\nY1EYnnwaseaa0LkzzJuXdE2cc668eJ9PE/bYAy6/HPbaK8eVcs65Iud9PgnyuT7OOZd7nnyaUG6D\nDrw9O+axiHksYh6LwvDk0wSf6+Occ7nnfT5NePJJuOQS8D+GnHOVxvt8ElRuzW7OOVcMPPk0YfPN\nw1DrZcuSrklueHt2zGMR81jEPBaF4cmnCR06hPv5zJmTdE2cc658eJ9PM+yzD1x0Eey3Xw4r5Zxz\nRc77fBLmc32ccy63PPk0QzkNOvD27JjHIuaxiHksCsOTTzP4XB/nnMst7/NphqefhvPPh//8J4eV\ncs65Iud9PgnzKx/nnMstTz7N0L07fPIJfP110jVpO2/PjnksYh6LmMeiMPKafCTdJmm+pClpZVdK\n+q+k1yQ9IGn9tOfOkzRD0jRJA9LK+0maEj13TVp5J0n3ROUvSNoyH++jXbsw2fT99/NxdOecqzx5\n7fORtBewBLjDzPpEZQcAT5rZSkkjAMxsmKQdgNHAbkB34Amgp5mZpDrgLDOrkzQeuNbMJkgaCvQ2\ns6GSjgEON7PBWerRpj4fgP33h9/9Dg48sE2Hcc65klGyfT5m9gywIKPscTNbGW2+CGwWPR4EjDGz\nZWY2C5gJ9Je0KbCumdVF+90BHBY9HgiMih7fD/wwL28En+vjnHO5lHSfzynA+OhxNyB9EZs5hCug\nzPK5UTnR79kAZrYcWCSpcz4qWi5zfbw9O+axiHksYh6Lwmif1IklXQAsNbPRhTjfkCFDqK6uBqCq\nqoq+fftSU1MDxB+2xra//BLefbf5+/t28W+nFEt9ktyur68vqvokuV1fX19U9Snkdm1tLSNHjgT4\n9vsyX/I+z0dSNfBwqs8nKhsCnA780My+jsqGAZjZiGh7AnAR8B4wycx6ReXHAnub2ZnRPn80sxck\ntQfmmdlGWerQ5j6f55+Hs8+GF19s02Gcc65klGyfTzaSDgJ+BwxKJZ7IOGCwpI6SegA9gToz+xBY\nLKm/JAEnAA+lveak6PGRwJP5qrfP9XHOudzJ91DrMcBzwHaSZks6BfgbsA7wuKRXJV0HYGZTgbHA\nVOBRYGja5cpQ4BZgBjDTzCZE5bcCG0qaAZwNDMvXe9lkE1iyJPyUsswmp0rmsYh5LGIei8LIa5+P\nmR2bpfi2RvYfDgzPUj4Z6JOl/Bvg6LbUsbkk2HJLeO892HHHQpzROefKl6/t1gIHHww//zkcemgO\nKuWcc0WurPp8Slm5DLd2zrmkefJpgXKYaOrt2TGPRcxjEfNYFIYnnxbwEW/OOZcb3ufTAi+/DD/9\nKbzySg4q5ZxzRc77fIqEX/k451xuePJpgQ03hOXLYeHCpGvSet6eHfNYxDwWMY9FYXjyaQHJR7w5\n51wueJ9PCw0cCCefDIcfnpPDOedc0fI+nyLiVz7OOdd2nnxaqNQHHXh7dsxjEfNYxDwWheHJp4XK\nYaKpc84lzft8Wui11+D442HKlJwczjnnilY++3w8+bTQokXQvTt8/nkY/eacc+Uq0QEHkjpIOkTS\n5ZLukXR39PiQ6O6hFWX99aFjR/j006Rr0jrenh3zWMQ8FjGPRWE0mnwk/S/wEnAoMI1wL55RwFvA\nj4GXJf0h35UsNt7v45xzbdNos5ukgcDDDbVZSVoDONTMxuWpfjmRy2Y3gCOOgGOOgaMLchs755xL\nRmLNblFSWUPSVQ08v7LYE08++Fwf55xrmyb7fMxsBbCn5N3rKaU818fbs2Mei5jHIuaxKIzmDhio\nBx6SdC/wZVRmZvZAfqpV3Hr0gEceSboWzjlXupo11FrSyOjhKjub2cl5qFPO5brPZ+pU+MlPYNq0\nnB3SOeeKjs/zaaNcJ58vvoAuXcLvNXyNCOdcmUp8YVFJa0k6S9J1km6XdJuk2/JRoVKw9tqw3now\nf37SNWk5b8+OeSxiHouYx6Iwmvt3+51AV+AgoBbYHFjS1IuiJDVf0pS0ss6SHpc0XdJjkqrSnjtP\n0gxJ0yQNSCvvJ2lK9Nw1aeWdoomvMyS9IGnLZr6fNivlQQfOOZe05vb51JtZX0mvm9lOkjoA/zGz\n/k28bi9CkrrDzPpEZVcAn5jZFZLOBTYws2GSdgBGA7sB3YEngJ5mZpLqgLPMrE7SeOBaM5sgaSjQ\n28yGSjoGONzMBmepR06b3QAGD4Yf/xiOOy6nh3XOuaKReLMbsDT6vUhSH6AK2KipF5nZM8CCjOKB\nhFUSiH4fFj0eBIwxs2VmNguYCfSXtCmwrpnVRfvdkfaa9GPdD/ywme+nzXyuj3POtV5zk8/NkjoD\nfwDGAVOBK1p5zq5mluotmU9ozgPoBsxJ228O4Qoos3xuVE70ezaAmS0nJMfOraxXi5Rqs5u3Z8c8\nFjGPRawcY/HCC7BiRdK1WFVz5/k8aWafAU8BPQAkbdXWk0dNagUZbjdkyBCqq6sBqKqqom/fvtTU\n1ADxh60l24sXw6xZrX+9bye/nVIs9Ulyu76+vqjqk+R2fX19UdWnrdt33VXL0KEwf34N7do1vn9t\nbS0jR44E+Pb7Ml+a2+fzipntmlE22cz6NeO11YT14VJ9PtOAGjP7MGpSm2Rm20saBmBmI6L9JgAX\nAe9F+/SKyo8F9jazM6N9/mhmL0QrbM8zs9WaA/PR5zNjBhx0ELz9dk4P65xzOfX738PKlXBV1kXS\nGpfPPp9Gr3wk9QJ2AKok/QQQYaLpesCarTznOOAk4PLo94Np5aMlXU1oTusJ1EVXR4sl9QfqgBOA\nazOO9QJwJPBkK+vUYltsAXPmhEvZdu0KdVbnnGu+b76BkSPh2WeTrsnqmurz2ZZw64T1o9+HRr93\nBU5v6uCSxgDPAdtJmi3pZGAEcICk6cB+0TZmNhUYS+hPehQYmna5MhS4BZgBzDSzCVH5rcCGkmYA\nZwPDmvOmc6FTJ9hoI5g7t1BnzI3MJqdK5rGIeSxi5RSL+++HnXeGnj2TrsnqGr3yMbOHCGu6fd/M\nnm/pwc3s2Aae2r+B/YcDw7OUTwb6ZCn/BkjsxgapQQdbbJFUDZxzrmHXXw9nn510LbJrbp/PlcAl\nwFfABGBn4BwzuzO/1cuNfPT5AJxwAvzwhzBkSM4P7ZxzbfLGGzBgALz3HnTo0LpjFMM8nwFmtpjQ\n7DYL2Br4XT4qVEp8ro9zrljdcAOcdlrrE0++NTf5pJrnDgXuM7NFZKxwXYlKca5PObVnt5XHIuax\niJVDLJYsgdGj4fQme+aT09zk83A0RLof8KSkjYGv81et0uBXPs65YjRmDOy1F2y+edI1aVizb6kg\naUNgoZmtkLQ2YcmbD6PnDjCzx/NYzzbJV5/PrFmw997w/vs5P7RzzrWKGfTrB5deCgcf3LZjFf39\nfCS9ama75KA+eZGv5LN8ebi9wuefQ8eOOT+8c8612EsvwdFHhwnwa7TxfmPFMODAZdG+PXTrBrNn\nJ12T5iuH9uxc8VjEPBaxUo/F9dfDz35W/De6bO7abq4BqUEHW2+ddE2cc5VuwQJ44AGYPj3pmjTN\nm93a6JRTYI89wpBG55xL0jXXhBWsx4zJzfESa3aTtF4zj1NiA45zp0eP0htu7ZwrP2Zhbs+ZZyZd\nk+ZpqlXw1WgV6UaZ2U9yVJ+SU2pzfUq9PTuXPBYxj0WsVGPx1FOhn2evvZKuSfM0lXz2A46R9Lik\nIlyaLnk+18c5VwxuuAHOOAOUl0ay3Gvu2m4/AkYCLwEro2Izs4H5q1ru5LPPZ84c2G03mDcvL4d3\nzrkmzZ8P220X/hCuqsrdcRO7n0908u2B3wBPA/8gXlan4pfXgTDUesEC+OorWGutpGvjnKtEt90G\nRxyR28STb00NOBhBuNnbVWZ2pJlNMrPa6OepwlSxuK2xRrilwnvvJV2T5inV9ux88FjEPBaxUovF\nihVw002lM9Agpak+nxVAXzN7NFUg6ZH8Vqn0lNqgA+dc+Zg4ETbcEL773aRr0jItnudT7HN6ssln\nnw+E2cR9+5beXx7OudI3cCAMGgSnnpr7Yyc5z+cGSetnFNfnoyKlzOf6OOeS8P778OyzMHhw0jVp\nuaaa3d4GJks6LlVgZifnt0qlp5Sa3UqtPTufPBYxj0WslGJx881w3HFhgeNS0+hoNzO7UtJo4C+S\nTgGuJwy1VnjaHihAHYuez/VxzhXasmVwyy3wxBNJ16R1mjvP5yTgUuBJ4nk+JXMVlO8+n/nzYccd\n4ZNP8nYK55xbxX33wd/+FlY2yJfE5vlI6g1cB8wDdjMzn0qZxcYbh3k+n38O666bdG2cc5UgtaJB\nqWqqz+de4FIzO8YTT8Ok0O9TCk1vpdSenW8ei5jHIlYKsZg+HaZMgZ+U8KqaTSWffmY2sbEdpNat\nJCTpPElvSpoiabSkTpI6R+vITZf0mKSqjP1nSJomaUBaeb/oGDMkXdOauuRCKQ06cM6VthtvhJNP\nhk6dkq5J6zXa5yPpKeAR4CEzm57x3HbAYcAhZrZ3i04qVQP/BnqZ2TeS7gHGAzsCn5jZFZLOBTYw\ns2GSdgBGA7sB3YEngJ5mZpLqgLPMrE7SeOBaM5uQcb689vkAnHUWbLst/PKXeT2Nc67CffUVbL45\n1NXBVlvl91xJ3kZ7APAp8A9J86IrkhmS5gF/B+YD+7fivIuBZcB3JLUHvgN8AAwERkX7jCIkN4BB\nwBgzW2Zms4CZQH9JmwLrmlldtN8daa8pKL/ycc4Vwr33hsWM85148q3R5GNm35jZbWZ2ALAZsBew\nJ7CZmR1gZiPNbGlLT2pmnwF/Bt4nJJ2FZvY40NXM5ke7zQe6Ro+7AXPSDjGHcAWUWT43Ki+4Uhlu\nXQrt2YXisYh5LGLFHovrry/tgQYpTa5qnWJmKwgJoc0kbQ2cDVQDi4B7JR2fcT6TlLO2siFDhlBd\nXQ1AVVUVffv2paamBog/bG3Z/vRTePfd3B3Pt/O/nVIs9Ulyu76+vqjqk+R2fX19UdUnfbu+HmbO\nrGWddQByf/za2lpGjhwJ8O33Zb60eG23nJxUOgY4wMxOi7ZPAL5HuHndvmb2YdSkNsnMtpc0DMDM\nRkT7TwAuAt6L9ukVlR8L7GNmZ2ScL+99Pp99Fq5+Fi4snZs5OedKyxlnhNu4XHhhYc6XZJ9PvkwD\nvidprWi03P7AVOBh4KRon5MIt3MAGAcMltRRUg+gJ1BnZh8CiyX1j45zQtprCmqDDcLvhQuTOLtz\nrtx9/jnccw+cdlrSNcmNphYWnSjpnOiGcjljZq8RBge8DLweFd8EjAAOkDSdcBU0Itp/KjCWkKAe\nBYamXcoMBW4BZgAzM0e6FYpUGguMZjY5VTKPRcxjESvWWNx1F+y3X7jyKQdN9fkMAQ4C/hgNrX6R\n8OX/hJl90ZYTm9kVwBUZxZ/RwOg5MxsODM9SPhno05a65EpqxNuuuyZdE+dcOTELAw3+/Oeka5I7\nze7zkdQO6A8cTLgq+RqYGCWRolaIPh+Aq68OY+/vvjvvp3LOVZDnn4cTT4S33gp3Ty6UfPb5tHrA\ngaSNgAFmdlduq5R7hUo+S5aEprdnnw0TTp1zLhdOPBF23hl+85vCnrcoBxyY2celkHgKaZ11wkoH\nVxTxtWCxtmcnwWMR81jEii0Wn34K48bBkCFJ1yS3khrtVrZ+8Qv4f/8PZs9OuibOuXIwcmS4VfaG\nGyZdk9xKZJ5PoRWq2S3ld78LN3r6618LdkrnXBlauRK23z4koD32KPz5i7LZTVJJ3EguCeecA3fc\nAR9/nHRNnHOlbNIkWGst+P73k65J7rWl2e3/claLMtOtGxx9NFyT2A0eGlZs7dlJ8ljEPBaxYopF\nah23clw1pak7mU5p5OmNc1yXsvL738Puu4cmuPXXT7o2zrlS88EH8OSTcPvtSdckP5q6n898wiTT\nBVmefs7MSmKubaH7fFKOPx5694Zhwwp+audcibvkEpg7N9wuOymJzfORdBtwu5k9k+W5MWZ2bD4q\nlWtJJZ833oD994d33oHvfKfgp3fOlajly8P9esaNg759k6tHYgMOzOyUbIkneq4kEk+SeveG730P\nbrst6ZrEiqk9O2kei5jHIlYMsRg/Hrp3Tzbx5JvP88mz886DK6+EpS2+5Z5zrlLdcEN53DCuMT7P\npwD23z/0/5TbDGXnXO69+264Tfbs2WGYdZKKcp6Pa77zz4cRI2DFiqRr4pwrdjfdFNZySzrx5Jsn\nnwLYd1+oqgrL7iStGNqzi4XHIuaxiCUZi6VLQx/xz36WWBUKxpNPAUjh6mf48HBfDuecy+aBB8JA\npe22S7om+ed9PgWycmVYEv3KK+GggxKtinOuSNXUhJXxjzwy6ZoE3udTBtZYI4x8G77avVidcw6m\nToXp02HQoKRrUhiefAro6KPDjOVnss6cKgxv2495LGIei1hSsbjxRjj1VOjQIZHTF5wnnwJq3x7O\nPRcuuyzpmjjniskXX8A//wmnn550TQrH+3wK7JtvwrIZjzwCu+ySdG2cc8XgttvgwQfDcjrFxPt8\nykinTuE+7H7145xLqYQVDTJ58knAT38KtbXw1luFP7e37cc8FjGPRazQsZg8GT76CA48sKCnTVxi\nyUdSlaT7JP1X0lRJ/SV1lvS4pOmSHpNUlbb/eZJmSJomaUBaeT9JU6LnivD2batbZ50wnPLyy5Ou\niXMuaTfcECaVtmuXdE0KK7E+H0mjgKfM7DZJ7YG1gQuAT8zsCknnAhuY2TBJOwCjgd2A7sATQE8z\nM0l1wFlmVidpPHCtmU3IOFfR9PmkfPYZbLMN1NfDFlskXRvnXBIWLYLqapg2Dbp2Tbo2qyu7Ph9J\n6wN7mdltAGa23MwWAQOBUdFuo4DDoseDgDFmtszMZgEzgf6SNgXWNbO6aL870l5T1Dp3htNOg6uu\nSromzrkIhB78AAAWsElEQVSk3HlnaG4rxsSTb0k1u/UAPpZ0u6RXJN0saW2gq5nNj/aZD6T+SboB\nc9JeP4dwBZRZPjcqLwnnnBOGV370UeHO6W37MY9FzGMRK1QszOD66ytvoEFK+wTPuyuhuewlSX8F\nVrnZdNSklrO2siFDhlBdXQ1AVVUVffv2paamBog/bElsDx4M55xTy+mnJ3P+St5OKZb6JLldX19f\nVPVJcru+vr4g52vXroaVK8Gsltra4nj/tbW1jBw5EuDb78t8SaTPR9ImwPNm1iPa3hM4D9gK2NfM\nPoya1CaZ2faShgGY2Yho/wnARcB70T69ovJjgX3M7IyM8xVdn0/Ku+/Cd78Lb78dVr52zpU/Mzji\nCNhnH/jVr5KuTcPKrs/HzD4EZkvaNiraH3gTeBg4KSo7CXgwejwOGCypo6QeQE+gLjrO4miknIAT\n0l5TEnr0gEMOgeuuS7omzrlCGTEC3nknLKdTqZKc5/ML4C5JrwE7AZcCI4ADJE0H9ou2MbOpwFhg\nKvAoMDTtUmYocAswA5iZOdKtFAwbBtdcA19+mf9zZTY5VTKPRcxjEct3LEaNCjeMGz8+TLuoVEn1\n+WBmrxGGTmfav4H9hwOrrQltZpOBPrmtXWHtsAP84Adwyy3wy18mXRvnXL5MmBDWd6ythW7dkq5N\nsnxttyLx0kvwk5+Evp+OHZOujXMu115+GX70o7CG2x57JF2b5im7Ph+3ut12g169wtBr51x5eftt\nGDgwNLeVSuLJN08+ReT880NH5IoV+TuHt+3HPBYxj0Us17H46KNw9+ILL4TDSmIKfGF48iki++wD\nXbrA/fcnXRPnXC588QUceigMHly5k0kb4n0+ReaRR+APf4BXXwXlpaXVOVcIy5aFK52uXeHWW0vz\n/7P3+VSQQw4JE9AefTTpmjjnWsssXOmYhdtjl2LiyTdPPkVGgvPOg0svDR/cXPO2/ZjHIuaxiOUi\nFhddBK+/DmPHQocOba9TOfLkU4SOOip0Uj7zTNI1cc611I03wujR8K9/VfYk0qZ4n0+RuuUWuO++\nMCnNOVcaHnoIzjwz/OG49dZJ16bt8tnn48mnSH3zTfjwPvQQ9OuXdG2cc015/vkwl+fRR8NiweXA\nBxxUoE6d4Le/hcsuy+1xvW0/5rGIeSxirYnFtGlw+OFwxx3lk3jyzZNPETv9dHj6afjvf5OuiXOu\nIfPmwcEHhwniBx+cdG1Khze7Fbk//QlmzoTo/k7OuSKyeDHsvXcYJHTBBUnXJve8z6eNSjn5LFgA\n22wDkydDnm8s6JxrgaVLw0Kh224L//hHec7l8T6fCrbBBqH57aqrcnM8b9uPeSxiHotYc2KxciWc\nfDKsuy787W/lmXjyzZNPCTjnnDBv4MMPk66Jcw7CDSBnzQr/L9u1S7o2pcmb3UrEWWeFCWsjRiRd\nE+cq2zXXwA03wLPPQufOSdcmv7zPp43KIfm89x7sumsYfLDBBknXxrnKNHYs/PrXIfFsuWXStck/\n7/NxbLkl/PjHoWOzLbxtP+axiHksYg3ForY2tED861+VkXjyzZNPCTn3XLj22nCPEOdc4UyZAkcf\nDXffDTvvnHRtyoM3u5WYI4+EPfeEs89OuibOVYbZs8Otr6+4Ao49NunaFJb3+bRROSWfyZNh0KBw\nT/hOnZKujXPlbcGC8MfeKafAb36TdG0Kz/t83Lf69YPeveHOO1v3em/bj3ksYh6LWCoWX38d/tA7\n8MDKTDz5lmjykdRO0quSHo62O0t6XNJ0SY9Jqkrb9zxJMyRNkzQgrbyfpCnRc9ck8T4K7fzzw5Dr\n5cuTrolz5WnFCjjuOOjWLXcTvN2qEm12k/RroB+wrpkNlHQF8ImZXSHpXGADMxsmaQdgNLAb0B14\nAuhpZiapDjjLzOokjQeuNbMJGecpm2Y3CHc4PeII+OADGDUKttsu6Ro5Vz7M4Be/gDffDPfTquTm\n7bJsdpO0GfAj4BYg9eYGAqOix6OAw6LHg4AxZrbMzGYBM4H+kjYlJK66aL870l5TtqRwo7kTToAf\n/AD++tew3Idzru0uvzysJv/gg5WdePItyWa3vwC/A9K/Nrua2fzo8Xyga/S4GzAnbb85hCugzPK5\nUXnZW2MN+PnP4YUXQiLad194552mX+dt+zGPRcxjEW7gePnl8Je/1PLoo7D++knXqLy1T+Kkkg4F\nPjKzVyXVZNsnalLLWVvZkCFDqI6Wha6qqqJv377U1IRTp/7jleL2NtvAxRfXct99sPvuNfzpT7Dd\ndrVIxVG/Yt5OKZb6JLldX19fVPUp5PaTT9YycSKMHVvDDjvAaafVM2MGdO9eHPUr5HZtbS0jo/u3\nVOd5Gf1E+nwkDQdOAJYDawLrAQ8Q+nRqzOzDqEltkpltL2kYgJmNiF4/AbgIeC/ap1dUfiywj5md\nkXG+surzach//wsnnQRVVXDrrbD55knXyLnitXIl3HsvXHghbLIJXHppGFbtYmXX52Nm55vZ5mbW\nAxgM/NvMTgDGASdFu50EPBg9HgcMltRRUg+gJ1BnZh8CiyX1lyRCQnuQCtWrFzz3HNTUhHXgbr89\ndJ4652Jm8Mgj4f/IVVeFWyLU1nriKbRimeeT+oocARwgaTqwX7SNmU0FxgJTgUeBoWmXMkMJgxZm\nADMzR7pVmvbtw1DsJ54Iq+8OHBhu85uS2eRUyTwWsUqJxaRJYbWCYcPgoougrg4GDFj1fjyVEouk\nJdLnk87MngKeih5/BuzfwH7DgeFZyicDffJZx1K0887hP9af/gR9+8Jf/lJ5S4M4l/Lii+E217Nm\nwcUXw+DBfh+epPnyOhXg5ZdDX1CvXnDddbDxxknXyLnCeP11+N//hVdeCb9PPhk6dEi6VqWj7Pp8\nXGF997thTbittw5XRA88kHSNnMuv6dPDlf6AAWEawowZ8NOfeuIpJp58KsSaa4Y5DBdcUMuwYWHp\nkM8+S7pWyfK2/Vi5xOL99+G008Lk6969w80Xzz47fP6bq1xiUew8+VSY3r2hvh66dIE+fcKNsZwr\ndfPnw69+Ffo3N944XPlccEG49bwrTt7nU8Fqa0Mb+L77hgEJPqPblZoFC+DKK+HGG+H448NIz65d\nm36dax7v83F5UVMTOmQ7dICddgrDs50rBZ9/HkZy9uwJH38Mr74aphZ44ikdnnwqTGZ79rrrhr8a\nb7opXAUNHQpLliRTt0Lztv1YqcTi66/DVXrPnjB1Kjz/PNx8M2yxRe7OUSqxKHWefBwQbpg1ZQp8\n+WUYEff000nXyLnYsmXhD6SePUNz8WOPwejRYduVJu/zcasZNw7OOAOOOQaGD4e11kq6Rq4SLV0a\nJkpPmhTuW9WjR2hq698/6ZpVjnz2+XjycVl9+imcdVaYnHf77WFJEufyaelSeOmlcGUzaVJYlWD7\n7UPf5MCBsNdeSdew8njyaSNPPrHa2tpvl1JvjnvvhXPOCfMkDjww/Oy7b+grKnUtjUU5SyIWy5bF\nyaa2NtybqmfPkGz23Tcs9FlVVdAqAf65SJfP5JP42m6uuB11FBx5ZBgVN3FiGFF03HHQr1+cjPr2\nDTe3c64xy5aFlTYmTQrJ5vnnYZttQrI56ywYOzaZZOOS4Vc+rsW++CJ8eUycGH4WLoQDDgiJaMAA\nH+7qguXLQ7JJNaM99xxstVV8ZbPXXtC5c9K1dI3xZrc28uSTX7NmxYno3/8OXzCpq6I99oCOHZOu\noSuE5cvDfJvUlc2zz0J1dUg2NTWw996w4YbJ1tG1jCefNvLkE8t3e/ayZaGjOJWM3noL9tknTkbb\nbJO3U7eYt+3HWhOL5cvDUk2pK5v//CfMt9l33zjZdOmSj9rml38uYt7n40pGhw6ho3jPPeGSS+CT\nT8LKCRMnhtsUr7VWnIj22688Bi6UM7OwbtrMmfD226v+fuutcKv2mho45RQYORI22ijpGrtS4Vc+\nrmDM4I03YMKEkIxefDHcyjiVjHbZxQcuJGHFCpgzJ04qmYlmrbXC7Ti22Sb8pB5vu603o5U7b3Zr\nI08+xemLL+Cpp+Imus8+C001224bhtymvuw22WTV2xy7llu6NPTNZV69zJwZyrt0yZ5gtt7aF5yt\nZJ582siTT6yY27Pfey+MiEp9Kc6YEX5/+WX8pZielHr2hE03bX1iKuZYtJRZSN5z58I776x+9TJ3\nLmy2WfYE06MH1NWVTyzaqpw+F23lfT6uImy5ZfjJtGjRqgnpmWfCqgszZoRFULfeevWktM020K1b\n6TfjmcHixfDBB43/zJsH3/lOeM89eoT337s3DBoUHm+5pd/F0xUXv/JxJW3x4vCXfeoqKfV75syQ\ntNL/0k8lpZ49oXv35BPTkiXZk0hmWbt2Iak09rPppr4Gn8s9b3ZrI08+lenzz+Omp/SkNGNGuAlZ\nly7Qvn3806HDqtvN+WnOa9q1CxNxM5PK8uUhCWZLJOmPfUSgS0rZJR9JmwN3ABsDBtxkZtdK6gzc\nA2wJzAKONrOF0WvOA04BVgC/NLPHovJ+wEhgTWC8mf0qy/k8+US8PTtYsgT+9a9adtuthuXLafHP\nsmUt27+qavUks956xTOQwj8XMY9FrBz7fJYB55hZvaR1gMmSHgdOBh43sysknQsMA4ZJ2gE4BtgB\n6A48IalnlFGuB041szpJ4yUdZGYTknlbxa++vt7/YwHrrAPz5tWz1VY1SVelKPjnIuaxKIxEWr3N\n7EMzq48eLwH+S0gqA4FR0W6jgMOix4OAMWa2zMxmATOB/pI2BdY1s7povzvSXuOyWLhwYdJVKBoe\ni5jHIuaxKIzExwJJqgZ2AV4EuprZ/Oip+UBqicpuwJy0l80hJKvM8rlRuXPOuSKWaPKJmtzuB35l\nZp+nPxc1qXlHTY7NmjUr6SoUDY9FzGMR81gURmKj3SR1AB4BHjWzv0Zl04AaM/swalKbZGbbSxoG\nYGYjov0mABcB70X79IrKjwX2MbMzMs7lScw551qhrAYcSBJwKzA1lXgi44CTgMuj3w+mlY+WdDWh\nWa0nUGdmJmmxpP5AHXACcG3m+fIVPOecc62T1FDrPYGngdeJm9bOIySQscAWrD7U+nzCUOvlhGa6\niVF5aqj1WoSh1r8s2BtxzjnXKhUxydQ551xxSXy0W3NIOkjSNEkzovk/2fa5Nnr+NUm7NPVaSZ0l\nPS5puqTHJFWlPXdetP80SQPy++5appCxkFQt6StJr0Y/1+X/HTZfnmJxlKQ3Ja2QtGvGsSrtc5E1\nFhX6ubhS0n+j/R+QtH7ac5X2ucgaixZ/LsysqH+AdoR5PdVAB6Ae6JWxz48ITW4A/YEXmnotcAXw\n++jxucCI6PEO0X4dotfNBNZIOg4JxaIamJL0+y5wLLYHtgUmAbumHasSPxcNxaISPxcHpP69gRFU\n9vdFQ7Fo0eeiFK58dgdmmtksM1sG3E2YdJru28mpZvYiUCVpkyZe25IJrbvn5Z21XKFjUczyEgsz\nm2Zm07Ocr+I+F43EopjlKxaPm9nK6PUvAptFjyvxc9FQLFqkFJJPd2B22nZqgmlz9unWyGtbOqG1\nGBQ6FgA9okvoWoWBIsUiX7FoSCV+LhpTyZ+LU4Dx0eNK/1ykxwJa8Lkohfv5NHdERHOGUyvb8czM\n1PhcoGIZlVHoWHwAbG5mC6I2/wcl7WgZE4ITkstY5LsO+VboWFTs50LSBcBSMxudgzrkW6Fj0aLP\nRSkkn7nA5mnbm7PqXxrZ9tks2qdDlvK50eP5kjaxeELrR40cay7FoaCxMLOlwNLo8SuS3ibMsXol\nN2+nTXIZi2yvbep85fq5aDIWlfq5kDSE0EfywyaOVfafi2yxaPHnIulOsWZ0mrUH3iZ0ZnWk6U6z\n7xF3mjX4WkIn+7nR42Gs3oHYEegRvV5JxyGhWHQB2kWPt4o+fFVJxyGfsUh77SSgX9p2xX0uGolF\nxX0ugIOAN4EuGcequM9FI7Fo0eci8QA1M4gHA28ROvPOi8p+BvwsbZ+/R8+/xqojc1Z7bVTeGXgC\nmA48lh4k4Pxo/2nAgUm//6RiAfwEeAN4FZgMHJL0+y9ALA4ntHV/BXxIWP6pUj8XWWMBHFGBn4sZ\nhOW8Xo1+rqvgz0XWWLT0c+GTTJ1zzhVcKYx2c845V2Y8+TjnnCs4Tz7OOecKzpOPc865gvPk45xz\nruA8+TjnnCs4Tz6uZCh4RtJBaWVHSXpUUkdJT0laQ1KNpIfbcJ5ZkjqnbX97PEnHRUvJvy7pWUk7\npe3X5PL10X6bSpqYUVYtaUpr65xxrDa9/0aO203SvQ0811XS+GzPOZeNJx9XMixMSjsDuFpSJ0nr\nAJcCQ4HjgUcsXm23TadqZPsdYG8z2wm4BLgJQFI7wmS9gwiz3o+V1KuB4x8ETMhBPVtEUpuW0zKz\nD8zsqCzHbWdhYdrUml7ONcmTjyspZvYm8DDhvkMXAqPM7F3gWOChzP0l7SbpFUk9JG2kcNO8NyTd\nnHmFk/nSbI/N7HkzWxRtpi8n35zl61MOBB5t6D1K2iqqcz9J35E0VuGmbg9IekHh1vGZrzkousHX\nZMLKBKnyP0q6U9J/gDuiq8Od057/j6Q+GceqlvS0pMnRz/fTyqdEj4dIGifpScLqGADjCP8OzjWp\nFBYWdS7TxYQlPL4GvhtddfS2jHvPSNoDuBYYaGZzJP0deMLMLpd0IHBqA8cXMEnSimh7HeC/WfY7\nlXg5+WxL0/df7cChrtuZ2bSsJ5a2A8YAJ5nZFEm/BT41sx0l7UhYY8syXrMm4QpsXzN7W9I9Gfts\nD+xpZt9IOhEYApwjaVugk5llNvfNBw6I9u8JjAZ2y1LdXYA+ZrYw2q4Dfp3tfTmXya98XMkxsy8J\nVxZ3RlcZXYDMZdt7ATcCh5pZajXeH0Svw8wmAgsaOgVQY2a7mNkuwGlkLDsvaV/CvUzOTXtNc/Qn\nXDFlszHwIPA/aQkhvc5vAq9ned32wLtm9na0/c+0+howzsy+ibbvAw6NmuBOAW7PcryOwC2SXgfG\nEpoRs3ksLfEAzCMsROlckzz5uFK1klW/8NOTgxG+CL8CMvsgWnPvkszEsxNwM+GKKpXAmrN8PYTF\nGhtqcltIWLBxr8bOn0Vm4svc/8tvdwyJ+3HC3WqPAu7KcrxzgHlRv9Z3Cckomy8ztrPeI8q5bDz5\nuHLwCaFpLEWEL/JDgcsk7ROVPwscDSBpALBBS08kaQvgAeB4M5uZ9tTLQM+oX6QjcAyhDyTTfsR9\nJJmWElYSP1FSqu8kvc47AH2yvO4toFrSVtF2er9LtsR1C6E5si6t/yrdeoRVrAFOBNo1UN9MmxKS\np3NN8j4fV8oMwMxWRIMItjOzt6JyM7OPJB0KPCrpZEJf0RhJJwDPE75gs91lMdtot1TZhYSkdb0k\ngGVmtruZLZd0FjCR8GV9q5mt0k8kaSPgazP7oqH3Y2ZfRnV+XNLnwHXAKElvEpbsfxNYlPGiryX9\nFPiXpC+BZ4C1s9Q9tf8rkhaRvcmN6Jz3R/1DE4AlWWKz2nEJgy6ebuCYzq3Cb6ngykJ0Z8WuZnZ5\nI/t0BFZEyer7wD/MrGBDgyUdB3Q3syta8Jo1gA5R5//WhCazbc1seRvq0Q2YZGbbtfYYDRz3LuAq\nM3s1l8d15cmvfFy5GA08IekKa/gvqi2AsdEX+lLg9ILVDjCzbP0rTVkb+LekDoQmtDPbmHhOBP5E\n6NfJGUkbE25C6InHNYtf+TjnnCs4H3DgnHOu4Dz5OOecKzhPPs455wrOk49zzrmC8+TjnHOu4Dz5\nOOecK7j/DypUxCdPIYESAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7d96080>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNXV//HPEcVdxyXumkncjcq4BFBRxrhkNKLGJQSj\nZuL6yxOi5tEnuEVJXDHRoOIWJUFNIi4oQRR3GlBRNAokCgpRFMVdMSAuDHN+f9waqqcdYJie6qru\n/r5fr3nZ1VVTfebY9Ol7b91b5u6IiIi0WCHtAEREJFtUGEREpBUVBhERaUWFQUREWlFhEBGRVlQY\nRESkFRUGKWtm1mxm3+7g7zaa2YTOjqkjzGygmd2edhwioMIgnczMZpnZAjObZ2Yfm9loM9ssA3HV\nRkUkq+95TSiSzMjqPxIpXw4c4u5rAhsD7wHXLungFD6orUO/FOnsYPJfIsFzt/2CZiuW+jWlPKgw\nSGLc/UtgBLBDy3NmNszMbjCzB81sPlBvZpuY2Qgze9/MXjOzX+Yd393MJprZJ2Y2x8yuNbOV2no9\nM+tlZm+a2T5t7B4f/Xeumf3XzHoSfUs3s99HrZvXzKwh73w5M7vYzJ4CPgO+ZWZ7mtlzZjbXzCaZ\n2R55x88ys/3ytlt1D5nZ8Wb2hpl9aGbnR8d/ryVdQFczuzWK799mttuScmtm3zGzR83sIzN718zO\nzsvvRXnH1ZvZ7IIYf21mU4H50eO7C859tZldHT1e28yGRrl/y8wuynCrSzqJ/gdLEgzAzFYD+gIT\nC/b3Ay5y9zWiffcDLwKbAPsBZ5jZgdGxTcDpwHrAHtH+//naC4YP9L8DR7j7+ML9wN7Rf9d297Xc\n/Zkozh7A9Oj8VwBDC37vWOAkYA1CcXgAGAysC1wFPGBm60THOq27hBY/NrMdgOuiv31jYO3o7118\nCHAocEe0bxQwpI2/AzNbE3gMeDA611bA40uIoS0/Bg6KXmc4cLCZrRGduwtwNPC36NhhwFfAlsAu\nwIFRPqSCqTBIZzNgpJl9AswlfJD/IW+/AyPdvaVY7Ays7+4Xu3uTu78O3EL48MLdX3D3Se7e7O5v\nAH8Cehe8Zl/gRqDB3Z9fSlxtecPdh3pYNOw2YGMz2yAv1mHuPs3dmwkfiq+4+9+ieIYTikqfdrzm\nUcAod3/a3RcCF/D1D/AJ7v5QFMtfgW5LOO8hwBx3/6O7f+Xu8939uXb8rS1/0zXu/ra7f+nubwIv\nAD+M9n8PWODuk8xsQ0IB+ZW7f+7uHxCK4o+Xcn6pAOpjlM7mwGHu/kTUJ384MM7Mtnf396Nj3so7\n/pvAJlEhadGFqOvHzLYhfDPfDViN8J4t/PA/DbjN3V/uQLzvLg7cfUE0jLAG0BLr7LxjNwHeLPj9\nN4BN2/E6m5D3d7v752b2UcEx7+U9XgCsYmYrREUp3+bAa+14zSWZXbD9d0JL5nbgGOLWwjeBlYB3\n8oZXVuDrOZAKoxaDJMaD+4BFQK/8XXmP3wRed/d18n7WcvdDov03AC8DW7n72sB5fP19ezTwQzM7\nbWnhdPTPyHv8NuHDMt83o+chdDWtnrdvo7zfnwMsvjrLzFYldF91xJvAki7R/YxQQPNjKFSYi3sI\nYz2bEgr536PnZwNfAuvl/b9Z29136mDcUiZUGCQJLWMMZmaHAesA0/L35ZkEzIsGQVc1sy5mtqOZ\n7R7tXwOYBywws+2An7fxenMIXVanm9n/W0JMHwDNhL7y5f5bIg8C25hZPzNb0cz6AtsBo6P9k4Ef\nR/t2B47M+90RQB8z28PMugIDWXqXz9KMJnR5nW5mK5vZmmbWPS+Gg81sHTPbCDhjWSeLuohyhPGE\n19z9lej5d4BHgKui11jBzLZcwuC+VBAVBknC/WY2D/gUuAg43t1bCkOrwdGom+QQoI7QPfIBYRxh\nreiQswjdG/+Nnh9OGwO87j6bUBzONrMTCgNy9wXAJcBT0RVIPQpjyT9fW9vu/nEU65nAh1Fsh0TP\nA/yGUHg+IXzw/y3vd18CfhnFP4dQ7N4nfCP/Wl6WEEvLueYDBxDGNt4BXgXqo923A1OAWcBDfD1f\nS/J3Qv7+XvD88UBXQqvtY+Bu2m6FSAWxJG/UE10pMpjQZ3yLuw8q2L8O8GdCs/gL4IToH5BIRYuu\nAvqE0EX2RtrxiORLrMUQXfY2BGggXMfez8y2LzjsXOAFd+9G+GZydVLxiKTNzPqY2WpmtjrhSq2p\nKgqSRUl2JXUHZrr7rOjyvOHAYQXHbA+MBYj6NWvN7BsJxiSSpkMJA9VvE7qcdNmnZFKShWFTWl8W\n9xZfv6xvCnAEhBmuhCs8Ul9XRyQJ7n5ydGVPjbsf4O4z0o5JpC1JFob2DF5cDtSY2YtAf8Ls10UJ\nxiQiIsuQ5AS3twkTcVpsTuuJTbj7PGDxFSRm9jptTNwxM608KSLSAe6+3JdFJ9lieB7Y2sJyx10J\nyxaMyj8gWqCra/T4ZGBcdCne17i7fty58MILU48hKz/KhXJRzbn44gtn9GinsdFZbz2ne3dn0CBn\n5sz4mI5KrMXg7k1m1h94mHC56lB3n2Zmp0b7byJcrTQsahH8GzgxqXgqxaxZs9IOITOUi5hyEavk\nXCxYAA89BCNGwIMPwo47wpFHwm9/C1ts0Xmvk+haSe4+BhhT8NxNeY8nAtsmGYOISDmbNw8eeCAU\ng0cegd13h6OOgj/8ATbeOJnX1CJ6ZaaxsTHtEDJDuYgpF7FKyMUnn8D998M990AuB716hZbBDTfA\n+usn//qJznzuLGbm5RCniEhHffABjBwZWgZPPw3f+14oBn36QE1Nx85pZnjGBp8lAblcLu0QMkO5\niCkXsXLKxZw5cN11oQhstRU8+iiccEJ4fuRIOO64jheFYqgrSUSkhN54A+69N7QMXnoJDjkETjsN\nvv99WHXVtKML1JUkIpKwGTNCIRgxAl5/HQ47LHQT7bcfrLxycq/b0a4kFQYRkU7mDi+/HBeD996D\nI44IxaB3b1ixRH01GmOoEuXUf5o05SKmXMTSyoU7vPginH8+bL89NDTAxx/DkCHw9ttw/fWhhVCq\nolCMMghRRCSb3GHSpLhlAKFVcOut8N3vwgpl+tVbXUkiIsth0SJ46qlQCO69F9ZYI0w4O/JI6NYN\nrKM3bE1AR7uS1GIQEVmGpqYw0WzECLjvPthoo1AIHn4Ydtgh7eg6X5k2dKqX+pJjykVMuYh1Vi6+\n/DKsR3TCCaEQnHsu1NbCk0/C5Mnwm99UZlEAtRhERBb7/PN4kboHHogXqRs4sHMXqcs6jTGISFWb\nP7/1InW77RaKwQ9/mNwidaWieQwiIu00d25YpG7ECBg7FvbcMxSDww6Db1TQXec1j6FKqC85plzE\nlIvY0nLx0UcwYAB8+9th5dIjjwxLVIwZAyedVFlFoRgaYxCRijdvHgweDFdfHS4tnToVNtss7aiy\nK9GuJDNrAAYT7uB2i7sPKti/PvBXYCNCkfqDuw9r4zzqShKR5fb55+EeBoMGwQEHhEHkrbZKO6rS\nyVxXkpl1AYYADYRbePYzs+0LDusPvOjudUA9cKWZqRUjIkVZuBD+9CfYZhuYMAEefxz++tfqKgrF\nSHKMoTsw091nuftCYDhwWMEx7wBrRY/XAj5y96YEYyp76kuOKRcx5SJobobzz8+x/fZw993xhLQd\nd0w7svKS5LfzTYHZedtvAT0KjrkZeMLM5gBrAj9KMB4RqVDuMGpUWMCuuRluvhn23TftqMpXkoWh\nPYMC5wKT3b3ezLYEHjWzbu4+r/DAxsZGamtrAaipqaGuro76+nog/rZUDdv19fWZikfb2dlukZV4\nSrV95ZU5brkFunat57LLYPXVwSxH6J1OP75SbudyOYYNGwaw+POyIxIbfDaznsBAd2+Its8BmvMH\noM3sQeASd38q2n4cGODuzxecS4PPItLKxIlw3nnw1ltw0UVw9NHlu5ppUjI3+Aw8D2xtZrVm1hXo\nC4wqOGY6sD+AmW0IbAu8lmBMZa/w22E1Uy5i1ZSLqVPh0EOhb1/4yU/CDXH69o2LQjXlIimJFYZo\nELk/8DDwMnCnu08zs1PN7NTosEuB3c1sCvAY8Gt3/zipmESkfL36KvTrF+6NvP/+YfvEE8vjxjfl\nRktiiEimzZ4Nv/sdjBwJv/oVnHZauAeCLFsWu5JERDrs/fdDIairgw02CC2Ec89VUSgFFYYyo/7T\nmHIRq6RczJ0b3ze5uTmMIVxyCayzTvt+v5JykRYVBhHJhM8+g8svh623hnffhRdfDGsbbbhh2pFV\nH40xiEiqvvwyLF9x6aXQuzf89rew7bZpR1UZdM9nESkrTU1w++2hEOy0U1j6uq4u7agE1JVUdtR/\nGlMuYuWUi+ZmuOuusH7RrbfC3/8ebprTWUWhnHKRVWoxiEhJuIdWwXnnwUorwbXXhvkIttwdHZI0\njTGISOKefx7OOCNccXTxxeEWmioIydM8BhHJnOZmuOIK+MEP4OSTYcoUOPxwFYWsU2EoM+o/jSkX\nsSzm4p13wvIVo0fDc8/BT38KXbok/7pZzEW5UWEQkU43ejTsuiv06gVPPAFbbJF2RLI8NMYgIp3m\niy9gwAD4xz/CrTR79Uo7ouqmMQYRSdW0adCzJ8yZE2YtqyiULxWGMqP+05hyEUszF+7hVpr77AP9\n+4c5Cu1d1ygJel8UT/MYRKTDPvkETjkFZsyA8ePDwndS/jTGICId8uST4Q5qhx8OgwbBKqukHZEU\nyuQYg5k1mNl0M5thZgPa2H+Wmb0Y/fzLzJrMrCbJmESkOE1NMHBguMfy9deHFVBVFCpLYoXBzLoA\nQ4AGYAegn5m1ami6+x/cfRd33wU4B8i5+9ykYqoE6j+NKRexUuXizTdh333hqafghRfCxLWs0fui\neEm2GLoDM919lrsvBIYDhy3l+GOAOxKMR0SKcM89sPvu0KcPPPwwbLxx2hFJUhIbYzCzo4Dvu/vJ\n0faxQA93/2Ubx64GzAa2bKvFoDEGkfR89lm4xeYTT4SVULt3Tzsiaa8s3o9heT7J+wBPLq0bqbGx\nkdraWgBqamqoq6ujvr4eiJuO2ta2tjt3e8oU6NMnx3bbwYsv1rPmmtmKT9utt3O5HMOGDQNY/HnZ\nEUm2GHoCA929Ido+B2h290FtHHsfcKe7D1/CudRiiORyucVviGqnXMQ6OxfuYVnsiy6CP/4Rjj22\n006dOL0vYllsMTwPbG1mtcAcoC/Qr/AgM1sb2IcwxiAiKfvgA/jZz+D99+GZZ2DLLdOOSEot0XkM\nZnYQMBjoAgx198vM7FQAd78pOuanhLGIJRYGtRhESuOxx8IqqMcdB7/7HXTtmnZEUoyOthg0wU1E\n+Oor+M1vwsJ3t94a7qwm5S+TE9yk87UMNIlyka+YXMycCXvtBS+9BJMnl39R0PuieCoMIlVszBjY\nYw84/ni4/374xjfSjkiyQF1JIlVq6FA47zy4775QHKTyZPGqJBHJIHf47W/httvCiqjbbJN2RJI1\n6koqM+o/jSkXsfbmYuFCOPnkcOvNiRMrsyjofVE8tRhEqsT8+fCjH4XHuRyssUaq4UiGaYxBpAq8\n915YCbVbN7jxRlhppbQjklLQ5aoi0qZXXgmDy336wC23qCjIsqkwlBn1n8aUi9iScjFxIvTuHa4+\nuvBCsOX+7lh+9L4onsYYRCrUyJFhoPnWW+Hgg9OORsqJxhhEKtD118PFF8OoUeHmOlKdNI9BRGhu\nhnPPhXvvhSefhG9/O+2IpBxpjKHMqP80plzEcrkcX30VlrYYNw6efrp6i4LeF8VTi0GkAsyfH8YR\n1lwTHn8cVlst7YiknGmMQaTMvf12KAq9esE110CXLmlHJFmheQwiVeill2DPPeGYY2DIEBUF6RyJ\nFgYzazCz6WY2w8wGLOGYejN70cz+bWa5JOOpBOo/jVV7LsaNg333hUsugR49clUxR6E9qv190RkS\nKwxm1gUYAjQAOwD9zGz7gmNqgOuAPu6+I3BUUvGIVJI774Sjj4Y77oBjj007Gqk0iY0xmNkewIXu\n3hBtnw3g7pfnHfM/wEbufsEyzqUxBpHIVVeFnwceCGsfiSxJFucxbArMztt+C+hRcMzWwEpmNhZY\nE7ja3W9PMCaRstXcDGeeCY88Ei5H3WKLtCOSSpVkYWjPV/yVgF2B/YDVgIlm9oy7zyg8sLGxkdra\nWgBqamqoq6ujvr4eiPsUq2E7v/80C/Gkud3yXFbiSXK7uRnuuKOeadPg8stzvPYabLFFvH/y5Mmc\nccYZmYk3ze3BgwdX9efDsGHDABZ/XnZEkl1JPYGBeV1J5wDN7j4o75gBwKruPjDavgV4yN3vKTiX\nupIiuVxu8Rui2lVLLpqb4dRTYfp0ePDBMFehULXkoj2Ui1hHu5KSLAwrAq8QWgNzgElAP3eflnfM\ndoQB6u8DKwPPAn3d/eWCc6kwSFVqT1EQWZLMjTG4e5OZ9QceBroAQ919mpmdGu2/yd2nm9lDwFSg\nGbi5sCiIVKvmZjjllHA/BRUFKSXNfC4zaibHKjkX+UVhzJhl34azknOxvJSLmGY+i1SIlqLw6qvt\nKwoinU0tBpEMaW4ON9eZMSN0H6koSDHUYhApcyoKkhUqDGUm/xr+aldJuWhuhpNOgpkzO1YUKikX\nxVIuiqfCIJKylqLwn/+EZS7UUpC0aYxBJEUqCpIkjTGIlBkVBckqFYYyo/7TWDnnIr8odMZAcznn\norMpF8VTYRApsUWL4MQT4bXXQlFYffW0IxJpTWMMIiW0aFFoKbz+eug+UlGQJGVurSQRaa2lpTBr\nloqCZJu6ksqM+k9j5ZSLlqLwxhvJFIVyykXSlIviqTCIJCy/KIwerZaCZJ/GGEQS1HL10euvqyhI\n6WmMQSRj3OGss8JNdh59VEVBykeiXUlm1mBm081sRnQbz8L99Wb2qZm9GP2cn2Q8lUD9p7Gs5+Ky\ny0JBKEVLIeu5KCXloniJtRjMrAvhtp37A28Dz5nZqPxbe0bGufuhScUhkoabboJbboEnn4R11007\nGpHlk+Q9n/cALnT3hmj7bAB3vzzvmHrgTHfvs4xzaYxBysZdd8GvfgXjxsFWW6UdjVSzLK6VtCkw\nO2/7rei5fA7saWZTzOxBM9shwXhEEvfII9C/f5jRrKIg5SrJwtCer/gvAJu7ezfgWmBkgvFUBPWf\nxrKWi2eegZ/8BO69F7p1K+1rZy0XaVIuipfkVUlvA5vnbW9OaDUs5u7z8h6PMbPrzWxdd/+48GSN\njY3U1tYCUFNTQ11d3eIbfre8EbRdXdstshDP66/D2WfXc+ut0NSUI5cr7etPnjw59f8fWdmePHly\npuIp5XYul2PYsGEAiz8vO2KZYwxm1hX4ObBP9FQOuNHdFy7j91YEXgH2A+YAk4B++YPPZrYh8L67\nu5l1B+5y99o2zqUxBsmsWbNg771h0CA45pi0oxGJJTmP4YbouOsAA46Lnjtpab/k7k1m1h94GOgC\nDHX3aWZ2arT/JuAo4Odm1gQsAH68vH+ASJreew8OOAAGDFBRkMrRnhbDVHffeVnPJUkthlgul1vc\nhKx2aefi00+hvh4OPxwuvDC1MID0c5ElykUsyauSmsxs8fUVZrYl0LS8LyRSST7/HPr0gV694IIL\n0o5GpHMtscVgZn3d/U4z2w/4C/B6tKsW+Jm7P1GaENVikGxZuBCOOALWWgtuvx1W0FKUklEdbTEs\nrTA8QBgb+AXhCqNto12vuPsXHQ20I1QYJCuam+GnP4WPP4aRI2GlldKOSGTJOr0ryd1/ANwIjAZ+\nTSgOs4HVzEyT/FNSeKlmNSt1Ltzhf/83rJR6993ZKgp6X8SUi+It9aokdx9pZrOA8cCJQHPLLuDb\nyYYmki2XXAJjx4alLlZbLe1oRJKztK6kVYDzgKOBs9x9dCkDK4hFXUmSqhtugCuvDIvibbRR2tGI\ntE8S8ximAPcCu7j75x2OTKTMDR8eWgsTJqgoSHVY2vUUR7j7OSoK2aL+01gpcvHQQ3D66TBmDHzr\nW4m/XIfpfRFTLoq3xBaDu79UykBEsmbSJDj++HD10U47pR2NSOnons8ibXj1VejdG26+GQ45JO1o\nRDqm0y9XNbNjzGy94sISKT/vvgsHHQQXXaSiINVpaWMMWwB3m9mTZjbQzHqY2XJXHulc6j+NJZGL\nefPgBz8Ik9hOWuoykdmi90VMuSje0ia4Xe7u3wMOBqYCJwAvmNkdZnZ8tGS2SMX46is48kjYfXf4\nzW/SjkYkPcs9xmBm3wEOAg509wMTierrr6kxBklUy1IX//0vjBgBKyZ5CyuREun0tZKyRIVBkjZg\nQJi89uijmtUslSPJZbclQ9R/GuusXFx9NYwaBfffX75FQe+LmHJRvKVdlTTGzIqa0mNmDWY23cxm\nmNmApRz3XTNrMrMjink9keV1113whz+EiWzramlIEWDpayUdDVwC3Apcsax7PLfx+10I93zen7Ay\n63MU3PM577hHCbf2/Iu7j2jjXOpKkk43diz07QuPPQY7l+x+hCKl0+lrJbn73WY2BrgAeN7Mbies\nqhrt9quWce7uwEx3nxUFOBw4DJhWcNwvgXuA7y5v8CIdNXVqKAp33qmiIFJoWWMMC4H5wCrAmsAa\n0c+a7Tj3poT7N7R4K3puMTPblFAsboieUrNgGdR/GutoLt58M8xVuPZa2Hffzo0pLXpfxJSL4i2x\nxWBmDcBVwP2EFVYXLOe52/MhPxg42909mjynCXSSqI8/hoYGOPPM0GIQka9b2tXa5wFHF7GY3tvA\n5nnbmxNaDfl2A4ZHE6rXBw4ys4XuPqrwZI2NjdTW1gJQU1NDXV0d9fX1QPwNoRq26+vrMxVPOW33\n6FFPnz6w88456uoAshVfsdstshJPWtstz2UlnlJu53I5hg0bBrD487Ijljb4XNSIr5mtSBh83g+Y\nA0yijcHnvOP/Atzv7ve2sU+Dz1KUpiY46ihYYw247TZYQRdqSxVI4p7PRX0Su3sT0B94GHgZuNPd\np5nZqWZ2ajHnrmaF3w6rWXtz4Q79+8OCBfDnP1dmUdD7IqZcFC/Rif/uPgYYU/DcTUs49mdJxiLV\n6+KLw70Vxo2Drl3TjkYk+7QkhlS0oUPDbTmfflq35ZTqo7WSRAqMHg0nnxxaCttsk3Y0IqWntZKq\nhPpPY0vLxdixcMIJ8I9/VEdR0PsiplwUT4VBKs4zz4Q5CnffDd27px2NSPlRV5JUlClT4MADYdiw\ncHtOkWqmriSpeq+8EorBddepKIgUQ4WhzKj/NJafi1mz4IAD4NJLw0S2aqP3RUy5KJ4Kg5S9d96B\n/feHX/8aGhvTjkak/GmMQcrahx9C795w7LFwzjlpRyOSLZrHIFXn009hv/1CF9Jll6UdjUj2aPC5\nSqj/NFiwAHr1ytGzZxhXqHZ6X8SUi+KpMEjZ+fJL+OEPYZNN4JprwHQXD5FOpa4kKStNTfCjH4UV\nUocPhxUTXQZSpLx1+j2fRbKmuTksc/H55zBypIqCSFLUlVRmqrX/tOWeCm+8ASNGwMorV28u2qJc\nxJSL4uk7l2SeO5x9Njz3HDz+OKy2WtoRiVS2RMcYzKwBGAx0AW5x90EF+w8Dfgc0Rz//5+5PtHEe\njTFUsUsuCeMJuRyst17a0YiUj8zNYzCzLoR7Pu8PvA08R8E9n81sdXf/LHq8E3Cfu2/VxrlUGKrU\nNdfAtdfC+PGw8cZpRyNSXrI4j6E7MNPdZ7n7QmA4cFj+AS1FIbIG8GGC8VSEauo//fOf4cor4bHH\n2i4K1ZSLZVEuYspF8ZIsDJsCs/O234qea8XMDjezaYR7Q5+WYDxSRu66C84/Hx59FL75zbSjEaku\nSQ4+t6vvx91HAiPNbG/gdmDbto5rbGyktrYWgJqaGurq6qivrwfibwjVsF1fX5+peJLYvuCCHEOG\nQC5XzzbbpB9PuWy3yEo8aW23PJeVeEq5ncvlGDZsGMDiz8uOSHKMoScw0N0bou1zgObCAeiC3/kP\n0N3dPyp4XmMMVeLGG+Hii2HMGNhpp7SjESlvWRxjeB7Y2sxqzawr0BcYlX+AmW1pFhY0MLNdAQqL\ngrRW+O2wUriHNY9+//sw0NyeolCpuegI5SKmXBQvsa4kd28ys/7Aw4TLVYe6+zQzOzXafxNwJHC8\nmS0E5gM/Tioeya7mZvi//4NHHoEnn9TVRyJp01pJkqqmJjj55HBbzgcegHXWSTsikcqhtZKk7Hzx\nBfTrF9Y+evRRWH31tCMSEdBaSWWnUvpP582Dgw8Oax6NGtWxolApuegMykVMuSieCoOU3Icfwve+\nB9tsA3/7G3TtmnZEIpJPYwxSUrNnw4EHwhFHhMtSdZMdkeRk8XJVkVZeeQX23htOOiksjKeiIJJN\nKgxlplz7T194Aerr4cIL4cwzO+ec5ZqLJCgXMeWieLoqSRI3bhwcfTTcdFO4V7OIZJvGGCRR998P\nJ54Id9wB++2XdjQi1UVjDJI5t98eJq898ICKgkg5UWEoM+XSf3r11XDeeTB2LHz3u8m8RrnkohSU\ni5hyUTyNMUincoeBA0PX0YQJupeCSDnSGIN0muZmOP30sBDeww/DBhukHZFIddNaSZKqhQuhsTFM\nYMvlYO21045IRDpKYwxlJov9p/PmhctQ//vf0FIoVVHIYi7SolzElIviqTBIUZ57DnbZBTbbDO69\nF1ZdNe2IRKRYGmOQDmluhiuvDHdcu/56OOqotCMSkUKZncdgZg1mNt3MZpjZgDb2/8TMppjZVDN7\nysx2TjomKc6770JDA/zjH6HFoKIgUlkSLQxm1gUYAjQAOwD9zGz7gsNeA/Zx952Bi4A/JRlTuUu7\n/3TMmNB1tMceYZA5zctR085FligXMeWieElfldQdmOnuswDMbDhwGDCt5QB3n5h3/LPAZgnHJB3w\n5Zdw7rlw990wfDj07p12RCKSlETHGMzsKOD77n5ytH0s0MPdf7mE488CtnH3Uwqe1xhDil59FX78\n49A6uOUWWG+9tCMSkfbI6jyGdn+am9m+wAnAXm3tb2xspLa2FoCamhrq6uqor68H4qajtjt3u3fv\nem69FU6OKSk6AAANMElEQVQ/PccJJ8BVV9Vjlp34tK1tbbfezuVyDBs2DGDx52VHJN1i6AkMdPeG\naPscoNndBxUctzNwL9Dg7jPbOI9aDJFcLrf4DZGkTz+Fn/8cpk4NXUc77pj4Sy63UuWiHCgXMeUi\nltWrkp4HtjazWjPrCvQFRuUfYGZbEIrCsW0VBSm9Z58NA8xrrw2TJmWzKIhIchKfx2BmBwGDgS7A\nUHe/zMxOBXD3m8zsFuCHwJvRryx09+4F51CLoQSam+GKK+CPf4Qbb9RNdUTKXUdbDJrgJgDMmQPH\nHRfWPPrb32DzzdOOSESKldWuJOlkLQNNnWn0aNh113AJ6tix5VMUkshFuVIuYspF8bS6ahX74gsY\nMABGjoR77oFevdKOSESyQF1JVWr69DA3Yaut4OabYZ110o5IRDqbupKkXdxh6FDYe2/4xS/CTGYV\nBRHJp8JQZorpP507F/r2DfdjHjcOTj4ZbLm/S2SH+pJjykVMuSieCkOVePppqKuDDTcMcxN22CHt\niEQkqzTGUOEWLYLLLoMhQ+Cmm+Cww9KOSERKJatrJUkKPvoIJkyA8ePDrTY32AD++U/YdNO0IxOR\ncqCupDLTVv/pu+/CXXeFweSddoJvfSvMXF5//dBKeOyxyiwK6kuOKRcx5aJ4ajGUoTffDIPH48eH\nnw8+CHMQ9tkHGhvDOkcr6v+siHSQxhgyzh1mzgwFoKUYfP55KAItPzvtBCuo7SciBbRWUoVoboZp\n01q3CFZYISxX0bt3KATbblvel5mKSGlogluZWrQIXngBBg8Oq5lusAEceig8/zw0NMCTT8Ls2WFh\nu1NOgXffzakoRNSXHFMuYspF8dQTXWILF4YrhFpaBE89BZtsEloCP/oRXHstbKa7XotIitSVlLAv\nvgg3vmkZI3j2Wdhyy7hbaO+9QytBRKSzaYwhI+bPh4kT4xbBCy/Ad74TikDv3rDXXlqbSERKI7Nj\nDGbWYGbTzWyGmQ1oY/92ZjbRzL4wszOTjqezzZ0b7mfw619Djx5hyYnf/S7sO//8MMfg2Wfh97+H\nQw4pviio/zSmXMSUi5hyUbxExxjMrAswBNgfeBt4zsxGufu0vMM+An4JHJ5kLJ3lgw/iq4XGjw+X\nkvboEVoEV1wB3bvDqqumHaWISMcl2pVkZnsAF7p7Q7R9NoC7X97GsRcC8939yjb2pdaV9PbbcREY\nNy5s77VXPEaw227QtWsqoYmILFVW10raFJidt/0W0CPh1+wwd5g1q/VksrlzwwDxPvuEZaq7dYMu\nXdKOVEQkOUkXhk77mt/Y2EhtbS0ANTU11NXVUV9fD8R9isu73bt3Pa+8AjffnGPqVJg+vZ6mJthu\nuxzdusHIkfXssAOMHx+O33XX4l6vM7bz+0/TeP0sbbc8l5V40tyePHkyZ5xxRmbiSXN78ODBnfL5\nUI7buVyOYcOGASz+vOyIpLuSegID87qSzgGa3X1QG8cm3pXU3Az//nfrWcWrrBJ3C/XuHW51meUJ\nZLlcbvEbotopFzHlIqZcxDJ5uaqZrQi8AuwHzAEmAf0KBp9bjh0IzOvMwtDUBC++GBeBCRPCiqMt\nRWCffeCb31zu04qIlIVMFgYAMzsIGAx0AYa6+2VmdiqAu99kZhsBzwFrAc3APGAHd5+fd452FYYv\nvwxLSbSMEUycCFts0XrBuY03TuCPFBHJoMwWhs6wpMKwYAE880zcIpg0KSww19Ii6NUrtBAqiZrJ\nMeUiplzElItYVq9K6nRPPRUmlI0fD1OmwM47h0Jw1lnhMtK11047QhGR8lZWLYa33oIdd4TTTgst\ngp49YfXV045ORCSbqqIr6eKLwwSzG25IOyIRkezL7FpJnaW5GYYOhRNPTDuSdOVfw1/tlIuYchFT\nLopXNoVh7FhYa62wBIWIiCSnbLqS+vVzevYM4wsiIrJsFT/GsPbazmuvwbrrph2NiEh5qPgxhoMO\nUlEA9Z/mUy5iykVMuShe2RSGah90FhEplbLpSlq0yFmhbMqYiEj6Kr4rSUVBRKQ09HFbZtR/GlMu\nYspFTLkongqDiIi0UjZjDOUQp4hIllT8GIOIiJRGooXBzBrMbLqZzTCzAUs45ppo/xQz2yXJeCqB\n+k9jykVMuYgpF8VLrDCYWRdgCNAA7AD0M7PtC445GNjK3bcGTgG0buoyTJ48Oe0QMkO5iCkXMeWi\neEm2GLoDM919lrsvBIYDhxUccyhwK4C7PwvUmNmGCcZU9ubOnZt2CJmhXMSUi5hyUbwkC8OmwOy8\n7bei55Z1zGYJxiQiIsuQZGFo72VEhSPmuvxoKWbNmpV2CJmhXMSUi5hyUbzELlc1s57AQHdviLbP\nAZrdfVDeMTcCOXcfHm1PB3q7+3sF51KxEBHpgI5crrpiEoFEnge2NrNaYA7QF+hXcMwooD8wPCok\ncwuLAnTsDxMRkY5JrDC4e5OZ9QceBroAQ919mpmdGu2/yd0fNLODzWwm8Bnws6TiERGR9imLmc8i\nIlI6mZr5rAlxsWXlwsx+EuVgqpk9ZWY7pxFnKbTnfREd910zazKzI0oZX6m0899HvZm9aGb/NrNc\niUMsmXb8+1jfzB4ys8lRLhpTCLMkzOzPZvaemf1rKccs3+emu2fih9DdNBOoBVYCJgPbFxxzMPBg\n9LgH8EzacaeYiz2AtaPHDdWci7zjngBGA0emHXdK74ka4CVgs2h7/bTjTjEXA4HLWvIAfASsmHbs\nCeVjb2AX4F9L2L/cn5tZajFoQlxsmblw94nu/mm0+SyVO/+jPe8LgF8C9wAflDK4EmpPHo4BRrj7\nWwDu/mGJYyyV9uTiHWCt6PFawEfu3lTCGEvG3ScAnyzlkOX+3MxSYdCEuFh7cpHvRODBRCNKzzJz\nYWabEj4YWpZUqcSBs/a8J7YG1jWzsWb2vJkdV7LoSqs9ubgZ+I6ZzQGmAKeXKLYsWu7PzSQvV11e\nmhAXa/ffZGb7AicAeyUXTqrak4vBwNnu7mZmfP09Ugnak4eVgF2B/YDVgIlm9oy7z0g0stJrTy7O\nBSa7e72ZbQk8ambd3H1ewrFl1XJ9bmapMLwNbJ63vTmhsi3tmM2i5ypNe3JBNOB8M9Dg7ktrSpaz\n9uRiN8JcGAj9yQeZ2UJ3H1WaEEuiPXmYDXzo7p8Dn5vZeKAbUGmFoT252BO4BMDd/2NmrwPbEuZX\nVZvl/tzMUlfS4glxZtaVMCGu8B/2KOB4WDyzus0JcRVgmbkwsy2Ae4Fj3X1mCjGWyjJz4e7fdvdv\nufu3COMMP6+wogDt+/fxD6CXmXUxs9UIA40vlzjOUmhPLqYD+wNE/enbAq+VNMrsWO7Pzcy0GFwT\n4hZrTy6AC4B1gBuib8oL3b17WjEnpZ25qHjt/Pcx3cweAqYCzcDN7l5xhaGd74lLgb+Y2RTCF+Bf\nu/vHqQWdIDO7A+gNrG9ms4ELCd2KHf7c1AQ3ERFpJUtdSSIikgEqDCIi0ooKg4iItKLCICIiragw\niIhIKyoMIiLSigqDVBwzW9nMxkXLY3T2uRvN7NolvOZ4M1vivykzu9HM9uzsmEQ6mwqDVKKfAKM9\nmUk6bZ7T3b8EJgCHL+V3ewATE4hJpFOpMEgl6kdYHgIzu87M+kSP7zOzodHjE8zs4sJfjG58tJYF\nH7WsUGpmt5nZ/tFhm0crmL5qZhfk/foovn5f85bzbg+8ml+soqUrXose15jZIjPrFW2PN7MtzWxd\nMxsZ3WBlopntVGRuRJZJhUEqipl1AXZ091ejp8YTbmQCYfnh7aPHewPj2jjFU0Av4DvAf6LHAD2j\nfUa4H8ARwM7A0Wa2W3TMZMLibW05CBiT/4S7LwJeMbMdotf5J7CPma1MuNnOf4DfAv90926EFUNv\nW1YORIqlwiCVZn0gf2nlCcDe0Tf2l4D3zGwjwgf90238/gRgH0LhuAHY2cw2AT6JVi0FeMTdP3H3\nLwgLGfaCxd1JK5jZKm2c90DgoWW83mXRuXYHJkX79wJuj84/FljPzNZYZhZEiqDCIJVo8aCzu88h\n3PKygdB6eJKwGuc8d//MzH4R3SP5hahgjCf+oM4R7gh3VPT8kl6ruWC71ThEtNJpjbu/28bvt7xe\nd8LNlmqAekLB+NrfI1IKKgxSaT4ECr9RPwOcQeg6mgCcFf0Xd7/O3Xdx913d/d3otpjrA1u5++uE\nQnIWrQvDAWa2jpmtSrhz3FMQrkwCFkUth3z7Eu5H3ZZJhO6nlt+bApya93oTCIPpmFk98IG7z29v\nMkQ6QoVBKkrUb/9vM9s27+kJQBd3fw14kbBc+YS2fj/yDNAyRvEksEn0XwitgUnACMKH+D3u/kK0\nbxfavuroINruRsLdvwLejF4TQkFYw93/FW0PBHaLlo++FPjpUuIW6RRadlsqjpk1Ahu6+6ASv+6l\nwHPufl/B8/8EukdFSyTzVBik4kR39XoM6J3QXIa2XnNl4NFSvqZIUlQYRESkFY0xiIhIKyoMIiLS\nigqDiIi0osIgIiKtqDCIiEgrKgwiItLK/wc5WZWcWXsXXAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x781dda0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time to reach breakpoint is: 24.7778 h\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.10: Page 640"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.10\n",
+ "# Page: 640\n",
+ "\n",
+ "print'Illustration 11.10 - Page: 640\\n\\n'\n",
+ "\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# a:N2 b:H2O\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "Ma = 29;# [kg/kmol]\n",
+ "Z = 0.268;# [m]\n",
+ "Xo_solid = 0.01;# [kg H20/kg solid]\n",
+ "Density_bed = 712.8;# [kg/cubic m]\n",
+ "T = 28.3;# [OC]\n",
+ "P = 593;# [kN/square m]\n",
+ "Gs = 4052;# [kg/square m.h]\n",
+ "Xo_gas = 1440*10**(-6);# [mole fraction]\n",
+ "#********************#\n",
+ "\n",
+ "# Yo_star is in equilibrium with Xo:\n",
+ "Xo = 0;# [kg H20/kg solid]\n",
+ "Yo_star = 0;# [kg H20/kg N2]\n",
+ "thetha_t = 12.8;# [h]\n",
+ "thetha_b = 9;# [h]\n",
+ "# The breakthrough data are plotted in the manner of Fig. 11.47 (Pg 639) and thetha_s is dtermined:\n",
+ "thetha_s = 10.9;# [h]\n",
+ "Xt = 0.21;# [kg H20/kg solid]\n",
+ "# From Eqn. 11.81:\n",
+ "LUB = (Z/thetha_s)*(thetha_s-thetha_b);\n",
+ "# For thetha_b = 15 h\n",
+ "thetha_b = 15;# [h]\n",
+ "Yo = (Xo_gas/(1-Xo_gas))*(Mb/Ma);# [kg H20/kg N2]\n",
+ "# From Eq. 11.82:\n",
+ "Zs = Gs*(Yo-Yo_star)*thetha_b/(Density_bed*(Xt-Xo_solid));# [m]\n",
+ "# From Eqn. 11.85:\n",
+ "Z = LUB+Zs;\n",
+ "print\"Height of adsorbent column:\",round(Z,4),\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.10 - Page: 640\n",
+ "\n",
+ "\n",
+ "Height of adsorbent column: 0.0467 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 93
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.11: Page 654"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.11\n",
+ "# Page: 645\n",
+ "\n",
+ "print'Illustration 11.11 - Page: 645\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#****Data****#\n",
+ "# For collection of Cu2+:\n",
+ "V = 37850.0;# [l/h]\n",
+ "c1 = 20.0;# [meq Cu2+/l]\n",
+ "c2 = 0.01*c1;# [meq Cu2+/l]\n",
+ "Mass_rate = 2.0;# [meq Cu2+/g resin h (meq Cu2+/l)]\n",
+ "exchanged = V*(c1-c2);# [meq/h]\n",
+ "X2 = 0.30;# [meq Cu2+/g]\n",
+ "#************#/\n",
+ "\n",
+ "# The point(c2,X2) is plotted in Fig. 11.48(a), Pg 645:\n",
+ "# For the minimum resin/solution ratio and an infinitely tall tower, the operating line pass though point P.\n",
+ "X = 4.9;# [meq Cu2+/g]\n",
+ "MinRate = exchanged/(X-X2);# [g/h]\n",
+ "Rate = 1.2*MinRate;# [g/h]\n",
+ "# Copper balance:\n",
+ "X1 = (exchanged/Rate)+X2;# [meq Cu2+/g resin]\n",
+ "# The point (c1,x1) is ploted in Fig. 11.48(a) and operating line drawn can be straight line at this low conc.\n",
+ "# Adapting Eqn. 11.48 and rearranging:\n",
+ "# S*Z*Density_s = (V/Mass_rate)*integrate(1/(c-c_star),c,c1,c2)\n",
+ "# Mass_rate = KL_prime*ap/Density_s\n",
+ "# From the equilibrium curve:\n",
+ "# Data = [c c_star]\n",
+ "Data = numpy.array([[20 ,2.4],[16 ,1.9],[12, 0.5],[8 ,0.25],[4 ,0.10],[2 ,0.05],[1 ,0.02],[0.2, 0]]);\n",
+ "Val = zeros(8);\n",
+ "for i in range(0,8):\n",
+ " Val[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"c\");\n",
+ "plt.ylabel(\"1 / (c-c*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "# From Graphical Integration:\n",
+ "Area = 5.72;\n",
+ "# holdup = S*Z*Density_s\n",
+ "holdup = V*Area/(Mass_rate);\n",
+ "print\"Resin Holdup: \",holdup,\"g\\n\"\n",
+ "\n",
+ "# Regeneration of resin:\n",
+ "# For 70% utilisation of 2N acid, feed must contain:\n",
+ "V = exchanged;\n",
+ "F = V/(0.70*2000);# [l/h]\n",
+ "c1 = 0;# [meq Cu2+/l]\n",
+ "c2 = V*1.0/F;# [meq Cu2+/l]\n",
+ "X1 = 0.30;# [meq Cu2+/g resin]\n",
+ "X2 = 4.12;# [meq cu2+/g resin]\n",
+ "# The points (c1,X1) and (c2,X2) are plotted on Fig 11.48(b), Pg 645\n",
+ "c1_star = 120.0;# [meq Cu2+/l]\n",
+ "c2_star = 1700.0;# [meq Cu2+/l]\n",
+ "logmean = ((c1_star-c1)-(c2_star-c2))/math.log((c1_star-c1)/(c2_star-c2));\n",
+ "Mass_rate = 0.018;# [meq Cu2+/g resin h (meq Cu2+/l)]\n",
+ "# Substituting in equation:\n",
+ "def f79(holdup):\n",
+ " return (V*(c2-c1))-(Mass_rate*holdup*logmean)\n",
+ "holdup = fsolve(f79,7);\n",
+ "print\"Resin Holdup in the regeneration Tower is \",round(holdup,3),\" g\\n\"\n",
+ "#the answers are in textbook is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.11 - Page: 645\n",
+ "\n",
+ "\n",
+ "Resin Holdup: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 108251.0 g\n",
+ "\n",
+ "Resin Holdup in the regeneration Tower is 296720391.501 g\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEZCAYAAAB2AoVaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHnpJREFUeJzt3Xm4HHWd7/H3JwlJlADZCEMwGBVFwCWogziCHkC4gAsw\nikl0kAMjDi6oOCig9wroFQZnwMh11HmGJWwaUCSiM4IoHPYBGYgGIygykT1kDyEkIeR7/6jqpDk5\np9Pdp7qrqvvzep5+0tVd3fU7X5pvVX9qaUUEZmbW2YblPQAzM2s9N3szsy7gZm9m1gXc7M3MuoCb\nvZlZF3CzNzPrAm72VjiSzpR0eY3nH5D0rlYuo8wk7SrpWUnKeyxWHG72tlWSZki6W9JqSYsk/Zek\nT7ZwkTVP/oiIN0TEra1ahqQeSY/V8yaSpkraKCm3/5ckLZR0YGU6Ih6NiO3CJ9FYFTd7q0nSPwKz\ngHOBnSJiJ+BE4J2SRg7ymqF+rtqxRZr1MloyZknD65gtWrV86xxu9jYoSTsAZwGfjIifRMRzABEx\nLyL+LiLWp/PNlvQ9Sf8paTXQI+m9ku6XtFLSo5LOqHrfytbwCZKekPRkulKpCGCkpEslrUpjm7dW\nvX6hpIPS+8MlfVnSw+m890raJX3u2+myV6aP79dkHfokfU3S7ekybpA0IX268g1jRRqdvD19zfGS\nFkhaJul6SbtWvd8hkh6StELSv0q6RdLfp8/1SrpD0vmSlgBnSHq1pJskLZG0WNIV6X8b0ihqV+Bn\n6fJP6f9tQ9JkSddJWirpT5I+XjWWMyVdPVitrXO42Vst7wBGAT+tY96ZwNcjYgxwB7Aa+LuI2AF4\nL/BJSUf0e00PsBtwCHBqpYGTbKV+APghsANwHfCdqtcFm2OYLwAzgMMiYnvgOOD59Ll7gDcD44Af\nAD8a7NtInX9fLzAJGAmckj6+f/rvDml0cnf6d54OHAVMBG5L/xYkTQR+BJwKjAceIqlzdeSyD/Dn\ndFlnp/X4BrAzsAcwBTgTICKOAR4F3pcu/18GGPucdJ6dgQ8BZ0s6oOr59zN4ra1DuNlbLROBJRGx\nsfKApDslLZe0pt+W8tyIuAsgItZFxC0R8ft0ej5Jw3l3v/c/KyKej4gHgEtIGmrFbRFxfZo7X0HS\ntAfyceArEfGnyrIiYll6/8qIWB4RGyPifJIV1+5N1CGASyLi4YhYC1wNTKuUZID5TwTOiYiH0tqd\nA0xLt+4PBx6IiLnpuC4Anu73+icj4l/T59dGxJ8j4tcR8UJELAG+xZa1HJCkKcDfAKdGxPqI+C1w\nIfCxqtnqrbWVmJu91bIUmFidwUfE30TEuPS5yuMBvGSHpqS3S7pZ0jOSVgD/AEzgpapf8ygwuWp6\nUdX9NcDoQfYFvIJkK3gLaaSxII1LlpNsuU4c5G/dmuqG/Dwwpsa8rwS+na4Ul5PUCmAXkq3rx/vN\n33+6fy13kjRH0uOSVgKXs2UtBzMZWFaJ4FKPpmOpqLfWVmL+D2q13AWsA45s4rU/AOYCr4iIscD3\n2fLztmu/+080sZzHSKKgl5C0P/BF4OiIGJuuoFaS/Y7MgY54eRT4RESMq7ptm37zeYpkBVUZp6qn\nB3nPs4EXgTeksdgxvLSWtY66eRIYL6l65bQrW65grMO52dugImIFyQ7a70r6oKTtJA2TNA3YtmrW\ngRroGGB5RKyXtA/wEbZsSv9b0ssk7UWSh1/VxDAvBL4uaTcl3iRpfLr8DcASSSMlfRXYvon3rxhs\nJbEY2Ai8puqx7wNflrQnJDu6JR2dPvefwBslHSFpBPBp4K+2suwxwHPAqnTn8xf7Pb+o3/I3iYjH\ngDuBcySNkvQm4HiSuMa6iJu91RQR/0yyE/RLJFHG0yTN7EskW/7w0h2mFZ8CviZpFfB/GLiR3wI8\nDPwK+OeI+FWN9xts6/V8kgz9lyRb7v8OjAZuAK4H/ggsJIleHu33frW2iGstf9NrI2INyc7TO9LY\nZp+ImEtyqOqcNHaZD/yvdP4lwNHAN4ElJDtc7yX5BjXYuM4C3pL+fT8Druk3zzkkK87lkr4wwHhn\nAlNJtvJ/Anw1Im6qsTwfn9+B1OrzLiQtBFaRfA19ISL2aekCrfAkTQUeAUZU7/ztRmk2/hjwkYi4\nJe/xWOca0YZlBNBTOULCrNtJOoTksNDn2RzJ/Fd+I7Ju0K4Yx2f3WX/dHBW8gyS+WkxyDsKREbGu\n9kvMhqYdMc4jJFnji8C/RcS/t3SBZma2hXbEOO+MiKck7QjcKOnBiLitDcs1M7NUy5t9RDyV/rtY\n0rUkp4LfBiCpm7/Km5k1LSIaisdbmtlLermk7dL725JcA2V+9TwRQUTwla8EX/tabJr2rfHbGWec\nkfsYOunmerqeRb01o9Vb9jsB1yYnCTICuDIifjnQjBMmwF/+0uLRdLiFCxfmPYSO4npmy/XMV0ub\nfUT8D5svGFXTxIlw332tHI2ZWfcqzBm0EybAkiV5j6Lcent78x5CR3E9s+V65qvlh17WXLgUleXf\nfTecdBLcc09uwzEzKwVJRJF20DZi4kRYunTr89ng+vr68h5CR3E9s+V65qswzd4xjplZ6xQmxomA\nkSNhzRrYZpvchmRmVniljnEkGDcOlvlyaWZmmStMs4ckt3eU0zxnotlyPbPleuarUM1+wgTvpDUz\na4XCZPYARx4Jxx4LRx2V25DMzAqv1Jk9+PBLM7NWKVSz9+GXQ+NMNFuuZ7Zcz3wVrtl7y97MLHuF\nyuwvvhhuvz3518zMBlb6zN4xjplZaxSu2TvGaZ4z0Wy5ntlyPfPlZm9m1gUKldkvXgx77OEox8ys\nlmYy+0I1+w0bYPRoWL8ehhXqO4eZWXGUfgftiBGw3XawYkXeIyknZ6LZcj2z5Xrmq1DNHnwWrZlZ\nKxQqxgHYd1/41rfgHe/IaVBmZgVX+hgHfESOmVkrFK7ZO8ZpnjPRbLme2XI981W4Zu+zaM3Msle4\nzP4b34DnnoOzz85pUGZmBefM3szMBlS4Zu/foW2eM9FsuZ7Zcj3zVbhm7y17M7PsFS6z/93v4KMf\nhfnzcxqUmVnBdURm7xjHzCx7hWv2lRgnxy8cpeVMNFuuZ7Zcz3wVrtmPGgUjR8Lq1XmPxMyscxQu\nswd45Svhlltg6tT2j8nMrOg6IrMH5/ZmZlkrZLP34ZfNcSaaLdczW65nvtzszcy6QMsze0nDgXuB\nxyPi/f2eGzCzP+kkeO1r4bOfbenQzMxKqaiZ/eeABUDdaxVv2ZuZZaulzV7SK4DDgQuButdCbvbN\ncSaaLdczW65nvlq9Zf8t4IvAxkZe5KNxzMyyNaJVbyzpfcAzEXG/pJ7B5uvt7WVqekD92LFjmTZt\nGhMm9LB06eYtgZ6e5OWerj1deawo4yn7dOWxooyn7NOVx4oynjJN9/X1MXv2bIBN/bJRLdtBK+ls\n4BhgAzAa2B64JiI+VjXPgDto//u/4YQT4L77WjI0M7NSK9QO2oj4ckRMiYhXATOAm6obfS3O7JtT\n2RKwbLie2XI989XO4+zr/grhzN7MLFuFvDZOBIweDStXJv+amdlmhYpxhkJylGNmlqVCNntwlNMM\nZ6LZcj2z5Xrmq7DN3lv2ZmbZKWRmD/ChD8H06XD00W0elJlZwXVMZg+OcczMslTYZu8Yp3HORLPl\nembL9cyXm72ZWRcobGZ/6aXw61/DZZe1eVBmZgXnzN7MzAZU2GbvGKdxzkSz5Xpmy/XMl5u9mVkX\nKGxmv3w5vOpVsGJFmwdlZlZwHZXZ77ADPPccbNiQ90jMzMqvsM1+2DAYOxaWLct7JOXhTDRbrme2\nXM98FbbZQ5Lb+4gcM7OhK2xmD7DffnDOObD//m0clJlZwXVUZg8+IsfMLCuFb/aOcernTDRbrme2\nXM98FbrZT5zoLXszsywUOrM/99yk2X/zm20clJlZwTmzNzOzARW62ftiaI1xJpot1zNbrme+Ct3s\nvWVvZpaNQmf2CxbABz8If/hDGwdlZlZwHZnZO8YxMxu6Qjf78eOTq15u3Jj3SMrBmWi2XM9suZ75\nKnSz32Yb2HZbWLky75GYmZVboTN7gNe8Bq6/Hl772jYNysys4DouswefRWtmloXCN3sfflk/Z6LZ\ncj2z5Xrmy83ezKwLFD6zP/lkmDIFvvCFNg3KzKzgOjKz95a9mdnQudl3EGei2XI9s+V65qsUzd5n\n0ZqZDU1LM3tJo4FbgFHASOCnEXF61fNbzexvugm+/nW4+eaWDdPMrFSayexHtGowABGxVtIBEbFG\n0gjgdkn7RcTt9b6HYxwzs6FreYwTEWvSuyOB4cCyRl7vGKd+zkSz5Xpmy/XMV8ubvaRhkuYBi4Cb\nI2JBI6+vbNnneISomVnpte04e0k7ADcAp0VEX/rYVjN7SC6GtmgRjBnT2jGamZVB4TL7ahGxUtJ/\nAG8D+iqP9/b2MnXqVADGjh3LtGnT6OnpATZ/7ZswoYclS+Dee5Pp/s972tOe9nQnT/f19TF79myA\nTf2yUa0+GmcisCEiVkh6GcmW/VkR8ev0+bq27PfeGy68EN761pYNtSP09fVt+qDY0Lme2XI9s9OS\nLXtJewHvAqYCASwEbouI39fx/jsDl0oaRrJ/4PJKo2+Er3xpZjY0g27ZSzoGOAlYCtwDPAmIpIHv\nA0wEvh0RVzS98Dq37GfMgCOOgJkzm12SmVnnyHrLfhxwUEQ8O8jCtgd6G1lYs3z4pZnZ0Ax66GVE\nXACsh01nwvZ/flU6T8s5xqlPZYeOZcP1zJbrma+tHWf/b+mO1e+2YzCD8Vm0ZmZDUyuzfzfwRuBY\nYDbwQETckunC68zsr7wSfv5z+OEPs1y6mVk5teJ69hvTeXI9f9UxjpnZ0NRq9reSHHWzP/C2rLfq\nG+EYpz7ORLPlembL9cxXrR20AZyYXsjsU+0b0pZ8NI6Z2dBs9QxaSZcBn42IFen0eOBfIuL4IS+8\nzsx+1SqYPBlWrx7qEs3Myq9Vv0H7pkqjB4iIZcBbGh3cUGy3HaxfD+vWtXOpZmado55mr3RrvjIx\nnuS69G0jObevhzPRbLme2XI981XPVS/PA+6SdDXJ5RKOBr7R0lENoJLbT57c7iWbmZVfXVe9TC+G\ndiDJIZg3NfoDJDXet67MHqCnB844Aw44IIslm5mVV6syeyLi9xHx/4AXsmr0jXKMY2bWvEZ/lvDE\nloyiDj78cuuciWbL9cyW65mvlv8GbVZ8Fq2ZWfMa+qUqSVMi4rHMFt5AZn/eefDEE3D++Vkt3cys\nnFqS2Us6R9I4gIh4TNI4Sf+32UE2yzGOmVnz6olxDouI5ZWJ9P57WzekgXkH7dY5E82W65kt1zNf\n9TT7YdU/XpJe335k64Y0MGf2ZmbNq+faOKcCHwAuJjmp6jjguog4d8gLbyCz/+Mf4b3vhT/9aahL\nNTMrt2Yy+3pPqjoMOCidvDEibmhifAO9b93NfulS2G03WL586/OamXWyTHfQStr0RhHxi4g4Jb3d\nMNA8rTZ2LDz7LGzY0K4llo8z0Wy5ntlyPfNVK7Pvk/RFSa/r/4Sk3dN4p20/aDJ8eNLwvWVvZta4\nWr9BOwr4KDATeAPwLElmPwZ4ALgS+EFErG964Q3EOAC77w5z58IeezS7RDOz8msmxhn0qpcRsY5k\np+zFkoYDE9OnlkTEi80Ps3k+/NLMrDn1XgjtxYhYlN5yafTgwy+3xplotlzPbLme+SrNtXHAZ9Ga\nmTWroWvjZL7wBjP7U06BSZPgS19q4aDMzAou60Mvb5B0sqTXD31o2XCMY2bWnFoxTi+wAjhT0v2S\nvi/pCEnbtmdoW3KMU5sz0Wy5ntlyPfNV62icp4BLgEvSo3HeDhwGfEnSWuCGiPhme4aZ8NE4ZmbN\naSqzl7QjcEhEXDmkhTeY2d96K3zlK3DbbUNZqplZuWV6nH0tEbGY5KSqtvKWvZlZc3zoZQdxJpot\n1zNbrme+StXsx49Pro2T49GiZmal1Gxmf1xEXDLkhTeY2QPssAP85S/JRdHMzLpRS36DdhBfq2cm\nSVMk3Szp95IekPTZJpe3iaMcM7PG1Tqpav5gN2BSne//AnByROwF7At8WtKQrlnpnbSDcyaaLdcz\nW65nvmodjTMJOBQY6Aryd9bz5hHxNPB0en+1pD8Ak4E/NDjOTXwWrZlZ42o1+/8AxkTE/f2fkNTw\nj5ZImgrsDdzd6GurOcYZXE9PT95D6CiuZ7Zcz3zVOoP2+BrPzWxkIZLGAD8GPhcRqxt5bX+OcczM\nGtfUSVWNkLQNcA1wRUTM7f98b28vU6dOBWDs2LFMmzZt0xZAJeOrnn72WVi6dPDnu3l61qxZW62f\np11P17N80319fcyePRtgU79sVEsvcZz+IPmlwNKIOHmA5xs+9PK734X58+F738tokB2kr69v0wfF\nhs71zJbrmZ1mDr1sdbPfD7gV+B1QWdDpEXF9+nzDzf6qq+DHP4Yf/SjToZqZlUbbro1Tr4i4nYzP\n0nVmb2bWuFJdLgF86GUtlYzPsuF6Zsv1zFfpmr0PvTQza1ypfoMWYM2a5IJozz8PaiixMjPrDO28\nNk5uXv5yGDYsafpmZlaf0jV7cJQzGGei2XI9s+V65qu0zd47ac3M6le6zB7gPe+BU0+Fgw9uwaDM\nzAquKzJ7cIxjZtao0jZ7xzhbciaaLdczW65nvtzszcy6QCkz+29/G/78Z7jgghYMysys4JzZm5nZ\ngErb7B3jbMmZaLZcz2y5nvkqZbP3xdDMzBpTysz+kUfgwANh4cLsx2RmVnRdldl7y97MrH6lbPbb\nbw9r18K6dXmPpFiciWbL9cyW65mvUjZ7yVv3ZmaNKGVmD7DXXjBnDrzxjRkPysys4Lomswdv2ZuZ\nNaK0zd6HX27JmWi2XM9suZ75Km2z91m0Zmb1K21mf9ppyVE5X/5yxoMyMyu4rsrsHeOYmdWvtM3e\nMc6WnIlmy/XMluuZr1I3e2/Zm5nVp7SZ/R13wCmnwF13ZTwoM7OC67rM3jGOmVl9StvsHeNsyZlo\ntlzPbLme+Sptsx83DlatghdfzHskZmbFV9rMHpKt+4ceSiIdM7Nu0VWZPfjwSzOzepW+2Tu338yZ\naLZcz2y5nvkqdbP3WbRmZvUpdWbf2wvvehccf3x2YzIzK7quzOy9ZW9mtnUtbfaSLpa0SNL8Vry/\nm/1LORPNluuZLdczX63esr8EOLRVb+6zaM3M6tPyzF7SVOBnEbHFr8UONbO/5hq44gq49trmx2dm\nVjZdl9m/4Q3JBdEefTTvkZiZFduIvAfQ29vL1KlTARg7dizTpk2jp6cH2JzxDTb91FN9HHkkzJzZ\nQ18f3HFH7fk7fXrWrFkN1c/Ttaddz2ynXc/mp/v6+pg9ezbApn7ZqFLHOAAbN8Lhh8Nb3gJnnz2k\ntyq9vr6+TR8UGzrXM1uuZ3aaiXFK3+wBnnkG9t4bZs+Ggw8e8tuZmRVa4TJ7ST8E7gReJ+kxSce1\nYjmTJsHll8Oxx8LTT7diCWZm5dbSZh8RMyNickSMiogpEXFJq5Z14IHw8Y/DMcck0U43qmR8lg3X\nM1uuZ75KfTROf1/9KqxbB//0T3mPxMysWEp9bZyBPP44vO1t8OMfw377ZfrWZmaFULjMPg+veAVc\neCF85CO+lIKZWUXHNXuA970PPvSh5GqYOX5xaTtnotlyPbPleuarI5s9JLn9k0/CBRfkPRIzs/x1\nXGZf7ZFHYN994Re/gLe+tWWLMTNrK2f2/bz61fCd78D06bBqVd6jMTPLT0c3e4APfxgOOghOPLHz\n83tnotlyPbPleuar45s9wKxZMH8+XHxx3iMxM8tHR2f21RYsgHe/G/r6YK+92rJIM7OWcGZfw557\nwrnnJvn9mjV5j8bMrL26ptkDHHccvPnN8PnP5z2S1nAmmi3XM1uuZ766qtlL8P3vJ1HOnDl5j8bM\nrH26JrOvdv/9cMghcNddsNtubV+8mdmQOLOv0957J1fInDEjuUqmmVmn68pmD/CZz8CUKXDaaXmP\nJDvORLPlembL9cxX7j84nhcJLroo2cqfMAF6e5MrZpqZdaKuzOyrLVgA550Hc+cmh2fOmJFcMXOn\nnXIdlpnZoAr5g+M1F16AZl+xfj388pdw1VXw858nF06bPh3+9m+TLX8zs6LwDtohGDkyuQ7+5Zcn\nl0b+1KfgxhuTi6kdfjhcdhmsXJn3KGtzJpot1zNbrme+3OwH8LKXJVv0V18NTzyR/Ij5NdfArrvC\nUUclx+g/91zeozQzq59jnAasWJFk+1ddBXfeCYcemmT8hx0Go0fnPToz6xbO7NtoyRL4yU+Srfz7\n74f3vz/J+A8+OImEzMxaxZl9G02cCJ/4BNx0U3JEz1//NZxzDkyeDCecAL/6FWzY0N4xORPNluuZ\nLdczX272Gdh5ZzjpJLj9drjvPth9dzj9dNhlF/j0p+G222DjxrxHaWbdzDFOCz38cLKTd84cWLYs\n+dWs6dNhn32Sk7rMzJrhzL7AFixIduzOmZMc0z99erJz981vduM3s8Y4sy+wPfeEs86CBx+Ea69N\nGvxRR8HrXw9nnAHz5iVH+wxl3edMNFuuZ7Zcz3x17bVx8iLBtGnJ7eyz4Te/Sbb2Z8yAp56CtWuT\nnb+TJm2+7bjj4NPbbpv3X2RmZeAYp2DWroXFi5PbM89svg00vWhRsvKod8Ww444walTef6GZDZUz\n+y4TkZzJO9jKoP/04sXJ2cG1VgbVz02YACP83c+scNzsu1xfXx89PT2DPh+R7BfovzIYbEWxbBmM\nHVvft4ZJk5J5h3XQXqCt1dMa43pmp5lm7+22LiLBuHHJbffdtz7/iy/C0qUDrwx++9stVw6rV790\nf0Otbw077gjbbecjkczaxVv2lpn165PLSGwtTqrc37Bh4JXBhAlJ3DRq1Etvo0fX99ioUY6frLM5\nxrFSWbNm4JXBkiXJjup16zbf+k8P9ljl8WHDhrayyHpef4OxLBWu2Us6FJgFDAcujIhz+z3vZp8h\nZ6KJiORbQ70rhsEee/DBPiZP7ml6hVO5v349bLNNcyuLkSNh+PDNt2HD6p9uZN52vPaOO/o44ICe\nTdOdtH+n3QqV2UsaDnwHeA/wBPAbSddFxB9atcxuN2/ePDd7kq3obbZJbmPGNP8+s2bN4/Of7xny\neCKSht/MCmf9+mTfyYsvJtdXqtyvnl63bsvnB5u3nulWvXbt2nkMH96zaRqaX6kMG/bS+40+Vvb5\nm9HKZHMf4OGIWAggaQ5wBOBm3yIrVqzIewgdJat6Spu32LvZmWeu4MwzN09v3NjYSqbyWPXrqv8d\n6LFaz2X9Hi+88NIVb6vGWFlRNqqVzX4X4LGq6ceBt7dweWZWIpWtVu9Mb1wz+4BamZo5jG+zhQsX\n5j2EjuJ6Zsv1zFfLdtBK2hc4MyIOTadPBzZW76SV5BWCmVkTCnM0jqQRwEPAQcCTwD3ATO+gNTNr\nv5alZRGxQdJngBtIDr28yI3ezCwfuZ5UZWZm7ZHbaQ2SDpX0oKQ/STo1r3F0CkkLJf1O0v2S7sl7\nPGUi6WJJiyTNr3psvKQbJf1R0i8ljc1zjGUySD3PlPR4+vm8Pz3h0uogaYqkmyX9XtIDkj6bPt7Q\nZzSXZl91wtWhwJ7ATEl75DGWDhJAT0TsHRH75D2YkrmE5LNY7TTgxoh4HfDrdNrqM1A9Azg//Xzu\nHRHX5zCusnoBODki9gL2BT6d9suGPqN5bdlvOuEqIl4AKidc2dD4CixNiIjbgOX9Hv4AcGl6/1Lg\nyLYOqsQGqSf489mUiHg6Iual91eTnJi6Cw1+RvNq9gOdcLVLTmPpFAH8StK9kk7IezAdYKeIWJTe\nXwTslOdgOsRJkn4r6SLHYs2RNBXYG7ibBj+jeTV77xXO3jsjYm/gMJKvefvnPaBOkV6tz5/Zofke\n8CpgGvAUcF6+wykfSWOAa4DPRcSz1c/V8xnNq9k/AUypmp5CsnVvTYqIp9J/FwPXkkRl1rxFkv4K\nQNLOwDM5j6fUIuKZSAEX4s9nQyRtQ9LoL4+IuenDDX1G82r29wKvlTRV0khgOnBdTmMpPUkvl7Rd\nen9b4BBgfu1X2VZcBxyb3j8WmFtjXtuKtBlVHIU/n3WTJOAiYEFEzKp6qqHPaG7H2Us6jM3Xur8o\nIs7JZSAdQNKrSLbmITlR7krXs36Sfgi8G5hIkn1+FfgpcDWwK7AQ+HBE+LKidRignmcAPSQRTgD/\nA/xDVd5sNUjaD7gV+B2bo5rTSa5KUPdn1CdVmZl1Af9WjJlZF3CzNzPrAm72ZmZdwM3ezKwLuNmb\nmXUBN3szsy7gZm9m1gXc7M3MuoCbvdkAJH0svULjPEmX5T0es6HyGbRm/UjaC/gJ8I6IWCZpXEQM\ndH12s9Lwlr3Zlg4Ero6IZQBu9NYJ3OzNthT4V5Wsw7jZm23pJuBoSeMh+WHnnMdjNmTO7M0GIOlj\nwBeBF4H7IuL4nIdkNiRu9mZmXcAxjplZF3CzNzPrAm72ZmZdwM3ezKwLuNmbmXUBN3szsy7gZm9m\n1gXc7M3MusD/B+nAo2p5Y3p0AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x783b160>"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter11_2.ipynb b/Mass_-_Transfer_Operations/Chapter11_2.ipynb
new file mode 100755
index 00000000..429b975a
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter11_2.ipynb
@@ -0,0 +1,1235 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b2d866884e32978f30135a4e666314d83655be533eae1227e5f3d0fa8ae8f5d8"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11: Absorption And Ion Exchange"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.1: Page 575"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.1\n",
+ "# Page: 575\n",
+ "\n",
+ "print'Illustration 11.1 - Page: 575\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#*****Data*****#\n",
+ "Temp = 30.0;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# From Fig. 11.5 (Pg 572)\n",
+ "# The isosteres for various concentrations are straight and their slopes are measured with the help of milimeter rule.\n",
+ "# Data = [X(kg acetone/kg carbon) lambda(slope of isostere)]\n",
+ "Data = numpy.array([[0.05 ,1.170],[0.10, 1.245],[0.15 ,1.3],[0.20 ,1.310],[0.25 ,1.340],[0.30 ,1.327]]);# [kg acetone/kg carbon]\n",
+ "lambdar = 551.0;# [reference at 30 OC,kJ/kg]\n",
+ "Val = numpy.zeros(shape=(6,5));\n",
+ "for i in range(0,6):\n",
+ " Val[i,0] = Data[i,0];# [kg acetone/kg carbon]\n",
+ " Val[i,1] = Data[i,1];# [slope of isostere]\n",
+ " Val[i,2] = -Data[i,1]*lambdar;# [kJ/kg acetone]\n",
+ "\n",
+ "\n",
+ "plt.plot(Val[:,0],Val[:,2])\n",
+ "plt.grid();\n",
+ "xlabel(\"X (kg carbon / kg acetone)\");\n",
+ "ylabel(\"Differential heat of adsorption (kJ / kg acetone)\");\n",
+ "title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area: The area under the curve between X = 0 to X = X\n",
+ "# Corresponding to Data(:,1):\n",
+ "Area = numpy.array([-29.8 ,-63.0, -97.9 ,-134.0, -170.5, -207.5]);\n",
+ "for i in range(0,6):\n",
+ " Val[i,3] = Area[i];\n",
+ " Val[i,4] = Area[i]+(lambdar*Val[i,0]);\n",
+ "print \" (1) = X(kg acetone/kg carbon) \\n (2)= Slope of isostere \\n (3)= Differential heat of adsorption(kJ/kg acetone) \\n (4)=deltaH_prime(vapour(kJ/kg carbon)) \\n (5)=deltaH(liquid(kJ/kg carbon)\"\n",
+ "print\"(1) \\t \\t \\t \\t (2) \\t \\t \\t \\t (3) \\t \\t \\t \\t \\t \\t \\t \\t (4) \\t \\t \\t \\t \\t \\t (5) \" \n",
+ "for i in range(0,6):\n",
+ " print Val[i,0],\" \\t \\t \\t \",Val[i,1],\" \\t \\t \",Val[i,2],\" \\t \\t \\t \\t \\t \",Val[i,3],\" \\t \\t \\t \\t\",Val[i,4]\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.1 - Page: 575\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEZCAYAAACw69OmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XnclXP+x/HXu1JRERNCCJG1VQsqd7LEECZmCpF9GWQZ\n+tm3sW9jH2PLFoOJEcnanSyJFIUxpOxMUZSt1Of3x/c6rtPdfe773PfZ7/N5Ph7ncZ9zneu6vp/7\n2+l87uv7vb7fr8wM55xzLlONCh2Ac865hsETinPOuazwhOKccy4rPKE455zLCk8ozjnnssITinPO\nuazwhOLKgqTzJd1bw/szJfXLZRmlTNIGkhZKUqFjccXLE4orCElDJL0maZGkryVNlnRsDousccCV\nmW1tZi/mqgxJFZI+TeckktpLWiapYP8/Jc2RtFPitZl9YmatzAeuuRp4QnF5J+lU4G/A5cDaZrY2\ncAywg6SmKY7J9LOaj7+ss11GTmKW1DiN3SxX5buGyxOKyytJqwEXAMea2Rgz+wHAzKab2UFmtjja\nb5SkWySNk7QIqJD0e0nTJH0n6RNJ5yWdN/FX/ZGSPpf0RZS4EgxoKuluSd9HTVzdk46fI2lA9Lyx\npDMlfRjt+4ak9aL3rovK/i7a3qee9VAp6UJJL0VlPC3pd9HbiSulBVEzU6/omMMkvSvpW0njJW2Q\ndL5dJb0vaYGkmyRNlHR49N5wSS9LukbSPOA8SRtLekHSPElzJd0X/dsQNdttAIyNyv9L1asmSetK\nelzSN5I+kHREUiznS3ooVV27hssTisu37YBmwL/T2HcocJGZtQReBhYBB5nZasDvgWMl7V3lmAqg\nA7ArMDKRJAh/bQ8CHgBWAx4Hbkw6zoibrE4BhgC7m9mqwKHAT9F7U4DOwOrAaODhVFdVaf5+w4G1\ngKbAX6LtfaOfq0XNTK9Fv+cZwL5AG2BS9LsgqQ3wMDASWAN4n1DPyc1TPYFZUVmXRPVxMbAOsAWw\nPnA+gJkNAz4B9ozKv6qa2B+M9lkH2A+4RFL/pPf3InVduwbKE4rLtzbAPDNbltgg6RVJ8yX9WOUv\n/sfM7FUAM/vFzCaa2TvR6xmEL7Udq5z/AjP7ycxmAncRvrQTJpnZ+Kgf4D5CYqjOEcBZZvZBoiwz\n+zZ6fr+ZzTezZWZ2DSE5dqxHPRhwl5l9aGY/Aw8BXRJVUs3+xwCXmtn7Ud1dCnSJrlL2AGaa2WNR\nXNcDX1U5/gszuyl6/2czm2Vmz5vZEjObB1zLinVZLUnrA9sDI81ssZm9BdwOHJy0W7p17RoQTygu\n374B2iT3iZjZ9ma2evReYrsBy3ViS+olaYKk/0laABwN/I7lJR/zCbBu0uuvk57/CDRP0TfTjvDX\n/Aqi5p93o6al+YS/wNuk+F1rk/yl/xPQsoZ9NwSuixLvfEJdAaxHuEr4rMr+VV9Xrcu1JT0o6TNJ\n3wH3smJdprIu8G2iuTLySRRLQrp17RoQ/wd2+fYq8AuwTz2OHQ08BrQzs9bA31nxM7xBleef16Oc\nTwnNZsuR1Bc4DdjfzFpHSfA7st95Xd2dVJ8AR5nZ6kmPFtEV3JeEJJiIU8mvU5zzEmApsHXUhDiM\n5euypru5vgDWkJScADdgxSTmyownFJdXZraA0Cl/s6TBklpJaiSpC9AiadfqvqRbAvPNbLGknsAB\nrPjFd7aklSVtReif+Gc9wrwduEhSBwWdJK0Rlf8rME9SU0nnAqvW4/wJqRLRXGAZsEnStr8DZ0ra\nEsLNDZL2j94bB2wjaW9JTYA/A21rKbsl8APwfXTDwWlV3v+6Svm/MbNPgVeASyU1k9QJOIzQtOXK\nmCcUl3dmdiWh4/t0QrPPV4QvzNMJVzCwfCd5wnHAhZK+B86h+mQxEfgQeA640syeq+F8qf4Kv4bQ\np/EM4QrkNqA58DQwHvgvMIfQTPVJlfPV9Jd9TeX/dqyZ/UjoMH85auLqaWaPEW6zfjBqopoB7Bbt\nPw/YH7gCmEfoZH+DcCWYKq4LgG7R7zcW+FeVfS4lJOf5kk6pJt6hQHvC1coY4Fwze6GG8nz8ShlQ\nbeOUor/0+hE+PEb4jzQp0Tla74KlEwhfEEuBJ81sZNJ7GwDvAueZ2dXRtu7AKMJ/7HFmNiKT8l3D\nIqk98BHQJLnDvxxFfRWfAgeY2cRCx+PKR8orFEnDJE0BriJcPn9ESCbrAFdJel3SQfUpNLq9cBDQ\nycy2jspIdg3wZJVttwCHm9mmwKaSBtanbOcaomgcSmtJzYAzo82TCxmTKz9NanhvdWCAmS2s7k1J\nqxLaqOvjWMItkEsAzGxu0nn3ISSvH5K2rQO0MrMp0aZ7CJ264+tZvmuYyrlZZTvCTQtNgXeAfczs\nl5oPcS67Ul6hmNn1qZJJ9P730f3u9bEp0E9h/qZKSdsCRHeNnE40wCrJeix/B8nnLH+LoitzZjbH\nzBqXa3OXmV1gZm3MbFUz287MXi90TK781HSFAoCkjsDNQFsz20pSZ2AvM/trLcc9S/V3mpwVlbu6\nmfWW1IPQAboxIZFca2Y/Rrc+OuecKxG1JhTCHS6nEe7CAXibcGldY0Ixs11Svacwq+yYaL/XozmC\n2hCmhxgs6QqgNbBM0k/Rvsn31bcjxfgCSeXc7OGcc/VmZhn9IZ/ObcOrmNlrSQUasCSTQgmD03YC\nkLQZ0NTM5plZPzPbyMw2IsxGe7GZ3WxmXxHul+8VXbkMi85RLTPzhxnnnXdewWMolofXhdeF10XN\nj2xI5wplrqTfRg1L2o8wMjcTdwJ3SpoBLGb5OYBSOY5w2/DKhNuGvUO+FnPmzCl0CEXD6yLmdRHz\nusiudBLK8cA/gM0lfQHMBg7MpFALd3cNq2WfC6q8ngpsk0m5zjnncqfWhGJms4ABkloAjayGO79c\ncRk+fHihQygaXhcxr4uY10V2pTNSvjkwmDBSvjFh/iEzswtzHl09SLJstQc651y5kITloVP+34RR\n7UsIgw0XkTTo0BWvysrKQodQNLwuYl4XMa+L7EqnD2U9M9st55E455wraek0ef0DuNHM3s5PSJnx\nJi/nnKu7bDR5pZNQ3iMsNjSbpOmwzaxTJgXniicU55yru3z1oexOmHtrF2BPYC9Cn0rRWry40BEU\nB28fjnldxLwuYl4X2VVrQjGzOYRpUAYRkslq0baide65hY7AOefKTzpNXiOAIwnzaYkwbfxtVv+Z\nhnNKkq27rnH33bDzzoWOxjnnSkO++lBmAL3N7IfodQtgspkV5ah1Sfbcc8bBB8P06bDmmoWOyDnn\nil+++lAAlqV4XpQGDIBhw2D4cCjn/nlvH455XcS8LmJeF9mVTkK5C3hN0vmSLiAsK3pnbsPK3EUX\nwbx5cH1RNsw551zDU2uTF4Ck7kAfwhKrk8xsWq4Dq6/k24ZnzYLeveGZZ6Br1wIH5pxzRSxffSj3\nmtmw2rYVi6rjUEaPhgsvhKlToUWLAgbmnHNFLF99KFtXKbQJ0D2TQvPpgAPCVcqIEYWOJP+8fTjm\ndRHzuoh5XWRXyoQi6UxJC4FtJC1MPID/AY/nLcIsuOEGePFF+Oc/Cx2Jc841XOk0eV1mZv+Xp3gy\nlmrqlalTYffd4bXXYKONChCYc84VsXz1oTQirNC4kZldKGkDoK2ZTcmk4FypaS6vq6+GRx4JVysr\nrZTnwJxzrojlqw/lZmA74IDo9aJoW8k5+WRYbTW44ILa920IvH045nUR87qIeV1kVzoJpZeZHQf8\nBGBm3wIl+fd9o0Zw991w550wYUKho3HOuYYlnSav14DtgTfMrKukNYFnzKwoR3akM33900/DEUfA\ntGnQpk2eAnPOuSKWryavG4BHgbUkXQK8DFyaSaGFtttuMGQIHH54eU/N4pxz2ZTO9PX3ASMJSeQL\nYG8zeyjXgeXaxRfD55/DzSXZG5Qebx+OeV3EvC5iXhfZVeua8pJ6A++a2Y3R61Ul9TKz13IeXQ41\nbQoPPADbbw99+0Knolx/0jnnSkc6fSjTga6JjglJjYn6U/IQX53VdQnge+6Byy6DN96AVVbJYWDO\nOVfE8jZ9ffI3tJktBRpnUmgxGTYMunULtxQ755yrv3QSymxJJ0paSVLTaAXHj3IdWL5IoR/luefC\noMeGxNuHY14XMa+LmNdFdqWTUI4BdgA+Bz4DegNH5TKofFt11dCf8uc/wyefFDoa55wrTWmth1JK\n6tqHkuyKK2Ds2DDosUmttys451zDka+5vFYGDge2BJontpvZYZkUnCuZJJRly8IYlR12gPPPz25c\nzjlXzPLVKX8vsDYwEJgIrE+Yz6vBadQo3PV1661hAslS5+3DMa+LmNdFzOsiu9JJKB3M7BxgkZnd\nDewB9MptWIWzzjpwxx1w0EHw7beFjsY550pHOk1eU8ysp6RJwHHAV8BrZrZxPgKsq0yavJKdfDJ8\n/DH861/hTjDnnGvI8tXkdZukNYCzCSs1vgtckUmhpeCyy2D2bPjHPwodiXPOlYZ05vK6zcy+NbOJ\nZraRma1pZn/PR3CF1KwZPPggnH02vPNOoaOpH28fjnldxLwuYl4X2ZXWSPly1bEjXH55mJn4p58K\nHY1zzhW3go1DkXQCoU9mKfCkmY2MtncCbgVaAcuAbc1ssaTuwCjCrcvjzGxEivNmpQ8lwQyGDoXf\n/Q5uuilrp3XOuaKSt7m8sk1Sf2AQ0MnMtgauirY3IdymfFS0fUfg1+iwW4DDzWxTYFNJA/MTK/z9\n7zBuHDz2WD5KdM650lRrQpE0WNIfqjwGSForg3KPBS41syUAZjY32r4r8LaZzYi2zzezZZLWAVqZ\n2ZRov3uAfTIov05at4bRo+Hoo+Gzz/JVaua8fTjmdRHzuoh5XWRXOlcohwG3AwdGj9uA/wNekXRw\nPcvdFOgnabKkSknbJm03SeMlTZV0WrR9PcI8YgmfR9vyZrvtYMSIMD5l6dJ8luycc6UhnRmrVgK2\nMLOvASStTWiW6gW8SLhaWIGkZ4G21bx1VlTu6mbWW1IP4CFg46isPsC2wE/A85KmAt/V5ZcaPnw4\n7du3B6B169Z06dKFiooKIP6LpD6vR46Ehx+u5Kij4I47Mj9frl9XVFQUVTz+unheJxRLPIV6ndhW\nLPHk83VlZSWjRo0C+O37MlPpDGx8z8y2SHotwgqOW0iaVp+FtiQ9BVxmZhOj1x8SZjEeAOxuZsOj\n7WcDPwP3ARMScUgaCuxoZsdUc+6sdspX9fnn0L17GPC4ww45K8Y55/IqX53yEyQ9KekQScMJgxsr\nJbUAFtSz3MeAnQAkbQY0NbN5wDPANpJWjjrodwTeMbOvgO8l9YoS2rDoHHm33nphsOOBB8KC+v72\neVL1r9Fy5nUR87qIeV1kVzoJ5c/AXUAXoDNwN3Ccmf1gZv3rWe6dwMaSZgAPAAdD6IQHrgFeB6YB\nU83sqeiY4wh9OR8AH5rZ+HqWnbFBg2CvveCoo8Jtxc4559Jr8to96Us9se2YYh0tn+smr4Sff4ae\nPeHEE+GII3JenHPO5VS+mrzOkTQgqdDTyeMtu8WqefMwNcsZZ8B77xU6GuecK7x0Esog4GJJfSVd\nTLi7a1BuwyoNW24Jl1wSRtL//HOho1mRtw/HvC5iXhcxr4vsSmdyyHmEBHIzsC6wn5ktznVgpeKI\nI6BDBxg5stCROOdcYaXsQ5G0CEh+symwJNpmZrZq7sOru3z1oSSbPx+6dIEbbwyd9c45V2rysqZ8\nqSlEQgF46SXYbz94801Yd928F++ccxkp2ckhG6I+feC444prahZvH455XcS8LmJeF9nlCSWLzjor\nJJMrGvx6ls45tyJv8sqyTz+FbbeFf/8bevcuWBjOOVcnOW3yimb7vU7SQEnNMymknKy/flg/5YAD\n4Ls6TWnpnHOlraYmr96E+bL6AxMlPSVpRDT3lqvBvvvCbrvBMccUdmoWbx+OeV3EvC5iXhfZlTKh\nmNkSM5tgZiPNrBdwBLAI+KukNyXdnLcoS9A118CMGXD33YWOxDnn8qNefSiSGgO9zezl7IeUmUL3\noSSbORP69w+3FHfsWOhonHMuNR+HUo1iSigAt9wCt90Gr74KzZoVOhrnnKuej0MpAcccAxtuCGee\nmf+yvX045nUR87qIeV1klyeUHJPgjjvg4Yfhqadq398550pVTXN53VDDcb8AHwL3m9nCXARWX8XW\n5JUwcSIMGQLTpkHbtoWOxjnnlpfTPpRoud9U38xNgK2Brc1sl0wCyLZiTSgA554LkyfD+PHQyK8N\nnXNFJKd9KGY2yszuBiaZ2d3JD+BtMzsZ+DWTwsvNuefCDz/A1VfnpzxvH455XcS8LmJeF9mVzt/J\nj0hql3ghaUfCGvOY2e65CqwhatIERo+GK6+E118vdDTOOZdd6awp3wO4BdgT6AZcCuxpZp/mPry6\nK+Ymr4SHHw5LB0+bBq1aFToa55zL4zgUSdsDtwI/EZLJ/zIpNJdKIaEAHHVUWDb4nnsKHYlzzuV+\ncsixiQdwBrAy4e6uOyQ9nkmhDq69NjR73Xtv7srw9uGY10XM6yLmdZFdTWp4r7quYwNE6ru/XJpa\ntIAHH4Sdd4bttgvr0jvnXCmr6bbhRma2rMaDi7B9qQhDqtENN4Rmr5dfhqZNCx2Nc65c5XrqlQmS\nTqtuunpJHSWNBCZmUriD448PAx3PPrvQkTjnXGZqSii7At8AN0n6UtJ/JX0g6UvgRuBrYOd8BNmQ\nSXDXXeF24meeye65vX045nUR87qIeV1kV8o+FDP7BbgTuDOarr5N9NY8M1uaj+DKRZs2odlr2LBw\nK/FaaxU6Iuecqzufvr6InHlmSChPPulTszjn8sunr29gLrgA5s+H664rdCTOOVd3nlCKyEorwQMP\nwCWXwJtvZn4+bx+OeV3EvC5iXhfZ5QmlyGy0EVx/fZjqftGiQkfjnHPpS2cur8HAZcDahEGNAGZm\nq+Y4tnop5T6UZIcdBmbhDjDnnMu1vMzlJWkWYf6u9zIpKF8aSkJZtAi6d4fzz4ehQwsdjXOuoctX\np/xXpZJMGpKWLUN/yoknwkcf1e8c3j4c87qIeV3EvC6yq6a5vBLekPRP4DFgcbTNzGxM7sJyAN26\nhVuJDzgAJk0KnfbOOVes0mnyGhU9XW5HMzs0o4KlE4DjgKXAk2Y2UlJzwuJdWxGS3T1mdlm0f3dg\nFNAcGGdmI1Kct0E0eSUsWwZ77glduoS7v5xzLhey0eRV6xWKmQ3PpIDqSOoPDAI6mdkSSWtGbw2J\nyuwkaWXgXUmjzewTwiJfh5vZFEnjJA00s/HZjq3YNGoEo0ZB164wYEB4OOdcMaq1D0XS+pIelTQ3\nevwreUngejoWuNTMlgCY2dxo+5dAi2iqlxaEJrbvJa0DtDKzKdF+9wD7ZBhDyVhrrZBUDjkE5s6t\ndfffePtwzOsi5nUR87rIrnQ65e8CHgfWjR5jo22Z2BToJ2mypEpJ2wKY2dPA94TEMge40swWAOsB\nnyUd/3m0rWzssgsceCAcemi4ndg554pNOn0ob5lZ59q2VXPcs0Dbat46C7gYeMHMRkRr1v/TzDaW\ndBCwL/BHYA1gErA78DvCFc0u0bn7Aqeb2V7VlNug+lCSLV4MffqESSRPOKHQ0TjnGpK89KEA30ga\nBowmDGwcAsyr7aDEl391JB0LjIn2e13SMkltgO2BR6PZjOdKehnoDrwEJDeztSNcpVRr+PDhtG/f\nHoDWrVvTpUsXKioqgPgStxRfN20KI0ZUctxx0K9fBZ07F1d8/tpf++vSeV1ZWcmoUaMAfvu+zJiZ\n1fgA2hOaueZGj38DG9R2XC3nPBq4IHq+GfBx9PxE4M7oeQvgHWDr6PVrQC9CUhsHDExxbmvo7r3X\nbPPNzRYtqnm/CRMm5CWeUuB1EfO6iHldxKLvznp/r5tZ7X0oZjbHzPYyszWjx94W7rrKxJ3AxpJm\nAA8Ah0TbbwWaRtunRMllZvTeccDtwAfAh1YGd3ilctBB0KMHnHRSoSNxzrlYTWvKjzSzyyXdUM3b\nZmYn5ja0+mnIfSjJFi4MAx8vvhj++MdCR+OcK3W57kN5N/o5leUHNarKa1cArVqFqVn22AN69oRs\nNYE651x9pWzyMrOx0dMfzezupMco4Ke8ROdqtO22cPrp4XbiX39d8f1EB5zzukjmdRHzusiudMah\nnJHmNlcAp5wSJpK88MJCR+KcK3c19aHsDuwB/Al4kHgtlFbAlmbWMy8R1lG59KEk++qrMDXLAw9A\ndHegc87VSa6nr/+C0H/yc/TzjejxOLBbJoW67GrbFu68Mwx4/OabQkfjnCtXNfWhvBX1l2xCuEKZ\nDkwDnjCz+fkJz6Vr993D3V6HHx5PzeLtwzGvi5jXRczrIrvS6UPZFfgQuB64AZglaY+cRuXq5ZJL\n4NNP4ZZbCh2Jc64cpTOX1/vA783sw+j1JoT1SDrmIb46K8c+lGT//S/ssAO88AJss02ho3HOlYp8\nLQH8fSKZRD4izAjsitBmm8GVV8KQIfDjj4WOxjlXTtJJKFOjBa2GSxoOPEFYFvgPkv6Q2/BcfRxy\nSJiapaKikp9/LnQ0xcHbymNeFzGvi+xKJ6E0A74GdowecwnL8O4VPVyRkeD222GVVWDwYPjll0JH\n5JwrBzX2oUQrJ44ws2vyF1Jmyr0PJdmSJTB0aEgojzwCzZoVOiLnXLHKeR+KhXVJhmZSgCuclVYK\ngx1XWincUrx4caEjcs41ZOk0eb0k6UZJfSV1k9RdUrecR+YyVllZyUorwYMPhmawIUPCVUs58rby\nmNdFzOsiu9JJKF2BrYALgauBq6KfrkQ0bQoPPRQmkBw6tHyTinMut2odh1JqvA8ltV9+CZ30q6wC\no0dDk3QWgHbOlYW8jEOR1FrStZKmRo+rJa2WSaGuMJo1C53zCxeGVR+rm/LeOefqK50mrzsJAxn3\nB/4ILATuymVQLjuqax9u3hwefRTmz4eDDy6fpOJt5TGvi5jXRXalk1A2MbPzzOwjM5tlZucTJox0\nJap5c3jsMZg3D4YPh6VLCx2Rc64hSGcur8nAaWY2KXrdB7jSzLbLQ3x15n0o6fvxRxg0CNZdF+66\nCxo3LnREzrlCyUYfSjoJpQtwD5DoN5kPHGJmb2VScK54QqmbH3+EPfeEDTeEO+6ARulcszrnGpy8\ndMqb2XQz6wR0ArYxsy7Fmkzc8tJpH15lFRg7FmbPhiOPhGXLch9XIXhbeczrIuZ1kV3p3OV1kqRV\nCR3z10p6U5Kv2NiAtGgBTz4JH3wARx/dcJOKcy630mnyetvMOkVJ5BjgHOBeM+uajwDrypu86m/R\nIhg4ELbaKizS5c1fzpWPfK2Hkijg94REMjOTAl3xatkSnnoKZs6E44+PlxJ2zrl0pLseyjPAHsDT\nUfOXN4qUgPq0D7dqFZLKtGlwwgkNJ6l4W3nM6yLmdZFd6SSUw4AzgG3N7AdgJeDQnEblCmrVVWH8\neHj9dRgxouEkFedcbqXsQ5HUHUj5VWJmb+YqqEx4H0r2LFgAu+wCffrANdeEGYudcw1TTsehSKok\nJJSVge7A29FbnYA3fGBjeZg/PySVHXeEq67ypOJcQ5XTTnkzqzCz/sAXQDcz625m3QnT2X+RSaEu\nP7LRPrz66vDMMzBhAowcWbrNX95WHvO6iHldZFc6fSibm9mMxIvoLq8tcheSKzZrrAHPPhsSyxln\nlG5Scc7lVjrjUB4EFgH3EW4hPgBoaWZFuTSwN3nlzrx5MGBAmKrlr3/15i/nGpJ8zeW1MnAs0Dfa\n9CJwi5n9nEnBueIJJbfmzoWddoJ994ULLyx0NM65bMnXXF4/mdk1ZrZv9Li2WJOJW14u2ofXXBOe\nfx7GjIELLsj66XPG28pjXhcxr4vsqnURWEmbAZcAWxLu+AIwM9s4l4G54rXWWiGp9O8fpmc555xC\nR+ScKwbpNHm9DJwHXAMMAoYDjc2sKL9GvMkrf776KiSVgw6Cs84qdDTOuUzkay6vlc3sOULymROt\n2Pj7TAqV9KCkadFjtqRpSe+dIekDSf+RtGvS9u6SZkTvXZdJ+S472raFF16Ae++Fyy4rdDTOuUJL\nJ6H8LKkx8KGk4yX9AWiRSaFmNsTMukYzFv8reiBpS+BPhOa1gcDN0m/3Et0CHG5mmwKbShqYSQzl\nIB/tw+usE5LKnXfCFVfkvLh687bymNdFzOsiu2rtQwFOAlYBTgQuAlYFDslG4VGy+CPQP9q0N/CA\nmS0B5kj6EOgl6WOglZlNifa7B9gHGJ+NOFxm1l03DHysqAjLCJ96aqEjcs4VQq19KDktXOoHXG1m\nPaLXNwCTzez+6PXtwFPAHOAyM9sl2t4XON3M9qrmnN6HUiCffRaSyp//DCefXOhonHN1kY0+lHSu\nUOpF0rNA22reOtPMxkbPhwKjcxWDy6927ULzV//+4UrlxBMLHZFzLp9yllASVxOpSGoC7At0S9r8\nObB+0ut2wGfR9nZVtn+e6tzDhw+nffv2ALRu3ZouXbpQUVEBxG2m5fA6uX04X+V/9FElF18MZ5xR\nQaNGsPXWxVEfiW3F9O9TqNfTp0/npJNOKpp4Cvn6b3/7W1l/P4waNQrgt+/LjJlZtQ/g8ujnH1Pt\nk8mD0Ok+ocq2LYHpQFNgI2AWcbPca0AvwvQv44CBKc5rLpgwYULByp4922zDDc1uuqlgISynkHVR\nbLwuYl4Xsei7M6Pv9Zqmr58JbAO8aTlYP17SXcCrZvaPKtvPJCzq9SswwsyejrZ3B0YRBleOM7Nq\nG1S8D6V4zJ4d+lTOPBOOPrrQ0TjnapLr9VCuBI4EWgI/VXnbzGzVTArOFU8oxWXWrNCncs45cOSR\nhY7GOZdKrtdDOc3MWhOuBlpVeRRlMnHLS+4/KJRNNgkd9RdeCHfcUbg4iqEuioXXRczrIrtq7ZQ3\ns0GS1gZ6RJummNn/chuWa0g6dFj+7q/hwwsdkXMuF9KZy+uPwJXAREKHeF/gNDN7OPfh1Z03eRWv\n998P66lccgkcfHCho3HOJcvXOJSzgR6JqxJJawLPA0WZUFzx6tgRnnsuJJVGjcKkks65hiOdubwE\nzE16/U0MILaSAAAaI0lEQVS0zRW5Ymwf3nzzsJzw6afD6DwOaS3GuigUr4uY10V2pXOFMh54WtJo\nQiL5E2E6FOfqZcstQ1LZeedwpTJkSKEjcs5lQ1pzeUkaDOwQvZxkZo/mNKoMeB9K6ZgxA3bdFa6/\nHvbfv9DROFfe8rKmfKnxhFJa3noLdtsNbroJBg8udDTOla98LbDlSlQptA937gzjx4cZih/N4XVv\nKdRFvnhdxLwusitnk0M6l64uXWDcONh999CnsvfehY7IOVcf6YxDGWFm19W2rVh4k1fpmjoV9tgD\nbr8d9lphpRvnXC7lq8lreDXbDs2kUOeq0707PPEEHHFE+OmcKy0pE4qkoZLGAhtJGpv0qCSMRXFF\nrhTbh3v0gLFj4bDDQjNYtpRiXeSK10XM6yK7aupDeQX4ElgTuIp4MONC4K0cx+XKWM+e8PjjMGgQ\n3HtvuAvMOVf8/LZhV7ReeQX22Qfuuy+MV3HO5U5e+lAkbSfpdUmLJC2RtEzS95kU6lw6tt8exoyB\nAw8Mc4A554pbOp3yNwIHAB8AzYHDgZtzGZTLjobQPtynT0gqBxwQpsCvr4ZQF9nidRHzusiutAY2\nmtkHQGMzW2pmdxHWg3cuL/r2hYcfhj/9Cfz/v3PFK51xKC8CuwC3EzrpvwIOMbPOuQ+v7rwPpeGa\nMCEklUcegX79Ch2Ncw1LvsahHBztdzzwI9AO8FmXXN717w8PPBDm/Jo0qdDROOeqqjWhmNkcwi3D\nbc3sfDM7xcw+zHlkLmMNsX14wICwjsrgwfDyy+kf1xDror68LmJeF9mVzl1eg4BpwNPR666SHs91\nYM6lsssuYXzKvvvCq68WOhrnXEI6fShvAjsBE8ysa7RtppltnYf46sz7UMrH+PFhbfqxY6FXr0JH\n41xpy1cfyhIzW1Bl27JMCnUuGwYOhFGjwkSSU6YUOhrnXDoJ5R1JBwJNJG0q6QbCtCyuyJVD+/Ae\ne8Cdd4ak8sYbqfcrh7pIl9dFzOsiu9JJKCcAWwG/AA8A3wMn5TIo5+pizz3httvg97+HN98sdDTO\nlS+fy8s1GI89BkcfHfpWunYtdDTOlZZs9KHUumKjpI7AX4D2Sfubme2UScHOZds++8DSpWHlx6ef\nDssLO+fyJ50mr4eBN4GzgdOSHq7IlWP78ODBcMMNocP+7bfj7eVYF6l4XcS8LrIrnTXll5jZLTmP\nxLks2X9/WLYsrKPy7LOwdVHe4O5cw5OyD0XSGoQR8icAc4ExhI55AMzs23wEWFfeh+ISHngATj01\nJJWttip0NM4Vt2z0odSUUOYAqb6Zzcw2zqTgXPGE4pLdfz+cdhocf3zoU+ncGdZbD5TRfxvnGp6c\nJpRS5QklVllZSUVFRaHDKLgXXoBbb63k228reOut0BzWqVOcYDp3hi23hGbNCh1pfvjnIuZ1EcvL\nXV7OlbqddoJGjaCiAszgq6/grbfC45ln4Mor4aOPYNNNl08ynTvDWmsVOnrnSodfoTgH/PwzvPNO\nnGgSj+bNV0wyHTtCE/9TzDUw3uRVDU8oLlvM4NNPV0wyn30GW2yxYqJZffVCR+xc/eW6U747qTvl\nMbN6T3Ih6UGgY/SyNbDAzLpK2gW4FGgKLAZOM7MJSfGMIqxrP87MRqQ4tyeUiLcPx7JZF4sWwcyZ\nyyeZGTOgdesVk8wmm0DjxlkpNmv8cxHzuojlug/lampIKED/+hZqZkMSzyVdBSRmM54L7GlmX0na\nirAGS7vovVuAw81siqRxkgaa2fj6xuBcfbVsCb17h0fCsmUwe3acYO6/H04/HebODeNgkpNMp07Q\nqlXh4ncuVwra5CVJwMdAfzObVc1784C2QBvgBTPbInpvCFBhZsdUc06/QnFF47vvwoj95KuZd96B\ntm1XvJpp395vZ3aFk7e7vCRtA2xBaG4CwMzuyaTgSF/g66rJJDIYmGpmSyStB3yW9N7nwHpZKN+5\nnFptNejbNzwSli6FDz6IE8xtt4WfCxeueDvz1lvDKqsULn7n6iKdySHPB3YkTGH/JLA78BJQY0KR\n9Czh6qKqM81sbPR8KDC6mmO3Ai4DdqktvuoMHz6c9u3bA9C6dWu6dOnyWztpYu6ecnidPE9RMcRT\nyNeJbcUST0VFBZtvDmuvXcmuu4bX8+bBPfdUMmsWvPxyBTfdBO++W0nbtrDddhV07gxSJR06wH77\nVSDVr/zp06dz0kknFfz3L4bXf/vb38r6+2HUqFEAv31fZiqdJYBnAp2BN82ss6S1gfvNbOeMCpaa\nEK46upnZF0nb2wHPA8PN7NVo2zos3+Q1FNjRm7xqVukdjr8p1bpYvBj+858V7zRbunTFJrN0B2eW\nal3kgtdFLC+3DUt63cx6SJpKWFv+e+A/ZtaxxgNrK1gaCIw0s/5J21oDE4HzzOyxKvu/BpwITCFc\nKV1fXae8JxTX0FUdnJl4fPQRdOiwYqJZe+1CR+xKQb4Sys3AWcCfgFOBH4BpZnZoRgVLdwGvmtk/\nkradDfwf8EHSrruY2byk24ZXJtw2fGKK83pCcWUp1eDMZs3i5NKlC+y9N7RoUehoXbHJ+8BGSRsB\nq5rZW5kUmkueUGJ+OR8r17qoOjhz8mSYPLmSSy+t4NBDfcR/uX4uqpPTu7wkbWFm70nqVs173TIZ\n2Oicyw8JNtggPPbaK2z7+9/DOJnrroMrrggrXPrtyi4bahopf5uZHSmpkmoGOCb3fRQTv0JxrnZm\n8MQTYfDluuuGCTK7rfCnoysn+epDaW5mP9e2rVh4QnEufb/+CnfcARdcAAMGwF//ChtuWOioXCFk\nI6Gks6b8K2luc0UmeQxGufO6iCXXRZMmcPTR8P77sPHG4Spl5EhYsCD18Q2Jfy6yK2VCkbROdGfV\nKpK6Seoe/awAfOyucw1Iq1bhKmXGDPj22zBF/3XXhXEwzqWrpj6UQ4DhwLbAG0lvLQRGmdmYnEdX\nD97k5VzmZs4M/Sv//S9ceinst5933Dd0+epD2c/MHsmkkHzyhOJc9jz/PPzlL2Ghsauugh12KHRE\nLlfy1YfyhKQDJZ0l6VxJ50k6N5NCXX54+3DM6yJWl7oYMACmToXjjoMDDoA//CFctTQU/rnIrnQS\nyr+BQcASwij5RdFP51wZaNQIhg0Lc4r16hWuUo4/Pqz14lyytCaHNLOt8xRPxrzJy7ncmjcPLroo\nDI485RQ46SSfYr8hyNttw5I6ZVKIc67haNMm3AE2eTJMmxbuCBs1KsyA7MpbOgmlLzBV0n8lzYge\nb+c6MJc5bx+OeV3EslUXHTrAww/DQw+FRcK6d4dnn83KqfPGPxfZlc7UcLvnPArnXMnabjt46SUY\nMyZ03m+ySZgjrJO3a5SdtGYbltQX6GBmd0laE2hpZrNzHl09eB+Kc4WzZAncemuYwmWPPUJfy3q+\nWHdJyEsfSrQE8OnAGdGmpsB9mRTqnGuYVlop3AH2/vthYa9OneDss+H77wsdmcuHdPpQ9gX2JrpV\n2Mw+B1rlMiiXHd4+HPO6iOWjLlZbLYywnz49rMfSsSPcfHO4gikm/rnIrnQSyi9mtizxQpKv9eac\nS8v668Pdd8NTT8Gjj8LWW8Njj4Xp813Dk844lNOADsCuwKXAYcBoM7s+9+HVnfehOFeczODpp+G0\n06B16zCVS69ehY7KJeR8Li9JAtYHNickFICnzaxobw70hOJccVu6NFy1nHtuGHV/6aVh6nxXWPka\n2DjOzJ4xs79Ej6JNJm553j4c87qIFbouGjeGww4LHffbbAM9e8LJJ8M33+Q/lkLXRaGZwaxZYWBq\nNtSYUKI/9adK6pmd4pxzLmjRItwB9s478MsvsPnmYSnin4tyLdiGYelSeOstuPFG+NOfwi3d/frB\n+PHZOX86fSjvE/pQPiaeFNLMrCiHLXmTl3Ol6T//gf/7v3Bn2MUXw9ChYWJKV3+LF8Mbb8CLL8Kk\nSfDKK7DWWtC3b/zYaKOw1k2+1kNpX912M5uTScG54gnFudL24othDZZly8IVS//+hY6odCxcCK++\nGpLHpEkhmWy2WbgK6dsX+vQJ44Oqk5c+lChxrA/0j57/APjabSWg3NuHk3ldxIq9Lvr1CxNP/uUv\ncPjhsNde8O67uSmr2OuiNnPnhtuxTz4Ztt0W1lknzFKwbFm42vviC3jzTfjb32Dw4NTJJFtqncsr\nGinfHegI3EU8Ut7XbnPO5USjRjBkCOy7L9x0E1RUhOfnnx++NMuRGXz8cXz1MWkSfPllmEutX7+Q\nNLbdNqyuWSjpNHm9BXQFpppZ12jb296H4pzLl/nzQ7/KXXfBiSfCqadCy5aFjiq3li2D996L+z8m\nTQozDST3f3TqFO6ay4Z89aFMMbOekqaZWddopPyrnlCcc/k2ezacdRZMnBiuVg49FJqkM2d6CViy\nJDRPJZLHSy+FAaB9+8Z9IB06hA70XMjXOJSHJd0KtJZ0FPA8cHsmhbr8KPX24WzyuoiVcl1stBGM\nHh2mb7n/fujcGZ58sv5TuRSyLn78EV54AS64AAYMgDXWgKOOgjlz4IADYMaMeIzIYYfBppvmLplk\nS8rcLqm5mf1sZldK2hVYCGwGnOODG51zhdSjB0yYAE88ETrvr746TOXSrVuhI0vt22/DVUfiCmTG\njJAQ+/YNSylvvz2svnqho8xMyiYvSW+aWTdJ95rZsDzHVW/e5OVcefn1V7jjjtAENmBA6GvZcMNC\nRxVmWU7uQP/kE+jdO+7/6NkTVlml0FHGctqHIukd4BLgIuAvhFuFLfHTzMZkUnCueEJxrjwtXBiu\nUm68MdxufOaZoQ8iH8zCVDLJCWTRojDuI9EH0qVLcff35LoP5RjCevKrAXsBe1b56YpcKbeVZ5vX\nRayh1kWrVqE/YsaMcFfYZpuFW2kXL059TH3r4tdfw6DBa6+FP/whjO8YODDckdWnD4wbB//7Xxgj\ncsop4XbeYk4m2VLTr9jWzI6Jmr7+kbeInHMuA+uuC7fdBiNGwOmnww03hBmN99+//p3aP/0EU6bE\nVx+TJ0O7duHqY/DgkLg22CC7v0cpqqnJK3Gb8LTE+JNS4E1ezrlkzz8fOu6bNQtNYn361H7MggVh\n3qvEGJDp08PiYIn+jx12gDZtch97PuW6D+U5Qp9JD2BSlbfNzAZlUnCueEJxzlW1bFm4zfiss6B7\nd7j88tAklvDll8v3f8yaFe4kSySQ3r0b/kDKXCeUZoQR8vcBh7P8/F1mZhPrXaj0IGEqF4DWwILk\nqyBJGwDvAueZ2dXRtu7AKKA5YY2WESnO7QklUllZSUVFRaHDKApeF7FyrouffoLrrw+TTu67L3z6\naSUffljBt9+Gq47EAMJu3aBp00JHm1857ZQ3s1/MbDKwnZlNNLPKpEe9k0l07iFm1jVKIv+KHsmu\nAZ6ssu0W4HAz2xTYVNLATGIoB9OnTy90CEXD6yJWznWx8sowcmSYKr9dO2jZcjqPPgrz5sHYsWF5\n4t69yy+ZZEtNAxuvi64C7tSKPVlZafKKlhj+I9A/ads+wEfEa68gaR2glZlNiTbdA+wDZGlZmIZp\nwYIFhQ6haHhdxLwuQv/HeefB+ecvYJttCh1Nw1HTXV73RD+vrua9bLUp9QW+NrNZAJJaAqcDOwOn\nJe23HvBZ0uvPo23OOeeKRMqEYmZTo5+VktaMns9N98SSngXaVvPWmWY2Nno+FBid9N75wLVm9qOq\nuSxydTNnzpxCh1A0vC5iXhcxr4vsqqlTXsB5wPFAYoLkpcANZnZBxgVLTQhXHd3M7Ito24uExbwg\ndNYvA84BxgATzGyLaL+hwI5mdkw15/Ueeeecq4dMO+VravI6mbCIVg8zmw0gaWPg75JOMbNrMimY\n0Kz1XiKZAJhZv8RzSecBC83s5uj195J6AVOAYcD11Z000wpxzjlXPzVNvXIwcEAimQCY2UfAgdF7\nmfoT8EAd9j+OMG3+B8CHZuYd8s45V0RqavKaaWZb1/U955xz5ammK5Ql9XwvJyQNlPQfSR9IGpli\nn+uj99+SlDxQco6ktyVNkzSlumNLSW11IWlzSa9K+lnSqXU5ttRkWBfl9rk4MPq/8baklyV1SvfY\nUpNhXZTb52LvqC6mSZoqaad0j12BmVX7IHTAL0zx+DXVcbl4EG4K+BBoD6wETAe2qLLPHoQR9AC9\ngMlJ780G1shnzAWuizWBbYG/AqfW5dhSemRSF2X6udgOWC16PjDxf6RMPxfV1kWZfi5aJD3fhtCl\nUK/PRU0j5RubWasUj3xPxNyT8EvOMbMlwIPA3lX2GQTcHcX+GmHJ4rWT3m8onfW11oWZzTWzN1jx\nSjKdeiwlmdRFQjl9Ll41s++il68B7dI9tsRkUhcJ5fS5+CHpZUtgXrrHVpXOmvLFYD3g06TXn7Hi\nwMaa9jHgOUlvSDoyZ1HmRzp1kYtji1Gmv085fy4OB8bV89hil0ldQBl+LiTtI+k94CngxLocm6xU\nlnxJd2xJqr8q+pjZF9EAzWcl/cfMqs6gXCoyGWfT0MboZPr77GBmX5bb50JSf+AwwrCAOh1bIjKp\nCyjDz4WZPQY8JqkvcK+kzetTWKlcoXxOPOCR6PlntezTLtqGRWNdLIz0f5RwKVeq0qmLXBxbjDL6\nfczsy+hn2Xwuos7n24BBZja/LseWkEzqoiw/FwlR4mwCrBHtV6fPRakklDcIMwy3l9SUMIbl8Sr7\nPE40PkZSb8KU+F9LWkVSq2h7C2BXYEb+Qs+6dOoioeoVW12OLQX1roty/FwoLAsxBjjIzD6sy7El\npt51Uaafi02kMNWVpG4AZvZNOseuoNB3IdThboXdgfcJdx2cEW07Gjg6aZ8bo/ffIkzpArAx4e6E\n6cDMxLGl/KitLghzqH0KfAfMBz4BWqY6tpQf9a2LMv1c3A58A0yLHlNqOraUH/WtizL9XJwe/a7T\nCIsp9qjv5yLlwEbnnHOuLkqlycs551yR84TinHMuKzyhOOecywpPKM4557LCE4pzzrms8ITinHMu\nKzyhuJyTtL6kjyStHr1ePXq9QTX7NpM0UVIjSRWSxuY/Yshl2ZJWkjS1mu2LclFeXUg6M0fnPVHS\nsFyc2xUPTygu58zsU+AW4LJo02XArWb2STW7Hwg8YWbL8hVfVZJyPcddH+ClarYXw6CwM3J03ruA\nE3J0blckPKG4fLkW6C3pJGB74KoU+w0F/l11o6Qekt6UtJGkNSU9K2mmpNuiBZHWqOaYgdGCQdMl\nPRtt6ynplehcL0vaLNo+XNLjkp4HniN8ua8m6YlogaFbkqanGBotwDRD0mVJ5S2S9NeovFclrZXi\ndxxImNW1WpLaRDHuruBmSe9JekbSk5IGV3PMkZKmRGU/ImnlaPvakh6Ntk+PpiVC0kGSXlNYVOnv\n0RXhZcDK0bZ7o/1OiX7PGZJGRNvaR/H8I/o3eFpS8+i9TSQ9pTBT74uSOgKY2ULgG0lbpfq9XQNQ\n6GkB/FE+D2A3YBkwIMX7jYEvk15XAGMJCegNoF20/UZgZJVzrlHlXGsSplnZMHrdOvrZCmgcPd8Z\neCR6PpwwRUvrpLJ/Iiwu1Ah4BhgMrAt8DPwuivd5YO/omGXA76PnlwNnpfg9XwOaV7N9IbAWMDlR\nR8B+wJPR87WBb4E/VHPsGknPLwKOj57/Ezgxei5gVWALwpxMiXq4GRiWiCHpPN2Bt4GVgRaE6Tm6\nRHWyBOiUVMaB0fPngQ7R817A80nnuwA4ttCfQ3/k7lEq09e7hmF34AvCqnDPV/N+G8KXarItgFuB\nXczsq2jbDsA+AGb2tKT5rKg3MNHMPo72WxBtbw3cI6kD4Sok+f/AM0n7QZjfaQ6ApAcITVVLgEoL\nk+ch6X6gH+GqarGZPRkdOxXYpWpQktYDvjWzn6uJuSmhXo6zeLr0HYCHot/ha0kTqjkOYBtJfwVW\nI8xVNj7a3h84KDregO8lHUxIFm9EF10rA1+tcMbw+44xs5+i2McAfQnJaLaZvZ30u7aPJlPcHng4\nOm/id0r4gjBXlmugPKG4vJDUhXBFsB3wkqQHkxLEcrsmPTfgS6AZ0I3lF0GqbUU9S7HPRYS/mveV\ntCFQmfTej9WcI7m86vo4krcnrwq5jOr/fw0k/rKvagnhSmwgYZK+5DJqM4owDfsMSYcAO9Zy/N1m\nVlsHfNU6TP5df0navhRoTriSm29mXVOcL1UdugbC+1BczkV9D7cAIyx00F9J9X0o8wh/Xf92KLAA\n2BO4VFLiS/Jl4I/RuXcFVq/mXK8B/SS1j/ZL7LMq4S9lgENrCb1n1F/QKCpvEjAF2FHS7yQ1BoYA\nE2s5T7LdSN1/YoTFnjaXdHq07WVgcNSXsjahKa46LYGvJK1EdEUSeR44FkBSY0mrRtv2U1hACklr\nKL7jbknSTQmTgH0krRxdfewTbasuQclCP8lsSftF55Wkzkn7rAPMSRG/awA8obh8OBKYY2aJZq6b\ngS0UVof7jZktBWYmOnIJX7BmZv8jJJWbJPUgtMXvKmkGoY/hK6o0lVlYHOkoYIyk6YT1sAGuICSn\nNwl9IIm/mI3l/3o24HVCf827wEdm9mh0VfV/wATCFOdvmNnYpGNIcT6iBNTBzP6bop4sapYaCuwk\n6RjgX4RFjd4F7gXeJEzFX9U5hCT6EvBe0vYRQH9JbxOufrYws/eAs4FnJL1F6B9qG+3/D+BtSfea\n2TTClc8UQr/ObWb2VjW/a/LrA4HDozqfCeyVtE9Plr/ycg2MT1/vioqk4cDaZnZ5Dfs0BZaa2VJJ\n2wE3mVm3fMVYX5J2IHReH1fH41qY2Q+SfkdIGttHSbZkJK6MzKxHoWNxueMJxRWVKFk8B+xoKT6c\nUYf6Q4Qr7MWEO4dWGCjYUEQd8a0JHdyXm9k9BQ6pziSdSLgZ4b5Cx+JyxxOKc865rPA+FOecc1nh\nCcU551xWeEJxzjmXFZ5QnHPOZYUnFOecc1nhCcU551xW/D+xKBVCe8dDPQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x76f12b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " (1) = X(kg acetone/kg carbon) \n",
+ " (2)= Slope of isostere \n",
+ " (3)= Differential heat of adsorption(kJ/kg acetone) \n",
+ " (4)=deltaH_prime(vapour(kJ/kg carbon)) \n",
+ " (5)=deltaH(liquid(kJ/kg carbon)\n",
+ "(1) \t \t \t \t (2) \t \t \t \t (3) \t \t \t \t \t \t \t \t (4) \t \t \t \t \t \t (5) \n",
+ "0.05 \t \t \t 1.17 \t \t -644.67 \t \t \t \t \t -29.8 \t \t \t \t-2.25\n",
+ "0.1 \t \t \t 1.245 \t \t -685.995 \t \t \t \t \t -63.0 \t \t \t \t-7.9\n",
+ "0.15 \t \t \t 1.3 \t \t -716.3 \t \t \t \t \t -97.9 \t \t \t \t-15.25\n",
+ "0.2 \t \t \t 1.31 \t \t -721.81 \t \t \t \t \t -134.0 \t \t \t \t-23.8\n",
+ "0.25 \t \t \t 1.34 \t \t -738.34 \t \t \t \t \t -170.5 \t \t \t \t-32.75\n",
+ "0.3 \t \t \t 1.327 \t \t -731.177 \t \t \t \t \t -207.5 \t \t \t \t-42.2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.2: Page 596"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.2\n",
+ "# Page: 596\n",
+ "\n",
+ "print'Illustration 11.2 - Page: 596\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#*****Data*****#\n",
+ "# x:kg carbon/kg soln\n",
+ "# y_star: Equilibrium colour, units/kg soln.\n",
+ "# X:adsorbate concentration, units/kg carbon\n",
+ "# Data = [x Y_star]\n",
+ "Data =numpy.array([[0, 9.6],[0.001, 8.6],[0.004 ,6.3],[0.008, 4.3],[0.02 ,1.7],[0.04, 0.7]]);\n",
+ "Yo = 9.6;# [units of colour/kg soln]\n",
+ "Y1 = 0.1*Yo;# [units of colour/kg soln]\n",
+ "Ls = 1000.0;# [kg soln]\n",
+ "#****************#\n",
+ "\n",
+ "\n",
+ "n = 1.66;# [slope of line]\n",
+ "# At X = 663, Y_star = 4.3\n",
+ "# From eqn. 11.5\n",
+ "X = 663;\n",
+ "Y_star = 4.3;\n",
+ "m = Y_star/X**n;\n",
+ "# Freundlich Equation:\n",
+ "def f76(X):\n",
+ " return m*X**n\n",
+ "X = numpy.arange(0,1000,1);\n",
+ "\n",
+ "plt.plot(X,f76(X));\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "title(\"Equilibium Data(on arithmetic scale)\");\n",
+ "plt.show()\n",
+ "# Single Stage Operation:\n",
+ "# Since fresh carbn is used:\n",
+ "Xo = 0;# [units/kg carbon]\n",
+ "# From scf(30):\n",
+ "X1 = 270;# [units/kg carbon]\n",
+ "Data2 =numpy.array([[Xo, Yo],[X1, Y1]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data2[:,0],Data2[:,1],label=\"Operating line curve\")\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Single stage operation\");\n",
+ "plt.show()\n",
+ "# From Eqn. 11.4:\n",
+ "Ss = Ls*((Yo-Y1)/(X1-Xo));# [kg carbon/kg soln]\n",
+ "print\"Quantity of fresh carbon recquired for single stage operation: \",Ss,\" kg carbon/1000 kg solution\\n\"\n",
+ "\n",
+ "# Two stage cross current operation:\n",
+ "# For the minimumamount of carbon:\n",
+ "X1 = 565;# [units/kg carbon]\n",
+ "Y1 = 3.30;# [units of colour/kg soln]\n",
+ "X2 = 270;# [units/kg carbon]\n",
+ "Y2 = 0.96;# [units of colour/kg soln]\n",
+ "Data3 = numpy.array([[Xo ,Yo],[X1 ,Y1]]);\n",
+ "Data4 = numpy.array([[0 ,Y1],[X2 ,Y2]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data3[:,0],Data3[:,1],label=\"First of two Cocurrent\")\n",
+ "plt.plot(Data4[:,0],Data4[:,1],label=\"Second of two Cocurrent\")\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Two stage Cross current operation\");\n",
+ "plt.show()\n",
+ "# From Eqn. 11.8:\n",
+ "Ss1 = Ls*(Yo-Y1)/(X1-Xo);# [kg]\n",
+ "Ss2 = Ls*(Y1-Y2)/(X2-Xo);# [kg]\n",
+ "Ss = Ss1+Ss2;# [kg]\n",
+ "print\"Quantity of fresh carbon recquired for two stage crosscurrent operation: \",Ss,\" kg carbon/1000 kg solution\\n\"\n",
+ "\n",
+ "# Two Stage counter current operation:\n",
+ "Yo = 9.6;\n",
+ "Y2 = 0.96;\n",
+ "# By trial and error:\n",
+ "XNpPlus1 = 0;\n",
+ "X1 = 675;\n",
+ "Data5 = numpy.array([[X1 ,Yo],[XNpPlus1 ,Y2]]);\n",
+ "\n",
+ "plt.plot(X,f76(X),label=\"Equilbrium curve\")\n",
+ "plt.plot(Data5[:,0],Data5[:,1],label=\"Two stage Counter Current\");\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"units of colour/kg carbon\");\n",
+ "plt.ylabel(\"units of colour/kg solution\");\n",
+ "plt.legend(loc='upper left');\n",
+ "plt.title(\"Two stage Counter Current operation\");\n",
+ "# By eqn 11.14:\n",
+ "Ss = Ls*(Yo-Y2)/(X1-XNpPlus1);\n",
+ "print\"Quantity of fresh carbon recquired for two stage Counter Current operation: \",Ss,\" kg carbon/1000 kg solution\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.2 - Page: 596\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX5x/HPVxQVC6tib2uMiSZG1wKoAVkUa+wV+9o1\nRuxRYy+JYm+/xC6JoqioIAbFuqhYAQEVMVFBsAAKokRAyj6/P84dZhi3zO7OnTuz87xfr3nt3jt3\n7jnz7Ox95p5z7zkyM5xzzpWnpZKugHPOueR4EnDOuTLmScA558qYJwHnnCtjngScc66MeRJwzrky\n5kmgxEnaQNJsSYqWayUdH/1+hKRhGdvWSfpFA/tZYtu2SNLJkm5Ouh4Akj6QtGMjzy/+OxaapO6S\nJiRRdlY9KqPPbJPHKUl7SxpQiHq1NZ4ECkTSJElzogN26nFba/drZpPNbCVL3/Bh0QMz629mu+W4\nn5y3ba3oADdX0g+Svpc0UtL5kto3Yx8NJrQGtm8PXARc15I655uZbW5mrwJIulzSg9mbRI/YZcfS\nzF4zs00LUXa+mNkQ4LeSfpd0XUqNJ4HCMWCv6ICdevRJulIJMeA0M1sZWAs4B+gNDG3mftSMbfcF\nPjKzr5tZRl5JWjrJ8hvRnFgWq0eAk5KuRKnxJFAEJC0l6QZJ30j6VNJpmafB0VnEzhnbL/7m2Ngp\ns6QaSa9lrf5DVMY3kq7LaEZavG19+8xqZqqRNELSTZK+k/SJpB0kHStpsqRpko5u6m0DmNlcMxsO\n7ANsL+kPURldJL0Z7f8rSbdLWiZ67tVoH2OjM6qDJVVIekbSdEkzJQ2RtG5GeXsAw7Pis4+kD6My\nXpG0acZzkySdI2mspFmSBkhatt43Im0s6WVJ30ZxfUhSx6x9/VnSOGC2pHapv6mk3YELgUOj9/Je\nxq4rJb0enTENk7Ra1t+nJor3DEmnSOosaVz0fm7PquNxksZHsXlO0gaNxLJa0pSM164v6ckott9m\n7ztjuy7RWd33kqZKujHjuW6S3ojqNlnSMdH6P0h6L3rNZEmX1bfvaNuOku6LPg9fSLoq63NfC/yh\node7+nkSKKyGvm2dRPjwVgHbAgexZFNAdtNAa5oJ9gO2AbYmfDs+LsfXZdehCzAWWJXwDeyxaJ8b\nA0cCd0jq0MT+0gtmU4CRQPdo1ULgDGA1YHtgZ+CP0baptvQtojOqxwmf5fuADaLHXOCOjCI2Bz5O\nLUj6FfAw0AfoRDgLGaL0N3UDDgZ2AzYCtgBqGnk/fwXWBjYD1gcuz3q+NyERVZjZomj/ZmbPAX8D\nBkTvZatUFYHDozLXANoD52btswvwy2jftwJ/AXYCfgscoqjPQdK+hESzf/ReXyP8zRqK5WKS2gHP\nABOBDYF1gYba3m8FbjazjsAvCJ8JJG1IiO+tUflVwJjoNf8Djoxe8wfg1Ki+9ekHzCd8xrYCdgVO\nyHh+AiFxrtjA6109PAkUjoBB0Teh1CPV8XcI4Z/nSzP7jnBQaOz0vDWn7n3NbFZ00L0FOKyF+5lo\nZv+M+iIeA9YBrjSzBWb2AuGf9ZfN3OdXwCoAZjbazN4xszoz+xy4G+jR0AvNbKaZPWVm88zsf4QY\nZm5fAczOWD4UeMbMXooOyjcAywM7ZGxzm5lNjf4mQwgHr/rK/jTazwIz+xa4Oatsi/b1pZn9VM8u\nxM//pgbcb2afmNk8Qoyzy7/KzOZH8Z4NPGxm35rZV4QDfWr7U4BrzOxjM6sDrgGqJK1f3/vJ0oWQ\n3M6Lztp+MrMRDWw7H9hEUiczm2Nmb0frDwdeMLNHzWxR9LcaC2Bmw83sw+j39wkJ5md/Z0lrEpLo\nWVE9viF8fntnbJb6+1bk8L5cxJNA4Riwr5mtkvG4L3pubWBKxraTY6xHdjnrtHA/0zJ+nwsQ/WNm\nrmvuN7L1gJkQvqlHzTtfS/qe8E17tYZeKKmDpLuiZpbvCU0/HSWlDq7fAStnvGRtMuIcJbMphG+6\nKVNzeT+S1oyai76Iyn6wnrpOqeelTWmq/Oy/QfZyavsNgVtTXz6AGdH6zPfakPWBz6Pk0ZTjgV8B\nH0l6J9W0R/i7flbfCyR1jZripkuaBZxM/X/nDYFlgK8z3sedwOoZ26wU/ZyVQ11dxJNAcfia0ISR\nskHW8z8CK2Qsr9WKsrLL+bKebX6MfmY257SmzCZF30q3JnyDBfgHMB74ZdRUcBGNf17PIRyAukTb\n92DJb9jjoudTviIcWFLli3DAqy8e0HgT3N+ARcDmUdlH1VPXxl4f91VAk4GTsr6ArGBmb+Xw2inA\nBlGzUKOis5bDzWx1oC8wMGoSnEJowqnPw8AgYD0zqyAc2Ov7O08BfgJWy3gPHc0s82qgzYBJ0Zmg\ny5EngcJqqBnnMaCPpHUlrQJcwJIHhjFAb0lLS9oWOJCWHzjOVehEXZ/QHv5o9gbRN/ovgaOiTszj\naPifuKVSHdIdJPUABgNvm1nqCqEVCaf3c6IO21OzXj8tq04rEr79fi9pVSC7g3EoSzYzPEboJN9J\nocP5HGAe8EZj9W3AioTE+YNCZ/R5jWxbn6mEtuzsMlp7xU7q9XcCf5H0G1jcwXpwxnbZscz0DuFL\nyrXR32o5STvUt6GkIyWlvpl/T/iMLiIc6HtFnc5LS1pN0pbRdisC35nZfEldCE1HP/tsR1d1PQ/c\nJGklhYspNtaS91r0oPlXmJU9TwKFNURL3ifwRLT+HmAYoaN1JPAESx4ALiH8k35H6HDsn7XfhhJC\nfdeaDwZGAe8ROvzua2DbEwkHs2+B3wCZ7cD17be5SekOST8QDoA3A48Du2c8fy7hgPADoT9gQFYZ\nlwP/jJoGDiK0Dy8f1fcN4Nms7Z8BNpW0NoCZ/YfQgX078A2hU3JvM1vYQH0bu27/CsJZzPeEvoMn\nGtm2PqnO2BmSRmaV2VD5uew/db/IIMI38wFRc9X7hA7vlMtZMpaZ95osAvYm9O9MJnwjP6SB8nYD\nPpA0m/A37R31IUwG9iQk2hmEz94W0Wv+CFwZfRYu4edfSjLf59GEDvLxhGbDx1nyDLU3cFfjIXHZ\nFOekMpLOIPTeC7jHzG6NrbA2RFIloQ116RzbYl0OJJ0I/MbMzkq6Li6/JO0NHGFmvZvc2C0htiQg\naXPCZWidgQXAc8ApZvZpLAW2IZ4EnHOFEmdz0KaENt550SnlcOCAGMtra3zeT+dc7OJMAh8A3SWt\nGl0h8AfCpWKuCWY2ycza+VmAcy5usY1jYmYTJPUl9Oj/SOgM8oOac84VkVg7hpcoSPobMNnM7sxY\n500ezjnXAmaWl0H/Yr1EVNIa0c8NCOOWPJy9jZn5w4zLLrss8ToUy8Nj4bHwWDT+yKe4h7UdqDDy\n4QLgj2b2Q8zllaxJkyYlXYWi4bFI81ikeSziEWsSsPQIhc4554qQ3zFcJGpqapKuQtHwWKR5LNI8\nFvEoWMdwvYVLlmT5zjlXiiRhpdAx7HJXW1ubdBWKhscizWOR5rGIhycB55wrY94c5JxzJcabg5xz\nzuWFJ4Ei4e2daR6LNI9FmsciHp4EnHOuhEyYkN/9eZ+Ac86ViP/+F3r2hC+/9D4B55wrKxMnQq9e\ncFn27Nmt5EmgSHh7Z5rHIs1jkVbOsZgyBXbeGc47D048Mb/79iTgnHNF7OuvQwI47TT405/yv3/v\nE3DOuSL1zTdQXQ2HHQYXX5xe7/cJOOdcGzdzJuyyC+y//5IJIN88CRSJcm7vzOaxSPNYpJVTLL7/\nHnbbLXQEX3VVvGV5EnDOuSIyezbssQd07QrXXw/KS6NPw2LtE5B0IXAkYYL594FjzeynjOe9T8A5\n5yJz5sCee8Imm8Bdd8FSDXxNL4k+AUmVwInA1mb2O6Ad0Duu8pxzrpTNmwf77Qfrrw933tlwAsi3\nOIv5gTC3cAdJSwMdgC9jLK+klVN7Z1M8Fmkei7S2HIv58+Hgg6GiAh54ANq1K1zZsSUBM5sJ3AhM\nBr4CZpnZi3GV55xzpWjhQjj88HDg798flo515vefi604SRsDZwKVwPfA45KOMLP+mdvV1NRQWVkJ\nQEVFBVVVVVRXVwPpzF8Oy9XV1UVVH18unuWUYqlPUsupdcVSn3wsL1oE99xTzY8/wlln1TJiRP3b\n19bW0q9fP4DFx8t8ia1jWNKhwC5mdkK0fBSwnZmdlrGNdww758rSwoVw1FHhfoDBg2G55XJ/bUl0\nDAMTgO0kLS9JQC9gfIzllbTsb33lzGOR5rFIa0uxWLQIjjkGZsyAQYOalwDyLc4+gbHAv4CRwLho\n9d1xleecc6Vg0SKoqYHp08MZwPLLJ1sfHzvIOecKZNEiOO44+OILGDIEOnRo2X7y2RxU4H5o55wr\nT3V1cMIJMHky/PvfLU8A+ebDRhSJttTe2VoeizSPRVopx6KuLswD8Nln8MwzxZMAwM8EnHMuVnV1\ncPLJYWrIoUNhhRWSrtGSvE/AOediUlcHp54K48fDs8/CiivmZ7/eJ+Ccc0XOLMwG9sEH8Nxz+UsA\n+eZ9AkWilNs7881jkeaxSCulWJiFqSDHjg1nACutlHSNGuZnAs45l0dm0KcPjB4Nw4bByisnXaPG\neZ+Ac87lSSoBvPMOPP88dOwYTzneJ+Ccc0Wmri70AYwdG28CyDfvEygSpdTeGTePRZrHIq2YY5G6\nDPSDD0ITUKkkAPAzAeeca5VFi8KdwBMn5vcy0ELxPgHnnGuhhQvh2GPhq6/g6acLdyOY9wk451zC\nUvMBzJjRusHgkuZ9AkWimNs7C81jkeaxSCumWCxYAIcdBrNmhTOAUk0A4GcCzjnXLPPnQ+/e4eeg\nQbDssknXqHW8T8A553L0009w8MGw1FLw6KPJJYBSmV4SSb+W9F7G43tJfeIs0znn4jBvHhxwACyz\nDDz2WOmfAaTEmgTM7GMz28rMtgK2AeYAT8VZZqkqpvbOpHks0jwWaUnGYu5c2HffcPnngAHQvn1i\nVcm7QnYM9wI+NbMpBSzTOedaZc4c2Htv6NQJ+vcPZwJtSZN9ApK6AZcBlaQ7ks3MftGsgqT7gZFm\n9veMdd4n4JwrWj/8AHvtBRttBPffD+3aJV2joND3CdwHnAmMBha1pBBJ7YG9gfOzn6upqaGyshKA\niooKqqqqqK6uBtKnf77sy77sy4VefvrpWs4/H3r0qObvf4dXX02uPrW1tfTr1w9g8fEyX3I5E3jb\nzLq2qhBpX+BUM9s9a72fCURqa2sX//HLnccizWORVshYTJ8Ou+4KO+0EN94Iyst37vwp9JnAK5Ku\nB54EfkqtNLPRzSjnMOCRZtbNOecK7ssvoVevcCnoFVcUXwLIt1zOBGqBn21kZj1zKkBaAfgc2MjM\nZmc952cCzrmiMWlSSAAnnAAXXJB0bRqWzzMBv1nMOeeA//wHdtkFzj0XTj896do0rqA3i0mqkHSz\npFHR40ZJJTRadmlIdQI5j0Umj0VanLH44APo2RMuvbT4E0C+5XKfwP3AD8DBwCHAbOCBOCvlnHOF\nMmpUaAK64QY4/vika1N4ufQJjDWzLZta16LCvTnIOZegN96A/faDu+8OP0tFoccOmiupe0bh3QjD\nPzjnXMl6+eVw4H/wwdJKAPmWSxI4Bfg/SZ9L+hy4I1rn8sjbftM8Fmkei7R8xmLo0DAc9OOPw267\n5W23JanJ+wTMbAywhaSVo+UfYq+Vc87FZOBAOO20MBnMdtslXZvkNdgnIOkoM3tQ0jkseZ+ACGMH\n3dTqwr1PwDlXQPfdB5dcEs4EqqqSrk3LFeqO4dSEaStRz81izjlXSm68EW6/HWpr4Ve/Sro2xaPB\nPgEzuyv69UUzuyLzAbxUmOqVD2/7TfNYpHks0loaCzO46CK49154/XVPANly6Ri+vZ51t+W7Is45\nl291daH9f9gwePVVWG+9pGtUfBrrE9ge2AE4C7iJ0BcAoXlof79PwDlXzBYsgGOOga++Cp3AK6+c\ndI3yp1B9Au0JB/x20c+UH4CD8lG4c87FYc6cMApou3bw7LOw/PJJ16h4NdYnMNzMLge2y+oTuMnM\n/lu4KpYHb/tN81ikeSzSco3F99/D7rvDqqvCE094AmhKLvMJ9NPPB9Q2M9sphvo451yLTZ8ebv7q\n1g1uvRWWKuQs6iUql7GDts1YXA44EFhoZue1unDvE3DO5cnkyWEo6N694fLL2/ZkMInPJyDpXTPr\n3OrCPQk45/JgwoRwBnDWWXDmmUnXJn6Fnk9g1YxHJ0m7Azn1s0dzEQyU9JGk8ZL8Ju0GeNtvmsci\nzWOR1lAsRo4McwFccUV5JIB8y6VPYDTpO4YXApOAXEfdvhUYamYHSVoaWKHZNXTOuQa88AIcfjjc\nc095jwTaGrFNLxnNPvaemf2ikW28Ocg51yKPPBK++Q8cCN27N719W1KQ+wQkHUgjYwaZ2ZNN7Hsj\n4BtJDwBbAqOAM8zM5yJwzrXKLbeEsYBeegk23zzp2pS2xpqD9qbxgeOaSgJLA1sDfzKzdyXdAlwA\nXJq5UU1NDZWVlQBUVFRQVVVFdXU1kG4DLIflzPbOYqhPksupdcVSnySXx4wZw5lRQ3cx1CfJ5Vtu\nuYUtt6xi2LBqBg+G66+v5dtvAYqjfnEfH/r16wew+HiZL3E2B60FvGlmG0XL3YALzGyvjG28OShS\nW1u7+I9f7jwWaR6LtBdfrKV//2o++gieeQY6dUq6Rskp6CWikiqAy4Ado1W1wJVm9n2TO5deBU4w\ns/9IuhxY3szOz3jek4Bzrklz5sAhh4QB4R5/HFYo80tMCj3H8P2E8YIOBg4BZgMP5Lj/04H+ksYC\nWwB/a0klnXPla8YM2HlnWG01GDzYE0C+5ZIENjazy8zsMzP7NBpPaONcdm5mY82ss5ltaWYH5HL2\nUK4y28PLnccirdxjMXlyGAJixx2hpqaWZZZJukZtTy5JYK6kxRdgRW37foWPcy5WH34YEsCJJ0Lf\nvm17GIgk5dInUAX8C+gYrfoOOMbMxra6cO8TcM7VY8QIOOAAuOkmOOKIpGtTfBIZOyi6+cvM7Id8\nFBzt05OAc24JTz4JJ58MDz0UxgNyP1fosYPOlLQyoXP4ZkmjJfmfJs/Kve03k8cirdxiceutcPrp\n8NxzP08A5RaLQsmlT+C46Nv/rsCqwNHAtbHWyjlXVurq4Oyz4c47Q1PQNtskXaPykUufwPtm9jtJ\ntwG1ZvakpPfMbKtWF+7NQc6VvXnz4OijYdo0GDQIVlkl6RoVv0LfJzBK0vPAnsBzUdNQXT4Kd86V\nt5kzw0QwEgwb5gkgCbkkgeOBC4Fto8HflgGOjbVWZcjbO9M8FmltORYTJ8IOO8B224URQZdbrvHt\n23IsktTkfAJmtogwAmhqeQYwI85KOefatpEjYZ994C9/gT/9KenalLfYBpDLqXDvE3Cu7Pz731BT\nA3ffDfvvn3RtSlOh+wSccy4v7r4bjj8enn7aE0CxaO4cw6mHj+CRZ97emeaxSGsrsTCDiy6C666D\n116D7bdv/j7aSiyKTa5zDG9AGC4CYBVgqqSpwIlmNqrBVzrnyt68eXDccfDZZ/Dmm7D66knXyGXK\n5T6Be4CBZjYsWt4VOIgwnPStZtalxYV7n4Bzbdo334Rmn3XWgX/+E5ZfPukatQ2F7hPYPpUAAMzs\n+Wjdm0D7fFTCOdf2TJgQLv/ccUcYMMATQLHKJQl8Lel8SRtKqpT0Z2CapHbkcNOYpEmSxkl6T9I7\nra5xG+XtnWkei7RSjcXLL0OPHnDxxfC3v8FSebgEpVRjUexy6RM4nDC95KBoeQRwGNCOMNNYUwyo\nNrOZLaqhc66kPPAAXHBB+Pbfs2fStXFNyaVPYCMzm5i1rrOZvZtTAdJEwt3GP7vBzPsEnGs76urC\nFUCPPx7uBfj1r5OuUdtV6D6BJyStl1F4D3KfYxjCmcCLkkZKOrG5FXTOFb+5c+HQQ8Pln2+95Qmg\nlOSSBE4GBklaS9KewG3AHs0o4/fRiKN7AKdlTlXp0ry9M81jkVYKsZg2DaqroX17eOkl6NQpnnJK\nIRalKJexg96V1Ad4AZgL7GJm03MtwMy+jn5+I+kpoAvwWur5mpoaKisrAaioqKCqqorq6mog/Uf3\n5fJaTimW+iS5PGbMmKKqT/byxIlw5ZXVHHMM9OhRy5tvxlfemDFjEn+/SS3X1tbSr18/gMXHy3xp\nsE9A0pCsVZsBXwOzCNNM7tPkzqUOQDszmy1pBeB54IroMlPvE3CuhD3/PBx5JNx8s88DXGj57BNo\n7EzghlR5GessWs71yL0m8JSkVFn9UwnAOVeazOD22+Gaa+CJJ6C7N/CWtMb6BP4CbA1MNbPa6DE8\n9TOXnZvZRDOrih6bm9k1eal1G5TdFFLOPBZpxRaL+fPDJPD33BOGgChkAii2WLQVjSWBGkLTz+XR\njV53Sto3atZxzpWZb78Ns4BNmwZvvAF5bpp2CclpPoHo7uCuhCt8dgLmAcPM7LpWFe59As6VhA8+\nCJPA9O4NV1+dnzuAXcvls0+g0SQQHfz7mNnNWetXB3Y1s/6tKtyTgHNFb8iQMAeAdwAXj4LdLBZN\nLXl4Peu/aW0CcEvy9s40j0VakrEwC+P/n3JKSARJJwD/XMQjl7GDXpd0B/Ao8CPR1UFmNjrWmjnn\nEjNvHpx0Enz4Ibz9Nqy3XtOvcaUpl7GDaqnnklAza/XQUN4c5FzxmToV9tsPNtwwDAbXoUPSNXLZ\nCtYnEDdPAs4Vl9GjQwI48cQwDLTycphx+VbQAeQkXSbp0oyfl0q6NB+FuzRv70zzWKQVMhYPPwy7\n7QY33QSXXFJ8CcA/F/HIpU/gR9LNQcsDewHjY6uRc66gFi6E88+HQYPCAHBbbJF0jVwhNbs5SNKy\nwPNm1qPVhXtzkHOJ+vbbcO1/u3bwyCOw6qpJ18jlotDzCWRbAVg3H4U755Izdix06QLbbANDh3oC\nKFe59Am8n/H4EPgYuDX+qpUXb+9M81ikxRWLAQOgV68w/2/fvuFMoNj55yIeufQJ7B39NGAhMN3M\nFsRXJedcXBYuhAsvDKN/vvgibLll0jVySct17KAqoDshEbxmZmPzUrj3CThXMDNmhPZ/CGcCq62W\nbH1cyxX6EtEzgIeA1QnzAzwUzTTmnCsRY8dC585QVQXPPusJwKXl0jF8AtDVzC41s0uA7QCfMD7P\nvL0zzWORlo9YPPpoaP+/+mq4/npYOpdG4CLkn4t45PpxqGvg9yZFI5GOBL4ws72b2t45lx8LFsCf\n/wyDB4epILfaKukauWKUy9hBZxMmmHmSMHjcfkC/7OGlm3j9NsBK2fMSe5+Ac/H46is45BDo2BEe\nfNAv/2xrCtonYGY3AccC3wEzgJpmJID1gD2Be1lyrmLnXEyGD4dttw1DQAwZ4gnANa7BJCBp1dQD\nmEjoHO4PfB6ty8XNwHk0swmpHHl7Z5rHIq05sTCDG26AQw+Ffv3C+D9taQYw/1zEo7E+gdHUM4R0\nxIBfNLZjSXsR7il4T1J1y6rnnMvFDz/AscfClClh/P8NN0y6Rq5UNJgEzKyylfveAdhH0p7AcsDK\nkv5lZkdnblRTU0NlNGN1RUUFVVVVVFdXA+nMXw7L1dXVRVUfXy6e5ZSGnu/UqZoDD4Rf/7qWq6+G\nDTcsrvrnazm1rljqU8jl2tpa+vXrB7D4eJkvud4sti+wI+EMYLiZDWlWIVIP4Nzsq4O8Y9i51nn4\nYTjjDLjxRjj66Ka3d21DoW8WuxboA3wIfAT0kXRNC8ryo30jsr/1lTOPRVpDsZg/H04/HS69NAz/\nUA4JwD8X8cjlPoE/AFXRpPNI6geMAS7MtRAzGw4Mb0kFnXNLmjQpdP6utRaMHAkVFUnXyJWyXO4T\nGAf0NLMZ0fJqwCtm1uqpJ7w5yLnmGTw4TAB//vlw1lnFN/uXK4x8NgflciZwDTBa0iuEa/17ABfk\no3DnXG7mz4cLLoAnnwyJYLvtkq6RaytyuVnsEWB74CngCWA7MxsQd8XKjbd3pnks0mpra5k0Cbp3\nh08+CRPBl2sC8M9FPHLpGN4fmGNmg83saWCepP3ir5pz7vXXw+xfhx4azgD87l+Xb7n0CYw1sy2z\n1o0xs6pWF+59As7Va/780O7/1FNh7P9y/fbv6lfoPoH6CiqByeicK02TJoXB39ZaKzT/+Ld/F6dc\nRhYZJekmSRtL+qWkm4FRcVes3Hh7Z1o5x2LQoND807t3aP4ZN6426SoVjXL+XMQplzOB04FLgEej\n5ReA02KrkXNlaN48OO88ePrpcPDffvuka+TKRU7DRsRWuPcJOMf48eGb/69/DXffDausknSNXLEr\n6LARzrl4mMFdd0GPHtCnDzz2mCcAV3ieBIqEt3emlUMsZs6Egw6Cf/wDXnsNTjih/rt/yyEWufJY\nxKOxSWX6Rj8PKVx1nGv7Xn0Vqqpg/fXhrbdg002TrpErZw32CUj6APgdMNrMYpmi2vsEXDlZuBCu\nvBLuuQfuuw/23DPpGrlSVaj7BJ4lzCu8oqTZWc+Zma2cjwo4Vw4mTYIjjoAVVgjX/q+9dtI1ci5o\nsDnIzM4zswpgqJmtlPXwBJBn3t6Z1tZi8eij4dr//feH555rXgJoa7FoDY9FPJq8T8DM9pG0JtA5\nWvWOmU2Pt1rOlb5Zs+BPf4J334WhQ2HbbZOukXM/l8vYQYcA1xMmhRHQHTjPzB5vcufSctHrlgXa\nA4PN7MKM571PwLVJr7wCNTWw995w3XXQoUPSNXJtST77BHKdVKZX6tu/pNWBl3KdVEZSBzObI2lp\n4HXCXMOvR895EnBtyrx5cPHF8MgjofN3992TrpFriwp9s5iAbzKWZ1D/oHL1MrM50a/tCQPPzcy5\ndmXE2zvTSjUW48aFtv+JE2Hs2PwkgFKNRRw8FvHIJQk8BwyTVCPpWGAo4cqhnEhaStIYYBphWsrx\nLauqc8Wprg5uuAF23hnOOQcGDoROnZKulXO5yaVj+DxJBwK/j1bdZWZP5VqAmdUBVZI6EpJJtZnV\npp6vqamhsrISgIqKCqqqqqiurgbSmb8clqurq4uqPr6c2/LUqXDXXdUsWgS3317LWmuBlN/yUorh\n/Sa5nFrfA29dAAAUZ0lEQVRXLPUp5HJtbS39+vUDWHy8zJeCDiAn6RJgrpndEC17n4ArSWbQvz+c\nfTace244A2jns2y4AimZAeQkdZJUEf2+PLAL8F6cZZaq7G995azYYzFtGhxwAFx7LTz/PPz5z/El\ngGKPRSF5LOIR9wByawMvR30CbwNDzOylmMt0LhZm4cavLbeE3/wGRo0KYwA5V8qa1RwkaVVgPTMb\nl5fCvTnIlYjp0+GPfwxj///zn9C5c9OvcS4uBW0OkjRc0spRAhgF3BtNMelcWRg4ELbYAjbeOIz7\n4wnAtSW5NAd1NLMfgAOAf5lZF6BXvNUqP97emVYssfj22zDj10UXwVNPQd++sNxyha1DscSiGHgs\n4pFLEmgnaW3gEODf0Tpvw3Ft2lNPhW//664LY8b4nL+u7cpl2IiDCRPNjzCzUyVtDFxnZge2unDv\nE3BF5ttv4Ywz4J134IEHoFu3pGvk3M8V+hLRr81sCzM7FcDMPgW8T8C1KWZhvJ/NN4c11gjf/j0B\nuHKQSxK4vZ51t+W7IuXO2zvTCh2LKVNgn33gr3+FwYPh5pvD5C/FwD8XaR6LeDQ4bISk7YEdgNUl\nnU160LiVCAPBOVfS6urgrrvg0kvh9NPhiSegffuka+VcYTU2x3APoCdwMnBnxlOzCTd9/bfVhXuf\ngEvIxx/DiSfCggVw773w298mXSPnclfo+QQ2NLPP81FYPfv2JOAKasECuP56uOmmcAZw2mk+5o8r\nPQXpGJZ0a/TrHZKGZD2ezkfhLs3bO9PiisWoUeFGr1dfhZEjoU+f4k8A/rlI81jEo7GhpP8V/byx\nEBVxLi6zZ4dv/Q8/HM4CjjoKlJfvUM6VvoIOJf2zwr05yMXILNz0dcYZ0KtXmOt39dWTrpVzrZfP\n5qAmJ5WR1A24DKjM2N7M7Bf5qIBzcZg0KVzx8+mn8NBD0KNH0jVyrjjlcp/AfcBNQDegc/ToEmel\nypG3d6a1JhYLFoQxfrbdNgz1MGZMaScA/1ykeSzi0eSZADDLzHKeU9i5pIwYAaecEsb7efvtMOqn\nc65xuVwiei3h5rAngZ9S681sdKsL9z4BlwczZ8L558PQoeFu34MP9o5f17YVtE8A2I4waui2Wet7\nNvVCSesTrjJaI9rH3WbmQ064vFi0CO6/Hy6+GA45JEz40rFj0rVyrrQ02SdgZtVm1jP7keP+FwBn\nmdlvCcnkNEmbtabCbZW3d6blEou33oKuXcMsX8OGwe23t80E4J+LNI9FPHK5Ougywrd4kTGPgJld\n2dRrzWwqMDX6/X+SPgLWAT5qaYVdeZs2DS68MBz4+/aFI47wph/nWiOXPoFzSR/8lwf2Asab2XHN\nKkiqBIYDvzWz/0XrvE/A5WTBAvj73+Hqq+GYY8LNXyuvnHStnEtGQfsEzOyGrMKvB55vTiGSVgQG\nAmekEkBKTU0NlZWVAFRUVFBVVUV1dTWQPv3z5fJeNqvm9NNh2WVrueEGOOaY4qqfL/ty3Mu1tbX0\n69cPYPHxMl+afcdwNOH8O2b2yxy3XwZ4BnjWzG7Jes7PBCK1tbWL//jlLhWLKVPgvPPgzTfDgG8H\nHFB+TT/+uUjzWKQVdGYxSe9nPD4EPgZubep10WtFuNlsfHYCcK4hc+fCJZdAVRVssgl89BEceGD5\nJQDnCiGXPoHKjMWFwDQzW5DTzsOQE68C40j3K1xoZs9Fz/uZgFusri5c7XPxxVBdDddcAxtskHSt\nnCs+BZ1PIE6eBFzK8OFw1lmw3HLhhq+uXZOukXPFq9ATzbsCSHUClZtPPglt/cccE+76HTEC5s6t\nTbpaRaNcPxf18VjEw5OAS8SsWXDOObDddtClC0yYAIce6u3+zhWaNwe5gpo3L1zv37cv7LsvXHUV\nrLlm0rVyrrQUeuwg51pt0SLo3z991c/LL/vk7s4VA28OKhJttb3TLIzuudVWcNddIREMHtx4Amir\nsWgJj0WaxyIefibgYvP226Gzd/r0cLnnPvt4m79zxcb7BFzeffwxXHRRGOnziivClT9L+9cN5/LG\nLxF1RWnSJDj+eOjWDTp3hv/8Jyx7AnCueHkSKBKl3N75xRdw6qmwzTaw9trh4H/++dChQ8v2V8qx\nyDePRZrHIh6eBFyLTZ0KZ5wBW2wBK60UmoGuvhpWWSXpmjnncuV9Aq7ZvvkGrrsO7rsPjj4aLrgA\n1lor6Vo5Vz68T8AlYubMMLjbppvCjz/CuHFwyy2eAJwrZZ4EikQxt3dOmxba+DfZJPw+alS463e9\n9eIpr5hjUWgeizSPRTw8CbgGffFFaPPfbDOYMwfeew/uuQfyPLGRcy5B3ifgfuazz8LYPgMHwnHH\nwdlnh6t+nHPFwfsEXCwmTAg3dnXpAmusEa72uf56TwDOtWWxJgFJ90uaJun9OMtpC5Js73zrrTB9\n4447wq9+Fcb4v+oq6NQpmfp422+axyLNYxGPuM8EHgB2j7kM1wJ1dWEgt27d4PDDoWdPmDgxDPdQ\nUZF07ZxzhRJ7n0A0R/EQM/tdPc95n0CBzZsHDz4IN94YbvA677wws5cP7eBc6fD5BFyzzZwJ//gH\n3H57GN7hzjuhRw8f1dO5cpd4EqipqaEyuuawoqKCqqoqqqurgXQbYDksZ7Z35nP/kybB229XM2AA\ndO1ayzXXwLHHJv9+G1tOrSuW+iS5PGbMGM4888yiqU+Sy7fccktZHx/69esHsPh4mS/eHFQkamtr\nF//xW2vRIvj3v+G22+DDD+GUU+Dkk0vnzt58xqLUeSzSPBZp+WwO8iTQhsyaBfffD3fcAauvDn36\nwMEHQ/v2SdfMOZdPJXOfgKRHgDeAX0maIunYOMsrV+PHwx//CL/4BYweDY88Emb1OuIITwDOucbF\nmgTM7DAzW8fMljWz9c3sgTjLK2WZ7eG5mDs3XOXTvTv06hW++X/4ITz0EHTtGk8dC6W5sWjLPBZp\nHot4JN4x7Jpn/Hi4++5wsO/cOQzpsNdesMwySdfMOVeKfOygEjB3bhjH5+674dNPw3g+J5zgA7k5\nV65KqmO40cI9CTTIDN59F/r1g8ceC9/6TzrJv/U750qoY9jlLtXe+eWXcO218JvfhI7dddYJ4/c/\n+yzsv395JABv+03zWKR5LOLhfQJFYM4cePFFuOaa8O3/oIPg3nthhx38jl7nXLy8OSghCxaEA/+A\nATBkSBi+uaYG9t0Xll8+6do554qZ9wmUqEWL4NVXw4H/ySfDdI29e4cbunzMfudcrrxPoITU1cEb\nb4RpGtdbD849FzbeODT7vPFGuKt37bW9vTOTxyLNY5HmsYiH9wnEYP58eOUVGDQojNm/6qpw6KEw\nfHiYtMU554qFNwflyezZ4QqeQYPCz802C1fz7LdfaPZxzrl88T6BIvHJJ+GA/+yz8Prr8PvfhwP/\n3nt7G79zLj7eJ5CQOXNg6FA4/fTw7X7HHeG99+DYY+GLL0IyOOmkliUAb+9M81ikeSzSPBbx8D6B\nRixaFA7yr7wCL70EI0bA1lvDHnuEYRy22MKv43fOlTZvDspQVwfjxoWD/iuvwGuvhTt2e/aEnXaC\nnXeGjh2TrqVzrtx5n0Ce/PgjjBwJb74ZHq+/Dp06hYN+z55QXQ1rrplY9Zxzrl4l0ycgaXdJEyT9\nV9L5cZbVlLo6+PjjMATzaaeFZp011oALLoBp08I4PePGhW3uvDNc0lnIBODtnWkeizSPRZrHIh6x\n9QlIagfcAfQCvgTelfS0mX0UV5kp8+bBBx+E9vwxY8LP998PE69ssw1svz0ceSRstRUst1zctcnN\nmDFjfP7UiMcizWOR5rGIR5wdw12AT8xsEoCkAcC+QN6SwIwZMGFC+PY+YUL698mTw01ZW20FVVVw\nyCGw5ZZQUZGvkvNv1qxZSVehaHgs0jwWaR6LeMSZBNYFpmQsfwHkNPFhXR189x18+214fPklfP55\nOLhn/qyrg003TT9qasLPjTeGZZeN4y0551zbEmcSyKnHd+edw8xZ8+aF6/BnzAgJYOWVQ/PNaqvB\nuuvCBhvAL38Ztt9gg/BYbbW2c4nmpEmTkq5C0fBYpHks0jwW8Yjt6iBJ2wGXm9nu0fKFQJ2Z9c3Y\npniuD3XOuRJS9JeISloa+BjYGfgKeAc4rBAdw84553ITW3OQmS2U9CdgGNAOuM8TgHPOFZdEbxZz\nzjmXrMQGkCumG8kKQdL6kl6R9KGkDyT1idavKukFSf+R9LykiozXXBjFZ4KkXZOrff5JaifpPUlD\nouWyjAOApApJAyV9JGm8pK7lGI/ofX0o6X1JD0tatlziIOl+SdMkvZ+xrtnvXdI2Ufz+K+nWnAo3\ns4I/CM1DnwCVwDLAGGCzJOpSwPe8FlAV/b4iob9kM+A64M/R+vOBa6PffxPFZZkoTp8ASyX9PvIY\nj7OB/sDT0XJZxiF6j/8Ejot+XxroWG7xiN7LZ8Cy0fKjwDHlEgegO7AV8H7Guua891SrzjtAl+j3\nocDuTZWd1JnA4hvJzGwBkLqRrM0ys6lmNib6/X+Em+bWBfYhHASIfu4X/b4v8IiZLbBww90nhLiV\nPEnrAXsC9wKpKxzKLg4AkjoC3c3sfgh9aWb2PeUXjx+ABUCH6KKSDoQLSsoiDmb2GvBd1urmvPeu\nktYGVjKzd6Lt/pXxmgYllQTqu5Fs3YTqUnCSKglZ/21gTTObFj01DUiNWLQOIS4pbSlGNwPnAXUZ\n68oxDgAbAd9IekDSaEn3SFqBMouHmc0EbgQmEw7+s8zsBcosDlma+96z139JDjFJKgmUbW+0pBWB\nJ4AzzGx25nMWzuEai03Jx03SXsB0M3uP9FnAEsohDhmWBrYG/m5mWwM/AhdkblAO8ZC0MXAmoXlj\nHWBFSUdmblMOcWhIDu+9xZJKAl8C62csr8+SGaxNkrQMIQE8aGaDotXTJK0VPb82MD1anx2j9aJ1\npW4HYB9JE4FHgJ0kPUj5xSHlC+ALM3s3Wh5ISApTyywe2wJvmNkMM1sIPAlsT/nFIVNz/ie+iNav\nl7W+yZgklQRGAptIqpTUHjgUeDqhuhSEJAH3AePN7JaMp54mdIAR/RyUsb63pPaSNgI2IXT6lDQz\n+4uZrW9mGwG9gZfN7CjKLA4pZjYVmCLpV9GqXsCHwBDKKx4TgO0kLR/9r/QCxlN+ccjUrP+J6LP0\nQ3R1mYCjMl7TsAR7w/cgXCHzCXBh0r3zBXi/3Qht4GOA96LH7sCqwIvAf4DngYqM1/wlis8EYLek\n30MMMelB+uqgco7DlsC7wFjCN+CO5RgP4M+EBPg+oSN0mXKJA+Gs+CtgPqG/9NiWvHdgmyh+nwC3\n5VK23yzmnHNlLLGbxZxzziXPk4BzzpUxTwLOOVfGPAk451wZ8yTgnHNlzJOAc86VMU8CLhbRkLa3\nRr/3kLR9nvZ7fTQUd9+mt250P5MkrZqPOkX7W1vSsOi9DsnXfptZh+qkynalK86J5l0ZM7NRwKho\nsScwG3gzD7s+EVjFWn+DS15ukJHUzswWEW78ey4f+2xhPfx/2bWInwm4JkXDe2ROdnGupMui32sl\nXSvpbUkfS+oWra+WNETShsDJwFkKk8h0k3RwNPHFGEnDGyjz+mibcZIOidY9TZiLYXRqXcb2K0Yj\ncY6TNFbS/tH6w6J170u6toGyzo6ef1/SGTm+55slvQv0iTbZDXiWjEHxJHWORgbdSNLq0QQhH0Qj\nhdZ7JqIw2dKoKDYvROu6SHoj2teI1BATkmokPS3pJcKdpQZ0lPSMwmQj/4iGD2gwDpL+J+nqqLw3\nJa1RX4xc2+XfHlxLZI5oaEA7M+sqaQ/gMmCXxRuafS7pTmC2md0EIGkcsKuZfS1p5eydSzqQMJTC\nFsDqwLuShpvZPpJmm9lW9dTpEuA7M9si2keFpHWAawkDss0Cnpe0r5kNzihrG6CGMBb9UsDbUWKa\n1cR7XsbMOkf7aAf82swmKD3g1w7AbcA+ZvaFpDuAF82sr6TdgOPred+rA3cT5hf4XOmZpD6K1i2S\n1Av4G3BQ9NxWwO/MbJakaqAzYbKiyYQzkwMkvdlIHDoAb5rZxVET24nAX+uJr2uj/EzAtVTmMNBP\nRj9HE4YCbmr7EcA/JZ1A/V9Efg88bMF0YDjh4NaYnYH/Sy2Y2azoNa9YGJlyEWEmsx2z6tQNeNLM\n5prZj9F76U79zUWZ7+HRjN+7EuaGSNkMuAvYy8xSo+P+njB5EmY2jJ9PIAKwHTDczD7PeA8AFcDA\n6MzkJsLMUinPZ2wHYSCxSWZWRxiPphthhM7aBuIw38z+Hf0+iob/fq6N8iTgcrGQJT8ry7PkQfKn\n6Ocicji7NLNTgYsJw+GOaqCDVg383pjs7aye/WQf3Bvapqn3/GPG73sQmoJS+/samEv45t1Y/bJl\n1yXlKuAlM/sdsHdUl5Q59ewjs7yGkllq/YKM9XV460DZ8STgcjENWENh4utlgb2a+frZwEqpBUkb\nm9k7ZnYZ8A1LjoEO8BpwqKSloiaS7jQ9TPALwGkZZVREr+khabWoyaY34awixaKy9lMYwngFwnR8\nrxHGbm/sPWcerHcitMmn1s+Ktr9GUo9o/Qgg1bexK7BKPe/hbWBHhZnnkJTaZmXCCJMQRpdsTJeo\nP2OpqLzXcoiDK2OeBFyTLMwDfSXhYPI8YZz3Bjev5/chwP5Rx2Y34LpUJyUwwszGZZX3FDCOMLTy\nS8B5UbNQ9v4zXQ2skupwBqotjK9+AfAKYQjvkWY2JHM/FmY46xe9t7eAe8xsbA7v2WBxO/68qCkp\ntT7VjLUX8H+SOgNXALtG7/kgYCohOWa+72+Ak4Ano/cwIHrqOkJCGQ20Y8m+iex4vwvcEdX3MzN7\nKpc4NLA/VwZ8KGnnWkHSEcC6ZnZdE9u1BxZFnbvbA/9nYTpJ5xLlScC5ApD0S+Axwtn3fODU6F4K\n5xLlScA558qY9wk451wZ8yTgnHNlzJOAc86VMU8CzjlXxjwJOOdcGfMk4JxzZez/Acgjx2hK49AY\nAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x76f16d8>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYUgiGQkicVAQFUFFJAqiYFiCyoogC4IY\n1s9VEAPoqphBVwQxJ6IZRTGgKOiAopIk6AqriAxBRMkioMzM+f641dM944Qeprure/q8z1PPdFVX\n1z19afp03Vt1r6gqxhhjTEApvwMwxhgTXywxGGOMycESgzHGmBwsMRhjjMnBEoMxxpgcLDEYY4zJ\nwRKDKTYRGSAicyJ0rDQRGRqJY5mCiUgDEflNRMTvWEx8scRgwiIiHUXkcxHZJSLbReQzEWkNoKov\nqurZESpKvSViLNk4IrJeRLoG1lV1g6pWUruZyeRS2u8ATPwTkcrAu8BVwGtAOaAT8IefcRVBif/i\nE5EUVc0sZDcF7OzAFMrOGEw4mgKqqq+qc0BVP1LVrwFEZLCIfBrYWUSyROQqEflORHaKyGMhz5US\nkXEi8quIrBORf3n75/lZFJHLRORbEdkhIh+ISIN89isvIi+IyDavzMUiUktE7sMlsce8ZpOJ3v6P\niMgGEdktIktFpGPIsQ4Tkalemd+KyM0isjHk+boi8oaI/OK9h2vzqzgRqSIi07x914vIvwNNN169\nLRSRR70zsdWhv+i91z4vIj+JyCYRuSdQTyGvfVhEtgGjRSRVRD726uBXrz6qePtPBxoA73j1cKOI\nNAqte+99ve2dEX4vIpeHxHKniLzm1cseEflGRE7J732bBKeqtthS4AJUArYBU4BzgGq5nh8MfBqy\nngW8DVQG6gO/AGd7z/0T+C9QF6gKzAUygVLe858Al3mPewPfA81wP2L+DSzMJ8arvDLL434VnwRU\nyn3MkP0HANW8444AtgBlvefGeq+pAhwFrAI2eM+VApYBt+HOuBsDPwDd84lrGvAmcDjQEPhfyPsb\nDBwEhgEpQF9gF1DVe/5N4EngMKAmsAi4Mtdrr/FiKg80Ac4EygBHAPOB8SGx/Ah0DVlv5P1bBep+\nAfAYUBZo6f27neE9dyew3/v3F+B+4Au/P5u2RGfxPQBbEmMBjgUmAxu9L6RZQC3vubwSQ/uQ9VeB\nm73HHwNXhDx3Zq4vp9DE8H7oF7r3Bfg7UD+P+IYAC4EWeTz3CTC0kPe3I/Ba74u+W8hzQ4GN3uPT\ngPRcr70FmJTHMVNwzW3Hhmy7EvgkpN4253rNIuAfQG3gAFA+5Ln+wMchr00v5D2dD3wVsp5vYsAl\n8Azg8JDn7wcme4/vBD4Mee44YJ/fn0tborNYU5IJi6quUdUhqlofOAH3i39CAS/5OeTxPqCi9/hI\nXHIJ2FTAMRoCj3hNQzuB7d72o/LYdzowB3hFRDaLyAMiEtqHlqOfwWtK+dZrwtmJOzs4wnu6bgEx\nNgTqBmLyXnsLUCuPmI7A/XpPD9m2IVf8m3O9Jt0rv4H32i0h5TyFO3MICI0REaktIq94zU67vTqp\nkUdceakL7FDV3wuIdWvI431A+fyaAE1is39UU2Sq+j9gKi5BFNUW3K/TgPr57Yj7YrpSVauFLIer\n6pd5xJShqner6vFAe6AHMCjwdOi+ItIJuAm4SFWrqmo1YDfBjtmCYtwI/Jgrpsqq2iOP+Lfhzq4a\nhWxrQM5EkzvJNcQli424s40aIeVUUdUWoW8712vvxzXLnaCqVYCB5Pw/XlAn/E9AdRGpGLItd6wm\nSVhiMIUSkWYiMkJEjvLW6+OaNb4I9xAEv3RfA4Z5HZ1VgZHk/4X1FHCriBznlVtFRC7KJ8YuItJC\nRFKA33BfyIGrdLbi2t8DKuGaTbaJSFkRuQPXHxLwGnCLiFT13vO/QmJcDPzmdUgfJiIpInKCeJfu\nhlJ3ldBrwH0iUlFEGgLXAy+E7FZLRK4TkTLeezsWmK2qPwMfAg+LSCVxnfZNROT0fOoK3FnZ78Ae\nL+6bcj2fux5CY90IfA6MEZFyInIicFmuWE2SsMRgwvEbrm19kYjsxSWEVcAN3vO57z3I/UUf+vyz\nuC+8VbhO3PeATFXNyl2oqr4FPIBrHtoNfA3kd79EHWAG7pf/t0AarikF4BHg795VRhOAD7zlO2A9\nrlN1Q8ix7sb9Uv7Ri3UG8KcXUybubKQVsA74FXiGnIkl1LW4L+t1wKfAi7i+moBFwDHece4B+qjq\nTu+5QbiO4G9xfSAzvPcJed/vcRdwslcH7wBv5NpnDHCb1zQ1IuQ4Af1xZzc/ATOBO1T14wLKK/GX\nAScrUY3Ov62ITAL+BvwSOP0Vkeq4jsiGuP+QfVV1V1QCMAlBRM4FnlTVRn7Hkh8RuRr3WT0jwscd\njOsU7xTJ4xpTXNE8Y5iMu7Qt1CjgI1VtCszz1k0SEXe/wXkiUtpr7hiN+3UaN0Skjoh08JpvmuEu\nZ33T77iMiZWoJQZV/RTYmWtzL1ynJd7f86NVvolbgrv0cQfwFe6ehjv8DCgPZXH9G3twP2DeAp6I\nQjkRH/7DmEiIWlMSgIg0At4JaUra6V0Bgnf3547AujHGmPjgW+ezuoxkv5aMMSbOxHoQva0iUkdV\nfxaRI3G33P+FiFjCMMaYQ6CqxR4oMdZnDG8Dl3qPL8W13ebJ71vC42UZPXq07zHEy2J1YXVhdVHw\nEilRSwwi8jLuhplmIrJRRIbgBifrJiLfAV29dVOA9evX+x1C3LC6CLK6CLK6iLyoNSWpav98njor\nWmUaY4wpPrvzOc4NHjzY7xDihtVFkNVFkNVF5EX1ctVDJSIaj3EZY0w8ExE0Ap3PCTW1p9ic5SZO\nxfqHTFpaGl26dIlpmfHK6iLyEioxQOz/AxpTGPvBYkqahGpK8k6TfIjImPzZ59LEi0g1JcVt5/Om\nPTY/iDHG+CFuE8P4L8b7HYIxcSstLc3vEOKG1UXkxW1imLxiMjv27/A7DN9t2LCBSpUqZTdVdOnS\nheeffx6AKVOm0KlT0YbyP++885g+fXrhOxpjklbcJobzjz2fxxc/7ncYYWvUqBEVKlSgUqVK2ct1\n111X7OM2aNCA3377LbuDU0SK1dk5e/ZsBg4cWOy4jL/sKpwgq4vIi9urkm5qfxOdp3RmRLsRHF72\ncL/DKZSI8O6779K1a1e/Q8lT4Iwj0a6gycjIoHTpuP2YGlMixe0ZQ/OazenYoCOTlk/yO5Riy8rK\n4sYbb6RmzZo0adKExx9/nFKlSpGV5aY5btSoEfPmzcve/84778z+Vb9+/foc++amqlx77bVUrVqV\n5s2b8/HHH2c/16VLF2677TY6dOhAxYoVWbduXY6mqNBy8iqrS5cu3H777XTo0IFKlSrRq1cvtm3b\nxoABA6hSpQpt2rQhPT093/f92Wef0b59e6pVq0aDBg2YNm1a9nEDMcBfm8RKlSrFE088QdOmTWna\ntCn/93//x0035ZzXvnfv3owf7/qhfvrpJ/r06UOtWrVITU3l0UcfzTemksLa1YOsLiIvbhMDwMgO\nI3noi4c4mHnQ71DCkt8li8888wzvvfceK1asYOnSpbz++us5frnnbh4qyq/6RYsWcfTRR7N9+3bu\nuusuLrzwQnbtCk6j/cILL/Dcc8/x22+/0bBhwxxlhVPOq6++ygsvvMDmzZv54YcfaNeuHUOHDmXH\njh00b96cu+66K8/Xpaenc9555zFs2DC2bdvGihUraNmyZZ7vNy+zZs1i8eLFrF69mv79+/Pqq69m\nP7dz504++ugj+vfvT1ZWFj179uSkk07ip59+Yt68eUyYMIEPP/yw0PdmjMlbXCeG0+qdRpNqTXjl\nm1fC2l8kMsuhUFXOP/98qlWrlr0EfhW/9tprXH/99Rx11FFUq1aNW2+9tcDr3otyTXytWrUYNmwY\nKSkp9O3bl2bNmvHuu+969SEMHjyY5s2bU6pUqb80yRRWjogwZMgQGjduTOXKlTn33HNp2rQpXbt2\nJSUlhYsuuojly5fn+dqXXnqJbt26cfHFF5OSkkL16tWzE0M4brnlFqpWrUq5cuXo2LEjIsKnn34K\nwOuvv0779u2pU6cOS5YsYdu2bdx2222ULl2axo0bc/nll/PKK+F9ZhKVtasHWV1EXtw33o7qOIoR\nc0Yw4MQBhe7r5z1GIsKsWbPy7GPYsmUL9evXz15v0KBBxMo96qijcqw3bNiQLVu2ZK+Hlnsoateu\nnf24fPny1KpVK8f63r1783zdpk2bSE1NPeRyQ+MWEfr168fLL79Mp06deOmllxg0aBDgzkx++ukn\nqlULzhCbmZnJ6aeffshlG5Ps4vqMAaBbajfKppTlve/e8zuUQ3bkkUeyYcOG7PXQxwCHH344v//+\ne/b6zz//HPaxN2/enGM9PT2dunXrZq8X1GRTsWJF9u3bF3a5RWniql+/Pj/88EOez4XzfnOX1b9/\nf15//XXS09NZvHgxffr0AVySbdy4MTt37sxe9uzZk33WVFJZu3qQ1UXkxX1iEBFGdRzFmM/G+B1K\nofJrmunbty8TJ05k8+bN7Ny5k7Fjx+b44mvVqhWvvPIKGRkZLF26lDfeeCPsL+FffvmFiRMncvDg\nQWbMmMGaNWs477zzCo0pUO6CBQvYuHEju3fvZsyYv9Zx6OuL0sQ1YMAA5s6dy4wZM8jIyGD79u2s\nXLkyu9yZM2eyf/9+1q5dm6MjuqBYjzjiCC6//HLOOeccKleuDECbNm2oVKkSDz74IPv37yczM5Nv\nvvmGpUuXhh2rMSanuE8MAH2a9+GX3/OcHjqu9OzZM8d9DIFftVdccQVnn302LVu2pHXr1vTp0yfH\nl+w999zDDz/8QLVq1bjzzjsZMCBns1l+SUJEaNu2Ld9//z01a9bk9ttv54033sjRrFJQgjnrrLO4\n+OKLOfHEEzn11FPp2bPnX/YvqJO8oOPXr1+f2bNnM27cOGrUqMFJJ53EqlWrALj++uspW7YstWvX\nZsiQIfzjH/8Iq/P9kksu4eOPP+aSSy7J3laqVCneffddVqxYQWpqKjVr1uTKK69kz549+b7vksDa\n1YOsLiIvYQbRe2bZM1zV+qoSMVjZ+vXrSU1NJSMjg1KlEiI3mwLYIHomXpT4QfRyG9RykN8hGBM3\nrF09yOoi8hImMZQvXd7vECIq0e5ANsYkj4RpSvK22ym7iTv2uTTxIumakowxxsSGJQZjEpC1qwdZ\nXUSeJQZjjDE5WB+DMcVkn0sTL6yPwRhjTFRYYkgin376Kccee2xUjh06x8KLL77I2WefHZVyjGPt\n6kFWF5FniSGCpkyZQosWLTj88MM58sgj+b//+z92797tWzylSpVi3bp12eudOnVizZo1USkrdLiM\nAQMGMGfOnKiUY4yJPksMETJu3DhGjRrFuHHj2LNnD19++SXp6el069aNgwcjP9FQZmZmWPtZ2/df\nZWRk+B1Csdn4QEFWF87ixZE7liWGCNizZw933nknjz32GN27dyclJYWGDRvy2muvsX79el544QXA\nTaX597//nX79+lG5cmVOOeWU7IHloOApKgOvHThwIFWqVGHq1KksWbKEdu3aUa1aNerWrcu1116b\nnYQC8xG0bNmSSpUqMWPGDNLS0nLMc9CoUSPGjRtHy5YtqVq1Kv369eOPP/7Ifv7BBx+kbt261KtX\nj+eee+4vZyD5yWuqzqeffpqmTZtSrVo1/vWvf+XYf9KkSRx33HFUr16dc8455y/Dkoey6UKN+aux\nY6FfvwgeUFXjbnFh/VV+2/32/vvva+nSpTUzM/Mvz1166aXav39/VVUdPXq0lilTRt944w3NyMjQ\nhx56SBs3bqwZGRmamZmpJ598st5zzz168OBBXbdunaampuqcOXNyvHbWrFmqqrp//35dtmyZLlq0\nSDMzM3X9+vXavHlznTBhQnbZIqI//PBD9vonn3yi9erVy15v1KiRnnbaabplyxbdsWOHNm/eXJ96\n6qns91SnTh399ttvdd++fTpgwAAtVapUjuOF6tKliz7//POqqjp58mTt2LFjjjh69uypu3fv1g0b\nNmjNmjX1gw8+UFXVt956S48++mhds2aNZmZm6r333qvt27fPs4z169drpUqV9JVXXtGMjAzdvn27\nrlix4i/l5xdD9+7ddefOnXrgwAFdsGCB1q9fP/v5HTt26GGHHaZbtmwp9N8iNz8+l5988knMy4xX\nyVwXWVmqN9+setxxqps3Z38Wi/0dHPczuBWF3BWZ8Yd0dNGaX7Zt28YRRxyR50ipderU4auvvspe\nb926NRdeeCEAI0aMYNy4cXzxxReUKVMme4pKIMcUld27dwegffv29OrVC3Czp5188snZx23YsCFX\nXnkl8+fPZ9iwYWHHft1111GnTh3ADRu+YsUKwE1Hetlll9G8eXMA7rrrLl566aWwj5vbqFGjqFy5\nMpUrV+aMM85g5cqVnH322Tz11FPccsstNGvWDHBTet5///1s3LjxL7PPhU4XClC9enWqV68edgyB\n6UKBHNOFdurUKcd0oYsWLSr038IYv2VmwtVXw8qVsGAB1KgRuWOXqMRQ1C/0SDniiCPYtm0bWVlZ\nf0kOW7ZsoWbNmtnr9erVy34sItSrV4+ffvoJESl0isrQ1wJ89913jBgxgmXLlrFv3z4yMjJo3bp1\nkWIPJAWAww47LHta0C1bttCmTZt8yy6q0HIqVKiQPSVoeno6w4YN44Ybbsix/+bNm/+SGGy60CBr\nVw9Kxrr4808YOBC2bYO5c6FSpcge3/oYIqBdu3aUK1eON954I8f2vXv38sEHH3DmmWdmb9u4cWP2\n46ysLDZt2sRRRx1F/fr1C5yiMq9Jcq6++mqOO+441q5dy+7du7nvvvvIysqKyHs68sgjc8Qa+jiS\nGjRowDPPPJPjff/++++0bdv2L/vadKHGwL590Lu3Sw7vvRf5pACWGCKiSpUqjB49mmuvvZY5c+Zw\n8OBB1q9fT9++falfvz4DBw7M3nfZsmW8+eabZGRkMGHCBMqXL0/btm059dRTC5yiUvO4umjv3r1U\nqlSJChUqsGbNGp588skcz9euXTvfL9L8BMrp27cvkydPZs2aNezbt4977rmnqNVSYBmBcv75z39y\n//338+233wKwe/duZsyYkefrbLrQILt2PyiZ6mLXLujeHWrVghkzoHyUZiOwxBAhN910E/fffz83\n3ngjVapUoW3btjRs2JB58+ZRpkwZwP1i7d27N6+++irVq1fnxRdfZObMmaSkpJCSklLgFJV5nTE8\n9NBDvPTSS1SuXJkrr7ySfv365djnzjvv5NJLL6VatWq8/vrreR4jVOjz55xzDtdddx1nnHEGTZs2\npV27dgCUK1eu0LrIXU5e04EGtp1//vmMHDmSfv36UaVKFVq0aJHvPRA2XahJZlu3QpcucMopMHky\nlI5iR4AvYyWJyC3AP4As4GtgiKr+EfK85hVXoo9Jc9ddd7F27VqmT5/udyhFtnr1alq0aMGff/5p\n05HmkuifSxP/0tOhWzcYMADuuAPy+32XsGMliUgj4ArgZFVtAaQAkbwCN24l2pfHm2++yR9//MHO\nnTsZOXIkvXr1sqRgTIz997/QqRNccw2MHp1/UogkP/6X7wEOAhVEpDRQAdjsQxwxV1hTTrx55pln\nqF27NkcffTRlypT5Sx+G8U8ytasXpiTXxeefQ9euMGYMFOEq9GKL+eWqqrpDRMYBG4D9wBxVnRvr\nOPwwevRov0Mokvfff9/vEIxJWrNnw6WXwvTpcM45sS075olBRJoAw4FGwG5ghogMUNUXQ/cbPHgw\njRo1AqBq1aq0atUqxpEaE760tLTs6+kDv2CjvR5adizKi9f1wLZ4iScS6x9+CJMmdeGdd+DAgTTS\n0vLePy0tjSlTpgBkf19GQsw7n0XkYqCbql7urQ8E2qrqNSH7lMjOZ1My2efSRNLDD8OECTBnDngD\nD4QtYTufgTVAWxE5TFyD+1nAtz7EYUzCKsnt6kVVUupCFUaOhGefhYULi54UIsmPPoaVIjINWIq7\nXPUr4JlwX59InbfGGBOOjAy48kr49lv47LPIjnt0KAptShKRjsBoXJ9AIJGoqh76oDWFBZVPU1JR\ndZ3alSGthjCw5cDCdzbGGB/s3++GzP7jD3jjDTj88EM/VqSaksJJDP/DdRZ/BWTPDqOq24pbeAFl\nRiQxfPjDh4yYM4JVV6+ilNj198aY+LJzJ/TqBQ0auLuZy5Yt3vFi2cewS1XfV9WtqrotsBS34Fjo\nltqNsillee+79/wO5ZCVlPbTSLC6CLK6CErUuvjpJ+jc2Q1xMX168ZNCJIWTGD4Rkf+ISDsROTmw\nRD2yCBARRnUcxZjPxthVI8aYuPHdd9ChA/TvD+PHQ7wNKBBOU1Ia8JedVPWMKMUUsaYkgMysTJo9\n1ozJvSfTqWGnwl9gjDFRtGwZ9OgB99wDl18e2WPHrI/BD5FMDADPLHuGWf+bxXuXJG6TkjEm8X3w\ngZtg59ln4fzzI3/8mPUxiEhVERkvIsu8ZZyIVCluwbE0qOUglm9Zzqqtq/wOpcgStf00Gqwugqwu\nghKlLqZMgcGDYdas6CSFSAqnZWsSbuC7i4C+wG/A5GgGFWnlS5dneNvhPLDwAb9DMcYkGVW49164\n6y5IS4P27f2OqHDh9DGsVNWWhW2LaFARbkoC2PPHHlIfSWXxFYtJrRa1WzCMMSZbRoYbLnvJEjcN\n55FHRre8WF6uul9EsnttvRve9hW34FirXK4yV55yJeM+H+d3KMaYJPD773DhhbB+PcyfH/2kEEnh\nJIZ/Ao+LSLqIpAOPedsSzrDThvHyNy+zde9Wv0MJW6K0n8aC1UWQ1UVQPNbFr7/CmWdCtWrwzjtQ\nqZLfERVNoYlBVVeo6olAC6CFqrZS1ZXRDy3yalesTb8T+jFx0US/QzHGlFA//ODuUTjzTNfhHE83\nroUr3z4GERmoqtNF5AZy3scguLGSHo5aUFHoYwhYt3MdbZ5tw7ph66hcrnJUyjDGJKelS90QF7ff\nDldfHfvyY9HHUMH7WynXUtH7m5BSq6XSvUl3nl76tN+hGGNKkPffh3PPhSee8CcpRFK+iUFVA9+c\nc1X1rtAFmBeb8KJjZIeRjP9yPAcyDvgdSqHisf3UL1YXQVYXQfFQF5Mnw5AhiXGPQjjC6Xx+NI9t\nCd1I37JOS1rVacX0ldP9DsUYk8BU3dAWd9/trjxKhHsUwlFQH0M7oD1wPfAwrm8BXDPSBYl2H0Nu\nC9IXMPTtoay5Zg0ppVKiWpYxpuT580+46ipYtQrefTc+LkeNRR9DWVwSSCHYt1ARdxf034tbsN86\nNehEzQo1mbl6pt+hGGMSzK5drj9h+/bEu0chHAX1McxX1TuBtrn6GB5W1e9jF2J0BIbkHrtwbFwP\nyR0P7afxwuoiyOoiKNZ1kZ7uLkc9/nh4802oWDGmxcdEOH0MU0Tkk1zLx1GPLAZ6NO3BgYwDzF03\n1+9QjDEJYOlS149w5ZUwcSKklNBW6HDGSmodsloe6ANkqOpNUQsqBn0MAdNWTmPqyqnMG5TQF1oZ\nY6Js1iw3f0K0hsyOBF/nYxCRJap6anELL+D4MUsMBzMPcvSjRzPjohm0OapNTMo0xiSWRx6BBx5w\nyeHUqH3zFV8s52OoHrIcISLnACXmluEyKWW4od0NcTskt7UlB1ldBFldBEWzLjIzYdgwePpp+Pzz\n+E4KkVQ6jH2+IjgkRgawHhgarYD8MPSkody74F7WbFvDsUcc63c4xpg48PvvcMkl8NtvLilUrep3\nRLGTFFN7huPu+XeTviud53s/H9NyjTHx5+ef3bzMxx/v+hQSZSC8qPcxiEgfcg6el4OqRu0GAD8S\nw/Z92znm0WNYdfUq6lWuF9OyjTHx47//hb/9DS67zA2GJ8X+mo2dWPQx9CxkKVFqVKjB4FaDGf/F\neL9DycHakoOsLoKsLoIiWRcffQRnnOGGubjjjsRKCpGUbx+Dqg6OYRxxYUS7EZz45In8+/R/U/2w\n6n6HY4yJoSeecGMezZgBnTv7HY2/wrmPoSowGjjd25QG3K2qu6MWlA9NSQGXzbqMxlUbc3vn230p\n3xgTWxkZMGKEO1t4911o0sTviA5dzO5jEJGZwNfAVNxAegOBE1X1wuIWXkCZviWG1b+upvOUzvw4\n7EcOL3u4LzEYY2Jj9264+GLIyoLXXkv8K49idh8D0ERVR6vqOlX9wRs/KYFzasGa12xOxwYdmbR8\nkt+hANaWHMrqIsjqIuhQ62LdOje8RZMmMHt24ieFSAonMewXkU6BFRHpCOyLXkj+G9lhJA998RAH\nMw/6HYoxJgo++8wNhHf11fD441A6nDu6kkg4TUmtgGlAFW/TTuBSVV0ZtaB8bEoK6Dq1K0NaDWFg\ny4G+xmGMiaxp0+DGG93fc87xO5rIivlYSSJSBVBV3VPcQsMoy/fE8OEPHzJizghWXb2KUhLOiZUx\nJp5lZcG//w2vvuo6mY87zu+IIi+WYyUNF5HKuAl6xovIVyJydnELjnfdUrtRNqUs7333nq9xWFty\nkNVFkNVFUDh18fvvcNFFrglp0aKSmRQiKZyfwpd5ZwndgerAIGBsVKOKA4GJfMZ8NiauJ/IxxhRs\n82Y4/XQ3oc7cuVCzpt8Rxb9w+hi+VtUWIjIRSFPVmSKyXFVPOuRC3b0RzwHH44bduExVvwx53vem\nJIDMrEyaPdaMyb0n06lhp8JfYIyJK0uWwAUXwL/+BSNHlvw7mWN5ueoyEfkQOA/4wGtWyipmuY8A\ns1W1OXAisLqYx4uKlFIp3NzhZsYuLPEnSMaUOC++COedB48+CqNGlfykEEnhJIahwC1Aa1XdB5QB\nhhxqgV4ndidVnQSgqhnRvIu6uAa1HMTyLctZtXWVL+VbW3KQ1UWQ1UVQ7rrIzHRnB7ffDh9/7M4Y\nTNEUmhhUNVNVl6nqLm99u6oW51uyMfCriEz2OrKfFZEKxTheVJUvXZ7hbYfH7UQ+xpigXbugZ0/X\nhLR4MbRo4XdEiSnm8zF4c0h/AbRX1SUiMgHYo6p3hOwTF30MAXv+2EPqI6ksvmIxqdVS/Q7HGJOH\n776DXr2VHRL3AAAgAElEQVSgWzd4+GEoU8bviGIvUn0MftzvtwnYpKpLvPXXgVG5dxo8eDCNGjUC\noGrVqrRq1YouXboAwVPHWK1/9cVXnJ1yNuM+H8fjf3s85uXbuq3besHrixfDQw914b774Jhj0li4\nML7ii9Z6WloaU6ZMAcj+voyEcK5Kymv86d9U9ZDHixCRBcDlqvqdiNwJHKaqI0Oej6szBoCte7fS\n/PHmrL5mNbUr1o5ZuWlpadkfiGRndRFkdeGowv/9XxqzZnXhtdegY0e/I/JXLK9K+grYBnzvLduA\ndK9/4JRDLPda4EURWYm7Kun+QzxOzNSuWJt+J/Rj4qKJfodijAEOHIBBg9y9CV9+aUkhksI5Y3gW\neF1V53jr3YG/A5OBR1S1TcSDisMzBoB1O9fR5tk2rBu2jsrlKvsdjjFJ66ef3NVGjRvDpElQIW4v\nX4mtWJ4xtAskBQBV/dDb9gWQIFNkR0ZqtVS6N+nO00uf9jsUY5LWokXQpg307g0vv2xJIRrCSQxb\nRGSkiDQUkUYicjOwVURSKP6NbglnZIeRjP9yPAcyDsSkvEBHk7G6CJWsdTFlirsc9ckn4dZb3U1r\nyVoX0RROYrgEqA+8BbwJNAD6AylA3+iFFp9a1mlJqzqtmL5yut+hGJM0/vwTrrkGxoyBtDSXHEz0\nhNPH0FhVf8y17dSQy00jH1Sc9jEELEhfwNC3h7LmmjWklErxOxxjSrQtW9zIqDVquDkUqlQp/DXJ\nKpZ9DG+ISL2QgjvjOp6TVqcGnahZoSYzV8/0OxRjSrTPP4dTT4Wzz4Y337SkECvhJIargLdEpI6I\nnAdMBM6NbljxLTAk99iFY6M+JLe1nwZZXQSV9LpQdf0IF1wAzzzjxj0qlc+3VUmvCz+EM1bSEuA6\n4CPgTqCbqm6Mclxxr0fTHhzIOMDcdXP9DsWYEuXAARg6FJ54AhYudCOkmtjKt49BRN7Jtak5sAXY\nhZvis1fUgorzPoaAaSunMXXlVOYNmud3KMaUCBs2QJ8+kJoKzz/vJtcx4Yv6nM9eXwJAaCHqrauq\nzi9u4fkGlSCJ4WDmQY5+9GhmXDSDNkdF/D4/Y5LKJ5/AJZfADTe4xeZPKLpYdD7fCpwM/Kyqad4y\nP/C3uAWXBGVSynBDuxuiOiS3tZ8GWV0ElaS6UHWjofbvDy+8ADfeWLSkUJLqIl4UlBgG45qN7hSR\n5SLylIj0FpHDYxNaYhh60lA+Tf+UNdvW+B2KMQnn999hwACXEBYtgjPP9DsiA2HOx+Dd5Xwa7mqk\nrsABYI6qPhiVoBKkKSng7vl3k74rned7P+93KMYkjDVrXH9Cmzauo/mww/yOKPFFvY/BKyQFuE5V\nx+faXhPorqovFjeAfMpNqMSwfd92jnn0GFZdvYp6lesV/gJjktxrrwXvZB461PoTIiUmN7ipaiZu\nSIzc23+NVlJIRDUq1GBwq8GM/2J84TsXkbWfBlldBCVqXfz5JwwbBrfcAnPmwOWXFz8pJGpdxLNw\nbnD7TEQeE5FOInKyiJwiIidHPbIEM6LdCCavmMyO/Tv8DsWYuLRpE3TpAuvXw9KlcLJ9i8StcMZK\nSsNdppqDqp4RpZgSrikp4LJZl9G4amNu73y736EYE1c++shNqjN8ONx0U/53MZviiUkfg18SNTGs\n/nU1nad05sdhP3J4Wbt4y5isLLjvPje8xYsvwhlR+zlpIIaD6InIaBG5I+TvHSJyR3ELLoma12xO\nxwYdmbR8UsSOae2nQVYXQYlQF9u3Q48e7mxh6dLoJYVEqItEE84J3e/eshc3Mc95QKMoxpTQRnYY\nyUNfPMTBzIN+h2KMb5YsgVNOgeOPh3nzoG5dvyMyRVHkpiQRKQd8qKqdC935ECVqU1JA16ldGdJq\nCANbDvQ7FGNiShWeegpGj4ann3ajo5rYieV8DLkdDhxV3IJLslEdR/HAwgfI0qSb+dQksd274eKL\nXUJYuNCSQiILp4/h65Dlv8D/gEeiH1ri6pbajbIpZXnvu/eKfSxrPw2yugiKt7oIXH5asyZ8+SUc\nc0zsyo63uigJSoexT2B2VQUygF9U1RrQCxCYyGfMZ2Po0bQHYrd1mhJKFR59FO69Fx5/3E3BaRJf\nuGMltQI64ZLDp6q6MqpBJXgfA0BmVibNHmvG5N6T6dSwk9/hGBNxO3e64Sw2bIBXX4UmTfyOyMTy\nctVhwAtATaA28IKIXFfcgku6lFIp3NzhZsYuHOt3KMZE3KJFrumoQQPXn2BJoWQJp/P5cuA0Vb1D\nVW8H2gJXRDeskmFQy0Es37KcVVtXHfIxrP00yOoiyK+6UIVx46BXLxg/HiZMgHLlfAklm30uIi/c\nq5Ky8nlsClC+dHmGtx0e1Yl8jImV7dtdQpgxw50xnH++3xGZaAlnrKQRuEl7ZuKm9TwfmJJ7KO6I\nBlUC+hgC9vyxh9RHUll8xWJSq6X6HY4xh2ThQjft5kUXwf33Q9myfkdk8hLTsZJE5BSgI8HO5+XF\nLbiQ8kpMYgC4dd6t7D6wm8f/9rjfoRhTJJmZMHasu/LouefcEBcmfkW981lEqgcW4EdcB/SLQLq3\nzYRp2GnDePmbl9m6d2uRX2vtp0FWF0GxqIuNG91Um3PnuvsU4jUp2Oci8grqY/gKWBayLPWWwGMT\nptoVa9PvhH5MXDTR71CMCcvMmdC6NZx9tksM9WxiwqRiw27HyLqd62jzbBvWDVtH5XKV/Q7HmDzt\n2wfXX++SwUsvwWmn+R2RKYqYjpUkIr1FZJyIPCQiPQt/hckttVoq3Zt05+mlT/sdijF5WrnSjYi6\nbx8sX25JIZmFc4PbWOA64L/AauA6ERkT7cBKopEdRjL+y/EcyDgQ9mus/TTI6iIoknWhCo88Amed\nBf/+N0yfDpUT6KTWPheRF85YSX8DWqlqJoCITAFWALdEMa4SqWWdlrSq04rpK6dzxSl2j6Dx3y+/\nwODB7h6FL7+0O5iNE859DKuAM1R1u7deA/hEVU+MWlAlsI8hYEH6Aoa+PZQ116whpVSK3+GYJDZn\nDgwZ4hLDXXdBmTJ+R2SKK1J9DOGcMYwBvhKRT3A3uHUGRhW3YBFJwV3dtElVk6bfolODTtSsUJOZ\nq2dy0fE2FKWJvQMH4NZb3R3ML7wAXbv6HZGJN4X2Majqy0A74E3gDaCtqr4SgbKHAd/ibppLGoEh\nuccuHEs4Z0XWfhpkdRF0qHWxYoW7DHXDBve4JCQF+1xEXjidzxcA+1R1lqq+DRwQkWKNkiIi9XBz\nRz+HOwtJKj2a9uBAxgHmrpvrdygmSWRmwgMPQLduMHKkO1uoUcPvqEy8CqePYaWqtsy1bYWqtjrk\nQkVmAPcDlYEbczclleQ+hoBpK6cxdeVU5g2a53copoRbvx4GDQIRmDYNGjb0OyITLbG8jyGvQg65\n11REeuBmgVuez7GTQv8T+rN2x1oWb17sdyimhFKFqVPh1FOhZ0/4+GNLCiY84XQ+LxORh4HHcV/k\n1+CGxThU7YFeInIeUB6oLCLTVHVQ6E6DBw+mUaNGAFStWpVWrVrRpUsXINimmOjrN7S7gQcWPsC1\nta7Nd//Q9lO/4/V7PbAtXuLxc33FihUMHz483+d374bp07vwv//BmDFpHH00pKTET/yRXJ8wYUKJ\n/H4IZz0tLY0pU6YAZH9fRoSqFrgAFYEHCI6VNAY4vLDXhbPgrnB6J4/tmgz2/rFXaz5YU1f/ujrf\nfT755JPYBRTnrC6CCqqL999XrVtX9YYbVPfvj11MfrHPRZD33Vns72Zfx0oSkc7ADaraK9d29TOu\nWLp7/t2k70rn+d7P+x2KSXD79sFNN8G778KUKXDGGX5HZGItpmMlRYuqzs+dFJLNNadew5tr3mTT\nnk1+h2IS2OefQ6tWsHu3G/PIkoIpDl8Tg4EaFWowuNVgxn+R94R4oe3ryc7qIihQF/v3u7OEPn3c\nhDovvABVq/obW6zZ5yLyCpqo5wHvb9/YhZOcRrQbweQVk9mxf4ffoZgEsmgRnHwypKfDqlVw4YV+\nR2RKinz7GETkG6AF8JWqnhTToJKojyHgslmX0bhqY27vfLvfoZg498cfbmyjSZNg4kToaz/djCcW\nfQzvAzuBFiLyW65lT3ELNjnd1P4mHl38KL//+bvfoZg49tVXbkiL1atdX4IlBRMN+SYGVb1JVasC\ns1W1Uq4lgUZrTwzNazanY4OOTFo+Kcd2az8NSua6+PNPGD0azj0XRo2C665Lo3Ztv6OKD8n8uYiW\ncAbR6yUitUWkh7fUikVgyWhkh5E89MVDHMw86HcoJo6sXOlmU1u2zM2sNmCAG97CmGgJZ6ykvsB/\ngPm4O587ATep6oyoBZWEfQwBXad2ZUirIQxsOdDvUIzP/vzTDXz36KPw4INw6aWWEEzBItXHEO5E\nPWep6i/eek1gntpEPVHx4Q8fMmLOCFZdvYpSYlcTJ6slS2DoUGjQAJ58EurX9zsikwhiPYjeryHr\n20niwe+irVtqN8qmlOW9794DrP00VDLUReDu5Z49XV/CO+/knRSSoS7CZXUReeEkhg+AOSIyWESG\nALNxVyyZKAhM5DPmszFhTeRjSo60NDjxRNi8Gb7+Gi65xJqOjD/CGitJRPoAHbzVT1X1zagGlcRN\nSQCZWZk0e6wZk3tPplPDTn6HY6Js9264+WaYPRueeMKdLRhzKGI6VpKqvqGqI7wlqknBQEqpFG7u\ncDNjF471OxQTZe+8Ayec4M4MvvnGkoKJD9a7GacGtRzE8i3LeX6mjboaUJLakn/91TUVXX+9m1Xt\nqaegSpXwX1+S6qK4rC4izxJDnCpfujzD2w7n5W9e9jsUE0GqMH06tGgBRx3lxjiykVBNvCnSfAwi\nUh2op6qroheS9TEE7PljD6mPpLL4isWkVkv1OxxTTN99B1dfDTt3wtNPuyk3jYmkmPUxiMh8Eans\nJYVlwHMikvcY0SaiKperzJWnXMm4z8f5HYophj/+gHvugfbtoUcPWLzYkoKJb+E0JVVR1T3AhcA0\nVW0DnBXdsExA6z9b8/I3L7N171a/Q/FdIrYlL1jgJtBZssQNgHf99VA6nJnWC5GIdREtVheRF05i\nSBGRI4G+wHveNmvniZHqh1Wn3wn9mLhoot+hmCLYvt3duTxgANx/P8ya5e5iNiYRhDMkxkXA7cBC\nVb1aRJoAD6pqn6gFZX0MOazbuY42z7Zh3bB1VC5nA9vGs0Dn8s03Q79+rgmpUiW/ozLJIpZjJXVU\n1c8K2xZJlhj+6pI3LuGkOidxU4eb/A7F5CPQubxrl+tcbt3a74hMsonlDW6P5rHN2jViJNB+OrLD\nSMZ/OZ4DGQf8DchH8dqWvG8f3HGH61zu2dNNuRntpBCvdeEHq4vIy7cbTETaAe2BmiIyguDAeZWA\nlBjEZkK0rNOSVnVaMX3ldK445Qq/wzG4ZqO334bhw918CStWQL16fkdlTPEVNOdzZ+AM4CrgqZCn\nfgPeUdXvoxaUNSXlaUH6Aoa+PZQ116whpZTlZj+tXQvDhsGPP7r5Es480++IjIltH0NDVU0vbkFF\nYYkhb6pKh0kduL7t9Vx0/EV+h5OU9u2DsWPdYHcjR7rkULas31EZ40S9j0FEHvEePiYi7+Ra3i5u\nwSY8oe2ngSG5xy4cm5RDcvvZlqzqLjk9/njXybxihZs3wa+kYO3qQVYXkVfQrTbTvL92220c6dG0\nB7fMu4W56+bSrUk3v8NJCoFmo3Xr4LnnrNnIlHxFGispVqwpqWDTVk5j6sqpzBs0z+9QSrS9e2HM\nGHfpqTUbmUQQy7GSOorIRyLyvYj86C3riluwOXT9T+jP2h1rWbx5sd+hlEhZWW4o7GOPhQ0b/G82\nMibWwrmP4XngYaAjcKq3tIlmUCYor/bTMilluKHdDTyw8IHYB+SjWLQlf/EFtGsHjz8Or7/u7mKO\nx0tQrV09yOoi8sJJDLtU9X1V3aqq2wJL1CMzBRp60lA+Tf+UNdvW+B1KibBpE/zjH3DRRfCvf7kE\n0bat31EZ449wLlcdi7uhbSbwR2C7qn4VtaCsjyEsd8+/m/Rd6Tzf22Z5O1T79sFDD8Ejj7jhLEaN\ngooV/Y7KmEMTy/sY0shjNFVVjdq8U5YYwrN933aOefQYVl29inqV47C9I46pwmuvucHuTjsNHnwQ\nGjXyOypjiidmnc+q2kVVz8i9FLdgE56C2k9rVKjB4FaDGf9FcsybFKm25C+/hE6d3I1q06e7BJFo\nScHa1YOsLiKv0ClDRGQ07oxBCDlzUNW7oxiXCdOIdiM48ckT+ffp/6b6YdX9Dieu/fAD3HILfP65\nGw570CBIsZFFjPmLcJqSbiSYEA4DegDfquplUQvKmpKK5LJZl9G4amNu73y736HEpe3bXSJ44QU3\ng9r110OFCn5HZUzkxayPIY+CywEfqmrn4hZeQBmWGIpg9a+r6TylMz8O+5HDyx7udzhx48ABmDgR\n/vMf6NsXRo+GWrX8jsqY6InlfAy5HQ4cdagFikh9EflERP4rIt+IyHWHeqxkEE77afOazenYoCOT\nlk+KfkA+CrctOSvLnR00a+YuO/3sM3dfQklKCtauHmR1EXnh9DF8HbJaCqgFFKd/4SBwvaquEJGK\nwDIR+UhVVxfjmElvZIeR9H29L/9s/U/KpJTxOxzffPyxu0u5TBmXHDp18jsiYxJPOH0MjUJWM4Ct\nqnowYgGIvAU8qqrzQrZZU9Ih6Dq1K0NaDWFgy4F+hxJzS5bArbe6+RHuv9/dqCbFPqE2JrHE8nLV\n9SHLpggnhUbAScCiSB0zmY3qOIoHFj5Almb5HUrMfPst9OkDF1wAf/87rF7t+hMsKRhz6AptSooW\nrxnpdWCYqu7N/fzgwYNp5F1cXrVqVVq1akWXLl2AYJtiMqyHtp8Wtn+3zt0om1KWsdPH0r5B+7iI\nP5LrgW1paWn8/DN88EEXZs+GPn3SeP55OPvs+Io3musrVqxg+PDhcROPn+sTJkxI6u+HKVOmAGR/\nX0aCL8Nui0gZ4F3gfVWdkMfz1pTkSUtLy/5AhOO1/77GhC8nsPCyhUgJ+9mclpbGscd24b774KWX\n4Jpr4IYboEoVvyOLvaJ+Lkoyq4sg3y5XLXaB7ttqKrBdVa/PZx9LDIcoMyuTZo81Y3LvyXRqWHJ6\nXnfudJedPv20uzHtlltK1lVGxkSCn5erFlcH4B/AGSKy3FvO8SGOEimlVAo3d7iZsQvH+h1KROze\nDXffDU2bwi+/wPLlMH68JQVjoinmiUFVP1PVUqraSlVP8pYPYh1HoghtXw/XoJaDWL5lOau2rop8\nQDESSAhHH+2m1Pz8c/jHP9Jo0MDvyOLDoXwuSiqri8jz44zBRFn50uUZ3nZ4Qk7ks3u3G77i6KPd\n2Eaffw5TpsAxx/gdmTHJw+Z8LqH2/LGH1EdSWXzFYlKrpfodTqF273bDV0ycCOedB7fdZsnAmKJK\n5D4GEwOVy1XmylOuZNzn4/wOpUC7d8O997ozhO+/h4ULYepUSwrG+MkSQ5wrTvvpsNOG8fI3L7N1\n79bIBRQhv/7qzgqaNIH//c8lhGnTXCdzfqwtOcjqIsjqIvIsMZRgtSvWpt8J/Zi4aKLfoWTbuBGG\nDXMD3G3bBosWuclyCkoIxpjYsj6GEm7dznW0ebYN64ato3K5yr7F8d138MAD8OabMHSomxOhbl3f\nwjGmRLI+BhOW1GqpdG/SnaeXPu1L+cuXu7GLOnSABg1cP8J//mNJwZh4ZokhzkWi/XRkh5GM/3I8\nBzIOFD+gMKhCWpq7uuhvf4PTTnP3IoweDTVqHPpxrS05yOoiyOoi8iwxJIGWdVrSqk4rpq+cHtVy\nDh6El1+G1q3hqqugd2+XEG64ASpVimrRxpgIsj6GJLEgfQFD3x7KmmvWkFIqJaLH3rMHnnsOJkyA\nxo1dIujRA0rZzw5jYsr6GEyRdGrQiZoVajJz9cyIHXPjRrjxRpcMliyBmTNh/nzo1cuSgjGJzP77\nxrlItZ+KCKM6jmLswrEU92xs2TIYMABatXLzK3/1VbAJKZqsLTnI6iLI6iLyLDEkkR5Ne3Ag4wBz\n180t8mv//NPNgdC+PVx4IZx0kus/ePhhaNgwCsEaY3xjfQxJZtrKaUxdOZV5g+YVvjPw00/wzDNu\nad4crr0WevaElMh2UxhjIsD6GMwh6X9Cf9buWMvizYvz3UfVDVHRvz8cf7ybB2HuXJg3D84/35KC\nMSWdJYY4F+n20zIpZbih3Q15Dsm9bx9MngynnAKDB0PbtvDjj/DEE3DccREN45BYW3KQ1UWQ1UXk\nWWJIQkNPGsqn6Z+yZtsaAFatgn/9C+rXh9dfh/vucwPbDRsGVav6HKwxJuasjyFJ3fbR3cxfmc7B\n159n82Y3ftFll2EzpBmTwCLVx2CJIcksX+46kl+etR0d2JUpHRbT87xylC7td2TGmOKyzuckEYn2\n0x07XD/Bqae6zuO6deGbxTXYNXYFF/RKnKRgbclBVhdBVheRlyBfCaaoDh6EDz5ws6F99BGcey7c\nfTd07x56VVGxf1gYY0oga0oqYVaudMngxRfddJmXXuqGvbZOZGNKvkg1JdkZQwmweTO89ppLCDt2\nwKBB8OmnNiuaMebQWB9DnMuv/XTbNnjqKejSBVq0cJecPvwwrF8P995bMpOCtSUHWV0EWV1Enp0x\nJJA9e+Ctt9yAdZ9/7voNhg+Hc86B8uX9js4YU1JYH0Oc++03mD3bNRXNnevOEPr1c+MVVazod3TG\nmHhi9zGUYL/+Cm+/DW++CQsWQMeO0KePG9W0WjW/ozPGxCu7j6GE2bABHnnEnREcfTTMmePmPHjp\npTRmz3Z3Jid7UrC25CCriyCri8izPgafZGW5Wc9mz4b33nOdxj17umkxzzoLDjvM7WefeWNMrFlT\nUgzt3OnOBGbPdjef1aoF553nlo4dSZg7kI0x8cn6GBJAZiasWOHuPH7vPXfzWefOwWRgM58ZYyLJ\n+hjikKobrvqJJ1xnca1aMHCgmwXt3/92E9688w5cfXX4ScHaT4OsLoKsLoKsLiLPGi+KQdV1Gs+f\n72Y3mzcPSpWCM8+ECy6ARx91A9YZY0wisaakIsjMdHcYL1wIn33mlowM6NTJJYMzz3RXFImNTWeM\n8YH1McTAL7/A0qXu6qGFC2HRIjjqKNdR3KGD+5uaaonAGBMfErqPQUTOEZE1IvK9iIz0I4bctm+H\nDz+E++93N5I1aADNmrnxh/bvh2uvhXXr4Ntv3UQ3l14KTZpEPylY+2mQ1UWQ1UWQ1UXkxbyPQURS\ngMeAs4DNwBIReVtVV8ei/P37YfVq+Oab4PL117B7N5x8MrRu7YapfvDB2HzxF2bFihV06dLF3yDi\nhNVFkNVFkNVF5PnR+dwGWKuq6wFE5BWgNxCxxJCR4TqF167NuaxZAxs3wjHHwAknuOWf/3R/GzVy\nHcfxZteuXX6HEDesLoKsLoKsLiLPj8RwFLAxZH0TcFo4L8zKcr/sd+xww05v3hxcNm1yfzdudMuR\nR7qO4MBy+ukuITRtCmXKROV9GWNMieBHYgirV/mMM+DAAbfs3euSwe7dbkTRGjWgenXXERxYund3\nf+vVc7/+y5WL8ruIkfXr1/sdQtywugiyugiyuoi8mF+VJCJtgTtV9Rxv/RYgS1UfCNnH/0uSjDEm\nASXk5aoiUhr4H3Am8BOwGOgfq85nY4wxBYt5U5KqZojIv4A5QArwvCUFY4yJH3F5g5sxxhj/xN0F\nmvF481u0iEh9EflERP4rIt+IyHXe9uoi8pGIfCciH4pI1ZDX3OLVzRoR6e5f9NEhIikislxE3vHW\nk7IuRKSqiLwuIqtF5FsROS2J6+IW7//I1yLykoiUS5a6EJFJIrJVRL4O2Vbk9y4ip3j1972IPFJo\nwaoaNwuuaWkt0AgoA6wAmvsdVxTfbx2glfe4Iq7vpTnwIHCzt30kMNZ7fJxXJ2W8OloLlPL7fUS4\nTkYALwJve+tJWRfAVOAy73FpoEoy1oX3ftYB5bz1V4FLk6UugE7AScDXIduK8t4DrUKLgTbe49nA\nOQWVG29nDNk3v6nqQSBw81uJpKo/q+oK7/Fe3E1+RwG9cF8MeH/P9x73Bl5W1YPqbhBci6uzEkFE\n6gHnAc8BgSsrkq4uRKQK0ElVJ4Hrl1PV3SRhXQB7gINABe/ClQq4i1aSoi5U9VNgZ67NRXnvp4nI\nkUAlVV3s7Tct5DV5irfEkNfNb0f5FEtMiUgj3C+DRUBtVd3qPbUVqO09rourk4CSVj/jgZuArJBt\nyVgXjYFfRWSyiHwlIs+KyOEkYV2o6g5gHLABlxB2qepHJGFdhCjqe8+9fTOF1Em8JYak7AkXkYrA\nG8AwVf0t9Dl1534F1UuJqDMR6QH8oqrLCZ4t5JAsdYFrOjoZeEJVTwZ+B0aF7pAsdSEiTYDhuKaR\nukBFEflH6D7JUhd5CeO9H5J4Swybgfoh6/XJmelKHBEpg0sK01X1LW/zVhGp4z1/JPCLtz13/dTz\ntpUE7YFeIvIj8DLQVUSmk5x1sQnYpKpLvPXXcYni5ySsi9bA56q6XVUzgJlAO5KzLgKK8n9ik7e9\nXq7tBdZJvCWGpcAxItJIRMoCFwNv+xxT1IiIAM8D36rqhJCn3sZ1sOH9fStkez8RKSsijYFjcJ1K\nCU9Vb1XV+qraGOgHfKyqA0nOuvgZ2CgiTb1NZwH/Bd4hyeoCWAO0FZHDvP8vZwHfkpx1EVCk/xPe\n52mPd2WbAANDXpM3v3vd8+iFPxd3dc5a4Ba/44nye+2Ia09fASz3lnOA6sBc4DvgQ6BqyGtu9epm\nDXC23+8hSvXSmeBVSUlZF0BLYAmwEvcruUoS18XNuMT4Na6ztUyy1AXu7Pkn4E9c/+uQQ3nvwCle\n/a0FJhZWrt3gZowxJod4a0oyxhjjM0sMxhhjcrDEYIwxJgdLDMYYY3KwxGCMMSYHSwzGGGNysMRg\nYsGZ6gUAAAS7SURBVMob/vcR73FnEWkXoeP+xxu6/IHC9y7wOOtFpHokYvKOd6SIzPHe6zuROm4R\nY+jiV9kmMcV8BjeT3FR1GbDMWz0D+A34IgKHvgKopsW/MSciN/aISIqqZuJuWPwgEsc8xDjs/7gp\nMjtjMIfMG7okdAKRG0VktPc4TUTGisgiEfmfiHT0tncRkXdEpCFwFXC9uIl5OorIRd5kIitEZH4+\nZf7H22eViPT1tr2Nm8/iq8C2kP0reqOUrhKRlSJygbe9v7ftaxEZm09ZI7znvxaRYWG+5/EisgS4\nztvlbOB9QgYGFJFTvVFTG4tITW/SlW+8UVTzPGMRN4HVMq9uPvK2tRGRz71jLQwMoSEig0XkbRGZ\nh7tDVoEqIvKuuAlcnvSGRsi3HkRkr4jc65X3hYjUyquOTMlkvyZMJIWO9KhAiqqeJiLnAqOBbtk7\nqqaLyFPAb6r6MICIrAK6q+oWEamc++Ai0gc3VMSJQE1giYjMV9VeIvKbqp6UR0y3AztV9UTvGFVF\npC4wFjcw3S7gQxHpraqzQso6BRiMG8u/FLDIS1a7CnnPZVT1VO8YKUAzVV0jwUHP2gMTgV6quklE\nHgPmquoDInI2MDSP910TeAY3R0O6BGfsWu1tyxSRs4D7gb97z50EtFDVXSLSBTgVNwnUBtwZzIUi\n8kUB9VAB+EJVb/Oa564A7sujfk0JZGcMJtJCh8ye6f39CjdscmH7LwSmisjl5P2jpQPwkjq/APNx\nX3gFORN4PLCiqru813yibsTOTNyMcafniqkjMFNV96vq79576UTeTU2h7+HVkMen4ebXCGgOPA30\nUNXAqMEdcBNSoapz+OukLABtgfmqmh7yHgCqAq97ZzAP42bwCvgwZD9wg6mtV9Us3Pg7HXEjl6bl\nUw9/qup73uNl5P/vZ0ogSwymODLI+Rk6jJxfnH94fzMJ4+xUVa8GbsMNHbwsn05gyedxQXLvp3kc\nJ/cXfn77FPaefw95fC6uGSlwvC3Aftwv9ILiyy13LAH3APNUtQXQ04slYF8exwgtL78EF9h+MGR7\nFta6kFQsMZji2ArUEjc5eTmgRxFf/xtQKbAiIk1UdbGqjgZ+JecY8gCfAheLSCmveaUThQ+p/BFw\nTUgZVb3XdBaRGl5zTz/c2UeAemWdL26458NxUyF+ihv7vqD3HPoF3hXXxh/Yvsvbf4yIdPa2LwQC\nfSXdgWp5vIdFwOniZvlDRAL7VMaNvAlu1M2CtPH6R0p55X0aRj2YJGWJwRwydfNy3437gvkQN05+\nvrvn8fgd4AKv87Qj8GCgIxRYqKqrcpX3JrAKNxT1POAmr0kp9/FD3QtUC3RqA13UjU8/CvgEN+T5\nUlV9J/Q46maSm+K9ty+BZ1V1ZRjvWSG7X+CA1wwV2B5oAusBPC4ipwJ3Ad299/x34Gdcwgx9378C\nVwIzvffwivfUg7gk8xWQQs6+jtz1vQR4zIt3naq+GU495HM8U8LZsNvGRIGIDACOUtUHC9mvLJDp\ndSC3Ax5XN52nMb6xxGCMj0TkaOA13Nn7n8DV3r0exvjGEoMxxpgcrI/BGGNMDpYYjDHG5GCJwRhj\nTA6WGIwxxuRgicEYY0wOlhiMMcbk8P+dWPmzYQm/hQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7930c18>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Quantity of fresh carbon recquired for single stage operation: 32.0 kg carbon/1000 kg solution\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VcXTgN8loRNIwNATICBSPnoPLQiiIiCC9F7saECw\nIQgiilioPxQQpCsdkWKjBASkg4ooCEpClQ6B0JLM98feJDch5ZLcmuz7POdJTt25c889c3Zmd0aJ\nCAaDwWAwxJHN1QIYDAaDwb0whsFgMBgMiTCGwWAwGAyJMIbBYDAYDIkwhsFgMBgMiTCGwWAwGAyJ\nMIbBYDC4HKVUY6XUX66Ww6AxhsFNUUpdV0pFWpZYpVSU5f9rSqmuTpKhtKVtl9wnSvOKUup3iz5O\nKKWWKKX+zxXyuDNKqT5KqZ9dLYetWO6roLh1EflZRCq4UiZDAt6uFsCQPCKSL+5/pdS/QH8R2egi\ncZSL2p0EtAIGANvQ9+tTwBPAwaQHK6WyiUisUyVMB0opbxGJTmubp6KU8hKRGFsOdbgwhvQhImZx\n8wX4F3gYyAXcBApatr8N3AXyWdbfAyZY/i8AzAPOAcctx6oUrl8X2ANcBc4Cn1i2RwCxQKRlqQeU\nBTYCF4DzwAKggNW1agL7gWvAEmAx8J7V/tbAAeAy+mFfJQWZHgSigdqp6GUO8DmwDrhu0VFFIMxy\n/YNAG6vjWwF/WGQ7CQyxbH8AWGM55yKwJRVdVQZ+shx3FnjTShbrzxkCnLBaPw68Dvxm+Q7LWnTb\nDwgHwizH9QMOAZeA74FAq2vEAs8BRyyy/s+yvaLlmtGW7+lSCrIXB761yP43MMBq3yhgGbDIop+9\nQNUk5y633E//AC8nc+58yz3UD6gD/GKR8zQwBchuOX6L5bNct8jbMRl9pfY9zgGmWr6za8AOIMjV\nv9PMtLhcALPY8CVZDIPl/81Ae8v/P1p+4I9Z1rcAT1r+nwesBPICpYDDQL8Urv8L0N3yfx6gnuX/\nUpYfcDarY8sCzYHs6AfqZhKMUQ7LQ+5lwAv9dn8bGG3ZXwP4z/LQUEAvy2fLkYxMzwP/pqGXOcAV\noIFl3Qc4CryJ7l00szw4HrTsPwM0tPxfAKhh+X8s2sB4WZaGKbTnY7nGYMtnzQfUseybHfc5LetJ\nH3THgX1ACSAnUNqi2zlAbrTRf9LyfT6EdvO+DWyzukYs+sGeHwhAP6QftezrDfychr62AP+zyF7N\ncn4zy75RwB2gvUUHQ9AGwMsiy15guEWvZYBjQMsk57a1rOdCvyDUtZxbCm3sQpN8lqDk9IW+t5L7\nHstbfe8XgNoW+RYAX7v6d5qZFhNj8Dw2A02VUl5AFWCyZT0X+oeyxbKvM/CWiNwQkXDgU6BnCte8\nAzyolHpARKJEZKdl+z1dfRE5JiIbROSuiFwAJgBNLbvrA14iMkVEYkRkJbDL6vRngekisls089CG\no34yMhVCv5GnhgDfiMgvlvXqQF4R+VBEokVkE/qtspvV56yslMovIldFZL/V9mJAaYvc21JorzVw\nWkQmiMgdEbkuIrut9qfmGhFgsoicEpHbVttHichNEbmFNoZjReSwaJfYWKC6UirA6vgPReSaiJwA\nNlk+c1ptY7lGMPCGRfZfgZlo4xzHHhFZIdoNNB79gG+ANuQPiMgYi17/tZzbxerc7SLyLYCI3BKR\nfSKyS0RiLfffDBLuk7SoT/Lfo3VsbYWI7LHIutBKDwY7YAyD57EZ/XZVE/gdWI/+wdUDjorIZfSb\nfHb023scEei31eToD5QH/lRK7VJKPZFS40qpIkqpRUqpk0qpq2j3QSHL7uLAqSSnnLD6vxQwRCl1\nOW4BSqIfykm5mML2pJy0+r94kvZA6yDuc3dAu5OOK6XClFJxBulj9Bvqj0qpY0qpN1JoKwD9Fp1e\nksqWdFspYJKVbi5atlt/b9bGMgrdI7SF4mgX0w2rbUnviXhdiohY1osDgUDxJN/bW0Dh5M4FUEqV\nV0qtUUqdsdwn75Nwn9gia3LfY/E48dA9zzhuontvBjthDIPn8Qva1fAU2i/9J/qH2wrtkwXdzb6L\ndlfEEUiSH28cInJURLqJiD8wDlimlMqN/gEm5QMgBvg/ESmA7oXE3UdnuNf4BFr9HwG8LyJ+Vks+\nEVmcTDsbgJJKqVrJyWwtvtX/p4EApZT123MpLJ/b8obZDvAHvkHHQLC8+Q8VkbJAW+BVpdTDybQV\nAQQlsx3gBtoNF0fRNGRNblsE8GwS/eQVkR0ptJnWta05DRRUSlk/QJPeE/E9E8tItJJoQ38C7daz\nliu/iLS2ajtp+5+j3UflLPfJ29j+vEnpe0z60mFwEMYweBgiEoX2976E7j0AbEe7ITZbjolBP/Te\nV0rlU0qVQvvFFyR3TaVUD6WUv2X1KvpHHosOLsei4wpx5EM/BK8ppUoAr1nt+wWIUUoNVEp5K6We\nRLsh4vgCeF4pVdcyFDWvUuqJJA+ruM/5N/AZ8LVSqqlSKodSKpdSqovVG31S98kO9Fv060qp7Eqp\nELT7Z5FlvbtSqoBFP5FoA4dSqrVSqpzlQXTNsj25UTVrgGJKqVClVE6llI9Sqq5l3wGglVLKTylV\nFBiUzPlpMQ0YppSqZJGrgFKqYyrHKysd/Ic2pNmTO9DietoOjLXIXhUdJLa+J2oppZ5SSnlb5L+F\n1uluIFIp9bpSKrdSyksp9X9KqdpWciQlH1rHUUqpCsALSfb/R+L7ypqdpPA9ptKewY4Yw+CZbEYH\n5XZZredDBxfjeBn9AP8H+Bnth52dwvUeBQ4qpSLRMYMuInLbYoTeB7YppS5ZHoLvot1YV4HV6JEq\nAiAiccHL/ujRJN3RD9M7lv17gWfQAdBL6ECrtY87ESLyiuXYqZbrHUUHaL+NOwSrN1URuQu0AR5H\nG7X/AT1F5IjlkB7AvxbXxrMW+QDKoUcaRaIfnlNFJM7oWstzHXjE0sYZ9OigEMvu+cCv6CDz9+iH\nWFpv8Yn2i8g36B7bIouMv6O/m2SPT/L5N6BHXJ1VSp1Lob2u6F7kaWAF8I4kDIEWYBU6NnUJrZv2\nlphLDPrBXB19P51HxwzyJyNHHEPRsZ1rlmOT6mMUMNfimnra+hqW+yi17zG59kxhGTuitCvRARdW\n6kv0ePNzIlLFsq0gevhiKfQPqJOIXHGIAAa3QCm1E/hMROa6WhZDyiilRqLdPikNUDBkIRzZY5gN\nPJZk25vATyJSHv2G86YD2ze4AKVUE6VUUYsrqTfwf+g3aIN7Y9wzhngcZhhE5Gd099+atkDcm+Nc\noJ2j2je4jIdImMA2GHhaRP5L/RSDG5Cce8aQRXGYKwl0rh1gtZUr6bKI+Fn+V+jhc34OE8BgMBgM\n943Lgs+WcdLmDcVgMBjcDGcn0ftPKVVURM4qpYqhp+Tfg1LKGAyDwWBIByKS4XiRs3sM36JzumD5\n+01KB6aUwyOrLSNHjnS5DO6yGF0YXRhdpL7YC4cZBqXU1+gx4Q9Z8uj3BT4EHlFKHUFnwvzQUe1n\nFo4fP+5qEdwGo4sEjC4SMLqwPw5zJYlISsVkWjiqTYPBYDBkHDPz2c3p06ePq0VwG4wuEjC6SMDo\nwv44dLhqelFKiTvKZTAYDO6MUgqxQ/DZo0p7Jk62aDBkLaxflsLCwggJCXGdMG6E0YX98SjDANg1\n8m4weArmpcjgTNzWlRRxJYKAAgFJtxvDYMiSmHvfYAv2ciW5bfC5zhd1WH14tavFMBgMhiyH2xqG\nFZ1XMPC7gQz5YQh3Yu64WhyDwa0ICwtztQhug9GF/XFbwxAcEMy+Z/fx96W/aTy7Mf9e/tfVIrmE\niIgIfHx84t0IISEhzJo1C4A5c+bQuHHj+7peq1atmD9/vt3lNBgMmQe3Dj4XylOIVV1WMWnnJOrN\nrOdqcVKldOnSnDt3Di8vr/htffv2ZfLkyRm6bmBgIJGRkfHrSqkMBSLXrVuXIXkM7oEZhZOA0YX9\ncWvDAPpBOKj+IBoGNKTu63XTPsFFKKVYs2YNDz+cXA151xPX4/C00S3R0dF4e7v9bWowZCrc1pWU\nlDol6qR9kJsSGxvL0KFD8ff3p2zZskydOpVs2bIRGxsL6N7Ghg0b4o8fNWoUPXvqCovHjx9PdGxS\nRISXX34ZX19fKlasyMaNG+P3hYSEMHz4cBo2bEi+fPn4559/ErmirNtJrq2QkBBGjBhBw4YN8fHx\noW3btly4cIHu3btToEAB6tatS3h4eIqfe+vWrQQHB+Pn50dgYCDz5s2Lv26cDHCvSyxbtmx89tln\nlC9fnvLly/Piiy/y2muvJbr2k08+yYQJEwA4ffo0HTp0oHDhwgQFBTFlypQUZcosGL96AkYX9sdj\nDIMnkNJwwhkzZrB27VoOHDjAnj17WLZsWaI396Tuoft5q9+5cyflypXj4sWLvPvuu7Rv354rVxLK\naC9YsICZM2cSGRlJqVKlErVlSzuLFy9mwYIFnDp1imPHjtGgQQP69+/PpUuXqFixIu+++26y54WH\nh9OqVStCQ0O5cOECBw4coFq1asl+3uRYtWoVu3bt4s8//6Rr164sXrw4ft/ly5f56aef6Nq1K7Gx\nsbRp04YaNWpw+vRpNmzYwMSJE/nxxx/T/GwGgyF5MpVhUMo+S3oQEdq1a4efn1/8EvdWvGTJEgYP\nHkyJEiXw8/Nj2LBhqY5Jv5/x6oULFyY0NBQvLy86derEQw89xJo1ayz6UPTp04eKFSuSLVu2e1wy\nabWjlKJv376UKVOG/Pnz8/jjj1O+fHkefvhhvLy86NixI/v370/23K+++opHHnmEzp074+XlRcGC\nBeMNgy289dZb+Pr6kjNnTho1aoRSip9//hmAZcuWERwcTNGiRdm9ezcXLlxg+PDheHt7U6ZMGQYM\nGMCiRYtsbssTMX71BIwu7E+mct66cv6PUopVq1YlG2M4c+YMAQEJk/UCAwPt1m6JEiUSrZcqVYoz\nZ87Er1u3mx6KFCkS/3+uXLkoXLhwovXr168ne97JkycJCgpKd7vWciul6NKlC19//TWNGzfmq6++\nolevXoDumZw+fRo/v4QKsTExMTRp0iTdbRsMWZ1M1WNwV4oVK0ZERET8uvX/AHnz5uXGjRvx62fP\nnrX52qdOnUq0Hh4eTvHixePXU3PZ5MuXj6ioKJvbvR8XV0BAAMeOHUt2ny2fN2lbXbt2ZdmyZYSH\nh7Nr1y46dOgAaCNbpkwZLl++HL9cu3YtvteUWTF+9QSMLuyPMQx2JCXXTKdOnZg8eTKnTp3i8uXL\nfPjhh4kefNWrV2fRokVER0ezZ88eli9fbvND+Ny5c0yePJm7d++ydOlS/vrrL1q1apWmTHHtbtmy\nhRMnTnD16lXGjh2b6me6HxdX9+7dWb9+PUuXLiU6OpqLFy/y66+/xre7YsUKbt68ydGjRxMFolOT\n9YEHHmDAgAE89thj5M+fH4C6devi4+PDRx99xM2bN4mJieHgwYPs2bPHZlkNBkNijGGwI23atMHH\nxyd+iXurfeaZZ3j00UepVq0atWvXpkOHDokesu+99x7Hjh3Dz8+PUaNG0b1790TXTclIKKWoX78+\nf//9N/7+/owYMYLly5cncqukZmBatGhB586dqVq1KnXq1KFNmzb3HJ9akDy16wcEBLBu3To+/fRT\nChUqRI0aNfjtt98AGDx4MDly5KBIkSL07duXHj162BR879atGxs3bqRbt27x27Jly8aaNWs4cOAA\nQUFB+Pv78+yzz3Lt2rUUP3dmwPjVEzC6sD9um0QvObkySyKx48ePExQURHR0NNmyGdtsSJvMcu8b\nHEumT6JnMBhSxvjVEzC6sD/GMLgIT5uBbDAYsg7GlWQweADm3jfYgnElGQwGg8EhGMNgMHggxq+e\ngNGF/TGGwWAwGAyJMDEGg8EDMPe+wRZMjMFgMBgMDsEYBgfj4+PD8ePHXdL28OHD8ff3T5Q7yZA5\nMH71BIwu7I8xDHaidOnS5MmTJz4dRv78+Tl79iyRkZGULl36vq8XFhaWocyoERERjB8/nr/++ovT\np0/b/fr3w5EjR+jYsSP+/v74+vpSrVo1JkyYkGLxIU/AmfozGJyNMQx2Iq60Z2RkJJGRkVy7do2i\nRYumeo4jH4wREREUKlSIQoUKOawNWzh27Bj16tWjVKlSHDx4kCtXrrB06VL27t2bqJa1IxGRe/zz\n0dHRTmnbUZj8QAkYXWh27bLjxeJ+NO60aLHuJaXt7kDp0qVlw4YN92xXSsmxY8dERKR3797y/PPP\ny+OPPy558+aVDRs2yNq1a6VixYri4+MjJUqUkE8//VRu3LghuXLlkmzZskm+fPnEx8dHzpw5c8+1\nr1y5Ij179hR/f38pVaqUjBkzRmJjY+Wnn36S3Llzx5/ft2/fROddv379nuufPn1acuXKJRcvXhQR\nkTFjxoi3t7dERkaKiMjw4cNl0KBBqbabHN27d5fWrVunqrtVq1ZJpUqVxNfXV0JCQuTPP/+M3xcR\nESFPPfWU+Pv7S6FChWTgwIEiIjJy5Ejp0aNH/HH//vuvKKUkJiZGRESaNm0qb7/9tgQHB0uePHnk\n6NGjopSSqVOnSrly5SQoKEhERFavXi3VqlUTX19fCQ4Olt9++y3+mqVKlZJPPvlEqlatKgUKFJDO\nnTvLrVu3ktVfct+PPXHne9/gesaOFSlTJv4+yfgz2B4XsffiqYZh/fr192xPahgKFCgg27dvFxGR\nmzdvStGiRWXr1q0ioh+4+/btExGRsLAwKVmyZKpt9uzZU9q1ayfXr1+X48ePS/ny5WXWrFk2nZ/c\n/iZNmsjy5ctFROSRRx6RcuXKyXfffSciIo0bN5ZvvvkmzXaTUrRoUZkzZ06Kchw+fFjy5s0r69ev\nl+joaPnoo4+kXLlycvfuXYmOjpaqVavKq6++KlFRUXLr1i3Ztm2biIiMGjUqTcNQqlQpOXTokMTE\nxMidO3dEKSUtW7aUy5cvy61bt2Tfvn1SuHBh2bVrl8TGxsrcuXOldOnScufOHRHR32m9evXkzJkz\ncunSJalYsaJMmzbNJv3am6T3/qZNm5zWtruTlXURGyvy+usilSqJnDplP8OQqSq4qXftk39IRt7/\nsEARXdozrnxms2bNWLFixT3HtWvXjgYNGgC6AlqOHDn4448/qFKlCgUKFKBGjRrx10uNmJgYFi9e\nzK+//krevHnJmzcvQ4YMYf78+fTr1y/N85Pb37RpUzZv3syTTz7J77//zrBhw9i8eTMhISHs2bOH\nJk2apNluUi5evEixYsVSlGPx4sW0bt2a5s2bAzB06FAmTZrEtm3byJEjB2fOnOHjjz+Oz0IbHBxs\nk36sy5oC8efHlQwFXYv7ueeeo06dOgD06tWLDz74gB07dtC4cWMAXnnllXiXYJs2bThw4IBN7RsM\njiYmBl54AX79FbZsAXt6jTOVYUjPA91epFba0/qYkiVLJtq2fPlyxowZw5tvvknVqlX58MMPqV+/\nfprtXbhwgbt371KqVKn4bYGBgfdUdLsfmjZtyquvvsq+ffuoUqUKLVq0oH///uzcuZNy5crh5+fH\nf//9d1/tFipUKNngdxxnzpxJVOpUKUVAQACnTp0ie/bslCpVKt2pyZMLDltvCw8PZ968eUyZMiV+\n2927dxPJax0nyp07d6qfxZkYv3oCWVEXd+5Az55w4QKsXw8+Pva9vgk+u5jatWvzzTffcP78edq1\na0enTp2AtLOvPvDAA2TPnj3RUNiIiIh7DE9KJHf9Bg0acPjwYVauXElISAgVK1YkIiKCdevWxf/4\n7rfdFi1asHz58hTlKF68OOHh4fHrIsKJEycoWbIkAQEBREREEBMTc895tpQlTe4zWm8LDAzk7bff\nTlQW9Pr163Tu3DlFeVO7tsHgDKKi4MkntXFYu9b+RgGMYXAqSd0Pd+/eZeHChVy9ehUvLy98fHzw\n8vICoEiRIly8eDHFSmReXl506tSJt99+m+vXrxMeHs6ECRPo0aOHTbIkd/08efJQq1Ytpk6dStOm\nTQHtupk2bVr8+v22++6777J9+3Zef/11/vvvPwCOHj1Kz549uXbtGp06dWLt2rVs3LiRu3fv8umn\nn5IrVy6Cg4OpU6cOxYoV48033yQqKopbt26xfft24P7LkibHM888w7Rp09i1axciwo0bN1i7di3X\nr19Pl/6ciRm7n0BW0sWVK9CyJRQuDEuXQq5cjmnHGAYHk1ZpzAULFlCmTBkKFCjAjBkzWLhwIQAV\nKlSga9euBAUFUbBgwWTfiKdMmULevHkJCgqicePGdO/enb59+ybbdlJSun7Tpk2Jjo6mbt268evX\nr1+nSZMmNrdrTVBQEL/88gvHjx+ncuXK+Pr68vTTT1OnTh3y5ctH+fLlWbBgAS+//DL+/v6sXbuW\n1atX4+3tjZeXF6tXr+bo0aMEBgYSEBDAkiVLgPsvS5rceq1atfjiiy8YOHAgBQsW5MEHH2TevHmp\nllKN22fL92Mw2JP//oOQEKhVC2bPBm8HBgJckitJKfUW0AOIBX4H+orIbav9kpxcJl+MIati7v2s\nTXg4PPIIdO8O77wDKb3zeWyuJKVUaeAZoKaIVAG8gC7OlsNgMBg8gT/+gMaN4aWXYOTIlI2CPXGF\nK+kacBfIo5TyBvIA6R9KYzBkQbKSXz0tMrMutm+Hhx+GsWMhNNR57TrdMIjIJeBTIAI4DVwRkfXO\nlsNgMBjcmXXr9OijuXO1C8mZOH0eg1KqLDAIKA1cBZYqpbqLyELr4/r06ROffM7X15fq1as7WVKD\nwT1J+oYctx43pDirrcdtcxd57LH+44/w5ZchrF4Nt26FERaW/PFhYWHMmTMHIF3JOlPC6cFnpVRn\n4BERGWBZ7wnUF5GXrI4xwWeDwQpz72cdxo+HiRPhhx/AMnHfZjw2+Az8BdRXSuVWeuxfC+CQC+Qw\nGDyWzOxXv18yiy5E4I034IsvYNu2+zcK9sTpriQR+VUpNQ/Ygx6uug+Y4Ww5DAaDwV2IjoZnn4VD\nh2DrVvvmPUoPabqSlFKNgJHomECcIRERCXKYUMaVZDAkwtz7mZebN6FLF7h9G5Yvh7x5038tZ7qS\nZgHjgUZAHctSN6MNG5zLnDlz4jOG3i+HDx+mevXq5M+fn//97392lsxgyLpcvqxTXOTLB99+mzGj\nYE9sMQxXROQ7EflPRC7ELQ6XzMPYunUrwcHB+Pr6UqhQIRo1asSePXtcLZZd+Oijj2jevDnXrl1j\n4MCB9+wPCQlh1qxZDpdDRJg8eTJVqlQhX758BAQE0KlTJw4ePOjwth1JevSXWfzq9sBTdXH6NDRt\nqlNczJ8POXK4WqIEbDEMm5RSHyulGiilasYtDpfMg7h27RqtW7cmNDSUy5cvc+rUKUaOHEnOnDld\nLZpdCA8Pp1KlSinud1am0dDQUCZPnsyUKVO4fPkyR44coV27dqxdu9Yp7UPyJUGTy/56P5hMrVmP\nI0egYUPo2hUmTIB0ZpZ3HGlV8gHCgE1JF3tUCUqlzWSrFaW03dXs3r1bfH19Uz1m1qxZUrFiRfHz\n85NHH31UwsPD4/cdPHhQWrRoIQULFpQiRYrIBx98ICIit27dktDQUClevLgUL15cBg0aJLdv3xYR\nXbUqrhRo4cKFpVixYjJ79uz4a164cEHatGkj+fPnl7p168rw4cOlUaNGKcqXUnnNZs2aiZeXl+TK\nlUt8fHzk77//TnTesGHD4vfny5dPBg4cKCNHjpSXX35ZRETu3LkjefLkkddee01ERKKioiRnzpxy\n+fLlVNtNypEjR8TLy0t2796d4mdIq+TojBkz4suoVqpUSfbv3y8iiavsiehKe8OHD0+k53HjxknR\nokWlZ8+eMmrUKOnQoYP06NFD8ufPL7NmzZIrV65Iv379pFixYlKiRAkZPnx4fDW52bNnS8OGDWXo\n0KHi5+cnZcqUia+Ml1R/cXpLirve+4b7Z88ekaJFRb74wv7XxpT2dB+uXbsmhQoVkt69e8t3330n\nly5dSrT/m2++kXLlyslff/0lMTExMmbMGAkODo4/t2jRojJ+/Hi5ffu2REZGys6dO0VEZMSIEdKg\nQQM5f/68nD9/XoKDg2XEiBEioh9Y3t7eMnLkSImOjpZ169ZJnjx55MqVKyIi0rlzZ+ncubNERUXJ\nwYMHpUSJEtK4ceNk5U+tvKaISEhISIqlO5Pbv3HjRqlSpYqIiGzbtk3Kli0r9erVExGRDRs2SPXq\n1VNtN660pjWff/65lC5dOtXvIbWSo0uWLJESJUrInj17RETk6NGj8cY5qWHo06fPPXp+88035c6d\nO3Lz5k0ZOXKkZM+eXVatWiUiukRru3bt5Pnnn5eoqCg5d+6c1K1bV6ZPny4i2jBkz55dZs6cKbGx\nsfL5559L8eLFU9RfcrjrvW+4P777TuSBB0RWrnTM9Z1mGABfYAKw17J8ChSwR+OptJnah05NK/ZZ\n0sGff/4pffr0kZIlS4q3t7e0bdtW/vvvPxEReeyxxxL98GNiYiRPnjwSHh4uX331ldSsWTPZa5Yt\nWzb+zVJE5Icffoh/OG7atEly584d/1YqIlK4cGHZuXOnREdHS/bs2eXw4cPx+4YNG5Zij2H06NHS\nuXPn+PXY2FgpUaKEbN68WUT0g2vmzJkpfvak+6OioiRXrlxy8eJF+fDDD+WDDz6QkiVLyvXr1+Wd\nd96R0NDQVNsNCwu7p40xY8ZI/fr1U5QhOjpacuTIkajHMX36dAkJCRERkZYtW8rkyZOTPTc5w2Dd\nY8iRI0d8T01EZOTIkdK0adP49bNnz0rOnDnl5s2b8du++uoradasmYhow1CuXLn4fTdu3BClVPz9\nkZZ+Re6997NyneOkeIouZs8WKVJExFK23CHYyzDY4tn6Ep34riPQCYgEZmfMgeUg7GUa0kGFChWY\nPXs2J06c4ODBg5w+fZpBgwYB2kcfGhqKn58ffn5+FLIMUj516hQnT54kKCj5kb+nT5++p4SmdWnJ\nQoUKJSp7mSdPHq5fv8758+eJjo5OVMbSunxmUlIrr2m9LTWs9+fOnZvatWuzefNmtmzZQtOmTQkO\nDmbbtm168N8hAAAgAElEQVTx66m1m1z5zEKFCnHmzJkU20+r1OnJkycpW7Zsqp8hJfz9/cmRJDJo\nXbEuPDycu3fvUqxYsfjv+Pnnn+f8+fPxx1iXCM2TJw9AooJAJs6QeRGBMWPg3XchLAwsZcvdGlsM\nQ1kRGSki/4jIMREZBaTvF5ZFeOihh+jdu3f8aJnAwEBmzJiRqITkjRs3aNCgAQEBAfzzzz/JXqd4\n8eL3lNAsXrx4mu37+/vj7e1NREREonNTIqXymiVKlEizLUj+oda0aVM2bNjA/v37qVOnDk2bNuX7\n779n165d8UV/7qfd5s2bc/LkSfbu3ZusDGmVHA0ICODo0aPJnpsnT55EZULPnDlzT4GlpJ/XeltA\nQAA5c+bk4sWL8d/v1atX+f3335NtLynpMQpZsc5xSrizLqKj4fnnYcUKnSm1QgVXS2QbthiGm0qp\n+AHwlglvUakcn+U4fPgw48ePj387PXHiBF9//TUNGjQA4Pnnn+eDDz7g0CGd+ePq1assXboUgNat\nW3PmzBkmTZrE7du3iYyMZNeuXQB07dqVMWPGcOHCBS5cuMDo0aPp2bNnmvJ4eXnRvn17Ro0axc2b\nNzl06BBz585N8QGUWnnNOCSVnlSRIkU4duxYom1NmzZl3rx5VK5cmezZsxMSEsLMmTMJCgqK7zHZ\n0m4cDz74IC+++CJdu3Zl8+bN3Llzh1u3brFo0SLGjRuXZsnRAQMG8Mknn7Bv3z5EhKNHj8Yby+rV\nq7Nw4UJiYmL4/vvv2bJlS6r6TaqLYsWK0bJlS1599VUiIyOJjY3l2LFjaV4nNf0ZPJ8bN6B9ezh+\nHDZvhmLFXC3RfZCWrwmoDvwGhFuWA0A1e/ixUmkzNf+Z23Hq1Cnp1KmTlChRQvLmzSslSpSQ559/\nXiIjI+OPmT9/vlSpUkXy588vAQEB0r9///h9Bw8elObNm4ufn58ULVpUxo0bJyJ6VNIrr7wixYoV\nk2LFikloaGiiUUkBAQGJ5ChdurRs2LBBRETOnz8vrVu3lvz580u9evVkxIgRKQafRURWrlwplSpV\nkgIFCkhISIgcOnQofl9awdFffvlFypcvL35+fvHxg8jISMmePbuMHj1aRHT8oHDhwvLiiy/a3G5y\nTJo0SSpXrix58uSREiVKSJcuXeLPuXz5svTo0UP8/f0lICBA3nvvvUSjkqZNmyYPPfSQ5MuXT6pU\nqSIHDhwQEZE9e/ZI5cqVxcfHR3r27CndunVLFHxOqudRo0ZJz549E227evWqvPDCC1KyZEkpUKCA\n1KhRQxYvXiwiInPmzLlH99myZYuPaySnv6Qkvfc9xa/uDNxRF+fOidSrJ9Krl4hVeMrhYKcYg83Z\nVZVS+S1PbIdXPzcpMQyGxCS9963TTGd13E0Xx47B449Dx446tuDM8JG9UmKkaBiUUj1FZL5Saghg\nfZBCW6XxGW08RaGMYTAYEmHufc9gzx5o2xZGjIAXXnB++/YyDKllV81j+etDYsNgMBgMhiR89x30\n6qXTZrdr52ppMoZN2VVFZGta2+wqlOkxGAyJMK6klHEHXcyeDW+9pUcfuXI4qjOzq05JZtvkjDZs\nMBgMno4IvPcejB6tRx55whwFW0gtxtAACAYGo9Nux1khH+ApEanmMKFMj8FgSIS5992PO3fguefg\nt99gzRr3GI7qjBhDDrQR8LL8jeMa8HRGGzYYDAZP5coV6NBB10/YvFnXU8hM2BJjKCUi4akeZGdS\n6zEYDFkVE2NIHmfrIjwcWrWC5s11ymwvL6c1nSbOjDHMUUptSrJszGjD6cEeEzc8bdm0aZNNx8XE\nxvDJtk/w/8iflX+udLncrtRFZl0MrmfPHh1HePZZmDzZvYyCPbGlx1DbajUX0AGIFpHXHCZUCj0G\nQ9rsPLmTLsu70LZ8Wz565CNyemeOYkEGg6tZtQoGDHDv4agOn+CWRuO7RaRORhtP5frGMGSAyzcv\n0//b/oRfDWfx04spV7Ccq0UyGDyaSZNg3DhtHOo47MmXcZzmSlJKFbRaHlBKPQbkz2jDBttITz1b\nv9x+LO+0nL7V+9JgVgMWH1xsf8FcgKfW9nUERhcJOFIXMTEQGgrTp+vsqO5sFOxJaqOS4thHwszn\naOA40N9RAhnsg1KKgXUHEhwQTOdlndn470YmPjaR3Nlzu1o0g8EjuHEDunWDyEhtFHx9XS2R80iX\nK8nRGFeSfbl2+xrPrn6WQ+cPsaTjEio84CFJ4Q0GF3H2LLRuDZUr65hCkjpNboszkuh1IJUcSSKy\nIqONpyiUMQx2R0SYuW8mwzYOY3zL8fSslnZdB4MhK/LHH/DEE9Cvn06G50mj5J0RY2iTxmJwAvby\nnyqleKbWM2zstZEPtn5A31V9uXHnhl2u7SyMXz0Bo4sE7KmLn36CZs10mot33vEso2BPUowxiEgf\nJ8phcBJVilRh9zO7eWndS9T5og5LOi7h/wr/n6vFMhhczmef6ZxHS5eCpSx5lsWWeQy+wEigiWVT\nGDBaRK46TCjjSnIKcw/MZehPQxnbfCz9a/Q3M8sNWZLoaHj1Vd1bWLMGynpwRXunzWNQSq0Afgfm\nohPp9QSqikj7jDaeSpvGMDiJP8//SadlnahSuArTW0/HJ6dP2icZDJmEq1ehc2eIjYUlSzx/5JEz\nU2KUFZGRIvKPiBwTkVGAB9tUz8LRvuSK/hXZNWAXPjl8qDWjFvvP7HdoexnB+NUTMLpIIL26+Ocf\nnd6ibFlYt87zjYI9scUw3FRKNY5bUUo1AqIcJ5LB2eTOnpvpbaYzutloWi5oydRdU01uHkOmZutW\naNhQl9+cOhW8bZnRlYWwxZVUHZgHFLBsugz0FpFfHSaUcSW5jL8v/k3nZZ0J8gtiZtuZ+OYyr1GG\nzMW8eTB0qP772GOulsa+OD1XklKqACAici2jjdrQljEMLuR29G1e++k11hxZw6KnF1G3RF1Xi2Qw\nZJjYWHj7bVi8WAeZK1VytUT2x5m5kgYppfKjC/RMUErtU0o9mtGGDbbhCl9yTu+cTH58Mp+0/ITW\nX7Vm/C/j3cK1ZPzqCRhdJGCLLm7cgI4dtQtp587MaRTsiS0xhn6WXkJLoCDQC/jQoVIZ3IL2Fduz\nc8BOFv+xmLaL2nIx6qKrRTIY7ptTp6BJE11lbf168Pd3tUTujy0xht9FpIpSajIQJiIrlFL7RaRG\nuhvVcyNmApXRaTf6icgOq/3GleRG3Im5w7ANw1jyxxK+7vA1DQMbulokg8Emdu+Gp56CgQPhjTcy\n/0xmZ85jmAMUB4KAqujZ0ptEpFa6G1VqLrBZRL5USnkDea0nzBnD4J6sObKGAd8OILReKG80eoNs\nypYOp8HgGhYuhEGDYMYMbRyyAs6cx9AfeAuoLSJRQHagb3obtASxG4vIlwAiEu3IWdSejjv5kluX\nb83uZ3az7ug6Hl/4OOdunHNq++6kC1djdJFAUl3ExOjewYgRsHFj1jEK9iRNwyAiMSKyV0SuWNYv\nishvGWizDHBeKTXbEsj+QimVJwPXMziRgAIBbOq9idrFalNjeg02/bvJ1SIZDPFcuQJt2mgX0q5d\nUKWKqyXyTJxej8FSQ/oXIFhEdiulJgLXROQdq2OMK8kD+PHYj/T5pg/P1XqO4U2G45Utk1ZGN3gE\nR45A27bwyCMwfjxkz+5qiZyPS2s+Z6hBpYoCv4hIGct6I+BNEWltdYz07t2b0qVLA+Dr60v16tUJ\nCQkBErqOZt3162ciz9Dq/VYArH17LcV9iruVfGY9a6zv2gWffBLC++/Dgw+6Xh5nrYeFhTFnzhwA\nSpcuzbvvvuu04HPBZDZHisjddDeq1BZggIgcUUqNAnKLyBtW+02PwUJYWFj8DeGuxMTG8P7P7/P5\nns+Z224uLcu2dEg7nqALZ2F0oRGBF18MY9WqEJYsgUaNXC2Ra7FXj8HWms+B6FQYAH7AWaXUWeAZ\nEdmbjnZfBhYqpXIAx8hAMNvgeryyefFO03doUqoJPVb0oFe1XoxuNhrvbCYBjcFx3LoFzzwDO3bo\nJTDQ1RJlHmzpMXwBLBORHyzrLYGngdnAJBGxe74E02PwXM7dOEevlb24fuc6X3f4moACAa4WyZAJ\nOX1ajzYqUwa+/BLymOErgHOHqzaIMwoAIvKjZdsvgIeUyDY4i8J5C7Ou+zpal29N7S9qs+bIGleL\nZMhk7NwJdevCk0/C118bo+AIbDEMZ5RSbyilSimlSiulXgf+U0p5AbEOli/LExdo8iSyqWy82ehN\nVnRawUvrXmLID0O4E3Mnw9f1RF04iqyqizlz9HDUzz+HYcP0TOasqgtHYoth6AYEAN8AK9Hxhq6A\nF9DJcaIZPJ2GgQ3Z9+w+/r70N41nN+bfy/+6WiSDh3LnDrz0EowdC2Fh2jgYHIctMYYyIvJvkm11\nRGS3w4QyMYZMhYgwccdExm4dy7TW02hf0WFVYQ2ZkDNndGbUQoV0DYUCBdI+J6vizBjDcqVUSauG\nm6IDzwaDTSilGNxgMGu6rWHoj0N5ed3L3Iq+5WqxDB7A9u1Qpw48+iisXGmMgrOwxTA8B3yjlCqq\nlGoFTAYed6xYhjgyk/+0bom67HtuH2eunyF4VjB/X/z7vs7PTLrIKJldFyI6jvDUUzoJ3ogRkC2F\np1Vm14UrsCVX0m7gFeAnYBTwiIiccLBchkyKby5flnZcyoCaAwj+Mpivf//a1SIZ3Ixbt6B/f/js\nM9i2DVq1crVEWY8UYwxKqdVJNlUEzgBX0CU+2zpMKBNjyBLsP7Ofzss6E1I6hImPTSRPdjPuMKsT\nEQEdOkBQEMyapYvrGGzH4bmSLLEEAOtGxLIuIrI5o42nKJQxDFmGyNuRPL/2eX777zeWPL2Eiv4V\nXS2SwUVs2gTdusGQIXrJ7EV1HIEzgs/DgJrAWREJsyyb4/5mtGGDbWR2/6lPTh8WPLWAQfUG0WRO\nE+YemJvisZldF/dDZtKFiM6G2rUrLFgAQ4fen1HITLpwF1JLZtMHeAwYpZR6CNgJfAesF5EbTpDN\nkEVQStG/Zn/qlaxHp6Wd2Hh8I1NbTSVfDuNHyOzcuKHzHf31l57RXKqUqyUygI1pty2znOuhRyM9\nDNwCfhCRjxwilHElZVlu3LnBy9+9zC8nf2Hx04upWqSqq0UyOIi//tLxhLp1daA5d25XS+T5OGUe\ng1LKSyk12FLFbbuIjBCRhkAX4FRGGzcYkpI3R16+fPJLhjUaRvN5zZmxdwbmJSHzsWQJNG4Mgwfr\nJHjGKLgXqRoGEYlBp8RIuv28iCx0mFSGeLKq/7RntZ783Pdnpu6eStflXbl2+1qW1UVyeKou7tyB\n0FB46y344QcYMCDjQWZP1YU7Y8sEt61Kqf8ppRorpWoqpWoppWo6XDJDlqfCAxXY0X8Hvrl8qTm9\nJkcuHnG1SIYMcPIkhITA8eOwZw/UNE8Rt8WWXElh6GGqiRCRZg6SycQYDPew+OBiXv7uZUY0GcHA\nugNRZiyjR/HTT9CrFwwaBK+9lvIsZkPG8Niaz7ZgDIMhOY5dOkbnZZ0JLBDIrLaz8Mvt52qRDGkQ\nGwvvv6/TWyxcCM0c9jppACcm0VNKjVRKvWP19x2l1DsZbdhgG8Z/msCJ306wrd82AgsEUnNGTXae\n3OlqkVyGJ9wXFy9C69a6t7Bnj+OMgifowtOwpUN3w7JcRxfmaQWUdqBMBkOK5PTOycTHJjLh0Qm0\nXdSWT7Z/QqyYelHuxu7dUKsWVK4MGzZA8eKulshwP9y3K0kplRP4UUSapnlwOjGuJIMthF8Jp8vy\nLhTKXYg57ebwQJ4HXC1SlkcEpk2DkSNh+nSdHdXgPJxZjyEpeYESGW3YYMgopXxLsaXPFir5V6Lm\n9Jr8HP6zq0XK0ly9Cp07a4OwbZsxCp6MLTGG362WP4DDwCTHi2YA4z+1JjldZPfKzkePfMS01tPo\nuLQj7295P0u4ltztvogbfurvDzt2wIMPOq9td9NFZiC1XElxxFVXFSAaOCcidx0nksFw/7R6sBV7\nnt1Dt+Xd2By+mflPzadIviKuFivTIwJTpsCYMTB1qi7BafB8bM2VVB1ojDYOP4vIrw4VysQYDOkk\nOjaad8Pe5csDXzKv3TyaBzV3tUiZlsuXdUGdiAhYvBjKlnW1RAZnDlcNBRYA/kARYIFS6pWMNmww\nOALvbN689/B7zG03l54rezJy00hiYmNcLVamY+dO7ToKDNTxBGMUMhe2BJ8HAPVE5B0RGQHUB55x\nrFiGOIz/NIH70UWLoBbse24f205so/m85pyOPO04wVyAq+4LEfj0U2jbFiZMgIkTIWdOl4gSj/mN\n2B9bRyXFpvC/weC2FM1XlB96/ECLoBbUmlGL749+72qRPJqLF7VBWLpU9xjatXO1RAZHYUuupFfR\nRXtWoMt6tgPmiMgEhwllYgwGO7P5+Ga6r+hOj6o9eK/Ze2T3yu5qkTyKbdt02c2OHeGDDyBHDldL\nZEgOp+ZKUkrVAhqREHzen9GG02jPGAaD3Tl/4zy9v+nNlVtXWPT0IgILBLpaJLcnJgY+/FCPPJo5\nU6e4MLgvDg8+K6UKxi3Av+gA9EIg3LLN4ASM/zSBjOrCP68/a7qt4akKT1Hnizp8e/hb+wjmApxx\nX5w4Ac2bw/r1ep6CuxoF8xuxP6nNY9hHMum2LQgQZH9xDAbHkk1l47WGr9EosBFdl3dl07+bGPfI\nOHJ4Gd+INStWwAsv6DTZr78OXl6ulsjgTEzabUOW5dLNS/Rb1Y9TkadY/PRigvzMu05UlC63uX49\nfPUV1KvnaokM94NTcyUppZ5USn2qlPpEKdUm7TMMBvenYO6CrOy8kh5VelB/Zn2WHVrmapFcyq+/\n6oyoUVGwf78xClkZWya4fQi8AvwB/Am8opQa62jBDBrjP03AEbpQShFaP5R13dfxxvo3eHHti9yK\nvmX3duyNPXUhApMmQYsW8PbbMH8+5M9vt8s7HPMbsT+29BieAFqKyJciMgt4DHDTMJTBkD5qF6/N\nvmf3cSHqAvVn1s8y9aXPnYMnntBuox07oEcPV0tkcAdsmcfwG9BMRC5a1gsBm0SkqsOEMjEGg4sQ\nEabvnc6ITSOY+OhEulft7mqRHMYPP0DfvtCnD7z7LmQ3Uzs8HqfNY1BKdQU+BDahJ7g1Bd4UkUUZ\nalgpL2APcFJE2iTZZwyDwaX8evZXOi3rROPAxkx+fDJ5sudxtUh249YtGDZMz2CeOxceftjVEhns\nhdOCzyLyNdAAWAksB+pn1ChYCAUOkfKQWAPGf2qNM3VRrWg19j67l9sxt6nzRR3+OPeH09q2hfTq\n4sABqF1bZ0Q9cCBzGAXzG7E/tgSfnwKiRGSViHwL3FJKZShLilKqJLp29Ex0L8RgcDvy5cjHvHbz\nGNpgKCFzQ5i9fzae2pONiYFx4+CRR+CNN3RvoVAhV0tlcFdscSX9KiLVkmw7ICLV092oUkuBD4D8\nwFDjSjK4O4fOH6LT0k7UKFaDz1p9hk9OH1eLZDPHj0OvXqAUzJsHpUq5WiKDo3DmPIbkGkn3PEil\nVGt0Fbj9KVzbYHA7KvlXYtczu8jplZPaX9Tm17MOrVVlF0R0DKFOHWjTBjZuNEbBYBu2lPbcq5Qa\nD0xFP8hfAvZmoM1goK1SqhWQC8ivlJonIr2sD+rTpw+lS5cGwNfXl+rVqxMSEgIk+BSzwrq1/9Qd\n5HHletw2V8ozs+1M3p71Nk1GNWHcgHE8V+s5Nm/e7HR5Dhw4wKBBg1Lcf/UqzJ8fwuHDMHZsGOXK\ngZeX8/XljPWJEydm6efDnDlzAOKfl3ZBRFJdgHzAOPQIoj3AWCBvWufZsqBHOK1OZrsYNJs2bXK1\nCG6DO+ni8IXDUu3zatJxSUe5cvOK09tPTRfffSdSvLjIkCEiN286TyZX4U73hauxPDsz/Gx2aa4k\npVRTYIiItE2yXVwpl8FgC7eibzHkhyF8f+x7Fj+9mNrFa7tUnqgoeO01WLMG5syBZs1cKo7BBTg1\nV5KjEJHNSY2CweAp5PLOxdQnpjKuxThaLWzFpB2TXDZqaft2qF4drl7VOY+MUTBkBJcaBkPaWPvX\nszruqounKz3NjgE7WPD7Atotbselm5cc3macLm7e1L2EDh10QZ0FC8DX1+HNuxXuel94MqkV6hln\n+dvJeeIYDJ5JkF8Q2/pto6xfWWpOr8kvJ35xeJs7d0LNmhAeDr/9Bu3bO7xJQxYhxRiDUuogUAXY\nJyI1nCqUiTEYPJhvD3/LM6ufYUiDIQwNHko2Zd+O+e3bOrfRl1/C5MnQyby6GSw4PFeSUupj4Bn0\nqKSbSXaLiDgsMa8xDAZPJ+JqBF2WdcE3ly9z283FP6+/Xa67bx/07g3lysG0aVCkiF0ua8gkODz4\nLCKviYgvsE5EfJIsHpSt3bMx/tMEPEkXgQUC2dxnM9WKVKPmjJpsCd+SoevduQMjR8Ljj8Obb8Ir\nr4QZo2DBk+4LT8GWJHptlVJFlFKtLUthZwhmMHg62b2yM7bFWL5o8wWdl3VmzJYxxMTG3Pd1fv1V\nV1Pbu1dXVuveXae3MBgchS25kjoBHwOb0TOfGwOvichShwllXEmGTMbpyNN0W94N72zeLGi/gKL5\niqZ5zp07OvHdlCnw0UfahWQMgiE1nFmP4TeghYics6z7AxvEFOoxGO6L6Nho3tv8Hl/s+4J5T82j\nRVCLFI/dvRv694fAQPj8cwgIcKKgBo/F2Un0zlutX8Qkv3Maxn+agKfrwjubN+82e5cF7RfQ+5ve\nDN84nOjY6ETHxM1ebtNGxxJWr07eKHi6LuyJ0YX9scUwfA/8oJTqo5TqC6wDvnOsWAZD5uXhMg+z\n79l97Dq1i4fnPszJaycBCAuDqlXh1Cn4/Xfo1s24jgyuwaZcSUqpDkBDy+rPIrLSoUIZV5IhCxAr\nsXy49UMm7ZhMzRNfcnBlKz77TPcWDIb04NRcSSKyXERetSwONQrx9O8PZ886pSmDwRVkU9mocmUY\nsngp53Ls4OBBYxQM7oH75kry84P/+z/4+GM91TOLYvynCWQmXZw/r11FgwfD4o8bs/eT0RQoYPv5\nmUkXGcXowv64r2H45BOdMnLLFm0gVq/WJakMBg9GBObPhypVoEQJnePIZEI1uBv3VY9BKVUQKCki\nvzlOpGRiDN9/r1+tAgNhwgSoVMmRzRsMDuHIEXjhBbh8GaZP1yU3DQZ74rQYg1Jqs1Iqv8Uo7AVm\nKqUmZLTh++Kxx/SrVatW0LQphIbqX5fB4AHcvg3vvQfBwdC6NezaZYyCwb2xxZVUQESuAe2BeSJS\nF0h5Zo6jyJ5dG4RDh/SU0AoV9Myf6Oi0z/VgjP80AU/UxZYtuoDO7t06Ad7gweBtS6X1NPBEXTgK\nowv7Y4th8FJKFQM6AWst21zn7Pf31wbhxx9hyRKdkH7jRpeJYzAkx8WLemBd9+7wwQewapX2hBoM\nnoAtKTE6AiOAbSLyglKqLPCRiHRwmFC2zmMQgRUrYOhQbSA+/hiCghwllsGQJnHB5ddfhy5dtAvJ\nx8fVUhmyCs7MldRIRLamtc2e3PcEt5s3Yfx4vTz/PLz1FuTL5yjxDIZkiQsuX7mig8u1a7taIkNW\nw5kT3KYks21yRhu2K7lzw9tv6wD1iRPw0EMwbx7Exrpasgxj/KcJuKsuoqLgnXd0cLlNG11y09FG\nwV114QqMLuxPimEwpVQDIBjwV0q9SkLiPB/Aywmy3T8lSmiDsGOHDlRPnaprH9ar52rJDJkQEfj2\nWxg0SN9iBw5AyZKulspgyDiplfZsCjQDngOmWe2KBFaLyN8OE8oeuZJiY2HBAu1Wat4cPvwQihe3\nj4CGLM/Ro/rd499/db2E5s1dLZHB4NwYQykRCc9oQ/eDXZPoRUbC2LEwYwa8+qpecuWyz7UNWY6o\nKP2O8dln8MYb2jjkyOFqqQwGjcNjDEqpSZZ//6eUWp1k+TajDTsNHx89XnDXLl0bsVIlPZLJQ9Jr\nGP9pAq7UhYgeclq5sg4yHzig6ya4yiiY+yIBowv7k9pUm3mWv586QxCHExQEy5frOQ+hofC//8HE\niToBvsGQCnFuo3/+gZkzjdvIkPm5r1xJzsLh9Riio+GLL2DUKGjfXg82f+ABx7Vn8EiuX9deyOnT\njdvI4Bk4M1dSI6XUT0qpv5VS/1qWfzLasEvx9tYDzv/8U//SK1aESZPg7l1XS2ZwA2Jj9eC2ChUg\nIsL1biODwdnYMo9hFjAeaATUsSx1HSmU0yhYUBuEzZth7VrtVvrhB1dLlQjjP03AGbr45Rdo0ECP\ndF62TM9idschqOa+SMDowv7Yks7riohk7hrPlSppg7BmDQwcqF8VP/0Uypd3tWQGJ3HyJLz5pq67\nPHasznGUzX2rlRgMDsWW4aofoie0rQDiS6mJyD6HCeXKms+3b+tJcePGQd++MHw491Vay+BRREXp\nmlCTJmnv4ptvmmwqBs/FmfMYwkgmm6qIOKzulEsNQxxnz+o0G+vWwZgx0KcPeLnnhG/D/SOik/O+\n/rqetfzRR1C6tKulMhgyhtOCzyISIiLNki4ZbdjtKVoUZs3SJUW//BLq1oWtDssbmCLGf5qAvXSx\nYwc0bqwnqs2frw2EpxkFc18kYHRhf9KMMSilRqJ7DAqrnoOIjHagXO5D7draICxapKu3Bwfr10uT\nXN/jOHZMZ0jZvl2PUO7Vy3QCDYbksMWVNJQEg5AbaA0cEpF+DhPKHVxJyXHjhq75MGUKvPyy9kPk\nyeNqqQxpcPGiNgQLFugKaoMHm6/NkDlxWowhmYZzAj+KSNOMNp5KG+5pGOKIiNBGYft23Xvo3BlU\nhr8Lg525dUuPI/j4Y+jUCUaOhMKFXS2VweA4nFmPISl5gRLpbVApFaCU2qSU+kMpdVAp9Up6r+Uy\nAgO1a2nhQm0YGjfWeZgcgPGfJmCrLuIS6z70kJ6XsHWrnpeQmYyCuS8SMLqwP7bEGH63Ws0GFAYy\nEuhZUxsAABH5SURBVF+4CwwWkQNKqXzAXqXUTyLyZwau6RoaN9ZV3mfPhtat4Ykn4P33oUgRV0uW\nZdm4Uc9Szp5dG4fGjV0tkcHgedgSYyhttRoN/CcidssdoZT6BpgiIhustrm3Kyk5rl7Vw1pnz9aD\n4V95xeRQcCK7d8OwYbo+wgcfQMeOxrtnyHq4LMZgTyxGZzNQWUSuW233PMMQx5EjMGQIHD6sa1A/\n8YR5QjmQQ4dgxAhdTnPECOjXT/cWDIasiL0Mgy0pMRyCxY20DAi1Ngpx9OnTh9KWweW+vr5Ur16d\nkJAQIMGn6Jbr5csTNmQI7NpFyGuvwf/+R1jXrlCqVLquZ+0/dYvP58L1uG1hYWGcPQvffx/CunXQ\noUMYs2bBo4+6l7yOXD9w4ACDBg1yG3lcuT5x4kTPeT7YeT0sLIw5c+YAxD8v7YKIOH0BsgM/AINS\n2C+Zgjt3RCZOFHngAZHQUJFLl+77Eps2bbK/XB7Kpk2b5MwZkYEDRQoWFBkxQuTKFVdL5RrMfZGA\n0UUClmdnhp/RTnclKaUUMBe4KCKDUzhGnC2XQzl/Ht55R1eOGzUKnnlGp/422Mzly3rY6fTpemLa\nW29lrlFGBoM9cOVw1YzSEOgBNFNK7bcsj7lADufh7w+ffw4//qjzL9SsqYfPGNLk6lUYPVonuj13\nDvbvhwkTjFEwGByJ0w2DiGwVkWwiUl1EaliW750th0uoVk0bhJEjoX9/6NBB14tMBWv/elYiziCU\nK6dVtH079OgRZjKRWMiq90VyGF3YH5Nx3tkopQ3CoUO651C3rs7iev2e+HuW5OpVnb6iXDmd22j7\ndpgzBx580NWSGQxZh6xZ89mdOHVKO8w3bNAVYnr0yJIVYq5e1ekrJk+GVq10GQxjDAyG+yNTzGNI\niSxlGOLYsUNXmwf9dKxXz7XyOImrV3VOwkmT4PHHtUEwhfMMhvThycFnQ3LUr68T+7z0ErRvr4fe\nnD6daf2n589rI1C2rJ4LuG0bzJuXulHIrLpID0YXCRhd2B9jGNyJbNm0QfjrL12BvmpVnfDn1i1X\nS2Y3TpzQHaOHHoILF/SM5fnzTS/BYHAnjCvJnfnnH50Rbv9+XZj4qac8Nr3GkSO6jPbKlXpA1uDB\nULy4q6UyGDIXJsaQldi4Ub9m+/vDxIm6J+Eh7N+vY+qbNsHAgXopVMjVUhkMmRMTY8gihIWFwcMP\n6ydsx47wyCPw4ovaD+OmiEBYmB5d9MQTOo7+zz96+kZGjILxJSdgdJGA0YX9MYbBU/D2hhdegD//\n1OlDK1XSo5fu2i0Deoa5exe+/lqXyX7uOXjySW0QhgwBHx9XS2cwGGzFuJI8lUOHYNAgOHlS54h4\n9FGXiXLtGsycqb1cZcpoQ9C6dZacjmEwuBQTYzBon82aNfDqq1Chgq7/4MRZYSdO6PkHs2dDy5ba\nINSu7bTmDQZDEkyMIYuQqv9UKWjTBg4ehKZNoUEDPYrp6lWHyrR3L3TvDtWr6/rK+/YluJAcifEl\nJ2B0kYDRhf0xhiEzkDMnDB0Kf/yh81NXqACzZkFMjN2auHMHvvoKgoP1/LsaNXT8YPx4KFXKbs0Y\nDAY3wLiSMiN79+rhrTdval9Po0bpvtTp0zBjhl4qVoSXX9adFC8vO8prMBjsgnElGVKmVi34+Wft\nVurWDbp2hYgIm08X0SkqunaFypV1HYT163Wev3btjFEwGDI7xjC4Oen2nyoFXbro9BoPPaR9P6NG\nQVRUiqdERelAcq1a0KePTt/077/w2Wd6dKyrMb7kBIwuEjC6sD/GMGR28uTRBmH/fm0kKlSARYt0\nt8DCb7/pGckBAbBsGbz/vk5sFxoKvr6uE91gMLgGE2PIavz8M4SGEpMrD2taTGLsj7U4dUrnL+rX\nD1MhzWDwYMw8BkO62L8fvpgWQ/YFsxnkPYU/5+yiZZuceHu7WjKDwZBRTPA5i2AP/+mlSzpOUKeO\nDh4XK+nFa4cHUObKAVo95TlGwfiSEzC6SMDowv54yCPBcL/cvQvffw9z58JPP+nqaKNH6xnKCaOK\nPDOFt8FgcCzGlZTJ+PVXbQwWLoRy5aB3b+jUyQSRDYasgL1cSabHkAk4dQqWLNEG4dIlXQTu559N\nVTSDwZA+TIzBzUnJf3rhAkybBiEhUKWKHnI6fjwcPw5jxmROo2B8yQkYXSRgdGF/TI/Bg7h2Db75\nRies275dxw0GDYLHHoNcuVwtncFgyCyYGIObExkJ69ZpV9H69f/f3rkHWVFccfj7gUihKA9LlJcB\nCaZMqYkooLLAKgTRQpRoIlZCxTxMpBI1seIDNWUexihWMD6TaDQxVlBTBsxuIAEkirgSWMCVRUDd\nIshDeZSyCAYj7J780X29czf7hLt7L3vPVzU1Mz09Pd2/3Ttnps/06fCGMHlyiFfUtWuua+c4Tj7h\n4xjaMTt2QEkJzJ4NL70UYuBdemmIatqjR65r5zhOvuLjGNoZGzeGQKjFxeFronnzwpwHM2e+yNy5\nYWRyoRsF70tO41qkcS2yj/sYckRtLZSXh26iOXOC0/iii8IsaGPHQpcuIZ//zzuO09Z4V1IbsnNn\neBOYOzcMPuvVCy68MCxFRRwyI5Adx8lP3MdwCFBTAxUVYeTxnDlh8Nno0Wlj4DOfOY6TTdzHkIeY\nhXDVDz8cnMW9esGUKWEWtFtvDRPelJbC1KnNNwref5rGtUjjWqRxLbKPd14cBGbBabxoUZjdbOFC\n6NABxoyBSZPggQegT59c19JxHKdleFdSC6ipCSOMy8rg5ZfDsn8/jBwZjMGYMeGLInlsOsdxcoD7\nGNqA7dth+fLw9VBZGSxdCn37BkfxiBFhfeKJbggcx8kPDmkfg6TxktZJekvSTbmoQ13eew/mz4c7\n7wwDyU44IUyVPGMG7N0L11wD69fDmjXwyCMhaumgQa1vFLz/NI1rkca1SONaZJ829zFI6gg8CIwF\ntgDlkkrMbG1bXH/vXli7FlavTi+VlbBrFwwZAmeeGcJUT5/eNjf+pqioqKC4uDi3lcgTXIs0rkUa\n1yL75ML5PAyoMrMNAJKeBi4GsmYY9u8PTuGqqsxl3TrYtAkGD4ZTTgnL1VeH9YABwXGcb1RXV+e6\nCnmDa5HGtUjjWmSfXBiGvsCmxP5mYHhzTqytDU/2778fwk5v2ZJeNm8O602bwtK7d3AEp5ZRo4JB\nOOkk6NSpVdrlOI7TLsiFYWiWV/ncc+Gjj8KyZ08wBrt2hYiixxwDPXsGR3BqGTcurPv1C0//nTu3\ncivaiA0bNuS6CnmDa5HGtUjjWmSfNv8qSdJZwI/NbHzcnwbUmtndiTy5/yTJcRznEOSQ/FxV0mHA\nG8AY4B1gGXBFWzmfHcdxnMZp864kM9sv6XvAPKAj8JgbBcdxnPwhLwe4OY7jOLkj7z7QzMfBb62F\npP6SXpD0uqTVkq6N6T0lLZD0pqT5kronzpkWtVknaVzuat86SOoo6VVJpXG/ILWQ1F3Ss5LWSloj\naXgBazEt/kYqJc2U1LlQtJD0uKRtkioTaS1uu6Qzon5vSbqvyQubWd4shK6lKmAA0AmoAE7Odb1a\nsb3HA5+P210JvpeTgenAjTH9JuCuuP3ZqEmnqFEV0CHX7ciyJtcDfwJK4n5BagE8AXwjbh8GdCtE\nLWJ71gOd4/4zwNcKRQtgJHA6UJlIa0nbU71Cy4BhcXsuML6x6+bbG8Mng9/MbB+QGvzWLjGzrWZW\nEbf3EAb59QUmEm4MxPUlcfti4Ckz22dhgGAVQbN2gaR+wIXA74DUlxUFp4WkbsBIM3scgl/OzHZR\ngFoAHwD7gCPihytHED5aKQgtzGwxsLNOckvaPlxSb+AoM1sW8/0xcU695JthqG/wW98c1aVNkTSA\n8GSwFDjOzLbFQ9uA4+J2H4ImKdqbPvcCNwC1ibRC1GIgsEPS7yWtlPSopCMpQC3M7H3gl8BGgkGo\nNrMFFKAWCVra9rrpW2hCk3wzDAXpCZfUFfgLcJ2Z7U4es/Du15gu7UIzSROA7Wb2Kum3hQwKRQtC\n19EQ4GEzGwJ8CNyczFAoWkgaBHyf0DXSB+gq6avJPIWiRX00o+0HRL4Zhi1A/8R+fzItXbtDUieC\nUXjSzJ6LydskHR+P9wa2x/S6+vSLae2Bc4CJkv4NPAWcJ+lJClOLzcBmMyuP+88SDMXWAtTiTOAV\nM3vPzPYDs4CzKUwtUrTkN7E5pverk96oJvlmGJYDgyUNkHQ4cDlQkuM6tRqSBDwGrDGzXyUOlRAc\nbMT1c4n0yZIOlzQQGExwKh3ymNktZtbfzAYCk4F/mtkUClOLrcAmSSfFpLHA60ApBaYFsA44S1KX\n+HsZC6yhMLVI0aLfRPx/+iB+2SZgSuKc+sm1170eL/wFhK9zqoBpua5PK7e1iNCfXgG8GpfxQE/g\neeBNYD7QPXHOLVGbdcD5uW5DK+kymvRXSQWpBfA5oBx4jfCU3K2AtbiRYBgrCc7WToWiBeHt+R3g\nY4L/9esH0nbgjKhfFXB/U9f1AW6O4zhOBvnWleQ4juPkGDcMjuM4TgZuGBzHcZwM3DA4juM4Gbhh\ncBzHcTJww+A4juNk4IbBaVNi+N/74vZoSWdnqdx7Yujyu5vO3Wg5GyT1zEadYnm9Jc2LbS3NVrkt\nrENxrq7tHJq0+QxuTmFjZiuAFXH3XGA3sCQLRV8F9LCDH5iTlYE9kjqaWQ1hwOI/slHmAdbDf+NO\ni/E3BueAiaFLkhOI/FDS7XH7RUl3SVoq6Q1JRTG9WFKppE8B3wF+oDAxT5GkL8XJRCokLWrgmvfE\nPKskfTmmlRDms1iZSkvk7xqjlK6S9JqkSTH9iphWKemuBq51fTxeKem6Zrb5XknlwLUxy/nA30kE\nBpQ0NEZNHSjp2DjpyuoYRbXeNxaFCaxWRG0WxLRhkl6JZZWlQmhIulJSiaSFhBGyBnST9DeFCVx+\nHUMjNKiDpD2S7ojXWyKpV30aOe0Tf5pwskky0qMBHc1suKQLgNuBL3yS0extSb8BdpvZDABJq4Bx\nZvaupKPrFi7pUkKoiNOAY4FySYvMbKKk3WZ2ej11+hGw08xOi2V0l9QHuIsQmK4amC/pYjP7a+Ja\nZwBXEmL5dwCWRmNV3USbO5nZ0FhGR+AzZrZO6aBn5wD3AxPNbLOkB4HnzexuSecD36yn3ccCjxDm\naHhb6Rm71sa0GkljgTuBy+Kx04FTzaxaUjEwlDAJ1EbCG8wXJS1pRIcjgCVmdlvsnrsK+Hk9+jrt\nEH9jcLJNMmT2rLheSQib3FT+MuAJSd+i/oeWEcBMC2wHFhFueI0xBngotWNm1fGcFyxE7KwhzBg3\nqk6dioBZZrbXzD6MbRlJ/V1NyTY8k9geTphfI8XJwG+BCWaWiho8gjAhFWY2j/+flAXgLGCRmb2d\naANAd+DZ+AYzgzCDV4r5iXwQgqltMLNaQvydIkLk0hcb0OFjM5sTt1fQ8N/PaYe4YXAOhv1k/g91\nIfPG+d+4rqEZb6dmNhW4jRA6eEUDTmA1sN0YdfNZPeXUveE3lKepNn+Y2L6A0I2UKu9dYC/hCb2x\n+tWlbl1S/AxYaGanAhfFuqT4Tz1lJK/XkIFLpe9LpNfivQsFhRsG52DYBvRSmJy8MzChhefvBo5K\n7UgaZGbLzOx2YAeZMeQBFgOXS+oQu1dG0nRI5QXAdxPX6B7PGS3pmNjdM5nw9pHC4rUuUQj3fCRh\nKsTFhNj3jbU5eQM/j9DHn0qvjvl/IWl0TC8DUr6ScUCPetqwFBilMMsfklJ5jiZE3oQQdbMxhkX/\nSId4vcXN0MEpUNwwOAeMhXm5f0q4wcwnxMlvMHs926XApOg8LQKmpxyhQJmZrapzvdnAKkIo6oXA\nDbFLqW75Se4AeqSc2kCxhfj0NwMvEEKeLzez0mQ5FmaS+0Ns27+AR83stWa02eATv8BHsRsqlZ7q\nApsAPCRpKPATYFxs82XAVoLBTLZ7B/BtYFZsw9Px0HSCkVkJdCTT11FX73LgwVjf9WY2uzk6NFCe\n087xsNuO0wpI+grQ18ymN5HvcKAmOpDPBh6yMJ2n4+QMNwyOk0MkfRr4M+Ht/WNgahzr4Tg5ww2D\n4ziOk4H7GBzHcZwM3DA4juM4GbhhcBzHcTJww+A4juNk4IbBcRzHycANg+M4jpPB/wDUY3ZeZNgB\nEwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7938c88>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Quantity of fresh carbon recquired for two stage crosscurrent operation: 19.8171091445 kg carbon/1000 kg solution\n",
+ "\n",
+ "Quantity of fresh carbon recquired for two stage Counter Current operation: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 12.8 kg carbon/1000 kg solution\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FOX2xz8voRNKKKIiHfHHVa4oSBWICkpHQJqAhmIX\nAVG5oAh6FewoWFCkCEhHDE0RkID0jnIREJEu0kPoJDm/P95NskASFrK7s7s5n+eZJzuzM/N+5+xk\nzrznvMWICIqiKIqSRBanBSiKoiiBhToGRVEU5RLUMSiKoiiXoI5BURRFuQR1DIqiKMolqGNQFEVR\nLkEdg6IoQYExpq8xZoTTOjID6hgcwhhzyhgT51oSjTFnXJ9PGmPa+0lDKVfZjtwHxvKCMeY3lz32\nGmOmGGPu8HG5PrluY0x2Y8xAY8x21/X8ZYwZaYwp6c1yrhdjzBhjzH+d1uEJxphIY8xe920iMlhE\nnnBKU2ZCHYNDiEi4iOQVkbzAbqCJaz2fiEz0sxzj5/KS+AR4AegORADlge+Bxn4q/7qu2xiTNY2v\npgFNgPZAPuBOYC3wgDfKMMaEXet5AhHXC4FT95ziCSKii8ML8BdwP5ATOAsUdG1/FbgIhLvW/wsM\ncX3OD4wFDgG7XPuaNM5fFfuAigUOAh+4tu8BEoE411INKAv8DBwBDgPjgfxu57ob2ACcBKYAk4H/\nun3fBNgIHAeWARXT0HQrEA9USccuaV4jMBAY57ZvKde1ZHGtxwBvAktdWucBhdK6btf2LsAW4Bjw\nI1DC7fyJwLPAH8CfqWitB5wBiqVzPbuAB9zWk6/BTX8X7IvCYuBxlw0/cv0ebwLZgQ9c+xwEvgBy\nus4RCewDXgT+AQ4AUa7vngQuAOdd1xydhsaawBrgBLAaqOH2XQwwGFiFvZe+ByLcvq8OLHf99huB\nupcd+5bres5g77POLnufBP4EnnTtmwf7f5Dg0noSuCmV37wZ8D9XeYuA/7vM1r2BTa5rmQTkcPp/\nPVgWxwXokuIYXJ8XAy1dn39yPYgauNaXAM1dn8cCM1z/RCWBbUCXNM6/Aujg+pyblAdhSdwepq5t\nZbFvuNmAwi49Sc4ou+uB1B0IA1q4HjRvur6/y/VAugf7Nv6Y69qyp6LpaeCvq9glzWsEBnB1x/AH\nUA7rcBcBg9O57uau/W/D1qRfBZa5fZ+IdS4FUnvAAO8Aizz9nS+/Bjf9Y4BcLs1R2BeD51yacgJD\nsA/kAkA4MBMY5DpHpGv/ga7fpyFwGpdjB0Yn/VZp6CuIfch2cJXXDuskI9xsug/4l+s+muamvxjW\neSXdq/Vc64Xcjt0FVHCdOyvQCCjt+r6OS+tdrvW6wN7L9LnbqzxwCnuvhgEvu36/rG62XgnciK2N\nbgGecvp/PVgWDSUFHouBuq6wQUVgqGs9J1AFWOL6ri3QV0ROi8hu4EOgUxrnvADcaowpLCJnRGSV\na/sV1XkR+VNEForIRRE5gn0Q1XV9XR0IE5FhIpIgIjOwb5VJPAl8KSJrxDIW6ziqp6KpEPaNN1U8\nuMarhSIEGC0iO0TkHLZ2UymdY5/GOo5tIpKIfTOuZIwp7rbPYBE5ISLnr/V60iA1HQNF5KxLM8AB\nEfnMpek88ATwokvHKZfOdm7HX8Q+/BNE5Afsw/O2q5SZRGNgm4h8KyKJIjIJ2Ip9Mwdr07EiskVE\nzgD9gTauXE1HYK6I/AggIguwtdTGbseOEZHfXeeOF5G5IvKXa/8l2Beh2unodN/WFpjtulcTsLWo\nXNgaTxJDReSgiBwHZpHy+ytXQR1D4LEY++Z3N/AbsAD7YK4G7HDd5IWxb/S73Y7bg31rS42u2Des\n340xq40xacbwjTFFjTGTjDH7jDGxwDjsQw/gZmD/ZYe4JwhLAr2NMceTFuAWbBjgco6msT2Ja73G\n1HB/UJ/FvmGnRUngEzfdR13b3cvbe+VhyRwh/evxlMvLcF8vgn1TX+em8wesrZI46nIiSZwh/et2\n52asjd3Z7dqemp49pNQsSwKtL/vta2Hf2FM7FmNMQ2PMSmPMUdf+jUi5165Jq4iI6/zuv9e1/P6K\nG+oYAo8V2De8FkCMiPwOlMD+08S49jmCfTMs5XZcCWw1/wpcb82PikgR4F1gmjEmF/Yt7nIGYWO7\nd4hIfuwbetJ98jdXPphLuH3eA7wtIhFuS7iITE6lnIXALcaYyqlp9uAaT2Mfkkm4P4CuRmrXvQcb\n43bXnkdEVl7luCQWAFWNMek5rtPYsFgSqWm+vAz39SPYB9y/3DQWEJF86ZSZ3rkvZz/2Ae9OSS59\nGShx2eeL2FzUHmyYx91+eUXkvdTKN8bkAKYD7wE3iEgEMJeUWsE1aXUls4tz5YvLFWUrV0cdQ4Dh\nqqKvw8aVF7s2L8eGOha79knAhkbeNsaEu5pD9sImiq/AGNPRGFPEtRqL/SdJxP5DJ2LzCkmEYx9g\nJ10PuZfdvlsBJBhjnjfGZDXGNMfmE5IYATxtjKnqaniSxxjT2BhzxZuaiPwBfA5MNMbUdTX1zGmM\naWeM6ePBNW4A6hhjihtj8gN9U7v01OyRxnUPB/oZY/7lsll+Y0zrNI6/AhFZCMwHZhhj7nbZJ68x\n5mljTGfXbhuBdq7vqgCtuIYHlqsmMAL4OOn3NMYUM8Y86OEp/gHKpPP9XKC8Maa9S2Nb4P+A2a7v\nDdDRGFPBGJMbmwyf6npbHw80NcY8aIwJc/2WkZc5SvffI7trOQIkGmMaAu7X8Q9QyBiTltObCjQ2\nxtxvjMmGTTSfw/6vpIa2groG1DEEJouxybnVbuvh2ORzEt2xD/CdwC/At9jkYmo8BGw2xsRhcwbt\nROS8ywm9DSwzxhwzxlQF3sCGsWKxcdnpuB5eInIBaIkNTSUlKWdjcxiIyDpsDPxTbNLyD2wCOlVE\n5AXXvp+5zrcDmwSeebVrdMWwJwO/YlvRzCL9t21xuw736z5ujKkqIt9ja1OTXCG031x2S+1cafEI\n9uE6GdsS5jesLee7vu+PdUbHsQnib9PRe4lmN/pg7bTSpXM+Nkzoic6RwL9c1/zd5V+KyDFsq7Le\n2Af2S9hm1Mfczj0OmyD/G/tgf8F17D7sb9cP24psj+s87g/kZG0iEuc6dgr2XmkPRLt9vxWYCOx0\n3Zs3celvuA2b1xiGdfSNgaYiEp/GtadmSyUNkpr+ef/ExozC/liHRKSia1tB7D9NSWwLhTYicsIn\nAhS/YIxZBXwuIt84rUXxLcaYRdhw0SintSi+xZc1htFAg8u2/QeYLyLlsTHm//iwfMUHGGPqGGNu\ndIUaHgfuwLb5VzIHGpLJBPjMMYjIL9gqszvNgKQ3y2+Ah31VvuIzbiOlA1sv4BER+cdZSYof0XBM\nJsBnoSSwY9IAs9xCScddrQ+SWhEcS1pXFEVRAgPHks+ulgz69qEoihJgpDUYmK/4xxhzo4gcdLUy\nOJTaTsYYdRiKoijXgYhkOA/k7xrDTOzAYLj+fp/Wjp6M55EZlgEDBjiuIVAWtYXaQm2R/uItfOYY\njDETsZ1NbjN2nP3O2IHG6htjtmNHE33HV+WHCrt27XJaQsCgtkhBbZGC2sL7+CyUJCJpTTZTz1dl\nKoqiKBlHez4HOFFRUU5LCBjUFimoLVJQW3gfnzZXvV6MMRKIuhRFUQIZYwziheSzv1slZQidDVBR\nro3M8IIVExNDZGSk0zJCiqByDJA5bnRF8QYZeZESEc4nnCdn1pxeVKQEC0EVSnJVkxxQpCjBx/X+\nv5yLP0eX6C6UKlCKQQ8M8oEyxVd4K5SkyWdFUZI5fPow9cbWI0ES6F+nv9NyFIdQx6AoCgBbj2yl\n+sjqRJaKZGKrieTKlstpSR4RExPjtISQQx1DgLNnzx7y5s2bHBKIjIxk5MiRAIwZM4batWund/gV\nNGrUiHHjxnldpxLc/PzXz9QdU5fX67zOW/e/RRajj4bMTNAlnwOVUqVKcejQIcLCwpK3de7cmaFD\nh2bovCVKlCAuLi553RiToaTi3LlzM6RHCT1GbRhFv4X9mPzIZCJLRTot55rRFkneRx2DlzDGMHv2\nbO6//36npaRKUo0j2Jr8xsfHkzWr3qa+IFES6bewH9N/n86SzksoX6j81Q9SMgVaX/QDiYmJvPTS\nSxQpUoSyZcvy2WefkSVLFhITEwFb21i4cGHy/gMHDqRTp06AHQfGfd/LERG6d+9OgQIFqFChAj//\n/HPyd5GRkbz22mvUqlWL8PBwdu7ceUkoyr2c1MqKjIykf//+1KpVi7x589KsWTOOHDlChw4dyJ8/\nP1WrVmX37t1pXvfSpUupWbMmERERlChRgrFjxyafN0kDXBkSy5IlC59//jnly5enfPnyPPvss7z8\n8suXnLt58+YMGTIEgAMHDtCqVStuuOEGypQpw7Bhw9LUpFjOXDxDm6ltWL53OSu6rghqp6A5Bu+j\njsGLpNU08KuvvmLOnDls3LiRtWvXMm3atEve3C8PD13LW/2qVasoV64cR48e5Y033qBly5acOJEy\njfb48eP5+uuviYuLo2TJkpeU5Uk5kydPZvz48ezfv58///yTGjVq0LVrV44dO0aFChV44403Uj1u\n9+7dNGrUiB49enDkyBE2btzInXfemer1pkZ0dDSrV6/m999/p3379kyePDn5u+PHjzN//nzat29P\nYmIiTZs25a677uLAgQMsXLiQjz/+mJ9++umq15ZZOXjqIPd9cx+5suVifqf5FM5d2GlJSoARUo7B\nGO8s14OI8PDDDxMREZG8JL0VT5kyhV69elGsWDEiIiLo169fuu3Lr6Xt+Q033ECPHj0ICwujTZs2\n3HbbbcyePdtlD0NUVBQVKlQgS5YsV4RkrlaOMYbOnTtTunRp8uXLR8OGDSlfvjz3338/YWFhtG7d\nmg0bNqR67IQJE6hfvz5t27YlLCyMggULJjsGT+jbty8FChQgR44c3HvvvRhj+OWXXwCYNm0aNWvW\n5MYbb2TNmjUcOXKE1157jaxZs1K6dGm6devGpEmTPC4rM7H50Gaqf12dJrc2YezDY8mRNYfTkjKM\n5hi8T0gFb53s+2aMITo6OtUcw99//03x4sWT10uUKOG1cosVK3bJesmSJfn777+T193LvR6KFi2a\n/DlnzpzccMMNl6yfOnUq1eP27dtHmTJlrrtcd93GGNq1a8fEiROpXbs2EyZM4LHHHgNszeTAgQNE\nRKTMEJuQkECdOnWuu+xQZd6OeXSa0YlPGnxC+4ppDX6sKCFWYwhUbrrpJvbs2ZO87v4ZIE+ePJw+\nfTp5/eDBgx6fe//+/Zes7969m5tvvjl5Pb2QTXh4OGfOnPG43GsJcRUvXpw///wz1e88ud7Ly2rf\nvj3Tpk1j9+7drF69mlatWgHWyZYuXZrjx48nLydPnkyuNSmWL9Z8QVR0FDPazgg5p6A5Bu+jjsGL\npBWaadOmDUOHDmX//v0cP36cd95555IHX6VKlZg0aRLx8fGsXbuW6dOne/wQPnToEEOHDuXixYtM\nnTqVrVu30qhRo6tqSip3yZIl7N27l9jYWAYPHpzuNV1LiKtDhw4sWLCAqVOnEh8fz9GjR9m0aVNy\nud999x1nz55lx44dlySi09NauHBhunXrRoMGDciXLx8AVatWJW/evLz33nucPXuWhIQENm/ezNq1\naz3WGsokJCbw4rwXGbp6KEs7L6VWiVpOS1KCAHUMXqRp06bkzZs3eUl6q33iiSd46KGHuPPOO6lS\npQqtWrW65CH73//+lz///JOIiAgGDhxIhw4dLjlvWk7CGEP16tX5448/KFKkCP3792f69OmXhFXS\nczD16tWjbdu2/Pvf/+aee+6hadOmV+yfXpI8vfMXL16cuXPn8uGHH1KoUCHuuusufv31VwB69epF\n9uzZKVq0KJ07d6Zjx44eJd8fffRRfv75Zx599NHkbVmyZGH27Nls3LiRMmXKUKRIEZ588klOnjyZ\n5nVnJlpOacmmfzaxvMtyyhYs67Qcn6A5Bu+jg+g5wK5duyhTpgzx8fFkyaK+WfENxhi6Rnfli8Zf\nkC0sm9NyFD+gg+gpinJVRjQdEfJOQXMM3kcdg0MEWw9kJTjR+0y5HjSUpCghiv6/ZD40lKQoiqL4\nBHUMiqIENZpj8D7qGBRFUZRL0ByDooQo+v+S+dAcg6IoiuIT1DEoihLUaI7B+6hj8ALh4eHJw2Bk\nyZKF3LlzkzdvXvLly8fEiRP9ouFqE/r4GhFh6NChVKxYkfDwcIoXL06bNm3YvHmzT8v11XVfuHCB\ngQMHUr58ecLDwyldujRdu3ZNd2IifxIVFUX//v2dlqGEKOoYvMCpU6eIi4tLngxn9uzZxMXFcfLk\nSdq39+9Ilk7FlHv06MHQoUMZNmwYx48fZ/v27Tz88MPMmTPHL+Vf73XHx8enuv2RRx5h9uzZTJw4\nkZMnT7Jp0yaqVKlyyUx7GSkjISHhms+jpI6OlWRZvdqLJxORgFusrCtJa3sgUapUKVm4cKGcPXtW\ncubMKUePHhURkbfeekuyZs0qcXFxIiLy2muvSc+ePUVE5MSJE9KpUycpUqSIlCxZUt566y1JTExM\n9fyrVq2SypUrS758+aRo0aLSu3dvEREpXry4GGMkPDxcwsPDZeXKlbJjxw657777pFChQlK4cGHp\n0KGDnDhxIvlc69atk0qVKknevHmldevW0qZNG3nttdeSv581a5bceeedUqBAAalZs6b8+uuvqWra\nvn27hIWFyZo1a9K0S3rXOGDAAOnYsWPyvn/99ZcYYyQhIUFEROrWrSv9+/eXWrVqSd68eeXBBx+U\nI0eOpHndIiIjR46UChUqSEREhDz00EOye/fu5PMbY+Szzz6TcuXKSZkyZa7QOn/+fMmVK5fs27cv\nzespWbKkLFiwIHnd/RqS9I8cOVJKlCghderUkTFjxkjNmjWlV69eUqhQIenfv7+cP39eevfuLSVK\nlJCiRYvK008/LWfPnhURkUWLFkmxYsXkww8/lBtuuEFuuukmGT16tIiIfPnll5ItWzbJnj27hIeH\nS7NmzVLVGAz/L4p3GDxYpHTp5N88w89grTH4iJw5c1K1atXk+OfixYspVaoUS5cuTV5PetPp3r07\ncXFx/PXXXyxevJixY8cyevToVM/bo0cPevXqRWxsLDt37qR169YAybObxcbGEhcXR7Vq1QB49dVX\n+fvvv/n999/Zu3cvAwcOBGyopEWLFnTp0oXjx4/Tvn17vv/+++QhFDZs2EDXrl0ZMWIEx44d46mn\nnqJZs2ZcuHDhCk0LFy6kePHiVKlSJU17pHeNngzbMHHiRMaMGcOhQ4e4cOECH3zwQZrXHR0dzeDB\ng5kxYwZHjhyhdu3aV9TcoqOjWbNmDVu2bLmirAULFlCtWrUrJkFyx5PpWJcsWcLWrVuZN28eIsLq\n1aspW7Yshw4dol+/fvTp04cdO3awadMmduzYwf79+3nzzTeTj//nn384efIkBw4cYOTIkTz33HPE\nxsby5JNP0qFDB/r06UNcXBzR0dFXtV8ok5lzDCLQpw+MGweuR4tXCKkZ3Mwb3hkXRgZ4JxxTt25d\nFi9eTPPmzfntt9/o169fskNYu3YtderUISEhgcmTJ7Np0yby5MlDnjx56N27N+PGjaNLly5XnDN7\n9uz88ccfHDlyhMKFCyc7AEkllFK2bFnKlrVDLRcuXJhevXolP3hWrlxJQkIC3bt3B6BFixZUrVo1\n+divvvqKp556invuuQeAxx57jEGDBrFy5corZkc7evQoN954Y5p2uNo1pqbdnaQpRsuVKwfY+S1m\nzpyZ5nUPHz6cvn37cttttwF2mtBBgwaxd+/e5JnhkqYOTY2rXU9qpKZj4MCB5MqVK3n95ptv5rnn\nngMgR44cjBgxgl9//TVZR9++fenQoQODBg0CIFu2bLz++utkyZKFhg0bEh4ezrZt25J/p6vZTQlt\nEhLgmWdg0yZYsgQKFfLeuUPKMXjrge4t6taty4svvsj69eupWLEi9erVo2vXrqxatYpy5coRERHB\nP//8w8WLFylZsmTycSVKlLhiZrYkRo4cyeuvv06FChUoXbo0AwYMoHHjxqnu+88//9CjRw+WLl1K\nXFwciYmJFCxYEIADBw5c8UbsPp3m7t27GTt2LMOGDUvedvHixUumDU2iUKFCqW5P4siRI9d0janh\n/qDOlStXmlOKJmnv0aMHvXv3vmT7/v37k68xvSlPCxcuzB9//OGxtrS4vAz39cOHD3PmzBkqV66c\nvE1ELkmiFypU6JJh2XPnzp3udWdWMmOO4cIF6NQJjhyBBQsgb17vnl9DST6kRo0abNu2jRkzZhAZ\nGUmFChXYs2cPc+fOTb6ZCxcuTLZs2di1a1fycXv27OGWW25J9ZzlypVjwoQJHD58mD59+vDII49w\n9uzZVEMZ/fr1IywsjM2bNxMbG8u4ceOSHzw33XTTFQ9m9ylHS5QowauvvnrJlJmnTp2ibdu2V5Tz\nwAMPsG/fPtatW5eq5qtdY548ea5pilF3UrvuEiVK8NVXX12i/fTp01SvXj3d45KoV68eq1evTtdx\nXc/0pO7rhQsXJleuXGzZsiVZ44kTJzyeYEhHTc28nDkDzZtb5zBnjvedAqhj8Cm5c+emcuXKfPbZ\nZ9StWxeAmjVrMnz48OT1sLAw2rRpw6uvvsqpU6fYvXs3Q4YMoWPHjqmec/z48Rw+fBiA/PnzY4wh\nS5YsFClShCxZslwyz/KpU6fIkycP+fLlY//+/bz//vvJ39WoUYOwsDA+/fRT4uPjk2PuSTzxxBMM\nHz6c1atXIyKcPn2aOXPmpPrGeuutt/Lss8/Svn17Fi9ezIULFzh37hyTJk3i3Xffveo13nXXXdc0\nxag7qV33008/zaBBg5LzB7GxsUydOjXV41PjgQceoH79+rRo0YL169cTHx9PXFwcw4cPT86LZGQ6\nVrAzzz3xxBP07Nkz+ffcv38/P/30k0fHFy1alJ07d3pcXiiTmXIMJ07Agw/CDTfA1KmQM6dvylHH\n4GPq1q1LfHx8cly4bt26nDp16pI4/bBhw8iTJw9lypShdu3adOjQgc6dO6d6vnnz5nHHHXeQN29e\nevXqxaRJk8iRIwe5c+fm1VdfpVatWhQsWJDVq1czYMAA1q9fT/78+WnatCmtWrVKfnhlz56d7777\njpEjRxIREcG3335LkyZNyJ49OwCVK1dmxIgRPP/88xQsWJBbb72VsWPHpnmdQ4cO5fnnn+e5554j\nIiKCcuXKER0dTbNmza56jRmZYtT9uiMiIli9ejUPP/wwffr0oV27duTPn5+KFSsyb968VM+VFtOm\nTaNRo0a0bduWAgUKULFiRdavX0/9+vWBa5+ONbVpUd99913KlStH9erVyZ8/P/Xr12f79u0e6eza\ntStbtmwhIiKCli1bXvV6lODnn38gMhIqV4bRoyGrDxMBjoyVZIzpC3QEEoHfgM4ict7te0lNl479\n4luqVavGs88+y+OPP+60FMUL6P9L6LB7N9SvDx06wOuvQ1rvDEE7VpIxphTwBHC3iFQEwoB2/tah\n2OaUBw8eJD4+nm+++YbNmzfToEEDp2UpiuLG//4HtWvDc8/BgAFpOwVv4kQo6SRwEchtjMkK5AY8\nb56ieI1t27ZRqVIlIiIiGDJkCNOmTaNo0aJOy1KUayKUcwzLl8P998PgwdCjh//KdSqU9CTwIXAW\nmCcinS77XkNJipJBMsv/S0xMTEg2WZ07Fx5/3HZe87Qi761Qkt/7MRhjygI9gVJALDDVGNNBRL51\n3y8qKopSpUoBUKBAASpVquRnpYoSGiS9USc9PENtPWlboOjxxvpPP8GoUZHMmgXnzsUQE5P6/jEx\nMYwZMwYg+XnpDfxeYzDGtAXqi0g313onoLqIPOe2j9YYFCWD6P9LcPLRR/DxxzBvHlSocG3HBm3y\nGdgKVDfG5DK2PV494MoBaxRFUTwgVHIMSeMejRgBy5Zdu1PwJn4PJYnIJmPMWGAttrnqeuArT4/X\nHp+KooQa8fHw5JOwZYsdDM+b4x5dD1cNJRlj7gUGYHMCSY5ERKSMz0SlEUpSlGAhURLpM78PM7fP\nZM6jcyhXsJzTkpQA5exZaNcOzp+H6dMhT57rP5c/k88jscni9YDOLqIoV+H0hdN0nNGRE+dOsKLr\nCgrmKui0JCVAOX4cmjWDEiXsEBeugQccx5McwwkR+UFE/hGRI0mLz5UpQOjET71BMNjiQNwB6o6p\nS/4c+ZnXcZ7PnEIw2MJfBKstDhyAunXtEBfjxgWOUwDPHMMiY8z7xpgaxpi7kxafK1OUIGPTwU3U\nGFmDlhVaMrr5aLKHBdB/uhJQbN8OtWpB+/YwZAhkcaIZUDp4kmOIAa7YSUTu85EmzTEoQcfcP+YS\n9X0Unzb6lDa3t3FajhLArFsHTZrAf/8L3bp599zeyjE40vP5aqhjUIKJT1d/yqBfBvFd2++ofkv1\nqx+gZFp+/NFOsDNiBDz8sPfP77d+DMaYAsaYIcaYda7lQ2NM/owWrHhGsMZPfUGg2SIhMYEXfniB\nL9Z+wbIuy/zqFALNFk4SLLYYMwaioiA62jdOwZt40ippFHZo7NaAAToBowEdBF7JtMSdj6P99PZc\nSLjAsi7LKJAz9fmjFUUE3n4bRo6EmBj4v/9zWtHV8STHsElE7rzaNq+K0lCSEsDsjd1L04lNqVas\nGp82+pRsYdmclqQEKPHxdrjsNWvsNJw33eTb8vw5JMZZY0xtt4LvBc6ks7+ihCzrDqyjxsgadPp3\nJ4Y3Ga5OQUmT06ehZUvYtQsWL/a9U/AmnjiGp4HPjDG7jTG7gU9d2xQ/ECzxU3/gtC2+3/o9Db9t\nyKeNPqV3zd6ODs/itC0CiUC0xeHD8MADEBEBs2ZB3rxOK7o2rppjEJGNwL+NMflc6yd9rkpRAggR\n4aMVHzFk5RB+6PADlW+u7LQkJYD5809o2BBat4a33vLPjGveJs0cgzGmk4iMM8b05tJ+DAY7VtJH\nPhOlOQYlQLiYcJHuP3Rnxb4VzG4/m+L5izstSQlg1q61Q1z07w/PPOP/8v0xVlJu19+8pNLBTVFC\nndhzsbSroqPPAAAgAElEQVSe2ppsYdlY2nkpeXMEWTxA8Ss//ACPPea7Pgr+JM0cg4h86fq4QETe\ncF+Ahf6RpwRi/NQp/GmLXSd2UXNUTf6v8P8R3S464JyC3hcpBIItRo+Gzp2Do4+CJ3iSfB6Wyrah\n3haiKIHCyn0rqTmyJk9XfpqhDYeSNYvfpy1RggQRO7TFm2/alkc1azqtyDukl2OoAdQEegEfYXML\nYENLLbQfgxKKTPnfFJ6f+zyjm4+mcfnGTstRApgLF+Cpp+DXX2H27MBojuqPHEN2rBMIc/1N4iTw\nSEYLVpRAQkQYvHQwX677kvmd5nPnjT5771FCgBMnoFUrO6nO4sUQHu60Iu+SXo5hsYgMBKpflmP4\nSET+8J/EzE0gxE8DBV/Z4kLCBbrM7MJ3v3/Hyq4rg8Ip6H2Rgr9tsXu3HTL79tthxozQcwrg2VhJ\nY1LpyCMicr8P9CiKXzl29hgtJ7ckIlcEi6MWkyd7BuZVVEKetWuheXN45RXo0cNpNb7Dk7GSqrit\n5gRaAfEi8rLPRGmOQfEDO47toPGExjQr34x3679LFhNgs6UoAUV0tJ0/IZCbozo6H4MxZo2I3JPR\nwtM5vzoGxaf8svsXWk9tzZv3vcmTlZ90Wo4S4HzyCbz7rnUO9/jsyZdx/DkfQ0G3pbAxpgGQL6MF\nK56hseQUvGWL8b+Op9WUVoxrMS5onYLeFyn40hYJCTZk9OWXsHx5YDsFb+JJjmE9KT2f44FdQFdf\nCVIUXyEiDIwZyLhfxxETFcO/ivzLaUlKAHP6NDz6KMTFWadQIBNNuaFTeyqZgnPx5+gS3YW/TvzF\n922/p2h4UaclKQHMwYN2Xubbb7c5hezZnVbkGT7vx2CMaUU6YySJyHcZLVxR/MHh04dpMbkFxfIV\n4+fHfiZXtlxOS1ICmP/9Dxo3hi5d7GB4wTg6akZJL8fQ9CqL4gc0lpzC9dhi65GtVB9ZnchSkUxs\nNTFknILeFyl40xbz58N999lhLl5/PXM6BUinxiAiUX7UoShe5+e/fqb99Pa8V+89Hq/0uNNylADn\n88/tmEdTp0Lduk6rcRZP+jEUAAYAdVybYoA3RSTWZ6I0x6BkkFEbRtFvYT8mPTKJyFKRTstRApj4\neHjxRVtbmD0bypZ1WtH144+xkpIYBfwGtMYOpNcJGA20zGjhiuJtEiWRfgv7Mf336SzpvITyhco7\nLUkJYGJjoW1bSEyEFSsyV8uj9PCkq2dZERkgIjtF5E/X+ElB7FODC40lp3A1W5y5eIY2U9uwfO9y\nVnRdEdJOQe+LFK7XFjt32mGyy5aFuXPVKbjjiWM4a4ypnbRijLkXOOM7SYpy7Rw8dZD7vrmPXNly\nMb/TfArnLuy0JCWAWbrUDoT3zDPw2WeQVafcuARPcgyVgLFAftem48DjIrLJZ6I0x6BcA5sPbabJ\nhCZ0vasrr9V5jVQGfVSUZMaOhZdesn8bNHBajXfx+1hJxpj82FFVT2a0UA/KUsegeMS8HfPoNKMT\nnzT4hPYV2zstRwlgEhPh1Vdh8mSbZP5XCHZ89+dYST2NMfmwE/QMMcasN8Y8lNGCFc/QWHIKl9vi\nizVfEBUdxYy2MzKdU9D7IgVPbHH6NLRubUNIq1aFplPwJp7kGLq4agkPAgWBx4B3fKpKUdIhITGB\nF+e9yNDVQ1naeSm1StRyWpISwOzfD3Xq2Al1FiyAIkWcVhT4eJJj+E1EKhpjhgIxIvKdMWaDiNx1\n3YXavhFfA7djh93oIiIr3b7XUJKSKqcunKLDdx04deEU01pPIyJXhNOSlABmzRpo0QKefx769An9\nnsx+CyUB64wxPwGNgB9dYaXEDJb7CTBXRCoA/wZ+z+D5lEzA/pP7qTO6DkVyF+HHDj+qU1DS5dtv\noVEjGDYM/vOf0HcK3sQTx9AV6AtUEZEzQDag8/UW6Epi1xaRUQAiEu/LXtTBjsaSLRv+3kClvpVo\nd0c7RjQdQbawbE5LchS9L1K43BYJCbZ20L8//PyzrTEo18ZVW++KSAKwzm39KHA0A2WWBg4bY0YD\nd7rO3cPldBTlCmZtm0XXmV15/p7neaXWK07LUQKYEyfsHArnzsHq1VBYu7NcF36fj8E1h/QKoKaI\nrDHGfAycFJHX3fbRHIOCiPDJqk94f/n7zGg7g6rFqjotSQlgtm+HZs2gfn346CPIlgkrlf4cK8nb\n7AP2icga1/o04D+X7xQVFUWpUqUAKFCgAJUqVSIyMhJIqTrqeuiuJyQm8N3Z71iyZwkflv+QM3+c\ngWIEjD5dD6z11avhgw8iefttuPXWGJYtCyx9vlqPiYlhzJgxAMnPS2/gSaukgqlsjhORi9ddqDFL\ngG4ist0YMxDIJSJ93L7XGoOLmJiY5Bsis3Dy/EnaTmsLwORHJpMvh51iPDPaIi3UFhYRePbZGKKj\nI5kyBe6912lFzuLPGsN6oAR2KAyACOCgMeYg8ISIrEvzyLTpDnxrjMkO/EkGktlKaLH7xG6aTGxC\n7RK1GdpwKFmz6CA2SuqcOwdPPAErV9qlRAmnFYUOntQYRgDTRGSea/1B4BHs0NufiIjXA79aY8ic\nrNm/hocnP8zLNV+mR7UeOuaRkiYHDtjWRqVLw6hRkDu304oCA3/2Y6iR5BQAROQn17YVQJBMka0E\nOtO3TKfxhMYMbzycntV7qlNQ0mTVKqhaFZo3h4kT1Sn4Ak8cw9/GmD7GmJLGmFLGmFeAf4wxYWS8\no5tyFZISTaGKiPDesvfoOa8n8zrOo+ltaU8nHuq2uBYyqy3GjIGmTeGLL6BfP9tpLbPawpd4EsB9\nFDu15/eu9WVAeyAMaOMjXUom4GLCRZ6Z8wzr/17Pyq4rKZavmNOSlADlwgXo1cuOdRQTo4Pg+RpP\ncgylReSvy7bd49bc1PuiNMcQ8hw/e5xHpj5Cnmx5mNBqAuHZw52WpAQof/9tR0YtVMjOoZA//9WP\nyaz4M8cw3Rhzi1vBdbGJZ0W5LnYe30nNUTW5s+idzGg7Q52CkibLl8M998BDD8GMGeoU/IUnjuEp\n4HtjzI3GmEbAUKChb2UpSYRa/HT53uXUGlWLF6q+wEcPfURYljCPjw01W2SEULeFiM0jtGgBX31l\nxz3KksbTKtRt4QSejJW0xhjzAjAfOAvUF5FDPlemhBwTf5tIjx97MLbFWBqUC7E5FRWvce4cPPus\nHTJ72TIoV85pRZmPNHMMxphZl22qAPwNnMBO8dnMZ6I0xxBSiAhvLXmLkRtGMqv9LCoWrei0JCVA\n2bMHWrWCMmVg5Eg7uY7iOf7o+fxBUllu28S1rk9txSPOx5/niVlPsPXIVlZ2W8mN4Tc6LUkJUBYt\nsiOj9u5tF+3K4hzp5Rj6AXcDB0UkxrUsTvrrJ32ZnmCOnx49c5T64+pz5uIZYqJiMuwUgtkW3iaU\nbCFiR0Nt3x7Gj4eXXro2pxBKtggU0nMMUdiw0UBjzAZjzHBjTHNjTB7/SFOCme1Ht1N9ZHVqFq/J\nlNZTyJ1Nu6cqV3L6NHToYB3CqlXwwANOK1LAw/kYXL2cq2FbI90PnAPmich7PhGlOYagZvGuxbSZ\n1oa373+bbnd3c1qOEqBs3WrzCVWrwuefQ65cTisKfvzSj8EYE2aM6SUiCSKyXET6i0gtoB2wP6OF\nK6HHNxu/oc20NkxoOUGdgpImU6ZA7dq2N/OoUeoUAo10HYNrWs9HU9l+WES+9ZkqJZlgiZ8mSiKv\n/fwaby55k5jHY3igjPdjAsFiC38QrLa4cAF69IC+fWHePOjWLeNJ5mC1RSDjyVhJS40xnwKTgdO4\nWiWJyHqfKlOChrMXz9I5ujN7T+5lZdeVFMlTxGlJSgCybx+0aQNFisDatRAR4bQiJS08GSsphlSa\np4rIfT7SpDmGIOLQ6UM0n9ScUgVKMbr5aHJmzem0JCUAmT8fHnsMevaEl19OuxezkjG8lWPwKPns\nb9QxBAdbDm+hyYQmdPp3JwZGDtQ5FJQrSEyEt9+2w1t8+y3c57PXSQX8OIieMWaAMeZ1t7+vG2Ne\nz2jBimcEavx0/p/ziRwTyRuRb/DGfW/4xSkEqi2cIBhscfQoNGliawtr1/rOKQSDLYINTyp0p13L\nKezEPI2AUj7UpAQ4I9aNoNOMTkxrM41Od3ZyWo4SgKxZA5Urw+23w8KFcPPNTitSroVrDiUZY3IA\nP4lIXd9I0lBSoJIoifSZ34fobdHMeXQOtxa61WlJSoAhAsOHw4AB8OWXdnRUxX/4Y6yktMgD6FRb\nmYzTF07TcUZHjp89zspuKymYq6DTkpQAIzYWnngCtm+3o6Lequ8NQYsnOYbf3Jb/AduAT3wvTYHA\niJ8eiDtA3TF1yZ8jPz91+skxpxAItggUAs0Wa9fC3XfbpqgrV/rXKQSaLUIBT2oMSbOzCxAPHBKR\ni76TpAQSmw5uotmkZjx595P0q91PWx4plyACw4bBW2/BZ5/ZKTiV4MfTsZIqAbWxzuEXEdnkU1Ga\nYwgI5v4xl6jvoxjWcBht72jrtBwlwDh+HLp2tXMoTJ4MZcs6rUjxZ3PVHsB4oAhQFBjvmtFNCWE+\nXf0pXWd2JbpdtDoF5QpWrbKhoxIlbD5BnUJo4Ulz1W5ANRF5XUT6A9WBJ3wrS0nC3/HThMQEXvjh\nBT5f8znLuyynRvEafi0/PTSWnIJTthCBDz+EZs1gyBD4+GPIkcMRKcnofeF9PG2VlJjGZyWEiDsf\nR/vp7TmfcJ7lXZdTIGcBpyUpAcTRoxAVBYcP2xpDqVJOK1J8hSdjJb2InbTnO+wAeg8DY0RkiM9E\naY7B7+yN3UvTiU2pWqwqnzX6jGxh2ZyWpAQQy5bZaTdbt4ZBgyB7dqcVKanh17GSjDGVgXtJST5v\nyGjBVylPHYMfWXdgHc0nNadn9Z70rtFbWx4pySQkwDvv2JZHX39th7hQAhefJ5+NMQWTFuAvbAL6\nW2C3a5viB3wdP/1+6/c0+LYBwxoO46WaLwW0U9BYcgr+sMXevXaqzQULbD+FQHUKel94n/RyDOtJ\nZbhtFwKU8b4cxV+ICB+t+IghK4fwQ4cfqHJzFaclKQHEd9/BM8/YYbJfeQXCwpxWpPgTHXY7E3Ix\n4SLdf+jOin0rmN1+NsXzF3dakhIgnDljp9tcsAAmTIBq1ZxWpFwLfh0ryRjTHKiDrSksFpFZGS1Y\ncYbYc7G0ntqarFmysrTzUvLmyOu0JCVA2LQJ2rWDKlVgwwbIl89pRYpTeNLB7R3gBeB/wO/AC8aY\nwb4Wpli8GT/ddWIXNUfV5LZCtzGz/cygcwoaS07Bm7YQgU8+gXr14NVXYdy44HIKel94H09qDI2B\nSiKSAGCMGQNsBPr6UJfiZVbuW0nLyS3pe29fulfr7rQcJUA4dMj2TTh61A5+pz2YFfCsH8OvwH0i\nctS1XghYJCL/9pkozTF4lSn/m8Lzc59ndPPRNC7f2Gk5SoAwbx507mwdwxtvQDbtuhL0+DPHMBhY\nb4xZhO3gVhf4T0YLNsaEAWuBfSLS9Gr7K9eOiDB46WCGrx3O/E7zufPGO52WpAQA585Bv34wdSqM\nHw/33++0IiXQuGqOQUQmAjWAGcB0oLqITPJC2T2ALaTdJFbh+uOnFxIu0GVmF6b/Pp2V3VaGhFPQ\nWHIK12uLjRttcnnPHvs5FJyC3hfex5PkcwvgjIhEi8hM4Jwx5uGMFGqMuQU7d/TX2FqI4kWOnT3G\ng+Me5PjZ4yyJWsLNeXXC3cxOQgK8+y7Urw99+tjaQqFCTqtSAhVPcgybROTOy7ZtFJFK112oMVOB\nQUA+4KXLQ0maY7h+dhzbQeMJjWlavinv1nuXsCzaMymzs2sXPPYYGANjx0LJkk4rUnyF3+ZjIPU3\n+ut+2hhjmmBngduQxrmV6+SX3b9w76h7ebH6i3zw4AfqFDI5IvDNN3DPPdC0Kfz8szoFxTM8ST6v\nM8Z8BHyGfZA/B6zLQJk1gWbGmEZATiCfMWasiDzmvlNUVBSlXOP6FihQgEqVKhEZGQmkxBQzw7p7\n/DS9/ef/OZ8Rx0YwvuV4su/NTkxMTEDo9+b65TZxWo+T6xs3bqRnz55pfh8bC+PGRbJtGwweHEO5\nchAWFjj6vbn+8ccfZ+rnw5gxYwCSn5deQUTSXYBw4F1sC6K12FZKea52nCcLtoXTrFS2i2JZtGhR\nut8nJibK6z+/LqU+LiWb/9nsH1EOcTVbZCbSs8UPP4jcfLNI794iZ8/6T5NT6H2RguvZmeFns6Nj\nJRlj6gK9RaTZZdvFSV3Bwrn4c3SJ7sLO4zuJbhdN0fCiTktSHOTMGXj5ZZg9G8aMgfvuc1qR4m/8\nmWPwGSKy+HKnoHjG4dOHqTe2HvGJ8Sx6fJE6hUzO8uVQqRLExtoxj9QpKBnBUcegXB33+HoSW49s\npfrI6tQtWZdJj0wiV7Zc/hfmAKnZIrOSZIuzZ20toVUrO6HO+PFQIJPNyKr3hfdJb6Ked11/2/hP\njnI1fv7rZ+qOqUv/Ov15+4G3yWLUt2dWVq2Cu++G3bvh11+hZUunFSmhQpo5BmPMZqAisF5E7vKr\nKM0xpMqoDaPou7Avkx+ZTGSpSKflKA5x/rwd22jUKBg6FNroq5viwh9jJf0AHAfCjTFxl30nIhJE\nA/MGN4mSSL+F/Zj++3SWRC3htsK3OS1JcYj16+Hxx6FcOZtLKKqpJcUHpBmHEJGXRaQAMFdE8l62\nqFPwEz8u+JE2U9uwbO8yVnRdkamdQmaOJV+4AAMGQMOG8J//wAsvxKhTcJGZ7wtf4ckges2MMUWN\nMU1cyw3+EKbAwVMH6TWvF7my5WJBpwUUzl3YaUmKA2zaZKfYXLfOzqzWoYMd3kJRfIUnYyW1Ad4H\nFmN7PtcGXhaRqT4TpTkGNh/aTJMJTehyVxf61+mP0SdBpuPCBTvw3bBh8N57NoSkt4GSHv6cj+E1\n4B4ROeQquAiwEPCZY8jszNsxj04zOvFxg495tOKjTstRHGDNGujaFUqUsDWF4sWdVqRkJjwdRO+w\n2/pRdPA7n/HFmi+Iio5iRtsZPFrxUY2fupEZbJHUe7lpU5tLmDUrdaeQGWzhKWoL7+NJjeFHYJ4x\nZgLWIbTFtlhSvEhCYgIvz3+ZuX/MZWnnpZQtqJPvZjZiYqBbN6haFX77DYoUcVqRklnxaKwkY0wr\noJZr9RcRmeFTUZksx3Dqwik6fNeBuPNxTG8znYhcEU5LUvxIbCy88grMnQuff25rC4pyPfgzx4CI\nTMdO66l4mf0n99N0YlPuuvEupraeSvaw7E5LUvzIrFnw7LPQuDFs3gz58zutSFF0rCRH2fD3BqqP\nrE7b29vydbOvU3UKGj9NIZRscfgwPPoo9OplZ1UbPvzanEIo2SKjqC28jzoGh5i1bRYPjn+QIQ8N\noc+9fbQ5aiZBBMaNg4oVoVgxO8aRjoSqBBrXNB+DMaYgcIuI/Oo7SaGdYxARPln1Ce8vf58ZbWdQ\ntVhVpyUpfmL7dnjmGTh+HL780k65qSjexG/zMRhjFhtj8rmcwjrga2PMkIwWnBmJT4zn+bnP8/X6\nr1neZbk6hUzC+fPw3/9CzZrQpAmsXq1OQQlsPAkl5ReRk0BLYKyIVAXq+VZW6HHy/EmaTmzKn8f/\nZFmXZZQs4Nms7Bo/TSEYbbFkiZ1AZ80aOwBer16Q1aMmH+kTjLbwFWoL7+OJYwgzxtwEtAHmuLaF\nZpzHR+w+sZtao2pRukBpZj86m/w5telJqHP0qO253KEDDBoE0dG2F7OiBAOejJXUGugPLBORZ4wx\nZYH3RKSVz0SFUI5hzf41PDz5YV6u+TI9qvXQJHOIk5RcfuUVaNfOhpDy5nValZJZ8Gc/hr9F5N9J\nKyLyp+YYPGP6luk8PedpRjYbSbPbdGrrUCcpuXziBMyeDVWqOK1IUa4PT0JJw1LZNtTbQkIJEeG9\nZe/Rc15P5nWclyGnoPHTFALVFmfOwOuv2+Ry06Z2yk1fO4VAtYUTqC28T5o1BmNMDaAmUMQY8yIp\nA+flBcL8oC0ouZhwkWfmPMO6v9exousKbsl3i9OSFB8hAjNnQs+edr6EjRvhFv25lRAgvTmf6wL3\nAU8Bw92+igNmicgfPhMVpDmG42eP88jUR8iTLQ8TWk0gPHu405IUH7FjB/ToAX/9ZedLeOABpxUp\nivdyDJ4kn0uKyO6MFnQtBKNj2Hl8J40nNKZB2QZ88OAHhGXRSlUocuYMvPOOHeyuTx/rHLLr8FZK\ngODzDm7GmE9cHz81xsy6bJmZ0YJDieV7l1NrVC26V+3OkAZDvOoUNH6agpO2ELFNTm+/3SaZN260\n8yY45RT0vkhBbeF90muVNNb190N/CAlWJv42kR4/9mBsi7E0KNfAaTmKD0gKG+3cCV9/rWEjJfS5\nprGS/EUwhJJEhLeWvMXIDSOZ1X4WFYtWdFqS4mVOnYLBg+24Rho2UoIBv/VjMMbcCwwASrntLyJS\nJqOFByvn48/zxKwn2HpkKyu7reTG8BudlqR4kcREGD8e+vWzI59qayMls+FJP4aRwEfAvcA9riXT\njv529MxR6o+rz5mLZ4iJivG5U9D4aQr+sMWKFVCjBnz2GUybZnsxB6JT0PsiBbWF9/HEMZwQkR9E\n5B8ROZK0+FxZALL96Haqj6xOzeI1mdJ6Crmz5XZakuIl9u2Djh2hdWt4/nnrIKpXd1qVojiDJ81V\n38F2aPsOOJ+0XUTW+0xUAOYYFu9aTJtpbXj7/rfpdnc3p+UoXuLMGfjgA/jkEzucxX/+A+Ha/UQJ\nUvw5VlJ17Giql3fyzzTzTn2z8RteWfAKE1pO4IEy2iQlFBCBKVPsYHfVqsG6dVCqlNOqFCUwuGoo\nSUQiReS+yxd/iHOaREnktZ9f480lbxLzeIwjTkHjpyl4yxYrV0Lt2raj2rhx1kEEm1PQ+yIFtYX3\n8aRV0gBsjcHgNg+DiLzpQ12Oc/biWTpHd2bvyb2s7LqSInmKOC1JySB//gl9+8Ly5XY47McegzDt\noK4oV+BJjuElUhxCLqAJsEVEuvhMlMM5hkOnD9F8UnNKFSjF6OajyZk1p2NalIxz9Kh1BOPH2xnU\nevWC3NpuQAlB/JZjEJEPLiv4feCnjBYcqGw5vIUmE5rQ6d+dGBg5UCfWCWLOnYOhQ+H996FNG9iy\nBW64wWlVihL4eNJc9XLyAMWut0BjTHFjzCJjzP+MMZuNMS9c77m8zfw/5xM5JpI3It/gjfveCAin\noPHTFDy1RVIHtdtus81Oly61/RJCySnofZGC2sL7eJJj+M1tNQtwA5CR/MJFoJeIbDTGhAPrjDHz\nReT3DJwzw4xYN4L+i/ozrc006pSs46QUJQP8/LMd3C5bNuscatd2WpGiBB+e5BhKua3GA/+IyEWv\nCTDme2CYiCx02+a3HEOiJNJnfh+it0Uz59E53FroVr+Uq3iXNWvsEBZ//QWDBtmOagFQ4VMUv+LP\nHMOujBaSFi6ncxewyldlpMfpC6fpOKMjx88eZ2W3lRTMVdAJGUoG2LIF+ve302n27w9dutjagqIo\n148nHdx8giuMNA3oISKnLv8+KiqKUq7G5QUKFKBSpUpERkYCKTHFjKwfOXOEd/a9wx033MGzhZ/l\n11W/evX83lp3j58Ggh4n15O2xcTEcPAg/PhjJHPnQqtWMYwcCQ89FFh6fbm+ceNGevbsGTB6nFz/\n+OOPvf58CJb1mJgYxowZA5D8vPQGjgy7bYzJBswGfhCRj1P53qehpE0HN9FsUjOevPtJ+tXuFxBJ\n5rSIiYlJviEyOzExMfzf/0Xy9tswYQI89xz07g358zutzP/ofZGC2iIFv03t6W2MfQp/AxwVkV5p\n7OMzxzD3j7lEfR/FsIbDaHtHW5+UoXif48dts9Mvv7Qd0/r2Da1WRoriDXw+tacPqQV0BO4zxmxw\nLX6Z+uzT1Z/SdWZXottFq1MIEmJj4c03oXx5OHQINmyAIUPUKSiKL/G7YxCRpSKSRUQqichdruVH\nX5aZkJjACz+8wOdrPmd5l+XUKF7Dl8V5Fff4emYiySGUK2en1Fy+HDp2jKFECaeVBQaZ9b5IDbWF\n93Es+ewv4s7H0X56e84nnGd51+UUyFnAaUlKOsTG2t7KQ4dCo0bWIdzqakG8f7+z2hQlsxDScz7v\njd1L04lNqVqsKp81+oxsYdqOMVC53CG89lqKQ1AUxTOCOcfgF9YdWEeNkTXo+O+OfNnkS3UKAUps\nLLz1lg0Z/fEHLFsG33yjTkFRnCQkHcP3W7+nwbcNGNZwGC/VfCmgm6NejVCNnx4+bGsFZcvCtm3W\nIYwda5PMaRGqtrge1BYpqC28T0jlGESEj1Z8xJCVQ/ihww9UufnySecUp9m7106lOW6cHfF01Srr\nHBRFCRxCJsdwMeEi3X/ozop9K5jdfjbF8xf3kTrleti+Hd59F2bMgK5d7ZwIN9/stCpFCS38Oedz\nwBN7LpbWU1uTNUtWlnZeSt4ceZ2WpLjYsAEGD4ZFi+D5520eoVAhp1UpipIeQZ9j2HViFzVH1eS2\nQrcxs/3MkHMKwRg/FYGYGNu6qHFjqFbN9kUYMCBjTiEYbeEr1BYpqC28T1DXGFbuW0nLyS3pe29f\nulfr7rScTM/FizBtms0hnDoFL74I330HOXVmVEUJKoI2xzDlf1N4fu7zjG4+msblG/tJmZIaJ0/C\n11/Dxx9D6dJ2YLsmTSBL0NdHFSW4yLQ5BhFh8NLBDF87nPmd5nPnjXc6LSnTsncvfPIJjB4NDz5o\nawdVtCGYogQ9QfVOdyHhAl1mdmH679NZ2W1lpnAKgRg/XbcOOnSASpXs/Mrr18PEib53CoFoC6dQ\nW6SgtvA+QVNjOHb2GC0nt6RAzgIsiVpCnux5nJaUqbhwweYPPv3UjlnUvTt8/nnmnAtBUUKdoMgx\n7Di2g8YTGtO0fFPerfcuYVnCHFSXuThwAL76yi4VKliH0LQphOlPoCgBR6YZK+mX3b9w76h7ebH6\nizICaVAAAA01SURBVHzw4AfqFPyAiB2ion17uP12Ow/CggWwcCE8/LA6BUUJdQLaMYz/dTytprRi\nbIuxPFXlKaflOII/46dnzthEcuXKEBUF1avDX3/ZkNG//uU3GWmiseQU1BYpqC28T8DmGAYsGsDY\nX8ey6PFF3H7D7U7LCWl+/dWGiiZOtM7g7bfhoYe0uamiZFYCNsdQbUQ1ottFUzS8qNNyQpLTp2Hy\nZOsQ9u+34xd16YLOkKYoQYy3cgwB6xjOXDhDrmy5nJYScmzYYJ3B5Mlw773w5JPQoAFkDdi6o6Io\nnhLyyWd1ChZvxE+PHbN5gnvuscnjm2+24aOZM20P5WBxChpLTkFtkYLawvsEySNBuVYuXoQff7Sz\noc2fDw0bwptv2h7K2qpIUZT0CNhQUiDqCgY2bbLO4Ntv7XSZjz9uJ8QpUMBpZYqi+JpMO1aSciX7\n98OUKdYhHDsGjz0Gv/yS/jSZiqIoaRGwOQbFklb89MgRGD4cIiOhYkWbM/joI9i1C956KzSdgsaS\nU1BbpKC28D5aYwgiTp6E77+3/Q2WL7d5g549basinfNAURRvoTmGACcuDubOtaGiBQtsDaFdOzte\nUXi40+oURQkkQr4fQyDq8heHD9umpDNmwJIltr9Bq1bQsiVERDitTlGUQCXk+zFkNvbssZPeREba\n1kTz5tk5DyZMiGHuXNszObM7BY0lp6C2SEFt4X00x+AQiYmwZo0NE82ZY5PGTZvaaTHr1YNcrv59\nes8riuJvNJTkR44ftzWBuXNt57MbboBGjexy773B0wNZUZTARHMMQUBCAmzcaHsez5ljO5/VrZvi\nDEqWdFqhoiihhOYYAhAR2LbNjkvUqpWtEXTqZGdBe/VVO+HNrFnwzDOeOwWNn6agtkhBbZGC2sL7\naPAiA4jYpPHixXZ2s4UL7RwGDzwALVrAsGF2wDpFUZRgQkNJ10BCgu1hvGwZLF1ql/h4qF3bOoMH\nHrAtikyGK3KKoijXjuYY/MChQ7B2rW09tGwZrFoFxYrZRHGtWvZvmTLqCBRFCQyCOsdgjGlgjNlq\njPnDGNPHCQ2Xc/Qo/PQTDBpkO5KVKAG33WbHHzp7Frp3h507YcsWO9HN449D2bK+dwoaP01BbZGC\n2iIFtYX38XuOwRgTBnwK1AP2A2uMMTNF5Hd/lH/2LPz+O2zenLL89hvExsLdd0OVKnaY6vfe88+D\n/2ps3LiRyMhIZ0UECGqLFNQWKagtvI8TyeeqwA4R2QVgjJkENAe85hji421SeMeOS5etW2HvXrj1\nVrjjDrs8/bT9W6qUTRwHGidOnHBaQsCgtkhBbZGC2sL7OOEYigF73db3AdU8OTAx0b7ZHztmh53e\nvz9l2bfP/t271y433WQTwUlLnTrWIZQvD9my+eS6FEVRQgInHINHWeX77oNz5+xy6pR1BrGxdkTR\nQoWgYEGbCE5aHnzQ/r3lFvv2nyOHj6/CT+zatctpCQGD2iIFtUUKagvv4/dWScaY6sBAEWngWu8L\nJIrIu277ON8kSVEUJQgJyuaqxpiswDbgAeAAsBpo76/ks6IoipI+fg8liUi8MeZ5YB4QBoxUp6Ao\nihI4BGQHN0VRFMU5Aq6BZiB2fvMVxpjixphFxpj/GWM2G2NecG0vaIyZb4zZboz5yRhTwO2Yvi7b\nbDXGPOicet9gjAkzxmwwxsxyrWdKWxhjChhjphljfjfGbDHGVMvEtujr+h/5zRgzwRiTI7PYwhgz\nyhjzjzHmN7dt13ztxpjKLvv9YYz55KoFi0jALNjQ0g6gFJAN2AhUcFqXD6/3RqCS63M4NvdSAXgP\neMW1vQ/wjuvzv1w2yeay0Q4gi9PX4WWbvAh8C8x0rWdKWwDfAF1cn7MC+TOjLVzXsxPI4VqfDDye\nWWwB1AbuAn5z23Yt154UFVoNVHV9ngs0SK/cQKsxJHd+E5GLQFLnt5BERA6KyEbX51PYTn7FgGbY\nBwOuvw+7PjcHJorIRbEdBHdgbRYSGGNuARoBXwNJLSsynS2MMfmB2iIyCmxeTkRiyYS2AE4CF4Hc\nroYrubGNVjKFLUTkF+D4ZZuv5dqrGWNuAvKK/H975x9jR1XF8c+3TWuQCi2mIIVGGgTjH2AACxQW\nWrG2NilVEKVGSTCKhpiIGjFIMI2KWkoEJdRfxKiQ+INAwa5GaanQNKWWZQvdKlZDlGKR/oi6ca1o\nZfv1j3uHzjzf21/d9i0755Ns3syZO/fec/bNnLn3vjnHj+dyd5fOacpYcwzNXn47qU19OaJIOoX0\nZLAZOMH27nxoN3BC3p5BsknBeLPP7cD1wIGSrI62mAXslfQ9SVsk3SXpaGpoC9t/A74KPEdyCL22\n11JDW5QYru6N8ucZxCZjzTHUciVc0hTgfuA6233lY05jv4HsMi5sJmkxsMf2kxwcLVSoiy1IU0dn\nA9+wfTawD7ihXKAutpB0KvAJ0tTIDGCKpA+Uy9TFFs0Ygu4jYqw5hueBmaX9mVQ93bhD0iSSU7jH\n9oNZvFvS6/LxE4E9Wd5on5OzbDxwAbBE0p+AHwGXSLqHetpiJ7DTdlfev4/kKHbV0BZvAR6z/Vfb\nLwGrgDnU0xYFw7kmdmb5yQ3yAW0y1hzDE8Bpkk6RNBm4Eljd5j4dNiQJ+C7wtO2vlQ6tJi2wkT8f\nLMmXSposaRZwGmlR6RWP7Rttz7Q9C1gK/Mr2VdTTFruAP0s6PYvmA78FOqmZLYDtwPmSjsrXy3zg\naeppi4JhXRP5+/SP/Ms2AVeVzmlOu1fdm6zCLyL9OucZ4LPt7s9h1rWDNJ/+FPBk/nsHcBzwMPAH\nYA0wtXTOjdk224GF7dbhMNllLgd/lVRLWwBvBrqAraSn5GNrbIvPkBzjNtJi66S62II0ev4LsJ+0\n/vrBkegOnJPt9wxwx2DtxgtuQRAEQYWxNpUUBEEQtJlwDEEQBEGFcAxBEARBhXAMQRAEQYVwDEEQ\nBEGFcAxBEARBhXAMwRElh//9et6eK2nOKNV7aw5dfsvgpQes51lJx41Gn3J9J0p6KOvaOVr1DrMP\n89rVdvDK5IhncAvqje1uoDvvvhXoAzaNQtXXANN86C/mjMqLPZIm2u4nvbD4y9Goc4T9iGs8GDYx\nYghGTA5dUk4g8mlJy/L2o5KWS9os6feSOrJ8nqROSa8HPgp8UikxT4ek9+RkIk9JWt+izVtzmR5J\n782y1aR8FlsKWan8lByltEfSVkmXZfn7smybpOUt2vpUPr5N0nVD1Pl2SV3Ax3ORhcAvKAUGlDQ7\nR02dJWl6TrrymxxFtemIRSmBVXe2zdosO1fSY7mujUUIDUlXS1otaR3pDVkDx0r6mVICl2/m0Agt\n7SDpn5Juzu1tknR8MxsF45N4mghGk3KkRwMTbZ8naRGwDHj7ywXtHZK+BfTZvg1AUg+wwPYLko5p\nrFzSu0mhIs4EpgNdktbbXiKpz/ZZTfr0OeDvts/MdUyVNANYTgpM1wuskfRO2z8ttXUOcDUplv8E\nYHN2Vr2D6DzJ9uxcx0Tgjba362DQswuAO4AltndKuhN42PYtkhYCH2qi93TgO6QcDTt0MGPX77Ks\nX9J84MvAFfnYWcAZtnslzQNmk5JAPUcawVwuadMAdng1sMn2TXl67hrgS03sG4xDYsQQjDblkNmr\n8ucWUtjkwcpvBH4g6cM0f2i5EPihE3uA9aQb3kC8DVhZ7Njuzec84hSxs5+UMe7ihj51AKtsv2h7\nX9blIppPNZV1+Elp+zxSfo2CNwHfBhbbLqIGX0hKSIXth/j/pCwA5wPrbe8o6QAwFbgvj2BuI2Xw\nKlhTKgcpmNqztg+Q4u90kCKXPtrCDvtt/zxvd9P6/xeMQ8IxBIfCS1S/Q0dRvXH+J3/2M4TRqe1r\ngZtIoYO7WywCq8X2QDSWc5N6Gm/4rcoMpvO+0vYi0jRSUd8LwIukJ/SB+tdIY18Kvgiss30GcGnu\nS8G/mtRRbq+Vgyvk/y3JDxCzC7UiHENwKOwGjldKTv4qYPEwz+8DXlPsSDrV9uO2lwF7qcaQB9gA\nXClpQp5euYjBQyqvBT5WamNqPmeupNfm6Z6lpNFHgXNb71IK93w0KRXiBlLs+4F0Lt/ALyHN8Rfy\n3lz+K5LmZvlGoFgrWQBMa6LDZuBipSx/SCrKHEOKvAkp6uZAnJvXRybk9jYMwQ5BTQnHEIwYp7zc\nXyDdYNaQ4uS3LN5kuxO4LC+edgArioVQYKPtnob2HgB6SKGo1wHX5ymlxvrL3AxMKxa1gXlO8elv\nAB4hhTx/wnZnuR6nTHLfz7r9GrjL9tYh6Gx4eV3g33kaqpAXU2CLgZWSZgOfBxZkna8AdpEcZlnv\nvcBHgFVZhx/nQytITmYLMJHqWkejvbuAO3N//2j7gaHYoUV9wTgnwm4HwWFA0vuBk2yvGKTcZKA/\nLyDPAVY6pfMMgrYRjiEI2oikNwD3kkbv+4Fr87seQdA2wjEEQRAEFWKNIQiCIKgQjiEIgiCoEI4h\nCIIgqBCOIQiCIKgQjiEIgiCoEI4hCIIgqPA/GiyMJzijEt8AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7d9ad68>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.3: Page 602"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.3\n",
+ "# Page: 602\n",
+ "\n",
+ "print'Illustration 11.3 - Page: 602\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#***Data***#\n",
+ "T = 1.0; #[m]\n",
+ "di = 0.203;# [m]\n",
+ "n = 1;# [for one impeller]\n",
+ "Density_S = 2300.0;# [kg/cubic m]\n",
+ "Density_p = 2300.0;# [kg/cubic m]\n",
+ "C = 0.150;# [m]\n",
+ "S = 50.0;# [kg]\n",
+ "g = 9.807;# [m/s]\n",
+ "dp = 8*10**(-4);# [m]\n",
+ "N = 8.33; #[r/s]\n",
+ "Temp=25;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# Assume:\n",
+ "Po = 5;\n",
+ "viscosity_L = 8.94*10**(-4);# [kg/m.s]\n",
+ "Density_L = 998.0;# [kg/cubic m]\n",
+ "delta_Density = Density_S-Density_L;# [kg/cubic m]\n",
+ "# By Eqn. 11.23:\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_L);# [m/s]\n",
+ "# By defn. of power number:\n",
+ "# P = Po*Density_m*di**5*Ni**3\n",
+ "# vm = math.pi*T**2*(Z+C)/4\n",
+ "# Solid Volume = S/Density_p;\n",
+ "# If these are substituted in Eqn. 11.22\n",
+ "def f(Z):\n",
+ " return (((Z+C)**(1.3/3))*math.exp(4.35*Z/(T-0.1)))-((1.0839*Po*di**(11.0/2)*N**3*Density_p**(2.0/3))/(g*Vts*T**(7.0/6)*S**(2.0/3)))\n",
+ "Z = fsolve(f,7);# [m]\n",
+ "phi_Sm = 4*S/(math.pi*T**2*(Z+C)*Density_p);\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_L);# [kg/cubic m]\n",
+ "phi_Ss = 0.6;\n",
+ "viscosity_m = viscosity_L/(1-(phi_Sm/phi_Ss))**1.8;# [kg/m.s]\n",
+ "Re = di**2*N*Density_m/viscosity_m;\n",
+ "P = Po*Density_m*N**3*di**5;# [W]\n",
+ "print \"Agitator Power required: \",round(P),\" W\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.3 - Page: 602\n",
+ "\n",
+ "\n",
+ "Agitator Power required: 1113.0 W\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 65
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.4: Page 604"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.4\n",
+ "# Page: 604\n",
+ "\n",
+ "print'Illustration 11.4 - Page: 604\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "#****Data*****#\n",
+ "# b: kerosene c:water\n",
+ "# c:kg water/cubic m liquid\n",
+ "Density_l = 783;# [kg/cubic m]\n",
+ "viscosity_l = 1.7*10**(-3);# [kg/m.s]\n",
+ "Mb = 200;# [kg/kmol]\n",
+ "Density_p = 881;# [kg/cubic m]\n",
+ "m = 0.522;# [(kg water/cubic m kerosene)/(kg water/kg gel)]\n",
+ "Xo = 0;# [kg H2O/kg gel]\n",
+ "#**************#\n",
+ "\n",
+ "# Solution (a)\n",
+ "co = Density_l*4*10**(-5);# [kg water/cubic m]\n",
+ "c1 = Density_l*5*10**(-6);# [kg water/cubic m]\n",
+ "# For Ss minimum:\n",
+ "X1 = c1/m;# [kg H2O/kg gel]\n",
+ "# By Water Balance:\n",
+ "SsminByVl = (co-c1)/(X1-Xo);# [kg gel/cubic m kerosene]\n",
+ "print\"Minimum Solid/Liquid ratio used:\",SsminByVl,\" kg gel/cubic m kerosene\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "# Basis: 1 batch,1.7 cubic m kerosene\n",
+ "Vl = 1.7;# [cubic m]\n",
+ "Ss = 16*1.7;# [kg gel]\n",
+ "V = Ss/Density_p;# [Xol. solid, cubic m]\n",
+ "Vt = 1.7+V;# [Total batch volume, cubic m]\n",
+ "# Take Z = T\n",
+ "T = (Vt*4/math.pi)**(1.0/3);# [m]\n",
+ "# To allow for the adequate free board:\n",
+ "h = 1.75;# [Vessel height,m]\n",
+ "# Use a six-blade disk impeller.\n",
+ "# From Fig. 11.26:\n",
+ "# dp corresponding to 14 mesh:\n",
+ "dp = 1.4/1000;# [m]\n",
+ "TBydi1 = 2.0;\n",
+ "Value1 = (Density_p-Density_l)/Density_l;\n",
+ "# From Fig. 11.26:\n",
+ "TBydi2 = 4.4;\n",
+ "TBydiAv = (TBydi1+TBydi2)/2.0;\n",
+ "di = T/TBydiAv;# [m]\n",
+ "fr = 0.6;# [settled volume fraction of solids]\n",
+ "Vs = V/fr;# [cubic m]\n",
+ "depth = Vs/((math.pi*(T**2))/4);# [m]\n",
+ "# The depth of settled solid is negligible.\n",
+ "# Locate the turbine 150mm from the bottom of the tank.\n",
+ "C = 0.150;# [m]\n",
+ "\n",
+ "# Power:\n",
+ "# Use the sufficient agitator power to lift the solids to 0.6 m above the bottom of the vessel.\n",
+ "Z_prime = 0.6-C;# [m]\n",
+ "# The properties of the slurry in 0.6 m above the bottom of the vessel.\n",
+ "Vm = 0.6*math.pi*T**2.0/4;# [square m]\n",
+ "phi_Sm = V/Vm;# [vol fraction solid]\n",
+ "# From Eqn. 11.24:\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_l);# [kg/cubic m]\n",
+ "# From Eqn. 11.25:\n",
+ "phi_Ss = 0.8;\n",
+ "viscosity_m = viscosity_l/(1-(phi_Sm/phi_Ss))**1.8;# [kg/m.s]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "# From Eqn. 11.23:\n",
+ "delta_Density = Density_p-Density_l;# [kg/cubic m]\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_l);# [m/s]\n",
+ "# From Eqn. 11.22:\n",
+ "n = 1.0;\n",
+ "P = (g*n*Density_m*Vm*Vts)*(phi_Sm**(2.0/3))*(TBydiAv**(1.0/2))*math.exp((4.35*Z_prime/T)-0.1);# [W]\n",
+ "# Assume:\n",
+ "Po = 5.0;\n",
+ "N = (P/(Po*Density_m*di**5))**(1.0/3);# [r/s]\n",
+ "# Use:\n",
+ "N1 = 2.0;# [r/s]\n",
+ "Re = di**2.0*N1*Density_m/viscosity_m;\n",
+ "# From fig. 6.5: Po = 5\n",
+ "# Hence our assumption was right.\n",
+ "print\"Power delivered to the slurry: \",round((P*(N1/N)**3),2),\" W\\n\",\n",
+ "print\"Power to the motor will be larger, depending on the efficiency of the motor and speed reducer.\\n\"\n",
+ "\n",
+ "# Mass transfer: \n",
+ "# From Eqn. 11.28:\n",
+ "Rep = (dp**(4.0/3))*(P/Vl)**(1.0/3)*(Density_l**(2.0/3)/viscosity_l);\n",
+ "# From Eqn. 2.44:\n",
+ "Temp = 298;# [K]\n",
+ "phi = 1.0;\n",
+ "Va = 0.0756;# [Chapter 2 notation]\n",
+ "Dl = ((117.3*10**(-18))*((phi*Mb)**0.5)*Temp)/(viscosity_l*(Va**(0.6)));\n",
+ "ScL = viscosity_l/(Density_l*Dl);\n",
+ "if dp<(2.0/1000):\n",
+ " # From Eqn. 11.29:\n",
+ " ShL = 2+(0.47*Rep**0.62*(1/TBydiAv**0.17)*ScL**0.36);\n",
+ "else:\n",
+ " # From Eqn. 11.30:\n",
+ " ShL = 0.222*Rep**(3.0/4)*ScL**(1.0/3);\n",
+ "\n",
+ "kL = ShL*Dl/dp;# [m/s]\n",
+ "apS = (math.pi*dp**2)/(math.pi*dp**3*Density_p/6.0);\n",
+ "apL = apS*16;# [square m/cubic m liquid]\n",
+ "Ratio = Ss/(Vl*m);\n",
+ "# From Eqn. 11.40:\n",
+ "thetha = math.log((co/c1)/(1+(1/Ratio)-(1/Ratio)*(co/c1)))/((1+(1/Ratio))*kL*apL);\n",
+ "print\"Contacting Time required: \",round(thetha/60,2),\" min\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.4 - Page: 604\n",
+ "\n",
+ "\n",
+ "Minimum Solid/Liquid ratio used: 3.654 kg gel/cubic m kerosene\n",
+ "\n",
+ "\n",
+ "Power delivered to the slurry: 350.05 W\n",
+ "Power to the motor will be larger, depending on the efficiency of the motor and speed reducer.\n",
+ "\n",
+ "Contacting Time required: 8.3 min\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 69
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.5: Page 606"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.5\n",
+ "# Page: 606\n",
+ "\n",
+ "print'Illustration 11.5 - Page: 606\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "import numpy.linalg as lin\n",
+ "#*****Data******#\n",
+ "Vl = 1.1*10**(-4);# [cubic m/s]\n",
+ "Ss = 0.0012;# [kg/s]\n",
+ "Density_p = 1120;# [kg/cubic m]\n",
+ "dp = 8*10**(-4);# [m]\n",
+ "Ds = 2*10**(-11);# [square m/s]\n",
+ "Dl = 7.3*10**(-10);# [square m/s]\n",
+ "m = 0.2;# [(kg Cu2+/cubic m soln)/(kg Cu2+/kg resin)]\n",
+ "T = 1;# [m]\n",
+ "#********************#\n",
+ "\n",
+ "Z = T;# [m]\n",
+ "# The particles will be lifted to the top of the vessel.\n",
+ "Z_prime = 0.5;# [m]\n",
+ "viscosity_l = 8.94*10**(-4);# [kg/m.s]\n",
+ "Density_l = 998;# [kg/cubic m]\n",
+ "delta_Density = Density_p-Density_l;# [kg/cubic m]\n",
+ "g = 9.80;# [m/square s]\n",
+ "# From Eqn. 11.23:\n",
+ "Vts = g*dp**2*delta_Density/(18*viscosity_l);\n",
+ "Vm = math.pi*T**2*Z/4.0;# [cubic m]\n",
+ "Vs = Ss/Density_p;# [cubic m/s]\n",
+ "phi_Sm = Vs/(Vs+Vl);# [vol fraction]\n",
+ "# From eqn. 11.24:\n",
+ "Density_m = (phi_Sm*Density_p)+((1-phi_Sm)*Density_l);# [kg/cubic m]\n",
+ "# From Eqn. 11.22:\n",
+ "n = 1.0;\n",
+ "di = 0.3;# [m]\n",
+ "P = (g*n*Density_m*Vm*Vts)*(phi_Sm**(2.0/3))*((T/di)**(1.0/2))*math.exp((4.35*Z_prime/T)-0.1);# [W]\n",
+ "# To estimate the impeller speed:\n",
+ "# Assume:\n",
+ "Po = 5;\n",
+ "N = (P/(Po*Density_m*di**5))**(1.0/3);# [r/s]\n",
+ "Re = di**2*N*Density_m/viscosity_l;\n",
+ "# From fig. 6.5: Assumption of Po was correct.\n",
+ "print\"Speed of the impeller:\",round(N,2),\" r/s\\n\"\n",
+ "vT = (math.pi/4.0)*T**2*Z;# [cubic m]\n",
+ "vL = vT*(1-phi_Sm);\n",
+ "# From Eqn. 11.28:\n",
+ "Rep = (dp**(4.0/3))*(P/vL)**(1.0/3)*(Density_l**(2.0/3)/viscosity_l);\n",
+ "ScL = viscosity_l/(Density_l*Dl);\n",
+ "if dp<(2.0/1000):\n",
+ " # From Eqn. 11.29:\n",
+ " ShL = 2+(0.47*Rep**0.62*((di/T)**0.17)*ScL**0.36);\n",
+ "else:\n",
+ " # From Eqn. 11.30:\n",
+ " ShL = 0.222*Rep**(3.0/4)*ScL**(1.0/3);\n",
+ "\n",
+ "ShL = 130.3;# Value wrong in book\n",
+ "kL = ShL*Dl/dp;# [m/s]\n",
+ "# Since the dispersion is uniform throughout the vessel, the residence time for both liquid and solid is same.\n",
+ "thetha = vL*(1-phi_Sm)/Vl;# [s]\n",
+ "# From Fig. 11.27:\n",
+ "abcissa = m*kL*dp/(2*Ds*Density_p);\n",
+ "Parameter = 2*m*kL*thetha/(dp*Density_p);\n",
+ "co = 100*Density_l/10.0**6;# [kg/cubic m]\n",
+ "EMS = 0.63;\n",
+ "Xo = 0;\n",
+ "# From Eqn. 11.44:\n",
+ "# (1): X1-(EMS/m)*c1 = 0\n",
+ "# Solute balance:\n",
+ "# (2): (Ss*X1)+(vL*c1) = (vL*co)+(Xo*Ss)\n",
+ "a = [[1 ,-(EMS/m)],[Ss ,Vl]];\n",
+ "b = [0,(Vl*co)+(Xo*Ss)];\n",
+ "soln =lin.solve(a,b);\n",
+ "X1 = soln[0];\n",
+ "c1 = soln[1];\n",
+ "print\"Effluent Cu2+ conc. \",round(c1*10**(6)/Density_l,2),\" ppm\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.5 - Page: 606\n",
+ "\n",
+ "\n",
+ "Speed of the impeller: 2.71 r/s\n",
+ "\n",
+ "Effluent Cu2+ conc. 2.83 ppm\n"
+ ]
+ }
+ ],
+ "prompt_number": 78
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.6: Page 616"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.6\n",
+ "# Page: 616\n",
+ "\n",
+ "print'Illustration 11.6 - Page: 616\\n\\n'\n",
+ "from scipy.optimize import fsolve\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# a: air b:silica\n",
+ "Density_a = 1.181;# [kg/cubic m]\n",
+ "Density_b = 671.2;# [kg/cubic m]\n",
+ "kSap = 0.965;# [kg H2O/square m s]\n",
+ "Y1 = 0.005;# [kg H2O/kg dry air]\n",
+ "Y2 = 0.0001;# [kg H2O/kg dry air]\n",
+ "Ss = 0.680;# [square m/s]\n",
+ "Gs = 1.36;# [kg/square m.s]\n",
+ "X2 = 0;# [kg H2O/kg dry air]\n",
+ "# Equilibrium function:\n",
+ "m = 0.0185;\n",
+ "#************#\n",
+ "X1 = (Gs*(Y1-Y2)/Ss)+X2;# [kg H2O/kg dry air]\n",
+ "def f77(X):\n",
+ " return m*X \n",
+ "Y2_star = f77(X2);# [kg H2O/kg dry gel]\n",
+ "Y1_star = f77(X1);# [kg H2O/kg dry gel]\n",
+ "deltaY = ((Y1-Y1_star)-(Y2-Y2_star))/math.log((Y1-Y1_star)/(Y2-Y2_star));\n",
+ "NtoG = (Y1-Y2)/deltaY;\n",
+ "# If the fixed bed data are to be used for estimating the mass transfer coeffecient for a moving bed of solids\n",
+ "va = Ss/Density_b;# [m/s]\n",
+ "vb = Gs/Density_a;# [m/s]\n",
+ "rel_v = va+vb;# [relative velocity,m/s]\n",
+ "G_prime = rel_v*Density_a;# [relative mass velocity of air,kg/square m s]\n",
+ "HtG = Gs/(31.6*G_prime**0.55);# [m]\n",
+ "HtS = Ss/kSap;# [m]\n",
+ "# By Eqn. 11.52:\n",
+ "HtoG = HtG+(m*Gs/Ss)*HtS;# [m]\n",
+ "Z = NtoG*HtoG;# [m]\n",
+ "print\"Height of continuous countercurrent isothermal absorber for drying: \",round(Z,4),\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.6 - Page: 616\n",
+ "\n",
+ "\n",
+ "Height of continuous countercurrent isothermal absorber for drying: 0.2511 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 81
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.7: Page 619"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.7\n",
+ "# Page: 619\n",
+ "\n",
+ "print'Illustration 11.7 - Page: 619\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import numpy.linalg as lin\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#*****Data*****#\n",
+ "# a: C2H4 b:C3H8\n",
+ "# The equlibrium curve is plotted in Fig.11.33 (Pg 620)\n",
+ "# C3H8 is more strongly adsorbed component and composition in the gas and adsorbate are expressed as weight fraction C3H8.\n",
+ "Ma = 28;# [kg/kmol]\n",
+ "Mb = 44.1;# [kg/kmol]\n",
+ "xaF = 0.6;# [mole fraction]\n",
+ "xbF = 0.4;# [mole fraction]\n",
+ "xa1 = 0.05;# [mole fraction]\n",
+ "xa2 = 0.95;# [mole fraction]\n",
+ "#***************#\n",
+ "\n",
+ "xF = xbF*Mb/((xbF*Mb)+(xaF*Ma));# [wt. fraction C3H8]\n",
+ "xb1 = 1-xa1;# [mole fraction]\n",
+ "x1 = xb1*Mb/((xb1*Mb)+xa1*Ma);# [wt. fraction C3H8]\n",
+ "xb2 = 1-xa2;# [mole fraction]\n",
+ "x2 = xb2*Mb/((xb2*Mb)+(xa2*Ma));# [wt. fraction C3H8]\n",
+ "# Basis: 100 kg feed gas\n",
+ "F = 100.0;# [kg]\n",
+ "# (1): R2+PE = F [From Eqn. 11.63]\n",
+ "# (2): (R2*x2)+(PE*x1) = (F*xF) [From Eqn. 11.64]\n",
+ "# Solving simultaneously:\n",
+ "a = [[1, 1],[x2 ,x1]];\n",
+ "b = [F,(F*xF)];\n",
+ "soln = lin.solve(a,b);\n",
+ "R2 = soln[0];# [kg]\n",
+ "PE = soln[1];# [kg]\n",
+ "# Point F at xF and point E1 at x1 are located on the diagram.\n",
+ "# From the diagram:\n",
+ "N1 = 4.57;# [kg carbon/kg adsorbate]\n",
+ "# The minimum reflux ratio is found as it is for the extraction.\n",
+ "delta_Em = 5.80;\n",
+ "Ratio = (delta_Em/N1)-1;# [kg reflux gas/kg product]\n",
+ "R1_m = Ratio*PE;# [kg]\n",
+ "E1_m = R1_m+PE;# [kg]\n",
+ "B_m = N1*E1_m;# [kg carbon/100 kg feed]\n",
+ "Ratio1 = 2*Ratio;\n",
+ "# From Eqn. 11.58:\n",
+ "N_deltaE = (Ratio1+1.0)*N1;# [kg carbon/kg adsorbate]\n",
+ "# Point deltaE is located on the diagram:\n",
+ "R1 = Ratio1*PE;# [kg]\n",
+ "E1 = R1+PE;# [kg]\n",
+ "B = N1*E1;# [kg]\n",
+ "N_deltaR = -(B/R2);# [kg carbon/kg adsorbate]\n",
+ "# Random lines such as the delta_RK are drawn from detaR, and the intersection of equilibrium curves are projected downward in the manner shown to provide the adsorption section operating curve.\n",
+ "# Similarly random lines such as delta_EJ are drawn from deltaE, and the intersections are projected downwards to provide the enriching section operating curve.\n",
+ "# Data = [x x_star]\n",
+ "Data = numpy.array([[0.967 ,0.825],[0.90, 0.710],[0.80 ,0.60],[0.70, 0.50],[0.60 ,0.43],[0.512 ,0.39],[0.40 ,0.193],[0.30, 0.090],[0.20, 0.041],[0.0763, 0.003]]);\n",
+ "Val = zeros(10);\n",
+ "for i in range(0,10):\n",
+ " Val[i] = 1/((Data[i,0])-Data[i,1]);\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x\");\n",
+ "plt.ylabel(\"1 / (x-x*)\");\n",
+ "plt.title(\"Graphical Integraion\");\n",
+ "# The area under the curve between x1 & xF, for the enriching section:\n",
+ "Area1 = 2.65;\n",
+ "# The area under the curve between xF & x2, for the adsorption section:\n",
+ "Area2 = 2.67;\n",
+ "r = Ma/Mb;\n",
+ "# From Eqn.11.66:\n",
+ "# For the enriching section:\n",
+ "NtoG1 = Area1-math.log((1+(r-1)*x1)/(1+(r-1)*xF));\n",
+ "# For the adsortion section:\n",
+ "NtoG2 = Area2-math.log((1+(r-1)*x1)/(1+(r-1)*xF));\n",
+ "NtoG = NtoG1+NtoG2;\n",
+ "print\"Number of transfer units: \",NtoG"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.7 - Page: 619\n",
+ "\n",
+ "\n",
+ "Number of transfer units: 5.77763695068\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVeXV9/HvAkRUlEERuw42gqJiASsyXDE+PppoYuIT\nuyimqDFqsEUjNkoIUVFjNBoFG7bYS8Q6yIugooKAIqAg2ECUomBBWe8f9znucZhy5pS9T/l9rmsu\nOHUvFmf2Ovte+763uTsiIlK5WiUdgIiIJEuFQESkwqkQiIhUOBUCEZEKp0IgIlLhVAhERCqcCoGU\nHDO7xMxub+LxaWa2fyG3UUrykQ8pbyoEkjMzO9LMXjKzL8xsgZlNNLNTCrjJJie/uHt3d3+hUNsw\nsxozm5/Jm5hZtZmtMrPEftfylA8pYyoEkhMzGwCMAIYBG7n7RsDvgX3NrG0jr8n1c2c5vj6JbRQk\nZjNrXYj3lcqiQiBZM7MOwKXAKe7+gLsvB3D3ye5+rLt/k3reKDO73syeMLMvgBozO8TMXjezpWY2\nz8wurvO+6W/RvzGzD8zsw1TBSXOgrZndambLUkMfu9d5/Vwz+3Hq763N7AIzm5167iQz2yz12NWp\nbS9N3b9flnmoNbPLzOz/pbYxxsw2SD2c/ia+xMw+N7M9U685yczeNLPPzOxJM9uyzvsdaGZvm9kS\nM7vOzMaaWf/UY/3MbLyZXWlmi4CLzWxrM3vOzBaZ2Sdmdkfq/6ahfKxpZiNSef3AzK5KF+zUkc77\nZvan1JHdh2bWL5ucSGlRIZBc7A2sCTycwXOPAi539/bAeOAL4Fh37wAcApxiZofVe00NsC1wIHBe\nemdG+HZ9KHAX0AF4BPhHndc50dDOn4Ajgf919/WAE4EvU4+9DOwCdARGA/c1dhST4b+vH9AZaAuc\nnbq/d+rPDu6+rru/lPp3/hn4BdAJGJf6t2BmnYD7gPOA9YG3CXmuO1TVC3gnta0hqXwMBjYBugFb\nAJc0ko8LU6/fJfXTC/hLneduBKwHbAr0B66rW1SkPKkQSC46AYvcfVX6DjN70cwWm9mKet+wH3L3\nCQDu/rW7j3X36anbU4G7gT713v9Sd//S3acBIwk727Rx7v6kh8Wy7iDs1BpyMnChu89Kb8vdP0v9\n/U53X+zuq9z9SkJR65pFHhwY6e6z3f0r4F6gRzolDTz/98BQd387lbuhQI/UUcHBwDR3fygV1zXA\nx/Ve/6G7X5d6/Ct3f8fdn3X3le6+CLiK1XOZdjRwmbsvSj33UuC4Oo+vTD3+nbv/l1Cws8mJlBAV\nAsnFp0CnumP+7r6Pu3dMPZa+34EfNFfNbE8ze97MFprZEuB3wAb8UN3XzCN8S01bUOfvK4B2jfQe\nNid8e16NmZ2dGp5ZYmaLCUcXnRr5tzan7s76S6B9E8/dCrg6VTAXE3IFsBnhW/379Z5f/3b9XG5k\nZnenhnWWArezei7TNgXeq3O7fl4/rVvYCblt6t8iZUCFQHIxAfga+HkWrx0NPARs7u5VwA2s/nnc\nst7fP8hiO/MJw0s/YGa9gXOAI9y9KlW8lpL/pm5DZx/NA37r7h3r/KyTOmL6iFC80nFa3duNvOcQ\n4Duge2qo7Tga/93+EKiuc3vL1H1SwVQIJGvuvoQwtPBPM/ulma1rZq3MrAewTp2nNrRzbQ8sdvdv\nzKwXYcii/g7uL2a2lpntSBh/vyeLMP8NXG5m21qws5mtn9r+t8AiM2trZgMJY+PZaqyAfAKsArap\nc98NwAVmtgOEpruZHZF67AlgJzM7zMzaAKcBGzez7fbAcmBZqhF+ThPPvYuQ106pfsRAwhGEVDAV\nAsmJuw8nNGTPJQyPfEzY0Z1LOGKAHzYr004FLjOzZcBFNLyTHwvMBp4Bhrv7M028X2Pn/V9JGLN/\nivCN/yagHTAGeBKYCcwlDOfMq/d+Tc1XaGr737/W3VcQGrnjU0NBvdz9IcLptnenhnKmAv+Tev4i\n4Ajgb8AiQvN3EuHIq7G4LgV2S/37HgXubyL2Qan3eyP1Myl1X2P/LqkAVqgL05jZLYSzQRa6+071\nHhsADAc6pRt3ImlmVg28C7SpN15dcVJ9j/nA0e4+Nul4pDwV8ohgJHBQ/TvNbAvgJ/ywYSUiKal5\nBFVmtiZwQeruiUnGJOWtYIXA3ccBixt46ErCsIFIUyp5iGJvwpDYJ4Sj6p+7+9dNv0Qke23i3Fhq\nIs377v5GOBlCZHXuPheo2KUT3P1Swri/SCxiKwRmtjbhMPcnde+Oa/siItKwOI8ItiGcvzwldTSw\nOfBq6iyKhXWfaGaVPCwgIpI1d2/xF+zYTh9NTe3fyN27uHsXwmzJ3eoXgTrP1487F198ceIxFMuP\ncqFcKBdN/2SrYIXAzO4CXgS2N7P5ZnZivafoW38G5s6dm3QIRUO5iCgXEeUidwUbGnL3o5p5fOtC\nbVtERDKnmcVFrl+/fkmHUDSUi4hyEVEuclewmcW5MDMvxrhERIqZmeHF3CwuNu7hp9jV1tYmHULR\nUC4iykVEuchdxRaCQw6BCROaf56ISLmr2KGhs86CDTeECy5o/rkiIqVAQ0Mt1LcvPP980lGIiCSv\nYgtB794wcSJ8XeRLeWn8M6JcRJSLiHKRu4otBB07wvbbwyuvJB2JiEiyKrZHAHD22dChA1x0UcE3\nJSJScOoRZKGmBnRUKSKVrqILQe/e8NJLxd0n0PhnRLmIKBcR5SJ3FV0IOnSAbt1C01hEpFJVdI8A\n4NxzYZ114OKLY9mciEjBqEeQJc0nEJFKV/GFYL/9YNIk+OqrpCNpmMY/I8pFRLmIKBe5q/hCsO66\n0L271h0SkcpV8T0CgPPPh7Zt4bLLYtukiEjeqUeQg759NZ9ARCqXCgGw777w2muwYkXSkaxO458R\n5SKiXESUi9ypEADt28POO6tPICKVST2ClAsvBDMYNCjWzYqI5I16BDmqqdF8AhGpTCoEKfvuC1Om\nwPLlSUfyQxr/jCgXEeUiolzkToUgZe21YdddYfz4pCMREYmXegR1XHQRfPcdDBkS+6ZFRHKmHkEe\naN0hEalEKgR17L03TJ0Kn3+edCQRjX9GlIuIchFRLnKnQlDHWmvB7rurTyAilUU9gnouuQS+/BKG\nDUtk8yIiWVOPIE90HWMRqTQqBPXstRdMnw7LliUdSaDxz4hyEVEuIspF7lQI6mnXDnr2hHHjko5E\nRCQe6hE04LLLwplDw4cnFoKISIupR5BHmk8gIpVEhaABvXrB22/DkiVJR6Lxz7qUi4hyEVEucqdC\n0IA114Q991SfQEQqQ0F7BGZ2C3AIsNDdd0rdNxz4KfAN8A5worsvrfe6RHsEEK5L8NlncOWViYYh\nIpKxYu0RjAQOqnffU8CO7r4LMBP4c4FjyIquYywilaKghcDdxwGL6933tLuvSt18Cdi8kDFkq2dP\nmDUrHBUkSeOfEeUiolxElIvcJd0jOAl4IuEYGtS2bViETn0CESl3bZLasJldCHzj7qMberxfv35U\nV1cDUFVVRY8ePaipqQGibwCFvt23bw3PPw8dOsSzvYZu19TUxLo93S6d22nFEk9St9P3FUs8cd6u\nra1l1KhRAN/vL7NR8AllZlYNPJpuFqfu6wf8Bvixu3/VwGsSbxYDTJgAv/99uISliEixK9Zm8WrM\n7CDgHOCwhopAMdljD5gzBz79NLkY6n/7q2TKRUS5iCgXuStoITCzu4AXga5mNt/MTgKuBdoDT5vZ\n62b2z0LGkIs11ggXtR87NulIREQKR2sNNWPYMPjgA7jmmqQjERFpWskMDZUarTskIuVOhaAZu+0G\n8+bBJ58ks32Nf0aUi4hyEVEucqdC0Iw2bWC//dQnEJHypR5BBv7+93D20HXXJR2JiEjj1CMoIF3H\nWETKmQpBBnbdNZw5tGBB/NvW+GdEuYgoFxHlIncqBBlo3Rp699ZRgYiUJ/UIMnTllWE10uuvTzoS\nEZGGqUdQYJpPICLlSoUgQzvvDAsXwkcfxbtdjX9GlIuIchFRLnKnQpCh1q1h//3VJxCR8qMeQQuM\nGAFvvgk33ph0JCIiq1OPIAa6jrGIlCMVghbYaadwbYIPPohvmxr/jCgXEeUiolzkToWgBVq1gj59\ndFQgIuVFPYIWuvbacOnKf/876UhERH5IPYKYaD6BiJQbFYIW2mEHWLYsXKMgDhr/jCgXEeUiolzk\nToWghVq10mqkIlJe1CPIwnXXwauvwi23JB2JiEhEPYIYqU8gIuVEhSAL3brBihUwd27ht6Xxz4hy\nEVEuIspF7lQIsmCmPoGIlA/1CLJ0ww0wYQLcemvSkYiIBOoRxCx9RFDk9UpEpFkqBFnq2hW++Qbm\nzCnsdjT+GVEuIspFRLnInQpBlsx09pCIlAf1CHJw440wbhzcfnvSkYiIqEeQiPQRQQnULBGRRqkQ\n5GDbbUMReOedwm1D458R5SKiXESUi9ypEORAfQIRKQfqEeTo5pvh2Wdh9OikIxGRSqceQUI0n0BE\nSp0KQY623hratIGZMwvz/hr/jCgXEeUiolzkToUgR1p3SERKXcF6BGZ2C3AIsNDdd0rdtz5wD7AV\nMBf4P3df0sBrS6ZHADByJIwZA3ffnXQkIlLJirFHMBI4qN595wNPu/v2wLOp2yWvb1/1CUSkdBWs\nELj7OGBxvbsPBdLrdd4K/LxQ249TdTW0awczZuT/vTX+GVEuIspFRLnIXdw9go3cfUHq7wuAjWLe\nfsFoPoGIlKqCziMws2rg0To9gsXu3rHO45+5+/oNvK6kegQQrkvw+ONw771JRyIilSrbHkGbQgTT\nhAVmtrG7f2xmmwALG3tiv379qK6uBqCqqooePXpQU1MDRIeCxXS7XTuora3BHcaOTT4e3dZt3S7/\n27W1tYwaNQrg+/1lNjI6IjCzbkA1sAp4z90zGg1v4Ijgb8Cn7j7MzM4Hqtx9tYZxKR4RAGyzDTz8\nMHTvnr/3rK2t/f4DUOmUi4hyEVEuInk/IjCzLsBZwMHAB8CHgAGbmNnmwGPAVe4+t5HX3wX0ATqZ\n2XxgIPBX4F4z60/q9NGWBlzM0vMJ8lkIREQKrdEjAjO7F7gJqHX3lfUeWwPoC5zs7nnfmZfqEcEd\nd8CDD8L99ycdiYhUomyPCLToXB69/z706AELF0IrzdkWkZgVZEKZmQ1O/Xl5toFVks03h44dYdq0\n/L1nujEkykVdykVEuchdc99bXzaz64BJcQRTDjSfQERKTVM9gouB9YHjgNuBz9z90liCKtGhIQjX\nJbjvvtArEBGJU96Hhurs9PcJN+MpAqWupgbGjoVVq5KOREQkM80NDY1MzRkYGUcw5WDTTWHDDeGN\nN/Lzfhr/jCgXEeUiolzkrslC4O6TzWwQMD19n5l1MLNRhQ6slKlPICKlpNnTR81sKPA/wImEReKu\nBf7h7tcWLKgS7hEA3HMP3HknPPJI0pGISCUp6DwCMzsAeJSwrHQfd5/V8hBbEFSJF4KPP4Zu3WDR\nImjdOuloRKRSFOzCNGbWB7gGuBwYC1xjZpu1PMTKsfHGsMkmMHly7u+l8c+IchFRLiLKRe4yWX10\nOPArd38TwMwOB54DuhYysFKXXndo992TjkREpGmZ9AjauPu39e7r5O6LChZUiQ8NQZhLcOut8Nhj\nSUciIpUilrWGzOwxd/9pSzfSUuVQCBYuhO22g08/hTZxX/VBRCpSXBevV28gQ507wxZbwOuv5/Y+\nGv+MKBcR5SKiXOSupYUgx91aZdF8AhEpBZn0CDq7+8J693V197cLFlQZDA1BuC7BzTfDE08kHYmI\nVIJCDg2NM7NfpzZiZjYAeKilG6pEffrA+PGwcmXzzxURSUomhaAGONbM7iPMI+gK9CxkUOWiUyeo\nroZXX83+PTT+GVEuIspFRLnIXbOFwN0/AsYQViGtBka5+xcFjqtspOcTiIgUq0x6BM8AHwGnA1sA\nNwMvuPvZBQuqTHoEAA89BNdfD2PGJB2JiJS7gs0jMLNfuPuDdW63Af7s7gW7fGU5FYLPPgvDQ59+\nCmuskXQ0IlLO8t4sNjMDqFsEUre/TReB9HOkceuvD9tsA6+8kt3rNf4ZUS4iykVEuchdUz2CWjM7\nx8y2r/+AmXU1s/MIzWNphuYTiEgxa+qaxWsCxwBHAd2BzwED2gPTgDuB0e7+Td6DKqOhIQjXJbj2\nWnj66aQjEZFyVujrEbQGOqVuLnL371q6oRYFVWaFYMmSsNzEokWw5ppJRyMi5aqgaw25+3fuviD1\nU9AiUI6qqmD77bPrE2j8M6JcRJSLiHKRu5auNSRZUp9ARIpVi5ahjku5DQ0BPP44XHEFPPdc0pGI\nSLnKe4/AzMYATwL/dfcZOcbXsqDKsBAsXQqbbRb6BO3aJR2NiJSjQvQI+gFLgEvM7HUzu8HMDjOz\ndbINspJ16AA77AAvvdSy12n8M6JcRJSLiHKRu0YLgbt/5O4j3f1IYA/gttSfT5nZs2Z2blxBlgut\nOyQixSirHoGZbQgc6O535j+k8hwaAvjvf2HYMBUDESmMWK5ZHJdyLQSffw6bbAKffAJrrZV0NCJS\nbuK6ZrHkYN11oXt3mDgx89do/DOiXESUi4hykTsVgphpPoGIFJtsewQnuvvIAsSTfv+yHBqCcF2C\nwYPhhReSjkTy4eWXYffdoXXrpCMRiX9o6LIsXweAmf3ZzKab2VQzG51a4K4i7LsvvPYarFiRdCSS\nqxkzYO+9YdSopCMRyU1T1yOY2tgP0DnbDZpZNfAbYDd33wloDRyZ7fuVmvbtYZdd4MUXM3u+xj8j\nxZaLQYPgV7+Ciy6CZcvi3Xax5SJJykXu2jTxWGfgIGBxA49luBtr0DJgJbC2mX0HrA18kMP7lZz0\nfIIDDkg6EsnWjBnw1FMwezaccQYMHRp+REpRU0tM3AKMdPdxDTx2l7sflfVGzX4LXAF8CYxx9+Pq\nPV62PQKAZ56Biy+G8eOTjkSydeyx0K0bXHghfPgh7LxzWF22S5ekI5NKVjLzCMxsG+BRoDewFLgP\n+E/dyWnlXghWrIDOnWHBAlhHC3aUnLffhv32g3fegfXWC/cNHgyTJ8N99yUbm1S2bAtBU0NDhbIH\n8KK7fwpgZg8A+xCuePa9fv36UV1dDUBVVRU9evSgpqYGiMYES/X2yy/X0qULjB9fw4EHNv38uuOf\nxRJ/UrfT9yUdzx/+UMuhh8J660WP77EH3HRTDS+8AKtWFT6eyZMnc+aZZyby7y+22yNGjCir/UNL\nbtfW1jIqdbZCen+ZjSSOCHYh7PR7Al8Bo4CX3f26Os8p6yMCgIEDYeXK5seVa2trv/8AVLpiyEVD\nRwNp99wTlhB55ZXCn05aDLkoFspFpGSGhgBSC9adAKwCXgNOdveVdR4v+0Lw3HNhfHnChKQjkZY4\n7jj40Y/C/1197qFInHwynHhi/LGJlFQhaE4lFIIvv4QNN4SPPgpLT0jxmzkzzANp6Ggg7ZVX4LDD\nwpGD/l8lblprqMSstVaYkdrcmUN1x8crXdK5GDQonCraWBEA6NkTfvIT+OtfCxtL0rkoJspF7lQI\nEqR1h0rHzJlhGfHTT2/+uUOGwL/+BXPnFjwskbzQ0FCCxo6Fc84J69VIcTv+eNh+e/jLXzJ7/uWX\nw7RpoYEsEhf1CErQV19Bp05hQlJTww2SrHRvYPbscMnRTKxYEZrKo0eHBrJIHNQjKEHt2kGvXjBu\ntbnbEY1/RpLKxaBB8Mc/Zl4EANZeO5xKeuaZsGpV/mPS5yKiXOROhSBhuo5xcZs1K/QG/vjHlr/2\nyCNhjTXg9tvzH5dIPmloKGHjxsFZZ8GkSUlHIg054QTYdtuwwmg2XnoJDj88nE7avn1+YxOpTz2C\nEvX116FPMH8+VFUlHY3UNWsW7LNPy3oDDTn22LAY3eWX5y82kYaoR1Ci1lwT9tyz8T6Bxj8jcedi\n0KBwumguRQDCMiL//Ce8915+4gJ9LupSLnKnQlAENJ+g+MyaBY8/nl1voL4ttggF5fzzc38vkULQ\n0FARGD8+7Cheey3pSCStXz/YeuuwOGA+LF8eTie9554w3CRSCOoRlLBvvgl9grlzYf31k45GZs8O\n1yKeNSu/fZs77oBrroGJE6GVjsWlANQjKGFt24YdzwsvrP6Yxj8jceUi3RvId/P+6KPBDO68s/nn\nNkefi4hykTsVgiKh+QTFYfZseOyx/PQG6mvVCkaMgD//OQwViRQLDQ0ViYkT4Xe/gylTko6ksp14\nIlRXh2tKF8rRR8N228GllxZuG1KZ1CMocStXwgYbwJw54U+J3+zZsNde4c9CzumYNw923RVefx22\n3LJw25HKox5BiVtjjbCw2dixP7xf45+RQudi8ODC9Abq23JLOO20MESULX0uIuWcizvugGeeKfx2\nVAiKSN++6hMkZfZsePTRcOGZOJx7bij6ulSpNGbxYhgwADp3Lvy2NDRURF5+Gfr3h6lTk46k8px4\nImy1FVxySXzbvO22MOP4xRd1Oqms7uyzYelSuOmmzF+jHkEZ+Pbb0B+YPTtcz1ji8c47YZmPQvcG\n6lu1Kmz3zDPhmGPi264Uv3S/ato02HjjzF+nHkEZaNMmXMSkbp+gnMc/W6pQuRg8GP7wh/gX/Uuf\nTnr++S0/nVSfi0g55uK888KwUEuKQC5UCIqM1h2K1zvvwCOPhG/lSdh33/Dz978ns30pPmPHwquv\nxvuZ1NBQkXn11XB93OnTk46kMpx0UjiLJ87eQH3vvQe77RbmkGy+eXJxSPJWrYKePcO1zI88suWv\nV4+gTHz3XVh3aMYM2GijpKMpb+++Gy4VOmsWdOyYbCx/+UsoCLqaWWW79Va44YZwAoG1eHeuHkHZ\naN0aeveOTiMtx/HPbOU7F4MHh/P5ky4CEPoEzz0XrmiWCX0uIuWSi+XL4cIL4aqrsisCuVAhKEJa\nd6jw3n0XHn44ud5Afe3bh8J05plQoQfDFe9vf4P99w9nC8VNQ0NF6PXX4aijwvCQFEb//mE8vpjW\n+0mPDw8YENYjksrx/vuwyy7hmiRbbZX9+6hHUEZWrQp9gunTYZNNko6m/BRTb6C+cePCnIIZM2Dt\ntZOORuJy/PHhSnaDB+f2PuoRlJFWrcIhYm1t+Yx/5kO+cjFkCJx6avEVAQj9ob32av50Un0uIqWe\ni0mTwnpCSV7KVIWgSGk+QWG8+y489FDx9AYaMmwYXH11GC6Q8uYOZ50Fl10G666bXBwaGipSU6bA\nEUfAzJlJR1JeTj4ZNt00/OIVswsuCIXgttuSjkQK6T//gcsvD72B1q1zfz/1CMrMqlVh1cEpU2Cz\nzZKOpjzMmROasTNnFv+1oT//HLp2DUcvvXolHY0UwtdfQ7duYVG5H/84P++pHkGZadUK+vSBf/6z\nNulQikauY8FDhsAppxR/EYAwTDBoUOOnk5b6uHg+lWourrkGunfPXxHIhQpBEevbNzSRvvsu6UhK\n35w58MADYTy2VJxwAnz1FdxzT9KRSL598knoBQ0fnnQkgYaGitiXX8Ihh4Tzim++WWvW5+I3vwkr\nOV5+edKRtMzYseHUwhkzYK21ko5G8uXUU8NVCa++Or/vqx5BmVq+HA4+GLbfHv71LxWDbMyZA3vs\nEeYNlMKwUH2/+hX06BHWI5LSN316WD3g7bfz/3ksqR6BmVWZ2X/M7C0ze9PMEphUXRpeeaWWxx+H\nt94K6+JUcn3Mdiw4PW+gFIsAhKUHrroKPvwwuq9Ux8ULodRycfbZYU2hYvo8JvX98mrgCXfvBuwM\nvJVQHCWhfXt44gmYPBn++MfKLgYtNXdu6fUG6tt66zC0dcEFSUciuXryyXANjFNPTTqSH4p9aMjM\nOgCvu/vWTTxHQ0MNWLoUfvKTcCGTK6+Mf4XCUvTb34bTcAcNSjqS3CxbFk4nffTRMMwlpefbb8N6\nQkOHwqGHFmYbpTQ01AX4xMxGmtlrZnaTmWlVlQx06ABjxsALL4RL2alWNm3uXLj//tI+Gkhbb73Q\n6NbqpKXrppvCNUZ+9rOkI1ldEkcEewATgH3c/RUzGwEsc/eBdZ7jJ5xwAtXV1QBUVVXRo0cPampq\ngGhMsBJu1x3/TD/+8MO1DBgA//d/NQweDGPHFk+8hbydvi/T548eXUPnznDAAcURf663e/euYffd\n4bDDaunYcTJnptbJKJb4kro9YsSIot8/fPEF9O9fw5gxsGRJ/t6/traWUaNGAVBdXc2ll16a1REB\n7h7rD7AxMKfO7f2Ax+o9xyV4/vnnG7z/k0/cu3d3Hzgw3niS1FguGjJ3rvsGG7gvWlS4eJLw3HPu\nW23l/uSTzycdStFoyeciKeec437SSYXfTmrf2eL9ciKnj5rZC8DJ7j7TzC4B1nL38+o87knEVWoW\nLgyTzo46SqcW1ve734WlvHNd1rcYHX44VFXBiBFhyEiKW3rZ86lTC7+sfCn1CABOB+40symEs4aG\nJBRHSevcGZ59Fu64A/7616SjKR7vvRcW8/rTn5KOpDBuvDH0Cbp1C9c4XrUq6YikKeeeG/pUxXxt\nkUQKgbtPcfee7r6Lux/u7kuTiKMU1B0fb8jGG4dr3d58M1xxRTwxJaW5XKQNGQK//z1ssEFh40lK\np05wwgm13H9/WK9mv/3C6pWVKtPPRRLGjYOXXy7+LyVtkg5AcrfppuHaBX36QJs2cMYZSUeUnPTR\nQCUs373XXuFi9yNHhtnnhx0WTpPdcMOkIxMIR2pnnRWO1ot9eRAtMVFG3nsvTF0/++wwC7kSpY8E\nyrE30JQlS+Dii2H0aBg4MKyy2kZf8xJ1++3wj3/AhAnxLQ2jtYYECOvq1NSEKey//W3S0cTrvfdg\nt93C0UC5Dgs1Z9q0MPt80aIwbJQ641Bitnw5/OhHYeXYffaJb7ul1iyWDLV0/LNLl9AzGDQIbrml\nMDElpblcDB0azhaqhCLQWC66dw8nEAwcGJax/vWvYf78eGOLWzH2CP7+97ACQJxFIBcqBGVom23C\ndQwGDoRbb006mnjMmwf33Vf8Tbk4mIUVS996K3wr3XXXMFT21VdJR1YZPvggHI2V0pl8GhoqYzNm\nhKsf/e2cHgWGAAAJbUlEQVRvcMwxSUdTWKecAh07hjOG5IfmzAkF8o03wiqmP/uZ1qkqpH79wqmi\nQ4fGv231CKRB06fDAQeEyUe//nXS0RTGvHnhW+/bb4dTK6VhTz0Vziirrg6fh65dk46o/Lz6Kvz0\np+GzmMRkP/UIylSu45877hgWqjvjjLAAWylrLBdDh4bGeCUVgWw+FwceCFOmhC8G++4bJjotW5b/\n2OJWLD0C93DkdemlpTfjW4WgAuy8c1gH/dRT4eGHk44mv+bNg3vvhQEDko6kNLRtG3I1bVq4bq5m\nJ+fPgw/C4sXQv3/SkbSchoYqyKuvholHN98cDl/LwSmnhHV3khiPLQcTJ8Lpp4fr5/7jH+H0W2m5\nr78OR9/XXx+uGZIU9QgkIy+/HIrAbbfBQQclHU1u5s8P1/JVbyA3q1aF2ckXXhhmJw8erHy21BVX\nhNn9jz2WbBzqEZSpfI9/9uoVhoeOPx6efjqvb11w9XMxdGi4hGMl7rTy+blo1SoMZ8yYAe3awQ47\nhKODb7/N2yYKKu4ewYoVMGkSjBoVhtkOPDBcNGj48FjDyCsVggq0997hOr7HHBO+xZSi+fPDrE31\nBvKnqgquvjpMSHzggTBMNHZs0lEl57vvwiz1+++HSy6BX/4Stt8+TFjs3z/M1encOVw17q23Qr+l\nVGloqIKNHQtHHBEWadt//6SjaZlTTw1nZpTSpJ1S4h52gAMGhC8Ow4fDFlskHVVhuMPHH4frBUyd\nGhrpU6eGnftGG8FOO/3wZ7vtQk+lGKlHIFl59tlwYZsHHwynFJaCdG9gxgyttFloK1bAsGFw3XVh\nJc0BA8LwUan6/PMwtya900//wOo7/B13hHXXTTbellIhKFO1tbXfX6u0UJ56Co49Fh55JCxtXKzS\nuTjttPALWslHA3F8Luoq5tnJDeVi5cowrFN3Zz9tGixYEIZw6u7wu3cP1/Uoln9PLrItBFqoVjjw\nwND4OuywcNZDz55JR9S4+fPh7rvD0YDEp0uXcNSYnp18/fVw5ZWw7bbJxuUeLtn6xBM/3OnPnBmG\nstI7+xNOCH9usw20bp1szMVIRwTyvUcfhZNPhv/+t3jPJz/tNGjfPgxXSDK++SacVTRoUBhqSVqn\nTtE3+/SOf4cdYO21k44sfhoakrx48MEwSWvMGNhll6Sj+aH33w8xqTcg0jDNIyhTcZ8j/YtfwLXX\nhslm06bFuulmnX56LSefrCIAxbO+TjFQLnKnHoGs5ogjwjnUBx4YziqK+/xo97B2/hdfhJ/ly0OT\n79ln4cYb441FpBJoaEgadccdcN55YYJRY0sWf/NNtMNO77Rbcrux57RtG3oB66wT/mzfPsyGPvXU\neHMgUkp01pDk3bHHhmUG+vQJV7pqaIftHk7lrL/Tbuh2hw6w2WZNP2eddcKPLrwuEh8dERS5uM8X\nb8hrr8HSpQ3vwNu2jS+OYshFsVAuIspFREcEUjDFeiqpiOSHjghERMqETh8VEZGsqBAUOZ0jHVEu\nIspFRLnInQqBiEiFU49ARKRMqEcgIiJZUSEochr/jCgXEeUiolzkToVARKTCqUcgIlIm1CMQEZGs\nJFYIzKy1mb1uZo8mFUMp0PhnRLmIKBcR5SJ3SR4RnAG8CWgMqAmTJ09OOoSioVxElIuIcpG7RAqB\nmW0OHAz8G2jxeFYlWbJkSdIhFA3lIqJcRJSL3CV1RHAVcA6wKqHti4hISuyFwMx+Cix099fR0UCz\n5s6dm3QIRUO5iCgXEeUid7GfPmpmQ4DjgG+BdsB6wP3ufnyd56hvICKShWxOH010HoGZ9QHOdvef\nJRaEiEiFK4Z5BPr2LyKSoKKcWSwiIvFJ9IjAzA4ysxlmNsvMzmvkOdekHp9iZrvGHWNcmsuFmR2T\nysEbZjbezHZOIs44ZPK5SD2vp5l9a2aHxxlfnDL8HalJTc6cZma1MYcYmwx+RzqZ2ZNmNjmVi34J\nhFlwZnaLmS0ws6lNPKdl+013T+QHaA3MBqqBNYDJQLd6zzkYeCL19z2BiUnFWwS52BvokPr7QZWc\nizrPew54DPhl0nEn+LmoAqYDm6dud0o67gRzcQkwNJ0H4FOgTdKxFyAXvYFdgamNPN7i/WaSRwS9\ngNnuPtfdVwJ3A4fVe86hwK0A7v4SUGVmG8UbZiyazYW7T3D3pambLwGbxxxjXDL5XACcDvwH+CTO\n4GKWSS6OJpx19z6Auy+KOca4ZJKLjwhnIZL681N3/zbGGGPh7uOAxU08pcX7zSQLwWbA/Dq330/d\n19xzynEHmEku6uoPPFHQiJLTbC7MbDPCTuD61F3l2ujK5HOxHbC+mT1vZpPM7LjYootXJrm4CdjR\nzD4EphCWsalELd5vtiloOE3L9Je3/jmx5fhLn/G/ycz6AicB+xYunERlkosRwPnu7mZmlO/ExExy\nsQawG/BjYG1ggplNdPdZBY0sfpnk4gJgsrvXmNk2wNNmtou7f17g2IpRi/abSRaCD4At6tzeglC5\nmnrO5qn7yk0muSDVIL4JOMjdmzo0LGWZ5GJ34O5QA+gE/K+ZrXT3R+IJMTaZ5GI+sMjdvwS+NLMX\ngF2AcisEmeRiH2AwgLu/Y2ZzgK7ApFgiLB4t3m8mOTQ0CdjOzKrNrC3wa6D+L/IjwPEAZrYXsMTd\nF8QbZiyazYWZbQk8ABzr7rMTiDEuzebC3bd29y7u3oXQJzilDIsAZPY78jCwX2pZ97UJzcE3Y44z\nDpnkYgZwAEBqTLwr8G6sURaHFu83EzsicPdvzewPwBjCGQE3u/tbZva71OP/cvcnzOxgM5sNLAdO\nTCreQsokF8BAoCNwfeqb8Ep375VUzIWSYS4qQoa/IzPM7EngDcIijje5e9kVggw/F0OAkWY2hfAl\n91x3/yyxoAvEzO4C+gCdzGw+cDFhiDDr/aYmlImIVLhiWGJCREQSpEIgIlLhVAhERCqcCoGISIVT\nIRARqXAqBCIiFU6FQESkwqkQiIhUOBUCkQykLoIzxczWNLN1Uhc+2SHpuETyQTOLRTJkZpcD7YC1\ngPnuPizhkETyQoVAJENmtgZh8bMvgb1dvzxSJjQ0JJK5TsA6QHvCUYFIWdARgUiGzOwRYDSwNbCJ\nu5+ecEgieZHkhWlESoaZHQ987e53m1kr4EUzq3H32oRDE8mZjghERCqcegQiIhVOhUBEpMKpEIiI\nVDgVAhGRCqdCICJS4VQIREQqnAqBiEiFUyEQEalw/x8ZY/mHSBnVIwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7dc14a8>"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.8: Page 627"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.8\n",
+ "# Page: 627\n",
+ "\n",
+ "print'Illustration 11.8 - Page: 627\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#******Data******#\n",
+ "rate = 0.1;# [kg/s]\n",
+ "conc = 3.0;# [kg vapour/100cubic m]\n",
+ "Density_p = 720.0;# [kg/cubic m]\n",
+ "Density_bed = 480.0;# [kg/cubic m]\n",
+ "capablity = 0.45;# [kg vapour/kg carbon]\n",
+ "dp = 0.0028;# [m]\n",
+ "time = 3.0;# [h]\n",
+ "#********************#\n",
+ "\n",
+ "Vap_adsorbed = time*3600.0*rate;# [kg]\n",
+ "C_required = Vap_adsorbed*1.0/capablity;\n",
+ "# Two beds will be needed: one adsorbing and another regenerated.\n",
+ "totC_required = 2*C_required;# [kg]\n",
+ "print\"Amount of carbon required: \",totC_required,\" kg\\n\",\n",
+ "Vol = (C_required/Density_bed);\n",
+ "# Assume:\n",
+ "Z = 0.5;# [m]\n",
+ "Area = Vol/Z;# [square m]\n",
+ "# From Eqn. 6.66:\n",
+ "T = 35.0;# [OC]\n",
+ "viscosity_air = 1.82*10**(-5);# [kg/m.s]\n",
+ "Density_air = (29/22.41)*(273.0/(T+273));\n",
+ "e = 1-(Density_bed/Density_p);\n",
+ "G = rate*(100.0/conc)*(Density_air/(Area));# [kg/square m.s]\n",
+ "Re = dp*G/viscosity_air;\n",
+ "Z = 0.5;# [m]\n",
+ "def f78(delta_p):\n",
+ " return ((delta_p/Z)*(e**3*dp*Density_air)/((1-e)*G**2))-(150*(1-e)/Re)-1.75\n",
+ "delta_p = fsolve(f78,7);\n",
+ "print\"The pressure drop is:\",round(delta_p,2),\" N/square m\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.8 - Page: 627\n",
+ "\n",
+ "\n",
+ "Amount of caron required: 4800.0 kg\n",
+ "The pressure drop is: 1413.31 N/square m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 88
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.9: Page 636"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.9\n",
+ "# Page: 636\n",
+ "\n",
+ "print'Illustration 11.9 - Page: 636\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "Yo = 0.00267;# [kg H2O/kg dry air]\n",
+ "Yb = 0.0001;# [kg H2O/kg dry air]\n",
+ "Ye = 0.024;# [kg H2O/kg dry air]\n",
+ "Z = 0.61;# [m]\n",
+ "G_prime = 0.1295;# [kg/square m.s]\n",
+ "#******************#\n",
+ "\n",
+ "# The equilicrium data is plotted in Fig. 11.45 (Pg 637)\n",
+ "# The gel is initially \"dry\" and the effluent air initially of so low a humidity asto be substantially dry, so that the operating line passes through the origin of the figure\n",
+ "# The operating line is then drawn to intersect the equilibrium curve.\n",
+ "# Data = [Y[kg H2O/kg dry air] Y_star[kg H2O/kg dry air]]\n",
+ "Data =numpy.array([[0.0001, 0.00003],[0.0002, 0.00007],[0.0004 ,0.00016],[0.0006, 0.00027],[0.0008, 0.00041],[0.0010, 0.00057],[0.0012 ,0.000765],[0.0014, 0.000995],[0.0016, 0.00123],[0.0018 ,0.00148],[0.0020 ,0.00175],[0.0022 ,0.00203],[0.0024 ,0.00230]])\n",
+ "Val1 = zeros(13);\n",
+ "# Val1 = [1/(Y-Y_star)]\n",
+ "for i in range(0,13):\n",
+ " Val1[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "# Graphical Integration:\n",
+ "plt.plot(Data[:,0],Val1);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"Y(kg H20 / kg dry air)\");\n",
+ "plt.ylabel(\"1 / (Y-Y_star)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area under The curve between Y = Yb and Y = Y:\n",
+ "Area = [0 ,0.100 ,2.219 ,2.930 ,3.487 ,3.976 ,4.438 ,4.915, 5.432, 6.015, 6.728 ,7.716 ,9.304];\n",
+ "# The total number of transfer unit corresponding to adsorption zone:\n",
+ "NtoG = 9.304;\n",
+ "Val2 = zeros(13);\n",
+ "Val3 = zeros(13);\n",
+ "# Val2 = [(w-wb)/wo]\n",
+ "# Val3 = [Y/Yo]\n",
+ "for i in range(0,13):\n",
+ " Val2[i] = Area[i]/NtoG;\n",
+ " Val3[i] = Data[i,0]/Yo;\n",
+ "\n",
+ "# Eqn. 11.74 can be arranged as follows:\n",
+ "# f = integrate((1-(Y/Yo)),(w-wb)/wa,0,1)\n",
+ "\n",
+ "plt.plot(Val2,Val3);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"(w-wb) / wo\");\n",
+ "plt.ylabel(\"Y / Yo\");\n",
+ "plt.title(\"Break through curve\");\n",
+ "plt.show()\n",
+ "# From area above the curve of scf(2):\n",
+ "f = 0.530;\n",
+ "\n",
+ "Gs = G_prime;# [kg/square m.s]\n",
+ "# From Illustration: 11.6\n",
+ "kYap = 31.6*G_prime**0.55;# [kg H2O/cubic m s delta_Y]\n",
+ "kSap = 0.965;# [kg H2O/cubic m s delta_X]\n",
+ "# From Fig. 11.48:\n",
+ "Xt = 0.0858;# [kg H2O/kg gel]\n",
+ "# From Eqn. 11.76:\n",
+ "Ss = Yo*Gs/Xt;# [kg/square m.s]\n",
+ "m = 0.0185;# [average slope of equilibrium curve]\n",
+ "# From Eqn. 11.51 & Eqn. 11.52:\n",
+ "HtG = Gs/kYap;# [m]\n",
+ "HtS = Ss/kSap;# [m]\n",
+ "HtoG = HtG+(m*Gs/Ss)*HtS;# [m]\n",
+ "# From Eqn. 11.79:\n",
+ "Za = NtoG*HtoG;# [m]\n",
+ "# From Eqn. 11.74:\n",
+ "Degree = (Z-(f*Za))/Z;\n",
+ "Density_bed = 671.2;# [Illustration 11.6, kg/cubic m]\n",
+ "mass_gel = Z*Density_bed;# [kg/square m]\n",
+ "# At saturation point the gel contins:\n",
+ "Y1 = mass_gel*Degree*Xt;# [kg H2O/square m cross section]\n",
+ "# The air introduces:\n",
+ "Y2 = Gs*Yo;# [kg/square m s]\n",
+ "print\"Time to reach breakpoint is: \",round((Y1/(Y2*3600)),4),\" h\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.9 - Page: 636\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEZCAYAAABICyhRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8nPP5//HXWzZqOyKExHKCICSElLRqOZSgNKG2+Npi\na0m1pZugX+qrIpZqaWtfEiohlh+hkViag9oO4RDSSIKQRMSWRWzZrt8fn3vck8mcfWbuWa7n43Ee\nZ+7P3HPfn7kymevcn+2WmeGcc84V0hpJV8A551zl8eTjnHOu4Dz5OOecKzhPPs455wrOk49zzrmC\n8+TjnHOu4Dz5uIol6Y+S7mzk+Tck7Z3Pc5QySVtI+lySkq6LKz2efFzRkDRY0ouSlkiaL+kFSWfm\n8ZSNTnIzs95m9nS+ziGpRtLs5hxEUrWklZIS+z8raZak/VLbZva+ma1rPlnQtYInH1cUJP0G+Ctw\nOdDVzLoCZwA/kNSxgde09fNbiL/Yc32OvNRZUrtm7Gb5Or+rPJ58XOIkrQ9cDJxpZg+Y2RcAZlZv\nZseb2dJov5GSrpc0XtISoEbSIZJelbRI0vuSLko7bupq4XRJcyV9ECW5FAM6SholaXHUzNYv7fWz\nJP0wetxO0vmSZkb7viype/TcNdG5F0Xle7YyDrWS/k/Sf6JzTJS0YfR06gpsYdTU1T96zSmSpkr6\nTNIESVukHW+ApLckLZT0D0lPSTo1em6IpGclXS3pE+AiSVtJ+rekTyR9LOmf0b8NUdPhFsDD0fl/\nm3k1JqmbpHGSPpU0Q9JpaXX5o6SxDcXaVR5PPq4YfB/oBDzUjH2PBS4xs3WAZ4ElwPFmtj5wCHCm\npEEZr6kBtgEGAOemEgrhr/iBwBhgfWAc8Pe01xlxs9mvgcHAwWa2HnAy8FX0XB2wM7ABMBq4t6Gr\ntWa+vyHAxkBH4LdR+V7R7/Wjpq4Xo/d5HnA40AV4JnovSOoC3AucC3QG3iLEOb2JbHfg7ehcw6N4\nXApsCvQCNgf+CGBmJwDvA4dG578qS93vjvbZFDgSGC5p37Tnf0zDsXYVxpOPKwZdgE/MbGWqQNJz\nkhZI+jLjSuJBM3sewMy+MbOnzOzNaHsK4Qtwn4zjX2xmX5nZG8DthC/4lGfMbELUb/FPQhLJ5jTg\nAjObkTqXmX0WPb7LzBaY2Uozu5qQSLdrRRwMuN3MZprZ18BYoG8qJFn2PwO4zMzeimJ3GdA3uvr5\nEfCGmT0Y1eta4MOM139gZv+Inv/azN42syfNbJmZfQL8hdVjmZWkzYE9gHPNbKmZvQbcApyYtltz\nY+0qgCcfVww+Bbqk9+GY2R5mtkH0XKrcgFU66CX1lzRJ0keSFgI/AzZkVemveR/olrY9P+3xl8Ca\nDfQlbUa4SlhN1AQ1NWreWkD4y75LA++1KekJ4itgnUb23RK4JkrSCwixAuhOuPqYk7F/5nZmLLtK\nulvSHEmLgDtZPZYN6QZ8lmoyjbwf1SWlubF2FcD/4V0xeB74BjisFa8dDTwIbGZmVcANrP653iLj\n8dxWnGc2oeluFZL2An4HHGVmVVHCXETuO+azjSh7H/ipmW2Q9rN2dGU4j5AwU/VU+nYDxxwOrAB6\nR82YJ7BqLBsb1fYB0FlSerLcgtUTnnOAJx9XBMxsIWHAwXWSjpC0rqQ1JPUF1k7bNdsX+jrAAjNb\nKml34H9Y/UvyD5LWkrQjoT/lnlZU8xbgEknbKNhJUufo/MuBTyR1lHQhsF4rjp/SUNL6GFgJbJ1W\ndgNwvqQdIAzckHRU9Nx4oI+kQZLaAz8HNmni3OsAXwCLo8EUv8t4fn7G+b9lZrOB54DLJHWStBNw\nCqF5zbnVePJxRcHMriR06v+e0PT0IeHL9feEKyNYdQBAylDg/yQtBv6X7InlKWAm8ARwpZk90cjx\nGvrr/mpCH8xjhCubm4E1gYnABGA6MIvQVPZ+xvEau2Jo7PzfvtbMviQMBng2ambb3cweJAxNvztq\nJpsCHBjt/wlwFHAF8AlhAMHLhCvMhup1MbBr9P4eBu7P2OcyQiJfIOnXWep7LFBNuAp6ALjQzP7d\nyPl8flAFUz7nh0m6jTAC6SMz65NW/gvCl8YK4F9mdm5Ufh7hr6UVwC/N7LGovB8wkvCffbyZ/Soq\n7wTcQfgP8ylwjJm9l7c35EqKpGrgHaB9+mCGShT1rcwG/sfMnkq6Ps7l+8rnduCg9IJo6OVAYCcz\n6w1cFZXvABwD7BC95rqonRrgeuBUM+sJ9JSUOuapwKdR+V8IfwU65/h2nk9V9Efa+VHxC0nWybmU\nvCYfM3sGWJBRfCZheOiyaJ+Po/JBwJhomOcsQjNJf0mbAuuaWV203x3EHdMDgVHR4/uB1PwN51Iq\nuWnn+4T/Rx8TWiAOM7NvGn+Jc4WRRJ9PT2BvhXW7aiV9NyrvxqojY+YQhmlmls8lHr7ZnWi4qJkt\nBxZFncDOYWazzKxdpTa5mdnFZtbFzNYzs++b2UtJ18m5lPYJnXMDM/uepN0InbhbJVAP55xzCUki\n+cwhjITBzF6K1obqQrii2Txtv82ifeey6vyEVDnRc1sAH0TDSddPzTpPJ6mSm16cc67VzCwvi8km\n0ez2ILAfgKRtgY7RsNBxwOBorkQPQvNcnZl9SJh30D8agHAC8Rpg44CTosdHAk82dFIz8x8zLrro\nosTrUCw/HguPhcei8Z98yuuVj6QxhLWhNlS4b8mFwG3AbZKmAEuJ1n4ys6mSxgJTCZP2hlr87ocS\nhlqvRRhqPSEqvxW4U9IMwlDrwfl8P+Vg1qxZSVehaHgsYh6LmMeiMPKafMzs2AaeOqGB/YcTlvjI\nLJ8M9MlS/g1wdFvq6JxzrvB8hYMKM2TIkKSrUDQ8FjGPRcxjURh5XeGgWEiySnifzjmXS5KwMhpw\n4BJUW1ubdBWKhsci5rGIeSwKw5OPc865gvNmN+ecc1l5s5tzzrmy4smnwnh7dsxjEfNYxDwWheHJ\nxznnXMF5n49zzrmsvM/HOedcWfHkU2G8PTvmsYh5LGIei8Lw5OOcc67gvM/HOedcVt7n45xzrqx4\n8qkw3p4d81jEPBYxj0VhePJxzjlXcN7n45xzLivv83HOOVdWPPlUGG/PjnksYh6LmMeiMDz5OOec\nKzjv83HOOZeV9/k455wrK558sli2DM45B8rxYsnbs2Mei5jHIuaxKIy8Jh9Jt0maL2lKlud+I2ml\npM5pZedJmiFpmqQBaeX9JE2JnrsmrbyTpHui8hckbZmLenfoALffDp99loujOeecy5TXPh9JewFL\ngDvMrE9a+ebAzcB2QD8z+0zSDsBoYDegO/AE0NPMTFIdcJaZ1UkaD1xrZhMkDQV6m9lQSccAh5vZ\n4Cz1aHGfzy67wC23QL9+rXrrzjlX8kq2z8fMngEWZHnqauD3GWWDgDFmtszMZgEzgf6SNgXWNbO6\naL87gMOixwOBUdHj+4Ef5qru1dXw7ru5Oppzzrl0Be/zkTQImGNmr2c81Q2Yk7Y9h3AFlFk+Nyon\n+j0bwMyWA4vSm/HaokcPmDUrF0cqLt6eHfNYxDwWMY9FYbQv5MkkfQc4HzggvbgQ5x4yZAjV1dUA\nVFVV0bdvX2pqaoD4w5a+vWwZvPtuw8/7dulvpxRLfZLcrq+vL6r6JLldX19fVPUp5HZtbS0jR44E\n+Pb7Ml/yPs9HUjXwsJn1kdSH0JfzZfT0ZoQrmf7AyQBmNiJ63QTgIuA9YJKZ9YrKjwX2NrMzo33+\naGYvSGoPzDOzjbLUocV9Pg8/DNdfD+PHt/QdO+dceSjZPp9MZjbFzLqaWQ8z60FoTtvVzOYD44DB\nkjpK6gH0BOrM7ENgsaT+kgScADwUHXIccFL0+EjgyVzVtVyb3Zxzrhjke6j1GOA5YFtJsyWdnLHL\nt5cjZjYVGAtMBR4FhqZdrgwFbgFmADPNbEJUfiuwoaQZwNnAsFzVvbo6JJ9ym+uT2eRUyTwWMY9F\nzGNRGHnt8zGzY5t4fquM7eHA8Cz7TQb6ZCn/Bji6jdXMap11YO21Yf582GSTfJzBOecql6/t1ojd\ndoO//Q2+9708VMo554pc2fT5lJoePXyuj3PO5YMnn0aU46ADb8+OeSxiHouYx6IwPPk0wlc5cM65\n/PA+n0ZMmAB//jM8/ngeKuWcc0XO+3wSUo7Nbs45Vww8+TRiyy1h9mxYsSLpmuSOt2fHPBYxj0XM\nY1EYnnwaseaa0LkzzJuXdE2cc668eJ9PE/bYAy6/HPbaK8eVcs65Iud9PgnyuT7OOZd7nnyaUG6D\nDrw9O+axiHksYh6LwvDk0wSf6+Occ7nnfT5NePJJuOQS8D+GnHOVxvt8ElRuzW7OOVcMPPk0YfPN\nw1DrZcuSrklueHt2zGMR81jEPBaF4cmnCR06hPv5zJmTdE2cc658eJ9PM+yzD1x0Eey3Xw4r5Zxz\nRc77fBLmc32ccy63PPk0QzkNOvD27JjHIuaxiHksCsOTTzP4XB/nnMst7/NphqefhvPPh//8J4eV\ncs65Iud9PgnzKx/nnMstTz7N0L07fPIJfP110jVpO2/PjnksYh6LmMeiMPKafCTdJmm+pClpZVdK\n+q+k1yQ9IGn9tOfOkzRD0jRJA9LK+0maEj13TVp5J0n3ROUvSNoyH++jXbsw2fT99/NxdOecqzx5\n7fORtBewBLjDzPpEZQcAT5rZSkkjAMxsmKQdgNHAbkB34Amgp5mZpDrgLDOrkzQeuNbMJkgaCvQ2\ns6GSjgEON7PBWerRpj4fgP33h9/9Dg48sE2Hcc65klGyfT5m9gywIKPscTNbGW2+CGwWPR4EjDGz\nZWY2C5gJ9Je0KbCumdVF+90BHBY9HgiMih7fD/wwL28En+vjnHO5lHSfzynA+OhxNyB9EZs5hCug\nzPK5UTnR79kAZrYcWCSpcz4qWi5zfbw9O+axiHksYh6Lwmif1IklXQAsNbPRhTjfkCFDqK6uBqCq\nqoq+fftSU1MDxB+2xra//BLefbf5+/t28W+nFEt9ktyur68vqvokuV1fX19U9Snkdm1tLSNHjgT4\n9vsyX/I+z0dSNfBwqs8nKhsCnA780My+jsqGAZjZiGh7AnAR8B4wycx6ReXHAnub2ZnRPn80sxck\ntQfmmdlGWerQ5j6f55+Hs8+GF19s02Gcc65klGyfTzaSDgJ+BwxKJZ7IOGCwpI6SegA9gToz+xBY\nLKm/JAEnAA+lveak6PGRwJP5qrfP9XHOudzJ91DrMcBzwHaSZks6BfgbsA7wuKRXJV0HYGZTgbHA\nVOBRYGja5cpQ4BZgBjDTzCZE5bcCG0qaAZwNDMvXe9lkE1iyJPyUsswmp0rmsYh5LGIei8LIa5+P\nmR2bpfi2RvYfDgzPUj4Z6JOl/Bvg6LbUsbkk2HJLeO892HHHQpzROefKl6/t1gIHHww//zkcemgO\nKuWcc0WurPp8Slm5DLd2zrmkefJpgXKYaOrt2TGPRcxjEfNYFIYnnxbwEW/OOZcb3ufTAi+/DD/9\nKbzySg4q5ZxzRc77fIqEX/k451xuePJpgQ03hOXLYeHCpGvSet6eHfNYxDwWMY9FYXjyaQHJR7w5\n51wueJ9PCw0cCCefDIcfnpPDOedc0fI+nyLiVz7OOdd2nnxaqNQHHXh7dsxjEfNYxDwWheHJp4XK\nYaKpc84lzft8Wui11+D442HKlJwczjnnilY++3w8+bTQokXQvTt8/nkY/eacc+Uq0QEHkjpIOkTS\n5ZLukXR39PiQ6O6hFWX99aFjR/j006Rr0jrenh3zWMQ8FjGPRWE0mnwk/S/wEnAoMI1wL55RwFvA\nj4GXJf0h35UsNt7v45xzbdNos5ukgcDDDbVZSVoDONTMxuWpfjmRy2Y3gCOOgGOOgaMLchs755xL\nRmLNblFSWUPSVQ08v7LYE08++Fwf55xrmyb7fMxsBbCn5N3rKaU818fbs2Mei5jHIuaxKIzmDhio\nBx6SdC/wZVRmZvZAfqpV3Hr0gEceSboWzjlXupo11FrSyOjhKjub2cl5qFPO5brPZ+pU+MlPYNq0\nnB3SOeeKjs/zaaNcJ58vvoAuXcLvNXyNCOdcmUp8YVFJa0k6S9J1km6XdJuk2/JRoVKw9tqw3now\nf37SNWk5b8+OeSxiHouYx6Iwmvt3+51AV+AgoBbYHFjS1IuiJDVf0pS0ss6SHpc0XdJjkqrSnjtP\n0gxJ0yQNSCvvJ2lK9Nw1aeWdoomvMyS9IGnLZr6fNivlQQfOOZe05vb51JtZX0mvm9lOkjoA/zGz\n/k28bi9CkrrDzPpEZVcAn5jZFZLOBTYws2GSdgBGA7sB3YEngJ5mZpLqgLPMrE7SeOBaM5sgaSjQ\n28yGSjoGONzMBmepR06b3QAGD4Yf/xiOOy6nh3XOuaKReLMbsDT6vUhSH6AK2KipF5nZM8CCjOKB\nhFUSiH4fFj0eBIwxs2VmNguYCfSXtCmwrpnVRfvdkfaa9GPdD/ywme+nzXyuj3POtV5zk8/NkjoD\nfwDGAVOBK1p5zq5mluotmU9ozgPoBsxJ228O4Qoos3xuVE70ezaAmS0nJMfOraxXi5Rqs5u3Z8c8\nFjGPRawcY/HCC7BiRdK1WFVz5/k8aWafAU8BPQAkbdXWk0dNagUZbjdkyBCqq6sBqKqqom/fvtTU\n1ADxh60l24sXw6xZrX+9bye/nVIs9Ulyu76+vqjqk+R2fX19UdWnrdt33VXL0KEwf34N7do1vn9t\nbS0jR44E+Pb7Ml+a2+fzipntmlE22cz6NeO11YT14VJ9PtOAGjP7MGpSm2Rm20saBmBmI6L9JgAX\nAe9F+/SKyo8F9jazM6N9/mhmL0QrbM8zs9WaA/PR5zNjBhx0ELz9dk4P65xzOfX738PKlXBV1kXS\nGpfPPp9Gr3wk9QJ2AKok/QQQYaLpesCarTznOOAk4PLo94Np5aMlXU1oTusJ1EVXR4sl9QfqgBOA\nazOO9QJwJPBkK+vUYltsAXPmhEvZdu0KdVbnnGu+b76BkSPh2WeTrsnqmurz2ZZw64T1o9+HRr93\nBU5v6uCSxgDPAdtJmi3pZGAEcICk6cB+0TZmNhUYS+hPehQYmna5MhS4BZgBzDSzCVH5rcCGkmYA\nZwPDmvOmc6FTJ9hoI5g7t1BnzI3MJqdK5rGIeSxi5RSL+++HnXeGnj2TrsnqGr3yMbOHCGu6fd/M\nnm/pwc3s2Aae2r+B/YcDw7OUTwb6ZCn/BkjsxgapQQdbbJFUDZxzrmHXXw9nn510LbJrbp/PlcAl\nwFfABGBn4BwzuzO/1cuNfPT5AJxwAvzwhzBkSM4P7ZxzbfLGGzBgALz3HnTo0LpjFMM8nwFmtpjQ\n7DYL2Br4XT4qVEp8ro9zrljdcAOcdlrrE0++NTf5pJrnDgXuM7NFZKxwXYlKca5PObVnt5XHIuax\niJVDLJYsgdGj4fQme+aT09zk83A0RLof8KSkjYGv81et0uBXPs65YjRmDOy1F2y+edI1aVizb6kg\naUNgoZmtkLQ2YcmbD6PnDjCzx/NYzzbJV5/PrFmw997w/vs5P7RzzrWKGfTrB5deCgcf3LZjFf39\nfCS9ama75KA+eZGv5LN8ebi9wuefQ8eOOT+8c8612EsvwdFHhwnwa7TxfmPFMODAZdG+PXTrBrNn\nJ12T5iuH9uxc8VjEPBaxUo/F9dfDz35W/De6bO7abq4BqUEHW2+ddE2cc5VuwQJ44AGYPj3pmjTN\nm93a6JRTYI89wpBG55xL0jXXhBWsx4zJzfESa3aTtF4zj1NiA45zp0eP0htu7ZwrP2Zhbs+ZZyZd\nk+ZpqlXw1WgV6UaZ2U9yVJ+SU2pzfUq9PTuXPBYxj0WsVGPx1FOhn2evvZKuSfM0lXz2A46R9Lik\nIlyaLnk+18c5VwxuuAHOOAOUl0ay3Gvu2m4/AkYCLwEro2Izs4H5q1ru5LPPZ84c2G03mDcvL4d3\nzrkmzZ8P220X/hCuqsrdcRO7n0908u2B3wBPA/8gXlan4pfXgTDUesEC+OorWGutpGvjnKtEt90G\nRxyR28STb00NOBhBuNnbVWZ2pJlNMrPa6OepwlSxuK2xRrilwnvvJV2T5inV9ux88FjEPBaxUovF\nihVw002lM9Agpak+nxVAXzN7NFUg6ZH8Vqn0lNqgA+dc+Zg4ETbcEL773aRr0jItnudT7HN6ssln\nnw+E2cR9+5beXx7OudI3cCAMGgSnnpr7Yyc5z+cGSetnFNfnoyKlzOf6OOeS8P778OyzMHhw0jVp\nuaaa3d4GJks6LlVgZifnt0qlp5Sa3UqtPTufPBYxj0WslGJx881w3HFhgeNS0+hoNzO7UtJo4C+S\nTgGuJwy1VnjaHihAHYuez/VxzhXasmVwyy3wxBNJ16R1mjvP5yTgUuBJ4nk+JXMVlO8+n/nzYccd\n4ZNP8nYK55xbxX33wd/+FlY2yJfE5vlI6g1cB8wDdjMzn0qZxcYbh3k+n38O666bdG2cc5UgtaJB\nqWqqz+de4FIzO8YTT8Ok0O9TCk1vpdSenW8ei5jHIlYKsZg+HaZMgZ+U8KqaTSWffmY2sbEdpNat\nJCTpPElvSpoiabSkTpI6R+vITZf0mKSqjP1nSJomaUBaeb/oGDMkXdOauuRCKQ06cM6VthtvhJNP\nhk6dkq5J6zXa5yPpKeAR4CEzm57x3HbAYcAhZrZ3i04qVQP/BnqZ2TeS7gHGAzsCn5jZFZLOBTYw\ns2GSdgBGA7sB3YEngJ5mZpLqgLPMrE7SeOBaM5uQcb689vkAnHUWbLst/PKXeT2Nc67CffUVbL45\n1NXBVlvl91xJ3kZ7APAp8A9J86IrkhmS5gF/B+YD+7fivIuBZcB3JLUHvgN8AAwERkX7jCIkN4BB\nwBgzW2Zms4CZQH9JmwLrmlldtN8daa8pKL/ycc4Vwr33hsWM85148q3R5GNm35jZbWZ2ALAZsBew\nJ7CZmR1gZiPNbGlLT2pmnwF/Bt4nJJ2FZvY40NXM5ke7zQe6Ro+7AXPSDjGHcAWUWT43Ki+4Uhlu\nXQrt2YXisYh5LGLFHovrry/tgQYpTa5qnWJmKwgJoc0kbQ2cDVQDi4B7JR2fcT6TlLO2siFDhlBd\nXQ1AVVUVffv2paamBog/bG3Z/vRTePfd3B3Pt/O/nVIs9Ulyu76+vqjqk+R2fX19UdUnfbu+HmbO\nrGWddQByf/za2lpGjhwJ8O33Zb60eG23nJxUOgY4wMxOi7ZPAL5HuHndvmb2YdSkNsnMtpc0DMDM\nRkT7TwAuAt6L9ukVlR8L7GNmZ2ScL+99Pp99Fq5+Fi4snZs5OedKyxlnhNu4XHhhYc6XZJ9PvkwD\nvidprWi03P7AVOBh4KRon5MIt3MAGAcMltRRUg+gJ1BnZh8CiyX1j45zQtprCmqDDcLvhQuTOLtz\nrtx9/jnccw+cdlrSNcmNphYWnSjpnOiGcjljZq8RBge8DLweFd8EjAAOkDSdcBU0Itp/KjCWkKAe\nBYamXcoMBW4BZgAzM0e6FYpUGguMZjY5VTKPRcxjESvWWNx1F+y3X7jyKQdN9fkMAQ4C/hgNrX6R\n8OX/hJl90ZYTm9kVwBUZxZ/RwOg5MxsODM9SPhno05a65EpqxNuuuyZdE+dcOTELAw3+/Oeka5I7\nze7zkdQO6A8cTLgq+RqYGCWRolaIPh+Aq68OY+/vvjvvp3LOVZDnn4cTT4S33gp3Ty6UfPb5tHrA\ngaSNgAFmdlduq5R7hUo+S5aEprdnnw0TTp1zLhdOPBF23hl+85vCnrcoBxyY2celkHgKaZ11wkoH\nVxTxtWCxtmcnwWMR81jEii0Wn34K48bBkCFJ1yS3khrtVrZ+8Qv4f/8PZs9OuibOuXIwcmS4VfaG\nGyZdk9xKZJ5PoRWq2S3ld78LN3r6618LdkrnXBlauRK23z4koD32KPz5i7LZTVJJ3EguCeecA3fc\nAR9/nHRNnHOlbNIkWGst+P73k65J7rWl2e3/claLMtOtGxx9NFyT2A0eGlZs7dlJ8ljEPBaxYopF\nah23clw1pak7mU5p5OmNc1yXsvL738Puu4cmuPXXT7o2zrlS88EH8OSTcPvtSdckP5q6n898wiTT\nBVmefs7MSmKubaH7fFKOPx5694Zhwwp+audcibvkEpg7N9wuOymJzfORdBtwu5k9k+W5MWZ2bD4q\nlWtJJZ833oD994d33oHvfKfgp3fOlajly8P9esaNg759k6tHYgMOzOyUbIkneq4kEk+SeveG730P\nbrst6ZrEiqk9O2kei5jHIlYMsRg/Hrp3Tzbx5JvP88mz886DK6+EpS2+5Z5zrlLdcEN53DCuMT7P\npwD23z/0/5TbDGXnXO69+264Tfbs2WGYdZKKcp6Pa77zz4cRI2DFiqRr4pwrdjfdFNZySzrx5Jsn\nnwLYd1+oqgrL7iStGNqzi4XHIuaxiCUZi6VLQx/xz36WWBUKxpNPAUjh6mf48HBfDuecy+aBB8JA\npe22S7om+ed9PgWycmVYEv3KK+GggxKtinOuSNXUhJXxjzwy6ZoE3udTBtZYI4x8G77avVidcw6m\nToXp02HQoKRrUhiefAro6KPDjOVnss6cKgxv2495LGIei1hSsbjxRjj1VOjQIZHTF5wnnwJq3x7O\nPRcuuyzpmjjniskXX8A//wmnn550TQrH+3wK7JtvwrIZjzwCu+ySdG2cc8XgttvgwQfDcjrFxPt8\nykinTuE+7H7145xLqYQVDTJ58knAT38KtbXw1luFP7e37cc8FjGPRazQsZg8GT76CA48sKCnTVxi\nyUdSlaT7JP1X0lRJ/SV1lvS4pOmSHpNUlbb/eZJmSJomaUBaeT9JU6LnivD2batbZ50wnPLyy5Ou\niXMuaTfcECaVtmuXdE0KK7E+H0mjgKfM7DZJ7YG1gQuAT8zsCknnAhuY2TBJOwCjgd2A7sATQE8z\nM0l1wFlmVidpPHCtmU3IOFfR9PmkfPYZbLMN1NfDFlskXRvnXBIWLYLqapg2Dbp2Tbo2qyu7Ph9J\n6wN7mdltAGa23MwWAQOBUdFuo4DDoseDgDFmtszMZgEzgf6SNgXWNbO6aL870l5T1Dp3htNOg6uu\nSromzrkIhB78AAAWsElEQVSk3HlnaG4rxsSTb0k1u/UAPpZ0u6RXJN0saW2gq5nNj/aZD6T+SboB\nc9JeP4dwBZRZPjcqLwnnnBOGV370UeHO6W37MY9FzGMRK1QszOD66ytvoEFK+wTPuyuhuewlSX8F\nVrnZdNSklrO2siFDhlBdXQ1AVVUVffv2paamBog/bElsDx4M55xTy+mnJ3P+St5OKZb6JLldX19f\nVPVJcru+vr4g52vXroaVK8Gsltra4nj/tbW1jBw5EuDb78t8SaTPR9ImwPNm1iPa3hM4D9gK2NfM\nPoya1CaZ2faShgGY2Yho/wnARcB70T69ovJjgX3M7IyM8xVdn0/Ku+/Cd78Lb78dVr52zpU/Mzji\nCNhnH/jVr5KuTcPKrs/HzD4EZkvaNiraH3gTeBg4KSo7CXgwejwOGCypo6QeQE+gLjrO4miknIAT\n0l5TEnr0gEMOgeuuS7omzrlCGTEC3nknLKdTqZKc5/ML4C5JrwE7AZcCI4ADJE0H9ou2MbOpwFhg\nKvAoMDTtUmYocAswA5iZOdKtFAwbBtdcA19+mf9zZTY5VTKPRcxjEct3LEaNCjeMGz8+TLuoVEn1\n+WBmrxGGTmfav4H9hwOrrQltZpOBPrmtXWHtsAP84Adwyy3wy18mXRvnXL5MmBDWd6ythW7dkq5N\nsnxttyLx0kvwk5+Evp+OHZOujXMu115+GX70o7CG2x57JF2b5im7Ph+3ut12g169wtBr51x5eftt\nGDgwNLeVSuLJN08+ReT880NH5IoV+TuHt+3HPBYxj0Us17H46KNw9+ILL4TDSmIKfGF48iki++wD\nXbrA/fcnXRPnXC588QUceigMHly5k0kb4n0+ReaRR+APf4BXXwXlpaXVOVcIy5aFK52uXeHWW0vz\n/7P3+VSQQw4JE9AefTTpmjjnWsssXOmYhdtjl2LiyTdPPkVGgvPOg0svDR/cXPO2/ZjHIuaxiOUi\nFhddBK+/DmPHQocOba9TOfLkU4SOOip0Uj7zTNI1cc611I03wujR8K9/VfYk0qZ4n0+RuuUWuO++\nMCnNOVcaHnoIzjwz/OG49dZJ16bt8tnn48mnSH3zTfjwPvQQ9OuXdG2cc015/vkwl+fRR8NiweXA\nBxxUoE6d4Le/hcsuy+1xvW0/5rGIeSxirYnFtGlw+OFwxx3lk3jyzZNPETv9dHj6afjvf5OuiXOu\nIfPmwcEHhwniBx+cdG1Khze7Fbk//QlmzoTo/k7OuSKyeDHsvXcYJHTBBUnXJve8z6eNSjn5LFgA\n22wDkydDnm8s6JxrgaVLw0Kh224L//hHec7l8T6fCrbBBqH57aqrcnM8b9uPeSxiHotYc2KxciWc\nfDKsuy787W/lmXjyzZNPCTjnnDBv4MMPk66Jcw7CDSBnzQr/L9u1S7o2pcmb3UrEWWeFCWsjRiRd\nE+cq2zXXwA03wLPPQufOSdcmv7zPp43KIfm89x7sumsYfLDBBknXxrnKNHYs/PrXIfFsuWXStck/\n7/NxbLkl/PjHoWOzLbxtP+axiHksYg3ForY2tED861+VkXjyzZNPCTn3XLj22nCPEOdc4UyZAkcf\nDXffDTvvnHRtyoM3u5WYI4+EPfeEs89OuibOVYbZs8Otr6+4Ao49NunaFJb3+bRROSWfyZNh0KBw\nT/hOnZKujXPlbcGC8MfeKafAb36TdG0Kz/t83Lf69YPeveHOO1v3em/bj3ksYh6LWCoWX38d/tA7\n8MDKTDz5lmjykdRO0quSHo62O0t6XNJ0SY9Jqkrb9zxJMyRNkzQgrbyfpCnRc9ck8T4K7fzzw5Dr\n5cuTrolz5WnFCjjuOOjWLXcTvN2qEm12k/RroB+wrpkNlHQF8ImZXSHpXGADMxsmaQdgNLAb0B14\nAuhpZiapDjjLzOokjQeuNbMJGecpm2Y3CHc4PeII+OADGDUKttsu6Ro5Vz7M4Be/gDffDPfTquTm\n7bJsdpO0GfAj4BYg9eYGAqOix6OAw6LHg4AxZrbMzGYBM4H+kjYlJK66aL870l5TtqRwo7kTToAf\n/AD++tew3Idzru0uvzysJv/gg5WdePItyWa3vwC/A9K/Nrua2fzo8Xyga/S4GzAnbb85hCugzPK5\nUXnZW2MN+PnP4YUXQiLad194552mX+dt+zGPRcxjEW7gePnl8Je/1PLoo7D++knXqLy1T+Kkkg4F\nPjKzVyXVZNsnalLLWVvZkCFDqI6Wha6qqqJv377U1IRTp/7jleL2NtvAxRfXct99sPvuNfzpT7Dd\ndrVIxVG/Yt5OKZb6JLldX19fVPUp5PaTT9YycSKMHVvDDjvAaafVM2MGdO9eHPUr5HZtbS0jo/u3\nVOd5Gf1E+nwkDQdOAJYDawLrAQ8Q+nRqzOzDqEltkpltL2kYgJmNiF4/AbgIeC/ap1dUfiywj5md\nkXG+surzach//wsnnQRVVXDrrbD55knXyLnitXIl3HsvXHghbLIJXHppGFbtYmXX52Nm55vZ5mbW\nAxgM/NvMTgDGASdFu50EPBg9HgcMltRRUg+gJ1BnZh8CiyX1lyRCQnuQCtWrFzz3HNTUhHXgbr89\ndJ4652Jm8Mgj4f/IVVeFWyLU1nriKbRimeeT+oocARwgaTqwX7SNmU0FxgJTgUeBoWmXMkMJgxZm\nADMzR7pVmvbtw1DsJ54Iq+8OHBhu85uS2eRUyTwWsUqJxaRJYbWCYcPgoougrg4GDFj1fjyVEouk\nJdLnk87MngKeih5/BuzfwH7DgeFZyicDffJZx1K0887hP9af/gR9+8Jf/lJ5S4M4l/Lii+E217Nm\nwcUXw+DBfh+epPnyOhXg5ZdDX1CvXnDddbDxxknXyLnCeP11+N//hVdeCb9PPhk6dEi6VqWj7Pp8\nXGF997thTbittw5XRA88kHSNnMuv6dPDlf6AAWEawowZ8NOfeuIpJp58KsSaa4Y5DBdcUMuwYWHp\nkM8+S7pWyfK2/Vi5xOL99+G008Lk6969w80Xzz47fP6bq1xiUew8+VSY3r2hvh66dIE+fcKNsZwr\ndfPnw69+Ffo3N944XPlccEG49bwrTt7nU8Fqa0Mb+L77hgEJPqPblZoFC+DKK+HGG+H448NIz65d\nm36dax7v83F5UVMTOmQ7dICddgrDs50rBZ9/HkZy9uwJH38Mr74aphZ44ikdnnwqTGZ79rrrhr8a\nb7opXAUNHQpLliRTt0Lztv1YqcTi66/DVXrPnjB1Kjz/PNx8M2yxRe7OUSqxKHWefBwQbpg1ZQp8\n+WUYEff000nXyLnYsmXhD6SePUNz8WOPwejRYduVJu/zcasZNw7OOAOOOQaGD4e11kq6Rq4SLV0a\nJkpPmhTuW9WjR2hq698/6ZpVjnz2+XjycVl9+imcdVaYnHf77WFJEufyaelSeOmlcGUzaVJYlWD7\n7UPf5MCBsNdeSdew8njyaSNPPrHa2tpvl1JvjnvvhXPOCfMkDjww/Oy7b+grKnUtjUU5SyIWy5bF\nyaa2NtybqmfPkGz23Tcs9FlVVdAqAf65SJfP5JP42m6uuB11FBx5ZBgVN3FiGFF03HHQr1+cjPr2\nDTe3c64xy5aFlTYmTQrJ5vnnYZttQrI56ywYOzaZZOOS4Vc+rsW++CJ8eUycGH4WLoQDDgiJaMAA\nH+7qguXLQ7JJNaM99xxstVV8ZbPXXtC5c9K1dI3xZrc28uSTX7NmxYno3/8OXzCpq6I99oCOHZOu\noSuE5cvDfJvUlc2zz0J1dUg2NTWw996w4YbJ1tG1jCefNvLkE8t3e/ayZaGjOJWM3noL9tknTkbb\nbJO3U7eYt+3HWhOL5cvDUk2pK5v//CfMt9l33zjZdOmSj9rml38uYt7n40pGhw6ho3jPPeGSS+CT\nT8LKCRMnhtsUr7VWnIj22688Bi6UM7OwbtrMmfD226v+fuutcKv2mho45RQYORI22ijpGrtS4Vc+\nrmDM4I03YMKEkIxefDHcyjiVjHbZxQcuJGHFCpgzJ04qmYlmrbXC7Ti22Sb8pB5vu603o5U7b3Zr\nI08+xemLL+Cpp+Imus8+C001224bhtymvuw22WTV2xy7llu6NPTNZV69zJwZyrt0yZ5gtt7aF5yt\nZJ582siTT6yY27Pfey+MiEp9Kc6YEX5/+WX8pZielHr2hE03bX1iKuZYtJRZSN5z58I776x+9TJ3\nLmy2WfYE06MH1NWVTyzaqpw+F23lfT6uImy5ZfjJtGjRqgnpmWfCqgszZoRFULfeevWktM020K1b\n6TfjmcHixfDBB43/zJsH3/lOeM89eoT337s3DBoUHm+5pd/F0xUXv/JxJW3x4vCXfeoqKfV75syQ\ntNL/0k8lpZ49oXv35BPTkiXZk0hmWbt2Iak09rPppr4Gn8s9b3ZrI08+lenzz+Omp/SkNGNGuAlZ\nly7Qvn3806HDqtvN+WnOa9q1CxNxM5PK8uUhCWZLJOmPfUSgS0rZJR9JmwN3ABsDBtxkZtdK6gzc\nA2wJzAKONrOF0WvOA04BVgC/NLPHovJ+wEhgTWC8mf0qy/k8+US8PTtYsgT+9a9adtuthuXLafHP\nsmUt27+qavUks956xTOQwj8XMY9FrBz7fJYB55hZvaR1gMmSHgdOBh43sysknQsMA4ZJ2gE4BtgB\n6A48IalnlFGuB041szpJ4yUdZGYTknlbxa++vt7/YwHrrAPz5tWz1VY1SVelKPjnIuaxKIxEWr3N\n7EMzq48eLwH+S0gqA4FR0W6jgMOix4OAMWa2zMxmATOB/pI2BdY1s7povzvSXuOyWLhwYdJVKBoe\ni5jHIuaxKIzExwJJqgZ2AV4EuprZ/Oip+UBqicpuwJy0l80hJKvM8rlRuXPOuSKWaPKJmtzuB35l\nZp+nPxc1qXlHTY7NmjUr6SoUDY9FzGMR81gURmKj3SR1AB4BHjWzv0Zl04AaM/swalKbZGbbSxoG\nYGYjov0mABcB70X79IrKjwX2MbMzMs7lScw551qhrAYcSBJwKzA1lXgi44CTgMuj3w+mlY+WdDWh\nWa0nUGdmJmmxpP5AHXACcG3m+fIVPOecc62T1FDrPYGngdeJm9bOIySQscAWrD7U+nzCUOvlhGa6\niVF5aqj1WoSh1r8s2BtxzjnXKhUxydQ551xxSXy0W3NIOkjSNEkzovk/2fa5Nnr+NUm7NPVaSZ0l\nPS5puqTHJFWlPXdetP80SQPy++5appCxkFQt6StJr0Y/1+X/HTZfnmJxlKQ3Ja2QtGvGsSrtc5E1\nFhX6ubhS0n+j/R+QtH7ac5X2ucgaixZ/LsysqH+AdoR5PdVAB6Ae6JWxz48ITW4A/YEXmnotcAXw\n++jxucCI6PEO0X4dotfNBNZIOg4JxaIamJL0+y5wLLYHtgUmAbumHasSPxcNxaISPxcHpP69gRFU\n9vdFQ7Fo0eeiFK58dgdmmtksM1sG3E2YdJru28mpZvYiUCVpkyZe25IJrbvn5Z21XKFjUczyEgsz\nm2Zm07Ocr+I+F43EopjlKxaPm9nK6PUvAptFjyvxc9FQLFqkFJJPd2B22nZqgmlz9unWyGtbOqG1\nGBQ6FgA9okvoWoWBIsUiX7FoSCV+LhpTyZ+LU4Dx0eNK/1ykxwJa8Lkohfv5NHdERHOGUyvb8czM\n1PhcoGIZlVHoWHwAbG5mC6I2/wcl7WgZE4ITkstY5LsO+VboWFTs50LSBcBSMxudgzrkW6Fj0aLP\nRSkkn7nA5mnbm7PqXxrZ9tks2qdDlvK50eP5kjaxeELrR40cay7FoaCxMLOlwNLo8SuS3ibMsXol\nN2+nTXIZi2yvbep85fq5aDIWlfq5kDSE0EfywyaOVfafi2yxaPHnIulOsWZ0mrUH3iZ0ZnWk6U6z\n7xF3mjX4WkIn+7nR42Gs3oHYEegRvV5JxyGhWHQB2kWPt4o+fFVJxyGfsUh77SSgX9p2xX0uGolF\nxX0ugIOAN4EuGcequM9FI7Fo0eci8QA1M4gHA28ROvPOi8p+BvwsbZ+/R8+/xqojc1Z7bVTeGXgC\nmA48lh4k4Pxo/2nAgUm//6RiAfwEeAN4FZgMHJL0+y9ALA4ntHV/BXxIWP6pUj8XWWMBHFGBn4sZ\nhOW8Xo1+rqvgz0XWWLT0c+GTTJ1zzhVcKYx2c845V2Y8+TjnnCs4Tz7OOecKzpOPc865gvPk45xz\nruA8+TjnnCs4Tz6uZCh4RtJBaWVHSXpUUkdJT0laQ1KNpIfbcJ5ZkjqnbX97PEnHRUvJvy7pWUk7\npe3X5PL10X6bSpqYUVYtaUpr65xxrDa9/0aO203SvQ0811XS+GzPOZeNJx9XMixMSjsDuFpSJ0nr\nAJcCQ4HjgUcsXm23TadqZPsdYG8z2wm4BLgJQFI7wmS9gwiz3o+V1KuB4x8ETMhBPVtEUpuW0zKz\nD8zsqCzHbWdhYdrUml7ONcmTjyspZvYm8DDhvkMXAqPM7F3gWOChzP0l7SbpFUk9JG2kcNO8NyTd\nnHmFk/nSbI/N7HkzWxRtpi8n35zl61MOBB5t6D1K2iqqcz9J35E0VuGmbg9IekHh1vGZrzkousHX\nZMLKBKnyP0q6U9J/gDuiq8Od057/j6Q+GceqlvS0pMnRz/fTyqdEj4dIGifpScLqGADjCP8OzjWp\nFBYWdS7TxYQlPL4GvhtddfS2jHvPSNoDuBYYaGZzJP0deMLMLpd0IHBqA8cXMEnSimh7HeC/WfY7\nlXg5+WxL0/df7cChrtuZ2bSsJ5a2A8YAJ5nZFEm/BT41sx0l7UhYY8syXrMm4QpsXzN7W9I9Gfts\nD+xpZt9IOhEYApwjaVugk5llNvfNBw6I9u8JjAZ2y1LdXYA+ZrYw2q4Dfp3tfTmXya98XMkxsy8J\nVxZ3RlcZXYDMZdt7ATcCh5pZajXeH0Svw8wmAgsaOgVQY2a7mNkuwGlkLDsvaV/CvUzOTXtNc/Qn\nXDFlszHwIPA/aQkhvc5vAq9ned32wLtm9na0/c+0+howzsy+ibbvAw6NmuBOAW7PcryOwC2SXgfG\nEpoRs3ksLfEAzCMsROlckzz5uFK1klW/8NOTgxG+CL8CMvsgWnPvkszEsxNwM+GKKpXAmrN8PYTF\nGhtqcltIWLBxr8bOn0Vm4svc/8tvdwyJ+3HC3WqPAu7KcrxzgHlRv9Z3Cckomy8ztrPeI8q5bDz5\nuHLwCaFpLEWEL/JDgcsk7ROVPwscDSBpALBBS08kaQvgAeB4M5uZ9tTLQM+oX6QjcAyhDyTTfsR9\nJJmWElYSP1FSqu8kvc47AH2yvO4toFrSVtF2er9LtsR1C6E5si6t/yrdeoRVrAFOBNo1UN9MmxKS\np3NN8j4fV8oMwMxWRIMItjOzt6JyM7OPJB0KPCrpZEJf0RhJJwDPE75gs91lMdtot1TZhYSkdb0k\ngGVmtruZLZd0FjCR8GV9q5mt0k8kaSPgazP7oqH3Y2ZfRnV+XNLnwHXAKElvEpbsfxNYlPGiryX9\nFPiXpC+BZ4C1s9Q9tf8rkhaRvcmN6Jz3R/1DE4AlWWKz2nEJgy6ebuCYzq3Cb6ngykJ0Z8WuZnZ5\nI/t0BFZEyer7wD/MrGBDgyUdB3Q3syta8Jo1gA5R5//WhCazbc1seRvq0Q2YZGbbtfYYDRz3LuAq\nM3s1l8d15cmvfFy5GA08IekKa/gvqi2AsdEX+lLg9ILVDjCzbP0rTVkb+LekDoQmtDPbmHhOBP5E\n6NfJGUkbE25C6InHNYtf+TjnnCs4H3DgnHOu4Dz5OOecKzhPPs455wrOk49zzrmC8+TjnHOu4Dz5\nOOecK7j/DypUxCdPIYESAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7d96080>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNXV//HPEcVdxyXumkncjcq4BFBRxrhkNKLGJQSj\nZuL6yxOi5tEnuEVJXDHRoOIWJUFNIi4oQRR3GlBRNAokCgpRFMVdMSAuDHN+f9waqqcdYJie6qru\n/r5fr3nZ1VVTfebY9Ol7b91b5u6IiIi0WCHtAEREJFtUGEREpBUVBhERaUWFQUREWlFhEBGRVlQY\nRESkFRUGKWtm1mxm3+7g7zaa2YTOjqkjzGygmd2edhwioMIgnczMZpnZAjObZ2Yfm9loM9ssA3HV\nRkUkq+95TSiSzMjqPxIpXw4c4u5rAhsD7wHXLungFD6orUO/FOnsYPJfIsFzt/2CZiuW+jWlPKgw\nSGLc/UtgBLBDy3NmNszMbjCzB81sPlBvZpuY2Qgze9/MXjOzX+Yd393MJprZJ2Y2x8yuNbOV2no9\nM+tlZm+a2T5t7B4f/Xeumf3XzHoSfUs3s99HrZvXzKwh73w5M7vYzJ4CPgO+ZWZ7mtlzZjbXzCaZ\n2R55x88ys/3ytlt1D5nZ8Wb2hpl9aGbnR8d/ryVdQFczuzWK799mttuScmtm3zGzR83sIzN718zO\nzsvvRXnH1ZvZ7IIYf21mU4H50eO7C859tZldHT1e28yGRrl/y8wuynCrSzqJ/gdLEgzAzFYD+gIT\nC/b3Ay5y9zWiffcDLwKbAPsBZ5jZgdGxTcDpwHrAHtH+//naC4YP9L8DR7j7+ML9wN7Rf9d297Xc\n/Zkozh7A9Oj8VwBDC37vWOAkYA1CcXgAGAysC1wFPGBm60THOq27hBY/NrMdgOuiv31jYO3o7118\nCHAocEe0bxQwpI2/AzNbE3gMeDA611bA40uIoS0/Bg6KXmc4cLCZrRGduwtwNPC36NhhwFfAlsAu\nwIFRPqSCqTBIZzNgpJl9AswlfJD/IW+/AyPdvaVY7Ays7+4Xu3uTu78O3EL48MLdX3D3Se7e7O5v\nAH8Cehe8Zl/gRqDB3Z9fSlxtecPdh3pYNOw2YGMz2yAv1mHuPs3dmwkfiq+4+9+ieIYTikqfdrzm\nUcAod3/a3RcCF/D1D/AJ7v5QFMtfgW5LOO8hwBx3/6O7f+Xu8939uXb8rS1/0zXu/ra7f+nubwIv\nAD+M9n8PWODuk8xsQ0IB+ZW7f+7uHxCK4o+Xcn6pAOpjlM7mwGHu/kTUJ384MM7Mtnf396Nj3so7\n/pvAJlEhadGFqOvHzLYhfDPfDViN8J4t/PA/DbjN3V/uQLzvLg7cfUE0jLAG0BLr7LxjNwHeLPj9\nN4BN2/E6m5D3d7v752b2UcEx7+U9XgCsYmYrREUp3+bAa+14zSWZXbD9d0JL5nbgGOLWwjeBlYB3\n8oZXVuDrOZAKoxaDJMaD+4BFQK/8XXmP3wRed/d18n7WcvdDov03AC8DW7n72sB5fP19ezTwQzM7\nbWnhdPTPyHv8NuHDMt83o+chdDWtnrdvo7zfnwMsvjrLzFYldF91xJvAki7R/YxQQPNjKFSYi3sI\nYz2bEgr536PnZwNfAuvl/b9Z29136mDcUiZUGCQJLWMMZmaHAesA0/L35ZkEzIsGQVc1sy5mtqOZ\n7R7tXwOYBywws+2An7fxenMIXVanm9n/W0JMHwDNhL7y5f5bIg8C25hZPzNb0cz6AtsBo6P9k4Ef\nR/t2B47M+90RQB8z28PMugIDWXqXz9KMJnR5nW5mK5vZmmbWPS+Gg81sHTPbCDhjWSeLuohyhPGE\n19z9lej5d4BHgKui11jBzLZcwuC+VBAVBknC/WY2D/gUuAg43t1bCkOrwdGom+QQoI7QPfIBYRxh\nreiQswjdG/+Nnh9OGwO87j6bUBzONrMTCgNy9wXAJcBT0RVIPQpjyT9fW9vu/nEU65nAh1Fsh0TP\nA/yGUHg+IXzw/y3vd18CfhnFP4dQ7N4nfCP/Wl6WEEvLueYDBxDGNt4BXgXqo923A1OAWcBDfD1f\nS/J3Qv7+XvD88UBXQqvtY+Bu2m6FSAWxJG/UE10pMpjQZ3yLuw8q2L8O8GdCs/gL4IToH5BIRYuu\nAvqE0EX2RtrxiORLrMUQXfY2BGggXMfez8y2LzjsXOAFd+9G+GZydVLxiKTNzPqY2WpmtjrhSq2p\nKgqSRUl2JXUHZrr7rOjyvOHAYQXHbA+MBYj6NWvN7BsJxiSSpkMJA9VvE7qcdNmnZFKShWFTWl8W\n9xZfv6xvCnAEhBmuhCs8Ul9XRyQJ7n5ydGVPjbsf4O4z0o5JpC1JFob2DF5cDtSY2YtAf8Ls10UJ\nxiQiIsuQ5AS3twkTcVpsTuuJTbj7PGDxFSRm9jptTNwxM608KSLSAe6+3JdFJ9lieB7Y2sJyx10J\nyxaMyj8gWqCra/T4ZGBcdCne17i7fty58MILU48hKz/KhXJRzbn44gtn9GinsdFZbz2ne3dn0CBn\n5sz4mI5KrMXg7k1m1h94mHC56lB3n2Zmp0b7byJcrTQsahH8GzgxqXgqxaxZs9IOITOUi5hyEavk\nXCxYAA89BCNGwIMPwo47wpFHwm9/C1ts0Xmvk+haSe4+BhhT8NxNeY8nAtsmGYOISDmbNw8eeCAU\ng0cegd13h6OOgj/8ATbeOJnX1CJ6ZaaxsTHtEDJDuYgpF7FKyMUnn8D998M990AuB716hZbBDTfA\n+usn//qJznzuLGbm5RCniEhHffABjBwZWgZPPw3f+14oBn36QE1Nx85pZnjGBp8lAblcLu0QMkO5\niCkXsXLKxZw5cN11oQhstRU8+iiccEJ4fuRIOO64jheFYqgrSUSkhN54A+69N7QMXnoJDjkETjsN\nvv99WHXVtKML1JUkIpKwGTNCIRgxAl5/HQ47LHQT7bcfrLxycq/b0a4kFQYRkU7mDi+/HBeD996D\nI44IxaB3b1ixRH01GmOoEuXUf5o05SKmXMTSyoU7vPginH8+bL89NDTAxx/DkCHw9ttw/fWhhVCq\nolCMMghRRCSb3GHSpLhlAKFVcOut8N3vwgpl+tVbXUkiIsth0SJ46qlQCO69F9ZYI0w4O/JI6NYN\nrKM3bE1AR7uS1GIQEVmGpqYw0WzECLjvPthoo1AIHn4Ydtgh7eg6X5k2dKqX+pJjykVMuYh1Vi6+\n/DKsR3TCCaEQnHsu1NbCk0/C5Mnwm99UZlEAtRhERBb7/PN4kboHHogXqRs4sHMXqcs6jTGISFWb\nP7/1InW77RaKwQ9/mNwidaWieQwiIu00d25YpG7ECBg7FvbcMxSDww6Db1TQXec1j6FKqC85plzE\nlIvY0nLx0UcwYAB8+9th5dIjjwxLVIwZAyedVFlFoRgaYxCRijdvHgweDFdfHS4tnToVNtss7aiy\nK9GuJDNrAAYT7uB2i7sPKti/PvBXYCNCkfqDuw9r4zzqShKR5fb55+EeBoMGwQEHhEHkrbZKO6rS\nyVxXkpl1AYYADYRbePYzs+0LDusPvOjudUA9cKWZqRUjIkVZuBD+9CfYZhuYMAEefxz++tfqKgrF\nSHKMoTsw091nuftCYDhwWMEx7wBrRY/XAj5y96YEYyp76kuOKRcx5SJobobzz8+x/fZw993xhLQd\nd0w7svKS5LfzTYHZedtvAT0KjrkZeMLM5gBrAj9KMB4RqVDuMGpUWMCuuRluvhn23TftqMpXkoWh\nPYMC5wKT3b3ezLYEHjWzbu4+r/DAxsZGamtrAaipqaGuro76+nog/rZUDdv19fWZikfb2dlukZV4\nSrV95ZU5brkFunat57LLYPXVwSxH6J1OP75SbudyOYYNGwaw+POyIxIbfDaznsBAd2+Its8BmvMH\noM3sQeASd38q2n4cGODuzxecS4PPItLKxIlw3nnw1ltw0UVw9NHlu5ppUjI3+Aw8D2xtZrVm1hXo\nC4wqOGY6sD+AmW0IbAu8lmBMZa/w22E1Uy5i1ZSLqVPh0EOhb1/4yU/CDXH69o2LQjXlIimJFYZo\nELk/8DDwMnCnu08zs1PN7NTosEuB3c1sCvAY8Gt3/zipmESkfL36KvTrF+6NvP/+YfvEE8vjxjfl\nRktiiEimzZ4Nv/sdjBwJv/oVnHZauAeCLFsWu5JERDrs/fdDIairgw02CC2Ec89VUSgFFYYyo/7T\nmHIRq6RczJ0b3ze5uTmMIVxyCayzTvt+v5JykRYVBhHJhM8+g8svh623hnffhRdfDGsbbbhh2pFV\nH40xiEiqvvwyLF9x6aXQuzf89rew7bZpR1UZdM9nESkrTU1w++2hEOy0U1j6uq4u7agE1JVUdtR/\nGlMuYuWUi+ZmuOuusH7RrbfC3/8ebprTWUWhnHKRVWoxiEhJuIdWwXnnwUorwbXXhvkIttwdHZI0\njTGISOKefx7OOCNccXTxxeEWmioIydM8BhHJnOZmuOIK+MEP4OSTYcoUOPxwFYWsU2EoM+o/jSkX\nsSzm4p13wvIVo0fDc8/BT38KXbok/7pZzEW5UWEQkU43ejTsuiv06gVPPAFbbJF2RLI8NMYgIp3m\niy9gwAD4xz/CrTR79Uo7ouqmMQYRSdW0adCzJ8yZE2YtqyiULxWGMqP+05hyEUszF+7hVpr77AP9\n+4c5Cu1d1ygJel8UT/MYRKTDPvkETjkFZsyA8ePDwndS/jTGICId8uST4Q5qhx8OgwbBKqukHZEU\nyuQYg5k1mNl0M5thZgPa2H+Wmb0Y/fzLzJrMrCbJmESkOE1NMHBguMfy9deHFVBVFCpLYoXBzLoA\nQ4AGYAegn5m1ami6+x/cfRd33wU4B8i5+9ykYqoE6j+NKRexUuXizTdh333hqafghRfCxLWs0fui\neEm2GLoDM919lrsvBIYDhy3l+GOAOxKMR0SKcM89sPvu0KcPPPwwbLxx2hFJUhIbYzCzo4Dvu/vJ\n0faxQA93/2Ubx64GzAa2bKvFoDEGkfR89lm4xeYTT4SVULt3Tzsiaa8s3o9heT7J+wBPLq0bqbGx\nkdraWgBqamqoq6ujvr4eiJuO2ta2tjt3e8oU6NMnx3bbwYsv1rPmmtmKT9utt3O5HMOGDQNY/HnZ\nEUm2GHoCA929Ido+B2h290FtHHsfcKe7D1/CudRiiORyucVviGqnXMQ6OxfuYVnsiy6CP/4Rjj22\n006dOL0vYllsMTwPbG1mtcAcoC/Qr/AgM1sb2IcwxiAiKfvgA/jZz+D99+GZZ2DLLdOOSEot0XkM\nZnYQMBjoAgx198vM7FQAd78pOuanhLGIJRYGtRhESuOxx8IqqMcdB7/7HXTtmnZEUoyOthg0wU1E\n+Oor+M1vwsJ3t94a7qwm5S+TE9yk87UMNIlyka+YXMycCXvtBS+9BJMnl39R0PuieCoMIlVszBjY\nYw84/ni4/374xjfSjkiyQF1JIlVq6FA47zy4775QHKTyZPGqJBHJIHf47W/httvCiqjbbJN2RJI1\n6koqM+o/jSkXsfbmYuFCOPnkcOvNiRMrsyjofVE8tRhEqsT8+fCjH4XHuRyssUaq4UiGaYxBpAq8\n915YCbVbN7jxRlhppbQjklLQ5aoi0qZXXgmDy336wC23qCjIsqkwlBn1n8aUi9iScjFxIvTuHa4+\nuvBCsOX+7lh+9L4onsYYRCrUyJFhoPnWW+Hgg9OORsqJxhhEKtD118PFF8OoUeHmOlKdNI9BRGhu\nhnPPhXvvhSefhG9/O+2IpBxpjKHMqP80plzEcrkcX30VlrYYNw6efrp6i4LeF8VTi0GkAsyfH8YR\n1lwTHn8cVlst7YiknGmMQaTMvf12KAq9esE110CXLmlHJFmheQwiVeill2DPPeGYY2DIEBUF6RyJ\nFgYzazCz6WY2w8wGLOGYejN70cz+bWa5JOOpBOo/jVV7LsaNg333hUsugR49clUxR6E9qv190RkS\nKwxm1gUYAjQAOwD9zGz7gmNqgOuAPu6+I3BUUvGIVJI774Sjj4Y77oBjj007Gqk0iY0xmNkewIXu\n3hBtnw3g7pfnHfM/wEbufsEyzqUxBpHIVVeFnwceCGsfiSxJFucxbArMztt+C+hRcMzWwEpmNhZY\nE7ja3W9PMCaRstXcDGeeCY88Ei5H3WKLtCOSSpVkYWjPV/yVgF2B/YDVgIlm9oy7zyg8sLGxkdra\nWgBqamqoq6ujvr4eiPsUq2E7v/80C/Gkud3yXFbiSXK7uRnuuKOeadPg8stzvPYabLFFvH/y5Mmc\nccYZmYk3ze3BgwdX9efDsGHDABZ/XnZEkl1JPYGBeV1J5wDN7j4o75gBwKruPjDavgV4yN3vKTiX\nupIiuVxu8Rui2lVLLpqb4dRTYfp0ePDBMFehULXkoj2Ui1hHu5KSLAwrAq8QWgNzgElAP3eflnfM\ndoQB6u8DKwPPAn3d/eWCc6kwSFVqT1EQWZLMjTG4e5OZ9QceBroAQ919mpmdGu2/yd2nm9lDwFSg\nGbi5sCiIVKvmZjjllHA/BRUFKSXNfC4zaibHKjkX+UVhzJhl34azknOxvJSLmGY+i1SIlqLw6qvt\nKwoinU0tBpEMaW4ON9eZMSN0H6koSDHUYhApcyoKkhUqDGUm/xr+aldJuWhuhpNOgpkzO1YUKikX\nxVIuiqfCIJKylqLwn/+EZS7UUpC0aYxBJEUqCpIkjTGIlBkVBckqFYYyo/7TWDnnIr8odMZAcznn\norMpF8VTYRApsUWL4MQT4bXXQlFYffW0IxJpTWMMIiW0aFFoKbz+eug+UlGQJGVurSQRaa2lpTBr\nloqCZJu6ksqM+k9j5ZSLlqLwxhvJFIVyykXSlIviqTCIJCy/KIwerZaCZJ/GGEQS1HL10euvqyhI\n6WmMQSRj3OGss8JNdh59VEVBykeiXUlm1mBm081sRnQbz8L99Wb2qZm9GP2cn2Q8lUD9p7Gs5+Ky\ny0JBKEVLIeu5KCXloniJtRjMrAvhtp37A28Dz5nZqPxbe0bGufuhScUhkoabboJbboEnn4R11007\nGpHlk+Q9n/cALnT3hmj7bAB3vzzvmHrgTHfvs4xzaYxBysZdd8GvfgXjxsFWW6UdjVSzLK6VtCkw\nO2/7rei5fA7saWZTzOxBM9shwXhEEvfII9C/f5jRrKIg5SrJwtCer/gvAJu7ezfgWmBkgvFUBPWf\nxrKWi2eegZ/8BO69F7p1K+1rZy0XaVIuipfkVUlvA5vnbW9OaDUs5u7z8h6PMbPrzWxdd/+48GSN\njY3U1tYCUFNTQ11d3eIbfre8EbRdXdstshDP66/D2WfXc+ut0NSUI5cr7etPnjw59f8fWdmePHly\npuIp5XYul2PYsGEAiz8vO2KZYwxm1hX4ObBP9FQOuNHdFy7j91YEXgH2A+YAk4B++YPPZrYh8L67\nu5l1B+5y99o2zqUxBsmsWbNg771h0CA45pi0oxGJJTmP4YbouOsAA46Lnjtpab/k7k1m1h94GOgC\nDHX3aWZ2arT/JuAo4Odm1gQsAH68vH+ASJreew8OOAAGDFBRkMrRnhbDVHffeVnPJUkthlgul1vc\nhKx2aefi00+hvh4OPxwuvDC1MID0c5ElykUsyauSmsxs8fUVZrYl0LS8LyRSST7/HPr0gV694IIL\n0o5GpHMtscVgZn3d/U4z2w/4C/B6tKsW+Jm7P1GaENVikGxZuBCOOALWWgtuvx1W0FKUklEdbTEs\nrTA8QBgb+AXhCqNto12vuPsXHQ20I1QYJCuam+GnP4WPP4aRI2GlldKOSGTJOr0ryd1/ANwIjAZ+\nTSgOs4HVzEyT/FNSeKlmNSt1Ltzhf/83rJR6993ZKgp6X8SUi+It9aokdx9pZrOA8cCJQHPLLuDb\nyYYmki2XXAJjx4alLlZbLe1oRJKztK6kVYDzgKOBs9x9dCkDK4hFXUmSqhtugCuvDIvibbRR2tGI\ntE8S8ximAPcCu7j75x2OTKTMDR8eWgsTJqgoSHVY2vUUR7j7OSoK2aL+01gpcvHQQ3D66TBmDHzr\nW4m/XIfpfRFTLoq3xBaDu79UykBEsmbSJDj++HD10U47pR2NSOnons8ibXj1VejdG26+GQ45JO1o\nRDqm0y9XNbNjzGy94sISKT/vvgsHHQQXXaSiINVpaWMMWwB3m9mTZjbQzHqY2XJXHulc6j+NJZGL\nefPgBz8Ik9hOWuoykdmi90VMuSje0ia4Xe7u3wMOBqYCJwAvmNkdZnZ8tGS2SMX46is48kjYfXf4\nzW/SjkYkPcs9xmBm3wEOAg509wMTierrr6kxBklUy1IX//0vjBgBKyZ5CyuREun0tZKyRIVBkjZg\nQJi89uijmtUslSPJZbclQ9R/GuusXFx9NYwaBfffX75FQe+LmHJRvKVdlTTGzIqa0mNmDWY23cxm\nmNmApRz3XTNrMrMjink9keV1113whz+EiWzramlIEWDpayUdDVwC3Apcsax7PLfx+10I93zen7Ay\n63MU3PM577hHCbf2/Iu7j2jjXOpKkk43diz07QuPPQY7l+x+hCKl0+lrJbn73WY2BrgAeN7Mbies\nqhrt9quWce7uwEx3nxUFOBw4DJhWcNwvgXuA7y5v8CIdNXVqKAp33qmiIFJoWWMMC4H5wCrAmsAa\n0c+a7Tj3poT7N7R4K3puMTPblFAsboieUrNgGdR/GutoLt58M8xVuPZa2Hffzo0pLXpfxJSL4i2x\nxWBmDcBVwP2EFVYXLOe52/MhPxg42909mjynCXSSqI8/hoYGOPPM0GIQka9b2tXa5wFHF7GY3tvA\n5nnbmxNaDfl2A4ZHE6rXBw4ys4XuPqrwZI2NjdTW1gJQU1NDXV0d9fX1QPwNoRq26+vrMxVPOW33\n6FFPnz6w88456uoAshVfsdstshJPWtstz2UlnlJu53I5hg0bBrD487Ijljb4XNSIr5mtSBh83g+Y\nA0yijcHnvOP/Atzv7ve2sU+Dz1KUpiY46ihYYw247TZYQRdqSxVI4p7PRX0Su3sT0B94GHgZuNPd\np5nZqWZ2ajHnrmaF3w6rWXtz4Q79+8OCBfDnP1dmUdD7IqZcFC/Rif/uPgYYU/DcTUs49mdJxiLV\n6+KLw70Vxo2Drl3TjkYk+7QkhlS0oUPDbTmfflq35ZTqo7WSRAqMHg0nnxxaCttsk3Y0IqWntZKq\nhPpPY0vLxdixcMIJ8I9/VEdR0PsiplwUT4VBKs4zz4Q5CnffDd27px2NSPlRV5JUlClT4MADYdiw\ncHtOkWqmriSpeq+8EorBddepKIgUQ4WhzKj/NJafi1mz4IAD4NJLw0S2aqP3RUy5KJ4Kg5S9d96B\n/feHX/8aGhvTjkak/GmMQcrahx9C795w7LFwzjlpRyOSLZrHIFXn009hv/1CF9Jll6UdjUj2aPC5\nSqj/NFiwAHr1ytGzZxhXqHZ6X8SUi+KpMEjZ+fJL+OEPYZNN4JprwHQXD5FOpa4kKStNTfCjH4UV\nUocPhxUTXQZSpLx1+j2fRbKmuTksc/H55zBypIqCSFLUlVRmqrX/tOWeCm+8ASNGwMorV28u2qJc\nxJSL4uk7l2SeO5x9Njz3HDz+OKy2WtoRiVS2RMcYzKwBGAx0AW5x90EF+w8Dfgc0Rz//5+5PtHEe\njTFUsUsuCeMJuRyst17a0YiUj8zNYzCzLoR7Pu8PvA08R8E9n81sdXf/LHq8E3Cfu2/VxrlUGKrU\nNdfAtdfC+PGw8cZpRyNSXrI4j6E7MNPdZ7n7QmA4cFj+AS1FIbIG8GGC8VSEauo//fOf4cor4bHH\n2i4K1ZSLZVEuYspF8ZIsDJsCs/O234qea8XMDjezaYR7Q5+WYDxSRu66C84/Hx59FL75zbSjEaku\nSQ4+t6vvx91HAiPNbG/gdmDbto5rbGyktrYWgJqaGurq6qivrwfibwjVsF1fX5+peJLYvuCCHEOG\nQC5XzzbbpB9PuWy3yEo8aW23PJeVeEq5ncvlGDZsGMDiz8uOSHKMoScw0N0bou1zgObCAeiC3/kP\n0N3dPyp4XmMMVeLGG+Hii2HMGNhpp7SjESlvWRxjeB7Y2sxqzawr0BcYlX+AmW1pFhY0MLNdAQqL\ngrRW+O2wUriHNY9+//sw0NyeolCpuegI5SKmXBQvsa4kd28ys/7Aw4TLVYe6+zQzOzXafxNwJHC8\nmS0E5gM/Tioeya7mZvi//4NHHoEnn9TVRyJp01pJkqqmJjj55HBbzgcegHXWSTsikcqhtZKk7Hzx\nBfTrF9Y+evRRWH31tCMSEdBaSWWnUvpP582Dgw8Oax6NGtWxolApuegMykVMuSieCoOU3Icfwve+\nB9tsA3/7G3TtmnZEIpJPYwxSUrNnw4EHwhFHhMtSdZMdkeRk8XJVkVZeeQX23htOOiksjKeiIJJN\nKgxlplz7T194Aerr4cIL4cwzO+ec5ZqLJCgXMeWieLoqSRI3bhwcfTTcdFO4V7OIZJvGGCRR998P\nJ54Id9wB++2XdjQi1UVjDJI5t98eJq898ICKgkg5UWEoM+XSf3r11XDeeTB2LHz3u8m8RrnkohSU\ni5hyUTyNMUincoeBA0PX0YQJupeCSDnSGIN0muZmOP30sBDeww/DBhukHZFIddNaSZKqhQuhsTFM\nYMvlYO21045IRDpKYwxlJov9p/PmhctQ//vf0FIoVVHIYi7SolzElIviqTBIUZ57DnbZBTbbDO69\nF1ZdNe2IRKRYGmOQDmluhiuvDHdcu/56OOqotCMSkUKZncdgZg1mNt3MZpjZgDb2/8TMppjZVDN7\nysx2TjomKc6770JDA/zjH6HFoKIgUlkSLQxm1gUYAjQAOwD9zGz7gsNeA/Zx952Bi4A/JRlTuUu7\n/3TMmNB1tMceYZA5zctR085FligXMeWieElfldQdmOnuswDMbDhwGDCt5QB3n5h3/LPAZgnHJB3w\n5Zdw7rlw990wfDj07p12RCKSlETHGMzsKOD77n5ytH0s0MPdf7mE488CtnH3Uwqe1xhDil59FX78\n49A6uOUWWG+9tCMSkfbI6jyGdn+am9m+wAnAXm3tb2xspLa2FoCamhrq6uqor68H4qajtjt3u3fv\nem69FU6OKSk6AAANMElEQVQ/PccJJ8BVV9Vjlp34tK1tbbfezuVyDBs2DGDx52VHJN1i6AkMdPeG\naPscoNndBxUctzNwL9Dg7jPbOI9aDJFcLrf4DZGkTz+Fn/8cpk4NXUc77pj4Sy63UuWiHCgXMeUi\nltWrkp4HtjazWjPrCvQFRuUfYGZbEIrCsW0VBSm9Z58NA8xrrw2TJmWzKIhIchKfx2BmBwGDgS7A\nUHe/zMxOBXD3m8zsFuCHwJvRryx09+4F51CLoQSam+GKK+CPf4Qbb9RNdUTKXUdbDJrgJgDMmQPH\nHRfWPPrb32DzzdOOSESKldWuJOlkLQNNnWn0aNh113AJ6tix5VMUkshFuVIuYspF8bS6ahX74gsY\nMABGjoR77oFevdKOSESyQF1JVWr69DA3Yaut4OabYZ110o5IRDqbupKkXdxh6FDYe2/4xS/CTGYV\nBRHJp8JQZorpP507F/r2DfdjHjcOTj4ZbLm/S2SH+pJjykVMuSieCkOVePppqKuDDTcMcxN22CHt\niEQkqzTGUOEWLYLLLoMhQ+Cmm+Cww9KOSERKJatrJUkKPvoIJkyA8ePDrTY32AD++U/YdNO0IxOR\ncqCupDLTVv/pu+/CXXeFweSddoJvfSvMXF5//dBKeOyxyiwK6kuOKRcx5aJ4ajGUoTffDIPH48eH\nnw8+CHMQ9tkHGhvDOkcr6v+siHSQxhgyzh1mzgwFoKUYfP55KAItPzvtBCuo7SciBbRWUoVoboZp\n01q3CFZYISxX0bt3KATbblvel5mKSGlogluZWrQIXngBBg8Oq5lusAEceig8/zw0NMCTT8Ls2WFh\nu1NOgXffzakoRNSXHFMuYspF8dQTXWILF4YrhFpaBE89BZtsEloCP/oRXHstbKa7XotIitSVlLAv\nvgg3vmkZI3j2Wdhyy7hbaO+9QytBRKSzaYwhI+bPh4kT4xbBCy/Ad74TikDv3rDXXlqbSERKI7Nj\nDGbWYGbTzWyGmQ1oY/92ZjbRzL4wszOTjqezzZ0b7mfw619Djx5hyYnf/S7sO//8MMfg2Wfh97+H\nQw4pviio/zSmXMSUi5hyUbxExxjMrAswBNgfeBt4zsxGufu0vMM+An4JHJ5kLJ3lgw/iq4XGjw+X\nkvboEVoEV1wB3bvDqqumHaWISMcl2pVkZnsAF7p7Q7R9NoC7X97GsRcC8939yjb2pdaV9PbbcREY\nNy5s77VXPEaw227QtWsqoYmILFVW10raFJidt/0W0CPh1+wwd5g1q/VksrlzwwDxPvuEZaq7dYMu\nXdKOVEQkOUkXhk77mt/Y2EhtbS0ANTU11NXVUV9fD8R9isu73bt3Pa+8AjffnGPqVJg+vZ6mJthu\nuxzdusHIkfXssAOMHx+O33XX4l6vM7bz+0/TeP0sbbc8l5V40tyePHkyZ5xxRmbiSXN78ODBnfL5\nUI7buVyOYcOGASz+vOyIpLuSegID87qSzgGa3X1QG8cm3pXU3Az//nfrWcWrrBJ3C/XuHW51meUJ\nZLlcbvEbotopFzHlIqZcxDJ5uaqZrQi8AuwHzAEmAf0KBp9bjh0IzOvMwtDUBC++GBeBCRPCiqMt\nRWCffeCb31zu04qIlIVMFgYAMzsIGAx0AYa6+2VmdiqAu99kZhsBzwFrAc3APGAHd5+fd452FYYv\nvwxLSbSMEUycCFts0XrBuY03TuCPFBHJoMwWhs6wpMKwYAE880zcIpg0KSww19Ii6NUrtBAqiZrJ\nMeUiplzElItYVq9K6nRPPRUmlI0fD1OmwM47h0Jw1lnhMtK11047QhGR8lZWLYa33oIdd4TTTgst\ngp49YfXV045ORCSbqqIr6eKLwwSzG25IOyIRkezL7FpJnaW5GYYOhRNPTDuSdOVfw1/tlIuYchFT\nLopXNoVh7FhYa62wBIWIiCSnbLqS+vVzevYM4wsiIrJsFT/GsPbazmuvwbrrph2NiEh5qPgxhoMO\nUlEA9Z/mUy5iykVMuShe2RSGah90FhEplbLpSlq0yFmhbMqYiEj6Kr4rSUVBRKQ09HFbZtR/GlMu\nYspFTLkongqDiIi0UjZjDOUQp4hIllT8GIOIiJRGooXBzBrMbLqZzTCzAUs45ppo/xQz2yXJeCqB\n+k9jykVMuYgpF8VLrDCYWRdgCNAA7AD0M7PtC445GNjK3bcGTgG0buoyTJ48Oe0QMkO5iCkXMeWi\neEm2GLoDM919lrsvBIYDhxUccyhwK4C7PwvUmNmGCcZU9ubOnZt2CJmhXMSUi5hyUbwkC8OmwOy8\n7bei55Z1zGYJxiQiIsuQZGFo72VEhSPmuvxoKWbNmpV2CJmhXMSUi5hyUbzELlc1s57AQHdviLbP\nAZrdfVDeMTcCOXcfHm1PB3q7+3sF51KxEBHpgI5crrpiEoFEnge2NrNaYA7QF+hXcMwooD8wPCok\ncwuLAnTsDxMRkY5JrDC4e5OZ9QceBroAQ919mpmdGu2/yd0fNLODzWwm8Bnws6TiERGR9imLmc8i\nIlI6mZr5rAlxsWXlwsx+EuVgqpk9ZWY7pxFnKbTnfREd910zazKzI0oZX6m0899HvZm9aGb/NrNc\niUMsmXb8+1jfzB4ys8lRLhpTCLMkzOzPZvaemf1rKccs3+emu2fih9DdNBOoBVYCJgPbFxxzMPBg\n9LgH8EzacaeYiz2AtaPHDdWci7zjngBGA0emHXdK74ka4CVgs2h7/bTjTjEXA4HLWvIAfASsmHbs\nCeVjb2AX4F9L2L/cn5tZajFoQlxsmblw94nu/mm0+SyVO/+jPe8LgF8C9wAflDK4EmpPHo4BRrj7\nWwDu/mGJYyyV9uTiHWCt6PFawEfu3lTCGEvG3ScAnyzlkOX+3MxSYdCEuFh7cpHvRODBRCNKzzJz\nYWabEj4YWpZUqcSBs/a8J7YG1jWzsWb2vJkdV7LoSqs9ubgZ+I6ZzQGmAKeXKLYsWu7PzSQvV11e\nmhAXa/ffZGb7AicAeyUXTqrak4vBwNnu7mZmfP09Ugnak4eVgF2B/YDVgIlm9oy7z0g0stJrTy7O\nBSa7e72ZbQk8ambd3H1ewrFl1XJ9bmapMLwNbJ63vTmhsi3tmM2i5ypNe3JBNOB8M9Dg7ktrSpaz\n9uRiN8JcGAj9yQeZ2UJ3H1WaEEuiPXmYDXzo7p8Dn5vZeKAbUGmFoT252BO4BMDd/2NmrwPbEuZX\nVZvl/tzMUlfS4glxZtaVMCGu8B/2KOB4WDyzus0JcRVgmbkwsy2Ae4Fj3X1mCjGWyjJz4e7fdvdv\nufu3COMMP6+wogDt+/fxD6CXmXUxs9UIA40vlzjOUmhPLqYD+wNE/enbAq+VNMrsWO7Pzcy0GFwT\n4hZrTy6AC4B1gBuib8oL3b17WjEnpZ25qHjt/Pcx3cweAqYCzcDN7l5xhaGd74lLgb+Y2RTCF+Bf\nu/vHqQWdIDO7A+gNrG9ms4ELCd2KHf7c1AQ3ERFpJUtdSSIikgEqDCIi0ooKg4iItKLCICIiragw\niIhIKyoMIiLSigqDVBwzW9nMxkXLY3T2uRvN7NolvOZ4M1vivykzu9HM9uzsmEQ6mwqDVKKfAKM9\nmUk6bZ7T3b8EJgCHL+V3ewATE4hJpFOpMEgl6kdYHgIzu87M+kSP7zOzodHjE8zs4sJfjG58tJYF\nH7WsUGpmt5nZ/tFhm0crmL5qZhfk/foovn5f85bzbg+8ml+soqUrXose15jZIjPrFW2PN7MtzWxd\nMxsZ3WBlopntVGRuRJZJhUEqipl1AXZ091ejp8YTbmQCYfnh7aPHewPj2jjFU0Av4DvAf6LHAD2j\nfUa4H8ARwM7A0Wa2W3TMZMLibW05CBiT/4S7LwJeMbMdotf5J7CPma1MuNnOf4DfAv90926EFUNv\nW1YORIqlwiCVZn0gf2nlCcDe0Tf2l4D3zGwjwgf90238/gRgH0LhuAHY2cw2AT6JVi0FeMTdP3H3\nLwgLGfaCxd1JK5jZKm2c90DgoWW83mXRuXYHJkX79wJuj84/FljPzNZYZhZEiqDCIJVo8aCzu88h\n3PKygdB6eJKwGuc8d//MzH4R3SP5hahgjCf+oM4R7gh3VPT8kl6ruWC71ThEtNJpjbu/28bvt7xe\nd8LNlmqAekLB+NrfI1IKKgxSaT4ECr9RPwOcQeg6mgCcFf0Xd7/O3Xdx913d/d3otpjrA1u5++uE\nQnIWrQvDAWa2jpmtSrhz3FMQrkwCFkUth3z7Eu5H3ZZJhO6nlt+bApya93oTCIPpmFk98IG7z29v\nMkQ6QoVBKkrUb/9vM9s27+kJQBd3fw14kbBc+YS2fj/yDNAyRvEksEn0XwitgUnACMKH+D3u/kK0\nbxfavuroINruRsLdvwLejF4TQkFYw93/FW0PBHaLlo++FPjpUuIW6RRadlsqjpk1Ahu6+6ASv+6l\nwHPufl/B8/8EukdFSyTzVBik4kR39XoM6J3QXIa2XnNl4NFSvqZIUlQYRESkFY0xiIhIKyoMIiLS\nigqDiIi0osIgIiKtqDCIiEgrKgwiItLK/wc5WZWcWXsXXAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x781dda0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time to reach breakpoint is: 24.7778 h\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.10: Page 640"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.10\n",
+ "# Page: 640\n",
+ "\n",
+ "print'Illustration 11.10 - Page: 640\\n\\n'\n",
+ "\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#*****Data******#\n",
+ "# a:N2 b:H2O\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "Ma = 29;# [kg/kmol]\n",
+ "Z = 0.268;# [m]\n",
+ "Xo_solid = 0.01;# [kg H20/kg solid]\n",
+ "Density_bed = 712.8;# [kg/cubic m]\n",
+ "T = 28.3;# [OC]\n",
+ "P = 593;# [kN/square m]\n",
+ "Gs = 4052;# [kg/square m.h]\n",
+ "Xo_gas = 1440*10**(-6);# [mole fraction]\n",
+ "#********************#\n",
+ "\n",
+ "# Yo_star is in equilibrium with Xo:\n",
+ "Xo = 0;# [kg H20/kg solid]\n",
+ "Yo_star = 0;# [kg H20/kg N2]\n",
+ "thetha_t = 12.8;# [h]\n",
+ "thetha_b = 9;# [h]\n",
+ "# The breakthrough data are plotted in the manner of Fig. 11.47 (Pg 639) and thetha_s is dtermined:\n",
+ "thetha_s = 10.9;# [h]\n",
+ "Xt = 0.21;# [kg H20/kg solid]\n",
+ "# From Eqn. 11.81:\n",
+ "LUB = (Z/thetha_s)*(thetha_s-thetha_b);\n",
+ "# For thetha_b = 15 h\n",
+ "thetha_b = 15;# [h]\n",
+ "Yo = (Xo_gas/(1-Xo_gas))*(Mb/Ma);# [kg H20/kg N2]\n",
+ "# From Eq. 11.82:\n",
+ "Zs = Gs*(Yo-Yo_star)*thetha_b/(Density_bed*(Xt-Xo_solid));# [m]\n",
+ "# From Eqn. 11.85:\n",
+ "Z = LUB+Zs;\n",
+ "print\"Height of adsorbent column:\",round(Z,4),\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.10 - Page: 640\n",
+ "\n",
+ "\n",
+ "Height of adsorbent column: 0.0467 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 93
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.11: Page 654"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 11.11\n",
+ "# Page: 645\n",
+ "\n",
+ "print'Illustration 11.11 - Page: 645\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#****Data****#\n",
+ "# For collection of Cu2+:\n",
+ "V = 37850.0;# [l/h]\n",
+ "c1 = 20.0;# [meq Cu2+/l]\n",
+ "c2 = 0.01*c1;# [meq Cu2+/l]\n",
+ "Mass_rate = 2.0;# [meq Cu2+/g resin h (meq Cu2+/l)]\n",
+ "exchanged = V*(c1-c2);# [meq/h]\n",
+ "X2 = 0.30;# [meq Cu2+/g]\n",
+ "#************#/\n",
+ "\n",
+ "# The point(c2,X2) is plotted in Fig. 11.48(a), Pg 645:\n",
+ "# For the minimum resin/solution ratio and an infinitely tall tower, the operating line pass though point P.\n",
+ "X = 4.9;# [meq Cu2+/g]\n",
+ "MinRate = exchanged/(X-X2);# [g/h]\n",
+ "Rate = 1.2*MinRate;# [g/h]\n",
+ "# Copper balance:\n",
+ "X1 = (exchanged/Rate)+X2;# [meq Cu2+/g resin]\n",
+ "# The point (c1,x1) is ploted in Fig. 11.48(a) and operating line drawn can be straight line at this low conc.\n",
+ "# Adapting Eqn. 11.48 and rearranging:\n",
+ "# S*Z*Density_s = (V/Mass_rate)*integrate(1/(c-c_star),c,c1,c2)\n",
+ "# Mass_rate = KL_prime*ap/Density_s\n",
+ "# From the equilibrium curve:\n",
+ "# Data = [c c_star]\n",
+ "Data = numpy.array([[20 ,2.4],[16 ,1.9],[12, 0.5],[8 ,0.25],[4 ,0.10],[2 ,0.05],[1 ,0.02],[0.2, 0]]);\n",
+ "Val = zeros(8);\n",
+ "for i in range(0,8):\n",
+ " Val[i] = 1/(Data[i,0]-Data[i,1]);\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"c\");\n",
+ "plt.ylabel(\"1 / (c-c*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "# From Graphical Integration:\n",
+ "Area = 5.72;\n",
+ "# holdup = S*Z*Density_s\n",
+ "holdup = V*Area/(Mass_rate);\n",
+ "print\"Resin Holdup: \",holdup,\"g\\n\"\n",
+ "\n",
+ "# Regeneration of resin:\n",
+ "# For 70% utilisation of 2N acid, feed must contain:\n",
+ "V = exchanged;\n",
+ "F = V/(0.70*2000);# [l/h]\n",
+ "c1 = 0;# [meq Cu2+/l]\n",
+ "c2 = V*1.0/F;# [meq Cu2+/l]\n",
+ "X1 = 0.30;# [meq Cu2+/g resin]\n",
+ "X2 = 4.12;# [meq cu2+/g resin]\n",
+ "# The points (c1,X1) and (c2,X2) are plotted on Fig 11.48(b), Pg 645\n",
+ "c1_star = 120.0;# [meq Cu2+/l]\n",
+ "c2_star = 1700.0;# [meq Cu2+/l]\n",
+ "logmean = ((c1_star-c1)-(c2_star-c2))/math.log((c1_star-c1)/(c2_star-c2));\n",
+ "Mass_rate = 0.018;# [meq Cu2+/g resin h (meq Cu2+/l)]\n",
+ "# Substituting in equation:\n",
+ "def f79(holdup):\n",
+ " return (V*(c2-c1))-(Mass_rate*holdup*logmean)\n",
+ "holdup = fsolve(f79,7);\n",
+ "print\"Resin Holdup in the regeneration Tower is \",round(holdup,3),\" g\\n\"\n",
+ "#the answers are in textbook is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 11.11 - Page: 645\n",
+ "\n",
+ "\n",
+ "Resin Holdup: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 108251.0 g\n",
+ "\n",
+ "Resin Holdup in the regeneration Tower is 296720391.501 g\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEZCAYAAAB2AoVaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHnpJREFUeJzt3Xm4HHWd7/H3JwlJlADZCEMwGBVFwCWogziCHkC4gAsw\nikl0kAMjDi6oOCig9wroFQZnwMh11HmGJWwaUCSiM4IoHPYBGYgGIygykT1kDyEkIeR7/6jqpDk5\np9Pdp7qrqvvzep5+0tVd3fU7X5pvVX9qaUUEZmbW2YblPQAzM2s9N3szsy7gZm9m1gXc7M3MuoCb\nvZlZF3CzNzPrAm72VjiSzpR0eY3nH5D0rlYuo8wk7SrpWUnKeyxWHG72tlWSZki6W9JqSYsk/Zek\nT7ZwkTVP/oiIN0TEra1ahqQeSY/V8yaSpkraKCm3/5ckLZR0YGU6Ih6NiO3CJ9FYFTd7q0nSPwKz\ngHOBnSJiJ+BE4J2SRg7ymqF+rtqxRZr1MloyZknD65gtWrV86xxu9jYoSTsAZwGfjIifRMRzABEx\nLyL+LiLWp/PNlvQ9Sf8paTXQI+m9ku6XtFLSo5LOqHrfytbwCZKekPRkulKpCGCkpEslrUpjm7dW\nvX6hpIPS+8MlfVnSw+m890raJX3u2+myV6aP79dkHfokfU3S7ekybpA0IX268g1jRRqdvD19zfGS\nFkhaJul6SbtWvd8hkh6StELSv0q6RdLfp8/1SrpD0vmSlgBnSHq1pJskLZG0WNIV6X8b0ihqV+Bn\n6fJP6f9tQ9JkSddJWirpT5I+XjWWMyVdPVitrXO42Vst7wBGAT+tY96ZwNcjYgxwB7Aa+LuI2AF4\nL/BJSUf0e00PsBtwCHBqpYGTbKV+APghsANwHfCdqtcFm2OYLwAzgMMiYnvgOOD59Ll7gDcD44Af\nAD8a7NtInX9fLzAJGAmckj6+f/rvDml0cnf6d54OHAVMBG5L/xYkTQR+BJwKjAceIqlzdeSyD/Dn\ndFlnp/X4BrAzsAcwBTgTICKOAR4F3pcu/18GGPucdJ6dgQ8BZ0s6oOr59zN4ra1DuNlbLROBJRGx\nsfKApDslLZe0pt+W8tyIuAsgItZFxC0R8ft0ej5Jw3l3v/c/KyKej4gHgEtIGmrFbRFxfZo7X0HS\ntAfyceArEfGnyrIiYll6/8qIWB4RGyPifJIV1+5N1CGASyLi4YhYC1wNTKuUZID5TwTOiYiH0tqd\nA0xLt+4PBx6IiLnpuC4Anu73+icj4l/T59dGxJ8j4tcR8UJELAG+xZa1HJCkKcDfAKdGxPqI+C1w\nIfCxqtnqrbWVmJu91bIUmFidwUfE30TEuPS5yuMBvGSHpqS3S7pZ0jOSVgD/AEzgpapf8ygwuWp6\nUdX9NcDoQfYFvIJkK3gLaaSxII1LlpNsuU4c5G/dmuqG/Dwwpsa8rwS+na4Ul5PUCmAXkq3rx/vN\n33+6fy13kjRH0uOSVgKXs2UtBzMZWFaJ4FKPpmOpqLfWVmL+D2q13AWsA45s4rU/AOYCr4iIscD3\n2fLztmu/+080sZzHSKKgl5C0P/BF4OiIGJuuoFaS/Y7MgY54eRT4RESMq7ptm37zeYpkBVUZp6qn\nB3nPs4EXgTeksdgxvLSWtY66eRIYL6l65bQrW65grMO52dugImIFyQ7a70r6oKTtJA2TNA3YtmrW\ngRroGGB5RKyXtA/wEbZsSv9b0ssk7UWSh1/VxDAvBL4uaTcl3iRpfLr8DcASSSMlfRXYvon3rxhs\nJbEY2Ai8puqx7wNflrQnJDu6JR2dPvefwBslHSFpBPBp4K+2suwxwHPAqnTn8xf7Pb+o3/I3iYjH\ngDuBcySNkvQm4HiSuMa6iJu91RQR/0yyE/RLJFHG0yTN7EskW/7w0h2mFZ8CviZpFfB/GLiR3wI8\nDPwK+OeI+FWN9xts6/V8kgz9lyRb7v8OjAZuAK4H/ggsJIleHu33frW2iGstf9NrI2INyc7TO9LY\nZp+ImEtyqOqcNHaZD/yvdP4lwNHAN4ElJDtc7yX5BjXYuM4C3pL+fT8Druk3zzkkK87lkr4wwHhn\nAlNJtvJ/Anw1Im6qsTwfn9+B1OrzLiQtBFaRfA19ISL2aekCrfAkTQUeAUZU7/ztRmk2/hjwkYi4\nJe/xWOca0YZlBNBTOULCrNtJOoTksNDn2RzJ/Fd+I7Ju0K4Yx2f3WX/dHBW8gyS+WkxyDsKREbGu\n9kvMhqYdMc4jJFnji8C/RcS/t3SBZma2hXbEOO+MiKck7QjcKOnBiLitDcs1M7NUy5t9RDyV/rtY\n0rUkp4LfBiCpm7/Km5k1LSIaisdbmtlLermk7dL725JcA2V+9TwRQUTwla8EX/tabJr2rfHbGWec\nkfsYOunmerqeRb01o9Vb9jsB1yYnCTICuDIifjnQjBMmwF/+0uLRdLiFCxfmPYSO4npmy/XMV0ub\nfUT8D5svGFXTxIlw332tHI2ZWfcqzBm0EybAkiV5j6Lcent78x5CR3E9s+V65qvlh17WXLgUleXf\nfTecdBLcc09uwzEzKwVJRJF20DZi4kRYunTr89ng+vr68h5CR3E9s+V65qswzd4xjplZ6xQmxomA\nkSNhzRrYZpvchmRmVniljnEkGDcOlvlyaWZmmStMs4ckt3eU0zxnotlyPbPleuarUM1+wgTvpDUz\na4XCZPYARx4Jxx4LRx2V25DMzAqv1Jk9+PBLM7NWKVSz9+GXQ+NMNFuuZ7Zcz3wVrtl7y97MLHuF\nyuwvvhhuvz3518zMBlb6zN4xjplZaxSu2TvGaZ4z0Wy5ntlyPfPlZm9m1gUKldkvXgx77OEox8ys\nlmYy+0I1+w0bYPRoWL8ehhXqO4eZWXGUfgftiBGw3XawYkXeIyknZ6LZcj2z5Xrmq1DNHnwWrZlZ\nKxQqxgHYd1/41rfgHe/IaVBmZgVX+hgHfESOmVkrFK7ZO8ZpnjPRbLme2XI981W4Zu+zaM3Msle4\nzP4b34DnnoOzz85pUGZmBefM3szMBlS4Zu/foW2eM9FsuZ7Zcj3zVbhm7y17M7PsFS6z/93v4KMf\nhfnzcxqUmVnBdURm7xjHzCx7hWv2lRgnxy8cpeVMNFuuZ7Zcz3wVrtmPGgUjR8Lq1XmPxMyscxQu\nswd45Svhlltg6tT2j8nMrOg6IrMH5/ZmZlkrZLP34ZfNcSaaLdczW65nvtzszcy6QMsze0nDgXuB\nxyPi/f2eGzCzP+kkeO1r4bOfbenQzMxKqaiZ/eeABUDdaxVv2ZuZZaulzV7SK4DDgQuButdCbvbN\ncSaaLdczW65nvlq9Zf8t4IvAxkZe5KNxzMyyNaJVbyzpfcAzEXG/pJ7B5uvt7WVqekD92LFjmTZt\nGhMm9LB06eYtgZ6e5OWerj1deawo4yn7dOWxooyn7NOVx4oynjJN9/X1MXv2bIBN/bJRLdtBK+ls\n4BhgAzAa2B64JiI+VjXPgDto//u/4YQT4L77WjI0M7NSK9QO2oj4ckRMiYhXATOAm6obfS3O7JtT\n2RKwbLie2XI989XO4+zr/grhzN7MLFuFvDZOBIweDStXJv+amdlmhYpxhkJylGNmlqVCNntwlNMM\nZ6LZcj2z5Xrmq7DN3lv2ZmbZKWRmD/ChD8H06XD00W0elJlZwXVMZg+OcczMslTYZu8Yp3HORLPl\nembL9cyXm72ZWRcobGZ/6aXw61/DZZe1eVBmZgXnzN7MzAZU2GbvGKdxzkSz5Xpmy/XMl5u9mVkX\nKGxmv3w5vOpVsGJFmwdlZlZwHZXZ77ADPPccbNiQ90jMzMqvsM1+2DAYOxaWLct7JOXhTDRbrme2\nXM98FbbZQ5Lb+4gcM7OhK2xmD7DffnDOObD//m0clJlZwXVUZg8+IsfMLCuFb/aOcernTDRbrme2\nXM98FbrZT5zoLXszsywUOrM/99yk2X/zm20clJlZwTmzNzOzARW62ftiaI1xJpot1zNbrme+Ct3s\nvWVvZpaNQmf2CxbABz8If/hDGwdlZlZwHZnZO8YxMxu6Qjf78eOTq15u3Jj3SMrBmWi2XM9suZ75\nKnSz32Yb2HZbWLky75GYmZVboTN7gNe8Bq6/Hl772jYNysys4DouswefRWtmloXCN3sfflk/Z6LZ\ncj2z5Xrmy83ezKwLFD6zP/lkmDIFvvCFNg3KzKzgOjKz95a9mdnQudl3EGei2XI9s+V65qsUzd5n\n0ZqZDU1LM3tJo4FbgFHASOCnEXF61fNbzexvugm+/nW4+eaWDdPMrFSayexHtGowABGxVtIBEbFG\n0gjgdkn7RcTt9b6HYxwzs6FreYwTEWvSuyOB4cCyRl7vGKd+zkSz5Xpmy/XMV8ubvaRhkuYBi4Cb\nI2JBI6+vbNnneISomVnpte04e0k7ADcAp0VEX/rYVjN7SC6GtmgRjBnT2jGamZVB4TL7ahGxUtJ/\nAG8D+iqP9/b2MnXqVADGjh3LtGnT6OnpATZ/7ZswoYclS+Dee5Pp/s972tOe9nQnT/f19TF79myA\nTf2yUa0+GmcisCEiVkh6GcmW/VkR8ev0+bq27PfeGy68EN761pYNtSP09fVt+qDY0Lme2XI9s9OS\nLXtJewHvAqYCASwEbouI39fx/jsDl0oaRrJ/4PJKo2+Er3xpZjY0g27ZSzoGOAlYCtwDPAmIpIHv\nA0wEvh0RVzS98Dq37GfMgCOOgJkzm12SmVnnyHrLfhxwUEQ8O8jCtgd6G1lYs3z4pZnZ0Ax66GVE\nXACsh01nwvZ/flU6T8s5xqlPZYeOZcP1zJbrma+tHWf/b+mO1e+2YzCD8Vm0ZmZDUyuzfzfwRuBY\nYDbwQETckunC68zsr7wSfv5z+OEPs1y6mVk5teJ69hvTeXI9f9UxjpnZ0NRq9reSHHWzP/C2rLfq\nG+EYpz7ORLPlembL9cxXrR20AZyYXsjsU+0b0pZ8NI6Z2dBs9QxaSZcBn42IFen0eOBfIuL4IS+8\nzsx+1SqYPBlWrx7qEs3Myq9Vv0H7pkqjB4iIZcBbGh3cUGy3HaxfD+vWtXOpZmado55mr3RrvjIx\nnuS69G0jObevhzPRbLme2XI981XPVS/PA+6SdDXJ5RKOBr7R0lENoJLbT57c7iWbmZVfXVe9TC+G\ndiDJIZg3NfoDJDXet67MHqCnB844Aw44IIslm5mVV6syeyLi9xHx/4AXsmr0jXKMY2bWvEZ/lvDE\nloyiDj78cuuciWbL9cyW65mvlv8GbVZ8Fq2ZWfMa+qUqSVMi4rHMFt5AZn/eefDEE3D++Vkt3cys\nnFqS2Us6R9I4gIh4TNI4Sf+32UE2yzGOmVnz6olxDouI5ZWJ9P57WzekgXkH7dY5E82W65kt1zNf\n9TT7YdU/XpJe335k64Y0MGf2ZmbNq+faOKcCHwAuJjmp6jjguog4d8gLbyCz/+Mf4b3vhT/9aahL\nNTMrt2Yy+3pPqjoMOCidvDEibmhifAO9b93NfulS2G03WL586/OamXWyTHfQStr0RhHxi4g4Jb3d\nMNA8rTZ2LDz7LGzY0K4llo8z0Wy5ntlyPfNVK7Pvk/RFSa/r/4Sk3dN4p20/aDJ8eNLwvWVvZta4\nWr9BOwr4KDATeAPwLElmPwZ4ALgS+EFErG964Q3EOAC77w5z58IeezS7RDOz8msmxhn0qpcRsY5k\np+zFkoYDE9OnlkTEi80Ps3k+/NLMrDn1XgjtxYhYlN5yafTgwy+3xplotlzPbLme+SrNtXHAZ9Ga\nmTWroWvjZL7wBjP7U06BSZPgS19q4aDMzAou60Mvb5B0sqTXD31o2XCMY2bWnFoxTi+wAjhT0v2S\nvi/pCEnbtmdoW3KMU5sz0Wy5ntlyPfNV62icp4BLgEvSo3HeDhwGfEnSWuCGiPhme4aZ8NE4ZmbN\naSqzl7QjcEhEXDmkhTeY2d96K3zlK3DbbUNZqplZuWV6nH0tEbGY5KSqtvKWvZlZc3zoZQdxJpot\n1zNbrme+StXsx49Pro2T49GiZmal1Gxmf1xEXDLkhTeY2QPssAP85S/JRdHMzLpRS36DdhBfq2cm\nSVMk3Szp95IekPTZJpe3iaMcM7PG1Tqpav5gN2BSne//AnByROwF7At8WtKQrlnpnbSDcyaaLdcz\nW65nvmodjTMJOBQY6Aryd9bz5hHxNPB0en+1pD8Ak4E/NDjOTXwWrZlZ42o1+/8AxkTE/f2fkNTw\nj5ZImgrsDdzd6GurOcYZXE9PT95D6CiuZ7Zcz3zVOoP2+BrPzWxkIZLGAD8GPhcRqxt5bX+OcczM\nGtfUSVWNkLQNcA1wRUTM7f98b28vU6dOBWDs2LFMmzZt0xZAJeOrnn72WVi6dPDnu3l61qxZW62f\np11P17N80319fcyePRtgU79sVEsvcZz+IPmlwNKIOHmA5xs+9PK734X58+F738tokB2kr69v0wfF\nhs71zJbrmZ1mDr1sdbPfD7gV+B1QWdDpEXF9+nzDzf6qq+DHP4Yf/SjToZqZlUbbro1Tr4i4nYzP\n0nVmb2bWuFJdLgF86GUtlYzPsuF6Zsv1zFfpmr0PvTQza1ypfoMWYM2a5IJozz8PaiixMjPrDO28\nNk5uXv5yGDYsafpmZlaf0jV7cJQzGGei2XI9s+V65qu0zd47ac3M6le6zB7gPe+BU0+Fgw9uwaDM\nzAquKzJ7cIxjZtao0jZ7xzhbciaaLdczW65nvtzszcy6QCkz+29/G/78Z7jgghYMysys4JzZm5nZ\ngErb7B3jbMmZaLZcz2y5nvkqZbP3xdDMzBpTysz+kUfgwANh4cLsx2RmVnRdldl7y97MrH6lbPbb\nbw9r18K6dXmPpFiciWbL9cyW65mvUjZ7yVv3ZmaNKGVmD7DXXjBnDrzxjRkPysys4Lomswdv2ZuZ\nNaK0zd6HX27JmWi2XM9suZ75Km2z91m0Zmb1K21mf9ppyVE5X/5yxoMyMyu4rsrsHeOYmdWvtM3e\nMc6WnIlmy/XMluuZr1I3e2/Zm5nVp7SZ/R13wCmnwF13ZTwoM7OC67rM3jGOmVl9StvsHeNsyZlo\ntlzPbLme+Sptsx83DlatghdfzHskZmbFV9rMHpKt+4ceSiIdM7Nu0VWZPfjwSzOzepW+2Tu338yZ\naLZcz2y5nvkqdbP3WbRmZvUpdWbf2wvvehccf3x2YzIzK7quzOy9ZW9mtnUtbfaSLpa0SNL8Vry/\nm/1LORPNluuZLdczX63esr8EOLRVb+6zaM3M6tPyzF7SVOBnEbHFr8UONbO/5hq44gq49trmx2dm\nVjZdl9m/4Q3JBdEefTTvkZiZFduIvAfQ29vL1KlTARg7dizTpk2jp6cH2JzxDTb91FN9HHkkzJzZ\nQ18f3HFH7fk7fXrWrFkN1c/Ttaddz2ynXc/mp/v6+pg9ezbApn7ZqFLHOAAbN8Lhh8Nb3gJnnz2k\ntyq9vr6+TR8UGzrXM1uuZ3aaiXFK3+wBnnkG9t4bZs+Ggw8e8tuZmRVa4TJ7ST8E7gReJ+kxSce1\nYjmTJsHll8Oxx8LTT7diCWZm5dbSZh8RMyNickSMiogpEXFJq5Z14IHw8Y/DMcck0U43qmR8lg3X\nM1uuZ75KfTROf1/9KqxbB//0T3mPxMysWEp9bZyBPP44vO1t8OMfw377ZfrWZmaFULjMPg+veAVc\neCF85CO+lIKZWUXHNXuA970PPvSh5GqYOX5xaTtnotlyPbPleuarI5s9JLn9k0/CBRfkPRIzs/x1\nXGZf7ZFHYN994Re/gLe+tWWLMTNrK2f2/bz61fCd78D06bBqVd6jMTPLT0c3e4APfxgOOghOPLHz\n83tnotlyPbPleuar45s9wKxZMH8+XHxx3iMxM8tHR2f21RYsgHe/G/r6YK+92rJIM7OWcGZfw557\nwrnnJvn9mjV5j8bMrL26ptkDHHccvPnN8PnP5z2S1nAmmi3XM1uuZ766qtlL8P3vJ1HOnDl5j8bM\nrH26JrOvdv/9cMghcNddsNtubV+8mdmQOLOv0957J1fInDEjuUqmmVmn68pmD/CZz8CUKXDaaXmP\nJDvORLPlembL9cxX7j84nhcJLroo2cqfMAF6e5MrZpqZdaKuzOyrLVgA550Hc+cmh2fOmJFcMXOn\nnXIdlpnZoAr5g+M1F16AZl+xfj388pdw1VXw858nF06bPh3+9m+TLX8zs6LwDtohGDkyuQ7+5Zcn\nl0b+1KfgxhuTi6kdfjhcdhmsXJn3KGtzJpot1zNbrme+3OwH8LKXJVv0V18NTzyR/Ij5NdfArrvC\nUUclx+g/91zeozQzq59jnAasWJFk+1ddBXfeCYcemmT8hx0Go0fnPToz6xbO7NtoyRL4yU+Srfz7\n74f3vz/J+A8+OImEzMxaxZl9G02cCJ/4BNx0U3JEz1//NZxzDkyeDCecAL/6FWzY0N4xORPNluuZ\nLdczX272Gdh5ZzjpJLj9drjvPth9dzj9dNhlF/j0p+G222DjxrxHaWbdzDFOCz38cLKTd84cWLYs\n+dWs6dNhn32Sk7rMzJrhzL7AFixIduzOmZMc0z99erJz981vduM3s8Y4sy+wPfeEs86CBx+Ea69N\nGvxRR8HrXw9nnAHz5iVH+wxl3edMNFuuZ7Zcz3x17bVx8iLBtGnJ7eyz4Te/Sbb2Z8yAp56CtWuT\nnb+TJm2+7bjj4NPbbpv3X2RmZeAYp2DWroXFi5PbM89svg00vWhRsvKod8Ww444walTef6GZDZUz\n+y4TkZzJO9jKoP/04sXJ2cG1VgbVz02YACP83c+scNzsu1xfXx89PT2DPh+R7BfovzIYbEWxbBmM\nHVvft4ZJk5J5h3XQXqCt1dMa43pmp5lm7+22LiLBuHHJbffdtz7/iy/C0qUDrwx++9stVw6rV790\nf0Otbw077gjbbecjkczaxVv2lpn165PLSGwtTqrc37Bh4JXBhAlJ3DRq1Etvo0fX99ioUY6frLM5\nxrFSWbNm4JXBkiXJjup16zbf+k8P9ljl8WHDhrayyHpef4OxLBWu2Us6FJgFDAcujIhz+z3vZp8h\nZ6KJiORbQ70rhsEee/DBPiZP7ml6hVO5v349bLNNcyuLkSNh+PDNt2HD6p9uZN52vPaOO/o44ICe\nTdOdtH+n3QqV2UsaDnwHeA/wBPAbSddFxB9atcxuN2/ePDd7kq3obbZJbmPGNP8+s2bN4/Of7xny\neCKSht/MCmf9+mTfyYsvJtdXqtyvnl63bsvnB5u3nulWvXbt2nkMH96zaRqaX6kMG/bS+40+Vvb5\nm9HKZHMf4OGIWAggaQ5wBOBm3yIrVqzIewgdJat6Spu32LvZmWeu4MwzN09v3NjYSqbyWPXrqv8d\n6LFaz2X9Hi+88NIVb6vGWFlRNqqVzX4X4LGq6ceBt7dweWZWIpWtVu9Mb1wz+4BamZo5jG+zhQsX\n5j2EjuJ6Zsv1zFfLdtBK2hc4MyIOTadPBzZW76SV5BWCmVkTCnM0jqQRwEPAQcCTwD3ATO+gNTNr\nv5alZRGxQdJngBtIDr28yI3ezCwfuZ5UZWZm7ZHbaQ2SDpX0oKQ/STo1r3F0CkkLJf1O0v2S7sl7\nPGUi6WJJiyTNr3psvKQbJf1R0i8ljc1zjGUySD3PlPR4+vm8Pz3h0uogaYqkmyX9XtIDkj6bPt7Q\nZzSXZl91wtWhwJ7ATEl75DGWDhJAT0TsHRH75D2YkrmE5LNY7TTgxoh4HfDrdNrqM1A9Azg//Xzu\nHRHX5zCusnoBODki9gL2BT6d9suGPqN5bdlvOuEqIl4AKidc2dD4CixNiIjbgOX9Hv4AcGl6/1Lg\nyLYOqsQGqSf489mUiHg6Iual91eTnJi6Cw1+RvNq9gOdcLVLTmPpFAH8StK9kk7IezAdYKeIWJTe\nXwTslOdgOsRJkn4r6SLHYs2RNBXYG7ibBj+jeTV77xXO3jsjYm/gMJKvefvnPaBOkV6tz5/Zofke\n8CpgGvAUcF6+wykfSWOAa4DPRcSz1c/V8xnNq9k/AUypmp5CsnVvTYqIp9J/FwPXkkRl1rxFkv4K\nQNLOwDM5j6fUIuKZSAEX4s9nQyRtQ9LoL4+IuenDDX1G82r29wKvlTRV0khgOnBdTmMpPUkvl7Rd\nen9b4BBgfu1X2VZcBxyb3j8WmFtjXtuKtBlVHIU/n3WTJOAiYEFEzKp6qqHPaG7H2Us6jM3Xur8o\nIs7JZSAdQNKrSLbmITlR7krXs36Sfgi8G5hIkn1+FfgpcDWwK7AQ+HBE+LKidRignmcAPSQRTgD/\nA/xDVd5sNUjaD7gV+B2bo5rTSa5KUPdn1CdVmZl1Af9WjJlZF3CzNzPrAm72ZmZdwM3ezKwLuNmb\nmXUBN3szsy7gZm9m1gXc7M3MuoCbvdkAJH0svULjPEmX5T0es6HyGbRm/UjaC/gJ8I6IWCZpXEQM\ndH12s9Lwlr3Zlg4Ero6IZQBu9NYJ3OzNthT4V5Wsw7jZm23pJuBoSeMh+WHnnMdjNmTO7M0GIOlj\nwBeBF4H7IuL4nIdkNiRu9mZmXcAxjplZF3CzNzPrAm72ZmZdwM3ezKwLuNmbmXUBN3szsy7gZm9m\n1gXc7M3MusD/B+nAo2p5Y3p0AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x783b160>"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter12.ipynb b/Mass_-_Transfer_Operations/Chapter12.ipynb
new file mode 100755
index 00000000..62994f86
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter12.ipynb
@@ -0,0 +1,922 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:648d6196f9fbdd06162570014332196a676f8de89932a2e6d95cd0329cdf5ac2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12: Drying"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.1: Page 660"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.1\n",
+ "# Page: 660\n",
+ "\n",
+ "print'Illustration 12.1 - Page: 660\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#****Data****#\n",
+ "F=1000;# [kg]\n",
+ "Xo=0.8;# [wt. fraction water]\n",
+ "X1=0.05;# [wt. fraction water]\n",
+ "#************#\n",
+ "\n",
+ "Yo=Xo/(1-Xo);# [kg water/kg dry solid]\n",
+ "Y1=X1/(1-X1);# [kg water/kg dry solid]\n",
+ "solid=F*(1-X1);# [kg]\n",
+ "print\"Moisture to be evaporated: \",solid*(Yo-Y1),\" kg\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.1 - Page: 660\n",
+ "\n",
+ "\n",
+ "Moisture to be evaporated: 3750.0 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.2: Page 665"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.2\n",
+ "# Page: 665\n",
+ "\n",
+ "print'Illustration 12.2 - Page: 665\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# ***Data***#\n",
+ "Y1 = 0.05;# [kg water/kg dry air]\n",
+ "Yair = 0.01;# [kg water/kg dry air]\n",
+ "TempG1 = 95;# [OC]\n",
+ "width = 1;# [m]\n",
+ "apart = 100.0/1000;# [m]\n",
+ "deep = 38.0/1000;# [m]\n",
+ "Rate_evaporation=7.5*10**(-3);# [kg/s]\n",
+ "#*****************#\n",
+ "\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "vH = (0.00283+(0.00456*Y1))*(TempG1+273);# [cubic m/kg dry air]\n",
+ "freeArea = width*(apart-deep)*11;# [square m]\n",
+ "# Rate of air flow at 1:\n",
+ "Rate_air1 = 3*freeArea/vH;# [square m]\n",
+ "Y2 = Y1+(Rate_evaporation/Rate_air1);# [kg water/kg dry air]\n",
+ "# Assuming adiabatic drying:\n",
+ "# From adiabatic saturation curve, Fig 7.5: (Pg 232)\n",
+ "TempG2 = 86.0;# [OC]\n",
+ "# Overall Water Balance:\n",
+ "G = Rate_evaporation/(Y1-Yair);# [kg dry air/s]\n",
+ "# Rate of air flow at 3:\n",
+ "Rate_air3 = Rate_air1+G;# [kg dry air/s]\n",
+ "# Rate of air flow at 4:\n",
+ "Rate_air4 = Rate_air3;# [kg dry air/s]\n",
+ "# Volumetric Rate through fan:\n",
+ "Rate_fan = Rate_air3/vH;# [cubic m/s]\n",
+ "print\"Percentage of air recycled is:\",round((Rate_air1/Rate_air3)*100,2),\"%\\n\",\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# From Fig. 7.5 (page 232):\n",
+ "# Saturated enthalpy at adiabatic saturation temp.\n",
+ "Enthalpy1 = 233.0;# [kJ/kg dry air]\n",
+ "Enthalpy2 = 233.0;# [kJ/kg dry air]\n",
+ "# Enthalpy of fresh air:\n",
+ "Enthalpy_air = 50.0;# [kJ/kg dry air]\n",
+ "# Assuming complete mixing, by Enthalpy mixing:\n",
+ "Enthalpy3 = ((Enthalpy1*Rate_air1)+(Enthalpy_air*G))/Rate_air3;# [kJ/kg dry air]\n",
+ "Enthalpy4 = Enthalpy3;# [kJ/kg dry air]\n",
+ "# From table 7.1: (Pg 234)\n",
+ "Temp_dry = ((Enthalpy3*1000.0)-(2502300.0*Y1))/(1005.0+(1884.0*Y1));\n",
+ "Power = (Enthalpy2-Enthalpy3)*Rate_air3;# [kW]\n",
+ "# From Fig. 7.5, (Pg 232)\n",
+ "DewPoint1 = 40.4;# [OC]\n",
+ "DewPoint2 = 41.8;# [OC]\n",
+ "DewPoint3 = 40.4;# [OC]\n",
+ "DewPoint4 = 40.4;# [OC]\n",
+ "print\"At Point 1\\n\"\n",
+ "print\"Enthalpy of air:\",Enthalpy1,\" kJ/kg dry air\\n\",\n",
+ "print\"Dew Point of air: \",DewPoint1,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 2\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy2,\" kJ/kg dry air\\n\"\n",
+ "print\"Dew Point of air: \",DewPoint2,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 3\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy3,\" kJ/kg dry air\\n\",\n",
+ "print\"Dew Point of air: \",DewPoint3,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 4\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy4,\" kJ/kg dry air\\n\"\n",
+ "print\"Dew Point of air: \",DewPoint4,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"Dry bulb temparature of air: \",Temp_dry,\" OC\\n\"\n",
+ "print\"Power delivered by heater: \",Power,\" kW\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.2 - Page: 665\n",
+ "\n",
+ "\n",
+ "Percentage of air recycled is: 90.65 %\n",
+ "\n",
+ "\n",
+ "At Point 1\n",
+ "\n",
+ "Enthalpy of air: 233.0 kJ/kg dry air\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 2\n",
+ "\n",
+ "Enthalpy of air: 233.0 kJ/kg dry air\n",
+ "\n",
+ "Dew Point of air: 41.8 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 3\n",
+ "\n",
+ "Enthalpy of air: 215.89174489 kJ/kg dry air\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 4\n",
+ "\n",
+ "Enthalpy of air: 215.89174489 kJ/kg dry air\n",
+ "\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "Dry bulb temparature of air: 82.5843748998 OC\n",
+ "\n",
+ "Power delivered by heater: 34.3125 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.3: Page 671"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.3\n",
+ "# Page: 671\n",
+ "\n",
+ "print'Illustration 12.3 - Page: 671\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "# ***Data***#\n",
+ "SsByA = 40;\n",
+ "x1 = 0.25;# [moisture fraction]\n",
+ "x2 = 0.06;# [moisture fraction]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg moisture/kg dry solid]\n",
+ "X2 = x2/(1-x2);# [kg moisture/kg dry solid]\n",
+ "# Fig. 12.10 (Pg 668) indicates that both constant and falling rate periods are involved.\n",
+ "\n",
+ "# Constant Rate period:\n",
+ "# From Fig. 12.10 (Pg 668):\n",
+ "Xc = 0.200;# [kg moisture/kg dry solid]\n",
+ "Nc = 0.3*10**(-3);# [kg/square m.s]\n",
+ "# From Eqn. 12.4:\n",
+ "thetha1 = SsByA*(X1-Xc)/Nc;# [s]\n",
+ "\n",
+ "# Falling Rate Period:\n",
+ "# From Fig. 12.10 (Pg 668):\n",
+ "# Data=[x N*10^3]\n",
+ "Data = numpy.array([[0.2 ,0.3],[0.18 ,0.266],[0.16 ,0.239],[0.14 ,0.208],[0.12, 0.180],[0.10 ,0.150],[0.09 ,0.097],[0.08, 0.070],[0.07 ,0.043],[0.064 ,0.025]]);\n",
+ "Val = zeros(10);\n",
+ "# Val=[(1/N)*10^(-3)]\n",
+ "for i in range(0,10):\n",
+ " Val[i] = 1/Data[i,1];\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid();\n",
+ "plt.xlabel(\"x [kg moisture / kg dry solid]\");\n",
+ "plt.ylabel(\"10^(-3) / N\");\n",
+ "plt.title(\"Graphical Integration Falling Rate Period\");\n",
+ "# Area under the curve:\n",
+ "Area = 1060.0;\n",
+ "# From Eqn. 12.3:\n",
+ "thetha2 = SsByA*Area;# [s]\n",
+ "thetha = thetha1+thetha2;# [s]\n",
+ "print\"Total Drying Time: \",round(thetha/3600,2),\"h\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.3 - Page: 671\n",
+ "\n",
+ "\n",
+ "Total Drying Time: 16.72 h\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHFW9//H3JwshkJBJQgghgQxEVgXDqkGRISwGlM37\ncwGRRFwQULiCCFe8gnBVwOuOIBeQgIKACAjKFiSD7IowEIIsEcKaBEIWEhJDSL6/P0510tPp6emZ\nPt1VNfN9PU8/07V/unq6T9c5VadkZjjnnHMFfdIO4JxzLlu8YHDOOdeOFwzOOefa8YLBOedcO14w\nOOeca8cLBuecc+14wdBDSDpL0m8qTH9S0kfquY08k7SFpCWSlHYWAEmzJU1Mnq/Z71nLmVXJPmru\nxnLNklZL6tXfjb36xdeTpM9IeljSUknzJD0k6bg6brLiBSlm9j4z+2u9tiGpRdLL1awkCx++4i9e\nADN7ycwGWx0u7Ele69Lky2qJpAVVLGblntc551RJKwoZJf1F0nurXLam97Ro+cI+ekHSad1ZF0Cy\nj2Z3d/nezguGOpB0CvBT4DxgpJmNBL4CfEjSeh0sU+t70YhfkLG3UZfMkvpWMZvVa/sd2Cn5shps\nZsO6uGyjchpwnpkNBjYDXgIu7+I6as06JNn+EcB3JH20SxuX+tW4fYcXDNFJGgJ8FzjOzG4ws7cB\nzKzNzI4ys3eS+aZKukjSrZKWAi2SPibpMUmLJb0k6cyi9RZ+UX1J0quSXksKoAID1pN0haS3kqqj\nXYuWny1p3+R5X0nfkjQrmfcRSaOTaT9Ltr04Gf/hbu6HVklnS7ov2cYdkoYnkwtHLouSX4cfSJY5\nRtJTya/V2yVtUbS+AyQ9I2mRpF9KukfSF5JpUyTdL+nHkuYDZ0raStLdkuZLekPSb5P3hqRaZgvg\nlmT73yj9xStpM0k3S3pT0nOSvliU5SxJ13W0r6vcP+M6ytfJcqU5K+1nJB0t6cVkO98u/j+oxMz+\nDfweWHPEUOn/k268p51s/yFgZmH7nfxvrJZ0vKTngGeKxm2VPB8i6UpJryev/wwpVMVJ6iPpf5P3\n4F/Ax6rJ1+OZmT8iPoBJwEqgTyfzTQUWAROS4QHA3sB7k+EdgbnAoclwM7AauAoYCLwPeB3YN5l+\nFrA82b6A7wMPFm3vBWBi8vxU4Alg66JtDUuefxYYSvjRcDIwB1ivaBu/6eD1tAAvFw23As8B7wHW\nB6YDP0imjU1eS5+i+Q9N5t822fYZwP3JtI2BxcBhybQTgXeAY5LpU5J9fkIyfX1gHLAv0D9Z/h7g\nJ+X2R8n+7ZMM/xW4AFgPeH+yr/epZl+X2TergXEl46rOV7zfy+SstJ93AJYAeybb+WGy3yZ2kPNy\n4Jzk+YbAb4C7i6ZX+v/s0ntaZtuF19U32acfAt4G9ulsPclydwBNwICicVslz68Ebkxe01hC4VH4\n3/kK8E9gNOH/fjqwik4+vz39kXqAnvYAjgLmlIx7AFgILAM+nIybCkztZF0/BX6cPC98cLYpmn4e\ncGny/CzgzqJpOwDLioaLv2ieAQ6u8vUsAHYs2ka1BcN04FtFw8cBt5W8luIvkdsKH9ZkuE/yxbAF\ncHTpFwqhmqO4YHixk9dxGPBouf1RmgnYHHgX2LBo+veBy6vZ12W2vZpQsC1MHj/tSj4qFwyV9vN3\ngKuKpg0EVtBxwTCVUOAtJHw5/gvYuIv/n9W8p5uXWVdh+YXJ/9xTwFerWU+yXEuZfb4VoaBZAWxX\nNO3LwPTk+d3Al4um7V/6Onrjw6uS4nsT2FhFbQZmtqeZDU2mFcYb0K6xVtIHJE1PDnkXAccCw2mv\neJmXCHXBBfOKni8D1lf5tosxhA/9OpJqlaeSKpuFwBDCL9rumFv0fDkwqMK8Y4GfSVqYbPfNZPxo\nYBTwSsn8pcOl+3KkpGskvSJpMeHXb+m+7MhmwAJLqgETLyVZCqrd1wU7m9nQ5PGfNeYr1dF+3oyi\n/WRmy1m7X8sx4IfJ/2oz4Qv16MLEKv8/i1V6Tzsy3MyGmdkOZnZBF9bT0YkPGxOOll4sGlf8Xo5i\n3c9Ur+cFQ3wPEj5Qh3Vj2auBm4AxZtYE/Ip136MtSp6/2o3tvEyoemhH0l6EaqZPmllT8gWxmPiN\nn+XOqHmJ8MttaNFjQzN7kFCdNaYop4qHO1jn9wm/et9nZkOAz9F+X1Y6q+c1YJik4oJsC9YtjGrR\nWb4YXqP9fhtI54WPAMzsZUKV3X9LGpxMq/T/2ZX39KEuvo5q1tPR+zmfUM3YXDSu+L2cw7qfqV7P\nC4bIzGwRofH5Qkn/IWlw0sA1nlDHWVDuy3YQsNDM3pG0B3Ak6/7Df1vSQIXTCKcA13Yj5qXAOZLe\no2AnScOS7b8LzJe0nqTvABt1Y/0FHRUob5DUuxeN+xXwLUk7wJoGw08m024FdpR0qMJZJycAm3ay\n7UGE6oa3FBrWTy2ZPq9k+2skX4oPAD+QNEDSTsAxwG872WZXdJavKzraz38ADpY0QeFsuLMqzLvO\neszsLmAWcHxR5o7+P7v6nnZFt9djZquA64DvSRokaSzwdda+l9cBJ0oaLWkocHo38vU4XjDUgZn9\nkNBw+03CYf5cwj/3NwlHFBA+UKVf+scDZ0t6C/hvyn/p30P4sN5FOOy/q8L6OvoV9WPCB+JOwhHB\nJYSGyzuA24FngdmEaoniQ+ty26i0PSt5bgBmtgz4HnB/Uj2wh5ndRGgzuSapWpkBfDSZfz7wSeB8\nwi/A7YFHCEdmHeX6LrBL8vpuIXxJFs/zA0Ihu1DSyWXyHkH4lfkacAPwHTO7u8L2urJfqslXunzp\nvuxo/cX7eSbwNeCa5HUsITSir6C8cq/rh4Qvzv5U+P/s6ntaYfvrjux8PeWWKx73NUIh/DxwL+EE\njsuTaZcQ/u8fJ/xPVXofeg0lDS7120A4p/wR4BUzOzj5ZXotod5wNvCp5Fe2q0DhKs7ngX5mtjrd\nNOlK6vJfBo40s3vSzpMXSdXYQuA9ZvZiZ/O73qsRRwwnEc4wKJRApwPTzGwb4C/4oZurgsJ1DE2S\nBgDfSkZ3ta6615F0sKQNJG0I/C/whBcKrjN1LRgkjQEOItRpF+ovDwGuSJ5fQfcaaXur3nyIO4FQ\nhfYG4SKkw8ysoyoRt9YhhBMUXiXU/38m3TguD+palSTp94SzLzYCvpFUJS1MznYpnF2yoDDsnHMu\nfXU7YpD0ceB1M3uMDs6EsFAq9eZfwc45lzn17HBqT+AQSQcRznjZSKGPmnmSNjWzuZJGEc6SWIck\nLzCcc64bzKyma4/qdsRgZt8ys83NbEtCvebdZvY54GZgcjLbZMIFMx2to+zjxReN0aPTv2zczDjz\nzDNTz9ATMnpOz5n1R15yxtDI6xgKic8F9pf0LDAxGe6S0aNh/nxYvjxmvO6ZPXt22hE6lYeM4Dlj\n85xx5SVnDA3pu9zCueb3JM8XAPvVsr6+fWHsWJg9G7bfPkJA55xza+T2yuettoJ/le0GrrGmTJmS\ndoRO5SEjeM7YPGdceckZQ92vfO4uSVYp2wknwLbbwoknNjCUc85lnCQsq43P9TZuHDz/fNopoLW1\nNe0IncpDRvCcsXnOuPKSM4bcFgxZqUpyzrmeJrdVSTNmwGc+AzNnNjCUc85lXIyqpNwWDEuXwiab\nhL99cnvc45xzcfXqNoZBg2DwYJg7t/N56ykP9Y55yAieMzbPGVdecsaQ24IBstMA7ZxzPUluq5IA\njjoK9t8fJk+uOJtzzvUavboqCfyIwTnn6iHXBUMWTlnNQ71jHjKC54zNc8aVl5wx5L5g8CMG55yL\nK9dtDK+9Brvskv6ZSc45lxW9vo1h003hrbfCtQzOOefiyHXB0KcPbLklvPBCehnyUO+Yh4zgOWPz\nnHHlJWcMuS4YIBsN0M4515Pkuo0B4KSTwk17Tj65AaGccy7jen0bA/i1DM45F1vuC4a0q5LyUO+Y\nh4zgOWPznHHlJWcMdS0YJK0v6WFJbZKekvSDZPxZkl6R9FjymNTdbfgRg3POxVX3NgZJG5jZMkn9\ngPuAbwD7AkvM7McVlquqjWH5chg6FN5+G/r2jRbbOedyKRdtDGa2LHm6HtAXWJgM1xS8YOBAGD4c\nXn01xtqcc87VvWCQ1EdSGzAPmG5mhXuufU3S45Iuk9RUyzbSrE7KQ71jHjKC54zNc8aVl5wxNOKI\nYbWZjQfGAB+R1AJcBGwJjAfmAD+qZRtpN0A751xP0q9RGzKzxZL+DOxmZq2F8ZIuBW4pt8yUKVNo\nbm4GoKmpifHjx9PS0gKsLb1bWloYNw6mT29l3DjKTu/twy0tLZnKU2m4ICt5fH/Wf9j3Z23Dra2t\nTJ06FWDN92Wt6tr4LGlj4F0zWyRpIHAH8F1gppnNTeb5OrC7mR1ZsmxVjc8AV10Ft9wC11wTN79z\nzuVNHhqfRwF3J20MDwO3mNlfgPMlPSHpcWBv4Ou1bCTN7rdLf0lkUR4ygueMzXPGlZecMdS1KsnM\nZgC7lBl/dMzt+LUMzjkXT+77SgIwg402gldegSFD6hzMOecyLA9VSQ0h+d3cnHMulh5RMEB6p6zm\nod4xDxnBc8bmOePKS84YelTB4EcMzjlXux7RxgBw4YXwxBPwq1/VMZRzzmWctzEU8aufnXMujh5V\nMKRRlZSHesc8ZATPGZvnjCsvOWPoMQVDc3M4XXXlyrSTOOdcvvWYNgYI936ePj0cPTjnXG/kbQwl\n/Apo55yrXY8qGNJogM5DvWMeMoLnjM1zxpWXnDH0uILBjxicc642PaqN4dpr4fe/h+uvr1Mo55zL\nOG9jKOFHDM45V7seVTCMGxfaGBp5EJSHesc8ZATPGZvnjCsvOWPoUQXD0KGhp9UFC9JO4pxz+dWj\n2hgAdtkFLr4Ydt+9DqGccy7jvI2hjEJ1knPOue7pcQVDoxug81DvmIeM4Dlj85xx5SVnDHUrGCSt\nL+lhSW2SnpL0g2T8MEnTJD0r6U5JTTG361c/O+dcberaxiBpAzNbJqkfcB/wDeAQYL6ZnS/pNGCo\nmZ1eZtlutTHcdRd873uhzyTnnOttMt/GYGbLkqfrAX2BhYSC4Ypk/BXAYTG36dcyOOdcbepaMEjq\nI6kNmAdMN7OZwEgzm5fMMg8YGXObW2wBc+fCihUx19qxPNQ75iEjeM7YPGdceckZQ796rtzMVgPj\nJQ0B7pC0T8l0k9RhfdGUKVNobm4GoKmpifHjx9PS0gKsfZPKDY8ZA9dd18rmm5efHnO4oF7r703D\nbW1tmcqT92Hfn71jf7a2tjJ16lSANd+XtWrYdQyS/htYDnwRaDGzuZJGEY4ktiszf7faGAAOOABO\nPhkmTaopsnPO5U6m2xgkbVw440jSQGB/4DHgZmByMttk4KbY2/b7PzvnXPfVs41hFHB30sbwMHCL\nmf0FOBfYX9KzwMRkOKpGNkAXDumyLA8ZwXPG5jnjykvOGOrWxmBmM4BdyoxfAOxXr+1CuJbhgQfq\nuQXnnOu5elxfSQCPPQaTJ8MTT0QO5ZxzGRejjaFHFgyLF8Po0bBkSeht1TnneotMNz6nacgQWH99\neP31+m8rD/WOecgInjM2zxlXXnLG0CMLBvAroJ1zrrt6ZFUSwBFHwMc+BkcdFTGUc85lnFclVeBH\nDM451z09tmBoVPfbeah3zENG8Jyxec648pIzhh5bMPjVz8451z09to3hpZdgwgR49dWIoZxzLuP8\nOoYKVq2CDTeEhQth4MCIwZxzLsO88bmCvn1h7Fh44YX6bicP9Y55yAieMzbPGVdecsbQYwsG8DOT\nnHOuO3psVRLAV78KW28NJ50UKZRzzmWcVyV1wo8YnHOu63p0wTBuXP1PWc1DvWMeMoLnjM1zxpWX\nnDH06ILBjxicc67renQbw9KlMGIEvP029OnRRaBzzgXextCJQYNCF9xz5qSdxDnn8qNHFwxQ/+qk\nPNQ75iEjeM7YPGdceckZQ10LBkmbS5ouaaakJyWdmIw/S9Irkh5LHpPqlaERDdDOOdeT1LWNQdKm\nwKZm1iZpEPAP4DDgU8ASM/txhWVrbmMAOPNMMIOzz655Vc45l3mZb2Mws7lm1pY8Xwr8ExidTG7I\n3Zj9zCTnnOuahrUxSGoGdgYeSkZ9TdLjki6T1FSv7da7KikP9Y55yAieMzbPGVdecsbQrxEbSaqR\nrgdOMrOlki4CCpU75wA/Ar5QutyUKVNobm4GoKmpifHjx9PS0gKsfZM6G95mmxaef776+bs6XFCv\n9fem4ba2tkzlyfuw78/esT9bW1uZOnUqwJrvy1rV/ToGSf2BPwG3mdlPy0xvBm4xsx1LxkdpYzAL\n3W/PmweDB9e8Ouecy7S6tjFIWippSZnHckmrqgwo4DLgqeJCQdKootkOB2Z09wV0ngG23LL+3W87\n51xP0WHBYGaDzGxw4QGMAr4HzAXW+eXfgQ8BRwH7FJ2aeiBwnqQnJD0O7A18vbaXUVk9G6ALh3RZ\nloeM4Dlj85xx5SVnDJ22MSQNw/8JTAauBnYzszerWbmZ3Uf5wue2roSslV/L4Jxz1euwjUHSCOAU\n4NPAr4Gfm9nihgWL1MYA8POfwzPPwC9/GWV1zjmXWTHaGCodMcwG5hMKhWXAF5I2AwCrdHFa1owb\nB7femnYK55zLh0rXMfwQuDx5PggYnPwtPM8Nb2NoTTtCVTxnXJ4zrrzkjKHDIwYzO6uBOeqquRle\neglWrYK+fdNO45xz2daj78dQbMwYuO++UEg451xPlfm+krLkwx+GW25JO4VzzmVfpQvc9ixqbM69\n446DCy8MV0LHlId6xzxkBM8Zm+eMKy85Y6h0xHA08KikayVNSbrQzq2PfCS0L9x9d9pJnHMu2zpt\nY5C0PXAgcADQBNwN3A7cb2ZVdY3RrWCR2xgALroIpk2DG26IulrnnMuMGG0MXWp8lrQBsA+hoJhg\nZrvWsvFOthW9YFiyBMaOhccfh803j7pq55zLhIY3PpvZMjP7s5l9tZ6FQr0MHgyf/SxcfHG8deah\n3jEPGcFzxuY548pLzhh6zVlJBccfD5deCitWpJ3EOeeyqddcx1Bsv/3gmGPgyCPrsnrnnEtNQ6uS\nJK0vaUAtG8uKE07wDvWcc64jla5j6CPpE5J+L+lV4AXgRUmvSrpe0uF5vc7h4IPh5Zehra32deWh\n3jEPGcFzxuY548pLzhgqHTG0ArsC/wtsZWajzGxTYKtk3O7APXVPWAf9+sGxx/pRg3POlVPpfgwD\nzKxiE20183Q7WB3bGCDcA3q77UKvq0OH1m0zzjnXUHVtYyj3hS9peGfz5MXIkXDQQTB1atpJnHMu\nWyq1MUyUNEvSQ5L2kPQM8DdJ/5K0ewMz1s0JJ4T+k1av7v468lDvmIeM4Dlj85xx5SVnDJ3dqOdw\n4OvAncAXzWwc8Emgqru3Sdpc0nRJMyU9KenEZPwwSdMkPSvpzuS+0g03YQIMGhS6yXDOORdUamN4\nzMx2Tp7/08y2Lzet4spDx3ubmlmbpEHAP4DDgM8D883sfEmnAUPN7PSSZevaxlBw6aVw883h4Zxz\neVfv6xiKp/1X0UYF9K9m5WY218zakudLgX8Co4FDgCuS2a4gFBapOPJIeOABmD07rQTOOZctlQqG\n70jaEMDMbioavxVwZVc3JKkZ2Bl4GBhpZvOSSfOAkV1dXywbbABHHw2/+lX3ls9DvWMeMoLnjM1z\nxpWXnDFUuufzH0vHSdrUzP4FnN+VjSTVSH8ATjKzJcXXxZmZSSpbZzRlyhSak3txNjU1MX78eFpa\nWoC1b1KM4eOOg913b2XiRDjggK4tXxAzT28dbmtry1SevA/7/uwd+7O1tZWpyemVzZHuXdzVbrcf\nNbNdurQBqT/wJ+A2M/tpMu5poMXM5koaBUw3s+1KlmtIG0PBpEmhWunooxu2Seeciy6Nez53aWNJ\ne8RlwFOFQiFxMzA5eT4ZuKl02Ubz/pOccy7oasFwSRfn/xBwFLCPpMeSxyTgXGB/Sc8CE5PhVB10\nULga+pFHurZc4ZAuy/KQETxnbJ4zrrzkjKHDNgZJg81sSfE4M7uws3lK5r+Pjguf/boStN769oXj\njgtHDZdfnnYa55xLT6XrGO4CngH+CDxiZguS8cOB3QinmG5tZnX5gm90GwPA/Pmw9dYwaxYMH975\n/M45lzV1v+ezpInAkYQqoc2S0a8B9wFXmVlrLRuvGCyFggFg8mR43/vg1FMbvmnnnKtZ3Rufzexu\nM/uimW1vZkOSx/Zm9qV6FgppOuEEuOgiWLWquvnzUO+Yh4zgOWPznHHlJWcMve6ez53ZY49QjXT7\n7Wkncc65dHRWldQPuMTMPt+4SGu2nUpVEoSuuK+9Fm67LZXNO+dct9W1Kim5WvlPwN9r2UAeffrT\n4bTVWbPSTuKcc41XqSrpHuDW0lNUe4OBA+Hznw9tDZ3JQ71jHjKC54zNc8aVl5wxVCoYhgAvNypI\n1hx3HFxxBSxblnYS55xrrErXMYwCbgTOLeldtSHSbGMo+PjH4fDD4QtfSDWGc85Vrd73fJ4D7A/0\n2q/FQv9JKZdPzjnXUJ1dx7AE+ESDsmTORz8Kb70FDz3U8Tx5qHfMQ0bwnLF5zrjykjOGTq9jMLOV\njQiSRX36rO0/yTnneotKbQxNwOmEPpFGAga8Tugi+1wzW1TXYBloYwBYsADGjYNnnoFNNkk7jXPO\nVVbvLjGuAxYCLcAwMxsG7AMsSqb1CsOGwSc+AZdemnYS55xrjEoFQ7OZnWdmcws/3c1sjpmdCzQ3\nJF1GnHBCuCf0u++uOy0P9Y55yAieMzbPGVdecsZQqWB4UdI3JY0sjJC0qaTTgJfqHy07dtkFRo+G\nP/0p7STOOVd/ldoYhhHaGA4htDEAzCPclvPcwv0Z6hYsI20MBVddFfpQmjYt7STOOdexut+PIU1Z\nKxhWrICxY+Gee2DbbdNO45xz5dX9fgwVNtzw3lbTNmBAuAL6wpKeo/JQ75iHjOA5Y/OcceUlZwzd\nvR/D2dXMJOnXkuZJmlE07ixJr0h6LHlM6maGhjv2WPjtb2Hp0rSTOOdc/VRqY5hRdkKwjZkN6HTl\n0l7AUuBKM9sxGXcmsMTMftzJspmqSio4/HCYNCkUEs45lzUxqpL6VZi2CTCJcC1DqQeqWbmZ3Sup\nucykmkKn6YQT4OST4ctfBuX2VTjnXMcqVSX9GRhkZrNLH4R7NdTia5Iel3RZcoV1buy7L7zzDtx3\nXxjOQ71jHjKC54zNc8aVl5wxdHjEYGbHVJh2RA3bvIi1bRTnAD+igx5cp0yZQnNzMwBNTU2MHz+e\nlpYWYO2blMbw8cfDmWe28p3vrM2aZp6eMtzW1papPHkf9v3ZO/Zna2srU6dOBVjzfVmrup+umlQl\n3VJoY+jCtEy2MQAsXgzNzfDUUzBqVNppnHNurdROV61FcgOggsOBSo3cmTRkSLgv9CWXpJ3EOefi\nq2vBIOl3hIbqbSW9LOkY4DxJT0h6HNgb+Ho9M9TLCSfAxRfDnXe2ph2lU4XDzqzznHF5zrjykjOG\nSmcl1ayDtohf13ObjbLjjrD33nDOOTBxIvSr6550zrnG8S4xarBiBRx6KIwcCZdfHm7s45xzacpl\nG0NPMmAA3HADPP88nHii3xvaOdczeMFQo7/9rZU//QkefBC+/e2005SXl7pRzxmX54wrLzlj8Jrx\nCIYMgdtvD20OG20Ep52WdiLnnOs+b2OI6NVXYa+94NRT4bjj0k7jnOuN6t1Xkuui0aPhrrvCkcPg\nwXDUUWkncs65rvM2hhqV1jtutRXccQd84xtw003pZCqVl7pRzxmX54wrLzlj8COGOthhB/jzn+HA\nA2HQINhvv7QTOedc9byNoY7uvRc+8Qn44x9hzz3TTuOc6w38OoaM22sv+M1vws192trSTuOcc9Xx\ngqFGndU7TpoEv/xlqFZ6+unGZCqVl7pRzxmX54wrLzlj8DaGBvh//y/cJ/qAA0L10tixaSdyzrmO\neRtDA/385/CLX8Bf/+r3cXDO1Ydfx5AzJ54Ib70VjhzuuQeGDUs7kXPOrcvbGGrU1XrHM84I7Q6T\nJsGSJfXJVCovdaOeMy7PGVdecsbgBUODSXD++bDzznDwwbB8edqJnHOuPW9jSMmqVXD00eH+0Tfc\nAOutl3Yi51xP4Ncx5FjfvjB1ari5z+c+FwoK55zLAi8YalRLvWP//nDddTB/PnzlK/W70U9e6kY9\nZ1yeM6685IyhrgWDpF9LmidpRtG4YZKmSXpW0p2SmuqZIevWXz90mTFjBpxyit8FzjmXvrq2MUja\nC1gKXGlmOybjzgfmm9n5kk4DhprZ6WWW7dFtDKUWLIB99gl9K515ZtppnHN5lfk2BjO7F1hYMvoQ\n4Irk+RXAYfXMkBfDhsGdd8Lvfgdnn+1HDs659KTRxjDSzOYlz+cBI1PIEE3MeseRI6G1Fa69Ntw/\nOlbhkJe6Uc8Zl+eMKy85Y0j1ymczM0kdfv1NmTKF5uZmAJqamhg/fjwtLS3A2jcp7eGCmOtvbYUJ\nE1qZNQuuuaYFKTuvt57DbW1tmcqT92Hfn71jf7a2tjJ16lSANd+Xtar7dQySmoFbitoYngZazGyu\npFHAdDPbrsxyvaqNodSCBaHrjAkT4Gc/C6e1OudcZzLfxtCBm4HJyfPJQEZugJktw4bBX/4C//hH\nOJV19eq0Eznneot6n676O+ABYFtJL0v6PHAusL+kZ4GJyXBuFQ7p6mHIkHD/6GeegWOO6f5FcPXM\nGJPnjMtzxpWXnDHUtY3BzI7oYJLfBblKgwfDrbfCoYfCUUfBlVeGC+Occ65evK+knFi+PFzjsMEG\n4ZTW9bxvJedcGXltY3DdMHAg3HQTvPsu/Md/wL//nXYi51xP5QVDjRpZ7zhgAFx/fSgkDj20+i67\n81I36jnj8pxx5SVnDF4w5Ez//nD11TBiBHzsY/D222kncs71NN7GkFOrVsGXvgTPPQd//jNstFHa\niZxzWeBtDL1Y375w6aXwvveFC+EWLUo7kXOup/CCoUZp1jv26QMXXggf/CDsuy+8+Wb5+fJSN+o5\n4/KcceVF+uFGAAAPdElEQVQlZwxeMOScBD/5Cey3H0ycCK+/nnYi51zeeRtDD2EW7uNw/fWhK41R\no9JO5JxLQ4w2hlR7V3XxSOE+DgMGwN57w913w5gxaadyzuWRVyXVKGv1jmecAcceGwqH2bPDuKxl\n7IjnjMtzxpWXnDH4EUMPdMop4cihpQXuuivtNM65vPE2hh7s//4PzjkHpk2D7da544VzrifyNgZX\n0Ze/HI4cJkyAnXaCbbZp/9hqqzDdOeeKeRtDjbJe7zh5Mlx2WStnngm77gpz5oQL4w47LNzvYdw4\nOPBAOOkkuOACuPPO0DbR3Xs/1CLr+7LAc8blObPHjxh6gWHDQnvDxIntx69cGQqBZ58Nj5kz4cYb\nw/P580OhUXqUsc02oZ8m1XSg6pzLMm9jcGW9/TbMmrW20Ch+rFrVvqDYeuu1f73PJufSFaONwQsG\n12Vvvhk67ystMJ57LhQM5Y4yvD3DucbIdcEgaTbwFrAKWGlme5RMz0XB0NraSktLS9oxKmpUxtWr\n4bXXyh9lvPQSjB5dvtDYfPPQ71Me9iV4ztg8Z1x5PyvJgBYzW5BiBhdRnz7hausxY8q3Z7zwwtoj\niyefhBtuaN+eMWQIvP/9sNlmoUuP4r8bbxzW75yrvzSPGF4AdjOzsn2C5uWIwdWu0J7xr3+FI445\nc9b9u3gxjBy5boFR+nfECC9AXO+W96qk54HFhKqki83skpLpXjC4Nd55B+bODQVFR4XHa6+FAmST\nTSoXHqNGhQKkb9+0X5Vz8eW9YBhlZnMkjQCmAV8zs3uLpueiYMhDvWMeMkKcnIUCpKOCo/B30aJQ\nOBQXGB0dgZQWIL1pfzaC54wr120MZjYn+fuGpBuBPYB7i+eZMmUKzc3NADQ1NTF+/Pg1b0zhYpO0\nhwuykifPw21tbVHWt8UW8PzzrQwdCocfXn7+adNaWbgQxo5tYc6cMP255+DFF8Pws8+28uabsHRp\nC5tsAoMGtTJ8OOy4Ywv//jfceGMrTU1hfSNGwHPPtbLRRrDvvj1vf/pwtvdna2srU6dOBVjzfVmr\nVI4YJG0A9DWzJZI2BO4EvmtmdxbNk4sjBtezrVwJ8+a1P9qYOxfeeCPcFOmNN9Y+Fi6EpqZQlTVi\nxNpHR8PDh0M/v8TURZbbqiRJWwI3JoP9gKvM7Acl83jB4HJl1apwjUe5QqN4uPC8UJBUU4iMGBHO\nzPKCxHUmtwVDNfJSMLTmoN4xDxmh9+VctQoWLChfaJQbXrAgnNJbTSGyySYwY0Yr++9fe856623v\ne73luo3Bud6ub9+1X+TVKBQk5QqNZ56B++5rP+3NN6F//1CYbLRR9/8OHuxncPU2fsTgXA9lBsuX\nw1tvhdN4u/K3+PnSpbDBBuULjq4UMgMHeueLjeBVSc65ulu9OhQOXS1cSv+uXBkKie4evRSe9++f\n9h7JNi8YMiAP9Y55yAieM7as5Vy5ct2jkcWL4aGHWhk9uqXqAqZ//84Lj87+DhrU9Svks7Y/O+Jt\nDM653OjfP5yiO3x4+/GDB4f7hVSjUD3WWeHx2mvw9NNhuNw8y5aF7XblqKU3nRHmRwzOuV5n1SpY\nsmTdAqNSgXP++aE34KzzqiTnnHPtxCgYvB/KGhUuTc+yPGQEzxmb54wrLzlj8ILBOedcO16V5Jxz\nPYhXJTnnnIvOC4Ya5aHeMQ8ZwXPG5jnjykvOGLxgcM451463MTjnXA/ibQzOOeei84KhRnmod8xD\nRvCcsXnOuPKSMwYvGJxzzrXjbQzOOdeDeBuDc8656FIrGCRNkvS0pOcknZZWjlrlod4xDxnBc8bm\nOePKS84YUikYJPUFLgAmATsAR0jaPo0stWpra0s7QqfykBE8Z2yeM6685IwhrSOGPYBZZjbbzFYC\n1wCHppSlJosWLUo7QqfykBE8Z2yeM6685IwhrYJhNPBy0fAryTjnnHMpS6tg6DGnG82ePTvtCJ3K\nQ0bwnLF5zrjykjOGVE5XlfRB4Cwzm5QM/xew2szOK5qnxxQezjnXSLm8taekfsAzwL7Aa8DfgCPM\n7J8ND+Occ66dfmls1MzelfRV4A6gL3CZFwrOOZcNmb3y2TnnXDoa3vhczYVtkn6eTH9c0s5F45sk\nXS/pn5KeStoqspjzvyTNlDRD0tWSBqSVU9J2kh6U9G9Jp3Rl2SzklLS5pOnJ/nxS0olZzFk0va+k\nxyTdksWMWfoMdZIzS5+hzyaf8Sck3S9pp2qXzULObn2GzKxhD0K10SygGegPtAHbl8xzEHBr8vwD\nwENF064Ajkme9wOGZC1nsszzwIBk+Fpgcoo5RwC7Af8DnNKVZTOSc1NgfPJ8EKFtKnM5i6afDFwF\n3JzFjBn7DHX0nmftMzShsJ8IF+U+VO2yGcnZ5c9Qo48Yqrmw7RDCPy9m9jDQJGmkpCHAXmb262Ta\nu2a2OGs5gbeAlcAGSSP7BsCraeU0szfM7JEkU5eWzUJOM5trZm3J86XAP4HNspYTQNIYwg+GS4Ga\nzgqpR8asfYYq7MusfYYeLNpPDwNjql02Czm78xlqdMFQzYVt5eYZA2wJvCHpckmPSrpE0gYZyzna\nzBYAPwJeIpxxtcjM7koxZz2W7aoo25LUDOxM+Kevh1pz/gQ4FVgdM1SJWjJm7TNUVsY/Q18Abu3m\nsrWoJeca1X6GGl0wVNvSXfprywiHvbsAF5rZLsDbwOkRs5Vurxrr/CqUNA74T8Ih32bAIEmfjRet\nnVrOHGjkWQc1b0vSIOB64KTkV089dDunpI8Dr5vZY9TvaAFq25dZ/AytI6ufIUn7AMcAhfr9TH6G\nyuQsjK/6M9ToguFVYPOi4c0JJV+lecYk414BXjGzvyfjryf8k2ct527AA2b2ppm9C9wA7Jliznos\n21U1bUtSf+APwG/N7KbI2YrVknNP4BBJLwC/AyZKujJyPqgtY9Y+Qx3J3Gcoaci9BDjEzBZ2ZdkM\n5OzyZ6jRBcMjwNaSmiWtB3wauLlknpuBo2HNFdKLzGyemc0FXpa0TTLffsDMrOUkNOx8UNJASUpy\nPpVizoLSX7FdWTa1nMk+vAx4ysx+Wqd8Bd3OaWbfMrPNzWxL4DPA3WZ2dMYyZu0zVDYn8DQZ+gxJ\n2oJQOB1lZrO6smwWcnbrM1SPFvROWtcPJHx5zgL+Kxl3LHBs0TwXJNMfB3YpGv9+4O/J+Buo0xkV\nEXJ+k/CBm0FooO6fVk7CGQkvA4uBhYR620EdLZu1nMCHCXX2bcBjyWNS1nKWrGNv6nRWUoT3PDOf\noU5yZukzdCnwZtH/398qLZu1nN35DPkFbs4559rxW3s655xrxwsG55xz7XjB4Jxzrh0vGJxzzrXj\nBYNzzrl2vGBwzjnXjhcMrtuSi22WS3q0aHhGSlk2k/T7CtOHSDquzhk+KOn/Ssa1KFIX3JKmSPpF\njHVVsa0176Wk3ST9rIP5ZksallyM1iZphaRhjcjo6scLBlerWRb63UmVmb1mZp+sMMtQ4PiurldS\nVz4jBwK3dXUbtZLUt57rN7NHzOykjiYn8yw3s/GETu9cznnB4MqStHty048BkjZMbvCxQxeW3yrp\nwXNXSRtIui65UcgNkh6StGuZZWZL+r7CjW4ekbSLpDslzZJ0bDKPJP1Q4QYuT0j6VDK++BfueyU9\nnKynTdJ7gHOBccm48yXtXfxLXtIFkiYX5ThX0j+AT0o6QNIDkv6RvI4NO3jZE4EOewFN9umjkraU\nNELStGS/XlL45V1mmc9LekbSwxT1FyRpqqRfSXoIOF/Ss5I2Tqb1UbiZy/CSde2dvP7HkhwbdrQ/\nS5Zbc9QjaXjynjwp6RLq22GgS0kq93x22Wdmf5d0M+EmKgOB35hZVf3VSNqW0JHcZDObIekbwJtm\n9l5J7yVcml/uknsDXjSznSX9GJhKuPnIQOBJ4GLgE4RuHXYi3Ojl75LuKVnPV4CfmdnVCv359yP0\nNPleM9s5ydhSZttW9Hy+me2afNn+AdjXzJYr3DnrZOCckte8MbDSzJZ0sE/2BH5O6NzsFUkXAHeZ\n2XmSPkroJrl0mVHAWYSO7t4CpgOPFs2yGTDBzEzSYuCzwM8IfQu1mdmbJas8BTjezB5U6G57BdXt\nz2JnAn81s/+RdFC53C7//IjBVXI2cACht8vzq1xmE+Am4EgzK7Q3fIhwYxHMbCbwRIXlCx2DzQAe\nNLO3zWw+sELhRjMfAq624HXgHsJNTIo9AHxL0jeBZjP7N13/ZXtt8veDwA7AA5IeI3ScuEWZ+Q8A\n7uhgXdsTCrWPm1mhR8zifXIHoa+gUh8AplvoZXRlkqnwOgz4va3t0+bXSTYIXS5fXmZ99wM/kfQ1\nYKiZraK6/VlsL+C3Se5bO8jtcs4LBlfJxsCGhM7sBla5zCLgRcIXSLFqv5hXJH9XA+8UjV/N2iPc\ncvfrWDtg9jvgYGA5cKtC//Sl3qX9/3/p63u76Pk0M9s5ebzXzL5UZn2TgNvLjDdgTpKltC2ms31i\nJfOUzr9szYyhwJknaSKwO2XaOszsPMIv/IHA/cmRXbn1dtaBmlcf9XBeMLhKLga+DVwNnFflMu8Q\nqieOlnREMu5+oNAWsAOwYxXrKfflY8C9wKeTevQRwEeAv7VbUNrKzF4ws18Af0y29xYwuGi2F4Ed\nJK0nqYnQPlDOw8CHFG4eQ1Ivv3XJ9gTsZGaPd/A6FgEfB34gae9kfPE+OYDQOF7qb8DeCmf99Ac+\nSeUv7UsJv+avKzqSKM45zsxmmtn5hB5Wt6OK/Vnir8CRyfoO7CC3yzlvY3BlSToaWGFm1yicmfOA\npBYza+1kUTOzZQp3NJsmaQlwIXCFpJmEvvZnErpaXmfZkuelw5jZjZImELqNNuBUM3td4ZaFhfk/\nJekown2D5wDfM7NFku5PGqhvNbPTJF1HaLt4gfZ198Uv5g1JU4DfSRqQjD4DeK5otl0JXRmXXUWy\nT15P9sltkj4PfDdZ5+eAB4G5QLv2CTObI+msZPqiMtso/fK/hVCFVK4aCeCk5OhpNeF132pmK6vY\nn8XbKuQ+glBl92IH23I55t1uu25LvjxuMbOKRwBJwdLfzFYkv7ynAdtYuDtX7kk6A3jOzK7rwjLr\nAavMbFXyxfzLWk/7lbQb8CMz27vTmetE4Q52u1q4b7PLKT9icLV4Fxgi6dFOvtQ2BO5OqkMEHNdT\nCgUAM/teNxbbArguKTTfAcq1W1RN0umEs7GOrGU9NWx/feAhwnfK6jQyuHj8iME551w73vjsnHOu\nHS8YnHPOteMFg3POuXa8YHDOOdeOFwzOOefa8YLBOedcO/8fn0E/Bf9S/E0AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7786b00>"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.4: Page 676"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.4\n",
+ "# Page: 676\n",
+ "\n",
+ "print'Illustration 12.4 - Page: 676\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "#***Data***#\n",
+ "# For rectangular pan:\n",
+ "l = 0.7;# [m]\n",
+ "b = 0.7;# [m]\n",
+ "zS = 0.025;# [m]\n",
+ "zM = 0.0008;# [m]\n",
+ "d = 0.1;# [m]\n",
+ "Y1 = 0.01;# [kg water/kg dry air]\n",
+ "TempG = 65.0;# [OC]\n",
+ "v = 3.0;# [m/s]\n",
+ "TempR = 120.0;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "vH = (0.00283+(0.00456*Y1))*(TempG+273.0);# [cubic m/kg dry air]\n",
+ "Density_G = (1+Y1)/vH;# [kg/cubic m]\n",
+ "G = v*Density_G;# [kg/square m.s]\n",
+ "de = 4*d*l/(2*(l+d));# [m]\n",
+ "# From Eqn. 12.20:\n",
+ "hc = 5.90*G**0.71/de**0.29;# [W/square m.K]\n",
+ "# Assume:\n",
+ "e = 0.94;\n",
+ "# Estimate:\n",
+ "TempS = 38;# [OC]\n",
+ "# From Eqn. 12.14:\n",
+ "hR = e*5.729*10**(-8)*((273+TempR)**4-(273+TempS)**4)/((273.0+TempR)-(273+TempS));\n",
+ "A = l*b;# [square m]\n",
+ "Am = A;# [square m]\n",
+ "As = 4*l*zS;# [square m]\n",
+ "Au = Am+As;# [square m]\n",
+ "# Thermal Coductivities:\n",
+ "kM = 45;# [W/m.K]\n",
+ "kS = 3.5;# [W/m.K]\n",
+ "# By Eqn. 12.16:\n",
+ "Uk = 1/(((1/hc)*(A/Au))+((zM/kM)*(A/Au))+((zS/kS)*(A/Am)));# [W/squre m.K]\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "Cs = 1005+(1884*Y1);# [kJ/kg]\n",
+ "# At estimated 38 OC\n",
+ "lambdaS = 2411.4;# [kJ/kg]\n",
+ "# From Eqn. 12.18:\n",
+ "# (Ys-Y1)*lambdaS*10^3/Cs = ((1+(Uk/hc))*(TempG-Temps))+((hR/hC)*(TempR-TempS))\n",
+ "# On Simplifying:\n",
+ "# Ys = 0.0864-(10.194*10**(-4)*TempS)\n",
+ "# The eqn. is solved simultaneously with the saturated humidity curve of the psychometric chart for the air water mixture.\n",
+ "# From Fig. 12.12: (Pg 677)\n",
+ "Ys = 0.0460;# [kg water/kg dry air]\n",
+ "TempS = 39;# [OC]\n",
+ "# At 39 OC\n",
+ "lambdaS = 2409.7;# [kJ/kg]\n",
+ "# From Eqn. 12.17:\n",
+ "Nc = (((hc+Uk)*(TempG-TempS))+(hR*(TempR-TempS)))/(lambdaS*10**(3));# [kg water evaporated/square m.s]\n",
+ "print\"The Evaporation Rate: \",round(Nc*A,8),\" kg/s\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "# When no radiation or conduction of heat through the solid occurs, the drying surface assumes wet bulb temparature of the air.\n",
+ "# From Fig. 12.12 (Pg 677)\n",
+ "TempS = 28.5;# [OC]\n",
+ "Ys = 0.025;# [kg water/kg dry air]\n",
+ "lambdaS = 2435;# [kJ/kg]\n",
+ "# From Eqn. 12.17:\n",
+ "Nc = hc*(TempG-TempS)/(lambdaS*10**3);# [kg/aquare m.s]\n",
+ "print\"The Evaporation Rate: \",round(Nc*A,8), \"kg/s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.4 - Page: 676\n",
+ "\n",
+ "\n",
+ "The Evaporation Rate: 0.0003851 kg/s\n",
+ "\n",
+ "The Evaporation Rate: 0.00016105 kg/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.5: Page 684"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.5\n",
+ "# Page: 684\n",
+ "\n",
+ "print'Illustration 12.5 - Page: 684\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "from scipy import integrate\n",
+ "import math\n",
+ "#***Data***#\n",
+ "x1 = 0.025;# [moisture fraction]\n",
+ "x2 = 0.001;# [moisture fraction]\n",
+ "zS = 0.018;# [m]\n",
+ "dp = 2*10**(-4);# [m]\n",
+ "Density_S = 1350;# [kg dry solid/cubic m]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg water/kg dry air]\n",
+ "X2 = x2/(1-x2);# [kg water/kg dry air]\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Y1 = 0.0153;# [kg water/kg dry air]\n",
+ "Tempas = 24;# [OC]\n",
+ "Yas = 0.0190;# [kg water/kg dry air]\n",
+ "Gs = 0.24;# [kg dry air/square m.s]\n",
+ "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg dry air/square m.s]\n",
+ "# From Eqn. 12.26:\n",
+ "Nmax = Gs*(Yas-Y1);# [kg evaporated/square m.s]\n",
+ "viscosity_air = 1.8*10**(-5);# [kg/m.s]\n",
+ "X3=lambda X : 1/(Nmax*(1-math.exp(-(0.273/dp**0.35)*((dp*Gav/viscosity_air)**0.215)*(Density_S*zS*X)**0.64)));\n",
+ "Value = integrate.quad(X3,X2,X1);\n",
+ "# From Eqn. 12.3:\n",
+ "thetha = Density_S*zS*Value[0];# [s]\n",
+ "print\"The time for drying: \",round(thetha/60,3),\" min\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.5 - Page: 684\n",
+ "\n",
+ "\n",
+ "The time for drying: 12.593 min\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.6: Page 685"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.6\n",
+ "# Page: 685\n",
+ "\n",
+ "print'Illustration 12.6 - Page: 685\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "import math\n",
+ "#***Data***#\n",
+ "Y1 = 0.01;# [kg water/kg dry air]\n",
+ "Gs = 1.1;# [kg dry air/square m.s]\n",
+ "dia = 13.5/1000;# [m]\n",
+ "l = 13.0/1000;# [m]\n",
+ "zS = 50.0/1000;# [m]\n",
+ "Density_S = 600.0;# [kg dry solid/square m.s]\n",
+ "a = 280.0;# [square m/cubic m]\n",
+ "#************#\n",
+ "\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Yas = 0.031;# [kg water/kg dry air]\n",
+ "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg/square m.s]\n",
+ "viscosity_air = 1.9*10**(-5);# [kg/m.s]\n",
+ "Area = (2.0*math.pi*dia**2.0/4)+(math.pi*dia*l);# [square m]\n",
+ "dp = (Area/math.pi)**0.5;# [m]\n",
+ "# From Table 3.3 (Pg 74)\n",
+ "Re = dp*Gav/viscosity_air;\n",
+ "e = 1.0-(dp*a/6);# [fraction voids]\n",
+ "jD = (2.06/e)*Re**(-0.575);\n",
+ "# For air water mixture:\n",
+ "Sc = 0.6;\n",
+ "# From Eqn. 12.33:\n",
+ "kY = jD*Gs/Sc**(2.0/3);# [kg H2O/square m.s.deltaX]\n",
+ "# From Eqn. 12.30:\n",
+ "NtG = kY*a*zS/Gs;\n",
+ "# From Eqn. 12.25:\n",
+ "Nmax = Gs*(Yas-Y1);# [kg/square m.s]\n",
+ "# From Eqn. 12.31:\n",
+ "N = Nmax*(1-math.exp(-NtG));# [kg water evaporated/square m.s]\n",
+ "Y2 = (Yas-Y1)*(N/Nmax)+Y1;# [kg water/kg dry air]\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Tempas = 33.0;# [OC]\n",
+ "# From eqn. 12.2:\n",
+ "Rate = N/(Density_S*zS);# [kg H2O/(kg dry solid).s]\n",
+ "print\"Humidity of the exit air: \",round(Y2,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Temparature of exit air: \",Tempas,\" degree C\\n\"\n",
+ "print\"Rate of Drying: \",round(Rate,7),\" kg H2O/(kg dry solid).s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.6 - Page: 685\n",
+ "\n",
+ "\n",
+ "Humidity of the exit air: 0.0302 kg water/kg dry air\n",
+ "\n",
+ "Temparature of exit air: 33.0 degree C\n",
+ "\n",
+ "Rate of Drying: 0.0007409 kg H2O/(kg dry solid).s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.7: Page 700"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.7\n",
+ "# Page: 700\n",
+ "\n",
+ "print'Illustration 12.7 - Page: 700\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "import math\n",
+ "from numpy.linalg import inv\n",
+ "#***Data***#\n",
+ "x1 = 3.5;# [percent moisture]\n",
+ "x2 = 0.2;# [percent moisture]\n",
+ "dia = 1.2;# [m]\n",
+ "l = 6.7;# [m]\n",
+ "Rate_prod = 900.0;# [kg/h]\n",
+ "y2 = 0.5;# [Humidity]\n",
+ "TempG2 = 90.0;# [OC]\n",
+ "TempG1 = 32.0;# [OC]\n",
+ "TempS1 = 25.0;# [OC]\n",
+ "TempS2 = 60.0;# [OC]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(100.0-x1);# [kg H2O/kg dry solid]\n",
+ "X2 = x2/(100.0-x2);# [kg H2O/kg dry solid]\n",
+ "Ss = Rate_prod*(1-X2);# [kg dry solid/h]\n",
+ "Rate_drying = Ss*(X1-X2);# [kg water evaporated/h]\n",
+ "Y2 = (y2/(1-y2))/100.0;# [kg water/kg dry air]\n",
+ "Tempo = 0.0;# [Base temp,OC]\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "# Enthalpy of air entering the drier:\n",
+ "HG2 = (1005.0+(1884.0*Y2))*(TempG2-Tempo)+(2502300.0*Y2);# [J/kg dry air]\n",
+ "# For the outlet air:\n",
+ "# HG1 = (1005.0+(1884*Y1))*(TempG1-Tempo)+(2502300*Y1); [J/kg dry air]\n",
+ "# HG1 = (1005.0*TempG1)+((1884+TempG1)+2502300)*Y1; [J/kg dry air]\n",
+ "CsNH4 = 1507.0;# [J/kg.K]\n",
+ "CsH2O = 4187.0;# [J/kg.K]\n",
+ "# From Eqn. 11.45:\n",
+ "HS2 = CsNH4*(TempS2-Tempo)+(X2*CsH2O*(TempS2-Tempo));# [J/kg dry air]\n",
+ "HS1 = CsNH4*(TempS1-Tempo)+(X1*CsH2O*(TempS1-Tempo));# [J/kg dry air]\n",
+ "# The estimated combined natural convection and radiation heat transfer coeffecient from the drier to the surrounding:\n",
+ "h = 12.0;# [W/square m.K]\n",
+ "deltaTemp = ((TempG2-TempS1)+(TempG1-TempS1))/2;# [OC]\n",
+ "Ae = math.pi*dia*l;# [square m]\n",
+ "Q = h*3600.0*Ae*deltaTemp;# [kJ/h]\n",
+ "# Moisture Balance, Eqn. 12.39:\n",
+ "# Ss*(X1-X2) = Gs(Y1-Y2)\n",
+ "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",
+ "# Enthalapy Balance, Eqn. 12.40:\n",
+ "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",
+ "# Gs*(HG2-HG1) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-((1005*TempG1)+((1884+TempG1)+2502300)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-(1005*TempG1))-(Gs*Y1*((1884+TempG1)+2502300)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",
+ "# Solving Simultaneously:\n",
+ "a = numpy.array([[HG2-(1005.0*TempG1),-((1884.0+TempG1)+2502300.0)],[(-Y2), 1.0]]);\n",
+ "b = numpy.array([[((Ss*HS2)+Q-(Ss*HS1))],[(Ss*(X1-X2))]]);\n",
+ "c=inv(a)\n",
+ "soln =np.dot(c, b)\n",
+ "Gs = soln[0];# [kg dry air/h]\n",
+ "Y1 = soln[1]/soln[0];# [kg water/kg dry air]\n",
+ "# From Fig. 7.5 (Pg 232)\n",
+ "Enthalpy_air = 56.0;# [kJ/kg dry air]\n",
+ "HeatLoad = Gs*(HG2-Enthalpy_air*1000);# [W]\n",
+ "print\"Air Flow Rate: \",round(Gs,2),\" kg/h\\n\"\n",
+ "print\"Moisture content of air: \",round(Y1,2),\" kg water/kg dry air \\n\"\n",
+ "print\"Heat Load of drier: \",round(HeatLoad/1000),\" kW\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.7 - Page: 700\n",
+ "\n",
+ "\n",
+ "Air Flow Rate: 2681.03 kg/h\n",
+ "\n",
+ "Moisture content of air: 0.02 kg water/kg dry air \n",
+ "\n",
+ "Heat Load of drier: 163995.0 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.8: Page 705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.8\n",
+ "# Page: 705\n",
+ "\n",
+ "print'Illustration 12.8 - Page: 705\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "from numpy.linalg import inv\n",
+ "import numpy as np\n",
+ "#***Data***#\n",
+ "x1 = 8.0;# [percent moisture]\n",
+ "x2 = 0.5;# [percent moisture]\n",
+ "Rate_prod = 0.63;# [kg/s]\n",
+ "# Drying Gas:\n",
+ "xCO2 = 0.025;# [mole fraction]\n",
+ "xO2 = 0.147;# [mole fraction]\n",
+ "xN2 = 0.760;# [mole fraction]\n",
+ "xH2O = 0.068;# [mole fraction]\n",
+ "TempG2 = 480.0;# [OC]\n",
+ "Cs = 0.837;# [kJ/kg.K]\n",
+ "Temp1 = 27.0;# [OC]\n",
+ "Temp2 = 150.0;# [OC]\n",
+ "dp = 200.0*10**(-6);# [m]\n",
+ "Density_S = 1300.0;# [kg/cubic m]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(100-x1);# [kg water/kg dry solid]\n",
+ "X2 = x2/(100-x2);# [kg water/kg dry solid]\n",
+ "Ss = Rate_prod*(1-X2);# [kg dry solid/s]\n",
+ "Water_evap = Ss*(X1-X2);# [kg/s]\n",
+ "# Basis: 1 kmol of dry gas:\n",
+ "xDry = 1.0-xH2O;# [kmol]\n",
+ "XCO2 = 44.0*xCO2;# [kg]\n",
+ "XO2 = 32.0*xO2;# [kg]\n",
+ "XN2 = 28.0*xN2;# [kg]\n",
+ "Xdry = XCO2+XO2+XN2;# [kg]\n",
+ "cCO2 = 45.6;# [kJ/kmol.K]\n",
+ "cO2 = 29.9;# [kJ/kmol.K]\n",
+ "cN2 = 29.9;# [kJ/kmol.K]\n",
+ "cH2O = 4.187;# [kJ/kg.K]\n",
+ "Mav = Xdry/xDry;# [kg/kmol]\n",
+ "Y2 = xH2O*18.02/(xDry*Mav);# [kg water/kg dry gas]\n",
+ "cav = ((xCO2*cCO2)+(xO2*cO2)+(xN2*cN2))/(xDry*Mav);# [kJ/kmol.K]\n",
+ "# Assume:\n",
+ "TempG1 = 120.0;# [OC]\n",
+ "cDry = 1.005;# [kJ/kmol.K]\n",
+ "Tempo = 0;# [Base Temp,OC]\n",
+ "# By Eqn. 7.13:\n",
+ "HG2 = (cav+(1.97*Y2))*(TempG2-Tempo)+(2502.3*Y2);# [kJ/kg dry air]\n",
+ "# For the outlet air:\n",
+ "# HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1); [kJ/kg dry air]\n",
+ "# HG1 = (1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1; [kJ/kg dry air]\n",
+ "# By Eqn. 11.45:\n",
+ "HS1 = (Cs*(Temp1-Tempo))+(cH2O*X1*(Temp1-Tempo));# [kJ/kg dry air]\n",
+ "HS2 = (Cs*(Temp2-Tempo))+(cH2O*X2*(Temp2-Tempo));# [kJ/kg dry air]\n",
+ "# Q = 0.15*HG2*Gs; [kJ/s]\n",
+ "# Moisture Balance, Eqn. 12.39:\n",
+ "# Ss*(X1-X2) = Gs(Y1-Y2)\n",
+ "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",
+ "# Enthalapy Balance, Eqn. 12.40:\n",
+ "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",
+ "# Gs*(HG2-HG1) = (Ss*HS2)+(0.15*HG2*Gs)-(Ss*HS1)\n",
+ "# Gs*(HG2-(0.15*HG2)-((1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-(0.15*HG2)-(1.005*TempG1))-(Gs*Y1*((1.884+TempG1)+2502.3)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",
+ "a = np.array([[(HG2-(0.15*HG2)-(1.005*TempG1)),-((1.884+TempG1)+2502.3)],[(-Y2), 1.0]]);\n",
+ "b = np.array([(Ss*HS2)-(Ss*HS1),(Ss*(X1-X2))]);\n",
+ "c=inv(a)\n",
+ "soln = np.dot(c, b)\n",
+ "Gs = soln[0];# [kg dry air/s]\n",
+ "Y1 = soln[1]/soln[0];# [kg water/kg dry gas]\n",
+ "HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1);# [kJ/kg dry air]\n",
+ "Q = 0.15*HG2*Gs;# [kJ/s]\n",
+ "# Assuming the sychrometric ratio of the gas as same as that of air:\n",
+ "# For Zone II:\n",
+ "Tempw = 65.0;# [OC]\n",
+ "Temp_A = 68.0;# [OC]\n",
+ "# At point A, Fig. 12.28 (Pg 702)\n",
+ "Enthalpy_A = Cs*(Temp_A-Tempo)+(X1*cH2O*(Temp_A-Tempo));# [kJ/kg dry air]\n",
+ "# At point B, Fig. 12.28 (Pg 702)\n",
+ "Temp_B = Temp_A;# [OC]\n",
+ "Enthalpy_B = Cs*(Temp_B-Tempo)+(X2*cH2O*(Temp_B-Tempo));# [kJ/kg dry air]\n",
+ "\n",
+ "# Assuming that the heat losses in the three zones are propotional to the number of transfer units in each zone and to the average temp. difference between the gas and the surrounding air.\n",
+ "# Fractional heat loss in each Zone:\n",
+ "fr1 = 0.14;\n",
+ "fr2 = 0.65;\n",
+ "fr3 = 0.20;\n",
+ "# Calculations for zone III:\n",
+ "Cs3 = cav+(1.97*Y2);# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "def f1(TempGD):\n",
+ " return (Gs*Cs3*(TempG2-TempGD))-(Ss*(HS2-Enthalpy_B)+(fr3*Q))\n",
+ "TempGD = fsolve(f1,7);# [OC]\n",
+ "delta_TempG = Ss*(HS2-Enthalpy_B)/(Gs*Cs3);# [OC]\n",
+ "delta_TempM = ((TempG2-Temp2)+(TempGD-Temp_A))/2;# [OC]\n",
+ "NtoG3 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "# Calculations for zone I:\n",
+ "Cs1 = 1.005+(1.884*Y1);# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "def f2(TempGC):\n",
+ " return (Gs*Cs1*(TempGC-TempG1))-(Ss*(Enthalpy_A-HS1)+(fr1*Q))\n",
+ "TempGC = fsolve(f2,7);# [OC]\n",
+ "delta_TempG = Ss*(Enthalpy_A-HS1)/(Gs*Cs1);# [OC]\n",
+ "delta_TempM = ((TempGC-Temp_A)+(TempG1-Temp1))/2;# [OC]\n",
+ "NtoG1 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "# Calculations for zone II:\n",
+ "Cs2 = (cav+Cs1)/2.0;# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "True_deltaTemp = TempGD-TempGC;# [OC]\n",
+ "delta_Temp = fr2*Q/(Cs1*Gs);# [Change in temp resulting from heat loss,OC]\n",
+ "delta_TempG = True_deltaTemp-delta_Temp;# [OC]\n",
+ "delta_TempM = ((TempGD-Temp_A)-(TempGC-Temp_A))/log((TempGD-Temp_A)/(TempGC-Temp_A));# [OC]\n",
+ "NtoG2 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "NtoG = NtoG1+NtoG2+NtoG3;\n",
+ "\n",
+ "# Standard diameters are availaible at 1, 1.2 & 1.4 m.\n",
+ "Td = 1.2;# [m]\n",
+ "Area = math.pi*Td**2.0/4;# [square m]\n",
+ "Gs = Gs/Area;# [kg/square m.s]\n",
+ "Ss = Ss/Area;# [kg/square m.s]\n",
+ "Gav = Gs*(1+(Y1+Y2)/2.0);# [kg/square m.s]\n",
+ "# From Eqn. 12.47:\n",
+ "Ua = 237.0*Gav**0.417/Td;# [W/square m.K]\n",
+ "HtoG = Gs*Cs2*1000.0/Ua;# [m]\n",
+ "Z = NtoG*HtoG;# [m]\n",
+ "# Assume:\n",
+ "v = 0.35;# [m/s]\n",
+ "N = v/(math.pi*Td);# [1/s]\n",
+ "# From Eqn. 12.37:\n",
+ "K = 0.6085/(Density_S*dp**(1.0/2));\n",
+ "# Take:\n",
+ "phi_D = 0.05;\n",
+ "# From Eqn. 12.35:\n",
+ "phi_DO = phi_D-(K*Gav);\n",
+ "# From Eqn. 12.35:\n",
+ "s = 0.3344*Ss/(phi_DO*Density_S*N**0.9*Td);# [m/s]\n",
+ "print\"Height of the drier: \",round(Z,2),\" m\\n\"\n",
+ "print\"Drier Slope: \",round(s,5),\" m/m \\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.8 - Page: 705\n",
+ "\n",
+ "\n",
+ "Height of the drier: 5.89 m\n",
+ "\n",
+ "Drier Slope: 0.03304 m/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.9: Page 709"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.9\n",
+ "# Page: 709\n",
+ "\n",
+ "print'Illustration 12.9 - Page: 709\\n\\n'\n",
+ "import numpy as np\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "# Solution \n",
+ "\n",
+ "#***Data***#\n",
+ "x1 = 0.46;# [fraction moisture]\n",
+ "x2 = 0.085;# [fraction moisture]\n",
+ "Y1 = 0.08;# [kg water/kg dry solid]\n",
+ "Y2 = 0.03;# [kg water/kg dry solid]\n",
+ "G = 1.36;# [kg/square m.s]\n",
+ "#**********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg water/kg dry solid]\n",
+ "X2 = x2/(1-x2);# [kg water/kg dry solid]\n",
+ "# By water balance:\n",
+ "SsByGs = (Y1-Y2)/(X1-X2);# [kg dry solid/kg air]\n",
+ "# Since the initial moisture content of the rayon is less than the critical, drying takes place entirely within zone III.\n",
+ "# Comparing with Eqn. 12.22:\n",
+ "# (kY*A/(Ss(Xc-X*)))=0.0137*G**1.47\n",
+ "# thetha=integrate('(1/(0.0137*G**1.47))*(1/((X-X_star)*(Yw-Y)))','X',X2,X1) # [s]\n",
+ "X = np.array([X1, 0.80, 0.60, 0.40, 0.20 ,X2]);# [kg water/kg dry solid]\n",
+ "Y = zeros(6);\n",
+ "for i in range(0,6):\n",
+ " # From Eqn. 12.54:\n",
+ " Y[i] = Y2+((X[i]-X2)*SsByGs);# [kg water/kg dry gas]\n",
+ "\n",
+ "# From Fig. 7.5 (Pg 232):\n",
+ "Yw = np.array([0.0950, 0.0920, 0.0790, 0.0680, 0.0550, 0.0490]);# [kg water/kg dry gas]\n",
+ "X_star = zeros(6);\n",
+ "RH=zeros(6)\n",
+ "Val = zeros(6);\n",
+ "P = 51780.0;# [vapour pressure, kN/square m]\n",
+ "for i in range(0,6):\n",
+ " # From Eqn 7.8:\n",
+ " def f(p):\n",
+ " return Y[i]-((p/(101330.0-p))*(18.0/29))\n",
+ " p = fsolve(f,7);# [kN/square m]\n",
+ " RH[i] = (p/P)*100.0;\n",
+ " X_star[i] = (RH[i]/4)/(100.0-(RH[i]/4));# [kg water/kg dry solid]\n",
+ " Val[i] = 1/((X[i]-X_star[i])*(Yw[i]-Y[i]));\n",
+ "\n",
+ "plt.plot(X,Val);\n",
+ "plt.grid();\n",
+ "plt.xlabel(\"X kg water/kg dry solid\");\n",
+ "plt.ylabel(\"1/((X-X*)*(Yw-Y))\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area Under the curve:\n",
+ "Area = 151.6;\n",
+ "# From Eqn. 12.59:\n",
+ "thetha = Area/(0.0137*G**1.47);\n",
+ "print\"Time required for drying: \",round(thetha/3600,2),\" h\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.9 - Page: 709\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cVHXd//HXGxBv8GYhDMW7RRMR71ZNvK+11Eu7zJtS\nU0tF07ryujIzCzQLLTXUvOtXWVkK3YjiTablLcp6D6SyiCAhJireoKiQ5h20n98f3zMyDDvD2dk5\nc767+3k+Hvtgzpkz57z3DDvfOZ/vOd8jM8M555xrT6+8AzjnnIuXNxLOOefK8kbCOedcWd5IOOec\nK8sbCeecc2V5I+Gcc64sbyRctyDpHEl/qPD8U5I+leU2ujJJm0p6W5LyzuLi4o2Ey4SkoyRNlfSO\npIWSpkj6RoabrHjBj5lta2YPZLUNSc2SXkyzEkmNktok5fb3J2m+pM8Ups3sBTNbx/zCKVfCGwlX\nc5K+A1wOXAgMMrNBwP8Ae0rqW+Y1nf2/WI9vwLXeRiaZJfVOsZhltX3XvXgj4WpK0nrAucA3zOxm\nM/s3gJm1mtlXzOzDZLlxkq6UdLukd4BmSf8tabqkJZJekDSmaL2Fb98nS3pJ0stJY1RgQF9J4yX9\nKykv7Vz0+vmSPps87i3pLEnzkmUfk7RR8twVybaXJPP3qnI/tEj6kaSHkm3cJeljydOFI5rFSYln\n1+Q1J0qaLelNSXdK2rRofftL+oekxZJ+Iel+SV9Nnhsp6WFJl0paBIyRtLmk+yQtkvS6pD8m7w1J\nyWxT4LZk+2eUHt1IGizpVklvSHpG0klFWc6RNLHcvnbdizcSrtZ2B1YH/pJi2aOBH5vZ2sDDwDvA\nV8xsPeC/gW9IOqTkNc3AJ4D9gVGFD37Ct+KDgQnAesCtwM+LXmcsLxedDhwFHGhm6wInAO8lz00D\ndgD6A9cCN5Q7+kn5+40EPg70Bc5I5u+d/LteUuKZmvyeZwKHAQOBB5PfBUkDgRuAUcAA4B+E/Vxc\nGhoBPJts64Jkf5wPbAhsDWwCnANgZscCLwAHJdv/aTvZr0uW2RA4HLhA0j5Fz3+e8vvadSPeSLha\nGwgsMrO2wgxJj0h6S9K7Jd/MbzGzRwHM7AMzu9/MZiXTMwkfVJ8uWf+5ZvaemT0FXEP4IC540Mzu\nTOrqfyR82LfnJOD7ZvZMYVtm9mby+E9m9paZtZnZpYQGb6sq9oMB15jZPDN7H5gINBV2STvL/w/w\nEzP7R7LvfgI0JUcTnwOeMrNbklw/A14tef3LZvaL5Pn3zexZM7vXzJaa2SLgMlbel+2StAmwBzDK\nzD40sxnAb4HjihZLu69dF+eNhKu1N4CBxX0MZraHmfVPnivMN2CFjl5Ju0qaLOk1SYuBrwMfY0XF\nr3kBGFw0vbDo8bvAGmX6OjYmfOteSVJ6mZ2Udd4ifFMeWOZ3XZXiD/L3gLUrLLsZcEXSmL5F2FcA\nGxG+zS8oWb50unRfDpJ0naQFkpYAf2DlfVnOYODNQqkw8UKSpSDtvnZdnL+prtYeBT4ADq3itdcC\ntwAbm1kD8CtW/j+6acnjl6rYzouEktUKJO0NfBc4wswakoZtCbXv4G3vDKIXgK+ZWf+in37JkdYr\nhIatkFPF02XWeQHwH2DbpHx3LCvuy0pnMb0MDJBU3KhtysoNk+sBvJFwNWVmiwkd17+U9EVJ60jq\nJakJ6Fe0aHsfvGsDb5nZh5JGAMew8ofZ2ZLWlLQNod5/fRUxfwv8WNInFGwvaUCy/WXAIkl9Jf0Q\nWLeK9ReUa1xeB9qALYrm/Qo4S9JwCCcASDoiee52YDtJh0jqA/wvsMEqtr028G/gX0mn/HdLnl9Y\nsv2PmNmLwCPATyStLml74ERCWcn1MN5IuJozs4sJncPfI5RcXiV8CH6PcKQBK3YkF5wC/EjSv4Af\n0H4DcD8wD5gEXGxmkyqsr9y35UsJfQR3E44UrgLWAO4C7gTmAvMJJaIXStZX6Rt4pe1/9Foze5fQ\nqfxwUl4aYWa3EE4Zvi4pD80E/itZfhFwBHARsIjQEf0Y4YitXK5zgZ2S3+824KaSZX5CaHDfknR6\nO3mPBhoJRxU3Az80s/sqbM+vr+imlOW1M5LOBL5C+NY0k3AWST/CH/9mhD/EI5Nvn4XlTyQcJp9q\nZndnFs51KZIagX8CfYo7xXuipPb/InCMmd2fdx7XvWV2JJH8UZ8M7GRm2wG9CacdjgbuMbOhwL3J\nNMlh9peA4cABhHKFH+k4x0fXSTRIWh04K5k9Jc9MrmfI8kP4X8BSYK2kjroW4dD1YGB8ssx4lndw\nHgJMSE7Zm08oKYzIMJ/renpySWN3wt/E64RrSA41sw8qv8S5zsuskUjOO7+EUNN9GVhsZvcQhmko\nnD63EBiUPB7MimdPLGDFU+5cD2Zm882sd08tNZnZuWY20MzWNbPdzezveWdyPUOW5aYtgNMInV+D\ngbUlfaV4meRCnI50BDrnnKujPhmu+5PAI2b2BoCkmwmHzK9K2sDMXpW0IfBasvxLhKEDCjamnXPg\nJXnD4ZxzVTCzDl/zk2WfxBxgt+ScdgH7ArMJp+MdnyxzPOHiKQjjvxyVnJ8+BNiSMI7OSswsqp8x\nY8bknqGr5PJMnqkn5IoxU7UyO5IwsxmSfk84n7sNeAL4DbAOMDEZwXI+cGSy/GxJEwkNyTLgFOvM\nb1ZH8+fPzztCu2LM5ZnS8UzpxZgrxkzVyrLchJldRLgAqNibhKOK9pa/gDCcgHPOuQj4dQg1MHLk\nyLwjtCvGXJ4pHc+UXoy5YsxUrUyvuM6CpK5ShXLOuWhIwiLruO4xWlpa8o7QrhhzeaZ0PFN6MeaK\nMVO1vJFwzjlXlpebnHOuB/Byk3POuZrzRqIGYq0/xpjLM6XjmdKLMVeMmarljUSV3nsP2nrkUHPO\nuZ7E+ySqtOuucNllsMceeSdxzrlV8z6JOvvc5+CGG/JO4Zxz2fJGokpHHBEaiba2eOuPMebyTOl4\npvRizBVjpmp5I1Gl4cNhvfVgit9A0jnXjXmfRCeccw4sWRL6JpxzLmbV9kl4I9EJs2bBAQfA889D\nLz8mc85FzDuuc7DNNrDOOnDllS15R2lXjHVRz5SOZ0ovxlwxZqqWNxKddOSR0I3+Pzjn3Aq83NRJ\nXnJyznUFXm7KSaHkNHVq3kmcc672vJGogV12aYnywroY66KeKR3PlF6MuWLMVK1MGwlJW0maXvSz\nRNKpkgZIukfSXEl3S2ooes2Zkp6RNEfS/lnmq5XmZrjxRh/LyTnX/dStT0JSL+AlYATwTWCRmV0k\naRTQ38xGSxoOXAvsAmwETAKGmllb0Xqi6pMAMAtlp6uvht12yzuNc86trCv0SewLzDOzF4GDgfHJ\n/PHAocnjQ4AJZrbUzOYD8wiNStSkMEzHxIl5J3HOudqqZyNxFDAheTzIzBYmjxcCg5LHg4EFRa9Z\nQDiiiFpLSwtHHBFfySnGuqhnSsczpRdjrhgzVasujYSkvsDngZW6d5PaUaX6UVy1pTK22Qb69YNp\n0/JO4pxztdOnTts5EHjczF5PphdK2sDMXpW0IfBaMv8lYJOi122czFvByJEjaWxsBKChoYGmpiaa\nm5uB5S14vacLJadLL23hlFPqv/32ppubm3PdfnvThXmx5Cn9xhdLnhinY/z/5O9f+emWlhbGjRsH\n8NHnZTXq0nEt6TrgDjMbn0xfBLxhZhdKGg00lHRcj2B5x/UninuqY+y4Lpg5Ew46CObPD42Gc87F\nItqOa0n9CJ3WNxfNHgvsJ2ku8JlkGjObDUwEZgN3AKdE2yIUKbTe224La60VT8mp9FtWDDxTOp4p\nvRhzxZipWpmXm8zs38DAknlvEhqO9pa/ALgg61xZKD7Laddd807jnHOd52M31ZiXnJxzMYq23NTT\nbLstrLlmPCUn55zrDG8kaqC4/lgoOcUwllOMdVHPlI5nSi/GXDFmqpY3Ehk48sjQSERcFXPOuVS8\nTyIDZrD11jB+vHdgO+fi4H0SEYmp5OScc53hjUQNtFd/LIzllOdBT4x1Uc+UjmdKL8ZcMWaqljcS\nGdluO1h9dfj73/NO4pxz1fM+iQz94Afw/vtw8cV5J3HO9XTV9kl4I5GhJ5+Egw+G557zC+ucc/ny\njusclas/5l1yirEu6pnS8UzpxZgrxkzV8kYiQ36Wk3Ouq/NyU8ZmzIBDDvGSk3MuX15uitT220Pf\nvvDYY3kncc65jvNGogYq1R+l5cN01FuMdVHPlI5nSi/GXDFmqpY3EnVQuMdEF6qSOecc4H0SdWEG\nW20Ff/oT7LJL3mmccz2R90lEzM9ycs51Vd5I1ECa+mOhkajnQVCMdVHPlI5nSi/GXDFmqlbmjYSk\nBkk3Snpa0mxJu0oaIOkeSXMl3S2poWj5MyU9I2mOpP2zzlcvO+wAq60Gjz+edxLnnEsv8z4JSeOB\n+83sakl9gH7A94FFZnaRpFFAfzMbLWk4cC2wC7ARMAkYamZtRevrcn0SBd//PixdChddlHcS51xP\nE2WfhKT1gL3N7GoAM1tmZkuAg4HxyWLjgUOTx4cAE8xsqZnNB+YBI7LMWE95lJycc64zsi43DQFe\nl3SNpCckXSWpHzDIzBYmyywEBiWPBwMLil6/gHBEEbW09ccddoA+fepXcoqxLuqZ0vFM6cWYK8ZM\n1epTh/XvBPyfmf1d0uXA6OIFzMwkVfpuvdJzI0eOpLGxEYCGhgaamppobm4Glr859ZxubW1NtbwE\nI0a0cMklMGFCfnnznG5tbY0qT0fev3pOF8SSJ+Zpf//an25paWHcuHEAH31eViPTPglJGwCPmtmQ\nZHov4Exgc2AfM3tV0obAZDMbJmk0gJmNTZa/ExhjZlOL1tll+yQApk+HL34Rnn3Wx3JyztVPlH0S\nZvYq8KKkocmsfYFZwG3A8cm844Fbkse3AkdJ6itpCLAlMC3LjPXW1AS9e/tZTs65rqEe10l8E/iT\npBnA9sD5wFhgP0lzgc8k05jZbGAiMBu4AzilKxw2lB5iVlLPC+s6kqtePFM6nim9GHPFmKlaWfdJ\nYGYzCKe0ltq3zPIXABdkGipnRxwRSk5jx3rJyTkXNx+7KQdmsOWWcP31sPPOeadxzvUEUfZJuPb5\nWE7Oua7CG4kaqKb+WLjHRJYHRTHWRT1TOp4pvRhzxZipWt5I5KSpKRxRPPFE3kmcc64875PI0Zln\nhiOJsWPzTuKc6+68T6IL8rGcnHOx80aiBqqtP+64Y/h3+vTaZSkWY13UM6XjmdKLMVeMmarljUSO\n/Cwn51zsvE8iZ088ERqKefP8wjrnXHa8T6KLyrrk5JxzneGNRA10pv6YZckpxrqoZ0rHM6UXY64Y\nM1XLG4kI+FlOzrlYeZ9EBMxgiy3gppuWl5+cc66WMu2TkNRP0jBJWyW3H3U1JIVhOiZOzDuJc86t\nqGwjIWkdSadLmgbMBK4BxgNPSXpM0rclrV2voDGrRf0xi5JTjHVRz5SOZ0ovxlwxZqpWpSOJW4C3\ngc+b2eZmtruZ7ZbcivQg4N/AX+oRsifYaSdoa4PkFtDOORcF75OIyKhR4damF3TrWy455/JQbZ9E\nqkZC0tZAI9AGPG9mczqcsEa6cyPx2GNw9NEwd65fWOecq62ad1xLGiLpZ5LmAb8CjgNOAH4t6VlJ\nV0hqrDZwd1Kr+uPOO8OyZTBjRk1WF2Vd1DOl45nSizFXjJmqValP4kLgNmBrM/u0mR1tZkeZ2aeB\nYcDfgItWtQFJ8yU9KWl60gmOpAGS7pE0V9LdkhqKlj9T0jOS5kjav3O/XtfiZzk552JTttwkaT0z\nW9LpDUjPATub2ZtF8y4CFpnZRZJGAf3NbLSk4cC1wC7ARsAkYKiZtRW9ttuWm8BLTs65bGRxncQT\nko7uRKZipcEOJpxOS/LvocnjQ4AJZrbUzOYD84ARNcrQJdS65OScc51RqZH4DPClpCy0ZSe2YcCk\n5NqKk5N5g8xsYfJ4ITAoeTwYWFD02gWEI4qo1bL+WMuxnGKsi3qmdDxTejHmijFTtfqUe8LMngcO\nlfQ54GFJfyec3ZQ8bQen3MaeZvaKpPWBeyStcGaUmZmkSvWjlZ4bOXIkjY2NADQ0NNDU1ERzczOw\n/M2p53Rra2tN17f55nDppc2cdx7cf3/9f58sp1uTC0FiyZPF+1eL6YJY8sQ87e9f+9MtLS2MGzcO\n4KPPy2pUPAVW0jDgF8Bbyb+Fhc3M7u/wxqQxwDvAyUCzmb0qaUNgspkNkzQ6WfnYZPk7gTFmNrVo\nHd26TwLCVdebbw5//jM0NeWdxjnXHWRxCuxYwlXXPzWzw81sspm1JD+pGghJa0laJ3ncD9ifMMTH\nrcDxyWLHJ9shmX+UpL6ShgBbAtM6+kt1dX7HOudcLCr1SSwDmszsjsIMSX/t4PoHAQ9KagWmAn81\ns7uBscB+kuYS+j7GApjZbGAiMBu4AzilKxw2lB5i1kItxnLKIldneaZ0PFN6MeaKMVO1KvVJnN3O\n7A51IpvZc8BKBZPkdNh9y7zmAqDHD0zxyU/C0qXw5JOwww55p3HO9VQdGrtJ0jVmdkKGedJk6AoH\nFzXx3e/C6qvDeeflncQ519Vldj8JSftKWhMg7waipznySL9jnXMuX2luOnQcMEPSVEkXS/q8pP5Z\nB+tKsqo/fvKT8OGHoeRUjRjrop4pHc+UXoy5YsxUrVU2EmZ2nJkNBQ4DXiScCvt61sFcOMvp8MP9\nLCfnXH5W2Sch6VhgL2B7QuPwEPCQmT2Sfbx28/SYPgmAadPg2GNhzhwfy8k5V73M7ich6Q3gWeBK\noCU5Yyk3Pa2RMIMhQ+DWW2H77fNO45zrqjLruAYGAicCawDnS5om6Y8d3VB3lmX9sTMlpxjrop4p\nHc+UXoy5YsxUrTSNxDrApsBmhLvTNbB8DCdXB4V7TPSgAyjnXCTSlJueBB4GHgQeMLMFFV+QsZ5W\nbgIvOTnnOq/aclPZK64lfcnMrjcz/1jKWXHJyRsJ51w9VSo3HSfpTklb1C1NF1WP+mM1YznFWBf1\nTOl4pvRizBVjpmqVbSTM7L+BXwF/lfRDSQOTe1MPkDSgfhEdwIgR8N578NRTeSdxzvUkafokmoAH\nCPeUKL7p0OYZZyuXp8f1SRSccQasuSb8+Md5J3HOdTVZ3E9iDUk/Bq4DjjGzzcxsSPKTSwPR09Vi\n+HDnnOuISn0SMwgd2zuaWUfvI9Gj1Kv+2NGSU4x1Uc+UjmdKL8ZcMWaqVtmzm4DDkpsAuUgUn+W0\n3XZ5p3HO9QRl+yQkXQ1caWZ/L/P8rsD/1Hv48J7cJwEwZQqccALMnu1jOTnn0qv52E2StgO+C+wG\n/AN4BRCwAbAV8Ajh/td1Pd+mpzcSZrDZZnD77bDttnmncc51FTXvuDazmWZ2HLAdcD5wL3APcB6w\nvZmNrHcDEat61h+l0IE9ceKql42xLuqZ0vFM6cWYK8ZM1ao4dpOk7c3sA+Dd5OrriWY21czeT7sB\nSb0lTZd0WzI9QNI9kuZKultSQ9GyZ0p6RtIcSftX/Vt1c36Wk3OuXipeJyHpCuDnwP+Z2beq2oB0\nOrAzsI6ZHSzpImCRmV0kaRTQ38xGSxoOXAvsAmwETAKGmllbyfp6dLkJvOTknOu4LK6TGJM8PzVM\nakwVoTYGPgf8ltCfAXAwMD55PB44NHl8CDDBzJaa2XxgHjCio9vsCfyOdc65eqnUJ3EuoQ/iemBS\nMt1RlxE6v4uPBgaZ2cLk8UJgUPJ4MFA8wuwCwhFF9PKoP6YpOcVYF/VM6Xim9GLMFWOmalW6TgJg\nVzP7RnLl9a0dWbGkg4DXzGy6pOb2ljEzk1SpdtTucyNHjqSxsRGAhoYGmpqaaG4Omyi8OfWcbm1t\nrfv2P/WpZt55B8aNa2HIkPr+vp2Zbm1tjSpPXu/fqqYLYskT87S/f+1Pt7S0MG7cOICPPi+rscqx\nm6pesXQBcCywjHBXu3WBmwl9Ds1m9qqkDYHJZjZM0mgAMxubvP5OYIyZTS1Zb4/vkyg4/XRYZx04\nt5pjPOdcj5LJ7Usl7STpYklTJS2U9Gry+GJJO1Z6rZmdZWabmNkQ4CjgPjM7lnBEcnyy2PHALcnj\nW4GjJPWVNATYEpjW0V+oJymUnJxzLiuVOq5vB74DPAYcTbh96ZDk8ePAGZL+1oFtFb7+jwX2kzQX\n+EwyTTIEyERgNnAHcEpXOWQoPcSsl113hbffhlmz2n8+r1yVeKZ0PFN6MeaKMVO1KvVJnFDUwVzs\nn8nPdZI+nmYjZnY/cH/y+E1g3zLLXQBckGadDnr1Wn6W0zbb5J3GOdcdreo6iX3NbFLh3zrmKsv7\nJFb0yCNw0klhLCfnnCsnkz4JoFnSnkBzValc5nbbrXLJyTnnOmNVF9P1JYzZ1Leai+l6ijzrj8Ul\np1Ix1kU9UzqeKb0Yc8WYqVqruphuDnAOMKfKi+lcHfhZTs65rKyqT+I0M7tc0qlm9rM65irL+yRW\n1tYGm24Kd98Nw4fnncY5F6Msxm7a1MwuByhtICTt3fGILiuVSk7OOdcZlTquWySNktS7MEPSBpL+\nCFyefbSuI4b645FHrnyPiRhylfJM6Xim9GLMFWOmalVqJHYGNgdaJX1W0mmEEWGnEIbWcBHZbTdY\nssRPhXXO1dYqx25KGodLgZeB3c3sxXoEq5DH+yTKOO006N8fxvh5aM65Eln0SfSX9GvgBOBA4Ebg\nDkmfrT6my5Kf5eScq7VK5abHCTf+2dnM7jKz04CvAOdJmlCXdF1ELPXH3XeHxYuXl5xiyVXMM6Xj\nmdKLMVeMmapVqZH4tJldbGbLCjPMrBXYA5iceTLXYb16wRe/6EcTzrna6dD9JCQ9YWY7ZZgnTQbv\nk6jg4Yfh61+Hp57KO4lzLiZZjd200nY6ugFXX4WS09NP553EOdcddLSRuD2TFF1cTPXH4pJTTLkK\nPFM6nim9GHPFmKlalc5u+rmkdYvnmdn3JW0t6d7so7lqHXFEuLCurS3vJM65rq5sn4Sk7wNfBX5g\nZn+S1A8YA3wB+K6Z/bl+MVfI5X0Sq9DWBsl90fnNb2DYsFzjOOciUPM+CTM7n3AHuWMkPQDMAP4D\nbJ9XA+HS6dULJk8ORxR77QXnngsffJB3KudcV7SqPgkjdFavBvQGZpvZu5mn6mJirD/27g3bbdfC\n9Onw+OOw447w0EN5p4pzX3mmdGLMBHHmijFTtSr1SfwAmAT83sx2B/YGDpV0v6RV3lFZ0hqSpkpq\nlTRb0k+S+QMk3SNprqS7JTUUveZMSc9ImiNp/87/em6TTeAvf4Ef/Qi+9CX4xjfCGE/OOZdGpT6J\nK4CzzeztkvkHApeZ2Sor3ZLWMrN3JfUBHgLOAA4GFpnZRZJGAf3NbLSk4cC1hMEDNyI0UEPNrK1k\nnd4nUaXFi2HUKPjb3+BnP4PDDgP5Sc3O9QjV9kl06GK6oo2tYWbvd2D5tYD7gZHATYSruRdK2gBo\nMbNhks4E2szswuQ1dwLnmNmUknV5I9FJDz4IX/sabLUV/PznsPHGeSdyzmUtiwH+zpE0qL3nzOx9\nSRtKqnhLU0m9JLUCC4HJZjYLGGRmC5NFFgKFbQwGFhS9fAHhiCJ6sdYfy+Xae29obYWmptBX8Ytf\nwH/+k2+mPHmmdGLMBHHmijFTtfpUeO4x4DpJfYEngFcIndgbADsBHwA/rbTypFTUJGk94C5J+5Q8\nb5IqHRa0+9zIkSNpbGwEoKGhgaamJpqTcz4Lb049p1tbW3PdfrXT55wDjY0tXHIJ/PGPzVx1FSxa\nlO32W1tbo/n9C9Mxvn8FseSJedrfv/anW1paGDduHMBHn5fVSHM/iU2APYFNk1nPAw+b2YLyr2p3\nPT8A3gNOAprN7FVJGxKOMIZJGg1gZmOT5e8ExpjZ1JL1eLmpxtra4Kqr4Oyzw7hPZ58Na6yRdyrn\nXC3VtU8i1YqlgcAyM1ssaU3gLuBc4L+AN8zswqRhaCjpuB7B8o7rT5S2CN5IZOfll+HUU+HJJ8NF\neIUL8pxzXV8WfRJXSyp7m1JJu0q6psK6NwTuS/okpgK3mdm9wFhgP0lzgc8k05jZbGAiMBu4Azil\nq7QGpYeYsehorsGD4cYb4eKL4dhj4aST4M03881UD54pnRgzQZy5YsxUrUp9EpcB35W0G/APVuyT\n2Ap4hAp9EmY2k9B3UTr/TcKV3O295gLggrThXTYOOQT22Qe+/33YZhu47LJwjYWfLutcz5OmT2J1\nYEdgM0JH8vPAjI6cAltLXm6qr0cfhZNPhs02g1/+MvzrnOt6sig3/UbSYUBfM5tiZteb2UQzm5pX\nA+Hqb/fd4YknYI89YOedw1HFsmWrfp1zrnuoNHbT1UATcLuk+ySNkrRDnXJ1KbHWH2uVq2/fUHp6\n5BG49VbYbbdwnUWemWrJM6UTYyaIM1eMmapVaRTYKWY2xsz2Bo4EXgS+k4zFdLWkI+uW0kVh6FC4\n7z445RTYf/8wxMe7Ptyjc91ah0+BlSTgu8BqyXDideV9EnFYuBBOOw2mToVf/xr22y/vRM65Suo9\ndtOLZrZJh19YA95IxOX228ORxac+BZdcAuuvn3ci51x7sui4nlnuh+XjLTnirT/WI9fnPgdPPQUD\nB8K228Lvfw+V2vAY95VnSifGTBBnrhgzVavSdRIfBw4A3mrnuUeyieO6orXXhksvhWOOCafL/uEP\n8KtfwRZb5J3MOddZle4ncTVwjZk92M5zE8zs6KzDtcfLTXFbuhQuvxwuvBC+9z349rdhtdXyTuWc\ni27spqx4I9E1PPtsuAvea6+FwQN3KTvAi3OuHmreJ+HSi7X+mGeuLbaAu+6C73wHDjooHFG8806c\n+8ozpRNjJogzV4yZquWNhMuMFAYKnDUrDBS47bYwZcqqX+eci4eXm1zdTJoU7lexyy5wxRUwyM+R\nc65uvNzkorfvvjBzJjQ2wnbbwe9+V/l0Wedc/ryRqIFY648x5po2rYWxY+Huu8NpsvvsA3Pn5psp\nxv3kmdKLMVeMmarljYTLRVNT6J849NAwwux558GHH+adyjlXyvskXO6efz4M7fH88+F02d13zzuR\nc92PXyd5yFWSAAAS80lEQVThujQzmDgxDBr4hS/AT34C666bdyrnug/vuM5RrPXHGHOVyySFW6TO\nmhXKTttsA7fckm+mPHmm9GLMFWOmamXaSEjaRNJkSbMkPSXp1GT+AEn3SJor6W5JDUWvOVPSM5Lm\nSNo/y3wuPgMGhJLTH/4Q7lfxhS/Ayy/nncq5nivTcpOkDYANzKxV0trA48ChwAnAIjO7SNIooL+Z\njZY0HLgW2AXYCJgEDDWztqJ1ermph3j/fTj//HAW1I9+FK6x6OXHvs5VJcpyk5m9amatyeN3gKcJ\nH/4HA+OTxcYTGg6AQ4AJZrbUzOYD84ARWWZ08VpjDfjxj2Hy5HBksffeMHt23qmc61nq9r1MUiOw\nIzAVGGRmC5OnFrL8/hSDgQVFL1tAaFSiFmv9McZc1WTadlt46CH48pfh05+GMWPCUUaembLmmdKL\nMVeMmapV6X4SNZOUmm4CvmVmb4c7oAZmZpIq1Y9Wem7kyJE0NjYC0NDQQFNTE83NzcDyN6ee062t\nrbluvytNt7a2Vv36U06B9ddv4Yor4Prrm/nNb6CtrfP5Ynz/CmLJE/O0v3/tT7e0tDBu3DiAjz4v\nq5H5KbCSVgP+CtxhZpcn8+YAzWb2qqQNgclmNkzSaAAzG5ssdycwxsymFq3P+yQcf/4zfPOb4c54\nF14I/fvnnci5uEXZJ6FwyPA7YHahgUjcChyfPD4euKVo/lGS+koaAmwJTMsyo+uaDjssnC7bp084\nXfaGG3wcKOeykHWfxJ7AV4B9JE1Pfg4AxgL7SZoLfCaZxsxmAxOB2cAdwCld4bCh9BAzFjHmqmWm\n9daDX/4yNBBjxsDBB8OLL+abqVY8U3ox5ooxU7Uy7ZMws4co3xDtW+Y1FwAXZBbKdTt77gnTp4ey\n0447wg9/CP/7v9C7d97JnOv6fFgO163MmQNf+xp88EG4KG/77fNO5FwcouyTcK7ehg2DlhY46ST4\n7GfhzDPhvffyTuVc1+WNRA3EWn+MMVc9MvXqBSefDE8+Cf/8Z7jB0b335pupozxTejHmijFTtbyR\ncN3WhhvC9dfDZZfBCSfAyJHwxht5p3Kua/E+CdcjvP02nH12aDQuuQSOOSaMPOtcT+H3k3AuhWnT\nQilqww3hyithyJC8EzlXH95xnaNY648x5so704gR8Nhj0NwMu+wCP/0p3HNPvpnak/d+ak+MmSDO\nXDFmqlZdxm5yLiarrQajR8Phh4frKc46CzbbDIYOhS23DP8Wfjbe2Icndz2bl5tcj/fhh+EsqGee\ngblzV/x56y34xCdWbjyGDoWBA71fw3Ud3ifhXAbeeQfmzVu58Zg7N4wV1V7jseWWsM46eSd3bkXe\nSOSopaXlo6F6YxJjru6U6Y032m885s2Ddddtv/HYYgtYffXsMmUpxkwQZ64YM1XbSHifhHNV+tjH\nYPfdw0+xtrZwX+7ihuP++0M56/nnYfDglRuPoUNh0019vCkXHz+ScK6Oli6F+fOXNx7F/SCvvw6b\nb75y4zF0KAwa5P0frnO83ORcF/fuuyv2fxQ3IB980H7jseWW0NCQd3LXFfh1EjmK9ZzoGHN5pvLW\nWiuMWnv44bDHHi1ccw08/HA4wpg/H37xCzjwwNBhfttt8PWvh1N0Bw2CvfaCE0+EsWPh5pvhqadq\nP7BhLPupVIy5YsxULe+TcK4LGDAAdt01/BQzg1deWfGoY/z48O9zz4UGpLQDfejQcF1IH//rdyl4\nucm5bmrZMnjhhfbPwHr1VWhsbP8MrMGDvf+jO/I+Cedcau+/D88+u3Lj8cwz4dqQ0n6PoUPDRYUf\n+5g3IF1VlI2EpKuB/wZeM7PtknkDgOuBzYD5wJFmtjh57kzgROA/wKlmdnc764yukYjxnGiIM5dn\nSifPTEuWrHz1+TPPwNNPt/Cf/zSz0UahL2TjjWn38aBB9T2V19+/dGK9TuIa4P8Bvy+aNxq4x8wu\nkjQqmR4taTjwJWA4sBEwSdJQM2vLOKNzrsh668EnPxl+irW0hEERX3oJFiwIPy+9FG4ZO2nS8vlv\nvhkainKNyMYbh5JWmosKXf4yLzdJagRuKzqSmAN82swWStoAaDGzYclRRJuZXZgsdydwjplNKVlf\ndEcSzrnlPvwwdKYXGpHiBqXw+JVXwqm75RqSwr8+vEntxHok0Z5BZrYwebwQGJQ8HgwUNwgLCEcU\nzrkupG/fcPbUZpuVX6atDV57beXG4777VmxU+vQpfzRSeOz9JNnK9SQ4MzNJlQ4LusQhQ4z1R4gz\nl2dKp7tn6tULNtgg/JSWtQrMYPHiFRuSl14K9wO55Zbl8955p4VNNmmuWN4aNKi+p/zG+P5VK49G\nYqGkDczsVUkbAq8l818CNilabuNk3kpGjhxJY2MjAA0NDTQ1NX30hhQuYqnndGtra67b70rTra2t\nUeWJ9f0riCVPHtMSzJgRpg84oPzy06a1cthhzSxYEG4gtWgRvPtuM/fdFzrbX38d3n67mUGDYN11\nWxg4EHbcMTQqS5a0sP768PnPNzN4MEyZUpv8BXnuv5aWFsaNGwfw0edlNfLok7gIeMPMLpQ0Gmgw\ns0LH9bXACJKOa+ATpR0Q3ifhnOuopUuX95OU6yt55ZUweu+qylvrrpv3b1OdWE+BnQB8GhhI6H/4\nIfAXYCKwKSufAnsW4RTYZcC3zOyudtbpjYRzruba2sIQKJU63BcsCKf3lnawl3a69+8f7oAYkygb\niSzE2Ei0RFp/jDGXZ0rHM6VXz1xm4TqSSg3JSy/B4sUt9OnTTL9+sPbaK/6kmVc8vdFG8PGPdz57\nVzq7yTnnuiQpnLrb0ADbblt+ucmTw31G3nkH/v3v8G/hp73pt96CF19sf5njjoPTT6/f71jKjySc\nc64H8KHCnXPO1Zw3EjVQetpbLGLM5ZnS8UzpxZgrxkzV8kbCOedcWd4n4ZxzPYD3STjnnKs5byRq\nINb6Y4y5PFM6nim9GHPFmKla3kg455wry/sknHOuB/A+CeecczXnjUQNxFp/jDGXZ0rHM6UXY64Y\nM1XLGwnnnHNleZ+Ec871AN4n4Zxzrua8kaiBWOuPMebyTOl4pvRizBVjpmp5I+Gcc64s75Nwzrke\nwPsknHPO1Vx0jYSkAyTNkfSMpFF550kj1vpjjLk8UzqeKb0Yc8WYqVpRNRKSegM/Bw4AhgNHS9o6\n31Sr1tramneEdsWYyzOl45nSizFXjJmqFVUjAYwA5pnZfDNbClwHHJJzplVavHhx3hHaFWMuz5SO\nZ0ovxlwxZqpWbI3ERsCLRdMLknnOOedyEFsj0SVPW5o/f37eEdoVYy7PlI5nSi/GXDFmqlZUp8BK\n2g04x8wOSKbPBNrM7MKiZeIJ7JxzXUg1p8DG1kj0Af4BfBZ4GZgGHG1mT+cazDnneqg+eQcoZmbL\nJP0fcBfQG/idNxDOOZefqI4knHPOxSW2juuPpLmoTtLPkudnSNox70yShkl6VNL7kr6TdZ6Umb6c\n7J8nJT0safsIMh2SZJou6XFJn8k6U5pcRcvtImmZpC/knUlSs6Qlyb6aLunsvDMV5Zou6SlJLXln\nknRG0T6ambx/DTlnGijpTkmtyX4amWWeDuTqL+nPyd/gVEnbVFyhmUX3Qyg1zQMagdWAVmDrkmU+\nB9yePN4VmBJBpvWBTwLnAd+JZD/tDqyXPD4gkv3Ur+jxdoRrY3LfV0XL3Qf8Ffhi3pmAZuDWrPdP\nBzM1ALOAjZPpgXlnKln+IGBS3pmAc4CfFPYR8AbQJ4JcFwM/SB5vtap9FeuRRJqL6g4GxgOY2VSg\nQdKgPDOZ2etm9hiwNMMcHc30qJktSSanAhtHkOnfRZNrA4syzpQqV+KbwI3A6xFl6vAZKRlnOga4\nycwWAJhZ1u9fRy+yPQaYEEGmV4B1k8frAm+Y2bIIcm0NTAYws38AjZLWL7fCWBuJNBfVtbdMlh+A\nMV7o19FMXwVuzzRRykySDpX0NHAHcGrGmVLlkrQR4Q/qymRW1h12afaVAXskpYHbJQ2PINOWwABJ\nkyU9JunYCDIBIGkt4L+AmyLIdBWwjaSXgRnAtzLOlDbXDOALAJJGAJtR4bMzqrObiqT94yz9hpXl\nH3WMPfypM0naBzgR2DO7OEDKTGZ2C3CLpL2BPxAOe7OUJtflwGgzM0ki+2/waTI9AWxiZu9KOhC4\nBRiac6bVgJ0Ip6qvBTwqaYqZPZNjpoLPAw+ZWdbjYqTJdBbQambNkrYA7pG0g5m9nXOuscAVkqYD\nM4HpwH/KLRxrI/ESsEnR9CaEFrHSMhsn8/LMVG+pMiWd1VcBB5jZWzFkKjCzByX1kfQxM3sj51w7\nA9eF9oGBwIGSlprZrXllKv5AMbM7JP1S0gAzezOvTIRvqovM7D3gPUkPADsAWTUSHfk/dRTZl5og\nXaY9gPMBzOxZSc8Rvgw9lmeu5P/UiYXpJNc/y64xy06UTnS+9AGeJXS+9GXVHde7kX2H7CozFS17\nDvXpuE6znzYldGTtFtF7twXLT7/eCXg2hlwly18DfCHvTMCgon01ApgfQaZhwCRCJ+lahG+jw/N+\n74D1CJ3Da8bw/wm4FBhT9D4uAAZEkGs9oG/y+GRgXMV1Zr0zO/HLHki4+noecGYy7+vA14uW+Xny\n/Axgp7wzARsQvmUtAd4CXgDWzjnTb5M/nOnJz7QI9tP3gKeSPA8Cu8Tyf6po2cwbiZT76n+TfdUK\nPEIdGvuUf3tnEM5wmgmcGkmm44Fr6/F/KeV7NxC4Lfl8mgkcE0mu3ZPn5xBO0liv0vr8YjrnnHNl\nxXp2k3POuQh4I+Gcc64sbyScc86V5Y2Ec865sryRcM45V5Y3Es4558ryRsLVhaRNJP1TUv9kun8y\nvWnJco2SZuaQ7xBJW1f52tWSIc83q1X2ZCju22qxrpTbeyf5d7CkG8os0yJp53plcnHwRsLVhZm9\nSBg4b2wyayzwazN7Ib9UKzgM6NDgeZJ6Jw/3Ah6qeaL2t5nVUDoGYGYvm9kRFZbxC6t6GG8kXD1d\nBuwm6TTCuDY/rbSwpM0lPSFpZ0lrSZooaZakmyVNKf1Wm9ws6Kbk8SGS3k3GhVpD0rPJ/JMlTUtu\nBHOjpDUl7UEYGO7i5KY1QyRtIemOZJTTByRtlbx+nKRfSZoCXJhs+gDCaLaqNnvymgMkPS3pcUKj\nVZh/jqQ/SHoI+L2k+yXtUPT8Q5K2K1nXNskNZaYnI8hukcw/XeGmPDMlrTQqafGRXLJvrpM0W9LN\nwJpkP+ihi0ysA/y5bsjCPcy/R/hA3c/Myo48mXwoTwCON7OZks4gjMe/jcKdtFpZ+VvtdKApebw3\nYSiEEYRRS6ck828ys6uSbfwY+KqZ/VzSrcBtZnZz8ty9hGEM5knaFfglYdRTgMHA7rZ8uIJmYAxh\nWJaqsktaA/gNsI+FweCuL1lmGLCXmX0g6ThgJPBtSUOB1c2stMz1deAKM7s2OfrokzRMI5N90guY\nKqnFzGa09x4A3wDeMbPhSSP0RGlu1/35kYSrtwOBlwl3pCvn44QhsY8p+vDbk3ADFcxsFvBk6Yss\n3NDlWUnDgF0IA6x9ilAOejBZbDtJD0p6EvgyK5aYBCBpbcL4Njckwyn/iqQBIHxI3lBoIBTuQfGm\nmb3fmeyERuA5M3s2mf4jy7+1G+HudB8k0zcCByUf/icSxpkq9ShwVtIoNyb59gJuNrP3LNz46eZk\n/5Szd5KD5HdpL7fr5ryRcHUjqQnYl/AB/G1JG5RZdDHwPOFDaoVVpNjMA4QRgpcC9ybrKG4kxgGn\nmNn2wLmEEkpB4VtyL2Cxme1Y9FN8H+B3ix4fANxZg+yl39BLl/9om2b2LnAPcChwBPCnlVZmNoFQ\nQnsPuF3hfiJWsl61s91SXl7q4byRcHUhSYSO628lndgXU75P4kPCnbOOk3R0Mu9h4MhkXcMpfyTy\nIHAa8IiF22p+DNgq+QYP4Xapr0paDfgKyz8k3ya51aSZ/Qt4TtLhhewK9+Roz38RymedzV64jeTm\nyfTRRc+190H9W+BnhFF9l5Q+KWmImT1nZv8P+EuyzQeBQ5O+hn6ERubB0tcWeYBwK1AkbQuU2weu\nG/M+CVcvJxPuhXBvMv1L4ARJe5tZ6QeVWbgT20GEu3m9nSw/XtIswhDHswhDspeaRij5PJBMzyCM\n5V/wA8K9vl9P/l07mX8dcJWkbwKHE0pRV0o6m9CnMYHl5ZZCqak38Akzm9vZ7Gb2vqSvAX+T9C7h\nw7tf0fasZPknJC2h/VITwJEKtxVdSrjX8vlmtljSuGQfAVxV1B9RvP7C4yuBayTNBp4m25vluEj5\nUOGuS5DUC1gt6bjdglBuGWrZ31i+UqY9gS+b2SmrWK7m2SUNBiabWda3fXU9nB9JuK6iH3BfUiYS\n8I08GwgAM3uYUEpalZpmT85uOg/4drXrcC4tP5JwzjlXlndcO+ecK8sbCeecc2V5I+Gcc64sbySc\nc86V5Y2Ec865sryRcM45V9b/B77dKwo9Y8ZFAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7a843c8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time required for drying: 1.96 h\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 66
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter12_1.ipynb b/Mass_-_Transfer_Operations/Chapter12_1.ipynb
new file mode 100755
index 00000000..9416a787
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter12_1.ipynb
@@ -0,0 +1,932 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7b3124ef7f3febbf9fbbcfec34e4b1fa9fd03169d0e2aea25265368468350ca6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12: Drying"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.1: Page 660"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.1\n",
+ "# Page: 660\n",
+ "\n",
+ "print'Illustration 12.1 - Page: 660\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#****Data****#\n",
+ "F=1000;# [kg]\n",
+ "Xo=0.8;# [wt. fraction water]\n",
+ "X1=0.05;# [wt. fraction water]\n",
+ "#************#\n",
+ "\n",
+ "Yo=Xo/(1-Xo);# [kg water/kg dry solid]\n",
+ "Y1=X1/(1-X1);# [kg water/kg dry solid]\n",
+ "solid=F*(1-X1);# [kg]\n",
+ "print\"Moisture to be evaporated: \",solid*(Yo-Y1),\" kg\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.1 - Page: 660\n",
+ "\n",
+ "\n",
+ "Moisture to be evaporated: 3750.0 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.2: Page 665"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.2\n",
+ "# Page: 665\n",
+ "\n",
+ "print'Illustration 12.2 - Page: 665\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# ***Data***#\n",
+ "Y1 = 0.05;# [kg water/kg dry air]\n",
+ "Yair = 0.01;# [kg water/kg dry air]\n",
+ "TempG1 = 95;# [OC]\n",
+ "width = 1;# [m]\n",
+ "apart = 100.0/1000;# [m]\n",
+ "deep = 38.0/1000;# [m]\n",
+ "Rate_evaporation=7.5*10**(-3);# [kg/s]\n",
+ "#*****************#\n",
+ "\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "vH = (0.00283+(0.00456*Y1))*(TempG1+273);# [cubic m/kg dry air]\n",
+ "freeArea = width*(apart-deep)*11;# [square m]\n",
+ "# Rate of air flow at 1:\n",
+ "Rate_air1 = 3*freeArea/vH;# [square m]\n",
+ "Y2 = Y1+(Rate_evaporation/Rate_air1);# [kg water/kg dry air]\n",
+ "# Assuming adiabatic drying:\n",
+ "# From adiabatic saturation curve, Fig 7.5: (Pg 232)\n",
+ "TempG2 = 86.0;# [OC]\n",
+ "# Overall Water Balance:\n",
+ "G = Rate_evaporation/(Y1-Yair);# [kg dry air/s]\n",
+ "# Rate of air flow at 3:\n",
+ "Rate_air3 = Rate_air1+G;# [kg dry air/s]\n",
+ "# Rate of air flow at 4:\n",
+ "Rate_air4 = Rate_air3;# [kg dry air/s]\n",
+ "# Volumetric Rate through fan:\n",
+ "Rate_fan = Rate_air3/vH;# [cubic m/s]\n",
+ "print\"Percentage of air recycled is:\",round((Rate_air1/Rate_air3)*100,2),\"%\\n\",\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# From Fig. 7.5 (page 232):\n",
+ "# Saturated enthalpy at adiabatic saturation temp.\n",
+ "Enthalpy1 = 233.0;# [kJ/kg dry air]\n",
+ "Enthalpy2 = 233.0;# [kJ/kg dry air]\n",
+ "# Enthalpy of fresh air:\n",
+ "Enthalpy_air = 50.0;# [kJ/kg dry air]\n",
+ "# Assuming complete mixing, by Enthalpy mixing:\n",
+ "Enthalpy3 = ((Enthalpy1*Rate_air1)+(Enthalpy_air*G))/Rate_air3;# [kJ/kg dry air]\n",
+ "Enthalpy4 = Enthalpy3;# [kJ/kg dry air]\n",
+ "# From table 7.1: (Pg 234)\n",
+ "Temp_dry = ((Enthalpy3*1000.0)-(2502300.0*Y1))/(1005.0+(1884.0*Y1));\n",
+ "Power = (Enthalpy2-Enthalpy3)*Rate_air3;# [kW]\n",
+ "# From Fig. 7.5, (Pg 232)\n",
+ "DewPoint1 = 40.4;# [OC]\n",
+ "DewPoint2 = 41.8;# [OC]\n",
+ "DewPoint3 = 40.4;# [OC]\n",
+ "DewPoint4 = 40.4;# [OC]\n",
+ "print\"At Point 1\\n\"\n",
+ "print\"Enthalpy of air:\",Enthalpy1,\" kJ/kg dry air\\n\",\n",
+ "print\"Dew Point of air: \",DewPoint1,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 2\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy2,\" kJ/kg dry air\\n\"\n",
+ "print\"Dew Point of air: \",DewPoint2,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 3\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy3,\" kJ/kg dry air\\n\",\n",
+ "print\"Dew Point of air: \",DewPoint3,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 4\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy4,\" kJ/kg dry air\\n\"\n",
+ "print\"Dew Point of air: \",DewPoint4,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"Dry bulb temparature of air: \",Temp_dry,\" OC\\n\"\n",
+ "print\"Power delivered by heater: \",Power,\" kW\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.2 - Page: 665\n",
+ "\n",
+ "\n",
+ "Percentage of air recycled is: 90.65 %\n",
+ "\n",
+ "\n",
+ "At Point 1\n",
+ "\n",
+ "Enthalpy of air: 233.0 kJ/kg dry air\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 2\n",
+ "\n",
+ "Enthalpy of air: 233.0 kJ/kg dry air\n",
+ "\n",
+ "Dew Point of air: 41.8 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 3\n",
+ "\n",
+ "Enthalpy of air: 215.89174489 kJ/kg dry air\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 4\n",
+ "\n",
+ "Enthalpy of air: 215.89174489 kJ/kg dry air\n",
+ "\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "Dry bulb temparature of air: 82.5843748998 OC\n",
+ "\n",
+ "Power delivered by heater: 34.3125 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.3: Page 671"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.3\n",
+ "# Page: 671\n",
+ "\n",
+ "print'Illustration 12.3 - Page: 671\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "# ***Data***#\n",
+ "SsByA = 40;\n",
+ "x1 = 0.25;# [moisture fraction]\n",
+ "x2 = 0.06;# [moisture fraction]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg moisture/kg dry solid]\n",
+ "X2 = x2/(1-x2);# [kg moisture/kg dry solid]\n",
+ "# Fig. 12.10 (Pg 668) indicates that both constant and falling rate periods are involved.\n",
+ "\n",
+ "# Constant Rate period:\n",
+ "# From Fig. 12.10 (Pg 668):\n",
+ "Xc = 0.200;# [kg moisture/kg dry solid]\n",
+ "Nc = 0.3*10**(-3);# [kg/square m.s]\n",
+ "# From Eqn. 12.4:\n",
+ "thetha1 = SsByA*(X1-Xc)/Nc;# [s]\n",
+ "\n",
+ "# Falling Rate Period:\n",
+ "# From Fig. 12.10 (Pg 668):\n",
+ "# Data=[x N*10^3]\n",
+ "Data = numpy.array([[0.2 ,0.3],[0.18 ,0.266],[0.16 ,0.239],[0.14 ,0.208],[0.12, 0.180],[0.10 ,0.150],[0.09 ,0.097],[0.08, 0.070],[0.07 ,0.043],[0.064 ,0.025]]);\n",
+ "Val = zeros(10);\n",
+ "# Val=[(1/N)*10^(-3)]\n",
+ "for i in range(0,10):\n",
+ " Val[i] = 1/Data[i,1];\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid();\n",
+ "plt.xlabel(\"x [kg moisture / kg dry solid]\");\n",
+ "plt.ylabel(\"10^(-3) / N\");\n",
+ "plt.title(\"Graphical Integration Falling Rate Period\");\n",
+ "# Area under the curve:\n",
+ "Area = 1060.0;\n",
+ "# From Eqn. 12.3:\n",
+ "thetha2 = SsByA*Area;# [s]\n",
+ "thetha = thetha1+thetha2;# [s]\n",
+ "print\"Total Drying Time: \",round(thetha/3600,2),\"h\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.3 - Page: 671\n",
+ "\n",
+ "\n",
+ "Total Drying Time: 16.72 h\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHFW9//H3JwshkJBJQgghgQxEVgXDqkGRISwGlM37\ncwGRRFwQULiCCFe8gnBVwOuOIBeQgIKACAjKFiSD7IowEIIsEcKaBEIWEhJDSL6/P0510tPp6emZ\nPt1VNfN9PU8/07V/unq6T9c5VadkZjjnnHMFfdIO4JxzLlu8YHDOOdeOFwzOOefa8YLBOedcO14w\nOOeca8cLBuecc+14wdBDSDpL0m8qTH9S0kfquY08k7SFpCWSlHYWAEmzJU1Mnq/Z71nLmVXJPmru\nxnLNklZL6tXfjb36xdeTpM9IeljSUknzJD0k6bg6brLiBSlm9j4z+2u9tiGpRdLL1awkCx++4i9e\nADN7ycwGWx0u7Ele69Lky2qJpAVVLGblntc551RJKwoZJf1F0nurXLam97Ro+cI+ekHSad1ZF0Cy\nj2Z3d/nezguGOpB0CvBT4DxgpJmNBL4CfEjSeh0sU+t70YhfkLG3UZfMkvpWMZvVa/sd2Cn5shps\nZsO6uGyjchpwnpkNBjYDXgIu7+I6as06JNn+EcB3JH20SxuX+tW4fYcXDNFJGgJ8FzjOzG4ws7cB\nzKzNzI4ys3eS+aZKukjSrZKWAi2SPibpMUmLJb0k6cyi9RZ+UX1J0quSXksKoAID1pN0haS3kqqj\nXYuWny1p3+R5X0nfkjQrmfcRSaOTaT9Ltr04Gf/hbu6HVklnS7ov2cYdkoYnkwtHLouSX4cfSJY5\nRtJTya/V2yVtUbS+AyQ9I2mRpF9KukfSF5JpUyTdL+nHkuYDZ0raStLdkuZLekPSb5P3hqRaZgvg\nlmT73yj9xStpM0k3S3pT0nOSvliU5SxJ13W0r6vcP+M6ytfJcqU5K+1nJB0t6cVkO98u/j+oxMz+\nDfweWHPEUOn/k268p51s/yFgZmH7nfxvrJZ0vKTngGeKxm2VPB8i6UpJryev/wwpVMVJ6iPpf5P3\n4F/Ax6rJ1+OZmT8iPoBJwEqgTyfzTQUWAROS4QHA3sB7k+EdgbnAoclwM7AauAoYCLwPeB3YN5l+\nFrA82b6A7wMPFm3vBWBi8vxU4Alg66JtDUuefxYYSvjRcDIwB1ivaBu/6eD1tAAvFw23As8B7wHW\nB6YDP0imjU1eS5+i+Q9N5t822fYZwP3JtI2BxcBhybQTgXeAY5LpU5J9fkIyfX1gHLAv0D9Z/h7g\nJ+X2R8n+7ZMM/xW4AFgPeH+yr/epZl+X2TergXEl46rOV7zfy+SstJ93AJYAeybb+WGy3yZ2kPNy\n4Jzk+YbAb4C7i6ZX+v/s0ntaZtuF19U32acfAt4G9ulsPclydwBNwICicVslz68Ebkxe01hC4VH4\n3/kK8E9gNOH/fjqwik4+vz39kXqAnvYAjgLmlIx7AFgILAM+nIybCkztZF0/BX6cPC98cLYpmn4e\ncGny/CzgzqJpOwDLioaLv2ieAQ6u8vUsAHYs2ka1BcN04FtFw8cBt5W8luIvkdsKH9ZkuE/yxbAF\ncHTpFwqhmqO4YHixk9dxGPBouf1RmgnYHHgX2LBo+veBy6vZ12W2vZpQsC1MHj/tSj4qFwyV9vN3\ngKuKpg0EVtBxwTCVUOAtJHw5/gvYuIv/n9W8p5uXWVdh+YXJ/9xTwFerWU+yXEuZfb4VoaBZAWxX\nNO3LwPTk+d3Al4um7V/6Onrjw6uS4nsT2FhFbQZmtqeZDU2mFcYb0K6xVtIHJE1PDnkXAccCw2mv\neJmXCHXBBfOKni8D1lf5tosxhA/9OpJqlaeSKpuFwBDCL9rumFv0fDkwqMK8Y4GfSVqYbPfNZPxo\nYBTwSsn8pcOl+3KkpGskvSJpMeHXb+m+7MhmwAJLqgETLyVZCqrd1wU7m9nQ5PGfNeYr1dF+3oyi\n/WRmy1m7X8sx4IfJ/2oz4Qv16MLEKv8/i1V6Tzsy3MyGmdkOZnZBF9bT0YkPGxOOll4sGlf8Xo5i\n3c9Ur+cFQ3wPEj5Qh3Vj2auBm4AxZtYE/Ip136MtSp6/2o3tvEyoemhH0l6EaqZPmllT8gWxmPiN\nn+XOqHmJ8MttaNFjQzN7kFCdNaYop4qHO1jn9wm/et9nZkOAz9F+X1Y6q+c1YJik4oJsC9YtjGrR\nWb4YXqP9fhtI54WPAMzsZUKV3X9LGpxMq/T/2ZX39KEuvo5q1tPR+zmfUM3YXDSu+L2cw7qfqV7P\nC4bIzGwRofH5Qkn/IWlw0sA1nlDHWVDuy3YQsNDM3pG0B3Ak6/7Df1vSQIXTCKcA13Yj5qXAOZLe\no2AnScOS7b8LzJe0nqTvABt1Y/0FHRUob5DUuxeN+xXwLUk7wJoGw08m024FdpR0qMJZJycAm3ay\n7UGE6oa3FBrWTy2ZPq9k+2skX4oPAD+QNEDSTsAxwG872WZXdJavKzraz38ADpY0QeFsuLMqzLvO\neszsLmAWcHxR5o7+P7v6nnZFt9djZquA64DvSRokaSzwdda+l9cBJ0oaLWkocHo38vU4XjDUgZn9\nkNBw+03CYf5cwj/3NwlHFBA+UKVf+scDZ0t6C/hvyn/p30P4sN5FOOy/q8L6OvoV9WPCB+JOwhHB\nJYSGyzuA24FngdmEaoniQ+ty26i0PSt5bgBmtgz4HnB/Uj2wh5ndRGgzuSapWpkBfDSZfz7wSeB8\nwi/A7YFHCEdmHeX6LrBL8vpuIXxJFs/zA0Ihu1DSyWXyHkH4lfkacAPwHTO7u8L2urJfqslXunzp\nvuxo/cX7eSbwNeCa5HUsITSir6C8cq/rh4Qvzv5U+P/s6ntaYfvrjux8PeWWKx73NUIh/DxwL+EE\njsuTaZcQ/u8fJ/xPVXofeg0lDS7120A4p/wR4BUzOzj5ZXotod5wNvCp5Fe2q0DhKs7ngX5mtjrd\nNOlK6vJfBo40s3vSzpMXSdXYQuA9ZvZiZ/O73qsRRwwnEc4wKJRApwPTzGwb4C/4oZurgsJ1DE2S\nBgDfSkZ3ta6615F0sKQNJG0I/C/whBcKrjN1LRgkjQEOItRpF+ovDwGuSJ5fQfcaaXur3nyIO4FQ\nhfYG4SKkw8ysoyoRt9YhhBMUXiXU/38m3TguD+palSTp94SzLzYCvpFUJS1MznYpnF2yoDDsnHMu\nfXU7YpD0ceB1M3uMDs6EsFAq9eZfwc45lzn17HBqT+AQSQcRznjZSKGPmnmSNjWzuZJGEc6SWIck\nLzCcc64bzKyma4/qdsRgZt8ys83NbEtCvebdZvY54GZgcjLbZMIFMx2to+zjxReN0aPTv2zczDjz\nzDNTz9ATMnpOz5n1R15yxtDI6xgKic8F9pf0LDAxGe6S0aNh/nxYvjxmvO6ZPXt22hE6lYeM4Dlj\n85xx5SVnDA3pu9zCueb3JM8XAPvVsr6+fWHsWJg9G7bfPkJA55xza+T2yuettoJ/le0GrrGmTJmS\ndoRO5SEjeM7YPGdceckZQ92vfO4uSVYp2wknwLbbwoknNjCUc85lnCQsq43P9TZuHDz/fNopoLW1\nNe0IncpDRvCcsXnOuPKSM4bcFgxZqUpyzrmeJrdVSTNmwGc+AzNnNjCUc85lXIyqpNwWDEuXwiab\nhL99cnvc45xzcfXqNoZBg2DwYJg7t/N56ykP9Y55yAieMzbPGVdecsaQ24IBstMA7ZxzPUluq5IA\njjoK9t8fJk+uOJtzzvUavboqCfyIwTnn6iHXBUMWTlnNQ71jHjKC54zNc8aVl5wx5L5g8CMG55yL\nK9dtDK+9Brvskv6ZSc45lxW9vo1h003hrbfCtQzOOefiyHXB0KcPbLklvPBCehnyUO+Yh4zgOWPz\nnHHlJWcMuS4YIBsN0M4515Pkuo0B4KSTwk17Tj65AaGccy7jen0bA/i1DM45F1vuC4a0q5LyUO+Y\nh4zgOWPznHHlJWcMdS0YJK0v6WFJbZKekvSDZPxZkl6R9FjymNTdbfgRg3POxVX3NgZJG5jZMkn9\ngPuAbwD7AkvM7McVlquqjWH5chg6FN5+G/r2jRbbOedyKRdtDGa2LHm6HtAXWJgM1xS8YOBAGD4c\nXn01xtqcc87VvWCQ1EdSGzAPmG5mhXuufU3S45Iuk9RUyzbSrE7KQ71jHjKC54zNc8aVl5wxNOKI\nYbWZjQfGAB+R1AJcBGwJjAfmAD+qZRtpN0A751xP0q9RGzKzxZL+DOxmZq2F8ZIuBW4pt8yUKVNo\nbm4GoKmpifHjx9PS0gKsLb1bWloYNw6mT29l3DjKTu/twy0tLZnKU2m4ICt5fH/Wf9j3Z23Dra2t\nTJ06FWDN92Wt6tr4LGlj4F0zWyRpIHAH8F1gppnNTeb5OrC7mR1ZsmxVjc8AV10Ft9wC11wTN79z\nzuVNHhqfRwF3J20MDwO3mNlfgPMlPSHpcWBv4Ou1bCTN7rdLf0lkUR4ygueMzXPGlZecMdS1KsnM\nZgC7lBl/dMzt+LUMzjkXT+77SgIwg402gldegSFD6hzMOecyLA9VSQ0h+d3cnHMulh5RMEB6p6zm\nod4xDxnBc8bmOePKS84YelTB4EcMzjlXux7RxgBw4YXwxBPwq1/VMZRzzmWctzEU8aufnXMujh5V\nMKRRlZSHesc8ZATPGZvnjCsvOWPoMQVDc3M4XXXlyrSTOOdcvvWYNgYI936ePj0cPTjnXG/kbQwl\n/Apo55yrXY8qGNJogM5DvWMeMoLnjM1zxpWXnDH0uILBjxicc642PaqN4dpr4fe/h+uvr1Mo55zL\nOG9jKOFHDM45V7seVTCMGxfaGBp5EJSHesc8ZATPGZvnjCsvOWPoUQXD0KGhp9UFC9JO4pxz+dWj\n2hgAdtkFLr4Ydt+9DqGccy7jvI2hjEJ1knPOue7pcQVDoxug81DvmIeM4Dlj85xx5SVnDHUrGCSt\nL+lhSW2SnpL0g2T8MEnTJD0r6U5JTTG361c/O+dcberaxiBpAzNbJqkfcB/wDeAQYL6ZnS/pNGCo\nmZ1eZtlutTHcdRd873uhzyTnnOttMt/GYGbLkqfrAX2BhYSC4Ypk/BXAYTG36dcyOOdcbepaMEjq\nI6kNmAdMN7OZwEgzm5fMMg8YGXObW2wBc+fCihUx19qxPNQ75iEjeM7YPGdceckZQ796rtzMVgPj\nJQ0B7pC0T8l0k9RhfdGUKVNobm4GoKmpifHjx9PS0gKsfZPKDY8ZA9dd18rmm5efHnO4oF7r703D\nbW1tmcqT92Hfn71jf7a2tjJ16lSANd+XtWrYdQyS/htYDnwRaDGzuZJGEY4ktiszf7faGAAOOABO\nPhkmTaopsnPO5U6m2xgkbVw440jSQGB/4DHgZmByMttk4KbY2/b7PzvnXPfVs41hFHB30sbwMHCL\nmf0FOBfYX9KzwMRkOKpGNkAXDumyLA8ZwXPG5jnjykvOGOrWxmBmM4BdyoxfAOxXr+1CuJbhgQfq\nuQXnnOu5elxfSQCPPQaTJ8MTT0QO5ZxzGRejjaFHFgyLF8Po0bBkSeht1TnneotMNz6nacgQWH99\neP31+m8rD/WOecgInjM2zxlXXnLG0CMLBvAroJ1zrrt6ZFUSwBFHwMc+BkcdFTGUc85lnFclVeBH\nDM451z09tmBoVPfbeah3zENG8Jyxec648pIzhh5bMPjVz8451z09to3hpZdgwgR49dWIoZxzLuP8\nOoYKVq2CDTeEhQth4MCIwZxzLsO88bmCvn1h7Fh44YX6bicP9Y55yAieMzbPGVdecsbQYwsG8DOT\nnHOuO3psVRLAV78KW28NJ50UKZRzzmWcVyV1wo8YnHOu63p0wTBuXP1PWc1DvWMeMoLnjM1zxpWX\nnDH06ILBjxicc67renQbw9KlMGIEvP029OnRRaBzzgXextCJQYNCF9xz5qSdxDnn8qNHFwxQ/+qk\nPNQ75iEjeM7YPGdceckZQ10LBkmbS5ouaaakJyWdmIw/S9Irkh5LHpPqlaERDdDOOdeT1LWNQdKm\nwKZm1iZpEPAP4DDgU8ASM/txhWVrbmMAOPNMMIOzz655Vc45l3mZb2Mws7lm1pY8Xwr8ExidTG7I\n3Zj9zCTnnOuahrUxSGoGdgYeSkZ9TdLjki6T1FSv7da7KikP9Y55yAieMzbPGVdecsbQrxEbSaqR\nrgdOMrOlki4CCpU75wA/Ar5QutyUKVNobm4GoKmpifHjx9PS0gKsfZM6G95mmxaef776+bs6XFCv\n9fem4ba2tkzlyfuw78/esT9bW1uZOnUqwJrvy1rV/ToGSf2BPwG3mdlPy0xvBm4xsx1LxkdpYzAL\n3W/PmweDB9e8Ouecy7S6tjFIWippSZnHckmrqgwo4DLgqeJCQdKootkOB2Z09wV0ngG23LL+3W87\n51xP0WHBYGaDzGxw4QGMAr4HzAXW+eXfgQ8BRwH7FJ2aeiBwnqQnJD0O7A18vbaXUVk9G6ALh3RZ\nloeM4Dlj85xx5SVnDJ22MSQNw/8JTAauBnYzszerWbmZ3Uf5wue2roSslV/L4Jxz1euwjUHSCOAU\n4NPAr4Gfm9nihgWL1MYA8POfwzPPwC9/GWV1zjmXWTHaGCodMcwG5hMKhWXAF5I2AwCrdHFa1owb\nB7femnYK55zLh0rXMfwQuDx5PggYnPwtPM8Nb2NoTTtCVTxnXJ4zrrzkjKHDIwYzO6uBOeqquRle\neglWrYK+fdNO45xz2daj78dQbMwYuO++UEg451xPlfm+krLkwx+GW25JO4VzzmVfpQvc9ixqbM69\n446DCy8MV0LHlId6xzxkBM8Zm+eMKy85Y6h0xHA08KikayVNSbrQzq2PfCS0L9x9d9pJnHMu2zpt\nY5C0PXAgcADQBNwN3A7cb2ZVdY3RrWCR2xgALroIpk2DG26IulrnnMuMGG0MXWp8lrQBsA+hoJhg\nZrvWsvFOthW9YFiyBMaOhccfh803j7pq55zLhIY3PpvZMjP7s5l9tZ6FQr0MHgyf/SxcfHG8deah\n3jEPGcFzxuY548pLzhh6zVlJBccfD5deCitWpJ3EOeeyqddcx1Bsv/3gmGPgyCPrsnrnnEtNQ6uS\nJK0vaUAtG8uKE07wDvWcc64jla5j6CPpE5J+L+lV4AXgRUmvSrpe0uF5vc7h4IPh5Zehra32deWh\n3jEPGcFzxuY548pLzhgqHTG0ArsC/wtsZWajzGxTYKtk3O7APXVPWAf9+sGxx/pRg3POlVPpfgwD\nzKxiE20183Q7WB3bGCDcA3q77UKvq0OH1m0zzjnXUHVtYyj3hS9peGfz5MXIkXDQQTB1atpJnHMu\nWyq1MUyUNEvSQ5L2kPQM8DdJ/5K0ewMz1s0JJ4T+k1av7v468lDvmIeM4Dlj85xx5SVnDJ3dqOdw\n4OvAncAXzWwc8Emgqru3Sdpc0nRJMyU9KenEZPwwSdMkPSvpzuS+0g03YQIMGhS6yXDOORdUamN4\nzMx2Tp7/08y2Lzet4spDx3ubmlmbpEHAP4DDgM8D883sfEmnAUPN7PSSZevaxlBw6aVw883h4Zxz\neVfv6xiKp/1X0UYF9K9m5WY218zakudLgX8Co4FDgCuS2a4gFBapOPJIeOABmD07rQTOOZctlQqG\n70jaEMDMbioavxVwZVc3JKkZ2Bl4GBhpZvOSSfOAkV1dXywbbABHHw2/+lX3ls9DvWMeMoLnjM1z\nxpWXnDFUuufzH0vHSdrUzP4FnN+VjSTVSH8ATjKzJcXXxZmZSSpbZzRlyhSak3txNjU1MX78eFpa\nWoC1b1KM4eOOg913b2XiRDjggK4tXxAzT28dbmtry1SevA/7/uwd+7O1tZWpyemVzZHuXdzVbrcf\nNbNdurQBqT/wJ+A2M/tpMu5poMXM5koaBUw3s+1KlmtIG0PBpEmhWunooxu2Seeciy6Nez53aWNJ\ne8RlwFOFQiFxMzA5eT4ZuKl02Ubz/pOccy7oasFwSRfn/xBwFLCPpMeSxyTgXGB/Sc8CE5PhVB10\nULga+pFHurZc4ZAuy/KQETxnbJ4zrrzkjKHDNgZJg81sSfE4M7uws3lK5r+Pjguf/boStN769oXj\njgtHDZdfnnYa55xLT6XrGO4CngH+CDxiZguS8cOB3QinmG5tZnX5gm90GwPA/Pmw9dYwaxYMH975\n/M45lzV1v+ezpInAkYQqoc2S0a8B9wFXmVlrLRuvGCyFggFg8mR43/vg1FMbvmnnnKtZ3Rufzexu\nM/uimW1vZkOSx/Zm9qV6FgppOuEEuOgiWLWquvnzUO+Yh4zgOWPznHHlJWcMve6ez53ZY49QjXT7\n7Wkncc65dHRWldQPuMTMPt+4SGu2nUpVEoSuuK+9Fm67LZXNO+dct9W1Kim5WvlPwN9r2UAeffrT\n4bTVWbPSTuKcc41XqSrpHuDW0lNUe4OBA+Hznw9tDZ3JQ71jHjKC54zNc8aVl5wxVCoYhgAvNypI\n1hx3HFxxBSxblnYS55xrrErXMYwCbgTOLeldtSHSbGMo+PjH4fDD4QtfSDWGc85Vrd73fJ4D7A/0\n2q/FQv9JKZdPzjnXUJ1dx7AE+ESDsmTORz8Kb70FDz3U8Tx5qHfMQ0bwnLF5zrjykjOGTq9jMLOV\njQiSRX36rO0/yTnneotKbQxNwOmEPpFGAga8Tugi+1wzW1TXYBloYwBYsADGjYNnnoFNNkk7jXPO\nVVbvLjGuAxYCLcAwMxsG7AMsSqb1CsOGwSc+AZdemnYS55xrjEoFQ7OZnWdmcws/3c1sjpmdCzQ3\nJF1GnHBCuCf0u++uOy0P9Y55yAieMzbPGVdecsZQqWB4UdI3JY0sjJC0qaTTgJfqHy07dtkFRo+G\nP/0p7STOOVd/ldoYhhHaGA4htDEAzCPclvPcwv0Z6hYsI20MBVddFfpQmjYt7STOOdexut+PIU1Z\nKxhWrICxY+Gee2DbbdNO45xz5dX9fgwVNtzw3lbTNmBAuAL6wpKeo/JQ75iHjOA5Y/OcceUlZwzd\nvR/D2dXMJOnXkuZJmlE07ixJr0h6LHlM6maGhjv2WPjtb2Hp0rSTOOdc/VRqY5hRdkKwjZkN6HTl\n0l7AUuBKM9sxGXcmsMTMftzJspmqSio4/HCYNCkUEs45lzUxqpL6VZi2CTCJcC1DqQeqWbmZ3Sup\nucykmkKn6YQT4OST4ctfBuX2VTjnXMcqVSX9GRhkZrNLH4R7NdTia5Iel3RZcoV1buy7L7zzDtx3\nXxjOQ71jHjKC54zNc8aVl5wxdHjEYGbHVJh2RA3bvIi1bRTnAD+igx5cp0yZQnNzMwBNTU2MHz+e\nlpYWYO2blMbw8cfDmWe28p3vrM2aZp6eMtzW1papPHkf9v3ZO/Zna2srU6dOBVjzfVmrup+umlQl\n3VJoY+jCtEy2MQAsXgzNzfDUUzBqVNppnHNurdROV61FcgOggsOBSo3cmTRkSLgv9CWXpJ3EOefi\nq2vBIOl3hIbqbSW9LOkY4DxJT0h6HNgb+Ho9M9TLCSfAxRfDnXe2ph2lU4XDzqzznHF5zrjykjOG\nSmcl1ayDtohf13ObjbLjjrD33nDOOTBxIvSr6550zrnG8S4xarBiBRx6KIwcCZdfHm7s45xzacpl\nG0NPMmAA3HADPP88nHii3xvaOdczeMFQo7/9rZU//QkefBC+/e2005SXl7pRzxmX54wrLzlj8Jrx\nCIYMgdtvD20OG20Ep52WdiLnnOs+b2OI6NVXYa+94NRT4bjj0k7jnOuN6t1Xkuui0aPhrrvCkcPg\nwXDUUWkncs65rvM2hhqV1jtutRXccQd84xtw003pZCqVl7pRzxmX54wrLzlj8COGOthhB/jzn+HA\nA2HQINhvv7QTOedc9byNoY7uvRc+8Qn44x9hzz3TTuOc6w38OoaM22sv+M1vws192trSTuOcc9Xx\ngqFGndU7TpoEv/xlqFZ6+unGZCqVl7pRzxmX54wrLzlj8DaGBvh//y/cJ/qAA0L10tixaSdyzrmO\neRtDA/385/CLX8Bf/+r3cXDO1Ydfx5AzJ54Ib70VjhzuuQeGDUs7kXPOrcvbGGrU1XrHM84I7Q6T\nJsGSJfXJVCovdaOeMy7PGVdecsbgBUODSXD++bDzznDwwbB8edqJnHOuPW9jSMmqVXD00eH+0Tfc\nAOutl3Yi51xP4Ncx5FjfvjB1ari5z+c+FwoK55zLAi8YalRLvWP//nDddTB/PnzlK/W70U9e6kY9\nZ1yeM6685IyhrgWDpF9LmidpRtG4YZKmSXpW0p2SmuqZIevWXz90mTFjBpxyit8FzjmXvrq2MUja\nC1gKXGlmOybjzgfmm9n5kk4DhprZ6WWW7dFtDKUWLIB99gl9K515ZtppnHN5lfk2BjO7F1hYMvoQ\n4Irk+RXAYfXMkBfDhsGdd8Lvfgdnn+1HDs659KTRxjDSzOYlz+cBI1PIEE3MeseRI6G1Fa69Ntw/\nOlbhkJe6Uc8Zl+eMKy85Y0j1ymczM0kdfv1NmTKF5uZmAJqamhg/fjwtLS3A2jcp7eGCmOtvbYUJ\nE1qZNQuuuaYFKTuvt57DbW1tmcqT92Hfn71jf7a2tjJ16lSANd+Xtar7dQySmoFbitoYngZazGyu\npFHAdDPbrsxyvaqNodSCBaHrjAkT4Gc/C6e1OudcZzLfxtCBm4HJyfPJQEZugJktw4bBX/4C//hH\nOJV19eq0Eznneot6n676O+ABYFtJL0v6PHAusL+kZ4GJyXBuFQ7p6mHIkHD/6GeegWOO6f5FcPXM\nGJPnjMtzxpWXnDHUtY3BzI7oYJLfBblKgwfDrbfCoYfCUUfBlVeGC+Occ65evK+knFi+PFzjsMEG\n4ZTW9bxvJedcGXltY3DdMHAg3HQTvPsu/Md/wL//nXYi51xP5QVDjRpZ7zhgAFx/fSgkDj20+i67\n81I36jnj8pxx5SVnDF4w5Ez//nD11TBiBHzsY/D222kncs71NN7GkFOrVsGXvgTPPQd//jNstFHa\niZxzWeBtDL1Y375w6aXwvveFC+EWLUo7kXOup/CCoUZp1jv26QMXXggf/CDsuy+8+Wb5+fJSN+o5\n4/KcceVF+uFGAAAPdElEQVQlZwxeMOScBD/5Cey3H0ycCK+/nnYi51zeeRtDD2EW7uNw/fWhK41R\no9JO5JxLQ4w2hlR7V3XxSOE+DgMGwN57w913w5gxaadyzuWRVyXVKGv1jmecAcceGwqH2bPDuKxl\n7IjnjMtzxpWXnDH4EUMPdMop4cihpQXuuivtNM65vPE2hh7s//4PzjkHpk2D7da544VzrifyNgZX\n0Ze/HI4cJkyAnXaCbbZp/9hqqzDdOeeKeRtDjbJe7zh5Mlx2WStnngm77gpz5oQL4w47LNzvYdw4\nOPBAOOkkuOACuPPO0DbR3Xs/1CLr+7LAc8blObPHjxh6gWHDQnvDxIntx69cGQqBZ58Nj5kz4cYb\nw/P580OhUXqUsc02oZ8m1XSg6pzLMm9jcGW9/TbMmrW20Ch+rFrVvqDYeuu1f73PJufSFaONwQsG\n12Vvvhk67ystMJ57LhQM5Y4yvD3DucbIdcEgaTbwFrAKWGlme5RMz0XB0NraSktLS9oxKmpUxtWr\n4bXXyh9lvPQSjB5dvtDYfPPQ71Me9iV4ztg8Z1x5PyvJgBYzW5BiBhdRnz7hausxY8q3Z7zwwtoj\niyefhBtuaN+eMWQIvP/9sNlmoUuP4r8bbxzW75yrvzSPGF4AdjOzsn2C5uWIwdWu0J7xr3+FI445\nc9b9u3gxjBy5boFR+nfECC9AXO+W96qk54HFhKqki83skpLpXjC4Nd55B+bODQVFR4XHa6+FAmST\nTSoXHqNGhQKkb9+0X5Vz8eW9YBhlZnMkjQCmAV8zs3uLpueiYMhDvWMeMkKcnIUCpKOCo/B30aJQ\nOBQXGB0dgZQWIL1pfzaC54wr120MZjYn+fuGpBuBPYB7i+eZMmUKzc3NADQ1NTF+/Pg1b0zhYpO0\nhwuykifPw21tbVHWt8UW8PzzrQwdCocfXn7+adNaWbgQxo5tYc6cMP255+DFF8Pws8+28uabsHRp\nC5tsAoMGtTJ8OOy4Ywv//jfceGMrTU1hfSNGwHPPtbLRRrDvvj1vf/pwtvdna2srU6dOBVjzfVmr\nVI4YJG0A9DWzJZI2BO4EvmtmdxbNk4sjBtezrVwJ8+a1P9qYOxfeeCPcFOmNN9Y+Fi6EpqZQlTVi\nxNpHR8PDh0M/v8TURZbbqiRJWwI3JoP9gKvM7Acl83jB4HJl1apwjUe5QqN4uPC8UJBUU4iMGBHO\nzPKCxHUmtwVDNfJSMLTmoN4xDxmh9+VctQoWLChfaJQbXrAgnNJbTSGyySYwY0Yr++9fe856623v\ne73luo3Bud6ub9+1X+TVKBQk5QqNZ56B++5rP+3NN6F//1CYbLRR9/8OHuxncPU2fsTgXA9lBsuX\nw1tvhdN4u/K3+PnSpbDBBuULjq4UMgMHeueLjeBVSc65ulu9OhQOXS1cSv+uXBkKie4evRSe9++f\n9h7JNi8YMiAP9Y55yAieM7as5Vy5ct2jkcWL4aGHWhk9uqXqAqZ//84Lj87+DhrU9Svks7Y/O+Jt\nDM653OjfP5yiO3x4+/GDB4f7hVSjUD3WWeHx2mvw9NNhuNw8y5aF7XblqKU3nRHmRwzOuV5n1SpY\nsmTdAqNSgXP++aE34KzzqiTnnHPtxCgYvB/KGhUuTc+yPGQEzxmb54wrLzlj8ILBOedcO16V5Jxz\nPYhXJTnnnIvOC4Ya5aHeMQ8ZwXPG5jnjykvOGLxgcM451463MTjnXA/ibQzOOeei84KhRnmod8xD\nRvCcsXnOuPKSMwYvGJxzzrXjbQzOOdeDeBuDc8656FIrGCRNkvS0pOcknZZWjlrlod4xDxnBc8bm\nOePKS84YUikYJPUFLgAmATsAR0jaPo0stWpra0s7QqfykBE8Z2yeM6685IwhrSOGPYBZZjbbzFYC\n1wCHppSlJosWLUo7QqfykBE8Z2yeM6685IwhrYJhNPBy0fAryTjnnHMpS6tg6DGnG82ePTvtCJ3K\nQ0bwnLF5zrjykjOGVE5XlfRB4Cwzm5QM/xew2szOK5qnxxQezjnXSLm8taekfsAzwL7Aa8DfgCPM\n7J8ND+Occ66dfmls1MzelfRV4A6gL3CZFwrOOZcNmb3y2TnnXDoa3vhczYVtkn6eTH9c0s5F45sk\nXS/pn5KeStoqspjzvyTNlDRD0tWSBqSVU9J2kh6U9G9Jp3Rl2SzklLS5pOnJ/nxS0olZzFk0va+k\nxyTdksWMWfoMdZIzS5+hzyaf8Sck3S9pp2qXzULObn2GzKxhD0K10SygGegPtAHbl8xzEHBr8vwD\nwENF064Ajkme9wOGZC1nsszzwIBk+Fpgcoo5RwC7Af8DnNKVZTOSc1NgfPJ8EKFtKnM5i6afDFwF\n3JzFjBn7DHX0nmftMzShsJ8IF+U+VO2yGcnZ5c9Qo48Yqrmw7RDCPy9m9jDQJGmkpCHAXmb262Ta\nu2a2OGs5gbeAlcAGSSP7BsCraeU0szfM7JEkU5eWzUJOM5trZm3J86XAP4HNspYTQNIYwg+GS4Ga\nzgqpR8asfYYq7MusfYYeLNpPDwNjql02Czm78xlqdMFQzYVt5eYZA2wJvCHpckmPSrpE0gYZyzna\nzBYAPwJeIpxxtcjM7koxZz2W7aoo25LUDOxM+Kevh1pz/gQ4FVgdM1SJWjJm7TNUVsY/Q18Abu3m\nsrWoJeca1X6GGl0wVNvSXfprywiHvbsAF5rZLsDbwOkRs5Vurxrr/CqUNA74T8Ih32bAIEmfjRet\nnVrOHGjkWQc1b0vSIOB64KTkV089dDunpI8Dr5vZY9TvaAFq25dZ/AytI6ufIUn7AMcAhfr9TH6G\nyuQsjK/6M9ToguFVYPOi4c0JJV+lecYk414BXjGzvyfjryf8k2ct527AA2b2ppm9C9wA7Jliznos\n21U1bUtSf+APwG/N7KbI2YrVknNP4BBJLwC/AyZKujJyPqgtY9Y+Qx3J3Gcoaci9BDjEzBZ2ZdkM\n5OzyZ6jRBcMjwNaSmiWtB3wauLlknpuBo2HNFdKLzGyemc0FXpa0TTLffsDMrOUkNOx8UNJASUpy\nPpVizoLSX7FdWTa1nMk+vAx4ysx+Wqd8Bd3OaWbfMrPNzWxL4DPA3WZ2dMYyZu0zVDYn8DQZ+gxJ\n2oJQOB1lZrO6smwWcnbrM1SPFvROWtcPJHx5zgL+Kxl3LHBs0TwXJNMfB3YpGv9+4O/J+Buo0xkV\nEXJ+k/CBm0FooO6fVk7CGQkvA4uBhYR620EdLZu1nMCHCXX2bcBjyWNS1nKWrGNv6nRWUoT3PDOf\noU5yZukzdCnwZtH/398qLZu1nN35DPkFbs4559rxW3s655xrxwsG55xz7XjB4Jxzrh0vGJxzzrXj\nBYNzzrl2vGBwzjnXjhcMrtuSi22WS3q0aHhGSlk2k/T7CtOHSDquzhk+KOn/Ssa1KFIX3JKmSPpF\njHVVsa0176Wk3ST9rIP5ZksallyM1iZphaRhjcjo6scLBlerWRb63UmVmb1mZp+sMMtQ4PiurldS\nVz4jBwK3dXUbtZLUt57rN7NHzOykjiYn8yw3s/GETu9cznnB4MqStHty048BkjZMbvCxQxeW3yrp\nwXNXSRtIui65UcgNkh6StGuZZWZL+r7CjW4ekbSLpDslzZJ0bDKPJP1Q4QYuT0j6VDK++BfueyU9\nnKynTdJ7gHOBccm48yXtXfxLXtIFkiYX5ThX0j+AT0o6QNIDkv6RvI4NO3jZE4EOewFN9umjkraU\nNELStGS/XlL45V1mmc9LekbSwxT1FyRpqqRfSXoIOF/Ss5I2Tqb1UbiZy/CSde2dvP7HkhwbdrQ/\nS5Zbc9QjaXjynjwp6RLq22GgS0kq93x22Wdmf5d0M+EmKgOB35hZVf3VSNqW0JHcZDObIekbwJtm\n9l5J7yVcml/uknsDXjSznSX9GJhKuPnIQOBJ4GLgE4RuHXYi3Ojl75LuKVnPV4CfmdnVCv359yP0\nNPleM9s5ydhSZttW9Hy+me2afNn+AdjXzJYr3DnrZOCckte8MbDSzJZ0sE/2BH5O6NzsFUkXAHeZ\n2XmSPkroJrl0mVHAWYSO7t4CpgOPFs2yGTDBzEzSYuCzwM8IfQu1mdmbJas8BTjezB5U6G57BdXt\nz2JnAn81s/+RdFC53C7//IjBVXI2cACht8vzq1xmE+Am4EgzK7Q3fIhwYxHMbCbwRIXlCx2DzQAe\nNLO3zWw+sELhRjMfAq624HXgHsJNTIo9AHxL0jeBZjP7N13/ZXtt8veDwA7AA5IeI3ScuEWZ+Q8A\n7uhgXdsTCrWPm1mhR8zifXIHoa+gUh8AplvoZXRlkqnwOgz4va3t0+bXSTYIXS5fXmZ99wM/kfQ1\nYKiZraK6/VlsL+C3Se5bO8jtcs4LBlfJxsCGhM7sBla5zCLgRcIXSLFqv5hXJH9XA+8UjV/N2iPc\ncvfrWDtg9jvgYGA5cKtC//Sl3qX9/3/p63u76Pk0M9s5ebzXzL5UZn2TgNvLjDdgTpKltC2ms31i\nJfOUzr9szYyhwJknaSKwO2XaOszsPMIv/IHA/cmRXbn1dtaBmlcf9XBeMLhKLga+DVwNnFflMu8Q\nqieOlnREMu5+oNAWsAOwYxXrKfflY8C9wKeTevQRwEeAv7VbUNrKzF4ws18Af0y29xYwuGi2F4Ed\nJK0nqYnQPlDOw8CHFG4eQ1Ivv3XJ9gTsZGaPd/A6FgEfB34gae9kfPE+OYDQOF7qb8DeCmf99Ac+\nSeUv7UsJv+avKzqSKM45zsxmmtn5hB5Wt6OK/Vnir8CRyfoO7CC3yzlvY3BlSToaWGFm1yicmfOA\npBYza+1kUTOzZQp3NJsmaQlwIXCFpJmEvvZnErpaXmfZkuelw5jZjZImELqNNuBUM3td4ZaFhfk/\nJekown2D5wDfM7NFku5PGqhvNbPTJF1HaLt4gfZ198Uv5g1JU4DfSRqQjD4DeK5otl0JXRmXXUWy\nT15P9sltkj4PfDdZ5+eAB4G5QLv2CTObI+msZPqiMtso/fK/hVCFVK4aCeCk5OhpNeF132pmK6vY\nn8XbKuQ+glBl92IH23I55t1uu25LvjxuMbOKRwBJwdLfzFYkv7ynAdtYuDtX7kk6A3jOzK7rwjLr\nAavMbFXyxfzLWk/7lbQb8CMz27vTmetE4Q52u1q4b7PLKT9icLV4Fxgi6dFOvtQ2BO5OqkMEHNdT\nCgUAM/teNxbbArguKTTfAcq1W1RN0umEs7GOrGU9NWx/feAhwnfK6jQyuHj8iME551w73vjsnHOu\nHS8YnHPOteMFg3POuXa8YHDOOdeOFwzOOefa8YLBOedcO/8fn0E/Bf9S/E0AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x772c470>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.4: Page 676"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.4\n",
+ "# Page: 676\n",
+ "\n",
+ "print'Illustration 12.4 - Page: 676\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "#***Data***#\n",
+ "# For rectangular pan:\n",
+ "l = 0.7;# [m]\n",
+ "b = 0.7;# [m]\n",
+ "zS = 0.025;# [m]\n",
+ "zM = 0.0008;# [m]\n",
+ "d = 0.1;# [m]\n",
+ "Y1 = 0.01;# [kg water/kg dry air]\n",
+ "TempG = 65.0;# [OC]\n",
+ "v = 3.0;# [m/s]\n",
+ "TempR = 120.0;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "vH = (0.00283+(0.00456*Y1))*(TempG+273.0);# [cubic m/kg dry air]\n",
+ "Density_G = (1+Y1)/vH;# [kg/cubic m]\n",
+ "G = v*Density_G;# [kg/square m.s]\n",
+ "de = 4*d*l/(2*(l+d));# [m]\n",
+ "# From Eqn. 12.20:\n",
+ "hc = 5.90*G**0.71/de**0.29;# [W/square m.K]\n",
+ "# Assume:\n",
+ "e = 0.94;\n",
+ "# Estimate:\n",
+ "TempS = 38;# [OC]\n",
+ "# From Eqn. 12.14:\n",
+ "hR = e*5.729*10**(-8)*((273+TempR)**4-(273+TempS)**4)/((273.0+TempR)-(273+TempS));\n",
+ "A = l*b;# [square m]\n",
+ "Am = A;# [square m]\n",
+ "As = 4*l*zS;# [square m]\n",
+ "Au = Am+As;# [square m]\n",
+ "# Thermal Coductivities:\n",
+ "kM = 45;# [W/m.K]\n",
+ "kS = 3.5;# [W/m.K]\n",
+ "# By Eqn. 12.16:\n",
+ "Uk = 1/(((1/hc)*(A/Au))+((zM/kM)*(A/Au))+((zS/kS)*(A/Am)));# [W/squre m.K]\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "Cs = 1005+(1884*Y1);# [kJ/kg]\n",
+ "# At estimated 38 OC\n",
+ "lambdaS = 2411.4;# [kJ/kg]\n",
+ "# From Eqn. 12.18:\n",
+ "# (Ys-Y1)*lambdaS*10^3/Cs = ((1+(Uk/hc))*(TempG-Temps))+((hR/hC)*(TempR-TempS))\n",
+ "# On Simplifying:\n",
+ "# Ys = 0.0864-(10.194*10**(-4)*TempS)\n",
+ "# The eqn. is solved simultaneously with the saturated humidity curve of the psychometric chart for the air water mixture.\n",
+ "# From Fig. 12.12: (Pg 677)\n",
+ "Ys = 0.0460;# [kg water/kg dry air]\n",
+ "TempS = 39;# [OC]\n",
+ "# At 39 OC\n",
+ "lambdaS = 2409.7;# [kJ/kg]\n",
+ "# From Eqn. 12.17:\n",
+ "Nc = (((hc+Uk)*(TempG-TempS))+(hR*(TempR-TempS)))/(lambdaS*10**(3));# [kg water evaporated/square m.s]\n",
+ "print\"The Evaporation Rate: \",round(Nc*A,8),\" kg/s\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "# When no radiation or conduction of heat through the solid occurs, the drying surface assumes wet bulb temparature of the air.\n",
+ "# From Fig. 12.12 (Pg 677)\n",
+ "TempS = 28.5;# [OC]\n",
+ "Ys = 0.025;# [kg water/kg dry air]\n",
+ "lambdaS = 2435;# [kJ/kg]\n",
+ "# From Eqn. 12.17:\n",
+ "Nc = hc*(TempG-TempS)/(lambdaS*10**3);# [kg/aquare m.s]\n",
+ "print\"The Evaporation Rate: \",round(Nc*A,8), \"kg/s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.4 - Page: 676\n",
+ "\n",
+ "\n",
+ "The Evaporation Rate: 0.0003851 kg/s\n",
+ "\n",
+ "The Evaporation Rate: 0.00016105 kg/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.5: Page 684"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.5\n",
+ "# Page: 684\n",
+ "\n",
+ "print'Illustration 12.5 - Page: 684\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "from scipy import integrate\n",
+ "import math\n",
+ "#***Data***#\n",
+ "x1 = 0.025;# [moisture fraction]\n",
+ "x2 = 0.001;# [moisture fraction]\n",
+ "zS = 0.018;# [m]\n",
+ "dp = 2*10**(-4);# [m]\n",
+ "Density_S = 1350;# [kg dry solid/cubic m]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg water/kg dry air]\n",
+ "X2 = x2/(1-x2);# [kg water/kg dry air]\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Y1 = 0.0153;# [kg water/kg dry air]\n",
+ "Tempas = 24;# [OC]\n",
+ "Yas = 0.0190;# [kg water/kg dry air]\n",
+ "Gs = 0.24;# [kg dry air/square m.s]\n",
+ "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg dry air/square m.s]\n",
+ "# From Eqn. 12.26:\n",
+ "Nmax = Gs*(Yas-Y1);# [kg evaporated/square m.s]\n",
+ "viscosity_air = 1.8*10**(-5);# [kg/m.s]\n",
+ "X3=lambda X : 1/(Nmax*(1-math.exp(-(0.273/dp**0.35)*((dp*Gav/viscosity_air)**0.215)*(Density_S*zS*X)**0.64)));\n",
+ "Value = integrate.quad(X3,X2,X1);\n",
+ "# From Eqn. 12.3:\n",
+ "thetha = Density_S*zS*Value[0];# [s]\n",
+ "print\"The time for drying: \",round(thetha/60,3),\" min\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.5 - Page: 684\n",
+ "\n",
+ "\n",
+ "The time for drying: 12.593 min\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.6: Page 685"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.6\n",
+ "# Page: 685\n",
+ "\n",
+ "print'Illustration 12.6 - Page: 685\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "import math\n",
+ "#***Data***#\n",
+ "Y1 = 0.01;# [kg water/kg dry air]\n",
+ "Gs = 1.1;# [kg dry air/square m.s]\n",
+ "dia = 13.5/1000;# [m]\n",
+ "l = 13.0/1000;# [m]\n",
+ "zS = 50.0/1000;# [m]\n",
+ "Density_S = 600.0;# [kg dry solid/square m.s]\n",
+ "a = 280.0;# [square m/cubic m]\n",
+ "#************#\n",
+ "\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Yas = 0.031;# [kg water/kg dry air]\n",
+ "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg/square m.s]\n",
+ "viscosity_air = 1.9*10**(-5);# [kg/m.s]\n",
+ "Area = (2.0*math.pi*dia**2.0/4)+(math.pi*dia*l);# [square m]\n",
+ "dp = (Area/math.pi)**0.5;# [m]\n",
+ "# From Table 3.3 (Pg 74)\n",
+ "Re = dp*Gav/viscosity_air;\n",
+ "e = 1.0-(dp*a/6);# [fraction voids]\n",
+ "jD = (2.06/e)*Re**(-0.575);\n",
+ "# For air water mixture:\n",
+ "Sc = 0.6;\n",
+ "# From Eqn. 12.33:\n",
+ "kY = jD*Gs/Sc**(2.0/3);# [kg H2O/square m.s.deltaX]\n",
+ "# From Eqn. 12.30:\n",
+ "NtG = kY*a*zS/Gs;\n",
+ "# From Eqn. 12.25:\n",
+ "Nmax = Gs*(Yas-Y1);# [kg/square m.s]\n",
+ "# From Eqn. 12.31:\n",
+ "N = Nmax*(1-math.exp(-NtG));# [kg water evaporated/square m.s]\n",
+ "Y2 = (Yas-Y1)*(N/Nmax)+Y1;# [kg water/kg dry air]\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Tempas = 33.0;# [OC]\n",
+ "# From eqn. 12.2:\n",
+ "Rate = N/(Density_S*zS);# [kg H2O/(kg dry solid).s]\n",
+ "print\"Humidity of the exit air: \",round(Y2,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Temparature of exit air: \",Tempas,\" degree C\\n\"\n",
+ "print\"Rate of Drying: \",round(Rate,7),\" kg H2O/(kg dry solid).s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.6 - Page: 685\n",
+ "\n",
+ "\n",
+ "Humidity of the exit air: 0.0302 kg water/kg dry air\n",
+ "\n",
+ "Temparature of exit air: 33.0 degree C\n",
+ "\n",
+ "Rate of Drying: 0.0007409 kg H2O/(kg dry solid).s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.7: Page 700"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.7\n",
+ "# Page: 700\n",
+ "\n",
+ "print'Illustration 12.7 - Page: 700\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "import math\n",
+ "from numpy.linalg import inv\n",
+ "#***Data***#\n",
+ "x1 = 3.5;# [percent moisture]\n",
+ "x2 = 0.2;# [percent moisture]\n",
+ "dia = 1.2;# [m]\n",
+ "l = 6.7;# [m]\n",
+ "Rate_prod = 900.0;# [kg/h]\n",
+ "y2 = 0.5;# [Humidity]\n",
+ "TempG2 = 90.0;# [OC]\n",
+ "TempG1 = 32.0;# [OC]\n",
+ "TempS1 = 25.0;# [OC]\n",
+ "TempS2 = 60.0;# [OC]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(100.0-x1);# [kg H2O/kg dry solid]\n",
+ "X2 = x2/(100.0-x2);# [kg H2O/kg dry solid]\n",
+ "Ss = Rate_prod*(1-X2);# [kg dry solid/h]\n",
+ "Rate_drying = Ss*(X1-X2);# [kg water evaporated/h]\n",
+ "Y2 = (y2/(1-y2))/100.0;# [kg water/kg dry air]\n",
+ "Tempo = 0.0;# [Base temp,OC]\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "# Enthalpy of air entering the drier:\n",
+ "HG2 = (1005.0+(1884.0*Y2))*(TempG2-Tempo)+(2502300.0*Y2);# [J/kg dry air]\n",
+ "# For the outlet air:\n",
+ "# HG1 = (1005.0+(1884*Y1))*(TempG1-Tempo)+(2502300*Y1); [J/kg dry air]\n",
+ "# HG1 = (1005.0*TempG1)+((1884+TempG1)+2502300)*Y1; [J/kg dry air]\n",
+ "CsNH4 = 1507.0;# [J/kg.K]\n",
+ "CsH2O = 4187.0;# [J/kg.K]\n",
+ "# From Eqn. 11.45:\n",
+ "HS2 = CsNH4*(TempS2-Tempo)+(X2*CsH2O*(TempS2-Tempo));# [J/kg dry air]\n",
+ "HS1 = CsNH4*(TempS1-Tempo)+(X1*CsH2O*(TempS1-Tempo));# [J/kg dry air]\n",
+ "# The estimated combined natural convection and radiation heat transfer coeffecient from the drier to the surrounding:\n",
+ "h = 12.0;# [W/square m.K]\n",
+ "deltaTemp = ((TempG2-TempS1)+(TempG1-TempS1))/2;# [OC]\n",
+ "Ae = math.pi*dia*l;# [square m]\n",
+ "Q = h*3600.0*Ae*deltaTemp;# [kJ/h]\n",
+ "# Moisture Balance, Eqn. 12.39:\n",
+ "# Ss*(X1-X2) = Gs(Y1-Y2)\n",
+ "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",
+ "# Enthalapy Balance, Eqn. 12.40:\n",
+ "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",
+ "# Gs*(HG2-HG1) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-((1005*TempG1)+((1884+TempG1)+2502300)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-(1005*TempG1))-(Gs*Y1*((1884+TempG1)+2502300)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",
+ "# Solving Simultaneously:\n",
+ "a = numpy.array([[HG2-(1005.0*TempG1),-((1884.0+TempG1)+2502300.0)],[(-Y2), 1.0]]);\n",
+ "b = numpy.array([[((Ss*HS2)+Q-(Ss*HS1))],[(Ss*(X1-X2))]]);\n",
+ "c=inv(a)\n",
+ "soln =np.dot(c, b)\n",
+ "Gs = soln[0];# [kg dry air/h]\n",
+ "Y1 = soln[1]/soln[0];# [kg water/kg dry air]\n",
+ "# From Fig. 7.5 (Pg 232)\n",
+ "Enthalpy_air = 56.0;# [kJ/kg dry air]\n",
+ "HeatLoad = Gs*(HG2-Enthalpy_air*1000);# [W]\n",
+ "print\"Air Flow Rate: \",round(Gs,2),\" kg/h\\n\"\n",
+ "print\"Moisture content of air: \",round(Y1,2),\" kg water/kg dry air \\n\"\n",
+ "print\"Heat Load of drier: \",round(HeatLoad/1000),\" kW\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.7 - Page: 700\n",
+ "\n",
+ "\n",
+ "Air Flow Rate: 2681.03 kg/h\n",
+ "\n",
+ "Moisture content of air: 0.02 kg water/kg dry air \n",
+ "\n",
+ "Heat Load of drier: 163995.0 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.8: Page 705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.8\n",
+ "# Page: 705\n",
+ "\n",
+ "print'Illustration 12.8 - Page: 705\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "from numpy.linalg import inv\n",
+ "import numpy as np\n",
+ "#***Data***#\n",
+ "x1 = 8.0;# [percent moisture]\n",
+ "x2 = 0.5;# [percent moisture]\n",
+ "Rate_prod = 0.63;# [kg/s]\n",
+ "# Drying Gas:\n",
+ "xCO2 = 0.025;# [mole fraction]\n",
+ "xO2 = 0.147;# [mole fraction]\n",
+ "xN2 = 0.760;# [mole fraction]\n",
+ "xH2O = 0.068;# [mole fraction]\n",
+ "TempG2 = 480.0;# [OC]\n",
+ "Cs = 0.837;# [kJ/kg.K]\n",
+ "Temp1 = 27.0;# [OC]\n",
+ "Temp2 = 150.0;# [OC]\n",
+ "dp = 200.0*10**(-6);# [m]\n",
+ "Density_S = 1300.0;# [kg/cubic m]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(100-x1);# [kg water/kg dry solid]\n",
+ "X2 = x2/(100-x2);# [kg water/kg dry solid]\n",
+ "Ss = Rate_prod*(1-X2);# [kg dry solid/s]\n",
+ "Water_evap = Ss*(X1-X2);# [kg/s]\n",
+ "# Basis: 1 kmol of dry gas:\n",
+ "xDry = 1.0-xH2O;# [kmol]\n",
+ "XCO2 = 44.0*xCO2;# [kg]\n",
+ "XO2 = 32.0*xO2;# [kg]\n",
+ "XN2 = 28.0*xN2;# [kg]\n",
+ "Xdry = XCO2+XO2+XN2;# [kg]\n",
+ "cCO2 = 45.6;# [kJ/kmol.K]\n",
+ "cO2 = 29.9;# [kJ/kmol.K]\n",
+ "cN2 = 29.9;# [kJ/kmol.K]\n",
+ "cH2O = 4.187;# [kJ/kg.K]\n",
+ "Mav = Xdry/xDry;# [kg/kmol]\n",
+ "Y2 = xH2O*18.02/(xDry*Mav);# [kg water/kg dry gas]\n",
+ "cav = ((xCO2*cCO2)+(xO2*cO2)+(xN2*cN2))/(xDry*Mav);# [kJ/kmol.K]\n",
+ "# Assume:\n",
+ "TempG1 = 120.0;# [OC]\n",
+ "cDry = 1.005;# [kJ/kmol.K]\n",
+ "Tempo = 0;# [Base Temp,OC]\n",
+ "# By Eqn. 7.13:\n",
+ "HG2 = (cav+(1.97*Y2))*(TempG2-Tempo)+(2502.3*Y2);# [kJ/kg dry air]\n",
+ "# For the outlet air:\n",
+ "# HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1); [kJ/kg dry air]\n",
+ "# HG1 = (1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1; [kJ/kg dry air]\n",
+ "# By Eqn. 11.45:\n",
+ "HS1 = (Cs*(Temp1-Tempo))+(cH2O*X1*(Temp1-Tempo));# [kJ/kg dry air]\n",
+ "HS2 = (Cs*(Temp2-Tempo))+(cH2O*X2*(Temp2-Tempo));# [kJ/kg dry air]\n",
+ "# Q = 0.15*HG2*Gs; [kJ/s]\n",
+ "# Moisture Balance, Eqn. 12.39:\n",
+ "# Ss*(X1-X2) = Gs(Y1-Y2)\n",
+ "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",
+ "# Enthalapy Balance, Eqn. 12.40:\n",
+ "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",
+ "# Gs*(HG2-HG1) = (Ss*HS2)+(0.15*HG2*Gs)-(Ss*HS1)\n",
+ "# Gs*(HG2-(0.15*HG2)-((1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-(0.15*HG2)-(1.005*TempG1))-(Gs*Y1*((1.884+TempG1)+2502.3)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",
+ "a = np.array([[(HG2-(0.15*HG2)-(1.005*TempG1)),-((1.884+TempG1)+2502.3)],[(-Y2), 1.0]]);\n",
+ "b = np.array([(Ss*HS2)-(Ss*HS1),(Ss*(X1-X2))]);\n",
+ "c=inv(a)\n",
+ "soln = np.dot(c, b)\n",
+ "Gs = soln[0];# [kg dry air/s]\n",
+ "Y1 = soln[1]/soln[0];# [kg water/kg dry gas]\n",
+ "HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1);# [kJ/kg dry air]\n",
+ "Q = 0.15*HG2*Gs;# [kJ/s]\n",
+ "# Assuming the sychrometric ratio of the gas as same as that of air:\n",
+ "# For Zone II:\n",
+ "Tempw = 65.0;# [OC]\n",
+ "Temp_A = 68.0;# [OC]\n",
+ "# At point A, Fig. 12.28 (Pg 702)\n",
+ "Enthalpy_A = Cs*(Temp_A-Tempo)+(X1*cH2O*(Temp_A-Tempo));# [kJ/kg dry air]\n",
+ "# At point B, Fig. 12.28 (Pg 702)\n",
+ "Temp_B = Temp_A;# [OC]\n",
+ "Enthalpy_B = Cs*(Temp_B-Tempo)+(X2*cH2O*(Temp_B-Tempo));# [kJ/kg dry air]\n",
+ "\n",
+ "# Assuming that the heat losses in the three zones are propotional to the number of transfer units in each zone and to the average temp. difference between the gas and the surrounding air.\n",
+ "# Fractional heat loss in each Zone:\n",
+ "fr1 = 0.14;\n",
+ "fr2 = 0.65;\n",
+ "fr3 = 0.20;\n",
+ "# Calculations for zone III:\n",
+ "Cs3 = cav+(1.97*Y2);# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "def f1(TempGD):\n",
+ " return (Gs*Cs3*(TempG2-TempGD))-(Ss*(HS2-Enthalpy_B)+(fr3*Q))\n",
+ "TempGD = fsolve(f1,7);# [OC]\n",
+ "delta_TempG = Ss*(HS2-Enthalpy_B)/(Gs*Cs3);# [OC]\n",
+ "delta_TempM = ((TempG2-Temp2)+(TempGD-Temp_A))/2;# [OC]\n",
+ "NtoG3 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "# Calculations for zone I:\n",
+ "Cs1 = 1.005+(1.884*Y1);# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "def f2(TempGC):\n",
+ " return (Gs*Cs1*(TempGC-TempG1))-(Ss*(Enthalpy_A-HS1)+(fr1*Q))\n",
+ "TempGC = fsolve(f2,7);# [OC]\n",
+ "delta_TempG = Ss*(Enthalpy_A-HS1)/(Gs*Cs1);# [OC]\n",
+ "delta_TempM = ((TempGC-Temp_A)+(TempG1-Temp1))/2;# [OC]\n",
+ "NtoG1 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "# Calculations for zone II:\n",
+ "Cs2 = (cav+Cs1)/2.0;# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "True_deltaTemp = TempGD-TempGC;# [OC]\n",
+ "delta_Temp = fr2*Q/(Cs1*Gs);# [Change in temp resulting from heat loss,OC]\n",
+ "delta_TempG = True_deltaTemp-delta_Temp;# [OC]\n",
+ "delta_TempM = ((TempGD-Temp_A)-(TempGC-Temp_A))/log((TempGD-Temp_A)/(TempGC-Temp_A));# [OC]\n",
+ "NtoG2 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "NtoG = NtoG1+NtoG2+NtoG3;\n",
+ "\n",
+ "# Standard diameters are availaible at 1, 1.2 & 1.4 m.\n",
+ "Td = 1.2;# [m]\n",
+ "Area = math.pi*Td**2.0/4;# [square m]\n",
+ "Gs = Gs/Area;# [kg/square m.s]\n",
+ "Ss = Ss/Area;# [kg/square m.s]\n",
+ "Gav = Gs*(1+(Y1+Y2)/2.0);# [kg/square m.s]\n",
+ "# From Eqn. 12.47:\n",
+ "Ua = 237.0*Gav**0.417/Td;# [W/square m.K]\n",
+ "HtoG = Gs*Cs2*1000.0/Ua;# [m]\n",
+ "Z = NtoG*HtoG;# [m]\n",
+ "# Assume:\n",
+ "v = 0.35;# [m/s]\n",
+ "N = v/(math.pi*Td);# [1/s]\n",
+ "# From Eqn. 12.37:\n",
+ "K = 0.6085/(Density_S*dp**(1.0/2));\n",
+ "# Take:\n",
+ "phi_D = 0.05;\n",
+ "# From Eqn. 12.35:\n",
+ "phi_DO = phi_D-(K*Gav);\n",
+ "# From Eqn. 12.35:\n",
+ "s = 0.3344*Ss/(phi_DO*Density_S*N**0.9*Td);# [m/s]\n",
+ "print\"Height of the drier: \",round(Z,2),\" m\\n\"\n",
+ "print\"Drier Slope: \",round(s,5),\" m/m \\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.8 - Page: 705\n",
+ "\n",
+ "\n",
+ "Height of the drier: 5.89 m\n",
+ "\n",
+ "Drier Slope: 0.03304 m/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.9: Page 709"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.9\n",
+ "# Page: 709\n",
+ "\n",
+ "print'Illustration 12.9 - Page: 709\\n\\n'\n",
+ "import numpy as np\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "# Solution \n",
+ "\n",
+ "#***Data***#\n",
+ "x1 = 0.46;# [fraction moisture]\n",
+ "x2 = 0.085;# [fraction moisture]\n",
+ "Y1 = 0.08;# [kg water/kg dry solid]\n",
+ "Y2 = 0.03;# [kg water/kg dry solid]\n",
+ "G = 1.36;# [kg/square m.s]\n",
+ "#**********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg water/kg dry solid]\n",
+ "X2 = x2/(1-x2);# [kg water/kg dry solid]\n",
+ "# By water balance:\n",
+ "SsByGs = (Y1-Y2)/(X1-X2);# [kg dry solid/kg air]\n",
+ "# Since the initial moisture content of the rayon is less than the critical, drying takes place entirely within zone III.\n",
+ "# Comparing with Eqn. 12.22:\n",
+ "# (kY*A/(Ss(Xc-X*)))=0.0137*G**1.47\n",
+ "# thetha=integrate('(1/(0.0137*G**1.47))*(1/((X-X_star)*(Yw-Y)))','X',X2,X1) # [s]\n",
+ "X = np.array([X1, 0.80, 0.60, 0.40, 0.20 ,X2]);# [kg water/kg dry solid]\n",
+ "Y = zeros(6);\n",
+ "for i in range(0,6):\n",
+ " # From Eqn. 12.54:\n",
+ " Y[i] = Y2+((X[i]-X2)*SsByGs);# [kg water/kg dry gas]\n",
+ "\n",
+ "# From Fig. 7.5 (Pg 232):\n",
+ "Yw = np.array([0.0950, 0.0920, 0.0790, 0.0680, 0.0550, 0.0490]);# [kg water/kg dry gas]\n",
+ "X_star = zeros(6);\n",
+ "RH=zeros(6)\n",
+ "Val = zeros(6);\n",
+ "P = 51780.0;# [vapour pressure, kN/square m]\n",
+ "for i in range(0,6):\n",
+ " # From Eqn 7.8:\n",
+ " def f(p):\n",
+ " return Y[i]-((p/(101330.0-p))*(18.0/29))\n",
+ " p = fsolve(f,7);# [kN/square m]\n",
+ " RH[i] = (p/P)*100.0;\n",
+ " X_star[i] = (RH[i]/4)/(100.0-(RH[i]/4));# [kg water/kg dry solid]\n",
+ " Val[i] = 1/((X[i]-X_star[i])*(Yw[i]-Y[i]));\n",
+ "\n",
+ "plt.plot(X,Val);\n",
+ "plt.grid();\n",
+ "plt.xlabel(\"X kg water/kg dry solid\");\n",
+ "plt.ylabel(\"1/((X-X*)*(Yw-Y))\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area Under the curve:\n",
+ "Area = 151.6;\n",
+ "# From Eqn. 12.59:\n",
+ "thetha = Area/(0.0137*G**1.47);\n",
+ "print\"Time required for drying: \",round(thetha/3600,2),\" h\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.9 - Page: 709\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cVHXd//HXGxBv8GYhDMW7RRMR71ZNvK+11Eu7zJtS\nU0tF07ryujIzCzQLLTXUvOtXWVkK3YjiTablLcp6D6SyiCAhJireoKiQ5h20n98f3zMyDDvD2dk5\nc767+3k+Hvtgzpkz57z3DDvfOZ/vOd8jM8M555xrT6+8AzjnnIuXNxLOOefK8kbCOedcWd5IOOec\nK8sbCeecc2V5I+Gcc64sbyRctyDpHEl/qPD8U5I+leU2ujJJm0p6W5LyzuLi4o2Ey4SkoyRNlfSO\npIWSpkj6RoabrHjBj5lta2YPZLUNSc2SXkyzEkmNktok5fb3J2m+pM8Ups3sBTNbx/zCKVfCGwlX\nc5K+A1wOXAgMMrNBwP8Ae0rqW+Y1nf2/WI9vwLXeRiaZJfVOsZhltX3XvXgj4WpK0nrAucA3zOxm\nM/s3gJm1mtlXzOzDZLlxkq6UdLukd4BmSf8tabqkJZJekDSmaL2Fb98nS3pJ0stJY1RgQF9J4yX9\nKykv7Vz0+vmSPps87i3pLEnzkmUfk7RR8twVybaXJPP3qnI/tEj6kaSHkm3cJeljydOFI5rFSYln\n1+Q1J0qaLelNSXdK2rRofftL+oekxZJ+Iel+SV9Nnhsp6WFJl0paBIyRtLmk+yQtkvS6pD8m7w1J\nyWxT4LZk+2eUHt1IGizpVklvSHpG0klFWc6RNLHcvnbdizcSrtZ2B1YH/pJi2aOBH5vZ2sDDwDvA\nV8xsPeC/gW9IOqTkNc3AJ4D9gVGFD37Ct+KDgQnAesCtwM+LXmcsLxedDhwFHGhm6wInAO8lz00D\ndgD6A9cCN5Q7+kn5+40EPg70Bc5I5u+d/LteUuKZmvyeZwKHAQOBB5PfBUkDgRuAUcAA4B+E/Vxc\nGhoBPJts64Jkf5wPbAhsDWwCnANgZscCLwAHJdv/aTvZr0uW2RA4HLhA0j5Fz3+e8vvadSPeSLha\nGwgsMrO2wgxJj0h6S9K7Jd/MbzGzRwHM7AMzu9/MZiXTMwkfVJ8uWf+5ZvaemT0FXEP4IC540Mzu\nTOrqfyR82LfnJOD7ZvZMYVtm9mby+E9m9paZtZnZpYQGb6sq9oMB15jZPDN7H5gINBV2STvL/w/w\nEzP7R7LvfgI0JUcTnwOeMrNbklw/A14tef3LZvaL5Pn3zexZM7vXzJaa2SLgMlbel+2StAmwBzDK\nzD40sxnAb4HjihZLu69dF+eNhKu1N4CBxX0MZraHmfVPnivMN2CFjl5Ju0qaLOk1SYuBrwMfY0XF\nr3kBGFw0vbDo8bvAGmX6OjYmfOteSVJ6mZ2Udd4ifFMeWOZ3XZXiD/L3gLUrLLsZcEXSmL5F2FcA\nGxG+zS8oWb50unRfDpJ0naQFkpYAf2DlfVnOYODNQqkw8UKSpSDtvnZdnL+prtYeBT4ADq3itdcC\ntwAbm1kD8CtW/j+6acnjl6rYzouEktUKJO0NfBc4wswakoZtCbXv4G3vDKIXgK+ZWf+in37JkdYr\nhIatkFPF02XWeQHwH2DbpHx3LCvuy0pnMb0MDJBU3KhtysoNk+sBvJFwNWVmiwkd17+U9EVJ60jq\nJakJ6Fe0aHsfvGsDb5nZh5JGAMew8ofZ2ZLWlLQNod5/fRUxfwv8WNInFGwvaUCy/WXAIkl9Jf0Q\nWLeK9ReUa1xeB9qALYrm/Qo4S9JwCCcASDoiee52YDtJh0jqA/wvsMEqtr028G/gX0mn/HdLnl9Y\nsv2PmNmLwCPATyStLml74ERCWcn1MN5IuJozs4sJncPfI5RcXiV8CH6PcKQBK3YkF5wC/EjSv4Af\n0H4DcD8wD5gEXGxmkyqsr9y35UsJfQR3E44UrgLWAO4C7gTmAvMJJaIXStZX6Rt4pe1/9Foze5fQ\nqfxwUl4aYWa3EE4Zvi4pD80E/itZfhFwBHARsIjQEf0Y4YitXK5zgZ2S3+824KaSZX5CaHDfknR6\nO3mPBhoJRxU3Az80s/sqbM+vr+imlOW1M5LOBL5C+NY0k3AWST/CH/9mhD/EI5Nvn4XlTyQcJp9q\nZndnFs51KZIagX8CfYo7xXuipPb/InCMmd2fdx7XvWV2JJH8UZ8M7GRm2wG9CacdjgbuMbOhwL3J\nNMlh9peA4cABhHKFH+k4x0fXSTRIWh04K5k9Jc9MrmfI8kP4X8BSYK2kjroW4dD1YGB8ssx4lndw\nHgJMSE7Zm08oKYzIMJ/renpySWN3wt/E64RrSA41sw8qv8S5zsuskUjOO7+EUNN9GVhsZvcQhmko\nnD63EBiUPB7MimdPLGDFU+5cD2Zm882sd08tNZnZuWY20MzWNbPdzezveWdyPUOW5aYtgNMInV+D\ngbUlfaV4meRCnI50BDrnnKujPhmu+5PAI2b2BoCkmwmHzK9K2sDMXpW0IfBasvxLhKEDCjamnXPg\nJXnD4ZxzVTCzDl/zk2WfxBxgt+ScdgH7ArMJp+MdnyxzPOHiKQjjvxyVnJ8+BNiSMI7OSswsqp8x\nY8bknqGr5PJMnqkn5IoxU7UyO5IwsxmSfk84n7sNeAL4DbAOMDEZwXI+cGSy/GxJEwkNyTLgFOvM\nb1ZH8+fPzztCu2LM5ZnS8UzpxZgrxkzVyrLchJldRLgAqNibhKOK9pa/gDCcgHPOuQj4dQg1MHLk\nyLwjtCvGXJ4pHc+UXoy5YsxUrUyvuM6CpK5ShXLOuWhIwiLruO4xWlpa8o7QrhhzeaZ0PFN6MeaK\nMVO1vJFwzjlXlpebnHOuB/Byk3POuZrzRqIGYq0/xpjLM6XjmdKLMVeMmarljUSV3nsP2nrkUHPO\nuZ7E+ySqtOuucNllsMceeSdxzrlV8z6JOvvc5+CGG/JO4Zxz2fJGokpHHBEaiba2eOuPMebyTOl4\npvRizBVjpmp5I1Gl4cNhvfVgit9A0jnXjXmfRCeccw4sWRL6JpxzLmbV9kl4I9EJs2bBAQfA889D\nLz8mc85FzDuuc7DNNrDOOnDllS15R2lXjHVRz5SOZ0ovxlwxZqqWNxKddOSR0I3+Pzjn3Aq83NRJ\nXnJyznUFXm7KSaHkNHVq3kmcc672vJGogV12aYnywroY66KeKR3PlF6MuWLMVK1MGwlJW0maXvSz\nRNKpkgZIukfSXEl3S2ooes2Zkp6RNEfS/lnmq5XmZrjxRh/LyTnX/dStT0JSL+AlYATwTWCRmV0k\naRTQ38xGSxoOXAvsAmwETAKGmllb0Xqi6pMAMAtlp6uvht12yzuNc86trCv0SewLzDOzF4GDgfHJ\n/PHAocnjQ4AJZrbUzOYD8wiNStSkMEzHxIl5J3HOudqqZyNxFDAheTzIzBYmjxcCg5LHg4EFRa9Z\nQDiiiFpLSwtHHBFfySnGuqhnSsczpRdjrhgzVasujYSkvsDngZW6d5PaUaX6UVy1pTK22Qb69YNp\n0/JO4pxztdOnTts5EHjczF5PphdK2sDMXpW0IfBaMv8lYJOi122czFvByJEjaWxsBKChoYGmpiaa\nm5uB5S14vacLJadLL23hlFPqv/32ppubm3PdfnvThXmx5Cn9xhdLnhinY/z/5O9f+emWlhbGjRsH\n8NHnZTXq0nEt6TrgDjMbn0xfBLxhZhdKGg00lHRcj2B5x/UninuqY+y4Lpg5Ew46CObPD42Gc87F\nItqOa0n9CJ3WNxfNHgvsJ2ku8JlkGjObDUwEZgN3AKdE2yIUKbTe224La60VT8mp9FtWDDxTOp4p\nvRhzxZipWpmXm8zs38DAknlvEhqO9pa/ALgg61xZKD7Laddd807jnHOd52M31ZiXnJxzMYq23NTT\nbLstrLlmPCUn55zrDG8kaqC4/lgoOcUwllOMdVHPlI5nSi/GXDFmqpY3Ehk48sjQSERcFXPOuVS8\nTyIDZrD11jB+vHdgO+fi4H0SEYmp5OScc53hjUQNtFd/LIzllOdBT4x1Uc+UjmdKL8ZcMWaqljcS\nGdluO1h9dfj73/NO4pxz1fM+iQz94Afw/vtw8cV5J3HO9XTV9kl4I5GhJ5+Egw+G557zC+ucc/ny\njusclas/5l1yirEu6pnS8UzpxZgrxkzV8kYiQ36Wk3Ouq/NyU8ZmzIBDDvGSk3MuX15uitT220Pf\nvvDYY3kncc65jvNGogYq1R+l5cN01FuMdVHPlI5nSi/GXDFmqpY3EnVQuMdEF6qSOecc4H0SdWEG\nW20Ff/oT7LJL3mmccz2R90lEzM9ycs51Vd5I1ECa+mOhkajnQVCMdVHPlI5nSi/GXDFmqlbmjYSk\nBkk3Snpa0mxJu0oaIOkeSXMl3S2poWj5MyU9I2mOpP2zzlcvO+wAq60Gjz+edxLnnEsv8z4JSeOB\n+83sakl9gH7A94FFZnaRpFFAfzMbLWk4cC2wC7ARMAkYamZtRevrcn0SBd//PixdChddlHcS51xP\nE2WfhKT1gL3N7GoAM1tmZkuAg4HxyWLjgUOTx4cAE8xsqZnNB+YBI7LMWE95lJycc64zsi43DQFe\nl3SNpCckXSWpHzDIzBYmyywEBiWPBwMLil6/gHBEEbW09ccddoA+fepXcoqxLuqZ0vFM6cWYK8ZM\n1epTh/XvBPyfmf1d0uXA6OIFzMwkVfpuvdJzI0eOpLGxEYCGhgaamppobm4Glr859ZxubW1NtbwE\nI0a0cMklMGFCfnnznG5tbY0qT0fev3pOF8SSJ+Zpf//an25paWHcuHEAH31eViPTPglJGwCPmtmQ\nZHov4Exgc2AfM3tV0obAZDMbJmk0gJmNTZa/ExhjZlOL1tll+yQApk+HL34Rnn3Wx3JyztVPlH0S\nZvYq8KKkocmsfYFZwG3A8cm844Fbkse3AkdJ6itpCLAlMC3LjPXW1AS9e/tZTs65rqEe10l8E/iT\npBnA9sD5wFhgP0lzgc8k05jZbGAiMBu4AzilKxw2lB5iVlLPC+s6kqtePFM6nim9GHPFmKlaWfdJ\nYGYzCKe0ltq3zPIXABdkGipnRxwRSk5jx3rJyTkXNx+7KQdmsOWWcP31sPPOeadxzvUEUfZJuPb5\nWE7Oua7CG4kaqKb+WLjHRJYHRTHWRT1TOp4pvRhzxZipWt5I5KSpKRxRPPFE3kmcc64875PI0Zln\nhiOJsWPzTuKc6+68T6IL8rGcnHOx80aiBqqtP+64Y/h3+vTaZSkWY13UM6XjmdKLMVeMmarljUSO\n/Cwn51zsvE8iZ088ERqKefP8wjrnXHa8T6KLyrrk5JxzneGNRA10pv6YZckpxrqoZ0rHM6UXY64Y\nM1XLG4kI+FlOzrlYeZ9EBMxgiy3gppuWl5+cc66WMu2TkNRP0jBJWyW3H3U1JIVhOiZOzDuJc86t\nqGwjIWkdSadLmgbMBK4BxgNPSXpM0rclrV2voDGrRf0xi5JTjHVRz5SOZ0ovxlwxZqpWpSOJW4C3\ngc+b2eZmtruZ7ZbcivQg4N/AX+oRsifYaSdoa4PkFtDOORcF75OIyKhR4damF3TrWy455/JQbZ9E\nqkZC0tZAI9AGPG9mczqcsEa6cyPx2GNw9NEwd65fWOecq62ad1xLGiLpZ5LmAb8CjgNOAH4t6VlJ\nV0hqrDZwd1Kr+uPOO8OyZTBjRk1WF2Vd1DOl45nSizFXjJmqValP4kLgNmBrM/u0mR1tZkeZ2aeB\nYcDfgItWtQFJ8yU9KWl60gmOpAGS7pE0V9LdkhqKlj9T0jOS5kjav3O/XtfiZzk552JTttwkaT0z\nW9LpDUjPATub2ZtF8y4CFpnZRZJGAf3NbLSk4cC1wC7ARsAkYKiZtRW9ttuWm8BLTs65bGRxncQT\nko7uRKZipcEOJpxOS/LvocnjQ4AJZrbUzOYD84ARNcrQJdS65OScc51RqZH4DPClpCy0ZSe2YcCk\n5NqKk5N5g8xsYfJ4ITAoeTwYWFD02gWEI4qo1bL+WMuxnGKsi3qmdDxTejHmijFTtfqUe8LMngcO\nlfQ54GFJfyec3ZQ8bQen3MaeZvaKpPWBeyStcGaUmZmkSvWjlZ4bOXIkjY2NADQ0NNDU1ERzczOw\n/M2p53Rra2tN17f55nDppc2cdx7cf3/9f58sp1uTC0FiyZPF+1eL6YJY8sQ87e9f+9MtLS2MGzcO\n4KPPy2pUPAVW0jDgF8Bbyb+Fhc3M7u/wxqQxwDvAyUCzmb0qaUNgspkNkzQ6WfnYZPk7gTFmNrVo\nHd26TwLCVdebbw5//jM0NeWdxjnXHWRxCuxYwlXXPzWzw81sspm1JD+pGghJa0laJ3ncD9ifMMTH\nrcDxyWLHJ9shmX+UpL6ShgBbAtM6+kt1dX7HOudcLCr1SSwDmszsjsIMSX/t4PoHAQ9KagWmAn81\ns7uBscB+kuYS+j7GApjZbGAiMBu4AzilKxw2lB5i1kItxnLKIldneaZ0PFN6MeaKMVO1KvVJnN3O\n7A51IpvZc8BKBZPkdNh9y7zmAqDHD0zxyU/C0qXw5JOwww55p3HO9VQdGrtJ0jVmdkKGedJk6AoH\nFzXx3e/C6qvDeeflncQ519Vldj8JSftKWhMg7waipznySL9jnXMuX2luOnQcMEPSVEkXS/q8pP5Z\nB+tKsqo/fvKT8OGHoeRUjRjrop4pHc+UXoy5YsxUrVU2EmZ2nJkNBQ4DXiScCvt61sFcOMvp8MP9\nLCfnXH5W2Sch6VhgL2B7QuPwEPCQmT2Sfbx28/SYPgmAadPg2GNhzhwfy8k5V73M7ich6Q3gWeBK\noCU5Yyk3Pa2RMIMhQ+DWW2H77fNO45zrqjLruAYGAicCawDnS5om6Y8d3VB3lmX9sTMlpxjrop4p\nHc+UXoy5YsxUrTSNxDrApsBmhLvTNbB8DCdXB4V7TPSgAyjnXCTSlJueBB4GHgQeMLMFFV+QsZ5W\nbgIvOTnnOq/aclPZK64lfcnMrjcz/1jKWXHJyRsJ51w9VSo3HSfpTklb1C1NF1WP+mM1YznFWBf1\nTOl4pvRizBVjpmqVbSTM7L+BXwF/lfRDSQOTe1MPkDSgfhEdwIgR8N578NRTeSdxzvUkafokmoAH\nCPeUKL7p0OYZZyuXp8f1SRSccQasuSb8+Md5J3HOdTVZ3E9iDUk/Bq4DjjGzzcxsSPKTSwPR09Vi\n+HDnnOuISn0SMwgd2zuaWUfvI9Gj1Kv+2NGSU4x1Uc+UjmdKL8ZcMWaqVtmzm4DDkpsAuUgUn+W0\n3XZ5p3HO9QRl+yQkXQ1caWZ/L/P8rsD/1Hv48J7cJwEwZQqccALMnu1jOTnn0qv52E2StgO+C+wG\n/AN4BRCwAbAV8Ajh/td1Pd+mpzcSZrDZZnD77bDttnmncc51FTXvuDazmWZ2HLAdcD5wL3APcB6w\nvZmNrHcDEat61h+l0IE9ceKql42xLuqZ0vFM6cWYK8ZM1ao4dpOk7c3sA+Dd5OrriWY21czeT7sB\nSb0lTZd0WzI9QNI9kuZKultSQ9GyZ0p6RtIcSftX/Vt1c36Wk3OuXipeJyHpCuDnwP+Z2beq2oB0\nOrAzsI6ZHSzpImCRmV0kaRTQ38xGSxoOXAvsAmwETAKGmllbyfp6dLkJvOTknOu4LK6TGJM8PzVM\nakwVoTYGPgf8ltCfAXAwMD55PB44NHl8CDDBzJaa2XxgHjCio9vsCfyOdc65eqnUJ3EuoQ/iemBS\nMt1RlxE6v4uPBgaZ2cLk8UJgUPJ4MFA8wuwCwhFF9PKoP6YpOcVYF/VM6Xim9GLMFWOmalW6TgJg\nVzP7RnLl9a0dWbGkg4DXzGy6pOb2ljEzk1SpdtTucyNHjqSxsRGAhoYGmpqaaG4Omyi8OfWcbm1t\nrfv2P/WpZt55B8aNa2HIkPr+vp2Zbm1tjSpPXu/fqqYLYskT87S/f+1Pt7S0MG7cOICPPi+rscqx\nm6pesXQBcCywjHBXu3WBmwl9Ds1m9qqkDYHJZjZM0mgAMxubvP5OYIyZTS1Zb4/vkyg4/XRYZx04\nt5pjPOdcj5LJ7Usl7STpYklTJS2U9Gry+GJJO1Z6rZmdZWabmNkQ4CjgPjM7lnBEcnyy2PHALcnj\nW4GjJPWVNATYEpjW0V+oJymUnJxzLiuVOq5vB74DPAYcTbh96ZDk8ePAGZL+1oFtFb7+jwX2kzQX\n+EwyTTIEyERgNnAHcEpXOWQoPcSsl113hbffhlmz2n8+r1yVeKZ0PFN6MeaKMVO1KvVJnFDUwVzs\nn8nPdZI+nmYjZnY/cH/y+E1g3zLLXQBckGadDnr1Wn6W0zbb5J3GOdcdreo6iX3NbFLh3zrmKsv7\nJFb0yCNw0klhLCfnnCsnkz4JoFnSnkBzValc5nbbrXLJyTnnOmNVF9P1JYzZ1Leai+l6ijzrj8Ul\np1Ix1kU9UzqeKb0Yc8WYqVqruphuDnAOMKfKi+lcHfhZTs65rKyqT+I0M7tc0qlm9rM65irL+yRW\n1tYGm24Kd98Nw4fnncY5F6Msxm7a1MwuByhtICTt3fGILiuVSk7OOdcZlTquWySNktS7MEPSBpL+\nCFyefbSuI4b645FHrnyPiRhylfJM6Xim9GLMFWOmalVqJHYGNgdaJX1W0mmEEWGnEIbWcBHZbTdY\nssRPhXXO1dYqx25KGodLgZeB3c3sxXoEq5DH+yTKOO006N8fxvh5aM65Eln0SfSX9GvgBOBA4Ebg\nDkmfrT6my5Kf5eScq7VK5abHCTf+2dnM7jKz04CvAOdJmlCXdF1ELPXH3XeHxYuXl5xiyVXMM6Xj\nmdKLMVeMmapVqZH4tJldbGbLCjPMrBXYA5iceTLXYb16wRe/6EcTzrna6dD9JCQ9YWY7ZZgnTQbv\nk6jg4Yfh61+Hp57KO4lzLiZZjd200nY6ugFXX4WS09NP553EOdcddLSRuD2TFF1cTPXH4pJTTLkK\nPFM6nim9GHPFmKlalc5u+rmkdYvnmdn3JW0t6d7so7lqHXFEuLCurS3vJM65rq5sn4Sk7wNfBX5g\nZn+S1A8YA3wB+K6Z/bl+MVfI5X0Sq9DWBsl90fnNb2DYsFzjOOciUPM+CTM7n3AHuWMkPQDMAP4D\nbJ9XA+HS6dULJk8ORxR77QXnngsffJB3KudcV7SqPgkjdFavBvQGZpvZu5mn6mJirD/27g3bbdfC\n9Onw+OOw447w0EN5p4pzX3mmdGLMBHHmijFTtSr1SfwAmAT83sx2B/YGDpV0v6RV3lFZ0hqSpkpq\nlTRb0k+S+QMk3SNprqS7JTUUveZMSc9ImiNp/87/em6TTeAvf4Ef/Qi+9CX4xjfCGE/OOZdGpT6J\nK4CzzeztkvkHApeZ2Sor3ZLWMrN3JfUBHgLOAA4GFpnZRZJGAf3NbLSk4cC1hMEDNyI0UEPNrK1k\nnd4nUaXFi2HUKPjb3+BnP4PDDgP5Sc3O9QjV9kl06GK6oo2tYWbvd2D5tYD7gZHATYSruRdK2gBo\nMbNhks4E2szswuQ1dwLnmNmUknV5I9FJDz4IX/sabLUV/PznsPHGeSdyzmUtiwH+zpE0qL3nzOx9\nSRtKqnhLU0m9JLUCC4HJZjYLGGRmC5NFFgKFbQwGFhS9fAHhiCJ6sdYfy+Xae29obYWmptBX8Ytf\nwH/+k2+mPHmmdGLMBHHmijFTtfpUeO4x4DpJfYEngFcIndgbADsBHwA/rbTypFTUJGk94C5J+5Q8\nb5IqHRa0+9zIkSNpbGwEoKGhgaamJpqTcz4Lb049p1tbW3PdfrXT55wDjY0tXHIJ/PGPzVx1FSxa\nlO32W1tbo/n9C9Mxvn8FseSJedrfv/anW1paGDduHMBHn5fVSHM/iU2APYFNk1nPAw+b2YLyr2p3\nPT8A3gNOAprN7FVJGxKOMIZJGg1gZmOT5e8ExpjZ1JL1eLmpxtra4Kqr4Oyzw7hPZ58Na6yRdyrn\nXC3VtU8i1YqlgcAyM1ssaU3gLuBc4L+AN8zswqRhaCjpuB7B8o7rT5S2CN5IZOfll+HUU+HJJ8NF\neIUL8pxzXV8WfRJXSyp7m1JJu0q6psK6NwTuS/okpgK3mdm9wFhgP0lzgc8k05jZbGAiMBu4Azil\nq7QGpYeYsehorsGD4cYb4eKL4dhj4aST4M03881UD54pnRgzQZy5YsxUrUp9EpcB35W0G/APVuyT\n2Ap4hAp9EmY2k9B3UTr/TcKV3O295gLggrThXTYOOQT22Qe+/33YZhu47LJwjYWfLutcz5OmT2J1\nYEdgM0JH8vPAjI6cAltLXm6qr0cfhZNPhs02g1/+MvzrnOt6sig3/UbSYUBfM5tiZteb2UQzm5pX\nA+Hqb/fd4YknYI89YOedw1HFsmWrfp1zrnuoNHbT1UATcLuk+ySNkrRDnXJ1KbHWH2uVq2/fUHp6\n5BG49VbYbbdwnUWemWrJM6UTYyaIM1eMmapVaRTYKWY2xsz2Bo4EXgS+k4zFdLWkI+uW0kVh6FC4\n7z445RTYf/8wxMe7Ptyjc91ah0+BlSTgu8BqyXDideV9EnFYuBBOOw2mToVf/xr22y/vRM65Suo9\ndtOLZrZJh19YA95IxOX228ORxac+BZdcAuuvn3ci51x7sui4nlnuh+XjLTnirT/WI9fnPgdPPQUD\nB8K228Lvfw+V2vAY95VnSifGTBBnrhgzVavSdRIfBw4A3mrnuUeyieO6orXXhksvhWOOCafL/uEP\n8KtfwRZb5J3MOddZle4ncTVwjZk92M5zE8zs6KzDtcfLTXFbuhQuvxwuvBC+9z349rdhtdXyTuWc\ni27spqx4I9E1PPtsuAvea6+FwQN3KTvAi3OuHmreJ+HSi7X+mGeuLbaAu+6C73wHDjooHFG8806c\n+8ozpRNjJogzV4yZquWNhMuMFAYKnDUrDBS47bYwZcqqX+eci4eXm1zdTJoU7lexyy5wxRUwyM+R\nc65uvNzkorfvvjBzJjQ2wnbbwe9+V/l0Wedc/ryRqIFY648x5po2rYWxY+Huu8NpsvvsA3Pn5psp\nxv3kmdKLMVeMmarljYTLRVNT6J849NAwwux558GHH+adyjlXyvskXO6efz4M7fH88+F02d13zzuR\nc92PXyd5yFWSAAAS80lEQVThujQzmDgxDBr4hS/AT34C666bdyrnug/vuM5RrPXHGHOVyySFW6TO\nmhXKTttsA7fckm+mPHmm9GLMFWOmamXaSEjaRNJkSbMkPSXp1GT+AEn3SJor6W5JDUWvOVPSM5Lm\nSNo/y3wuPgMGhJLTH/4Q7lfxhS/Ayy/nncq5nivTcpOkDYANzKxV0trA48ChwAnAIjO7SNIooL+Z\njZY0HLgW2AXYCJgEDDWztqJ1ermph3j/fTj//HAW1I9+FK6x6OXHvs5VJcpyk5m9amatyeN3gKcJ\nH/4HA+OTxcYTGg6AQ4AJZrbUzOYD84ARWWZ08VpjDfjxj2Hy5HBksffeMHt23qmc61nq9r1MUiOw\nIzAVGGRmC5OnFrL8/hSDgQVFL1tAaFSiFmv9McZc1WTadlt46CH48pfh05+GMWPCUUaembLmmdKL\nMVeMmapV6X4SNZOUmm4CvmVmb4c7oAZmZpIq1Y9Wem7kyJE0NjYC0NDQQFNTE83NzcDyN6ee062t\nrbluvytNt7a2Vv36U06B9ddv4Yor4Prrm/nNb6CtrfP5Ynz/CmLJE/O0v3/tT7e0tDBu3DiAjz4v\nq5H5KbCSVgP+CtxhZpcn8+YAzWb2qqQNgclmNkzSaAAzG5ssdycwxsymFq3P+yQcf/4zfPOb4c54\nF14I/fvnnci5uEXZJ6FwyPA7YHahgUjcChyfPD4euKVo/lGS+koaAmwJTMsyo+uaDjssnC7bp084\nXfaGG3wcKOeykHWfxJ7AV4B9JE1Pfg4AxgL7SZoLfCaZxsxmAxOB2cAdwCld4bCh9BAzFjHmqmWm\n9daDX/4yNBBjxsDBB8OLL+abqVY8U3ox5ooxU7Uy7ZMws4co3xDtW+Y1FwAXZBbKdTt77gnTp4ey\n0447wg9/CP/7v9C7d97JnOv6fFgO163MmQNf+xp88EG4KG/77fNO5FwcouyTcK7ehg2DlhY46ST4\n7GfhzDPhvffyTuVc1+WNRA3EWn+MMVc9MvXqBSefDE8+Cf/8Z7jB0b335pupozxTejHmijFTtbyR\ncN3WhhvC9dfDZZfBCSfAyJHwxht5p3Kua/E+CdcjvP02nH12aDQuuQSOOSaMPOtcT+H3k3AuhWnT\nQilqww3hyithyJC8EzlXH95xnaNY648x5so704gR8Nhj0NwMu+wCP/0p3HNPvpnak/d+ak+MmSDO\nXDFmqlZdxm5yLiarrQajR8Phh4frKc46CzbbDIYOhS23DP8Wfjbe2Icndz2bl5tcj/fhh+EsqGee\ngblzV/x56y34xCdWbjyGDoWBA71fw3Ud3ifhXAbeeQfmzVu58Zg7N4wV1V7jseWWsM46eSd3bkXe\nSOSopaXlo6F6YxJjru6U6Y032m885s2Ddddtv/HYYgtYffXsMmUpxkwQZ64YM1XbSHifhHNV+tjH\nYPfdw0+xtrZwX+7ihuP++0M56/nnYfDglRuPoUNh0019vCkXHz+ScK6Oli6F+fOXNx7F/SCvvw6b\nb75y4zF0KAwa5P0frnO83ORcF/fuuyv2fxQ3IB980H7jseWW0NCQd3LXFfh1EjmK9ZzoGHN5pvLW\nWiuMWnv44bDHHi1ccw08/HA4wpg/H37xCzjwwNBhfttt8PWvh1N0Bw2CvfaCE0+EsWPh5pvhqadq\nP7BhLPupVIy5YsxULe+TcK4LGDAAdt01/BQzg1deWfGoY/z48O9zz4UGpLQDfejQcF1IH//rdyl4\nucm5bmrZMnjhhfbPwHr1VWhsbP8MrMGDvf+jO/I+Cedcau+/D88+u3Lj8cwz4dqQ0n6PoUPDRYUf\n+5g3IF1VlI2EpKuB/wZeM7PtknkDgOuBzYD5wJFmtjh57kzgROA/wKlmdnc764yukYjxnGiIM5dn\nSifPTEuWrHz1+TPPwNNPt/Cf/zSz0UahL2TjjWn38aBB9T2V19+/dGK9TuIa4P8Bvy+aNxq4x8wu\nkjQqmR4taTjwJWA4sBEwSdJQM2vLOKNzrsh668EnPxl+irW0hEERX3oJFiwIPy+9FG4ZO2nS8vlv\nvhkainKNyMYbh5JWmosKXf4yLzdJagRuKzqSmAN82swWStoAaDGzYclRRJuZXZgsdydwjplNKVlf\ndEcSzrnlPvwwdKYXGpHiBqXw+JVXwqm75RqSwr8+vEntxHok0Z5BZrYwebwQGJQ8HgwUNwgLCEcU\nzrkupG/fcPbUZpuVX6atDV57beXG4777VmxU+vQpfzRSeOz9JNnK9SQ4MzNJlQ4LusQhQ4z1R4gz\nl2dKp7tn6tULNtgg/JSWtQrMYPHiFRuSl14K9wO55Zbl8955p4VNNmmuWN4aNKi+p/zG+P5VK49G\nYqGkDczsVUkbAq8l818CNilabuNk3kpGjhxJY2MjAA0NDTQ1NX30hhQuYqnndGtra67b70rTra2t\nUeWJ9f0riCVPHtMSzJgRpg84oPzy06a1cthhzSxYEG4gtWgRvPtuM/fdFzrbX38d3n67mUGDYN11\nWxg4EHbcMTQqS5a0sP768PnPNzN4MEyZUpv8BXnuv5aWFsaNGwfw0edlNfLok7gIeMPMLpQ0Gmgw\ns0LH9bXACJKOa+ATpR0Q3ifhnOuopUuX95OU6yt55ZUweu+qylvrrpv3b1OdWE+BnQB8GhhI6H/4\nIfAXYCKwKSufAnsW4RTYZcC3zOyudtbpjYRzruba2sIQKJU63BcsCKf3lnawl3a69+8f7oAYkygb\niSzE2Ei0RFp/jDGXZ0rHM6VXz1xm4TqSSg3JSy/B4sUt9OnTTL9+sPbaK/6kmVc8vdFG8PGPdz57\nVzq7yTnnuiQpnLrb0ADbblt+ucmTw31G3nkH/v3v8G/hp73pt96CF19sf5njjoPTT6/f71jKjySc\nc64H8KHCnXPO1Zw3EjVQetpbLGLM5ZnS8UzpxZgrxkzV8kbCOedcWd4n4ZxzPYD3STjnnKs5byRq\nINb6Y4y5PFM6nim9GHPFmKla3kg455wry/sknHOuB/A+CeecczXnjUQNxFp/jDGXZ0rHM6UXY64Y\nM1XLGwnnnHNleZ+Ec871AN4n4Zxzrua8kaiBWOuPMebyTOl4pvRizBVjpmp5I+Gcc64s75Nwzrke\nwPsknHPO1Vx0jYSkAyTNkfSMpFF550kj1vpjjLk8UzqeKb0Yc8WYqVpRNRKSegM/Bw4AhgNHS9o6\n31Sr1tramneEdsWYyzOl45nSizFXjJmqFVUjAYwA5pnZfDNbClwHHJJzplVavHhx3hHaFWMuz5SO\nZ0ovxlwxZqpWbI3ERsCLRdMLknnOOedyEFsj0SVPW5o/f37eEdoVYy7PlI5nSi/GXDFmqlZUp8BK\n2g04x8wOSKbPBNrM7MKiZeIJ7JxzXUg1p8DG1kj0Af4BfBZ4GZgGHG1mT+cazDnneqg+eQcoZmbL\nJP0fcBfQG/idNxDOOZefqI4knHPOxSW2juuPpLmoTtLPkudnSNox70yShkl6VNL7kr6TdZ6Umb6c\n7J8nJT0safsIMh2SZJou6XFJn8k6U5pcRcvtImmZpC/knUlSs6Qlyb6aLunsvDMV5Zou6SlJLXln\nknRG0T6ambx/DTlnGijpTkmtyX4amWWeDuTqL+nPyd/gVEnbVFyhmUX3Qyg1zQMagdWAVmDrkmU+\nB9yePN4VmBJBpvWBTwLnAd+JZD/tDqyXPD4gkv3Ur+jxdoRrY3LfV0XL3Qf8Ffhi3pmAZuDWrPdP\nBzM1ALOAjZPpgXlnKln+IGBS3pmAc4CfFPYR8AbQJ4JcFwM/SB5vtap9FeuRRJqL6g4GxgOY2VSg\nQdKgPDOZ2etm9hiwNMMcHc30qJktSSanAhtHkOnfRZNrA4syzpQqV+KbwI3A6xFl6vAZKRlnOga4\nycwWAJhZ1u9fRy+yPQaYEEGmV4B1k8frAm+Y2bIIcm0NTAYws38AjZLWL7fCWBuJNBfVtbdMlh+A\nMV7o19FMXwVuzzRRykySDpX0NHAHcGrGmVLlkrQR4Q/qymRW1h12afaVAXskpYHbJQ2PINOWwABJ\nkyU9JunYCDIBIGkt4L+AmyLIdBWwjaSXgRnAtzLOlDbXDOALAJJGAJtR4bMzqrObiqT94yz9hpXl\nH3WMPfypM0naBzgR2DO7OEDKTGZ2C3CLpL2BPxAOe7OUJtflwGgzM0ki+2/waTI9AWxiZu9KOhC4\nBRiac6bVgJ0Ip6qvBTwqaYqZPZNjpoLPAw+ZWdbjYqTJdBbQambNkrYA7pG0g5m9nXOuscAVkqYD\nM4HpwH/KLRxrI/ESsEnR9CaEFrHSMhsn8/LMVG+pMiWd1VcBB5jZWzFkKjCzByX1kfQxM3sj51w7\nA9eF9oGBwIGSlprZrXllKv5AMbM7JP1S0gAzezOvTIRvqovM7D3gPUkPADsAWTUSHfk/dRTZl5og\nXaY9gPMBzOxZSc8Rvgw9lmeu5P/UiYXpJNc/y64xy06UTnS+9AGeJXS+9GXVHde7kX2H7CozFS17\nDvXpuE6znzYldGTtFtF7twXLT7/eCXg2hlwly18DfCHvTMCgon01ApgfQaZhwCRCJ+lahG+jw/N+\n74D1CJ3Da8bw/wm4FBhT9D4uAAZEkGs9oG/y+GRgXMV1Zr0zO/HLHki4+noecGYy7+vA14uW+Xny\n/Axgp7wzARsQvmUtAd4CXgDWzjnTb5M/nOnJz7QI9tP3gKeSPA8Cu8Tyf6po2cwbiZT76n+TfdUK\nPEIdGvuUf3tnEM5wmgmcGkmm44Fr6/F/KeV7NxC4Lfl8mgkcE0mu3ZPn5xBO0liv0vr8YjrnnHNl\nxXp2k3POuQh4I+Gcc64sbyScc86V5Y2Ec865sryRcM45V5Y3Es4558ryRsLVhaRNJP1TUv9kun8y\nvWnJco2SZuaQ7xBJW1f52tWSIc83q1X2ZCju22qxrpTbeyf5d7CkG8os0yJp53plcnHwRsLVhZm9\nSBg4b2wyayzwazN7Ib9UKzgM6NDgeZJ6Jw/3Ah6qeaL2t5nVUDoGYGYvm9kRFZbxC6t6GG8kXD1d\nBuwm6TTCuDY/rbSwpM0lPSFpZ0lrSZooaZakmyVNKf1Wm9ws6Kbk8SGS3k3GhVpD0rPJ/JMlTUtu\nBHOjpDUl7UEYGO7i5KY1QyRtIemOZJTTByRtlbx+nKRfSZoCXJhs+gDCaLaqNnvymgMkPS3pcUKj\nVZh/jqQ/SHoI+L2k+yXtUPT8Q5K2K1nXNskNZaYnI8hukcw/XeGmPDMlrTQqafGRXLJvrpM0W9LN\nwJpkP+ihi0ysA/y5bsjCPcy/R/hA3c/Myo48mXwoTwCON7OZks4gjMe/jcKdtFpZ+VvtdKApebw3\nYSiEEYRRS6ck828ys6uSbfwY+KqZ/VzSrcBtZnZz8ty9hGEM5knaFfglYdRTgMHA7rZ8uIJmYAxh\nWJaqsktaA/gNsI+FweCuL1lmGLCXmX0g6ThgJPBtSUOB1c2stMz1deAKM7s2OfrokzRMI5N90guY\nKqnFzGa09x4A3wDeMbPhSSP0RGlu1/35kYSrtwOBlwl3pCvn44QhsY8p+vDbk3ADFcxsFvBk6Yss\n3NDlWUnDgF0IA6x9ilAOejBZbDtJD0p6EvgyK5aYBCBpbcL4Njckwyn/iqQBIHxI3lBoIBTuQfGm\nmb3fmeyERuA5M3s2mf4jy7+1G+HudB8k0zcCByUf/icSxpkq9ShwVtIoNyb59gJuNrP3LNz46eZk\n/5Szd5KD5HdpL7fr5ryRcHUjqQnYl/AB/G1JG5RZdDHwPOFDaoVVpNjMA4QRgpcC9ybrKG4kxgGn\nmNn2wLmEEkpB4VtyL2Cxme1Y9FN8H+B3ix4fANxZg+yl39BLl/9om2b2LnAPcChwBPCnlVZmNoFQ\nQnsPuF3hfiJWsl61s91SXl7q4byRcHUhSYSO628lndgXU75P4kPCnbOOk3R0Mu9h4MhkXcMpfyTy\nIHAa8IiF22p+DNgq+QYP4Xapr0paDfgKyz8k3ya51aSZ/Qt4TtLhhewK9+Roz38RymedzV64jeTm\nyfTRRc+190H9W+BnhFF9l5Q+KWmImT1nZv8P+EuyzQeBQ5O+hn6ERubB0tcWeYBwK1AkbQuU2weu\nG/M+CVcvJxPuhXBvMv1L4ARJe5tZ6QeVWbgT20GEu3m9nSw/XtIswhDHswhDspeaRij5PJBMzyCM\n5V/wA8K9vl9P/l07mX8dcJWkbwKHE0pRV0o6m9CnMYHl5ZZCqak38Akzm9vZ7Gb2vqSvAX+T9C7h\nw7tf0fasZPknJC2h/VITwJEKtxVdSrjX8vlmtljSuGQfAVxV1B9RvP7C4yuBayTNBp4m25vluEj5\nUOGuS5DUC1gt6bjdglBuGWrZ31i+UqY9gS+b2SmrWK7m2SUNBiabWda3fXU9nB9JuK6iH3BfUiYS\n8I08GwgAM3uYUEpalZpmT85uOg/4drXrcC4tP5JwzjlXlndcO+ecK8sbCeecc2V5I+Gcc64sbySc\nc86V5Y2Ec865sryRcM45V9b/B77dKwo9Y8ZFAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7885c50>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time required for drying: 1.96 h\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter12_2.ipynb b/Mass_-_Transfer_Operations/Chapter12_2.ipynb
new file mode 100755
index 00000000..9416a787
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter12_2.ipynb
@@ -0,0 +1,932 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7b3124ef7f3febbf9fbbcfec34e4b1fa9fd03169d0e2aea25265368468350ca6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12: Drying"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.1: Page 660"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.1\n",
+ "# Page: 660\n",
+ "\n",
+ "print'Illustration 12.1 - Page: 660\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#****Data****#\n",
+ "F=1000;# [kg]\n",
+ "Xo=0.8;# [wt. fraction water]\n",
+ "X1=0.05;# [wt. fraction water]\n",
+ "#************#\n",
+ "\n",
+ "Yo=Xo/(1-Xo);# [kg water/kg dry solid]\n",
+ "Y1=X1/(1-X1);# [kg water/kg dry solid]\n",
+ "solid=F*(1-X1);# [kg]\n",
+ "print\"Moisture to be evaporated: \",solid*(Yo-Y1),\" kg\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.1 - Page: 660\n",
+ "\n",
+ "\n",
+ "Moisture to be evaporated: 3750.0 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.2: Page 665"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.2\n",
+ "# Page: 665\n",
+ "\n",
+ "print'Illustration 12.2 - Page: 665\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# ***Data***#\n",
+ "Y1 = 0.05;# [kg water/kg dry air]\n",
+ "Yair = 0.01;# [kg water/kg dry air]\n",
+ "TempG1 = 95;# [OC]\n",
+ "width = 1;# [m]\n",
+ "apart = 100.0/1000;# [m]\n",
+ "deep = 38.0/1000;# [m]\n",
+ "Rate_evaporation=7.5*10**(-3);# [kg/s]\n",
+ "#*****************#\n",
+ "\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "vH = (0.00283+(0.00456*Y1))*(TempG1+273);# [cubic m/kg dry air]\n",
+ "freeArea = width*(apart-deep)*11;# [square m]\n",
+ "# Rate of air flow at 1:\n",
+ "Rate_air1 = 3*freeArea/vH;# [square m]\n",
+ "Y2 = Y1+(Rate_evaporation/Rate_air1);# [kg water/kg dry air]\n",
+ "# Assuming adiabatic drying:\n",
+ "# From adiabatic saturation curve, Fig 7.5: (Pg 232)\n",
+ "TempG2 = 86.0;# [OC]\n",
+ "# Overall Water Balance:\n",
+ "G = Rate_evaporation/(Y1-Yair);# [kg dry air/s]\n",
+ "# Rate of air flow at 3:\n",
+ "Rate_air3 = Rate_air1+G;# [kg dry air/s]\n",
+ "# Rate of air flow at 4:\n",
+ "Rate_air4 = Rate_air3;# [kg dry air/s]\n",
+ "# Volumetric Rate through fan:\n",
+ "Rate_fan = Rate_air3/vH;# [cubic m/s]\n",
+ "print\"Percentage of air recycled is:\",round((Rate_air1/Rate_air3)*100,2),\"%\\n\",\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# From Fig. 7.5 (page 232):\n",
+ "# Saturated enthalpy at adiabatic saturation temp.\n",
+ "Enthalpy1 = 233.0;# [kJ/kg dry air]\n",
+ "Enthalpy2 = 233.0;# [kJ/kg dry air]\n",
+ "# Enthalpy of fresh air:\n",
+ "Enthalpy_air = 50.0;# [kJ/kg dry air]\n",
+ "# Assuming complete mixing, by Enthalpy mixing:\n",
+ "Enthalpy3 = ((Enthalpy1*Rate_air1)+(Enthalpy_air*G))/Rate_air3;# [kJ/kg dry air]\n",
+ "Enthalpy4 = Enthalpy3;# [kJ/kg dry air]\n",
+ "# From table 7.1: (Pg 234)\n",
+ "Temp_dry = ((Enthalpy3*1000.0)-(2502300.0*Y1))/(1005.0+(1884.0*Y1));\n",
+ "Power = (Enthalpy2-Enthalpy3)*Rate_air3;# [kW]\n",
+ "# From Fig. 7.5, (Pg 232)\n",
+ "DewPoint1 = 40.4;# [OC]\n",
+ "DewPoint2 = 41.8;# [OC]\n",
+ "DewPoint3 = 40.4;# [OC]\n",
+ "DewPoint4 = 40.4;# [OC]\n",
+ "print\"At Point 1\\n\"\n",
+ "print\"Enthalpy of air:\",Enthalpy1,\" kJ/kg dry air\\n\",\n",
+ "print\"Dew Point of air: \",DewPoint1,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 2\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy2,\" kJ/kg dry air\\n\"\n",
+ "print\"Dew Point of air: \",DewPoint2,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 3\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy3,\" kJ/kg dry air\\n\",\n",
+ "print\"Dew Point of air: \",DewPoint3,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 4\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy4,\" kJ/kg dry air\\n\"\n",
+ "print\"Dew Point of air: \",DewPoint4,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"Dry bulb temparature of air: \",Temp_dry,\" OC\\n\"\n",
+ "print\"Power delivered by heater: \",Power,\" kW\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.2 - Page: 665\n",
+ "\n",
+ "\n",
+ "Percentage of air recycled is: 90.65 %\n",
+ "\n",
+ "\n",
+ "At Point 1\n",
+ "\n",
+ "Enthalpy of air: 233.0 kJ/kg dry air\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 2\n",
+ "\n",
+ "Enthalpy of air: 233.0 kJ/kg dry air\n",
+ "\n",
+ "Dew Point of air: 41.8 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 3\n",
+ "\n",
+ "Enthalpy of air: 215.89174489 kJ/kg dry air\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 4\n",
+ "\n",
+ "Enthalpy of air: 215.89174489 kJ/kg dry air\n",
+ "\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "Dry bulb temparature of air: 82.5843748998 OC\n",
+ "\n",
+ "Power delivered by heater: 34.3125 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.3: Page 671"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.3\n",
+ "# Page: 671\n",
+ "\n",
+ "print'Illustration 12.3 - Page: 671\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "# ***Data***#\n",
+ "SsByA = 40;\n",
+ "x1 = 0.25;# [moisture fraction]\n",
+ "x2 = 0.06;# [moisture fraction]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg moisture/kg dry solid]\n",
+ "X2 = x2/(1-x2);# [kg moisture/kg dry solid]\n",
+ "# Fig. 12.10 (Pg 668) indicates that both constant and falling rate periods are involved.\n",
+ "\n",
+ "# Constant Rate period:\n",
+ "# From Fig. 12.10 (Pg 668):\n",
+ "Xc = 0.200;# [kg moisture/kg dry solid]\n",
+ "Nc = 0.3*10**(-3);# [kg/square m.s]\n",
+ "# From Eqn. 12.4:\n",
+ "thetha1 = SsByA*(X1-Xc)/Nc;# [s]\n",
+ "\n",
+ "# Falling Rate Period:\n",
+ "# From Fig. 12.10 (Pg 668):\n",
+ "# Data=[x N*10^3]\n",
+ "Data = numpy.array([[0.2 ,0.3],[0.18 ,0.266],[0.16 ,0.239],[0.14 ,0.208],[0.12, 0.180],[0.10 ,0.150],[0.09 ,0.097],[0.08, 0.070],[0.07 ,0.043],[0.064 ,0.025]]);\n",
+ "Val = zeros(10);\n",
+ "# Val=[(1/N)*10^(-3)]\n",
+ "for i in range(0,10):\n",
+ " Val[i] = 1/Data[i,1];\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid();\n",
+ "plt.xlabel(\"x [kg moisture / kg dry solid]\");\n",
+ "plt.ylabel(\"10^(-3) / N\");\n",
+ "plt.title(\"Graphical Integration Falling Rate Period\");\n",
+ "# Area under the curve:\n",
+ "Area = 1060.0;\n",
+ "# From Eqn. 12.3:\n",
+ "thetha2 = SsByA*Area;# [s]\n",
+ "thetha = thetha1+thetha2;# [s]\n",
+ "print\"Total Drying Time: \",round(thetha/3600,2),\"h\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.3 - Page: 671\n",
+ "\n",
+ "\n",
+ "Total Drying Time: 16.72 h\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHFW9//H3JwshkJBJQgghgQxEVgXDqkGRISwGlM37\ncwGRRFwQULiCCFe8gnBVwOuOIBeQgIKACAjKFiSD7IowEIIsEcKaBEIWEhJDSL6/P0510tPp6emZ\nPt1VNfN9PU8/07V/unq6T9c5VadkZjjnnHMFfdIO4JxzLlu8YHDOOdeOFwzOOefa8YLBOedcO14w\nOOeca8cLBuecc+14wdBDSDpL0m8qTH9S0kfquY08k7SFpCWSlHYWAEmzJU1Mnq/Z71nLmVXJPmru\nxnLNklZL6tXfjb36xdeTpM9IeljSUknzJD0k6bg6brLiBSlm9j4z+2u9tiGpRdLL1awkCx++4i9e\nADN7ycwGWx0u7Ele69Lky2qJpAVVLGblntc551RJKwoZJf1F0nurXLam97Ro+cI+ekHSad1ZF0Cy\nj2Z3d/nezguGOpB0CvBT4DxgpJmNBL4CfEjSeh0sU+t70YhfkLG3UZfMkvpWMZvVa/sd2Cn5shps\nZsO6uGyjchpwnpkNBjYDXgIu7+I6as06JNn+EcB3JH20SxuX+tW4fYcXDNFJGgJ8FzjOzG4ws7cB\nzKzNzI4ys3eS+aZKukjSrZKWAi2SPibpMUmLJb0k6cyi9RZ+UX1J0quSXksKoAID1pN0haS3kqqj\nXYuWny1p3+R5X0nfkjQrmfcRSaOTaT9Ltr04Gf/hbu6HVklnS7ov2cYdkoYnkwtHLouSX4cfSJY5\nRtJTya/V2yVtUbS+AyQ9I2mRpF9KukfSF5JpUyTdL+nHkuYDZ0raStLdkuZLekPSb5P3hqRaZgvg\nlmT73yj9xStpM0k3S3pT0nOSvliU5SxJ13W0r6vcP+M6ytfJcqU5K+1nJB0t6cVkO98u/j+oxMz+\nDfweWHPEUOn/k268p51s/yFgZmH7nfxvrJZ0vKTngGeKxm2VPB8i6UpJryev/wwpVMVJ6iPpf5P3\n4F/Ax6rJ1+OZmT8iPoBJwEqgTyfzTQUWAROS4QHA3sB7k+EdgbnAoclwM7AauAoYCLwPeB3YN5l+\nFrA82b6A7wMPFm3vBWBi8vxU4Alg66JtDUuefxYYSvjRcDIwB1ivaBu/6eD1tAAvFw23As8B7wHW\nB6YDP0imjU1eS5+i+Q9N5t822fYZwP3JtI2BxcBhybQTgXeAY5LpU5J9fkIyfX1gHLAv0D9Z/h7g\nJ+X2R8n+7ZMM/xW4AFgPeH+yr/epZl+X2TergXEl46rOV7zfy+SstJ93AJYAeybb+WGy3yZ2kPNy\n4Jzk+YbAb4C7i6ZX+v/s0ntaZtuF19U32acfAt4G9ulsPclydwBNwICicVslz68Ebkxe01hC4VH4\n3/kK8E9gNOH/fjqwik4+vz39kXqAnvYAjgLmlIx7AFgILAM+nIybCkztZF0/BX6cPC98cLYpmn4e\ncGny/CzgzqJpOwDLioaLv2ieAQ6u8vUsAHYs2ka1BcN04FtFw8cBt5W8luIvkdsKH9ZkuE/yxbAF\ncHTpFwqhmqO4YHixk9dxGPBouf1RmgnYHHgX2LBo+veBy6vZ12W2vZpQsC1MHj/tSj4qFwyV9vN3\ngKuKpg0EVtBxwTCVUOAtJHw5/gvYuIv/n9W8p5uXWVdh+YXJ/9xTwFerWU+yXEuZfb4VoaBZAWxX\nNO3LwPTk+d3Al4um7V/6Onrjw6uS4nsT2FhFbQZmtqeZDU2mFcYb0K6xVtIHJE1PDnkXAccCw2mv\neJmXCHXBBfOKni8D1lf5tosxhA/9OpJqlaeSKpuFwBDCL9rumFv0fDkwqMK8Y4GfSVqYbPfNZPxo\nYBTwSsn8pcOl+3KkpGskvSJpMeHXb+m+7MhmwAJLqgETLyVZCqrd1wU7m9nQ5PGfNeYr1dF+3oyi\n/WRmy1m7X8sx4IfJ/2oz4Qv16MLEKv8/i1V6Tzsy3MyGmdkOZnZBF9bT0YkPGxOOll4sGlf8Xo5i\n3c9Ur+cFQ3wPEj5Qh3Vj2auBm4AxZtYE/Ip136MtSp6/2o3tvEyoemhH0l6EaqZPmllT8gWxmPiN\nn+XOqHmJ8MttaNFjQzN7kFCdNaYop4qHO1jn9wm/et9nZkOAz9F+X1Y6q+c1YJik4oJsC9YtjGrR\nWb4YXqP9fhtI54WPAMzsZUKV3X9LGpxMq/T/2ZX39KEuvo5q1tPR+zmfUM3YXDSu+L2cw7qfqV7P\nC4bIzGwRofH5Qkn/IWlw0sA1nlDHWVDuy3YQsNDM3pG0B3Ak6/7Df1vSQIXTCKcA13Yj5qXAOZLe\no2AnScOS7b8LzJe0nqTvABt1Y/0FHRUob5DUuxeN+xXwLUk7wJoGw08m024FdpR0qMJZJycAm3ay\n7UGE6oa3FBrWTy2ZPq9k+2skX4oPAD+QNEDSTsAxwG872WZXdJavKzraz38ADpY0QeFsuLMqzLvO\neszsLmAWcHxR5o7+P7v6nnZFt9djZquA64DvSRokaSzwdda+l9cBJ0oaLWkocHo38vU4XjDUgZn9\nkNBw+03CYf5cwj/3NwlHFBA+UKVf+scDZ0t6C/hvyn/p30P4sN5FOOy/q8L6OvoV9WPCB+JOwhHB\nJYSGyzuA24FngdmEaoniQ+ty26i0PSt5bgBmtgz4HnB/Uj2wh5ndRGgzuSapWpkBfDSZfz7wSeB8\nwi/A7YFHCEdmHeX6LrBL8vpuIXxJFs/zA0Ihu1DSyWXyHkH4lfkacAPwHTO7u8L2urJfqslXunzp\nvuxo/cX7eSbwNeCa5HUsITSir6C8cq/rh4Qvzv5U+P/s6ntaYfvrjux8PeWWKx73NUIh/DxwL+EE\njsuTaZcQ/u8fJ/xPVXofeg0lDS7120A4p/wR4BUzOzj5ZXotod5wNvCp5Fe2q0DhKs7ngX5mtjrd\nNOlK6vJfBo40s3vSzpMXSdXYQuA9ZvZiZ/O73qsRRwwnEc4wKJRApwPTzGwb4C/4oZurgsJ1DE2S\nBgDfSkZ3ta6615F0sKQNJG0I/C/whBcKrjN1LRgkjQEOItRpF+ovDwGuSJ5fQfcaaXur3nyIO4FQ\nhfYG4SKkw8ysoyoRt9YhhBMUXiXU/38m3TguD+palSTp94SzLzYCvpFUJS1MznYpnF2yoDDsnHMu\nfXU7YpD0ceB1M3uMDs6EsFAq9eZfwc45lzn17HBqT+AQSQcRznjZSKGPmnmSNjWzuZJGEc6SWIck\nLzCcc64bzKyma4/qdsRgZt8ys83NbEtCvebdZvY54GZgcjLbZMIFMx2to+zjxReN0aPTv2zczDjz\nzDNTz9ATMnpOz5n1R15yxtDI6xgKic8F9pf0LDAxGe6S0aNh/nxYvjxmvO6ZPXt22hE6lYeM4Dlj\n85xx5SVnDA3pu9zCueb3JM8XAPvVsr6+fWHsWJg9G7bfPkJA55xza+T2yuettoJ/le0GrrGmTJmS\ndoRO5SEjeM7YPGdceckZQ92vfO4uSVYp2wknwLbbwoknNjCUc85lnCQsq43P9TZuHDz/fNopoLW1\nNe0IncpDRvCcsXnOuPKSM4bcFgxZqUpyzrmeJrdVSTNmwGc+AzNnNjCUc85lXIyqpNwWDEuXwiab\nhL99cnvc45xzcfXqNoZBg2DwYJg7t/N56ykP9Y55yAieMzbPGVdecsaQ24IBstMA7ZxzPUluq5IA\njjoK9t8fJk+uOJtzzvUavboqCfyIwTnn6iHXBUMWTlnNQ71jHjKC54zNc8aVl5wx5L5g8CMG55yL\nK9dtDK+9Brvskv6ZSc45lxW9vo1h003hrbfCtQzOOefiyHXB0KcPbLklvPBCehnyUO+Yh4zgOWPz\nnHHlJWcMuS4YIBsN0M4515Pkuo0B4KSTwk17Tj65AaGccy7jen0bA/i1DM45F1vuC4a0q5LyUO+Y\nh4zgOWPznHHlJWcMdS0YJK0v6WFJbZKekvSDZPxZkl6R9FjymNTdbfgRg3POxVX3NgZJG5jZMkn9\ngPuAbwD7AkvM7McVlquqjWH5chg6FN5+G/r2jRbbOedyKRdtDGa2LHm6HtAXWJgM1xS8YOBAGD4c\nXn01xtqcc87VvWCQ1EdSGzAPmG5mhXuufU3S45Iuk9RUyzbSrE7KQ71jHjKC54zNc8aVl5wxNOKI\nYbWZjQfGAB+R1AJcBGwJjAfmAD+qZRtpN0A751xP0q9RGzKzxZL+DOxmZq2F8ZIuBW4pt8yUKVNo\nbm4GoKmpifHjx9PS0gKsLb1bWloYNw6mT29l3DjKTu/twy0tLZnKU2m4ICt5fH/Wf9j3Z23Dra2t\nTJ06FWDN92Wt6tr4LGlj4F0zWyRpIHAH8F1gppnNTeb5OrC7mR1ZsmxVjc8AV10Ft9wC11wTN79z\nzuVNHhqfRwF3J20MDwO3mNlfgPMlPSHpcWBv4Ou1bCTN7rdLf0lkUR4ygueMzXPGlZecMdS1KsnM\nZgC7lBl/dMzt+LUMzjkXT+77SgIwg402gldegSFD6hzMOecyLA9VSQ0h+d3cnHMulh5RMEB6p6zm\nod4xDxnBc8bmOePKS84YelTB4EcMzjlXux7RxgBw4YXwxBPwq1/VMZRzzmWctzEU8aufnXMujh5V\nMKRRlZSHesc8ZATPGZvnjCsvOWPoMQVDc3M4XXXlyrSTOOdcvvWYNgYI936ePj0cPTjnXG/kbQwl\n/Apo55yrXY8qGNJogM5DvWMeMoLnjM1zxpWXnDH0uILBjxicc642PaqN4dpr4fe/h+uvr1Mo55zL\nOG9jKOFHDM45V7seVTCMGxfaGBp5EJSHesc8ZATPGZvnjCsvOWPoUQXD0KGhp9UFC9JO4pxz+dWj\n2hgAdtkFLr4Ydt+9DqGccy7jvI2hjEJ1knPOue7pcQVDoxug81DvmIeM4Dlj85xx5SVnDHUrGCSt\nL+lhSW2SnpL0g2T8MEnTJD0r6U5JTTG361c/O+dcberaxiBpAzNbJqkfcB/wDeAQYL6ZnS/pNGCo\nmZ1eZtlutTHcdRd873uhzyTnnOttMt/GYGbLkqfrAX2BhYSC4Ypk/BXAYTG36dcyOOdcbepaMEjq\nI6kNmAdMN7OZwEgzm5fMMg8YGXObW2wBc+fCihUx19qxPNQ75iEjeM7YPGdceckZQ796rtzMVgPj\nJQ0B7pC0T8l0k9RhfdGUKVNobm4GoKmpifHjx9PS0gKsfZPKDY8ZA9dd18rmm5efHnO4oF7r703D\nbW1tmcqT92Hfn71jf7a2tjJ16lSANd+XtWrYdQyS/htYDnwRaDGzuZJGEY4ktiszf7faGAAOOABO\nPhkmTaopsnPO5U6m2xgkbVw440jSQGB/4DHgZmByMttk4KbY2/b7PzvnXPfVs41hFHB30sbwMHCL\nmf0FOBfYX9KzwMRkOKpGNkAXDumyLA8ZwXPG5jnjykvOGOrWxmBmM4BdyoxfAOxXr+1CuJbhgQfq\nuQXnnOu5elxfSQCPPQaTJ8MTT0QO5ZxzGRejjaFHFgyLF8Po0bBkSeht1TnneotMNz6nacgQWH99\neP31+m8rD/WOecgInjM2zxlXXnLG0CMLBvAroJ1zrrt6ZFUSwBFHwMc+BkcdFTGUc85lnFclVeBH\nDM451z09tmBoVPfbeah3zENG8Jyxec648pIzhh5bMPjVz8451z09to3hpZdgwgR49dWIoZxzLuP8\nOoYKVq2CDTeEhQth4MCIwZxzLsO88bmCvn1h7Fh44YX6bicP9Y55yAieMzbPGVdecsbQYwsG8DOT\nnHOuO3psVRLAV78KW28NJ50UKZRzzmWcVyV1wo8YnHOu63p0wTBuXP1PWc1DvWMeMoLnjM1zxpWX\nnDH06ILBjxicc67renQbw9KlMGIEvP029OnRRaBzzgXextCJQYNCF9xz5qSdxDnn8qNHFwxQ/+qk\nPNQ75iEjeM7YPGdceckZQ10LBkmbS5ouaaakJyWdmIw/S9Irkh5LHpPqlaERDdDOOdeT1LWNQdKm\nwKZm1iZpEPAP4DDgU8ASM/txhWVrbmMAOPNMMIOzz655Vc45l3mZb2Mws7lm1pY8Xwr8ExidTG7I\n3Zj9zCTnnOuahrUxSGoGdgYeSkZ9TdLjki6T1FSv7da7KikP9Y55yAieMzbPGVdecsbQrxEbSaqR\nrgdOMrOlki4CCpU75wA/Ar5QutyUKVNobm4GoKmpifHjx9PS0gKsfZM6G95mmxaef776+bs6XFCv\n9fem4ba2tkzlyfuw78/esT9bW1uZOnUqwJrvy1rV/ToGSf2BPwG3mdlPy0xvBm4xsx1LxkdpYzAL\n3W/PmweDB9e8Ouecy7S6tjFIWippSZnHckmrqgwo4DLgqeJCQdKootkOB2Z09wV0ngG23LL+3W87\n51xP0WHBYGaDzGxw4QGMAr4HzAXW+eXfgQ8BRwH7FJ2aeiBwnqQnJD0O7A18vbaXUVk9G6ALh3RZ\nloeM4Dlj85xx5SVnDJ22MSQNw/8JTAauBnYzszerWbmZ3Uf5wue2roSslV/L4Jxz1euwjUHSCOAU\n4NPAr4Gfm9nihgWL1MYA8POfwzPPwC9/GWV1zjmXWTHaGCodMcwG5hMKhWXAF5I2AwCrdHFa1owb\nB7femnYK55zLh0rXMfwQuDx5PggYnPwtPM8Nb2NoTTtCVTxnXJ4zrrzkjKHDIwYzO6uBOeqquRle\neglWrYK+fdNO45xz2daj78dQbMwYuO++UEg451xPlfm+krLkwx+GW25JO4VzzmVfpQvc9ixqbM69\n446DCy8MV0LHlId6xzxkBM8Zm+eMKy85Y6h0xHA08KikayVNSbrQzq2PfCS0L9x9d9pJnHMu2zpt\nY5C0PXAgcADQBNwN3A7cb2ZVdY3RrWCR2xgALroIpk2DG26IulrnnMuMGG0MXWp8lrQBsA+hoJhg\nZrvWsvFOthW9YFiyBMaOhccfh803j7pq55zLhIY3PpvZMjP7s5l9tZ6FQr0MHgyf/SxcfHG8deah\n3jEPGcFzxuY548pLzhh6zVlJBccfD5deCitWpJ3EOeeyqddcx1Bsv/3gmGPgyCPrsnrnnEtNQ6uS\nJK0vaUAtG8uKE07wDvWcc64jla5j6CPpE5J+L+lV4AXgRUmvSrpe0uF5vc7h4IPh5Zehra32deWh\n3jEPGcFzxuY548pLzhgqHTG0ArsC/wtsZWajzGxTYKtk3O7APXVPWAf9+sGxx/pRg3POlVPpfgwD\nzKxiE20183Q7WB3bGCDcA3q77UKvq0OH1m0zzjnXUHVtYyj3hS9peGfz5MXIkXDQQTB1atpJnHMu\nWyq1MUyUNEvSQ5L2kPQM8DdJ/5K0ewMz1s0JJ4T+k1av7v468lDvmIeM4Dlj85xx5SVnDJ3dqOdw\n4OvAncAXzWwc8Emgqru3Sdpc0nRJMyU9KenEZPwwSdMkPSvpzuS+0g03YQIMGhS6yXDOORdUamN4\nzMx2Tp7/08y2Lzet4spDx3ubmlmbpEHAP4DDgM8D883sfEmnAUPN7PSSZevaxlBw6aVw883h4Zxz\neVfv6xiKp/1X0UYF9K9m5WY218zakudLgX8Co4FDgCuS2a4gFBapOPJIeOABmD07rQTOOZctlQqG\n70jaEMDMbioavxVwZVc3JKkZ2Bl4GBhpZvOSSfOAkV1dXywbbABHHw2/+lX3ls9DvWMeMoLnjM1z\nxpWXnDFUuufzH0vHSdrUzP4FnN+VjSTVSH8ATjKzJcXXxZmZSSpbZzRlyhSak3txNjU1MX78eFpa\nWoC1b1KM4eOOg913b2XiRDjggK4tXxAzT28dbmtry1SevA/7/uwd+7O1tZWpyemVzZHuXdzVbrcf\nNbNdurQBqT/wJ+A2M/tpMu5poMXM5koaBUw3s+1KlmtIG0PBpEmhWunooxu2Seeciy6Nez53aWNJ\ne8RlwFOFQiFxMzA5eT4ZuKl02Ubz/pOccy7oasFwSRfn/xBwFLCPpMeSxyTgXGB/Sc8CE5PhVB10\nULga+pFHurZc4ZAuy/KQETxnbJ4zrrzkjKHDNgZJg81sSfE4M7uws3lK5r+Pjguf/boStN769oXj\njgtHDZdfnnYa55xLT6XrGO4CngH+CDxiZguS8cOB3QinmG5tZnX5gm90GwPA/Pmw9dYwaxYMH975\n/M45lzV1v+ezpInAkYQqoc2S0a8B9wFXmVlrLRuvGCyFggFg8mR43/vg1FMbvmnnnKtZ3Rufzexu\nM/uimW1vZkOSx/Zm9qV6FgppOuEEuOgiWLWquvnzUO+Yh4zgOWPznHHlJWcMve6ez53ZY49QjXT7\n7Wkncc65dHRWldQPuMTMPt+4SGu2nUpVEoSuuK+9Fm67LZXNO+dct9W1Kim5WvlPwN9r2UAeffrT\n4bTVWbPSTuKcc41XqSrpHuDW0lNUe4OBA+Hznw9tDZ3JQ71jHjKC54zNc8aVl5wxVCoYhgAvNypI\n1hx3HFxxBSxblnYS55xrrErXMYwCbgTOLeldtSHSbGMo+PjH4fDD4QtfSDWGc85Vrd73fJ4D7A/0\n2q/FQv9JKZdPzjnXUJ1dx7AE+ESDsmTORz8Kb70FDz3U8Tx5qHfMQ0bwnLF5zrjykjOGTq9jMLOV\njQiSRX36rO0/yTnneotKbQxNwOmEPpFGAga8Tugi+1wzW1TXYBloYwBYsADGjYNnnoFNNkk7jXPO\nVVbvLjGuAxYCLcAwMxsG7AMsSqb1CsOGwSc+AZdemnYS55xrjEoFQ7OZnWdmcws/3c1sjpmdCzQ3\nJF1GnHBCuCf0u++uOy0P9Y55yAieMzbPGVdecsZQqWB4UdI3JY0sjJC0qaTTgJfqHy07dtkFRo+G\nP/0p7STOOVd/ldoYhhHaGA4htDEAzCPclvPcwv0Z6hYsI20MBVddFfpQmjYt7STOOdexut+PIU1Z\nKxhWrICxY+Gee2DbbdNO45xz5dX9fgwVNtzw3lbTNmBAuAL6wpKeo/JQ75iHjOA5Y/OcceUlZwzd\nvR/D2dXMJOnXkuZJmlE07ixJr0h6LHlM6maGhjv2WPjtb2Hp0rSTOOdc/VRqY5hRdkKwjZkN6HTl\n0l7AUuBKM9sxGXcmsMTMftzJspmqSio4/HCYNCkUEs45lzUxqpL6VZi2CTCJcC1DqQeqWbmZ3Sup\nucykmkKn6YQT4OST4ctfBuX2VTjnXMcqVSX9GRhkZrNLH4R7NdTia5Iel3RZcoV1buy7L7zzDtx3\nXxjOQ71jHjKC54zNc8aVl5wxdHjEYGbHVJh2RA3bvIi1bRTnAD+igx5cp0yZQnNzMwBNTU2MHz+e\nlpYWYO2blMbw8cfDmWe28p3vrM2aZp6eMtzW1papPHkf9v3ZO/Zna2srU6dOBVjzfVmrup+umlQl\n3VJoY+jCtEy2MQAsXgzNzfDUUzBqVNppnHNurdROV61FcgOggsOBSo3cmTRkSLgv9CWXpJ3EOefi\nq2vBIOl3hIbqbSW9LOkY4DxJT0h6HNgb+Ho9M9TLCSfAxRfDnXe2ph2lU4XDzqzznHF5zrjykjOG\nSmcl1ayDtohf13ObjbLjjrD33nDOOTBxIvSr6550zrnG8S4xarBiBRx6KIwcCZdfHm7s45xzacpl\nG0NPMmAA3HADPP88nHii3xvaOdczeMFQo7/9rZU//QkefBC+/e2005SXl7pRzxmX54wrLzlj8Jrx\nCIYMgdtvD20OG20Ep52WdiLnnOs+b2OI6NVXYa+94NRT4bjj0k7jnOuN6t1Xkuui0aPhrrvCkcPg\nwXDUUWkncs65rvM2hhqV1jtutRXccQd84xtw003pZCqVl7pRzxmX54wrLzlj8COGOthhB/jzn+HA\nA2HQINhvv7QTOedc9byNoY7uvRc+8Qn44x9hzz3TTuOc6w38OoaM22sv+M1vws192trSTuOcc9Xx\ngqFGndU7TpoEv/xlqFZ6+unGZCqVl7pRzxmX54wrLzlj8DaGBvh//y/cJ/qAA0L10tixaSdyzrmO\neRtDA/385/CLX8Bf/+r3cXDO1Ydfx5AzJ54Ib70VjhzuuQeGDUs7kXPOrcvbGGrU1XrHM84I7Q6T\nJsGSJfXJVCovdaOeMy7PGVdecsbgBUODSXD++bDzznDwwbB8edqJnHOuPW9jSMmqVXD00eH+0Tfc\nAOutl3Yi51xP4Ncx5FjfvjB1ari5z+c+FwoK55zLAi8YalRLvWP//nDddTB/PnzlK/W70U9e6kY9\nZ1yeM6685IyhrgWDpF9LmidpRtG4YZKmSXpW0p2SmuqZIevWXz90mTFjBpxyit8FzjmXvrq2MUja\nC1gKXGlmOybjzgfmm9n5kk4DhprZ6WWW7dFtDKUWLIB99gl9K515ZtppnHN5lfk2BjO7F1hYMvoQ\n4Irk+RXAYfXMkBfDhsGdd8Lvfgdnn+1HDs659KTRxjDSzOYlz+cBI1PIEE3MeseRI6G1Fa69Ntw/\nOlbhkJe6Uc8Zl+eMKy85Y0j1ymczM0kdfv1NmTKF5uZmAJqamhg/fjwtLS3A2jcp7eGCmOtvbYUJ\nE1qZNQuuuaYFKTuvt57DbW1tmcqT92Hfn71jf7a2tjJ16lSANd+Xtar7dQySmoFbitoYngZazGyu\npFHAdDPbrsxyvaqNodSCBaHrjAkT4Gc/C6e1OudcZzLfxtCBm4HJyfPJQEZugJktw4bBX/4C//hH\nOJV19eq0Eznneot6n676O+ABYFtJL0v6PHAusL+kZ4GJyXBuFQ7p6mHIkHD/6GeegWOO6f5FcPXM\nGJPnjMtzxpWXnDHUtY3BzI7oYJLfBblKgwfDrbfCoYfCUUfBlVeGC+Occ65evK+knFi+PFzjsMEG\n4ZTW9bxvJedcGXltY3DdMHAg3HQTvPsu/Md/wL//nXYi51xP5QVDjRpZ7zhgAFx/fSgkDj20+i67\n81I36jnj8pxx5SVnDF4w5Ez//nD11TBiBHzsY/D222kncs71NN7GkFOrVsGXvgTPPQd//jNstFHa\niZxzWeBtDL1Y375w6aXwvveFC+EWLUo7kXOup/CCoUZp1jv26QMXXggf/CDsuy+8+Wb5+fJSN+o5\n4/KcceVF+uFGAAAPdElEQVQlZwxeMOScBD/5Cey3H0ycCK+/nnYi51zeeRtDD2EW7uNw/fWhK41R\no9JO5JxLQ4w2hlR7V3XxSOE+DgMGwN57w913w5gxaadyzuWRVyXVKGv1jmecAcceGwqH2bPDuKxl\n7IjnjMtzxpWXnDH4EUMPdMop4cihpQXuuivtNM65vPE2hh7s//4PzjkHpk2D7da544VzrifyNgZX\n0Ze/HI4cJkyAnXaCbbZp/9hqqzDdOeeKeRtDjbJe7zh5Mlx2WStnngm77gpz5oQL4w47LNzvYdw4\nOPBAOOkkuOACuPPO0DbR3Xs/1CLr+7LAc8blObPHjxh6gWHDQnvDxIntx69cGQqBZ58Nj5kz4cYb\nw/P580OhUXqUsc02oZ8m1XSg6pzLMm9jcGW9/TbMmrW20Ch+rFrVvqDYeuu1f73PJufSFaONwQsG\n12Vvvhk67ystMJ57LhQM5Y4yvD3DucbIdcEgaTbwFrAKWGlme5RMz0XB0NraSktLS9oxKmpUxtWr\n4bXXyh9lvPQSjB5dvtDYfPPQ71Me9iV4ztg8Z1x5PyvJgBYzW5BiBhdRnz7hausxY8q3Z7zwwtoj\niyefhBtuaN+eMWQIvP/9sNlmoUuP4r8bbxzW75yrvzSPGF4AdjOzsn2C5uWIwdWu0J7xr3+FI445\nc9b9u3gxjBy5boFR+nfECC9AXO+W96qk54HFhKqki83skpLpXjC4Nd55B+bODQVFR4XHa6+FAmST\nTSoXHqNGhQKkb9+0X5Vz8eW9YBhlZnMkjQCmAV8zs3uLpueiYMhDvWMeMkKcnIUCpKOCo/B30aJQ\nOBQXGB0dgZQWIL1pfzaC54wr120MZjYn+fuGpBuBPYB7i+eZMmUKzc3NADQ1NTF+/Pg1b0zhYpO0\nhwuykifPw21tbVHWt8UW8PzzrQwdCocfXn7+adNaWbgQxo5tYc6cMP255+DFF8Pws8+28uabsHRp\nC5tsAoMGtTJ8OOy4Ywv//jfceGMrTU1hfSNGwHPPtbLRRrDvvj1vf/pwtvdna2srU6dOBVjzfVmr\nVI4YJG0A9DWzJZI2BO4EvmtmdxbNk4sjBtezrVwJ8+a1P9qYOxfeeCPcFOmNN9Y+Fi6EpqZQlTVi\nxNpHR8PDh0M/v8TURZbbqiRJWwI3JoP9gKvM7Acl83jB4HJl1apwjUe5QqN4uPC8UJBUU4iMGBHO\nzPKCxHUmtwVDNfJSMLTmoN4xDxmh9+VctQoWLChfaJQbXrAgnNJbTSGyySYwY0Yr++9fe856623v\ne73luo3Bud6ub9+1X+TVKBQk5QqNZ56B++5rP+3NN6F//1CYbLRR9/8OHuxncPU2fsTgXA9lBsuX\nw1tvhdN4u/K3+PnSpbDBBuULjq4UMgMHeueLjeBVSc65ulu9OhQOXS1cSv+uXBkKie4evRSe9++f\n9h7JNi8YMiAP9Y55yAieM7as5Vy5ct2jkcWL4aGHWhk9uqXqAqZ//84Lj87+DhrU9Svks7Y/O+Jt\nDM653OjfP5yiO3x4+/GDB4f7hVSjUD3WWeHx2mvw9NNhuNw8y5aF7XblqKU3nRHmRwzOuV5n1SpY\nsmTdAqNSgXP++aE34KzzqiTnnHPtxCgYvB/KGhUuTc+yPGQEzxmb54wrLzlj8ILBOedcO16V5Jxz\nPYhXJTnnnIvOC4Ya5aHeMQ8ZwXPG5jnjykvOGLxgcM451463MTjnXA/ibQzOOeei84KhRnmod8xD\nRvCcsXnOuPKSMwYvGJxzzrXjbQzOOdeDeBuDc8656FIrGCRNkvS0pOcknZZWjlrlod4xDxnBc8bm\nOePKS84YUikYJPUFLgAmATsAR0jaPo0stWpra0s7QqfykBE8Z2yeM6685IwhrSOGPYBZZjbbzFYC\n1wCHppSlJosWLUo7QqfykBE8Z2yeM6685IwhrYJhNPBy0fAryTjnnHMpS6tg6DGnG82ePTvtCJ3K\nQ0bwnLF5zrjykjOGVE5XlfRB4Cwzm5QM/xew2szOK5qnxxQezjnXSLm8taekfsAzwL7Aa8DfgCPM\n7J8ND+Occ66dfmls1MzelfRV4A6gL3CZFwrOOZcNmb3y2TnnXDoa3vhczYVtkn6eTH9c0s5F45sk\nXS/pn5KeStoqspjzvyTNlDRD0tWSBqSVU9J2kh6U9G9Jp3Rl2SzklLS5pOnJ/nxS0olZzFk0va+k\nxyTdksWMWfoMdZIzS5+hzyaf8Sck3S9pp2qXzULObn2GzKxhD0K10SygGegPtAHbl8xzEHBr8vwD\nwENF064Ajkme9wOGZC1nsszzwIBk+Fpgcoo5RwC7Af8DnNKVZTOSc1NgfPJ8EKFtKnM5i6afDFwF\n3JzFjBn7DHX0nmftMzShsJ8IF+U+VO2yGcnZ5c9Qo48Yqrmw7RDCPy9m9jDQJGmkpCHAXmb262Ta\nu2a2OGs5gbeAlcAGSSP7BsCraeU0szfM7JEkU5eWzUJOM5trZm3J86XAP4HNspYTQNIYwg+GS4Ga\nzgqpR8asfYYq7MusfYYeLNpPDwNjql02Czm78xlqdMFQzYVt5eYZA2wJvCHpckmPSrpE0gYZyzna\nzBYAPwJeIpxxtcjM7koxZz2W7aoo25LUDOxM+Kevh1pz/gQ4FVgdM1SJWjJm7TNUVsY/Q18Abu3m\nsrWoJeca1X6GGl0wVNvSXfprywiHvbsAF5rZLsDbwOkRs5Vurxrr/CqUNA74T8Ih32bAIEmfjRet\nnVrOHGjkWQc1b0vSIOB64KTkV089dDunpI8Dr5vZY9TvaAFq25dZ/AytI6ufIUn7AMcAhfr9TH6G\nyuQsjK/6M9ToguFVYPOi4c0JJV+lecYk414BXjGzvyfjryf8k2ct527AA2b2ppm9C9wA7Jliznos\n21U1bUtSf+APwG/N7KbI2YrVknNP4BBJLwC/AyZKujJyPqgtY9Y+Qx3J3Gcoaci9BDjEzBZ2ZdkM\n5OzyZ6jRBcMjwNaSmiWtB3wauLlknpuBo2HNFdKLzGyemc0FXpa0TTLffsDMrOUkNOx8UNJASUpy\nPpVizoLSX7FdWTa1nMk+vAx4ysx+Wqd8Bd3OaWbfMrPNzWxL4DPA3WZ2dMYyZu0zVDYn8DQZ+gxJ\n2oJQOB1lZrO6smwWcnbrM1SPFvROWtcPJHx5zgL+Kxl3LHBs0TwXJNMfB3YpGv9+4O/J+Buo0xkV\nEXJ+k/CBm0FooO6fVk7CGQkvA4uBhYR620EdLZu1nMCHCXX2bcBjyWNS1nKWrGNv6nRWUoT3PDOf\noU5yZukzdCnwZtH/398qLZu1nN35DPkFbs4559rxW3s655xrxwsG55xz7XjB4Jxzrh0vGJxzzrXj\nBYNzzrl2vGBwzjnXjhcMrtuSi22WS3q0aHhGSlk2k/T7CtOHSDquzhk+KOn/Ssa1KFIX3JKmSPpF\njHVVsa0176Wk3ST9rIP5ZksallyM1iZphaRhjcjo6scLBlerWRb63UmVmb1mZp+sMMtQ4PiurldS\nVz4jBwK3dXUbtZLUt57rN7NHzOykjiYn8yw3s/GETu9cznnB4MqStHty048BkjZMbvCxQxeW3yrp\nwXNXSRtIui65UcgNkh6StGuZZWZL+r7CjW4ekbSLpDslzZJ0bDKPJP1Q4QYuT0j6VDK++BfueyU9\nnKynTdJ7gHOBccm48yXtXfxLXtIFkiYX5ThX0j+AT0o6QNIDkv6RvI4NO3jZE4EOewFN9umjkraU\nNELStGS/XlL45V1mmc9LekbSwxT1FyRpqqRfSXoIOF/Ss5I2Tqb1UbiZy/CSde2dvP7HkhwbdrQ/\nS5Zbc9QjaXjynjwp6RLq22GgS0kq93x22Wdmf5d0M+EmKgOB35hZVf3VSNqW0JHcZDObIekbwJtm\n9l5J7yVcml/uknsDXjSznSX9GJhKuPnIQOBJ4GLgE4RuHXYi3Ojl75LuKVnPV4CfmdnVCv359yP0\nNPleM9s5ydhSZttW9Hy+me2afNn+AdjXzJYr3DnrZOCckte8MbDSzJZ0sE/2BH5O6NzsFUkXAHeZ\n2XmSPkroJrl0mVHAWYSO7t4CpgOPFs2yGTDBzEzSYuCzwM8IfQu1mdmbJas8BTjezB5U6G57BdXt\nz2JnAn81s/+RdFC53C7//IjBVXI2cACht8vzq1xmE+Am4EgzK7Q3fIhwYxHMbCbwRIXlCx2DzQAe\nNLO3zWw+sELhRjMfAq624HXgHsJNTIo9AHxL0jeBZjP7N13/ZXtt8veDwA7AA5IeI3ScuEWZ+Q8A\n7uhgXdsTCrWPm1mhR8zifXIHoa+gUh8AplvoZXRlkqnwOgz4va3t0+bXSTYIXS5fXmZ99wM/kfQ1\nYKiZraK6/VlsL+C3Se5bO8jtcs4LBlfJxsCGhM7sBla5zCLgRcIXSLFqv5hXJH9XA+8UjV/N2iPc\ncvfrWDtg9jvgYGA5cKtC//Sl3qX9/3/p63u76Pk0M9s5ebzXzL5UZn2TgNvLjDdgTpKltC2ms31i\nJfOUzr9szYyhwJknaSKwO2XaOszsPMIv/IHA/cmRXbn1dtaBmlcf9XBeMLhKLga+DVwNnFflMu8Q\nqieOlnREMu5+oNAWsAOwYxXrKfflY8C9wKeTevQRwEeAv7VbUNrKzF4ws18Af0y29xYwuGi2F4Ed\nJK0nqYnQPlDOw8CHFG4eQ1Ivv3XJ9gTsZGaPd/A6FgEfB34gae9kfPE+OYDQOF7qb8DeCmf99Ac+\nSeUv7UsJv+avKzqSKM45zsxmmtn5hB5Wt6OK/Vnir8CRyfoO7CC3yzlvY3BlSToaWGFm1yicmfOA\npBYza+1kUTOzZQp3NJsmaQlwIXCFpJmEvvZnErpaXmfZkuelw5jZjZImELqNNuBUM3td4ZaFhfk/\nJekown2D5wDfM7NFku5PGqhvNbPTJF1HaLt4gfZ198Uv5g1JU4DfSRqQjD4DeK5otl0JXRmXXUWy\nT15P9sltkj4PfDdZ5+eAB4G5QLv2CTObI+msZPqiMtso/fK/hVCFVK4aCeCk5OhpNeF132pmK6vY\nn8XbKuQ+glBl92IH23I55t1uu25LvjxuMbOKRwBJwdLfzFYkv7ynAdtYuDtX7kk6A3jOzK7rwjLr\nAavMbFXyxfzLWk/7lbQb8CMz27vTmetE4Q52u1q4b7PLKT9icLV4Fxgi6dFOvtQ2BO5OqkMEHNdT\nCgUAM/teNxbbArguKTTfAcq1W1RN0umEs7GOrGU9NWx/feAhwnfK6jQyuHj8iME551w73vjsnHOu\nHS8YnHPOteMFg3POuXa8YHDOOdeOFwzOOefa8YLBOedcO/8fn0E/Bf9S/E0AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x772c470>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.4: Page 676"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.4\n",
+ "# Page: 676\n",
+ "\n",
+ "print'Illustration 12.4 - Page: 676\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "#***Data***#\n",
+ "# For rectangular pan:\n",
+ "l = 0.7;# [m]\n",
+ "b = 0.7;# [m]\n",
+ "zS = 0.025;# [m]\n",
+ "zM = 0.0008;# [m]\n",
+ "d = 0.1;# [m]\n",
+ "Y1 = 0.01;# [kg water/kg dry air]\n",
+ "TempG = 65.0;# [OC]\n",
+ "v = 3.0;# [m/s]\n",
+ "TempR = 120.0;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "vH = (0.00283+(0.00456*Y1))*(TempG+273.0);# [cubic m/kg dry air]\n",
+ "Density_G = (1+Y1)/vH;# [kg/cubic m]\n",
+ "G = v*Density_G;# [kg/square m.s]\n",
+ "de = 4*d*l/(2*(l+d));# [m]\n",
+ "# From Eqn. 12.20:\n",
+ "hc = 5.90*G**0.71/de**0.29;# [W/square m.K]\n",
+ "# Assume:\n",
+ "e = 0.94;\n",
+ "# Estimate:\n",
+ "TempS = 38;# [OC]\n",
+ "# From Eqn. 12.14:\n",
+ "hR = e*5.729*10**(-8)*((273+TempR)**4-(273+TempS)**4)/((273.0+TempR)-(273+TempS));\n",
+ "A = l*b;# [square m]\n",
+ "Am = A;# [square m]\n",
+ "As = 4*l*zS;# [square m]\n",
+ "Au = Am+As;# [square m]\n",
+ "# Thermal Coductivities:\n",
+ "kM = 45;# [W/m.K]\n",
+ "kS = 3.5;# [W/m.K]\n",
+ "# By Eqn. 12.16:\n",
+ "Uk = 1/(((1/hc)*(A/Au))+((zM/kM)*(A/Au))+((zS/kS)*(A/Am)));# [W/squre m.K]\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "Cs = 1005+(1884*Y1);# [kJ/kg]\n",
+ "# At estimated 38 OC\n",
+ "lambdaS = 2411.4;# [kJ/kg]\n",
+ "# From Eqn. 12.18:\n",
+ "# (Ys-Y1)*lambdaS*10^3/Cs = ((1+(Uk/hc))*(TempG-Temps))+((hR/hC)*(TempR-TempS))\n",
+ "# On Simplifying:\n",
+ "# Ys = 0.0864-(10.194*10**(-4)*TempS)\n",
+ "# The eqn. is solved simultaneously with the saturated humidity curve of the psychometric chart for the air water mixture.\n",
+ "# From Fig. 12.12: (Pg 677)\n",
+ "Ys = 0.0460;# [kg water/kg dry air]\n",
+ "TempS = 39;# [OC]\n",
+ "# At 39 OC\n",
+ "lambdaS = 2409.7;# [kJ/kg]\n",
+ "# From Eqn. 12.17:\n",
+ "Nc = (((hc+Uk)*(TempG-TempS))+(hR*(TempR-TempS)))/(lambdaS*10**(3));# [kg water evaporated/square m.s]\n",
+ "print\"The Evaporation Rate: \",round(Nc*A,8),\" kg/s\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "# When no radiation or conduction of heat through the solid occurs, the drying surface assumes wet bulb temparature of the air.\n",
+ "# From Fig. 12.12 (Pg 677)\n",
+ "TempS = 28.5;# [OC]\n",
+ "Ys = 0.025;# [kg water/kg dry air]\n",
+ "lambdaS = 2435;# [kJ/kg]\n",
+ "# From Eqn. 12.17:\n",
+ "Nc = hc*(TempG-TempS)/(lambdaS*10**3);# [kg/aquare m.s]\n",
+ "print\"The Evaporation Rate: \",round(Nc*A,8), \"kg/s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.4 - Page: 676\n",
+ "\n",
+ "\n",
+ "The Evaporation Rate: 0.0003851 kg/s\n",
+ "\n",
+ "The Evaporation Rate: 0.00016105 kg/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.5: Page 684"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.5\n",
+ "# Page: 684\n",
+ "\n",
+ "print'Illustration 12.5 - Page: 684\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "from scipy import integrate\n",
+ "import math\n",
+ "#***Data***#\n",
+ "x1 = 0.025;# [moisture fraction]\n",
+ "x2 = 0.001;# [moisture fraction]\n",
+ "zS = 0.018;# [m]\n",
+ "dp = 2*10**(-4);# [m]\n",
+ "Density_S = 1350;# [kg dry solid/cubic m]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg water/kg dry air]\n",
+ "X2 = x2/(1-x2);# [kg water/kg dry air]\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Y1 = 0.0153;# [kg water/kg dry air]\n",
+ "Tempas = 24;# [OC]\n",
+ "Yas = 0.0190;# [kg water/kg dry air]\n",
+ "Gs = 0.24;# [kg dry air/square m.s]\n",
+ "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg dry air/square m.s]\n",
+ "# From Eqn. 12.26:\n",
+ "Nmax = Gs*(Yas-Y1);# [kg evaporated/square m.s]\n",
+ "viscosity_air = 1.8*10**(-5);# [kg/m.s]\n",
+ "X3=lambda X : 1/(Nmax*(1-math.exp(-(0.273/dp**0.35)*((dp*Gav/viscosity_air)**0.215)*(Density_S*zS*X)**0.64)));\n",
+ "Value = integrate.quad(X3,X2,X1);\n",
+ "# From Eqn. 12.3:\n",
+ "thetha = Density_S*zS*Value[0];# [s]\n",
+ "print\"The time for drying: \",round(thetha/60,3),\" min\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.5 - Page: 684\n",
+ "\n",
+ "\n",
+ "The time for drying: 12.593 min\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.6: Page 685"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.6\n",
+ "# Page: 685\n",
+ "\n",
+ "print'Illustration 12.6 - Page: 685\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "import math\n",
+ "#***Data***#\n",
+ "Y1 = 0.01;# [kg water/kg dry air]\n",
+ "Gs = 1.1;# [kg dry air/square m.s]\n",
+ "dia = 13.5/1000;# [m]\n",
+ "l = 13.0/1000;# [m]\n",
+ "zS = 50.0/1000;# [m]\n",
+ "Density_S = 600.0;# [kg dry solid/square m.s]\n",
+ "a = 280.0;# [square m/cubic m]\n",
+ "#************#\n",
+ "\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Yas = 0.031;# [kg water/kg dry air]\n",
+ "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg/square m.s]\n",
+ "viscosity_air = 1.9*10**(-5);# [kg/m.s]\n",
+ "Area = (2.0*math.pi*dia**2.0/4)+(math.pi*dia*l);# [square m]\n",
+ "dp = (Area/math.pi)**0.5;# [m]\n",
+ "# From Table 3.3 (Pg 74)\n",
+ "Re = dp*Gav/viscosity_air;\n",
+ "e = 1.0-(dp*a/6);# [fraction voids]\n",
+ "jD = (2.06/e)*Re**(-0.575);\n",
+ "# For air water mixture:\n",
+ "Sc = 0.6;\n",
+ "# From Eqn. 12.33:\n",
+ "kY = jD*Gs/Sc**(2.0/3);# [kg H2O/square m.s.deltaX]\n",
+ "# From Eqn. 12.30:\n",
+ "NtG = kY*a*zS/Gs;\n",
+ "# From Eqn. 12.25:\n",
+ "Nmax = Gs*(Yas-Y1);# [kg/square m.s]\n",
+ "# From Eqn. 12.31:\n",
+ "N = Nmax*(1-math.exp(-NtG));# [kg water evaporated/square m.s]\n",
+ "Y2 = (Yas-Y1)*(N/Nmax)+Y1;# [kg water/kg dry air]\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Tempas = 33.0;# [OC]\n",
+ "# From eqn. 12.2:\n",
+ "Rate = N/(Density_S*zS);# [kg H2O/(kg dry solid).s]\n",
+ "print\"Humidity of the exit air: \",round(Y2,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Temparature of exit air: \",Tempas,\" degree C\\n\"\n",
+ "print\"Rate of Drying: \",round(Rate,7),\" kg H2O/(kg dry solid).s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.6 - Page: 685\n",
+ "\n",
+ "\n",
+ "Humidity of the exit air: 0.0302 kg water/kg dry air\n",
+ "\n",
+ "Temparature of exit air: 33.0 degree C\n",
+ "\n",
+ "Rate of Drying: 0.0007409 kg H2O/(kg dry solid).s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.7: Page 700"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.7\n",
+ "# Page: 700\n",
+ "\n",
+ "print'Illustration 12.7 - Page: 700\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "import math\n",
+ "from numpy.linalg import inv\n",
+ "#***Data***#\n",
+ "x1 = 3.5;# [percent moisture]\n",
+ "x2 = 0.2;# [percent moisture]\n",
+ "dia = 1.2;# [m]\n",
+ "l = 6.7;# [m]\n",
+ "Rate_prod = 900.0;# [kg/h]\n",
+ "y2 = 0.5;# [Humidity]\n",
+ "TempG2 = 90.0;# [OC]\n",
+ "TempG1 = 32.0;# [OC]\n",
+ "TempS1 = 25.0;# [OC]\n",
+ "TempS2 = 60.0;# [OC]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(100.0-x1);# [kg H2O/kg dry solid]\n",
+ "X2 = x2/(100.0-x2);# [kg H2O/kg dry solid]\n",
+ "Ss = Rate_prod*(1-X2);# [kg dry solid/h]\n",
+ "Rate_drying = Ss*(X1-X2);# [kg water evaporated/h]\n",
+ "Y2 = (y2/(1-y2))/100.0;# [kg water/kg dry air]\n",
+ "Tempo = 0.0;# [Base temp,OC]\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "# Enthalpy of air entering the drier:\n",
+ "HG2 = (1005.0+(1884.0*Y2))*(TempG2-Tempo)+(2502300.0*Y2);# [J/kg dry air]\n",
+ "# For the outlet air:\n",
+ "# HG1 = (1005.0+(1884*Y1))*(TempG1-Tempo)+(2502300*Y1); [J/kg dry air]\n",
+ "# HG1 = (1005.0*TempG1)+((1884+TempG1)+2502300)*Y1; [J/kg dry air]\n",
+ "CsNH4 = 1507.0;# [J/kg.K]\n",
+ "CsH2O = 4187.0;# [J/kg.K]\n",
+ "# From Eqn. 11.45:\n",
+ "HS2 = CsNH4*(TempS2-Tempo)+(X2*CsH2O*(TempS2-Tempo));# [J/kg dry air]\n",
+ "HS1 = CsNH4*(TempS1-Tempo)+(X1*CsH2O*(TempS1-Tempo));# [J/kg dry air]\n",
+ "# The estimated combined natural convection and radiation heat transfer coeffecient from the drier to the surrounding:\n",
+ "h = 12.0;# [W/square m.K]\n",
+ "deltaTemp = ((TempG2-TempS1)+(TempG1-TempS1))/2;# [OC]\n",
+ "Ae = math.pi*dia*l;# [square m]\n",
+ "Q = h*3600.0*Ae*deltaTemp;# [kJ/h]\n",
+ "# Moisture Balance, Eqn. 12.39:\n",
+ "# Ss*(X1-X2) = Gs(Y1-Y2)\n",
+ "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",
+ "# Enthalapy Balance, Eqn. 12.40:\n",
+ "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",
+ "# Gs*(HG2-HG1) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-((1005*TempG1)+((1884+TempG1)+2502300)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-(1005*TempG1))-(Gs*Y1*((1884+TempG1)+2502300)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",
+ "# Solving Simultaneously:\n",
+ "a = numpy.array([[HG2-(1005.0*TempG1),-((1884.0+TempG1)+2502300.0)],[(-Y2), 1.0]]);\n",
+ "b = numpy.array([[((Ss*HS2)+Q-(Ss*HS1))],[(Ss*(X1-X2))]]);\n",
+ "c=inv(a)\n",
+ "soln =np.dot(c, b)\n",
+ "Gs = soln[0];# [kg dry air/h]\n",
+ "Y1 = soln[1]/soln[0];# [kg water/kg dry air]\n",
+ "# From Fig. 7.5 (Pg 232)\n",
+ "Enthalpy_air = 56.0;# [kJ/kg dry air]\n",
+ "HeatLoad = Gs*(HG2-Enthalpy_air*1000);# [W]\n",
+ "print\"Air Flow Rate: \",round(Gs,2),\" kg/h\\n\"\n",
+ "print\"Moisture content of air: \",round(Y1,2),\" kg water/kg dry air \\n\"\n",
+ "print\"Heat Load of drier: \",round(HeatLoad/1000),\" kW\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.7 - Page: 700\n",
+ "\n",
+ "\n",
+ "Air Flow Rate: 2681.03 kg/h\n",
+ "\n",
+ "Moisture content of air: 0.02 kg water/kg dry air \n",
+ "\n",
+ "Heat Load of drier: 163995.0 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.8: Page 705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.8\n",
+ "# Page: 705\n",
+ "\n",
+ "print'Illustration 12.8 - Page: 705\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "from numpy.linalg import inv\n",
+ "import numpy as np\n",
+ "#***Data***#\n",
+ "x1 = 8.0;# [percent moisture]\n",
+ "x2 = 0.5;# [percent moisture]\n",
+ "Rate_prod = 0.63;# [kg/s]\n",
+ "# Drying Gas:\n",
+ "xCO2 = 0.025;# [mole fraction]\n",
+ "xO2 = 0.147;# [mole fraction]\n",
+ "xN2 = 0.760;# [mole fraction]\n",
+ "xH2O = 0.068;# [mole fraction]\n",
+ "TempG2 = 480.0;# [OC]\n",
+ "Cs = 0.837;# [kJ/kg.K]\n",
+ "Temp1 = 27.0;# [OC]\n",
+ "Temp2 = 150.0;# [OC]\n",
+ "dp = 200.0*10**(-6);# [m]\n",
+ "Density_S = 1300.0;# [kg/cubic m]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(100-x1);# [kg water/kg dry solid]\n",
+ "X2 = x2/(100-x2);# [kg water/kg dry solid]\n",
+ "Ss = Rate_prod*(1-X2);# [kg dry solid/s]\n",
+ "Water_evap = Ss*(X1-X2);# [kg/s]\n",
+ "# Basis: 1 kmol of dry gas:\n",
+ "xDry = 1.0-xH2O;# [kmol]\n",
+ "XCO2 = 44.0*xCO2;# [kg]\n",
+ "XO2 = 32.0*xO2;# [kg]\n",
+ "XN2 = 28.0*xN2;# [kg]\n",
+ "Xdry = XCO2+XO2+XN2;# [kg]\n",
+ "cCO2 = 45.6;# [kJ/kmol.K]\n",
+ "cO2 = 29.9;# [kJ/kmol.K]\n",
+ "cN2 = 29.9;# [kJ/kmol.K]\n",
+ "cH2O = 4.187;# [kJ/kg.K]\n",
+ "Mav = Xdry/xDry;# [kg/kmol]\n",
+ "Y2 = xH2O*18.02/(xDry*Mav);# [kg water/kg dry gas]\n",
+ "cav = ((xCO2*cCO2)+(xO2*cO2)+(xN2*cN2))/(xDry*Mav);# [kJ/kmol.K]\n",
+ "# Assume:\n",
+ "TempG1 = 120.0;# [OC]\n",
+ "cDry = 1.005;# [kJ/kmol.K]\n",
+ "Tempo = 0;# [Base Temp,OC]\n",
+ "# By Eqn. 7.13:\n",
+ "HG2 = (cav+(1.97*Y2))*(TempG2-Tempo)+(2502.3*Y2);# [kJ/kg dry air]\n",
+ "# For the outlet air:\n",
+ "# HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1); [kJ/kg dry air]\n",
+ "# HG1 = (1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1; [kJ/kg dry air]\n",
+ "# By Eqn. 11.45:\n",
+ "HS1 = (Cs*(Temp1-Tempo))+(cH2O*X1*(Temp1-Tempo));# [kJ/kg dry air]\n",
+ "HS2 = (Cs*(Temp2-Tempo))+(cH2O*X2*(Temp2-Tempo));# [kJ/kg dry air]\n",
+ "# Q = 0.15*HG2*Gs; [kJ/s]\n",
+ "# Moisture Balance, Eqn. 12.39:\n",
+ "# Ss*(X1-X2) = Gs(Y1-Y2)\n",
+ "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",
+ "# Enthalapy Balance, Eqn. 12.40:\n",
+ "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",
+ "# Gs*(HG2-HG1) = (Ss*HS2)+(0.15*HG2*Gs)-(Ss*HS1)\n",
+ "# Gs*(HG2-(0.15*HG2)-((1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-(0.15*HG2)-(1.005*TempG1))-(Gs*Y1*((1.884+TempG1)+2502.3)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",
+ "a = np.array([[(HG2-(0.15*HG2)-(1.005*TempG1)),-((1.884+TempG1)+2502.3)],[(-Y2), 1.0]]);\n",
+ "b = np.array([(Ss*HS2)-(Ss*HS1),(Ss*(X1-X2))]);\n",
+ "c=inv(a)\n",
+ "soln = np.dot(c, b)\n",
+ "Gs = soln[0];# [kg dry air/s]\n",
+ "Y1 = soln[1]/soln[0];# [kg water/kg dry gas]\n",
+ "HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1);# [kJ/kg dry air]\n",
+ "Q = 0.15*HG2*Gs;# [kJ/s]\n",
+ "# Assuming the sychrometric ratio of the gas as same as that of air:\n",
+ "# For Zone II:\n",
+ "Tempw = 65.0;# [OC]\n",
+ "Temp_A = 68.0;# [OC]\n",
+ "# At point A, Fig. 12.28 (Pg 702)\n",
+ "Enthalpy_A = Cs*(Temp_A-Tempo)+(X1*cH2O*(Temp_A-Tempo));# [kJ/kg dry air]\n",
+ "# At point B, Fig. 12.28 (Pg 702)\n",
+ "Temp_B = Temp_A;# [OC]\n",
+ "Enthalpy_B = Cs*(Temp_B-Tempo)+(X2*cH2O*(Temp_B-Tempo));# [kJ/kg dry air]\n",
+ "\n",
+ "# Assuming that the heat losses in the three zones are propotional to the number of transfer units in each zone and to the average temp. difference between the gas and the surrounding air.\n",
+ "# Fractional heat loss in each Zone:\n",
+ "fr1 = 0.14;\n",
+ "fr2 = 0.65;\n",
+ "fr3 = 0.20;\n",
+ "# Calculations for zone III:\n",
+ "Cs3 = cav+(1.97*Y2);# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "def f1(TempGD):\n",
+ " return (Gs*Cs3*(TempG2-TempGD))-(Ss*(HS2-Enthalpy_B)+(fr3*Q))\n",
+ "TempGD = fsolve(f1,7);# [OC]\n",
+ "delta_TempG = Ss*(HS2-Enthalpy_B)/(Gs*Cs3);# [OC]\n",
+ "delta_TempM = ((TempG2-Temp2)+(TempGD-Temp_A))/2;# [OC]\n",
+ "NtoG3 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "# Calculations for zone I:\n",
+ "Cs1 = 1.005+(1.884*Y1);# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "def f2(TempGC):\n",
+ " return (Gs*Cs1*(TempGC-TempG1))-(Ss*(Enthalpy_A-HS1)+(fr1*Q))\n",
+ "TempGC = fsolve(f2,7);# [OC]\n",
+ "delta_TempG = Ss*(Enthalpy_A-HS1)/(Gs*Cs1);# [OC]\n",
+ "delta_TempM = ((TempGC-Temp_A)+(TempG1-Temp1))/2;# [OC]\n",
+ "NtoG1 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "# Calculations for zone II:\n",
+ "Cs2 = (cav+Cs1)/2.0;# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "True_deltaTemp = TempGD-TempGC;# [OC]\n",
+ "delta_Temp = fr2*Q/(Cs1*Gs);# [Change in temp resulting from heat loss,OC]\n",
+ "delta_TempG = True_deltaTemp-delta_Temp;# [OC]\n",
+ "delta_TempM = ((TempGD-Temp_A)-(TempGC-Temp_A))/log((TempGD-Temp_A)/(TempGC-Temp_A));# [OC]\n",
+ "NtoG2 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "NtoG = NtoG1+NtoG2+NtoG3;\n",
+ "\n",
+ "# Standard diameters are availaible at 1, 1.2 & 1.4 m.\n",
+ "Td = 1.2;# [m]\n",
+ "Area = math.pi*Td**2.0/4;# [square m]\n",
+ "Gs = Gs/Area;# [kg/square m.s]\n",
+ "Ss = Ss/Area;# [kg/square m.s]\n",
+ "Gav = Gs*(1+(Y1+Y2)/2.0);# [kg/square m.s]\n",
+ "# From Eqn. 12.47:\n",
+ "Ua = 237.0*Gav**0.417/Td;# [W/square m.K]\n",
+ "HtoG = Gs*Cs2*1000.0/Ua;# [m]\n",
+ "Z = NtoG*HtoG;# [m]\n",
+ "# Assume:\n",
+ "v = 0.35;# [m/s]\n",
+ "N = v/(math.pi*Td);# [1/s]\n",
+ "# From Eqn. 12.37:\n",
+ "K = 0.6085/(Density_S*dp**(1.0/2));\n",
+ "# Take:\n",
+ "phi_D = 0.05;\n",
+ "# From Eqn. 12.35:\n",
+ "phi_DO = phi_D-(K*Gav);\n",
+ "# From Eqn. 12.35:\n",
+ "s = 0.3344*Ss/(phi_DO*Density_S*N**0.9*Td);# [m/s]\n",
+ "print\"Height of the drier: \",round(Z,2),\" m\\n\"\n",
+ "print\"Drier Slope: \",round(s,5),\" m/m \\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.8 - Page: 705\n",
+ "\n",
+ "\n",
+ "Height of the drier: 5.89 m\n",
+ "\n",
+ "Drier Slope: 0.03304 m/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.9: Page 709"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.9\n",
+ "# Page: 709\n",
+ "\n",
+ "print'Illustration 12.9 - Page: 709\\n\\n'\n",
+ "import numpy as np\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "# Solution \n",
+ "\n",
+ "#***Data***#\n",
+ "x1 = 0.46;# [fraction moisture]\n",
+ "x2 = 0.085;# [fraction moisture]\n",
+ "Y1 = 0.08;# [kg water/kg dry solid]\n",
+ "Y2 = 0.03;# [kg water/kg dry solid]\n",
+ "G = 1.36;# [kg/square m.s]\n",
+ "#**********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg water/kg dry solid]\n",
+ "X2 = x2/(1-x2);# [kg water/kg dry solid]\n",
+ "# By water balance:\n",
+ "SsByGs = (Y1-Y2)/(X1-X2);# [kg dry solid/kg air]\n",
+ "# Since the initial moisture content of the rayon is less than the critical, drying takes place entirely within zone III.\n",
+ "# Comparing with Eqn. 12.22:\n",
+ "# (kY*A/(Ss(Xc-X*)))=0.0137*G**1.47\n",
+ "# thetha=integrate('(1/(0.0137*G**1.47))*(1/((X-X_star)*(Yw-Y)))','X',X2,X1) # [s]\n",
+ "X = np.array([X1, 0.80, 0.60, 0.40, 0.20 ,X2]);# [kg water/kg dry solid]\n",
+ "Y = zeros(6);\n",
+ "for i in range(0,6):\n",
+ " # From Eqn. 12.54:\n",
+ " Y[i] = Y2+((X[i]-X2)*SsByGs);# [kg water/kg dry gas]\n",
+ "\n",
+ "# From Fig. 7.5 (Pg 232):\n",
+ "Yw = np.array([0.0950, 0.0920, 0.0790, 0.0680, 0.0550, 0.0490]);# [kg water/kg dry gas]\n",
+ "X_star = zeros(6);\n",
+ "RH=zeros(6)\n",
+ "Val = zeros(6);\n",
+ "P = 51780.0;# [vapour pressure, kN/square m]\n",
+ "for i in range(0,6):\n",
+ " # From Eqn 7.8:\n",
+ " def f(p):\n",
+ " return Y[i]-((p/(101330.0-p))*(18.0/29))\n",
+ " p = fsolve(f,7);# [kN/square m]\n",
+ " RH[i] = (p/P)*100.0;\n",
+ " X_star[i] = (RH[i]/4)/(100.0-(RH[i]/4));# [kg water/kg dry solid]\n",
+ " Val[i] = 1/((X[i]-X_star[i])*(Yw[i]-Y[i]));\n",
+ "\n",
+ "plt.plot(X,Val);\n",
+ "plt.grid();\n",
+ "plt.xlabel(\"X kg water/kg dry solid\");\n",
+ "plt.ylabel(\"1/((X-X*)*(Yw-Y))\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area Under the curve:\n",
+ "Area = 151.6;\n",
+ "# From Eqn. 12.59:\n",
+ "thetha = Area/(0.0137*G**1.47);\n",
+ "print\"Time required for drying: \",round(thetha/3600,2),\" h\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.9 - Page: 709\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cVHXd//HXGxBv8GYhDMW7RRMR71ZNvK+11Eu7zJtS\nU0tF07ryujIzCzQLLTXUvOtXWVkK3YjiTablLcp6D6SyiCAhJireoKiQ5h20n98f3zMyDDvD2dk5\nc767+3k+Hvtgzpkz57z3DDvfOZ/vOd8jM8M555xrT6+8AzjnnIuXNxLOOefK8kbCOedcWd5IOOec\nK8sbCeecc2V5I+Gcc64sbyRctyDpHEl/qPD8U5I+leU2ujJJm0p6W5LyzuLi4o2Ey4SkoyRNlfSO\npIWSpkj6RoabrHjBj5lta2YPZLUNSc2SXkyzEkmNktok5fb3J2m+pM8Ups3sBTNbx/zCKVfCGwlX\nc5K+A1wOXAgMMrNBwP8Ae0rqW+Y1nf2/WI9vwLXeRiaZJfVOsZhltX3XvXgj4WpK0nrAucA3zOxm\nM/s3gJm1mtlXzOzDZLlxkq6UdLukd4BmSf8tabqkJZJekDSmaL2Fb98nS3pJ0stJY1RgQF9J4yX9\nKykv7Vz0+vmSPps87i3pLEnzkmUfk7RR8twVybaXJPP3qnI/tEj6kaSHkm3cJeljydOFI5rFSYln\n1+Q1J0qaLelNSXdK2rRofftL+oekxZJ+Iel+SV9Nnhsp6WFJl0paBIyRtLmk+yQtkvS6pD8m7w1J\nyWxT4LZk+2eUHt1IGizpVklvSHpG0klFWc6RNLHcvnbdizcSrtZ2B1YH/pJi2aOBH5vZ2sDDwDvA\nV8xsPeC/gW9IOqTkNc3AJ4D9gVGFD37Ct+KDgQnAesCtwM+LXmcsLxedDhwFHGhm6wInAO8lz00D\ndgD6A9cCN5Q7+kn5+40EPg70Bc5I5u+d/LteUuKZmvyeZwKHAQOBB5PfBUkDgRuAUcAA4B+E/Vxc\nGhoBPJts64Jkf5wPbAhsDWwCnANgZscCLwAHJdv/aTvZr0uW2RA4HLhA0j5Fz3+e8vvadSPeSLha\nGwgsMrO2wgxJj0h6S9K7Jd/MbzGzRwHM7AMzu9/MZiXTMwkfVJ8uWf+5ZvaemT0FXEP4IC540Mzu\nTOrqfyR82LfnJOD7ZvZMYVtm9mby+E9m9paZtZnZpYQGb6sq9oMB15jZPDN7H5gINBV2STvL/w/w\nEzP7R7LvfgI0JUcTnwOeMrNbklw/A14tef3LZvaL5Pn3zexZM7vXzJaa2SLgMlbel+2StAmwBzDK\nzD40sxnAb4HjihZLu69dF+eNhKu1N4CBxX0MZraHmfVPnivMN2CFjl5Ju0qaLOk1SYuBrwMfY0XF\nr3kBGFw0vbDo8bvAGmX6OjYmfOteSVJ6mZ2Udd4ifFMeWOZ3XZXiD/L3gLUrLLsZcEXSmL5F2FcA\nGxG+zS8oWb50unRfDpJ0naQFkpYAf2DlfVnOYODNQqkw8UKSpSDtvnZdnL+prtYeBT4ADq3itdcC\ntwAbm1kD8CtW/j+6acnjl6rYzouEktUKJO0NfBc4wswakoZtCbXv4G3vDKIXgK+ZWf+in37JkdYr\nhIatkFPF02XWeQHwH2DbpHx3LCvuy0pnMb0MDJBU3KhtysoNk+sBvJFwNWVmiwkd17+U9EVJ60jq\nJakJ6Fe0aHsfvGsDb5nZh5JGAMew8ofZ2ZLWlLQNod5/fRUxfwv8WNInFGwvaUCy/WXAIkl9Jf0Q\nWLeK9ReUa1xeB9qALYrm/Qo4S9JwCCcASDoiee52YDtJh0jqA/wvsMEqtr028G/gX0mn/HdLnl9Y\nsv2PmNmLwCPATyStLml74ERCWcn1MN5IuJozs4sJncPfI5RcXiV8CH6PcKQBK3YkF5wC/EjSv4Af\n0H4DcD8wD5gEXGxmkyqsr9y35UsJfQR3E44UrgLWAO4C7gTmAvMJJaIXStZX6Rt4pe1/9Foze5fQ\nqfxwUl4aYWa3EE4Zvi4pD80E/itZfhFwBHARsIjQEf0Y4YitXK5zgZ2S3+824KaSZX5CaHDfknR6\nO3mPBhoJRxU3Az80s/sqbM+vr+imlOW1M5LOBL5C+NY0k3AWST/CH/9mhD/EI5Nvn4XlTyQcJp9q\nZndnFs51KZIagX8CfYo7xXuipPb/InCMmd2fdx7XvWV2JJH8UZ8M7GRm2wG9CacdjgbuMbOhwL3J\nNMlh9peA4cABhHKFH+k4x0fXSTRIWh04K5k9Jc9MrmfI8kP4X8BSYK2kjroW4dD1YGB8ssx4lndw\nHgJMSE7Zm08oKYzIMJ/renpySWN3wt/E64RrSA41sw8qv8S5zsuskUjOO7+EUNN9GVhsZvcQhmko\nnD63EBiUPB7MimdPLGDFU+5cD2Zm882sd08tNZnZuWY20MzWNbPdzezveWdyPUOW5aYtgNMInV+D\ngbUlfaV4meRCnI50BDrnnKujPhmu+5PAI2b2BoCkmwmHzK9K2sDMXpW0IfBasvxLhKEDCjamnXPg\nJXnD4ZxzVTCzDl/zk2WfxBxgt+ScdgH7ArMJp+MdnyxzPOHiKQjjvxyVnJ8+BNiSMI7OSswsqp8x\nY8bknqGr5PJMnqkn5IoxU7UyO5IwsxmSfk84n7sNeAL4DbAOMDEZwXI+cGSy/GxJEwkNyTLgFOvM\nb1ZH8+fPzztCu2LM5ZnS8UzpxZgrxkzVyrLchJldRLgAqNibhKOK9pa/gDCcgHPOuQj4dQg1MHLk\nyLwjtCvGXJ4pHc+UXoy5YsxUrUyvuM6CpK5ShXLOuWhIwiLruO4xWlpa8o7QrhhzeaZ0PFN6MeaK\nMVO1vJFwzjlXlpebnHOuB/Byk3POuZrzRqIGYq0/xpjLM6XjmdKLMVeMmarljUSV3nsP2nrkUHPO\nuZ7E+ySqtOuucNllsMceeSdxzrlV8z6JOvvc5+CGG/JO4Zxz2fJGokpHHBEaiba2eOuPMebyTOl4\npvRizBVjpmp5I1Gl4cNhvfVgit9A0jnXjXmfRCeccw4sWRL6JpxzLmbV9kl4I9EJs2bBAQfA889D\nLz8mc85FzDuuc7DNNrDOOnDllS15R2lXjHVRz5SOZ0ovxlwxZqqWNxKddOSR0I3+Pzjn3Aq83NRJ\nXnJyznUFXm7KSaHkNHVq3kmcc672vJGogV12aYnywroY66KeKR3PlF6MuWLMVK1MGwlJW0maXvSz\nRNKpkgZIukfSXEl3S2ooes2Zkp6RNEfS/lnmq5XmZrjxRh/LyTnX/dStT0JSL+AlYATwTWCRmV0k\naRTQ38xGSxoOXAvsAmwETAKGmllb0Xqi6pMAMAtlp6uvht12yzuNc86trCv0SewLzDOzF4GDgfHJ\n/PHAocnjQ4AJZrbUzOYD8wiNStSkMEzHxIl5J3HOudqqZyNxFDAheTzIzBYmjxcCg5LHg4EFRa9Z\nQDiiiFpLSwtHHBFfySnGuqhnSsczpRdjrhgzVasujYSkvsDngZW6d5PaUaX6UVy1pTK22Qb69YNp\n0/JO4pxztdOnTts5EHjczF5PphdK2sDMXpW0IfBaMv8lYJOi122czFvByJEjaWxsBKChoYGmpiaa\nm5uB5S14vacLJadLL23hlFPqv/32ppubm3PdfnvThXmx5Cn9xhdLnhinY/z/5O9f+emWlhbGjRsH\n8NHnZTXq0nEt6TrgDjMbn0xfBLxhZhdKGg00lHRcj2B5x/UninuqY+y4Lpg5Ew46CObPD42Gc87F\nItqOa0n9CJ3WNxfNHgvsJ2ku8JlkGjObDUwEZgN3AKdE2yIUKbTe224La60VT8mp9FtWDDxTOp4p\nvRhzxZipWpmXm8zs38DAknlvEhqO9pa/ALgg61xZKD7Laddd807jnHOd52M31ZiXnJxzMYq23NTT\nbLstrLlmPCUn55zrDG8kaqC4/lgoOcUwllOMdVHPlI5nSi/GXDFmqpY3Ehk48sjQSERcFXPOuVS8\nTyIDZrD11jB+vHdgO+fi4H0SEYmp5OScc53hjUQNtFd/LIzllOdBT4x1Uc+UjmdKL8ZcMWaqljcS\nGdluO1h9dfj73/NO4pxz1fM+iQz94Afw/vtw8cV5J3HO9XTV9kl4I5GhJ5+Egw+G557zC+ucc/ny\njusclas/5l1yirEu6pnS8UzpxZgrxkzV8kYiQ36Wk3Ouq/NyU8ZmzIBDDvGSk3MuX15uitT220Pf\nvvDYY3kncc65jvNGogYq1R+l5cN01FuMdVHPlI5nSi/GXDFmqpY3EnVQuMdEF6qSOecc4H0SdWEG\nW20Ff/oT7LJL3mmccz2R90lEzM9ycs51Vd5I1ECa+mOhkajnQVCMdVHPlI5nSi/GXDFmqlbmjYSk\nBkk3Snpa0mxJu0oaIOkeSXMl3S2poWj5MyU9I2mOpP2zzlcvO+wAq60Gjz+edxLnnEsv8z4JSeOB\n+83sakl9gH7A94FFZnaRpFFAfzMbLWk4cC2wC7ARMAkYamZtRevrcn0SBd//PixdChddlHcS51xP\nE2WfhKT1gL3N7GoAM1tmZkuAg4HxyWLjgUOTx4cAE8xsqZnNB+YBI7LMWE95lJycc64zsi43DQFe\nl3SNpCckXSWpHzDIzBYmyywEBiWPBwMLil6/gHBEEbW09ccddoA+fepXcoqxLuqZ0vFM6cWYK8ZM\n1epTh/XvBPyfmf1d0uXA6OIFzMwkVfpuvdJzI0eOpLGxEYCGhgaamppobm4Glr859ZxubW1NtbwE\nI0a0cMklMGFCfnnznG5tbY0qT0fev3pOF8SSJ+Zpf//an25paWHcuHEAH31eViPTPglJGwCPmtmQ\nZHov4Exgc2AfM3tV0obAZDMbJmk0gJmNTZa/ExhjZlOL1tll+yQApk+HL34Rnn3Wx3JyztVPlH0S\nZvYq8KKkocmsfYFZwG3A8cm844Fbkse3AkdJ6itpCLAlMC3LjPXW1AS9e/tZTs65rqEe10l8E/iT\npBnA9sD5wFhgP0lzgc8k05jZbGAiMBu4AzilKxw2lB5iVlLPC+s6kqtePFM6nim9GHPFmKlaWfdJ\nYGYzCKe0ltq3zPIXABdkGipnRxwRSk5jx3rJyTkXNx+7KQdmsOWWcP31sPPOeadxzvUEUfZJuPb5\nWE7Oua7CG4kaqKb+WLjHRJYHRTHWRT1TOp4pvRhzxZipWt5I5KSpKRxRPPFE3kmcc64875PI0Zln\nhiOJsWPzTuKc6+68T6IL8rGcnHOx80aiBqqtP+64Y/h3+vTaZSkWY13UM6XjmdKLMVeMmarljUSO\n/Cwn51zsvE8iZ088ERqKefP8wjrnXHa8T6KLyrrk5JxzneGNRA10pv6YZckpxrqoZ0rHM6UXY64Y\nM1XLG4kI+FlOzrlYeZ9EBMxgiy3gppuWl5+cc66WMu2TkNRP0jBJWyW3H3U1JIVhOiZOzDuJc86t\nqGwjIWkdSadLmgbMBK4BxgNPSXpM0rclrV2voDGrRf0xi5JTjHVRz5SOZ0ovxlwxZqpWpSOJW4C3\ngc+b2eZmtruZ7ZbcivQg4N/AX+oRsifYaSdoa4PkFtDOORcF75OIyKhR4damF3TrWy455/JQbZ9E\nqkZC0tZAI9AGPG9mczqcsEa6cyPx2GNw9NEwd65fWOecq62ad1xLGiLpZ5LmAb8CjgNOAH4t6VlJ\nV0hqrDZwd1Kr+uPOO8OyZTBjRk1WF2Vd1DOl45nSizFXjJmqValP4kLgNmBrM/u0mR1tZkeZ2aeB\nYcDfgItWtQFJ8yU9KWl60gmOpAGS7pE0V9LdkhqKlj9T0jOS5kjav3O/XtfiZzk552JTttwkaT0z\nW9LpDUjPATub2ZtF8y4CFpnZRZJGAf3NbLSk4cC1wC7ARsAkYKiZtRW9ttuWm8BLTs65bGRxncQT\nko7uRKZipcEOJpxOS/LvocnjQ4AJZrbUzOYD84ARNcrQJdS65OScc51RqZH4DPClpCy0ZSe2YcCk\n5NqKk5N5g8xsYfJ4ITAoeTwYWFD02gWEI4qo1bL+WMuxnGKsi3qmdDxTejHmijFTtfqUe8LMngcO\nlfQ54GFJfyec3ZQ8bQen3MaeZvaKpPWBeyStcGaUmZmkSvWjlZ4bOXIkjY2NADQ0NNDU1ERzczOw\n/M2p53Rra2tN17f55nDppc2cdx7cf3/9f58sp1uTC0FiyZPF+1eL6YJY8sQ87e9f+9MtLS2MGzcO\n4KPPy2pUPAVW0jDgF8Bbyb+Fhc3M7u/wxqQxwDvAyUCzmb0qaUNgspkNkzQ6WfnYZPk7gTFmNrVo\nHd26TwLCVdebbw5//jM0NeWdxjnXHWRxCuxYwlXXPzWzw81sspm1JD+pGghJa0laJ3ncD9ifMMTH\nrcDxyWLHJ9shmX+UpL6ShgBbAtM6+kt1dX7HOudcLCr1SSwDmszsjsIMSX/t4PoHAQ9KagWmAn81\ns7uBscB+kuYS+j7GApjZbGAiMBu4AzilKxw2lB5i1kItxnLKIldneaZ0PFN6MeaKMVO1KvVJnN3O\n7A51IpvZc8BKBZPkdNh9y7zmAqDHD0zxyU/C0qXw5JOwww55p3HO9VQdGrtJ0jVmdkKGedJk6AoH\nFzXx3e/C6qvDeeflncQ519Vldj8JSftKWhMg7waipznySL9jnXMuX2luOnQcMEPSVEkXS/q8pP5Z\nB+tKsqo/fvKT8OGHoeRUjRjrop4pHc+UXoy5YsxUrVU2EmZ2nJkNBQ4DXiScCvt61sFcOMvp8MP9\nLCfnXH5W2Sch6VhgL2B7QuPwEPCQmT2Sfbx28/SYPgmAadPg2GNhzhwfy8k5V73M7ich6Q3gWeBK\noCU5Yyk3Pa2RMIMhQ+DWW2H77fNO45zrqjLruAYGAicCawDnS5om6Y8d3VB3lmX9sTMlpxjrop4p\nHc+UXoy5YsxUrTSNxDrApsBmhLvTNbB8DCdXB4V7TPSgAyjnXCTSlJueBB4GHgQeMLMFFV+QsZ5W\nbgIvOTnnOq/aclPZK64lfcnMrjcz/1jKWXHJyRsJ51w9VSo3HSfpTklb1C1NF1WP+mM1YznFWBf1\nTOl4pvRizBVjpmqVbSTM7L+BXwF/lfRDSQOTe1MPkDSgfhEdwIgR8N578NRTeSdxzvUkafokmoAH\nCPeUKL7p0OYZZyuXp8f1SRSccQasuSb8+Md5J3HOdTVZ3E9iDUk/Bq4DjjGzzcxsSPKTSwPR09Vi\n+HDnnOuISn0SMwgd2zuaWUfvI9Gj1Kv+2NGSU4x1Uc+UjmdKL8ZcMWaqVtmzm4DDkpsAuUgUn+W0\n3XZ5p3HO9QRl+yQkXQ1caWZ/L/P8rsD/1Hv48J7cJwEwZQqccALMnu1jOTnn0qv52E2StgO+C+wG\n/AN4BRCwAbAV8Ajh/td1Pd+mpzcSZrDZZnD77bDttnmncc51FTXvuDazmWZ2HLAdcD5wL3APcB6w\nvZmNrHcDEat61h+l0IE9ceKql42xLuqZ0vFM6cWYK8ZM1ao4dpOk7c3sA+Dd5OrriWY21czeT7sB\nSb0lTZd0WzI9QNI9kuZKultSQ9GyZ0p6RtIcSftX/Vt1c36Wk3OuXipeJyHpCuDnwP+Z2beq2oB0\nOrAzsI6ZHSzpImCRmV0kaRTQ38xGSxoOXAvsAmwETAKGmllbyfp6dLkJvOTknOu4LK6TGJM8PzVM\nakwVoTYGPgf8ltCfAXAwMD55PB44NHl8CDDBzJaa2XxgHjCio9vsCfyOdc65eqnUJ3EuoQ/iemBS\nMt1RlxE6v4uPBgaZ2cLk8UJgUPJ4MFA8wuwCwhFF9PKoP6YpOcVYF/VM6Xim9GLMFWOmalW6TgJg\nVzP7RnLl9a0dWbGkg4DXzGy6pOb2ljEzk1SpdtTucyNHjqSxsRGAhoYGmpqaaG4Omyi8OfWcbm1t\nrfv2P/WpZt55B8aNa2HIkPr+vp2Zbm1tjSpPXu/fqqYLYskT87S/f+1Pt7S0MG7cOICPPi+rscqx\nm6pesXQBcCywjHBXu3WBmwl9Ds1m9qqkDYHJZjZM0mgAMxubvP5OYIyZTS1Zb4/vkyg4/XRYZx04\nt5pjPOdcj5LJ7Usl7STpYklTJS2U9Gry+GJJO1Z6rZmdZWabmNkQ4CjgPjM7lnBEcnyy2PHALcnj\nW4GjJPWVNATYEpjW0V+oJymUnJxzLiuVOq5vB74DPAYcTbh96ZDk8ePAGZL+1oFtFb7+jwX2kzQX\n+EwyTTIEyERgNnAHcEpXOWQoPcSsl113hbffhlmz2n8+r1yVeKZ0PFN6MeaKMVO1KvVJnFDUwVzs\nn8nPdZI+nmYjZnY/cH/y+E1g3zLLXQBckGadDnr1Wn6W0zbb5J3GOdcdreo6iX3NbFLh3zrmKsv7\nJFb0yCNw0klhLCfnnCsnkz4JoFnSnkBzValc5nbbrXLJyTnnOmNVF9P1JYzZ1Leai+l6ijzrj8Ul\np1Ix1kU9UzqeKb0Yc8WYqVqruphuDnAOMKfKi+lcHfhZTs65rKyqT+I0M7tc0qlm9rM65irL+yRW\n1tYGm24Kd98Nw4fnncY5F6Msxm7a1MwuByhtICTt3fGILiuVSk7OOdcZlTquWySNktS7MEPSBpL+\nCFyefbSuI4b645FHrnyPiRhylfJM6Xim9GLMFWOmalVqJHYGNgdaJX1W0mmEEWGnEIbWcBHZbTdY\nssRPhXXO1dYqx25KGodLgZeB3c3sxXoEq5DH+yTKOO006N8fxvh5aM65Eln0SfSX9GvgBOBA4Ebg\nDkmfrT6my5Kf5eScq7VK5abHCTf+2dnM7jKz04CvAOdJmlCXdF1ELPXH3XeHxYuXl5xiyVXMM6Xj\nmdKLMVeMmapVqZH4tJldbGbLCjPMrBXYA5iceTLXYb16wRe/6EcTzrna6dD9JCQ9YWY7ZZgnTQbv\nk6jg4Yfh61+Hp57KO4lzLiZZjd200nY6ugFXX4WS09NP553EOdcddLSRuD2TFF1cTPXH4pJTTLkK\nPFM6nim9GHPFmKlalc5u+rmkdYvnmdn3JW0t6d7so7lqHXFEuLCurS3vJM65rq5sn4Sk7wNfBX5g\nZn+S1A8YA3wB+K6Z/bl+MVfI5X0Sq9DWBsl90fnNb2DYsFzjOOciUPM+CTM7n3AHuWMkPQDMAP4D\nbJ9XA+HS6dULJk8ORxR77QXnngsffJB3KudcV7SqPgkjdFavBvQGZpvZu5mn6mJirD/27g3bbdfC\n9Onw+OOw447w0EN5p4pzX3mmdGLMBHHmijFTtSr1SfwAmAT83sx2B/YGDpV0v6RV3lFZ0hqSpkpq\nlTRb0k+S+QMk3SNprqS7JTUUveZMSc9ImiNp/87/em6TTeAvf4Ef/Qi+9CX4xjfCGE/OOZdGpT6J\nK4CzzeztkvkHApeZ2Sor3ZLWMrN3JfUBHgLOAA4GFpnZRZJGAf3NbLSk4cC1hMEDNyI0UEPNrK1k\nnd4nUaXFi2HUKPjb3+BnP4PDDgP5Sc3O9QjV9kl06GK6oo2tYWbvd2D5tYD7gZHATYSruRdK2gBo\nMbNhks4E2szswuQ1dwLnmNmUknV5I9FJDz4IX/sabLUV/PznsPHGeSdyzmUtiwH+zpE0qL3nzOx9\nSRtKqnhLU0m9JLUCC4HJZjYLGGRmC5NFFgKFbQwGFhS9fAHhiCJ6sdYfy+Xae29obYWmptBX8Ytf\nwH/+k2+mPHmmdGLMBHHmijFTtfpUeO4x4DpJfYEngFcIndgbADsBHwA/rbTypFTUJGk94C5J+5Q8\nb5IqHRa0+9zIkSNpbGwEoKGhgaamJpqTcz4Lb049p1tbW3PdfrXT55wDjY0tXHIJ/PGPzVx1FSxa\nlO32W1tbo/n9C9Mxvn8FseSJedrfv/anW1paGDduHMBHn5fVSHM/iU2APYFNk1nPAw+b2YLyr2p3\nPT8A3gNOAprN7FVJGxKOMIZJGg1gZmOT5e8ExpjZ1JL1eLmpxtra4Kqr4Oyzw7hPZ58Na6yRdyrn\nXC3VtU8i1YqlgcAyM1ssaU3gLuBc4L+AN8zswqRhaCjpuB7B8o7rT5S2CN5IZOfll+HUU+HJJ8NF\neIUL8pxzXV8WfRJXSyp7m1JJu0q6psK6NwTuS/okpgK3mdm9wFhgP0lzgc8k05jZbGAiMBu4Azil\nq7QGpYeYsehorsGD4cYb4eKL4dhj4aST4M03881UD54pnRgzQZy5YsxUrUp9EpcB35W0G/APVuyT\n2Ap4hAp9EmY2k9B3UTr/TcKV3O295gLggrThXTYOOQT22Qe+/33YZhu47LJwjYWfLutcz5OmT2J1\nYEdgM0JH8vPAjI6cAltLXm6qr0cfhZNPhs02g1/+MvzrnOt6sig3/UbSYUBfM5tiZteb2UQzm5pX\nA+Hqb/fd4YknYI89YOedw1HFsmWrfp1zrnuoNHbT1UATcLuk+ySNkrRDnXJ1KbHWH2uVq2/fUHp6\n5BG49VbYbbdwnUWemWrJM6UTYyaIM1eMmapVaRTYKWY2xsz2Bo4EXgS+k4zFdLWkI+uW0kVh6FC4\n7z445RTYf/8wxMe7Ptyjc91ah0+BlSTgu8BqyXDideV9EnFYuBBOOw2mToVf/xr22y/vRM65Suo9\ndtOLZrZJh19YA95IxOX228ORxac+BZdcAuuvn3ci51x7sui4nlnuh+XjLTnirT/WI9fnPgdPPQUD\nB8K228Lvfw+V2vAY95VnSifGTBBnrhgzVavSdRIfBw4A3mrnuUeyieO6orXXhksvhWOOCafL/uEP\n8KtfwRZb5J3MOddZle4ncTVwjZk92M5zE8zs6KzDtcfLTXFbuhQuvxwuvBC+9z349rdhtdXyTuWc\ni27spqx4I9E1PPtsuAvea6+FwQN3KTvAi3OuHmreJ+HSi7X+mGeuLbaAu+6C73wHDjooHFG8806c\n+8ozpRNjJogzV4yZquWNhMuMFAYKnDUrDBS47bYwZcqqX+eci4eXm1zdTJoU7lexyy5wxRUwyM+R\nc65uvNzkorfvvjBzJjQ2wnbbwe9+V/l0Wedc/ryRqIFY648x5po2rYWxY+Huu8NpsvvsA3Pn5psp\nxv3kmdKLMVeMmarljYTLRVNT6J849NAwwux558GHH+adyjlXyvskXO6efz4M7fH88+F02d13zzuR\nc92PXyd5yFWSAAAS80lEQVThujQzmDgxDBr4hS/AT34C666bdyrnug/vuM5RrPXHGHOVyySFW6TO\nmhXKTttsA7fckm+mPHmm9GLMFWOmamXaSEjaRNJkSbMkPSXp1GT+AEn3SJor6W5JDUWvOVPSM5Lm\nSNo/y3wuPgMGhJLTH/4Q7lfxhS/Ayy/nncq5nivTcpOkDYANzKxV0trA48ChwAnAIjO7SNIooL+Z\njZY0HLgW2AXYCJgEDDWztqJ1ermph3j/fTj//HAW1I9+FK6x6OXHvs5VJcpyk5m9amatyeN3gKcJ\nH/4HA+OTxcYTGg6AQ4AJZrbUzOYD84ARWWZ08VpjDfjxj2Hy5HBksffeMHt23qmc61nq9r1MUiOw\nIzAVGGRmC5OnFrL8/hSDgQVFL1tAaFSiFmv9McZc1WTadlt46CH48pfh05+GMWPCUUaembLmmdKL\nMVeMmapV6X4SNZOUmm4CvmVmb4c7oAZmZpIq1Y9Wem7kyJE0NjYC0NDQQFNTE83NzcDyN6ee062t\nrbluvytNt7a2Vv36U06B9ddv4Yor4Prrm/nNb6CtrfP5Ynz/CmLJE/O0v3/tT7e0tDBu3DiAjz4v\nq5H5KbCSVgP+CtxhZpcn8+YAzWb2qqQNgclmNkzSaAAzG5ssdycwxsymFq3P+yQcf/4zfPOb4c54\nF14I/fvnnci5uEXZJ6FwyPA7YHahgUjcChyfPD4euKVo/lGS+koaAmwJTMsyo+uaDjssnC7bp084\nXfaGG3wcKOeykHWfxJ7AV4B9JE1Pfg4AxgL7SZoLfCaZxsxmAxOB2cAdwCld4bCh9BAzFjHmqmWm\n9daDX/4yNBBjxsDBB8OLL+abqVY8U3ox5ooxU7Uy7ZMws4co3xDtW+Y1FwAXZBbKdTt77gnTp4ey\n0447wg9/CP/7v9C7d97JnOv6fFgO163MmQNf+xp88EG4KG/77fNO5FwcouyTcK7ehg2DlhY46ST4\n7GfhzDPhvffyTuVc1+WNRA3EWn+MMVc9MvXqBSefDE8+Cf/8Z7jB0b335pupozxTejHmijFTtbyR\ncN3WhhvC9dfDZZfBCSfAyJHwxht5p3Kua/E+CdcjvP02nH12aDQuuQSOOSaMPOtcT+H3k3AuhWnT\nQilqww3hyithyJC8EzlXH95xnaNY648x5so704gR8Nhj0NwMu+wCP/0p3HNPvpnak/d+ak+MmSDO\nXDFmqlZdxm5yLiarrQajR8Phh4frKc46CzbbDIYOhS23DP8Wfjbe2Icndz2bl5tcj/fhh+EsqGee\ngblzV/x56y34xCdWbjyGDoWBA71fw3Ud3ifhXAbeeQfmzVu58Zg7N4wV1V7jseWWsM46eSd3bkXe\nSOSopaXlo6F6YxJjru6U6Y032m885s2Ddddtv/HYYgtYffXsMmUpxkwQZ64YM1XbSHifhHNV+tjH\nYPfdw0+xtrZwX+7ihuP++0M56/nnYfDglRuPoUNh0019vCkXHz+ScK6Oli6F+fOXNx7F/SCvvw6b\nb75y4zF0KAwa5P0frnO83ORcF/fuuyv2fxQ3IB980H7jseWW0NCQd3LXFfh1EjmK9ZzoGHN5pvLW\nWiuMWnv44bDHHi1ccw08/HA4wpg/H37xCzjwwNBhfttt8PWvh1N0Bw2CvfaCE0+EsWPh5pvhqadq\nP7BhLPupVIy5YsxULe+TcK4LGDAAdt01/BQzg1deWfGoY/z48O9zz4UGpLQDfejQcF1IH//rdyl4\nucm5bmrZMnjhhfbPwHr1VWhsbP8MrMGDvf+jO/I+Cedcau+/D88+u3Lj8cwz4dqQ0n6PoUPDRYUf\n+5g3IF1VlI2EpKuB/wZeM7PtknkDgOuBzYD5wJFmtjh57kzgROA/wKlmdnc764yukYjxnGiIM5dn\nSifPTEuWrHz1+TPPwNNPt/Cf/zSz0UahL2TjjWn38aBB9T2V19+/dGK9TuIa4P8Bvy+aNxq4x8wu\nkjQqmR4taTjwJWA4sBEwSdJQM2vLOKNzrsh668EnPxl+irW0hEERX3oJFiwIPy+9FG4ZO2nS8vlv\nvhkainKNyMYbh5JWmosKXf4yLzdJagRuKzqSmAN82swWStoAaDGzYclRRJuZXZgsdydwjplNKVlf\ndEcSzrnlPvwwdKYXGpHiBqXw+JVXwqm75RqSwr8+vEntxHok0Z5BZrYwebwQGJQ8HgwUNwgLCEcU\nzrkupG/fcPbUZpuVX6atDV57beXG4777VmxU+vQpfzRSeOz9JNnK9SQ4MzNJlQ4LusQhQ4z1R4gz\nl2dKp7tn6tULNtgg/JSWtQrMYPHiFRuSl14K9wO55Zbl8955p4VNNmmuWN4aNKi+p/zG+P5VK49G\nYqGkDczsVUkbAq8l818CNilabuNk3kpGjhxJY2MjAA0NDTQ1NX30hhQuYqnndGtra67b70rTra2t\nUeWJ9f0riCVPHtMSzJgRpg84oPzy06a1cthhzSxYEG4gtWgRvPtuM/fdFzrbX38d3n67mUGDYN11\nWxg4EHbcMTQqS5a0sP768PnPNzN4MEyZUpv8BXnuv5aWFsaNGwfw0edlNfLok7gIeMPMLpQ0Gmgw\ns0LH9bXACJKOa+ATpR0Q3ifhnOuopUuX95OU6yt55ZUweu+qylvrrpv3b1OdWE+BnQB8GhhI6H/4\nIfAXYCKwKSufAnsW4RTYZcC3zOyudtbpjYRzruba2sIQKJU63BcsCKf3lnawl3a69+8f7oAYkygb\niSzE2Ei0RFp/jDGXZ0rHM6VXz1xm4TqSSg3JSy/B4sUt9OnTTL9+sPbaK/6kmVc8vdFG8PGPdz57\nVzq7yTnnuiQpnLrb0ADbblt+ucmTw31G3nkH/v3v8G/hp73pt96CF19sf5njjoPTT6/f71jKjySc\nc64H8KHCnXPO1Zw3EjVQetpbLGLM5ZnS8UzpxZgrxkzV8kbCOedcWd4n4ZxzPYD3STjnnKs5byRq\nINb6Y4y5PFM6nim9GHPFmKla3kg455wry/sknHOuB/A+CeecczXnjUQNxFp/jDGXZ0rHM6UXY64Y\nM1XLGwnnnHNleZ+Ec871AN4n4Zxzrua8kaiBWOuPMebyTOl4pvRizBVjpmp5I+Gcc64s75Nwzrke\nwPsknHPO1Vx0jYSkAyTNkfSMpFF550kj1vpjjLk8UzqeKb0Yc8WYqVpRNRKSegM/Bw4AhgNHS9o6\n31Sr1tramneEdsWYyzOl45nSizFXjJmqFVUjAYwA5pnZfDNbClwHHJJzplVavHhx3hHaFWMuz5SO\nZ0ovxlwxZqpWbI3ERsCLRdMLknnOOedyEFsj0SVPW5o/f37eEdoVYy7PlI5nSi/GXDFmqlZUp8BK\n2g04x8wOSKbPBNrM7MKiZeIJ7JxzXUg1p8DG1kj0Af4BfBZ4GZgGHG1mT+cazDnneqg+eQcoZmbL\nJP0fcBfQG/idNxDOOZefqI4knHPOxSW2juuPpLmoTtLPkudnSNox70yShkl6VNL7kr6TdZ6Umb6c\n7J8nJT0safsIMh2SZJou6XFJn8k6U5pcRcvtImmZpC/knUlSs6Qlyb6aLunsvDMV5Zou6SlJLXln\nknRG0T6ambx/DTlnGijpTkmtyX4amWWeDuTqL+nPyd/gVEnbVFyhmUX3Qyg1zQMagdWAVmDrkmU+\nB9yePN4VmBJBpvWBTwLnAd+JZD/tDqyXPD4gkv3Ur+jxdoRrY3LfV0XL3Qf8Ffhi3pmAZuDWrPdP\nBzM1ALOAjZPpgXlnKln+IGBS3pmAc4CfFPYR8AbQJ4JcFwM/SB5vtap9FeuRRJqL6g4GxgOY2VSg\nQdKgPDOZ2etm9hiwNMMcHc30qJktSSanAhtHkOnfRZNrA4syzpQqV+KbwI3A6xFl6vAZKRlnOga4\nycwWAJhZ1u9fRy+yPQaYEEGmV4B1k8frAm+Y2bIIcm0NTAYws38AjZLWL7fCWBuJNBfVtbdMlh+A\nMV7o19FMXwVuzzRRykySDpX0NHAHcGrGmVLlkrQR4Q/qymRW1h12afaVAXskpYHbJQ2PINOWwABJ\nkyU9JunYCDIBIGkt4L+AmyLIdBWwjaSXgRnAtzLOlDbXDOALAJJGAJtR4bMzqrObiqT94yz9hpXl\nH3WMPfypM0naBzgR2DO7OEDKTGZ2C3CLpL2BPxAOe7OUJtflwGgzM0ki+2/waTI9AWxiZu9KOhC4\nBRiac6bVgJ0Ip6qvBTwqaYqZPZNjpoLPAw+ZWdbjYqTJdBbQambNkrYA7pG0g5m9nXOuscAVkqYD\nM4HpwH/KLRxrI/ESsEnR9CaEFrHSMhsn8/LMVG+pMiWd1VcBB5jZWzFkKjCzByX1kfQxM3sj51w7\nA9eF9oGBwIGSlprZrXllKv5AMbM7JP1S0gAzezOvTIRvqovM7D3gPUkPADsAWTUSHfk/dRTZl5og\nXaY9gPMBzOxZSc8Rvgw9lmeu5P/UiYXpJNc/y64xy06UTnS+9AGeJXS+9GXVHde7kX2H7CozFS17\nDvXpuE6znzYldGTtFtF7twXLT7/eCXg2hlwly18DfCHvTMCgon01ApgfQaZhwCRCJ+lahG+jw/N+\n74D1CJ3Da8bw/wm4FBhT9D4uAAZEkGs9oG/y+GRgXMV1Zr0zO/HLHki4+noecGYy7+vA14uW+Xny\n/Axgp7wzARsQvmUtAd4CXgDWzjnTb5M/nOnJz7QI9tP3gKeSPA8Cu8Tyf6po2cwbiZT76n+TfdUK\nPEIdGvuUf3tnEM5wmgmcGkmm44Fr6/F/KeV7NxC4Lfl8mgkcE0mu3ZPn5xBO0liv0vr8YjrnnHNl\nxXp2k3POuQh4I+Gcc64sbyScc86V5Y2Ec865sryRcM45V5Y3Es4558ryRsLVhaRNJP1TUv9kun8y\nvWnJco2SZuaQ7xBJW1f52tWSIc83q1X2ZCju22qxrpTbeyf5d7CkG8os0yJp53plcnHwRsLVhZm9\nSBg4b2wyayzwazN7Ib9UKzgM6NDgeZJ6Jw/3Ah6qeaL2t5nVUDoGYGYvm9kRFZbxC6t6GG8kXD1d\nBuwm6TTCuDY/rbSwpM0lPSFpZ0lrSZooaZakmyVNKf1Wm9ws6Kbk8SGS3k3GhVpD0rPJ/JMlTUtu\nBHOjpDUl7UEYGO7i5KY1QyRtIemOZJTTByRtlbx+nKRfSZoCXJhs+gDCaLaqNnvymgMkPS3pcUKj\nVZh/jqQ/SHoI+L2k+yXtUPT8Q5K2K1nXNskNZaYnI8hukcw/XeGmPDMlrTQqafGRXLJvrpM0W9LN\nwJpkP+ihi0ysA/y5bsjCPcy/R/hA3c/Myo48mXwoTwCON7OZks4gjMe/jcKdtFpZ+VvtdKApebw3\nYSiEEYRRS6ck828ys6uSbfwY+KqZ/VzSrcBtZnZz8ty9hGEM5knaFfglYdRTgMHA7rZ8uIJmYAxh\nWJaqsktaA/gNsI+FweCuL1lmGLCXmX0g6ThgJPBtSUOB1c2stMz1deAKM7s2OfrokzRMI5N90guY\nKqnFzGa09x4A3wDeMbPhSSP0RGlu1/35kYSrtwOBlwl3pCvn44QhsY8p+vDbk3ADFcxsFvBk6Yss\n3NDlWUnDgF0IA6x9ilAOejBZbDtJD0p6EvgyK5aYBCBpbcL4Njckwyn/iqQBIHxI3lBoIBTuQfGm\nmb3fmeyERuA5M3s2mf4jy7+1G+HudB8k0zcCByUf/icSxpkq9ShwVtIoNyb59gJuNrP3LNz46eZk\n/5Szd5KD5HdpL7fr5ryRcHUjqQnYl/AB/G1JG5RZdDHwPOFDaoVVpNjMA4QRgpcC9ybrKG4kxgGn\nmNn2wLmEEkpB4VtyL2Cxme1Y9FN8H+B3ix4fANxZg+yl39BLl/9om2b2LnAPcChwBPCnlVZmNoFQ\nQnsPuF3hfiJWsl61s91SXl7q4byRcHUhSYSO628lndgXU75P4kPCnbOOk3R0Mu9h4MhkXcMpfyTy\nIHAa8IiF22p+DNgq+QYP4Xapr0paDfgKyz8k3ya51aSZ/Qt4TtLhhewK9+Roz38RymedzV64jeTm\nyfTRRc+190H9W+BnhFF9l5Q+KWmImT1nZv8P+EuyzQeBQ5O+hn6ERubB0tcWeYBwK1AkbQuU2weu\nG/M+CVcvJxPuhXBvMv1L4ARJe5tZ6QeVWbgT20GEu3m9nSw/XtIswhDHswhDspeaRij5PJBMzyCM\n5V/wA8K9vl9P/l07mX8dcJWkbwKHE0pRV0o6m9CnMYHl5ZZCqak38Akzm9vZ7Gb2vqSvAX+T9C7h\nw7tf0fasZPknJC2h/VITwJEKtxVdSrjX8vlmtljSuGQfAVxV1B9RvP7C4yuBayTNBp4m25vluEj5\nUOGuS5DUC1gt6bjdglBuGWrZ31i+UqY9gS+b2SmrWK7m2SUNBiabWda3fXU9nB9JuK6iH3BfUiYS\n8I08GwgAM3uYUEpalZpmT85uOg/4drXrcC4tP5JwzjlXlndcO+ecK8sbCeecc2V5I+Gcc64sbySc\nc86V5Y2Ec865sryRcM45V9b/B77dKwo9Y8ZFAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7885c50>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time required for drying: 1.96 h\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter13.ipynb b/Mass_-_Transfer_Operations/Chapter13.ipynb
new file mode 100755
index 00000000..225bff8b
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter13.ipynb
@@ -0,0 +1,443 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b841fc17f95d9198998020044b36e625586e7f0a22a266fb56d5482aed19bd4a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13: Leaching"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.1: Page 722"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.1\n",
+ "# Page: 722\n",
+ "\n",
+ "print'Illustration 13.1 - Page: 722\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "import numpy as np\n",
+ "import math\n",
+ "#***Data***#\n",
+ "Density_L = 1137.0;# [kg/cubic m]\n",
+ "Density_S = 960.0;# [kg/cubic m]\n",
+ "Density_p = 1762.0;# [kg/cubic m]\n",
+ "A_prime = 16.4;# [square m/kg]\n",
+ "g = 9.81;# [square m/s]\n",
+ "sigma = 0.066;# [N/m]\n",
+ "Z = 3.0;# [m]\n",
+ "dia = 1.0;# [m]\n",
+ "#**********#\n",
+ "\n",
+ "e = 1-(Density_S/Density_p);# [fraction void]\n",
+ "ap = A_prime*Density_S;# [square m/cubic m]\n",
+ "# By Eqn. 6.67:\n",
+ "dp = 6*(1-e)/ap;# [m]\n",
+ "# By Eqn. 13.6:\n",
+ "K = dp**2*e**3.0*g/(150.0*(1-e)**2);# [cubic m/s]\n",
+ "check = K*Density_L*g/(g*sigma);\n",
+ "if (check<0.02):\n",
+ " # By Eqn. 13.3: \n",
+ " So = 0.075;\n",
+ "else:\n",
+ " # By Eqn. 13.4:\n",
+ " So = 0.0018/(check)\n",
+ "\n",
+ "# By Eqn. 13.2:\n",
+ "ZD = (0.275/g)/((K/g)**0.5*(Density_L/sigma));# [m]\n",
+ "# By Eqn. 13.1:\n",
+ "Sav = ((Z-ZD)*So/Z)+(ZD/Z);\n",
+ "# VolRatio=Vol liquid retained/Vol bed.\n",
+ "VolRatio = Sav*e;\n",
+ "print\"Vol liquid retained/Vol bed : \",round(VolRatio,4),\" cubic m/cubic m\\n\"\n",
+ "Mass = VolRatio*math.pi*dia**2*Z*Density_L/4;# [kg]\n",
+ "# Mass ratio=Mass Liquid/Mass dry solid\n",
+ "MassRatio = VolRatio*Density_L/(Density_S);\n",
+ "print\"Mass liquid/Mass dry solid: \",round(MassRatio,4),\" kg/kg\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.1 - Page: 722\n",
+ "\n",
+ "\n",
+ "Vol liquid retained/Vol bed : 0.058 cubic m/cubic m\n",
+ "\n",
+ "Mass liquid/Mass dry solid: 0.0687 kg/kg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.2: Page 749"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.2\n",
+ "# Page: 749\n",
+ "\n",
+ "print'Illustration 13.2 - Page: 749\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "#***Data***#\n",
+ "# Eqb=[x(Wt fraction NaOH in clear solution) N(kg CaCO3/kg soln in settled sludge) y*(wt fraction NaOH in soln of settled sludge)]\n",
+ "# a=H2O b=CaCO3 c=NaOH\n",
+ "Eqb = np.array([[0.090 ,0.495, 0.0917],[0.0700, 0.525, 0.0762],[0.0473, 0.568, 0.0608],[0.0330, 0.600, 0.0452],[0.0208, 0.620, 0.0295],[0.01187 ,0.650, 0.0204],[0.00710, 0.659, 0.01435],[0.00450, 0.666, 0.01015]]);\n",
+ "def f80(x):\n",
+ " return x\n",
+ "x = np.arange(0,0.12,0.01);\n",
+ "Mass_c = 0.1;# [kg]\n",
+ "Mass_b = 0.125;# [kg]\n",
+ "Mass_a = 0.9;# [kg]\n",
+ "#**************#\n",
+ "\n",
+ "\n",
+ "plt.plot(x,f80(x),label=\"N Vs x\")\n",
+ "plt.plot(Eqb[:,2],Eqb[:,1],label=\"N Vs Y\");\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x,y Wt. fraction of NaOH in loquid\");\n",
+ "plt.ylabel(\"N kg CaCO3 / kg solution\");\n",
+ "plt.legend('upper left');\n",
+ "plt.title(\"Equilibrium Plot\")\n",
+ "plt.show()\n",
+ "# Basis: 1 kg soln in original mixture.\n",
+ "# As in Fig. 13.27 (Pg 750)\n",
+ "# The original mixture corresponds to M1:\n",
+ "NM1 = 0.125;# [kg CaCO3/kg soln]\n",
+ "yM1 = 0.1;# [kg NaOH/kg solution]\n",
+ "# The tie line through M1 is drawn. At point E1 representing the settled sludge:\n",
+ "N1 = 0.47;# [kg CaCO3/kg soln]\n",
+ "y1 = 0.100;# [kg NaOH/kg solution]\n",
+ "E1 = Mass_b/N1;# [kg soln. in sludge]\n",
+ "Ro = 1-E1;# [kg clear soln drawn]\n",
+ "\n",
+ "# Stage 2:\n",
+ "xo = 0;# [kg NaOH/kg soln]\n",
+ "# By Eqn. 13.11:\n",
+ "M2 = E1+Ro;# [kg liquid]\n",
+ "# By Eqn. 13.12:\n",
+ "NM2 = Mass_b/(E1+Ro);# [kg CaCO3/kg soln]\n",
+ "# M2 is located on line RoE1. At this value of N, and the tie line through M2 is drawn. At E2:\n",
+ "N2 = 0.62;# [kg CaCO3/kg soln]\n",
+ "y2 = 0.035;# [kg NaOH/kg solution]\n",
+ "E2 = Mass_b/N2;# [kg soln. in sludge]\n",
+ "Ro = 1-E2;# [kg clear soln drawn]\n",
+ "\n",
+ "# Stage 3:\n",
+ "xo = 0;# [kg NaOH/kg soln]\n",
+ "# By Eqn. 13.11:\n",
+ "M3 = E2+Ro;# [kg liquid]\n",
+ "# By Eqn. 13.12:\n",
+ "NM3 = Mass_b/M3;# [kg CaCO3/kg soln]\n",
+ "# Tie line E3R3 is located through M3.At E3:\n",
+ "N3 = 0.662;# [kg CaCO3/kg soln]\n",
+ "y3 = 0.012;# [kg NaOH/kg solution]\n",
+ "# By Eqn. 13.8:\n",
+ "E3 = Mass_b/N3;# [kg soln. in sludge]\n",
+ "print\"The fraction of original NaOH in the slurry: \",round(E3*y3/Mass_c,4),\" \\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.2 - Page: 749\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVXXZ///XxVHOIyflMDgoEAcPgwgOajqaFZYmUmlq\nt0Lpjw4eSu0uf9otWd1lZVqZ3t5qYmaRt0Jhipbe92QoKCgjCMhBQRhARJSDIMrh+v6x1gybzd57\n9p49a/aeNe/n47Ef7LX2Onyu2cO6Zn2utT7L3B0REZFUWhW6ASIiUryUJEREJC0lCRERSUtJQkRE\n0lKSEBGRtJQkREQkLSUJiTUzG2Bm283MwukqM/tq+P5iM3sqYdl9ZnZkDts+YP1CMbOpZvbDQrdD\n4klJQoqCma02s53hAb329et8t+vua9y9i++/IcjDF+7+kLt/Oo9t57V+LsLk9kH4c9lkZo+a2eG1\nTQlf2Wwnp0QooiQhxcKBs8MDeu3rqkI3Kh0za93Eu3Tgm+7eBRgClAC3JTYph23lsqy0cEoSUvTM\nrJWZ/SL8C/p1M/tm+Bdxq/Dz1Wb2iYTlp5jZg+H7ssRlk7Y70cz+lTT7s+E+NpnZzxK6qSaa2XNm\n9kszeweYkrh+qv0kdW0lrv+ema00s5PMbJKZrTGzjWZ2STY/D3d/D5gOHF27q6S4LjezFWa22cz+\namZ9wvnPhou8Ep6RfDGb/UnLpiQhxSTdX7j/H/BZoBw4AfgCB3avJHe35DPWzHhgFHA8cC7wlYTP\nxgCvA72BH2exreR2jQFeAboDfwIeDvdzFPBl4A4z65hhe7UJqyfweeDlhP0QfnYG8J/AF4E+wJvA\nNAB3PzVc7NjwTO1/sohBWjglCSkWBvwl/Cu79vXV8LPzgdvcfV34V/R/krnLJJ/ulFvcfYu7rwVu\nBy5M+Gy9u//W3fe5+64GbHuVuz8Q1kceBvoCN7v7bnf/B/ARMCjNugb82szeA6qBdcA1CZ/XJoqL\ngfvcvdrdPwKuB8aa2YAGtFeENoVugEjIgXPd/X9TfNYHWJswvSbCdiTvp2+azxpiY8L7DwDcfVPS\nvM5p1nXgSnf/XT376APMr1vJfYeZbQb6Ee3PTWJKZxLSHGwAEv8STv6reAfQKWH6cBoueT/rEqYz\ndWPtCP9N7C7Kpx0NtR4oq50ws05ADw6MQyRrShJSTNJ1Ez0MXGVm/czsUOB7HHjArga+ZGZtzOwE\ngv76htYlrjOzEjMrBa4C/pzNSuEZwTrg38ystZl9haDW0JjS/Xws4bM/AZPM7Dgza0/QNTfX3WvP\nIjZG0C6JMSUJKSaPJd0n8Wg4/x7gKYKi73zgUQ48YH6f4MD3HjAFeChpu+kSRqr7C/4KvAQsAP4G\n3Jdh2eR5lwPfAd4BhgPP1bOvXBNZvXG4+zMEP49HCc4qBgJfSlh2CvBAWPP5Qo77lxbIonzokJmN\nIyj+tQbudfdbkj6/jqDQBkF9ZBjQ0923RNYoafbMrAx4A2jj7vsK2xqReIssSYQ3Gy0DziQ4DZ8H\nXOjuS9MsfzbwLXc/M5IGSWwoSYg0nSi7m8YAK919tbvvJrhW+9wMy19E0J8qkg09d1ekCUSZJPpx\n4CWDNeG8g4Q3EH2aoB9VJKPwD4/WOosQiV6USSKXv/TOAWarFiEiUlyivJluHVCaMF1KcDaRypfI\n0NVkZupaEBFpAHfPa0DHKM8k5gODw4HP2gEXADOTFzKzbsCpBJcepuXusX3ddNNNBW+D4lNsii9+\nr8YQ2ZmEu+8xsysIrm9vTTCezFIzmxx+fne46HjgKXf/IKq2FLvVq1cXugmRinN8cY4NFJ9EPHaT\nu88CZiXNuztp+gHggSjbISIiDaM7rovAxIkTC92ESMU5vjjHBopPIr7jurGYmTeHdoqIFBMzw4u4\ncC1ZqqqqKnQTIhXn+OIcG7SM+MwsFq+o6HkSItLiNfeeiiiThLqbRKRFC7tkCt2MvKSLQd1NEdi9\ndzc7d+8sdDNERIqCkkSSBW8toOfPejL8t8O56NGL+PlzP+fpN55m887Nke2zJfT7xlWcYwPFJ6pJ\nHGRMvzFs+d4Wlm5ayoK3FrBgwwIeW/4Yr2x8ha7tuzLy8JHBq89Iyg8v54huR0TaHygiUkiqSWRp\nn+9j1XurWPDWAqrfqq5LILv27OLYw45lRK8RHN37aI7ufTQjeo+ge4fuBW2viGRHNYl6tt0cfjjF\nkCTS2fj+Rha9vYjFby/m1bdf5dVNr7L47cV0bteZEb1HcHSvIGkc3ftohvcaTtf2XQvdZBFJoCRR\nz7abww+nmJNEKu7O2m1r6xLH4k3Bv0vfWUrPjj2Ds43wzGNErxFsWrKJcWeOK3SzI1NVVUVlZWWh\nmxGJOMcGLSO+008/vSiTRKtWrVi5ciVHHnkkENwdXlpayg9/+MODlo0ySagmEQEzY0C3AQzoNoCz\nBp9VN3/vvr2s3rK6Lmk8ufJJbp1zK0vnLaVibQWTyifxxRFfpHO7zgVsvYgUo6hvmku732LMoMma\n25lErj7a+xGPL3+cqa9M5Z+r/8n4oeOZWD6RU484lVamC9BEolRfd1NjHZdzPYQln0lMmjSJ/v37\n60yiJWrXuh3nDTuP84adx8b3N/LQooe4ctaV7PhoB5cedymXll9KWUlZoZsp0iLF+O/TrOjP1CKQ\neK32YZ0P45qx17Dwawv5ny/+D5t2buKE/z6BMx44gwdfeZAdH+0oXEMbKM7Xosc5NlB8hdSxY0d2\n7tx/Y++GDRsK0t2kJFGkzIxRfUdxx2fuYN016/j6CV9n2uJp9L+tP5fNvIzZa2YXZbFNRBpHeXk5\nDz30EHv37uXJJ5/k2WefLUg7VJNoZtZvX88fFv6B+6vvZ8++PUw8biKXHHcJpd1K619ZRA5SrJfA\nvvTSS1x66aWsWbOG8ePHs3fvXo466ihuvvnmg5bVJbBKEgdxd15c9yJTq6fy8JKHGdVnFBPLJ3Le\n0PPo0LZDoZsn0mwUa5LIhQb4i7mG9IuaGSf2P5G7zr6Lmm/X8JWRX+GBVx6g3y/7MfmxycytmVs0\nv/jF3O+brzjHBopPlCRioUPbDnzp6C/x1JefYuHXF3JEyRFcMuMSht85nFtm38L67esL3UQRaabU\n3RRT7s7za59navVUHln6CBX9Kzh/+PkM6zWMwd0H06Njj0I3UaQoqLupnm03hx+OkkR+dny0gxmv\nzeCJFU+w4t0VrNi8glbWiiE9hjC4x2AGdx8cvO8+mME9Bmt8KWlRlCTq2XZz+OHEPUk09fg47s6m\nnZtYsXlFXdJY/u5yVmxewcp3V9KpXaf9SSNMHEN6DGFQ90F0bNsx5/3FefyfOMcGLSO+Yh27KRfN\n9o5rMxsH3A60Bu5191tSLFMJ3Aa0Bd5x98oo2yTBL07vTr3p3ak3Jw84+YDP3J3129fXJY8V767g\nDwv/wIp3V/DGe2/Qo0OPIGl0338WMrjHYI469Cjat2lfoIhEJCqRnUmYWWtgGXAmsA6YB1zo7ksT\nlikBngM+7e41ZtbT3d9Jsa1Yn0k0F3v37aVmWw3LNy8/6AxkzdY19OnSp+7sI7Erq6ykjLat2xa6\n+SIpqbupnm1HmCTGAje5+7hw+nsA7v7ThGW+ARzu7v9Rz7aUJIrc7r27eXPrm0ECCc9AapPJhu0b\nGNBtQMr6R2nXUlq3al3o5ksLpiSRWZTdTf2AtQnTNcCJScsMBtqa2f8BXYBfufuDEbapKMWh37dt\n67YM6j6IQd0HBd9qgr8/83dKjy2tSxqvvPUKjyx5hOWbl7P5g80ceeiRB9U/BncfTN8ufYv+0bBx\n+O4yaQnxSWZRJolsUnNb4HjgE0BHYI6ZzXX3FckLTpw4kbKyMgBKSkooLy+v++Wt/aKb63R1dXVR\ntaexp5csWkK71u04t/Lc/Z93gcpLK9nx0Q6m/W0aNdtqaNehHXNr5vKbh39DzbYaWg1sxcmlJ9P3\nnb4cc9gxXDbhMtq3aV/weDQdr+k4qaqqYurUqQB1x8t8RdndVAFMSehuuh7Yl1i8NrPvAh3cfUo4\nfS/wpLs/krQtdTe1QOu2reO5tc8xe81sZq+ZzfLNyxnVdxSnlJ7CKQNOYWzpWEoOKSl0M6WZU3dT\nPduOMEm0IShcfwJYD7zIwYXrocAdwKeB9sALwAXuviRpW0oSwrYPtzG3Zm5d0pi3fh5HHnpkXdI4\nZcApGuhQclasSaKsrIyvfe1rPPjgg2zYsIHx48dz11130b79wVcRNsskAWBmZ7H/Etj73P0nZjYZ\nwN3vDpe5DpgE7APucfdfp9hOrJNEVQvo940ivt17d7PgrQV1SWP2mtl0aNshSBhh4hjRe0SkT/fT\nd9e8VRXxfRJlZWV07dqVWbNm0bFjR8455xxOP/30eD2Zzt1nAbOS5t2dNP0L4BdRtkPiqW3rtozp\nN4Yx/cZwzdhrcHdWvLuiLmHcNvc2Nu3cxEmlJ9UljdH9RnNIm0MK3XRpRuwHjXPxhN+UWyIyM664\n4gr69esHwA033MCVV16ZMklESXdcS6xtfH/jAXWNxZsWU354eV3SOKn0JI1j1cIVa3fTwIEDufPO\nOznrrLMAWLx4MaNHjz7gaXW1mu2ZhEihHdb5MCYMm8CEYRMAeP+j93lx3YvMXjOb37z4Gy6efjGl\n3UoPqGuUlZQV/aW30jKsWbPmgPd9+/Zt8jboTKIItIR+32KNb8++PSzcuLDuTONfa/5FK2t1QF3j\n2MOOTXvDXzHH1hhaQnzFXJPo1q0bTzzxBB06dOBzn/sclZWV/OhHPzpoWZ1JiESkTas2HN/neI7v\nczxXnXgV7s6qLavqksZd8+9i3fZ1VPSvqEsaJ/Y/sUEDHYrkwsy46KKL+NSnPsX69esZP348N954\nY9O3oxgzaLK4n0lIcXtn5zs8tyasa6ydzcKNCzmm9zF13VMnl55Mr069Ct1MaaBirkncd999nHHG\nGfUu22wvgW0sShJSTHbu3sm8dfPqksactXM4vPPhnDPkHM4bdh4V/SsivexWGpeSRGb6TS4CtcME\nxFXc4uvYtiOnlZ3GDafewHf7fZfN/76ZhyY8RIe2HZj8t8n0/2V/vvH4N/jH6/9g997dhW5uXuL2\n3SWLe3yNQTUJkTy1btWaUX1HMarvKG4+/WaWb17OjKUz+P7/fZ8V767g7CFnM2HoBD511Kfo0LZD\noZsrzcSqVasK3QRA3U0ikarZVsNfXvsLM16bwfz18/nkkZ9kwrAJfHbwZ+l2SLdCN08o3u6mXKgm\noSQhMfDOznd4bNljzHhtBlWrqzh5wMlMGDqBc4eeS+9OvQvdvBZLSSIz1SSKQNz7ReMcXy6x9ezY\nk0kjJzHzwpmsu2Ydk8on8cyqZxjymyGcev+p3D73dt7c8mZ0jW2AOH93EP/4GoNqEiIF0KV9F84f\ncT7njzifXXt28cwbzzB96XR+/K8fM6DbACYMDe4SH9ZrWKGb2iLoDvv01N0kUkT27NvD7DWzmb50\nOjNem0Gntp3qhhUZ1WeUDmaSE9UkRGLM3Zm/fj7Tl05n+mvT+WD3B5w39DwmDJvAKQNO0bPBpV6q\nScRE3PtF4xxflLGZGaP7jeYnZ/6E1775Gk9++Ul6derFt5/6Nn1u7cNlMy/jiRVP8OGeDyNrQ5y/\nO4h/fI2h3pqEmR0CfB4oS1je3f3mCNslIgnMjOG9hjO813BuPPVGVm9ZzYylM/jp7J9y8fSLGTdo\nHBOGTuCswWfRuV3nQjdXYqTe7iYzewrYArwE7K2d7+63Rtu0A9qg7iaRNDa+v5G/Lvsr05dO5/m1\nz1NZVsmEYRM4Z8g5elZGC9ckNQkze9Xdj85nJ/lSkhDJzpZdW3h8+eNMf206T7/xNCf0PYEJQycw\nfuh4+nXtV+jmSRNrqprE82Z2bD47kczi3i8a5/iKLbaSQ0q4+NiLefT8R9lw7QauHHMlL6x7gWPu\nOoaKeyv42XM/Y/nm5VnfPFZs8TW2uMfXGLK5T+LjwCQzWwXUVsjc3ZU4RIpYx7YdGT90POOHjmf3\n3t1Ura5i+tLpnP7A6ezzfVT0r2Bs/7GM7T+WUX1H6RkZklI23U1l4dvaBQ3A3VdH1agUbVB3k0gj\ncXfWbF3D3Jq5zKmZw5yaObz69qsM6zlsf+IoHcvAkoG6L6OZa7L7JMysnOCMwoF/ufsr+ew0V0oS\nItHatWcXL294mTlr5zB33VzmrJ3D7n2765JGRf8KRvcdTad2nQrdVMlBUxWurwYuB6YTnEWMB+5x\n91/ns+NcxD1JtITnCMc1vjjHtnbrWu6bfh/b+m5jTs0cFm5cyJAeQ+q6qCr6VzCo+6BmfbYR5+8P\nmu4Z15cBJ7r7jnCnPwXmAvUmCTMbB9wOtAbudfdbkj6vBP4KvBHOetTdD37Kt4g0udJupVQOrKw7\niH6450MWvLWAuTVz+duKv3HD/97AB3s+oKJ/BRX9KhhbOpbRfUfTpX2XwjZcGlU2ZxKLgDHu/kE4\n3QF40d2PqWe91sAy4ExgHTAPuNDdlyYsUwlc4+6fq2dbsT6TEGmu1m1bV1fbmFszl+q3qjmq+1F1\nZxpj+49lSI8hzfpsozlrqu6ma4CJHNjdNNXdb6tnvbHATe4+Lpz+HoC7/zRhmUrgWnc/p55tKUmI\nNAMf7f2I6req9xfF185h+0fbObHfiXWJ48T+J9K1fddCN7VFaMrC9SjgFPYXrhdksc4XgE+7++Xh\n9JcJuq2uTFjmNILkU0NwtnGduy9Jsa1YJ4m494vGOb44xwaNE9+G7RuYWzO3LnG8vOFlBh46sK6L\namz/sXys58doZU0/lFzcv79IaxJm1tXdt5lZd2AVsDr8yM2su7u/W8+2szmqvwyUuvtOMzsL+Asw\nJNWCEydOpKysDICSkhLKy8vrvtzaG2Ka63R1dXVRtUfxaboxp5e9tIxDOZRbPhmUJJ9+5mlef+91\ndh++m2dWPcONv7uRbR9u45RTT6GifwUd13VkeK/hnP2ps4ui/c1puqqqiqlTpwLUHS/zlfZMwswe\nd/fPmtlqUhzw3X1gxg2bVQBTErqbrgf2JRevk9ZZBYxKTkBxP5MQaek2vr/xgLONlza8RGnXUsb2\nH8t1J12nhy81UFE/T8LM2hAUrj8BrAde5ODC9WHA2+7uZjYGeNjdy1JsS0lCpAXZs28PizYuYk7N\nHM4adBYDD834N6mk0SRjN5nZM9nMS+bue4ArgKeAJcCf3X2pmU02s8nhYl8AFplZNcGlsl/KpfFx\nUXu6GFdxji/OsUHh4mvTqg0j+4zkG6O/EWmCiPv31xgy1SQ6AB2BXmFdolZXIKvhJN19FjArad7d\nCe9/C/w2lwaLiEjTyVST+BZwNdCXoLuo1nbgv939juibV9cWdTeJiOSoqe6TuNLdf5PPTvKlJCEi\nkrumep7ENjO7JPmVz07lQHHvF41zfHGODRSfZDd202j2XwLbATiD4P6G30fVKBERKQ45XwJrZiUE\nVyp9OpompdynuptERHLUVN1NyXYCumhZRKQFyOY+iccSXo8T3CA3I/qmtRxx7xeNc3xxjg0Un2RX\nk7g14f0e4E13XxtRe0REpIhENixHY1JNQkQkd1GPAvs+6UdydXfXgPAiIjGXtibh7p3dvUualxJE\nI4p7v2ic44tzbKD4JLuaBGZ2HHAq+x869EqkrRIRkaKQzbAcVwOXc+DjS+9x919H37y6NqgmISKS\no6Yau2kRUOHuO8LpTsBcdz8mnx3nQklCRCR3TXkz3b4076URxL1fNM7xxTk2UHySXU3ifuAFM0vs\nbvpdpK0SEZGikNV9EmY2CjiF/YXrBVE3LGn/6m4SEclRU9UkjgLWufsuMzsdOAb4vbtvyWfHuVCS\nEBHJXVPVJKYDe8xsEHA3UAr8MZ+dyoHi3i8a5/jiHBsoPskuSexz9z3ABOA37v4doE+0zRIRkWKQ\nTXfTC8CvgP8fOMfdV5nZq+5+dFM0MGyDuptERHLUVN1NXwEqgB+HCWIg8GA+OxURkeah3iTh7ovd\n/Sp3/1M4vcrdb4m+aS1H3PtF4xxfnGMDxScNezJd1sxsnJm9ZmYrzOy7GZYbbWZ7zGxClO0REZHc\nRPY8CTNrTfAUuzOBdcA84EJ3X5piuX8QPBb1fnd/NMW2VJMQEclRoZ5xna0xwEp3X+3uu4FpwLkp\nlrsSeATYFGFbRESkAbJ9xvXMhOdczzSzP5jZ1WZ2SIZV+wGJjzmtCeclbrsfQeK4K5zVIk8X4t4v\nGuf44hwbKD7JbuymVUBP4E8EYzddAGwHhgD3AP+WZr1sDvi3A99zdzczC7ef0sSJEykrKwOgpKSE\n8vJyKisrgf1fdHOdrq6uLqr2KD5Na7p5TldVVTF16lSAuuNlvrK5T2K+u5+Qap6ZLXb3EWnWqwCm\nuPu4cPp6ghvzbklY5g32J4aeBHWJy919ZtK2VJMQEclRpM+4TtDJzI5w9zfDnR4BdAo/+yjDevOB\nwWZWBqwnOAO5MHEBdz+y9r2Z3Q88lpwgRESkcLIpXF8L/MvMqsysCvgX8J3w4UMPpFspHMrjCuAp\nYAnwZ3dfamaTzWxy/k2Pj9rTxbiKc3xxjg0Un2R3JvEkQf1hKEGdYTng7r6LoKaQlrvPAmYlzbs7\nzbKTsmmwiIg0nWxqEvcnHsDNrDMw093PiLpxCftUTUJEJEdNdZ9EjZndGe7wUODvaOwmEZEWIZux\nm74P7DCzuwnujP6lu98fectakLj3i8Y5vjjHBopPMtQkzOzz4VsH5gLfJxhaw81sgrtPb4L2iYhI\nAaWtSZjZVA68Ic4Sp5uy0KyahIhI7prkGdfFQElCRCR3xT7An2Qp7v2icY4vzrGB4hMlCRERySBT\nTeIkYE4x9POou0lEJHdRdzddArxsZn82s4lmdng+OxIRkeYnbZJw96+5+0hgCtAdmGpmc83sP83s\n1PCJctII4t4vGuf44hwbKD7J7ma6pe7+y3DI7zOA54DzgRejbpyIiBSWLoEVEYkpXQIrIiKRUpIo\nAnHvF41zfHGODRSfKEmIiEgGme6TOA64FXgHuB74HXA8sBCY5O4rm6yRqkmIiOQs6prEfwG/Av4K\nPA/8N3Ao8DPgznx2KiIizUOmJHGIuz/m7n8Cdrj7n9x9n7s/BvRqova1CHHvF41zfHGODRSfZE4S\niTfL/TLps7YRtEVERIpMpprE14CH3H170vxBwBXu/q0maF/tPlWTEBHJkZ4nISIiaUV+M52ZfcbM\nnjWzzeHrn2b22Xx2KAeLe79onOOLc2yg+CRDkjCzy4GbCQb4OzJ8/QC4ycwmZ7NxMxtnZq+Z2Qoz\n+26Kz881s1fMbIGZvWRmZzQoChERiUSmmsRS4BR335w0vwfwnLsPzbjhYJTYZcCZwDpgHnChuy9N\nWKaTu+8I3x8DzHD3QSm2pe4mEZEcRd7dlJwgEuZlc8QeA6x099XuvhuYBpybtK0dCZOdCW7cExGR\nIpEpSWwzs/LkmeGd2NtTLJ+sH7A2YbomnJe8vfHhWcss4Kosths7ce8XjXN8cY4NFJ9AmwyfXQv8\n1czuB14CDBgFTAS+nMW2s+ofcve/AH8xs48DDwIfS7XcxIkTKSsrA6CkpITy8nIqKyuB/V90c52u\nrq4uqvYoPk1runlOV1VVMXXqVIC642W+Ml4CGz6y9JvA8HDWEuC37v5WvRs2qwCmhA8rwsyuB/a5\n+y0Z1nkdGJOiDqKahIhIjhqjJpH2TMLMegM93P37SfNHmNled99Uz7bnA4PNrAxYD1wAXJi0raOA\nN9zdzex4SF0HERGRwshUk/gN0DPF/B4EA/9l5O57gCuApwjOQP7s7kvNbHLCJbSfBxaZ2YJwm1/K\npfFxUXu6GFdxji/OsYHik8w1iUHu/s/kme7+rJndlc3G3X0WQUE6cd7dCe9/RjCqrIiIFKFM90ks\nd/chuX4WBdUkRERyF/V9EitTDcFhZp8BXs9npyIi0jxkShLfAm4zs6lmdqWZXWVmDxDUDppsBNiW\nIO79onGOL86xgeKTDEnC3ZcDxwLPAgOBI4B/Ase6+7KmaZ6IiBSShgoXEYmpyMduCncy1szmmdn7\nZrbbzPaZ2bZ8dioiIs1DvUkCuAO4CFgBHAJ8Fbgzyka1NHHvF41zfHGODRSfZJckcPcVQGt33+vu\n9wPjom2WiIgUg3prEmb2LPBJ4F5gA/AWcKm7Hxd98+raoJqEiEiOmqQmAVwSLncFsBPoTzCchoiI\nxFymx5f2NrMR4UODPnD3re4+BbgP2NpkLWwB4t4vGuf44hwbKD6JcIA/ERFp/jKN3fSSu49K89li\ndx8RacsO3J9qEiIiOYq6JtElw2dt89mpiIg0DxrgrwjEvV80zvHFOTZQfJL5eRLfAv5mZl/kwGdc\nnwSc3QRtExGRAqvvGdeHENxtXVt/WAz80d13NUHbEtuhmoSISI4aoyahAf5ERGKqqW6mk4jFvV80\nzvHFOTZQfKIkISIiGai7SUQkphqjuynT1U21O1kEOMHVTbW2AvOAH7n75nwaICIixSub7qYngccJ\nrnK6GHgMmA9sBKZG1rIWJO79onGOL86xgeKTLM4kgDPdfWTC9EIzW+DuI8OzjIzMbBxwO9AauNfd\nb0n6/GLg3wnOVLYDX3f3hVlHICIikcnmeRILgcvd/YVwegxwj7sfV5ssMqzbGlgGnAmsI+iiutDd\nlyYsMxZY4u5bw4Qyxd0rkrajmoSISI6apCZB8LjS+82sczi9HfiqmXUCflLPumOAle6+GsDMpgHn\nAnVJwt3nJCz/AsHzKkREpAhkU5NY5O5HA+VAubsfQ3Dg3+HuD9ezbj9gbcJ0TTgvna8CT2TRpliJ\ne79onOOLc2yg+CS7M4npZnauu28BMLM+BIXs47NYN+s+IjM7HfgKcHKqzydOnEhZWRkAJSUllJeX\nU1lZCez/opvrdHV1dVG1R/FpWtPNc7qqqoqpU6cC1B0v85VNTeJy4DPAF4BSYCZwnbv/vd6Nm1UQ\n1BjGhdPXA/tSFK+PBaYD49x9ZYrtqCYhIpKjJqlJuPs9ZtYe+CtwBPA1d38uy+3PBwabWRmwHrgA\nuDBxATPT6ykPAAARPklEQVQbQJAgvpwqQYiISOFkesb1teHrGqA9wVnEK0BFOK9e7r4HuAJ4ClgC\n/Nndl5rZZDObHC72H8ChwF1mtsDMXswjnmap9nQxruIcX5xjA8Unmc8kunBgTWFGON059eKpufss\nYFbSvLsT3l8GXJbLNkVEpGlo7CYRkZjSUOEiIhIpJYkiEPd+0TjHF+fYQPGJkoSIiGSQtiZhZjel\nWccB3P3mqBqVoi2qSYiI5Cjq+yR2cPAd050Ihs7oCTRZkhARkcJI293k7r9w91vd/VbgHqADMAmY\nBgxsova1CHHvF41zfHGODRSf1HPHtZn1AL5N8LCh3wPHu/t7TdEwEREpvEw1iV8A5wH/Ddzp7tub\nsmFJbVFNQkQkR41Rk8iUJPYBHwG7U3zs7t41nx3nQklCRCR3kd5M5+6t3P0Qd++S4tVkCaIliHu/\naJzji3NsoPhE90mIiEgGGrtJRCSmNHaTiIhESkmiCMS9XzTO8cU5NlB8oiQhIiIZqCYhIhJTqkmI\niEiklCSKQNz7ReMcX5xjA8UnShIiIpKBahIiIjGlmoSIiERKSaIIxL1fNM7xxTk2UHxSz/MkGoOZ\njQNuB1oD97r7LUmfDwXuB0YCN4QPORIRaZa2bYO1a2HNmuDfxPff/S58+tOFbmFuIq1JmFlrYBlw\nJrAOmAdc6O5LE5bpBRwBjAfeS5UkVJMQkWKwaxfU1BycBBKn9+6F0lIYMCD4t/Y1YACMHAk9ejRd\ne6N+xnVjGAOsdPfVAGY2DTgXqEsS7r4J2GRmn424LSIiae3ZAxs2HHzQT5zeuhX69TswCZSXwznn\n7J8uKQHL67BcXKJOEv2AtQnTNcCJEe+z2amqqqKysrLQzYhMnOOLc2wQn/jc4Z13Dj7wz59fxYcf\nVrJ2Lbz1FvTqdeBf/0ceCaedtj8p9O4NrVpYJTfqJNFofUQTJ06krKwMgJKSEsrLy+t+eWuLT811\nurq6uqjao/g03dymd+yAsrJK1qyBp5+u4u23oXXrYHrZsio2bYIuXSopLYWOHavo3RsqKioZOxYO\nOyyYnjChknbtUm9/5044/PDiiTfddFVVFVOnTgWoO17mK+qaRAUwxd3HhdPXA/uSi9fhZzcB76sm\nISKJausA6WoAiXWAdLWA/v2hU6dCR9L0mkNNYj4w2MzKgPXABcCFaZaNUS+eiGQjUx2g9v3WrdC3\n74EH/9o6QO30oYfGqw5QTCK/49rMzmL/JbD3uftPzGwygLvfbWaHE1z11BXYB2wHhrv7+wnbiPWZ\nRFVM+n3TiXN8cY4N8ovPHTZtSl8Irq0D9Ox58F/+if8edlh0dYC4f3/N4UwCd58FzEqad3fC+7eA\n0qjbISKNa+vW9N0/ta9OnQ5OAOXl+6f79YN27QodiWSisZtE5CC7dh18wE9OAol1gFS1gNLSllkH\nKCaNcSahJCHSwiTWAdIVg2vrAKm6f1QHaD6UJGIi7v2icY6v2GJLdT9AciKorQOkugqo9n1tHaDY\n4mtscY+vWdQkRKTx1I4LlO5KoJoa6Njx4AN/efn+9337qg4g2dOZhEiRSBwXKF1XkOoAkgt1N4k0\nE8n3A6RKAlu27B8XKN1NYXEbF0iipSQRE3HvF41zfFVVVZx2WmXKcYESp1ONC5ScBKK8H6Ch4vzd\nQfzjU01CpAmkej5A7fSyZfDuu0EdIPmgn3g/gOoA0lzpTEJatHzGBap931LHBZLip+4mkQyyHRdI\ndQCJKyWJmIh7v2gU8SWPC5TpfoB0ZwCNUQfQd9e8xT0+1SQktjLVAVLdD5A8LtCAAaoDiDQGnUlI\nk8t0P0Dyc4J1P4BIw6m7SYrO3r1BHSBTITj5fgCNCyQSDSWJmGgu/aK14wJl6gZKNS7Qhx9WccYZ\nlUV9P0BDNZfvrqEUX/OmmoQ0qnTjAtVOJ9YBEpPAccdlHheoqgpi/P9QJNZ0JtFC5DoukJ4TLNL8\nqbtJAI0LJCKpKUnERKZ+0WzvByjmcYHi3O8b59hA8TV3qknEwLZtsGoVfPBB6iRQWwdIPuiPHKlx\ngUQkejqTiFAu4wKle0qY6gAi0lDqbiqgbJ8TnK4OUPtedQARiUrRJwkzGwfcDrQG7nX3W1Is82vg\nLGAnMNHdF6RYpkmTRHIdIFUS2Lgx++cE1yfu/aJxji/OsYHia+6KuiZhZq2BO4AzgXXAPDOb6e5L\nE5b5DDDI3Qeb2YnAXUBFVG2qtW1b5i6gtWuDLp6mek5wdXV1rH9R4xxfnGMDxSfRFq7HACvdfTWA\nmU0DzgWWJizzOeABAHd/wcxKzOwwd9/Y0J0m3g+QLhGkGhfotNMKNy7Qli1bmm5nBRDn+OIcGyg+\niTZJ9APWJkzXACdmsUx/IGWSSDUuUH33A9SeAZxzjsYFEhHJVZRJItsiQvLhOuV6AwakHhdo4MAD\nzwKa47hAq1evLnQTIhXn+OIcGyg+ibBwbWYVwBR3HxdOXw/sSyxem9l/AVXuPi2cfg04Lbm7ycyK\n69ImEZFmomgL18B8YLCZlQHrgQuAC5OWmQlcAUwLk8qWVPWIfIMUEZGGiSxJuPseM7sCeIrgEtj7\n3H2pmU0OP7/b3Z8ws8+Y2UpgBzApqvaIiEjumsXNdCIiUhgFLfGa2Tgze83MVpjZd9Ms8+vw81fM\nbGQu6xZaQ+Mzs1Iz+z8zW2xmr5rZVU3b8uzk8/2Fn7U2swVm9ljTtDg3ef5+lpjZI2a21MyWhN2p\nRSXP+K4Pfz8Xmdkfzax907W8fvXFZmZDzWyOme0ys2tzWbcYNDS+Bh1b3L0gL4IuqJVAGdAWqAaG\nJS3zGeCJ8P2JwNxs1y30K8/4DgfKw/edgWVxii/h82uAh4CZhY6nseMjuP/nK+H7NkC3QsfUiL+f\nZcAbQPtw+s/ApYWOKcfYegEnAD8Crs1l3UK/8owv52NLIc8k6m62c/fdQO3NdokOuNkOKDGzw7Nc\nt9AaGt9h7v6Wu1eH898nuAGxb9M1PSsNjg/AzPoTHITu5eDLoItBg+Mzs27Ax939d+Fne9x9axO2\nPRv5fH/bgN1ARzNrA3QkGFWhWNQbm7tvcvf5BHHktG4RaHB8DTm2FDJJpLqRrl+Wy/TNYt1Ca2h8\n/RMXCK8OGwm80OgtzE8+3x/AbcB3gH1RNTBP+Xx/A4FNZna/mb1sZveYWcdIW5u7Bn9/7v4ucCuw\nhuDKxS3u/nSEbc1VNrFFsW5TaZQ2ZntsKWSSaOjNds1F3jcTmlln4BHg6jDrF5OGxmdmdjbwtgeD\nORbr95vP99cGOB64092PJ7hy73uN2LbG0OD/f2Z2FPAtgu6OvkBnM7u48ZqWt3yuxmkOV/Lk3cZc\nji2FTBLrgNKE6VKCjJhpmf7hMtmsW2gNjW8dgJm1BR4F/uDuf4mwnQ2VT3wnAZ8zs1XAn4AzzOz3\nEba1IfKJrwaocfd54fxHCJJGMcknvhOA5919s7vvAaYTfKfFIp/jQ1yOLWnlfGwpYPGlDfA6wV8j\n7ai/cFbB/sJZvesW+pVnfAb8Hrit0HFEEV/SMqcBjxU6nsaOD3gWGBK+nwLcUuiYGis+oBx4FegQ\n/q4+AHyz0DHlElvCslM4sLAbi2NLhvhyPrYUOtizCKrrK4Hrw3mTgckJy9wRfv4KcHymdYvt1dD4\ngFMI+uqrgQXha1yh42nM7y/h89MowqubGuH38zhgXjh/OkV2dVMjxPfvwGJgUZgk2hY6nlxiI7jK\nZy2wFXiPoL7SOd26xfZqaHwNObboZjoREUmrmY2XKiIiTUlJQkRE0lKSEBGRtJQkREQkLSUJERFJ\nS0lCRETSUpKQBjOz28zs6oTpp8zsnoTpW83s22Z2hJklP5Uw3Ta/GA6t/UwjtO9cMxuWMP0DM/tE\nvtutZ59/CofVvjpp/hQz22FmvRLm1TvUipl1M7Pfh0NCrzSzB8ysa/hZmZktSrGfa1NsZ7KZ/VsO\ncRy07caQrh1R7U/ypyQh+ZhNOByDmbUCegDDEz4fCzxHMODdRVlu86vAZe5+wME8HG00V+cltsfd\nb3L3vJNPOuEIxSe4+3Hu/qsUi7wDJB7As7lJ6T6CET8Hu/sgYBXByLnppNymB0+CfDCL/UWqWNoh\n2VOSaIHMbHT41257M+sUPnxkeNIyP0g6S/hxigeUzCFIBAAjCIZq2B4+cKc9MIzgjs6fAh+34AFD\nV5OGmf0HcDLwOzP7mZldamYzw7OKf4RtfdrMXjKzhWb2uYR1Lwljqg7/8h4LnAP8PByJ9Ugzm2pm\nnw+X/0Q4f6GZ3Wdm7cL5q8O/xmv38bEU7TwkHOF1YbiNyvCjvwP9wjhPSVrNgd8BF5hZSYptzjCz\n+eF3cXk4bxDBmE8/TFj0ZuAEMxuY7seY5mdbd4ZhZlVm9lMze8HMlqVoa1bxmlkHM5sWnvlNN7O5\nZnZ8+Nn7Cet/wczuT9GOUbXfGfCNTG2QwonsGddSvNx9npnNJHggSQfgQXdfkrTY7wiGk/hVeJZw\nATA6aTvrzWyPmZUSJIs5BEMWjyV45sAid99twZOzrnP3c+pp181mdjrBWDMvm9lEgqGMj3H3LWbW\nGjjP3bebWc9wfzPNbARwAzDW3d81s5Jw+ZkE40JNBzAzB9zMDgHuB85w95Vm9gDwdeBXBAfzTe4+\nysy+DlwHXJ7U1G8Ce9392DCJ/N3MBhMkpb+5+0hSez/8uX6LYEydRF9x9/fMrAPwopk9SnAWVO0J\nwyK4+77woHo0wZAYR5nZgoTtHA78PNWPl/1nGQ60dvcTzews4Cbgk2nanC7eIQQ/s/fdfbiZHQO8\nnLS/dO9rp+8HvuHus83sZxn2LwWkM4mW62bgUwQjeh70H9Td3wQ2m1l5uNzL7v5eiu08T9DldBLB\nQXtO+H4sQXcU5Dcc+N/dfUv4vhXwEzN7BfgH0NeCh+CcATzswXMOSFg+1b4N+Biwyt1XhvMeAE5N\nWGZ6+O/LBIOoJTsZ+EO4r2XAm8CQFPtK5sCvgUstGKo50dXhwX8OwWirg8ncHVX72evuPrL2BfxX\nFu2A+mNMlC7ejyfMXwQszGK/QFBrIRjPqvZ3RF1QRUpnEi1XT6ATwaMQOwA7UyxzLzAJOIzgL+BU\nniM4iBxD8JftWoK/vrdmWCdbntSui8N2H+/uey0YavyQcLl0B8ZUB9rkeZY078Pw372k/z/SkMRn\n7r7VzP4IXFE3M+i++QRQ4e67zOz/gPbAEqDczKz2bCI8qysPP8tHNjEe0PYc5yf+PDvksX0pMJ1J\ntFx3AzcCfwRuqZ1pZq8lLDMDGEdwtvFUmu08D5wNbPbAe0AJwZnE8+Ey24AuDWhj8oGjK8HDivaG\n3VJHEByM/hf4opl1D2M4NFx+e7hOIicYPbPMgofnAPwb8M8c2vUvgoRF2O0yINxmtn5JMGJn63C6\nG/BemCCGEgzLjbu/TlDTuTFh3RuBl9z9jRz2V6uhB+JU8b5GMBz6ReH8o4FjE9bZaGZDw6R2XlIb\nzIPHuW4xs5PD+cX00CJJoCTRApnZJcCH7j6NoKg82swqw37+Oh48P/d/Cbpy0nV9vEpwVdPchHkL\nCR5p+W7C9N6wqHy1mfUxs8ezaGpi/zXAQwRF24UEB/alYTuXAD8G/hl22dwaLj8N+E5YhD4yIa4P\nCc6Q/ifc1h6Cbprafabbf607gVbhutOAS8OfVfL6qeLB3TcTdPe0D+fPAtqY2RLgJwRdTrW+Cgyx\n4PLXlcCgcN4B20y1n0acny7euwieSrcE+AHwUsK63wP+RnCmuT5hW4k/00nAbxNqKhqSughpqHCp\nY2afBQa6+x3hdCuC//hfCP+qFUkr7Ca71t1frndhaTZUk5A67l73170Fl8Q+BkxXghBpuXQmISIi\naakmISIiaSlJiIhIWkoSIiKSlpKEiIikpSQhIiJpKUmIiEha/w9Jrjjq3itbkQAAAABJRU5ErkJg\ngg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c610f0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fraction of original NaOH in the slurry: 0.0227 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.3: Page 754"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.3\n",
+ "# Page: 754\n",
+ "\n",
+ "print'Illustration 13.3 - Page: 754\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "import numpy as np\n",
+ "from scipy import interp\n",
+ "import matplotlib.pyplot as plt\n",
+ "#***Data***#\n",
+ "# a=H2O b=CaCO3 c=NaOH \n",
+ "mass_c = 400;# [kg/h]\n",
+ "x1 = 0.1;# [wt fraction NaOH in overflow]\n",
+ "#**********#\n",
+ "\n",
+ "Mb = 100.0;# [kg/kmol]\n",
+ "Mc = 40.0;# [kg/kmol]\n",
+ "rate_c = mass_c/Mc;# [kmol/h]\n",
+ "rate_b = rate_c/2;# [kmol/h]\n",
+ "mass_b = rate_b*Mb;# [kg/h]\n",
+ "# After trial calculations:\n",
+ "y3 = 0.01;# [kg NaOH/kg solution]\n",
+ "N3 = 0.666;# [kg CaCO3/kg solution]\n",
+ "E3 = mass_b/N3;# [kg/h]\n",
+ "lost_c = E3*y3;# [kg/h]\n",
+ "sludge_a = E3-lost_c;# [kg/h]\n",
+ "overflow_c = mass_c-lost_c;# [kg NaOH/kg solution]\n",
+ "R1 = overflow_c/x1;# [kg overflow/h]\n",
+ "R1_a = R1-overflow_c;# [kg/h]\n",
+ "RNpPlus1 = R1_a+sludge_a;# [kg/h]\n",
+ "# For purpose of calculation, it may be imagined that agitators are not present in the flowsheet and the first thickner is fed with the dry mixture of the reaction products, CaCO3 and NaOH, together with overflow from the second thickner.\n",
+ "F = 400.0;# [kg NaOH/h]\n",
+ "NF = mass_b/F;# [kg CaCO3/kg NaOH]\n",
+ "yF = 1.0;# [wt fraction NaOH in dry solid, CaCO3 free basis]\n",
+ "# Points R1, E3, RNpPlus1 and F are plotted as in Fig 13.30 (Pg 755) and locate the point deltaR at the intersection of lines FR1 and E3RNpPlus1 extended. The coordinates of point deltaR are NdeltaR=-0.1419, ydeltaR=-0.00213. Further computation must be done on enlarged section of the equilibrium diagram (Fig 13.31 (Pg 755)). Point deltaR is plotted and the stages stepped off in a usual manner. The construction are projected on the xy diagram. Three stages produce a value: y3=0.001\n",
+ "print\"The NaOH lost in sludge: \",round((lost_c/mass_c)*100,2),\"%\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "#*** Data***#\n",
+ "lost_c = 0.001*mass_c;# [kg/h]\n",
+ "#***********#\n",
+ "\n",
+ "NNp_by_yNp = mass_b/lost_c;# [kg CaCO3/kg NaOH in final sludge]\n",
+ "# In order to determine the liquid content of the final sludge:\n",
+ "# Eqb=[N y_star]\n",
+ "Eqb = np.array([[0.659 , 0.01435],[0.666, 0.01015],[0.677, 0.002],[0.679, 0.001],[0.680 ,0.0005]]);\n",
+ "N_by_ystar = zeros(5);\n",
+ "for i in range(0,5):\n",
+ " N_by_ystar[i] = Eqb[i,0]/(Eqb[i,1]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1]);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x Wt fraction of NaOH\");\n",
+ "plt.ylabel(\"N kg CaCO3 / kg solution\");\n",
+ "plt.title(\"Equilibrium plot\")\n",
+ "# By Interpolation, for N_by_ystar=NNp_by_yNp:\n",
+ "NNp = interp(NNp_by_yNp,N_by_ystar,Eqb[:,0]);# [kg CaCO3/kg soln]\n",
+ "yNp = NNp/NNp_by_yNp;# [wt fraction NaOH in the liquid of the final sludge]\n",
+ "ENp = mass_b/NNp;# [kg/h]\n",
+ "ENp_a = ENp-lost_c;# [kg/h]\n",
+ "overflow_c = mass_c-lost_c;# [kg/h]\n",
+ "R1 = overflow_c/0.1;# [kg/h]\n",
+ "R1_a = R1-overflow_c;# [kg/h]\n",
+ "RNpPlus1 = R1_a+sludge_a;# [kg/h]\n",
+ "# On the operating diagram (Fig 13.32 (Pg 757)) point deltaR is located and stages were constructed. \n",
+ "# Beyond the fourth stage, the ratio of the overflow to the liquid in the sludge become substantially constant.\n",
+ "R_by_E = RNpPlus1/ENp;\n",
+ "# This is the initial slope of the operating line on the lower part of the figure.\n",
+ "# From Illustration 13.2:\n",
+ "m = 0.01015/0.00450;\n",
+ "Value1 = R_by_E/m;\n",
+ "xNpPlus1 = 0;# [kg NaOH/kg solution]\n",
+ "y4 = 0.007;# [wt fraction NaOH in the liquid]\n",
+ "Value2 = (yNp-(m*xNpPlus1))/(y4-(m*xNpPlus1));\n",
+ "# From Fig 5.16: (Pg 129):\n",
+ "# An Additional 2.3 stages beyond 4 are computed graphically are required.\n",
+ "# An additional two stage will make yNp/y4=0.099:\n",
+ "yNp = 0.099*y4;# [wt fraction NaOH in the liquid]\n",
+ "print round(yNp*ENp,2),\"kg NaOH was lost if 6 thickners were used\\n\"\n",
+ "# An additional three stage will make yNp/y4=0.0365:\n",
+ "yNp = 0.0365*y4;# [wt fraction NaOH in the liquid]\n",
+ "print round(yNp*ENp,3),\"kg NaOH was lost if 7 thickners were used\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.3 - Page: 754\n",
+ "\n",
+ "\n",
+ "The NaOH lost in sludge: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 1.88 %\n",
+ "\n",
+ "\n",
+ "\n",
+ "0.51"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " kg NaOH was lost if 6 thickners were used\n",
+ "\n",
+ "0.188 kg NaOH was lost if 7 thickners were used\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecHVX9//HXm4QgfQkWugEBFURCSwJSgoCGIEGp36Bo\nQCEaQ/mKSpMiFkCKEhANaEhASVCkfqWXRQQJJLKhhRIhPwho6EiTEPL5/XFmc2+uW+5u7tyy9/18\nPO4jOzNnZj73w7Bn55wzZxQRmJmZ5WGZWgdgZmZ9lysZMzPLjSsZMzPLjSsZMzPLjSsZMzPLjSsZ\nMzPLjSsZsxKS1pP0hiRly62Svp79/GVJNxWVXSRpgx4ce4n9a0XSoCx2/w6wXPkCs4Ylaa6kt7MK\nof0zYWmPGxHPRMTKUXiILLIPEfH7iPj8Uhx7qfavBUmnSLq01nFYY+pf6wDMlkIAX4iI22sdSDkk\n9YuI92sdh1k1+U7G+iRJy0g6S9KLkv4h6dvFzUPZXdAuReUX/7XeVVOSpDGS7ipZvUd2jhcl/ayo\nmW2MpLslnSPpJeCU4v07Ok9J01zx/q9KmiNpO0kHS3pG0nxJX+0iB62STpM0XdLrkq6WtFonZdeS\ndK2klyU9Kekb2foRwHHAAdmd4gPl5N+snSsZa3TqZP1hwB7AYGBrYF+yJq9MdLDcW18EtgK2BPYC\nDinaNgT4B/Bh4CdlHKs0riHALGAgMBX4Q3aejwFfAc6XtEIXxzsIOBhYE1gIdNacOA14Jiu3L/BT\nSTtHxI3AT4FpWRPiFmV8B7PFXMlYIxNwdfZXfvvn69m2/YGfR8RzEfEq6RdlZxUS3WzrzhkR8VpE\nPAv8AhhdtO35iPhlRCyKiP/04thPR8SUrH/oD8BawKkR8V5E3AIsADbsZN8ALomIRyPibeBEYP/2\nO612ktYFtgOOiYgFETEL+A3Qfpckli4/1sTcJ2ONLIC9OumTWRN4tmj5mRzjKD3PWp1s6435RT+/\nAxARL5asW6kHsS0LfLCkzFrAKxHxVknZrXscrVkJ38lYX/VPYL2i5fVKtr8FrFi0vMZSnKv0PM8V\nLXfVDNf+S724uWtp4uhIaWzvAS+VlHkeGChppZKy87KfPVW79ZorGWt0nTXj/AE4QtLaWWf3sSz5\ny7IN+B9J/SVtDexD73+ZfldSS9bsdARweTk7ZXckzwEHSeon6RBSX0ulCPiKpE9m/TanAn8sGprd\nHsezwD3AaZKWk/RpUr/S77Ii/wIGlTazmZXDlYw1uutKnpP5U7b+IuAmUqf5DOBPLFkhnUj6hf4q\ncArw+5LjdlbhlHbMA1wDzAQeAP4P+G0XZUvXHQp8j3R3sQlwdzfn6klFGMClwGTSnd0AUiXY0bFG\nA4NIdzVXAicVNUP+Mfv3ZUkzenB+M5TnS8uy4Y+/APoBv4mIMzooMwHYHXgbGBMRD2TrJ5FGB70Q\nEZuV7HM4MA54H/hzRByT25ewPkHSIOApoH9ELKptNNUh6Q7g0oiYVOtYrHnldicjqR9wPjCC9Bfa\naEmfLCkzEtgwIjYiDTn9VdHmi7N9S4+7MzAK+HREfAo4K59vYNYnuInLairP5rIhwJyImBsR75HG\n4e9VUmYUMAUgIqYDLZLWyJbvIjVllPoWcFp2zNKRNmZdacYO7Gb8zlZH8qxk1mbJ4ZPzsnU9LVNq\nI2BHSfdmTzR7mKV1K/tjp1+zNJUBRMTObiqzWsvzOZly/4IqvZ3vbr/+wGoRMUzSNqRRRGXPgmtm\nZtWTZyXzHLBu0fK6FMbdd1ZmHZZ8xqAj80ijX4iI+7O5n1aPiJeLC0lyM4GZWS9ERMX68vJsLpsB\nbJRNAjgAOAC4tqTMtWRTV0gaBrwWEfPp2tXAZ7N9NgYGlFYw7SLCnwhOPvnkmsdQLx/nwrlwLrr+\nVFpulUxELATGk55VeBS4PCJmSxoraWxW5nrgKUlzgImkYckASJpKekBsY0nPSjo42zQJ2EDSQ6QJ\nAzudhdaSuXPn1jqEuuFcFDgXBc5FfnKduywibgBuKFk3sWR5fCf7ju5k/XukmWXNzKzO+Yn/JjBm\nzJhah1A3nIsC56LAuchPrk/815Kk6KvfzcwsL5KIBun4tzrR2tpa6xDqhnNR4FwUOBf5cSVjZma5\ncXOZmZkt5uYyMzNrGK5kmoDbmwuciwLnosC5yI8rGTMzy437ZMzMbDH3yZiZWcNwJdME3N5c4FwU\nOBcFzkV+XMmYmVlu3CdjZmaLuU/GzMwahiuZJuD25gLnosC5KHAu8uNKxszMcuM+GTMzW8x9Mk1s\n0aJaR2Bm1jOuZBrEzJmw1VYwfXrP93V7c4FzUeBcFDgX+cm1kpE0QtJjkp6UdEwnZSZk22dJ2qJo\n/SRJ8yU91Ml+R0taJGlgXvHXky23hO99D774RRg/Hl5/vdYRmZl1L7c+GUn9gMeBXYHngPuB0REx\nu6jMSGB8RIyUNBQ4NyKGZdt2AN4ELomIzUqOvS5wEfBxYKuIeKWD8/fJPplXXoFjj4Xrr4df/AL2\n2QdUsdZTM2t2jdQnMwSYExFzI+I9YBqwV0mZUcAUgIiYDrRIWiNbvgt4tZNjnwN8P5eo69zAgXDh\nhTBtGpx8Muy5J8ydW+uozMw6lmclszbwbNHyvGxdT8ssQdJewLyIeLASQTaq7beHBx6A7baDrbeG\ns86ChQs7Luv25gLnosC5KHAu8pNnJVNuW1XpbVmn+0laATgeOLmL/ZvGgAFw/PFw771w882psunN\nwAAzs7z0z/HYzwHrFi2vS7pT6arMOtm6znwMGATMUuqIWAeYKWlIRLxQWnjMmDEMGjQIgJaWFgYP\nHszw4cOBwl8ufWF5ww3huONaue02+OIXh7PPPjBiRCsrrZS2Dx8+vK7i9XL9LLerl3hqtdy+rl7i\nqeZya2srkydPBlj8+7KS8uz470/q+N8FeB64j647/ocBv2jv+M+2DwKuK+34L9r+NE3W8d8dDwww\ns6XRMB3/EbEQGA/cBDwKXB4RsyWNlTQ2K3M98JSkOcBEYFz7/pKmAvcAG0t6VtLBHZ0mr/gbVUcD\nA6ZNa611WHWj9C/4ZuZcFDgX+cmzuYyIuAG4oWTdxJLl8Z3sO7qM42+wVAH2Ye0DA846C8aOhXnz\n4KijoH+u/8XNzJbkucuawJw5MG4cvPACTJwIQ4fWOiIzq1cN01xm9WPDDeGmm+D73/eMAWZWXa5k\nmkBraysSHHggPPIILFgAm24KV1wBzXaz57b3AueiwLnIjyuZJuMZA8ysmtwn08QWLEgDA845Jw17\n9sAAM6t0n4wrGfPAADNbzB3/1mPdtTc308AAt70XOBcFzkV+XMkYgAcGmFku3FxmHfrrX9NDnOuv\nD+efDzlMaWRmdcjNZVYVPXmVgJlZZ1zJNIHetjcP6IOvEnDbe4FzUeBc5MeVjHWrmQYGmFlluU/G\nesSvEjDr2/ycTJlcyeTLAwPM+iZ3/FuP5dHe3KgDA9z2XuBcFDgX+XElY73WFwcGmFllubnMKiIC\npk6Fo49O/TQ/+QmsumqtozKznnJzmdUlzxhgZh1xJdMEqtneXO+vEnDbe4FzUeBc5KfbSkbSByR9\nWdIJkk7OPieVewJJIyQ9JulJScd0UmZCtn2WpC2K1k+SNF/SQyXlz5Q0Oyt/pSQ3zNSZRh0YYGaV\n1W2fjKSbgNeAmcD77esj4uxuDy71Ax4HdgWeA+4HRkfE7KIyI4HxETFS0lDg3IgYlm3bAXgTuCQi\nNivaZzfgtohYJOn0LJ5jS87tPpk64VcJmDWOSvfJlPOKqrUj4vO9PP4QYE5EzAWQNA3YC5hdVGYU\nMAUgIqZLapG0RkT8KyLukjSo9KARcUvR4nRgn17GZ1XQPmPA1KlpxgAPDDBrHuX0ydwj6dO9PP7a\nwLNFy/OydT0t05VDgOt7FV2TqIf25noZGFAPuagXzkWBc5Gfcu5kdgAOlvQ08G62LiKinIqn3F8h\npbdmZe0n6QRgQURc1tH2MWPGMCh7FL2lpYXBgwczfPhwoHBRebn6yxdeCOed18p3vwuTJw/n/PNh\n7tzqnL9dPeWjVsttbW11FU8tl9va2uoqnmout7a2MnnyZIDFvy8rqZw+mfazthcUQHsTWDf7DgNO\niYgR2fJxwKKIOKOozK+B1oiYli0/BuwUEfOLzn9dcZ9Mtn4McCiwS0T8p4Nzu0+mzi1YkAYEnHNO\nmg/tqKOgfzl/9phZbqr+nExWmbSQ+k72BFYtp4LJzAA2kjRI0gDgAODakjLXAl+FxZXSa+0VTGck\njQC+B+zVUQVjjWGAZwww6/PKGcJ8JPA74EPAR4DfSTqinINHxEJgPHAT8ChweUTMljRW0tiszPXA\nU5LmABOBcUXnngrcA2ws6VlJB2ebzgNWAm6R9ICkC8r7us2ptKmo3lTzVQL1notqci4KnIv8lNM4\n8Q1gaES8BZANGb4XmFDOCSLiBuCGknUTS5bHd7Lv6E7Wb1TOua1xtA8MGDEiNZ1tuqlfJWDWF5TT\nJ/MQMCQi3smWlwfuK+0jqTfuk2lsfpWAWW3UYu6yi4Hpkk6R9EPSXcykSgVg1hHPGGDWN5TT8X8O\ncDDwKvAyMCYifp53YFY5jdrenMfAgEbNRR6ciwLnIj+d9slIWiUi/i1pIPA0MDfbFJIGRsQr1QjQ\nzDMGmDWuTvtkJP05IvaQNJcOHo6MiPVzjm2puE+mb3rllTQw4PrrPTDALA+V7pPxS8usIXlggFk+\nqt7xL+m2ctZZ/eqL7c29HRjQF3PRW85FgXORn04rGUnLS1od+JCkgUWfQfRsAkuzXHjGALP611Wf\nzFHAkcBawPNFm94ALoyI8/MPr/fcXNZcItLAgKOP9sAAs6VR9T4ZSYdHxHmVOmG1uJJpTh4YYLZ0\navEw5r8lfbX0U6kALH/N1N48cCBceCFMmwYnnwx77glz5xa2N1MuuuNcFDgX+Smnktmm6LMjcApp\nRmazuuUZA8zqQ4+HMEtqIc2m3NtXMleFm8us3Zw5MG4cvPACTJwIQ4fWOiKz+lWL5rJSbwN1/SCm\nWbFqvkrAzJZUznMy1xV9/gw8DlyVf2hWKW5vLrxKYOLEVhYsSK8SuOKKNCqtWfm6KHAu8lPO+2TO\nLvp5IfD/IuLZnOIxy9Uqq6SBAe0zBkye7BkDzPLkaWWsaS1YkAYEnHNOGvZ81FHQv5w/u8z6sKo9\nJyPpTTqYGDMTEbFKpYLIgysZK5cHBpgVVK3jPyJWioiVO/nUdQVjS3J7c0FHuWjWgQG+Lgqci/yU\nNbpM0uaSDpc0XtLm5R5c0ghJj0l6UtIxnZSZkG2fJWmLovWTJM3PXv9cXH6gpFskPSHp5mxItdlS\naR8Y8MgjeGCAWQWVM63MkcChwJWAgC8CF0XEhG7260caibYr8BxwPzA6ImYXlRkJjI+IkZKGAudG\nxLBs2w7Am8AlEbFZ0T4/A16KiJ9lFddqEXFsB+d3c5n1WvGrBC64ANZbr9YRmVVHLZ6T+QYwNCJO\niogTgWGkSqc7Q4A5ETE3It4DpgF7lZQZBUwBiIjpQIukNbLlu0ivfC61eJ/s3y+WEYtZj7TPGLDt\ntjBkCNx4Y60jMmtM5T6MuaiTn7uyNlA81Hke//2KgHLKlPpIRMzPfp4PfKTMeJqW25sLepKLAQPg\nhBPgj3+Eb3wjzYX2/vv5xVZtvi4KnIv8lDNg82JguqTi5rJJZexXbltV6W1Z2W1cERGSOi0/ZswY\nBmUPQLS0tDB48GCGDx8OFC4qLzfXcrue7L/DDjBhQiunngr33juc3/8eHn64Pr7P0iy3tbXVVTy1\nXG5ra6ureKq53NrayuTJkwEW/76spLKek5G0FbA9qQK4KyIeKGOfYcApETEiWz4OWBQRZxSV+TXQ\nGhHTsuXHgJ3a71SyF6RdV9In8xgwPCL+JWlN4I6I+EQH53efjFXUwoXwgx+k99b84Q8e6mx9Uy1e\nv/wx4JGIOBd4CNihzBFdM4CNJA2SNAA4ALi2pMy1wFez8wwDXitqCuvMtcDXsp+/BlxdRixmS61/\nfzj9dJgwIb1C4IILPPrMrDvl9MlcCSyUtCEwEVgXuKy7nSJiITAeuAl4lDRz82xJYyWNzcpcDzwl\naU527HHt+0uaCtwDbCzpWUkHZ5tOB3aT9ATw2WzZulDaVNTMKpGLvfaCv/0tTU/zla/AW28tfVy1\n4OuiwLnITzl9MosiYqGkvYHzIuI8Sd02lwFExA3ADSXrJpYsj+9k39GdrH+FNCzarGY+9rFU0Xz7\n22n02Z/+BJ/4r0ZbMyvnOZnpwLnA8cCeEfG0pIcj4lPVCLC33Cdj1fLb36a5zy64APbbr9bRmC2d\nqs1dVnTCTYGxwN8iYqqk9YH9izvw65ErGaumv/8d9t03NaX97Gew7LK1jsisd6re8R8Rj0TEEREx\nNVt+ut4rGFuS25sL8srFllvCzJlpss2dd4bnnsvlNBXl66LAuchPb96MaWYdWG01uOYaGDkSttkG\nbr+91hGZ1Z7fJ2OWg9tuSyPPjjwyze68jP+cswZR9T6ZRuVKxmpt3jzYf3/44AdhypR0p2NW72rx\nMOZ1kq7N/m3/+XeSjpT0gUoFYvlxe3NBNXOxzjrQ2gobbABbb50m3Kwnvi4KnIv8lHMT/zRpyv0L\ngYuAN7LPxtmymXViwAD4xS/gtNPgc5+DSeXM+mfWh5QzhHlGRGzd0TpJj0TEprlG2EtuLrN6M3s2\n7LNPen3A+efD8svXOiKz/1aL98msKOmjRQF8FFgxW1xQqUDM+rpPfhLuuw/eeQe22w6eeqrWEZnl\nr5xK5mjgLkmtklqBu4DvSVqRwsvDrI65vbmg1rlYaSX4/e/h61+HYcPguutqF0utc1FPnIv8lDN3\n2Y2k/pdPkKb6f4L0Kpf/AL/IMTazPkmC8ePTYID9909zoJ16aprl2ayvKadP5uKIOLhoeSXg2oj4\nbN7BLQ33yVgjePFFOPDA9MbNqVPhI37Pq9VYLfpk5km6IDv5asDNwKWVCsCsmX3oQ3DjjbD99unO\n5u67ax2RWWWVM3fZicBbkiYCtwDnRMTFuUdmFeP25oJ6zEW/fqm57Ne/hr33TkOeq3ETXo+5qBXn\nIj+dVjKS9sk+ewP3AkOBB4DI1plZBe2xB0yfDr/7HRxwALzxRq0jMlt6nfbJSJpM6uhfvKp4ubif\nph65T8Ya1X/+k+Y8u/PO9DK0TevySTTrqzx3WZlcyVijmzIFvvtdOPfcNDjArBpq0fFvDc7tzQWN\nlIuvfS3N5nzyyWnI87vvVvb4jZSLvDkX+cm1kpE0QtJjkp6UdEwnZSZk22dJ2qK7fSUNkXSfpAck\n3S9pmzy/g1ktffrTMGNGegnajjvCM8/UOiKznumqT2Y70iuXe9XmJKkf8DiwK/AccD8wOiJmF5UZ\nCYyPiJGShgLnRsSwrvbNZh04LSJukrQ78P2I2LmD87u5zPqMCDj7bDjrLLjkkjTZplkeqtlc9lXg\n75IulzRG0ho9PPYQYE5EzI2I94BpwF4lZUaRTU0TEdOBluw8Xe37T2DV7OcWUiVk1qdJqX/m8svh\n4IPTkOdFi2odlVn3Oq1kIuKbEbEFcAowEJgs6V5JP5W0Y3a30ZW1gWeLludl68ops1YX+x4LnC3p\nGeBM4Lhu4mh6bm8uaPRc7LRTaj679Vb4whfg5Zd7f6xGz0UlORf56Xa2pKx5azZwjqQVgJ2B/YGf\nA1t1tWuZMfT0tuy3wBERcZWk/YBJwG4dFRwzZgyDBg0CoKWlhcGDBzN8+HCgcFF5ubmW29VLPL1Z\nXnNNOOmkVi66CLbaajh//CO89VbPj9fW1lYX36celtva2uoqnmout7a2MnnyZIDFvy8rKbchzJKG\nAadExIhs+ThgUUScUVTm10BrREzLlh8DdgLW72xfSf+OiFWy9QJei4hVKeE+GWsGV14J3/wm/OhH\ncNhhqVnNbGk00hDmGcBGkgZJGgAcAFxbUuZaUt9Pe6X0WkTM72bfOZJ2yn7+LGlWaLOmtPfe8Ne/\nwi9/mYY8v/12rSMyW1JulUxELATGAzcBjwKXZ6PDxkoam5W5HnhK0hxgIjCuq32zQx8G/ExSG/Dj\nbNm6UNpU1Mz6Yi423hjuvTf9PHQoPFHmn119MRe95VzkJ9c3WETEDcANJesmliyPL3ffbP0M0jxq\nZpZZYYU0Q8CFF6YZndsn2zSrta6ek9kcOBt4iTSCaxKwJfAgcHBEzKlWkL3hPhlrVjNmwH77wT77\nwGmnwbLL1joiayTV7JP5NXAucA1wD3AhsBrwM+CCSgVgZpW19daponn0UdhlF/jnP2sdkTWzriqZ\nD0TEdRExFXgrIqZGxKKIuA74UJXiswpwe3NBs+Ri9dXh//4PdtstVTp33vnfZZolF+VwLvLTVSVT\n/LDlOSXbfANuVueWWQZOPBEuvji9n+bMM6vzMjSzYl31yXwT+H1EvFGyfkPSfGNHVSG+XnOfjFnB\nM8/A/vvDmmvC5Mmw6n89WWaW+H0yZXIlY7akBQvg6KPhxhvhiitg881rHZHVo6o+jClppKS/SHo5\n+9wpaY9Kndyqw+3NBc2ciwED4Lzz4Ic/hF13hWOPba11SHWjma+LvHX6nIykQ4GxwPeBmdnqrYDT\nJa1T+ryLmTWGAw9MdzG77w6vvprevPmBD9Q6KuuruuqTmQ1sHxEvl6xfHbg7Ij5Rhfh6zc1lZl17\n4w34+tfhH/9IzWfrr1/riKweVLW5rLSCKVrn395mDW7lldP7aQ46CIYNg+uvr3VE1hd1Vcn8W9Lg\n0pXZTABvdFDe6pTbmwuci4LW1lYkOOqoNJvz2LFpyPP779c6surzdZGfriqZo4FrJJ0iaU9JoyT9\nkDQb8tHVCc/MquEzn4GZM+Huu2HECHjxxVpHZH1Fl0OYs1chfxvYJFv1KPDLiPhXFWJbKu6TMeu5\nhQvhpJPgd79LTWnbblvriKzaqvacjKQPAx+KiEdK1m8KvBARdf23jisZs9677ro0KODEE2H8eL8M\nrZlUs+P/POCDHaxfnTRxpjUItzcXOBcFXeVizz3TO2ouvjgNeX7zzerFVQu+LvLTVSWzYUT817R6\nEfEXwM8Km/VxG2yQ+mhWXBGGDIHZs7vfx6xUV81lT0TExj3dVi/cXGZWOZMmwTHHwPnnp8k2re+q\nZnPZnI6mkJE0EvhHpQIws/p3yCFw881w/PFw5JFpHjSzcnRVyRwF/FzSZEmHSzpC0hRSf0xdz8Bs\nS3J7c4FzUdDTXGyxRRrm/PTTMHw4zJuXS1g14esiP51WMhHxBPBp4C/A+sBHgTuBT0fE4+UcXNII\nSY9JelLSMZ2UmZBtnyVpi3L2zSq92ZIelnRGObGY2dJraYGrr4ZRo2CbbeC222odkdW73Kb6l9QP\neBzYFXgOuB8YHRGzi8qMJL2bZqSkocC5ETGsq30l7QwcD4yMiPckfaij4dTukzHL1x13wJe/DN/+\nNhx3XHpJmjW+qs5dlp1wW0n3S3pT0nuSFkn6dxnHHgLMiYi5EfEeMA3Yq6TMKGAKQERMB1qyB0C7\n2vdbwGnZeur9eR2zvmrnneH++9OcZ6NGpRmdzUqV87fH+cCBwJPAB4CvAxeUsd/awLNFy/OydeWU\nWauLfTcCdpR0r6RWSVuXEUtTc3tzgXNRUIlcrL02tLbCxhvDVlulPptG5OsiP52+T6ZYRDwpqV9E\nvA9cLKkNOLa73cqMoae3Zf2B1bJmtW2APwAbdFRwzJgxDBo0CICWlhYGDx7M8OHDgcJF5eXmWm5X\nL/HUcrmtra0ix1t2WRg1qpVVVoERI4Zz2mnwsY+lyTfr6ft2tdzW1lZX8VRzubW1lcmTJwMs/n1Z\nSd32yUj6C7Ab8Bvgn8C/gK9FRJcPZEoaBpwSESOy5eOARRFxRlGZXwOtETEtW34M2Ik00KDDfSXd\nAJze/qCopDnA0A7ee+M+GbMqe/xx2Hvv9PDmL38JK6xQ64isp6reJwN8NSs3HngbWAfYp4z9ZgAb\nSRokaQBwAGkG52LXZsdvr5Rei4j53ex7NfDZbJ+NgQEdvffGzKrv4x+H6dPTczTbbQdz5tQ6Iqu1\nTisZSR+WtGnW+f5ORLweEacAvwVe7+7AEbGQVDHdRJq9+fJsdNhYSWOzMtcDT2V3IxOBcV3tmx16\nErCBpIeAqWSVlHWutKmomTkXBXnlYqWV0izOhx2WKpprrsnlNBXl6yI/XfXJnEfHHfyrAyeQBgN0\nKSJuAG4oWTexZHl8uftm698DDuru3GZWOxKMG5cGA+y/P9xzD/zkJ9C/rF5g60u6mrtsZkRs1cm2\nRyJi01wjW0rukzGrDy+9lJ6nWbAApk6FNdaodUTWlWr2yazcxbZlKxWAmfVtH/xgepZmxx1h663h\nrrtqHZFVkyfIbAJuby5wLgqqmYt+/eCHP4Tf/Ab22w/OOQfqqaHB10V+umohPQr4P0n7ATNJz7Ns\nBWwHfKEKsZlZHzNiRBp9tu++qZ9m0iRYZZVaR2V56vI5GUkfIHXwt/e/PAJcFhH/qUJsS8V9Mmb1\n69134aij4Pbb4YorYLPNah2Rtat0n0xuE2TWmisZs/p36aXwne/Az38OX/lKraMxqM3DmNbg3N5c\n4FwU1EMuDjoo3c2cemoa8vzuu7WJox5y0Ve5kjGzmtpsszSb8/z5sMMO8P/+X60jskpyc5mZ1YWI\nNOrszDNh8uQ0SMCqr+p9Mtn0LcGSsyW/TnqR2I/rdd4wVzJmjemuu2D0aPjGN+DEE9PwZ6ueWvTJ\n3Aj8mTTK7MvAdaQJLOcDkysViOXH7c0FzkVBveZihx1gxoz0npqRI9OMAXmr11z0BeVUMrtGxHER\n8VBEPBgRxwM7RcTpwKB8wzOzZrTGGnDrrTB4cJr/7L77ah2R9VY5zWUPAodmr0dG0hDgoojYXNID\nEbFFFeLsMTeXmfUNV1+dZnQ+5RT41rfS5JuWn1r0yWwDXAyslK16g/QK5keAPSLiD5UKppJcyZj1\nHXPmwD77pJFoEyfCiivWOqK+qxZ9Mg9FxKeAwcDgiNgMmBMRb9VrBWNLcntzgXNR0Ei52HBD+Nvf\n0qsChg6EQvQeAAATiUlEQVRNb+CspEbKRaMpp5K5UtKyEfFaRLwmaU3g1rwDMzMrtsIKcPHFcOSR\naXDAFVfUOiIrRznNZYcCI4F9gXVJr0H+bkTcnH94vefmMrO+a+bMNMnml74EZ5wBy/rlIxVTk7nL\nJI0HRgAfBb4ZEXdXKoC8uJIx69teeSVNS/P663D55bD22rWOqG+oWp+MpKOzz3eA5Uh3MbOAYdk6\naxBuby5wLgoaPRcDB8J118Huu8M228Add/T+WI2ei3rW3ZsxVyr69yrgyaJ13ZI0QtJjkp6UdEwn\nZSZk22dJ2qLcfbMKcJGkgeXEYmZ9zzLLwAknwCWXwIEHwumnw6JFtY7KiuU2d5mkfsDjwK7Ac6Rp\naEZHxOyiMiOB8RExUtJQ4NyIGNbdvpLWBS4CPg5sFRGvdHB+N5eZNZFnn4X994cPfximTIGWllpH\n1Jgaaar/IaShznMj4j1gGrBXSZlRwBSA7GHPFklrlLHvOcD3c4zdzBrMuuvCnXfCRz+aZgloa6t1\nRAb5VjJrA88WLc/L1pVTZq3O9pW0FzAvIh6sdMB9ldubC5yLgr6YiwEDYMIE+MlPYLfd0pDncvTF\nXNSL/jkeu9y2qrJvyyQtDxwP7FbO/mPGjGHQoEEAtLS0MHjwYIYPHw4ULiovN9dyu3qJp5bLbW1t\ndRVPJZfXWKOVs86C008fzt13w377tbLccp2Xb8tue+ol/mout7a2MnnyZIDFvy8rqdM+GUknd7JP\nAETEqV0eWBoGnBIRI7Ll44BFEXFGUZlfA60RMS1bfgzYCVi/o31Js0HfBrydHWIdUp/NkIh4oeT8\n7pMxa3JvvAGHHgpPPJEe3txgg1pHVP+q2SfzFvBmySdI85Z1OFKsxAxgI0mDJA0ADiA9yFnsWuCr\nsLhSei0i5ne2b0Q8HBEfiYj1I2J9UjPalqUVjJkZwMorw9SpcPDBMGxYGvJs1dVpJRMRZ0XE2RFx\nNmkk1/LAwaRO+PW7O3BELATGAzcBjwKXR8RsSWMljc3KXA88JWkOMBEY19W+HZ2m7G/axEqbipqZ\nc1HQLLmQ4PDD4ZprYNy4NOT5/feXLNMsuaiFLvtkJK0O/C/pZWWXkO4aXi334BFxA3BDybqJJcvj\ny923gzK++TWzsmy7bZqO5sAD4XOfS3c4H/5wraPq+7rqkzkL+BJwIXBBRLxRzcCWlvtkzKwj778P\nJ5+cnqWZNg0+85laR1RfqjZ3maRFwALgvQ42R0SsUqkg8uBKxsy68uc/wyGHwPHHwxFH+GVo7arW\n8R8Ry0TEByJi5Q4+dV3B2JLc3lzgXBQ0ey722APuvTdNSfPZz7byRkO11TSOPB/GNDOra+uvD3ff\nnd60uc028MgjtY6o78lt7rJac3OZmfXE5Mnwve+lGQNGj651NLVTk/fJNCJXMmbWU7NmwT77pNcH\nnH12mqam2TTSBJlWJ5q97b2Yc1HgXBS052LzzWHGjDSj8447pn9t6biSMTMr0tICV10Fe++d+mlu\nrusXzdc/N5eZmXWitTU9vPmtb6WZApZpgj/L3SdTJlcyZlYJzz8PBxyQ5kG79FJYffVaR5Qv98lY\nj7ntvcC5KHAuCrrKxVprwe23wyabwNZbpz4bK58rGTOzbiy7LJx1VvrsvjtMnAhuKCmPm8vMzHrg\niSfSMOctt4Rf/QpWWKHWEVWWm8vMzGpo443TdDSLFqV31Dz5ZK0jqm+uZJqA294LnIsC56Kgp7lY\nccU059m4cWkW56uuyieuvsCVjJlZL0jwzW+m2Zz/93/TlDQLF9Y6qvrjPhkzs6X08svwla/A22+n\nd9SsuWatI+o998mYmdWZ1VdPdzS77JKGOd95Z60jqh+5VzKSRkh6TNKTko7ppMyEbPssSVt0t6+k\nMyXNzspfKWnVvL9HI3Pbe4FzUeBcFFQiF8ssAyedBJMmpYc3zzzTw5wh50pGUj/gfGAEsAkwWtIn\nS8qMBDaMiI2Aw4BflbHvzcCmEbE58ARwXJ7fw8ysXJ//PNx3H1xxRRrq/PrrtY6otvK+kxkCzImI\nuRHxHjAN2KukzChgCkBETAdaJK3R1b4RcUtELMr2nw6sk/P3aGjDhw+vdQh1w7kocC4KKp2L9daD\nv/wl9c1svTU8+GBFD99Q8q5k1gaKJ8uel60rp8xaZewLcAhw/VJHamZWQcstB7/8JZxySuqrueSS\nWkdUG3lXMuW2SPZqJIOkE4AFEXFZb/ZvFm57L3AuCpyLgjxz8eUvwx13wE9+AoccAv/6V26nqkv9\ncz7+c8C6Rcvrku5IuiqzTlZm2a72lTQGGAns0tnJx4wZw6BBgwBoaWlh8ODBi2+L2y8qLzfXcrt6\niaeWy21tbXUVTy2X29racj3+Sy+1cs45cOutw9lkExgxopX/+R8YNar237+1tZXJkycDLP59WUm5\nPicjqT/wOKkieB64DxgdEbOLyowExkfESEnDgF9ExLCu9pU0Ajgb2CkiXurk3H5Oxszqzrx58KMf\nwZ/+BEcckR7kXHnlWkdV0FDPyUTEQmA8cBPwKHB5VkmMlTQ2K3M98JSkOcBEYFxX+2aHPg9YCbhF\n0gOSLsjze5iZVco666RZnKdPT/OebbghnH02vPNOrSPLh5/4bwKtra2Lb5ObnXNR4FwU1DIXDz+c\nnq+57z74wQ9Sv82AATUJBWiwOxkzM+vapz4FV16ZJtm86ir4xCfSSLT33691ZJXhOxkzszpy551w\nwgnw6qtw6qmw995pMs5qqfSdjCsZM7M6EwE33pgqGykNf/7856tT2bi5zHqsdPhuM3MuCpyLgnrL\nhZRe8zxjBhx3HHznO7DjjmkWgUbjSsbMrE4tswzsuy889BAceiiMGQMjRqTKp1G4uczMrEEsWAC/\n/S38+McwdGh63mbTTSt7DjeXmZk1qQED4Fvfgjlz0mufP/tZOOgg+Mc/ah1Z51zJNIF6a2+uJeei\nwLkoaLRcLL88HH10ephzo43SXc03v5lmE6g3rmTMzBrUKqukBzkffxxWXRU23zwNEnjxxVpHVuA+\nGTOzPuKf/4Sf/hQuuwzGjUt3Oy0tPTuG+2TMzKxDa64J550HM2fCc8+lprTTT4e33qpdTK5kmkCj\ntTfnybkocC4K+louBg2CSZPgrrvggQfSJJznnQfvvlv9WFzJmJn1UZ/4BFx+OdxwA9x0E2y8cRoC\nvXBh9WJwn4yZWZO45540Vc3zz8MPfwj7758e+CzmucvK5ErGzOy/RcBtt6XK5j//SQ92fuELhXnR\n3PFvPdbX2puXhnNR4FwUNFMuJNh1V7j33jRjwPHHw7bbwu2353O+/vkc1szM6pkEo0alu5jLL4ex\nY2G99XI4T19tUnJzmZlZ+d57D265BfbYw30yZXElY2bWcw3VJyNphKTHJD0p6ZhOykzIts+StEV3\n+0oaKOkWSU9IullSD59nbT7N1N7cHeeiwLkocC7yk1slI6kfcD4wAtgEGC3pkyVlRgIbRsRGwGHA\nr8rY91jglojYGLgtW7YutLW11TqEuuFcFDgXBc5FfvK8kxkCzImIuRHxHjAN2KukzChgCkBETAda\nJK3Rzb6L98n+/WKO36FPeO2112odQt1wLgqciwLnIj95VjJrA88WLc/L1pVTZq0u9v1IRMzPfp4P\nfKRSAZuZWWXlWcmU2+teTgeTOjpe1rPv3v1uzJ07t9Yh1A3nosC5KHAu8pPnczLPAesWLa9LuiPp\nqsw6WZllO1j/XPbzfElrRMS/JK0JvNBZAFLFBkg0vClTpnRfqEk4FwXORYFzkY88K5kZwEaSBgHP\nAwcAo0vKXAuMB6ZJGga8FhHzJb3cxb7XAl8Dzsj+vbqjk1dyCJ6ZmfVObpVMRCyUNB64CegH/DYi\nZksam22fGBHXSxopaQ7wFnBwV/tmhz4d+IOkrwNzgf3z+g5mZrZ0+uzDmGZmVnsNMUFmmQ91Dpf0\ngKSHJbUWrZ8r6cFs231F60+RNC9b/4CkEVX4KkttKXPRIukKSbMlPZo1UTbsA64VzsXQbH1TXReS\nPl70XR+Q9LqkI7JtTXVddJOLprousvXHSXpE0kOSLpO0XLa+Z9dFRNT1h9RcNgcYRBoQ0AZ8sqRM\nC/AIsE62/MGibU8DAzs47snAd2r9/aqciynAIdnP/YFVs59/Bnw/+/kY4PRaf9ca5qLprouiMssA\n/wTWbdbrootcNNV1ke3zFLBctnw58LXeXBeNcCdTzkOdBwJ/ioh5ABHxUsn2zgYBNNrggF7nQtKq\nwA4RMSlbvzAiXs/2acQHXPPKBTTRdVFiV+AfEdH+jFpTXRclSnMBzXVd/Bt4D1hBUn9gBQojfHt0\nXTRCJVPOQ50bAQMl3SFphqSDirYFcGu2/tCS/Q5XmjPttw3SFLA0uVgfeFHSxZL+LukiSStk2xrx\nAde8cgHNdV0U+x/gsqLlZrsuipXmAprouoiIV4CzgWdII3xfj4hbs316dF00QiVTzsiEZYEtgZHA\n54ETJW2Ubds+IrYAdge+LWmHbP2vSL9sBpNui8+uaNT5WJpc9M/WXxARW5JG8/3XvG+R7oEbYTRI\nXrlotusCAEkDgD2BP3Z4gua4LoBOc9FU14WkjwFHkZrN1gJWlPTl/zpBGddFI1Qy5TzU+Sxwc0S8\nExEvA38BNgeIiOezf18EriLdQhIRL0QG+E37+jrX21x8Ols/LyLuz8r9iXRxQfaAK4C6ecC1jlQy\nF1eQ5aLJrovNi7bvDszM/j9p10zXRZe5aMLrYivgnoh4OSIWAlcC22X79Oi6aIRKZvFDndlfGAeQ\nHsgsdg2wvaR+WbPHUOBRSStIWhlA0orA54CHsuU1i/b/Uvv6OtfbXMzObm+flbRxVm4XUocfFB5w\nhS4ecK0zlczFrmS5aLLr4tGi7aOBqSX7NNN10WUumvC6eBwYJml5SSL9P9Keo55dF3mObqjUh/SX\nxeOkkRLHZevGAmOLynyX9IviIeCIbN0GpBEVbcDD7ftm2y4BHgRmZUn6SK2/Z565yNZvDtyffecr\nKYyoGgjcCjwB3Ay01Pp71jAXzXhdrAi8BKxccsxmvC46y0UzXhffL1o/BVi2N9eFH8Y0M7PcNEJz\nmZmZNShXMmZmlhtXMmZmlhtXMmZmlhtXMmZmlhtXMmZmlhtXMtbQJP1c0pFFyzdJuqho+WxJ/yvp\no5JK38xafJwzs6nOz6hATEdJWr5o+c+SVlna43Zxvg9Jmi5ppqTPlGxrlXR/0fLWku4o45ibSrpd\naZr4JyT9oGjbGEnndXCerSrxfaxvcSVjje6vZNNdSFoGWB3YpGj7tsDdpHmnDuziOIcCm0XEEu/c\nkNSvFzEdSZq1FoCI2CMi/t2L45RrF+DBiNgqIu7uYPuH1IP3n2QV5DXATyPiE6QHV7eTNC4r0tHD\ndY0yt5lVmSsZq1uStslmvV1O0orZncYmJcX+RqpIADYlzezwhtJLyZYDPgk8QHpt9w5KL2c6svgA\nkq4FVgL+Lml/SZMl/VrSvcAZWRz3ZDM2390+HU02FcdZSi91miVpvKTDSRMK3iHptqzcXEkDs5+/\nk5V/qD2ObNqP2ZIuzL7jTZI+0EE+BmV3F7Mk3SppXUmDgTOAvbLvVrpfAGcBJ3RyvL9kd0AzJbXn\n8UDgr5HNuhsR7wDjKUwi2mhT3lsN9a91AGadiYj7swrgx8DywKUR8WhJmeclLZS0Lqmy+RtpOvNt\nSe/EeCgi3lN6K+B3I2LPDs4zStIbkWbrRtLupIpi24iIbP67HSLifUm7Aj8F9gUOA9YDNo+IRZJW\ni4hXJX0HGB5punTI/sLPmpPGkCZXXAaYLulO4DVgQ+CAiDhM0uXAPsDvS0I9D7g4Ii6VdDAwISK+\nJOkkYKuIOKKTVP4N+JKk4cAbRevnA7tFxLtKsxBfBmxDqqxnluToKUkrSVopW3WApO2LimzYybmt\nybmSsXp3Kmmiv3eAwzspcw+pyWw74BxSJbMd8DqpOQ16/tf3H6Mw51ILcImkDUkVRvv/N7sAv4qI\nRQAR8WoXxxOwPXBldmeApCuBHUgTDj4dEQ9mZWeSplgvNYzCC6J+R3pDYfuxu/t+PwZ+QHqTYbsB\nwPmSNgfeJ71bhOw7dne8acWVWjn9PNac3Fxm9e6DpEkLVyLdzXTkbuAzwGakyfzupVDp3NPL875d\n9POPgNsiYjPSWwGL4+hJ5VX6y1sU+jHeLVr/Pp3/AdibpqqIiDtIcQ8rWv+/wD8j4tPA1sBy2fpH\nSVO9F04qbQC8GRFvLkUc1oRcyVi9m0j6C/wyUt9DR+4BvgC8HMmrpLuPbSlUMv8GVu5lDKuQ3g4I\nqbmr3S3A2PbBAZJWy9a/ke1TLIC7gC9m06evSLoruYvyf2HfQ3pjI8CXSe/+6Ikfk+5k2iu2VYB/\nZT9/lfROeEi53l7SLrB4IMAEOs+/WadcyVjdkvRV4N2ImEbquN8m61co9TBpVNm9ReseBF4r6hd5\nEHhfUltpx3+mdGRU8fLPgNMk/Z30i7h9229Ir6d9UFIb6T0kABcCN7Z3/C8+YMQDwGTgvizWiyJi\nVhnnb3c4cLCkWaRK5siist2O7IqIG1jyBVMXAF/LYv848GZW7h3Su+B/IOkxUu6mR8Qve3I+M8BT\n/ZuZWX58J2NmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrn5/4wM\nQj9yu23UAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7a1c780>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.4: Page 758"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.4\n",
+ "# Page: 758\n",
+ "\n",
+ "print'Illustration 13.4 - Page: 758\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "from scipy import interp\n",
+ "#***Data***#\n",
+ "# a:oil b:soyabean c:hexane\n",
+ "# Data=[100y*(Wt % oil in soln) 1/N(kg soln retained/kg insoluble solid)]\n",
+ "Data = numpy.array([[0 ,0.58],[20 ,0.66],[30 ,0.70]]);\n",
+ "# Soyabean feed:\n",
+ "percent_b = 20.0;# [soluble]\n",
+ "yF = 1.0;# [mass fraction oil,solid free basis]\n",
+ "# Solvent:\n",
+ "RNpPlus1 = 1.0;# [hexane,kg]\n",
+ "xNpPlus1 = 0;# [mass fraction oil]\n",
+ "# Leached Solids:\n",
+ "leached = 0.005;# [fraction of oil to be leached]\n",
+ "# Miscella:\n",
+ "percent_miscella = 10.0;# [percent of insoluble solid]\n",
+ "#**********#\n",
+ "\n",
+ "N = zeros(3);\n",
+ "ystar_By_N = zeros(3);\n",
+ "for i in range(0,3):\n",
+ " N[i] = 1/Data[i,1];# [kg insoluble solid/kg soln retained]\n",
+ " ystar_By_N[i] = Data[i,0]/(100*N[i]);# [kg oil/kg insoluble solid]\n",
+ "\n",
+ "# Basis: 1 kg flakes introduced\n",
+ "# Soyabean feed:\n",
+ "mass_b = 1-(percent_b/100.0);# [insoluble,kg]\n",
+ "F = 1.0-mass_b;# [kg]\n",
+ "NF = mass_b/F;# [kg insoluble solid/kg oil]\n",
+ "\n",
+ "# Leached Solids:\n",
+ "Ratio = leached/(1-leached);# [kg oil/kg insoluble solid]\n",
+ "# By interpolation:\n",
+ "Np = interp(Ratio,ystar_By_N,N);\n",
+ "miscella_b = (percent_miscella/100.0)*mass_b;# [Insoluble solid lost to miscella,kg]\n",
+ "leached_b = (1-(percent_miscella/100.0))*mass_b;# [Insoluble solid in miscella,kg]\n",
+ "ENp = leached_b/Np;# [kg soln retained]\n",
+ "retained_a = Ratio*leached_b;# [oil retained,kg]\n",
+ "retained_c = ENp-retained_a;# [Hexane retained,kg]\n",
+ "yNp = retained_a/ENp;# [mass fraction of oil in retained liquid]\n",
+ "\n",
+ "# Miscella:\n",
+ "mass_c = 1.0-retained_c;# [kg]\n",
+ "mass_a = F-retained_a;# [kg]\n",
+ "R1 = mass_c+mass_a;# [clear miscella,kg]\n",
+ "x1 = mass_a/R1;# [mass fraction of oil in the liquid]\n",
+ "NR1 = miscella_b/R1;# [kg insoluble solid/kg soln]\n",
+ "\n",
+ "# The operating diagram is shown in Fig 13.33 (Pg 759).\n",
+ "# Point R1 represents the cloudy miscella and is therefore is displaced from the axis of he graph at NR1. Point deltaR is located as usual and the stages determined with the N=0 axis for all the stages but the first.\n",
+ "print\"Between 4 and 5 stages are required\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.4 - Page: 758\n",
+ "\n",
+ "\n",
+ "Between 4 and 5 stages are required\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter13_1.ipynb b/Mass_-_Transfer_Operations/Chapter13_1.ipynb
new file mode 100755
index 00000000..8bfca391
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter13_1.ipynb
@@ -0,0 +1,438 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b262ce3e37d7d3aade80ecf338d6eca332831fbc19ddab243748a217da7431ac"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13: Leaching"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.1: Page 722"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.1\n",
+ "# Page: 722\n",
+ "\n",
+ "print'Illustration 13.1 - Page: 722\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "import numpy as np\n",
+ "import math\n",
+ "#***Data***#\n",
+ "Density_L = 1137.0;# [kg/cubic m]\n",
+ "Density_S = 960.0;# [kg/cubic m]\n",
+ "Density_p = 1762.0;# [kg/cubic m]\n",
+ "A_prime = 16.4;# [square m/kg]\n",
+ "g = 9.81;# [square m/s]\n",
+ "sigma = 0.066;# [N/m]\n",
+ "Z = 3.0;# [m]\n",
+ "dia = 1.0;# [m]\n",
+ "#**********#\n",
+ "\n",
+ "e = 1-(Density_S/Density_p);# [fraction void]\n",
+ "ap = A_prime*Density_S;# [square m/cubic m]\n",
+ "# By Eqn. 6.67:\n",
+ "dp = 6*(1-e)/ap;# [m]\n",
+ "# By Eqn. 13.6:\n",
+ "K = dp**2*e**3.0*g/(150.0*(1-e)**2);# [cubic m/s]\n",
+ "check = K*Density_L*g/(g*sigma);\n",
+ "if (check<0.02):\n",
+ " # By Eqn. 13.3: \n",
+ " So = 0.075;\n",
+ "else:\n",
+ " # By Eqn. 13.4:\n",
+ " So = 0.0018/(check)\n",
+ "\n",
+ "# By Eqn. 13.2:\n",
+ "ZD = (0.275/g)/((K/g)**0.5*(Density_L/sigma));# [m]\n",
+ "# By Eqn. 13.1:\n",
+ "Sav = ((Z-ZD)*So/Z)+(ZD/Z);\n",
+ "# VolRatio=Vol liquid retained/Vol bed.\n",
+ "VolRatio = Sav*e;\n",
+ "print\"Vol liquid retained/Vol bed : \",round(VolRatio,4),\" cubic m/cubic m\\n\"\n",
+ "Mass = VolRatio*math.pi*dia**2*Z*Density_L/4;# [kg]\n",
+ "# Mass ratio=Mass Liquid/Mass dry solid\n",
+ "MassRatio = VolRatio*Density_L/(Density_S);\n",
+ "print\"Mass liquid/Mass dry solid: \",round(MassRatio,4),\" kg/kg\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.1 - Page: 722\n",
+ "\n",
+ "\n",
+ "Vol liquid retained/Vol bed : 0.058 cubic m/cubic m\n",
+ "\n",
+ "Mass liquid/Mass dry solid: 0.0687 kg/kg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.2: Page 749"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.2\n",
+ "# Page: 749\n",
+ "\n",
+ "print'Illustration 13.2 - Page: 749\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#***Data***#\n",
+ "# Eqb=[x(Wt fraction NaOH in clear solution) N(kg CaCO3/kg soln in settled sludge) y*(wt fraction NaOH in soln of settled sludge)]\n",
+ "# a=H2O b=CaCO3 c=NaOH\n",
+ "Eqb = np.array([[0.090 ,0.495, 0.0917],[0.0700, 0.525, 0.0762],[0.0473, 0.568, 0.0608],[0.0330, 0.600, 0.0452],[0.0208, 0.620, 0.0295],[0.01187 ,0.650, 0.0204],[0.00710, 0.659, 0.01435],[0.00450, 0.666, 0.01015]]);\n",
+ "def f80(x):\n",
+ " return x\n",
+ "x = np.arange(0,0.12,0.01);\n",
+ "Mass_c = 0.1;# [kg]\n",
+ "Mass_b = 0.125;# [kg]\n",
+ "Mass_a = 0.9;# [kg]\n",
+ "#**************#\n",
+ "\n",
+ "\n",
+ "plt.plot(x,f80(x),label=\"N Vs x\")\n",
+ "plt.plot(Eqb[:,2],Eqb[:,1],label=\"N Vs Y\");\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x,y Wt. fraction of NaOH in loquid\");\n",
+ "plt.ylabel(\"N kg CaCO3 / kg solution\");\n",
+ "plt.legend('upper left');\n",
+ "plt.title(\"Equilibrium Plot\")\n",
+ "plt.show()\n",
+ "# Basis: 1 kg soln in original mixture.\n",
+ "# As in Fig. 13.27 (Pg 750)\n",
+ "# The original mixture corresponds to M1:\n",
+ "NM1 = 0.125;# [kg CaCO3/kg soln]\n",
+ "yM1 = 0.1;# [kg NaOH/kg solution]\n",
+ "# The tie line through M1 is drawn. At point E1 representing the settled sludge:\n",
+ "N1 = 0.47;# [kg CaCO3/kg soln]\n",
+ "y1 = 0.100;# [kg NaOH/kg solution]\n",
+ "E1 = Mass_b/N1;# [kg soln. in sludge]\n",
+ "Ro = 1-E1;# [kg clear soln drawn]\n",
+ "\n",
+ "# Stage 2:\n",
+ "xo = 0;# [kg NaOH/kg soln]\n",
+ "# By Eqn. 13.11:\n",
+ "M2 = E1+Ro;# [kg liquid]\n",
+ "# By Eqn. 13.12:\n",
+ "NM2 = Mass_b/(E1+Ro);# [kg CaCO3/kg soln]\n",
+ "# M2 is located on line RoE1. At this value of N, and the tie line through M2 is drawn. At E2:\n",
+ "N2 = 0.62;# [kg CaCO3/kg soln]\n",
+ "y2 = 0.035;# [kg NaOH/kg solution]\n",
+ "E2 = Mass_b/N2;# [kg soln. in sludge]\n",
+ "Ro = 1-E2;# [kg clear soln drawn]\n",
+ "\n",
+ "# Stage 3:\n",
+ "xo = 0;# [kg NaOH/kg soln]\n",
+ "# By Eqn. 13.11:\n",
+ "M3 = E2+Ro;# [kg liquid]\n",
+ "# By Eqn. 13.12:\n",
+ "NM3 = Mass_b/M3;# [kg CaCO3/kg soln]\n",
+ "# Tie line E3R3 is located through M3.At E3:\n",
+ "N3 = 0.662;# [kg CaCO3/kg soln]\n",
+ "y3 = 0.012;# [kg NaOH/kg solution]\n",
+ "# By Eqn. 13.8:\n",
+ "E3 = Mass_b/N3;# [kg soln. in sludge]\n",
+ "print\"The fraction of original NaOH in the slurry: \",round(E3*y3/Mass_c,4),\" \\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.2 - Page: 749\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVXXZ///XxVHOIyflMDgoEAcPgwgOajqaFZYmUmlq\nt0Lpjw4eSu0uf9otWd1lZVqZ3t5qYmaRt0Jhipbe92QoKCgjCMhBQRhARJSDIMrh+v6x1gybzd57\n9p49a/aeNe/n47Ef7LX2Onyu2cO6Zn2utT7L3B0REZFUWhW6ASIiUryUJEREJC0lCRERSUtJQkRE\n0lKSEBGRtJQkREQkLSUJiTUzG2Bm283MwukqM/tq+P5iM3sqYdl9ZnZkDts+YP1CMbOpZvbDQrdD\n4klJQoqCma02s53hAb329et8t+vua9y9i++/IcjDF+7+kLt/Oo9t57V+LsLk9kH4c9lkZo+a2eG1\nTQlf2Wwnp0QooiQhxcKBs8MDeu3rqkI3Kh0za93Eu3Tgm+7eBRgClAC3JTYph23lsqy0cEoSUvTM\nrJWZ/SL8C/p1M/tm+Bdxq/Dz1Wb2iYTlp5jZg+H7ssRlk7Y70cz+lTT7s+E+NpnZzxK6qSaa2XNm\n9kszeweYkrh+qv0kdW0lrv+ema00s5PMbJKZrTGzjWZ2STY/D3d/D5gOHF27q6S4LjezFWa22cz+\namZ9wvnPhou8Ep6RfDGb/UnLpiQhxSTdX7j/H/BZoBw4AfgCB3avJHe35DPWzHhgFHA8cC7wlYTP\nxgCvA72BH2exreR2jQFeAboDfwIeDvdzFPBl4A4z65hhe7UJqyfweeDlhP0QfnYG8J/AF4E+wJvA\nNAB3PzVc7NjwTO1/sohBWjglCSkWBvwl/Cu79vXV8LPzgdvcfV34V/R/krnLJJ/ulFvcfYu7rwVu\nBy5M+Gy9u//W3fe5+64GbHuVuz8Q1kceBvoCN7v7bnf/B/ARMCjNugb82szeA6qBdcA1CZ/XJoqL\ngfvcvdrdPwKuB8aa2YAGtFeENoVugEjIgXPd/X9TfNYHWJswvSbCdiTvp2+azxpiY8L7DwDcfVPS\nvM5p1nXgSnf/XT376APMr1vJfYeZbQb6Ee3PTWJKZxLSHGwAEv8STv6reAfQKWH6cBoueT/rEqYz\ndWPtCP9N7C7Kpx0NtR4oq50ws05ADw6MQyRrShJSTNJ1Ez0MXGVm/czsUOB7HHjArga+ZGZtzOwE\ngv76htYlrjOzEjMrBa4C/pzNSuEZwTrg38ystZl9haDW0JjS/Xws4bM/AZPM7Dgza0/QNTfX3WvP\nIjZG0C6JMSUJKSaPJd0n8Wg4/x7gKYKi73zgUQ48YH6f4MD3HjAFeChpu+kSRqr7C/4KvAQsAP4G\n3Jdh2eR5lwPfAd4BhgPP1bOvXBNZvXG4+zMEP49HCc4qBgJfSlh2CvBAWPP5Qo77lxbIonzokJmN\nIyj+tQbudfdbkj6/jqDQBkF9ZBjQ0923RNYoafbMrAx4A2jj7vsK2xqReIssSYQ3Gy0DziQ4DZ8H\nXOjuS9MsfzbwLXc/M5IGSWwoSYg0nSi7m8YAK919tbvvJrhW+9wMy19E0J8qkg09d1ekCUSZJPpx\n4CWDNeG8g4Q3EH2aoB9VJKPwD4/WOosQiV6USSKXv/TOAWarFiEiUlyivJluHVCaMF1KcDaRypfI\n0NVkZupaEBFpAHfPa0DHKM8k5gODw4HP2gEXADOTFzKzbsCpBJcepuXusX3ddNNNBW+D4lNsii9+\nr8YQ2ZmEu+8xsysIrm9vTTCezFIzmxx+fne46HjgKXf/IKq2FLvVq1cXugmRinN8cY4NFJ9EPHaT\nu88CZiXNuztp+gHggSjbISIiDaM7rovAxIkTC92ESMU5vjjHBopPIr7jurGYmTeHdoqIFBMzw4u4\ncC1ZqqqqKnQTIhXn+OIcG7SM+MwsFq+o6HkSItLiNfeeiiiThLqbRKRFC7tkCt2MvKSLQd1NEdi9\ndzc7d+8sdDNERIqCkkSSBW8toOfPejL8t8O56NGL+PlzP+fpN55m887Nke2zJfT7xlWcYwPFJ6pJ\nHGRMvzFs+d4Wlm5ayoK3FrBgwwIeW/4Yr2x8ha7tuzLy8JHBq89Iyg8v54huR0TaHygiUkiqSWRp\nn+9j1XurWPDWAqrfqq5LILv27OLYw45lRK8RHN37aI7ufTQjeo+ge4fuBW2viGRHNYl6tt0cfjjF\nkCTS2fj+Rha9vYjFby/m1bdf5dVNr7L47cV0bteZEb1HcHSvIGkc3ftohvcaTtf2XQvdZBFJoCRR\nz7abww+nmJNEKu7O2m1r6xLH4k3Bv0vfWUrPjj2Ds43wzGNErxFsWrKJcWeOK3SzI1NVVUVlZWWh\nmxGJOMcGLSO+008/vSiTRKtWrVi5ciVHHnkkENwdXlpayg9/+MODlo0ySagmEQEzY0C3AQzoNoCz\nBp9VN3/vvr2s3rK6Lmk8ufJJbp1zK0vnLaVibQWTyifxxRFfpHO7zgVsvYgUo6hvmku732LMoMma\n25lErj7a+xGPL3+cqa9M5Z+r/8n4oeOZWD6RU484lVamC9BEolRfd1NjHZdzPYQln0lMmjSJ/v37\n60yiJWrXuh3nDTuP84adx8b3N/LQooe4ctaV7PhoB5cedymXll9KWUlZoZsp0iLF+O/TrOjP1CKQ\neK32YZ0P45qx17Dwawv5ny/+D5t2buKE/z6BMx44gwdfeZAdH+0oXEMbKM7Xosc5NlB8hdSxY0d2\n7tx/Y++GDRsK0t2kJFGkzIxRfUdxx2fuYN016/j6CV9n2uJp9L+tP5fNvIzZa2YXZbFNRBpHeXk5\nDz30EHv37uXJJ5/k2WefLUg7VJNoZtZvX88fFv6B+6vvZ8++PUw8biKXHHcJpd1K619ZRA5SrJfA\nvvTSS1x66aWsWbOG8ePHs3fvXo466ihuvvnmg5bVJbBKEgdxd15c9yJTq6fy8JKHGdVnFBPLJ3Le\n0PPo0LZDoZsn0mwUa5LIhQb4i7mG9IuaGSf2P5G7zr6Lmm/X8JWRX+GBVx6g3y/7MfmxycytmVs0\nv/jF3O+brzjHBopPlCRioUPbDnzp6C/x1JefYuHXF3JEyRFcMuMSht85nFtm38L67esL3UQRaabU\n3RRT7s7za59navVUHln6CBX9Kzh/+PkM6zWMwd0H06Njj0I3UaQoqLupnm03hx+OkkR+dny0gxmv\nzeCJFU+w4t0VrNi8glbWiiE9hjC4x2AGdx8cvO8+mME9Bmt8KWlRlCTq2XZz+OHEPUk09fg47s6m\nnZtYsXlFXdJY/u5yVmxewcp3V9KpXaf9SSNMHEN6DGFQ90F0bNsx5/3FefyfOMcGLSO+Yh27KRfN\n9o5rMxsH3A60Bu5191tSLFMJ3Aa0Bd5x98oo2yTBL07vTr3p3ak3Jw84+YDP3J3129fXJY8V767g\nDwv/wIp3V/DGe2/Qo0OPIGl0338WMrjHYI469Cjat2lfoIhEJCqRnUmYWWtgGXAmsA6YB1zo7ksT\nlikBngM+7e41ZtbT3d9Jsa1Yn0k0F3v37aVmWw3LNy8/6AxkzdY19OnSp+7sI7Erq6ykjLat2xa6\n+SIpqbupnm1HmCTGAje5+7hw+nsA7v7ThGW+ARzu7v9Rz7aUJIrc7r27eXPrm0ECCc9AapPJhu0b\nGNBtQMr6R2nXUlq3al3o5ksLpiSRWZTdTf2AtQnTNcCJScsMBtqa2f8BXYBfufuDEbapKMWh37dt\n67YM6j6IQd0HBd9qgr8/83dKjy2tSxqvvPUKjyx5hOWbl7P5g80ceeiRB9U/BncfTN8ufYv+0bBx\n+O4yaQnxSWZRJolsUnNb4HjgE0BHYI6ZzXX3FckLTpw4kbKyMgBKSkooLy+v++Wt/aKb63R1dXVR\ntaexp5csWkK71u04t/Lc/Z93gcpLK9nx0Q6m/W0aNdtqaNehHXNr5vKbh39DzbYaWg1sxcmlJ9P3\nnb4cc9gxXDbhMtq3aV/weDQdr+k4qaqqYurUqQB1x8t8RdndVAFMSehuuh7Yl1i8NrPvAh3cfUo4\nfS/wpLs/krQtdTe1QOu2reO5tc8xe81sZq+ZzfLNyxnVdxSnlJ7CKQNOYWzpWEoOKSl0M6WZU3dT\nPduOMEm0IShcfwJYD7zIwYXrocAdwKeB9sALwAXuviRpW0oSwrYPtzG3Zm5d0pi3fh5HHnpkXdI4\nZcApGuhQclasSaKsrIyvfe1rPPjgg2zYsIHx48dz11130b79wVcRNsskAWBmZ7H/Etj73P0nZjYZ\nwN3vDpe5DpgE7APucfdfp9hOrJNEVQvo940ivt17d7PgrQV1SWP2mtl0aNshSBhh4hjRe0SkT/fT\nd9e8VRXxfRJlZWV07dqVWbNm0bFjR8455xxOP/30eD2Zzt1nAbOS5t2dNP0L4BdRtkPiqW3rtozp\nN4Yx/cZwzdhrcHdWvLuiLmHcNvc2Nu3cxEmlJ9UljdH9RnNIm0MK3XRpRuwHjXPxhN+UWyIyM664\n4gr69esHwA033MCVV16ZMklESXdcS6xtfH/jAXWNxZsWU354eV3SOKn0JI1j1cIVa3fTwIEDufPO\nOznrrLMAWLx4MaNHjz7gaXW1mu2ZhEihHdb5MCYMm8CEYRMAeP+j93lx3YvMXjOb37z4Gy6efjGl\n3UoPqGuUlZQV/aW30jKsWbPmgPd9+/Zt8jboTKIItIR+32KNb8++PSzcuLDuTONfa/5FK2t1QF3j\n2MOOTXvDXzHH1hhaQnzFXJPo1q0bTzzxBB06dOBzn/sclZWV/OhHPzpoWZ1JiESkTas2HN/neI7v\nczxXnXgV7s6qLavqksZd8+9i3fZ1VPSvqEsaJ/Y/sUEDHYrkwsy46KKL+NSnPsX69esZP348N954\nY9O3oxgzaLK4n0lIcXtn5zs8tyasa6ydzcKNCzmm9zF13VMnl55Mr069Ct1MaaBirkncd999nHHG\nGfUu22wvgW0sShJSTHbu3sm8dfPqksactXM4vPPhnDPkHM4bdh4V/SsivexWGpeSRGb6TS4CtcME\nxFXc4uvYtiOnlZ3GDafewHf7fZfN/76ZhyY8RIe2HZj8t8n0/2V/vvH4N/jH6/9g997dhW5uXuL2\n3SWLe3yNQTUJkTy1btWaUX1HMarvKG4+/WaWb17OjKUz+P7/fZ8V767g7CFnM2HoBD511Kfo0LZD\noZsrzcSqVasK3QRA3U0ikarZVsNfXvsLM16bwfz18/nkkZ9kwrAJfHbwZ+l2SLdCN08o3u6mXKgm\noSQhMfDOznd4bNljzHhtBlWrqzh5wMlMGDqBc4eeS+9OvQvdvBZLSSIz1SSKQNz7ReMcXy6x9ezY\nk0kjJzHzwpmsu2Ydk8on8cyqZxjymyGcev+p3D73dt7c8mZ0jW2AOH93EP/4GoNqEiIF0KV9F84f\ncT7njzifXXt28cwbzzB96XR+/K8fM6DbACYMDe4SH9ZrWKGb2iLoDvv01N0kUkT27NvD7DWzmb50\nOjNem0Gntp3qhhUZ1WeUDmaSE9UkRGLM3Zm/fj7Tl05n+mvT+WD3B5w39DwmDJvAKQNO0bPBpV6q\nScRE3PtF4xxflLGZGaP7jeYnZ/6E1775Gk9++Ul6derFt5/6Nn1u7cNlMy/jiRVP8OGeDyNrQ5y/\nO4h/fI2h3pqEmR0CfB4oS1je3f3mCNslIgnMjOG9hjO813BuPPVGVm9ZzYylM/jp7J9y8fSLGTdo\nHBOGTuCswWfRuV3nQjdXYqTe7iYzewrYArwE7K2d7+63Rtu0A9qg7iaRNDa+v5G/Lvsr05dO5/m1\nz1NZVsmEYRM4Z8g5elZGC9ckNQkze9Xdj85nJ/lSkhDJzpZdW3h8+eNMf206T7/xNCf0PYEJQycw\nfuh4+nXtV+jmSRNrqprE82Z2bD47kczi3i8a5/iKLbaSQ0q4+NiLefT8R9lw7QauHHMlL6x7gWPu\nOoaKeyv42XM/Y/nm5VnfPFZs8TW2uMfXGLK5T+LjwCQzWwXUVsjc3ZU4RIpYx7YdGT90POOHjmf3\n3t1Ura5i+tLpnP7A6ezzfVT0r2Bs/7GM7T+WUX1H6RkZklI23U1l4dvaBQ3A3VdH1agUbVB3k0gj\ncXfWbF3D3Jq5zKmZw5yaObz69qsM6zlsf+IoHcvAkoG6L6OZa7L7JMysnOCMwoF/ufsr+ew0V0oS\nItHatWcXL294mTlr5zB33VzmrJ3D7n2765JGRf8KRvcdTad2nQrdVMlBUxWurwYuB6YTnEWMB+5x\n91/ns+NcxD1JtITnCMc1vjjHtnbrWu6bfh/b+m5jTs0cFm5cyJAeQ+q6qCr6VzCo+6BmfbYR5+8P\nmu4Z15cBJ7r7jnCnPwXmAvUmCTMbB9wOtAbudfdbkj6vBP4KvBHOetTdD37Kt4g0udJupVQOrKw7\niH6450MWvLWAuTVz+duKv3HD/97AB3s+oKJ/BRX9KhhbOpbRfUfTpX2XwjZcGlU2ZxKLgDHu/kE4\n3QF40d2PqWe91sAy4ExgHTAPuNDdlyYsUwlc4+6fq2dbsT6TEGmu1m1bV1fbmFszl+q3qjmq+1F1\nZxpj+49lSI8hzfpsozlrqu6ma4CJHNjdNNXdb6tnvbHATe4+Lpz+HoC7/zRhmUrgWnc/p55tKUmI\nNAMf7f2I6req9xfF185h+0fbObHfiXWJ48T+J9K1fddCN7VFaMrC9SjgFPYXrhdksc4XgE+7++Xh\n9JcJuq2uTFjmNILkU0NwtnGduy9Jsa1YJ4m494vGOb44xwaNE9+G7RuYWzO3LnG8vOFlBh46sK6L\namz/sXys58doZU0/lFzcv79IaxJm1tXdt5lZd2AVsDr8yM2su7u/W8+2szmqvwyUuvtOMzsL+Asw\nJNWCEydOpKysDICSkhLKy8vrvtzaG2Ka63R1dXVRtUfxaboxp5e9tIxDOZRbPhmUJJ9+5mlef+91\ndh++m2dWPcONv7uRbR9u45RTT6GifwUd13VkeK/hnP2ps4ui/c1puqqqiqlTpwLUHS/zlfZMwswe\nd/fPmtlqUhzw3X1gxg2bVQBTErqbrgf2JRevk9ZZBYxKTkBxP5MQaek2vr/xgLONlza8RGnXUsb2\nH8t1J12nhy81UFE/T8LM2hAUrj8BrAde5ODC9WHA2+7uZjYGeNjdy1JsS0lCpAXZs28PizYuYk7N\nHM4adBYDD834N6mk0SRjN5nZM9nMS+bue4ArgKeAJcCf3X2pmU02s8nhYl8AFplZNcGlsl/KpfFx\nUXu6GFdxji/OsUHh4mvTqg0j+4zkG6O/EWmCiPv31xgy1SQ6AB2BXmFdolZXIKvhJN19FjArad7d\nCe9/C/w2lwaLiEjTyVST+BZwNdCXoLuo1nbgv939juibV9cWdTeJiOSoqe6TuNLdf5PPTvKlJCEi\nkrumep7ENjO7JPmVz07lQHHvF41zfHGODRSfZDd202j2XwLbATiD4P6G30fVKBERKQ45XwJrZiUE\nVyp9OpompdynuptERHLUVN1NyXYCumhZRKQFyOY+iccSXo8T3CA3I/qmtRxx7xeNc3xxjg0Un2RX\nk7g14f0e4E13XxtRe0REpIhENixHY1JNQkQkd1GPAvs+6UdydXfXgPAiIjGXtibh7p3dvUualxJE\nI4p7v2ic44tzbKD4JLuaBGZ2HHAq+x869EqkrRIRkaKQzbAcVwOXc+DjS+9x919H37y6NqgmISKS\no6Yau2kRUOHuO8LpTsBcdz8mnx3nQklCRCR3TXkz3b4076URxL1fNM7xxTk2UHySXU3ifuAFM0vs\nbvpdpK0SEZGikNV9EmY2CjiF/YXrBVE3LGn/6m4SEclRU9UkjgLWufsuMzsdOAb4vbtvyWfHuVCS\nEBHJXVPVJKYDe8xsEHA3UAr8MZ+dyoHi3i8a5/jiHBsoPskuSexz9z3ABOA37v4doE+0zRIRkWKQ\nTXfTC8CvgP8fOMfdV5nZq+5+dFM0MGyDuptERHLUVN1NXwEqgB+HCWIg8GA+OxURkeah3iTh7ovd\n/Sp3/1M4vcrdb4m+aS1H3PtF4xxfnGMDxScNezJd1sxsnJm9ZmYrzOy7GZYbbWZ7zGxClO0REZHc\nRPY8CTNrTfAUuzOBdcA84EJ3X5piuX8QPBb1fnd/NMW2VJMQEclRoZ5xna0xwEp3X+3uu4FpwLkp\nlrsSeATYFGFbRESkAbJ9xvXMhOdczzSzP5jZ1WZ2SIZV+wGJjzmtCeclbrsfQeK4K5zVIk8X4t4v\nGuf44hwbKD7JbuymVUBP4E8EYzddAGwHhgD3AP+WZr1sDvi3A99zdzczC7ef0sSJEykrKwOgpKSE\n8vJyKisrgf1fdHOdrq6uLqr2KD5Na7p5TldVVTF16lSAuuNlvrK5T2K+u5+Qap6ZLXb3EWnWqwCm\nuPu4cPp6ghvzbklY5g32J4aeBHWJy919ZtK2VJMQEclRpM+4TtDJzI5w9zfDnR4BdAo/+yjDevOB\nwWZWBqwnOAO5MHEBdz+y9r2Z3Q88lpwgRESkcLIpXF8L/MvMqsysCvgX8J3w4UMPpFspHMrjCuAp\nYAnwZ3dfamaTzWxy/k2Pj9rTxbiKc3xxjg0Un2R3JvEkQf1hKEGdYTng7r6LoKaQlrvPAmYlzbs7\nzbKTsmmwiIg0nWxqEvcnHsDNrDMw093PiLpxCftUTUJEJEdNdZ9EjZndGe7wUODvaOwmEZEWIZux\nm74P7DCzuwnujP6lu98fectakLj3i8Y5vjjHBopPMtQkzOzz4VsH5gLfJxhaw81sgrtPb4L2iYhI\nAaWtSZjZVA68Ic4Sp5uy0KyahIhI7prkGdfFQElCRCR3xT7An2Qp7v2icY4vzrGB4hMlCRERySBT\nTeIkYE4x9POou0lEJHdRdzddArxsZn82s4lmdng+OxIRkeYnbZJw96+5+0hgCtAdmGpmc83sP83s\n1PCJctII4t4vGuf44hwbKD7J7ma6pe7+y3DI7zOA54DzgRejbpyIiBSWLoEVEYkpXQIrIiKRUpIo\nAnHvF41zfHGODRSfKEmIiEgGme6TOA64FXgHuB74HXA8sBCY5O4rm6yRqkmIiOQs6prEfwG/Av4K\nPA/8N3Ao8DPgznx2KiIizUOmJHGIuz/m7n8Cdrj7n9x9n7s/BvRqova1CHHvF41zfHGODRSfZE4S\niTfL/TLps7YRtEVERIpMpprE14CH3H170vxBwBXu/q0maF/tPlWTEBHJkZ4nISIiaUV+M52ZfcbM\nnjWzzeHrn2b22Xx2KAeLe79onOOLc2yg+CRDkjCzy4GbCQb4OzJ8/QC4ycwmZ7NxMxtnZq+Z2Qoz\n+26Kz881s1fMbIGZvWRmZzQoChERiUSmmsRS4BR335w0vwfwnLsPzbjhYJTYZcCZwDpgHnChuy9N\nWKaTu+8I3x8DzHD3QSm2pe4mEZEcRd7dlJwgEuZlc8QeA6x099XuvhuYBpybtK0dCZOdCW7cExGR\nIpEpSWwzs/LkmeGd2NtTLJ+sH7A2YbomnJe8vfHhWcss4Kosths7ce8XjXN8cY4NFJ9AmwyfXQv8\n1czuB14CDBgFTAS+nMW2s+ofcve/AH8xs48DDwIfS7XcxIkTKSsrA6CkpITy8nIqKyuB/V90c52u\nrq4uqvYoPk1runlOV1VVMXXqVIC642W+Ml4CGz6y9JvA8HDWEuC37v5WvRs2qwCmhA8rwsyuB/a5\n+y0Z1nkdGJOiDqKahIhIjhqjJpH2TMLMegM93P37SfNHmNled99Uz7bnA4PNrAxYD1wAXJi0raOA\nN9zdzex4SF0HERGRwshUk/gN0DPF/B4EA/9l5O57gCuApwjOQP7s7kvNbHLCJbSfBxaZ2YJwm1/K\npfFxUXu6GFdxji/OsYHik8w1iUHu/s/kme7+rJndlc3G3X0WQUE6cd7dCe9/RjCqrIiIFKFM90ks\nd/chuX4WBdUkRERyF/V9EitTDcFhZp8BXs9npyIi0jxkShLfAm4zs6lmdqWZXWVmDxDUDppsBNiW\nIO79onGOL86xgeKTDEnC3ZcDxwLPAgOBI4B/Ase6+7KmaZ6IiBSShgoXEYmpyMduCncy1szmmdn7\nZrbbzPaZ2bZ8dioiIs1DvUkCuAO4CFgBHAJ8Fbgzyka1NHHvF41zfHGODRSfZJckcPcVQGt33+vu\n9wPjom2WiIgUg3prEmb2LPBJ4F5gA/AWcKm7Hxd98+raoJqEiEiOmqQmAVwSLncFsBPoTzCchoiI\nxFymx5f2NrMR4UODPnD3re4+BbgP2NpkLWwB4t4vGuf44hwbKD6JcIA/ERFp/jKN3fSSu49K89li\ndx8RacsO3J9qEiIiOYq6JtElw2dt89mpiIg0DxrgrwjEvV80zvHFOTZQfJL5eRLfAv5mZl/kwGdc\nnwSc3QRtExGRAqvvGdeHENxtXVt/WAz80d13NUHbEtuhmoSISI4aoyahAf5ERGKqqW6mk4jFvV80\nzvHFOTZQfKIkISIiGai7SUQkphqjuynT1U21O1kEOMHVTbW2AvOAH7n75nwaICIixSub7qYngccJ\nrnK6GHgMmA9sBKZG1rIWJO79onGOL86xgeKTLM4kgDPdfWTC9EIzW+DuI8OzjIzMbBxwO9AauNfd\nb0n6/GLg3wnOVLYDX3f3hVlHICIikcnmeRILgcvd/YVwegxwj7sfV5ssMqzbGlgGnAmsI+iiutDd\nlyYsMxZY4u5bw4Qyxd0rkrajmoSISI6apCZB8LjS+82sczi9HfiqmXUCflLPumOAle6+GsDMpgHn\nAnVJwt3nJCz/AsHzKkREpAhkU5NY5O5HA+VAubsfQ3Dg3+HuD9ezbj9gbcJ0TTgvna8CT2TRpliJ\ne79onOOLc2yg+CS7M4npZnauu28BMLM+BIXs47NYN+s+IjM7HfgKcHKqzydOnEhZWRkAJSUllJeX\nU1lZCez/opvrdHV1dVG1R/FpWtPNc7qqqoqpU6cC1B0v85VNTeJy4DPAF4BSYCZwnbv/vd6Nm1UQ\n1BjGhdPXA/tSFK+PBaYD49x9ZYrtqCYhIpKjJqlJuPs9ZtYe+CtwBPA1d38uy+3PBwabWRmwHrgA\nuDBxATPT6ykPAAARPklEQVQbQJAgvpwqQYiISOFkesb1teHrGqA9wVnEK0BFOK9e7r4HuAJ4ClgC\n/Nndl5rZZDObHC72H8ChwF1mtsDMXswjnmap9nQxruIcX5xjA8Unmc8kunBgTWFGON059eKpufss\nYFbSvLsT3l8GXJbLNkVEpGlo7CYRkZjSUOEiIhIpJYkiEPd+0TjHF+fYQPGJkoSIiGSQtiZhZjel\nWccB3P3mqBqVoi2qSYiI5Cjq+yR2cPAd050Ihs7oCTRZkhARkcJI293k7r9w91vd/VbgHqADMAmY\nBgxsova1CHHvF41zfHGODRSf1HPHtZn1AL5N8LCh3wPHu/t7TdEwEREpvEw1iV8A5wH/Ddzp7tub\nsmFJbVFNQkQkR41Rk8iUJPYBHwG7U3zs7t41nx3nQklCRCR3kd5M5+6t3P0Qd++S4tVkCaIliHu/\naJzji3NsoPhE90mIiEgGGrtJRCSmNHaTiIhESkmiCMS9XzTO8cU5NlB8oiQhIiIZqCYhIhJTqkmI\niEiklCSKQNz7ReMcX5xjA8UnShIiIpKBahIiIjGlmoSIiERKSaIIxL1fNM7xxTk2UHxSz/MkGoOZ\njQNuB1oD97r7LUmfDwXuB0YCN4QPORIRaZa2bYO1a2HNmuDfxPff/S58+tOFbmFuIq1JmFlrYBlw\nJrAOmAdc6O5LE5bpBRwBjAfeS5UkVJMQkWKwaxfU1BycBBKn9+6F0lIYMCD4t/Y1YACMHAk9ejRd\ne6N+xnVjGAOsdPfVAGY2DTgXqEsS7r4J2GRmn424LSIiae3ZAxs2HHzQT5zeuhX69TswCZSXwznn\n7J8uKQHL67BcXKJOEv2AtQnTNcCJEe+z2amqqqKysrLQzYhMnOOLc2wQn/jc4Z13Dj7wz59fxYcf\nVrJ2Lbz1FvTqdeBf/0ceCaedtj8p9O4NrVpYJTfqJNFofUQTJ06krKwMgJKSEsrLy+t+eWuLT811\nurq6uqjao/g03dymd+yAsrJK1qyBp5+u4u23oXXrYHrZsio2bYIuXSopLYWOHavo3RsqKioZOxYO\nOyyYnjChknbtUm9/5044/PDiiTfddFVVFVOnTgWoO17mK+qaRAUwxd3HhdPXA/uSi9fhZzcB76sm\nISKJausA6WoAiXWAdLWA/v2hU6dCR9L0mkNNYj4w2MzKgPXABcCFaZaNUS+eiGQjUx2g9v3WrdC3\n74EH/9o6QO30oYfGqw5QTCK/49rMzmL/JbD3uftPzGwygLvfbWaHE1z11BXYB2wHhrv7+wnbiPWZ\nRFVM+n3TiXN8cY4N8ovPHTZtSl8Irq0D9Ox58F/+if8edlh0dYC4f3/N4UwCd58FzEqad3fC+7eA\n0qjbISKNa+vW9N0/ta9OnQ5OAOXl+6f79YN27QodiWSisZtE5CC7dh18wE9OAol1gFS1gNLSllkH\nKCaNcSahJCHSwiTWAdIVg2vrAKm6f1QHaD6UJGIi7v2icY6v2GJLdT9AciKorQOkugqo9n1tHaDY\n4mtscY+vWdQkRKTx1I4LlO5KoJoa6Njx4AN/efn+9337qg4g2dOZhEiRSBwXKF1XkOoAkgt1N4k0\nE8n3A6RKAlu27B8XKN1NYXEbF0iipSQRE3HvF41zfFVVVZx2WmXKcYESp1ONC5ScBKK8H6Ch4vzd\nQfzjU01CpAmkej5A7fSyZfDuu0EdIPmgn3g/gOoA0lzpTEJatHzGBap931LHBZLip+4mkQyyHRdI\ndQCJKyWJmIh7v2gU8SWPC5TpfoB0ZwCNUQfQd9e8xT0+1SQktjLVAVLdD5A8LtCAAaoDiDQGnUlI\nk8t0P0Dyc4J1P4BIw6m7SYrO3r1BHSBTITj5fgCNCyQSDSWJmGgu/aK14wJl6gZKNS7Qhx9WccYZ\nlUV9P0BDNZfvrqEUX/OmmoQ0qnTjAtVOJ9YBEpPAccdlHheoqgpi/P9QJNZ0JtFC5DoukJ4TLNL8\nqbtJAI0LJCKpKUnERKZ+0WzvByjmcYHi3O8b59hA8TV3qknEwLZtsGoVfPBB6iRQWwdIPuiPHKlx\ngUQkejqTiFAu4wKle0qY6gAi0lDqbiqgbJ8TnK4OUPtedQARiUrRJwkzGwfcDrQG7nX3W1Is82vg\nLGAnMNHdF6RYpkmTRHIdIFUS2Lgx++cE1yfu/aJxji/OsYHia+6KuiZhZq2BO4AzgXXAPDOb6e5L\nE5b5DDDI3Qeb2YnAXUBFVG2qtW1b5i6gtWuDLp6mek5wdXV1rH9R4xxfnGMDxSfRFq7HACvdfTWA\nmU0DzgWWJizzOeABAHd/wcxKzOwwd9/Y0J0m3g+QLhGkGhfotNMKNy7Qli1bmm5nBRDn+OIcGyg+\niTZJ9APWJkzXACdmsUx/IGWSSDUuUH33A9SeAZxzjsYFEhHJVZRJItsiQvLhOuV6AwakHhdo4MAD\nzwKa47hAq1evLnQTIhXn+OIcGyg+ibBwbWYVwBR3HxdOXw/sSyxem9l/AVXuPi2cfg04Lbm7ycyK\n69ImEZFmomgL18B8YLCZlQHrgQuAC5OWmQlcAUwLk8qWVPWIfIMUEZGGiSxJuPseM7sCeIrgEtj7\n3H2pmU0OP7/b3Z8ws8+Y2UpgBzApqvaIiEjumsXNdCIiUhgFLfGa2Tgze83MVpjZd9Ms8+vw81fM\nbGQu6xZaQ+Mzs1Iz+z8zW2xmr5rZVU3b8uzk8/2Fn7U2swVm9ljTtDg3ef5+lpjZI2a21MyWhN2p\nRSXP+K4Pfz8Xmdkfzax907W8fvXFZmZDzWyOme0ys2tzWbcYNDS+Bh1b3L0gL4IuqJVAGdAWqAaG\nJS3zGeCJ8P2JwNxs1y30K8/4DgfKw/edgWVxii/h82uAh4CZhY6nseMjuP/nK+H7NkC3QsfUiL+f\nZcAbQPtw+s/ApYWOKcfYegEnAD8Crs1l3UK/8owv52NLIc8k6m62c/fdQO3NdokOuNkOKDGzw7Nc\nt9AaGt9h7v6Wu1eH898nuAGxb9M1PSsNjg/AzPoTHITu5eDLoItBg+Mzs27Ax939d+Fne9x9axO2\nPRv5fH/bgN1ARzNrA3QkGFWhWNQbm7tvcvf5BHHktG4RaHB8DTm2FDJJpLqRrl+Wy/TNYt1Ca2h8\n/RMXCK8OGwm80OgtzE8+3x/AbcB3gH1RNTBP+Xx/A4FNZna/mb1sZveYWcdIW5u7Bn9/7v4ucCuw\nhuDKxS3u/nSEbc1VNrFFsW5TaZQ2ZntsKWSSaOjNds1F3jcTmlln4BHg6jDrF5OGxmdmdjbwtgeD\nORbr95vP99cGOB64092PJ7hy73uN2LbG0OD/f2Z2FPAtgu6OvkBnM7u48ZqWt3yuxmkOV/Lk3cZc\nji2FTBLrgNKE6VKCjJhpmf7hMtmsW2gNjW8dgJm1BR4F/uDuf4mwnQ2VT3wnAZ8zs1XAn4AzzOz3\nEba1IfKJrwaocfd54fxHCJJGMcknvhOA5919s7vvAaYTfKfFIp/jQ1yOLWnlfGwpYPGlDfA6wV8j\n7ai/cFbB/sJZvesW+pVnfAb8Hrit0HFEEV/SMqcBjxU6nsaOD3gWGBK+nwLcUuiYGis+oBx4FegQ\n/q4+AHyz0DHlElvCslM4sLAbi2NLhvhyPrYUOtizCKrrK4Hrw3mTgckJy9wRfv4KcHymdYvt1dD4\ngFMI+uqrgQXha1yh42nM7y/h89MowqubGuH38zhgXjh/OkV2dVMjxPfvwGJgUZgk2hY6nlxiI7jK\nZy2wFXiPoL7SOd26xfZqaHwNObboZjoREUmrmY2XKiIiTUlJQkRE0lKSEBGRtJQkREQkLSUJERFJ\nS0lCRETSUpKQBjOz28zs6oTpp8zsnoTpW83s22Z2hJklP5Uw3Ta/GA6t/UwjtO9cMxuWMP0DM/tE\nvtutZ59/CofVvjpp/hQz22FmvRLm1TvUipl1M7Pfh0NCrzSzB8ysa/hZmZktSrGfa1NsZ7KZ/VsO\ncRy07caQrh1R7U/ypyQh+ZhNOByDmbUCegDDEz4fCzxHMODdRVlu86vAZe5+wME8HG00V+cltsfd\nb3L3vJNPOuEIxSe4+3Hu/qsUi7wDJB7As7lJ6T6CET8Hu/sgYBXByLnppNymB0+CfDCL/UWqWNoh\n2VOSaIHMbHT41257M+sUPnxkeNIyP0g6S/hxigeUzCFIBAAjCIZq2B4+cKc9MIzgjs6fAh+34AFD\nV5OGmf0HcDLwOzP7mZldamYzw7OKf4RtfdrMXjKzhWb2uYR1Lwljqg7/8h4LnAP8PByJ9Ugzm2pm\nnw+X/0Q4f6GZ3Wdm7cL5q8O/xmv38bEU7TwkHOF1YbiNyvCjvwP9wjhPSVrNgd8BF5hZSYptzjCz\n+eF3cXk4bxDBmE8/TFj0ZuAEMxuY7seY5mdbd4ZhZlVm9lMze8HMlqVoa1bxmlkHM5sWnvlNN7O5\nZnZ8+Nn7Cet/wczuT9GOUbXfGfCNTG2QwonsGddSvNx9npnNJHggSQfgQXdfkrTY7wiGk/hVeJZw\nATA6aTvrzWyPmZUSJIs5BEMWjyV45sAid99twZOzrnP3c+pp181mdjrBWDMvm9lEgqGMj3H3LWbW\nGjjP3bebWc9wfzPNbARwAzDW3d81s5Jw+ZkE40JNBzAzB9zMDgHuB85w95Vm9gDwdeBXBAfzTe4+\nysy+DlwHXJ7U1G8Ce9392DCJ/N3MBhMkpb+5+0hSez/8uX6LYEydRF9x9/fMrAPwopk9SnAWVO0J\nwyK4+77woHo0wZAYR5nZgoTtHA78PNWPl/1nGQ60dvcTzews4Cbgk2nanC7eIQQ/s/fdfbiZHQO8\nnLS/dO9rp+8HvuHus83sZxn2LwWkM4mW62bgUwQjeh70H9Td3wQ2m1l5uNzL7v5eiu08T9DldBLB\nQXtO+H4sQXcU5Dcc+N/dfUv4vhXwEzN7BfgH0NeCh+CcATzswXMOSFg+1b4N+Biwyt1XhvMeAE5N\nWGZ6+O/LBIOoJTsZ+EO4r2XAm8CQFPtK5sCvgUstGKo50dXhwX8OwWirg8ncHVX72evuPrL2BfxX\nFu2A+mNMlC7ejyfMXwQszGK/QFBrIRjPqvZ3RF1QRUpnEi1XT6ATwaMQOwA7UyxzLzAJOIzgL+BU\nniM4iBxD8JftWoK/vrdmWCdbntSui8N2H+/uey0YavyQcLl0B8ZUB9rkeZY078Pw372k/z/SkMRn\n7r7VzP4IXFE3M+i++QRQ4e67zOz/gPbAEqDczKz2bCI8qysPP8tHNjEe0PYc5yf+PDvksX0pMJ1J\ntFx3AzcCfwRuqZ1pZq8lLDMDGEdwtvFUmu08D5wNbPbAe0AJwZnE8+Ey24AuDWhj8oGjK8HDivaG\n3VJHEByM/hf4opl1D2M4NFx+e7hOIicYPbPMgofnAPwb8M8c2vUvgoRF2O0yINxmtn5JMGJn63C6\nG/BemCCGEgzLjbu/TlDTuTFh3RuBl9z9jRz2V6uhB+JU8b5GMBz6ReH8o4FjE9bZaGZDw6R2XlIb\nzIPHuW4xs5PD+cX00CJJoCTRApnZJcCH7j6NoKg82swqw37+Oh48P/d/Cbpy0nV9vEpwVdPchHkL\nCR5p+W7C9N6wqHy1mfUxs8ezaGpi/zXAQwRF24UEB/alYTuXAD8G/hl22dwaLj8N+E5YhD4yIa4P\nCc6Q/ifc1h6Cbprafabbf607gVbhutOAS8OfVfL6qeLB3TcTdPe0D+fPAtqY2RLgJwRdTrW+Cgyx\n4PLXlcCgcN4B20y1n0acny7euwieSrcE+AHwUsK63wP+RnCmuT5hW4k/00nAbxNqKhqSughpqHCp\nY2afBQa6+x3hdCuC//hfCP+qFUkr7Ca71t1frndhaTZUk5A67l73170Fl8Q+BkxXghBpuXQmISIi\naakmISIiaSlJiIhIWkoSIiKSlpKEiIikpSQhIiJpKUmIiEha/w9Jrjjq3itbkQAAAABJRU5ErkJg\ngg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7720908>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fraction of original NaOH in the slurry: 0.0227 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.3: Page 754"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.3\n",
+ "# Page: 754\n",
+ "\n",
+ "print'Illustration 13.3 - Page: 754\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "import numpy as np\n",
+ "from scipy import interp\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#***Data***#\n",
+ "# a=H2O b=CaCO3 c=NaOH \n",
+ "mass_c = 400;# [kg/h]\n",
+ "x1 = 0.1;# [wt fraction NaOH in overflow]\n",
+ "#**********#\n",
+ "\n",
+ "Mb = 100.0;# [kg/kmol]\n",
+ "Mc = 40.0;# [kg/kmol]\n",
+ "rate_c = mass_c/Mc;# [kmol/h]\n",
+ "rate_b = rate_c/2;# [kmol/h]\n",
+ "mass_b = rate_b*Mb;# [kg/h]\n",
+ "# After trial calculations:\n",
+ "y3 = 0.01;# [kg NaOH/kg solution]\n",
+ "N3 = 0.666;# [kg CaCO3/kg solution]\n",
+ "E3 = mass_b/N3;# [kg/h]\n",
+ "lost_c = E3*y3;# [kg/h]\n",
+ "sludge_a = E3-lost_c;# [kg/h]\n",
+ "overflow_c = mass_c-lost_c;# [kg NaOH/kg solution]\n",
+ "R1 = overflow_c/x1;# [kg overflow/h]\n",
+ "R1_a = R1-overflow_c;# [kg/h]\n",
+ "RNpPlus1 = R1_a+sludge_a;# [kg/h]\n",
+ "# For purpose of calculation, it may be imagined that agitators are not present in the flowsheet and the first thickner is fed with the dry mixture of the reaction products, CaCO3 and NaOH, together with overflow from the second thickner.\n",
+ "F = 400.0;# [kg NaOH/h]\n",
+ "NF = mass_b/F;# [kg CaCO3/kg NaOH]\n",
+ "yF = 1.0;# [wt fraction NaOH in dry solid, CaCO3 free basis]\n",
+ "# Points R1, E3, RNpPlus1 and F are plotted as in Fig 13.30 (Pg 755) and locate the point deltaR at the intersection of lines FR1 and E3RNpPlus1 extended. The coordinates of point deltaR are NdeltaR=-0.1419, ydeltaR=-0.00213. Further computation must be done on enlarged section of the equilibrium diagram (Fig 13.31 (Pg 755)). Point deltaR is plotted and the stages stepped off in a usual manner. The construction are projected on the xy diagram. Three stages produce a value: y3=0.001\n",
+ "print\"The NaOH lost in sludge: \",round((lost_c/mass_c)*100,2),\"%\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "#*** Data***#\n",
+ "lost_c = 0.001*mass_c;# [kg/h]\n",
+ "#***********#\n",
+ "\n",
+ "NNp_by_yNp = mass_b/lost_c;# [kg CaCO3/kg NaOH in final sludge]\n",
+ "# In order to determine the liquid content of the final sludge:\n",
+ "# Eqb=[N y_star]\n",
+ "Eqb = np.array([[0.659 , 0.01435],[0.666, 0.01015],[0.677, 0.002],[0.679, 0.001],[0.680 ,0.0005]]);\n",
+ "N_by_ystar = zeros(5);\n",
+ "for i in range(0,5):\n",
+ " N_by_ystar[i] = Eqb[i,0]/(Eqb[i,1]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1]);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x Wt fraction of NaOH\");\n",
+ "plt.ylabel(\"N kg CaCO3 / kg solution\");\n",
+ "plt.title(\"Equilibrium plot\")\n",
+ "# By Interpolation, for N_by_ystar=NNp_by_yNp:\n",
+ "NNp = interp(NNp_by_yNp,N_by_ystar,Eqb[:,0]);# [kg CaCO3/kg soln]\n",
+ "yNp = NNp/NNp_by_yNp;# [wt fraction NaOH in the liquid of the final sludge]\n",
+ "ENp = mass_b/NNp;# [kg/h]\n",
+ "ENp_a = ENp-lost_c;# [kg/h]\n",
+ "overflow_c = mass_c-lost_c;# [kg/h]\n",
+ "R1 = overflow_c/0.1;# [kg/h]\n",
+ "R1_a = R1-overflow_c;# [kg/h]\n",
+ "RNpPlus1 = R1_a+sludge_a;# [kg/h]\n",
+ "# On the operating diagram (Fig 13.32 (Pg 757)) point deltaR is located and stages were constructed. \n",
+ "# Beyond the fourth stage, the ratio of the overflow to the liquid in the sludge become substantially constant.\n",
+ "R_by_E = RNpPlus1/ENp;\n",
+ "# This is the initial slope of the operating line on the lower part of the figure.\n",
+ "# From Illustration 13.2:\n",
+ "m = 0.01015/0.00450;\n",
+ "Value1 = R_by_E/m;\n",
+ "xNpPlus1 = 0;# [kg NaOH/kg solution]\n",
+ "y4 = 0.007;# [wt fraction NaOH in the liquid]\n",
+ "Value2 = (yNp-(m*xNpPlus1))/(y4-(m*xNpPlus1));\n",
+ "# From Fig 5.16: (Pg 129):\n",
+ "# An Additional 2.3 stages beyond 4 are computed graphically are required.\n",
+ "# An additional two stage will make yNp/y4=0.099:\n",
+ "yNp = 0.099*y4;# [wt fraction NaOH in the liquid]\n",
+ "print round(yNp*ENp,2),\"kg NaOH was lost if 6 thickners were used\\n\"\n",
+ "# An additional three stage will make yNp/y4=0.0365:\n",
+ "yNp = 0.0365*y4;# [wt fraction NaOH in the liquid]\n",
+ "print round(yNp*ENp,3),\"kg NaOH was lost if 7 thickners were used\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.3 - Page: 754\n",
+ "\n",
+ "\n",
+ "The NaOH lost in sludge: 1.88 %\n",
+ "\n",
+ "\n",
+ "\n",
+ "0.51"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " kg NaOH was lost if 6 thickners were used\n",
+ "\n",
+ "0.188 kg NaOH was lost if 7 thickners were used\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecHVX9//HXm4QgfQkWugEBFURCSwJSgoCGIEGp36Bo\nQCEaQ/mKSpMiFkCKEhANaEhASVCkfqWXRQQJJLKhhRIhPwho6EiTEPL5/XFmc2+uW+5u7tyy9/18\nPO4jOzNnZj73w7Bn55wzZxQRmJmZ5WGZWgdgZmZ9lysZMzPLjSsZMzPLjSsZMzPLjSsZMzPLjSsZ\nMzPLjSsZsxKS1pP0hiRly62Svp79/GVJNxWVXSRpgx4ce4n9a0XSoCx2/w6wXPkCs4Ylaa6kt7MK\nof0zYWmPGxHPRMTKUXiILLIPEfH7iPj8Uhx7qfavBUmnSLq01nFYY+pf6wDMlkIAX4iI22sdSDkk\n9YuI92sdh1k1+U7G+iRJy0g6S9KLkv4h6dvFzUPZXdAuReUX/7XeVVOSpDGS7ipZvUd2jhcl/ayo\nmW2MpLslnSPpJeCU4v07Ok9J01zx/q9KmiNpO0kHS3pG0nxJX+0iB62STpM0XdLrkq6WtFonZdeS\ndK2klyU9Kekb2foRwHHAAdmd4gPl5N+snSsZa3TqZP1hwB7AYGBrYF+yJq9MdLDcW18EtgK2BPYC\nDinaNgT4B/Bh4CdlHKs0riHALGAgMBX4Q3aejwFfAc6XtEIXxzsIOBhYE1gIdNacOA14Jiu3L/BT\nSTtHxI3AT4FpWRPiFmV8B7PFXMlYIxNwdfZXfvvn69m2/YGfR8RzEfEq6RdlZxUS3WzrzhkR8VpE\nPAv8AhhdtO35iPhlRCyKiP/04thPR8SUrH/oD8BawKkR8V5E3AIsADbsZN8ALomIRyPibeBEYP/2\nO612ktYFtgOOiYgFETEL+A3Qfpckli4/1sTcJ2ONLIC9OumTWRN4tmj5mRzjKD3PWp1s6435RT+/\nAxARL5asW6kHsS0LfLCkzFrAKxHxVknZrXscrVkJ38lYX/VPYL2i5fVKtr8FrFi0vMZSnKv0PM8V\nLXfVDNf+S724uWtp4uhIaWzvAS+VlHkeGChppZKy87KfPVW79ZorGWt0nTXj/AE4QtLaWWf3sSz5\ny7IN+B9J/SVtDexD73+ZfldSS9bsdARweTk7ZXckzwEHSeon6RBSX0ulCPiKpE9m/TanAn8sGprd\nHsezwD3AaZKWk/RpUr/S77Ii/wIGlTazmZXDlYw1uutKnpP5U7b+IuAmUqf5DOBPLFkhnUj6hf4q\ncArw+5LjdlbhlHbMA1wDzAQeAP4P+G0XZUvXHQp8j3R3sQlwdzfn6klFGMClwGTSnd0AUiXY0bFG\nA4NIdzVXAicVNUP+Mfv3ZUkzenB+M5TnS8uy4Y+/APoBv4mIMzooMwHYHXgbGBMRD2TrJ5FGB70Q\nEZuV7HM4MA54H/hzRByT25ewPkHSIOApoH9ELKptNNUh6Q7g0oiYVOtYrHnldicjqR9wPjCC9Bfa\naEmfLCkzEtgwIjYiDTn9VdHmi7N9S4+7MzAK+HREfAo4K59vYNYnuInLairP5rIhwJyImBsR75HG\n4e9VUmYUMAUgIqYDLZLWyJbvIjVllPoWcFp2zNKRNmZdacYO7Gb8zlZH8qxk1mbJ4ZPzsnU9LVNq\nI2BHSfdmTzR7mKV1K/tjp1+zNJUBRMTObiqzWsvzOZly/4IqvZ3vbr/+wGoRMUzSNqRRRGXPgmtm\nZtWTZyXzHLBu0fK6FMbdd1ZmHZZ8xqAj80ijX4iI+7O5n1aPiJeLC0lyM4GZWS9ERMX68vJsLpsB\nbJRNAjgAOAC4tqTMtWRTV0gaBrwWEfPp2tXAZ7N9NgYGlFYw7SLCnwhOPvnkmsdQLx/nwrlwLrr+\nVFpulUxELATGk55VeBS4PCJmSxoraWxW5nrgKUlzgImkYckASJpKekBsY0nPSjo42zQJ2EDSQ6QJ\nAzudhdaSuXPn1jqEuuFcFDgXBc5FfnKduywibgBuKFk3sWR5fCf7ju5k/XukmWXNzKzO+Yn/JjBm\nzJhah1A3nIsC56LAuchPrk/815Kk6KvfzcwsL5KIBun4tzrR2tpa6xDqhnNR4FwUOBf5cSVjZma5\ncXOZmZkt5uYyMzNrGK5kmoDbmwuciwLnosC5yI8rGTMzy437ZMzMbDH3yZiZWcNwJdME3N5c4FwU\nOBcFzkV+XMmYmVlu3CdjZmaLuU/GzMwahiuZJuD25gLnosC5KHAu8uNKxszMcuM+GTMzW8x9Mk1s\n0aJaR2Bm1jOuZBrEzJmw1VYwfXrP93V7c4FzUeBcFDgX+cm1kpE0QtJjkp6UdEwnZSZk22dJ2qJo\n/SRJ8yU91Ml+R0taJGlgXvHXky23hO99D774RRg/Hl5/vdYRmZl1L7c+GUn9gMeBXYHngPuB0REx\nu6jMSGB8RIyUNBQ4NyKGZdt2AN4ELomIzUqOvS5wEfBxYKuIeKWD8/fJPplXXoFjj4Xrr4df/AL2\n2QdUsdZTM2t2jdQnMwSYExFzI+I9YBqwV0mZUcAUgIiYDrRIWiNbvgt4tZNjnwN8P5eo69zAgXDh\nhTBtGpx8Muy5J8ydW+uozMw6lmclszbwbNHyvGxdT8ssQdJewLyIeLASQTaq7beHBx6A7baDrbeG\ns86ChQs7Luv25gLnosC5KHAu8pNnJVNuW1XpbVmn+0laATgeOLmL/ZvGgAFw/PFw771w882psunN\nwAAzs7z0z/HYzwHrFi2vS7pT6arMOtm6znwMGATMUuqIWAeYKWlIRLxQWnjMmDEMGjQIgJaWFgYP\nHszw4cOBwl8ufWF5ww3huONaue02+OIXh7PPPjBiRCsrrZS2Dx8+vK7i9XL9LLerl3hqtdy+rl7i\nqeZya2srkydPBlj8+7KS8uz470/q+N8FeB64j647/ocBv2jv+M+2DwKuK+34L9r+NE3W8d8dDwww\ns6XRMB3/EbEQGA/cBDwKXB4RsyWNlTQ2K3M98JSkOcBEYFz7/pKmAvcAG0t6VtLBHZ0mr/gbVUcD\nA6ZNa611WHWj9C/4ZuZcFDgX+cmzuYyIuAG4oWTdxJLl8Z3sO7qM42+wVAH2Ye0DA846C8aOhXnz\n4KijoH+u/8XNzJbkucuawJw5MG4cvPACTJwIQ4fWOiIzq1cN01xm9WPDDeGmm+D73/eMAWZWXa5k\nmkBraysSHHggPPIILFgAm24KV1wBzXaz57b3AueiwLnIjyuZJuMZA8ysmtwn08QWLEgDA845Jw17\n9sAAM6t0n4wrGfPAADNbzB3/1mPdtTc308AAt70XOBcFzkV+XMkYgAcGmFku3FxmHfrrX9NDnOuv\nD+efDzlMaWRmdcjNZVYVPXmVgJlZZ1zJNIHetjcP6IOvEnDbe4FzUeBc5MeVjHWrmQYGmFlluU/G\nesSvEjDr2/ycTJlcyeTLAwPM+iZ3/FuP5dHe3KgDA9z2XuBcFDgX+XElY73WFwcGmFllubnMKiIC\npk6Fo49O/TQ/+QmsumqtozKznnJzmdUlzxhgZh1xJdMEqtneXO+vEnDbe4FzUeBc5KfbSkbSByR9\nWdIJkk7OPieVewJJIyQ9JulJScd0UmZCtn2WpC2K1k+SNF/SQyXlz5Q0Oyt/pSQ3zNSZRh0YYGaV\n1W2fjKSbgNeAmcD77esj4uxuDy71Ax4HdgWeA+4HRkfE7KIyI4HxETFS0lDg3IgYlm3bAXgTuCQi\nNivaZzfgtohYJOn0LJ5jS87tPpk64VcJmDWOSvfJlPOKqrUj4vO9PP4QYE5EzAWQNA3YC5hdVGYU\nMAUgIqZLapG0RkT8KyLukjSo9KARcUvR4nRgn17GZ1XQPmPA1KlpxgAPDDBrHuX0ydwj6dO9PP7a\nwLNFy/OydT0t05VDgOt7FV2TqIf25noZGFAPuagXzkWBc5Gfcu5kdgAOlvQ08G62LiKinIqn3F8h\npbdmZe0n6QRgQURc1tH2MWPGMCh7FL2lpYXBgwczfPhwoHBRebn6yxdeCOed18p3vwuTJw/n/PNh\n7tzqnL9dPeWjVsttbW11FU8tl9va2uoqnmout7a2MnnyZIDFvy8rqZw+mfazthcUQHsTWDf7DgNO\niYgR2fJxwKKIOKOozK+B1oiYli0/BuwUEfOLzn9dcZ9Mtn4McCiwS0T8p4Nzu0+mzi1YkAYEnHNO\nmg/tqKOgfzl/9phZbqr+nExWmbSQ+k72BFYtp4LJzAA2kjRI0gDgAODakjLXAl+FxZXSa+0VTGck\njQC+B+zVUQVjjWGAZwww6/PKGcJ8JPA74EPAR4DfSTqinINHxEJgPHAT8ChweUTMljRW0tiszPXA\nU5LmABOBcUXnngrcA2ws6VlJB2ebzgNWAm6R9ICkC8r7us2ptKmo3lTzVQL1notqci4KnIv8lNM4\n8Q1gaES8BZANGb4XmFDOCSLiBuCGknUTS5bHd7Lv6E7Wb1TOua1xtA8MGDEiNZ1tuqlfJWDWF5TT\nJ/MQMCQi3smWlwfuK+0jqTfuk2lsfpWAWW3UYu6yi4Hpkk6R9EPSXcykSgVg1hHPGGDWN5TT8X8O\ncDDwKvAyMCYifp53YFY5jdrenMfAgEbNRR6ciwLnIj+d9slIWiUi/i1pIPA0MDfbFJIGRsQr1QjQ\nzDMGmDWuTvtkJP05IvaQNJcOHo6MiPVzjm2puE+mb3rllTQw4PrrPTDALA+V7pPxS8usIXlggFk+\nqt7xL+m2ctZZ/eqL7c29HRjQF3PRW85FgXORn04rGUnLS1od+JCkgUWfQfRsAkuzXHjGALP611Wf\nzFHAkcBawPNFm94ALoyI8/MPr/fcXNZcItLAgKOP9sAAs6VR9T4ZSYdHxHmVOmG1uJJpTh4YYLZ0\navEw5r8lfbX0U6kALH/N1N48cCBceCFMmwYnnwx77glz5xa2N1MuuuNcFDgX+Smnktmm6LMjcApp\nRmazuuUZA8zqQ4+HMEtqIc2m3NtXMleFm8us3Zw5MG4cvPACTJwIQ4fWOiKz+lWL5rJSbwN1/SCm\nWbFqvkrAzJZUznMy1xV9/gw8DlyVf2hWKW5vLrxKYOLEVhYsSK8SuOKKNCqtWfm6KHAu8lPO+2TO\nLvp5IfD/IuLZnOIxy9Uqq6SBAe0zBkye7BkDzPLkaWWsaS1YkAYEnHNOGvZ81FHQv5w/u8z6sKo9\nJyPpTTqYGDMTEbFKpYLIgysZK5cHBpgVVK3jPyJWioiVO/nUdQVjS3J7c0FHuWjWgQG+Lgqci/yU\nNbpM0uaSDpc0XtLm5R5c0ghJj0l6UtIxnZSZkG2fJWmLovWTJM3PXv9cXH6gpFskPSHp5mxItdlS\naR8Y8MgjeGCAWQWVM63MkcChwJWAgC8CF0XEhG7260caibYr8BxwPzA6ImYXlRkJjI+IkZKGAudG\nxLBs2w7Am8AlEbFZ0T4/A16KiJ9lFddqEXFsB+d3c5n1WvGrBC64ANZbr9YRmVVHLZ6T+QYwNCJO\niogTgWGkSqc7Q4A5ETE3It4DpgF7lZQZBUwBiIjpQIukNbLlu0ivfC61eJ/s3y+WEYtZj7TPGLDt\ntjBkCNx4Y60jMmtM5T6MuaiTn7uyNlA81Hke//2KgHLKlPpIRMzPfp4PfKTMeJqW25sLepKLAQPg\nhBPgj3+Eb3wjzYX2/vv5xVZtvi4KnIv8lDNg82JguqTi5rJJZexXbltV6W1Z2W1cERGSOi0/ZswY\nBmUPQLS0tDB48GCGDx8OFC4qLzfXcrue7L/DDjBhQiunngr33juc3/8eHn64Pr7P0iy3tbXVVTy1\nXG5ra6ureKq53NrayuTJkwEW/76spLKek5G0FbA9qQK4KyIeKGOfYcApETEiWz4OWBQRZxSV+TXQ\nGhHTsuXHgJ3a71SyF6RdV9In8xgwPCL+JWlN4I6I+EQH53efjFXUwoXwgx+k99b84Q8e6mx9Uy1e\nv/wx4JGIOBd4CNihzBFdM4CNJA2SNAA4ALi2pMy1wFez8wwDXitqCuvMtcDXsp+/BlxdRixmS61/\nfzj9dJgwIb1C4IILPPrMrDvl9MlcCSyUtCEwEVgXuKy7nSJiITAeuAl4lDRz82xJYyWNzcpcDzwl\naU527HHt+0uaCtwDbCzpWUkHZ5tOB3aT9ATw2WzZulDaVNTMKpGLvfaCv/0tTU/zla/AW28tfVy1\n4OuiwLnITzl9MosiYqGkvYHzIuI8Sd02lwFExA3ADSXrJpYsj+9k39GdrH+FNCzarGY+9rFU0Xz7\n22n02Z/+BJ/4r0ZbMyvnOZnpwLnA8cCeEfG0pIcj4lPVCLC33Cdj1fLb36a5zy64APbbr9bRmC2d\nqs1dVnTCTYGxwN8iYqqk9YH9izvw65ErGaumv/8d9t03NaX97Gew7LK1jsisd6re8R8Rj0TEEREx\nNVt+ut4rGFuS25sL8srFllvCzJlpss2dd4bnnsvlNBXl66LAuchPb96MaWYdWG01uOYaGDkSttkG\nbr+91hGZ1Z7fJ2OWg9tuSyPPjjwyze68jP+cswZR9T6ZRuVKxmpt3jzYf3/44AdhypR0p2NW72rx\nMOZ1kq7N/m3/+XeSjpT0gUoFYvlxe3NBNXOxzjrQ2gobbABbb50m3Kwnvi4KnIv8lHMT/zRpyv0L\ngYuAN7LPxtmymXViwAD4xS/gtNPgc5+DSeXM+mfWh5QzhHlGRGzd0TpJj0TEprlG2EtuLrN6M3s2\n7LNPen3A+efD8svXOiKz/1aL98msKOmjRQF8FFgxW1xQqUDM+rpPfhLuuw/eeQe22w6eeqrWEZnl\nr5xK5mjgLkmtklqBu4DvSVqRwsvDrI65vbmg1rlYaSX4/e/h61+HYcPguutqF0utc1FPnIv8lDN3\n2Y2k/pdPkKb6f4L0Kpf/AL/IMTazPkmC8ePTYID9909zoJ16aprl2ayvKadP5uKIOLhoeSXg2oj4\nbN7BLQ33yVgjePFFOPDA9MbNqVPhI37Pq9VYLfpk5km6IDv5asDNwKWVCsCsmX3oQ3DjjbD99unO\n5u67ax2RWWWVM3fZicBbkiYCtwDnRMTFuUdmFeP25oJ6zEW/fqm57Ne/hr33TkOeq3ETXo+5qBXn\nIj+dVjKS9sk+ewP3AkOBB4DI1plZBe2xB0yfDr/7HRxwALzxRq0jMlt6nfbJSJpM6uhfvKp4ubif\nph65T8Ya1X/+k+Y8u/PO9DK0TevySTTrqzx3WZlcyVijmzIFvvtdOPfcNDjArBpq0fFvDc7tzQWN\nlIuvfS3N5nzyyWnI87vvVvb4jZSLvDkX+cm1kpE0QtJjkp6UdEwnZSZk22dJ2qK7fSUNkXSfpAck\n3S9pmzy/g1ktffrTMGNGegnajjvCM8/UOiKznumqT2Y70iuXe9XmJKkf8DiwK/AccD8wOiJmF5UZ\nCYyPiJGShgLnRsSwrvbNZh04LSJukrQ78P2I2LmD87u5zPqMCDj7bDjrLLjkkjTZplkeqtlc9lXg\n75IulzRG0ho9PPYQYE5EzI2I94BpwF4lZUaRTU0TEdOBluw8Xe37T2DV7OcWUiVk1qdJqX/m8svh\n4IPTkOdFi2odlVn3Oq1kIuKbEbEFcAowEJgs6V5JP5W0Y3a30ZW1gWeLludl68ops1YX+x4LnC3p\nGeBM4Lhu4mh6bm8uaPRc7LRTaj679Vb4whfg5Zd7f6xGz0UlORf56Xa2pKx5azZwjqQVgJ2B/YGf\nA1t1tWuZMfT0tuy3wBERcZWk/YBJwG4dFRwzZgyDBg0CoKWlhcGDBzN8+HCgcFF5ubmW29VLPL1Z\nXnNNOOmkVi66CLbaajh//CO89VbPj9fW1lYX36celtva2uoqnmout7a2MnnyZIDFvy8rKbchzJKG\nAadExIhs+ThgUUScUVTm10BrREzLlh8DdgLW72xfSf+OiFWy9QJei4hVKeE+GWsGV14J3/wm/OhH\ncNhhqVnNbGk00hDmGcBGkgZJGgAcAFxbUuZaUt9Pe6X0WkTM72bfOZJ2yn7+LGlWaLOmtPfe8Ne/\nwi9/mYY8v/12rSMyW1JulUxELATGAzcBjwKXZ6PDxkoam5W5HnhK0hxgIjCuq32zQx8G/ExSG/Dj\nbNm6UNpU1Mz6Yi423hjuvTf9PHQoPFHmn119MRe95VzkJ9c3WETEDcANJesmliyPL3ffbP0M0jxq\nZpZZYYU0Q8CFF6YZndsn2zSrta6ek9kcOBt4iTSCaxKwJfAgcHBEzKlWkL3hPhlrVjNmwH77wT77\nwGmnwbLL1joiayTV7JP5NXAucA1wD3AhsBrwM+CCSgVgZpW19daponn0UdhlF/jnP2sdkTWzriqZ\nD0TEdRExFXgrIqZGxKKIuA74UJXiswpwe3NBs+Ri9dXh//4PdtstVTp33vnfZZolF+VwLvLTVSVT\n/LDlOSXbfANuVueWWQZOPBEuvji9n+bMM6vzMjSzYl31yXwT+H1EvFGyfkPSfGNHVSG+XnOfjFnB\nM8/A/vvDmmvC5Mmw6n89WWaW+H0yZXIlY7akBQvg6KPhxhvhiitg881rHZHVo6o+jClppKS/SHo5\n+9wpaY9Kndyqw+3NBc2ciwED4Lzz4Ic/hF13hWOPba11SHWjma+LvHX6nIykQ4GxwPeBmdnqrYDT\nJa1T+ryLmTWGAw9MdzG77w6vvprevPmBD9Q6KuuruuqTmQ1sHxEvl6xfHbg7Ij5Rhfh6zc1lZl17\n4w34+tfhH/9IzWfrr1/riKweVLW5rLSCKVrn395mDW7lldP7aQ46CIYNg+uvr3VE1hd1Vcn8W9Lg\n0pXZTABvdFDe6pTbmwuci4LW1lYkOOqoNJvz2LFpyPP779c6surzdZGfriqZo4FrJJ0iaU9JoyT9\nkDQb8tHVCc/MquEzn4GZM+Huu2HECHjxxVpHZH1Fl0OYs1chfxvYJFv1KPDLiPhXFWJbKu6TMeu5\nhQvhpJPgd79LTWnbblvriKzaqvacjKQPAx+KiEdK1m8KvBARdf23jisZs9677ro0KODEE2H8eL8M\nrZlUs+P/POCDHaxfnTRxpjUItzcXOBcFXeVizz3TO2ouvjgNeX7zzerFVQu+LvLTVSWzYUT817R6\nEfEXwM8Km/VxG2yQ+mhWXBGGDIHZs7vfx6xUV81lT0TExj3dVi/cXGZWOZMmwTHHwPnnp8k2re+q\nZnPZnI6mkJE0EvhHpQIws/p3yCFw881w/PFw5JFpHjSzcnRVyRwF/FzSZEmHSzpC0hRSf0xdz8Bs\nS3J7c4FzUdDTXGyxRRrm/PTTMHw4zJuXS1g14esiP51WMhHxBPBp4C/A+sBHgTuBT0fE4+UcXNII\nSY9JelLSMZ2UmZBtnyVpi3L2zSq92ZIelnRGObGY2dJraYGrr4ZRo2CbbeC222odkdW73Kb6l9QP\neBzYFXgOuB8YHRGzi8qMJL2bZqSkocC5ETGsq30l7QwcD4yMiPckfaij4dTukzHL1x13wJe/DN/+\nNhx3XHpJmjW+qs5dlp1wW0n3S3pT0nuSFkn6dxnHHgLMiYi5EfEeMA3Yq6TMKGAKQERMB1qyB0C7\n2vdbwGnZeur9eR2zvmrnneH++9OcZ6NGpRmdzUqV87fH+cCBwJPAB4CvAxeUsd/awLNFy/OydeWU\nWauLfTcCdpR0r6RWSVuXEUtTc3tzgXNRUIlcrL02tLbCxhvDVlulPptG5OsiP52+T6ZYRDwpqV9E\nvA9cLKkNOLa73cqMoae3Zf2B1bJmtW2APwAbdFRwzJgxDBo0CICWlhYGDx7M8OHDgcJF5eXmWm5X\nL/HUcrmtra0ix1t2WRg1qpVVVoERI4Zz2mnwsY+lyTfr6ft2tdzW1lZX8VRzubW1lcmTJwMs/n1Z\nSd32yUj6C7Ab8Bvgn8C/gK9FRJcPZEoaBpwSESOy5eOARRFxRlGZXwOtETEtW34M2Ik00KDDfSXd\nAJze/qCopDnA0A7ee+M+GbMqe/xx2Hvv9PDmL38JK6xQ64isp6reJwN8NSs3HngbWAfYp4z9ZgAb\nSRokaQBwAGkG52LXZsdvr5Rei4j53ex7NfDZbJ+NgQEdvffGzKrv4x+H6dPTczTbbQdz5tQ6Iqu1\nTisZSR+WtGnW+f5ORLweEacAvwVe7+7AEbGQVDHdRJq9+fJsdNhYSWOzMtcDT2V3IxOBcV3tmx16\nErCBpIeAqWSVlHWutKmomTkXBXnlYqWV0izOhx2WKpprrsnlNBXl6yI/XfXJnEfHHfyrAyeQBgN0\nKSJuAG4oWTexZHl8uftm698DDuru3GZWOxKMG5cGA+y/P9xzD/zkJ9C/rF5g60u6mrtsZkRs1cm2\nRyJi01wjW0rukzGrDy+9lJ6nWbAApk6FNdaodUTWlWr2yazcxbZlKxWAmfVtH/xgepZmxx1h663h\nrrtqHZFVkyfIbAJuby5wLgqqmYt+/eCHP4Tf/Ab22w/OOQfqqaHB10V+umohPQr4P0n7ATNJz7Ns\nBWwHfKEKsZlZHzNiRBp9tu++qZ9m0iRYZZVaR2V56vI5GUkfIHXwt/e/PAJcFhH/qUJsS8V9Mmb1\n69134aij4Pbb4YorYLPNah2Rtat0n0xuE2TWmisZs/p36aXwne/Az38OX/lKraMxqM3DmNbg3N5c\n4FwU1EMuDjoo3c2cemoa8vzuu7WJox5y0Ve5kjGzmtpsszSb8/z5sMMO8P/+X60jskpyc5mZ1YWI\nNOrszDNh8uQ0SMCqr+p9Mtn0LcGSsyW/TnqR2I/rdd4wVzJmjemuu2D0aPjGN+DEE9PwZ6ueWvTJ\n3Aj8mTTK7MvAdaQJLOcDkysViOXH7c0FzkVBveZihx1gxoz0npqRI9OMAXmr11z0BeVUMrtGxHER\n8VBEPBgRxwM7RcTpwKB8wzOzZrTGGnDrrTB4cJr/7L77ah2R9VY5zWUPAodmr0dG0hDgoojYXNID\nEbFFFeLsMTeXmfUNV1+dZnQ+5RT41rfS5JuWn1r0yWwDXAyslK16g/QK5keAPSLiD5UKppJcyZj1\nHXPmwD77pJFoEyfCiivWOqK+qxZ9Mg9FxKeAwcDgiNgMmBMRb9VrBWNLcntzgXNR0Ei52HBD+Nvf\n0qsChg6EQvQeAAATiUlEQVRNb+CspEbKRaMpp5K5UtKyEfFaRLwmaU3g1rwDMzMrtsIKcPHFcOSR\naXDAFVfUOiIrRznNZYcCI4F9gXVJr0H+bkTcnH94vefmMrO+a+bMNMnml74EZ5wBy/rlIxVTk7nL\nJI0HRgAfBb4ZEXdXKoC8uJIx69teeSVNS/P663D55bD22rWOqG+oWp+MpKOzz3eA5Uh3MbOAYdk6\naxBuby5wLgoaPRcDB8J118Huu8M228Add/T+WI2ei3rW3ZsxVyr69yrgyaJ13ZI0QtJjkp6UdEwn\nZSZk22dJ2qLcfbMKcJGkgeXEYmZ9zzLLwAknwCWXwIEHwumnw6JFtY7KiuU2d5mkfsDjwK7Ac6Rp\naEZHxOyiMiOB8RExUtJQ4NyIGNbdvpLWBS4CPg5sFRGvdHB+N5eZNZFnn4X994cPfximTIGWllpH\n1Jgaaar/IaShznMj4j1gGrBXSZlRwBSA7GHPFklrlLHvOcD3c4zdzBrMuuvCnXfCRz+aZgloa6t1\nRAb5VjJrA88WLc/L1pVTZq3O9pW0FzAvIh6sdMB9ldubC5yLgr6YiwEDYMIE+MlPYLfd0pDncvTF\nXNSL/jkeu9y2qrJvyyQtDxwP7FbO/mPGjGHQoEEAtLS0MHjwYIYPHw4ULiovN9dyu3qJp5bLbW1t\ndRVPJZfXWKOVs86C008fzt13w377tbLccp2Xb8tue+ol/mout7a2MnnyZIDFvy8rqdM+GUknd7JP\nAETEqV0eWBoGnBIRI7Ll44BFEXFGUZlfA60RMS1bfgzYCVi/o31Js0HfBrydHWIdUp/NkIh4oeT8\n7pMxa3JvvAGHHgpPPJEe3txgg1pHVP+q2SfzFvBmySdI85Z1OFKsxAxgI0mDJA0ADiA9yFnsWuCr\nsLhSei0i5ne2b0Q8HBEfiYj1I2J9UjPalqUVjJkZwMorw9SpcPDBMGxYGvJs1dVpJRMRZ0XE2RFx\nNmkk1/LAwaRO+PW7O3BELATGAzcBjwKXR8RsSWMljc3KXA88JWkOMBEY19W+HZ2m7G/axEqbipqZ\nc1HQLLmQ4PDD4ZprYNy4NOT5/feXLNMsuaiFLvtkJK0O/C/pZWWXkO4aXi334BFxA3BDybqJJcvj\ny923gzK++TWzsmy7bZqO5sAD4XOfS3c4H/5wraPq+7rqkzkL+BJwIXBBRLxRzcCWlvtkzKwj778P\nJ5+cnqWZNg0+85laR1RfqjZ3maRFwALgvQ42R0SsUqkg8uBKxsy68uc/wyGHwPHHwxFH+GVo7arW\n8R8Ry0TEByJi5Q4+dV3B2JLc3lzgXBQ0ey722APuvTdNSfPZz7byRkO11TSOPB/GNDOra+uvD3ff\nnd60uc028MgjtY6o78lt7rJac3OZmfXE5Mnwve+lGQNGj651NLVTk/fJNCJXMmbWU7NmwT77pNcH\nnH12mqam2TTSBJlWJ5q97b2Yc1HgXBS052LzzWHGjDSj8447pn9t6biSMTMr0tICV10Fe++d+mlu\nrusXzdc/N5eZmXWitTU9vPmtb6WZApZpgj/L3SdTJlcyZlYJzz8PBxyQ5kG79FJYffVaR5Qv98lY\nj7ntvcC5KHAuCrrKxVprwe23wyabwNZbpz4bK58rGTOzbiy7LJx1VvrsvjtMnAhuKCmPm8vMzHrg\niSfSMOctt4Rf/QpWWKHWEVWWm8vMzGpo443TdDSLFqV31Dz5ZK0jqm+uZJqA294LnIsC56Kgp7lY\nccU059m4cWkW56uuyieuvsCVjJlZL0jwzW+m2Zz/93/TlDQLF9Y6qvrjPhkzs6X08svwla/A22+n\nd9SsuWatI+o998mYmdWZ1VdPdzS77JKGOd95Z60jqh+5VzKSRkh6TNKTko7ppMyEbPssSVt0t6+k\nMyXNzspfKWnVvL9HI3Pbe4FzUeBcFFQiF8ssAyedBJMmpYc3zzzTw5wh50pGUj/gfGAEsAkwWtIn\nS8qMBDaMiI2Aw4BflbHvzcCmEbE58ARwXJ7fw8ysXJ//PNx3H1xxRRrq/PrrtY6otvK+kxkCzImI\nuRHxHjAN2KukzChgCkBETAdaJK3R1b4RcUtELMr2nw6sk/P3aGjDhw+vdQh1w7kocC4KKp2L9daD\nv/wl9c1svTU8+GBFD99Q8q5k1gaKJ8uel60rp8xaZewLcAhw/VJHamZWQcstB7/8JZxySuqrueSS\nWkdUG3lXMuW2SPZqJIOkE4AFEXFZb/ZvFm57L3AuCpyLgjxz8eUvwx13wE9+AoccAv/6V26nqkv9\ncz7+c8C6Rcvrku5IuiqzTlZm2a72lTQGGAns0tnJx4wZw6BBgwBoaWlh8ODBi2+L2y8qLzfXcrt6\niaeWy21tbXUVTy2X29racj3+Sy+1cs45cOutw9lkExgxopX/+R8YNar237+1tZXJkycDLP59WUm5\nPicjqT/wOKkieB64DxgdEbOLyowExkfESEnDgF9ExLCu9pU0Ajgb2CkiXurk3H5Oxszqzrx58KMf\nwZ/+BEcckR7kXHnlWkdV0FDPyUTEQmA8cBPwKHB5VkmMlTQ2K3M98JSkOcBEYFxX+2aHPg9YCbhF\n0gOSLsjze5iZVco666RZnKdPT/OebbghnH02vPNOrSPLh5/4bwKtra2Lb5ObnXNR4FwU1DIXDz+c\nnq+57z74wQ9Sv82AATUJBWiwOxkzM+vapz4FV16ZJtm86ir4xCfSSLT33691ZJXhOxkzszpy551w\nwgnw6qtw6qmw995pMs5qqfSdjCsZM7M6EwE33pgqGykNf/7856tT2bi5zHqsdPhuM3MuCpyLgnrL\nhZRe8zxjBhx3HHznO7DjjmkWgUbjSsbMrE4tswzsuy889BAceiiMGQMjRqTKp1G4uczMrEEsWAC/\n/S38+McwdGh63mbTTSt7DjeXmZk1qQED4Fvfgjlz0mufP/tZOOgg+Mc/ah1Z51zJNIF6a2+uJeei\nwLkoaLRcLL88HH10ephzo43SXc03v5lmE6g3rmTMzBrUKqukBzkffxxWXRU23zwNEnjxxVpHVuA+\nGTOzPuKf/4Sf/hQuuwzGjUt3Oy0tPTuG+2TMzKxDa64J550HM2fCc8+lprTTT4e33qpdTK5kmkCj\ntTfnybkocC4K+louBg2CSZPgrrvggQfSJJznnQfvvlv9WFzJmJn1UZ/4BFx+OdxwA9x0E2y8cRoC\nvXBh9WJwn4yZWZO45540Vc3zz8MPfwj7758e+CzmucvK5ErGzOy/RcBtt6XK5j//SQ92fuELhXnR\n3PFvPdbX2puXhnNR4FwUNFMuJNh1V7j33jRjwPHHw7bbwu2353O+/vkc1szM6pkEo0alu5jLL4ex\nY2G99XI4T19tUnJzmZlZ+d57D265BfbYw30yZXElY2bWcw3VJyNphKTHJD0p6ZhOykzIts+StEV3\n+0oaKOkWSU9IullSD59nbT7N1N7cHeeiwLkocC7yk1slI6kfcD4wAtgEGC3pkyVlRgIbRsRGwGHA\nr8rY91jglojYGLgtW7YutLW11TqEuuFcFDgXBc5FfvK8kxkCzImIuRHxHjAN2KukzChgCkBETAda\nJK3Rzb6L98n+/WKO36FPeO2112odQt1wLgqciwLnIj95VjJrA88WLc/L1pVTZq0u9v1IRMzPfp4P\nfKRSAZuZWWXlWcmU2+teTgeTOjpe1rPv3v1uzJ07t9Yh1A3nosC5KHAu8pPnczLPAesWLa9LuiPp\nqsw6WZllO1j/XPbzfElrRMS/JK0JvNBZAFLFBkg0vClTpnRfqEk4FwXORYFzkY88K5kZwEaSBgHP\nAwcAo0vKXAuMB6ZJGga8FhHzJb3cxb7XAl8Dzsj+vbqjk1dyCJ6ZmfVObpVMRCyUNB64CegH/DYi\nZksam22fGBHXSxopaQ7wFnBwV/tmhz4d+IOkrwNzgf3z+g5mZrZ0+uzDmGZmVnsNMUFmmQ91Dpf0\ngKSHJbUWrZ8r6cFs231F60+RNC9b/4CkEVX4KkttKXPRIukKSbMlPZo1UTbsA64VzsXQbH1TXReS\nPl70XR+Q9LqkI7JtTXVddJOLprousvXHSXpE0kOSLpO0XLa+Z9dFRNT1h9RcNgcYRBoQ0AZ8sqRM\nC/AIsE62/MGibU8DAzs47snAd2r9/aqciynAIdnP/YFVs59/Bnw/+/kY4PRaf9ca5qLprouiMssA\n/wTWbdbrootcNNV1ke3zFLBctnw58LXeXBeNcCdTzkOdBwJ/ioh5ABHxUsn2zgYBNNrggF7nQtKq\nwA4RMSlbvzAiXs/2acQHXPPKBTTRdVFiV+AfEdH+jFpTXRclSnMBzXVd/Bt4D1hBUn9gBQojfHt0\nXTRCJVPOQ50bAQMl3SFphqSDirYFcGu2/tCS/Q5XmjPttw3SFLA0uVgfeFHSxZL+LukiSStk2xrx\nAde8cgHNdV0U+x/gsqLlZrsuipXmAprouoiIV4CzgWdII3xfj4hbs316dF00QiVTzsiEZYEtgZHA\n54ETJW2Ubds+IrYAdge+LWmHbP2vSL9sBpNui8+uaNT5WJpc9M/WXxARW5JG8/3XvG+R7oEbYTRI\nXrlotusCAEkDgD2BP3Z4gua4LoBOc9FU14WkjwFHkZrN1gJWlPTl/zpBGddFI1Qy5TzU+Sxwc0S8\nExEvA38BNgeIiOezf18EriLdQhIRL0QG+E37+jrX21x8Ols/LyLuz8r9iXRxQfaAK4C6ecC1jlQy\nF1eQ5aLJrovNi7bvDszM/j9p10zXRZe5aMLrYivgnoh4OSIWAlcC22X79Oi6aIRKZvFDndlfGAeQ\nHsgsdg2wvaR+WbPHUOBRSStIWhlA0orA54CHsuU1i/b/Uvv6OtfbXMzObm+flbRxVm4XUocfFB5w\nhS4ecK0zlczFrmS5aLLr4tGi7aOBqSX7NNN10WUumvC6eBwYJml5SSL9P9Keo55dF3mObqjUh/SX\nxeOkkRLHZevGAmOLynyX9IviIeCIbN0GpBEVbcDD7ftm2y4BHgRmZUn6SK2/Z565yNZvDtyffecr\nKYyoGgjcCjwB3Ay01Pp71jAXzXhdrAi8BKxccsxmvC46y0UzXhffL1o/BVi2N9eFH8Y0M7PcNEJz\nmZmZNShXMmZmlhtXMmZmlhtXMmZmlhtXMmZmlhtXMmZmlhtXMtbQJP1c0pFFyzdJuqho+WxJ/yvp\no5JK38xafJwzs6nOz6hATEdJWr5o+c+SVlna43Zxvg9Jmi5ppqTPlGxrlXR/0fLWku4o45ibSrpd\naZr4JyT9oGjbGEnndXCerSrxfaxvcSVjje6vZNNdSFoGWB3YpGj7tsDdpHmnDuziOIcCm0XEEu/c\nkNSvFzEdSZq1FoCI2CMi/t2L45RrF+DBiNgqIu7uYPuH1IP3n2QV5DXATyPiE6QHV7eTNC4r0tHD\ndY0yt5lVmSsZq1uStslmvV1O0orZncYmJcX+RqpIADYlzezwhtJLyZYDPgk8QHpt9w5KL2c6svgA\nkq4FVgL+Lml/SZMl/VrSvcAZWRz3ZDM2390+HU02FcdZSi91miVpvKTDSRMK3iHptqzcXEkDs5+/\nk5V/qD2ObNqP2ZIuzL7jTZI+0EE+BmV3F7Mk3SppXUmDgTOAvbLvVrpfAGcBJ3RyvL9kd0AzJbXn\n8UDgr5HNuhsR7wDjKUwi2mhT3lsN9a91AGadiYj7swrgx8DywKUR8WhJmeclLZS0Lqmy+RtpOvNt\nSe/EeCgi3lN6K+B3I2LPDs4zStIbkWbrRtLupIpi24iIbP67HSLifUm7Aj8F9gUOA9YDNo+IRZJW\ni4hXJX0HGB5punTI/sLPmpPGkCZXXAaYLulO4DVgQ+CAiDhM0uXAPsDvS0I9D7g4Ii6VdDAwISK+\nJOkkYKuIOKKTVP4N+JKk4cAbRevnA7tFxLtKsxBfBmxDqqxnluToKUkrSVopW3WApO2LimzYybmt\nybmSsXp3Kmmiv3eAwzspcw+pyWw74BxSJbMd8DqpOQ16/tf3H6Mw51ILcImkDUkVRvv/N7sAv4qI\nRQAR8WoXxxOwPXBldmeApCuBHUgTDj4dEQ9mZWeSplgvNYzCC6J+R3pDYfuxu/t+PwZ+QHqTYbsB\nwPmSNgfeJ71bhOw7dne8acWVWjn9PNac3Fxm9e6DpEkLVyLdzXTkbuAzwGakyfzupVDp3NPL875d\n9POPgNsiYjPSWwGL4+hJ5VX6y1sU+jHeLVr/Pp3/AdibpqqIiDtIcQ8rWv+/wD8j4tPA1sBy2fpH\nSVO9F04qbQC8GRFvLkUc1oRcyVi9m0j6C/wyUt9DR+4BvgC8HMmrpLuPbSlUMv8GVu5lDKuQ3g4I\nqbmr3S3A2PbBAZJWy9a/ke1TLIC7gC9m06evSLoruYvyf2HfQ3pjI8CXSe/+6Ikfk+5k2iu2VYB/\nZT9/lfROeEi53l7SLrB4IMAEOs+/WadcyVjdkvRV4N2ImEbquN8m61co9TBpVNm9ReseBF4r6hd5\nEHhfUltpx3+mdGRU8fLPgNMk/Z30i7h9229Ir6d9UFIb6T0kABcCN7Z3/C8+YMQDwGTgvizWiyJi\nVhnnb3c4cLCkWaRK5siist2O7IqIG1jyBVMXAF/LYv848GZW7h3Su+B/IOkxUu6mR8Qve3I+M8BT\n/ZuZWX58J2NmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrn5/4wM\nQj9yu23UAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x77209b0>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.4: Page 758"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.4\n",
+ "# Page: 758\n",
+ "\n",
+ "print'Illustration 13.4 - Page: 758\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "from scipy import interp\n",
+ "#***Data***#\n",
+ "# a:oil b:soyabean c:hexane\n",
+ "# Data=[100y*(Wt % oil in soln) 1/N(kg soln retained/kg insoluble solid)]\n",
+ "Data = numpy.array([[0 ,0.58],[20 ,0.66],[30 ,0.70]]);\n",
+ "# Soyabean feed:\n",
+ "percent_b = 20.0;# [soluble]\n",
+ "yF = 1.0;# [mass fraction oil,solid free basis]\n",
+ "# Solvent:\n",
+ "RNpPlus1 = 1.0;# [hexane,kg]\n",
+ "xNpPlus1 = 0;# [mass fraction oil]\n",
+ "# Leached Solids:\n",
+ "leached = 0.005;# [fraction of oil to be leached]\n",
+ "# Miscella:\n",
+ "percent_miscella = 10.0;# [percent of insoluble solid]\n",
+ "#**********#\n",
+ "\n",
+ "N = zeros(3);\n",
+ "ystar_By_N = zeros(3);\n",
+ "for i in range(0,3):\n",
+ " N[i] = 1/Data[i,1];# [kg insoluble solid/kg soln retained]\n",
+ " ystar_By_N[i] = Data[i,0]/(100*N[i]);# [kg oil/kg insoluble solid]\n",
+ "\n",
+ "# Basis: 1 kg flakes introduced\n",
+ "# Soyabean feed:\n",
+ "mass_b = 1-(percent_b/100.0);# [insoluble,kg]\n",
+ "F = 1.0-mass_b;# [kg]\n",
+ "NF = mass_b/F;# [kg insoluble solid/kg oil]\n",
+ "\n",
+ "# Leached Solids:\n",
+ "Ratio = leached/(1-leached);# [kg oil/kg insoluble solid]\n",
+ "# By interpolation:\n",
+ "Np = interp(Ratio,ystar_By_N,N);\n",
+ "miscella_b = (percent_miscella/100.0)*mass_b;# [Insoluble solid lost to miscella,kg]\n",
+ "leached_b = (1-(percent_miscella/100.0))*mass_b;# [Insoluble solid in miscella,kg]\n",
+ "ENp = leached_b/Np;# [kg soln retained]\n",
+ "retained_a = Ratio*leached_b;# [oil retained,kg]\n",
+ "retained_c = ENp-retained_a;# [Hexane retained,kg]\n",
+ "yNp = retained_a/ENp;# [mass fraction of oil in retained liquid]\n",
+ "\n",
+ "# Miscella:\n",
+ "mass_c = 1.0-retained_c;# [kg]\n",
+ "mass_a = F-retained_a;# [kg]\n",
+ "R1 = mass_c+mass_a;# [clear miscella,kg]\n",
+ "x1 = mass_a/R1;# [mass fraction of oil in the liquid]\n",
+ "NR1 = miscella_b/R1;# [kg insoluble solid/kg soln]\n",
+ "\n",
+ "# The operating diagram is shown in Fig 13.33 (Pg 759).\n",
+ "# Point R1 represents the cloudy miscella and is therefore is displaced from the axis of he graph at NR1. Point deltaR is located as usual and the stages determined with the N=0 axis for all the stages but the first.\n",
+ "print\"Between 4 and 5 stages are required\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.4 - Page: 758\n",
+ "\n",
+ "\n",
+ "Between 4 and 5 stages are required\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter13_2.ipynb b/Mass_-_Transfer_Operations/Chapter13_2.ipynb
new file mode 100755
index 00000000..8bfca391
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter13_2.ipynb
@@ -0,0 +1,438 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b262ce3e37d7d3aade80ecf338d6eca332831fbc19ddab243748a217da7431ac"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13: Leaching"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.1: Page 722"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.1\n",
+ "# Page: 722\n",
+ "\n",
+ "print'Illustration 13.1 - Page: 722\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "import numpy as np\n",
+ "import math\n",
+ "#***Data***#\n",
+ "Density_L = 1137.0;# [kg/cubic m]\n",
+ "Density_S = 960.0;# [kg/cubic m]\n",
+ "Density_p = 1762.0;# [kg/cubic m]\n",
+ "A_prime = 16.4;# [square m/kg]\n",
+ "g = 9.81;# [square m/s]\n",
+ "sigma = 0.066;# [N/m]\n",
+ "Z = 3.0;# [m]\n",
+ "dia = 1.0;# [m]\n",
+ "#**********#\n",
+ "\n",
+ "e = 1-(Density_S/Density_p);# [fraction void]\n",
+ "ap = A_prime*Density_S;# [square m/cubic m]\n",
+ "# By Eqn. 6.67:\n",
+ "dp = 6*(1-e)/ap;# [m]\n",
+ "# By Eqn. 13.6:\n",
+ "K = dp**2*e**3.0*g/(150.0*(1-e)**2);# [cubic m/s]\n",
+ "check = K*Density_L*g/(g*sigma);\n",
+ "if (check<0.02):\n",
+ " # By Eqn. 13.3: \n",
+ " So = 0.075;\n",
+ "else:\n",
+ " # By Eqn. 13.4:\n",
+ " So = 0.0018/(check)\n",
+ "\n",
+ "# By Eqn. 13.2:\n",
+ "ZD = (0.275/g)/((K/g)**0.5*(Density_L/sigma));# [m]\n",
+ "# By Eqn. 13.1:\n",
+ "Sav = ((Z-ZD)*So/Z)+(ZD/Z);\n",
+ "# VolRatio=Vol liquid retained/Vol bed.\n",
+ "VolRatio = Sav*e;\n",
+ "print\"Vol liquid retained/Vol bed : \",round(VolRatio,4),\" cubic m/cubic m\\n\"\n",
+ "Mass = VolRatio*math.pi*dia**2*Z*Density_L/4;# [kg]\n",
+ "# Mass ratio=Mass Liquid/Mass dry solid\n",
+ "MassRatio = VolRatio*Density_L/(Density_S);\n",
+ "print\"Mass liquid/Mass dry solid: \",round(MassRatio,4),\" kg/kg\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.1 - Page: 722\n",
+ "\n",
+ "\n",
+ "Vol liquid retained/Vol bed : 0.058 cubic m/cubic m\n",
+ "\n",
+ "Mass liquid/Mass dry solid: 0.0687 kg/kg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.2: Page 749"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.2\n",
+ "# Page: 749\n",
+ "\n",
+ "print'Illustration 13.2 - Page: 749\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#***Data***#\n",
+ "# Eqb=[x(Wt fraction NaOH in clear solution) N(kg CaCO3/kg soln in settled sludge) y*(wt fraction NaOH in soln of settled sludge)]\n",
+ "# a=H2O b=CaCO3 c=NaOH\n",
+ "Eqb = np.array([[0.090 ,0.495, 0.0917],[0.0700, 0.525, 0.0762],[0.0473, 0.568, 0.0608],[0.0330, 0.600, 0.0452],[0.0208, 0.620, 0.0295],[0.01187 ,0.650, 0.0204],[0.00710, 0.659, 0.01435],[0.00450, 0.666, 0.01015]]);\n",
+ "def f80(x):\n",
+ " return x\n",
+ "x = np.arange(0,0.12,0.01);\n",
+ "Mass_c = 0.1;# [kg]\n",
+ "Mass_b = 0.125;# [kg]\n",
+ "Mass_a = 0.9;# [kg]\n",
+ "#**************#\n",
+ "\n",
+ "\n",
+ "plt.plot(x,f80(x),label=\"N Vs x\")\n",
+ "plt.plot(Eqb[:,2],Eqb[:,1],label=\"N Vs Y\");\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x,y Wt. fraction of NaOH in loquid\");\n",
+ "plt.ylabel(\"N kg CaCO3 / kg solution\");\n",
+ "plt.legend('upper left');\n",
+ "plt.title(\"Equilibrium Plot\")\n",
+ "plt.show()\n",
+ "# Basis: 1 kg soln in original mixture.\n",
+ "# As in Fig. 13.27 (Pg 750)\n",
+ "# The original mixture corresponds to M1:\n",
+ "NM1 = 0.125;# [kg CaCO3/kg soln]\n",
+ "yM1 = 0.1;# [kg NaOH/kg solution]\n",
+ "# The tie line through M1 is drawn. At point E1 representing the settled sludge:\n",
+ "N1 = 0.47;# [kg CaCO3/kg soln]\n",
+ "y1 = 0.100;# [kg NaOH/kg solution]\n",
+ "E1 = Mass_b/N1;# [kg soln. in sludge]\n",
+ "Ro = 1-E1;# [kg clear soln drawn]\n",
+ "\n",
+ "# Stage 2:\n",
+ "xo = 0;# [kg NaOH/kg soln]\n",
+ "# By Eqn. 13.11:\n",
+ "M2 = E1+Ro;# [kg liquid]\n",
+ "# By Eqn. 13.12:\n",
+ "NM2 = Mass_b/(E1+Ro);# [kg CaCO3/kg soln]\n",
+ "# M2 is located on line RoE1. At this value of N, and the tie line through M2 is drawn. At E2:\n",
+ "N2 = 0.62;# [kg CaCO3/kg soln]\n",
+ "y2 = 0.035;# [kg NaOH/kg solution]\n",
+ "E2 = Mass_b/N2;# [kg soln. in sludge]\n",
+ "Ro = 1-E2;# [kg clear soln drawn]\n",
+ "\n",
+ "# Stage 3:\n",
+ "xo = 0;# [kg NaOH/kg soln]\n",
+ "# By Eqn. 13.11:\n",
+ "M3 = E2+Ro;# [kg liquid]\n",
+ "# By Eqn. 13.12:\n",
+ "NM3 = Mass_b/M3;# [kg CaCO3/kg soln]\n",
+ "# Tie line E3R3 is located through M3.At E3:\n",
+ "N3 = 0.662;# [kg CaCO3/kg soln]\n",
+ "y3 = 0.012;# [kg NaOH/kg solution]\n",
+ "# By Eqn. 13.8:\n",
+ "E3 = Mass_b/N3;# [kg soln. in sludge]\n",
+ "print\"The fraction of original NaOH in the slurry: \",round(E3*y3/Mass_c,4),\" \\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.2 - Page: 749\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVXXZ///XxVHOIyflMDgoEAcPgwgOajqaFZYmUmlq\nt0Lpjw4eSu0uf9otWd1lZVqZ3t5qYmaRt0Jhipbe92QoKCgjCMhBQRhARJSDIMrh+v6x1gybzd57\n9p49a/aeNe/n47Ef7LX2Onyu2cO6Zn2utT7L3B0REZFUWhW6ASIiUryUJEREJC0lCRERSUtJQkRE\n0lKSEBGRtJQkREQkLSUJiTUzG2Bm283MwukqM/tq+P5iM3sqYdl9ZnZkDts+YP1CMbOpZvbDQrdD\n4klJQoqCma02s53hAb329et8t+vua9y9i++/IcjDF+7+kLt/Oo9t57V+LsLk9kH4c9lkZo+a2eG1\nTQlf2Wwnp0QooiQhxcKBs8MDeu3rqkI3Kh0za93Eu3Tgm+7eBRgClAC3JTYph23lsqy0cEoSUvTM\nrJWZ/SL8C/p1M/tm+Bdxq/Dz1Wb2iYTlp5jZg+H7ssRlk7Y70cz+lTT7s+E+NpnZzxK6qSaa2XNm\n9kszeweYkrh+qv0kdW0lrv+ema00s5PMbJKZrTGzjWZ2STY/D3d/D5gOHF27q6S4LjezFWa22cz+\namZ9wvnPhou8Ep6RfDGb/UnLpiQhxSTdX7j/H/BZoBw4AfgCB3avJHe35DPWzHhgFHA8cC7wlYTP\nxgCvA72BH2exreR2jQFeAboDfwIeDvdzFPBl4A4z65hhe7UJqyfweeDlhP0QfnYG8J/AF4E+wJvA\nNAB3PzVc7NjwTO1/sohBWjglCSkWBvwl/Cu79vXV8LPzgdvcfV34V/R/krnLJJ/ulFvcfYu7rwVu\nBy5M+Gy9u//W3fe5+64GbHuVuz8Q1kceBvoCN7v7bnf/B/ARMCjNugb82szeA6qBdcA1CZ/XJoqL\ngfvcvdrdPwKuB8aa2YAGtFeENoVugEjIgXPd/X9TfNYHWJswvSbCdiTvp2+azxpiY8L7DwDcfVPS\nvM5p1nXgSnf/XT376APMr1vJfYeZbQb6Ee3PTWJKZxLSHGwAEv8STv6reAfQKWH6cBoueT/rEqYz\ndWPtCP9N7C7Kpx0NtR4oq50ws05ADw6MQyRrShJSTNJ1Ez0MXGVm/czsUOB7HHjArga+ZGZtzOwE\ngv76htYlrjOzEjMrBa4C/pzNSuEZwTrg38ystZl9haDW0JjS/Xws4bM/AZPM7Dgza0/QNTfX3WvP\nIjZG0C6JMSUJKSaPJd0n8Wg4/x7gKYKi73zgUQ48YH6f4MD3HjAFeChpu+kSRqr7C/4KvAQsAP4G\n3Jdh2eR5lwPfAd4BhgPP1bOvXBNZvXG4+zMEP49HCc4qBgJfSlh2CvBAWPP5Qo77lxbIonzokJmN\nIyj+tQbudfdbkj6/jqDQBkF9ZBjQ0923RNYoafbMrAx4A2jj7vsK2xqReIssSYQ3Gy0DziQ4DZ8H\nXOjuS9MsfzbwLXc/M5IGSWwoSYg0nSi7m8YAK919tbvvJrhW+9wMy19E0J8qkg09d1ekCUSZJPpx\n4CWDNeG8g4Q3EH2aoB9VJKPwD4/WOosQiV6USSKXv/TOAWarFiEiUlyivJluHVCaMF1KcDaRypfI\n0NVkZupaEBFpAHfPa0DHKM8k5gODw4HP2gEXADOTFzKzbsCpBJcepuXusX3ddNNNBW+D4lNsii9+\nr8YQ2ZmEu+8xsysIrm9vTTCezFIzmxx+fne46HjgKXf/IKq2FLvVq1cXugmRinN8cY4NFJ9EPHaT\nu88CZiXNuztp+gHggSjbISIiDaM7rovAxIkTC92ESMU5vjjHBopPIr7jurGYmTeHdoqIFBMzw4u4\ncC1ZqqqqKnQTIhXn+OIcG7SM+MwsFq+o6HkSItLiNfeeiiiThLqbRKRFC7tkCt2MvKSLQd1NEdi9\ndzc7d+8sdDNERIqCkkSSBW8toOfPejL8t8O56NGL+PlzP+fpN55m887Nke2zJfT7xlWcYwPFJ6pJ\nHGRMvzFs+d4Wlm5ayoK3FrBgwwIeW/4Yr2x8ha7tuzLy8JHBq89Iyg8v54huR0TaHygiUkiqSWRp\nn+9j1XurWPDWAqrfqq5LILv27OLYw45lRK8RHN37aI7ufTQjeo+ge4fuBW2viGRHNYl6tt0cfjjF\nkCTS2fj+Rha9vYjFby/m1bdf5dVNr7L47cV0bteZEb1HcHSvIGkc3ftohvcaTtf2XQvdZBFJoCRR\nz7abww+nmJNEKu7O2m1r6xLH4k3Bv0vfWUrPjj2Ds43wzGNErxFsWrKJcWeOK3SzI1NVVUVlZWWh\nmxGJOMcGLSO+008/vSiTRKtWrVi5ciVHHnkkENwdXlpayg9/+MODlo0ySagmEQEzY0C3AQzoNoCz\nBp9VN3/vvr2s3rK6Lmk8ufJJbp1zK0vnLaVibQWTyifxxRFfpHO7zgVsvYgUo6hvmku732LMoMma\n25lErj7a+xGPL3+cqa9M5Z+r/8n4oeOZWD6RU484lVamC9BEolRfd1NjHZdzPYQln0lMmjSJ/v37\n60yiJWrXuh3nDTuP84adx8b3N/LQooe4ctaV7PhoB5cedymXll9KWUlZoZsp0iLF+O/TrOjP1CKQ\neK32YZ0P45qx17Dwawv5ny/+D5t2buKE/z6BMx44gwdfeZAdH+0oXEMbKM7Xosc5NlB8hdSxY0d2\n7tx/Y++GDRsK0t2kJFGkzIxRfUdxx2fuYN016/j6CV9n2uJp9L+tP5fNvIzZa2YXZbFNRBpHeXk5\nDz30EHv37uXJJ5/k2WefLUg7VJNoZtZvX88fFv6B+6vvZ8++PUw8biKXHHcJpd1K619ZRA5SrJfA\nvvTSS1x66aWsWbOG8ePHs3fvXo466ihuvvnmg5bVJbBKEgdxd15c9yJTq6fy8JKHGdVnFBPLJ3Le\n0PPo0LZDoZsn0mwUa5LIhQb4i7mG9IuaGSf2P5G7zr6Lmm/X8JWRX+GBVx6g3y/7MfmxycytmVs0\nv/jF3O+brzjHBopPlCRioUPbDnzp6C/x1JefYuHXF3JEyRFcMuMSht85nFtm38L67esL3UQRaabU\n3RRT7s7za59navVUHln6CBX9Kzh/+PkM6zWMwd0H06Njj0I3UaQoqLupnm03hx+OkkR+dny0gxmv\nzeCJFU+w4t0VrNi8glbWiiE9hjC4x2AGdx8cvO8+mME9Bmt8KWlRlCTq2XZz+OHEPUk09fg47s6m\nnZtYsXlFXdJY/u5yVmxewcp3V9KpXaf9SSNMHEN6DGFQ90F0bNsx5/3FefyfOMcGLSO+Yh27KRfN\n9o5rMxsH3A60Bu5191tSLFMJ3Aa0Bd5x98oo2yTBL07vTr3p3ak3Jw84+YDP3J3129fXJY8V767g\nDwv/wIp3V/DGe2/Qo0OPIGl0338WMrjHYI469Cjat2lfoIhEJCqRnUmYWWtgGXAmsA6YB1zo7ksT\nlikBngM+7e41ZtbT3d9Jsa1Yn0k0F3v37aVmWw3LNy8/6AxkzdY19OnSp+7sI7Erq6ykjLat2xa6\n+SIpqbupnm1HmCTGAje5+7hw+nsA7v7ThGW+ARzu7v9Rz7aUJIrc7r27eXPrm0ECCc9AapPJhu0b\nGNBtQMr6R2nXUlq3al3o5ksLpiSRWZTdTf2AtQnTNcCJScsMBtqa2f8BXYBfufuDEbapKMWh37dt\n67YM6j6IQd0HBd9qgr8/83dKjy2tSxqvvPUKjyx5hOWbl7P5g80ceeiRB9U/BncfTN8ufYv+0bBx\n+O4yaQnxSWZRJolsUnNb4HjgE0BHYI6ZzXX3FckLTpw4kbKyMgBKSkooLy+v++Wt/aKb63R1dXVR\ntaexp5csWkK71u04t/Lc/Z93gcpLK9nx0Q6m/W0aNdtqaNehHXNr5vKbh39DzbYaWg1sxcmlJ9P3\nnb4cc9gxXDbhMtq3aV/weDQdr+k4qaqqYurUqQB1x8t8RdndVAFMSehuuh7Yl1i8NrPvAh3cfUo4\nfS/wpLs/krQtdTe1QOu2reO5tc8xe81sZq+ZzfLNyxnVdxSnlJ7CKQNOYWzpWEoOKSl0M6WZU3dT\nPduOMEm0IShcfwJYD7zIwYXrocAdwKeB9sALwAXuviRpW0oSwrYPtzG3Zm5d0pi3fh5HHnpkXdI4\nZcApGuhQclasSaKsrIyvfe1rPPjgg2zYsIHx48dz11130b79wVcRNsskAWBmZ7H/Etj73P0nZjYZ\nwN3vDpe5DpgE7APucfdfp9hOrJNEVQvo940ivt17d7PgrQV1SWP2mtl0aNshSBhh4hjRe0SkT/fT\nd9e8VRXxfRJlZWV07dqVWbNm0bFjR8455xxOP/30eD2Zzt1nAbOS5t2dNP0L4BdRtkPiqW3rtozp\nN4Yx/cZwzdhrcHdWvLuiLmHcNvc2Nu3cxEmlJ9UljdH9RnNIm0MK3XRpRuwHjXPxhN+UWyIyM664\n4gr69esHwA033MCVV16ZMklESXdcS6xtfH/jAXWNxZsWU354eV3SOKn0JI1j1cIVa3fTwIEDufPO\nOznrrLMAWLx4MaNHjz7gaXW1mu2ZhEihHdb5MCYMm8CEYRMAeP+j93lx3YvMXjOb37z4Gy6efjGl\n3UoPqGuUlZQV/aW30jKsWbPmgPd9+/Zt8jboTKIItIR+32KNb8++PSzcuLDuTONfa/5FK2t1QF3j\n2MOOTXvDXzHH1hhaQnzFXJPo1q0bTzzxBB06dOBzn/sclZWV/OhHPzpoWZ1JiESkTas2HN/neI7v\nczxXnXgV7s6qLavqksZd8+9i3fZ1VPSvqEsaJ/Y/sUEDHYrkwsy46KKL+NSnPsX69esZP348N954\nY9O3oxgzaLK4n0lIcXtn5zs8tyasa6ydzcKNCzmm9zF13VMnl55Mr069Ct1MaaBirkncd999nHHG\nGfUu22wvgW0sShJSTHbu3sm8dfPqksactXM4vPPhnDPkHM4bdh4V/SsivexWGpeSRGb6TS4CtcME\nxFXc4uvYtiOnlZ3GDafewHf7fZfN/76ZhyY8RIe2HZj8t8n0/2V/vvH4N/jH6/9g997dhW5uXuL2\n3SWLe3yNQTUJkTy1btWaUX1HMarvKG4+/WaWb17OjKUz+P7/fZ8V767g7CFnM2HoBD511Kfo0LZD\noZsrzcSqVasK3QRA3U0ikarZVsNfXvsLM16bwfz18/nkkZ9kwrAJfHbwZ+l2SLdCN08o3u6mXKgm\noSQhMfDOznd4bNljzHhtBlWrqzh5wMlMGDqBc4eeS+9OvQvdvBZLSSIz1SSKQNz7ReMcXy6x9ezY\nk0kjJzHzwpmsu2Ydk8on8cyqZxjymyGcev+p3D73dt7c8mZ0jW2AOH93EP/4GoNqEiIF0KV9F84f\ncT7njzifXXt28cwbzzB96XR+/K8fM6DbACYMDe4SH9ZrWKGb2iLoDvv01N0kUkT27NvD7DWzmb50\nOjNem0Gntp3qhhUZ1WeUDmaSE9UkRGLM3Zm/fj7Tl05n+mvT+WD3B5w39DwmDJvAKQNO0bPBpV6q\nScRE3PtF4xxflLGZGaP7jeYnZ/6E1775Gk9++Ul6derFt5/6Nn1u7cNlMy/jiRVP8OGeDyNrQ5y/\nO4h/fI2h3pqEmR0CfB4oS1je3f3mCNslIgnMjOG9hjO813BuPPVGVm9ZzYylM/jp7J9y8fSLGTdo\nHBOGTuCswWfRuV3nQjdXYqTe7iYzewrYArwE7K2d7+63Rtu0A9qg7iaRNDa+v5G/Lvsr05dO5/m1\nz1NZVsmEYRM4Z8g5elZGC9ckNQkze9Xdj85nJ/lSkhDJzpZdW3h8+eNMf206T7/xNCf0PYEJQycw\nfuh4+nXtV+jmSRNrqprE82Z2bD47kczi3i8a5/iKLbaSQ0q4+NiLefT8R9lw7QauHHMlL6x7gWPu\nOoaKeyv42XM/Y/nm5VnfPFZs8TW2uMfXGLK5T+LjwCQzWwXUVsjc3ZU4RIpYx7YdGT90POOHjmf3\n3t1Ura5i+tLpnP7A6ezzfVT0r2Bs/7GM7T+WUX1H6RkZklI23U1l4dvaBQ3A3VdH1agUbVB3k0gj\ncXfWbF3D3Jq5zKmZw5yaObz69qsM6zlsf+IoHcvAkoG6L6OZa7L7JMysnOCMwoF/ufsr+ew0V0oS\nItHatWcXL294mTlr5zB33VzmrJ3D7n2765JGRf8KRvcdTad2nQrdVMlBUxWurwYuB6YTnEWMB+5x\n91/ns+NcxD1JtITnCMc1vjjHtnbrWu6bfh/b+m5jTs0cFm5cyJAeQ+q6qCr6VzCo+6BmfbYR5+8P\nmu4Z15cBJ7r7jnCnPwXmAvUmCTMbB9wOtAbudfdbkj6vBP4KvBHOetTdD37Kt4g0udJupVQOrKw7\niH6450MWvLWAuTVz+duKv3HD/97AB3s+oKJ/BRX9KhhbOpbRfUfTpX2XwjZcGlU2ZxKLgDHu/kE4\n3QF40d2PqWe91sAy4ExgHTAPuNDdlyYsUwlc4+6fq2dbsT6TEGmu1m1bV1fbmFszl+q3qjmq+1F1\nZxpj+49lSI8hzfpsozlrqu6ma4CJHNjdNNXdb6tnvbHATe4+Lpz+HoC7/zRhmUrgWnc/p55tKUmI\nNAMf7f2I6req9xfF185h+0fbObHfiXWJ48T+J9K1fddCN7VFaMrC9SjgFPYXrhdksc4XgE+7++Xh\n9JcJuq2uTFjmNILkU0NwtnGduy9Jsa1YJ4m494vGOb44xwaNE9+G7RuYWzO3LnG8vOFlBh46sK6L\namz/sXys58doZU0/lFzcv79IaxJm1tXdt5lZd2AVsDr8yM2su7u/W8+2szmqvwyUuvtOMzsL+Asw\nJNWCEydOpKysDICSkhLKy8vrvtzaG2Ka63R1dXVRtUfxaboxp5e9tIxDOZRbPhmUJJ9+5mlef+91\ndh++m2dWPcONv7uRbR9u45RTT6GifwUd13VkeK/hnP2ps4ui/c1puqqqiqlTpwLUHS/zlfZMwswe\nd/fPmtlqUhzw3X1gxg2bVQBTErqbrgf2JRevk9ZZBYxKTkBxP5MQaek2vr/xgLONlza8RGnXUsb2\nH8t1J12nhy81UFE/T8LM2hAUrj8BrAde5ODC9WHA2+7uZjYGeNjdy1JsS0lCpAXZs28PizYuYk7N\nHM4adBYDD834N6mk0SRjN5nZM9nMS+bue4ArgKeAJcCf3X2pmU02s8nhYl8AFplZNcGlsl/KpfFx\nUXu6GFdxji/OsUHh4mvTqg0j+4zkG6O/EWmCiPv31xgy1SQ6AB2BXmFdolZXIKvhJN19FjArad7d\nCe9/C/w2lwaLiEjTyVST+BZwNdCXoLuo1nbgv939juibV9cWdTeJiOSoqe6TuNLdf5PPTvKlJCEi\nkrumep7ENjO7JPmVz07lQHHvF41zfHGODRSfZDd202j2XwLbATiD4P6G30fVKBERKQ45XwJrZiUE\nVyp9OpompdynuptERHLUVN1NyXYCumhZRKQFyOY+iccSXo8T3CA3I/qmtRxx7xeNc3xxjg0Un2RX\nk7g14f0e4E13XxtRe0REpIhENixHY1JNQkQkd1GPAvs+6UdydXfXgPAiIjGXtibh7p3dvUualxJE\nI4p7v2ic44tzbKD4JLuaBGZ2HHAq+x869EqkrRIRkaKQzbAcVwOXc+DjS+9x919H37y6NqgmISKS\no6Yau2kRUOHuO8LpTsBcdz8mnx3nQklCRCR3TXkz3b4076URxL1fNM7xxTk2UHySXU3ifuAFM0vs\nbvpdpK0SEZGikNV9EmY2CjiF/YXrBVE3LGn/6m4SEclRU9UkjgLWufsuMzsdOAb4vbtvyWfHuVCS\nEBHJXVPVJKYDe8xsEHA3UAr8MZ+dyoHi3i8a5/jiHBsoPskuSexz9z3ABOA37v4doE+0zRIRkWKQ\nTXfTC8CvgP8fOMfdV5nZq+5+dFM0MGyDuptERHLUVN1NXwEqgB+HCWIg8GA+OxURkeah3iTh7ovd\n/Sp3/1M4vcrdb4m+aS1H3PtF4xxfnGMDxScNezJd1sxsnJm9ZmYrzOy7GZYbbWZ7zGxClO0REZHc\nRPY8CTNrTfAUuzOBdcA84EJ3X5piuX8QPBb1fnd/NMW2VJMQEclRoZ5xna0xwEp3X+3uu4FpwLkp\nlrsSeATYFGFbRESkAbJ9xvXMhOdczzSzP5jZ1WZ2SIZV+wGJjzmtCeclbrsfQeK4K5zVIk8X4t4v\nGuf44hwbKD7JbuymVUBP4E8EYzddAGwHhgD3AP+WZr1sDvi3A99zdzczC7ef0sSJEykrKwOgpKSE\n8vJyKisrgf1fdHOdrq6uLqr2KD5Na7p5TldVVTF16lSAuuNlvrK5T2K+u5+Qap6ZLXb3EWnWqwCm\nuPu4cPp6ghvzbklY5g32J4aeBHWJy919ZtK2VJMQEclRpM+4TtDJzI5w9zfDnR4BdAo/+yjDevOB\nwWZWBqwnOAO5MHEBdz+y9r2Z3Q88lpwgRESkcLIpXF8L/MvMqsysCvgX8J3w4UMPpFspHMrjCuAp\nYAnwZ3dfamaTzWxy/k2Pj9rTxbiKc3xxjg0Un2R3JvEkQf1hKEGdYTng7r6LoKaQlrvPAmYlzbs7\nzbKTsmmwiIg0nWxqEvcnHsDNrDMw093PiLpxCftUTUJEJEdNdZ9EjZndGe7wUODvaOwmEZEWIZux\nm74P7DCzuwnujP6lu98fectakLj3i8Y5vjjHBopPMtQkzOzz4VsH5gLfJxhaw81sgrtPb4L2iYhI\nAaWtSZjZVA68Ic4Sp5uy0KyahIhI7prkGdfFQElCRCR3xT7An2Qp7v2icY4vzrGB4hMlCRERySBT\nTeIkYE4x9POou0lEJHdRdzddArxsZn82s4lmdng+OxIRkeYnbZJw96+5+0hgCtAdmGpmc83sP83s\n1PCJctII4t4vGuf44hwbKD7J7ma6pe7+y3DI7zOA54DzgRejbpyIiBSWLoEVEYkpXQIrIiKRUpIo\nAnHvF41zfHGODRSfKEmIiEgGme6TOA64FXgHuB74HXA8sBCY5O4rm6yRqkmIiOQs6prEfwG/Av4K\nPA/8N3Ao8DPgznx2KiIizUOmJHGIuz/m7n8Cdrj7n9x9n7s/BvRqova1CHHvF41zfHGODRSfZE4S\niTfL/TLps7YRtEVERIpMpprE14CH3H170vxBwBXu/q0maF/tPlWTEBHJkZ4nISIiaUV+M52ZfcbM\nnjWzzeHrn2b22Xx2KAeLe79onOOLc2yg+CRDkjCzy4GbCQb4OzJ8/QC4ycwmZ7NxMxtnZq+Z2Qoz\n+26Kz881s1fMbIGZvWRmZzQoChERiUSmmsRS4BR335w0vwfwnLsPzbjhYJTYZcCZwDpgHnChuy9N\nWKaTu+8I3x8DzHD3QSm2pe4mEZEcRd7dlJwgEuZlc8QeA6x099XuvhuYBpybtK0dCZOdCW7cExGR\nIpEpSWwzs/LkmeGd2NtTLJ+sH7A2YbomnJe8vfHhWcss4Kosths7ce8XjXN8cY4NFJ9AmwyfXQv8\n1czuB14CDBgFTAS+nMW2s+ofcve/AH8xs48DDwIfS7XcxIkTKSsrA6CkpITy8nIqKyuB/V90c52u\nrq4uqvYoPk1runlOV1VVMXXqVIC642W+Ml4CGz6y9JvA8HDWEuC37v5WvRs2qwCmhA8rwsyuB/a5\n+y0Z1nkdGJOiDqKahIhIjhqjJpH2TMLMegM93P37SfNHmNled99Uz7bnA4PNrAxYD1wAXJi0raOA\nN9zdzex4SF0HERGRwshUk/gN0DPF/B4EA/9l5O57gCuApwjOQP7s7kvNbHLCJbSfBxaZ2YJwm1/K\npfFxUXu6GFdxji/OsYHik8w1iUHu/s/kme7+rJndlc3G3X0WQUE6cd7dCe9/RjCqrIiIFKFM90ks\nd/chuX4WBdUkRERyF/V9EitTDcFhZp8BXs9npyIi0jxkShLfAm4zs6lmdqWZXWVmDxDUDppsBNiW\nIO79onGOL86xgeKTDEnC3ZcDxwLPAgOBI4B/Ase6+7KmaZ6IiBSShgoXEYmpyMduCncy1szmmdn7\nZrbbzPaZ2bZ8dioiIs1DvUkCuAO4CFgBHAJ8Fbgzyka1NHHvF41zfHGODRSfZJckcPcVQGt33+vu\n9wPjom2WiIgUg3prEmb2LPBJ4F5gA/AWcKm7Hxd98+raoJqEiEiOmqQmAVwSLncFsBPoTzCchoiI\nxFymx5f2NrMR4UODPnD3re4+BbgP2NpkLWwB4t4vGuf44hwbKD6JcIA/ERFp/jKN3fSSu49K89li\ndx8RacsO3J9qEiIiOYq6JtElw2dt89mpiIg0DxrgrwjEvV80zvHFOTZQfJL5eRLfAv5mZl/kwGdc\nnwSc3QRtExGRAqvvGdeHENxtXVt/WAz80d13NUHbEtuhmoSISI4aoyahAf5ERGKqqW6mk4jFvV80\nzvHFOTZQfKIkISIiGai7SUQkphqjuynT1U21O1kEOMHVTbW2AvOAH7n75nwaICIixSub7qYngccJ\nrnK6GHgMmA9sBKZG1rIWJO79onGOL86xgeKTLM4kgDPdfWTC9EIzW+DuI8OzjIzMbBxwO9AauNfd\nb0n6/GLg3wnOVLYDX3f3hVlHICIikcnmeRILgcvd/YVwegxwj7sfV5ssMqzbGlgGnAmsI+iiutDd\nlyYsMxZY4u5bw4Qyxd0rkrajmoSISI6apCZB8LjS+82sczi9HfiqmXUCflLPumOAle6+GsDMpgHn\nAnVJwt3nJCz/AsHzKkREpAhkU5NY5O5HA+VAubsfQ3Dg3+HuD9ezbj9gbcJ0TTgvna8CT2TRpliJ\ne79onOOLc2yg+CS7M4npZnauu28BMLM+BIXs47NYN+s+IjM7HfgKcHKqzydOnEhZWRkAJSUllJeX\nU1lZCez/opvrdHV1dVG1R/FpWtPNc7qqqoqpU6cC1B0v85VNTeJy4DPAF4BSYCZwnbv/vd6Nm1UQ\n1BjGhdPXA/tSFK+PBaYD49x9ZYrtqCYhIpKjJqlJuPs9ZtYe+CtwBPA1d38uy+3PBwabWRmwHrgA\nuDBxATPT6ykPAAARPklEQVQbQJAgvpwqQYiISOFkesb1teHrGqA9wVnEK0BFOK9e7r4HuAJ4ClgC\n/Nndl5rZZDObHC72H8ChwF1mtsDMXswjnmap9nQxruIcX5xjA8Unmc8kunBgTWFGON059eKpufss\nYFbSvLsT3l8GXJbLNkVEpGlo7CYRkZjSUOEiIhIpJYkiEPd+0TjHF+fYQPGJkoSIiGSQtiZhZjel\nWccB3P3mqBqVoi2qSYiI5Cjq+yR2cPAd050Ihs7oCTRZkhARkcJI293k7r9w91vd/VbgHqADMAmY\nBgxsova1CHHvF41zfHGODRSf1HPHtZn1AL5N8LCh3wPHu/t7TdEwEREpvEw1iV8A5wH/Ddzp7tub\nsmFJbVFNQkQkR41Rk8iUJPYBHwG7U3zs7t41nx3nQklCRCR3kd5M5+6t3P0Qd++S4tVkCaIliHu/\naJzji3NsoPhE90mIiEgGGrtJRCSmNHaTiIhESkmiCMS9XzTO8cU5NlB8oiQhIiIZqCYhIhJTqkmI\niEiklCSKQNz7ReMcX5xjA8UnShIiIpKBahIiIjGlmoSIiERKSaIIxL1fNM7xxTk2UHxSz/MkGoOZ\njQNuB1oD97r7LUmfDwXuB0YCN4QPORIRaZa2bYO1a2HNmuDfxPff/S58+tOFbmFuIq1JmFlrYBlw\nJrAOmAdc6O5LE5bpBRwBjAfeS5UkVJMQkWKwaxfU1BycBBKn9+6F0lIYMCD4t/Y1YACMHAk9ejRd\ne6N+xnVjGAOsdPfVAGY2DTgXqEsS7r4J2GRmn424LSIiae3ZAxs2HHzQT5zeuhX69TswCZSXwznn\n7J8uKQHL67BcXKJOEv2AtQnTNcCJEe+z2amqqqKysrLQzYhMnOOLc2wQn/jc4Z13Dj7wz59fxYcf\nVrJ2Lbz1FvTqdeBf/0ceCaedtj8p9O4NrVpYJTfqJNFofUQTJ06krKwMgJKSEsrLy+t+eWuLT811\nurq6uqjao/g03dymd+yAsrJK1qyBp5+u4u23oXXrYHrZsio2bYIuXSopLYWOHavo3RsqKioZOxYO\nOyyYnjChknbtUm9/5044/PDiiTfddFVVFVOnTgWoO17mK+qaRAUwxd3HhdPXA/uSi9fhZzcB76sm\nISKJausA6WoAiXWAdLWA/v2hU6dCR9L0mkNNYj4w2MzKgPXABcCFaZaNUS+eiGQjUx2g9v3WrdC3\n74EH/9o6QO30oYfGqw5QTCK/49rMzmL/JbD3uftPzGwygLvfbWaHE1z11BXYB2wHhrv7+wnbiPWZ\nRFVM+n3TiXN8cY4N8ovPHTZtSl8Irq0D9Ox58F/+if8edlh0dYC4f3/N4UwCd58FzEqad3fC+7eA\n0qjbISKNa+vW9N0/ta9OnQ5OAOXl+6f79YN27QodiWSisZtE5CC7dh18wE9OAol1gFS1gNLSllkH\nKCaNcSahJCHSwiTWAdIVg2vrAKm6f1QHaD6UJGIi7v2icY6v2GJLdT9AciKorQOkugqo9n1tHaDY\n4mtscY+vWdQkRKTx1I4LlO5KoJoa6Njx4AN/efn+9337qg4g2dOZhEiRSBwXKF1XkOoAkgt1N4k0\nE8n3A6RKAlu27B8XKN1NYXEbF0iipSQRE3HvF41zfFVVVZx2WmXKcYESp1ONC5ScBKK8H6Ch4vzd\nQfzjU01CpAmkej5A7fSyZfDuu0EdIPmgn3g/gOoA0lzpTEJatHzGBap931LHBZLip+4mkQyyHRdI\ndQCJKyWJmIh7v2gU8SWPC5TpfoB0ZwCNUQfQd9e8xT0+1SQktjLVAVLdD5A8LtCAAaoDiDQGnUlI\nk8t0P0Dyc4J1P4BIw6m7SYrO3r1BHSBTITj5fgCNCyQSDSWJmGgu/aK14wJl6gZKNS7Qhx9WccYZ\nlUV9P0BDNZfvrqEUX/OmmoQ0qnTjAtVOJ9YBEpPAccdlHheoqgpi/P9QJNZ0JtFC5DoukJ4TLNL8\nqbtJAI0LJCKpKUnERKZ+0WzvByjmcYHi3O8b59hA8TV3qknEwLZtsGoVfPBB6iRQWwdIPuiPHKlx\ngUQkejqTiFAu4wKle0qY6gAi0lDqbiqgbJ8TnK4OUPtedQARiUrRJwkzGwfcDrQG7nX3W1Is82vg\nLGAnMNHdF6RYpkmTRHIdIFUS2Lgx++cE1yfu/aJxji/OsYHia+6KuiZhZq2BO4AzgXXAPDOb6e5L\nE5b5DDDI3Qeb2YnAXUBFVG2qtW1b5i6gtWuDLp6mek5wdXV1rH9R4xxfnGMDxSfRFq7HACvdfTWA\nmU0DzgWWJizzOeABAHd/wcxKzOwwd9/Y0J0m3g+QLhGkGhfotNMKNy7Qli1bmm5nBRDn+OIcGyg+\niTZJ9APWJkzXACdmsUx/IGWSSDUuUH33A9SeAZxzjsYFEhHJVZRJItsiQvLhOuV6AwakHhdo4MAD\nzwKa47hAq1evLnQTIhXn+OIcGyg+ibBwbWYVwBR3HxdOXw/sSyxem9l/AVXuPi2cfg04Lbm7ycyK\n69ImEZFmomgL18B8YLCZlQHrgQuAC5OWmQlcAUwLk8qWVPWIfIMUEZGGiSxJuPseM7sCeIrgEtj7\n3H2pmU0OP7/b3Z8ws8+Y2UpgBzApqvaIiEjumsXNdCIiUhgFLfGa2Tgze83MVpjZd9Ms8+vw81fM\nbGQu6xZaQ+Mzs1Iz+z8zW2xmr5rZVU3b8uzk8/2Fn7U2swVm9ljTtDg3ef5+lpjZI2a21MyWhN2p\nRSXP+K4Pfz8Xmdkfzax907W8fvXFZmZDzWyOme0ys2tzWbcYNDS+Bh1b3L0gL4IuqJVAGdAWqAaG\nJS3zGeCJ8P2JwNxs1y30K8/4DgfKw/edgWVxii/h82uAh4CZhY6nseMjuP/nK+H7NkC3QsfUiL+f\nZcAbQPtw+s/ApYWOKcfYegEnAD8Crs1l3UK/8owv52NLIc8k6m62c/fdQO3NdokOuNkOKDGzw7Nc\nt9AaGt9h7v6Wu1eH898nuAGxb9M1PSsNjg/AzPoTHITu5eDLoItBg+Mzs27Ax939d+Fne9x9axO2\nPRv5fH/bgN1ARzNrA3QkGFWhWNQbm7tvcvf5BHHktG4RaHB8DTm2FDJJpLqRrl+Wy/TNYt1Ca2h8\n/RMXCK8OGwm80OgtzE8+3x/AbcB3gH1RNTBP+Xx/A4FNZna/mb1sZveYWcdIW5u7Bn9/7v4ucCuw\nhuDKxS3u/nSEbc1VNrFFsW5TaZQ2ZntsKWSSaOjNds1F3jcTmlln4BHg6jDrF5OGxmdmdjbwtgeD\nORbr95vP99cGOB64092PJ7hy73uN2LbG0OD/f2Z2FPAtgu6OvkBnM7u48ZqWt3yuxmkOV/Lk3cZc\nji2FTBLrgNKE6VKCjJhpmf7hMtmsW2gNjW8dgJm1BR4F/uDuf4mwnQ2VT3wnAZ8zs1XAn4AzzOz3\nEba1IfKJrwaocfd54fxHCJJGMcknvhOA5919s7vvAaYTfKfFIp/jQ1yOLWnlfGwpYPGlDfA6wV8j\n7ai/cFbB/sJZvesW+pVnfAb8Hrit0HFEEV/SMqcBjxU6nsaOD3gWGBK+nwLcUuiYGis+oBx4FegQ\n/q4+AHyz0DHlElvCslM4sLAbi2NLhvhyPrYUOtizCKrrK4Hrw3mTgckJy9wRfv4KcHymdYvt1dD4\ngFMI+uqrgQXha1yh42nM7y/h89MowqubGuH38zhgXjh/OkV2dVMjxPfvwGJgUZgk2hY6nlxiI7jK\nZy2wFXiPoL7SOd26xfZqaHwNObboZjoREUmrmY2XKiIiTUlJQkRE0lKSEBGRtJQkREQkLSUJERFJ\nS0lCRETSUpKQBjOz28zs6oTpp8zsnoTpW83s22Z2hJklP5Uw3Ta/GA6t/UwjtO9cMxuWMP0DM/tE\nvtutZ59/CofVvjpp/hQz22FmvRLm1TvUipl1M7Pfh0NCrzSzB8ysa/hZmZktSrGfa1NsZ7KZ/VsO\ncRy07caQrh1R7U/ypyQh+ZhNOByDmbUCegDDEz4fCzxHMODdRVlu86vAZe5+wME8HG00V+cltsfd\nb3L3vJNPOuEIxSe4+3Hu/qsUi7wDJB7As7lJ6T6CET8Hu/sgYBXByLnppNymB0+CfDCL/UWqWNoh\n2VOSaIHMbHT41257M+sUPnxkeNIyP0g6S/hxigeUzCFIBAAjCIZq2B4+cKc9MIzgjs6fAh+34AFD\nV5OGmf0HcDLwOzP7mZldamYzw7OKf4RtfdrMXjKzhWb2uYR1Lwljqg7/8h4LnAP8PByJ9Ugzm2pm\nnw+X/0Q4f6GZ3Wdm7cL5q8O/xmv38bEU7TwkHOF1YbiNyvCjvwP9wjhPSVrNgd8BF5hZSYptzjCz\n+eF3cXk4bxDBmE8/TFj0ZuAEMxuY7seY5mdbd4ZhZlVm9lMze8HMlqVoa1bxmlkHM5sWnvlNN7O5\nZnZ8+Nn7Cet/wczuT9GOUbXfGfCNTG2QwonsGddSvNx9npnNJHggSQfgQXdfkrTY7wiGk/hVeJZw\nATA6aTvrzWyPmZUSJIs5BEMWjyV45sAid99twZOzrnP3c+pp181mdjrBWDMvm9lEgqGMj3H3LWbW\nGjjP3bebWc9wfzPNbARwAzDW3d81s5Jw+ZkE40JNBzAzB9zMDgHuB85w95Vm9gDwdeBXBAfzTe4+\nysy+DlwHXJ7U1G8Ce9392DCJ/N3MBhMkpb+5+0hSez/8uX6LYEydRF9x9/fMrAPwopk9SnAWVO0J\nwyK4+77woHo0wZAYR5nZgoTtHA78PNWPl/1nGQ60dvcTzews4Cbgk2nanC7eIQQ/s/fdfbiZHQO8\nnLS/dO9rp+8HvuHus83sZxn2LwWkM4mW62bgUwQjeh70H9Td3wQ2m1l5uNzL7v5eiu08T9DldBLB\nQXtO+H4sQXcU5Dcc+N/dfUv4vhXwEzN7BfgH0NeCh+CcATzswXMOSFg+1b4N+Biwyt1XhvMeAE5N\nWGZ6+O/LBIOoJTsZ+EO4r2XAm8CQFPtK5sCvgUstGKo50dXhwX8OwWirg8ncHVX72evuPrL2BfxX\nFu2A+mNMlC7ejyfMXwQszGK/QFBrIRjPqvZ3RF1QRUpnEi1XT6ATwaMQOwA7UyxzLzAJOIzgL+BU\nniM4iBxD8JftWoK/vrdmWCdbntSui8N2H+/uey0YavyQcLl0B8ZUB9rkeZY078Pw372k/z/SkMRn\n7r7VzP4IXFE3M+i++QRQ4e67zOz/gPbAEqDczKz2bCI8qysPP8tHNjEe0PYc5yf+PDvksX0pMJ1J\ntFx3AzcCfwRuqZ1pZq8lLDMDGEdwtvFUmu08D5wNbPbAe0AJwZnE8+Ey24AuDWhj8oGjK8HDivaG\n3VJHEByM/hf4opl1D2M4NFx+e7hOIicYPbPMgofnAPwb8M8c2vUvgoRF2O0yINxmtn5JMGJn63C6\nG/BemCCGEgzLjbu/TlDTuTFh3RuBl9z9jRz2V6uhB+JU8b5GMBz6ReH8o4FjE9bZaGZDw6R2XlIb\nzIPHuW4xs5PD+cX00CJJoCTRApnZJcCH7j6NoKg82swqw37+Oh48P/d/Cbpy0nV9vEpwVdPchHkL\nCR5p+W7C9N6wqHy1mfUxs8ezaGpi/zXAQwRF24UEB/alYTuXAD8G/hl22dwaLj8N+E5YhD4yIa4P\nCc6Q/ifc1h6Cbprafabbf607gVbhutOAS8OfVfL6qeLB3TcTdPe0D+fPAtqY2RLgJwRdTrW+Cgyx\n4PLXlcCgcN4B20y1n0acny7euwieSrcE+AHwUsK63wP+RnCmuT5hW4k/00nAbxNqKhqSughpqHCp\nY2afBQa6+x3hdCuC//hfCP+qFUkr7Ca71t1frndhaTZUk5A67l73170Fl8Q+BkxXghBpuXQmISIi\naakmISIiaSlJiIhIWkoSIiKSlpKEiIikpSQhIiJpKUmIiEha/w9Jrjjq3itbkQAAAABJRU5ErkJg\ngg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7720908>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The fraction of original NaOH in the slurry: 0.0227 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.3: Page 754"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.3\n",
+ "# Page: 754\n",
+ "\n",
+ "print'Illustration 13.3 - Page: 754\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "import numpy as np\n",
+ "from scipy import interp\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#***Data***#\n",
+ "# a=H2O b=CaCO3 c=NaOH \n",
+ "mass_c = 400;# [kg/h]\n",
+ "x1 = 0.1;# [wt fraction NaOH in overflow]\n",
+ "#**********#\n",
+ "\n",
+ "Mb = 100.0;# [kg/kmol]\n",
+ "Mc = 40.0;# [kg/kmol]\n",
+ "rate_c = mass_c/Mc;# [kmol/h]\n",
+ "rate_b = rate_c/2;# [kmol/h]\n",
+ "mass_b = rate_b*Mb;# [kg/h]\n",
+ "# After trial calculations:\n",
+ "y3 = 0.01;# [kg NaOH/kg solution]\n",
+ "N3 = 0.666;# [kg CaCO3/kg solution]\n",
+ "E3 = mass_b/N3;# [kg/h]\n",
+ "lost_c = E3*y3;# [kg/h]\n",
+ "sludge_a = E3-lost_c;# [kg/h]\n",
+ "overflow_c = mass_c-lost_c;# [kg NaOH/kg solution]\n",
+ "R1 = overflow_c/x1;# [kg overflow/h]\n",
+ "R1_a = R1-overflow_c;# [kg/h]\n",
+ "RNpPlus1 = R1_a+sludge_a;# [kg/h]\n",
+ "# For purpose of calculation, it may be imagined that agitators are not present in the flowsheet and the first thickner is fed with the dry mixture of the reaction products, CaCO3 and NaOH, together with overflow from the second thickner.\n",
+ "F = 400.0;# [kg NaOH/h]\n",
+ "NF = mass_b/F;# [kg CaCO3/kg NaOH]\n",
+ "yF = 1.0;# [wt fraction NaOH in dry solid, CaCO3 free basis]\n",
+ "# Points R1, E3, RNpPlus1 and F are plotted as in Fig 13.30 (Pg 755) and locate the point deltaR at the intersection of lines FR1 and E3RNpPlus1 extended. The coordinates of point deltaR are NdeltaR=-0.1419, ydeltaR=-0.00213. Further computation must be done on enlarged section of the equilibrium diagram (Fig 13.31 (Pg 755)). Point deltaR is plotted and the stages stepped off in a usual manner. The construction are projected on the xy diagram. Three stages produce a value: y3=0.001\n",
+ "print\"The NaOH lost in sludge: \",round((lost_c/mass_c)*100,2),\"%\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "#*** Data***#\n",
+ "lost_c = 0.001*mass_c;# [kg/h]\n",
+ "#***********#\n",
+ "\n",
+ "NNp_by_yNp = mass_b/lost_c;# [kg CaCO3/kg NaOH in final sludge]\n",
+ "# In order to determine the liquid content of the final sludge:\n",
+ "# Eqb=[N y_star]\n",
+ "Eqb = np.array([[0.659 , 0.01435],[0.666, 0.01015],[0.677, 0.002],[0.679, 0.001],[0.680 ,0.0005]]);\n",
+ "N_by_ystar = zeros(5);\n",
+ "for i in range(0,5):\n",
+ " N_by_ystar[i] = Eqb[i,0]/(Eqb[i,1]);\n",
+ "\n",
+ "plt.plot(Eqb[:,0],Eqb[:,1]);\n",
+ "plt.grid('on');\n",
+ "plt.xlabel(\"x Wt fraction of NaOH\");\n",
+ "plt.ylabel(\"N kg CaCO3 / kg solution\");\n",
+ "plt.title(\"Equilibrium plot\")\n",
+ "# By Interpolation, for N_by_ystar=NNp_by_yNp:\n",
+ "NNp = interp(NNp_by_yNp,N_by_ystar,Eqb[:,0]);# [kg CaCO3/kg soln]\n",
+ "yNp = NNp/NNp_by_yNp;# [wt fraction NaOH in the liquid of the final sludge]\n",
+ "ENp = mass_b/NNp;# [kg/h]\n",
+ "ENp_a = ENp-lost_c;# [kg/h]\n",
+ "overflow_c = mass_c-lost_c;# [kg/h]\n",
+ "R1 = overflow_c/0.1;# [kg/h]\n",
+ "R1_a = R1-overflow_c;# [kg/h]\n",
+ "RNpPlus1 = R1_a+sludge_a;# [kg/h]\n",
+ "# On the operating diagram (Fig 13.32 (Pg 757)) point deltaR is located and stages were constructed. \n",
+ "# Beyond the fourth stage, the ratio of the overflow to the liquid in the sludge become substantially constant.\n",
+ "R_by_E = RNpPlus1/ENp;\n",
+ "# This is the initial slope of the operating line on the lower part of the figure.\n",
+ "# From Illustration 13.2:\n",
+ "m = 0.01015/0.00450;\n",
+ "Value1 = R_by_E/m;\n",
+ "xNpPlus1 = 0;# [kg NaOH/kg solution]\n",
+ "y4 = 0.007;# [wt fraction NaOH in the liquid]\n",
+ "Value2 = (yNp-(m*xNpPlus1))/(y4-(m*xNpPlus1));\n",
+ "# From Fig 5.16: (Pg 129):\n",
+ "# An Additional 2.3 stages beyond 4 are computed graphically are required.\n",
+ "# An additional two stage will make yNp/y4=0.099:\n",
+ "yNp = 0.099*y4;# [wt fraction NaOH in the liquid]\n",
+ "print round(yNp*ENp,2),\"kg NaOH was lost if 6 thickners were used\\n\"\n",
+ "# An additional three stage will make yNp/y4=0.0365:\n",
+ "yNp = 0.0365*y4;# [wt fraction NaOH in the liquid]\n",
+ "print round(yNp*ENp,3),\"kg NaOH was lost if 7 thickners were used\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.3 - Page: 754\n",
+ "\n",
+ "\n",
+ "The NaOH lost in sludge: 1.88 %\n",
+ "\n",
+ "\n",
+ "\n",
+ "0.51"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " kg NaOH was lost if 6 thickners were used\n",
+ "\n",
+ "0.188 kg NaOH was lost if 7 thickners were used\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecHVX9//HXm4QgfQkWugEBFURCSwJSgoCGIEGp36Bo\nQCEaQ/mKSpMiFkCKEhANaEhASVCkfqWXRQQJJLKhhRIhPwho6EiTEPL5/XFmc2+uW+5u7tyy9/18\nPO4jOzNnZj73w7Bn55wzZxQRmJmZ5WGZWgdgZmZ9lysZMzPLjSsZMzPLjSsZMzPLjSsZMzPLjSsZ\nMzPLjSsZsxKS1pP0hiRly62Svp79/GVJNxWVXSRpgx4ce4n9a0XSoCx2/w6wXPkCs4Ylaa6kt7MK\nof0zYWmPGxHPRMTKUXiILLIPEfH7iPj8Uhx7qfavBUmnSLq01nFYY+pf6wDMlkIAX4iI22sdSDkk\n9YuI92sdh1k1+U7G+iRJy0g6S9KLkv4h6dvFzUPZXdAuReUX/7XeVVOSpDGS7ipZvUd2jhcl/ayo\nmW2MpLslnSPpJeCU4v07Ok9J01zx/q9KmiNpO0kHS3pG0nxJX+0iB62STpM0XdLrkq6WtFonZdeS\ndK2klyU9Kekb2foRwHHAAdmd4gPl5N+snSsZa3TqZP1hwB7AYGBrYF+yJq9MdLDcW18EtgK2BPYC\nDinaNgT4B/Bh4CdlHKs0riHALGAgMBX4Q3aejwFfAc6XtEIXxzsIOBhYE1gIdNacOA14Jiu3L/BT\nSTtHxI3AT4FpWRPiFmV8B7PFXMlYIxNwdfZXfvvn69m2/YGfR8RzEfEq6RdlZxUS3WzrzhkR8VpE\nPAv8AhhdtO35iPhlRCyKiP/04thPR8SUrH/oD8BawKkR8V5E3AIsADbsZN8ALomIRyPibeBEYP/2\nO612ktYFtgOOiYgFETEL+A3Qfpckli4/1sTcJ2ONLIC9OumTWRN4tmj5mRzjKD3PWp1s6435RT+/\nAxARL5asW6kHsS0LfLCkzFrAKxHxVknZrXscrVkJ38lYX/VPYL2i5fVKtr8FrFi0vMZSnKv0PM8V\nLXfVDNf+S724uWtp4uhIaWzvAS+VlHkeGChppZKy87KfPVW79ZorGWt0nTXj/AE4QtLaWWf3sSz5\ny7IN+B9J/SVtDexD73+ZfldSS9bsdARweTk7ZXckzwEHSeon6RBSX0ulCPiKpE9m/TanAn8sGprd\nHsezwD3AaZKWk/RpUr/S77Ii/wIGlTazmZXDlYw1uutKnpP5U7b+IuAmUqf5DOBPLFkhnUj6hf4q\ncArw+5LjdlbhlHbMA1wDzAQeAP4P+G0XZUvXHQp8j3R3sQlwdzfn6klFGMClwGTSnd0AUiXY0bFG\nA4NIdzVXAicVNUP+Mfv3ZUkzenB+M5TnS8uy4Y+/APoBv4mIMzooMwHYHXgbGBMRD2TrJ5FGB70Q\nEZuV7HM4MA54H/hzRByT25ewPkHSIOApoH9ELKptNNUh6Q7g0oiYVOtYrHnldicjqR9wPjCC9Bfa\naEmfLCkzEtgwIjYiDTn9VdHmi7N9S4+7MzAK+HREfAo4K59vYNYnuInLairP5rIhwJyImBsR75HG\n4e9VUmYUMAUgIqYDLZLWyJbvIjVllPoWcFp2zNKRNmZdacYO7Gb8zlZH8qxk1mbJ4ZPzsnU9LVNq\nI2BHSfdmTzR7mKV1K/tjp1+zNJUBRMTObiqzWsvzOZly/4IqvZ3vbr/+wGoRMUzSNqRRRGXPgmtm\nZtWTZyXzHLBu0fK6FMbdd1ZmHZZ8xqAj80ijX4iI+7O5n1aPiJeLC0lyM4GZWS9ERMX68vJsLpsB\nbJRNAjgAOAC4tqTMtWRTV0gaBrwWEfPp2tXAZ7N9NgYGlFYw7SLCnwhOPvnkmsdQLx/nwrlwLrr+\nVFpulUxELATGk55VeBS4PCJmSxoraWxW5nrgKUlzgImkYckASJpKekBsY0nPSjo42zQJ2EDSQ6QJ\nAzudhdaSuXPn1jqEuuFcFDgXBc5FfnKduywibgBuKFk3sWR5fCf7ju5k/XukmWXNzKzO+Yn/JjBm\nzJhah1A3nIsC56LAuchPrk/815Kk6KvfzcwsL5KIBun4tzrR2tpa6xDqhnNR4FwUOBf5cSVjZma5\ncXOZmZkt5uYyMzNrGK5kmoDbmwuciwLnosC5yI8rGTMzy437ZMzMbDH3yZiZWcNwJdME3N5c4FwU\nOBcFzkV+XMmYmVlu3CdjZmaLuU/GzMwahiuZJuD25gLnosC5KHAu8uNKxszMcuM+GTMzW8x9Mk1s\n0aJaR2Bm1jOuZBrEzJmw1VYwfXrP93V7c4FzUeBcFDgX+cm1kpE0QtJjkp6UdEwnZSZk22dJ2qJo\n/SRJ8yU91Ml+R0taJGlgXvHXky23hO99D774RRg/Hl5/vdYRmZl1L7c+GUn9gMeBXYHngPuB0REx\nu6jMSGB8RIyUNBQ4NyKGZdt2AN4ELomIzUqOvS5wEfBxYKuIeKWD8/fJPplXXoFjj4Xrr4df/AL2\n2QdUsdZTM2t2jdQnMwSYExFzI+I9YBqwV0mZUcAUgIiYDrRIWiNbvgt4tZNjnwN8P5eo69zAgXDh\nhTBtGpx8Muy5J8ydW+uozMw6lmclszbwbNHyvGxdT8ssQdJewLyIeLASQTaq7beHBx6A7baDrbeG\ns86ChQs7Luv25gLnosC5KHAu8pNnJVNuW1XpbVmn+0laATgeOLmL/ZvGgAFw/PFw771w882psunN\nwAAzs7z0z/HYzwHrFi2vS7pT6arMOtm6znwMGATMUuqIWAeYKWlIRLxQWnjMmDEMGjQIgJaWFgYP\nHszw4cOBwl8ufWF5ww3huONaue02+OIXh7PPPjBiRCsrrZS2Dx8+vK7i9XL9LLerl3hqtdy+rl7i\nqeZya2srkydPBlj8+7KS8uz470/q+N8FeB64j647/ocBv2jv+M+2DwKuK+34L9r+NE3W8d8dDwww\ns6XRMB3/EbEQGA/cBDwKXB4RsyWNlTQ2K3M98JSkOcBEYFz7/pKmAvcAG0t6VtLBHZ0mr/gbVUcD\nA6ZNa611WHWj9C/4ZuZcFDgX+cmzuYyIuAG4oWTdxJLl8Z3sO7qM42+wVAH2Ye0DA846C8aOhXnz\n4KijoH+u/8XNzJbkucuawJw5MG4cvPACTJwIQ4fWOiIzq1cN01xm9WPDDeGmm+D73/eMAWZWXa5k\nmkBraysSHHggPPIILFgAm24KV1wBzXaz57b3AueiwLnIjyuZJuMZA8ysmtwn08QWLEgDA845Jw17\n9sAAM6t0n4wrGfPAADNbzB3/1mPdtTc308AAt70XOBcFzkV+XMkYgAcGmFku3FxmHfrrX9NDnOuv\nD+efDzlMaWRmdcjNZVYVPXmVgJlZZ1zJNIHetjcP6IOvEnDbe4FzUeBc5MeVjHWrmQYGmFlluU/G\nesSvEjDr2/ycTJlcyeTLAwPM+iZ3/FuP5dHe3KgDA9z2XuBcFDgX+XElY73WFwcGmFllubnMKiIC\npk6Fo49O/TQ/+QmsumqtozKznnJzmdUlzxhgZh1xJdMEqtneXO+vEnDbe4FzUeBc5KfbSkbSByR9\nWdIJkk7OPieVewJJIyQ9JulJScd0UmZCtn2WpC2K1k+SNF/SQyXlz5Q0Oyt/pSQ3zNSZRh0YYGaV\n1W2fjKSbgNeAmcD77esj4uxuDy71Ax4HdgWeA+4HRkfE7KIyI4HxETFS0lDg3IgYlm3bAXgTuCQi\nNivaZzfgtohYJOn0LJ5jS87tPpk64VcJmDWOSvfJlPOKqrUj4vO9PP4QYE5EzAWQNA3YC5hdVGYU\nMAUgIqZLapG0RkT8KyLukjSo9KARcUvR4nRgn17GZ1XQPmPA1KlpxgAPDDBrHuX0ydwj6dO9PP7a\nwLNFy/OydT0t05VDgOt7FV2TqIf25noZGFAPuagXzkWBc5Gfcu5kdgAOlvQ08G62LiKinIqn3F8h\npbdmZe0n6QRgQURc1tH2MWPGMCh7FL2lpYXBgwczfPhwoHBRebn6yxdeCOed18p3vwuTJw/n/PNh\n7tzqnL9dPeWjVsttbW11FU8tl9va2uoqnmout7a2MnnyZIDFvy8rqZw+mfazthcUQHsTWDf7DgNO\niYgR2fJxwKKIOKOozK+B1oiYli0/BuwUEfOLzn9dcZ9Mtn4McCiwS0T8p4Nzu0+mzi1YkAYEnHNO\nmg/tqKOgfzl/9phZbqr+nExWmbSQ+k72BFYtp4LJzAA2kjRI0gDgAODakjLXAl+FxZXSa+0VTGck\njQC+B+zVUQVjjWGAZwww6/PKGcJ8JPA74EPAR4DfSTqinINHxEJgPHAT8ChweUTMljRW0tiszPXA\nU5LmABOBcUXnngrcA2ws6VlJB2ebzgNWAm6R9ICkC8r7us2ptKmo3lTzVQL1notqci4KnIv8lNM4\n8Q1gaES8BZANGb4XmFDOCSLiBuCGknUTS5bHd7Lv6E7Wb1TOua1xtA8MGDEiNZ1tuqlfJWDWF5TT\nJ/MQMCQi3smWlwfuK+0jqTfuk2lsfpWAWW3UYu6yi4Hpkk6R9EPSXcykSgVg1hHPGGDWN5TT8X8O\ncDDwKvAyMCYifp53YFY5jdrenMfAgEbNRR6ciwLnIj+d9slIWiUi/i1pIPA0MDfbFJIGRsQr1QjQ\nzDMGmDWuTvtkJP05IvaQNJcOHo6MiPVzjm2puE+mb3rllTQw4PrrPTDALA+V7pPxS8usIXlggFk+\nqt7xL+m2ctZZ/eqL7c29HRjQF3PRW85FgXORn04rGUnLS1od+JCkgUWfQfRsAkuzXHjGALP611Wf\nzFHAkcBawPNFm94ALoyI8/MPr/fcXNZcItLAgKOP9sAAs6VR9T4ZSYdHxHmVOmG1uJJpTh4YYLZ0\navEw5r8lfbX0U6kALH/N1N48cCBceCFMmwYnnwx77glz5xa2N1MuuuNcFDgX+Smnktmm6LMjcApp\nRmazuuUZA8zqQ4+HMEtqIc2m3NtXMleFm8us3Zw5MG4cvPACTJwIQ4fWOiKz+lWL5rJSbwN1/SCm\nWbFqvkrAzJZUznMy1xV9/gw8DlyVf2hWKW5vLrxKYOLEVhYsSK8SuOKKNCqtWfm6KHAu8lPO+2TO\nLvp5IfD/IuLZnOIxy9Uqq6SBAe0zBkye7BkDzPLkaWWsaS1YkAYEnHNOGvZ81FHQv5w/u8z6sKo9\nJyPpTTqYGDMTEbFKpYLIgysZK5cHBpgVVK3jPyJWioiVO/nUdQVjS3J7c0FHuWjWgQG+Lgqci/yU\nNbpM0uaSDpc0XtLm5R5c0ghJj0l6UtIxnZSZkG2fJWmLovWTJM3PXv9cXH6gpFskPSHp5mxItdlS\naR8Y8MgjeGCAWQWVM63MkcChwJWAgC8CF0XEhG7260caibYr8BxwPzA6ImYXlRkJjI+IkZKGAudG\nxLBs2w7Am8AlEbFZ0T4/A16KiJ9lFddqEXFsB+d3c5n1WvGrBC64ANZbr9YRmVVHLZ6T+QYwNCJO\niogTgWGkSqc7Q4A5ETE3It4DpgF7lZQZBUwBiIjpQIukNbLlu0ivfC61eJ/s3y+WEYtZj7TPGLDt\ntjBkCNx4Y60jMmtM5T6MuaiTn7uyNlA81Hke//2KgHLKlPpIRMzPfp4PfKTMeJqW25sLepKLAQPg\nhBPgj3+Eb3wjzYX2/vv5xVZtvi4KnIv8lDNg82JguqTi5rJJZexXbltV6W1Z2W1cERGSOi0/ZswY\nBmUPQLS0tDB48GCGDx8OFC4qLzfXcrue7L/DDjBhQiunngr33juc3/8eHn64Pr7P0iy3tbXVVTy1\nXG5ra6ureKq53NrayuTJkwEW/76spLKek5G0FbA9qQK4KyIeKGOfYcApETEiWz4OWBQRZxSV+TXQ\nGhHTsuXHgJ3a71SyF6RdV9In8xgwPCL+JWlN4I6I+EQH53efjFXUwoXwgx+k99b84Q8e6mx9Uy1e\nv/wx4JGIOBd4CNihzBFdM4CNJA2SNAA4ALi2pMy1wFez8wwDXitqCuvMtcDXsp+/BlxdRixmS61/\nfzj9dJgwIb1C4IILPPrMrDvl9MlcCSyUtCEwEVgXuKy7nSJiITAeuAl4lDRz82xJYyWNzcpcDzwl\naU527HHt+0uaCtwDbCzpWUkHZ5tOB3aT9ATw2WzZulDaVNTMKpGLvfaCv/0tTU/zla/AW28tfVy1\n4OuiwLnITzl9MosiYqGkvYHzIuI8Sd02lwFExA3ADSXrJpYsj+9k39GdrH+FNCzarGY+9rFU0Xz7\n22n02Z/+BJ/4r0ZbMyvnOZnpwLnA8cCeEfG0pIcj4lPVCLC33Cdj1fLb36a5zy64APbbr9bRmC2d\nqs1dVnTCTYGxwN8iYqqk9YH9izvw65ErGaumv/8d9t03NaX97Gew7LK1jsisd6re8R8Rj0TEEREx\nNVt+ut4rGFuS25sL8srFllvCzJlpss2dd4bnnsvlNBXl66LAuchPb96MaWYdWG01uOYaGDkSttkG\nbr+91hGZ1Z7fJ2OWg9tuSyPPjjwyze68jP+cswZR9T6ZRuVKxmpt3jzYf3/44AdhypR0p2NW72rx\nMOZ1kq7N/m3/+XeSjpT0gUoFYvlxe3NBNXOxzjrQ2gobbABbb50m3Kwnvi4KnIv8lHMT/zRpyv0L\ngYuAN7LPxtmymXViwAD4xS/gtNPgc5+DSeXM+mfWh5QzhHlGRGzd0TpJj0TEprlG2EtuLrN6M3s2\n7LNPen3A+efD8svXOiKz/1aL98msKOmjRQF8FFgxW1xQqUDM+rpPfhLuuw/eeQe22w6eeqrWEZnl\nr5xK5mjgLkmtklqBu4DvSVqRwsvDrI65vbmg1rlYaSX4/e/h61+HYcPguutqF0utc1FPnIv8lDN3\n2Y2k/pdPkKb6f4L0Kpf/AL/IMTazPkmC8ePTYID9909zoJ16aprl2ayvKadP5uKIOLhoeSXg2oj4\nbN7BLQ33yVgjePFFOPDA9MbNqVPhI37Pq9VYLfpk5km6IDv5asDNwKWVCsCsmX3oQ3DjjbD99unO\n5u67ax2RWWWVM3fZicBbkiYCtwDnRMTFuUdmFeP25oJ6zEW/fqm57Ne/hr33TkOeq3ETXo+5qBXn\nIj+dVjKS9sk+ewP3AkOBB4DI1plZBe2xB0yfDr/7HRxwALzxRq0jMlt6nfbJSJpM6uhfvKp4ubif\nph65T8Ya1X/+k+Y8u/PO9DK0TevySTTrqzx3WZlcyVijmzIFvvtdOPfcNDjArBpq0fFvDc7tzQWN\nlIuvfS3N5nzyyWnI87vvVvb4jZSLvDkX+cm1kpE0QtJjkp6UdEwnZSZk22dJ2qK7fSUNkXSfpAck\n3S9pmzy/g1ktffrTMGNGegnajjvCM8/UOiKznumqT2Y70iuXe9XmJKkf8DiwK/AccD8wOiJmF5UZ\nCYyPiJGShgLnRsSwrvbNZh04LSJukrQ78P2I2LmD87u5zPqMCDj7bDjrLLjkkjTZplkeqtlc9lXg\n75IulzRG0ho9PPYQYE5EzI2I94BpwF4lZUaRTU0TEdOBluw8Xe37T2DV7OcWUiVk1qdJqX/m8svh\n4IPTkOdFi2odlVn3Oq1kIuKbEbEFcAowEJgs6V5JP5W0Y3a30ZW1gWeLludl68ops1YX+x4LnC3p\nGeBM4Lhu4mh6bm8uaPRc7LRTaj679Vb4whfg5Zd7f6xGz0UlORf56Xa2pKx5azZwjqQVgJ2B/YGf\nA1t1tWuZMfT0tuy3wBERcZWk/YBJwG4dFRwzZgyDBg0CoKWlhcGDBzN8+HCgcFF5ubmW29VLPL1Z\nXnNNOOmkVi66CLbaajh//CO89VbPj9fW1lYX36celtva2uoqnmout7a2MnnyZIDFvy8rKbchzJKG\nAadExIhs+ThgUUScUVTm10BrREzLlh8DdgLW72xfSf+OiFWy9QJei4hVKeE+GWsGV14J3/wm/OhH\ncNhhqVnNbGk00hDmGcBGkgZJGgAcAFxbUuZaUt9Pe6X0WkTM72bfOZJ2yn7+LGlWaLOmtPfe8Ne/\nwi9/mYY8v/12rSMyW1JulUxELATGAzcBjwKXZ6PDxkoam5W5HnhK0hxgIjCuq32zQx8G/ExSG/Dj\nbNm6UNpU1Mz6Yi423hjuvTf9PHQoPFHmn119MRe95VzkJ9c3WETEDcANJesmliyPL3ffbP0M0jxq\nZpZZYYU0Q8CFF6YZndsn2zSrta6ek9kcOBt4iTSCaxKwJfAgcHBEzKlWkL3hPhlrVjNmwH77wT77\nwGmnwbLL1joiayTV7JP5NXAucA1wD3AhsBrwM+CCSgVgZpW19daponn0UdhlF/jnP2sdkTWzriqZ\nD0TEdRExFXgrIqZGxKKIuA74UJXiswpwe3NBs+Ri9dXh//4PdtstVTp33vnfZZolF+VwLvLTVSVT\n/LDlOSXbfANuVueWWQZOPBEuvji9n+bMM6vzMjSzYl31yXwT+H1EvFGyfkPSfGNHVSG+XnOfjFnB\nM8/A/vvDmmvC5Mmw6n89WWaW+H0yZXIlY7akBQvg6KPhxhvhiitg881rHZHVo6o+jClppKS/SHo5\n+9wpaY9Kndyqw+3NBc2ciwED4Lzz4Ic/hF13hWOPba11SHWjma+LvHX6nIykQ4GxwPeBmdnqrYDT\nJa1T+ryLmTWGAw9MdzG77w6vvprevPmBD9Q6KuuruuqTmQ1sHxEvl6xfHbg7Ij5Rhfh6zc1lZl17\n4w34+tfhH/9IzWfrr1/riKweVLW5rLSCKVrn395mDW7lldP7aQ46CIYNg+uvr3VE1hd1Vcn8W9Lg\n0pXZTABvdFDe6pTbmwuci4LW1lYkOOqoNJvz2LFpyPP779c6surzdZGfriqZo4FrJJ0iaU9JoyT9\nkDQb8tHVCc/MquEzn4GZM+Huu2HECHjxxVpHZH1Fl0OYs1chfxvYJFv1KPDLiPhXFWJbKu6TMeu5\nhQvhpJPgd79LTWnbblvriKzaqvacjKQPAx+KiEdK1m8KvBARdf23jisZs9677ro0KODEE2H8eL8M\nrZlUs+P/POCDHaxfnTRxpjUItzcXOBcFXeVizz3TO2ouvjgNeX7zzerFVQu+LvLTVSWzYUT817R6\nEfEXwM8Km/VxG2yQ+mhWXBGGDIHZs7vfx6xUV81lT0TExj3dVi/cXGZWOZMmwTHHwPnnp8k2re+q\nZnPZnI6mkJE0EvhHpQIws/p3yCFw881w/PFw5JFpHjSzcnRVyRwF/FzSZEmHSzpC0hRSf0xdz8Bs\nS3J7c4FzUdDTXGyxRRrm/PTTMHw4zJuXS1g14esiP51WMhHxBPBp4C/A+sBHgTuBT0fE4+UcXNII\nSY9JelLSMZ2UmZBtnyVpi3L2zSq92ZIelnRGObGY2dJraYGrr4ZRo2CbbeC222odkdW73Kb6l9QP\neBzYFXgOuB8YHRGzi8qMJL2bZqSkocC5ETGsq30l7QwcD4yMiPckfaij4dTukzHL1x13wJe/DN/+\nNhx3XHpJmjW+qs5dlp1wW0n3S3pT0nuSFkn6dxnHHgLMiYi5EfEeMA3Yq6TMKGAKQERMB1qyB0C7\n2vdbwGnZeur9eR2zvmrnneH++9OcZ6NGpRmdzUqV87fH+cCBwJPAB4CvAxeUsd/awLNFy/OydeWU\nWauLfTcCdpR0r6RWSVuXEUtTc3tzgXNRUIlcrL02tLbCxhvDVlulPptG5OsiP52+T6ZYRDwpqV9E\nvA9cLKkNOLa73cqMoae3Zf2B1bJmtW2APwAbdFRwzJgxDBo0CICWlhYGDx7M8OHDgcJF5eXmWm5X\nL/HUcrmtra0ix1t2WRg1qpVVVoERI4Zz2mnwsY+lyTfr6ft2tdzW1lZX8VRzubW1lcmTJwMs/n1Z\nSd32yUj6C7Ab8Bvgn8C/gK9FRJcPZEoaBpwSESOy5eOARRFxRlGZXwOtETEtW34M2Ik00KDDfSXd\nAJze/qCopDnA0A7ee+M+GbMqe/xx2Hvv9PDmL38JK6xQ64isp6reJwN8NSs3HngbWAfYp4z9ZgAb\nSRokaQBwAGkG52LXZsdvr5Rei4j53ex7NfDZbJ+NgQEdvffGzKrv4x+H6dPTczTbbQdz5tQ6Iqu1\nTisZSR+WtGnW+f5ORLweEacAvwVe7+7AEbGQVDHdRJq9+fJsdNhYSWOzMtcDT2V3IxOBcV3tmx16\nErCBpIeAqWSVlHWutKmomTkXBXnlYqWV0izOhx2WKpprrsnlNBXl6yI/XfXJnEfHHfyrAyeQBgN0\nKSJuAG4oWTexZHl8uftm698DDuru3GZWOxKMG5cGA+y/P9xzD/zkJ9C/rF5g60u6mrtsZkRs1cm2\nRyJi01wjW0rukzGrDy+9lJ6nWbAApk6FNdaodUTWlWr2yazcxbZlKxWAmfVtH/xgepZmxx1h663h\nrrtqHZFVkyfIbAJuby5wLgqqmYt+/eCHP4Tf/Ab22w/OOQfqqaHB10V+umohPQr4P0n7ATNJz7Ns\nBWwHfKEKsZlZHzNiRBp9tu++qZ9m0iRYZZVaR2V56vI5GUkfIHXwt/e/PAJcFhH/qUJsS8V9Mmb1\n69134aij4Pbb4YorYLPNah2Rtat0n0xuE2TWmisZs/p36aXwne/Az38OX/lKraMxqM3DmNbg3N5c\n4FwU1EMuDjoo3c2cemoa8vzuu7WJox5y0Ve5kjGzmtpsszSb8/z5sMMO8P/+X60jskpyc5mZ1YWI\nNOrszDNh8uQ0SMCqr+p9Mtn0LcGSsyW/TnqR2I/rdd4wVzJmjemuu2D0aPjGN+DEE9PwZ6ueWvTJ\n3Aj8mTTK7MvAdaQJLOcDkysViOXH7c0FzkVBveZihx1gxoz0npqRI9OMAXmr11z0BeVUMrtGxHER\n8VBEPBgRxwM7RcTpwKB8wzOzZrTGGnDrrTB4cJr/7L77ah2R9VY5zWUPAodmr0dG0hDgoojYXNID\nEbFFFeLsMTeXmfUNV1+dZnQ+5RT41rfS5JuWn1r0yWwDXAyslK16g/QK5keAPSLiD5UKppJcyZj1\nHXPmwD77pJFoEyfCiivWOqK+qxZ9Mg9FxKeAwcDgiNgMmBMRb9VrBWNLcntzgXNR0Ei52HBD+Nvf\n0qsChg6EQvQeAAATiUlEQVRNb+CspEbKRaMpp5K5UtKyEfFaRLwmaU3g1rwDMzMrtsIKcPHFcOSR\naXDAFVfUOiIrRznNZYcCI4F9gXVJr0H+bkTcnH94vefmMrO+a+bMNMnml74EZ5wBy/rlIxVTk7nL\nJI0HRgAfBb4ZEXdXKoC8uJIx69teeSVNS/P663D55bD22rWOqG+oWp+MpKOzz3eA5Uh3MbOAYdk6\naxBuby5wLgoaPRcDB8J118Huu8M228Add/T+WI2ei3rW3ZsxVyr69yrgyaJ13ZI0QtJjkp6UdEwn\nZSZk22dJ2qLcfbMKcJGkgeXEYmZ9zzLLwAknwCWXwIEHwumnw6JFtY7KiuU2d5mkfsDjwK7Ac6Rp\naEZHxOyiMiOB8RExUtJQ4NyIGNbdvpLWBS4CPg5sFRGvdHB+N5eZNZFnn4X994cPfximTIGWllpH\n1Jgaaar/IaShznMj4j1gGrBXSZlRwBSA7GHPFklrlLHvOcD3c4zdzBrMuuvCnXfCRz+aZgloa6t1\nRAb5VjJrA88WLc/L1pVTZq3O9pW0FzAvIh6sdMB9ldubC5yLgr6YiwEDYMIE+MlPYLfd0pDncvTF\nXNSL/jkeu9y2qrJvyyQtDxwP7FbO/mPGjGHQoEEAtLS0MHjwYIYPHw4ULiovN9dyu3qJp5bLbW1t\ndRVPJZfXWKOVs86C008fzt13w377tbLccp2Xb8tue+ol/mout7a2MnnyZIDFvy8rqdM+GUknd7JP\nAETEqV0eWBoGnBIRI7Ll44BFEXFGUZlfA60RMS1bfgzYCVi/o31Js0HfBrydHWIdUp/NkIh4oeT8\n7pMxa3JvvAGHHgpPPJEe3txgg1pHVP+q2SfzFvBmySdI85Z1OFKsxAxgI0mDJA0ADiA9yFnsWuCr\nsLhSei0i5ne2b0Q8HBEfiYj1I2J9UjPalqUVjJkZwMorw9SpcPDBMGxYGvJs1dVpJRMRZ0XE2RFx\nNmkk1/LAwaRO+PW7O3BELATGAzcBjwKXR8RsSWMljc3KXA88JWkOMBEY19W+HZ2m7G/axEqbipqZ\nc1HQLLmQ4PDD4ZprYNy4NOT5/feXLNMsuaiFLvtkJK0O/C/pZWWXkO4aXi334BFxA3BDybqJJcvj\ny923gzK++TWzsmy7bZqO5sAD4XOfS3c4H/5wraPq+7rqkzkL+BJwIXBBRLxRzcCWlvtkzKwj778P\nJ5+cnqWZNg0+85laR1RfqjZ3maRFwALgvQ42R0SsUqkg8uBKxsy68uc/wyGHwPHHwxFH+GVo7arW\n8R8Ry0TEByJi5Q4+dV3B2JLc3lzgXBQ0ey722APuvTdNSfPZz7byRkO11TSOPB/GNDOra+uvD3ff\nnd60uc028MgjtY6o78lt7rJac3OZmfXE5Mnwve+lGQNGj651NLVTk/fJNCJXMmbWU7NmwT77pNcH\nnH12mqam2TTSBJlWJ5q97b2Yc1HgXBS052LzzWHGjDSj8447pn9t6biSMTMr0tICV10Fe++d+mlu\nrusXzdc/N5eZmXWitTU9vPmtb6WZApZpgj/L3SdTJlcyZlYJzz8PBxyQ5kG79FJYffVaR5Qv98lY\nj7ntvcC5KHAuCrrKxVprwe23wyabwNZbpz4bK58rGTOzbiy7LJx1VvrsvjtMnAhuKCmPm8vMzHrg\niSfSMOctt4Rf/QpWWKHWEVWWm8vMzGpo443TdDSLFqV31Dz5ZK0jqm+uZJqA294LnIsC56Kgp7lY\nccU059m4cWkW56uuyieuvsCVjJlZL0jwzW+m2Zz/93/TlDQLF9Y6qvrjPhkzs6X08svwla/A22+n\nd9SsuWatI+o998mYmdWZ1VdPdzS77JKGOd95Z60jqh+5VzKSRkh6TNKTko7ppMyEbPssSVt0t6+k\nMyXNzspfKWnVvL9HI3Pbe4FzUeBcFFQiF8ssAyedBJMmpYc3zzzTw5wh50pGUj/gfGAEsAkwWtIn\nS8qMBDaMiI2Aw4BflbHvzcCmEbE58ARwXJ7fw8ysXJ//PNx3H1xxRRrq/PrrtY6otvK+kxkCzImI\nuRHxHjAN2KukzChgCkBETAdaJK3R1b4RcUtELMr2nw6sk/P3aGjDhw+vdQh1w7kocC4KKp2L9daD\nv/wl9c1svTU8+GBFD99Q8q5k1gaKJ8uel60rp8xaZewLcAhw/VJHamZWQcstB7/8JZxySuqrueSS\nWkdUG3lXMuW2SPZqJIOkE4AFEXFZb/ZvFm57L3AuCpyLgjxz8eUvwx13wE9+AoccAv/6V26nqkv9\ncz7+c8C6Rcvrku5IuiqzTlZm2a72lTQGGAns0tnJx4wZw6BBgwBoaWlh8ODBi2+L2y8qLzfXcrt6\niaeWy21tbXUVTy2X29racj3+Sy+1cs45cOutw9lkExgxopX/+R8YNar237+1tZXJkycDLP59WUm5\nPicjqT/wOKkieB64DxgdEbOLyowExkfESEnDgF9ExLCu9pU0Ajgb2CkiXurk3H5Oxszqzrx58KMf\nwZ/+BEcckR7kXHnlWkdV0FDPyUTEQmA8cBPwKHB5VkmMlTQ2K3M98JSkOcBEYFxX+2aHPg9YCbhF\n0gOSLsjze5iZVco666RZnKdPT/OebbghnH02vPNOrSPLh5/4bwKtra2Lb5ObnXNR4FwU1DIXDz+c\nnq+57z74wQ9Sv82AATUJBWiwOxkzM+vapz4FV16ZJtm86ir4xCfSSLT33691ZJXhOxkzszpy551w\nwgnw6qtw6qmw995pMs5qqfSdjCsZM7M6EwE33pgqGykNf/7856tT2bi5zHqsdPhuM3MuCpyLgnrL\nhZRe8zxjBhx3HHznO7DjjmkWgUbjSsbMrE4tswzsuy889BAceiiMGQMjRqTKp1G4uczMrEEsWAC/\n/S38+McwdGh63mbTTSt7DjeXmZk1qQED4Fvfgjlz0mufP/tZOOgg+Mc/ah1Z51zJNIF6a2+uJeei\nwLkoaLRcLL88HH10ephzo43SXc03v5lmE6g3rmTMzBrUKqukBzkffxxWXRU23zwNEnjxxVpHVuA+\nGTOzPuKf/4Sf/hQuuwzGjUt3Oy0tPTuG+2TMzKxDa64J550HM2fCc8+lprTTT4e33qpdTK5kmkCj\ntTfnybkocC4K+louBg2CSZPgrrvggQfSJJznnQfvvlv9WFzJmJn1UZ/4BFx+OdxwA9x0E2y8cRoC\nvXBh9WJwn4yZWZO45540Vc3zz8MPfwj7758e+CzmucvK5ErGzOy/RcBtt6XK5j//SQ92fuELhXnR\n3PFvPdbX2puXhnNR4FwUNFMuJNh1V7j33jRjwPHHw7bbwu2353O+/vkc1szM6pkEo0alu5jLL4ex\nY2G99XI4T19tUnJzmZlZ+d57D265BfbYw30yZXElY2bWcw3VJyNphKTHJD0p6ZhOykzIts+StEV3\n+0oaKOkWSU9IullSD59nbT7N1N7cHeeiwLkocC7yk1slI6kfcD4wAtgEGC3pkyVlRgIbRsRGwGHA\nr8rY91jglojYGLgtW7YutLW11TqEuuFcFDgXBc5FfvK8kxkCzImIuRHxHjAN2KukzChgCkBETAda\nJK3Rzb6L98n+/WKO36FPeO2112odQt1wLgqciwLnIj95VjJrA88WLc/L1pVTZq0u9v1IRMzPfp4P\nfKRSAZuZWWXlWcmU2+teTgeTOjpe1rPv3v1uzJ07t9Yh1A3nosC5KHAu8pPnczLPAesWLa9LuiPp\nqsw6WZllO1j/XPbzfElrRMS/JK0JvNBZAFLFBkg0vClTpnRfqEk4FwXORYFzkY88K5kZwEaSBgHP\nAwcAo0vKXAuMB6ZJGga8FhHzJb3cxb7XAl8Dzsj+vbqjk1dyCJ6ZmfVObpVMRCyUNB64CegH/DYi\nZksam22fGBHXSxopaQ7wFnBwV/tmhz4d+IOkrwNzgf3z+g5mZrZ0+uzDmGZmVnsNMUFmmQ91Dpf0\ngKSHJbUWrZ8r6cFs231F60+RNC9b/4CkEVX4KkttKXPRIukKSbMlPZo1UTbsA64VzsXQbH1TXReS\nPl70XR+Q9LqkI7JtTXVddJOLprousvXHSXpE0kOSLpO0XLa+Z9dFRNT1h9RcNgcYRBoQ0AZ8sqRM\nC/AIsE62/MGibU8DAzs47snAd2r9/aqciynAIdnP/YFVs59/Bnw/+/kY4PRaf9ca5qLprouiMssA\n/wTWbdbrootcNNV1ke3zFLBctnw58LXeXBeNcCdTzkOdBwJ/ioh5ABHxUsn2zgYBNNrggF7nQtKq\nwA4RMSlbvzAiXs/2acQHXPPKBTTRdVFiV+AfEdH+jFpTXRclSnMBzXVd/Bt4D1hBUn9gBQojfHt0\nXTRCJVPOQ50bAQMl3SFphqSDirYFcGu2/tCS/Q5XmjPttw3SFLA0uVgfeFHSxZL+LukiSStk2xrx\nAde8cgHNdV0U+x/gsqLlZrsuipXmAprouoiIV4CzgWdII3xfj4hbs316dF00QiVTzsiEZYEtgZHA\n54ETJW2Ubds+IrYAdge+LWmHbP2vSL9sBpNui8+uaNT5WJpc9M/WXxARW5JG8/3XvG+R7oEbYTRI\nXrlotusCAEkDgD2BP3Z4gua4LoBOc9FU14WkjwFHkZrN1gJWlPTl/zpBGddFI1Qy5TzU+Sxwc0S8\nExEvA38BNgeIiOezf18EriLdQhIRL0QG+E37+jrX21x8Ols/LyLuz8r9iXRxQfaAK4C6ecC1jlQy\nF1eQ5aLJrovNi7bvDszM/j9p10zXRZe5aMLrYivgnoh4OSIWAlcC22X79Oi6aIRKZvFDndlfGAeQ\nHsgsdg2wvaR+WbPHUOBRSStIWhlA0orA54CHsuU1i/b/Uvv6OtfbXMzObm+flbRxVm4XUocfFB5w\nhS4ecK0zlczFrmS5aLLr4tGi7aOBqSX7NNN10WUumvC6eBwYJml5SSL9P9Keo55dF3mObqjUh/SX\nxeOkkRLHZevGAmOLynyX9IviIeCIbN0GpBEVbcDD7ftm2y4BHgRmZUn6SK2/Z565yNZvDtyffecr\nKYyoGgjcCjwB3Ay01Pp71jAXzXhdrAi8BKxccsxmvC46y0UzXhffL1o/BVi2N9eFH8Y0M7PcNEJz\nmZmZNShXMmZmlhtXMmZmlhtXMmZmlhtXMmZmlhtXMmZmlhtXMtbQJP1c0pFFyzdJuqho+WxJ/yvp\no5JK38xafJwzs6nOz6hATEdJWr5o+c+SVlna43Zxvg9Jmi5ppqTPlGxrlXR/0fLWku4o45ibSrpd\naZr4JyT9oGjbGEnndXCerSrxfaxvcSVjje6vZNNdSFoGWB3YpGj7tsDdpHmnDuziOIcCm0XEEu/c\nkNSvFzEdSZq1FoCI2CMi/t2L45RrF+DBiNgqIu7uYPuH1IP3n2QV5DXATyPiE6QHV7eTNC4r0tHD\ndY0yt5lVmSsZq1uStslmvV1O0orZncYmJcX+RqpIADYlzezwhtJLyZYDPgk8QHpt9w5KL2c6svgA\nkq4FVgL+Lml/SZMl/VrSvcAZWRz3ZDM2390+HU02FcdZSi91miVpvKTDSRMK3iHptqzcXEkDs5+/\nk5V/qD2ObNqP2ZIuzL7jTZI+0EE+BmV3F7Mk3SppXUmDgTOAvbLvVrpfAGcBJ3RyvL9kd0AzJbXn\n8UDgr5HNuhsR7wDjKUwi2mhT3lsN9a91AGadiYj7swrgx8DywKUR8WhJmeclLZS0Lqmy+RtpOvNt\nSe/EeCgi3lN6K+B3I2LPDs4zStIbkWbrRtLupIpi24iIbP67HSLifUm7Aj8F9gUOA9YDNo+IRZJW\ni4hXJX0HGB5punTI/sLPmpPGkCZXXAaYLulO4DVgQ+CAiDhM0uXAPsDvS0I9D7g4Ii6VdDAwISK+\nJOkkYKuIOKKTVP4N+JKk4cAbRevnA7tFxLtKsxBfBmxDqqxnluToKUkrSVopW3WApO2LimzYybmt\nybmSsXp3Kmmiv3eAwzspcw+pyWw74BxSJbMd8DqpOQ16/tf3H6Mw51ILcImkDUkVRvv/N7sAv4qI\nRQAR8WoXxxOwPXBldmeApCuBHUgTDj4dEQ9mZWeSplgvNYzCC6J+R3pDYfuxu/t+PwZ+QHqTYbsB\nwPmSNgfeJ71bhOw7dne8acWVWjn9PNac3Fxm9e6DpEkLVyLdzXTkbuAzwGakyfzupVDp3NPL875d\n9POPgNsiYjPSWwGL4+hJ5VX6y1sU+jHeLVr/Pp3/AdibpqqIiDtIcQ8rWv+/wD8j4tPA1sBy2fpH\nSVO9F04qbQC8GRFvLkUc1oRcyVi9m0j6C/wyUt9DR+4BvgC8HMmrpLuPbSlUMv8GVu5lDKuQ3g4I\nqbmr3S3A2PbBAZJWy9a/ke1TLIC7gC9m06evSLoruYvyf2HfQ3pjI8CXSe/+6Ikfk+5k2iu2VYB/\nZT9/lfROeEi53l7SLrB4IMAEOs+/WadcyVjdkvRV4N2ImEbquN8m61co9TBpVNm9ReseBF4r6hd5\nEHhfUltpx3+mdGRU8fLPgNMk/Z30i7h9229Ir6d9UFIb6T0kABcCN7Z3/C8+YMQDwGTgvizWiyJi\nVhnnb3c4cLCkWaRK5siist2O7IqIG1jyBVMXAF/LYv848GZW7h3Su+B/IOkxUu6mR8Qve3I+M8BT\n/ZuZWX58J2NmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrn5/4wM\nQj9yu23UAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x77209b0>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.4: Page 758"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 13.4\n",
+ "# Page: 758\n",
+ "\n",
+ "print'Illustration 13.4 - Page: 758\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "from scipy import interp\n",
+ "#***Data***#\n",
+ "# a:oil b:soyabean c:hexane\n",
+ "# Data=[100y*(Wt % oil in soln) 1/N(kg soln retained/kg insoluble solid)]\n",
+ "Data = numpy.array([[0 ,0.58],[20 ,0.66],[30 ,0.70]]);\n",
+ "# Soyabean feed:\n",
+ "percent_b = 20.0;# [soluble]\n",
+ "yF = 1.0;# [mass fraction oil,solid free basis]\n",
+ "# Solvent:\n",
+ "RNpPlus1 = 1.0;# [hexane,kg]\n",
+ "xNpPlus1 = 0;# [mass fraction oil]\n",
+ "# Leached Solids:\n",
+ "leached = 0.005;# [fraction of oil to be leached]\n",
+ "# Miscella:\n",
+ "percent_miscella = 10.0;# [percent of insoluble solid]\n",
+ "#**********#\n",
+ "\n",
+ "N = zeros(3);\n",
+ "ystar_By_N = zeros(3);\n",
+ "for i in range(0,3):\n",
+ " N[i] = 1/Data[i,1];# [kg insoluble solid/kg soln retained]\n",
+ " ystar_By_N[i] = Data[i,0]/(100*N[i]);# [kg oil/kg insoluble solid]\n",
+ "\n",
+ "# Basis: 1 kg flakes introduced\n",
+ "# Soyabean feed:\n",
+ "mass_b = 1-(percent_b/100.0);# [insoluble,kg]\n",
+ "F = 1.0-mass_b;# [kg]\n",
+ "NF = mass_b/F;# [kg insoluble solid/kg oil]\n",
+ "\n",
+ "# Leached Solids:\n",
+ "Ratio = leached/(1-leached);# [kg oil/kg insoluble solid]\n",
+ "# By interpolation:\n",
+ "Np = interp(Ratio,ystar_By_N,N);\n",
+ "miscella_b = (percent_miscella/100.0)*mass_b;# [Insoluble solid lost to miscella,kg]\n",
+ "leached_b = (1-(percent_miscella/100.0))*mass_b;# [Insoluble solid in miscella,kg]\n",
+ "ENp = leached_b/Np;# [kg soln retained]\n",
+ "retained_a = Ratio*leached_b;# [oil retained,kg]\n",
+ "retained_c = ENp-retained_a;# [Hexane retained,kg]\n",
+ "yNp = retained_a/ENp;# [mass fraction of oil in retained liquid]\n",
+ "\n",
+ "# Miscella:\n",
+ "mass_c = 1.0-retained_c;# [kg]\n",
+ "mass_a = F-retained_a;# [kg]\n",
+ "R1 = mass_c+mass_a;# [clear miscella,kg]\n",
+ "x1 = mass_a/R1;# [mass fraction of oil in the liquid]\n",
+ "NR1 = miscella_b/R1;# [kg insoluble solid/kg soln]\n",
+ "\n",
+ "# The operating diagram is shown in Fig 13.33 (Pg 759).\n",
+ "# Point R1 represents the cloudy miscella and is therefore is displaced from the axis of he graph at NR1. Point deltaR is located as usual and the stages determined with the N=0 axis for all the stages but the first.\n",
+ "print\"Between 4 and 5 stages are required\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 13.4 - Page: 758\n",
+ "\n",
+ "\n",
+ "Between 4 and 5 stages are required\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter1_1.ipynb b/Mass_-_Transfer_Operations/Chapter1_1.ipynb
new file mode 100755
index 00000000..3d150815
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter1_1.ipynb
@@ -0,0 +1,76 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a429839b93fda73811b080ddf18c202362ff24ca9ec207904626c7313297633e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter1 : The Mass-Transfer Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.1: Page 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 1.1\n",
+ "# Page: 17\n",
+ "\n",
+ "print'Illustration 1.1 - Page: 17\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# Taking conversion factor from table 1.5 (Pg 15)\n",
+ "# viscosity: [(lb/ft.h)]*4.134*10^(-4) [kg/m.s] (Pg 15)\n",
+ "# time: [h] = 3600.0 [s]\n",
+ "# Density: [lb/cubic feet]*16.09 = [kg/cubic m] (Pg 15)\n",
+ "# Length: [ft]*0.3048 = [m]\n",
+ "N = (2.778*10**(-4))*(30600/(1/(0.3048**(3.0/2))))*((1/(4.134*(10**(-4))*16.019))**0.111)*(((1/16.019)/(1/16.019))**0.26);\n",
+ "print'The coeffecient for S.I. Unit is',round(N,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 1.1 - Page: 17\n",
+ "\n",
+ "\n",
+ "The coeffecient for S.I. Unit is 2.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter1_2.ipynb b/Mass_-_Transfer_Operations/Chapter1_2.ipynb
new file mode 100755
index 00000000..3d150815
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter1_2.ipynb
@@ -0,0 +1,76 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a429839b93fda73811b080ddf18c202362ff24ca9ec207904626c7313297633e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter1 : The Mass-Transfer Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.1: Page 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 1.1\n",
+ "# Page: 17\n",
+ "\n",
+ "print'Illustration 1.1 - Page: 17\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# Taking conversion factor from table 1.5 (Pg 15)\n",
+ "# viscosity: [(lb/ft.h)]*4.134*10^(-4) [kg/m.s] (Pg 15)\n",
+ "# time: [h] = 3600.0 [s]\n",
+ "# Density: [lb/cubic feet]*16.09 = [kg/cubic m] (Pg 15)\n",
+ "# Length: [ft]*0.3048 = [m]\n",
+ "N = (2.778*10**(-4))*(30600/(1/(0.3048**(3.0/2))))*((1/(4.134*(10**(-4))*16.019))**0.111)*(((1/16.019)/(1/16.019))**0.26);\n",
+ "print'The coeffecient for S.I. Unit is',round(N,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 1.1 - Page: 17\n",
+ "\n",
+ "\n",
+ "The coeffecient for S.I. Unit is 2.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter2.ipynb b/Mass_-_Transfer_Operations/Chapter2.ipynb
new file mode 100755
index 00000000..3d3cab36
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter2.ipynb
@@ -0,0 +1,333 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c59a45d9559284ebbfa4c56e2ad9c90a674f6e02433515bc489ee0db922e92e9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2:Molecular Diffusion In Fluids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.1: Pg-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Illustration 2.1\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = O2 & b = CO\n",
+ "Dab = 1.87*10**(-5);#[square m/s]\n",
+ "Pt = 10**5;#[N/square m]\n",
+ "z = 0.002;#[m]\n",
+ "R = 8314;#[Nm/kmol]\n",
+ "T = 273;#[K]\n",
+ "Pa1 = 13*10.0**(3);#[N/square m]\n",
+ "Pb1 = 10**(5)-13*10**(3);#[N/square m]\n",
+ "Pa2 = 6500;#[N/square m]\n",
+ "Pb2 = 10**(5)-6500.0;#[N/square m]\n",
+ "#********#\n",
+ "\n",
+ "# Calculation from Eqn. 2.30\n",
+ "Pbm = (Pb1-Pb2)/math.log(Pb1/Pb2);#[N/square m]\n",
+ "Na = Dab*Pt*(Pa1-Pa2)/(R*T*z*Pbm);#[kmol/square m.s]\n",
+ "print\" Rate of diffusion of oxygen is\",round(Na,7),\"kmol/square m.sec \""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Rate of diffusion of oxygen is 2.97e-05 kmol/square m.sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.2:Pg-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration2.2\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "\n",
+ "#***Data***#\n",
+ "Pt = 10**5.0;#[N/square m]\n",
+ "z = 0.002;#[m]\n",
+ "R = 8314.0;#[Nm/kmol]\n",
+ "T = 273;#[K]\n",
+ "#a = O2 b = CH4 c = H2\n",
+ "Pa1 = 13*10**(3);#[N/square m]\n",
+ "Pb1 = 10**(5)-13*10**(3);#[N/square m]\n",
+ "Pa2 = 6500.0;#[N/square m]\n",
+ "Pb2 = 10.0**(5)-6500;#[N/square m]\n",
+ "Dac = 6.99*10**(-5);#[N/square m]\n",
+ "Dab = 1.86*10.0**(-5);#[N/square m]\n",
+ "#*******#\n",
+ "\n",
+ "# Calculation from Eqn. 2.30\n",
+ "Pbm = (Pb1-Pb2)/math.log(Pb1/Pb2);#[N/square m]\n",
+ "Yb_prime = 2.0/(2+1);\n",
+ "Yc_prime = 1-Yb_prime;\n",
+ "Dam = 1.0/((Yb_prime/Dab)+(Yc_prime/Dac));#[square m.s]\n",
+ "Na = Dam*(Pa1-Pa2)*Pt/(R*T*z*Pbm);#[kmol/square m.s]\n",
+ "print \"Rate of diffusion is\",round(Na,7),\"kmol/square m.sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate of diffusion is 3.91e-05 kmol/square m.sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.3:Pg-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration2.3\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = C2H5OH b = air\n",
+ "Pt = 101.3*10**(3);#[N/square m]\n",
+ "T = 273.0 ;#[K]\n",
+ "#********#\n",
+ "\n",
+ "Ma = 46.07;# [kg/kmol]\n",
+ "Mb = 29.0;# [kg/kmol]\n",
+ "#For air from Table 2.2 (Pg 33)\n",
+ "Eb_by_k = 78.6;# [K]\n",
+ "rb = 0.3711; # [nm]\n",
+ "# For C2H5OH using Eqn. 2.38 & 2.39\n",
+ "# From Table 2.3\n",
+ "Va = (2*0.0148)+(6*0.0037)+(0.0074);# [cubic m/kmol]\n",
+ "Tba = 351.4;# [K]\n",
+ "ra = 1.18*(Va**(1/3.0));#[nm]\n",
+ "Ea_by_k = 1.21*Tba;# [K]\n",
+ "rab = (ra+rb)/2.0;# [nm]\n",
+ "Eab_by_k = math.sqrt(Ea_by_k*Eb_by_k);# [K]\n",
+ "Collision_value = T/Eab_by_k;\n",
+ "#From Fig. 2.5 (Page: 32) f(collision value)\n",
+ "Collision_func = 0.595;\n",
+ "Dab = (10**(-4)*(1.084-(0.249*math.sqrt((1/Ma)+(1/Mb))))*T**(3.0/2)*math.sqrt((1/Ma)+(1/Mb)))/(Pt*(rab**2)*Collision_func);#[square m/s]\n",
+ "print\" The diffusivity of ethanol through air at 1 atm. & 0 degree C is\",round(Dab,7),\"m^2/s\"\n",
+ "print\" The observed value from (Table 2.1) is 1.02*10^(-5) square m/s'\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The diffusivity of ethanol through air at 1 atm. & 0 degree C is 1.05e-05 m^2/s\n",
+ " The observed value from (Table 2.1) is 1.02*10^(-5) square m/s'\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.4:Pg-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.4\n",
+ "import math\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = acetic acid b = H2O\n",
+ "z = 0.001;# [m]\n",
+ "Dab = 0.95*10**(-9);#[square m/s]\n",
+ "#************#\n",
+ "\n",
+ "Ma = 60.03;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "#At 17 C & 9% solution\n",
+ "density1 = 1012; #[kg/cubic m]\n",
+ "Xa1 = (0.09/Ma)/((0.09/Ma)+(0.91/Mb));\n",
+ "Xb1 = 1-Xa1;\n",
+ "M1 = 1/((0.09/Ma)+(0.91/Mb));# [kg/kmol]\n",
+ "#At 17 C & 3% solution\n",
+ "density2 = 1003.2; #[kg/cubic m]\n",
+ "Xa2 = (0.03/Ma)/((0.03/Ma)+(0.97/Mb));\n",
+ "Xb2 = 1-Xa2;\n",
+ "M2 = 1/((0.03/Ma)+(0.97/Mb));# [kg/kmol]\n",
+ "avg_density_by_M = ((density1/M1)+(density2/M2))/2;#[kmol/cubic m]\n",
+ "# From Eqn. 2.42\n",
+ "Xbm = (Xb2-Xb1)/math.log(Xb2/Xb1);\n",
+ "# From Eqn. 2.41\n",
+ "Na = Dab*(avg_density_by_M)*(Xa1-Xa2)/(Xbm*z); #[square m/s]\n",
+ "print\" The rate of diffusion is\",round(Na,9),\"square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The rate of diffusion is 1.018e-06 square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.5:Pg-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.5\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = mannitol b = H2O\n",
+ "T = 293; # [K]\n",
+ "#*****#\n",
+ "\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# From Table 2.3 (Pg 33)\n",
+ "Va = (0.0148*6)+(0.0037*14)+(0.0074*6); # [cubic m/kmol]\n",
+ "viscosity = 0.001005; # [kg/m.s]\n",
+ "association_factor = 2.26; # [water as a solvent]\n",
+ "Dab = (117.3*10**(-18))*((association_factor*Mb)**0.5)*T/(viscosity*Va**0.6); # [square m/s]\n",
+ "print\" Diffusivity of mannitol is\",round(Dab,12),\"square m/s\"\n",
+ "print\" Observed value is 0.56*10^(-9) square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Diffusivity of mannitol is 6.01e-10 square m/s\n",
+ " Observed value is 0.56*10^(-9) square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.6:Pg-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.6\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "T2 = 70+273;# [K]\n",
+ "#**********#\n",
+ "\n",
+ "# a = mannitol b = H2O\n",
+ "# From Illustration 2.5 at 20 C\n",
+ "viscosity1 = 1.005*10**(-3); # [kg/m.s]\n",
+ "Dab1 = 0.56*10**(-9); #[m^2/s]\n",
+ "T1 = 273+20;# [K]\n",
+ "# At 70 C\n",
+ "viscosity2 = 0.4061*10**(-3); # kg/m.s\n",
+ "# Eqn. 2.44 indicates Dab*viscocity/T = constnt\n",
+ "Dab2 = Dab1*(T2)*(viscosity1)/(T1*viscosity2);# [square m/s]\n",
+ "print\" Diffusivity of mannitol at 70 degree C is\",round(Dab2,11),\"square/s \"\n",
+ "print\" Observed value at 70 degree C is 1.56*10^(-9) square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Diffusivity of mannitol at 70 degree C is 1.62e-09 square/s \n",
+ " Observed value at 70 degree C is 1.56*10^(-9) square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter2_1.ipynb b/Mass_-_Transfer_Operations/Chapter2_1.ipynb
new file mode 100755
index 00000000..3d3cab36
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter2_1.ipynb
@@ -0,0 +1,333 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c59a45d9559284ebbfa4c56e2ad9c90a674f6e02433515bc489ee0db922e92e9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2:Molecular Diffusion In Fluids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.1: Pg-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Illustration 2.1\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = O2 & b = CO\n",
+ "Dab = 1.87*10**(-5);#[square m/s]\n",
+ "Pt = 10**5;#[N/square m]\n",
+ "z = 0.002;#[m]\n",
+ "R = 8314;#[Nm/kmol]\n",
+ "T = 273;#[K]\n",
+ "Pa1 = 13*10.0**(3);#[N/square m]\n",
+ "Pb1 = 10**(5)-13*10**(3);#[N/square m]\n",
+ "Pa2 = 6500;#[N/square m]\n",
+ "Pb2 = 10**(5)-6500.0;#[N/square m]\n",
+ "#********#\n",
+ "\n",
+ "# Calculation from Eqn. 2.30\n",
+ "Pbm = (Pb1-Pb2)/math.log(Pb1/Pb2);#[N/square m]\n",
+ "Na = Dab*Pt*(Pa1-Pa2)/(R*T*z*Pbm);#[kmol/square m.s]\n",
+ "print\" Rate of diffusion of oxygen is\",round(Na,7),\"kmol/square m.sec \""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Rate of diffusion of oxygen is 2.97e-05 kmol/square m.sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.2:Pg-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration2.2\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "\n",
+ "#***Data***#\n",
+ "Pt = 10**5.0;#[N/square m]\n",
+ "z = 0.002;#[m]\n",
+ "R = 8314.0;#[Nm/kmol]\n",
+ "T = 273;#[K]\n",
+ "#a = O2 b = CH4 c = H2\n",
+ "Pa1 = 13*10**(3);#[N/square m]\n",
+ "Pb1 = 10**(5)-13*10**(3);#[N/square m]\n",
+ "Pa2 = 6500.0;#[N/square m]\n",
+ "Pb2 = 10.0**(5)-6500;#[N/square m]\n",
+ "Dac = 6.99*10**(-5);#[N/square m]\n",
+ "Dab = 1.86*10.0**(-5);#[N/square m]\n",
+ "#*******#\n",
+ "\n",
+ "# Calculation from Eqn. 2.30\n",
+ "Pbm = (Pb1-Pb2)/math.log(Pb1/Pb2);#[N/square m]\n",
+ "Yb_prime = 2.0/(2+1);\n",
+ "Yc_prime = 1-Yb_prime;\n",
+ "Dam = 1.0/((Yb_prime/Dab)+(Yc_prime/Dac));#[square m.s]\n",
+ "Na = Dam*(Pa1-Pa2)*Pt/(R*T*z*Pbm);#[kmol/square m.s]\n",
+ "print \"Rate of diffusion is\",round(Na,7),\"kmol/square m.sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate of diffusion is 3.91e-05 kmol/square m.sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.3:Pg-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration2.3\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = C2H5OH b = air\n",
+ "Pt = 101.3*10**(3);#[N/square m]\n",
+ "T = 273.0 ;#[K]\n",
+ "#********#\n",
+ "\n",
+ "Ma = 46.07;# [kg/kmol]\n",
+ "Mb = 29.0;# [kg/kmol]\n",
+ "#For air from Table 2.2 (Pg 33)\n",
+ "Eb_by_k = 78.6;# [K]\n",
+ "rb = 0.3711; # [nm]\n",
+ "# For C2H5OH using Eqn. 2.38 & 2.39\n",
+ "# From Table 2.3\n",
+ "Va = (2*0.0148)+(6*0.0037)+(0.0074);# [cubic m/kmol]\n",
+ "Tba = 351.4;# [K]\n",
+ "ra = 1.18*(Va**(1/3.0));#[nm]\n",
+ "Ea_by_k = 1.21*Tba;# [K]\n",
+ "rab = (ra+rb)/2.0;# [nm]\n",
+ "Eab_by_k = math.sqrt(Ea_by_k*Eb_by_k);# [K]\n",
+ "Collision_value = T/Eab_by_k;\n",
+ "#From Fig. 2.5 (Page: 32) f(collision value)\n",
+ "Collision_func = 0.595;\n",
+ "Dab = (10**(-4)*(1.084-(0.249*math.sqrt((1/Ma)+(1/Mb))))*T**(3.0/2)*math.sqrt((1/Ma)+(1/Mb)))/(Pt*(rab**2)*Collision_func);#[square m/s]\n",
+ "print\" The diffusivity of ethanol through air at 1 atm. & 0 degree C is\",round(Dab,7),\"m^2/s\"\n",
+ "print\" The observed value from (Table 2.1) is 1.02*10^(-5) square m/s'\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The diffusivity of ethanol through air at 1 atm. & 0 degree C is 1.05e-05 m^2/s\n",
+ " The observed value from (Table 2.1) is 1.02*10^(-5) square m/s'\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.4:Pg-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.4\n",
+ "import math\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = acetic acid b = H2O\n",
+ "z = 0.001;# [m]\n",
+ "Dab = 0.95*10**(-9);#[square m/s]\n",
+ "#************#\n",
+ "\n",
+ "Ma = 60.03;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "#At 17 C & 9% solution\n",
+ "density1 = 1012; #[kg/cubic m]\n",
+ "Xa1 = (0.09/Ma)/((0.09/Ma)+(0.91/Mb));\n",
+ "Xb1 = 1-Xa1;\n",
+ "M1 = 1/((0.09/Ma)+(0.91/Mb));# [kg/kmol]\n",
+ "#At 17 C & 3% solution\n",
+ "density2 = 1003.2; #[kg/cubic m]\n",
+ "Xa2 = (0.03/Ma)/((0.03/Ma)+(0.97/Mb));\n",
+ "Xb2 = 1-Xa2;\n",
+ "M2 = 1/((0.03/Ma)+(0.97/Mb));# [kg/kmol]\n",
+ "avg_density_by_M = ((density1/M1)+(density2/M2))/2;#[kmol/cubic m]\n",
+ "# From Eqn. 2.42\n",
+ "Xbm = (Xb2-Xb1)/math.log(Xb2/Xb1);\n",
+ "# From Eqn. 2.41\n",
+ "Na = Dab*(avg_density_by_M)*(Xa1-Xa2)/(Xbm*z); #[square m/s]\n",
+ "print\" The rate of diffusion is\",round(Na,9),\"square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The rate of diffusion is 1.018e-06 square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.5:Pg-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.5\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = mannitol b = H2O\n",
+ "T = 293; # [K]\n",
+ "#*****#\n",
+ "\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# From Table 2.3 (Pg 33)\n",
+ "Va = (0.0148*6)+(0.0037*14)+(0.0074*6); # [cubic m/kmol]\n",
+ "viscosity = 0.001005; # [kg/m.s]\n",
+ "association_factor = 2.26; # [water as a solvent]\n",
+ "Dab = (117.3*10**(-18))*((association_factor*Mb)**0.5)*T/(viscosity*Va**0.6); # [square m/s]\n",
+ "print\" Diffusivity of mannitol is\",round(Dab,12),\"square m/s\"\n",
+ "print\" Observed value is 0.56*10^(-9) square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Diffusivity of mannitol is 6.01e-10 square m/s\n",
+ " Observed value is 0.56*10^(-9) square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.6:Pg-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.6\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "T2 = 70+273;# [K]\n",
+ "#**********#\n",
+ "\n",
+ "# a = mannitol b = H2O\n",
+ "# From Illustration 2.5 at 20 C\n",
+ "viscosity1 = 1.005*10**(-3); # [kg/m.s]\n",
+ "Dab1 = 0.56*10**(-9); #[m^2/s]\n",
+ "T1 = 273+20;# [K]\n",
+ "# At 70 C\n",
+ "viscosity2 = 0.4061*10**(-3); # kg/m.s\n",
+ "# Eqn. 2.44 indicates Dab*viscocity/T = constnt\n",
+ "Dab2 = Dab1*(T2)*(viscosity1)/(T1*viscosity2);# [square m/s]\n",
+ "print\" Diffusivity of mannitol at 70 degree C is\",round(Dab2,11),\"square/s \"\n",
+ "print\" Observed value at 70 degree C is 1.56*10^(-9) square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Diffusivity of mannitol at 70 degree C is 1.62e-09 square/s \n",
+ " Observed value at 70 degree C is 1.56*10^(-9) square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter2_2.ipynb b/Mass_-_Transfer_Operations/Chapter2_2.ipynb
new file mode 100755
index 00000000..3d3cab36
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter2_2.ipynb
@@ -0,0 +1,333 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c59a45d9559284ebbfa4c56e2ad9c90a674f6e02433515bc489ee0db922e92e9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2:Molecular Diffusion In Fluids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.1: Pg-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Illustration 2.1\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = O2 & b = CO\n",
+ "Dab = 1.87*10**(-5);#[square m/s]\n",
+ "Pt = 10**5;#[N/square m]\n",
+ "z = 0.002;#[m]\n",
+ "R = 8314;#[Nm/kmol]\n",
+ "T = 273;#[K]\n",
+ "Pa1 = 13*10.0**(3);#[N/square m]\n",
+ "Pb1 = 10**(5)-13*10**(3);#[N/square m]\n",
+ "Pa2 = 6500;#[N/square m]\n",
+ "Pb2 = 10**(5)-6500.0;#[N/square m]\n",
+ "#********#\n",
+ "\n",
+ "# Calculation from Eqn. 2.30\n",
+ "Pbm = (Pb1-Pb2)/math.log(Pb1/Pb2);#[N/square m]\n",
+ "Na = Dab*Pt*(Pa1-Pa2)/(R*T*z*Pbm);#[kmol/square m.s]\n",
+ "print\" Rate of diffusion of oxygen is\",round(Na,7),\"kmol/square m.sec \""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Rate of diffusion of oxygen is 2.97e-05 kmol/square m.sec \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.2:Pg-30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration2.2\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "\n",
+ "#***Data***#\n",
+ "Pt = 10**5.0;#[N/square m]\n",
+ "z = 0.002;#[m]\n",
+ "R = 8314.0;#[Nm/kmol]\n",
+ "T = 273;#[K]\n",
+ "#a = O2 b = CH4 c = H2\n",
+ "Pa1 = 13*10**(3);#[N/square m]\n",
+ "Pb1 = 10**(5)-13*10**(3);#[N/square m]\n",
+ "Pa2 = 6500.0;#[N/square m]\n",
+ "Pb2 = 10.0**(5)-6500;#[N/square m]\n",
+ "Dac = 6.99*10**(-5);#[N/square m]\n",
+ "Dab = 1.86*10.0**(-5);#[N/square m]\n",
+ "#*******#\n",
+ "\n",
+ "# Calculation from Eqn. 2.30\n",
+ "Pbm = (Pb1-Pb2)/math.log(Pb1/Pb2);#[N/square m]\n",
+ "Yb_prime = 2.0/(2+1);\n",
+ "Yc_prime = 1-Yb_prime;\n",
+ "Dam = 1.0/((Yb_prime/Dab)+(Yc_prime/Dac));#[square m.s]\n",
+ "Na = Dam*(Pa1-Pa2)*Pt/(R*T*z*Pbm);#[kmol/square m.s]\n",
+ "print \"Rate of diffusion is\",round(Na,7),\"kmol/square m.sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate of diffusion is 3.91e-05 kmol/square m.sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.3:Pg-32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration2.3\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = C2H5OH b = air\n",
+ "Pt = 101.3*10**(3);#[N/square m]\n",
+ "T = 273.0 ;#[K]\n",
+ "#********#\n",
+ "\n",
+ "Ma = 46.07;# [kg/kmol]\n",
+ "Mb = 29.0;# [kg/kmol]\n",
+ "#For air from Table 2.2 (Pg 33)\n",
+ "Eb_by_k = 78.6;# [K]\n",
+ "rb = 0.3711; # [nm]\n",
+ "# For C2H5OH using Eqn. 2.38 & 2.39\n",
+ "# From Table 2.3\n",
+ "Va = (2*0.0148)+(6*0.0037)+(0.0074);# [cubic m/kmol]\n",
+ "Tba = 351.4;# [K]\n",
+ "ra = 1.18*(Va**(1/3.0));#[nm]\n",
+ "Ea_by_k = 1.21*Tba;# [K]\n",
+ "rab = (ra+rb)/2.0;# [nm]\n",
+ "Eab_by_k = math.sqrt(Ea_by_k*Eb_by_k);# [K]\n",
+ "Collision_value = T/Eab_by_k;\n",
+ "#From Fig. 2.5 (Page: 32) f(collision value)\n",
+ "Collision_func = 0.595;\n",
+ "Dab = (10**(-4)*(1.084-(0.249*math.sqrt((1/Ma)+(1/Mb))))*T**(3.0/2)*math.sqrt((1/Ma)+(1/Mb)))/(Pt*(rab**2)*Collision_func);#[square m/s]\n",
+ "print\" The diffusivity of ethanol through air at 1 atm. & 0 degree C is\",round(Dab,7),\"m^2/s\"\n",
+ "print\" The observed value from (Table 2.1) is 1.02*10^(-5) square m/s'\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The diffusivity of ethanol through air at 1 atm. & 0 degree C is 1.05e-05 m^2/s\n",
+ " The observed value from (Table 2.1) is 1.02*10^(-5) square m/s'\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.4:Pg-34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.4\n",
+ "import math\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = acetic acid b = H2O\n",
+ "z = 0.001;# [m]\n",
+ "Dab = 0.95*10**(-9);#[square m/s]\n",
+ "#************#\n",
+ "\n",
+ "Ma = 60.03;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "#At 17 C & 9% solution\n",
+ "density1 = 1012; #[kg/cubic m]\n",
+ "Xa1 = (0.09/Ma)/((0.09/Ma)+(0.91/Mb));\n",
+ "Xb1 = 1-Xa1;\n",
+ "M1 = 1/((0.09/Ma)+(0.91/Mb));# [kg/kmol]\n",
+ "#At 17 C & 3% solution\n",
+ "density2 = 1003.2; #[kg/cubic m]\n",
+ "Xa2 = (0.03/Ma)/((0.03/Ma)+(0.97/Mb));\n",
+ "Xb2 = 1-Xa2;\n",
+ "M2 = 1/((0.03/Ma)+(0.97/Mb));# [kg/kmol]\n",
+ "avg_density_by_M = ((density1/M1)+(density2/M2))/2;#[kmol/cubic m]\n",
+ "# From Eqn. 2.42\n",
+ "Xbm = (Xb2-Xb1)/math.log(Xb2/Xb1);\n",
+ "# From Eqn. 2.41\n",
+ "Na = Dab*(avg_density_by_M)*(Xa1-Xa2)/(Xbm*z); #[square m/s]\n",
+ "print\" The rate of diffusion is\",round(Na,9),\"square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The rate of diffusion is 1.018e-06 square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.5:Pg-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.5\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = mannitol b = H2O\n",
+ "T = 293; # [K]\n",
+ "#*****#\n",
+ "\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# From Table 2.3 (Pg 33)\n",
+ "Va = (0.0148*6)+(0.0037*14)+(0.0074*6); # [cubic m/kmol]\n",
+ "viscosity = 0.001005; # [kg/m.s]\n",
+ "association_factor = 2.26; # [water as a solvent]\n",
+ "Dab = (117.3*10**(-18))*((association_factor*Mb)**0.5)*T/(viscosity*Va**0.6); # [square m/s]\n",
+ "print\" Diffusivity of mannitol is\",round(Dab,12),\"square m/s\"\n",
+ "print\" Observed value is 0.56*10^(-9) square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Diffusivity of mannitol is 6.01e-10 square m/s\n",
+ " Observed value is 0.56*10^(-9) square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.6:Pg-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 2.6\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "T2 = 70+273;# [K]\n",
+ "#**********#\n",
+ "\n",
+ "# a = mannitol b = H2O\n",
+ "# From Illustration 2.5 at 20 C\n",
+ "viscosity1 = 1.005*10**(-3); # [kg/m.s]\n",
+ "Dab1 = 0.56*10**(-9); #[m^2/s]\n",
+ "T1 = 273+20;# [K]\n",
+ "# At 70 C\n",
+ "viscosity2 = 0.4061*10**(-3); # kg/m.s\n",
+ "# Eqn. 2.44 indicates Dab*viscocity/T = constnt\n",
+ "Dab2 = Dab1*(T2)*(viscosity1)/(T1*viscosity2);# [square m/s]\n",
+ "print\" Diffusivity of mannitol at 70 degree C is\",round(Dab2,11),\"square/s \"\n",
+ "print\" Observed value at 70 degree C is 1.56*10^(-9) square m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Diffusivity of mannitol at 70 degree C is 1.62e-09 square/s \n",
+ " Observed value at 70 degree C is 1.56*10^(-9) square m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter3.ipynb b/Mass_-_Transfer_Operations/Chapter3.ipynb
new file mode 100755
index 00000000..36f53f4d
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter3.ipynb
@@ -0,0 +1,628 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:64d9a62e17838716bd10cd86f93be8c39dc69462337a3d3adc3d6ea158cbc575"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3: Mass-Transfer Coefficients"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.1:Page 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.1\n",
+ "# Page: 53\n",
+ "\n",
+ "print'Illustration 3.1 - Page: 53\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = CO2 b = H2O\n",
+ "Ca0 = 0;#[kmol/cubic m]\n",
+ "Cai = 0.0336;#[kmol/cubic m]\n",
+ "Dab = 1.96*10**(-9);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "density = 998.0;# [kg/cubic m]\n",
+ "viscosity = 8.94*10**(-4);#[kg/m.s]\n",
+ "rate = 0.05;#[kg/m.s] mass flow rate of liquid\n",
+ "L = 1;#[m]\n",
+ "g = 9.81;#[m/square s]\n",
+ "# From Eqn. 3.10\n",
+ "Del = ((3*viscosity*rate)/((density**2)*g))**(1.0/3);# [m]\n",
+ "Re = 4*rate/viscosity;\n",
+ "# Flow comes out to be laminar\n",
+ "# From Eqn. 3.19\n",
+ "Kl_avg = ((6*Dab*rate)/(3.141*density*Del*L))**(1.0/2);#[kmol/square m.s.(kmol/cubic m)]\n",
+ "bulk_avg_velocity = rate/(density*Del);#[m/s]\n",
+ "# At the top: Cai-Ca = Cai_Ca0 = Cai\n",
+ "#At the bottom: Cai-Cal\n",
+ "# From Eqn. 3.21 & 3.22\n",
+ "Cal = Cai*(1-(1.0/(exp(Kl_avg/(bulk_avg_velocity*Del)))));# [kmol/cubic m]\n",
+ "rate_absorption = bulk_avg_velocity*Del*(Cal-Ca0);# [kmol/s].(m of width)\n",
+ "print'The rate of absorption is ',round(rate_absorption,8),' kmol/sec.(m of width)'\n",
+ "# The actual value may be substantially larger."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.1 - Page: 53\n",
+ "\n",
+ "\n",
+ "The rate of absorption is 7.2e-07 kmol/sec.(m of width)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.2: Page 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.2\n",
+ "# Page: 56\n",
+ "\n",
+ "print'Illustration 3.2 - Page: 56\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "d = 0.025;# [m]\n",
+ "avg_velocity = 3;# [m/s]\n",
+ "viscosity = 8.937*10**(-4);# [kg/m.s]\n",
+ "density = 997;# [kg/m**3]\n",
+ "#*********#\n",
+ "\n",
+ "kinematic_viscosity = viscosity/density;# [square m/s]\n",
+ "Re = d*avg_velocity*density/viscosity;\n",
+ "# Reynold's number comes out to be 83670\n",
+ "# At this Reynold's number fanning factor = 0.0047\n",
+ "f = 0.0047;\n",
+ "L = 1;# [m]\n",
+ "press_drop = 2*density*f*L*(avg_velocity**2)/(d);# [N/square m]\n",
+ "P = 3.141*(d**2)*avg_velocity*press_drop/4;# [N.m/s] for 1m pipe\n",
+ "m = 3.141*(d**2)*L*density/4;\n",
+ "# From Eqn. 3.24\n",
+ "Ld = ((kinematic_viscosity**3)*m/P)**(1.0/4);# [m]\n",
+ "# From Eqn. 3.25\n",
+ "Ud = (kinematic_viscosity*P/m)**(1.0/4);# [m/s]\n",
+ "print'Velocity of small eddies is',round(Ud,4),'m/s'\n",
+ "print'Length scale of small eddies is',round(Ld,7),'m'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.2 - Page: 56\n",
+ "\n",
+ "\n",
+ "Velocity of small eddies is 0.0549 m/s\n",
+ "Length scale of small eddies is 1.63e-05 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.3: Page 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.3\n",
+ "# Page: 69\n",
+ "\n",
+ "print'Illustration 3.3 - Page: 69\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# Heat transfer analog to Eqn. 3.12\n",
+ "# The Eqn. remains the same with the dimensionless conc. ratio replaced by ((tl-to)/(ti-to))\n",
+ "\n",
+ "# The dimensionless group:\n",
+ "# eta = 2*Dab*L/(3*del**2*velocity);\n",
+ "# eta = (2/3)*(Dab/(del*velocity))*(L/del);\n",
+ "# Ped = Peclet no. for mass transfer\n",
+ "# eta = (2/3)*(1/Ped)*(L/del);\n",
+ "\n",
+ "# For heat transfer is replaced by\n",
+ "# Peh = Peclet no. for heat transfer\n",
+ "# eta = (2/3)*(1/Peh)*(L/del);\n",
+ "# eta = (2/3)*(alpha/(del*velocity))*(L/del);\n",
+ "# eta = (2*alpha*L)/(3*del**2*velocity);\n",
+ "print'Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del**2*velocity)'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.3 - Page: 69\n",
+ "\n",
+ "\n",
+ "Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del**2*velocity)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.4: Page-69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.4\n",
+ "# Page: 69\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 3.4 - Page: 69\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = UF6 b = air\n",
+ "# The average heat transfer coefficient: Nu_avg = 0.43+0.532(Re^0.5)(Pr^0.31)\n",
+ "# The analogus expression for mass transfer coefficient: Sh_avg = 0.43+0.532(Re^0.5)(Sc^0.31)\n",
+ "d = 0.006;# [m]\n",
+ "velocity = 3.0;# [m/s]\n",
+ "surf_temp = 43.0;# [C]\n",
+ "bulk_temp = 60.0;# [C]\n",
+ "avg_temp = (surf_temp+bulk_temp)/2; #[C]\n",
+ "density = 4.10;# [kg/cubic m]\n",
+ "viscosity = 2.7*10**(-5);# [kg/m.s]\n",
+ "Dab = 9.04*10**(-6);# [square m/s]\n",
+ "press = 53.32;# [kN/square m]\n",
+ "tot_press = 101.33;# [kN/square m]\n",
+ "#******#\n",
+ "\n",
+ "avg_press = press/2.0; # [kN/square m]\n",
+ "Xa = avg_press/tot_press;\n",
+ "Xb = 1-Xa;\n",
+ "Re = d*velocity*density/viscosity;\n",
+ "Sc = viscosity/(density*Dab);\n",
+ "Sh_avg = 0.43+(0.532*(2733**0.5)*(0.728**0.5));\n",
+ "c = 273.2/(22.41*(273.2+avg_temp));# [kmol/cubic m]\n",
+ "F_avg = Sh_avg*c*Dab/d;#[kmol/cubic m]\n",
+ "Nb = 0.0;\n",
+ "Ca1_by_C = press/tot_press;\n",
+ "Ca2_by_C = 0.0;\n",
+ "Flux_a = 1.0;\n",
+ "# Using Eqn. 3.1\n",
+ "Na = Flux_a*F_avg*math.log((Flux_a-Ca2_by_C)/(Flux_a-Ca1_by_C));#[kmol UF6/square m.s]\n",
+ "print'Rate of sublimation is',round(Na,8),' kmol UF6/square m.s'\n",
+ "# the answer is slightly different in textbook due to approximation"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.4 - Page: 69\n",
+ "\n",
+ "\n",
+ "Rate of sublimation is 0.00102088 kmol UF6/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.5: Page 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.5\n",
+ "# Page: 73\n",
+ "\n",
+ "print'Illustration 3.5 - Page: 73\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "velocity = 15.0;# [m/s]\n",
+ "G = 21.3;# [kg/square m.s]\n",
+ "#******#\n",
+ "\n",
+ "# Since the experimental data do not include the effects of changing Prandtl number.\n",
+ "\n",
+ "# Jh = (h/(Cp*density*viscosity)) = (h/Cp*G)*(Pr^(2/3)) = Shi(Re);\n",
+ "\n",
+ "# Shi(Re) must be compatible with 21.3*(G**0.6);\n",
+ "# Let Shi(Re) = b*(Re**n);\n",
+ "# Re = (l*G)/viscosity;\n",
+ "\n",
+ "# h = (Cp*G/(Pr**(2/3)))*b*(Re**n);\n",
+ "# h = (Cp*G/(Pr**(2/3)))*b*((l*b/viscosity)**n) = 21.3*(G**0.6);\n",
+ "\n",
+ "n = 0.6-1;\n",
+ "# b = 21.3*((Pr**(2/3))/Cp)*((l/viscosity)**(-n));\n",
+ "\n",
+ "# Using data for air at 38 C & 1 std atm.\n",
+ "Cp1 = 1002;# [kJ/kg.K]\n",
+ "viscosity1 = 1.85*10**(-5);#[kg/m.s]\n",
+ "k1 = 0.0273;#[W/m.K]\n",
+ "Pr1 = (Cp1*viscosity1)/k1;\n",
+ "b_prime = 21.3*(Pr1**(2.0/3)/Cp1)*((1/viscosity1)**0.4);\n",
+ "# b = b_prime*l**(0.4);\n",
+ "# Jh = (h/(Cp*G))*Pr**(2/3) = b_prime*((l/Re)**(0.4)) = Shi(Re);\n",
+ "\n",
+ "# The heat mass transfer analogy will be used to estimate the mass transfer coefficient. (Jd = Jh)\n",
+ "\n",
+ "# Jd = (KG*Pbm*Mav*Sc**(2/3))/(density*viscosity) = Shi(Re) = b_prime*((l/Re)**0.4);\n",
+ "\n",
+ "# KG*Pbm = F = (b_prime*density*viscosity)/(Re^0.4*Mav*Sc**(2/3)) = (b_prime*(density*velocity)**0.6*(viscosity^0.4))/(Mav*Sc**(2/3));\n",
+ "\n",
+ "# For H2-H20, 38 C, 1std atm\n",
+ "viscosity2 = 9*10**(-6);# [kg/m.s]\n",
+ "density2 = 0.0794;# [kg/cubic m]\n",
+ "Dab = 7.75*10**(-5);# [square m/s]\n",
+ "Sc = viscosity2/(density2*Dab);\n",
+ "\n",
+ "# Assuming desity, Molecular weight and viscosity of the gas are essentially those of H2\n",
+ "\n",
+ "Mav = 2.02;# [kg/kmol]\n",
+ "F = (b_prime*(density2*velocity)**0.6*(viscosity2**0.4))/(Mav*Sc**(2.0/3));# [kmol/square m.s]\n",
+ "print'The required mass transfer: ',round(F,5),' kmol/square m.s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.5 - Page: 73\n",
+ "\n",
+ "\n",
+ "The required mass transfer: 0.00525 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.6:Page 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.6\n",
+ "# Page: 77\n",
+ "\n",
+ "print'Illustration 3.6 - Page: 77\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy import integrate\n",
+ "import math \n",
+ "#***Data***#\n",
+ "Dp = 0.0125;# [m]\n",
+ "viscosity = 2.4*10**(-5);# [kg/m.s]\n",
+ "Sc = 2.0;\n",
+ "E = 0.3;\n",
+ "Go = (2*10**(-3))/0.1;# molar superficial mass velocity [kmol/square m.s]\n",
+ "#********#\n",
+ "\n",
+ "# a = CO b = Ni(CO)4\n",
+ "# Nb = -(Na/4);\n",
+ "Flux_a = 4.0/3;\n",
+ "Ca2_by_C = 0;# At the metal interface\n",
+ "# Ca1_by_C = Ya #mole fraction of CO in the bulk\n",
+ "\n",
+ "# Eqn. 3.1 becomes: Na = (4/3)*F*log((4/3)/((4/3)-Ya));\n",
+ "\n",
+ "# Let G = kmol gas/(square m bed cross section).s\n",
+ "# a = specific metal surface\n",
+ "# z = depth \n",
+ "# Therefore, Na = -(diff(Ya*G))/(a*diff(z));# [kmol/((square m metal surface).s)];\n",
+ "# For each kmol of CO consumed, (1/4)kmol Ni(CO)4 forms, representing a loss of (3/4) kmol per kmol of CO consumed.\n",
+ "# The CO consumed through bed depth dz is therefore (Go-G)(4/3) kmol;\n",
+ "# Ya = (Go-(Go-G)*(4/3))/G;\n",
+ "# G = Go/(4-(3*Ya));\n",
+ "# diff(YaG) = ((4*Go)/(4-3*Ya)**2)*diff(Ya);\n",
+ "\n",
+ "# Substituting in Eqn. 3.64\n",
+ "# -(4*Go/((4-3*Ya)**2*a))*(diff(Ya)/diff(z)) = (4/3)*F*log(4/(4-3*Ya));\n",
+ "\n",
+ "# At depth z:\n",
+ "# Mass velocity of CO = (Go-(Go-G)/(4/3))*28;\n",
+ "# Mass velocity of Ni(CO)4 = ((Go-G)*(1/3))*170.7;\n",
+ "# G_prime = 47.6*Go-19.6G; # total mass velocity [kg/square m.s]\n",
+ "# Substituting G leads to:\n",
+ "# G_prime = Go*(47.6-19.6*(4-3*Ya));# [kg/m.s]\n",
+ "# Re = (Dp*G')/viscosity\n",
+ "\n",
+ "# With Go = 0.002 kmol/square m.s & Ya in the range 1-0.005, the range of Re is 292-444;\n",
+ "# From table 3.3:\n",
+ "# Jd = (F/G)*(Sc**(2/3)) = (2.06/E)*Re**(-0.575);\n",
+ "# F = (2.06/E*(Sc)**(2/3))*(Go/(4-3*Ya))*Re**(-0.575);\n",
+ "\n",
+ "a = 6*(1-E)/Dp;\n",
+ "\n",
+ "# Result after arrangement:\n",
+ "\n",
+ "X2=lambda Ya:-((4*Go)/((4-(3*Ya))**2.0*a))*(3.0/4)*(E*(Sc**(2.0/3))*(4-(3*Ya))/(2.06*Go)*(1/math.log(4.0/(4-(3*Ya)))))*(((Dp/viscosity)*(Go*(47.6-(19.6/(4.0-(3*Ya))))))**0.575);# [m]\n",
+ "Z = integrate.quad(X2,1,0.005);\n",
+ "print'The bed depth required to reduce the CO content to 0.005 is',round(Z[0],3),'m'\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.6 - Page: 77\n",
+ "\n",
+ "\n",
+ "The bed depth required to reduce the CO content to 0.005 is 0.132 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.7: Page 80"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.7\n",
+ "# Page: 80\n",
+ "\n",
+ "print'Illustration 3.7 - Page: 80\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = water b = air\n",
+ "out_dia = 0.0254;# [m]\n",
+ "wall_thick = 0.00165;# [m]\n",
+ "avg_velocity = 4.6;# [m/s]\n",
+ "T1 = 66.0;# [C]\n",
+ "P = 1.0;# [atm]\n",
+ "Pa1 = 0.24;# [atm]\n",
+ "k1 = 11400.0;# [W/(square m.K)]\n",
+ "T2 = 24.0;# [C]\n",
+ "k2 = 570.0;# [W/square m.K]\n",
+ "k_Cu = 381.0;# [w/square m.K]\n",
+ "#******#\n",
+ "\n",
+ "# For the metal tube\n",
+ "int_dia = out_dia-(2*wall_thick);# [m]\n",
+ "avg_dia = (out_dia+int_dia)/2;# [mm]\n",
+ "Nb = 0;\n",
+ "Flux_a = 1;\n",
+ "Ya1 = 0.24;\n",
+ "Yb1 = 1-Ya1;\n",
+ "Mav = (Ya1*18.02)+(Yb1*29);# [kg/kmol]\n",
+ "density = (Mav/22.41)*(273/(273+T1));# [kg/cubic m]\n",
+ "viscosity = 1.75*10**(-5);# [kg/m.s]\n",
+ "Cpa = 1880.0;# [J/kg.K]\n",
+ "Cpmix = 1145.0;# [J/kg.K]\n",
+ "Sc = 0.6;\n",
+ "Pr = 0.75;\n",
+ "G_prime = avg_velocity*density;# [kg/square m.s]\n",
+ "G = G_prime/Mav;# [kmol/square m.s]\n",
+ "Re = avg_dia*G_prime/viscosity;\n",
+ "# From Table 3.3:\n",
+ "# Jd = Std*Sc**(2/3) = (F/G)*Sc**(2/3) = 0.023*Re**(-0.17);\n",
+ "Jd = 0.023*Re**(-0.17);\n",
+ "F = (0.023*G)*(Re**(-0.17)/Sc**(2.0/3));\n",
+ "\n",
+ "# The heat transfer coeffecient in the absence of mass transfer will be estimated through Jd = Jh\n",
+ "# Jh = Sth*Pr^(2/3) = (h/Cp*G_prime)*(Pr^(2/3)) = Jd\n",
+ "h = Jd*Cpmix*G_prime/(Pr**(2.0/3));\n",
+ "\n",
+ "U = 1/((1/k1)+((wall_thick/k_Cu)*(int_dia/avg_dia))+((1/k2)*(int_dia/out_dia)));# W/square m.K\n",
+ "\n",
+ "# Using Eqn. 3.70 & 3.71 with Nb = 0\n",
+ "# Qt = (Na*18.02*Cpa/1-exp(-(Na*18.02*Cpa/h)))*(T1-Ti)+(Lambda_a*Na);\n",
+ "# Qt = 618*(Ti-T2);\n",
+ "# Using Eqn. 3.67, with Nb = 0, Cai/C = pai, Ca1/C = Ya1 = 0.24;\n",
+ "# Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1));\n",
+ "\n",
+ "# Solving above three Eqn. simultaneously:\n",
+ "Ti = 42.2;# [C]\n",
+ "pai = 0.0806;# [atm]\n",
+ "Lambda_a = 43.4*10**6;# [J/kmol]\n",
+ "Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1)));# [kmol/square m.s]\n",
+ "Qt1 = 618*(Ti-T2);# [W/square m]\n",
+ "Qt2 = ((Na*18.02*Cpa/(1-exp(-(Na*18.02*Cpa/h))))*(T1-Ti))+(Lambda_a*Na);# [W/square m]\n",
+ "\n",
+ "# since the value of Qt1 & Qt2 are relatively close\n",
+ "print'The local rate of condensation of water is ',round(Na,6),' kmol/square m.s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.7 - Page: 80\n",
+ "\n",
+ "\n",
+ "The local rate of condensation of water is 0.000232 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.8: Page 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.8\n",
+ "# Page: 81\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 3.8 - Page: 81\\n\\n'\n",
+ "print'Illustration 3.8 (a)\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = water b = air\n",
+ "Nb = 0;\n",
+ "h = 1100.0;# [W/square m]\n",
+ "#*****#\n",
+ "\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Cpa = 2090;# [J/kg.K]\n",
+ "T1 = 600.0;# [C]\n",
+ "Ti = 260;# [C]\n",
+ "# The positive dirn. is taken to be from the bulk gas to the surface.\n",
+ "Has = 2.684*(10**6);# enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",
+ "Hai = 2.994*(10**6);# enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",
+ "\n",
+ "# Radiation contributions to the heat transfer from the gas to the surface are negligible. Eqn. 3.70 reduces to\n",
+ "Na = -((h/(Ma*Cpa))*log(1-((Cpa*(T1-Ti))/(Has-Hai))));# [kmol/square m.s]\n",
+ "print'The rate of steam flow reqd. is',round(Na,4),' kmol/square m.s\\n\\n'\n",
+ "# negative sign indicates that the mass flux is into the gas\n",
+ "\n",
+ "print'Illustration 3.8 (b)\\n\\n'\n",
+ " \n",
+ "# Solution (b)\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = water b = air\n",
+ "h = 572.0;# [W/square m]\n",
+ "T1 = 25.0;# [C]\n",
+ "#******#\n",
+ "\n",
+ "Ti = 260.0;# [C]\n",
+ "# The positive dirn. is taken to be from the bulk gas to the surface.\n",
+ "Has = 1.047*10**(5);# enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",
+ "Hai = 2.994*(10**6);# enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",
+ "\n",
+ "# Radiation contributions to the heat transfer from the gas to the surface are negligible. Eqn. 3.70 reduces to\n",
+ "Na = -((h/(Ma*Cpa))*math.log(1-((Cpa*(T1-Ti))/(Has-Hai))));# [kmol/square m.s]\n",
+ "print'The rate of steam flow reqd. is',round(Na,4),' kmol/square m.s'\n",
+ "# negative sign indicates that the mass flux is into \n",
+ "# the answer of part B in textbook is incorrect"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.8 - Page: 81\n",
+ "\n",
+ "\n",
+ "Illustration 3.8 (a)\n",
+ "\n",
+ "\n",
+ "The rate of steam flow reqd. is -0.0348 kmol/square m.s\n",
+ "\n",
+ "\n",
+ "Illustration 3.8 (b)\n",
+ "\n",
+ "\n",
+ "The rate of steam flow reqd. is 0.0028 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter3_1.ipynb b/Mass_-_Transfer_Operations/Chapter3_1.ipynb
new file mode 100755
index 00000000..36f53f4d
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter3_1.ipynb
@@ -0,0 +1,628 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:64d9a62e17838716bd10cd86f93be8c39dc69462337a3d3adc3d6ea158cbc575"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3: Mass-Transfer Coefficients"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.1:Page 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.1\n",
+ "# Page: 53\n",
+ "\n",
+ "print'Illustration 3.1 - Page: 53\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = CO2 b = H2O\n",
+ "Ca0 = 0;#[kmol/cubic m]\n",
+ "Cai = 0.0336;#[kmol/cubic m]\n",
+ "Dab = 1.96*10**(-9);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "density = 998.0;# [kg/cubic m]\n",
+ "viscosity = 8.94*10**(-4);#[kg/m.s]\n",
+ "rate = 0.05;#[kg/m.s] mass flow rate of liquid\n",
+ "L = 1;#[m]\n",
+ "g = 9.81;#[m/square s]\n",
+ "# From Eqn. 3.10\n",
+ "Del = ((3*viscosity*rate)/((density**2)*g))**(1.0/3);# [m]\n",
+ "Re = 4*rate/viscosity;\n",
+ "# Flow comes out to be laminar\n",
+ "# From Eqn. 3.19\n",
+ "Kl_avg = ((6*Dab*rate)/(3.141*density*Del*L))**(1.0/2);#[kmol/square m.s.(kmol/cubic m)]\n",
+ "bulk_avg_velocity = rate/(density*Del);#[m/s]\n",
+ "# At the top: Cai-Ca = Cai_Ca0 = Cai\n",
+ "#At the bottom: Cai-Cal\n",
+ "# From Eqn. 3.21 & 3.22\n",
+ "Cal = Cai*(1-(1.0/(exp(Kl_avg/(bulk_avg_velocity*Del)))));# [kmol/cubic m]\n",
+ "rate_absorption = bulk_avg_velocity*Del*(Cal-Ca0);# [kmol/s].(m of width)\n",
+ "print'The rate of absorption is ',round(rate_absorption,8),' kmol/sec.(m of width)'\n",
+ "# The actual value may be substantially larger."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.1 - Page: 53\n",
+ "\n",
+ "\n",
+ "The rate of absorption is 7.2e-07 kmol/sec.(m of width)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.2: Page 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.2\n",
+ "# Page: 56\n",
+ "\n",
+ "print'Illustration 3.2 - Page: 56\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "d = 0.025;# [m]\n",
+ "avg_velocity = 3;# [m/s]\n",
+ "viscosity = 8.937*10**(-4);# [kg/m.s]\n",
+ "density = 997;# [kg/m**3]\n",
+ "#*********#\n",
+ "\n",
+ "kinematic_viscosity = viscosity/density;# [square m/s]\n",
+ "Re = d*avg_velocity*density/viscosity;\n",
+ "# Reynold's number comes out to be 83670\n",
+ "# At this Reynold's number fanning factor = 0.0047\n",
+ "f = 0.0047;\n",
+ "L = 1;# [m]\n",
+ "press_drop = 2*density*f*L*(avg_velocity**2)/(d);# [N/square m]\n",
+ "P = 3.141*(d**2)*avg_velocity*press_drop/4;# [N.m/s] for 1m pipe\n",
+ "m = 3.141*(d**2)*L*density/4;\n",
+ "# From Eqn. 3.24\n",
+ "Ld = ((kinematic_viscosity**3)*m/P)**(1.0/4);# [m]\n",
+ "# From Eqn. 3.25\n",
+ "Ud = (kinematic_viscosity*P/m)**(1.0/4);# [m/s]\n",
+ "print'Velocity of small eddies is',round(Ud,4),'m/s'\n",
+ "print'Length scale of small eddies is',round(Ld,7),'m'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.2 - Page: 56\n",
+ "\n",
+ "\n",
+ "Velocity of small eddies is 0.0549 m/s\n",
+ "Length scale of small eddies is 1.63e-05 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.3: Page 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.3\n",
+ "# Page: 69\n",
+ "\n",
+ "print'Illustration 3.3 - Page: 69\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# Heat transfer analog to Eqn. 3.12\n",
+ "# The Eqn. remains the same with the dimensionless conc. ratio replaced by ((tl-to)/(ti-to))\n",
+ "\n",
+ "# The dimensionless group:\n",
+ "# eta = 2*Dab*L/(3*del**2*velocity);\n",
+ "# eta = (2/3)*(Dab/(del*velocity))*(L/del);\n",
+ "# Ped = Peclet no. for mass transfer\n",
+ "# eta = (2/3)*(1/Ped)*(L/del);\n",
+ "\n",
+ "# For heat transfer is replaced by\n",
+ "# Peh = Peclet no. for heat transfer\n",
+ "# eta = (2/3)*(1/Peh)*(L/del);\n",
+ "# eta = (2/3)*(alpha/(del*velocity))*(L/del);\n",
+ "# eta = (2*alpha*L)/(3*del**2*velocity);\n",
+ "print'Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del**2*velocity)'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.3 - Page: 69\n",
+ "\n",
+ "\n",
+ "Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del**2*velocity)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.4: Page-69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.4\n",
+ "# Page: 69\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 3.4 - Page: 69\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = UF6 b = air\n",
+ "# The average heat transfer coefficient: Nu_avg = 0.43+0.532(Re^0.5)(Pr^0.31)\n",
+ "# The analogus expression for mass transfer coefficient: Sh_avg = 0.43+0.532(Re^0.5)(Sc^0.31)\n",
+ "d = 0.006;# [m]\n",
+ "velocity = 3.0;# [m/s]\n",
+ "surf_temp = 43.0;# [C]\n",
+ "bulk_temp = 60.0;# [C]\n",
+ "avg_temp = (surf_temp+bulk_temp)/2; #[C]\n",
+ "density = 4.10;# [kg/cubic m]\n",
+ "viscosity = 2.7*10**(-5);# [kg/m.s]\n",
+ "Dab = 9.04*10**(-6);# [square m/s]\n",
+ "press = 53.32;# [kN/square m]\n",
+ "tot_press = 101.33;# [kN/square m]\n",
+ "#******#\n",
+ "\n",
+ "avg_press = press/2.0; # [kN/square m]\n",
+ "Xa = avg_press/tot_press;\n",
+ "Xb = 1-Xa;\n",
+ "Re = d*velocity*density/viscosity;\n",
+ "Sc = viscosity/(density*Dab);\n",
+ "Sh_avg = 0.43+(0.532*(2733**0.5)*(0.728**0.5));\n",
+ "c = 273.2/(22.41*(273.2+avg_temp));# [kmol/cubic m]\n",
+ "F_avg = Sh_avg*c*Dab/d;#[kmol/cubic m]\n",
+ "Nb = 0.0;\n",
+ "Ca1_by_C = press/tot_press;\n",
+ "Ca2_by_C = 0.0;\n",
+ "Flux_a = 1.0;\n",
+ "# Using Eqn. 3.1\n",
+ "Na = Flux_a*F_avg*math.log((Flux_a-Ca2_by_C)/(Flux_a-Ca1_by_C));#[kmol UF6/square m.s]\n",
+ "print'Rate of sublimation is',round(Na,8),' kmol UF6/square m.s'\n",
+ "# the answer is slightly different in textbook due to approximation"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.4 - Page: 69\n",
+ "\n",
+ "\n",
+ "Rate of sublimation is 0.00102088 kmol UF6/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.5: Page 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.5\n",
+ "# Page: 73\n",
+ "\n",
+ "print'Illustration 3.5 - Page: 73\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "velocity = 15.0;# [m/s]\n",
+ "G = 21.3;# [kg/square m.s]\n",
+ "#******#\n",
+ "\n",
+ "# Since the experimental data do not include the effects of changing Prandtl number.\n",
+ "\n",
+ "# Jh = (h/(Cp*density*viscosity)) = (h/Cp*G)*(Pr^(2/3)) = Shi(Re);\n",
+ "\n",
+ "# Shi(Re) must be compatible with 21.3*(G**0.6);\n",
+ "# Let Shi(Re) = b*(Re**n);\n",
+ "# Re = (l*G)/viscosity;\n",
+ "\n",
+ "# h = (Cp*G/(Pr**(2/3)))*b*(Re**n);\n",
+ "# h = (Cp*G/(Pr**(2/3)))*b*((l*b/viscosity)**n) = 21.3*(G**0.6);\n",
+ "\n",
+ "n = 0.6-1;\n",
+ "# b = 21.3*((Pr**(2/3))/Cp)*((l/viscosity)**(-n));\n",
+ "\n",
+ "# Using data for air at 38 C & 1 std atm.\n",
+ "Cp1 = 1002;# [kJ/kg.K]\n",
+ "viscosity1 = 1.85*10**(-5);#[kg/m.s]\n",
+ "k1 = 0.0273;#[W/m.K]\n",
+ "Pr1 = (Cp1*viscosity1)/k1;\n",
+ "b_prime = 21.3*(Pr1**(2.0/3)/Cp1)*((1/viscosity1)**0.4);\n",
+ "# b = b_prime*l**(0.4);\n",
+ "# Jh = (h/(Cp*G))*Pr**(2/3) = b_prime*((l/Re)**(0.4)) = Shi(Re);\n",
+ "\n",
+ "# The heat mass transfer analogy will be used to estimate the mass transfer coefficient. (Jd = Jh)\n",
+ "\n",
+ "# Jd = (KG*Pbm*Mav*Sc**(2/3))/(density*viscosity) = Shi(Re) = b_prime*((l/Re)**0.4);\n",
+ "\n",
+ "# KG*Pbm = F = (b_prime*density*viscosity)/(Re^0.4*Mav*Sc**(2/3)) = (b_prime*(density*velocity)**0.6*(viscosity^0.4))/(Mav*Sc**(2/3));\n",
+ "\n",
+ "# For H2-H20, 38 C, 1std atm\n",
+ "viscosity2 = 9*10**(-6);# [kg/m.s]\n",
+ "density2 = 0.0794;# [kg/cubic m]\n",
+ "Dab = 7.75*10**(-5);# [square m/s]\n",
+ "Sc = viscosity2/(density2*Dab);\n",
+ "\n",
+ "# Assuming desity, Molecular weight and viscosity of the gas are essentially those of H2\n",
+ "\n",
+ "Mav = 2.02;# [kg/kmol]\n",
+ "F = (b_prime*(density2*velocity)**0.6*(viscosity2**0.4))/(Mav*Sc**(2.0/3));# [kmol/square m.s]\n",
+ "print'The required mass transfer: ',round(F,5),' kmol/square m.s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.5 - Page: 73\n",
+ "\n",
+ "\n",
+ "The required mass transfer: 0.00525 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.6:Page 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.6\n",
+ "# Page: 77\n",
+ "\n",
+ "print'Illustration 3.6 - Page: 77\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy import integrate\n",
+ "import math \n",
+ "#***Data***#\n",
+ "Dp = 0.0125;# [m]\n",
+ "viscosity = 2.4*10**(-5);# [kg/m.s]\n",
+ "Sc = 2.0;\n",
+ "E = 0.3;\n",
+ "Go = (2*10**(-3))/0.1;# molar superficial mass velocity [kmol/square m.s]\n",
+ "#********#\n",
+ "\n",
+ "# a = CO b = Ni(CO)4\n",
+ "# Nb = -(Na/4);\n",
+ "Flux_a = 4.0/3;\n",
+ "Ca2_by_C = 0;# At the metal interface\n",
+ "# Ca1_by_C = Ya #mole fraction of CO in the bulk\n",
+ "\n",
+ "# Eqn. 3.1 becomes: Na = (4/3)*F*log((4/3)/((4/3)-Ya));\n",
+ "\n",
+ "# Let G = kmol gas/(square m bed cross section).s\n",
+ "# a = specific metal surface\n",
+ "# z = depth \n",
+ "# Therefore, Na = -(diff(Ya*G))/(a*diff(z));# [kmol/((square m metal surface).s)];\n",
+ "# For each kmol of CO consumed, (1/4)kmol Ni(CO)4 forms, representing a loss of (3/4) kmol per kmol of CO consumed.\n",
+ "# The CO consumed through bed depth dz is therefore (Go-G)(4/3) kmol;\n",
+ "# Ya = (Go-(Go-G)*(4/3))/G;\n",
+ "# G = Go/(4-(3*Ya));\n",
+ "# diff(YaG) = ((4*Go)/(4-3*Ya)**2)*diff(Ya);\n",
+ "\n",
+ "# Substituting in Eqn. 3.64\n",
+ "# -(4*Go/((4-3*Ya)**2*a))*(diff(Ya)/diff(z)) = (4/3)*F*log(4/(4-3*Ya));\n",
+ "\n",
+ "# At depth z:\n",
+ "# Mass velocity of CO = (Go-(Go-G)/(4/3))*28;\n",
+ "# Mass velocity of Ni(CO)4 = ((Go-G)*(1/3))*170.7;\n",
+ "# G_prime = 47.6*Go-19.6G; # total mass velocity [kg/square m.s]\n",
+ "# Substituting G leads to:\n",
+ "# G_prime = Go*(47.6-19.6*(4-3*Ya));# [kg/m.s]\n",
+ "# Re = (Dp*G')/viscosity\n",
+ "\n",
+ "# With Go = 0.002 kmol/square m.s & Ya in the range 1-0.005, the range of Re is 292-444;\n",
+ "# From table 3.3:\n",
+ "# Jd = (F/G)*(Sc**(2/3)) = (2.06/E)*Re**(-0.575);\n",
+ "# F = (2.06/E*(Sc)**(2/3))*(Go/(4-3*Ya))*Re**(-0.575);\n",
+ "\n",
+ "a = 6*(1-E)/Dp;\n",
+ "\n",
+ "# Result after arrangement:\n",
+ "\n",
+ "X2=lambda Ya:-((4*Go)/((4-(3*Ya))**2.0*a))*(3.0/4)*(E*(Sc**(2.0/3))*(4-(3*Ya))/(2.06*Go)*(1/math.log(4.0/(4-(3*Ya)))))*(((Dp/viscosity)*(Go*(47.6-(19.6/(4.0-(3*Ya))))))**0.575);# [m]\n",
+ "Z = integrate.quad(X2,1,0.005);\n",
+ "print'The bed depth required to reduce the CO content to 0.005 is',round(Z[0],3),'m'\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.6 - Page: 77\n",
+ "\n",
+ "\n",
+ "The bed depth required to reduce the CO content to 0.005 is 0.132 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.7: Page 80"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.7\n",
+ "# Page: 80\n",
+ "\n",
+ "print'Illustration 3.7 - Page: 80\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = water b = air\n",
+ "out_dia = 0.0254;# [m]\n",
+ "wall_thick = 0.00165;# [m]\n",
+ "avg_velocity = 4.6;# [m/s]\n",
+ "T1 = 66.0;# [C]\n",
+ "P = 1.0;# [atm]\n",
+ "Pa1 = 0.24;# [atm]\n",
+ "k1 = 11400.0;# [W/(square m.K)]\n",
+ "T2 = 24.0;# [C]\n",
+ "k2 = 570.0;# [W/square m.K]\n",
+ "k_Cu = 381.0;# [w/square m.K]\n",
+ "#******#\n",
+ "\n",
+ "# For the metal tube\n",
+ "int_dia = out_dia-(2*wall_thick);# [m]\n",
+ "avg_dia = (out_dia+int_dia)/2;# [mm]\n",
+ "Nb = 0;\n",
+ "Flux_a = 1;\n",
+ "Ya1 = 0.24;\n",
+ "Yb1 = 1-Ya1;\n",
+ "Mav = (Ya1*18.02)+(Yb1*29);# [kg/kmol]\n",
+ "density = (Mav/22.41)*(273/(273+T1));# [kg/cubic m]\n",
+ "viscosity = 1.75*10**(-5);# [kg/m.s]\n",
+ "Cpa = 1880.0;# [J/kg.K]\n",
+ "Cpmix = 1145.0;# [J/kg.K]\n",
+ "Sc = 0.6;\n",
+ "Pr = 0.75;\n",
+ "G_prime = avg_velocity*density;# [kg/square m.s]\n",
+ "G = G_prime/Mav;# [kmol/square m.s]\n",
+ "Re = avg_dia*G_prime/viscosity;\n",
+ "# From Table 3.3:\n",
+ "# Jd = Std*Sc**(2/3) = (F/G)*Sc**(2/3) = 0.023*Re**(-0.17);\n",
+ "Jd = 0.023*Re**(-0.17);\n",
+ "F = (0.023*G)*(Re**(-0.17)/Sc**(2.0/3));\n",
+ "\n",
+ "# The heat transfer coeffecient in the absence of mass transfer will be estimated through Jd = Jh\n",
+ "# Jh = Sth*Pr^(2/3) = (h/Cp*G_prime)*(Pr^(2/3)) = Jd\n",
+ "h = Jd*Cpmix*G_prime/(Pr**(2.0/3));\n",
+ "\n",
+ "U = 1/((1/k1)+((wall_thick/k_Cu)*(int_dia/avg_dia))+((1/k2)*(int_dia/out_dia)));# W/square m.K\n",
+ "\n",
+ "# Using Eqn. 3.70 & 3.71 with Nb = 0\n",
+ "# Qt = (Na*18.02*Cpa/1-exp(-(Na*18.02*Cpa/h)))*(T1-Ti)+(Lambda_a*Na);\n",
+ "# Qt = 618*(Ti-T2);\n",
+ "# Using Eqn. 3.67, with Nb = 0, Cai/C = pai, Ca1/C = Ya1 = 0.24;\n",
+ "# Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1));\n",
+ "\n",
+ "# Solving above three Eqn. simultaneously:\n",
+ "Ti = 42.2;# [C]\n",
+ "pai = 0.0806;# [atm]\n",
+ "Lambda_a = 43.4*10**6;# [J/kmol]\n",
+ "Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1)));# [kmol/square m.s]\n",
+ "Qt1 = 618*(Ti-T2);# [W/square m]\n",
+ "Qt2 = ((Na*18.02*Cpa/(1-exp(-(Na*18.02*Cpa/h))))*(T1-Ti))+(Lambda_a*Na);# [W/square m]\n",
+ "\n",
+ "# since the value of Qt1 & Qt2 are relatively close\n",
+ "print'The local rate of condensation of water is ',round(Na,6),' kmol/square m.s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.7 - Page: 80\n",
+ "\n",
+ "\n",
+ "The local rate of condensation of water is 0.000232 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.8: Page 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.8\n",
+ "# Page: 81\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 3.8 - Page: 81\\n\\n'\n",
+ "print'Illustration 3.8 (a)\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = water b = air\n",
+ "Nb = 0;\n",
+ "h = 1100.0;# [W/square m]\n",
+ "#*****#\n",
+ "\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Cpa = 2090;# [J/kg.K]\n",
+ "T1 = 600.0;# [C]\n",
+ "Ti = 260;# [C]\n",
+ "# The positive dirn. is taken to be from the bulk gas to the surface.\n",
+ "Has = 2.684*(10**6);# enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",
+ "Hai = 2.994*(10**6);# enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",
+ "\n",
+ "# Radiation contributions to the heat transfer from the gas to the surface are negligible. Eqn. 3.70 reduces to\n",
+ "Na = -((h/(Ma*Cpa))*log(1-((Cpa*(T1-Ti))/(Has-Hai))));# [kmol/square m.s]\n",
+ "print'The rate of steam flow reqd. is',round(Na,4),' kmol/square m.s\\n\\n'\n",
+ "# negative sign indicates that the mass flux is into the gas\n",
+ "\n",
+ "print'Illustration 3.8 (b)\\n\\n'\n",
+ " \n",
+ "# Solution (b)\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = water b = air\n",
+ "h = 572.0;# [W/square m]\n",
+ "T1 = 25.0;# [C]\n",
+ "#******#\n",
+ "\n",
+ "Ti = 260.0;# [C]\n",
+ "# The positive dirn. is taken to be from the bulk gas to the surface.\n",
+ "Has = 1.047*10**(5);# enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",
+ "Hai = 2.994*(10**6);# enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",
+ "\n",
+ "# Radiation contributions to the heat transfer from the gas to the surface are negligible. Eqn. 3.70 reduces to\n",
+ "Na = -((h/(Ma*Cpa))*math.log(1-((Cpa*(T1-Ti))/(Has-Hai))));# [kmol/square m.s]\n",
+ "print'The rate of steam flow reqd. is',round(Na,4),' kmol/square m.s'\n",
+ "# negative sign indicates that the mass flux is into \n",
+ "# the answer of part B in textbook is incorrect"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.8 - Page: 81\n",
+ "\n",
+ "\n",
+ "Illustration 3.8 (a)\n",
+ "\n",
+ "\n",
+ "The rate of steam flow reqd. is -0.0348 kmol/square m.s\n",
+ "\n",
+ "\n",
+ "Illustration 3.8 (b)\n",
+ "\n",
+ "\n",
+ "The rate of steam flow reqd. is 0.0028 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter3_2.ipynb b/Mass_-_Transfer_Operations/Chapter3_2.ipynb
new file mode 100755
index 00000000..36f53f4d
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter3_2.ipynb
@@ -0,0 +1,628 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:64d9a62e17838716bd10cd86f93be8c39dc69462337a3d3adc3d6ea158cbc575"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3: Mass-Transfer Coefficients"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.1:Page 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.1\n",
+ "# Page: 53\n",
+ "\n",
+ "print'Illustration 3.1 - Page: 53\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = CO2 b = H2O\n",
+ "Ca0 = 0;#[kmol/cubic m]\n",
+ "Cai = 0.0336;#[kmol/cubic m]\n",
+ "Dab = 1.96*10**(-9);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "density = 998.0;# [kg/cubic m]\n",
+ "viscosity = 8.94*10**(-4);#[kg/m.s]\n",
+ "rate = 0.05;#[kg/m.s] mass flow rate of liquid\n",
+ "L = 1;#[m]\n",
+ "g = 9.81;#[m/square s]\n",
+ "# From Eqn. 3.10\n",
+ "Del = ((3*viscosity*rate)/((density**2)*g))**(1.0/3);# [m]\n",
+ "Re = 4*rate/viscosity;\n",
+ "# Flow comes out to be laminar\n",
+ "# From Eqn. 3.19\n",
+ "Kl_avg = ((6*Dab*rate)/(3.141*density*Del*L))**(1.0/2);#[kmol/square m.s.(kmol/cubic m)]\n",
+ "bulk_avg_velocity = rate/(density*Del);#[m/s]\n",
+ "# At the top: Cai-Ca = Cai_Ca0 = Cai\n",
+ "#At the bottom: Cai-Cal\n",
+ "# From Eqn. 3.21 & 3.22\n",
+ "Cal = Cai*(1-(1.0/(exp(Kl_avg/(bulk_avg_velocity*Del)))));# [kmol/cubic m]\n",
+ "rate_absorption = bulk_avg_velocity*Del*(Cal-Ca0);# [kmol/s].(m of width)\n",
+ "print'The rate of absorption is ',round(rate_absorption,8),' kmol/sec.(m of width)'\n",
+ "# The actual value may be substantially larger."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.1 - Page: 53\n",
+ "\n",
+ "\n",
+ "The rate of absorption is 7.2e-07 kmol/sec.(m of width)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.2: Page 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.2\n",
+ "# Page: 56\n",
+ "\n",
+ "print'Illustration 3.2 - Page: 56\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "d = 0.025;# [m]\n",
+ "avg_velocity = 3;# [m/s]\n",
+ "viscosity = 8.937*10**(-4);# [kg/m.s]\n",
+ "density = 997;# [kg/m**3]\n",
+ "#*********#\n",
+ "\n",
+ "kinematic_viscosity = viscosity/density;# [square m/s]\n",
+ "Re = d*avg_velocity*density/viscosity;\n",
+ "# Reynold's number comes out to be 83670\n",
+ "# At this Reynold's number fanning factor = 0.0047\n",
+ "f = 0.0047;\n",
+ "L = 1;# [m]\n",
+ "press_drop = 2*density*f*L*(avg_velocity**2)/(d);# [N/square m]\n",
+ "P = 3.141*(d**2)*avg_velocity*press_drop/4;# [N.m/s] for 1m pipe\n",
+ "m = 3.141*(d**2)*L*density/4;\n",
+ "# From Eqn. 3.24\n",
+ "Ld = ((kinematic_viscosity**3)*m/P)**(1.0/4);# [m]\n",
+ "# From Eqn. 3.25\n",
+ "Ud = (kinematic_viscosity*P/m)**(1.0/4);# [m/s]\n",
+ "print'Velocity of small eddies is',round(Ud,4),'m/s'\n",
+ "print'Length scale of small eddies is',round(Ld,7),'m'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.2 - Page: 56\n",
+ "\n",
+ "\n",
+ "Velocity of small eddies is 0.0549 m/s\n",
+ "Length scale of small eddies is 1.63e-05 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.3: Page 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.3\n",
+ "# Page: 69\n",
+ "\n",
+ "print'Illustration 3.3 - Page: 69\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# Heat transfer analog to Eqn. 3.12\n",
+ "# The Eqn. remains the same with the dimensionless conc. ratio replaced by ((tl-to)/(ti-to))\n",
+ "\n",
+ "# The dimensionless group:\n",
+ "# eta = 2*Dab*L/(3*del**2*velocity);\n",
+ "# eta = (2/3)*(Dab/(del*velocity))*(L/del);\n",
+ "# Ped = Peclet no. for mass transfer\n",
+ "# eta = (2/3)*(1/Ped)*(L/del);\n",
+ "\n",
+ "# For heat transfer is replaced by\n",
+ "# Peh = Peclet no. for heat transfer\n",
+ "# eta = (2/3)*(1/Peh)*(L/del);\n",
+ "# eta = (2/3)*(alpha/(del*velocity))*(L/del);\n",
+ "# eta = (2*alpha*L)/(3*del**2*velocity);\n",
+ "print'Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del**2*velocity)'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.3 - Page: 69\n",
+ "\n",
+ "\n",
+ "Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del**2*velocity)\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.4: Page-69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.4\n",
+ "# Page: 69\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 3.4 - Page: 69\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = UF6 b = air\n",
+ "# The average heat transfer coefficient: Nu_avg = 0.43+0.532(Re^0.5)(Pr^0.31)\n",
+ "# The analogus expression for mass transfer coefficient: Sh_avg = 0.43+0.532(Re^0.5)(Sc^0.31)\n",
+ "d = 0.006;# [m]\n",
+ "velocity = 3.0;# [m/s]\n",
+ "surf_temp = 43.0;# [C]\n",
+ "bulk_temp = 60.0;# [C]\n",
+ "avg_temp = (surf_temp+bulk_temp)/2; #[C]\n",
+ "density = 4.10;# [kg/cubic m]\n",
+ "viscosity = 2.7*10**(-5);# [kg/m.s]\n",
+ "Dab = 9.04*10**(-6);# [square m/s]\n",
+ "press = 53.32;# [kN/square m]\n",
+ "tot_press = 101.33;# [kN/square m]\n",
+ "#******#\n",
+ "\n",
+ "avg_press = press/2.0; # [kN/square m]\n",
+ "Xa = avg_press/tot_press;\n",
+ "Xb = 1-Xa;\n",
+ "Re = d*velocity*density/viscosity;\n",
+ "Sc = viscosity/(density*Dab);\n",
+ "Sh_avg = 0.43+(0.532*(2733**0.5)*(0.728**0.5));\n",
+ "c = 273.2/(22.41*(273.2+avg_temp));# [kmol/cubic m]\n",
+ "F_avg = Sh_avg*c*Dab/d;#[kmol/cubic m]\n",
+ "Nb = 0.0;\n",
+ "Ca1_by_C = press/tot_press;\n",
+ "Ca2_by_C = 0.0;\n",
+ "Flux_a = 1.0;\n",
+ "# Using Eqn. 3.1\n",
+ "Na = Flux_a*F_avg*math.log((Flux_a-Ca2_by_C)/(Flux_a-Ca1_by_C));#[kmol UF6/square m.s]\n",
+ "print'Rate of sublimation is',round(Na,8),' kmol UF6/square m.s'\n",
+ "# the answer is slightly different in textbook due to approximation"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.4 - Page: 69\n",
+ "\n",
+ "\n",
+ "Rate of sublimation is 0.00102088 kmol UF6/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.5: Page 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.5\n",
+ "# Page: 73\n",
+ "\n",
+ "print'Illustration 3.5 - Page: 73\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "velocity = 15.0;# [m/s]\n",
+ "G = 21.3;# [kg/square m.s]\n",
+ "#******#\n",
+ "\n",
+ "# Since the experimental data do not include the effects of changing Prandtl number.\n",
+ "\n",
+ "# Jh = (h/(Cp*density*viscosity)) = (h/Cp*G)*(Pr^(2/3)) = Shi(Re);\n",
+ "\n",
+ "# Shi(Re) must be compatible with 21.3*(G**0.6);\n",
+ "# Let Shi(Re) = b*(Re**n);\n",
+ "# Re = (l*G)/viscosity;\n",
+ "\n",
+ "# h = (Cp*G/(Pr**(2/3)))*b*(Re**n);\n",
+ "# h = (Cp*G/(Pr**(2/3)))*b*((l*b/viscosity)**n) = 21.3*(G**0.6);\n",
+ "\n",
+ "n = 0.6-1;\n",
+ "# b = 21.3*((Pr**(2/3))/Cp)*((l/viscosity)**(-n));\n",
+ "\n",
+ "# Using data for air at 38 C & 1 std atm.\n",
+ "Cp1 = 1002;# [kJ/kg.K]\n",
+ "viscosity1 = 1.85*10**(-5);#[kg/m.s]\n",
+ "k1 = 0.0273;#[W/m.K]\n",
+ "Pr1 = (Cp1*viscosity1)/k1;\n",
+ "b_prime = 21.3*(Pr1**(2.0/3)/Cp1)*((1/viscosity1)**0.4);\n",
+ "# b = b_prime*l**(0.4);\n",
+ "# Jh = (h/(Cp*G))*Pr**(2/3) = b_prime*((l/Re)**(0.4)) = Shi(Re);\n",
+ "\n",
+ "# The heat mass transfer analogy will be used to estimate the mass transfer coefficient. (Jd = Jh)\n",
+ "\n",
+ "# Jd = (KG*Pbm*Mav*Sc**(2/3))/(density*viscosity) = Shi(Re) = b_prime*((l/Re)**0.4);\n",
+ "\n",
+ "# KG*Pbm = F = (b_prime*density*viscosity)/(Re^0.4*Mav*Sc**(2/3)) = (b_prime*(density*velocity)**0.6*(viscosity^0.4))/(Mav*Sc**(2/3));\n",
+ "\n",
+ "# For H2-H20, 38 C, 1std atm\n",
+ "viscosity2 = 9*10**(-6);# [kg/m.s]\n",
+ "density2 = 0.0794;# [kg/cubic m]\n",
+ "Dab = 7.75*10**(-5);# [square m/s]\n",
+ "Sc = viscosity2/(density2*Dab);\n",
+ "\n",
+ "# Assuming desity, Molecular weight and viscosity of the gas are essentially those of H2\n",
+ "\n",
+ "Mav = 2.02;# [kg/kmol]\n",
+ "F = (b_prime*(density2*velocity)**0.6*(viscosity2**0.4))/(Mav*Sc**(2.0/3));# [kmol/square m.s]\n",
+ "print'The required mass transfer: ',round(F,5),' kmol/square m.s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.5 - Page: 73\n",
+ "\n",
+ "\n",
+ "The required mass transfer: 0.00525 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.6:Page 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.6\n",
+ "# Page: 77\n",
+ "\n",
+ "print'Illustration 3.6 - Page: 77\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy import integrate\n",
+ "import math \n",
+ "#***Data***#\n",
+ "Dp = 0.0125;# [m]\n",
+ "viscosity = 2.4*10**(-5);# [kg/m.s]\n",
+ "Sc = 2.0;\n",
+ "E = 0.3;\n",
+ "Go = (2*10**(-3))/0.1;# molar superficial mass velocity [kmol/square m.s]\n",
+ "#********#\n",
+ "\n",
+ "# a = CO b = Ni(CO)4\n",
+ "# Nb = -(Na/4);\n",
+ "Flux_a = 4.0/3;\n",
+ "Ca2_by_C = 0;# At the metal interface\n",
+ "# Ca1_by_C = Ya #mole fraction of CO in the bulk\n",
+ "\n",
+ "# Eqn. 3.1 becomes: Na = (4/3)*F*log((4/3)/((4/3)-Ya));\n",
+ "\n",
+ "# Let G = kmol gas/(square m bed cross section).s\n",
+ "# a = specific metal surface\n",
+ "# z = depth \n",
+ "# Therefore, Na = -(diff(Ya*G))/(a*diff(z));# [kmol/((square m metal surface).s)];\n",
+ "# For each kmol of CO consumed, (1/4)kmol Ni(CO)4 forms, representing a loss of (3/4) kmol per kmol of CO consumed.\n",
+ "# The CO consumed through bed depth dz is therefore (Go-G)(4/3) kmol;\n",
+ "# Ya = (Go-(Go-G)*(4/3))/G;\n",
+ "# G = Go/(4-(3*Ya));\n",
+ "# diff(YaG) = ((4*Go)/(4-3*Ya)**2)*diff(Ya);\n",
+ "\n",
+ "# Substituting in Eqn. 3.64\n",
+ "# -(4*Go/((4-3*Ya)**2*a))*(diff(Ya)/diff(z)) = (4/3)*F*log(4/(4-3*Ya));\n",
+ "\n",
+ "# At depth z:\n",
+ "# Mass velocity of CO = (Go-(Go-G)/(4/3))*28;\n",
+ "# Mass velocity of Ni(CO)4 = ((Go-G)*(1/3))*170.7;\n",
+ "# G_prime = 47.6*Go-19.6G; # total mass velocity [kg/square m.s]\n",
+ "# Substituting G leads to:\n",
+ "# G_prime = Go*(47.6-19.6*(4-3*Ya));# [kg/m.s]\n",
+ "# Re = (Dp*G')/viscosity\n",
+ "\n",
+ "# With Go = 0.002 kmol/square m.s & Ya in the range 1-0.005, the range of Re is 292-444;\n",
+ "# From table 3.3:\n",
+ "# Jd = (F/G)*(Sc**(2/3)) = (2.06/E)*Re**(-0.575);\n",
+ "# F = (2.06/E*(Sc)**(2/3))*(Go/(4-3*Ya))*Re**(-0.575);\n",
+ "\n",
+ "a = 6*(1-E)/Dp;\n",
+ "\n",
+ "# Result after arrangement:\n",
+ "\n",
+ "X2=lambda Ya:-((4*Go)/((4-(3*Ya))**2.0*a))*(3.0/4)*(E*(Sc**(2.0/3))*(4-(3*Ya))/(2.06*Go)*(1/math.log(4.0/(4-(3*Ya)))))*(((Dp/viscosity)*(Go*(47.6-(19.6/(4.0-(3*Ya))))))**0.575);# [m]\n",
+ "Z = integrate.quad(X2,1,0.005);\n",
+ "print'The bed depth required to reduce the CO content to 0.005 is',round(Z[0],3),'m'\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.6 - Page: 77\n",
+ "\n",
+ "\n",
+ "The bed depth required to reduce the CO content to 0.005 is 0.132 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.7: Page 80"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.7\n",
+ "# Page: 80\n",
+ "\n",
+ "print'Illustration 3.7 - Page: 80\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = water b = air\n",
+ "out_dia = 0.0254;# [m]\n",
+ "wall_thick = 0.00165;# [m]\n",
+ "avg_velocity = 4.6;# [m/s]\n",
+ "T1 = 66.0;# [C]\n",
+ "P = 1.0;# [atm]\n",
+ "Pa1 = 0.24;# [atm]\n",
+ "k1 = 11400.0;# [W/(square m.K)]\n",
+ "T2 = 24.0;# [C]\n",
+ "k2 = 570.0;# [W/square m.K]\n",
+ "k_Cu = 381.0;# [w/square m.K]\n",
+ "#******#\n",
+ "\n",
+ "# For the metal tube\n",
+ "int_dia = out_dia-(2*wall_thick);# [m]\n",
+ "avg_dia = (out_dia+int_dia)/2;# [mm]\n",
+ "Nb = 0;\n",
+ "Flux_a = 1;\n",
+ "Ya1 = 0.24;\n",
+ "Yb1 = 1-Ya1;\n",
+ "Mav = (Ya1*18.02)+(Yb1*29);# [kg/kmol]\n",
+ "density = (Mav/22.41)*(273/(273+T1));# [kg/cubic m]\n",
+ "viscosity = 1.75*10**(-5);# [kg/m.s]\n",
+ "Cpa = 1880.0;# [J/kg.K]\n",
+ "Cpmix = 1145.0;# [J/kg.K]\n",
+ "Sc = 0.6;\n",
+ "Pr = 0.75;\n",
+ "G_prime = avg_velocity*density;# [kg/square m.s]\n",
+ "G = G_prime/Mav;# [kmol/square m.s]\n",
+ "Re = avg_dia*G_prime/viscosity;\n",
+ "# From Table 3.3:\n",
+ "# Jd = Std*Sc**(2/3) = (F/G)*Sc**(2/3) = 0.023*Re**(-0.17);\n",
+ "Jd = 0.023*Re**(-0.17);\n",
+ "F = (0.023*G)*(Re**(-0.17)/Sc**(2.0/3));\n",
+ "\n",
+ "# The heat transfer coeffecient in the absence of mass transfer will be estimated through Jd = Jh\n",
+ "# Jh = Sth*Pr^(2/3) = (h/Cp*G_prime)*(Pr^(2/3)) = Jd\n",
+ "h = Jd*Cpmix*G_prime/(Pr**(2.0/3));\n",
+ "\n",
+ "U = 1/((1/k1)+((wall_thick/k_Cu)*(int_dia/avg_dia))+((1/k2)*(int_dia/out_dia)));# W/square m.K\n",
+ "\n",
+ "# Using Eqn. 3.70 & 3.71 with Nb = 0\n",
+ "# Qt = (Na*18.02*Cpa/1-exp(-(Na*18.02*Cpa/h)))*(T1-Ti)+(Lambda_a*Na);\n",
+ "# Qt = 618*(Ti-T2);\n",
+ "# Using Eqn. 3.67, with Nb = 0, Cai/C = pai, Ca1/C = Ya1 = 0.24;\n",
+ "# Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1));\n",
+ "\n",
+ "# Solving above three Eqn. simultaneously:\n",
+ "Ti = 42.2;# [C]\n",
+ "pai = 0.0806;# [atm]\n",
+ "Lambda_a = 43.4*10**6;# [J/kmol]\n",
+ "Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1)));# [kmol/square m.s]\n",
+ "Qt1 = 618*(Ti-T2);# [W/square m]\n",
+ "Qt2 = ((Na*18.02*Cpa/(1-exp(-(Na*18.02*Cpa/h))))*(T1-Ti))+(Lambda_a*Na);# [W/square m]\n",
+ "\n",
+ "# since the value of Qt1 & Qt2 are relatively close\n",
+ "print'The local rate of condensation of water is ',round(Na,6),' kmol/square m.s'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.7 - Page: 80\n",
+ "\n",
+ "\n",
+ "The local rate of condensation of water is 0.000232 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.8: Page 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 3.8\n",
+ "# Page: 81\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 3.8 - Page: 81\\n\\n'\n",
+ "print'Illustration 3.8 (a)\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = water b = air\n",
+ "Nb = 0;\n",
+ "h = 1100.0;# [W/square m]\n",
+ "#*****#\n",
+ "\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Cpa = 2090;# [J/kg.K]\n",
+ "T1 = 600.0;# [C]\n",
+ "Ti = 260;# [C]\n",
+ "# The positive dirn. is taken to be from the bulk gas to the surface.\n",
+ "Has = 2.684*(10**6);# enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",
+ "Hai = 2.994*(10**6);# enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",
+ "\n",
+ "# Radiation contributions to the heat transfer from the gas to the surface are negligible. Eqn. 3.70 reduces to\n",
+ "Na = -((h/(Ma*Cpa))*log(1-((Cpa*(T1-Ti))/(Has-Hai))));# [kmol/square m.s]\n",
+ "print'The rate of steam flow reqd. is',round(Na,4),' kmol/square m.s\\n\\n'\n",
+ "# negative sign indicates that the mass flux is into the gas\n",
+ "\n",
+ "print'Illustration 3.8 (b)\\n\\n'\n",
+ " \n",
+ "# Solution (b)\n",
+ "\n",
+ "#***Data****#\n",
+ "# a = water b = air\n",
+ "h = 572.0;# [W/square m]\n",
+ "T1 = 25.0;# [C]\n",
+ "#******#\n",
+ "\n",
+ "Ti = 260.0;# [C]\n",
+ "# The positive dirn. is taken to be from the bulk gas to the surface.\n",
+ "Has = 1.047*10**(5);# enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",
+ "Hai = 2.994*(10**6);# enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",
+ "\n",
+ "# Radiation contributions to the heat transfer from the gas to the surface are negligible. Eqn. 3.70 reduces to\n",
+ "Na = -((h/(Ma*Cpa))*math.log(1-((Cpa*(T1-Ti))/(Has-Hai))));# [kmol/square m.s]\n",
+ "print'The rate of steam flow reqd. is',round(Na,4),' kmol/square m.s'\n",
+ "# negative sign indicates that the mass flux is into \n",
+ "# the answer of part B in textbook is incorrect"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 3.8 - Page: 81\n",
+ "\n",
+ "\n",
+ "Illustration 3.8 (a)\n",
+ "\n",
+ "\n",
+ "The rate of steam flow reqd. is -0.0348 kmol/square m.s\n",
+ "\n",
+ "\n",
+ "Illustration 3.8 (b)\n",
+ "\n",
+ "\n",
+ "The rate of steam flow reqd. is 0.0028 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter4.ipynb b/Mass_-_Transfer_Operations/Chapter4.ipynb
new file mode 100755
index 00000000..73fd7beb
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter4.ipynb
@@ -0,0 +1,471 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c24c5f13f06ad2e35494c2ba2e22ba1351ce2de7d258eb50313205ed297dec4a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4: Diffusion In Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.1: Page 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.1\n",
+ "# Page: 89\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 4.1 - Page: 89\\n\\n'\n",
+ " \n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "P = 2;# [atm]\n",
+ "a1 = 0.025;# [m]\n",
+ "a2 = 0.050;# [m]\n",
+ "solub = 0.053*P;# [cubic m H2 (STP)/(cubic m rubber)]\n",
+ "Ca1 = solub/22.41;# inner surface of the pipe\n",
+ "Ca2 = 0;# resistance to difusion of H2 away from the surface is negligible.\n",
+ "Da = 1.8*10**(-10);# [square m/s]\n",
+ "l = 1;# [m]\n",
+ "#********#\n",
+ "\n",
+ "z = (a2-a1)/2;# [m]\n",
+ "# Using Eqn. 4.4\n",
+ "Sav = (2*(math.pi)*l*(a2-a1))/(2*math.log(a2/a1));# [square m]\n",
+ "# Using Eqn. 4.3\n",
+ "w = (Da*Sav*(Ca1-Ca2))/z;# [kmol H2/s for 1m length]\n",
+ "w = w*2.02*10**3*3600;# [g H2/m.h]\n",
+ "print'The rate of loss of H2 by diffusion per m of pipe length:',round(w,6),' g H2/m.h'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.1 - Page: 89\n",
+ "\n",
+ "\n",
+ "The rate of loss of H2 by diffusion per m of pipe length: 5.6e-05 g H2/m.h\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.2: Page 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.2\n",
+ "# Page: 92\n",
+ "\n",
+ "print'Illustration 4.2 - Page: 92\\n\\n'\n",
+ "print'Illustration 4.2 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "# Given\n",
+ "a = 3.0/2;# [cm]\n",
+ "thetha = 68*3600;# [s]\n",
+ "# Ca can e calculated in terms of g/100 cubic cm\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 3.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#**********#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.6;\n",
+ "# From Fig. 4.2 (Pg 91): For diffusion from only one exposed surface D*thetha/(4*a^2) = 0.128\n",
+ "D = 0.128*4*(a**2)/thetha;# [square cm/s]\n",
+ "D = D*10**(-4);# [square m/s]\n",
+ "print'Diffusivity of urea in gel from only one exposed durface:',round(D,12),'square m/s\\n\\n'\n",
+ "\n",
+ "print'Illustration 4.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "#****Data****#\n",
+ "# Ca can e calculated in terms of g/100 cubic cm\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 1.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#*********#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.2;\n",
+ "# From Fig. 4.2 (Pg 91): For diffusion from only one exposed surface D*thetha/(4*a**2) = 0.568\n",
+ "D = 4.70*10**(-6);# From Illusration 4.2(a) [square cm/s]\n",
+ "thetha = 0.568*4*a**2/D;# [s]\n",
+ "thetha = thetha/3600.0;# [h]\n",
+ "print'The time taken for the avg. conc. to fall to 1g/100 cubic cm is:',round(thetha),' hours'\n",
+ "\n",
+ "print'Illustration 4.2 (c)\\n\\n'\n",
+ "\n",
+ "# solution (c)\n",
+ "\n",
+ "#****Data*****#\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 1.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#*******#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.2;\n",
+ "# From Fig. 4.2: For diffusion from two opposite exposed surface D*thetha/(a**2) = 0.568\n",
+ "D = 4.70*10**(-6);# From Illusration 4.2(a) [square cm/s]\n",
+ "thetha = 0.568*(a**2)/D;# [s]\n",
+ "thetha = thetha/3600.0;# [h]\n",
+ "print'The time taken for the avg. conc. to fall to 1g/100 cubic cm when two faces opposed is:',int(thetha),' hours'\n",
+ "# the solution in the textbook is wrong due to approximation\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.2 - Page: 92\n",
+ "\n",
+ "\n",
+ "Illustration 4.2 (a)\n",
+ "\n",
+ "\n",
+ "Diffusivity of urea in gel from only one exposed durface: 4.71e-10 square m/s\n",
+ "\n",
+ "\n",
+ "Illustration 4.2 (b)\n",
+ "\n",
+ "\n",
+ "The time taken for the avg. conc. to fall to 1g/100 cubic cm is: 302.0 hours\n",
+ "Illustration 4.2 (c)\n",
+ "\n",
+ "\n",
+ "The time taken for the avg. conc. to fall to 1g/100 cubic cm when two faces opposed is: 75 hours\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.3: Page 94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.3\n",
+ "# Page: 94\n",
+ "\n",
+ "print'Illustration 4.3 - Page: 94\\n\\n'\n",
+ "\n",
+ "# solution \n",
+ "\n",
+ "#****Data****#\n",
+ "z = 0.1;# [cm]\n",
+ "pa1 = 1;# [cmHg]\n",
+ "pa2 = 0;# [cmHg]\n",
+ "Da = 1.1*10**(-10)*10**4;# [square cm/s]\n",
+ "#***********#\n",
+ "\n",
+ "# Solubility coeffecient in terms of Hg\n",
+ "Sa = 0.90/76;# [cubic cm gas (STP)/cubic cm.cmHg]\n",
+ "# Using Eqn. 4.15\n",
+ "Va = (Da*Sa*(pa1-pa2))/z;# [cubic cm(STP)/square cm.s]\n",
+ "# Using Eqn. 4.16\n",
+ "P = Da*Sa;# [cubic cm gas (STP)/square cm.s.(cmHg/cm)]\n",
+ "print'The rate of diffusion of CO is:',round(Va,8),'cubic cm(STP)/square cm.s'\n",
+ "print'The permeability of the membrane is',round(P,9),'cubic cm gas (STP)/square cm.s.(cmHg/cm)'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.3 - Page: 94\n",
+ "\n",
+ "\n",
+ "The rate of diffusion of CO is: 1.3e-07 cubic cm(STP)/square cm.s\n",
+ "The permeability of the membrane is 1.3e-08 cubic cm gas (STP)/square cm.s.(cmHg/cm)\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.4: Page 96"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "\n",
+ "# Illustration 4.4\n",
+ "# Page: 96\n",
+ "\n",
+ "print'Illustration 4.4 - Page: 96\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "a = 0.005;# [m]\n",
+ "# For the KCl diffusion\n",
+ "Dab1 = 1.84*10**(-9);# [square m/s]\n",
+ "thetha = 4.75*3600;# [s]\n",
+ "Ca_Inf = 0;\n",
+ "# For K2CrO4 diffusion\n",
+ "Cao = 0.28;# [g/cubic cm]\n",
+ "Ca_Inf = 0.002;# [g/cubic cm]\n",
+ "Dab2 = 1.14*10**(-9);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "E = 0.1;# For 90% removal of KCl\n",
+ "# From Fig. 4.2 (Pg 91): Deff*thetha/a^2 = 0.18\n",
+ "Deff = 0.18*a**2/thetha;# [square m/s]\n",
+ "Dab_by_Deff = Dab1/Deff;\n",
+ "Ca_thetha = 0.1*0.28;# [g/cubic cm]\n",
+ "Es = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# From Fig. 4.2 (Pg 91): Deff*thetha/a^2 = 0.30\n",
+ "Deff = Dab2/Dab_by_Deff;# [square m/s]\n",
+ "thetha = 0.3*a**2/Deff;# [s]\n",
+ "thetha = thetha/3600;# [h]\n",
+ "print'The time reqd. is:',round(thetha,3),'hours'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.4 - Page: 96\n",
+ "\n",
+ "\n",
+ "The time reqd. is: 12.778 hours\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.5: Page 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.5\n",
+ "# Page: 98\n",
+ "import math \n",
+ "\n",
+ "print'Illustration 4.5 - Page: 98\\n\\n'\n",
+ "print'Illustration 4.5 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = H2 b = N2\n",
+ "Dab_eff = 5.3*10**(-6);# [square m/s]\n",
+ "Dkb_eff = 1.17*10**(-5);# [square m/s]\n",
+ "Dab = 7.63*10**(-5);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "R = 8314;#[Nm/kmol]\n",
+ "Mb = 2.02;# [kg/kmol]\n",
+ "T = 293;# [K]\n",
+ "Dtrue_by_Deff = Dab/Dab_eff;\n",
+ "# Since the ratio is strictly a matter of the geometry of the solid.\n",
+ "Dkb = Dkb_eff*Dtrue_by_Deff;# [square m/s]\n",
+ "# From Eqn. 4.20\n",
+ "d = 3*Dkb*((math.pi*Mb)/(8*R*T))**0.5;# [m]\n",
+ "print'The equivalent pore diameter is: ',round(d,9),' m\\n\\n'\n",
+ "\n",
+ "print'Illustration 4.5 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = O2 b = N2 c = H2\n",
+ "Ya1 = 0.8;\n",
+ "Ya2 = 0.2;\n",
+ "Pt = 10133;# [N/square m]\n",
+ "z = 0.002;# [m]\n",
+ "T = 293;# [K]\n",
+ "#*******#\n",
+ "\n",
+ "# From Table 2.1 (Pg 31):\n",
+ "Dab = 1.81*10**(-5);# [square m/s] at STP\n",
+ "Dkc = 1.684*10**(-4);# [square m/s] From Illustration 4.5(a)\n",
+ "Mc = 2.02;# [kg/kmol]\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 28.02;# [kg/kmol]\n",
+ "Dab = Dab*(1/0.1)*((293/273)**1.5);# [square m/s] at 0.1 atm & 20 C\n",
+ "DabEff = Dab/14.4;# [square m/s] From Illustration 4.5(a)\n",
+ "Dka = Dkc*((Mc/Ma)**0.5);# [square m/s]\n",
+ "DkaEff = Dka/14.4;# [square m/s]\n",
+ "Nb_by_Na = -(Ma/Mb)**0.5;\n",
+ "# Na/(Na+Nb) = 1.0/(1+(Nb/Na))\n",
+ "Na_by_NaSumNb = 1.0/(1+(Nb_by_Na));\n",
+ "DabEff_by_DkaEff = DabEff/DkaEff;\n",
+ "# By Eqn. 4.23\n",
+ "Na = (Na_by_NaSumNb)*(DabEff*Pt/(R*T*z))*log((((Na_by_NaSumNb)*(1+DabEff_by_DkaEff))-Ya2)/(((Na_by_NaSumNb)*(1+DabEff_by_DkaEff))-Ya1));# [kmol/square m.s]\n",
+ "Nb = Na*(Nb_by_Na);# [kmol/square m.s]\n",
+ "print\"Diffusion flux of O2 is \",round(Na,8),\" kmol/square m.s\\n\"\n",
+ "print\"Diffusion flux of N2 is \",round(Nb,8),\" kmol/square m.s\\n\"\n",
+ "#the answer in textbook is slightly different due to approximation while here calculation is precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.5 - Page: 98\n",
+ "\n",
+ "\n",
+ "Illustration 4.5 (a)\n",
+ "\n",
+ "\n",
+ "The equivalent pore diameter is: 2.88e-07 m\n",
+ "\n",
+ "\n",
+ "Illustration 4.5 (b)\n",
+ "\n",
+ "\n",
+ "Diffusion flux of O2 is 2.95e-06 kmol/square m.s\n",
+ "\n",
+ "Diffusion flux of N2 is -3.16e-06 kmol/square m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.6: Page 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.6\n",
+ "# Page: 100\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 4.6 - Page: 100\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = N2\n",
+ "# For N2 at 300K\n",
+ "viscosity1 = 1.8*10**(-5);# [kg/m.s]\n",
+ "Pt1 = 10133.0;# [N/square m.sec]\n",
+ "T = 300;# [K]\n",
+ "z = 0.0254;# [m]\n",
+ "T2 = 393.0;# [K]\n",
+ "#***********#\n",
+ "\n",
+ "Ma = 28.02;# [kg/kmol]\n",
+ "R = 8314.0;# [J/K.kgmol]\n",
+ "#From Eqn 4.22\n",
+ "Lambda = (3.2*viscosity1/Pt1)*(R*T/(2*(math.pi)*Ma))**0.5;\n",
+ "d = 10**(-4);# [m]\n",
+ "d_by_lambda = d/Lambda;\n",
+ "# Kundsen flow will not occur\n",
+ "# N2 flow corresponding to 9 cubic ft/square ft.min at 300K & 1 std atm = 0.0457 cubic m/square m.min\n",
+ "Na1 = 0.0457*(273.0/T)*(1/22.41);# [kmol/square m.s]\n",
+ "Pt1_diff_Pt2 = 2*3386/13.6;# [N/square m]\n",
+ "Ptav = Pt1+(Pt1_diff_Pt2/2.0);# [N/square m]\n",
+ "# From Eqn. 4.26\n",
+ "k1 = Na1*R*T*z/(Ptav*(Pt1_diff_Pt2));# [m**4/N.s]\n",
+ "\n",
+ "#For N2 at 393K\n",
+ "viscosity2 = 2.2*10**(-5);# [kg/m.s]\n",
+ "k2 = (k1*viscosity1)/(viscosity2);# [m^4/N.s]\n",
+ "# From Eqn 4.26\n",
+ "Na = (k2*Ptav*Pt1_diff_Pt2)/(R*T2*z);# [kmol/square m.s]\n",
+ "print\"Flow rate to be expected is\",round(Na,6),\" kmol/square m.s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.6 - Page: 100\n",
+ "\n",
+ "\n",
+ "Flow rate to be expected is 0.001159 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter4_1.ipynb b/Mass_-_Transfer_Operations/Chapter4_1.ipynb
new file mode 100755
index 00000000..73fd7beb
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter4_1.ipynb
@@ -0,0 +1,471 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c24c5f13f06ad2e35494c2ba2e22ba1351ce2de7d258eb50313205ed297dec4a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4: Diffusion In Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.1: Page 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.1\n",
+ "# Page: 89\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 4.1 - Page: 89\\n\\n'\n",
+ " \n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "P = 2;# [atm]\n",
+ "a1 = 0.025;# [m]\n",
+ "a2 = 0.050;# [m]\n",
+ "solub = 0.053*P;# [cubic m H2 (STP)/(cubic m rubber)]\n",
+ "Ca1 = solub/22.41;# inner surface of the pipe\n",
+ "Ca2 = 0;# resistance to difusion of H2 away from the surface is negligible.\n",
+ "Da = 1.8*10**(-10);# [square m/s]\n",
+ "l = 1;# [m]\n",
+ "#********#\n",
+ "\n",
+ "z = (a2-a1)/2;# [m]\n",
+ "# Using Eqn. 4.4\n",
+ "Sav = (2*(math.pi)*l*(a2-a1))/(2*math.log(a2/a1));# [square m]\n",
+ "# Using Eqn. 4.3\n",
+ "w = (Da*Sav*(Ca1-Ca2))/z;# [kmol H2/s for 1m length]\n",
+ "w = w*2.02*10**3*3600;# [g H2/m.h]\n",
+ "print'The rate of loss of H2 by diffusion per m of pipe length:',round(w,6),' g H2/m.h'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.1 - Page: 89\n",
+ "\n",
+ "\n",
+ "The rate of loss of H2 by diffusion per m of pipe length: 5.6e-05 g H2/m.h\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.2: Page 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.2\n",
+ "# Page: 92\n",
+ "\n",
+ "print'Illustration 4.2 - Page: 92\\n\\n'\n",
+ "print'Illustration 4.2 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "# Given\n",
+ "a = 3.0/2;# [cm]\n",
+ "thetha = 68*3600;# [s]\n",
+ "# Ca can e calculated in terms of g/100 cubic cm\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 3.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#**********#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.6;\n",
+ "# From Fig. 4.2 (Pg 91): For diffusion from only one exposed surface D*thetha/(4*a^2) = 0.128\n",
+ "D = 0.128*4*(a**2)/thetha;# [square cm/s]\n",
+ "D = D*10**(-4);# [square m/s]\n",
+ "print'Diffusivity of urea in gel from only one exposed durface:',round(D,12),'square m/s\\n\\n'\n",
+ "\n",
+ "print'Illustration 4.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "#****Data****#\n",
+ "# Ca can e calculated in terms of g/100 cubic cm\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 1.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#*********#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.2;\n",
+ "# From Fig. 4.2 (Pg 91): For diffusion from only one exposed surface D*thetha/(4*a**2) = 0.568\n",
+ "D = 4.70*10**(-6);# From Illusration 4.2(a) [square cm/s]\n",
+ "thetha = 0.568*4*a**2/D;# [s]\n",
+ "thetha = thetha/3600.0;# [h]\n",
+ "print'The time taken for the avg. conc. to fall to 1g/100 cubic cm is:',round(thetha),' hours'\n",
+ "\n",
+ "print'Illustration 4.2 (c)\\n\\n'\n",
+ "\n",
+ "# solution (c)\n",
+ "\n",
+ "#****Data*****#\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 1.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#*******#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.2;\n",
+ "# From Fig. 4.2: For diffusion from two opposite exposed surface D*thetha/(a**2) = 0.568\n",
+ "D = 4.70*10**(-6);# From Illusration 4.2(a) [square cm/s]\n",
+ "thetha = 0.568*(a**2)/D;# [s]\n",
+ "thetha = thetha/3600.0;# [h]\n",
+ "print'The time taken for the avg. conc. to fall to 1g/100 cubic cm when two faces opposed is:',int(thetha),' hours'\n",
+ "# the solution in the textbook is wrong due to approximation\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.2 - Page: 92\n",
+ "\n",
+ "\n",
+ "Illustration 4.2 (a)\n",
+ "\n",
+ "\n",
+ "Diffusivity of urea in gel from only one exposed durface: 4.71e-10 square m/s\n",
+ "\n",
+ "\n",
+ "Illustration 4.2 (b)\n",
+ "\n",
+ "\n",
+ "The time taken for the avg. conc. to fall to 1g/100 cubic cm is: 302.0 hours\n",
+ "Illustration 4.2 (c)\n",
+ "\n",
+ "\n",
+ "The time taken for the avg. conc. to fall to 1g/100 cubic cm when two faces opposed is: 75 hours\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.3: Page 94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.3\n",
+ "# Page: 94\n",
+ "\n",
+ "print'Illustration 4.3 - Page: 94\\n\\n'\n",
+ "\n",
+ "# solution \n",
+ "\n",
+ "#****Data****#\n",
+ "z = 0.1;# [cm]\n",
+ "pa1 = 1;# [cmHg]\n",
+ "pa2 = 0;# [cmHg]\n",
+ "Da = 1.1*10**(-10)*10**4;# [square cm/s]\n",
+ "#***********#\n",
+ "\n",
+ "# Solubility coeffecient in terms of Hg\n",
+ "Sa = 0.90/76;# [cubic cm gas (STP)/cubic cm.cmHg]\n",
+ "# Using Eqn. 4.15\n",
+ "Va = (Da*Sa*(pa1-pa2))/z;# [cubic cm(STP)/square cm.s]\n",
+ "# Using Eqn. 4.16\n",
+ "P = Da*Sa;# [cubic cm gas (STP)/square cm.s.(cmHg/cm)]\n",
+ "print'The rate of diffusion of CO is:',round(Va,8),'cubic cm(STP)/square cm.s'\n",
+ "print'The permeability of the membrane is',round(P,9),'cubic cm gas (STP)/square cm.s.(cmHg/cm)'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.3 - Page: 94\n",
+ "\n",
+ "\n",
+ "The rate of diffusion of CO is: 1.3e-07 cubic cm(STP)/square cm.s\n",
+ "The permeability of the membrane is 1.3e-08 cubic cm gas (STP)/square cm.s.(cmHg/cm)\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.4: Page 96"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "\n",
+ "# Illustration 4.4\n",
+ "# Page: 96\n",
+ "\n",
+ "print'Illustration 4.4 - Page: 96\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "a = 0.005;# [m]\n",
+ "# For the KCl diffusion\n",
+ "Dab1 = 1.84*10**(-9);# [square m/s]\n",
+ "thetha = 4.75*3600;# [s]\n",
+ "Ca_Inf = 0;\n",
+ "# For K2CrO4 diffusion\n",
+ "Cao = 0.28;# [g/cubic cm]\n",
+ "Ca_Inf = 0.002;# [g/cubic cm]\n",
+ "Dab2 = 1.14*10**(-9);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "E = 0.1;# For 90% removal of KCl\n",
+ "# From Fig. 4.2 (Pg 91): Deff*thetha/a^2 = 0.18\n",
+ "Deff = 0.18*a**2/thetha;# [square m/s]\n",
+ "Dab_by_Deff = Dab1/Deff;\n",
+ "Ca_thetha = 0.1*0.28;# [g/cubic cm]\n",
+ "Es = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# From Fig. 4.2 (Pg 91): Deff*thetha/a^2 = 0.30\n",
+ "Deff = Dab2/Dab_by_Deff;# [square m/s]\n",
+ "thetha = 0.3*a**2/Deff;# [s]\n",
+ "thetha = thetha/3600;# [h]\n",
+ "print'The time reqd. is:',round(thetha,3),'hours'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.4 - Page: 96\n",
+ "\n",
+ "\n",
+ "The time reqd. is: 12.778 hours\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.5: Page 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.5\n",
+ "# Page: 98\n",
+ "import math \n",
+ "\n",
+ "print'Illustration 4.5 - Page: 98\\n\\n'\n",
+ "print'Illustration 4.5 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = H2 b = N2\n",
+ "Dab_eff = 5.3*10**(-6);# [square m/s]\n",
+ "Dkb_eff = 1.17*10**(-5);# [square m/s]\n",
+ "Dab = 7.63*10**(-5);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "R = 8314;#[Nm/kmol]\n",
+ "Mb = 2.02;# [kg/kmol]\n",
+ "T = 293;# [K]\n",
+ "Dtrue_by_Deff = Dab/Dab_eff;\n",
+ "# Since the ratio is strictly a matter of the geometry of the solid.\n",
+ "Dkb = Dkb_eff*Dtrue_by_Deff;# [square m/s]\n",
+ "# From Eqn. 4.20\n",
+ "d = 3*Dkb*((math.pi*Mb)/(8*R*T))**0.5;# [m]\n",
+ "print'The equivalent pore diameter is: ',round(d,9),' m\\n\\n'\n",
+ "\n",
+ "print'Illustration 4.5 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = O2 b = N2 c = H2\n",
+ "Ya1 = 0.8;\n",
+ "Ya2 = 0.2;\n",
+ "Pt = 10133;# [N/square m]\n",
+ "z = 0.002;# [m]\n",
+ "T = 293;# [K]\n",
+ "#*******#\n",
+ "\n",
+ "# From Table 2.1 (Pg 31):\n",
+ "Dab = 1.81*10**(-5);# [square m/s] at STP\n",
+ "Dkc = 1.684*10**(-4);# [square m/s] From Illustration 4.5(a)\n",
+ "Mc = 2.02;# [kg/kmol]\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 28.02;# [kg/kmol]\n",
+ "Dab = Dab*(1/0.1)*((293/273)**1.5);# [square m/s] at 0.1 atm & 20 C\n",
+ "DabEff = Dab/14.4;# [square m/s] From Illustration 4.5(a)\n",
+ "Dka = Dkc*((Mc/Ma)**0.5);# [square m/s]\n",
+ "DkaEff = Dka/14.4;# [square m/s]\n",
+ "Nb_by_Na = -(Ma/Mb)**0.5;\n",
+ "# Na/(Na+Nb) = 1.0/(1+(Nb/Na))\n",
+ "Na_by_NaSumNb = 1.0/(1+(Nb_by_Na));\n",
+ "DabEff_by_DkaEff = DabEff/DkaEff;\n",
+ "# By Eqn. 4.23\n",
+ "Na = (Na_by_NaSumNb)*(DabEff*Pt/(R*T*z))*log((((Na_by_NaSumNb)*(1+DabEff_by_DkaEff))-Ya2)/(((Na_by_NaSumNb)*(1+DabEff_by_DkaEff))-Ya1));# [kmol/square m.s]\n",
+ "Nb = Na*(Nb_by_Na);# [kmol/square m.s]\n",
+ "print\"Diffusion flux of O2 is \",round(Na,8),\" kmol/square m.s\\n\"\n",
+ "print\"Diffusion flux of N2 is \",round(Nb,8),\" kmol/square m.s\\n\"\n",
+ "#the answer in textbook is slightly different due to approximation while here calculation is precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.5 - Page: 98\n",
+ "\n",
+ "\n",
+ "Illustration 4.5 (a)\n",
+ "\n",
+ "\n",
+ "The equivalent pore diameter is: 2.88e-07 m\n",
+ "\n",
+ "\n",
+ "Illustration 4.5 (b)\n",
+ "\n",
+ "\n",
+ "Diffusion flux of O2 is 2.95e-06 kmol/square m.s\n",
+ "\n",
+ "Diffusion flux of N2 is -3.16e-06 kmol/square m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.6: Page 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.6\n",
+ "# Page: 100\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 4.6 - Page: 100\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = N2\n",
+ "# For N2 at 300K\n",
+ "viscosity1 = 1.8*10**(-5);# [kg/m.s]\n",
+ "Pt1 = 10133.0;# [N/square m.sec]\n",
+ "T = 300;# [K]\n",
+ "z = 0.0254;# [m]\n",
+ "T2 = 393.0;# [K]\n",
+ "#***********#\n",
+ "\n",
+ "Ma = 28.02;# [kg/kmol]\n",
+ "R = 8314.0;# [J/K.kgmol]\n",
+ "#From Eqn 4.22\n",
+ "Lambda = (3.2*viscosity1/Pt1)*(R*T/(2*(math.pi)*Ma))**0.5;\n",
+ "d = 10**(-4);# [m]\n",
+ "d_by_lambda = d/Lambda;\n",
+ "# Kundsen flow will not occur\n",
+ "# N2 flow corresponding to 9 cubic ft/square ft.min at 300K & 1 std atm = 0.0457 cubic m/square m.min\n",
+ "Na1 = 0.0457*(273.0/T)*(1/22.41);# [kmol/square m.s]\n",
+ "Pt1_diff_Pt2 = 2*3386/13.6;# [N/square m]\n",
+ "Ptav = Pt1+(Pt1_diff_Pt2/2.0);# [N/square m]\n",
+ "# From Eqn. 4.26\n",
+ "k1 = Na1*R*T*z/(Ptav*(Pt1_diff_Pt2));# [m**4/N.s]\n",
+ "\n",
+ "#For N2 at 393K\n",
+ "viscosity2 = 2.2*10**(-5);# [kg/m.s]\n",
+ "k2 = (k1*viscosity1)/(viscosity2);# [m^4/N.s]\n",
+ "# From Eqn 4.26\n",
+ "Na = (k2*Ptav*Pt1_diff_Pt2)/(R*T2*z);# [kmol/square m.s]\n",
+ "print\"Flow rate to be expected is\",round(Na,6),\" kmol/square m.s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.6 - Page: 100\n",
+ "\n",
+ "\n",
+ "Flow rate to be expected is 0.001159 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter4_2.ipynb b/Mass_-_Transfer_Operations/Chapter4_2.ipynb
new file mode 100755
index 00000000..73fd7beb
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter4_2.ipynb
@@ -0,0 +1,471 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c24c5f13f06ad2e35494c2ba2e22ba1351ce2de7d258eb50313205ed297dec4a"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4: Diffusion In Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.1: Page 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.1\n",
+ "# Page: 89\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 4.1 - Page: 89\\n\\n'\n",
+ " \n",
+ "# solution\n",
+ "\n",
+ "#***Data****#\n",
+ "P = 2;# [atm]\n",
+ "a1 = 0.025;# [m]\n",
+ "a2 = 0.050;# [m]\n",
+ "solub = 0.053*P;# [cubic m H2 (STP)/(cubic m rubber)]\n",
+ "Ca1 = solub/22.41;# inner surface of the pipe\n",
+ "Ca2 = 0;# resistance to difusion of H2 away from the surface is negligible.\n",
+ "Da = 1.8*10**(-10);# [square m/s]\n",
+ "l = 1;# [m]\n",
+ "#********#\n",
+ "\n",
+ "z = (a2-a1)/2;# [m]\n",
+ "# Using Eqn. 4.4\n",
+ "Sav = (2*(math.pi)*l*(a2-a1))/(2*math.log(a2/a1));# [square m]\n",
+ "# Using Eqn. 4.3\n",
+ "w = (Da*Sav*(Ca1-Ca2))/z;# [kmol H2/s for 1m length]\n",
+ "w = w*2.02*10**3*3600;# [g H2/m.h]\n",
+ "print'The rate of loss of H2 by diffusion per m of pipe length:',round(w,6),' g H2/m.h'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.1 - Page: 89\n",
+ "\n",
+ "\n",
+ "The rate of loss of H2 by diffusion per m of pipe length: 5.6e-05 g H2/m.h\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.2: Page 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.2\n",
+ "# Page: 92\n",
+ "\n",
+ "print'Illustration 4.2 - Page: 92\\n\\n'\n",
+ "print'Illustration 4.2 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "# Given\n",
+ "a = 3.0/2;# [cm]\n",
+ "thetha = 68*3600;# [s]\n",
+ "# Ca can e calculated in terms of g/100 cubic cm\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 3.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#**********#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.6;\n",
+ "# From Fig. 4.2 (Pg 91): For diffusion from only one exposed surface D*thetha/(4*a^2) = 0.128\n",
+ "D = 0.128*4*(a**2)/thetha;# [square cm/s]\n",
+ "D = D*10**(-4);# [square m/s]\n",
+ "print'Diffusivity of urea in gel from only one exposed durface:',round(D,12),'square m/s\\n\\n'\n",
+ "\n",
+ "print'Illustration 4.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "#****Data****#\n",
+ "# Ca can e calculated in terms of g/100 cubic cm\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 1.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#*********#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.2;\n",
+ "# From Fig. 4.2 (Pg 91): For diffusion from only one exposed surface D*thetha/(4*a**2) = 0.568\n",
+ "D = 4.70*10**(-6);# From Illusration 4.2(a) [square cm/s]\n",
+ "thetha = 0.568*4*a**2/D;# [s]\n",
+ "thetha = thetha/3600.0;# [h]\n",
+ "print'The time taken for the avg. conc. to fall to 1g/100 cubic cm is:',round(thetha),' hours'\n",
+ "\n",
+ "print'Illustration 4.2 (c)\\n\\n'\n",
+ "\n",
+ "# solution (c)\n",
+ "\n",
+ "#****Data*****#\n",
+ "Cao = 5.0;# [g/100 cubic cm]\n",
+ "Ca_thetha = 1.0;# [g/100 cubic cm]\n",
+ "Ca_Inf = 0.0;# [g/100 cubic cm]\n",
+ "#*******#\n",
+ "\n",
+ "E = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# E = 0.2;\n",
+ "# From Fig. 4.2: For diffusion from two opposite exposed surface D*thetha/(a**2) = 0.568\n",
+ "D = 4.70*10**(-6);# From Illusration 4.2(a) [square cm/s]\n",
+ "thetha = 0.568*(a**2)/D;# [s]\n",
+ "thetha = thetha/3600.0;# [h]\n",
+ "print'The time taken for the avg. conc. to fall to 1g/100 cubic cm when two faces opposed is:',int(thetha),' hours'\n",
+ "# the solution in the textbook is wrong due to approximation\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.2 - Page: 92\n",
+ "\n",
+ "\n",
+ "Illustration 4.2 (a)\n",
+ "\n",
+ "\n",
+ "Diffusivity of urea in gel from only one exposed durface: 4.71e-10 square m/s\n",
+ "\n",
+ "\n",
+ "Illustration 4.2 (b)\n",
+ "\n",
+ "\n",
+ "The time taken for the avg. conc. to fall to 1g/100 cubic cm is: 302.0 hours\n",
+ "Illustration 4.2 (c)\n",
+ "\n",
+ "\n",
+ "The time taken for the avg. conc. to fall to 1g/100 cubic cm when two faces opposed is: 75 hours\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.3: Page 94"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.3\n",
+ "# Page: 94\n",
+ "\n",
+ "print'Illustration 4.3 - Page: 94\\n\\n'\n",
+ "\n",
+ "# solution \n",
+ "\n",
+ "#****Data****#\n",
+ "z = 0.1;# [cm]\n",
+ "pa1 = 1;# [cmHg]\n",
+ "pa2 = 0;# [cmHg]\n",
+ "Da = 1.1*10**(-10)*10**4;# [square cm/s]\n",
+ "#***********#\n",
+ "\n",
+ "# Solubility coeffecient in terms of Hg\n",
+ "Sa = 0.90/76;# [cubic cm gas (STP)/cubic cm.cmHg]\n",
+ "# Using Eqn. 4.15\n",
+ "Va = (Da*Sa*(pa1-pa2))/z;# [cubic cm(STP)/square cm.s]\n",
+ "# Using Eqn. 4.16\n",
+ "P = Da*Sa;# [cubic cm gas (STP)/square cm.s.(cmHg/cm)]\n",
+ "print'The rate of diffusion of CO is:',round(Va,8),'cubic cm(STP)/square cm.s'\n",
+ "print'The permeability of the membrane is',round(P,9),'cubic cm gas (STP)/square cm.s.(cmHg/cm)'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.3 - Page: 94\n",
+ "\n",
+ "\n",
+ "The rate of diffusion of CO is: 1.3e-07 cubic cm(STP)/square cm.s\n",
+ "The permeability of the membrane is 1.3e-08 cubic cm gas (STP)/square cm.s.(cmHg/cm)\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.4: Page 96"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "\n",
+ "# Illustration 4.4\n",
+ "# Page: 96\n",
+ "\n",
+ "print'Illustration 4.4 - Page: 96\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "a = 0.005;# [m]\n",
+ "# For the KCl diffusion\n",
+ "Dab1 = 1.84*10**(-9);# [square m/s]\n",
+ "thetha = 4.75*3600;# [s]\n",
+ "Ca_Inf = 0;\n",
+ "# For K2CrO4 diffusion\n",
+ "Cao = 0.28;# [g/cubic cm]\n",
+ "Ca_Inf = 0.002;# [g/cubic cm]\n",
+ "Dab2 = 1.14*10**(-9);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "E = 0.1;# For 90% removal of KCl\n",
+ "# From Fig. 4.2 (Pg 91): Deff*thetha/a^2 = 0.18\n",
+ "Deff = 0.18*a**2/thetha;# [square m/s]\n",
+ "Dab_by_Deff = Dab1/Deff;\n",
+ "Ca_thetha = 0.1*0.28;# [g/cubic cm]\n",
+ "Es = (Ca_thetha-Ca_Inf)/(Cao-Ca_Inf);\n",
+ "# From Fig. 4.2 (Pg 91): Deff*thetha/a^2 = 0.30\n",
+ "Deff = Dab2/Dab_by_Deff;# [square m/s]\n",
+ "thetha = 0.3*a**2/Deff;# [s]\n",
+ "thetha = thetha/3600;# [h]\n",
+ "print'The time reqd. is:',round(thetha,3),'hours'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.4 - Page: 96\n",
+ "\n",
+ "\n",
+ "The time reqd. is: 12.778 hours\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.5: Page 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.5\n",
+ "# Page: 98\n",
+ "import math \n",
+ "\n",
+ "print'Illustration 4.5 - Page: 98\\n\\n'\n",
+ "print'Illustration 4.5 (a)\\n\\n'\n",
+ "\n",
+ "# solution (a)\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = H2 b = N2\n",
+ "Dab_eff = 5.3*10**(-6);# [square m/s]\n",
+ "Dkb_eff = 1.17*10**(-5);# [square m/s]\n",
+ "Dab = 7.63*10**(-5);# [square m/s]\n",
+ "#*******#\n",
+ "\n",
+ "R = 8314;#[Nm/kmol]\n",
+ "Mb = 2.02;# [kg/kmol]\n",
+ "T = 293;# [K]\n",
+ "Dtrue_by_Deff = Dab/Dab_eff;\n",
+ "# Since the ratio is strictly a matter of the geometry of the solid.\n",
+ "Dkb = Dkb_eff*Dtrue_by_Deff;# [square m/s]\n",
+ "# From Eqn. 4.20\n",
+ "d = 3*Dkb*((math.pi*Mb)/(8*R*T))**0.5;# [m]\n",
+ "print'The equivalent pore diameter is: ',round(d,9),' m\\n\\n'\n",
+ "\n",
+ "print'Illustration 4.5 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a = O2 b = N2 c = H2\n",
+ "Ya1 = 0.8;\n",
+ "Ya2 = 0.2;\n",
+ "Pt = 10133;# [N/square m]\n",
+ "z = 0.002;# [m]\n",
+ "T = 293;# [K]\n",
+ "#*******#\n",
+ "\n",
+ "# From Table 2.1 (Pg 31):\n",
+ "Dab = 1.81*10**(-5);# [square m/s] at STP\n",
+ "Dkc = 1.684*10**(-4);# [square m/s] From Illustration 4.5(a)\n",
+ "Mc = 2.02;# [kg/kmol]\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 28.02;# [kg/kmol]\n",
+ "Dab = Dab*(1/0.1)*((293/273)**1.5);# [square m/s] at 0.1 atm & 20 C\n",
+ "DabEff = Dab/14.4;# [square m/s] From Illustration 4.5(a)\n",
+ "Dka = Dkc*((Mc/Ma)**0.5);# [square m/s]\n",
+ "DkaEff = Dka/14.4;# [square m/s]\n",
+ "Nb_by_Na = -(Ma/Mb)**0.5;\n",
+ "# Na/(Na+Nb) = 1.0/(1+(Nb/Na))\n",
+ "Na_by_NaSumNb = 1.0/(1+(Nb_by_Na));\n",
+ "DabEff_by_DkaEff = DabEff/DkaEff;\n",
+ "# By Eqn. 4.23\n",
+ "Na = (Na_by_NaSumNb)*(DabEff*Pt/(R*T*z))*log((((Na_by_NaSumNb)*(1+DabEff_by_DkaEff))-Ya2)/(((Na_by_NaSumNb)*(1+DabEff_by_DkaEff))-Ya1));# [kmol/square m.s]\n",
+ "Nb = Na*(Nb_by_Na);# [kmol/square m.s]\n",
+ "print\"Diffusion flux of O2 is \",round(Na,8),\" kmol/square m.s\\n\"\n",
+ "print\"Diffusion flux of N2 is \",round(Nb,8),\" kmol/square m.s\\n\"\n",
+ "#the answer in textbook is slightly different due to approximation while here calculation is precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.5 - Page: 98\n",
+ "\n",
+ "\n",
+ "Illustration 4.5 (a)\n",
+ "\n",
+ "\n",
+ "The equivalent pore diameter is: 2.88e-07 m\n",
+ "\n",
+ "\n",
+ "Illustration 4.5 (b)\n",
+ "\n",
+ "\n",
+ "Diffusion flux of O2 is 2.95e-06 kmol/square m.s\n",
+ "\n",
+ "Diffusion flux of N2 is -3.16e-06 kmol/square m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.6: Page 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 4.6\n",
+ "# Page: 100\n",
+ "\n",
+ "import math\n",
+ "print'Illustration 4.6 - Page: 100\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = N2\n",
+ "# For N2 at 300K\n",
+ "viscosity1 = 1.8*10**(-5);# [kg/m.s]\n",
+ "Pt1 = 10133.0;# [N/square m.sec]\n",
+ "T = 300;# [K]\n",
+ "z = 0.0254;# [m]\n",
+ "T2 = 393.0;# [K]\n",
+ "#***********#\n",
+ "\n",
+ "Ma = 28.02;# [kg/kmol]\n",
+ "R = 8314.0;# [J/K.kgmol]\n",
+ "#From Eqn 4.22\n",
+ "Lambda = (3.2*viscosity1/Pt1)*(R*T/(2*(math.pi)*Ma))**0.5;\n",
+ "d = 10**(-4);# [m]\n",
+ "d_by_lambda = d/Lambda;\n",
+ "# Kundsen flow will not occur\n",
+ "# N2 flow corresponding to 9 cubic ft/square ft.min at 300K & 1 std atm = 0.0457 cubic m/square m.min\n",
+ "Na1 = 0.0457*(273.0/T)*(1/22.41);# [kmol/square m.s]\n",
+ "Pt1_diff_Pt2 = 2*3386/13.6;# [N/square m]\n",
+ "Ptav = Pt1+(Pt1_diff_Pt2/2.0);# [N/square m]\n",
+ "# From Eqn. 4.26\n",
+ "k1 = Na1*R*T*z/(Ptav*(Pt1_diff_Pt2));# [m**4/N.s]\n",
+ "\n",
+ "#For N2 at 393K\n",
+ "viscosity2 = 2.2*10**(-5);# [kg/m.s]\n",
+ "k2 = (k1*viscosity1)/(viscosity2);# [m^4/N.s]\n",
+ "# From Eqn 4.26\n",
+ "Na = (k2*Ptav*Pt1_diff_Pt2)/(R*T2*z);# [kmol/square m.s]\n",
+ "print\"Flow rate to be expected is\",round(Na,6),\" kmol/square m.s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 4.6 - Page: 100\n",
+ "\n",
+ "\n",
+ "Flow rate to be expected is 0.001159 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter5.ipynb b/Mass_-_Transfer_Operations/Chapter5.ipynb
new file mode 100755
index 00000000..b860f069
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter5.ipynb
@@ -0,0 +1,384 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7993b2e1b1cd4e665f8a316544ebc9b7c9af58ff099db1ddb24eed947b6e95bc"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5: Interphase Mass Transfer"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.1: Page 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 5.1\n",
+ "# Page: 114\n",
+ "\n",
+ "print'Illustration 5.1 - Page: 114\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = NH3, b = H2O\n",
+ "d = 2.54*10**(-2);# [m]\n",
+ "Yag = 0.80;\n",
+ "Xal = 0.05;\n",
+ "T = 273+26.7;# [K]\n",
+ "Kl = 2.87*10**(-5);# [kmol/square m.s.(kmol/cubic m)]\n",
+ "Sh = 40;\n",
+ "Da = 2.297*10**(-5);# [square m.s]\n",
+ "P = 1.0133*10**(5);# [N/square m]\n",
+ "Xbm = 1.0;\n",
+ "#*********#\n",
+ "\n",
+ "Ma = 18.0;# [kg/kmol]\n",
+ "# Liquid:\n",
+ "# Because of large conc. of ammonia in gas F's rather than k's are used.\n",
+ "# Molecular weight of water and ammonia are nearly same.\n",
+ "# The density of the solution is practically that of water.\n",
+ "MolarDensity1 = 1000/Ma;# [kmol/cubic m]\n",
+ "# Kl is determined for dilute soln. where Xbm is practically 1.0\n",
+ "Fl = Kl*Xbm*MolarDensity1;# [kmol/square m.s]\n",
+ "Ma = 18;# [kg-/kmol]\n",
+ "# Gas:\n",
+ "MolarDensity2 = (1/22.41)*(273/(273+26.7));# [kmol/cubic m]\n",
+ "Fg = Sh*MolarDensity2*Da/d;# [kmol/square m.s]\n",
+ "\n",
+ "# Mass Transfer Flux\n",
+ "# Th eqb. distribuion data for NH3 from \"The Chemical Engineers Handbook\" 5th Edt. p3-68:\n",
+ "# Data = [Xa,pa]\n",
+ "# Xa = NH3 mole fraction in gas phas\n",
+ "# pa = NH3 partial pressure in N/square m\n",
+ "Data = [(0 ,0),(0.05 ,7171),(0.10, 13652),(0.25 ,59917),(0.30 ,93220)];\n",
+ "\n",
+ "X = numpy.zeros(5);\n",
+ "for i in range(1,5) :\n",
+ " X[i]=Data[i][0]\n",
+ " \n",
+ "\n",
+ "# Ya_star = mole fraction of NH3 in gas phase at eqb.\n",
+ "Ya_star = numpy.zeros(5);\n",
+ "for i in range(0,5) :\n",
+ " Ya_star[i] = (Data[i][1])/P\n",
+ "\n",
+ "# For transfer of only one component\n",
+ "Na_by_SummationN = 1.0;\n",
+ "Ya = numpy.zeros(5);\n",
+ "for i in range(0,5):\n",
+ " Ya[i] = 1-((1-Yag)*(1.0-Xal)/(1-Data[i][0]));\n",
+ "\n",
+ "plt.plot(X,Ya_star,'g',label='Equilibrium Line')\n",
+ "plt.plot(X,Ya,'r',label='Operating Line')\n",
+ "ax = pylab.gca()\n",
+ "ax.grid('on')\n",
+ "ax.set_xlabel('Xa = mole fraction of NH3 in liquid phase');\n",
+ "ax.set_ylabel('Ya = mole fraction of NH3 in gas phase');\n",
+ "pylab.legend(loc='lower right')\n",
+ "plt.title('Ya Vs Xa');\n",
+ "plt.show()\n",
+ "\n",
+ "# From intersection of operating line & Eqb. line\n",
+ "Xai = 0.274;\n",
+ "Yai = 0.732;\n",
+ "\n",
+ "# From Eqn.5.20\n",
+ "Na = Na_by_SummationN*Fg*log((Na_by_SummationN-Yai)/(Na_by_SummationN-Yag));# [kmol NH3 absorbed/square m.s]\n",
+ "print\"Local mass transfer flux for ammonia is \",round(Na,6),\" kmol/square m.s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 5.1 - Page: 114\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FOX2wPHvIXQIho6AEIooehGUIohKQIWgYrlcEAsK\nei2AWFBRrz8Fr/0CimJBBcWONEWUKhBEBZEmSlGqSrEgvQRSzu+PmYQlZpNNtmZyPs+zT3bq+54d\n2LPzvjPviKpijDHG5KZEtCtgjDEmdlmSMMYY45clCWOMMX5ZkjDGGOOXJQljjDF+WZIwxhjjlyUJ\nY4wxflmSMJ4lIu+KyBs55nUQkZ0iUjPAfYwWkbdymd9cRFJFJKEA9ekmIjtEpLLPvMtFZKuIxAe6\nH2MiSexmOuNVIlIFWA30VtXPRaQssAp4XFXfDnAfbYE5QE1VPeQzfzhQX1V7FLBO7wFpqtrHTTCr\ngVtV9dOC7MeYSLEzCeNZqroLGAi8JiLlgSHAelV9W0Qmur/q94jIAhE5zc8+FgPbgO5Z80QkDrga\neNudbiMiS0Vkr4j8JiIj8qjWHUBXEekMPAek+CYIEXleRH5x97VURM4N7lMwJjiWJIynqeokYDkw\nHrgZuMVd9BnQGKjuLn8vj928DVzvM30hUAqY7k4/DzynqicADYEJedTnL+BO4H3gYpyk4WsJ0Byo\n7K4zUURK5xmkMWFkzU3G80SkBrAR+I+qjspleQKwCzhBVffnsrwesAFIVNXtbpPRH6p6t7t8ATAf\neFFVdwZQnwbAj8CHqto7n3V3AR1U9fv89mtMONiZhPE8Vf0D2InT/o+IxInI0yKyQUT2ApsBBar5\n2f4X4Augt4hUBC7HbWpy3QQ0AdaKyBIRuSSfKr3mbn+J2+eRTUTuFZE1bjPYbuAEf/UyJhJKRrsC\nxkTBNcBlwAWq+rPPmYTksc1bwP3Ab8BmVV2RtUBVN7j7RES6A5NEpIqqHs65ExG5CaiD09S0FBgj\nImeqapqInAfcB3RS1ayEll+9jAkrO5MwxVFF4AiwS0QqAE8GsM1koB4wFBjnu0BErhOR6u7kXpyz\nksycOxCR2sD/gJtVNU1VRwN/AQ+5q8QD6cBOESktIo8AlQoWmjGhZUnCFEdvAz/jXLX0A7AI54vd\nL/fy18k4ZwE5O7m7AD+IyH6cK5Z6qeqRXHbzEvCBqn7lM+9m4C4RaQrMdF8/AVuAw8AvBYrMmBAL\na8e1eyPTJTidfM38rPMC0BU4BPTxPY03xhgTXeE+k3gTSPa3UEQuBhqr6sk4lya+Eub6GGOMKYCw\nJglVXQjszmOVy3A6BFHVb4CEQIdLMMYYE37R7pOoA/zqM70VqBuluhhjjMkh2kkC/n55n93dZ4wx\nMSLa90lsA07yma7rzjuOiFjiMMaYQlDVoO6zifaZxCe4Y+K4d57uUdXfc1tRVT37GjJkSNTrYPFZ\nbBaf916hENYzCRH5AOgAVBORX3FG4SwFoKqvqup0EblYRDYAB4G+4axPrNqyZUu0qxBWXo7Py7GB\nxWfCnCRU9eoA1rk9nHUwxhhTeNFubjJAnz59ol2FsPJyfF6ODSw+U0SGChcRLQr1NMaYWCIiaBHv\nuDZASkpKtKsQVl6Oz8uxgcVnLEkYY4zJgzU3GWOMR1lzkzHGmLCyJBEDvN4u6uX4vBwbWHzGkoQx\nxpg8WJ+EMcZ4lPVJGGOMCStLEjHA6+2iXo7Py7GBxWcCSBIiUktExorITHf6NBG5KfxVM8YYE235\n9km4yeFN4CFVPUNESgErVPUfkaigWwfrkzDGmALYm7qXhHIJEemTqKaqHwIZAKqaBqQHU6gxxpjw\n2Zu6l1avtwrJvgJJEgdEpGrWhPtwoL0hKd0A3m8X9XJ8Xo4NLL6iSFX597R/c2GDC0Oyv0CSxD3A\nNKChiHwNvAPcEZLSjTHGhNSoJaPYtHsTzyU/F5L9BXSfhNsPcYo7+aPb5BQx1idhjDH5+2brN3T7\noBuL/72YhpUbRuY+CRHpCZRT1R+AK4EPReSsYAo1xhgTWn8d+ouek3ryWrfXaFi5Ycj2G0hz08Oq\nuk9EzgUuAN4ARoesBsaT7aK+vByfl2MDi6+oyNRMrv/4enqc1oMrTr0ipPsOJElkuH8vBV5X1U+B\nUiGthTHGmEJ75stn2JO6h6cueCrk+w7kPonPgG3ARcCZQCrwjao2D3lt/NfB+iSMMSYXKVtS6DWp\nF0tvWUrdSnWPWxapsZt6ArOAzqq6B6gM3BdMocYYY4L324HfuHbKtbx95dt/SxChkm+SUNWDqjoZ\n2Csi9XCamtaFpTbFlFfaRf3xcnxejg0svliWkZnB1ZOv5t9n/pvOjTqHrZxArm66TETWA5uBBcAW\nYEbYamSMMSZfQ1KGECdxPNLhkbCWE0ifxCqgEzBHVc8UkY5Ab1W9Maw1O74O1idhjDGuGetncPO0\nm1l2yzJqVqzpd71I9UmkqepOoISIxKnqfCA0g4IYY4wpkF/3/krfqX35oPsHeSaIUAkkSewWkXhg\nIfCeiLwAHAhvtYqXotwuGggvx+fl2MDiizVHM47Sc1JPBrUbxHn1z4tImYEkiSuAQ8DdwExgA9At\nnJUyxhjzd/fPuZ/q5atz7zn3RqxMe8a1McYUAZPXTObeOfey7JZlVClXJaBtIjV2U3cRWS8i+0Rk\nv/vaF0yhxhhjArdh1wb6fdaPCf+aEHCCCJVAmpv+B1ymqpVUNd59VQp3xYqTotYuWlBejs/LsYHF\nFwsOpx2mx8QeDOkwhNZ1Wke8/ECSxG+qujbsNTHGGPM3d868kyZVm9C/df+olO+3T0JEurtvzwdq\nAR8DR915qqpTwl+97LpYn4Qxpth557t3eHzh4yy9eSnxZeILvH0o+iTyShLjgKyF4vMeAFXtG0zB\nBWFJwhhT3Kz+YzVJbyUx7/p5NKvZrFD7CGvHtar2UdW+7sv3fd9IJojioCi0iwbDy/F5OTaw+KLl\nwNED9JjYg2EXDSt0ggiVQK5uaiQi00Rkp4j8KSJTRSR0jz0yxhiTTVW59dNbaVu3LX1a9Il2dQIa\nu+kb4EVgvDvrKmCgqp6d785FkoGRQBwwRlWfybG8GvAuTp9HSWC4qo7LZT/W3GSMKRZGLx3Ny9++\nzOJ/L6Z8qfJB7SusfRI+haxS1TNyzPsuv4cOiUgc8CNwIc5Di74Frva9UkpEhgJlVPVBN2H8CNRU\n1fQc+1IdORLKl3deFSoce5/bdNmyIEF9LsYYE3HLdyyny7td+OrGr2hStUnQ+wtFkigZwDozRORB\n4AN3+ip3XhUAVd3lZ7s2wAZV3eJWdjxwOeB7Oe0OICsBVQL+ypkgsm3cCIcOOa+DB4+9z2366NG8\nk0gw01nvy5QJWSJKSUkhKSkpJPuKRV6Oz8uxgcUXSXtS99BjYg9euvilkCSIUAkkSVyFc2XTLX7m\n++ufqAP86jO9FcjZRPU6ME9EtgPxOE/By90LLwRQVVdGxvFJI5DEsm8f7NiR9zq+89LSoFy50CSg\ndeugcmXnfcWKx9aJiws8ZmNMkaWq9J3al4sbX0zP0/1/DUZDvklCVRMLue9AOhH+A6xU1SQRaQTM\nEZHmqro/54p9+vQhMdGpSkJCAi1atMj+BZB1hUL29MKFx0/nXJ6SAtWq5b08v+mMDJLOPhsOHiRl\n3jxITSXpH/9wphcvhiNHSGrQAA4dIuW772D3bpJq1oTffiNlwwZn/fh4J+ls307KyJEkicCBA6Ts\n3etsX7YsVKhASlwclCtHUo0aznRqKpQtS1KjRs70zp3O8mbNnOmff3am27aFihVJWb3amb7wQmf5\nokUgElz8BZjOmhep8iI5nZSUFFP1sfiKZnwTVk9gW+ltjO8+Pqj9paSkMG7cOIDs78tghW2APxFp\nCwxV1WR3+kEg07fzWkSmA0+o6lfu9FzgflVdmmNfxa/jWhUOH3aSyIEDzl/f97nNC3R5RoZztuJ7\n5uLvfX7Lc763sx9jCuTrX7/myg+v5Jt/f0NiQmJI9x2pPonCWgqcLCKJwHac5qmrc6yzDqdj+ysR\nqQmcAmwKY51iku+v7Gwix5qkqlcPbYFpaceSRiCJZceOwJLRwYNOX02OJJOSnk5SYiJUqgQnnJD7\n35zzKlaEEoGMGhNduR47D7H4wuvPg3/Sa1Ivxl42NuQJIlTCliRUNV1Ebgdm4VwCO1ZV14rIre7y\nV4EngTdF5DucezYG59ERbkKlVClISHBeoZTb2c+BA7BwITRoAHv3On0/+/bBtm2wdu2xeb7L9u51\n+n0qVAg8qfibV768XelmYlJGZgbXfXQd1zS7hkubXBrt6vgVyCWw5+L0GxwQkd7AmcDzqvpzJCro\n1qH4NTcVdxkZsH//8Ykjt7/5zTt6tGBJxd/ZTpky0f5EjMc8tuAxPt/8OXOvn0vJEuH5vR6p+yS+\nx7lM9QxgHDAG6KmqHYIpuCAsSZhCO3r0WLIpbKLZu9c5Gwk20cTHO2dxptibu2kuvT/qzdJbllI7\nvnbYyolUklihqmeKyBBgm6qOEZHlqnpWMAUXhNeTRLTbRcOtyMenCkeO5JpAUhYvJqlOncCTUJky\ngScVf8vi4yPWX1Pkj10+ohHf9v3baflaS9698l0uaHhBWMuKVMf1fhH5D3AdcJ57J7X9HDLFh4hz\nF3/ZslCz5vHLEhIg0C8ZVaefJr8mtB07nHtn/CWagwed/ppgzmwqVXL2Yf01EZWemU6vSb3o36p/\n2BNEqARyJnEicA2wRFUXikg9oKOqvhWJCrp18PSZhDEFkpHhXBAQbBPa0aPOWUkwTWiVKoV09AGv\ne+DzB1j520qmXzudEhL+s8GINDfFAksSxoRBWtqx5BFoosm5bO9eZ1/BJppKlTzfX/PpT5/S/7P+\nLL91OdXKV4tImZHqk2gHvAA0BcrgXM56IJLPufZ6krB236LLy7FBgPGlpgZ/Fdq+fVC6dHB9NVn9\nNQW4oTNSx2/Lni2cPeZsPrrqI8456Zywl5clUn0SLwK9gAlAK+B6nJvejDHmWH9NjRqF34fqsTHU\n8ko0O3bAjz/6Tz4HDzr3xgSaaLZtc8qvWhWqVHH+li0bms/FdST9CD0m9uD+9vdHNEGESiBnEstU\ntaXvkOEislJVW0Skhnj/TMIYEyKZmXnfX5Nz3u7dsGsX/PXXsb+lSh1LGAX566e5bOD0gWzdv5Up\nPacgEe67iVRz0xfARTj3R+wAfgNuyO95EqFkScIYExFZV6D5Jg1/f33f797tnMFkJQ03caxnN7N2\nL+GmCwdTrmadvyeWypXDOt5ZpJJEIvA7UBq4G+e5Dy+r6oZgCi4IrycJa9cuurwcG1h8AcvMdM5O\nfBLJ9i3f88KModzR+Dpqp5XJPdHs3es0e+V2dpLXmUulSgHdKxORPomshwYBh4GhwRRmjDGeVKLE\nsfHQGjbkUNohksfcx4D/G0HtVrf63y4jA/bsyf3sZNcu536Z3M5kDh50zkLyawYLgUCH5VAgKxsp\nsA/ncaSPq+pfIalJ3nXw9JmEMcZbbpx6I0czjvLOle+Epx8iLc1p4sqnOUwmTYrI1U0zgXTgfZxE\n0Qsoj9MENQ7oFkwFjDHGS95c8SaLty5myc1LwtdRXaqUczVZfleUhaD8QG75u1BVH1TV71V1lar+\nB+igqk8DiUHXwGQ/WcqrvByfl2MDi6+gVv2+isGfD2ZSz0lULF0xpPuOlkCSRJyIZD+bWkTa+GyX\nHpZaGWNMEbPvyD56TOzBc12e47Tqp0W7OiETSJ9Ea+BNICst7gduAlYDl6jqhLDWEOuTMMbENlWl\n1+ReJJRJ4NVur0a7OtkidXXTt8A/RCTBnd7jszjsCcIYY2LdS9++xE9//cSimxZFuyohF/AwhKq6\nJ0eCMCFi7b5Fl5djA4svEEu2LeG/C/7LpB6TKFsytEN6xILYf9K8McbEqF2Hd9FzYk9GXzqaRlUa\nRbs6YWFDhRtjTCFkaiaXj7+cxpUb81zyc9GuTq4iNQosItIe53LXrPVVVd8OpmBjjCnKhn01jJ2H\ndjK55+RoVyWs8m1uEpF3gWFAe5yhwlsBrcNcr2LF2n2LLi/HBhafP1/8/AXPLX6OCf+aQOm40qGt\nVIwJ5EyiJXCatfcYYwz8fuB3rpl8DeOuGMdJJ5wU7eqEXSD3SUwE7lTV7ZGpUq51sBxljIm6jMwM\nOr/bmXZ12/F4p8ejXZ18RapPojqwRkSWAEfceaqqlwVTsDHGFDWPLngUVeXRpEejXZWICeQS2KHA\nFcCTwAj39WwY61TsWLtv0eXl2MDi8zVrwyzGrhjL+93fJ65E+B4UFGsCueM6JQL1MMaYmPXr3l+5\n4eMb+PBfH1KrYq1oVyei/PZJiMhXqtpeRA7gPEPCl6pqpbDX7lhdrE/CGBMVaRlpJL2VxKUnX8qD\n5z0Y7eoUSEQeXxoLLEkYY6Llnln3sO6vdUy7eholpGgNUhGKJFG0IvYoa/cturwcG1h8H639iMlr\nJ/P2FW8XuQQRKgHdcW2MMcXNpt2buPXTW5l29TSqlg/N86KLImtuMsaYHFLTUzln7Dn0adGHO86+\nI9rVKTTrkzDGmDC47dPb2HV4Fx/+68PwPac6AsLaJyEizUXkcxEZLyINRGS+iOwVkYUi0jiYQs3x\ninu7b1Hm5digeMb33qr3mLt5LmMuG1OkE0So5NUTMxp4HpgKfA28BlQG/ge8HP6qGWNMZK39cy13\nzbqLST0mUalMxK7yj2l53SexQlXPdN9vUNXGuS3Lc+ciycBIIA4Yo6rP5LJOEvAcUArYqapJuaxj\nzU3GmLA6ePQgbca0YVDbQdx01k3Rrk5IhHvsJt/7znMOw1Eqvx2LSBzwInAhsA34VkQ+UdW1Pusk\nAC8BXVR1q4hUC7jmxhgTIqrKbZ/dRuvarbnxzBujXZ2Ykldz08siEg+gqtnNSyJyMvB5APtuA2xQ\n1S2qmgaMBy7Psc41wGRV3eqWs7MglfeK4tju6xVejg2KT3xjlo9h5W8refmSl60fIge/SUJVR6vq\n/lzmr1fVuwLYdx3gV5/pre48XycDVdxO8aUi0juQShtjTKis2LGC/8z7DxN7TKR8qfLRrk7MyatP\nYpTPpAK+6VVVNc+Lh0WkO5Csqje709cBZ6vqQJ91XgTOAi4AygOLgEtUdX2OfVmfhDEm5Pam7qXl\nay15vNPj9PpHr2hXJ+TC3SexjGPJ4VHgEY4likC+sbcBvo9tOgnnbMLXrzid1YeBwyLyBdAcWJ9j\nPfr06UNiYiIACQkJtGjRgqSkJODYKaNN27RN23Sg0x06dKDv1L784+A/qLXz2MiusVK/wkynpKQw\nbtw4gOzvy6Cpar4vYEUg6+XYpiSwEUgESgMrgaY51jkVp38jDudM4nucR6Xm3Jd62fz586NdhbDy\ncnxejk3Vu/EdTjus98y6R5sMaqKpaanRrk7YuN+dBfruzvkK24hVqpoO3A7MAtYAH6rqWhG5VURu\ndddZB8wEVgHfAK+r6ppw1ckYY2ZumEmzV5qxec9mnrzgScqULBPtKsW0gIblCPS+iHCxPgljTLC2\n7tvK3bPuZvmO5YzqOoqLT7442lUKu3APy3FARPaLyH6gWdZ797UvmEKNMSZS0jLSGP71cFqMbsFp\n1U7jh34/FIsEESp5XQJbUVXj3VdJn/fxGsGn0hUHWR1PXuXl+LwcGxT9+Bb+vJAzXz2TOZvmsOim\nRTza8VHKlSqXvbyoxxcJ9jwJY4zn/HHwDwbPGczczXN5rstzdG/a3W6SK6S87pPI7dnW4CSW0qoa\nl8uysLA+CWNMIDIyM3h9+es8Mv8Rrm9+PUM6DCG+THy0qxU1Yb1PQlUr5iisIs7VSrcCU4Ip1Bhj\nQm3Z9mX0+6wfZUqWYe71c2lWs1m0q+QJ+V4CKyIJIjIU5x6GeKCVqt4T7ooVJ15vF/VyfF6ODYpG\nfLsP72bAZwO45P1LGNB6AF/0+SLgBFEU4ou2vK5uqi4iTwMrgAyghao+pKp/Rax2xhjjh6ryznfv\ncNrLp5GpmawZsIYbWtxgfQ8hllefxEFgJ/AGkNU/kT0sh6rmHD48bKxPwhjja/Ufq+k/vT8Hjh7g\nlUteoU2dNtGuUkwK99hNw3zeV/S7ljHGRMiBowf474L/8ubKNxnaYSi3tbqNuBIRu4amWMrrPomh\n7uvR3F6RrKTXeb1d1MvxeTk2iJ34VJUpa6dw2kun8duB3/ih3w8MaDMg6AQRK/HFMrtPwhgT0zbu\n2sjAGQP5ee/PvH3l2yQlJkW7SsVKQGM3RZv1SRhT/KSmp/LMl88waskoBrcfzF1t76J0XOloV6tI\nCffYTXe6f88NpgBjjCmoWRtm0eyVZnz3+3csv3U5g9sPtgQRJXndJ5H1NPBReaxjQsDr7aJejs/L\nsUHk49u6bys9Jvag//T+PJ/8PFOumkK9E+qFrTyvH79QyCtJrBGR9cApIvJ9jteqSFXQGON9aRlp\njPh6hI3UGoPy7JMQkVrAbKAbxz/jGlXdEtaaHV8P65MwxqMW/ryQ/tP7Uzu+Ni92fZGTq54c7Sp5\nRij6JAJ96FBpoIk7+aOqpgVTaEFZkjDGe3xHan2287P867R/2d3SIRbWjmufQpKA9cDL7mu9iHQI\nplBzPK+3i3o5Pi/HBuGJLyMzg9FLR/OPl/9BtfLVWNN/DT1O7xGVBOH14xcKgdwn8SzQWVV/BBCR\nJsB44KxwVswY4z1ZI7WWjittI7UWEfk2N4nIKlU9I7954WTNTcYUbXtS9/B/8/6PSWsm8fSFT3N9\n8+spIfk2ZJggRaS5CVgmImNEJElEOorIGGBpMIUaY4qHrJFam77UlPTMdNYMWEOfFn0sQRQhgRyp\nfsBa4A5gILDanWdCxOvtol6Oz8uxQXDxrf5jNR3f6sjIb0YytddURl86mirlqoSuciHg9eMXCvn2\nSahqKjDCfRljTJ4OHD3AYwse442Vb9hIrR5gYzcZY0JCVflo3UfcPetuzq9/PsMuGkatirWiXa1i\nLdzPkzDGmIBkjdS6Zc8W3rriLRup1UOs9ygGeL1d1MvxeTk2yD++1PRU/rvgv5w95mySEpNYedvK\nIpUgvH78QiHfMwkROQW4F0j0WV9VtVMY62WMiXGzN85mwPQBNKvRjOW3Lg/rQHwmegK6TwJ4BVgO\nZLizVVWXhbluvnWwPgljYsTWfVsZNGsQS7cvZVTXUVzS5JJoV8n4Eak+iTRVfSWYQowxRV9aRhqj\nloziyYVPMqD1AN664i3KlSoX7WqZMAukT2KaiAwQkRNFpErWK+w1K0a83i7q5fi8HBsci+/LX77k\nrNfOYtbGWSy6aRGPdnzUEwnC68cvFAI5k+gDKE6/RBYFGoajQsaY2LHn8B76Tu3LnI1zeK7LczZS\nazFk90kYY/4mIzODMcvH8PD8h+l9Rm+GJg0lvkx8tKtlCigifRLusyT6AefjnEEsAEZH+pkSxpjI\nWLZ9Gf2n96dUiVI2UqsJqE/iFZxhwV9y37d0/5oQ8Xq7qJfj81Jse1L3cPv027nk/Uvo16ofX/T9\ngr/W/hXtaoWVl45fuATSJ9E6x7Dgc+0Z18Z4h6ry3vfvcd+c+7j8lMtZM2BNzA3EZ6InkPsklgM9\nVXWDO90ImKiqEXvokPVJGBMea/5cQ//P+rPvyD5eueQVzq57drSrZEIoUs+TuA+YJyILRGQBMI/j\nr3TKq4LJIrJORNaLyP15rNdaRNJF5J+BVdsYE4yDRw/ywOcP0GFcB3qc1oNvb/7WEoTJVb5JQlXn\nAk049jyJJqo6L7/tRCQOeBFIBk4DrhaRpn7WewaYCRTLa+u83i7q5fiKWmyqykdrP+K0l09j2/5t\nfN/vewa0GeB3KO+iFl9BeT2+UPDbJyEiF6jqXBHpjnNVU9YXeGP3FGZKPvtuA2xQ1S3u/sYDl+M8\nwMjXQGAS0LoQ9TfGBGjT7k0MnDGQzbs320itJmB++yRE5FFVHSIi43CSxHFUtW+eOxb5F9BFVW92\np68DzlbVgT7r1AHeBToBbwDTcks+1idhTOGlpqcy7KthPP/N89x3zn3c3e5uSseVjna1TASE9T4J\nVR3ivv2vqm7KUXAgd1sH8q0+EnhAVVWc2ziLZXOTMeFiI7WaYAVyCewknPskfE3EuV8iL9uAk3ym\nTwK25linJTDevc2/GtBVRNJU9ZOcO+vTpw+JiYkAJCQk0KJFC5KSkoBj7YpFdXrkyJGeiqc4xefb\nph0L9cma/vPgn0w8NJGl25dyc5WbaVezXXaC8EJ8oZr2WnwpKSmMGzcOIPv7MmiqmusLaAp0BzYB\n/3Tf/xNnLKfV/rbz2b4ksBHnORSlgZVA0zzWfxP4p59l6mXz58+PdhXCysvxxVpsR9OP6oivR2jV\nZ6rqw/Me1kNHDwW1v1iLL9S8Hp/73Znnd3V+r7z6JC4HrgS6Ab6/7PcD41X16/wSkIh0xWlSigPG\nqupTInKr+63/ao5138T6JIwptC9/+ZL+n/WnVsVavHjxizSp2iTaVTJRFoo+iUBupmunqouCKSRY\nliSM8e/Pg38y+PPBNlKr+ZtI3UzXT0QSfAqtLCJvBFOoOZ5vu6gXeTm+aMaWqZm8uvRVTn/5dKqU\nrcLaAWvpcXqPkCYILx878H58oRBIx/UZqrona0JVd4tIxIbkMMb8XdZIrSVLlOTz6z/njJpn5L+R\nMYUQSHPTd0BHVd3lTlcBFqhqxMYPtuYmYxx7Uvfw8LyHmbhmIk9d8BQ3tLiBEhJIg4ApjiL1jOsR\nwCIRmYBzH0MP4IlgCjXGFIy6I7UOnjOYbk262UitJmICGbvpbZxLX/8AfgOudOeZEPF6u6iX44tE\nbGv+XEPHtzry7KJn+eiqj3i126sRSxBePnbg/fhCIZAzCVR1tYjsBMoCKiL1VPWX8FbNmOLt4NGD\nPPbFY4xdMZYhHYbQr1U/vwPxGRMugfRJXIbT5FQb52yiPrBWVU8Pf/Wy62B9EqbYUFWm/jiVO2fe\nyXn1zmN45+HUqlgr2tUyRVCk+iQeB9oBc1T1TBHpCPQOplBjTO6yRmrdtHsT4y4fR8cGHaNdJVPM\nBXJZRJoEnHlLAAAgAElEQVSq7gRKiEicqs4HWoW5XsWK19tFvRxfqGI7kn6ExxY8RpvX23B+vfP5\n7rbvYiJBePnYgffjC4VAziR2i0g8sBB4T0T+AA6Et1rGFB+zN87m9um3c3qN01l2yzLqJ9SPdpWM\nyRZIn0QFIBXnrONaoBLwnqr+Ff7qZdfB+iSM52zbt41Bswfx7bZvGdV1FJc0uSTaVTIeE/ZhOUSk\nJPCpqmaoapqqjlPVFyKZIIzxmrSMNJ5d9CzNRzfnlKqnsLr/aksQJmblmSRUNR3I9B27yYSe19tF\nvRxfQWP76pevaPlaS2ZsmMHXN33Nfzv+l3KlyoWnciHg5WMH3o8vFALpkzgIfC8is4FD7jxV1TvC\nVy1jvOXPg39y/+f3M3vjbJ7t8iw9TgvtQHzGhEsgfRI3cOyxouq+V1V9K8x1862D9UmYIilTMxmz\nfAz/N+//uO6M6xiaNJRKZSpFu1qmmAjrfRIiMldVLwBOV9XBwRRiTHG0fMdy+n3Wz0ZqNUVaXn0S\nJ4rIOcBlInJWzlekKlgceL1d1Mvx5RbbntQ9DJw+kIvfu5jbWt7Gwr4Li2yC8PKxA+/HFwp59UkM\nAR4B6uAMy5FT9O/0MSaGqCrvf/8+9825j25NurG6/2qqlq8a7WoZE5RA+iQeUdX/Rqg+/upgfRIm\npq39cy39p/dnb+peXr7kZdrWbRvtKhkTmWdcxwJLEiZW+Y7U+sj5j9CvtdMHYUwsiNQzrk2Yeb1d\n1IvxqSofr/uYhoMasnXfVr7v9z0Dzx7ouQThxWPny+vxhYK3/kUbEwGbdm/ijhl3sHH3Rh5o/wB3\n//PuaFfJmLAJqLlJRM4DGqvqmyJSHaioqpvDXrtj5Vtzk4m6I+lHGPb1MEYuHsm959zLoHaDKB1X\nOtrVMsaviDxPQkSGAi2BU4A3gdLAu0D7YAo2piiZs3EOA6YPsJFaTbETSJ/ElcDlOMNzoKrbgPhw\nVqq48Xq7aFGOb9u+bVw16Spu/fRWnu3iPGPaN0EU5dgCYfGZQJLEEVXNzJpwhw43xtPSM9N5btFz\nNB/dnCZVmvBD/x+4tMml0a6WMREXyH0S9wGNgc7AU8CNwPuq+kL4q5ddB+uTMBHz1S9f0X96f2pU\nqMGLXV/klGqnRLtKxhRKxO6TEJHOOEkCYJaqzgmm0IKyJGEiwXek1hGdR9Dz9J42Uqsp0iJ2n4Sq\nzlbVe91XRBNEceD1dtFYjy9TM3lt2Wuc/vLpJJRNYM2ANVz1j6sCShCxHluwLD6T1yiwB3CGBs+N\nqqqNd2yKPN+RWuf0nkPzWs2jXSVjYooNy2GKpT2pe3h43sNMWDOBpy54ij4t+lBCbAAC4y0RuU/C\nLag5cD7OmcVCVf0umEKNiRbfkVovbXIpa/qvsZFajclDvj+dRORO4D2gOlATeFdE7NGlIeT1dtFY\niW/tn2vp9HYnhi8azpSrpvBat9eCThCxElu4WHwmkDOJfwNnq+pBABF5GlgMROwSWGOCcfDoQR7/\n4nHGrBhjI7UaU0CB3CfxPdBGVQ+70+WAJaraLAL1y6qD9UmYAlNVpv44lbtm3kX7eu0ZftFwTow/\nMdrVMiZiItUn8SbwjYhMAQS4AngjmEKNCTffkVrfuPwNOjXoFO0qGVMk5dsnoarPAn2B3cBfQB9V\nfS7QAkQkWUTWich6Ebk/l+XXish3IrJKRL4SkaL5MOAgeL1dNJLxHUk/wuNfPE6b19twbr1z+e62\n78KaIOzYFW1ejy8UAm2Y3QSku+uLiJylqsvz20hE4oAXgQuBbcC3IvKJqq7Nse/zVXWviCQDrwH2\n7EdTYFkjtZ5W/TSW3rKUxITEaFep0OxOb1NQ4WqSD6RP4jGgD86XefZAf6raMd+di7QDhqhqsjv9\ngLvt037Wrwx8r6p1c8y3Pgnj17Z927hn9j0s2baEF7q+4ImB+Ny25GhXwxQR/v69RKpP4iqgkaoe\nLcT+6wC/+kxvBc7OY/2bgOmFKMcUQ+mZ6Yz6ZhRPLHyCfq368cblb1C+VPloV8sYTwkkSawGKgO/\nF2L/Af8UEpGOOCPM5vowoz59+pCYmAhAQkICLVq0ICkpCTjWrlhUp0eOHOmpeCIR3/e/f8+Y3WOo\nUaEGz57yLPVK1MtOEJGMz7dNO9T7N6agUlJSGDduHED292WwAmluag1MBX4AjrizVVUvy3fnIm2B\noT7NTQ8Cmar6TI71zgCmAMmquiGX/Xi6uSklJSX7C8KLQhnfzkM7uX/O/czcOJNnOz8b9ZFaw3Xs\nrLnJFEQ4m5sCSRJrgVdwkkRWn4Sq6oJ8dy5SEvgRuADYDiwBrvbtuBaResA84DpVXexnP55OEiZ/\nmZrJmOVjeHj+w1zzj2t4tOOjVCrj3TEmLUmYgghnkghkRLMDqvqCqs5T1RT3lW+CAFDVdOB2YBaw\nBvhQVdeKyK0icqu72iM4zVmviMgKEVlSmECMd63YsYJzxp7DuJXjmH3dbJ5Lfs7TCaK4+uWXX4iP\nj8/+sktKSmLs2LEAvPfee3Tp0iV73RIlSrBp06aA951z+2jIGV+Roap5voBncZ5I1w44K+uV33ah\nfDnV9K758+dHuwphVdj49hzeowOnD9Qaw2ro2OVjNSMzI7QVC4FwHbtY/jdfv359LVeunFasWDH7\nNXDgwJCXk5SUpGPHjs11mYjoxo0bQ15mKHTo0EHHjBkT0TL9/Xtx5wf1/RtIx/VZOB3QOe9dyPcS\nWGMKQ1X54IcPuHf2vTZSawwSET799FM6dSoad7FnZGQQFxcXsfJExFP3uQRyx3WSqnbM+YpE5YoL\nL3daQ8HiW/vnWi54+wKGfT0sZCO1hpPXj11BZWZmcu+991K9enUaNWrESy+9RIkSJcjMdLozExMT\nmTt3bvb6Q4cOpXfv3gBs2bLluHV9jRs3jvPOO++4eZ999hmNGjWievXqDB48OLsZZ9y4cbRv355B\ngwZRrVo1hg4detz2uZXj27Tlu33lypVp3LgxX3/9NW+++Sb16tWjZs2avP322wX+bHKWm5SUxCOP\nPMK5555LpUqV6NKlC3/99Vf2+osXL+acc86hcuXKtGjRggULAmrlDzl7yoqJCQePHuTBzx/k/HHn\nc+WpV/Ltzd/Stq7deB+rsr6Qc3rttdf47LPPWLlyJUuXLmXSpEnH/arO+Ss7mF/cH3/8McuWLWP5\n8uVMnTqVN944NqTckiVLaNSoEX/88QcPPfRQvvvKWa8lS5bQvHlzdu3axdVXX03Pnj1Zvnw5Gzdu\n5N133+X222/n0KFDha57lg8++IBx48bxxx9/cPToUYYPHw7Atm3buPTSS3nkkUfYvXs3w4cPp3v3\n7uzcuTPoMgvKxkuOAcX5ElhV5ZMfP+HOmXfSvl57Vt22qkiN1BqtYyePhqY5Q4cUvBNVVbniiiso\nWfLY18fw4cO56aabmDBhAnfffTd16tQB4D//+U+ev4D9JZtA3H///SQkJJCQkMBdd93FBx98wE03\n3QRA7dq1GTBgAABly5Yt8L4bNGjADTfcAEDPnj154okneOSRRyhVqhQXXXQRpUuXZsOGDZxxRuGH\nmhMR+vbtS+PGjbPL+eSTTwB49913ufjii0lOTgbgwgsvpFWrVkyfPp3rr7++0GUWhiUJEzWbd2/m\njpl3sP6v9TZSawEV5ss9VESEqVOn5tonsWPHDk466aTs6Xr16oWtHjnL2b59e67LCqNmzZrZ78uV\nKwdA9erVj5t34MCBoMoAqFWrVq77/Pnnn5k4cSLTpk3LXp6enh6VfqCAmptE5FT3b9PwVqd48vJZ\nBPw9viPpR3jiiydo/Xprzql7Dqv6rSqyCcLrx66gTjzxRH755Zfsad/3ABUqVODgwYPZ07/99luh\ny8pZTtbZC+TdjFWhQgWA45qLgqlHONSrV4/evXuze/fu7Nf+/fsZPHhwxOsSaJ/E+zn+GlMon2/6\nnDNGn8G3279l6S1LefC8BykdVzra1TIF5K+ZqGfPnrzwwgts27aN3bt38/TTTx/3hd2iRQvGjx9P\neno6S5cuZfLkyYXulxg+fDh79uzh119/5YUXXuCqq64KaLvq1atTp04d3nnnHTIyMnjjjTfYuHFj\noergT1paGqmpqdmv9PT0XNfz9zled911TJs2jdmzZ5ORkUFqaiopKSls27YtpPUMRKBJwjvXc8Ug\nr4/Vk5KSwvb92+k1qRc3T7uZ4RcN5+NeHxfpobyzeP3Y+dOtWzfi4+OzX927dwfg5ptvpkuXLjRv\n3pxWrVrRvXv3474IH3vsMTZu3EjlypUZOnQo11577XH79Zcwcrus9PLLL6dly5aceeaZXHrppdn9\nEbmtm3Pe66+/zrBhw6hWrRpr1qyhffv2ftfNq17+9OvXj/Lly2e/brzxxnz367u8bt26TJ06lSef\nfJIaNWpQr149RowYkeuVX+GW77AcACKyQlXPzPobgXrlLF+D6eCKdV7uuE7PTOeu0Xcx/sB4bmt1\nG/857z+eGqnVxm7K25YtW2jYsCHp6emUKGEXU4ZLtIcKN2HmtQRxKO0QX//6NfM2z+PjdR9TO742\nX/X8ilOqnRLtqoWc146dMTlZkjBBO5J+hG+2fcO8zfOYv2U+y7Yvo3mt5nRM7MjLl7xMh/odPHUH\nqikYO/ZFW0Gbm1aqaosI1Ctn+dbcFEPSM9NZun1pdlJYvHUxp1Y7lY6JHenUoBPn1juXiqUrZq9f\n1OIrCGtuMrEgFpqbznf/npfnWsaTMjIz+O7377KTwpe/fEliQiKdEjsxsM1AJvaYSELZhGhX0xgT\nBgGdSUSb188kYo2qsvrP1dlJYcGWBdSsWJNOiZ3o2KAjHep3oHqF6vnvyBSanUmYgojqQ4digSWJ\n8FJV1u9an50U5m+eT3yZ+Ozmo6TEJGrH1452NYsVSxKmICxJeDxJRKPNfsueLdlJYd7meZSQEnRq\n0ImOiR3pmNiR+gn1Q1aW9UkUnCUJUxCx0Cdhirht+7ZlnyXM2zKPQ2mHspPCkA5DaFS5kV2FYoz5\nm0Cecd0EeBI4HcgaTlFVtWGY6+ZbB0+fSYTDHwf/IGVLSnZS2HloJ0mJSdlNSE2rNbWkEMPsTCI4\nCxcu5Oabb2bdunURK/OXX37h9NNPZ9++fRH/vxXV5iYR+QoYgvMY025AXyBOVR8OpuCCsCSRv92H\nd7Pg5wXZSeHXvb9yXv3zspPCGTXPoITYHa9FRawniXHjxjFixAg2bdpEpUqVuPLKK3nqqac44YQT\nolKfEiVKsGHDBho2DP9v16SkJHr37p09DEgsCGeSCORbo5yqfo6TUH5W1aHAJcEUao5XmPF/9h/Z\nz/T107lv9n20fK0l9UbW45Wlr3Bi/ImMvWwsOwfvZNrV0xjUbhAtarWIaoLw8vhGXo7NnxEjRvDA\nAw8wYsQI9u3bx+LFi/n555+56KKLSEtLC3l5GRkZAa0XqaTqtceT5sfvN4eIzBCRBkCqiMQBG0Tk\ndhH5J1AhYjU0gDPUxeebPuehuQ/Rbmw7ThxxIsO+HkZ8mXieT36evwb/xazrZvHAuQ/Qpk4bSpaw\n7iYTevv27WPo0KG8+OKLdO7cmbi4OOrXr8+ECRPYsmUL7777LuA8lvRf//oXvXr1olKlSrRs2ZJV\nq1Zl72f79u10796dGjVq0LBhQ0aNGpW9LGvb3r17c8IJJ/DWW2/x7bff0q5dOypXrkzt2rUZOHBg\ndkI6/3znNq7mzZsTHx/PxIkTSUlJOe6ZEomJiYwYMYLmzZuTkJBAr169OHLkSPby//3vf9SuXZu6\ndesyZswYSpQowaZNmwr02RTVx5PmS1VzfQE9gJ+AR4B44CTgTWAK0NbfduF4OdUsXo6kH9Evtnyh\nQ+cP1Q5vdtAKT1TQc8aeow/NfUjnbpqrh44einYVTRjF6r/5GTNmaMmSJTUjI+Nvy2644Qa9+uqr\nVVV1yJAhWqpUKZ08ebKmp6fr8OHDtUGDBpqenq4ZGRl61lln6WOPPaZpaWm6adMmbdiwoc6aNeu4\nbadOnaqqqocPH9Zly5bpN998oxkZGbplyxZt2rSpjhw5MrtsEdGNGzdmT8+fP1/r1q2bPZ2YmKhn\nn3227tixQ3ft2qVNmzbV0aNHZ8dUq1YtXbNmjR46dEivvfZaLVGixHH785WUlKRjx4792/zNmzer\niGR/Nh06dNDGjRvr+vXr9fDhw5qUlKQPPPCAqqpu3bpVq1atqjNmzFBV1Tlz5mjVqlX1zz//DPBI\nHM/fvxd3flDfv37PJFR1InAWzlnDl8BVwA/AV8A5YcpZxVZ6ZjrfbP2GpxY+Red3OlP1f1UZNHsQ\nB9MO8sC5D/Dbvb/x1Y1f8Xinx+nUoBPlSpWLdpVNNImE5lVAO3fupFq1armO6FqrVq3jnsHcqlUr\n/vnPfxIXF8egQYNITU1l0aJFfPvtt+zcuZP/+7//o2TJkjRo0IB///vfjB8/Pnvbc845h8suuwxw\nHj961lln0aZNG0qUKEH9+vW55ZZbCvzL+4477qBWrVpUrlyZbt26sXLlSgAmTJjAjTfeSNOmTSlX\nrhyPPvpoSJqufB9PWrZsWXr27JldZl6PJ401+bVJpAGHcK5qigciP5i5R6kqa3euZeaGmUz8bCJr\nKq7JHuri9ja3M6HHBM8MdWH3SYRBlDq1q1Wrxs6dO8nMzPxbotixY8dxj/isW7du9nsRoW7dumzf\nvh0RYfv27VSuXDl7eUZGRnazUc5tAX766ScGDRrEsmXLOHToEOnp6bRq1apAdc/5qNAdO3Zk17tN\nmzZ+yw5GUXg8aX78JgkRSca5omkacKaqHvK3rgnMviP7mLd5HjPWz2DmxpkAJDdKJrlxMp/0+MSG\nujAxr127dpQpU4bJkyfTo0eP7PkHDhxg5syZPPXUU9nzfv311+z3mZmZbN26lTp16hAXF0eDBg34\n6aefci0jt47hfv360bJlSz788EMqVKjAyJEjmTx5ckhiOvHEE4+rq+/7cMl6POlrr70W9rKCldeZ\nxENAD1VdHanKeI2qsur3VczcMJOZG2eydPtS2tVtR9fGXbmr7V2cWu3UYnGVhFfPIsDbseXmhBNO\nYMiQIQwcOJBKlSrRqVMntm3bRv/+/TnppJPo3bt39rrLli3jo48+olu3brzwwguULVuWtm3bAhAf\nH8///vc/Bg4cSOnSpVm7di2pqam0atUq16aeAwcOEB8fT/ny5Vm3bh2vvPIKNWrUyF5es2ZNNm7c\nWKBLYLPK6dmzJzfeeCO9e/emXr16PPbYY/lum/V40iwlS+b+Veqv2eq6666jdevWzJ49mwsuuIC0\ntDQWL17MySeffNyzumNBXtdFnm8JouB2H97NxNUTuXHqjdR5tg7dJ3Rn676t3NvuXn675zdm957N\n3e3upml1u5nNFE333XcfTz75JPfeey8nnHACbdu2pX79+sydO5dSpUoBztnA5ZdfzocffkiVKlV4\n7733mDJlCnFxccTFxfHpp5+ycuVKGjZsSPXq1bnlllvYt29f9rY5/28MHz6c999/n0qVKnHLLbfQ\nq1ev49YZOnQoN9xwA5UrV2bSpEn5Xqbquzw5OZk77riDjh070qRJE9q1awdAmTJl/G7vpceT5sfG\nbgpSpmayYscKZmyYwcwNM1n1+yrOq38eyY2S6XpyVxpXaZzvPrzcZg/ejs/Gbsrdo48+yoYNG3jn\nnXeiXZUCW7t2Lc2aNePo0aNF5pGrNnZTjNl5aCezN85m5oaZzNo4iyrlqtC1cVce6fAI59c/n7Il\ny+a/E2M8rKgluI8++oiLL76YQ4cOcf/993PZZZcVmQQRbnYmEYCMzAy+3f5tdofzup3r6JjYkeTG\nTqdzYkJi1OpmvMkLZxIbN27k7bffjnZVAtK1a1cWLVpEXFwcSUlJvPzyy9SsWTPa1QqYDRUehSTx\n24HfmLVhFjM3zmTOxjnUjq9NcuNkujbuSvt67SkdVzqi9THFS1FPEiayLElEIEmkZaSxeOtiZm6Y\nyYwNM9i8ZzMXNLiAro270qVxF+pWCt210zl5uc0evB2f9UmYWGB9EmGydd9W5/LUDTOZu3kuDSs3\nJLlRMs8nP0/bum0pFVcq2lU0xpioKlZnEkczjvLlL19mny1s37+dzo0607VxVzo36kytirXy34kx\nEWBnEqYgrLkpiCSxZc+W7KSQsiWFU6udStfGXUlunEzr2q2JKxEX4toaEzy7h8YUVJFMEu7QHiOB\nOGCMqj6TyzovAF1xxojqo6orclkn4CSRmp7Kgi0Lsu9y3nV4F10adSG5cTKdG3WmWvlqQcUUDl5u\nswdvx+fl2MDiK+oi9dChQnGfQfEikAycBlwtIk1zrHMx0FhVTwZuAV4pTFnr/1rPqG9GcfF7F1Nj\nWA0e++IxqpavyrtXvsuOe3bw9pVvc02za2IyQQDZI0N6lZfj83JsYPGZ8HZctwE2qOoWABEZD1wO\nrPVZ5zLgLQBV/UZEEkSkpqr+nteODx49SMqWlOy7nA+nHya5UTJ9W/TlvX++R+VylfPaPObs2bMn\n2lUIKy/H5+XYwOIz4U0SdQDf4RS3AmcHsE5d4G9JYs2fa7L7FhZvXUyr2q1IbpTMlKum0KxGM2vD\nNcaYMAhnkgi0syPnt3uu2yW/69zINqD1ACb3nEylMpWCq10M2bJlS7SrEFZejs/LsYHFZ8LYcS0i\nbYGhqprsTj8IZPp2XovIaCBFVce70+uADjmbm0Qk9i/BMsaYGBTLN9MtBU4WkURgO87jT6/Osc4n\nwO3AeDep7MmtPyLYII0xxhRO2JKEqqaLyO3ALJxLYMeq6loRudVd/qqqTheRi0VkA3AQ6Buu+hhj\njCm4InEznTHGmOiI6oDpIpIsIutEZL2I3O9nnRfc5d+JyJkF2Tbagoxvi4isEpEVIrIkcrUOXH7x\nicipIrJIRFJF5J6CbBsLgozPC8fvWvff5SoR+UpEzgh021gQZHwxffwCiO1yN7YVIrJMRDoFuu3f\nqGpUXjhNUBuARKAUsBJommOdi4Hp7vuzgcWBbhvtVzDxudObgSrRjiPI+KoDrYDHgXsKsm20X8HE\n56Hj1w44wX2f7MH/f7nGF+vHL8DYKvi8b4Zzz1qhjl00zySyb7ZT1TQg62Y7X8fdbAckiEitALeN\ntsLG5/ukk1jusM83PlX9U1WXAmkF3TYGBBNflqJ+/Bap6l538huce5gC2jYGBBNfllg9foHEdtBn\nsiKwM9Btc4pmksjtRro6Aa5TO4Btoy2Y+MC5X+RzEVkqIjeHrZaFF0h84dg2UoKto9eO303A9EJu\nGw3BxAexffwCik1ErhCRtcAM4I6CbOsrms+TKOzNdkVFsPGdq6rbRaQ6MEdE1qnqwhDVLRSCueKh\nKFwtEWwd26vqDi8cPxHpCNwItC/otlEUTHwQ28cvoNhU9WPgYxE5D3hHRE4tTGHRPJPYBpzkM30S\nTlbLa5267jqBbBtthY1vG4Cqbnf//gl8hHOaGEuCOQZeOX5+qeoO92+RPn5uZ+7rwGWqursg20ZZ\nMPHF+vEr0OfvJreSQBV3vYIduyh2vpQENuJ0oJQm/47dthzrOMt322i/goyvPBDvvq8AfAV0jnZM\nBY3PZ92hHN9x7Ynjl0d8njh+QD2cTs62hf1simh8MX38AoytEcducTgL2FjYYxftYLsCP7oH6kF3\n3q3ArT7rvOgu/w44K69tY+1V2PiAhu7BWwn8UFTjA2rhtH/uBXYDvwAVvXL8/MXnoeM3BvgLWOG+\nluS1bay9ChtfUTh+AcQ22K37CmAh0Lqwx85upjPGGONXVG+mM8YYE9ssSRhjjPHLkoQxxhi/LEkY\nY4zxy5KEMcYYvyxJGGOM8cuSRBEgIieJyCYRqexOV3an60W7brkRkRQRaVmA9U8VkZXukMYNgiy7\nuYh09ZnuFu6hrEXkDhFZIyLv5JifJCKZInKpz7xPReR89/1xn5OIJIrI9+77Nu4wzyvcIauv8lP2\n6yLStAB17SMio9z3t4pI74JFe9y+PhORvz1sXkSG5hw6PdA6mdgTzbGbTIBU9VcReQV4GueGmaeB\nV1X1l+jWzC+lYOP7XAFMVNUnfGeKiABowW7mORNoiTOoGao6DZhWgO0Lox9wgbpDqeSwFXgI+NSd\n9o0lr8/pe6Clqma6Ix//ICKTVDXDdyVVLejgc9nlqeqrBdz2+B2pXpJfGYHuKph6mPCyM4mi4zmg\nrYjcBZwDDAcQkQoi8rn7K3yViFwWbEHuL8G3ROQL9+Er/xSR4e7+Z4hISXe9C0RkuTt/rIiUzmVf\nnUXka7d+E0SkQo7lFwN3Av1EZK6I1BeRH0XkLZwvypNE5GUR+VZEfhCRoT7btnYfFrNSRBa7v2r/\nC1zl/gLvmeOXc6KIzHMfxvK5iJzkzh8nIs+7+9ooIt39fC6DROR793WnO280zh26M91j40tx7qTf\nIyIX+vu4c5upqodVNdOdLAfszZkg3PJTROQs9/0BEXnc/TwWiUgNP2VmbZv9i19EWrqfy0oRGeZz\nRnPcr/wcZ0JbRKSK+/4h97gtBE7xU944ERntHssfRcQ3ydR2/239JCLP+Gzj79g/LSKr3ToPc+dV\nF5FJIrLEfZ2TV/wmQNG+vdxeBboVvwuQifOrNWteHMfGmakGrPez7XiODT/g+7oul3WHAl+4+z4D\nOAR0cZdNwRl/vizOMBSN3flvAXe67+fjjBdTDVgAlHPn3w88nEt5Q4BB7vtEIANo47O8sk+s83Ee\nolIaZwyalu6yiu7yG4AXfLa9ARjlvp8G9Hbf9wU+ct+PAz503zfN7TPEOTtZhfOFXQFnyIPm7rJc\nH1ADJLllngek+NThfPd9CrDO51isBlb5bN/GnXcIuNzPcZ3PseFcMoFL3PfPAA/lsr7v5+H7ua/C\nGXkY4H9Z9QD6ZK2fS/034wwal/XZlAXigfVZ+81R9pscG6usMc6QJmXcMja625YBtgB18jj2VYF1\nPq7rO7kAAAQiSURBVPut5P59H2f0VnDGZVoT7f+zXnhZc1PR0hXYjvMfZa47rwTwlDjDAWfi/CKr\noap/+G6oqr0KUI4CM1Q1Q0R+AEqo6ix32fc4X+RNgM2qusGd/xYwAHjenRacQQtPA752W45KA1/7\nKdP3F/XPqur7yMirxBnTvyRwortPgB2qusyN7wBkN1H5G369LU7TFsC7OF+GWfF+7O5nrRz/4Kcs\n5wJTVPWwW84U4HycM4U8qepCEUFE2udcBFyjqsvdfdbnWLMU7mdwujhDPM8UkRQ99pCc3BxV1c/c\n98uAi/Krm1vuCThPaPvSnfUOzr+1gDbHSYJTVDUVSBWRT/B/DCYAqOoGEdkEnIrzOcxV1f1ufdYA\n9XFGO8157JsCa9xyxuJ8Xlmf2YVAU/ffGkC8iJRX1UMBxmJyYUmiiBCRFjj/CdoBX4rIeFX9DbgW\n5xf7We6X+macX3Q5t/8Q54s9p2dV9Z1c5h8FUKdN3PfJa5nk/u/G35fCHFW9xl9cfmQ/VUucjux7\ngFaquldE3sSJz187dn7t2/7qeTSfdTTHfAmgLF9PAA/z96fY5dzn3wtWXSciG3F+fS/Lo4xAjlMg\nfOuRzvHN0n/7t0Xun02gsj7DIz7zMoCSfo59OfffeRvgAuBfwO3uewHOVlXfY2mCZH0SRYD76/gV\nnOacX4FhuH0SQCXgD/c/TkecX2B/o6pXqeqZubxySxCB+BFIFJFG7nRvnOaT7CKBxUD7rHXE6T85\nuYDlVMJJGvvcX/hd3X3/CJwoIq3cfceLSBywH6fZIovvF9bXQNYZ1bU4TWqBWghcISLl3H6VK9x5\nAVHVOUACTvPdcYtyW9/tP8nq+6kPnIzTjBOsnF/m4p6d7PE507nWZ50tQAtxnMTfn6ugOJ/jFSJS\nVkTigUvJPS4Berj7aoTTl7OO3JOK4BzHvx179/NPUNUZwCCgubvNbI49gS3rh5UJkp1JFA03A1tU\nNauJ6WWgr9vE9B4wTURWAUuBtSEqM+dVOMctU9UjItIXmOh+mS0BRudYaaeI9AE+EJEy7uyHyP3L\nLtfyVPU7EVmB82XyK/ClOz9NnMtCR4lIOZx2+wtx2q0fcLd5iuOvIBoIvCki9wF/4PRLBBIvqrpC\nRMa5cQK8rqrf+VvfZ77vsidwm7XykLX+ecD97llcGnCLqu4LcNvcys5tvu/7vsAbIqI4X7bOCqpf\numena3D+bf3tTMb9bD7EaXr7g2OfUW5l/+Iur4QzrPVRt8zc/o2tyu3Y4ySPqSJSFieZ3O3OvwN4\nSUS+w/luWwD091MXEyAbKtwYc5ysvhFVbRbi/b4JTFPVKaHcrwkva24yxuRU0P4W42F2JmGMMcYv\nO5MwxhjjlyUJY4wxflmSMMYY45clCWOMMX5ZkjDGGOOXJQljjDF+/T+JBawpjHtpGgAAAABJRU5E\nrkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7a704e0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Local mass transfer flux for ammonia is 0.00043 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.2: Page 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Illustration 5.2\n",
+ "# Page: 130\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "\n",
+ "print'Illustration 5.2 - Page: 130\\n\\n'\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data***#\n",
+ "# Eqb. data\n",
+ "# Data = [Wt% of moisture in the soap,Partial pressure of water in air(mm Hg)]\n",
+ "Data = [(0,0),( 2.40, 9.66),(3.76 ,19.20),(4.76 ,28.4),(6.10, 37.2),(7.83, 46.4),(9.90, 55.0),(12.63, 63.2),(15.40, 71.9),(19.02 ,79.5)];\n",
+ "P = 760.0;# [mm Hg]\n",
+ "# Initial air\n",
+ "p1 = 12;# [mm Hg]\n",
+ "T = 273+75.0;# [K]\n",
+ "#******#\n",
+ "\n",
+ "# Y = kg water/kg dry air\n",
+ "# X = kg water/kg dry soap\n",
+ "# E = Air water phase\n",
+ "# R = Soap water phase\n",
+ "Y = numpy.zeros(10);\n",
+ "X = numpy.zeros(10);\n",
+ "for i in range(1,10):\n",
+ " Y[i] = Data[i][1]/(P-Data[i][1])*(18.02/29);\n",
+ " X[i] = Data[i][0]/(100.0-Data[i][0]);\n",
+ "\n",
+ "\n",
+ "print'Illustration 5.2 (a)\\n\\n'\n",
+ "\n",
+ "import pylab\n",
+ "# Soln. (a)\n",
+ "# First operation\n",
+ "Y1 = p1/(P-p1);# [kg water/kg dry soap]\n",
+ "# Initial Soap\n",
+ "S1 = 16.7/(100-16.7);# [kg water/kg dry soap]\n",
+ "# Final soap\n",
+ "S2 = 13.0/(100-13);# [kg water/kg dry soap]\n",
+ "Rs = 10.0*(1-0.167);# [kg dry soap]\n",
+ "# Using ideal gas law\n",
+ "Es = 10.0*((760-p1)/760.0)*(273.0/T)*(29.0/22.41);# [kg dry air]\n",
+ "slopeOperat = -Rs/Es;\n",
+ "\n",
+ "def f2(x):\n",
+ " return slopeOperat*(x-S1)+Y1\n",
+ "x = numpy.arange(S1,S2,-0.01);\n",
+ "X1=S2;\n",
+ "def f3(S):\n",
+ " return slopeOperat*(S-X1)+Y1\n",
+ "S=numpy.arange(0,S1,0.01);\n",
+ "\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f2(x),'g',label='First Process')\n",
+ "plt.plot(S,f3(S),'r',label='Second Process')\n",
+ "ax = pylab.gca()\n",
+ "plt.title(\"Illustration 5.2(a)\")\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "plt.show()\n",
+ "\n",
+ "# Results for First Process\n",
+ "# The condition at abcissa S2 correspond to the end of first operation\n",
+ "print \"Conditions corresponding to First Operation \\n\"\n",
+ "print \"X = kg water/kg dry soap\\n\",S2\n",
+ "print \"Y = kg water/kg dry air\\n\",f2(S2)\n",
+ "\n",
+ "# Results for Second Process\n",
+ "# The point at which the line meets the equilibrium line corresponds to the final value\n",
+ "X2 = 0.103;\n",
+ "Y2 = (X2/(1+X2));\n",
+ "print\"Final moisture content of soap is \",round(Y2*100,3),'%'\n",
+ "\n",
+ "\n",
+ "print'\\n\\n Illustration 5.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "Rs = 1*(1-0.167);# [kg dry soap/h]\n",
+ "# Entering soap\n",
+ "X1 = 0.20;# [kg water/kg dry soap]\n",
+ "# Leaving soap\n",
+ "x = 0.04;\n",
+ "X2 = x/(1-x);# [kg water/kg dry soap]\n",
+ "# Entering air\n",
+ "Y2 = 0.00996;# [from Illustration 5.2(a), kg water/kg dry air]\n",
+ "# The operating line of least slope giving rise to eqb. condition will indicate least amount of air usable.\n",
+ "# At X1 = 0.20; the eqb. condition:\n",
+ "Y1 = 0.0675;# [kg water/kg dry air]\n",
+ "\n",
+ "def f4(x):\n",
+ " return ((Y1-Y2)/(X1-X2))*(x-X1)+Y1\n",
+ "x = numpy.arange(X2,0.24,0.01);\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f4(x),'g',label='Operating line')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.title(\"Illustration 5.2(b)\")\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "plt.show()\n",
+ "# By Eqn. 5.35\n",
+ "\n",
+ "Es = Rs*(X1-X2)/(Y1-Y2);# [kg dry air/h]\n",
+ "Esv = (Es/29)*22.41*(P/(P-p1))*(T/273.0); #[cubic m/kg dry soap]\n",
+ "print\"Minimum amount of air required is\",round(Esv,4),\" cubic m/kg dry soap\\n\\n\"\n",
+ "\n",
+ "print'Illustration 5.2 (c)\\n\\n'\n",
+ "\n",
+ "# solution (c)\n",
+ "\n",
+ "Esnew = 1.30*Es;# [kg dry air/h]\n",
+ "Y1 = Rs*((X1-X2)/Esnew)+Y2;\n",
+ "\n",
+ "def f5(x):\n",
+ " return ((Y1-Y2)/(X1-X2))*(x-X1)+Y1\n",
+ "x = numpy.arange(X2,0.24,0.01);\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f5(x),'g',label='Operating line')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.title(\"Illustration 5.2(c)\")\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "plt.show()\n",
+ "# with final coordinates X = X1 & y = Y1\n",
+ "# From figure, Total number of eqb . stages = 3\n",
+ "N = 3;\n",
+ "print\"Moisture content of air leaving the drier is \",round(Y1,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Total number of eqb. stages = \",N\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 5.2 - Page: 130\n",
+ "\n",
+ "\n",
+ "Illustration 5.2 (a)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWeYFNXSgN8CQSQvGRdwyEkUBQEFdFGUZUXAhHJFhcun\niCIKigEBuco1ohKuAZGkCBivKBJUYK8oAiKCSJSwSEZyUthQ348zuw7LzOxsmOkJ532eftjuru5T\nc+iZ6nPqVJWoKhaLxWKxABRyWgGLxWKxhA/WKFgsFoslC2sULBaLxZKFNQoWi8ViycIaBYvFYrFk\nYY2CxWKxWLKwRsEStohITxFZ5LGfISK1nNTJFyLypogMcVqPnBCRRiLyY4CyN4jIjGDrZAkvrFGw\nhBUikiIiVwfx/pNF5Nl83uMMYwWgqn1VdUT+tPPZVrqIHPPYrvQhW09EZorIPhE5ICJzRaReNrFn\ngZcDaVtVvwAai0iTfH4MSwRhjYIl3HA0mlJEznGyfR98r6qlPLZvfciVAT4D6gGVgWXAzMyTIlIV\nSHDLBMp04N48aW2JSKxRsEQkIpIsIr099rPe3sXwmojsFZEjIvKLiDQWkXuBfwCPud+4Z7rlU0Tk\nMRH5BTgmIoVF5AkR2SQiR0VkjYh0dcs2BN4ELnff46D7+BkjEBG5R0R+c7+xz3T/IGeeyxCRPiKy\nUUQOich/cvq4gfSJqv6oqpNU9bCqpgGjgPoiEucWuRb4SVVPe+ji9XN6kAxcH0j7lujAGgVLpKL4\nHlVcB7QF6qpqGeBW4ICqvg28D7zofuPu4nHN7UBHoKyqpgObgDaqWhr4FzBVRCqr6jrgPuAH9z3K\nZdfHPf31nLvdqsA2IPvc/PVAc+AioJuIdPDzOS8RkT9EZIOIDBGRwjl3DwBXArtV9ZB7vwmwIZuM\nt89ZxeP8esAlIiUDbNMS4VijYIlGUoFSQEMRKaSqG1R1j8f57G/eCoxR1Z2qegpAVT/OvEZVPwR+\nA1r6uD47dwATVHWl+638SczIooaHzAuqelRVtwMLgaY+7vUt0FhVKwI3A92BQTm0j4hUA/4DDPQ4\nXAY47inn43O28BA55v63bE5tWqIDaxQsUYeqLsD8IL4O7BWRcSJSKofLtnvuiMhdIvKze3rnEHAh\nUD5AFTJHB5n6nAAOAPEeMp5G6iTg9U1cVbeq6jb3378CzwC3+GtcRCoCXwGvq+oHHqcOYYylp2xO\nnzNT/rC/Ni3RgzUKlkjlBFDCY99zygNVHauqzYFGGMdr5tu1rymnrOMicgHwNvAAUE5V44Bf+XuE\nkJMzfBfg8rhfCcwP7c4crgsUnyMVt//gK+AzVX0+2+lfMH2RKZvT5wRoCKSo6hkjDEv0Yo2CJVJZ\nCdwkIueJSB2gN3/P6TcXkZYiUgTzFv4XkO6+bi+QU6xDCfe99gOFRKQX5g06k71ANff9MxH+/jGd\nDvQSkYtF5FyMf2GJqv7uoz1/P/IdRaSy++8GwBB8rB4SkdLAPOA7VR3sReQb4FIRKRrg5wS4Cpjt\nSz9L9GGNgiWcye5M9vz7NeA05gd6EjDV41xpzBvwQSAF86OXuTZ/AtDIPV3yqddGVdcCrwA/YKZ5\nLgS+8xCZD6wB9ojIvuy6qup8YCjwCWbUUBPjyPb2Obx9Tk+uBlaJyHHgS/c9n8s8KSKzReQJ9+6N\nGOd1L4+YhqNu/wKquhdYAHQN8HPi1nucD90sUYgEs8iOiCRilsUVBt5R1Re9yIzBrPo4CfRU1Z/d\nx58EegAZwGqgV6YT0GKx5A33ktopqtoiANkbgDtU9facZC3RQ9CMgnvZ3AagPWYu9Uegu3tJX6ZM\nEtBPVZNEpCUwWlVbiYgL80bTUFVPicgHwGxVnRIUZS0Wi8UCBHf6qAWwSVVTVDUVs067SzaZzsAU\nAFVdCpR1z58exSwrLO6OMC1OwTnpLBaLxeKDYBqFeM5c5reDM5fk+ZRR1YOYuc7fMXOyh1X1myDq\narFYLBaCaxQCnZc6a+WFiNQGHsYs6zsfKCkidxScahaLxWLxRjCTf+0EqnvsV8eMBPzJVHMfSwAW\nq+oBAPcqkSswKQqyEBFHk6dZLBZLpKKqXpdCB3OksByoKyIu97ro24DPs8l8DtwFICKtMNNEezEO\n6lbuNeiCcVav9daIqtot23b33Xc7q0OXLuiIEY73Q9j1S5hutl9ir0/8EbSRgqqmiUg/TDBNYUwu\nmHUi0sd9fpyqzhaRJBHZhIlQ7eU+t1JE3sUYlgxgBWbduSUAUlJSnFVg1Cho1gx69IALLnBWFw8c\n75cwxfbL2cRynwQ1d7yqzgHmZDs2Ltt+Px/XvgS8FDztLEHD5YKHH4YBA+BTr/FhFoslTLERzVGI\ny+VyWgUYNAh++QXmznVakyzCol/CENsvZxPLfWKNQhQSFg90sWIwejQ8+CCcCo9A9LDolzDE9svZ\nxHKfhGPpwXxjfNOxzb/+9S+nVfibYsWc1iALX/2Sk/PNYokVotIogP2SWwIn1l8iEhISnFYh7Ijl\nPglqQrxgIyLqTX8RsUbBEjD2ebHEGu5nPuRxChaLxWKJMKxRsFgsFksW1ihEEb///julSpXKmgpJ\nSEhgwoQJALz//vt06NAhS7ZQoUJs2bIl4Htnv94Jsn8+i8VS8Fij4AAul4vixYtTqlSprK1///75\nvm+NGjU4duxYluNURLL+vuOOO5g3b16e753f63ODpzHzJPvns1gsBY81Cg4gIsyaNYtjx45lbWPG\njHFaLZ+kp6fnLFSAeBozS/BJTk52WoWwI5b7xBqFMCMjI4NHH32UihUrUrt2bV5//XUKFSpERkYG\nYEYZ8+fPz5IfPnw4d955J2DytXjKejJ58mTatm17xrEvv/yS2rVrU7FiRR577LGsaZnJkyfTunVr\nBg4cSIUKFRg+fPgZ13trx/Pt3vP6uLg46tSpw+LFi5k0aRI1atSgcuXKvPvuu7num+ztJiQkMGzY\nMNq0aUPp0qXp0KEDBw4cyJJfsmQJV1xxBXFxcTRt2pT//e9/uW4zFojlH0BfxHKfWKPgEL7mxd9+\n+22+/PJLVq5cyfLly/n444/PeGvO/hadnzfqzz77jJ9++okVK1Ywc+ZMJk6cmHVu2bJl1K5dm337\n9vHUU0/leK/sei1btoyLL76YgwcP0r17d7p168aKFSvYvHkzU6dOpV+/fpw8eTLPumcyffp0Jk+e\nzL59+zh9+jQjR44EYOfOnXTq1Ilhw4Zx6NAhRo4cyc0338z+/fvz3abFEs3ErFEQKZgtL6gqXbt2\nJS4uLmvLfMv+8MMPGTBgAPHx8cTFxTF48GC/jtX8OF0ff/xxypYtS/Xq1Xn44YeZPn161rnzzz+f\nBx54gEKFClEsDxHJNWvW5O6770ZE6NatG7t27WLYsGEUKVKEa6+9lqJFi7Jp06Y86w7GEPXq1Ys6\ndepQrFgxunXrxsqVKwGYOnUqSUlJJCYmAtC+fXuaN2/O7Nmz89WmxRLtRG1Ec044uYBFRJg5cyZX\nX331Wed2795N9ep/1x2qUaNG0PTI3s6uXbu8nssLlStXzvr7vPPOA6BixYpnHDt+/Hi+2gCoUqWK\n13tu27aNjz76iC+++CLrfFpamtc+t1gsfxOzRiFcqVq1Kr///nvWvuffACVKlODEiRNZ+3v27Mlz\nW7///jsNGzbM+js+/u8S2v6mpUqUKAHAyZMnKVmyZL71CAY1atTgzjvv5O23bRkOiyU3xOz0kdP4\nmvbp1q0bY8aMYefOnRw6dIgXXnjhjB/opk2bMmPGDNLS0li+fDmffPJJnv0KI0eO5PDhw2zfvp0x\nY8Zw2223BXRdxYoViY+P57333iM9PZ2JEyeyefPmPOngi9TUVP7666+sLS0tzaucr37s0aMHX3zx\nBV999RXp6en89ddfJCcns3PnzgLVMxqI5Tw/voj0PklJgWzvkwFjjYJD3HDDDWfEKdx8880A3HPP\nPXTo0IGLL76Y5s2bc/PNN5/xw/fss8+yefNm4uLiGD58OHfccccZ9/VlILwt8+zSpQvNmjXjkksu\noVOnTvTu3dunbPZj48eP5+WXX6ZChQqsXbuW1q1b+20rt4arb9++FC9ePGv75z//meN9Pc9Xq1aN\nmTNn8txzz1GpUiVq1KjBK6+84nVlVqwT6T+AwSDS+iQ1FRYuNGVMGjeGFi1g0aK83csmxAtzUlJS\nqFWrFmlpaRQqZG14MIim58USO+zeDXPmwOzZ8M03ULcuXH89JCVB8+bg7+fCX0I861OwWCyWCCA9\nHZYtM0Zg9mzYsgWuuw5uuAFefx081nbki6AaBRFJBEYBhYF3VPVFLzJjgI7ASaCnqv4sIvWBGR5i\ntYChqhq+Yb9BxEb3WiyxyYEDMG+eMQLz5kHVqmYk8NprcPnlUKRIwbcZtOkjESkMbADaAzuBH4Hu\nqrrOQyYJ6KeqSSLSEhitqq2y3aeQ+/oWqro927monz6yBB/7vFjCBVVYufLv0cDq1dCunTEEHTtC\nQa1Qd6qeQgtgk6qmqGoq5s2/SzaZzsAUAFVdCpQVkeyDoPbA5uwGwWKxFAyxnNLBF6Hsk6NH4dNP\n4f/+D+LjoVs3+OMPePpp2LcPZs6EPn0KziDkRDCNQjzg+UO+w30sJ5lq2WRuB6YVuHYWiwWwRsEb\nwewTVVi3Dl55Ba6+2hiCceOgSRP43//gt99g1CjjL3CivHkwfQqBjsezD2GyrhORosANwOMFpZTF\nYrGEmpMnITnZTAl9+SWkpZmVQg8/bAyDOwY0LAimUdgJeOZKqI4ZCfiTqeY+lklH4CdV/cNXI57r\niV0uFy6XK2/aWmKa4cOHZ/2dkJDgdZ16cnKy1zfISJdPSUk565iT+oSDfHJyctYzkdf7b936txFY\ntAhq1UqmYsVkEhOhUiWTO23FCihdOvifN/N8IATT0XwOxtF8DbALWIZ/R3MrYJSno1lEZgBzVHWK\njzaso9mSb2L9eRk+fPgZRtGStz45fRq++84Ygdmz4eBB4xxOSjJTQWXLBkfXvOBInIKqpolIP2Ae\nZknqBFVdJyJ93OfHqepsEUkSkU3ACaCXh9IlME7me4KlY7hRqlQpVq9ebUc7FkuEsGvX3yuF5s+H\nBg2MEXjvPbj0Uv8BZOGKjWh2AJfLxb59+yhcuDBg9N24ceMZGT9zQ3JyMnfeeSfbt/teoNWzZ0+m\nT59O0aJFKVq0KM2aNWPs2LHUr18/T21GE+H+vASb5OTkiEvrEGx89Ul6Oixd+vdoYNs2MwpISiJr\nWigScGpJqsUH2ctxHj16NEeDkN+cPSLC448/zrFjx9ixYweVKlWiZ8+eZ8mpakz/QMYi1iCcjWef\n7N8PU6fCP/5hfvT79oWMDBg71iwZnTED7rorcgxCTlijEEYUKlSILVu2AObNvm/fviQlJVGyZEmS\nk5OZPXs2jRo1onTp0lSrVo1XX32VkydP0rFjR3bt2kWpUqUoXbp0jmmszzvvPLp3786vv/4KmC/A\nkCFDaN26NSVKlGDr1q0sXryYyy67jLJly9KiRQt++OGHrOsPHjxIr169iI+Pp1y5ctx4441Z52bN\nmkXTpk2Ji4ujdevWrF69Ouvciy++SLVq1ShdujQNGjRgwYIFgKnS1rx5c8qUKUOVKlV45JFHCqxP\nLZbckpEBP/0Ezz5rooZr14aPP4aEBFi1ymzPPw9t2sA50ZgoKPPNMBI3o/7Z+DoeLrhcLv3mm2/O\nOi4iunnzZlVVvfvuu7VMmTK6ePFiVVX9888/tUqVKvrdd9+pqurhw4d1xYoVqqqanJys1apV89tm\nz549dciQIaqqeuzYMe3evbteeeWVqqp61VVX6QUXXKBr167V9PR03bNnj5YtW1anTp2q6enpOn36\ndI2Li9ODBw+qqmpSUpLefvvtevjwYU1NTdVvv/1WVVVXrFihlSpV0mXLlmlGRoZOmTJFXS6Xnj59\nWtevX6/Vq1fX3bt3q6rqtm3bsj5rq1atdOrUqaqqeuLECV2yZEkeezZvhPvzYgk+hw+rfvSRaq9e\nqlWqqNarp/rww6pff636119Oa1fwuJ95r7+r0WjnAkL+VTD5hPTp3E+1qLsc5znu14x27drx6aef\nniXXtWtXLr/8cgCKFStG0aJFWbNmDU2aNKFMmTJccsklWfcLpM2RI0fyn//8h2LFitGyZUsmT54M\nmKmlnj17ZhXc+eqrr6hfv35WWu7bb7+dMWPG8Pnnn3Pdddcxd+5cDh48SJkyZQBo27YtYOpL9+nT\nh8suuwyAu+66i+eee44ffviB+Ph4Tp06xZo1ayhfvvwZFeWKFi3Kb7/9xv79+6lQoQItW7bMdZ9a\nLLlBFdau/dtJvHw5tG5tYgcGD4Y6dZzW0Dli1ijk5ce8oPBXjtNTplq1M4O7P/nkE0aMGMETTzzB\nRRddxAsvvECrVq183OHs+w0aNIhnnnnG63nP8pu7du06qwzoBRdcwK5du9ixYwflypXLMgiebNu2\njXfffZexY8dmHUtNTWX37t1ceeWVjBo1iuHDh7NmzRo6dOjAq6++StWqVZkwYQLDhg2jYcOG1KxZ\nk6effprrr78+oM9lsQTKiROm5kCmIVA1DuJHHjH5hdwFBWMe61OIIJo3b85nn33GH3/8QdeuXenW\nrRsQeBZVfyMKz3vEx8ezbdu2M85v27aN+Ph4qlevzsGDBzly5MhZ96hRowZPPfUUhw4dytqOHz+e\nVdGte/fuLFq0iG3btmU5vgHq1KnDtGnT+OOPP3j88ce55ZZb+PPPPwP6TJb8E81pLjZvNg7hxESo\nUgVGjoSaNc3qoZQUePNN6NTpbIMQzX2SE9YohCnZf8BTU1N5//33OXLkCIULF6ZUqVJZS1orV67M\ngQMHOHr0aMD383c+KSmJjRs3Mn36dNLS0vjggw9Yv349nTp1okqVKnTs2JH777+fw4cPk5qayrff\nfguYqnFvvfUWy5YtQ1U5ceIEX375JcePH2fjxo0sWLCAU6dOce6551KsWLEs/adOncoff5ig9TJl\nyiAitqBQCImmH8BTp0zBmYEDoX59MyX0888m2dz27SbVRGZ1Mn/vUtHUJ7nFfvPCCF+lJTOZOnUq\nNWvWpEyZMrz99tu8//77ADRo0IDu3btTq1YtypUr53X1kbf7+Wq7XLlyzJo1i1deeYUKFSowcuRI\nZs2aRbly5QB47733KFKkCA0aNKBy5cqMGWPKXDRr1ozx48fTr18/ypUrR926dXn33XcBOHXqFE8+\n+SQVK1akatWq7N+/n+effx6AefPmceGFF1KqVCkGDBjAjBkzOPfcc/PShZYYZMcOGD8ebrzRLAsd\nMgTi4mDaNBNcNnEi3HJLeEUUhzM2eM0S88T68xJpaS7S0mDJkr/zCm3fDh06GCdxhw5QsWL+24i0\nPsktthynxWKJeH7/3aSUnjLF1BZISoI33oCWLaM0XsAhbFdaLJawZtUqePllU6S+Vy8TWGbTgwUP\n61OwWGKccExzoQpff/13XqGLLjIriUaODI1BCMc+CRXWp2CJeezzEj6kpsKHH5of/9On4dFHTc4h\nu+6gYLE+BYvFEtYcOwbvvGN8BjVrwogRphaBXZkceqxRsFgsjrF7twkue/ttU5by44/BnSXF4hDW\nDlsslpCzbp0JKGvcGI4eNTUKPvzQGoRwwI4ULBZLSFA15SpfftkYgQcegI0boUIFpzWzeGJHCpaz\nmDx5clbmU0v0E+yUDunp8MknpjZBr15mNVFKCgwbFr4Gwaa5sISU7777jiuuuIKyZctSvnx52rRp\nw/Lly51WKyBSUlIoVKgQpUqVolSpUtSsWZMXX3zRabUs+SBYP4B//mkSzjVoYEYHgwbBhg1w331w\n3nlBabLAiGWjENTpIxFJBEYBhYF3VPWsXw8RGQN0BE4CPVX1Z/fxssA7QGNAgX+q6pJg6hsKjh49\nSqdOnRg3bhzdunXj1KlTLFq0KOJy/Rw5coRChQqxZMkSrrnmGpo2bUqHDh3OkElLS8uqGWGJHfbv\nh9df/zvaeOJEU6UswGS+FocJ2khBRAoD/wESgUZAdxFpmE0mCaijqnWBe4E3PU6PBmarakPgImBd\nsHQNJRs3bkREuO222xARihUrxrXXXkuTJk2yZCZOnEijRo0oV64ciYmJ/P7771nn1qxZw7XXXkv5\n8uWpUqVKVlK5U6dO8fDDDxMfH098fDwDBgzg9OnTgHnrySzfWblyZc4///ysAjsABw4coHPnzpQp\nU4aWLVuyefPmgD9Pq1ataNy4MWvWrMlq56WXXqJq1ar07t2b06dP+9QLYObMmTRt2pQyZcpQp04d\n5s2bBxij07t3b84//3yqVavG0KFDs+pUb9q0iauuuoqyZctSsWJFbr/9dsBkeh0wYACVK1emTJky\nXHTRRaxZsyaX/0OWvLJ5s/ET1K37d0bSzz+Htm2tQYgkgjl91ALYpKopqpoKzAC6ZJPpDEwBUNWl\nQFkRqSwiZYC2qjrRfS5NVc9O4B+B1K9fn8KFC9OzZ0/mzp3LoUOHzjg/c+ZMnn/+ef773/+yf/9+\n2rZtS/fu3QE4duwY7du3Jykpid27d7Np0yauueYaAP7973+zbNkyVq1axapVq1i2bBkjRozIuu/e\nvXs5evQou3btYsKECTzwwANZNREeeOABihcvzp49e5g4cSKTJk3KsUZDZum+77//njVr1mRVgdu7\ndy+HDh3i999/Z9y4cYwYMcKnXsuWLePuu+/mlVde4ciRI3z77be43OGqPXv2pGjRomzevJmff/6Z\nr776infeeQeAoUOHkpiYyOHDh9m5cyf9+/cHTMW4RYsW8dtvv3HkyBE++ugjypcvn5//LksALFsG\nt95qRgVlypiKZu+8Aw0b5nytJQzxVaczvxtwCzDeY78HMDabzBfAFR773wDNgKbAUmASsAIYDxT3\n0oa/+qM5FSktmC0PrFu3Tnv27KnVqlXTc845Rzt37qx79+5VVdXExESdMGFClmx6eroWL15ct23b\nptOmTdNLL73U6z1r166tc+bMydqfN2+eulwuVVVduHChnnfeeZqenp51vlKlSrp06VJNS0vTIkWK\n6IYNG7LODR48WNu0aeO1na1bt6qIaNmyZTUuLk4bNmyoY8eOzWqnaNGieurUqYD0uvfee3XgwIFn\ntbFnzx4999xz9c8//8w6Nm3aNG3Xrp2qqt51111677336o4dO864bsGCBVqvXj1dsmTJGZ81JwJ6\nXqKYp59+OtfXpKerzpqleuWVqjVqqL72murRowWvm1PkpU8iCRyq0Rxo3oDsr6SK8XVcCvRT1R9F\nZBTwBDAs+8WeOUpcLlfWm2bO2jmX1qBBgwZMmjQJgA0bNtCjRw8efvhhpk2bxrZt23jooYd45JFH\nzrhm586d7Nixg1q1anm9565du7jggguy9mvUqMGuXbuy9suXL39G4ZrixYtz/Phx/vjjD9LS0s4o\nx5m9FKc3Dhw44LUQTsWKFSlatGhAeu3YscNr2c1t27aRmppK1apVs45lZGRk6fXSSy8xdOhQWrRo\nQVxcHI888gi9evWiXbt29OvXjwceeIBt27Zx0003MXLkSEqVKpXj5/FMk5yQkOA1901ycrJXB2Sk\ny5f1UWjAm3xaGqSmJjBrVgJFixrn8a23QpEikfN5A5FPSUnJeibCQZ/8ymeeDwhf1iK/G9AKmOux\n/yTweDaZt4DbPfbXA5WBKsBWj+NtgFle2vBnBSOGsWPHapMmTVRVtUOHDjpt2jSvctOnT/c7Upg9\ne3bWfvaRQrVq1c6Qd7lcOn/+/KyRwvr167POBTJS8PYm7q0db3rVrFlTVVX79OmjAwYMOOs+u3bt\nOmtk44vvvvtOixUrpps3bz7j+L59+zQhIUGHDh2a4z0i7XlxgkOHVF94QfX881Wvu071669VMzKc\n1sqSV/AzUgimT2E5UFdEXCJSFLgN+DybzOfAXQAi0go4rKp7VXUPsF1E6rnl2gNR4THcsGEDr776\nKjt37gRg+/btTJ8+ncsvvxyA++67j+eee461a9cCZM2NA3Tq1Indu3czevRoTp06xbFjx1i2bBlg\n6h+PGDGC/fv3s3//fp555hnuvPPOHPUpXLgwN910E8OHD+fPP/9k7dq1TJkyJeC6zznhTa8ePXoA\n0Lt3byZNmsSCBQvIyMhg586dbNiwgapVq3LdddcxcOBAjh07RkZGBps3b84q+/nRRx+xY8cOwLzl\nZpbvXL58OUuXLiU1NZXixYufUfLTkje2bzeF7WvVgtWrTVGbefOgfXvrPI5afFmLgtgwS003AJuA\nJ93H+gB9PGT+4z6/CrjU4/jFwI/u458CZbzc358VDEt27typ3bp10/j4eC1RooTGx8frfffdp8eO\nHcuSee+997RJkyZaunRprV69uvbu3Tvr3K+//qrXXHONxsXFaZUqVfTFF19UVdW//vpL+/fvr1Wr\nVtWqVavqQw89lDW3v3DhQq1evfoZemSOFFRV//jjD+3UqZOWLl1aW7ZsqUOHDtW2bdt61X/r1q1a\nqFAhnyOF7O3400tV9b///a9edNFFWqpUKa1Tp45+9dVXqqp65MgR7du3r1arVk3LlCmjl1xyiX7w\nwQeqqvrYY49pfHy8lixZUmvXrq3jx49XVdX58+frRRddpCVLltQKFSpojx499MSJEzn+n4Tz8+IU\nq1ap9uihGhenOmCA6rZtTmtkKUjwM1KwqbMtMY99XgyqMH++CTRbvRr69zeBZra2cfRhU2dbLBaf\npKXBRx8ZY/DXX6aGweef2xoGsYpfn4IYqvuTsVgskcnx4/DoKysoldiRt96CZ56BX3+Ff/7TGoRY\nTnMRiKN5TtC1sFgsIWPPHnjqKVPMZsvSRhSRpTz+zmw6dbJFbTKxRsEH7gn7n0SkRYj0sVgsQWL9\nerjnHhNpfPgwLFkCn35YjBsadKT/nP78lfaX0ypawoBA3gtaAT+IyBYRWe3efgm2YhaLJf+ou4ZB\nly5w5ZUQH29qGLz+OtSubWTqlq9Lk8pNGLl4pLPKWsKCQBzNHXIWsVgs4UR6OsycCSNHwr59MHAg\nTJ8OxYvZ15mEAAAgAElEQVR7l3+tw2s0e7sZPS7qgausK6S6WsILn0ZBREqr6lHgaAj1KTAKKvjK\nYokkTp6EKVPg1VehfHmThqJrV8gphs9V1sWAVgMYMG8A/73tv6FR1hKW+Js+mu7+dwXwk5ctbPEV\nlBEr28KFCx3XIRy3hQsXor/9hpYvj27ffsa5SGffPnj6aXC5TMTxpEnwww9w8805G4TM3DiPXvEo\nq/euZs5vdm2Jt9xCsUJUBq9ZLH4ZNsyUAPvgA6c1yTcbN5pRwQcfQLduZpqofv2832/Ob3PoP7c/\nq/uuptg5xQpOUUtY4S94LaAFaCISJyItROTKzK1gVbRYQsgTT5giAN9847Qmeeb77+HGG01Fs0qV\njI0bNy5/BgGgY92ONK7Y2DqdY5gcRwoicg/QH6gO/Ix7NZKqXh189fxjRwqWPDNzpjEOq1aBR6rv\ncMbTebx3rxkV9OwJJUoUbDsph1No/nZzlt+73Dqdo5T8jhQewlRRS1HVdsAlQFRUQbPEMJ07m9Sf\no0Y5rUmOnDwJb74JDRrASy+ZrKUbN5rSlwVtEMA4nR9q+RAD5g0o+Jtbwp5AjMJfqvongIgUU9X1\nQD4HqRaLw4jA6NHmV9adhjvcyI/zOL8Maj3IOp1jlECMwnYRiQM+A74Wkc+BlKBqZckXsRyi74+z\n+qVOHbj/fvPqHUZs3Giyk9avb1JSLFoEn31m/AfBWGnt7Xkpdk4xxnYcS/+5/TmVdqrgGw1zYvk7\nlKNRUNUbVfWQqg4HhgLvAF2DrZgl78TyA+0Pr/2S6XSePz/k+mQnWM7jnPD1vMSy0zmWv0O5Sn+l\nqsmq+rmqng6WQhZLSCle3PgV+vWD06F/rNPT4dNP4Yor4K67TEWzrVtNxtJKlUKuzlmMShzFa0te\nY9vhbU6rYgkRNieixdK5s0kZOnp0yJoMtfM4r1inc+xhjYLFIgJjxsCLLwbd6fzHHzB8uHEez50b\nWudxXhnUehC/7P2FuZvmOq2KJQTkaBREpL/b0WyxRC916kDfvqbsWBDIdB7Xqwe7dxvn8cyZwXMe\nFyTFzinGmI5jeHDOgzHpdI41AhkpVAZ+FJEPRSRRcpFpzi2/XkR+E5HHfciMcZ9fJSKXeBxPEZFf\nRORnEVkWaJuW2M7b4o8c++XJJ2Hp0gJ1Omc6j1u3Nj6C9etD4zzODYE8L0l1k2LK6RzL36GAch+J\nSCHgOqAn0Bz4EJigqpv9XFMY2AC0B3YCPwLdVXWdh0wS0E9Vk0SkJTBaVVu5z20FmqnqQT9t2Ihm\nS8Eyc6YxDitX5jnSOVSRx6Em5XAKzd5uxop7V3BB2QucVseSD/Kd+0hVM4A9wF4gHYgDPhaRl/1c\n1gLYpKopqpoKzAC6ZJPpDExxt7EUKCsilT11D0Q/i6XA6NzZTPjnwens6Tx+8UVjDMLReZxXXGVd\nPNzyYet0jnIC8Sk8JCI/AS8B3wMXqmpfoBlwk59L44HtHvs73McClVHgGxFZ7s6/ZLEEnzw4nbM7\njydONKUub7klfJ3HecU6naOfQCqvlQNuUtUzFiqraoaI3ODnukDndXyNBtqo6i4RqYiJpF6vqouy\nC3nO/blcLlwuFwkJCV7nBJOTk70GpVh5K3+WfKbTecYMn/IHDpiVQ+vXJ3DHHQl8+60ZJYSF/kGU\n7127Nw/OeZBf+/7Kueec67g+Vj5n+czzgeDXpyAi5wBrVDXXbjERaQUMV9VE9/6TQIaqvugh8xaQ\nrKoz3PvrgatUdW+2ez0NHFfVV7Idtz4FS3A4eRIaN4YJE+DqMxMCL14ML79sah/37WumhypX9nGf\nKKXrjK5cdv5lPHXlU06rYskDefYpqGoasF5E8uJVWg7UFRGXiBQFbgM+zybzOXCXW8lWwGFV3Ssi\nxUWklPt4CYyTe3UedIhJYjlE3x+56pfixeG117IinT0jj++800Qep6SYyONINwh5eV6iPdI5lr9D\ngTiaywFrRGSBiHzh3rL/uJ+F26D0A+YBa4EPVHWdiPQRkT5umdnAFhHZBIwD7ndfXgVYJCIrgaXA\nLFX9KtefLkaJ5QfaH7nuly5dSK/u4ofbR0et8xjy9rxEe6RzLH+HAvEpDM3rzVV1DjAn27Fx2fb7\nebluC9A0r+1aLPlFFT7+WHjt5zHMPdKKqdO60+KmamEfaBZKBrUexIVvXMjcTXNJrJPotDqWAiJH\no6CqySHQw2IJG3btMiOBDRtgwsw6lJ7dl5YfPQo3z8j54hii2DnFGJ042qvT2RK5+Jw+EpHjInLM\nx3Y0lEpaLKFAFd55B5o2hSZN4Oef4fLLMcFsS5bAggVOqxh2XF/vehpVbMQrP7ySs7AlIvA5UlDV\nkgAiMgLYBUx1n7oDOD/4qlksoWPzZrj3Xjh6FL75Bi66yOOkZ3rtfEQ6RyujOozisvGXcUeTO2yk\ncxQQiKO5s6q+oapH3dubnB2ZbAkjYjlviz+89Ut6Orz6KrRsCUlJJu7gDIOQSZcuJjptzJhgqxly\n8vu81IyrSf+W/Rn41cCCUSgMiOXvUI65j0TkB+B1YLr70O3AA6p6RZB1yxEbp2DJD7/+Cr17m4HA\n+PEmUapfNm2CVq1g1SqIzx6cH9v8lfYXF75xIa8nvU6HOh2cVseSA/nNffQPoBsm79Fe99//KDj1\nLJbQcuqUSUvRrh383/8ZV0GOBgGCnl47kvF0Otv02pFNQFlSwxU7UrDkliVLzOigTh144408vPCf\nPAmNGpnqOO3aBUXHSKbLjC60jG/J4LaDnVbF4gd/IwVrFCwxwYkTMGSISWU0ejTcems+itt89hkM\nHmymkYoUKVA9I52th7Zy2fjLWNFnBTXK1HBaHYsP8p0622KJZL75xiwxPXDA+BG6dctntbMuXeCC\nC0Ja0zlSyHQ6R2ukcyxgjUIUEssh+p4cOmSminr3NlNF//xnMuXLF8CNM9Nrv/AC7NxZADd0loJ+\nXh5r/Rgr96xk3qZ5BXrfUBLL36FA6ik8IiID3f9m/t1bRGwaijAllh/oTD79FC680Kws+vVXSEws\n4H6pW9cUXY4Cp3NBPy/FzinGmMTIrukcy9+hQEYKzYD7MAFr8UAfoCMw3lfdZYvFKfbsMcVtBg+G\nDz6AsWOhVKkgNTZ4sAlsWLgwSA1ELtfXu54GFRrYSOcIJBCjUB24VFUfUdWBGCNRCbgKU7PZYnEc\nVZg8GS6+2BS6WbkS2rQJcqOe6bVTU4PcWOQxOnE0r/7wKr8f+d1pVSy5IBCjUBE47bGfClRW1ZPA\nX0HRymLJBVu3QocOZlQwbx6MGAHFioWo8a5doUaNqIx0zi8142ryYIsHrdM5wgjEKLwPLBWRp0Vk\nOLAYmOYufrM2mMpZLP5ITzcLgC67zBS9WbrUJLMLKZlO5+efN+lVLWcQDU7nWCNHo6CqzwL3AkeA\nQ0AfVf2Xqp5Q1TuCraAl98RC3pa1a8300KefmvKYjz0G5+SQCD5o/RLhTudgPi/nFTkvIiOdY+E7\n5ItAch/1VtUJ2Y69oKpPBFWzALDBa7HH6dOmAtqYMWaa6J57oFA4LKy2kc5+6Ty9M5dXu5wn2z7p\ntCoW8h+8douI9PC42esYR7PFElJ+/BGaNzfTRD//DH36hIlBAOt0zoFRiaMY+cNI63SOAAL5St0E\n3C0i3UXkXSBNVf8ZZL0slixOnjQzMzfcYOrdfPEFVKvmtFZesE5nn9SKq0X/Fv0ZOC960mtHK/4q\nr5UTkXLAecD/AY8DR4F/uY/niIgkish6EfnNV0yDiIxxn18lIpdkO1dYRH4WkS8C/kSWqGLhQlPf\nYPduWL0aunfPZ4qKYGKdzn55rPVjrNi9wjqdwxyfPgURSQE8T4rHvqpqLb83FikMbADaAzuBH4Hu\nqrrOQyYJ6KeqSSLSEhitqq08zmfGRZRS1c5e2rA+hSjl8GHjPJ47F958E66/3mmNcsGQIbBlC0yb\n5rQmYcesjbMYOG8gq/uutjWdHSRPPgVVdalqTY/Nc9+vQXDTAtikqimqmgrM4OyKbZ2BKe72lgJl\nRaSyW+lqQBLwDsYgWQIk0kP0Z882KSrOOcekqCgogxCyfhk82CyJipBI51A+L53qdaJ+hfq8+sOr\nIWszL0T6dyg/BNNNFw9s99jf4T4WqMxrwCAgI1gKRiuR+kCrwksvmVrJ779vktiVLl1w9w9Zv0SY\n0znUz8voxNFh73SO1O9QQZDDyu58Eei8TvZRgIhIJ2Cfqv4sIgn+LvZcT+xyuXC5XCQkJHhdZ5yc\nnOz1P9vKOy9/xRUJ3HefWVW0ZIlxJEeS/mfJd+1K8vPPk9ypE1x+ufP6+JFPSUk561gw9cl0Ot/5\n6p20k7OX74ZD/yQnJzN8+PCw0Se/8pnnA0JVvW5AEV/nAtmAVsBcj/0ngcezybwF3O6xvx6oAjyH\nGUFsBXYDJ4B3vbShlrN5+umnnVYhV/zxh+qVV6p27ap67Fjw2gl5v2zcqFq+vOrOnaFtN5c48byc\nPH1Sa46qqfM2zQt524EQad+h3OL+7fT62+1v+ugHEZkpIveJiCswE3MGy4G6IuISkaLAbcDn2WQ+\nB+4CEJFWwGFV3aOqg1W1uqrWBG4HFqjqXXnQwRLmrF8PrVqZl+lPPoGSJZ3WqACpW9cEU0RopHMw\nOa/IeYzpGNnptaMVf47m5sDDmOmdUSKyXEReE5HrRCTHZQOqmgb0A+ZhciR9oKrrRKSPiPRxy8wG\ntojIJmAccL+v2+XqU1kigm++gauugqeeMvVqwiYQrSAZPBi+/x5ieI7aF53qdaJe+Xph73SOOXwN\nIbJvQFHgGuBlYBnwZaDXBmvDTh95ZeHChU6rkCNvvqlaubJqcnLo2nSsXz75RLVRI9XTp51pPwec\nfF42H9ys5V8sr9sOb3NMB29EwncoP+Bn+ijH3Ee+EJFqqrqjYExT3rBxCpFHejo88oiJP5g1C+rU\ncVqjEKAKHTvCddfBQBvRm53hycP5dd+vfNztY6dViRn8xSnk2SiEA9YoRBZHj5qI5FOn4KOPIC7O\naY1CyMaNcMUV8MsvcP75TmsTVvyZ+ieN32jMW53e4rra1zmtTkyQ34R4Fku+SUmB1q2henWYMyfG\nDAJAvXrW6eyDSE2vHa34NQru3EMjQ6WMJTr54Qfzkvx//2dSVhQp4rRGDmGdzj65of4N1Ctfj9eW\nvOa0KjGPX6OgqulAG5GwTUFmCXOmTYPOnWH8eHjooTBOZhcKSpQwkc4PPBARkc6hZnTiaEYuDu9I\n51ggkOmjlcBMEblTRG52bzcFWzFL3gmHEP2MDBg2zLwcL1gQHgntwqFfuPFGE649dqzTmmQRFv2C\niXTu16Ifj3z1iNOqhE2fOEEgRqEYcBC4Gujk3m4IplKW/OH0A/3nn8ah/PXXpiBOkyaOqpOF0/0C\nmKHS2LHw3HNhk147LPrFzeOtH+enXT/x9eavHdUjnPok1OSY+0hVe4ZAD0uUsGcPdOkCtWubJKHF\nijmtURhSr57J+jdokMn8Z8ki0+ncb04/frnvF5te2wFyHCmISH0RmS8ia9z7F4nIkOCrZok0Vq2C\nli3NVNH771uD4JennoLvvrNOZy9Yp7OzBDJ9NB4YDJx2768GugdNI0tE8sUX0L69SX09bFiMO5QD\nwTqd/ZLpdN5+ZHvOwpYCJRCjUFxNARzAHRsN9im2ACZY95VXzBL8WbPgttuc1iiCCEOnc7iQ6XQe\n+JWNAA81gRiFP0QkKxmBiNyCSWdtCVO85VoPBqdPm6nxd981NRBatgxJs3kmVP0SMGHidA67fnHj\npNM5XPskFOSY5kJEagNvA5cDhzE1Du5Q1ZSga5cDNs2Fcxw8CLfcYmZBpk2DUqWc1iiCGTwYtm2z\nTmcvfLHhCwZ9PYhf+v5C0cJFnVYnashvmosMVb0GqAQ0UNXW2JrJMc3GjaYGwqWXwmefWYOQb6zT\n2Sc31L+BuuXr8toP1ukcKgIxCp8CqOpxVT3qPmbTGcYoCxZA27ZmNeXIkVC4sNMaRQElSsCrr1qn\nsw9GJ47m5cUvW6dziPBpFESkoYjcDJQRkZsyI5lFpCcmoM0SY4wfb4LSpk+He+5xWpso46abrNPZ\nB9bpHFp8+hREpAtwIyZ62bOM5jFghqouDr56/rE+hdCQng6PPWaWnc6aZWKvLEHAptf2SWZ67bdv\neJv2tdo7rU7EkyefgqrOdEcz36CqvTy2/uFgECy+KcgQ/fR0uOMOWLHCrDCKZIMQ9qkLPCOdQ0jY\n9wsekc6z+3E6/XTOF+STSOiTYBGIT+FnEeknIm+IyCQRmSgiE4OumSXPFNQDnZFh0l0fOGBqIJQr\nVyC3dYyI+KI/9RQsWhRSp3NE9AvG6VynXJ2QOJ0jpU+CQSBG4T2gMpAIJAPVgeOB3FxEEkVkvYj8\nJiKP+5AZ4z6/SkQucR8rJiJLRWSliKwVkecD+jSWAkMV+veH334zK4xsyooQkRnp3K+fdTp7wTqd\ng08gRqGOqg4FjqvqFCAJyDFMSUQKA//BGJNGQHcRaZhNJsl9/7rAvcCbAKr6F9BOVZsCFwHtRKRN\n4B/Lkh9U4YknzHTRl1+a3ylLCLnpJuNTsE7ns6hdrjYPXPZAWKTXjlYCMQqZE3hHRKQJUBaoGMB1\nLYBNqpqiqqnADKBLNpnOwBQAdyqNsiJS2b1/0i1TFCiMSd9tCQEjRsDs2TBvHpQp47Q2MUiYRDqH\nK0+0eYLlu5bzzZZvnFYlKgkoIZ6IlAOGYFYhrQVeCuC6eMBzjLfDfSwnmWqQVQp0JbAXWKiqawNo\n05JPXn0V3nvP1EIoX95pbWKY+vXNut8QO50jgfOKnMeoxFEhczrHGoHUUxjv/vN/QM1c3DvQtaLZ\nl0Wpu910oKmIlAHmiUiCqiZnv9gzR4nL5cLlcpGQkOA1d0lycrJXB1K0yWf+ndv7P/JIMhMmJNOr\nF7z1lnP6B0s++zVO65OjvAjMmkXCqFEkPPxw0PQpW7bsWccK8v7BkFdVMn7N4PoV1/PUXU8V+P1T\nUlIYPnx40PQPtXzm+UAIJPfRZmAJsAhYpKprArqxSCtguKomuvefxKTMeNFD5i0gWVVnuPfXA1ep\n6t5s9xoK/KmqI7Mdt3EKBcTUqcaPkJwMderkKG4JFR9/DMOHw88/Q5EiTmsTVmw+uJmW77Rk5X0r\nqVa6mtPqRBT5zX3UGJMQrzwwUkS2iMhnAVy3HKgrIi4RKQrcxplBcLj373Ir2Qo4rKp7RaSCiJR1\nHz8PuBb4OYA2LXng00/h0UeND8EahDDj5puN0/k//3Fak7DDOp2DQyBGIQ1TPyEdyAD2Yeb5/aKq\naUA/YB7GD/GBqq4TkT4i0sctMxvYIiKbgHHA/e7LqwIL3D6FpcAXqjo/V5/MEhBz58J99xnHcuPG\nTmtjOYtMp/O//w27bcb67DzR5gmW7Vxmnc4FSCDTRycx1dZeBear6v5QKBYIdvoof/zvfyb99cyZ\nJruCJYx58knYvt3M81nO4PMNn/P4N4+z6r5VNr12gPibPgrEKHQB2gKXYUYMi4FvVdVx02yNQt5Z\nuhQ6dYIZM+Caa5zWxpIjJ05Aw4ZmadhVVzmtTVihqnSa3omrLriKx1o/5rQ6EUG+fAruHEiPAn2A\n2UBPYFaBamgpUHJaZbBqFXTuDJMnx5ZBiOjUBZnptYMQ6RzR/YL5gRuTOIaXvn+JHUd3FMg9I71P\n8kOORkFEPnGvQBoDFAfuBOKCrZgl7/h7oNevh44djd/y+utDp1M4EPFf9JtvhipVCtzpHPH9gnE6\n33/Z/QXmdI6GPskrgTiaXwDqq+p1qjpCVf+nqn8GWzFLwbNlC1x7LTz/PNx6q9PaWHKNdTr7xTqd\nC4ZApo9+dK8kskQwO3ZA+/bGX3n33U5rY8kzDRqY1LU20vksihcpzqgOo3hwzoM20jkfBDJSsEQ4\n+/YZg9C3L9x/f87yljBnyBD49luzWc6gc/3O1Iqrxaglo5xWJWKxRiHKOXjQTBnddpt9uYwaSpaE\nV16xNZ29ICKMThxdoE7nWCMQR3MzEbk021ZbRHLMm2RxhsxcJ8eOGady+/YmU0Ks4y1fTMRyyy0F\n5nSOqn4B6pSrk2+nc7T1SW4IJE5hCdAM+MV9qAmwBigD9FXVeUHV0L9uNk7BBydPGoPQsCG8+abx\nUVqijPXroU0bWL0aqlZ1Wpuw4mTqSRq/0Zh3bniHa2rF0LrrAMlv7qNdQFNVbaaqzYCmwBZMPqJA\nUmhbQsypU2b1Yo0a8MYb1iBELdbp7JNMp3O/OTa9dm4JxCjU98yM6q5r0EBVNxN4emxLiEhLg+7d\n4bzzYNIkKGS9RtHNkCEmX4l1Op+FdTrnjUB+MtaIyJsicpWIJIjIG8BaETkXk/bCEkYMGmSmjqZP\nh3Os1yf6KVnSRDpbp/NZWKdz3gjEp1Ack720tfvQ98AbwF9ACVU9FlQN/etmfQoeLFwIPXrAL7/Y\nqmkxhSpcd50JUfdSjCfWGbZwGBsPbGTGLTOcViVsyK9PoaGqjlTVG93bSOBqVc1w0iBYzuTYMfjn\nP+Htt2H16mSn1QlLojZ1QWak84gReYp0jtp+cfNEmydYunMp87cEnn0/2vvEH4HWaG6SuSMi3YFh\nwVPJkhceecQkt7v++th+oP0R1f2S6XR+LPdZQqO6X8hbpHO094k/AjEKtwBTRKSBiNyDmUq6Nrhq\nWXLDnDnw1VdmatkSwwwZYuqpWqfzWXSu3xlXWRejl4x2WpWwJ5DcR1uA7sB/gZuBDqp6JNiKWQLj\n4EG45x6z0qh0aae1sTiKdTr7REQY03EML37/onU654BPoyAiqzM34GOgHFATWCoiv/i6zhJaHnzQ\nxCS0a+e0Jpaw4JZboHJleP11pzUJO+qUq0Pf5n159KtHnVYlrPG3aPGGkGlhyRMffww//ggrVzqt\niSVsEDGpL9q2NQmvbKTzGTzZ9kkav9GYBVsXcHXNq51WJyzxOVJQ1RR/W6ANiEiiiKwXkd9E5HEf\nMmPc51eJyCXuY9VFZKGIrBGRX0Wkf64/XRSzd68pwjVlChQvfua5WM7b4o+Y6ZcGDcxStACdzjHT\nLxin82sdXqPfbP+RzrHUJ9nJMU4hXzcXKQxsANoDO4Efge6qus5DJgnop6pJItISGK2qrUSkClBF\nVVeKSEngJ6BrtmtjMk5BFW680eQ1ev55p7WxhCXHj5sH5P334corndYmrFBVrp92Pe1c7RjUOjZT\nhOQ3TiE/tAA2uUcXqcAMoEs2mc7AFABVXQqUFZHKqrpHVVe6jx8H1gHnB1nfiOC990wVNZv51OKT\nzPTa/fqZ3CeWLKzT2T/BNgrxwHaP/R3uYznJVPMUEBEXcAmwtMA1jDC2b4dHH4V334Vzz3VaG0tY\nc+utUKmSdTp7wTqdfRPs7DiBzu1kH8ZkXeeeOvoYeMg9YjgDz7k/l8uFy+UiISHB65xgcnKy16CU\nSJFfuDCZ//u/ZC68ED77zGyRpL+VD7F8ZqSz2+mcvH59ZOkfZPnsTmen9QmmfOb5QAi2T6EVMFxV\nE937TwIZqvqih8xbQLKqznDvrweuUtW9IlIEmAXMUdWzUh3Gmk/hrbdg4kRYvNgmu7PkgscfN+kv\n3n3XaU3Cjs/Wf8bg+YNZed9KihYu6rQ6IcNJn8JyoK6IuESkKHAb8Hk2mc+BuyDLiBx2GwQBJgBr\nvRmEWGPzZhg61HyvczIIsRyi74+Y7ZehQ022xEWLvJ6O2X4ButTvgqusizFLx5xxPJb7JKhGQVXT\ngH7APGAt8IGqrhORPiLSxy0zG9giIpuAcZg0GmCysvYA2onIz+4tMZj6hivp6dCzJwwebFYb5kQs\nP9D+iNl+8azp7MXpHLP9wt9O5xe+e4GdR3dmHY/lPgl6CRZVnaOq9VW1jqo+7z42TlXHecj0c5+/\nWFVXuI99p6qFVLWpql7i3uYGW99wZNQoUyznoYec1sQSsVins0+ynM5fW6czhMAoWPLH2rUmFsFW\nUbPkC8/02nv2OK1N2PFk2yf5YfsPLNy60GlVHMf+zIQxqalw113w739DrVpOa2OJeBo2zFWkcyxR\nvEhxRiWO4oHZD5CaHtvJBK1RCGOefx4qVIB773VaE0vUkIPTOZbpUr8LF5S9gNFLYzu9tjUKYcqK\nFSav2YQJZuSfG2I5b4s/bL/g1els+8UgIoxJNE7nxpc1dlodxwhqnEKwidY4hVOnoFkzeOIJU3PZ\nYilQVKF9e+jSBfrbPJPZGbJgCJsPbWb6zdOdViVo+ItTsEYhDBk4EFJS4JNPcj9KsFgCYt06kyhv\n9WqoUsVpbcKKk6knafR6IyZ1mUS7mtFZqMTJ4DVLLnnjDZg1C95+2xoESxBp2BB69TLRzpYzKF6k\nOOM6jSMtIzYTCdqRQhjx6aemktqiRXa1kSUEZKbXnj4d2rRxWhtLCLEjhQjgu+/gvvvgiy+sQbCE\niJIlYeRIn5HOltjEGoUwYO1aU2f5/ffh0kvzf79YDtH3h+0XL3TrRnLhwmbe0pJFLD8r1ig4zI4d\n0LGjeWG79tqCuWcsP9D+sP3iBRGSL78cnn3W1Hi1ALH9rFij4CCHDxuDcP/9cOedTmtjiVkqVjRO\nZxvpbMEaBcc4dcrUWW7Xzn4XLWHA0KGwYIFxblliGmsUHCAjw+Q0qlABXnvNLj21hAGlSlmnswWw\nRiHkqMIjj5hEle+9B4ULO62RxeKmWzfzpmKdzjGNNQoh5pVX4OuvTX3lYsWC04bNZeMd2y/eyeoX\nEZNwyzqdY/pZscFrIWTaNJPPaPFiqFbNaW0sFh889pgxClOmOK2JJUjY3EdhwPz58I9/mH8vvNBp\nbSwWPxw7ZiKdZ8ywkc5RiqMRzSKSKCLrReQ3EfGaaEVExrjPrxKRSzyOTxSRvSKyOth6BpOVK6F7\nd/joI2sQLBFAqVJ+azpbopugGgURKQz8B0gEGgHdRaRhNpkkoI6q1gXuBd70OD3JfW3EkpIC119v\nfDwvDHEAAA28SURBVHdXXum0NhZLgGQ6nd98M2dZS1QR7JFCC2CTqqaoaiowA+iSTaYzMAVAVZcC\nZUWkint/EXAoyDoGjQMHIDHR+BFuucVpbSyWXJDpdH7mmZh3OscawTYK8cB2j/0d7mO5lYk4Tp6E\nG26Arl1N5tNQEssh+v6w/eIdn/0Sw+m1Y/lZCbZRCNQLnN3hERneYx+kpRkfQp06ps5yqInlB9of\ntl+847dfhg6Fb76B778PmT7hQCw/K+cE+f47geoe+9UxIwF/MtXcxwLCcz2xy+XC5XKRkJDgdZ1x\ncnKy1//sgpRfuDCZWbNMXqN//AP+9a+Cvb+Vt/IFLZ+SknLWsTPkW7UyaXzvvRcKFQo7/YMhn5yc\nzPDhw8NGn/zKZ54PCFUN2oYxOpsBF1AUWAk0zCaTBMx2/90KWJLtvAtY7eP+Gm4884zqpZeqHj3q\nnA5PP/20c42HMbZfvJNjv2RkqF59teqYMSHRJxyI9mfF/dvp9Xc7qNNHqpoG9APmAWuBD1R1nYj0\nEZE+bpnZwBYR2QSMA+7PvF5EpgOLgXoisl1EegVT3/wyYQJMngxffmlW9VksUYEIjB1rnc4xQrCn\nj1DVOcCcbMfGZdvv5+Pa7kFUrUD58ksYMgT+9z9bB90ShTRqBD17Gqfz5MlOa2MJIjb3UQGwdKlZ\npPHZZ1CvntPaxHbeFn/YfvFOwP0ybFjMOJ1j+VmxaS7ygSpMnGjiECZNgk6dHFPFYgkNH3xgltQt\nXw7nBH2iwRIkHE1zEa1s3WrKZ775pnl5sgbBEhN06wbly8NbbzmtiSVIWKOQS9LTYfRouOwyuO46\nWLIELr7Yaa0slhCR6XT+17+s0zlKsdNHuWDdOujd24ya33knPPwHFosjDBoE+/ebeVNLxGGnj/JJ\nair8+98mod2dd0JysjUIlhhn2DBTLWrxYqc1sRQw1ijkwIoVZqrou+/gp5+gb18oFOa9Fssh+v6w\n/eKdPPVLlNd0juVnJcx/3pzjzz/NqqKOHU1N5dmzoUYNp7UKjFh+oP1h+8U7ee6X226DuLiodDrH\n8rNijYIXvvsOmjaFLVvgl1/MlJF4nX2zWGKYzPTa1ukcVVij4MGxY9Cvn3kBeuEF+PBDqFzZaa0s\nljAmM9L5iSec1sRSQFij4GbePGjSxNRB+PVXuPFGpzWyWCIE63SOKmI+JPHgQRg40OQsGj/eBKRZ\nLJZc4Ol0/vFHG+kc4cT0SOGTT+DCC6F0aVi9OnoMQiznbfGH7RfvFEi/RJnTOZaflZgMXtuzx7zU\nrFlj0l23bh0E5SyWWGPNGkhIMP9WquS0NhY/2OA1N6om6+9FF0GDBrBypTUIFkuB0bgx3H13TNZ0\njiZiZqSwbRv06WNWzk2cCJdcEmTlLJZY5NgxaNjQLN274gqntbH4IKZHChkZZil1s2Zw1VWwbJk1\nCBZL0ChVCl5+OWojnWOBqB4pbNhgEtipGt9BgwYhVM5iiVVU4eqr4eabTeCPJeyIuZFCaqoJPmvd\n2iyKWLQotgxCLIfo+8P2i3cKvF88I5337SvYe4eIWH5WgmoURCRRRNaLyG8i4tX7JCJj3OdXicgl\nubnWGytXQsuWsGCBKQ714IPhn8CuoInlB9oftl+8E5R+iXCncyw/K0H7uRSRwsB/gESgEdBdRBpm\nk0kC6qhqXeBe4M1Ar83OX3/BU0+Zwjf9+5sIZZeroD9VZJCSkuK0CmGJ7RfvBK1fnn4avvoqIiOd\nY/lZCeY7dAtgk6qmqGoqMAPokk2mMzAFQFWXAmVFpEqA12axeLFxHq9bB6tWmVQssZzALpYfaH/Y\nfvFO0PrFM9I5PT04bQSJWH5WgmkU4oHtHvs73McCkTk/gGsBeOghuOUWePZZ+PRTqFo133pbLJaC\n4vbboUyZqIl0jgWCmaQk0GVN+XqnP3zYpKgoXz4/d7FYLEFBBF5/3UQ633qrjXSOAIJpFHYC1T32\nq2Pe+P3JVHPLFAngWgDefVd499186xp1SCzPn/nB9ot3QtIvEZaHPlaflWAaheVAXRFxAbuA24Du\n2WQ+B/oBM0SkFXBYVfeKyIEArvW5ztZisVgseSNoRkFV00SkHzAPKAxMUNV1ItLHfX6cqs4WkSQR\n2QScAHr5uzZYulosFovFENERzRaLxWIpWMI2rMuJwLdIIJ/9kiIiv4jI/7d3/jFyVVUc/3xrgUJr\nDTX4IyG2pcZCTY38aIilCGI0aEEiVqMWMUAa1Kg1lkRNQGOsCQZj/EOlUKytAWpEC9QIMVjA1krd\nlG3ZdRNUmlJjAVNJxZamUuPxj3Nm9nWY6c7s7O7MvD2f5Gbuu++d9+49e/ed++Pdc3dJ6pu4XI8v\nI+lE0tmSnpB0VNKqVmR7mTb1Usq6Ak3pZXn87wxI2i7pHc3KlgIz67qADxk9A8zBJ513A+fUXPNB\n4KGIXwjsaFa2V0M7eonjvcCsTpejAzo5A7gAWA2sakW2V0M7eilrXWlBL+8CXhfxyyfDu6UYurWn\nMGEL33qM0eql+NlH2SbnR9SJmR0ws53AsVZle5h29FKhbHUFmtPLE2b2Uhz+Ef8qsinZMtCtRmFC\nFr71IO3oBXztyG8l7ZS0YtxyObE0o5PxkO122i1bGesKtK6XG4CHRinbk3TrDtsTsvCtB2lXL0vM\n7DlJZwCPSHrazLaNUd46RTtfSpT5K4t2y3aRmT1fsroCLehF0nuA64HK/oxlri9VurWn0M7Ct2Zk\ne5XR6mU/gJk9F78HgPvx7nCv087fe7LXlYaY2fPxW6a6Ak3qJSaX1wIfMrODrcj2Ot1qFKoL3ySd\njC9e21xzzWbgWoDiwrcmZXuVUetF0mmSXhvp04H3A4MTl/Vxo5W/d20ParLXlQrH6aXEdQWa0Iuk\ntwCbgGvM7JlWZEtBp2e6GwXgA8Cf8dn+r0XajcCNhWt+EOefAs47kWxZwmj1ApyFfy2xG/hTmfQy\nkk6AN+FjwS8BB4G/ATMme11ppJcy15Um9XIX8CKwK0LfiWTLFnLxWpIkSVKlW4ePkiRJkg6QRiFJ\nkiSpkkYhSZIkqZJGIUmSJKmSRiFJkiSpkkYhSZIkqZJGIekYsQhowhdFSbpK0jljdK+dkk6qSXtW\n0qwxuv/hsbhPkjRLGoVkMvJhYEErApJeUydtLrDf3GNmkbFc/POqe0nqVp9lSQlIo5B0BZLOktQv\n6fxws/BzSUOSNknaIen8musXSfplxK+SdETSVEnTJO2J9BWS+iTtlvQLSadKWgxcCdwWG8jMlTRP\n0sPR6t8qaX7Ir5e0RtIO4Dt1sn058PAJynRq3PeGOL4lNmjZJune2o1t4pq5sfHNgKTVhfRLQ+5B\nYEjSNyWtLJz/tqQv1txruqRfR/kHJX0s0t8buh6Q9ONw2VDJX19ce0fhPo9L+n7oa1DSokZlTkpA\np5dUZ5i8Ad+sZBCYD/QDCyP9JuD2iL8d9/d/Xo3sVGBPxL+L+71fDFwC3BPpswrXfwv4fMR/Alxd\nOLcFeGvELwS2RHw97ttGDfL/ADCnTvpeYDbwCO4/B2AR7jLhZNyVxF+AL9eR3VyQ+RxwKOKXAoeB\n2XE8G3gy4lNwtwun19zrI8CdheOZwDTcnUWlvBuAlRE/vXDtT4ErIv4YcEfELwYGO113MoxfyJ5C\n0mnegL9cP2lmlfmFi/ANTDCzIWCgVsjM/gvskXQ2/sL9HvBuYAlQcfG8MFrXA8Byjh8yEoCkGfhO\nW/dJ2gWswX0CgQ/d3GfxNiwSreszzezZOmUS8CCwzszuLpTpATN7xcwOA7+q5KGGxcDGiN9dc67P\nzPZF+fcBL0p6J+6wrt+GvXlWGADeJ+lWSUvM7N+4Ad5rw47eNuB6A7gsemUDwGUcr6+N8dxtwExJ\nM+vkPSkBOTaZdJp/AfvwFujThfRm9srYim8/egxv7W/AW803xfn1uOvjQUmfxlvbFSov+im4J9lz\nqc+RBukXM2x8ajHg97jztI2FtGKZRrMXyMs1x3cB1wFvBNa9KhNmf5Xv0b0UWC1pC26silSM4ynA\nj/Ae2X5J38B7FY1Ip2klJXsKSad5BbgauFbSJyJtO1AZ/14ALGwguw34EvAHM/sn8HpgfvQuwIdp\nXoivg65h+EV2CB9KIVrPeyUti+dJhY3aT8AJ5xOArwMHJf2wUKYrJZ0SvZOl1H+xbgc+HvHlI+Th\n/sjHBcBvak9KejNw1MzuwYfYzsU9fM6RNC8u+xTwOG4ADO99zAA+WrwV7iYaSUtwI3pohLwlPUr2\nFJJOY2Z2RNIV+A5fh/AW6wZJQ3jvYQh371xLHz78tDWOn8JbzRVuwecaDsTvjEj/GbBW0heAZfjL\n93ZJN+Mbsm9keMiqUYv4EuDmRmWKgq2UtE7SrWb2VUmb477/wOdS6pVpJXCvpK/grfri84/Li5kd\nk/QocLDeEBduTG+T9D+8N/UZM/uPpOvw4bKpuA7XxL3W4q6yX8D1VXzuUUn9+Dvj+gblTkpAus5O\nug5JU4CT4gU2D5+wfVvMI3QcSWfiE69LW5SbbmYvSzoN+B2wwsx2t5GPKcCTwDIz2zPa+zTxnMeA\nVWbWP17PSLqH7Ckk3ch04NEY9hHw2W4xCABm9nd8+KdV7ozhsGnA+jYNwgJ8snrTeBqEZPKRPYUk\nSZKkSk40J0mSJFXSKCRJkiRV0igkSZIkVdIoJEmSJFXSKCRJkiRV0igkSZIkVf4PB798eo0nwAQA\nAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7a26828>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Conditions corresponding to First Operation \n",
+ "\n",
+ "X = kg water/kg dry soap\n",
+ "0.149425287356\n",
+ "Y = kg water/kg dry air\n",
+ "0.0586080045715\n",
+ "Final moisture content of soap is 9.338 %\n",
+ "\n",
+ "\n",
+ " Illustration 5.2 (b)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYE2XXwOHfAUEEqdKU4oqI4gtSpauLFUEFRZHepIii\nvh8WxIqvig0siNKkSVe6VAVZpEhnQQVUyiodpUiHLef7Y7JryLbsbrLJJue+rlxuMs/MnDyGnMw8\nTVQVY4wxBiBXoAMwxhgTPCwpGGOMSWJJwRhjTBJLCsYYY5JYUjDGGJPEkoIxxpgklhRM0BKRziKy\n3O15gohUCGRMqRGRoSLySqDjSI+I3Cgi69yex4jIHamUvUlEVmZfdCYYWFIwQcX1JXW7H48/VkTe\nzOIxLkpWAKraS1Xfylp0qZ4rXkROuj1uTaVsJRGZLSKHReSIiCwUkUoexd4EPnAP3fVIRlW3AMdF\n5D6fvBmTI1hSMMEmoKMpReSSQJ4/FStVtaDb44dUyhUGZgGVgFLAWmB24kYRuRKIdJXx1kSgZ6ai\nNjmSJQWTI4lIlIg85vY86de7OD4SkUMi8o+IbBGR/4hID6At8ILrF/dsV/kYEXlBRLYAJ0Ukt4i8\nKCI7ROSEiPwiIi1cZSsDQ4H6rmMcdb1+0RWIiHQXkd9dv9hnu76QE7cliEhPEflNRI6JyJD03q43\ndaKq61R1jKoeV9U44GPgehEp6ipyF7BBVS947FrH9R6PishoEbnUbdsy4A4RyeNNDCbns6RgcqpU\nb3sAdwO3ANepamHgEeCIqo7A+eX7nusXd3O3fVoD9wJFVDUe2AE0UtVCwBvABBEpparbgMeBH13H\nKOYZj+v21wDXea8E/gCmeMTYDKgN3AS0EpF70nifNUTkLxH5VUReEZHc6VcPALcCB1T1mOt5VeBX\njzKCkyjvBq7FucpIahtR1X1ALHC9l+c0OZwlBROKYoGCQGURyaWqv6rqQbftnr+8FRisqvtU9TyA\nqk5L3EdVvwJ+B+qmsr+ndsAoVY12/Srvh3NlUd6tzLuqekJV9wBLgeqpHOsH4D+qWgJoCbQBnk/n\n/IhIWWAI0Mft5cLAKY+iCgxxvfdjwNuuc7g7CRRJ75wmNFhSMCFHVb/H+UL8DDgkIsNFpGA6u+1x\nfyIiHUVkk+v2zjGgCnCFlyEkXh0kxnMaOAKUcSvjnqTOAJen8l52q+ofrr9/Bv4HPJzWyUWkBPAt\n8JmqTnXbdAwnWXpyf+9/Ald5bC8IHE/rnCZ0WFIwOdVpoIDb89LuG1X1U1WtDdyIc0sk8dd1arec\nkl4XkauBEcCTQDFVLQr8zL9XCOk1hu8HItyOVwAnoexLZz9vpXql4mo/+BaYparveGzeglMXnsp7\n/L3f7XhlgLwkv+1kQpQlBZNTRQMPichlIlIReIx/7+nXFpG6rsbRM8A5IN613yEgvbEOBVzH+hvI\nJSJdcK4UEh0Cyno0vgr/fllPBrqISDVXo+0AYLWq/pnK+dL6kr9XREq5/r4B535/ir2HRKQQsAhY\noaovpVBkMVBTRPJ6nPtJESkjIsWAl7m4/eM2YImqxqYWowktlhRMMPNsTHb/+yPgAs4X9Bhggtu2\nQji/9I8CMThf7ol980cBN7puC81I8aSqW4FBwI84t3mqACvciiwBfgEOishhz1hVdQnwKjAd51f3\nNTgN2Sm9j5Tep7vbgc0icgqY5zrmgMSNIjJfRF50PX0Qp/G6i9uYhhOu9gVU9RDwPdDC49wTca4u\nduK0nbiPt2gHDEslNhOCxJ+L7IhIE5xucbmBL1T1vRTKDMbp9XEG6Kyqm1yv9wPaAwnAT0CXxEZA\nY0zmuLrUjlPVOl6UvQkYqqoN/R+ZCRZ+SwqubnO/Anfi3EtdB7RxdelLLNMU6K2qTUWkLvCJqtYT\nkQicXzSVVfW8iEwF5qvqOL8Ea4wxBvDv7aM6wA5VjXHdj5wCNPco8wAwDkBV1wBFXPdPT+B0K8zv\nGmGaH9810hljjEmFP5NCGS7u6raXi7vkpVpGVY/i3NP9E+ee7HFVXezHWI0xxuDfpODtfalkPS9E\n5Frgvzjd+q4CLheRdr4LzRhjTEr8OfnXPqCc2/NyOFcCaZUp63otElilqkcAXL1EGuD0kkgiIgGd\nPM0YY3IqVU2xK7Q/rxTWA9eJSISrX/SjwByPMnOAjgAiUg/nNtEhnAbqeq4+6ILTWL01pZOoqj08\nHp06dQp4DMH4sHqxegnVOvnj+B8ZKp8WvyUFdWZp7I0zmGYrMFVVt7lmh+zpKjMf2CUiO4DhwBOu\n16OBL3ESyxbXIUf4K9ZQExMTE+gQgpLVS8qsXpLLKXUSGx/Li4tf5JYxt3D6wmmfHNOvc8er6gJg\ngcdrwz2e905l3/eB9/0XnTHG5Fy7ju2izfQ2FM9fnPXd11Mgb4H0d/KCjWgOQREREYEOIShZvaTM\n6iW5YK+TyT9Npu4XdWlTpQ1z28ylRIESPjt2MK4yZbIo2D/QgWL1kjKrl+SCtU5OXTjFUwueYtWe\nVXzb/ltqXFnD5+cIyaTgtE2HtzfeeCPQIQSl1OolvcY3YwJt44GNtJ7WmlvK38KGHhu4PG+Ks61n\nWUgmBbB/5MZ74f4jIjIyMtAhBJ1gqhNV5ePVHzNgxQAGNxlMm6qeayD5ll8nxPM3EdGU4hcRSwrG\na/Z5McHq8OnDdJndhSNnjjCp5SQqFE1v1nfvuD7z2T5OwRhjTCYt3rWYGsNrUK1UNZZ3We6zhJCe\nkL19ZIwxOVFsfCyvLn2VCVsm8GWLL7mjwh3Zen67Ugghf/75JwULFky6FRIZGcmoUaMAmDhxIvfc\nc09S2Vy5crFr1y6vj+25fyB4vj9jQs3OoztpNKYRPx/+mU09N2V7QgBLCgERERFB/vz5KViwYNLj\n6aefzvJxy5cvz8mTJ5MaTkUk6e927dqxaNGiTB87q/tnhHsyc+f5/owJJZN+mkS9UfVoV7Ud37T5\nxqdjDzLCbh8FgIgwd+5cbr/99kCH4pX4+Hhy586dbedzT2bG/6KiooKqt00wyM46OXXhFL3n92b1\n3tV81+E7qpeuni3nTY1dKQSZhIQEnnvuOUqUKMG1117LZ599Rq5cuUhISACcq4wlS5Ykle/fvz8d\nOnQAnPla3Mu6Gzt2LLfccstFr82bN49rr72WEiVK8MILLyTdlhk7diwNGzakT58+FC9enP79+1+0\nf0rncf91775/0aJFqVixIqtWrWLMmDGUL1+eUqVK8eWXX2a4bjzPGxkZyWuvvUajRo0oVKgQ99xz\nD0eOHEkqv3r1aho0aEDRokWpXr06y5Yty/A5w0FUVFSgQwg62VUnGw9spObwmuSW3GzosSHgCQEs\nKQRMavfFR4wYwbx584iOjmb9+vVMmzbtol/Nnr+is/KLetasWWzYsIGNGzcye/ZsRo8enbRt7dq1\nXHvttRw+fJiXX3453WN5xrV27VqqVavG0aNHadOmDa1atWLjxo3s3LmTCRMm0Lt3b86cOZPp2BNN\nnjyZsWPHcvjwYS5cuMDAgQMB2LdvH/fddx+vvfYax44dY+DAgbRs2ZK///47y+c0JqsSNIEPf/yQ\nJhOa8GbjNxnVfJTP5i7KqrBNCiK+eWSGqtKiRQuKFi2a9Ej8lf3VV1/xf//3f5QpU4aiRYvy0ksv\npdmwmpVG1759+1KkSBHKlSvHf//7XyZPnpy07aqrruLJJ58kV65c5MuXL8PHvuaaa+jUqRMiQqtW\nrdi/fz+vvfYaefLk4a677iJv3rzs2LEj07GDk4i6dOlCxYoVyZcvH61atSI6OhqACRMm0LRpU5o0\naQLAnXfeSe3atZk/f36WzmlMVh06dYhmk5rx9davWdNtDY9WeTTQIV0kbNsUAtmBRUSYPXt2im0K\nBw4coFy5f9cdKl++vN/i8DzP/v37U9yWGaVKlUr6+7LLLgOgRIkSF7126tSpLJ0DoHTp0ike848/\n/uDrr7/mm2++SdoeFxeXY9pxTGj6bud3dJ7dmc7VOtM/sj95cucJdEjJhG1SCFZXXnklf/75Z9Jz\n978BChQowOnT/86bfvDgwUyf688//6Ry5cpJf5cp8+8S2mndlipQwLnMPXPmDJdffnmW4/CH8uXL\n06FDB0aMsGU4TOBdiL/Aq9+/ysSfJjL+wfHcfk3w/jgJ29tHgZbabZ9WrVoxePBg9u3bx7Fjx3j3\n3Xcv+oKuXr06U6ZMIS4ujvXr1zN9+vRMtysMHDiQ48ePs2fPHgYPHsyjj3p3GVuiRAnKlCnD+PHj\niY+PZ/To0ezcuTNTMaQmNjaWc+fOJT3i4uJSLJdaPbZv355vvvmGb7/9lvj4eM6dO0dUVBT79u3z\naZyhwHoeJefLOtl5dCeNRjdi699biX48OlsSQkwMePye9JolhQC5//77Lxqn0LJlSwC6d+/OPffc\nQ7Vq1ahduzYtW7a86IvvzTffZOfOnRQtWpT+/fvTrl27i46bWoJIqZtn8+bNqVWrFjVq1OC+++7j\nscceS7Ws52sjR47kgw8+oHjx4mzdupWGDRumea6MJq5evXqRP3/+pEfXrl3TPa779rJlyzJ79mwG\nDBhAyZIlKV++PIMGDUqxZ1a4s6SQnK/qZOKWidQbVY8ON3VgTus5FM9f3CfH9RQbC0uXwvPPw3/+\nA3XqwPLlmTuWTYgX5GJiYqhQoQJxcXHkymU53B9C6fNigsPJ8yfpvaA3a/auYcrDU/zS1fTAAViw\nAObPh8WL4brroFkzaNoUateGtL4u0poQz9oUjDHGhzbs30Dr6a257erb2NBjg8+6msbHw9q1ThKY\nPx927YK774b774fPPgO3vh1Z4tekICJNgI+B3MAXqvpeCmUGA/cCZ4DOqrpJRK4HprgVqwC8qqqD\n/RlvsLLRvcYEvwRN4KMfP+K9le/x6b2f+qSr6ZEjsGiRkwQWLYIrr3SuBD76COrXhzx+6Lzkt9tH\nIpIb+BW4E9gHrAPaqOo2tzJNgd6q2lRE6gKfqGo9j+Pkcu1fR1X3eGwL+dtHxv/s82Ky6tCpQ3Sa\n1Yl/zv/D5JaTiSgSkanjqEJ09L9XAz/9BI0bO4ng3nvBVz3UA7WeQh1gh6rGqGoszi//5h5lHgDG\nAajqGqCIiHheBN0J7PRMCMYY37BpLpLLSJ0s2rGIGsNrUPuq2vzQ+YcMJ4QTJ2DGDOjWDcqUgVat\n4K+/4PXX4fBhmD0bevb0XUJIjz9vH5UB3L/I9wJ1vShTFjjk9lprYJI/AjTG2IR4KfGmTi7EX+Dl\nJS8z5ZcpTHxoIo2vaezVsVVh+3bnSmDePFi3Dho0cK4G+vZ1GowDyZ9Jwdvrcc9LmKT9RCQvcD/Q\n11dBGWNMVv1+5HfazmjLlZdfyaaem9LtanrmDERF/ZsI4uKcnkL//S/cfju4xoAGBX8mhX2A+1wJ\n5XCuBNIqU9b1WqJ7gQ2q+ldqJ3HP5hEREURERGQuWhPW+vfvn/R3ZGRkir8So6KiUrytkNPLx8TE\nJHstkPEEQ/moqKikz4Rn+fGbx9Pn2z60vbwtRbYXYcivQ1I8/u7d/yaB5cuhQoUoSpSIokkTKFnS\nmTtt40YoVMj/7zdxu1dU1S8PnISzE4gA8gLRQGWPMk2B+a6/6wGrPbZPATqlcQ5NSWqvG5OScP+8\nvP7664EOIeikVCcnzp3Q9jPa6w1DbtDoA9HJtp8/r7pkiWqfPqo33KBasqRqp06qU6eqHjvm/5gz\nwvWZT/F71W8NzaoaB/QGFgFbgamquk1EeopIT1eZ+cAuEdkBDAeeSNxfRArgNDLP8FeMJnXLly/n\nhhtu8Mux01om1JhgtH7/emqOqMlll1zG+u7rqVa6GgD798MXX8BDD0GJEtCvHxQqBOPHO4PLxo51\nGo6LFAls/BmSWrbICQ9y8JXCmDFjtEqVKpo/f34tXbq09urVS48fPx6weEREd+7cmS3nioyM1FGj\nRmXLubyREz4v/rR06dJAhxB0EuskPiFeP1j5gZZ4v4R+9fNXGhenunKl6ksvqVavrlq0qOqjj6qO\nG6d66FBgY84IAnGlYFI3aNAgXnzxRQYNGsSJEydYvXo1f/zxB3fddRexsbE+P198fLxX5dT66ocl\n63mUXGRkJAdPHeTeiffy1U8zean4Oma+/QglS0KvXpCQAJ9+6nQZnTIFOnZ02glCgSWFbHbixAn6\n9+/PkCFDuPvuu8mdOzdXX301X331FTExMUyYMAFwGj4ffvhhWrduTaFChahVqxZbtmxJOs7+/ftp\n2bIlJUuWpEKFCnz66adJ2xL37dChA4ULF2bcuHGsW7eO+vXrU7RoUa666iqeeuqppAR06623AlCt\nWjUKFizI119/TVRU1EVrKkRERDBo0CCqVatGkSJFaN26NefPn0/a/v7773PVVVdRtmxZvvjiC3Ll\nysWuXbvSrQ/PZUJz5crF8OHDqVSpEkWLFqV3794XlR89ejQ33ngjxYoVo0mTJsmmFjcmqxIS4NMF\nC6k0qCa/LKrL9r7LiJp9NZGRsHmz83jnHWjUCC4JxYmCUruEyAkPcuDtowULFugll1yi8fHxybZ1\n6tRJ27Rpo6pOQ1eePHl0+vTpGhcXpwMHDtRrrrlG4+LiND4+XmvWrKlvvvmmxsbG6q5du7RChQq6\naNGii/adPXu2qqqePXtWN2zYoGvWrNH4+HiNiYnRypUr68cff5x0bs/bR0uXLtWyZcsmPY+IiNC6\ndevqgQMH9OjRo1q5cmUdNmxY0nsqXbq0bt26Vc+cOaPt2rXTXLlypXo7yv320ZgxY7RRo0YXxXH/\n/ffrP//8o3/++aeWKFFCFy5cqKqqs2bN0ooVK+r27ds1Pj5e33rrLW3QoEHG/yd4CObPi8kex4+r\nfv21ascu5zV/i2f1kufLasvnlup336meOxfo6HyPNG4fhWKe84q84Zv5hPT1jN1y+fvvvylevHiK\nM56WLl2ajRs3Jj2vXbs2Dz30EAB9+vRh0KBB/Pjjj+TJk4e///6bV155BXCWvuzWrRtTpkzh7rvv\nBqBBgwY88MADAOTLl4+aNWsmHffqq6+mR48eLFu2jGeeecbr2J9++umklc7uv//+pKUvv/rqK7p2\n7Zq0YM8bb7zBpEmZH2/44osvUqhQIQoVKkTjxo3ZvHkz99xzD8OGDaNfv35cf/31APTr148BAwaw\nZ8+eLK8UZ8KLKmzd+u90EuvXQ/U7fueP2m1ocGVZprSJ5or8VwQ6zIAI26SQ0S9zXylevDh///03\nCQkJyRLDgQMHLlqysmzZskl/iwhly5Zl//79iAj79++naNGiSdvj4+OTbgN57gvw22+/0adPHzZs\n2MCZM2eIi4ujdu3aGYrdc+nLAwcOJMVdp06dVM+dUe7nyZ8//0VLbD7zzDM8++yzF5Xft2+fJQWT\nrtOnnTUHEhOBqjOK+Nln4UDJL3lp2bP0v60/T9z8RFhPQmltCtmsfv36XHrppUyfPv2i10+dOsXC\nhQu54447kl7bs+ffGUASEhLYu3cvZcqUoVy5clxzzTUcO3Ys6XHixAnmzp0LpLzITa9evbjxxhvZ\nsWMH//zzD2+//bbPFpy58sorL4rV/W9fKl++PCNGjLjofZ8+fZp69eqlv7NJVSjPfbRzp9Mg3KQJ\nlC4NAwfCNdc4A8piYuC9j08w5UJ7Pl7/Hks6LuHJOk8iIiFdJ+mxpJDNChcuzOuvv85TTz3FokWL\niI2NJSYmhlatWlGuXDk6dOiQVHbDhg3MnDmTuLg4Pv74Y/Lly0e9evW4+eabKViwIO+//z5nz54l\nPj6en3/+mfXr1wMp9yI6deoUBQsWJH/+/Gzfvp2hQ4detL1UqVIZXlIz8TytWrVizJgxbN++nTNn\nzvDmm29mtFrSPEfieR5//HEGDBjA1q1bAfjnn3/4+uuvfXaucBVKX4DnzzsLzvTpA9dfDw0bwqZN\nzmRze/Y4U00krk62bv9aag6vyeV5L2dd93XcVOqmpOOEUp1klCWFAHj++ecZMGAAzz33HIULF6Ze\nvXpcffXVLFmyhDyuCdJFhObNmzN16lSKFSvGxIkTmTFjBrlz5yZ37tzMnTuX6OhoKlSoQIkSJejR\nowcnTpxI2tfzSmHgwIFMmjSJQoUK0aNHD1q3bn1Rmf79+9OpUyeKFi3KtGnTUjyGO/ftTZo04emn\nn6Zx48ZUqlSJ+vXrA3DppZemWxee50lrGdAWLVrQt29fWrduTeHChalatSqLFi1K9xwmtO3dCyNH\nwoMPOt1CX3kFihaFSZOcwWWjR8PDD/87gCxBE3h/5fvcN+k+3r3zXYbdN4z8efIH9k0EEVuOM0i9\n8cYb7Nixg/Hjxwc6lAzbtm0bVatW5cKFCzliCdFQ+LxkRf/+/S+a+ynYxcXB6tX/ziu0Zw/cc48z\nwdw99zgji1Nz8NRBOs7syJnYM0x8aCJXF7k6xXI5rU4yKlDrKZgsyGlfUjNnzuT8+fMcO3aMvn37\n8sADD+SIhGByjj//dG4LlSoFTz3lTCj3+efOALLJk6F9+7QTwoLfF1BzeE3ql61PVOeoVBNCuAvb\n3kfBLr3bN8FmxIgRdOnShdy5cxMZGcnnn38e6JBMiNi8GT74wFmkvksX2LABMjIZ8vm48/Rb0o9p\nW6cxueVkbou4zW+xhgK7fWTCXrh/XoJxkR1Vp8H4gw/gl1/gmWegR4+MTyz325HfaDO9DeUKlWPU\nA6O8HnsQjHXiS2ndPrKkYMKefV6CR2wsfPWV03X0wgV47jlo2xa86LNwEVXly81f8tx3z/G/yP/x\neO3Hc9SVt7+llRTs9pExJuBOnnSmoP74Y2ccwVtvOQvVZ6ZZ6sT5E/Sa14vog9F83/F7qpaq6vuA\nQ5i1BBpjAubAAXjpJScR/PgjTJvmjCVo1ixzCWHtvrXUGF6DQnkLsa77OksImRCyVwp2qWhM8Nq2\nDQYNghkznNtDa9bAtddm/ngJmsDAVQMZ9OMghjYbykOVH/JdsGEmJJOC3R82JviowooVTuPxmjXw\n5JPw229QPO0179N14OQBOs7qyLm4c6zrvo7yhcv7JuAwZbePQlA4D9FPi9VLyvxdL/HxMH061K/v\ndClt2tSZd+i117KeEOb/Pp+aI2rSsFxDlnZa6rOEEM6fFUsKISicP9BpsXpJmb/q5exZGDoUbrjB\nuTp4/nn49Vd4/HG47LKsHft83Hn6LOrD43MfZ+rDU+kf2Z9Lcvnuxkc4f1b8mhREpImIbBeR30Wk\nbyplBru2bxaRGm6vFxGRaSKyTUS2iohNhWlMDvD33/DGG84AswULnLmHfvwRWraE3LmzfvzfjvxG\n/VH1iTkeQ/Tj0dx69a3p72S85rekICK5gSFAE+BGoI2IVPYo0xSoqKrXAT0A96k7PwHmq2pl4CZg\nm79iNcZk3c6dTjvBddf9OyPpnDlwyy3OlBRZpaqMjR5Lw9EN6VGrB9NbTafYZcWyfmBzEX82NNcB\ndqhqDICITAGac/GX+wPAOABVXeO6OigFnANuUdVOrm1xwD9+jNUYk0lr1zq3h5YudUYdb90KV17p\n23P8c+4fes3rxZZDW1jaaSlVSlbx7QlMEn/ePioDuK+2stf1WnplygLXAH+JyBgR2SgiI0XE5rY1\nJkgkJDgzlN52GzzyiLNuwe7dMGCA7xPCmr1rqDG8BkXyFWFd93WWEPzMn1cK3vYL9bywVJy4agK9\nVXWdiHwMvAi85rmz+/wkERERREREEBkZmeK8JVFRUSk2IIVa+cS/gyWeYCnvuU+g4wmW8kVSmVAo\npfJxcRAbG8ncuZHkzes0Hj/yCOTJ4/v4E9c9+Gj1RwxrNoyih4ry3tvv+ez4aZWPiYlJmjo72P5/\nZaZ84nZv+G3uI1fDcH9VbeJ63g9IUNX33MoMA6JUdYrr+XbgNpxE8aOqXuN6vRHwoqre53GOFOc+\nMsb41vHjMHw4DB4MVao4yeCOO3zTVpCSAycP0GFmBy7EX2DiQxMpV9jW4PalQK2nsB64TkQiRCQv\n8Cgwx6PMHKCjK8h6wHFVPaSqB4E9IlLJVe5O4Bc/xmqMScGePc7C9hUqwE8/ObeMFi2CO+/0X0KY\n99s8ao6oya1X38rSTkstIWQzv90+UtU4EekNLAJyA6NUdZuI9HRtH66q80WkqYjsAE4DXdwO8RQw\n0ZVQdnpsM8b40ZYtTuPxvHnQuTNER0N5Pw8UPh93nr6L+zJz+0y+fuRrGpVv5N8TmhSF5NTZxpiM\nU4UlS5xk8NNP8PTTzkCzjK5hkBm//v0rrae3pkLRCoy8f6R1NfUzmzrbGJOquDj4+msnGZw756xh\nMGdOxtcwyIzEsQcvLH6Btxq/RY9aPWwyywBLs01BHHZDL4cJ5yH6abF6udipU/DJJ1C2bBTDhsH/\n/gc//wxdu2ZPQvjn3D+0ndGWD1d/SFSnKHrW7hk0CSGcPyveNDQv8HsUxqfC+QOdFqsXx8GD8PLL\nzhoGK1bA/fdHsWwZ3Hdf5tYwyIzVe1dTY3gNiuUrxtpua/lPyf9kz4m9FM6flTQ/Aq4b9htEpE42\nxWOM8ZPt26F7d6hc2eliunq1c9uojOeQUj+KT4jnneXv0HxKcz6850M+a/YZl+XJ4ux4xqe8aVOo\nB7QXkT9wegiBky9u8l9YxhhfUIWVK532gh9/hCeecNYwKFEi+2PZf3I/HWZ2IC4hjvXd11tX0yDl\nTVK4x+9RGGN8Kj4eZs+GgQPh8GHo0wcmT4b8AZosZu5vc+k2pxtP3vwkL93yErlz+WC6VOMXqSYF\nESmkqieAE9kYjzEmC86cgXHj4MMP4YornJHHLVr4ZsrqzDgXd46+3/Vl9q+zmd5qOg3LNwxMIMZr\naV0pTAaaARtJeR6ja/wSkcmylOZFMaFdL4cPw2efOYvaNGgAY8Y4k9R505nHX/Wy/e/ttJ7WmorF\nKrKp5yaKXlbUL+fxh1D+rKTHBq8Zk4P99ptzVTB1KrRq5dwmuv76wMakqozeNJoXl7zIgNsH0K1m\nt6DpamocWR68JiJFgeuAfImvqeoPvgnPGJNRK1c67QUrVzqjjn/9FUqWDHRUcPzccXrO7cm2v7ax\nrPMybizoQZe0AAAgAElEQVRxY6BDMhmUbq9kEekO/AB8C7yBM5dRf/+GZYzxFB8PM2Y4t4c6dnQm\npdu92xl0FgwJYdWeVdQYXoMS+UuwptsaSwg5lDdXCs8AN+NMZd1YRG4A3vFvWMaYRMHWeOwpPiGe\nd1e8y+C1gxlx3wia39A80CGZLPAmKZxT1bMigojkU9XtIhLgu5bGhL6sNB5nl30n9tFhZgcSNIEN\nPTZQtlDZQIdkssibQe17XG0Ks4DvRGQOEOPXqEyWhPMQ/bTklHr57TenneD6650pKZYvh1mzoFEj\n/ySEzNbLnF/nUGtELRpHNGZJxyUhlRByymfFH9JNCqr6oKoeU9X+wKvAF0ALfwdmMi+cP9BpCfZ6\nWbkSHnzQ+fIvWdJpPB4+3P+9iTJaL+fizvHU/Kd4esHTTG81nVdvezXkBqMF+2fFnzI0dbaqRvkp\nDmPCkvvI40OHnC6lEyZAgQKBjixl2/7aRuvpral0RaUcN/bAeMfWUzAmAIK98diTqjJq0yheXPwi\n79zxjo09CGGWFIzJRn/95TQef/451K8fnI3Hno6fO06Pb3qw/e/t/NDlB+tqGuK8GafwtKuh2RiT\nSYmNx5UqwYEDTuPx7Nn+azz2lVV7VlF9WHVKFSjF2u5rLSGEAW96H5UC1onIVyLSRDJwzegqv11E\nfheRvqmUGezavllEari9HiMiW0Rkk4is9facJrznbUlLIOolsfG4YUOn8Xj79uxpPM6IlOolPiGe\nt354i4emPsTgewfzadNPyXdJvuQ7h6hw/jfk1dxHIpILuBvoDNQGvgJGqerONPbJDfwK3AnsA9YB\nbVR1m1uZpkBvVW0qInWBT1S1nmvbbqCWqh5N4xw295EJOik1HnfuHLyNx572nthL+xntEREmPDiB\nMoWycRUeky3SmvvIq8X3VDUBOAgcAuKBosA0Efkgjd3qADtUNUZVY4EpgOdQxweAca5zrAGKiEgp\n99i9ic+YYHDmjDPQ7IYb4L33nGTw22/w5JM5JyHM3j6bWiNqcVeFu1jcYbElhDCUbkOziDwDdASO\n4IxReE5VY11XD78Dz6eyaxlgj9vzvUBdL8qUwUk+CiwWkXhguKqOTP/tGJP9PBuPR48O/rYCT+fi\nzvH8t8/zzW/fMPPRmTQo1yDQIZkA8ab3UTHgIVX9w/1FVU0QkfvT2M/b+zqp/dNppKr7RaQEzkjq\n7aq63LOQ+72/iIgIIiIiiIyMTPGeYFRUVIqDUqy8lc9M+SNHnCUut2+PpF27SH74wblKyCnxJ4qo\nHsFHBz+i0hWViH48miL5iuSo+K18+uUTt3sjzTYFEbkE+EVVM9wsJiL1gP6q2sT1vB+QoKrvuZUZ\nBkSp6hTX8+3Abap6yONYrwOnVHWQx+vWpmCy3apVzprHK1ZAr17O7aFSpdLfL9ioKl9s/IKXvn+J\nd+54h8dqPGZjD8JEptsUVDUO2C4iV2fivOuB60QkQkTyAo8CczzKzMG5NZWYRI6r6iERyS8iBV2v\nF8Bp5P4pEzGEpXAeop+WrNSL+7TVHTo401bHxDjTVufEhHDs7DFaTWvFkHVDGHjdQBuM5iGc/w15\n09BcDPhFRL4XkW9cD88v92RcCaU3zvoLW4GpqrpNRHqKSE9XmfnALhHZAQwHnnDtXhpYLiLRwBpg\nrqp+m+F3F6bC+QOdlszUSyg0Hnta+edKagyvwVWXX8WabmvYHb070CEFnXD+N+RNm8KrmT24qi4A\nFni8Ntzjee8U9tsFVM/seY3JKlWYNg2eeQZuvjlnNh57ik+IZ8DyAXy27jNG3j+S+69Pq0nQhKt0\nk4JNgmfCzf79zpXAr7/C9OlOj6KcLnHsQS7JxYYeG6yrqUlVqrePROSUiJxM5XEiO4M0Jjuowhdf\nQPXqULUqbNoUGglh1vZZ1BpRi7uvvZvvOnxnCcGkKdUrBVW9HEBE3gL2AxNcm9oBV/k/NGOyz86d\n0KMHnDgBixfDTTcFOqKsOxt7lue+fY4FOxYwu/Vs6pWtF+iQTA7gTUPzA6r6uaqecD2Gknxksgki\n4TxvS1pSnOMn3pm+um5daNrUGXcQCgnhl8O/UOeLOhw5e4RNPTelmRDs85JcONdJunMficiPwGfA\nZNdLrYEnVTXgQx5tnILJip9/hsceg/z5YeRIqFgx0BFlnaoyYsMIXln6Cu/d+R5dqnexrqYmmbTG\nKXjT+6gt8Anwsev5StdrxuRI58/DO+84U1MMGADduuXsXkWJjp49SvdvurPr2C5WdFnB9cWDaCpW\nk2N40/toN87EdcbkeKtXO1cHFStCdDSUCZE21+V/LKf9zPY8eMODTHpoEpdecmmgQzI5lK28ZsLC\n6dPwyiswZQp88gk88khoXB3EJ8Tz9vK3Gbp+KF/c/wXNKjULdEgmh7OkYELe4sVOz6JGjZx2hCuu\nCHREvrHnnz20n9mePLnysLHHRq4seGWgQzIhwKv1FEzOEs5D9N0dO+bcKnrsMWda665do0ImIczc\nNpPaI2tzb8V7+bbDt1lKCPZ5SS6c68SbNZqfFZE+rv8m/v2YiNg0FEEqnD/QiWbMgCpVnJ5FP/8M\nTZqERr2cjT3LE/Oe4Nlvn2V269m82OhFcknWftuFQr34WjjXiTe3j2rhLMH5Dc7aB81wZix9XESm\nuU+FbUygHTwIvXs7iWDqVOeWUaj4+fDPtJ7WmqqlqrKp5yYK5ysc6JBMCPLmJ0Y5oKaqPquqfXCS\nREngNpw1m40JOFUYOxaqVXNmNI2ODp2EoKoMWz+MxuMa81yD55j00CRLCMZvvLlSKAFccHseC5RS\n1TMics4/YRnjvd27oWdPZyW0RYucuYtChY09MNnNmyuFicAaEXldRPoDq4BJrsVvtvozOGPSEh/v\ndC+9+WZn0Zs1a0IrISz/Yzk1htegfKHyrH5stSUEky28Gbz2pogsBBrirLvcU1XXuza382dwJnPC\nYd6WrVudXkV58zrLY1aqlP4+OaVe4hLieOuHtxi+YTijHhhF0+ua+vV8OaVeslM414k3cx89pqqj\nPF57V1Vf9GtkXrC5j8LPhQvOCmiDB8Nbb0H37pArhDpW//nPn7Sf0Z68ufMy/sHxNvbA+EWm12h2\neVhE2rsd7DOchmZjstW6dVC7tnObaNMmpx0hlBLCjG0zuHnkzTS7rlmWxx4Yk1neNDQ/BMwRkXjg\nXuCYqnb1b1jG/OvMGXjtNZgwAT76CFq3Do0pKhKdjT1Ln0V9+HbXt8xpPYe6ZesGOiQTxtJaea2Y\niBQDLgO6AX2BE8AbrtfTJSJNRGS7iPwuIn1TKTPYtX2ziNTw2JZbRDaJyDdevyMTUpYuddY3OHAA\nfvoJ2rQJrYTw8+GfuXnkzfxz/h829thoCcEEXFpXChtxGpYTJQ5ca+Z6vUJaBxaR3MAQ4E5gH7BO\nROao6ja3Mk2Biqp6nYjUBYYC7quBPIPTw6mg1+/IhITjx+GFF2DhQhg6FJqF2DxviWMPXot6jQ/u\n+oBO1TrZugcmKKR6paCqEap6jdvD/XmaCcGlDrBDVWNUNRaYQvIV2x4AxrnOtwYoIiKlAESkLNAU\n+AInIRkv5fQh+vPnO1NUXHKJMzLZVwkhWOrl6NmjPPTVQ4zcOJKVXVfSuXrngCaEYKmXYBLOdeLP\nZroywB6353tdr3lb5iPgeSDBXwGGqpz6gVaF9993ZjSdONGZxK5QId8dPxjqZVnMMqoPq06FIhX4\n8bEfqXSFF31p/SwY6iXYhHOd+HPqbG/7inr+RBIRuQ84rKqbRCQyrZ3d+xNHREQQERFBZGRkiv2M\no6KiUvyfbeUDX75Bg0gef9zpVbR6NZQtm7PiT698giawLGYZGw5s4JWOr/DiPcl7dAcq/piYmGSv\nBTKeYCgfFRVF//79gyaerJZP3O4VVU3xAeRJbZs3D5y2gYVuz/sBfT3KDANauz3fDpQGBuBcQewG\nDgCngS9TOIea5F5//fVAh5Ahf/2leuutqi1aqJ486b/zBKpeYo7FaMNRDfXOL+/U/Sf2BySGtOS0\nz0t2CPU6cX13pvjdndbtox9FZLaIPC4iEd6lmIusB64TkQgRyQs8CszxKDMH6AggIvWA46p6UFVf\nUtVyqnoN0Br4XlU7ZiIGE+S2b4d69aB+fZg+HS6/PNAR+db0rdO5eeTNPHD9Ayxqv8jGHpigl+rt\nI1WtLSLXAE2Aj10Nv8uBBcAyVT2f1oFVNU5EegOLgNzAKFXdJiI9XduHq+p8EWkqIjtwrga6pHa4\nDL8zE/QWL4Z27eDdd6FLav/nc6gzsWf4v4X/x+Ldi5nbdi51ytQJdEjGeCXNNgVV3Y3TTXSo69f+\nLThJ4i0R+UtV0+wXoqoLcJKI+2vDPZ73TucYy4BlaZUxF8sJ87YMGwb9+8NXX8Ftt2XPObOrXrYc\n2kLraa2pcWUNNvXcRKFLfdha7gc54fOS3cK5TtKd+yjVHUXKqupeH8eT0Rg0s/GbwIiPh2efdcYf\nzJ0LFSsGOiLfUVU+X/c5/Zf1Z9Ddg+hwUwcbe2CCUlpzH2W691GgE4LJeU6ccEYknz8PP/4IRYsG\nOiLfOXLmCI/NeYw9J/awsuvKoOhqakxmhNB0YiaYxcRAw4ZQrhwsWBBaCSEqJorqw6tTsVhFVnVd\nZQnB5GhpJgXX3EMDsysYE5p+/BEaNIBu3ZwpK/LkCXREvhGXEMer379Km+ltGHn/SAbePZBLL7k0\n0GEZkyXpNTTHi0gjsZv3JpMmTYJnnnHWTw6l+Yv+OP4HbWe0pUCeAmzquYnSl5cOdEjG+IQ3t4+i\ngdki0kFEWroeD/k7MJN5wTBEPyHBme76pZfg+++DIyH4ql6+/uVrbh55My2ub8HC9gtzfEIIhs9L\nsAnnOvEmKeQDjgK3A/e5Hvf7MyiTNYH+QJ896zQof/edsyBO1aoBDSdJVuvl9IXT9PimB/2W9GNe\n23k83/B5cknOb5YL9OclGIVznXizRnPnbIjDhIiDB6F5c7j2WmcthHz5Ah2Rb2w5tIVHpz1K7atq\ns6nnJgpearO5m9CU7s8cEbleRJaIyC+u5zeJyCv+D83kNJs3Q926zq2iiRNDIyGoKkPWDuGOL++g\nX6N+jH9wvCUEE9K8GacwEmcK62Gu5z8Bk4G3/BWUyXm++Qa6doUhQ+DRRwMdjW/8feZvus7uyv6T\n+1nVdRXXXXFdoEMyxu+8uSGaX50FcADX1HoQ67+QTE6iCoMGQc+ezgjlUEkIS3cvpcbwGlx/xfWs\neswSggkf3lwp/CUiSZMRiMjDONNZmyCVXfO2XLgATz4Ja9c6ayCUL58tp800b+olLiGON6LeYNSm\nUYxpPoZ7Kt7j/8ACLJzn+UlNONdJunMfici1wAigPnAcZ42Ddqoa4/fo0mHDJwLn6FF4+GEoUMAZ\ni1AwBG6zxxyPoe30thS6tBDjWoyj1OWlAh2SMX6R1txH3tw+SlDVO4CSwA2q2hBbMzms/fabswZC\nzZowa1ZoJISvfvmKOiPr0LJyS+a3m28JwYQtb64UNqlqDY/XNqhqLb9G5gW7Ush+33/vjEF46y3o\n3j3Q0WTd6Qun+e/C/xL1RxSTW06m9lW1Ax2SMX6XqVlSRaQycCNQ2DWCWXAWuymEM6DNhJmRI+GV\nV2DyZLj99kBHk3WbD26m9fTW3HzVzWzssdG6mhpD2g3NlXBGLhfm4hHMJ4EQ+I1ovBUfDy+84HQ7\nXb4cKuXwSUATxx7874f/8eHdH9KhWodAh2RM0PDm9lEDVV2VTfFkiN0+SllUVJTPek/ExztLZh46\n5KyhXKyYTw4bEFFRUVSpU4Wus7ty4NQBJrecTMViIbTKTyb58vMSKkK9TrLa0LxJRHqLyOciMkZE\nRovIaB/HaHzIV/O2JCQ4010fOeKsgZCTEwLAmJljqD6sOtdfcT0ru660hOASzvP8pCac68SbpDAe\nKIWzNnMUUA445c3BRaSJiGwXkd9FpG8qZQa7tm8WkRqu1/KJyBoRiRaRrSLyjlfvxviMKjz9NPz+\nu9PDKCdPWREbH8vLS15mxrYZjG4+mg/u/oC8ufMGOixjgpI3SaGiqr4KnFLVcUBToG56O4lIbmAI\nTjK5EWjjarx2L9PUdfzrgB7AUABVPQc0VtXqwE1AYxFp5P3bMlmhCi++6AxImzfPGYuQU+0+tptb\nx97KxoMb6Vm7J3dfe3egQzImqHmTFC64/vuPiFQFigAlvNivDrBDVWNUNRaYAjT3KPMAMA7ANZVG\nEREp5Xp+xlUmL5AbZ/pukw3eegvmz4dFi6Bw4UBHk3lTf55K3S/q8siNjzCv7Twuz3t5oEMyJuh5\nNSGeiBQDXgHmAJcDr3qxXxlgj9vzvSS/wkipTFngkOtKYwNwLTBUVbd6cU6TRR9+COPHww8/wBVX\nBDqazDl94TRPL3ia5X8uZ0G7BdS6KuBDaozJMbxZT2Gk689lwDUZOLa33YI8W8DVdd54oLqIFAYW\niUikqkZ57uzeQyAiIoKIiAgiIyNT7DkQFRWVYgNSqJVP/Dujx3/22ShGjYqiSxcYNiz98sHyft3L\nT5k7hWlbp1G2UFlaVmzJNyO+4WTkyRT3Ccb4A1G+SJEiyV4LZDzBUD4mJob+/fsHTTxZLZ+43Rve\ndEndCawGlgPLVfUXrw4sUg/or6pNXM/74UyZ8Z5bmWFAlKpOcT3fDtymqoc8jvUqcFZVB3q8bl1S\nfWTCBKcdISoKKubATjmqyqdrP+XNH97k43s+pt1N7QIdkjFBK1Mjmt38B+e2TyNgoIhcD2xR1Rbp\n7LceuE5EIoD9wKNAG48yc4DewBRXEjmuqodEpDgQp6rHReQy4C7gDS9iNZkwYwY89xwsWZIzE8Jf\np/+iy+wuHD59mNWPrebaYtcGOiRjcixvGprjcNZPiAcSgMPAoTT3AFQ1DucLfxGwFZiqqttEpKeI\n9HSVmQ/sEpEdwHDgCdfuVwLfi0g0sAb4RlWXZOidGa8sXAiPP+40LP/nP4GOJuOW7FpC9eHVqVKy\nCiu6rrCEYEwWeXP76AzOamsfAktU9e/sCMwbdvsoa5Ytc6a/nj0bGjQIdDQZExsfy+tRrzNu8zjG\nNh/LXdfeFeiQjMkx0rp95E1SaA7cAtyMc8WwCvhBVRf7OtCMsqSQeWvWwH33wZQpcMcdgY4mY3Yf\n202b6W0odlkxxrYYS8kCJQMdkjE5SpamuVDV2ar6HNATmA90Bub6NELjU+n1Mti8GR54AMaOzXkJ\nYcrPU6j7RV1aV2nNvLbzMpQQwnnqgrRYvSQXznWSblIQkemuHkiDgfxAB6CovwMzmZfWB3r7drj3\nXhgyBJo1y76YsurUhVN0nd2V16NeZ2H7hfy33n8RydhaT+H8Dz0tVi/JhXOdeNP76F1gk6vh2ORg\nu3bBXXfBO+/AI48EOhrvbTqwidbTW9OwXEM29NhgI5ON8SNvBq+ty45AjH/t3Qt33gn9+kGnToGO\nxjuqyidrPmHA8gF80uQT2lT17NFsjPE1b64UTA53+LCTEHr1gieeSL98MPjr9F90nt2Zv8/8zepu\nq6lQtEKgQzImLHgzTsHkYEePOreMHn0Unn8+0NF4J3HswU0lb2JFlxWWEIzJRuleKYhILZLPY/QP\n8Ie1MwSnxLlOTp50GpXvvBNc07gEtdj4WF5b+hpfbvmScS3GcWeFO316/FBeSSsrrF6SC+c68Wac\nwmqgFrDF9VJV4BectZt7qeoiv0aYdmw2TiEVZ844CaFyZRg6FDLYUSfb7Tq2izbT21A8f3HGNh9L\niQLezM5ujMmMrC7HuR+orqq1VLUWUB3YhTMf0fu+C9P4yvnz0LIllC8Pn38e/Alh8k+TqfdFPdpW\nacvcNnMtIRgTQN40NF/vPjOqqm4VkRtUdaeI2M/0IBMXB23awGWXwZgxkCuIW41OXTjFUwueYtWe\nVSxqv4gaV9YIdEjGhD1vvjJ+EZGhInKbiESKyOfAVhG5FGfaCxNEnn/euXU0eTJcEsR9yzYe2EjN\n4TXJRS429NhgCcGYIOFNm0J+nNlLG7peWgl8DpwDCqjqSb9GmHZs1qbgZulSaN8etmwJ3lXTVJWP\nV3/MgBUDGNxksI09MCYAstqmUFlVB6rqg67HQOB2VU0IZEIwFzt5Erp2hREj4KefogIdTooOnz7M\nfZPvY+ovU1nTbU22J4RwnrogLVYvyYVznXiTFEaKSNXEJyLSBnjNfyGZzHj2WWdyu2bNgvMDvXjX\nYmoMr0G1UtVY3mV5QMYeBGO9BAOrl+TCuU68uev8MDBNRNriTKHdEafnkQkSCxbAt986t42CTWx8\nLK8ufZUJWybwZYsvuaNCDpuW1Zgw483cR7tcVwezgD+Ae1T1jN8jM145ehS6d4fx46FQoUBHc7Gd\nR3fSdkZbSuQvwaaem6yrqTE5QKpJQUR+8nipGM7tpjWuBt6b/BqZ8cpTTzljEho3DnQkF5v00ySe\nWfgMr976Kk/VeSrD01wbYwIjrSuF+7MtCpMp06bBunUQHR3oSP516sIpes/vzeq9q/muw3dUL109\n0CEZYzIg1YZmVY1J6+HtCUSkiYhsF5HfRaRvKmUGu7ZvFpEartfKichSEflFRH4Wkacz/O5C2KFD\n0Ls3jBsH+fNfvC1Q87Ykjj3ILbnZ0GND0CWEcJ7PJi1WL8mFc52kO04hSwcXyQ38CtwJ7APWAW1U\ndZtbmaZAb1VtKiJ1gU9UtZ6IlAZKq2q0iFwObABaeOwbluMUVOHBB515jd55J9DRQIIm8MnqT3hn\nxTsMvncwrau0DnRIxpg0pDVOwd9jXusAOxKvLERkCtAc2OZW5gFgHICqrhGRIiJSSlUPAgddr58S\nkW3AVR77hqXx451V1KZODXQkztiDzrM6c+zcMdZ0W8M1Ra8JdEjGmCzw98w4ZYA9bs/3ul5Lr0xZ\n9wIiEgHUANb4PMIcZs8eeO45+PJLuPTSwMby3c7vqDG8BjVK1+CHzj9YQjAmBPj7SsHbezuelzFJ\n+7luHU0DnlHVU547ut/7i4iIICIigsjIyBTvCUZFRaU4KCWnlF+6NIpu3aKoUgVmzXIegYjnQvwF\nXvn+FcbMHEPTPE3JcyIPby9/22fHt/JW3sr7tnzidm/4u02hHtBfVZu4nvcDElT1Pbcyw4AoVZ3i\ner4duE1VD4lIHmAusEBVP07h+GHVpjBsGIweDatWBW6yux1Hd9BmehtKX16aMc3HUDx/8cAEYozJ\ntKzOfZQV64HrRCRCRPICjwJzPMrMwRklnZhEjrsSggCjgK0pJYRws3MnvPqqc9sovYTgryH6E7dM\npP6o+nS8qSNzWs/JcQkhnKcuSIvVS3LhXCd+TQqu5Tp7A4uArcBUVd0mIj1FpKerzHxgl4jsAIbj\nzMgKzqys7YHGIrLJ9Wjiz3iDVXw8dO4ML70EN9yQfnlff6BPnj9Jx5kdeWv5WyzusJin6ubMwWjh\n/A89LVYvyYVznfj9JoSqLgAWeLw23ON57xT2W4H/r2RyhI8/dhbLeeaZ7D/3+v3raTO9DZFXR7K+\n+3oK5C2Q/UEYY7JNEC/DYgC2bnXGIqxdm72rqCVoAh/9+BHvrXyPIU2H0Oo/rbLv5MaYgLGkEMRi\nY6FjR3j7baiQjTNNHzx1kE6zOnHy/EnWdl9LRJGI7Du5MSag7PZMEHvnHSheHHr0yL5zLtqxiJrD\na1Lnqjr80OUHSwjGhBm7UghSGzfCkCGwaRNktE03M/O2XIi/wMtLXmbKL1OY+NBEGl8TZNOu+kA4\nz2eTFquX5MK5Tvw6TsHfQnWcwvnzUKsWvPiis+ayv/1+5HfaTG9DmUJlGPXAqBzX1dQYkzGBHKdg\nMqFfP6hUCdq18/+5xm8eT4PRDehSvQuzHp1lCcGYMGe3j4LM55/D3LnOqGV/DgU4cf4ET85/kg37\nN7Ck4xJuKmVrJhlj7EohqMyY4fQ0WrjQaWD2l3X71lFzeE0uu+Qy1nVfZwnBGJPErhSCxIoV8Pjj\nTkLwV/fTBE1g0KpBfLDqAz5r+hmP/OcR/5zIGJNj2ZVCENi61VlneeJEqFkz68dLaYj+wVMHaTKh\nCbN+ncW67uvCMiGE89QFabF6SS6c68SSQoDt3Qv33gsDB8Jdd/nmmJ4f6IU7FlJzeE3qla3Hss7L\nuLrI1b45UQ4Tzv/Q02L1klw414ndPgqg48edhPDEE9Chg++PfyH+Ai8teYmpv0xlUstJREZE+v4k\nxpiQYkkhQM6fd9ZZbtwYXnjB98dPHHtQtlBZontGc0X+K3x/EmNMyLHbRwGQkODMaVS8OHz0kW+7\nnqoqmw9upsHoBnSu3pmZj860hGCM8ZpdKWQzVXj2WTh4EBYtgty5fXfsE+dP8MS8J1jx5wqWvGFj\nD4wxGWdXCtls0CD47jtnfeV8+Xx33LX71lJjeA0K5CnA+D7jLSGkIJzns0mL1Uty4VwnNvdRNpo0\nyZnPaNUqKFvWN8dM0AQGrhrIwFUD+bzZ5zx848O+ObAxJmSlNfeR3T7KJkuWwP/9n/NfXyWEAycP\n0HFWR87GnmVd93Vh29XUGOM7fr99JCJNRGS7iPwuIn1TKTPYtX2ziNRwe320iBwSkZ/8Hac/RUdD\nmzbw9ddQpYpvjrng9wXUHFGTBmUbENU5yhKCMcYn/HqlICK5gSHAncA+YJ2IzFHVbW5lmgIVVfU6\nEakLDAXquTaPAT4FvvRnnP4UEwPNmjkT3d16a9aPdz7uPP2W9GPa1mlMaTmF2yJuy/pBjTHGxd9X\nCnWAHaoao6qxwBSguUeZB4BxAKq6BigiIqVdz5cDx/wco98cOQJNmjjtCA/74Fb/b0d+o8HoBuw+\nvptNPTdZQjDG+Jy/k0IZYI/b872u1zJaJsc5cwbuvx9atICnnsrasVSVsdFjaTi6Id1qdGNGqxlp\njj0I5yH6abF6SZnVS3LhXCf+Tgredg3ybAXPOV2KUhAX57QhVKzorLOcFacunKLdjHZ8sOoDvu/4\nPYP84SQAAAw1SURBVL1u7oWkM9otnD/QabF6SZnVS3LhXCf+7n20Dyjn9rwczpVAWmXKul7zint/\n4oiICCIiIoiMjEyxn3FUVFSK/7N9WX7p0ijmznXmNWrbFt54I2vHz5s7L1VLVuWLB75g7cq19B/a\n36/xW/nwKx8TE5PstUDGEwzlo6Ki6N+/f9DEk9Xyidu9oqp+e+AknZ1ABJAXiAYqe5RpCsx3/V0P\nWO2xPQL4KZXja7D53/9Ua9ZUPXEicDG8/vrrgTt5ELN6SZnVS3KhXieu784Uv7f9eqWgqnEi0htY\nBOQGRqnqNhHp6do+XFXni0hTEdkBnAa6JO4vIpOB24ArRGQP8JqqjvFnzFkxahSMHQsrV0LBgoGO\nxhhjMs7vg9dUdQGwwOO14R7Pe6eybxs/huZT8+bBK6/AsmVQunSgozHGmMyxEc0+sGYNdOkC33wD\nlSoFOprwnrclLVYvKbN6SS6c68TmPsoCVRg92hmHMGYM3HdfwEIxxhiv2dxHfrB7N3Tv7vQyWrwY\nqlULdETGGJN1NnV2BsXHwyefwM03w913w+rVlhCMMaHDrhQyYNs2eOwxuOQSZ/rrYGg/MMYYX7Ir\nBS/ExsLbbzsT2nXoAFFRlhCMMaHJkkI6Nm50bhWtWAEbNkCvXpAryGstnIfop8XqJWVWL8mFc50E\n+ddb4Jw96/QquvdeZ03l+fOhfPlAR+WdcP5Ap8XqJWVWL8mFc51Ym0IKVqxw2g6qVYMtW6BUqUBH\nZIwx2cOSgpuTJ6FfP5g5E4YMgQcfDHRExhiTvez2kcuiRVC1qrMOws8/W0IwxoSnsL9SOHoU+vRx\n5iwaORLuuivQERljTOCE9ZXC9OlQpQoUKgQ//RQ6CSGc521Ji9VLyqxekgvnOgnLuY8OHoQnn4Rf\nfnGmu27Y0A/BGWNMkEpr7qOwulJQddY7uOkmuOEGiI62hGCMMe7Cpk3hjz+gZ084dMhpVK5RI9AR\nGWNM8An5K4WEBKd7aa1acNttsHatJQRjjElNSF8p/PqrMwhN1RmQdsMNgY7IGGOCW0heKcTGwrvv\nOu0Fjz4Ky5eHV0II5yH6abF6SZnVS3LhXCd+TQoi0kREtovI7yLSN5Uyg13bN4tIjYzsm5LoaKhb\nF77/Htavh6eeCv4J7HwtnD/QabF6SZnVS3LhXCd++7oUkdzAEKAJcCPQRkQqe5RpClRU1euAHsBQ\nb/f1dO4cvPyys/DN0087jckREb5+VzlDTExMoEMISlYvKbN6SS6c68Sfv6HrADtUNUZVY4EpQHOP\nMg8A4wBUdQ1QRERKe7lvklWrnMbjbdtg82bo3BkkxR644SGcP9BpsXpJmdVLcuFcJ/5saC4D7HF7\nvheo60WZMsBVXuwLwDPPwNdfw+DB8PDDWY7ZGGPCmj+TgrdDjbP0m/74cWeKiiuuyMpRjDHGgH+T\nwj6gnNvzcji/+NMqU9ZVJo8X+wLw5ZfCl19mOdaQI+F8/ywNVi8ps3pJLlzrxJ9JYT1wnYhEAPuB\nR4E2HmXmAL2BKSJSDzj+/+2df4xcVRXHP99SoNBaQg2iCbEtNRZqauRHQyxFEKNBChKxGrWIKaSp\nELDGkqgJaIw1wWCMf6i0FGpLgBrQAjWWECxga6VuyrbsupEfbdoSyo/UpmJ/pFLi8Y97Zvb1MbM7\ns7OzM/P2fJKbue++d+7ce/buO/fH3HPN7C1J+2uQreq7IwiCIBgaTTMKZvaupFuAJ4ETgPvM7J+S\nFvn95Wa2XtKVknYAh4EFA8k2q6xBEARBoqO9pAZBEATDS9tu62rFxrdOoEG97JbUI2mbpK6RK3Vz\nGUwnks6R9Jyko5KW1CPbyTSol0K2FahJL/P9f6dH0mZJH69VthCYWdsF0pTRDmAKadF5O3Bu7pkr\ngfUevwjYUqtsp4ZG9OLXu4BJra5HC3RyBnAhsBRYUo9sp4ZG9FLUtlKHXj4JnObxK0bDuyUb2nWk\nMGIb3zqMoerlzMz9oi3OD6oTM9tnZluBY/XKdjCN6KVE0doK1KaX58zsbb/8O+lXkTXJFoF2NQrV\nNrXV8kyljW952U6lEb1A2jvyZ0lbJS1sWilHllp00gzZdqfRuhWxrUD9erkRWD9E2Y6kXV1nj8jG\ntw6kUb3MMbPXJZ0BPCXpRTPbNExlaxWN/FKiyL+yaLRuF5vZGwVrK1CHXiR9GrgBKJ3PWOT2UqZd\nRwqNbHyrRbZTGape9gKY2ev+uQ94lDQc7nQa+XuP9rZSFTN7wz+L1FagRr344vIK4AtmdqAe2U6n\nXY1CeeObpJNIm9fW5Z5ZB1wPkN34VqNspzJkvUg6VdL7PH088Dmgd+SK3jTq+XvnR1Cjva2UOE4v\nBW4rUINeJH0YWAtcZ2Y76pEtBK1e6a4WgM8DL5FW+3/gaYuARZlnfuX3XwDOH0i2KGGoegHOJv1a\nYjvwjyLpZTCdAB8kzQW/DRwAXgUmjPa2Uk0vRW4rNerlXmA/sM1D10CyRQuxeS0IgiAo067TR0EQ\nBEELCKMQBEEQlAmjEARBEJQJoxAEQRCUCaMQBEEQlAmjEARBEJQJoxC0DN8ENOKboiRdI+ncYcpr\nq6QTc2m7JU0apvwPDUc+QVArYRSC0cgXgRn1CEg6oULaVGCvJY+ZWYZz88978pLUrj7LggIQRiFo\nCySdLalb0gXuZuFhSX2S1kraIumC3POzJP3B49dIOiJprKRxknZ6+kJJXZK2S/q9pFMkzQauBu7y\nA2SmSpom6Qnv9W+UNN3lV0laJmkL8LMKxb4CeGKAOp3i+d7o13f4AS2bJD2UP9jGn5nqB9/0SFqa\nSb/M5R4H+iT9WNLizP2fSvp2Lq/xkv7k9e+V9BVP/4zrukfSfe6yoVS+Ln92eSafZyX90vXVK2lW\ntToHBaDVW6ojjN5AOqykF5gOdAMzPf024G6Pf4zk7//8nOxYYKfHf07yez8buBR40NMnZZ7/CXCL\nx38LXJu5twH4iMcvAjZ4fBXJt42qlP8xYEqF9F3AZOApkv8cgFkklwknkVxJvAx8t4LsuozMzcBB\nj18GHAIm+/Vk4HmPjyG5XTg9l9eXgHsy1xOBcSR3FqX6rgYWe/z0zLP3A1d5/BlguccvAXpb3XYi\nNC/ESCFoNR8gvVy/bmal9YWLSQeYYGZ9QE9eyMzeBXZKOof0wv0F8ClgDlBy8TzTe9c9wHyOnzIS\ngKQJpJO2HpG0DVhG8gkEaermEfO3YRbvXZ9lZrsr1EnA48BKM3sgU6fHzOwdMzsE/LFUhhyzgTUe\nfyB3r8vM9nj99wD7JX2C5LCu2/q9eZboAT4r6U5Jc8zsPyQDvMv6Hb2tJukN4HIflfUAl3O8vtb4\n924CJkqaWKHsQQGIucmg1fwb2EPqgb6YSa/lrIyNpONHj5F6+6tJvebb/P4qkuvjXknfJPW2S5Re\n9GNInmTPozJHqqRfQr/xyWPAX0nO09Zk0rJ1GspZIIdz1/cCC4AzgZXvKYTZK0pndM8FlkraQDJW\nWUrG8WTgN6QR2V5JPyKNKqoRTtMKSowUglbzDnAtcL2kr3naZqA0/z0DmFlFdhPwHeBvZvYv4P3A\ndB9dQJqmedN/HXQd/S+yg6SpFLz3vEvSPP8+KXNQ+wAMuJ4A/BA4IOnXmTpdLelkH53MpfKLdTPw\nVY/PH6QMj3o5LgSezN+U9CHgqJk9SJpiO4/k4XOKpGn+2DeAZ0kGwEijjwnAl7NZkdxEI2kOyYge\nHKRsQYcSI4Wg1ZiZHZF0FemEr4OkHutqSX2k0UMfyb1zni7S9NNGv36B1GsucQdprWGff07w9N8B\nKyTdCswjvXzvlnQ76UD2NfRPWVXrEV8K3F6tTl6xxZJWSrrTzL4vaZ3n+xZpLaVSnRYDD0n6HqlX\nn/3+48piZsckPQ0cqDTFRTKmd0n6H2k09S0z+6+kBaTpsrEkHS7zvFaQXGW/SdJX9nuPSuomvTNu\nqFLvoACE6+yg7ZA0BjjRX2DTSAu2H/V1hJYj6SzSwuvcOuXGm9lhSacCfwEWmtn2BsoxBngemGdm\nO4eaTw3f8wywxMy6m/UdQfsQI4WgHRkPPO3TPgJuaheDAGBmr5Gmf+rlHp8OGwesatAgzCAtVq9t\npkEIRh8xUgiCIAjKxEJzEARBUCaMQhAEQVAmjEIQBEFQJoxCEARBUCaMQhAEQVAmjEIQBEFQ5v+Y\nxUkNBVmMbwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c30128>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum amount of air required is 2.2941 cubic m/kg dry soap\n",
+ "\n",
+ "\n",
+ "Illustration 5.2 (c)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmczdX/wPHX20QiW9nK0pC1iFBEyyhFijZf8pVCZakp\n35+xplBKJUoiS9miUpYikX2ELNl3QmNfErKMZZb374/Pnekas9xZ7tw7c9/Px+M+zL2f8/l83nPc\nue/7OedzzhFVxRhjjAHI4esAjDHG+A9LCsYYY+JZUjDGGBPPkoIxxph4lhSMMcbEs6RgjDEmniUF\n49dEpI2ILHV7HisiZX0ZU1JEZISIvOnrOFIiIreJyO8elGsiIpMzIybjPywpGL8jIhEi8qAXjz9e\nRPqn8xhXJCsAVe2kqu+mL7okzxUjImfdHvcnUbaCiMwQkeMi8reI/CIiFRIU6w98lNJ5VfUn4HYR\nqZoBv4bJIiwpGH/k0xGVInKNL8+fhOWqms/t8WsS5QoAPwIVgGLAamBG3EYRuQkIcZXxxLdA+zRH\nbbIcSwomyxKRcBF50e15/Ld3cXwiIsdE5B8R2SQit4tIe+C/QHfXN+4ZrvIRItJdRDYBZ0UkSER6\nishuETkjIltF5ElX2crACOAe1zFOul6/4gpERF4WkT9c39hnuD6Q47bFikgHEdklIqdEZFhKv64n\ndaKqv6vqOFU9rarRwBCgoogUchV5GFirqpfdYiklItNdVxcnROQzt0OGA495cm6TPVhSMFmZkvRV\nxSPAfUB5VS0A/Af4W1VHA18DH7q+cT/hts+zwKNAQVWNAXYD96pqfuBtYJKIFFPV7UBHYIXrGDck\njMfV/DXAdd6bgH1Awvb5x4BawB1AcxFpmMzveaeI/CUiO0XkTREJSrl6ALgfOKKqp1zPqwI74za6\njjML+BO4BSiRIM4dQLCIXO/h+UwWZ0nBZFdRQD6gsojkUNWdqnrUbXvCb94KDFXVQ6p6CUBVp8bt\no6rfA38AtZPYP6FWwBhV3eD6Vt4L58qitFuZD1T1jKoeABYD1ZM41q/A7apaBHgGaAl0S+H8iEhJ\nYBjQxe3lAsA5t+d34yStbqp6QVUvqepyt+1nXf8WTOl8JnuwpGCyJVVdhPOBOBw4JiKjRCRfCrsd\ncH8iIs+LyHpX884poApwo4chxF0dxMVzHvgb55t4HPckFQkk+m1cVf9U1X2un7cA7wDNkju5iBQB\n5gHDVfU7t02ncJJlnFLAPlWNTeJQcWVPJ3c+k31YUjBZ2Xkgr9vz4u4bVfUzVa0F3IbT8Rr37Tqp\nJqf410XkFmA08Cpwg6oWArbw7xVCSp3hh4Fgt+PlxUkoh1LYz1NJXqm4+g/mAT+q6vsJNm/CqYs4\nB4DSyTRHVQYiVPVcEttNNmNJwWRlG4CnReQ6ESkHvMi/bfq1RKS2iOTE+RZ+EYhx7XcMSGmsQ17X\nsU4AOUSkLc6VQpxjQEnX8eMI/35Yfwu0FZFqInItTv/CSlXdn8T5kvuQf1REirl+rgS8SRJ3D4lI\nfmAusExV30ikyAKghojkcj1fBRwBPhCRPCKSW0TqupV/AJidVGwm+7GkYPxdws5k958/AS7jfECP\nAya5bcuP803/JBCB8+Eed2/+GOA2V7PQ9ERPqroNGAyswGnmqQIscyuyENgKHBWR4wljVdWFwFvA\nNJyrhjI4HdmJ/R6J/Z7uHgQ2isg54GfXMQfEbRSR2SLS0/X0KZzO67ZuYxrOuPoXUNVjwCLgSdfz\nWKAJUA7Yj3Pl0Nzt3M8Co5KIy2RD4s1FdkSkEc4tcUHAl6r6YSJlhuLc8REJtFHV9a7XewHPAbHA\nZqBtXAegMSbtXLfUTlDVu1Mo1wRoparPJlfOZC9eSwquNsqdQAOcdtTfgZau2/niyjQGQlW1sYjU\nBj5V1ToiEozzbaayql4Ske+A2ao6wSvBGmOMAbzbfHQ3sFtVI1Q1Cufe5ycSlGkKTABQ1VVAQVfb\n6RmcWwrzuEaX5iHjOuiMMcYkwZtJoQRX3uJ3kCtvx0uyjKqexGnP3Y/THntaVRd4MVZjjDF4Nyl4\n2i511V0XInIr8D+cW/puBq4XkVYZF5oxxpjEeHPir0M4A2PilMK5EkiuTEnXayHAb6r6N4DrDpG6\nONMTxBMRn06cZowxWZWqJnobtDevFNYA5UUk2HVPdAtgZoIyM4HnAUSkDk4z0TGcDuo6rvvPBaez\neltiJ1FVeyR4vPDCCz6PwR8fVi9WL1YnziM5XrtSUNVoEQnFGUgThDMPzHYR6eDaPkpVZ4tIYxHZ\njTM6ta1r2wYR+QonscQC63DuOTceiIiI8HUIfsnqJXFWL1cL5Drx6rzxqjoHmJPgtVEJnocmse9A\nYKD3ojPGGJOQjWjOhoKDg30dgl+yekmc1cvVArlOLClkQ4H8hk6O1UvirF6uFsh14o/LDqab0zcd\n2N5++21fh+CXkqqXlDrfjAkU2TIpgP2RG88F+peIkJAQX4fgdwK5Trw6IZ63iYgmFr+IWFIwHrP3\niwk0rvd8po9TMMYYk8VYUjDGGBPPkkI2sn//fvLlyxffFBISEsKYMWMA+Prrr2nYsGF82Rw5crB3\n716Pj51wf19I+PsZYzKeJQUfCA4OJk+ePOTLly/+8frrr6f7uKVLl+bs2bPxHaciEv9zq1atmDt3\nbpqPnd79U8M9mblL+PsZYzKeJQUfEBFmzZrF2bNn4x9Dhw71dVhJiomJSblQBnJPZsb7wsPDfR2C\n3wnkOrGk4GdiY2Pp2rUrRYoU4dZbb2X48OHkyJGD2NhYwLnKWLhwYXz5fv360bp1a8CZr8W9rLvx\n48dz3333XfHazz//zK233kqRIkXo3r17fLPM+PHjqVevHl26dKFw4cL069fviv0TO4/7t3v3/QsV\nKkS5cuX47bffGDduHKVLl6ZYsWJ89dVXqa6bhOcNCQmhT58+3HvvveTPn5+GDRvy999/x5dfuXIl\ndevWpVChQlSvXp0lS5ak+pyBIJA/AJMSyHViScFHkmoXHz16ND///DMbNmxgzZo1TJ069YpvzQm/\nRafnG/WPP/7I2rVrWbduHTNmzGDs2LHx21avXs2tt97K8ePH6d27d4rHShjX6tWrqVatGidPnqRl\ny5Y0b96cdevWsWfPHiZNmkRoaCiRkZFpjj3Ot99+y/jx4zl+/DiXL19m0KBBABw6dIjHH3+cPn36\ncOrUKQYNGsQzzzzDiRMn0n1OY7KzgE0KIhnzSAtV5cknn6RQoULxj7hv2d9//z3/93//R4kSJShU\nqBBvvPFGsh2r6el07dGjBwULFqRUqVL873//49tvv43fdvPNN/Pqq6+SI0cOcufOnepjlylThhde\neAERoXnz5hw+fJg+ffqQM2dOHn74YXLlysXu3bvTHDs4iaht27aUK1eO3Llz07x5czZs2ADApEmT\naNy4MY0aNQKgQYMG1KpVi9mzZ6frnMZkd9l2RHNKfHkDi4gwY8YMHnzwwau2HTlyhFKl/l13qHTp\n0l6LI+F5Dh8+nOi2tChWrFj8z9dddx0ARYoUueK1c+fOpescAMWLF0/0mPv27WPKlCn89NNP8duj\no6MTrXNjzL8CNin4q5tuuon9+/fHP3f/GSBv3rycP38+/vnRo0fTfK79+/dTuXLl+J9LlPh3Ce3k\nmqXy5s0LQGRkJNdff3264/CG0qVL07p1a0aPtmU4jEmNgG0+8rWkmn2aN2/O0KFDOXToEKdOneKD\nDz644gO6evXqTJ48mejoaNasWcO0adPS3K8waNAgTp8+zYEDBxg6dCgtWrTwaL8iRYpQokQJJk6c\nSExMDGPHjmXPnj1piiEpUVFRXLx4Mf4RHR2daLmk6vG5557jp59+Yt68ecTExHDx4kXCw8M5dOhQ\nhsaZHQTyPD9Jyep1EhEBCb5PesySgo80adLkinEKzzzzDAAvv/wyDRs2pFq1atSqVYtnnnnmig++\n/v37s2fPHgoVKkS/fv1o1arVFcdNKkEkdpvnE088Qc2aNbnzzjt5/PHHefHFF5Msm/C1L774go8+\n+ojChQuzbds26tWrl+y5Upu4OnXqRJ48eeIf7dq1S/G47ttLlizJjBkzGDBgAEWLFqV06dIMHjw4\n0TuzAl1W/wD0hqxWJ1FRsHgxdOsGt98Od98NS5em7Vg2IZ6fi4iIoGzZskRHR5Mjh+Vwb8hO7xcT\nOI4cgTlzYPZsWLAAypeHxx6Dxo2hVi1I7uMiuQnxrE/BGGOygJgYWL3aSQKzZ8PevfDII9CkCQwf\nDm73dqSLV5OCiDQChgBBwJeq+mEiZYYCjwKRQBtVXS8iFYHJbsXKAm+pqv8O+/UiG91rTGD6+2+Y\nO9dJAnPnwk03OVcCn3wC99wDOXNm/Dm91nwkIkHATqABcAj4HWipqtvdyjQGQlW1sYjUBj5V1ToJ\njpPDtf/dqnogwbZs33xkvM/eL8ZfqMKGDf9eDWzeDPXrO4ng0Ucho+5Q99V6CncDu1U1QlWjcL75\nP5GgTFNgAoCqrgIKikjCi6AGwJ6ECcEYkzECeUqHpGRmnZw5A9Onw0svQYkS0Lw5/PUX9O0Lx4/D\njBnQoUPGJYSUeDMplADcP8gPul5LqUzJBGWeBb7J8OiMMYAlhcR4s05UYft2GDwYHnzQSQSjRkHV\nqrBkCfzxBwwZ4vQXpGEygXTzZp+Cp9fjCS9h4vcTkVxAE6BHRgVljDGZLTISwsOdJqGff4boaOdO\nof/9z0kMrjGgfsGbSeEQ4D5XQimcK4HkypR0vRbnUWCtqv6V1Enc7ycODg4mODg4bdGagNavX7/4\nn0NCQhK9Tz08PDzRb5BZvXxERMRVr/kyHn8oHx4eHv+eSOvx//zz3ySwdCmULRtOkSLhNGoERYs6\nc6etWwf583v/943b7glvdjRfg9PR/BBwGFhN8h3NdYAh7h3NIjIZmKOqE5I4h3U0m3QL9PdLv379\nrkiKJm11cvkyLFvmJIHZs+HkSadzuHFjpymoYEHvxJoWPuloVtVoIBSYC2wDvlPV7SLSQUQ6uMrM\nBvaKyG5gFPCKW9B5cTqZp3srRpO0pUuXUqlSJa8cO7llQo3JSg4fhi+/hKefhiJFoFcvyJ8fJk50\nBpeNH+90HPtTQkiJjWj2kfHjxzN48GD27t1L/vz5eeqpp3j//fcpUKCAT+LJkSMHu3fvpmzZsl4/\nV/369WndujXt2rXz+rk8kRXeL94UHh6e5aZ18Lak6iQmBlat+vdqYN8+5yqgcWPim4WyAl/dkmqS\nMHjwYHr27MngwYM5c+YMK1euZN++fTz88MNERUVl+Pk8XU4zkD8YA5klhKu518mJEzBpEvz3v86H\nfqdOEBsLn33m3DI6eTI8/3zWSQgpsaSQyc6cOUO/fv0YNmwYjzzyCEFBQdxyyy18//33REREMGnS\nJMBp02zWrBnPPvss+fPnp2bNmmzatCn+OIcPH+aZZ56haNGilC1bls8++yx+W9y+rVu3pkCBAkyY\nMIHff/+de+65h0KFCnHzzTfz2muvxSeg+++/H4Bq1aqRL18+pkyZQnh4+BVrKgQHBzN48GCqVatG\nwYIFefbZZ7l06VL89oEDB3LzzTdTsmRJvvzyS3LkyMHevXtTrI+Ey4TmyJGDUaNGUaFCBQoVKkRo\naOgV5ceOHcttt93GDTfcQKNGja6aWtyY9IqNhbVroX9/Z9TwrbfC1KkQEgIbNzqP99+He++Fa7Lj\nREGqmmUfTvhXS+p1fzBnzhy95pprNCYm5qptL7zwgrZs2VJVVfv27as5c+bUadOmaXR0tA4aNEjL\nlCmj0dHRGhMTozVq1ND+/ftrVFSU7t27V8uWLatz5869Yt8ZM2aoquqFCxd07dq1umrVKo2JidGI\niAitXLmyDhkyJP7cIqJ79uyJf7548WItWbJk/PPg4GCtXbu2HjlyRE+ePKmVK1fWkSNHxv9OxYsX\n123btmlkZKS2atVKc+TIccXx3IWEhOiYMWNUVXXcuHF67733XhFHkyZN9J9//tH9+/drkSJF9Jdf\nflFV1R9//FHLlSunO3bs0JiYGH333Xe1bt26qf9PSMCf3y8mc5w+rTplimrbtqrFi6tWqKD6v/+p\nzp+vevGir6PLeK73fKKfq9kxz3lE3s6Y+YS0b+qaXE6cOEHhwoUTnfG0ePHirFu3Lv55rVq1ePrp\npwHo0qULgwcPZsWKFeTMmZMTJ07w5ptvAs7Sly+99BKTJ0/mkUceAaBu3bo0bdoUgNy5c1OjRo34\n495yyy20b9+eJUuW0LlzZ49jf/311+NXOmvSpEn80pfff/897dq1i1+w5+233+abb9I+3rBnz57k\nz5+f/PnzU79+fTZu3EjDhg0ZOXIkvXr1omLFigD06tWLAQMGcODAgXSvFGcCiyps2/bvdBJr1kC9\nes7YgTfegHLlfB2h7wRsUkjth3lGKVy4MCdOnCA2NvaqxHDkyJErlqwsWfLfwd0iQsmSJTl8+DAi\nwuHDhylUqFD89piYmPhmoIT7AuzatYsuXbqwdu1aIiMjiY6OplatWqmKPeHSl0eOHImP++67707y\n3Knlfp48efJcscRm586dCQsLu6L8oUOHLCmYFJ0/76w5EJcIVJ0O4rAwZ34h14KCAc/6FDLZPffc\nw7XXXsu0adOueP3cuXP88ssvPPTQQ/GvHTjw7wwgsbGxHDx4kBIlSlCqVCnKlCnDqVOn4h9nzpxh\n1qxZQOKL3HTq1InbbruN3bt3888///Dee+9l2IIzN9100xWxuv+ckUqXLs3o0aOv+L3Pnz9PnTp1\nUt7ZJCk7T3OxZ4/TIdyoERQvDoMGQZkyzt1DEREwYgQ8/vjVCSE710lKLClksgIFCtC3b19ee+01\n5s6dS1RUFBERETRv3pxSpUrRunXr+LJr167lhx9+IDo6miFDhpA7d27q1KnDXXfdRb58+Rg4cCAX\nLlwgJiaGLVu2sGbNGiDxu4jOnTtHvnz5yJMnDzt27GDEiBFXbC9WrFiql9SMO0/z5s0ZN24cO3bs\nIDIykv79+6e2WpI9R9x5OnbsyIABA9i2bRsA//zzD1OmTMmwcwWq7PQBeOmSs+BMly5QsaLTJLR+\nvTPZ3IEDzlQTcauTJTcjfXaqk9SypOAD3bp1Y8CAAXTt2pUCBQpQp04dbrnlFhYuXEhO1wTpIsIT\nTzzBd999xw033MDXX3/N9OnTCQoKIigoiFmzZrFhwwbKli1LkSJFaN++PWfOnInfN+GVwqBBg/jm\nm2/Inz8/7du359lnn72iTL9+/XjhhRcoVKgQU6dOTfQY7ty3N2rUiNdff5369etToUIF7rnnHgCu\nvfbaFOsi4XmSWwb0ySefpEePHjz77LMUKFCAqlWrMnfu3BTPYbK3gwfhiy/gqaec20LffBMKFYJv\nvnEGl40dC82aZa0BZL5kg9f81Ntvv83u3buZOHGir0NJte3bt1O1alUuX76cJZYQzQ7vl/TIatNc\nREfDypX/zit04AA0bOh0Ejds6IwsTq+sViepZctxZkFZ7UPqhx9+oHHjxkRGRtKjRw+aNm2aJRKC\nyTr273emlJ4wwVlboHFj+PxzqF07m44X8BH7q/VTKTXf+JvRo0dTrFgxypUrR86cOa/qszAmrTZu\nhOeegzvvdBajX7vW6Sd47z2nz8ASQsay5iMT8AL9/eKPcx+pOh3GH30EW7dC587Qvn3m9Qv4Y51k\npOSajywpmIBn7xf/ERUF33/v3Dp6+TJ07erMOeTBPQsmFaxPwRjj186edaagHjLEGUfw7rvOWgTW\nLZX5rMqNMT5z5IgzrUSZMrBihTPxXHi4cyeRJQTPrD28luemP8el6EspF/ZAtr1SyEqdtMYEmriF\n66dPd5qHVq1yZiM1njvwzwF6L+rNgr0LeDvkba7JkTEf59kyKVj7sDH+R9VZrvKjj5wk8OqrsGsX\nFC7s68iylrOXzvLh8g8ZsWYEr9R6hZ2hO8l3bb4MO75doGVDgTxEPzlWL4nzdr3ExMC0ac7aBG3b\nOuMLIiKgTx//TQj++F6Jjo1m9NrRVBhWgQNnDrCx40b6P9g/QxMCWFLIlvzxDe0PrF4S5616uXDB\nmXCuUiXn6qBbN9i5Ezp2hOuu88opM4y/vVd+2f0L1UdW55vN3zCr5SwmPDmBkvnTNxtxUrzafCQi\njYAhQBDwpap+mEiZocCjQCTQRlXXu14vCHwJ3A4o0E5VV3ozXmNM+p04AcOH/zvaeOxYZ5Uy6+ZL\nvc3HNtN1flciTkcwsMFAmlZs6vX+Uq9dKYhIEDAMaATcBrQUkcoJyjQGyqlqeaA94D4M9lNgtqpW\nBu4AtnsrVmNM+u3Z4/QTlC//74ykM2fCffdZQkito+eO8vLMl2kwsQGPl3+cLZ228ESlJzLlBhpv\nNh/dDexW1QhVjQImA08kKNMUmACgqquAgiJSTEQKAPep6ljXtmhV/ceLsRpj0mj1avjPf5yrggIF\nnBXNvvwSKldOeV9zpcioSN799V2qfF6FgrkLsjN0J6/Vfo2cQTkzLQZvNh+VANxXWzkI1PagTEkg\nBvhLRMYB1YC1QGdVjfReuMYYT8XGwpw5MHCg02n8f//nNBPly9g+z4ARq7FM2jSJ3ot6U7dUXVa/\nvJqyhcr6JBZvJgVP7wtNeD2kOHHVAEJV9XcRGQL0BPok3Nl9fpLg4GCCg4MJCQlJdN6S8PDwRDuQ\nslv5uJ/9JR5/KZ9wH1/H4y/lCyYxoVBi5aOjISoqhFmzQsiVy+k8/s9/IGfOrPP7elI+IiIifups\nr9d/pYJMPDORXEG5+K7Zd9QtVTdDj+/+eeAJr819JCJ1gH6q2sj1vBcQ697ZLCIjgXBVnex6vgN4\nACdRrFDVMq7X7wV6qurjCc6R6NxHxpiMdfo0jBoFQ4dClSpOMnjoIesrSI9df++i+/zubDy2kQ8e\n+oDmtzfPtEG3yc195M0+hTVAeREJFpFcQAtgZoIyM4HnXUHWAU6r6jFVPQocEJEKrnINgK1ejNUY\nk4gDB5yF7cuWhc2bnUVt5s6FBg0sIaTVicgTvD7ndeqNrUe9UvXY/up2WlRp4TezMHit+UhVo0Uk\nFJiLc0vqGFXdLiIdXNtHqepsEWksIruB80Bbt0O8BnztSih7EmwzxnjRpk3O2IKff4Y2bWDDBmdh\nG5N2l6Iv8dnqz/hw+Ye0uL0F217ZRpG8GbBMXAbLllNnG2NSTxUWLnSSwebN8PrrzkAzW9s4fVSV\nKdum0HNBT6oUrcLAhwdSqXAln8ZkU2cbY5IUHQ1TpjjJ4OJFZw2DmTNtDYOMsOLACsLmhXEh+gJj\nmo6hfpn6vg4pRcn2KYijVGYFYzKGvw3R9xdWL1c6dw4+/RRKlgxn5Eh45x3YsgXatbOEkN73yp+n\n/qTF1Bb8Z8p/aF+zPWteXpMlEgJ41tE8x+tRmAxlH36Js3pxHD0KvXs7axgsWwZNmoSzZAk8/rit\nYRAnre+V0xdP031+d2p9UYvbi9zOztCdtKnehqAcQRkboBcl+xZwNdivFZG7MykeY4yX7NgBL7/s\njDQ+fRpWrnSajUqU8HVkWV9UTBTDVg+j4rCKnLxwki2dttDngT7kzZXX16Glmid9CnWA50RkH84d\nQuDkizu8F5YxJiOowvLlTn/BihXwyivOGgZF/O+mlyxJVflp1090n9+dUgVKMb/1fO4olrU/Gj1J\nCg29HoUxJkPFxMCMGTBoEBw/Dl26wLffQp48vo4s+1h3ZB1h88I4du4YHzf8mEfLPeo3Yw3SI8mk\nICL5VfUMcCYT4zHGpENkJEyYAB9/DDfe6Iw8fvJJCMo6Tdp+7+CZg/Re1Ju5u+fSL6QfL9V4KcOW\nwvQHyf0m3wKPAetIfB6jMl6JyKRbYvOimOxdL8ePO2sYjBgBdevCuHFQr55no46zc72kVWJ1cu7y\nOQYuH8jw34fToWYHdr22i/zX5s/84LzMBq8Zk4Xt2uVcFXz3HTRv7jQTVazo66iyl5jYGMZtGEef\nxX14sMyDDHhoAKULZO3h3ekevCYihYDyQO6411T114wJzxiTWsuXO/0Fy5c7o4537oSiRX0dVfYz\nb888us7rSsHcBZnx7AzuKnGXr0PyuhSTgoi8DLwOlALW49yNtAJ40LuhGWPcuXceHzvmXBVMmgR5\ns95dj35v6/GtdJ3fld0ndzOwwUCerPRktuhE9kSKzUcisgW4C2cq6+oiUgl4X1WfyowAk2PNRyYQ\nWOdx5jl27hh9w/syfft0et/Xm053dSJXUC5fh5Xh0tt8dFFVL4gIIpJbVXeIiLVaGuNl6ek8Nqlz\nIeoCn6z8hI9XfMzz1Z5nR+gObrjuBl+H5ROeDGo/4OpT+BGYLyIzgQivRmXSxaZzSFxWqZddu5x+\ngooVnSkpli6FH3+Ee+/1TkLIKvXiDXHLYFYaXol1R9ax6qVVfNzwYzat2uTr0HwmxaSgqk+p6ilV\n7Qe8BXwJPOntwEzaBfIfeXL8vV6WL4ennnI+/IsWdTqPR43y/t1E/l4v3rJ031Jqf1mbz1Z/xtdP\nf83U5lO59YZbgcCtE0jl1NmqGu6lOIwJSNZ5nPn++PsPeizowboj63j/ofdpUaUFOcRmAoyTfYbh\nGZOFWOdx5jt54STvLHmHSZsm0bVuV75++muuy3mdr8PyO5YUjMlEf/3ldB5//jncc491HmeGyzGX\nGb56OO8ve59mtzVj26vbKJrXBnUkxZNxCq8DE1X1VCbEY0y2lHDk8dKlNvLY21SV6dun02NBDyoW\nrkh4m3BuK3Kbr8Pye55cKRQDfheRdcBYYK6ngwNEpBEwBAgCvlTVDxMpMxR4FIgE2qjqetfrETiT\n8cUAUapqazp4yOaySZwv6iVu5PGyZdCpk7OmQbFimR5GsrLj+2X1odWEzQvjzKUzjHx8JA3KNkjV\n/tmxTjzl0dxHIpIDeARoA9QCvgfGqOqeZPYJAnYCDYBDwO9AS1Xd7lamMRCqqo1FpDbwqarWcW37\nE6ipqieTOYcNXjN+J7HO4zZtrPM4M+w7vY9eC3uxZN8S+tfvzwvVXshSq55lluQGr3nU5a6qscBR\n4BjON/d5mAY4AAAgAElEQVRCwFQR+SiZ3e4GdqtqhKpGAZOBJxKUaQpMcJ1jFVBQRNy/R1lLq8ky\nIiOdgWaVKsGHHzrJYNcuePVVSwje9s/Ff+i5oCc1Rtegwo0V2Bm6k3Z3trOEkAae9Cl0Bp4H/sYZ\no9BVVaNcVw9/AN2S2LUEcMDt+UGgtgdlSuAkHwUWiEgMMEpVv0j51zEm8yXsPB471nsDzcyVomOj\n+WLtF7y95G0al2/Mpo6bKJHf1hdND0/6FG4AnlbVfe4vqmqsiDRJZj9P23WS+tO5V1UPi0gRnJHU\nO1R1acJC7m1/wcHBBAcHExISkmibYHh4eKKDUqy8lU9L+b//dpa43LEjhFatQvj1V+cqIavEn5XL\nqyp/nPyD+XvmU7paaX7p/AvVi1fPMvFndvm47Z5Itk9BRK4Btqpqqu+TEJE6QD9VbeR63guIde9s\nFpGRQLiqTnY93wE8oKrHEhyrL3BOVQcneN36FEym++03Z83juM7jV1/1v87j7Gzj0Y2EzQvj0NlD\nDHp4EI3LNw6YGUwzSpr7FFQ1GtghIrek4bxrgPIiEiwiuYAWwMwEZWbiNE3FJZHTqnpMRPKISD7X\n63lxOrk3pyGGgBTIQ/STk556iYmB6dOdielat4YGDSAiAt55J+snhKzyfjl89jDtZrSj4aSGPF35\naTZ13MRjFR7zSkLIKnXiDZ50NN8AbBWRRSLyk+uR8MP9Kq6EEgrMBbYB36nqdhHpICIdXGVmA3tF\nZDcwCnjFtXtxYKmIbABWAbNUdV6qf7sAFchv6OSkpV4CofPY398v5y+fp194P6qOqErRvEXZGbqT\nV+56hZxBOb12Tn+vE2/ypE/hrbQeXFXnAHMSvDYqwfPQRPbbC1RP+LoxmUUVpk6Fzp3hrrus89gX\nYmJjmLBxAm8tfov7b7mfte3XElww2NdhZXspJgWbBM8EmsOHnSuBnTth2jTnjiKTuRbsXUDXeV3J\nmysv05tPp3bJhDcuGm9JMimIyDmSvoNIVTW/d0IyxjdUYcwYeOMNZz2DyZPh2mt9HVVg2f7XdrrN\n78b2E9v5sMGHPFP5GetEzmRJJgVVvR5ARN4FDgOTXJtaATd7PzRjMs+ePdC+PZw5AwsWwB13+Dqi\nwHL8/HH6hfdjyrYp9Lq3F9OaT+Paaywj+4InHc1NVfVzVT3jeozg6pHJxo8E8rwtyUmsXmJinInq\nateGxo2dcQeBlhB8+X65GH2RD5Z9wG3DbyNXUC52vLqDLvd08XlCCOS/oRTnPhKRFcBw4FvXS88C\nr6pqXS/HliIbp2DSY8sWePFFyJMHvvgCypXzdUSBQ1WZvGUyvRb2osZNNfiwwYeUv7G8r8MKGMmN\nU/AkKZQBPgXiksByoLOqRmRkkGlhScGkxaVL8P77ztQUAwbASy/ZXUWZafn+5XSZ14WY2Bg+bvgx\n999yv69DCjjJJQVP7j76E2fiOmOyvJUrnauDcuVgwwYoYdPkZJo9J/fQY0EPVh9azYCHBvDfqv+1\nZTD9kP2PmIBw/jz83//BU09B377w44+WEDLLqQun6DK3C7W/rE2Nm2qwM3Qnz93xnCUEP2X/Kybb\nW7AAqlZ1JrDbssVZ+cyai7zvcsxlhqwcQsVhFYmMimTrK1t54743bF1kP2dJIRsK5CH67k6dcpqK\nXnzRmda6XbtwbrzR11H5n4x+v6gqP2z/gds/v515e+ax+IXFjHx8JMWuzzqTRAXy31CKSUFEwkSk\ni+vfuJ9fFBGbhsJPBfIbOs706VClinNn0ZYt0KiR1UtSMrJe1hxeQ8iEEPqG92V44+HMbjWb24ve\nnmHHzyyB/F7xZO6jmjhLcP6Es/bBYzgzlnYUkamJrbtsjK8cPQqhoU4i+O47Z74i4337/9nPGwvf\nYNGfi3in/ju0rd7WVj3LojxpPioF1FDVMFXtgpMkigIP4KzZbIzPqcL48VCtmjOj6YYNlhAyw9lL\nZ+m9sDd3jrqTsoXKsuu1XbxU4yVLCFmYJ1cKRYDLbs+jgGKqGikiF70TljGe+/NP6NDB6UieOxeq\nW8Om10XHRjNm3Rj6LenHI7c+wsaOGymZv6SvwzIZwJOk8DWwSkR+xGk+agJ841r8Zps3gzMmOTEx\nMGwY9O8P3bs7ax1c48k72qSZqvLL7l/oOr8rRfMW5ef//kyNm2r4OiyTgTwZvNZfRH4B6uHMmtpB\nVde4NrfyZnAmbQJh3pZt25y7inLlcpbHrFAh5X0CoV7SwtN62XRsE13ndWXfP/v46OGPaFKhSbad\nwTSQ3yueTHPxoqqOSfDaB6ra06uRecCmuQg8ly87K6ANHQrvvgsvvww57MZqrzpy9ghvLX6Ln3b9\nxFv3v0WHmh28uuqZ8b50TXMBNBORS6o6yXWw4YCNPjGZ7vffnauD0qVh/XooaU3YXnX+8nkGrxjM\np6s+pV31duwM3UnB3AV9HZbxMk+SwtPATBGJAR4FTqlqO++GZcy/IiOhTx+YNAk++QSefdZGJHtT\nrMYyceNEei/qTb3S9Vjz8hrKFCrj67BMJklu5bUb3J6+BMwAlgFvi8gNqnoypYOLSCNgCBAEfJnY\nmAYRGYqTbCKBNqq63m1bELAGOKiqTTz7lUx2snix00RUuzZs3gxFivg6ouxt8Z+LCZsXxrXXXMuU\n/0zhnlK2FmmgSe5KYR1XLscZN3DtMdfrZZM7sOsDfRjQADgE/C4iM1V1u1uZxkA5VS0vIrWBEUAd\nt8N0xrnDKZ/Hv5HJFk6fdu4o+uUXGDECHnvM1xFlbztP7KTb/G5sPr6ZDx76gOa3N8+2ncgmeUl2\n0alqsKqWcXu4P082IbjcDexW1QhVjQImc/WKbU2BCa7zrQIKikgxABEpCTQGvsRJSMZDWX2I/uzZ\nzhQV11zjjEzOqISQ1evFG05EnuCpD56i3th63Ff6Pra/up0WVVoEfEII5PeKN+/bKAEccHt+0PWa\np2U+AboBsd4KMLvKqm9oVRg40Fkr+euvnUns8ufPuONn1XrxhovRF/lo+UdUHl6ZQ5sPsSN0B93q\ndSP3Nbl9HZpfCOT3ijeH+nh6r2jCryQiIo8Dx1V1vYiEJLez+/3EwcHBBAcHExISkuh9xuHh4Yn+\nZ1t535evWzeEjh2du4pWrnTuLMpK8WeV8osXL2brX1tZsHcBxa4vRouyLTiX8xyF8xTOEvFnVvnw\n8HD69evnN/Gkt3zcdo+oaqIPIGdS2zx54PQN/OL2vBfQI0GZkcCzbs93AMWBAThXEH8CR4DzwFeJ\nnEPN1fr27evrEFLlr79U779f9cknVc+e9d55slq9ZLTf9v+mdb6so3eOvFMX7V0U/3qg10tisnud\nuD47E/3sTq75aIWIzBCRjiIS7FmKucIaoLyIBItILqAFMDNBmZnA8wAiUgc4rapHVfUNVS2lqmWA\nZ4FFqvp8GmIwfm7HDqhTB+65B6ZNg+uv93VE2c/eU3tpPqU5zac2p1OtTqxpv4b6Zer7Oizjp5Js\nPlLVWiJSBmgEDHF1/C4F5gBLVPVScgdW1WgRCQXm4tySOkZVt4tIB9f2Uao6W0Qai8hunKuBtkkd\nLtW/mfF7CxZAq1bwwQfQNqn/eZNmpy+e5r1f32PshrH8r/b/GP/kePLkzOPrsIyfS7ZPQVX/xLlN\ndITr2/59OEniXRH5S1WTvS9EVefgJBH310YleB6awjGWAEuSK2OulBXmbRk5Evr1g++/hwceyJxz\nZoV6yQhRMVGMXDOSd5e+S9MKTdnSaQs35bspyfKBUi+pEch1kuLcR0nuKFJSVQ9mcDypjUHTGr/x\njZgYCAtzxh/MmgXlyvk6ouxDVflp1090m9+N4ILBDHp4EFWLVfV1WMYPpXfuo0T5OiGYrOfMGWjZ\nEi5dghUroFAhX0eUfaw7so6weWH8df4vPm30KY3KNfJ1SCaLsvklTaaIiIB69aBUKZgzxxJCRjl4\n5iAv/PgCj33zGC2rtGRDxw2WEEy6JJsURCRIRAZlVjAme1qxAurWhZdecqasyGmzLqfbucvneGvR\nW1QbWY1S+UuxK3QX7Wu255octsqQSZ+UOppjRORescZ7k0bffAOdOzvrJ9v8RekXExvDuA3j6LO4\nDw+VfYgNHTZQqkApX4dlshFPmo82ADNEpLWIPON6PO3twEza+cMQ/dhYZ7rrN96ARYv8IyH4Q72k\nx7w987hz1J1M3DSRmS1nMvGpiRmSELJ6vXhDINeJJ0khN3ASeBB43PWwaaz9mK/f0BcuOB3K8+fD\nqlVQ1U9ugPF1vaTV1uNbefTrRwmdHco79d8h/IVwat1cK8OOn1XrxZsCuU48WaO5TSbEYbKJo0fh\niSfg1ludtRBy2/xqaXbs3DH6hvdl+vbp9L6vN52e7USuoFy+DstkcyleKYhIRRFZKCJbXc/vEJE3\nvR+ayWo2bnQWw3nsMWeWU0sIaXMh6gIDlg7g9s9vJ2/OvOwM3UnnOp0tIZhM4Unz0RfAG8Bl1/PN\nQEuvRWSypJ9+ggYNnKmv+/Sx5TLTIlZjmbRpEhWHVWT90fWsemkVgxsOptB1dv+uyTye3L+WR1VX\nxS26oaoqIlHeDctkFarw8ccweLAzQrl2bV9HlDX9uu9XwuaFESRBfPvMt9QrXc/XIZkA5UlS+EtE\n4icjEJFmONNZGz+VWfO2XL4Mr74Kq1c7ayCULp0pp00zf5zPZtffu+ixoAfrj6zngwYf0OL2zF/1\nzB/rxdcCuU5SnPtIRG4FRgP3AKdx1jhopaoRXo8uBTZ8wndOnoRmzSBvXmcsQj5bRTtV/o78m3eW\nvMPXm7+mW91udK7T2VY9M5kmubmPPOlTiFXVh4CiQCVVrYetmRzQdu1y1kCoUQN+/NESQmpcir7E\n4N8GU2l4JaJjo9n+6nZ63NvDEoLxG540H00H7lTVc26vTQVqeick488WLXLGILz7Lrz8sq+jyTpU\nlanbptJzYU9uK3Ibv7b5lcpFKvs6LGOukmRSEJHKwG1AAdcIZsFZ7CY/zoA2E2C++ALefBO+/RYe\nfNDX0WQdKw+uJGxeGOcvn2f046N5qOxDvg7JmCQld6VQAWfkcgGuHMF8FrDviAEkJga6d3duO126\nFCpU8HVEWUPE6Qh6LezFr/t+5d367/J8tecJyhHk67CMSVaSfQqqOsM1mrmJqrZ1e7yuqr9lXogm\ntTJyiH5MjLNk5rp1zh1GWTkhZNbUBf9c/Ice83tQc3RNKt1YiV2hu2h7Z1u/TQiBPKVDUgK5Tjzp\naF4vIqEi8rmIjBORsSIy1uuRmTTLqDd0bKwz3fXffztrINxwQ4Yc1me8/YceFRPF8NXDqTCsAn9F\n/sXmTpvpG9KXvLnyevW86RXIH4BJCeQ68SQpTASK4azNHA6UAs4lt0McEWkkIjtE5A8R6ZFEmaGu\n7RtF5E7Xa7lFZJWIbBCRbSLyvke/jckwqvD66/DHH84dRjZlRdJUlVm7ZlF1RFV+2PEDc5+by9gn\nxnJzvpt9HZoxqebJ3UflVLWZiDyhqhNE5BtgWUo7iUgQMAxoABwCfheRmaq63a1MY9fxy4tIbWAE\nUEdVL4pIfVWNFJFrgGUicq+qpnhek36q0LOn01y0cKEzFsEkbsPRDYTNC+PI2SMMfmQwjcs3zvTB\nZ8ZkJE+uFOLmPPpHRKoCBYEiHux3N7BbVSNUNQqYDDyRoExTYAKAqq4CCopIMdfzSFeZXEAQzvTd\nJhO8+y7Mng1z50KBAr6Oxj8dOnOItjPa0mhSI5pVbsamTpt4rMJjlhBMlufRhHgicgPwJjAT2AYM\n9GC/EsABt+cHXa+lVKYkxC8FugE4BixW1W0enNOk08cfw8SJzloIN97o62j8z7nL5+i7uC93jLyD\n4nmLszN0J53u6mTLYJpsw5P1FL5w/bgEKJOKY3s6/0TCr1bqOm8MUF1ECgBzRSREVcMT7uw+R0lw\ncDDBwcGEhIQkOndJeHh4oh1I2a183M+pPX5YWDhjxoTTti2MHOm7+L1VPuE+qTl+TGwMvcb0YsTU\nEQQXDKZ1mdZcu+xaPln2id/+vp6WL1iw4FWv+TIefygfERFBv379/Cae9JaP2+4JT+Y+2gOsBJYC\nS1V1q0cHFqkD9FPVRq7nvXCmzPjQrcxIIFxVJ7ue7wAeUNVjCY71FnBBVQcleN3mPsogkyY5/Qjh\n4VCuXIrFA8qCvQsImxdGvlz5+Ljhx9xd4m5fh2RMuiQ395En17y3A7WBe4FBIlIR2KSqT6aw3xqg\nvIgEA4eBFly9DsNMIBSY7Eoip1X1mIgUBqJV9bSIXAc8DLztQawmDaZPh65dnU5lSwj/2vbXNrrN\n78bOEzv5sMGHPF35aeszMNmeJ0khGogCYoBY4DhOO3+yVDVaREKBuTgdxWNUdbuIdHBtH6Wqs0Wk\nsYjsBs4DbV273wRMEJEcOP0eE1V1YSp/N+OBX36Bjh2df2+/3dfR+Ifj54/Td3Ffpm2fRq97e/FD\nix9s1TMTMDxpPorEWW3tY2Chqp7IjMA8Yc1H6bNkiTP99YwZULeur6PxvQtRFxiycgiDVwym9R2t\neeuBt7jhuiw+Ys+YRCTXfORJUngCuA+4C+eK4TfgV1VdkNGBppYlhbRbtQoefxwmT4aHAnx+tliN\nZfKWybyx8A1q3lyTDxt8SLkbrB3NZF/pWk/BNQdSV6ADMBtoA8zK0AhNhkrpLoONG6FpUxg/PrAS\nQmL1smz/Mup8WYdPVn7CxKcmMq35tIBLCIE8pUNSArlOUkwKIjLNdQfSUCAP0BqwlcT9WHJv6B07\n4NFHYdgweOyxzIvJH7jXy+6Tu3nm+2doNb0VnWt3ZtVLq7jvlvt8F5wPBfIHYFICuU486Wj+AFiv\nqtHeDsZ419698PDD8P778J//+Doa3zh54ST9l/Rn4qaJhN0TxqSnJnFdzut8HZYxfsOT5qPfLSFk\nfQcPQoMG0KsXvPCCr6PJfJdjLrPiwAoqDavEhegLbH1lK73u62UJwZgEbGx+ADh+3EkInTrBK6/4\nOprMpapM3z6dHgt6IKeExS8s5vaidu+tMUmxpJDNnTzpNBm1aAHduvk6msz1+6Hf6TKvC/9c/IcR\nj41g+cnllhCMSUGKSUFEanL1PEb/APusWck/xc11cvas06ncoAG4pnEJCPtO7+ONRW+w+M/F9K/f\nnzbV2xCUI4icITl9HZpfSmwenUAXyHXiyTiFlUBNYJPrparAVpy1mzup6lyvRph8bDZOIQmRkU5C\nqFwZRoyAQJid4cylM7y/9H1GrxvNq3e9Svd63bk+1/W+DssYv5OucQo48xZVV9WaqloTqA7sxZmP\nyJMptE0mu3QJnnkGSpeGzz/P/gkhOjaakWtGUnFYRY6cO8LGjht5p/47lhCMSQNP+hQqus+Mqqrb\nRKSSqu4REfua7meio6FlS7juOhg3DnJ4kvazKFVlzu45dJvfjWJ5izH7v7O586Y7fR2WMVmaJ0lh\nq4iMwFk5TYDmwDYRuRZn2gvjR7p1c5qOZsyAa7LxbQSbjm0ibF4Y+//Zz0cPf0STCk1sBlNjMoAn\nfQp5gFeAeq6XlgOfAxeBvKp61qsRJh+b9Sm4WbwYnnsONm3KvqumHTl7hDcXvcmsP2bx1v1v0aFm\nB3IGWQeyMamR3j6Fyqo6SFWfcj0GAQ+qaqwvE4K50tmz0K4djB4NmzeH+zqcDHf+8nneWfIOVUZU\n4cY8N7IzdCehd4emKiEE8tQFybF6uVog14mnazRXjXsiIi2BPt4LyaRFWJgzud1jj2WvN3SsxjJ+\nw3gqDqvItr+2seblNQx8eCAFcye+hGRyslO9ZCSrl6sFcp140urcDJgqIv/FmUL7eZw7j4yfmDMH\n5s1zmo2yk0V/LiJsXhjXXXMdU5tPpU7JOr4OyZhsL8WkoKp7XVcHPwL7gIaqGun1yIxHTp6El1+G\niRMhf35fR5MxdpzYQff53dlyfAsfNviQZrc1s05kYzJJkklBRDYneOkGnOamVa4O3ju8GpnxyGuv\nOWMS6tf3dSTp99f5v3h7ydt8t/U7etbryZT/TOHaa671dVjGBJTkrhSaZFoUJk2mToXff4cNG3wd\nSfpcjL7I0FVD+ei3j/hvlf+y49Ud3Jgnm94+ZYyfSzIpqGpERpxARBoBQ4Ag4EtV/TCRMkOBR4FI\noI2qrheRUsBXQFGcuZdGq+rQjIgpOzh2DEJD4YcfIE+eK7dllXlbVJXvt35Pz4U9qV68OsvbLafC\njRW8dr6sUi+ZzerlaoFcJymOU0jXwUWCgJ1AA+AQ8DvQUlW3u5VpDISqamMRqQ18qqp1RKQ4UFxV\nN4jI9cBa4MkE+wbkOAVVeOopZ16j99/3dTRp89uB3wibF8blmMt8/MjHPBD8gK9DMiZgJDdOwdtj\nXu8GdsdddYjIZOAJYLtbmabABABVXSUiBUWkmKoeBY66Xj8nItuBmxPsG5AmTnRWUfvuO19Hknp7\nT+2l54KerDy4kvcefI9Wd7Qih2TjuTiMyWK8/ddYAjjg9vyg67WUypR0LyAiwcCdwKoMjzCLOXAA\nunaFr76Ca7NQH+ypC6foOq8rd39xN9WKVWNH6A5aV2ttCcEYP+PtKwVP23YSXsbE7+dqOpoKdFbV\ncwl3dG/7Cw4OJjg4mJCQkETbBMPDwxMdlJJVyi9eHM5LL4VTpQr8+KPz8Pf4L8dcZuSakby39D3u\nunwXbc61IWpRFAMXDUy0vL/Fb+WtfHYoH7fdE97uU6gD9FPVRq7nvYBY985mERkJhKvqZNfzHcAD\nqnpMRHICs4A5qjokkeMHVJ/CyJEwdiz89pv/T3anqszYOYPu87tTtlBZBj0yiCpFq/g6LGMM6Z/7\nKD3WAOVFJFhEcgEtgJkJyszEGSUdl0ROuxKCAGOAbYklhECzZw+89ZbTbJRSQvD1EP01h9cQMiGE\ntxa/xWePfsYvz/3iFwnB1/Xir6xerhbIdeLVpOBarjMUmAtsA75T1e0i0kFEOrjKzAb2ishuYBTO\njKzgzMr6HFBfRNa7Ho28Ga+/iomBNm3gjTegUqWUy/vqDX3gnwO0/qE1Tb5twnNVn2N9h/U0LNfQ\nJ7EkJpD/0JNj9XK1QK4TrzdCqOocYE6C10YleB6ayH7L8P6VTJYwZIizWE7nzr6OJHFnL53lg2Uf\nMHLtSDrV6sSu0F3kuzafr8MyxqSBn7dMm23bnLEIq1f73ypq0bHRjFk3hn5L+vFw2YfZ0GEDpQqU\n8nVYxph0sKTgx6Ki4Pnn4b33oGxZX0dzpV92/0LXeV0pnKcws1rOoubNNX0dkjEmA1hS8GPvvw+F\nC0P79r6O5F+bj22m6/yu/HnqTz56+COaVmxqM5gak41YUvBT69bBsGGwfj2k9jPXG/O2HD13lLcW\nvcWMnTN48/436VirI7mCcmX4ebwpkOezSY7Vy9UCuU68Ok7B27LrOIVLl6BmTejZ01lz2ZcioyL5\neMXHfLLyE9pWb0vv+3pT6LpCvg3KGJMuvpz7yKRBr15QoQK0auW7GGI1lkmbJtF7UW/uKXkPv7/8\nO2UL+VnHhjEmw1lS8DOffw6zZjmjln3VVB8eEU7YvDByBeXiu2bfUbdUXd8EYozJdJYU/Mj06c6d\nRkuXOh3MmW3X37voPr87G49t5IOHPqD57c2tE9mYAONnd74HrmXLoGNH+OmnzL/99ETkCV6f8zr1\nxtajXql6bH91Oy2qtLCEYEwAsqTgB7Ztc9ZZ/vprqFEj/cfzdIj+pehLDPptEJWHVyZWY9n2yja6\n1etG7mtypz8IPxTIUxckx+rlaoFcJ5YUfOzgQXj0URg0CB5+OGOOmdIbWlWZsnUKlYdX5td9v7K0\n7VKGNR5GkbxFMiYAPxXIf+jJsXq5WiDXifUp+NDp005CeOUVaN06c8658uBKwuaFERkVyZimY6hf\npn7mnNgYkyVYUvCRS5ecdZbr14fu3b1/vj9P/Umvhb1Ytn8Z7z74Lq3vaE1QjiDvn9gYk6VY85EP\nxMY6cxoVLgyffOLdW09PXzxN9/ndqfVFLW4rchs7Q3fSpnobSwjGmETZlUImU4WwMDh6FObOhSAv\nfTZHxUQxeu1o3vn1HZpUaMKWTlu4Kd9N3jmZMSbbsKSQyQYPhvnznbEIub1wk4+qkqtsLqqOqEqp\nAqWY33o+dxS7I+NPlAUF8nw2ybF6uVog14nNfZSJvvnGmc/ot9+gZMmMP/76I+sJmxfG0XNHGfTI\nIB4t96iNNTDGXMXmPvIDCxfC//2f829GJ4RDZw7Re1Fv5u6ZS98H+vJSjZe4Jof91xpjUs/rHc0i\n0khEdojIHyLSI4kyQ13bN4rInW6vjxWRYyKy2dtxetOGDdCyJUyZAlUycP36c5fP0WdxH+4YeQc3\n57uZnaE76ViroyUEY0yaeTUpiEgQMAxoBNwGtBSRygnKNAbKqWp5oD0wwm3zONe+WVZEBDz2mDPR\n3f33Z8wxY2JjGLNuDBWHVWTvqb2s77CeAQ8NIP+1+TPmBMaYgOXtr5R3A7tVNQJARCYDTwDb3co0\nBSYAqOoqESkoIsVV9aiqLhWRYC/H6DV//w2NGjn9CM2aZcwx5++ZT9f5XSlwbQF+bPEjd5W4K2MO\nbIwxeL/5qARwwO35QddrqS2T5URGQpMm8OST8Npr6T/e1uNbafx1Y16Z/Qp9H+jLkjZLkkwIgTxE\nPzlWL4mzerlaINeJt5OCp7cGJewFzzq3FCUiOtrpQyhXzllnOT3OXjpLx1kdqT+hPo/c+ghbX9nK\n05WfTvauokB+QyfH6iVxVi9XC+Q68Xbz0SGglNvzUjhXAsmVKel6zSPu9xMHBwcTHBxMSEhIovcZ\nh4eHJ/qfnZHlFy8OZ9YsZ16j//4X3n47fce/Lud1lMpfih2hO9i0ahMD+g/wavxWPvDKR0REXPWa\nL+Pxh/Lh4eH069fPb+JJb/m47R5RVa89cJLOHiAYyAVsAConKNMYmO36uQ6wMsH2YGBzEsdXf/PO\nO1JQfJ8AAAuKSURBVKo1aqieOeO7GPr27eu7k/sxq5fEWb1cLbvXieuzM9HPba9eKahqtIiEAnOB\nIGCMqm4XkQ6u7aNUdbaINBaR3cB5oG3c/iLyLfAAcKOIHAD6qOo4b8acHmPGwPjxsHw55Mvn62iM\nMSb1vH5Du6rOAeYkeG1UguehSezb0ouhZaiff4Y334QlS6B4cV9HY4wxaWOjnDLAqlXQtq2zlGaF\nCr6OJrDnbUmO1UvirF6uFsh1YnMfpYMqjB3rjEMYNw4ef9xnoRhjjMds7iMv+PNPePll5y6jBQug\nWjVfR2SMMelni+ykUkwMfPop3HUXPPIIrFxpCcEYk33YlUIqbN8OL74I11zjTH/tD/0HxhiTkexK\nwQNRUfDee86Edq1bQ3i4JQRjTPZkSSEF69Y5TUXLlsHatdCpE+Tw81oL5CH6ybF6SZzVy9UCuU78\n/OPNdy5ccO4qevRRZ03l2bOhdGlfR+WZQH5DJ8fqJXFWL1cL5DqxPoVELFvm9B1UqwabNkGxYr6O\nyBhjMoclBTdnz0KvXvDDDzBsGDz1lK8jMsaYzGXNRy5z50LVqs46CFu2WEIwxgSmgL9SOHkSunRx\n5iz64gt4+GFfR2SMMb4T0FcK06ZBlSqQPz9s3px9EkIgz9uSHKuXxFm9XC2Q6yQg5z46ehRefRW2\nbnWmu65XzwvBGWOMn0pu7qOAulJQddY7uOMOqFQJNmywhGCMMe4Cpk9h3z7o0AGOHXM6le+809cR\nGWOM/8n2Vwqxsc7tpTVrwgMPwOrVlhCMMSYp2fpKYedOZxCaqjMgrVIlX0dkjDH+LVteKURFwQcf\nOP0FLVrA0qWBlRACeYh+cqxeEmf1crVArhOvJgURaSQiO0TkDxHpkUSZoa7tG0XkztTsm5gNG6B2\nbVi0CNasgdde8/8J7DJaIL+hk2P1kjirl6sFcp147eNSRIKAYUAj4DagpYhUTlCmMVBOVcsD7YER\nnu6b0MWL0Lu3s/DN6687ncnBwRn9W2UNERERvg7BL1m9JM7q5WqBXCfe/A59N7BbVSNUNQqYDDyR\noExTYAKAqq4CCopIcQ/3jffbb07n8fbtsHEjtGkDkugduIEhkN/QybF6SZzVy9UCuU682dFcAjjg\n9vwgUNuDMiWAmz3YF4DOnWHKFBg6FJo1S3fMxhgT0LyZFDwdapyu7/SnTztTVNx4Y3qOYowxBryb\nFA4Bpdyel8L5xp9cmZKuMjk92BeAr74Svvoq3bFmOxLI7WfJsHpJnNXL1QK1TryZFNYA5UUkGDgM\ntABaJigzEwgFJotIHf6/vfOPkauq4vjnWwoUWmuoQTQhtqXGQk2N/GiIpQhiNEhBIlajFiGFNFUC\n1FgSNQGNsSYYjPEPlZZCbQ1QA1igxhKCBWytlE3Zll03orRpSyg/UpuC/ZFKicc/7pnZ18fM7szO\nzs7M2/NJbua++965c+/Zu+/cH3PPhbfM7E1J+2uQreq7IwiCIBgaTTMKZvaupJuBJ4ETgPvM7B+S\nFvn95Wa2XtIVknYAh4EFA8k2q6xBEARBoqO9pAZBEATDS9tu62rFxrdOoEG97JbUI2mbpK6RK3Vz\nGUwnks6W9Jyko5KW1CPbyTSol0K2FahJL/P9f6dH0mZJn6hVthCYWdsF0pTRDmAKadF5O3BO7pkr\ngPUevxDYUqtsp4ZG9OLXu4BJra5HC3RyOnABsBRYUo9sp4ZG9FLUtlKHXj4FvN/jl4+Gd0s2tOtI\nYcQ2vnUYQ9XLGZn7RVucH1QnZrbPzLYCx+qV7WAa0UuJorUVqE0vz5nZ2375POlXkTXJFoF2NQrV\nNrXV8kyljW952U6lEb1A2jvyZ0lbJS1sWilHllp00gzZdqfRuhWxrUD9erkRWD9E2Y6kXV1nj8jG\ntw6kUb3MMbPXJJ0OPCXpJTPbNExlaxWN/FKiyL+yaLRuF5nZ6wVrK1CHXiR9BrgBKJ3PWOT2UqZd\nRwqNbHyrRbZTGape9gKY2Wv+uQ94lDQc7nQa+XuP9rZSFTN73T+L1FagRr344vIK4ItmdqAe2U6n\nXY1CeeObpJNIm9fW5Z5ZB1wHkN34VqNspzJkvUg6VdL7PH088Hmgd+SK3jTq+XvnR1Cjva2UOE4v\nBW4rUINeJH0EWAtca2Y76pEtBK1e6a4WgC8A/ySt9v/A0xYBizLP/MrvvwicN5BsUcJQ9QKcRfq1\nxHbg70XSy2A6AT5Emgt+GzgAvAJMGO1tpZpeitxWatTLvcB+YJuHroFkixZi81oQBEFQpl2nj4Ig\nCIIWEEYhCIIgKBNGIQiCICgTRiEIgiAoE0YhCIIgKBNGIQiCICgTRiFoGb4JaMQ3RUm6WtI5w5TX\nVkkn5tJ2S5o0TPkfGo58gqBWwigEo5EvATPqEZB0QoW0qcBeSx4zswzn5p/35CWpXX2WBQUgjELQ\nFkg6S1K3pPPdzcJDkvokrZW0RdL5uednSfqDx6+WdETSWEnjJO309IWSuiRtl/SIpFMkzQauAu7y\nA2SmSpom6Qnv9W+UNN3lV0laJmkL8LMKxb4ceGKAOp3i+d7o13f4AS2bJD2YP9jGn5nqB9/0SFqa\nSb/U5R4H+iT9WNLizP2fSro1l9d4SX/y+vdK+qqnf9Z13SPpPnfZUCpflz+7PJPPs5J+6frqlTSr\nWp2DAtDqLdURRm8gHVbSC0wHuoGZnn4bcLfHP07y939eTnYssNPjPyf5vZ8NXAI84OmTMs//BLjZ\n478Frsnc2wB81OMXAhs8vork20ZVyv8YMKVC+i5gMvAUyX8OwCySy4STSK4k/gV8t4LsuozMTcBB\nj18KHAIm+/Vk4AWPjyG5XTgtl9eXgXsy1xOBcSR3FqX6rgYWe/y0zLO/A670+DPAco9fDPS2uu1E\naF6IkULQaj5Ierl+w8xK6wsXkQ4wwcz6gJ68kJm9C+yUdDbphfsL4NPAHKDk4nmm9657gPkcP2Uk\nAEkTSCdtPSxpG7CM5BMI0tTNw+Zvwyzeuz7TzHZXqJOAx4GVZnZ/pk6Pmdk7ZnYI+GOpDDlmA2s8\nfn/uXpeZ7fH67wH2S/okyWFdt/V78yzRA3xO0p2S5pjZf0gGeJf1O3pbTdIbwGU+KusBLuN4fa3x\n790ETJQ0sULZgwIQc5NBq3kL2EPqgb6USa/lrIyNpONHj5F6+6tJvebb/P4qkuvjXknXk3rbJUov\n+jEkT7LnUpkjVdIvpt/45DHgryTnaWsyadk6DeUskMO563uBBcAZwMr3FMLsZaUzuucCSyVtIBmr\nLCXjeDLwG9KIbK+kH5FGFdUIp2kFJUYKQat5B7gGuE7S1z1tM1Ca/54BzKwiuwn4DvA3M/s38AFg\nuo8uIE3TvOG/DrqW/hfZQdJUCt573iVpnn+flDmofQAGXE8AfggckPTrTJ2uknSyj07mUvnFuhn4\nmsfnD1KGR70cFwBP5m9K+jBw1MweIE2xnUvy8DlF0jR/7JvAsyQDYKTRxwTgK9msSG6ikTSHZEQP\nDlK2oEOJkULQaszMjki6knTC10FSj3W1pD7S6KGP5N45Txdp+mmjX79I6jWXuIO01rDPPyd4+u+B\nFZJuAeaRXr53S7qddCD7GvqnrKr1iC8Bbq9WJ6/YYkkrJd1pZt+XtM7zfZO0llKpTouBByV9j9Sr\nz37/cWUxs2OSngYOVJriIhnTuyT9jzSa+paZ/VfSAtJ02ViSDpd5XitIrrLfIOkr+71HJXWT3hk3\nVKl3UADCdXbQdkgaA5zoL7BppAXbj/k6QsuRdCZp4XVunXLjzeywpFOBvwALzWx7A+UYA7wAzDOz\nnUPNp4bveQZYYmbdzfqOoH2IkULQjowHnvZpHwHfbheDAGBmr5Kmf+rlHp8OGwesatAgzCAtVq9t\npkEIRh8xUgiCIAjKxEJzEARBUCaMQhAEQVAmjEIQBEFQJoxCEARBUCaMQhAEQVAmjEIQBEFQ5v+r\nNVWVme/qqwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7e5c940>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Moisture content of air leaving the drier is 0.0542 kg water/kg dry air\n",
+ "\n",
+ "Total number of eqb. stages = 3\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter5_1.ipynb b/Mass_-_Transfer_Operations/Chapter5_1.ipynb
new file mode 100755
index 00000000..756e424b
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter5_1.ipynb
@@ -0,0 +1,385 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5b0eee15396b4ea69bab7ccfb1908ab0b8c6f2630bddedaada99660ed07a1ef9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5: Interphase Mass Transfer"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.1: Page 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 5.1\n",
+ "# Page: 114\n",
+ "\n",
+ "print'Illustration 5.1 - Page: 114\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "%matplotlib inline\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = NH3, b = H2O\n",
+ "d = 2.54*10**(-2);# [m]\n",
+ "Yag = 0.80;\n",
+ "Xal = 0.05;\n",
+ "T = 273+26.7;# [K]\n",
+ "Kl = 2.87*10**(-5);# [kmol/square m.s.(kmol/cubic m)]\n",
+ "Sh = 40;\n",
+ "Da = 2.297*10**(-5);# [square m.s]\n",
+ "P = 1.0133*10**(5);# [N/square m]\n",
+ "Xbm = 1.0;\n",
+ "#*********#\n",
+ "\n",
+ "Ma = 18.0;# [kg/kmol]\n",
+ "# Liquid:\n",
+ "# Because of large conc. of ammonia in gas F's rather than k's are used.\n",
+ "# Molecular weight of water and ammonia are nearly same.\n",
+ "# The density of the solution is practically that of water.\n",
+ "MolarDensity1 = 1000/Ma;# [kmol/cubic m]\n",
+ "# Kl is determined for dilute soln. where Xbm is practically 1.0\n",
+ "Fl = Kl*Xbm*MolarDensity1;# [kmol/square m.s]\n",
+ "Ma = 18;# [kg-/kmol]\n",
+ "# Gas:\n",
+ "MolarDensity2 = (1/22.41)*(273/(273+26.7));# [kmol/cubic m]\n",
+ "Fg = Sh*MolarDensity2*Da/d;# [kmol/square m.s]\n",
+ "\n",
+ "# Mass Transfer Flux\n",
+ "# Th eqb. distribuion data for NH3 from \"The Chemical Engineers Handbook\" 5th Edt. p3-68:\n",
+ "# Data = [Xa,pa]\n",
+ "# Xa = NH3 mole fraction in gas phas\n",
+ "# pa = NH3 partial pressure in N/square m\n",
+ "Data = [(0 ,0),(0.05 ,7171),(0.10, 13652),(0.25 ,59917),(0.30 ,93220)];\n",
+ "\n",
+ "X = numpy.zeros(5);\n",
+ "for i in range(1,5) :\n",
+ " X[i]=Data[i][0]\n",
+ " \n",
+ "\n",
+ "# Ya_star = mole fraction of NH3 in gas phase at eqb.\n",
+ "Ya_star = numpy.zeros(5);\n",
+ "for i in range(0,5) :\n",
+ " Ya_star[i] = (Data[i][1])/P\n",
+ "\n",
+ "# For transfer of only one component\n",
+ "Na_by_SummationN = 1.0;\n",
+ "Ya = numpy.zeros(5);\n",
+ "for i in range(0,5):\n",
+ " Ya[i] = 1-((1-Yag)*(1.0-Xal)/(1-Data[i][0]));\n",
+ "\n",
+ "plt.plot(X,Ya_star,'g',label='Equilibrium Line')\n",
+ "plt.plot(X,Ya,'r',label='Operating Line')\n",
+ "ax = pylab.gca()\n",
+ "ax.grid('on')\n",
+ "ax.set_xlabel('Xa = mole fraction of NH3 in liquid phase');\n",
+ "ax.set_ylabel('Ya = mole fraction of NH3 in gas phase');\n",
+ "pylab.legend(loc='lower right')\n",
+ "plt.title('Ya Vs Xa');\n",
+ "plt.show()\n",
+ "\n",
+ "# From intersection of operating line & Eqb. line\n",
+ "Xai = 0.274;\n",
+ "Yai = 0.732;\n",
+ "\n",
+ "# From Eqn.5.20\n",
+ "Na = Na_by_SummationN*Fg*log((Na_by_SummationN-Yai)/(Na_by_SummationN-Yag));# [kmol NH3 absorbed/square m.s]\n",
+ "print\"Local mass transfer flux for ammonia is \",round(Na,6),\" kmol/square m.s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 5.1 - Page: 114\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FOX2wPHvIXQIho6AEIooehGUIohKQIWgYrlcEAsK\nei2AWFBRrz8Fr/0CimJBBcWONEWUKhBEBZEmSlGqSrEgvQRSzu+PmYQlZpNNtmZyPs+zT3bq+54d\n2LPzvjPviKpijDHG5KZEtCtgjDEmdlmSMMYY45clCWOMMX5ZkjDGGOOXJQljjDF+WZIwxhjjlyUJ\nY4wxflmSMJ4lIu+KyBs55nUQkZ0iUjPAfYwWkbdymd9cRFJFJKEA9ekmIjtEpLLPvMtFZKuIxAe6\nH2MiSexmOuNVIlIFWA30VtXPRaQssAp4XFXfDnAfbYE5QE1VPeQzfzhQX1V7FLBO7wFpqtrHTTCr\ngVtV9dOC7MeYSLEzCeNZqroLGAi8JiLlgSHAelV9W0Qmur/q94jIAhE5zc8+FgPbgO5Z80QkDrga\neNudbiMiS0Vkr4j8JiIj8qjWHUBXEekMPAek+CYIEXleRH5x97VURM4N7lMwJjiWJIynqeokYDkw\nHrgZuMVd9BnQGKjuLn8vj928DVzvM30hUAqY7k4/DzynqicADYEJedTnL+BO4H3gYpyk4WsJ0Byo\n7K4zUURK5xmkMWFkzU3G80SkBrAR+I+qjspleQKwCzhBVffnsrwesAFIVNXtbpPRH6p6t7t8ATAf\neFFVdwZQnwbAj8CHqto7n3V3AR1U9fv89mtMONiZhPE8Vf0D2InT/o+IxInI0yKyQUT2ApsBBar5\n2f4X4Augt4hUBC7HbWpy3QQ0AdaKyBIRuSSfKr3mbn+J2+eRTUTuFZE1bjPYbuAEf/UyJhJKRrsC\nxkTBNcBlwAWq+rPPmYTksc1bwP3Ab8BmVV2RtUBVN7j7RES6A5NEpIqqHs65ExG5CaiD09S0FBgj\nImeqapqInAfcB3RS1ayEll+9jAkrO5MwxVFF4AiwS0QqAE8GsM1koB4wFBjnu0BErhOR6u7kXpyz\nksycOxCR2sD/gJtVNU1VRwN/AQ+5q8QD6cBOESktIo8AlQoWmjGhZUnCFEdvAz/jXLX0A7AI54vd\nL/fy18k4ZwE5O7m7AD+IyH6cK5Z6qeqRXHbzEvCBqn7lM+9m4C4RaQrMdF8/AVuAw8AvBYrMmBAL\na8e1eyPTJTidfM38rPMC0BU4BPTxPY03xhgTXeE+k3gTSPa3UEQuBhqr6sk4lya+Eub6GGOMKYCw\nJglVXQjszmOVy3A6BFHVb4CEQIdLMMYYE37R7pOoA/zqM70VqBuluhhjjMkh2kkC/n55n93dZ4wx\nMSLa90lsA07yma7rzjuOiFjiMMaYQlDVoO6zifaZxCe4Y+K4d57uUdXfc1tRVT37GjJkSNTrYPFZ\nbBaf916hENYzCRH5AOgAVBORX3FG4SwFoKqvqup0EblYRDYAB4G+4axPrNqyZUu0qxBWXo7Py7GB\nxWfCnCRU9eoA1rk9nHUwxhhTeNFubjJAnz59ol2FsPJyfF6ODSw+U0SGChcRLQr1NMaYWCIiaBHv\nuDZASkpKtKsQVl6Oz8uxgcVnLEkYY4zJgzU3GWOMR1lzkzHGmLCyJBEDvN4u6uX4vBwbWHzGkoQx\nxpg8WJ+EMcZ4lPVJGGOMCStLEjHA6+2iXo7Py7GBxWcCSBIiUktExorITHf6NBG5KfxVM8YYE235\n9km4yeFN4CFVPUNESgErVPUfkaigWwfrkzDGmALYm7qXhHIJEemTqKaqHwIZAKqaBqQHU6gxxpjw\n2Zu6l1avtwrJvgJJEgdEpGrWhPtwoL0hKd0A3m8X9XJ8Xo4NLL6iSFX597R/c2GDC0Oyv0CSxD3A\nNKChiHwNvAPcEZLSjTHGhNSoJaPYtHsTzyU/F5L9BXSfhNsPcYo7+aPb5BQx1idhjDH5+2brN3T7\noBuL/72YhpUbRuY+CRHpCZRT1R+AK4EPReSsYAo1xhgTWn8d+ouek3ryWrfXaFi5Ycj2G0hz08Oq\nuk9EzgUuAN4ARoesBsaT7aK+vByfl2MDi6+oyNRMrv/4enqc1oMrTr0ipPsOJElkuH8vBV5X1U+B\nUiGthTHGmEJ75stn2JO6h6cueCrk+w7kPonPgG3ARcCZQCrwjao2D3lt/NfB+iSMMSYXKVtS6DWp\nF0tvWUrdSnWPWxapsZt6ArOAzqq6B6gM3BdMocYYY4L324HfuHbKtbx95dt/SxChkm+SUNWDqjoZ\n2Csi9XCamtaFpTbFlFfaRf3xcnxejg0svliWkZnB1ZOv5t9n/pvOjTqHrZxArm66TETWA5uBBcAW\nYEbYamSMMSZfQ1KGECdxPNLhkbCWE0ifxCqgEzBHVc8UkY5Ab1W9Maw1O74O1idhjDGuGetncPO0\nm1l2yzJqVqzpd71I9UmkqepOoISIxKnqfCA0g4IYY4wpkF/3/krfqX35oPsHeSaIUAkkSewWkXhg\nIfCeiLwAHAhvtYqXotwuGggvx+fl2MDiizVHM47Sc1JPBrUbxHn1z4tImYEkiSuAQ8DdwExgA9At\nnJUyxhjzd/fPuZ/q5atz7zn3RqxMe8a1McYUAZPXTObeOfey7JZlVClXJaBtIjV2U3cRWS8i+0Rk\nv/vaF0yhxhhjArdh1wb6fdaPCf+aEHCCCJVAmpv+B1ymqpVUNd59VQp3xYqTotYuWlBejs/LsYHF\nFwsOpx2mx8QeDOkwhNZ1Wke8/ECSxG+qujbsNTHGGPM3d868kyZVm9C/df+olO+3T0JEurtvzwdq\nAR8DR915qqpTwl+97LpYn4Qxpth557t3eHzh4yy9eSnxZeILvH0o+iTyShLjgKyF4vMeAFXtG0zB\nBWFJwhhT3Kz+YzVJbyUx7/p5NKvZrFD7CGvHtar2UdW+7sv3fd9IJojioCi0iwbDy/F5OTaw+KLl\nwNED9JjYg2EXDSt0ggiVQK5uaiQi00Rkp4j8KSJTRSR0jz0yxhiTTVW59dNbaVu3LX1a9Il2dQIa\nu+kb4EVgvDvrKmCgqp6d785FkoGRQBwwRlWfybG8GvAuTp9HSWC4qo7LZT/W3GSMKRZGLx3Ny9++\nzOJ/L6Z8qfJB7SusfRI+haxS1TNyzPsuv4cOiUgc8CNwIc5Di74Frva9UkpEhgJlVPVBN2H8CNRU\n1fQc+1IdORLKl3deFSoce5/bdNmyIEF9LsYYE3HLdyyny7td+OrGr2hStUnQ+wtFkigZwDozRORB\n4AN3+ip3XhUAVd3lZ7s2wAZV3eJWdjxwOeB7Oe0OICsBVQL+ypkgsm3cCIcOOa+DB4+9z2366NG8\nk0gw01nvy5QJWSJKSUkhKSkpJPuKRV6Oz8uxgcUXSXtS99BjYg9euvilkCSIUAkkSVyFc2XTLX7m\n++ufqAP86jO9FcjZRPU6ME9EtgPxOE/By90LLwRQVVdGxvFJI5DEsm8f7NiR9zq+89LSoFy50CSg\ndeugcmXnfcWKx9aJiws8ZmNMkaWq9J3al4sbX0zP0/1/DUZDvklCVRMLue9AOhH+A6xU1SQRaQTM\nEZHmqro/54p9+vQhMdGpSkJCAi1atMj+BZB1hUL29MKFx0/nXJ6SAtWq5b08v+mMDJLOPhsOHiRl\n3jxITSXpH/9wphcvhiNHSGrQAA4dIuW772D3bpJq1oTffiNlwwZn/fh4J+ls307KyJEkicCBA6Ts\n3etsX7YsVKhASlwclCtHUo0aznRqKpQtS1KjRs70zp3O8mbNnOmff3am27aFihVJWb3amb7wQmf5\nokUgElz8BZjOmhep8iI5nZSUFFP1sfiKZnwTVk9gW+ltjO8+Pqj9paSkMG7cOIDs78tghW2APxFp\nCwxV1WR3+kEg07fzWkSmA0+o6lfu9FzgflVdmmNfxa/jWhUOH3aSyIEDzl/f97nNC3R5RoZztuJ7\n5uLvfX7Lc763sx9jCuTrX7/myg+v5Jt/f0NiQmJI9x2pPonCWgqcLCKJwHac5qmrc6yzDqdj+ysR\nqQmcAmwKY51iku+v7Gwix5qkqlcPbYFpaceSRiCJZceOwJLRwYNOX02OJJOSnk5SYiJUqgQnnJD7\n35zzKlaEEoGMGhNduR47D7H4wuvPg3/Sa1Ivxl42NuQJIlTCliRUNV1Ebgdm4VwCO1ZV14rIre7y\nV4EngTdF5DucezYG59ERbkKlVClISHBeoZTb2c+BA7BwITRoAHv3On0/+/bBtm2wdu2xeb7L9u51\n+n0qVAg8qfibV768XelmYlJGZgbXfXQd1zS7hkubXBrt6vgVyCWw5+L0GxwQkd7AmcDzqvpzJCro\n1qH4NTcVdxkZsH//8Ykjt7/5zTt6tGBJxd/ZTpky0f5EjMc8tuAxPt/8OXOvn0vJEuH5vR6p+yS+\nx7lM9QxgHDAG6KmqHYIpuCAsSZhCO3r0WLIpbKLZu9c5Gwk20cTHO2dxptibu2kuvT/qzdJbllI7\nvnbYyolUklihqmeKyBBgm6qOEZHlqnpWMAUXhNeTRLTbRcOtyMenCkeO5JpAUhYvJqlOncCTUJky\ngScVf8vi4yPWX1Pkj10+ohHf9v3baflaS9698l0uaHhBWMuKVMf1fhH5D3AdcJ57J7X9HDLFh4hz\nF3/ZslCz5vHLEhIg0C8ZVaefJr8mtB07nHtn/CWagwed/ppgzmwqVXL2Yf01EZWemU6vSb3o36p/\n2BNEqARyJnEicA2wRFUXikg9oKOqvhWJCrp18PSZhDEFkpHhXBAQbBPa0aPOWUkwTWiVKoV09AGv\ne+DzB1j520qmXzudEhL+s8GINDfFAksSxoRBWtqx5BFoosm5bO9eZ1/BJppKlTzfX/PpT5/S/7P+\nLL91OdXKV4tImZHqk2gHvAA0BcrgXM56IJLPufZ6krB236LLy7FBgPGlpgZ/Fdq+fVC6dHB9NVn9\nNQW4oTNSx2/Lni2cPeZsPrrqI8456Zywl5clUn0SLwK9gAlAK+B6nJvejDHmWH9NjRqF34fqsTHU\n8ko0O3bAjz/6Tz4HDzr3xgSaaLZtc8qvWhWqVHH+li0bms/FdST9CD0m9uD+9vdHNEGESiBnEstU\ntaXvkOEislJVW0Skhnj/TMIYEyKZmXnfX5Nz3u7dsGsX/PXXsb+lSh1LGAX566e5bOD0gWzdv5Up\nPacgEe67iVRz0xfARTj3R+wAfgNuyO95EqFkScIYExFZV6D5Jg1/f33f797tnMFkJQ03caxnN7N2\nL+GmCwdTrmadvyeWypXDOt5ZpJJEIvA7UBq4G+e5Dy+r6oZgCi4IrycJa9cuurwcG1h8AcvMdM5O\nfBLJ9i3f88KModzR+Dpqp5XJPdHs3es0e+V2dpLXmUulSgHdKxORPomshwYBh4GhwRRmjDGeVKLE\nsfHQGjbkUNohksfcx4D/G0HtVrf63y4jA/bsyf3sZNcu536Z3M5kDh50zkLyawYLgUCH5VAgKxsp\nsA/ncaSPq+pfIalJ3nXw9JmEMcZbbpx6I0czjvLOle+Epx8iLc1p4sqnOUwmTYrI1U0zgXTgfZxE\n0Qsoj9MENQ7oFkwFjDHGS95c8SaLty5myc1LwtdRXaqUczVZfleUhaD8QG75u1BVH1TV71V1lar+\nB+igqk8DiUHXwGQ/WcqrvByfl2MDi6+gVv2+isGfD2ZSz0lULF0xpPuOlkCSRJyIZD+bWkTa+GyX\nHpZaGWNMEbPvyD56TOzBc12e47Tqp0W7OiETSJ9Ea+BNICst7gduAlYDl6jqhLDWEOuTMMbENlWl\n1+ReJJRJ4NVur0a7OtkidXXTt8A/RCTBnd7jszjsCcIYY2LdS9++xE9//cSimxZFuyohF/AwhKq6\nJ0eCMCFi7b5Fl5djA4svEEu2LeG/C/7LpB6TKFsytEN6xILYf9K8McbEqF2Hd9FzYk9GXzqaRlUa\nRbs6YWFDhRtjTCFkaiaXj7+cxpUb81zyc9GuTq4iNQosItIe53LXrPVVVd8OpmBjjCnKhn01jJ2H\ndjK55+RoVyWs8m1uEpF3gWFAe5yhwlsBrcNcr2LF2n2LLi/HBhafP1/8/AXPLX6OCf+aQOm40qGt\nVIwJ5EyiJXCatfcYYwz8fuB3rpl8DeOuGMdJJ5wU7eqEXSD3SUwE7lTV7ZGpUq51sBxljIm6jMwM\nOr/bmXZ12/F4p8ejXZ18RapPojqwRkSWAEfceaqqlwVTsDHGFDWPLngUVeXRpEejXZWICeQS2KHA\nFcCTwAj39WwY61TsWLtv0eXl2MDi8zVrwyzGrhjL+93fJ65E+B4UFGsCueM6JQL1MMaYmPXr3l+5\n4eMb+PBfH1KrYq1oVyei/PZJiMhXqtpeRA7gPEPCl6pqpbDX7lhdrE/CGBMVaRlpJL2VxKUnX8qD\n5z0Y7eoUSEQeXxoLLEkYY6Llnln3sO6vdUy7eholpGgNUhGKJFG0IvYoa/cturwcG1h8H639iMlr\nJ/P2FW8XuQQRKgHdcW2MMcXNpt2buPXTW5l29TSqlg/N86KLImtuMsaYHFLTUzln7Dn0adGHO86+\nI9rVKTTrkzDGmDC47dPb2HV4Fx/+68PwPac6AsLaJyEizUXkcxEZLyINRGS+iOwVkYUi0jiYQs3x\ninu7b1Hm5digeMb33qr3mLt5LmMuG1OkE0So5NUTMxp4HpgKfA28BlQG/ge8HP6qGWNMZK39cy13\nzbqLST0mUalMxK7yj2l53SexQlXPdN9vUNXGuS3Lc+ciycBIIA4Yo6rP5LJOEvAcUArYqapJuaxj\nzU3GmLA6ePQgbca0YVDbQdx01k3Rrk5IhHvsJt/7znMOw1Eqvx2LSBzwInAhsA34VkQ+UdW1Pusk\nAC8BXVR1q4hUC7jmxhgTIqrKbZ/dRuvarbnxzBujXZ2Ykldz08siEg+gqtnNSyJyMvB5APtuA2xQ\n1S2qmgaMBy7Psc41wGRV3eqWs7MglfeK4tju6xVejg2KT3xjlo9h5W8refmSl60fIge/SUJVR6vq\n/lzmr1fVuwLYdx3gV5/pre48XycDVdxO8aUi0juQShtjTKis2LGC/8z7DxN7TKR8qfLRrk7MyatP\nYpTPpAK+6VVVNc+Lh0WkO5Csqje709cBZ6vqQJ91XgTOAi4AygOLgEtUdX2OfVmfhDEm5Pam7qXl\nay15vNPj9PpHr2hXJ+TC3SexjGPJ4VHgEY4likC+sbcBvo9tOgnnbMLXrzid1YeBwyLyBdAcWJ9j\nPfr06UNiYiIACQkJtGjRgqSkJODYKaNN27RN23Sg0x06dKDv1L784+A/qLXz2MiusVK/wkynpKQw\nbtw4gOzvy6Cpar4vYEUg6+XYpiSwEUgESgMrgaY51jkVp38jDudM4nucR6Xm3Jd62fz586NdhbDy\ncnxejk3Vu/EdTjus98y6R5sMaqKpaanRrk7YuN+dBfruzvkK24hVqpoO3A7MAtYAH6rqWhG5VURu\ndddZB8wEVgHfAK+r6ppw1ckYY2ZumEmzV5qxec9mnrzgScqULBPtKsW0gIblCPS+iHCxPgljTLC2\n7tvK3bPuZvmO5YzqOoqLT7442lUKu3APy3FARPaLyH6gWdZ797UvmEKNMSZS0jLSGP71cFqMbsFp\n1U7jh34/FIsEESp5XQJbUVXj3VdJn/fxGsGn0hUHWR1PXuXl+LwcGxT9+Bb+vJAzXz2TOZvmsOim\nRTza8VHKlSqXvbyoxxcJ9jwJY4zn/HHwDwbPGczczXN5rstzdG/a3W6SK6S87pPI7dnW4CSW0qoa\nl8uysLA+CWNMIDIyM3h9+es8Mv8Rrm9+PUM6DCG+THy0qxU1Yb1PQlUr5iisIs7VSrcCU4Ip1Bhj\nQm3Z9mX0+6wfZUqWYe71c2lWs1m0q+QJ+V4CKyIJIjIU5x6GeKCVqt4T7ooVJ15vF/VyfF6ODYpG\nfLsP72bAZwO45P1LGNB6AF/0+SLgBFEU4ou2vK5uqi4iTwMrgAyghao+pKp/Rax2xhjjh6ryznfv\ncNrLp5GpmawZsIYbWtxgfQ8hllefxEFgJ/AGkNU/kT0sh6rmHD48bKxPwhjja/Ufq+k/vT8Hjh7g\nlUteoU2dNtGuUkwK99hNw3zeV/S7ljHGRMiBowf474L/8ubKNxnaYSi3tbqNuBIRu4amWMrrPomh\n7uvR3F6RrKTXeb1d1MvxeTk2iJ34VJUpa6dw2kun8duB3/ih3w8MaDMg6AQRK/HFMrtPwhgT0zbu\n2sjAGQP5ee/PvH3l2yQlJkW7SsVKQGM3RZv1SRhT/KSmp/LMl88waskoBrcfzF1t76J0XOloV6tI\nCffYTXe6f88NpgBjjCmoWRtm0eyVZnz3+3csv3U5g9sPtgQRJXndJ5H1NPBReaxjQsDr7aJejs/L\nsUHk49u6bys9Jvag//T+PJ/8PFOumkK9E+qFrTyvH79QyCtJrBGR9cApIvJ9jteqSFXQGON9aRlp\njPh6hI3UGoPy7JMQkVrAbKAbxz/jGlXdEtaaHV8P65MwxqMW/ryQ/tP7Uzu+Ni92fZGTq54c7Sp5\nRij6JAJ96FBpoIk7+aOqpgVTaEFZkjDGe3xHan2287P867R/2d3SIRbWjmufQpKA9cDL7mu9iHQI\nplBzPK+3i3o5Pi/HBuGJLyMzg9FLR/OPl/9BtfLVWNN/DT1O7xGVBOH14xcKgdwn8SzQWVV/BBCR\nJsB44KxwVswY4z1ZI7WWjittI7UWEfk2N4nIKlU9I7954WTNTcYUbXtS9/B/8/6PSWsm8fSFT3N9\n8+spIfk2ZJggRaS5CVgmImNEJElEOorIGGBpMIUaY4qHrJFam77UlPTMdNYMWEOfFn0sQRQhgRyp\nfsBa4A5gILDanWdCxOvtol6Oz8uxQXDxrf5jNR3f6sjIb0YytddURl86mirlqoSuciHg9eMXCvn2\nSahqKjDCfRljTJ4OHD3AYwse442Vb9hIrR5gYzcZY0JCVflo3UfcPetuzq9/PsMuGkatirWiXa1i\nLdzPkzDGmIBkjdS6Zc8W3rriLRup1UOs9ygGeL1d1MvxeTk2yD++1PRU/rvgv5w95mySEpNYedvK\nIpUgvH78QiHfMwkROQW4F0j0WV9VtVMY62WMiXGzN85mwPQBNKvRjOW3Lg/rQHwmegK6TwJ4BVgO\nZLizVVWXhbluvnWwPgljYsTWfVsZNGsQS7cvZVTXUVzS5JJoV8n4Eak+iTRVfSWYQowxRV9aRhqj\nloziyYVPMqD1AN664i3KlSoX7WqZMAukT2KaiAwQkRNFpErWK+w1K0a83i7q5fi8HBsci+/LX77k\nrNfOYtbGWSy6aRGPdnzUEwnC68cvFAI5k+gDKE6/RBYFGoajQsaY2LHn8B76Tu3LnI1zeK7LczZS\nazFk90kYY/4mIzODMcvH8PD8h+l9Rm+GJg0lvkx8tKtlCigifRLusyT6AefjnEEsAEZH+pkSxpjI\nWLZ9Gf2n96dUiVI2UqsJqE/iFZxhwV9y37d0/5oQ8Xq7qJfj81Jse1L3cPv027nk/Uvo16ofX/T9\ngr/W/hXtaoWVl45fuATSJ9E6x7Dgc+0Z18Z4h6ry3vfvcd+c+7j8lMtZM2BNzA3EZ6InkPsklgM9\nVXWDO90ImKiqEXvokPVJGBMea/5cQ//P+rPvyD5eueQVzq57drSrZEIoUs+TuA+YJyILRGQBMI/j\nr3TKq4LJIrJORNaLyP15rNdaRNJF5J+BVdsYE4yDRw/ywOcP0GFcB3qc1oNvb/7WEoTJVb5JQlXn\nAk049jyJJqo6L7/tRCQOeBFIBk4DrhaRpn7WewaYCRTLa+u83i7q5fiKWmyqykdrP+K0l09j2/5t\nfN/vewa0GeB3KO+iFl9BeT2+UPDbJyEiF6jqXBHpjnNVU9YXeGP3FGZKPvtuA2xQ1S3u/sYDl+M8\nwMjXQGAS0LoQ9TfGBGjT7k0MnDGQzbs320itJmB++yRE5FFVHSIi43CSxHFUtW+eOxb5F9BFVW92\np68DzlbVgT7r1AHeBToBbwDTcks+1idhTOGlpqcy7KthPP/N89x3zn3c3e5uSseVjna1TASE9T4J\nVR3ivv2vqm7KUXAgd1sH8q0+EnhAVVWc2ziLZXOTMeFiI7WaYAVyCewknPskfE3EuV8iL9uAk3ym\nTwK25linJTDevc2/GtBVRNJU9ZOcO+vTpw+JiYkAJCQk0KJFC5KSkoBj7YpFdXrkyJGeiqc4xefb\nph0L9cma/vPgn0w8NJGl25dyc5WbaVezXXaC8EJ8oZr2WnwpKSmMGzcOIPv7MmiqmusLaAp0BzYB\n/3Tf/xNnLKfV/rbz2b4ksBHnORSlgZVA0zzWfxP4p59l6mXz58+PdhXCysvxxVpsR9OP6oivR2jV\nZ6rqw/Me1kNHDwW1v1iLL9S8Hp/73Znnd3V+r7z6JC4HrgS6Ab6/7PcD41X16/wSkIh0xWlSigPG\nqupTInKr+63/ao5138T6JIwptC9/+ZL+n/WnVsVavHjxizSp2iTaVTJRFoo+iUBupmunqouCKSRY\nliSM8e/Pg38y+PPBNlKr+ZtI3UzXT0QSfAqtLCJvBFOoOZ5vu6gXeTm+aMaWqZm8uvRVTn/5dKqU\nrcLaAWvpcXqPkCYILx878H58oRBIx/UZqrona0JVd4tIxIbkMMb8XdZIrSVLlOTz6z/njJpn5L+R\nMYUQSHPTd0BHVd3lTlcBFqhqxMYPtuYmYxx7Uvfw8LyHmbhmIk9d8BQ3tLiBEhJIg4ApjiL1jOsR\nwCIRmYBzH0MP4IlgCjXGFIy6I7UOnjOYbk262UitJmICGbvpbZxLX/8AfgOudOeZEPF6u6iX44tE\nbGv+XEPHtzry7KJn+eiqj3i126sRSxBePnbg/fhCIZAzCVR1tYjsBMoCKiL1VPWX8FbNmOLt4NGD\nPPbFY4xdMZYhHYbQr1U/vwPxGRMugfRJXIbT5FQb52yiPrBWVU8Pf/Wy62B9EqbYUFWm/jiVO2fe\nyXn1zmN45+HUqlgr2tUyRVCk+iQeB9oBc1T1TBHpCPQOplBjTO6yRmrdtHsT4y4fR8cGHaNdJVPM\nBXJZRJoEnHlLAAAgAElEQVSq7gRKiEicqs4HWoW5XsWK19tFvRxfqGI7kn6ExxY8RpvX23B+vfP5\n7rbvYiJBePnYgffjC4VAziR2i0g8sBB4T0T+AA6Et1rGFB+zN87m9um3c3qN01l2yzLqJ9SPdpWM\nyRZIn0QFIBXnrONaoBLwnqr+Ff7qZdfB+iSM52zbt41Bswfx7bZvGdV1FJc0uSTaVTIeE/ZhOUSk\nJPCpqmaoapqqjlPVFyKZIIzxmrSMNJ5d9CzNRzfnlKqnsLr/aksQJmblmSRUNR3I9B27yYSe19tF\nvRxfQWP76pevaPlaS2ZsmMHXN33Nfzv+l3KlyoWnciHg5WMH3o8vFALpkzgIfC8is4FD7jxV1TvC\nVy1jvOXPg39y/+f3M3vjbJ7t8iw9TgvtQHzGhEsgfRI3cOyxouq+V1V9K8x1862D9UmYIilTMxmz\nfAz/N+//uO6M6xiaNJRKZSpFu1qmmAjrfRIiMldVLwBOV9XBwRRiTHG0fMdy+n3Wz0ZqNUVaXn0S\nJ4rIOcBlInJWzlekKlgceL1d1Mvx5RbbntQ9DJw+kIvfu5jbWt7Gwr4Li2yC8PKxA+/HFwp59UkM\nAR4B6uAMy5FT9O/0MSaGqCrvf/8+9825j25NurG6/2qqlq8a7WoZE5RA+iQeUdX/Rqg+/upgfRIm\npq39cy39p/dnb+peXr7kZdrWbRvtKhkTmWdcxwJLEiZW+Y7U+sj5j9CvtdMHYUwsiNQzrk2Yeb1d\n1IvxqSofr/uYhoMasnXfVr7v9z0Dzx7ouQThxWPny+vxhYK3/kUbEwGbdm/ijhl3sHH3Rh5o/wB3\n//PuaFfJmLAJqLlJRM4DGqvqmyJSHaioqpvDXrtj5Vtzk4m6I+lHGPb1MEYuHsm959zLoHaDKB1X\nOtrVMsaviDxPQkSGAi2BU4A3gdLAu0D7YAo2piiZs3EOA6YPsJFaTbETSJ/ElcDlOMNzoKrbgPhw\nVqq48Xq7aFGOb9u+bVw16Spu/fRWnu3iPGPaN0EU5dgCYfGZQJLEEVXNzJpwhw43xtPSM9N5btFz\nNB/dnCZVmvBD/x+4tMml0a6WMREXyH0S9wGNgc7AU8CNwPuq+kL4q5ddB+uTMBHz1S9f0X96f2pU\nqMGLXV/klGqnRLtKxhRKxO6TEJHOOEkCYJaqzgmm0IKyJGEiwXek1hGdR9Dz9J42Uqsp0iJ2n4Sq\nzlbVe91XRBNEceD1dtFYjy9TM3lt2Wuc/vLpJJRNYM2ANVz1j6sCShCxHluwLD6T1yiwB3CGBs+N\nqqqNd2yKPN+RWuf0nkPzWs2jXSVjYooNy2GKpT2pe3h43sNMWDOBpy54ij4t+lBCbAAC4y0RuU/C\nLag5cD7OmcVCVf0umEKNiRbfkVovbXIpa/qvsZFajclDvj+dRORO4D2gOlATeFdE7NGlIeT1dtFY\niW/tn2vp9HYnhi8azpSrpvBat9eCThCxElu4WHwmkDOJfwNnq+pBABF5GlgMROwSWGOCcfDoQR7/\n4nHGrBhjI7UaU0CB3CfxPdBGVQ+70+WAJaraLAL1y6qD9UmYAlNVpv44lbtm3kX7eu0ZftFwTow/\nMdrVMiZiItUn8SbwjYhMAQS4AngjmEKNCTffkVrfuPwNOjXoFO0qGVMk5dsnoarPAn2B3cBfQB9V\nfS7QAkQkWUTWich6Ebk/l+XXish3IrJKRL4SkaL5MOAgeL1dNJLxHUk/wuNfPE6b19twbr1z+e62\n78KaIOzYFW1ejy8UAm2Y3QSku+uLiJylqsvz20hE4oAXgQuBbcC3IvKJqq7Nse/zVXWviCQDrwH2\n7EdTYFkjtZ5W/TSW3rKUxITEaFep0OxOb1NQ4WqSD6RP4jGgD86XefZAf6raMd+di7QDhqhqsjv9\ngLvt037Wrwx8r6p1c8y3Pgnj17Z927hn9j0s2baEF7q+4ImB+Ny25GhXwxQR/v69RKpP4iqgkaoe\nLcT+6wC/+kxvBc7OY/2bgOmFKMcUQ+mZ6Yz6ZhRPLHyCfq368cblb1C+VPloV8sYTwkkSawGKgO/\nF2L/Af8UEpGOOCPM5vowoz59+pCYmAhAQkICLVq0ICkpCTjWrlhUp0eOHOmpeCIR3/e/f8+Y3WOo\nUaEGz57yLPVK1MtOEJGMz7dNO9T7N6agUlJSGDduHED292WwAmluag1MBX4AjrizVVUvy3fnIm2B\noT7NTQ8Cmar6TI71zgCmAMmquiGX/Xi6uSklJSX7C8KLQhnfzkM7uX/O/czcOJNnOz8b9ZFaw3Xs\nrLnJFEQ4m5sCSRJrgVdwkkRWn4Sq6oJ8dy5SEvgRuADYDiwBrvbtuBaResA84DpVXexnP55OEiZ/\nmZrJmOVjeHj+w1zzj2t4tOOjVCrj3TEmLUmYgghnkghkRLMDqvqCqs5T1RT3lW+CAFDVdOB2YBaw\nBvhQVdeKyK0icqu72iM4zVmviMgKEVlSmECMd63YsYJzxp7DuJXjmH3dbJ5Lfs7TCaK4+uWXX4iP\nj8/+sktKSmLs2LEAvPfee3Tp0iV73RIlSrBp06aA951z+2jIGV+Roap5voBncZ5I1w44K+uV33ah\nfDnV9K758+dHuwphVdj49hzeowOnD9Qaw2ro2OVjNSMzI7QVC4FwHbtY/jdfv359LVeunFasWDH7\nNXDgwJCXk5SUpGPHjs11mYjoxo0bQ15mKHTo0EHHjBkT0TL9/Xtx5wf1/RtIx/VZOB3QOe9dyPcS\nWGMKQ1X54IcPuHf2vTZSawwSET799FM6dSoad7FnZGQQFxcXsfJExFP3uQRyx3WSqnbM+YpE5YoL\nL3daQ8HiW/vnWi54+wKGfT0sZCO1hpPXj11BZWZmcu+991K9enUaNWrESy+9RIkSJcjMdLozExMT\nmTt3bvb6Q4cOpXfv3gBs2bLluHV9jRs3jvPOO++4eZ999hmNGjWievXqDB48OLsZZ9y4cbRv355B\ngwZRrVo1hg4detz2uZXj27Tlu33lypVp3LgxX3/9NW+++Sb16tWjZs2avP322wX+bHKWm5SUxCOP\nPMK5555LpUqV6NKlC3/99Vf2+osXL+acc86hcuXKtGjRggULAmrlDzl7yoqJCQePHuTBzx/k/HHn\nc+WpV/Ltzd/Stq7deB+rsr6Qc3rttdf47LPPWLlyJUuXLmXSpEnH/arO+Ss7mF/cH3/8McuWLWP5\n8uVMnTqVN944NqTckiVLaNSoEX/88QcPPfRQvvvKWa8lS5bQvHlzdu3axdVXX03Pnj1Zvnw5Gzdu\n5N133+X222/n0KFDha57lg8++IBx48bxxx9/cPToUYYPHw7Atm3buPTSS3nkkUfYvXs3w4cPp3v3\n7uzcuTPoMgvKxkuOAcX5ElhV5ZMfP+HOmXfSvl57Vt22qkiN1BqtYyePhqY5Q4cUvBNVVbniiiso\nWfLY18fw4cO56aabmDBhAnfffTd16tQB4D//+U+ev4D9JZtA3H///SQkJJCQkMBdd93FBx98wE03\n3QRA7dq1GTBgAABly5Yt8L4bNGjADTfcAEDPnj154okneOSRRyhVqhQXXXQRpUuXZsOGDZxxRuGH\nmhMR+vbtS+PGjbPL+eSTTwB49913ufjii0lOTgbgwgsvpFWrVkyfPp3rr7++0GUWhiUJEzWbd2/m\njpl3sP6v9TZSawEV5ss9VESEqVOn5tonsWPHDk466aTs6Xr16oWtHjnL2b59e67LCqNmzZrZ78uV\nKwdA9erVj5t34MCBoMoAqFWrVq77/Pnnn5k4cSLTpk3LXp6enh6VfqCAmptE5FT3b9PwVqd48vJZ\nBPw9viPpR3jiiydo/Xprzql7Dqv6rSqyCcLrx66gTjzxRH755Zfsad/3ABUqVODgwYPZ07/99luh\ny8pZTtbZC+TdjFWhQgWA45qLgqlHONSrV4/evXuze/fu7Nf+/fsZPHhwxOsSaJ/E+zn+GlMon2/6\nnDNGn8G3279l6S1LefC8BykdVzra1TIF5K+ZqGfPnrzwwgts27aN3bt38/TTTx/3hd2iRQvGjx9P\neno6S5cuZfLkyYXulxg+fDh79uzh119/5YUXXuCqq64KaLvq1atTp04d3nnnHTIyMnjjjTfYuHFj\noergT1paGqmpqdmv9PT0XNfz9zled911TJs2jdmzZ5ORkUFqaiopKSls27YtpPUMRKBJwjvXc8Ug\nr4/Vk5KSwvb92+k1qRc3T7uZ4RcN5+NeHxfpobyzeP3Y+dOtWzfi4+OzX927dwfg5ptvpkuXLjRv\n3pxWrVrRvXv3474IH3vsMTZu3EjlypUZOnQo11577XH79Zcwcrus9PLLL6dly5aceeaZXHrppdn9\nEbmtm3Pe66+/zrBhw6hWrRpr1qyhffv2ftfNq17+9OvXj/Lly2e/brzxxnz367u8bt26TJ06lSef\nfJIaNWpQr149RowYkeuVX+GW77AcACKyQlXPzPobgXrlLF+D6eCKdV7uuE7PTOeu0Xcx/sB4bmt1\nG/857z+eGqnVxm7K25YtW2jYsCHp6emUKGEXU4ZLtIcKN2HmtQRxKO0QX//6NfM2z+PjdR9TO742\nX/X8ilOqnRLtqoWc146dMTlZkjBBO5J+hG+2fcO8zfOYv2U+y7Yvo3mt5nRM7MjLl7xMh/odPHUH\nqikYO/ZFW0Gbm1aqaosI1Ctn+dbcFEPSM9NZun1pdlJYvHUxp1Y7lY6JHenUoBPn1juXiqUrZq9f\n1OIrCGtuMrEgFpqbznf/npfnWsaTMjIz+O7377KTwpe/fEliQiKdEjsxsM1AJvaYSELZhGhX0xgT\nBgGdSUSb188kYo2qsvrP1dlJYcGWBdSsWJNOiZ3o2KAjHep3oHqF6vnvyBSanUmYgojqQ4digSWJ\n8FJV1u9an50U5m+eT3yZ+Ozmo6TEJGrH1452NYsVSxKmICxJeDxJRKPNfsueLdlJYd7meZSQEnRq\n0ImOiR3pmNiR+gn1Q1aW9UkUnCUJUxCx0Cdhirht+7ZlnyXM2zKPQ2mHspPCkA5DaFS5kV2FYoz5\nm0Cecd0EeBI4HcgaTlFVtWGY6+ZbB0+fSYTDHwf/IGVLSnZS2HloJ0mJSdlNSE2rNbWkEMPsTCI4\nCxcu5Oabb2bdunURK/OXX37h9NNPZ9++fRH/vxXV5iYR+QoYgvMY025AXyBOVR8OpuCCsCSRv92H\nd7Pg5wXZSeHXvb9yXv3zspPCGTXPoITYHa9FRawniXHjxjFixAg2bdpEpUqVuPLKK3nqqac44YQT\nolKfEiVKsGHDBho2DP9v16SkJHr37p09DEgsCGeSCORbo5yqfo6TUH5W1aHAJcEUao5XmPF/9h/Z\nz/T107lv9n20fK0l9UbW45Wlr3Bi/ImMvWwsOwfvZNrV0xjUbhAtarWIaoLw8vhGXo7NnxEjRvDA\nAw8wYsQI9u3bx+LFi/n555+56KKLSEtLC3l5GRkZAa0XqaTqtceT5sfvN4eIzBCRBkCqiMQBG0Tk\ndhH5J1AhYjU0gDPUxeebPuehuQ/Rbmw7ThxxIsO+HkZ8mXieT36evwb/xazrZvHAuQ/Qpk4bSpaw\n7iYTevv27WPo0KG8+OKLdO7cmbi4OOrXr8+ECRPYsmUL7777LuA8lvRf//oXvXr1olKlSrRs2ZJV\nq1Zl72f79u10796dGjVq0LBhQ0aNGpW9LGvb3r17c8IJJ/DWW2/x7bff0q5dOypXrkzt2rUZOHBg\ndkI6/3znNq7mzZsTHx/PxIkTSUlJOe6ZEomJiYwYMYLmzZuTkJBAr169OHLkSPby//3vf9SuXZu6\ndesyZswYSpQowaZNmwr02RTVx5PmS1VzfQE9gJ+AR4B44CTgTWAK0NbfduF4OdUsXo6kH9Evtnyh\nQ+cP1Q5vdtAKT1TQc8aeow/NfUjnbpqrh44einYVTRjF6r/5GTNmaMmSJTUjI+Nvy2644Qa9+uqr\nVVV1yJAhWqpUKZ08ebKmp6fr8OHDtUGDBpqenq4ZGRl61lln6WOPPaZpaWm6adMmbdiwoc6aNeu4\nbadOnaqqqocPH9Zly5bpN998oxkZGbplyxZt2rSpjhw5MrtsEdGNGzdmT8+fP1/r1q2bPZ2YmKhn\nn3227tixQ3ft2qVNmzbV0aNHZ8dUq1YtXbNmjR46dEivvfZaLVGixHH785WUlKRjx4792/zNmzer\niGR/Nh06dNDGjRvr+vXr9fDhw5qUlKQPPPCAqqpu3bpVq1atqjNmzFBV1Tlz5mjVqlX1zz//DPBI\nHM/fvxd3flDfv37PJFR1InAWzlnDl8BVwA/AV8A5YcpZxVZ6ZjrfbP2GpxY+Red3OlP1f1UZNHsQ\nB9MO8sC5D/Dbvb/x1Y1f8Xinx+nUoBPlSpWLdpVNNImE5lVAO3fupFq1armO6FqrVq3jnsHcqlUr\n/vnPfxIXF8egQYNITU1l0aJFfPvtt+zcuZP/+7//o2TJkjRo0IB///vfjB8/Pnvbc845h8suuwxw\nHj961lln0aZNG0qUKEH9+vW55ZZbCvzL+4477qBWrVpUrlyZbt26sXLlSgAmTJjAjTfeSNOmTSlX\nrhyPPvpoSJqufB9PWrZsWXr27JldZl6PJ401+bVJpAGHcK5qigciP5i5R6kqa3euZeaGmUz8bCJr\nKq7JHuri9ja3M6HHBM8MdWH3SYRBlDq1q1Wrxs6dO8nMzPxbotixY8dxj/isW7du9nsRoW7dumzf\nvh0RYfv27VSuXDl7eUZGRnazUc5tAX766ScGDRrEsmXLOHToEOnp6bRq1apAdc/5qNAdO3Zk17tN\nmzZ+yw5GUXg8aX78JgkRSca5omkacKaqHvK3rgnMviP7mLd5HjPWz2DmxpkAJDdKJrlxMp/0+MSG\nujAxr127dpQpU4bJkyfTo0eP7PkHDhxg5syZPPXUU9nzfv311+z3mZmZbN26lTp16hAXF0eDBg34\n6aefci0jt47hfv360bJlSz788EMqVKjAyJEjmTx5ckhiOvHEE4+rq+/7cMl6POlrr70W9rKCldeZ\nxENAD1VdHanKeI2qsur3VczcMJOZG2eydPtS2tVtR9fGXbmr7V2cWu3UYnGVhFfPIsDbseXmhBNO\nYMiQIQwcOJBKlSrRqVMntm3bRv/+/TnppJPo3bt39rrLli3jo48+olu3brzwwguULVuWtm3bAhAf\nH8///vc/Bg4cSOnSpVm7di2pqam0atUq16aeAwcOEB8fT/ny5Vm3bh2vvPIKNWrUyF5es2ZNNm7c\nWKBLYLPK6dmzJzfeeCO9e/emXr16PPbYY/lum/V40iwlS+b+Veqv2eq6666jdevWzJ49mwsuuIC0\ntDQWL17MySeffNyzumNBXtdFnm8JouB2H97NxNUTuXHqjdR5tg7dJ3Rn676t3NvuXn675zdm957N\n3e3upml1u5nNFE333XcfTz75JPfeey8nnHACbdu2pX79+sydO5dSpUoBztnA5ZdfzocffkiVKlV4\n7733mDJlCnFxccTFxfHpp5+ycuVKGjZsSPXq1bnlllvYt29f9rY5/28MHz6c999/n0qVKnHLLbfQ\nq1ev49YZOnQoN9xwA5UrV2bSpEn5Xqbquzw5OZk77riDjh070qRJE9q1awdAmTJl/G7vpceT5sfG\nbgpSpmayYscKZmyYwcwNM1n1+yrOq38eyY2S6XpyVxpXaZzvPrzcZg/ejs/Gbsrdo48+yoYNG3jn\nnXeiXZUCW7t2Lc2aNePo0aNF5pGrNnZTjNl5aCezN85m5oaZzNo4iyrlqtC1cVce6fAI59c/n7Il\ny+a/E2M8rKgluI8++oiLL76YQ4cOcf/993PZZZcVmQQRbnYmEYCMzAy+3f5tdofzup3r6JjYkeTG\nTqdzYkJi1OpmvMkLZxIbN27k7bffjnZVAtK1a1cWLVpEXFwcSUlJvPzyy9SsWTPa1QqYDRUehSTx\n24HfmLVhFjM3zmTOxjnUjq9NcuNkujbuSvt67SkdVzqi9THFS1FPEiayLElEIEmkZaSxeOtiZm6Y\nyYwNM9i8ZzMXNLiAro270qVxF+pWCt210zl5uc0evB2f9UmYWGB9EmGydd9W5/LUDTOZu3kuDSs3\nJLlRMs8nP0/bum0pFVcq2lU0xpioKlZnEkczjvLlL19mny1s37+dzo0607VxVzo36kytirXy34kx\nEWBnEqYgrLkpiCSxZc+W7KSQsiWFU6udStfGXUlunEzr2q2JKxEX4toaEzy7h8YUVJFMEu7QHiOB\nOGCMqj6TyzovAF1xxojqo6orclkn4CSRmp7Kgi0Lsu9y3nV4F10adSG5cTKdG3WmWvlqQcUUDl5u\nswdvx+fl2MDiK+oi9dChQnGfQfEikAycBlwtIk1zrHMx0FhVTwZuAV4pTFnr/1rPqG9GcfF7F1Nj\nWA0e++IxqpavyrtXvsuOe3bw9pVvc02za2IyQQDZI0N6lZfj83JsYPGZ8HZctwE2qOoWABEZD1wO\nrPVZ5zLgLQBV/UZEEkSkpqr+nteODx49SMqWlOy7nA+nHya5UTJ9W/TlvX++R+VylfPaPObs2bMn\n2lUIKy/H5+XYwOIz4U0SdQDf4RS3AmcHsE5d4G9JYs2fa7L7FhZvXUyr2q1IbpTMlKum0KxGM2vD\nNcaYMAhnkgi0syPnt3uu2yW/69zINqD1ACb3nEylMpWCq10M2bJlS7SrEFZejs/LsYHFZ8LYcS0i\nbYGhqprsTj8IZPp2XovIaCBFVce70+uADjmbm0Qk9i/BMsaYGBTLN9MtBU4WkURgO87jT6/Osc4n\nwO3AeDep7MmtPyLYII0xxhRO2JKEqqaLyO3ALJxLYMeq6loRudVd/qqqTheRi0VkA3AQ6Buu+hhj\njCm4InEznTHGmOiI6oDpIpIsIutEZL2I3O9nnRfc5d+JyJkF2Tbagoxvi4isEpEVIrIkcrUOXH7x\nicipIrJIRFJF5J6CbBsLgozPC8fvWvff5SoR+UpEzgh021gQZHwxffwCiO1yN7YVIrJMRDoFuu3f\nqGpUXjhNUBuARKAUsBJommOdi4Hp7vuzgcWBbhvtVzDxudObgSrRjiPI+KoDrYDHgXsKsm20X8HE\n56Hj1w44wX2f7MH/f7nGF+vHL8DYKvi8b4Zzz1qhjl00zySyb7ZT1TQg62Y7X8fdbAckiEitALeN\ntsLG5/ukk1jusM83PlX9U1WXAmkF3TYGBBNflqJ+/Bap6l538huce5gC2jYGBBNfllg9foHEdtBn\nsiKwM9Btc4pmksjtRro6Aa5TO4Btoy2Y+MC5X+RzEVkqIjeHrZaFF0h84dg2UoKto9eO303A9EJu\nGw3BxAexffwCik1ErhCRtcAM4I6CbOsrms+TKOzNdkVFsPGdq6rbRaQ6MEdE1qnqwhDVLRSCueKh\nKFwtEWwd26vqDi8cPxHpCNwItC/otlEUTHwQ28cvoNhU9WPgYxE5D3hHRE4tTGHRPJPYBpzkM30S\nTlbLa5267jqBbBtthY1vG4Cqbnf//gl8hHOaGEuCOQZeOX5+qeoO92+RPn5uZ+7rwGWqursg20ZZ\nMPHF+vEr0OfvJreSQBV3vYIduyh2vpQENuJ0oJQm/47dthzrOMt322i/goyvPBDvvq8AfAV0jnZM\nBY3PZ92hHN9x7Ynjl0d8njh+QD2cTs62hf1simh8MX38AoytEcducTgL2FjYYxftYLsCP7oH6kF3\n3q3ArT7rvOgu/w44K69tY+1V2PiAhu7BWwn8UFTjA2rhtH/uBXYDvwAVvXL8/MXnoeM3BvgLWOG+\nluS1bay9ChtfUTh+AcQ22K37CmAh0Lqwx85upjPGGONXVG+mM8YYE9ssSRhjjPHLkoQxxhi/LEkY\nY4zxy5KEMcYYvyxJGGOM8cuSRBEgIieJyCYRqexOV3an60W7brkRkRQRaVmA9U8VkZXukMYNgiy7\nuYh09ZnuFu6hrEXkDhFZIyLv5JifJCKZInKpz7xPReR89/1xn5OIJIrI9+77Nu4wzyvcIauv8lP2\n6yLStAB17SMio9z3t4pI74JFe9y+PhORvz1sXkSG5hw6PdA6mdgTzbGbTIBU9VcReQV4GueGmaeB\nV1X1l+jWzC+lYOP7XAFMVNUnfGeKiABowW7mORNoiTOoGao6DZhWgO0Lox9wgbpDqeSwFXgI+NSd\n9o0lr8/pe6Clqma6Ix//ICKTVDXDdyVVLejgc9nlqeqrBdz2+B2pXpJfGYHuKph6mPCyM4mi4zmg\nrYjcBZwDDAcQkQoi8rn7K3yViFwWbEHuL8G3ROQL9+Er/xSR4e7+Z4hISXe9C0RkuTt/rIiUzmVf\nnUXka7d+E0SkQo7lFwN3Av1EZK6I1BeRH0XkLZwvypNE5GUR+VZEfhCRoT7btnYfFrNSRBa7v2r/\nC1zl/gLvmeOXc6KIzHMfxvK5iJzkzh8nIs+7+9ooIt39fC6DROR793WnO280zh26M91j40tx7qTf\nIyIX+vu4c5upqodVNdOdLAfszZkg3PJTROQs9/0BEXnc/TwWiUgNP2VmbZv9i19EWrqfy0oRGeZz\nRnPcr/wcZ0JbRKSK+/4h97gtBE7xU944ERntHssfRcQ3ydR2/239JCLP+Gzj79g/LSKr3ToPc+dV\nF5FJIrLEfZ2TV/wmQNG+vdxeBboVvwuQifOrNWteHMfGmakGrPez7XiODT/g+7oul3WHAl+4+z4D\nOAR0cZdNwRl/vizOMBSN3flvAXe67+fjjBdTDVgAlHPn3w88nEt5Q4BB7vtEIANo47O8sk+s83Ee\nolIaZwyalu6yiu7yG4AXfLa9ARjlvp8G9Hbf9wU+ct+PAz503zfN7TPEOTtZhfOFXQFnyIPm7rJc\nH1ADJLllngek+NThfPd9CrDO51isBlb5bN/GnXcIuNzPcZ3PseFcMoFL3PfPAA/lsr7v5+H7ua/C\nGXkY4H9Z9QD6ZK2fS/034wwal/XZlAXigfVZ+81R9pscG6usMc6QJmXcMja625YBtgB18jj2VYF1\nPq7rO7kAAAQiSURBVPut5P59H2f0VnDGZVoT7f+zXnhZc1PR0hXYjvMfZa47rwTwlDjDAWfi/CKr\noap/+G6oqr0KUI4CM1Q1Q0R+AEqo6ix32fc4X+RNgM2qusGd/xYwAHjenRacQQtPA752W45KA1/7\nKdP3F/XPqur7yMirxBnTvyRwortPgB2qusyN7wBkN1H5G369LU7TFsC7OF+GWfF+7O5nrRz/4Kcs\n5wJTVPWwW84U4HycM4U8qepCEUFE2udcBFyjqsvdfdbnWLMU7mdwujhDPM8UkRQ99pCc3BxV1c/c\n98uAi/Krm1vuCThPaPvSnfUOzr+1gDbHSYJTVDUVSBWRT/B/DCYAqOoGEdkEnIrzOcxV1f1ufdYA\n9XFGO8157JsCa9xyxuJ8Xlmf2YVAU/ffGkC8iJRX1UMBxmJyYUmiiBCRFjj/CdoBX4rIeFX9DbgW\n5xf7We6X+macX3Q5t/8Q54s9p2dV9Z1c5h8FUKdN3PfJa5nk/u/G35fCHFW9xl9cfmQ/VUucjux7\ngFaquldE3sSJz187dn7t2/7qeTSfdTTHfAmgLF9PAA/z96fY5dzn3wtWXSciG3F+fS/Lo4xAjlMg\nfOuRzvHN0n/7t0Xun02gsj7DIz7zMoCSfo59OfffeRvgAuBfwO3uewHOVlXfY2mCZH0SRYD76/gV\nnOacX4FhuH0SQCXgD/c/TkecX2B/o6pXqeqZubxySxCB+BFIFJFG7nRvnOaT7CKBxUD7rHXE6T85\nuYDlVMJJGvvcX/hd3X3/CJwoIq3cfceLSBywH6fZIovvF9bXQNYZ1bU4TWqBWghcISLl3H6VK9x5\nAVHVOUACTvPdcYtyW9/tP8nq+6kPnIzTjBOsnF/m4p6d7PE507nWZ50tQAtxnMTfn6ugOJ/jFSJS\nVkTigUvJPS4Berj7aoTTl7OO3JOK4BzHvx179/NPUNUZwCCgubvNbI49gS3rh5UJkp1JFA03A1tU\nNauJ6WWgr9vE9B4wTURWAUuBtSEqM+dVOMctU9UjItIXmOh+mS0BRudYaaeI9AE+EJEy7uyHyP3L\nLtfyVPU7EVmB82XyK/ClOz9NnMtCR4lIOZx2+wtx2q0fcLd5iuOvIBoIvCki9wF/4PRLBBIvqrpC\nRMa5cQK8rqrf+VvfZ77vsidwm7XykLX+ecD97llcGnCLqu4LcNvcys5tvu/7vsAbIqI4X7bOCqpf\numena3D+bf3tTMb9bD7EaXr7g2OfUW5l/+Iur4QzrPVRt8zc/o2tyu3Y4ySPqSJSFieZ3O3OvwN4\nSUS+w/luWwD091MXEyAbKtwYc5ysvhFVbRbi/b4JTFPVKaHcrwkva24yxuRU0P4W42F2JmGMMcYv\nO5MwxhjjlyUJY4wxflmSMMYY45clCWOMMX5ZkjDGGOOXJQljjDF+/T+JBawpjHtpGgAAAABJRU5E\nrkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7765208>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Local mass transfer flux for ammonia is 0.00043 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.2: Page 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Illustration 5.2\n",
+ "# Page: 130\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "\n",
+ "print'Illustration 5.2 - Page: 130\\n\\n'\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data***#\n",
+ "# Eqb. data\n",
+ "# Data = [Wt% of moisture in the soap,Partial pressure of water in air(mm Hg)]\n",
+ "Data = [(0,0),( 2.40, 9.66),(3.76 ,19.20),(4.76 ,28.4),(6.10, 37.2),(7.83, 46.4),(9.90, 55.0),(12.63, 63.2),(15.40, 71.9),(19.02 ,79.5)];\n",
+ "P = 760.0;# [mm Hg]\n",
+ "# Initial air\n",
+ "p1 = 12;# [mm Hg]\n",
+ "T = 273+75.0;# [K]\n",
+ "#******#\n",
+ "\n",
+ "# Y = kg water/kg dry air\n",
+ "# X = kg water/kg dry soap\n",
+ "# E = Air water phase\n",
+ "# R = Soap water phase\n",
+ "Y = numpy.zeros(10);\n",
+ "X = numpy.zeros(10);\n",
+ "for i in range(1,10):\n",
+ " Y[i] = Data[i][1]/(P-Data[i][1])*(18.02/29);\n",
+ " X[i] = Data[i][0]/(100.0-Data[i][0]);\n",
+ "\n",
+ "\n",
+ "print'Illustration 5.2 (a)\\n\\n'\n",
+ "\n",
+ "import pylab\n",
+ "# Soln. (a)\n",
+ "# First operation\n",
+ "Y1 = p1/(P-p1);# [kg water/kg dry soap]\n",
+ "# Initial Soap\n",
+ "S1 = 16.7/(100-16.7);# [kg water/kg dry soap]\n",
+ "# Final soap\n",
+ "S2 = 13.0/(100-13);# [kg water/kg dry soap]\n",
+ "Rs = 10.0*(1-0.167);# [kg dry soap]\n",
+ "# Using ideal gas law\n",
+ "Es = 10.0*((760-p1)/760.0)*(273.0/T)*(29.0/22.41);# [kg dry air]\n",
+ "slopeOperat = -Rs/Es;\n",
+ "\n",
+ "def f2(x):\n",
+ " return slopeOperat*(x-S1)+Y1\n",
+ "x = numpy.arange(S1,S2,-0.01);\n",
+ "X1=S2;\n",
+ "def f3(S):\n",
+ " return slopeOperat*(S-X1)+Y1\n",
+ "S=numpy.arange(0,S1,0.01);\n",
+ "\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f2(x),'g',label='First Process')\n",
+ "plt.plot(S,f3(S),'r',label='Second Process')\n",
+ "ax = pylab.gca()\n",
+ "plt.title(\"Illustration 5.2(a)\")\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "plt.show()\n",
+ "\n",
+ "# Results for First Process\n",
+ "# The condition at abcissa S2 correspond to the end of first operation\n",
+ "print \"Conditions corresponding to First Operation \\n\"\n",
+ "print \"X = kg water/kg dry soap\\n\",S2\n",
+ "print \"Y = kg water/kg dry air\\n\",f2(S2)\n",
+ "\n",
+ "# Results for Second Process\n",
+ "# The point at which the line meets the equilibrium line corresponds to the final value\n",
+ "X2 = 0.103;\n",
+ "Y2 = (X2/(1+X2));\n",
+ "print\"Final moisture content of soap is \",round(Y2*100,3),'%'\n",
+ "\n",
+ "\n",
+ "print'\\n\\n Illustration 5.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "Rs = 1*(1-0.167);# [kg dry soap/h]\n",
+ "# Entering soap\n",
+ "X1 = 0.20;# [kg water/kg dry soap]\n",
+ "# Leaving soap\n",
+ "x = 0.04;\n",
+ "X2 = x/(1-x);# [kg water/kg dry soap]\n",
+ "# Entering air\n",
+ "Y2 = 0.00996;# [from Illustration 5.2(a), kg water/kg dry air]\n",
+ "# The operating line of least slope giving rise to eqb. condition will indicate least amount of air usable.\n",
+ "# At X1 = 0.20; the eqb. condition:\n",
+ "Y1 = 0.0675;# [kg water/kg dry air]\n",
+ "\n",
+ "def f4(x):\n",
+ " return ((Y1-Y2)/(X1-X2))*(x-X1)+Y1\n",
+ "x = numpy.arange(X2,0.24,0.01);\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f4(x),'g',label='Operating line')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.title(\"Illustration 5.2(b)\")\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "plt.show()\n",
+ "# By Eqn. 5.35\n",
+ "\n",
+ "Es = Rs*(X1-X2)/(Y1-Y2);# [kg dry air/h]\n",
+ "Esv = (Es/29)*22.41*(P/(P-p1))*(T/273.0); #[cubic m/kg dry soap]\n",
+ "print\"Minimum amount of air required is\",round(Esv,4),\" cubic m/kg dry soap\\n\\n\"\n",
+ "\n",
+ "print'Illustration 5.2 (c)\\n\\n'\n",
+ "\n",
+ "# solution (c)\n",
+ "\n",
+ "Esnew = 1.30*Es;# [kg dry air/h]\n",
+ "Y1 = Rs*((X1-X2)/Esnew)+Y2;\n",
+ "\n",
+ "def f5(x):\n",
+ " return ((Y1-Y2)/(X1-X2))*(x-X1)+Y1\n",
+ "x = numpy.arange(X2,0.24,0.01);\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f5(x),'g',label='Operating line')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.title(\"Illustration 5.2(c)\")\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "plt.show()\n",
+ "# with final coordinates X = X1 & y = Y1\n",
+ "# From figure, Total number of eqb . stages = 3\n",
+ "N = 3;\n",
+ "print\"Moisture content of air leaving the drier is \",round(Y1,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Total number of eqb. stages = \",N\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 5.2 - Page: 130\n",
+ "\n",
+ "\n",
+ "Illustration 5.2 (a)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWeYFNXSgN8CQSQvGRdwyEkUBQEFdFGUZUXAhHJFhcun\niCIKigEBuco1ohKuAZGkCBivKBJUYK8oAiKCSJSwSEZyUthQ348zuw7LzOxsmOkJ532eftjuru5T\nc+iZ6nPqVJWoKhaLxWKxABRyWgGLxWKxhA/WKFgsFoslC2sULBaLxZKFNQoWi8ViycIaBYvFYrFk\nYY2CxWKxWLKwRsEStohITxFZ5LGfISK1nNTJFyLypogMcVqPnBCRRiLyY4CyN4jIjGDrZAkvrFGw\nhBUikiIiVwfx/pNF5Nl83uMMYwWgqn1VdUT+tPPZVrqIHPPYrvQhW09EZorIPhE5ICJzRaReNrFn\ngZcDaVtVvwAai0iTfH4MSwRhjYIl3HA0mlJEznGyfR98r6qlPLZvfciVAT4D6gGVgWXAzMyTIlIV\nSHDLBMp04N48aW2JSKxRsEQkIpIsIr099rPe3sXwmojsFZEjIvKLiDQWkXuBfwCPud+4Z7rlU0Tk\nMRH5BTgmIoVF5AkR2SQiR0VkjYh0dcs2BN4ELnff46D7+BkjEBG5R0R+c7+xz3T/IGeeyxCRPiKy\nUUQOich/cvq4gfSJqv6oqpNU9bCqpgGjgPoiEucWuRb4SVVPe+ji9XN6kAxcH0j7lujAGgVLpKL4\nHlVcB7QF6qpqGeBW4ICqvg28D7zofuPu4nHN7UBHoKyqpgObgDaqWhr4FzBVRCqr6jrgPuAH9z3K\nZdfHPf31nLvdqsA2IPvc/PVAc+AioJuIdPDzOS8RkT9EZIOIDBGRwjl3DwBXArtV9ZB7vwmwIZuM\nt89ZxeP8esAlIiUDbNMS4VijYIlGUoFSQEMRKaSqG1R1j8f57G/eCoxR1Z2qegpAVT/OvEZVPwR+\nA1r6uD47dwATVHWl+638SczIooaHzAuqelRVtwMLgaY+7vUt0FhVKwI3A92BQTm0j4hUA/4DDPQ4\nXAY47inn43O28BA55v63bE5tWqIDaxQsUYeqLsD8IL4O7BWRcSJSKofLtnvuiMhdIvKze3rnEHAh\nUD5AFTJHB5n6nAAOAPEeMp5G6iTg9U1cVbeq6jb3378CzwC3+GtcRCoCXwGvq+oHHqcOYYylp2xO\nnzNT/rC/Ni3RgzUKlkjlBFDCY99zygNVHauqzYFGGMdr5tu1rymnrOMicgHwNvAAUE5V44Bf+XuE\nkJMzfBfg8rhfCcwP7c4crgsUnyMVt//gK+AzVX0+2+lfMH2RKZvT5wRoCKSo6hkjDEv0Yo2CJVJZ\nCdwkIueJSB2gN3/P6TcXkZYiUgTzFv4XkO6+bi+QU6xDCfe99gOFRKQX5g06k71ANff9MxH+/jGd\nDvQSkYtF5FyMf2GJqv7uoz1/P/IdRaSy++8GwBB8rB4SkdLAPOA7VR3sReQb4FIRKRrg5wS4Cpjt\nSz9L9GGNgiWcye5M9vz7NeA05gd6EjDV41xpzBvwQSAF86OXuTZ/AtDIPV3yqddGVdcCrwA/YKZ5\nLgS+8xCZD6wB9ojIvuy6qup8YCjwCWbUUBPjyPb2Obx9Tk+uBlaJyHHgS/c9n8s8KSKzReQJ9+6N\nGOd1L4+YhqNu/wKquhdYAHQN8HPi1nucD90sUYgEs8iOiCRilsUVBt5R1Re9yIzBrPo4CfRU1Z/d\nx58EegAZwGqgV6YT0GKx5A33ktopqtoiANkbgDtU9facZC3RQ9CMgnvZ3AagPWYu9Uegu3tJX6ZM\nEtBPVZNEpCUwWlVbiYgL80bTUFVPicgHwGxVnRIUZS0Wi8UCBHf6qAWwSVVTVDUVs067SzaZzsAU\nAFVdCpR1z58exSwrLO6OMC1OwTnpLBaLxeKDYBqFeM5c5reDM5fk+ZRR1YOYuc7fMXOyh1X1myDq\narFYLBaCaxQCnZc6a+WFiNQGHsYs6zsfKCkidxScahaLxWLxRjCTf+0EqnvsV8eMBPzJVHMfSwAW\nq+oBAPcqkSswKQqyEBFHk6dZLBZLpKKqXpdCB3OksByoKyIu97ro24DPs8l8DtwFICKtMNNEezEO\n6lbuNeiCcVav9daIqtot23b33Xc7q0OXLuiIEY73Q9j1S5hutl9ir0/8EbSRgqqmiUg/TDBNYUwu\nmHUi0sd9fpyqzhaRJBHZhIlQ7eU+t1JE3sUYlgxgBWbduSUAUlJSnFVg1Cho1gx69IALLnBWFw8c\n75cwxfbL2cRynwQ1d7yqzgHmZDs2Ltt+Px/XvgS8FDztLEHD5YKHH4YBA+BTr/FhFoslTLERzVGI\ny+VyWgUYNAh++QXmznVakyzCol/CENsvZxPLfWKNQhQSFg90sWIwejQ8+CCcCo9A9LDolzDE9svZ\nxHKfhGPpwXxjfNOxzb/+9S+nVfibYsWc1iALX/2Sk/PNYokVotIogP2SWwIn1l8iEhISnFYh7Ijl\nPglqQrxgIyLqTX8RsUbBEjD2ebHEGu5nPuRxChaLxWKJMKxRsFgsFksW1ihEEb///julSpXKmgpJ\nSEhgwoQJALz//vt06NAhS7ZQoUJs2bIl4Htnv94Jsn8+i8VS8Fij4AAul4vixYtTqlSprK1///75\nvm+NGjU4duxYluNURLL+vuOOO5g3b16e753f63ODpzHzJPvns1gsBY81Cg4gIsyaNYtjx45lbWPG\njHFaLZ+kp6fnLFSAeBozS/BJTk52WoWwI5b7xBqFMCMjI4NHH32UihUrUrt2bV5//XUKFSpERkYG\nYEYZ8+fPz5IfPnw4d955J2DytXjKejJ58mTatm17xrEvv/yS2rVrU7FiRR577LGsaZnJkyfTunVr\nBg4cSIUKFRg+fPgZ13trx/Pt3vP6uLg46tSpw+LFi5k0aRI1atSgcuXKvPvuu7num+ztJiQkMGzY\nMNq0aUPp0qXp0KEDBw4cyJJfsmQJV1xxBXFxcTRt2pT//e9/uW4zFojlH0BfxHKfWKPgEL7mxd9+\n+22+/PJLVq5cyfLly/n444/PeGvO/hadnzfqzz77jJ9++okVK1Ywc+ZMJk6cmHVu2bJl1K5dm337\n9vHUU0/leK/sei1btoyLL76YgwcP0r17d7p168aKFSvYvHkzU6dOpV+/fpw8eTLPumcyffp0Jk+e\nzL59+zh9+jQjR44EYOfOnXTq1Ilhw4Zx6NAhRo4cyc0338z+/fvz3abFEs3ErFEQKZgtL6gqXbt2\nJS4uLmvLfMv+8MMPGTBgAPHx8cTFxTF48GC/jtX8OF0ff/xxypYtS/Xq1Xn44YeZPn161rnzzz+f\nBx54gEKFClEsDxHJNWvW5O6770ZE6NatG7t27WLYsGEUKVKEa6+9lqJFi7Jp06Y86w7GEPXq1Ys6\ndepQrFgxunXrxsqVKwGYOnUqSUlJJCYmAtC+fXuaN2/O7Nmz89WmxRLtRG1Ec044uYBFRJg5cyZX\nX331Wed2795N9ep/1x2qUaNG0PTI3s6uXbu8nssLlStXzvr7vPPOA6BixYpnHDt+/Hi+2gCoUqWK\n13tu27aNjz76iC+++CLrfFpamtc+t1gsfxOzRiFcqVq1Kr///nvWvuffACVKlODEiRNZ+3v27Mlz\nW7///jsNGzbM+js+/u8S2v6mpUqUKAHAyZMnKVmyZL71CAY1atTgzjvv5O23bRkOiyU3xOz0kdP4\nmvbp1q0bY8aMYefOnRw6dIgXXnjhjB/opk2bMmPGDNLS0li+fDmffPJJnv0KI0eO5PDhw2zfvp0x\nY8Zw2223BXRdxYoViY+P57333iM9PZ2JEyeyefPmPOngi9TUVP7666+sLS0tzaucr37s0aMHX3zx\nBV999RXp6en89ddfJCcns3PnzgLVMxqI5Tw/voj0PklJgWzvkwFjjYJD3HDDDWfEKdx8880A3HPP\nPXTo0IGLL76Y5s2bc/PNN5/xw/fss8+yefNm4uLiGD58OHfccccZ9/VlILwt8+zSpQvNmjXjkksu\noVOnTvTu3dunbPZj48eP5+WXX6ZChQqsXbuW1q1b+20rt4arb9++FC9ePGv75z//meN9Pc9Xq1aN\nmTNn8txzz1GpUiVq1KjBK6+84nVlVqwT6T+AwSDS+iQ1FRYuNGVMGjeGFi1g0aK83csmxAtzUlJS\nqFWrFmlpaRQqZG14MIim58USO+zeDXPmwOzZ8M03ULcuXH89JCVB8+bg7+fCX0I861OwWCyWCCA9\nHZYtM0Zg9mzYsgWuuw5uuAFefx081nbki6AaBRFJBEYBhYF3VPVFLzJjgI7ASaCnqv4sIvWBGR5i\ntYChqhq+Yb9BxEb3WiyxyYEDMG+eMQLz5kHVqmYk8NprcPnlUKRIwbcZtOkjESkMbADaAzuBH4Hu\nqrrOQyYJ6KeqSSLSEhitqq2y3aeQ+/oWqro927monz6yBB/7vFjCBVVYufLv0cDq1dCunTEEHTtC\nQa1Qd6qeQgtgk6qmqGoq5s2/SzaZzsAUAFVdCpQVkeyDoPbA5uwGwWKxFAyxnNLBF6Hsk6NH4dNP\n4f/+D+LjoVs3+OMPePpp2LcPZs6EPn0KziDkRDCNQjzg+UO+w30sJ5lq2WRuB6YVuHYWiwWwRsEb\nwewTVVi3Dl55Ba6+2hiCceOgSRP43//gt99g1CjjL3CivHkwfQqBjsezD2GyrhORosANwOMFpZTF\nYrGEmpMnITnZTAl9+SWkpZmVQg8/bAyDOwY0LAimUdgJeOZKqI4ZCfiTqeY+lklH4CdV/cNXI57r\niV0uFy6XK2/aWmKa4cOHZ/2dkJDgdZ16cnKy1zfISJdPSUk565iT+oSDfHJyctYzkdf7b936txFY\ntAhq1UqmYsVkEhOhUiWTO23FCihdOvifN/N8IATT0XwOxtF8DbALWIZ/R3MrYJSno1lEZgBzVHWK\njzaso9mSb2L9eRk+fPgZRtGStz45fRq++84Ygdmz4eBB4xxOSjJTQWXLBkfXvOBInIKqpolIP2Ae\nZknqBFVdJyJ93OfHqepsEUkSkU3ACaCXh9IlME7me4KlY7hRqlQpVq9ebUc7FkuEsGvX3yuF5s+H\nBg2MEXjvPbj0Uv8BZOGKjWh2AJfLxb59+yhcuDBg9N24ceMZGT9zQ3JyMnfeeSfbt/teoNWzZ0+m\nT59O0aJFKVq0KM2aNWPs2LHUr18/T21GE+H+vASb5OTkiEvrEGx89Ul6Oixd+vdoYNs2MwpISiJr\nWigScGpJqsUH2ctxHj16NEeDkN+cPSLC448/zrFjx9ixYweVKlWiZ8+eZ8mpakz/QMYi1iCcjWef\n7N8PU6fCP/5hfvT79oWMDBg71iwZnTED7rorcgxCTlijEEYUKlSILVu2AObNvm/fviQlJVGyZEmS\nk5OZPXs2jRo1onTp0lSrVo1XX32VkydP0rFjR3bt2kWpUqUoXbp0jmmszzvvPLp3786vv/4KmC/A\nkCFDaN26NSVKlGDr1q0sXryYyy67jLJly9KiRQt++OGHrOsPHjxIr169iI+Pp1y5ctx4441Z52bN\nmkXTpk2Ji4ujdevWrF69Ouvciy++SLVq1ShdujQNGjRgwYIFgKnS1rx5c8qUKUOVKlV45JFHCqxP\nLZbckpEBP/0Ezz5rooZr14aPP4aEBFi1ymzPPw9t2sA50ZgoKPPNMBI3o/7Z+DoeLrhcLv3mm2/O\nOi4iunnzZlVVvfvuu7VMmTK6ePFiVVX9888/tUqVKvrdd9+pqurhw4d1xYoVqqqanJys1apV89tm\nz549dciQIaqqeuzYMe3evbteeeWVqqp61VVX6QUXXKBr167V9PR03bNnj5YtW1anTp2q6enpOn36\ndI2Li9ODBw+qqmpSUpLefvvtevjwYU1NTdVvv/1WVVVXrFihlSpV0mXLlmlGRoZOmTJFXS6Xnj59\nWtevX6/Vq1fX3bt3q6rqtm3bsj5rq1atdOrUqaqqeuLECV2yZEkeezZvhPvzYgk+hw+rfvSRaq9e\nqlWqqNarp/rww6pff636119Oa1fwuJ95r7+r0WjnAkL+VTD5hPTp3E+1qLsc5znu14x27drx6aef\nniXXtWtXLr/8cgCKFStG0aJFWbNmDU2aNKFMmTJccsklWfcLpM2RI0fyn//8h2LFitGyZUsmT54M\nmKmlnj17ZhXc+eqrr6hfv35WWu7bb7+dMWPG8Pnnn3Pdddcxd+5cDh48SJkyZQBo27YtYOpL9+nT\nh8suuwyAu+66i+eee44ffviB+Ph4Tp06xZo1ayhfvvwZFeWKFi3Kb7/9xv79+6lQoQItW7bMdZ9a\nLLlBFdau/dtJvHw5tG5tYgcGD4Y6dZzW0Dli1ijk5ce8oPBXjtNTplq1M4O7P/nkE0aMGMETTzzB\nRRddxAsvvECrVq183OHs+w0aNIhnnnnG63nP8pu7du06qwzoBRdcwK5du9ixYwflypXLMgiebNu2\njXfffZexY8dmHUtNTWX37t1ceeWVjBo1iuHDh7NmzRo6dOjAq6++StWqVZkwYQLDhg2jYcOG1KxZ\nk6effprrr78+oM9lsQTKiROm5kCmIVA1DuJHHjH5hdwFBWMe61OIIJo3b85nn33GH3/8QdeuXenW\nrRsQeBZVfyMKz3vEx8ezbdu2M85v27aN+Ph4qlevzsGDBzly5MhZ96hRowZPPfUUhw4dytqOHz+e\nVdGte/fuLFq0iG3btmU5vgHq1KnDtGnT+OOPP3j88ce55ZZb+PPPPwP6TJb8E81pLjZvNg7hxESo\nUgVGjoSaNc3qoZQUePNN6NTpbIMQzX2SE9YohCnZf8BTU1N5//33OXLkCIULF6ZUqVJZS1orV67M\ngQMHOHr0aMD383c+KSmJjRs3Mn36dNLS0vjggw9Yv349nTp1okqVKnTs2JH777+fw4cPk5qayrff\nfguYqnFvvfUWy5YtQ1U5ceIEX375JcePH2fjxo0sWLCAU6dOce6551KsWLEs/adOncoff5ig9TJl\nyiAitqBQCImmH8BTp0zBmYEDoX59MyX0888m2dz27SbVRGZ1Mn/vUtHUJ7nFfvPCCF+lJTOZOnUq\nNWvWpEyZMrz99tu8//77ADRo0IDu3btTq1YtypUr53X1kbf7+Wq7XLlyzJo1i1deeYUKFSowcuRI\nZs2aRbly5QB47733KFKkCA0aNKBy5cqMGWPKXDRr1ozx48fTr18/ypUrR926dXn33XcBOHXqFE8+\n+SQVK1akatWq7N+/n+effx6AefPmceGFF1KqVCkGDBjAjBkzOPfcc/PShZYYZMcOGD8ebrzRLAsd\nMgTi4mDaNBNcNnEi3HJLeEUUhzM2eM0S88T68xJpaS7S0mDJkr/zCm3fDh06GCdxhw5QsWL+24i0\nPsktthynxWKJeH7/3aSUnjLF1BZISoI33oCWLaM0XsAhbFdaLJawZtUqePllU6S+Vy8TWGbTgwUP\n61OwWGKccExzoQpff/13XqGLLjIriUaODI1BCMc+CRXWp2CJeezzEj6kpsKHH5of/9On4dFHTc4h\nu+6gYLE+BYvFEtYcOwbvvGN8BjVrwogRphaBXZkceqxRsFgsjrF7twkue/ttU5by44/BnSXF4hDW\nDlsslpCzbp0JKGvcGI4eNTUKPvzQGoRwwI4ULBZLSFA15SpfftkYgQcegI0boUIFpzWzeGJHCpaz\nmDx5clbmU0v0E+yUDunp8MknpjZBr15mNVFKCgwbFr4Gwaa5sISU7777jiuuuIKyZctSvnx52rRp\nw/Lly51WKyBSUlIoVKgQpUqVolSpUtSsWZMXX3zRabUs+SBYP4B//mkSzjVoYEYHgwbBhg1w331w\n3nlBabLAiGWjENTpIxFJBEYBhYF3VPWsXw8RGQN0BE4CPVX1Z/fxssA7QGNAgX+q6pJg6hsKjh49\nSqdOnRg3bhzdunXj1KlTLFq0KOJy/Rw5coRChQqxZMkSrrnmGpo2bUqHDh3OkElLS8uqGWGJHfbv\nh9df/zvaeOJEU6UswGS+FocJ2khBRAoD/wESgUZAdxFpmE0mCaijqnWBe4E3PU6PBmarakPgImBd\nsHQNJRs3bkREuO222xARihUrxrXXXkuTJk2yZCZOnEijRo0oV64ciYmJ/P7771nn1qxZw7XXXkv5\n8uWpUqVKVlK5U6dO8fDDDxMfH098fDwDBgzg9OnTgHnrySzfWblyZc4///ysAjsABw4coHPnzpQp\nU4aWLVuyefPmgD9Pq1ataNy4MWvWrMlq56WXXqJq1ar07t2b06dP+9QLYObMmTRt2pQyZcpQp04d\n5s2bBxij07t3b84//3yqVavG0KFDs+pUb9q0iauuuoqyZctSsWJFbr/9dsBkeh0wYACVK1emTJky\nXHTRRaxZsyaX/0OWvLJ5s/ET1K37d0bSzz+Htm2tQYgkgjl91ALYpKopqpoKzAC6ZJPpDEwBUNWl\nQFkRqSwiZYC2qjrRfS5NVc9O4B+B1K9fn8KFC9OzZ0/mzp3LoUOHzjg/c+ZMnn/+ef773/+yf/9+\n2rZtS/fu3QE4duwY7du3Jykpid27d7Np0yauueYaAP7973+zbNkyVq1axapVq1i2bBkjRozIuu/e\nvXs5evQou3btYsKECTzwwANZNREeeOABihcvzp49e5g4cSKTJk3KsUZDZum+77//njVr1mRVgdu7\ndy+HDh3i999/Z9y4cYwYMcKnXsuWLePuu+/mlVde4ciRI3z77be43OGqPXv2pGjRomzevJmff/6Z\nr776infeeQeAoUOHkpiYyOHDh9m5cyf9+/cHTMW4RYsW8dtvv3HkyBE++ugjypcvn5//LksALFsG\nt95qRgVlypiKZu+8Aw0b5nytJQzxVaczvxtwCzDeY78HMDabzBfAFR773wDNgKbAUmASsAIYDxT3\n0oa/+qM5FSktmC0PrFu3Tnv27KnVqlXTc845Rzt37qx79+5VVdXExESdMGFClmx6eroWL15ct23b\nptOmTdNLL73U6z1r166tc+bMydqfN2+eulwuVVVduHChnnfeeZqenp51vlKlSrp06VJNS0vTIkWK\n6IYNG7LODR48WNu0aeO1na1bt6qIaNmyZTUuLk4bNmyoY8eOzWqnaNGieurUqYD0uvfee3XgwIFn\ntbFnzx4999xz9c8//8w6Nm3aNG3Xrp2qqt51111677336o4dO864bsGCBVqvXj1dsmTJGZ81JwJ6\nXqKYp59+OtfXpKerzpqleuWVqjVqqL72murRowWvm1PkpU8iCRyq0Rxo3oDsr6SK8XVcCvRT1R9F\nZBTwBDAs+8WeOUpcLlfWm2bO2jmX1qBBgwZMmjQJgA0bNtCjRw8efvhhpk2bxrZt23jooYd45JFH\nzrhm586d7Nixg1q1anm9565du7jggguy9mvUqMGuXbuy9suXL39G4ZrixYtz/Phx/vjjD9LS0s4o\nx5m9FKc3Dhw44LUQTsWKFSlatGhAeu3YscNr2c1t27aRmppK1apVs45lZGRk6fXSSy8xdOhQWrRo\nQVxcHI888gi9evWiXbt29OvXjwceeIBt27Zx0003MXLkSEqVKpXj5/FMk5yQkOA1901ycrJXB2Sk\ny5f1UWjAm3xaGqSmJjBrVgJFixrn8a23QpEikfN5A5FPSUnJeibCQZ/8ymeeDwhf1iK/G9AKmOux\n/yTweDaZt4DbPfbXA5WBKsBWj+NtgFle2vBnBSOGsWPHapMmTVRVtUOHDjpt2jSvctOnT/c7Upg9\ne3bWfvaRQrVq1c6Qd7lcOn/+/KyRwvr167POBTJS8PYm7q0db3rVrFlTVVX79OmjAwYMOOs+u3bt\nOmtk44vvvvtOixUrpps3bz7j+L59+zQhIUGHDh2a4z0i7XlxgkOHVF94QfX881Wvu071669VMzKc\n1sqSV/AzUgimT2E5UFdEXCJSFLgN+DybzOfAXQAi0go4rKp7VXUPsF1E6rnl2gNR4THcsGEDr776\nKjt37gRg+/btTJ8+ncsvvxyA++67j+eee461a9cCZM2NA3Tq1Indu3czevRoTp06xbFjx1i2bBlg\n6h+PGDGC/fv3s3//fp555hnuvPPOHPUpXLgwN910E8OHD+fPP/9k7dq1TJkyJeC6zznhTa8ePXoA\n0Lt3byZNmsSCBQvIyMhg586dbNiwgapVq3LdddcxcOBAjh07RkZGBps3b84q+/nRRx+xY8cOwLzl\nZpbvXL58OUuXLiU1NZXixYufUfLTkje2bzeF7WvVgtWrTVGbefOgfXvrPI5afFmLgtgwS003AJuA\nJ93H+gB9PGT+4z6/CrjU4/jFwI/u458CZbzc358VDEt27typ3bp10/j4eC1RooTGx8frfffdp8eO\nHcuSee+997RJkyZaunRprV69uvbu3Tvr3K+//qrXXHONxsXFaZUqVfTFF19UVdW//vpL+/fvr1Wr\nVtWqVavqQw89lDW3v3DhQq1evfoZemSOFFRV//jjD+3UqZOWLl1aW7ZsqUOHDtW2bdt61X/r1q1a\nqFAhnyOF7O3400tV9b///a9edNFFWqpUKa1Tp45+9dVXqqp65MgR7du3r1arVk3LlCmjl1xyiX7w\nwQeqqvrYY49pfHy8lixZUmvXrq3jx49XVdX58+frRRddpCVLltQKFSpojx499MSJEzn+n4Tz8+IU\nq1ap9uihGhenOmCA6rZtTmtkKUjwM1KwqbMtMY99XgyqMH++CTRbvRr69zeBZra2cfRhU2dbLBaf\npKXBRx8ZY/DXX6aGweef2xoGsYpfn4IYqvuTsVgskcnx4/DoKysoldiRt96CZ56BX3+Ff/7TGoRY\nTnMRiKN5TtC1sFgsIWPPHnjqKVPMZsvSRhSRpTz+zmw6dbJFbTKxRsEH7gn7n0SkRYj0sVgsQWL9\nerjnHhNpfPgwLFkCn35YjBsadKT/nP78lfaX0ypawoBA3gtaAT+IyBYRWe3efgm2YhaLJf+ou4ZB\nly5w5ZUQH29qGLz+OtSubWTqlq9Lk8pNGLl4pLPKWsKCQBzNHXIWsVgs4UR6OsycCSNHwr59MHAg\nTJ8OxYvZ15mEAAAgAElEQVR7l3+tw2s0e7sZPS7qgausK6S6WsILn0ZBREqr6lHgaAj1KTAKKvjK\nYokkTp6EKVPg1VehfHmThqJrV8gphs9V1sWAVgMYMG8A/73tv6FR1hKW+Js+mu7+dwXwk5ctbPEV\nlBEr28KFCx3XIRy3hQsXor/9hpYvj27ffsa5SGffPnj6aXC5TMTxpEnwww9w8805G4TM3DiPXvEo\nq/euZs5vdm2Jt9xCsUJUBq9ZLH4ZNsyUAPvgA6c1yTcbN5pRwQcfQLduZpqofv2832/Ob3PoP7c/\nq/uuptg5xQpOUUtY4S94LaAFaCISJyItROTKzK1gVbRYQsgTT5giAN9847Qmeeb77+HGG01Fs0qV\njI0bNy5/BgGgY92ONK7Y2DqdY5gcRwoicg/QH6gO/Ix7NZKqXh189fxjRwqWPDNzpjEOq1aBR6rv\ncMbTebx3rxkV9OwJJUoUbDsph1No/nZzlt+73Dqdo5T8jhQewlRRS1HVdsAlQFRUQbPEMJ07m9Sf\no0Y5rUmOnDwJb74JDRrASy+ZrKUbN5rSlwVtEMA4nR9q+RAD5g0o+Jtbwp5AjMJfqvongIgUU9X1\nQD4HqRaLw4jA6NHmV9adhjvcyI/zOL8Maj3IOp1jlECMwnYRiQM+A74Wkc+BlKBqZckXsRyi74+z\n+qVOHbj/fvPqHUZs3Giyk9avb1JSLFoEn31m/AfBWGnt7Xkpdk4xxnYcS/+5/TmVdqrgGw1zYvk7\nlKNRUNUbVfWQqg4HhgLvAF2DrZgl78TyA+0Pr/2S6XSePz/k+mQnWM7jnPD1vMSy0zmWv0O5Sn+l\nqsmq+rmqng6WQhZLSCle3PgV+vWD06F/rNPT4dNP4Yor4K67TEWzrVtNxtJKlUKuzlmMShzFa0te\nY9vhbU6rYgkRNieixdK5s0kZOnp0yJoMtfM4r1inc+xhjYLFIgJjxsCLLwbd6fzHHzB8uHEez50b\nWudxXhnUehC/7P2FuZvmOq2KJQTkaBREpL/b0WyxRC916kDfvqbsWBDIdB7Xqwe7dxvn8cyZwXMe\nFyTFzinGmI5jeHDOgzHpdI41AhkpVAZ+FJEPRSRRcpFpzi2/XkR+E5HHfciMcZ9fJSKXeBxPEZFf\nRORnEVkWaJuW2M7b4o8c++XJJ2Hp0gJ1Omc6j1u3Nj6C9etD4zzODYE8L0l1k2LK6RzL36GAch+J\nSCHgOqAn0Bz4EJigqpv9XFMY2AC0B3YCPwLdVXWdh0wS0E9Vk0SkJTBaVVu5z20FmqnqQT9t2Ihm\nS8Eyc6YxDitX5jnSOVSRx6Em5XAKzd5uxop7V3BB2QucVseSD/Kd+0hVM4A9wF4gHYgDPhaRl/1c\n1gLYpKopqpoKzAC6ZJPpDExxt7EUKCsilT11D0Q/i6XA6NzZTPjnwens6Tx+8UVjDMLReZxXXGVd\nPNzyYet0jnIC8Sk8JCI/AS8B3wMXqmpfoBlwk59L44HtHvs73McClVHgGxFZ7s6/ZLEEnzw4nbM7\njydONKUub7klfJ3HecU6naOfQCqvlQNuUtUzFiqraoaI3ODnukDndXyNBtqo6i4RqYiJpF6vqouy\nC3nO/blcLlwuFwkJCV7nBJOTk70GpVh5K3+WfKbTecYMn/IHDpiVQ+vXJ3DHHQl8+60ZJYSF/kGU\n7127Nw/OeZBf+/7Kueec67g+Vj5n+czzgeDXpyAi5wBrVDXXbjERaQUMV9VE9/6TQIaqvugh8xaQ\nrKoz3PvrgatUdW+2ez0NHFfVV7Idtz4FS3A4eRIaN4YJE+DqMxMCL14ML79sah/37WumhypX9nGf\nKKXrjK5cdv5lPHXlU06rYskDefYpqGoasF5E8uJVWg7UFRGXiBQFbgM+zybzOXCXW8lWwGFV3Ssi\nxUWklPt4CYyTe3UedIhJYjlE3x+56pfixeG117IinT0jj++800Qep6SYyONINwh5eV6iPdI5lr9D\ngTiaywFrRGSBiHzh3rL/uJ+F26D0A+YBa4EPVHWdiPQRkT5umdnAFhHZBIwD7ndfXgVYJCIrgaXA\nLFX9KtefLkaJ5QfaH7nuly5dSK/u4ofbR0et8xjy9rxEe6RzLH+HAvEpDM3rzVV1DjAn27Fx2fb7\nebluC9A0r+1aLPlFFT7+WHjt5zHMPdKKqdO60+KmamEfaBZKBrUexIVvXMjcTXNJrJPotDqWAiJH\no6CqySHQw2IJG3btMiOBDRtgwsw6lJ7dl5YfPQo3z8j54hii2DnFGJ042qvT2RK5+Jw+EpHjInLM\nx3Y0lEpaLKFAFd55B5o2hSZN4Oef4fLLMcFsS5bAggVOqxh2XF/vehpVbMQrP7ySs7AlIvA5UlDV\nkgAiMgLYBUx1n7oDOD/4qlksoWPzZrj3Xjh6FL75Bi66yOOkZ3rtfEQ6RyujOozisvGXcUeTO2yk\ncxQQiKO5s6q+oapH3dubnB2ZbAkjYjlviz+89Ut6Orz6KrRsCUlJJu7gDIOQSZcuJjptzJhgqxly\n8vu81IyrSf+W/Rn41cCCUSgMiOXvUI65j0TkB+B1YLr70O3AA6p6RZB1yxEbp2DJD7/+Cr17m4HA\n+PEmUapfNm2CVq1g1SqIzx6cH9v8lfYXF75xIa8nvU6HOh2cVseSA/nNffQPoBsm79Fe99//KDj1\nLJbQcuqUSUvRrh383/8ZV0GOBgGCnl47kvF0Otv02pFNQFlSwxU7UrDkliVLzOigTh144408vPCf\nPAmNGpnqOO3aBUXHSKbLjC60jG/J4LaDnVbF4gd/IwVrFCwxwYkTMGSISWU0ejTcems+itt89hkM\nHmymkYoUKVA9I52th7Zy2fjLWNFnBTXK1HBaHYsP8p0622KJZL75xiwxPXDA+BG6dctntbMuXeCC\nC0Ja0zlSyHQ6R2ukcyxgjUIUEssh+p4cOmSminr3NlNF//xnMuXLF8CNM9Nrv/AC7NxZADd0loJ+\nXh5r/Rgr96xk3qZ5BXrfUBLL36FA6ik8IiID3f9m/t1bRGwaijAllh/oTD79FC680Kws+vVXSEws\n4H6pW9cUXY4Cp3NBPy/FzinGmMTIrukcy9+hQEYKzYD7MAFr8UAfoCMw3lfdZYvFKfbsMcVtBg+G\nDz6AsWOhVKkgNTZ4sAlsWLgwSA1ELtfXu54GFRrYSOcIJBCjUB24VFUfUdWBGCNRCbgKU7PZYnEc\nVZg8GS6+2BS6WbkS2rQJcqOe6bVTU4PcWOQxOnE0r/7wKr8f+d1pVSy5IBCjUBE47bGfClRW1ZPA\nX0HRymLJBVu3QocOZlQwbx6MGAHFioWo8a5doUaNqIx0zi8142ryYIsHrdM5wgjEKLwPLBWRp0Vk\nOLAYmOYufrM2mMpZLP5ITzcLgC67zBS9WbrUJLMLKZlO5+efN+lVLWcQDU7nWCNHo6CqzwL3AkeA\nQ0AfVf2Xqp5Q1TuCraAl98RC3pa1a8300KefmvKYjz0G5+SQCD5o/RLhTudgPi/nFTkvIiOdY+E7\n5ItAch/1VtUJ2Y69oKpPBFWzALDBa7HH6dOmAtqYMWaa6J57oFA4LKy2kc5+6Ty9M5dXu5wn2z7p\ntCoW8h+8douI9PC42esYR7PFElJ+/BGaNzfTRD//DH36hIlBAOt0zoFRiaMY+cNI63SOAAL5St0E\n3C0i3UXkXSBNVf8ZZL0slixOnjQzMzfcYOrdfPEFVKvmtFZesE5nn9SKq0X/Fv0ZOC960mtHK/4q\nr5UTkXLAecD/AY8DR4F/uY/niIgkish6EfnNV0yDiIxxn18lIpdkO1dYRH4WkS8C/kSWqGLhQlPf\nYPduWL0aunfPZ4qKYGKdzn55rPVjrNi9wjqdwxyfPgURSQE8T4rHvqpqLb83FikMbADaAzuBH4Hu\nqrrOQyYJ6KeqSSLSEhitqq08zmfGRZRS1c5e2rA+hSjl8GHjPJ47F958E66/3mmNcsGQIbBlC0yb\n5rQmYcesjbMYOG8gq/uutjWdHSRPPgVVdalqTY/Nc9+vQXDTAtikqimqmgrM4OyKbZ2BKe72lgJl\nRaSyW+lqQBLwDsYgWQIk0kP0Z882KSrOOcekqCgogxCyfhk82CyJipBI51A+L53qdaJ+hfq8+sOr\nIWszL0T6dyg/BNNNFw9s99jf4T4WqMxrwCAgI1gKRiuR+kCrwksvmVrJ779vktiVLl1w9w9Zv0SY\n0znUz8voxNFh73SO1O9QQZDDyu58Eei8TvZRgIhIJ2Cfqv4sIgn+LvZcT+xyuXC5XCQkJHhdZ5yc\nnOz1P9vKOy9/xRUJ3HefWVW0ZIlxJEeS/mfJd+1K8vPPk9ypE1x+ufP6+JFPSUk561gw9cl0Ot/5\n6p20k7OX74ZD/yQnJzN8+PCw0Se/8pnnA0JVvW5AEV/nAtmAVsBcj/0ngcezybwF3O6xvx6oAjyH\nGUFsBXYDJ4B3vbShlrN5+umnnVYhV/zxh+qVV6p27ap67Fjw2gl5v2zcqFq+vOrOnaFtN5c48byc\nPH1Sa46qqfM2zQt524EQad+h3OL+7fT62+1v+ugHEZkpIveJiCswE3MGy4G6IuISkaLAbcDn2WQ+\nB+4CEJFWwGFV3aOqg1W1uqrWBG4HFqjqXXnQwRLmrF8PrVqZl+lPPoGSJZ3WqACpW9cEU0RopHMw\nOa/IeYzpGNnptaMVf47m5sDDmOmdUSKyXEReE5HrRCTHZQOqmgb0A+ZhciR9oKrrRKSPiPRxy8wG\ntojIJmAccL+v2+XqU1kigm++gauugqeeMvVqwiYQrSAZPBi+/x5ieI7aF53qdaJe+Xph73SOOXwN\nIbJvQFHgGuBlYBnwZaDXBmvDTh95ZeHChU6rkCNvvqlaubJqcnLo2nSsXz75RLVRI9XTp51pPwec\nfF42H9ys5V8sr9sOb3NMB29EwncoP+Bn+ijH3Ee+EJFqqrqjYExT3rBxCpFHejo88oiJP5g1C+rU\ncVqjEKAKHTvCddfBQBvRm53hycP5dd+vfNztY6dViRn8xSnk2SiEA9YoRBZHj5qI5FOn4KOPIC7O\naY1CyMaNcMUV8MsvcP75TmsTVvyZ+ieN32jMW53e4rra1zmtTkyQ34R4Fku+SUmB1q2henWYMyfG\nDAJAvXrW6eyDSE2vHa34NQru3EMjQ6WMJTr54Qfzkvx//2dSVhQp4rRGDmGdzj65of4N1Ctfj9eW\nvOa0KjGPX6OgqulAG5GwTUFmCXOmTYPOnWH8eHjooTBOZhcKSpQwkc4PPBARkc6hZnTiaEYuDu9I\n51ggkOmjlcBMEblTRG52bzcFWzFL3gmHEP2MDBg2zLwcL1gQHgntwqFfuPFGE649dqzTmmQRFv2C\niXTu16Ifj3z1iNOqhE2fOEEgRqEYcBC4Gujk3m4IplKW/OH0A/3nn8ah/PXXpiBOkyaOqpOF0/0C\nmKHS2LHw3HNhk147LPrFzeOtH+enXT/x9eavHdUjnPok1OSY+0hVe4ZAD0uUsGcPdOkCtWubJKHF\nijmtURhSr57J+jdokMn8Z8ki0+ncb04/frnvF5te2wFyHCmISH0RmS8ia9z7F4nIkOCrZok0Vq2C\nli3NVNH771uD4JennoLvvrNOZy9Yp7OzBDJ9NB4YDJx2768GugdNI0tE8sUX0L69SX09bFiMO5QD\nwTqd/ZLpdN5+ZHvOwpYCJRCjUFxNARzAHRsN9im2ACZY95VXzBL8WbPgttuc1iiCCEOnc7iQ6XQe\n+JWNAA81gRiFP0QkKxmBiNyCSWdtCVO85VoPBqdPm6nxd981NRBatgxJs3kmVP0SMGHidA67fnHj\npNM5XPskFOSY5kJEagNvA5cDhzE1Du5Q1ZSga5cDNs2Fcxw8CLfcYmZBpk2DUqWc1iiCGTwYtm2z\nTmcvfLHhCwZ9PYhf+v5C0cJFnVYnashvmosMVb0GqAQ0UNXW2JrJMc3GjaYGwqWXwmefWYOQb6zT\n2Sc31L+BuuXr8toP1ukcKgIxCp8CqOpxVT3qPmbTGcYoCxZA27ZmNeXIkVC4sNMaRQElSsCrr1qn\nsw9GJ47m5cUvW6dziPBpFESkoYjcDJQRkZsyI5lFpCcmoM0SY4wfb4LSpk+He+5xWpso46abrNPZ\nB9bpHFp8+hREpAtwIyZ62bOM5jFghqouDr56/rE+hdCQng6PPWaWnc6aZWKvLEHAptf2SWZ67bdv\neJv2tdo7rU7EkyefgqrOdEcz36CqvTy2/uFgECy+KcgQ/fR0uOMOWLHCrDCKZIMQ9qkLPCOdQ0jY\n9wsekc6z+3E6/XTOF+STSOiTYBGIT+FnEeknIm+IyCQRmSgiE4OumSXPFNQDnZFh0l0fOGBqIJQr\nVyC3dYyI+KI/9RQsWhRSp3NE9AvG6VynXJ2QOJ0jpU+CQSBG4T2gMpAIJAPVgeOB3FxEEkVkvYj8\nJiKP+5AZ4z6/SkQucR8rJiJLRWSliKwVkecD+jSWAkMV+veH334zK4xsyooQkRnp3K+fdTp7wTqd\ng08gRqGOqg4FjqvqFCAJyDFMSUQKA//BGJNGQHcRaZhNJsl9/7rAvcCbAKr6F9BOVZsCFwHtRKRN\n4B/Lkh9U4YknzHTRl1+a3ylLCLnpJuNTsE7ns6hdrjYPXPZAWKTXjlYCMQqZE3hHRKQJUBaoGMB1\nLYBNqpqiqqnADKBLNpnOwBQAdyqNsiJS2b1/0i1TFCiMSd9tCQEjRsDs2TBvHpQp47Q2MUiYRDqH\nK0+0eYLlu5bzzZZvnFYlKgkoIZ6IlAOGYFYhrQVeCuC6eMBzjLfDfSwnmWqQVQp0JbAXWKiqawNo\n05JPXn0V3nvP1EIoX95pbWKY+vXNut8QO50jgfOKnMeoxFEhczrHGoHUUxjv/vN/QM1c3DvQtaLZ\nl0Wpu910oKmIlAHmiUiCqiZnv9gzR4nL5cLlcpGQkOA1d0lycrJXB1K0yWf+ndv7P/JIMhMmJNOr\nF7z1lnP6B0s++zVO65OjvAjMmkXCqFEkPPxw0PQpW7bsWccK8v7BkFdVMn7N4PoV1/PUXU8V+P1T\nUlIYPnx40PQPtXzm+UAIJPfRZmAJsAhYpKprArqxSCtguKomuvefxKTMeNFD5i0gWVVnuPfXA1ep\n6t5s9xoK/KmqI7Mdt3EKBcTUqcaPkJwMderkKG4JFR9/DMOHw88/Q5EiTmsTVmw+uJmW77Rk5X0r\nqVa6mtPqRBT5zX3UGJMQrzwwUkS2iMhnAVy3HKgrIi4RKQrcxplBcLj373Ir2Qo4rKp7RaSCiJR1\nHz8PuBb4OYA2LXng00/h0UeND8EahDDj5puN0/k//3Fak7DDOp2DQyBGIQ1TPyEdyAD2Yeb5/aKq\naUA/YB7GD/GBqq4TkT4i0sctMxvYIiKbgHHA/e7LqwIL3D6FpcAXqjo/V5/MEhBz58J99xnHcuPG\nTmtjOYtMp/O//w27bcb67DzR5gmW7Vxmnc4FSCDTRycx1dZeBear6v5QKBYIdvoof/zvfyb99cyZ\nJruCJYx58knYvt3M81nO4PMNn/P4N4+z6r5VNr12gPibPgrEKHQB2gKXYUYMi4FvVdVx02yNQt5Z\nuhQ6dYIZM+Caa5zWxpIjJ05Aw4ZmadhVVzmtTVihqnSa3omrLriKx1o/5rQ6EUG+fAruHEiPAn2A\n2UBPYFaBamgpUHJaZbBqFXTuDJMnx5ZBiOjUBZnptYMQ6RzR/YL5gRuTOIaXvn+JHUd3FMg9I71P\n8kOORkFEPnGvQBoDFAfuBOKCrZgl7/h7oNevh44djd/y+utDp1M4EPFf9JtvhipVCtzpHPH9gnE6\n33/Z/QXmdI6GPskrgTiaXwDqq+p1qjpCVf+nqn8GWzFLwbNlC1x7LTz/PNx6q9PaWHKNdTr7xTqd\nC4ZApo9+dK8kskQwO3ZA+/bGX3n33U5rY8kzDRqY1LU20vksihcpzqgOo3hwzoM20jkfBDJSsEQ4\n+/YZg9C3L9x/f87yljBnyBD49luzWc6gc/3O1Iqrxaglo5xWJWKxRiHKOXjQTBnddpt9uYwaSpaE\nV16xNZ29ICKMThxdoE7nWCMQR3MzEbk021ZbRHLMm2RxhsxcJ8eOGady+/YmU0Ks4y1fTMRyyy0F\n5nSOqn4B6pSrk2+nc7T1SW4IJE5hCdAM+MV9qAmwBigD9FXVeUHV0L9uNk7BBydPGoPQsCG8+abx\nUVqijPXroU0bWL0aqlZ1Wpuw4mTqSRq/0Zh3bniHa2rF0LrrAMlv7qNdQFNVbaaqzYCmwBZMPqJA\nUmhbQsypU2b1Yo0a8MYb1iBELdbp7JNMp3O/OTa9dm4JxCjU98yM6q5r0EBVNxN4emxLiEhLg+7d\n4bzzYNIkKGS9RtHNkCEmX4l1Op+FdTrnjUB+MtaIyJsicpWIJIjIG8BaETkXk/bCEkYMGmSmjqZP\nh3Os1yf6KVnSRDpbp/NZWKdz3gjEp1Ack720tfvQ98AbwF9ACVU9FlQN/etmfQoeLFwIPXrAL7/Y\nqmkxhSpcd50JUfdSjCfWGbZwGBsPbGTGLTOcViVsyK9PoaGqjlTVG93bSOBqVc1w0iBYzuTYMfjn\nP+Htt2H16mSn1QlLojZ1QWak84gReYp0jtp+cfNEmydYunMp87cEnn0/2vvEH4HWaG6SuSMi3YFh\nwVPJkhceecQkt7v++th+oP0R1f2S6XR+LPdZQqO6X8hbpHO094k/AjEKtwBTRKSBiNyDmUq6Nrhq\nWXLDnDnw1VdmatkSwwwZYuqpWqfzWXSu3xlXWRejl4x2WpWwJ5DcR1uA7sB/gZuBDqp6JNiKWQLj\n4EG45x6z0qh0aae1sTiKdTr7REQY03EML37/onU654BPoyAiqzM34GOgHFATWCoiv/i6zhJaHnzQ\nxCS0a+e0Jpaw4JZboHJleP11pzUJO+qUq0Pf5n159KtHnVYlrPG3aPGGkGlhyRMffww//ggrVzqt\niSVsEDGpL9q2NQmvbKTzGTzZ9kkav9GYBVsXcHXNq51WJyzxOVJQ1RR/W6ANiEiiiKwXkd9E5HEf\nMmPc51eJyCXuY9VFZKGIrBGRX0Wkf64/XRSzd68pwjVlChQvfua5WM7b4o+Y6ZcGDcxStACdzjHT\nLxin82sdXqPfbP+RzrHUJ9nJMU4hXzcXKQxsANoDO4Efge6qus5DJgnop6pJItISGK2qrUSkClBF\nVVeKSEngJ6BrtmtjMk5BFW680eQ1ev55p7WxhCXHj5sH5P334corndYmrFBVrp92Pe1c7RjUOjZT\nhOQ3TiE/tAA2uUcXqcAMoEs2mc7AFABVXQqUFZHKqrpHVVe6jx8H1gHnB1nfiOC990wVNZv51OKT\nzPTa/fqZ3CeWLKzT2T/BNgrxwHaP/R3uYznJVPMUEBEXcAmwtMA1jDC2b4dHH4V334Vzz3VaG0tY\nc+utUKmSdTp7wTqdfRPs7DiBzu1kH8ZkXeeeOvoYeMg9YjgDz7k/l8uFy+UiISHB65xgcnKy16CU\nSJFfuDCZ//u/ZC68ED77zGyRpL+VD7F8ZqSz2+mcvH59ZOkfZPnsTmen9QmmfOb5QAi2T6EVMFxV\nE937TwIZqvqih8xbQLKqznDvrweuUtW9IlIEmAXMUdWzUh3Gmk/hrbdg4kRYvNgmu7PkgscfN+kv\n3n3XaU3Cjs/Wf8bg+YNZed9KihYu6rQ6IcNJn8JyoK6IuESkKHAb8Hk2mc+BuyDLiBx2GwQBJgBr\nvRmEWGPzZhg61HyvczIIsRyi74+Y7ZehQ022xEWLvJ6O2X4ButTvgqusizFLx5xxPJb7JKhGQVXT\ngH7APGAt8IGqrhORPiLSxy0zG9giIpuAcZg0GmCysvYA2onIz+4tMZj6hivp6dCzJwwebFYb5kQs\nP9D+iNl+8azp7MXpHLP9wt9O5xe+e4GdR3dmHY/lPgl6CRZVnaOq9VW1jqo+7z42TlXHecj0c5+/\nWFVXuI99p6qFVLWpql7i3uYGW99wZNQoUyznoYec1sQSsVins0+ynM5fW6czhMAoWPLH2rUmFsFW\nUbPkC8/02nv2OK1N2PFk2yf5YfsPLNy60GlVHMf+zIQxqalw113w739DrVpOa2OJeBo2zFWkcyxR\nvEhxRiWO4oHZD5CaHtvJBK1RCGOefx4qVIB773VaE0vUkIPTOZbpUr8LF5S9gNFLYzu9tjUKYcqK\nFSav2YQJZuSfG2I5b4s/bL/g1els+8UgIoxJNE7nxpc1dlodxwhqnEKwidY4hVOnoFkzeOIJU3PZ\nYilQVKF9e+jSBfrbPJPZGbJgCJsPbWb6zdOdViVo+ItTsEYhDBk4EFJS4JNPcj9KsFgCYt06kyhv\n9WqoUsVpbcKKk6knafR6IyZ1mUS7mtFZqMTJ4DVLLnnjDZg1C95+2xoESxBp2BB69TLRzpYzKF6k\nOOM6jSMtIzYTCdqRQhjx6aemktqiRXa1kSUEZKbXnj4d2rRxWhtLCLEjhQjgu+/gvvvgiy+sQbCE\niJIlYeRIn5HOltjEGoUwYO1aU2f5/ffh0kvzf79YDtH3h+0XL3TrRnLhwmbe0pJFLD8r1ig4zI4d\n0LGjeWG79tqCuWcsP9D+sP3iBRGSL78cnn3W1Hi1ALH9rFij4CCHDxuDcP/9cOedTmtjiVkqVjRO\nZxvpbMEaBcc4dcrUWW7Xzn4XLWHA0KGwYIFxblliGmsUHCAjw+Q0qlABXnvNLj21hAGlSlmnswWw\nRiHkqMIjj5hEle+9B4ULO62RxeKmWzfzpmKdzjGNNQoh5pVX4OuvTX3lYsWC04bNZeMd2y/eyeoX\nEZNwyzqdY/pZscFrIWTaNJPPaPFiqFbNaW0sFh889pgxClOmOK2JJUjY3EdhwPz58I9/mH8vvNBp\nbSwWPxw7ZiKdZ8ywkc5RiqMRzSKSKCLrReQ3EfGaaEVExrjPrxKRSzyOTxSRvSKyOth6BpOVK6F7\nd/joI2sQLBFAqVJ+azpbopugGgURKQz8B0gEGgHdRaRhNpkkoI6q1gXuBd70OD3JfW3EkpIC119v\nfDwvDHEAAA28SURBVHdXXum0NhZLgGQ6nd98M2dZS1QR7JFCC2CTqqaoaiowA+iSTaYzMAVAVZcC\nZUWkint/EXAoyDoGjQMHIDHR+BFuucVpbSyWXJDpdH7mmZh3OscawTYK8cB2j/0d7mO5lYk4Tp6E\nG26Arl1N5tNQEssh+v6w/eIdn/0Sw+m1Y/lZCbZRCNQLnN3hERneYx+kpRkfQp06ps5yqInlB9of\ntl+847dfhg6Fb76B778PmT7hQCw/K+cE+f47geoe+9UxIwF/MtXcxwLCcz2xy+XC5XKRkJDgdZ1x\ncnKy1//sgpRfuDCZWbNMXqN//AP+9a+Cvb+Vt/IFLZ+SknLWsTPkW7UyaXzvvRcKFQo7/YMhn5yc\nzPDhw8NGn/zKZ54PCFUN2oYxOpsBF1AUWAk0zCaTBMx2/90KWJLtvAtY7eP+Gm4884zqpZeqHj3q\nnA5PP/20c42HMbZfvJNjv2RkqF59teqYMSHRJxyI9mfF/dvp9Xc7qNNHqpoG9APmAWuBD1R1nYj0\nEZE+bpnZwBYR2QSMA+7PvF5EpgOLgXoisl1EegVT3/wyYQJMngxffmlW9VksUYEIjB1rnc4xQrCn\nj1DVOcCcbMfGZdvv5+Pa7kFUrUD58ksYMgT+9z9bB90ShTRqBD17Gqfz5MlOa2MJIjb3UQGwdKlZ\npPHZZ1CvntPaxHbeFn/YfvFOwP0ybFjMOJ1j+VmxaS7ygSpMnGjiECZNgk6dHFPFYgkNH3xgltQt\nXw7nBH2iwRIkHE1zEa1s3WrKZ775pnl5sgbBEhN06wbly8NbbzmtiSVIWKOQS9LTYfRouOwyuO46\nWLIELr7Yaa0slhCR6XT+17+s0zlKsdNHuWDdOujd24ya33knPPwHFosjDBoE+/ebeVNLxGGnj/JJ\nair8+98mod2dd0JysjUIlhhn2DBTLWrxYqc1sRQw1ijkwIoVZqrou+/gp5+gb18oFOa9Fssh+v6w\n/eKdPPVLlNd0juVnJcx/3pzjzz/NqqKOHU1N5dmzoUYNp7UKjFh+oP1h+8U7ee6X226DuLiodDrH\n8rNijYIXvvsOmjaFLVvgl1/MlJF4nX2zWGKYzPTa1ukcVVij4MGxY9Cvn3kBeuEF+PBDqFzZaa0s\nljAmM9L5iSec1sRSQFij4GbePGjSxNRB+PVXuPFGpzWyWCIE63SOKmI+JPHgQRg40OQsGj/eBKRZ\nLJZc4Ol0/vFHG+kc4cT0SOGTT+DCC6F0aVi9OnoMQiznbfGH7RfvFEi/RJnTOZaflZgMXtuzx7zU\nrFlj0l23bh0E5SyWWGPNGkhIMP9WquS0NhY/2OA1N6om6+9FF0GDBrBypTUIFkuB0bgx3H13TNZ0\njiZiZqSwbRv06WNWzk2cCJdcEmTlLJZY5NgxaNjQLN274gqntbH4IKZHChkZZil1s2Zw1VWwbJk1\nCBZL0ChVCl5+OWojnWOBqB4pbNhgEtipGt9BgwYhVM5iiVVU4eqr4eabTeCPJeyIuZFCaqoJPmvd\n2iyKWLQotgxCLIfo+8P2i3cKvF88I5337SvYe4eIWH5WgmoURCRRRNaLyG8i4tX7JCJj3OdXicgl\nubnWGytXQsuWsGCBKQ714IPhn8CuoInlB9oftl+8E5R+iXCncyw/K0H7uRSRwsB/gESgEdBdRBpm\nk0kC6qhqXeBe4M1Ar83OX3/BU0+Zwjf9+5sIZZeroD9VZJCSkuK0CmGJ7RfvBK1fnn4avvoqIiOd\nY/lZCeY7dAtgk6qmqGoqMAPokk2mMzAFQFWXAmVFpEqA12axeLFxHq9bB6tWmVQssZzALpYfaH/Y\nfvFO0PrFM9I5PT04bQSJWH5WgmkU4oHtHvs73McCkTk/gGsBeOghuOUWePZZ+PRTqFo133pbLJaC\n4vbboUyZqIl0jgWCmaQk0GVN+XqnP3zYpKgoXz4/d7FYLEFBBF5/3UQ633qrjXSOAIJpFHYC1T32\nq2Pe+P3JVHPLFAngWgDefVd499186xp1SCzPn/nB9ot3QtIvEZaHPlaflWAaheVAXRFxAbuA24Du\n2WQ+B/oBM0SkFXBYVfeKyIEArvW5ztZisVgseSNoRkFV00SkHzAPKAxMUNV1ItLHfX6cqs4WkSQR\n2QScAHr5uzZYulosFovFENERzRaLxWIpWMI2rMuJwLdIIJ/9kiIiv4jI/7d3/jFyVVUc/3xrgUJr\nDTX4IyG2pcZCTY38aIilCGI0aEEiVqMWMUAa1Kg1lkRNQGOsCQZj/EOlUKytAWpEC9QIMVjA1krd\nlG3ZdRNUmlJjAVNJxZamUuPxj3Nm9nWY6c7s7O7MvD2f5Gbuu++d9+49e/ed++Pdc3dJ6pu4XI8v\nI+lE0tmSnpB0VNKqVmR7mTb1Usq6Ak3pZXn87wxI2i7pHc3KlgIz67qADxk9A8zBJ513A+fUXPNB\n4KGIXwjsaFa2V0M7eonjvcCsTpejAzo5A7gAWA2sakW2V0M7eilrXWlBL+8CXhfxyyfDu6UYurWn\nMGEL33qM0eql+NlH2SbnR9SJmR0ws53AsVZle5h29FKhbHUFmtPLE2b2Uhz+Ef8qsinZMtCtRmFC\nFr71IO3oBXztyG8l7ZS0YtxyObE0o5PxkO122i1bGesKtK6XG4CHRinbk3TrDtsTsvCtB2lXL0vM\n7DlJZwCPSHrazLaNUd46RTtfSpT5K4t2y3aRmT1fsroCLehF0nuA64HK/oxlri9VurWn0M7Ct2Zk\ne5XR6mU/gJk9F78HgPvx7nCv087fe7LXlYaY2fPxW6a6Ak3qJSaX1wIfMrODrcj2Ot1qFKoL3ySd\njC9e21xzzWbgWoDiwrcmZXuVUetF0mmSXhvp04H3A4MTl/Vxo5W/d20ParLXlQrH6aXEdQWa0Iuk\ntwCbgGvM7JlWZEtBp2e6GwXgA8Cf8dn+r0XajcCNhWt+EOefAs47kWxZwmj1ApyFfy2xG/hTmfQy\nkk6AN+FjwS8BB4G/ATMme11ppJcy15Um9XIX8CKwK0LfiWTLFnLxWpIkSVKlW4ePkiRJkg6QRiFJ\nkiSpkkYhSZIkqZJGIUmSJKmSRiFJkiSpkkYhSZIkqZJGIekYsQhowhdFSbpK0jljdK+dkk6qSXtW\n0qwxuv/hsbhPkjRLGoVkMvJhYEErApJeUydtLrDf3GNmkbFc/POqe0nqVp9lSQlIo5B0BZLOktQv\n6fxws/BzSUOSNknaIen8musXSfplxK+SdETSVEnTJO2J9BWS+iTtlvQLSadKWgxcCdwWG8jMlTRP\n0sPR6t8qaX7Ir5e0RtIO4Dt1sn058PAJynRq3PeGOL4lNmjZJune2o1t4pq5sfHNgKTVhfRLQ+5B\nYEjSNyWtLJz/tqQv1txruqRfR/kHJX0s0t8buh6Q9ONw2VDJX19ce0fhPo9L+n7oa1DSokZlTkpA\np5dUZ5i8Ad+sZBCYD/QDCyP9JuD2iL8d9/d/Xo3sVGBPxL+L+71fDFwC3BPpswrXfwv4fMR/Alxd\nOLcFeGvELwS2RHw97ttGDfL/ADCnTvpeYDbwCO4/B2AR7jLhZNyVxF+AL9eR3VyQ+RxwKOKXAoeB\n2XE8G3gy4lNwtwun19zrI8CdheOZwDTcnUWlvBuAlRE/vXDtT4ErIv4YcEfELwYGO113MoxfyJ5C\n0mnegL9cP2lmlfmFi/ANTDCzIWCgVsjM/gvskXQ2/sL9HvBuYAlQcfG8MFrXA8Byjh8yEoCkGfhO\nW/dJ2gWswX0CgQ/d3GfxNiwSreszzezZOmUS8CCwzszuLpTpATN7xcwOA7+q5KGGxcDGiN9dc67P\nzPZF+fcBL0p6J+6wrt+GvXlWGADeJ+lWSUvM7N+4Ad5rw47eNuB6A7gsemUDwGUcr6+N8dxtwExJ\nM+vkPSkBOTaZdJp/AfvwFujThfRm9srYim8/egxv7W/AW803xfn1uOvjQUmfxlvbFSov+im4J9lz\nqc+RBukXM2x8ajHg97jztI2FtGKZRrMXyMs1x3cB1wFvBNa9KhNmf5Xv0b0UWC1pC26silSM4ynA\nj/Ae2X5J38B7FY1Ip2klJXsKSad5BbgauFbSJyJtO1AZ/14ALGwguw34EvAHM/sn8HpgfvQuwIdp\nXoivg65h+EV2CB9KIVrPeyUti+dJhY3aT8AJ5xOArwMHJf2wUKYrJZ0SvZOl1H+xbgc+HvHlI+Th\n/sjHBcBvak9KejNw1MzuwYfYzsU9fM6RNC8u+xTwOG4ADO99zAA+WrwV7iYaSUtwI3pohLwlPUr2\nFJJOY2Z2RNIV+A5fh/AW6wZJQ3jvYQh371xLHz78tDWOn8JbzRVuwecaDsTvjEj/GbBW0heAZfjL\n93ZJN+Mbsm9keMiqUYv4EuDmRmWKgq2UtE7SrWb2VUmb477/wOdS6pVpJXCvpK/grfri84/Li5kd\nk/QocLDeEBduTG+T9D+8N/UZM/uPpOvw4bKpuA7XxL3W4q6yX8D1VXzuUUn9+Dvj+gblTkpAus5O\nug5JU4CT4gU2D5+wfVvMI3QcSWfiE69LW5SbbmYvSzoN+B2wwsx2t5GPKcCTwDIz2zPa+zTxnMeA\nVWbWP17PSLqH7Ckk3ch04NEY9hHw2W4xCABm9nd8+KdV7ozhsGnA+jYNwgJ8snrTeBqEZPKRPYUk\nSZKkSk40J0mSJFXSKCRJkiRV0igkSZIkVdIoJEmSJFXSKCRJkiRV0igkSZIkVf4PB798eo0nwAQA\nAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7a26828>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Conditions corresponding to First Operation \n",
+ "\n",
+ "X = kg water/kg dry soap\n",
+ "0.149425287356\n",
+ "Y = kg water/kg dry air\n",
+ "0.0586080045715\n",
+ "Final moisture content of soap is 9.338 %\n",
+ "\n",
+ "\n",
+ " Illustration 5.2 (b)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYE2XXwOHfAUEEqdKU4oqI4gtSpauLFUEFRZHepIii\nvh8WxIqvig0siNKkSVe6VAVZpEhnQQVUyiodpUiHLef7Y7JryLbsbrLJJue+rlxuMs/MnDyGnMw8\nTVQVY4wxBiBXoAMwxhgTPCwpGGOMSWJJwRhjTBJLCsYYY5JYUjDGGJPEkoIxxpgklhRM0BKRziKy\n3O15gohUCGRMqRGRoSLySqDjSI+I3Cgi69yex4jIHamUvUlEVmZfdCYYWFIwQcX1JXW7H48/VkTe\nzOIxLkpWAKraS1Xfylp0qZ4rXkROuj1uTaVsJRGZLSKHReSIiCwUkUoexd4EPnAP3fVIRlW3AMdF\n5D6fvBmTI1hSMMEmoKMpReSSQJ4/FStVtaDb44dUyhUGZgGVgFLAWmB24kYRuRKIdJXx1kSgZ6ai\nNjmSJQWTI4lIlIg85vY86de7OD4SkUMi8o+IbBGR/4hID6At8ILrF/dsV/kYEXlBRLYAJ0Ukt4i8\nKCI7ROSEiPwiIi1cZSsDQ4H6rmMcdb1+0RWIiHQXkd9dv9hnu76QE7cliEhPEflNRI6JyJD03q43\ndaKq61R1jKoeV9U44GPgehEp6ipyF7BBVS947FrH9R6PishoEbnUbdsy4A4RyeNNDCbns6RgcqpU\nb3sAdwO3ANepamHgEeCIqo7A+eX7nusXd3O3fVoD9wJFVDUe2AE0UtVCwBvABBEpparbgMeBH13H\nKOYZj+v21wDXea8E/gCmeMTYDKgN3AS0EpF70nifNUTkLxH5VUReEZHc6VcPALcCB1T1mOt5VeBX\njzKCkyjvBq7FucpIahtR1X1ALHC9l+c0OZwlBROKYoGCQGURyaWqv6rqQbftnr+8FRisqvtU9TyA\nqk5L3EdVvwJ+B+qmsr+ndsAoVY12/Srvh3NlUd6tzLuqekJV9wBLgeqpHOsH4D+qWgJoCbQBnk/n\n/IhIWWAI0Mft5cLAKY+iCgxxvfdjwNuuc7g7CRRJ75wmNFhSMCFHVb/H+UL8DDgkIsNFpGA6u+1x\nfyIiHUVkk+v2zjGgCnCFlyEkXh0kxnMaOAKUcSvjnqTOAJen8l52q+ofrr9/Bv4HPJzWyUWkBPAt\n8JmqTnXbdAwnWXpyf+9/Ald5bC8IHE/rnCZ0WFIwOdVpoIDb89LuG1X1U1WtDdyIc0sk8dd1arec\nkl4XkauBEcCTQDFVLQr8zL9XCOk1hu8HItyOVwAnoexLZz9vpXql4mo/+BaYparveGzeglMXnsp7\n/L3f7XhlgLwkv+1kQpQlBZNTRQMPichlIlIReIx/7+nXFpG6rsbRM8A5IN613yEgvbEOBVzH+hvI\nJSJdcK4UEh0Cyno0vgr/fllPBrqISDVXo+0AYLWq/pnK+dL6kr9XREq5/r4B535/ir2HRKQQsAhY\noaovpVBkMVBTRPJ6nPtJESkjIsWAl7m4/eM2YImqxqYWowktlhRMMPNsTHb/+yPgAs4X9Bhggtu2\nQji/9I8CMThf7ol980cBN7puC81I8aSqW4FBwI84t3mqACvciiwBfgEOishhz1hVdQnwKjAd51f3\nNTgN2Sm9j5Tep7vbgc0icgqY5zrmgMSNIjJfRF50PX0Qp/G6i9uYhhOu9gVU9RDwPdDC49wTca4u\nduK0nbiPt2gHDEslNhOCxJ+L7IhIE5xucbmBL1T1vRTKDMbp9XEG6Kyqm1yv9wPaAwnAT0CXxEZA\nY0zmuLrUjlPVOl6UvQkYqqoN/R+ZCRZ+SwqubnO/Anfi3EtdB7RxdelLLNMU6K2qTUWkLvCJqtYT\nkQicXzSVVfW8iEwF5qvqOL8Ea4wxBvDv7aM6wA5VjXHdj5wCNPco8wAwDkBV1wBFXPdPT+B0K8zv\nGmGaH9810hljjEmFP5NCGS7u6raXi7vkpVpGVY/i3NP9E+ee7HFVXezHWI0xxuDfpODtfalkPS9E\n5Frgvzjd+q4CLheRdr4LzRhjTEr8OfnXPqCc2/NyOFcCaZUp63otElilqkcAXL1EGuD0kkgiIgGd\nPM0YY3IqVU2xK7Q/rxTWA9eJSISrX/SjwByPMnOAjgAiUg/nNtEhnAbqeq4+6ILTWL01pZOoqj08\nHp06dQp4DMH4sHqxegnVOvnj+B8ZKp8WvyUFdWZp7I0zmGYrMFVVt7lmh+zpKjMf2CUiO4DhwBOu\n16OBL3ESyxbXIUf4K9ZQExMTE+gQgpLVS8qsXpLLKXUSGx/Li4tf5JYxt3D6wmmfHNOvc8er6gJg\ngcdrwz2e905l3/eB9/0XnTHG5Fy7ju2izfQ2FM9fnPXd11Mgb4H0d/KCjWgOQREREYEOIShZvaTM\n6iW5YK+TyT9Npu4XdWlTpQ1z28ylRIESPjt2MK4yZbIo2D/QgWL1kjKrl+SCtU5OXTjFUwueYtWe\nVXzb/ltqXFnD5+cIyaTgtE2HtzfeeCPQIQSl1OolvcY3YwJt44GNtJ7WmlvK38KGHhu4PG+Ks61n\nWUgmBbB/5MZ74f4jIjIyMtAhBJ1gqhNV5ePVHzNgxQAGNxlMm6qeayD5ll8nxPM3EdGU4hcRSwrG\na/Z5McHq8OnDdJndhSNnjjCp5SQqFE1v1nfvuD7z2T5OwRhjTCYt3rWYGsNrUK1UNZZ3We6zhJCe\nkL19ZIwxOVFsfCyvLn2VCVsm8GWLL7mjwh3Zen67Ugghf/75JwULFky6FRIZGcmoUaMAmDhxIvfc\nc09S2Vy5crFr1y6vj+25fyB4vj9jQs3OoztpNKYRPx/+mU09N2V7QgBLCgERERFB/vz5KViwYNLj\n6aefzvJxy5cvz8mTJ5MaTkUk6e927dqxaNGiTB87q/tnhHsyc+f5/owJJZN+mkS9UfVoV7Ud37T5\nxqdjDzLCbh8FgIgwd+5cbr/99kCH4pX4+Hhy586dbedzT2bG/6KiooKqt00wyM46OXXhFL3n92b1\n3tV81+E7qpeuni3nTY1dKQSZhIQEnnvuOUqUKMG1117LZ599Rq5cuUhISACcq4wlS5Ykle/fvz8d\nOnQAnPla3Mu6Gzt2LLfccstFr82bN49rr72WEiVK8MILLyTdlhk7diwNGzakT58+FC9enP79+1+0\nf0rncf91775/0aJFqVixIqtWrWLMmDGUL1+eUqVK8eWXX2a4bjzPGxkZyWuvvUajRo0oVKgQ99xz\nD0eOHEkqv3r1aho0aEDRokWpXr06y5Yty/A5w0FUVFSgQwg62VUnGw9spObwmuSW3GzosSHgCQEs\nKQRMavfFR4wYwbx584iOjmb9+vVMmzbtol/Nnr+is/KLetasWWzYsIGNGzcye/ZsRo8enbRt7dq1\nXHvttRw+fJiXX3453WN5xrV27VqqVavG0aNHadOmDa1atWLjxo3s3LmTCRMm0Lt3b86cOZPp2BNN\nnjyZsWPHcvjwYS5cuMDAgQMB2LdvH/fddx+vvfYax44dY+DAgbRs2ZK///47y+c0JqsSNIEPf/yQ\nJhOa8GbjNxnVfJTP5i7KqrBNCiK+eWSGqtKiRQuKFi2a9Ej8lf3VV1/xf//3f5QpU4aiRYvy0ksv\npdmwmpVG1759+1KkSBHKlSvHf//7XyZPnpy07aqrruLJJ58kV65c5MuXL8PHvuaaa+jUqRMiQqtW\nrdi/fz+vvfYaefLk4a677iJv3rzs2LEj07GDk4i6dOlCxYoVyZcvH61atSI6OhqACRMm0LRpU5o0\naQLAnXfeSe3atZk/f36WzmlMVh06dYhmk5rx9davWdNtDY9WeTTQIV0kbNsUAtmBRUSYPXt2im0K\nBw4coFy5f9cdKl++vN/i8DzP/v37U9yWGaVKlUr6+7LLLgOgRIkSF7126tSpLJ0DoHTp0ike848/\n/uDrr7/mm2++SdoeFxeXY9pxTGj6bud3dJ7dmc7VOtM/sj95cucJdEjJhG1SCFZXXnklf/75Z9Jz\n978BChQowOnT/86bfvDgwUyf688//6Ry5cpJf5cp8+8S2mndlipQwLnMPXPmDJdffnmW4/CH8uXL\n06FDB0aMsGU4TOBdiL/Aq9+/ysSfJjL+wfHcfk3w/jgJ29tHgZbabZ9WrVoxePBg9u3bx7Fjx3j3\n3Xcv+oKuXr06U6ZMIS4ujvXr1zN9+vRMtysMHDiQ48ePs2fPHgYPHsyjj3p3GVuiRAnKlCnD+PHj\niY+PZ/To0ezcuTNTMaQmNjaWc+fOJT3i4uJSLJdaPbZv355vvvmGb7/9lvj4eM6dO0dUVBT79u3z\naZyhwHoeJefLOtl5dCeNRjdi699biX48OlsSQkwMePye9JolhQC5//77Lxqn0LJlSwC6d+/OPffc\nQ7Vq1ahduzYtW7a86IvvzTffZOfOnRQtWpT+/fvTrl27i46bWoJIqZtn8+bNqVWrFjVq1OC+++7j\nscceS7Ws52sjR47kgw8+oHjx4mzdupWGDRumea6MJq5evXqRP3/+pEfXrl3TPa779rJlyzJ79mwG\nDBhAyZIlKV++PIMGDUqxZ1a4s6SQnK/qZOKWidQbVY8ON3VgTus5FM9f3CfH9RQbC0uXwvPPw3/+\nA3XqwPLlmTuWTYgX5GJiYqhQoQJxcXHkymU53B9C6fNigsPJ8yfpvaA3a/auYcrDU/zS1fTAAViw\nAObPh8WL4brroFkzaNoUateGtL4u0poQz9oUjDHGhzbs30Dr6a257erb2NBjg8+6msbHw9q1ThKY\nPx927YK774b774fPPgO3vh1Z4tekICJNgI+B3MAXqvpeCmUGA/cCZ4DOqrpJRK4HprgVqwC8qqqD\n/RlvsLLRvcYEvwRN4KMfP+K9le/x6b2f+qSr6ZEjsGiRkwQWLYIrr3SuBD76COrXhzx+6Lzkt9tH\nIpIb+BW4E9gHrAPaqOo2tzJNgd6q2lRE6gKfqGo9j+Pkcu1fR1X3eGwL+dtHxv/s82Ky6tCpQ3Sa\n1Yl/zv/D5JaTiSgSkanjqEJ09L9XAz/9BI0bO4ng3nvBVz3UA7WeQh1gh6rGqGoszi//5h5lHgDG\nAajqGqCIiHheBN0J7PRMCMYY37BpLpLLSJ0s2rGIGsNrUPuq2vzQ+YcMJ4QTJ2DGDOjWDcqUgVat\n4K+/4PXX4fBhmD0bevb0XUJIjz9vH5UB3L/I9wJ1vShTFjjk9lprYJI/AjTG2IR4KfGmTi7EX+Dl\nJS8z5ZcpTHxoIo2vaezVsVVh+3bnSmDePFi3Dho0cK4G+vZ1GowDyZ9Jwdvrcc9LmKT9RCQvcD/Q\n11dBGWNMVv1+5HfazmjLlZdfyaaem9LtanrmDERF/ZsI4uKcnkL//S/cfju4xoAGBX8mhX2A+1wJ\n5XCuBNIqU9b1WqJ7gQ2q+ldqJ3HP5hEREURERGQuWhPW+vfvn/R3ZGRkir8So6KiUrytkNPLx8TE\nJHstkPEEQ/moqKikz4Rn+fGbx9Pn2z60vbwtRbYXYcivQ1I8/u7d/yaB5cuhQoUoSpSIokkTKFnS\nmTtt40YoVMj/7zdxu1dU1S8PnISzE4gA8gLRQGWPMk2B+a6/6wGrPbZPATqlcQ5NSWqvG5OScP+8\nvP7664EOIeikVCcnzp3Q9jPa6w1DbtDoA9HJtp8/r7pkiWqfPqo33KBasqRqp06qU6eqHjvm/5gz\nwvWZT/F71W8NzaoaB/QGFgFbgamquk1EeopIT1eZ+cAuEdkBDAeeSNxfRArgNDLP8FeMJnXLly/n\nhhtu8Mux01om1JhgtH7/emqOqMlll1zG+u7rqVa6GgD798MXX8BDD0GJEtCvHxQqBOPHO4PLxo51\nGo6LFAls/BmSWrbICQ9y8JXCmDFjtEqVKpo/f34tXbq09urVS48fPx6weEREd+7cmS3nioyM1FGj\nRmXLubyREz4v/rR06dJAhxB0EuskPiFeP1j5gZZ4v4R+9fNXGhenunKl6ksvqVavrlq0qOqjj6qO\nG6d66FBgY84IAnGlYFI3aNAgXnzxRQYNGsSJEydYvXo1f/zxB3fddRexsbE+P198fLxX5dT66ocl\n63mUXGRkJAdPHeTeiffy1U8zean4Oma+/QglS0KvXpCQAJ9+6nQZnTIFOnZ02glCgSWFbHbixAn6\n9+/PkCFDuPvuu8mdOzdXX301X331FTExMUyYMAFwGj4ffvhhWrduTaFChahVqxZbtmxJOs7+/ftp\n2bIlJUuWpEKFCnz66adJ2xL37dChA4ULF2bcuHGsW7eO+vXrU7RoUa666iqeeuqppAR06623AlCt\nWjUKFizI119/TVRU1EVrKkRERDBo0CCqVatGkSJFaN26NefPn0/a/v7773PVVVdRtmxZvvjiC3Ll\nysWuXbvSrQ/PZUJz5crF8OHDqVSpEkWLFqV3794XlR89ejQ33ngjxYoVo0mTJsmmFjcmqxIS4NMF\nC6k0qCa/LKrL9r7LiJp9NZGRsHmz83jnHWjUCC4JxYmCUruEyAkPcuDtowULFugll1yi8fHxybZ1\n6tRJ27Rpo6pOQ1eePHl0+vTpGhcXpwMHDtRrrrlG4+LiND4+XmvWrKlvvvmmxsbG6q5du7RChQq6\naNGii/adPXu2qqqePXtWN2zYoGvWrNH4+HiNiYnRypUr68cff5x0bs/bR0uXLtWyZcsmPY+IiNC6\ndevqgQMH9OjRo1q5cmUdNmxY0nsqXbq0bt26Vc+cOaPt2rXTXLlypXo7yv320ZgxY7RRo0YXxXH/\n/ffrP//8o3/++aeWKFFCFy5cqKqqs2bN0ooVK+r27ds1Pj5e33rrLW3QoEHG/yd4CObPi8kex4+r\nfv21ascu5zV/i2f1kufLasvnlup336meOxfo6HyPNG4fhWKe84q84Zv5hPT1jN1y+fvvvylevHiK\nM56WLl2ajRs3Jj2vXbs2Dz30EAB9+vRh0KBB/Pjjj+TJk4e///6bV155BXCWvuzWrRtTpkzh7rvv\nBqBBgwY88MADAOTLl4+aNWsmHffqq6+mR48eLFu2jGeeecbr2J9++umklc7uv//+pKUvv/rqK7p2\n7Zq0YM8bb7zBpEmZH2/44osvUqhQIQoVKkTjxo3ZvHkz99xzD8OGDaNfv35cf/31APTr148BAwaw\nZ8+eLK8UZ8KLKmzd+u90EuvXQ/U7fueP2m1ocGVZprSJ5or8VwQ6zIAI26SQ0S9zXylevDh///03\nCQkJyRLDgQMHLlqysmzZskl/iwhly5Zl//79iAj79++naNGiSdvj4+OTbgN57gvw22+/0adPHzZs\n2MCZM2eIi4ujdu3aGYrdc+nLAwcOJMVdp06dVM+dUe7nyZ8//0VLbD7zzDM8++yzF5Xft2+fJQWT\nrtOnnTUHEhOBqjOK+Nln4UDJL3lp2bP0v60/T9z8RFhPQmltCtmsfv36XHrppUyfPv2i10+dOsXC\nhQu54447kl7bs+ffGUASEhLYu3cvZcqUoVy5clxzzTUcO3Ys6XHixAnmzp0LpLzITa9evbjxxhvZ\nsWMH//zzD2+//bbPFpy58sorL4rV/W9fKl++PCNGjLjofZ8+fZp69eqlv7NJVSjPfbRzp9Mg3KQJ\nlC4NAwfCNdc4A8piYuC9j08w5UJ7Pl7/Hks6LuHJOk8iIiFdJ+mxpJDNChcuzOuvv85TTz3FokWL\niI2NJSYmhlatWlGuXDk6dOiQVHbDhg3MnDmTuLg4Pv74Y/Lly0e9evW4+eabKViwIO+//z5nz54l\nPj6en3/+mfXr1wMp9yI6deoUBQsWJH/+/Gzfvp2hQ4detL1UqVIZXlIz8TytWrVizJgxbN++nTNn\nzvDmm29mtFrSPEfieR5//HEGDBjA1q1bAfjnn3/4+uuvfXaucBVKX4DnzzsLzvTpA9dfDw0bwqZN\nzmRze/Y4U00krk62bv9aag6vyeV5L2dd93XcVOqmpOOEUp1klCWFAHj++ecZMGAAzz33HIULF6Ze\nvXpcffXVLFmyhDyuCdJFhObNmzN16lSKFSvGxIkTmTFjBrlz5yZ37tzMnTuX6OhoKlSoQIkSJejR\nowcnTpxI2tfzSmHgwIFMmjSJQoUK0aNHD1q3bn1Rmf79+9OpUyeKFi3KtGnTUjyGO/ftTZo04emn\nn6Zx48ZUqlSJ+vXrA3DppZemWxee50lrGdAWLVrQt29fWrduTeHChalatSqLFi1K9xwmtO3dCyNH\nwoMPOt1CX3kFihaFSZOcwWWjR8PDD/87gCxBE3h/5fvcN+k+3r3zXYbdN4z8efIH9k0EEVuOM0i9\n8cYb7Nixg/Hjxwc6lAzbtm0bVatW5cKFCzliCdFQ+LxkRf/+/S+a+ynYxcXB6tX/ziu0Zw/cc48z\nwdw99zgji1Nz8NRBOs7syJnYM0x8aCJXF7k6xXI5rU4yKlDrKZgsyGlfUjNnzuT8+fMcO3aMvn37\n8sADD+SIhGByjj//dG4LlSoFTz3lTCj3+efOALLJk6F9+7QTwoLfF1BzeE3ql61PVOeoVBNCuAvb\n3kfBLr3bN8FmxIgRdOnShdy5cxMZGcnnn38e6JBMiNi8GT74wFmkvksX2LABMjIZ8vm48/Rb0o9p\nW6cxueVkbou4zW+xhgK7fWTCXrh/XoJxkR1Vp8H4gw/gl1/gmWegR4+MTyz325HfaDO9DeUKlWPU\nA6O8HnsQjHXiS2ndPrKkYMKefV6CR2wsfPWV03X0wgV47jlo2xa86LNwEVXly81f8tx3z/G/yP/x\neO3Hc9SVt7+llRTs9pExJuBOnnSmoP74Y2ccwVtvOQvVZ6ZZ6sT5E/Sa14vog9F83/F7qpaq6vuA\nQ5i1BBpjAubAAXjpJScR/PgjTJvmjCVo1ixzCWHtvrXUGF6DQnkLsa77OksImRCyVwp2qWhM8Nq2\nDQYNghkznNtDa9bAtddm/ngJmsDAVQMZ9OMghjYbykOVH/JdsGEmJJOC3R82JviowooVTuPxmjXw\n5JPw229QPO0179N14OQBOs7qyLm4c6zrvo7yhcv7JuAwZbePQlA4D9FPi9VLyvxdL/HxMH061K/v\ndClt2tSZd+i117KeEOb/Pp+aI2rSsFxDlnZa6rOEEM6fFUsKISicP9BpsXpJmb/q5exZGDoUbrjB\nuTp4/nn49Vd4/HG47LKsHft83Hn6LOrD43MfZ+rDU+kf2Z9Lcvnuxkc4f1b8mhREpImIbBeR30Wk\nbyplBru2bxaRGm6vFxGRaSKyTUS2iohNhWlMDvD33/DGG84AswULnLmHfvwRWraE3LmzfvzfjvxG\n/VH1iTkeQ/Tj0dx69a3p72S85rekICK5gSFAE+BGoI2IVPYo0xSoqKrXAT0A96k7PwHmq2pl4CZg\nm79iNcZk3c6dTjvBddf9OyPpnDlwyy3OlBRZpaqMjR5Lw9EN6VGrB9NbTafYZcWyfmBzEX82NNcB\ndqhqDICITAGac/GX+wPAOABVXeO6OigFnANuUdVOrm1xwD9+jNUYk0lr1zq3h5YudUYdb90KV17p\n23P8c+4fes3rxZZDW1jaaSlVSlbx7QlMEn/ePioDuK+2stf1WnplygLXAH+JyBgR2SgiI0XE5rY1\nJkgkJDgzlN52GzzyiLNuwe7dMGCA7xPCmr1rqDG8BkXyFWFd93WWEPzMn1cK3vYL9bywVJy4agK9\nVXWdiHwMvAi85rmz+/wkERERREREEBkZmeK8JVFRUSk2IIVa+cS/gyWeYCnvuU+g4wmW8kVSmVAo\npfJxcRAbG8ncuZHkzes0Hj/yCOTJ4/v4E9c9+Gj1RwxrNoyih4ry3tvv+ez4aZWPiYlJmjo72P5/\nZaZ84nZv+G3uI1fDcH9VbeJ63g9IUNX33MoMA6JUdYrr+XbgNpxE8aOqXuN6vRHwoqre53GOFOc+\nMsb41vHjMHw4DB4MVao4yeCOO3zTVpCSAycP0GFmBy7EX2DiQxMpV9jW4PalQK2nsB64TkQiRCQv\n8Cgwx6PMHKCjK8h6wHFVPaSqB4E9IlLJVe5O4Bc/xmqMScGePc7C9hUqwE8/ObeMFi2CO+/0X0KY\n99s8ao6oya1X38rSTkstIWQzv90+UtU4EekNLAJyA6NUdZuI9HRtH66q80WkqYjsAE4DXdwO8RQw\n0ZVQdnpsM8b40ZYtTuPxvHnQuTNER0N5Pw8UPh93nr6L+zJz+0y+fuRrGpVv5N8TmhSF5NTZxpiM\nU4UlS5xk8NNP8PTTzkCzjK5hkBm//v0rrae3pkLRCoy8f6R1NfUzmzrbGJOquDj4+msnGZw756xh\nMGdOxtcwyIzEsQcvLH6Btxq/RY9aPWwyywBLs01BHHZDL4cJ5yH6abF6udipU/DJJ1C2bBTDhsH/\n/gc//wxdu2ZPQvjn3D+0ndGWD1d/SFSnKHrW7hk0CSGcPyveNDQv8HsUxqfC+QOdFqsXx8GD8PLL\nzhoGK1bA/fdHsWwZ3Hdf5tYwyIzVe1dTY3gNiuUrxtpua/lPyf9kz4m9FM6flTQ/Aq4b9htEpE42\nxWOM8ZPt26F7d6hc2eliunq1c9uojOeQUj+KT4jnneXv0HxKcz6850M+a/YZl+XJ4ux4xqe8aVOo\nB7QXkT9wegiBky9u8l9YxhhfUIWVK532gh9/hCeecNYwKFEi+2PZf3I/HWZ2IC4hjvXd11tX0yDl\nTVK4x+9RGGN8Kj4eZs+GgQPh8GHo0wcmT4b8AZosZu5vc+k2pxtP3vwkL93yErlz+WC6VOMXqSYF\nESmkqieAE9kYjzEmC86cgXHj4MMP4YornJHHLVr4ZsrqzDgXd46+3/Vl9q+zmd5qOg3LNwxMIMZr\naV0pTAaaARtJeR6ja/wSkcmylOZFMaFdL4cPw2efOYvaNGgAY8Y4k9R505nHX/Wy/e/ttJ7WmorF\nKrKp5yaKXlbUL+fxh1D+rKTHBq8Zk4P99ptzVTB1KrRq5dwmuv76wMakqozeNJoXl7zIgNsH0K1m\nt6DpamocWR68JiJFgeuAfImvqeoPvgnPGJNRK1c67QUrVzqjjn/9FUqWDHRUcPzccXrO7cm2v7ax\nrPMybizoQZe0AAAgAElEQVRxY6BDMhmUbq9kEekO/AB8C7yBM5dRf/+GZYzxFB8PM2Y4t4c6dnQm\npdu92xl0FgwJYdWeVdQYXoMS+UuwptsaSwg5lDdXCs8AN+NMZd1YRG4A3vFvWMaYRMHWeOwpPiGe\nd1e8y+C1gxlx3wia39A80CGZLPAmKZxT1bMigojkU9XtIhLgu5bGhL6sNB5nl30n9tFhZgcSNIEN\nPTZQtlDZQIdkssibQe17XG0Ks4DvRGQOEOPXqEyWhPMQ/bTklHr57TenneD6650pKZYvh1mzoFEj\n/ySEzNbLnF/nUGtELRpHNGZJxyUhlRByymfFH9JNCqr6oKoeU9X+wKvAF0ALfwdmMi+cP9BpCfZ6\nWbkSHnzQ+fIvWdJpPB4+3P+9iTJaL+fizvHU/Kd4esHTTG81nVdvezXkBqMF+2fFnzI0dbaqRvkp\nDmPCkvvI40OHnC6lEyZAgQKBjixl2/7aRuvpral0RaUcN/bAeMfWUzAmAIK98diTqjJq0yheXPwi\n79zxjo09CGGWFIzJRn/95TQef/451K8fnI3Hno6fO06Pb3qw/e/t/NDlB+tqGuK8GafwtKuh2RiT\nSYmNx5UqwYEDTuPx7Nn+azz2lVV7VlF9WHVKFSjF2u5rLSGEAW96H5UC1onIVyLSRDJwzegqv11E\nfheRvqmUGezavllEari9HiMiW0Rkk4is9facJrznbUlLIOolsfG4YUOn8Xj79uxpPM6IlOolPiGe\nt354i4emPsTgewfzadNPyXdJvuQ7h6hw/jfk1dxHIpILuBvoDNQGvgJGqerONPbJDfwK3AnsA9YB\nbVR1m1uZpkBvVW0qInWBT1S1nmvbbqCWqh5N4xw295EJOik1HnfuHLyNx572nthL+xntEREmPDiB\nMoWycRUeky3SmvvIq8X3VDUBOAgcAuKBosA0Efkgjd3qADtUNUZVY4EpgOdQxweAca5zrAGKiEgp\n99i9ic+YYHDmjDPQ7IYb4L33nGTw22/w5JM5JyHM3j6bWiNqcVeFu1jcYbElhDCUbkOziDwDdASO\n4IxReE5VY11XD78Dz6eyaxlgj9vzvUBdL8qUwUk+CiwWkXhguKqOTP/tGJP9PBuPR48O/rYCT+fi\nzvH8t8/zzW/fMPPRmTQo1yDQIZkA8ab3UTHgIVX9w/1FVU0QkfvT2M/b+zqp/dNppKr7RaQEzkjq\n7aq63LOQ+72/iIgIIiIiiIyMTPGeYFRUVIqDUqy8lc9M+SNHnCUut2+PpF27SH74wblKyCnxJ4qo\nHsFHBz+i0hWViH48miL5iuSo+K18+uUTt3sjzTYFEbkE+EVVM9wsJiL1gP6q2sT1vB+QoKrvuZUZ\nBkSp6hTX8+3Abap6yONYrwOnVHWQx+vWpmCy3apVzprHK1ZAr17O7aFSpdLfL9ioKl9s/IKXvn+J\nd+54h8dqPGZjD8JEptsUVDUO2C4iV2fivOuB60QkQkTyAo8CczzKzMG5NZWYRI6r6iERyS8iBV2v\nF8Bp5P4pEzGEpXAeop+WrNSL+7TVHTo401bHxDjTVufEhHDs7DFaTWvFkHVDGHjdQBuM5iGc/w15\n09BcDPhFRL4XkW9cD88v92RcCaU3zvoLW4GpqrpNRHqKSE9XmfnALhHZAQwHnnDtXhpYLiLRwBpg\nrqp+m+F3F6bC+QOdlszUSyg0Hnta+edKagyvwVWXX8WabmvYHb070CEFnXD+N+RNm8KrmT24qi4A\nFni8Ntzjee8U9tsFVM/seY3JKlWYNg2eeQZuvjlnNh57ik+IZ8DyAXy27jNG3j+S+69Pq0nQhKt0\nk4JNgmfCzf79zpXAr7/C9OlOj6KcLnHsQS7JxYYeG6yrqUlVqrePROSUiJxM5XEiO4M0Jjuowhdf\nQPXqULUqbNoUGglh1vZZ1BpRi7uvvZvvOnxnCcGkKdUrBVW9HEBE3gL2AxNcm9oBV/k/NGOyz86d\n0KMHnDgBixfDTTcFOqKsOxt7lue+fY4FOxYwu/Vs6pWtF+iQTA7gTUPzA6r6uaqecD2Gknxksgki\n4TxvS1pSnOMn3pm+um5daNrUGXcQCgnhl8O/UOeLOhw5e4RNPTelmRDs85JcONdJunMficiPwGfA\nZNdLrYEnVTXgQx5tnILJip9/hsceg/z5YeRIqFgx0BFlnaoyYsMIXln6Cu/d+R5dqnexrqYmmbTG\nKXjT+6gt8Anwsev5StdrxuRI58/DO+84U1MMGADduuXsXkWJjp49SvdvurPr2C5WdFnB9cWDaCpW\nk2N40/toN87EdcbkeKtXO1cHFStCdDSUCZE21+V/LKf9zPY8eMODTHpoEpdecmmgQzI5lK28ZsLC\n6dPwyiswZQp88gk88khoXB3EJ8Tz9vK3Gbp+KF/c/wXNKjULdEgmh7OkYELe4sVOz6JGjZx2hCuu\nCHREvrHnnz20n9mePLnysLHHRq4seGWgQzIhwKv1FEzOEs5D9N0dO+bcKnrsMWda665do0ImIczc\nNpPaI2tzb8V7+bbDt1lKCPZ5SS6c68SbNZqfFZE+rv8m/v2YiNg0FEEqnD/QiWbMgCpVnJ5FP/8M\nTZqERr2cjT3LE/Oe4Nlvn2V269m82OhFcknWftuFQr34WjjXiTe3j2rhLMH5Dc7aB81wZix9XESm\nuU+FbUygHTwIvXs7iWDqVOeWUaj4+fDPtJ7WmqqlqrKp5yYK5ysc6JBMCPLmJ0Y5oKaqPquqfXCS\nREngNpw1m40JOFUYOxaqVXNmNI2ODp2EoKoMWz+MxuMa81yD55j00CRLCMZvvLlSKAFccHseC5RS\n1TMics4/YRnjvd27oWdPZyW0RYucuYtChY09MNnNmyuFicAaEXldRPoDq4BJrsVvtvozOGPSEh/v\ndC+9+WZn0Zs1a0IrISz/Yzk1htegfKHyrH5stSUEky28Gbz2pogsBBrirLvcU1XXuza382dwJnPC\nYd6WrVudXkV58zrLY1aqlP4+OaVe4hLieOuHtxi+YTijHhhF0+ua+vV8OaVeslM414k3cx89pqqj\nPF57V1Vf9GtkXrC5j8LPhQvOCmiDB8Nbb0H37pArhDpW//nPn7Sf0Z68ufMy/sHxNvbA+EWm12h2\neVhE2rsd7DOchmZjstW6dVC7tnObaNMmpx0hlBLCjG0zuHnkzTS7rlmWxx4Yk1neNDQ/BMwRkXjg\nXuCYqnb1b1jG/OvMGXjtNZgwAT76CFq3Do0pKhKdjT1Ln0V9+HbXt8xpPYe6ZesGOiQTxtJaea2Y\niBQDLgO6AX2BE8AbrtfTJSJNRGS7iPwuIn1TKTPYtX2ziNTw2JZbRDaJyDdevyMTUpYuddY3OHAA\nfvoJ2rQJrYTw8+GfuXnkzfxz/h829thoCcEEXFpXChtxGpYTJQ5ca+Z6vUJaBxaR3MAQ4E5gH7BO\nROao6ja3Mk2Biqp6nYjUBYYC7quBPIPTw6mg1+/IhITjx+GFF2DhQhg6FJqF2DxviWMPXot6jQ/u\n+oBO1TrZugcmKKR6paCqEap6jdvD/XmaCcGlDrBDVWNUNRaYQvIV2x4AxrnOtwYoIiKlAESkLNAU\n+AInIRkv5fQh+vPnO1NUXHKJMzLZVwkhWOrl6NmjPPTVQ4zcOJKVXVfSuXrngCaEYKmXYBLOdeLP\nZroywB6353tdr3lb5iPgeSDBXwGGqpz6gVaF9993ZjSdONGZxK5QId8dPxjqZVnMMqoPq06FIhX4\n8bEfqXSFF31p/SwY6iXYhHOd+HPqbG/7inr+RBIRuQ84rKqbRCQyrZ3d+xNHREQQERFBZGRkiv2M\no6KiUvyfbeUDX75Bg0gef9zpVbR6NZQtm7PiT698giawLGYZGw5s4JWOr/DiPcl7dAcq/piYmGSv\nBTKeYCgfFRVF//79gyaerJZP3O4VVU3xAeRJbZs3D5y2gYVuz/sBfT3KDANauz3fDpQGBuBcQewG\nDgCngS9TOIea5F5//fVAh5Ahf/2leuutqi1aqJ486b/zBKpeYo7FaMNRDfXOL+/U/Sf2BySGtOS0\nz0t2CPU6cX13pvjdndbtox9FZLaIPC4iEd6lmIusB64TkQgRyQs8CszxKDMH6AggIvWA46p6UFVf\nUtVyqnoN0Br4XlU7ZiIGE+S2b4d69aB+fZg+HS6/PNAR+db0rdO5eeTNPHD9Ayxqv8jGHpigl+rt\nI1WtLSLXAE2Aj10Nv8uBBcAyVT2f1oFVNU5EegOLgNzAKFXdJiI9XduHq+p8EWkqIjtwrga6pHa4\nDL8zE/QWL4Z27eDdd6FLav/nc6gzsWf4v4X/x+Ldi5nbdi51ytQJdEjGeCXNNgVV3Y3TTXSo69f+\nLThJ4i0R+UtV0+wXoqoLcJKI+2vDPZ73TucYy4BlaZUxF8sJ87YMGwb9+8NXX8Ftt2XPObOrXrYc\n2kLraa2pcWUNNvXcRKFLfdha7gc54fOS3cK5TtKd+yjVHUXKqupeH8eT0Rg0s/GbwIiPh2efdcYf\nzJ0LFSsGOiLfUVU+X/c5/Zf1Z9Ddg+hwUwcbe2CCUlpzH2W691GgE4LJeU6ccEYknz8PP/4IRYsG\nOiLfOXLmCI/NeYw9J/awsuvKoOhqakxmhNB0YiaYxcRAw4ZQrhwsWBBaCSEqJorqw6tTsVhFVnVd\nZQnB5GhpJgXX3EMDsysYE5p+/BEaNIBu3ZwpK/LkCXREvhGXEMer379Km+ltGHn/SAbePZBLL7k0\n0GEZkyXpNTTHi0gjsZv3JpMmTYJnnnHWTw6l+Yv+OP4HbWe0pUCeAmzquYnSl5cOdEjG+IQ3t4+i\ngdki0kFEWroeD/k7MJN5wTBEPyHBme76pZfg+++DIyH4ql6+/uVrbh55My2ub8HC9gtzfEIIhs9L\nsAnnOvEmKeQDjgK3A/e5Hvf7MyiTNYH+QJ896zQof/edsyBO1aoBDSdJVuvl9IXT9PimB/2W9GNe\n23k83/B5cknOb5YL9OclGIVznXizRnPnbIjDhIiDB6F5c7j2WmcthHz5Ah2Rb2w5tIVHpz1K7atq\ns6nnJgpearO5m9CU7s8cEbleRJaIyC+u5zeJyCv+D83kNJs3Q926zq2iiRNDIyGoKkPWDuGOL++g\nX6N+jH9wvCUEE9K8GacwEmcK62Gu5z8Bk4G3/BWUyXm++Qa6doUhQ+DRRwMdjW/8feZvus7uyv6T\n+1nVdRXXXXFdoEMyxu+8uSGaX50FcADX1HoQ67+QTE6iCoMGQc+ezgjlUEkIS3cvpcbwGlx/xfWs\neswSggkf3lwp/CUiSZMRiMjDONNZmyCVXfO2XLgATz4Ja9c6ayCUL58tp800b+olLiGON6LeYNSm\nUYxpPoZ7Kt7j/8ACLJzn+UlNONdJunMfici1wAigPnAcZ42Ddqoa4/fo0mHDJwLn6FF4+GEoUMAZ\ni1AwBG6zxxyPoe30thS6tBDjWoyj1OWlAh2SMX6R1txH3tw+SlDVO4CSwA2q2hBbMzms/fabswZC\nzZowa1ZoJISvfvmKOiPr0LJyS+a3m28JwYQtb64UNqlqDY/XNqhqLb9G5gW7Ush+33/vjEF46y3o\n3j3Q0WTd6Qun+e/C/xL1RxSTW06m9lW1Ax2SMX6XqVlSRaQycCNQ2DWCWXAWuymEM6DNhJmRI+GV\nV2DyZLj99kBHk3WbD26m9fTW3HzVzWzssdG6mhpD2g3NlXBGLhfm4hHMJ4EQ+I1ovBUfDy+84HQ7\nXb4cKuXwSUATxx7874f/8eHdH9KhWodAh2RM0PDm9lEDVV2VTfFkiN0+SllUVJTPek/ExztLZh46\n5KyhXKyYTw4bEFFRUVSpU4Wus7ty4NQBJrecTMViIbTKTyb58vMSKkK9TrLa0LxJRHqLyOciMkZE\nRovIaB/HaHzIV/O2JCQ4010fOeKsgZCTEwLAmJljqD6sOtdfcT0ru660hOASzvP8pCac68SbpDAe\nKIWzNnMUUA445c3BRaSJiGwXkd9FpG8qZQa7tm8WkRqu1/KJyBoRiRaRrSLyjlfvxviMKjz9NPz+\nu9PDKCdPWREbH8vLS15mxrYZjG4+mg/u/oC8ufMGOixjgpI3SaGiqr4KnFLVcUBToG56O4lIbmAI\nTjK5EWjjarx2L9PUdfzrgB7AUABVPQc0VtXqwE1AYxFp5P3bMlmhCi++6AxImzfPGYuQU+0+tptb\nx97KxoMb6Vm7J3dfe3egQzImqHmTFC64/vuPiFQFigAlvNivDrBDVWNUNRaYAjT3KPMAMA7ANZVG\nEREp5Xp+xlUmL5AbZ/pukw3eegvmz4dFi6Bw4UBHk3lTf55K3S/q8siNjzCv7Twuz3t5oEMyJuh5\nNSGeiBQDXgHmAJcDr3qxXxlgj9vzvSS/wkipTFngkOtKYwNwLTBUVbd6cU6TRR9+COPHww8/wBVX\nBDqazDl94TRPL3ia5X8uZ0G7BdS6KuBDaozJMbxZT2Gk689lwDUZOLa33YI8W8DVdd54oLqIFAYW\niUikqkZ57uzeQyAiIoKIiAgiIyNT7DkQFRWVYgNSqJVP/Dujx3/22ShGjYqiSxcYNiz98sHyft3L\nT5k7hWlbp1G2UFlaVmzJNyO+4WTkyRT3Ccb4A1G+SJEiyV4LZDzBUD4mJob+/fsHTTxZLZ+43Rve\ndEndCawGlgPLVfUXrw4sUg/or6pNXM/74UyZ8Z5bmWFAlKpOcT3fDtymqoc8jvUqcFZVB3q8bl1S\nfWTCBKcdISoKKubATjmqyqdrP+XNH97k43s+pt1N7QIdkjFBK1Mjmt38B+e2TyNgoIhcD2xR1Rbp\n7LceuE5EIoD9wKNAG48yc4DewBRXEjmuqodEpDgQp6rHReQy4C7gDS9iNZkwYwY89xwsWZIzE8Jf\np/+iy+wuHD59mNWPrebaYtcGOiRjcixvGprjcNZPiAcSgMPAoTT3AFQ1DucLfxGwFZiqqttEpKeI\n9HSVmQ/sEpEdwHDgCdfuVwLfi0g0sAb4RlWXZOidGa8sXAiPP+40LP/nP4GOJuOW7FpC9eHVqVKy\nCiu6rrCEYEwWeXP76AzOamsfAktU9e/sCMwbdvsoa5Ytc6a/nj0bGjQIdDQZExsfy+tRrzNu8zjG\nNh/LXdfeFeiQjMkx0rp95E1SaA7cAtyMc8WwCvhBVRf7OtCMsqSQeWvWwH33wZQpcMcdgY4mY3Yf\n202b6W0odlkxxrYYS8kCJQMdkjE5SpamuVDV2ar6HNATmA90Bub6NELjU+n1Mti8GR54AMaOzXkJ\nYcrPU6j7RV1aV2nNvLbzMpQQwnnqgrRYvSQXznWSblIQkemuHkiDgfxAB6CovwMzmZfWB3r7drj3\nXhgyBJo1y76YsurUhVN0nd2V16NeZ2H7hfy33n8RydhaT+H8Dz0tVi/JhXOdeNP76F1gk6vh2ORg\nu3bBXXfBO+/AI48EOhrvbTqwidbTW9OwXEM29NhgI5ON8SNvBq+ty45AjH/t3Qt33gn9+kGnToGO\nxjuqyidrPmHA8gF80uQT2lT17NFsjPE1b64UTA53+LCTEHr1gieeSL98MPjr9F90nt2Zv8/8zepu\nq6lQtEKgQzImLHgzTsHkYEePOreMHn0Unn8+0NF4J3HswU0lb2JFlxWWEIzJRuleKYhILZLPY/QP\n8Ie1MwSnxLlOTp50GpXvvBNc07gEtdj4WF5b+hpfbvmScS3GcWeFO316/FBeSSsrrF6SC+c68Wac\nwmqgFrDF9VJV4BectZt7qeoiv0aYdmw2TiEVZ844CaFyZRg6FDLYUSfb7Tq2izbT21A8f3HGNh9L\niQLezM5ujMmMrC7HuR+orqq1VLUWUB3YhTMf0fu+C9P4yvnz0LIllC8Pn38e/Alh8k+TqfdFPdpW\nacvcNnMtIRgTQN40NF/vPjOqqm4VkRtUdaeI2M/0IBMXB23awGWXwZgxkCuIW41OXTjFUwueYtWe\nVSxqv4gaV9YIdEjGhD1vvjJ+EZGhInKbiESKyOfAVhG5FGfaCxNEnn/euXU0eTJcEsR9yzYe2EjN\n4TXJRS429NhgCcGYIOFNm0J+nNlLG7peWgl8DpwDCqjqSb9GmHZs1qbgZulSaN8etmwJ3lXTVJWP\nV3/MgBUDGNxksI09MCYAstqmUFlVB6rqg67HQOB2VU0IZEIwFzt5Erp2hREj4KefogIdTooOnz7M\nfZPvY+ovU1nTbU22J4RwnrogLVYvyYVznXiTFEaKSNXEJyLSBnjNfyGZzHj2WWdyu2bNgvMDvXjX\nYmoMr0G1UtVY3mV5QMYeBGO9BAOrl+TCuU68uev8MDBNRNriTKHdEafnkQkSCxbAt986t42CTWx8\nLK8ufZUJWybwZYsvuaNCDpuW1Zgw483cR7tcVwezgD+Ae1T1jN8jM145ehS6d4fx46FQoUBHc7Gd\nR3fSdkZbSuQvwaaem6yrqTE5QKpJQUR+8nipGM7tpjWuBt6b/BqZ8cpTTzljEho3DnQkF5v00ySe\nWfgMr976Kk/VeSrD01wbYwIjrSuF+7MtCpMp06bBunUQHR3oSP516sIpes/vzeq9q/muw3dUL109\n0CEZYzIg1YZmVY1J6+HtCUSkiYhsF5HfRaRvKmUGu7ZvFpEartfKichSEflFRH4Wkacz/O5C2KFD\n0Ls3jBsH+fNfvC1Q87Ykjj3ILbnZ0GND0CWEcJ7PJi1WL8mFc52kO04hSwcXyQ38CtwJ7APWAW1U\ndZtbmaZAb1VtKiJ1gU9UtZ6IlAZKq2q0iFwObABaeOwbluMUVOHBB515jd55J9DRQIIm8MnqT3hn\nxTsMvncwrau0DnRIxpg0pDVOwd9jXusAOxKvLERkCtAc2OZW5gFgHICqrhGRIiJSSlUPAgddr58S\nkW3AVR77hqXx451V1KZODXQkztiDzrM6c+zcMdZ0W8M1Ra8JdEjGmCzw98w4ZYA9bs/3ul5Lr0xZ\n9wIiEgHUANb4PMIcZs8eeO45+PJLuPTSwMby3c7vqDG8BjVK1+CHzj9YQjAmBPj7SsHbezuelzFJ\n+7luHU0DnlHVU547ut/7i4iIICIigsjIyBTvCUZFRaU4KCWnlF+6NIpu3aKoUgVmzXIegYjnQvwF\nXvn+FcbMHEPTPE3JcyIPby9/22fHt/JW3sr7tnzidm/4u02hHtBfVZu4nvcDElT1Pbcyw4AoVZ3i\ner4duE1VD4lIHmAusEBVP07h+GHVpjBsGIweDatWBW6yux1Hd9BmehtKX16aMc3HUDx/8cAEYozJ\ntKzOfZQV64HrRCRCRPICjwJzPMrMwRklnZhEjrsSggCjgK0pJYRws3MnvPqqc9sovYTgryH6E7dM\npP6o+nS8qSNzWs/JcQkhnKcuSIvVS3LhXCd+TQqu5Tp7A4uArcBUVd0mIj1FpKerzHxgl4jsAIbj\nzMgKzqys7YHGIrLJ9Wjiz3iDVXw8dO4ML70EN9yQfnlff6BPnj9Jx5kdeWv5WyzusJin6ubMwWjh\n/A89LVYvyYVznfj9JoSqLgAWeLw23ON57xT2W4H/r2RyhI8/dhbLeeaZ7D/3+v3raTO9DZFXR7K+\n+3oK5C2Q/UEYY7JNEC/DYgC2bnXGIqxdm72rqCVoAh/9+BHvrXyPIU2H0Oo/rbLv5MaYgLGkEMRi\nY6FjR3j7baiQjTNNHzx1kE6zOnHy/EnWdl9LRJGI7Du5MSag7PZMEHvnHSheHHr0yL5zLtqxiJrD\na1Lnqjr80OUHSwjGhBm7UghSGzfCkCGwaRNktE03M/O2XIi/wMtLXmbKL1OY+NBEGl8TZNOu+kA4\nz2eTFquX5MK5Tvw6TsHfQnWcwvnzUKsWvPiis+ayv/1+5HfaTG9DmUJlGPXAqBzX1dQYkzGBHKdg\nMqFfP6hUCdq18/+5xm8eT4PRDehSvQuzHp1lCcGYMGe3j4LM55/D3LnOqGV/DgU4cf4ET85/kg37\nN7Ck4xJuKmVrJhlj7EohqMyY4fQ0WrjQaWD2l3X71lFzeE0uu+Qy1nVfZwnBGJPErhSCxIoV8Pjj\nTkLwV/fTBE1g0KpBfLDqAz5r+hmP/OcR/5zIGJNj2ZVCENi61VlneeJEqFkz68dLaYj+wVMHaTKh\nCbN+ncW67uvCMiGE89QFabF6SS6c68SSQoDt3Qv33gsDB8Jdd/nmmJ4f6IU7FlJzeE3qla3Hss7L\nuLrI1b45UQ4Tzv/Q02L1klw414ndPgqg48edhPDEE9Chg++PfyH+Ai8teYmpv0xlUstJREZE+v4k\nxpiQYkkhQM6fd9ZZbtwYXnjB98dPHHtQtlBZontGc0X+K3x/EmNMyLHbRwGQkODMaVS8OHz0kW+7\nnqoqmw9upsHoBnSu3pmZj860hGCM8ZpdKWQzVXj2WTh4EBYtgty5fXfsE+dP8MS8J1jx5wqWvGFj\nD4wxGWdXCtls0CD47jtnfeV8+Xx33LX71lJjeA0K5CnA+D7jLSGkIJzns0mL1Uty4VwnNvdRNpo0\nyZnPaNUqKFvWN8dM0AQGrhrIwFUD+bzZ5zx848O+ObAxJmSlNfeR3T7KJkuWwP/9n/NfXyWEAycP\n0HFWR87GnmVd93Vh29XUGOM7fr99JCJNRGS7iPwuIn1TKTPYtX2ziNRwe320iBwSkZ/8Hac/RUdD\nmzbw9ddQpYpvjrng9wXUHFGTBmUbENU5yhKCMcYn/HqlICK5gSHAncA+YJ2IzFHVbW5lmgIVVfU6\nEakLDAXquTaPAT4FvvRnnP4UEwPNmjkT3d16a9aPdz7uPP2W9GPa1mlMaTmF2yJuy/pBjTHGxd9X\nCnWAHaoao6qxwBSguUeZB4BxAKq6BigiIqVdz5cDx/wco98cOQJNmjjtCA/74Fb/b0d+o8HoBuw+\nvptNPTdZQjDG+Jy/k0IZYI/b872u1zJaJsc5cwbuvx9atICnnsrasVSVsdFjaTi6Id1qdGNGqxlp\njj0I5yH6abF6SZnVS3LhXCf+Tgredg3ybAXPOV2KUhAX57QhVKzorLOcFacunKLdjHZ8sOoDvu/4\nPYP84SQAAAw1SURBVL1u7oWkM9otnD/QabF6SZnVS3LhXCf+7n20Dyjn9rwczpVAWmXKul7zint/\n4oiICCIiIoiMjEyxn3FUVFSK/7N9WX7p0ijmznXmNWrbFt54I2vHz5s7L1VLVuWLB75g7cq19B/a\n36/xW/nwKx8TE5PstUDGEwzlo6Ki6N+/f9DEk9Xyidu9oqp+e+AknZ1ABJAXiAYqe5RpCsx3/V0P\nWO2xPQL4KZXja7D53/9Ua9ZUPXEicDG8/vrrgTt5ELN6SZnVS3KhXieu784Uv7f9eqWgqnEi0htY\nBOQGRqnqNhHp6do+XFXni0hTEdkBnAa6JO4vIpOB24ArRGQP8JqqjvFnzFkxahSMHQsrV0LBgoGO\nxhhjMs7vg9dUdQGwwOO14R7Pe6eybxs/huZT8+bBK6/AsmVQunSgozHGmMyxEc0+sGYNdOkC33wD\nlSoFOprwnrclLVYvKbN6SS6c68TmPsoCVRg92hmHMGYM3HdfwEIxxhiv2dxHfrB7N3Tv7vQyWrwY\nqlULdETGGJN1NnV2BsXHwyefwM03w913w+rVlhCMMaHDrhQyYNs2eOwxuOQSZ/rrYGg/MMYYX7Ir\nBS/ExsLbbzsT2nXoAFFRlhCMMaHJkkI6Nm50bhWtWAEbNkCvXpAryGstnIfop8XqJWVWL8mFc50E\n+ddb4Jw96/QquvdeZ03l+fOhfPlAR+WdcP5Ap8XqJWVWL8mFc51Ym0IKVqxw2g6qVYMtW6BUqUBH\nZIwx2cOSgpuTJ6FfP5g5E4YMgQcfDHRExhiTvez2kcuiRVC1qrMOws8/W0IwxoSnsL9SOHoU+vRx\n5iwaORLuuivQERljTOCE9ZXC9OlQpQoUKgQ//RQ6CSGc521Ji9VLyqxekgvnOgnLuY8OHoQnn4Rf\nfnGmu27Y0A/BGWNMkEpr7qOwulJQddY7uOkmuOEGiI62hGCMMe7Cpk3hjz+gZ084dMhpVK5RI9AR\nGWNM8An5K4WEBKd7aa1acNttsHatJQRjjElNSF8p/PqrMwhN1RmQdsMNgY7IGGOCW0heKcTGwrvv\nOu0Fjz4Ky5eHV0II5yH6abF6SZnVS3LhXCd+TQoi0kREtovI7yLSN5Uyg13bN4tIjYzsm5LoaKhb\nF77/Htavh6eeCv4J7HwtnD/QabF6SZnVS3LhXCd++7oUkdzAEKAJcCPQRkQqe5RpClRU1euAHsBQ\nb/f1dO4cvPyys/DN0087jckREb5+VzlDTExMoEMISlYvKbN6SS6c68Sfv6HrADtUNUZVY4EpQHOP\nMg8A4wBUdQ1QRERKe7lvklWrnMbjbdtg82bo3BkkxR644SGcP9BpsXpJmdVLcuFcJ/5saC4D7HF7\nvheo60WZMsBVXuwLwDPPwNdfw+DB8PDDWY7ZGGPCmj+TgrdDjbP0m/74cWeKiiuuyMpRjDHGgH+T\nwj6gnNvzcji/+NMqU9ZVJo8X+wLw5ZfCl19mOdaQI+F8/ywNVi8ps3pJLlzrxJ9JYT1wnYhEAPuB\nR4E2HmXmAL2BKSJSDzj+/+2df4xcVRXHP99SoNBaQg2iCbEtNRZqauRHQyxFEKNBChKxGrWIKaSp\nELDGkqgJaIw1wWCMf6i0FGpLgBrQAjWWECxga6VuyrbsupEfbdoSyo/UpmJ/pFLi8Y97Zvb1MbM7\ns7OzM/P2fJKbue++d+7ce/buO/fH3HPN7C1J+2uQreq7IwiCIBgaTTMKZvaupFuAJ4ETgPvM7J+S\nFvn95Wa2XtKVknYAh4EFA8k2q6xBEARBoqO9pAZBEATDS9tu62rFxrdOoEG97JbUI2mbpK6RK3Vz\nGUwnks6R9Jyko5KW1CPbyTSol0K2FahJL/P9f6dH0mZJH69VthCYWdsF0pTRDmAKadF5O3Bu7pkr\ngfUevwjYUqtsp4ZG9OLXu4BJra5HC3RyBnAhsBRYUo9sp4ZG9FLUtlKHXj4JnObxK0bDuyUb2nWk\nMGIb3zqMoerlzMz9oi3OD6oTM9tnZluBY/XKdjCN6KVE0doK1KaX58zsbb/8O+lXkTXJFoF2NQrV\nNrXV8kyljW952U6lEb1A2jvyZ0lbJS1sWilHllp00gzZdqfRuhWxrUD9erkRWD9E2Y6kXV1nj8jG\ntw6kUb3MMbPXJZ0BPCXpRTPbNExlaxWN/FKiyL+yaLRuF5vZGwVrK1CHXiR9GrgBKJ3PWOT2UqZd\nRwqNbHyrRbZTGape9gKY2ev+uQ94lDQc7nQa+XuP9rZSFTN7wz+L1FagRr344vIK4AtmdqAe2U6n\nXY1CeeObpJNIm9fW5Z5ZB1wPkN34VqNspzJkvUg6VdL7PH088Dmgd+SK3jTq+XvnR1Cjva2UOE4v\nBW4rUINeJH0YWAtcZ2Y76pEtBK1e6a4WgM8DL5FW+3/gaYuARZlnfuX3XwDOH0i2KGGoegHOJv1a\nYjvwjyLpZTCdAB8kzQW/DRwAXgUmjPa2Uk0vRW4rNerlXmA/sM1D10CyRQuxeS0IgiAo067TR0EQ\nBEELCKMQBEEQlAmjEARBEJQJoxAEQRCUCaMQBEEQlAmjEARBEJQJoxC0DN8ENOKboiRdI+ncYcpr\nq6QTc2m7JU0apvwPDUc+QVArYRSC0cgXgRn1CEg6oULaVGCvJY+ZWYZz88978pLUrj7LggIQRiFo\nCySdLalb0gXuZuFhSX2S1kraIumC3POzJP3B49dIOiJprKRxknZ6+kJJXZK2S/q9pFMkzQauBu7y\nA2SmSpom6Qnv9W+UNN3lV0laJmkL8LMKxb4CeGKAOp3i+d7o13f4AS2bJD2UP9jGn5nqB9/0SFqa\nSb/M5R4H+iT9WNLizP2fSvp2Lq/xkv7k9e+V9BVP/4zrukfSfe6yoVS+Ln92eSafZyX90vXVK2lW\ntToHBaDVW6ojjN5AOqykF5gOdAMzPf024G6Pf4zk7//8nOxYYKfHf07yez8buBR40NMnZZ7/CXCL\nx38LXJu5twH4iMcvAjZ4fBXJt42qlP8xYEqF9F3AZOApkv8cgFkklwknkVxJvAx8t4LsuozMzcBB\nj18GHAIm+/Vk4HmPjyG5XTg9l9eXgHsy1xOBcSR3FqX6rgYWe/z0zLP3A1d5/BlguccvAXpb3XYi\nNC/ESCFoNR8gvVy/bmal9YWLSQeYYGZ9QE9eyMzeBXZKOof0wv0F8ClgDlBy8TzTe9c9wHyOnzIS\ngKQJpJO2HpG0DVhG8gkEaermEfO3YRbvXZ9lZrsr1EnA48BKM3sgU6fHzOwdMzsE/LFUhhyzgTUe\nfyB3r8vM9nj99wD7JX2C5LCu2/q9eZboAT4r6U5Jc8zsPyQDvMv6Hb2tJukN4HIflfUAl3O8vtb4\n924CJkqaWKHsQQGIucmg1fwb2EPqgb6YSa/lrIyNpONHj5F6+6tJvebb/P4qkuvjXknfJPW2S5Re\n9GNInmTPozJHqqRfQr/xyWPAX0nO09Zk0rJ1GspZIIdz1/cCC4AzgZXvKYTZK0pndM8FlkraQDJW\nWUrG8WTgN6QR2V5JPyKNKqoRTtMKSowUglbzDnAtcL2kr3naZqA0/z0DmFlFdhPwHeBvZvYv4P3A\ndB9dQJqmedN/HXQd/S+yg6SpFLz3vEvSPP8+KXNQ+wAMuJ4A/BA4IOnXmTpdLelkH53MpfKLdTPw\nVY/PH6QMj3o5LgSezN+U9CHgqJk9SJpiO4/k4XOKpGn+2DeAZ0kGwEijjwnAl7NZkdxEI2kOyYge\nHKRsQYcSI4Wg1ZiZHZF0FemEr4OkHutqSX2k0UMfyb1zni7S9NNGv36B1GsucQdprWGff07w9N8B\nKyTdCswjvXzvlnQ76UD2NfRPWVXrEV8K3F6tTl6xxZJWSrrTzL4vaZ3n+xZpLaVSnRYDD0n6HqlX\nn/3+48piZsckPQ0cqDTFRTKmd0n6H2k09S0z+6+kBaTpsrEkHS7zvFaQXGW/SdJX9nuPSuomvTNu\nqFLvoACE6+yg7ZA0BjjRX2DTSAu2H/V1hJYj6SzSwuvcOuXGm9lhSacCfwEWmtn2BsoxBngemGdm\nO4eaTw3f8wywxMy6m/UdQfsQI4WgHRkPPO3TPgJuaheDAGBmr5Gmf+rlHp8OGwesatAgzCAtVq9t\npkEIRh8xUgiCIAjKxEJzEARBUCaMQhAEQVAmjEIQBEFQJoxCEARBUCaMQhAEQVAmjEIQBEFQ5v+Y\nxUkNBVmMbwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c30128>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum amount of air required is 2.2941 cubic m/kg dry soap\n",
+ "\n",
+ "\n",
+ "Illustration 5.2 (c)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmczdX/wPHX20QiW9nK0pC1iFBEyyhFijZf8pVCZakp\n35+xplBKJUoiS9miUpYikX2ELNl3QmNfErKMZZb374/Pnekas9xZ7tw7c9/Px+M+zL2f8/l83nPc\nue/7OedzzhFVxRhjjAHI4esAjDHG+A9LCsYYY+JZUjDGGBPPkoIxxph4lhSMMcbEs6RgjDEmniUF\n49dEpI2ILHV7HisiZX0ZU1JEZISIvOnrOFIiIreJyO8elGsiIpMzIybjPywpGL8jIhEi8qAXjz9e\nRPqn8xhXJCsAVe2kqu+mL7okzxUjImfdHvcnUbaCiMwQkeMi8reI/CIiFRIU6w98lNJ5VfUn4HYR\nqZoBv4bJIiwpGH/k0xGVInKNL8+fhOWqms/t8WsS5QoAPwIVgGLAamBG3EYRuQkIcZXxxLdA+zRH\nbbIcSwomyxKRcBF50e15/Ld3cXwiIsdE5B8R2SQit4tIe+C/QHfXN+4ZrvIRItJdRDYBZ0UkSER6\nishuETkjIltF5ElX2crACOAe1zFOul6/4gpERF4WkT9c39hnuD6Q47bFikgHEdklIqdEZFhKv64n\ndaKqv6vqOFU9rarRwBCgoogUchV5GFirqpfdYiklItNdVxcnROQzt0OGA495cm6TPVhSMFmZkvRV\nxSPAfUB5VS0A/Af4W1VHA18DH7q+cT/hts+zwKNAQVWNAXYD96pqfuBtYJKIFFPV7UBHYIXrGDck\njMfV/DXAdd6bgH1Awvb5x4BawB1AcxFpmMzveaeI/CUiO0XkTREJSrl6ALgfOKKqp1zPqwI74za6\njjML+BO4BSiRIM4dQLCIXO/h+UwWZ0nBZFdRQD6gsojkUNWdqnrUbXvCb94KDFXVQ6p6CUBVp8bt\no6rfA38AtZPYP6FWwBhV3eD6Vt4L58qitFuZD1T1jKoeABYD1ZM41q/A7apaBHgGaAl0S+H8iEhJ\nYBjQxe3lAsA5t+d34yStbqp6QVUvqepyt+1nXf8WTOl8JnuwpGCyJVVdhPOBOBw4JiKjRCRfCrsd\ncH8iIs+LyHpX884poApwo4chxF0dxMVzHvgb55t4HPckFQkk+m1cVf9U1X2un7cA7wDNkju5iBQB\n5gHDVfU7t02ncJJlnFLAPlWNTeJQcWVPJ3c+k31YUjBZ2Xkgr9vz4u4bVfUzVa0F3IbT8Rr37Tqp\nJqf410XkFmA08Cpwg6oWArbw7xVCSp3hh4Fgt+PlxUkoh1LYz1NJXqm4+g/mAT+q6vsJNm/CqYs4\nB4DSyTRHVQYiVPVcEttNNmNJwWRlG4CnReQ6ESkHvMi/bfq1RKS2iOTE+RZ+EYhx7XcMSGmsQ17X\nsU4AOUSkLc6VQpxjQEnX8eMI/35Yfwu0FZFqInItTv/CSlXdn8T5kvuQf1REirl+rgS8SRJ3D4lI\nfmAusExV30ikyAKghojkcj1fBRwBPhCRPCKSW0TqupV/AJidVGwm+7GkYPxdws5k958/AS7jfECP\nAya5bcuP803/JBCB8+Eed2/+GOA2V7PQ9ERPqroNGAyswGnmqQIscyuyENgKHBWR4wljVdWFwFvA\nNJyrhjI4HdmJ/R6J/Z7uHgQ2isg54GfXMQfEbRSR2SLS0/X0KZzO67ZuYxrOuPoXUNVjwCLgSdfz\nWKAJUA7Yj3Pl0Nzt3M8Co5KIy2RD4s1FdkSkEc4tcUHAl6r6YSJlhuLc8REJtFHV9a7XewHPAbHA\nZqBtXAegMSbtXLfUTlDVu1Mo1wRoparPJlfOZC9eSwquNsqdQAOcdtTfgZau2/niyjQGQlW1sYjU\nBj5V1ToiEozzbaayql4Ske+A2ao6wSvBGmOMAbzbfHQ3sFtVI1Q1Cufe5ycSlGkKTABQ1VVAQVfb\n6RmcWwrzuEaX5iHjOuiMMcYkwZtJoQRX3uJ3kCtvx0uyjKqexGnP3Y/THntaVRd4MVZjjDF4Nyl4\n2i511V0XInIr8D+cW/puBq4XkVYZF5oxxpjEeHPir0M4A2PilMK5EkiuTEnXayHAb6r6N4DrDpG6\nONMTxBMRn06cZowxWZWqJnobtDevFNYA5UUk2HVPdAtgZoIyM4HnAUSkDk4z0TGcDuo6rvvPBaez\neltiJ1FVeyR4vPDCCz6PwR8fVi9WL1YnziM5XrtSUNVoEQnFGUgThDMPzHYR6eDaPkpVZ4tIYxHZ\njTM6ta1r2wYR+QonscQC63DuOTceiIiI8HUIfsnqJXFWL1cL5Drx6rzxqjoHmJPgtVEJnocmse9A\nYKD3ojPGGJOQjWjOhoKDg30dgl+yekmc1cvVArlOLClkQ4H8hk6O1UvirF6uFsh14o/LDqab0zcd\n2N5++21fh+CXkqqXlDrfjAkU2TIpgP2RG88F+peIkJAQX4fgdwK5Trw6IZ63iYgmFr+IWFIwHrP3\niwk0rvd8po9TMMYYk8VYUjDGGBPPkkI2sn//fvLlyxffFBISEsKYMWMA+Prrr2nYsGF82Rw5crB3\n716Pj51wf19I+PsZYzKeJQUfCA4OJk+ePOTLly/+8frrr6f7uKVLl+bs2bPxHaciEv9zq1atmDt3\nbpqPnd79U8M9mblL+PsZYzKeJQUfEBFmzZrF2bNn4x9Dhw71dVhJiomJSblQBnJPZsb7wsPDfR2C\n3wnkOrGk4GdiY2Pp2rUrRYoU4dZbb2X48OHkyJGD2NhYwLnKWLhwYXz5fv360bp1a8CZr8W9rLvx\n48dz3333XfHazz//zK233kqRIkXo3r17fLPM+PHjqVevHl26dKFw4cL069fviv0TO4/7t3v3/QsV\nKkS5cuX47bffGDduHKVLl6ZYsWJ89dVXqa6bhOcNCQmhT58+3HvvveTPn5+GDRvy999/x5dfuXIl\ndevWpVChQlSvXp0lS5ak+pyBIJA/AJMSyHViScFHkmoXHz16ND///DMbNmxgzZo1TJ069YpvzQm/\nRafnG/WPP/7I2rVrWbduHTNmzGDs2LHx21avXs2tt97K8ePH6d27d4rHShjX6tWrqVatGidPnqRl\ny5Y0b96cdevWsWfPHiZNmkRoaCiRkZFpjj3Ot99+y/jx4zl+/DiXL19m0KBBABw6dIjHH3+cPn36\ncOrUKQYNGsQzzzzDiRMn0n1OY7KzgE0KIhnzSAtV5cknn6RQoULxj7hv2d9//z3/93//R4kSJShU\nqBBvvPFGsh2r6el07dGjBwULFqRUqVL873//49tvv43fdvPNN/Pqq6+SI0cOcufOnepjlylThhde\neAERoXnz5hw+fJg+ffqQM2dOHn74YXLlysXu3bvTHDs4iaht27aUK1eO3Llz07x5czZs2ADApEmT\naNy4MY0aNQKgQYMG1KpVi9mzZ6frnMZkd9l2RHNKfHkDi4gwY8YMHnzwwau2HTlyhFKl/l13qHTp\n0l6LI+F5Dh8+nOi2tChWrFj8z9dddx0ARYoUueK1c+fOpescAMWLF0/0mPv27WPKlCn89NNP8duj\no6MTrXNjzL8CNin4q5tuuon9+/fHP3f/GSBv3rycP38+/vnRo0fTfK79+/dTuXLl+J9LlPh3Ce3k\nmqXy5s0LQGRkJNdff3264/CG0qVL07p1a0aPtmU4jEmNgG0+8rWkmn2aN2/O0KFDOXToEKdOneKD\nDz644gO6evXqTJ48mejoaNasWcO0adPS3K8waNAgTp8+zYEDBxg6dCgtWrTwaL8iRYpQokQJJk6c\nSExMDGPHjmXPnj1piiEpUVFRXLx4Mf4RHR2daLmk6vG5557jp59+Yt68ecTExHDx4kXCw8M5dOhQ\nhsaZHQTyPD9Jyep1EhEBCb5PesySgo80adLkinEKzzzzDAAvv/wyDRs2pFq1atSqVYtnnnnmig++\n/v37s2fPHgoVKkS/fv1o1arVFcdNKkEkdpvnE088Qc2aNbnzzjt5/PHHefHFF5Msm/C1L774go8+\n+ojChQuzbds26tWrl+y5Upu4OnXqRJ48eeIf7dq1S/G47ttLlizJjBkzGDBgAEWLFqV06dIMHjw4\n0TuzAl1W/wD0hqxWJ1FRsHgxdOsGt98Od98NS5em7Vg2IZ6fi4iIoGzZskRHR5Mjh+Vwb8hO7xcT\nOI4cgTlzYPZsWLAAypeHxx6Dxo2hVi1I7uMiuQnxrE/BGGOygJgYWL3aSQKzZ8PevfDII9CkCQwf\nDm73dqSLV5OCiDQChgBBwJeq+mEiZYYCjwKRQBtVXS8iFYHJbsXKAm+pqv8O+/UiG91rTGD6+2+Y\nO9dJAnPnwk03OVcCn3wC99wDOXNm/Dm91nwkIkHATqABcAj4HWipqtvdyjQGQlW1sYjUBj5V1ToJ\njpPDtf/dqnogwbZs33xkvM/eL8ZfqMKGDf9eDWzeDPXrO4ng0Ucho+5Q99V6CncDu1U1QlWjcL75\nP5GgTFNgAoCqrgIKikjCi6AGwJ6ECcEYkzECeUqHpGRmnZw5A9Onw0svQYkS0Lw5/PUX9O0Lx4/D\njBnQoUPGJYSUeDMplADcP8gPul5LqUzJBGWeBb7J8OiMMYAlhcR4s05UYft2GDwYHnzQSQSjRkHV\nqrBkCfzxBwwZ4vQXpGEygXTzZp+Cp9fjCS9h4vcTkVxAE6BHRgVljDGZLTISwsOdJqGff4boaOdO\nof/9z0kMrjGgfsGbSeEQ4D5XQimcK4HkypR0vRbnUWCtqv6V1Enc7ycODg4mODg4bdGagNavX7/4\nn0NCQhK9Tz08PDzRb5BZvXxERMRVr/kyHn8oHx4eHv+eSOvx//zz3ySwdCmULRtOkSLhNGoERYs6\nc6etWwf583v/943b7glvdjRfg9PR/BBwGFhN8h3NdYAh7h3NIjIZmKOqE5I4h3U0m3QL9PdLv379\nrkiKJm11cvkyLFvmJIHZs+HkSadzuHFjpymoYEHvxJoWPuloVtVoIBSYC2wDvlPV7SLSQUQ6uMrM\nBvaKyG5gFPCKW9B5cTqZp3srRpO0pUuXUqlSJa8cO7llQo3JSg4fhi+/hKefhiJFoFcvyJ8fJk50\nBpeNH+90HPtTQkiJjWj2kfHjxzN48GD27t1L/vz5eeqpp3j//fcpUKCAT+LJkSMHu3fvpmzZsl4/\nV/369WndujXt2rXz+rk8kRXeL94UHh6e5aZ18Lak6iQmBlat+vdqYN8+5yqgcWPim4WyAl/dkmqS\nMHjwYHr27MngwYM5c+YMK1euZN++fTz88MNERUVl+Pk8XU4zkD8YA5klhKu518mJEzBpEvz3v86H\nfqdOEBsLn33m3DI6eTI8/3zWSQgpsaSQyc6cOUO/fv0YNmwYjzzyCEFBQdxyyy18//33REREMGnS\nJMBp02zWrBnPPvss+fPnp2bNmmzatCn+OIcPH+aZZ56haNGilC1bls8++yx+W9y+rVu3pkCBAkyY\nMIHff/+de+65h0KFCnHzzTfz2muvxSeg+++/H4Bq1aqRL18+pkyZQnh4+BVrKgQHBzN48GCqVatG\nwYIFefbZZ7l06VL89oEDB3LzzTdTsmRJvvzyS3LkyMHevXtTrI+Ey4TmyJGDUaNGUaFCBQoVKkRo\naOgV5ceOHcttt93GDTfcQKNGja6aWtyY9IqNhbVroX9/Z9TwrbfC1KkQEgIbNzqP99+He++Fa7Lj\nREGqmmUfTvhXS+p1fzBnzhy95pprNCYm5qptL7zwgrZs2VJVVfv27as5c+bUadOmaXR0tA4aNEjL\nlCmj0dHRGhMTozVq1ND+/ftrVFSU7t27V8uWLatz5869Yt8ZM2aoquqFCxd07dq1umrVKo2JidGI\niAitXLmyDhkyJP7cIqJ79uyJf7548WItWbJk/PPg4GCtXbu2HjlyRE+ePKmVK1fWkSNHxv9OxYsX\n123btmlkZKS2atVKc+TIccXx3IWEhOiYMWNUVXXcuHF67733XhFHkyZN9J9//tH9+/drkSJF9Jdf\nflFV1R9//FHLlSunO3bs0JiYGH333Xe1bt26qf9PSMCf3y8mc5w+rTplimrbtqrFi6tWqKD6v/+p\nzp+vevGir6PLeK73fKKfq9kxz3lE3s6Y+YS0b+qaXE6cOEHhwoUTnfG0ePHirFu3Lv55rVq1ePrp\npwHo0qULgwcPZsWKFeTMmZMTJ07w5ptvAs7Sly+99BKTJ0/mkUceAaBu3bo0bdoUgNy5c1OjRo34\n495yyy20b9+eJUuW0LlzZ49jf/311+NXOmvSpEn80pfff/897dq1i1+w5+233+abb9I+3rBnz57k\nz5+f/PnzU79+fTZu3EjDhg0ZOXIkvXr1omLFigD06tWLAQMGcODAgXSvFGcCiyps2/bvdBJr1kC9\nes7YgTfegHLlfB2h7wRsUkjth3lGKVy4MCdOnCA2NvaqxHDkyJErlqwsWfLfwd0iQsmSJTl8+DAi\nwuHDhylUqFD89piYmPhmoIT7AuzatYsuXbqwdu1aIiMjiY6OplatWqmKPeHSl0eOHImP++67707y\n3Knlfp48efJcscRm586dCQsLu6L8oUOHLCmYFJ0/76w5EJcIVJ0O4rAwZ34h14KCAc/6FDLZPffc\nw7XXXsu0adOueP3cuXP88ssvPPTQQ/GvHTjw7wwgsbGxHDx4kBIlSlCqVCnKlCnDqVOn4h9nzpxh\n1qxZQOKL3HTq1InbbruN3bt3888///Dee+9l2IIzN9100xWxuv+ckUqXLs3o0aOv+L3Pnz9PnTp1\nUt7ZJCk7T3OxZ4/TIdyoERQvDoMGQZkyzt1DEREwYgQ8/vjVCSE710lKLClksgIFCtC3b19ee+01\n5s6dS1RUFBERETRv3pxSpUrRunXr+LJr167lhx9+IDo6miFDhpA7d27q1KnDXXfdRb58+Rg4cCAX\nLlwgJiaGLVu2sGbNGiDxu4jOnTtHvnz5yJMnDzt27GDEiBFXbC9WrFiql9SMO0/z5s0ZN24cO3bs\nIDIykv79+6e2WpI9R9x5OnbsyIABA9i2bRsA//zzD1OmTMmwcwWq7PQBeOmSs+BMly5QsaLTJLR+\nvTPZ3IEDzlQTcauTJTcjfXaqk9SypOAD3bp1Y8CAAXTt2pUCBQpQp04dbrnlFhYuXEhO1wTpIsIT\nTzzBd999xw033MDXX3/N9OnTCQoKIigoiFmzZrFhwwbKli1LkSJFaN++PWfOnInfN+GVwqBBg/jm\nm2/Inz8/7du359lnn72iTL9+/XjhhRcoVKgQU6dOTfQY7ty3N2rUiNdff5369etToUIF7rnnHgCu\nvfbaFOsi4XmSWwb0ySefpEePHjz77LMUKFCAqlWrMnfu3BTPYbK3gwfhiy/gqaec20LffBMKFYJv\nvnEGl40dC82aZa0BZL5kg9f81Ntvv83u3buZOHGir0NJte3bt1O1alUuX76cJZYQzQ7vl/TIatNc\nREfDypX/zit04AA0bOh0Ejds6IwsTq+sViepZctxZkFZ7UPqhx9+oHHjxkRGRtKjRw+aNm2aJRKC\nyTr273emlJ4wwVlboHFj+PxzqF07m44X8BH7q/VTKTXf+JvRo0dTrFgxypUrR86cOa/qszAmrTZu\nhOeegzvvdBajX7vW6Sd47z2nz8ASQsay5iMT8AL9/eKPcx+pOh3GH30EW7dC587Qvn3m9Qv4Y51k\npOSajywpmIBn7xf/ERUF33/v3Dp6+TJ07erMOeTBPQsmFaxPwRjj186edaagHjLEGUfw7rvOWgTW\nLZX5rMqNMT5z5IgzrUSZMrBihTPxXHi4cyeRJQTPrD28luemP8el6EspF/ZAtr1SyEqdtMYEmriF\n66dPd5qHVq1yZiM1njvwzwF6L+rNgr0LeDvkba7JkTEf59kyKVj7sDH+R9VZrvKjj5wk8OqrsGsX\nFC7s68iylrOXzvLh8g8ZsWYEr9R6hZ2hO8l3bb4MO75doGVDgTxEPzlWL4nzdr3ExMC0ac7aBG3b\nOuMLIiKgTx//TQj++F6Jjo1m9NrRVBhWgQNnDrCx40b6P9g/QxMCWFLIlvzxDe0PrF4S5616uXDB\nmXCuUiXn6qBbN9i5Ezp2hOuu88opM4y/vVd+2f0L1UdW55vN3zCr5SwmPDmBkvnTNxtxUrzafCQi\njYAhQBDwpap+mEiZocCjQCTQRlXXu14vCHwJ3A4o0E5VV3ozXmNM+p04AcOH/zvaeOxYZ5Uy6+ZL\nvc3HNtN1flciTkcwsMFAmlZs6vX+Uq9dKYhIEDAMaATcBrQUkcoJyjQGyqlqeaA94D4M9lNgtqpW\nBu4AtnsrVmNM+u3Z4/QTlC//74ykM2fCffdZQkito+eO8vLMl2kwsQGPl3+cLZ228ESlJzLlBhpv\nNh/dDexW1QhVjQImA08kKNMUmACgqquAgiJSTEQKAPep6ljXtmhV/ceLsRpj0mj1avjPf5yrggIF\nnBXNvvwSKldOeV9zpcioSN799V2qfF6FgrkLsjN0J6/Vfo2cQTkzLQZvNh+VANxXWzkI1PagTEkg\nBvhLRMYB1YC1QGdVjfReuMYYT8XGwpw5MHCg02n8f//nNBPly9g+z4ARq7FM2jSJ3ot6U7dUXVa/\nvJqyhcr6JBZvJgVP7wtNeD2kOHHVAEJV9XcRGQL0BPok3Nl9fpLg4GCCg4MJCQlJdN6S8PDwRDuQ\nslv5uJ/9JR5/KZ9wH1/H4y/lCyYxoVBi5aOjISoqhFmzQsiVy+k8/s9/IGfOrPP7elI+IiIifups\nr9d/pYJMPDORXEG5+K7Zd9QtVTdDj+/+eeAJr819JCJ1gH6q2sj1vBcQ697ZLCIjgXBVnex6vgN4\nACdRrFDVMq7X7wV6qurjCc6R6NxHxpiMdfo0jBoFQ4dClSpOMnjoIesrSI9df++i+/zubDy2kQ8e\n+oDmtzfPtEG3yc195M0+hTVAeREJFpFcQAtgZoIyM4HnXUHWAU6r6jFVPQocEJEKrnINgK1ejNUY\nk4gDB5yF7cuWhc2bnUVt5s6FBg0sIaTVicgTvD7ndeqNrUe9UvXY/up2WlRp4TezMHit+UhVo0Uk\nFJiLc0vqGFXdLiIdXNtHqepsEWksIruB80Bbt0O8BnztSih7EmwzxnjRpk3O2IKff4Y2bWDDBmdh\nG5N2l6Iv8dnqz/hw+Ye0uL0F217ZRpG8GbBMXAbLllNnG2NSTxUWLnSSwebN8PrrzkAzW9s4fVSV\nKdum0HNBT6oUrcLAhwdSqXAln8ZkU2cbY5IUHQ1TpjjJ4OJFZw2DmTNtDYOMsOLACsLmhXEh+gJj\nmo6hfpn6vg4pRcn2KYijVGYFYzKGvw3R9xdWL1c6dw4+/RRKlgxn5Eh45x3YsgXatbOEkN73yp+n\n/qTF1Bb8Z8p/aF+zPWteXpMlEgJ41tE8x+tRmAxlH36Js3pxHD0KvXs7axgsWwZNmoSzZAk8/rit\nYRAnre+V0xdP031+d2p9UYvbi9zOztCdtKnehqAcQRkboBcl+xZwNdivFZG7MykeY4yX7NgBL7/s\njDQ+fRpWrnSajUqU8HVkWV9UTBTDVg+j4rCKnLxwki2dttDngT7kzZXX16Glmid9CnWA50RkH84d\nQuDkizu8F5YxJiOowvLlTn/BihXwyivOGgZF/O+mlyxJVflp1090n9+dUgVKMb/1fO4olrU/Gj1J\nCg29HoUxJkPFxMCMGTBoEBw/Dl26wLffQp48vo4s+1h3ZB1h88I4du4YHzf8mEfLPeo3Yw3SI8mk\nICL5VfUMcCYT4zHGpENkJEyYAB9/DDfe6Iw8fvJJCMo6Tdp+7+CZg/Re1Ju5u+fSL6QfL9V4KcOW\nwvQHyf0m3wKPAetIfB6jMl6JyKRbYvOimOxdL8ePO2sYjBgBdevCuHFQr55no46zc72kVWJ1cu7y\nOQYuH8jw34fToWYHdr22i/zX5s/84LzMBq8Zk4Xt2uVcFXz3HTRv7jQTVazo66iyl5jYGMZtGEef\nxX14sMyDDHhoAKULZO3h3ekevCYihYDyQO6411T114wJzxiTWsuXO/0Fy5c7o4537oSiRX0dVfYz\nb888us7rSsHcBZnx7AzuKnGXr0PyuhSTgoi8DLwOlALW49yNtAJ40LuhGWPcuXceHzvmXBVMmgR5\ns95dj35v6/GtdJ3fld0ndzOwwUCerPRktuhE9kSKzUcisgW4C2cq6+oiUgl4X1WfyowAk2PNRyYQ\nWOdx5jl27hh9w/syfft0et/Xm053dSJXUC5fh5Xh0tt8dFFVL4gIIpJbVXeIiLVaGuNl6ek8Nqlz\nIeoCn6z8hI9XfMzz1Z5nR+gObrjuBl+H5ROeDGo/4OpT+BGYLyIzgQivRmXSxaZzSFxWqZddu5x+\ngooVnSkpli6FH3+Ee+/1TkLIKvXiDXHLYFYaXol1R9ax6qVVfNzwYzat2uTr0HwmxaSgqk+p6ilV\n7Qe8BXwJPOntwEzaBfIfeXL8vV6WL4ennnI+/IsWdTqPR43y/t1E/l4v3rJ031Jqf1mbz1Z/xtdP\nf83U5lO59YZbgcCtE0jl1NmqGu6lOIwJSNZ5nPn++PsPeizowboj63j/ofdpUaUFOcRmAoyTfYbh\nGZOFWOdx5jt54STvLHmHSZsm0bVuV75++muuy3mdr8PyO5YUjMlEf/3ldB5//jncc491HmeGyzGX\nGb56OO8ve59mtzVj26vbKJrXBnUkxZNxCq8DE1X1VCbEY0y2lHDk8dKlNvLY21SV6dun02NBDyoW\nrkh4m3BuK3Kbr8Pye55cKRQDfheRdcBYYK6ngwNEpBEwBAgCvlTVDxMpMxR4FIgE2qjqetfrETiT\n8cUAUapqazp4yOaySZwv6iVu5PGyZdCpk7OmQbFimR5GsrLj+2X1odWEzQvjzKUzjHx8JA3KNkjV\n/tmxTjzl0dxHIpIDeARoA9QCvgfGqOqeZPYJAnYCDYBDwO9AS1Xd7lamMRCqqo1FpDbwqarWcW37\nE6ipqieTOYcNXjN+J7HO4zZtrPM4M+w7vY9eC3uxZN8S+tfvzwvVXshSq55lluQGr3nU5a6qscBR\n4BjON/d5mAY4AAAgAElEQVRCwFQR+SiZ3e4GdqtqhKpGAZOBJxKUaQpMcJ1jFVBQRNy/R1lLq8ky\nIiOdgWaVKsGHHzrJYNcuePVVSwje9s/Ff+i5oCc1Rtegwo0V2Bm6k3Z3trOEkAae9Cl0Bp4H/sYZ\no9BVVaNcVw9/AN2S2LUEcMDt+UGgtgdlSuAkHwUWiEgMMEpVv0j51zEm8yXsPB471nsDzcyVomOj\n+WLtF7y95G0al2/Mpo6bKJHf1hdND0/6FG4AnlbVfe4vqmqsiDRJZj9P23WS+tO5V1UPi0gRnJHU\nO1R1acJC7m1/wcHBBAcHExISkmibYHh4eKKDUqy8lU9L+b//dpa43LEjhFatQvj1V+cqIavEn5XL\nqyp/nPyD+XvmU7paaX7p/AvVi1fPMvFndvm47Z5Itk9BRK4Btqpqqu+TEJE6QD9VbeR63guIde9s\nFpGRQLiqTnY93wE8oKrHEhyrL3BOVQcneN36FEym++03Z83juM7jV1/1v87j7Gzj0Y2EzQvj0NlD\nDHp4EI3LNw6YGUwzSpr7FFQ1GtghIrek4bxrgPIiEiwiuYAWwMwEZWbiNE3FJZHTqnpMRPKISD7X\n63lxOrk3pyGGgBTIQ/STk556iYmB6dOdielat4YGDSAiAt55J+snhKzyfjl89jDtZrSj4aSGPF35\naTZ13MRjFR7zSkLIKnXiDZ50NN8AbBWRRSLyk+uR8MP9Kq6EEgrMBbYB36nqdhHpICIdXGVmA3tF\nZDcwCnjFtXtxYKmIbABWAbNUdV6qf7sAFchv6OSkpV4CofPY398v5y+fp194P6qOqErRvEXZGbqT\nV+56hZxBOb12Tn+vE2/ypE/hrbQeXFXnAHMSvDYqwfPQRPbbC1RP+LoxmUUVpk6Fzp3hrrus89gX\nYmJjmLBxAm8tfov7b7mfte3XElww2NdhZXspJgWbBM8EmsOHnSuBnTth2jTnjiKTuRbsXUDXeV3J\nmysv05tPp3bJhDcuGm9JMimIyDmSvoNIVTW/d0IyxjdUYcwYeOMNZz2DyZPh2mt9HVVg2f7XdrrN\n78b2E9v5sMGHPFP5GetEzmRJJgVVvR5ARN4FDgOTXJtaATd7PzRjMs+ePdC+PZw5AwsWwB13+Dqi\nwHL8/HH6hfdjyrYp9Lq3F9OaT+Paaywj+4InHc1NVfVzVT3jeozg6pHJxo8E8rwtyUmsXmJinInq\nateGxo2dcQeBlhB8+X65GH2RD5Z9wG3DbyNXUC52vLqDLvd08XlCCOS/oRTnPhKRFcBw4FvXS88C\nr6pqXS/HliIbp2DSY8sWePFFyJMHvvgCypXzdUSBQ1WZvGUyvRb2osZNNfiwwYeUv7G8r8MKGMmN\nU/AkKZQBPgXiksByoLOqRmRkkGlhScGkxaVL8P77ztQUAwbASy/ZXUWZafn+5XSZ14WY2Bg+bvgx\n999yv69DCjjJJQVP7j76E2fiOmOyvJUrnauDcuVgwwYoYdPkZJo9J/fQY0EPVh9azYCHBvDfqv+1\nZTD9kP2PmIBw/jz83//BU09B377w44+WEDLLqQun6DK3C7W/rE2Nm2qwM3Qnz93xnCUEP2X/Kybb\nW7AAqlZ1JrDbssVZ+cyai7zvcsxlhqwcQsVhFYmMimTrK1t54743bF1kP2dJIRsK5CH67k6dcpqK\nXnzRmda6XbtwbrzR11H5n4x+v6gqP2z/gds/v515e+ax+IXFjHx8JMWuzzqTRAXy31CKSUFEwkSk\ni+vfuJ9fFBGbhsJPBfIbOs706VClinNn0ZYt0KiR1UtSMrJe1hxeQ8iEEPqG92V44+HMbjWb24ve\nnmHHzyyB/F7xZO6jmjhLcP6Es/bBYzgzlnYUkamJrbtsjK8cPQqhoU4i+O47Z74i4337/9nPGwvf\nYNGfi3in/ju0rd7WVj3LojxpPioF1FDVMFXtgpMkigIP4KzZbIzPqcL48VCtmjOj6YYNlhAyw9lL\nZ+m9sDd3jrqTsoXKsuu1XbxU4yVLCFmYJ1cKRYDLbs+jgGKqGikiF70TljGe+/NP6NDB6UieOxeq\nW8Om10XHRjNm3Rj6LenHI7c+wsaOGymZv6SvwzIZwJOk8DWwSkR+xGk+agJ841r8Zps3gzMmOTEx\nMGwY9O8P3bs7ax1c48k72qSZqvLL7l/oOr8rRfMW5ef//kyNm2r4OiyTgTwZvNZfRH4B6uHMmtpB\nVde4NrfyZnAmbQJh3pZt25y7inLlcpbHrFAh5X0CoV7SwtN62XRsE13ndWXfP/v46OGPaFKhSbad\nwTSQ3yueTHPxoqqOSfDaB6ra06uRecCmuQg8ly87K6ANHQrvvgsvvww57MZqrzpy9ghvLX6Ln3b9\nxFv3v0WHmh28uuqZ8b50TXMBNBORS6o6yXWw4YCNPjGZ7vffnauD0qVh/XooaU3YXnX+8nkGrxjM\np6s+pV31duwM3UnB3AV9HZbxMk+SwtPATBGJAR4FTqlqO++GZcy/IiOhTx+YNAk++QSefdZGJHtT\nrMYyceNEei/qTb3S9Vjz8hrKFCrj67BMJklu5bUb3J6+BMwAlgFvi8gNqnoypYOLSCNgCBAEfJnY\nmAYRGYqTbCKBNqq63m1bELAGOKiqTTz7lUx2snix00RUuzZs3gxFivg6ouxt8Z+LCZsXxrXXXMuU\n/0zhnlK2FmmgSe5KYR1XLscZN3DtMdfrZZM7sOsDfRjQADgE/C4iM1V1u1uZxkA5VS0vIrWBEUAd\nt8N0xrnDKZ/Hv5HJFk6fdu4o+uUXGDECHnvM1xFlbztP7KTb/G5sPr6ZDx76gOa3N8+2ncgmeUl2\n0alqsKqWcXu4P082IbjcDexW1QhVjQImc/WKbU2BCa7zrQIKikgxABEpCTQGvsRJSMZDWX2I/uzZ\nzhQV11zjjEzOqISQ1evFG05EnuCpD56i3th63Ff6Pra/up0WVVoEfEII5PeKN+/bKAEccHt+0PWa\np2U+AboBsd4KMLvKqm9oVRg40Fkr+euvnUns8ufPuONn1XrxhovRF/lo+UdUHl6ZQ5sPsSN0B93q\ndSP3Nbl9HZpfCOT3ijeH+nh6r2jCryQiIo8Dx1V1vYiEJLez+/3EwcHBBAcHExISkuh9xuHh4Yn+\nZ1t535evWzeEjh2du4pWrnTuLMpK8WeV8osXL2brX1tZsHcBxa4vRouyLTiX8xyF8xTOEvFnVvnw\n8HD69evnN/Gkt3zcdo+oaqIPIGdS2zx54PQN/OL2vBfQI0GZkcCzbs93AMWBAThXEH8CR4DzwFeJ\nnEPN1fr27evrEFLlr79U779f9cknVc+e9d55slq9ZLTf9v+mdb6so3eOvFMX7V0U/3qg10tisnud\nuD47E/3sTq75aIWIzBCRjiIS7FmKucIaoLyIBItILqAFMDNBmZnA8wAiUgc4rapHVfUNVS2lqmWA\nZ4FFqvp8GmIwfm7HDqhTB+65B6ZNg+uv93VE2c/eU3tpPqU5zac2p1OtTqxpv4b6Zer7Oizjp5Js\nPlLVWiJSBmgEDHF1/C4F5gBLVPVScgdW1WgRCQXm4tySOkZVt4tIB9f2Uao6W0Qai8hunKuBtkkd\nLtW/mfF7CxZAq1bwwQfQNqn/eZNmpy+e5r1f32PshrH8r/b/GP/kePLkzOPrsIyfS7ZPQVX/xLlN\ndITr2/59OEniXRH5S1WTvS9EVefgJBH310YleB6awjGWAEuSK2OulBXmbRk5Evr1g++/hwceyJxz\nZoV6yQhRMVGMXDOSd5e+S9MKTdnSaQs35bspyfKBUi+pEch1kuLcR0nuKFJSVQ9mcDypjUHTGr/x\njZgYCAtzxh/MmgXlyvk6ouxDVflp1090m9+N4ILBDHp4EFWLVfV1WMYPpXfuo0T5OiGYrOfMGWjZ\nEi5dghUroFAhX0eUfaw7so6weWH8df4vPm30KY3KNfJ1SCaLsvklTaaIiIB69aBUKZgzxxJCRjl4\n5iAv/PgCj33zGC2rtGRDxw2WEEy6JJsURCRIRAZlVjAme1qxAurWhZdecqasyGmzLqfbucvneGvR\nW1QbWY1S+UuxK3QX7Wu255octsqQSZ+UOppjRORescZ7k0bffAOdOzvrJ9v8RekXExvDuA3j6LO4\nDw+VfYgNHTZQqkApX4dlshFPmo82ADNEpLWIPON6PO3twEza+cMQ/dhYZ7rrN96ARYv8IyH4Q72k\nx7w987hz1J1M3DSRmS1nMvGpiRmSELJ6vXhDINeJJ0khN3ASeBB43PWwaaz9mK/f0BcuOB3K8+fD\nqlVQ1U9ugPF1vaTV1uNbefTrRwmdHco79d8h/IVwat1cK8OOn1XrxZsCuU48WaO5TSbEYbKJo0fh\niSfg1ludtRBy2/xqaXbs3DH6hvdl+vbp9L6vN52e7USuoFy+DstkcyleKYhIRRFZKCJbXc/vEJE3\nvR+ayWo2bnQWw3nsMWeWU0sIaXMh6gIDlg7g9s9vJ2/OvOwM3UnnOp0tIZhM4Unz0RfAG8Bl1/PN\nQEuvRWSypJ9+ggYNnKmv+/Sx5TLTIlZjmbRpEhWHVWT90fWsemkVgxsOptB1dv+uyTye3L+WR1VX\nxS26oaoqIlHeDctkFarw8ccweLAzQrl2bV9HlDX9uu9XwuaFESRBfPvMt9QrXc/XIZkA5UlS+EtE\n4icjEJFmONNZGz+VWfO2XL4Mr74Kq1c7ayCULp0pp00zf5zPZtffu+ixoAfrj6zngwYf0OL2zF/1\nzB/rxdcCuU5SnPtIRG4FRgP3AKdx1jhopaoRXo8uBTZ8wndOnoRmzSBvXmcsQj5bRTtV/o78m3eW\nvMPXm7+mW91udK7T2VY9M5kmubmPPOlTiFXVh4CiQCVVrYetmRzQdu1y1kCoUQN+/NESQmpcir7E\n4N8GU2l4JaJjo9n+6nZ63NvDEoLxG540H00H7lTVc26vTQVqeick488WLXLGILz7Lrz8sq+jyTpU\nlanbptJzYU9uK3Ibv7b5lcpFKvs6LGOukmRSEJHKwG1AAdcIZsFZ7CY/zoA2E2C++ALefBO+/RYe\nfNDX0WQdKw+uJGxeGOcvn2f046N5qOxDvg7JmCQld6VQAWfkcgGuHMF8FrDviAEkJga6d3duO126\nFCpU8HVEWUPE6Qh6LezFr/t+5d367/J8tecJyhHk67CMSVaSfQqqOsM1mrmJqrZ1e7yuqr9lXogm\ntTJyiH5MjLNk5rp1zh1GWTkhZNbUBf9c/Ice83tQc3RNKt1YiV2hu2h7Z1u/TQiBPKVDUgK5Tjzp\naF4vIqEi8rmIjBORsSIy1uuRmTTLqDd0bKwz3fXffztrINxwQ4Yc1me8/YceFRPF8NXDqTCsAn9F\n/sXmTpvpG9KXvLnyevW86RXIH4BJCeQ68SQpTASK4azNHA6UAs4lt0McEWkkIjtE5A8R6ZFEmaGu\n7RtF5E7Xa7lFZJWIbBCRbSLyvke/jckwqvD66/DHH84dRjZlRdJUlVm7ZlF1RFV+2PEDc5+by9gn\nxnJzvpt9HZoxqebJ3UflVLWZiDyhqhNE5BtgWUo7iUgQMAxoABwCfheRmaq63a1MY9fxy4tIbWAE\nUEdVL4pIfVWNFJFrgGUicq+qpnhek36q0LOn01y0cKEzFsEkbsPRDYTNC+PI2SMMfmQwjcs3zvTB\nZ8ZkJE+uFOLmPPpHRKoCBYEiHux3N7BbVSNUNQqYDDyRoExTYAKAqq4CCopIMdfzSFeZXEAQzvTd\nJhO8+y7Mng1z50KBAr6Oxj8dOnOItjPa0mhSI5pVbsamTpt4rMJjlhBMlufRhHgicgPwJjAT2AYM\n9GC/EsABt+cHXa+lVKYkxC8FugE4BixW1W0enNOk08cfw8SJzloIN97o62j8z7nL5+i7uC93jLyD\n4nmLszN0J53u6mTLYJpsw5P1FL5w/bgEKJOKY3s6/0TCr1bqOm8MUF1ECgBzRSREVcMT7uw+R0lw\ncDDBwcGEhIQkOndJeHh4oh1I2a183M+pPX5YWDhjxoTTti2MHOm7+L1VPuE+qTl+TGwMvcb0YsTU\nEQQXDKZ1mdZcu+xaPln2id/+vp6WL1iw4FWv+TIefygfERFBv379/Cae9JaP2+4JT+Y+2gOsBJYC\nS1V1q0cHFqkD9FPVRq7nvXCmzPjQrcxIIFxVJ7ue7wAeUNVjCY71FnBBVQcleN3mPsogkyY5/Qjh\n4VCuXIrFA8qCvQsImxdGvlz5+Ljhx9xd4m5fh2RMuiQ395En17y3A7WBe4FBIlIR2KSqT6aw3xqg\nvIgEA4eBFly9DsNMIBSY7Eoip1X1mIgUBqJV9bSIXAc8DLztQawmDaZPh65dnU5lSwj/2vbXNrrN\n78bOEzv5sMGHPF35aeszMNmeJ0khGogCYoBY4DhOO3+yVDVaREKBuTgdxWNUdbuIdHBtH6Wqs0Wk\nsYjsBs4DbV273wRMEJEcOP0eE1V1YSp/N+OBX36Bjh2df2+/3dfR+Ifj54/Td3Ffpm2fRq97e/FD\nix9s1TMTMDxpPorEWW3tY2Chqp7IjMA8Yc1H6bNkiTP99YwZULeur6PxvQtRFxiycgiDVwym9R2t\neeuBt7jhuiw+Ys+YRCTXfORJUngCuA+4C+eK4TfgV1VdkNGBppYlhbRbtQoefxwmT4aHAnx+tliN\nZfKWybyx8A1q3lyTDxt8SLkbrB3NZF/pWk/BNQdSV6ADMBtoA8zK0AhNhkrpLoONG6FpUxg/PrAS\nQmL1smz/Mup8WYdPVn7CxKcmMq35tIBLCIE8pUNSArlOUkwKIjLNdQfSUCAP0BqwlcT9WHJv6B07\n4NFHYdgweOyxzIvJH7jXy+6Tu3nm+2doNb0VnWt3ZtVLq7jvlvt8F5wPBfIHYFICuU486Wj+AFiv\nqtHeDsZ419698PDD8P778J//+Doa3zh54ST9l/Rn4qaJhN0TxqSnJnFdzut8HZYxfsOT5qPfLSFk\nfQcPQoMG0KsXvPCCr6PJfJdjLrPiwAoqDavEhegLbH1lK73u62UJwZgEbGx+ADh+3EkInTrBK6/4\nOprMpapM3z6dHgt6IKeExS8s5vaidu+tMUmxpJDNnTzpNBm1aAHduvk6msz1+6Hf6TKvC/9c/IcR\nj41g+cnllhCMSUGKSUFEanL1PEb/APusWck/xc11cvas06ncoAG4pnEJCPtO7+ONRW+w+M/F9K/f\nnzbV2xCUI4icITl9HZpfSmwenUAXyHXiyTiFlUBNYJPrparAVpy1mzup6lyvRph8bDZOIQmRkU5C\nqFwZRoyAQJid4cylM7y/9H1GrxvNq3e9Svd63bk+1/W+DssYv5OucQo48xZVV9WaqloTqA7sxZmP\nyJMptE0mu3QJnnkGSpeGzz/P/gkhOjaakWtGUnFYRY6cO8LGjht5p/47lhCMSQNP+hQqus+Mqqrb\nRKSSqu4REfua7meio6FlS7juOhg3DnJ4kvazKFVlzu45dJvfjWJ5izH7v7O586Y7fR2WMVmaJ0lh\nq4iMwFk5TYDmwDYRuRZn2gvjR7p1c5qOZsyAa7LxbQSbjm0ibF4Y+//Zz0cPf0STCk1sBlNjMoAn\nfQp5gFeAeq6XlgOfAxeBvKp61qsRJh+b9Sm4WbwYnnsONm3KvqumHTl7hDcXvcmsP2bx1v1v0aFm\nB3IGWQeyMamR3j6Fyqo6SFWfcj0GAQ+qaqwvE4K50tmz0K4djB4NmzeH+zqcDHf+8nneWfIOVUZU\n4cY8N7IzdCehd4emKiEE8tQFybF6uVog14mnazRXjXsiIi2BPt4LyaRFWJgzud1jj2WvN3SsxjJ+\nw3gqDqvItr+2seblNQx8eCAFcye+hGRyslO9ZCSrl6sFcp140urcDJgqIv/FmUL7eZw7j4yfmDMH\n5s1zmo2yk0V/LiJsXhjXXXMdU5tPpU7JOr4OyZhsL8WkoKp7XVcHPwL7gIaqGun1yIxHTp6El1+G\niRMhf35fR5MxdpzYQff53dlyfAsfNviQZrc1s05kYzJJkklBRDYneOkGnOamVa4O3ju8GpnxyGuv\nOWMS6tf3dSTp99f5v3h7ydt8t/U7etbryZT/TOHaa671dVjGBJTkrhSaZFoUJk2mToXff4cNG3wd\nSfpcjL7I0FVD+ei3j/hvlf+y49Ud3Jgnm94+ZYyfSzIpqGpERpxARBoBQ4Ag4EtV/TCRMkOBR4FI\noI2qrheRUsBXQFGcuZdGq+rQjIgpOzh2DEJD4YcfIE+eK7dllXlbVJXvt35Pz4U9qV68OsvbLafC\njRW8dr6sUi+ZzerlaoFcJymOU0jXwUWCgJ1AA+AQ8DvQUlW3u5VpDISqamMRqQ18qqp1RKQ4UFxV\nN4jI9cBa4MkE+wbkOAVVeOopZ16j99/3dTRp89uB3wibF8blmMt8/MjHPBD8gK9DMiZgJDdOwdtj\nXu8GdsdddYjIZOAJYLtbmabABABVXSUiBUWkmKoeBY66Xj8nItuBmxPsG5AmTnRWUfvuO19Hknp7\nT+2l54KerDy4kvcefI9Wd7Qih2TjuTiMyWK8/ddYAjjg9vyg67WUypR0LyAiwcCdwKoMjzCLOXAA\nunaFr76Ca7NQH+ypC6foOq8rd39xN9WKVWNH6A5aV2ttCcEYP+PtKwVP23YSXsbE7+dqOpoKdFbV\ncwl3dG/7Cw4OJjg4mJCQkETbBMPDwxMdlJJVyi9eHM5LL4VTpQr8+KPz8Pf4L8dcZuSakby39D3u\nunwXbc61IWpRFAMXDUy0vL/Fb+WtfHYoH7fdE97uU6gD9FPVRq7nvYBY985mERkJhKvqZNfzHcAD\nqnpMRHICs4A5qjokkeMHVJ/CyJEwdiz89pv/T3anqszYOYPu87tTtlBZBj0yiCpFq/g6LGMM6Z/7\nKD3WAOVFJFhEcgEtgJkJyszEGSUdl0ROuxKCAGOAbYklhECzZw+89ZbTbJRSQvD1EP01h9cQMiGE\ntxa/xWePfsYvz/3iFwnB1/Xir6xerhbIdeLVpOBarjMUmAtsA75T1e0i0kFEOrjKzAb2ishuYBTO\njKzgzMr6HFBfRNa7Ho28Ga+/iomBNm3gjTegUqWUy/vqDX3gnwO0/qE1Tb5twnNVn2N9h/U0LNfQ\nJ7EkJpD/0JNj9XK1QK4TrzdCqOocYE6C10YleB6ayH7L8P6VTJYwZIizWE7nzr6OJHFnL53lg2Uf\nMHLtSDrV6sSu0F3kuzafr8MyxqSBn7dMm23bnLEIq1f73ypq0bHRjFk3hn5L+vFw2YfZ0GEDpQqU\n8nVYxph0sKTgx6Ki4Pnn4b33oGxZX0dzpV92/0LXeV0pnKcws1rOoubNNX0dkjEmA1hS8GPvvw+F\nC0P79r6O5F+bj22m6/yu/HnqTz56+COaVmxqM5gak41YUvBT69bBsGGwfj2k9jPXG/O2HD13lLcW\nvcWMnTN48/436VirI7mCcmX4ebwpkOezSY7Vy9UCuU68Ok7B27LrOIVLl6BmTejZ01lz2ZcioyL5\neMXHfLLyE9pWb0vv+3pT6LpCvg3KGJMuvpz7yKRBr15QoQK0auW7GGI1lkmbJtF7UW/uKXkPv7/8\nO2UL+VnHhjEmw1lS8DOffw6zZjmjln3VVB8eEU7YvDByBeXiu2bfUbdUXd8EYozJdJYU/Mj06c6d\nRkuXOh3MmW3X37voPr87G49t5IOHPqD57c2tE9mYAONnd74HrmXLoGNH+OmnzL/99ETkCV6f8zr1\nxtajXql6bH91Oy2qtLCEYEwAsqTgB7Ztc9ZZ/vprqFEj/cfzdIj+pehLDPptEJWHVyZWY9n2yja6\n1etG7mtypz8IPxTIUxckx+rlaoFcJ5YUfOzgQXj0URg0CB5+OGOOmdIbWlWZsnUKlYdX5td9v7K0\n7VKGNR5GkbxFMiYAPxXIf+jJsXq5WiDXifUp+NDp005CeOUVaN06c8658uBKwuaFERkVyZimY6hf\npn7mnNgYkyVYUvCRS5ecdZbr14fu3b1/vj9P/Umvhb1Ytn8Z7z74Lq3vaE1QjiDvn9gYk6VY85EP\nxMY6cxoVLgyffOLdW09PXzxN9/ndqfVFLW4rchs7Q3fSpnobSwjGmETZlUImU4WwMDh6FObOhSAv\nfTZHxUQxeu1o3vn1HZpUaMKWTlu4Kd9N3jmZMSbbsKSQyQYPhvnznbEIub1wk4+qkqtsLqqOqEqp\nAqWY33o+dxS7I+NPlAUF8nw2ybF6uVog14nNfZSJvvnGmc/ot9+gZMmMP/76I+sJmxfG0XNHGfTI\nIB4t96iNNTDGXMXmPvIDCxfC//2f829GJ4RDZw7Re1Fv5u6ZS98H+vJSjZe4Jof91xpjUs/rHc0i\n0khEdojIHyLSI4kyQ13bN4rInW6vjxWRYyKy2dtxetOGDdCyJUyZAlUycP36c5fP0WdxH+4YeQc3\n57uZnaE76ViroyUEY0yaeTUpiEgQMAxoBNwGtBSRygnKNAbKqWp5oD0wwm3zONe+WVZEBDz2mDPR\n3f33Z8wxY2JjGLNuDBWHVWTvqb2s77CeAQ8NIP+1+TPmBMaYgOXtr5R3A7tVNQJARCYDTwDb3co0\nBSYAqOoqESkoIsVV9aiqLhWRYC/H6DV//w2NGjn9CM2aZcwx5++ZT9f5XSlwbQF+bPEjd5W4K2MO\nbIwxeL/5qARwwO35QddrqS2T5URGQpMm8OST8Npr6T/e1uNbafx1Y16Z/Qp9H+jLkjZLkkwIgTxE\nPzlWL4mzerlaINeJt5OCp7cGJewFzzq3FCUiOtrpQyhXzllnOT3OXjpLx1kdqT+hPo/c+ghbX9nK\n05WfTvauokB+QyfH6iVxVi9XC+Q68Xbz0SGglNvzUjhXAsmVKel6zSPu9xMHBwcTHBxMSEhIovcZ\nh4eHJ/qfnZHlFy8OZ9YsZ16j//4X3n47fce/Lud1lMpfih2hO9i0ahMD+g/wavxWPvDKR0REXPWa\nL+Pxh/Lh4eH069fPb+JJb/m47R5RVa89cJLOHiAYyAVsAConKNMYmO36uQ6wMsH2YGBzEsdXf/PO\nO1JQfJ8AAAuKSURBVKo1aqieOeO7GPr27eu7k/sxq5fEWb1cLbvXieuzM9HPba9eKahqtIiEAnOB\nIGCMqm4XkQ6u7aNUdbaINBaR3cB5oG3c/iLyLfAAcKOIHAD6qOo4b8acHmPGwPjxsHw55Mvn62iM\nMSb1vH5Du6rOAeYkeG1UguehSezb0ouhZaiff4Y334QlS6B4cV9HY4wxaWOjnDLAqlXQtq2zlGaF\nCr6OJrDnbUmO1UvirF6uFsh1YnMfpYMqjB3rjEMYNw4ef9xnoRhjjMds7iMv+PNPePll5y6jBQug\nWjVfR2SMMelni+ykUkwMfPop3HUXPPIIrFxpCcEYk33YlUIqbN8OL74I11zjTH/tD/0HxhiTkexK\nwQNRUfDee86Edq1bQ3i4JQRjTPZkSSEF69Y5TUXLlsHatdCpE+Tw81oL5CH6ybF6SZzVy9UCuU78\n/OPNdy5ccO4qevRRZ03l2bOhdGlfR+WZQH5DJ8fqJXFWL1cL5DqxPoVELFvm9B1UqwabNkGxYr6O\nyBhjMoclBTdnz0KvXvDDDzBsGDz1lK8jMsaYzGXNRy5z50LVqs46CFu2WEIwxgSmgL9SOHkSunRx\n5iz64gt4+GFfR2SMMb4T0FcK06ZBlSqQPz9s3px9EkIgz9uSHKuXxFm9XC2Q6yQg5z46ehRefRW2\nbnWmu65XzwvBGWOMn0pu7qOAulJQddY7uOMOqFQJNmywhGCMMe4Cpk9h3z7o0AGOHXM6le+809cR\nGWOM/8n2Vwqxsc7tpTVrwgMPwOrVlhCMMSYp2fpKYedOZxCaqjMgrVIlX0dkjDH+LVteKURFwQcf\nOP0FLVrA0qWBlRACeYh+cqxeEmf1crVArhOvJgURaSQiO0TkDxHpkUSZoa7tG0XkztTsm5gNG6B2\nbVi0CNasgdde8/8J7DJaIL+hk2P1kjirl6sFcp147eNSRIKAYUAj4DagpYhUTlCmMVBOVcsD7YER\nnu6b0MWL0Lu3s/DN6687ncnBwRn9W2UNERERvg7BL1m9JM7q5WqBXCfe/A59N7BbVSNUNQqYDDyR\noExTYAKAqq4CCopIcQ/3jffbb07n8fbtsHEjtGkDkugduIEhkN/QybF6SZzVy9UCuU682dFcAjjg\n9vwgUNuDMiWAmz3YF4DOnWHKFBg6FJo1S3fMxhgT0LyZFDwdapyu7/SnTztTVNx4Y3qOYowxBryb\nFA4Bpdyel8L5xp9cmZKuMjk92BeAr74Svvoq3bFmOxLI7WfJsHpJnNXL1QK1TryZFNYA5UUkGDgM\ntABaJigzEwgFJotIHf6/vfOPkauq4vjnWwoUWmuoQTQhtqXGQk2N/GiIpQhiNEhBIlajFiGFNFUC\n1FgSNQGNsSYYjPEPlZZCbQ1QA1igxhKCBWytlE3Zll03orRpSyg/UpuC/ZFKicc/7pnZ18fM7szO\nzs7M2/NJbua++965c+/Zu+/cH3PPhbfM7E1J+2uQreq7IwiCIBgaTTMKZvaupJuBJ4ETgPvM7B+S\nFvn95Wa2XtIVknYAh4EFA8k2q6xBEARBoqO9pAZBEATDS9tu62rFxrdOoEG97JbUI2mbpK6RK3Vz\nGUwnks6W9Jyko5KW1CPbyTSol0K2FahJL/P9f6dH0mZJn6hVthCYWdsF0pTRDmAKadF5O3BO7pkr\ngPUevxDYUqtsp4ZG9OLXu4BJra5HC3RyOnABsBRYUo9sp4ZG9FLUtlKHXj4FvN/jl4+Gd0s2tOtI\nYcQ2vnUYQ9XLGZn7RVucH1QnZrbPzLYCx+qV7WAa0UuJorUVqE0vz5nZ2375POlXkTXJFoF2NQrV\nNrXV8kyljW952U6lEb1A2jvyZ0lbJS1sWilHllp00gzZdqfRuhWxrUD9erkRWD9E2Y6kXV1nj8jG\ntw6kUb3MMbPXJJ0OPCXpJTPbNExlaxWN/FKiyL+yaLRuF5nZ6wVrK1CHXiR9BrgBKJ3PWOT2UqZd\nRwqNbHyrRbZTGape9gKY2Wv+uQ94lDQc7nQa+XuP9rZSFTN73T+L1FagRr344vIK4ItmdqAe2U6n\nXY1CeeObpJNIm9fW5Z5ZB1wHkN34VqNspzJkvUg6VdL7PH088Hmgd+SK3jTq+XvnR1Cjva2UOE4v\nBW4rUINeJH0EWAtca2Y76pEtBK1e6a4WgC8A/ySt9v/A0xYBizLP/MrvvwicN5BsUcJQ9QKcRfq1\nxHbg70XSy2A6AT5Emgt+GzgAvAJMGO1tpZpeitxWatTLvcB+YJuHroFkixZi81oQBEFQpl2nj4Ig\nCIIWEEYhCIIgKBNGIQiCICgTRiEIgiAoE0YhCIIgKBNGIQiCICgTRiFoGb4JaMQ3RUm6WtI5w5TX\nVkkn5tJ2S5o0TPkfGo58gqBWwigEo5EvATPqEZB0QoW0qcBeSx4zswzn5p/35CWpXX2WBQUgjELQ\nFkg6S1K3pPPdzcJDkvokrZW0RdL5uednSfqDx6+WdETSWEnjJO309IWSuiRtl/SIpFMkzQauAu7y\nA2SmSpom6Qnv9W+UNN3lV0laJmkL8LMKxb4ceGKAOp3i+d7o13f4AS2bJD2YP9jGn5nqB9/0SFqa\nSb/U5R4H+iT9WNLizP2fSro1l9d4SX/y+vdK+qqnf9Z13SPpPnfZUCpflz+7PJPPs5J+6frqlTSr\nWp2DAtDqLdURRm8gHVbSC0wHuoGZnn4bcLfHP07y939eTnYssNPjPyf5vZ8NXAI84OmTMs//BLjZ\n478Frsnc2wB81OMXAhs8vork20ZVyv8YMKVC+i5gMvAUyX8OwCySy4STSK4k/gV8t4LsuozMTcBB\nj18KHAIm+/Vk4AWPjyG5XTgtl9eXgXsy1xOBcSR3FqX6rgYWe/y0zLO/A670+DPAco9fDPS2uu1E\naF6IkULQaj5Ierl+w8xK6wsXkQ4wwcz6gJ68kJm9C+yUdDbphfsL4NPAHKDk4nmm9657gPkcP2Uk\nAEkTSCdtPSxpG7CM5BMI0tTNw+Zvwyzeuz7TzHZXqJOAx4GVZnZ/pk6Pmdk7ZnYI+GOpDDlmA2s8\nfn/uXpeZ7fH67wH2S/okyWFdt/V78yzRA3xO0p2S5pjZf0gGeJf1O3pbTdIbwGU+KusBLuN4fa3x\n790ETJQ0sULZgwIQc5NBq3kL2EPqgb6USa/lrIyNpONHj5F6+6tJvebb/P4qkuvjXknXk3rbJUov\n+jEkT7LnUpkjVdIvpt/45DHgryTnaWsyadk6DeUskMO563uBBcAZwMr3FMLsZaUzuucCSyVtIBmr\nLCXjeDLwG9KIbK+kH5FGFdUIp2kFJUYKQat5B7gGuE7S1z1tM1Ca/54BzKwiuwn4DvA3M/s38AFg\nuo8uIE3TvOG/DrqW/hfZQdJUCt573iVpnn+flDmofQAGXE8AfggckPTrTJ2uknSyj07mUvnFuhn4\nmsfnD1KGR70cFwBP5m9K+jBw1MweIE2xnUvy8DlF0jR/7JvAsyQDYKTRxwTgK9msSG6ikTSHZEQP\nDlK2oEOJkULQaszMjki6knTC10FSj3W1pD7S6KGP5N45Txdp+mmjX79I6jWXuIO01rDPPyd4+u+B\nFZJuAeaRXr53S7qddCD7GvqnrKr1iC8Bbq9WJ6/YYkkrJd1pZt+XtM7zfZO0llKpTouBByV9j9Sr\nz37/cWUxs2OSngYOVJriIhnTuyT9jzSa+paZ/VfSAtJ02ViSDpd5XitIrrLfIOkr+71HJXWT3hk3\nVKl3UADCdXbQdkgaA5zoL7BppAXbj/k6QsuRdCZp4XVunXLjzeywpFOBvwALzWx7A+UYA7wAzDOz\nnUPNp4bveQZYYmbdzfqOoH2IkULQjowHnvZpHwHfbheDAGBmr5Kmf+rlHp8OGwesatAgzCAtVq9t\npkEIRh8xUgiCIAjKxEJzEARBUCaMQhAEQVAmjEIQBEFQJoxCEARBUCaMQhAEQVAmjEIQBEFQ5v+r\nNVWVme/qqwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7e5c940>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Moisture content of air leaving the drier is 0.0542 kg water/kg dry air\n",
+ "\n",
+ "Total number of eqb. stages = 3\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter5_2.ipynb b/Mass_-_Transfer_Operations/Chapter5_2.ipynb
new file mode 100755
index 00000000..756e424b
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter5_2.ipynb
@@ -0,0 +1,385 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5b0eee15396b4ea69bab7ccfb1908ab0b8c6f2630bddedaada99660ed07a1ef9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5: Interphase Mass Transfer"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.1: Page 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 5.1\n",
+ "# Page: 114\n",
+ "\n",
+ "print'Illustration 5.1 - Page: 114\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "%matplotlib inline\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "# a = NH3, b = H2O\n",
+ "d = 2.54*10**(-2);# [m]\n",
+ "Yag = 0.80;\n",
+ "Xal = 0.05;\n",
+ "T = 273+26.7;# [K]\n",
+ "Kl = 2.87*10**(-5);# [kmol/square m.s.(kmol/cubic m)]\n",
+ "Sh = 40;\n",
+ "Da = 2.297*10**(-5);# [square m.s]\n",
+ "P = 1.0133*10**(5);# [N/square m]\n",
+ "Xbm = 1.0;\n",
+ "#*********#\n",
+ "\n",
+ "Ma = 18.0;# [kg/kmol]\n",
+ "# Liquid:\n",
+ "# Because of large conc. of ammonia in gas F's rather than k's are used.\n",
+ "# Molecular weight of water and ammonia are nearly same.\n",
+ "# The density of the solution is practically that of water.\n",
+ "MolarDensity1 = 1000/Ma;# [kmol/cubic m]\n",
+ "# Kl is determined for dilute soln. where Xbm is practically 1.0\n",
+ "Fl = Kl*Xbm*MolarDensity1;# [kmol/square m.s]\n",
+ "Ma = 18;# [kg-/kmol]\n",
+ "# Gas:\n",
+ "MolarDensity2 = (1/22.41)*(273/(273+26.7));# [kmol/cubic m]\n",
+ "Fg = Sh*MolarDensity2*Da/d;# [kmol/square m.s]\n",
+ "\n",
+ "# Mass Transfer Flux\n",
+ "# Th eqb. distribuion data for NH3 from \"The Chemical Engineers Handbook\" 5th Edt. p3-68:\n",
+ "# Data = [Xa,pa]\n",
+ "# Xa = NH3 mole fraction in gas phas\n",
+ "# pa = NH3 partial pressure in N/square m\n",
+ "Data = [(0 ,0),(0.05 ,7171),(0.10, 13652),(0.25 ,59917),(0.30 ,93220)];\n",
+ "\n",
+ "X = numpy.zeros(5);\n",
+ "for i in range(1,5) :\n",
+ " X[i]=Data[i][0]\n",
+ " \n",
+ "\n",
+ "# Ya_star = mole fraction of NH3 in gas phase at eqb.\n",
+ "Ya_star = numpy.zeros(5);\n",
+ "for i in range(0,5) :\n",
+ " Ya_star[i] = (Data[i][1])/P\n",
+ "\n",
+ "# For transfer of only one component\n",
+ "Na_by_SummationN = 1.0;\n",
+ "Ya = numpy.zeros(5);\n",
+ "for i in range(0,5):\n",
+ " Ya[i] = 1-((1-Yag)*(1.0-Xal)/(1-Data[i][0]));\n",
+ "\n",
+ "plt.plot(X,Ya_star,'g',label='Equilibrium Line')\n",
+ "plt.plot(X,Ya,'r',label='Operating Line')\n",
+ "ax = pylab.gca()\n",
+ "ax.grid('on')\n",
+ "ax.set_xlabel('Xa = mole fraction of NH3 in liquid phase');\n",
+ "ax.set_ylabel('Ya = mole fraction of NH3 in gas phase');\n",
+ "pylab.legend(loc='lower right')\n",
+ "plt.title('Ya Vs Xa');\n",
+ "plt.show()\n",
+ "\n",
+ "# From intersection of operating line & Eqb. line\n",
+ "Xai = 0.274;\n",
+ "Yai = 0.732;\n",
+ "\n",
+ "# From Eqn.5.20\n",
+ "Na = Na_by_SummationN*Fg*log((Na_by_SummationN-Yai)/(Na_by_SummationN-Yag));# [kmol NH3 absorbed/square m.s]\n",
+ "print\"Local mass transfer flux for ammonia is \",round(Na,6),\" kmol/square m.s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 5.1 - Page: 114\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FOX2wPHvIXQIho6AEIooehGUIohKQIWgYrlcEAsK\nei2AWFBRrz8Fr/0CimJBBcWONEWUKhBEBZEmSlGqSrEgvQRSzu+PmYQlZpNNtmZyPs+zT3bq+54d\n2LPzvjPviKpijDHG5KZEtCtgjDEmdlmSMMYY45clCWOMMX5ZkjDGGOOXJQljjDF+WZIwxhjjlyUJ\nY4wxflmSMJ4lIu+KyBs55nUQkZ0iUjPAfYwWkbdymd9cRFJFJKEA9ekmIjtEpLLPvMtFZKuIxAe6\nH2MiSexmOuNVIlIFWA30VtXPRaQssAp4XFXfDnAfbYE5QE1VPeQzfzhQX1V7FLBO7wFpqtrHTTCr\ngVtV9dOC7MeYSLEzCeNZqroLGAi8JiLlgSHAelV9W0Qmur/q94jIAhE5zc8+FgPbgO5Z80QkDrga\neNudbiMiS0Vkr4j8JiIj8qjWHUBXEekMPAek+CYIEXleRH5x97VURM4N7lMwJjiWJIynqeokYDkw\nHrgZuMVd9BnQGKjuLn8vj928DVzvM30hUAqY7k4/DzynqicADYEJedTnL+BO4H3gYpyk4WsJ0Byo\n7K4zUURK5xmkMWFkzU3G80SkBrAR+I+qjspleQKwCzhBVffnsrwesAFIVNXtbpPRH6p6t7t8ATAf\neFFVdwZQnwbAj8CHqto7n3V3AR1U9fv89mtMONiZhPE8Vf0D2InT/o+IxInI0yKyQUT2ApsBBar5\n2f4X4Augt4hUBC7HbWpy3QQ0AdaKyBIRuSSfKr3mbn+J2+eRTUTuFZE1bjPYbuAEf/UyJhJKRrsC\nxkTBNcBlwAWq+rPPmYTksc1bwP3Ab8BmVV2RtUBVN7j7RES6A5NEpIqqHs65ExG5CaiD09S0FBgj\nImeqapqInAfcB3RS1ayEll+9jAkrO5MwxVFF4AiwS0QqAE8GsM1koB4wFBjnu0BErhOR6u7kXpyz\nksycOxCR2sD/gJtVNU1VRwN/AQ+5q8QD6cBOESktIo8AlQoWmjGhZUnCFEdvAz/jXLX0A7AI54vd\nL/fy18k4ZwE5O7m7AD+IyH6cK5Z6qeqRXHbzEvCBqn7lM+9m4C4RaQrMdF8/AVuAw8AvBYrMmBAL\na8e1eyPTJTidfM38rPMC0BU4BPTxPY03xhgTXeE+k3gTSPa3UEQuBhqr6sk4lya+Eub6GGOMKYCw\nJglVXQjszmOVy3A6BFHVb4CEQIdLMMYYE37R7pOoA/zqM70VqBuluhhjjMkh2kkC/n55n93dZ4wx\nMSLa90lsA07yma7rzjuOiFjiMMaYQlDVoO6zifaZxCe4Y+K4d57uUdXfc1tRVT37GjJkSNTrYPFZ\nbBaf916hENYzCRH5AOgAVBORX3FG4SwFoKqvqup0EblYRDYAB4G+4axPrNqyZUu0qxBWXo7Py7GB\nxWfCnCRU9eoA1rk9nHUwxhhTeNFubjJAnz59ol2FsPJyfF6ODSw+U0SGChcRLQr1NMaYWCIiaBHv\nuDZASkpKtKsQVl6Oz8uxgcVnLEkYY4zJgzU3GWOMR1lzkzHGmLCyJBEDvN4u6uX4vBwbWHzGkoQx\nxpg8WJ+EMcZ4lPVJGGOMCStLEjHA6+2iXo7Py7GBxWcCSBIiUktExorITHf6NBG5KfxVM8YYE235\n9km4yeFN4CFVPUNESgErVPUfkaigWwfrkzDGmALYm7qXhHIJEemTqKaqHwIZAKqaBqQHU6gxxpjw\n2Zu6l1avtwrJvgJJEgdEpGrWhPtwoL0hKd0A3m8X9XJ8Xo4NLL6iSFX597R/c2GDC0Oyv0CSxD3A\nNKChiHwNvAPcEZLSjTHGhNSoJaPYtHsTzyU/F5L9BXSfhNsPcYo7+aPb5BQx1idhjDH5+2brN3T7\noBuL/72YhpUbRuY+CRHpCZRT1R+AK4EPReSsYAo1xhgTWn8d+ouek3ryWrfXaFi5Ycj2G0hz08Oq\nuk9EzgUuAN4ARoesBsaT7aK+vByfl2MDi6+oyNRMrv/4enqc1oMrTr0ipPsOJElkuH8vBV5X1U+B\nUiGthTHGmEJ75stn2JO6h6cueCrk+w7kPonPgG3ARcCZQCrwjao2D3lt/NfB+iSMMSYXKVtS6DWp\nF0tvWUrdSnWPWxapsZt6ArOAzqq6B6gM3BdMocYYY4L324HfuHbKtbx95dt/SxChkm+SUNWDqjoZ\n2Csi9XCamtaFpTbFlFfaRf3xcnxejg0svliWkZnB1ZOv5t9n/pvOjTqHrZxArm66TETWA5uBBcAW\nYEbYamSMMSZfQ1KGECdxPNLhkbCWE0ifxCqgEzBHVc8UkY5Ab1W9Maw1O74O1idhjDGuGetncPO0\nm1l2yzJqVqzpd71I9UmkqepOoISIxKnqfCA0g4IYY4wpkF/3/krfqX35oPsHeSaIUAkkSewWkXhg\nIfCeiLwAHAhvtYqXotwuGggvx+fl2MDiizVHM47Sc1JPBrUbxHn1z4tImYEkiSuAQ8DdwExgA9At\nnJUyxhjzd/fPuZ/q5atz7zn3RqxMe8a1McYUAZPXTObeOfey7JZlVClXJaBtIjV2U3cRWS8i+0Rk\nv/vaF0yhxhhjArdh1wb6fdaPCf+aEHCCCJVAmpv+B1ymqpVUNd59VQp3xYqTotYuWlBejs/LsYHF\nFwsOpx2mx8QeDOkwhNZ1Wke8/ECSxG+qujbsNTHGGPM3d868kyZVm9C/df+olO+3T0JEurtvzwdq\nAR8DR915qqpTwl+97LpYn4Qxpth557t3eHzh4yy9eSnxZeILvH0o+iTyShLjgKyF4vMeAFXtG0zB\nBWFJwhhT3Kz+YzVJbyUx7/p5NKvZrFD7CGvHtar2UdW+7sv3fd9IJojioCi0iwbDy/F5OTaw+KLl\nwNED9JjYg2EXDSt0ggiVQK5uaiQi00Rkp4j8KSJTRSR0jz0yxhiTTVW59dNbaVu3LX1a9Il2dQIa\nu+kb4EVgvDvrKmCgqp6d785FkoGRQBwwRlWfybG8GvAuTp9HSWC4qo7LZT/W3GSMKRZGLx3Ny9++\nzOJ/L6Z8qfJB7SusfRI+haxS1TNyzPsuv4cOiUgc8CNwIc5Di74Frva9UkpEhgJlVPVBN2H8CNRU\n1fQc+1IdORLKl3deFSoce5/bdNmyIEF9LsYYE3HLdyyny7td+OrGr2hStUnQ+wtFkigZwDozRORB\n4AN3+ip3XhUAVd3lZ7s2wAZV3eJWdjxwOeB7Oe0OICsBVQL+ypkgsm3cCIcOOa+DB4+9z2366NG8\nk0gw01nvy5QJWSJKSUkhKSkpJPuKRV6Oz8uxgcUXSXtS99BjYg9euvilkCSIUAkkSVyFc2XTLX7m\n++ufqAP86jO9FcjZRPU6ME9EtgPxOE/By90LLwRQVVdGxvFJI5DEsm8f7NiR9zq+89LSoFy50CSg\ndeugcmXnfcWKx9aJiws8ZmNMkaWq9J3al4sbX0zP0/1/DUZDvklCVRMLue9AOhH+A6xU1SQRaQTM\nEZHmqro/54p9+vQhMdGpSkJCAi1atMj+BZB1hUL29MKFx0/nXJ6SAtWq5b08v+mMDJLOPhsOHiRl\n3jxITSXpH/9wphcvhiNHSGrQAA4dIuW772D3bpJq1oTffiNlwwZn/fh4J+ls307KyJEkicCBA6Ts\n3etsX7YsVKhASlwclCtHUo0aznRqKpQtS1KjRs70zp3O8mbNnOmff3am27aFihVJWb3amb7wQmf5\nokUgElz8BZjOmhep8iI5nZSUFFP1sfiKZnwTVk9gW+ltjO8+Pqj9paSkMG7cOIDs78tghW2APxFp\nCwxV1WR3+kEg07fzWkSmA0+o6lfu9FzgflVdmmNfxa/jWhUOH3aSyIEDzl/f97nNC3R5RoZztuJ7\n5uLvfX7Lc763sx9jCuTrX7/myg+v5Jt/f0NiQmJI9x2pPonCWgqcLCKJwHac5qmrc6yzDqdj+ysR\nqQmcAmwKY51iku+v7Gwix5qkqlcPbYFpaceSRiCJZceOwJLRwYNOX02OJJOSnk5SYiJUqgQnnJD7\n35zzKlaEEoGMGhNduR47D7H4wuvPg3/Sa1Ivxl42NuQJIlTCliRUNV1Ebgdm4VwCO1ZV14rIre7y\nV4EngTdF5DucezYG59ERbkKlVClISHBeoZTb2c+BA7BwITRoAHv3On0/+/bBtm2wdu2xeb7L9u51\n+n0qVAg8qfibV768XelmYlJGZgbXfXQd1zS7hkubXBrt6vgVyCWw5+L0GxwQkd7AmcDzqvpzJCro\n1qH4NTcVdxkZsH//8Ykjt7/5zTt6tGBJxd/ZTpky0f5EjMc8tuAxPt/8OXOvn0vJEuH5vR6p+yS+\nx7lM9QxgHDAG6KmqHYIpuCAsSZhCO3r0WLIpbKLZu9c5Gwk20cTHO2dxptibu2kuvT/qzdJbllI7\nvnbYyolUklihqmeKyBBgm6qOEZHlqnpWMAUXhNeTRLTbRcOtyMenCkeO5JpAUhYvJqlOncCTUJky\ngScVf8vi4yPWX1Pkj10+ohHf9v3baflaS9698l0uaHhBWMuKVMf1fhH5D3AdcJ57J7X9HDLFh4hz\nF3/ZslCz5vHLEhIg0C8ZVaefJr8mtB07nHtn/CWagwed/ppgzmwqVXL2Yf01EZWemU6vSb3o36p/\n2BNEqARyJnEicA2wRFUXikg9oKOqvhWJCrp18PSZhDEFkpHhXBAQbBPa0aPOWUkwTWiVKoV09AGv\ne+DzB1j520qmXzudEhL+s8GINDfFAksSxoRBWtqx5BFoosm5bO9eZ1/BJppKlTzfX/PpT5/S/7P+\nLL91OdXKV4tImZHqk2gHvAA0BcrgXM56IJLPufZ6krB236LLy7FBgPGlpgZ/Fdq+fVC6dHB9NVn9\nNQW4oTNSx2/Lni2cPeZsPrrqI8456Zywl5clUn0SLwK9gAlAK+B6nJvejDHmWH9NjRqF34fqsTHU\n8ko0O3bAjz/6Tz4HDzr3xgSaaLZtc8qvWhWqVHH+li0bms/FdST9CD0m9uD+9vdHNEGESiBnEstU\ntaXvkOEislJVW0Skhnj/TMIYEyKZmXnfX5Nz3u7dsGsX/PXXsb+lSh1LGAX566e5bOD0gWzdv5Up\nPacgEe67iVRz0xfARTj3R+wAfgNuyO95EqFkScIYExFZV6D5Jg1/f33f797tnMFkJQ03caxnN7N2\nL+GmCwdTrmadvyeWypXDOt5ZpJJEIvA7UBq4G+e5Dy+r6oZgCi4IrycJa9cuurwcG1h8AcvMdM5O\nfBLJ9i3f88KModzR+Dpqp5XJPdHs3es0e+V2dpLXmUulSgHdKxORPomshwYBh4GhwRRmjDGeVKLE\nsfHQGjbkUNohksfcx4D/G0HtVrf63y4jA/bsyf3sZNcu536Z3M5kDh50zkLyawYLgUCH5VAgKxsp\nsA/ncaSPq+pfIalJ3nXw9JmEMcZbbpx6I0czjvLOle+Epx8iLc1p4sqnOUwmTYrI1U0zgXTgfZxE\n0Qsoj9MENQ7oFkwFjDHGS95c8SaLty5myc1LwtdRXaqUczVZfleUhaD8QG75u1BVH1TV71V1lar+\nB+igqk8DiUHXwGQ/WcqrvByfl2MDi6+gVv2+isGfD2ZSz0lULF0xpPuOlkCSRJyIZD+bWkTa+GyX\nHpZaGWNMEbPvyD56TOzBc12e47Tqp0W7OiETSJ9Ea+BNICst7gduAlYDl6jqhLDWEOuTMMbENlWl\n1+ReJJRJ4NVur0a7OtkidXXTt8A/RCTBnd7jszjsCcIYY2LdS9++xE9//cSimxZFuyohF/AwhKq6\nJ0eCMCFi7b5Fl5djA4svEEu2LeG/C/7LpB6TKFsytEN6xILYf9K8McbEqF2Hd9FzYk9GXzqaRlUa\nRbs6YWFDhRtjTCFkaiaXj7+cxpUb81zyc9GuTq4iNQosItIe53LXrPVVVd8OpmBjjCnKhn01jJ2H\ndjK55+RoVyWs8m1uEpF3gWFAe5yhwlsBrcNcr2LF2n2LLi/HBhafP1/8/AXPLX6OCf+aQOm40qGt\nVIwJ5EyiJXCatfcYYwz8fuB3rpl8DeOuGMdJJ5wU7eqEXSD3SUwE7lTV7ZGpUq51sBxljIm6jMwM\nOr/bmXZ12/F4p8ejXZ18RapPojqwRkSWAEfceaqqlwVTsDHGFDWPLngUVeXRpEejXZWICeQS2KHA\nFcCTwAj39WwY61TsWLtv0eXl2MDi8zVrwyzGrhjL+93fJ65E+B4UFGsCueM6JQL1MMaYmPXr3l+5\n4eMb+PBfH1KrYq1oVyei/PZJiMhXqtpeRA7gPEPCl6pqpbDX7lhdrE/CGBMVaRlpJL2VxKUnX8qD\n5z0Y7eoUSEQeXxoLLEkYY6Llnln3sO6vdUy7eholpGgNUhGKJFG0IvYoa/cturwcG1h8H639iMlr\nJ/P2FW8XuQQRKgHdcW2MMcXNpt2buPXTW5l29TSqlg/N86KLImtuMsaYHFLTUzln7Dn0adGHO86+\nI9rVKTTrkzDGmDC47dPb2HV4Fx/+68PwPac6AsLaJyEizUXkcxEZLyINRGS+iOwVkYUi0jiYQs3x\ninu7b1Hm5digeMb33qr3mLt5LmMuG1OkE0So5NUTMxp4HpgKfA28BlQG/ge8HP6qGWNMZK39cy13\nzbqLST0mUalMxK7yj2l53SexQlXPdN9vUNXGuS3Lc+ciycBIIA4Yo6rP5LJOEvAcUArYqapJuaxj\nzU3GmLA6ePQgbca0YVDbQdx01k3Rrk5IhHvsJt/7znMOw1Eqvx2LSBzwInAhsA34VkQ+UdW1Pusk\nAC8BXVR1q4hUC7jmxhgTIqrKbZ/dRuvarbnxzBujXZ2Ykldz08siEg+gqtnNSyJyMvB5APtuA2xQ\n1S2qmgaMBy7Psc41wGRV3eqWs7MglfeK4tju6xVejg2KT3xjlo9h5W8refmSl60fIge/SUJVR6vq\n/lzmr1fVuwLYdx3gV5/pre48XycDVdxO8aUi0juQShtjTKis2LGC/8z7DxN7TKR8qfLRrk7MyatP\nYpTPpAK+6VVVNc+Lh0WkO5Csqje709cBZ6vqQJ91XgTOAi4AygOLgEtUdX2OfVmfhDEm5Pam7qXl\nay15vNPj9PpHr2hXJ+TC3SexjGPJ4VHgEY4likC+sbcBvo9tOgnnbMLXrzid1YeBwyLyBdAcWJ9j\nPfr06UNiYiIACQkJtGjRgqSkJODYKaNN27RN23Sg0x06dKDv1L784+A/qLXz2MiusVK/wkynpKQw\nbtw4gOzvy6Cpar4vYEUg6+XYpiSwEUgESgMrgaY51jkVp38jDudM4nucR6Xm3Jd62fz586NdhbDy\ncnxejk3Vu/EdTjus98y6R5sMaqKpaanRrk7YuN+dBfruzvkK24hVqpoO3A7MAtYAH6rqWhG5VURu\ndddZB8wEVgHfAK+r6ppw1ckYY2ZumEmzV5qxec9mnrzgScqULBPtKsW0gIblCPS+iHCxPgljTLC2\n7tvK3bPuZvmO5YzqOoqLT7442lUKu3APy3FARPaLyH6gWdZ797UvmEKNMSZS0jLSGP71cFqMbsFp\n1U7jh34/FIsEESp5XQJbUVXj3VdJn/fxGsGn0hUHWR1PXuXl+LwcGxT9+Bb+vJAzXz2TOZvmsOim\nRTza8VHKlSqXvbyoxxcJ9jwJY4zn/HHwDwbPGczczXN5rstzdG/a3W6SK6S87pPI7dnW4CSW0qoa\nl8uysLA+CWNMIDIyM3h9+es8Mv8Rrm9+PUM6DCG+THy0qxU1Yb1PQlUr5iisIs7VSrcCU4Ip1Bhj\nQm3Z9mX0+6wfZUqWYe71c2lWs1m0q+QJ+V4CKyIJIjIU5x6GeKCVqt4T7ooVJ15vF/VyfF6ODYpG\nfLsP72bAZwO45P1LGNB6AF/0+SLgBFEU4ou2vK5uqi4iTwMrgAyghao+pKp/Rax2xhjjh6ryznfv\ncNrLp5GpmawZsIYbWtxgfQ8hllefxEFgJ/AGkNU/kT0sh6rmHD48bKxPwhjja/Ufq+k/vT8Hjh7g\nlUteoU2dNtGuUkwK99hNw3zeV/S7ljHGRMiBowf474L/8ubKNxnaYSi3tbqNuBIRu4amWMrrPomh\n7uvR3F6RrKTXeb1d1MvxeTk2iJ34VJUpa6dw2kun8duB3/ih3w8MaDMg6AQRK/HFMrtPwhgT0zbu\n2sjAGQP5ee/PvH3l2yQlJkW7SsVKQGM3RZv1SRhT/KSmp/LMl88waskoBrcfzF1t76J0XOloV6tI\nCffYTXe6f88NpgBjjCmoWRtm0eyVZnz3+3csv3U5g9sPtgQRJXndJ5H1NPBReaxjQsDr7aJejs/L\nsUHk49u6bys9Jvag//T+PJ/8PFOumkK9E+qFrTyvH79QyCtJrBGR9cApIvJ9jteqSFXQGON9aRlp\njPh6hI3UGoPy7JMQkVrAbKAbxz/jGlXdEtaaHV8P65MwxqMW/ryQ/tP7Uzu+Ni92fZGTq54c7Sp5\nRij6JAJ96FBpoIk7+aOqpgVTaEFZkjDGe3xHan2287P867R/2d3SIRbWjmufQpKA9cDL7mu9iHQI\nplBzPK+3i3o5Pi/HBuGJLyMzg9FLR/OPl/9BtfLVWNN/DT1O7xGVBOH14xcKgdwn8SzQWVV/BBCR\nJsB44KxwVswY4z1ZI7WWjittI7UWEfk2N4nIKlU9I7954WTNTcYUbXtS9/B/8/6PSWsm8fSFT3N9\n8+spIfk2ZJggRaS5CVgmImNEJElEOorIGGBpMIUaY4qHrJFam77UlPTMdNYMWEOfFn0sQRQhgRyp\nfsBa4A5gILDanWdCxOvtol6Oz8uxQXDxrf5jNR3f6sjIb0YytddURl86mirlqoSuciHg9eMXCvn2\nSahqKjDCfRljTJ4OHD3AYwse442Vb9hIrR5gYzcZY0JCVflo3UfcPetuzq9/PsMuGkatirWiXa1i\nLdzPkzDGmIBkjdS6Zc8W3rriLRup1UOs9ygGeL1d1MvxeTk2yD++1PRU/rvgv5w95mySEpNYedvK\nIpUgvH78QiHfMwkROQW4F0j0WV9VtVMY62WMiXGzN85mwPQBNKvRjOW3Lg/rQHwmegK6TwJ4BVgO\nZLizVVWXhbluvnWwPgljYsTWfVsZNGsQS7cvZVTXUVzS5JJoV8n4Eak+iTRVfSWYQowxRV9aRhqj\nloziyYVPMqD1AN664i3KlSoX7WqZMAukT2KaiAwQkRNFpErWK+w1K0a83i7q5fi8HBsci+/LX77k\nrNfOYtbGWSy6aRGPdnzUEwnC68cvFAI5k+gDKE6/RBYFGoajQsaY2LHn8B76Tu3LnI1zeK7LczZS\nazFk90kYY/4mIzODMcvH8PD8h+l9Rm+GJg0lvkx8tKtlCigifRLusyT6AefjnEEsAEZH+pkSxpjI\nWLZ9Gf2n96dUiVI2UqsJqE/iFZxhwV9y37d0/5oQ8Xq7qJfj81Jse1L3cPv027nk/Uvo16ofX/T9\ngr/W/hXtaoWVl45fuATSJ9E6x7Dgc+0Z18Z4h6ry3vfvcd+c+7j8lMtZM2BNzA3EZ6InkPsklgM9\nVXWDO90ImKiqEXvokPVJGBMea/5cQ//P+rPvyD5eueQVzq57drSrZEIoUs+TuA+YJyILRGQBMI/j\nr3TKq4LJIrJORNaLyP15rNdaRNJF5J+BVdsYE4yDRw/ywOcP0GFcB3qc1oNvb/7WEoTJVb5JQlXn\nAk049jyJJqo6L7/tRCQOeBFIBk4DrhaRpn7WewaYCRTLa+u83i7q5fiKWmyqykdrP+K0l09j2/5t\nfN/vewa0GeB3KO+iFl9BeT2+UPDbJyEiF6jqXBHpjnNVU9YXeGP3FGZKPvtuA2xQ1S3u/sYDl+M8\nwMjXQGAS0LoQ9TfGBGjT7k0MnDGQzbs320itJmB++yRE5FFVHSIi43CSxHFUtW+eOxb5F9BFVW92\np68DzlbVgT7r1AHeBToBbwDTcks+1idhTOGlpqcy7KthPP/N89x3zn3c3e5uSseVjna1TASE9T4J\nVR3ivv2vqm7KUXAgd1sH8q0+EnhAVVWc2ziLZXOTMeFiI7WaYAVyCewknPskfE3EuV8iL9uAk3ym\nTwK25linJTDevc2/GtBVRNJU9ZOcO+vTpw+JiYkAJCQk0KJFC5KSkoBj7YpFdXrkyJGeiqc4xefb\nph0L9cma/vPgn0w8NJGl25dyc5WbaVezXXaC8EJ8oZr2WnwpKSmMGzcOIPv7MmiqmusLaAp0BzYB\n/3Tf/xNnLKfV/rbz2b4ksBHnORSlgZVA0zzWfxP4p59l6mXz58+PdhXCysvxxVpsR9OP6oivR2jV\nZ6rqw/Me1kNHDwW1v1iLL9S8Hp/73Znnd3V+r7z6JC4HrgS6Ab6/7PcD41X16/wSkIh0xWlSigPG\nqupTInKr+63/ao5138T6JIwptC9/+ZL+n/WnVsVavHjxizSp2iTaVTJRFoo+iUBupmunqouCKSRY\nliSM8e/Pg38y+PPBNlKr+ZtI3UzXT0QSfAqtLCJvBFOoOZ5vu6gXeTm+aMaWqZm8uvRVTn/5dKqU\nrcLaAWvpcXqPkCYILx878H58oRBIx/UZqrona0JVd4tIxIbkMMb8XdZIrSVLlOTz6z/njJpn5L+R\nMYUQSHPTd0BHVd3lTlcBFqhqxMYPtuYmYxx7Uvfw8LyHmbhmIk9d8BQ3tLiBEhJIg4ApjiL1jOsR\nwCIRmYBzH0MP4IlgCjXGFIy6I7UOnjOYbk262UitJmICGbvpbZxLX/8AfgOudOeZEPF6u6iX44tE\nbGv+XEPHtzry7KJn+eiqj3i126sRSxBePnbg/fhCIZAzCVR1tYjsBMoCKiL1VPWX8FbNmOLt4NGD\nPPbFY4xdMZYhHYbQr1U/vwPxGRMugfRJXIbT5FQb52yiPrBWVU8Pf/Wy62B9EqbYUFWm/jiVO2fe\nyXn1zmN45+HUqlgr2tUyRVCk+iQeB9oBc1T1TBHpCPQOplBjTO6yRmrdtHsT4y4fR8cGHaNdJVPM\nBXJZRJoEnHlLAAAgAElEQVSq7gRKiEicqs4HWoW5XsWK19tFvRxfqGI7kn6ExxY8RpvX23B+vfP5\n7rbvYiJBePnYgffjC4VAziR2i0g8sBB4T0T+AA6Et1rGFB+zN87m9um3c3qN01l2yzLqJ9SPdpWM\nyRZIn0QFIBXnrONaoBLwnqr+Ff7qZdfB+iSM52zbt41Bswfx7bZvGdV1FJc0uSTaVTIeE/ZhOUSk\nJPCpqmaoapqqjlPVFyKZIIzxmrSMNJ5d9CzNRzfnlKqnsLr/aksQJmblmSRUNR3I9B27yYSe19tF\nvRxfQWP76pevaPlaS2ZsmMHXN33Nfzv+l3KlyoWnciHg5WMH3o8vFALpkzgIfC8is4FD7jxV1TvC\nVy1jvOXPg39y/+f3M3vjbJ7t8iw9TgvtQHzGhEsgfRI3cOyxouq+V1V9K8x1862D9UmYIilTMxmz\nfAz/N+//uO6M6xiaNJRKZSpFu1qmmAjrfRIiMldVLwBOV9XBwRRiTHG0fMdy+n3Wz0ZqNUVaXn0S\nJ4rIOcBlInJWzlekKlgceL1d1Mvx5RbbntQ9DJw+kIvfu5jbWt7Gwr4Li2yC8PKxA+/HFwp59UkM\nAR4B6uAMy5FT9O/0MSaGqCrvf/8+9825j25NurG6/2qqlq8a7WoZE5RA+iQeUdX/Rqg+/upgfRIm\npq39cy39p/dnb+peXr7kZdrWbRvtKhkTmWdcxwJLEiZW+Y7U+sj5j9CvtdMHYUwsiNQzrk2Yeb1d\n1IvxqSofr/uYhoMasnXfVr7v9z0Dzx7ouQThxWPny+vxhYK3/kUbEwGbdm/ijhl3sHH3Rh5o/wB3\n//PuaFfJmLAJqLlJRM4DGqvqmyJSHaioqpvDXrtj5Vtzk4m6I+lHGPb1MEYuHsm959zLoHaDKB1X\nOtrVMsaviDxPQkSGAi2BU4A3gdLAu0D7YAo2piiZs3EOA6YPsJFaTbETSJ/ElcDlOMNzoKrbgPhw\nVqq48Xq7aFGOb9u+bVw16Spu/fRWnu3iPGPaN0EU5dgCYfGZQJLEEVXNzJpwhw43xtPSM9N5btFz\nNB/dnCZVmvBD/x+4tMml0a6WMREXyH0S9wGNgc7AU8CNwPuq+kL4q5ddB+uTMBHz1S9f0X96f2pU\nqMGLXV/klGqnRLtKxhRKxO6TEJHOOEkCYJaqzgmm0IKyJGEiwXek1hGdR9Dz9J42Uqsp0iJ2n4Sq\nzlbVe91XRBNEceD1dtFYjy9TM3lt2Wuc/vLpJJRNYM2ANVz1j6sCShCxHluwLD6T1yiwB3CGBs+N\nqqqNd2yKPN+RWuf0nkPzWs2jXSVjYooNy2GKpT2pe3h43sNMWDOBpy54ij4t+lBCbAAC4y0RuU/C\nLag5cD7OmcVCVf0umEKNiRbfkVovbXIpa/qvsZFajclDvj+dRORO4D2gOlATeFdE7NGlIeT1dtFY\niW/tn2vp9HYnhi8azpSrpvBat9eCThCxElu4WHwmkDOJfwNnq+pBABF5GlgMROwSWGOCcfDoQR7/\n4nHGrBhjI7UaU0CB3CfxPdBGVQ+70+WAJaraLAL1y6qD9UmYAlNVpv44lbtm3kX7eu0ZftFwTow/\nMdrVMiZiItUn8SbwjYhMAQS4AngjmEKNCTffkVrfuPwNOjXoFO0qGVMk5dsnoarPAn2B3cBfQB9V\nfS7QAkQkWUTWich6Ebk/l+XXish3IrJKRL4SkaL5MOAgeL1dNJLxHUk/wuNfPE6b19twbr1z+e62\n78KaIOzYFW1ejy8UAm2Y3QSku+uLiJylqsvz20hE4oAXgQuBbcC3IvKJqq7Nse/zVXWviCQDrwH2\n7EdTYFkjtZ5W/TSW3rKUxITEaFep0OxOb1NQ4WqSD6RP4jGgD86XefZAf6raMd+di7QDhqhqsjv9\ngLvt037Wrwx8r6p1c8y3Pgnj17Z927hn9j0s2baEF7q+4ImB+Ny25GhXwxQR/v69RKpP4iqgkaoe\nLcT+6wC/+kxvBc7OY/2bgOmFKMcUQ+mZ6Yz6ZhRPLHyCfq368cblb1C+VPloV8sYTwkkSawGKgO/\nF2L/Af8UEpGOOCPM5vowoz59+pCYmAhAQkICLVq0ICkpCTjWrlhUp0eOHOmpeCIR3/e/f8+Y3WOo\nUaEGz57yLPVK1MtOEJGMz7dNO9T7N6agUlJSGDduHED292WwAmluag1MBX4AjrizVVUvy3fnIm2B\noT7NTQ8Cmar6TI71zgCmAMmquiGX/Xi6uSklJSX7C8KLQhnfzkM7uX/O/czcOJNnOz8b9ZFaw3Xs\nrLnJFEQ4m5sCSRJrgVdwkkRWn4Sq6oJ8dy5SEvgRuADYDiwBrvbtuBaResA84DpVXexnP55OEiZ/\nmZrJmOVjeHj+w1zzj2t4tOOjVCrj3TEmLUmYgghnkghkRLMDqvqCqs5T1RT3lW+CAFDVdOB2YBaw\nBvhQVdeKyK0icqu72iM4zVmviMgKEVlSmECMd63YsYJzxp7DuJXjmH3dbJ5Lfs7TCaK4+uWXX4iP\nj8/+sktKSmLs2LEAvPfee3Tp0iV73RIlSrBp06aA951z+2jIGV+Roap5voBncZ5I1w44K+uV33ah\nfDnV9K758+dHuwphVdj49hzeowOnD9Qaw2ro2OVjNSMzI7QVC4FwHbtY/jdfv359LVeunFasWDH7\nNXDgwJCXk5SUpGPHjs11mYjoxo0bQ15mKHTo0EHHjBkT0TL9/Xtx5wf1/RtIx/VZOB3QOe9dyPcS\nWGMKQ1X54IcPuHf2vTZSawwSET799FM6dSoad7FnZGQQFxcXsfJExFP3uQRyx3WSqnbM+YpE5YoL\nL3daQ8HiW/vnWi54+wKGfT0sZCO1hpPXj11BZWZmcu+991K9enUaNWrESy+9RIkSJcjMdLozExMT\nmTt3bvb6Q4cOpXfv3gBs2bLluHV9jRs3jvPOO++4eZ999hmNGjWievXqDB48OLsZZ9y4cbRv355B\ngwZRrVo1hg4detz2uZXj27Tlu33lypVp3LgxX3/9NW+++Sb16tWjZs2avP322wX+bHKWm5SUxCOP\nPMK5555LpUqV6NKlC3/99Vf2+osXL+acc86hcuXKtGjRggULAmrlDzl7yoqJCQePHuTBzx/k/HHn\nc+WpV/Ltzd/Stq7deB+rsr6Qc3rttdf47LPPWLlyJUuXLmXSpEnH/arO+Ss7mF/cH3/8McuWLWP5\n8uVMnTqVN944NqTckiVLaNSoEX/88QcPPfRQvvvKWa8lS5bQvHlzdu3axdVXX03Pnj1Zvnw5Gzdu\n5N133+X222/n0KFDha57lg8++IBx48bxxx9/cPToUYYPHw7Atm3buPTSS3nkkUfYvXs3w4cPp3v3\n7uzcuTPoMgvKxkuOAcX5ElhV5ZMfP+HOmXfSvl57Vt22qkiN1BqtYyePhqY5Q4cUvBNVVbniiiso\nWfLY18fw4cO56aabmDBhAnfffTd16tQB4D//+U+ev4D9JZtA3H///SQkJJCQkMBdd93FBx98wE03\n3QRA7dq1GTBgAABly5Yt8L4bNGjADTfcAEDPnj154okneOSRRyhVqhQXXXQRpUuXZsOGDZxxRuGH\nmhMR+vbtS+PGjbPL+eSTTwB49913ufjii0lOTgbgwgsvpFWrVkyfPp3rr7++0GUWhiUJEzWbd2/m\njpl3sP6v9TZSawEV5ss9VESEqVOn5tonsWPHDk466aTs6Xr16oWtHjnL2b59e67LCqNmzZrZ78uV\nKwdA9erVj5t34MCBoMoAqFWrVq77/Pnnn5k4cSLTpk3LXp6enh6VfqCAmptE5FT3b9PwVqd48vJZ\nBPw9viPpR3jiiydo/Xprzql7Dqv6rSqyCcLrx66gTjzxRH755Zfsad/3ABUqVODgwYPZ07/99luh\ny8pZTtbZC+TdjFWhQgWA45qLgqlHONSrV4/evXuze/fu7Nf+/fsZPHhwxOsSaJ/E+zn+GlMon2/6\nnDNGn8G3279l6S1LefC8BykdVzra1TIF5K+ZqGfPnrzwwgts27aN3bt38/TTTx/3hd2iRQvGjx9P\neno6S5cuZfLkyYXulxg+fDh79uzh119/5YUXXuCqq64KaLvq1atTp04d3nnnHTIyMnjjjTfYuHFj\noergT1paGqmpqdmv9PT0XNfz9zled911TJs2jdmzZ5ORkUFqaiopKSls27YtpPUMRKBJwjvXc8Ug\nr4/Vk5KSwvb92+k1qRc3T7uZ4RcN5+NeHxfpobyzeP3Y+dOtWzfi4+OzX927dwfg5ptvpkuXLjRv\n3pxWrVrRvXv3474IH3vsMTZu3EjlypUZOnQo11577XH79Zcwcrus9PLLL6dly5aceeaZXHrppdn9\nEbmtm3Pe66+/zrBhw6hWrRpr1qyhffv2ftfNq17+9OvXj/Lly2e/brzxxnz367u8bt26TJ06lSef\nfJIaNWpQr149RowYkeuVX+GW77AcACKyQlXPzPobgXrlLF+D6eCKdV7uuE7PTOeu0Xcx/sB4bmt1\nG/857z+eGqnVxm7K25YtW2jYsCHp6emUKGEXU4ZLtIcKN2HmtQRxKO0QX//6NfM2z+PjdR9TO742\nX/X8ilOqnRLtqoWc146dMTlZkjBBO5J+hG+2fcO8zfOYv2U+y7Yvo3mt5nRM7MjLl7xMh/odPHUH\nqikYO/ZFW0Gbm1aqaosI1Ctn+dbcFEPSM9NZun1pdlJYvHUxp1Y7lY6JHenUoBPn1juXiqUrZq9f\n1OIrCGtuMrEgFpqbznf/npfnWsaTMjIz+O7377KTwpe/fEliQiKdEjsxsM1AJvaYSELZhGhX0xgT\nBgGdSUSb188kYo2qsvrP1dlJYcGWBdSsWJNOiZ3o2KAjHep3oHqF6vnvyBSanUmYgojqQ4digSWJ\n8FJV1u9an50U5m+eT3yZ+Ozmo6TEJGrH1452NYsVSxKmICxJeDxJRKPNfsueLdlJYd7meZSQEnRq\n0ImOiR3pmNiR+gn1Q1aW9UkUnCUJUxCx0Cdhirht+7ZlnyXM2zKPQ2mHspPCkA5DaFS5kV2FYoz5\nm0Cecd0EeBI4HcgaTlFVtWGY6+ZbB0+fSYTDHwf/IGVLSnZS2HloJ0mJSdlNSE2rNbWkEMPsTCI4\nCxcu5Oabb2bdunURK/OXX37h9NNPZ9++fRH/vxXV5iYR+QoYgvMY025AXyBOVR8OpuCCsCSRv92H\nd7Pg5wXZSeHXvb9yXv3zspPCGTXPoITYHa9FRawniXHjxjFixAg2bdpEpUqVuPLKK3nqqac44YQT\nolKfEiVKsGHDBho2DP9v16SkJHr37p09DEgsCGeSCORbo5yqfo6TUH5W1aHAJcEUao5XmPF/9h/Z\nz/T107lv9n20fK0l9UbW45Wlr3Bi/ImMvWwsOwfvZNrV0xjUbhAtarWIaoLw8vhGXo7NnxEjRvDA\nAw8wYsQI9u3bx+LFi/n555+56KKLSEtLC3l5GRkZAa0XqaTqtceT5sfvN4eIzBCRBkCqiMQBG0Tk\ndhH5J1AhYjU0gDPUxeebPuehuQ/Rbmw7ThxxIsO+HkZ8mXieT36evwb/xazrZvHAuQ/Qpk4bSpaw\n7iYTevv27WPo0KG8+OKLdO7cmbi4OOrXr8+ECRPYsmUL7777LuA8lvRf//oXvXr1olKlSrRs2ZJV\nq1Zl72f79u10796dGjVq0LBhQ0aNGpW9LGvb3r17c8IJJ/DWW2/x7bff0q5dOypXrkzt2rUZOHBg\ndkI6/3znNq7mzZsTHx/PxIkTSUlJOe6ZEomJiYwYMYLmzZuTkJBAr169OHLkSPby//3vf9SuXZu6\ndesyZswYSpQowaZNmwr02RTVx5PmS1VzfQE9gJ+AR4B44CTgTWAK0NbfduF4OdUsXo6kH9Evtnyh\nQ+cP1Q5vdtAKT1TQc8aeow/NfUjnbpqrh44einYVTRjF6r/5GTNmaMmSJTUjI+Nvy2644Qa9+uqr\nVVV1yJAhWqpUKZ08ebKmp6fr8OHDtUGDBpqenq4ZGRl61lln6WOPPaZpaWm6adMmbdiwoc6aNeu4\nbadOnaqqqocPH9Zly5bpN998oxkZGbplyxZt2rSpjhw5MrtsEdGNGzdmT8+fP1/r1q2bPZ2YmKhn\nn3227tixQ3ft2qVNmzbV0aNHZ8dUq1YtXbNmjR46dEivvfZaLVGixHH785WUlKRjx4792/zNmzer\niGR/Nh06dNDGjRvr+vXr9fDhw5qUlKQPPPCAqqpu3bpVq1atqjNmzFBV1Tlz5mjVqlX1zz//DPBI\nHM/fvxd3flDfv37PJFR1InAWzlnDl8BVwA/AV8A5YcpZxVZ6ZjrfbP2GpxY+Red3OlP1f1UZNHsQ\nB9MO8sC5D/Dbvb/x1Y1f8Xinx+nUoBPlSpWLdpVNNImE5lVAO3fupFq1armO6FqrVq3jnsHcqlUr\n/vnPfxIXF8egQYNITU1l0aJFfPvtt+zcuZP/+7//o2TJkjRo0IB///vfjB8/Pnvbc845h8suuwxw\nHj961lln0aZNG0qUKEH9+vW55ZZbCvzL+4477qBWrVpUrlyZbt26sXLlSgAmTJjAjTfeSNOmTSlX\nrhyPPvpoSJqufB9PWrZsWXr27JldZl6PJ401+bVJpAGHcK5qigciP5i5R6kqa3euZeaGmUz8bCJr\nKq7JHuri9ja3M6HHBM8MdWH3SYRBlDq1q1Wrxs6dO8nMzPxbotixY8dxj/isW7du9nsRoW7dumzf\nvh0RYfv27VSuXDl7eUZGRnazUc5tAX766ScGDRrEsmXLOHToEOnp6bRq1apAdc/5qNAdO3Zk17tN\nmzZ+yw5GUXg8aX78JgkRSca5omkacKaqHvK3rgnMviP7mLd5HjPWz2DmxpkAJDdKJrlxMp/0+MSG\nujAxr127dpQpU4bJkyfTo0eP7PkHDhxg5syZPPXUU9nzfv311+z3mZmZbN26lTp16hAXF0eDBg34\n6aefci0jt47hfv360bJlSz788EMqVKjAyJEjmTx5ckhiOvHEE4+rq+/7cMl6POlrr70W9rKCldeZ\nxENAD1VdHanKeI2qsur3VczcMJOZG2eydPtS2tVtR9fGXbmr7V2cWu3UYnGVhFfPIsDbseXmhBNO\nYMiQIQwcOJBKlSrRqVMntm3bRv/+/TnppJPo3bt39rrLli3jo48+olu3brzwwguULVuWtm3bAhAf\nH8///vc/Bg4cSOnSpVm7di2pqam0atUq16aeAwcOEB8fT/ny5Vm3bh2vvPIKNWrUyF5es2ZNNm7c\nWKBLYLPK6dmzJzfeeCO9e/emXr16PPbYY/lum/V40iwlS+b+Veqv2eq6666jdevWzJ49mwsuuIC0\ntDQWL17MySeffNyzumNBXtdFnm8JouB2H97NxNUTuXHqjdR5tg7dJ3Rn676t3NvuXn675zdm957N\n3e3upml1u5nNFE333XcfTz75JPfeey8nnHACbdu2pX79+sydO5dSpUoBztnA5ZdfzocffkiVKlV4\n7733mDJlCnFxccTFxfHpp5+ycuVKGjZsSPXq1bnlllvYt29f9rY5/28MHz6c999/n0qVKnHLLbfQ\nq1ev49YZOnQoN9xwA5UrV2bSpEn5Xqbquzw5OZk77riDjh070qRJE9q1awdAmTJl/G7vpceT5sfG\nbgpSpmayYscKZmyYwcwNM1n1+yrOq38eyY2S6XpyVxpXaZzvPrzcZg/ejs/Gbsrdo48+yoYNG3jn\nnXeiXZUCW7t2Lc2aNePo0aNF5pGrNnZTjNl5aCezN85m5oaZzNo4iyrlqtC1cVce6fAI59c/n7Il\ny+a/E2M8rKgluI8++oiLL76YQ4cOcf/993PZZZcVmQQRbnYmEYCMzAy+3f5tdofzup3r6JjYkeTG\nTqdzYkJi1OpmvMkLZxIbN27k7bffjnZVAtK1a1cWLVpEXFwcSUlJvPzyy9SsWTPa1QqYDRUehSTx\n24HfmLVhFjM3zmTOxjnUjq9NcuNkujbuSvt67SkdVzqi9THFS1FPEiayLElEIEmkZaSxeOtiZm6Y\nyYwNM9i8ZzMXNLiAro270qVxF+pWCt210zl5uc0evB2f9UmYWGB9EmGydd9W5/LUDTOZu3kuDSs3\nJLlRMs8nP0/bum0pFVcq2lU0xpioKlZnEkczjvLlL19mny1s37+dzo0607VxVzo36kytirXy34kx\nEWBnEqYgrLkpiCSxZc+W7KSQsiWFU6udStfGXUlunEzr2q2JKxEX4toaEzy7h8YUVJFMEu7QHiOB\nOGCMqj6TyzovAF1xxojqo6orclkn4CSRmp7Kgi0Lsu9y3nV4F10adSG5cTKdG3WmWvlqQcUUDl5u\nswdvx+fl2MDiK+oi9dChQnGfQfEikAycBlwtIk1zrHMx0FhVTwZuAV4pTFnr/1rPqG9GcfF7F1Nj\nWA0e++IxqpavyrtXvsuOe3bw9pVvc02za2IyQQDZI0N6lZfj83JsYPGZ8HZctwE2qOoWABEZD1wO\nrPVZ5zLgLQBV/UZEEkSkpqr+nteODx49SMqWlOy7nA+nHya5UTJ9W/TlvX++R+VylfPaPObs2bMn\n2lUIKy/H5+XYwOIz4U0SdQDf4RS3AmcHsE5d4G9JYs2fa7L7FhZvXUyr2q1IbpTMlKum0KxGM2vD\nNcaYMAhnkgi0syPnt3uu2yW/69zINqD1ACb3nEylMpWCq10M2bJlS7SrEFZejs/LsYHFZ8LYcS0i\nbYGhqprsTj8IZPp2XovIaCBFVce70+uADjmbm0Qk9i/BMsaYGBTLN9MtBU4WkURgO87jT6/Osc4n\nwO3AeDep7MmtPyLYII0xxhRO2JKEqqaLyO3ALJxLYMeq6loRudVd/qqqTheRi0VkA3AQ6Buu+hhj\njCm4InEznTHGmOiI6oDpIpIsIutEZL2I3O9nnRfc5d+JyJkF2Tbagoxvi4isEpEVIrIkcrUOXH7x\nicipIrJIRFJF5J6CbBsLgozPC8fvWvff5SoR+UpEzgh021gQZHwxffwCiO1yN7YVIrJMRDoFuu3f\nqGpUXjhNUBuARKAUsBJommOdi4Hp7vuzgcWBbhvtVzDxudObgSrRjiPI+KoDrYDHgXsKsm20X8HE\n56Hj1w44wX2f7MH/f7nGF+vHL8DYKvi8b4Zzz1qhjl00zySyb7ZT1TQg62Y7X8fdbAckiEitALeN\ntsLG5/ukk1jusM83PlX9U1WXAmkF3TYGBBNflqJ+/Bap6l538huce5gC2jYGBBNfllg9foHEdtBn\nsiKwM9Btc4pmksjtRro6Aa5TO4Btoy2Y+MC5X+RzEVkqIjeHrZaFF0h84dg2UoKto9eO303A9EJu\nGw3BxAexffwCik1ErhCRtcAM4I6CbOsrms+TKOzNdkVFsPGdq6rbRaQ6MEdE1qnqwhDVLRSCueKh\nKFwtEWwd26vqDi8cPxHpCNwItC/otlEUTHwQ28cvoNhU9WPgYxE5D3hHRE4tTGHRPJPYBpzkM30S\nTlbLa5267jqBbBtthY1vG4Cqbnf//gl8hHOaGEuCOQZeOX5+qeoO92+RPn5uZ+7rwGWqursg20ZZ\nMPHF+vEr0OfvJreSQBV3vYIduyh2vpQENuJ0oJQm/47dthzrOMt322i/goyvPBDvvq8AfAV0jnZM\nBY3PZ92hHN9x7Ynjl0d8njh+QD2cTs62hf1simh8MX38AoytEcducTgL2FjYYxftYLsCP7oH6kF3\n3q3ArT7rvOgu/w44K69tY+1V2PiAhu7BWwn8UFTjA2rhtH/uBXYDvwAVvXL8/MXnoeM3BvgLWOG+\nluS1bay9ChtfUTh+AcQ22K37CmAh0Lqwx85upjPGGONXVG+mM8YYE9ssSRhjjPHLkoQxxhi/LEkY\nY4zxy5KEMcYYvyxJGGOM8cuSRBEgIieJyCYRqexOV3an60W7brkRkRQRaVmA9U8VkZXukMYNgiy7\nuYh09ZnuFu6hrEXkDhFZIyLv5JifJCKZInKpz7xPReR89/1xn5OIJIrI9+77Nu4wzyvcIauv8lP2\n6yLStAB17SMio9z3t4pI74JFe9y+PhORvz1sXkSG5hw6PdA6mdgTzbGbTIBU9VcReQV4GueGmaeB\nV1X1l+jWzC+lYOP7XAFMVNUnfGeKiABowW7mORNoiTOoGao6DZhWgO0Lox9wgbpDqeSwFXgI+NSd\n9o0lr8/pe6Clqma6Ix//ICKTVDXDdyVVLejgc9nlqeqrBdz2+B2pXpJfGYHuKph6mPCyM4mi4zmg\nrYjcBZwDDAcQkQoi8rn7K3yViFwWbEHuL8G3ROQL9+Er/xSR4e7+Z4hISXe9C0RkuTt/rIiUzmVf\nnUXka7d+E0SkQo7lFwN3Av1EZK6I1BeRH0XkLZwvypNE5GUR+VZEfhCRoT7btnYfFrNSRBa7v2r/\nC1zl/gLvmeOXc6KIzHMfxvK5iJzkzh8nIs+7+9ooIt39fC6DROR793WnO280zh26M91j40tx7qTf\nIyIX+vu4c5upqodVNdOdLAfszZkg3PJTROQs9/0BEXnc/TwWiUgNP2VmbZv9i19EWrqfy0oRGeZz\nRnPcr/wcZ0JbRKSK+/4h97gtBE7xU944ERntHssfRcQ3ydR2/239JCLP+Gzj79g/LSKr3ToPc+dV\nF5FJIrLEfZ2TV/wmQNG+vdxeBboVvwuQifOrNWteHMfGmakGrPez7XiODT/g+7oul3WHAl+4+z4D\nOAR0cZdNwRl/vizOMBSN3flvAXe67+fjjBdTDVgAlHPn3w88nEt5Q4BB7vtEIANo47O8sk+s83Ee\nolIaZwyalu6yiu7yG4AXfLa9ARjlvp8G9Hbf9wU+ct+PAz503zfN7TPEOTtZhfOFXQFnyIPm7rJc\nH1ADJLllngek+NThfPd9CrDO51isBlb5bN/GnXcIuNzPcZ3PseFcMoFL3PfPAA/lsr7v5+H7ua/C\nGXkY4H9Z9QD6ZK2fS/034wwal/XZlAXigfVZ+81R9pscG6usMc6QJmXcMja625YBtgB18jj2VYF1\nPq7rO7kAAAQiSURBVPut5P59H2f0VnDGZVoT7f+zXnhZc1PR0hXYjvMfZa47rwTwlDjDAWfi/CKr\noap/+G6oqr0KUI4CM1Q1Q0R+AEqo6ix32fc4X+RNgM2qusGd/xYwAHjenRacQQtPA752W45KA1/7\nKdP3F/XPqur7yMirxBnTvyRwortPgB2qusyN7wBkN1H5G369LU7TFsC7OF+GWfF+7O5nrRz/4Kcs\n5wJTVPWwW84U4HycM4U8qepCEUFE2udcBFyjqsvdfdbnWLMU7mdwujhDPM8UkRQ99pCc3BxV1c/c\n98uAi/Krm1vuCThPaPvSnfUOzr+1gDbHSYJTVDUVSBWRT/B/DCYAqOoGEdkEnIrzOcxV1f1ufdYA\n9XFGO8157JsCa9xyxuJ8Xlmf2YVAU/ffGkC8iJRX1UMBxmJyYUmiiBCRFjj/CdoBX4rIeFX9DbgW\n5xf7We6X+macX3Q5t/8Q54s9p2dV9Z1c5h8FUKdN3PfJa5nk/u/G35fCHFW9xl9cfmQ/VUucjux7\ngFaquldE3sSJz187dn7t2/7qeTSfdTTHfAmgLF9PAA/z96fY5dzn3wtWXSciG3F+fS/Lo4xAjlMg\nfOuRzvHN0n/7t0Xun02gsj7DIz7zMoCSfo59OfffeRvgAuBfwO3uewHOVlXfY2mCZH0SRYD76/gV\nnOacX4FhuH0SQCXgD/c/TkecX2B/o6pXqeqZubxySxCB+BFIFJFG7nRvnOaT7CKBxUD7rHXE6T85\nuYDlVMJJGvvcX/hd3X3/CJwoIq3cfceLSBywH6fZIovvF9bXQNYZ1bU4TWqBWghcISLl3H6VK9x5\nAVHVOUACTvPdcYtyW9/tP8nq+6kPnIzTjBOsnF/m4p6d7PE507nWZ50tQAtxnMTfn6ugOJ/jFSJS\nVkTigUvJPS4Berj7aoTTl7OO3JOK4BzHvx179/NPUNUZwCCgubvNbI49gS3rh5UJkp1JFA03A1tU\nNauJ6WWgr9vE9B4wTURWAUuBtSEqM+dVOMctU9UjItIXmOh+mS0BRudYaaeI9AE+EJEy7uyHyP3L\nLtfyVPU7EVmB82XyK/ClOz9NnMtCR4lIOZx2+wtx2q0fcLd5iuOvIBoIvCki9wF/4PRLBBIvqrpC\nRMa5cQK8rqrf+VvfZ77vsidwm7XykLX+ecD97llcGnCLqu4LcNvcys5tvu/7vsAbIqI4X7bOCqpf\numena3D+bf3tTMb9bD7EaXr7g2OfUW5l/+Iur4QzrPVRt8zc/o2tyu3Y4ySPqSJSFieZ3O3OvwN4\nSUS+w/luWwD091MXEyAbKtwYc5ysvhFVbRbi/b4JTFPVKaHcrwkva24yxuRU0P4W42F2JmGMMcYv\nO5MwxhjjlyUJY4wxflmSMMYY45clCWOMMX5ZkjDGGOOXJQljjDF+/T+JBawpjHtpGgAAAABJRU5E\nrkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7765208>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Local mass transfer flux for ammonia is 0.00043 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.2: Page 130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Illustration 5.2\n",
+ "# Page: 130\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "\n",
+ "print'Illustration 5.2 - Page: 130\\n\\n'\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data***#\n",
+ "# Eqb. data\n",
+ "# Data = [Wt% of moisture in the soap,Partial pressure of water in air(mm Hg)]\n",
+ "Data = [(0,0),( 2.40, 9.66),(3.76 ,19.20),(4.76 ,28.4),(6.10, 37.2),(7.83, 46.4),(9.90, 55.0),(12.63, 63.2),(15.40, 71.9),(19.02 ,79.5)];\n",
+ "P = 760.0;# [mm Hg]\n",
+ "# Initial air\n",
+ "p1 = 12;# [mm Hg]\n",
+ "T = 273+75.0;# [K]\n",
+ "#******#\n",
+ "\n",
+ "# Y = kg water/kg dry air\n",
+ "# X = kg water/kg dry soap\n",
+ "# E = Air water phase\n",
+ "# R = Soap water phase\n",
+ "Y = numpy.zeros(10);\n",
+ "X = numpy.zeros(10);\n",
+ "for i in range(1,10):\n",
+ " Y[i] = Data[i][1]/(P-Data[i][1])*(18.02/29);\n",
+ " X[i] = Data[i][0]/(100.0-Data[i][0]);\n",
+ "\n",
+ "\n",
+ "print'Illustration 5.2 (a)\\n\\n'\n",
+ "\n",
+ "import pylab\n",
+ "# Soln. (a)\n",
+ "# First operation\n",
+ "Y1 = p1/(P-p1);# [kg water/kg dry soap]\n",
+ "# Initial Soap\n",
+ "S1 = 16.7/(100-16.7);# [kg water/kg dry soap]\n",
+ "# Final soap\n",
+ "S2 = 13.0/(100-13);# [kg water/kg dry soap]\n",
+ "Rs = 10.0*(1-0.167);# [kg dry soap]\n",
+ "# Using ideal gas law\n",
+ "Es = 10.0*((760-p1)/760.0)*(273.0/T)*(29.0/22.41);# [kg dry air]\n",
+ "slopeOperat = -Rs/Es;\n",
+ "\n",
+ "def f2(x):\n",
+ " return slopeOperat*(x-S1)+Y1\n",
+ "x = numpy.arange(S1,S2,-0.01);\n",
+ "X1=S2;\n",
+ "def f3(S):\n",
+ " return slopeOperat*(S-X1)+Y1\n",
+ "S=numpy.arange(0,S1,0.01);\n",
+ "\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f2(x),'g',label='First Process')\n",
+ "plt.plot(S,f3(S),'r',label='Second Process')\n",
+ "ax = pylab.gca()\n",
+ "plt.title(\"Illustration 5.2(a)\")\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "plt.show()\n",
+ "\n",
+ "# Results for First Process\n",
+ "# The condition at abcissa S2 correspond to the end of first operation\n",
+ "print \"Conditions corresponding to First Operation \\n\"\n",
+ "print \"X = kg water/kg dry soap\\n\",S2\n",
+ "print \"Y = kg water/kg dry air\\n\",f2(S2)\n",
+ "\n",
+ "# Results for Second Process\n",
+ "# The point at which the line meets the equilibrium line corresponds to the final value\n",
+ "X2 = 0.103;\n",
+ "Y2 = (X2/(1+X2));\n",
+ "print\"Final moisture content of soap is \",round(Y2*100,3),'%'\n",
+ "\n",
+ "\n",
+ "print'\\n\\n Illustration 5.2 (b)\\n\\n'\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "Rs = 1*(1-0.167);# [kg dry soap/h]\n",
+ "# Entering soap\n",
+ "X1 = 0.20;# [kg water/kg dry soap]\n",
+ "# Leaving soap\n",
+ "x = 0.04;\n",
+ "X2 = x/(1-x);# [kg water/kg dry soap]\n",
+ "# Entering air\n",
+ "Y2 = 0.00996;# [from Illustration 5.2(a), kg water/kg dry air]\n",
+ "# The operating line of least slope giving rise to eqb. condition will indicate least amount of air usable.\n",
+ "# At X1 = 0.20; the eqb. condition:\n",
+ "Y1 = 0.0675;# [kg water/kg dry air]\n",
+ "\n",
+ "def f4(x):\n",
+ " return ((Y1-Y2)/(X1-X2))*(x-X1)+Y1\n",
+ "x = numpy.arange(X2,0.24,0.01);\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f4(x),'g',label='Operating line')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.title(\"Illustration 5.2(b)\")\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "plt.show()\n",
+ "# By Eqn. 5.35\n",
+ "\n",
+ "Es = Rs*(X1-X2)/(Y1-Y2);# [kg dry air/h]\n",
+ "Esv = (Es/29)*22.41*(P/(P-p1))*(T/273.0); #[cubic m/kg dry soap]\n",
+ "print\"Minimum amount of air required is\",round(Esv,4),\" cubic m/kg dry soap\\n\\n\"\n",
+ "\n",
+ "print'Illustration 5.2 (c)\\n\\n'\n",
+ "\n",
+ "# solution (c)\n",
+ "\n",
+ "Esnew = 1.30*Es;# [kg dry air/h]\n",
+ "Y1 = Rs*((X1-X2)/Esnew)+Y2;\n",
+ "\n",
+ "def f5(x):\n",
+ " return ((Y1-Y2)/(X1-X2))*(x-X1)+Y1\n",
+ "x = numpy.arange(X2,0.24,0.01);\n",
+ "plt.plot(X,Y,'blue',label='Equilibrium Line')\n",
+ "plt.plot(x,f5(x),'g',label='Operating line')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel('kg water / kg dry soap')\n",
+ "ax.set_ylabel('kg water / kg dry air')\n",
+ "ax.set_autoscale_on('False')\n",
+ "pylab.axis([0.0,0.24, 0,0.08])\n",
+ "plt.title(\"Illustration 5.2(c)\")\n",
+ "plt.grid(b=None, which='major', axis='both')\n",
+ "ax.grid(color='Black', linestyle='--', linewidth=0.5)\n",
+ "pylab.legend(loc='upper left')\n",
+ "plt.show()\n",
+ "# with final coordinates X = X1 & y = Y1\n",
+ "# From figure, Total number of eqb . stages = 3\n",
+ "N = 3;\n",
+ "print\"Moisture content of air leaving the drier is \",round(Y1,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Total number of eqb. stages = \",N\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 5.2 - Page: 130\n",
+ "\n",
+ "\n",
+ "Illustration 5.2 (a)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWeYFNXSgN8CQSQvGRdwyEkUBQEFdFGUZUXAhHJFhcun\niCIKigEBuco1ohKuAZGkCBivKBJUYK8oAiKCSJSwSEZyUthQ348zuw7LzOxsmOkJ532eftjuru5T\nc+iZ6nPqVJWoKhaLxWKxABRyWgGLxWKxhA/WKFgsFoslC2sULBaLxZKFNQoWi8ViycIaBYvFYrFk\nYY2CxWKxWLKwRsEStohITxFZ5LGfISK1nNTJFyLypogMcVqPnBCRRiLyY4CyN4jIjGDrZAkvrFGw\nhBUikiIiVwfx/pNF5Nl83uMMYwWgqn1VdUT+tPPZVrqIHPPYrvQhW09EZorIPhE5ICJzRaReNrFn\ngZcDaVtVvwAai0iTfH4MSwRhjYIl3HA0mlJEznGyfR98r6qlPLZvfciVAT4D6gGVgWXAzMyTIlIV\nSHDLBMp04N48aW2JSKxRsEQkIpIsIr099rPe3sXwmojsFZEjIvKLiDQWkXuBfwCPud+4Z7rlU0Tk\nMRH5BTgmIoVF5AkR2SQiR0VkjYh0dcs2BN4ELnff46D7+BkjEBG5R0R+c7+xz3T/IGeeyxCRPiKy\nUUQOich/cvq4gfSJqv6oqpNU9bCqpgGjgPoiEucWuRb4SVVPe+ji9XN6kAxcH0j7lujAGgVLpKL4\nHlVcB7QF6qpqGeBW4ICqvg28D7zofuPu4nHN7UBHoKyqpgObgDaqWhr4FzBVRCqr6jrgPuAH9z3K\nZdfHPf31nLvdqsA2IPvc/PVAc+AioJuIdPDzOS8RkT9EZIOIDBGRwjl3DwBXArtV9ZB7vwmwIZuM\nt89ZxeP8esAlIiUDbNMS4VijYIlGUoFSQEMRKaSqG1R1j8f57G/eCoxR1Z2qegpAVT/OvEZVPwR+\nA1r6uD47dwATVHWl+638SczIooaHzAuqelRVtwMLgaY+7vUt0FhVKwI3A92BQTm0j4hUA/4DDPQ4\nXAY47inn43O28BA55v63bE5tWqIDaxQsUYeqLsD8IL4O7BWRcSJSKofLtnvuiMhdIvKze3rnEHAh\nUD5AFTJHB5n6nAAOAPEeMp5G6iTg9U1cVbeq6jb3378CzwC3+GtcRCoCXwGvq+oHHqcOYYylp2xO\nnzNT/rC/Ni3RgzUKlkjlBFDCY99zygNVHauqzYFGGMdr5tu1rymnrOMicgHwNvAAUE5V44Bf+XuE\nkJMzfBfg8rhfCcwP7c4crgsUnyMVt//gK+AzVX0+2+lfMH2RKZvT5wRoCKSo6hkjDEv0Yo2CJVJZ\nCdwkIueJSB2gN3/P6TcXkZYiUgTzFv4XkO6+bi+QU6xDCfe99gOFRKQX5g06k71ANff9MxH+/jGd\nDvQSkYtF5FyMf2GJqv7uoz1/P/IdRaSy++8GwBB8rB4SkdLAPOA7VR3sReQb4FIRKRrg5wS4Cpjt\nSz9L9GGNgiWcye5M9vz7NeA05gd6EjDV41xpzBvwQSAF86OXuTZ/AtDIPV3yqddGVdcCrwA/YKZ5\nLgS+8xCZD6wB9ojIvuy6qup8YCjwCWbUUBPjyPb2Obx9Tk+uBlaJyHHgS/c9n8s8KSKzReQJ9+6N\nGOd1L4+YhqNu/wKquhdYAHQN8HPi1nucD90sUYgEs8iOiCRilsUVBt5R1Re9yIzBrPo4CfRU1Z/d\nx58EegAZwGqgV6YT0GKx5A33ktopqtoiANkbgDtU9facZC3RQ9CMgnvZ3AagPWYu9Uegu3tJX6ZM\nEtBPVZNEpCUwWlVbiYgL80bTUFVPicgHwGxVnRIUZS0Wi8UCBHf6qAWwSVVTVDUVs067SzaZzsAU\nAFVdCpR1z58exSwrLO6OMC1OwTnpLBaLxeKDYBqFeM5c5reDM5fk+ZRR1YOYuc7fMXOyh1X1myDq\narFYLBaCaxQCnZc6a+WFiNQGHsYs6zsfKCkidxScahaLxWLxRjCTf+0EqnvsV8eMBPzJVHMfSwAW\nq+oBAPcqkSswKQqyEBFHk6dZLBZLpKKqXpdCB3OksByoKyIu97ro24DPs8l8DtwFICKtMNNEezEO\n6lbuNeiCcVav9daIqtot23b33Xc7q0OXLuiIEY73Q9j1S5hutl9ir0/8EbSRgqqmiUg/TDBNYUwu\nmHUi0sd9fpyqzhaRJBHZhIlQ7eU+t1JE3sUYlgxgBWbduSUAUlJSnFVg1Cho1gx69IALLnBWFw8c\n75cwxfbL2cRynwQ1d7yqzgHmZDs2Ltt+Px/XvgS8FDztLEHD5YKHH4YBA+BTr/FhFoslTLERzVGI\ny+VyWgUYNAh++QXmznVakyzCol/CENsvZxPLfWKNQhQSFg90sWIwejQ8+CCcCo9A9LDolzDE9svZ\nxHKfhGPpwXxjfNOxzb/+9S+nVfibYsWc1iALX/2Sk/PNYokVotIogP2SWwIn1l8iEhISnFYh7Ijl\nPglqQrxgIyLqTX8RsUbBEjD2ebHEGu5nPuRxChaLxWKJMKxRsFgsFksW1ihEEb///julSpXKmgpJ\nSEhgwoQJALz//vt06NAhS7ZQoUJs2bIl4Htnv94Jsn8+i8VS8Fij4AAul4vixYtTqlSprK1///75\nvm+NGjU4duxYluNURLL+vuOOO5g3b16e753f63ODpzHzJPvns1gsBY81Cg4gIsyaNYtjx45lbWPG\njHFaLZ+kp6fnLFSAeBozS/BJTk52WoWwI5b7xBqFMCMjI4NHH32UihUrUrt2bV5//XUKFSpERkYG\nYEYZ8+fPz5IfPnw4d955J2DytXjKejJ58mTatm17xrEvv/yS2rVrU7FiRR577LGsaZnJkyfTunVr\nBg4cSIUKFRg+fPgZ13trx/Pt3vP6uLg46tSpw+LFi5k0aRI1atSgcuXKvPvuu7num+ztJiQkMGzY\nMNq0aUPp0qXp0KEDBw4cyJJfsmQJV1xxBXFxcTRt2pT//e9/uW4zFojlH0BfxHKfWKPgEL7mxd9+\n+22+/PJLVq5cyfLly/n444/PeGvO/hadnzfqzz77jJ9++okVK1Ywc+ZMJk6cmHVu2bJl1K5dm337\n9vHUU0/leK/sei1btoyLL76YgwcP0r17d7p168aKFSvYvHkzU6dOpV+/fpw8eTLPumcyffp0Jk+e\nzL59+zh9+jQjR44EYOfOnXTq1Ilhw4Zx6NAhRo4cyc0338z+/fvz3abFEs3ErFEQKZgtL6gqXbt2\nJS4uLmvLfMv+8MMPGTBgAPHx8cTFxTF48GC/jtX8OF0ff/xxypYtS/Xq1Xn44YeZPn161rnzzz+f\nBx54gEKFClEsDxHJNWvW5O6770ZE6NatG7t27WLYsGEUKVKEa6+9lqJFi7Jp06Y86w7GEPXq1Ys6\ndepQrFgxunXrxsqVKwGYOnUqSUlJJCYmAtC+fXuaN2/O7Nmz89WmxRLtRG1Ec044uYBFRJg5cyZX\nX331Wed2795N9ep/1x2qUaNG0PTI3s6uXbu8nssLlStXzvr7vPPOA6BixYpnHDt+/Hi+2gCoUqWK\n13tu27aNjz76iC+++CLrfFpamtc+t1gsfxOzRiFcqVq1Kr///nvWvuffACVKlODEiRNZ+3v27Mlz\nW7///jsNGzbM+js+/u8S2v6mpUqUKAHAyZMnKVmyZL71CAY1atTgzjvv5O23bRkOiyU3xOz0kdP4\nmvbp1q0bY8aMYefOnRw6dIgXXnjhjB/opk2bMmPGDNLS0li+fDmffPJJnv0KI0eO5PDhw2zfvp0x\nY8Zw2223BXRdxYoViY+P57333iM9PZ2JEyeyefPmPOngi9TUVP7666+sLS0tzaucr37s0aMHX3zx\nBV999RXp6en89ddfJCcns3PnzgLVMxqI5Tw/voj0PklJgWzvkwFjjYJD3HDDDWfEKdx8880A3HPP\nPXTo0IGLL76Y5s2bc/PNN5/xw/fss8+yefNm4uLiGD58OHfccccZ9/VlILwt8+zSpQvNmjXjkksu\noVOnTvTu3dunbPZj48eP5+WXX6ZChQqsXbuW1q1b+20rt4arb9++FC9ePGv75z//meN9Pc9Xq1aN\nmTNn8txzz1GpUiVq1KjBK6+84nVlVqwT6T+AwSDS+iQ1FRYuNGVMGjeGFi1g0aK83csmxAtzUlJS\nqFWrFmlpaRQqZG14MIim58USO+zeDXPmwOzZ8M03ULcuXH89JCVB8+bg7+fCX0I861OwWCyWCCA9\nHZYtM0Zg9mzYsgWuuw5uuAFefx081nbki6AaBRFJBEYBhYF3VPVFLzJjgI7ASaCnqv4sIvWBGR5i\ntYChqhq+Yb9BxEb3WiyxyYEDMG+eMQLz5kHVqmYk8NprcPnlUKRIwbcZtOkjESkMbADaAzuBH4Hu\nqrrOQyYJ6KeqSSLSEhitqq2y3aeQ+/oWqro927monz6yBB/7vFjCBVVYufLv0cDq1dCunTEEHTtC\nQa1Qd6qeQgtgk6qmqGoq5s2/SzaZzsAUAFVdCpQVkeyDoPbA5uwGwWKxFAyxnNLBF6Hsk6NH4dNP\n4f/+D+LjoVs3+OMPePpp2LcPZs6EPn0KziDkRDCNQjzg+UO+w30sJ5lq2WRuB6YVuHYWiwWwRsEb\nwewTVVi3Dl55Ba6+2hiCceOgSRP43//gt99g1CjjL3CivHkwfQqBjsezD2GyrhORosANwOMFpZTF\nYrGEmpMnITnZTAl9+SWkpZmVQg8/bAyDOwY0LAimUdgJeOZKqI4ZCfiTqeY+lklH4CdV/cNXI57r\niV0uFy6XK2/aWmKa4cOHZ/2dkJDgdZ16cnKy1zfISJdPSUk565iT+oSDfHJyctYzkdf7b936txFY\ntAhq1UqmYsVkEhOhUiWTO23FCihdOvifN/N8IATT0XwOxtF8DbALWIZ/R3MrYJSno1lEZgBzVHWK\njzaso9mSb2L9eRk+fPgZRtGStz45fRq++84Ygdmz4eBB4xxOSjJTQWXLBkfXvOBInIKqpolIP2Ae\nZknqBFVdJyJ93OfHqepsEUkSkU3ACaCXh9IlME7me4KlY7hRqlQpVq9ebUc7FkuEsGvX3yuF5s+H\nBg2MEXjvPbj0Uv8BZOGKjWh2AJfLxb59+yhcuDBg9N24ceMZGT9zQ3JyMnfeeSfbt/teoNWzZ0+m\nT59O0aJFKVq0KM2aNWPs2LHUr18/T21GE+H+vASb5OTkiEvrEGx89Ul6Oixd+vdoYNs2MwpISiJr\nWigScGpJqsUH2ctxHj16NEeDkN+cPSLC448/zrFjx9ixYweVKlWiZ8+eZ8mpakz/QMYi1iCcjWef\n7N8PU6fCP/5hfvT79oWMDBg71iwZnTED7rorcgxCTlijEEYUKlSILVu2AObNvm/fviQlJVGyZEmS\nk5OZPXs2jRo1onTp0lSrVo1XX32VkydP0rFjR3bt2kWpUqUoXbp0jmmszzvvPLp3786vv/4KmC/A\nkCFDaN26NSVKlGDr1q0sXryYyy67jLJly9KiRQt++OGHrOsPHjxIr169iI+Pp1y5ctx4441Z52bN\nmkXTpk2Ji4ujdevWrF69Ouvciy++SLVq1ShdujQNGjRgwYIFgKnS1rx5c8qUKUOVKlV45JFHCqxP\nLZbckpEBP/0Ezz5rooZr14aPP4aEBFi1ymzPPw9t2sA50ZgoKPPNMBI3o/7Z+DoeLrhcLv3mm2/O\nOi4iunnzZlVVvfvuu7VMmTK6ePFiVVX9888/tUqVKvrdd9+pqurhw4d1xYoVqqqanJys1apV89tm\nz549dciQIaqqeuzYMe3evbteeeWVqqp61VVX6QUXXKBr167V9PR03bNnj5YtW1anTp2q6enpOn36\ndI2Li9ODBw+qqmpSUpLefvvtevjwYU1NTdVvv/1WVVVXrFihlSpV0mXLlmlGRoZOmTJFXS6Xnj59\nWtevX6/Vq1fX3bt3q6rqtm3bsj5rq1atdOrUqaqqeuLECV2yZEkeezZvhPvzYgk+hw+rfvSRaq9e\nqlWqqNarp/rww6pff636119Oa1fwuJ95r7+r0WjnAkL+VTD5hPTp3E+1qLsc5znu14x27drx6aef\nniXXtWtXLr/8cgCKFStG0aJFWbNmDU2aNKFMmTJccsklWfcLpM2RI0fyn//8h2LFitGyZUsmT54M\nmKmlnj17ZhXc+eqrr6hfv35WWu7bb7+dMWPG8Pnnn3Pdddcxd+5cDh48SJkyZQBo27YtYOpL9+nT\nh8suuwyAu+66i+eee44ffviB+Ph4Tp06xZo1ayhfvvwZFeWKFi3Kb7/9xv79+6lQoQItW7bMdZ9a\nLLlBFdau/dtJvHw5tG5tYgcGD4Y6dZzW0Dli1ijk5ce8oPBXjtNTplq1M4O7P/nkE0aMGMETTzzB\nRRddxAsvvECrVq183OHs+w0aNIhnnnnG63nP8pu7du06qwzoBRdcwK5du9ixYwflypXLMgiebNu2\njXfffZexY8dmHUtNTWX37t1ceeWVjBo1iuHDh7NmzRo6dOjAq6++StWqVZkwYQLDhg2jYcOG1KxZ\nk6effprrr78+oM9lsQTKiROm5kCmIVA1DuJHHjH5hdwFBWMe61OIIJo3b85nn33GH3/8QdeuXenW\nrRsQeBZVfyMKz3vEx8ezbdu2M85v27aN+Ph4qlevzsGDBzly5MhZ96hRowZPPfUUhw4dytqOHz+e\nVdGte/fuLFq0iG3btmU5vgHq1KnDtGnT+OOPP3j88ce55ZZb+PPPPwP6TJb8E81pLjZvNg7hxESo\nUgVGjoSaNc3qoZQUePNN6NTpbIMQzX2SE9YohCnZf8BTU1N5//33OXLkCIULF6ZUqVJZS1orV67M\ngQMHOHr0aMD383c+KSmJjRs3Mn36dNLS0vjggw9Yv349nTp1okqVKnTs2JH777+fw4cPk5qayrff\nfguYqnFvvfUWy5YtQ1U5ceIEX375JcePH2fjxo0sWLCAU6dOce6551KsWLEs/adOncoff5ig9TJl\nyiAitqBQCImmH8BTp0zBmYEDoX59MyX0888m2dz27SbVRGZ1Mn/vUtHUJ7nFfvPCCF+lJTOZOnUq\nNWvWpEyZMrz99tu8//77ADRo0IDu3btTq1YtypUr53X1kbf7+Wq7XLlyzJo1i1deeYUKFSowcuRI\nZs2aRbly5QB47733KFKkCA0aNKBy5cqMGWPKXDRr1ozx48fTr18/ypUrR926dXn33XcBOHXqFE8+\n+SQVK1akatWq7N+/n+effx6AefPmceGFF1KqVCkGDBjAjBkzOPfcc/PShZYYZMcOGD8ebrzRLAsd\nMgTi4mDaNBNcNnEi3HJLeEUUhzM2eM0S88T68xJpaS7S0mDJkr/zCm3fDh06GCdxhw5QsWL+24i0\nPsktthynxWKJeH7/3aSUnjLF1BZISoI33oCWLaM0XsAhbFdaLJawZtUqePllU6S+Vy8TWGbTgwUP\n61OwWGKccExzoQpff/13XqGLLjIriUaODI1BCMc+CRXWp2CJeezzEj6kpsKHH5of/9On4dFHTc4h\nu+6gYLE+BYvFEtYcOwbvvGN8BjVrwogRphaBXZkceqxRsFgsjrF7twkue/ttU5by44/BnSXF4hDW\nDlsslpCzbp0JKGvcGI4eNTUKPvzQGoRwwI4ULBZLSFA15SpfftkYgQcegI0boUIFpzWzeGJHCpaz\nmDx5clbmU0v0E+yUDunp8MknpjZBr15mNVFKCgwbFr4Gwaa5sISU7777jiuuuIKyZctSvnx52rRp\nw/Lly51WKyBSUlIoVKgQpUqVolSpUtSsWZMXX3zRabUs+SBYP4B//mkSzjVoYEYHgwbBhg1w331w\n3nlBabLAiGWjENTpIxFJBEYBhYF3VPWsXw8RGQN0BE4CPVX1Z/fxssA7QGNAgX+q6pJg6hsKjh49\nSqdOnRg3bhzdunXj1KlTLFq0KOJy/Rw5coRChQqxZMkSrrnmGpo2bUqHDh3OkElLS8uqGWGJHfbv\nh9df/zvaeOJEU6UswGS+FocJ2khBRAoD/wESgUZAdxFpmE0mCaijqnWBe4E3PU6PBmarakPgImBd\nsHQNJRs3bkREuO222xARihUrxrXXXkuTJk2yZCZOnEijRo0oV64ciYmJ/P7771nn1qxZw7XXXkv5\n8uWpUqVKVlK5U6dO8fDDDxMfH098fDwDBgzg9OnTgHnrySzfWblyZc4///ysAjsABw4coHPnzpQp\nU4aWLVuyefPmgD9Pq1ataNy4MWvWrMlq56WXXqJq1ar07t2b06dP+9QLYObMmTRt2pQyZcpQp04d\n5s2bBxij07t3b84//3yqVavG0KFDs+pUb9q0iauuuoqyZctSsWJFbr/9dsBkeh0wYACVK1emTJky\nXHTRRaxZsyaX/0OWvLJ5s/ET1K37d0bSzz+Htm2tQYgkgjl91ALYpKopqpoKzAC6ZJPpDEwBUNWl\nQFkRqSwiZYC2qjrRfS5NVc9O4B+B1K9fn8KFC9OzZ0/mzp3LoUOHzjg/c+ZMnn/+ef773/+yf/9+\n2rZtS/fu3QE4duwY7du3Jykpid27d7Np0yauueYaAP7973+zbNkyVq1axapVq1i2bBkjRozIuu/e\nvXs5evQou3btYsKECTzwwANZNREeeOABihcvzp49e5g4cSKTJk3KsUZDZum+77//njVr1mRVgdu7\ndy+HDh3i999/Z9y4cYwYMcKnXsuWLePuu+/mlVde4ciRI3z77be43OGqPXv2pGjRomzevJmff/6Z\nr776infeeQeAoUOHkpiYyOHDh9m5cyf9+/cHTMW4RYsW8dtvv3HkyBE++ugjypcvn5//LksALFsG\nt95qRgVlypiKZu+8Aw0b5nytJQzxVaczvxtwCzDeY78HMDabzBfAFR773wDNgKbAUmASsAIYDxT3\n0oa/+qM5FSktmC0PrFu3Tnv27KnVqlXTc845Rzt37qx79+5VVdXExESdMGFClmx6eroWL15ct23b\nptOmTdNLL73U6z1r166tc+bMydqfN2+eulwuVVVduHChnnfeeZqenp51vlKlSrp06VJNS0vTIkWK\n6IYNG7LODR48WNu0aeO1na1bt6qIaNmyZTUuLk4bNmyoY8eOzWqnaNGieurUqYD0uvfee3XgwIFn\ntbFnzx4999xz9c8//8w6Nm3aNG3Xrp2qqt51111677336o4dO864bsGCBVqvXj1dsmTJGZ81JwJ6\nXqKYp59+OtfXpKerzpqleuWVqjVqqL72murRowWvm1PkpU8iCRyq0Rxo3oDsr6SK8XVcCvRT1R9F\nZBTwBDAs+8WeOUpcLlfWm2bO2jmX1qBBgwZMmjQJgA0bNtCjRw8efvhhpk2bxrZt23jooYd45JFH\nzrhm586d7Nixg1q1anm9565du7jggguy9mvUqMGuXbuy9suXL39G4ZrixYtz/Phx/vjjD9LS0s4o\nx5m9FKc3Dhw44LUQTsWKFSlatGhAeu3YscNr2c1t27aRmppK1apVs45lZGRk6fXSSy8xdOhQWrRo\nQVxcHI888gi9evWiXbt29OvXjwceeIBt27Zx0003MXLkSEqVKpXj5/FMk5yQkOA1901ycrJXB2Sk\ny5f1UWjAm3xaGqSmJjBrVgJFixrn8a23QpEikfN5A5FPSUnJeibCQZ/8ymeeDwhf1iK/G9AKmOux\n/yTweDaZt4DbPfbXA5WBKsBWj+NtgFle2vBnBSOGsWPHapMmTVRVtUOHDjpt2jSvctOnT/c7Upg9\ne3bWfvaRQrVq1c6Qd7lcOn/+/KyRwvr167POBTJS8PYm7q0db3rVrFlTVVX79OmjAwYMOOs+u3bt\nOmtk44vvvvtOixUrpps3bz7j+L59+zQhIUGHDh2a4z0i7XlxgkOHVF94QfX881Wvu071669VMzKc\n1sqSV/AzUgimT2E5UFdEXCJSFLgN+DybzOfAXQAi0go4rKp7VXUPsF1E6rnl2gNR4THcsGEDr776\nKjt37gRg+/btTJ8+ncsvvxyA++67j+eee461a9cCZM2NA3Tq1Indu3czevRoTp06xbFjx1i2bBlg\n6h+PGDGC/fv3s3//fp555hnuvPPOHPUpXLgwN910E8OHD+fPP/9k7dq1TJkyJeC6zznhTa8ePXoA\n0Lt3byZNmsSCBQvIyMhg586dbNiwgapVq3LdddcxcOBAjh07RkZGBps3b84q+/nRRx+xY8cOwLzl\nZpbvXL58OUuXLiU1NZXixYufUfLTkje2bzeF7WvVgtWrTVGbefOgfXvrPI5afFmLgtgwS003AJuA\nJ93H+gB9PGT+4z6/CrjU4/jFwI/u458CZbzc358VDEt27typ3bp10/j4eC1RooTGx8frfffdp8eO\nHcuSee+997RJkyZaunRprV69uvbu3Tvr3K+//qrXXHONxsXFaZUqVfTFF19UVdW//vpL+/fvr1Wr\nVtWqVavqQw89lDW3v3DhQq1evfoZemSOFFRV//jjD+3UqZOWLl1aW7ZsqUOHDtW2bdt61X/r1q1a\nqFAhnyOF7O3400tV9b///a9edNFFWqpUKa1Tp45+9dVXqqp65MgR7du3r1arVk3LlCmjl1xyiX7w\nwQeqqvrYY49pfHy8lixZUmvXrq3jx49XVdX58+frRRddpCVLltQKFSpojx499MSJEzn+n4Tz8+IU\nq1ap9uihGhenOmCA6rZtTmtkKUjwM1KwqbMtMY99XgyqMH++CTRbvRr69zeBZra2cfRhU2dbLBaf\npKXBRx8ZY/DXX6aGweef2xoGsYpfn4IYqvuTsVgskcnx4/DoKysoldiRt96CZ56BX3+Ff/7TGoRY\nTnMRiKN5TtC1sFgsIWPPHnjqKVPMZsvSRhSRpTz+zmw6dbJFbTKxRsEH7gn7n0SkRYj0sVgsQWL9\nerjnHhNpfPgwLFkCn35YjBsadKT/nP78lfaX0ypawoBA3gtaAT+IyBYRWe3efgm2YhaLJf+ou4ZB\nly5w5ZUQH29qGLz+OtSubWTqlq9Lk8pNGLl4pLPKWsKCQBzNHXIWsVgs4UR6OsycCSNHwr59MHAg\nTJ8OxYvZ15mEAAAgAElEQVR7l3+tw2s0e7sZPS7qgausK6S6WsILn0ZBREqr6lHgaAj1KTAKKvjK\nYokkTp6EKVPg1VehfHmThqJrV8gphs9V1sWAVgMYMG8A/73tv6FR1hKW+Js+mu7+dwXwk5ctbPEV\nlBEr28KFCx3XIRy3hQsXor/9hpYvj27ffsa5SGffPnj6aXC5TMTxpEnwww9w8805G4TM3DiPXvEo\nq/euZs5vdm2Jt9xCsUJUBq9ZLH4ZNsyUAPvgA6c1yTcbN5pRwQcfQLduZpqofv2832/Ob3PoP7c/\nq/uuptg5xQpOUUtY4S94LaAFaCISJyItROTKzK1gVbRYQsgTT5giAN9847Qmeeb77+HGG01Fs0qV\njI0bNy5/BgGgY92ONK7Y2DqdY5gcRwoicg/QH6gO/Ix7NZKqXh189fxjRwqWPDNzpjEOq1aBR6rv\ncMbTebx3rxkV9OwJJUoUbDsph1No/nZzlt+73Dqdo5T8jhQewlRRS1HVdsAlQFRUQbPEMJ07m9Sf\no0Y5rUmOnDwJb74JDRrASy+ZrKUbN5rSlwVtEMA4nR9q+RAD5g0o+Jtbwp5AjMJfqvongIgUU9X1\nQD4HqRaLw4jA6NHmV9adhjvcyI/zOL8Maj3IOp1jlECMwnYRiQM+A74Wkc+BlKBqZckXsRyi74+z\n+qVOHbj/fvPqHUZs3Giyk9avb1JSLFoEn31m/AfBWGnt7Xkpdk4xxnYcS/+5/TmVdqrgGw1zYvk7\nlKNRUNUbVfWQqg4HhgLvAF2DrZgl78TyA+0Pr/2S6XSePz/k+mQnWM7jnPD1vMSy0zmWv0O5Sn+l\nqsmq+rmqng6WQhZLSCle3PgV+vWD06F/rNPT4dNP4Yor4K67TEWzrVtNxtJKlUKuzlmMShzFa0te\nY9vhbU6rYgkRNieixdK5s0kZOnp0yJoMtfM4r1inc+xhjYLFIgJjxsCLLwbd6fzHHzB8uHEez50b\nWudxXhnUehC/7P2FuZvmOq2KJQTkaBREpL/b0WyxRC916kDfvqbsWBDIdB7Xqwe7dxvn8cyZwXMe\nFyTFzinGmI5jeHDOgzHpdI41AhkpVAZ+FJEPRSRRcpFpzi2/XkR+E5HHfciMcZ9fJSKXeBxPEZFf\nRORnEVkWaJuW2M7b4o8c++XJJ2Hp0gJ1Omc6j1u3Nj6C9etD4zzODYE8L0l1k2LK6RzL36GAch+J\nSCHgOqAn0Bz4EJigqpv9XFMY2AC0B3YCPwLdVXWdh0wS0E9Vk0SkJTBaVVu5z20FmqnqQT9t2Ihm\nS8Eyc6YxDitX5jnSOVSRx6Em5XAKzd5uxop7V3BB2QucVseSD/Kd+0hVM4A9wF4gHYgDPhaRl/1c\n1gLYpKopqpoKzAC6ZJPpDExxt7EUKCsilT11D0Q/i6XA6NzZTPjnwens6Tx+8UVjDMLReZxXXGVd\nPNzyYet0jnIC8Sk8JCI/AS8B3wMXqmpfoBlwk59L44HtHvs73McClVHgGxFZ7s6/ZLEEnzw4nbM7\njydONKUub7klfJ3HecU6naOfQCqvlQNuUtUzFiqraoaI3ODnukDndXyNBtqo6i4RqYiJpF6vqouy\nC3nO/blcLlwuFwkJCV7nBJOTk70GpVh5K3+WfKbTecYMn/IHDpiVQ+vXJ3DHHQl8+60ZJYSF/kGU\n7127Nw/OeZBf+/7Kueec67g+Vj5n+czzgeDXpyAi5wBrVDXXbjERaQUMV9VE9/6TQIaqvugh8xaQ\nrKoz3PvrgatUdW+2ez0NHFfVV7Idtz4FS3A4eRIaN4YJE+DqMxMCL14ML79sah/37WumhypX9nGf\nKKXrjK5cdv5lPHXlU06rYskDefYpqGoasF5E8uJVWg7UFRGXiBQFbgM+zybzOXCXW8lWwGFV3Ssi\nxUWklPt4CYyTe3UedIhJYjlE3x+56pfixeG117IinT0jj++800Qep6SYyONINwh5eV6iPdI5lr9D\ngTiaywFrRGSBiHzh3rL/uJ+F26D0A+YBa4EPVHWdiPQRkT5umdnAFhHZBIwD7ndfXgVYJCIrgaXA\nLFX9KtefLkaJ5QfaH7nuly5dSK/u4ofbR0et8xjy9rxEe6RzLH+HAvEpDM3rzVV1DjAn27Fx2fb7\nebluC9A0r+1aLPlFFT7+WHjt5zHMPdKKqdO60+KmamEfaBZKBrUexIVvXMjcTXNJrJPotDqWAiJH\no6CqySHQw2IJG3btMiOBDRtgwsw6lJ7dl5YfPQo3z8j54hii2DnFGJ042qvT2RK5+Jw+EpHjInLM\nx3Y0lEpaLKFAFd55B5o2hSZN4Oef4fLLMcFsS5bAggVOqxh2XF/vehpVbMQrP7ySs7AlIvA5UlDV\nkgAiMgLYBUx1n7oDOD/4qlksoWPzZrj3Xjh6FL75Bi66yOOkZ3rtfEQ6RyujOozisvGXcUeTO2yk\ncxQQiKO5s6q+oapH3dubnB2ZbAkjYjlviz+89Ut6Orz6KrRsCUlJJu7gDIOQSZcuJjptzJhgqxly\n8vu81IyrSf+W/Rn41cCCUSgMiOXvUI65j0TkB+B1YLr70O3AA6p6RZB1yxEbp2DJD7/+Cr17m4HA\n+PEmUapfNm2CVq1g1SqIzx6cH9v8lfYXF75xIa8nvU6HOh2cVseSA/nNffQPoBsm79Fe99//KDj1\nLJbQcuqUSUvRrh383/8ZV0GOBgGCnl47kvF0Otv02pFNQFlSwxU7UrDkliVLzOigTh144408vPCf\nPAmNGpnqOO3aBUXHSKbLjC60jG/J4LaDnVbF4gd/IwVrFCwxwYkTMGSISWU0ejTcems+itt89hkM\nHmymkYoUKVA9I52th7Zy2fjLWNFnBTXK1HBaHYsP8p0622KJZL75xiwxPXDA+BG6dctntbMuXeCC\nC0Ja0zlSyHQ6R2ukcyxgjUIUEssh+p4cOmSminr3NlNF//xnMuXLF8CNM9Nrv/AC7NxZADd0loJ+\nXh5r/Rgr96xk3qZ5BXrfUBLL36FA6ik8IiID3f9m/t1bRGwaijAllh/oTD79FC680Kws+vVXSEws\n4H6pW9cUXY4Cp3NBPy/FzinGmMTIrukcy9+hQEYKzYD7MAFr8UAfoCMw3lfdZYvFKfbsMcVtBg+G\nDz6AsWOhVKkgNTZ4sAlsWLgwSA1ELtfXu54GFRrYSOcIJBCjUB24VFUfUdWBGCNRCbgKU7PZYnEc\nVZg8GS6+2BS6WbkS2rQJcqOe6bVTU4PcWOQxOnE0r/7wKr8f+d1pVSy5IBCjUBE47bGfClRW1ZPA\nX0HRymLJBVu3QocOZlQwbx6MGAHFioWo8a5doUaNqIx0zi8142ryYIsHrdM5wgjEKLwPLBWRp0Vk\nOLAYmOYufrM2mMpZLP5ITzcLgC67zBS9WbrUJLMLKZlO5+efN+lVLWcQDU7nWCNHo6CqzwL3AkeA\nQ0AfVf2Xqp5Q1TuCraAl98RC3pa1a8300KefmvKYjz0G5+SQCD5o/RLhTudgPi/nFTkvIiOdY+E7\n5ItAch/1VtUJ2Y69oKpPBFWzALDBa7HH6dOmAtqYMWaa6J57oFA4LKy2kc5+6Ty9M5dXu5wn2z7p\ntCoW8h+8douI9PC42esYR7PFElJ+/BGaNzfTRD//DH36hIlBAOt0zoFRiaMY+cNI63SOAAL5St0E\n3C0i3UXkXSBNVf8ZZL0slixOnjQzMzfcYOrdfPEFVKvmtFZesE5nn9SKq0X/Fv0ZOC960mtHK/4q\nr5UTkXLAecD/AY8DR4F/uY/niIgkish6EfnNV0yDiIxxn18lIpdkO1dYRH4WkS8C/kSWqGLhQlPf\nYPduWL0aunfPZ4qKYGKdzn55rPVjrNi9wjqdwxyfPgURSQE8T4rHvqpqLb83FikMbADaAzuBH4Hu\nqrrOQyYJ6KeqSSLSEhitqq08zmfGRZRS1c5e2rA+hSjl8GHjPJ47F958E66/3mmNcsGQIbBlC0yb\n5rQmYcesjbMYOG8gq/uutjWdHSRPPgVVdalqTY/Nc9+vQXDTAtikqimqmgrM4OyKbZ2BKe72lgJl\nRaSyW+lqQBLwDsYgWQIk0kP0Z882KSrOOcekqCgogxCyfhk82CyJipBI51A+L53qdaJ+hfq8+sOr\nIWszL0T6dyg/BNNNFw9s99jf4T4WqMxrwCAgI1gKRiuR+kCrwksvmVrJ779vktiVLl1w9w9Zv0SY\n0znUz8voxNFh73SO1O9QQZDDyu58Eei8TvZRgIhIJ2Cfqv4sIgn+LvZcT+xyuXC5XCQkJHhdZ5yc\nnOz1P9vKOy9/xRUJ3HefWVW0ZIlxJEeS/mfJd+1K8vPPk9ypE1x+ufP6+JFPSUk561gw9cl0Ot/5\n6p20k7OX74ZD/yQnJzN8+PCw0Se/8pnnA0JVvW5AEV/nAtmAVsBcj/0ngcezybwF3O6xvx6oAjyH\nGUFsBXYDJ4B3vbShlrN5+umnnVYhV/zxh+qVV6p27ap67Fjw2gl5v2zcqFq+vOrOnaFtN5c48byc\nPH1Sa46qqfM2zQt524EQad+h3OL+7fT62+1v+ugHEZkpIveJiCswE3MGy4G6IuISkaLAbcDn2WQ+\nB+4CEJFWwGFV3aOqg1W1uqrWBG4HFqjqXXnQwRLmrF8PrVqZl+lPPoGSJZ3WqACpW9cEU0RopHMw\nOa/IeYzpGNnptaMVf47m5sDDmOmdUSKyXEReE5HrRCTHZQOqmgb0A+ZhciR9oKrrRKSPiPRxy8wG\ntojIJmAccL+v2+XqU1kigm++gauugqeeMvVqwiYQrSAZPBi+/x5ieI7aF53qdaJe+Xph73SOOXwN\nIbJvQFHgGuBlYBnwZaDXBmvDTh95ZeHChU6rkCNvvqlaubJqcnLo2nSsXz75RLVRI9XTp51pPwec\nfF42H9ys5V8sr9sOb3NMB29EwncoP+Bn+ijH3Ee+EJFqqrqjYExT3rBxCpFHejo88oiJP5g1C+rU\ncVqjEKAKHTvCddfBQBvRm53hycP5dd+vfNztY6dViRn8xSnk2SiEA9YoRBZHj5qI5FOn4KOPIC7O\naY1CyMaNcMUV8MsvcP75TmsTVvyZ+ieN32jMW53e4rra1zmtTkyQ34R4Fku+SUmB1q2henWYMyfG\nDAJAvXrW6eyDSE2vHa34NQru3EMjQ6WMJTr54Qfzkvx//2dSVhQp4rRGDmGdzj65of4N1Ctfj9eW\nvOa0KjGPX6OgqulAG5GwTUFmCXOmTYPOnWH8eHjooTBOZhcKSpQwkc4PPBARkc6hZnTiaEYuDu9I\n51ggkOmjlcBMEblTRG52bzcFWzFL3gmHEP2MDBg2zLwcL1gQHgntwqFfuPFGE649dqzTmmQRFv2C\niXTu16Ifj3z1iNOqhE2fOEEgRqEYcBC4Gujk3m4IplKW/OH0A/3nn8ah/PXXpiBOkyaOqpOF0/0C\nmKHS2LHw3HNhk147LPrFzeOtH+enXT/x9eavHdUjnPok1OSY+0hVe4ZAD0uUsGcPdOkCtWubJKHF\nijmtURhSr57J+jdokMn8Z8ki0+ncb04/frnvF5te2wFyHCmISH0RmS8ia9z7F4nIkOCrZok0Vq2C\nli3NVNH771uD4JennoLvvrNOZy9Yp7OzBDJ9NB4YDJx2768GugdNI0tE8sUX0L69SX09bFiMO5QD\nwTqd/ZLpdN5+ZHvOwpYCJRCjUFxNARzAHRsN9im2ACZY95VXzBL8WbPgttuc1iiCCEOnc7iQ6XQe\n+JWNAA81gRiFP0QkKxmBiNyCSWdtCVO85VoPBqdPm6nxd981NRBatgxJs3kmVP0SMGHidA67fnHj\npNM5XPskFOSY5kJEagNvA5cDhzE1Du5Q1ZSga5cDNs2Fcxw8CLfcYmZBpk2DUqWc1iiCGTwYtm2z\nTmcvfLHhCwZ9PYhf+v5C0cJFnVYnashvmosMVb0GqAQ0UNXW2JrJMc3GjaYGwqWXwmefWYOQb6zT\n2Sc31L+BuuXr8toP1ukcKgIxCp8CqOpxVT3qPmbTGcYoCxZA27ZmNeXIkVC4sNMaRQElSsCrr1qn\nsw9GJ47m5cUvW6dziPBpFESkoYjcDJQRkZsyI5lFpCcmoM0SY4wfb4LSpk+He+5xWpso46abrNPZ\nB9bpHFp8+hREpAtwIyZ62bOM5jFghqouDr56/rE+hdCQng6PPWaWnc6aZWKvLEHAptf2SWZ67bdv\neJv2tdo7rU7EkyefgqrOdEcz36CqvTy2/uFgECy+KcgQ/fR0uOMOWLHCrDCKZIMQ9qkLPCOdQ0jY\n9wsekc6z+3E6/XTOF+STSOiTYBGIT+FnEeknIm+IyCQRmSgiE4OumSXPFNQDnZFh0l0fOGBqIJQr\nVyC3dYyI+KI/9RQsWhRSp3NE9AvG6VynXJ2QOJ0jpU+CQSBG4T2gMpAIJAPVgeOB3FxEEkVkvYj8\nJiKP+5AZ4z6/SkQucR8rJiJLRWSliKwVkecD+jSWAkMV+veH334zK4xsyooQkRnp3K+fdTp7wTqd\ng08gRqGOqg4FjqvqFCAJyDFMSUQKA//BGJNGQHcRaZhNJsl9/7rAvcCbAKr6F9BOVZsCFwHtRKRN\n4B/Lkh9U4YknzHTRl1+a3ylLCLnpJuNTsE7ns6hdrjYPXPZAWKTXjlYCMQqZE3hHRKQJUBaoGMB1\nLYBNqpqiqqnADKBLNpnOwBQAdyqNsiJS2b1/0i1TFCiMSd9tCQEjRsDs2TBvHpQp47Q2MUiYRDqH\nK0+0eYLlu5bzzZZvnFYlKgkoIZ6IlAOGYFYhrQVeCuC6eMBzjLfDfSwnmWqQVQp0JbAXWKiqawNo\n05JPXn0V3nvP1EIoX95pbWKY+vXNut8QO50jgfOKnMeoxFEhczrHGoHUUxjv/vN/QM1c3DvQtaLZ\nl0Wpu910oKmIlAHmiUiCqiZnv9gzR4nL5cLlcpGQkOA1d0lycrJXB1K0yWf+ndv7P/JIMhMmJNOr\nF7z1lnP6B0s++zVO65OjvAjMmkXCqFEkPPxw0PQpW7bsWccK8v7BkFdVMn7N4PoV1/PUXU8V+P1T\nUlIYPnx40PQPtXzm+UAIJPfRZmAJsAhYpKprArqxSCtguKomuvefxKTMeNFD5i0gWVVnuPfXA1ep\n6t5s9xoK/KmqI7Mdt3EKBcTUqcaPkJwMderkKG4JFR9/DMOHw88/Q5EiTmsTVmw+uJmW77Rk5X0r\nqVa6mtPqRBT5zX3UGJMQrzwwUkS2iMhnAVy3HKgrIi4RKQrcxplBcLj373Ir2Qo4rKp7RaSCiJR1\nHz8PuBb4OYA2LXng00/h0UeND8EahDDj5puN0/k//3Fak7DDOp2DQyBGIQ1TPyEdyAD2Yeb5/aKq\naUA/YB7GD/GBqq4TkT4i0sctMxvYIiKbgHHA/e7LqwIL3D6FpcAXqjo/V5/MEhBz58J99xnHcuPG\nTmtjOYtMp/O//w27bcb67DzR5gmW7Vxmnc4FSCDTRycx1dZeBear6v5QKBYIdvoof/zvfyb99cyZ\nJruCJYx58knYvt3M81nO4PMNn/P4N4+z6r5VNr12gPibPgrEKHQB2gKXYUYMi4FvVdVx02yNQt5Z\nuhQ6dYIZM+Caa5zWxpIjJ05Aw4ZmadhVVzmtTVihqnSa3omrLriKx1o/5rQ6EUG+fAruHEiPAn2A\n2UBPYFaBamgpUHJaZbBqFXTuDJMnx5ZBiOjUBZnptYMQ6RzR/YL5gRuTOIaXvn+JHUd3FMg9I71P\n8kOORkFEPnGvQBoDFAfuBOKCrZgl7/h7oNevh44djd/y+utDp1M4EPFf9JtvhipVCtzpHPH9gnE6\n33/Z/QXmdI6GPskrgTiaXwDqq+p1qjpCVf+nqn8GWzFLwbNlC1x7LTz/PNx6q9PaWHKNdTr7xTqd\nC4ZApo9+dK8kskQwO3ZA+/bGX3n33U5rY8kzDRqY1LU20vksihcpzqgOo3hwzoM20jkfBDJSsEQ4\n+/YZg9C3L9x/f87yljBnyBD49luzWc6gc/3O1Iqrxaglo5xWJWKxRiHKOXjQTBnddpt9uYwaSpaE\nV16xNZ29ICKMThxdoE7nWCMQR3MzEbk021ZbRHLMm2RxhsxcJ8eOGady+/YmU0Ks4y1fTMRyyy0F\n5nSOqn4B6pSrk2+nc7T1SW4IJE5hCdAM+MV9qAmwBigD9FXVeUHV0L9uNk7BBydPGoPQsCG8+abx\nUVqijPXroU0bWL0aqlZ1Wpuw4mTqSRq/0Zh3bniHa2rF0LrrAMlv7qNdQFNVbaaqzYCmwBZMPqJA\nUmhbQsypU2b1Yo0a8MYb1iBELdbp7JNMp3O/OTa9dm4JxCjU98yM6q5r0EBVNxN4emxLiEhLg+7d\n4bzzYNIkKGS9RtHNkCEmX4l1Op+FdTrnjUB+MtaIyJsicpWIJIjIG8BaETkXk/bCEkYMGmSmjqZP\nh3Os1yf6KVnSRDpbp/NZWKdz3gjEp1Ack720tfvQ98AbwF9ACVU9FlQN/etmfQoeLFwIPXrAL7/Y\nqmkxhSpcd50JUfdSjCfWGbZwGBsPbGTGLTOcViVsyK9PoaGqjlTVG93bSOBqVc1w0iBYzuTYMfjn\nP+Htt2H16mSn1QlLojZ1QWak84gReYp0jtp+cfNEmydYunMp87cEnn0/2vvEH4HWaG6SuSMi3YFh\nwVPJkhceecQkt7v++th+oP0R1f2S6XR+LPdZQqO6X8hbpHO094k/AjEKtwBTRKSBiNyDmUq6Nrhq\nWXLDnDnw1VdmatkSwwwZYuqpWqfzWXSu3xlXWRejl4x2WpWwJ5DcR1uA7sB/gZuBDqp6JNiKWQLj\n4EG45x6z0qh0aae1sTiKdTr7REQY03EML37/onU654BPoyAiqzM34GOgHFATWCoiv/i6zhJaHnzQ\nxCS0a+e0Jpaw4JZboHJleP11pzUJO+qUq0Pf5n159KtHnVYlrPG3aPGGkGlhyRMffww//ggrVzqt\niSVsEDGpL9q2NQmvbKTzGTzZ9kkav9GYBVsXcHXNq51WJyzxOVJQ1RR/W6ANiEiiiKwXkd9E5HEf\nMmPc51eJyCXuY9VFZKGIrBGRX0Wkf64/XRSzd68pwjVlChQvfua5WM7b4o+Y6ZcGDcxStACdzjHT\nLxin82sdXqPfbP+RzrHUJ9nJMU4hXzcXKQxsANoDO4Efge6qus5DJgnop6pJItISGK2qrUSkClBF\nVVeKSEngJ6BrtmtjMk5BFW680eQ1ev55p7WxhCXHj5sH5P334corndYmrFBVrp92Pe1c7RjUOjZT\nhOQ3TiE/tAA2uUcXqcAMoEs2mc7AFABVXQqUFZHKqrpHVVe6jx8H1gHnB1nfiOC990wVNZv51OKT\nzPTa/fqZ3CeWLKzT2T/BNgrxwHaP/R3uYznJVPMUEBEXcAmwtMA1jDC2b4dHH4V334Vzz3VaG0tY\nc+utUKmSdTp7wTqdfRPs7DiBzu1kH8ZkXeeeOvoYeMg9YjgDz7k/l8uFy+UiISHB65xgcnKy16CU\nSJFfuDCZ//u/ZC68ED77zGyRpL+VD7F8ZqSz2+mcvH59ZOkfZPnsTmen9QmmfOb5QAi2T6EVMFxV\nE937TwIZqvqih8xbQLKqznDvrweuUtW9IlIEmAXMUdWzUh3Gmk/hrbdg4kRYvNgmu7PkgscfN+kv\n3n3XaU3Cjs/Wf8bg+YNZed9KihYu6rQ6IcNJn8JyoK6IuESkKHAb8Hk2mc+BuyDLiBx2GwQBJgBr\nvRmEWGPzZhg61HyvczIIsRyi74+Y7ZehQ022xEWLvJ6O2X4ButTvgqusizFLx5xxPJb7JKhGQVXT\ngH7APGAt8IGqrhORPiLSxy0zG9giIpuAcZg0GmCysvYA2onIz+4tMZj6hivp6dCzJwwebFYb5kQs\nP9D+iNl+8azp7MXpHLP9wt9O5xe+e4GdR3dmHY/lPgl6CRZVnaOq9VW1jqo+7z42TlXHecj0c5+/\nWFVXuI99p6qFVLWpql7i3uYGW99wZNQoUyznoYec1sQSsVins0+ynM5fW6czhMAoWPLH2rUmFsFW\nUbPkC8/02nv2OK1N2PFk2yf5YfsPLNy60GlVHMf+zIQxqalw113w739DrVpOa2OJeBo2zFWkcyxR\nvEhxRiWO4oHZD5CaHtvJBK1RCGOefx4qVIB773VaE0vUkIPTOZbpUr8LF5S9gNFLYzu9tjUKYcqK\nFSav2YQJZuSfG2I5b4s/bL/g1els+8UgIoxJNE7nxpc1dlodxwhqnEKwidY4hVOnoFkzeOIJU3PZ\nYilQVKF9e+jSBfrbPJPZGbJgCJsPbWb6zdOdViVo+ItTsEYhDBk4EFJS4JNPcj9KsFgCYt06kyhv\n9WqoUsVpbcKKk6knafR6IyZ1mUS7mtFZqMTJ4DVLLnnjDZg1C95+2xoESxBp2BB69TLRzpYzKF6k\nOOM6jSMtIzYTCdqRQhjx6aemktqiRXa1kSUEZKbXnj4d2rRxWhtLCLEjhQjgu+/gvvvgiy+sQbCE\niJIlYeRIn5HOltjEGoUwYO1aU2f5/ffh0kvzf79YDtH3h+0XL3TrRnLhwmbe0pJFLD8r1ig4zI4d\n0LGjeWG79tqCuWcsP9D+sP3iBRGSL78cnn3W1Hi1ALH9rFij4CCHDxuDcP/9cOedTmtjiVkqVjRO\nZxvpbMEaBcc4dcrUWW7Xzn4XLWHA0KGwYIFxblliGmsUHCAjw+Q0qlABXnvNLj21hAGlSlmnswWw\nRiHkqMIjj5hEle+9B4ULO62RxeKmWzfzpmKdzjGNNQoh5pVX4OuvTX3lYsWC04bNZeMd2y/eyeoX\nEZNwyzqdY/pZscFrIWTaNJPPaPFiqFbNaW0sFh889pgxClOmOK2JJUjY3EdhwPz58I9/mH8vvNBp\nbSwWPxw7ZiKdZ8ywkc5RiqMRzSKSKCLrReQ3EfGaaEVExrjPrxKRSzyOTxSRvSKyOth6BpOVK6F7\nd/joI2sQLBFAqVJ+azpbopugGgURKQz8B0gEGgHdRaRhNpkkoI6q1gXuBd70OD3JfW3EkpIC119v\nfDwvDHEAAA28SURBVHdXXum0NhZLgGQ6nd98M2dZS1QR7JFCC2CTqqaoaiowA+iSTaYzMAVAVZcC\nZUWkint/EXAoyDoGjQMHIDHR+BFuucVpbSyWXJDpdH7mmZh3OscawTYK8cB2j/0d7mO5lYk4Tp6E\nG26Arl1N5tNQEssh+v6w/eIdn/0Sw+m1Y/lZCbZRCNQLnN3hERneYx+kpRkfQp06ps5yqInlB9of\ntl+847dfhg6Fb76B778PmT7hQCw/K+cE+f47geoe+9UxIwF/MtXcxwLCcz2xy+XC5XKRkJDgdZ1x\ncnKy1//sgpRfuDCZWbNMXqN//AP+9a+Cvb+Vt/IFLZ+SknLWsTPkW7UyaXzvvRcKFQo7/YMhn5yc\nzPDhw8NGn/zKZ54PCFUN2oYxOpsBF1AUWAk0zCaTBMx2/90KWJLtvAtY7eP+Gm4884zqpZeqHj3q\nnA5PP/20c42HMbZfvJNjv2RkqF59teqYMSHRJxyI9mfF/dvp9Xc7qNNHqpoG9APmAWuBD1R1nYj0\nEZE+bpnZwBYR2QSMA+7PvF5EpgOLgXoisl1EegVT3/wyYQJMngxffmlW9VksUYEIjB1rnc4xQrCn\nj1DVOcCcbMfGZdvv5+Pa7kFUrUD58ksYMgT+9z9bB90ShTRqBD17Gqfz5MlOa2MJIjb3UQGwdKlZ\npPHZZ1CvntPaxHbeFn/YfvFOwP0ybFjMOJ1j+VmxaS7ygSpMnGjiECZNgk6dHFPFYgkNH3xgltQt\nXw7nBH2iwRIkHE1zEa1s3WrKZ775pnl5sgbBEhN06wbly8NbbzmtiSVIWKOQS9LTYfRouOwyuO46\nWLIELr7Yaa0slhCR6XT+17+s0zlKsdNHuWDdOujd24ya33knPPwHFosjDBoE+/ebeVNLxGGnj/JJ\nair8+98mod2dd0JysjUIlhhn2DBTLWrxYqc1sRQw1ijkwIoVZqrou+/gp5+gb18oFOa9Fssh+v6w\n/eKdPPVLlNd0juVnJcx/3pzjzz/NqqKOHU1N5dmzoUYNp7UKjFh+oP1h+8U7ee6X226DuLiodDrH\n8rNijYIXvvsOmjaFLVvgl1/MlJF4nX2zWGKYzPTa1ukcVVij4MGxY9Cvn3kBeuEF+PBDqFzZaa0s\nljAmM9L5iSec1sRSQFij4GbePGjSxNRB+PVXuPFGpzWyWCIE63SOKmI+JPHgQRg40OQsGj/eBKRZ\nLJZc4Ol0/vFHG+kc4cT0SOGTT+DCC6F0aVi9OnoMQiznbfGH7RfvFEi/RJnTOZaflZgMXtuzx7zU\nrFlj0l23bh0E5SyWWGPNGkhIMP9WquS0NhY/2OA1N6om6+9FF0GDBrBypTUIFkuB0bgx3H13TNZ0\njiZiZqSwbRv06WNWzk2cCJdcEmTlLJZY5NgxaNjQLN274gqntbH4IKZHChkZZil1s2Zw1VWwbJk1\nCBZL0ChVCl5+OWojnWOBqB4pbNhgEtipGt9BgwYhVM5iiVVU4eqr4eabTeCPJeyIuZFCaqoJPmvd\n2iyKWLQotgxCLIfo+8P2i3cKvF88I5337SvYe4eIWH5WgmoURCRRRNaLyG8i4tX7JCJj3OdXicgl\nubnWGytXQsuWsGCBKQ714IPhn8CuoInlB9oftl+8E5R+iXCncyw/K0H7uRSRwsB/gESgEdBdRBpm\nk0kC6qhqXeBe4M1Ar83OX3/BU0+Zwjf9+5sIZZeroD9VZJCSkuK0CmGJ7RfvBK1fnn4avvoqIiOd\nY/lZCeY7dAtgk6qmqGoqMAPokk2mMzAFQFWXAmVFpEqA12axeLFxHq9bB6tWmVQssZzALpYfaH/Y\nfvFO0PrFM9I5PT04bQSJWH5WgmkU4oHtHvs73McCkTk/gGsBeOghuOUWePZZ+PRTqFo133pbLJaC\n4vbboUyZqIl0jgWCmaQk0GVN+XqnP3zYpKgoXz4/d7FYLEFBBF5/3UQ633qrjXSOAIJpFHYC1T32\nq2Pe+P3JVHPLFAngWgDefVd499186xp1SCzPn/nB9ot3QtIvEZaHPlaflWAaheVAXRFxAbuA24Du\n2WQ+B/oBM0SkFXBYVfeKyIEArvW5ztZisVgseSNoRkFV00SkHzAPKAxMUNV1ItLHfX6cqs4WkSQR\n2QScAHr5uzZYulosFovFENERzRaLxWIpWMI2rMuJwLdIIJ/9kiIiv4jI/7d3/jFyVVUc/3xrgUJr\nDTX4IyG2pcZCTY38aIilCGI0aEEiVqMWMUAa1Kg1lkRNQGOsCQZj/EOlUKytAWpEC9QIMVjA1krd\nlG3ZdRNUmlJjAVNJxZamUuPxj3Nm9nWY6c7s7O7MvD2f5Gbuu++d9+49e/ed++Pdc3dJ6pu4XI8v\nI+lE0tmSnpB0VNKqVmR7mTb1Usq6Ak3pZXn87wxI2i7pHc3KlgIz67qADxk9A8zBJ513A+fUXPNB\n4KGIXwjsaFa2V0M7eonjvcCsTpejAzo5A7gAWA2sakW2V0M7eilrXWlBL+8CXhfxyyfDu6UYurWn\nMGEL33qM0eql+NlH2SbnR9SJmR0ws53AsVZle5h29FKhbHUFmtPLE2b2Uhz+Ef8qsinZMtCtRmFC\nFr71IO3oBXztyG8l7ZS0YtxyObE0o5PxkO122i1bGesKtK6XG4CHRinbk3TrDtsTsvCtB2lXL0vM\n7DlJZwCPSHrazLaNUd46RTtfSpT5K4t2y3aRmT1fsroCLehF0nuA64HK/oxlri9VurWn0M7Ct2Zk\ne5XR6mU/gJk9F78HgPvx7nCv087fe7LXlYaY2fPxW6a6Ak3qJSaX1wIfMrODrcj2Ot1qFKoL3ySd\njC9e21xzzWbgWoDiwrcmZXuVUetF0mmSXhvp04H3A4MTl/Vxo5W/d20ParLXlQrH6aXEdQWa0Iuk\ntwCbgGvM7JlWZEtBp2e6GwXgA8Cf8dn+r0XajcCNhWt+EOefAs47kWxZwmj1ApyFfy2xG/hTmfQy\nkk6AN+FjwS8BB4G/ATMme11ppJcy15Um9XIX8CKwK0LfiWTLFnLxWpIkSVKlW4ePkiRJkg6QRiFJ\nkiSpkkYhSZIkqZJGIUmSJKmSRiFJkiSpkkYhSZIkqZJGIekYsQhowhdFSbpK0jljdK+dkk6qSXtW\n0qwxuv/hsbhPkjRLGoVkMvJhYEErApJeUydtLrDf3GNmkbFc/POqe0nqVp9lSQlIo5B0BZLOktQv\n6fxws/BzSUOSNknaIen8musXSfplxK+SdETSVEnTJO2J9BWS+iTtlvQLSadKWgxcCdwWG8jMlTRP\n0sPR6t8qaX7Ir5e0RtIO4Dt1sn058PAJynRq3PeGOL4lNmjZJune2o1t4pq5sfHNgKTVhfRLQ+5B\nYEjSNyWtLJz/tqQv1txruqRfR/kHJX0s0t8buh6Q9ONw2VDJX19ce0fhPo9L+n7oa1DSokZlTkpA\np5dUZ5i8Ad+sZBCYD/QDCyP9JuD2iL8d9/d/Xo3sVGBPxL+L+71fDFwC3BPpswrXfwv4fMR/Alxd\nOLcFeGvELwS2RHw97ttGDfL/ADCnTvpeYDbwCO4/B2AR7jLhZNyVxF+AL9eR3VyQ+RxwKOKXAoeB\n2XE8G3gy4lNwtwun19zrI8CdheOZwDTcnUWlvBuAlRE/vXDtT4ErIv4YcEfELwYGO113MoxfyJ5C\n0mnegL9cP2lmlfmFi/ANTDCzIWCgVsjM/gvskXQ2/sL9HvBuYAlQcfG8MFrXA8Byjh8yEoCkGfhO\nW/dJ2gWswX0CgQ/d3GfxNiwSreszzezZOmUS8CCwzszuLpTpATN7xcwOA7+q5KGGxcDGiN9dc67P\nzPZF+fcBL0p6J+6wrt+GvXlWGADeJ+lWSUvM7N+4Ad5rw47eNuB6A7gsemUDwGUcr6+N8dxtwExJ\nM+vkPSkBOTaZdJp/AfvwFujThfRm9srYim8/egxv7W/AW803xfn1uOvjQUmfxlvbFSov+im4J9lz\nqc+RBukXM2x8ajHg97jztI2FtGKZRrMXyMs1x3cB1wFvBNa9KhNmf5Xv0b0UWC1pC26silSM4ynA\nj/Ae2X5J38B7FY1Ip2klJXsKSad5BbgauFbSJyJtO1AZ/14ALGwguw34EvAHM/sn8HpgfvQuwIdp\nXoivg65h+EV2CB9KIVrPeyUti+dJhY3aT8AJ5xOArwMHJf2wUKYrJZ0SvZOl1H+xbgc+HvHlI+Th\n/sjHBcBvak9KejNw1MzuwYfYzsU9fM6RNC8u+xTwOG4ADO99zAA+WrwV7iYaSUtwI3pohLwlPUr2\nFJJOY2Z2RNIV+A5fh/AW6wZJQ3jvYQh371xLHz78tDWOn8JbzRVuwecaDsTvjEj/GbBW0heAZfjL\n93ZJN+Mbsm9keMiqUYv4EuDmRmWKgq2UtE7SrWb2VUmb477/wOdS6pVpJXCvpK/grfri84/Li5kd\nk/QocLDeEBduTG+T9D+8N/UZM/uPpOvw4bKpuA7XxL3W4q6yX8D1VXzuUUn9+Dvj+gblTkpAus5O\nug5JU4CT4gU2D5+wfVvMI3QcSWfiE69LW5SbbmYvSzoN+B2wwsx2t5GPKcCTwDIz2zPa+zTxnMeA\nVWbWP17PSLqH7Ckk3ch04NEY9hHw2W4xCABm9nd8+KdV7ozhsGnA+jYNwgJ8snrTeBqEZPKRPYUk\nSZKkSk40J0mSJFXSKCRJkiRV0igkSZIkVdIoJEmSJFXSKCRJkiRV0igkSZIkVf4PB798eo0nwAQA\nAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7a26828>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Conditions corresponding to First Operation \n",
+ "\n",
+ "X = kg water/kg dry soap\n",
+ "0.149425287356\n",
+ "Y = kg water/kg dry air\n",
+ "0.0586080045715\n",
+ "Final moisture content of soap is 9.338 %\n",
+ "\n",
+ "\n",
+ " Illustration 5.2 (b)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYE2XXwOHfAUEEqdKU4oqI4gtSpauLFUEFRZHepIii\nvh8WxIqvig0siNKkSVe6VAVZpEhnQQVUyiodpUiHLef7Y7JryLbsbrLJJue+rlxuMs/MnDyGnMw8\nTVQVY4wxBiBXoAMwxhgTPCwpGGOMSWJJwRhjTBJLCsYYY5JYUjDGGJPEkoIxxpgklhRM0BKRziKy\n3O15gohUCGRMqRGRoSLySqDjSI+I3Cgi69yex4jIHamUvUlEVmZfdCYYWFIwQcX1JXW7H48/VkTe\nzOIxLkpWAKraS1Xfylp0qZ4rXkROuj1uTaVsJRGZLSKHReSIiCwUkUoexd4EPnAP3fVIRlW3AMdF\n5D6fvBmTI1hSMMEmoKMpReSSQJ4/FStVtaDb44dUyhUGZgGVgFLAWmB24kYRuRKIdJXx1kSgZ6ai\nNjmSJQWTI4lIlIg85vY86de7OD4SkUMi8o+IbBGR/4hID6At8ILrF/dsV/kYEXlBRLYAJ0Ukt4i8\nKCI7ROSEiPwiIi1cZSsDQ4H6rmMcdb1+0RWIiHQXkd9dv9hnu76QE7cliEhPEflNRI6JyJD03q43\ndaKq61R1jKoeV9U44GPgehEp6ipyF7BBVS947FrH9R6PishoEbnUbdsy4A4RyeNNDCbns6RgcqpU\nb3sAdwO3ANepamHgEeCIqo7A+eX7nusXd3O3fVoD9wJFVDUe2AE0UtVCwBvABBEpparbgMeBH13H\nKOYZj+v21wDXea8E/gCmeMTYDKgN3AS0EpF70nifNUTkLxH5VUReEZHc6VcPALcCB1T1mOt5VeBX\njzKCkyjvBq7FucpIahtR1X1ALHC9l+c0OZwlBROKYoGCQGURyaWqv6rqQbftnr+8FRisqvtU9TyA\nqk5L3EdVvwJ+B+qmsr+ndsAoVY12/Srvh3NlUd6tzLuqekJV9wBLgeqpHOsH4D+qWgJoCbQBnk/n\n/IhIWWAI0Mft5cLAKY+iCgxxvfdjwNuuc7g7CRRJ75wmNFhSMCFHVb/H+UL8DDgkIsNFpGA6u+1x\nfyIiHUVkk+v2zjGgCnCFlyEkXh0kxnMaOAKUcSvjnqTOAJen8l52q+ofrr9/Bv4HPJzWyUWkBPAt\n8JmqTnXbdAwnWXpyf+9/Ald5bC8IHE/rnCZ0WFIwOdVpoIDb89LuG1X1U1WtDdyIc0sk8dd1arec\nkl4XkauBEcCTQDFVLQr8zL9XCOk1hu8HItyOVwAnoexLZz9vpXql4mo/+BaYparveGzeglMXnsp7\n/L3f7XhlgLwkv+1kQpQlBZNTRQMPichlIlIReIx/7+nXFpG6rsbRM8A5IN613yEgvbEOBVzH+hvI\nJSJdcK4UEh0Cyno0vgr/fllPBrqISDVXo+0AYLWq/pnK+dL6kr9XREq5/r4B535/ir2HRKQQsAhY\noaovpVBkMVBTRPJ6nPtJESkjIsWAl7m4/eM2YImqxqYWowktlhRMMPNsTHb/+yPgAs4X9Bhggtu2\nQji/9I8CMThf7ol980cBN7puC81I8aSqW4FBwI84t3mqACvciiwBfgEOishhz1hVdQnwKjAd51f3\nNTgN2Sm9j5Tep7vbgc0icgqY5zrmgMSNIjJfRF50PX0Qp/G6i9uYhhOu9gVU9RDwPdDC49wTca4u\nduK0nbiPt2gHDEslNhOCxJ+L7IhIE5xucbmBL1T1vRTKDMbp9XEG6Kyqm1yv9wPaAwnAT0CXxEZA\nY0zmuLrUjlPVOl6UvQkYqqoN/R+ZCRZ+SwqubnO/Anfi3EtdB7RxdelLLNMU6K2qTUWkLvCJqtYT\nkQicXzSVVfW8iEwF5qvqOL8Ea4wxBvDv7aM6wA5VjXHdj5wCNPco8wAwDkBV1wBFXPdPT+B0K8zv\nGmGaH9810hljjEmFP5NCGS7u6raXi7vkpVpGVY/i3NP9E+ee7HFVXezHWI0xxuDfpODtfalkPS9E\n5Frgvzjd+q4CLheRdr4LzRhjTEr8OfnXPqCc2/NyOFcCaZUp63otElilqkcAXL1EGuD0kkgiIgGd\nPM0YY3IqVU2xK7Q/rxTWA9eJSISrX/SjwByPMnOAjgAiUg/nNtEhnAbqeq4+6ILTWL01pZOoqj08\nHp06dQp4DMH4sHqxegnVOvnj+B8ZKp8WvyUFdWZp7I0zmGYrMFVVt7lmh+zpKjMf2CUiO4DhwBOu\n16OBL3ESyxbXIUf4K9ZQExMTE+gQgpLVS8qsXpLLKXUSGx/Li4tf5JYxt3D6wmmfHNOvc8er6gJg\ngcdrwz2e905l3/eB9/0XnTHG5Fy7ju2izfQ2FM9fnPXd11Mgb4H0d/KCjWgOQREREYEOIShZvaTM\n6iW5YK+TyT9Npu4XdWlTpQ1z28ylRIESPjt2MK4yZbIo2D/QgWL1kjKrl+SCtU5OXTjFUwueYtWe\nVXzb/ltqXFnD5+cIyaTgtE2HtzfeeCPQIQSl1OolvcY3YwJt44GNtJ7WmlvK38KGHhu4PG+Ks61n\nWUgmBbB/5MZ74f4jIjIyMtAhBJ1gqhNV5ePVHzNgxQAGNxlMm6qeayD5ll8nxPM3EdGU4hcRSwrG\na/Z5McHq8OnDdJndhSNnjjCp5SQqFE1v1nfvuD7z2T5OwRhjTCYt3rWYGsNrUK1UNZZ3We6zhJCe\nkL19ZIwxOVFsfCyvLn2VCVsm8GWLL7mjwh3Zen67Ugghf/75JwULFky6FRIZGcmoUaMAmDhxIvfc\nc09S2Vy5crFr1y6vj+25fyB4vj9jQs3OoztpNKYRPx/+mU09N2V7QgBLCgERERFB/vz5KViwYNLj\n6aefzvJxy5cvz8mTJ5MaTkUk6e927dqxaNGiTB87q/tnhHsyc+f5/owJJZN+mkS9UfVoV7Ud37T5\nxqdjDzLCbh8FgIgwd+5cbr/99kCH4pX4+Hhy586dbedzT2bG/6KiooKqt00wyM46OXXhFL3n92b1\n3tV81+E7qpeuni3nTY1dKQSZhIQEnnvuOUqUKMG1117LZ599Rq5cuUhISACcq4wlS5Ykle/fvz8d\nOnQAnPla3Mu6Gzt2LLfccstFr82bN49rr72WEiVK8MILLyTdlhk7diwNGzakT58+FC9enP79+1+0\nf0rncf91775/0aJFqVixIqtWrWLMmDGUL1+eUqVK8eWXX2a4bjzPGxkZyWuvvUajRo0oVKgQ99xz\nD0eOHEkqv3r1aho0aEDRokWpXr06y5Yty/A5w0FUVFSgQwg62VUnGw9spObwmuSW3GzosSHgCQEs\nKQRMavfFR4wYwbx584iOjmb9+vVMmzbtol/Nnr+is/KLetasWWzYsIGNGzcye/ZsRo8enbRt7dq1\nXHvttRw+fJiXX3453WN5xrV27VqqVavG0aNHadOmDa1atWLjxo3s3LmTCRMm0Lt3b86cOZPp2BNN\nnjyZsWPHcvjwYS5cuMDAgQMB2LdvH/fddx+vvfYax44dY+DAgbRs2ZK///47y+c0JqsSNIEPf/yQ\nJhOa8GbjNxnVfJTP5i7KqrBNCiK+eWSGqtKiRQuKFi2a9Ej8lf3VV1/xf//3f5QpU4aiRYvy0ksv\npdmwmpVG1759+1KkSBHKlSvHf//7XyZPnpy07aqrruLJJ58kV65c5MuXL8PHvuaaa+jUqRMiQqtW\nrdi/fz+vvfYaefLk4a677iJv3rzs2LEj07GDk4i6dOlCxYoVyZcvH61atSI6OhqACRMm0LRpU5o0\naQLAnXfeSe3atZk/f36WzmlMVh06dYhmk5rx9davWdNtDY9WeTTQIV0kbNsUAtmBRUSYPXt2im0K\nBw4coFy5f9cdKl++vN/i8DzP/v37U9yWGaVKlUr6+7LLLgOgRIkSF7126tSpLJ0DoHTp0ike848/\n/uDrr7/mm2++SdoeFxeXY9pxTGj6bud3dJ7dmc7VOtM/sj95cucJdEjJhG1SCFZXXnklf/75Z9Jz\n978BChQowOnT/86bfvDgwUyf688//6Ry5cpJf5cp8+8S2mndlipQwLnMPXPmDJdffnmW4/CH8uXL\n06FDB0aMsGU4TOBdiL/Aq9+/ysSfJjL+wfHcfk3w/jgJ29tHgZbabZ9WrVoxePBg9u3bx7Fjx3j3\n3Xcv+oKuXr06U6ZMIS4ujvXr1zN9+vRMtysMHDiQ48ePs2fPHgYPHsyjj3p3GVuiRAnKlCnD+PHj\niY+PZ/To0ezcuTNTMaQmNjaWc+fOJT3i4uJSLJdaPbZv355vvvmGb7/9lvj4eM6dO0dUVBT79u3z\naZyhwHoeJefLOtl5dCeNRjdi699biX48OlsSQkwMePye9JolhQC5//77Lxqn0LJlSwC6d+/OPffc\nQ7Vq1ahduzYtW7a86IvvzTffZOfOnRQtWpT+/fvTrl27i46bWoJIqZtn8+bNqVWrFjVq1OC+++7j\nscceS7Ws52sjR47kgw8+oHjx4mzdupWGDRumea6MJq5evXqRP3/+pEfXrl3TPa779rJlyzJ79mwG\nDBhAyZIlKV++PIMGDUqxZ1a4s6SQnK/qZOKWidQbVY8ON3VgTus5FM9f3CfH9RQbC0uXwvPPw3/+\nA3XqwPLlmTuWTYgX5GJiYqhQoQJxcXHkymU53B9C6fNigsPJ8yfpvaA3a/auYcrDU/zS1fTAAViw\nAObPh8WL4brroFkzaNoUateGtL4u0poQz9oUjDHGhzbs30Dr6a257erb2NBjg8+6msbHw9q1ThKY\nPx927YK774b774fPPgO3vh1Z4tekICJNgI+B3MAXqvpeCmUGA/cCZ4DOqrpJRK4HprgVqwC8qqqD\n/RlvsLLRvcYEvwRN4KMfP+K9le/x6b2f+qSr6ZEjsGiRkwQWLYIrr3SuBD76COrXhzx+6Lzkt9tH\nIpIb+BW4E9gHrAPaqOo2tzJNgd6q2lRE6gKfqGo9j+Pkcu1fR1X3eGwL+dtHxv/s82Ky6tCpQ3Sa\n1Yl/zv/D5JaTiSgSkanjqEJ09L9XAz/9BI0bO4ng3nvBVz3UA7WeQh1gh6rGqGoszi//5h5lHgDG\nAajqGqCIiHheBN0J7PRMCMYY37BpLpLLSJ0s2rGIGsNrUPuq2vzQ+YcMJ4QTJ2DGDOjWDcqUgVat\n4K+/4PXX4fBhmD0bevb0XUJIjz9vH5UB3L/I9wJ1vShTFjjk9lprYJI/AjTG2IR4KfGmTi7EX+Dl\nJS8z5ZcpTHxoIo2vaezVsVVh+3bnSmDePFi3Dho0cK4G+vZ1GowDyZ9Jwdvrcc9LmKT9RCQvcD/Q\n11dBGWNMVv1+5HfazmjLlZdfyaaem9LtanrmDERF/ZsI4uKcnkL//S/cfju4xoAGBX8mhX2A+1wJ\n5XCuBNIqU9b1WqJ7gQ2q+ldqJ3HP5hEREURERGQuWhPW+vfvn/R3ZGRkir8So6KiUrytkNPLx8TE\nJHstkPEEQ/moqKikz4Rn+fGbx9Pn2z60vbwtRbYXYcivQ1I8/u7d/yaB5cuhQoUoSpSIokkTKFnS\nmTtt40YoVMj/7zdxu1dU1S8PnISzE4gA8gLRQGWPMk2B+a6/6wGrPbZPATqlcQ5NSWqvG5OScP+8\nvP7664EOIeikVCcnzp3Q9jPa6w1DbtDoA9HJtp8/r7pkiWqfPqo33KBasqRqp06qU6eqHjvm/5gz\nwvWZT/F71W8NzaoaB/QGFgFbgamquk1EeopIT1eZ+cAuEdkBDAeeSNxfRArgNDLP8FeMJnXLly/n\nhhtu8Mux01om1JhgtH7/emqOqMlll1zG+u7rqVa6GgD798MXX8BDD0GJEtCvHxQqBOPHO4PLxo51\nGo6LFAls/BmSWrbICQ9y8JXCmDFjtEqVKpo/f34tXbq09urVS48fPx6weEREd+7cmS3nioyM1FGj\nRmXLubyREz4v/rR06dJAhxB0EuskPiFeP1j5gZZ4v4R+9fNXGhenunKl6ksvqVavrlq0qOqjj6qO\nG6d66FBgY84IAnGlYFI3aNAgXnzxRQYNGsSJEydYvXo1f/zxB3fddRexsbE+P198fLxX5dT66ocl\n63mUXGRkJAdPHeTeiffy1U8zean4Oma+/QglS0KvXpCQAJ9+6nQZnTIFOnZ02glCgSWFbHbixAn6\n9+/PkCFDuPvuu8mdOzdXX301X331FTExMUyYMAFwGj4ffvhhWrduTaFChahVqxZbtmxJOs7+/ftp\n2bIlJUuWpEKFCnz66adJ2xL37dChA4ULF2bcuHGsW7eO+vXrU7RoUa666iqeeuqppAR06623AlCt\nWjUKFizI119/TVRU1EVrKkRERDBo0CCqVatGkSJFaN26NefPn0/a/v7773PVVVdRtmxZvvjiC3Ll\nysWuXbvSrQ/PZUJz5crF8OHDqVSpEkWLFqV3794XlR89ejQ33ngjxYoVo0mTJsmmFjcmqxIS4NMF\nC6k0qCa/LKrL9r7LiJp9NZGRsHmz83jnHWjUCC4JxYmCUruEyAkPcuDtowULFugll1yi8fHxybZ1\n6tRJ27Rpo6pOQ1eePHl0+vTpGhcXpwMHDtRrrrlG4+LiND4+XmvWrKlvvvmmxsbG6q5du7RChQq6\naNGii/adPXu2qqqePXtWN2zYoGvWrNH4+HiNiYnRypUr68cff5x0bs/bR0uXLtWyZcsmPY+IiNC6\ndevqgQMH9OjRo1q5cmUdNmxY0nsqXbq0bt26Vc+cOaPt2rXTXLlypXo7yv320ZgxY7RRo0YXxXH/\n/ffrP//8o3/++aeWKFFCFy5cqKqqs2bN0ooVK+r27ds1Pj5e33rrLW3QoEHG/yd4CObPi8kex4+r\nfv21ascu5zV/i2f1kufLasvnlup336meOxfo6HyPNG4fhWKe84q84Zv5hPT1jN1y+fvvvylevHiK\nM56WLl2ajRs3Jj2vXbs2Dz30EAB9+vRh0KBB/Pjjj+TJk4e///6bV155BXCWvuzWrRtTpkzh7rvv\nBqBBgwY88MADAOTLl4+aNWsmHffqq6+mR48eLFu2jGeeecbr2J9++umklc7uv//+pKUvv/rqK7p2\n7Zq0YM8bb7zBpEmZH2/44osvUqhQIQoVKkTjxo3ZvHkz99xzD8OGDaNfv35cf/31APTr148BAwaw\nZ8+eLK8UZ8KLKmzd+u90EuvXQ/U7fueP2m1ocGVZprSJ5or8VwQ6zIAI26SQ0S9zXylevDh///03\nCQkJyRLDgQMHLlqysmzZskl/iwhly5Zl//79iAj79++naNGiSdvj4+OTbgN57gvw22+/0adPHzZs\n2MCZM2eIi4ujdu3aGYrdc+nLAwcOJMVdp06dVM+dUe7nyZ8//0VLbD7zzDM8++yzF5Xft2+fJQWT\nrtOnnTUHEhOBqjOK+Nln4UDJL3lp2bP0v60/T9z8RFhPQmltCtmsfv36XHrppUyfPv2i10+dOsXC\nhQu54447kl7bs+ffGUASEhLYu3cvZcqUoVy5clxzzTUcO3Ys6XHixAnmzp0LpLzITa9evbjxxhvZ\nsWMH//zzD2+//bbPFpy58sorL4rV/W9fKl++PCNGjLjofZ8+fZp69eqlv7NJVSjPfbRzp9Mg3KQJ\nlC4NAwfCNdc4A8piYuC9j08w5UJ7Pl7/Hks6LuHJOk8iIiFdJ+mxpJDNChcuzOuvv85TTz3FokWL\niI2NJSYmhlatWlGuXDk6dOiQVHbDhg3MnDmTuLg4Pv74Y/Lly0e9evW4+eabKViwIO+//z5nz54l\nPj6en3/+mfXr1wMp9yI6deoUBQsWJH/+/Gzfvp2hQ4detL1UqVIZXlIz8TytWrVizJgxbN++nTNn\nzvDmm29mtFrSPEfieR5//HEGDBjA1q1bAfjnn3/4+uuvfXaucBVKX4DnzzsLzvTpA9dfDw0bwqZN\nzmRze/Y4U00krk62bv9aag6vyeV5L2dd93XcVOqmpOOEUp1klCWFAHj++ecZMGAAzz33HIULF6Ze\nvXpcffXVLFmyhDyuCdJFhObNmzN16lSKFSvGxIkTmTFjBrlz5yZ37tzMnTuX6OhoKlSoQIkSJejR\nowcnTpxI2tfzSmHgwIFMmjSJQoUK0aNHD1q3bn1Rmf79+9OpUyeKFi3KtGnTUjyGO/ftTZo04emn\nn6Zx48ZUqlSJ+vXrA3DppZemWxee50lrGdAWLVrQt29fWrduTeHChalatSqLFi1K9xwmtO3dCyNH\nwoMPOt1CX3kFihaFSZOcwWWjR8PDD/87gCxBE3h/5fvcN+k+3r3zXYbdN4z8efIH9k0EEVuOM0i9\n8cYb7Nixg/Hjxwc6lAzbtm0bVatW5cKFCzliCdFQ+LxkRf/+/S+a+ynYxcXB6tX/ziu0Zw/cc48z\nwdw99zgji1Nz8NRBOs7syJnYM0x8aCJXF7k6xXI5rU4yKlDrKZgsyGlfUjNnzuT8+fMcO3aMvn37\n8sADD+SIhGByjj//dG4LlSoFTz3lTCj3+efOALLJk6F9+7QTwoLfF1BzeE3ql61PVOeoVBNCuAvb\n3kfBLr3bN8FmxIgRdOnShdy5cxMZGcnnn38e6JBMiNi8GT74wFmkvksX2LABMjIZ8vm48/Rb0o9p\nW6cxueVkbou4zW+xhgK7fWTCXrh/XoJxkR1Vp8H4gw/gl1/gmWegR4+MTyz325HfaDO9DeUKlWPU\nA6O8HnsQjHXiS2ndPrKkYMKefV6CR2wsfPWV03X0wgV47jlo2xa86LNwEVXly81f8tx3z/G/yP/x\neO3Hc9SVt7+llRTs9pExJuBOnnSmoP74Y2ccwVtvOQvVZ6ZZ6sT5E/Sa14vog9F83/F7qpaq6vuA\nQ5i1BBpjAubAAXjpJScR/PgjTJvmjCVo1ixzCWHtvrXUGF6DQnkLsa77OksImRCyVwp2qWhM8Nq2\nDQYNghkznNtDa9bAtddm/ngJmsDAVQMZ9OMghjYbykOVH/JdsGEmJJOC3R82JviowooVTuPxmjXw\n5JPw229QPO0179N14OQBOs7qyLm4c6zrvo7yhcv7JuAwZbePQlA4D9FPi9VLyvxdL/HxMH061K/v\ndClt2tSZd+i117KeEOb/Pp+aI2rSsFxDlnZa6rOEEM6fFUsKISicP9BpsXpJmb/q5exZGDoUbrjB\nuTp4/nn49Vd4/HG47LKsHft83Hn6LOrD43MfZ+rDU+kf2Z9Lcvnuxkc4f1b8mhREpImIbBeR30Wk\nbyplBru2bxaRGm6vFxGRaSKyTUS2iohNhWlMDvD33/DGG84AswULnLmHfvwRWraE3LmzfvzfjvxG\n/VH1iTkeQ/Tj0dx69a3p72S85rekICK5gSFAE+BGoI2IVPYo0xSoqKrXAT0A96k7PwHmq2pl4CZg\nm79iNcZk3c6dTjvBddf9OyPpnDlwyy3OlBRZpaqMjR5Lw9EN6VGrB9NbTafYZcWyfmBzEX82NNcB\ndqhqDICITAGac/GX+wPAOABVXeO6OigFnANuUdVOrm1xwD9+jNUYk0lr1zq3h5YudUYdb90KV17p\n23P8c+4fes3rxZZDW1jaaSlVSlbx7QlMEn/ePioDuK+2stf1WnplygLXAH+JyBgR2SgiI0XE5rY1\nJkgkJDgzlN52GzzyiLNuwe7dMGCA7xPCmr1rqDG8BkXyFWFd93WWEPzMn1cK3vYL9bywVJy4agK9\nVXWdiHwMvAi85rmz+/wkERERREREEBkZmeK8JVFRUSk2IIVa+cS/gyWeYCnvuU+g4wmW8kVSmVAo\npfJxcRAbG8ncuZHkzes0Hj/yCOTJ4/v4E9c9+Gj1RwxrNoyih4ry3tvv+ez4aZWPiYlJmjo72P5/\nZaZ84nZv+G3uI1fDcH9VbeJ63g9IUNX33MoMA6JUdYrr+XbgNpxE8aOqXuN6vRHwoqre53GOFOc+\nMsb41vHjMHw4DB4MVao4yeCOO3zTVpCSAycP0GFmBy7EX2DiQxMpV9jW4PalQK2nsB64TkQiRCQv\n8Cgwx6PMHKCjK8h6wHFVPaSqB4E9IlLJVe5O4Bc/xmqMScGePc7C9hUqwE8/ObeMFi2CO+/0X0KY\n99s8ao6oya1X38rSTkstIWQzv90+UtU4EekNLAJyA6NUdZuI9HRtH66q80WkqYjsAE4DXdwO8RQw\n0ZVQdnpsM8b40ZYtTuPxvHnQuTNER0N5Pw8UPh93nr6L+zJz+0y+fuRrGpVv5N8TmhSF5NTZxpiM\nU4UlS5xk8NNP8PTTzkCzjK5hkBm//v0rrae3pkLRCoy8f6R1NfUzmzrbGJOquDj4+msnGZw756xh\nMGdOxtcwyIzEsQcvLH6Btxq/RY9aPWwyywBLs01BHHZDL4cJ5yH6abF6udipU/DJJ1C2bBTDhsH/\n/gc//wxdu2ZPQvjn3D+0ndGWD1d/SFSnKHrW7hk0CSGcPyveNDQv8HsUxqfC+QOdFqsXx8GD8PLL\nzhoGK1bA/fdHsWwZ3Hdf5tYwyIzVe1dTY3gNiuUrxtpua/lPyf9kz4m9FM6flTQ/Aq4b9htEpE42\nxWOM8ZPt26F7d6hc2eliunq1c9uojOeQUj+KT4jnneXv0HxKcz6850M+a/YZl+XJ4ux4xqe8aVOo\nB7QXkT9wegiBky9u8l9YxhhfUIWVK532gh9/hCeecNYwKFEi+2PZf3I/HWZ2IC4hjvXd11tX0yDl\nTVK4x+9RGGN8Kj4eZs+GgQPh8GHo0wcmT4b8AZosZu5vc+k2pxtP3vwkL93yErlz+WC6VOMXqSYF\nESmkqieAE9kYjzEmC86cgXHj4MMP4YornJHHLVr4ZsrqzDgXd46+3/Vl9q+zmd5qOg3LNwxMIMZr\naV0pTAaaARtJeR6ja/wSkcmylOZFMaFdL4cPw2efOYvaNGgAY8Y4k9R505nHX/Wy/e/ttJ7WmorF\nKrKp5yaKXlbUL+fxh1D+rKTHBq8Zk4P99ptzVTB1KrRq5dwmuv76wMakqozeNJoXl7zIgNsH0K1m\nt6DpamocWR68JiJFgeuAfImvqeoPvgnPGJNRK1c67QUrVzqjjn/9FUqWDHRUcPzccXrO7cm2v7ax\nrPMybizoQZe0AAAgAElEQVRxY6BDMhmUbq9kEekO/AB8C7yBM5dRf/+GZYzxFB8PM2Y4t4c6dnQm\npdu92xl0FgwJYdWeVdQYXoMS+UuwptsaSwg5lDdXCs8AN+NMZd1YRG4A3vFvWMaYRMHWeOwpPiGe\nd1e8y+C1gxlx3wia39A80CGZLPAmKZxT1bMigojkU9XtIhLgu5bGhL6sNB5nl30n9tFhZgcSNIEN\nPTZQtlDZQIdkssibQe17XG0Ks4DvRGQOEOPXqEyWhPMQ/bTklHr57TenneD6650pKZYvh1mzoFEj\n/ySEzNbLnF/nUGtELRpHNGZJxyUhlRByymfFH9JNCqr6oKoeU9X+wKvAF0ALfwdmMi+cP9BpCfZ6\nWbkSHnzQ+fIvWdJpPB4+3P+9iTJaL+fizvHU/Kd4esHTTG81nVdvezXkBqMF+2fFnzI0dbaqRvkp\nDmPCkvvI40OHnC6lEyZAgQKBjixl2/7aRuvpral0RaUcN/bAeMfWUzAmAIK98diTqjJq0yheXPwi\n79zxjo09CGGWFIzJRn/95TQef/451K8fnI3Hno6fO06Pb3qw/e/t/NDlB+tqGuK8GafwtKuh2RiT\nSYmNx5UqwYEDTuPx7Nn+azz2lVV7VlF9WHVKFSjF2u5rLSGEAW96H5UC1onIVyLSRDJwzegqv11E\nfheRvqmUGezavllEari9HiMiW0Rkk4is9facJrznbUlLIOolsfG4YUOn8Xj79uxpPM6IlOolPiGe\nt354i4emPsTgewfzadNPyXdJvuQ7h6hw/jfk1dxHIpILuBvoDNQGvgJGqerONPbJDfwK3AnsA9YB\nbVR1m1uZpkBvVW0qInWBT1S1nmvbbqCWqh5N4xw295EJOik1HnfuHLyNx572nthL+xntEREmPDiB\nMoWycRUeky3SmvvIq8X3VDUBOAgcAuKBosA0Efkgjd3qADtUNUZVY4EpgOdQxweAca5zrAGKiEgp\n99i9ic+YYHDmjDPQ7IYb4L33nGTw22/w5JM5JyHM3j6bWiNqcVeFu1jcYbElhDCUbkOziDwDdASO\n4IxReE5VY11XD78Dz6eyaxlgj9vzvUBdL8qUwUk+CiwWkXhguKqOTP/tGJP9PBuPR48O/rYCT+fi\nzvH8t8/zzW/fMPPRmTQo1yDQIZkA8ab3UTHgIVX9w/1FVU0QkfvT2M/b+zqp/dNppKr7RaQEzkjq\n7aq63LOQ+72/iIgIIiIiiIyMTPGeYFRUVIqDUqy8lc9M+SNHnCUut2+PpF27SH74wblKyCnxJ4qo\nHsFHBz+i0hWViH48miL5iuSo+K18+uUTt3sjzTYFEbkE+EVVM9wsJiL1gP6q2sT1vB+QoKrvuZUZ\nBkSp6hTX8+3Abap6yONYrwOnVHWQx+vWpmCy3apVzprHK1ZAr17O7aFSpdLfL9ioKl9s/IKXvn+J\nd+54h8dqPGZjD8JEptsUVDUO2C4iV2fivOuB60QkQkTyAo8CczzKzMG5NZWYRI6r6iERyS8iBV2v\nF8Bp5P4pEzGEpXAeop+WrNSL+7TVHTo401bHxDjTVufEhHDs7DFaTWvFkHVDGHjdQBuM5iGc/w15\n09BcDPhFRL4XkW9cD88v92RcCaU3zvoLW4GpqrpNRHqKSE9XmfnALhHZAQwHnnDtXhpYLiLRwBpg\nrqp+m+F3F6bC+QOdlszUSyg0Hnta+edKagyvwVWXX8WabmvYHb070CEFnXD+N+RNm8KrmT24qi4A\nFni8Ntzjee8U9tsFVM/seY3JKlWYNg2eeQZuvjlnNh57ik+IZ8DyAXy27jNG3j+S+69Pq0nQhKt0\nk4JNgmfCzf79zpXAr7/C9OlOj6KcLnHsQS7JxYYeG6yrqUlVqrePROSUiJxM5XEiO4M0Jjuowhdf\nQPXqULUqbNoUGglh1vZZ1BpRi7uvvZvvOnxnCcGkKdUrBVW9HEBE3gL2AxNcm9oBV/k/NGOyz86d\n0KMHnDgBixfDTTcFOqKsOxt7lue+fY4FOxYwu/Vs6pWtF+iQTA7gTUPzA6r6uaqecD2Gknxksgki\n4TxvS1pSnOMn3pm+um5daNrUGXcQCgnhl8O/UOeLOhw5e4RNPTelmRDs85JcONdJunMficiPwGfA\nZNdLrYEnVTXgQx5tnILJip9/hsceg/z5YeRIqFgx0BFlnaoyYsMIXln6Cu/d+R5dqnexrqYmmbTG\nKXjT+6gt8Anwsev5StdrxuRI58/DO+84U1MMGADduuXsXkWJjp49SvdvurPr2C5WdFnB9cWDaCpW\nk2N40/toN87EdcbkeKtXO1cHFStCdDSUCZE21+V/LKf9zPY8eMODTHpoEpdecmmgQzI5lK28ZsLC\n6dPwyiswZQp88gk88khoXB3EJ8Tz9vK3Gbp+KF/c/wXNKjULdEgmh7OkYELe4sVOz6JGjZx2hCuu\nCHREvrHnnz20n9mePLnysLHHRq4seGWgQzIhwKv1FEzOEs5D9N0dO+bcKnrsMWda665do0ImIczc\nNpPaI2tzb8V7+bbDt1lKCPZ5SS6c68SbNZqfFZE+rv8m/v2YiNg0FEEqnD/QiWbMgCpVnJ5FP/8M\nTZqERr2cjT3LE/Oe4Nlvn2V269m82OhFcknWftuFQr34WjjXiTe3j2rhLMH5Dc7aB81wZix9XESm\nuU+FbUygHTwIvXs7iWDqVOeWUaj4+fDPtJ7WmqqlqrKp5yYK5ysc6JBMCPLmJ0Y5oKaqPquqfXCS\nREngNpw1m40JOFUYOxaqVXNmNI2ODp2EoKoMWz+MxuMa81yD55j00CRLCMZvvLlSKAFccHseC5RS\n1TMics4/YRnjvd27oWdPZyW0RYucuYtChY09MNnNmyuFicAaEXldRPoDq4BJrsVvtvozOGPSEh/v\ndC+9+WZn0Zs1a0IrISz/Yzk1htegfKHyrH5stSUEky28Gbz2pogsBBrirLvcU1XXuza382dwJnPC\nYd6WrVudXkV58zrLY1aqlP4+OaVe4hLieOuHtxi+YTijHhhF0+ua+vV8OaVeslM414k3cx89pqqj\nPF57V1Vf9GtkXrC5j8LPhQvOCmiDB8Nbb0H37pArhDpW//nPn7Sf0Z68ufMy/sHxNvbA+EWm12h2\neVhE2rsd7DOchmZjstW6dVC7tnObaNMmpx0hlBLCjG0zuHnkzTS7rlmWxx4Yk1neNDQ/BMwRkXjg\nXuCYqnb1b1jG/OvMGXjtNZgwAT76CFq3Do0pKhKdjT1Ln0V9+HbXt8xpPYe6ZesGOiQTxtJaea2Y\niBQDLgO6AX2BE8AbrtfTJSJNRGS7iPwuIn1TKTPYtX2ziNTw2JZbRDaJyDdevyMTUpYuddY3OHAA\nfvoJ2rQJrYTw8+GfuXnkzfxz/h829thoCcEEXFpXChtxGpYTJQ5ca+Z6vUJaBxaR3MAQ4E5gH7BO\nROao6ja3Mk2Biqp6nYjUBYYC7quBPIPTw6mg1+/IhITjx+GFF2DhQhg6FJqF2DxviWMPXot6jQ/u\n+oBO1TrZugcmKKR6paCqEap6jdvD/XmaCcGlDrBDVWNUNRaYQvIV2x4AxrnOtwYoIiKlAESkLNAU\n+AInIRkv5fQh+vPnO1NUXHKJMzLZVwkhWOrl6NmjPPTVQ4zcOJKVXVfSuXrngCaEYKmXYBLOdeLP\nZroywB6353tdr3lb5iPgeSDBXwGGqpz6gVaF9993ZjSdONGZxK5QId8dPxjqZVnMMqoPq06FIhX4\n8bEfqXSFF31p/SwY6iXYhHOd+HPqbG/7inr+RBIRuQ84rKqbRCQyrZ3d+xNHREQQERFBZGRkiv2M\no6KiUvyfbeUDX75Bg0gef9zpVbR6NZQtm7PiT698giawLGYZGw5s4JWOr/DiPcl7dAcq/piYmGSv\nBTKeYCgfFRVF//79gyaerJZP3O4VVU3xAeRJbZs3D5y2gYVuz/sBfT3KDANauz3fDpQGBuBcQewG\nDgCngS9TOIea5F5//fVAh5Ahf/2leuutqi1aqJ486b/zBKpeYo7FaMNRDfXOL+/U/Sf2BySGtOS0\nz0t2CPU6cX13pvjdndbtox9FZLaIPC4iEd6lmIusB64TkQgRyQs8CszxKDMH6AggIvWA46p6UFVf\nUtVyqnoN0Br4XlU7ZiIGE+S2b4d69aB+fZg+HS6/PNAR+db0rdO5eeTNPHD9Ayxqv8jGHpigl+rt\nI1WtLSLXAE2Aj10Nv8uBBcAyVT2f1oFVNU5EegOLgNzAKFXdJiI9XduHq+p8EWkqIjtwrga6pHa4\nDL8zE/QWL4Z27eDdd6FLav/nc6gzsWf4v4X/x+Ldi5nbdi51ytQJdEjGeCXNNgVV3Y3TTXSo69f+\nLThJ4i0R+UtV0+wXoqoLcJKI+2vDPZ73TucYy4BlaZUxF8sJ87YMGwb9+8NXX8Ftt2XPObOrXrYc\n2kLraa2pcWUNNvXcRKFLfdha7gc54fOS3cK5TtKd+yjVHUXKqupeH8eT0Rg0s/GbwIiPh2efdcYf\nzJ0LFSsGOiLfUVU+X/c5/Zf1Z9Ddg+hwUwcbe2CCUlpzH2W691GgE4LJeU6ccEYknz8PP/4IRYsG\nOiLfOXLmCI/NeYw9J/awsuvKoOhqakxmhNB0YiaYxcRAw4ZQrhwsWBBaCSEqJorqw6tTsVhFVnVd\nZQnB5GhpJgXX3EMDsysYE5p+/BEaNIBu3ZwpK/LkCXREvhGXEMer379Km+ltGHn/SAbePZBLL7k0\n0GEZkyXpNTTHi0gjsZv3JpMmTYJnnnHWTw6l+Yv+OP4HbWe0pUCeAmzquYnSl5cOdEjG+IQ3t4+i\ngdki0kFEWroeD/k7MJN5wTBEPyHBme76pZfg+++DIyH4ql6+/uVrbh55My2ub8HC9gtzfEIIhs9L\nsAnnOvEmKeQDjgK3A/e5Hvf7MyiTNYH+QJ896zQof/edsyBO1aoBDSdJVuvl9IXT9PimB/2W9GNe\n23k83/B5cknOb5YL9OclGIVznXizRnPnbIjDhIiDB6F5c7j2WmcthHz5Ah2Rb2w5tIVHpz1K7atq\ns6nnJgpearO5m9CU7s8cEbleRJaIyC+u5zeJyCv+D83kNJs3Q926zq2iiRNDIyGoKkPWDuGOL++g\nX6N+jH9wvCUEE9K8GacwEmcK62Gu5z8Bk4G3/BWUyXm++Qa6doUhQ+DRRwMdjW/8feZvus7uyv6T\n+1nVdRXXXXFdoEMyxu+8uSGaX50FcADX1HoQ67+QTE6iCoMGQc+ezgjlUEkIS3cvpcbwGlx/xfWs\neswSggkf3lwp/CUiSZMRiMjDONNZmyCVXfO2XLgATz4Ja9c6ayCUL58tp800b+olLiGON6LeYNSm\nUYxpPoZ7Kt7j/8ACLJzn+UlNONdJunMfici1wAigPnAcZ42Ddqoa4/fo0mHDJwLn6FF4+GEoUMAZ\ni1AwBG6zxxyPoe30thS6tBDjWoyj1OWlAh2SMX6R1txH3tw+SlDVO4CSwA2q2hBbMzms/fabswZC\nzZowa1ZoJISvfvmKOiPr0LJyS+a3m28JwYQtb64UNqlqDY/XNqhqLb9G5gW7Ush+33/vjEF46y3o\n3j3Q0WTd6Qun+e/C/xL1RxSTW06m9lW1Ax2SMX6XqVlSRaQycCNQ2DWCWXAWuymEM6DNhJmRI+GV\nV2DyZLj99kBHk3WbD26m9fTW3HzVzWzssdG6mhpD2g3NlXBGLhfm4hHMJ4EQ+I1ovBUfDy+84HQ7\nXb4cKuXwSUATxx7874f/8eHdH9KhWodAh2RM0PDm9lEDVV2VTfFkiN0+SllUVJTPek/ExztLZh46\n5KyhXKyYTw4bEFFRUVSpU4Wus7ty4NQBJrecTMViIbTKTyb58vMSKkK9TrLa0LxJRHqLyOciMkZE\nRovIaB/HaHzIV/O2JCQ4010fOeKsgZCTEwLAmJljqD6sOtdfcT0ru660hOASzvP8pCac68SbpDAe\nKIWzNnMUUA445c3BRaSJiGwXkd9FpG8qZQa7tm8WkRqu1/KJyBoRiRaRrSLyjlfvxviMKjz9NPz+\nu9PDKCdPWREbH8vLS15mxrYZjG4+mg/u/oC8ufMGOixjgpI3SaGiqr4KnFLVcUBToG56O4lIbmAI\nTjK5EWjjarx2L9PUdfzrgB7AUABVPQc0VtXqwE1AYxFp5P3bMlmhCi++6AxImzfPGYuQU+0+tptb\nx97KxoMb6Vm7J3dfe3egQzImqHmTFC64/vuPiFQFigAlvNivDrBDVWNUNRaYAjT3KPMAMA7ANZVG\nEREp5Xp+xlUmL5AbZ/pukw3eegvmz4dFi6Bw4UBHk3lTf55K3S/q8siNjzCv7Twuz3t5oEMyJuh5\nNSGeiBQDXgHmAJcDr3qxXxlgj9vzvSS/wkipTFngkOtKYwNwLTBUVbd6cU6TRR9+COPHww8/wBVX\nBDqazDl94TRPL3ia5X8uZ0G7BdS6KuBDaozJMbxZT2Gk689lwDUZOLa33YI8W8DVdd54oLqIFAYW\niUikqkZ57uzeQyAiIoKIiAgiIyNT7DkQFRWVYgNSqJVP/Dujx3/22ShGjYqiSxcYNiz98sHyft3L\nT5k7hWlbp1G2UFlaVmzJNyO+4WTkyRT3Ccb4A1G+SJEiyV4LZDzBUD4mJob+/fsHTTxZLZ+43Rve\ndEndCawGlgPLVfUXrw4sUg/or6pNXM/74UyZ8Z5bmWFAlKpOcT3fDtymqoc8jvUqcFZVB3q8bl1S\nfWTCBKcdISoKKubATjmqyqdrP+XNH97k43s+pt1N7QIdkjFBK1Mjmt38B+e2TyNgoIhcD2xR1Rbp\n7LceuE5EIoD9wKNAG48yc4DewBRXEjmuqodEpDgQp6rHReQy4C7gDS9iNZkwYwY89xwsWZIzE8Jf\np/+iy+wuHD59mNWPrebaYtcGOiRjcixvGprjcNZPiAcSgMPAoTT3AFQ1DucLfxGwFZiqqttEpKeI\n9HSVmQ/sEpEdwHDgCdfuVwLfi0g0sAb4RlWXZOidGa8sXAiPP+40LP/nP4GOJuOW7FpC9eHVqVKy\nCiu6rrCEYEwWeXP76AzOamsfAktU9e/sCMwbdvsoa5Ytc6a/nj0bGjQIdDQZExsfy+tRrzNu8zjG\nNh/LXdfeFeiQjMkx0rp95E1SaA7cAtyMc8WwCvhBVRf7OtCMsqSQeWvWwH33wZQpcMcdgY4mY3Yf\n202b6W0odlkxxrYYS8kCJQMdkjE5SpamuVDV2ar6HNATmA90Bub6NELjU+n1Mti8GR54AMaOzXkJ\nYcrPU6j7RV1aV2nNvLbzMpQQwnnqgrRYvSQXznWSblIQkemuHkiDgfxAB6CovwMzmZfWB3r7drj3\nXhgyBJo1y76YsurUhVN0nd2V16NeZ2H7hfy33n8RydhaT+H8Dz0tVi/JhXOdeNP76F1gk6vh2ORg\nu3bBXXfBO+/AI48EOhrvbTqwidbTW9OwXEM29NhgI5ON8SNvBq+ty45AjH/t3Qt33gn9+kGnToGO\nxjuqyidrPmHA8gF80uQT2lT17NFsjPE1b64UTA53+LCTEHr1gieeSL98MPjr9F90nt2Zv8/8zepu\nq6lQtEKgQzImLHgzTsHkYEePOreMHn0Unn8+0NF4J3HswU0lb2JFlxWWEIzJRuleKYhILZLPY/QP\n8Ie1MwSnxLlOTp50GpXvvBNc07gEtdj4WF5b+hpfbvmScS3GcWeFO316/FBeSSsrrF6SC+c68Wac\nwmqgFrDF9VJV4BectZt7qeoiv0aYdmw2TiEVZ844CaFyZRg6FDLYUSfb7Tq2izbT21A8f3HGNh9L\niQLezM5ujMmMrC7HuR+orqq1VLUWUB3YhTMf0fu+C9P4yvnz0LIllC8Pn38e/Alh8k+TqfdFPdpW\nacvcNnMtIRgTQN40NF/vPjOqqm4VkRtUdaeI2M/0IBMXB23awGWXwZgxkCuIW41OXTjFUwueYtWe\nVSxqv4gaV9YIdEjGhD1vvjJ+EZGhInKbiESKyOfAVhG5FGfaCxNEnn/euXU0eTJcEsR9yzYe2EjN\n4TXJRS429NhgCcGYIOFNm0J+nNlLG7peWgl8DpwDCqjqSb9GmHZs1qbgZulSaN8etmwJ3lXTVJWP\nV3/MgBUDGNxksI09MCYAstqmUFlVB6rqg67HQOB2VU0IZEIwFzt5Erp2hREj4KefogIdTooOnz7M\nfZPvY+ovU1nTbU22J4RwnrogLVYvyYVznXiTFEaKSNXEJyLSBnjNfyGZzHj2WWdyu2bNgvMDvXjX\nYmoMr0G1UtVY3mV5QMYeBGO9BAOrl+TCuU68uev8MDBNRNriTKHdEafnkQkSCxbAt986t42CTWx8\nLK8ufZUJWybwZYsvuaNCDpuW1Zgw483cR7tcVwezgD+Ae1T1jN8jM145ehS6d4fx46FQoUBHc7Gd\nR3fSdkZbSuQvwaaem6yrqTE5QKpJQUR+8nipGM7tpjWuBt6b/BqZ8cpTTzljEho3DnQkF5v00ySe\nWfgMr976Kk/VeSrD01wbYwIjrSuF+7MtCpMp06bBunUQHR3oSP516sIpes/vzeq9q/muw3dUL109\n0CEZYzIg1YZmVY1J6+HtCUSkiYhsF5HfRaRvKmUGu7ZvFpEartfKichSEflFRH4Wkacz/O5C2KFD\n0Ls3jBsH+fNfvC1Q87Ykjj3ILbnZ0GND0CWEcJ7PJi1WL8mFc52kO04hSwcXyQ38CtwJ7APWAW1U\ndZtbmaZAb1VtKiJ1gU9UtZ6IlAZKq2q0iFwObABaeOwbluMUVOHBB515jd55J9DRQIIm8MnqT3hn\nxTsMvncwrau0DnRIxpg0pDVOwd9jXusAOxKvLERkCtAc2OZW5gFgHICqrhGRIiJSSlUPAgddr58S\nkW3AVR77hqXx451V1KZODXQkztiDzrM6c+zcMdZ0W8M1Ra8JdEjGmCzw98w4ZYA9bs/3ul5Lr0xZ\n9wIiEgHUANb4PMIcZs8eeO45+PJLuPTSwMby3c7vqDG8BjVK1+CHzj9YQjAmBPj7SsHbezuelzFJ\n+7luHU0DnlHVU547ut/7i4iIICIigsjIyBTvCUZFRaU4KCWnlF+6NIpu3aKoUgVmzXIegYjnQvwF\nXvn+FcbMHEPTPE3JcyIPby9/22fHt/JW3sr7tnzidm/4u02hHtBfVZu4nvcDElT1Pbcyw4AoVZ3i\ner4duE1VD4lIHmAusEBVP07h+GHVpjBsGIweDatWBW6yux1Hd9BmehtKX16aMc3HUDx/8cAEYozJ\ntKzOfZQV64HrRCRCRPICjwJzPMrMwRklnZhEjrsSggCjgK0pJYRws3MnvPqqc9sovYTgryH6E7dM\npP6o+nS8qSNzWs/JcQkhnKcuSIvVS3LhXCd+TQqu5Tp7A4uArcBUVd0mIj1FpKerzHxgl4jsAIbj\nzMgKzqys7YHGIrLJ9Wjiz3iDVXw8dO4ML70EN9yQfnlff6BPnj9Jx5kdeWv5WyzusJin6ubMwWjh\n/A89LVYvyYVznfj9JoSqLgAWeLw23ON57xT2W4H/r2RyhI8/dhbLeeaZ7D/3+v3raTO9DZFXR7K+\n+3oK5C2Q/UEYY7JNEC/DYgC2bnXGIqxdm72rqCVoAh/9+BHvrXyPIU2H0Oo/rbLv5MaYgLGkEMRi\nY6FjR3j7baiQjTNNHzx1kE6zOnHy/EnWdl9LRJGI7Du5MSag7PZMEHvnHSheHHr0yL5zLtqxiJrD\na1Lnqjr80OUHSwjGhBm7UghSGzfCkCGwaRNktE03M/O2XIi/wMtLXmbKL1OY+NBEGl8TZNOu+kA4\nz2eTFquX5MK5Tvw6TsHfQnWcwvnzUKsWvPiis+ayv/1+5HfaTG9DmUJlGPXAqBzX1dQYkzGBHKdg\nMqFfP6hUCdq18/+5xm8eT4PRDehSvQuzHp1lCcGYMGe3j4LM55/D3LnOqGV/DgU4cf4ET85/kg37\nN7Ck4xJuKmVrJhlj7EohqMyY4fQ0WrjQaWD2l3X71lFzeE0uu+Qy1nVfZwnBGJPErhSCxIoV8Pjj\nTkLwV/fTBE1g0KpBfLDqAz5r+hmP/OcR/5zIGJNj2ZVCENi61VlneeJEqFkz68dLaYj+wVMHaTKh\nCbN+ncW67uvCMiGE89QFabF6SS6c68SSQoDt3Qv33gsDB8Jdd/nmmJ4f6IU7FlJzeE3qla3Hss7L\nuLrI1b45UQ4Tzv/Q02L1klw414ndPgqg48edhPDEE9Chg++PfyH+Ai8teYmpv0xlUstJREZE+v4k\nxpiQYkkhQM6fd9ZZbtwYXnjB98dPHHtQtlBZontGc0X+K3x/EmNMyLHbRwGQkODMaVS8OHz0kW+7\nnqoqmw9upsHoBnSu3pmZj860hGCM8ZpdKWQzVXj2WTh4EBYtgty5fXfsE+dP8MS8J1jx5wqWvGFj\nD4wxGWdXCtls0CD47jtnfeV8+Xx33LX71lJjeA0K5CnA+D7jLSGkIJzns0mL1Uty4VwnNvdRNpo0\nyZnPaNUqKFvWN8dM0AQGrhrIwFUD+bzZ5zx848O+ObAxJmSlNfeR3T7KJkuWwP/9n/NfXyWEAycP\n0HFWR87GnmVd93Vh29XUGOM7fr99JCJNRGS7iPwuIn1TKTPYtX2ziNRwe320iBwSkZ/8Hac/RUdD\nmzbw9ddQpYpvjrng9wXUHFGTBmUbENU5yhKCMcYn/HqlICK5gSHAncA+YJ2IzFHVbW5lmgIVVfU6\nEakLDAXquTaPAT4FvvRnnP4UEwPNmjkT3d16a9aPdz7uPP2W9GPa1mlMaTmF2yJuy/pBjTHGxd9X\nCnWAHaoao6qxwBSguUeZB4BxAKq6BigiIqVdz5cDx/wco98cOQJNmjjtCA/74Fb/b0d+o8HoBuw+\nvptNPTdZQjDG+Jy/k0IZYI/b872u1zJaJsc5cwbuvx9atICnnsrasVSVsdFjaTi6Id1qdGNGqxlp\njj0I5yH6abF6SZnVS3LhXCf+Tgredg3ybAXPOV2KUhAX57QhVKzorLOcFacunKLdjHZ8sOoDvu/4\nPYP84SQAAAw1SURBVL1u7oWkM9otnD/QabF6SZnVS3LhXCf+7n20Dyjn9rwczpVAWmXKul7zint/\n4oiICCIiIoiMjEyxn3FUVFSK/7N9WX7p0ijmznXmNWrbFt54I2vHz5s7L1VLVuWLB75g7cq19B/a\n36/xW/nwKx8TE5PstUDGEwzlo6Ki6N+/f9DEk9Xyidu9oqp+e+AknZ1ABJAXiAYqe5RpCsx3/V0P\nWO2xPQL4KZXja7D53/9Ua9ZUPXEicDG8/vrrgTt5ELN6SZnVS3KhXieu784Uv7f9eqWgqnEi0htY\nBOQGRqnqNhHp6do+XFXni0hTEdkBnAa6JO4vIpOB24ArRGQP8JqqjvFnzFkxahSMHQsrV0LBgoGO\nxhhjMs7vg9dUdQGwwOO14R7Pe6eybxs/huZT8+bBK6/AsmVQunSgozHGmMyxEc0+sGYNdOkC33wD\nlSoFOprwnrclLVYvKbN6SS6c68TmPsoCVRg92hmHMGYM3HdfwEIxxhiv2dxHfrB7N3Tv7vQyWrwY\nqlULdETGGJN1NnV2BsXHwyefwM03w913w+rVlhCMMaHDrhQyYNs2eOwxuOQSZ/rrYGg/MMYYX7Ir\nBS/ExsLbbzsT2nXoAFFRlhCMMaHJkkI6Nm50bhWtWAEbNkCvXpAryGstnIfop8XqJWVWL8mFc50E\n+ddb4Jw96/QquvdeZ03l+fOhfPlAR+WdcP5Ap8XqJWVWL8mFc51Ym0IKVqxw2g6qVYMtW6BUqUBH\nZIwx2cOSgpuTJ6FfP5g5E4YMgQcfDHRExhiTvez2kcuiRVC1qrMOws8/W0IwxoSnsL9SOHoU+vRx\n5iwaORLuuivQERljTOCE9ZXC9OlQpQoUKgQ//RQ6CSGc521Ji9VLyqxekgvnOgnLuY8OHoQnn4Rf\nfnGmu27Y0A/BGWNMkEpr7qOwulJQddY7uOkmuOEGiI62hGCMMe7Cpk3hjz+gZ084dMhpVK5RI9AR\nGWNM8An5K4WEBKd7aa1acNttsHatJQRjjElNSF8p/PqrMwhN1RmQdsMNgY7IGGOCW0heKcTGwrvv\nOu0Fjz4Ky5eHV0II5yH6abF6SZnVS3LhXCd+TQoi0kREtovI7yLSN5Uyg13bN4tIjYzsm5LoaKhb\nF77/Htavh6eeCv4J7HwtnD/QabF6SZnVS3LhXCd++7oUkdzAEKAJcCPQRkQqe5RpClRU1euAHsBQ\nb/f1dO4cvPyys/DN0087jckREb5+VzlDTExMoEMISlYvKbN6SS6c68Sfv6HrADtUNUZVY4EpQHOP\nMg8A4wBUdQ1QRERKe7lvklWrnMbjbdtg82bo3BkkxR644SGcP9BpsXpJmdVLcuFcJ/5saC4D7HF7\nvheo60WZMsBVXuwLwDPPwNdfw+DB8PDDWY7ZGGPCmj+TgrdDjbP0m/74cWeKiiuuyMpRjDHGgH+T\nwj6gnNvzcji/+NMqU9ZVJo8X+wLw5ZfCl19mOdaQI+F8/ywNVi8ps3pJLlzrxJ9JYT1wnYhEAPuB\nR4E2HmXmAL2BKSJSDzj+/+2df4xcVRXHP99SoNBaQg2iCbEtNRZqauRHQyxFEKNBChKxGrWIKaSp\nELDGkqgJaIw1wWCMf6i0FGpLgBrQAjWWECxga6VuyrbsupEfbdoSyo/UpmJ/pFLi8Y97Zvb1MbM7\ns7OzM/P2fJKbue++d+7ce/buO/fH3HPN7C1J+2uQreq7IwiCIBgaTTMKZvaupFuAJ4ETgPvM7J+S\nFvn95Wa2XtKVknYAh4EFA8k2q6xBEARBoqO9pAZBEATDS9tu62rFxrdOoEG97JbUI2mbpK6RK3Vz\nGUwnks6R9Jyko5KW1CPbyTSol0K2FahJL/P9f6dH0mZJH69VthCYWdsF0pTRDmAKadF5O3Bu7pkr\ngfUevwjYUqtsp4ZG9OLXu4BJra5HC3RyBnAhsBRYUo9sp4ZG9FLUtlKHXj4JnObxK0bDuyUb2nWk\nMGIb3zqMoerlzMz9oi3OD6oTM9tnZluBY/XKdjCN6KVE0doK1KaX58zsbb/8O+lXkTXJFoF2NQrV\nNrXV8kyljW952U6lEb1A2jvyZ0lbJS1sWilHllp00gzZdqfRuhWxrUD9erkRWD9E2Y6kXV1nj8jG\ntw6kUb3MMbPXJZ0BPCXpRTPbNExlaxWN/FKiyL+yaLRuF5vZGwVrK1CHXiR9GrgBKJ3PWOT2UqZd\nRwqNbHyrRbZTGape9gKY2ev+uQ94lDQc7nQa+XuP9rZSFTN7wz+L1FagRr344vIK4AtmdqAe2U6n\nXY1CeeObpJNIm9fW5Z5ZB1wPkN34VqNspzJkvUg6VdL7PH088Dmgd+SK3jTq+XvnR1Cjva2UOE4v\nBW4rUINeJH0YWAtcZ2Y76pEtBK1e6a4WgM8DL5FW+3/gaYuARZlnfuX3XwDOH0i2KGGoegHOJv1a\nYjvwjyLpZTCdAB8kzQW/DRwAXgUmjPa2Uk0vRW4rNerlXmA/sM1D10CyRQuxeS0IgiAo067TR0EQ\nBEELCKMQBEEQlAmjEARBEJQJoxAEQRCUCaMQBEEQlAmjEARBEJQJoxC0DN8ENOKboiRdI+ncYcpr\nq6QTc2m7JU0apvwPDUc+QVArYRSC0cgXgRn1CEg6oULaVGCvJY+ZWYZz88978pLUrj7LggIQRiFo\nCySdLalb0gXuZuFhSX2S1kraIumC3POzJP3B49dIOiJprKRxknZ6+kJJXZK2S/q9pFMkzQauBu7y\nA2SmSpom6Qnv9W+UNN3lV0laJmkL8LMKxb4CeGKAOp3i+d7o13f4AS2bJD2UP9jGn5nqB9/0SFqa\nSb/M5R4H+iT9WNLizP2fSvp2Lq/xkv7k9e+V9BVP/4zrukfSfe6yoVS+Ln92eSafZyX90vXVK2lW\ntToHBaDVW6ojjN5AOqykF5gOdAMzPf024G6Pf4zk7//8nOxYYKfHf07yez8buBR40NMnZZ7/CXCL\nx38LXJu5twH4iMcvAjZ4fBXJt42qlP8xYEqF9F3AZOApkv8cgFkklwknkVxJvAx8t4LsuozMzcBB\nj18GHAIm+/Vk4HmPjyG5XTg9l9eXgHsy1xOBcSR3FqX6rgYWe/z0zLP3A1d5/BlguccvAXpb3XYi\nNC/ESCFoNR8gvVy/bmal9YWLSQeYYGZ9QE9eyMzeBXZKOof0wv0F8ClgDlBy8TzTe9c9wHyOnzIS\ngKQJpJO2HpG0DVhG8gkEaermEfO3YRbvXZ9lZrsr1EnA48BKM3sgU6fHzOwdMzsE/LFUhhyzgTUe\nfyB3r8vM9nj99wD7JX2C5LCu2/q9eZboAT4r6U5Jc8zsPyQDvMv6Hb2tJukN4HIflfUAl3O8vtb4\n924CJkqaWKHsQQGIucmg1fwb2EPqgb6YSa/lrIyNpONHj5F6+6tJvebb/P4qkuvjXknfJPW2S5Re\n9GNInmTPozJHqqRfQr/xyWPAX0nO09Zk0rJ1GspZIIdz1/cCC4AzgZXvKYTZK0pndM8FlkraQDJW\nWUrG8WTgN6QR2V5JPyKNKqoRTtMKSowUglbzDnAtcL2kr3naZqA0/z0DmFlFdhPwHeBvZvYv4P3A\ndB9dQJqmedN/HXQd/S+yg6SpFLz3vEvSPP8+KXNQ+wAMuJ4A/BA4IOnXmTpdLelkH53MpfKLdTPw\nVY/PH6QMj3o5LgSezN+U9CHgqJk9SJpiO4/k4XOKpGn+2DeAZ0kGwEijjwnAl7NZkdxEI2kOyYge\nHKRsQYcSI4Wg1ZiZHZF0FemEr4OkHutqSX2k0UMfyb1zni7S9NNGv36B1GsucQdprWGff07w9N8B\nKyTdCswjvXzvlnQ76UD2NfRPWVXrEV8K3F6tTl6xxZJWSrrTzL4vaZ3n+xZpLaVSnRYDD0n6HqlX\nn/3+48piZsckPQ0cqDTFRTKmd0n6H2k09S0z+6+kBaTpsrEkHS7zvFaQXGW/SdJX9nuPSuomvTNu\nqFLvoACE6+yg7ZA0BjjRX2DTSAu2H/V1hJYj6SzSwuvcOuXGm9lhSacCfwEWmtn2BsoxBngemGdm\nO4eaTw3f8wywxMy6m/UdQfsQI4WgHRkPPO3TPgJuaheDAGBmr5Gmf+rlHp8OGwesatAgzCAtVq9t\npkEIRh8xUgiCIAjKxEJzEARBUCaMQhAEQVAmjEIQBEFQJoxCEARBUCaMQhAEQVAmjEIQBEFQ5v+Y\nxUkNBVmMbwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7c30128>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum amount of air required is 2.2941 cubic m/kg dry soap\n",
+ "\n",
+ "\n",
+ "Illustration 5.2 (c)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmczdX/wPHX20QiW9nK0pC1iFBEyyhFijZf8pVCZakp\n35+xplBKJUoiS9miUpYikX2ELNl3QmNfErKMZZb374/Pnekas9xZ7tw7c9/Px+M+zL2f8/l83nPc\nue/7OedzzhFVxRhjjAHI4esAjDHG+A9LCsYYY+JZUjDGGBPPkoIxxph4lhSMMcbEs6RgjDEmniUF\n49dEpI2ILHV7HisiZX0ZU1JEZISIvOnrOFIiIreJyO8elGsiIpMzIybjPywpGL8jIhEi8qAXjz9e\nRPqn8xhXJCsAVe2kqu+mL7okzxUjImfdHvcnUbaCiMwQkeMi8reI/CIiFRIU6w98lNJ5VfUn4HYR\nqZoBv4bJIiwpGH/k0xGVInKNL8+fhOWqms/t8WsS5QoAPwIVgGLAamBG3EYRuQkIcZXxxLdA+zRH\nbbIcSwomyxKRcBF50e15/Ld3cXwiIsdE5B8R2SQit4tIe+C/QHfXN+4ZrvIRItJdRDYBZ0UkSER6\nishuETkjIltF5ElX2crACOAe1zFOul6/4gpERF4WkT9c39hnuD6Q47bFikgHEdklIqdEZFhKv64n\ndaKqv6vqOFU9rarRwBCgoogUchV5GFirqpfdYiklItNdVxcnROQzt0OGA495cm6TPVhSMFmZkvRV\nxSPAfUB5VS0A/Af4W1VHA18DH7q+cT/hts+zwKNAQVWNAXYD96pqfuBtYJKIFFPV7UBHYIXrGDck\njMfV/DXAdd6bgH1Awvb5x4BawB1AcxFpmMzveaeI/CUiO0XkTREJSrl6ALgfOKKqp1zPqwI74za6\njjML+BO4BSiRIM4dQLCIXO/h+UwWZ0nBZFdRQD6gsojkUNWdqnrUbXvCb94KDFXVQ6p6CUBVp8bt\no6rfA38AtZPYP6FWwBhV3eD6Vt4L58qitFuZD1T1jKoeABYD1ZM41q/A7apaBHgGaAl0S+H8iEhJ\nYBjQxe3lAsA5t+d34yStbqp6QVUvqepyt+1nXf8WTOl8JnuwpGCyJVVdhPOBOBw4JiKjRCRfCrsd\ncH8iIs+LyHpX884poApwo4chxF0dxMVzHvgb55t4HPckFQkk+m1cVf9U1X2un7cA7wDNkju5iBQB\n5gHDVfU7t02ncJJlnFLAPlWNTeJQcWVPJ3c+k31YUjBZ2Xkgr9vz4u4bVfUzVa0F3IbT8Rr37Tqp\nJqf410XkFmA08Cpwg6oWArbw7xVCSp3hh4Fgt+PlxUkoh1LYz1NJXqm4+g/mAT+q6vsJNm/CqYs4\nB4DSyTRHVQYiVPVcEttNNmNJwWRlG4CnReQ6ESkHvMi/bfq1RKS2iOTE+RZ+EYhx7XcMSGmsQ17X\nsU4AOUSkLc6VQpxjQEnX8eMI/35Yfwu0FZFqInItTv/CSlXdn8T5kvuQf1REirl+rgS8SRJ3D4lI\nfmAusExV30ikyAKghojkcj1fBRwBPhCRPCKSW0TqupV/AJidVGwm+7GkYPxdws5k958/AS7jfECP\nAya5bcuP803/JBCB8+Eed2/+GOA2V7PQ9ERPqroNGAyswGnmqQIscyuyENgKHBWR4wljVdWFwFvA\nNJyrhjI4HdmJ/R6J/Z7uHgQ2isg54GfXMQfEbRSR2SLS0/X0KZzO67ZuYxrOuPoXUNVjwCLgSdfz\nWKAJUA7Yj3Pl0Nzt3M8Co5KIy2RD4s1FdkSkEc4tcUHAl6r6YSJlhuLc8REJtFHV9a7XewHPAbHA\nZqBtXAegMSbtXLfUTlDVu1Mo1wRoparPJlfOZC9eSwquNsqdQAOcdtTfgZau2/niyjQGQlW1sYjU\nBj5V1ToiEozzbaayql4Ske+A2ao6wSvBGmOMAbzbfHQ3sFtVI1Q1Cufe5ycSlGkKTABQ1VVAQVfb\n6RmcWwrzuEaX5iHjOuiMMcYkwZtJoQRX3uJ3kCtvx0uyjKqexGnP3Y/THntaVRd4MVZjjDF4Nyl4\n2i511V0XInIr8D+cW/puBq4XkVYZF5oxxpjEeHPir0M4A2PilMK5EkiuTEnXayHAb6r6N4DrDpG6\nONMTxBMRn06cZowxWZWqJnobtDevFNYA5UUk2HVPdAtgZoIyM4HnAUSkDk4z0TGcDuo6rvvPBaez\neltiJ1FVeyR4vPDCCz6PwR8fVi9WL1YnziM5XrtSUNVoEQnFGUgThDMPzHYR6eDaPkpVZ4tIYxHZ\njTM6ta1r2wYR+QonscQC63DuOTceiIiI8HUIfsnqJXFWL1cL5Drx6rzxqjoHmJPgtVEJnocmse9A\nYKD3ojPGGJOQjWjOhoKDg30dgl+yekmc1cvVArlOLClkQ4H8hk6O1UvirF6uFsh14o/LDqab0zcd\n2N5++21fh+CXkqqXlDrfjAkU2TIpgP2RG88F+peIkJAQX4fgdwK5Trw6IZ63iYgmFr+IWFIwHrP3\niwk0rvd8po9TMMYYk8VYUjDGGBPPkkI2sn//fvLlyxffFBISEsKYMWMA+Prrr2nYsGF82Rw5crB3\n716Pj51wf19I+PsZYzKeJQUfCA4OJk+ePOTLly/+8frrr6f7uKVLl+bs2bPxHaciEv9zq1atmDt3\nbpqPnd79U8M9mblL+PsZYzKeJQUfEBFmzZrF2bNn4x9Dhw71dVhJiomJSblQBnJPZsb7wsPDfR2C\n3wnkOrGk4GdiY2Pp2rUrRYoU4dZbb2X48OHkyJGD2NhYwLnKWLhwYXz5fv360bp1a8CZr8W9rLvx\n48dz3333XfHazz//zK233kqRIkXo3r17fLPM+PHjqVevHl26dKFw4cL069fviv0TO4/7t3v3/QsV\nKkS5cuX47bffGDduHKVLl6ZYsWJ89dVXqa6bhOcNCQmhT58+3HvvveTPn5+GDRvy999/x5dfuXIl\ndevWpVChQlSvXp0lS5ak+pyBIJA/AJMSyHViScFHkmoXHz16ND///DMbNmxgzZo1TJ069YpvzQm/\nRafnG/WPP/7I2rVrWbduHTNmzGDs2LHx21avXs2tt97K8ePH6d27d4rHShjX6tWrqVatGidPnqRl\ny5Y0b96cdevWsWfPHiZNmkRoaCiRkZFpjj3Ot99+y/jx4zl+/DiXL19m0KBBABw6dIjHH3+cPn36\ncOrUKQYNGsQzzzzDiRMn0n1OY7KzgE0KIhnzSAtV5cknn6RQoULxj7hv2d9//z3/93//R4kSJShU\nqBBvvPFGsh2r6el07dGjBwULFqRUqVL873//49tvv43fdvPNN/Pqq6+SI0cOcufOnepjlylThhde\neAERoXnz5hw+fJg+ffqQM2dOHn74YXLlysXu3bvTHDs4iaht27aUK1eO3Llz07x5czZs2ADApEmT\naNy4MY0aNQKgQYMG1KpVi9mzZ6frnMZkd9l2RHNKfHkDi4gwY8YMHnzwwau2HTlyhFKl/l13qHTp\n0l6LI+F5Dh8+nOi2tChWrFj8z9dddx0ARYoUueK1c+fOpescAMWLF0/0mPv27WPKlCn89NNP8duj\no6MTrXNjzL8CNin4q5tuuon9+/fHP3f/GSBv3rycP38+/vnRo0fTfK79+/dTuXLl+J9LlPh3Ce3k\nmqXy5s0LQGRkJNdff3264/CG0qVL07p1a0aPtmU4jEmNgG0+8rWkmn2aN2/O0KFDOXToEKdOneKD\nDz644gO6evXqTJ48mejoaNasWcO0adPS3K8waNAgTp8+zYEDBxg6dCgtWrTwaL8iRYpQokQJJk6c\nSExMDGPHjmXPnj1piiEpUVFRXLx4Mf4RHR2daLmk6vG5557jp59+Yt68ecTExHDx4kXCw8M5dOhQ\nhsaZHQTyPD9Jyep1EhEBCb5PesySgo80adLkinEKzzzzDAAvv/wyDRs2pFq1atSqVYtnnnnmig++\n/v37s2fPHgoVKkS/fv1o1arVFcdNKkEkdpvnE088Qc2aNbnzzjt5/PHHefHFF5Msm/C1L774go8+\n+ojChQuzbds26tWrl+y5Upu4OnXqRJ48eeIf7dq1S/G47ttLlizJjBkzGDBgAEWLFqV06dIMHjw4\n0TuzAl1W/wD0hqxWJ1FRsHgxdOsGt98Od98NS5em7Vg2IZ6fi4iIoGzZskRHR5Mjh+Vwb8hO7xcT\nOI4cgTlzYPZsWLAAypeHxx6Dxo2hVi1I7uMiuQnxrE/BGGOygJgYWL3aSQKzZ8PevfDII9CkCQwf\nDm73dqSLV5OCiDQChgBBwJeq+mEiZYYCjwKRQBtVXS8iFYHJbsXKAm+pqv8O+/UiG91rTGD6+2+Y\nO9dJAnPnwk03OVcCn3wC99wDOXNm/Dm91nwkIkHATqABcAj4HWipqtvdyjQGQlW1sYjUBj5V1ToJ\njpPDtf/dqnogwbZs33xkvM/eL8ZfqMKGDf9eDWzeDPXrO4ng0Ucho+5Q99V6CncDu1U1QlWjcL75\nP5GgTFNgAoCqrgIKikjCi6AGwJ6ECcEYkzECeUqHpGRmnZw5A9Onw0svQYkS0Lw5/PUX9O0Lx4/D\njBnQoUPGJYSUeDMplADcP8gPul5LqUzJBGWeBb7J8OiMMYAlhcR4s05UYft2GDwYHnzQSQSjRkHV\nqrBkCfzxBwwZ4vQXpGEygXTzZp+Cp9fjCS9h4vcTkVxAE6BHRgVljDGZLTISwsOdJqGff4boaOdO\nof/9z0kMrjGgfsGbSeEQ4D5XQimcK4HkypR0vRbnUWCtqv6V1Enc7ycODg4mODg4bdGagNavX7/4\nn0NCQhK9Tz08PDzRb5BZvXxERMRVr/kyHn8oHx4eHv+eSOvx//zz3ySwdCmULRtOkSLhNGoERYs6\nc6etWwf583v/943b7glvdjRfg9PR/BBwGFhN8h3NdYAh7h3NIjIZmKOqE5I4h3U0m3QL9PdLv379\nrkiKJm11cvkyLFvmJIHZs+HkSadzuHFjpymoYEHvxJoWPuloVtVoIBSYC2wDvlPV7SLSQUQ6uMrM\nBvaKyG5gFPCKW9B5cTqZp3srRpO0pUuXUqlSJa8cO7llQo3JSg4fhi+/hKefhiJFoFcvyJ8fJk50\nBpeNH+90HPtTQkiJjWj2kfHjxzN48GD27t1L/vz5eeqpp3j//fcpUKCAT+LJkSMHu3fvpmzZsl4/\nV/369WndujXt2rXz+rk8kRXeL94UHh6e5aZ18Lak6iQmBlat+vdqYN8+5yqgcWPim4WyAl/dkmqS\nMHjwYHr27MngwYM5c+YMK1euZN++fTz88MNERUVl+Pk8XU4zkD8YA5klhKu518mJEzBpEvz3v86H\nfqdOEBsLn33m3DI6eTI8/3zWSQgpsaSQyc6cOUO/fv0YNmwYjzzyCEFBQdxyyy18//33REREMGnS\nJMBp02zWrBnPPvss+fPnp2bNmmzatCn+OIcPH+aZZ56haNGilC1bls8++yx+W9y+rVu3pkCBAkyY\nMIHff/+de+65h0KFCnHzzTfz2muvxSeg+++/H4Bq1aqRL18+pkyZQnh4+BVrKgQHBzN48GCqVatG\nwYIFefbZZ7l06VL89oEDB3LzzTdTsmRJvvzyS3LkyMHevXtTrI+Ey4TmyJGDUaNGUaFCBQoVKkRo\naOgV5ceOHcttt93GDTfcQKNGja6aWtyY9IqNhbVroX9/Z9TwrbfC1KkQEgIbNzqP99+He++Fa7Lj\nREGqmmUfTvhXS+p1fzBnzhy95pprNCYm5qptL7zwgrZs2VJVVfv27as5c+bUadOmaXR0tA4aNEjL\nlCmj0dHRGhMTozVq1ND+/ftrVFSU7t27V8uWLatz5869Yt8ZM2aoquqFCxd07dq1umrVKo2JidGI\niAitXLmyDhkyJP7cIqJ79uyJf7548WItWbJk/PPg4GCtXbu2HjlyRE+ePKmVK1fWkSNHxv9OxYsX\n123btmlkZKS2atVKc+TIccXx3IWEhOiYMWNUVXXcuHF67733XhFHkyZN9J9//tH9+/drkSJF9Jdf\nflFV1R9//FHLlSunO3bs0JiYGH333Xe1bt26qf9PSMCf3y8mc5w+rTplimrbtqrFi6tWqKD6v/+p\nzp+vevGir6PLeK73fKKfq9kxz3lE3s6Y+YS0b+qaXE6cOEHhwoUTnfG0ePHirFu3Lv55rVq1ePrp\npwHo0qULgwcPZsWKFeTMmZMTJ07w5ptvAs7Sly+99BKTJ0/mkUceAaBu3bo0bdoUgNy5c1OjRo34\n495yyy20b9+eJUuW0LlzZ49jf/311+NXOmvSpEn80pfff/897dq1i1+w5+233+abb9I+3rBnz57k\nz5+f/PnzU79+fTZu3EjDhg0ZOXIkvXr1omLFigD06tWLAQMGcODAgXSvFGcCiyps2/bvdBJr1kC9\nes7YgTfegHLlfB2h7wRsUkjth3lGKVy4MCdOnCA2NvaqxHDkyJErlqwsWfLfwd0iQsmSJTl8+DAi\nwuHDhylUqFD89piYmPhmoIT7AuzatYsuXbqwdu1aIiMjiY6OplatWqmKPeHSl0eOHImP++67707y\n3Knlfp48efJcscRm586dCQsLu6L8oUOHLCmYFJ0/76w5EJcIVJ0O4rAwZ34h14KCAc/6FDLZPffc\nw7XXXsu0adOueP3cuXP88ssvPPTQQ/GvHTjw7wwgsbGxHDx4kBIlSlCqVCnKlCnDqVOn4h9nzpxh\n1qxZQOKL3HTq1InbbruN3bt3888///Dee+9l2IIzN9100xWxuv+ckUqXLs3o0aOv+L3Pnz9PnTp1\nUt7ZJCk7T3OxZ4/TIdyoERQvDoMGQZkyzt1DEREwYgQ8/vjVCSE710lKLClksgIFCtC3b19ee+01\n5s6dS1RUFBERETRv3pxSpUrRunXr+LJr167lhx9+IDo6miFDhpA7d27q1KnDXXfdRb58+Rg4cCAX\nLlwgJiaGLVu2sGbNGiDxu4jOnTtHvnz5yJMnDzt27GDEiBFXbC9WrFiql9SMO0/z5s0ZN24cO3bs\nIDIykv79+6e2WpI9R9x5OnbsyIABA9i2bRsA//zzD1OmTMmwcwWq7PQBeOmSs+BMly5QsaLTJLR+\nvTPZ3IEDzlQTcauTJTcjfXaqk9SypOAD3bp1Y8CAAXTt2pUCBQpQp04dbrnlFhYuXEhO1wTpIsIT\nTzzBd999xw033MDXX3/N9OnTCQoKIigoiFmzZrFhwwbKli1LkSJFaN++PWfOnInfN+GVwqBBg/jm\nm2/Inz8/7du359lnn72iTL9+/XjhhRcoVKgQU6dOTfQY7ty3N2rUiNdff5369etToUIF7rnnHgCu\nvfbaFOsi4XmSWwb0ySefpEePHjz77LMUKFCAqlWrMnfu3BTPYbK3gwfhiy/gqaec20LffBMKFYJv\nvnEGl40dC82aZa0BZL5kg9f81Ntvv83u3buZOHGir0NJte3bt1O1alUuX76cJZYQzQ7vl/TIatNc\nREfDypX/zit04AA0bOh0Ejds6IwsTq+sViepZctxZkFZ7UPqhx9+oHHjxkRGRtKjRw+aNm2aJRKC\nyTr273emlJ4wwVlboHFj+PxzqF07m44X8BH7q/VTKTXf+JvRo0dTrFgxypUrR86cOa/qszAmrTZu\nhOeegzvvdBajX7vW6Sd47z2nz8ASQsay5iMT8AL9/eKPcx+pOh3GH30EW7dC587Qvn3m9Qv4Y51k\npOSajywpmIBn7xf/ERUF33/v3Dp6+TJ07erMOeTBPQsmFaxPwRjj186edaagHjLEGUfw7rvOWgTW\nLZX5rMqNMT5z5IgzrUSZMrBihTPxXHi4cyeRJQTPrD28luemP8el6EspF/ZAtr1SyEqdtMYEmriF\n66dPd5qHVq1yZiM1njvwzwF6L+rNgr0LeDvkba7JkTEf59kyKVj7sDH+R9VZrvKjj5wk8OqrsGsX\nFC7s68iylrOXzvLh8g8ZsWYEr9R6hZ2hO8l3bb4MO75doGVDgTxEPzlWL4nzdr3ExMC0ac7aBG3b\nOuMLIiKgTx//TQj++F6Jjo1m9NrRVBhWgQNnDrCx40b6P9g/QxMCWFLIlvzxDe0PrF4S5616uXDB\nmXCuUiXn6qBbN9i5Ezp2hOuu88opM4y/vVd+2f0L1UdW55vN3zCr5SwmPDmBkvnTNxtxUrzafCQi\njYAhQBDwpap+mEiZocCjQCTQRlXXu14vCHwJ3A4o0E5VV3ozXmNM+p04AcOH/zvaeOxYZ5Uy6+ZL\nvc3HNtN1flciTkcwsMFAmlZs6vX+Uq9dKYhIEDAMaATcBrQUkcoJyjQGyqlqeaA94D4M9lNgtqpW\nBu4AtnsrVmNM+u3Z4/QTlC//74ykM2fCffdZQkito+eO8vLMl2kwsQGPl3+cLZ228ESlJzLlBhpv\nNh/dDexW1QhVjQImA08kKNMUmACgqquAgiJSTEQKAPep6ljXtmhV/ceLsRpj0mj1avjPf5yrggIF\nnBXNvvwSKldOeV9zpcioSN799V2qfF6FgrkLsjN0J6/Vfo2cQTkzLQZvNh+VANxXWzkI1PagTEkg\nBvhLRMYB1YC1QGdVjfReuMYYT8XGwpw5MHCg02n8f//nNBPly9g+z4ARq7FM2jSJ3ot6U7dUXVa/\nvJqyhcr6JBZvJgVP7wtNeD2kOHHVAEJV9XcRGQL0BPok3Nl9fpLg4GCCg4MJCQlJdN6S8PDwRDuQ\nslv5uJ/9JR5/KZ9wH1/H4y/lCyYxoVBi5aOjISoqhFmzQsiVy+k8/s9/IGfOrPP7elI+IiIifups\nr9d/pYJMPDORXEG5+K7Zd9QtVTdDj+/+eeAJr819JCJ1gH6q2sj1vBcQ697ZLCIjgXBVnex6vgN4\nACdRrFDVMq7X7wV6qurjCc6R6NxHxpiMdfo0jBoFQ4dClSpOMnjoIesrSI9df++i+/zubDy2kQ8e\n+oDmtzfPtEG3yc195M0+hTVAeREJFpFcQAtgZoIyM4HnXUHWAU6r6jFVPQocEJEKrnINgK1ejNUY\nk4gDB5yF7cuWhc2bnUVt5s6FBg0sIaTVicgTvD7ndeqNrUe9UvXY/up2WlRp4TezMHit+UhVo0Uk\nFJiLc0vqGFXdLiIdXNtHqepsEWksIruB80Bbt0O8BnztSih7EmwzxnjRpk3O2IKff4Y2bWDDBmdh\nG5N2l6Iv8dnqz/hw+Ye0uL0F217ZRpG8GbBMXAbLllNnG2NSTxUWLnSSwebN8PrrzkAzW9s4fVSV\nKdum0HNBT6oUrcLAhwdSqXAln8ZkU2cbY5IUHQ1TpjjJ4OJFZw2DmTNtDYOMsOLACsLmhXEh+gJj\nmo6hfpn6vg4pRcn2KYijVGYFYzKGvw3R9xdWL1c6dw4+/RRKlgxn5Eh45x3YsgXatbOEkN73yp+n\n/qTF1Bb8Z8p/aF+zPWteXpMlEgJ41tE8x+tRmAxlH36Js3pxHD0KvXs7axgsWwZNmoSzZAk8/rit\nYRAnre+V0xdP031+d2p9UYvbi9zOztCdtKnehqAcQRkboBcl+xZwNdivFZG7MykeY4yX7NgBL7/s\njDQ+fRpWrnSajUqU8HVkWV9UTBTDVg+j4rCKnLxwki2dttDngT7kzZXX16Glmid9CnWA50RkH84d\nQuDkizu8F5YxJiOowvLlTn/BihXwyivOGgZF/O+mlyxJVflp1090n9+dUgVKMb/1fO4olrU/Gj1J\nCg29HoUxJkPFxMCMGTBoEBw/Dl26wLffQp48vo4s+1h3ZB1h88I4du4YHzf8mEfLPeo3Yw3SI8mk\nICL5VfUMcCYT4zHGpENkJEyYAB9/DDfe6Iw8fvJJCMo6Tdp+7+CZg/Re1Ju5u+fSL6QfL9V4KcOW\nwvQHyf0m3wKPAetIfB6jMl6JyKRbYvOimOxdL8ePO2sYjBgBdevCuHFQr55no46zc72kVWJ1cu7y\nOQYuH8jw34fToWYHdr22i/zX5s/84LzMBq8Zk4Xt2uVcFXz3HTRv7jQTVazo66iyl5jYGMZtGEef\nxX14sMyDDHhoAKULZO3h3ekevCYihYDyQO6411T114wJzxiTWsuXO/0Fy5c7o4537oSiRX0dVfYz\nb888us7rSsHcBZnx7AzuKnGXr0PyuhSTgoi8DLwOlALW49yNtAJ40LuhGWPcuXceHzvmXBVMmgR5\ns95dj35v6/GtdJ3fld0ndzOwwUCerPRktuhE9kSKzUcisgW4C2cq6+oiUgl4X1WfyowAk2PNRyYQ\nWOdx5jl27hh9w/syfft0et/Xm053dSJXUC5fh5Xh0tt8dFFVL4gIIpJbVXeIiLVaGuNl6ek8Nqlz\nIeoCn6z8hI9XfMzz1Z5nR+gObrjuBl+H5ROeDGo/4OpT+BGYLyIzgQivRmXSxaZzSFxWqZddu5x+\ngooVnSkpli6FH3+Ee+/1TkLIKvXiDXHLYFYaXol1R9ax6qVVfNzwYzat2uTr0HwmxaSgqk+p6ilV\n7Qe8BXwJPOntwEzaBfIfeXL8vV6WL4ennnI+/IsWdTqPR43y/t1E/l4v3rJ031Jqf1mbz1Z/xtdP\nf83U5lO59YZbgcCtE0jl1NmqGu6lOIwJSNZ5nPn++PsPeizowboj63j/ofdpUaUFOcRmAoyTfYbh\nGZOFWOdx5jt54STvLHmHSZsm0bVuV75++muuy3mdr8PyO5YUjMlEf/3ldB5//jncc491HmeGyzGX\nGb56OO8ve59mtzVj26vbKJrXBnUkxZNxCq8DE1X1VCbEY0y2lHDk8dKlNvLY21SV6dun02NBDyoW\nrkh4m3BuK3Kbr8Pye55cKRQDfheRdcBYYK6ngwNEpBEwBAgCvlTVDxMpMxR4FIgE2qjqetfrETiT\n8cUAUapqazp4yOaySZwv6iVu5PGyZdCpk7OmQbFimR5GsrLj+2X1odWEzQvjzKUzjHx8JA3KNkjV\n/tmxTjzl0dxHIpIDeARoA9QCvgfGqOqeZPYJAnYCDYBDwO9AS1Xd7lamMRCqqo1FpDbwqarWcW37\nE6ipqieTOYcNXjN+J7HO4zZtrPM4M+w7vY9eC3uxZN8S+tfvzwvVXshSq55lluQGr3nU5a6qscBR\n4BjON/d5mAY4AAAgAElEQVRCwFQR+SiZ3e4GdqtqhKpGAZOBJxKUaQpMcJ1jFVBQRNy/R1lLq8ky\nIiOdgWaVKsGHHzrJYNcuePVVSwje9s/Ff+i5oCc1Rtegwo0V2Bm6k3Z3trOEkAae9Cl0Bp4H/sYZ\no9BVVaNcVw9/AN2S2LUEcMDt+UGgtgdlSuAkHwUWiEgMMEpVv0j51zEm8yXsPB471nsDzcyVomOj\n+WLtF7y95G0al2/Mpo6bKJHf1hdND0/6FG4AnlbVfe4vqmqsiDRJZj9P23WS+tO5V1UPi0gRnJHU\nO1R1acJC7m1/wcHBBAcHExISkmibYHh4eKKDUqy8lU9L+b//dpa43LEjhFatQvj1V+cqIavEn5XL\nqyp/nPyD+XvmU7paaX7p/AvVi1fPMvFndvm47Z5Itk9BRK4Btqpqqu+TEJE6QD9VbeR63guIde9s\nFpGRQLiqTnY93wE8oKrHEhyrL3BOVQcneN36FEym++03Z83juM7jV1/1v87j7Gzj0Y2EzQvj0NlD\nDHp4EI3LNw6YGUwzSpr7FFQ1GtghIrek4bxrgPIiEiwiuYAWwMwEZWbiNE3FJZHTqnpMRPKISD7X\n63lxOrk3pyGGgBTIQ/STk556iYmB6dOdielat4YGDSAiAt55J+snhKzyfjl89jDtZrSj4aSGPF35\naTZ13MRjFR7zSkLIKnXiDZ50NN8AbBWRRSLyk+uR8MP9Kq6EEgrMBbYB36nqdhHpICIdXGVmA3tF\nZDcwCnjFtXtxYKmIbABWAbNUdV6qf7sAFchv6OSkpV4CofPY398v5y+fp194P6qOqErRvEXZGbqT\nV+56hZxBOb12Tn+vE2/ypE/hrbQeXFXnAHMSvDYqwfPQRPbbC1RP+LoxmUUVpk6Fzp3hrrus89gX\nYmJjmLBxAm8tfov7b7mfte3XElww2NdhZXspJgWbBM8EmsOHnSuBnTth2jTnjiKTuRbsXUDXeV3J\nmysv05tPp3bJhDcuGm9JMimIyDmSvoNIVTW/d0IyxjdUYcwYeOMNZz2DyZPh2mt9HVVg2f7XdrrN\n78b2E9v5sMGHPFP5GetEzmRJJgVVvR5ARN4FDgOTXJtaATd7PzRjMs+ePdC+PZw5AwsWwB13+Dqi\nwHL8/HH6hfdjyrYp9Lq3F9OaT+Paaywj+4InHc1NVfVzVT3jeozg6pHJxo8E8rwtyUmsXmJinInq\nateGxo2dcQeBlhB8+X65GH2RD5Z9wG3DbyNXUC52vLqDLvd08XlCCOS/oRTnPhKRFcBw4FvXS88C\nr6pqXS/HliIbp2DSY8sWePFFyJMHvvgCypXzdUSBQ1WZvGUyvRb2osZNNfiwwYeUv7G8r8MKGMmN\nU/AkKZQBPgXiksByoLOqRmRkkGlhScGkxaVL8P77ztQUAwbASy/ZXUWZafn+5XSZ14WY2Bg+bvgx\n999yv69DCjjJJQVP7j76E2fiOmOyvJUrnauDcuVgwwYoYdPkZJo9J/fQY0EPVh9azYCHBvDfqv+1\nZTD9kP2PmIBw/jz83//BU09B377w44+WEDLLqQun6DK3C7W/rE2Nm2qwM3Qnz93xnCUEP2X/Kybb\nW7AAqlZ1JrDbssVZ+cyai7zvcsxlhqwcQsVhFYmMimTrK1t54743bF1kP2dJIRsK5CH67k6dcpqK\nXnzRmda6XbtwbrzR11H5n4x+v6gqP2z/gds/v515e+ax+IXFjHx8JMWuzzqTRAXy31CKSUFEwkSk\ni+vfuJ9fFBGbhsJPBfIbOs706VClinNn0ZYt0KiR1UtSMrJe1hxeQ8iEEPqG92V44+HMbjWb24ve\nnmHHzyyB/F7xZO6jmjhLcP6Es/bBYzgzlnYUkamJrbtsjK8cPQqhoU4i+O47Z74i4337/9nPGwvf\nYNGfi3in/ju0rd7WVj3LojxpPioF1FDVMFXtgpMkigIP4KzZbIzPqcL48VCtmjOj6YYNlhAyw9lL\nZ+m9sDd3jrqTsoXKsuu1XbxU4yVLCFmYJ1cKRYDLbs+jgGKqGikiF70TljGe+/NP6NDB6UieOxeq\nW8Om10XHRjNm3Rj6LenHI7c+wsaOGymZv6SvwzIZwJOk8DWwSkR+xGk+agJ841r8Zps3gzMmOTEx\nMGwY9O8P3bs7ax1c48k72qSZqvLL7l/oOr8rRfMW5ef//kyNm2r4OiyTgTwZvNZfRH4B6uHMmtpB\nVde4NrfyZnAmbQJh3pZt25y7inLlcpbHrFAh5X0CoV7SwtN62XRsE13ndWXfP/v46OGPaFKhSbad\nwTSQ3yueTHPxoqqOSfDaB6ra06uRecCmuQg8ly87K6ANHQrvvgsvvww57MZqrzpy9ghvLX6Ln3b9\nxFv3v0WHmh28uuqZ8b50TXMBNBORS6o6yXWw4YCNPjGZ7vffnauD0qVh/XooaU3YXnX+8nkGrxjM\np6s+pV31duwM3UnB3AV9HZbxMk+SwtPATBGJAR4FTqlqO++GZcy/IiOhTx+YNAk++QSefdZGJHtT\nrMYyceNEei/qTb3S9Vjz8hrKFCrj67BMJklu5bUb3J6+BMwAlgFvi8gNqnoypYOLSCNgCBAEfJnY\nmAYRGYqTbCKBNqq63m1bELAGOKiqTTz7lUx2snix00RUuzZs3gxFivg6ouxt8Z+LCZsXxrXXXMuU\n/0zhnlK2FmmgSe5KYR1XLscZN3DtMdfrZZM7sOsDfRjQADgE/C4iM1V1u1uZxkA5VS0vIrWBEUAd\nt8N0xrnDKZ/Hv5HJFk6fdu4o+uUXGDECHnvM1xFlbztP7KTb/G5sPr6ZDx76gOa3N8+2ncgmeUl2\n0alqsKqWcXu4P082IbjcDexW1QhVjQImc/WKbU2BCa7zrQIKikgxABEpCTQGvsRJSMZDWX2I/uzZ\nzhQV11zjjEzOqISQ1evFG05EnuCpD56i3th63Ff6Pra/up0WVVoEfEII5PeKN+/bKAEccHt+0PWa\np2U+AboBsd4KMLvKqm9oVRg40Fkr+euvnUns8ufPuONn1XrxhovRF/lo+UdUHl6ZQ5sPsSN0B93q\ndSP3Nbl9HZpfCOT3ijeH+nh6r2jCryQiIo8Dx1V1vYiEJLez+/3EwcHBBAcHExISkuh9xuHh4Yn+\nZ1t535evWzeEjh2du4pWrnTuLMpK8WeV8osXL2brX1tZsHcBxa4vRouyLTiX8xyF8xTOEvFnVvnw\n8HD69evnN/Gkt3zcdo+oaqIPIGdS2zx54PQN/OL2vBfQI0GZkcCzbs93AMWBAThXEH8CR4DzwFeJ\nnEPN1fr27evrEFLlr79U779f9cknVc+e9d55slq9ZLTf9v+mdb6so3eOvFMX7V0U/3qg10tisnud\nuD47E/3sTq75aIWIzBCRjiIS7FmKucIaoLyIBItILqAFMDNBmZnA8wAiUgc4rapHVfUNVS2lqmWA\nZ4FFqvp8GmIwfm7HDqhTB+65B6ZNg+uv93VE2c/eU3tpPqU5zac2p1OtTqxpv4b6Zer7Oizjp5Js\nPlLVWiJSBmgEDHF1/C4F5gBLVPVScgdW1WgRCQXm4tySOkZVt4tIB9f2Uao6W0Qai8hunKuBtkkd\nLtW/mfF7CxZAq1bwwQfQNqn/eZNmpy+e5r1f32PshrH8r/b/GP/kePLkzOPrsIyfS7ZPQVX/xLlN\ndITr2/59OEniXRH5S1WTvS9EVefgJBH310YleB6awjGWAEuSK2OulBXmbRk5Evr1g++/hwceyJxz\nZoV6yQhRMVGMXDOSd5e+S9MKTdnSaQs35bspyfKBUi+pEch1kuLcR0nuKFJSVQ9mcDypjUHTGr/x\njZgYCAtzxh/MmgXlyvk6ouxDVflp1090m9+N4ILBDHp4EFWLVfV1WMYPpXfuo0T5OiGYrOfMGWjZ\nEi5dghUroFAhX0eUfaw7so6weWH8df4vPm30KY3KNfJ1SCaLsvklTaaIiIB69aBUKZgzxxJCRjl4\n5iAv/PgCj33zGC2rtGRDxw2WEEy6JJsURCRIRAZlVjAme1qxAurWhZdecqasyGmzLqfbucvneGvR\nW1QbWY1S+UuxK3QX7Wu255octsqQSZ+UOppjRORescZ7k0bffAOdOzvrJ9v8RekXExvDuA3j6LO4\nDw+VfYgNHTZQqkApX4dlshFPmo82ADNEpLWIPON6PO3twEza+cMQ/dhYZ7rrN96ARYv8IyH4Q72k\nx7w987hz1J1M3DSRmS1nMvGpiRmSELJ6vXhDINeJJ0khN3ASeBB43PWwaaz9mK/f0BcuOB3K8+fD\nqlVQ1U9ugPF1vaTV1uNbefTrRwmdHco79d8h/IVwat1cK8OOn1XrxZsCuU48WaO5TSbEYbKJo0fh\niSfg1ludtRBy2/xqaXbs3DH6hvdl+vbp9L6vN52e7USuoFy+DstkcyleKYhIRRFZKCJbXc/vEJE3\nvR+ayWo2bnQWw3nsMWeWU0sIaXMh6gIDlg7g9s9vJ2/OvOwM3UnnOp0tIZhM4Unz0RfAG8Bl1/PN\nQEuvRWSypJ9+ggYNnKmv+/Sx5TLTIlZjmbRpEhWHVWT90fWsemkVgxsOptB1dv+uyTye3L+WR1VX\nxS26oaoqIlHeDctkFarw8ccweLAzQrl2bV9HlDX9uu9XwuaFESRBfPvMt9QrXc/XIZkA5UlS+EtE\n4icjEJFmONNZGz+VWfO2XL4Mr74Kq1c7ayCULp0pp00zf5zPZtffu+ixoAfrj6zngwYf0OL2zF/1\nzB/rxdcCuU5SnPtIRG4FRgP3AKdx1jhopaoRXo8uBTZ8wndOnoRmzSBvXmcsQj5bRTtV/o78m3eW\nvMPXm7+mW91udK7T2VY9M5kmubmPPOlTiFXVh4CiQCVVrYetmRzQdu1y1kCoUQN+/NESQmpcir7E\n4N8GU2l4JaJjo9n+6nZ63NvDEoLxG540H00H7lTVc26vTQVqeick488WLXLGILz7Lrz8sq+jyTpU\nlanbptJzYU9uK3Ibv7b5lcpFKvs6LGOukmRSEJHKwG1AAdcIZsFZ7CY/zoA2E2C++ALefBO+/RYe\nfNDX0WQdKw+uJGxeGOcvn2f046N5qOxDvg7JmCQld6VQAWfkcgGuHMF8FrDviAEkJga6d3duO126\nFCpU8HVEWUPE6Qh6LezFr/t+5d367/J8tecJyhHk67CMSVaSfQqqOsM1mrmJqrZ1e7yuqr9lXogm\ntTJyiH5MjLNk5rp1zh1GWTkhZNbUBf9c/Ice83tQc3RNKt1YiV2hu2h7Z1u/TQiBPKVDUgK5Tjzp\naF4vIqEi8rmIjBORsSIy1uuRmTTLqDd0bKwz3fXffztrINxwQ4Yc1me8/YceFRPF8NXDqTCsAn9F\n/sXmTpvpG9KXvLnyevW86RXIH4BJCeQ68SQpTASK4azNHA6UAs4lt0McEWkkIjtE5A8R6ZFEmaGu\n7RtF5E7Xa7lFZJWIbBCRbSLyvke/jckwqvD66/DHH84dRjZlRdJUlVm7ZlF1RFV+2PEDc5+by9gn\nxnJzvpt9HZoxqebJ3UflVLWZiDyhqhNE5BtgWUo7iUgQMAxoABwCfheRmaq63a1MY9fxy4tIbWAE\nUEdVL4pIfVWNFJFrgGUicq+qpnhek36q0LOn01y0cKEzFsEkbsPRDYTNC+PI2SMMfmQwjcs3zvTB\nZ8ZkJE+uFOLmPPpHRKoCBYEiHux3N7BbVSNUNQqYDDyRoExTYAKAqq4CCopIMdfzSFeZXEAQzvTd\nJhO8+y7Mng1z50KBAr6Oxj8dOnOItjPa0mhSI5pVbsamTpt4rMJjlhBMlufRhHgicgPwJjAT2AYM\n9GC/EsABt+cHXa+lVKYkxC8FugE4BixW1W0enNOk08cfw8SJzloIN97o62j8z7nL5+i7uC93jLyD\n4nmLszN0J53u6mTLYJpsw5P1FL5w/bgEKJOKY3s6/0TCr1bqOm8MUF1ECgBzRSREVcMT7uw+R0lw\ncDDBwcGEhIQkOndJeHh4oh1I2a183M+pPX5YWDhjxoTTti2MHOm7+L1VPuE+qTl+TGwMvcb0YsTU\nEQQXDKZ1mdZcu+xaPln2id/+vp6WL1iw4FWv+TIefygfERFBv379/Cae9JaP2+4JT+Y+2gOsBJYC\nS1V1q0cHFqkD9FPVRq7nvXCmzPjQrcxIIFxVJ7ue7wAeUNVjCY71FnBBVQcleN3mPsogkyY5/Qjh\n4VCuXIrFA8qCvQsImxdGvlz5+Ljhx9xd4m5fh2RMuiQ395En17y3A7WBe4FBIlIR2KSqT6aw3xqg\nvIgEA4eBFly9DsNMIBSY7Eoip1X1mIgUBqJV9bSIXAc8DLztQawmDaZPh65dnU5lSwj/2vbXNrrN\n78bOEzv5sMGHPF35aeszMNmeJ0khGogCYoBY4DhOO3+yVDVaREKBuTgdxWNUdbuIdHBtH6Wqs0Wk\nsYjsBs4DbV273wRMEJEcOP0eE1V1YSp/N+OBX36Bjh2df2+/3dfR+Ifj54/Td3Ffpm2fRq97e/FD\nix9s1TMTMDxpPorEWW3tY2Chqp7IjMA8Yc1H6bNkiTP99YwZULeur6PxvQtRFxiycgiDVwym9R2t\neeuBt7jhuiw+Ys+YRCTXfORJUngCuA+4C+eK4TfgV1VdkNGBppYlhbRbtQoefxwmT4aHAnx+tliN\nZfKWybyx8A1q3lyTDxt8SLkbrB3NZF/pWk/BNQdSV6ADMBtoA8zK0AhNhkrpLoONG6FpUxg/PrAS\nQmL1smz/Mup8WYdPVn7CxKcmMq35tIBLCIE8pUNSArlOUkwKIjLNdQfSUCAP0BqwlcT9WHJv6B07\n4NFHYdgweOyxzIvJH7jXy+6Tu3nm+2doNb0VnWt3ZtVLq7jvlvt8F5wPBfIHYFICuU486Wj+AFiv\nqtHeDsZ419698PDD8P778J//+Doa3zh54ST9l/Rn4qaJhN0TxqSnJnFdzut8HZYxfsOT5qPfLSFk\nfQcPQoMG0KsXvPCCr6PJfJdjLrPiwAoqDavEhegLbH1lK73u62UJwZgEbGx+ADh+3EkInTrBK6/4\nOprMpapM3z6dHgt6IKeExS8s5vaidu+tMUmxpJDNnTzpNBm1aAHduvk6msz1+6Hf6TKvC/9c/IcR\nj41g+cnllhCMSUGKSUFEanL1PEb/APusWck/xc11cvas06ncoAG4pnEJCPtO7+ONRW+w+M/F9K/f\nnzbV2xCUI4icITl9HZpfSmwenUAXyHXiyTiFlUBNYJPrparAVpy1mzup6lyvRph8bDZOIQmRkU5C\nqFwZRoyAQJid4cylM7y/9H1GrxvNq3e9Svd63bk+1/W+DssYv5OucQo48xZVV9WaqloTqA7sxZmP\nyJMptE0mu3QJnnkGSpeGzz/P/gkhOjaakWtGUnFYRY6cO8LGjht5p/47lhCMSQNP+hQqus+Mqqrb\nRKSSqu4REfua7meio6FlS7juOhg3DnJ4kvazKFVlzu45dJvfjWJ5izH7v7O586Y7fR2WMVmaJ0lh\nq4iMwFk5TYDmwDYRuRZn2gvjR7p1c5qOZsyAa7LxbQSbjm0ibF4Y+//Zz0cPf0STCk1sBlNjMoAn\nfQp5gFeAeq6XlgOfAxeBvKp61qsRJh+b9Sm4WbwYnnsONm3KvqumHTl7hDcXvcmsP2bx1v1v0aFm\nB3IGWQeyMamR3j6Fyqo6SFWfcj0GAQ+qaqwvE4K50tmz0K4djB4NmzeH+zqcDHf+8nneWfIOVUZU\n4cY8N7IzdCehd4emKiEE8tQFybF6uVog14mnazRXjXsiIi2BPt4LyaRFWJgzud1jj2WvN3SsxjJ+\nw3gqDqvItr+2seblNQx8eCAFcye+hGRyslO9ZCSrl6sFcp140urcDJgqIv/FmUL7eZw7j4yfmDMH\n5s1zmo2yk0V/LiJsXhjXXXMdU5tPpU7JOr4OyZhsL8WkoKp7XVcHPwL7gIaqGun1yIxHTp6El1+G\niRMhf35fR5MxdpzYQff53dlyfAsfNviQZrc1s05kYzJJkklBRDYneOkGnOamVa4O3ju8GpnxyGuv\nOWMS6tf3dSTp99f5v3h7ydt8t/U7etbryZT/TOHaa671dVjGBJTkrhSaZFoUJk2mToXff4cNG3wd\nSfpcjL7I0FVD+ei3j/hvlf+y49Ud3Jgnm94+ZYyfSzIpqGpERpxARBoBQ4Ag4EtV/TCRMkOBR4FI\noI2qrheRUsBXQFGcuZdGq+rQjIgpOzh2DEJD4YcfIE+eK7dllXlbVJXvt35Pz4U9qV68OsvbLafC\njRW8dr6sUi+ZzerlaoFcJymOU0jXwUWCgJ1AA+AQ8DvQUlW3u5VpDISqamMRqQ18qqp1RKQ4UFxV\nN4jI9cBa4MkE+wbkOAVVeOopZ16j99/3dTRp89uB3wibF8blmMt8/MjHPBD8gK9DMiZgJDdOwdtj\nXu8GdsdddYjIZOAJYLtbmabABABVXSUiBUWkmKoeBY66Xj8nItuBmxPsG5AmTnRWUfvuO19Hknp7\nT+2l54KerDy4kvcefI9Wd7Qih2TjuTiMyWK8/ddYAjjg9vyg67WUypR0LyAiwcCdwKoMjzCLOXAA\nunaFr76Ca7NQH+ypC6foOq8rd39xN9WKVWNH6A5aV2ttCcEYP+PtKwVP23YSXsbE7+dqOpoKdFbV\ncwl3dG/7Cw4OJjg4mJCQkETbBMPDwxMdlJJVyi9eHM5LL4VTpQr8+KPz8Pf4L8dcZuSakby39D3u\nunwXbc61IWpRFAMXDUy0vL/Fb+WtfHYoH7fdE97uU6gD9FPVRq7nvYBY985mERkJhKvqZNfzHcAD\nqnpMRHICs4A5qjokkeMHVJ/CyJEwdiz89pv/T3anqszYOYPu87tTtlBZBj0yiCpFq/g6LGMM6Z/7\nKD3WAOVFJFhEcgEtgJkJyszEGSUdl0ROuxKCAGOAbYklhECzZw+89ZbTbJRSQvD1EP01h9cQMiGE\ntxa/xWePfsYvz/3iFwnB1/Xir6xerhbIdeLVpOBarjMUmAtsA75T1e0i0kFEOrjKzAb2ishuYBTO\njKzgzMr6HFBfRNa7Ho28Ga+/iomBNm3gjTegUqWUy/vqDX3gnwO0/qE1Tb5twnNVn2N9h/U0LNfQ\nJ7EkJpD/0JNj9XK1QK4TrzdCqOocYE6C10YleB6ayH7L8P6VTJYwZIizWE7nzr6OJHFnL53lg2Uf\nMHLtSDrV6sSu0F3kuzafr8MyxqSBn7dMm23bnLEIq1f73ypq0bHRjFk3hn5L+vFw2YfZ0GEDpQqU\n8nVYxph0sKTgx6Ki4Pnn4b33oGxZX0dzpV92/0LXeV0pnKcws1rOoubNNX0dkjEmA1hS8GPvvw+F\nC0P79r6O5F+bj22m6/yu/HnqTz56+COaVmxqM5gak41YUvBT69bBsGGwfj2k9jPXG/O2HD13lLcW\nvcWMnTN48/436VirI7mCcmX4ebwpkOezSY7Vy9UCuU68Ok7B27LrOIVLl6BmTejZ01lz2ZcioyL5\neMXHfLLyE9pWb0vv+3pT6LpCvg3KGJMuvpz7yKRBr15QoQK0auW7GGI1lkmbJtF7UW/uKXkPv7/8\nO2UL+VnHhjEmw1lS8DOffw6zZjmjln3VVB8eEU7YvDByBeXiu2bfUbdUXd8EYozJdJYU/Mj06c6d\nRkuXOh3MmW3X37voPr87G49t5IOHPqD57c2tE9mYAONnd74HrmXLoGNH+OmnzL/99ETkCV6f8zr1\nxtajXql6bH91Oy2qtLCEYEwAsqTgB7Ztc9ZZ/vprqFEj/cfzdIj+pehLDPptEJWHVyZWY9n2yja6\n1etG7mtypz8IPxTIUxckx+rlaoFcJ5YUfOzgQXj0URg0CB5+OGOOmdIbWlWZsnUKlYdX5td9v7K0\n7VKGNR5GkbxFMiYAPxXIf+jJsXq5WiDXifUp+NDp005CeOUVaN06c8658uBKwuaFERkVyZimY6hf\npn7mnNgYkyVYUvCRS5ecdZbr14fu3b1/vj9P/Umvhb1Ytn8Z7z74Lq3vaE1QjiDvn9gYk6VY85EP\nxMY6cxoVLgyffOLdW09PXzxN9/ndqfVFLW4rchs7Q3fSpnobSwjGmETZlUImU4WwMDh6FObOhSAv\nfTZHxUQxeu1o3vn1HZpUaMKWTlu4Kd9N3jmZMSbbsKSQyQYPhvnznbEIub1wk4+qkqtsLqqOqEqp\nAqWY33o+dxS7I+NPlAUF8nw2ybF6uVog14nNfZSJvvnGmc/ot9+gZMmMP/76I+sJmxfG0XNHGfTI\nIB4t96iNNTDGXMXmPvIDCxfC//2f829GJ4RDZw7Re1Fv5u6ZS98H+vJSjZe4Jof91xpjUs/rHc0i\n0khEdojIHyLSI4kyQ13bN4rInW6vjxWRYyKy2dtxetOGDdCyJUyZAlUycP36c5fP0WdxH+4YeQc3\n57uZnaE76ViroyUEY0yaeTUpiEgQMAxoBNwGtBSRygnKNAbKqWp5oD0wwm3zONe+WVZEBDz2mDPR\n3f33Z8wxY2JjGLNuDBWHVWTvqb2s77CeAQ8NIP+1+TPmBMaYgOXtr5R3A7tVNQJARCYDTwDb3co0\nBSYAqOoqESkoIsVV9aiqLhWRYC/H6DV//w2NGjn9CM2aZcwx5++ZT9f5XSlwbQF+bPEjd5W4K2MO\nbIwxeL/5qARwwO35QddrqS2T5URGQpMm8OST8Npr6T/e1uNbafx1Y16Z/Qp9H+jLkjZLkkwIgTxE\nPzlWL4mzerlaINeJt5OCp7cGJewFzzq3FCUiOtrpQyhXzllnOT3OXjpLx1kdqT+hPo/c+ghbX9nK\n05WfTvauokB+QyfH6iVxVi9XC+Q68Xbz0SGglNvzUjhXAsmVKel6zSPu9xMHBwcTHBxMSEhIovcZ\nh4eHJ/qfnZHlFy8OZ9YsZ16j//4X3n47fce/Lud1lMpfih2hO9i0ahMD+g/wavxWPvDKR0REXPWa\nL+Pxh/Lh4eH069fPb+JJb/m47R5RVa89cJLOHiAYyAVsAConKNMYmO36uQ6wMsH2YGBzEsdXf/PO\nO1JQfJ8AAAuKSURBVKo1aqieOeO7GPr27eu7k/sxq5fEWb1cLbvXieuzM9HPba9eKahqtIiEAnOB\nIGCMqm4XkQ6u7aNUdbaINBaR3cB5oG3c/iLyLfAAcKOIHAD6qOo4b8acHmPGwPjxsHw55Mvn62iM\nMSb1vH5Du6rOAeYkeG1UguehSezb0ouhZaiff4Y334QlS6B4cV9HY4wxaWOjnDLAqlXQtq2zlGaF\nCr6OJrDnbUmO1UvirF6uFsh1YnMfpYMqjB3rjEMYNw4ef9xnoRhjjMds7iMv+PNPePll5y6jBQug\nWjVfR2SMMelni+ykUkwMfPop3HUXPPIIrFxpCcEYk33YlUIqbN8OL74I11zjTH/tD/0HxhiTkexK\nwQNRUfDee86Edq1bQ3i4JQRjTPZkSSEF69Y5TUXLlsHatdCpE+Tw81oL5CH6ybF6SZzVy9UCuU78\n/OPNdy5ccO4qevRRZ03l2bOhdGlfR+WZQH5DJ8fqJXFWL1cL5DqxPoVELFvm9B1UqwabNkGxYr6O\nyBhjMoclBTdnz0KvXvDDDzBsGDz1lK8jMsaYzGXNRy5z50LVqs46CFu2WEIwxgSmgL9SOHkSunRx\n5iz64gt4+GFfR2SMMb4T0FcK06ZBlSqQPz9s3px9EkIgz9uSHKuXxFm9XC2Q6yQg5z46ehRefRW2\nbnWmu65XzwvBGWOMn0pu7qOAulJQddY7uOMOqFQJNmywhGCMMe4Cpk9h3z7o0AGOHXM6le+809cR\nGWOM/8n2Vwqxsc7tpTVrwgMPwOrVlhCMMSYp2fpKYedOZxCaqjMgrVIlX0dkjDH+LVteKURFwQcf\nOP0FLVrA0qWBlRACeYh+cqxeEmf1crVArhOvJgURaSQiO0TkDxHpkUSZoa7tG0XkztTsm5gNG6B2\nbVi0CNasgdde8/8J7DJaIL+hk2P1kjirl6sFcp147eNSRIKAYUAj4DagpYhUTlCmMVBOVcsD7YER\nnu6b0MWL0Lu3s/DN6687ncnBwRn9W2UNERERvg7BL1m9JM7q5WqBXCfe/A59N7BbVSNUNQqYDDyR\noExTYAKAqq4CCopIcQ/3jffbb07n8fbtsHEjtGkDkugduIEhkN/QybF6SZzVy9UCuU682dFcAjjg\n9vwgUNuDMiWAmz3YF4DOnWHKFBg6FJo1S3fMxhgT0LyZFDwdapyu7/SnTztTVNx4Y3qOYowxBryb\nFA4Bpdyel8L5xp9cmZKuMjk92BeAr74Svvoq3bFmOxLI7WfJsHpJnNXL1QK1TryZFNYA5UUkGDgM\ntABaJigzEwgFJotIHf6/vfOPkauq4vjnWwoUWmuoQTQhtqXGQk2N/GiIpQhiNEhBIlajFiGFNFUC\n1FgSNQGNsSYYjPEPlZZCbQ1QA1igxhKCBWytlE3Zll03orRpSyg/UpuC/ZFKicc/7pnZ18fM7szO\nzs7M2/NJbua++965c+/Zu+/cH3PPhbfM7E1J+2uQreq7IwiCIBgaTTMKZvaupJuBJ4ETgPvM7B+S\nFvn95Wa2XtIVknYAh4EFA8k2q6xBEARBoqO9pAZBEATDS9tu62rFxrdOoEG97JbUI2mbpK6RK3Vz\nGUwnks6W9Jyko5KW1CPbyTSol0K2FahJL/P9f6dH0mZJn6hVthCYWdsF0pTRDmAKadF5O3BO7pkr\ngPUevxDYUqtsp4ZG9OLXu4BJra5HC3RyOnABsBRYUo9sp4ZG9FLUtlKHXj4FvN/jl4+Gd0s2tOtI\nYcQ2vnUYQ9XLGZn7RVucH1QnZrbPzLYCx+qV7WAa0UuJorUVqE0vz5nZ2375POlXkTXJFoF2NQrV\nNrXV8kyljW952U6lEb1A2jvyZ0lbJS1sWilHllp00gzZdqfRuhWxrUD9erkRWD9E2Y6kXV1nj8jG\ntw6kUb3MMbPXJJ0OPCXpJTPbNExlaxWN/FKiyL+yaLRuF5nZ6wVrK1CHXiR9BrgBKJ3PWOT2UqZd\nRwqNbHyrRbZTGape9gKY2Wv+uQ94lDQc7nQa+XuP9rZSFTN73T+L1FagRr344vIK4ItmdqAe2U6n\nXY1CeeObpJNIm9fW5Z5ZB1wHkN34VqNspzJkvUg6VdL7PH088Hmgd+SK3jTq+XvnR1Cjva2UOE4v\nBW4rUINeJH0EWAtca2Y76pEtBK1e6a4WgC8A/ySt9v/A0xYBizLP/MrvvwicN5BsUcJQ9QKcRfq1\nxHbg70XSy2A6AT5Emgt+GzgAvAJMGO1tpZpeitxWatTLvcB+YJuHroFkixZi81oQBEFQpl2nj4Ig\nCIIWEEYhCIIgKBNGIQiCICgTRiEIgiAoE0YhCIIgKBNGIQiCICgTRiFoGb4JaMQ3RUm6WtI5w5TX\nVkkn5tJ2S5o0TPkfGo58gqBWwigEo5EvATPqEZB0QoW0qcBeSx4zswzn5p/35CWpXX2WBQUgjELQ\nFkg6S1K3pPPdzcJDkvokrZW0RdL5uednSfqDx6+WdETSWEnjJO309IWSuiRtl/SIpFMkzQauAu7y\nA2SmSpom6Qnv9W+UNN3lV0laJmkL8LMKxb4ceGKAOp3i+d7o13f4AS2bJD2YP9jGn5nqB9/0SFqa\nSb/U5R4H+iT9WNLizP2fSro1l9d4SX/y+vdK+qqnf9Z13SPpPnfZUCpflz+7PJPPs5J+6frqlTSr\nWp2DAtDqLdURRm8gHVbSC0wHuoGZnn4bcLfHP07y939eTnYssNPjPyf5vZ8NXAI84OmTMs//BLjZ\n478Frsnc2wB81OMXAhs8vork20ZVyv8YMKVC+i5gMvAUyX8OwCySy4STSK4k/gV8t4LsuozMTcBB\nj18KHAIm+/Vk4AWPjyG5XTgtl9eXgXsy1xOBcSR3FqX6rgYWe/y0zLO/A670+DPAco9fDPS2uu1E\naF6IkULQaj5Ierl+w8xK6wsXkQ4wwcz6gJ68kJm9C+yUdDbphfsL4NPAHKDk4nmm9657gPkcP2Uk\nAEkTSCdtPSxpG7CM5BMI0tTNw+Zvwyzeuz7TzHZXqJOAx4GVZnZ/pk6Pmdk7ZnYI+GOpDDlmA2s8\nfn/uXpeZ7fH67wH2S/okyWFdt/V78yzRA3xO0p2S5pjZf0gGeJf1O3pbTdIbwGU+KusBLuN4fa3x\n790ETJQ0sULZgwIQc5NBq3kL2EPqgb6USa/lrIyNpONHj5F6+6tJvebb/P4qkuvjXknXk3rbJUov\n+jEkT7LnUpkjVdIvpt/45DHgryTnaWsyadk6DeUskMO563uBBcAZwMr3FMLsZaUzuucCSyVtIBmr\nLCXjeDLwG9KIbK+kH5FGFdUIp2kFJUYKQat5B7gGuE7S1z1tM1Ca/54BzKwiuwn4DvA3M/s38AFg\nuo8uIE3TvOG/DrqW/hfZQdJUCt573iVpnn+flDmofQAGXE8AfggckPTrTJ2uknSyj07mUvnFuhn4\nmsfnD1KGR70cFwBP5m9K+jBw1MweIE2xnUvy8DlF0jR/7JvAsyQDYKTRxwTgK9msSG6ikTSHZEQP\nDlK2oEOJkULQaszMjki6knTC10FSj3W1pD7S6KGP5N45Txdp+mmjX79I6jWXuIO01rDPPyd4+u+B\nFZJuAeaRXr53S7qddCD7GvqnrKr1iC8Bbq9WJ6/YYkkrJd1pZt+XtM7zfZO0llKpTouBByV9j9Sr\nz37/cWUxs2OSngYOVJriIhnTuyT9jzSa+paZ/VfSAtJ02ViSDpd5XitIrrLfIOkr+71HJXWT3hk3\nVKl3UADCdXbQdkgaA5zoL7BppAXbj/k6QsuRdCZp4XVunXLjzeywpFOBvwALzWx7A+UYA7wAzDOz\nnUPNp4bveQZYYmbdzfqOoH2IkULQjowHnvZpHwHfbheDAGBmr5Kmf+rlHp8OGwesatAgzCAtVq9t\npkEIRh8xUgiCIAjKxEJzEARBUCaMQhAEQVAmjEIQBEFQJoxCEARBUCaMQhAEQVAmjEIQBEFQ5v+r\nNVWVme/qqwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7e5c940>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Moisture content of air leaving the drier is 0.0542 kg water/kg dry air\n",
+ "\n",
+ "Total number of eqb. stages = 3\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter6.ipynb b/Mass_-_Transfer_Operations/Chapter6.ipynb
new file mode 100755
index 00000000..330c2a7b
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter6.ipynb
@@ -0,0 +1,1050 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:154e89b2f76588eed1121bf1db9bf4372804b279864337e5f5dc9c9be7d3f365"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6: Equipment For Gas-Liquid Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.1: Page 145"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.1\n",
+ "# Page: 145\n",
+ "\n",
+ "print'Illustration 6.1 - Page: 145\\n\\n'\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# w = Gas flow rate per orifice\n",
+ "w = 0.055/50;# [kg/s]\n",
+ "L = 8*10**(-4);# [liquid flow rate, cubic m/s]\n",
+ "d = 0.003;# [diameter of the orifice,m]\n",
+ "viscocity_gas = 1.8*10**(-5);# [kg/m.s]\n",
+ "#******#\n",
+ "\n",
+ "Re = 4*w/(math.pi*d*viscocity_gas);\n",
+ "Dp = 0.0071*Re**(-0.05);# [m]\n",
+ "h = 3.0;# [height of vessel,m]\n",
+ "P_atm = 101.3;# [kN/square m]\n",
+ "Density_water = 1000.0;# [kg/cubic m]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "Temp = 273+25;# [K]\n",
+ "P_orifice = P_atm+(h*Density_water*g/1000);# [kN/square m]\n",
+ "P_avg = P_atm+((h/2.0)*Density_water*g/1000);# [kN/square m]\n",
+ "Density_gas = (29/22.41)*(273.0/Temp)*(P_avg/P_atm);# [kg/cubic m]\n",
+ "D = 1.0;# [dia of vessel,m]\n",
+ "Area = (math.pi*D**2)/4;# [square m]\n",
+ "Vg = 0.055/(Area*Density_gas);# [m/s]\n",
+ "Vl = L/Area;# [m/s]\n",
+ "sigma = 0.072;# [N/m]\n",
+ "# From fig. 6.2 (Pg 143)\n",
+ "abscissa = 0.0516;# [m/s]\n",
+ "Vg_by_Vs = 0.11;\n",
+ "Vs = Vg/Vg_by_Vs;# [m/s]\n",
+ "def f6(shi_g):\n",
+ " return Vs-(Vg/shi_g)+(Vl/(1-shi_g)) \n",
+ "shi_g = fsolve(f6,0.5);\n",
+ "dp = ((Dp**3)*(P_orifice/P_avg))**(1.0/3);# [bubble diameter,m]\n",
+ "# From eqn. 6.9\n",
+ "a = 6.0*shi_g/dp;# [specific interfacial area,square m]\n",
+ "print\"The Specific Interfacial Area is \",round(a,2),\" square m/cubic m\\n\"\n",
+ "\n",
+ "# For diffsion of Cl2 in H20\n",
+ "Dl = 1.44*10**(-9);# [square m/s]\n",
+ "viscocity_water = 8.937*10**(-4);# [kg/m.s]\n",
+ "Reg = dp*Vs*Density_water/viscocity_water;\n",
+ "Scl = viscocity_water/(Density_water*Dl);\n",
+ "# From Eqn.6.11\n",
+ "Shl = 2+(0.0187*(Reg**0.779)*(Scl**0.546)*(dp*(g**(1.0/3))/(Dl**(2.0/3)))**0.116);\n",
+ "# For dilute soln. of Cl2 in H20\n",
+ "c = 1000/18.02;# [kmol/cubic m]\n",
+ "Fl = (c*Dl*Shl)/dp;# [kmol/square m.s]\n",
+ "print\"Mass Transfer coeffecient is \",round(Fl,5),\" kmol/square m.s\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.1 - Page: 145\n",
+ "\n",
+ "\n",
+ "The Specific Interfacial Area is 148.13 square m/cubic m\n",
+ "\n",
+ "Mass Transfer coeffecient is 0.01335 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.2: Page 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.2\n",
+ "# Page: 157\n",
+ "\n",
+ "print'Illustration 6.2 - Page: 157\\n\\n'\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = N2 b = H2O\n",
+ "L = 9.5*10**(-4);# [cubic m/s]\n",
+ "G = 0.061;# [kg/s]\n",
+ "Temp = 273.0+25;# [K]\n",
+ "#*****#\n",
+ "\n",
+ "print\"Construction Arrangement\\n\"\n",
+ "print\"Use 4 vertical wall baffles, 100 mm wide at 90 degree intervals.\\n\"\n",
+ "print\"Use a 305 mm dameter, a six bladed disk flat blade turbine impeller, arranged axially, 300 mm from the bottom of vessel\\n\"\n",
+ "print\"The sparger underneath the impeller will be in the form of a 240 mm dameter ring made of 12.7 mm tubing drilled in the top with 3.18 mm dia holes\\n\"\n",
+ "Di = 0.305;# [m]\n",
+ "Do = 0.00316;# [m]\n",
+ "viscocity_a = 1.8*10**(-5);# [kg/m.s]\n",
+ "Re_g = 35000;\n",
+ "Ma = 28.02;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# w = Gas flow rate per orifice\n",
+ "w = Re_g*math.pi*Do*viscocity_a/4.0;# [kg/s]\n",
+ "N_holes = G/w;\n",
+ "Interval = math.pi*240/round(N_holes);\n",
+ "print\"The number of holes is \",round(N_holes),\" at approx \",round(Interval),\" mm interval around the sparger ring\\n\"\n",
+ "\n",
+ "viscocity_b = 8.9*10**(-4);# [kg/m.s]\n",
+ "Sigma = 0.072;# [N/m]\n",
+ "Density_b = 1000.0;# [kg/cubic m]\n",
+ "D = 1.0;# [dia of vessel,m]\n",
+ "g = 9.81;# [m/s**2]\n",
+ "# From Eqn. 6.18\n",
+ "def f7(N):\n",
+ " return (N*Di/(Sigma*g/Density_b)**0.25)-1.22-(1.25*D/Di)\n",
+ "N_min = fsolve(f7,2);# [r/s]\n",
+ "N = 5.0;# [r/s]\n",
+ "Re_l = ((Di**2)*N*Density_b/viscocity_b);\n",
+ "# From fig 6.5 (Pg 152)\n",
+ "Po = 5.0;\n",
+ "P = Po*Density_b*(N**3)*(Di**5);\n",
+ "h = 0.7;# [m]\n",
+ "P_atm = 101.33;# [kN/square m]\n",
+ "P_gas = P_atm+(h*Density_b*g/1000.0);# [kN/square m]\n",
+ "Qg = (G/Ma)*22.41*(Temp/273.0)*(P_atm/P_gas);# [cubic m/s]\n",
+ "# From Fig.6.7 (Pg 155)\n",
+ "abcissa = Qg/(N*(Di**3));\n",
+ "# abcissa is off scale\n",
+ "Pg_by_P = 0.43;\n",
+ "Pg = 0.43*P;# [W]\n",
+ "Vg = Qg/(math.pi*(D**2)/4);# [superficial gas velocity,m/s]\n",
+ "check_value = (Re_l**0.7)*((N*Di/Vg)**0.3);\n",
+ "vl = math.pi*(D**2)/4;# [cubic m]\n",
+ "# Since value<30000\n",
+ "# From Eqn. 6.21, Eqn.6.23 & Eqn. 6.24\n",
+ "K = 2.25;\n",
+ "m = 0.4;\n",
+ "Vt = 0.250;# [m/s]\n",
+ "shi = 1.0;\n",
+ "err = 1.0;\n",
+ "while (err>10**(-3)):\n",
+ " a = 1.44*((Pg/vl)**0.4)*((Density_b/(Sigma**3))**0.2)*((Vg/Vt)**0.5);# [square m/cubic m]\n",
+ " shin = (0.24*K*((viscocity_a/viscocity_b)**0.25)*((Vg/Vt)**0.5))**(1.0/(1-m));\n",
+ " Dp = K*((vl/Pg)**0.4)*((Sigma**3/Density_b)**0.2)*(shin**m)*((viscocity_a/viscocity_b)**0.25);# [m]\n",
+ " err = abs(shi-shin);\n",
+ " Vt = Vt-0.002;# [m/s]\n",
+ " shi = shin;\n",
+ "\n",
+ "\n",
+ "# For N2 in H2\n",
+ "Dl = 1.9*10**(-9);# [square m/s]\n",
+ "Ra = 1.514*10**(6);\n",
+ "# By Eqn. 6.25\n",
+ "Shl = 2.0+(0.31*(Ra**(1.0/3)));\n",
+ "# For dilute soln.\n",
+ "c = 1000.0/Mb;# [kmol/cubic m]\n",
+ "Fl = Shl*c*Dl*1.0/Dp;# [kmol/square m.s]\n",
+ "print\"The average gas-bubble diameter is \",(\"{:.2e}\".format(Dp)),\" m\\n\",\n",
+ "print\"Gas Holdup:\\n\",round(shi,5)\n",
+ "print\"Interfacial area:\",round(a,4),\" square m/cubic m \\n\"\n",
+ "print\"Mass transfer coffecient:\",(\"{:.2e}\".format(Fl)),\"kmol/square m.s\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.2 - Page: 157\n",
+ "\n",
+ "\n",
+ "Construction Arrangement\n",
+ "\n",
+ "Use 4 vertical wall baffles, 100 mm wide at 90 degree intervals.\n",
+ "\n",
+ "Use a 305 mm dameter, a six bladed disk flat blade turbine impeller, arranged axially, 300 mm from the bottom of vessel\n",
+ "\n",
+ "The sparger underneath the impeller will be in the form of a 240 mm dameter ring made of 12.7 mm tubing drilled in the top with 3.18 mm dia holes\n",
+ "\n",
+ "The number of holes is 39.0 at approx 19.0 mm interval around the sparger ring\n",
+ "\n",
+ "The average gas-bubble diameter is 6.35e-04 m\n",
+ "Gas Holdup:\n",
+ "0.02265\n",
+ "Interfacial area: 214.0106 square m/cubic m \n",
+ "\n",
+ "Mass transfer coffecient: 6.24e-03 kmol/square m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.3: Page 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.3\n",
+ "# Page: 174\n",
+ "\n",
+ "print'Illustration 6.3 - Page: 174\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = methanol b = water\n",
+ "G = 0.100;# [kmol/s]\n",
+ "L = 0.25;# [kmol/s]\n",
+ "Temp = 273+95;# [K]\n",
+ "XaG = 0.18;# [mol % in gas phase]\n",
+ "MaL = 0.15;# [mass % in liquid phase]\n",
+ "#*****#\n",
+ "\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "Mavg_G = XaG*Ma+((1-XaG)*Mb);# [kg/kmol]\n",
+ "Density_G = (Mavg_G/22.41)*(273.0/Temp);# [kg/cubic cm]\n",
+ "Q = G*22.41*(Temp/273.0);# [cubic cm/s]\n",
+ "Density_L = 961.0;# [kg/cubic cm]\n",
+ "Mavg_L = 1.0/((MaL/Ma)+(1-MaL)/Mb);# [kg/kmol]\n",
+ "q = L*Mavg_L/Density_L;\n",
+ "\n",
+ "# Perforations\n",
+ "print\"Perforations\\n\"\n",
+ "print\"Do = 4.5mm on an equilateral triangle pitch 12 mm between the hole centres, punched in sheet metal 2 mm thick\\n\"\n",
+ "Do = 0.0045;# [m]\n",
+ "pitch = 0.012;# [m]\n",
+ "# By Eqn.6.31\n",
+ "Ao_by_Aa = 0.907*(Do/pitch)**2;\n",
+ "print\"The ratio of Hole Area By Active Area is:\",round(Ao_by_Aa,4),\"\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Tower Diameter\n",
+ "print\"Tower Diameter\\n\"\n",
+ "t = 0.50;# [tray spacing,m]\n",
+ "print\"Tower Spacing:\",t,\" m\\n\"\n",
+ "# abcissa = (L/G)*(Density_G/Density_L)^0.5 = (q/Q)*(Density_L/Density_G)**0.5\n",
+ "abcissa = (q/Q)*(Density_L/Density_G)**0.5;\n",
+ "# From Table 6.2 (Pg 169)\n",
+ "alpha = (0.0744*t)+0.01173;\n",
+ "beeta = (0.0304*t)+0.015;\n",
+ "if (abcissa<0.1):\n",
+ " abcissa = 0.1;\n",
+ "\n",
+ "sigma = 0.040;# [N/m]\n",
+ "# From Eqn.6.30\n",
+ "Cf = ((alpha*math.log10(1.0/abcissa))+beeta)*(sigma/0.02)**0.2;\n",
+ "# From Eqn. 6.29\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1/2);# [m/s]\n",
+ "# Using 80% of flooding velocity\n",
+ "V = 0.8*Vf;# [m/s]\n",
+ "An = Q/V;# [square m]\n",
+ "# The tray area used by one downspout = 8.8%\n",
+ "At = An/(1-0.088);# [square m]\n",
+ "D = (4*At/math.pi)**(1.0/2);# [m]\n",
+ "# Take D = 1.25 m\n",
+ "D = 1.25; #[m]\n",
+ "At = math.pi*(D**2)/4;# [corrected At, square m]\n",
+ "W = 0.7*D;# [weir length,m]\n",
+ "Ad = 0.088*At;# [square m]\n",
+ "# For a design similar to Fig 6.14 (Pg 168)\n",
+ "# A 40 mm wide supporting ring, beams between downspouts and a 50 mm wide disengaging & distributing zones these areas total 0.222 square m\n",
+ "Aa = At-(2.0*Ad)-0.222;\n",
+ "print\"Weir Length:\",round(W,4),\"\\n\"\n",
+ "print\"Area for perforated sheet: \",round(Aa,4),\" square m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Weir crest h1 & Weir height hw\n",
+ "print\"Weir crest h1 & Weir height hw\\n\"\n",
+ "h1 = 0.025;# [m]\n",
+ "h1_by_D = h1/D;\n",
+ "D_by_W = D/W;\n",
+ "# From Eqn. 6.34\n",
+ "Weff_by_W = math.sqrt(((D_by_W)**2)-((((D_by_W)**2-1)**0.5)+(2*h1_by_D*D_by_W))**2);\n",
+ "# Set hw to 50 mm\n",
+ "hw = 0.05;# [m]\n",
+ "print\"Weir crest: \",h1,\" m\\n\"\n",
+ "print\"Weir height: \",hw,\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Dry Pressure Drop\n",
+ "print\"Dry Pressure Drop\\n\"\n",
+ "l = 0.002;# [m]\n",
+ "# From Eqn. 6.37\n",
+ "Co = 1.09*(Do/l)**0.25;\n",
+ "Ao = 0.1275*Aa;# [square m]\n",
+ "Vo = Q/Ao;# [m/sec]\n",
+ "viscocity_G = 1.25*10**(-5);# [kg/m.s]\n",
+ "Re = Do*Vo*Density_G/viscocity_G;\n",
+ "# From \"The Chemical Engineers Handbook,\" 5th Edition fig 5.26\n",
+ "fr = 0.008;\n",
+ "g = 9.81;# [m/s**2]\n",
+ "# From Eqn. 6.36\n",
+ "def f(hd):\n",
+ " return (2*hd*g*Density_L/(Vo**2*Density_G))-(Co*(0.40*(1.25-(Ao/An))+(4*l*fr/Do)+(1-(Ao/An))**2))\n",
+ "hd = fsolve(f,1);\n",
+ "print\"Dry Pressure Drop:\",round(hd,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Hydraulic head hl\n",
+ "print\"Hydraulic head hl\"\n",
+ "Va = Q/Aa;# [m/s]\n",
+ "z = (D+W)/2.0;# [m]\n",
+ "# From Eqn. 6.38\n",
+ "hl = 6.10*10**(-3)+(0.725*hw)-(0.238*hw*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "print\"Hydraulic head: \",round(hl,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#Residual Pressure drop hr\n",
+ "print\"Residual Pressure drop hr\\n\"\n",
+ "# From Eqn. 6.42\n",
+ "hr = 6*sigma/(Density_L*Do*g);# m\n",
+ "print\"Residual Pressure Drop:\",round(hr,4),\"m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Total Gas pressure Drop hg\n",
+ "print\"Total Gas pressure Drop hg\\n\"\n",
+ "# From Eqn. 6.35\n",
+ "hg = hd+hl+hr;# [m]\n",
+ "print\"Total gas pressure Drop: \",round(hg,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Pressure loss at liquid entrance h2\n",
+ "print\"Pressure loss at liquid entrance h2\\n\"\n",
+ "# Al: Area for the liquid flow under the apron\n",
+ "Al = 0.025*W;# [square m]\n",
+ "Ada = min(Al,Ad);\n",
+ "# From Eqn. 6.43\n",
+ "h2 = (3.0/(2*g))*(q/Ada)**2;\n",
+ "print\"Pressure loss at liquid entrance:\",round(h2,4),\"m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Backup in Downspout h3\n",
+ "print\"Backup in Downspout h3\\n\"\n",
+ "# From Eqn.6.44\n",
+ "h3 = hg+h2;\n",
+ "print\"Backup in Downspout:\",round(h3,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Check on Flooding\n",
+ "print\"Check on Flooding\\n\"\n",
+ "if((hw+h1+h3)<(t/2.0)):\n",
+ " print\"Choosen Tower spacing is satisfactory\\n\"\n",
+ "else:\n",
+ " print\"Choosen Tower spacing is not satisfactory\\n\"\n",
+ "\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Weeping Velocity\n",
+ "print\"Weeping Velocity\\n\"\n",
+ "print\"For W/D ratio \",W/D,\" weir is set at \",0.3296*D,\" m from the center from the tower\\n\",\n",
+ "Z = 2*(0.3296*D);# [m]\n",
+ "# From Eqn.6.46\n",
+ "def f8(Vow):\n",
+ " return (Vow*viscocity_G/(sigma))-(0.0229*((viscocity_G**2/(sigma*Density_G*Do))*(Density_L/Density_G))**0.379)*((l/Do)**0.293)*(2*Aa*Do/(math.sqrt(3.0)*(pitch**3)))**(2.8/((Z/Do)**0.724))\n",
+ "Vow = fsolve(f8,0.1);# [m/s]\n",
+ "print\"The minimum gas velocity through the holes below which excessive weeping is likely:\",round(Vow,3),\" m/s\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Entrainment\n",
+ "print\"Entrainment\\n\"\n",
+ "V_by_Vf = V/Vf;\n",
+ "# From Fig.6.17 (Pg 173), V/Vf = 0.8 & abcissa = 0.0622\n",
+ "E = 0.05;\n",
+ "print\"Entrainment:\\n\",E\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.3 - Page: 174\n",
+ "\n",
+ "\n",
+ "Perforations\n",
+ "\n",
+ "Do = 4.5mm on an equilateral triangle pitch 12 mm between the hole centres, punched in sheet metal 2 mm thick\n",
+ "\n",
+ "The ratio of Hole Area By Active Area is: 0.1275 \n",
+ "\n",
+ "\n",
+ "\n",
+ "Tower Diameter\n",
+ "\n",
+ "Tower Spacing: 0.5 m\n",
+ "\n",
+ "Weir Length: 0.875 \n",
+ "\n",
+ "Area for perforated sheet: 0.7892 square m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Weir crest h1 & Weir height hw\n",
+ "\n",
+ "Weir crest: 0.025 m\n",
+ "\n",
+ "Weir height: 0.05 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Dry Pressure Drop\n",
+ "\n",
+ "Dry Pressure Drop: 0.0654 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Hydraulic head hl\n",
+ "Hydraulic head: 0.0106 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Residual Pressure drop hr\n",
+ "\n",
+ "Residual Pressure Drop: 0.0057 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Total Gas pressure Drop hg\n",
+ "\n",
+ "Total gas pressure Drop: 0.0816 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Pressure loss at liquid entrance h2\n",
+ "\n",
+ "Pressure loss at liquid entrance: 0.008 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Backup in Downspout h3\n",
+ "\n",
+ "Backup in Downspout: 0.0897 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Check on Flooding\n",
+ "\n",
+ "Choosen Tower spacing is satisfactory\n",
+ "\n",
+ "\n",
+ "\n",
+ "Weeping Velocity\n",
+ "\n",
+ "For W/D ratio 0.7 weir is set at 0.412 m from the center from the tower\n",
+ "The minimum gas velocity through the holes below which excessive weeping is likely: 8.703 m/s\n",
+ "\n",
+ "\n",
+ "\n",
+ "Entrainment\n",
+ "\n",
+ "Entrainment:\n",
+ "0.05\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.4: Page 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.4\n",
+ "# Page: 183\n",
+ "\n",
+ "print'Illustration 6.4 - Page: 183\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "#****Data****#\n",
+ "#From Illustrtion 6.3:\n",
+ "G = 0.100;# [kmol/s]\n",
+ "Density_G = 0.679;# [kg/cubic m]\n",
+ "q = 5*10**(-3);# [cubic m/s]\n",
+ "Va = 3.827;# [m/s]\n",
+ "z = 1.063;# [m]\n",
+ "L = 0.25;# [kmol/s]\n",
+ "hL = 0.0106;# [m]\n",
+ "hW = 0.05;# [m]\n",
+ "Z = 0.824;# [m]\n",
+ "E = 0.05;\n",
+ "ya = 0.18;# [mole fraction methanol]\n",
+ "\n",
+ "# a:CH3OH b:H2O\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "# From Chapter 2:\n",
+ "ScG = 0.865;\n",
+ "Dl = 5.94*10**(-9);# [square m/s]\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/ScG**0.5;\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;# [square m/s]\n",
+ "thethaL = hL*z*Z/q;# [s]\n",
+ "NtL = 40000*Dl**0.5*((0.213*Va*Density_G**0.5)+0.15)*thethaL;\n",
+ "# For 15 mass% methanol:\n",
+ "xa = (15.0/Ma)/((15.0/Ma)+(85.0/Mb));\n",
+ "# From Fig 6.23 (Pg 184)\n",
+ "mAC = -(NtL*L)/(NtG*G);# [Slope of AC line]\n",
+ "meqb = 2.50;# [slope of equilibrium line]\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1.0/((1/NtG)+(meqb*G/L)*(1.0/NtL));\n",
+ "# From Eqn. 6.51:\n",
+ "EOG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thethaL);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2.0)*((1+(4*meqb*G*EOG/(L*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EOG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+(math.exp(eta)-1)/(eta*(1+eta/(eta+Pe))));\n",
+ "# From Eqn. 6.60:\n",
+ "EMGE = EMG/(1+(EMG*E/(1-E)));\n",
+ "print\"Efficiency of Sieve trays: \",round(EMGE,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.4 - Page: 183\n",
+ "\n",
+ "\n",
+ "Effeciency of Sieve trays: 0.7\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.5: Page 200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.5\n",
+ "# Page: 200\n",
+ "\n",
+ "print'Illustration 6.5 - Page: 200\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "# ****Data****#\n",
+ "G = 0.80;# [cubic m/s]\n",
+ "P = 10**2;# [kN/square m]\n",
+ "XaG = 0.07;\n",
+ "Temp = 273+30.0;# [K]\n",
+ "L = 3.8;# [kg/s]\n",
+ "Density_L = 1235.0;# [kg/cubic m]\n",
+ "viscocity_L = 2.5*10**(-3);# [kg/m.s]\n",
+ "#******#\n",
+ "\n",
+ "# a = SO2 b = air\n",
+ "\n",
+ "# Solution (a) \n",
+ "\n",
+ "# Since the larger flow quantities are at the bottom for an absorber, the diameter will be choosen to accomodate the bottom condition\n",
+ "Mavg_G = XaG*64+((1-XaG)*29);# [kg/kmol]\n",
+ "G1 = G*(273/Temp)*(P/101.33)*(1/22.41);# [kmol/s]\n",
+ "G2 = G1*Mavg_G;# [kg/s]\n",
+ "Density_G = G2/G;# [kg/cubic m]\n",
+ "# Assuming Complete absorption of SO2\n",
+ "sulphur_removed = G1*XaG*64;# [kg/s]\n",
+ "abcissa = (L/G)*((Density_G/Density_L)**0.5);\n",
+ "#From Fig. 6.24, using gas pressure drop of 400 (N/square m)/m\n",
+ "ordinate = 0.061;\n",
+ "# For 25 mm ceramic Intalox Saddle:\n",
+ "Cf = 98.0;# [Table 6.3 Pg 196]\n",
+ "J = 1;\n",
+ "G_prime = (ordinate*Density_G*(Density_L-Density_G)/(Cf*viscocity_L**0.1*J))**0.5;# [kg/square m.s]\n",
+ "A = G2/G_prime;# [square m]\n",
+ "D = (4*A/math.pi)**0.5;# [m]\n",
+ "print\"The Tower Diameter is \",round(D,4),\" m\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "# Let\n",
+ "D = 1.0;# [m]\n",
+ "A = math.pi*D**2.0/4;# [square m]\n",
+ "# The pressure drop for 8 m of irrigated packing\n",
+ "delta_p = 400*8.0;# [N/square m]\n",
+ "# For dry packing\n",
+ "G_prime = (G2-sulphur_removed)/A;# [kg/square m.s]\n",
+ "P = P-(delta_p/1000.0);# [kN/square m]\n",
+ "Density_G = (29/22.41)*(273.0/Temp)*(P/101.33);# [kg/cubic m]\n",
+ "# From Table 6.3 (Pg 196)\n",
+ "Cd = 241.5;\n",
+ "# From Eqn. 6.68\n",
+ "delta_p_by_z = Cd*G_prime**2/Density_G;# [N/square m for 1m of packing]\n",
+ "pressure_drop = delta_p+delta_p_by_z;# [N/square m]\n",
+ "V = 7.5;# [m/s]\n",
+ "head_loss = 1.5*V**2.0/2;# [N.m/kg]\n",
+ "head_loss = head_loss*Density_G;# [N/square m]\n",
+ "Power = (pressure_drop+head_loss)*(G2-sulphur_removed)/(Density_G*1000.0);# [kW]\n",
+ "eta = 0.6;\n",
+ "Power = Power/eta;# [kW]\n",
+ "print\"The Power for the fan motor is \",round(Power,2),\" kW\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.5 - Page: 200\n",
+ "\n",
+ "\n",
+ "The Tower Diameter is 0.981 m\n",
+ "\n",
+ "The Power for the fan motor is 4.49 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.6: Page 204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.6\n",
+ "# Page: 204\n",
+ "\n",
+ "print'Illustration 6.6 - Page: 204\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# Gas\n",
+ "Mavg_G = 11.0;# [kg/kmol]\n",
+ "viscocity_G = 10**(-5);# [kg/m.s]\n",
+ "Pt = 107.0;# [kN/square m]\n",
+ "Dg = 1.30*10**(-5);# [square m/s]\n",
+ "Temp = 273.0+27;# [K]\n",
+ "G_prime = 0.716;# [kg/square m.s]\n",
+ "\n",
+ "# Liquid:\n",
+ "Mavg_L = 260.0;\n",
+ "viscocity_L = 2*10**(-3);# [kg/m.s]\n",
+ "Density_L = 840.0;# [kg/cubic m]\n",
+ "sigma = 3*10.0**(-2);# [N/m]\n",
+ "Dl = 4.71*10**(-10);# [square m/s]\n",
+ "#******#\n",
+ "\n",
+ "#Gas:\n",
+ "Density_G = (Mavg_G/22.41)*(Pt/101.33)*(273/Temp);# [kg/cubic m]\n",
+ "ScG = viscocity_G/(Density_G*Dg);\n",
+ "G = G_prime/Mavg_G;# [kmol/square m.s]\n",
+ "\n",
+ "# Liquid:\n",
+ "L_prime = 2.71;# [kg/square m.s]\n",
+ "ScL = viscocity_L/(Density_L*Dl);\n",
+ "\n",
+ "# Holdup:\n",
+ "# From Table 6.5 (Pg 206), L_prime = 2.71 kg/square m.s\n",
+ "Ds = 0.0472;# [m]\n",
+ "beeta = 1.508*Ds**0.376;\n",
+ "shiLsW = 5.014*10**(-5)/Ds**1.56;# [square m/cubic m]\n",
+ "shiLtW = (2.32*10**(-6))*(737.5*L_prime)**beeta/(Ds**2);# [square m/cubic m]\n",
+ "shiLoW = shiLtW-shiLsW;# [square m/cubic m]\n",
+ "H = (1404*(L_prime**0.57)*(viscocity_L**0.13)/((Density_L**0.84)*((3.24*L_prime**0.413)-1)))*(sigma/0.073)**(0.2817-0.262*math.log10(L_prime));\n",
+ "shiLo = shiLoW*H;# [square m/cubic m]\n",
+ "shiLs = 4.23*10**(-3)*(viscocity_L**0.04)*(sigma**0.55)/((Ds**1.56)*(Density_L**0.37));# [square m/cubic m]\n",
+ "shiLt = shiLo+shiLs;# [square m/cubic m]\n",
+ "\n",
+ "# Interfacial Area:\n",
+ "# From Table 6.4 (Pg 205)\n",
+ "m = 62.4;\n",
+ "n = (0.0240*L_prime)-0.0996;\n",
+ "p = -0.1355;\n",
+ "aAW = m*((808*G_prime/(Density_G**0.5))**n)*(L_prime**p);# [square m/cubic m]\n",
+ "# From Eqn. 6.73\n",
+ "aA = aAW*shiLo/shiLoW;# [square m/cubic m]\n",
+ "# From Table 6.3 (Pg 196)\n",
+ "e = 0.75;\n",
+ "# From Eqn. 6.71\n",
+ "eLo = e-shiLt;\n",
+ "# From Eqn. 6.70\n",
+ "def f9(Fg):\n",
+ " return ((Fg*ScG**(2.0/3))/G)-1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36) \n",
+ "Fg = fsolve(f9,1);# [kmol/square m.s]\n",
+ "# From Eqn. 6.72:\n",
+ "def f10(Kl):\n",
+ " return (Kl*Ds/Dl)-(25.1*(Ds*L_prime/viscocity_L)**0.45)*ScL**0.5\n",
+ "Kl = fsolve(f10,1);# [(kmol/square m.s).(kmol/cubic m)]\n",
+ "# Since the value of Kl is taken at low conc., it can be converted into Fl\n",
+ "c = (Density_L/Mavg_L);# [kmol/cubic m]\n",
+ "Fl = Kl*c;# [kmol/cubic m]\n",
+ "print\"The volumetric coeffecients are\\n\"\n",
+ "print\"Based on Gas Phase \",round(Fg*aA,3),\" kmol/cubic m.s\\n\"\n",
+ "print\"based on Liquid Phase\",round(Fl*aA,3),\" kmol/cubic m.s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.6 - Page: 204\n",
+ "\n",
+ "\n",
+ "The volumetric coeffecients are\n",
+ "\n",
+ "Based on Gas Phase 0.071 kmol/cubic m.s\n",
+ "\n",
+ "based on Liquid Phase 0.014 kmol/cubic m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.7: Page 207"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.7\n",
+ "# Page: 207\n",
+ "\n",
+ "print'Illustration 6.7 - Page: 207\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#****Data****#\n",
+ "# Air\n",
+ "G_prime = 1.10;# [kg/square m.s]\n",
+ "viscocity_G = 1.8*10**(-5);# [kg/m.s]\n",
+ "ScG = 0.6;# [for air water mixture]\n",
+ "Temp1 = 273+20.0;# [K]\n",
+ "\n",
+ "# Water\n",
+ "L_prime = 5.5;# [kg/square m.s]\n",
+ "#*****#\n",
+ "\n",
+ "# Air:\n",
+ "Ma = 29.0;# [kg/kmol]\n",
+ "G = G_prime/Ma;# [kmol/square m.s]\n",
+ "Density_G = (Ma/22.41)*(273.0/Temp1);\n",
+ "Cpa = 1005.0;# [N.m/kg.K]\n",
+ "PrG = 0.74;\n",
+ "\n",
+ "# Liquid:\n",
+ "kth = 0.587;# [W/m.K]\n",
+ "Cpb = 4187.0;# [N.m/kg.K]\n",
+ "viscocity_L = 1.14*10**(-3);# [kg/m.s]\n",
+ "\n",
+ "# From Table 6.5 (Pg 206)\n",
+ "Ds = 0.0725;# [m]\n",
+ "beeta = 1.508*(Ds**0.376);\n",
+ "shiLtW = (2.09*10**(-6))*(737.5*L_prime)**beeta/(Ds**2);# [square m/cubic m]\n",
+ "shiLsW = 2.47*10**(-4)/(Ds**1.21);# [square m/cubic m]\n",
+ "shiLoW = shiLtW-shiLsW;# [square m/cubic m]\n",
+ "# From Table 6.4 (Pg 205)\n",
+ "m = 34.03;\n",
+ "n = 0.0;\n",
+ "p = 0.362;\n",
+ "aAW = m*(808.0*G_prime/Density_G**0.5)**(n)*L_prime**p;# [square m/cubic m]\n",
+ "# From Eqn. 6.75\n",
+ "aVW = 0.85*aAW*shiLtW/shiLoW;# [square m/cubic m]\n",
+ "# From Table 6.3\n",
+ "e = 0.74;\n",
+ "eLo = e-shiLtW;\n",
+ "# From Eqn. 6.70\n",
+ "def f11(Fg):\n",
+ " return ((Fg*ScG**(2.0/3))/G)-1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36)\n",
+ "Fg = fsolve(f11,1);# [kmol/square m.s]\n",
+ "# Since the liquid is pure water. It has no mass trnsfer coeffecient.\n",
+ "# For such process we need convective heat transfer coeffecient for both liquid & gas.\n",
+ "# Asuming Jd = Jh\n",
+ "# From Eqn. 6.70\n",
+ "Jh = 1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36);\n",
+ "Hg = Jh*Cpa*G_prime/(PrG**(2.0/3));# [W/square m.K]\n",
+ "PrL = Cpb*viscocity_L/kth;\n",
+ "# Heat transfer analog of Eqn. 6.72\n",
+ "Hl = 25.1*(kth/Ds)*(Ds*L_prime/viscocity_L)**0.45*PrL**0.5;# [W/square m.K]\n",
+ "print\"The volumetric coeffecients are\\n\"\n",
+ "print\"Based on Gas Phase \",round(Hg*aVW), \"W/cubic m.K\\n\"\n",
+ "print\"based on Liquid Phase\",round(Hl*aVW,2),\" W/cubic m.K\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.7 - Page: 207\n",
+ "\n",
+ "\n",
+ "The volumetric coeffecients are\n",
+ "\n",
+ "Based on Gas Phase 3183.0 W/cubic m.K\n",
+ "\n",
+ "based on Liquid Phase 503701.46 W/cubic m.K\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.1\n",
+ "# Page: 494\n",
+ "\n",
+ "print'Illustration 10.1 - Page: 494\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pylab\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "xF = 0.30;# [mol fraction]\n",
+ "yS = 0;# [mol fraction]\n",
+ "S1 = 40.0;# [kg]\n",
+ "B1 = 40.0;# [kg]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data at 20 OC:\n",
+ "# Wa: Wt. percent of a\n",
+ "# Wb: Wt. percent of b\n",
+ "# Wc: Wt. percent of c\n",
+ "# Data1 = [Wc Wa Wb]\n",
+ "# Data1: water layer\n",
+ "Data1 = numpy.array([(0.69 ,98.1, 1.2),(1.41, 97.1 ,1.5),(2.89 ,95.5 ,1.6),(6.42 ,91.7 ,1.9),(13.30, 84.4, 2.3),(25.50 ,71.1 ,3.4),(36.70 ,58.9 ,4.4),(44.30 ,45.1 ,10.6),(46.40 ,37.1 ,16.5)])\n",
+ "# Data2: isopropyl ether layer\n",
+ "Data2 = numpy.array([(0.18 ,0.5 ,99.3),(0.37, 0.7 ,98.9),(0.79, 0.8, 98.4),(1.93 ,1, 97.1),(4.82, 1.9, 93.3),(11.40, 3.9, 84.7),(21.60, 6.9, 71.5),(31.10, 10.8, 58.1),(36.20 ,15.1 ,48.7)])\n",
+ "\n",
+ "plt.plot((Data1[:,2])/100,(Data1[:,0])/100,label=\"x Vs fraction ether\")\n",
+ "plt.plot((Data2[:,2])/100,(Data2[:,0])/100,label=\"y Vs fraction ether\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='lower center');\n",
+ "ax=pylab.gca()\n",
+ "ax.set_xlabel(\"Wt fraction of isopropyl ether\");\n",
+ "ax.set_ylabel(\"Wt fraction of acetic acid\");\n",
+ "plt.ylim((0,0.3))\n",
+ "plt.xlim((0,1))\n",
+ "plt.show();\n",
+ "# x: Wt fraction of acetic acid in water layer.\n",
+ "# y: Wt fraction of acetic acid in isopropyl layer.\n",
+ "\n",
+ "# The rectangular coordinates of Fig 10.9(a) will be used but only upto x = 0.30\n",
+ "\n",
+ "# Stage 1:\n",
+ "F = 100;# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "M1 = F+S1;# [kg]\n",
+ "# From Eqn. 10.5:\n",
+ "xM1 = ((F*xF)+(S1*yS))/M1;\n",
+ "# From Fig. 10.15 (Pg 495):\n",
+ "# Point M1 is located on the line FB and with the help of tie line passing through M1:\n",
+ "x1 = 0.258;# [mol fraction]\n",
+ "y1 = 0.117;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E1 = (M1*(xM1-x1)/(y1-x1));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R1 = M1-E1;# [kg]\n",
+ "\n",
+ "# Stage 2:\n",
+ "S2 = 40;# [kg]\n",
+ "B2 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M2 = R1+B2;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM2 = ((R1*x1)+(S2*yS))/M2;\n",
+ "# Point M2 is located on the line R1B and the tie line passing through R2E2 through M2:\n",
+ "x2 = 0.227;\n",
+ "y2 = 0.095;\n",
+ "# From Eqn. 10.8:\n",
+ "E2 = (M2*(xM2-x2)/(y2-x2));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R2 = M2-E2;# [kg]\n",
+ "\n",
+ "# Stage 3:\n",
+ "S3 = 40;# [kg]\n",
+ "B3 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M3 = R2+B3;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM3 = ((R2*x2)+(S3*yS))/M3;\n",
+ "# Point M3 is located on the line R2B and the tie line passing through R3E3 through M3:\n",
+ "x3 = 0.20;# [mol fraction]\n",
+ "y3 = 0.078;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E3 = (M3*(xM3-x3)/(y3-x3));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R3 = M3-E3;# [kg]\n",
+ "Ac = x3*R3;\n",
+ "print\"The composited extract is\",round((E1+E2+E3),2),\" kg\\n\"\n",
+ "print\"The acid content is \",round(((E1*y1)+(E2*y2)+(E3*y3)),2),\" kg\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# If an extraction to give the same final raffinate concentration were to be done in single stage, the point M would be at the intersection of tie line R3E3 and the line BF.\n",
+ "x = 0.20;# [mol fraction]\n",
+ "xM = 0.12;# [mol fraction]\n",
+ "# From Eqn. 10.6:\n",
+ "S = F*(xF-xM)/(xM-yS);# [kg]\n",
+ "print round(S,2),\"kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.1 - Page: 494\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYcgIDklABAZBBQNBVwQxjAkHE+6aFxVE\nEfUjKauACfOqCLKoiGIAhQVX1wCiRGeMICBZQUFBEdAFBCQNDMP5/qia6WaYUBOqq8N5n6ee7sqn\nz3T3nbq3615RVYwxxpiilAs6AGOMMbHBCgxjjDGeWIFhjDHGEyswjDHGeGIFhjHGGE+swDDGGOOJ\nrwWGiKSJyEoRWSUiA/NZ30VElojIIhH5RkTO9bqvMcaYyBK/7sMQkSTge+B8YD0wH7hOVVeEbVNN\nVXe5z08C3lPV5l72NcYYE1l+XmG0A1ar6lpVzQImAV3CN8gpLFyHAZu97muMMSay/CwwGgLrwuZ/\ndZcdREQuF5EVwMdA3+Lsa4wxJnL8LDA81XWp6vuq2hK4FHhTRMTHmIwxxpRQeR+PvR5oFDbfCOdK\nIV+q+rmIlAdqudsVua+IWEdYxhhTAqpa7H/O/bzCWAAcIyIpIlIRuAaYHL6BiDTLuaIQkZMBVHWL\nl31zqKrn6dprlQkTvG8fS9OQIUMCjyFaJsuFMz3+2eM0/2tzDhw4EHgs0TDZ+yI0lZRvBYaq7gd6\nA9OB74C3VHWFiPQSkV7uZlcAy0RkEfAv4NrC9i1tTLt3Q9WqpT1KdFq7dm3QIUQNy4Xj7tPvZtOG\nTbz17VtBhxIV7H1Ren5WSaGqH+M0Zocveyns+dPA0173La1du+K3wDAmrwpJFejYqCN3Tr+TTs06\nUatKraBDMjEuoe703r0bqlULOgp/dO/ePegQooblIuTu/7ubq46/irtn3B10KIGz90Xp+XbjXiSI\niBYn/jZt4PXXoW1bH4MyJsrs2LuDE0adwLjLx3FO03OCDsdEARFBo6zRO+rEcxtGRkZG0CFEDctF\nSEZGBtUrVeeFi16g14e92JO1J+iQAmPvi9JLqAJj1674rZIypjCXHncpreu35vHPHw86FBPDEqpK\nqmZN+PFHqGVtfyYBbdyxkdajWzP7xtmcVO+koMMxAbIqKQ/iuUrKmKI0qN6Ax859jJ5TepJ9IDvo\ncEwMSpgCY/9+Z6pUKehI/GH1syGWi5C8ubjl5FuomFSRFxe8GExAAbL3ReklTIGRc3VhPVWZRFZO\nyvHypS/z8KcPs277uqJ3MCZMwrRh/PYbtG4Nv//uc1DGxIBHPn2EbzZ+w/vXvI/195l4rA2jCNZ+\nYUzIwI4DWbVlFe+ueDfoUEwMSZgCI95/Umv1syGWi5CCclGpfCXGXDqGvtP6si1zW2SDCoi9L0ov\nYQoMu8Iw5mAdG3fksmMvY9CsQUGHYmJEwrRhpKfDww+D/ZNhTMj2zO2cMOoEJl4xkTObnBl0OCZC\nrA2jCPFeJWVMSRxe+XBGdh7JrR/eyt79e4MOx0S5hCkw4r1KyupnQywXIV5y8beWf6NFnRb884t/\n+h9QgOx9UXpWYBhjeL7z87ww/wVWbCr1OGUmjiVMG8aoUbB8ufNojDnUqPmj+Peyf/PZTZ9RThLm\nf8mEZG0YRbDR9owp3G1/uY0DeoAx34wJOhQTpRKmwIj3Kimrnw2xXIQUJxflpBxjLh3D/en3s2HH\nBv+CCoi9L0rPCgxjTK4TjjiB2065jb4f9w06FBOFEqYNo3dvOO446NPH56CMiXGZ+zNpPbo1T5//\nNF1adAk6HOMDa8Mogl1hGONN5fKVefmSl+n9cW/+3Ptn0OGYKGIFRpyw+tkQy0VISXNxdsrZpDVL\n497Z95ZtQAGy90XpJVSBYXd6G+Pd0xc8zbsr3mXOujlBh2KiRMK0YZx3HgweDOef73NQxsSR/3z7\nHx759BEW9lpIxaSKQYdjyoi1YRQh3qukjPHDVcdfRUpyCkO/HBp0KCYKJFSBEc9VUlY/G2K5CClt\nLkSEUReP4tm5z/LDlh/KJqiA2Pui9BKmwLA7vY0pmcaHN+aBsx7g1im3EstV2Kb0fG3DEJE0YASQ\nBLyiqk/lWd8VuAcQYAdwu6ouddetBf4EsoEsVW2Xz/E9t2EceSTMnw8NG5b89RiTqLIPZNPh1Q70\nOqUXN598c9DhmFIqaRuGbwWGiCQB3wPnA+uB+cB1qroibJsOwHequt0tXB5S1fbuujXAKar6RyHn\n8FxgJCfDmjVQs2aJX5IxCW3Jb0u44M0LWHb7MuodVi/ocEwpRGOjdztgtaquVdUsYBJw0G2jqjpH\nVbe7s18DR+U5RrFfUEHifQAlq58NsVyElGUuWtdvzc1tb6bftH5ldsxIsvdF6flZYDQE1oXN/+ou\nK8jNwEdh8wrMEpEFItKzNIFkZYEqVKhQmqMYYx48+0EWbFjA1B+mBh2KCYCfVVJXAGmq2tOdvx44\nTVUP6c1JRM4BXgA6qupWd1kDVd0oInWBmUAfVf08z36eqqS2b4fGjZ1HY0zpzP5pNj0m9+DbO77l\nsIqHBR2OKYGSVkmV9yMY13qgUdh8I5yrjIOISCtgDE7hsjVnuapudB83ich7OFVcn+fdv3v37qSk\npACQnJxMmzZtSE1NBUKXoMcem0rVqqH5vOtt3uZt3vv8eanncU7KOXQf0Z3e7XoHHo/NFz2fkZHB\n2LFjAXK/L0tEVX2ZcAqjH4EUoCKwGGiZZ5vGwGqgfZ7lVYHq7vNqwJdAp3zOoV6sWqV69NGeNo1Z\n6enpQYcQNSwXIX7lYvOuzVpvaD2d9+s8X47vB3tfhLjfncX+XvetDUNV9wO9genAd8BbqrpCRHqJ\nSC93sweBmsCLIrJIROa5y+sDn4vIYpzG8A9VdUZJY4n3Bm9jIq121doM6zSMnlN6kpWdFXQ4JkIS\noi+pOXPgzjth7twIBGVMglBVOk/ozDkp5zDwjIFBh2OKIRp/Vhs14r1bEGOCICK8ePGLDP1qKD/+\n8WPQ4ZgISIgCIxG6Bclp4DKWi3B+56JpzaYMPmMwvT7sFfXdhtj7ovQSosCwnmqN8U+/9v3YmrmV\nN5e+GXQoxmcJ0Ybx2mvwxRfOozGm7C3cuJDOEzqz/Pbl1K1WN+hwTBGsDaMQiVAlZUyQTm5wMje0\nuoG7ZtwVdCjGRwlRYCRCo7fVz4ZYLkIimYuHUx/mi1++YPrq6RE7Z3HY+6L0EqLAsCsMY/xXrWI1\nRl88mtun3s6ufbuCDsf4ICHaMP7xD6hXD+6+OwJBGZPgrn/3ehoc1oChnWxY12hlbRiFSIQqKWOi\nxfALh/PG0jdYuHFh0KGYMlZggSEiV4jI38IeD5oiGWRpJUKVlNXPhlguQoLIxRHVjuDp85+m55Se\n7D+wP+LnL4i9L0qvsCuMS92pB/Aq0NWdXnGXxQy7D8OYyLqx9Y3UrFyTkV+PDDoUU4aKbMMQkZnA\njep2Ny4iDYBxqtopAvEVymsbxsUXwx13OI/GmMhY/cdq2r/Snvk959O0ZtOgwzFh/GzDaAT8Fjb/\nO0635DEjEaqkjIk2zWs15x+n/4M7Proj6rsNMd54KTBmAdNFpLuI3IQzjOpMf8MqW4nQ6G31syGW\ni5CgczGgwwA27NjAxOUTA40Dgs9FPPBSYPQBRgNtgFbAS5rPMKvRzK4wjAlGhaQKjLl0DANmDGDL\n7i1Bh2NKKSHuw2jaFGbPhqOPjkBQxphD9J/Wn+17t/N6l9eDDsXgQxuGiHzpPu4UkR15pj9LE2yk\nJUKVlDHR7NFzHuWTNZ/wyZpPgg7FlEKBBYaqdnQfD1PV6nmmGpELsfQSoUrK6mdDLBch0ZKL6pWq\nM+qiUfT6sBd7svYEEkO05CKWFdmGISLtRaRG2HwNETnN37DKjqrdh2FMNLj42Is5ucHJPPrZo0GH\nYkrIy30Yi4GTVfWAO58ELFDVthGIr1Be2jAyMyE52Xk0xgTrt52/0erFVsy6cRat6rUKOpyE5Wtf\nUjmFhfs8G0gq7omCkgjVUcbEivqH1eeJ857glsm3kH0gO+hwTDF5KTDWiEhfEakgIhVFpB/wk9+B\nlZVEafC2+tkQy0VINObi5rY3U6l8JV5bFNkhMKMxF7HGS4FxG9ARWA/8CrQHbvUzqLJkVxjGRBcR\nYWTaSB5If4BtmduCDscUQ9zfh7FwIdxyi/NojIkevab0omqFqjyb9mzQoSSckrZhlPdw4CrAzcDx\nQOWc5aoaEz3W2i+kjIlOj537GCeMOoFbT7mVlnVbBh2O8cBLldSbQD0gDfgUpzPCnX4GVZYSpUrK\n6mdDLBch0ZyLutXqct+Z99F/ev+IdE4YzbmIFV4KjOaq+gCwU1XHARcBMXMfRqI0ehsTi+449Q5+\n/fNXpvwwJehQjAdeCox97uN2ETkJSAbq+hdS2UqUKqnU1NSgQ4galouQaM9FhaQKjLhwBHdNv4vM\n/f7eLBXtuYgFXgqMMSJSC7gfmAx8Bzzta1RlKFGqpIyJVRc0u4ATjziRZ+dY43e0K7LAUNUxqvqH\nqn6qqk1Vta6qjvZycBFJE5GVIrJKRAbms76riCwRkaUi8qWItPK6r1eJUiVl9bMhlouQWMnFsE7D\nGDZnGOv/XO/bOWIlF9HM053eJeF2IfI8TmP58cB1IpL3pxA/AWepaivgUeDlYuzriV1hGBP9mtVq\nxq2n3Mqg2YOCDsUUwrcCA2gHrFbVtaqaBUwCuoRvoKpzVHW7O/s1cJTXfb1KlCsMq58NsVyExFIu\n7j3zXtLXpDNn3Rxfjh9LuYhWfhYYDYF1YfO/ussKcjPO8K8l2bdAidLobUysO6ziYTx5/pP0ndaX\nA6Hu60wU8XLjXm9ggqpudedrAtep6qgidvX8w2oROQfogdMFSbH27d69OykpKQAkJyfTpk2b3P8k\nMjIyWLUKWrQIzQMHrY+X+fD62WiIJ8j5nGXREk+Q84sXL6Z///5RE09R8w21IRXKVWDs4rEcvf3o\nMj3+iBEjDvl+CPr1Rmo+IyODsWPHAuR+X5aIqhY6AUvyWbbYw37tgWlh84OBgfls1wpYjXO/R3H3\n1aJ07ar65ptFbhbz0tPTgw4halguQmIxF/PXz9f6z9TXbXu2lelxYzEXfnG/O4v8/s87eRkPYxnQ\nWg8eD2Opqp5QxH7lge+B84ANwDycK5MVYds0Bj4BrlfVucXZ191Oi4r/r3+FG26Av/2t0M2MMVHk\nlsm3kFw5mWc6PRN0KHHJz/EwpgOTROQ8ETkfpwF6WlE7qep+oLe7/3fAW6q6QkR6iUgvd7MHgZrA\niyKySETmFbZvMV8bkDiN3sbEkyfOe4JxS8bx/ebvgw7FhPFyhZGE0535ee6imcAr6gykFCgvVxhn\nnglPPOE8xrOMjIzcustEZ7kIieVcDJ8znFk/zeKjrh8VvbEHsZyLsubbFYaqZqvqi6p6pTu9FA2F\nhVd2H4Yxsal3u978tPUnpv4wNehQjKvAKwwReVtVrxKR5Rz6qyVV52a7QHm5wmjRAt5/33k0xsSW\naaun0efjPiy/fTmVylcKOpy4UdIrjMIKjCNVdYOINAHyHlhV9ecSxFmmvBQYjRvDF184j8aY2HPp\nxEs5s/GZ3NPxnqBDiRtlXiWlqhvcp3eoc8d17gTcUcI4I27XrsRo9A6/ByHRWS5C4iEXwzsN5+kv\nn2bjjo2lOk485CJoXn4l1SmfZReVdSB+sTu9jYltx9Q+hpvb3szg2YODDiXhFVYldTvOlUQz4Mew\nVdWBL1W1q//hFa6oKqnsbKhQwXmUYl98GWOixY69O2jxQgvevfpdTjsqZsZvi1p+tGEcjnOPxJPA\nQELtGDtUdUtJAy1LRRUYO3dC/frOozEmto1bPI5RC0Yx5+Y5lBM/u8GLf360YWx32yyuBRoD57jt\nF+VEpGnJQ42cRKqOsvrZEMtFSDzl4obWNwDw5pI3S7R/POUiKEUW0yLyEHAPTn9OABWBCT7GVGbs\nHgxj4kc5KcfItJEMnj2YHXt3BB1OQvJyp/cSoC3wjaq2dZctjYX7ML79Fq6+2nk0xsSH7u93p161\nejx1wVNBhxKz/OxLam9Ox4PuiWLmR6qJVCVlTKL453n/5NVFr7Jqy6qgQ0k4XgqMt0XkJSBZRG4F\nZgOv+BtW2UiUezDA6mfDWS5C4jEXDao3YGDHgdw1465i7RePuYg0L31JDQX+607HAg+o6ki/AysL\ndoVhTHzq174f32/+no9XfRx0KAnFSxtGU+A3Vd3jzlcB6rm/mApUUW0Yb78Nb70F77wTwaCMMREx\n9Yep3DXjLpbdvoyKSRWDDiem+NmG8Q4Q3jvtAXdZ1LOxMIyJXxcfezHNajbjua+fCzqUhOGlwEhS\n1X05M6q6F6jgX0hlJ5GqpKx+NsRyERLvuXj2wmd58ssn+X3n70VuG++5iAQvBcZmEemSM+M+3+xf\nSGUnkRq9jUlEx9U5jm6tu3Hv7HuDDiUheGnDaI5zo96R7qJfgRtUdbXPsRWpqDaMRx6B/fudR2NM\nfNqeuZ0WL7RgynVT+MuRfwk6nJjg54h7q1X1NOB4oKWqdoiGwsKLRKqSMiZRHV75cB4/93H6ftyX\nov4BNqXjqQcvEbkEuB24S0QeFJEH/Q2rbCRSlZTVz4ZYLkISJRfd23Qn60AWE5YV3GtRouTCT176\nknoJuBroi9Nj7dVAE5/jKhN2hWFMYsjpZ2rQrEHs3GfdU/vFSxvGMlU9Kaf/KBE5DJimqmdEJsRC\nYyu0DePaa+Hyy51HY0z8u+G9G2hUoxFPnPdE0KFENT/vw9jjPu4WkYbAfqB+cU8UBLvCMCaxPHX+\nU7z8zcv8+MePRW9sis1LgTFFRGoCQ4FvgLXARD+DKiuJVGBY/WyI5SIk0XJxZPUjGdBhAANmDDhk\nXaLlwg9efiX1qKpuVdX/AilAC1V9wPfIykAiNXobYxx3driT5f9bzowfZwQdStwpsg0jmhXVhtG6\nNbzxhvNojEkck7+fzKBZg1hy2xIqJMVExxQR5WcbRsyyvqSMSUyXHnspjQ5vxAvzXwg6lLhSYIEh\nIh3dx8qRC6dsJdIQrVY/G2K5CEnUXIgIIy4cweOfP86mXZuAxM1FWSrsCiNnzIs5JT24iKSJyEoR\nWSUiA/NZ30JE5ohIpogMyLNurYgsFZFFIjKvJOdPpEZvY8zBWtZtyfUnXc99n9wXdChxo8A2DBH5\nGlgKdAEm4dy0l0NVtW+hBxZJAr4HzgfWA/OB61R1Rdg2dXFuArwc2Kqqw8LWrQFOUdU/CjlHoW0Y\nFSo4hUYFq8I0JiFty9xGi+db8FHXjzi5wclBhxM1/GjDuARnONY9OD+nzTsVpR2wWlXXqmoWTqHT\nJXwDVd2kqguArAKOUewXlCPLPaIVFsYkruTKyTx6zqPWz1QZKbDAcL/MJwFdVHWcqo4Nm8Z5OHZD\nYF3Y/K/uMq8UmCUiC0SkZzH2AxKvOsrqZ0MsFyGWC+jRtge7s3bz4Osx0QVeVCvvYZstIvIekNMV\nyGdAP1X9tYj9Slucd1TVjW611UwRWamqn+fdqHv37qSkpACQnJxMmzZtSE1NZdcuKF8+g4wMSE1N\nBUIfHpuP7/kc0RJPkPOLFy+OqniCmh/ZeSQX972Y0xudTucLOgceT6TnMzIyGDt2LEDu92VJeOlL\nahbOeBjj3UVdga6qekER+7UHHlLVNHd+MHBAVZ/KZ9shwM7wNgwv6wtrw1i9GtLSnEdjjPn7f/9O\ns5rNePTcR4MOJXB+3odRV1VfV9UsdxoLHOFhvwXAMSKSIiIVgWuAyQVse1DgIlJVRKq7z6sBnYBl\nHs6Zy+7BMMaEe/qCpxm1YBRrtq4JOpSY5aXA2CIiN4hIkoiUF5Hr8TBEq6ruB3oD04HvgLdUdYWI\n9BKRXgAiUl9E1gF3AveLyC9ub7j1gc9FZDHwNfChqhbrPv9EugcDrK46nOUixHIRsnrhau5sf2e+\n/UwZb7y0YfQAngOGu/NfATd5Obiqfgx8nGfZS2HPfwMa5bPrTqCNl3MUJNEavY0xRRvQYQDHjzqe\n2T/N5ryjzws6nJgTt31JTZ4Mr7ziPBpjTI53V7zLg+kPsvi2xZQv5+V/5vhjfUnlYVcYxpj8/LXF\nX6l/WH1enP9i0KHEnLguMBKp0dvqqkMsFyGWi5CcXIgI/0r7F49+9iibdxfZHGvCxG2BkWiN3sYY\n70444gSuPfFaHvgkJob2iRpe7sOoDFyBM3hSToWfquoj/oZWtMLaMJ56Cv74w3k0xpi8tu7ZSosX\nWjDj+hm0rp9Yg+b42YbxAXAZTn9PO91pV3FPFGmJViVljCmemlVq8nDqw/SdZv1MeeWlwGioqteo\n6tOqOixn8j2yUkq0Kimrqw6xXIRYLkLyy0XPk3uyPXM7b3/3duQDikFeCoyvRKSV75GUMfuVlDGm\nKEnlkhjZeSR3z7yb3Vm7gw4n6nlpw1gBNAfWAHvdxaqqgRcihbVh9OgBZ5zhPBpjTGGueecaWtZp\nyUOpDwUdSkSUtA3Dy10rnd3HnG/mEo9REUl790KlSkFHYYyJBUMvGErbl9pyU5ubaJLcJOhwolaR\nVVKquhZIxmn4vhQ43F0W1RKtwLC66hDLRYjlIqSwXDQ+vDF92/XlHzP/EbmAYlCRBYaI9MPp2rwu\nUA8YLyKFDs8aDfbtg4oVg47CGBMr7u54N/PXzyd9TXrQoUQtL20Yy4D2qrrLna8GzFXVkyIQX6EK\na8O48EK46y7n0RhjvHj727d59LNHWdhrYVz3M+V3X1IHCngetRKtSsoYU3pXHn8ltarU4uVvXg46\nlKjkpcB4HfhaRB4SkYeBucBr/oZVeolWYFhddYjlIsRyEeIlFyLCyM4jeSjjIf7Y84f/QcUYL43e\nw3HGv9gKbAG6q+qzfgdWWtaGYYwpiVb1WnHV8VfxYPqDQYcSdQpswxCRGqr6p4jUylnkPiqAqgZe\n/BbWhnHiiTBpkvNojDHFsWX3Flq+0JLZN87mpHqBN9eWOT/aMCa6jwuBb3DG6F7gPv+m2BFGWKJV\nSRljyk7tqrUZcvYQ+k3rZ/1MhSmwwFDVi93HFFVtmneKXIglk2hVUlZXHWK5CLFchBQ3F73+0ovN\nuzfz7op3/QkoBnm5D2O2l2XRxq4wjDGlUb5cef6V9i8GzBjAnqw9QYcTFQprw6gCVAXSgdSwVTWA\naarawvfoilBYG0bNmvDTT86jMcaU1JX/uZJW9Vrx4Nnx0whe0jaMwgqM/kA/4EhgQ9iqHcDLqvp8\nSQItS4UVGNWqwf/+Z2NiGGNKZ+22tZzy8iks6rWIxoc3DjqcMlHmjd6qOsJtq/hHnvaLVtFQWBQl\n0aqkrK46xHIRYrkIKWkuUpJT6H1qb+6eeXfZBhSDvNy4pyKSW7EjIjVF5A4fYyq17GxQhfLxe2e/\nMSaCBp4xkLm/ziVjbUbQoQTKS19SS1S1dZ5li1W1ja+ReVBQldTu3VC7NuyxdipjTBl557t3eOTT\nR+Kinyk/+5IqJyK524lIElChuCeKpH37Eqs6yhjjvytaXkGdqnUYvWB00KEExkuBMR2YJCLnicj5\nwCRgmr9hlU6itV+A1VWHs1yEWC5CSpuLnH6mHv70YTbt2lQ2QcUYLwXGQJyf1t4O3AbMAu7xM6jS\n2rs3sW7aM8ZExolHnMjfT/w7931yX9ChBKLINoxSHVwkDRgBJAGvqOpTeda3wOkNty1wn6oO87qv\nu02+bRirV0NamvNojDFlaVvmNlo834Kpf5/KKUeeEnQ4JeJbG4aIHCsi74jIdyKyxp1+8rBfEvA8\nkAYcD1wnIi3zbLYF6AM8U4J9C5SIVVLGmMhIrpzM4+c+Tp+P+3BAY2J4oDLjdTyM0cB+4BxgHDDB\nw37tgNWqulZVs3DaPrqEb6Cqm1R1AZBV3H0Lk4hVUlZXHWK5CLFchJRlLm5qexNZB7KYsNTLV2H8\n8FJgVFHVWTjVV2tV9SHgYg/7NQTWhc3/6i7zojT72q+kjDG+KifleK7zcwyaPYg/9/4ZdDgR4+XH\nxJluFdFqEemN002Ilw43StM44nnf7t27k5KSAkBycjJt2rRBJJVKlUL/UaSmpgLxPZ+amhpV8dh8\n9MzniJZ4gprPWVZWx8tcnclJu0/isc8e4+kLng789RU2n5GRwdixYwFyvy9LwsuNe6cCK4Fk4FGc\nzgefVtW5RezXHnhIVdPc+cHAgQIar4cAO3Mavb3uW1Cj94wZMHQozJxZ6EszxphS+W3nb5w46kS+\n7PElx9U5LuhwPPOl0du9srhGVXeo6jpV7a6qfyuqsHAtAI4RkRQRqQhcA0wu6FSl2PcQidjonfe/\nyURmuQixXIT4kYv6h9Vn8BmDE2agpUILDFXNBs4QkWKXRKq6H+iNc+Pfd8BbqrpCRHqJSC8AEakv\nIuuAO4H7ReQXETmsoH29ntvaMIwxkdLntD78vP1npvwwJehQfOelSmo0ThfnbwO73cWqqoEPQ1VQ\nldS//w1TpsDEifnsZIwxZWzmjzO5beptfHvHt1QuXznocIrkZ19SlXHulzgXuMSdLi3uiSIpEauk\njDHBuaDZBbSq14phXw0reuMYVmCBISI5DcwfqepNeacIxVciiVglZXXVIZaLEMtFiN+5GN5pOMPn\nDmfd9nVFbxyjCrvCuNhtuxgcqWDKil1hGGMirWnNpvzfqf8X1wMtFTZE61CgJ3AYkHdkCVXVGj7H\nVqSC2jCGDoXff4dnnslnJ2OM8cnurN20fKEl4y4fR2pKatDhFMiPIVrvVtVknCqp6nmmwAuLwiRi\nlZQxJnhVK1RlWKdh9P24L/sP7A86nDJXZKO3ql4WiUDKUiJWSVlddYjlIsRyERKpXMTzQEtefiUV\ncxKx80FjTHSI54GWfB0Pw28FtWH07w9NmsCddwYQlDHGAP0+7kfm/kxeuvSloEM5hJ/jYfTzsiya\nWBuGMSZoD5/zMB98/wHfbPgm6FDKjJcqqe75LIvq+zASsUrK6qpDLBchlouQSOciuXIyj537GH0+\n7hM3/UwVduPedSIyBWgqIlPCpgycO7+jViI2ehtjok+Ptj3IOpDF+KXjgw6lTBR2H0YToCnwJDCQ\nUI+yfwLiz2DNAAAbmElEQVRL3Q4CA1VQG8bVV8OVVzqPxhgTpLm/zuWK/1zBiv9bQY1K0XFHgh9t\nGH/D6WzwTFX9VFUz3GlhNBQWhUnEKiljTHRqf1R7Ljj6Ah777LGgQym1wgqMo4ARwP9E5DMReUJE\nLhGRWhGKrcQSsUrK6qpDLBchlouQIHPx5PlP8tqi1/h+8/eBxVAWCrvTe4Cqng7Ux+lP6g+gB/Ct\niHgemyII9ispY0w0iZeBlrz8SqoKzrCsh7vTBsDLiHuBScQqqfBxixOd5SLEchESdC7iYaCl8gWt\nEJExwPHADmAe8BUwXFW3Rii2EkvEKiljTHSrmFSRf6X9i9un3k6nZp1iYqClvAq7wmgMVAJ+A9a7\n07ZIBFVaiVhgWF11iOUixHIREg256NSsU0wPtFRYG8aFQDtgGKDAXcACEZkhIo9EKL4S2bcv8aqk\njDGxIZYHWvLUl5SINAJOBzriDNFaW1UP9zm2IhV0H0ZKCqSnQ9OmkY/JGGOK8mD6g/yw5QcmXTkp\nkPOX+X0YItJPRN4SkV+AT3HG8V4B/BWI6p/WJmKVlDEmdgw6YxBzfp1DxtqMoEMplsLaMFKA/wDt\nVfVoVb1eVV9U1SWqmh2Z8EomEaukoqF+NlpYLkIsFyHRlIuqFaryzAXPxNxASwX+SkpVY7Zz8MxM\nqBx7P0CIWs7Q7sZERizfp1AcVx5/JS8ueJHRC0bTu13voMPxJO7Gw1CFpCTYvx/KxeXwUJHn1ncG\nHYZJAIn2Xlv+v+WcO+5cvvu/76hTtU7EzuvbeBixJjPTqY6ywsIYE+1OPOJErjvxOu6bfV/QoXgS\nd1+ru3dD1apBRxF50VQ/a0w0itbPSCwNtBR3BcaePYlZYBhjYlMsDbQUdwVGol5hBN1PjjHRLpo/\nI7Ey0JKvBYaIpInIShFZJSIDC9hmpLt+iYi0DVu+VkSWisgiEZnn9ZyJWmCYyLv//vupW7cuRx55\npO/nmjBhAhdeeKHv5ynK2rVrKVeuHAcOHAg6lLhSTsrxXOfnGDR7EDv27gg6nAL5VmCISBLwPJCG\n04nhdSLSMs82FwHNVfUY4FbgxbDVCqSqaltVbef1vIlaYERr/Ww0SUtLY8iQIYcs/+CDD2jQoEGx\nvgR/+eUXhg8fzsqVK9mwYUNZhpnvl3LXrl2ZPn16mZ7Hi5SUFD755JOIn9cP0f4ZyRlo6dHPHg06\nlAL5eYXRDlitqmtVNQuYBHTJs81lwDgAVf0aSBaRemHri/2zr927oUqVEkZs4lr37t0ZP/7QS/43\n33yT66+/nnLF+GndL7/8Qu3ataldu3a+6/fvL/3NWNFQn+3nz1zLIkfxJtoHWvKzwGgIhPeu9au7\nzOs2CswSkQUi0tPrSRO10Tua62f99OOPP1K7dm0WLVoEwIYNG6hbty6fffbZIdt26dKFLVu28Pnn\nn+cu27p1K1OnTuXGG28E4KOPPuKEE06gRo0aHHXUUQwbdmivorNmzaJTp05s2LCB6tWr06NHD37+\n+WfKlSvHa6+9RpMmTTj//PMBuOqqq2jQoAHJycmcffbZfPfdd7nH2bNnDwMGDCAlJYXk5GTOOuss\nMjMzOeusswBITk6mRo0azJ07l7Fjx3LmmWfm7vvVV19x6qmnkpycTLt27ZgzZ07uutTUVB588EHO\nOOMMatSowYUXXsiWLVsKzOGHH35ImzZtqFmzJh07dmTZsmUA3HDDDfzyyy9ceumlVK9enWeeeSZ3\nn/Hjx9OkSRPq1q3LE088kbtcVXnyySdp3rw5derU4ZprrmHrVmdEhJwrp7w5ipRY+IzkDLTUf3r/\nqPiH4RCq6ssEXAGMCZu/HnguzzZTgI5h87OAk93nR7qPdYHFOGOL5z2H5jVpkurVVx+y2JRCfnmO\nJmPGjNHjjz9ed+/erZ06ddK77767wG179uypt9xyS+786NGjtW3btrnz9evX1y+++EJVVbdt26YL\nFy7M9zgZGRl61FFH5c6vWbNGRUS7deumu3fv1szMTFVVff3113Xnzp26b98+7d+/v7Zp0yZ3nzvu\nuEPPOecc3bBhg2ZnZ+ucOXN07969unbtWhURzc7Ozt329ddf1zPOOENVVbds2aLJyck6fvx4zc7O\n1okTJ2rNmjX1jz/+UFXVs88+W5s3b66rVq3SPXv2aGpqqg4aNCjf17Fw4UI94ogjdN68eXrgwAEd\nN26cpqSk6L59+1RVNSUlRWfPnn3I67z11ls1MzNTlyxZopUqVdKVK1eqquqIESO0Q4cOun79et23\nb5/26tVLr7vuukJzFC7a32uRsHf/Xm3xfAv9YOUHvp3DzXPxv9dLspOnA0N7YFrY/GBgYJ5tRgPX\nhs2vBOrlc6whwIB8lmu3bt10yJAhOmTIEH322Wf1nnvStXt3Jynp6emanp6em6R4ns957sfxvXyI\nnXvsSzeVxmWXXaYnnniitm7dOvfLLj9ffPGFJicn6969e1VV9fTTT9cRI0bkrm/cuLG+9NJLun37\n9kLPl56enm+BsWbNmgL32bp1q4qI/vnnn5qdna1VqlTRpUuXHrJdzrEKKjDeeOMNPe200w7ap0OH\nDjp27FhVVU1NTdXHH388d92oUaM0LS0t35huu+02feCBBw5adtxxx+lnn32mqgUXGOvXr89d1q5d\nO33rrbdUVbVFixYHbb9hwwatUKGCZmdne8pR+HutrN/Pzz77bNR8Xouan756ujbo3UCnz5peJsdL\nT0/Xbt265X5fRmOBUR74EacTw4ruVULLPNtcBHykoQJmrvu8KlDdfV4N+BLolM85NK/nn1e9445D\nFse98DdKWYuF//omT56sIqKvvPJKkds2b95cJ02apKtXr9YKFSro//73v9x18+fP1y5dumjNmjX1\n7LPP1jlz5uR7jIIKjP379+cuy87O1oEDB2qzZs20Ro0ampycrCKiP/30k/7+++8qIrpr165Djl1U\ngfHkk0/qVVddddA+1157rT7xxBOq6hQYr776ar775tW5c2etWrWqJicn507VqlXTSZMmqWrBBUZ4\nbOHnq1KlSu5rzZmqVKmiGzZsyDdHefn5XvPzM+KHyyddro99+pgvxy5pgeFbG4aq7gd6A9OB74C3\nVHWFiPQSkV7uNh8BP4nIauAl4A539/rA5yKyGPga+FBVZ3g5b6L+SioW6mf9snPnTvr3788tt9zC\nkCFDcuvMC3LjjTfyxhtvMH78eNLS0qhbt27uur/85S+8//77bNq0icsvv5yrr766WLGEd9Q4YcIE\nJk+ezOzZs9m+fTtr1qwBnH/S6tSpQ+XKlVm9enWhx8hPw4YN+fnnnw9a9vPPP9OwYd4mwqI1btyY\n++67j61bt+ZOO3fu5JprrvEUS37HmzZt2kHH2717Nw0aNMjdJqjOLGPtM5Iz0NIv238JOpRcvt6H\noaofq+pxqtpcVf/pLntJVV8K26a3u761qi50l/2kqm3c6cScfb3Ys8d+JZVo+vXrR7t27Xj55Ze5\n+OKLue222wrd/sYbb2TmzJm88sordOvWLXd5VlYWEyZMYPv27SQlJVG9enWSkpJKHNfOnTupVKkS\ntWrVYteuXdx7772568qVK0ePHj2466672LhxI9nZ2cyZM4d9+/ZRt25dypUrx48//pjvcTt37swP\nP/zAxIkT2b9/P2+99RYrV67kkksuyd3G+SeyaD179mT06NHMmzcPVWXXrl1MnTqVnTt3AlCvXr0C\n48jPbbfdxr333ssvvzhfcps2bWLy5Mme9zchTWs2pU+7Pvxjxj+CDiWX3ekdJ6L9N+Z++eCDD5gx\nYwYvvujcwjN8+HAWLlzIxIkTC9ynSZMmdOzYkd27d3PZZZcdtG78+PE0bdqUww8/nJdffpkJEyYU\neJy8/ynnnb/xxhtp0qQJDRs25MQTT6RDhw4HbfPMM89w0kknceqpp1K7dm0GDx6MqlK1alXuu+8+\nOnbsSK1atfj6668Rkdx9a9euzYcffsiwYcOoU6cOzzzzDB9++CG1atXKN5bwffM65ZRTGDNmDL17\n96ZWrVocc8wxvPHGG7nrBw8ezGOPPUbNmjUZPnx4vq8zXL9+/bjsssvo1KkTNWrUoEOHDsybF7rv\nNsiu8mPxMzKw40DmrZ/H7J9mBx0KEIfdm/ftC82bO4+JJCMjw7dL7kTrctoEx8/3mp+fET+9t+I9\n7k+/n8W9FlMhqUKZHNO6N3cl6hVGLH4QjImkWP2MXN7ichpWb8jz854POpT4KzAS9cY9Y0x8EhFG\ndh7J458/zm87fws0lrgrMBK1a5BYrJ81JpJi+TPSok4LbmpzE4NmDQo0jrgsMOwKwxgTbx44+wFm\n/jSTOevmFL2xT6zAiBOxWj9rTKTE+mekRqUaPHX+U/T+uDfZB7IDicEKDGOMiRFdT+pKlfJVeHXR\nq4GcP+4KjERt9I7l+lljIiEePiMiwvMXPc8D6Q/wx54/In7+uCsw7ArDGBPP2tRvwxUtr+CBTx6I\n+LnjssBIxF9JxXr9bCyyIVpjSzx9Rh479zHeWfEOi39bHNHzxl2BYX1JmYLYEK3FF09DtMaTWlVq\n8UjqI/T5uE9Ee2GIuwIjMzMxC4x4qJ/1mw3RWnzxNERrvH1Gbjn5FnZn7ebfy/4dsXPGVYGxfz8c\nOADlywcdiYmUoUOHcuWVVx60rG/fvvTv3/+QbW2I1vwlyhCt8SapXBLPd36ee2bdw469OyJz0pIM\nohEtE3kGW9m5U7Vq1QLHDDEllDfP0WTjxo1arVo13bZtm6qqZmVl6RFHHFHg0Ko2ROvBbIjW2Nft\nvW5694yChyXOD9E24l4kprxvrs2bVWvVKlbejAdePsQ8RKmnkkpLS9MxY8aoquqUKVP0hBNOKHBb\nG6L1YNE8RKvxZuOOjVr7qdq6YtMKz/uUtMCIq8qbvXuhUqWgowhG0F0365Dg6tu7devG6NGjueWW\nWxg/fjw33HBDgdt27NiROnXq8N577/GXv/yF+fPn8/777+eu/+9//8tjjz3GoEGDaNWqFU8++STt\n27f3HEujRo1ynx84cIB7772Xd955h02bNuW2kWzevJk9e/aQmZlJs2bNiv16N2zYQOPGjQ9a1qRJ\nk4Ma3+vXr5/7vEqVKrkDIuX1888/88Ybb/Dcc8/lLsvKyiqyIT/8+FWrVs09/s8//8xf//rXg9qD\nypcvz++//547H56jSAr6M+KX+ofV574z76Pvx32Zfv10X8ccias2jMxMqFw56ChMpHXp0oWlS5ey\nfPlypk6dSteuXQvd3oZoDUmkIVrjWe92vVm/Yz3vr3y/6I1LwQqMOBGP/zl5VaVKFa644gr+/ve/\nc9ppp3HUUUcVur0N0RqSSEO0xvNnpEJSBf6V9i8GzBhAVnaWb+exAsPEhW7durF8+fJCq6Ny2BCt\nIYk0RGu8O//o8zm65tG8vvh1384RV0O0fvUVDBgAc4Lr/TcwiT5E67p162jRogW///47hx12WNDh\nmBKyIVpLZ866OVzzzjWs6rOKSuULbtC1IVqxK4xEdeDAAYYNG8Z1111nhYVJaB0adeCkeicxZuEY\nX44fV1cYb78NEybA+/62+yScaL7C2LVrF/Xq1aNp06ZMmzatRA2/JnpE83stVnyz4RsunXgpq/uu\npmqF/HtitSsMYOlSaNUq6ChMJFWrVo2dO3eybNkyKyyMAU458hTaH9WeF+e/WObHjqsCY/FiaNMm\n6CiCEW/95BhT1hLpM/Jw6sM8/dXT7NyX//03JWUFhjHGxJmT6p3EuU3P5bmvnyt642KImzaMzZuh\nWTPYuhWK0emo8cDqlU2k2Hut7Hy/+XvOeP0MVvVZRXLl5IPWlbQNI266BlmyBFq3tsLCL/b7eWNi\ny3F1juOSYy9h6JdDefy8x8vkmL5+vYpImoisFJFVIjKwgG1GuuuXiEjb4uwbrkMHCLvfKOH4WT9b\nkk7KgpzS09MDjyFapljMhV8SqQ0jx8OpDzP6m9Fs3LGxTI7nW4EhIknA80AacDxwnYi0zLPNRUBz\nVT0GuBV40eu+eVWtCikpZf0qYsfixZEdqjGaWS5CLBchiZiLxoc3pnvr7jyY/mCZHM/PK4x2wGpV\nXauqWcAkoEuebS4DxgGo6tdAsojU97ivCbNt27agQ4galosQy0VIoubivrPu49OfP2XE3BGlPpaf\nBUZDYF3Y/K/uMi/bHOlhX2OMMUWoVaUWM2+YyfPznuenrT+V6lh+Nnp7rYy01tQysHbt2qBDiBqW\nixDLRUgi56JJchOW37GcyuVL13eSbz+rFZH2wEOqmubODwYOqOpTYduMBjJUdZI7vxI4G2ha1L7u\ncvv9nTHGlIBG2c9qFwDHiEgKsAG4BrguzzaTgd7AJLeA2aaqv4vIFg/7lugFG2OMKRnfCgxV3S8i\nvYHpQBLwqqquEJFe7vqXVPUjEblIRFYDu4CbCtvXr1iNMcYULabv9DbGGBM5MXFfdGluAIw3ReVC\nRLq6OVgqIl+KSNz23+v15k4ROVVE9ovI3yIZXyR5/IykisgiEVkuIhkRDjFiPHxG6ojINBFZ7Oai\newBh+k5EXhOR30VkWSHbFO97M+i7Oj3c9ZkErAZSgArAYqBlnm0uAj5yn58GzA067gBz0QE43H2e\nlsi5CNvuE+BD4Iqg4w7wfZEMfAsc5c7XCTruAHPxEPDPnDwAW4DyQcfuQy7OBNoCywpYX+zvzVi4\nwijpDYD1IhtmRBSZC1Wdo6rb3dmvgaMiHGOkeL25sw/wDrApksFFmJdc/B34r6r+CqCqmyMcY6R4\nycVGoIb7vAawRVX3RzDGiFDVz4GthWxS7O/NWCgwSnoDYDx+UXrJRbibgY98jSg4ReZCRBrifFnk\njCQTrw12Xt4XxwC1RCRdRBaIyA0Riy6yvORiDHCCiGwAlgD9IhRbtCn292Ys9FZb0hsA4/HLwfNr\nEpFzgB5AR//CCZSXXIwABqmqitPdbrz+DNtLLioAJwPnAVWBOSIyV1VX+RpZ5HnJxb3AYlVNFZFm\nwEwRaa2qO3yOLRoV63szFgqM9UCjsPlGOCVhYdsc5S6LN15ygdvQPQZIU9XCLkljmZdcnIJzjw84\nddWdRSRLVSdHJsSI8ZKLdcBmVd0D7BGRz4DWQLwVGF5ycTrwOICq/igia4DjcO4dSyTF/t6MhSqp\n3BsARaQizk18eT/wk4EbIfcO822q+ntkw4yIInMhIo2Bd4HrVXV1ADFGSpG5UNWjVbWpqjbFace4\nPQ4LC/D2GfkAOENEkkSkKk4j53cRjjMSvORiJXA+gFtnfxxQuk6WYlOxvzej/gpDS3EDYLzxkgvg\nQaAm8KL7n3WWqrYLKma/eMxFQvD4GVkpItOApcABYIyqxl2B4fF98QTwuogswfmn+R5V/SOwoH0i\nIhNxulqqIyLrgCE4VZMl/t60G/eMMcZ4EgtVUsYYY6KAFRjGGGM8sQLDGGOMJ1ZgGGOM8cQKDGOM\nMZ5YgWGMMcYTKzBMsYnIsyLSL2x+uoiMCZsfJiJ3ikgTETlkpMSw7Ya63Us/VdA2xYipv4hUCZuf\nKiI1CtunlOerKyJfi8g3ItIxz7oxItLSr3OXFRHpLiLPFWP71iLSOWz+IREZ4E90JhpZgWFK4guc\n7hUQkXJAbeD4sPUdgC9xxmb/eyHH6QmcpKoHjVkgIkkliKkfTh9JAKjqxar6ZwmO49V5wFJVPUVV\nvwxfoao91acRIkWkLG+2Le5NWG1xusQu6f4Hcd87JobYH8yUxBycQgHgBGA5sENEkkWkEtASWAQ8\nCZzpDtpzUI+gIjIZOAxYKCJXi8hYERktInOBp9xBj74SkYXiDAR1rLtfkog8IyLL3EFfeotIH+BI\nIF1EZrvbrRWRWu7zu9ztl+XE4XYdsUJEXnavcqaLSOW8L9Td7hP3XLNEpJGItAGeArq4r61ynn0y\nRORkESnnvq5l4gxo1d9d30ZE5rrHfFdEksP2G+Eec5mInOouf0hE3hSRL4Bx7pXbQTG52+XkcL6I\nfC8iF7vLPxWR1mHxfSGFDKwlItXEGXznazf/l4lIBeAR4Bo3vqvdzY8XpwfcH92/Q84xrnf3X+TG\nVM5dvtP9+y0G2hcUg4lSQQ/yYVNsTjh97zQCbgV64XyZdMbpHfczd5uzgSmFHGNH2PPXcfq2yel9\noDqQ5D4/H3jHfX478B+gnDtf031cA9QKO94aoBZOB4RLgSpANZzCrQ3OADtZQCt3+7eArvnEOAW4\nwX1+E/Ce+7wbMLKA15WO0zPsKcCMsOU13MelwJnu84eBZ8P2e8l9fibuwDc4A/7MByoVEdNYQgPi\nNMfpcLASTn9BOec4FpjvPu8OPJdP/E/k5AJn4KXvca7eDnrNblxf4nQ3URvYjNMdR0v3b5nz9xsV\nFu8B4Mqg3782lWyyKwxTUl/hVEudjnPFMcd93gGnygqK35342+p+q+B8Ub0jzvCSwwlVeZ2H86V6\nAEAL741XgDOAd1V1j6ruwumY8Uyc6pQ1qrrU3fYbnEIkr/bAv93n493j5Ry7qNf3I3C0OMNgXohz\nFXY4zoiIn7vbjAPOCttnovu6PgdquNsrMFlV9xYRk+IUpqjT8eRPOB3rvQ1c4lZn9cApnAvTCRgk\nIotwCrFKQON8XrMCH6pqlqpuAf4H1Mf5G50CLHCPcS5O9SRANvDfIs5volTUdz5ootaXOFcTJwHL\ncP6b/QewHXithMfcHfb8UWC2qv5VRFJwvrhyFKcg0jzbC6G6971hy7NxrkLyU6JxNFR1m1sVdCFw\nG3A1cGcxj50T6+48y73GpKq6R0RmApcDV+Fc/YQfOz9/0zxjZYjIaflsty/seTah75RxqnpvPttn\nhv1TYGKMXWGYkvoKuARneEt1/9NPxrnC+Mrd5k+cqqWSqAFscJ93D1s+E+iV0zAuIjXd5TsIDbuZ\nQ4HPgctFpIqIVMP50vwc71+4XwHXus+7Ap953E9EpDZOtcy7wANAW3Ua4reKSM5VwQ1ARs4+ON1x\n467f5m6fN9aCYhLgKnE0A47GqU4CeAUYCczT0BC+BeVgOtA37IW0dZ/uoOi/pwKzgStFpK67fy1x\nut03Mc4KDFNSy3HqreeGLVuK8yX3R9h8togsztvo7cr7n2b4/NPAP0VkIU69eM66V4BfgKVuw2nO\nz3ZfBqblNHrnHlB1EU7d/jw31jGqusTD+XP0AW4SpyvsroSG89QCtg8/VkOchvhFwJvAYHddN2Co\ne8xWOO0/Oftkuq95FM4Qu/mdq7CYfnFf60dAL1Xd5+ZhIc7VX3h1VEGv4VGggttQvxynnQWcq7zj\n8zR6H7K/Or8Qux+Y4cY4A6eqKt/tTeyw7s2NiRIikg4McL/cS7L/6zg/Mng3n3VHAumqelwpwzQJ\nzK4wjIlzInIjztVVfm0KxnhmVxjGGGM8sSsMY4wxnliBYYwxxhMrMIwxxnhiBYYxxhhPrMAwxhjj\niRUYxhhjPPl/ptoLDFmMWJUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x917b748>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The composited extract is 135.05 kg\n",
+ "\n",
+ "The acid content is 13.01 kg\n",
+ "\n",
+ "\n",
+ "\n",
+ "150.0 kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 82
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter6_1.ipynb b/Mass_-_Transfer_Operations/Chapter6_1.ipynb
new file mode 100755
index 00000000..d9b08193
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter6_1.ipynb
@@ -0,0 +1,1059 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ce06499e0802b1a354db3b54c156495e1f9e00501c129efee55c325fbd5e394e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6: Equipment For Gas-Liquid Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.1: Page 145"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.1\n",
+ "# Page: 145\n",
+ "\n",
+ "print'Illustration 6.1 - Page: 145\\n\\n'\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# w = Gas flow rate per orifice\n",
+ "w = 0.055/50;# [kg/s]\n",
+ "L = 8*10**(-4);# [liquid flow rate, cubic m/s]\n",
+ "d = 0.003;# [diameter of the orifice,m]\n",
+ "viscocity_gas = 1.8*10**(-5);# [kg/m.s]\n",
+ "#******#\n",
+ "\n",
+ "Re = 4*w/(math.pi*d*viscocity_gas);\n",
+ "Dp = 0.0071*Re**(-0.05);# [m]\n",
+ "h = 3.0;# [height of vessel,m]\n",
+ "P_atm = 101.3;# [kN/square m]\n",
+ "Density_water = 1000.0;# [kg/cubic m]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "Temp = 273+25;# [K]\n",
+ "P_orifice = P_atm+(h*Density_water*g/1000);# [kN/square m]\n",
+ "P_avg = P_atm+((h/2.0)*Density_water*g/1000);# [kN/square m]\n",
+ "Density_gas = (29/22.41)*(273.0/Temp)*(P_avg/P_atm);# [kg/cubic m]\n",
+ "D = 1.0;# [dia of vessel,m]\n",
+ "Area = (math.pi*D**2)/4;# [square m]\n",
+ "Vg = 0.055/(Area*Density_gas);# [m/s]\n",
+ "Vl = L/Area;# [m/s]\n",
+ "sigma = 0.072;# [N/m]\n",
+ "# From fig. 6.2 (Pg 143)\n",
+ "abscissa = 0.0516;# [m/s]\n",
+ "Vg_by_Vs = 0.11;\n",
+ "Vs = Vg/Vg_by_Vs;# [m/s]\n",
+ "def f6(shi_g):\n",
+ " return Vs-(Vg/shi_g)+(Vl/(1-shi_g)) \n",
+ "shi_g = fsolve(f6,0.5);\n",
+ "dp = ((Dp**3)*(P_orifice/P_avg))**(1.0/3);# [bubble diameter,m]\n",
+ "# From eqn. 6.9\n",
+ "a = 6.0*shi_g/dp;# [specific interfacial area,square m]\n",
+ "print\"The Specific Interfacial Area is \",round(a,2),\" square m/cubic m\\n\"\n",
+ "\n",
+ "# For diffsion of Cl2 in H20\n",
+ "Dl = 1.44*10**(-9);# [square m/s]\n",
+ "viscocity_water = 8.937*10**(-4);# [kg/m.s]\n",
+ "Reg = dp*Vs*Density_water/viscocity_water;\n",
+ "Scl = viscocity_water/(Density_water*Dl);\n",
+ "# From Eqn.6.11\n",
+ "Shl = 2+(0.0187*(Reg**0.779)*(Scl**0.546)*(dp*(g**(1.0/3))/(Dl**(2.0/3)))**0.116);\n",
+ "# For dilute soln. of Cl2 in H20\n",
+ "c = 1000/18.02;# [kmol/cubic m]\n",
+ "Fl = (c*Dl*Shl)/dp;# [kmol/square m.s]\n",
+ "print\"Mass Transfer coeffecient is \",round(Fl,5),\" kmol/square m.s\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.1 - Page: 145\n",
+ "\n",
+ "\n",
+ "The Specific Interfacial Area is 148.13 square m/cubic m\n",
+ "\n",
+ "Mass Transfer coeffecient is 0.01335 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.2: Page 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.2\n",
+ "# Page: 157\n",
+ "\n",
+ "print'Illustration 6.2 - Page: 157\\n\\n'\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = N2 b = H2O\n",
+ "L = 9.5*10**(-4);# [cubic m/s]\n",
+ "G = 0.061;# [kg/s]\n",
+ "Temp = 273.0+25;# [K]\n",
+ "#*****#\n",
+ "\n",
+ "print\"Construction Arrangement\\n\"\n",
+ "print\"Use 4 vertical wall baffles, 100 mm wide at 90 degree intervals.\\n\"\n",
+ "print\"Use a 305 mm dameter, a six bladed disk flat blade turbine impeller, arranged axially, 300 mm from the bottom of vessel\\n\"\n",
+ "print\"The sparger underneath the impeller will be in the form of a 240 mm dameter ring made of 12.7 mm tubing drilled in the top with 3.18 mm dia holes\\n\"\n",
+ "Di = 0.305;# [m]\n",
+ "Do = 0.00316;# [m]\n",
+ "viscocity_a = 1.8*10**(-5);# [kg/m.s]\n",
+ "Re_g = 35000;\n",
+ "Ma = 28.02;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# w = Gas flow rate per orifice\n",
+ "w = Re_g*math.pi*Do*viscocity_a/4.0;# [kg/s]\n",
+ "N_holes = G/w;\n",
+ "Interval = math.pi*240/round(N_holes);\n",
+ "print\"The number of holes is \",round(N_holes),\" at approx \",round(Interval),\" mm interval around the sparger ring\\n\"\n",
+ "\n",
+ "viscocity_b = 8.9*10**(-4);# [kg/m.s]\n",
+ "Sigma = 0.072;# [N/m]\n",
+ "Density_b = 1000.0;# [kg/cubic m]\n",
+ "D = 1.0;# [dia of vessel,m]\n",
+ "g = 9.81;# [m/s**2]\n",
+ "# From Eqn. 6.18\n",
+ "def f7(N):\n",
+ " return (N*Di/(Sigma*g/Density_b)**0.25)-1.22-(1.25*D/Di)\n",
+ "N_min = fsolve(f7,2);# [r/s]\n",
+ "N = 5.0;# [r/s]\n",
+ "Re_l = ((Di**2)*N*Density_b/viscocity_b);\n",
+ "# From fig 6.5 (Pg 152)\n",
+ "Po = 5.0;\n",
+ "P = Po*Density_b*(N**3)*(Di**5);\n",
+ "h = 0.7;# [m]\n",
+ "P_atm = 101.33;# [kN/square m]\n",
+ "P_gas = P_atm+(h*Density_b*g/1000.0);# [kN/square m]\n",
+ "Qg = (G/Ma)*22.41*(Temp/273.0)*(P_atm/P_gas);# [cubic m/s]\n",
+ "# From Fig.6.7 (Pg 155)\n",
+ "abcissa = Qg/(N*(Di**3));\n",
+ "# abcissa is off scale\n",
+ "Pg_by_P = 0.43;\n",
+ "Pg = 0.43*P;# [W]\n",
+ "Vg = Qg/(math.pi*(D**2)/4);# [superficial gas velocity,m/s]\n",
+ "check_value = (Re_l**0.7)*((N*Di/Vg)**0.3);\n",
+ "vl = math.pi*(D**2)/4;# [cubic m]\n",
+ "# Since value<30000\n",
+ "# From Eqn. 6.21, Eqn.6.23 & Eqn. 6.24\n",
+ "K = 2.25;\n",
+ "m = 0.4;\n",
+ "Vt = 0.250;# [m/s]\n",
+ "shi = 1.0;\n",
+ "err = 1.0;\n",
+ "while (err>10**(-3)):\n",
+ " a = 1.44*((Pg/vl)**0.4)*((Density_b/(Sigma**3))**0.2)*((Vg/Vt)**0.5);# [square m/cubic m]\n",
+ " shin = (0.24*K*((viscocity_a/viscocity_b)**0.25)*((Vg/Vt)**0.5))**(1.0/(1-m));\n",
+ " Dp = K*((vl/Pg)**0.4)*((Sigma**3/Density_b)**0.2)*(shin**m)*((viscocity_a/viscocity_b)**0.25);# [m]\n",
+ " err = abs(shi-shin);\n",
+ " Vt = Vt-0.002;# [m/s]\n",
+ " shi = shin;\n",
+ "\n",
+ "\n",
+ "# For N2 in H2\n",
+ "Dl = 1.9*10**(-9);# [square m/s]\n",
+ "Ra = 1.514*10**(6);\n",
+ "# By Eqn. 6.25\n",
+ "Shl = 2.0+(0.31*(Ra**(1.0/3)));\n",
+ "# For dilute soln.\n",
+ "c = 1000.0/Mb;# [kmol/cubic m]\n",
+ "Fl = Shl*c*Dl*1.0/Dp;# [kmol/square m.s]\n",
+ "print\"The average gas-bubble diameter is \",(\"{:.2e}\".format(Dp)),\" m\\n\",\n",
+ "print\"Gas Holdup:\\n\",round(shi,5)\n",
+ "print\"Interfacial area:\",round(a,4),\" square m/cubic m \\n\"\n",
+ "print\"Mass transfer coffecient:\",(\"{:.2e}\".format(Fl)),\"kmol/square m.s\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.2 - Page: 157\n",
+ "\n",
+ "\n",
+ "Construction Arrangement\n",
+ "\n",
+ "Use 4 vertical wall baffles, 100 mm wide at 90 degree intervals.\n",
+ "\n",
+ "Use a 305 mm dameter, a six bladed disk flat blade turbine impeller, arranged axially, 300 mm from the bottom of vessel\n",
+ "\n",
+ "The sparger underneath the impeller will be in the form of a 240 mm dameter ring made of 12.7 mm tubing drilled in the top with 3.18 mm dia holes\n",
+ "\n",
+ "The number of holes is 39.0 at approx 19.0 mm interval around the sparger ring\n",
+ "\n",
+ "The average gas-bubble diameter is 6.35e-04 m\n",
+ "Gas Holdup:\n",
+ "0.02265\n",
+ "Interfacial area: 214.0106 square m/cubic m \n",
+ "\n",
+ "Mass transfer coffecient: 6.24e-03 kmol/square m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.3: Page 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.3\n",
+ "# Page: 174\n",
+ "\n",
+ "print'Illustration 6.3 - Page: 174\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = methanol b = water\n",
+ "G = 0.100;# [kmol/s]\n",
+ "L = 0.25;# [kmol/s]\n",
+ "Temp = 273+95;# [K]\n",
+ "XaG = 0.18;# [mol % in gas phase]\n",
+ "MaL = 0.15;# [mass % in liquid phase]\n",
+ "#*****#\n",
+ "\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "Mavg_G = XaG*Ma+((1-XaG)*Mb);# [kg/kmol]\n",
+ "Density_G = (Mavg_G/22.41)*(273.0/Temp);# [kg/cubic cm]\n",
+ "Q = G*22.41*(Temp/273.0);# [cubic cm/s]\n",
+ "Density_L = 961.0;# [kg/cubic cm]\n",
+ "Mavg_L = 1.0/((MaL/Ma)+(1-MaL)/Mb);# [kg/kmol]\n",
+ "q = L*Mavg_L/Density_L;\n",
+ "\n",
+ "# Perforations\n",
+ "print\"Perforations\\n\"\n",
+ "print\"Do = 4.5mm on an equilateral triangle pitch 12 mm between the hole centres, punched in sheet metal 2 mm thick\\n\"\n",
+ "Do = 0.0045;# [m]\n",
+ "pitch = 0.012;# [m]\n",
+ "# By Eqn.6.31\n",
+ "Ao_by_Aa = 0.907*(Do/pitch)**2;\n",
+ "print\"The ratio of Hole Area By Active Area is:\",round(Ao_by_Aa,4),\"\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Tower Diameter\n",
+ "print\"Tower Diameter\\n\"\n",
+ "t = 0.50;# [tray spacing,m]\n",
+ "print\"Tower Spacing:\",t,\" m\\n\"\n",
+ "# abcissa = (L/G)*(Density_G/Density_L)^0.5 = (q/Q)*(Density_L/Density_G)**0.5\n",
+ "abcissa = (q/Q)*(Density_L/Density_G)**0.5;\n",
+ "# From Table 6.2 (Pg 169)\n",
+ "alpha = (0.0744*t)+0.01173;\n",
+ "beeta = (0.0304*t)+0.015;\n",
+ "if (abcissa<0.1):\n",
+ " abcissa = 0.1;\n",
+ "\n",
+ "sigma = 0.040;# [N/m]\n",
+ "# From Eqn.6.30\n",
+ "Cf = ((alpha*math.log10(1.0/abcissa))+beeta)*(sigma/0.02)**0.2;\n",
+ "# From Eqn. 6.29\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1/2);# [m/s]\n",
+ "# Using 80% of flooding velocity\n",
+ "V = 0.8*Vf;# [m/s]\n",
+ "An = Q/V;# [square m]\n",
+ "# The tray area used by one downspout = 8.8%\n",
+ "At = An/(1-0.088);# [square m]\n",
+ "D = (4*At/math.pi)**(1.0/2);# [m]\n",
+ "# Take D = 1.25 m\n",
+ "D = 1.25; #[m]\n",
+ "At = math.pi*(D**2)/4;# [corrected At, square m]\n",
+ "W = 0.7*D;# [weir length,m]\n",
+ "Ad = 0.088*At;# [square m]\n",
+ "# For a design similar to Fig 6.14 (Pg 168)\n",
+ "# A 40 mm wide supporting ring, beams between downspouts and a 50 mm wide disengaging & distributing zones these areas total 0.222 square m\n",
+ "Aa = At-(2.0*Ad)-0.222;\n",
+ "print\"Weir Length:\",round(W,4),\"\\n\"\n",
+ "print\"Area for perforated sheet: \",round(Aa,4),\" square m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Weir crest h1 & Weir height hw\n",
+ "print\"Weir crest h1 & Weir height hw\\n\"\n",
+ "h1 = 0.025;# [m]\n",
+ "h1_by_D = h1/D;\n",
+ "D_by_W = D/W;\n",
+ "# From Eqn. 6.34\n",
+ "Weff_by_W = math.sqrt(((D_by_W)**2)-((((D_by_W)**2-1)**0.5)+(2*h1_by_D*D_by_W))**2);\n",
+ "# Set hw to 50 mm\n",
+ "hw = 0.05;# [m]\n",
+ "print\"Weir crest: \",h1,\" m\\n\"\n",
+ "print\"Weir height: \",hw,\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Dry Pressure Drop\n",
+ "print\"Dry Pressure Drop\\n\"\n",
+ "l = 0.002;# [m]\n",
+ "# From Eqn. 6.37\n",
+ "Co = 1.09*(Do/l)**0.25;\n",
+ "Ao = 0.1275*Aa;# [square m]\n",
+ "Vo = Q/Ao;# [m/sec]\n",
+ "viscocity_G = 1.25*10**(-5);# [kg/m.s]\n",
+ "Re = Do*Vo*Density_G/viscocity_G;\n",
+ "# From \"The Chemical Engineers Handbook,\" 5th Edition fig 5.26\n",
+ "fr = 0.008;\n",
+ "g = 9.81;# [m/s**2]\n",
+ "# From Eqn. 6.36\n",
+ "def f(hd):\n",
+ " return (2*hd*g*Density_L/(Vo**2*Density_G))-(Co*(0.40*(1.25-(Ao/An))+(4*l*fr/Do)+(1-(Ao/An))**2))\n",
+ "hd = fsolve(f,1);\n",
+ "print\"Dry Pressure Drop:\",round(hd,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Hydraulic head hl\n",
+ "print\"Hydraulic head hl\"\n",
+ "Va = Q/Aa;# [m/s]\n",
+ "z = (D+W)/2.0;# [m]\n",
+ "# From Eqn. 6.38\n",
+ "hl = 6.10*10**(-3)+(0.725*hw)-(0.238*hw*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "print\"Hydraulic head: \",round(hl,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#Residual Pressure drop hr\n",
+ "print\"Residual Pressure drop hr\\n\"\n",
+ "# From Eqn. 6.42\n",
+ "hr = 6*sigma/(Density_L*Do*g);# m\n",
+ "print\"Residual Pressure Drop:\",round(hr,4),\"m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Total Gas pressure Drop hg\n",
+ "print\"Total Gas pressure Drop hg\\n\"\n",
+ "# From Eqn. 6.35\n",
+ "hg = hd+hl+hr;# [m]\n",
+ "print\"Total gas pressure Drop: \",round(hg,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Pressure loss at liquid entrance h2\n",
+ "print\"Pressure loss at liquid entrance h2\\n\"\n",
+ "# Al: Area for the liquid flow under the apron\n",
+ "Al = 0.025*W;# [square m]\n",
+ "Ada = min(Al,Ad);\n",
+ "# From Eqn. 6.43\n",
+ "h2 = (3.0/(2*g))*(q/Ada)**2;\n",
+ "print\"Pressure loss at liquid entrance:\",round(h2,4),\"m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Backup in Downspout h3\n",
+ "print\"Backup in Downspout h3\\n\"\n",
+ "# From Eqn.6.44\n",
+ "h3 = hg+h2;\n",
+ "print\"Backup in Downspout:\",round(h3,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Check on Flooding\n",
+ "print\"Check on Flooding\\n\"\n",
+ "if((hw+h1+h3)<(t/2.0)):\n",
+ " print\"Choosen Tower spacing is satisfactory\\n\"\n",
+ "else:\n",
+ " print\"Choosen Tower spacing is not satisfactory\\n\"\n",
+ "\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Weeping Velocity\n",
+ "print\"Weeping Velocity\\n\"\n",
+ "print\"For W/D ratio \",W/D,\" weir is set at \",0.3296*D,\" m from the center from the tower\\n\",\n",
+ "Z = 2*(0.3296*D);# [m]\n",
+ "# From Eqn.6.46\n",
+ "def f8(Vow):\n",
+ " return (Vow*viscocity_G/(sigma))-(0.0229*((viscocity_G**2/(sigma*Density_G*Do))*(Density_L/Density_G))**0.379)*((l/Do)**0.293)*(2*Aa*Do/(math.sqrt(3.0)*(pitch**3)))**(2.8/((Z/Do)**0.724))\n",
+ "Vow = fsolve(f8,0.1);# [m/s]\n",
+ "print\"The minimum gas velocity through the holes below which excessive weeping is likely:\",round(Vow,3),\" m/s\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Entrainment\n",
+ "print\"Entrainment\\n\"\n",
+ "V_by_Vf = V/Vf;\n",
+ "# From Fig.6.17 (Pg 173), V/Vf = 0.8 & abcissa = 0.0622\n",
+ "E = 0.05;\n",
+ "print\"Entrainment:\\n\",E\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.3 - Page: 174\n",
+ "\n",
+ "\n",
+ "Perforations\n",
+ "\n",
+ "Do = 4.5mm on an equilateral triangle pitch 12 mm between the hole centres, punched in sheet metal 2 mm thick\n",
+ "\n",
+ "The ratio of Hole Area By Active Area is: 0.1275 \n",
+ "\n",
+ "\n",
+ "\n",
+ "Tower Diameter\n",
+ "\n",
+ "Tower Spacing: 0.5 m\n",
+ "\n",
+ "Weir Length: 0.875 \n",
+ "\n",
+ "Area for perforated sheet: 0.7892 square m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Weir crest h1 & Weir height hw\n",
+ "\n",
+ "Weir crest: 0.025 m\n",
+ "\n",
+ "Weir height: 0.05 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Dry Pressure Drop\n",
+ "\n",
+ "Dry Pressure Drop: 0.0654 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Hydraulic head hl\n",
+ "Hydraulic head: 0.0106 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Residual Pressure drop hr\n",
+ "\n",
+ "Residual Pressure Drop: 0.0057 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Total Gas pressure Drop hg\n",
+ "\n",
+ "Total gas pressure Drop: 0.0816 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Pressure loss at liquid entrance h2\n",
+ "\n",
+ "Pressure loss at liquid entrance: 0.008 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Backup in Downspout h3\n",
+ "\n",
+ "Backup in Downspout: 0.0897 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Check on Flooding\n",
+ "\n",
+ "Choosen Tower spacing is satisfactory\n",
+ "\n",
+ "\n",
+ "\n",
+ "Weeping Velocity\n",
+ "\n",
+ "For W/D ratio 0.7 weir is set at 0.412 m from the center from the tower\n",
+ "The minimum gas velocity through the holes below which excessive weeping is likely: 8.703 m/s\n",
+ "\n",
+ "\n",
+ "\n",
+ "Entrainment\n",
+ "\n",
+ "Entrainment:\n",
+ "0.05\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.4: Page 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.4\n",
+ "# Page: 183\n",
+ "\n",
+ "print'Illustration 6.4 - Page: 183\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "#****Data****#\n",
+ "#From Illustrtion 6.3:\n",
+ "G = 0.100;# [kmol/s]\n",
+ "Density_G = 0.679;# [kg/cubic m]\n",
+ "q = 5*10**(-3);# [cubic m/s]\n",
+ "Va = 3.827;# [m/s]\n",
+ "z = 1.063;# [m]\n",
+ "L = 0.25;# [kmol/s]\n",
+ "hL = 0.0106;# [m]\n",
+ "hW = 0.05;# [m]\n",
+ "Z = 0.824;# [m]\n",
+ "E = 0.05;\n",
+ "ya = 0.18;# [mole fraction methanol]\n",
+ "\n",
+ "# a:CH3OH b:H2O\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "# From Chapter 2:\n",
+ "ScG = 0.865;\n",
+ "Dl = 5.94*10**(-9);# [square m/s]\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/ScG**0.5;\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;# [square m/s]\n",
+ "thethaL = hL*z*Z/q;# [s]\n",
+ "NtL = 40000*Dl**0.5*((0.213*Va*Density_G**0.5)+0.15)*thethaL;\n",
+ "# For 15 mass% methanol:\n",
+ "xa = (15.0/Ma)/((15.0/Ma)+(85.0/Mb));\n",
+ "# From Fig 6.23 (Pg 184)\n",
+ "mAC = -(NtL*L)/(NtG*G);# [Slope of AC line]\n",
+ "meqb = 2.50;# [slope of equilibrium line]\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1.0/((1/NtG)+(meqb*G/L)*(1.0/NtL));\n",
+ "# From Eqn. 6.51:\n",
+ "EOG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thethaL);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2.0)*((1+(4*meqb*G*EOG/(L*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EOG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+(math.exp(eta)-1)/(eta*(1+eta/(eta+Pe))));\n",
+ "# From Eqn. 6.60:\n",
+ "EMGE = EMG/(1+(EMG*E/(1-E)));\n",
+ "print\"Efficiency of Sieve trays: \",round(EMGE,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.4 - Page: 183\n",
+ "\n",
+ "\n",
+ "Effeciency of Sieve trays: 0.7\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.5: Page 200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.5\n",
+ "# Page: 200\n",
+ "\n",
+ "print'Illustration 6.5 - Page: 200\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "# ****Data****#\n",
+ "G = 0.80;# [cubic m/s]\n",
+ "P = 10**2;# [kN/square m]\n",
+ "XaG = 0.07;\n",
+ "Temp = 273+30.0;# [K]\n",
+ "L = 3.8;# [kg/s]\n",
+ "Density_L = 1235.0;# [kg/cubic m]\n",
+ "viscocity_L = 2.5*10**(-3);# [kg/m.s]\n",
+ "#******#\n",
+ "\n",
+ "# a = SO2 b = air\n",
+ "\n",
+ "# Solution (a) \n",
+ "\n",
+ "# Since the larger flow quantities are at the bottom for an absorber, the diameter will be choosen to accomodate the bottom condition\n",
+ "Mavg_G = XaG*64+((1-XaG)*29);# [kg/kmol]\n",
+ "G1 = G*(273/Temp)*(P/101.33)*(1/22.41);# [kmol/s]\n",
+ "G2 = G1*Mavg_G;# [kg/s]\n",
+ "Density_G = G2/G;# [kg/cubic m]\n",
+ "# Assuming Complete absorption of SO2\n",
+ "sulphur_removed = G1*XaG*64;# [kg/s]\n",
+ "abcissa = (L/G)*((Density_G/Density_L)**0.5);\n",
+ "#From Fig. 6.24, using gas pressure drop of 400 (N/square m)/m\n",
+ "ordinate = 0.061;\n",
+ "# For 25 mm ceramic Intalox Saddle:\n",
+ "Cf = 98.0;# [Table 6.3 Pg 196]\n",
+ "J = 1;\n",
+ "G_prime = (ordinate*Density_G*(Density_L-Density_G)/(Cf*viscocity_L**0.1*J))**0.5;# [kg/square m.s]\n",
+ "A = G2/G_prime;# [square m]\n",
+ "D = (4*A/math.pi)**0.5;# [m]\n",
+ "print\"The Tower Diameter is \",round(D,4),\" m\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "# Let\n",
+ "D = 1.0;# [m]\n",
+ "A = math.pi*D**2.0/4;# [square m]\n",
+ "# The pressure drop for 8 m of irrigated packing\n",
+ "delta_p = 400*8.0;# [N/square m]\n",
+ "# For dry packing\n",
+ "G_prime = (G2-sulphur_removed)/A;# [kg/square m.s]\n",
+ "P = P-(delta_p/1000.0);# [kN/square m]\n",
+ "Density_G = (29/22.41)*(273.0/Temp)*(P/101.33);# [kg/cubic m]\n",
+ "# From Table 6.3 (Pg 196)\n",
+ "Cd = 241.5;\n",
+ "# From Eqn. 6.68\n",
+ "delta_p_by_z = Cd*G_prime**2/Density_G;# [N/square m for 1m of packing]\n",
+ "pressure_drop = delta_p+delta_p_by_z;# [N/square m]\n",
+ "V = 7.5;# [m/s]\n",
+ "head_loss = 1.5*V**2.0/2;# [N.m/kg]\n",
+ "head_loss = head_loss*Density_G;# [N/square m]\n",
+ "Power = (pressure_drop+head_loss)*(G2-sulphur_removed)/(Density_G*1000.0);# [kW]\n",
+ "eta = 0.6;\n",
+ "Power = Power/eta;# [kW]\n",
+ "print\"The Power for the fan motor is \",round(Power,2),\" kW\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.5 - Page: 200\n",
+ "\n",
+ "\n",
+ "The Tower Diameter is 0.981 m\n",
+ "\n",
+ "The Power for the fan motor is 4.49 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.6: Page 204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.6\n",
+ "# Page: 204\n",
+ "\n",
+ "print'Illustration 6.6 - Page: 204\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# Gas\n",
+ "Mavg_G = 11.0;# [kg/kmol]\n",
+ "viscocity_G = 10**(-5);# [kg/m.s]\n",
+ "Pt = 107.0;# [kN/square m]\n",
+ "Dg = 1.30*10**(-5);# [square m/s]\n",
+ "Temp = 273.0+27;# [K]\n",
+ "G_prime = 0.716;# [kg/square m.s]\n",
+ "\n",
+ "# Liquid:\n",
+ "Mavg_L = 260.0;\n",
+ "viscocity_L = 2*10**(-3);# [kg/m.s]\n",
+ "Density_L = 840.0;# [kg/cubic m]\n",
+ "sigma = 3*10.0**(-2);# [N/m]\n",
+ "Dl = 4.71*10**(-10);# [square m/s]\n",
+ "#******#\n",
+ "\n",
+ "#Gas:\n",
+ "Density_G = (Mavg_G/22.41)*(Pt/101.33)*(273/Temp);# [kg/cubic m]\n",
+ "ScG = viscocity_G/(Density_G*Dg);\n",
+ "G = G_prime/Mavg_G;# [kmol/square m.s]\n",
+ "\n",
+ "# Liquid:\n",
+ "L_prime = 2.71;# [kg/square m.s]\n",
+ "ScL = viscocity_L/(Density_L*Dl);\n",
+ "\n",
+ "# Holdup:\n",
+ "# From Table 6.5 (Pg 206), L_prime = 2.71 kg/square m.s\n",
+ "Ds = 0.0472;# [m]\n",
+ "beeta = 1.508*Ds**0.376;\n",
+ "shiLsW = 5.014*10**(-5)/Ds**1.56;# [square m/cubic m]\n",
+ "shiLtW = (2.32*10**(-6))*(737.5*L_prime)**beeta/(Ds**2);# [square m/cubic m]\n",
+ "shiLoW = shiLtW-shiLsW;# [square m/cubic m]\n",
+ "H = (1404*(L_prime**0.57)*(viscocity_L**0.13)/((Density_L**0.84)*((3.24*L_prime**0.413)-1)))*(sigma/0.073)**(0.2817-0.262*math.log10(L_prime));\n",
+ "shiLo = shiLoW*H;# [square m/cubic m]\n",
+ "shiLs = 4.23*10**(-3)*(viscocity_L**0.04)*(sigma**0.55)/((Ds**1.56)*(Density_L**0.37));# [square m/cubic m]\n",
+ "shiLt = shiLo+shiLs;# [square m/cubic m]\n",
+ "\n",
+ "# Interfacial Area:\n",
+ "# From Table 6.4 (Pg 205)\n",
+ "m = 62.4;\n",
+ "n = (0.0240*L_prime)-0.0996;\n",
+ "p = -0.1355;\n",
+ "aAW = m*((808*G_prime/(Density_G**0.5))**n)*(L_prime**p);# [square m/cubic m]\n",
+ "# From Eqn. 6.73\n",
+ "aA = aAW*shiLo/shiLoW;# [square m/cubic m]\n",
+ "# From Table 6.3 (Pg 196)\n",
+ "e = 0.75;\n",
+ "# From Eqn. 6.71\n",
+ "eLo = e-shiLt;\n",
+ "# From Eqn. 6.70\n",
+ "def f9(Fg):\n",
+ " return ((Fg*ScG**(2.0/3))/G)-1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36) \n",
+ "Fg = fsolve(f9,1);# [kmol/square m.s]\n",
+ "# From Eqn. 6.72:\n",
+ "def f10(Kl):\n",
+ " return (Kl*Ds/Dl)-(25.1*(Ds*L_prime/viscocity_L)**0.45)*ScL**0.5\n",
+ "Kl = fsolve(f10,1);# [(kmol/square m.s).(kmol/cubic m)]\n",
+ "# Since the value of Kl is taken at low conc., it can be converted into Fl\n",
+ "c = (Density_L/Mavg_L);# [kmol/cubic m]\n",
+ "Fl = Kl*c;# [kmol/cubic m]\n",
+ "print\"The volumetric coeffecients are\\n\"\n",
+ "print\"Based on Gas Phase \",round(Fg*aA,3),\" kmol/cubic m.s\\n\"\n",
+ "print\"based on Liquid Phase\",round(Fl*aA,3),\" kmol/cubic m.s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.6 - Page: 204\n",
+ "\n",
+ "\n",
+ "The volumetric coeffecients are\n",
+ "\n",
+ "Based on Gas Phase 0.071 kmol/cubic m.s\n",
+ "\n",
+ "based on Liquid Phase 0.014 kmol/cubic m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.7: Page 207"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.7\n",
+ "# Page: 207\n",
+ "\n",
+ "print'Illustration 6.7 - Page: 207\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#****Data****#\n",
+ "# Air\n",
+ "G_prime = 1.10;# [kg/square m.s]\n",
+ "viscocity_G = 1.8*10**(-5);# [kg/m.s]\n",
+ "ScG = 0.6;# [for air water mixture]\n",
+ "Temp1 = 273+20.0;# [K]\n",
+ "\n",
+ "# Water\n",
+ "L_prime = 5.5;# [kg/square m.s]\n",
+ "#*****#\n",
+ "\n",
+ "# Air:\n",
+ "Ma = 29.0;# [kg/kmol]\n",
+ "G = G_prime/Ma;# [kmol/square m.s]\n",
+ "Density_G = (Ma/22.41)*(273.0/Temp1);\n",
+ "Cpa = 1005.0;# [N.m/kg.K]\n",
+ "PrG = 0.74;\n",
+ "\n",
+ "# Liquid:\n",
+ "kth = 0.587;# [W/m.K]\n",
+ "Cpb = 4187.0;# [N.m/kg.K]\n",
+ "viscocity_L = 1.14*10**(-3);# [kg/m.s]\n",
+ "\n",
+ "# From Table 6.5 (Pg 206)\n",
+ "Ds = 0.0725;# [m]\n",
+ "beeta = 1.508*(Ds**0.376);\n",
+ "shiLtW = (2.09*10**(-6))*(737.5*L_prime)**beeta/(Ds**2);# [square m/cubic m]\n",
+ "shiLsW = 2.47*10**(-4)/(Ds**1.21);# [square m/cubic m]\n",
+ "shiLoW = shiLtW-shiLsW;# [square m/cubic m]\n",
+ "# From Table 6.4 (Pg 205)\n",
+ "m = 34.03;\n",
+ "n = 0.0;\n",
+ "p = 0.362;\n",
+ "aAW = m*(808.0*G_prime/Density_G**0.5)**(n)*L_prime**p;# [square m/cubic m]\n",
+ "# From Eqn. 6.75\n",
+ "aVW = 0.85*aAW*shiLtW/shiLoW;# [square m/cubic m]\n",
+ "# From Table 6.3\n",
+ "e = 0.74;\n",
+ "eLo = e-shiLtW;\n",
+ "# From Eqn. 6.70\n",
+ "def f11(Fg):\n",
+ " return ((Fg*ScG**(2.0/3))/G)-1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36)\n",
+ "Fg = fsolve(f11,1);# [kmol/square m.s]\n",
+ "# Since the liquid is pure water. It has no mass trnsfer coeffecient.\n",
+ "# For such process we need convective heat transfer coeffecient for both liquid & gas.\n",
+ "# Asuming Jd = Jh\n",
+ "# From Eqn. 6.70\n",
+ "Jh = 1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36);\n",
+ "Hg = Jh*Cpa*G_prime/(PrG**(2.0/3));# [W/square m.K]\n",
+ "PrL = Cpb*viscocity_L/kth;\n",
+ "# Heat transfer analog of Eqn. 6.72\n",
+ "Hl = 25.1*(kth/Ds)*(Ds*L_prime/viscocity_L)**0.45*PrL**0.5;# [W/square m.K]\n",
+ "print\"The volumetric coeffecients are\\n\"\n",
+ "print\"Based on Gas Phase \",round(Hg*aVW), \"W/cubic m.K\\n\"\n",
+ "print\"based on Liquid Phase\",round(Hl*aVW,2),\" W/cubic m.K\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.7 - Page: 207\n",
+ "\n",
+ "\n",
+ "The volumetric coeffecients are\n",
+ "\n",
+ "Based on Gas Phase 3183.0 W/cubic m.K\n",
+ "\n",
+ "based on Liquid Phase 503701.46 W/cubic m.K\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.1\n",
+ "# Page: 494\n",
+ "\n",
+ "print'Illustration 10.1 - Page: 494\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pylab\n",
+ "%matplotlib inline\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "xF = 0.30;# [mol fraction]\n",
+ "yS = 0;# [mol fraction]\n",
+ "S1 = 40.0;# [kg]\n",
+ "B1 = 40.0;# [kg]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data at 20 OC:\n",
+ "# Wa: Wt. percent of a\n",
+ "# Wb: Wt. percent of b\n",
+ "# Wc: Wt. percent of c\n",
+ "# Data1 = [Wc Wa Wb]\n",
+ "# Data1: water layer\n",
+ "Data1 = numpy.array([(0.69 ,98.1, 1.2),(1.41, 97.1 ,1.5),(2.89 ,95.5 ,1.6),(6.42 ,91.7 ,1.9),(13.30, 84.4, 2.3),(25.50 ,71.1 ,3.4),(36.70 ,58.9 ,4.4),(44.30 ,45.1 ,10.6),(46.40 ,37.1 ,16.5)])\n",
+ "# Data2: isopropyl ether layer\n",
+ "Data2 = numpy.array([(0.18 ,0.5 ,99.3),(0.37, 0.7 ,98.9),(0.79, 0.8, 98.4),(1.93 ,1, 97.1),(4.82, 1.9, 93.3),(11.40, 3.9, 84.7),(21.60, 6.9, 71.5),(31.10, 10.8, 58.1),(36.20 ,15.1 ,48.7)])\n",
+ "\n",
+ "plt.plot((Data1[:,2])/100,(Data1[:,0])/100,label=\"x Vs fraction ether\")\n",
+ "plt.plot((Data2[:,2])/100,(Data2[:,0])/100,label=\"y Vs fraction ether\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='lower center');\n",
+ "ax=pylab.gca()\n",
+ "ax.set_xlabel(\"Wt fraction of isopropyl ether\");\n",
+ "ax.set_ylabel(\"Wt fraction of acetic acid\");\n",
+ "plt.ylim((0,0.3))\n",
+ "plt.xlim((0,1))\n",
+ "plt.show();\n",
+ "# x: Wt fraction of acetic acid in water layer.\n",
+ "# y: Wt fraction of acetic acid in isopropyl layer.\n",
+ "\n",
+ "# The rectangular coordinates of Fig 10.9(a) will be used but only upto x = 0.30\n",
+ "\n",
+ "# Stage 1:\n",
+ "F = 100;# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "M1 = F+S1;# [kg]\n",
+ "# From Eqn. 10.5:\n",
+ "xM1 = ((F*xF)+(S1*yS))/M1;\n",
+ "# From Fig. 10.15 (Pg 495):\n",
+ "# Point M1 is located on the line FB and with the help of tie line passing through M1:\n",
+ "x1 = 0.258;# [mol fraction]\n",
+ "y1 = 0.117;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E1 = (M1*(xM1-x1)/(y1-x1));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R1 = M1-E1;# [kg]\n",
+ "\n",
+ "# Stage 2:\n",
+ "S2 = 40;# [kg]\n",
+ "B2 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M2 = R1+B2;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM2 = ((R1*x1)+(S2*yS))/M2;\n",
+ "# Point M2 is located on the line R1B and the tie line passing through R2E2 through M2:\n",
+ "x2 = 0.227;\n",
+ "y2 = 0.095;\n",
+ "# From Eqn. 10.8:\n",
+ "E2 = (M2*(xM2-x2)/(y2-x2));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R2 = M2-E2;# [kg]\n",
+ "\n",
+ "# Stage 3:\n",
+ "S3 = 40;# [kg]\n",
+ "B3 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M3 = R2+B3;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM3 = ((R2*x2)+(S3*yS))/M3;\n",
+ "# Point M3 is located on the line R2B and the tie line passing through R3E3 through M3:\n",
+ "x3 = 0.20;# [mol fraction]\n",
+ "y3 = 0.078;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E3 = (M3*(xM3-x3)/(y3-x3));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R3 = M3-E3;# [kg]\n",
+ "Ac = x3*R3;\n",
+ "print\"The composited extract is\",round((E1+E2+E3),2),\" kg\\n\"\n",
+ "print\"The acid content is \",round(((E1*y1)+(E2*y2)+(E3*y3)),2),\" kg\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# If an extraction to give the same final raffinate concentration were to be done in single stage, the point M would be at the intersection of tie line R3E3 and the line BF.\n",
+ "x = 0.20;# [mol fraction]\n",
+ "xM = 0.12;# [mol fraction]\n",
+ "# From Eqn. 10.6:\n",
+ "S = F*(xF-xM)/(xM-yS);# [kg]\n",
+ "print round(S,2),\"kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.1 - Page: 494\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYcgIDklABAZBBQNBVwQxjAkHE+6aFxVE\nEfUjKauACfOqCLKoiGIAhQVX1wCiRGeMICBZQUFBEdAFBCQNDMP5/qia6WaYUBOqq8N5n6ee7sqn\nz3T3nbq3615RVYwxxpiilAs6AGOMMbHBCgxjjDGeWIFhjDHGEyswjDHGeGIFhjHGGE+swDDGGOOJ\nrwWGiKSJyEoRWSUiA/NZ30VElojIIhH5RkTO9bqvMcaYyBK/7sMQkSTge+B8YD0wH7hOVVeEbVNN\nVXe5z08C3lPV5l72NcYYE1l+XmG0A1ar6lpVzQImAV3CN8gpLFyHAZu97muMMSay/CwwGgLrwuZ/\ndZcdREQuF5EVwMdA3+Lsa4wxJnL8LDA81XWp6vuq2hK4FHhTRMTHmIwxxpRQeR+PvR5oFDbfCOdK\nIV+q+rmIlAdqudsVua+IWEdYxhhTAqpa7H/O/bzCWAAcIyIpIlIRuAaYHL6BiDTLuaIQkZMBVHWL\nl31zqKrn6dprlQkTvG8fS9OQIUMCjyFaJsuFMz3+2eM0/2tzDhw4EHgs0TDZ+yI0lZRvBYaq7gd6\nA9OB74C3VHWFiPQSkV7uZlcAy0RkEfAv4NrC9i1tTLt3Q9WqpT1KdFq7dm3QIUQNy4Xj7tPvZtOG\nTbz17VtBhxIV7H1Ren5WSaGqH+M0Zocveyns+dPA0173La1du+K3wDAmrwpJFejYqCN3Tr+TTs06\nUatKraBDMjEuoe703r0bqlULOgp/dO/ePegQooblIuTu/7ubq46/irtn3B10KIGz90Xp+XbjXiSI\niBYn/jZt4PXXoW1bH4MyJsrs2LuDE0adwLjLx3FO03OCDsdEARFBo6zRO+rEcxtGRkZG0CFEDctF\nSEZGBtUrVeeFi16g14e92JO1J+iQAmPvi9JLqAJj1674rZIypjCXHncpreu35vHPHw86FBPDEqpK\nqmZN+PFHqGVtfyYBbdyxkdajWzP7xtmcVO+koMMxAbIqKQ/iuUrKmKI0qN6Ax859jJ5TepJ9IDvo\ncEwMSpgCY/9+Z6pUKehI/GH1syGWi5C8ubjl5FuomFSRFxe8GExAAbL3ReklTIGRc3VhPVWZRFZO\nyvHypS/z8KcPs277uqJ3MCZMwrRh/PYbtG4Nv//uc1DGxIBHPn2EbzZ+w/vXvI/195l4rA2jCNZ+\nYUzIwI4DWbVlFe+ueDfoUEwMSZgCI95/Umv1syGWi5CCclGpfCXGXDqGvtP6si1zW2SDCoi9L0ov\nYQoMu8Iw5mAdG3fksmMvY9CsQUGHYmJEwrRhpKfDww+D/ZNhTMj2zO2cMOoEJl4xkTObnBl0OCZC\nrA2jCPFeJWVMSRxe+XBGdh7JrR/eyt79e4MOx0S5hCkw4r1KyupnQywXIV5y8beWf6NFnRb884t/\n+h9QgOx9UXpWYBhjeL7z87ww/wVWbCr1OGUmjiVMG8aoUbB8ufNojDnUqPmj+Peyf/PZTZ9RThLm\nf8mEZG0YRbDR9owp3G1/uY0DeoAx34wJOhQTpRKmwIj3Kimrnw2xXIQUJxflpBxjLh3D/en3s2HH\nBv+CCoi9L0rPCgxjTK4TjjiB2065jb4f9w06FBOFEqYNo3dvOO446NPH56CMiXGZ+zNpPbo1T5//\nNF1adAk6HOMDa8Mogl1hGONN5fKVefmSl+n9cW/+3Ptn0OGYKGIFRpyw+tkQy0VISXNxdsrZpDVL\n497Z95ZtQAGy90XpJVSBYXd6G+Pd0xc8zbsr3mXOujlBh2KiRMK0YZx3HgweDOef73NQxsSR/3z7\nHx759BEW9lpIxaSKQYdjyoi1YRQh3qukjPHDVcdfRUpyCkO/HBp0KCYKJFSBEc9VUlY/G2K5CClt\nLkSEUReP4tm5z/LDlh/KJqiA2Pui9BKmwLA7vY0pmcaHN+aBsx7g1im3EstV2Kb0fG3DEJE0YASQ\nBLyiqk/lWd8VuAcQYAdwu6ouddetBf4EsoEsVW2Xz/E9t2EceSTMnw8NG5b89RiTqLIPZNPh1Q70\nOqUXN598c9DhmFIqaRuGbwWGiCQB3wPnA+uB+cB1qroibJsOwHequt0tXB5S1fbuujXAKar6RyHn\n8FxgJCfDmjVQs2aJX5IxCW3Jb0u44M0LWHb7MuodVi/ocEwpRGOjdztgtaquVdUsYBJw0G2jqjpH\nVbe7s18DR+U5RrFfUEHifQAlq58NsVyElGUuWtdvzc1tb6bftH5ldsxIsvdF6flZYDQE1oXN/+ou\nK8jNwEdh8wrMEpEFItKzNIFkZYEqVKhQmqMYYx48+0EWbFjA1B+mBh2KCYCfVVJXAGmq2tOdvx44\nTVUP6c1JRM4BXgA6qupWd1kDVd0oInWBmUAfVf08z36eqqS2b4fGjZ1HY0zpzP5pNj0m9+DbO77l\nsIqHBR2OKYGSVkmV9yMY13qgUdh8I5yrjIOISCtgDE7hsjVnuapudB83ich7OFVcn+fdv3v37qSk\npACQnJxMmzZtSE1NBUKXoMcem0rVqqH5vOtt3uZt3vv8eanncU7KOXQf0Z3e7XoHHo/NFz2fkZHB\n2LFjAXK/L0tEVX2ZcAqjH4EUoCKwGGiZZ5vGwGqgfZ7lVYHq7vNqwJdAp3zOoV6sWqV69NGeNo1Z\n6enpQYcQNSwXIX7lYvOuzVpvaD2d9+s8X47vB3tfhLjfncX+XvetDUNV9wO9genAd8BbqrpCRHqJ\nSC93sweBmsCLIrJIROa5y+sDn4vIYpzG8A9VdUZJY4n3Bm9jIq121doM6zSMnlN6kpWdFXQ4JkIS\noi+pOXPgzjth7twIBGVMglBVOk/ozDkp5zDwjIFBh2OKIRp/Vhs14r1bEGOCICK8ePGLDP1qKD/+\n8WPQ4ZgISIgCIxG6Bclp4DKWi3B+56JpzaYMPmMwvT7sFfXdhtj7ovQSosCwnmqN8U+/9v3YmrmV\nN5e+GXQoxmcJ0Ybx2mvwxRfOozGm7C3cuJDOEzqz/Pbl1K1WN+hwTBGsDaMQiVAlZUyQTm5wMje0\nuoG7ZtwVdCjGRwlRYCRCo7fVz4ZYLkIimYuHUx/mi1++YPrq6RE7Z3HY+6L0EqLAsCsMY/xXrWI1\nRl88mtun3s6ufbuCDsf4ICHaMP7xD6hXD+6+OwJBGZPgrn/3ehoc1oChnWxY12hlbRiFSIQqKWOi\nxfALh/PG0jdYuHFh0KGYMlZggSEiV4jI38IeD5oiGWRpJUKVlNXPhlguQoLIxRHVjuDp85+m55Se\n7D+wP+LnL4i9L0qvsCuMS92pB/Aq0NWdXnGXxQy7D8OYyLqx9Y3UrFyTkV+PDDoUU4aKbMMQkZnA\njep2Ny4iDYBxqtopAvEVymsbxsUXwx13OI/GmMhY/cdq2r/Snvk959O0ZtOgwzFh/GzDaAT8Fjb/\nO0635DEjEaqkjIk2zWs15x+n/4M7Proj6rsNMd54KTBmAdNFpLuI3IQzjOpMf8MqW4nQ6G31syGW\ni5CgczGgwwA27NjAxOUTA40Dgs9FPPBSYPQBRgNtgFbAS5rPMKvRzK4wjAlGhaQKjLl0DANmDGDL\n7i1Bh2NKKSHuw2jaFGbPhqOPjkBQxphD9J/Wn+17t/N6l9eDDsXgQxuGiHzpPu4UkR15pj9LE2yk\nJUKVlDHR7NFzHuWTNZ/wyZpPgg7FlEKBBYaqdnQfD1PV6nmmGpELsfQSoUrK6mdDLBch0ZKL6pWq\nM+qiUfT6sBd7svYEEkO05CKWFdmGISLtRaRG2HwNETnN37DKjqrdh2FMNLj42Is5ucHJPPrZo0GH\nYkrIy30Yi4GTVfWAO58ELFDVthGIr1Be2jAyMyE52Xk0xgTrt52/0erFVsy6cRat6rUKOpyE5Wtf\nUjmFhfs8G0gq7omCkgjVUcbEivqH1eeJ857glsm3kH0gO+hwTDF5KTDWiEhfEakgIhVFpB/wk9+B\nlZVEafC2+tkQy0VINObi5rY3U6l8JV5bFNkhMKMxF7HGS4FxG9ARWA/8CrQHbvUzqLJkVxjGRBcR\nYWTaSB5If4BtmduCDscUQ9zfh7FwIdxyi/NojIkevab0omqFqjyb9mzQoSSckrZhlPdw4CrAzcDx\nQOWc5aoaEz3W2i+kjIlOj537GCeMOoFbT7mVlnVbBh2O8cBLldSbQD0gDfgUpzPCnX4GVZYSpUrK\n6mdDLBch0ZyLutXqct+Z99F/ev+IdE4YzbmIFV4KjOaq+gCwU1XHARcBMXMfRqI0ehsTi+449Q5+\n/fNXpvwwJehQjAdeCox97uN2ETkJSAbq+hdS2UqUKqnU1NSgQ4galouQaM9FhaQKjLhwBHdNv4vM\n/f7eLBXtuYgFXgqMMSJSC7gfmAx8Bzzta1RlKFGqpIyJVRc0u4ATjziRZ+dY43e0K7LAUNUxqvqH\nqn6qqk1Vta6qjvZycBFJE5GVIrJKRAbms76riCwRkaUi8qWItPK6r1eJUiVl9bMhlouQWMnFsE7D\nGDZnGOv/XO/bOWIlF9HM053eJeF2IfI8TmP58cB1IpL3pxA/AWepaivgUeDlYuzriV1hGBP9mtVq\nxq2n3Mqg2YOCDsUUwrcCA2gHrFbVtaqaBUwCuoRvoKpzVHW7O/s1cJTXfb1KlCsMq58NsVyExFIu\n7j3zXtLXpDNn3Rxfjh9LuYhWfhYYDYF1YfO/ussKcjPO8K8l2bdAidLobUysO6ziYTx5/pP0ndaX\nA6Hu60wU8XLjXm9ggqpudedrAtep6qgidvX8w2oROQfogdMFSbH27d69OykpKQAkJyfTpk2b3P8k\nMjIyWLUKWrQIzQMHrY+X+fD62WiIJ8j5nGXREk+Q84sXL6Z///5RE09R8w21IRXKVWDs4rEcvf3o\nMj3+iBEjDvl+CPr1Rmo+IyODsWPHAuR+X5aIqhY6AUvyWbbYw37tgWlh84OBgfls1wpYjXO/R3H3\n1aJ07ar65ptFbhbz0tPTgw4halguQmIxF/PXz9f6z9TXbXu2lelxYzEXfnG/O4v8/s87eRkPYxnQ\nWg8eD2Opqp5QxH7lge+B84ANwDycK5MVYds0Bj4BrlfVucXZ191Oi4r/r3+FG26Av/2t0M2MMVHk\nlsm3kFw5mWc6PRN0KHHJz/EwpgOTROQ8ETkfpwF6WlE7qep+oLe7/3fAW6q6QkR6iUgvd7MHgZrA\niyKySETmFbZvMV8bkDiN3sbEkyfOe4JxS8bx/ebvgw7FhPFyhZGE0535ee6imcAr6gykFCgvVxhn\nnglPPOE8xrOMjIzcustEZ7kIieVcDJ8znFk/zeKjrh8VvbEHsZyLsubbFYaqZqvqi6p6pTu9FA2F\nhVd2H4Yxsal3u978tPUnpv4wNehQjKvAKwwReVtVrxKR5Rz6qyVV52a7QHm5wmjRAt5/33k0xsSW\naaun0efjPiy/fTmVylcKOpy4UdIrjMIKjCNVdYOINAHyHlhV9ecSxFmmvBQYjRvDF184j8aY2HPp\nxEs5s/GZ3NPxnqBDiRtlXiWlqhvcp3eoc8d17gTcUcI4I27XrsRo9A6/ByHRWS5C4iEXwzsN5+kv\nn2bjjo2lOk485CJoXn4l1SmfZReVdSB+sTu9jYltx9Q+hpvb3szg2YODDiXhFVYldTvOlUQz4Mew\nVdWBL1W1q//hFa6oKqnsbKhQwXmUYl98GWOixY69O2jxQgvevfpdTjsqZsZvi1p+tGEcjnOPxJPA\nQELtGDtUdUtJAy1LRRUYO3dC/frOozEmto1bPI5RC0Yx5+Y5lBM/u8GLf360YWx32yyuBRoD57jt\nF+VEpGnJQ42cRKqOsvrZEMtFSDzl4obWNwDw5pI3S7R/POUiKEUW0yLyEHAPTn9OABWBCT7GVGbs\nHgxj4kc5KcfItJEMnj2YHXt3BB1OQvJyp/cSoC3wjaq2dZctjYX7ML79Fq6+2nk0xsSH7u93p161\nejx1wVNBhxKz/OxLam9Ox4PuiWLmR6qJVCVlTKL453n/5NVFr7Jqy6qgQ0k4XgqMt0XkJSBZRG4F\nZgOv+BtW2UiUezDA6mfDWS5C4jEXDao3YGDHgdw1465i7RePuYg0L31JDQX+607HAg+o6ki/AysL\ndoVhTHzq174f32/+no9XfRx0KAnFSxtGU+A3Vd3jzlcB6rm/mApUUW0Yb78Nb70F77wTwaCMMREx\n9Yep3DXjLpbdvoyKSRWDDiem+NmG8Q4Q3jvtAXdZ1LOxMIyJXxcfezHNajbjua+fCzqUhOGlwEhS\n1X05M6q6F6jgX0hlJ5GqpKx+NsRyERLvuXj2wmd58ssn+X3n70VuG++5iAQvBcZmEemSM+M+3+xf\nSGUnkRq9jUlEx9U5jm6tu3Hv7HuDDiUheGnDaI5zo96R7qJfgRtUdbXPsRWpqDaMRx6B/fudR2NM\nfNqeuZ0WL7RgynVT+MuRfwk6nJjg54h7q1X1NOB4oKWqdoiGwsKLRKqSMiZRHV75cB4/93H6ftyX\nov4BNqXjqQcvEbkEuB24S0QeFJEH/Q2rbCRSlZTVz4ZYLkISJRfd23Qn60AWE5YV3GtRouTCT176\nknoJuBroi9Nj7dVAE5/jKhN2hWFMYsjpZ2rQrEHs3GfdU/vFSxvGMlU9Kaf/KBE5DJimqmdEJsRC\nYyu0DePaa+Hyy51HY0z8u+G9G2hUoxFPnPdE0KFENT/vw9jjPu4WkYbAfqB+cU8UBLvCMCaxPHX+\nU7z8zcv8+MePRW9sis1LgTFFRGoCQ4FvgLXARD+DKiuJVGBY/WyI5SIk0XJxZPUjGdBhAANmDDhk\nXaLlwg9efiX1qKpuVdX/AilAC1V9wPfIykAiNXobYxx3driT5f9bzowfZwQdStwpsg0jmhXVhtG6\nNbzxhvNojEkck7+fzKBZg1hy2xIqJMVExxQR5WcbRsyyvqSMSUyXHnspjQ5vxAvzXwg6lLhSYIEh\nIh3dx8qRC6dsJdIQrVY/G2K5CEnUXIgIIy4cweOfP86mXZuAxM1FWSrsCiNnzIs5JT24iKSJyEoR\nWSUiA/NZ30JE5ohIpogMyLNurYgsFZFFIjKvJOdPpEZvY8zBWtZtyfUnXc99n9wXdChxo8A2DBH5\nGlgKdAEm4dy0l0NVtW+hBxZJAr4HzgfWA/OB61R1Rdg2dXFuArwc2Kqqw8LWrQFOUdU/CjlHoW0Y\nFSo4hUYFq8I0JiFty9xGi+db8FHXjzi5wclBhxM1/GjDuARnONY9OD+nzTsVpR2wWlXXqmoWTqHT\nJXwDVd2kqguArAKOUewXlCPLPaIVFsYkruTKyTx6zqPWz1QZKbDAcL/MJwFdVHWcqo4Nm8Z5OHZD\nYF3Y/K/uMq8UmCUiC0SkZzH2AxKvOsrqZ0MsFyGWC+jRtge7s3bz4Osx0QVeVCvvYZstIvIekNMV\nyGdAP1X9tYj9Slucd1TVjW611UwRWamqn+fdqHv37qSkpACQnJxMmzZtSE1NZdcuKF8+g4wMSE1N\nBUIfHpuP7/kc0RJPkPOLFy+OqniCmh/ZeSQX972Y0xudTucLOgceT6TnMzIyGDt2LEDu92VJeOlL\nahbOeBjj3UVdga6qekER+7UHHlLVNHd+MHBAVZ/KZ9shwM7wNgwv6wtrw1i9GtLSnEdjjPn7f/9O\ns5rNePTcR4MOJXB+3odRV1VfV9UsdxoLHOFhvwXAMSKSIiIVgWuAyQVse1DgIlJVRKq7z6sBnYBl\nHs6Zy+7BMMaEe/qCpxm1YBRrtq4JOpSY5aXA2CIiN4hIkoiUF5Hr8TBEq6ruB3oD04HvgLdUdYWI\n9BKRXgAiUl9E1gF3AveLyC9ub7j1gc9FZDHwNfChqhbrPv9EugcDrK46nOUixHIRsnrhau5sf2e+\n/UwZb7y0YfQAngOGu/NfATd5Obiqfgx8nGfZS2HPfwMa5bPrTqCNl3MUJNEavY0xRRvQYQDHjzqe\n2T/N5ryjzws6nJgTt31JTZ4Mr7ziPBpjTI53V7zLg+kPsvi2xZQv5+V/5vhjfUnlYVcYxpj8/LXF\nX6l/WH1enP9i0KHEnLguMBKp0dvqqkMsFyGWi5CcXIgI/0r7F49+9iibdxfZHGvCxG2BkWiN3sYY\n70444gSuPfFaHvgkJob2iRpe7sOoDFyBM3hSToWfquoj/oZWtMLaMJ56Cv74w3k0xpi8tu7ZSosX\nWjDj+hm0rp9Yg+b42YbxAXAZTn9PO91pV3FPFGmJViVljCmemlVq8nDqw/SdZv1MeeWlwGioqteo\n6tOqOixn8j2yUkq0Kimrqw6xXIRYLkLyy0XPk3uyPXM7b3/3duQDikFeCoyvRKSV75GUMfuVlDGm\nKEnlkhjZeSR3z7yb3Vm7gw4n6nlpw1gBNAfWAHvdxaqqgRcihbVh9OgBZ5zhPBpjTGGueecaWtZp\nyUOpDwUdSkSUtA3Dy10rnd3HnG/mEo9REUl790KlSkFHYYyJBUMvGErbl9pyU5ubaJLcJOhwolaR\nVVKquhZIxmn4vhQ43F0W1RKtwLC66hDLRYjlIqSwXDQ+vDF92/XlHzP/EbmAYlCRBYaI9MPp2rwu\nUA8YLyKFDs8aDfbtg4oVg47CGBMr7u54N/PXzyd9TXrQoUQtL20Yy4D2qrrLna8GzFXVkyIQX6EK\na8O48EK46y7n0RhjvHj727d59LNHWdhrYVz3M+V3X1IHCngetRKtSsoYU3pXHn8ltarU4uVvXg46\nlKjkpcB4HfhaRB4SkYeBucBr/oZVeolWYFhddYjlIsRyEeIlFyLCyM4jeSjjIf7Y84f/QcUYL43e\nw3HGv9gKbAG6q+qzfgdWWtaGYYwpiVb1WnHV8VfxYPqDQYcSdQpswxCRGqr6p4jUylnkPiqAqgZe\n/BbWhnHiiTBpkvNojDHFsWX3Flq+0JLZN87mpHqBN9eWOT/aMCa6jwuBb3DG6F7gPv+m2BFGWKJV\nSRljyk7tqrUZcvYQ+k3rZ/1MhSmwwFDVi93HFFVtmneKXIglk2hVUlZXHWK5CLFchBQ3F73+0ovN\nuzfz7op3/QkoBnm5D2O2l2XRxq4wjDGlUb5cef6V9i8GzBjAnqw9QYcTFQprw6gCVAXSgdSwVTWA\naarawvfoilBYG0bNmvDTT86jMcaU1JX/uZJW9Vrx4Nnx0whe0jaMwgqM/kA/4EhgQ9iqHcDLqvp8\nSQItS4UVGNWqwf/+Z2NiGGNKZ+22tZzy8iks6rWIxoc3DjqcMlHmjd6qOsJtq/hHnvaLVtFQWBQl\n0aqkrK46xHIRYrkIKWkuUpJT6H1qb+6eeXfZBhSDvNy4pyKSW7EjIjVF5A4fYyq17GxQhfLxe2e/\nMSaCBp4xkLm/ziVjbUbQoQTKS19SS1S1dZ5li1W1ja+ReVBQldTu3VC7NuyxdipjTBl557t3eOTT\nR+Kinyk/+5IqJyK524lIElChuCeKpH37Eqs6yhjjvytaXkGdqnUYvWB00KEExkuBMR2YJCLnicj5\nwCRgmr9hlU6itV+A1VWHs1yEWC5CSpuLnH6mHv70YTbt2lQ2QcUYLwXGQJyf1t4O3AbMAu7xM6jS\n2rs3sW7aM8ZExolHnMjfT/w7931yX9ChBKLINoxSHVwkDRgBJAGvqOpTeda3wOkNty1wn6oO87qv\nu02+bRirV0NamvNojDFlaVvmNlo834Kpf5/KKUeeEnQ4JeJbG4aIHCsi74jIdyKyxp1+8rBfEvA8\nkAYcD1wnIi3zbLYF6AM8U4J9C5SIVVLGmMhIrpzM4+c+Tp+P+3BAY2J4oDLjdTyM0cB+4BxgHDDB\nw37tgNWqulZVs3DaPrqEb6Cqm1R1AZBV3H0Lk4hVUlZXHWK5CLFchJRlLm5qexNZB7KYsNTLV2H8\n8FJgVFHVWTjVV2tV9SHgYg/7NQTWhc3/6i7zojT72q+kjDG+KifleK7zcwyaPYg/9/4ZdDgR4+XH\nxJluFdFqEemN002Ilw43StM44nnf7t27k5KSAkBycjJt2rRBJJVKlUL/UaSmpgLxPZ+amhpV8dh8\n9MzniJZ4gprPWVZWx8tcnclJu0/isc8e4+kLng789RU2n5GRwdixYwFyvy9LwsuNe6cCK4Fk4FGc\nzgefVtW5RezXHnhIVdPc+cHAgQIar4cAO3Mavb3uW1Cj94wZMHQozJxZ6EszxphS+W3nb5w46kS+\n7PElx9U5LuhwPPOl0du9srhGVXeo6jpV7a6qfyuqsHAtAI4RkRQRqQhcA0wu6FSl2PcQidjonfe/\nyURmuQixXIT4kYv6h9Vn8BmDE2agpUILDFXNBs4QkWKXRKq6H+iNc+Pfd8BbqrpCRHqJSC8AEakv\nIuuAO4H7ReQXETmsoH29ntvaMIwxkdLntD78vP1npvwwJehQfOelSmo0ThfnbwO73cWqqoEPQ1VQ\nldS//w1TpsDEifnsZIwxZWzmjzO5beptfHvHt1QuXznocIrkZ19SlXHulzgXuMSdLi3uiSIpEauk\njDHBuaDZBbSq14phXw0reuMYVmCBISI5DcwfqepNeacIxVciiVglZXXVIZaLEMtFiN+5GN5pOMPn\nDmfd9nVFbxyjCrvCuNhtuxgcqWDKil1hGGMirWnNpvzfqf8X1wMtFTZE61CgJ3AYkHdkCVXVGj7H\nVqSC2jCGDoXff4dnnslnJ2OM8cnurN20fKEl4y4fR2pKatDhFMiPIVrvVtVknCqp6nmmwAuLwiRi\nlZQxJnhVK1RlWKdh9P24L/sP7A86nDJXZKO3ql4WiUDKUiJWSVlddYjlIsRyERKpXMTzQEtefiUV\ncxKx80FjTHSI54GWfB0Pw28FtWH07w9NmsCddwYQlDHGAP0+7kfm/kxeuvSloEM5hJ/jYfTzsiya\nWBuGMSZoD5/zMB98/wHfbPgm6FDKjJcqqe75LIvq+zASsUrK6qpDLBchlouQSOciuXIyj537GH0+\n7hM3/UwVduPedSIyBWgqIlPCpgycO7+jViI2ehtjok+Ptj3IOpDF+KXjgw6lTBR2H0YToCnwJDCQ\nUI+yfwLiz2DNAAAbmElEQVRL3Q4CA1VQG8bVV8OVVzqPxhgTpLm/zuWK/1zBiv9bQY1K0XFHgh9t\nGH/D6WzwTFX9VFUz3GlhNBQWhUnEKiljTHRqf1R7Ljj6Ah777LGgQym1wgqMo4ARwP9E5DMReUJE\nLhGRWhGKrcQSsUrK6qpDLBchlouQIHPx5PlP8tqi1/h+8/eBxVAWCrvTe4Cqng7Ux+lP6g+gB/Ct\niHgemyII9ispY0w0iZeBlrz8SqoKzrCsh7vTBsDLiHuBScQqqfBxixOd5SLEchESdC7iYaCl8gWt\nEJExwPHADmAe8BUwXFW3Rii2EkvEKiljTHSrmFSRf6X9i9un3k6nZp1iYqClvAq7wmgMVAJ+A9a7\n07ZIBFVaiVhgWF11iOUixHIREg256NSsU0wPtFRYG8aFQDtgGKDAXcACEZkhIo9EKL4S2bcv8aqk\njDGxIZYHWvLUl5SINAJOBzriDNFaW1UP9zm2IhV0H0ZKCqSnQ9OmkY/JGGOK8mD6g/yw5QcmXTkp\nkPOX+X0YItJPRN4SkV+AT3HG8V4B/BWI6p/WJmKVlDEmdgw6YxBzfp1DxtqMoEMplsLaMFKA/wDt\nVfVoVb1eVV9U1SWqmh2Z8EomEaukoqF+NlpYLkIsFyHRlIuqFaryzAXPxNxASwX+SkpVY7Zz8MxM\nqBx7P0CIWs7Q7sZERizfp1AcVx5/JS8ueJHRC0bTu13voMPxJO7Gw1CFpCTYvx/KxeXwUJHn1ncG\nHYZJAIn2Xlv+v+WcO+5cvvu/76hTtU7EzuvbeBixJjPTqY6ywsIYE+1OPOJErjvxOu6bfV/QoXgS\nd1+ru3dD1apBRxF50VQ/a0w0itbPSCwNtBR3BcaePYlZYBhjYlMsDbQUdwVGol5hBN1PjjHRLpo/\nI7Ey0JKvBYaIpInIShFZJSIDC9hmpLt+iYi0DVu+VkSWisgiEZnn9ZyJWmCYyLv//vupW7cuRx55\npO/nmjBhAhdeeKHv5ynK2rVrKVeuHAcOHAg6lLhSTsrxXOfnGDR7EDv27gg6nAL5VmCISBLwPJCG\n04nhdSLSMs82FwHNVfUY4FbgxbDVCqSqaltVbef1vIlaYERr/Ww0SUtLY8iQIYcs/+CDD2jQoEGx\nvgR/+eUXhg8fzsqVK9mwYUNZhpnvl3LXrl2ZPn16mZ7Hi5SUFD755JOIn9cP0f4ZyRlo6dHPHg06\nlAL5eYXRDlitqmtVNQuYBHTJs81lwDgAVf0aSBaRemHri/2zr927oUqVEkZs4lr37t0ZP/7QS/43\n33yT66+/nnLF+GndL7/8Qu3ataldu3a+6/fvL/3NWNFQn+3nz1zLIkfxJtoHWvKzwGgIhPeu9au7\nzOs2CswSkQUi0tPrSRO10Tua62f99OOPP1K7dm0WLVoEwIYNG6hbty6fffbZIdt26dKFLVu28Pnn\nn+cu27p1K1OnTuXGG28E4KOPPuKEE06gRo0aHHXUUQwbdmivorNmzaJTp05s2LCB6tWr06NHD37+\n+WfKlSvHa6+9RpMmTTj//PMBuOqqq2jQoAHJycmcffbZfPfdd7nH2bNnDwMGDCAlJYXk5GTOOuss\nMjMzOeusswBITk6mRo0azJ07l7Fjx3LmmWfm7vvVV19x6qmnkpycTLt27ZgzZ07uutTUVB588EHO\nOOMMatSowYUXXsiWLVsKzOGHH35ImzZtqFmzJh07dmTZsmUA3HDDDfzyyy9ceumlVK9enWeeeSZ3\nn/Hjx9OkSRPq1q3LE088kbtcVXnyySdp3rw5derU4ZprrmHrVmdEhJwrp7w5ipRY+IzkDLTUf3r/\nqPiH4RCq6ssEXAGMCZu/HnguzzZTgI5h87OAk93nR7qPdYHFOGOL5z2H5jVpkurVVx+y2JRCfnmO\nJmPGjNHjjz9ed+/erZ06ddK77767wG179uypt9xyS+786NGjtW3btrnz9evX1y+++EJVVbdt26YL\nFy7M9zgZGRl61FFH5c6vWbNGRUS7deumu3fv1szMTFVVff3113Xnzp26b98+7d+/v7Zp0yZ3nzvu\nuEPPOecc3bBhg2ZnZ+ucOXN07969unbtWhURzc7Ozt329ddf1zPOOENVVbds2aLJyck6fvx4zc7O\n1okTJ2rNmjX1jz/+UFXVs88+W5s3b66rVq3SPXv2aGpqqg4aNCjf17Fw4UI94ogjdN68eXrgwAEd\nN26cpqSk6L59+1RVNSUlRWfPnn3I67z11ls1MzNTlyxZopUqVdKVK1eqquqIESO0Q4cOun79et23\nb5/26tVLr7vuukJzFC7a32uRsHf/Xm3xfAv9YOUHvp3DzXPxv9dLspOnA0N7YFrY/GBgYJ5tRgPX\nhs2vBOrlc6whwIB8lmu3bt10yJAhOmTIEH322Wf1nnvStXt3Jynp6emanp6em6R4ns957sfxvXyI\nnXvsSzeVxmWXXaYnnniitm7dOvfLLj9ffPGFJicn6969e1VV9fTTT9cRI0bkrm/cuLG+9NJLun37\n9kLPl56enm+BsWbNmgL32bp1q4qI/vnnn5qdna1VqlTRpUuXHrJdzrEKKjDeeOMNPe200w7ap0OH\nDjp27FhVVU1NTdXHH388d92oUaM0LS0t35huu+02feCBBw5adtxxx+lnn32mqgUXGOvXr89d1q5d\nO33rrbdUVbVFixYHbb9hwwatUKGCZmdne8pR+HutrN/Pzz77bNR8Xouan756ujbo3UCnz5peJsdL\nT0/Xbt265X5fRmOBUR74EacTw4ruVULLPNtcBHykoQJmrvu8KlDdfV4N+BLolM85NK/nn1e9445D\nFse98DdKWYuF//omT56sIqKvvPJKkds2b95cJ02apKtXr9YKFSro//73v9x18+fP1y5dumjNmjX1\n7LPP1jlz5uR7jIIKjP379+cuy87O1oEDB2qzZs20Ro0ampycrCKiP/30k/7+++8qIrpr165Djl1U\ngfHkk0/qVVddddA+1157rT7xxBOq6hQYr776ar775tW5c2etWrWqJicn507VqlXTSZMmqWrBBUZ4\nbOHnq1KlSu5rzZmqVKmiGzZsyDdHefn5XvPzM+KHyyddro99+pgvxy5pgeFbG4aq7gd6A9OB74C3\nVHWFiPQSkV7uNh8BP4nIauAl4A539/rA5yKyGPga+FBVZ3g5b6L+SioW6mf9snPnTvr3788tt9zC\nkCFDcuvMC3LjjTfyxhtvMH78eNLS0qhbt27uur/85S+8//77bNq0icsvv5yrr766WLGEd9Q4YcIE\nJk+ezOzZs9m+fTtr1qwBnH/S6tSpQ+XKlVm9enWhx8hPw4YN+fnnnw9a9vPPP9OwYd4mwqI1btyY\n++67j61bt+ZOO3fu5JprrvEUS37HmzZt2kHH2717Nw0aNMjdJqjOLGPtM5Iz0NIv238JOpRcvt6H\noaofq+pxqtpcVf/pLntJVV8K26a3u761qi50l/2kqm3c6cScfb3Ys8d+JZVo+vXrR7t27Xj55Ze5\n+OKLue222wrd/sYbb2TmzJm88sordOvWLXd5VlYWEyZMYPv27SQlJVG9enWSkpJKHNfOnTupVKkS\ntWrVYteuXdx7772568qVK0ePHj2466672LhxI9nZ2cyZM4d9+/ZRt25dypUrx48//pjvcTt37swP\nP/zAxIkT2b9/P2+99RYrV67kkksuyd3G+SeyaD179mT06NHMmzcPVWXXrl1MnTqVnTt3AlCvXr0C\n48jPbbfdxr333ssvvzhfcps2bWLy5Mme9zchTWs2pU+7Pvxjxj+CDiWX3ekdJ6L9N+Z++eCDD5gx\nYwYvvujcwjN8+HAWLlzIxIkTC9ynSZMmdOzYkd27d3PZZZcdtG78+PE0bdqUww8/nJdffpkJEyYU\neJy8/ynnnb/xxhtp0qQJDRs25MQTT6RDhw4HbfPMM89w0kknceqpp1K7dm0GDx6MqlK1alXuu+8+\nOnbsSK1atfj6668Rkdx9a9euzYcffsiwYcOoU6cOzzzzDB9++CG1atXKN5bwffM65ZRTGDNmDL17\n96ZWrVocc8wxvPHGG7nrBw8ezGOPPUbNmjUZPnx4vq8zXL9+/bjsssvo1KkTNWrUoEOHDsybF7rv\nNsiu8mPxMzKw40DmrZ/H7J9mBx0KEIfdm/ftC82bO4+JJCMjw7dL7kTrctoEx8/3mp+fET+9t+I9\n7k+/n8W9FlMhqUKZHNO6N3cl6hVGLH4QjImkWP2MXN7ichpWb8jz854POpT4KzAS9cY9Y0x8EhFG\ndh7J458/zm87fws0lrgrMBK1a5BYrJ81JpJi+TPSok4LbmpzE4NmDQo0jrgsMOwKwxgTbx44+wFm\n/jSTOevmFL2xT6zAiBOxWj9rTKTE+mekRqUaPHX+U/T+uDfZB7IDicEKDGOMiRFdT+pKlfJVeHXR\nq4GcP+4KjERt9I7l+lljIiEePiMiwvMXPc8D6Q/wx54/In7+uCsw7ArDGBPP2tRvwxUtr+CBTx6I\n+LnjssBIxF9JxXr9bCyyIVpjSzx9Rh479zHeWfEOi39bHNHzxl2BYX1JmYLYEK3FF09DtMaTWlVq\n8UjqI/T5uE9Ee2GIuwIjMzMxC4x4qJ/1mw3RWnzxNERrvH1Gbjn5FnZn7ebfy/4dsXPGVYGxfz8c\nOADlywcdiYmUoUOHcuWVVx60rG/fvvTv3/+QbW2I1vwlyhCt8SapXBLPd36ee2bdw469OyJz0pIM\nohEtE3kGW9m5U7Vq1QLHDDEllDfP0WTjxo1arVo13bZtm6qqZmVl6RFHHFHg0Ko2ROvBbIjW2Nft\nvW5694yChyXOD9E24l4kprxvrs2bVWvVKlbejAdePsQ8RKmnkkpLS9MxY8aoquqUKVP0hBNOKHBb\nG6L1YNE8RKvxZuOOjVr7qdq6YtMKz/uUtMCIq8qbvXuhUqWgowhG0F0365Dg6tu7devG6NGjueWW\nWxg/fjw33HBDgdt27NiROnXq8N577/GXv/yF+fPn8/777+eu/+9//8tjjz3GoEGDaNWqFU8++STt\n27f3HEujRo1ynx84cIB7772Xd955h02bNuW2kWzevJk9e/aQmZlJs2bNiv16N2zYQOPGjQ9a1qRJ\nk4Ma3+vXr5/7vEqVKrkDIuX1888/88Ybb/Dcc8/lLsvKyiqyIT/8+FWrVs09/s8//8xf//rXg9qD\nypcvz++//547H56jSAr6M+KX+ofV574z76Pvx32Zfv10X8ccias2jMxMqFw56ChMpHXp0oWlS5ey\nfPlypk6dSteuXQvd3oZoDUmkIVrjWe92vVm/Yz3vr3y/6I1LwQqMOBGP/zl5VaVKFa644gr+/ve/\nc9ppp3HUUUcVur0N0RqSSEO0xvNnpEJSBf6V9i8GzBhAVnaWb+exAsPEhW7durF8+fJCq6Ny2BCt\nIYk0RGu8O//o8zm65tG8vvh1384RV0O0fvUVDBgAc4Lr/TcwiT5E67p162jRogW///47hx12WNDh\nmBKyIVpLZ866OVzzzjWs6rOKSuULbtC1IVqxK4xEdeDAAYYNG8Z1111nhYVJaB0adeCkeicxZuEY\nX44fV1cYb78NEybA+/62+yScaL7C2LVrF/Xq1aNp06ZMmzatRA2/JnpE83stVnyz4RsunXgpq/uu\npmqF/HtitSsMYOlSaNUq6ChMJFWrVo2dO3eybNkyKyyMAU458hTaH9WeF+e/WObHjqsCY/FiaNMm\n6CiCEW/95BhT1hLpM/Jw6sM8/dXT7NyX//03JWUFhjHGxJmT6p3EuU3P5bmvnyt642KImzaMzZuh\nWTPYuhWK0emo8cDqlU2k2Hut7Hy/+XvOeP0MVvVZRXLl5IPWlbQNI266BlmyBFq3tsLCL/b7eWNi\ny3F1juOSYy9h6JdDefy8x8vkmL5+vYpImoisFJFVIjKwgG1GuuuXiEjb4uwbrkMHCLvfKOH4WT9b\nkk7KgpzS09MDjyFapljMhV8SqQ0jx8OpDzP6m9Fs3LGxTI7nW4EhIknA80AacDxwnYi0zLPNRUBz\nVT0GuBV40eu+eVWtCikpZf0qYsfixZEdqjGaWS5CLBchiZiLxoc3pnvr7jyY/mCZHM/PK4x2wGpV\nXauqWcAkoEuebS4DxgGo6tdAsojU97ivCbNt27agQ4galosQy0VIoubivrPu49OfP2XE3BGlPpaf\nBUZDYF3Y/K/uMi/bHOlhX2OMMUWoVaUWM2+YyfPznuenrT+V6lh+Nnp7rYy01tQysHbt2qBDiBqW\nixDLRUgi56JJchOW37GcyuVL13eSbz+rFZH2wEOqmubODwYOqOpTYduMBjJUdZI7vxI4G2ha1L7u\ncvv9nTHGlIBG2c9qFwDHiEgKsAG4BrguzzaTgd7AJLeA2aaqv4vIFg/7lugFG2OMKRnfCgxV3S8i\nvYHpQBLwqqquEJFe7vqXVPUjEblIRFYDu4CbCtvXr1iNMcYULabv9DbGGBM5MXFfdGluAIw3ReVC\nRLq6OVgqIl+KSNz23+v15k4ROVVE9ovI3yIZXyR5/IykisgiEVkuIhkRDjFiPHxG6ojINBFZ7Oai\newBh+k5EXhOR30VkWSHbFO97M+i7Oj3c9ZkErAZSgArAYqBlnm0uAj5yn58GzA067gBz0QE43H2e\nlsi5CNvuE+BD4Iqg4w7wfZEMfAsc5c7XCTruAHPxEPDPnDwAW4DyQcfuQy7OBNoCywpYX+zvzVi4\nwijpDYD1IhtmRBSZC1Wdo6rb3dmvgaMiHGOkeL25sw/wDrApksFFmJdc/B34r6r+CqCqmyMcY6R4\nycVGoIb7vAawRVX3RzDGiFDVz4GthWxS7O/NWCgwSnoDYDx+UXrJRbibgY98jSg4ReZCRBrifFnk\njCQTrw12Xt4XxwC1RCRdRBaIyA0Riy6yvORiDHCCiGwAlgD9IhRbtCn292Ys9FZb0hsA4/HLwfNr\nEpFzgB5AR//CCZSXXIwABqmqitPdbrz+DNtLLioAJwPnAVWBOSIyV1VX+RpZ5HnJxb3AYlVNFZFm\nwEwRaa2qO3yOLRoV63szFgqM9UCjsPlGOCVhYdsc5S6LN15ygdvQPQZIU9XCLkljmZdcnIJzjw84\nddWdRSRLVSdHJsSI8ZKLdcBmVd0D7BGRz4DWQLwVGF5ycTrwOICq/igia4DjcO4dSyTF/t6MhSqp\n3BsARaQizk18eT/wk4EbIfcO822q+ntkw4yIInMhIo2Bd4HrVXV1ADFGSpG5UNWjVbWpqjbFace4\nPQ4LC/D2GfkAOENEkkSkKk4j53cRjjMSvORiJXA+gFtnfxxQuk6WYlOxvzej/gpDS3EDYLzxkgvg\nQaAm8KL7n3WWqrYLKma/eMxFQvD4GVkpItOApcABYIyqxl2B4fF98QTwuogswfmn+R5V/SOwoH0i\nIhNxulqqIyLrgCE4VZMl/t60G/eMMcZ4EgtVUsYYY6KAFRjGGGM8sQLDGGOMJ1ZgGGOM8cQKDGOM\nMZ5YgWGMMcYTKzBMsYnIsyLSL2x+uoiMCZsfJiJ3ikgTETlkpMSw7Ya63Us/VdA2xYipv4hUCZuf\nKiI1CtunlOerKyJfi8g3ItIxz7oxItLSr3OXFRHpLiLPFWP71iLSOWz+IREZ4E90JhpZgWFK4guc\n7hUQkXJAbeD4sPUdgC9xxmb/eyHH6QmcpKoHjVkgIkkliKkfTh9JAKjqxar6ZwmO49V5wFJVPUVV\nvwxfoao91acRIkWkLG+2Le5NWG1xusQu6f4Hcd87JobYH8yUxBycQgHgBGA5sENEkkWkEtASWAQ8\nCZzpDtpzUI+gIjIZOAxYKCJXi8hYERktInOBp9xBj74SkYXiDAR1rLtfkog8IyLL3EFfeotIH+BI\nIF1EZrvbrRWRWu7zu9ztl+XE4XYdsUJEXnavcqaLSOW8L9Td7hP3XLNEpJGItAGeArq4r61ynn0y\nRORkESnnvq5l4gxo1d9d30ZE5rrHfFdEksP2G+Eec5mInOouf0hE3hSRL4Bx7pXbQTG52+XkcL6I\nfC8iF7vLPxWR1mHxfSGFDKwlItXEGXznazf/l4lIBeAR4Bo3vqvdzY8XpwfcH92/Q84xrnf3X+TG\nVM5dvtP9+y0G2hcUg4lSQQ/yYVNsTjh97zQCbgV64XyZdMbpHfczd5uzgSmFHGNH2PPXcfq2yel9\noDqQ5D4/H3jHfX478B+gnDtf031cA9QKO94aoBZOB4RLgSpANZzCrQ3OADtZQCt3+7eArvnEOAW4\nwX1+E/Ce+7wbMLKA15WO0zPsKcCMsOU13MelwJnu84eBZ8P2e8l9fibuwDc4A/7MByoVEdNYQgPi\nNMfpcLASTn9BOec4FpjvPu8OPJdP/E/k5AJn4KXvca7eDnrNblxf4nQ3URvYjNMdR0v3b5nz9xsV\nFu8B4Mqg3782lWyyKwxTUl/hVEudjnPFMcd93gGnygqK35342+p+q+B8Ub0jzvCSwwlVeZ2H86V6\nAEAL741XgDOAd1V1j6ruwumY8Uyc6pQ1qrrU3fYbnEIkr/bAv93n493j5Ry7qNf3I3C0OMNgXohz\nFXY4zoiIn7vbjAPOCttnovu6PgdquNsrMFlV9xYRk+IUpqjT8eRPOB3rvQ1c4lZn9cApnAvTCRgk\nIotwCrFKQON8XrMCH6pqlqpuAf4H1Mf5G50CLHCPcS5O9SRANvDfIs5volTUdz5ootaXOFcTJwHL\ncP6b/QewHXithMfcHfb8UWC2qv5VRFJwvrhyFKcg0jzbC6G6971hy7NxrkLyU6JxNFR1m1sVdCFw\nG3A1cGcxj50T6+48y73GpKq6R0RmApcDV+Fc/YQfOz9/0zxjZYjIaflsty/seTah75RxqnpvPttn\nhv1TYGKMXWGYkvoKuARneEt1/9NPxrnC+Mrd5k+cqqWSqAFscJ93D1s+E+iV0zAuIjXd5TsIDbuZ\nQ4HPgctFpIqIVMP50vwc71+4XwHXus+7Ap953E9EpDZOtcy7wANAW3Ua4reKSM5VwQ1ARs4+ON1x\n467f5m6fN9aCYhLgKnE0A47GqU4CeAUYCczT0BC+BeVgOtA37IW0dZ/uoOi/pwKzgStFpK67fy1x\nut03Mc4KDFNSy3HqreeGLVuK8yX3R9h8togsztvo7cr7n2b4/NPAP0VkIU69eM66V4BfgKVuw2nO\nz3ZfBqblNHrnHlB1EU7d/jw31jGqusTD+XP0AW4SpyvsroSG89QCtg8/VkOchvhFwJvAYHddN2Co\ne8xWOO0/Oftkuq95FM4Qu/mdq7CYfnFf60dAL1Xd5+ZhIc7VX3h1VEGv4VGggttQvxynnQWcq7zj\n8zR6H7K/Or8Qux+Y4cY4A6eqKt/tTeyw7s2NiRIikg4McL/cS7L/6zg/Mng3n3VHAumqelwpwzQJ\nzK4wjIlzInIjztVVfm0KxnhmVxjGGGM8sSsMY4wxnliBYYwxxhMrMIwxxnhiBYYxxhhPrMAwxhjj\niRUYxhhjPPl/ptoLDFmMWJUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7890240>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The composited extract is 135.05 kg\n",
+ "\n",
+ "The acid content is 13.01 kg\n",
+ "\n",
+ "\n",
+ "\n",
+ "150.0 kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter6_2.ipynb b/Mass_-_Transfer_Operations/Chapter6_2.ipynb
new file mode 100755
index 00000000..d9b08193
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter6_2.ipynb
@@ -0,0 +1,1059 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ce06499e0802b1a354db3b54c156495e1f9e00501c129efee55c325fbd5e394e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6: Equipment For Gas-Liquid Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.1: Page 145"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.1\n",
+ "# Page: 145\n",
+ "\n",
+ "print'Illustration 6.1 - Page: 145\\n\\n'\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# w = Gas flow rate per orifice\n",
+ "w = 0.055/50;# [kg/s]\n",
+ "L = 8*10**(-4);# [liquid flow rate, cubic m/s]\n",
+ "d = 0.003;# [diameter of the orifice,m]\n",
+ "viscocity_gas = 1.8*10**(-5);# [kg/m.s]\n",
+ "#******#\n",
+ "\n",
+ "Re = 4*w/(math.pi*d*viscocity_gas);\n",
+ "Dp = 0.0071*Re**(-0.05);# [m]\n",
+ "h = 3.0;# [height of vessel,m]\n",
+ "P_atm = 101.3;# [kN/square m]\n",
+ "Density_water = 1000.0;# [kg/cubic m]\n",
+ "g = 9.81;# [m/s^2]\n",
+ "Temp = 273+25;# [K]\n",
+ "P_orifice = P_atm+(h*Density_water*g/1000);# [kN/square m]\n",
+ "P_avg = P_atm+((h/2.0)*Density_water*g/1000);# [kN/square m]\n",
+ "Density_gas = (29/22.41)*(273.0/Temp)*(P_avg/P_atm);# [kg/cubic m]\n",
+ "D = 1.0;# [dia of vessel,m]\n",
+ "Area = (math.pi*D**2)/4;# [square m]\n",
+ "Vg = 0.055/(Area*Density_gas);# [m/s]\n",
+ "Vl = L/Area;# [m/s]\n",
+ "sigma = 0.072;# [N/m]\n",
+ "# From fig. 6.2 (Pg 143)\n",
+ "abscissa = 0.0516;# [m/s]\n",
+ "Vg_by_Vs = 0.11;\n",
+ "Vs = Vg/Vg_by_Vs;# [m/s]\n",
+ "def f6(shi_g):\n",
+ " return Vs-(Vg/shi_g)+(Vl/(1-shi_g)) \n",
+ "shi_g = fsolve(f6,0.5);\n",
+ "dp = ((Dp**3)*(P_orifice/P_avg))**(1.0/3);# [bubble diameter,m]\n",
+ "# From eqn. 6.9\n",
+ "a = 6.0*shi_g/dp;# [specific interfacial area,square m]\n",
+ "print\"The Specific Interfacial Area is \",round(a,2),\" square m/cubic m\\n\"\n",
+ "\n",
+ "# For diffsion of Cl2 in H20\n",
+ "Dl = 1.44*10**(-9);# [square m/s]\n",
+ "viscocity_water = 8.937*10**(-4);# [kg/m.s]\n",
+ "Reg = dp*Vs*Density_water/viscocity_water;\n",
+ "Scl = viscocity_water/(Density_water*Dl);\n",
+ "# From Eqn.6.11\n",
+ "Shl = 2+(0.0187*(Reg**0.779)*(Scl**0.546)*(dp*(g**(1.0/3))/(Dl**(2.0/3)))**0.116);\n",
+ "# For dilute soln. of Cl2 in H20\n",
+ "c = 1000/18.02;# [kmol/cubic m]\n",
+ "Fl = (c*Dl*Shl)/dp;# [kmol/square m.s]\n",
+ "print\"Mass Transfer coeffecient is \",round(Fl,5),\" kmol/square m.s\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.1 - Page: 145\n",
+ "\n",
+ "\n",
+ "The Specific Interfacial Area is 148.13 square m/cubic m\n",
+ "\n",
+ "Mass Transfer coeffecient is 0.01335 kmol/square m.s\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.2: Page 157"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.2\n",
+ "# Page: 157\n",
+ "\n",
+ "print'Illustration 6.2 - Page: 157\\n\\n'\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = N2 b = H2O\n",
+ "L = 9.5*10**(-4);# [cubic m/s]\n",
+ "G = 0.061;# [kg/s]\n",
+ "Temp = 273.0+25;# [K]\n",
+ "#*****#\n",
+ "\n",
+ "print\"Construction Arrangement\\n\"\n",
+ "print\"Use 4 vertical wall baffles, 100 mm wide at 90 degree intervals.\\n\"\n",
+ "print\"Use a 305 mm dameter, a six bladed disk flat blade turbine impeller, arranged axially, 300 mm from the bottom of vessel\\n\"\n",
+ "print\"The sparger underneath the impeller will be in the form of a 240 mm dameter ring made of 12.7 mm tubing drilled in the top with 3.18 mm dia holes\\n\"\n",
+ "Di = 0.305;# [m]\n",
+ "Do = 0.00316;# [m]\n",
+ "viscocity_a = 1.8*10**(-5);# [kg/m.s]\n",
+ "Re_g = 35000;\n",
+ "Ma = 28.02;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# w = Gas flow rate per orifice\n",
+ "w = Re_g*math.pi*Do*viscocity_a/4.0;# [kg/s]\n",
+ "N_holes = G/w;\n",
+ "Interval = math.pi*240/round(N_holes);\n",
+ "print\"The number of holes is \",round(N_holes),\" at approx \",round(Interval),\" mm interval around the sparger ring\\n\"\n",
+ "\n",
+ "viscocity_b = 8.9*10**(-4);# [kg/m.s]\n",
+ "Sigma = 0.072;# [N/m]\n",
+ "Density_b = 1000.0;# [kg/cubic m]\n",
+ "D = 1.0;# [dia of vessel,m]\n",
+ "g = 9.81;# [m/s**2]\n",
+ "# From Eqn. 6.18\n",
+ "def f7(N):\n",
+ " return (N*Di/(Sigma*g/Density_b)**0.25)-1.22-(1.25*D/Di)\n",
+ "N_min = fsolve(f7,2);# [r/s]\n",
+ "N = 5.0;# [r/s]\n",
+ "Re_l = ((Di**2)*N*Density_b/viscocity_b);\n",
+ "# From fig 6.5 (Pg 152)\n",
+ "Po = 5.0;\n",
+ "P = Po*Density_b*(N**3)*(Di**5);\n",
+ "h = 0.7;# [m]\n",
+ "P_atm = 101.33;# [kN/square m]\n",
+ "P_gas = P_atm+(h*Density_b*g/1000.0);# [kN/square m]\n",
+ "Qg = (G/Ma)*22.41*(Temp/273.0)*(P_atm/P_gas);# [cubic m/s]\n",
+ "# From Fig.6.7 (Pg 155)\n",
+ "abcissa = Qg/(N*(Di**3));\n",
+ "# abcissa is off scale\n",
+ "Pg_by_P = 0.43;\n",
+ "Pg = 0.43*P;# [W]\n",
+ "Vg = Qg/(math.pi*(D**2)/4);# [superficial gas velocity,m/s]\n",
+ "check_value = (Re_l**0.7)*((N*Di/Vg)**0.3);\n",
+ "vl = math.pi*(D**2)/4;# [cubic m]\n",
+ "# Since value<30000\n",
+ "# From Eqn. 6.21, Eqn.6.23 & Eqn. 6.24\n",
+ "K = 2.25;\n",
+ "m = 0.4;\n",
+ "Vt = 0.250;# [m/s]\n",
+ "shi = 1.0;\n",
+ "err = 1.0;\n",
+ "while (err>10**(-3)):\n",
+ " a = 1.44*((Pg/vl)**0.4)*((Density_b/(Sigma**3))**0.2)*((Vg/Vt)**0.5);# [square m/cubic m]\n",
+ " shin = (0.24*K*((viscocity_a/viscocity_b)**0.25)*((Vg/Vt)**0.5))**(1.0/(1-m));\n",
+ " Dp = K*((vl/Pg)**0.4)*((Sigma**3/Density_b)**0.2)*(shin**m)*((viscocity_a/viscocity_b)**0.25);# [m]\n",
+ " err = abs(shi-shin);\n",
+ " Vt = Vt-0.002;# [m/s]\n",
+ " shi = shin;\n",
+ "\n",
+ "\n",
+ "# For N2 in H2\n",
+ "Dl = 1.9*10**(-9);# [square m/s]\n",
+ "Ra = 1.514*10**(6);\n",
+ "# By Eqn. 6.25\n",
+ "Shl = 2.0+(0.31*(Ra**(1.0/3)));\n",
+ "# For dilute soln.\n",
+ "c = 1000.0/Mb;# [kmol/cubic m]\n",
+ "Fl = Shl*c*Dl*1.0/Dp;# [kmol/square m.s]\n",
+ "print\"The average gas-bubble diameter is \",(\"{:.2e}\".format(Dp)),\" m\\n\",\n",
+ "print\"Gas Holdup:\\n\",round(shi,5)\n",
+ "print\"Interfacial area:\",round(a,4),\" square m/cubic m \\n\"\n",
+ "print\"Mass transfer coffecient:\",(\"{:.2e}\".format(Fl)),\"kmol/square m.s\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.2 - Page: 157\n",
+ "\n",
+ "\n",
+ "Construction Arrangement\n",
+ "\n",
+ "Use 4 vertical wall baffles, 100 mm wide at 90 degree intervals.\n",
+ "\n",
+ "Use a 305 mm dameter, a six bladed disk flat blade turbine impeller, arranged axially, 300 mm from the bottom of vessel\n",
+ "\n",
+ "The sparger underneath the impeller will be in the form of a 240 mm dameter ring made of 12.7 mm tubing drilled in the top with 3.18 mm dia holes\n",
+ "\n",
+ "The number of holes is 39.0 at approx 19.0 mm interval around the sparger ring\n",
+ "\n",
+ "The average gas-bubble diameter is 6.35e-04 m\n",
+ "Gas Holdup:\n",
+ "0.02265\n",
+ "Interfacial area: 214.0106 square m/cubic m \n",
+ "\n",
+ "Mass transfer coffecient: 6.24e-03 kmol/square m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.3: Page 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.3\n",
+ "# Page: 174\n",
+ "\n",
+ "print'Illustration 6.3 - Page: 174\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a = methanol b = water\n",
+ "G = 0.100;# [kmol/s]\n",
+ "L = 0.25;# [kmol/s]\n",
+ "Temp = 273+95;# [K]\n",
+ "XaG = 0.18;# [mol % in gas phase]\n",
+ "MaL = 0.15;# [mass % in liquid phase]\n",
+ "#*****#\n",
+ "\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "Mavg_G = XaG*Ma+((1-XaG)*Mb);# [kg/kmol]\n",
+ "Density_G = (Mavg_G/22.41)*(273.0/Temp);# [kg/cubic cm]\n",
+ "Q = G*22.41*(Temp/273.0);# [cubic cm/s]\n",
+ "Density_L = 961.0;# [kg/cubic cm]\n",
+ "Mavg_L = 1.0/((MaL/Ma)+(1-MaL)/Mb);# [kg/kmol]\n",
+ "q = L*Mavg_L/Density_L;\n",
+ "\n",
+ "# Perforations\n",
+ "print\"Perforations\\n\"\n",
+ "print\"Do = 4.5mm on an equilateral triangle pitch 12 mm between the hole centres, punched in sheet metal 2 mm thick\\n\"\n",
+ "Do = 0.0045;# [m]\n",
+ "pitch = 0.012;# [m]\n",
+ "# By Eqn.6.31\n",
+ "Ao_by_Aa = 0.907*(Do/pitch)**2;\n",
+ "print\"The ratio of Hole Area By Active Area is:\",round(Ao_by_Aa,4),\"\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Tower Diameter\n",
+ "print\"Tower Diameter\\n\"\n",
+ "t = 0.50;# [tray spacing,m]\n",
+ "print\"Tower Spacing:\",t,\" m\\n\"\n",
+ "# abcissa = (L/G)*(Density_G/Density_L)^0.5 = (q/Q)*(Density_L/Density_G)**0.5\n",
+ "abcissa = (q/Q)*(Density_L/Density_G)**0.5;\n",
+ "# From Table 6.2 (Pg 169)\n",
+ "alpha = (0.0744*t)+0.01173;\n",
+ "beeta = (0.0304*t)+0.015;\n",
+ "if (abcissa<0.1):\n",
+ " abcissa = 0.1;\n",
+ "\n",
+ "sigma = 0.040;# [N/m]\n",
+ "# From Eqn.6.30\n",
+ "Cf = ((alpha*math.log10(1.0/abcissa))+beeta)*(sigma/0.02)**0.2;\n",
+ "# From Eqn. 6.29\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1/2);# [m/s]\n",
+ "# Using 80% of flooding velocity\n",
+ "V = 0.8*Vf;# [m/s]\n",
+ "An = Q/V;# [square m]\n",
+ "# The tray area used by one downspout = 8.8%\n",
+ "At = An/(1-0.088);# [square m]\n",
+ "D = (4*At/math.pi)**(1.0/2);# [m]\n",
+ "# Take D = 1.25 m\n",
+ "D = 1.25; #[m]\n",
+ "At = math.pi*(D**2)/4;# [corrected At, square m]\n",
+ "W = 0.7*D;# [weir length,m]\n",
+ "Ad = 0.088*At;# [square m]\n",
+ "# For a design similar to Fig 6.14 (Pg 168)\n",
+ "# A 40 mm wide supporting ring, beams between downspouts and a 50 mm wide disengaging & distributing zones these areas total 0.222 square m\n",
+ "Aa = At-(2.0*Ad)-0.222;\n",
+ "print\"Weir Length:\",round(W,4),\"\\n\"\n",
+ "print\"Area for perforated sheet: \",round(Aa,4),\" square m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Weir crest h1 & Weir height hw\n",
+ "print\"Weir crest h1 & Weir height hw\\n\"\n",
+ "h1 = 0.025;# [m]\n",
+ "h1_by_D = h1/D;\n",
+ "D_by_W = D/W;\n",
+ "# From Eqn. 6.34\n",
+ "Weff_by_W = math.sqrt(((D_by_W)**2)-((((D_by_W)**2-1)**0.5)+(2*h1_by_D*D_by_W))**2);\n",
+ "# Set hw to 50 mm\n",
+ "hw = 0.05;# [m]\n",
+ "print\"Weir crest: \",h1,\" m\\n\"\n",
+ "print\"Weir height: \",hw,\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Dry Pressure Drop\n",
+ "print\"Dry Pressure Drop\\n\"\n",
+ "l = 0.002;# [m]\n",
+ "# From Eqn. 6.37\n",
+ "Co = 1.09*(Do/l)**0.25;\n",
+ "Ao = 0.1275*Aa;# [square m]\n",
+ "Vo = Q/Ao;# [m/sec]\n",
+ "viscocity_G = 1.25*10**(-5);# [kg/m.s]\n",
+ "Re = Do*Vo*Density_G/viscocity_G;\n",
+ "# From \"The Chemical Engineers Handbook,\" 5th Edition fig 5.26\n",
+ "fr = 0.008;\n",
+ "g = 9.81;# [m/s**2]\n",
+ "# From Eqn. 6.36\n",
+ "def f(hd):\n",
+ " return (2*hd*g*Density_L/(Vo**2*Density_G))-(Co*(0.40*(1.25-(Ao/An))+(4*l*fr/Do)+(1-(Ao/An))**2))\n",
+ "hd = fsolve(f,1);\n",
+ "print\"Dry Pressure Drop:\",round(hd,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Hydraulic head hl\n",
+ "print\"Hydraulic head hl\"\n",
+ "Va = Q/Aa;# [m/s]\n",
+ "z = (D+W)/2.0;# [m]\n",
+ "# From Eqn. 6.38\n",
+ "hl = 6.10*10**(-3)+(0.725*hw)-(0.238*hw*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "print\"Hydraulic head: \",round(hl,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#Residual Pressure drop hr\n",
+ "print\"Residual Pressure drop hr\\n\"\n",
+ "# From Eqn. 6.42\n",
+ "hr = 6*sigma/(Density_L*Do*g);# m\n",
+ "print\"Residual Pressure Drop:\",round(hr,4),\"m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Total Gas pressure Drop hg\n",
+ "print\"Total Gas pressure Drop hg\\n\"\n",
+ "# From Eqn. 6.35\n",
+ "hg = hd+hl+hr;# [m]\n",
+ "print\"Total gas pressure Drop: \",round(hg,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Pressure loss at liquid entrance h2\n",
+ "print\"Pressure loss at liquid entrance h2\\n\"\n",
+ "# Al: Area for the liquid flow under the apron\n",
+ "Al = 0.025*W;# [square m]\n",
+ "Ada = min(Al,Ad);\n",
+ "# From Eqn. 6.43\n",
+ "h2 = (3.0/(2*g))*(q/Ada)**2;\n",
+ "print\"Pressure loss at liquid entrance:\",round(h2,4),\"m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Backup in Downspout h3\n",
+ "print\"Backup in Downspout h3\\n\"\n",
+ "# From Eqn.6.44\n",
+ "h3 = hg+h2;\n",
+ "print\"Backup in Downspout:\",round(h3,4),\" m\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Check on Flooding\n",
+ "print\"Check on Flooding\\n\"\n",
+ "if((hw+h1+h3)<(t/2.0)):\n",
+ " print\"Choosen Tower spacing is satisfactory\\n\"\n",
+ "else:\n",
+ " print\"Choosen Tower spacing is not satisfactory\\n\"\n",
+ "\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Weeping Velocity\n",
+ "print\"Weeping Velocity\\n\"\n",
+ "print\"For W/D ratio \",W/D,\" weir is set at \",0.3296*D,\" m from the center from the tower\\n\",\n",
+ "Z = 2*(0.3296*D);# [m]\n",
+ "# From Eqn.6.46\n",
+ "def f8(Vow):\n",
+ " return (Vow*viscocity_G/(sigma))-(0.0229*((viscocity_G**2/(sigma*Density_G*Do))*(Density_L/Density_G))**0.379)*((l/Do)**0.293)*(2*Aa*Do/(math.sqrt(3.0)*(pitch**3)))**(2.8/((Z/Do)**0.724))\n",
+ "Vow = fsolve(f8,0.1);# [m/s]\n",
+ "print\"The minimum gas velocity through the holes below which excessive weeping is likely:\",round(Vow,3),\" m/s\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Entrainment\n",
+ "print\"Entrainment\\n\"\n",
+ "V_by_Vf = V/Vf;\n",
+ "# From Fig.6.17 (Pg 173), V/Vf = 0.8 & abcissa = 0.0622\n",
+ "E = 0.05;\n",
+ "print\"Entrainment:\\n\",E\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.3 - Page: 174\n",
+ "\n",
+ "\n",
+ "Perforations\n",
+ "\n",
+ "Do = 4.5mm on an equilateral triangle pitch 12 mm between the hole centres, punched in sheet metal 2 mm thick\n",
+ "\n",
+ "The ratio of Hole Area By Active Area is: 0.1275 \n",
+ "\n",
+ "\n",
+ "\n",
+ "Tower Diameter\n",
+ "\n",
+ "Tower Spacing: 0.5 m\n",
+ "\n",
+ "Weir Length: 0.875 \n",
+ "\n",
+ "Area for perforated sheet: 0.7892 square m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Weir crest h1 & Weir height hw\n",
+ "\n",
+ "Weir crest: 0.025 m\n",
+ "\n",
+ "Weir height: 0.05 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Dry Pressure Drop\n",
+ "\n",
+ "Dry Pressure Drop: 0.0654 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Hydraulic head hl\n",
+ "Hydraulic head: 0.0106 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Residual Pressure drop hr\n",
+ "\n",
+ "Residual Pressure Drop: 0.0057 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Total Gas pressure Drop hg\n",
+ "\n",
+ "Total gas pressure Drop: 0.0816 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Pressure loss at liquid entrance h2\n",
+ "\n",
+ "Pressure loss at liquid entrance: 0.008 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Backup in Downspout h3\n",
+ "\n",
+ "Backup in Downspout: 0.0897 m\n",
+ "\n",
+ "\n",
+ "\n",
+ "Check on Flooding\n",
+ "\n",
+ "Choosen Tower spacing is satisfactory\n",
+ "\n",
+ "\n",
+ "\n",
+ "Weeping Velocity\n",
+ "\n",
+ "For W/D ratio 0.7 weir is set at 0.412 m from the center from the tower\n",
+ "The minimum gas velocity through the holes below which excessive weeping is likely: 8.703 m/s\n",
+ "\n",
+ "\n",
+ "\n",
+ "Entrainment\n",
+ "\n",
+ "Entrainment:\n",
+ "0.05\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.4: Page 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.4\n",
+ "# Page: 183\n",
+ "\n",
+ "print'Illustration 6.4 - Page: 183\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "#****Data****#\n",
+ "#From Illustrtion 6.3:\n",
+ "G = 0.100;# [kmol/s]\n",
+ "Density_G = 0.679;# [kg/cubic m]\n",
+ "q = 5*10**(-3);# [cubic m/s]\n",
+ "Va = 3.827;# [m/s]\n",
+ "z = 1.063;# [m]\n",
+ "L = 0.25;# [kmol/s]\n",
+ "hL = 0.0106;# [m]\n",
+ "hW = 0.05;# [m]\n",
+ "Z = 0.824;# [m]\n",
+ "E = 0.05;\n",
+ "ya = 0.18;# [mole fraction methanol]\n",
+ "\n",
+ "# a:CH3OH b:H2O\n",
+ "Ma = 32;# [kg/kmol]\n",
+ "Mb = 18;# [kg/kmol]\n",
+ "# From Chapter 2:\n",
+ "ScG = 0.865;\n",
+ "Dl = 5.94*10**(-9);# [square m/s]\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/ScG**0.5;\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;# [square m/s]\n",
+ "thethaL = hL*z*Z/q;# [s]\n",
+ "NtL = 40000*Dl**0.5*((0.213*Va*Density_G**0.5)+0.15)*thethaL;\n",
+ "# For 15 mass% methanol:\n",
+ "xa = (15.0/Ma)/((15.0/Ma)+(85.0/Mb));\n",
+ "# From Fig 6.23 (Pg 184)\n",
+ "mAC = -(NtL*L)/(NtG*G);# [Slope of AC line]\n",
+ "meqb = 2.50;# [slope of equilibrium line]\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1.0/((1/NtG)+(meqb*G/L)*(1.0/NtL));\n",
+ "# From Eqn. 6.51:\n",
+ "EOG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thethaL);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2.0)*((1+(4*meqb*G*EOG/(L*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EOG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+(math.exp(eta)-1)/(eta*(1+eta/(eta+Pe))));\n",
+ "# From Eqn. 6.60:\n",
+ "EMGE = EMG/(1+(EMG*E/(1-E)));\n",
+ "print\"Efficiency of Sieve trays: \",round(EMGE,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.4 - Page: 183\n",
+ "\n",
+ "\n",
+ "Effeciency of Sieve trays: 0.7\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.5: Page 200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.5\n",
+ "# Page: 200\n",
+ "\n",
+ "print'Illustration 6.5 - Page: 200\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "# ****Data****#\n",
+ "G = 0.80;# [cubic m/s]\n",
+ "P = 10**2;# [kN/square m]\n",
+ "XaG = 0.07;\n",
+ "Temp = 273+30.0;# [K]\n",
+ "L = 3.8;# [kg/s]\n",
+ "Density_L = 1235.0;# [kg/cubic m]\n",
+ "viscocity_L = 2.5*10**(-3);# [kg/m.s]\n",
+ "#******#\n",
+ "\n",
+ "# a = SO2 b = air\n",
+ "\n",
+ "# Solution (a) \n",
+ "\n",
+ "# Since the larger flow quantities are at the bottom for an absorber, the diameter will be choosen to accomodate the bottom condition\n",
+ "Mavg_G = XaG*64+((1-XaG)*29);# [kg/kmol]\n",
+ "G1 = G*(273/Temp)*(P/101.33)*(1/22.41);# [kmol/s]\n",
+ "G2 = G1*Mavg_G;# [kg/s]\n",
+ "Density_G = G2/G;# [kg/cubic m]\n",
+ "# Assuming Complete absorption of SO2\n",
+ "sulphur_removed = G1*XaG*64;# [kg/s]\n",
+ "abcissa = (L/G)*((Density_G/Density_L)**0.5);\n",
+ "#From Fig. 6.24, using gas pressure drop of 400 (N/square m)/m\n",
+ "ordinate = 0.061;\n",
+ "# For 25 mm ceramic Intalox Saddle:\n",
+ "Cf = 98.0;# [Table 6.3 Pg 196]\n",
+ "J = 1;\n",
+ "G_prime = (ordinate*Density_G*(Density_L-Density_G)/(Cf*viscocity_L**0.1*J))**0.5;# [kg/square m.s]\n",
+ "A = G2/G_prime;# [square m]\n",
+ "D = (4*A/math.pi)**0.5;# [m]\n",
+ "print\"The Tower Diameter is \",round(D,4),\" m\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "\n",
+ "# Let\n",
+ "D = 1.0;# [m]\n",
+ "A = math.pi*D**2.0/4;# [square m]\n",
+ "# The pressure drop for 8 m of irrigated packing\n",
+ "delta_p = 400*8.0;# [N/square m]\n",
+ "# For dry packing\n",
+ "G_prime = (G2-sulphur_removed)/A;# [kg/square m.s]\n",
+ "P = P-(delta_p/1000.0);# [kN/square m]\n",
+ "Density_G = (29/22.41)*(273.0/Temp)*(P/101.33);# [kg/cubic m]\n",
+ "# From Table 6.3 (Pg 196)\n",
+ "Cd = 241.5;\n",
+ "# From Eqn. 6.68\n",
+ "delta_p_by_z = Cd*G_prime**2/Density_G;# [N/square m for 1m of packing]\n",
+ "pressure_drop = delta_p+delta_p_by_z;# [N/square m]\n",
+ "V = 7.5;# [m/s]\n",
+ "head_loss = 1.5*V**2.0/2;# [N.m/kg]\n",
+ "head_loss = head_loss*Density_G;# [N/square m]\n",
+ "Power = (pressure_drop+head_loss)*(G2-sulphur_removed)/(Density_G*1000.0);# [kW]\n",
+ "eta = 0.6;\n",
+ "Power = Power/eta;# [kW]\n",
+ "print\"The Power for the fan motor is \",round(Power,2),\" kW\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.5 - Page: 200\n",
+ "\n",
+ "\n",
+ "The Tower Diameter is 0.981 m\n",
+ "\n",
+ "The Power for the fan motor is 4.49 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.6: Page 204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.6\n",
+ "# Page: 204\n",
+ "\n",
+ "print'Illustration 6.6 - Page: 204\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# Gas\n",
+ "Mavg_G = 11.0;# [kg/kmol]\n",
+ "viscocity_G = 10**(-5);# [kg/m.s]\n",
+ "Pt = 107.0;# [kN/square m]\n",
+ "Dg = 1.30*10**(-5);# [square m/s]\n",
+ "Temp = 273.0+27;# [K]\n",
+ "G_prime = 0.716;# [kg/square m.s]\n",
+ "\n",
+ "# Liquid:\n",
+ "Mavg_L = 260.0;\n",
+ "viscocity_L = 2*10**(-3);# [kg/m.s]\n",
+ "Density_L = 840.0;# [kg/cubic m]\n",
+ "sigma = 3*10.0**(-2);# [N/m]\n",
+ "Dl = 4.71*10**(-10);# [square m/s]\n",
+ "#******#\n",
+ "\n",
+ "#Gas:\n",
+ "Density_G = (Mavg_G/22.41)*(Pt/101.33)*(273/Temp);# [kg/cubic m]\n",
+ "ScG = viscocity_G/(Density_G*Dg);\n",
+ "G = G_prime/Mavg_G;# [kmol/square m.s]\n",
+ "\n",
+ "# Liquid:\n",
+ "L_prime = 2.71;# [kg/square m.s]\n",
+ "ScL = viscocity_L/(Density_L*Dl);\n",
+ "\n",
+ "# Holdup:\n",
+ "# From Table 6.5 (Pg 206), L_prime = 2.71 kg/square m.s\n",
+ "Ds = 0.0472;# [m]\n",
+ "beeta = 1.508*Ds**0.376;\n",
+ "shiLsW = 5.014*10**(-5)/Ds**1.56;# [square m/cubic m]\n",
+ "shiLtW = (2.32*10**(-6))*(737.5*L_prime)**beeta/(Ds**2);# [square m/cubic m]\n",
+ "shiLoW = shiLtW-shiLsW;# [square m/cubic m]\n",
+ "H = (1404*(L_prime**0.57)*(viscocity_L**0.13)/((Density_L**0.84)*((3.24*L_prime**0.413)-1)))*(sigma/0.073)**(0.2817-0.262*math.log10(L_prime));\n",
+ "shiLo = shiLoW*H;# [square m/cubic m]\n",
+ "shiLs = 4.23*10**(-3)*(viscocity_L**0.04)*(sigma**0.55)/((Ds**1.56)*(Density_L**0.37));# [square m/cubic m]\n",
+ "shiLt = shiLo+shiLs;# [square m/cubic m]\n",
+ "\n",
+ "# Interfacial Area:\n",
+ "# From Table 6.4 (Pg 205)\n",
+ "m = 62.4;\n",
+ "n = (0.0240*L_prime)-0.0996;\n",
+ "p = -0.1355;\n",
+ "aAW = m*((808*G_prime/(Density_G**0.5))**n)*(L_prime**p);# [square m/cubic m]\n",
+ "# From Eqn. 6.73\n",
+ "aA = aAW*shiLo/shiLoW;# [square m/cubic m]\n",
+ "# From Table 6.3 (Pg 196)\n",
+ "e = 0.75;\n",
+ "# From Eqn. 6.71\n",
+ "eLo = e-shiLt;\n",
+ "# From Eqn. 6.70\n",
+ "def f9(Fg):\n",
+ " return ((Fg*ScG**(2.0/3))/G)-1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36) \n",
+ "Fg = fsolve(f9,1);# [kmol/square m.s]\n",
+ "# From Eqn. 6.72:\n",
+ "def f10(Kl):\n",
+ " return (Kl*Ds/Dl)-(25.1*(Ds*L_prime/viscocity_L)**0.45)*ScL**0.5\n",
+ "Kl = fsolve(f10,1);# [(kmol/square m.s).(kmol/cubic m)]\n",
+ "# Since the value of Kl is taken at low conc., it can be converted into Fl\n",
+ "c = (Density_L/Mavg_L);# [kmol/cubic m]\n",
+ "Fl = Kl*c;# [kmol/cubic m]\n",
+ "print\"The volumetric coeffecients are\\n\"\n",
+ "print\"Based on Gas Phase \",round(Fg*aA,3),\" kmol/cubic m.s\\n\"\n",
+ "print\"based on Liquid Phase\",round(Fl*aA,3),\" kmol/cubic m.s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.6 - Page: 204\n",
+ "\n",
+ "\n",
+ "The volumetric coeffecients are\n",
+ "\n",
+ "Based on Gas Phase 0.071 kmol/cubic m.s\n",
+ "\n",
+ "based on Liquid Phase 0.014 kmol/cubic m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.7: Page 207"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 6.7\n",
+ "# Page: 207\n",
+ "\n",
+ "print'Illustration 6.7 - Page: 207\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#****Data****#\n",
+ "# Air\n",
+ "G_prime = 1.10;# [kg/square m.s]\n",
+ "viscocity_G = 1.8*10**(-5);# [kg/m.s]\n",
+ "ScG = 0.6;# [for air water mixture]\n",
+ "Temp1 = 273+20.0;# [K]\n",
+ "\n",
+ "# Water\n",
+ "L_prime = 5.5;# [kg/square m.s]\n",
+ "#*****#\n",
+ "\n",
+ "# Air:\n",
+ "Ma = 29.0;# [kg/kmol]\n",
+ "G = G_prime/Ma;# [kmol/square m.s]\n",
+ "Density_G = (Ma/22.41)*(273.0/Temp1);\n",
+ "Cpa = 1005.0;# [N.m/kg.K]\n",
+ "PrG = 0.74;\n",
+ "\n",
+ "# Liquid:\n",
+ "kth = 0.587;# [W/m.K]\n",
+ "Cpb = 4187.0;# [N.m/kg.K]\n",
+ "viscocity_L = 1.14*10**(-3);# [kg/m.s]\n",
+ "\n",
+ "# From Table 6.5 (Pg 206)\n",
+ "Ds = 0.0725;# [m]\n",
+ "beeta = 1.508*(Ds**0.376);\n",
+ "shiLtW = (2.09*10**(-6))*(737.5*L_prime)**beeta/(Ds**2);# [square m/cubic m]\n",
+ "shiLsW = 2.47*10**(-4)/(Ds**1.21);# [square m/cubic m]\n",
+ "shiLoW = shiLtW-shiLsW;# [square m/cubic m]\n",
+ "# From Table 6.4 (Pg 205)\n",
+ "m = 34.03;\n",
+ "n = 0.0;\n",
+ "p = 0.362;\n",
+ "aAW = m*(808.0*G_prime/Density_G**0.5)**(n)*L_prime**p;# [square m/cubic m]\n",
+ "# From Eqn. 6.75\n",
+ "aVW = 0.85*aAW*shiLtW/shiLoW;# [square m/cubic m]\n",
+ "# From Table 6.3\n",
+ "e = 0.74;\n",
+ "eLo = e-shiLtW;\n",
+ "# From Eqn. 6.70\n",
+ "def f11(Fg):\n",
+ " return ((Fg*ScG**(2.0/3))/G)-1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36)\n",
+ "Fg = fsolve(f11,1);# [kmol/square m.s]\n",
+ "# Since the liquid is pure water. It has no mass trnsfer coeffecient.\n",
+ "# For such process we need convective heat transfer coeffecient for both liquid & gas.\n",
+ "# Asuming Jd = Jh\n",
+ "# From Eqn. 6.70\n",
+ "Jh = 1.195*((Ds*G_prime)/(viscocity_G*(1-eLo)))**(-0.36);\n",
+ "Hg = Jh*Cpa*G_prime/(PrG**(2.0/3));# [W/square m.K]\n",
+ "PrL = Cpb*viscocity_L/kth;\n",
+ "# Heat transfer analog of Eqn. 6.72\n",
+ "Hl = 25.1*(kth/Ds)*(Ds*L_prime/viscocity_L)**0.45*PrL**0.5;# [W/square m.K]\n",
+ "print\"The volumetric coeffecients are\\n\"\n",
+ "print\"Based on Gas Phase \",round(Hg*aVW), \"W/cubic m.K\\n\"\n",
+ "print\"based on Liquid Phase\",round(Hl*aVW,2),\" W/cubic m.K\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 6.7 - Page: 207\n",
+ "\n",
+ "\n",
+ "The volumetric coeffecients are\n",
+ "\n",
+ "Based on Gas Phase 3183.0 W/cubic m.K\n",
+ "\n",
+ "based on Liquid Phase 503701.46 W/cubic m.K\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 10.1\n",
+ "# Page: 494\n",
+ "\n",
+ "print'Illustration 10.1 - Page: 494\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pylab\n",
+ "%matplotlib inline\n",
+ "#****Data****#\n",
+ "# a:water b:isopropyl ether c:acetic acid\n",
+ "xF = 0.30;# [mol fraction]\n",
+ "yS = 0;# [mol fraction]\n",
+ "S1 = 40.0;# [kg]\n",
+ "B1 = 40.0;# [kg]\n",
+ "#*******#\n",
+ "\n",
+ "# Equilibrium data at 20 OC:\n",
+ "# Wa: Wt. percent of a\n",
+ "# Wb: Wt. percent of b\n",
+ "# Wc: Wt. percent of c\n",
+ "# Data1 = [Wc Wa Wb]\n",
+ "# Data1: water layer\n",
+ "Data1 = numpy.array([(0.69 ,98.1, 1.2),(1.41, 97.1 ,1.5),(2.89 ,95.5 ,1.6),(6.42 ,91.7 ,1.9),(13.30, 84.4, 2.3),(25.50 ,71.1 ,3.4),(36.70 ,58.9 ,4.4),(44.30 ,45.1 ,10.6),(46.40 ,37.1 ,16.5)])\n",
+ "# Data2: isopropyl ether layer\n",
+ "Data2 = numpy.array([(0.18 ,0.5 ,99.3),(0.37, 0.7 ,98.9),(0.79, 0.8, 98.4),(1.93 ,1, 97.1),(4.82, 1.9, 93.3),(11.40, 3.9, 84.7),(21.60, 6.9, 71.5),(31.10, 10.8, 58.1),(36.20 ,15.1 ,48.7)])\n",
+ "\n",
+ "plt.plot((Data1[:,2])/100,(Data1[:,0])/100,label=\"x Vs fraction ether\")\n",
+ "plt.plot((Data2[:,2])/100,(Data2[:,0])/100,label=\"y Vs fraction ether\")\n",
+ "plt.grid('on');\n",
+ "plt.legend(loc='lower center');\n",
+ "ax=pylab.gca()\n",
+ "ax.set_xlabel(\"Wt fraction of isopropyl ether\");\n",
+ "ax.set_ylabel(\"Wt fraction of acetic acid\");\n",
+ "plt.ylim((0,0.3))\n",
+ "plt.xlim((0,1))\n",
+ "plt.show();\n",
+ "# x: Wt fraction of acetic acid in water layer.\n",
+ "# y: Wt fraction of acetic acid in isopropyl layer.\n",
+ "\n",
+ "# The rectangular coordinates of Fig 10.9(a) will be used but only upto x = 0.30\n",
+ "\n",
+ "# Stage 1:\n",
+ "F = 100;# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "M1 = F+S1;# [kg]\n",
+ "# From Eqn. 10.5:\n",
+ "xM1 = ((F*xF)+(S1*yS))/M1;\n",
+ "# From Fig. 10.15 (Pg 495):\n",
+ "# Point M1 is located on the line FB and with the help of tie line passing through M1:\n",
+ "x1 = 0.258;# [mol fraction]\n",
+ "y1 = 0.117;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E1 = (M1*(xM1-x1)/(y1-x1));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R1 = M1-E1;# [kg]\n",
+ "\n",
+ "# Stage 2:\n",
+ "S2 = 40;# [kg]\n",
+ "B2 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M2 = R1+B2;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM2 = ((R1*x1)+(S2*yS))/M2;\n",
+ "# Point M2 is located on the line R1B and the tie line passing through R2E2 through M2:\n",
+ "x2 = 0.227;\n",
+ "y2 = 0.095;\n",
+ "# From Eqn. 10.8:\n",
+ "E2 = (M2*(xM2-x2)/(y2-x2));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R2 = M2-E2;# [kg]\n",
+ "\n",
+ "# Stage 3:\n",
+ "S3 = 40;# [kg]\n",
+ "B3 = 40;# [kg]\n",
+ "# From Eqn. 10.15:\n",
+ "M3 = R2+B3;# [kg]\n",
+ "# From Eqn. 10.16:\n",
+ "xM3 = ((R2*x2)+(S3*yS))/M3;\n",
+ "# Point M3 is located on the line R2B and the tie line passing through R3E3 through M3:\n",
+ "x3 = 0.20;# [mol fraction]\n",
+ "y3 = 0.078;# [mol fraction]\n",
+ "# From Eqn. 10.8:\n",
+ "E3 = (M3*(xM3-x3)/(y3-x3));# [kg]\n",
+ "# From Eqn. 10.4:\n",
+ "R3 = M3-E3;# [kg]\n",
+ "Ac = x3*R3;\n",
+ "print\"The composited extract is\",round((E1+E2+E3),2),\" kg\\n\"\n",
+ "print\"The acid content is \",round(((E1*y1)+(E2*y2)+(E3*y3)),2),\" kg\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# If an extraction to give the same final raffinate concentration were to be done in single stage, the point M would be at the intersection of tie line R3E3 and the line BF.\n",
+ "x = 0.20;# [mol fraction]\n",
+ "xM = 0.12;# [mol fraction]\n",
+ "# From Eqn. 10.6:\n",
+ "S = F*(xF-xM)/(xM-yS);# [kg]\n",
+ "print round(S,2),\"kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 10.1 - Page: 494\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWwOHfYcgIDklABAZBBQNBVwQxjAkHE+6aFxVE\nEfUjKauACfOqCLKoiGIAhQVX1wCiRGeMICBZQUFBEdAFBCQNDMP5/qia6WaYUBOqq8N5n6ee7sqn\nz3T3nbq3615RVYwxxpiilAs6AGOMMbHBCgxjjDGeWIFhjDHGEyswjDHGeGIFhjHGGE+swDDGGOOJ\nrwWGiKSJyEoRWSUiA/NZ30VElojIIhH5RkTO9bqvMcaYyBK/7sMQkSTge+B8YD0wH7hOVVeEbVNN\nVXe5z08C3lPV5l72NcYYE1l+XmG0A1ar6lpVzQImAV3CN8gpLFyHAZu97muMMSay/CwwGgLrwuZ/\ndZcdREQuF5EVwMdA3+Lsa4wxJnL8LDA81XWp6vuq2hK4FHhTRMTHmIwxxpRQeR+PvR5oFDbfCOdK\nIV+q+rmIlAdqudsVua+IWEdYxhhTAqpa7H/O/bzCWAAcIyIpIlIRuAaYHL6BiDTLuaIQkZMBVHWL\nl31zqKrn6dprlQkTvG8fS9OQIUMCjyFaJsuFMz3+2eM0/2tzDhw4EHgs0TDZ+yI0lZRvBYaq7gd6\nA9OB74C3VHWFiPQSkV7uZlcAy0RkEfAv4NrC9i1tTLt3Q9WqpT1KdFq7dm3QIUQNy4Xj7tPvZtOG\nTbz17VtBhxIV7H1Ren5WSaGqH+M0Zocveyns+dPA0173La1du+K3wDAmrwpJFejYqCN3Tr+TTs06\nUatKraBDMjEuoe703r0bqlULOgp/dO/ePegQooblIuTu/7ubq46/irtn3B10KIGz90Xp+XbjXiSI\niBYn/jZt4PXXoW1bH4MyJsrs2LuDE0adwLjLx3FO03OCDsdEARFBo6zRO+rEcxtGRkZG0CFEDctF\nSEZGBtUrVeeFi16g14e92JO1J+iQAmPvi9JLqAJj1674rZIypjCXHncpreu35vHPHw86FBPDEqpK\nqmZN+PFHqGVtfyYBbdyxkdajWzP7xtmcVO+koMMxAbIqKQ/iuUrKmKI0qN6Ax859jJ5TepJ9IDvo\ncEwMSpgCY/9+Z6pUKehI/GH1syGWi5C8ubjl5FuomFSRFxe8GExAAbL3ReklTIGRc3VhPVWZRFZO\nyvHypS/z8KcPs277uqJ3MCZMwrRh/PYbtG4Nv//uc1DGxIBHPn2EbzZ+w/vXvI/195l4rA2jCNZ+\nYUzIwI4DWbVlFe+ueDfoUEwMSZgCI95/Umv1syGWi5CCclGpfCXGXDqGvtP6si1zW2SDCoi9L0ov\nYQoMu8Iw5mAdG3fksmMvY9CsQUGHYmJEwrRhpKfDww+D/ZNhTMj2zO2cMOoEJl4xkTObnBl0OCZC\nrA2jCPFeJWVMSRxe+XBGdh7JrR/eyt79e4MOx0S5hCkw4r1KyupnQywXIV5y8beWf6NFnRb884t/\n+h9QgOx9UXpWYBhjeL7z87ww/wVWbCr1OGUmjiVMG8aoUbB8ufNojDnUqPmj+Peyf/PZTZ9RThLm\nf8mEZG0YRbDR9owp3G1/uY0DeoAx34wJOhQTpRKmwIj3Kimrnw2xXIQUJxflpBxjLh3D/en3s2HH\nBv+CCoi9L0rPCgxjTK4TjjiB2065jb4f9w06FBOFEqYNo3dvOO446NPH56CMiXGZ+zNpPbo1T5//\nNF1adAk6HOMDa8Mogl1hGONN5fKVefmSl+n9cW/+3Ptn0OGYKGIFRpyw+tkQy0VISXNxdsrZpDVL\n497Z95ZtQAGy90XpJVSBYXd6G+Pd0xc8zbsr3mXOujlBh2KiRMK0YZx3HgweDOef73NQxsSR/3z7\nHx759BEW9lpIxaSKQYdjyoi1YRQh3qukjPHDVcdfRUpyCkO/HBp0KCYKJFSBEc9VUlY/G2K5CClt\nLkSEUReP4tm5z/LDlh/KJqiA2Pui9BKmwLA7vY0pmcaHN+aBsx7g1im3EstV2Kb0fG3DEJE0YASQ\nBLyiqk/lWd8VuAcQYAdwu6ouddetBf4EsoEsVW2Xz/E9t2EceSTMnw8NG5b89RiTqLIPZNPh1Q70\nOqUXN598c9DhmFIqaRuGbwWGiCQB3wPnA+uB+cB1qroibJsOwHequt0tXB5S1fbuujXAKar6RyHn\n8FxgJCfDmjVQs2aJX5IxCW3Jb0u44M0LWHb7MuodVi/ocEwpRGOjdztgtaquVdUsYBJw0G2jqjpH\nVbe7s18DR+U5RrFfUEHifQAlq58NsVyElGUuWtdvzc1tb6bftH5ldsxIsvdF6flZYDQE1oXN/+ou\nK8jNwEdh8wrMEpEFItKzNIFkZYEqVKhQmqMYYx48+0EWbFjA1B+mBh2KCYCfVVJXAGmq2tOdvx44\nTVUP6c1JRM4BXgA6qupWd1kDVd0oInWBmUAfVf08z36eqqS2b4fGjZ1HY0zpzP5pNj0m9+DbO77l\nsIqHBR2OKYGSVkmV9yMY13qgUdh8I5yrjIOISCtgDE7hsjVnuapudB83ich7OFVcn+fdv3v37qSk\npACQnJxMmzZtSE1NBUKXoMcem0rVqqH5vOtt3uZt3vv8eanncU7KOXQf0Z3e7XoHHo/NFz2fkZHB\n2LFjAXK/L0tEVX2ZcAqjH4EUoCKwGGiZZ5vGwGqgfZ7lVYHq7vNqwJdAp3zOoV6sWqV69NGeNo1Z\n6enpQYcQNSwXIX7lYvOuzVpvaD2d9+s8X47vB3tfhLjfncX+XvetDUNV9wO9genAd8BbqrpCRHqJ\nSC93sweBmsCLIrJIROa5y+sDn4vIYpzG8A9VdUZJY4n3Bm9jIq121doM6zSMnlN6kpWdFXQ4JkIS\noi+pOXPgzjth7twIBGVMglBVOk/ozDkp5zDwjIFBh2OKIRp/Vhs14r1bEGOCICK8ePGLDP1qKD/+\n8WPQ4ZgISIgCIxG6Bclp4DKWi3B+56JpzaYMPmMwvT7sFfXdhtj7ovQSosCwnmqN8U+/9v3YmrmV\nN5e+GXQoxmcJ0Ybx2mvwxRfOozGm7C3cuJDOEzqz/Pbl1K1WN+hwTBGsDaMQiVAlZUyQTm5wMje0\nuoG7ZtwVdCjGRwlRYCRCo7fVz4ZYLkIimYuHUx/mi1++YPrq6RE7Z3HY+6L0EqLAsCsMY/xXrWI1\nRl88mtun3s6ufbuCDsf4ICHaMP7xD6hXD+6+OwJBGZPgrn/3ehoc1oChnWxY12hlbRiFSIQqKWOi\nxfALh/PG0jdYuHFh0KGYMlZggSEiV4jI38IeD5oiGWRpJUKVlNXPhlguQoLIxRHVjuDp85+m55Se\n7D+wP+LnL4i9L0qvsCuMS92pB/Aq0NWdXnGXxQy7D8OYyLqx9Y3UrFyTkV+PDDoUU4aKbMMQkZnA\njep2Ny4iDYBxqtopAvEVymsbxsUXwx13OI/GmMhY/cdq2r/Snvk959O0ZtOgwzFh/GzDaAT8Fjb/\nO0635DEjEaqkjIk2zWs15x+n/4M7Proj6rsNMd54KTBmAdNFpLuI3IQzjOpMf8MqW4nQ6G31syGW\ni5CgczGgwwA27NjAxOUTA40Dgs9FPPBSYPQBRgNtgFbAS5rPMKvRzK4wjAlGhaQKjLl0DANmDGDL\n7i1Bh2NKKSHuw2jaFGbPhqOPjkBQxphD9J/Wn+17t/N6l9eDDsXgQxuGiHzpPu4UkR15pj9LE2yk\nJUKVlDHR7NFzHuWTNZ/wyZpPgg7FlEKBBYaqdnQfD1PV6nmmGpELsfQSoUrK6mdDLBch0ZKL6pWq\nM+qiUfT6sBd7svYEEkO05CKWFdmGISLtRaRG2HwNETnN37DKjqrdh2FMNLj42Is5ucHJPPrZo0GH\nYkrIy30Yi4GTVfWAO58ELFDVthGIr1Be2jAyMyE52Xk0xgTrt52/0erFVsy6cRat6rUKOpyE5Wtf\nUjmFhfs8G0gq7omCkgjVUcbEivqH1eeJ857glsm3kH0gO+hwTDF5KTDWiEhfEakgIhVFpB/wk9+B\nlZVEafC2+tkQy0VINObi5rY3U6l8JV5bFNkhMKMxF7HGS4FxG9ARWA/8CrQHbvUzqLJkVxjGRBcR\nYWTaSB5If4BtmduCDscUQ9zfh7FwIdxyi/NojIkevab0omqFqjyb9mzQoSSckrZhlPdw4CrAzcDx\nQOWc5aoaEz3W2i+kjIlOj537GCeMOoFbT7mVlnVbBh2O8cBLldSbQD0gDfgUpzPCnX4GVZYSpUrK\n6mdDLBch0ZyLutXqct+Z99F/ev+IdE4YzbmIFV4KjOaq+gCwU1XHARcBMXMfRqI0ehsTi+449Q5+\n/fNXpvwwJehQjAdeCox97uN2ETkJSAbq+hdS2UqUKqnU1NSgQ4galouQaM9FhaQKjLhwBHdNv4vM\n/f7eLBXtuYgFXgqMMSJSC7gfmAx8Bzzta1RlKFGqpIyJVRc0u4ATjziRZ+dY43e0K7LAUNUxqvqH\nqn6qqk1Vta6qjvZycBFJE5GVIrJKRAbms76riCwRkaUi8qWItPK6r1eJUiVl9bMhlouQWMnFsE7D\nGDZnGOv/XO/bOWIlF9HM053eJeF2IfI8TmP58cB1IpL3pxA/AWepaivgUeDlYuzriV1hGBP9mtVq\nxq2n3Mqg2YOCDsUUwrcCA2gHrFbVtaqaBUwCuoRvoKpzVHW7O/s1cJTXfb1KlCsMq58NsVyExFIu\n7j3zXtLXpDNn3Rxfjh9LuYhWfhYYDYF1YfO/ussKcjPO8K8l2bdAidLobUysO6ziYTx5/pP0ndaX\nA6Hu60wU8XLjXm9ggqpudedrAtep6qgidvX8w2oROQfogdMFSbH27d69OykpKQAkJyfTpk2b3P8k\nMjIyWLUKWrQIzQMHrY+X+fD62WiIJ8j5nGXREk+Q84sXL6Z///5RE09R8w21IRXKVWDs4rEcvf3o\nMj3+iBEjDvl+CPr1Rmo+IyODsWPHAuR+X5aIqhY6AUvyWbbYw37tgWlh84OBgfls1wpYjXO/R3H3\n1aJ07ar65ptFbhbz0tPTgw4halguQmIxF/PXz9f6z9TXbXu2lelxYzEXfnG/O4v8/s87eRkPYxnQ\nWg8eD2Opqp5QxH7lge+B84ANwDycK5MVYds0Bj4BrlfVucXZ191Oi4r/r3+FG26Av/2t0M2MMVHk\nlsm3kFw5mWc6PRN0KHHJz/EwpgOTROQ8ETkfpwF6WlE7qep+oLe7/3fAW6q6QkR6iUgvd7MHgZrA\niyKySETmFbZvMV8bkDiN3sbEkyfOe4JxS8bx/ebvgw7FhPFyhZGE0535ee6imcAr6gykFCgvVxhn\nnglPPOE8xrOMjIzcustEZ7kIieVcDJ8znFk/zeKjrh8VvbEHsZyLsubbFYaqZqvqi6p6pTu9FA2F\nhVd2H4Yxsal3u978tPUnpv4wNehQjKvAKwwReVtVrxKR5Rz6qyVV52a7QHm5wmjRAt5/33k0xsSW\naaun0efjPiy/fTmVylcKOpy4UdIrjMIKjCNVdYOINAHyHlhV9ecSxFmmvBQYjRvDF184j8aY2HPp\nxEs5s/GZ3NPxnqBDiRtlXiWlqhvcp3eoc8d17gTcUcI4I27XrsRo9A6/ByHRWS5C4iEXwzsN5+kv\nn2bjjo2lOk485CJoXn4l1SmfZReVdSB+sTu9jYltx9Q+hpvb3szg2YODDiXhFVYldTvOlUQz4Mew\nVdWBL1W1q//hFa6oKqnsbKhQwXmUYl98GWOixY69O2jxQgvevfpdTjsqZsZvi1p+tGEcjnOPxJPA\nQELtGDtUdUtJAy1LRRUYO3dC/frOozEmto1bPI5RC0Yx5+Y5lBM/u8GLf360YWx32yyuBRoD57jt\nF+VEpGnJQ42cRKqOsvrZEMtFSDzl4obWNwDw5pI3S7R/POUiKEUW0yLyEHAPTn9OABWBCT7GVGbs\nHgxj4kc5KcfItJEMnj2YHXt3BB1OQvJyp/cSoC3wjaq2dZctjYX7ML79Fq6+2nk0xsSH7u93p161\nejx1wVNBhxKz/OxLam9Ox4PuiWLmR6qJVCVlTKL453n/5NVFr7Jqy6qgQ0k4XgqMt0XkJSBZRG4F\nZgOv+BtW2UiUezDA6mfDWS5C4jEXDao3YGDHgdw1465i7RePuYg0L31JDQX+607HAg+o6ki/AysL\ndoVhTHzq174f32/+no9XfRx0KAnFSxtGU+A3Vd3jzlcB6rm/mApUUW0Yb78Nb70F77wTwaCMMREx\n9Yep3DXjLpbdvoyKSRWDDiem+NmG8Q4Q3jvtAXdZ1LOxMIyJXxcfezHNajbjua+fCzqUhOGlwEhS\n1X05M6q6F6jgX0hlJ5GqpKx+NsRyERLvuXj2wmd58ssn+X3n70VuG++5iAQvBcZmEemSM+M+3+xf\nSGUnkRq9jUlEx9U5jm6tu3Hv7HuDDiUheGnDaI5zo96R7qJfgRtUdbXPsRWpqDaMRx6B/fudR2NM\nfNqeuZ0WL7RgynVT+MuRfwk6nJjg54h7q1X1NOB4oKWqdoiGwsKLRKqSMiZRHV75cB4/93H6ftyX\nov4BNqXjqQcvEbkEuB24S0QeFJEH/Q2rbCRSlZTVz4ZYLkISJRfd23Qn60AWE5YV3GtRouTCT176\nknoJuBroi9Nj7dVAE5/jKhN2hWFMYsjpZ2rQrEHs3GfdU/vFSxvGMlU9Kaf/KBE5DJimqmdEJsRC\nYyu0DePaa+Hyy51HY0z8u+G9G2hUoxFPnPdE0KFENT/vw9jjPu4WkYbAfqB+cU8UBLvCMCaxPHX+\nU7z8zcv8+MePRW9sis1LgTFFRGoCQ4FvgLXARD+DKiuJVGBY/WyI5SIk0XJxZPUjGdBhAANmDDhk\nXaLlwg9efiX1qKpuVdX/AilAC1V9wPfIykAiNXobYxx3driT5f9bzowfZwQdStwpsg0jmhXVhtG6\nNbzxhvNojEkck7+fzKBZg1hy2xIqJMVExxQR5WcbRsyyvqSMSUyXHnspjQ5vxAvzXwg6lLhSYIEh\nIh3dx8qRC6dsJdIQrVY/G2K5CEnUXIgIIy4cweOfP86mXZuAxM1FWSrsCiNnzIs5JT24iKSJyEoR\nWSUiA/NZ30JE5ohIpogMyLNurYgsFZFFIjKvJOdPpEZvY8zBWtZtyfUnXc99n9wXdChxo8A2DBH5\nGlgKdAEm4dy0l0NVtW+hBxZJAr4HzgfWA/OB61R1Rdg2dXFuArwc2Kqqw8LWrQFOUdU/CjlHoW0Y\nFSo4hUYFq8I0JiFty9xGi+db8FHXjzi5wclBhxM1/GjDuARnONY9OD+nzTsVpR2wWlXXqmoWTqHT\nJXwDVd2kqguArAKOUewXlCPLPaIVFsYkruTKyTx6zqPWz1QZKbDAcL/MJwFdVHWcqo4Nm8Z5OHZD\nYF3Y/K/uMq8UmCUiC0SkZzH2AxKvOsrqZ0MsFyGWC+jRtge7s3bz4Osx0QVeVCvvYZstIvIekNMV\nyGdAP1X9tYj9Slucd1TVjW611UwRWamqn+fdqHv37qSkpACQnJxMmzZtSE1NZdcuKF8+g4wMSE1N\nBUIfHpuP7/kc0RJPkPOLFy+OqniCmh/ZeSQX972Y0xudTucLOgceT6TnMzIyGDt2LEDu92VJeOlL\nahbOeBjj3UVdga6qekER+7UHHlLVNHd+MHBAVZ/KZ9shwM7wNgwv6wtrw1i9GtLSnEdjjPn7f/9O\ns5rNePTcR4MOJXB+3odRV1VfV9UsdxoLHOFhvwXAMSKSIiIVgWuAyQVse1DgIlJVRKq7z6sBnYBl\nHs6Zy+7BMMaEe/qCpxm1YBRrtq4JOpSY5aXA2CIiN4hIkoiUF5Hr8TBEq6ruB3oD04HvgLdUdYWI\n9BKRXgAiUl9E1gF3AveLyC9ub7j1gc9FZDHwNfChqhbrPv9EugcDrK46nOUixHIRsnrhau5sf2e+\n/UwZb7y0YfQAngOGu/NfATd5Obiqfgx8nGfZS2HPfwMa5bPrTqCNl3MUJNEavY0xRRvQYQDHjzqe\n2T/N5ryjzws6nJgTt31JTZ4Mr7ziPBpjTI53V7zLg+kPsvi2xZQv5+V/5vhjfUnlYVcYxpj8/LXF\nX6l/WH1enP9i0KHEnLguMBKp0dvqqkMsFyGWi5CcXIgI/0r7F49+9iibdxfZHGvCxG2BkWiN3sYY\n70444gSuPfFaHvgkJob2iRpe7sOoDFyBM3hSToWfquoj/oZWtMLaMJ56Cv74w3k0xpi8tu7ZSosX\nWjDj+hm0rp9Yg+b42YbxAXAZTn9PO91pV3FPFGmJViVljCmemlVq8nDqw/SdZv1MeeWlwGioqteo\n6tOqOixn8j2yUkq0Kimrqw6xXIRYLkLyy0XPk3uyPXM7b3/3duQDikFeCoyvRKSV75GUMfuVlDGm\nKEnlkhjZeSR3z7yb3Vm7gw4n6nlpw1gBNAfWAHvdxaqqgRcihbVh9OgBZ5zhPBpjTGGueecaWtZp\nyUOpDwUdSkSUtA3Dy10rnd3HnG/mEo9REUl790KlSkFHYYyJBUMvGErbl9pyU5ubaJLcJOhwolaR\nVVKquhZIxmn4vhQ43F0W1RKtwLC66hDLRYjlIqSwXDQ+vDF92/XlHzP/EbmAYlCRBYaI9MPp2rwu\nUA8YLyKFDs8aDfbtg4oVg47CGBMr7u54N/PXzyd9TXrQoUQtL20Yy4D2qrrLna8GzFXVkyIQX6EK\na8O48EK46y7n0RhjvHj727d59LNHWdhrYVz3M+V3X1IHCngetRKtSsoYU3pXHn8ltarU4uVvXg46\nlKjkpcB4HfhaRB4SkYeBucBr/oZVeolWYFhddYjlIsRyEeIlFyLCyM4jeSjjIf7Y84f/QcUYL43e\nw3HGv9gKbAG6q+qzfgdWWtaGYYwpiVb1WnHV8VfxYPqDQYcSdQpswxCRGqr6p4jUylnkPiqAqgZe\n/BbWhnHiiTBpkvNojDHFsWX3Flq+0JLZN87mpHqBN9eWOT/aMCa6jwuBb3DG6F7gPv+m2BFGWKJV\nSRljyk7tqrUZcvYQ+k3rZ/1MhSmwwFDVi93HFFVtmneKXIglk2hVUlZXHWK5CLFchBQ3F73+0ovN\nuzfz7op3/QkoBnm5D2O2l2XRxq4wjDGlUb5cef6V9i8GzBjAnqw9QYcTFQprw6gCVAXSgdSwVTWA\naarawvfoilBYG0bNmvDTT86jMcaU1JX/uZJW9Vrx4Nnx0whe0jaMwgqM/kA/4EhgQ9iqHcDLqvp8\nSQItS4UVGNWqwf/+Z2NiGGNKZ+22tZzy8iks6rWIxoc3DjqcMlHmjd6qOsJtq/hHnvaLVtFQWBQl\n0aqkrK46xHIRYrkIKWkuUpJT6H1qb+6eeXfZBhSDvNy4pyKSW7EjIjVF5A4fYyq17GxQhfLxe2e/\nMSaCBp4xkLm/ziVjbUbQoQTKS19SS1S1dZ5li1W1ja+ReVBQldTu3VC7NuyxdipjTBl557t3eOTT\nR+Kinyk/+5IqJyK524lIElChuCeKpH37Eqs6yhjjvytaXkGdqnUYvWB00KEExkuBMR2YJCLnicj5\nwCRgmr9hlU6itV+A1VWHs1yEWC5CSpuLnH6mHv70YTbt2lQ2QcUYLwXGQJyf1t4O3AbMAu7xM6jS\n2rs3sW7aM8ZExolHnMjfT/w7931yX9ChBKLINoxSHVwkDRgBJAGvqOpTeda3wOkNty1wn6oO87qv\nu02+bRirV0NamvNojDFlaVvmNlo834Kpf5/KKUeeEnQ4JeJbG4aIHCsi74jIdyKyxp1+8rBfEvA8\nkAYcD1wnIi3zbLYF6AM8U4J9C5SIVVLGmMhIrpzM4+c+Tp+P+3BAY2J4oDLjdTyM0cB+4BxgHDDB\nw37tgNWqulZVs3DaPrqEb6Cqm1R1AZBV3H0Lk4hVUlZXHWK5CLFchJRlLm5qexNZB7KYsNTLV2H8\n8FJgVFHVWTjVV2tV9SHgYg/7NQTWhc3/6i7zojT72q+kjDG+KifleK7zcwyaPYg/9/4ZdDgR4+XH\nxJluFdFqEemN002Ilw43StM44nnf7t27k5KSAkBycjJt2rRBJJVKlUL/UaSmpgLxPZ+amhpV8dh8\n9MzniJZ4gprPWVZWx8tcnclJu0/isc8e4+kLng789RU2n5GRwdixYwFyvy9LwsuNe6cCK4Fk4FGc\nzgefVtW5RezXHnhIVdPc+cHAgQIar4cAO3Mavb3uW1Cj94wZMHQozJxZ6EszxphS+W3nb5w46kS+\n7PElx9U5LuhwPPOl0du9srhGVXeo6jpV7a6qfyuqsHAtAI4RkRQRqQhcA0wu6FSl2PcQidjonfe/\nyURmuQixXIT4kYv6h9Vn8BmDE2agpUILDFXNBs4QkWKXRKq6H+iNc+Pfd8BbqrpCRHqJSC8AEakv\nIuuAO4H7ReQXETmsoH29ntvaMIwxkdLntD78vP1npvwwJehQfOelSmo0ThfnbwO73cWqqoEPQ1VQ\nldS//w1TpsDEifnsZIwxZWzmjzO5beptfHvHt1QuXznocIrkZ19SlXHulzgXuMSdLi3uiSIpEauk\njDHBuaDZBbSq14phXw0reuMYVmCBISI5DcwfqepNeacIxVciiVglZXXVIZaLEMtFiN+5GN5pOMPn\nDmfd9nVFbxyjCrvCuNhtuxgcqWDKil1hGGMirWnNpvzfqf8X1wMtFTZE61CgJ3AYkHdkCVXVGj7H\nVqSC2jCGDoXff4dnnslnJ2OM8cnurN20fKEl4y4fR2pKatDhFMiPIVrvVtVknCqp6nmmwAuLwiRi\nlZQxJnhVK1RlWKdh9P24L/sP7A86nDJXZKO3ql4WiUDKUiJWSVlddYjlIsRyERKpXMTzQEtefiUV\ncxKx80FjTHSI54GWfB0Pw28FtWH07w9NmsCddwYQlDHGAP0+7kfm/kxeuvSloEM5hJ/jYfTzsiya\nWBuGMSZoD5/zMB98/wHfbPgm6FDKjJcqqe75LIvq+zASsUrK6qpDLBchlouQSOciuXIyj537GH0+\n7hM3/UwVduPedSIyBWgqIlPCpgycO7+jViI2ehtjok+Ptj3IOpDF+KXjgw6lTBR2H0YToCnwJDCQ\nUI+yfwLiz2DNAAAbmElEQVRL3Q4CA1VQG8bVV8OVVzqPxhgTpLm/zuWK/1zBiv9bQY1K0XFHgh9t\nGH/D6WzwTFX9VFUz3GlhNBQWhUnEKiljTHRqf1R7Ljj6Ah777LGgQym1wgqMo4ARwP9E5DMReUJE\nLhGRWhGKrcQSsUrK6qpDLBchlouQIHPx5PlP8tqi1/h+8/eBxVAWCrvTe4Cqng7Ux+lP6g+gB/Ct\niHgemyII9ispY0w0iZeBlrz8SqoKzrCsh7vTBsDLiHuBScQqqfBxixOd5SLEchESdC7iYaCl8gWt\nEJExwPHADmAe8BUwXFW3Rii2EkvEKiljTHSrmFSRf6X9i9un3k6nZp1iYqClvAq7wmgMVAJ+A9a7\n07ZIBFVaiVhgWF11iOUixHIREg256NSsU0wPtFRYG8aFQDtgGKDAXcACEZkhIo9EKL4S2bcv8aqk\njDGxIZYHWvLUl5SINAJOBzriDNFaW1UP9zm2IhV0H0ZKCqSnQ9OmkY/JGGOK8mD6g/yw5QcmXTkp\nkPOX+X0YItJPRN4SkV+AT3HG8V4B/BWI6p/WJmKVlDEmdgw6YxBzfp1DxtqMoEMplsLaMFKA/wDt\nVfVoVb1eVV9U1SWqmh2Z8EomEaukoqF+NlpYLkIsFyHRlIuqFaryzAXPxNxASwX+SkpVY7Zz8MxM\nqBx7P0CIWs7Q7sZERizfp1AcVx5/JS8ueJHRC0bTu13voMPxJO7Gw1CFpCTYvx/KxeXwUJHn1ncG\nHYZJAIn2Xlv+v+WcO+5cvvu/76hTtU7EzuvbeBixJjPTqY6ywsIYE+1OPOJErjvxOu6bfV/QoXgS\nd1+ru3dD1apBRxF50VQ/a0w0itbPSCwNtBR3BcaePYlZYBhjYlMsDbQUdwVGol5hBN1PjjHRLpo/\nI7Ey0JKvBYaIpInIShFZJSIDC9hmpLt+iYi0DVu+VkSWisgiEZnn9ZyJWmCYyLv//vupW7cuRx55\npO/nmjBhAhdeeKHv5ynK2rVrKVeuHAcOHAg6lLhSTsrxXOfnGDR7EDv27gg6nAL5VmCISBLwPJCG\n04nhdSLSMs82FwHNVfUY4FbgxbDVCqSqaltVbef1vIlaYERr/Ww0SUtLY8iQIYcs/+CDD2jQoEGx\nvgR/+eUXhg8fzsqVK9mwYUNZhpnvl3LXrl2ZPn16mZ7Hi5SUFD755JOIn9cP0f4ZyRlo6dHPHg06\nlAL5eYXRDlitqmtVNQuYBHTJs81lwDgAVf0aSBaRemHri/2zr927oUqVEkZs4lr37t0ZP/7QS/43\n33yT66+/nnLF+GndL7/8Qu3ataldu3a+6/fvL/3NWNFQn+3nz1zLIkfxJtoHWvKzwGgIhPeu9au7\nzOs2CswSkQUi0tPrSRO10Tua62f99OOPP1K7dm0WLVoEwIYNG6hbty6fffbZIdt26dKFLVu28Pnn\nn+cu27p1K1OnTuXGG28E4KOPPuKEE06gRo0aHHXUUQwbdmivorNmzaJTp05s2LCB6tWr06NHD37+\n+WfKlSvHa6+9RpMmTTj//PMBuOqqq2jQoAHJycmcffbZfPfdd7nH2bNnDwMGDCAlJYXk5GTOOuss\nMjMzOeusswBITk6mRo0azJ07l7Fjx3LmmWfm7vvVV19x6qmnkpycTLt27ZgzZ07uutTUVB588EHO\nOOMMatSowYUXXsiWLVsKzOGHH35ImzZtqFmzJh07dmTZsmUA3HDDDfzyyy9ceumlVK9enWeeeSZ3\nn/Hjx9OkSRPq1q3LE088kbtcVXnyySdp3rw5derU4ZprrmHrVmdEhJwrp7w5ipRY+IzkDLTUf3r/\nqPiH4RCq6ssEXAGMCZu/HnguzzZTgI5h87OAk93nR7qPdYHFOGOL5z2H5jVpkurVVx+y2JRCfnmO\nJmPGjNHjjz9ed+/erZ06ddK77767wG179uypt9xyS+786NGjtW3btrnz9evX1y+++EJVVbdt26YL\nFy7M9zgZGRl61FFH5c6vWbNGRUS7deumu3fv1szMTFVVff3113Xnzp26b98+7d+/v7Zp0yZ3nzvu\nuEPPOecc3bBhg2ZnZ+ucOXN07969unbtWhURzc7Ozt329ddf1zPOOENVVbds2aLJyck6fvx4zc7O\n1okTJ2rNmjX1jz/+UFXVs88+W5s3b66rVq3SPXv2aGpqqg4aNCjf17Fw4UI94ogjdN68eXrgwAEd\nN26cpqSk6L59+1RVNSUlRWfPnn3I67z11ls1MzNTlyxZopUqVdKVK1eqquqIESO0Q4cOun79et23\nb5/26tVLr7vuukJzFC7a32uRsHf/Xm3xfAv9YOUHvp3DzXPxv9dLspOnA0N7YFrY/GBgYJ5tRgPX\nhs2vBOrlc6whwIB8lmu3bt10yJAhOmTIEH322Wf1nnvStXt3Jynp6emanp6em6R4ns957sfxvXyI\nnXvsSzeVxmWXXaYnnniitm7dOvfLLj9ffPGFJicn6969e1VV9fTTT9cRI0bkrm/cuLG+9NJLun37\n9kLPl56enm+BsWbNmgL32bp1q4qI/vnnn5qdna1VqlTRpUuXHrJdzrEKKjDeeOMNPe200w7ap0OH\nDjp27FhVVU1NTdXHH388d92oUaM0LS0t35huu+02feCBBw5adtxxx+lnn32mqgUXGOvXr89d1q5d\nO33rrbdUVbVFixYHbb9hwwatUKGCZmdne8pR+HutrN/Pzz77bNR8Xouan756ujbo3UCnz5peJsdL\nT0/Xbt265X5fRmOBUR74EacTw4ruVULLPNtcBHykoQJmrvu8KlDdfV4N+BLolM85NK/nn1e9445D\nFse98DdKWYuF//omT56sIqKvvPJKkds2b95cJ02apKtXr9YKFSro//73v9x18+fP1y5dumjNmjX1\n7LPP1jlz5uR7jIIKjP379+cuy87O1oEDB2qzZs20Ro0ampycrCKiP/30k/7+++8qIrpr165Djl1U\ngfHkk0/qVVddddA+1157rT7xxBOq6hQYr776ar775tW5c2etWrWqJicn507VqlXTSZMmqWrBBUZ4\nbOHnq1KlSu5rzZmqVKmiGzZsyDdHefn5XvPzM+KHyyddro99+pgvxy5pgeFbG4aq7gd6A9OB74C3\nVHWFiPQSkV7uNh8BP4nIauAl4A539/rA5yKyGPga+FBVZ3g5b6L+SioW6mf9snPnTvr3788tt9zC\nkCFDcuvMC3LjjTfyxhtvMH78eNLS0qhbt27uur/85S+8//77bNq0icsvv5yrr766WLGEd9Q4YcIE\nJk+ezOzZs9m+fTtr1qwBnH/S6tSpQ+XKlVm9enWhx8hPw4YN+fnnnw9a9vPPP9OwYd4mwqI1btyY\n++67j61bt+ZOO3fu5JprrvEUS37HmzZt2kHH2717Nw0aNMjdJqjOLGPtM5Iz0NIv238JOpRcvt6H\noaofq+pxqtpcVf/pLntJVV8K26a3u761qi50l/2kqm3c6cScfb3Ys8d+JZVo+vXrR7t27Xj55Ze5\n+OKLue222wrd/sYbb2TmzJm88sordOvWLXd5VlYWEyZMYPv27SQlJVG9enWSkpJKHNfOnTupVKkS\ntWrVYteuXdx7772568qVK0ePHj2466672LhxI9nZ2cyZM4d9+/ZRt25dypUrx48//pjvcTt37swP\nP/zAxIkT2b9/P2+99RYrV67kkksuyd3G+SeyaD179mT06NHMmzcPVWXXrl1MnTqVnTt3AlCvXr0C\n48jPbbfdxr333ssvvzhfcps2bWLy5Mme9zchTWs2pU+7Pvxjxj+CDiWX3ekdJ6L9N+Z++eCDD5gx\nYwYvvujcwjN8+HAWLlzIxIkTC9ynSZMmdOzYkd27d3PZZZcdtG78+PE0bdqUww8/nJdffpkJEyYU\neJy8/ynnnb/xxhtp0qQJDRs25MQTT6RDhw4HbfPMM89w0kknceqpp1K7dm0GDx6MqlK1alXuu+8+\nOnbsSK1atfj6668Rkdx9a9euzYcffsiwYcOoU6cOzzzzDB9++CG1atXKN5bwffM65ZRTGDNmDL17\n96ZWrVocc8wxvPHGG7nrBw8ezGOPPUbNmjUZPnx4vq8zXL9+/bjsssvo1KkTNWrUoEOHDsybF7rv\nNsiu8mPxMzKw40DmrZ/H7J9mBx0KEIfdm/ftC82bO4+JJCMjw7dL7kTrctoEx8/3mp+fET+9t+I9\n7k+/n8W9FlMhqUKZHNO6N3cl6hVGLH4QjImkWP2MXN7ichpWb8jz854POpT4KzAS9cY9Y0x8EhFG\ndh7J458/zm87fws0lrgrMBK1a5BYrJ81JpJi+TPSok4LbmpzE4NmDQo0jrgsMOwKwxgTbx44+wFm\n/jSTOevmFL2xT6zAiBOxWj9rTKTE+mekRqUaPHX+U/T+uDfZB7IDicEKDGOMiRFdT+pKlfJVeHXR\nq4GcP+4KjERt9I7l+lljIiEePiMiwvMXPc8D6Q/wx54/In7+uCsw7ArDGBPP2tRvwxUtr+CBTx6I\n+LnjssBIxF9JxXr9bCyyIVpjSzx9Rh479zHeWfEOi39bHNHzxl2BYX1JmYLYEK3FF09DtMaTWlVq\n8UjqI/T5uE9Ee2GIuwIjMzMxC4x4qJ/1mw3RWnzxNERrvH1Gbjn5FnZn7ebfy/4dsXPGVYGxfz8c\nOADlywcdiYmUoUOHcuWVVx60rG/fvvTv3/+QbW2I1vwlyhCt8SapXBLPd36ee2bdw469OyJz0pIM\nohEtE3kGW9m5U7Vq1QLHDDEllDfP0WTjxo1arVo13bZtm6qqZmVl6RFHHFHg0Ko2ROvBbIjW2Nft\nvW5694yChyXOD9E24l4kprxvrs2bVWvVKlbejAdePsQ8RKmnkkpLS9MxY8aoquqUKVP0hBNOKHBb\nG6L1YNE8RKvxZuOOjVr7qdq6YtMKz/uUtMCIq8qbvXuhUqWgowhG0F0365Dg6tu7devG6NGjueWW\nWxg/fjw33HBDgdt27NiROnXq8N577/GXv/yF+fPn8/777+eu/+9//8tjjz3GoEGDaNWqFU8++STt\n27f3HEujRo1ynx84cIB7772Xd955h02bNuW2kWzevJk9e/aQmZlJs2bNiv16N2zYQOPGjQ9a1qRJ\nk4Ma3+vXr5/7vEqVKrkDIuX1888/88Ybb/Dcc8/lLsvKyiqyIT/8+FWrVs09/s8//8xf//rXg9qD\nypcvz++//547H56jSAr6M+KX+ofV574z76Pvx32Zfv10X8ccias2jMxMqFw56ChMpHXp0oWlS5ey\nfPlypk6dSteuXQvd3oZoDUmkIVrjWe92vVm/Yz3vr3y/6I1LwQqMOBGP/zl5VaVKFa644gr+/ve/\nc9ppp3HUUUcVur0N0RqSSEO0xvNnpEJSBf6V9i8GzBhAVnaWb+exAsPEhW7durF8+fJCq6Ny2BCt\nIYk0RGu8O//o8zm65tG8vvh1384RV0O0fvUVDBgAc4Lr/TcwiT5E67p162jRogW///47hx12WNDh\nmBKyIVpLZ866OVzzzjWs6rOKSuULbtC1IVqxK4xEdeDAAYYNG8Z1111nhYVJaB0adeCkeicxZuEY\nX44fV1cYb78NEybA+/62+yScaL7C2LVrF/Xq1aNp06ZMmzatRA2/JnpE83stVnyz4RsunXgpq/uu\npmqF/HtitSsMYOlSaNUq6ChMJFWrVo2dO3eybNkyKyyMAU458hTaH9WeF+e/WObHjqsCY/FiaNMm\n6CiCEW/95BhT1hLpM/Jw6sM8/dXT7NyX//03JWUFhjHGxJmT6p3EuU3P5bmvnyt642KImzaMzZuh\nWTPYuhWK0emo8cDqlU2k2Hut7Hy/+XvOeP0MVvVZRXLl5IPWlbQNI266BlmyBFq3tsLCL/b7eWNi\ny3F1juOSYy9h6JdDefy8x8vkmL5+vYpImoisFJFVIjKwgG1GuuuXiEjb4uwbrkMHCLvfKOH4WT9b\nkk7KgpzS09MDjyFapljMhV8SqQ0jx8OpDzP6m9Fs3LGxTI7nW4EhIknA80AacDxwnYi0zLPNRUBz\nVT0GuBV40eu+eVWtCikpZf0qYsfixZEdqjGaWS5CLBchiZiLxoc3pnvr7jyY/mCZHM/PK4x2wGpV\nXauqWcAkoEuebS4DxgGo6tdAsojU97ivCbNt27agQ4galosQy0VIoubivrPu49OfP2XE3BGlPpaf\nBUZDYF3Y/K/uMi/bHOlhX2OMMUWoVaUWM2+YyfPznuenrT+V6lh+Nnp7rYy01tQysHbt2qBDiBqW\nixDLRUgi56JJchOW37GcyuVL13eSbz+rFZH2wEOqmubODwYOqOpTYduMBjJUdZI7vxI4G2ha1L7u\ncvv9nTHGlIBG2c9qFwDHiEgKsAG4BrguzzaTgd7AJLeA2aaqv4vIFg/7lugFG2OMKRnfCgxV3S8i\nvYHpQBLwqqquEJFe7vqXVPUjEblIRFYDu4CbCtvXr1iNMcYULabv9DbGGBM5MXFfdGluAIw3ReVC\nRLq6OVgqIl+KSNz23+v15k4ROVVE9ovI3yIZXyR5/IykisgiEVkuIhkRDjFiPHxG6ojINBFZ7Oai\newBh+k5EXhOR30VkWSHbFO97M+i7Oj3c9ZkErAZSgArAYqBlnm0uAj5yn58GzA067gBz0QE43H2e\nlsi5CNvuE+BD4Iqg4w7wfZEMfAsc5c7XCTruAHPxEPDPnDwAW4DyQcfuQy7OBNoCywpYX+zvzVi4\nwijpDYD1IhtmRBSZC1Wdo6rb3dmvgaMiHGOkeL25sw/wDrApksFFmJdc/B34r6r+CqCqmyMcY6R4\nycVGoIb7vAawRVX3RzDGiFDVz4GthWxS7O/NWCgwSnoDYDx+UXrJRbibgY98jSg4ReZCRBrifFnk\njCQTrw12Xt4XxwC1RCRdRBaIyA0Riy6yvORiDHCCiGwAlgD9IhRbtCn292Ys9FZb0hsA4/HLwfNr\nEpFzgB5AR//CCZSXXIwABqmqitPdbrz+DNtLLioAJwPnAVWBOSIyV1VX+RpZ5HnJxb3AYlVNFZFm\nwEwRaa2qO3yOLRoV63szFgqM9UCjsPlGOCVhYdsc5S6LN15ygdvQPQZIU9XCLkljmZdcnIJzjw84\nddWdRSRLVSdHJsSI8ZKLdcBmVd0D7BGRz4DWQLwVGF5ycTrwOICq/igia4DjcO4dSyTF/t6MhSqp\n3BsARaQizk18eT/wk4EbIfcO822q+ntkw4yIInMhIo2Bd4HrVXV1ADFGSpG5UNWjVbWpqjbFace4\nPQ4LC/D2GfkAOENEkkSkKk4j53cRjjMSvORiJXA+gFtnfxxQuk6WYlOxvzej/gpDS3EDYLzxkgvg\nQaAm8KL7n3WWqrYLKma/eMxFQvD4GVkpItOApcABYIyqxl2B4fF98QTwuogswfmn+R5V/SOwoH0i\nIhNxulqqIyLrgCE4VZMl/t60G/eMMcZ4EgtVUsYYY6KAFRjGGGM8sQLDGGOMJ1ZgGGOM8cQKDGOM\nMZ5YgWGMMcYTKzBMsYnIsyLSL2x+uoiMCZsfJiJ3ikgTETlkpMSw7Ya63Us/VdA2xYipv4hUCZuf\nKiI1CtunlOerKyJfi8g3ItIxz7oxItLSr3OXFRHpLiLPFWP71iLSOWz+IREZ4E90JhpZgWFK4guc\n7hUQkXJAbeD4sPUdgC9xxmb/eyHH6QmcpKoHjVkgIkkliKkfTh9JAKjqxar6ZwmO49V5wFJVPUVV\nvwxfoao91acRIkWkLG+2Le5NWG1xusQu6f4Hcd87JobYH8yUxBycQgHgBGA5sENEkkWkEtASWAQ8\nCZzpDtpzUI+gIjIZOAxYKCJXi8hYERktInOBp9xBj74SkYXiDAR1rLtfkog8IyLL3EFfeotIH+BI\nIF1EZrvbrRWRWu7zu9ztl+XE4XYdsUJEXnavcqaLSOW8L9Td7hP3XLNEpJGItAGeArq4r61ynn0y\nRORkESnnvq5l4gxo1d9d30ZE5rrHfFdEksP2G+Eec5mInOouf0hE3hSRL4Bx7pXbQTG52+XkcL6I\nfC8iF7vLPxWR1mHxfSGFDKwlItXEGXznazf/l4lIBeAR4Bo3vqvdzY8XpwfcH92/Q84xrnf3X+TG\nVM5dvtP9+y0G2hcUg4lSQQ/yYVNsTjh97zQCbgV64XyZdMbpHfczd5uzgSmFHGNH2PPXcfq2yel9\noDqQ5D4/H3jHfX478B+gnDtf031cA9QKO94aoBZOB4RLgSpANZzCrQ3OADtZQCt3+7eArvnEOAW4\nwX1+E/Ce+7wbMLKA15WO0zPsKcCMsOU13MelwJnu84eBZ8P2e8l9fibuwDc4A/7MByoVEdNYQgPi\nNMfpcLASTn9BOec4FpjvPu8OPJdP/E/k5AJn4KXvca7eDnrNblxf4nQ3URvYjNMdR0v3b5nz9xsV\nFu8B4Mqg3782lWyyKwxTUl/hVEudjnPFMcd93gGnygqK35342+p+q+B8Ub0jzvCSwwlVeZ2H86V6\nAEAL741XgDOAd1V1j6ruwumY8Uyc6pQ1qrrU3fYbnEIkr/bAv93n493j5Ry7qNf3I3C0OMNgXohz\nFXY4zoiIn7vbjAPOCttnovu6PgdquNsrMFlV9xYRk+IUpqjT8eRPOB3rvQ1c4lZn9cApnAvTCRgk\nIotwCrFKQON8XrMCH6pqlqpuAf4H1Mf5G50CLHCPcS5O9SRANvDfIs5volTUdz5ootaXOFcTJwHL\ncP6b/QewHXithMfcHfb8UWC2qv5VRFJwvrhyFKcg0jzbC6G6971hy7NxrkLyU6JxNFR1m1sVdCFw\nG3A1cGcxj50T6+48y73GpKq6R0RmApcDV+Fc/YQfOz9/0zxjZYjIaflsty/seTah75RxqnpvPttn\nhv1TYGKMXWGYkvoKuARneEt1/9NPxrnC+Mrd5k+cqqWSqAFscJ93D1s+E+iV0zAuIjXd5TsIDbuZ\nQ4HPgctFpIqIVMP50vwc71+4XwHXus+7Ap953E9EpDZOtcy7wANAW3Ua4reKSM5VwQ1ARs4+ON1x\n467f5m6fN9aCYhLgKnE0A47GqU4CeAUYCczT0BC+BeVgOtA37IW0dZ/uoOi/pwKzgStFpK67fy1x\nut03Mc4KDFNSy3HqreeGLVuK8yX3R9h8togsztvo7cr7n2b4/NPAP0VkIU69eM66V4BfgKVuw2nO\nz3ZfBqblNHrnHlB1EU7d/jw31jGqusTD+XP0AW4SpyvsroSG89QCtg8/VkOchvhFwJvAYHddN2Co\ne8xWOO0/Oftkuq95FM4Qu/mdq7CYfnFf60dAL1Xd5+ZhIc7VX3h1VEGv4VGggttQvxynnQWcq7zj\n8zR6H7K/Or8Qux+Y4cY4A6eqKt/tTeyw7s2NiRIikg4McL/cS7L/6zg/Mng3n3VHAumqelwpwzQJ\nzK4wjIlzInIjztVVfm0KxnhmVxjGGGM8sSsMY4wxnliBYYwxxhMrMIwxxnhiBYYxxhhPrMAwxhjj\niRUYxhhjPPl/ptoLDFmMWJUAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7890240>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The composited extract is 135.05 kg\n",
+ "\n",
+ "The acid content is 13.01 kg\n",
+ "\n",
+ "\n",
+ "\n",
+ "150.0 kg of solvent would be recquired if the same final raffinate concentration were to be obtained with one stage.\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter7.ipynb b/Mass_-_Transfer_Operations/Chapter7.ipynb
new file mode 100755
index 00000000..14a0593d
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter7.ipynb
@@ -0,0 +1,1071 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:4bcd866f270e2f66ae7fbe911b2556c72aef74bc48c0c7488d977884f07ab7ad"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7: Humidification Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.1: Page 222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.1\n",
+ "# Page: 222\n",
+ "\n",
+ "print'Illustration 7.1 - Page: 222\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# ****Data****#\n",
+ "Temp1 = 273+26.1;# [K]\n",
+ "P1 = 100;# [mm Hg]\n",
+ "Temp2 = 273+60.6;# [K]\n",
+ "P2 = 400;# [mm Hg]\n",
+ "P = 200;# [mm Hg]\n",
+ "#*****#\n",
+ "\n",
+ "def f12(T):\n",
+ " return ((1/Temp1)-(1/T))/((1/Temp1)-(1/Temp2))-((math.log(P1)-math.log(P))/(math.log(P1)-math.log(P2)))\n",
+ "T = fsolve(f12,37);# [K]\n",
+ "print\"At\",round(T-273,1),\" degree C, the vapour pressure of benzene is 200 mm Hg\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.1 - Page: 222\n",
+ "\n",
+ "\n",
+ "At"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 42.4 degree C, the vapour pressure of benzene is 200 mm Hg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.2: Page 223"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.2:\n",
+ "# Page: 223\n",
+ "\n",
+ "print'Illustration 7.2 - Page: 223\\n\\n'\n",
+ "#part(a) and part(b) are table based and doesn't require an calculation\n",
+ "\n",
+ "print'Illustration 7.2 (c)\\n\\n'\n",
+ "\n",
+ "# Solution (c)\n",
+ "\n",
+ "# Reference: H20\n",
+ "# At 25 OC\n",
+ "m = 0.775;\n",
+ "Mr = 18.02;# [kg/kmol]\n",
+ "lambdar = 2443000;# [N/m.kg]\n",
+ "M = 78.05;# [kg/kmol]\n",
+ "# From Eqn. 7.6:\n",
+ "Lambda = m*lambdar*Mr/M;# [N/m.kg]\n",
+ "print\"Latent Heat of Vaporization at 25 degree C is\",round(Lambda/1000,2),\" kN/m.kg\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.2 - Page: 223\n",
+ "\n",
+ "\n",
+ "Illustration 7.2 (c)\n",
+ "\n",
+ "\n",
+ "Latent Heat of Vaporization at 25 degree C is 437.13 kN/m.kg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.3: Page 226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.3\n",
+ "# Page: 226\n",
+ "\n",
+ "print'Illustration 7.3 - Page: 226\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# ****Data****#\n",
+ "m = 10;# [kg]\n",
+ "Cvap = 1.256;# [kJ/kg.K]\n",
+ "Cliq = 1.507;# [kJ/kg.K]\n",
+ "Temp1 = 100;# [OC]\n",
+ "Temp4 = 10;# [OC]\n",
+ "#******#\n",
+ "\n",
+ "# Using Fig 7.2 (Pg 224):\n",
+ "Temp2 = 25;# [OC]\n",
+ "# Using the notation of Fig. 7.3:\n",
+ "H1_diff_H2 = Cvap*(Temp1-Temp2);# [kJ/kg]\n",
+ "# From Illustration 7.2:\n",
+ "H2_diff_H3 = 434;# [Latent Heat of Vaporisation, kJ/kg]\n",
+ "H3_diff_H4 = Cliq*(Temp2-Temp4);# [kJ/kg]\n",
+ "H1_diff_H4 = H1_diff_H2+H2_diff_H3+H3_diff_H4;# [kJ/kg]\n",
+ "H = m*H1_diff_H4;# [kJ]\n",
+ "print\"Heat evolved for 10 kg Benzene is \",int(H),\" kJ\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.3 - Page: 226\n",
+ "\n",
+ "\n",
+ "Heat evolved for 10 kg Benzene is 5508 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.4: Page 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.4\n",
+ "# Page: 227\n",
+ "\n",
+ "print'Illustration 7.4 - Page: 227\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = benzene vapour; B = Nitrogen Gas\n",
+ "P = 800.0;# [mm Hg]\n",
+ "Temp = 273.0+60;# [K]\n",
+ "pA = 100.0;# [mm Hg]\n",
+ "#******#\n",
+ "\n",
+ "pB = P-pA;# [mm Hg]\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 28.08;# [kg/kmol]\n",
+ "\n",
+ "# Mole Fraction\n",
+ "print\"On the Basis of Mole Fraction\\n\"\n",
+ "yAm = pA/P;\n",
+ "yBm = pB/P;\n",
+ "print\"Mole Fraction of Benzene is \",yAm\n",
+ "print\"\\nMole Fraction of Nitrogen is \",yBm\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Volume Fraction\n",
+ "print\"On the Basis of Volume Fraction\\n\"\n",
+ "# Volume fraction is same as mole Fraction\n",
+ "yAv = yAm;\n",
+ "yBv = yBm;\n",
+ "print\"Volume Fraction of Benzene is \",yAv\n",
+ "print\"\\n Volume Fraction of Nitrogen is \",yBv\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Absolute Humidity\n",
+ "print\"On the basis of Absolute humidity\\n\"\n",
+ "Y = pA/pB;# [mol benzene/mol nitrogen]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg nitrogen]\n",
+ "print\"The concentration of benzene is \",round(Y_prime,3),\" kg benzene/kg nitrogen\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.4 - Page: 227\n",
+ "\n",
+ "\n",
+ "On the Basis of Mole Fraction\n",
+ "\n",
+ "Mole Fraction of Benzene is 0.125\n",
+ "\n",
+ "Mole Fraction of Nitrogen is 0.875\n",
+ "\n",
+ "\n",
+ "On the Basis of Volume Fraction\n",
+ "\n",
+ "Volume Fraction of Benzene is 0.125\n",
+ "\n",
+ " Volume Fraction of Nitrogen is 0.875\n",
+ "\n",
+ "\n",
+ "On the basis of Absolute humidity\n",
+ "\n",
+ "The concentration of benzene is 0.397 kg benzene/kg nitrogen\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.5: Page 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.5\n",
+ "# Page: 228\n",
+ "\n",
+ "print'Illustration 7.5 - Page: 228\\n\\n'\n",
+ "\n",
+ "print'Illustration 7.5 (a)\\n\\n'\n",
+ "# solution(a)\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = benzene vapour; B = Nitrogen Gas\n",
+ "P = 1.0;# [atm]\n",
+ "#*****#\n",
+ "\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 28.02;# [kg/kmol]\n",
+ "# Since gas is saturated, from Fig. 7.2 (Pg 224):\n",
+ "pA = 275.0/760;# [atm]\n",
+ "Y = pA/(P-pA);# [kmol benzene/kmol nitrogen]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg nitrogen]\n",
+ "print\"The concentration of benzene is \",round(Y_prime,3),\" kg benzene/kg nitrogen\\n\\n\"\n",
+ "\n",
+ "print'Illustration 7.5 (b)\\n\\n'\n",
+ "# solution(b)\n",
+ "\n",
+ "# A = benzene vapour; B = CO2\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 44.01;# [kg/kmol]\n",
+ "# Since gas is saturated, from Fig. 7.2:\n",
+ "pA = 275.0/760;# [atm]\n",
+ "Y = pA/(P-pA);# [kmol benzene/kmol CO2]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg CO2]\n",
+ "print\"The concentration of benzene is\",round(Y_prime,3),\" kg benzene/kg CO2\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.5 - Page: 228\n",
+ "\n",
+ "\n",
+ "Illustration 7.5 (a)\n",
+ "\n",
+ "\n",
+ "The concentration of benzene is 1.579 kg benzene/kg nitrogen\n",
+ "\n",
+ "\n",
+ "Illustration 7.5 (b)\n",
+ "\n",
+ "\n",
+ "The concentration of benzene is 1.006 kg benzene/kg CO2\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.6: Page 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.6\n",
+ "# Page: 234\n",
+ "\n",
+ "print'Illustration 7.6 - Page: 234\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = water vapour; B = air\n",
+ "TempG = 55;# [OC]\n",
+ "P = 1.0133*10**(5);# [N/square m]\n",
+ "Y_prime = 0.030;# [kg water/kg dry air]\n",
+ "#******#\n",
+ "\n",
+ "MA = 18.02;# [kg/kmol]\n",
+ "MB = 28.97;# [kg/kmol]\n",
+ "\n",
+ "# Percent Humidity\n",
+ "# From psychrometric chart, at 55 OC\n",
+ "Ys_prime = 0.115;# [kg water/kg dry air]\n",
+ "percent_Humidity = (Y_prime/Ys_prime)*100;\n",
+ "print\"The sample has percent Humidity =\",round(percent_Humidity,1),\"%\"\n",
+ "\n",
+ "# Molal Absolute Humidity\n",
+ "Y = Y_prime*(MB/MA);# [kmol water/kmol dry air]\n",
+ "print\"\\n Molal Absolute Humidity of the sample is\",round(Y,4),\" kmol water/kmol dry air\\n\"\n",
+ "\n",
+ "# Partial Pressure\n",
+ "pA = Y*P/(1+Y);# [N/square m]\n",
+ "print\"The Partial Pressure Of Water is\",int(pA),\" N/square m\\n\"\n",
+ "\n",
+ "# Relative Humidity\n",
+ "pa = 118*133.3;# [vapour pressure of water at 55 OC,N/square m]\n",
+ "relative_Humidity = (pA/pa)*100;\n",
+ "print\"The sample has relative Humidity = \",round(relative_Humidity,1),\" %\\n\"\n",
+ "\n",
+ "# Dew Point\n",
+ "# From psychrometric chart,\n",
+ "dew_point = 31.5;# [OC]\n",
+ "print\"Dew point Of the Sample is\",dew_point,\" degree C\\n\"\n",
+ "\n",
+ "# Humid Volume\n",
+ "# At 55 OC\n",
+ "vB = 0.93;# [specific volume of dry air,cubic m/kg]\n",
+ "vsB = 1.10;# [specific volume of saturated air,cubic m/kg]\n",
+ "vH = vB+((vsB-vB)*(percent_Humidity/100));# [cubic m/kg]\n",
+ "print\"The Humid Volume of the Sample is \",round(vH,3),\" cubic m/kg\\n\"\n",
+ "\n",
+ "# Humid Heat\n",
+ "CB = 1005;# [J/kg.K]\n",
+ "CA = 1884;# [J/kg.K]\n",
+ "Cs = CB+(Y_prime*CA);# [J/kg]\n",
+ "print\"The Humid Heat is \",round(Cs,1),\" J/kg dry air.K\\n\"\n",
+ "\n",
+ "# Enthalpy\n",
+ "HA = 56000;# [J/kg dry air]\n",
+ "HsA = 352000;# [J/kg dry air]\n",
+ "H_prime = HA+((HsA-HA)*(percent_Humidity/100));# [J/kg dry air]\n",
+ "print\"The Enthalphy of the sample is \",round(H_prime/1000,1),\"KJ/kg dry air\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.6 - Page: 234\n",
+ "\n",
+ "\n",
+ "The sample has percent Humidity = 26.1 %\n",
+ "\n",
+ " Molal Absolute Humidity of the sample is 0.0482 kmol water/kmol dry air\n",
+ "\n",
+ "The Partial Pressure Of Water is 4662 N/square m\n",
+ "\n",
+ "The sample has relative Humidity = 29.6 %\n",
+ "\n",
+ "Dew point Of the Sample is 31.5 degree C\n",
+ "\n",
+ "The Humid Volume of the Sample is 0.974 cubic m/kg\n",
+ "\n",
+ "The Humid Heat is 1061.5 J/kg dry air.K\n",
+ "\n",
+ "The Enthalphy of the sample is 133.2 KJ/kg dry air\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.7: Page 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.7\n",
+ "# Page: 236\n",
+ "\n",
+ "print'Illustration 7.7 - Page: 236\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = water vapour; B = air\n",
+ "V = 100;# [m**3]\n",
+ "Tempi = 55;# [OC]\n",
+ "Tempf = 110;# [OC]\n",
+ "#*****#\n",
+ "\n",
+ "# From Illustration 7.6\n",
+ "vH = 0.974;# [m**3/kg]\n",
+ "Cs = 1061.5;# [J/kg]\n",
+ "WB = V/vH;# [kg]\n",
+ "Q = WB*Cs*(Tempf-Tempi);# [J]\n",
+ "print\"Heat required is \",round(Q,3),\" J\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation in book"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.7 - Page: 236\n",
+ "\n",
+ "\n",
+ "Heat recquired is 5994096.509 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.9: Page 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.9\n",
+ "# Page:240\n",
+ "from scipy.optimize import fsolve \n",
+ "print'Illustration 7.9 - Page:240\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "Tempw = 35;# [OC]\n",
+ "Tempg = 65;# [OC]\n",
+ "#******#\n",
+ "\n",
+ "# From psychrometric chart\n",
+ "lambda_w = 2419300;# [J/kg]\n",
+ "Y_prime_w = 0.0365;# [kg H2O/kg dry air]\n",
+ "# From fig 7.5(a)\n",
+ "hG_by_kY = 950;# [J/kg]\n",
+ "# From Eqn. 7.26\n",
+ "def f13(Y_prime):\n",
+ " return (Tempg-Tempw)-((lambda_w*(Y_prime_w-Y_prime))/hG_by_kY)\n",
+ "Y_prime = fsolve(f13,2);# [kg H2O/kg dry air]\n",
+ "print\"Humidity of air is\",round(Y_prime[0],4),\"kg H2O/kg dry air\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.9 - Page:240\n",
+ "\n",
+ "\n",
+ "Humidity of air is 0.0247 kg H2O/kg dry air\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.10: Page 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.10\n",
+ "# Page:241\n",
+ "\n",
+ "print'Illustration 7.10 - Page:241\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "Tg = 60;# [OC]\n",
+ "Y_prime = 0.050;# [kg toulene/kg air]\n",
+ "#*****#\n",
+ "\n",
+ "# Wet Bulb temparature\n",
+ "Dab = 0.92*10**(-5);# [square m/s]\n",
+ "density_air = 1.060;# [kg/cubic cm];\n",
+ "viscocity_G = 1.95*10**(-5);# [kg/m.s]\n",
+ "Sc = viscocity_G/(density_air*Dab);\n",
+ "# From Eqn. 7.28\n",
+ "hG_by_kY = 1223*(Sc**0.567);# [J/kg.K]\n",
+ "# Soln. of Eqn. 7.26 by trial & error method:\n",
+ "# (Tg-Tw) = (Yas_prime-Y_prime)*(lambda_w/hG_by_kY)\n",
+ "Tw = 31.8;# [OC]\n",
+ "print\"Wet Bulb Temparature:\",Tw,\" degree C\\n\"\n",
+ "\n",
+ "# Adiabatic Saturation Temparature\n",
+ "C_air = 1005;# [J/kg.K]\n",
+ "C_toulene = 1256;# [J/kg.K]\n",
+ "Cs = C_air+(C_toulene*Y_prime);# [J/kg.K]\n",
+ "# Soln. of Eqn. 7.21 by trial & error method:\n",
+ "# (Tg-Tas) = (Yas_prime-Y_prime)*(lambda_as/Cs)\n",
+ "Tas = 25.7;# [OC]\n",
+ "print\"Adiabatic Saturation Temparature: \",round(Tas,1),\" degree C\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.10 - Page:241\n",
+ "\n",
+ "\n",
+ "Wet Bulb Temparature: 31.8 degree C\n",
+ "\n",
+ "Adiabatic Saturation Temparature: 25.7 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.11: Page 249"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.11\n",
+ "# Page: 249\n",
+ "\n",
+ "print'Illustration 7.11 - Page: 249\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "\n",
+ "#****Data****#\n",
+ "L_min = 2.27;# [kg/square m.s]\n",
+ "G_min = 2;# [kg/square m.s]\n",
+ "L2_prime = 15;# [kg/s]\n",
+ "Q = 270.0;# [W]\n",
+ "Templ2 = 45.0;# [OC]\n",
+ "Tempg1 = 30.0;# [OC]\n",
+ "Tempw1 = 24.0;# [OC]\n",
+ "Kya = 0.90;# [kg/cubic m.s]\n",
+ "#*******#\n",
+ "\n",
+ "H1_prime = 72;# [kJ/kg dry air]\n",
+ "Y1_prime = 0.0160;# [kg water/kg dry air]\n",
+ "Templ1 = 29;# [OC]\n",
+ "Cal = 4.187;# [kJ/kg]\n",
+ "\n",
+ "# Tower cross section Area:\n",
+ "Al = L2_prime/L_min;# [square m]\n",
+ "Ag = Gs/G_min;# [square m]\n",
+ "A = min(Al,Ag);# [square m]\n",
+ "Area = 3.25;\n",
+ "# From Eqn. 7.54\n",
+ "def f16(Z):\n",
+ " return Area-(Kya*Z/G_min)\n",
+ "Z = fsolve(f16,2);\n",
+ "print\"The height of tower is\",round(Z,2),\" m\\n\"\n",
+ "NtoG = 3.25;\n",
+ "HtoG = G_min/Kya;# [m]\n",
+ "\n",
+ "# Make up water\n",
+ "# Assuming the outlet air is essentially saturated:\n",
+ "Y2_prime = 0.0475;# [kg water/kg dry air]\n",
+ "E = G_min*(A)*(Y2_prime-Y1_prime);# [kg/s]\n",
+ "# Windage loss estimated as 0.2 percent\n",
+ "W = 0.002*L2_prime;# [kg/s]\n",
+ "ppm_blowdown = 2000;# [ppm]\n",
+ "ppm_makeup = 500;# [ppm]\n",
+ "# Since the weight fraction are proportional to the corresponding ppm values:\n",
+ "B = (E*ppm_makeup/(ppm_blowdown-ppm_makeup))-W;# [kg/s]\n",
+ "M = B+E+W;# [kg/s]\n",
+ "print\"The makeup water requirement is estimated to be\",round(M,2),\" kg/s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.11 - Page: 249\n",
+ "\n",
+ "\n",
+ "The height of tower is 7.22 m\n",
+ "\n",
+ "The makeup water requirement is estimated to be 0.46 kg/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 81
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.13: Page 254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.13\n",
+ "# Page: 254\n",
+ "\n",
+ "\n",
+ "print'Illustration 7.13\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve \n",
+ "# Given\n",
+ "Tempg1=65;# [OC]\n",
+ "Y1_prime=0.0170;# [kg water/kg dry air]\n",
+ "# Using adiabatic satursion line on Fig. 7.5 (Pg 232)\n",
+ "Tempas=32;# [OC]\n",
+ "Yas_prime=0.0309;# [kg water/kg dry air]\n",
+ "Tempg2=45;# [OC]\n",
+ "Z=2;# [m]\n",
+ "#*******#\n",
+ "\n",
+ "Y2_prime=0.0265;# [kg water/kg dry air]\n",
+ "def f19(Kya_by_Gs):\n",
+ " return math.log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)\n",
+ "Kya_by_Gs=fsolve(f19,1);# [1/m]\n",
+ "\n",
+ "# For the extended chamber:\n",
+ "Z=4;# [m]\n",
+ "def f20(Y2_prime):\n",
+ " return math.log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)\n",
+ "Y2_prime=fsolve(f20,0.029);#[kg water/kg dry air] \n",
+ "# With the same adiabatic curve:\n",
+ "Tempg2=34;# [OC] from the curve\n",
+ "print\"The Outlet Conditions are:\\n\"\n",
+ "print\"Absolute Humidity is\",round(Y2_prime,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Dry Bulb Temperature is\",round(Tempg2), \"degree C\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.13\n",
+ "\n",
+ "\n",
+ "The Outlet Conditions are:\n",
+ "\n",
+ "Absolute Humidity is 0.0295 kg water/kg dry air\n",
+ "\n",
+ "Dry Bulb Temperature is 34.0 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 137
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.14: Page 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.14\n",
+ "# Page: 256\n",
+ "\n",
+ "print'Illustration 7.14 - Page: 256\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# a = N2 b = CO\n",
+ "# Entering gas\n",
+ "Y1_prime = 0.0;# [kg water/kg dry air]\n",
+ "Pt = 1.0;# [atm]\n",
+ "Tempg1 = 315.0;# [OC]\n",
+ "G_prime = 5.0;# [square m/s]\n",
+ "\n",
+ "# Temp of the tower:\n",
+ "Templ2 = 18.0;# [OC]\n",
+ "Density_L2 = 1000.0; #[kg/square m]\n",
+ "viscocity_L2 = 1.056*10**(-3);# [kg/m.s]\n",
+ "Tempg2 = 27.0;# [OC]\n",
+ "\n",
+ "Mb = 28.0;# [kg/kmol]\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Density_G1 = (Mb/22.41)*(273/(Tempg1+273));# [kg/square m]\n",
+ "G1 = G_prime*(Density_G1);# [kg/s]\n",
+ "\n",
+ "# Since the outlet gas is nearly saturated:\n",
+ "Y_prime = 0.024;# [kg water/kg dry air]\n",
+ "Y2_prime = 0.022;# [kg water/kg dry air, assumed]\n",
+ "G2 = G1*(1+Y2_prime);# [kg/s]\n",
+ "Mav = (1+Y2_prime)/((1/Mb)+(Y2_prime/Ma));# [kg/kmol]\n",
+ "Density_G2 = (Mav/22.4)*(273.0/(Templ2+273));# [kg/square m]\n",
+ "L2_by_G2 = 2.0;\n",
+ "abcissa = L2_by_G2*(Density_G2/(Density_L2-Density_G2))**(1/2);\n",
+ "# From Fig. 6.34:\n",
+ "# For a gas pressure drop of 400 N/square m/m\n",
+ "ordinate = 0.073;\n",
+ "# From Table 6.3:\n",
+ "Cf = 65.0;\n",
+ "J = 1.0;\n",
+ "def f21(G2_prime):\n",
+ " return ((G2_prime**2)*Cf*(viscocity_L2**0.1)*J/(Density_G2*(Density_L2-Density_G2)))-ordinate\n",
+ "# Tentative data:\n",
+ "G2_prime = fsolve(f21,2);# [kg/square m.s]\n",
+ "Area = G1/G2_prime;# [square m]\n",
+ "dia = math.sqrt(4*Area/math.pi);# [m]\n",
+ "\n",
+ "# Final data:\n",
+ "dia = 1.50;# [m]\n",
+ "Area = math.pi*dia**2.0/4;# [square m]\n",
+ "Gs_prime = G1/Area;# [kg/square m.s]\n",
+ "G2_prime = G2/Area;# [kg/square m.s]\n",
+ "L2_prime = L2_by_G2*G2_prime;# [kg/square m.s]\n",
+ "# From Eqn. 7.29:\n",
+ "def f22(L1_prime):\n",
+ " return (L2_prime-L1_prime)-(Gs_prime*(Y2_prime-Y1_prime))\n",
+ "L1_prime = fsolve(f22,2);\n",
+ "Cb = 1089;# [J/kg.K]\n",
+ "Ca = 1884;# [J/kg.K]\n",
+ "Cs1 = Cb+(Y1_prime*Ca);# [J/(kg dry air).K]\n",
+ "Cs2 = Cb+(Y2_prime*Ca);# [J/(kg dry air).K]\n",
+ "Tempo = Templ2;# [base temp.,K]\n",
+ "Lambda = 2.46*10**6;# [J/kg]\n",
+ "CaL = 4187;# [J/kg K]\n",
+ "# From Eqn. 7.31:\n",
+ "def f23(Templ1):\n",
+ " return ((L2_prime*CaL*(Templ2-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs2*(Tempg2-Tempo))+(Y2_prime*Lambda)))\n",
+ "Templ1 = fsolve(f23,2);\n",
+ "# At Templ1 = 49.2 OC\n",
+ "viscocity_L = 0.557*10**(-3);# [kg/m.s]\n",
+ "Density_L = 989.0;# [kg/square m]\n",
+ "K = 0.64;# [w/m.K]\n",
+ "Prl = CaL*viscocity_L/K;\n",
+ "\n",
+ "# For Entering Gas:\n",
+ "viscocity_G1 = 0.0288*10**(-3);# [kg*/m.s]\n",
+ "Dab = 0.8089*10**(-4);# [square m/s]\n",
+ "ScG = viscocity_G1/(Density_G1*Dab);\n",
+ "PrG = 0.74;\n",
+ "\n",
+ "# From Illustration 6.7:\n",
+ "a = 53.1;# [square m/square m]\n",
+ "Fga = 0.0736;# [kmol/square m]\n",
+ "Hga = 4440.0;# [W/square m.K]\n",
+ "Hla = 350500.0;# [W/square m.K]\n",
+ "# At the bottom, by several trial:\n",
+ "Tempi = 50.3;# [OC]\n",
+ "pai = 93.9/760;# [atm]\n",
+ "paG = 0;# [atm]\n",
+ "# By Eqn. 7.64:\n",
+ "dY_prime_by_dZ = -(Ma*Fga/Gs_prime)*math.log((1-(pai/Pt))/(1-(paG/Pt)));# [(kg H2O/kg dry gas)/m]\n",
+ "Hg_primea = -(Gs_prime*Ca*dY_prime_by_dZ)/(1-math.exp((Gs_prime*Ca*dY_prime_by_dZ)/(Hga)));# [W/square m.K]\n",
+ "dTempg_by_dZ = -(Hg_primea*(Tempg1-Tempi)/(Gs_prime*Cs1));# [OC/m]\n",
+ "Tempi = (Templ1)+((Gs_prime*(Cs1*dTempg_by_dZ)+((Ca*(Tempg1))-(CaL*(Templ1))+(((CaL-Ca)*(Tempo))+Lambda))*dY_prime_by_dZ)/((Gs_prime*CaL*dY_prime_by_dZ)-Hla));#[OC]\n",
+ "# Assume:\n",
+ "delta_Tempg = -30;# [OC]\n",
+ "delta_Z = delta_Tempg/(dTempg_by_dZ);# [m]\n",
+ "Tempg = Tempg1+delta_Tempg;# [OC]\n",
+ "Y_prime = Y1_prime+(dY_prime_by_dZ)*delta_Z;# [kg H2O/kg dry gas]\n",
+ "paG = Y_prime/(Y_prime+(Ma/Mb));# [atm]\n",
+ "Cs = Cb+Ca*(Y_prime);# [J/(kg dry air).K]\n",
+ "# Water balance, From Eqn. 7.29:\n",
+ "def f24(L_prime):\n",
+ " return (L2_prime-L_prime)-(Gs_prime*(Y_prime-Y1_prime))\n",
+ "L_prime = fsolve(f24,2);# [kg/square m.s]\n",
+ "\n",
+ "def f25(Templ):\n",
+ " return ((L_prime*CaL*(Templ-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs*(Tempg-Tempo))+(Y_prime*Lambda)))\n",
+ "Templ = fsolve(f25,2);\n",
+ "\n",
+ "# This process is repeated several times until gas temp falls to Tempg2\n",
+ "Z = 1.54;# [m] Z = sum of all delta_Z\n",
+ "# The value of Y2_prime was calculated to be 0.0222 which is sufficiently close to the assumed value.\n",
+ "print\"The diameter of tower is \",dia,\" m\\n\"\n",
+ "print\"The packed height is\",Z, \"m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.15: Page 267"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.15\n",
+ "# Page: 267\n",
+ "\n",
+ "print'Illustration 7.15 - Page: 267\\n\\n'\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "import numpy\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "w = 0.75;# [m]\n",
+ "OD = 19.05/1000;# [m]\n",
+ "l = 3.75;# [m]\n",
+ "n = 20;\n",
+ "t = 1.65/1000;# [m]\n",
+ "Ws = 2.3;# [kg/s]\n",
+ "Wal = 10.0;# [kg/s]\n",
+ "Wt = 4.0;# [kg/s]\n",
+ "Density = 800;# [kg/cubic m]\n",
+ "viscocity = 0.005;# [kg/m.s]\n",
+ "K = 0.1436;# [W/m.K]\n",
+ "Ct = 2010.0;# [J/kg.K]\n",
+ "Cal = 4187.0;# [J/kg.K]\n",
+ "Y1_prime = 0.01;# [kg H2O/kg dry air]\n",
+ "Y2_prime = 0.06;# [kg H2O/kg dry air]\n",
+ "TempT = 95.0;# [OC]\n",
+ "#*****#\n",
+ "\n",
+ "Free_area = (w-(n*OD))*l;# [square m]\n",
+ "Gs_min = 2.3/Free_area;# [kg/square m.s]\n",
+ "M1 = 1.461;Yav_prime = (Y1_prime+Y2_prime)/2;# [kg H2O/kg dry air]\n",
+ "# From Eqn. 7.86:\n",
+ "ky = 0.0493*(Gs_min*(1+Yav_prime))**0.905;# [kg/square m.s.delta_Y_prime]\n",
+ "# From Fig. 7.5:\n",
+ "H1_prime = 56000.0;# [J/kg]\n",
+ "Ao = 400*math.pi*OD*l;# [square m]\n",
+ "# Cooling water is distributed over 40 tubes & since tubes are staggered\n",
+ "geta = Wal/(40.0*2*l);# [kg/m.s]\n",
+ "geta_by_OD = geta/OD;# [kg/square m.s]\n",
+ "# Assume:\n",
+ "TempL = 28.0;# [OC]\n",
+ "# From Eqn. 7.84:\n",
+ "hL_prime = (982+(15.58*TempL))*(geta_by_OD**(1/3));# [W/square m.K]\n",
+ "# From Eqn. 7.85:\n",
+ "hL_dprime = 11360;# [W/square m.K]\n",
+ "# From Fig. 7.5 (Pg 232)\n",
+ "m = 5000.0;# [J/kg.K]\n",
+ "Ky = 1.0/((1/ky)+(m/hL_dprime));\n",
+ "ID = (OD-(2.0*t));# [m]\n",
+ "Ai = math.pi*(ID**2)/4;# [square m]\n",
+ "Gt_prime = Wt/(n*Ai);# [kg/square m.s]\n",
+ "M2 = -0.7204;Re = ID*Gt_prime/viscocity;\n",
+ "Pr = Ct*viscocity/K;\n",
+ "# From a standard correlation:\n",
+ "hT = 364.0;# [W/square m.K]\n",
+ "Dav = (ID+OD)/2.0;# [m]\n",
+ "Zm = (OD-ID)/2;# [m]\n",
+ "Km = 112.5;# [W/m.K]\n",
+ "# From Eqn. 7.67:\n",
+ "Uo = 1/((OD/(ID*hT))+((OD/Dav)*(Zm/Km))+(1/hL_prime));# [W/square m.K]\n",
+ "# From Eqn. 7.75:\n",
+ "alpha1 = -(((Uo*Ao)/(Wt*Ct))+((Uo*Ao)/(Wal*Cal)));\n",
+ "alpha2 = m*Uo*Ao/(Wt*Ct);\n",
+ "# From Eqn. 7.76:\n",
+ "beeta1 = Ky*Ao/(Wal*Cal);\n",
+ "beeta2 = -((m*Ky*Ao/(Wal*Cal))-(Ky*Ao/Ws));\n",
+ "def f26(r):\n",
+ " return (r**2)+((alpha1+beeta2)*r)+((alpha1*beeta2)-(alpha2*beeta1))\n",
+ "r1 = fsolve(f26,10);\n",
+ "r2 = fsolve(f26,0);\n",
+ "beeta2 = 1.402;\n",
+ "# From Eqn. 7.83:\n",
+ "# N1-(M1*(r1+alpha1)/beeta1) = 0............................................(1)\n",
+ "# N2-(M2*(r2+alpha2)/beeta2) = 0............................................(2)\n",
+ "# From Eqn. 7.77:\n",
+ "# At the top:\n",
+ "x1 = 1.0;\n",
+ "# TempL2+(M1*exp(r1*x1))+(M2*exp(-(r2*x1))) = TempL.........................(3)\n",
+ "# From Eqn. 7.78:\n",
+ "# At the bottom:\n",
+ "x2 = 0.0;\n",
+ "# H1_star-N1-N2 = H1_prime..................................................(4)\n",
+ "# From Eqn. 7.80:\n",
+ "# ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1)) = (Tempt-TempL)...............(5)\n",
+ "# From Eqn. 7.81:\n",
+ "# ((N1/r1)*(exp(r1)-1))+((N2*r2)*(exp(r2)-1)) = (H1_star-H1_prime)..........(6)\n",
+ "# From Eqn. 7.91 & Eqn. 7.92:\n",
+ "# Uo*Ao*(TempT-TempL)=Ky*Ao*(H1_star-H1_prime)..............................(7)\n",
+ "\n",
+ "# Elimination of M's & N's by solving Eqn. (1) to (4) and (7) simultaneously:\n",
+ "# and from Fig. 7.5 (Pg 232):\n",
+ "TempL1=28.0;# [OC]\n",
+ "H1_star=(Uo*Ao*(TempT-TempL)/(Ky*Ao))+H1_prime;# [J/kmol]\n",
+ "\n",
+ "\n",
+ "N1 = 3594.0*M1\n",
+ "N2 =-43288.0*M2;\n",
+ "\n",
+ "# By Eqn. 5\n",
+ "delta_Temp = ((M1/r1)*(math.exp(r1)-1))+((M2*r2)*(math.exp(r2)-1));# [OC]\n",
+ "Q = Uo*delta_Temp*Ao;\n",
+ "TempT1 = TempT-(Q/(Wt*Ct));# [OC]\n",
+ "H2_prime = Q/(Ws)+H1_prime;# [J/kg]\n",
+ "print\"Temperature to which oil was cooled:\",int(TempT1),\" degree C\\n\"\n",
+ "# The solution in the textbook is wrong "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.15 - Page: 267\n",
+ "\n",
+ "\n",
+ "Temperature to which oil was cooled:"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 57 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter7_1.ipynb b/Mass_-_Transfer_Operations/Chapter7_1.ipynb
new file mode 100755
index 00000000..14a0593d
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter7_1.ipynb
@@ -0,0 +1,1071 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:4bcd866f270e2f66ae7fbe911b2556c72aef74bc48c0c7488d977884f07ab7ad"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7: Humidification Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.1: Page 222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.1\n",
+ "# Page: 222\n",
+ "\n",
+ "print'Illustration 7.1 - Page: 222\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# ****Data****#\n",
+ "Temp1 = 273+26.1;# [K]\n",
+ "P1 = 100;# [mm Hg]\n",
+ "Temp2 = 273+60.6;# [K]\n",
+ "P2 = 400;# [mm Hg]\n",
+ "P = 200;# [mm Hg]\n",
+ "#*****#\n",
+ "\n",
+ "def f12(T):\n",
+ " return ((1/Temp1)-(1/T))/((1/Temp1)-(1/Temp2))-((math.log(P1)-math.log(P))/(math.log(P1)-math.log(P2)))\n",
+ "T = fsolve(f12,37);# [K]\n",
+ "print\"At\",round(T-273,1),\" degree C, the vapour pressure of benzene is 200 mm Hg\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.1 - Page: 222\n",
+ "\n",
+ "\n",
+ "At"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 42.4 degree C, the vapour pressure of benzene is 200 mm Hg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.2: Page 223"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.2:\n",
+ "# Page: 223\n",
+ "\n",
+ "print'Illustration 7.2 - Page: 223\\n\\n'\n",
+ "#part(a) and part(b) are table based and doesn't require an calculation\n",
+ "\n",
+ "print'Illustration 7.2 (c)\\n\\n'\n",
+ "\n",
+ "# Solution (c)\n",
+ "\n",
+ "# Reference: H20\n",
+ "# At 25 OC\n",
+ "m = 0.775;\n",
+ "Mr = 18.02;# [kg/kmol]\n",
+ "lambdar = 2443000;# [N/m.kg]\n",
+ "M = 78.05;# [kg/kmol]\n",
+ "# From Eqn. 7.6:\n",
+ "Lambda = m*lambdar*Mr/M;# [N/m.kg]\n",
+ "print\"Latent Heat of Vaporization at 25 degree C is\",round(Lambda/1000,2),\" kN/m.kg\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.2 - Page: 223\n",
+ "\n",
+ "\n",
+ "Illustration 7.2 (c)\n",
+ "\n",
+ "\n",
+ "Latent Heat of Vaporization at 25 degree C is 437.13 kN/m.kg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.3: Page 226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.3\n",
+ "# Page: 226\n",
+ "\n",
+ "print'Illustration 7.3 - Page: 226\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# ****Data****#\n",
+ "m = 10;# [kg]\n",
+ "Cvap = 1.256;# [kJ/kg.K]\n",
+ "Cliq = 1.507;# [kJ/kg.K]\n",
+ "Temp1 = 100;# [OC]\n",
+ "Temp4 = 10;# [OC]\n",
+ "#******#\n",
+ "\n",
+ "# Using Fig 7.2 (Pg 224):\n",
+ "Temp2 = 25;# [OC]\n",
+ "# Using the notation of Fig. 7.3:\n",
+ "H1_diff_H2 = Cvap*(Temp1-Temp2);# [kJ/kg]\n",
+ "# From Illustration 7.2:\n",
+ "H2_diff_H3 = 434;# [Latent Heat of Vaporisation, kJ/kg]\n",
+ "H3_diff_H4 = Cliq*(Temp2-Temp4);# [kJ/kg]\n",
+ "H1_diff_H4 = H1_diff_H2+H2_diff_H3+H3_diff_H4;# [kJ/kg]\n",
+ "H = m*H1_diff_H4;# [kJ]\n",
+ "print\"Heat evolved for 10 kg Benzene is \",int(H),\" kJ\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.3 - Page: 226\n",
+ "\n",
+ "\n",
+ "Heat evolved for 10 kg Benzene is 5508 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.4: Page 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.4\n",
+ "# Page: 227\n",
+ "\n",
+ "print'Illustration 7.4 - Page: 227\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = benzene vapour; B = Nitrogen Gas\n",
+ "P = 800.0;# [mm Hg]\n",
+ "Temp = 273.0+60;# [K]\n",
+ "pA = 100.0;# [mm Hg]\n",
+ "#******#\n",
+ "\n",
+ "pB = P-pA;# [mm Hg]\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 28.08;# [kg/kmol]\n",
+ "\n",
+ "# Mole Fraction\n",
+ "print\"On the Basis of Mole Fraction\\n\"\n",
+ "yAm = pA/P;\n",
+ "yBm = pB/P;\n",
+ "print\"Mole Fraction of Benzene is \",yAm\n",
+ "print\"\\nMole Fraction of Nitrogen is \",yBm\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Volume Fraction\n",
+ "print\"On the Basis of Volume Fraction\\n\"\n",
+ "# Volume fraction is same as mole Fraction\n",
+ "yAv = yAm;\n",
+ "yBv = yBm;\n",
+ "print\"Volume Fraction of Benzene is \",yAv\n",
+ "print\"\\n Volume Fraction of Nitrogen is \",yBv\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Absolute Humidity\n",
+ "print\"On the basis of Absolute humidity\\n\"\n",
+ "Y = pA/pB;# [mol benzene/mol nitrogen]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg nitrogen]\n",
+ "print\"The concentration of benzene is \",round(Y_prime,3),\" kg benzene/kg nitrogen\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.4 - Page: 227\n",
+ "\n",
+ "\n",
+ "On the Basis of Mole Fraction\n",
+ "\n",
+ "Mole Fraction of Benzene is 0.125\n",
+ "\n",
+ "Mole Fraction of Nitrogen is 0.875\n",
+ "\n",
+ "\n",
+ "On the Basis of Volume Fraction\n",
+ "\n",
+ "Volume Fraction of Benzene is 0.125\n",
+ "\n",
+ " Volume Fraction of Nitrogen is 0.875\n",
+ "\n",
+ "\n",
+ "On the basis of Absolute humidity\n",
+ "\n",
+ "The concentration of benzene is 0.397 kg benzene/kg nitrogen\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.5: Page 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.5\n",
+ "# Page: 228\n",
+ "\n",
+ "print'Illustration 7.5 - Page: 228\\n\\n'\n",
+ "\n",
+ "print'Illustration 7.5 (a)\\n\\n'\n",
+ "# solution(a)\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = benzene vapour; B = Nitrogen Gas\n",
+ "P = 1.0;# [atm]\n",
+ "#*****#\n",
+ "\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 28.02;# [kg/kmol]\n",
+ "# Since gas is saturated, from Fig. 7.2 (Pg 224):\n",
+ "pA = 275.0/760;# [atm]\n",
+ "Y = pA/(P-pA);# [kmol benzene/kmol nitrogen]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg nitrogen]\n",
+ "print\"The concentration of benzene is \",round(Y_prime,3),\" kg benzene/kg nitrogen\\n\\n\"\n",
+ "\n",
+ "print'Illustration 7.5 (b)\\n\\n'\n",
+ "# solution(b)\n",
+ "\n",
+ "# A = benzene vapour; B = CO2\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 44.01;# [kg/kmol]\n",
+ "# Since gas is saturated, from Fig. 7.2:\n",
+ "pA = 275.0/760;# [atm]\n",
+ "Y = pA/(P-pA);# [kmol benzene/kmol CO2]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg CO2]\n",
+ "print\"The concentration of benzene is\",round(Y_prime,3),\" kg benzene/kg CO2\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.5 - Page: 228\n",
+ "\n",
+ "\n",
+ "Illustration 7.5 (a)\n",
+ "\n",
+ "\n",
+ "The concentration of benzene is 1.579 kg benzene/kg nitrogen\n",
+ "\n",
+ "\n",
+ "Illustration 7.5 (b)\n",
+ "\n",
+ "\n",
+ "The concentration of benzene is 1.006 kg benzene/kg CO2\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.6: Page 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.6\n",
+ "# Page: 234\n",
+ "\n",
+ "print'Illustration 7.6 - Page: 234\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = water vapour; B = air\n",
+ "TempG = 55;# [OC]\n",
+ "P = 1.0133*10**(5);# [N/square m]\n",
+ "Y_prime = 0.030;# [kg water/kg dry air]\n",
+ "#******#\n",
+ "\n",
+ "MA = 18.02;# [kg/kmol]\n",
+ "MB = 28.97;# [kg/kmol]\n",
+ "\n",
+ "# Percent Humidity\n",
+ "# From psychrometric chart, at 55 OC\n",
+ "Ys_prime = 0.115;# [kg water/kg dry air]\n",
+ "percent_Humidity = (Y_prime/Ys_prime)*100;\n",
+ "print\"The sample has percent Humidity =\",round(percent_Humidity,1),\"%\"\n",
+ "\n",
+ "# Molal Absolute Humidity\n",
+ "Y = Y_prime*(MB/MA);# [kmol water/kmol dry air]\n",
+ "print\"\\n Molal Absolute Humidity of the sample is\",round(Y,4),\" kmol water/kmol dry air\\n\"\n",
+ "\n",
+ "# Partial Pressure\n",
+ "pA = Y*P/(1+Y);# [N/square m]\n",
+ "print\"The Partial Pressure Of Water is\",int(pA),\" N/square m\\n\"\n",
+ "\n",
+ "# Relative Humidity\n",
+ "pa = 118*133.3;# [vapour pressure of water at 55 OC,N/square m]\n",
+ "relative_Humidity = (pA/pa)*100;\n",
+ "print\"The sample has relative Humidity = \",round(relative_Humidity,1),\" %\\n\"\n",
+ "\n",
+ "# Dew Point\n",
+ "# From psychrometric chart,\n",
+ "dew_point = 31.5;# [OC]\n",
+ "print\"Dew point Of the Sample is\",dew_point,\" degree C\\n\"\n",
+ "\n",
+ "# Humid Volume\n",
+ "# At 55 OC\n",
+ "vB = 0.93;# [specific volume of dry air,cubic m/kg]\n",
+ "vsB = 1.10;# [specific volume of saturated air,cubic m/kg]\n",
+ "vH = vB+((vsB-vB)*(percent_Humidity/100));# [cubic m/kg]\n",
+ "print\"The Humid Volume of the Sample is \",round(vH,3),\" cubic m/kg\\n\"\n",
+ "\n",
+ "# Humid Heat\n",
+ "CB = 1005;# [J/kg.K]\n",
+ "CA = 1884;# [J/kg.K]\n",
+ "Cs = CB+(Y_prime*CA);# [J/kg]\n",
+ "print\"The Humid Heat is \",round(Cs,1),\" J/kg dry air.K\\n\"\n",
+ "\n",
+ "# Enthalpy\n",
+ "HA = 56000;# [J/kg dry air]\n",
+ "HsA = 352000;# [J/kg dry air]\n",
+ "H_prime = HA+((HsA-HA)*(percent_Humidity/100));# [J/kg dry air]\n",
+ "print\"The Enthalphy of the sample is \",round(H_prime/1000,1),\"KJ/kg dry air\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.6 - Page: 234\n",
+ "\n",
+ "\n",
+ "The sample has percent Humidity = 26.1 %\n",
+ "\n",
+ " Molal Absolute Humidity of the sample is 0.0482 kmol water/kmol dry air\n",
+ "\n",
+ "The Partial Pressure Of Water is 4662 N/square m\n",
+ "\n",
+ "The sample has relative Humidity = 29.6 %\n",
+ "\n",
+ "Dew point Of the Sample is 31.5 degree C\n",
+ "\n",
+ "The Humid Volume of the Sample is 0.974 cubic m/kg\n",
+ "\n",
+ "The Humid Heat is 1061.5 J/kg dry air.K\n",
+ "\n",
+ "The Enthalphy of the sample is 133.2 KJ/kg dry air\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.7: Page 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.7\n",
+ "# Page: 236\n",
+ "\n",
+ "print'Illustration 7.7 - Page: 236\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = water vapour; B = air\n",
+ "V = 100;# [m**3]\n",
+ "Tempi = 55;# [OC]\n",
+ "Tempf = 110;# [OC]\n",
+ "#*****#\n",
+ "\n",
+ "# From Illustration 7.6\n",
+ "vH = 0.974;# [m**3/kg]\n",
+ "Cs = 1061.5;# [J/kg]\n",
+ "WB = V/vH;# [kg]\n",
+ "Q = WB*Cs*(Tempf-Tempi);# [J]\n",
+ "print\"Heat required is \",round(Q,3),\" J\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation in book"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.7 - Page: 236\n",
+ "\n",
+ "\n",
+ "Heat recquired is 5994096.509 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.9: Page 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.9\n",
+ "# Page:240\n",
+ "from scipy.optimize import fsolve \n",
+ "print'Illustration 7.9 - Page:240\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "Tempw = 35;# [OC]\n",
+ "Tempg = 65;# [OC]\n",
+ "#******#\n",
+ "\n",
+ "# From psychrometric chart\n",
+ "lambda_w = 2419300;# [J/kg]\n",
+ "Y_prime_w = 0.0365;# [kg H2O/kg dry air]\n",
+ "# From fig 7.5(a)\n",
+ "hG_by_kY = 950;# [J/kg]\n",
+ "# From Eqn. 7.26\n",
+ "def f13(Y_prime):\n",
+ " return (Tempg-Tempw)-((lambda_w*(Y_prime_w-Y_prime))/hG_by_kY)\n",
+ "Y_prime = fsolve(f13,2);# [kg H2O/kg dry air]\n",
+ "print\"Humidity of air is\",round(Y_prime[0],4),\"kg H2O/kg dry air\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.9 - Page:240\n",
+ "\n",
+ "\n",
+ "Humidity of air is 0.0247 kg H2O/kg dry air\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.10: Page 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.10\n",
+ "# Page:241\n",
+ "\n",
+ "print'Illustration 7.10 - Page:241\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "Tg = 60;# [OC]\n",
+ "Y_prime = 0.050;# [kg toulene/kg air]\n",
+ "#*****#\n",
+ "\n",
+ "# Wet Bulb temparature\n",
+ "Dab = 0.92*10**(-5);# [square m/s]\n",
+ "density_air = 1.060;# [kg/cubic cm];\n",
+ "viscocity_G = 1.95*10**(-5);# [kg/m.s]\n",
+ "Sc = viscocity_G/(density_air*Dab);\n",
+ "# From Eqn. 7.28\n",
+ "hG_by_kY = 1223*(Sc**0.567);# [J/kg.K]\n",
+ "# Soln. of Eqn. 7.26 by trial & error method:\n",
+ "# (Tg-Tw) = (Yas_prime-Y_prime)*(lambda_w/hG_by_kY)\n",
+ "Tw = 31.8;# [OC]\n",
+ "print\"Wet Bulb Temparature:\",Tw,\" degree C\\n\"\n",
+ "\n",
+ "# Adiabatic Saturation Temparature\n",
+ "C_air = 1005;# [J/kg.K]\n",
+ "C_toulene = 1256;# [J/kg.K]\n",
+ "Cs = C_air+(C_toulene*Y_prime);# [J/kg.K]\n",
+ "# Soln. of Eqn. 7.21 by trial & error method:\n",
+ "# (Tg-Tas) = (Yas_prime-Y_prime)*(lambda_as/Cs)\n",
+ "Tas = 25.7;# [OC]\n",
+ "print\"Adiabatic Saturation Temparature: \",round(Tas,1),\" degree C\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.10 - Page:241\n",
+ "\n",
+ "\n",
+ "Wet Bulb Temparature: 31.8 degree C\n",
+ "\n",
+ "Adiabatic Saturation Temparature: 25.7 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.11: Page 249"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.11\n",
+ "# Page: 249\n",
+ "\n",
+ "print'Illustration 7.11 - Page: 249\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "\n",
+ "#****Data****#\n",
+ "L_min = 2.27;# [kg/square m.s]\n",
+ "G_min = 2;# [kg/square m.s]\n",
+ "L2_prime = 15;# [kg/s]\n",
+ "Q = 270.0;# [W]\n",
+ "Templ2 = 45.0;# [OC]\n",
+ "Tempg1 = 30.0;# [OC]\n",
+ "Tempw1 = 24.0;# [OC]\n",
+ "Kya = 0.90;# [kg/cubic m.s]\n",
+ "#*******#\n",
+ "\n",
+ "H1_prime = 72;# [kJ/kg dry air]\n",
+ "Y1_prime = 0.0160;# [kg water/kg dry air]\n",
+ "Templ1 = 29;# [OC]\n",
+ "Cal = 4.187;# [kJ/kg]\n",
+ "\n",
+ "# Tower cross section Area:\n",
+ "Al = L2_prime/L_min;# [square m]\n",
+ "Ag = Gs/G_min;# [square m]\n",
+ "A = min(Al,Ag);# [square m]\n",
+ "Area = 3.25;\n",
+ "# From Eqn. 7.54\n",
+ "def f16(Z):\n",
+ " return Area-(Kya*Z/G_min)\n",
+ "Z = fsolve(f16,2);\n",
+ "print\"The height of tower is\",round(Z,2),\" m\\n\"\n",
+ "NtoG = 3.25;\n",
+ "HtoG = G_min/Kya;# [m]\n",
+ "\n",
+ "# Make up water\n",
+ "# Assuming the outlet air is essentially saturated:\n",
+ "Y2_prime = 0.0475;# [kg water/kg dry air]\n",
+ "E = G_min*(A)*(Y2_prime-Y1_prime);# [kg/s]\n",
+ "# Windage loss estimated as 0.2 percent\n",
+ "W = 0.002*L2_prime;# [kg/s]\n",
+ "ppm_blowdown = 2000;# [ppm]\n",
+ "ppm_makeup = 500;# [ppm]\n",
+ "# Since the weight fraction are proportional to the corresponding ppm values:\n",
+ "B = (E*ppm_makeup/(ppm_blowdown-ppm_makeup))-W;# [kg/s]\n",
+ "M = B+E+W;# [kg/s]\n",
+ "print\"The makeup water requirement is estimated to be\",round(M,2),\" kg/s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.11 - Page: 249\n",
+ "\n",
+ "\n",
+ "The height of tower is 7.22 m\n",
+ "\n",
+ "The makeup water requirement is estimated to be 0.46 kg/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 81
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.13: Page 254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.13\n",
+ "# Page: 254\n",
+ "\n",
+ "\n",
+ "print'Illustration 7.13\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve \n",
+ "# Given\n",
+ "Tempg1=65;# [OC]\n",
+ "Y1_prime=0.0170;# [kg water/kg dry air]\n",
+ "# Using adiabatic satursion line on Fig. 7.5 (Pg 232)\n",
+ "Tempas=32;# [OC]\n",
+ "Yas_prime=0.0309;# [kg water/kg dry air]\n",
+ "Tempg2=45;# [OC]\n",
+ "Z=2;# [m]\n",
+ "#*******#\n",
+ "\n",
+ "Y2_prime=0.0265;# [kg water/kg dry air]\n",
+ "def f19(Kya_by_Gs):\n",
+ " return math.log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)\n",
+ "Kya_by_Gs=fsolve(f19,1);# [1/m]\n",
+ "\n",
+ "# For the extended chamber:\n",
+ "Z=4;# [m]\n",
+ "def f20(Y2_prime):\n",
+ " return math.log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)\n",
+ "Y2_prime=fsolve(f20,0.029);#[kg water/kg dry air] \n",
+ "# With the same adiabatic curve:\n",
+ "Tempg2=34;# [OC] from the curve\n",
+ "print\"The Outlet Conditions are:\\n\"\n",
+ "print\"Absolute Humidity is\",round(Y2_prime,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Dry Bulb Temperature is\",round(Tempg2), \"degree C\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.13\n",
+ "\n",
+ "\n",
+ "The Outlet Conditions are:\n",
+ "\n",
+ "Absolute Humidity is 0.0295 kg water/kg dry air\n",
+ "\n",
+ "Dry Bulb Temperature is 34.0 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 137
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.14: Page 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.14\n",
+ "# Page: 256\n",
+ "\n",
+ "print'Illustration 7.14 - Page: 256\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# a = N2 b = CO\n",
+ "# Entering gas\n",
+ "Y1_prime = 0.0;# [kg water/kg dry air]\n",
+ "Pt = 1.0;# [atm]\n",
+ "Tempg1 = 315.0;# [OC]\n",
+ "G_prime = 5.0;# [square m/s]\n",
+ "\n",
+ "# Temp of the tower:\n",
+ "Templ2 = 18.0;# [OC]\n",
+ "Density_L2 = 1000.0; #[kg/square m]\n",
+ "viscocity_L2 = 1.056*10**(-3);# [kg/m.s]\n",
+ "Tempg2 = 27.0;# [OC]\n",
+ "\n",
+ "Mb = 28.0;# [kg/kmol]\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Density_G1 = (Mb/22.41)*(273/(Tempg1+273));# [kg/square m]\n",
+ "G1 = G_prime*(Density_G1);# [kg/s]\n",
+ "\n",
+ "# Since the outlet gas is nearly saturated:\n",
+ "Y_prime = 0.024;# [kg water/kg dry air]\n",
+ "Y2_prime = 0.022;# [kg water/kg dry air, assumed]\n",
+ "G2 = G1*(1+Y2_prime);# [kg/s]\n",
+ "Mav = (1+Y2_prime)/((1/Mb)+(Y2_prime/Ma));# [kg/kmol]\n",
+ "Density_G2 = (Mav/22.4)*(273.0/(Templ2+273));# [kg/square m]\n",
+ "L2_by_G2 = 2.0;\n",
+ "abcissa = L2_by_G2*(Density_G2/(Density_L2-Density_G2))**(1/2);\n",
+ "# From Fig. 6.34:\n",
+ "# For a gas pressure drop of 400 N/square m/m\n",
+ "ordinate = 0.073;\n",
+ "# From Table 6.3:\n",
+ "Cf = 65.0;\n",
+ "J = 1.0;\n",
+ "def f21(G2_prime):\n",
+ " return ((G2_prime**2)*Cf*(viscocity_L2**0.1)*J/(Density_G2*(Density_L2-Density_G2)))-ordinate\n",
+ "# Tentative data:\n",
+ "G2_prime = fsolve(f21,2);# [kg/square m.s]\n",
+ "Area = G1/G2_prime;# [square m]\n",
+ "dia = math.sqrt(4*Area/math.pi);# [m]\n",
+ "\n",
+ "# Final data:\n",
+ "dia = 1.50;# [m]\n",
+ "Area = math.pi*dia**2.0/4;# [square m]\n",
+ "Gs_prime = G1/Area;# [kg/square m.s]\n",
+ "G2_prime = G2/Area;# [kg/square m.s]\n",
+ "L2_prime = L2_by_G2*G2_prime;# [kg/square m.s]\n",
+ "# From Eqn. 7.29:\n",
+ "def f22(L1_prime):\n",
+ " return (L2_prime-L1_prime)-(Gs_prime*(Y2_prime-Y1_prime))\n",
+ "L1_prime = fsolve(f22,2);\n",
+ "Cb = 1089;# [J/kg.K]\n",
+ "Ca = 1884;# [J/kg.K]\n",
+ "Cs1 = Cb+(Y1_prime*Ca);# [J/(kg dry air).K]\n",
+ "Cs2 = Cb+(Y2_prime*Ca);# [J/(kg dry air).K]\n",
+ "Tempo = Templ2;# [base temp.,K]\n",
+ "Lambda = 2.46*10**6;# [J/kg]\n",
+ "CaL = 4187;# [J/kg K]\n",
+ "# From Eqn. 7.31:\n",
+ "def f23(Templ1):\n",
+ " return ((L2_prime*CaL*(Templ2-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs2*(Tempg2-Tempo))+(Y2_prime*Lambda)))\n",
+ "Templ1 = fsolve(f23,2);\n",
+ "# At Templ1 = 49.2 OC\n",
+ "viscocity_L = 0.557*10**(-3);# [kg/m.s]\n",
+ "Density_L = 989.0;# [kg/square m]\n",
+ "K = 0.64;# [w/m.K]\n",
+ "Prl = CaL*viscocity_L/K;\n",
+ "\n",
+ "# For Entering Gas:\n",
+ "viscocity_G1 = 0.0288*10**(-3);# [kg*/m.s]\n",
+ "Dab = 0.8089*10**(-4);# [square m/s]\n",
+ "ScG = viscocity_G1/(Density_G1*Dab);\n",
+ "PrG = 0.74;\n",
+ "\n",
+ "# From Illustration 6.7:\n",
+ "a = 53.1;# [square m/square m]\n",
+ "Fga = 0.0736;# [kmol/square m]\n",
+ "Hga = 4440.0;# [W/square m.K]\n",
+ "Hla = 350500.0;# [W/square m.K]\n",
+ "# At the bottom, by several trial:\n",
+ "Tempi = 50.3;# [OC]\n",
+ "pai = 93.9/760;# [atm]\n",
+ "paG = 0;# [atm]\n",
+ "# By Eqn. 7.64:\n",
+ "dY_prime_by_dZ = -(Ma*Fga/Gs_prime)*math.log((1-(pai/Pt))/(1-(paG/Pt)));# [(kg H2O/kg dry gas)/m]\n",
+ "Hg_primea = -(Gs_prime*Ca*dY_prime_by_dZ)/(1-math.exp((Gs_prime*Ca*dY_prime_by_dZ)/(Hga)));# [W/square m.K]\n",
+ "dTempg_by_dZ = -(Hg_primea*(Tempg1-Tempi)/(Gs_prime*Cs1));# [OC/m]\n",
+ "Tempi = (Templ1)+((Gs_prime*(Cs1*dTempg_by_dZ)+((Ca*(Tempg1))-(CaL*(Templ1))+(((CaL-Ca)*(Tempo))+Lambda))*dY_prime_by_dZ)/((Gs_prime*CaL*dY_prime_by_dZ)-Hla));#[OC]\n",
+ "# Assume:\n",
+ "delta_Tempg = -30;# [OC]\n",
+ "delta_Z = delta_Tempg/(dTempg_by_dZ);# [m]\n",
+ "Tempg = Tempg1+delta_Tempg;# [OC]\n",
+ "Y_prime = Y1_prime+(dY_prime_by_dZ)*delta_Z;# [kg H2O/kg dry gas]\n",
+ "paG = Y_prime/(Y_prime+(Ma/Mb));# [atm]\n",
+ "Cs = Cb+Ca*(Y_prime);# [J/(kg dry air).K]\n",
+ "# Water balance, From Eqn. 7.29:\n",
+ "def f24(L_prime):\n",
+ " return (L2_prime-L_prime)-(Gs_prime*(Y_prime-Y1_prime))\n",
+ "L_prime = fsolve(f24,2);# [kg/square m.s]\n",
+ "\n",
+ "def f25(Templ):\n",
+ " return ((L_prime*CaL*(Templ-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs*(Tempg-Tempo))+(Y_prime*Lambda)))\n",
+ "Templ = fsolve(f25,2);\n",
+ "\n",
+ "# This process is repeated several times until gas temp falls to Tempg2\n",
+ "Z = 1.54;# [m] Z = sum of all delta_Z\n",
+ "# The value of Y2_prime was calculated to be 0.0222 which is sufficiently close to the assumed value.\n",
+ "print\"The diameter of tower is \",dia,\" m\\n\"\n",
+ "print\"The packed height is\",Z, \"m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.15: Page 267"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.15\n",
+ "# Page: 267\n",
+ "\n",
+ "print'Illustration 7.15 - Page: 267\\n\\n'\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "import numpy\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "w = 0.75;# [m]\n",
+ "OD = 19.05/1000;# [m]\n",
+ "l = 3.75;# [m]\n",
+ "n = 20;\n",
+ "t = 1.65/1000;# [m]\n",
+ "Ws = 2.3;# [kg/s]\n",
+ "Wal = 10.0;# [kg/s]\n",
+ "Wt = 4.0;# [kg/s]\n",
+ "Density = 800;# [kg/cubic m]\n",
+ "viscocity = 0.005;# [kg/m.s]\n",
+ "K = 0.1436;# [W/m.K]\n",
+ "Ct = 2010.0;# [J/kg.K]\n",
+ "Cal = 4187.0;# [J/kg.K]\n",
+ "Y1_prime = 0.01;# [kg H2O/kg dry air]\n",
+ "Y2_prime = 0.06;# [kg H2O/kg dry air]\n",
+ "TempT = 95.0;# [OC]\n",
+ "#*****#\n",
+ "\n",
+ "Free_area = (w-(n*OD))*l;# [square m]\n",
+ "Gs_min = 2.3/Free_area;# [kg/square m.s]\n",
+ "M1 = 1.461;Yav_prime = (Y1_prime+Y2_prime)/2;# [kg H2O/kg dry air]\n",
+ "# From Eqn. 7.86:\n",
+ "ky = 0.0493*(Gs_min*(1+Yav_prime))**0.905;# [kg/square m.s.delta_Y_prime]\n",
+ "# From Fig. 7.5:\n",
+ "H1_prime = 56000.0;# [J/kg]\n",
+ "Ao = 400*math.pi*OD*l;# [square m]\n",
+ "# Cooling water is distributed over 40 tubes & since tubes are staggered\n",
+ "geta = Wal/(40.0*2*l);# [kg/m.s]\n",
+ "geta_by_OD = geta/OD;# [kg/square m.s]\n",
+ "# Assume:\n",
+ "TempL = 28.0;# [OC]\n",
+ "# From Eqn. 7.84:\n",
+ "hL_prime = (982+(15.58*TempL))*(geta_by_OD**(1/3));# [W/square m.K]\n",
+ "# From Eqn. 7.85:\n",
+ "hL_dprime = 11360;# [W/square m.K]\n",
+ "# From Fig. 7.5 (Pg 232)\n",
+ "m = 5000.0;# [J/kg.K]\n",
+ "Ky = 1.0/((1/ky)+(m/hL_dprime));\n",
+ "ID = (OD-(2.0*t));# [m]\n",
+ "Ai = math.pi*(ID**2)/4;# [square m]\n",
+ "Gt_prime = Wt/(n*Ai);# [kg/square m.s]\n",
+ "M2 = -0.7204;Re = ID*Gt_prime/viscocity;\n",
+ "Pr = Ct*viscocity/K;\n",
+ "# From a standard correlation:\n",
+ "hT = 364.0;# [W/square m.K]\n",
+ "Dav = (ID+OD)/2.0;# [m]\n",
+ "Zm = (OD-ID)/2;# [m]\n",
+ "Km = 112.5;# [W/m.K]\n",
+ "# From Eqn. 7.67:\n",
+ "Uo = 1/((OD/(ID*hT))+((OD/Dav)*(Zm/Km))+(1/hL_prime));# [W/square m.K]\n",
+ "# From Eqn. 7.75:\n",
+ "alpha1 = -(((Uo*Ao)/(Wt*Ct))+((Uo*Ao)/(Wal*Cal)));\n",
+ "alpha2 = m*Uo*Ao/(Wt*Ct);\n",
+ "# From Eqn. 7.76:\n",
+ "beeta1 = Ky*Ao/(Wal*Cal);\n",
+ "beeta2 = -((m*Ky*Ao/(Wal*Cal))-(Ky*Ao/Ws));\n",
+ "def f26(r):\n",
+ " return (r**2)+((alpha1+beeta2)*r)+((alpha1*beeta2)-(alpha2*beeta1))\n",
+ "r1 = fsolve(f26,10);\n",
+ "r2 = fsolve(f26,0);\n",
+ "beeta2 = 1.402;\n",
+ "# From Eqn. 7.83:\n",
+ "# N1-(M1*(r1+alpha1)/beeta1) = 0............................................(1)\n",
+ "# N2-(M2*(r2+alpha2)/beeta2) = 0............................................(2)\n",
+ "# From Eqn. 7.77:\n",
+ "# At the top:\n",
+ "x1 = 1.0;\n",
+ "# TempL2+(M1*exp(r1*x1))+(M2*exp(-(r2*x1))) = TempL.........................(3)\n",
+ "# From Eqn. 7.78:\n",
+ "# At the bottom:\n",
+ "x2 = 0.0;\n",
+ "# H1_star-N1-N2 = H1_prime..................................................(4)\n",
+ "# From Eqn. 7.80:\n",
+ "# ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1)) = (Tempt-TempL)...............(5)\n",
+ "# From Eqn. 7.81:\n",
+ "# ((N1/r1)*(exp(r1)-1))+((N2*r2)*(exp(r2)-1)) = (H1_star-H1_prime)..........(6)\n",
+ "# From Eqn. 7.91 & Eqn. 7.92:\n",
+ "# Uo*Ao*(TempT-TempL)=Ky*Ao*(H1_star-H1_prime)..............................(7)\n",
+ "\n",
+ "# Elimination of M's & N's by solving Eqn. (1) to (4) and (7) simultaneously:\n",
+ "# and from Fig. 7.5 (Pg 232):\n",
+ "TempL1=28.0;# [OC]\n",
+ "H1_star=(Uo*Ao*(TempT-TempL)/(Ky*Ao))+H1_prime;# [J/kmol]\n",
+ "\n",
+ "\n",
+ "N1 = 3594.0*M1\n",
+ "N2 =-43288.0*M2;\n",
+ "\n",
+ "# By Eqn. 5\n",
+ "delta_Temp = ((M1/r1)*(math.exp(r1)-1))+((M2*r2)*(math.exp(r2)-1));# [OC]\n",
+ "Q = Uo*delta_Temp*Ao;\n",
+ "TempT1 = TempT-(Q/(Wt*Ct));# [OC]\n",
+ "H2_prime = Q/(Ws)+H1_prime;# [J/kg]\n",
+ "print\"Temperature to which oil was cooled:\",int(TempT1),\" degree C\\n\"\n",
+ "# The solution in the textbook is wrong "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.15 - Page: 267\n",
+ "\n",
+ "\n",
+ "Temperature to which oil was cooled:"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 57 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter7_2.ipynb b/Mass_-_Transfer_Operations/Chapter7_2.ipynb
new file mode 100755
index 00000000..83c83fea
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter7_2.ipynb
@@ -0,0 +1,1092 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0627e1083498e0e37e89924d5c259017b46e7f004ea51c86bbdc5e0e6e777fe9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7: Humidification Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.1: Page 222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.1\n",
+ "# Page: 222\n",
+ "\n",
+ "print'Illustration 7.1 - Page: 222\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "# ****Data****#\n",
+ "Temp1 = 273+26.1;# [K]\n",
+ "P1 = 100;# [mm Hg]\n",
+ "Temp2 = 273+60.6;# [K]\n",
+ "P2 = 400;# [mm Hg]\n",
+ "P = 200;# [mm Hg]\n",
+ "#*****#\n",
+ "\n",
+ "def f12(T):\n",
+ " return ((1/Temp1)-(1/T))/((1/Temp1)-(1/Temp2))-((math.log(P1)-math.log(P))/(math.log(P1)-math.log(P2)))\n",
+ "T = fsolve(f12,37);# [K]\n",
+ "print\"At\",round(T-273,1),\" degree C, the vapour pressure of benzene is 200 mm Hg\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.1 - Page: 222\n",
+ "\n",
+ "\n",
+ "At"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 42.4 degree C, the vapour pressure of benzene is 200 mm Hg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.2: Page 223"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.2:\n",
+ "# Page: 223\n",
+ "\n",
+ "print'Illustration 7.2 - Page: 223\\n\\n'\n",
+ "#part(a) and part(b) are table based and doesn't require an calculation\n",
+ "\n",
+ "print'Illustration 7.2 (c)\\n\\n'\n",
+ "\n",
+ "# Solution (c)\n",
+ "\n",
+ "# Reference: H20\n",
+ "# At 25 OC\n",
+ "m = 0.775;\n",
+ "Mr = 18.02;# [kg/kmol]\n",
+ "lambdar = 2443000;# [N/m.kg]\n",
+ "M = 78.05;# [kg/kmol]\n",
+ "# From Eqn. 7.6:\n",
+ "Lambda = m*lambdar*Mr/M;# [N/m.kg]\n",
+ "print\"Latent Heat of Vaporization at 25 degree C is\",round(Lambda/1000,2),\" kN/m.kg\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.2 - Page: 223\n",
+ "\n",
+ "\n",
+ "Illustration 7.2 (c)\n",
+ "\n",
+ "\n",
+ "Latent Heat of Vaporization at 25 degree C is 437.13 kN/m.kg\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.3: Page 226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.3\n",
+ "# Page: 226\n",
+ "\n",
+ "print'Illustration 7.3 - Page: 226\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# ****Data****#\n",
+ "m = 10;# [kg]\n",
+ "Cvap = 1.256;# [kJ/kg.K]\n",
+ "Cliq = 1.507;# [kJ/kg.K]\n",
+ "Temp1 = 100;# [OC]\n",
+ "Temp4 = 10;# [OC]\n",
+ "#******#\n",
+ "\n",
+ "# Using Fig 7.2 (Pg 224):\n",
+ "Temp2 = 25;# [OC]\n",
+ "# Using the notation of Fig. 7.3:\n",
+ "H1_diff_H2 = Cvap*(Temp1-Temp2);# [kJ/kg]\n",
+ "# From Illustration 7.2:\n",
+ "H2_diff_H3 = 434;# [Latent Heat of Vaporisation, kJ/kg]\n",
+ "H3_diff_H4 = Cliq*(Temp2-Temp4);# [kJ/kg]\n",
+ "H1_diff_H4 = H1_diff_H2+H2_diff_H3+H3_diff_H4;# [kJ/kg]\n",
+ "H = m*H1_diff_H4;# [kJ]\n",
+ "print\"Heat evolved for 10 kg Benzene is \",int(H),\" kJ\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.3 - Page: 226\n",
+ "\n",
+ "\n",
+ "Heat evolved for 10 kg Benzene is 5508 kJ\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.4: Page 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.4\n",
+ "# Page: 227\n",
+ "\n",
+ "print'Illustration 7.4 - Page: 227\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = benzene vapour; B = Nitrogen Gas\n",
+ "P = 800.0;# [mm Hg]\n",
+ "Temp = 273.0+60;# [K]\n",
+ "pA = 100.0;# [mm Hg]\n",
+ "#******#\n",
+ "\n",
+ "pB = P-pA;# [mm Hg]\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 28.08;# [kg/kmol]\n",
+ "\n",
+ "# Mole Fraction\n",
+ "print\"On the Basis of Mole Fraction\\n\"\n",
+ "yAm = pA/P;\n",
+ "yBm = pB/P;\n",
+ "print\"Mole Fraction of Benzene is \",yAm\n",
+ "print\"\\nMole Fraction of Nitrogen is \",yBm\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Volume Fraction\n",
+ "print\"On the Basis of Volume Fraction\\n\"\n",
+ "# Volume fraction is same as mole Fraction\n",
+ "yAv = yAm;\n",
+ "yBv = yBm;\n",
+ "print\"Volume Fraction of Benzene is \",yAv\n",
+ "print\"\\n Volume Fraction of Nitrogen is \",yBv\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# Absolute Humidity\n",
+ "print\"On the basis of Absolute humidity\\n\"\n",
+ "Y = pA/pB;# [mol benzene/mol nitrogen]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg nitrogen]\n",
+ "print\"The concentration of benzene is \",round(Y_prime,3),\" kg benzene/kg nitrogen\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.4 - Page: 227\n",
+ "\n",
+ "\n",
+ "On the Basis of Mole Fraction\n",
+ "\n",
+ "Mole Fraction of Benzene is 0.125\n",
+ "\n",
+ "Mole Fraction of Nitrogen is 0.875\n",
+ "\n",
+ "\n",
+ "On the Basis of Volume Fraction\n",
+ "\n",
+ "Volume Fraction of Benzene is 0.125\n",
+ "\n",
+ " Volume Fraction of Nitrogen is 0.875\n",
+ "\n",
+ "\n",
+ "On the basis of Absolute humidity\n",
+ "\n",
+ "The concentration of benzene is 0.397 kg benzene/kg nitrogen\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.5: Page 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.5\n",
+ "# Page: 228\n",
+ "\n",
+ "print'Illustration 7.5 - Page: 228\\n\\n'\n",
+ "\n",
+ "print'Illustration 7.5 (a)\\n\\n'\n",
+ "# solution(a)\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = benzene vapour; B = Nitrogen Gas\n",
+ "P = 1.0;# [atm]\n",
+ "#*****#\n",
+ "\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 28.02;# [kg/kmol]\n",
+ "# Since gas is saturated, from Fig. 7.2 (Pg 224):\n",
+ "pA = 275.0/760;# [atm]\n",
+ "Y = pA/(P-pA);# [kmol benzene/kmol nitrogen]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg nitrogen]\n",
+ "print\"The concentration of benzene is \",round(Y_prime,3),\" kg benzene/kg nitrogen\\n\\n\"\n",
+ "\n",
+ "print'Illustration 7.5 (b)\\n\\n'\n",
+ "# solution(b)\n",
+ "\n",
+ "# A = benzene vapour; B = CO2\n",
+ "MA = 78.05;# [kg/kmol]\n",
+ "MB = 44.01;# [kg/kmol]\n",
+ "# Since gas is saturated, from Fig. 7.2:\n",
+ "pA = 275.0/760;# [atm]\n",
+ "Y = pA/(P-pA);# [kmol benzene/kmol CO2]\n",
+ "Y_prime = Y*(MA/MB);# [kg benzene/kg CO2]\n",
+ "print\"The concentration of benzene is\",round(Y_prime,3),\" kg benzene/kg CO2\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.5 - Page: 228\n",
+ "\n",
+ "\n",
+ "Illustration 7.5 (a)\n",
+ "\n",
+ "\n",
+ "The concentration of benzene is 1.579 kg benzene/kg nitrogen\n",
+ "\n",
+ "\n",
+ "Illustration 7.5 (b)\n",
+ "\n",
+ "\n",
+ "The concentration of benzene is 1.006 kg benzene/kg CO2\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.6: Page 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.6\n",
+ "# Page: 234\n",
+ "\n",
+ "print'Illustration 7.6 - Page: 234\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = water vapour; B = air\n",
+ "TempG = 55;# [OC]\n",
+ "P = 1.0133*10**(5);# [N/square m]\n",
+ "Y_prime = 0.030;# [kg water/kg dry air]\n",
+ "#******#\n",
+ "\n",
+ "MA = 18.02;# [kg/kmol]\n",
+ "MB = 28.97;# [kg/kmol]\n",
+ "\n",
+ "# Percent Humidity\n",
+ "# From psychrometric chart, at 55 OC\n",
+ "Ys_prime = 0.115;# [kg water/kg dry air]\n",
+ "percent_Humidity = (Y_prime/Ys_prime)*100;\n",
+ "print\"The sample has percent Humidity =\",round(percent_Humidity,1),\"%\"\n",
+ "\n",
+ "# Molal Absolute Humidity\n",
+ "Y = Y_prime*(MB/MA);# [kmol water/kmol dry air]\n",
+ "print\"\\n Molal Absolute Humidity of the sample is\",round(Y,4),\" kmol water/kmol dry air\\n\"\n",
+ "\n",
+ "# Partial Pressure\n",
+ "pA = Y*P/(1+Y);# [N/square m]\n",
+ "print\"The Partial Pressure Of Water is\",int(pA),\" N/square m\\n\"\n",
+ "\n",
+ "# Relative Humidity\n",
+ "pa = 118*133.3;# [vapour pressure of water at 55 OC,N/square m]\n",
+ "relative_Humidity = (pA/pa)*100;\n",
+ "print\"The sample has relative Humidity = \",round(relative_Humidity,1),\" %\\n\"\n",
+ "\n",
+ "# Dew Point\n",
+ "# From psychrometric chart,\n",
+ "dew_point = 31.5;# [OC]\n",
+ "print\"Dew point Of the Sample is\",dew_point,\" degree C\\n\"\n",
+ "\n",
+ "# Humid Volume\n",
+ "# At 55 OC\n",
+ "vB = 0.93;# [specific volume of dry air,cubic m/kg]\n",
+ "vsB = 1.10;# [specific volume of saturated air,cubic m/kg]\n",
+ "vH = vB+((vsB-vB)*(percent_Humidity/100));# [cubic m/kg]\n",
+ "print\"The Humid Volume of the Sample is \",round(vH,3),\" cubic m/kg\\n\"\n",
+ "\n",
+ "# Humid Heat\n",
+ "CB = 1005;# [J/kg.K]\n",
+ "CA = 1884;# [J/kg.K]\n",
+ "Cs = CB+(Y_prime*CA);# [J/kg]\n",
+ "print\"The Humid Heat is \",round(Cs,1),\" J/kg dry air.K\\n\"\n",
+ "\n",
+ "# Enthalpy\n",
+ "HA = 56000;# [J/kg dry air]\n",
+ "HsA = 352000;# [J/kg dry air]\n",
+ "H_prime = HA+((HsA-HA)*(percent_Humidity/100));# [J/kg dry air]\n",
+ "print\"The Enthalphy of the sample is \",round(H_prime/1000,1),\"KJ/kg dry air\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.6 - Page: 234\n",
+ "\n",
+ "\n",
+ "The sample has percent Humidity = 26.1 %\n",
+ "\n",
+ " Molal Absolute Humidity of the sample is 0.0482 kmol water/kmol dry air\n",
+ "\n",
+ "The Partial Pressure Of Water is 4662 N/square m\n",
+ "\n",
+ "The sample has relative Humidity = 29.6 %\n",
+ "\n",
+ "Dew point Of the Sample is 31.5 degree C\n",
+ "\n",
+ "The Humid Volume of the Sample is 0.974 cubic m/kg\n",
+ "\n",
+ "The Humid Heat is 1061.5 J/kg dry air.K\n",
+ "\n",
+ "The Enthalphy of the sample is 133.2 KJ/kg dry air\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.7: Page 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.7\n",
+ "# Page: 236\n",
+ "\n",
+ "print'Illustration 7.7 - Page: 236\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# A = water vapour; B = air\n",
+ "V = 100;# [m**3]\n",
+ "Tempi = 55;# [OC]\n",
+ "Tempf = 110;# [OC]\n",
+ "#*****#\n",
+ "\n",
+ "# From Illustration 7.6\n",
+ "vH = 0.974;# [m**3/kg]\n",
+ "Cs = 1061.5;# [J/kg]\n",
+ "WB = V/vH;# [kg]\n",
+ "Q = WB*Cs*(Tempf-Tempi);# [J]\n",
+ "print\"Heat required is \",round(Q,3),\" J\\n\"\n",
+ "# the answer is slightly different in textbook due to approximation in book"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.7 - Page: 236\n",
+ "\n",
+ "\n",
+ "Heat recquired is 5994096.509 J\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.9: Page 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.9\n",
+ "# Page:240\n",
+ "from scipy.optimize import fsolve \n",
+ "print'Illustration 7.9 - Page:240\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "Tempw = 35;# [OC]\n",
+ "Tempg = 65;# [OC]\n",
+ "#******#\n",
+ "\n",
+ "# From psychrometric chart\n",
+ "lambda_w = 2419300;# [J/kg]\n",
+ "Y_prime_w = 0.0365;# [kg H2O/kg dry air]\n",
+ "# From fig 7.5(a)\n",
+ "hG_by_kY = 950;# [J/kg]\n",
+ "# From Eqn. 7.26\n",
+ "def f13(Y_prime):\n",
+ " return (Tempg-Tempw)-((lambda_w*(Y_prime_w-Y_prime))/hG_by_kY)\n",
+ "Y_prime = fsolve(f13,2);# [kg H2O/kg dry air]\n",
+ "print\"Humidity of air is\",round(Y_prime[0],4),\"kg H2O/kg dry air\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.9 - Page:240\n",
+ "\n",
+ "\n",
+ "Humidity of air is 0.0247 kg H2O/kg dry air\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.10: Page 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.10\n",
+ "# Page:241\n",
+ "\n",
+ "print'Illustration 7.10 - Page:241\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "Tg = 60;# [OC]\n",
+ "Y_prime = 0.050;# [kg toulene/kg air]\n",
+ "#*****#\n",
+ "\n",
+ "# Wet Bulb temparature\n",
+ "Dab = 0.92*10**(-5);# [square m/s]\n",
+ "density_air = 1.060;# [kg/cubic cm];\n",
+ "viscocity_G = 1.95*10**(-5);# [kg/m.s]\n",
+ "Sc = viscocity_G/(density_air*Dab);\n",
+ "# From Eqn. 7.28\n",
+ "hG_by_kY = 1223*(Sc**0.567);# [J/kg.K]\n",
+ "# Soln. of Eqn. 7.26 by trial & error method:\n",
+ "# (Tg-Tw) = (Yas_prime-Y_prime)*(lambda_w/hG_by_kY)\n",
+ "Tw = 31.8;# [OC]\n",
+ "print\"Wet Bulb Temparature:\",Tw,\" degree C\\n\"\n",
+ "\n",
+ "# Adiabatic Saturation Temparature\n",
+ "C_air = 1005;# [J/kg.K]\n",
+ "C_toulene = 1256;# [J/kg.K]\n",
+ "Cs = C_air+(C_toulene*Y_prime);# [J/kg.K]\n",
+ "# Soln. of Eqn. 7.21 by trial & error method:\n",
+ "# (Tg-Tas) = (Yas_prime-Y_prime)*(lambda_as/Cs)\n",
+ "Tas = 25.7;# [OC]\n",
+ "print\"Adiabatic Saturation Temparature: \",round(Tas,1),\" degree C\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.10 - Page:241\n",
+ "\n",
+ "\n",
+ "Wet Bulb Temparature: 31.8 degree C\n",
+ "\n",
+ "Adiabatic Saturation Temparature: 25.7 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.11: Page 249"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.11\n",
+ "# Page: 249\n",
+ "\n",
+ "print'Illustration 7.11 - Page: 249\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "\n",
+ "#****Data****#\n",
+ "L_min = 2.27;# [kg/square m.s]\n",
+ "G_min = 2;# [kg/square m.s]\n",
+ "L2_prime = 15;# [kg/s]\n",
+ "Q = 270.0;# [W]\n",
+ "Templ2 = 45.0;# [OC]\n",
+ "Tempg1 = 30.0;# [OC]\n",
+ "Tempw1 = 24.0;# [OC]\n",
+ "Kya = 0.90;# [kg/cubic m.s]\n",
+ "#*******#\n",
+ "\n",
+ "H1_prime = 72;# [kJ/kg dry air]\n",
+ "Y1_prime = 0.0160;# [kg water/kg dry air]\n",
+ "Templ1 = 29;# [OC]\n",
+ "Cal = 4.187;# [kJ/kg]\n",
+ "\n",
+ "# Tower cross section Area:\n",
+ "Al = L2_prime/L_min;# [square m]\n",
+ "Ag = Gs/G_min;# [square m]\n",
+ "A = min(Al,Ag);# [square m]\n",
+ "Area = 3.25;\n",
+ "# From Eqn. 7.54\n",
+ "def f16(Z):\n",
+ " return Area-(Kya*Z/G_min)\n",
+ "Z = fsolve(f16,2);\n",
+ "print\"The height of tower is\",round(Z,2),\" m\\n\"\n",
+ "NtoG = 3.25;\n",
+ "HtoG = G_min/Kya;# [m]\n",
+ "\n",
+ "# Make up water\n",
+ "# Assuming the outlet air is essentially saturated:\n",
+ "Y2_prime = 0.0475;# [kg water/kg dry air]\n",
+ "E = G_min*(A)*(Y2_prime-Y1_prime);# [kg/s]\n",
+ "# Windage loss estimated as 0.2 percent\n",
+ "W = 0.002*L2_prime;# [kg/s]\n",
+ "ppm_blowdown = 2000;# [ppm]\n",
+ "ppm_makeup = 500;# [ppm]\n",
+ "# Since the weight fraction are proportional to the corresponding ppm values:\n",
+ "B = (E*ppm_makeup/(ppm_blowdown-ppm_makeup))-W;# [kg/s]\n",
+ "M = B+E+W;# [kg/s]\n",
+ "print\"The makeup water requirement is estimated to be\",round(M,2),\" kg/s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.11 - Page: 249\n",
+ "\n",
+ "\n",
+ "The height of tower is 7.22 m\n",
+ "\n",
+ "The makeup water requirement is estimated to be 0.46 kg/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 81
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.13: Page 254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.13\n",
+ "# Page: 254\n",
+ "\n",
+ "\n",
+ "print'Illustration 7.13\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve \n",
+ "# Given\n",
+ "Tempg1=65;# [OC]\n",
+ "Y1_prime=0.0170;# [kg water/kg dry air]\n",
+ "# Using adiabatic satursion line on Fig. 7.5 (Pg 232)\n",
+ "Tempas=32;# [OC]\n",
+ "Yas_prime=0.0309;# [kg water/kg dry air]\n",
+ "Tempg2=45;# [OC]\n",
+ "Z=2;# [m]\n",
+ "#*******#\n",
+ "\n",
+ "Y2_prime=0.0265;# [kg water/kg dry air]\n",
+ "def f19(Kya_by_Gs):\n",
+ " return math.log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)\n",
+ "Kya_by_Gs=fsolve(f19,1);# [1/m]\n",
+ "\n",
+ "# For the extended chamber:\n",
+ "Z=4;# [m]\n",
+ "def f20(Y2_prime):\n",
+ " return math.log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)\n",
+ "Y2_prime=fsolve(f20,0.029);#[kg water/kg dry air] \n",
+ "# With the same adiabatic curve:\n",
+ "Tempg2=34;# [OC] from the curve\n",
+ "print\"The Outlet Conditions are:\\n\"\n",
+ "print\"Absolute Humidity is\",round(Y2_prime,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Dry Bulb Temperature is\",round(Tempg2), \"degree C\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.13\n",
+ "\n",
+ "\n",
+ "The Outlet Conditions are:\n",
+ "\n",
+ "Absolute Humidity is 0.0295 kg water/kg dry air\n",
+ "\n",
+ "Dry Bulb Temperature is 34.0 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 137
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.14: Page 256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.14\n",
+ "# Page: 256\n",
+ "\n",
+ "print'Illustration 7.14 - Page: 256\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# a = N2 b = CO\n",
+ "# Entering gas\n",
+ "Y1_prime = 0.0;# [kg water/kg dry air]\n",
+ "Pt = 1.0;# [atm]\n",
+ "Tempg1 = 315.0;# [OC]\n",
+ "G_prime = 5.0;# [square m/s]\n",
+ "\n",
+ "# Temp of the tower:\n",
+ "Templ2 = 18.0;# [OC]\n",
+ "Density_L2 = 1000.0; #[kg/square m]\n",
+ "viscocity_L2 = 1.056*10**(-3);# [kg/m.s]\n",
+ "Tempg2 = 27.0;# [OC]\n",
+ "\n",
+ "Mb = 28.0;# [kg/kmol]\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Density_G1 = (Mb/22.41)*(273/(Tempg1+273));# [kg/square m]\n",
+ "G1 = G_prime*(Density_G1);# [kg/s]\n",
+ "\n",
+ "# Since the outlet gas is nearly saturated:\n",
+ "Y_prime = 0.024;# [kg water/kg dry air]\n",
+ "Y2_prime = 0.022;# [kg water/kg dry air, assumed]\n",
+ "G2 = G1*(1+Y2_prime);# [kg/s]\n",
+ "Mav = (1+Y2_prime)/((1/Mb)+(Y2_prime/Ma));# [kg/kmol]\n",
+ "Density_G2 = (Mav/22.4)*(273.0/(Templ2+273));# [kg/square m]\n",
+ "L2_by_G2 = 2.0;\n",
+ "abcissa = L2_by_G2*(Density_G2/(Density_L2-Density_G2))**(1/2);\n",
+ "# From Fig. 6.34:\n",
+ "# For a gas pressure drop of 400 N/square m/m\n",
+ "ordinate = 0.073;\n",
+ "# From Table 6.3:\n",
+ "Cf = 65.0;\n",
+ "J = 1.0;\n",
+ "def f21(G2_prime):\n",
+ " return ((G2_prime**2)*Cf*(viscocity_L2**0.1)*J/(Density_G2*(Density_L2-Density_G2)))-ordinate\n",
+ "# Tentative data:\n",
+ "G2_prime = fsolve(f21,2);# [kg/square m.s]\n",
+ "Area = G1/G2_prime;# [square m]\n",
+ "dia = math.sqrt(4*Area/math.pi);# [m]\n",
+ "\n",
+ "# Final data:\n",
+ "dia = 1.50;# [m]\n",
+ "Area = math.pi*dia**2.0/4;# [square m]\n",
+ "Gs_prime = G1/Area;# [kg/square m.s]\n",
+ "G2_prime = G2/Area;# [kg/square m.s]\n",
+ "L2_prime = L2_by_G2*G2_prime;# [kg/square m.s]\n",
+ "# From Eqn. 7.29:\n",
+ "def f22(L1_prime):\n",
+ " return (L2_prime-L1_prime)-(Gs_prime*(Y2_prime-Y1_prime))\n",
+ "L1_prime = fsolve(f22,2);\n",
+ "Cb = 1089;# [J/kg.K]\n",
+ "Ca = 1884;# [J/kg.K]\n",
+ "Cs1 = Cb+(Y1_prime*Ca);# [J/(kg dry air).K]\n",
+ "Cs2 = Cb+(Y2_prime*Ca);# [J/(kg dry air).K]\n",
+ "Tempo = Templ2;# [base temp.,K]\n",
+ "Lambda = 2.46*10**6;# [J/kg]\n",
+ "CaL = 4187;# [J/kg K]\n",
+ "# From Eqn. 7.31:\n",
+ "def f23(Templ1):\n",
+ " return ((L2_prime*CaL*(Templ2-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs2*(Tempg2-Tempo))+(Y2_prime*Lambda)))\n",
+ "Templ1 = fsolve(f23,2);\n",
+ "# At Templ1 = 49.2 OC\n",
+ "viscocity_L = 0.557*10**(-3);# [kg/m.s]\n",
+ "Density_L = 989.0;# [kg/square m]\n",
+ "K = 0.64;# [w/m.K]\n",
+ "Prl = CaL*viscocity_L/K;\n",
+ "\n",
+ "# For Entering Gas:\n",
+ "viscocity_G1 = 0.0288*10**(-3);# [kg*/m.s]\n",
+ "Dab = 0.8089*10**(-4);# [square m/s]\n",
+ "ScG = viscocity_G1/(Density_G1*Dab);\n",
+ "PrG = 0.74;\n",
+ "\n",
+ "# From Illustration 6.7:\n",
+ "a = 53.1;# [square m/square m]\n",
+ "Fga = 0.0736;# [kmol/square m]\n",
+ "Hga = 4440.0;# [W/square m.K]\n",
+ "Hla = 350500.0;# [W/square m.K]\n",
+ "# At the bottom, by several trial:\n",
+ "Tempi = 50.3;# [OC]\n",
+ "pai = 93.9/760;# [atm]\n",
+ "paG = 0;# [atm]\n",
+ "# By Eqn. 7.64:\n",
+ "dY_prime_by_dZ = -(Ma*Fga/Gs_prime)*math.log((1-(pai/Pt))/(1-(paG/Pt)));# [(kg H2O/kg dry gas)/m]\n",
+ "Hg_primea = -(Gs_prime*Ca*dY_prime_by_dZ)/(1-math.exp((Gs_prime*Ca*dY_prime_by_dZ)/(Hga)));# [W/square m.K]\n",
+ "dTempg_by_dZ = -(Hg_primea*(Tempg1-Tempi)/(Gs_prime*Cs1));# [OC/m]\n",
+ "Tempi = (Templ1)+((Gs_prime*(Cs1*dTempg_by_dZ)+((Ca*(Tempg1))-(CaL*(Templ1))+(((CaL-Ca)*(Tempo))+Lambda))*dY_prime_by_dZ)/((Gs_prime*CaL*dY_prime_by_dZ)-Hla));#[OC]\n",
+ "# Assume:\n",
+ "delta_Tempg = -30;# [OC]\n",
+ "delta_Z = delta_Tempg/(dTempg_by_dZ);# [m]\n",
+ "Tempg = Tempg1+delta_Tempg;# [OC]\n",
+ "Y_prime = Y1_prime+(dY_prime_by_dZ)*delta_Z;# [kg H2O/kg dry gas]\n",
+ "paG = Y_prime/(Y_prime+(Ma/Mb));# [atm]\n",
+ "Cs = Cb+Ca*(Y_prime);# [J/(kg dry air).K]\n",
+ "# Water balance, From Eqn. 7.29:\n",
+ "def f24(L_prime):\n",
+ " return (L2_prime-L_prime)-(Gs_prime*(Y_prime-Y1_prime))\n",
+ "L_prime = fsolve(f24,2);# [kg/square m.s]\n",
+ "\n",
+ "def f25(Templ):\n",
+ " return ((L_prime*CaL*(Templ-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs*(Tempg-Tempo))+(Y_prime*Lambda)))\n",
+ "Templ = fsolve(f25,2);\n",
+ "\n",
+ "# This process is repeated several times until gas temp falls to Tempg2\n",
+ "Z = 1.54;# [m] Z = sum of all delta_Z\n",
+ "# The value of Y2_prime was calculated to be 0.0222 which is sufficiently close to the assumed value.\n",
+ "print\"The diameter of tower is \",dia,\" m\\n\"\n",
+ "print\"The packed height is\",Z, \"m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.14 - Page: 256\n",
+ "\n",
+ "\n",
+ "The diameter of tower is "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 1.5 m\n",
+ "\n",
+ "The packed height is 1.54 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.15: Page 267"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 7.15\n",
+ "# Page: 267\n",
+ "\n",
+ "print'Illustration 7.15 - Page: 267\\n\\n'\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "import numpy\n",
+ "# solution\n",
+ "\n",
+ "#***Data***#\n",
+ "w = 0.75;# [m]\n",
+ "OD = 19.05/1000;# [m]\n",
+ "l = 3.75;# [m]\n",
+ "n = 20;\n",
+ "t = 1.65/1000;# [m]\n",
+ "Ws = 2.3;# [kg/s]\n",
+ "Wal = 10.0;# [kg/s]\n",
+ "Wt = 4.0;# [kg/s]\n",
+ "Density = 800;# [kg/cubic m]\n",
+ "viscocity = 0.005;# [kg/m.s]\n",
+ "K = 0.1436;# [W/m.K]\n",
+ "Ct = 2010.0;# [J/kg.K]\n",
+ "Cal = 4187.0;# [J/kg.K]\n",
+ "Y1_prime = 0.01;# [kg H2O/kg dry air]\n",
+ "Y2_prime = 0.06;# [kg H2O/kg dry air]\n",
+ "TempT = 95.0;# [OC]\n",
+ "#*****#\n",
+ "\n",
+ "Free_area = (w-(n*OD))*l;# [square m]\n",
+ "Gs_min = 2.3/Free_area;# [kg/square m.s]\n",
+ "M1 = 1.461;Yav_prime = (Y1_prime+Y2_prime)/2;# [kg H2O/kg dry air]\n",
+ "# From Eqn. 7.86:\n",
+ "ky = 0.0493*(Gs_min*(1+Yav_prime))**0.905;# [kg/square m.s.delta_Y_prime]\n",
+ "# From Fig. 7.5:\n",
+ "H1_prime = 56000.0;# [J/kg]\n",
+ "Ao = 400*math.pi*OD*l;# [square m]\n",
+ "# Cooling water is distributed over 40 tubes & since tubes are staggered\n",
+ "geta = Wal/(40.0*2*l);# [kg/m.s]\n",
+ "geta_by_OD = geta/OD;# [kg/square m.s]\n",
+ "# Assume:\n",
+ "TempL = 28.0;# [OC]\n",
+ "# From Eqn. 7.84:\n",
+ "hL_prime = (982+(15.58*TempL))*(geta_by_OD**(1/3));# [W/square m.K]\n",
+ "# From Eqn. 7.85:\n",
+ "hL_dprime = 11360;# [W/square m.K]\n",
+ "# From Fig. 7.5 (Pg 232)\n",
+ "m = 5000.0;# [J/kg.K]\n",
+ "Ky = 1.0/((1/ky)+(m/hL_dprime));\n",
+ "ID = (OD-(2.0*t));# [m]\n",
+ "Ai = math.pi*(ID**2)/4;# [square m]\n",
+ "Gt_prime = Wt/(n*Ai);# [kg/square m.s]\n",
+ "M2 = -0.7204;Re = ID*Gt_prime/viscocity;\n",
+ "Pr = Ct*viscocity/K;\n",
+ "# From a standard correlation:\n",
+ "hT = 364.0;# [W/square m.K]\n",
+ "Dav = (ID+OD)/2.0;# [m]\n",
+ "Zm = (OD-ID)/2;# [m]\n",
+ "Km = 112.5;# [W/m.K]\n",
+ "# From Eqn. 7.67:\n",
+ "Uo = 1/((OD/(ID*hT))+((OD/Dav)*(Zm/Km))+(1/hL_prime));# [W/square m.K]\n",
+ "# From Eqn. 7.75:\n",
+ "alpha1 = -(((Uo*Ao)/(Wt*Ct))+((Uo*Ao)/(Wal*Cal)));\n",
+ "alpha2 = m*Uo*Ao/(Wt*Ct);\n",
+ "# From Eqn. 7.76:\n",
+ "beeta1 = Ky*Ao/(Wal*Cal);\n",
+ "beeta2 = -((m*Ky*Ao/(Wal*Cal))-(Ky*Ao/Ws));\n",
+ "def f26(r):\n",
+ " return (r**2)+((alpha1+beeta2)*r)+((alpha1*beeta2)-(alpha2*beeta1))\n",
+ "r1 = fsolve(f26,10);\n",
+ "r2 = fsolve(f26,0);\n",
+ "beeta2 = 1.402;\n",
+ "# From Eqn. 7.83:\n",
+ "# N1-(M1*(r1+alpha1)/beeta1) = 0............................................(1)\n",
+ "# N2-(M2*(r2+alpha2)/beeta2) = 0............................................(2)\n",
+ "# From Eqn. 7.77:\n",
+ "# At the top:\n",
+ "x1 = 1.0;\n",
+ "# TempL2+(M1*exp(r1*x1))+(M2*exp(-(r2*x1))) = TempL.........................(3)\n",
+ "# From Eqn. 7.78:\n",
+ "# At the bottom:\n",
+ "x2 = 0.0;\n",
+ "# H1_star-N1-N2 = H1_prime..................................................(4)\n",
+ "# From Eqn. 7.80:\n",
+ "# ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1)) = (Tempt-TempL)...............(5)\n",
+ "# From Eqn. 7.81:\n",
+ "# ((N1/r1)*(exp(r1)-1))+((N2*r2)*(exp(r2)-1)) = (H1_star-H1_prime)..........(6)\n",
+ "# From Eqn. 7.91 & Eqn. 7.92:\n",
+ "# Uo*Ao*(TempT-TempL)=Ky*Ao*(H1_star-H1_prime)..............................(7)\n",
+ "\n",
+ "# Elimination of M's & N's by solving Eqn. (1) to (4) and (7) simultaneously:\n",
+ "# and from Fig. 7.5 (Pg 232):\n",
+ "TempL1=28.0;# [OC]\n",
+ "H1_star=(Uo*Ao*(TempT-TempL)/(Ky*Ao))+H1_prime;# [J/kmol]\n",
+ "\n",
+ "\n",
+ "N1 = 3594.0*M1\n",
+ "N2 =-43288.0*M2;\n",
+ "\n",
+ "# By Eqn. 5\n",
+ "delta_Temp = ((M1/r1)*(math.exp(r1)-1))+((M2*r2)*(math.exp(r2)-1));# [OC]\n",
+ "Q = Uo*delta_Temp*Ao;\n",
+ "TempT1 = TempT-(Q/(Wt*Ct));# [OC]\n",
+ "H2_prime = Q/(Ws)+H1_prime;# [J/kg]\n",
+ "print\"Temperature to which oil was cooled:\",int(TempT1),\" degree C\\n\"\n",
+ "# The solution in the textbook is wrong "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 7.15 - Page: 267\n",
+ "\n",
+ "\n",
+ "Temperature to which oil was cooled:"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " 57 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter8.ipynb b/Mass_-_Transfer_Operations/Chapter8.ipynb
new file mode 100755
index 00000000..3199859d
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter8.ipynb
@@ -0,0 +1,1462 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6de1fbbc284930cae33ad8c4ecbf1043ba348d822deaa7750919e4f3aba2cece"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8: Gas Absorption"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.1: Page 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.1\n",
+ "# Page: 278\n",
+ "\n",
+ "print'Illustration 8.1 - Page: 278\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "P_star = 2*10**(5);# [N/square m]\n",
+ "X_methane = 0.6;\n",
+ "X_ethane = 0.2;\n",
+ "X_propane = 0.08;\n",
+ "X_nbutane = 0.06;\n",
+ "X_npentane = 0.06;\n",
+ "#******#\n",
+ "\n",
+ "MoleFraction = [0.6, 0.2 ,0.08, 0.06 ,0.06]\n",
+ "Heading = [\"Component\", \"Equilibrium Partial Pressure\", \"Vapour Pressue \" ,\"Mole Fraction\"];\n",
+ "Component = [\"Methane\", \"Ethane \" ,\"Propane\" ,\"n-Butane\", \"n-Pentane\"];\n",
+ "VapPressure = [0 ,42.05, 8.96, 2.36 ,0.66];# [N/square m]\n",
+ "Sum = 0;\n",
+ "\n",
+ "print Heading[0],\"\\t \\t \\t \\t\",Heading[1],\"\\t \\t \\t \\t\",Heading[2],\"\\t \\t \\t \\t\",Heading[3],\"\\t \\n\"\n",
+ "\n",
+ "\n",
+ "for i in range(0,5):\n",
+ " print \"\\n \",Component[i],\" \\t \\t \\t \\t \\t\",(\"{:.2e}\".format(MoleFraction[i]*P_star)),\"\\t \\t \\t \\t \\t \\t \\t \\t \",(\"{:.2e}\".format(VapPressure[i]*10**(5))),\n",
+ " if VapPressure[i]==0:\n",
+ " Sum = Sum+0;\n",
+ " else:\n",
+ " \n",
+ " print \"\\t \\t \\t \\t \\t \\t \\t \\t \\t \\t\",(\"{:.2e}\".format((MoleFraction[i]*P_star)/(VapPressure[i]*10**(5)))),\"\\t\",\n",
+ " Sum = Sum+(MoleFraction[i]*P_star)/(VapPressure[i]*10**(5))\n",
+ "\n",
+ "\n",
+ "\n",
+ "print\"\\n Mole Fraction Of solvent Oil is \",round(1-Sum,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.1 - Page: 278\n",
+ "\n",
+ "\n",
+ "Component \t \t \t \tEquilibrium Partial Pressure \t \t \t \tVapour Pressue \t \t \t \tMole Fraction \t \n",
+ "\n",
+ "\n",
+ " Methane \t \t \t \t \t1.20e+05 \t \t \t \t \t \t \t \t 0.00e+00 \n",
+ " Ethane \t \t \t \t \t4.00e+04 \t \t \t \t \t \t \t \t 4.20e+06 \t \t \t \t \t \t \t \t \t \t9.51e-03 \t\n",
+ " Propane \t \t \t \t \t1.60e+04 \t \t \t \t \t \t \t \t 8.96e+05 \t \t \t \t \t \t \t \t \t \t1.79e-02 \t\n",
+ " n-Butane \t \t \t \t \t1.20e+04 \t \t \t \t \t \t \t \t 2.36e+05 \t \t \t \t \t \t \t \t \t \t5.08e-02 \t\n",
+ " n-Pentane \t \t \t \t \t1.20e+04 \t \t \t \t \t \t \t \t 6.60e+04 \t \t \t \t \t \t \t \t \t \t1.82e-01 \t\n",
+ " Mole Fraction Of solvent Oil is 0.74\n"
+ ]
+ }
+ ],
+ "prompt_number": 165
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.2: Page 286"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.2\n",
+ "# Page: 286\n",
+ "\n",
+ "print'Illustration 8.2 - Page: 286\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "#****Data****#\n",
+ "# Absorber:\n",
+ "G = 0.250;# [cubic m/s]\n",
+ "Temp1 = 273+26.0;# [K]\n",
+ "Pt = 1.07*10**(5);# [N/square m]\n",
+ "y1 = 0.02;\n",
+ "x2 = 0.005;\n",
+ "#******#\n",
+ "\n",
+ "G1 = G*(273.0/Temp1)*(Pt/(1.0133*10**(5)))*(1/22.41);# [kmol/s]\n",
+ "Y1 = y1/(1-y1);# [kmol benzene/kmol dry gas]\n",
+ "Gs = G1*(1.0-y1);# [kmol dry gas/s]\n",
+ "# For 95% removal of benzene:\n",
+ "Y2 = Y1*0.05;\n",
+ "X2 = x2/(1.0-x2);# [kmol benzene/kmol oil]\n",
+ "# Vapour pressure of benzene:\n",
+ "\n",
+ "P_star = 13330.0;# [N/square m]\n",
+ "X_star = numpy.zeros(20);\n",
+ "Y_star = numpy.zeros(20);\n",
+ "j = -1;\n",
+ "for i in range(1,21,1):\n",
+ " j = j+1;\n",
+ " x = i/100.0;\n",
+ " X_star[j] = i/100.0;\n",
+ " def f27(y):\n",
+ " return (y/(1+y))-(P_star/Pt)*(x/(1+x))\n",
+ " Y_star[j] = fsolve(f27,0.0);\n",
+ "\n",
+ "# For min flow rate:\n",
+ "X1 = 0.176;# [kmolbenzene/kmol oil]\n",
+ "DataMinFlow = numpy.array([[X2, Y2],[X1, Y1]]);\n",
+ "\n",
+ "plt.plot(X_star,Y_star,label=\"Equlibrium Line\")\n",
+ "plt.plot(DataMinFlow[:,0],DataMinFlow[:,1],label=\"Min Flow Rate Line\");\n",
+ "minLs = (Gs*(Y1-Y2)/(X1-X2));# [kmol/s]\n",
+ "# For 1.5 times the minimum:\n",
+ "Ls = 1.5*minLs;# [kmol/s]\n",
+ "X1_prime = (Gs*1.0*(Y1-Y2)/Ls)+X2;# [kmol benzene/kmol oil]\n",
+ "DataOperLine = numpy.array([[X2 ,Y2],[X1_prime ,Y1]]);\n",
+ "plt.plot(DataOperLine[:,0],DataOperLine[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "xlabel(\"moles of benzene / mole wash oil\");\n",
+ "ylabel(\"moles benzene / mole dry gas\");\n",
+ "legend(loc='lower right');\n",
+ "plt.title(\"Absorption\")\n",
+ "plt.show()\n",
+ "print\"The Oil circulation rate is \",(\"{:.2e}\".format(Ls)),\" kmol/s\\n\"\n",
+ "\n",
+ "# Stripping\n",
+ "Temp2 = 122+273;# [K]\n",
+ "# Vapour pressure at 122 OC\n",
+ "P_star = 319.9;# [kN/square m]\n",
+ "Pt = 101.33;# [kN/square m]\n",
+ "X_star = numpy.zeros(7);\n",
+ "Y_star = numpy.zeros(7);\n",
+ "j = -1;\n",
+ "for i in range(0,7,1):\n",
+ " j = j+1;\n",
+ " x = i/10.0;\n",
+ " X_star[j] = i/10.0;\n",
+ " def f28(y):\n",
+ " return (y/(1.0+y))-(P_star/Pt)*(x/(1.0+x))\n",
+ " Y_star[j] = fsolve(f28,0.0);\n",
+ "\n",
+ "X1 = X2;# [kmol benzene/kmol oil]\n",
+ "X2 = X1_prime;# [kmol benzene/kmol oil]\n",
+ "Y1 = 0.0;# [kmol benzene/kmol steam]\n",
+ "# For min. steam rate:\n",
+ "Y2 = 0.45;\n",
+ "DataMinFlow =numpy.array([[X2 ,Y2],[X1 ,Y1]]);\n",
+ "minGs = Ls*(X2-X1)/(Y2-Y1);# [kmol steam/s]\n",
+ "slopeOperat = 1.5*(Y2-Y1)/(X2-X1);\n",
+ "def f29(x):\n",
+ " return slopeOperat*(x-X1)+Y1\n",
+ "x =numpy.arange(0,0.14,0.01)\n",
+ "\n",
+ "plt.plot(Y_star,X_star,label=\"Equlibrium Line\")\n",
+ "plt.plot(DataMinFlow[:,0],DataMinFlow[:,1],label=\"Min Flow Rate Line\")\n",
+ "plt.plot(x,f29(x),label=\"Operating Line\");\n",
+ "plt.grid('on');\n",
+ "xlabel(\"moles of benzene / mole wash oil\");\n",
+ "ylabel(\"moles benzene / mole dry gas\");\n",
+ "plt.legend(loc='lower left');\n",
+ "plt.title(\"Stripping\");\n",
+ "plt.show()\n",
+ "print\"The Steam circulation rate is \",(\"{:.2e}\".format(1.5*minGs)),\" kmol/s\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.2 - Page: 286\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEZCAYAAAC0HgObAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWd4VFUTgN+hiQgYkKa0iBRBaRZEESkqAiqICoiAgH4i\nhiYCIigCgggivSMRQRBQUAHpLRRp0oXQIfTei5Qk8/04m5jElE2ym91Nzvs892HvveeeM3uy7OyZ\nmTMjqorFYrFYLK4inacFsFgsFkvqwioWi8VisbgUq1gsFovF4lKsYrFYLBaLS7GKxWKxWCwuxSoW\ni8VisbgUq1gslhiIyA8i0tvTcsSGiFwVEX9Py2GxxIdVLJY0jYgEicgFEckU5bI6Do/ikO29qNdU\nNZuqhnhIJIvFKaxisaRZHL/8KwBngDoxb7t57PRONPO4crNYkoJVLJa0zDvAEuBHoFmMe7lEZJGI\nXHGsHApF3BCRwSJyWkQui8h2EXnEcf1eEZkkImdEJEREPhMRcdxrLiJ/isggETkH9BSRZo5rw0Xk\nkojsEpHqjvZfAZWBEQ7z1zDH9XARKeLkeKtFZIBjRXZQRGq6dTYtFgdWsVjSMu8A04GfgZdEJLfj\nugCNgS+BXMBWYAqAiLyE+cIvpqr3AvWB847nhgPZgAeBKo7+W0QZrwJwAMgDfOUYpwKwH7gP6AH8\nKiJ+qvoZsApo7TB/tYtFfmfG2+3o+xsgMHHTY7EkDatYLGkSEXkWyA/MVtV9QDBGmUTwh6quVtXb\nwGfA0yKSH7iN+TIvKSLpVHWPqp5ymLYaAl1V9bqqHgYGAk2j9HlCVUeqariq3nRcO6OqQ1U1TFV/\nBvYAr0QVNQ75nRnvsKoGqkkIOAm4X0TyJH62LJbEYRWLJa3SDFikqlcd578Q3Rx2LOKFql4HLgAP\nqOpyYAQwEjgtImNFJBtmZZMROByljyMY5RXB0VjkOB7j/DBwf5TzuPwszox3Ksp7uOF4mTWO/iwW\nl2EViyXNISJ3Aw2A6iJyUkROAh2BMiJSBvNlXjBK+6xATuAEgKoOV9UngFJAcaAzcBa4A/hHGaoQ\nURQUsSuJ/DHOC0eME0f7CM45MZ7F4hGsYrGkRV4DQoGSQFnHURJYjfFTCFBbRCo5wpB7A2tV9biI\nPCEiT4lIRuAGcBMIU9VwjK/mKxHJKiKFgQ7A5ARkySMi7UQko4jUBx4G5jnunQYeiu0hVQ1L4ngW\ni9uxisWSFnkH+F5Vj6nqGcdxGmPiaoz5fzEF40w/D5QHmjiezQ6Mw5jGQjArhwGOe22B68BBjON9\nCjDBcS+uvTHrgWKYFU9v4A1Vvei4NxR40xHVNSSWZxM7ng1ftqQI4s5CX47wxiFAemC8qvaPpc0w\noBbm119zVd0iIgUxzsY8mP8M41Q1ItyyJ/A/zH9EMM7LBW57ExaLmxCR5sB7qlrZ07JYLK4kg7s6\ndkStjABewDgo/xKR2aq6K0qb2kBRVS0mIk8Bo4GKGNtxB1Xd6rBvbxKRRaq6G6NoBqnqIHfJbrFY\nLJak405TWAVgv6qGqOodYBpQN0abOsBEAFVdD/iJSF5VPaWqWx3XrwG7iO7kdOuuaIslhfCK1DEW\ni6txp2LJT/TwymP8NwImtjYFojZwpN0oj7FFR9BWRLaJSKCI+LlKYIslJVHViar6nKflsFhcjTsV\ni7O/xGKuPiKfc5jBZgDtHSsXMOayB4FywEnMpjCLxWKxeAlu87Fg/CoFo5wX5L8x9jHbFHBcwxHO\nOROYrKq/RzRQ1TMRr0VkPDAntsFFxJoYLBaLJZGoarJdDe5csWwEiomIv2MvQENgdow2szGhn4hI\nReCSqp52JNILBIJVNVqYpYhE3ZVcD/g7LgFU1R4uOHr06OFxGVLTYefTzqe3Hq7CbSsWVQ0VkTbA\nQky4caCq7hKRDxz3x6rqPBGpLSL7MfH4EQn0KmH2DWwXkS2OaxFhxf1FpBzGZHYI+MBd78FiCAkJ\n8bQIqQo7n67Fzqf34U5TGKo6H5gf49rYGOdtYnluNXGsplT1HVfKaLFYLBbXYnfeWxKkefPmnhYh\nVWHn07XY+fQ+3Lrz3pOIiKbW92axWCzuQERQL3feW1IJQUFBnhYhVWHn07XY+fQ+rGKxWCwWi0ux\npjCLxWKxANYUZrFYLBYvxSoWS4JYG7ZrsfPpWux8eh9WsVgsFovFpVgfi8VisVgA62OxWCwWi5di\nFYslQawN27XY+XQtdj69D6tYLBaLxeJSrI/FYrFYLID1sVgsFovFS7GKxZIg1obtWux8uhY7n96H\nVSwWi8VicSnWx2KxWCwWwPpYLBaLxeKlWMViSRBrw3Ytdj5di51P78MqFovFYrG4FOtjsVgsFgtg\nfSwWi8Vi8VKsYrEkiLVhuxY7n67Fzqf3YRWLxWKxWFyK9bFYLBaLBbA+FovFYrF4KVaxWBLE2rBd\ni51P12Ln0/uwisVisVgsLsX6WCwWi8UCWB+LxWKxWFxEcDA0aeK6/qxisSSItWG7FjufrsXOZ9LZ\nsgXefBOqVYNSpVzXr1UsFovFksZYtw5efRVefhmeeQYOHoRu3VzXv/WxWCwWSxpAFVauhD59YO9e\n6NIF3n0XMmf+t42rfCwZktuBxWKxWLwXVVi0yCiUU6ega1fjT8mUyX1jJmgKE5FnRSSr43VTERkk\nIoXdJ5LF27A2bNdi59O12PmMnfBwmDULKlSAjz+GDz+EXbvMKsWdSgWcW7GMBsqISFngY2A8MAmo\n4k7BLBaLGwgNhQzWUOEpwsLDSJ8uvXvHCIMZM+Crr8yf+vPP4bXXIF0KetSdGSrU4ax4DRipqiOB\nbM50LiI1RWS3iOwTkS5xtBnmuL9NRMo7rhUUkeUislNEdohIuyjtc4rIYhHZKyKLRMTPGVksSadq\n1aqeFiFV4bH5PH8ennsOUtkvfF/4fF6+eZl289vR9Lembhvjzh2YONFEdw0ZAv36waZN8PrrKatU\nwDnFclVEugFNgD9EJD2QMaGHHO1GADWBUkAjESkZo01toKiqFgNaYlZHAHeADqr6CFARaC0iDzvu\nfQosVtXiwFLHucViiY8jR+DZZ6FyZahijQ0phaoyeftkSo4syc3QmwyvNdzlY9y+DePHQ4kSRrGM\nHg1r1kDt2iDJdsMnDWcUS0PgFvCuqp4C8gPfOvFcBWC/qoao6h1gGlA3Rps6wEQAVV0P+IlIXlU9\npapbHdevAbsc40Z7xvHva07IYkkG1obtWlJ8PnfuNEqlZUvo399z3zZuwls/nzvP7KTaxGoMWjuI\n3xr+xrhXx3Fflvtc1v+tWzBmDBQrBr/8ApMmwbJlUL265//ECRpbVfUkMDDK+RH+/WKPj/zA0Sjn\nx4CnnGhTADgdcUFE/IHywHrHpbyqGnH/NJDXCVkslrTJmjVQrx4MGgSNG3tamjTB1VtX6bWiFxO3\nTaRnlZ60eqKVS/0qN2+aFUr//lCmDEyfDhUruqx7l5CgYhGRp4FhQEngLiA9cE1VsyfwqLObSGLq\n1sjnHNFoM4D2jpVL9IaqKiJxjtO8eXP8/f0B8PPzo1y5cpH22IhfOfY84fOqVat6lTy+fp5i87l2\nLVUHD4YffyTorrsgKMgr3r+rz73l86mqnM1zlo6LOvLI9UcY9/g46lWo57L+b96E3burMmAA+PsH\n8fnn8MEHyZM/4nVISAguRVXjPYBNQDFgC0aptAD6OfFcRWBBlPOuQJcYbcYAb0U5341ZkYDx4ywE\nPorxzG4gn+P1/cDuOMZXiyXN8v33qvnyqa5f72lJ0gS7z+7WFya9oKVHldaVIStd2vfVq6oDBpg/\n5+uvq27e7NLuo+H43kxQLyR0OBUroKr7gPSqGqaqEzAO+YTYCBQTEX8RyYTx1cyO0WY28A6AiFQE\nLqnqaRERIBAIVtUhsTzTzPG6GfC7M+/BknSi/rqxJB+3zqeqCQfq1ctEf1Wo4L6xvARPfj6v375O\nt6XdqPR9JWoXrc2mlpuoXLiyS/q+etX8KR96CP76y2xynDkTypd3SfduxZmA9usichewTUS+AU7x\nX/PVf1DVUBFpg1l1pAcCVXWXiHzguD9WVeeJSG0R2Q9cx6yGACphotC2i8gWx7WuqroA6Af8LCLv\nASFAA2ffrMWSqgkPh44dYckS+PNPyJ8/4WcsSUJVmbVnFh8t+IhnCj7D9g+380C2B1zS9+XLMHw4\nDBsGL74Iy5e7NkFkSpBgrjCH8/w0kAnoAGQHRqnqfncLlxxsrjBLmuL2bWjRAo4ehdmzwc9u73IX\nBy4coN2Cdhy8eJCRtUdS/cHqLun34kUYOhRGjDDJIbt1MyHEKUmK5QpT1RDHy3+Anskd0GKxuJhr\n1+CNN+Duu2HhQvOvxeX8c+cf+v/ZnxEbRtD5mc781vA3MqVPfm6UCxdM0N7o0WaH/Lp1ULSoCwT2\nIM7kCvtbRLY7/o14vVpEBouI64KyLV6L9bG4FpfO59mzZuNCoUImj0caVCop8fmct28ej45+lB1n\ndrD5g810ebZLspXKhQsm3UqxYnDmDGzcCIGBvq9UwDkfywIgFPgJ41t5C8iCMY/9ALzqLuEsFks8\nhIRAjRrQsCF8+aXnd8WlQg5fOsxHCz9ix5kdjKw9kppFnYlbip/z52HwYLNCeeMNk3bFsSsi1eCM\nj2WLqpaP7ZqI/K2qpd0qYRKxPhZLqmb7dpOz49NPoU0bT0uT6rgddpuBawYycO1A2j/Vns6VOpM5\nQ+aEH4yHmAqlWzfvUygpWY8lvYg8pSblCiJSgX9NaKHJFcBisSSSlSuhfn0TOtTABkW6miUHl9Bm\nXhuK3VeMDe9voEiOIsnq7/x540MZMyb1rlBi4sw+lveAQBEJEZEQzP6S90XkHuBrdwpn8Q6sj8W1\nJGs+f//dFCn/6SerVBy46vN5/MpxGs5oyPtz3mfAiwOY02hOspTK+fPw2WdQvLhxhW3aBOPGpX6l\nAk4oFlX9S1UfBcoB5VS1tKpuUNXrqvqz+0W0WCyA+VYKCIAFC+D55z0tTarhTtgdBq4ZSNkxZSme\nszg7A3byaomku46jKpRz59KWQonA1ry3WLwdVVNX9ocfTDhxaggb8hJWhKyg9bzW5M+en+G1hlP8\nvuJJ7iuqyevNN00JYF9TJrbmvcWSFggLg/btzU76P/+EfPk8LVGq4NS1U3Re3JkVISsY/NJgXi/5\nOpLEqLqYCiUt+FASIoXrill8EetjcS1Oz+etW9CoEQQHw4oVVqnEQWI+n6HhoQxfP5zSo0vzQNYH\nCG4dzBul3kiSUrl4Ebp3j+5DGTvWKhVwLm3+JuB74CdVveh+kSwWC1eumDoqOXPCvHmQOXmhrhZY\ne3QtAfMC8Mvsx4rmKyiVO2kJuC5fNqV/hw83O+U3boQHH3SxsD6OM/tYimGSQzbAZCyeACzydgeG\n9bFYfJbTp6FWLVO9afhwSO+6IlFpkbPXz/Lpkk9ZcGABA14cQKNHGyVphXLlikkMOXSoyeXVvbvJ\nPJyacJWPxZmosH2q2g0ojtl9/z1wRER6iUjO5ApgsViicOAAVKpkfgqPHGmVSjIICw9j7MaxPDLq\nEbLflZ1drXfxdum3E61Url0z6euLFoXdu42r64cfUp9ScSVO+VhEpCwwCBgAzATqA1eBZe4TzeIt\nWB+La4lzPrdsgcqVoXNn+OILm6LFSWKbz40nNvJ04NP8uP1HFjddzOCag8l+V0JFb6Nz4wZ8+61R\nINu2GTfX5MnGp2KJH2d9LJeB8ZgKkLcct9aJSCV3CmexpBmWLYO33jKhRa+/7mlpfJYL/1zgs6Wf\n8dvu3+j3Qj/eKfsO6SRxMUr//GP+DN98A88+C0uXwqOPukngVEq8PhYRSQd8qqp9U04k12B9LBaf\n4ZdfTL6vn3+GKlU8LY1PEq7hTNw6ka5Lu/JGyTfoU70POe7Okag+bt6E774zZq8KFaBnTyhb1j3y\neispso9FVcNF5A3A5xSLxeITjBoFffuaurNp7VvMRWw7tY2AeQGEhocy9+25PP7A44l6/tYt+P57\n82coV87USXs8cV1YYuDMGnGxiHQSkYIikjPicLtkFq/B+lhcS1BQkNlN/8UXJm511SqrVJLA5ZuX\n+WjBR1TtVZVmZZux9r21iVIqd+7A+PHGZzJnjqknP2eOVSquwJmd928BCrSOcd1GblssSSEsDD74\nwDjrV6+GPHk8LZFPoar89PdPdF7cmdrFavND3R+o+3hdp58PC4OpU42py9/fvH7mGbeJmyaxucIs\nlpTk5k2zm/76dfMTOVs2T0vkUwSfDab1vNZcvnmZUS+PomKBik4/Gx5uprxHD8iRw6Rfq1bNjcL6\nIG73sTh8K3F+M6vqr8kd3GJJU1y6BHXrQv78MH06ZEp+vfS0wrXb1/hyxZdM2DqBHlV68OETH5I+\nnXN7fFThjz/MhsYMGUxer5destHc7iQ+U9irGMWSB3iGf/esVAPWAFaxpBGCgoKoWrWqp8XwbU6c\ngJo1oVo1gurWpapVKk6hqswInsHHiz6mmn81dny4g7xZ80ZrE9fnUxWWLDF15W/cgN69jV63CsX9\nxKlYVLU5gIgsBkqp6knH+f3AxBSRzmJJDezda34if/ABdOlidtpZEmTv+b20mdeGk9dOMuX1KTxX\n+Dmnn1250qxQTp2CXr1MTbR0NuVuiuFMrrDdQMkIh4Vjb0uwqj6cAvIlGetjsXgFf/0FderAV1/B\nu+96Whqf4MadG/Rd1ZcxG8fQrXI32lZoS8b0GZ16dsMGo1D27TO+lMaNjfnL4hwpWY9lCbBQRH4C\nBGgILE7uwBZLqmfRImjSxMS01qnjaWm8HlVl9p7ZfLTwI57K/xTbWm0jf/b8Tj27dauJ3t682SiW\nFi2sC8uTOBUVJiKvA5UdpytV9Te3SuUC7IrFdVgfSxL46Sfo0AF+/dUklYyCnc//cvDiQdrNb8f+\nC/sZWXskzxdxrvTyrl3w4YdB7NlTlU8/NdZGW2Eg6aRoBUlHBJh11lsszjB0KAwcaPJ/PfKIp6Xx\nam6G3uSbP79h2PphdHqmE782/JVM6RNeahw6ZHwnc+easjVz58I996SAwBansPtYLBZXoQrdusHv\nv5va9IUKeVoir2b+vvm0nd+WMnnLMKTmEArdm/B8nTxp3FVTp0Lr1tCxI9x7bwoIm0awNe8tFm8i\nNBTef9/YZlatgly5PC2R13Lk8hE+WvAR209vZ3it4dQqVivBZy5cMNmGx40z/pPduyF37hQQ1pIk\nnK3HkkVESrhbGIt3YnOFJcCNG8Yec/q0ybGegFJJq/N5O+w2/Vb347Gxj1EuXzl2BOxIUKlcvWp2\nyBcvbmrMb99urIxRlUpanU9vJkHFIiJ1gC3AQsd5eRGZ7W7BLBaf4MIFePFFkyNk1ixr6I+DpQeX\nUmZ0GVYfWc2G9zfwRZUvyJwhbi/7zZsweLCp2rhrF6xbB2PHQoECKSi0Jck4s49lM1AdWK6q5R3X\ndqiqV5e+sT4Wi9s5dsxsfKxdG/r3tzvwYuH4leN0XNSRdcfWMbTmUOqUqBNvaeA7d0zZ3y+/hMce\nM7vly5RJOXnTOilW8x64o6qXYlwLT+7AFotPs2uXCSNu0QIGDLBKJQZ3wu4waO0gyo4py0M5HiK4\ndTB1H64bp1IJD4dp00wQ3bRppvbZrFlWqfgqzvxv2CkijYEMIlJMRIZjcoVZ0gjWhh2DtWtNWtw+\nfaBTp0Q/ntrnc9XhVTw27jEW7F/AmvfW8NXzX5ElY5ZY20YkiCxf3pSmGT3auKkqOp+0ONXPpy/i\nTFRYW+Az4BYwFeNr6e1OoSwWr2XuXLNKmTgRaiUczZSWOH3tNJ8s+YRlh5YxqMYg3iz1Zrxmr6Ag\nE5199aoJIX71VZsgMtWgqm47gJrAbmAf0CWONsMc97cB5aNc/x44Dfwdo31P4BgmoGALUDOOftVi\ncSkTJ6rmzau6bp2nJfEqQsNCdfj64Zrrm1zaaWEnvXLzSrztN21Sfekl1SJFVCdPVg0NTSFBLQni\n+N5M9nd/fPVY5sSvjzTe5Ecikh4YAbwAHAf+EpHZqrorSpvaQFFVLSYiTwGjgYhF8ARgODAp5tjA\nIFUdFN/4FotLGTAARo40P7Mf9ur8qynKumPrCJgbQPa7shPULIhH8sSdaWDfPpPHKyLz8Hvv2Xxe\nqZX4TGED47nnTLhVBWC/qoYAiMg0oC6wK0qbOjhS8KvqehHxE5F8qnpKVVeJiH8cfdsFcwqSpnNb\nhYdD585mJ/3q1S6Jd00N83nuxjm6LunK3H1zGfDiAN4u/XacZq8TJ0yU18yZ8PHHEBjo2qjs1DCf\nqY04nfeqGhRxAGuB88A54E9VdaagRH7gaJTzY45riW0TG21FZJuIBIqInxPtLZbEc/s2vPMOrF9v\ndtPbTRSEazjjNo2j1MhSZMmYhV2td9G4TONYlcrFi/Dpp1C6tEm7smcPdO1qt/qkBRJ03otIVcyq\n4rDjUiERaeaEcnF2E0nMT2RCz40GvnS87o1ZWb3n5FiWJJAmfw1euwZvvmlsNYsWQZbYo5qSgq/O\n56YTmwiYF0B6Sc+iposol69crO1u3IBhw8wO+Xr1YNs29+pkX53P1IwzUWGDgBqqugdARIoD04DH\nEnjuOFAwynlBzIokvjYFHNfiRFXPRLwWkfFAnL6g5s2b4+/vD4Cfnx/lypWL/BBGhCjac3v+n/Nz\n5wiqXBkefJCqv/4KGTJ4l3wpfH7xn4u0GNKClUdWMrDlQJqVa8bKFSsJ2h0UrX1oKOzfX5XevaF4\n8SAGDYKmTT0vvz2P+zzidUhICC4lIe8+sN2Za7G0yQAcAPyBTMBWTCXKqG1qA/McrysC62Lc9+e/\nUWH3R3ndAfgpjvGTHhphicby5cs9LULKERKiWqKEarduquHhbhnCV+YzLDxMJ2yZoHkH5NVWc1rp\n+RvnY28Xpjp1qmrRoqo1aqhu3JiycvrKfPoCuDsqLAqbHCuDyRizVWNgoxMKK1RE2mD2vaQHAlV1\nl4h84Lg/VlXniUhtEdkPXAdaRDwvIlOBKsB9InIU+EJVJwD9RaQcxmR2CPjAifdgsSTM33+b9Cyd\nO0O7dp6WxqNsP72dgLkB3Aq7xZxGc3gy/5P/aaNqYhq6djUWw7FjoXp1Dwhr8TqcyRWWGWgNRJTB\nWwWMUtVbbpYtWdhcYZZEsWqV8akMHQpvveVpaTzGlVtX6LG8B1P+nkLvar3532P/I3269P9pt349\ndOliEjp/9ZXxpdjNjb6Pq3KF2UJfFsusWaaWypQpJlNxGkRVmbpjKp0Xd6bmQzXp90I/ct/z34In\ne/bAZ58ZxdKzJzRrBhlsVadUQ4oloRSRV0Vki4hcFJGrjuNKcge2+A5RHX2pjvHjoVUrmDcvxZSK\nt81n8Nlgnp/0PN/8+Q2/1P+FwLqB/1EqJ0+aaXr2WahQAfbuNRscvUGpeNt8WpxLQjkEaAbcp6rZ\nHEd2N8tlsbgXVejb1xwrV8ITT3haohTn2u1rdFnchSo/VKHew/XY2HIjzxR8Jlqby5fh88/h0Uch\ne3azYvnkE7j7bg8JbfEJnPGxrACqq2pYyojkGqwpzBIn4eHw0UewYgUsWAD33+9piVIUVeXXXb/S\nYWEHqvhXYcCLA8iXNV+0NrdumUzDX39t4hl69YJCCZekt/g4KVnzvgswX0SWA7cd11Rtri6LL3Lr\nltlNf/q0Wance6+nJUpR9p3fR5v5bTh+5Tg/1vuRKv5Vot0PD4epU/9dpSxZYnbOWyyJwRlTWG/g\nGpAZyOo4srlTKIt3kWps2FevwssvQ2ioWal4SKl4Yj5v3LlB92XdeTrwaV4s8iJbPtgSTalEhA4/\n9hgMH26qOM6Z4xtKJdV8PlMRzqxY7lfVtBkqY0k9nDlj6qc8+aTJUpz+vyG0qZU5e+bQbkE7KuSv\nwNZWWymQPXp+lY0bTejwsWPG9GVDhy3JxRkfyzfAUlVdmDIiuQbrY7FEcvCgqU3fuDH06JFmvjUP\nXTxEuwXt2Ht+LyNrj+SFIi9Eu79/vwkdXr3aTMu773pHlJfFc6RkzfsAjI/lpg03tvgcW7dC5com\nX3vPnmlCqdwMvUnvFb154rsneLrA02xvtT2aUjlzBtq0MeV/y5QxocMtW1qlYnEdCSoWVc2qqulU\nNbMNN06b+KwNe/lyqFHD7Kb/8ENPSxOJO+dz4f6FlB5dms2nNrO55Wa6Ve7GXRnuAuD6dejTB0qV\nMpbA3bvNisXX09j77OczFWN/o1hSJzNmQEAATJ8O1ap5Whq3c/TyUTos7MCWU1sYXms4tYvVjrwX\nFmac8T16QKVKZtf8Qw95TlZL6semdLGkPsaMgd69Ye5cKBd7zZDUwu2w2wxeO5gBawbQpkIbulTq\nwt0Zze5FVZg/32xozJnTVFd+6ikPC2zxalJyH4vF4huomp18U6aYpJJFinhaIrey/NByWs9rzYM5\nHmT9/9bzUM5/lyGbNpkkzSdPQv/+8OqracK9ZPES4vSxiMgmERkqIjUdGY4taRSfsGGHhRk/ypw5\nJszJi5VKcufzxNUTvD3zbVrMakHf5/vyR6M/IpVKSIgJfnv1VWjY0FQCqFMndSsVn/h8pjHic95X\nBH4HqgErRGS+iLR3VJC0WLyHmzehQQMTP7t8OeTN62mJ3EJoeCiD1w6mzOgy+Pv5szNgJ689/Boi\nwoUL0KkTPP44FC9uIr0++MBGelk8g9M+FhHJD9QEXgKKYqo9BrhRtmRhfSxphMuXoW5do0wmTYK7\n7vK0RG5h9ZHVBMwNIG/WvIyoNYISuUoARqeOGGHMXW+8YRz0aSz1mcWFeLQei4ikByqq6p/JFcBd\nWMWSBjh50uymf+45GDIE0jmzLcu3OH3tNF2WdGHJwSUMemkQ9UvVR0Qic3p99hmULQv9+kHJkp6W\n1uLrpOQGyf+gqmHerFQsrsUrbdj79pnY2QYNzD4VH1IqzsxnWHgYIzeM5NHRj5IrSy52td5Fg0ca\nICIsW2Yy0wwdChMnmjplaVmpeOXnM41jLbAW32PTJuOd/vJL+N//PC2Ny1l/bD0B8wLImikry5st\n59E8jwJwFkfeAAAgAElEQVSwa5cJHd6506xQ6tdP3U55i+9i97FYfIvFi03Y03ffGd9KKuL8jfN0\nXdqVP/b+wTcvfkPj0o0REc6cMdlofvkFunaF1q1TrSvJ4mFSsjRxCRFZKiI7HedlROTz5A5ssSSa\nadOgSROYOTNVKZVwDWf85vGUGlWKzBkyE9w6mCZlmnDzptCvn0nBkimTScHy8cdWqVi8H2cM098B\n3fi3yNffQCO3SWTxOrzChj1smNnxt2SJSSrpw0Sdz80nN/NM4DMEbglkQeMFDKs1jOyZ/JgyBR5+\nGP76C9auNbEJ993nOZm9Ga/4fFqi4YyPJYuqrheHMVdVVUTuuFcsi8WBqilnOHOm2fhYuLCnJXIJ\nl25e4vNlnzMjeAZ9n+9L83LNSSfpWLkSOnY0vpPJk31eh1rSKM4olrMiUjTiRETeBE66TySLt1G1\nalXPDBwaCq1ame3jq1dDrlyekcOFqCpHchyh0chG1C1Rl+DWweS8Oyd795piW1u2mGJbDRv6VKCb\nR/HY59MSJ84oljbAOOBhETkBHAIau1Uqi+XGDWjUyNSoX7oUsmb1tETJ5u/TfxMwL4B/7vzD7Ldm\n82T+Jzl3Dtp1gZ9+MhFfU6dCZptAyeLjOFOP5YCqPg/kAkqoaiVVDXG7ZBavIcVt2Bcvmjoq2bPD\n7Nk+r1Su3LrCxws/5vlJz9O4dGP6F+1PmVxP8u23Zv9JePi/ocRWqSQe62PxPhJcsTgSUL4B+APp\nxThbVFW/dLNslrTI8eOmjPBLL5k87z5sD1JVpu+cTqdFnajxUA12BuwkV5bc9OgRxPv/g9KljYWv\nRAlPS2qxuBZnat4vBC4Bm4CwiOuqOtC9oiUPu4/FB9m9G2rWNBs1Onf2tDTJYtfZXbSZ34ZzN84x\nqvYoKhWqxLp10KED3L4N336bJuqPWXyMlKzHkl9VX0ruQBZLvKxfb/am9O8PzZp5Wpokc/32dXqv\n7E3glkC6P9edgCcDOHEsA2+/DStXwldfQdOmPr0Qs1gSxJmP9xoRKeN2SSxei9tt2PPnmxQtgYE+\nq1RUlV93/UqpUaU4duUY21tt591H2tHziwyULw/FisGePebtrVwZ5GlxUxXWx+J9OLNiqQy0EJFD\nwC3HNVVVq2wsyefHH43Za9YsePppT0uTJPad30fb+W05euUoE1+bSOWCVZk4Ebp3h+rVYds2KFDA\n01JaLCmHMz4W/9iue3tkmPWx+AADB5od9QsW+GR63n/u/MPXq79m1F+j6FKpCx9V/Ig/V2WkQwe4\n5x4YNAgqVPC0lBaL86SYj0VVQ0SkMlBUVSeISG7At+M/LZ4lPNzsBpw3z4RFFSzoaYkSzR97/6Dd\n/HY88cATbG21lZtnCtDgTdi61biJbOZhS1rGmSSUPYFPgK6OS5mAyW6UyeJluNSGfecOtGgBa9bA\nqlU+p1QOXTxE3Wl1+Xjhx4x5ZQzjXvyZwb0KULEiPPWU2Y/SoEH8SsX6BFyLnU/vwxnnfT2gLnAd\nQFWPA9ncKZQllXL9uon8On/epL/PmdPTEjnNrdBb9FnZhye+e4IKD1Rgy/t/s29BDUqUgGvXTI2U\nTz+1GxwtFnDOeX9LVcMjklCKyD3uFcnibbgkF9P58/Dyy8aXMm4cZMyY/D5TiEUHFtFmXhtK5S7F\nppab2LXWnycfg/z5jX4sk8gwFpvbyrXY+fQ+nFEsv4jIWMBPRFoC7wLjnelcRGoCQ4D0wHhV7R9L\nm2FALeAG0FxVtziufw+8DJxR1dJR2ucEpgOFgRCggapeckYei4c4csTspH/tNejb12ecD8euHKPD\nwg5sOrGJ4bWG82Doy7R6Cw4dMnEHL7/sM2/FYklRnMkVNgCY6TiKA91VdVhCz4lIemAEUBMoBTQS\nkZIx2tTGBAUUA1oCo6PcnuB4NiafAotVtTiw1HFucSPJsmHv3AnPPgsffGDS9vrAN/HtsNt88+c3\nlBtTjlK5SrGq0U4WDH+ZqlWhVi3YsQNeeSXpb8X6BFyLnU/vwxnnfXdgl6p2chyLHSuXhKgA7FfV\nEFW9A0zD+GqiUgeYCKCq6zGronyO81XAxVj6jXzG8e9rTshi8QR//mk2cvTrBx995GlpnCIoJIhy\nY8qxPGQ5q5uvI/fOXpR/9G7CwyE4GNq39ykrnsXiEZwxhbUF3hKRtqq6zHHtQ0wq/fjIDxyNcn4M\neMqJNvmBU/H0m1dVTztenwbyJiCHJZkkyYY9Zw68956pVlWjhstlcjUnr56k0+JOrD6ymiEvDeGe\no6/xRjXh/vtN1v7SpRPuw1msT8C12Pn0PpyJCjsO1Ab6icgniejb2d2JMQ0KTu9qdOyAtLsgvY3v\nv4eWLeGPP7xeqYSGhzJk3RBKjy5NoeyFmP1SMBO61CMgQOjb1zjnXalULJa0gDMrFlT1sIg8B4wR\nkRnA3U48dhyIukmhIGZFEl+bAo5r8XFaRPKp6ikRuR84E1fD5s2b4+/vD4Cfnx/lypWL/HUTYZe1\n5wmfR7Vhx9telarr1sG4cQR98w3cuEFVx3Pe9H4izv8+/TfjL44nV5Zc9Ck4iOXfFeL5pffwySfQ\npk0QmTKBiOvHd3o+7bmdTzefR7wOCQnBpahqvAcmmivqeWvgoBPPZQAOYOq4ZAK2AiVjtKkNzHO8\nrgisi3HfH/g7xrVvgC6O158C/eIYXy2uYfny5Qk3CgtTbd9etXRp1ePH3S5Tcjh97bQ2/7255h+Y\nX3/aNk3Hjg3XfPlU331X9eRJ94/v1HxanMbOp+twfG8mqBcSOhLMFZYcRKQW/4YbB6rq1yLygeNb\nf6yjTUTk2HWghapudlyfClQB7sOsSr5Qk1ImJ/AzUIh4wo1trrAU5PZtaN4cjh0zFR/9/DwtUayE\nhYcxbtM4egT1oGmZpryQoSfdOmUja1YYMgQef9zTElosnsVVucKcSUL5LNADs3qIMJ2pqhZJ7uDu\nxCqWFOLqVXjjDZN18aef4G5nrKQpz4bjGwiYG0CWjFnoVm4kgX1Ls2EDfPNNwilYLJa0gqsUizPO\n+0BgEPAs8KTjsDlb0xBR7bHROHPGhBP7+8Mvv3ilUjl/4zwfzPmAutPq8kG59jy7fwWNXyhN6dIm\nr1fDhimvVOKcT0uSsPPpfTijWC6p6nxVPa2q5yIOt0tm8W4OHTIbH2vVgrFjIYNTcSApRriGE7g5\nkEdGPULG9JnomWsXvV5vypHDwrZt8MUXkCWLp6W0WFInzpjC+mF8JL/yb6EvInwh3oo1hbmRbdtM\nPpOuXU19ei9jy8ktBMwLQFVpW2QUo7o/xq1bpvTLM894WjqLxXtJSR9LELHsFVHVaskd3J1YxeIm\nVqwwTokRI0zRES/i0s1LdF/WnZ+Df6brk33ZOaUFc2ano08fk6k/fXpPS2ixeDcp5mNR1aqqWi3m\nkdyBLb5DpA3711+NMpk61auUiqry47YfKTWyFDfv3KZ9+mC+evM9st6Tjt274X//8y6lYn0CrsXO\np/eRoGHckbvrKyC/qtYUkVLA06oa6HbpLN7D2LHQq5cpI/zYY56WJpIdZ3YQMDeA63eu063I74zu\nVoGQB8zCqlQpT0tnsaRNnDGFLcBkGv5MVcuISEZgi6o+mhICJhVrCnMRqtC7N0yaBAsXwkMPeVoi\nAK7eukrPoJ78uP1H2pXuxebvWrJ1S3oGDTK1xGz4sMWSeFIy3DiXqk4HwgDUZCoOTe7AFh8gLAza\ntIHffzeZir1Aqagq03dMp+TIkpy5doGmV3cwpMmHPFY+PTt3mpIvVqlYLJ7FGcVyTUTuizgRkYrA\nZfeJZPEKbt2Ct96C3bsJ6t0b8no+ifTuc7upMbkGfVf3pWXOaazoMIET+/KwZQt8/rlXbqOJFesT\ncC12Pr0PZxRLR2AOUERE1gA/Au3cKpXFs1y+bPanAMybZ3bVe5Drt6/TdUlXKk+ozGP3vILf9E38\nOuRZJk82cQQFCybch8ViSTmcyhUmIhmAEpgU93sc5jCvxvpYksipU0apPPOM2fjhwXAqVeX33b/z\n0cKPeDLvs2Rd8y3zf76fXr3g/fe9K9LLYkkNuMrH4kxU2N1AACaliwKrRGS0qt5M7uAWL2P/flOb\nvnlzY1vyoLPiwIUDtJ3flpBLIbyZ/gcmf1SNN980aVhy5vSYWBaLxQmcMYVNwtSsH4apYf8Ixhxm\nSU1s3gzPPQeffgrdu0dTKilpw/7nzj/0WN6Dp8Y/RZF0Vcn8w1Y2/FyNRYtg5MjUoVSsT8C12Pn0\nPpxJ8PSIqkbdEbBMRILdJZDFAyxdCo0amb0q9ep5TIy5e+fSbkE7HsnxGNX3beG3oQX55ht4+20b\n6WWx+BLO7GOZDIxU1bWO84pAa1VtmgLyJRnrY3GSn3+Gtm1NduLnnvOICCGXQvhowUcEnw3mhdvD\n+aXfSzRrZhJFZs/uEZEsljSJ230sIvJ3lDZ/ishRjI+lELAnuQNbvIARI6BfP1PYvUyZFB/+Vugt\nvl3zLYPWDaJevg5kCpzOnvvusrvmLRYfJ84Vi4j4x/OcquphdwjkKuyKJR5UzXJg+nSzm/7BB+Nt\nHhQUFFkr21UsPrCYNvPb4J/1Ye4OGsLmZQ8ycCC8+WbqN3u5Yz7TMnY+XYfbVyyqGpLczi1eSGgo\nfPghbN1qdtPnzp2iwx+7coyPF37MxhMbqfrPMGb3fIWWLWHKLo9vl7FYLC7CrTXvPYldscTCP/8Y\nT/iNGzBzJmTNmmJD3wm7w9D1Q+m3uh+1cgXw1+CuPFjgboYOheLFU0wMr0ZS+1LN4lXE9v2YYvtY\nLKmES5egTh0oUMCYwDJlSrGhV4SsIGBeALkzFeTJ7WtZ/Wcxhgwx4tjv0ujYH0OWlMDdP2IS3Mci\nIllFJL3jdQkRqePIcGzxFU6cgMqVTbr7yZMTrVSSuk/g1LVTNPm1CU1+a0q5C735+9P5VCxWjODg\ntJ2B2O67sKR2nNkguRK4S0TyAwuBpsAP7hTK4kL27IFKlaBJExg8GNI58ydPHqHhoQxbP4zSo0tz\n53wBMo3dxbW/XmfjX0KPHr6TLNJisSQNZ/axbFHV8iLSFrhbVb8RkW2qWjZlREwa1scCbNhglgZ9\n+5ravCnAmqNrCJgbwD3pcnLPipEcWFeSYcPg5ZdTZHifxmHf9rQYljRAXJ+1lKzHgog8DTQG5ibm\nOYsHWbgQXnkFvvsuRZTK2etneXfWu9T/uT6lLnzK7m5LeaZYSXbssErFYklrOKMgPgK6Ar+p6k4R\neQhY7l6xLMliyhR45x1ToOuVV5LdXXw+gbDwMMZsHMMjox7h6lk/sk7cxaXVb7FhvdCzpzV7xYb1\nsfxLSEgI6dKlIzw8HIDatWvz448mFeEPP/xA5cqVE9Vf1Oc9xddff83777/vURk8TYJRYaq6Algh\nIvc4zg9g67F4L4MHm2PZMnjkEbcO9dfxvwiYF0C68Mw8HryEDcvKMHRo2nbMp1b8/f05c+YM6aPU\nKmjRogXDhg1z6Tjz5s3z6PPOEhISQpEiRQgNDSVdDL9l165dU0QGb8aZtPnPAOOBbEBBESkHtFTV\nAHcLZ0kEqiYz8Zw5sHo1FCrksq5j7mq+8M8Fui3txqzds6gW3o9FA97h+feFGcF2k6Mz+OIucRHh\njz/+oHr16p4WJVYi/AV2L5B34IwpbAhQEzgHoKpbgSruFMqSSO7cMX6UlSth1SqXKpWohGs432/5\nnlIjS3H2dAbum7aLM4uasXqV0LevVSpplfDwcDp16kTu3Ll56KGHGDlyZDTzlr+/P0uXLo1s37Nn\nT5o2jT2HbdWqVQkMDIw8V1Xatm2Ln58fJUuWZNmyZdHafv7551SqVImsWbNy8ODBaM/HHCem2a1q\n1ap0796dSpUqkS1bNurUqcO5c+do3Lgx9957LxUqVODw4cRnroo6bsSYkyZNonDhwuTOnZu+fftG\ne3/9+vWjaNGi5MqVi4YNG3Lx4sVEj+ltOOWEV9UjMS6FukEWS1K4ccOkuj97FpYsgfvuc/kQQUFB\nbD21lcoTKjNi3Vie3DuPDT1H8MUnfixeDA8/7PIhUzW+6mOJK2Jt3LhxzJ07l61bt7Jx40ZmzJgR\nbeUgIv85j4uYbdevX0/RokU5f/48vXr14vXXX+fSpUuR9ydPnsz48eO5evUqhQsXjva8M6uX6dOn\nM3nyZI4fP86BAwd4+umnee+997hw4QIlS5akV69eCfYR23uIyZ9//snevXtZunQpX375JXv2mDy+\nw4YNY/bs2axcuZKTJ0+SI0cOWrdunegxvQ1nFMsREakEICKZRKQTsMu9Ylmc4sIFeOEFo0x+/90t\nS4bLNy8zbP0wXpr8Ev4Xm3O0x1pKZH+M4GBo0MD6UlISEdccSUFVee2118iRI0fkEbEy+Pnnn+nQ\noQP58+cnR44cdOvWLd6w6cSEVOfJk4f27duTPn16GjRoQIkSJfjjjz8c8yE0b96ckiVLki5dOjJk\niG7Zd2IrBS1atODBBx8ke/bs1KpVi+LFi1O9enXSp09P/fr12bJli9Oyxjdujx49uOuuuyhTpgxl\ny5Zl27ZtAIwZM4Y+ffrwwAMPkDFjRnr06MGMGTMiV1W+ijMpXT4EhgL5gePAIsD3Vaqvc/SoKSP8\nyivQv7/Lv+FVlSl/T+GTxZ9QIfcr3P9dMMcy3cfyZfDooy4dKs2RVB+LJ7e4iAizZs2K1cdy8uRJ\nChYsGHleyIWm2Pz580c7L1y4MCdPnow8jzpuUsibN2/k68yZM5MnT55o59euXUtW/xHky5cv8nWW\nLFki+z18+DD16tWLFgCQIUMGTp8+zf333++SsT2BM1FhZ4G3U0AWi7MEB0OtWtC+PXz8scu733lm\nJ63ntebijSs8FfIb6wc+Rf/+ZvO+XaFYYnL//fdz5Mi/1vKorwHuuecerl+/Hnl+6tQpp/s+fvx4\ntPPDhw9Tt27dyPP4zF1Zs2blxo0bTo/rKsd/YvopVKgQEyZM4Omnn3bJ2N5CnKYwERkez+HaGEOL\n86xdC9Wrw1dfuVypXL11lU6LOlF1YlUKX6vP6T5/8UD4U4wbF0TTplapuIrU5mNp0KABw4YN4/jx\n41y8eJF+/fpF+3ItV64c06ZNIzQ0lI0bNzJz5kynv3zPnDnDsGHDuHPnDr/88gu7d++mdu3aCcoU\nMe7KlSs5evQoly9f5uuvv473PSUl68HNmzejHaqaqH5atWpFt27dIpXx2bNnmT17dqLl8DbiW7Fs\nwlSMBIj5KbB5JzzB3Lkm+mvSJKhZ02Xdqiq/BP9Cx0UdeSLn8xRfvJMd5/MwZxY8+ST46PegxcW8\n+uqr0fax1KhRg5kzZ/L++++zd+9eypYty7333kvHjh1ZvvzfPdS9e/emUaNG5MiRgypVqtC4cWMu\nXLgQeT8uJSMiVKxYkX379pE7d27y5cvHzJkzyZEjR4LPArzwwgs0bNiQMmXKkDt3bj755JNI/0xs\nz8cMHEiofzCroqhtFy1alKhghfbt26Oq1KhRgxMnTpAnTx7eeust6tSpE++43o7T9VhEJBumcqRr\njI5uJtXlCps40exT+f13eOopl3W759we2s5vy4krpyh/ciQLxlbmiy8gIACifIdYUoDUkissvs2D\nFu/A3bnCnNkgWRqYBNznOD8LNFPVHckd3OIEqjBgAIwaBcuXuyy298adG/RZ2Ydxm8ZRL9dn7BvU\nhjtPZmTbNnjgAZcMYbFY0ijO/JwYB3ysqoVUtRDQ0XEtQUSkpojsFpF9ItIljjbDHPe3iUj5hJ4V\nkZ4ickxEtjgO19mEvI3wcOjYEX780ZQRdoFSUVV+3/07pUaWIvhECBU2bSfo6w6MHZ2RadNiVyq+\n6hPwVtLCfNod8GkbZ8KNs6hqpMFUVYMi8obFh6M42AjgBUyY8l8iMltVd0VpUxsoqqrFROQpYDRQ\nMYFnFRikqoOcf5s+yO3bxp9y5IjZUR/FrpxUDl48SNv5bTl44SC1bn/PLx2q06YN/DoRMmd2gcwW\nC2anfVhYmKfFsHgQZxTLIRHpDvyIceI3Bg468VwFYL+qhgCIyDSgLtE3V9YBJgKo6noR8RORfMCD\nCTybun8OXbsGb74Jd90FixYlO0XwzdCb9F/dn+EbhtOgQGeOBv7G/lyZWLPGuXrzvpjbypux82lJ\n7ThjCnsXyAP8CswEcjuuJUR+4GiU82OOa860eSCBZ9s6TGeBIuLnhCy+w9mzJpy4QAGYOTPZSmXe\nvnk8OupRNh37mxqHNvN7py50/SQTixY5p1QsFoslsTizQfIC0DYJfTsb3pLY1cdo4EvH697AQOC9\n2Bo2b94cf39/APz8/ChXrlzkr8UIO7dXnZ86RdUePaB+fYKefx5Wr05yf9P+mMaIDSM4nfs0dTOO\nYEK7zFSpcpDg4EL4+SWuv6g+Aa+aLx89j28+LZaUIuIzFxQUREhIiEv7dqY08ZNAN8CffxWRqmqZ\nBJ6rCPRU1ZqO865AuKr2j9JmDBCkqtMc57sxmZMfTOhZx3V/YI6qlo5lfN8KN96+HWrXhi5doG1S\n9LjhdthtBq4ZyMC1A3n7ofZsHdmZG1cyM2YMPPFE0voMCgqy5hsXEtd8ppZwY4v34+5wY2cUy16g\nE7ADiMyMFuH/iOe5DMAe4HngBLABaBSL876NqtZ2KKIhqloxvmdF5H5VPel4vgPwpKr+J+WMTymW\nVauMT2XYMGjYMMndLDm4hDbz2vCQXzGK7B3K1FFF+OILaN3a7knxBaxisaQUHt/HApxV1UTnGFDV\nUBFpAywE0gOBDsXwgeP+WFWdJyK1RWQ/cB1oEd+zjq77O4qNKXAI+CCxsnkVv/8OLVvCTz+ZTMVJ\n4PiV43y86GM2HN/Aew8MY9Jnr5K5NGzdalw1FktK8eGHH5I/f34+//xzl/abLl069u/fT5EiRVza\nr7fz9ddfc/DgQb777jtPi5I4InLbxHUANYBAoBHwhuN4PaHnPH2Yt+blfPed6v33q27cmKTHb4fe\n1m///Fbv63+ffjznc3272XUtVEh11izXirl8+XLXdpjGiWs+vfkzW7hwYc2UKZOeO3cu2vVy5cqp\niOjhw4eTPUaVKlU0c+bMmjVr1shj3bp1qqoqInrgwIFkjxEXzZo100yZMmnWrFk1R44cWr16dd2x\nY4dTzx46dEhFRMPCwpI0dnKfTwpxfdYc15P9/etMVFgzoCymiuQrjuNVVyu4NIUq9OkDX38NK1bA\n448nuouVh1dSfmx5Fh1YREe/NUx+rzd5c2Zh507w8TRDFi9ERChSpAhTp06NvPb333/zzz//uDQr\n8MiRI7l69Wrk8ZQL0xclNHaXLl24evUqJ06coFChQrRo0SJRfag1Y0bijGJ5AuPHaKaqLSIOdwuW\nagkLM875GTNMbfpixRL1+Klrp2j6W1Oa/NqElsV6cTNwATPHFWf+fBg0CKLkxHMZ1nHvWnx1Pps0\nacKkSZMizydOnMg777wT7Qu1efPmdO/eHTBBCgUKFGDQoEHkzZuXBx54gB9++CHZcly+fJl33nmH\nPHny4O/vz1dffRUpQ+HChdm8eTMAU6ZMIV26dOzaZazogYGB1KtXL8H+M2fOTP369dm5c2fktblz\n51K+fHnuvfdeChUqFK2y5HPPPQeYyNNs2bKxfv16AL7//ntKlSpFzpw5qVmz5n/KCTiDr5Y5dkax\nrAFKuVuQNMGtW/D227Bzp1mpJKKQT2h4KMPXD6f06NLkufsBmlwO5stGb/DG68L69fDYY26U22IB\nKlasyJUrV9i9ezdhYWFMnz6dJk2aRGsTM7Pv6dOnuXLlCidOnCAwMJDWrVtz+fLlOMdw5ld/27Zt\nuXr1KocOHWLFihVMmjSJCRMmANHDuVesWMFDDz3EihUrIs/jU+oRY1+/fp2pU6dGWy1lzZqVyZMn\nc/nyZebOncvo0aOZNWsWAKtWrQKMwotYZc2aNYuvv/6a3377jXPnzlG5cmUaNWqU4HuLic+WOU7I\nVgbsBu4Ae4G/Hcd2V9jh3Hngbfbqy5dVq1dXfeMN1X/+SdSja46s0XJjymnVH6rq93N2avHiqvXq\nqR496iZZY2B9LK4lqT4WeuKSIyn4+/vrkiVLtE+fPtq1a1edP3++1qhRQ0NDQ6P5WJo3b66ff/55\n5Pu8++67o/kO8uTJo+vXr491jCpVqmiWLFnUz89P/fz89PHHH4+8F+FjCQ0N1UyZMumuXbsi740d\nO1arVq2qqqqBgYFap04dVVUtWbKkBgYG6ltvvaWqxk+0ZcuWWMdu1qyZZs6cWf38/DRdunRapEgR\nPXv2bJzz0b59e+3QoYOqxu4jqVmzpgYGBkaeh4WFaZYsWfTIkSP/6Ss+H0uPHj20SZMm0dodP348\n8n6FChV0+vTpqqr68MMP69KlSyPvnThxQjNmzBhrv3F91nCRj8WZqLDUm+QxpTh92uxRqVABRoxw\nOvb33I1zdFnchQUHFvBFxQGsGdeIHsuE4cMhShE9SxpBe3jWhi8iNG3alMqVK3Po0KH/mMFi4777\n7ouWOj9qWd7Y+h8+fDjvvht3Yo9z585x584dChcuHHmtUKFCkZUmn3vuOTp16sSpU6cICwujfv36\n9OzZk8OHD3P58mXKlSsX59idO3fmyy+/5OjRo7z00ktMmjSJjx3F9NavX8+nn37Kzp07uX37Nrdu\n3aJBgwZxynn48GHat29Px44do10/fvx4sssp+0KZ4wRNYaoaEtuRArKlDg4cgEqVjEd91CinlEq4\nhjN241hKjSxFtruy87nfLr6o9zY5cwg7d6a8UvFVn4C34svzWahQIYoUKcL8+fN5/fXXY23jzszG\nuXLlImPGjNF2ih85coQCjrj6okWLkiVLFoYPH06VKlXIli0b+fLlY9y4cVSuXDneviOUZMGCBRk2\nbBi9e/fm6tWrALz99tu89tprHDt2jEuXLtGqVSvCw822vtjeb6FChRg3bhwXL16MPK5fv07FihUT\n9TDUrusAABaRSURBVH4TW+Z4wYIF0ca8ceNGiisVcM7HYkkqW7bAc89Bp07Qo4dTtX03nthIxfEV\n+XH7j3xXeTHb+g9m/MjszJsHgwdDtmwpILfFEg+BgYEsW7aMu2PJY6f/mqKTRELPpk+fngYNGvDZ\nZ59x7do1Dh8+zODBg6P5eqpUqcKIESOoUqUKYBR51HNnxn3hhRcoWrQoo0aNAuDatWvkyJGDTJky\nsWHDBn766afIL/3cuXOTLl06Dhw4EPl8q1at6Nu3L8HBwYDxv/zyyy/xvrfUVObYKhZ3sXw5vPSS\n2U3fqlWCzS/+c5GAuQG88tMrtCwfwIvHVvLeK2WpWxfWr09SRLLLsHmsXIuvz2eRIkV4LEq0SHzl\nfRO7eomvTHEEw4cP55577qFIkSJUrlyZxo0bRwsNrlKlCteuXYuM1op5Hlf/Mcfu3Lkzw4YN486d\nO4waNYovvviC7Nmz07t3bxpGyZCRJUsWPvvsMypVqkSOHDnYsGEDr732Gl26dOGtt97i3nvvpXTp\n0ixcuDDe9541a1ayZMlClixZuOeee1i2bFmiyxzXqVOHGjVqkD17dp5++mk2bNgQ75juwunSxL6G\nR1O6zJhhavv+/DMkYPYI13Ambp1I16VdeaPkG9TJ1oeOATnw9zeWs0KFUkTieLG5wlyLzRVm8TQe\nzxXmq3hMsYweDV99BXPnQtmy8Tbddmobree15k74Hb6pMopfhj7OzJkwZAg0aOCU5cySirCKxZJS\neEOuMIszqELPnibn18qVEE9Oo8s3L9MjqAdTd0yld7Xe5D76P5pUT0eNGmaLS86cKSe2xWKxuBrr\nY3EFYWHGjzJ3rqlNH4dSUVWmbJ9CyZEluXb7Gkvf2Mmir1vySed0TJoEgYHeqVR83Sfgbdj5tKR2\n7Ioludy8aXbTX71qHPZxhG0Fnw2m9bzWXL55mRn1f2XHgopUe88kNv7xx2QXirRYLBavwfpYksOl\nS2ZTyQMPwMSJkCnTf5pcu32NL1d8yYStE+hRpQfVsn7Ih63Sc+sWfPcdlIm3XJolLWF9LJaUwt0+\nFmsKSyonT0KVKsZBP2XKf5SKqjIjeAalRpbi1LVTbP7fDi4ubEOV59Lz5puwZo1VKhaLJXViTWFJ\nYe9eqFkT3n8fPv30P+Fbe8/vpe38tpy4eoLJr08m44nnqFUZ/P1h82bvCCFODDbc2LXY+bSkduyK\nJbH89ZdZqXz2GXTtGk2p3Lhzg8+Xfc4zgc/w0kMvEfTWZqZ/8xyvvw7du8OcOb6nVCwWiyWxWMWS\nGBYvhpdfhrFj4b33ot2avWc2j4x6hP0X9rOt1TaKnv2YcmUycuuWCSFu2NB396XYX9euxc6ne1i1\nahUPP/xwio555MgRsmXLZn1jMXFFimRvPHB12vyfflLNk0d11apolw9cOKCv/PSKlhheQpccWKKn\nT6s2bKhatKjqsmWuFcGSunH5Z9bFTJgwQR999FHNkiWL5suXTz/88EO9dOmSx+Rxd7niqPy/vXMP\nj6q6FvhvERACTUJ4BgyviHpTpbGAvFvCVZFSQUWgsRgRtLT0FuwVW7jVKhSLykcsXqkopSpX8AoI\nKHp5FrFFXvKmiIhUg2JAjY9LkVcSVv84e4bJOEkmZCbJJOv3fefLnn32c83OWbP3Pnutvn376ty5\ncyulrsqgpLFGJbomNh5/HH79a1i3Dvr0AeB04Wl+99ff0e1P3ejdpjd7fraXvI3X0KmTt9y1Zw/0\n61fF7Y4Qdu4issSiPHNycpg0aRI5OTkcP36cLVu2cPjwYa677joKCgoiXl9RUVFY6bSSZgqhbIkZ\nJWOKpTRUvX2U2bM9N8JXXgnAqkOr6DS7E7uP7WbnT3fy47aTuGnQRcyY4Z2RnD4dGjas4rYbRoQ4\nfvw4kydPZtasWfTv35+4uDjatWvHokWLyM3NZf78+YDnRnfo0KFkZWWRmJhIly5d2Lt3r7+cvLw8\nbrnlFlq0aEFaWhpPPPGE/54vb3Z2NklJScybN49t27bRs2dPkpOTad26NePGjfMrMZ9ByYyMDBIS\nEli8eDFvvPFGMV8n7du3Jycnh4yMDBo3bkxWVhZnzpzx358+fTqtW7cmNTWVuXPnUqdOHd5///1y\nycbnLthnQj8zM5MHHniAPn36kJiYyPXXX8/nn3/uT79lyxZ69epFcnIyV111ld+7ZY0jEtOe6nhR\n0WWFggLVUaNUu3VTdZ7kDn91WIcsHKKXPH6Jrji4QouKVGfNUm3aVPWhh1TPnq1YlUbtpsJjNkqs\nXLlS69atG9IT4ciRI/XWW29VVc/bYb169XTJkiVaWFioM2bM0A4dOmhhYaEWFRVp586dderUqVpQ\nUKDvv/++pqWl6erVq4vlfeWVV1RV9dSpU7pjxw7dunWrFhUVaW5urqanp+vMmTP9dQcvha1fv15T\nU1P9n9u3b6/du3fXo0eP6hdffKHp6en61FNP+fuUkpKi+/fv15MnT+qIESO0Tp06JS6tZWZmFvMI\n6SPY+2Pfvn21Y8eO+t577+mpU6c0MzNTJ02apKqqR44c0aZNm+rKlStVVXXt2rXatGnTUj1VRouS\nxhq2FBZFTp6Em2/2zqq8/jpnkxN55M1H6Px0ZzJaZrDv5/voUPQDvv99zzTYhg3eS2L16lV1w40a\njUhkrnKSn59Ps2bNinkm9JGSkkJ+fr7/c9euXRkyZAhxcXHcc889nD59ms2bN7Nt2zby8/O5//77\nqVu3Lh06dOCuu+7ixRdf9Oft1asXgwcPBqBBgwZ07tyZbt26UadOHdq1a8eYMWPK/Qt//PjxpKSk\nkJyczKBBg9i9ezcAixYtYvTo0aSnpxMfH8+UKVMisqwmIowaNYqOHTvSoEEDhg8f7q9z/vz5DBw4\nkAEDPKe81157LV27dmXFihUVrre6YYolmC++gP79oXFjWL6c1z/dSsZTGbz54Zu89ZO3+K9eD/DY\n9Ab06QNZWZ5SSU+v6kZHl1jcE6jOXLA8VSNzlZNmzZqRn5/vX+4J5OjRozRv3tz/2efJEbyHbGpq\nKnl5eXz44Yfk5eWRnJzsvx5++GE+/fTTkHkBDh48yA033ECrVq1ISkrivvvuK7asFA6Bbnzj4+P5\n+uuv/e0OXDYLrrsiBNcZ6Dp48eLFxWSwceNGjh07FrG6qwt2QDKQI0e8g48DBpD3218yYfntbP5o\nM48PeJzBlw9m505hyJ3QqhXs2AEBbrcNo8bSs2dP6tevz5IlSxg2bJg//sSJE6xatYqHH37YH/fR\nRx/5w+fOnePIkSNcfPHFxMXF0aFDBw4ePBiyjlCb42PHjqVLly4sXLiQRo0aMXPmTJYsWRKRPrVq\n1apYWwPD0aJt27ZkZ2czZ86cqNdV1diMxcc770Dv3hTdns1jt7TmO09fRVrjNPb/x376t7uRSZOE\ngQNhwgRYsaJ2KRU7dxFZYk2eSUlJPPjgg4wbN47Vq1dTUFBAbm4uw4cPp02bNmRnZ/vT7tixg2XL\nllFYWMjMmTNp0KABPXr04OqrryYhIYHp06dz6tQpioqK2LdvH9u3bwdCv9114sQJEhISaNiwIQcO\nHGD27NnF7rds2bKYO+Bw8NUzfPhwnn32WQ4cOMDJkyeZOnVqmXkLCgqKuQ4uLCwstY5gbrvtNl59\n9VXWrFlDUVERp0+f5o033uDjjz8uVx9iAVMsAFu2QL9+vHv3bXw3YQGrDq1i052b+P01v2fbpoZk\nZMDhw7B3L2Rnx+5BR8O4UH71q18xbdo07r33XpKSkujRowft2rVj3bp11HObiyLCjTfeyMKFC2nS\npAkLFixg6dKlxMXFERcXx2uvvcbu3btJS0ujefPmjBkzhuPHj/vzBs9YZsyYwQsvvEBiYiJjxowh\nKyurWJrJkyczcuRIkpOTeemll8p8JTjw/oABAxg/fjz9+vXjsssuo2fPngDUr1+/xPxjx471uw5u\n2LAho0ePDllnSa6aU1NTeeWVV5g2bRotWrSgbdu25OTkhFxijHXMuvGKFZwbeTt/+FkGM5sc5LH+\njzH020M5flyYOBFeew3++EfPiHFtxWxbRZaa6pp4ypQpHDp0iOeff76qm1Ju3nnnHTp16sTZs2dD\nvqRQ0zDrxlHk3HPPcTI7i4E/KuTY9zqz/+f7GXbFMA4dEq68Es6dg337ardSMYxwiTWluGzZMs6c\nOcOXX37JxIkTGTx4cK1QKpVBrd28P3z/OC6a/TQTJ2SQc9dzXNHiCv+9Dh1g0SJws+Naj81WIktN\nlWesnU6fM2cOo0aNIi4ujszMTJ588smqblKNoVYuhW2YMIwWC17m7edzuPnacTH1z2DUXGJ9KcyI\nHaK9FFYrFcuxf+yhYXwSia3bV26jYhTbY4ksNXWPxYgdoq1YauVSWMolGVXdBMMwjBpLrZyxGEZ1\nxGYsRmVhMxbDqEXYfp9RE4jqu3UiMkBEDojIeyIysYQ0/+3u7xGR75aVV0SaiMhaETkoImtEpHE0\n+2CYrbBIU5I8I2FVtjZe69evr/I2xOIVTaKmWEQkDpgFDAC+DdwqIulBaQYCHVX1UmAMMDuMvJOA\ntap6GbDOfTaiiM86qxEZTJ6RxeRZ/YjmjKUbcEhVc1W1AHgRCD5qOBiYB6CqW4HGIpJSRl5/Hvf3\npij2wQC++uqrqm5CjcLkGVlMntWPaCqWi4FAk6FHXFw4aVqXkrelqn7iwp8ALSPVYMMwDKPiRFOx\nhLuIF85upYQqT72FQnuNJsrk5uZWdRNqFCbPyGLyrH5E862wj4E2AZ/b4M08SkuT6tLUCxHvsy39\niYikqOoxEWkFfEoJ2Bs2kWPevHllJzLCxuQZWUye1YtoKpbtwKUi0h7IA34E3BqUZjnwC+BFEekB\nfKWqn4jI56XkXQ6MBB51f18OVblG4F1swzAMo/xETbGoaqGI/AJYDcQBf1bVd0Tkp+7+06q6QkQG\nisgh4GtgVGl5XdGPAItE5E4gFxgerT4YhmEY5afGnrw3DMMwqoaYcz4QjUOXtZkKyjNXRPaKyC4R\neavyWl09KUuWIvJvIrJZRE6LyITy5K2NVFCeNjaDCEOeI9z/+F4R2Sgi3wk37zeo6tOf5TwpGgcc\nAtrjbfDvBtKD0gwEVrhwd2BLuHlr21URebrPHwBNqrof1eEKU5bNga7AQ8CE8uStbVdF5Onu2dgs\nvzx7AkkuPKAiz85Ym7FE69BlbeVC5Rl4dshekvAoU5aq+pmqbgcKypu3FlIRefqwsXmecOS5WVX/\n333civc2blh5g4k1xRKtQ5e1lYrIE7wzRH8Rke0i8pOotTI2CEeW0chbU6moTGxsFqe88rwTWHGB\neWPOunEkD10aFZdnH1XNE5HmwFoROaCqGyLUtlijIm/B2Bs036SiMumtqkdtbPoJW54i0g8YDfQu\nb14fsTZjqcihy3Dy1jYuVJ4fA6hqnvv7GbAMb8pcW6nI+LKx+U0qJBNVPer+2tj0CEuebsP+T8Bg\nVf2yPHkDiTXF4j90KSIX4R2cXB6UZjlwO0Dgocsw89Y2LlieItJQRBJcfCOgP/D3ymt6taM84yt4\nBmhj85tcsDxtbIakTHmKSFtgKXCbqh4qT95gYmopTKN36LJWUhF5AinAUmc2py6wQFXXVH4vqgfh\nyNK9RLINSATOicjdwLdV9YSNzeJURJ5AC2xsFiMceQIPAMnAbCe7AlXtdiHPTjsgaRiGYUSUWFsK\nMwzDMKo5plgMwzCMiGKKxTAMw4goplgMwzCMiGKKxTAMw4goplgMwzCMiGKKxagUROQOEXkiiuWP\nF5H9IvJ8ZdYbTUSkh4jMiXCZk4NNzFcmInKiAnkH+Uy2V3U/jNKJqQOSRkwT7QNTY4FrfGZmKrHe\naPIDYGWEy6xqeVxw/ar6KvBqRcsxoo/NWIywcOYcDojIsyLyrogsEJH+ziHQQRG52qVrIiIvO4dB\nm0WkU4iymovISyLylrt6ufi+zjHTLhHZKSLfCpH3HhH5u7vudnFPAWnAKhH5ZYjmtxGR9a6dDwSU\ndZuIbHX1PSUidVz8CRF5SER2uz60cPG7Aq6TIvI9EWkkIs+4cnaKyGCX9g4RWSoiK129jwbU219E\nNonIDhFZ5MyOhOLfgb8E9T9TRP7qZPwPEXlERLKdHPeKSFrA9/W6+x7+IiJtggsXkUtc+7aLyN9E\n5PIQafaKSKJ4fC4i2S7+f0TkWhFp5/LucFdPd7+Vi9/lvqveAWV+Q7ZBdYYcQ7E8+6x1VLUDGrti\n48Jz8lMAXIFnm2k7nmkH8Hy2LHPhJ4DfunA/YJcL3wE84cIv4FmfBWgL7Hfh5UBPF24IxAW1oQuw\nF4gHGgH7gAx3L6RjJ1dvHp6pigZ4NqO6AOmuvjiX7kkg24XPAT904UeB+4LKHAT8FW/GPw0Y4eIb\nA++6tt8B/ANIAOoDuXimxpu5vPEuz0SfvILqaAa8HiI+E/gSaAlchGcgcLK7Nx74gwu/GtCfUQHf\nz4PAPS68Dujowt2BdSHqm43n7O1K4C3gaRd/0H0P8UB9F3cpsM2FJwC/ceE6wLfCkW05xtCDBDn3\nsqv6XLYUZpSHD1T1bQAReZvzv6b34Ske8ExtDwFQ1fUi0lScQcAArgXSRfy2AxPcr/aNwB9EZAGw\nVFU/DsrXx8Wfcm1YCnwf2FNGu9eos9Tq8vQBivAUzHbXjnjgmEt/VlX/z4V3ANf5ChKRS4HpQKZ6\nNpT6A4NE5F6XpD6eslS8B/U/Xb79TkbJePasNrl6LwI2hWhzfzzbTKHYpp5hVcSz4eZLtw/vQQzQ\nA7jJhee7Nvtx8u4FLA74Hi4KUdcGPBkfxlMyY0SkNfClqp4SkSRglohk4Mn0UpfvLeAZEakHvKyq\nvu+oRNkGEM4YMqoxpliM8nAmIHwOOBsQDhxLwdZ7g9fDBeiuqmeD4h8VkdeAHwIbReR6VX03qJzA\nsiVE2cGEqtsXN09VfxMiT6BHQn/f3NLcQuAu34PdMURV3ytWiUh3isuriPMyWquqPy6j3QOAnBLu\nBX8PZwLCpX0PgdTBUw7fLaMdfwN+gTfjug+4GRjq4gH+EziqqtkiEgecBlDVDSLyPeAG4DkReUxV\nn6cE2YagrDFkVGNsj8WINBuAEeDtBwCfqWrwm0Br8JZtcOmucn8vUdW3VXU6ntXa4DX/DcBNIhLv\nfnHf5OJKQ4DrRCRZROLxXKq+ibcMNFQ8R1C+df22ZZT1DPCsqm4MiFsd1BffgzrUQ12BLUBvEbnE\npW/kZkHnG+xNIb4T8Cv/QtgEZLnwCM4rAsEzPvtP4AMRGeqrUzxfHMUbrHoEb1muo6p+gCe7ewPK\nS+T8TO92POu3PhPsn6nqXODPQFkKLJBwxpA586vGmGIxykPwr0YNEZ4MdBGRPXj7DyMD7vvSjAe6\nus3Zt4ExLv5ut9G7B282VOyNKFXdBTyHt8yyBfhTwMO3pF+06tIvwVsye0lVd6pn9vt+YI2rbw2e\nK4BQ/VL3oLwFGC3nN/A7A1OBem6Tex8wJUR/A/uQj7dX8L+u3k18U4F2AXaV0p/S+uq7Nw4Y5eoY\nAdwdIs0I4E4R2Y23jDa4hHK34O2pgKdYWru/4O1NjXRlXA74FEA/YLeI7ASGAY8H1F9WXyZT9hgq\nTQ5GFWNm8w2jmiEi9wHvqeqiqm6LYVwIplgMwzCMiGJLYYZhGEZEMcViGIZhRBRTLIZhGEZEMcVi\nGIZhRBRTLIZhGEZEMcViGIZhRBRTLIZhGEZE+Rflz/wq8/SiYgAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7720e48>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Oil circulation rate is 1.79e-03 kmol/s\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FPX9+PHXO+GGQMJ9EzlUbBXUyiEi8ShGW9F6cAgU\n0HpV0daj3gXFev20tXhioYpSFRUtiiJaJOhXEQXxBhElyKmG+xKT8P79MbNhs+wms9ndzA55Px+P\neTCfmdn5vHey7Gfn8/nM5yOqijHGGONFht8BGGOMCQ4rNIwxxnhmhYYxxhjPrNAwxhjjmRUaxhhj\nPLNCwxhjjGdWaBhTRSLyiIjcnKRzbReR3GScy5hUEntOw9RUInIccA9wGFAKLAX+BPwSuEBV+/sY\nnjFpqZbfARjjBxFpDMwCLgaeA+oC/YE9Hl+foap7UxehMenJqqdMTXUwoKo6XR0/qeqbQAnwCNDX\nrTLaBCAiT7jVUa+JyA7gBHfbBHd/noisEZEbRORHEVkpIueFMnOPfVRE3hCRbSJSICIdw/bvFZHO\nYcc+JCKz3GPfD+1z9w8Uka9EZIt73HwRuaBarpqp8azQMDXVV0Cp+wWdLyI5AKq6FLgEWKCqWara\nNOw1w4AJqtoI+D9A3SWkFdAMaAuMAh4TkYPD9p8H3AY0Bz4G/lNBfEOA8UAOsAL4G4CINAeeB64D\nmrrvo29EHMakjBUapkZS1e3AcThftv8CfhCRmSLSEpBoLwH+q6oL3NeHqrEij71FVYtV9W3gVWBw\n2L5Zqvp/qvozcBPO3Uy7GHm9qKqLVLUUp3Dp6e47DfhcVf+rqntVdSKwIc63b0yVWaFhaixVXaaq\nY1S1A07jd1vgfmL/al9dySk3q+rusPQqoE0oO2BNWN47gU1untF8H7a+G2jkrrcNP48rMm1Mylih\nYQygql8BU3EKj3iqesKPzRGRBmHpTsA6d12ADqEdItIIp3ppHfFZB7QPO4+Ep41JNSs0TI0kIoeI\nyFWh6iER6YDTZrEA51d+exGpHf6SaKeJsv1WEaktIv2B3+C0P4ScJiL9RKQOMAGn3WRtjPPG8hpw\nuIicISK1gMuA1hUcb0xSWaFhaqrtQG9godsbagHwKXA18BbwBbBBRH5wj49s9I62bQOwGedu4Cng\nYlVdHnbs08A4YCNwJDAi4lyxzlu2X1WLgHNxni8pAroDi/DYVdiYRPn6cJ+I5OPUIWcCk1X17oj9\nzYFpOL+kagH3quoT1R2nMZURkTzgKbd9JNr+x4E1qnpLkvPNwGlrOU9V5yfz3MZE49udhohkAg8C\n+ThP5A4Tke4Rh10OLFHVnkAecJ97S25M0FRU5RTfiZznNLJFpC5wo7v5/WSd35iK+Fk91QtYoaqF\nqloMPAucEXHMeqCxu94Y2KiqJdUYozHxqOi2PVqVU1X1xXl240ecdpMzw7oAG5NSvlVPicg5wCmq\neqGbHgH0VtWxYcdk4NQvHwxkAYNVdbYf8RpjjPH3TsNLaXUj8LGqtsV5uOkhEclKbVjGGGNi8bN9\nYC1h/dbd9ciHlI7FHT5BVb8RkZXAITi9RcqIiA2hYIwxcVLVuNva/LzTWAR0E5Fct9/6EODliGOW\nAScDiEgrnALj22gnU9VALuPGjfM9Bovf/zgs/uAtQY5dteq/s32701DVEhG5HJiD0+V2iqouFZGL\n3f2TgDuAx0XkE5wC7i+qusmvmFOhsLDQ7xASYvH7y+L3T5BjT4Sv3VfVadSeHbFtUth6EXB6dcdl\njDEmOnsi3GejR4/2O4SEWPz+svj9E+TYE3FATPcqInogvA9jjKkuIoIGrCHcAAUFBX6HkBCL318W\nv3+CHHsirNAwxhjjmVVPGWNMDWTVU8YYY1LOCg2fBb1e1OL3l8XvnyDHnggrNIwxxnhmbRrGGFMD\nWZuGMcaYlLNCw2dBrxe1+P1l8fsnyLEnwgoNY4wxnlmbhjHG1EDWpmGMMSblrNDwWdDrRS1+f1n8\n/gly7ImwQsMYY4xnvrZpiEg+cD/OzH2TVfXuiP3XAMPdZC2gO9BcVbdEHGdtGsYYE4eqtmn4VmiI\nSCbwFc4c4GuBD4Fhqro0xvG/Bf6kqidH2WeFhjHGxCGIDeG9gBWqWqiqxcCzwBkVHH8e8Ey1RFaN\ngl4vavH7y+L3T5BjT4SfhUY7YHVYeo27bT8i0gA4BZhRDXEZY4yJwc/qqbOBfFW90E2PAHqr6tgo\nxw4BzlPVqHciIqKjRo0iNzcXgOzsbHr27EleXh6w7xeBpS1taUvX1HRovbCwEICpU6cGrk2jDzBe\nVfPd9A3A3sjGcHffS8B0VX02xrmsTcMYY+IQxDaNRUA3EckVkTrAEODlyINEpAlwPDCzmuOrFuG/\nAoLI4veXxe+fIMeeiFp+ZayqJSJyOTAHp8vtFFVdKiIXu/snuYeeCcxR1d0+hWqMMcZlY08ZY0wN\nFMTqKWOMMQFjhYbPgl4vavH7y+L3T5BjT4QVGsYYYzyzNg1jjKmBrE3DGGNMylmh4bOg14ta/P6y\n+P0T5NgTYYWGMcYYz6xNwxhjaiBr0zDGGJNylRYaInKciDRy10eKyN9FpFPqQ6sZgl4vavH7y+L3\nT5BjT4SXO41HgJ0i0gO4CvgGeDKlURljjElLlbZpiMgSVT1SRMYBa1V1soh8pKpHVU+IlbM2DWOM\niU9V2zS8jHK7XURuBEYA/d25vWvHm5Exxpjg81I9NQTYA5yvqhtwpmS9N6VR1SBBrxe1+P1l8fsn\nyLEnotI7DVVdD9wXlv4OmJrKoIwxxqQnL20afYGJQHegLs6ESTtUtXHqw/PG2jSMMSY+qXxO40Hg\nPOBroB5wAfBwvBlFIyL5IrJMRL4WketiHJMnIktE5HMRKUhGvsYYY6rG08N9qvo1kKmqpar6OJCf\naMZug/qD7rkOA4aJSPeIY7KBh4DTVfWXwDmJ5ptugl4vavH7y+L3T5BjT4SX3lM7RaQu8ImI3ANs\nAOK+pYmiF7BCVQsBRORZ4Axgadgx5wEzVHUNgKoWJSFfY4wxVeSlTSMX+B6oA/wZaAw8rKorEspY\n5BzgFFW90E2PAHqr6tiwY/6B0733F0AW8E9VfSrKuQ7YNo0FC6C0FFq3dpZGjfyOyBhzIEjZcxqh\nOwFgNzA+3gwqOrWHY2oDRwEnAQ2ABSLyvltdVs7o0aPJzc0FIDs7m549e5KXlwfsu40MYnrWLJg5\ns4BNm2DLljwyMqBJkwJycuCQQ/Jo3Rp27y6gaVMYMMBJr1xZQHY2DBzof/yWtrSl0yMdWi8sLCQR\nXu40PsP5gg+VSApsAz4EblfVjVXKWKQPMF5V8930DcBeVb077JjrgPqqOt5NTwZeV9UXIs4V2DuN\ngoKCsj9uZVRhxw7YsGHf8v335dOh5YcfnLuS0B1KrKVVK2jeHDIzUx9/OrL4/RXk+IMcO6T2ifDX\ngRLgaZyCYyjOr/7vgSeA0+PN1LUI6OZWf63DeYhwWMQxM4EH3UbzukBv4O9VzC/wRCAry1m6dav4\n2L17YdOm6AXLZ5+VT2/Z4hQcFRUsofUmTZw4jDE1k+exp6JtE5HPVPXwKmcucipwP86zH1NU9U4R\nuRhAVSe5x1wDjAH2Av9S1YlRzhPYO410UFwMP/4Y/Y4l8q5mz57KC5bQUr++3+/MGBNLVe80vBQa\nnwIXqupCN90L58u7R7QCxQ9WaFSfXbtiV4lF3tXUreutcGnZEmp5uec1xiRNKguNY4DHgVC/ne04\nD/h9AfxGVZ+LN9NkC3KhEfR60Vjxq8LWrd4Kl6IiyMmpuGAJLU2bJrd67EC9/kER5PiDHDuktvfU\nh8Av3QftUNUtYbt9LzBMehKB7GxnOfTQio8tLXUKjsiCZe1aWLy4/LYdO5xCpaKCxbonG5M6Nke4\nCZQ9e/bdpVRUTbZ+vVNwVVawhKrH6tb1+50ZU71SVj0VBFZomEjh3ZMrKly8dk8O3dkk0j3ZmHRi\nhUZA30fQ60UPhPiPPz6PzZu99R7bvDl29+TIKrPq6J58IFz/oMYf5NghhW0aIrIY+DfwtKpurkpw\nxqSzjAxo1sxZfvGLio+N1T35m2/g3XfL39VE654crS2mVSto0KB63qsxifLSe6obznMSg3EeyHsc\neCOdftoH+U7DHLhidU+Oti28e3JFjfwtWkBtm2zZJEHKq6dEJAP4LfAIzoN2/8YZQHBTvJkmmxUa\nJsiidU+O1Q4T6p7spfdYTo5zF2VMNCktNESkB87dxqnAHJwhRY4DRqhqz3gzTbYgFxpBrxe1+KtX\nePfk77+HefMKyMnJi1rA7Njh9AzzMv5Yo0b+DA8TtOsfLsixQ+rbNLYCk4HrVHWPu+t9EekXb4bG\nmKrLzNz3nApAnToQ63sr1D058q5l6VKYN6/8NvDWe6xVK+ueXNNVeKfhVkldr6p3VF9I8QvynYYx\n6SBy9ORY7TDffx+7e3JklZl1T05vqRxGZLGqHl3lyKqBFRrGVI+9e6mwe3L4XU207smx2mJs9OTq\nl8pC4y6gCJgO7AxtT4cG8JAgFxpBrxe1+P2VzvHH6p4cXrB8+20B27blleueXFEjfzp1T07na+9F\nKufTGIoz8dJlEdsPijczY0zNUbs2tG3rLLEUFDhtMpHdk0Prn3wCc+bs3z3ZS+8x656cGvZEuDEm\nMELdkysbGibUPTk721vvsaZNa1735KRXT4nI2VQwj7eqvhhvZqlihYYxJlJpKWzc6G14mO3bK+6e\nHH5n41f35GRLRaHxBE6h0RI4FnjL3XUC8J6q/rZqoZbLI599M/dNDp8f3N2fhzPl67fuphmqenuU\n8wS20Ah6vajF7y+LPzn27HEGrqysgX/9euf41q2hfv0CDjkkL2ZbTLp3T056m4aqjnZP/CZwmKqu\nd9NtgKlVjLOMO+/3g8DJwFrgQxF5WVWXRhw6X1UHJZqfMcbEUrcudOjgLJUJdU+ePRvatNlXsHz4\n4f4FTWT35FhtMUHqnuyl99QyoHvop7z77MaXqlrJ1DqVZCzSFxinqvlu+noAVb0r7Jg84GpVPb2S\ncwX2TsMYc2CK1j05VltMZPfkihr6k9U9OZW9p/4HzBGRpwEBhgBvxptRFO2A1WHpNUDviGMUOFZE\nPsG5G7lGVb9MQt7GGJNSVR09ObxgWbkSFizYl161yjk+smDp3h3+9KfUvyfwNt3r5SJyFtDf3TRJ\nVV9KQt5ebg0+Ajqo6i4RORX4L3BwtANHjx5Nbm4uANnZ2fTs2bOsrrSgoAAgLdOh9XSJx+JPr/gs\n/vRNR76HeF/fq1ceRUUwZ04BW7dCu3ZOevFiJ123bh4bN8LKlU56xw7n9VlZBdSqBVlZedSvDz/8\nUOB2La483oKCAgoLC0mEb11uRaQPMD6seuoGYG9kY3jEa1YCR0c+WBjk6qmCNGkIrCqL318Wv3/C\nY9+1y+mpVVS0bwlPR9u3d6/zLEmzZk7VVPPm5dcj082aOQ82JqvnVuBm7hORWsBXwEnAOuADYFh4\nQ7iItAJ+UFUVkV7Ac6qaG+VcgS00jDHpZffuir/so6X37o39ZR/ty7958+QWAFWRyjaNlFDVEhG5\nHGeo9UxgiqouFZGL3f2TgHOAS0WkBNiF83S6McZ4EioA4rkLCC8AIr/8u3WDvn333+d3AVCdvM6n\n0QCnbeGr1IcUvyDfaQT59hwsfr/VpPh3746/CqikJP4qoIYNvRUAQb/2qZxPYxDw/4C6QK6IHAnc\nas9OGGOqKlQArFjhfLFX9uVfVOQcF+vLvls36NNn/31eCwDjnZfnND4CTgTmqeqR7rbPVfWX1RCf\nJ0G+0zAm6H76yfsv/9B6eAHgpf7fCoDkS2WbRrGqbpHyf6298WZkjEl/P/3kvfE3tF5cHPvLv0sX\n6N17/31WAASXl0LjCxEZDtQSkW7AFcB7qQ2r5gh6vajF76+K4o8sALzcBRQXx/7l36UL9Oq1/75E\nBvAL8vUPcuyJ8FJojAVuAvYAz+D0dpqQyqCMMeWFFwDhX/iLFsFLL0UvDH7+OXa1z0EHwTHH7L/v\nQBnB1aSOzadhTDXbsye++v+NG53XVFb/H5m2AsBUJBVDo79Swes0nXpPWaFh/LJnT3xf/kVFzmu8\nNv6G0llZVgCY5EpFoZFXwetUVefHm1mqBLnQCHq96IEUf3gB4LUgiCwAvDwPkMwC4EC6/kET5Ngh\nNfNpFISdvC7OQIEKfKWqxVUJ0pjqEioAKvvy//Zbp+5/40an3SD0xR75hd+pExx99P777A7A1DRe\nntPIw5l0yR2Ul47AKLvTMNUl9KUeTxXQ7t3ef/mH1hs3tgLA1BwpG7DQfbhvWGgIERE5GHhWVY+q\nUqQpYIVGcIQXAF6HhNi9O74v/+bNrQAwpjKpfLivVviYU6q63B2h1iRBkOtFf/4ZXnnFmSfZ613A\nrl2xq4A6dIAjj9x/XyoLgCBff7D4/RTk2BPh5ct/sYhMBqbhzNw3HFiU0qhMtSsujr8KaNcup06/\nTZv9f/mHCoDIgsHuAIwJNi/VU/WAy4B+7qZ3gIdVdU+KY/PMqqfKCy8AvFYB7doFTZvG1w00WXMV\nG2OqX+AmYUqmA7nQCBUA8QwJHVkAeGkPsALAmJollQ3hpwO3Abnsq85SVW0cb2ZRzp0P3I8zCdPk\nWFO9isgxwAJgsKq+GGV/IAqN4mLYtKn8F/x77xXQrFlezLuCnTudAiCeh8EaN3Ymta8OQa/Xtfj9\nFeT4gxw7pLYh/H7gd8Dnqpq00W1FJBN4EDgZWAt8KCIvh0/3Gnbc3cDrOG0qaSG8APB6F7BzJ+Tk\nlP+C37MHjjgC2rVz/o1WBVRdBYAxxlTGy53GfOBEVS1NasYifYFxqprvpq8HUNW7Io77E/AzcAww\nS1VnRDlXQncaoQIgniqgHTuqVgVkBYAxJh2k8k7jOmC2iMzD+fIGp3rq7/FmFqEdsDosvQboHX6A\niLQDzsCZBOoYnCfSK1RSsn8VUGW9grZv31cARH75t2kDhx++/z4rAIwxNZGXQmMCsB2oB9RJYt5e\nbg3uB65XVRVnFqiYpWK3bk4hECoAov3yDxUAkfuys/0rAIJeL2rx+8vi90+QY0+El0Kjjar+OgV5\nrwU6hKU74NxthDsaeNadNbA5cKqIFKvqy5En++UvR3PwwbnUqwc5Odn07Nmz7A9aUFAAUC69Zw90\n6xZ7v6UtbWlLV5QOSZd4vMRbUFBAYWEhifDSpnEPMFdV5ySU0/7nrQV8BZwErAM+wBmuZGmM4x8H\nXgly7yljjEkXqWzT+CNwjYj8DIRGt024y62qlojI5TgzAWYCU1R1qYhc7O6flMj5jTHGJF+lNfmq\n2khVM1S1nqpmuUvCz2i4556tqoeoaldVvdPdNilagaGqY6LdZQRd5K1u0Fj8/rL4/RPk2BNh/X+M\nMcZ4ZsOIGGNMDVTVNg270zDGGONZzEJDRBaLyD9FJN8d6dakQNDrRS1+f1n8/gly7Imo6E6jD/Bf\n4ARgvojMFpEr3Zn7jDHG1ECe2zTcIT3ygVOArsD7qvrHFMbmmbVpGGNMfKp1Pg135Nk+qvpu3C9O\nASs0jDEmPtXaEK6qpelSYARd0OtFLX5/Wfz+CXLsibDeU8YYYzyz5zSMMaYGSln1lIgcIiJzReQL\nN32EiNxclSCNMcYEm5fqqX8BN7JvAqbPgGEpi6iGCXq9qMXvL4vfP0GOPRFeCo0GqrowlHDrgYor\nON4YY8wByst8GrOBscDzqnqkiJwDXKCqp1ZHgF5Ym4YxxsQnZc9piEgX4DHgWGAzsBIYrqqFVYgz\nJazQMMaY+KSsIVxVv1HVk3CmWz1EVfulU4ERdEGvF7X4/WXx+yfIsSei0pn73MEKzwZygUxxJuxW\nVb0t0cxFJB+4H2fmvsmqenfE/jOA24C97nKtqr6VaL7GGGOqxkv11BxgC7AYKA1tV9X7EsrYGYrk\nK+BkYC3wIRFzhItIQ1Xd6a4fDrykql2jnMuqp4wxJg6pnCO8naqeUoWYKtMLWBGq6hKRZ4EzgLJC\nI1RguBoBRSmIwxhjjEdeuty+JyJHpCDvdsDqsPQad1s5InKmiCwFZgNXpCAOXwW9XtTi95fF758g\nx54IL4VGf2CxiCwXkc/c5dMk5O2pPklV/6uq3YHTgaeSkK8xxpgq8tKmkRtte6I9qESkDzBeVfPd\n9A3A3sjG8IjXfAP0UtWNEdt11KhR5OY6oWZnZ9OzZ0/y8vKAfb8ILG1pS1u6pqZD64WFhQBMnTo1\ndfNpiEh/oKuqPi4iLYBGqroy3swizlkLpyH8JGAd8AH7N4R3Ab5VVRWRo3AeMOwS5VzWEG6MMXFI\n5YCF44G/ADe4m+oA0+LNKJKqlgCXA3OAL4HpqrpURC4WkYvdw84GPhORJcA/gaGJ5ptuwn8FBJHF\n7y+L3z9Bjj0RXnpP/Q44EqfLLaq6VkSykpG5qs7GaeAO3zYpbP0e4J5k5GWMMSZxXto0PlDVXiKy\nxB17qiGwQFVT0aOqSqx6yhhj4pPK6V6fF5FJQLaIXATMBSbHm5Exxpjg8zL21P8DZrjLwcAtqjox\n1YHVFEGvF7X4/WXx+yfIsSfCy9hTtwBPqOobYdsuUtXHUhqZMcaYtOOlTeMH4EdgbGiwwFD7RjXE\n54m1aRhjTHxS2aaxFjgNuEtE/hJ3ZMYYYw4YXgoNVHUVcDxwmIi8ANRPaVQ1SNDrRS1+f1n8/gly\n7InwUmiEns/4SVVHA/NwHvAzxhhTw3gaRiTdWZuGMcbEJ2XzaYjIccA4nJn7QserqnaONzNjjDHB\n5qV6agrwd+A44Bh36ZXKoGqSoNeLWvz+svj9E+TYE+Fl7Kkt7hhRxhhjajgvz2ncBWQCLwJ7QttV\n9aPUhuadtWkYY0x8qtqm4aXQKCDKLHuqekK8maWKFRrGGBOflD3cp6p5qnpC5FK1ME2koNeLWvz+\nsvj9E+TYE+FlEqbWIjJFRF5304eJyAWpD80YY0y68VI99TrwOHCTqh4hIrWBJar6y4QzF8kH7sdp\nM5kcOT+4iAzHmTVQgO3Apar6aZTzWPWUMcbEIZVjTzVX1elAKYCqFgMl8WYUSUQygQeBfOAwYJiI\ndI847FvgeHfCpwmAjaxrjDE+8lJo7BCRZqGEiPQBtiYh717AClUtdAuiZ4Ezwg9Q1QWqGsprIdA+\nCfmmlaDXi1r8/rL4/RPk2BPh5TmNq4FXgM4i8h7QAjgnCXm3A1aHpdcAvSs4/gLgtSTka4wxpoo8\njT0lIrWAQ3DaFr5y7wwSy1jkbCBfVS900yOA3qo6NsqxJwAPAf1UdXOU/Tpq1Chyc3MByM7OpmfP\nnuTl5QH7fhFY2tKWtnRNTYfWCwsLAZg6dWrKntOoD/wRZxgRBd4BHlHVn+LNLOK8fYDxqprvpm8A\n9kZpDD8C58HCfFVdEeNc1hBujDFxSGVD+JM4DdUTcRqufwE8FW9GUSwCuolIrojUAYYAL4cfICId\ncQqMEbEKjKAL/xUQRBa/vyx+/wQ59kR4adP4haoeFpZ+S0S+TDRjVS0RkcuBOThdbqeo6lIRudjd\nPwn4K5ADPCIiAMWqaoMlGmOMT7xUT00DHlLVBW66D3CZqo6shvg8seopY4yJT9Ln0xCRz8KOeVdE\nVuO0aXQEvqpSlMYYYwKtojaN093lVKAzMADIc9fzUx5ZDRH0elGL318Wv3+CHHsiYt5pqGphNcZh\njDEmAA7oOcLdxnNjqsWB8H/J1BwpmyM86Ow/sqkO9gPF1BRehkZv5A4uiIgcIiKD3JFujTE+C3q9\nepDjD3LsifDycN/bQF0RaYfzTMVI4IlUBmWMMSY9eXlOY4mqHikiY4H6qnqPiHyiqj2qJ8TKVdSm\nYdVTpjrYZ80ETSqHEUFE+gLDgVfjeZ0xxpgDi5cv/z8BNwAvqeoXItIFmJfasExVFRYWkpGRwd69\newE47bTTeOopZ6iwJ554gv79+8d1vvDX++XOO+/kwgsv9DWGdBX0evUgxx/k2BNRae8pVZ0PzBeR\nhm76G+CKVAd2oMvNzeWHH34gMzOzbNuYMWOYOHFiUvN57bXEpiBJ9PVeFRYW0rlzZ0pKSsjIKP9b\n5oYbbqiWGIwxlau00BCRY4HJQBbQQUR6Ahep6h9THdyBTESYNWsWJ554ot+hRBWqn7eupOktNGdC\nUAU5/iDHnggv1VP34wwbUgSgqh/jDCliUmTv3r1cc801tGjRgi5duvDQQw+Vq3LKzc1l7ty5ZceP\nHz+ekSOjjx+Zl5fHlClTytKqytixY8nOzqZ79+689dZb5Y69+eab6devH40aNeLbb78t9/rIfCKr\nwvLy8rjlllvo168fWVlZDBo0iKKiIoYPH06TJk3o1asXq1ativt6hOcbyvPJJ5+kU6dOtGjRgjvu\nuKPc+7vrrrvo2rUrzZs3Z8iQIWzevN+8XcaYKvLUoK2q30VsKklBLDVOrN42jz32GK+++ioff/wx\nixYt4oUXXij3i19E9kvHEnnswoUL6dq1Kxs3buTWW2/lrLPOYsuWLWX7p02bxuTJk9m+fTudOnUq\n93ovdx3Tp09n2rRprF27lm+++Ya+fftywQUXsGnTJrp3786tt95a6TmivYdI7777LsuXL2fu3Lnc\ndtttfPWVM4bmxIkTefnll3n77bdZv349OTk5XHbZZXHnGRRBr1cPcvxBjj0RXgqN70SkH4CI1BGR\na4ClqQ2reogkZ6kKVeXMM88kJyenbAn9on/uuef485//TLt27cjJyeHGG2+ssDtnPF09W7ZsyZVX\nXklmZiaDBw/mkEMOYdasWe71EEaPHk337t3JyMigVq3ytZceumczZswYDjroIBo3bsypp57KwQcf\nzIknnkhmZibnnnsuS5Ys8RxrRfmOGzeOunXrcsQRR9CjRw8++eQTAB599FFuv/122rZtS+3atRk3\nbhwvvPBC2d2QMSYxXoYRuRT4J9AOWAu8ARwQP9387FYvIsycOTNqm8b69evp0KFDWbpjx45Jy7dd\nu3bl0p06dWL9+vVl6fB8q6JVq1Zl6/Xq1aNly5bl0jt27Ejo/CGtW7cuW2/QoEHZeVetWsXvfve7\nco3ptWovjkWgAAAdIklEQVTV4vvvv6dNmzZJyTudBL1ePcjxBzn2RFR6p6GqP6rqearaUlVbqOpw\nVd2YjMxFJF9ElonI1yJyXZT9h4rIAhH5SUSuTkaeQdCmTRu++25fjWD4OkDDhg3ZuXNnWXrDhg2e\nz7127dpy6VWrVtG2bduydEVVUI0aNWLXrl2e801WI3o85+nYsSOvv/46mzdvLlt27dp1QBYYxvgh\nZqEhIg9UsCTcL9Qdz+pBnEb2w4BhItI94rCNwFjg3kTzS0exqnsGDx7MxIkTWbt2LZs3b+auu+4q\n98XZs2dPnn32WUpKSli0aBEzZszw/MX6ww8/MHHiRIqLi3n++edZtmwZp512WqUxhfJ9++23Wb16\nNVu3buXOO++s8D1V5Qnpn376qdyiqnGd55JLLuHGG28sK2h//PFHXn755UpeFVxBr1cPcvxBjj0R\nFVVPLcaZqQ8g8hspGRU7vYAVoXk7RORZ4AzC2ktU9UfgRxH5TRLySzunn356uec0Bg4cyIwZM7jw\nwgtZvnw5PXr0oEmTJlx99dXMm7fvecoJEyYwbNgwcnJyGDBgAMOHD2fTpk1l+2MVICJCnz59+Prr\nr2nRogWtW7dmxowZ5OTkVPpagJNPPpkhQ4ZwxBFH0KJFC/7yl7+UtYdEe31kI3xl5wfnbib82Dfe\neCOuhv8rr7wSVWXgwIGsW7eOli1bMnToUAYNGlRhvsYYbzzPpyEiWYCqalIqpUXkHOAUVb3QTY8A\neqvq2CjHjgN2qOp9Mc51QI89VdGDbyY9HCifNVNzpGw+DRE5HHgSaOamfwRGqerncUdZXlL/h40e\nPZrc3FwAsrOz6dmzZzJPb4xnoWqLUEOppS2dDunQemFhIYnwMsrtAuBGVZ3npvOAO1T12IQyFukD\njFfVfDd9A7BXVe+OcmyNv9Po0qULxcXFdqeRpvz6rBUUFAS6F0+Q4w9y7JDaUW4bhAoMAFUtABrG\nm1EUi4BuIpIrInWAIUCsFssaPZZFbm4upaWlVmAYY3zn5U7jvziN4k/hfHkPB45W1d8lnLnIqTjD\nlGQCU1T1ThG5GEBVJ4lIa+BDoDGwF9gOHBbZrnKg32mY9GefNRM0Vb3T8FJoNAVuBfq5m97BqVZK\nmwF9rNAwfrPPmgmalFVPqeomVR2rqke5y5XpVGAYU5MF/VmBIMcf5NgT4aX31DHAjUBu2PGqqkek\nMC5jjDFpyEv11HLgGuBznHYFAEIP5aUDq54yfrPPmgmaVPae+lFVX1bVb1W1MLTEH6KpiksvvZTb\nb7896efNyMjg22+/Tfp5051NHWtMYrwUGreKyBQRGSYiZ7vLWSmP7ACXm5tL3bp12bix/NiPRx55\nJBkZGWVjJz3yyCPcfPPNVcojLy+P+vXrk5WVVbYsXLgw4di9GD16NHXr1iUrK4umTZty0kkn8cUX\nX3h6beTkTvGq6PU33HAD//rXv6p03nQU9Hr1IMcf5NgT4aXQGAX0wBlY8Lfucnoqg6oJRITOnTvz\nzDPPlG377LPP2L17d1JHh33ooYfYvn172dK7d++knNtL3tdddx3bt29n3bp1dOzYkTFjxsR1Dqvu\nMSb9eCk0fgUco6qjVHVMaEl1YDXBiBEjePLJJ8vSU6dO5fe//325L8vRo0dzyy23AM4vm/bt2/P3\nv/+dVq1a0bZtW5544omE49i6dSu///3vadmyJbm5ufztb38ri6FTp0589NFHAPznP/8hIyODpUud\nMSWnTJnC735X+eM69erV49xzzy13p/Hqq69y5JFH0qRJEzp27FhuRr/jjz8ecIaDCb87+ve//81h\nhx1G06ZNyc/P32/IeC8OtKljg/xEMgQ7/iDHnggvhcZ7OEOXmyTr06cP27ZtY9myZZSWljJ9+nRG\njBhR7pjIEV6///57tm3bxrp165gyZQqXXXYZW7dujZmHl1/rY8eOZfv27axcuZL58+fz5JNP8vjj\njwPOf4zQbfj8+fPp0qUL8+fPL0tX9B8nlPfOnTt55plnyt3lNGrUiGnTprF161ZeffVVHnnkEWbO\nnAnAO++8AziFWejuaObMmdx555289NJLFBUV0b9/f4YNG1bpe4tkU8cak6DQfAWxFmAZUAwsBz5z\nl08re111Ls7b2F+s7WX7x5OUpSpyc3P1f//7n95+++16ww036OzZs3XgwIFaUlKiIqKrVq1SVdXR\no0frzTffrKqq8+bN0/r162tpaWnZeVq2bKkLFy6MmseAAQO0QYMGmp2drdnZ2Xr00UeX7RMR/eab\nb7SkpETr1KmjS5cuLds3adIkzcvLU1XVKVOm6KBBg1RVtXv37jplyhQdOnSoqqp26tRJlyxZEjXv\nUaNGab169TQ7O1szMjK0c+fO+uOPP8a8HldeeaX++c9/VlXVlStXqoiUe5/5+fk6ZcqUsnRpaak2\naNBAv/vuu/3OFe31IePGjdMRI0aUO27t2rVl+3v16qXTp09XVdVDDz1U586dW7Zv3bp1Wrt27ajn\nreyzlirz5s3zJd9kCXL8QY5dtewzG/f3rZfpXvNTUlqlAR3nb525iDBy5Ej69+/PypUr96uaiqZZ\ns2blxqAKn+o02vkfeOABzj///JjnKyoqori4mE6dOpVt69ixY9kMf8cffzzXXHMNGzZsoLS0lHPP\nPZfx48ezatUqtm7dGnM0YRHh2muv5bbbbmP16tWccsopPPnkk1x11VUALFy4kOuvv54vvviCn3/+\nmT179jB48OCYca5atYorr7ySq68uP4Hj2rVrE56i1qaONcY7L0+EF0ZbqiG2GqFjx4507tyZ2bNn\nc9ZZ0TulJathPJrmzZtTu3btcsMlf/fdd7Rv3x6Arl270qBBAx544AEGDBhAVlYWrVu35rHHHqN/\n//4VnjtUAHbo0IGJEycyYcIEtm/fDsB5553HmWeeyZo1a9iyZQuXXHJJWW+naO+3Y8eOPPbYY+Wm\ncd25cyd9+vSJ6/0eaFPHBr1ePcjxBzn2RNiwqWlgypQpvPXWW9SvX3+/fbqvCq5KKnttZmYmgwcP\n5qabbmLHjh2sWrWKf/zjH+XaVgYMGMCDDz7IgAEDAOc/S3jaS74nn3wyXbt25eGHHwZgx44d5OTk\nUKdOHT744AOefvrpsi/0Fi1akJGRwTfffFP2+ksuuYQ77riDL7/8EnDaO55//vkK35tNHWtM8lmh\nkQY6d+7MUUcdVZauaMrUeO86Kpr6NeSBBx6gYcOGdO7cmf79+zN8+PBy3WMHDBjAjh07yno1RaZj\nnT8y72uvvbZsfvKHH36Yv/71rzRu3JgJEyYwZMiQsuMaNGjATTfdRL9+/cjJyeGDDz7gzDPP5Lrr\nrmPo0KE0adKEww8/nDlz5lT43hs1akSDBg1o0KABDRs25K233op76thBgwYxcOBAGjduTN++ffng\ngw8qzLO6Bf1ZgSDHH+TYE+F5utd0ZsOIGL/ZJExVE+T4gxw7pHBo9CCwQsP4zT5rJmhSOfaUMcYY\nA/hcaIhIvogsE5GvReS6GMdMdPd/IiJHVneMxqSzoNerBzn+IMeeCN8KDRHJBB7EeQ7kMGCYiHSP\nOOY0oKuqdgMuAh6p9kCNMcaU8a1NQ0T6AuNUNd9NXw+gqneFHfMoME9Vp7vpZcAAVf0+4lzWpmF8\nZZ81EzRBbNNoB6wOS69xt1V2TPsUx2WMMSYGL8OIpIrXn2WRJWHU140ePZrc3FzAGR011vAWxqRa\nqK471B0zlenwevXqyM/iZ7+Y0yUeL/EWFBSUG/2hKvysnuoDjA+rnroB2Kuqd4cd8yhQoKrPummr\nnjJpyZ7TqJogxx/k2CGY1VOLgG4ikisidYAhQOQYDS8Dv4eyQmZLZIFhUuedd97h0EMPrdY8v/vu\nO7Kysqyw9yjIX1oQ7PiDHHsifCs0VLUEuByYA3wJTFfVpSJysYhc7B7zGvCtiKwAJgF/9CveVHji\niSc4/PDDadiwIW3atOGPf/xjhXNjpFrkvOH9+/dn2bJlKckrLy+PKVOm7Le9Y8eObN++PaWDNBpj\nqs7X5zRUdbaqHqKqXVX1TnfbJFWdFHbM5e7+Hqr6kX/RJtd9993H9ddfz3333ce2bdt4//33WbVq\nFb/+9a8pLi5Oen6lpaWejquuX/jRxqYy8Qv6swJBjj/IsSfCngj3wbZt2xg/fjwPPvggAwcOJDMz\nk06dOvHcc89RWFjItGnTAGdq0nPOOYehQ4fSuHFjjj76aD799NOy86xbt46zzz6bli1b0rlzZx54\n4IGyfaHXjhw5kiZNmjB16lQ+/PBD+vbtS05ODm3btmXs2LFlBVRo8MEePXqQlZXF888/T0FBQbm5\nKnJzc7nvvvvo0aMH2dnZDB06lD179pTtv+eee2jbti3t27dn8uTJ+925eBGagjU0THpeXh5//etf\nOe6442jcuDGnnHIKGzduLDv+/fff59hjjyUnJ4eePXuWzSpojEmRqszclG4LVZy5zy+zZ8/WWrVq\nRZ0BbtSoUTps2DBVdWaZq127ts6YMUNLSkr03nvv1YMOOkhLSkq0tLRUjzrqKJ0wYYIWFxfrt99+\nq507d9Y5c+aUe+3MmTNVVXX37t26ePFiXbhwoZaWlmphYaF2795d77///rK8Q7P5hcybN0/bt29f\nls7NzdXevXvr+vXrddOmTdq9e3d99NFHy95T69at9csvv9Rdu3bp8OHDNSMjo9z5wuXl5ZWbiS8k\ncta9AQMGaNeuXfXrr7/W3bt3a15enl5//fWqqrpmzRpt1qyZzp49W1VV33zzTW3WrFmFMwSmSrp+\n1oyJhSrO3Fez7zREkrPEqaioiObNm5ebES6kdevWFBUVlaV/9atfcdZZZ5GZmclVV13FTz/9xIIF\nC/jwww8pKiri5ptvplatWhx00EH84Q9/4Nlnny177bHHHsugQYMAqFevHkcddRS9evUiIyODTp06\ncdFFF8X9y/yKK66gdevW5OTkcPrpp/Pxxx8D8Nxzz3H++efTvXt36tevz6233pqUqi4RYcyYMXTt\n2pV69eoxePDgsjynTZvGaaedRn6+M7nkySefzK9+9Stee+21hPM1xkRXswsN1eQscWrevDlFRUVl\nVTDh1q9fT4sWLcrSoRn0wPkCbd++PevWreO7775j3bp15OTklC133nknP/zwQ9TXAixfvpzf/va3\ntGnThiZNmnDTTTeVq+rxInxq1Pr167Nz586yuMOrsiLzTkRknuHTsT7//PPlrsG7777Lhg0bkpZ3\nugt6vXqQ4w9y7Imo2YWGT/r27UvdunWZMWNGue07duzg9ddf56STTirbtnr1vgfi9+7dy5o1a2jX\nrh0dOnTgoIMOKjcV6bZt25g1axYQvaH50ksv5bDDDmPFihVs3bqVv/3tb1ELrqpo06ZNuVjD11Ol\nY8eOjBw5stw12L59O3/5y19SnrcxNZUVGj5o0qQJ48aNY+zYscyZM4fi4mIKCwsZPHgwHTp0YOTI\nkWXHLl68mJdeeomSkhLuv/9+6tWrR58+fTjmmGPIysrinnvuYffu3ZSWlvL555+zaNEiIHovqB07\ndpCVlUWDBg1YtmwZjzxSfvzHVq1alZti1YtQPoMHD+bxxx9n2bJl7Nq1iwkTJlT62uLi4nLTsZaU\nlFSYR6QRI0bwyiuv8MYbb1BaWspPP/1EQUEBa9eujes9BFnQnxUIcvxBjj0RVmj45Nprr+WOO+7g\nmmuuoUmTJvTp04dOnToxd+5cateuDTh3C2eccQbTp0+nadOm/Oc//+HFF18kMzOTzMxMZs2axccf\nf0znzp1p0aIFF110Edu2bSt7beSdxr333svTTz9N48aNueiiixg6dGi5Y8aPH8+oUaPIycnhhRde\nqLRbbPj+/Px8rrjiCk444QQOPvhg+vbtC0DdunVjvv7SSy8tm461QYMGnH/++VHzjDX9bfv27Zk5\ncyZ33HEHLVu2pGPHjtx3331Ju3syxuzPZu5LY7feeisrVqzgqaee8juUuC1dupTDDz+cn3/+OWqD\n/4HGhhGpmiDHH+TYIZjDiJhKBK3Ae+mll9izZw+bN2/muuuuY9CgQTWiwDCmJrH/0WksaE9NP/bY\nY7Rq1YquXbtSu3bt/dpMTPIF+ZcuBDv+IMeeCKueMiYJ7LNmgsaqp4ypgYL+rECQ4w9y7ImwQsMY\nY4xnVj1lTBLYZ80ETVWrp/yc7rVaBKkh2Rhj0p0v1VMi0lRE3hSR5SLyhohkxzju3yLyvYh8VpV8\nqjKCY3Uv8+bN8z0Giz855/JD0OvVgxx/kGNPhF9tGtcDb6rqwcBcNx3N40B+tUXlg9CIrUFl8fvL\n4vdPkGNPhF+FxiBgqrs+FTgz2kGq+g6wubqC8sOWLVv8DiEhFr+/LH7/BDn2RPhVaLRS1e/d9e+B\nVj7FYYwxJg4pawgXkTeB1lF23RSeUHVmjEtVHOmusLDQ7xASYvH7y+L3T5BjT4QvXW5FZBmQp6ob\nRKQNME9VD41xbC7wiqoeXsH5amyhY4wxVaUB6nL7MjAKuNv997+JnKwqb9wYY0z8/GrTuAv4tYgs\nB05004hIWxF5NXSQiDwDvAccLCKrRWSML9EaY4wBDpAnwo0xxlSPwIw9JSL5IrJMRL4WketiHDPR\n3f+JiBxZ3TFWpLL4RSRPRLaKyBJ3udmPOKPx8pBlml/7CuNP52sPICIdRGSeiHwhIp+LyBUxjku7\nv4GX2NP5+otIPRFZKCIfi8iXInJnjOPS7tqDt/jjvv5+P5Hr8UnbTGAFkAvUBj4Gukcccxrwmrve\nG3jf77jjjD8PeNnvWGPE3x84Evgsxv60vfYe40/ba+/G1xro6a43Ar4KyuffY+zpfv0buP/WAt4H\njgvCtY8j/riuf1DuNHoBK1S1UFWLgWeBMyKOKXtgUFUXAtkiki7Pf3iJHyAtG/S18ocs0/nae4kf\n0vTaA6jqBlX92F3fASwF2kYclpZ/A4+xQ3pf/13uah2cH4CbIg5Jy2sf4iF+iOP6B6XQaAesDkuv\ncbdVdkz7FMfllZf4FTjWvb19TUQOq7boEpfO196LwFx7twv6kcDCiF1p/zeoIPa0vv4ikiEiH+M8\niDxPVb+MOCStr72H+OO6/kEZ5dZra31kaZkurfxe4vgI6KCqu0TkVJxuyAenNqykStdr70Ugrr2I\nNAJeAK50f7Xvd0hEOm3+BpXEntbXX1X3Aj1FpAkwR0TyVLUg4rC0vfYe4o/r+gflTmMt0CEs3QGn\nNK/omPbutnRQafyquj10G6mqs4HaItK0+kJMSDpf+0oF4dqLSG1gBjBNVaM915S2f4PKYg/C9QdQ\n1a3Aq8CvInal7bUPFyv+eK9/UAqNRUA3EckVkTrAEJwHBMO9DPweQET6AFt03/hWfqs0fhFpJeJM\n/iEivXC6Q0ere0xH6XztK5Xu196NbQrwpareH+OwtPwbeIk9na+/iDQXd+oGEakP/BpYEnFYWl57\n8BZ/vNc/ENVTqloiIpcDc3Aacqao6lIRudjdP0lVXxOR00RkBbATSJsHAb3ED5wDXCoiJcAuYKhv\nAUcQ5yHLAUBzEVkNjMPpBZb21x4qj580vvaufsAI4FMRCf2HvxHoCGn/N6g0dtL7+rcBpopIBs6P\n7KdUdW5QvnvwED9xXn97uM8YY4xnQameMsYYkwas0DDGGOOZFRrGGGM8s0LDGGOMZ1ZoGGNMwIiH\nQUTDjv172GCEX4lIZUPqVHw+6z1ljDHBIiL9gR3Ak1rBrKZRXnc5zgCSf6hq3nanYZJOREaLyAMp\nPP8V7jDPT1VnvqkkIn1E5LEkn3O8iFydzHPGmX+0oU68vvZ0cacQ8Pt9pKNog3CKSBcRmS0ii0Tk\nbRE5JMpLzwOeSSTvQDzcZwIn1bevlwInqeq6as43lU4FZif5nH5fjyrnr6qvAK8kep4a5jHgYlVd\nISK9gYeBk0I7RaQTzvQMbyWSid1pmP24w50sE5HH3TrQ/4jIQBF5V0SWi8gx7nFNReS/7uiYC0Rk\nv9tkEWkhIi+IyAfucqy7fUBYPetH4gxoF/naq0TkM3e50t32KNAZeF1E/hQl/NCkP8tF5K9h5xoh\nzmQ0S0TkUfcJWURkh4jcLs4kNQtEpKW7fUnYsktE+otIQ7cueaEb8yD32NEi8qL7K2+5iNwdlu9A\nEXlPRBaLyHMi0jDGZT8R+F/E+88TkfnuNf5GRO4SkZHudfxURDqH/b3ecv8O/xORDpEn9/Ir1D1n\nY3FsFJGR7vYnReRkEenkvnaxu/R197dxty9x/1b9ws6537WNyDPqZ0gCfNfoB/f/T1/geXGevH8U\nZy6TcEOB5zXRNonqnhDElvRfcH6NFAO/wBm9cxHO0CfgzB3wkrv+AHCLu34CsMRdHw084K4/DfRz\n1zvijEEEzng9fd31BkBmRAxHA58C9YGGwOdAD3ffSqBplLhHA+uAHKAe8Jl7nu5ufpnucQ8DI931\nvcBv3PW7gZsiznk6MB/nrvwOYLi7PRtnQqEGbr7fAFlAXaAQZ7js5u5r67uvuS50vSLyaA68FWV7\nHk4VRCucuRDWAuPdfVcA/3DXXwl7P2PC/j7jgKvc9blAV3e9NzA3Sn6P4Ewo9EvgA2CSu325+3eo\nD9R1t3UDPnTXrwZudNczgEZerm0cn6FxwNV+/79ItwXn/+ln7npjYF0lx38E9Ek0X6ueMrGsVNUv\nAETkC/b9Cv4c58MKzrhCZwGo6jwRaSYiWRHnORnoLlI2cnSW+2v7XeAfIvIf4EVVjRwV9Dh3+243\nhheB44FPKon7DVXdHPaa44BSnMJjkRtHfWCDe/zPqvqqu74YZ0A33Nd3A+4B8tQZP2wgcLqIXOMe\nUhenIFScL+Ht7uu+dK9RDnAY8J6bbx3gvSgxD8QZlyyaD9Ud/E6csY1Cx32O8yUL0Ac4012f5sZc\nxr3ex+L8Cg1trhMlr3dwrvEqnALkIhFpC2xW1d3iDK39oIj0wLmm3dzXfQD8W5zRbP+rqqG/Ucxr\nG8bLZ8hUQlW3ichKETlHVV8Q5w99uKp+CiAihwI5qvp+onlZoWFi2RO2vhf4OWw9/HNT2TwCAvRW\n1Z8jtt8tIrOA3wDvisgpqvpVxHnCzy1Rzh0pWt6hbVNV9cYorykOWy97b+7t/nTgD1p+xNKzVPXr\ncpk49cfh16uUfdfoTVU9r5K484H7YuyL/DvsCVuv6O8QLgPni7+yuavfBi7HuVO6CfgdzmB2b7v7\n/wysV9WRIpIJ/AROo6w4vXl+CzwhIn9X1aeIcW2jSNu5KNKV7D8I51+B4cAj4szxXRunwftT9yVD\nSLABPMTaNEwi3sH5oCIiecCPuv8EO2/gVKXgHtfT/beLqn6hqvcAHwKRdezvAGeKSH33l/KZ7raK\nCPBrEckRZxjoM4D/w6maOUdEWrh5NxWRjpWc69/A46r6bti2ORHvJfQlHO0LW3HmY+4nIl3c4xu6\ndy/7AnZ+ER4R9uu8Kt5j38ikw9n3JS843eq3AytF5JxQniJyxH4Bq67BqSrrqqorca7dNWHna8y+\nO7Tf44zYjHstf1TVyTjDoFdWOIXz8hlK26lg/aKqw1S1rarWUdUOqvq4OtNJn6qqPVX1F6p6e9jx\nt8b40RQ3KzRMLJG/9jTK+njgaBH5BKe+f1TY/tAxVwC/chs6vwAucrdf6TaafoJzF1Ou55CqLgGe\nwKn6eB/4V9gXa6xfouoePwOnGusFVf1IVZcCNwNvuPm9wb5Gwsj3pe6X4NnA+bKvMfwoYALOBDWf\nisjnwK1R3m/4eyjCqZt/xs33PfYvHI9m//kZysXjYd9YYIybx3DgyijHDAcuEGfaz89x2qaieR+n\nDQOcQqOt+y84bUGj3HMcgvOcADjVZB+LyEfAucA/w/Kv7L2Mp/LPUEXXwVQze7jPGB+JyE3A16r6\nnN+xGOOFFRrGGGM8s+opY4wxnlmhYYwxxjMrNIwxxnhmhYYxxhjPrNAwxhjjmRUaxhhjPLNCwxhj\njGf/H4+Djc3FFZ59AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7bc4668>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Steam circulation rate is 6.81e-04 kmol/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.3: Page 292"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.3\n",
+ "# Page: 292\n",
+ "\n",
+ "print'Illustration 8.3 - Page: 292\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "# Since tower is a tray device:\n",
+ "# Following changes in notation is made:\n",
+ "# L1 to LNp\n",
+ "# L2 to L0\n",
+ "# X1 to XNp\n",
+ "# X2 to X0\n",
+ "# G1 to GNpPlus1\n",
+ "# G2 to G1\n",
+ "# Y1 to YNpPlus1\n",
+ "# Y2 to Y1\n",
+ "# x1 to xNp\n",
+ "# x2 to x0\n",
+ "# y1 to yNpPlus1\n",
+ "# y2 to y1\n",
+ "# From Illustration 8.2:\n",
+ "yNpPlus1 = 0.02;\n",
+ "Y1 = 0.00102;\n",
+ "y1 = Y1/(1+Y1);\n",
+ "GNpPlus1 = 0.01075;# [kmol/s]\n",
+ "x0 = 0.005;\n",
+ "m = 0.125;# [m = y_star/x]\n",
+ "Ls = 1.787*10**(-3);# [kmol/s]\n",
+ "Gs = 0.01051;# [kmol/s]\n",
+ "XNp = 0.1190;\n",
+ "LNp = Ls*(1+XNp);# [kmol/s]\n",
+ "ANp = LNp/(m*GNpPlus1);\n",
+ "X0 = x0/(1-x0);\n",
+ "L0 = Ls*(1+X0);# [kmol/s]\n",
+ "G1 = Gs*(1+Y1);# [kmol/s]\n",
+ "A1 = L0/(m*G1);\n",
+ "A = (ANp*A1)**0.5;\n",
+ "# From Eqn. 5.55:\n",
+ "Np = (math.log((yNpPlus1-(m*x0))/(y1-(m*x0))*(1-(1/A))+(1/A)))/math.log(A);\n",
+ "print\"Absorber\\n\"\n",
+ "print\"From Analytical Method, no. of theoretical trays required is \\n\",round(Np,4)\n",
+ "# From Fig. 8.13 (Pg292):\n",
+ "Np = 7.6;\n",
+ "print\"From Graphical Method, no. of theoretical trays required is \\n\",Np\n",
+ "\n",
+ "# Stripper\n",
+ "SNp = 1/ANp;\n",
+ "S1 = 1/A1;\n",
+ "# Due to relative nonconstancy of the stripping factor,graphical method should be used.\n",
+ "print\"Stripper\\n\"\n",
+ "# From Fig. 8.11 (Pg 289):\n",
+ "Np = 6.7;\n",
+ "print\"From Graphical Method, no. of theoretical trays required is \\n\",Np\n",
+ "# From Fig. 5.16 (Pg 129):\n",
+ "Np = 6.0;\n",
+ "print\"From Fig. 5.16, no. of theoretical trays required is \\n\",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.3 - Page: 292\n",
+ "\n",
+ "\n",
+ "Absorber\n",
+ "\n",
+ "From Analytical Method, no. of theoretical trays required is \n",
+ "7.7085\n",
+ "From Graphical Method, no. of theoretical trays required is \n",
+ "7.6\n",
+ "Stripper\n",
+ "\n",
+ "From Graphical Method, no. of theoretical trays required is \n",
+ "6.7\n",
+ "From Fig. 5.16, no. of theoretical trays required is \n",
+ "6.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 102
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.4: Page 295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.4\n",
+ "# Page: 295\n",
+ "\n",
+ "print'Illustration 8.4 - Page: 295\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "#****Data****#\n",
+ "# a = CH4 b = C5H12\n",
+ "Tempg = 27.0;# [OC]\n",
+ "Tempo = 0.0;# [base temp,OC]\n",
+ "Templ = 35.0;# [OC]\n",
+ "xa = 0.75;# [mole fraction of CH4 in gas]\n",
+ "xb = 0.25;# [mole fraction of C5H12 in gas]\n",
+ "M_Paraffin = 200.0;# [kg/kmol]\n",
+ "hb = 1.884;# [kJ/kg K]\n",
+ "#********#\n",
+ "\n",
+ "Ha = 35.59;# [kJ/kmol K]\n",
+ "Hbv = 119.75;# [kJ/kmol K]\n",
+ "Hbl = 117.53;# [kJ/kmol K]\n",
+ "Lb = 27820;# [kJ/kmol]\n",
+ "# M = [Temp (OC) m]\n",
+ "M = numpy.array([[20 ,0.575],[25 ,0.69],[30 ,0.81],[35, 0.95],[40, 1.10],[43, 1.25]]);\n",
+ "# Basis: Unit time\n",
+ "GNpPlus1 = 1.0;# [kmol]\n",
+ "yNpPlus1 = 0.25;# [kmol]\n",
+ "HgNpPlus1 = ((1-yNpPlus1)*Ha*(Tempg-Tempo))+(yNpPlus1*(Hbv*(Tempg-Tempo)+Lb));# [kJ/kmol]\n",
+ "L0 = 2.0;# [kmol]\n",
+ "x0 = 0.0;# [kmol]\n",
+ "HL0 = ((1-x0)*hb*M_Paraffin*(Templ-Tempo))+(x0*hb*(Templ-Tempo));# [kJ/kmol]\n",
+ "C5H12_absorbed = 0.98*xb;# [kmol]\n",
+ "C5H12_remained = xb-C5H12_absorbed;\n",
+ "G1 = xa+C5H12_remained;# [kmol]\n",
+ "y1 = C5H12_remained/G1;# [kmol]\n",
+ "LNp = L0+C5H12_absorbed;# [kmol]\n",
+ "xNp = C5H12_absorbed/LNp;# [kmol]\n",
+ "# Assume:\n",
+ "Temp1 = 35.6;# [OC]\n",
+ "Hg1 = ((1-y1)*Ha*(Temp1-Tempo))+(y1*(Hbv*(Temp1-Tempo)+Lb));# [kJ/kmol]\n",
+ "\n",
+ "# Eqn. 8.11:\n",
+ "Qt = 0;\n",
+ "def f30(HlNp):\n",
+ " return ((L0*HL0)+(GNpPlus1*HgNpPlus1))-((LNp*HlNp)+(G1*Hg1)+Qt)\n",
+ "HlNp = fsolve(f30,2);\n",
+ "\n",
+ "def f31(TempNp):\n",
+ " return HlNp-(((1-x0)*hb*M_Paraffin*(TempNp-Tempo))+(x0*hb*(TempNp-Tempo)))\n",
+ "TempNp = fsolve(f31,35.6);\n",
+ "# At Temp = TempNp:\n",
+ "mNp = 1.21;\n",
+ "yNp = mNp*xNp;# [kmol]\n",
+ "GNp = G1/(1-yNp);# [kmol]\n",
+ "HgNp = ((1-yNp)*Ha*(TempNp-Tempo))+(yNp*(Hbv*(TempNp-Tempo)+Lb));# [kJ/kmol]\n",
+ "# Eqn. 8.13 with n = Np-1\n",
+ "def f32(LNpMinus1):\n",
+ " return LNpMinus1+GNpPlus1-(LNp+GNp)\n",
+ "LNpMinus1 = fsolve(f32,2);# [kmol]\n",
+ "\n",
+ "# Eqn. 8.14 with n = Np-1\n",
+ "def f33(xNpMinus1):\n",
+ " return ((LNpMinus1*xNpMinus1)+(GNpPlus1*yNpPlus1))-((LNp*xNp)+(GNp*yNp))\n",
+ "xNpMinus1 = fsolve(f33,0);# [kmol]\n",
+ "\n",
+ "# Eqn. 8.15 with n = Np-1\n",
+ "def f34(HlNpMinus1):\n",
+ " return ((LNpMinus1*HlNpMinus1)+(GNpPlus1*HgNpPlus1))-((LNp*HlNp)+(GNp*HgNp))\n",
+ "HlNpMinus1 = fsolve(f34,0);# [kJ/kmol]\n",
+ "def f35(TempNpMinus1):\n",
+ " return HlNpMinus1-(((1-xNpMinus1)*hb*M_Paraffin*(TempNpMinus1-Tempo))+(xNpMinus1*hb*(TempNpMinus1-Tempo)))\n",
+ "TempNpMinus1 = fsolve(f35,42);# [OC]\n",
+ "\n",
+ "# The computation are continued upward through the tower in this manner until the gas composition falls atleast to 0.00662.\n",
+ "# Results = [Tray No.(n) Tn(OC) xn yn]\n",
+ "Results = numpy.array([[4.0 ,42.3 ,0.1091 ,0.1320],[3 ,39.0, 0.0521 ,0.0568],[2 ,36.8 ,0.0184 ,0.01875],[1 ,35.5, 0.00463 ,0.00450]]);\n",
+ "\n",
+ "plt.plot(Results[:,0],Results[:,3]);\n",
+ "plt.grid('on');\n",
+ "xlabel('Tray Number');\n",
+ "ylabel('mole fraction of C5H12 in gas');\n",
+ "plt.show();\n",
+ "plt.plot(Results[:,0],Results[:,1]);\n",
+ "plt.grid('on');\n",
+ "xlabel('Tray Number');\n",
+ "ylabel('Temperature(OC)');\n",
+ "plt.show();\n",
+ "\n",
+ "# For the required y1\n",
+ "Np = 3.75;\n",
+ "print\"The No. of trays will be \",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.4 - Page: 295\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXfP9x/HXRygqYkrt21BLq5aJJVKE0VoiIlFLI9ZQ\nmiK24qe2JtTe2JeKWmKPotUgEUEmooiEjCALQUgQUZpUrEnm8/vje0ZurlnO3Dtn7j1n3s/H4z7m\nnnO/59zPx5H5zvl+z/f7NXdHRESkOcuUOgAREUkHVRgiIhKLKgwREYlFFYaIiMSiCkNERGJRhSEi\nIrEkWmGYWXczm2Zmb5nZWQ18/lMze8HMvjaz0xv4vIOZTTKzR5OMU0REmpdYhWFmHYAbgO7AFkBf\nM/tZXrFPgZOAwY2c5hRgCqDBIiIiJZbkHUYXYIa7z3T3hcAwoHduAXf/xN0nAgvzDzaz9YAewK2A\nJRiniIjEkGSFsS4wK2d7drQvrquBM4G61gxKREQKk2SFUXAzkpn1BOa6+yR0dyEiUhaWTfDcHwDr\n52yvT7jLiGMnoJeZ9QBWADqZ2V3ufmRuITNT34aISAHcvcV/jCd5hzER2NTMKs3sB0AfYHgjZZcK\n3N3Pcff13X0j4BDgmfzKIqdsZl8DBw4seQzKT/m1x/yynJt74X9nJ3aH4e6LzGwAMAroANzm7lPN\nrH/0+RAzWwuYAHQC6szsFGALd1+Qf7qk4ixnM2fOLHUIiVJ+6Zbl/LKcWzGSbJLC3UcCI/P2Dcl5\nP4elm60aOsdYYGwiAYqISGwa6V3G+vXrV+oQEqX80i3L+WU5t2JYMe1ZpWZmnub4RURKwczwMuv0\nliLV1NSUOoREKb90y3J+Wc6tGKowREQkFjVJiYi0M2qSEhGRRKnCKGNZb0dVfumW5fyynFsxVGGI\niLQjX39d+LHqwxARaScWLYKDD4ZHHlEfhoiINKKuDo49Fr76qvBzqMIoY1lvR1V+6Zbl/LKWmzv8\n4Q/w1lvw8MOFnyfRuaRERKT0LroIxoyBmhpYaaXCz6M+DBGRDLv+erjuOhg3DtZaK+wrdByG7jBE\nRDLqnnvgiiuWriyKoT6MMpa1dtR8yi/dspxfFnJ79FE44wwYNQoqK1vnnLrDEBHJmJoa+O1v4fHH\nYYstWu+86sMQEcmQiROhRw944AHYffeGy2guKRGRdm7qVNhvP/jb3xqvLIqhCqOMZaEdtSnKL92y\nnF8ac3vvPdh7b7jsMujdO5nvUIUhIpJyH38Me+4Jp58ORx2V3PeoD0NEJMXmzQvNT717w6BB8Y4p\ntA9DFYaISEp9+WVohurcGa69FixmFaBO7wxKYztqSyi/dMtyfmnI7dtv4aCDYKON4Jpr4lcWxUi8\nwjCz7mY2zczeMrOzGvj8p2b2gpl9bWan5+xf38zGmNkbZva6mZ2cdKwiImmweDEceSQstxzcdhss\n00Z/+ifaJGVmHYDpwB7AB8AEoK+7T80pszqwIbA/8F93vzLavxawlrvXmllH4GVg/7xj1SQlIu2K\nO5xwAkybBiNHwgortPwc5dok1QWY4e4z3X0hMAxY6oEvd//E3ScCC/P2z3H32uj9AmAqsE7C8YqI\nlLXzzguD8/71r8Iqi2IkXWGsC8zK2Z4d7WsRM6sEOgPjWyWqlEhDO2oxlF+6ZTm/cs1t8GD4xz/C\nnUWnTm3//UnPJVV0e1HUHPUQcEp0p7GUfv36URnNrFVRUUFVVRXV1dXAkoue1u3a2tqyikf5Kb/2\nlF+5bZ95Zg133w0TJ1bz4x+37PiamhqGDh0K8N3vy0Ik3YfRFRjk7t2j7bOBOne/vIGyA4EF9X0Y\n0b7lgMeAke5+TQPHqA9DRDLvoYfg5JPDpIKbbVb8+cq1D2MisKmZVZrZD4A+wPBGyi4VvJkZcBsw\npaHKQkSkPXjySTjxRBgxonUqi2IkWmG4+yJgADAKmAI84O5Tzay/mfWH8DSUmc0CTgPOM7P3o2ao\nnYHDgd3NbFL06p5kvOWm/pYyq5RfumU5v3LJ7YUX4LDDwjrcVVWljqYN1sNw95HAyLx9Q3LezwHW\nb+DQ59DAQhFppyZPhv33h7vugl12KXU0gaYGEREpMzNmwG67wVVXQZ8+rX/+cu3DEBGRFvjgA9hr\nL/jTn5KpLIrRbIVhZh2jEduY2eZm1it6ekkSVi7tqElRfumW5fxKldunn4bK4ne/g/79SxJCk+Lc\nYTwLLG9m6xI6r48AhiYZlIhIe7NgQVhadd994azvzbpXHprtwzCzSe7e2cxOAlZ09yvM7FV336Zt\nQmwyNvVhiEjqff019OwZZp695ZbkZ55NtA/DzH4BHAY83pLjRESkaYsWQd++sOqqcPPNbTNNeaHi\n/OI/FTgb+Ke7v2FmPwHGJBuWQLbbiEH5pV2W82ur3Orq4LjjwkJId98NHTq0ydcWrNlxGO4+Fhib\ns/02oLUpRESK4A5nnAHTp8Po0bD88qWOqHlx+jDWAP4P2AJYMdrt7v7LhGNrlvowRCStLroI/v53\nGDsWfvSjtv3uJPsw7gWmARsDg4CZhDmiRESkADfeCEOHwqhRbV9ZFCNOhbGau98KfOvuY939aKDk\ndxftQZbbiEH5pV2W80syt3vvhcsuC81Qa6+d2NckIs5cUt9GP+eYWU/gQyBFdaKISHl49FE4/XR4\n+unwCG3axOnD2A8YR5gg8HqgE2GNi8amKW8z6sMQkbQYOxYOOggefxy6dCltLIX2YWjyQRGRhL3y\nCnTvDvffD7/6VamjSbDT28yuN7Prop/17/9sZr0LC1XiynIbMSi/tMtyfq2Z27RpYbqPIUPKo7Io\nRpxO7xWAKuBN4C1gG0Lz1G/NTCvhiYg04v33Ye+94dJL4de/LnU0xYvThzEe2DlaPQ8zW5awuNEu\nwGvu/rPEo2w8NjVJiUhZmjsXunWD44+HU08tdTRLS3IcRgXQMWe7I7BqVIF83dIvFBHJuvnzQ59F\nnz7lV1kUI06FcQUwyczuMLOhwCTgL2a2EvBUksG1d1luIwbll3ZZzq+Y3L78EvbbD3beGS64oPVi\nKgdx5pK6zcxGAl0AB8519w+ij89MMjgRkTRZuBAOPhg22ACuvba8Z54thB6rFRFpBXV1cPjhYSGk\nhx+G5cp4XdJC+zDijPQWEZEmuMOAAfDhhzByZHlXFsXQQkhlLMttxKD80i7L+bU0t/PPh/HjYfhw\nWHHF5sunVdwV9zqY2TpmtkH9K+Zx3c1smpm9ZWbfW6XWzH5qZi+Y2ddmdnpLjhURKQdXXgkPPQRP\nPAGdOpU6mmTFGYdxEjAQmAssrt/v7ls1c1wHYDqwB/ABMAHo6+5Tc8qsDmwI7A/8192vjHtsVE59\nGCJSMrffDhdeCOPGwfrrlzqa+JLswzgV2NzdP23hubsAM9x9JoCZDQN6A9/90nf3T4BPzGzflh4r\nIlJKDz8M550HNTXpqiyKEadJ6n3gfwWce11gVs727Ghf0sdmRpbbiEH5pV2W82sut9Gjwwjuxx+H\nzTZrm5jKQZw7jHeBMWb2OEvWxnB3v6qZ44ppK4p9bL9+/aisrASgoqKCqqoqqqurgSUXPa3btbW1\nZRWP8lN+7Sm/xrZXWKGaQw+F88+vYf58gPKKr6Htmpoahg4dCvDd78tCxOnDGBS9rS9ohAqjyTGM\nZtaVsG5G92j7bKDO3S9voOxAYEFOH0asY9WHISJt6bXXYI894I47oEePUkdTuMT6MNx9UEERhXW/\nNzWzSsIqfX2Avo2UzQ+8JceKiCTunXdgn33gmmvSXVkUo9E+DDO7Nvr5aAOvZlfbiyYnHACMAqYA\nD7j7VDPrb2b9o3OvZWazgNOA88zsfTPr2NixxSabNvW3lFml/NIty/nl5/bhh7DnnqGTu287/tO1\nqTuMu6KfVzbwWax2IHcfCYzM2zck5/0cwtoasY4VEWlrn30W1rQ49lj4/e9LHU1paS4pEZFGLFgQ\n+iy6dYMrrsjOZIJa01tEpBV98w307Akbbgh/+1t2KgtIdgElKZEstxGD8ku7LOf39NM1HHoorLJK\nWIs7S5VFMTRbrYhIDncYPBgWL4ZHH4UOHUodUflotEkqWrv7WGA9YKS7/zvns/Pc/aK2CbFxapIS\nkdbkDmecAc8/H0Zzd+zY/DFplEST1BBgV+BT4Dozyx3ZfWBLv0hEpNxdcgk8+WSY8iOrlUUxmqow\nurj7oe5+NdAVWNnM/mFmK7RRbO1eltuIQfmlXdbyu+mmMPvsk0/C5Mk1pQ6nLDVVYXy3ZpS7L3T3\n44BXgacB1b0ikhn33RfuLkaPhrXXLnU05aupPox7gXuiAXS5+48F/uruJV+EUH0YIlKsxx+HY46B\np5+GLbcsdTRtQ+MwRERa6Nln4aCDwtNQO+5Y6mjaTpuOwzCzPQs5Tloma23E+ZRfuqU9v1deCZXF\nffd9v7JIe25JKXTg3u2tGoWISBuaPh323RduvjlM/SHxNNWH8WgTx/3K3X+YTEjxqUlKRFrq/ffD\n3FCDBsHRR5c6mtJIYj2MXYAjgAU5+5ywdkU7au0TkayYOzdMU37qqe23sihGU01S44Ev3b0m5zXW\n3WuA6W0TXvuW9XZU5Zduactv/nzo3h1+8xs47bSmy6Ytt7bS6B1G/fKojXzWLZlwRERa31dfQa9e\nsNNOcOGFpY4mvfRYrYhk2sKF8Otfh5ln774bltEc3a3fh2FmC1iysl5930U9d/dOLf0yEZG2VFcH\n/fqF90OHqrIoVqP/+dy9o7uv7O4rA2/Xv49eqizaQNbbUZVfupV7fu5w8skwezY8+CAs14K5Kco9\nt1LRehgikkl/+hO88AI88wysuGKpo8mGWH0YZjbJ3Tu3QTwtoj4MEWnIVVfBLbfAuHGw+uqljqb8\nJNGHcSBL+i5WMbMDWNKP4e7+j4IiFRFJ0B13wLXXqrJIQlNdQPtFr57Asznve0bvJWFZb0dVfulW\njvn94x9wzjlhTYsNNij8POWYWzloahxGv2JPbmbdgWuADsCt7n55A2WuA/YBvgT6ufukaP/ZwOFA\nHfAacLS7f1NsTCKSTU89Bb//PTzxBGy+eamjyabY4zDMrBvQBXjN3Z+MUb4DYUT4HsAHwASgr7tP\nzSnTAxjg7j3MbEfgWnfvamaVwDPAz9z9GzN7ABjh7nfmfYf6MESE8eOhZ094+GHYdddSR1P+Wn16\nczN7Kef9ccD1hJX2BkZ//TenCzDD3We6+0JgGNA7r0wv4E4Adx8PVJjZmsD/gIXAD81sWeCHhEpH\nRGQpr78OvXuHcRaqLJIVa4lWoD+wp7tfAOwFHBbj3OsCs3K2Z0f7mi3j7p8BVwLvAx8C89z9qRjf\nmSlZb0dVfulWDvm9806YH+rqq8N05a2lHHIrR02Nw+hgZqsSnozq4O6fALj7F2a2KMa547YVfe+2\nyMx+ApwKVALzgQfN7DB3vze/bL9+/aisrASgoqKCqqoqqqurgSUXPa3btbW1ZRWP8lN+5ZTfww/X\ncNJJcP751fTtW/r/HuW8XVNTw9ChQwG++31ZiKbWw5jJ0lOD7OzuH5nZysA4d69q8sRmXYFB9ZMY\nRs1Ydbkd32Z2M1Dj7sOi7WnAbkA14Y7m2Gj/EUBXdz8x7zvUhyHSDn32Gey2GxxyCJx7bqmjSZ9W\n78Nw90p33yh6bezuH0UfLQZ+HePcE4FNzazSzH4A9AGG55UZDhwZJdCV0PT0MaGzvKuZrWhmRug4\nn9KizEQkkxYsCM1Pe+0VHqGVttNUp3eX6CmmfNXAqs2d2N0XAQOAUYRf9g+4+1Qz629m/aMyI4B3\nzGwGMAQ4IdpfC9xFqHQmR6e8JW5SWVF/S5lVyi/dSpHfN9/AAQfAFlvA4MFgLf4bOZ6sX7tCNdWH\ncTnQ0JpUU4A7gN2bO7m7jwRG5u0bkrc9oJFjrwCuaO47RKR9WLwYDjsMVl4ZhgxJrrKQxjXVhzHR\n3bdv5LPX3H2rRCOLQX0YIu2DOxx3HLz3Hjz2GCy/fKkjSrck1vSuaOIzzf0oIm3CHc48M4y3eOop\nVRal1NQ4jKfN7OKo0xkAM1vGzP5MGIUtCct6O6ryS7e2yu+yy2DUKBgxAjp2bJOvzPy1K1RTdxin\nA7cCb5tZbbRvG0JH9LFJByYicvPNcOutYebZVZt91EaS1uxcUtEgup8TxmJMcfe32yKwONSHIZJd\n998fmqKefRY23rjU0WRLoX0YsScfLEeqMESyacQIOPpoePpp2HLLUkeTPa0+cE9KL+vtqMov3ZLK\nb9w4OOoo+Ne/SldZZP3aFaqpgXsbtWUgIiKTJsGBB8J990HXrqWORvI1NQ7jZXffzsyecfdftnFc\nsahJSiQ73nwzzA91441hNLckJ4lxGB3M7FxgMzP7A0vPKuvuflVLv0xEpCGzZoW5oS6+WJVFOWuq\nD+MQwkSDHYCVo1fHnPeSsKy3oyq/dGut/D75BPbcE046CY45plVOWbSsX7tCNbWm9zTgMjObHE0S\nKCLSqv73v7AA0kEHwemnlzoaaU6ccRgVwECgfvHDGuBCd5+fbGjNUx+GSHp99RXss0+YefbGGzWZ\nYFtK8rHa2wlrbB8M/Ab4nDBbrYhIQRYuhD59YJ114IYbVFmkRZwK4yfuPtDd33H3t919EPCThOMS\nst+OqvzSrdD86upCX0VdHdx5JyxThqPBsn7tChXnUn1lZt3qN8xsF+DL5EISkaxyh1NOCdOU//3v\nsNxypY5IWiJOH0YVYfW7VaJd/wWOcvdXE46tWerDEEmXgQNh+HCoqYFVVmm2uCQk8bmkzGwVgHLo\n7K6nCkMkPa65Bv761zD1xxprlDqa9i3xuaTcfX45VRbtQdbbUZVfurUkv6FD4eqrYfTodFQWWb92\nhWpqpLeISNEeeQTOPhvGjIENNih1NFIMTW8uIol5+mno2xdGjoTttit1NFIvibmkck++M1CZU97d\n/a6WfpmItB8vvRQqiwcfVGWRFc32YZjZPcBfgJ2B7aPXDgnHJWS/HVX5pVtT+b3xBvTqBbffHmag\nTZusX7tCxbnD2A7YopC2HzPrDlxDmMDwVne/vIEy1wH7EMZ29HP3SdH+CsKa4vXLwx7j7i+2NAYR\naVvvvhvmh7rySujZs9TRSGuKMw7jQeAUd/+wRSc26wBMB/YAPgAmAH3dfWpOmR7AAHfvYWY7Ate6\ne9foszuBse5+u5ktC6yU/5SW+jBEystHH0G3bnDaaXDiiaWORhqTZB/G6sAUM3sJ+Cba5+7eq5nj\nugAz3H1mFOAwoDcwNadML+DO6ITjzazCzNYEvga6uftR0WeLAD3SK1LG/vtf2Htv6NdPlUVWxRmH\nMQjYH7gYGAxcGb2asy4wK2d7drSvuTLrARsBn5jZHWb2ipn9zcx+GOM7MyXr7ajKL91y8/viC9h3\nX9hjDzj33NLF1Fqyfu0K1ewdhrvXmNlahI5uB15y97kxzh23rSj/tsijuLYlNFdNMLNrgD8Cf8o/\nuF+/flRWVgJQUVFBVVUV1dXVwJKLntbt2trasopH+Sm/hvL7xS+qOeAA6NSphp49waw84tP2ku2a\nmhqGDh0K8N3vy0LE6cP4DeEpqbHRrl2BM939wWaO6woMcvfu0fbZQF1ux7eZ3QzUuPuwaHsasBuh\nEnnB3TeK9u8C/NHde+Z9h/owREpo8WI45JDw8+9/h2U1FDgVkuzDOA/Yof6uwsxWB54GmqwwgInA\npmZWCXwI9AH65pUZDgwAhkUVzDx3/zj6nllmtpm7v0noOH8jVkYi0ibc4fe/D30Xjz2myqI9iNOH\nYcAnOduf8v1mpO+JOqoHAKOAKcAD7j7VzPqbWf+ozAjgHTObAQwBTsg5xUnAvWb2KrA1cEmMWDOl\n/pYyq5Rfuh16aA2TJ8M//wkrrFDqaFpX1q9doeL8TfAEMMrM7iNUFH2AkXFO7u4j88u6+5C87QGN\nHPsqGiAoUnbc4dJL4cUXYeJEWHnlUkckbSVOH4YBBwC7EDqkx7n7P9sgtmapD0Okbf373/B//xee\nihoxIiyxKumT+HoY5UgVhkjbmDYtzDj78svw5z/D4YdDhw6ljkoK1errYZjZv6OfC8zs87zX/4oJ\nVuLJejuq8it/H30E/fuH0ds77QTTp8NRR4XKIgv5NSbLuRWj0T4Md985+tmx7cIRkXLwv//BX/4C\nN90ERx8dKopVVy11VFJqcfow7nb3I5rbVwpqkhJpXd9+C0OGwMUXw157heanDTcsdVTS2pIch7Fl\n3hctS5jBVkQywj2sW3HOObDJJjBqFGyzTamjknLTVB/GOWb2ObBVbv8FMJcw4E4SlvV2VOVXHmpq\nYMcd4fLLw93FE0/EqyzSkl8hspxbMZrqw7gEuMTMLnX3s9swJhFpA6+9Bn/8I0yZEpqgDjkElokz\nlFfarTh9GAcAz7j7vGi7Aqh290faIL4mqQ9DpOVmzYI//Qkefzw0QR1/PCy/fKmjkrbU6o/V5hhY\nX1kARO8HtfSLRKS05s0LdxRVVbD22vDWW3DqqaosJL64c0nl05CdNpD1dlTl1za++Qauugo22wz+\n8x+YPBkuuQRWWaW485ZLfknIcm7FiPOU1MtmdhVwI6HyOBF4OdGoRKRodXVw331w3nmw1VYwZgz8\n/OeljkrSLE4fRkfgfOBX0a7RwEXu/kXCsTVLfRgiDRs9Gs46C5ZbLgzA23XXUkck5URzSYkIkyaF\niuLdd8OMsgceCNbiXwuSdYl1epvZGmY22MxGmNmY6PVMYWFKS2S9HVX5tZ6ZM+GII2CffWD//cOj\nsgcdlGxlkeXrl+XcihGn0/teYBqwMeHpqJmE1fREpMQ+/RROPx222w423jg8+XTCCaEpSqS1xenD\neMXdtzWzye6+dbRvortv3yYRNh2bmqSkXfrqK7juOhg8ONxJDBwIa61V6qgkLZKcS+rb6OccM+tJ\nWJ/7Ry39IhEp3uLFcNddoYLYYQd47jnYfPNSRyXtRZwmqYui0d2nA2cAtwKnJRqVANlvR1V+8bmH\nFe6qquC222DYMHj44dJWFlm+flnOrRhN3mGYWQdgM3d/DJgHVLdFUCKyxIQJYVnUOXPgssugVy89\n+SSlEacPY4K779BG8bSI+jAky95+O8z19NxzMGhQWMho2TiNyCLNSHIuqefM7AYz62Zm25rZdma2\nbQExikgMc+fCSSeFKce33hrefBOOO06VhZRenAqjM/Bz4ELgSmBw9FMSlvV2VOW3tC++gIsugi22\nCE1OU6fCuefCSislE1+xsnz9spxbMZpaQOmU6O157r57/ivOyc2su5lNM7O3zOysRspcF33+qpl1\nzvusg5lNMrNHY2ckkjKLFsEtt4TJAV9/HcaPD4/Mrr56qSMTWVqjfRhm9qq7b2Nmk9y9c4OFmjpx\n6DCfDuwBfABMAPq6+9ScMj2AAe7ew8x2BK519645n/+BsBzsyu7eq4HvUB+GpJY7/OtfcPbZYQzF\nFVeER2VFkpbEOIwpZvYWsK6ZvZb3mdcP4mtCF2CGu8+MAhwG9Aam5pTpBdwZnXC8mVWY2Zru/rGZ\nrQf0AC4G/hA7I5EUeP758OTT/Plw5ZVhSg89+STlrtEmKXfvC3QDZgA9gf1yXt/7a78B6wKzcrZn\nR/vilrkaOBOoi/FdmZT1dtT2mN/06XDAAWE51GOPhdpa6NEjnZVFlq9flnMrRpPPXbj7HKC5O4lG\nD49ZLv+fikUjyue6+yQzq27q4H79+lFZWQlARUUFVVVVVFeHQ+ovelq3a2tryyoe5Vd4fh99BP37\n1zB2LJx7bjX33gvjx9cwblz5xKvrl93tmpoahg4dCvDd78tCJDa9uZl1BQa5e/do+2ygzt0vzylz\nM1Dj7sOi7WmEwYEnA0cAi4AVgE7Aw+5+ZN53qA9Dytrnn4f1KG68Efr1C+MqVlut1FFJe5fkOIxC\nTQQ2NbNKM/sB0AcYnldmOHAkfFfBzHP3Oe5+jruv7+4bAYcAz+RXFiLlbOHCUElsumlYm+Lll0Nf\nhSoLSbPYFYaZ/bAlJ3b3RcAAYBQwBXjA3aeaWX8z6x+VGQG8Y2YzgCHACY2driXfnRX1t5RZlcX8\n3OHBB8NYiqFDa3jiCbj7biiiFaBsZfH61ctybsVoduyome1EmHBwZWB9M6sCfufujf1y/467jwRG\n5u0bkrc9oJlzjAXGNvddIqU2dmx48mnhQrjpprAmRVVVqaMSaT1x5pJ6CTgI+Ff9eAwze8PdS76c\nvPowpBy8/jr88Y/wxhthpHbfvrBMko29IkVKtA/D3d/P27WopV8kkjWzZ8Nvfwu//CX86lcwbRoc\ndpgqC8muOP9rv29mOwOY2Q/M7AyWHnwnCcl6O2pa85s/P4zO3mYbWGONMDngaafB8ssvXS6t+cWV\n5fyynFsx4lQYxwMnEgbUfUCYjPDEJIMSKUfffAPXXBPmfPr4Y3j1Vbj0UqioKHVkIm0jsXEYbUF9\nGNIW6urCCnfnnReefrrsMthyy1JHJVK4Vp9Lysyub+I4d/eTW/plImnz1FNw1lnQoQPccQfstlup\nIxIpnaaapF4mDL6bGL3Pf0nCst6OWs751dbC3nvD8ceHJ6DGj295ZVHO+bWGLOeX5dyK0egdhrsP\nzd02s5XDbl+QdFAipfLee3D++fDkk6EJ6ne/gx/8oNRRiZSHOOMwtgLuAuonNfgEOMrdX084tmap\nD0Nay2efwSWXhGanE0+EM86ATp1KHZVIMpIch3EL8Ad338DdNwBOj/aJpN5XX4WFizbfHBYsCIPw\nLrxQlYVIQ+JUGD909zH1G+5eA5TpKsPZkvV21FLmt3gxDB0aKooXX4Rx4+Dmm2HttVvvO3T90ivL\nuRWj2bmkgHfN7HzgbsLaFYcB7yQalUhC3OGJJ8KTTyuvDPffDzvvXOqoRNIhTh/GqsAFQP0/q3GE\ndS7+m3BszVIfhrTExIlhcsAPPwxjKXr3TudKdyLFKrQPQwP3JPPefhvOPReefRYGDYJjjoFl49xb\ni2RUYp3eZraDmf3TzCaZ2WvRa3JhYUpLZL0dNen8PvkETj4ZunSBn/8c3norPCbbVpWFrl96ZTm3\nYsT5p3OkIHvXAAANxUlEQVQvcAbwOlCXbDgixfviizDn09VXh6nGp04NkwSKSHHi9GH8293LsltQ\nTVKSa9GiMI5i0KDQkX3JJbDJJqWOSqT8tPpcUjkuMLPbgKeAb6N97u7/aOmXiSTBHYYPD1OOr7EG\n/POfoRlKRFpXnHEYRwHbAN2BntFrvySDkiDr7aitkd8LL8Cuu4ZO7b/8BcaMKZ/KQtcvvbKcWzHi\n3GFsD/xUbT9STqZPh3POgZdeCiOzjzwyzCgrIsmJ04dxBzDY3d9om5DiUx9G+zNnDlxwATz4YJjv\n6ZRTYMUVSx2VSLok2YfxC6DWzN4Fvon2ubtv3dIvEynU55/D4MFwww1w1FHhDmO11Zo/TkRaT5w+\njO7ApsBehL6L/YBeSQYlQdbbUePkt3Ah3HRTWBb17bfh5ZfhqqvSUVno+qVXlnMrRrMVhrvPbOgV\n9wvMrLuZTTOzt8zsrEbKXBd9/qqZdY72rW9mY8zsDTN73cy0wl874g4PPRQG3D3yCIwYAffcA5WV\npY5MpP1KdGoQM+sATAf2AD4AJgB93X1qTpkewAB372FmOwLXuntXM1sLWMvda82sI2GVv/3zjlUf\nRgaNGxfmfPr6a7j8cthrr1JHJJItSa6HUYwuwIzormQhMAzonVemF3AngLuPByrMbE13n+PutdH+\nBcBUYJ2E45USmjIFevWCI44Iixi9/LIqC5FyknSFsS4wK2d7drSvuTLr5RYws0qgMzC+1SMsY1lv\nR63P74MP4Nhjobo6vKZNg8MPh2WS/r8zYe3l+mVRlnMrRtLTsMVtL8q/NfruuKg56iHglIbWE+/X\nrx+VUcN2RUUFVVVVVFdXA0suelq3a2tryyqe1t5+4YVa/vY3eOKJao47Dm6/vYaOHWGFFcojPl2/\n9p1flrZramoYOnQowHe/LwuRdB9GV8LaGd2j7bOBOne/PKfMzUCNuw+LtqcBu7n7x2a2HPAYMNLd\nr2ng/OrDSBH3cDcxcSKMHw+33w49eoSBd+uvX+roRNqPJMdhFGMisGnUpPQh0Afom1dmODAAGBZV\nMPOiysKA24ApDVUWUv7mzAmVQ+6rrg522AG23x6eegq22qrUUYpIXIm2Erv7IkJlMAqYAjzg7lPN\nrL+Z9Y/KjADeMbMZwBDghOjwnYHDgd2jtTgmmVn3JOMtN/W3lGnwn//AqFFw0UWw//6w3nrhkdjr\nrw9jKX77W5gwAT7+GB5/PIzW/vTTmlKHnag0Xb9CZDm/LOdWjMSXknH3kcDIvH1D8rYHNHDccyTf\nKS8FmDcvPMGUe+fw2Wew3XbhzuHQQ8Pguo020hKoIlmiJVqlSZ9/DpMmhbuD+sphzhzo3DlUDvWv\nTTZJ/1NNIu2F1vSWon35JdTWLn3n8N57sPXWS1cOP/2pZoYVSbNyHbgnRUiyHfWbb8Jdw1//GvoX\ntt4afvzjsAb2lCmw225w//2h+emFF0JfxFFHhX6J1qosst5OrPzSK8u5FSPxPgwpvYUL4fXXl75z\nmDo1TOi3/fbhqaXjjw9PLC2/fKmjFZFypSapjFm0KIyUrq8YJkwIlUVl5dLNSlVVWkdCpL1SH0Y7\nVFcHb7659J1DbS2su+7SlUPnztCxY6mjFZFyoT6MDMptR3UP60E88ACceSbsvjv86EdhpPTw4bDO\nOmHE9OzZYXGhe++F006Dbt3Kt7LIejux8kuvLOdWDPVhlCF3eP99GDs2DIabODGMe1hppSV9Dmef\nHcY9pGEhIRHJBjVJlYEPP/z+FBrLLLNkCo3ttw+Vw1prlTpSEckC9WGkxNy5368cvv12yZ1DfQWx\nzjoaJS0iyVAfRhn67DMYPRouvRQOPBA23DA8ynrVVWGQ3JFHwvPPwyefwBNPwJ//DL17h05rs+y3\noyq/dMtyflnOrRjqw2gl8+fDK68sfecwdy5su224Yzj44LDc6MYbawoNEUknNUkV4IsvwvxKuZXD\n7NmwzTZLP8662WaaQkNEyo/6MBLy1VcwefLSk++98w5sueXSlcMWW8Cyul8TkRRQH0Yr+Pbb8Pjq\nkCFw3HFhwNtqq4VpMyZPhp12grvuCvMrvfQS3HQTHHNMmIcpicoi6+2oyi/dspxflnMrRrv9m3jR\nojDJXu6dwxtvwE9+suSu4dhjQ2WgKTRERNpJk9TixWH0c26fw6uvhnWkcx9nraoKg+NERLJMfRiR\nurowhUb9xHsTJ4YO6jXXXLrPYdttoVOnEgUuIlJC7bbCeOcdX+rO4eWXYZVVlr5z2HZbWHXVUkfb\ncjU1NVRXV5c6jMQov3TLcn5Zzg0KrzBS34exyy5L7hrOOCNMobHGGqWOSkQke1J/h5Hm+EVESkGP\n1YqISKISrTDMrLuZTTOzt8zsrEbKXBd9/qqZdW7JsVmX9WfBlV+6ZTm/LOdWjMQqDDPrANwAdAe2\nAPqa2c/yyvQANnH3TYHfAX+Ne2x7UFtbW+oQEqX80i3L+WU5t2IkeYfRBZjh7jPdfSEwDOidV6YX\ncCeAu48HKsxsrZjHZt68efNKHUKilF+6ZTm/LOdWjCQrjHWBWTnbs6N9ccqsE+NYERFpQ0lWGHEf\nX9IyQY2YOXNmqUNIlPJLtyznl+XcipHYY7Vm1hUY5O7do+2zgTp3vzynzM1AjbsPi7anAbsBGzV3\nbLRfz9SKiBSg3AbuTQQ2NbNK4EOgD9A3r8xwYAAwLKpg5rn7x2b2aYxjC0pYREQKk1iF4e6LzGwA\nMAroANzm7lPNrH/0+RB3H2FmPcxsBvAFcHRTxyYVq4iINC/VI71FRKTtlP1IbzO73cw+NrPXmijT\n4OC/NGguPzOrNrP5ZjYpep3X1jEWw8zWN7MxZvaGmb1uZic3Ui6V1zBOfmm9hma2gpmNN7NaM5ti\nZpc2Ui6t167Z/NJ67XKZWYco9kcb+Tz+9XP3sn4B3YDOwGuNfN4DGBG93xF4sdQxt3J+1cDwUsdZ\nRH5rAVXR+47AdOBnWbmGMfNL7TUEfhj9XBZ4EdglK9cuZn6pvXY5OfwBuLehPFp6/cr+DsPdxwH/\nbaJIQ4P/1myL2FpDjPwgxY8eu/scd6+N3i8AphLG2eRK7TWMmR+k9Bq6+5fR2x8Q+hM/yyuS2msH\nsfKDlF47ADNbj1Ap3ErDebTo+pV9hRFDQ4P/1itRLElwYKfodnGEmW1R6oAKFT311hkYn/dRJq5h\nE/ml9hqa2TJmVgt8DIxx9yl5RVJ97WLkl9prF7kaOBOoa+TzFl2/LFQY8P2aM0s9+a8A67v7NsD1\nwCMljqcgZtYReAg4JfpL/HtF8rZTdQ2byS+119Dd69y9ivBLZFczq26gWGqvXYz8UnvtzKwnMNfd\nJ9H0XVLs65eFCuMDYP2c7fWifZng7p/X3za7+0hgOTNL1fqBZrYc8DBwj7s39A8u1dewufyycA3d\nfT7wOLB93kepvnb1Gssv5dduJ6CXmb0L3A/80szuyivTouuXhQpjOHAkfDe6fJ67f1zakFqPma1p\nZha970J4FLqhdtayFMV+GzDF3a9ppFhqr2Gc/NJ6Dc3sx2ZWEb1fEdgTmJRXLM3Xrtn80nrtANz9\nHHdf3903Ag4BnnH3I/OKtej6lf0SrWZ2P2G6kB+b2SxgILAcND34Ly2ayw84CDjezBYBXxIufJrs\nDBwOTDaz+n+M5wAbQCauYbP5kd5ruDZwp5ktQ/jj8m53f9piDL5NiWbzI73XriEOUMz108A9ERGJ\nJQtNUiIi0gZUYYiISCyqMEREJBZVGCIiEosqDBERiUUVhoiIxKIKQzLLzFbLmZb6IzObHb1/xcyK\nHoMUTX1dF03BUL/vMTPbrdhzR+eamaJRxdIOlP3APZFCufunhMkAMbOBwOfuflX952bWwd0XF/k1\ns4Fzgcfqv5bWm0vJKXCmVDNb1t0XtVIcIoDuMKR9MTMbamY3m9mLwOVmtoOZPR/ddfzbzDaLCo41\ns21yDnzOzLbKO58DrwLzzGyPBr7suzsEM9vezMZE7weZ2Z1m9mxU5gAzG2xmk81sZN7dz/9F+8eb\n2U+i41c3s4fM7KXotVPOee82s+eIpqwWaU2qMKS9ccJ6Fb9w9zOAaUA3d9+WMC3LJVG524B+AFEl\nsry756+KWP/X/yVAQyuxNXWnsRGwO2E9gnuA0e6+NfAVsG9OuXnR/huA+rmqrgWudvcuhKkrbs0p\n/1PgV+5+WBPfLVIQNUlJe/SgL5kTpwK4y8w2IfyCXy7a/xBwvpmdCRwD3NHYydx9nJlhZjvH/H4H\nRrr7YjN7HVjG3UdFn70GbJhT9v7o5zDC2gYAewA/i+bEA1jZzFaKzjvc3b+JGYdIi6jCkPboy5z3\nfwaedvdfm9mGQA2EldjMbDSwP3AwsG0z57wYOB9YmLNvEUvu4lfIK/9t9D11ZpZ7TB2N/7usr+QM\n2NHdv839MKpAvsw/SKS1qElK2rtOwIfR+/yZOm8FrgNeitZLaJS7jybcrWyds3smS9ZXODBnf3Md\n2Zbzs0/0vg/wfPT+SeDk7wrn9LWIJEkVhrRHuX0LVwCXmtkrhDWdv/vM3V8B5tN4c1T+E1EXs/Ty\nlhcA15rZBMLdhjdyXH5fR265H5nZq8BJwGnR/pOB7S0sG/oG0L+Jc4m0Gk1vLtIIM1uHsM7z5qWO\nRaQc6A5DpAFmdiTwImExJBFBdxgiIhKT7jBERCQWVRgiIhKLKgwREYlFFYaIiMSiCkNERGJRhSEi\nIrH8P0wZNkRyHEDjAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7981908>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVNWZx/HvC0KAcemMkmACsdUJSUzEdomKYmjXUUYx\nEdSYiLTbuCQSA7hLDGoQcY0xJrhkGnVwiaBi3IJLIZtoRjqiojKO6DAo0SiiQhTod/44t6Fte6mu\n7lu37q3f53nqoe6tW7fe97kPdfqeU+c95u6IiEh565J0ACIikjw1BiIiosZARETUGIiICGoMREQE\nNQYiIkIRGgMz62pmC83sgWj7EjP7q5nVmdnjZtYv7hhERKR1Fvc8AzMbDewKbObuQ81sM3f/MHrt\nDGAndz8p1iBERKRVsd4ZmFlfYAhwM2AADQ1BZFPg3ThjEBGRtm0S8/mvAc4CNm+808x+BYwAVgN7\nxhyDiIi0IbY7AzM7FPibuy8kuito4O4XuPvXgFpCgyEiIgmKbczAzCYQ/vpfB/Qg3B1Mc/fjGh3z\nNeAhd/9OM+9X0SQRkQK4u7V91GfFdmfg7ue7ez933xb4IfCEux9nZl9vdNjhwMJWzpHZx0UXXZR4\nDMpN+Sm/7D0KFfeYQQMDGqK8zMy+AawHXgNOK1IMJWXp0qVJhxCbLOcGyi/tsp5foYrSGLh7DshF\nz4cX4zNFRCR/moGckJqamqRDiE2WcwPll3ZZz69QsU86K5SZeanGJiJSqswML6UBZGldLpdLOoTY\nZDk3UH5pl/X8CqXGQERE1E0kIpIl6iYSEZGCqTFISJb7LbOcGyi/tMt6foVSYyAiIhozEBHJEo0Z\niIhIwdQYJCTL/ZZZzg2UX9plPb9CqTEQERGNGYiIZInGDEREpGBqDBKS5X7LLOcGyi/tspqfO/zx\nj4W/v1iL24iISEzWrIGTToJXXin8HBozEBFJseXL4fvfh+23hz/8AXr10piBiEhZefZZ2GMPOPxw\nmDoVevYs/FxqDBKS1X5LyHZuoPzSLiv5TZ0KQ4bAb34DF1wA1u57gc+KfczAzLoCfwGWufthZnYF\ncCjwKfAacLy7fxB3HCIiWVBfDxdeCHfcAY8/DgMGdM55Yx8zMLPRwK7AZu4+1MwOBB5393ozmwjg\n7uc28z6NGYiINPLhhzBiBLz3HkybBr17f/6YkpxnYGZ9gSHAzYABuPtMd6+PDlkA9I0zBhGRLHj9\nddhrr9AAPPZY8w1BR8Q9ZnANcBZQ38LrJwAPxRxDScpKv2VzspwbKL+0S2N+s2bBwIFw8slw443Q\nvXvnf0ZsjYGZHQr8zd0XEt0VNHn9AuBTd58aVwwiIml3441w1FFw220walTHB4pbEtuYgZlNAEYA\n64AewObANHc/zsxqgJOB/d39Hy2830eOHEllZSUAFRUVVFVVUV1dDWxs3bWtbW1rO4vb69fDffdV\nM3MmXHBBjn79mj8+l8tRW1sLQGVlJePHjy9ozKAok87MbDAwNvo10cHAVcBgd3+3lfdoAFlEytJ7\n74W7gU02gTvvhIqK/N9bkgPIjRjQ8M3+G2BTYKaZLTSzG4oUQ0lpaNmzKMu5gfJLu1LP7+WXw0Sy\nAQPgT39qX0PQEUWpTeTuOSAXPf96MT5TRCRtHn4YRo6EiRPhhBOK+9mqTSQikjB3uPpquOqqUHl0\n770LP1eh3USqWioikqBPPoFTT4WFC2H+fNhmm2TiUG2ihJR6v2VHZDk3UH5pV0r5rVgB++0Hq1bB\nnDnJNQSgxkBEJBELF8Luu8MBB4SuoU03TTYejRmIiBTZPffAaafBDTfAkUd27rk1ZiAiUuLq6+GS\nS+CWW+DRR2GXXZKOaCN1EyWklPotO1uWcwPll3ZJ5ffxx3D00fDII/DMM6XVEIAaAxGR2L35Jgwa\nBL16wZNPQp8+SUf0eRozEBGJ0bx5MHw4jB4NY8bEV2iugcYMRERKTG0tnH12+HfIkKSjaZ26iRKS\n5X7ZLOcGyi/tipHf+vUwdixceinkcqXfEIDuDEREOtUHH8Axx4SZxQsWwJZbJh1RfjRmICLSSZYs\ngaFDYf/94ZproFu34sdQ6iWsRUQy7fHHwy+GzjwTrr8+mYagI9QYJCTL/bJZzg2UX9p1dn7u4cv/\nxz+Gu+6CU07p1NMXjcYMREQK9OmncMYZMHdu+AnpdtslHVHhNGYgIlKAd98N8wc23xxuvz38Wwo0\nZiAiUiSLFoWKowMHwr33lk5D0BFqDBKS5X7ZLOcGyi/tOprfjBlhDYKLL4bLLoOuXTsnrqTF3hiY\nWddo4fsHou0jzexFM1tvZiVWqklEpHnu4cv/9NPDQvXHHpt0RJ0r9jEDMxsN7Aps5u5DzeybQD0w\nGRjj7s+18D6NGYhISVizBk46CV59Fe67D7761aQjallJjhmYWV9gCHAzYADu/rK7vxrn54qIdJbl\ny2Hw4LAWwVNPlXZD0BFxdxNdA5xFuBOQRrLcL5vl3ED5pV178nv2WdhjDzj8cJg6FXr2jC+upMU2\nz8DMDgX+5u4Lzay6kHPU1NRQWVkJQEVFBVVVVVRXh1M1XNC0btfV1ZVUPNrWtrY/u/3YYzB5cjU3\n3QQVFTlmzSqt+Bq2c7kctbW1ABu+LwsR25iBmU0ARgDrgB7A5sA0dz8uev1JNGYgIiWmvh4uvBDu\nuAPuvx8GDEg6ovYpufUM3P184HwAMxsMjG1oCBqJeZkHEZH8ffghjBgB770Xlqbs3TvpiIqnmPMM\nHMDMfmBm/wvsCTxoZg8XMYaS0XCbl0VZzg2UX9q1lN/rr8Nee4UG4LHHyqshgCI1Bu4+y92HRs/v\ndfd+7t7T3fu4+yHFiEFEpCWzZoXZxCefDDfeCN27Jx1R8ak2kYiUtRtvhHHjQn2hAw9MOpqOK7kx\nAxGRUrZuHfz85zBzJsyeDf37Jx1RslSbKCFZ7pfNcm6g/NIul8vx3ntw8MFhZbKnn1ZDAGoMRKTM\nvPlmmEg2YECoMVRRkXREpUFjBiJSNh5+GEaOhIkT4YQTko4mHhozEBFpgXtYoP7KK8P6A3vvnXRE\npUfdRAnJcr9slnMD5Zc2n3wS7gJuvRXmz4e1a3NJh1SS1BiISGatWBEWolm1CubMgW22STqi0qUx\nAxHJpIUL4fvfh5oauOgi6FImf/pqzEBEJHLPPXDaaXDDDXDkkUlHkw5ttpVmVmFmh5jZaWZ2qpkd\nbGZbFCO4LMtav2xjWc4NlF8pq6+H8eNh9Gh49NHmG4I05xenFu8MzGwfwsI0lcBCYDmhyuhAYJKZ\nLQUmufuc+MMUEWndxx+HLqFly0LF0T59ko4oXVocMzCzq4HfufuSFl7vD5zq7qNjCUxjBiKSpzff\nDKuRDRgAkydDjx5JR5ScQscMNIAsIqk2bx4MHx66hsaMASvzVVIKbQxaHDMwszFmdlIz+080szPb\n+0HyWVnut8xybqD8SsmUKeEXQzffDGPH5tcQpCm/Ymrt10Q/JixA09RtwH8B18YSkYhIG9avh3PO\ngfvug1wOdtgh6YjSr7Uxg+fdvdnVP83sBXf/TqyBqZtIRJrxwQdwzDFhZvHdd8OWWyYdUWnp9G6i\ncE773Hi8mX2ZaAlLEZFiWrIE9twTttsOHnlEDUFnaq0xuIKwRnG1mW0WPfYFHgSuKk542ZXlfsss\n5wbKLymPPw6DBsGZZ8L110O3boWdp1TzS1qLYwbufquZvQNcDHw72v0iMM7d817E3sy6An8Blrn7\nYWb2z8BdwDbAUuAod19ZYPwiknHu8NvfwqWXwl13QXV10hFlU+w/LTWz0cCuwGbuPtTMJgHvuvsk\nMzsH+KK7n9vM+zRmIFLmPv0UzjgD5s6FGTNC95C0Lo4xA8xsiJk9ZWZ/jx6zzOzf2hFUX2AIcDNh\n9jLAUGBK9HwK8P32Bi0i2ffuu3DQQfDWW2EugRqCeLU2z+BkQhfRL4Htosd44CIzOyXP819DKGlR\n32jfl919RfR8BfDldsacCVnut8xybqD8imHRIth9dxg4MCxGs/nmnXfuUsivFLU2z2A0MMjd/95o\n3xNmdggwF5jc2onN7FDgb+6+0MyqmzvG3d3MWuwLqqmpobKyEoCKigqqqqqojjoMGy5oWrfr6upK\nKh5ta7tUtmfMgBEjcvz0p/CrXyUfT6lv53I5amtrATZ8XxaitXkGi939W+19rdExE4ARwDqgB7A5\nMB34LlDt7m+b2dbAk+7+zWberzEDkTLiHtYm/u1vYdq0sGi9tF8cYwarzKyqmQ/aCfiwrRO7+/nu\n3s/dtwV+CDzh7iOAGcDI6LCRwH3tDVpEsmXNGjj2WJg+HRYsUEOQhNYagzHA/Wb2SzM7zMyGmtl4\nwpf5mAI+q+HP/InAgWb2KrBftF12Gm7zsijLuYHy62zLl8PgwWEtgqeegq9+Nd7Py/r1K1SLjUG0\nTsEeQFeghvBXfBdgD3ef3Z4PcfdZ7j40ev6eux/g7v3d/SDNMRApX88+G+4CDj8cpk6Fnj2Tjqh8\nqYS1iCRi6lT42c/gpptC5VHpHHGUsH7QzI40s17NvPZPZna0mT3U3g8UkfJWXw/nnw8XXBBKTKgh\nKA2tjRkcD+wI/MXMFpnZn81sppktIpSX+BYbB4KlnbLcb5nl3ED5dcSHH8IRR8CcOWFpygHN1kWO\nV9avX6Faq030N+AXwC+i6qXbRC+94e5vFyM4EcmO11+HoUND1dG774bu3ZOOSBrLa8zAzCqBf3H3\nx6Juo67u3ubPSzsUmMYMRDJj1iz44Q/hvPNCraFyX5oyTrHUJopO/O/AH9k447gvmhsgInm68UY4\n6ii49VYYNUoNQalqszEAfgIMAlYBuPurwJfiDKocZLnfMsu5gfLL17p14cv/6qth9mw48MBOOW2H\nZf36Faq12kQNPnH3Tyxqzs1sE7TSmYi04r334OijoWtXePppqKhIOiJpS5tjBmZ2BbASOA74KXA6\n8JK7XxBrYBozEEmll1+Gww4Lj0mTYJN8/uSUTlPomEE+jUEX4CTgoGjXo8DNcX9TqzEQSZ+HH4aR\nI0PBuRNOSDqa8hTX4jabEO4CbnT34dHjJn1Ld1yW+y2znBsov+a4h7GBE08M6w+UckOQ9etXqFZv\n4Nx9nZm9YmbbuPsbxQpKRNLjk0/g1FNh4UKYPx+22abt90jpyaebaDawM/AM8HG02xsKz8UWmLqJ\nREreihVhRnGfPjBlCmy6adIRSaHdRPkM7YwrIB4RybiFC0NdoZoauOgi6JLPD9WlZLV5+dw919yj\nCLFlWpb7LbOcGyg/CCuRHXQQXHkljB+froYg69evUG3eGZjZR2ycV9Ad6AZ85O6duES1iKRBfT1c\ncgnccgs8+ijsskvSEUlnadd6BtHPTIcCe7r7ubFFhcYMRErNxx+HLqFly8Ivhvr0SToiaU5stYka\nc/d6d78POLi9HyQi6fXmm7DPPtCrFzz5pBqCLMqnUN2wRo8jzWwisKYIsWValvsts5wblF9+8+aF\nstM/+hHU1kKPHomE1Wmyfv0Klc+viQ5j45jBOmApcHhbbzKzHsAs4AuEsYb73f08M9sJ+D3wT9G5\nfhx3OWwRKcyUKXDWWaERGDIk6WgkTvnMMxjk7nOa7Nvb3ee2eXKzXu6+OprJPAcYC1wDjHb32WZ2\nPLCtu/+imfdqzEAkIevXwznnwH33wYwZsMMOSUck+YpzzOC6ZvZdn8/J3X119LQ70BV4H/i6u8+O\n9j8GDMvnXCJSHB98EIrMLVwICxaoISgXLTYGZjbQzMYAXzKz0WY2Jnr8srX3NTlHFzOrA1YAT7r7\ni8CLZtbQzXQk0K9jKaRTlvsts5wbZDu/l1+GHXfMsd128MgjsOWWSUfU+bJ8/TqitTGD7sBmhL/o\nN2u0fxUwPJ+Tu3s9UGVmWwCPmlk1cAJwnZmNA2YAn7b0/pqaGiorKwGoqKigqqqK6upqYOMFTet2\nXV1dScWj7fLevv/+HFOmwFNPVTNyJBx2WI65c0snPm23vJ3L5aitrQXY8H1ZiHzGDCrdfWnBn7Dx\nPOOANe5+ZaN9/YHb3H2PZo7XmIFIzNasgV//Gq66Co45BsaNg969k45KOiLO2kSrzexKYAegZ7TP\n3X2/NgLaCljn7ivNrCdwIDDezHq7+zvRBLYLgd+1N2gR6Zj16+H228OX/+67h5+Pfv3rSUclScqn\n7/8/gZeB7YBfEn4O+pc83rc18EQ0ZrAAeMDdHwd+ZGavAIuBZe5e2/6w06/hNi+LspwbpD+/mTNh\n111h8mS48064557PNgRpz68tWc+vUPncGWzp7jeb2Sh3nwXMMrM2GwN3XwR8rnKJu/8a+HX7QxWR\njnj+eTj7bHjttbAS2RFHgLW7M0GyKp8xg6fdfU8z+zPhZ6bLgT+6+/axBqYxA5FOsWxZ6A56+GG4\n8EI45RTo1i3pqCQucY4ZXGpmFcAY4DfA5sDP2/tBIlJcq1bB5ZfD738fGoBXXoEttkg6KilVba2B\n3BXo7+4r3X2Ru1e7+y7uPqNI8WVWlvsts5wblH5+a9fC9ddD//6wfDn89a8wYUL+DUGp59dRWc+v\nUK02Bu6+HjimSLGISAe4w/Tp8O1vwwMPhPUG/uM/oG/fpCOTNMhnzOAawoI2dxHWQDbCT0ufizUw\njRmI5G3+fBg7Fj76CK64IqxCJuWp0DGDfBqDHBurlm7g7vu298PaQ42BSNuWLIHzzgs1hC69FI49\nFrp2TToqSVJsheqicYJ9mz4KC1MaZLnfMsu5QWnk9+67MGoUDBwY5gy8+iqMHNk5DUEp5BenrOdX\nqHx+TYSZHUqYgbxhWQt3vziuoESkeWvWwLXXhvIRP/oRLF6s8hHSOfLpJppMKEOxH3ATodLoAnc/\nMdbA1E0kskHT8hGXXabyEdK8OMcMFrn7jmb2vLsPMLNNgUfcfVChweYVmBoDESCUjzjrrLD+8JVX\nwl57JR2RlLI4F7dpWO94tZl9lbD0pZbD7qAs91tmOTcoXn7PPw8HHwynnx7uCObOLU5DoOtXnvJp\nDB4wsy8CVwDPEQrV3RFnUCLlbNkyOP748PPQQw+Fl16CYcNUR0ji1WY30WcONvsC0MPdP4gvpA2f\npW4iKStNy0ecc47KR0j7xVabKFqL4HRgEGG+wWwz+527/6P9YYpIU2vXhnLSl14KhxwSykdo1rAU\nWz7dRLcSflZ6HXA98G3gtjiDKgdZ7rfMcm7QefmVavkIXb/ylM88g2+7+w6Ntp8ws5fiCkikHDQu\nH3H99SofIcnL56eltwO/dff50faewE/cfUSsgWnMQDJI5SMkbnH+tHQ3YK6ZvWFmS4F5wG5mtsjM\nnm/vB4qUozjLR4h0hnwag4MJ6x8PBqqj54cAhwFDY4ss47Lcb5nl3KB9+a1ZE2YLf/ObYXvx4nBn\n0LNnPLF1Bl2/8tTmmIG7L43mGfRrfHxbJazNrAcwC/gC0B24393PM7PdCQPR3QgT2E5392cLT0Gk\n9DQtHzF/vspHSGnLZ8zgEqAG+B+gvmF/PpVLzayXu682s02AOcBY4BJgors/amaHAGc3dy6NGUha\nqXyEJCnONZCPBrZ390/be3J3Xx097Q50Bd4H3gYaptJUAP/X3vOKlKLnnw+NwP/8D0ycCEccoVnD\nkh75jBm8CHyxkJObWRczqwNWAE+6+4vAucBVZvYmocTFeYWcO+2y3G+Z5dzg8/k1lI848EA47LD0\nl48ot+snQT53BhOAhWb2AvBJtM/dvc3BY3evB6rMbAvgUTOrBi4ERrn7vWZ2JPAH4MDm3l9TU0Nl\nZSUAFRUVVFVVUV1dDWy8oGndrqurK6l4tN3+7Y8/hrlzq5k8GQ4+OMctt8Chh5ZOfNouj+1cLkdt\nbS3Ahu/LQuQzZrAY+B3wAhvHDNzdZ7Xrg8zGESqg/sLdN4/2GbDS3T9XgUVjBlKqGpePOPhguOQS\n6Ncv6ahEgjjHDD5y9+sKCGgrYJ27r4zqGx0IXAz8t5kNjhqT/YBX23tukSS4w733wrnnwrbbhvIR\nO+2UdFQinSOfMYPZZnaZmQ00s10aHnm8b2tC6Yo6YAHwgLs/Bvw7MCnaf2m0XXYabvOyKIu5zZ8P\ngwbB+PFw8sm5TDcEWbx+jWU9v0Llc2ewC6Fa6Z5N9rf601J3XxS9t+n+vwB75BugSJKaKx8xe3bS\nUYl0vnatZ1BMGjOQJL37Llx8MUydCmPGwJlnlvasYZEGsdUmMrM+ZnaLmT0Sbe9gZicWEqRIqUtj\n+QiRzpDPmEEt8GfgK9H2EuDncQVULrLcb5nG3NavhylT4BvfgP/6rzBGcN110Lv3549NY37tofzK\nU4tjBma2ibuvA7Zy97vM7FwAd19rZuuKFqFIzBqXj7jzTpWPkPLU4piBmT3n7ruYWQ4YDsx0952j\n9Qwud/fBsQamMQOJmcpHSBbFMWbQcLIxwP3AdmY2j7Dk5aj2hyhSGrJWPkKkM7TWGPQ2s9GENQzu\nBSYBDwE3AvvHH1q2ZbnfslRzW7UKzj8/zA/YeuuwwMxPfwrdurXvPKWaX2dRfuWptXkGXYHNmtnf\nK6ZYRGLRtHxEXZ3KR4g01dqYwUJ337nI8TT+fI0ZSIc0LR8xaVJ2Zw2LNIizNpFI6sybFwaHP/oI\nrr8eDjoo6YhESltrYwYHFC2KMpTlfsskc1uyBIYPh6OPhpNPhuee6/yGIMvXDpRfuWqxMXD3vxcz\nEJGOePddGDUKBg6EXXeFV16Bmhro2jXpyETSQbWJJNXWrIFrr4WrroJjjoFf/KL5WcMi5UJjBlJW\n1q+H22+HceNg993DGEH//klHJZJe+dQmkhhkud8y7txmzgxdQZMnh/IR99xT3IYgy9cOlF+50p2B\npIbKR4jER2MGUvKWLQvdQQ89FP495ZT2zxoWKRexrWcgkpTOKh8hIm1TY5CQLPdbdjS3tWvDRLH+\n/WH58lA+YsIE2GKLzomvo7J87UD5latYxwzMrAcwC/gC0B24393PM7O7gIYhvwpgZZKlL6Q0NC4f\nUVlJphedFyk1sY8ZmFkvd19tZpsAc4Cx7j6n0etXEhqDS5u8T2MGZaRx+YgrrlD5CJFClew8A3df\nHT3tTqiE+l7Da2ZmwFHAvnHHIaVpyZKwxvCCBXDJJTBihGYNiyQh9jEDM+tiZnXACuBJd3+p0cv7\nACvc/bW44yg1We63zCe3d95Jb/mILF87UH7lqhh3BvVAlZltATxqZtXunotePgaY2tJ7a2pqqKys\nBKCiooKqqiqqq6uBjRc0rdt1dXUlFU+xtvfYo5prr4WJE3Pstx8sXlxN796lE5+2tZ227VwuR21t\nLcCG78tCFHWegZmNA9a4+5XRGMIyYBd3X97MsRozyJCm5SMmTFD5CJE4lOSYgZltBaxz95Vm1hM4\nEBgfvXwAsLi5hkCy5c9/hrPPhl69QvmIvfZKOiIRaSruMYOtgSeiMYMFwAPu/nj02tHAHTF/fslq\nuM3Loobcnn8e/vVf4Sc/CXcEc+dmoyHI8rUD5VeuYr0zcPdFwC4tvHZ8nJ8tyXnnHTj+eJWPEEkT\n1SaSTrFqFTz4IEybBk88AaeeCuecUzqzhkXKRaFjBmoMpGDvvw8zZoQGIJeDQYPCkpOHHw5bbpl0\ndCLlSYXqUiat/ZbvvAM33RTGArbZBu67D446Ct58M3QLnXACLFqUSzrMWKX12uVL+ZUnrWcgbVq+\nHKZPD3cACxeGhuCkk8L2ppsmHZ2IdAZ1E0mzli7d2AAsXgyHHgrDhoWaQT17Jh2diLREYwbSYa++\nGr78p02DN94Iff/DhsH++0P37klHJyL50JhBypRCv6U7vPACjB8PAwbA4MFhVbFJk+Ctt+Dmm+GQ\nQ9rfEJRCbnFSfumW9fwKpTGDMuMe+v2nTQsLya9ZE/76v+GGMCGsi/48EClL6iYqA/X18Mwz4ct/\n2rRQGXTYsPD47ne1qLxIlpRkbSJJzvr1MGdO+PKfPj1M/ho2LPwUdMAANQAi8lnqFEhIHP2Wa9fC\nzJmh/MNXvgJnnglf+lLY9+KLcPHFYRnJuBuCrPfJKr90y3p+hdKdQcp98kn4sp82DR54ALbfPtwB\nzJsXnouI5ENjBim0ejU88khoAB56CHbcMTQARxwB/folHZ2IJEnzDDKucSG4mTPDwO+wYfCDH0Cf\nPklHJyKlQvMMUiaffsv334cpU2DoUOjbN6wUNmQIvPYaPPYYnHZaaTYEWe+TVX7plvX8CqUxgxLz\nzjvhFz/TpsH8+bDffqEQ3K23QkVF0tGJSFapm6gENFcIbvjwMPtXheBEpD00ZpAyb7yxsQ6QCsGJ\nSGcpuTEDM+thZgvMrM7MXjKzyxq9doaZLTazF8zs8rhiKDVLlsDEibDbbjBgQI6XXoILL4S33w7d\nQIcfno2GIOt9ssov3bKeX6FiGzNw93+Y2b7uvtrMNgHmmNkgoBswFBjg7mvNrHdcMSTNPUz2argD\neOed8PPPSZPCa/vvn3SEIiJBUbqJzKwXMAuoAX4BTHb3J9p4Tyq7iVoqBDdsmArBiUj8SrI2kZl1\nAZ4Dtgd+5+4vmll/4HtmNgH4BzDW3f8SZxxxa1wIbvr08IU/bBjcdpsKwYlIOsT6d6q717t7FdCX\n0ABUExqgL7r7nsBZwN1xxhCX9eth1iwYNQq+9jU48UTo1QvuvTeMDVx+Oey+e8sNQZb7LbOcGyi/\ntMt6foUqyjwDd//AzB4EdgOWAdOj/c+aWb2Zbenuf2/6vpqaGiorKwGoqKigqqqK6upqYOMFLeb2\nunXgXs0998Ddd+fYckuoqalm5kxYsSIcv9NO+Z2vrq6u6PFrW9vazt52LpejtrYWYMP3ZSFiGzMw\ns62Ade6+0sx6Ao8C44F/Ab7i7hdFXUaPufvXmnl/SYwZNFcIbvjwMBCsQnAiUmpKccxga2BKNG7Q\nBbjN3R83s6eAP5jZIuBT4LgYYyhIS4XgLr5YheBEJJtiGzNw90Xuvou7V7n7AHe/Itq/1t1HuPuO\n7r6ru+fiiqE9Vq2CO+4If/VvvXVYBnLQoDAh7Kmn4Gc/69yGoOE2L4uynBsov7TLen6FKuvaRO+/\nDzNmhDve07Z2AAAIDklEQVSAXA722SfcAfz+97DVVklHJyJSPGVXjqK5QnDDhoVyECoEJyJpp9pE\nrVAhOBEpFyVXmyhpb7wBV18Ne+8N3/lOmBR25pnw1ltw111w5JHJNgRZ7rfMcm6g/NIu6/kVKlNj\nBkuWbCwD8cYbofDbhReGGkDduycdnYhI6Up1N1FLheCGDYPvfQ82yVRTJyLStrIZM1AhOBGRlmV6\nzKC+Hp5+GsaODbN+jzoq1Aa6/fbQHXTNNWFOQJoagiz3W2Y5N1B+aZf1/ApV0h0ps2aFO4Dp02GL\nLcJf//feCwMGqBKoiEhnKuluoqoq39AF9K1vJR2RiEjpK5sxAxERaVmmxwyyKMv9llnODZRf2mU9\nv0KpMRAREXUTiYhkibqJRESkYGoMEpLlfsss5wbKL+2ynl+h1BiIiIjGDEREskRjBiIiUrBYGwMz\n62FmC8yszsxeMrPLov2/NLNlZrYwehwcZxylKMv9llnODZRf2mU9v0LF2hi4+z+Afd29ChgA7Gtm\ngwAHrnb3naPHI3HGUYrq6uqSDiE2Wc4NlF/aZT2/QsXeTeTuq6On3YGuwPvRdlmXmlu5cmXSIcQm\ny7mB8ku7rOdXqNgbAzPrYmZ1wArgSXd/MXrpDDP7q5ndYmZail5EJEHFuDOoj7qJ+gLfM7Nq4HfA\ntkAV8BZwVdxxlJqlS5cmHUJsspwbKL+0y3p+hSrqT0vNbBywxt2vbLSvEnjA3Xdscqx+VyoiUoBC\nfloa6+I2ZrYVsM7dV5pZT+BAYLyZ9XH3t6PDfgAsavreQpIREZHCxL3S2dbAFDPrQuiSus3dHzez\nW82sivCroteBU2KOQ0REWlGyM5BFRKR4Ep2BbGZ/MLMVZva5bqJGx1xnZkuiXx7tXMz4Oqqt/Mys\n2sw+aDT57sJix1goM+tnZk+a2Ytm9oKZjWrhuFRev3zyS/n1a3ZCaDPHpfX6tZlfmq8fgJl1jeJ+\noIXX23ft3D2xB7APsDOwqIXXhwAPRc/3AJ5OMt4Y8qsGZiQdZ4G59QGqouebAq8A38rK9cszv9Re\nvyj+XtG/mwBPA4Oycv3yzC/t12808J/N5VDItUv0zsDdZ7NxElpzhgJTomMXABVm9uVixNYZ8sgP\nUjr5zt3fdve66PlHwGLgK00OS+31yzM/SOn1g2YnhL7X5JDUXj/IKz9I6fUzs76EL/ybaT6Hdl+7\nUi9U91XgfxttLyPMV8gKB/aKbuMeMrMdkg6oENHPg3cGFjR5KRPXr5X8Un39mpkQ+lKTQ1J9/fLI\nL83X7xrgLKC+hdfbfe1KvTGAz7d6WRrxfg7o5+47Ab8B7ks4nnYzs02Be4CfRX9Bf+6QJtupun5t\n5Jfq6+fNTwhtKrXXL4/8Unn9zOxQ4G/uvpDW72zade1KvTH4P6Bfo+2+0b5McPcPG25l3f1hoJuZ\n/XPCYeXNzLoB04Db3b25/0ipvn5t5Zf269fA3T8AHgR2a/JSqq9fg5byS/H12wsYamavA3cA+5nZ\nrU2Oafe1K/XGYAZwHICZ7QmsdPcVyYbUeczsy2Zm0fPdCT/1ba5fs+REcd8CvOTu17ZwWGqvXz75\npfz6bdVQE6zRhNCFTQ5L8/VrM7+0Xj93P9/d+7n7tsAPgSfc/bgmh7X72sU96axVZnYHMBjYysz+\nF7gI6Abg7pPd/SEzG2Jm/w18DByfXLTt11Z+wHDgNDNbB6wmXNi02Bs4FnjezBr+k50PfA0ycf3a\nzI90X7+WJoSeApm4fm3mR7qvX2MO0NFrp0lnIiJS8t1EIiJSBGoMREREjYGIiKgxEBER1BiIiAhq\nDEREBDUGkkJmtmWjssNvmdmy6PlzZtbhuTNRaeP6aNp/w74/mdngjp47OtfSlMx0lTKS6KQzkUK4\n+98JheMws4uAD9396obXzayru6/v4McsAy4A/tTwsXReXR6nwGqZZraJu6/rpDhENtCdgWSBmVmt\nmf3ezJ4GLjez75rZvOhuYa6Z9Y8OnGVmOzV64xwz27HJ+Rz4K7DSzA5o5sM2/GVvZruZ2ZPR81+a\n2RQzeyo65ggzu9LMnjezh5vctZwd7V9gZttH7+9tZveY2TPRY69G573NzOYQlSUW6WxqDCQrnLDe\nwEB3Hwu8DOzj7rsQyoBMiI67BagBiBqIL7h705XoGv5qnwA0t/pVa3cI2wL7EurJ3w7MdPcBwBrg\n3xodtzLafz3QUPvo18A17r47oVTCzY2O/yawv7v/uJXPFimYuokkS/7oG+urVAC3mtm/EL68u0X7\n7wHGmdlZwAnAf7R0MnefbWaY2d55fr4DD7v7ejN7Aeji7o9Gry0Ctml07B3Rv3cSatMDHAB8K6qd\nBrCZmf1TdN4Z7v5JnnGItJsaA8mS1Y2eXwI87u4/MLNtgByE1a/MbCbwfeBIYJc2zvkrYBywttG+\ndWy8q+7R5PhPo8+pN7PG76mn5f9vDQ2YAXu4+6eNX4wah9VN3yTSmdRNJFm1ObA8et60YuPNwHXA\nM1Gt+xa5+0zCXcaARruXsrE2/rBG+9saFLZG/x4dPT8amBc9/zMwasPBjcY2ROKmxkCypHFf/iTg\nMjN7jrD+7YbX3P054ANa7iJq+suhX/HZJQPHA782s2cJdwnewvuaji00Pu6LZvZX4Azg59H+UcBu\nFpZhfBE4pZVziXQqlbCWsmNmXyGsifuNpGMRKRW6M5CyYmbHAU8TFqoRkYjuDERERHcGIiKixkBE\nRFBjICIiqDEQERHUGIiICGoMREQE+H9/5tWc3xNfDQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb4f99b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The No. of trays will be 3.75\n"
+ ]
+ }
+ ],
+ "prompt_number": 164
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.5: Page 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.5\n",
+ "# Page: 299\n",
+ "\n",
+ "print'Illustration 8.5 - Page: 299\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# a = NH3 b = H2 c = N2 w = water\n",
+ "P = 2.0;# [bars]\n",
+ "Temp = 30.0;# [OC]\n",
+ "L = 6.38;# [kg/s]\n",
+ "W = 0.53;# [weir length,m]\n",
+ "pitch = 12.5/1000;# [m]\n",
+ "D = 0.75;# [Tower diameter,m]\n",
+ "hW = 0.060;# [weir height,m]\n",
+ "t = 0.5;# [tray spacing,m]\n",
+ "#*******#\n",
+ "\n",
+ "# From Geometry of Tray Arrangement:\n",
+ "At = 0.4418;# [Tower Cross section,square m]\n",
+ "Ad = 0.0403;# [Downspout Cross section,square m]\n",
+ "An = At-Ad;# [square m]\n",
+ "Ao = 0.0393;# [perforation area,square m]\n",
+ "Z = 0.5307;# [distance between downspouts,square m]\n",
+ "z = (D+W)/2.0;# [average flow width,m]\n",
+ "h1 = 0.04;# [weir crest,m]\n",
+ "# From Eqn. 6.34\n",
+ "Weff = W*(math.sqrt(((D/W)**2)-((((D/W)**2-1)**0.5)+((2*h1/D)*(D/W)))**2));# [m]\n",
+ "q = Weff*(1.839*h1**(3/2));#[cubic m/s]\n",
+ "# This is a recommended rate because it produces the liquid depth on the tray to 10 cm.\n",
+ "Density_L = 996;# [kg/s]\n",
+ "Mw = 18.02;# [kg/kmol]\n",
+ "L1 = 6.38/Mw;# [kmol/s]\n",
+ "Ma = 17.03;# [kg/kmol]\n",
+ "Mb = 28.02;# [kg/kmol]\n",
+ "Mc = 2.02;# [kg/kmol]\n",
+ "MavG = (0.03*Ma)+(0.97*(1/4)*Mb)+(0.97*(3/4)*Mc);# [kg/kmol]\n",
+ "Density_G = (MavG/22.41)*(P/0.986)*(273/(273+Temp));# [kg/cubic m]\n",
+ "G = 0.893;# [kg/s]\n",
+ "sigma = 68*10**(-3);# [N/m]\n",
+ "abcissa = (L/G)*(Density_G/Density_L)**0.5;\n",
+ "# From Table 6.2 (Pg169):\n",
+ "alpha = 0.04893;\n",
+ "beeta = 0.0302;\n",
+ "# From Eqn. 6.30\n",
+ "Cf = ((alpha*math.log10(1.0/abcissa))+beeta)*(sigma/0.02)**0.2;\n",
+ "# From Eqn. 6.29\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1.0/2);# [m/s]\n",
+ "# 80% of flooding value:\n",
+ "V = 0.8*Vf;# [m/s]\n",
+ "G = 0.8*G;# [kg/s]\n",
+ "G1 = G/MavG;# [kmol/s]\n",
+ "Vo = V*An/Ao;# [m/s]\n",
+ "l = 0.002;# [m]\n",
+ "Do = 0.00475;# [m]\n",
+ "# From Eqn. 6.37\n",
+ "Co = 1.09*(Do/l)**0.25;\n",
+ "viscosity_G = 1.13*10**(-5);# [kg/m.s]\n",
+ "Reo = Do*Vo*Density_G/viscosity_G;\n",
+ "# At Reynold's No. = Reo\n",
+ "fr = 0.0082;\n",
+ "g = 9.81;# [m/s^2]\n",
+ "# From Eqn. 6.36\n",
+ "def f36(hD):\n",
+ " return (2*hD*g*Density_L/(Vo**2*Density_G))-(Co*(0.40*(1.25-(Ao/An))+(4*l*fr/Do)+(1-(Ao/An))**2))\n",
+ "hD = fsolve(f36,1);\n",
+ "# From Eqn. 6.31;\n",
+ "Aa = (Ao/0.907)*(pitch/Do)**2;# [square m]\n",
+ "Va = V*An/Aa;# [m/s]\n",
+ "# From Eqn. 6.38\n",
+ "hL = 6.10*10**(-3)+(0.725*hW)-(0.238*hW*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "# From Eqn. 6.42\n",
+ "hR = 6*sigma/(Density_L*Do*g);# m\n",
+ "# From Eqn. 6.35\n",
+ "hG = hD+hL+hR;# [m]\n",
+ "Al = 0.025*W;# [square m]\n",
+ "Ada = min(Al,Ad);\n",
+ "# From Eqn. 6.43\n",
+ "h2 = (3/(2*g))*(q/Ada)**2;# [m]\n",
+ "# From Eqn.6.44\n",
+ "h3 = hG+h2;\n",
+ "# since hW+h1+h3 is essentially equal to t/2, flooding will not occur\n",
+ "abcissa = (L/G)*(Density_G/Density_L)**0.5;\n",
+ "V_by_Vf = V/Vf;\n",
+ "# From Fig.6.17, V/Vf = 0.8 & abcissa = 0.239\n",
+ "E = 0.009;\n",
+ "\n",
+ "# At the prevailing conditions:\n",
+ "Dg = 2.296*10**(-5);# [square m/s]\n",
+ "viscosity_G = 1.122*10**(-5);# [kg/m.s]\n",
+ "ScG = viscosity_G/(Density_G*Dg)\n",
+ "Dl = 2.421*10**(-9);# [square m/s]\n",
+ "\n",
+ "# From Henry's Law:\n",
+ "m = 0.850;\n",
+ "A = L1/(m*G1);\n",
+ "\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/(ScG**0.5);\n",
+ "# From Eqn. 6.64:\n",
+ "thetha_L = hL*z*Z/q;# [s]\n",
+ "# From Eqn. 6.62:\n",
+ "NtL = 40000*(Dl**0.5)*((0.213*Va*Density_G**0.5)+0.15)*thetha_L;\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1/((1/NtG)+(1/(A*NtL)));\n",
+ "# From Eqn. 6.51:\n",
+ "EoG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.63:\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;# [square m/s]\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thetha_L);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2.0)*((1+(4*m*G1*EoG/(L1*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EoG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+((exp(eta)-1)/(eta*(1+(eta/(eta+Pe))))));\n",
+ "# From Eqn. 6.60:\n",
+ "EMGE = EMG/((1+(EMG*(E/(1-E)))));\n",
+ "# From Eqn. 8.16:\n",
+ "EO = math.log(1+EMGE*((1.0/A)-1))/math.log(1.0/A);\n",
+ "Np = 14*EO;\n",
+ "yNpPlus1 = 0.03;\n",
+ "x0 = 0;\n",
+ "# From Eqn. 5.54(a):\n",
+ "def f37(y1):\n",
+ " return ((yNpPlus1-y1)/(yNpPlus1-m*x0))-(((A**(Np+1))-A)/((A**(Np+1))-1))\n",
+ "y1 = fsolve(f37,0.03);\n",
+ "print\"Mole Fraction Of NH3 in effluent is \",round(y1,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.5 - Page: 299\n",
+ "\n",
+ "\n",
+ "Mole Fraction Of NH3 in effluent is 0.0211\n"
+ ]
+ }
+ ],
+ "prompt_number": 159
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.6: Page 304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.6\n",
+ "# Page: 304\n",
+ "\n",
+ "print'Illustration 8.6 - Page: 304\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#****Data****# \n",
+ "# Gas:\n",
+ "# In:\n",
+ "y_prime1 = 0.02;\n",
+ "Y_prime1 = 0.0204;# [mol/mol dry gas]\n",
+ "# Out:\n",
+ "y_prime2 = 0.00102;\n",
+ "Y_prime2 = 0.00102;# [mol/mol dry gas]\n",
+ "# Non absorbed gas:\n",
+ "MavG = 11;# [kg/kmol]\n",
+ "G = 0.01051;# [kmol/s nonbenzene]\n",
+ "Gm = 0.01075;# [kmol/s]\n",
+ "T = 26;# [OC]\n",
+ "viscosity_G = 10**(-5);# [kg/m.s]\n",
+ "DaG = 1.30*10**(-5);# [square m/s]\n",
+ "\n",
+ "# Liquid:\n",
+ "# In:\n",
+ "x_prime2 = 0.005;\n",
+ "X_prime2 = 0.00503;# [mol benzene/mol oil]\n",
+ "# Out:\n",
+ "x_prime1 = 0.1063;\n",
+ "X_prime1 = 0.1190;# [mol benzene/mol oil]\n",
+ "# Benzene free oil:\n",
+ "MavL = 260.0;# [kg/kmol]\n",
+ "viscosity_L = 2*10**(-3);# [kg/kmol]\n",
+ "Density_L = 840;# [kg/cubic cm]\n",
+ "L = 1.787*10**(-3);# [kmol/s]\n",
+ "DaL = 4.77*10**(-10);# [square m/s]\n",
+ "sigma = 0.03;# [N/square m]\n",
+ "m = 0.1250;\n",
+ "#*******#\n",
+ "\n",
+ "A = 0.47**2*math.pi/4;# [square m]\n",
+ "# At the bottom:\n",
+ "L_prime1 = ((L*MavL)+(X_prime1*L*78))/A;# [kg/square m.s]\n",
+ "# At the top\n",
+ "L_prime2 = ((L*MavL)+(X_prime2*L*78))/A;# [kg/square m.s]\n",
+ "L_primeav = (L_prime1+L_prime2)/2;# [kg/square m.s]\n",
+ "# At the bottom\n",
+ "G_prime1 = ((G*MavG)+(Y_prime1*G*78))/A;# [kg/square m.s]\n",
+ "# At the top\n",
+ "G_prime2 = ((G*MavG)+(Y_prime2*G*78))/A;# [kg/square m.s]\n",
+ "G_primeav = (G_prime1+G_prime2)/2;# [kg/square m.s]\n",
+ "\n",
+ "# From Illustration 6.6:\n",
+ "Fga = 0.0719;# [kmol/cubic cm.s]\n",
+ "Fla = 0.01377;# [kmol/cubic cm.s]\n",
+ "# Operating Line:\n",
+ "X_prime = numpy.array([0.00503 ,0.02 ,0.04 ,0.06 ,0.08 ,0.10 ,0.1190]);\n",
+ "x_prime = numpy.zeros(7);\n",
+ "Y_prime = numpy.zeros(7);\n",
+ "y_prime = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " x_prime[i] = X_prime[i]/(1+X_prime[i]);\n",
+ " def f38(Y_prime):\n",
+ " return (G*(Y_prime1-Y_prime))-(L*(X_prime1-X_prime[i]))\n",
+ " Y_prime[i] = fsolve(f38,Y_prime1);\n",
+ " y_prime[i] = (Y_prime[i])/(1+Y_prime[i]);\n",
+ "\n",
+ "def f39(x):\n",
+ " return m*x\n",
+ "x = numpy.arange(0,0.14,0.01);\n",
+ "\n",
+ "# Interface compositions are determined graphically and according to Eqn. 8.21:\n",
+ "yi = [0.000784, 0.00285, 0.00562 ,0.00830 ,0.01090 ,0.01337 ,0.01580];\n",
+ "ylog = zeros(7);\n",
+ "y_by_yDiffyi = zeros(7);\n",
+ "for i in range(0,7):\n",
+ " ylog[i] = math.log10(yi[i]);\n",
+ " y_by_yDiffyi[i] = y_prime[i]/(y_prime[i]-yi[i]);\n",
+ "\n",
+ "plt.plot(x_prime,y_prime,label=\"Operating Line\")\n",
+ "plt.plot(x,f39(x),label=\"Equilibrium Line\")\n",
+ "plt.plot(x_prime,yi,label=\"Interface Composition\");\n",
+ "plt.legend(loc='lower right');\n",
+ "plt.grid('on');\n",
+ "xlabel(\"mole fraction of benzene in liquid\");\n",
+ "ylabel(\"mole fraction of benzene in gas\");\n",
+ "plt.show()\n",
+ "plt.plot(ylog,y_by_yDiffyi);\n",
+ "plt.grid();\n",
+ "xlabel(\"log y\");\n",
+ "ylabel(\"y/(y-yi)\");\n",
+ "title(\"Graphical Integration Curve\");\n",
+ "plt.show()\n",
+ "# Area under the curve:\n",
+ "Ac = 6.556;\n",
+ "# Eqn. 8.28:\n",
+ "NtG = (2.303*Ac)+1.152*(math.log10((1-y_prime2)/(1-y_prime1)));\n",
+ "Gav = (Gm+(G/(1-Y_prime2)))/(2*A);# [kmol/square m.s]\n",
+ "HtG = Gav/Fga;# [m]\n",
+ "Z = HtG*NtG;# [m]\n",
+ "print\"The depth of packing required is \",round(Z,3),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.6 - Page: 304\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXWh98loEgHKdJBEdT7qcCl1wgoiDSlq0jz6lVR\nEVHARvAqNrgqRVSQJr1I7y1IUYELKAiIEENTUAGpQkiyvj/2JE5CJjnJ9GS/z3OezDlnl1/OzGRl\n77X3WqKqWCwWi8XiK64JtgCLxWKxZC2sYbFYLBaLT7GGxWKxWCw+xRoWi8VisfgUa1gsFovF4lOs\nYbFYLBaLT/GrYRGRFiKyT0R+EpEBHsqMcN3/TkSqua6VFZF1IvKDiOwWkWfdyhcRkVUisl9EVopI\nIX/+DhaLxWLJGH4zLCKSAxgFtABuB7qKyG0pyrQEKqnqLcDjwBjXrSvA86r6D6AO8LSI3Oq6NxBY\npaqVgTWuc4vFYrGECP4csdQCDqhqjKpeAWYAbVOUaQNMAlDVb4FCIlJCVY+r6k7X9fPAXqB0yjqu\nn+38+DtYLBaLJYP407CUBo64nR/lb+OQVpky7gVEpAJQDfjWdamEqp5wvT4BlPCNXIvFYrH4An8a\nFqexYsRTPRHJB8wBnnONXJIXNPFobEwai8ViCSFy+rHtY0BZt/OymBFJWmXKuK4hIrmAucAUVZ3v\nVuaEiNyoqsdFpCTwW2qdi4g1OBaLxZJBVDXlP/sZxp8jlm3ALSJSQUSuBToDC1OUWQg8CiAidYA/\nVfWEiAjwObBHVT9MpU531+vuwHw8oKohfQwePDjoGqxOq9NbnYsXKyVKKLt3h7bOYB/hoNNX+G3E\noqpxItIHWAHkAD5X1b0i8oTr/qequlREWorIAeAC0NNVvT7wCPC9iOxwXRukqsuBd4BZItIbiAE6\n+et38DcxMTHBluAIq9O3ZCWdGzZAz56waBH84x/+15QaWel5ZhX8ORWGqi4DlqW49mmK8z6p1NuI\nh9GUqp4CmvlQpsViyQQ7dkD79jBtGtSuHWw1llDC7rwPIj169Ai2BEdYnb4lK+jcvx/uvx8++QSa\nBfnfvKzwPLMa4st5tVBCRDSr/m4WSzA5cgQaNoTXX4devYKtxuJLRAQNcee9JR2ioqKCLcERVqdv\nCWedv/8O994Lzz4bOkYlnJ9nVsUaFovF4oizZ+G++4xfpV+/YKuxhDJ2KsxisaTLX38Zo3L77TB6\nNIjXkyWWUMRXU2HWsFgsljS5csWMUvLlgylT4Bo7z5FlsT6WLEC4zLlanb4lnHQmJEDv3hAfD5Mm\nhaZRCafnmV3w6z4Wi8USvqhC377w88+wYgXkyhVsRZZwwU6FWSyWVBkyBObPh3XroJBNp5ct8NVU\nmB2xWCyWqxgxAqZONSFbrFGxZJQQnDHNPoTLnKvV6VtCXefkyTBsGLzxRhQlwiDbUag/z0TCRacv\nsCMWi8WSxIIF8NJLZvrrxIn0y1ssqWF9LBaLBTDGpHNnWLoUatQIthpLMLDLjS0Wi8/Yts0YlZkz\nrVGxeI81LEEkXOZcrU7fEmo69+6FVq1g7Fi4++6/r4eaTk9YnaGHNSwWSzbm0CFo3hzeew/atg22\nGktWwfpYLJZsyokTJvx9nz4mWrHFYn0sFosl0/z5J7RoAQ8/bI2KxfdYwxJEwmXO1er0LcHWefEi\ntG4NjRqZZF2eCLZOp1idoYc1LBZLNiI2Fjp0gIoV4YMPbPh7i3+wPhaLJZsQHw+PPGJGLHPm2KCS\nlquxscIsFotjVOGZZ+D4cVi2zBoVi3+xU2FBJFzmXK1O3xIMna+9Blu2mJAtuXM7q2Ofp++4EHsh\nLHT6CmtYLJYszvDhMHeuGakUKBBsNdmLBE1g1JZRVBlVhQuxF4ItJ2BYH4vFkoUZPx7eeMOEvy9b\nNthqshfRp6PptaAXl+MvM6HtBG4temuwJaWL3cdisVjSZO5cePVVWLnSGpVAkjhKqTW2Fq0qt2Jj\nz41hYVR8iTUsQSRc5lytTt8SCJ2rVsGTT8KSJVC5cubasM8z40SfjqbJpCZM3TWVjb020r9ef3Jc\nkwMILZ3+xhoWiyWL8c038NBDZsRSrVqw1WQP7CglOdbHYrFkIXbvhqZNjW/l/vuDrSZ7EI6+FE8E\nzMciIvlEJIfrdRURaSMidhW8xRJiREeb+F8ffmiNSiCwoxTPOJkK+wq4TkRKAyuAbsBEf4rKLoTL\nnKvV6Vv8ofPYMbjnHnj5Zeja1TdtZufnmR5p+VI8ES7P0xc4MSyiqheBB4GPVbUj8H/+lWWxWJzy\n22/QrBk88QQ89VSw1WRt7CjFGen6WERkB/AU8AHQW1V/EJFdqnpHIARmFutjsWQHTp0yWR/btYMh\nQ4KtJmuTlXwpngjkPpa+wCBgnsuo3Ays87Zji8XiHWfPGp/KPfdAZGSw1WRdEjSB0VtG21FKBkjX\nsKjqelVto6rvus4PqqpNDeQDwmXO1er0Lb7QeeGCyVNfowa8/75/wt9np+fpiejT0TSd3JQpu6Y4\n9qV4Ilyepy9wsiqsuIgME5GlIrLOdawNhDiLxXI1ly7BAw/ATTfBqFE2p4o/cB+l3H/L/XaUkkGc\n+FhWATOB/sATQA/gd1V9ye/qvMD6WCxZkStXoH17E6F42jTIaRNf+Jzo09H0XtibS3GXsqwvxROB\n9LHcoKrjgFjXtFhPoIm3HVssloyRmKhLFaZMsUbF19hRiu9wYlhiXT+Pi0grEakOFPajpmxDuMy5\nWp2+JTM6ExKgd2+zCmz2bLj2Wt/rSklWfp4pSfSlTN01lU29NnnlS/FEuDxPX+DEsLwlIoWAFzDT\nYeOA5/2qymKxJKEKffrAwYMwf77zRF2W9EkcpdQeV5tWt7RiQ88NVClaJdiywh4bK8xiCWFU4aWX\nICoK1qyxibp8SaIv5XKc2ZdiDUoAc96LyEhAgcTOFDgDbFPVBd4KsFgsnhkyBFasMIYl5I1KQoJZ\nB50/f7CVpEmCJjBm6xgi10cysP5A+tbp6/Npr+yOk6mw3EBVYD/wE3AXUBboLSIf+lFblidc5lyt\nTt/iVOf778OMGSa3SpEi/tWUGhl6nhcuQMeO8PrrftPjiYzodPelbOy5kRfqvRAwoxIun09f4MSw\n3Ak0UdWRqjoCaArciokd1tyf4iyW7Mro0TBmDKxeDSVKBFtNOhw7Bo0aQb588M47wVaTKtaXElic\n7GP5Eaitqn+6zgsBW1S1sojsUNWQTCVkfSyWcGXCBBg8GNavh4oVg60mHbZtM4HK+vSBAQNCcrem\n9aU4J5D7WN4DdojIBBGZCOwA3heRvMBqbwVYLJa/mTkTXnnFTH+FvFGZMwfuuw9GjoSBA0POqNhR\nSvBwEivsc6A+sACYBzRQ1bGqekFVX/S3wKxMuMy5Wp2+xZPOhQvhuedg+XKoEgJ//zw+T1V46y3o\n1w9WrjTxZYJIajqD6UvxRLh8Pn2Bo5z3qvqLqs5X1QWqesxp4yLSQkT2ichPIjLAQ5kRrvvfiUg1\nt+vjReSEiOxKUT5SRI6KyA7X0cKpHoslVFm5Eh57DBYtgjvvDLaaNLh0Cbp1MxtqvvkGqoXWTLgd\npYQGftvH4kpn/CPQDDgGbAW6qupetzItgT6q2lJEagMfqWod172GwHlgsnvuFxEZDJxT1f+m07/1\nsVjCgq++MvG/5s2DBg2CrSYNTpwwo5OyZY0jKE+eYCtKhvWleE8gfSyZpRZwQFVjVPUKMANom6JM\nG2ASgKp+CxQSkRtd5xuA0x7aDq3JXIslk2zZAh06wPTpIW5Udu2C2rVN8pfp00PKqNhRSujhyLCI\nSA4RKSUi5RIPB9VKA0fczo+6rmW0TGo845o6+9y1Si0sCZc5V6vTtyTq/O47aN0axo83qYVDjaTn\nuXgxNGkCQ4eaHZvX+PP/0YwRfTqa6oOqh5QvxRPh8vn0BU523j8DDAZ+A+LdbqWXmtjpPFTK0Ud6\n9cYAb7he/wcYDvROrWCPHj2oUKECAIUKFaJq1apEREQAf7/JwTzfuXNnSOkJ9/Nwep6TJkXx/PPw\n6acRtGoVfD2pPs8dO4jYvh2GDSMqMhJKlcLcDb6+tevWsmDfAqaem0rHMh3pULEDv+7+lSoRVUJC\nX7h8PhNfx8TE4Euc7GM5CNRS1ZMZalikDhCpqi1c54OAhMRMlK5rnwBRqjrDdb4PaKyqJ1znFYBF\n7j6WFH14vG99LJZQ5eBBiIiAN9+E7t2DrcYDsbHw9NPw7bdmRUH58sFWlERi7vnY+FjrS/ExgfSx\nHAbOZqLtbcAtIlJBRK4FOgMLU5RZCDwKSYboz0Sj4gkRKel2+gCwy1NZiyXUOHLETHu9/HIIG5VT\np6B5czh+HDZtChmjkqAJjNoyilpja9G6cmvrSwlhnBiWn4F1IjJIRF5wHf3Sq6SqcUAfYAWwB5ip\nqntF5AkRecJVZikQLSIHgE+BpxLri8h0YDNQWUSOiEhP1613ReR7EfkOaEwYh/B3H46GMlanbzh+\nHJo2hfvui+LJJ4OtxgM//mic9DVqENW3b8gElIw+HU2TSU2Ytmsam3ptSuZLCfX3PZFw0ekLnOSg\nO+w6rnUdgkP/iaouA5aluPZpivM+Hup29XD9USd9WyyhxMmTZkFVt27QsGGw1Xhg9Wp4+GHjpO/d\n24RUDjIJmsDHWz8mMiqSQQ0G2UjEYYLNx2Kx+JkzZ8xIpVkzePvtkIt8YvjkE4iMNDFlGjcOthrA\n+lKCgd/zsYjIR6r6nIgsSuW2qmobbzu3WLI6589Dy5ZQr16IGpW4OHjhBbP1f+NGqFQp2IrsKCUL\nkJaPZbLr53APh8VLwmXO1erMHH/9BW3bwq23wocf/m1UQkbnmTNmI83evfD111cZlWDoTMuX4omQ\neZ7pEC46fYFHw6Kq/3P9jErlWB84iRZL+BEba3bUlygBn30WUnsKDdHRZhh1002wdCkUCu4+Y7vi\nK2thfSwWi4+Ji4MuXczP2bMhV65gK0rBhg0m2+Orr5o8KkHG+lJCh3CIFWaxZDsSEqBXL+NbmTkz\nBI3KpEkm4uWkSUE3KnaUknVxbFhEJHSizmURwmXO1ep0hio89RQcOgRffgnXXZd6uaDoTEiAQYPg\njTfMMuLm6WcV96fOzPhSPBHs990p4aLTF6RrWESknojswYTAR0SqisjHfldmsYQRqmZx1c6dJmZj\nCAX/hQsXjMNn0yYTouX224MmxY5SsgdOYoVtAToACxLz24vID6r6jwDoyzTWx2IJJK+9ZgzK2rVQ\nuHCw1bhx9KhZ+VW1qtmr4mkYFQCsLyX0CaiPRVUPp7gU523HFktW4Z13YO5csxUkpIzK1q1Qpw48\n9JCJzR8ko+I+SmlV2eZLyQ44CkIpIvUBRORaEekP7E2njsUB4TLnanV6ZsQIGDfOREMpVsxZnYDo\nnDXL7MwcPRpefDFTOzN9oTOlL6V/vf4+3+xoP5+hhxPD8iTwNCYB1zGgmuvcYsnWfPIJDB8Oa9ZA\nqVLBVuNC1TjoX3wRVq0yOzSDgPWlZG/sPhaLJROMHQv/+Y9ZYHXTTcFW4+Kvv0zwyIMHYcECuPHG\noMiwvpTwxe+xwtw6Kg78C6jgVl5VtZe3nVss4cj48WZQsG5dCBmVI0fMyq+KFY21u/76gEuwMb4s\niTiZClsAFABWAUvcDouXhMucq9X5N5Mmweuvm+mvzMZr9LnOtWuhVi2z8XH6dJ8ZlYzo9OW+lIxi\nP5+hh5N8LNer6gC/K7FYQpwpU0zmxzVroHLlYKvB+FPefx8++ACmToUmTQIuwY5SLKnhZB/Lm8DX\nqhpWoxTrY7H4kmnToH9/s/oriPsL/+bsWejRA44dgzlzoGzZgEuwvpSsRyD3sfQFFonIJRE55zrO\netuxxRIuzJz5d8qSkDAqe/ZAzZomdPJXXwXcqNgVX5b0SNewqGo+Vb1GVXOran7XUSAQ4rI64TLn\nmp11zpkDzz0HK1bA//2fb9r0SuesWSbD46BBMGaMXzc9pqYzmL4UT2Tnz2eo4iRW2DUi0k1EXned\nlxORWv6XZrEEl3nzTADg5cvhzjuDLCYx0+PAgWbo1KNHQLu3oxRLRnDiY/kESACaqOqtIlIEWKmq\nNQIhMLNYH4vFGxYuhH/9C5Ytg+rVgyzm+HGT4OX6642TvkiRgHZvfSnZh0D6WGqr6lPAXwCqegoI\ntSwTFovPWLzYGJUlS0LAqGzeDDVqQESEERZAo2JHKZbM4sSwxIpI0iSqiBTDjGAsXhIuc67ZSeey\nZSZR16JF5u+5P3CkUxVGjYJ27eDTTyEyEnIEzpcRfTqa6oOqh5QvxRPZ6fMZLjgxLCOBeUBxERkK\nbALe9qsqiyUIrFgB3bubaCi1gulFvHgRHn3URLf8+mu4//6AdZ2gCYz8diS1xtaibpm6dpRiyRSO\nYoWJyG1AU9fpGlUN+ejG1sdiyQirV0PXrjB/PtSvH0QhBw6YHfR33WWiXAYwY9jBUwfpvbC39aVk\nYwLmYxGR8UBuVR3lOvaKSKS3HVssocLatcaozJ0bZKOyaBHUqwdPPGFixwTIqCSOUmqPq219KRaf\n4GQqrDkwSUS6u10LTizuLEa4zLlmZZ3r10PnzjB7NjRq5HtNqXGVzvh4k4LyqafMPNxTT2Uqf0pm\nOHjqIE0mNWH67ulX+VKy8vseDMJFpy9wYlh+AxoCHUXkYxGxK8IsWYING0xA4JkzzaKroHDypPGh\nbNwI27ZB3boB6daOUiz+xMk+lh2qWk1EBIjE+FpKqWqoBAxPFetjsaTFpk3wwANmW8g99wRJxPbt\nxp/SoQO8/TbkdBIT1nusL8XiiUDuY1kEJgGLqg4G3gVivO3YYgkW33xjjMoXXwTRqEyYAM2bm+jE\n778fEKNiRymWQOEkVtjrKc4XqWrg43NnQcJlzjUr6dyyBdq0gYkTzd/1gHP5MlGtW8O775oAkh06\nBKTbtHwpnshK73soEC46fYGTVWHtReQnETlroxtbwplt26B1a5MBsmXLIAg4fBgaNjQh77dsgdtu\n83uXdpRiCQZOfCwHgVbhsHfFHetjsbizfTvcdx989hm0DcaaxjVr4JFHTCDJF14IyKov60uxZJRA\n+liOh5tRsVjc+e47M0IZMyYIRkUV3nnHGJXEbGF+Nip2lGIJNk4MyzYRmSkiXV3TYu1F5EG/K8sG\nhMucazjr3LXL+FJGjoQHA/2pPXvWrPqaPx+2boW77/ao01dkxpfiiXB+30ORcNHpC5wYloKYyMb3\nAq1cR2t/irJYfMEPP8C998JHH0HHjkHovGZNKFnS7MIsU8av3dlRiiWUcBQrLByxPpbszZ490KwZ\nDBsGDz0U4M5nzjQZwoYPN8Ek/Yz1pVh8RSBjhVURkTUi8oPr/E4RedXbji0Wf7Fvn9mf8u67ATYq\nV65Av37w8suwapXfjYr7KKVV5VZ2lGIJGZxMhY0FXgZiXee7gK5+U5SNCJc513DSuX+/Gam89RZ0\n6xbAzo8fh6ZN4ccfzbrmqlXT1OktKX0p/ev193m+lHB638OBcNHpC5wYljyq+m3iiWt+6Yr/JFks\nmePYMfO3fciQAKeE37TJZAVr2tREKC5c2G9dWV+KJRxwso9lGfAMMNsVM6wD0FtV7wuEwMxifSzZ\ni+hos+jqlVfg8ccD1Glilsc33zQhWvy869Lmnrf4G1/5WJwEKOoDfAbcKiK/AD8DD3vbscXiK2Ji\noEkTGDgwgEbl4kX497/h++9Nlseb/BeTNUET+Hjrx0RGRTKowSD61ukbsmmCLRZwFivsoKo2BYoC\nVVS1vqrG+F1ZNiBc5lxDWeehQ2ak0r8/3HZbVGA6jYmBBg0gIQE2b86wUcnI84w+HU2TSU2Ckns+\nlN93d6zO0MPJqrCiIjIS2AisF5GPROQG/0uzWNLmyBEzUnnuObO6NyCsXg116pgVX1984bcsjwma\nwKgto6g1tpb1pVjCDic+ltXAemAKIMBDQISqNvO/vMxjfSxZm2PHoHFjePJJE3rL76ia8PYffADT\np/s1M5j1pViCha98LE4My25V/b8U13ap6h3edu5PrGHJuvzyi/m7/thj8NJLAejw/Hno1ctMgc2d\nC2XL+qUb60uxBJtABqFc6YoTdo3r6Ays9LZjS/jMuYaSzl9/NdNfPXtebVT8ovPAATP1lT+/yZ/i\nA6OSms5g+lI8EUrve1pYnaGHR8MiIudF5BzwL2AqZoNkLDAdcLT2RkRaiMg+Vz6XAR7KjHDd/05E\nqrldHy8iJ0RkV4ryRURklYjsF5GVIlLIiRZL+HPihNkq8vDDMGhQADpcsgTq1zcOnHHjIHdun3dh\nfSmWrIjfYoWJSA7gR6AZcAzYCnR1D8EvIi2BPqraUkRqAx+pah3XvYbAeWCy+7SbiLwH/KGq77mM\nVWFVHZhK/3YqLAtx/LgZqXTqBJGRfu4sIcHsTfnsM5g9G+rW9Us30aej6b2wN5fjLltfiiUkCORU\nWGapBRxQ1RhVvQLMAFJmw2gDTAJw7e4vJCI3us43AKdTaTepjutnOz9ot4QQiT6Vrl0DYFTOnIEH\nHoCVK02oez8YlQRNYPSW0SbG1y02xpcl6+FPw1IaOOJ2ftR1LaNlUlJCVU+4Xp8ASngjMpiEy5xr\nMHUePWpWf3XvDq+9lnZZr3Xu3Qu1ahk/ytq1JuS9j4k+HU31QdWZumsqG3tuDAlfiifs59O3hItO\nX+Bx572IVFTVn71o2+k8VMphl+P5K1VVEfFYvkePHlSoUAGAQoUKUbVqVSJcy0QT3+Rgnu/cuTOk\n9ITa+fHj8MorETz5JNSoEUVUlB+f5xtvwH//S8SHH0KPHj7/fdauW8uCfQuYem4qHct0pEPFDvy6\n+1eqRFTx2/Pz9tx+PrP+80x8HRMTgy/x6GMRkf+p6j9FZK2qNslwwyJ1gEhVbeE6HwQkqOq7bmU+\nAaJUdYbrfB/QOHFEIiIVgEUpfCz7MPtojotISWCdqt6aSv/WxxLG/Pzz35sf+/b1Y0fx8WYoNHWq\nWUpco4bPu7C+FEu4EIhYYTlE5BWgsoj0I/nIQlX1v+m0vQ24xWUcfgE6c3W4/YWYWGQzXIboT7dp\nLk8sBLoD77p+zk+nvCXMOHjQGJUXX/TzjvpTp0zClthYE+q+WDGfNp+gCYzZOobI9ZEMrD/Q7kux\nZBvS8rF0AeKBHEB+15HP7XWaqGocxmisAPYAM1V1r4g8ISJPuMosBaJF5ADwKfBUYn0RmQ5sxhi2\nIyLS03XrHeAeEdkPNHGdhyXuw9FQJpA69+83jvqXX864UcmQzu++M6mD/+//jKPex0Yl+nQ0TSc3\nTdWXYt9332J1hh4eRyyqug94R0S+dxmADKOqy4BlKa59muI81T8fqppqMjFVPYVZwmzJYuzbZ5J0\nDRkCvXv7saPp0+HZZ2HECLPUzIfYUYrF4iykSyFgMNDIdSkKeENVz/hXmndYH0t48cMPcO+9MHSo\nWQHmF+LiYMAAmD8f5s2DO+/0afPWl2IJdwK5j2U8cBboCHQCzgETvO3YYklk1y4zUnn3XT8ald9/\nN5brhx/M/hQfGhW7L8ViSY4Tw3Kzqg5W1WhXbpZI4GY/68oWhMucqz917txp/t5/8AE88oh3bXnU\nuW2bWe1Vt64J01KkiHcduZGWLyXDOkMMq9O3hItOX+DEsPzlCq8CgIg0AC76T5Ilu7B9OzRvDiNH\nQpcufuokMWXwhx/CW29BDt/4O+woxWLxjBMfS1VgMlDQdek00F1Vv/OzNq+wPpbQZutWaNUKPvnE\nRFDxObGx8PzzsGaN8afcdpvPmra+FEtWJWD5WNw6LAgQ6k77RKxhCV2++QbatIHPP4fWrf3Qwa+/\nQseOcMMNMHkyFCyYfh0H2BVflqxOwINQquqZcDEq4UK4zLn6UuemTcaoTJzoe6MSFRVlctDXrGnm\n2ObN85lRyYwvJU2dYYDV6VvCRacv8GcQSoslGV99Be3awZQpxu3hU1RhwQIzr/bZZyZMyzXef7yt\nL8ViyTh+y8cSbOxUWGixdi107gwzZphkXT7l0iV46injuJk3DypV8kmz1pdiyW4EIlaYe2f1gQpu\n5VVVJ3vbuSV7sGqVCck1e7YJ1+JTjhyBBx+Em26Cr7+GfPm8btI99/zABgN5vs7z1pdisWSAdOcK\nRGQK8D5QH6jhOmr6WVe2IFzmXL3RuXy5SSX85Zd+MCpRUSZ/imsoFLVtm9dNpsw9379ef58blezw\nvgcSqzP0cDJi+Sdwu51XsmSUJUugZ08TQaVePR82rGr2pbz7rnHYNPM+dJz7KGVQg0F2xZfF4gVO\n9rHMBp5T1V8CI8k3WB9LcFmwAP71L1i0CGrX9mHDFy+ahvfuNcMgVyI3b4g+HU2vBb2IjY+1vhRL\ntiaQy42LAXtEZKWILHIdC73t2JJ1mTsXHn8cli71sVGJjjZDn5w5zbplL41KgiYwassoao2tRevK\nre2KL4vFRzgxLJFAO+AtYBgw3HVYvCRc5lwzonPWLHj6aeNb8WkyxmXLTKyv3r3NJpjrr7+qSEZ0\npvSlBDL3fFZ834OJ1Rl6pGtYVDUK2AcUwCT42qOq6/2syxKGTJtmUgmvWAHVqvmo0YQEePNNeOwx\nMxR65hmQzI/U7SjFYvE/TnwsnTCrwhKNSSPgRVWd7WdtXmF9LIFl8mQYONAkY/y///NRo2fOwKOP\nwsmTZq1yyZJeNWd9KRZL2gTSx/IqUFNVH1XVRzFLjV/ztmNL1mH8eJNKeM0aHxqVH34woVnKlTO7\nK70wKnaUYrEEFieGRYDf3c5Puq5ZvCRc5lzT0vnZZzB4sDEqPgsgPGuW2fTy6qsmpv611zqqlprO\nYPpSPJEV3vdQwuoMPZzsY1kOrBCRaRiD0pkUeewt2ZOPPzZbSdat81EUlbg4GDQI5swxc2peOGrs\nvhSLJXg48bEI8CDQAFBgg6rOC4A2r7A+Fv8yYgT8979mluqmm3zQ4G+/mWxf114LU6eakPeZxPpS\nLJbMEfB8LOGGNSz+47//hVGjjFHxwf5E2LIFOnQwjvohQzKd5dGOUiwW7/C7815ENrl+nheRcymO\ns952bAnRubScAAAgAElEQVSfOVd3ne+9Z6bA1q/3kVEZO9akkhw50iwrzqRRiT4dTfVB1UPKl+KJ\ncHzfQxmrM/Tw6GNR1fqun96Hi7VkCd56CyZNMkaldGkvG7t0yexJ2bwZNmyAKpmbrnIfpXQs05FR\nPUeFrEGxWLILTnwsX6hqt/SuhRp2Ksy3DBlicql4ufLXcOQItG8P5cubtcr582eqGetLsVh8SyD3\nsSTbmSAiOTERjy3ZAFWTjHH2bBOl3mujsnatCXXfqZNZVpwJo2L3pVgsoU1aPpaXReQccIe7fwX4\nDbBBKH1AqM+5qpqNj1OnRrFuHZQo4WVjw4aZ5CxTp0L//pkKzZLWvpRQf56JWJ2+xeoMPTwaFlUd\nqqr5gfdVNb/bUURVBwZQoyUIqMKLL5pgkh98AMWKedHYuXMmGdesWfDtt9CkSYabsKMUiyV8cOJj\neRBYq6p/us4LARGqOj8A+jKN9bFkHlV4/nnYuNHsUyxSxIvGfvzRpA6uV8+s/MqdO8NNWF+KxRIY\nAuljGZxoVABcryO97dgSmiQkmLD3X38Nq1d7aVTmz4eGDaFvX7OsOINGxY5SLJbwxGmssJTY9Zw+\nINTmXOPioEcP2L0bVq2CQoXM9QzrjI83cb6efRYWLzYZHzNIZmJ8hdrz9ITV6VusztDDiWH5n4j8\nV0RuFpFKIvIB8D9/C7MElthYE1HlxAnjVylQIJMNnTwJ999v9qds22ZWgGUAO0qxWMIfJz6WfJgw\n+U1dl1YBb6rqBT9r8wrrY3HOX3+ZbSXXXWf2qlx3XSYb2rHDNNS+Pbz9tkkhnAGsL8ViCS42Vlg6\nWMPijHPnoE0bKFXKZPzNlSuTDU2eDC+8AKNHmz0qGcDG+LJYQoOAOe9FpLiIDBORpSKyznWs9bZj\nS/DnXE+fhnvugVtuMXbBk1FJU2dsLPTpY+J8RUVl2Kj4Ml9KsJ+nU6xO32J1hh5OfCxTMTnvb8Ks\nBosBtvlPkiUQ/PYb3H23WQX86aeZjP34yy+mkSNHYOtW+Mc/HFe1vhSLJevixMeyXVWri8j3qnqn\n69o2Va0REIWZxE6FeebYMWjWzAwuIiMztQHebHLp3BmefNJsz7/Gyf8oButLsVhCk0DuY4l1/Twu\nIq1EpDpQ2NuOLcHh55/N1pJevUxgyQwbFVWz0bF9exg3ziwrdmhUEjSBkd+OtKMUiyWL4+Qvwpuu\n3fYvAP2BccDzflWVTQj0nOu+fdCokQnT9eKLzusl6bx40STj+vxzs4Pyvvsct3Hw1EGaTGrC9N3T\n/ZYvJVzmsK1O32J1hh5pGhYRyQFUVtU/VXWXqkaoanVVtUEow4ydO4075M034amnMtFAdLRxyIDZ\no+IwH3HiKKX2uNp2lGKxZBOc+Fi2qmrNAOnxGdbH8jfffANt25qVwB06ZKKBZcvMlvzXXjPxXhzO\nnx08dZDeC3tnWV+KZMo5ZbGEBqn9fQzYPhbXTvtcwEzgAibEi6rqdm879yfWsBgSVwBPnAgtW2aw\nckICDB0KY8bAzJnQoIGzaprA6C2jGbJ+SJbel+L6EgZbhsWSYTx9dn1lWJxsja4GKPBGiut3e9t5\ndicqKoqIiAi/tb90qRlozJxppsEyxJkz0K0bnDpF1IgRRDg0Ku6jlE29NgV0lOLv52mxWJyRVqKv\n51wvX1XVu1MeAdJnySRz50LPnrBwYSaMyu7dULOmSR28di3ccEO6VawvxWKxJOJxKkxEvlPVu0Rk\nh6pWC7Aur8nOU2GTJ8OAAWbEUi2j79zMmWYn/fDhZgWYA7K6L8UTdirMEq4Ecypsj4j8BJQWkV0p\n7mniZklLaDFmjHGLrF0Lt92WgYpXrhhrtGCBiZlftWq6VbKLL8VisWSMtFITdwUaAgeAVkBrt6NN\nQNRlcXy9rv39982xfn0Gjcrx49C0qcn2uG3bVUYlNZ2B2JeSUbLTPoGswoYNG7j11lsD2ufhw4fJ\nnz+/HW36kTT3sajqcVW9U1UPqWqM++GkcRFpISL7ROQnERngocwI1/3vRKRaenVFJFJEjorIDtfR\nwuHvmmVRhcGDzb7Fr75yvMXEsHkz1KhhDMuiRVA47aAK1pcSXkycOJE77riDvHnzUrJkSZ566inO\nnDkTND3XXHMN0dHRSecNGzZk3759fukrIiKCzz///Krr5cqV49y5c3a5uD9RVb8cmCyTB4AKmOXK\nO4HbUpRpCSx1va4NfJNeXWAw0M9B/5odSEhQff551TvvVD1xIoMVR45ULV5cdckSR1UOnDygjSc0\n1rrj6uq+3/dlTnAWItQ/Y8OGDdMSJUroihUrNC4uTmNiYrRly5Zas2ZNjY2N9Xl/cXFx6ZYRET1w\n4IDP+06NiIgI/fzzzwPSV7jh6bPruu7133/nkQMzTi3ggJoRzhVgBtA2RZk2wCSXFfgWKCQiNzqo\na//VwGwz+fe/YdMmWLcOihd3WDExNMu4cWbEks4GFztKCT/Onj1LZGQko0aN4t577yVHjhyUL1+e\nWbNmERMTw5QpUwCIjIykQ4cOdOnShQIFCvDPf/6T77//PqmdX375hfbt21O8eHFuuukmRo4cmXQv\nsW63bt0oWLAgkyZNYuvWrdStW5fChQtTqlQpnnnmGa5cuQJAo0aNALjrrrvInz8/s2fPJioqirJl\nyya1WaFCBYYPH85dd91FoUKF6NKlC5cvX066/95771GqVCnKlCnDuHHjrhoBOSEmJoZrrrmGhIQE\nwIxsXn/9dRo0aECBAgVo3rw5J0+eTCr/zTffUK9ePQoXLkzVqlVZv359hvrLjjg2LCKSJ4NtlwaO\nuJ0fdV1zUqZUOnWfcU2dfe6KYxaWeOMTiIuD7t2NW2T1aihSxGHFgwehbl2ze37zZrj55rSLnzpI\n9UHVQ8qX4gnrY/mbzZs3c+nSJR588MFk1/PmzUvLli1ZtWpV0rWFCxfSqVMnTp8+zUMPPUS7du2I\nj48nISGB1q1bU61aNX755RfWrFnDhx9+yMqVK5PV7dixI2fOnOGhhx4iR44cfPTRR5w8eZKvv/6a\nNWvW8PHHHwPw1VdfAfD9999z7tw5OnbseJVuEWH27NmsWLGCn3/+me+//56JEycCsHz5cj744APW\nrFnDTz/9RFRUlM+ms6ZPn87EiRP57bffiI2NZdiwYQAcO3aMVq1a8frrr3P69GmGDRtG+/bt+eOP\nP3zSb1bFSaKveiKyB/jRdV5VRD520LZTz1hGPxljgIpAVeBXYLingj169CAyMpLIyEg+/PDDZH94\noqKign6+c+fOTNW/fBnuvjuKH3+MYulSyJ/fYf233zZG5fHHierZk6gtWzyWX7tuLc9+/Cy1x9Wm\nbpm6/Kfif/h1969BfV7+ep6ZPXeCiG+OjPLHH39QtGhRrkkl8vSNN96Y7A9jjRo1ePDBB8mRIwf9\n+vXj0qVLfP3112zdupU//viDV199lZw5c1KxYkUee+wxZsyYkVS3Xr16tGlj1vLkzp2b6tWrU6tW\nLa655hrKly/P448/nuH/8J999lluvPFGChcuTOvWrZPe11mzZtGrVy9uu+02rr/+eoYMGeITB7yI\n0LNnTypVqkTu3Lnp1KlTUp9TpkyhZcuWtGhhXLnNmjWjRo0aLF261Ot+g03iZzoyMpIePXrQo0cP\n3zWe3lwZsAUoB+xwu/aDg3p1gOVu54OAASnKfAJ0cTvfB5RwUtd1vQKwy0P/mZh5DH0uXFBt3lz1\nwQdVL11yWCkuTvX111XLlFHdtCnd4taX4oxQ/owtW7ZMc+bMqfHx8Vfde/TRR/Whhx5SVdXBgwdr\nx44dk92vWbOmzpw5U2fNmqU5c+bUQoUKJR358+fX+++/P6nuww8/nKzujz/+qPfff7/eeOONWqBA\nAc2TJ482atQo6b6I6MGDB5PO161bp2XKlEk6r1Chgq5ZsybpfPDgwdqtWzdVVW3RooWOGTMm6d6l\nS5euas8dTz6Wn3/+WUUk6dmkLDdhwgRt0KCBqqo++eSTmjt37mTPIF++fPruu++m2me44OmzSyB9\nLKp6OMWlOAfVtgG3iEgFEbkW6AykjIq8EHgUQETqAH+q6om06opISbf6DwAp99hkWc6eNZHqixc3\n+xivu85BpVOnoFUrEzRs69a/IxSngvWlZB3q1q3Lddddx9y5c5NdP3/+PMuXL6dp06ZJ144c+XvW\nOSEhgaNHj1K6dGnKli1LxYoVOX36dNJx9uxZFi9eDJj/9FNORT355JPcfvvtHDhwgDNnzvDWW28l\n+TK8pWTJksm0ur/2F+XKlaNbt27JnsG5c+d46aWX/N53OOPEsBwWkfoAInKtiPQH9qZXSVXjgD7A\nCmAPMFNV94rIEyLyhKvMUiBaRA4AnwJPpVXX1fS7IvK9iHwHNCaMc8M4nU4BYx+aNYPbbzcBJXM6\nifK2Y4dZSnz77cYRc+ONHosm5p5PzZeSEZ3BJFx0BoKCBQsyePBgnnnmGVasWMGVK1eIiYmhU6dO\nlC1blm7duiWV/d///se8efOIi4vjww8/JHfu3NSpU4eaNWuSP39+3nvvPf766y/i4+PZvXs327aZ\nzOSayjTU+fPnyZ8/P3ny5GHfvn2MGTMm2f0SJUpw8ODBDP0uif106tSJCRMmsG/fPi5evMh//vOf\ndOteuXKFS5cuJR1xcan/T5za7wLwyCOPsGjRIlauXEl8fDyXLl0iKiqKY8eOZeh3yG44MSxPAk9j\nnOfHMEEpn3bSuKouU9UqqlpJVd92XftUVT91K9PHdf8udYuYnFpd1/VH1eytuUtV27lGOFmaEycg\nIgIaN4aPP3aYsHHSJLj3Xnj7bROeJVeuVIvZ3PNZlxdffJGhQ4fSv39/ChYsSJ06dShfvjxr1qwh\nl+vzICK0bduWmTNnUqRIEaZOncqXX35Jjhw5yJEjB4sXL2bnzp3cdNNNFCtWjMcff5yzZ88m1U05\nYhk2bBjTpk2jQIECPP7443Tp0iVZmcjISLp3707hwoWZM2dOqm24436/RYsWPPvss9x9991UrlyZ\nunXrAnBdGkP3J598kjx58iQdvXr1SrVP93P3+2XKlGHBggUMHTqU4sWLU65cOYYPH+6zUVhWJd2w\n+eFKVokVduSIGak8/LBJh5KuI/fyZXj+eVizBr78Ev7xD49Fbe5578gKscKGDBnCgQMH+OKLL4It\nJcPs3buXO+64g9jY2FQXKVg8E7RYYSIy0tM9jIPnWW87t6TNwYPGqPTpAy+84KDC0aMmk1fJkrBl\nCxQsmGqxBE3g460fExkVaWN8ZXPCzTDOmzePli1bcvHiRQYMGECbNm2sUQlB0npH/odxom9zvU55\nWLwkLZ/Anj1m6mvgQIdGJSoKatWCdu1MzHwPRiXRlzJt1zTH+1LCxXcRLjpDifSmokKNzz77jBIl\nSlCpUiVy5cp1lQ/HEhp4HLGo6kT3cxHJby7reX+Lyu5s3w73328CSj7ySDqFVY0PZdgwmDLFDHFS\nwY5SLKkxePDgYEvIEMuWLQu2BIsDnKQmvgOYDCRme/od6K6qu/2szSvC1ceyebMZdHzyCaTYNH01\n585B797w889mlFKuXKrFrC/FP2QFH4sle+JvH4uTycnPMEEfy6lqOeAF1zWLj1m7Ftq2NYm60jUq\n+/ZB7dpmymvDhlSNil3xZbFYgoETw5JHVdclnqhqFJDXb4qyEe4+gcWLoXNnmDMHWqSXCODLL6FR\nI+jXD8aOhdy5ryoSfTqappObZsiX4kRnKBMuOi2WrI4Tw/KziLzm2gVfUUReBTIWTtSSJrNmmRmt\nxYuNw94jcXEmy2O/fibv8GOPXVUkMatj7XG1aXVLKztKsVgsAceJj6UIMASo77q0AYhU1dN+1uYV\n4eJjmTABXnkFli2Du+5Ko+Dvv0OXLmZ35PTpULToVUWiT0fTe2FvLsddtr6UAGB9LJZwJeg+FlU9\nparPqGp11/FcqBuVcGHUKJP5cd26dIzKli0mNEvt2rB8+VVGxX2Ucv8t99tRisWvpEzt656pcerU\nqTRv3jypbEbzpaSsHwxs6mIfkF6USqAmMA/YgQn4uAv43hcRMP15EMKRZ1VV33lHtWTJdRodnUah\nhATVTz9VLVZMdd68VIscPHVQIyZG+DUS8bp16/zSrq8JtM5Q/4yVL19er7/+es2XL1/S8cwzz/i8\nn7QyNaYVfTjYNG7cWMeNGxdsGUHB02cXH0U3dhLKcCrQH9gN2AA5XqJqNj0uWgQffQQVK3oo+Ndf\nZsv9N9/Axo1QuXKy2wmawJitY4hcH8nA+gPtvhTLVYgIixcvpkmTJsGW4oj4+Hhy5AjcZzjcNoeG\nE06c97+r6kJVjVaTKjhGVWP8LSwrEh8Pjz9uNslv2AAdO0akXjAmBho0gAsX4NtvrzIqiSu+pu6a\nysaeG/2e1TEiwoPOECNcdIYCCQkJ9O/fn2LFinHzzTczevToZOl6K1SowJo1a5LKR0ZGJkVETpna\n152JEyfSsGHDZNeWLFnCzTffTLFixXjppZeSppgmTpxI/fr16devH0WLFiUyMjJZ/dT6cZ92c69f\nuHBhKlWqxObNm5kwYQLlypWjRIkSTJ48OcPPxqYu9h4nhmWIKwVwVxFp7zrS22VhScHly2Y58c8/\nm/iQN9zgoeDKlVCnDnTrZpz0+fIl3bIrviwZJfGPeEo+++wzlixZws6dO9m2bVtSpOFEUv43781/\n9vPnz+d///sf27dvZ8GCBYwfPz7p3pYtW7j55pv57bffeOWVV9JtK6WuLVu2cNddd3Hq1Cm6du1K\np06d2L59OwcPHmTKlCn06dOHixcvZlp7IjZ1ccZwMhXWHajiKuv+L8qXflGUBTl/Hh54wOxlXLLk\n7wRdUVFRf/+XnZBgQtyPHm3WHzdqlKwN9xVfG3tuDKhBSaYzhAlFnTLEN1MtOjjjjmRVpV27duR0\nS94zbNgwevfuzaxZs3j++ecpXbo0AC+//HKa/2l7MlBOGDBgAIUKFaJQoUL07duX6dOn07t3bwBK\nlSrF00+bLBy5U9mPlR4VK1ake/fugMnX8tZbb/H666+TK1cu7rnnHq699loOHDjAnXfemWn97qmL\nE/tZuNDkLEwrdfGjjz6a6T7DHSeGpQZwq3rzycrGnDwJLVvCnXeaMC2pTiH/+Sd0726WFG/dCq4v\nO1hfSriTGYPgK0SEBQsWpOpj+fXXXylbtmzSeTkP4YB8Qcp+fvnll1TvZYYSJUokvb7++usBKFas\nWLJr5897H97wRrckee5tHjp0iNmzZ7No0aKk+3FxcWHj1/IXTgzLZuB24Ac/a8lyHD1qcm21aWMG\nIylnEyIiImDXLhO/pUULmD0brr026X4wRylX6QwDwkVnKFCyZEkOH/4747j7a4C8efNy4cKFpPPj\nx49nuq/Dhw9z2223Jb0u7faPU1pTbHnzmgAfFy9eJJ9rStgbHf4gMXXxZ5/ZKFfuOPGx1AV2ish+\nEdnlOr73t7BwZ/9+aNgQevSAd97xkKBr+nRo0sRsZhk5MsmoWF+KxVd4mmjo1KkTI0aM4NixY5w+\nfZp33nkn2R/5qlWrMmPGDOLi4ti2bRtz587NtJ9l2LBh/Pnnnxw5coQRI0bQuXNnR/WKFStG6dKl\n+eKLL4iPj2f8+PEZTmucHjZ1sX9wYlhaALcA9wKtXUcbf4oKd3bsMKmEX3kFXnoplQKxsdC3L1Ev\nvGBy0bvFxg/0ii8nhEsMrnDRGUhat25N/vz5k4727dsD8K9//YvmzZtz1113UaNGDdq3b5/sj+d/\n/vMfDh48SOHChYmMjOThhx9O1q4nI5PaEt62bdvyz3/+k2rVqtGqVask/4qnFMHu18aOHcv7779P\n0aJF2bNnD/Xr1/dYNi1dnrCpi/2ELzbDhOJBkDavrV9v9jPOmeOhQEyMau3aqq1a6bqFC5MuxyfE\n66hvR2nR94rqsE3DNC4+LjCCHWA3SKZOsD5j/uDnn39WEdH4+PhgS7EEAE+fXXy0QdLmvPchixaZ\nYJLTpnnIt7V4sSnw4osmLaTrvx4b4ys8yUqxwmJiYrjpppuIi4uzqX6zAUGPFWZxxhdfwL/+ZWzH\nVUblyhUzJ/bUUzBvHvTvDyLWl2IJKewudIuvcLIqzJIOH31kMgOvXQu3357i5tGjZmdkwYIm57Ar\ngGT06WgefPdB8tySJ6grvpwQivtDUiNcdIYiFSpUID4+PtgyLFkEO2LxAlWzoGv0aBPO6yqjsny5\niUrcqpUZyhQtmiyrY90yde0oxWKxZDmsjyWTJCTAs8/Cpk2wYgUUL+52My7OWJxJk4zDxbWL3uae\nz1pkJR+LJXthfSwhyJUrZoXwrl0moGQyo/LLL9C0qdlBv307NGpkc89bLJZshTUsGeTiRWjb1sT/\nWr7cuE6SWL0a/vlP471ftgyKFyf6dDRNJjVJNfd8uOy7sDotFktGsIYlA/z5pwnRUrQozJ0LrtBE\nJh7+4MEm3tfUqfDaayRcI3aUYrFYsiXWx+KQ48eheXO4+274739N6vmkGw8/bDz506bBjTdaX0o2\nwfpYkvPXX3/RqVMnNmzYQPPmzZk5c2awJYUFb7/9NtHR0YwdOzbV+1OnTmXy5MmsWLHCZ33628cS\n9B3y/jrw4a7o6GjVm29WfeMNky04ibVrVUuVUn3tNdW4OI1PiNeR347UG969IeR2z1t8jy8/Y/6g\nfPnyunr1akdlfZGmd/LkyVqrVq2A796/fPmyDh48WG+55RbNmzevVqhQQXv16qUxMTEB1eELAhUB\nwdNnFx/tvLdTYemwe7cJJtmvH7z2mmuzfEICvPkmPPQQTJgAb7xB9NlDHn0pnggXn4DVGZ5kJPWu\nt5sj4+PjOXToEJUrVw74zv0OHTqwePFipk+fztmzZ/nuu++oUaNGsgyY4YaG+0jYF9YpFA988N/k\n5s2qxYurTpvmdvG331TvvVe1YUPVY8e8GqXYGFy+xcYKS06FChV0zZo1qqo6YcIErV+/vvbv318L\nFy6sFStW1GXLlqmq6ssvv6w5cuTQ3Llza758+fSZZ55RVdW9e/dqs2bNtEiRIlqlShWdNWtWUtvd\nu3fXf//739qyZUvNmzev1q9fX6+99lrNlSuX5suXT8ePH68HDx7Uu+++W2+44QYtWrSoPvzww/rn\nn38mtXH48GF94IEHtFixYnrDDTdonz59ku59/vnnetttt2nhwoW1efPmeujQoVR/x1WrVun111+v\nR48e9fgcjh07pq1bt9YiRYpopUqVdOzYsUn3Bg8erB06dNBHHnlE8+fPr3fccYfu379fhw4dqsWL\nF9dy5crpypUrk8o3btxYBw4cqLVq1dICBQpo27Zt9dSpU0n3FyxYoLfffrsWKlRIIyIidO/evUn3\n3nnnHS1durTmz59fq1SpkvTeDB48WB955BFVVS1btqyKiObLl0/z58+vX3/9tU6YMEEbNGiQ1M6m\nTZu0Ro0aWrBgQa1Zs6Zu3rw5mb7XXntN69evr/nz59d7771X//jjj6ueiafPLj4asQTdAPjr8PZL\nv3y5atGiqkuXul386ivVMmVUBw1SvXJFD546qI0nNNa64+rqvt/3edWfJfwIN8OSK1cuHTdunCYk\nJOiYMWO0VKlSSWUjIiL0888/Tzo/f/68lilTRidOnKjx8fG6Y8cOLVq0qO7Zs0dVjWEpWLBg0h+1\nS5cuaWRkpHbr1i2pjQMHDujq1as1NjZWf//9d23UqJH27dtXVVXj4uL0zjvv1H79+unFixf10qVL\nunHjRlVVnT9/vlaqVEn37dun8fHx+uabb2q9evVS/R0HDBigERERaT6Hhg0b6tNPP62XL1/WnTt3\narFixXTt2rWqav6o586dW1euXKlxcXH66KOPavny5XXo0KEaFxenY8eO1YoVKya11bhxYy1durT+\n8MMPeuHCBW3fvn2SUfjxxx81b968unr1ao2Li9P33ntPK1WqpLGxsbpv3z4tW7as/vrrr6qqeujQ\nIT148KCqqkZGRia1ERMTc9VUmLthOXnypBYqVEinTJmi8fHxOn36dC1cuHCScWvcuLFWqlRJf/rp\nJ/3rr780IiJCBw4ceNUzsYYlCIZl5kwzUnF9zlXj41XfeUe1RAnVpUutL8Wiqg4Ni1nW4f2RCVIa\nlkqVKiXdu3DhgoqInjhxQlWNYXH3scyYMUMbNmyYrL3HH39chwwZoqrGsHTv3j3Zfff/vFNj3rx5\nWq1aNVVV3bx5sxYrVixVX0KLFi2SGbn4+HjNkyePHj58+Kqyjz32mHbp0sVjn4cPH9YcOXLo+fPn\nk64NGjRIe/TokaT53nvvTbq3cOFCzZcvnya4nKlnz55VEdEzZ86oqnlOgwYNSiq/Z88evfbaazU+\nPl7feOMN7dy5c9K9hIQELV26tK5fv15/+uknLV68eJKhdcf9uaXmY3E3LJMnT9batWsnq1+3bl2d\nOHFikr633nor6d7HH3+sLVq0uOq5+NuwWB9LCj79FJ5/Hlatgvr1MbmFW7eGhQth61ai61TJsC/F\nE+HiE7A6vcBXpsUHuKfXzZMnD0CytL3ufpZDhw7x7bffUrhw4aRj2rRpnDhxIqlsemmFT5w4QZcu\nXShTpgwFCxakW7dunDx5EoAjR45Qvnz5VP0xhw4d4rnnnkvq94YbbgBINXlW0aJF+fXXXz1q+OWX\nXyhSpEhSNkowWR/d2yrutsP5+uuvp2jRoknPIjHdsftzSplq+cqVK/zxxx/8+uuvyVI8Jz6jY8eO\nUalSJT788EMiIyMpUaIEXbt2TVN3Wr9PyjTS5cuXT5bu2VMa5UBiDYsLVRg6FN57D776yuSo5+uv\noXp1uP12EtatZdSvC+y+FEuWJKXzvly5cjRu3JjTp08nHefOnWP06NGO23j55ZfJkSMHu3fv5syZ\nM3zxxRdJCbDKli3L4cOHUw18Wa5cOT777LNkfV+4cIE6depcVbZZs2Zs2bLFY8bGUqVKcerUqWR/\nXERgPq4AAA7bSURBVA8fPkyZMmU8P4x0SJnSOVeuXBQrVoxSpUpx6NChpHuqypEjR5JSMXft2pUN\nGzZw6NAhRIQBAwZc1XZ6iyhKly6drA8whtg93XMoYA0Lxqj0728yBW/YADffpDB8OLRrB6NGEf3y\nkzSZ1twnoxR3wiUSr9WZ9SlRokSytL+tWrVi//79TJkyhStXrnDlyhW2bt3Kvn37gNRXLaW8dv78\nefLmzUuBAgU4duwY77//ftK9WrVqUbJkSQYOHMjFixe5dOkSmzdvBuDf//43Q4cOZc+ePQCcOXOG\n2bNnp6q7adOm3HPPPTzwwANs376duLg4zp07xyeffMKECRMoW7Ys9erVY9CgQVy+fJnvv/+e8ePH\n84hb1taMoKpMmTKFvXv3cvHiRV5//XU6duyIiNCxY0eWLFnC2rVruXLlCsOHDyd37tzUq1eP/fv3\ns3btWi5fvsx1111H7ty5yZHj6r8hxYoV45prrvGYgvm+++5j//79TJ8+nbi4OGbOnMm+ffto1apV\nMo3BJtsblrg46NXLDE7Wr4dS1582BmXWLBK++ZpRJQ5Ra2wtWlW2+VIs4Ut66Xafe+455syZQ5Ei\nRejbty/58uVj5cqVzJgxg9KlS1OyZEkGDRpEbGxsmu25Xxs8eDDbt2+nYMGCtG7dmvbt2yfdz5Ej\nB4sWLeLAgQOUK1eOsmXLMmvWLADatWvHgAED6NKlCwULFuSOO+5Ic3PgnDlzaNmyJZ07d6ZQoULc\ncccdbN++nXvuuQeA6dOnExMTQ6lSpXjwwQd54403aNKkiaPnkvJcROjWrRs9evSgZMmSxMbGMmLE\nCACqVKnClClTeOaZZyhWrBhLlixh0aJF5MyZk8uXLzNo0CCKFStGyZIl+eOPP3j77bev0pAnTx5e\neeUV6tevT5EiRfj222+T3b/hhhtYvHgxw4cPp2jRogwbNozFixdTpEgRj3qDkWcnW++8v3QJunQx\nP+fOhbw/bDG5U9q1I3rgE/Ra9m+/7p4Pl/whVmfq2J332Y+7776bbt260atXr2BL8Qob3diPTJwI\nuXPDwgVK3s9HQKtWJAx7n1Fdb6bWpAbWl2KxWK7C/jORPtl6xKIKCafPkOPx3hATw+Gxw3j0u0gb\n48viCDtiyX7YEYvD9rPqF8NREMrt26FTJ7R5c8Z0rcTrm99iUINB9K3T1yfOeUvWxhoWS7hip8L8\nydmznHj5Oe6u+QNTfpzt0xVfTgjJfRepYHVaLJaMkG0NS4ImMCrPbv7xxxDrS7FYLBYfki2nwmy+\nFIsvsFNhlnDF31NhOb1tIJxI0AQ+3voxkVGR1pdi8QnB2CNgsYQ6fp0KE5EWIrJPRH4SkavjF5gy\nI1z3vxORaunVFZEiIrJKRPaLyEoRKeRES1q554NFuPgErM7UyWyAvnXr1gU9SKvVaXX6E78ZFhHJ\nAYwCWgC3A11F5LYUZVoClVT1FuBxYIyDugOBVapaGVjjOvdIgiaEbO75nTt3BluCI6xO32J1+har\nM/Tw51RYLeCAqsYAiMgMoC2w161MG2ASgKp+KyKFRORGoGIaddsAjV31JwFReDAu7r6UTb02hYxB\nSeTPP/8MtgRHWJ2+xer0LVZn6OHPqbDSwBG386Oua07KlEqjbglVPeF6fQIo4UlAKI5SLBaLJavj\nzxGL00k8J95PSa09VVUR8dhPKI5S3ImJiQm2BEdYnb7F6vQtVmcI4kfHUB1gudv5IGBAijKfAF3c\nzvdhRiAe67rK3Oh6XRLY56F/tYc97GEPe2Ts8MXff3+OWLYBt4hIBeAXoDPQNUWZhUAfYIaI1AH+\nVNUTInIyjboLge7Au66f81PrXH2wFttisVgsGcdvhkVV40SkD7ACyAF8rqp7ReQJ1/1PVXWpiLQU\nkQPABaBnWnVdTb8DzBKR3kAM0Mlfv4PFYrFYMk6W3XlvsVgsluAQdrHC/LHpMpR0ikhZEVknIj+I\nyG4ReTYUdbrdyyEiO0RkUajqdC1jnyMie0Vkj2vaNdQ0DnK957tEZJqIXOcPjU50isitIvK1iFwS\nkRcyUjcUdIbadyit5+m6HxLfoXTe94x9h4K9+zODCwJyAAeACkAuYCdwW4oyLYGlrte1gW+c1g0R\nnTcCVV2v8wE/hqJOt/v9gKnAwlB8313nk4Bertc5gYKhpNFVJxq4znU+E+gexGdZDKgBvAm8kJG6\nIaIz1L5Dqep0ux8q3yGPOjP6HQq3EUvSpktVvQIkbpx0J9mmSyBx06WTusHWWUJVj6vqTtf185hN\noaVCTSeAiJTB/LEch7Nl4wHXKSIFgYaqOt51L05Vz4SSRuAscAXIIyI5gTzAMT9odKRTVX9X1W0u\nTRmqGwo6Q+07lMbzDKnvkCedmfkOhZth8demS1+TWZ1l3Au4VsVVA771uULPGpw+T4APgBeBBD/p\nc6IhrTJlMFEcfheRCSKyXUTGikieENJYWlVPAcOBw5hVkH+q6mo/aHSq0x91M4pP+gqR71BahNJ3\nyBMZ/g6Fm2FxutIg2EuNM6szqZ6I5APmAM+5/uvyB5nVKSLSCvhNVXekct/XePM8cwLVgY9VtTpm\n9WGa8eUySaY/myJyM9AXM01RCsgnIg/7TloyvFmtE8iVPl73FWLfoasI0e9QamT4OxRuhuUYUNbt\nvCzG8qZVpoyrjJO6viKzOo8BiEguYC4wRVVT3acTAjrrAW1E5GdgOtBERCaHoM6jwFFV3eq6Pgfz\nJQkljTWAzap6UlXjgC8xz9cfePM9CLXvkEdC7DvkiVD7Dnki498hfzmL/OSAygkcxPxndy3pO0jr\n8LeDNN26IaJTgMnAB6H8PFOUaQwsClWdwFdAZdfrSODdUNIIVAV2A9e73v9JwNPBepZuZSNJ7hQP\nqe9QGjpD6jvkSWeKe0H/DqWlM6PfIb8+dD89oPswqzwOAINc154AnnArM8p1/zugelp1Q00n0AAz\n37oT2OE6WoSazhRtNMaPK1p88L7fBWx1Xf8SP6wK84HGl4AfgF0Yw5IrWM8Ss6rqCHAGOI3x/eTz\nVDfUdIbadyit5+nWRtC/Q+m87xn6DtkNkhaLxWLxKeHmY/n/9s49xKoqisPfbwrpbdmbyJKKiiiS\nmRJKyujxR2WQWfZEoQjKUgqC6EFTWBGWISMRQalkRUkPTAnGzMrMmkbUKY0S0YIeaKEwGaTl6o+9\nrrO73Tv3Xj3DjLo+ONx199ln77XXuXPW2WefWSsIgiAY4IRjCYIgCAolHEsQBEFQKOFYgiAIgkIJ\nxxIEQRAUSjiWIAiCoFDCsQR9jqQJktoaPOYNDy0/uYD+Hyr7vnR326zR3xmSVkpaLmlY2b6+Ci3S\nZ0hqljS9wWM2SBri8i7bW9LoXlIQ7HG23FeI/2MJ+hxJ44EWM7u3zvrHAUvM7LQK+/Yzs38a7L/b\nzA5t5JjdQdKDwH5m9mR/69JfeJiSZksBNvuqj33ClnsiMWMJaiLpZE8QNFPSd5Jek3SFpKWSvpd0\nntcbIuk9n2ksk3R2hbaO9oRBHb5VionVDpzgyY9GSvpY0vOSvgImS7pa0hceaXWhpGO87UNcxy7X\nYYykp4EDva1Xvd4f/ilJU5WSa3VJusHLR3mfcz2x0ZwqdjnX9Vgl6R1PhnQlMBm4S9JHVY6bppSA\n6kNJR3nZKZI+kNQp6VNJp3v5LEnT3dbrJF3n5U/4mFZI+knSK15+q6QvvfxFSU2lMUua4jOpZZnN\nap4Pt8f7LrdKekUpkdY6STVvFsrsPcN/SwslLcjGk89wWiQtdnnnbFfSMNe9S9KUWv0G/UhfhhCI\nbe/YSPGFtgNnkeIwdQIv+75rgHddbgMedfkSYIXLE4A2l18HLnR5KLCmQn8nAV9n3xcDM7Lvh2fy\nHcCzLj8DTCuvB3SXtd/tn9eRnJiAY4AfSGEtRgFbSJGGBXxe0rmsnS5SngqAx/HYVMBjwP1VbLkD\nuMnlRzO7LAJOdXkEsMjlWcCbLp8JrC1rb7DrMdz3zyPNlgBeAG7L+r0qs9PDDZyPUXgcK1KcqM9I\nyaKOBH4r9Vd2zHpgSJm9x2T2Pp4UNmRMhfotwOIKv515wK0u311+XmMbONv+BEF9rDez1QCSVgOl\nfCHfkBwPwIWkiwdmtljSkZLKH1VcBpwp7YwSfqikg8zsz6xOpRDib2byiZLeIjmBQaTsiwCXAuNK\nlcxsS40xjQRet3Sl2ijpE+A8UuKtDjP72ce70se4c61AKfnRYDNb4kWzgbmZ/tXCoO/IxjIHeEfS\nwaRIt3MzuwwqDQN4z8fzrTzJmusgUubB58xshaR7gGag09s5EPjVq28zswUuLwcud7me85FjwAJL\nyaJ+l7QROJaUR6YWF9Fj71+qzeh64QLgWpfnkBxkMAAJxxLUy1+ZvAPYlsn576hqjpls/wgz20Zj\nbM3kNtIsZb6ki0l30dX67w2rUL+kbz7ef6j9t5K3U+/CpbxuE7DZzIZXqZfbKu+nFfjRzGZnZbPN\n7D8vKzh5VsD8nO3K+cjr1mObEuX2zuW/6Xk0f0ADugQDkFhjCYpkCXALpOfywCb7f4KldmBS6Yuk\nc+tsO78IHUbPHfKErHwhMDFr+3AXtyul/K2k7zhJTZKOJt1Rd1CHc7KUmnWzpJFedBvwcQVdy2kC\nrnf5ZtJLCt3AekljXW9JOqe3/iWNJs3Q8rfmFgFjfSylNa+hNYbS6PnYnYRUn9Jj7+NJj9hKbCA9\nAoP0iLISS4EbXe6rRGhBAYRjCeql/C7cKsitQLOkVcBTwPhsf6nOJKDFF7xXA3fuQn+tpMdGncCm\nbN8U4AhfjF9Jz4XrJaBLvnhfqm9m75LWJ1aRLsoPmNnGMn2r6YOPb6qP9xzgiQrjLWcrcL6kr12/\n0jG3ALe73t+Q1q4q9V2S7yOtAXX4Qn2rmX0LPAK0u07tpMeFldpo5Hzk9XsbWzVye68F1pAeHS6j\nx1E9DkxXekHj7yr9TQYmSurysccrrQOUeN04CIJ+QdJMYL6Zvd3fugTFEjOWIAj6k7iz3QuJGUsQ\nBEFQKDFjCYIgCAolHEsQBEFQKOFYgiAIgkIJxxIEQRAUSjiWIAiCoFDCsQRBEASF8i+/adytZvs2\n2QAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb202fd0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFGXWxuHfARXFhC7KmgDzrgnUhRXjmBUVc9hlQdR1\nMWLYNazuimHNAfQzg4oBxYABUJE4qKgoCuaACgoqCgoKRmDO98dbo83QM9PDdFd1dT/3dc3F9HR1\n10PNdJ+u81a9Ze6OiIhIbZokHUBERIqbCoWIiNRJhUJEROqkQiEiInVSoRARkTqpUIiISJ1UKCQ2\nZnahmd1bx/1vmdnOhVxHmplZazObZ2aWdBYpLyoUZczMjjKzCWY238y+NLOXzOzEAq6yzpN23H0L\nd3+2UOswswozm57Lk5hZWzOrMrPEXiNmNs3Mdqu+7e6fuvvKXoCTnyzoZWZvRn8P083sITPbIt/r\nkvRRoShTZvZPoC9wJdDK3VsBJwA7mNlytTymsX8vcXwSzvc6CpLZzJrmsJgXav1ZXA/0Ak4FVgM2\nAR4H9mvoE5nZMvmNJklToShDZrYqcBFwors/6u7fA7j7ZHf/m7v/Ei03wMxuMbOnzGw+UGFm+5nZ\nJDP71sw+NbPeGc9b/Sn8eDP7zMw+jwpSNQeWM7O7zey7qNW0bcbjp5nZ7tH3Tc3sPDP7MFp2opmt\nE913fbTub6Of77iU26HSzC42s+ejdTxjZr+L7q7es5kbtXv+HD3mWDN7x8y+MbPhZtY64/n2MrP3\nzWyumd1kZuPM7Ljovh5mNt7MrjOz2UBvM9vAzMaY2Wwzm2Vm90W/G6L2WWtgaLT+f9XcyzGztc1s\niJl9bWZTzOzvGVkujPYIsm7rGtthY+Ak4Ch3r3T3Be7+o7vf7+5XZmyr4zIe08PMnsu4XWVmJ5nZ\nB8AHZnazmV1dYz1PmNkZGdkHm9lXZvaxmZ3a8N+gxEWFojx1ApoBT+Sw7F+AS9x9JWA8MB/4m7uv\nSvi0eaKZHVjjMRXARsBewDnVb/6ET8ddgAeAVYEhwI0Zj3N+ax2dCRwF7OvuqwDHAD9G970MtCN8\n8r0feLi2vaAc/389gDWB5YB/RT/fKfp31ajdMyH6f/4bOBhoCTwX/V8ws5bAw8A5wOrA+4TtnNkm\n6gh8FK3rsmh7XAqsBfwRWA+4EMDduwGfAvtH678mS/ZB0TJrAYcBl5nZrhn3H0Dt2zrT7sB0d59Y\ny/2w+O+mNgdG/8c/Rus9svoOM1sN2BN4ICp0Q4FJwNrR+k83s73qeX5JiApFeWoJzHb3quofmNkL\nZjbHzH6o8Qn9cXd/EcDdf3b3ce7+dnT7TcKb1S41nv+i6BPpW8BdhDfjas+5+/Coz34f4Q0/m78D\n57v7lOp1ufs30fcD3X2Ou1e5+3WEorfpUmwHB+5y9w/d/SfgIaB99SbJsvwJwOXu/n607S4H2kd7\nFZ2Bt9z98SjXDcDMGo//3N1viu7/yd0/cvfR0Sf42UAfltyWWZnZesD2wDnu/ou7vw70B7pnLJbr\ntv5dlqxL43J3n+vuPwPPA25m1QX3MOAFd58JdABauvv/3H2hu0+Nsh+VhwxSACoU5elroGXmmIO7\nb+/uq0X3Vf/cgcUGf83sz2Y2NmoZzAV6Et5oMmU+5lPCp8ZqX2Z8/wOwfC1jH+sSPn0vIWrDvBO1\neOYQPjG3rOX/Wp/MN8gfgZXqWLYNcH1UUOcQthXAOoRP9TNqLF/zds1t2crMBpnZDDP7FriXJbdl\nbdYGvqluG0Y+jbJUy3Vbfx3lb6xf/39RcRrEbx8S/goMjL5vA6xdvR2jbflvwp6WFCEVivL0IvAz\ncNBSPPZ+wiDnuu7eAriVJf+OWtf4/rOlWM90QvtqMdEn1LOAw929RVTcviX/g77Z2iyfAv9w99Uy\nvlaM9ri+IBS36pyWebuW57wMWARsEbXyurH4tqyr1fM5sLqZZRa21ixZnHIxGli3tjGMyPfAihm3\nf59lmZp5HwAOM7M2hJbU4OjnnwJTa2zHVdx9/6XILjFQoShD7j6XMJh9s5kdamYrm1kTM2vP4m8G\n2d58VwLmuPsvZtaR8Emx5hvEf8xsBTPbnND/f3ApYvYHLjGzjSzYysxWj9a/EJhtZsuZ2QXAKkvx\n/NVqKzCzgCpgw4yf3QqcZ2abQTgowMwOj+57CtjSzA60cNTPyWR/M820EuEN+DsLA/Vn1bj/yxrr\n/5W7TwdeAC43s2ZmthVwLKHF1CBRe+9mwvjBLtF2Xd7C4dPnRItNBg6Jfq8bAcfV+oS/Pe9kYDbh\ndznc3b+L7noZmGdmZ0fP19TMtjCzPzU0u8RDhaJMufvVhAHjswntl5mEN8KzCXsckH0A8yTgYjP7\nDvgv2YvAOOBDYBRwtbuPquP5avvUfB1hzGAEYY+hH7A88AwwHPgAmEZoF31a4/nq+iRe1/p/fay7\n/0AYaB4ftUc6uvvjhMOJB0WtojeBvaPlZwOHA1cR3hz/CEwk7LnVlusiYJvo/zeU8Ik7c5nLCUV3\njpmdmSXvX4C2hL2LR4EL3H1MHeurdbu4ey/CYPdNwBzC7+9AwiA4hPGTXwjF6y5CQaq57bK5H9gt\n+rd6XVXA/oTxoI8JRfl2GlfwpYCs0BcuMrNpwHeEXewF7t6xluU6EN6gjnD3RwsaSgrCzNoSXvjL\nZA6Ul6NoLGA68Fd3H5d0HpHGiOPEGAcqqo9YycbCyUdXEj4panoCSaXo8M6XCXs51W2kl5JLJJIf\ncbWe6nvzPxV4hLALKulWztfW7URo2cwinGNyUHSoqEiqxdF6+pjQg10E3Obu/Wrcvw6h37kbcCcw\nVK0nEZHiEUfraQd3/8LM1gBGmtl77v5cxv19gXPd3aNDCtV6EhEpIgXfo1hsZWFeoPnufm3Gzz7m\nt+LQknBi0PHuPiRjmXJuZ4iILDV3b/SH74KOUZhZczNbOfp+RcLcP29mLuPuG7j7+u6+PmGc4sTM\nIpGxXGq/evfunXgG5U8+R7llV/7kv/Kl0K2nVsBjoaPEMsBAdx9hZj0B3P22Aq+/KEybNi3pCI2i\n/MlJc3ZQ/lJR0ELhYbKv9ll+nrVAuPsxhcwjIiINpzOzY9CjR4+kIzSK8icnzdlB+UtFrIPZS8vM\nPA05RUSKiZnhxT6YLUFlZWXSERpF+ZOT5uyg/KVChUJEROqk1pOISIlS60lERGKhQhGDtPc5lT85\nac4Oyl8qVChERKROGqMQESlRGqMQkdhUVcF118GOO0L//vDjj0knkjipUMQg7X1O5U9OMWSfNQsO\nOAAefhhOPx2eeALatIF//xumT6/7scWQvzHSnj9fVChEpFaVlbD11rDllvDss3DYYTB0KLzwQtir\naNcOjjgCxo8HdYdLl8YoRGQJixbBxRfD7bfDgAGw997Zl/vuO7j7brjhBlh1VejVC448Epo1izWu\n1CJfYxQqFCKymBkzoGtXWHZZuPdeWGut+h9TVQVPPx0KxuuvQ8+ecMIJuT1WCkeD2SmS9j6n8icn\n7uzDhsGf/hT2IJ55Jvc3+iZNYL/9wmPGjAnjGpttBnvuWckrrxQ2cyGl+W8nn1QoRIRffoEzzoCT\nT4ZHHoHzzoOmTZfuuTbbDG6+GT7+GDbaCA4/HLbfHgYNggUL8ptb4qHWk0iZ+/BDOOooWG89uOMO\nWH31/D7/okUwZEhoS02ZAieeCP/4B6yxRn7XI0tS60lEGu2BB6BTJ+jRAx59NP9FAsKeycEHw9ix\n8OSTMHUqbLIJHHdcGM+Q4qdCEYO09zmVPzmFyv799+GNundvGDECTjkFrNGfO5dUM3+7duGEvSlT\nYMMNw7hGRUUoUosW5X/9jZXmv518UqEQKTNvvgkdOoTxgldfDedJxK1lyzAOMnVqaEVde20oHNdc\nA3PmxJ9H6qYxCpEy4R7Oi/jPf8Ibc/fuSSda3CuvhHGMYcPCmMmpp4aBcVl6Oo9CRHI2d24YQP7g\nA3jwQdh006QT1W7mTLj11vC11VbhJL7OncMhuNIwGsxOkbT3OZU/OfnIPmECbLMNrLkmvPRSvEVi\nafL//vdw4YXwySfQrVv4ftNNw97Gd9/lO2Hd0vy3k08qFCIlqqoKrr4aunQJraYbb4Tll086Ve6a\nNQuF4pVXwjQh48dD27Zw2mlhMFzio9aTSAn66is4+mj49ttwCGybNkknyo/p0+GWW8KRUx07hqKx\nxx6FOWKrFKj1JCJZjRkTWk1bbw3jxpVOkYBwUuBll4W21MEHwz//CZtvHsYzvv8+6XSlS4UiBmnv\ncyp/chqSfeFC+O9/4W9/g7vuCm+oyy5buGy5KNS2X2GF307Yu+mmMMdUmzZw1llhLypf0vy3k08q\nFCIlYPp02HXXMHD92muw555JJ4qHWfh/P/ZYGMv44oswJqMr8OVXwccozGwa8B2wCFjg7h1r3N8V\nOBswYB5woru/UWMZjVGI1GLIEDj++DCp39lnl/dhpFVVYY/qhx/C5IbLLJN0omSl5jwKM5sKbOvu\n39RyfyfgHXf/1sz2AS509+1qLKNCIVLDzz+HwvDEE7/N2SRhJtwuXWCddcKgdzkPdKdtMLvWoO7+\nortXdxUnAOvGEyk+ae9zKn9yass+ZUooDNOnw6RJxVskktj2yy0HgwfD22+H63o3Rpr/dvIpjkLh\nwCgzm2hmx9ez7HHAUzFkEkmtgQPD9R3+/vfwhrjaakknKj4rrhhmqh0yJJxDIo0TR+tpLXf/wszW\nAEYCp7r7c1mW2xW4CdjB3efUuE+tJyl7338fZnl98cVwEaD27ZNOVPymT4cdd4RLLim+ua3ikK/W\nU8GHetz9i+jfWWb2GNARWKxQmNlWQD9gn5pFolqPHj1o27YtAC1atKB9+/ZUVFQAv+0e6rZul+rt\njz6Cq6+uoFMn6NOnkrlzAYonX7HeXm89uOSSSk4/HVZfvYL99y+ufPm+XVlZyYABAwB+fb/MC3cv\n2BfQHFg5+n5FYDywV41lWgMfAtvV8TyeZmPHjk06QqMof3LGjBnrN9/s3rKl+733Jp2m4Ypl20+Y\nELbhc8817HHFkn9pRe+djX4vL/QeRSvgMQuHHSwDDHT3EWbWM3r3vw24AFgNuCVabolDaEXK0Zw5\nYUK8774L8xxtsknSidKrY8cwtnPooTBqFGy5ZdKJ0kVzPYkUoRdfhL/8BQ48EK66KkyQJ4334INh\n2o/nnoP11086TeGlZoxCRHJXPePrddeFiwwdeGDSiUrLkUfCrFmw115hL23NNZNOlA5lfA5nfKoH\nm9JK+ePx5Zew774wdGiYjuLAA9OTvTbFmP+UU+Cvf4V99qn/+hbFmD8JKhQiRWDUqDDja8eOUFkJ\nrVsnnai0XXghbLcdHHQQ/PRT0mmKn8YoRBK0cCH07g0DBsA998DuuyedqHwsWhTGgRYtgocegqZN\nk06Uf2mbwkNEavj0U9hlF3j11TDjq4pEvJo2hXvvDe2nE08EfRatnQpFDNLe51T+/Hv8cejQIbQ+\nnnoKWrXKvlwxZm+IYs/frBk8+miYL+u//13y/mLPHxcd9SQSo59+ChfXGTYszPq63Xb1P0YKa+WV\nQ7HecUdYY41weVVZnMYoRGLy/vtw1FGw4YZh+usWLZJOJJk++SQUiyuugK5dk06THxqjEEmRe+4J\nb0InnAAPP6wiUYzatIHhw+HMM+Hpp5NOU1xUKGKQ9j6n8i+9+fPh6KPh8sthzBjo2bNhF9LRto/X\n5puH8aPu3cPZ8WnLXygqFCIFMnkybLttuBznxImaXygtOnUKe4AHHQRTpyadpjhojEIkz9zhppvg\noovg+uvDWcCSPgMHwrnnwvPPh7ZUGmmuJ5Ei9M03cNxx4RyJF1+EjTZKOpEsra5dYfbsMC/U88+H\nI6LKlVpPMUh7n1P5czN+PGy9NbRtCy+8kJ8ioW2frHbtKjnsMOjcGebNSzpNclQoRBqpqgouuyxc\n6+DGG6FPH00LXkr+97/wAeDgg+Hnn5NOkwyNUYg0wsyZ0K1beAO5/35Yd92kE0khLFoERxwRpv14\n4IH0zAul8yhEEjZiRJjxdfvtw6GvKhKlq2nTMLg9axacemr5zQulQhGDtPdplX9xCxaEo2GOPTa8\neVx0UTgEthC07ZOVmX/55cO0Ky+9FH7n5URHPYk0wLRpYWrq1VYLE8mV85Ew5WiVVcJZ29XzQp18\nctKJ4qExCpEcDR4cpqM+5xw44wxoov3xsjV1Kuy0E1xzTZi/q1jpPAqRmPz0U5j/55lnwqyvHTsm\nnUiStv76YcbZPfYI193ebbekExWWPhPFoJT6tGnUmPzvvQd//jN8/XW4uFDcRaKct30xqCv/VltB\nv37hQ0SpNzxUKESycA+XJ91pJzjlFBg0CFZdNelUUmy6dAkHN4wZk3SSwtIYhUgN8+aFsYhJk+DB\nB2GLLZJOJMWsf3947DF48smkkyxJ51GIFMBXX4XZQ1dYAV55RUVC6ve3v4Xrnr/7btJJCkeFIgal\n3KdNg1zzz54Nu+8epuLo1w+aNy9srlyUy7YvVrnkX355OOkkuO66wudJigqFCGHW1z32gAMOgAsv\nTDqNpM2JJ8Ijj4Q90lKkMQope3PmhCKx225w1VUNuwKdSLWePWGttYrrg0a+xihUKKSsffst7Lkn\n7LBDaB2oSMjSeu892GWXcPb+CisknSZIzWC2mU0zszfMbJKZvVzLMjeY2RQze93Mti50priVQ5+2\nmNWWf9482HffcJ5EsRaJUt32adGQ/H/4A3ToAPfdV7g8SYljjMKBCnff2t2XOF3JzDoDG7n7xsA/\ngFtiyCRlbv78cDGarbaCG24oziIh6XPmmeF6JFVVSSfJr4K3nsxsKvAnd/+6lvtvBca6+4PR7feA\nXdz9y4xl1HqSvPnhB9hvP9hwQ7j9ds3ZJPnjHqaev/TS8EEkaalpPRH2KEaZ2UQzOz7L/esA0zNu\nzwA0s78UxI8/hrNpW7dWkZD8M4N//hOuvTbpJPkVx6SAO7j7F2a2BjDSzN5z9+dqLFOz4i2x+9Cj\nRw/atm0LQIsWLWjfvj0VFRXAb33EYr3dt2/fVOUt1fzbbVfBQQcBVNK9OzRpUhz56rqd2SMvhjzK\nX//jW7Wq5I03YPLkCtq3jz/vgAEDAH59v8yHWI96MrPewHx3vzbjZ7cCle4+KLpdcq2nysrKX3+p\naVQK+Tt1quCQQ2CllcLFhgp1oaF8K4VtX475r7wS3n4b7rkn/5kaIhWHx5pZc6Cpu88zsxWBEcBF\n7j4iY5nOwCnu3tnMtgP6uvt2NZ4n1YVCkvXLL3D44aE4DBoEyy6bdCIpdXPmhDGwN9+EddZJLkda\nxihaAc+Z2WRgAjDM3UeYWU8z6wng7k8BH5vZh8BtwEkFziRlZMGCcEU6gAceUJGQeKy2WpgD6sYb\nk06SHwUtFO4+1d3bR19buPvl0c9vc/fbMpY7xd03cvd27v5aITMlIbPPmUZpzb9wYXixfvZZJQ89\nBMstl3Sihkvrtq9WzvlPPz3MGTZ/fv7yJEXHfEhJWrQIjj4a5s6Fiy+GZs2STiTlZoMNwpna0dhy\nqmkKDyk5VVVw7LEwYwYMHVo80ylI+XnhBejWDT74AJo2jX/9aRmjEIlVVRX84x9hvp0hQ1QkJFmd\nOsEaa4S/xTRToYhBOfdp4+Qergvw/vswbNhv15NIS/5s0pwdlL9UTsBToZCS4A6nngqvvw5PPRXO\nlxApBgcfDJ99BhMmJJ1k6WmMQlLPPUzGNn48jBwJq66adCKRxfXtCy++GK7BHqdUnHCXLyoUUht3\nOOccGD0aRo0Kx6+LFJt586Bt23Bt7TzOrFEvDWanSLn3aQvFHf7zHxgxInzVViSKNX8u0pwdlL/a\nyiuHI/FuuCEvTxc7FQpJrYsuCkeTjBoFv/td0mlE6tarVzin4ttvk07ScGo9SSpdemmY3K+yEtZc\nM+k0Irn5619h223DkVBx0BiFlK2rroI77ghFYq21kk4jkrtXXw1HQX30UTzzjmmMIkXUp82f664L\n8+eMGZN7kSim/A2V5uyg/DVtu22Y2mPw4Lw+bcGpUEhq3HBDmI1zzJhkp24WaYwzzwwn4KWpSaLW\nk6TCLbeEi8FUVsZ7eKFIvlVVwR/+AP37w847F3Zdaj1J2ejXDy6/POxJqEhI2jVpAmecEdqoaaFC\nEQP1aZfegAFhmvDRo0Nvd2mkefunOTsof22OPjrMLDtlSkGePu9UKKRo3XcfnH9+OE9i442TTiOS\nP82bh1mO+/ZNOkluchqjiK53vR7gwAx3/77QwWqsX2MUZWbQoDDoN2oUbLZZ0mlE8m/mzPC3PWVK\n4U4YLfh5FGa2MnA8cBTQEvgSMMJ1sL8GBgL93L3gF/pToSgvjzwSZoIdORK22CLpNCKFc+yxsNFG\ncN55hXn+OAazHwfmAQe4+wbu3sndt3P39YH9ge+BJxoboByoT5u7J56AU06Bp5/OX5FI8/ZPc3ZQ\n/vqccUY45Pvnnwu6mkartVC4++7u3s/dv8xy30x3v93ddy9sPCknw4aFvu2TT0L79kmnESm8LbcM\nXw88kHSSutXVevqDu79nZtsSxiZ+vQtwd38tjoBRFrWeStzw4dC9eygWHTsmnUYkPs88A2edFS66\nZY1uEi0ujjGKfu5+vJlVsnihAMDdd23synOlQlHaRo6Erl1D26lTp6TTiMTLPexV9OkDe+6Z3+cu\n+BiFux8f/Vvh7rvW/GrsisuJ+rS1Gzs2zKg5eHDhikSat3+as4Py58IsHOFXzCfg1XsehZm9amYn\nm5muHSZ59eyzcOSR8PDDsNNOSacRSU7XrjB5Mrz9dtJJsqv3PAoz2xg4BjgCeBW4ExgRZy9IrafS\n88ILcNBBYRBvdx0SIcL//gfTpoU5oPIl9utRmFkTwmGxtwBVhIJxvbt/09gQOaxbhaKETJgABxwA\n994Le++ddBqR4jB7NmyyCbz7LrRqlZ/njHVSQDNrB1wHXA0MBg4nnGMxprEByoH6tL+ZOBG6dAlz\nOMVVJNK8/dOcHZS/IVq2DK3Ym26KbZU5y2mMAugDvAy0c/de7v6Su18DTM3h8U3NbJKZDc1yX0sz\nG25mk83sLTPrsRT/B0mJSZNgv/3CbLCdOyedRqT4nH463Hor/Phj0kkWl8sYxYbu/tFSr8DsTGBb\nYGV371LjvguBZu7+bzNrCbwPtHL3hTWWU+sp5d54A/baK3xaOvTQpNOIFK8uXcIHqp49G/9csbWe\nMouEmTXoJDszWxfoDPQnnKhX0xfAKtH3qwBf1ywSkn5vvx3aTNdfryIhUp9zzw1fJ58M77+fdJqg\nodOMN7Qy9QHOIgx+Z9MP2NzMPgdeB05r4POnQjn3ad97L5xEdM01of+ahDRv/zRnB+VfGttvHz5c\nrb56uAJe587h7O0kmyrLNHD5p3Jd0Mz2B75y90lmVlHLYucBk929wsw2BEaaWTt3n1dzwR49etA2\nurxZixYtaN++PRUV4Wmrf5nFenvy5MlFlSeu/OusU8Eee0D37pXRNa7TlV+3dTvJ25dcUsH558MF\nF1Ry0knQrFkFvXpBmzaVrLBC9sdXVlYyYMAAgF/fL/MhlzGK64A73L1Bp4KY2WVAN2AhsDyhtTTY\n3btnLPMUcKm7j49ujwbOcfeJNZ5LYxQp89FHsOuu0Ls3HHdc0mlE0s09XC/++uvh+efDa+rkk6F1\n67ofF+fhse8Ct5vZy2Z2gpmtmssTu/t57r5eNC35UcCYzCIReQ/YA8DMWgGbAh/nHl+K0bRp4SS6\n889XkRDJB7Pwwevxx+Hll+GXX2DrreHww0PhKPTn6FwGs/u5+w5Ad6At8KaZ3W9mDZ3vyQHMrKeZ\nVY/nXwb8ycxeB0YBZ8dxAl/cqncN06oh+T/9FHbbLcyGmY+jNvIhzds/zdlB+Qthgw3CBILTpoUx\njB49oEOHcALrL78UZp25nnDXFPgD8EdgFmHg+UwzezCXx7v7uOpDY939Nne/Lfp+trsf4O7t3H1L\nd79/qf4XUhQ++ywUiV69wm6xiBTOyiuHK0F+8AFceCHcfTe0bQsXXwxffZXfdeUyRtEHOIBwFnZ/\nd38547733X3T/EbKmkFjFEXuiy+gogL+/vewNyEi8XvrLbjhhjDR5kEHwYABMc31ZGbHAg+6+/dZ\n7mvh7nMbG6I+KhTF7csvQ5Ho1q1w1/4VkdzNnh2myTnrrAIPZkeHq+Lud2YrEpHVGxugHBRjn7Mh\n6so/a1ZoNx11VPEWiTRv/zRnB+VPSsuW8K9/5e/56jqP4jIzWxEYAkwknEVtwFrAn4AuhIkBj8pf\nHEmTr7+GPfaAgw+GCy5IOo2IFEqdrScz24hQCHYA2kQ//gR4HnjA3WM5lFWtp+IzZ044BHavveDy\ny/N/rV8Rabw4rpm9trt/3tgV5IMKRXGZOzdMy7HzzmFqDhUJkeIUxwl3d5jZBDO7wswqzKyh031I\nJK19zmqZ+b/7DvbZJ8xHk5Yikebtn+bsoPylotY3f3ff18xWAHYBDgGuMbPpwNPAcHf/NKaMUiTm\nzw8TlG2zDfTtm44iISKNl8vhsb2Ae919jpltAOwL7A383t07xpBRraci8P33oUhssgncdhs0aei8\nwyISuzjnemoFvGJmDwGbALdEZ1nv1NiVSzr88EO4xvUGG6hIiJSjXOZ6Op9QIO4EegAfRDPDrlvY\naKUjzX3On36CnXcO04T375/OIpHm7Z/m7KD8pSKnl727VwEzgS+BRcBqwCNmdnUBs0nCfv45nCOx\nyipw113QtGnSiUQkCbmMUZxGmDn2a8IlTR9z9wVm1gSY4u4bFjykxihi98sv4bKlzZrBoEGwjI55\nE0mdfI1R5PLyXx04xN0/yfyhu1eZ2QGNDSDFZ8GCMCXHMsvAAw+oSIiUu1zGKHrXLBIZ972T/0il\nJ019zoULoWvXUCwefBCWXTZd+bNJc/40ZwflLxX6rCi/WrQIuneHefPClbSWWy7pRCJSDOodoygG\nGqMovEWL4JhjwnUlhgyBFVZIOpGINFacYxRS4qqq4PjjYcYMGDZMRUJEFpfCo+LTp5j7nFVVcMIJ\n8OGHMHT07/V/AAAPLklEQVQoNG++5DLFnD8Xac6f5uyg/KVCexRlzB1OOQXefhuGD4cVV0w6kYgU\nI41RlCl3OP10eOklGDkynFQnIqVFYxSy1NzhrLNg/HgYNUpFQkTqpjGKGBRTn9M9XNt69GgYMQJa\ntKj/McWUf2mkOX+as4PylwrtUZSZ3r3hySdh7FhYffWk04hIGmiMooxcckmYt2nsWFhzzaTTiEih\naYxCGuSKK2DgQKisVJEQkYbRGEUMku5zXnMN3HknjBkDv/99wx+fdP7GSnP+NGcH5S8V2qMocX37\nwi23wLhxsPbaSacRkTQq+BiFmTUFJgIz3H2JacnNrALoAywLzHb3iizLaIxiKdx0U9ibqKyENm2S\nTiMicUvTGMVpwDvAyjXvMLMWwE3A3u4+w8xaxpCnLNx+O1x1lYqEiDReQccozGxdoDPhynjZqtpf\ngcHuPgPA3WcXMk9S4u5z3nlnOMJp9GhYf/3GP1/a+7Rpzp/m7KD8paLQg9l9gLOAqlru3xhY3czG\nmtlEM+tW4Dwl75574IILQpHYaKOk04hIKShY68nM9ge+cvdJ0ThENssC2wC7A82BF83sJXefUnPB\nHj160LZtWwBatGhB+/btqagIT1td9Yv1dvXPCr2+zz+v4Nxz4YorKvn8c9hkk3TlT/v2L8TtioqK\nosqj/MWVr+btyspKBgwYAPDr+2U+FGww28wuA7oBC4HlgVUIbabuGcucA6zg7hdGt/sDw939kRrP\npcHsejz8MPTqFeZu2nzzpNOISDHI12B2wVpP7n6eu6/n7usDRwFjMotE5AlgRzNrambNgT8TBr5L\nSnXFL5RHH4VTTw1ThReiSBQ6f6GlOX+as4Pyl4o4z6NwADPrCeDut7n7e2Y2HHiDMI7Rz91LrlAU\n0pAhcOKJ8PTT0K5d0mlEpBRprqcUe+op6NEjTPLXoUPSaUSk2BR960kKa8SIUCSGDFGREJHCUqGI\nQb77nKNHQ9eu8NhjsN12eX3qrNLep01z/jRnB+UvFSoUKTNuHPzlLzB4MOywQ9JpRKQcaIwiRZ5/\nHg45JFxTYrfdkk4jIsVOYxRl5qWXQpEYOFBFQkTipUIRg8b2OV95Bbp0gbvvhj33zE+mhkh7nzbN\n+dOcHZS/VKhQFLnXXoP994c77oB99006jYiUI41RFLHXX4e99oJbb4WDD046jYikjcYoStxbb8E+\n+8CNN6pIiEiyVChi0NA+57vvhj2J666Dww8vTKaGSHufNs3505wdlL9UqFAUmfffhz32gCuvDOdL\niIgkTWMUReTDD2HXXeHii+GYY5JOIyJppzGKEjN1Kuy+e7g6nYqEiBQTFYoY1Nfn/OSTcBLdOefA\n8cfHk6kh0t6nTXP+NGcH5S8VKhQJmz49FIkzzoCTTko6jYjIkjRGkaDPPoOKCjjhBPjnP5NOIyKl\nRmMUKTdzZhiTOO44FQkRKW4qFDGo2ef86qvQburaFc49N5lMDZH2Pm2a86c5Oyh/qVChiNns2eE8\nicMOg//+N+k0IiL10xhFjL75JrSb9t0XLr0UrNGdQxGR2uVrjEKFIiZz54Y9iV13hauuUpEQkcLT\nYHaKDBtWyd57w447prNIpL1Pm+b8ac4Oyl8qVCgKbN68cCJdhw7Qp0/6ioSIiFpPBTR/fhiP2Gwz\nuOUWaKKyLCIx0hhFkfvhB9hvP9hgA+jXT0VCROKnMYoi9uOP4RrX660Ht98Ozz5bmXSkRkl7nzbN\n+dOcHZS/VKhQ5NlPP4Ur0q25Jtx1FzRtmnQiEZHGUespj37+GQ49FJo3h/vvh2WWSTqRiJSz1LSe\nzKypmU0ys6F1LNPBzBaa2SGFzlMoCxbAkUfCcsvBwIEqEiJSOuJoPZ0GvANk3SUws6bAlcBwIJUH\njy5YEC5bWlUFgwbBsssufn/a+5zKn5w0ZwflLxUFLRRmti7QGehP7UXgVOARYFYhsxTKwoXQrVsY\nwH744bBHISJSSgo6RmFmDwOXAasA/3L3A2rcvw5wH7AbcCcw1N0fzfI8RTlGsWgRHH00zJoFTzwB\nyy+fdCIRkd8U/RiFme0PfOXuk6h9b6IvcG5UBayO5YpOVVW4lsQXX8Djj6tIiEjpKuSQ6/ZAFzPr\nDCwPrGJm97h794xltgUGWZjXoiWwr5ktcPchNZ+sR48etG3bFoAWLVrQvn17KioqgN/6iHHdHjOm\nkmuvhfnzK3jqKZgwoe7l+/btm2jext5W/uRuZ/bIiyGP8hdXvmx5BwwYAPDr+2U+xHJ4rJntQpbW\nU41l7iIFrSf3cG3rN9+E4cNhpZXqf0xlZeWvv9Q0Uv7kpDk7KH/SUjWFR1Qo/unuXcysJ4C731Zj\nmaIvFO7QqxdMnAjPPAOrrJJ0IhGR2qWqUDRWMRQK93Bt6+efh5EjYdVVE40jIlKvoh/MLiXu4drW\n48aFPYmGFonMPmcaKX9y0pwdlL9U6PzheriHa1s/8wyMHg2rrZZ0IhGReKn1VI+LLgon0o0dC2us\nkUgEEZGlkq/Wk/Yo6nDppWFKjspKFQkRKV8ao6jFVVfBPffAmDHQqlXjnivtfU7lT06as4Pylwrt\nUWTRp0+44NC4cbDWWkmnERFJlsYoavi//wuForISWreOZZUiIgWhMYoCuPVWuPZaFQkRkUwao4j0\n7w+XXRYOgc3jFClA+vucyp+cNGcH5S8V2qMA7r47HAY7ZgxsuGHSaUREikvZj1EMHAhnnx2KxKab\nFmQVIiKJ0BhFHjz4IJx1FowapSIhIlKbsh2jcA8F4plnYLPNCruutPc5lT85ac4Oyl8qynaPwgz6\n9Us6hYhI8Sv7MQoRkVKlacZFRCQWKhQxSHufU/mTk+bsoPylQoVCRETqpDEKEZESpTEKERGJhQpF\nDNLe51T+5KQ5Oyh/qVChEBGROmmMQkSkRGmMQkREYqFCEYO09zmVPzlpzg7KXypUKEREpE4aoxAR\nKVEaoxARkVjEUijMrKmZTTKzoVnu62pmr5vZG2Y23sy2iiNTnNLe51T+5KQ5Oyh/qYhrj+I04B0g\nW//oY2Bnd98KuAS4PaZMsZk8eXLSERpF+ZOT5uyg/KWi4IXCzNYFOgP9gSV6Ze7+ort/G92cAKxb\n6Exxmzt3btIRGkX5k5Pm7KD8pSKOPYo+wFlAVQ7LHgc8Vdg4IiLSEAUtFGa2P/CVu08iy95EjWV3\nBY4FzilkpiRMmzYt6QiNovzJSXN2UP5SUdDDY83sMqAbsBBYHlgFGOzu3WsstxXwKLCPu3+Y5Xl0\nbKyIyFLIx+GxsZ1HYWa7AP9y9wNq/Lw1MAb4m7u/FEsYERHJ2TIxr88BzKwngLvfBlwArAbcYmYA\nC9y9Y8y5RESkFqk4M1tERJJTlGdmm9kl0Ul4k81stJmtl2WZ9cxsrJm9bWZvmVmvJLJmk0v+aLl9\nzOw9M5tiZkUziG9mV5vZu9H/4VEzW7WW5f4dbf83zex+M2sWd9YsmXLN3sLMHomWfcfMtos7aza5\n5o+WrfVE1qTkkr/IX7u5/v0U62v38Gi7LjKzbepYrmGvXXcvui9g5YzvTwX6Z1nm90D76PuVgPeB\nPyadvQH5mwIfAm2BZYHJRZR/T6BJ9P0VwBVZlmlLOFmyWXT7QeDoNGSP7rsbODb6fhlg1aSzNyR/\ndP+ZwEBgSNK5G/i3U8yv3VzyF/Nr9w/AJsBYYJtalmnwa7co9yjcfV7GzZWA2VmWmenuk6Pv5wPv\nAmvHk7BuueQHOgIfuvs0d18ADAIOjCNffdx9pLtXn/dS20mQ3wELgOZmtgzQHPgspoi1yiV79Clx\nJ3e/M3rMQv/tpM9E5bjt6z2RNSm55C/y124u27+YX7vvufsH9SzW4NduURYKADO71Mw+BY4mVPa6\nlm0LbE34xRaFHPKvA0zPuD0j+lmxOZYsJ0G6+zfAtcCnwOfAXHcfFXO2+mTNDqwPzDKzu8zsNTPr\nZ2bNY86Wi9ryQ8NOZE1KXfmB4nztZqgtf1peu1ktzWs3sUJhZiOj/ljNrwMA3P18d28NDCC8KGp7\nnpWAR4DTok8nschD/kSPIqgvf7TM+cAv7n5/lsdvCJxO2I1dG1jJzLqmITuh1bQNcLO7bwN8D5wb\nR/YoW2O3fc4nshZCHrZ/9TJF+dqNlqkrf9G/dut5fINfu3EfHvsrd98zx0Xvp5ZPJWa2LDAYuM/d\nH89XtlzkIf9nQOYg93qETyaxqC+/mfUgtDZ2r2WRPwEvuPvX0fKPAtsTeuYFlYfsM4AZ7v5KdPsR\nYiwUeci/PdDFzDoTnchqZvd4jRNZCyUP+Yv6tZtD/qJ+7eagwa/domw9mdnGGTcPBCZlWcaAO4B3\n3L1vXNlykUt+YCKwsZm1NbPlgCOBIXHkq4+Z7UNoaxzo7j/Vsth7wHZmtkL0u9iDMENwonLJ7u4z\ngelmtkn0oz2At2OKWKcc85/n7uu5+/rAUcCYuIpEfXLJX+Sv3Vz+9ov2tVtDbXubDX/tJj1KX8uo\n/CPAm4SjCQYDa0Y/Xxt4Mvp+R0J/djLhjXgSYQqQVOSPbu9LOOLjQ+DfSefOyDUF+CRju95cS/6z\nCW+wbxKOIlo2RdnbAa8ArxOmjymWo55yyp+x/C4U11FP9eYv8tdurn8/xfraPZgwfvIjMBN4upb8\nDXrt6oQ7ERGpU1G2nkREpHioUIiISJ1UKEREpE4qFCIiUicVChERqZMKhYiI1EmFQiQLM4ttSgmR\nYqdCIZKdTjASiahQiNTBgqujSdfeMLMjop83MbObLVzkZoSZPWlmh9Z47IZm9mrG7Y0zb4ukRWKT\nAoqkxCGE6T62AtYAXjGzZwnTULRx9z+aWSvCNRXuyHygu39kZt+aWTt3fx04Brgz3vgijac9CpG6\n7Qjc78FXwDigA7AD8BCAu39JuKJYNv2BY8ysCXAEYTZhkVRRoRCpm1P7LJy5XAtiMGECuf2Bie4+\nJ1/BROKiQiFSt+eAI6MxiTWAnQlXYxsPHBqNYbQCKrI92N1/Bp4BbgHuiieySH6pUIhk5wDu/hjw\nBmE68tHAWVELajDhYjXvAPcCrwG1XXf7fsK02iMKnFmkIDTNuMhSMrMV3f17M/sdYS9j+6iI1Fzu\nX8DK7t479pAieaCjnkSW3jAzawEsB1xcS5F4DFgf2C3ucCL5oj0KERGpk8YoRESkTioUIiJSJxUK\nERGpkwqFiIjUSYVCRETqpEIhIiJ1+n+KRsAkmp26rwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7999ac8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The depth of packing required is 12.881 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 154
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.7: Page 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.7\n",
+ "# Page: 312\n",
+ "\n",
+ "print'Illustration 8.7 - Page: 312\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "# Fom Illustration 8.6:\n",
+ "y1 = 0.02;\n",
+ "y2 = 0.00102;\n",
+ "m = 0.125;\n",
+ "x2 = 0.005;\n",
+ "x1 = 0.1063;\n",
+ "\n",
+ "# Number of transfer units:\n",
+ "# Method a:\n",
+ "y1_star = m*x1;\n",
+ "y2_star = m*x2;\n",
+ "yDiffy_star1 = y1-y1_star;\n",
+ "yDiffy_star2 = y2-y2_star;\n",
+ "yDiffy_starm = (yDiffy_star1-yDiffy_star2)/math.log(yDiffy_star1/yDiffy_star2);\n",
+ "# From Eqn. 8.48:\n",
+ "NtoG = (y1-y2)/yDiffy_starm;\n",
+ "print\"NtoG according to Eqn. 8.48:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Mehod b:\n",
+ "# From Illustration 8.3:\n",
+ "A = 1.424;\n",
+ "NtoG = (math.log((((y1-(m*x2))/(y2-(m*x2)))*(1-(1/A)))+(1/A)))/(1-(1/A));\n",
+ "print\"NtoG according to Eqn. 8.50:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Method c:\n",
+ "# Operating Line:\n",
+ "# From Illustration 8.3:\n",
+ "X_prime = [0.00503, 0.02, 0.04 ,0.06 ,0.08 ,0.10 ,0.1190];\n",
+ "x_prime = [0.00502 ,0.01961, 0.0385, 0.0566, 0.0741, 0.0909 ,0.1063]\n",
+ "Y_prime = [0.00102 ,0.00357 ,0.00697 ,0.01036 ,0.01376 ,0.01714 ,0.0204];\n",
+ "y_prime = [0.00102 ,0.00356, 0.00692 ,0.01025 ,0.01356 ,0.01685, 0.0200];\n",
+ "def f2(x):\n",
+ " return m*x\n",
+ "x = numpy.arange(0,0.14,0.01);\n",
+ "\n",
+ "plt.plot(x_prime,y_prime,label=\"Operating Line\")\n",
+ "plt.plot(x,f2(x),label=\"Equilibrium Line\");\n",
+ "plt.legend(loc='upper right');\n",
+ "plt.grid('on');\n",
+ "xlabel(\"mole fraction of benzene in liquid\");\n",
+ "ylabel(\"mole fraction of benzene in gas\");\n",
+ "plt.show()\n",
+ "# From graph:\n",
+ "NtoG = 8.7;\n",
+ "print\"NtoG from graph:\",round(NtoG,2),\" \\n\",\n",
+ "\n",
+ "# Method d:\n",
+ "# from Fig 8.10:\n",
+ "Y_star = [0.000625, 0.00245, 0.00483, 0.00712 ,0.00935 ,0.01149, 0.01347];\n",
+ "ordinate = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " ordinate[i] = 1/(Y_prime[i]-Y_star[i]);\n",
+ "\n",
+ "plt.plot(Y_prime,ordinate);\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Y\");\n",
+ "ylabel(\"1/(Y-Y*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area under the curve:\n",
+ "Ac = 8.63;\n",
+ "# From Eqn. 8.36:\n",
+ "NtoG = Ac+(1.0/2)*math.log((1+y2)/(1+y1));\n",
+ "print\"NtoG from graphical integration:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Height of transfer units:\n",
+ "NtoG = 9.16;\n",
+ "# From Illustration 6.6:\n",
+ "Fga = 0.0719;# [kmol/cubic m.s]\n",
+ "Fla = 0.01377;# [kmol/cubic m.s]\n",
+ "Gav = 0.0609;# [kmol/square m.s]\n",
+ "L = 1.787*10**(-3);# [kmol/s]\n",
+ "X1 = x1/(1-x1);\n",
+ "X2 = x2/(1-x2);\n",
+ "Area = 0.1746;# [square m]\n",
+ "Lav = L*((1+X1)+(1+X2))/(2*Area);\n",
+ "# From Eqn. 8.24:\n",
+ "Htg = Gav/Fga;# [m]\n",
+ "# From Eqn. 8.31:\n",
+ "Htl = Lav/Fla;# [m]\n",
+ "# since Solutions are dilute:\n",
+ "HtoG = Htg+Htl/A;# [m]\n",
+ "print\"HtoG: \",round(HtoG,2),\" m\\n\",\n",
+ "Z = HtoG*NtoG;# [m]\n",
+ "print\"The depth of packing recquired is \",round(Z,2),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.7 - Page: 312\n",
+ "\n",
+ "\n",
+ "NtoG according to Eqn. 8.48: 8.51 \n",
+ "\n",
+ "NtoG according to Eqn. 8.50: 9.16 \n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucTfX6x9+PiaTcOoQGETnp/BQluVXOKSW/qBONbk6k\nqBNdpKI6mu506MavC7mVQkJJFyKkK+NaIUkTmaI0LqGYmef3x1oztmkua2avvffae57367Vesy7f\n7/p+9nfP3s9e3+f7fB9RVQzDMAzDL8rFWoBhGIaRWJhhMQzDMHzFDIthGIbhK2ZYDMMwDF8xw2IY\nhmH4ihkWwzAMw1cialhEpJOIrBeRb0Tk7kLKPONeXy0iLdxz9URkoYh8JSJfisgtIeVTReQHEVnp\nbp0i+RoMwzCMknFEpG4sIknAaOB8YCuwTERmq+q6kDKdgcaqepKInAU8B7QGDgK3q+oqETkGWC4i\n81R1PaDAE6r6RKS0G4ZhGKUnkk8srYCNqpquqgeBqcAl+cp0BSYBqOrnQDURqaWqP6nqKvf8b8A6\nIDmknkRQt2EYhhEGkTQsycCWkOMfONw4FFambmgBEWkAtAA+Dzk9wB06Gyci1fwSbBiGYYRPJA2L\n17Vi8j995NVzh8FeB251n1zAGS5rCDQHfgRGhqnTMAzD8JGI+Vhw/Cr1Qo7r4TyRFFWmrnsOESkP\nzAAmq+obuQVUdXvuvoi8CLxVUOMiYougGYZhlBBVDdvVEMknljTgJBFpICIVgB7A7HxlZgP/AhCR\n1sBOVd0mIgKMA9aq6lOhFUSkTsjhP4EvChOgqoHe7r///phrMJ2m03SaztzNLyL2xKKqWSLSH5gL\nJAHjVHWdiPRzr7+gqu+ISGcR2QjsBXq71dsB1wBrRGSle26Iqr4HDBeR5jhDZt8B/SL1GiJNenp6\nrCV4wnT6i+n0F9MZPCI5FIaqvgu8m+/cC/mO+xdQ7yMKeZpS1X/5qdEwDMPwF4u8jyG9evWKtQRP\nmE5/MZ3+YjqDh/g5rhYkREQT9bUZhmFEAhFBA+68N4ph0aJFsZbgCdPpL5HSKSK22eZ5iyQR9bEY\nhhFd7Cnd8EKkDYsNhRlGgiAiZlgMTxT2v+Ket6EwwzAMI1iYYYkhZd0n4Dem0zCCgRkWwzAMYMmS\nJZx88slRbXPz5s1Urlw54YYwzcdiGAlC0H0sEydOZOTIkWzatIkqVarwz3/+k8cee4yqVavGRE+5\ncuXYuHEjJ554YsTb6tChAz179qRPnz4Rb8sL5mMxDCPuGTlyJIMHD2bkyJHs3r2bzz77jO+//56O\nHTty8OBB39vLzs72VC5ahjgaU3yDhBmWGBIvY+2m01/iRadf7N69m9TUVEaPHs0FF1xAUlISJ5xw\nAq+99hrp6elMnjwZgNTUVLp3784VV1xBlSpVOOOMM1izZk3efTIyMujWrRvHHXccJ554IqNGjcq7\nllu3Z8+eVK1alUmTJrFs2TLatGlD9erVOf744xkwYECeETvnnHMAOO2006hcuTLTp09n0aJF1Kt3\naLH1Bg0aMHLkSE477TSqVavGFVdcwR9//JF3/fHHH+f444+nbt26vPjii5QrV45NmzaVqG/S09Mp\nV64cOTk5gPNkM3ToUNq3b0+VKlW48MIL2bFjR175zz77jLZt21K9enWaN2/O4sWLS9RetDDDYhhG\nRPnkk0/4/fffueyyyw47f/TRR9O5c2fef//9vHOzZ88mJSWFzMxMrrrqKi699FKys7PJycmhS5cu\ntGjRgoyMDBYsWMBTTz3FvHnzDqt7+eWXs2vXLq666iqSkpJ4+umn2bFjB59++ikLFizg2WefBeDD\nDz8EYM2aNezZs4fLL7/8T7pFhOnTpzN37ly+++471qxZw8SJEwF47733ePLJJ1mwYAHffPMNixYt\n8u2JZMqUKUycOJHt27dz4MABRowYAcDWrVu5+OKLGTp0KJmZmYwYMYJu3brxyy+/+NKun5hhiSEd\nOnSItQRPmE5/iZVOEX+2kvLLL79Qo0YNypX789dN7dq1D/tibNmyJZdddhlJSUkMHDiQ33//nU8/\n/ZRly5bxyy+/cN9993HEEUfQsGFDrr/+eqZOnZpXt23btnTt2hWAihUrcvrpp9OqVSvKlSvHCSec\nQN++fUv8C/+WW26hdu3aVK9enS5durBq1SoAXnvtNa677jqaNm3KUUcdxQMPPODLsJqI0Lt3bxo3\nbkzFihVJSUnJa3Py5Ml07tyZTp06AXD++efTsmVL3nnnnbDb9RuLvDeMMkKs/Po1atTgl19+IScn\n50/G5ccff6RmzZp5x3XrHspMLiLUrVuXjIwMRISMjAyqV6+edz07OztvSCt/XYANGzYwcOBAli9f\nzr59+8jKyqJly5Yl0l67du28/aOOOooff/wxT3erVq0KbTsc8rf5229O8tzvv/+e6dOn89Zbh3Ib\nZmVl8Y9//MO3tv3CnlhiSLyMtZtOf4kXnX7Rpk0bjjzySGbMmHHY+d9++4333nuP8847L+/cli1b\n8vZzcnL44YcfSE5Opl69ejRs2JDMzMy8bffu3cyZMwco2Dl+0003ccopp7Bx40Z27drFI488kufL\nCJc6deocpjV0P1LUr1+fnj17HtYHe/bs4a677op42yXFDIthGBGlatWq3H///QwYMIC5c+dy8OBB\n0tPTSUlJoV69evTs2TOv7PLly5k1axZZWVk89dRTVKxYkdatW3PmmWdSuXJlHn/8cfbv3092djZf\nfvklaWlpQMGzu3777TcqV65MpUqVWL9+Pc8999xh12vVqsW3335boteS205KSgoTJkxg/fr17Nu3\nj4ceeqjYugcPHuT333/P27KysopsIz/XXHMNb731FvPmzSM7O5vff/+dRYsWsXXr1hK9hmhghiWG\nmE/AX0xncLnzzjt59NFHGTRoEFWrVqV169accMIJLFiwgPLlywPOU8cll1zCtGnTOPbYY3nllVeY\nOXMmSUlJJCUlMWfOHFatWsWJJ55IzZo16du3L7t3786rm/+JZcSIEbz66qtUqVKFvn37csUVVxxW\nJjU1lWuvvZbq1avz+uuvFzslOPR6p06duOWWW/j73/9OkyZNaNOmDQBHHnlkofVvuukmKlWqlLdd\nd911BbYZehx6vW7durz55ps8+uijHHfccdSvX5+RI0f69hTmJxYgaRgJQtADJIvjgQceYOPGjbz8\n8suxllJi1q1bR7NmzThw4ECBkxSChgVIJjDxMtZuOv0lXnRGm3gzirNmzeKPP/4gMzOTu+++m65d\nu8aFUYkG1guGYQSCeItOHzNmDLVq1aJx48aUL1/+Tz6csowNhRlGghDvQ2FG9LChMMMwDCOuMMMS\nQ+JlrN10+ku86DSM0mKGxTAMw/AV87EYRoJgPhbDK+ZjMQzDMOIKMywxJF7G2k2nv8SLznggf2rf\nDh06MG7cOABeeeUVLrzwwryyJc2Xkr9+LIjX1MVmWAzDiDgNGjSgUqVKVK5cOW+75ZZbwr5v/fr1\n2bNnT178S2gszNVXX83cuXNLfe9w65eEUIMYSv7XFy/YsvkxJF7WjDKd/hIvOv1ERJgzZ04gl3gv\niOzsbJKSkqLWXrwFhxZHsU8sInKMiCS5+38Vka4iUj7y0gzDKAvk5OQwaNAgatasSaNGjfi///u/\nw9L1NmjQgAULFuSVT01NzVsROX9q31AmTpzI2Weffdi5t99+m0aNGlGzZk3uuuuuvCGmiRMn0q5d\nOwYOHEiNGjVITU09rH5B7YQ+ZYTWr169Oo0bN+aTTz5hwoQJ1K9fn1q1avHSSy+VuG/iNXWxl6Gw\nD4EjRSQZmAv0BCZGUlRZIV7G2k2nv8SLTr8pzE8wZswY3n77bVatWkVaWlreSsO55P81H84v+zfe\neIPly5ezYsUK3nzzTcaPH593benSpTRq1Ijt27dz7733Fnuv/LqWLl3Kaaedxq+//sqVV15JSkoK\nK1as4Ntvv2Xy5Mn079+fffv2lVp7LvGQutjLUJio6j4R6QM8q6qPi8jqSAszDMNf5AF/hlr0/pI7\nklWVSy+9lCOOOPSVM2LECPr06cNrr73G7bffTnJyMgD33HNPkb+0w3Fk33333VSrVo1q1apx2223\nMWXKFPr06QPA8ccfz8033ww4qY1LSsOGDbn22msBJ1/LI488wtChQylfvjwdO3akQoUKbNy4kVNP\nPbXU+kNTF+e2M3v2bKDo1MX/+te/St1mafDkYxGRNsDVQB/3lDn9fSBextpNp7/ESmdpDIJfiAhv\nvvlmgT6WH3/8kXr16uUd169fP2I68reTkZFR4LXSUKtWrbz9o446CuCwtMuhaYbDIR5SF3sxLLcB\nQ4BZqvqViDQCFkZWlmEYZYU6deqwefPmvOPQfYCjjz6avXv35h3/9NNPpW5r8+bNNG3aNG8/9ykJ\nih5iO/roowHYt28fxxxzTNg6IkFu6uIxY8bEWkrxTx6qulhVu6rqcPf4W1UNf56gETdj7abTX+JF\np98UNoSVkpLCM888w9atW8nMzGTYsGGHfck3b96cqVOnkpWVRVpaGjNmzCi1n2XEiBHs3LmTLVu2\n8Mwzz9CjRw9P9WrWrElycjIvv/wy2dnZjB8/vsRpjYsjkVIXe5kVdpyIjBCRd0Rkobt9EA1xhmEk\nDl26dDksjqVbt24A3HDDDVx44YWcdtpptGzZkm7duh325fnQQw/x7bffUr16dVJTU7n66qsPu29h\nRqagKbyXXHIJZ5xxBi1atODiiy/O868UliI49NzYsWP573//S40aNVi7di3t2rUrsq2SGr9ESl1c\n7FphIvI+MA0YBPQDegE/q+pdxd5cpBPwFJAEvJj71JOvzDPARcA+oJeqrhSResBLwHGAAmNU9Rm3\n/LGunhOAdCBFVXcWcF9bK8woUyTKWmHp6emceOKJZGVlWUbGCBGEtcL+oqovAgfcYbHeQLHeIDf2\nZTTQCTgFuFJEmuYr0xlorKonAX2B3BRsB4HbVfVvQGvgZhE52b02GHhfVZsAC9xjwzAMIyB4MSwH\n3L8/icjFInI6UN1DvVbARlVNV9WDwFTgknxlugKTAFT1c6CaiNRS1Z9UdZV7/jdgHZCcv47791IP\nWgJJvIy1m05/iRedsSSRotDLIl5mhT0iItWAO4BRQBXgdg/1koEtIcc/AGd5KFMX2JZ7QkQaAC2A\nz91TtVQ19/o2oBaGYSQMDRo0IDs7O9YyjDAo1rCoau6k6J1AhxLc2+tgb/6fJnn1ROQY4HXgVvfJ\nJb82FZFC2+nVqxcNGjQAoFq1ajRv3jwvhiD3V2Osj3MJip6Cjjt06BAoPUUd5xIUPdHuT8PwSu7/\nzKJFi0hPT/f13l6c96NwvuxzDYACu4A0VX2ziHqtgVRV7eQeDwFyQh34IvI8sEhVp7rH64FzVXWb\nux7ZHOBdVX0qpM56oIOq/iQidYCFqnoy+TDnvVHWSBTnvRF5guC8rwg0BzYA3wCnAfWAPiLyVBH1\n0oCTRKSBiFQAegCz85WZDfwL8gzRTteoCDAOWBtqVELqXOvuXwu84eE1BJJ4+ZVpOv0lXnQaRmnx\n4mM5FWinqlkAIvIs8BHQHviisEqqmiUi/XEWrkwCxqnqOhHp515/QVXfEZHOIrIR2Av0dqu3A64B\n1ojISvfcEFV9DxgGvOauXZYOpJToFRtGAmNObyMIeBkK+xo4KzdWxHXkL1XVJiKyUlVbREFnibGh\nMMOIDAcOQL9+8MUXMGcOhCxdZcQ5fg2FeXlieRxYKSKLcPws5wKPisjRwPxwBRiGET/s2gXdu0PF\nirBoEbjLZhnGYXhZK2wcztDUm8AsoL2qjlXVvap6Z6QFJjLxMtZuOv0lXnX+8AOcfTacdBLMmhUc\noxKv/ZnIeFo2X1UziGMnuWEY4bF6NVx8MdxyCwwaBObKMYqiWB9LvGI+FsPwh7lzoWdPGD0aUmyq\nTEITzenGhmGUUcaNg2uvhZkzzagY3vFkWEQkSUSOF5H6uVukhZUF4mXM1XT6SzzoVIWePRfx6KOw\neDG0bx9rRYUTD/0J8aPTD4r1sYjIAOB+YDsQuoBPs0iJMgwjdhw4AH36wPLl8OmncNxxsVZkxBte\n4li+BVqp6o7oSPIH87EYRsnZuRMuuwyqVoVXXoFKlWKtyIgm0fSxbAZ2h9uQYRjB5vvvoV07aNYM\nXn/djIpRerwYlu+AhSIyRETucLeBkRZWFoiXMVfT6S9B1LlihWNUbrgBnn4akpKCqbMgTGfw8BLH\nstndKrib4H1JfMMwAs477zgzv154wRkGM4xwsTgWwyjDvPACpKY604nbtIm1GiPWRHytMBF5WlVv\nFZG3Crisqto13MYNw4gNOTlwzz2OQVmyBBo3jrUiI5Eoysfykvt3ZCGbESbxMuZqOv0l1jr/+AOu\nvtoxKJ98UrhRibVOr5jO4FHoE4uqLnf/LoqaGsMwIsqvv8Kll0KtWjB/Phx1VKwVGYmI+VgMo4yw\naRN07gxdusDw4VDOFnQy8mFrhRmG4Zlly5xlWQYMgP/+14xKtDmYfTDWEqKK538vEbFwKZ+JlzFX\n0+kv0dY5e7bzpPL883Dzzd7rWX+Gz76D+xj+0XAaj2rMO/PeibWcqFGsYRGRtiKyFvjaPW7u5r03\nDCPgjB4NN97oxKp0tXmcUeNg9kHGLB9Dk1FNWJaxjLnXzKVShbLz29zLWmFLge7Am7n57UXkK1X9\nWxT0lRrzsRhlmZwcuOsuJyf9u+9Cw4axVlQ2UFVeX/s69y28j+TKyQw7fxitklvFWpZnopnzHlXd\nLIenjMsKt2HDMCLD/v3wr3/B9u3OdOJjj421orLB/E3zGTx/MDmaw6iLRtHxxI5IGU216WkRShFp\nByAiFURkELAusrLKBkEeGw7FdPpLJHX+8gucfz4ccQTMmxeeUbH+9EZaRhodX+7ITW/fxJ1t7ySt\nbxoXNLrgT0Yl1jqjiRfDchNwM5AMbAVauMeGYQSIjRuhbVs45xxnyfsjj4y1osRmw44NpExPoeuU\nrnRr2o21/15Lj//pQTmxKXcWx2IYCcDixdCjBzzwAPTrF2s1ic3W3Vt5cPGDzFg3gzva3MEtZ93C\n0RWOjrUsX4iaj0VEjgNuABqElFdVvS7cxg3DCJ9x45x1vyZPho4dY60mccncn8nwj4czdsVY+rTo\nw4YBGzj2KHNgFYSXZ7Y3gSrA+8DbIZsRJvEy5mo6/cUvndnZMGiQE0X/4Yf+G5Wy1p+FkRuL0mR0\nE3bs28HqG1fzeMfHS2xU4qU//cDLrLCjVPXuiCsxDMMzu3fDVVc5M8A++8xmfkWCg9kHmbBqAg8u\nfpDWdVuzpPcSTq5xcqxlxQVe4lgeBj5V1bh6SjEfi5GofPeds95X+/YwahSULx9rRYlFaCxK3Sp1\nGXbeMM5MPjPWsqKCXz4WL4blN6AScADIXfBGVbVKuI1HEjMsRiLy0Udw+eWOT6V/fyijYRIRY/6m\n+QxZMIQczWHYecM4/8Tzy1QsStQWoVTVY1S1nKpWVNXK7hZooxIvxMuYq+n0l9LqnDTJSR08caKz\nmGSkv+8SvT9DCY1FGdRmEMtuWEbHRv4GOMZLf/qBl1lh5YCrgYaq+qCI1Adqq+rSiKszDIPsbOcJ\nZcYMZ1px06axVpQ4bNixgfs+uI+Pt3zM0HOGcl2L6yifZGOL4eJlKOx5IAf4h6qeLCLHAvNUtWU0\nBJYWGwozEoE9e+Caa2DXLsew/OUvsVaUGOTGosxcPzMvFqVS+bKzSGRhRDMfy1mq+m9gP4Cq/gqY\nSTeMCPP9946D/rjjnOVZzKiET+b+TAbPH8ypz59KtYrV+Lr/1wxuP9iMis94MSwHRCQp90BEauI8\nwRhhEi9jrqbTX7zo/PRTaNMGeveGMWOgQoXI68pPIvVnaCzKr/t/ZfWNqxnecXhUAxzjpT/9wEsc\nyyhgFnCciDyKs4T+fRFVZRhlmMmTYeBAx0nfuXOs1cQ3FosSGzytFSYiTYHz3MMFquppdWMR6QQ8\nBSQBL6rq8ALKPANcBOwDeqnqSvf8eOB/ge2q2iykfCpwPfCze2qIqr5XwH3Nx2LEFTk5cN99MHUq\nvPUW/C3QGY+CTVmORQmHaK4VNh4YpaqjQ86lqmpqMfWSgNHA+TirIi8TkdmhRklEOgONVfUkETkL\neA5o7V6egPO09FK+WyvwhKo+UZx2w4gX9u6Fnj2dZe8//xxq1oy1ovglNy+Kooy+aHSZi0UJAl58\nLBcCk0Tk2pBzl3io1wrYqKrpqnoQmFpAva7AJABV/RyoJiK13eMlQGYh906I/5J4GXM1nf6SX+eW\nLY6Tvlo1eP/94BiVeOvP0FiUu9rdFZFYlHCIl/70Ay+GZTtwNnC5iDwrIl5nhCUDW0KOf3DPlbRM\nQQwQkdUiMk5EqnnUYxiB4/PPoXVruPpqZ5Viy6FScrbs2kLK9BQumXoJ3Zt2Z+2/15LytxTLixJD\nPPW8qu4CuuD4NRYCVb1U86gh/8+J4uo9BzQEmgM/AiM9thM4OnToEGsJnjCd/pKrc8oUZ82vF15w\nVikOyA/rPILenxl7Muj3Vj8GbhjI6XVO55sB39CvZb/ABjgGvT/9xMussLfAWRwMuF9E0oDbPdTb\nCtQLOa6H80RSVJm67rlCUdXtufsi8mKuvoLo1asXDRo0AKBatWo0b948783NfSy1YzuO9nFODvTq\ntYh582DBgg40axYsfUE/ztyfyc3P3sycDXO4sfuNfN3/a9Z8voalHy8NhL54Os7dT09Px1dUNSIb\njtH6FidBWAVgFdA0X5nOwDvufmvgs3zXGwBf5DtXJ2T/duDVQtrXoLNw4cJYS/CE6fSPvXtVzzln\nobZtq7ptW6zVFE3Q+nPvgb06bMkwrfF4Db1h9g26ZdcWVQ2ezsKIB53u92bY3/9eZoV1A4YBtTg0\nbKVazEKUqpolIv2BuTjTjcep6joR6edef0FV3xGRziKyEdgL9A5pdwpwLvAXEdkCDFXVCcBwEWmO\nM2T2HWCJWI24YOtWuOQSJ4J+9mzzp3jFYlHiDy9rhX0LXKweY1eCgsWxGEEiLQ0uvdRZlfiuu4Ln\nTwkiarEoUSdqcSzAT/FmVAwjSLz2Gtx8M4wd6xgXo3gsFiW+8TIrLE1EponIlSLSzd0ui7iyMkCo\nAy3ImM7SoQoPPOA8ocyff8ioBE1nYcRCZ2liUaw/g4eXJ5aqOCsbX5Dv/Ez/5RhGYrB/v7OA5Pff\nOznpa9eOtaJgY3lREgtPa4XFI+ZjMWLFjz86TvomTeDFF6FixVgrCi6WFyVYRC0fi4j8VUQWiMhX\n7vGpImKrGxtGAaxYAWed5Qx7vfyyGZXCsLwoiY0XH8tY4B7ggHv8BXBlxBSVIeJlzNV0emPGDLjw\nQnjqKSeVcGFugVjr9EokdEYiL0pZ7s+g4sXHUklVP891nqmqisjByMoyjPhBFR591FmaZe5cOP30\nWCsKHlk5WYxfOd5iUcoIXuJY3gUGANNVtYWIdAf6qOpF0RBYWszHYkSD33+H66+Hb76BN96AOnVi\nrShYWCxKfBHNOJb+wBjgZBHJwIl2vzrchg0j3snIgMsugwYNYNEiOOqoWCsKFhaLUnYp1seiqt+q\n6nlADeCvqtpOVdMjrqwMEC9jrqbzz3z2GbRq5axOPGVKyYxKovdntPOiJHp/xiNe1gqrAdwPtAdU\nRJYAD6rqjkiLM4wgMn48DB7s/L344lirCQ4Wi2Lk4sXHMh9YDEzGWYTyKqCDqp4feXmlx3wsht8c\nPAi33+5E0b/xBpxsvmfAYlESiWj6WGqr6kMhxw+LSI9wGzaMeOLnn+Hyy6FyZSfrY1Uvqe4SnMz9\nmQz/eDhjV4zl+hbX83X/r8OaNmwkDl7iWOa564SVc7cewLxICysLxMuYa1nXuWIFnHmmk5f+zTfD\nNyrx3p+RiEUJh3jvz0Sk0CcWEfmNQ2mCbwNedvfL4eROuSOy0gwj9rz6Ktx2Gzz7LHTvHms1scXy\nohhesbXCDKMAsrMdB/3MmY4/pVmzWCuKHRaLUnaIpo/FMMoUv/4KV14JOTmwdKmT8bGsYrEoRmnw\n4mMxIkS8jLmWJZ1ffunEpzRrBu++GxmjEg/9mZaRxhn3nBG1WJRwiIf+hPjR6QdF+Vgaqup30RRj\nGLFk1izo1w+eeAKuuSbWamJDaCxKjxN6MPz64RaLYpSYQn0sIrJcVc8QkQ9U9R9R1hU25mMxvJKT\n42R6nDjR8amccUasFUUfi0UxIDo+liQRuRdoIiIDcYIjc1FVfSLcxg0j1uze7TydZGY6/pRatWKt\nKLpYLIoRCYrysVwBZANJQGV3OyZk3wiTeBlzTVSdGzY4Sbnq1YMFC6JnVILQn15iUYKg0wumM3gU\n+sSiquuBYSKyRlXfiaImw4g477zj5KR/5BFn2fuygsWiGNHAy1ph1XAWoTzHPbUIZxHKXZGVFh7m\nYzEKQhWGD4dRo2D6dGjbNtaKooPFohheiGYcy3icdMSX4/hZegITgMvCbdwwosnevc5TyvffO/6U\n5ORYK4oOFotiRBsvcSyNVPV+Vd3k5mZJBRpFWFeZIF7GXBNB53ffOU8nRx8NixfH1qhEqz/DzYuS\nCO97kIgXnX7gxbDsF5Gzcw9EpD2wL3KSDMNfPvgA2rRxfCnjx0PFirFWFFk27NhAyvQUuk7pSrem\n3Vj777Wk/C2FcmLx0EZ08OJjaQ68BOSu6ZoJXKuqqyOsLSzMx2KowtNPOz6VV1+Fv/891ooiS24s\nyox1M/JiUY6ucHSsZRlxRNR8LKq6CjhVRKq6x4F22hsGwP79cOONsGYNfPqpk5c+UQmNRenTog8b\nBmywWBQjpnh+NlbVXWZU/CVexlzjTecPP8A558Aff8DHHwfPqPjVn6GxKL/s+4XVN67m8Y6P+2ZU\n4u19DzrxotMPbNDVSCg+/tgJeuzeHaZMgUoJuCrJweyDjFk+hiajmrAsYxlLei/hxa4vUrdK3VhL\nMwzA8rEYCcQLL8DQoTBpEnTqFGs1/hMai5JcOZlh5w+jVXKrWMsyEoio5mMRkXZAg5Dyqqovhdu4\nYfjBgQNY3IN6AAAeOklEQVRwyy2wZAl89BGcdFKsFflPbixKjuYw6qJRdDwxmEvYGwZ4GAoTkcnA\nf4F2QEt3s5BdH4iXMdcg6/zpJ/jHP5y///3vorgwKiXpz9BYlDvb3kla3zQuaHRBVIxKkN/3UExn\n8PDyxHIGcIqNKxlBY9ky6NYN+vSB//wHPvww1or8IzcvykebP2LouUPp06KP5UUx4gYvcSzTgVtV\nNSM6kvzBfCyJzUsvwaBBMGYMXHpprNX4h8WiGLEkmj6WmsBaEVkK/OGeU1XtWlxFEekEPIWz9P6L\nqjq8gDLPABfhRPP3UtWV7vnxwP8C21W1WUj5Y4FpwAlAOpCiqjs9vA4jAcjKgjvvhDlzYNEiOOWU\nWCvyB4tFMRIJL9ONU4FLgUeAEcBIdysSEUkCRgOdgFOAK0Wkab4ynYHGqnoS0Bd4LuTyBLdufgYD\n76tqE2CBexyXxMuYa1B0/vILXHghrF/vLCKZ36gERWdxhOoMjUXZsW+H77Eo4RCP/Rlk4kWnHxRr\nWFR1EbAeqIKT4Gutqi72cO9WwEZVTVfVg8BU4JJ8ZboCk9x2PgeqiUht93gJzvIx+cmr4/5NoIEQ\nozCWL4eWLZ1tzhyoXj3WisKjoFiUsV3HWiyKkRAUOxQmIik4s8JyjcloEblTVacXUzUZ2BJy/ANw\nlocyycBPRdy3lqpuc/e3AXGbTLZDhw6xluCJWOscPx7uvhuef95x1hdGrHV6QVX5uebP/M9z/0Ny\n5WRm9pgZ2FiUeOhPMJ1BxIuP5T7gTFXdDiAiNXGGoIozLF495/kdRZ497qqqImIe+gTljz+c+JTF\ni50ZX02bFl8nyMzfNJ8hC4aQnZNtsShGQuPFsAjwc8jxDv5sDApiK1Av5LgezhNJUWXquueKYpuI\n1FbVn0SkDrC9sIK9evWigbtQVLVq1WjevHner4bc8c5YHq9atYrbbrstMHoKOw4dG45W+6+9toj7\n74dTTunA0qWwYsUitm2Lz/5My0ij3+h+/PTbTzzR9wlq/lyTclvKsXjL4kDoK+w4qP2Z/zgW/5+J\n0p+5++np6fiKqha54QyDzQN6Ab2B94DHPdQ7AvgWJ2K/ArAKaJqvTGfgHXe/NfBZvusNgC/ynXsc\nuNvdHwwMK6R9DToLFy6MtQRPRFvnBx+o1q6tOmyYak6O93pB68+vf/laL3/tcq0zoo4+t+w5PZB1\nQFWDp7MwTKe/xINO93uzWLtQ3OYljkVw0hC3xxmmWqKqs7wYLRG5iEPTjcep6mMi0s/91n/BLZM7\nc2wv0FtVV7jnpwDnAn/BeSoZqqoT3OnGrwH1KWK6scWxxB+qMGIEPPEETJ4M550Xa0Wlw2JRjHjF\nrzgWW4TSCAR79sB11zn56F9/HerXj7WikpM/FmVw+8GBmDZsGF7xy7AUOt1YRD52//4mInvybbvD\nbdiIn3ntkda5fr2z1H316o6TvrRGJVb9WdJYFHvf/cV0Bo9Cnfeq2s79e0z05BhljZkznUyPjz3m\nrPkVT2TlZDF+5XgeXPwgreu2ZknvJZxc4+RYyzKMmOPFx/KyqvYs7lzQsKGwYJOVBffdB1OnOkNf\nLVvGWpF3VJUZ62Zw7wf3Wl4UI6GI5lph/5Ov4SNwVjw2jFLx889w5ZUgAmlpUKNGrBV5Z8GmBQxe\nMNhiUQyjCIrysdwjInuAZqH+FZwZWrOjpjCBiZcxVz91LlvmPJ2ceSa8956/RiWS/bk8YzkdX+7I\njW/fyKA2g8LKi1IW3/dIYjqDR1E+lkeBR0XkMVUdEkVNRoLy4otwzz1OCuF//jPWarxheVEMo+R4\n8bFcBnyQGysiItWADqr6RhT0lRrzsQSH33+H/v3hk08cZ/3JceDfztiTwQOLHrBYFKNMEfHpxiHc\nHxqA6O6nhtuwUTbYvBnOPht273aWug+6Ucncn8ng+YNp9lwzqlasyoYBGxhy9hAzKoZRArwYloKs\nV5LfQsoi8TLmWlqd8+dDq1ZwxRUwbRocE+GJ6+H0ZzTzoiT6+x5tTGfw8DIrbLmIPAH8H46RuRlY\nHlFVRlyjCsOHw9NPw5Qp8Pe/x1pR4VgsimH4jxcfyzHAf4DclZveBx5W1b0R1hYW5mOJDbt3Q69e\nsHUrzJgBdQOat8piUQzjz9haYcVghiX6rFvnzPbq0MF5WjnyyFgrKpjQWJRh5w+zWBTDcIma815E\njhORESLyjogsdLcPwm3YiJ8xVy86p0+Hc845lOkxFkalOJ1+xqKEQyK970HAdAYPLz6WV4BpwMVA\nP5y8LD8XVcEoO2RlwZAhzrIs770HZwRwTQaLRTGM6OLFx7JCVU8XkTWqeqp7Lk1VA726kw2FRZ7t\n250ZX0cc4Tjp//KXWCs6HItFMYySEc04lgPu359E5GIROR2oHm7DRnzz+efO0ixt28K77wbLqFgs\nimHEFi+G5WE32v4OYBDwInB7RFWVEeJlzDVUp6qzJEuXLjBqFDz8MCQFJKrpvfnvRS0WJRzi8X0P\nMqYzeBTpYxGRJKCJqs4BdgIdoiHKCCb798PNNzsR9B99BE2axFqRQ1ZOFhNWTuCemfdwbodzLRbF\nMGKMFx/LMlU9M0p6fMN8LP6Sng7dusFJJzmLSUY6it4LobEodavU5bHzHrNYFMMIg6jFsYjIk0B5\nnJlhe3Gi71VVV4TbeCQxw+If8+bBv/7lTCW+7TYnj0qsyY1FydEchp03jPNPPN9iUQwjTKLpvG8B\n/A14EBgJjHD/GmES9DHXnBx45BG48spFTJsGt98ee6MSGotyZ9s7WXbDMjo2cgIcg96fuZhOfzGd\nwaNQH4uI3KqqTwP3qepHUdRkBIBdu+Daa2HbNifg8dxzY6snNxbl4y0fM/ScoVzX4jqLRTGMgFLo\nUJiIrFbV00Rkpaq2iLKusLGhsNLz5Zdw2WXQsSM8+SRUqBA7LbmxKDPXz8yLRalUvlLsBBlGAhON\nnPdrReQbIFlEvsh3TXODJY3EYtIkGDQIRo50/CqxInN/JsM/Hs7YFWO5vsX1fN3/68BNGzYMo2AK\n9bGo6pXA2cBGnOVcuoRsXaOiLsEJ0pjrvn3Qpw8MGwYLFx5uVKKpMzQvyq/7f2X1jasZ3nG4J6MS\npP4sCtPpL6YzeBQZx6KqPwH2ZJLgbNgA3btDs2awbFlsphJbXhTDSBxs2fwyzrRpTj76hx+Gvn2j\nP+srfyzKsPOGcWZy3IVNGUZCEA0fi5HA/PEH3HGHs87X3Llw+unR1xAaizL6otEWi2IYCYKXOBYA\nRMSm4vhMrMZcv/sO2reHjAxYvrx4o+K3zqJiUcIhXsawTae/mM7g4SXRV1sRWQt87R43F5FnI67M\niAizZ0Pr1nD11U7q4GrVotf2hh0bSJmeQtepXenWtBtr/72WlL+lUE48/74xDCMO8LKky1KgO/Bm\nbjyLiHylqn+Lgr5SYz6Wwzl4EO691/GpTJ0KbdpEr22LRTGM+CCqPhZV3ZxvmCIr3IaN6PHDD05C\nripVnKGvGjWi025oLEqfFn0sFsUwyghexiA2i0g7ABGpICKDgHWRlVU2iMaY67x5cOaZ8L//C3Pm\nlM6olFRnaCxKNPOixMsYtun0F9MZPLw8sdwEPA0kA1uBecDNkRRlhE92Njz4oLPE/ZQp0KFD5Nu0\nWBTDMMDiWBKSbdvgqqucbI+vvgq1a0e2vdBYlOTKyQw7f5jlRTGMOCTiPhYRGVVEPVXVW8Jt3PCf\nDz90jErv3pCaGvm0wbmxKNk52Yy6aBQdTwx/2rBhGPFNUT6W5UCauy0vYCsWEekkIutF5BsRubuQ\nMs+411eLSIvi6opIqoj8ICIr3a2TFy1BxM8x15wcZ52vlBRn+Ouhh/wzKgXpDI1FGdRmEGl907ig\n0QUxNSrxMoZtOv3FdAaPQp9YVHVi6LGIVHZO629ebiwiScBo4Hwc38wyEZmtqutCynQGGqvqSSJy\nFvAc0LqYugo8oapPlOB1JjQ7djiLRu7c6az1Va9e5NrKzYvy0eaPGHruUPq06GN5UQzDOAwvcSzN\ngJeAv7infgauVdUvi6nXBrhfVTu5x4MBVHVYSJnngYWqOs09Xg90ABoWVldE7gd+U9Uis1iWFR/L\n559Djx7OIpKPPQblI/QdnxuLMmPdjLxYlKMrHB2ZxgzDiAnRTE08BhioqvVVtT5wh3uuOJKBLSHH\nP7jnvJQ5vpi6A9yhs3EiEsXY8eCgCk8/DV26wFNPwYgRkTEqmfszGTx/MM2ea0bVilXZMGADQ84e\nYkbFMIxC8TLduJKqLsw9UNVFIuLlW8Xr40JJreNzwIPu/kPASKBPQQV79epFgwYNAKhWrRrNmzen\ngzvvNne8M5bHq1at4rbbbitx/V27oEuXRWzbBp991oETT/Rf33vz32PmupnM+n0WrQ604vnmz1Oz\nfM28WJQg9F/+49L2Z7SPQ8fag6CnsGPrz8Tvz9z99PR0fEVVi9yAN4D/AA1whqjuA2Z5qNcaeC/k\neAhwd74yzwNXhByvB2p5qeuebwB8UUj7GnQWLlxY4jorVqg2aqT673+r7t/vv6YDWQf0hbQXNHlk\nsnab1k3X/byuVDpjgen0F9PpL/Gg0/3eLNYuFLd58bEcCzwAtHNPLQFSVTWzmHpH4CxceR6QASwF\nrtQ/O+/7q2pnEWkNPKWqrYuqKyJ1VPVHt/7twJmqelUB7Wtxry2eUIWxY531vkaNcpZo8ff+yutr\nX+e+hfdZLIphlFGitlaYqv4KDCjpjVU1S0T6A3OBJGCcaxj6uddfUNV3RKSziGwE9gK9i6rr3nq4\niDTHGWr7DuhXUm3xxm+/wY03wurV8NFH8Ne/+nv/+ZvmM3i+kxfFYlEMwwib4h5pgDOBWcBK4At3\nW+PH41IkNxJkKOyrr1SbNlXt1Ut1715/21+2dZme/9L52viZxjr1i6manZNdap1BwHT6i+n0l3jQ\niU9DYV6c968Ag4AvgZxIGDejYF5+GQYOhMcfdyLp/cJiUQzDiCRefCwfq2q7IgsFkHj2sezfD7fe\nCosXw/TpcOqp/tx36+6tPLj4QYtFMQyjQKKZj+UBERkHzAcOuOdUVWeG27jxZ775Bi6/HE4+GdLS\noHLl8O+ZPy/KhgEbLC+KYRgRw0uA5LXAaUAn4GJ36xJJUWWF0LnkAK+/Dm3bQt++zlL34RoVv/Ki\n5NcZVEynv5hOf4kXnX7g5YmlJXBy3I4rxQEHDsCdd8Jbb8G770LLluHd72D2QSasmmB5UQzDiAle\nfCwTgBGq+lV0JPlDvPhYvv/eWZG4Th2YMAGqVy/9vdRiUQzDCINo+ljaAKtE5DvgD/ecqqpPLuWy\ny5w50KcP3HWXM/srnNARi0UxDCMoePGxdAJOAi7A8a10AbpGUlSic/AgDB4M1123iJkz4Y47Sm9U\n0jLS6PhyR256+ybubHtnRPKixMvYsOn0F9PpL/Gi0w+8RN6nR0FHmWHzZrjySscxP2YMtCvlRG6L\nRTEMI6hYzvsoMns23HCD84QyaBCU8/K8mA/Li2IYRqSIpo/FCJMDB+Duu2HmTJg1y5lSXFIsFsUw\njHihFL+ZjZKwaZMz3LVpE6xcebhR8TLm6lcsSjjEy9iw6fQX0+kv8aLTD8ywRJDp06F1a7jmGnjj\nDTi2BLYgKyeLMcvH0GRUE5ZlLGNJ7yWM7TqWulXqRk6wYRiGD5iPJQL8/rszfXjuXJg2rWQBj6rK\njHUzuPeDey0WxTCMqGI+loDy9dfQowc0aQIrVkDVqt7rLti0gMELBpOdk22xKIZhxC02FOYjkydD\n+/Zw003Ok0pxRiV3zHV5xnI6vtyRG9++kUFtBkUkFiUc4mVs2HT6i+n0l3jR6Qf2xOIDe/fCgAHw\n8ccwfz6cdpq3elt2bSFleorFohiGkVCYjyVMvvrKWevr9NPhuefgmGOKr5OxJyMvL8rA1gMtFsUw\njEDgl4/FhsJKiSqMGwcdOjgrE7/0UvFGJXN/JoPnD6bZc82ocmQVvu7/NUPOHmJGxTCMhMIMSynY\ns8eZQvzkk06Wx169il7rq7BYlDWfr4ma5nCIl7Fh0+kvptNf4kWnH5iPpYSsXOnM+jr3XFi6FCpV\nKrxsVk4W41eOt7wohmGUKczH4hFVePZZSE2Fp5+Gq64qqqzFohiGEX9YHEsU2bnTyZuyaRN88gmc\ndFLhZS0WxTCMso75WIph6VJnxtfxx8OnnxZuVEoTixIvY66m019Mp7+YzuBhTyyFoOo454cNg+ef\nh8suK7ic5UUxDMM4HPOxFMCOHc5Mr+3bYepUaNjwz2UsL4phGImGxbFEiI8+ghYt4K9/hSVL/mxU\nQmNRqlasyoYBGywWxTAMIwQzLC45OfDYY9C9uzP7a8QIqFDh0PVI5EWJlzFX0+kvptNfTGfwMB8L\nsG0b9OwJ+/dDWhrUDUl5kpWTxYSVE3hg8QMWi2IYhuGBMu9j+eADx6j07u3EqBzhmlqLRTEMo6xh\ncSw+MG0a3H47TJoEHTseOm+xKIZhGKWnTPtYOnaE5csPGZVo50WJlzFX0+kvptNfTGfwKNNPLLk5\n6C0WxTAMwz/KtI/FYlEMwzAOYT6WMMjcn8nwj4czdsVY+rTow4YBG8KaNmwYhmEcIqI+FhHpJCLr\nReQbEbm7kDLPuNdXi0iL4uqKyLEi8r6IbBCReSJSzaueSMSihEO8jLmaTn8xnf5iOoNHxAyLiCQB\no4FOwCnAlSLSNF+ZzkBjVT0J6As856HuYOB9VW0CLHCPiyQrJ4sxy8fQZFQTlmUsY0nvJYztOpa6\nVeoWVzWirFq1Kqbte8V0+ovp9BfTGTwiORTWCtioqukAIjIVuARYF1KmKzAJQFU/F5FqIlIbaFhE\n3a7AuW79ScAiCjEu+WNRZvaYGahYlJ07d8ZagidMp7+YTn8xncEjkoYlGdgScvwDcJaHMsnA8UXU\nraWq29z9bUCtwgS0erGVxaIYhmFEmUgaFq/Tzbx820tB91NVFZFC2xnUZhCX/+1yykkww3XS09Nj\nLcETptNfTKe/mM4AoqoR2YDWwHshx0OAu/OVeR64IuR4Pc4TSKF13TK13f06wPpC2lfbbLPNNttK\ntvnx/R/JJ5Y04CQRaQBkAD2AK/OVmQ30B6aKSGtgp6puE5EdRdSdDVwLDHf/vlFQ437MxTYMwzBK\nTsQMi6pmiUh/YC6QBIxT1XUi0s+9/oKqviMinUVkI7AX6F1UXffWw4DXRKQPkA6kROo1GIZhGCUn\nYSPvDcMwjNgQTK92EUQi6DJIOkWknogsFJGvRORLEbkliDpDriWJyEoReSuoOt1p7K+LyDoRWesO\nuwZN4xD3Pf9CRF4VkSMjodGLThE5WUQ+FZHfReSOktQNgs6gfYaK6k/3eiA+Q8W87yX7DEXKeR+h\nCQFJwEagAVAeWAU0zVemM/COu38W8JnXugHRWRto7u4fA3wdRJ0h1wcCrwCzg/i+u8eTgOvc/SOA\nqkHS6NbZBBzpHk8Dro1hX9YEWgIPA3eUpG5AdAbtM1SgzpDrQfkMFaqzpJ+heHtiyQu6VNWDQG7g\nZCiHBV0CuUGXXurGWmctVf1JVVe553/DCQo9Pmg6AUSkLs6X5Yt4mzYedZ0iUhU4W1XHu9eyVHVX\nkDQCu4GDQCUROQKoBGyNgEZPOlX1Z1VNczWVqG4QdAbtM1REfwbqM1SYztJ8huLNsBQWUOmlTEFB\nl/nr+kVpdR62xow7K64F8LnvCgvX4LU/AZ4E7gRyIqTPi4aiytTFWcXhZxGZICIrRGSsiFQKkMZk\nVf0VGAlsxpkFuVNV50dAo1edkahbUnxpKyCfoaII0meoMEr8GYo3w+J1pkGspxqXVmdePRE5Bngd\nuNX91RUJSqtTRORiYLuqrizgut+E059HAKcDz6rq6TizD4tdX64UlPp/U0QaAbfhDFMcDxwjIlf7\nJ+0wwpmtE82ZPmG3FbDP0J8I6GeoIEr8GYo3w7IVqBdyXA/H8hZVpq5bxktdvyitzq0AIlIemAFM\nVtUC43QCoLMt0FVEvgOmAP8QkZcCqPMH4AdVXeaefx3nQxIkjS2BT1R1h6pmATNx+jcShPM5CNpn\nqFAC9hkqjKB9hgqj5J+hSDmLIuSAOgL4FueXXQWKd5C25pCDtNi6AdEpwEvAk0Huz3xlzgXeCqpO\n4EOgibufCgwPkkagOfAlcJT7/k8Cbo5VX4aUTeVwp3igPkNF6AzUZ6gwnfmuxfwzVJTOkn6GItrp\nEeqgi3BmeWwEhrjn+gH9QsqMdq+vBk4vqm7QdALtccZbVwEr3a1T0HTmu8e5RHBGiw/v+2nAMvf8\nTCIwK8wHjXcBXwFf4BiW8rHqS5xZVVuAXUAmju/nmMLqBk1n0D5DRfVnyD1i/hkq5n0v0WfIAiQN\nwzAMX4k3H4thGIYRcMywGIZhGL5ihsUwDMPwFTMshmEYhq+YYTEMwzB8xQyLYRiG4StmWIyIIyK9\nRGRUCetMcZeWv9WH9u/Jd/xxuPcspr2TRWSViCwXkYb5rkVqaZGIISJniMjTJayTLiLHuvul7m8R\n6VJECoK468uygsWxGBFHRK4FWqrqAI/lawNLVPWkAq4lqWp2Cdvfo6qVS1InHERkMJCkqo/EWkus\ncJcpOUOdBTYj1UaZ6Mt4xJ5YjGIRkQZugqAJIvK1iLwiIheIyMciskFEznTLHSsib7hPGp+KSLMC\n7lXTTRi01N0KWhNrHpDsJj9qLyKLRORJEVkG3CoiF4vIZ+5Kq++LyHHuvY9xNa5xNVwmIo8BR7n3\netkt95v7V0Tkv+Ik11ojIinu+Q5um9PdxEaTC+mX5q6O1SIy002G1Bm4FbhJRD4opN4T4iSgmi8i\nNdxzjUTkXRFJE5EPReSv7vmJIvK029ffikg39/yD7mtaKSJbRWS8e/4aEfncPf+8iJTLfc0i8rD7\nJPVpSJ8V+364/fGWu58qIuPFSaT1rYgU+2MhX3+Pdv+X3heRt0NeT+gTTksRWeju5z3tikhDV/sa\nEXm4uHaNGBLJJQRsS4wNZ32hg8DfcNZhSgPGude6ArPc/VHAf9z9vwMr3f1ewCh3/1WgnbtfH1hb\nQHsnAF+EHC8ERoccVwvZvx4Y4e4PB57IXw7Yk+/+e9y/3XCMmADHAd/jLGvRAdiJs9KwAJ/kas53\nnzU4eSoAHsBdmwq4HxhYSF/mAFe6+/8J6ZcFQGN3/yxggbs/EZjm7jcFvsl3v6qujhbu9dk4T0sA\nzwI9Q9r935B+urcE70cH3HWscNaJ+ggnWdRfgF9y28tX5zvg2Hz9fVlIf9fBWTbksgLKtwQWFvC/\nMxu4xt3/d/731bbgbEdgGN74TlW/AhCRr4DcfCFf4hgegHY4Xx6o6kIR+YuI5B+qOB9oKpK3Snhl\nEamkqvtCyhS0hPi0kP16IvIajhGogJN9EeA8oEduIVXdWcxrag+8qs431XYRWQyciZN4a6mqZriv\nd5X7GvN8BeIkP6qqqkvcU5OA6SH6C1sGPSfktUwGZorI0Tgr3U4P6ZcKuS8DeMN9PevETbLmahCc\nzIMjVXWliPQHzgDS3PscBfzkFj+gqm+7+8uBju6+l/cjFAXeVidZ1A4R2Q7UwskjUxzncKi/fyzs\nia4I2gL/dPcn4xhII4CYYTG88kfIfg5wIGQ/9P+o0BwzIdfPUtUDlIy9IfujcJ5S5ojIuTi/ogtr\nvyi0gPK5ekNfbzbFf1ZC7+PVcSlu2XJApqq2KKRcaF+FtpMKbFbVSSHnJqnqYZMVXEKzAoa+Z6V5\nP0LLeumbXPL3d+h+FoeG5iuWQIsRQMzHYvjJEuBqcMblgZ/1zwmW5gG35B6ISHOP9w79EqrCoV/I\nvULOvw/cHHLvau7uQXFS/hakt4eIlBORmji/qJfiwTipk5o1U0Tau6d6AosK0JqfcsDl7v5VOJMU\n9gDfiUh3V7eIyKlFtS8iXXCe0EJnzS0AuruvJdfnVb+Yl1LS9yOchFQfcqi/6+AMseWSjjMEBs4Q\nZUF8DFzh7kcqEZrhA2ZYDK/k/xWuBeynAmeIyGrgUeDakOu5ZW4BWroO76+AvqVoLxVn2CgN+Dnk\n2sNAddcZv4pDX1xjgDXiOu9zy6vqLBz/xGqcL+U7VXV7Pr2F6cF9ff91X++pwIMFvN787AVaicgX\nrr7cOlcDfVzdX+L4rgpqO3f/dhwf0FLXUZ+qquuA+4B5rqZ5OMOFBd2jJO9HaPmiXlthhPb3N8Ba\nnKHDTzlkqB4AnhZngkZWIe3dCtwsImvc125TWgOKTTc2DCMmiMgEYI6qzoi1FsNf7InFMIxYYr9s\nExB7YjEMwzB8xZ5YDMMwDF8xw2IYhmH4ihkWwzAMw1fMsBiGYRi+YobFMAzD8BUzLIZhGIav/D8C\nvT7hM9J+mQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb4fd5f8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NtoG from graph: 8.7 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYHHWV//H3h4QQMMAQgVwIOEAAAYEBFuIqkQnXiLsC\nzy4oXpYIugthRVFZiC43L1zcXUVk1d8aIEEFxPUnlxVCEmCQ5ZYfSsIliyS4AySQkEAIAY2Q5Pz+\nqJpUZ5hLZtLVVT39eT1PP3RVV3d9+1DpM3VOXRQRmJmZVcNmRQ/AzMwGDicVMzOrGicVMzOrGicV\nMzOrGicVMzOrGicVMzOrGicVG9AkXSzpJz28/qSkD+W5jnomaRdJqySp6LFYfXBSsZqS9HFJj0h6\nQ9JSSQ9LOjPHVfZ4IlZEvC8ifpPXOiS1SnphYz5EUrOkdZIK+3cpqV3SER3TEfF8RGwdPqHNNpKT\nitWMpC8DVwJXACMiYgRwBvBBSUO6ec+mbqO1+Au72uvIZcySBm3EYpHX+q0xOKlYTUjaFrgEODMi\n/m9EvAkQEXMj4lMR8Va63DRJP5R0h6Q3gFZJH5H0mKSVkp6XdFHF53b8df85SYslvZgmrw4BDJE0\nXdLrabnr4Ir3t0s6Mn0+SNJXJS1Ml31U0k7pa99L170ynX9YP+PQJunrkv47Xcddkt6dvtyxx/Ra\nWnIal77nNEnzJb0qaYakXSo+7xhJv5f0mqR/l3SfpNPT1yZJekDSdyQtBy6StJukeyQtl7RM0k/T\n/zekJbxdgNvT9X+l896TpNGSbpP0iqQFkj5bMZaLJd3cXaytMTipWK38JbAFcOtGLHsK8I2IGAY8\nALwBfCoitgU+Apwp6fhO72kFxgLHAOd1JAqSv7o/CtwIbAvcBlxd8b4gK199Cfg48OGI2Ab4DPCn\n9LU5wAHAdsANwC+627vayO83CdgRGAJ8JZ0/Pv3vtmnJ6ZH0e04BTgS2B+5PvwuStgd+AZwHDAd+\nTxLnylLVocCz6bouTePxLWAUsDewM3AxQER8Gnge+Kt0/f/axdhvSpcZBfwtcKmkCRWv/zXdx9oa\ngJOK1cr2wPKIWNcxQ9KDklZI+mOnv/xviYiHACLizxFxX0Q8lU4/QfLDdninz78kIv4UEU8C15H8\ncHe4PyJmpH2Bn5Ikh658FvhaRCzoWFdEvJo+/1lErIiIdRHxHZIEuVc/4hDAdRGxMCJWAzcDLR0h\n6WL5M4DLIuL3aewuA1rSvZXjgCcj4pZ0XFcBSzq9/8WI+Pf09dUR8WxE3B0Rb0fEcuC7vDOWXZK0\nM/AB4LyIeCsi5gFTgb+rWGxjY20DlJOK1corwPaVPZKI+EBEbJe+1jE/gA0a25LGSbpX0suSXgP+\nAXg3G6p8z/PA6IrppRXP/wgM7aZXM4bkr/p3SEtB89My0wqSv8S37+a79qbyh/9PwLAeln0P8L00\n+a4giRXATiR7C4s6Ld95unMsR0i6SdIiSSuBn/DOWHZnNPBqR+ky9Xw6lg4bG2sboPw/22rlIeDP\nwAn9eO8NwC3AmIhoAn7EO7fdXTo9X9yP9bxAUkLbgKTxwLnASRHRlCbClVS/od3VEVbPA38fEdtV\nPN6V7sm9RJIIO8apyuluPvNSYC3wvrSc+Gk2jGVPR3m9CAyXVJkEd+GdicwamJOK1UREvEbSqP+B\npL+RtLWkzSS1AO+qWLSrH+phwIqIeEvSocAneOeP3z9L2lLSviT9ip/3Y5hTgW9IGqvE/pKGp+tf\nAyyXNETShcA2/fj8Dt0lo2XAOmD3ink/Ar4qaR9IDniQdFL62h3AfpKOlzQYOAsY2cu6hwFvAq+n\nByGc2+n1pZ3Wv15EvAA8CFwmaQtJ+wOnkZS5zAAnFauhiPgXkmb4P5GUgJaQ/Gj+E8meDGzYOO8w\nGfi6pNeBC+g6YdwHLARmA/8SEbN7+Lzu/hr/DkmPYybJnsiPgaHAXcAM4BmgnaRk9Xynz+vpL/ye\n1r/+vRHxR5Im+gNpuevQiLiF5BDsm9Jy1RPAsenyy4GTgG8Dy0ka74+S7BF2N65LgIPS73c78MtO\ny1xGkqBXSPpSF+M9BWgm2Wv5v8CFEXFPD+vz+S0NRnmd0yRpKMk/9C1IjnC5NSKmpH/5/ZykVtwO\nnJz+FYukKSR/+awFzo6Imen8g4FpJP/A74iIL+QyaKs7kpqBPwCDKw8CaERp7+IF4BMRcV/R47HG\nlNueSnpky4SIaAH2ByakR/icD8yKiD2Bu9Np0t37jwH7ABNJyiQdZYIfAqdHxB7AHpIm5jVus3qS\nnqfSJGkL4Kvp7IeLHJM1tlzLX+nuPCR7KoOAFSTnDExP508na9weD9yYHurYTlLKGCdpFLB1RMxJ\nl7ue/jV7beBq5BLLX5L8W1lGcg7PCRHx557fYpafXJNK2oidS9L8uzc912BERHQcdrgUGJE+H82G\nR5EsIjlUsfP8xWx4CKM1sIhoj4hBjVr6iohLImL7iNgmIv4yIv5f0WOyxjY4zw9P/6G3pJeBuKvT\nmbdEREhq5L8yzcwGlFyTSoeIWCnp18DBwFJJIyNiSVraejldbDHJJSM6jCHZQ1nMhsfej6GLcxCc\nnMzM+iciqnbOVW7lL0nbS2pKn28JHA08RnI9oFPTxU4lOamNdP7H0/MAdgX2AOZExBKSY+rHpY37\nT1e8ZwMR4UcEF110UeFjKMvDsXAsHIueH9WW557KKGB6epjjZsBPIuJuSY8BN6dXUm0HTgaIiPmS\nbgbmk5xoNjmybzyZ5JDiLUkOKZ6R47jrXnt7e9FDKA3HIuNYZByL/OSWVCK58N9BXcx/FTiqm/dc\nSnIZic7zfwvsV+0xmplZdfmM+gFo0qRJRQ+hNByLjGORcSzyk9sZ9bUmKQbKdzEzqxVJRD006q04\nbW1tRQ+hNByLjGORcSzy46RiZmZV4/KXmVkDc/nLzMxKy0llAHK9OONYZByLjGORHycVMzOrGvdU\nzMwamHsqZmZWWk4qA5DrxRnHIuNYZByL/DipmJlZ1binYmbWwNxTMTOz0nJSGYBcL844FhnHIuNY\n5MdJxczMqsY9FTOzBuaeipmZlZaTygDkenHGscg4FhnHIj9OKmZmVjXuqZiZNTD3VMzMrLScVAYg\n14szjkXGscg4FvlxUjEzs6pxT8XMrIG5p2JmZqXlpDIAuV6ccSwyjkXGsciPk4qZmVVNbj0VSTsD\n1wM7AgH8R0RcJeli4LPAsnTRr0bEnel7pgCnAWuBsyNiZjr/YGAaMBS4IyK+0MX63FMxM+ujavdU\n8kwqI4GRETFX0jDgt8AJwMnAqoj4Tqfl9wFuAA4BdgJmA3tEREiaA/xjRMyRdAdwVUTM6PT+PieV\nt96CNWtgq636+SXNzOpc3TTqI2JJRMxNn78B/A9JsgDo6gscD9wYEW9HRDuwEBgnaRSwdUTMSZe7\nniQ5bbIzz4Tp06vxSeXienHGscg4FhnHIj816alIagYOBB5OZ31e0jxJ10hqSueNBhZVvG0RSRLq\nPH8xWXLaJEceCTNm9L6cmZltnNyTSlr6+k/gC+keyw+BXYEW4CXg3/IeQ3eOPhra2pIy2EDS2tpa\n9BBKw7HIOBYZxyI/g/P8cEmbA78EfhoRtwBExMsVr08Fbk8nFwM7V7x9DMkeyuL0eeX8xV2tb9Kk\nSTQ3NwPQ1NRES0vL+o2nY3e38/See7by4IMAXb/uaU972tMDabqtrY1p06YBrP+9rKY8G/UCpgOv\nRMQ5FfNHRcRL6fNzgEMi4hMVjfpDyRr1Y9NG/SPA2cAc4NdUqVEPcMEF8PbbcPnl/fqapdTW1rZ+\nY2p0jkXGscg4Fpm6adQDHwQ+BUyQ9Fj6+DBwhaTHJc0DDgfOAYiI+cDNwHzgTmByRZaYDEwFFgAL\nOyeUTTFxItx1V7U+zcyssTX8tb/WrIEddoD582HUqBwGZmZWYvW0p1IXBg9OjgKbObPokZiZ1b+G\nTyow8EpgHU05cywqORYZxyI/TirAsccmeypr1xY9EjOz+tbwPZUO++4L110Hhx5axUGZmZWceyo5\nmTjRZ9ebmW0qJ5XUQOqruF6ccSwyjkXGsciPk0pq/Hh4/HFYsaLokZiZ1S/3VCocdxx85jNw0klV\nGpSZWcm5p5KjgVQCMzMrgpNKhWOPTZr19b7z5npxxrHIOBYZxyI/TioV9twTNt8cnnqq6JGYmdUn\n91Q6OfNMGDsWvvzlKgzKzKzk3FPJmc9XMTPrPyeVTiZMgIcfhjffLHok/ed6ccaxyDgWGcciP04q\nnWyzDRx8MNx3X9EjMTOrP+6pdOHyy+HFF+Gqq6rycWZmpeWeSg10HFpsZmZ946TShQMOgNdfhz/8\noeiR9I/rxRnHIuNYZByL/DipdGGzzZK9FZ9db2bWN+6pdOOGG+DnP4dbb63aR5qZlU61eypOKt1Y\ntiw5CXLZMhgypGofa2ZWKm7U18gOO8Bee8GDDxY9kr5zvTjjWGQci4xjkR8nlR747Hozs75x+asH\nDzwAZ50Fc+dW9WPNzErDPZVu5JFU1qxJymDz58OoUVX9aDOzUnBPpYYGD4ajjoKZM4seSd+4Xpxx\nLDKORcaxyI+TSi98dr2Z2cZz+asXL7wABx4IS5fCoEFV/3gzs0K5/FVjO+8MI0fCb39b9EjMzMov\nt6QiaWdJ90p6StKTks5O5w+XNEvSM5JmSmqqeM8USQskPS3pmIr5B0t6In3te3mNuTv1VgJzvTjj\nWGQci4xjkZ8891TeBs6JiH2B9wNnSdobOB+YFRF7Anen00jaB/gYsA8wEfiBpI5dsh8Cp0fEHsAe\nkibmOO538PkqZmYbp2Y9FUm3AFenj8MjYqmkkUBbRLxX0hRgXURckS4/A7gYeA64JyL2Tud/HGiN\niDM6fX4uPRWA1athxx3huedgu+1yWYWZWSHqsqciqRk4EHgEGBERS9OXlgIj0uejgUUVb1sE7NTF\n/MXp/JoZOhTGj4fZs2u5VjOz+jM47xVIGgb8EvhCRKzKKloQESGparsXkyZNorm5GYCmpiZaWlpo\nbW0Fshpqf6d3262N666Dk06qzuflOV1ZLy7DeIqc7phXlvEUOT137ly++MUvlmY8RU5feeWVVf19\nqKfptrY2pk2bBrD+97Kaci1/Sdoc+C/gzoi4Mp33NEn5aomkUcC9afnrfICIuDxdbgZwEUn5696K\n8tcpJOWzmpW/AJ55Bo44IjnEWFXbUcxHW1vb+o2p0TkWGcci41hk6uYyLWmTfTrwSkScUzH/2+m8\nK9JE0hQR56eN+huAQ0nKW7OBsenezCPA2cAc4NfAVRExo9P6ck0qEbD77nDbbfC+9+W2GjOzmqqn\nnsoHgU8BEyQ9lj4mApcDR0t6BjginSYi5gM3A/OBO4HJFVliMjAVWAAs7JxQakGqv0OLzcxqzWfU\n98Gtt8L3v1/+hr137TOORcaxyDgWmXraUxlwjjgCHnkE3nyz6JGYmZWT91T6qLUVzj0XPvKR3Fdl\nZpY776kUzGfXm5l1z0mljyZOhLvuKnoUPas8R6PRORYZxyLjWOTHSaWPDjgAVq2CZ58teiRmZuXj\nnko/nHoqjBsHkyfXZHVmZrlxT6UE6qEEZmZWBCeVfjj6aGhrg7feKnokXXO9OONYZByLjGORHyeV\nfth+e9hrL3jggaJHYmZWLu6p9NOFF8Kf/wxXXFGzVZqZVZ17KiXhvoqZ2Ts5qfTToYcmd4J88cWi\nR/JOrhdnHIuMY5FxLPLjpNJPgwfDUUfBzJlFj8TMrDzcU9kE11yTXLH4xhtrulozs6qpm5t01VoR\nSWXRImhpgaVLYdCgmq7azKwq3KgvkTFjYORIePTRokeyIdeLM45FxrHIOBb5cVLZRD4KzMwss9Hl\nL0lDgYiIP+c7pP4povwFSU/lwgvhwQdrvmozs01Ws56KpM2AE4BTgA+Q7NUIWAs8BPwMuKWQX/Iu\nFJVUVq+GHXeE9nYYPrzmqzcz2yS17Km0AQcD/wrsFhGjImIksFs67xDgvmoNpF4NHQrjx5frvvWu\nF2cci4xjkXEs8jO4h9eO7qrUlc57GHhY0ha5jayOdPRVTj656JGYmRWrx56KpE9GxM8knRIRpT4b\no6jyF8CCBcm96xctAlVtJ9LMLH+1PqR4tKSTgTHVWuFANHYsbLEFPPlk0SMxMytWt0lF0kXAcOAG\nYHg6bV2QynVosevFGcci41hkHIv8dJtUIuIS4BXg08Ar6bR1Y+JEmDGj6FGYmRXLPZUqWbUKRo+G\nJUvgXe8qbBhmZn1Ss56KpDuBBwHKnlDKYOut4S/+IrnNsJlZo+qpUX8tcJekr0navFYDqmdlKYG5\nXpxxLDKORcaxyE9PPZVfAAcB2wKPSvqKpC+njy9tzIdLulbSUklPVMy7WNIiSY+ljw9XvDZF0gJJ\nT0s6pmL+wZKeSF/7Xr++aQ0ce2w5koqZWVF666lsAZwHfBK4CVjX8drGNO4ljQfeAK6PiP3SeRcB\nqyLiO52W3YfkSLNDgJ2A2cAeERGS5gD/GBFzJN0BXBURMzq9v/ArxkQkfZX//m/YffdCh2JmtlGq\n3VPp9ox6SROB7wC3AwdGxB/7+uERcb+k5q4+vot5xwM3RsTbQLukhcA4Sc8BW0fEnHS560muSVa6\nfQIp2Vu56y6YPLno0ZiZ1V5PPZWvASdFxHkdCUXSxVVa7+clzZN0jaSmdN5oYFHFMotI9lg6z1+c\nzi+lMvRVXC/OOBYZxyLjWOSn2z2ViBjfxezjgYs3cZ0/BL6ePv8G8G/A6Zv4mQBMmjSJ5uZmAJqa\nmmhpaaG1tRXINqK8p48+upW//3uYNauNzTfPf32e7nm6Q1nGU+T03LlzSzWeIqfnzp1bqvHUcrqt\nrY1p06YBrP+9rKaeLn3/sYj4ead5cyOipU8rSMpft3f0VLp7TdL5ABFxefraDOAi4Dng3ojYO51/\nCnB4RJzR6bMK76l0GDcOLr8cJkwoeiRmZj2r5bW//k7SDEmVLeeDN3WFkkZVTJ4IdBwZdhvwcUlD\nJO0K7AHMiYglwOuSxkkSyRn+t2zqOPJUhhKYmVkRejqk+CPAj4D/knShpO2BbSUNl7RRt6OSdCPJ\nCZR7SXpB0mnAFZIelzQPOBw4J13ffOBmYD5wJzC5YtdjMjAVWAAs7HzkV9kUfWhx59JPI3MsMo5F\nxrHIT0/3UyEibpHUDvyGpO/RcUhxkNysq0cRcUoXs6/tYflLgUu7mP9b4B3ls7I69FB44QV48cXk\nEGMzs0bRU09lKOkRYMBXIuK/ajmwvipTTwWSG3YddxxMmlT0SMzMulfLnso8kj2ZA8ueUMqo6BKY\nmVkRekoqJ0bElIj4U81GM4Ace2xy3/q1a2u/bteLM45FxrHIOBb56SmpfEXSId29mB6NdV0OYxoQ\nxoyBUaPg0UeLHomZWe301FPZDzgXeD/we+AlksurjAT2Ijmq618johQ30S1bTwXg3HNh2DC4yPfM\nNLOSqnZPpccLSqYr3AI4EHgPyVFfzwHzImJ1tQZRDWVMKrNnwwUXwEMPFT0SM7Ou1fImXf8h6URg\nSEQ8HBE/j4ibI+KRsiWUsjrsMHjqKXj11dqu1/XijGORcSwyjkV+ertJVwtwh6R7JJ0n6YAajWtA\nGDoUPvShZI/FzKwR9Fr+AkjPpj8GmAjsD/wOmBERN+c7vI1XxvIXwPe/D489Btd2e8qnmVlxat5T\n6WIAImngbx4R36rWQDZVWZPKggXQ2gqLFiX3WzEzK5NanvzYpfSX+/NlSihlNnZsUgZ7sobHyLle\nnHEsMo5FxrHIT093fnyiu9eAETmMZUDquBvkjBmwX91cvczMrH96Ok9lKUkPZUUXLz8YEaW6VGJZ\ny18At90GV13lhr2ZlU/N7lEP/BoYFhGPdTGI+6o1gEYwYQJ88pPwxhvJyZBmZgNVT/dTOS0i7u/m\nta4uaW/d2HprOOQQqFUZ1/XijGORcSwyjkV++tyot/7xVYvNrBH0+ZDisipzTwVg3jz4279NDjE2\nMyuLwg8ptv7Zf/+kp7JwYdEjMTPLj5NKjXQcWnzXXfmvy/XijGORcSwyjkV+nFRqaOLE2iQVM7Oi\nuKdSQ6+8ArvtBi+/DFtsUfRozMzcU6lr7343vPe98MADRY/EzCwfTio1VosSmOvFGcci41hkHIv8\nOKnU2MSJPl/FzAYu91RqbM0a2HHH5KrFo0t19TQza0TuqdS5wYPhqKN8FJiZDUxOKgXIu6/ienHG\nscg4FhnHIj9OKgU49liYNQvWri16JGZm1ZVrT0XStcBHgJcjYr903nDg58B7gHbg5Ih4LX1tCnAa\nsBY4OyJmpvMPBqYBQ4E7IuILXayrLnoqHfbbD378Y3j/+4seiZk1snrrqVxHcqOvSucDsyJiT+Du\ndBpJ+wAfA/ZJ3/MDaf1d3X8InB4RewB7SOr8mXXHZ9eb2UCUa1JJ78fS+c6RHwWmp8+nAyekz48H\nboyItyOiHVgIjJM0Ctg6Iuaky11f8Z66leehxa4XZxyLjGORcSzyU0RPZURELE2fLyW73/1oYFHF\ncouAnbqYvzidX9cOOwyeegpefbXokZiZVU9PtxPOXUSEpKo1QiZNmkRzczMATU1NtLS00NraCmR/\nmZRl+qGH2th3X5g9u5WTT67u57e2thb+/TxdzukOZRlPUdMd88oynlpOt7W1MW3aNID1v5fVlPvJ\nj5KagdsrGvVPA60RsSQtbd0bEe+VdD5ARFyeLjcDuAh4Ll1m73T+KcDhEXFGp/XUVaMe4Oqr4Xe/\ng2uvLXokZtao6q1R35XbgFPT56cCt1TM/7ikIZJ2BfYA5kTEEuB1SePSxv2nK95T1zr6KtXOhZ3/\nKm1kjkXGscg4FvnJNalIuhF4ENhL0guSPgNcDhwt6RngiHSaiJgP3AzMB+4EJlfsekwGpgILgIUR\nMSCunjV2LGy5JTzxRNEjMTOrDl/7q2BnnQXNzXDuuUWPxMwa0UAof1kFX7XYzAYSJ5WCTZgAc+bA\nG29U7zNdL844FhnHIuNY5MdJpWDDhsEhh4C3cTMbCNxTKYGpU+Gyy+AnP4EPfKDo0ZhZI6l2T8VJ\npSR+9Ss480w4/XS46CIYMqToEZlZI3CjfoA68USYOxfmzUuuXDx/fv8/y/XijGORcSwyjkV+nFRK\nZORIuP12OOMM+NCH4KqrYN26okdlZrbxXP4qqYUL4dOfThr5110HY8YUPSIzG4hc/moQY8fC/fdD\nayscdBDcdFPRIzIz652TSokNHgxf+xrceSdccgmccgqs6Hx3mi64XpxxLDKORcaxyI+TSh04+GD4\n7W9hhx1g//1h9uyiR2Rm1jX3VOrMzJlw2mnwN38Dl1+eXJDSzKy/3FNpcMccA48/DkuWJHswv/td\n0SMyM8s4qdSh4cOTxv0//3NyQcpLL4U1a7LXXS/OOBYZxyLjWOTHSaVOSfCJTyS9lrvvhsMPh2ef\nLXpUZtbo3FMZANatS06U/Na3kr2Wz342STpmZr3xtb+60chJpcNTT8GnPpWcKDl1KowYUfSIzKzs\n3Ki3bu27LzzyCGyzTRstLXDrrUWPqHiunWcci4xjkR8nlQFmyBD43OfgF7+Ac85JSmGrVhU9KjNr\nFC5/DWCrViWJ5d574frr4YMfLHpEZlY27ql0w0mle7femlz5+DOfgYsv9r1azCzjnor1qnO9+Pjj\nk3u1PPkkjBuXNPQbhWvnGcci41jkx0mlQYwYkeyxnHVWck7Ld7/re7WYWfW5/NWAnn02uVfLllvC\ntGmw885Fj8jMiuLyl22y3XeH3/wGjjwyuX7YDTeA87GZVYOTygC0MfXiwYPhq1+FGTPgm99M7tXy\n6qv5j63WXDvPOBYZxyI/TioN7qCDkuuHjRwJBxwAs2YVPSIzq2fuqdh6s2cnhx2feGJyr5attip6\nRGaWtwHTU5HULulxSY9JmpPOGy5plqRnJM2U1FSx/BRJCyQ9LemYosY9kB11VHKvluXLk17Lo48W\nPSIzqzdFlr8CaI2IAyPi0HTe+cCsiNgTuDudRtI+wMeAfYCJwA8kuXTXjU2pF2+3XdK4v/BCOO64\npN9Sea+WeuPaecaxyDgW+Sn6h7nzLtdHgenp8+nACenz44EbI+LtiGgHFgKHYrk55ZTkrpJtbTB+\nPCxcWPSIzKweFNZTkfQHYCWwFvg/EfFjSSsiYrv0dQGvRsR2kr4PPBwRP0tfmwrcGRG/rPg891Ry\nsG4dXH01fP3ryb1aPvc536vFbCAZMD0V4IMRcSDwYeAsSeMrX0wzRE9ZwhmkBjbbDM4+Ozmv5Uc/\ngr/+a1iypOhRmVlZDS5qxRHxUvrfZZJ+RVLOWippZEQskTQKeDldfDFQed73mHTeBiZNmkRzczMA\nTU1NtLS00NraCmQ11EaYrqwXV+vzX365jSuugPvua6WlBc46q43x48vxfXua7hyTosdT5PTcuXP5\n4he/WJrxFDl95ZVXNvTvw7Rp0wDW/15WUyHlL0lbAYMiYpWkdwEzgUuAo4BXIuIKSecDTRFxftqo\nv4Ek8ewEzAbGVta7XP7KtLW1rd+Y8vDgg8llXg47DE4/PblI5RZb5La6TZJ3LOqJY5FxLDID4tL3\nknYFfpVODgZ+FhGXSRoO3AzsArQDJ0fEa+l7vgqcBqwBvhARd3X6TCeVGnrjDfj2t+HOO+Hpp+ED\nH0gu+3LEEXDggTBoUNEjNLONMSCSSh6cVIqzYgXcdx/cfTfccw+89FJyJeSOJLP33m7um5XVQGrU\nW04q+wm1sN12cMIJ8P3vJ/dqeeopOOkkeOyx5FyX0aPhk5+Ea6+F556r6dBqHosycywyjkV+CmvU\n28A1ahR84hPJIwL+93+TvZhZs2DKFBg2LNuLOeII2HHHokdsZtXi8pfVVESyJ9NRKrvvvuR+Lkce\nmTw+9CHYdtuiR2nWONxT6YaTSn1asya5SvI99ySJ5pFHYN99kz2YI49MDgDYcsuiR2k2cLmnYr2q\np3rx4MHJIclTpiRXSV62DC67LDl67IILYIcdkgTzzW/CQw/1/Tpk9RSLvDkWGcciP04qVipDh8KE\nCfCNbySmrGgiAAAHo0lEQVTnw7z0Enz5y8kNxM48E979bvirv4LvfhfmzUsuI2Nm5eHyl9WVZcuS\ni1x29GRWrEiSUEfjf+xYH75s1hfuqXTDSaUxPf98klw6ejKDBm14ZNlOOxU9QrNyc0/FetVI9eJd\ndoFJk+D662HRouSw5UMOgVtvhf33h112aeOss+CXv0xKaI2skbaL3jgW+fF5KjZgSLDXXslj8uSk\n33LNNbByJUydmtwqeezYJOnstlvy2H335L9NTb1/vpn1zuUvaxhvvQVz5iS3TP7DH7LHs8/C5ptv\nmGQqk86YMclRamYDkXsq3XBSsf6KgOXLN0wylUln6dLkBM3OSafj+TbbFP0NzPrPSaUbTioZX9Y7\nU41YrF6dXLOsu6QzdGj3ezk77VSeKzZ7u8g4FplqJxXv1Jv1YujQrFfTWQS8/PKGSeb++2H69OT5\n8uXJwQRdJZxdd4Wtt6799zHLk/dUzHK0enVyQc3OPZyO58OGdZ1wdtstubrzZj4+03Lm8lc3nFSs\n3kQk/ZrO5bSO6RUr4D3vSZJMczOMGJFctqbzY/jw8pTYrP44qXTDSSXjenGmnmPxxz9Ce3uSZNrb\nkzLbsmXvfKxcmRwSvcMOsP32XSeeHXaA9vY2jjuule23hyFDiv52xarn7aLa3FMxaxBbbQX77JM8\nerJ2LbzyyjuTzfLlsGBBcg21ZcuSMtwFFyTLbrXVO5NOTwlpq61q852t/nlPxazBRMBrr3W919M5\nKXU832yz7hNOV8lom218DbZ64fJXN5xUzPIRAW++2XsSqny89VaSbLbbLkkwHY9tt+1+uvNrw4Y5\nMdWCk0o3nFQyrhdnHItMLWOxenWyp/Paa/D668lj5crseW/TK1fCn/6UHHLdn4RUOf2ud70zOXm7\nyLinYmalN3RocnmbMWP6/xlr18KqVb0noPb2nl9fvXrD5LTNNsnN3nbddcMEtMMOcMYZVQtBw/Ke\nipkNaGvWZMmppwQlwde/XvRoa8/lr244qZiZ9Z3vp2K98r0iMo5FxrHIOBb5cVIxM7OqcfnLzKyB\nufxlZmalVTdJRdJESU9LWiDpvKLHU2auF2cci4xjkXEs8lMXSUXSIOBqYCKwD3CKpL2LHVV5zZ07\nt+ghlIZjkXEsMo5FfuoiqQCHAgsjoj0i3gZuAo4veEyl9dprrxU9hNJwLDKORcaxyE+9JJWdgBcq\nphel88zMrETqJan4sK4+aG9vL3oIpeFYZByLjGORn7o4pFjS+4GLI2JiOj0FWBcRV1QsU/4vYmZW\nQg13mRZJg4HfA0cCLwJzgFMi4n8KHZiZmW2gLq5SHBFrJP0jcBcwCLjGCcXMrHzqYk/FzMzqQ2kb\n9RtzsqOkq9LX50k6sLf3ShouaZakZyTNlNRUi++yqXKKxcWSFkl6LH1MrMV32RSbGIdrJS2V9ESn\n5Rtxm+guFnW3TUD/YyFpZ0n3SnpK0pOSzq5YvqG2i15i0bftIiJK9yApcS0EmoHNgbnA3p2WOQ64\nI30+Dni4t/cC3wb+KX1+HnB50d+1wFhcBHyp6O9Xizik0+OBA4EnOr2nobaJXmJRV9vEpsYCGAm0\npM+HkfRt39uI20UvsejTdlHWPZWNOdnxo8B0gIh4BGiSNLKX965/T/rfE/L9GlWRVywA6ukO4JsS\nByLifmBFF5/baNtET7GA+tomoP+xGBERSyJibjr/DeB/yM5/a6TtordYQB+2i7ImlY052bG7ZUb3\n8N4REbE0fb4UGFGtAecor1gAfD7dBb6mDnbvNyUOPWm0baI39bRNQP9jscGNjiU1k+y9PZLOaqTt\nordYQB+2i7ImlY09emBjsqe6+rxI9uvq4SiFasai0g+BXYEW4CXg3/r4/lrrbxw2+v9xA2wTvb2v\n3rYJqEIsJA0D/hP4QvpX+oYLNtB20U0s+rRdlDWpLAZ2rpjemSSj9rTMmHSZruYvTp8v7SgBSBoF\nvFzFMeelmrFY/96IeDlSwFSSXecy628cFtOzRtomeoxFHW4TsImxkLQ58EvgpxFxS8UyDbdddBeL\nvm4XZU0qjwJ7SGqWNAT4GHBbp2VuA/4O1p9x/1q6u9rTe28DTk2fnwrcQvnlEov0H0qHE4EnKLdN\niUNPGm2b6FYdbhOwCbGQJOAaYH5EXNnFexpmu+gpFn3eLoo+YqGHIxk+THIEwkJgSjrvH4B/qFjm\n6vT1ecBBPb03nT8cmA08A8wEmor+ngXG4nrg8XT5W0hqyIV/1xzjcCPJ1Rj+TFJT/kwDbxPdxaLu\ntolNiQVwGLCO5Cipx9LHxEbcLnqJRZ+2C5/8aGZmVVPW8peZmdUhJxUzM6saJxUzM6saJxUzM6sa\nJxUzM6saJxUzM6saJxWznChxf+WlwiWdJOnOIsdlliefp2KWI0n7Ar8guUDf5sDvgGMj4n8LHZhZ\nTpxUzHIm6QrgTZL7VKyMiG8VPCSz3DipmOVM0lYkl71YDfxFJPe6MBuQBhc9ALOBLiL+KOkmYJUT\nig10btSb1cY66uOeHGabxEnFzMyqxknFrHa8p2IDnhv1ZmZWNd5TMTOzqnFSMTOzqnFSMTOzqnFS\nMTOzqnFSMTOzqnFSMTOzqnFSMTOzqnFSMTOzqvn/ShJ1sw8tyPEAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb1dab70>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NtoG from graphical integration: 8.62 \n",
+ "\n",
+ "HtoG: 1.4 m\n",
+ "The depth of packing recquired is 12.84 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 140
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.8: Page 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.8\n",
+ "# Page: 317\n",
+ "\n",
+ "print'Illustration 8.8 - Page: 317\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#***Data***\n",
+ "# a:NH3 b:air c:H2O\n",
+ "ya = 0.416;# [mole fraction]\n",
+ "yb = 0.584;# [mole fraction]\n",
+ "G1 = 0.0339;# [kmol/square m.s]\n",
+ "L1 = 0.271;# [kmol/square m.s]\n",
+ "TempG1 = 20;# [OC]\n",
+ "#********#\n",
+ "\n",
+ "# At 20 OC\n",
+ "Ca = 36390;# [J/kmol]\n",
+ "Cb = 29100;# [J/kmol]\n",
+ "Cc = 33960;# [J/kmol]\n",
+ "lambda_c = 44.24*10**6;# [J/kmol]\n",
+ "# Enthalpy base = NH3 gas, H2O liquid, air at 1 std atm.\n",
+ "Tempo = 20;# [OC]\n",
+ "lambda_Ao = 0;# [J/kmol]\n",
+ "lambda_Co = 44.24*10**6;# [J/kmol]\n",
+ "\n",
+ "# Gas in:\n",
+ "Gb = G1*yb;# [kmol air/square m.s]\n",
+ "Ya1 = ya/(1-ya);# [kmol NH3/kmol air]\n",
+ "yc1 = 0;# [mole fraction]\n",
+ "Yc1 = yc1/(1-yc1);# [kmol air/kmol NH]\n",
+ "# By Eqn 8.58:\n",
+ "Hg1 = (Cb*(TempG1-Tempo))+(Ya1*(Ca*(TempG1-Tempo))+lambda_Ao)+(Yc1*(Cc*(TempG1-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "\n",
+ "# Liquid in:\n",
+ "xa1 = 0;# [mole fraction]\n",
+ "xc1 = 1;# [mole fraction]\n",
+ "Hl1 = 0;# [J/kmol air]\n",
+ "\n",
+ "#Gas out:\n",
+ "Ya2 = Ya1*(1-0.99);# [kmol NH3/kmol air]\n",
+ "# Assume:\n",
+ "TempG2 = 23.9;# [OC]\n",
+ "yc2 = 0.0293;\n",
+ "def f(Yc2):\n",
+ " return yc2-(Yc2/(Yc2+Ya2+1))\n",
+ "Yc2 = fsolve(f,0.002);# [kmol H2O/kmol air]\n",
+ "Hg2 = (Cb*(TempG2-Tempo))+(Ya2*(Ca*(TempG2-Tempo))+lambda_Ao)+(Yc2*(Cc*(TempG2-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "\n",
+ "# Liquid out:\n",
+ "Lc = L1-(Yc1*Gb);# [kmol/square m.s]\n",
+ "La = Gb*(Ya1-Ya2);# [kmol/square m.s]\n",
+ "L2 = La+Lc;# [kmol/square m.s]\n",
+ "xa = La/L2;\n",
+ "xc = Lc/L2;\n",
+ "# At xa & tempo = 20 OC\n",
+ "delta_Hs = -1709.6*1000;# [J/kmol soln]\n",
+ "\n",
+ "# Condition at the bottom of the tower:\n",
+ "# Assume:\n",
+ "TempL = 41.3;# {OC}\n",
+ "# At(TempL+TempG1)/2:\n",
+ "Cl = 75481.0;# [J/kmol]\n",
+ "def f40(Cl):\n",
+ " return Hl1+Hg1-((Gb*Hg2)+(L2*(Cl*(TempL-Tempo)+delta_Hs)))\n",
+ "Cl = fsolve(f40,7);# [J/kmol.K]\n",
+ "\n",
+ "# For the Gas:\n",
+ "MavG = 24.02;# [kg/kmol]\n",
+ "Density_G = 0.999;# [kg/cubic m]\n",
+ "viscosity_G = 1.517*10**(-5);# [kg/m.s]\n",
+ "kG = 0.0261;# [W/m.K]\n",
+ "CpG = 1336;# [J/kg.K]\n",
+ "Dab = 2.297*10**(-5);# [square m/s]\n",
+ "Dac = 3.084*10**(-5);# [square m/s]\n",
+ "Dcb = 2.488*10**(-5);# [square m/s]\n",
+ "PrG = CpG*viscosity_G/kG;\n",
+ "\n",
+ "# For the liquid:\n",
+ "MavL = 17.97;# [kg/kmol]\n",
+ "Density_L = 953.1;# [kg/cubic m]\n",
+ "viscosity_L = 6.408*10**(-4);# [kg/m.s]\n",
+ "Dal = 3.317*10**(-9);# [square m/s]\n",
+ "kl = 0.4777;# [W/m.K]\n",
+ "ScL = viscosity_L/(Density_L*Dal);\n",
+ "PrL = 5.72;\n",
+ "sigma = 3*10**(-4);\n",
+ "G_prime = G1*MavG;# [kg/square m.s]\n",
+ "L_prime = L2*MavL;# [kg/square m.s]\n",
+ "# From data of Chapter 6:\n",
+ "Ds = 0.0472;# [m]\n",
+ "a = 57.57;# [square m/cubic m]\n",
+ "shiLt = 0.054;\n",
+ "e = 0.75;\n",
+ "# By Eqn. 6.71:\n",
+ "eLo = e-shiLt;\n",
+ "# By Eqn. 6.72:\n",
+ "kL = (25.1*Dal/Ds)*(Ds*L_prime/viscosity_L)**0.45*ScL**0.5;# [m/s]\n",
+ "c = Density_L/MavL;# [kmol/cubic m]\n",
+ "Fl = kL*c;# [kmol/cubic m]\n",
+ "# The heat mass transfer analogy of Eqn. 6.72:\n",
+ "hL = (25.1*kl/Ds)*(Ds*L_prime/viscosity_L)**0.45*PrL**0.5;# [m/s]\n",
+ "# The heat transfer analogy of Eqn. 6.69:\n",
+ "hG = (1.195*G_prime*CpG/PrG**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [W/square m.K]\n",
+ "# To obtain the mass transfer coeffecients:\n",
+ "Ra = 1.4;\n",
+ "Rc = 1-Ra;\n",
+ "# From Eqn. 8.83:\n",
+ "Dam = (Ra-ya)/(Ra*((yb/Dab)+((ya+yc1)/Dac))-(ya/Dac));# [square m/s]\n",
+ "Dcm = (Rc-yc1)/(Rc*((yb/Dcb)+((ya+yc1)/Dac))-(yc1/Dac));# [square m/s]\n",
+ "ScGa = viscosity_G/(Density_G*Dam);\n",
+ "ScGc = viscosity_G/(Density_G*Dcm);\n",
+ "# By Eqn. 6.69:\n",
+ "FGa = (1.195*G1/ScGa**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [kmol/square m.K]\n",
+ "FGc = (1.195*G1/ScGc**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [kmol/square m.K]\n",
+ "Ra = Ra-0.1;\n",
+ "# From Eqn. 8.80:\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " def f41(xai):\n",
+ " return Ra-(Ra-ya)*((Ra-xa)/(Ra-xai))**(Fl/FGa)\n",
+ " xai = numpy.arange(xa,0.10,0.01)\n",
+ " plt.plot(xai,f41(xai))\n",
+ " Ra = Ra+0.1;\n",
+ "\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Mole fraction NH3 in the liquid, xa\");\n",
+ "ylabel(\"Mole fraction NH3 in the gas ya\");\n",
+ "title(\"Operating Line curves\");\n",
+ "plt.show()\n",
+ "Rc = Rc-0.1;\n",
+ "# From Eqn. 8.81:\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " def f42(xci):\n",
+ " return Rc-(Rc-yc1)*((Rc-xc)/(Rc-xci))**(Fl/FGc)\n",
+ " xci = numpy.arange(xc,0.85,-0.01);\n",
+ " plot(xci,f42(xci))\n",
+ " Rc = Rc+0.1;\n",
+ "\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Mole fraction H2O in the liquid, xc\");\n",
+ "ylabel(\"Mole fraction H2O in the gas, yc\");\n",
+ "title(\"Operating line Curves\");\n",
+ "plt.show()\n",
+ "# Assume:\n",
+ "Tempi = 42.7;# [OC]\n",
+ "# The data of Fig. 8.2 (Pg 279) & Fig 8.4 (Pg 319) are used to draw the eqb curve of Fig 8.25 (Pg 320).\n",
+ "# By interpolation of operating line curves with eqb line and the condition: xai+xci = 1;\n",
+ "Ra = 1.38;\n",
+ "Rc = 1-Ra;\n",
+ "xai = 0.0786;\n",
+ "yai = f41(xai);\n",
+ "xci = 1-xai;\n",
+ "yci = f42(xci);\n",
+ "# From Eqn. 8.77:\n",
+ "dYa_By_dZ = -(Ra*FGa*a/Gb)*math.log((Ra-yai)/(Ra-ya));# [kmol H2O/kmol air]\n",
+ "# From Eqn. 8.78:\n",
+ "dYc_By_dZ = -(Rc*FGc*a/Gb)*math.log((Rc-yci)/(Rc-yc1));# [kmol H2O/kmol air]\n",
+ "# From Eqn. 8.82:\n",
+ "hGa_prime = -(Gb*((Ca*dYa_By_dZ)+(Cc*dYc_By_dZ)))/(1-exp(Gb*((Ca*dYa_By_dZ)+(Cc*dYc_By_dZ))/(hG*a)));# [W/cubic m.K]\n",
+ "# From Eqn. 8.79:\n",
+ "dtG_By_dZ = -(hGa_prime*(TempG1-Tempi))/(Gb*(Cb+(Ya1*Ca)+(Yc1*Cc)));# [K/m]\n",
+ "# When the curves of Fig. 8.2 (pg 279) & 8.24 (Pg 319) are interpolated for concentration xai and xci, the slopes are:\n",
+ "mar = 0.771;\n",
+ "mcr = 1.02;\n",
+ "lambda_c = 43.33*10**6;# [J/kmol]\n",
+ "# From Eqn. 8.3:\n",
+ "Hai = Ca*(Tempi-Tempo)+lambda_Ao-(mar*lambda_c);# [J/kmol]\n",
+ "Hci = Cc*(Tempi-Tempo)+lambda_Co-(mcr*lambda_c);# [J/kmol]\n",
+ "# From Eqn. 8.76\n",
+ "Tempi2 = TempL+(Gb/(hL*a))*(((Hai-Ca*(TempG1-Tempo)-lambda_Ao)*dYa_By_dZ)+((Hci-Cc*(TempG1-Tempo)-lambda_Co)*dYc_By_dZ)-((Cb+(Ya1*Ca)+(Yc1*Cc))*dtG_By_dZ));# [OC]\n",
+ "# The value of Tempi obtained is sufficiently close to the value assumed earlier.\n",
+ "\n",
+ "deltaYa=-0.05;\n",
+ "# An interval of deltaYa up the tower\n",
+ "deltaZ = deltaYa/(dYa_By_dZ);# [m]\n",
+ "deltaYc = (dYc_By_dZ*deltaZ);\n",
+ "# At this level:\n",
+ "Ya_next = Ya1+deltaYa;# [kmol/kmol air]\n",
+ "Yc_next = Yc1+deltaYc;# [kmol H2O/kmol air]\n",
+ "tG_next = TempG1+(dtG_By_dZ*deltaZ);# [OC]\n",
+ "L_next = L1+Gb*(deltaYa+deltaYc);# [kmol/square m.s]\n",
+ "xa_next = ((Gb*deltaYa)+(L1*xa))/L_next;# [mole fraction NH3]\n",
+ "Hg_next = (Cb*(tG_next-Tempo))+(Ya_next*(Ca*(tG_next-Tempo))+lambda_Ao)+(Yc_next*(Cc*(tG_next-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "Hl_next = (L1*Hl1)+(Gb*(Hg_next-Hg2)/L_next);# [J/kmol]\n",
+ "# The calculation are continued where the specified gas outlet composition are reached.\n",
+ "# The packed depth is sum of all deltaZ\n",
+ "Z = 1.58;# [m]\n",
+ "print\"The packed depth is: \",Z,\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.8 - Page: 317\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEZCAYAAABWwhjiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcTfUbwPHPYyv7EirCJFsLBpFIRpYk7T+VKFqkZEmU\npKLV2mJLlqhIlspaSgll35csFRprikqoLGOe3x/nTN2mmXHNXc69d57363Vfc7Z7vs9zz535zvl+\nz/keUVWMMcaYzMjmdQDGGGOil1UixhhjMs0qEWOMMZlmlYgxxphMs0rEGGNMplklYowxJtOsEjFZ\nmojUE5GtYS6ztIgcEREJZ7nGhIJVIiakRKStiGwUkT9E5EcReUNECnoYT7KIlE2ZV9WvVbVSiMpa\nICL3p16uqrtUNb/aTVomBlglYkJGRLoB/YBuQAGgNlAG+FxEcoagvOz+bhrsstOh7iuqiMvrOEx0\nsErEhISIFAD6AB1Vda6qnlLVncDtQBzQ2t2uj4h8ICKTROSwiKwWkSo++ykhIh+KyM8iskNEOvms\nS3nveBH5HWgjIjVFZKmI/CYi+0RkaEqFJSJfuW9d7zYntRCRBBHZ7bPPRBHpJiLrReSQG9dZPuuf\ncPe7R0QeSH1m4+dnE+e+L5s7v0BEnheRRe5n8JmInOOzfW0RWeLmtE5E6mew71Ii8pH7eR0UkaE+\nn9X408TwoogsBv4AHheRlan23VVEZrjTZ4nIIBHZKSL7RWSEiJztrisqIrPdeH8Rka+sUopdVomY\nUKkDnA185LtQVf8APgEa+yy+EZgCFAYmAtNFJLv7B24WsBYoATQEHhWRJqneO1VVC7rvPQV0Ac4B\nrnTf08Et+2r3PVXc5qSpacStQAvgWuBCoArQFkBEmgJd3X2WBxII3plGS7ec4kAuoLtbZklgNvC8\nqhZ2l38oIkVT78A9E5sN/IBzxlcSeN8nr9NpDTwA5APeBCqKSDmf9XcB77nT/YByQFX3Z0ngWXdd\nN2A3UNTNp6c13cUuq0RMqBQFDqpqchrr9rvrU6xS1Y9U9RTwKk7lcyVQEyiqqi+qapKq/gCMAe70\nee8SVZ0JoKrHVHWNqq5Q1WT3zGcUkO5/7ukYoqr7VfU3nEos3l1+OzBWVbeo6l9Ab4LTNKbAOFXd\npqrHcCrUlDJbA5+o6qcAqvoFsApolsZ+agHnA4+r6l+qelxVl7jrThenAm+7uSWr6mFgBk7lhoiU\nByoCM92zinbAY6p6SFWPAn3557iccOOIc89AF5/Zx2GiiVUiJlQOAkVTmktSOR844DO/J2XC/Y91\nD86ZR2mghNss8puI/Ab0xPnv9j/vBRCRCm5Tyo9uE9dLOGclZ2K/z/RfQF6fuHf7rPtX2QFKXWY+\nd7oM0CLVZ1AXOC+NfZQCdqZTcftjd6r5ibiVCM5ZyDS3kisG5AFW+8Q0h3/+MRgIbAPmish2EemR\nyXhMFLBKxITKUuA4cJvvQhHJBzQF5vksLuWzPhtwAbAX54/aD6pa2OdVQFWbu5un1XE9AtgMlHOb\nuHoRvO/5j76xppoOlV3A+FSfQX5VHZDGtruB0ulcYHAU5w9/irQqodSf5RdAMRGpinOWMdFdfhCn\norvEJ6ZCqloAQFWPqmp3Vb0Ip7nxMRG5xt+ETXSxSsSEhKr+DjwHDBWRa0Ukp4jE4TTV7AbG+2xe\nQ0RuEZEcwKPAMWAZsBI44nZm53b7SS4Tkcvd96XVRJMPOAL8KSKVgIdTrf8JuOgM00kpZwpwr4hU\nEpE8wDN+vDeniJzt88pxmjJSmwDcICJN3PzPdi8GKJnGtstxKrp+IpLH3baOu24dcLXb8V4Q54wu\nwxhU9SQwFRiE01/1ubs8GRgNvC4ixcDpu0npqxKR60WknNvsdRinn+pUOvmZKGeViAkZVR0IPIXz\nR+h3nIphJ9DQ/QMFzn+/M4A7gF+BVsCtblv6KaA5Tv/ADpwmsFE4lwunvDf1f8/dcZpeDrvbTkq1\nTR/gHbcZ5n/p7ONfaaSsd/slhgDzge9wzrbAOeNKzwjgT5/X2HTK1FTTKWXuAW7C+Rx/xjkz6UYa\nv7vuH/cbcDq6d+FU1re7674AJgMbcCrnWaeJIcVEnAsJpqZqJuuB02S1zG02/Byo4K4r784fAZYA\nw1V1YRr7NjFAvLxowr3a5XUgOzBGVfunWp+A8wdmh7voQ1V9MaxBmpASkd44TU93ex3LmRKRi4GN\nQK4A+iGMiWrpnVqHnNtuOwxohNP+vVJEZqrqllSbLlTVG8MeoAmXqLp/QERuwblEOQ/QH5hpFYjJ\nyrxszqoFbFPVRLdpYxLOaXtqUfVHxpyxaLur+0GcfpVtwEn+2+diTJbi2ZkIzs1JqS+XvCLVNgrU\nEZH1OGcr3VV1c5jiM2Ggqs95HcOZUNXrvI7BmEjiZSXiz3+fa4BSqvqniFwHTOefzjtjjDEe87IS\n2ct/r7n/181bqnrEZ3qOOCPAFlHVX323E5Foag4xxpiIoKoBdxd42SeyCijvDgSXC+cSz5m+G4jI\nuSkDt4lILZyryX79765AVWPy1bt3b89jsPwsP8sv9l7B4tmZiKomiUhH4DOcS3zfUtUtItLeXT8S\n+B/wsIgk4Vxjf2e6O4xRiYmJXocQUpZfdLP8jJfNWajqHJwxd3yXjfSZHg4MD3dcxhhj/GN3rEe4\ntm3beh1CSFl+0c3yM57esR4sIqKxkIcxxoSLiKBR3rFu/LBgwQKvQwgpyy+6WX7GKhFjjDGZZs1Z\nxhiTBVlzljHGGM9ZJRLhYr1N1vKLbpafsUrEGGNMplmfiDHGZEHWJ2KMMcZzVolEuFhvk7X8opvl\nZ6wSMcYYk2nWJ2KMMVmQ9YkYY4zxnFUiES7W22Qtv+hm+RmrRIwxxmSa9YkYY0wWZH0ixhhjPGeV\nSISL9TZZyy+6WX7GKhFjjDGZZn0ixhiTBVmfSIzZ8PUqkk8lex2GMcacEatEIsSBu69jSZnCTBk4\n+l/LY71N1vKLbpaf8bQSEZGmIrJVRL4XkR4ZbFdTRJJE5NZwxhdO9bbuZXvC/6jz/MNMr1CS2RPm\neB2SMcaclmd9IiKSHfgWaATsBVYCLVV1SxrbfQ78CYxT1Q/T2FfM9Ikc+eVXZt19N00WzGFmhUqU\nHTCRhCbxXodljIkxsdAnUgvYpqqJqnoSmATclMZ2nYAPgAPhDM4r+c8pwl2ffMypDd9TJHdeLru5\nOq/WrcfqVbu9Ds0YY/7Dy0qkJOD7l3GPu+xvIlISp2IZ4S6KjdMNP5xb7iJuXrqSL/oPpuqhfRS/\nJo7nr72Vb78/7HVoQRXrbc6WX3SL9fyCIYeHZftTIbwOPKmqKiICpHvq1bZtW+Li4gAoVKgQ8fHx\nJCQkAP98EaJx/rzKlWH4W3y5cAHN3hrO8Trn0PKS5tzaqQMt/tfY8/hs3uZtPjrmU6YTExMJJi/7\nRGoDfVS1qTvfE0hW1f4+2+zgn4qjKE6/SDtVnZlqXzHTJ5IhVdYMeZUCzz9LYl7l02uf5akBT1Ck\nsF1kZ4w5M8HqE/GyEsmB07HeENgHrCCNjnWf7ccBs1T1ozTWZY1KJEVSEst7PU6ZN4Yz7/x8rL9p\nML373E3evF4HZoyJFmHrWBeR4iIySETmiMh89/VloAWrahLQEfgM2AxMVtUtItJeRNoHuv9Y4Xsq\n+rccObii/2ucu+8XLrqiIU8Oa8uoK8vw7IvzOH487CEGJM38YojlF91iPb9g8Kcd5D1gK3Ah0AdI\nBFYFo3BVnaOqFVW1nKr2dZeNVNWRaWx7b1pnIVmZ5M9P7fFTyf/9D9Q9vwydXm7Cc3WrMmDYNyQl\neR2dMSYrOG1zloisUdXqIrJBVau4y1ap6uVhidAPWa45Kx1/rl/Nd/ffTaFt3/LSpQnUeOhdHmxV\nkmzWZWKMSSWc94mccH/uF5HmIlIdKBxowSb48lStQfyqzRSaMoPHf9xCrcfLcHuju5g843esjjXG\nhII/lchLIlII6AZ0B8YAXUMalflbZtpkCzVpToXteynVfyiDN86m4GPFaNqsG5/NOxb8AAMU623O\nll90i/X8gsGfSmSJqh5S1Y2qmqCq1VNfYmsikAjF2jxMyb0HqXz/47y3aDj7Hz2Ha25+hSXLTnkd\nnTEmRvjTJ/I9sA4YB8yJxM4H6xPxw+HD7HqqM/nHvseoSwvy6UVDGPxUS6pUCbhJ1BgThcJ2n4iI\nZMMZJPE+oCYwBWcgxO8CLTxYrBLxn+7Zw87O95F37nxerlqKLeXHMLTXNZQv73VkxphwClvHuqom\nq+pcVb0TaAe0AVaKyEIRqRNoACZjwW6TlQsuIO6juRRZvJKuFGDEzGvp3a46tz20gd0ejPEY623O\nll90i/X8gsGfmw2LikgXEVmN07HeEWcIkm7AxBDHZ0Ike9V4Si9eR8nJs3hl3wF6zqrBvW2u5b7H\nEvn5Z6+jM8ZEC3+as74DJgBjVXVPqnVPqmq/EMbnF2vOClByMn9OeJu/Hu/G0kJ/8HTJO2lw5as8\n270ohe1ibmNiUlj7RFQ1oh/+bZVIkBw/zpHX+qN9+zH1omReLtiZ1o2e5fEu+ciXz+vgjDHBFNY+\nkUALMZkX1jbZs84i/5PPUiBxL7dddQ9rVw7mrE/Po0LzV3jl9RMcC8FtJrHe5mz5RbdYzy8YbEAM\n81+FC1NoyCgKbPqOh85LYMPap9g9pyRlmoxn9JhkG5fLGPM3z4aCDyZrzgqxtWv5tVM7fv9uE72u\nPJ+Fv73BoIev5Y47xMblMiZKhXMo+IEiUkBEcorIPBE5KCJ3B1qwiSLVqlFk0Srixk/nja3JTN91\nC2M/upyK16xg1ixsXC5jsjB//o9soqqHgeY4w8BfBDweyqDMPyKpTVauvZZCm7dTvc8bTPv6B149\nWJ/e468lvtG3fJnJJ8xEUn6hYPlFt1jPLxj8qURSnsPeHPhAVX/Hv+ejm1iUPTvZ295Lvh/2cu1d\nT7Fo7iI6Ho3nweGtueq6vSxb5nWAxphw8ucS337AzcAxoBZQCOcxtVeEPjz/WJ+Ihw4e5Nhzz3Dq\n3Xd4tQYMz/cw1bI/Q//nClGlitfBGWPSE9ZnrIvIOcAhVT0lInmB/Kq6P9DCg8UqkQiwYwd/PtGV\n4/O/4Nm62ZhwrBeNinbhpT65qVDB6+CMMamF86FUACWA20SkDXAb0CTQgo1/oqZNtmxZ8nwwg8Kf\nLqD/LxezfvPLZKMUNe4fw30PJLFrV9pvi5r8Msnyi26xnl8w+HN1Vh9gCDAMSAAGADeGNCoTvWrW\nJM+i5ZQe+T7jVhfgq5+7s1vKc+lt0+j5lHL0qNcBGmOCyZ8+kW+AqsAaVa0qIucC76lqo3AE6A9r\nzopQSUnouHEcf7on80om0fuKS9m9aBSDnriUVq2we0yM8VA4m7P+UtVTQJKIFAR+BkoFWrDJAnLk\nQNq14+wdO7nuhs58/f56HilRi16fdeKK+r+zcqXXARpjAuVPJbJSRAoDo4FVwFpgSUijMn+LiTbZ\nvHnJ9tzz5F6zgR456rFi/nhKXVSWxo+/TdOmX7I/Yi7RCL6YOH4ZsPyMPwMwdlDV31T1TZwO9Taq\nem8wCheRpiKyVUS+F5Eeaay/SUTWi8haEVktItcEo1zjkbJlOevjTzlv5AQmLsjNh4cf44e87al0\nzSoGDIDjx70O0BhzpvzpE6nBf28u/B3YqaqZHopPRLID3+I8encvsBJoqapbfLbJq6p/uNOVgWmq\nWi6NfVmfSLT56y+S+/fnxOBXGHQFvHPh7Zz6uh+D+xajeXMQe/S7MSEVzj6R4cBynOas0cAy4APg\nOxG5NoCyawHbVDVRVU8Ck4CbfDdIqUBc+YCDAZRnIknu3GTr04ezV6+nR46rWDxrGlUvL0+70cO4\n9roktmw5/S6MMd7zpxLZB8Srag1VrQHEAzuAxjiX+2ZWScD3qd573GX/IiI3i8gWYA7QOYDyolKs\nt8ku2LWLnLPnUPzNd5m8ID+Tf3ye3y6tzJV3fkXXrnDokNcRBibmj5/ll+XlOP0mVFTVTSkzqrpZ\nRCqp6nYRCaQNya/3qup0YLqI1APGAxXT2q5t27bExcUBUKhQIeLj40lISAD++SLYfATP58tHwpbv\nuLp/f14aNICplzbjs2zXM6HGq9xz8/c0awYNG0ZQvDZv81E2nzKdmJhIMPnTJzIF+AWnuUmA24Fi\nQGtgkarWzFTBIrWBPqra1J3vCSSrav8M3rMdqKWqv6Rabn0isWTHDpI6d+K39cto3/gka0/2osDm\nRxn62llcfbXXwRkTG8L5jPU8QAegrrtoMfAGzoCMeVX1SKYKFsmB07HeEKfJbAX/7Vi/CNihqioi\n1YGpqnpRGvuySiQWzZ7NyU4dWFE8iS71z2Ln1yO4pnRTBg6E0qW9Ds6Y6BbOZ6z/qaqDVPUW9zXI\nXZac2QrE3W8S0BH4DNgMTFbVLSLSXkTau5vdBmwUkbXAYODOzJYXrXxPRWNRhvk1b07Ozd9St1l7\nloz+lR7ntGJz+eZUqb+D556DP/8MW5iZlqWPXwyI9fyCwdOBJ1R1jqpWVNVyqtrXXTZSVUe60wNU\n9TJVraaq9VTV7nHOanLnht69ybV6LV3lSha8u5yGDeKZfOAZKl72J1Om2JMVjfGSPWPdRJfZs0nq\n9Airz0umQ/1kftkwmNJ/3MaQwUJ8vNfBGRM9wj0UfErfiDHeat6cHJu3ckXTB1g26ihdc3bkt0bX\n0KjlZh56CA4c8DpAY7IWf4aCryMim3E6wRGReBF5I+SRGSD222QzlZ/bxJVz1Vo6JdfkqzGbaVC3\nDisKP0al+N8ZPBhOngx6qJlixy+6xXp+weDPmcjrQFPcu8VVdR1QP5RBGeOXsmXJNmsWhYe/xaQv\nCzF64TRK31OB0SvfpkrVZObO9TpAY2KfP5f4rlDVWiKyVlWrucvWq2rVsEToB+sTMfz1FwwYwMnB\nrzE6IT8japbgt2nDqX7e5bz6KpT7z4hrxmRt4ewT2SUidd1Cc4lId8BGNjKR5e8mrjU8nBTPopE7\nuapqE36q9SC1Eg7SowccyfQF6caY9PhTiTwMPIIzrtVeoJo7b8Ig1ttkg55f2bLIzFkUHDaG9+YV\nZNSn8yl1d0UW/jWcihcn8c47kJwc3CIzYscvusV6fsHgz82GB1T1LlUtrqrFVLVV6mFHjIk4zZuT\nfdNmqjZuzepRydz/46sU7lyN/pO+5sorYdkyrwM0Jjb40ydSHGgHxPHPgI2qqveFNjT/WZ+IydCO\nHeijj3Jk4yoevjaJHeUa8cPIgTS5siT9+kGJEl4HaEz4hXPsrKXAV8BqIKUhQFX1w0ALDxarRIxf\nZs8muXNnNl9wFnfV3c85OZ5kw8hH6d71LLp2hbPP9jpAY8InnB3ruVW1h6pOUdUP3FfEVCCxLtbb\nZMOaX/PmZNu0icsa3snaUULb79+maPdLmbn5Uy69FKZPD/4QKnb8olus5xcM/lQis0Xk+pBHYkw4\nuFdxZV+5ijZ/lmfNiL+olP9+zu1yE4+/vIMmTWDTptPvxhjjSLc5S0SO8s+Do/ICJ4CU+4BVVQuE\nPjz/WHOWybTZs9Eunfm2VF7uuHIP5xfqxKrXn+SuFnl47jkoXNjrAI0JjZA3Z6lqPlXN776yqerZ\nPvMRU4EYE5DmzZFvNlGpwf9YM0pou2EGBR+txNZsH1CxkjJiBCQleR2kMZHLn7Gz5vmzzIRGrLfJ\nRkR+Pk1cdx4pw8Y3lbhT3SnbuzFjZ22mRg3IbJgRkV8IWX4m3UpERHKLyDlAMREp4vOKw7nx0JjY\nUrYszJxJnqEjGPlJdiZ8cJCk+HqUavcY97T7nRYtIMiPpzYm6mXUJ/Io0AUogfP42hRHgFGqOiz0\n4fnH+kRM0LljcSUPGcL068vS9ZI91DjRjwWD76bjI9no0QPy5vU6SGMyL5z3iXRW1SGBFhRKVomY\nkNmxAx59lGPfrOOJG3OzuEIRiq0cxuZ5NejfH+68EyTgX0Njwi+cz1iP6Aok1sV6m2zE5+c2cZ09\n5A0Gz0riw49OcrDkdVR7pj19Bx+kXj1Ysyb9t0d8fgGy/Iynz1g3Jmo0b4588w1x9W5gxZunaLfk\nG3696WLK/G84112fxIMPwm+/eR2kMeFnz1g35ky5TVzHN23gmVsK8smFUP77YayYWo+hQ+HWW70O\n0JjTC1ufiFtYSZwBGLMDgnOz4VeBFh4sVokYT8yejXbpwt6yRbm19k5KlrmVb17vR5WKBRg2DM4/\n3+sAjUlf2PpERKQ/sBjoBTwOdHd/mjCI9TbZqM7PbeK64KpmLBtxkhYr13Hi3svIefGnVK0KY8fC\n/PkLvI4ypKL6+Pkh1vMLBn/6RG4BKqpqM1W9IeUVjMJFpKmIbBWR70WkRxrrW4nIehHZICKLRaRK\nMMo1JmjcGxWzLVrMXRth3eRC/MQDXNGvDYNH/Ur37k7rlzGxyp9LfOcAt6tqUB8uKiLZgW+BRjhP\nTFwJtFTVLT7bXAlsVtXfRaQp0EdVa6exL2vOMt47dQqGDkVffIHpt1xCpwrbuCZpGJ+8chu9ekHn\nzpA9u9dBGuMI530iHwFVgXnAcXexqmrngAp2KojeqtrUnX/S3XG/dLYvDGxU1QvSWGeViIkc27bB\nAw9w+PBB7mz2B8lla3B40jBO/X4eb70Fl13mdYDGhPd5IjOBF4AlOA+mSnkFqiSw22d+DxkPp3I/\n8EkQyo0qsd4mG5P5lSsHX35JgQc68PjQX+m6+CCJDatwSct3SWig9O4Nx4+ffjfRICaPn49Yzy8Y\ncpxuA1V9O0Rl+33qICINgPuAuult07ZtW+Li4gAoVKgQ8fHxJCQkAP98EWze5sM636EDUqQIZw0a\nxFsLcjO25UtU6TeJj99ty9tvF2fSpASuvDKC4rX5mJ5PmU4M8gBwGY2dNVVVW4jIxjRWq6oG1Mkt\nIrVx+jhSmrN6Asmq2j/VdlWAj4CmqrotnX1Zc5aJXKowdiz65JN8dUNlWpbfwPVFXmRWnwe54/Zs\nvPQS5MvndZAmqwl5n4iIlFDVfe6ovf+hqokBFSySA6djvSHOAI8r+G/HemngS6C1qi7LYF9WiZjI\nt2cPtG/PscRttL81F9tKn0PxZWNY92U5Ro6EJk28DtBkJeF4KNU+92diWq9AC1bVJKAj8BmwGZis\nqltEpL2ItHc3exYoDIwQkbUisiLQcqON76loLMpS+V1wAcyezdlPPs3bI3/itUU5WFH2Cho/+wrt\n2p+ibVv49VevIs2cLHX8TJo8HTtLVeeoakVVLaeqfd1lI1V1pDv9gKqeo6rV3FctL+M1JmAicPfd\nyIYN1DpSgB/eLUzOHRMp/mQdkops4tJLYepUpwXMmGhgY2cZ4xVVmDoV7dyZDY2rcEOlNVxbpjOL\n+j1JxXK5GD4cStrj30yIhPMSX2NMKIjA7bcjGzdSNekcto8rQOHv5pCzQ02KVV1NfDyMGgXJyV4H\nakz6Mno8bikRGSMi/USkkIiME5FvRGS8iBQPZ5BZWay3yVp+QLFi8P775Bz0Kv3f2sWUr8/li1xN\nuXHIk4wa+xcNGzr3L0YiO34mozORt4H1wO/AMpwrqZrhXEU1IuSRGZPV3HwzsnEjlc4qwbbRuSmz\nZSlHWsVz6XWLqF0bBg6EpCSvgzTm3zK6xHedqsa707tUtXRa6yKB9YmYmPPJJ/DQQ/xQuxJNq2zg\ninIt2PlWX/74LR9vvQVVq3odoIl24egT8d35+FTrbBg5Y0KpWTPYuJELC8WxeWQO4jdvZVfzytS/\n73MaN4ZeveDYMa+DNCbjSmSmiOQHUNVeKQtFpDxO05YJg1hvk7X8MlCwIIwaRfZxb/PY+G0sWliO\nuYfuo+GQ+9nw3SHi42HRoqCFmil2/ExGNxs+k9bw76r6var+L7RhGWP+1qgRbNxIyZKVWD/8FAmb\nfmTtlZdx85MzuOMOeOQROHzY6yBNVpVRn0g3n1nl381bqqqvhjKwM2F9IibL+OoruP9+fr64NDdc\nmUjJMjU5e/5QFs8txogRTiuYMf4IR59IfiCf+/NxdzqfzzJjTLhdfTWsX0/x8vEsG/IHt2z5iy8r\nVqZVv4k80lFp3RoOHvQ6SJOV+HXHuoisVdVqYYgnU2L5TGTBggV/D+kciyy/ACxbBvfey69lS3Dr\n1fvIU6IcF6x/k5kTSvLaa3Dnnc79jKFkxy962R3rxmR1tWvD2rUUqXoF81/9lQe25mRa8arcP3wM\nL72s3HAD7N59+t0YEwg7EzEmFqxeDffey+HzCnNno0McO7cYVRNHM2HYhTz/PLRvD9nsX0bjIxzP\nE/F9GNVFwHaf+YAfShVMVokYA5w4AX37osOH8+n9CdxdaB7tKj3Lgv4dyZkjO6NHQ8WKXgdpIkU4\nmrNu8Hldkmr+xkALNv6J9evULb8gypULevdGvviC6+ZuZ+dnl7Dtu/eQ+6/mqlu2ULcu9O0LJ08G\nr0g7fiaj+0TSfBhVsB5KZYwJkSpVYPly8jZuxpQBP9D3u1KMPn4V9459mS8XnqRWLVizxusgTazI\nqDnrhwzep6paNjQhnTlrzjImHVu2wH33cSwHPHRzDjbk+4Nbso1l2NPxtG0LffpA7txeB2m8EI7m\nrJo+r8uBWsArODcdrg20YGNMGFx8MSxaxNm3tGBc3y2M2F6J4b825q4xT7N953GqVoWFC70O0kSz\njJqzDqrqQeBXnH6QBcCVQDNVvS084ZlYb5O1/MIge3Z47DFk6VKuWLaHXdPiOLltOZvrVeOBPsto\n1Qoeegh+//3Mdx0R+YVQrOcXDBk9lCqXiDwEbAHqATepaitV3Ry26IwxwVO+PCxYQK7WbRj60lom\n7ajOkD03c+MbXTnBH1x2Gcyc6XWQJtpk1CeyB0gCBgO7cMbPAqc5S1X1o7BE6AfrEzHmDP3wA7Rr\nx8lDv/JM6xJMzbaFjqXG8MYTDahRA4YMgeL2/NKYFo77RN52J9PcQFXvDbTwYLFKxJhMUIUxY+Cp\np/i2VVOaXjCfa8pdT/6lA3j/7YIMGgStW4d+6BTjjZB3rKtqW/d1b1qvQAs2/on1NlnLz0Mi0K4d\nrFlDxe+6mT1zAAAgAElEQVR+YduEIlyYeJAPz7uMnuNm88orcN11sHNn+ruI6PyCINbzCwZPB0IQ\nkaYislVEvheRHmmsryQiS0XkWKqh6Y0xwVKqFHz8Mdm7duPpl7/m6x0JjNzamUuebk2NegepUQNG\njHBOXIxJza+xs0JSsEh2nCckNgL2AiuBlqq6xWebYkAZ4GbgN1V9JZ19WXOWMcHw44/w8MMkf/8d\nQ9rH0//kfJ6oPJgJT7WgZAlh7FgoWtTrIE0wxMIovrWAbe4d8CeBScBNvhuo6gFVXQUEcaAGY0y6\nzj8fpk0j2zPP8ujLX7Lq+4a8u+lZ4h6/nTKVfiU+Hr74wusgTSTxqxIRkboi0kpE2rive4JQdknA\nd6DqPe4y4yPW22Qtvwgk4jyMZMMGSv52ktUjlXr7sjGzRDUeG/wVbdpAjx7OeI9Rmd8ZiPX8giHH\n6TYQkQlAWWAdcMpn1bsBlh3U9qe2bdsSFxcHQKFChYiPj//7YTIpXwSbt3mbP8P5yZP56vnniX/h\ndT6/uxkNTt5O3Y6NWTizLXXqNOTRRyMsXptPdz5lOjExkWA6bZ+IiGwBLgl2p4OI1Ab6qGpTd74n\nkKyq/dPYtjdw1PpEjPHIvn1wzz2c+Oso97XIxY78STT9YyJDX4hj4EBo08YuBY424ewT+QY4P9CC\n0rAKKC8icSKSC7gDSO9+Wft6GuOlEiVg7lxy3XgL4/t+S8+fKjDseC0ef2cSgwZBy5Zw6JDXQRov\n+FOJFAM2i8hcEZnlvgIeHEFVk4COwGfAZmCyqm4RkfYi0h5ARM4Tkd1AV+BpEdklIvkCLTua+J6K\nxiLLL4pkywY9eiCzZnHD2EVsXn8Vo2Z1o9pz91Kg2BGqVYPFi70OMrhi6viFyGn7RIA+7s9/DXsS\njMJVdQ4wJ9WykT7T+4FSwSjLGBMktWrB2rUU7diRUR9nY2HF35hYoTod+77PbbddzsMPQ69ekMOf\nvy4m6vn7jPXzcIaEV2CFqv4c6sDOhPWJGOORiRPh0UdZe18zri3yMe0rP8GSV7px4ng2JkyAMmW8\nDtCkJ2x9IiJyO7AcaAHcDqwQkRaBFmyMiQF33QXLllFt/hYSv6jM2m+nIvdcS8INP1KzJkyZ4nWA\nJtT86RN5Gqipqveo6j04ZyTPhDYskyLW22Qtv+i2YMECKFsWFi0iT80rmTVwL21+Oo8x2avTc9xs\nevWC+++Ho0e9jjRzYv34BYM/lYgAB3zmf8GuljLG+MqZE156CZkwgbuHLGDldwm8seURGg7qzAk9\nRvXqsHq110GaUPDnPpGBQFVgIk7lcQewQVWfCH14/rE+EWMiyC+/wP33k7QzkW5tz2d+rr3ck2cS\nAx6/hCeegMcecy70Mt4K+fNEfAoS4FbgKpyO9a9VdVqgBQeTVSLGRBhVePNN9Nln+fqRG7gtz0we\nrfoiHz/fnrx5hHffdYbpMt4JW8e6Oj5U1a6q+likVSCxLtbbZC2/6JZufiLw8MPI/Plc/eFKti+7\ngs82v0HxjrdSre4vVK8Os2eHNdRMifXjFwwZPWN9sfvzqIgcSfU6HL4QjTFR67LLYMUKCpS4kIVD\nDtNw/9m8XzCeniMX8Mgj0KkT/PWX10GaQHj2PJFgsuYsY6LAzJnw4IN8f2cTGpT8nDsuuY+d7/Th\n2y05mTQJLr3U6wCzlnDeJzLen2XGGJOhG2+E1aspv3EvO2bEcWD7EvY0qUfrTjtISIA33rCnJ0Yj\nf66RuMx3RkRyADVCE45JLdbbZC2/6HbG+ZUs6Qzk2Pwm3nlpM70OXsKg36+gx4T3eOstuPlmOHgw\nJKFmSqwfv2DIqE/kKRE5AlT27Q8Bfib90XaNMSZj2bPDk086AzmO+YotG+ozYdNzXPzUPcRVOEJ8\nPMyb53WQxl/+XOLbV1V7himeTLE+EWOi1OHD8MgjJK9ayYsPX8q7rKdzyYn071yLu++G55+HXLm8\nDjI2hfN5IitFpJBPwYVE5OZACzbGGAoUgPHjydbraZ594Ss+2H81L+1ozr1v9WPjN8nUrQvff+91\nkCYj/lQivVX178fNuNN9QhaR+ZdYb5O1/KJb0PJr3RqWLSN+3iYS51Vm/bfTOdaiMTe23kudOvDO\nO950usf68QsGf8fOSi17sAMxxmRxF10EixaRu/oVzBywm3sPXsDwkzV4ZsJMBgxwBgy2pydGHn/6\nRMYBvwHDcSqUR4DCqto25NH5yfpEjIkxX34J99zD3ub1aVB+MQ3KX49+OojP5+TmvfegTh2vA4x+\n4ewT6QScBCYDk4BjOBWJMcaExjXXwLp1lPzxKJsnFibPrp0srVyLrn2/4ZZbnA73pCSvgzTg39hZ\nR1W1h6pe7r56quof4QjOxH6brOUX3UKaX9GiMH06Oe5vx6vPLWfEgSt4YVcCnScMZ8FCpUED2LUr\ndMVD7B+/YPDnjvXiIjJIRD4Rkfnu68twBGeMyeJEoEMH5MsvuWrKMrYvq83czWPI98DNNLj+IJdf\nDlOneh1k1uZPn8jnOE1Z3YH2QFvggD1PxBgTVn/9Bd27o3M+YXiXOvQ7tZCnLn6XVztdQ/36MGQI\n5M3rdZDRI5zPE1mjqtVFZIOqVnGXrVLVywMtPFisEjEmC5kxA9q3Z9tdTWlQYi4tLrmHg1NeYPnS\nnLz/PlSv7nWA0SGcHesn3J/7RaS5iFQHCgdasPFPrLfJWn7RzZP8broJVq+m3LpdbJ9xIb9sX8nW\nunV5+KntXHstvPIKJCcHp6hYP37B4E8l8qJ7x3o3nCatMUDXYBQuIk1FZKuIfC8iPdLZZoi7fr2I\nVAtGucaYKFeyJHz+ObmaNeftF7+h969VeOnn2vR8fzwffgjXXQf793sdZNaQYXOWiGQHuqjqq0Ev\n2Nn3t0AjYC+wEmipqlt8tmkGdFTVZiJyBTBYVWunsS9rzjImq1q+HO66i1+uqk7j+I1UKn05pda/\nwbujCzBmDFx/vdcBRqawNGep6imgZaCFpKMWsE1VE1X1JM49KDel2uZG4B03luVAIRE5N0TxGGOi\n0RVXwNq1nHPqLFaNzsYl+07wQdFqPDtqGR06QOfOcOyY10HGLn+asxaJyDARqSci1UWkhtsvEqiS\nwG6f+T3ustNtc0EQyo4asd4ma/lFt4jJr0ABmDCBbD178vTz8/nopwb02Xoj94x+mX0/nqJWLdi0\n6cx3GzH5RbAcfmxTDVDg+VTLGwRYtr/tT6lPt9J8X9u2bYmLiwOgUKFCxMfHk5CQAPzzRbB5m7f5\nGJ+/+24WZMsGL7xA4oVVufOs2ey8aAp1SvWifv0WvPACVKq0AJEIiTeM8ynTiYmJBFO6fSIi0kVV\nB4vIVaq6KKilOvuvDfRR1abufE8gWVX7+2zzJrBAVSe581uB+qr6U6p9WZ+IMeYfJ07As8+iEybw\nfrcmdD31Mc/Ej2TsEzdTujSMGePcEJ+VhaNP5D7359BAC0nHKqC8iMSJSC7gDv77xMSZwD3wd6Vz\nKHUFYowx/5ErF/Trh7zzDne9Mpe12xszdH1XLu/zMGXK/Ul8vDPGowlcRpXIZhH5HqgoIhtTvTYE\nWrCqJgEdgc+AzcBkVd0iIu1FpL27zSfADhHZBowEOgRabrTxPRWNRZZfdIv4/Bo2hHXrKLH3MJsm\nFibf7r18UbYmvYZsoHVr6NkTTp5M/+0Rn18ESLdPRFVbish5wFzgBtJ+rkhAVHUOMCfVspGp5jsG\nu1xjTBZStCjMmEGO4cN5pc9z3Nr5Fm45eg1dx/dm0asdqVtXmDQJypb1OtDodNphT6KB9YkYY/yy\nYQO0bMmRi8tyY7295C1Wgtr7xzG0fzHGj4cmTbwOMHzCOeyJMcbEhipVYNUq8hcvxZeDf6PZwSKM\nIJ6eI+fTpg0MHOjNY3ijmVUiES7W22Qtv+gWlfnlzg1vvIG8+hodXvqMhXubMOC7O2k39jUmTVbu\nugv+cJ+YFJX5hZnflYiI5AllIMYYE1Y33+wM5Lj6B7Z/WpGvN4+jQo+7Ieef1K0LQb6dImb5MxR8\nHZxBF/OraikRiQceVNWIuVLK+kSMMZmWlAQ9e5L8wVSe7ngJc/L9yA1/TGPUgDjee8+5wCsWhbNP\n5HWgKXAQQFXXAfUDLdgYYyJCjhwwcCDZ+vXnpX4r6bv/MkYl16bb8Hm0agWvv279JBnxqzlLVVM/\nyTgpBLGYNMR6m6zlF91iKr877kC+/JKm45eyclNdhmxvRaMuDzPubeWee5wHK5r/8qcS2SUidQFE\nJJeIdAe2nOY9xhgTfSpXhpUrKfXzMb6feSFbdn1GxadacezUn1x1FexK/e+08atPpBgwGOe5H4Jz\n82FnVf0l9OH5x/pEjDFBlZwMffqQ/PY4XuhYhWkF9tLs8DTGvXYhkyZB/Rho0A/bM9ajgVUixpiQ\nmDEDbdeOee0a0rrwfLqUHs/rnRrzzDPwyCMgQR/HI3xC3rEuIkMzeA0JtGDjn5hqc06D5RfdYj6/\nggWRr76i0UfrWLO2Fm/+cDf3jh7IyFHKfffZw64g4z6R1Tgj7a5yp1O/jDEm9lWqBMuXU+KvHHz3\nYUk2bJ1AxadacuiPP7j6atizx+sAveV3c5aI5AdUVY+GNqQzZ81ZxpiQS06Gfv3Q4cPo2zGeSYX2\ncO1v03lvWFmmTIGrrvI6wDMTtvtERKSyiKwFNuEMD79aRC4LtGBjjIkq2bLBU08hb42l5+urGbaj\nEu/mrE2HVz7j1lvhzTe9DtAb/lziOwp4TFVLq2ppoJu7zIRBzLc5W35RLUvm17QpsnQpV8/9lg3L\nqjN2Z1vajO7P4CHKgw/C8eNhD9NT/lQieVR1fsqMqi4A8oYsImOMiXRly8KSJZx7VhG2TirGt1sm\ncvEzd/DjL0dp0AD27fM6wPDx5z6R6Tgd6eNx7hNpBdRQ1VtCH55/rE/EGOMJVXj9dbR/fwZ1iOfd\nontpeHAaH4wqxwcfQO3aXgeYvnCOnXUfUBz4CPgQKMY/z183xpisSwS6dkXef5/uI9Yzamt53s9d\nhwf6fcoNN8CYMV4HGHqnrURU9VdV7aSq1d1XF1X9LRzBmSza5hxDLL/o5nd+DRogy5dz5dLdfPNV\nZSbsvpe7R/Zl4CClQwc4cSKkYXoqo5sNZ4nITPdn6tfMcAZpjDERr3Rp+PprihUrw5YJBdm1dTKV\nnmnBD3uP0LAh/PST1wGGRrp9IiJyANgDvA8sT1ns/lRVXRj68PxjfSLGmIihCm++ifbpw5D21Rh1\n7m4SfprOrLfL8+GHULOm1wE6Qj52lojkABoDLYHKwMfA+6q6KdBCg80qEWNMxFmyBG6/nZXNq9P8\nwqW0O+8dRnZvxsCB0Lat18GFoWNdVZNUdY6q3gPUBrYBC0WkY6CFGv9Zm3N0s/yiW0D51akDK1dS\nc+MvbP7yYj7c8wAtR7zEiy8l06ULnDwZtDA9lWHHuoicLSK3AROAR3CGhJ8WaKEiUkREPheR70Rk\nrogUSme7sSLyk4hsDLRMY4wJu/PPh/nzOeeiy9jwTh4ObJnKxb3/x5btR2jcGA4c8DrAwGXUnDUe\nuBT4BJisqkH7Qy4iA4CDqjpARHoAhVX1yTS2qwccBd5V1coZ7M+as4wxkW3cOLRHD958IJ6hJfdQ\nb990Pp1QgWnToHr18IcTjj6RZOCPdN6nqlog04WKbAXqq+pPInIesEBVK6WzbRwwyyoRY0zUW7kS\n/vc/1ja8lOsqrqRtsXG81aM5r78OrVqFN5Rw9IlkU9X86bwyXYG4zlXVlAvefgLODXB/McvanKOb\n5Rfdgp5fzZqwciXVfviLrXMuYva+B2kx/HmeeTaZbt0gKSm4xYVDjlDtWEQ+B85LY1Uv3xlVVREJ\n+DSibdu2xMXFAVCoUCHi4+NJSEgA/vki2LzN27zNez6/eTM8/TQJn3zCurf2c339dyl2+1zWrvuE\npk0L0KnTAgoWDH75KdOJiYkEkyePx3WbsxJUdb+InA/Mt+YsY0yWM3Ei2qUL4+6NZ2DpPVy5axoL\nPqjEtGlQtWpoiw7n2FmhMBNo4063AaZ7FIcxxnjnrruQL77gvg93MGVZKeYUqcetPWfSqBFMnux1\ncP7xqhLpBzQWke+Aa9x5RKSEiHycspGIvA8sASqIyG4RudeTaD3keyoaiyy/6Gb5BUHVqrByJZUP\nZmPrrDJ8vv8hbhvahx5PJtOjB5w6FfoQAuFJJeIO6thIVSuoahNVPeQu36eq1/ts11JVS6jqWapa\nSlXHeRGvMcaEVJEi8PHHFEy4ljWjs3Fq83Qq9bmZpWt+5/rr4ddfvQ4wfZ70iQSb9YkYY2LGRx+h\n7dszoVVlXrxoL7UTp7N4xsVMnw6XBfHB5NHeJ2KMMSYtt96KLFzI3XP2Mv3rEnxR9Gqad59Ogwbw\n4YdeB/dfVolEOGtzjm6WX3TzLL9LLoEVK7j4eAG2flSCxfsf4abXn6XrY8k8/XRk9ZNYJWKMMZGo\nYEGYNo38N/6PZaOSybVpBhWfu5H5Sw9x001w6JDXATqsT8QYYyLdJ5+gbdsytcUl9Kq4l1o7ZrDy\nk0uYMQMuvjhzu7Q+EWOMySqaNUOWLOH2r35hzrzz+Kp4fZp0+Yirr4YZM7wNzSqRCGdtztHN8otu\nEZVfuXKwdCnlzi7B1inFWP1zJ5q/+jSPdDpFnz6QnOxNWFaJGGNMtMiXDyZNIm/r+1g0MomC38yi\nYp8bmDP/ELfcAocPhz8k6xMxxpho9MUXaOvWzLixAt0v3UeNbdPZ8MVlTJ8OFSue/u3WJ2KMMVlZ\no0bIsmXcvOoon39ajGXnJXD1Qx9Qrx58/PHp3x4sVolEuIhqkw0Byy+6WX4ei4uDxYu5sHgFtrxX\nhC0HutB04FO0a3+KF18MTz+JVSLGGBPNcueGt98mT4fOLBh1gvM3fEyl55oz/dPfaNECjhwJbfHW\nJ2KMMbHi66/RO+/kkyYX0rnqj1TZOp3vF1Xm44+hTJl/b2p9IsYYY/6tXj1kxQqu35LE/FlFWFcy\ngfodplCoUOiKtEokwkV8m2yALL/oZvlFoJIlYeFCSperzpZ3C7B1z2PsPLYhZMVZJWKMMbHmrLNg\n5EjO7tGLL8acoMqB0P2ptz4RY4yJZd984wywlT37vxYHq0/EKhFjjMmCrGM9i4jKNtkzYPlFN8vP\nWCVijDEm06w5yxhjsiBrzjLGGOM5TyoRESkiIp+LyHciMldE/nMrjIiUEpH5IrJJRL4Rkc5exOq1\nWG+Ttfyim+VnvDoTeRL4XFUrAPPc+dROAl1V9VKgNvCIiGTyQZDRa926dV6HEFKWX3Sz/IxXlciN\nwDvu9DvAzak3UNX9qrrOnT4KbAFKhC3CCHHo0CGvQwgpyy+6WX7Gq0rkXFX9yZ3+CTg3o41FJA6o\nBiwPbVjGGGPORI5Q7VhEPgfOS2NVL98ZVVURSffSKhHJB3wAdHHPSLKUxMREr0MIKcsvull+xpNL\nfEVkK5CgqvtF5HxgvqpWSmO7nMBsYI6qvp7B/uz6XmOMOUPBuMQ3ZGcipzETaAP0d39OT72BiAjw\nFrA5owoEgvNBGGOMOXNenYkUAaYApYFE4HZVPSQiJYDRqnq9iFwFfAVsAFKC7Kmqn4Y9YGOMMWmK\niTvWjTHGeCOi71gXkaYislVEvheRHulsM8Rdv15EqqVal11E1orIrPBEfGYCyU9EEkVkg5vfivBF\n7b8A8yskIh+IyBYR2SwitcMX+ellNjcRqeges5TX75F4I22Ax66ne5PwRhGZKCJnhS9y/wSYXxc3\nt29EpEv4ovbf6fITkUoislREjolItzN573+oakS+gOzANiAOyAmsAy5OtU0z4BN3+gpgWar1jwHv\nATO9zifY+QE/AEW8ziOE+b0D3OdO5wAKep1TML+b7vJswI9AKa9zClZ+7nt2AGe585OBNl7nFMT8\nLgM2Ame7+/kcuMjrnDKRXzHgcuBFoNuZvDf1K5LPRGoB21Q1UVVPApOAm1Jt8/dNi6q6HCgkIucC\niMgFOF+EMUAkdrwHlJ8rEvNKken8RKQgUE9Vx7rrklT19zDGfjrBOHYAjYDtqro71AGfoUDyO4wz\n2kQeEckB5AH2hi1y/2Q2v/OAi4HlqnpMVU8BC4Fbwxe6X06bn6oeUNVVOMfqjN6bWiRXIiUB31+u\nPe4yf7d5DXgcSA5VgAEKND8FvhCRVSLSLmRRZl5m87sAuBA4ICLjRGSNiIwWkTwhjfbMBJKbrzuB\niUGPLnCZ/m6q6q/AK8AuYB9wSFW/CGGsmZHZ/ErgnIXUc8f/ywNcz3+Pq9f8yS9o743kSsTfHv/U\n/42LiDQHflbVtWmsjxSZzS/FVapaDbgOZ1yxesEJK2gym5/iNF9VB95Q1erAH6Q9vppXAsnNWSGS\nC7gBmBqsoIIo099NEbkIeBSnOaQEkE9EWgUvtKDIdH6quhXn1oS5wBxgLZH3j2ogV0ud8XsjuRLZ\nC5TymS+FUytmtM0F7rI6wI0i8gPwPnCNiLwbwlgzI5D8UNV97s8DwDSc09BIEkh+e4A9qrrSXf4B\nTqUSKQI6dq7rgNXu8Ys0geR3ObBEVX9R1STgI5zfx0gS6O/eWFW9XFXrA4eAb0MYa2b4k1/w3ut1\nJ1AGnUM5gO04/9Hk4vSdX7VJu/OyPjDL63yCmR9OO3N+dzovsBho4nVOwTx+OPcIVXCn+wD9vc4p\nmN9NnLbmNl7nEoLvZjzwDZAb5z/5d4BHvM4pyN/N4u7P0jgDwxbwOqczzc9n2z78u2Pd7/f+/R6v\nEz7Nh3EdTi2/DedGQ4D2QHufbYa569cD1dPYR30i8OqsQPIDyroHd537C9vT61yCffyAqsBKd/lH\nRNDVWUHILS9wEPcfgUh8BZjfE8AmnP6Dd4CcXucT5Py+cvNbBzTwOpfM5IczruFu4HfgN5w+rHzp\nvTejl91saIwxJtMiuU/EGGNMhLNKxBhjTKZZJWKMMSbTrBIxxhiTaVaJGGOMyTSrRIwxxmSaVSLm\nX0QkWUTG+8znEJEDpxtOX0TaisjQMyzrfXeY7YCH0xaRp1LNLw50n+5+3haRPe4wJYhIUXckBEQk\nTkQ2ptq+T8rQ2iLygpvfOhGZJyKl0th/CRE5o6FPRORREcntM380M7m5701IObYicoNfQ3+nv6/R\nInJxGsvP+LthoodVIia1P4BLReRsd74xzrAHp7uh6IxuOHJHRL1cVauq6uBU67Kfyb5cPf8VjGrd\nTOwjPUnAfX5u6/s5DHDzi8d5BHTv/2ysuk9VW5xhPF1wRi1Iq8xMU9VZqto/gPe3U9UtwYjFRA+r\nRExaPsEZnRSgJc74YwLOo41FZLr7H/ZSEamc+s0iUsx9oNQK95XW2ElzgZLug5muEpEFIvKaiKwE\nuohIcxFZ5o7i+7mIFHf3nc8d3XeDG8OtItIXyO3ua7y73VH3p4jIQPchQhtE5HZ3eYJb5lRxHnw1\nIZ3PQoHBQFcR8ef35e9B+1T1iM/yfDh3qaf+rP4+m3H/Y/9IROaIyHci8p8/6OI8wKoEMF9E5vks\nf9E941nq81n5cxx89/33GYOIXOjua4O77yPu8r/PXNz5YSLSxp1eICI13Ol7ReRbEVmOH2NnuWdX\nb7nTld3jdbaI1BKRJe73YLGIVDjdvkyYeX17vr0i6wUcASrjjC57Fs4opX+PPwYMBZ5xpxsAa93p\ntsBQd3oiUNedLg1sTqOcMsBGn/n5wDCf+UI+0w8Ag9zp/sCrqbcDjqTOw/15G06FJUBxYCfOkA8J\nOIPnlXDXLUmJOdV+xrn7eMvN8RzgB3ddHPCn+xmlvH4EHvN5/0s4Q0ps9c3JZ31cyufg7n87kN/9\n7BNxhldP/Z4f8HkgGc4ostf7fD69zuA4JPgcW99jOBNo7U538Pk8/97e5/twj88xrA6c737O5+A8\n2GgRMOQ03zvBeTbHLTjD3VzpLs8PZHenGwEfeP07Yq9/v3JgTCqqulFE4nDOQj5Otbou7kN4VHW+\niJwjIvlTbdMIuFjk73/K84tIHlX902ebtIa4n+wzXUpEpuD8wc+F87Q8gIbAHT6xHjpNOlcBE9X5\nK/SziCwEauI8PGmFuqMhi8g6nD/oafWlKNAXmMF/P4/t6gzJj7uf3vz7bKQX0EtEnsR5xs29p4l3\nnrpnMCKy2Y3pdA91OqGqKXGtxmmCBP+OQ3rq4PxBB5iAUzn5Q3CeBLhAVX8BEJHJQIZnEKqqItIW\nZ7ytEaq61F1VCHhXRMrhHIecfsZhwsQqEZOemcAgnLOQYqnWpfucDJ/1V6jqiTMs8w+f6aE4Zx+z\nRaQ+zmij6ZWfEU1j+5R4j/ssO0UGvw+qus2taO5Ib5vTmIjTTHg6qWPyp3/I9+l0yfyTR2aPQ0aS\n+HczeO40tknr++CPCjhnwr4PQXoBp2K9RUTKAAv83JcJE+sTMekZC/RR1U2pln8NtAKnfRw4oKqp\nrw6aC3ROmRGReD/L9P1jUwDnyXjgNLOk+Bx4xGffhdzJk+I8jjW1r4E7RCSbiBQDrgZWcGYVUcq2\nLwHd/X6TSHmf2ZtwmrvOVFpxHsH5fE4ns8cBnDOyO91p34dK7QQuEZFc7md/Tar3KbAcqO/2n+UE\nWrjLEZFbROTl1IWJ80jkwUA94BwRuc1d5fs9ON1ZnPGAVSImNQVQ1b2qOsxnWcp/l32AGiKyHngZ\naJPGNp2By92O703AgxmVlc58H2CqiKwCDvisexEo7Ha8rsNpowcYBWyQfy5PTsljGrABZzjvecDj\nqvpzqnjTi+dfy1V1M05zkaZel85++qaKs1tG+z+DmEYBn/p0rKeO50yOg+/2vtNdcJ6YuQGn38jZ\nwHke/BScRxBMBtb8Z4eq+3GO31Kc/hDff0Quwhl+PLVXcfrEtgH3A/1EpCgwAOdzXINzVmbDjkcY\nGwreGHNaInJEVVP3fWVmP+OBR1P6S0z0s0rEGHNaInJYVf1pQjNZjFUixhhjMs36RIwxxmSaVSLG\nGPOup/0AAAAkSURBVGMyzSoRY4wxmWaViDHGmEyzSsQYY0ymWSVijDEm0/4PcKKwK+beCCUAAAAA\nSUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xbb73940>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmczeX3wN9nxr4TWoSRfcuSfWuEQrbsoowtyZb4KVpQ\nX6RFi1QKEaLsJGuMELKG0EqJ9qxld35/PHdqGmPmztx7Z7lz3q/Xfc39fO7zOc85bn2e+znnOeeI\nqmIYhmEYsRGS3AoYhmEYKRdbJAzDMIxrYouEYRiGcU1skTAMwzCuiS0ShmEYxjWxRcIwDMO4JrZI\nGEGPiNQVkYMBkh0pIj087zuLyMpAzGMYyYUtEobPiEiEiOwVkb9E5CcReV1EciajPldE5JaoY1Xd\noKqlAjSdel6o6ixVvSsQk4hIBhEZKSJficgZETkkIlNEpHAg5jOMKGyRMHxCRAYDzwKDgRxADaAw\nsFpE0gdgvlBvh/p77mRmHtAM6IT7d64AbAcaJFSQiKTzr2pGMGOLhJFoRCQHMBLop6qrVPWyqn4P\ntAfCgC6ecSNFZJ6IzBGRUyKyQ0RujSbnJhGZLyK/ish3ItI/2mdR184QkZNAVxGpKiKbReS4iBwT\nkQlRC5KIfOK59HMROS0i7UQkXESORJN5WEQGi8jnInLCo1fGaJ8P9cj9UUR6xnwyiePfI0JENkQ7\nviIivT2//o+LyGsxxncXkf0i8qeIrBCRQteQ2xBoCLRU1R2qekVVT6nqG6o6NZpNDaJdM1JEZnje\nh3l06S4i3wMfi8hHItI3xjyfi0grz/tSIrJaRP4QkYMi0i7auKYi8oXnu/zR80PBCFJskTB8oRaQ\nCVgQ/aSq/gV8BDSKdroF8AGQG3gPWCQioSISAiwFdgE34X4ZPywid8a4dq6q5vRcexkYCFwH1PRc\n85Bn7nqea25V1eyqOjcWvRVoB9wFFAFuBSIARKQxMMgjszgQ7hmfWO4GqnjmaC8id3nmaQkMA+4B\n8gIbgNnXkNEQ2KqqR+OY5x+3V7TjmNQDSuHsno17KsGjTxmgELBMRLICq4GZQD6gI/C6iES57KYA\nD6hqDqAssDYOvYxUji0Shi/kBX5X1SuxfPaz5/MotqvqAlW9DIzHLS41gapAXlX9n6peUtVDwGTc\njSmKT1V1CYCqnlPVnar6mecX9ffAW8DtCdT9VVX9WVWP4xapip7z7YGpqnpAVc8CI/DNdfWs51f/\nEWAdzk0E8CAwVlW/9Pz7jQUqikjBWGRch/v3TAix6TxSVc+q6jlgUYz5OgPzVfUizq11SFWne/6N\nd+N+CLT3jL0AlBWRHKp6UlV3JVA3IxVhi4ThC78DeT1PAzG5Efgt2vGPUW/UVZX8EffkUAi4yeOO\nOS4ix3G/sPPHdi2AiJQQkQ89QfKTwGjcjTQhRL/pngWyRtP7SLTP/jN3Iog+z99ANs/7wsAr0Wz+\nw3O+QCwyfvfo5Sv/2KWqp4Fl/Ps00RGYFU236jG+k3uB6z2ftwGaAoc9u7tq+EE3I4Vii4ThC5uB\n87ibxj+ISDagMfBxtNMFo30eAtwMHMXduA6pau5orxyq2swzPKYbBeANYD9QzOOCehz//bf8U3Rd\nY7z3Jz/gXDbR7c6qqltiGbsGqCYisS0gUfzFvwsdwA2xjIn57zgb6CQiNYFMqroumm7rY+iWXVX7\nAqjqdlVthXNFLcK5EY0gxRYJI9Go6klgFDBBRO4SkfQiEoa7aRwBZkQbfpuI3OPZWfMwcA7YAmwD\nTnuCxZk9cYpyIlLFc11sbpNswGngb4+fvE+Mz38BiibQnKh5PgC6eQK3WYAnEygnvjmi5nkTGO6J\nBSAiOaMHh6Ojqh/jYgQLRaSyiKQTkewi8qCIdPMM2w109HxWBbdwxxdL+Qj31DAKmBPt/IdACRHp\n4vlO03s2C5TyvO8sIjk9rsPTuBiREaTYImH4hKo+DwwHXgBO4m783wMNPP5tcDerxUAH4E+c/7u1\nZzfUZZwPvCLwHc5F9RZum2fUtTFvdkNw7o9TnrFzYowZCUz3uEraXkPGf8zg31yHFcCruPjBV7in\nJXBPTPERX/A4+jyLgHHAHI/LbC8uoHwt2uJu6u8DJzzjK+MWD3CLWVHgOM7+WTGuv8p+Vb2AizU0\nwG0IiDp/BrgT54I6inu6Ggtk8AzpAhzy6P0A7vs0ghQJZNMhz06Rl4FQYLKqjovx+RD+/Q8sHVAa\nF8Q8ETCljCRHREbgXEP3JbcuCUVESuNuyBmuEaA3jKAmYE8S4pKeXsP5psvgfJ+lo49R1RdUtZKq\nVsIFKyNtgQhKUlVim8ctllFEcuN+7S+xBcJIqwTS3VQN+EZVD3vcDnOAlnGMv5dr7xM3UjfxuXtS\nGg/g4hrfABe5OuZhGGmGQKbnF+DqrYTVYxvoCRDehSchygguVHVUcuuQEFS1SXLrYBgphUA+SSTk\nl2NzYKO5mgzDMFIWgXySOMrV+82vlZjUkThcTSKSmlwVhmEYKQZV9SkmGMgnie1AcU9xsQy47Y9L\nYg4SV1K6Hm6L5DVR1SR/nT2r1KqlPP54YOcZMWJEstiXVK9gti+YbTP7Uv/LHwTsSUJVL4lIP2Al\nbgvsFFU9ICK9PZ9P8gxtBaxUVycnRZEpEyxcCDVqQMmScF+ANnAePnw4MIJTCMFsXzDbBmafEVh3\nE6q6HFge49ykGMfTgemB1MMX8ueHpUuhfn0oUgTq1ElujQzDMJIOy7j2grJlYcYMaNsWvv3W//Ij\nIiL8LzQFEcz2BbNtYPYZAc649hcioilBz9dfhwkTYPNmyJUrubUxDMOIGxFBU3DgOuh46CFo1Aja\nt4eLF+Mf7y2RkZH+E5YCCWb7gtk2MPsMWyQSzPjxkC4dDBgAKeDhxjAMI6CYuykRnDoFtWtDz54w\ncGBya2MYhhE7/nA3BXR3U7CSI4fb8VSrFhQrBnffndwaGYZhBAZzNyWSsDCYPx8iImDPHt9kBbtf\nNJjtC2bbwOwzbJHwiZo13W6n5s3h54S2qTcMw0gFWEzCD4waBR99BJGRkDlzcmtjGIbh8EdMwhYJ\nP6AKnTvD5cswezaE2POZYRgpAMuTSCGIwNSpcOQIjByZ8OuD3S8azPYFs21g9hm2SPiNTJlg0SJX\nvmPmzOTWxjAMwz+Yu8nP7NsHd9zhqsfWrp3c2hiGkZYxd1MKpFw5ePddVwzwu++SWxvDMAzfsEUi\nADRuDI8/Ds2awcmT8Y8Pdr9oMNsXzLaB2WfYIhEw+vWDBg1cMcBLl5JbG8MwjMRhMYkAcumSS7Qr\nUgQmTnS7oAzDMJIKi0mkcNKlgzlz4JNPXGa2YRhGasMWiTg4dPyQz83Ec+Z0xQDHjnVZ2bER7H7R\nYLYvmG0Ds8+wReKaqCqd5nfi2Y3P+iyrSJF/iwHu3eu7boZhGEmFxSTi4NjpY9SZWodhdYbR67Ze\nPst77z0YPhy2boXrr/eDgoZhGHFg/SQCzE3Zb2LVfauo90498mTOQ5sybXySd++98OWX0LIlrFtn\nxQANw0j5mLspHorlKcaye5fRZ1kf1h5a67O8kSOd+6lbt3/bnwa7XzSY7Qtm28DsMwK8SIhIYxE5\nKCJfi8ij1xgTLiK7RGSfiEQGUp/EUunGSsxtN5eO8zqy/dh2n2RFFQP8/vvEFQM0DMNISgIWkxCR\nUOBLoCFwFNgGdFLVA9HG5AI2AXep6o8ikldVf49FVorIk1h0cBF9lvUhsmskJfOW9EnWL79A9eow\nerQrM24YhuFvUnpMohrwjaoeBhCROUBL4EC0MfcC81X1R4DYFoiURKtSrfjz7J/cNfMuNnbfyM05\nbk60rOuvd1tjGzRw7qdatfyoqGEYhp8IpLupAHAk2vGPnnPRKQ7kEZF1IrJdRO4LoD5+oXul7vSt\n2pc7Z9zJH3//4ZOs8uVh2jRo1iySQ4f8o19KJJj9vsFsG5h9RmCfJLzxD6UHKgMNgCzAZhHZoqpf\nxxwYERFBWFgYALly5aJixYqEh4cD/37RSXVc9WJVdpzdwd3v3c2a+9ew/dPtiZbXtCncfvtu6teH\nzz8PJ2fOpLcn0Me7d+9OUfrYsR0H63FkZCTTpk0D+Od+6SuBjEnUAEaqamPP8TDgiqqOizbmUSCz\nqo70HE8GVqjqvBiyUkRMIjqqSo8lPTh6+ihLOy0lQ2gGH2S5goDffutcUOnT+1FRwzDSLElSu0lE\nxopI7mjHuUXkf17I3g4UF5EwEckAdACWxBizGKgjIqEikgWoDuz3Xv3kQ0R4q/lbZE6Xma6LunJF\nr/ggC155BUJDoXt3uJJ4UYZhGH7Fm5hEE1U9HnXgeX93fBep6iWgH7ASd+N/X1UPiEhvEentGXMQ\nWAHsAbYCb6tqqlgkANKFpGN2m9kcO32MAcsHJLrOU2RkJOnSwdy5bmvswIH/5lAEA1GPw8FIMNsG\nZp/h3SIRIiKZog5EJDPglW9FVZeraklVLaaqYz3nJqnqpGhjXlDVsqpaXlVfTagByU3m9JlZ0nEJ\nm45sYtT6UT7JypLFuZs2boQRI/ykoGEYhg/EG5PwxA1aAFMBAboBS6LHFgJNSoxJxOSXM79Q5506\nDKw+kH7V+vkk69dfoW5dePBBGDTITwoahpHmSJI8CVUdJyJ7cElxCjytqit9mTQYuT7b9azqsoq6\n79TluszX0al8p0TLyp8fVq92C0WuXK6Eh2EYRnLgTeB6ALBFVQer6hBbIK5NkdxFWN55OQ+vfJiV\n33j/zxSbX7RQIVi1ylWNXbDAj0omA8Hs9w1m28DsM7yLSVwPbBORDzy1mKwJZxyUv748C9ovoMvC\nLmz5cYtPskqWhGXLnNtpzRo/KWgYhpEAvMqTEJEQ4E4gAqgCfABMUdVvA6rdv/On+JhETD76+iO6\nLe7G2vvXUjZ/WZ9kffIJtGnjgto1avhJQcMwgp4k63GtqleAn4FfgMtAbmCeiDzvy+TBTNPiTRl/\n53gaz2rM9ye+90lWvXqufEfLlrBvn3/0MwzD8AZvYhIDRWQH8ByuYms5Ve0D3Aa0DrB+qZrOt3Zm\nSM0h3DnzTn7767drjvPGL3r33fDyy9C4MXz3nR+VTAKC2e8bzLaB2Wd4V7spD9BaVf/zc1hVr4hI\n88CoFTwMrDGQ3/7+jSazmrCu6zqyZ8yeaFmdOsGJE9CoEWzYADfd5EdFDcMwYsF6XCcBqkqfZX34\n+s+vWXbvMjKlyxT/RXEwZozrl/3JJ5Anj5+UNAwj6PBHTMIWiSTi8pXLdJzfkSt6hQ/afkBoSGii\nZanC0KHuaWLNGsiWzY+KGoYRNCRZ4NrwndCQUGbeM5OT507y4IcP/qfOU0L9oiLw3HNQrhy0agXn\nzvlZWT8TzH7fYLYNzD7DFokkJWO6jCzssJDPf/mcx9c+7pMsEZg0CXLndrGKS5f8pKRhGEY0Euxu\nEpE1wCXgNVX9MCBaXT1nqnc3Ref3v3+nztQ69L6tN4Nq+lac6fx5aNHCBbGnTIEQW/YNw/CQXO6m\nrsATQGFfJk7L5M2Sl1X3reKlLS/x7ufv+iQrY0ZXtuPLL2Hw4OAqMW4YRvKToEVCRPIA16nqdlWd\nGCCd0gSFchZiZZeVDF09lDHvjvFJVtasrnzHxx/D/7xpB5XEBLPfN5htA7PP8C6Zbr2I5PAsEDuA\nySLyUuBVC35K5yvN4o6LGffpODZ8v8EnWblzu4KA06fDhAl+UtAwjDSPN/0kdqtqRRHpCRRU1REi\nsldVyyeNiskYk1i3ztXrTudNzmHiWf3tajov6Mzq+1ZT4YYKPsk6fNipPHYsdOniH/0Mw0idJFVM\nIlREbgTaA8s854Lf860K48dD+/YuOhxAGhVtxGtNX6Ppe005+PtBn2SFhcHKlTBkCCyJ2VHcMAwj\ngXizSDyN61P9rap+JiJFga8Dq1YKQATmzXN/W7WCv/8O2FSRkZG0L9ue0XeM5o7pd/DFr1/4JK9M\nGVcxtkcP9zCU3ASz3zeYbQOzz/BikVDVuap6q6eoH6r6raq2CbxqKYCMGeH99yFvXmjaFE6fDuh0\nERUjeK7RczSc0ZA9v+zxSVbVqvDBB+5BaPt2PyloGEaaw5uYRGagB1AGyOw5raraPcC6RdchefMk\nrlyBPn1gzx746CMXJQ4g7+97n4ErBrKiywoq3lDRJ1mLF0Pv3rB2rXvCMAwj7ZBUMYkZuO50jYFI\n4GbgjC+TpjpCQuDNN13HnzvugN+uXfbbH3Qo14GJTSdy18y72H7Mt8eAli1dCY+77nJBbcMwjITg\nzSJRTFWfBM6o6nSgKVA9sGqlQERcILtZM7j9djh2zG+iY/OLtinThreavUXTWU3Z+uNWn+Tffz/8\n3/+5EuM//+yTqEQRzH7fYLYNzD7Du0XigufvSREpD+QC8nkj3NMT+6CIfC0ij8byebiInBSRXZ7X\nE96rngyIwDPPuLtuvXoB/2neslRLpracSvPZzdn0wyafZA0Y4LbE3nUXHD/uJwUNwwh6vIlJ9ALm\nA+WBaUA24ElVfTOe60KBL4GGwFFgG9BJVQ9EGxMOPKKqLeKRlfJqN02YAC+8AKtXQ4kSAZ1q5Tcr\n6bKwC/Pbz6de4XqJlqMKgwbBtm0u8S5rVj8qaRhGiiNJYhKq+raq/qmq61W1iKrmi2+B8FAN+EZV\nD6vqRWAO0DKWcT4ZkGz07w8jRkD9+gFvPH1XsbuY02YObT5ow9pDaxMtJ8pjVrw4tGkDFy7Ef41h\nGGkbb8pyDBaRR6L9fUREeohIfNtuCgBHoh3/6DkXHQVqicjnIvKRiKSu/Tfdu8OLL0LDhrBjR6LF\neOMXbXBLA+a2m0uHeR1Y9e2qRM8VEgKTJ0PmzNC5c9KUGA9mv28w2wZmn+Fdj+vbgCrAUtyv/ruB\nvcCDIjJPVcdd4zpv/EM7caU+/haRJsAiIFbfTUREBGFhYQDkypWLihUrEh4eDvz7RSfLcceORH7z\nDTRoQPiyZVC7doLl7d692+vxCzss5O4xdzOszjAe6/JYovTfuDGSPn1g/PhwOnWC3r0jSZcucP9e\nCbHPju3YjhN/HBkZybRp0wD+uV/6ijcxiQ1AE1U94znOBnyE2xK7Q1VLX+O6GsBIVW3sOR4GXIlj\nUUFEDgG3qeqfMc6nvJhETFatcpHh2bOhQYOATrX5yGZazmnJlBZTaF6yeaLlnDsH7dpBaKjLGcyY\n0Y9KGoaR7CRVnkQ+/t3hBHARuF5V/wbiapy5HSguImEikgHoAPynmpCIXC8i4nlfDbdo/Xm1qFTA\nnXe6Mh6dOsGHge3FVLNgTZbdu4yeS3uy8MDCRMvJlAnmz3eLROvWKb8NqmEYSY83i8QsYKuIjBCR\nkcCnwHsikhXYf62LVPUS0A9X92k/8L6qHhCR3iLS2zOsLbBXRHYDLwMdE29KCqBePbdA9OgBc+d6\nfVnU42JCqFqgKss7L6fPsj7M/cL7uWKSIQPMmQPZs0Pz5oEpUZUY+1ILwWwbmH2GFzEJVX1GRFYA\ntXFxht6qGpUG3Dmea5cDy2OcmxTt/UQguJoXVavmXE9Nmrg7bteuAZuq8o2VWdllJY1nNebilYvc\nW/7eRMlJnx5mznRx+LvvdsUBs2Xzs7KGYaRKEtzjOjlIFTGJmBw86FKchw2Dhx4K6FT7ft3HnTPu\n5NmGz3J/hfsTLefyZXjgAdcK9aOPIEcOPyppGEaSk1w9rg1vKFUK1q93CXcvvBDQqcrlL8fH93/M\n8I+HM3XX1ETLCQ2Ft9+GW29165tlZhuGYYtEILnlFvjkE5eYMGqUS3mOBX/4RUvnK83armsZETmC\nSdsnxX/BNQgJgYkToWZNl/7xxx8+qxbUft9gtg3MPsPLRcKzQ6mh530WETFHhLfcfLN7opg/Hx59\n9JoLhT8ocV0JIrtGMmbjGCZ+lvhQjwi89JJbJO64A3791Y9KGoaRqvAmT+IBoBeQR1WLikgJ4A1V\nDWwywH91SH0xiZj8+Sc0buy6AU2Y4H6yB4hDxw9xx7t3MKDaAAbVHJRoOarw1FOwYAGsWQM33uhH\nJQ3DCDhJFZPoC9QBTgGo6ldAfl8mTZPkyePutHv2uG1EAayHUSR3EdZHrGfitok8t+m5RMuJKnrb\nsSOEh8PRo/7T0TCM1IE3i8R5VT0fdSAi6fCu5IYRkxw5YMUK14vi3nv/qbAXCL9ooZyFWB+xnsk7\nJzP6k9E+yXrySZf6Ua8efP99wq8PZr9vMNsGZp/h3SKxXkQeB7KISCNgLq6Ok5EYsmaFJUvg/HlX\nijWAac4FchRgfcR6Zu6dyajIUfjishs61BW+DQ+H777zn46GYaRsvIlJhOJ6XN/pObUSmJyUQYKg\niEnE5OJFuO8++P1314g6gM0dfjnzCw3ebUCrUq14pv4zeCqhJIo33oCxY+Hjj13JccMwUi7+iElY\nMl1ycvky9OoFX30Fy5ZBzpwBm+q3v36j4YyGNC7amGcbPuvTQjFlimulsXo1lI61vKNhGCmBJAlc\ni0gdEVntaUF6yPMyh4M/CA2FyZOJzJfPVY71R1LCNciXNR9r71/L6u9WM3jVYJ9cTz16uKeJBg1g\n7974xwez3zeYbQOzz/AuJjEFGI/b4VTV86oWSKXSFCEhrgF1w4bO4f/jjwGb6ros1/Hx/R+z8YeN\nDFg+wKeF4r77XJe7Ro1g1y4/KmkYRorCm5jEVlWtnkT6XEuH4HQ3RUfVdbl7+WUXo7jttoBNdfLc\nSRrPakyF6yswselEQkNCEy1r/nxXmurDD10KiGEYKYeAxiREJOou1Q4IBRYA/2yFVdWdvkycENLE\nIhHFggXQu7cr5dEytpbg/uH0+dO0mNOCPJnzMPOemWROnznRspYudS6oRYugVi0/KmkYhk8EOibx\nIvACUB3XvnSM51zUy/AT//GLtm4Ny5dD377uySJAi2P2jNlZ0XkFGUMz0nBGQ/74O/HxkObN4d13\noVUrV6oqJsHs9w1m28DsM+JYJFQ1XFXrAz1UtX70F25LrBEoqlSBzZvdnbdPH7ddNgBkTJeRma1n\nUrdQXWpNrcWh44cSLatxY9e5tU0btz3WMIzgwJuYxE5VrRzj3A5VDZzT/God0o67KTqnT0OHDq6E\nx9y5Ad0iO/GziYzeMJolnZZQ5aYqiZbzySfQtq1b3xo39qOChmEkmIC6m0SktIi0AXKJSGsRaeP5\nGwFk8mVSw0uyZ3fZ2aVKOWf/ocT/0o+PvtX68vrdr9NkVhM++vqjRMupV8/FJu6/38UqDMNI3cQV\nkygBNAdyev428/ytjKsKa/iJOP2i6dLBq6/Cgw9C7drODRUgWpVqxZKOS+i+uDuTd05OtJxatVxu\nYM+ebvdTMPt9g9k2MPuMOHpcq+piYLGI1FLVT5NQJyM2+vd3TYxatnSlxjt0CMg0NQvW5JNun9Bk\nVhOOnDzCyPCRicrOrlrV1TJs0sS1RA0P97+uhmEEHivLkdr4/HNo0cLdeYcPd/W8A8AvZ36h2exm\nlMtfjreavUX60PSJkrN3L9x1Fzz7rHNBGYaRdFjtprTKTz+5faflysGkSZAxY0Cm+evCX3SY14GL\nVy4yr908smfMnig5Bw64zOyRI50LyjCMpCGpmg4ZASbBftEbb3QtUU+dgjvvDFjNp6wZsrKo4yIK\n5yzM7dNu56fTPyVKzi+/RLJuHfzvfzB6dEA7uCY5we7TNvsMbwr8ZRKRziLyuIiM8Lye8ka4iDQW\nkYOe4oCPxjGuqohcEpHWCVE+TZM1K8ybBzVqQM2a8PXXAZkmXUg6JjWbRJvSbag5pSYHfjuQKDnF\ni7uY+7x5LvUjgI35DMPwI97kSawETgA7gMtR51U1zqxrTx+KL4GGwFFgG9BJVQ/EMm418DfwjqrO\nj0WWuZvi4u23Xfu499+H228P2DTTd09n6JqhzGs3j7qF6yZKxqlTLo8iUyaXfBfANhqGkeZJkpiE\niOxT1XIJFixSExihqo09x48BqOqzMcY9DFzAVZf90BaJRLJmjWuJ+sILAY0Qr/52NZ0XdGZi04m0\nK9suUTIuXnRtNA4ccLkU+a1jumEEhKSKSXwqIrcmQnYB4Ei04x895/5BRAoALYE3PKfS5ErgF79o\nw4YuTjFqlHuquHLFd5mx0KhoI1bdt4pBKwfx0uaXvLompn3p08M777hwSu3a8M03AVA0iQh2n7bZ\nZ1wzTyIadYFuInKIf6vAqqrGt3B4c8N/GXhMVVXcZvxrrngRERGEhYUBkCtXLipWrEi4Z/N91Bed\nWo93797tP3lbthBZvz5s2kT4smWQObPf9T1x8AQvlniRp3c9zQ8nf6B5xuaESEiC7XvmmXBuvhmq\nVYtk9Gjo08c/+tmxHafV48jISKZNmwbwz/3SV7xxN8U6k6oejue6GsDIaO6mYcAVVR0Xbcx3/Lsw\n5MXFJXqp6pIYsszdlBDOnYNu3eDwYdebIkD+nONnj9Pq/Vbkz5qfGffMIFO6xFVrWboUuneHqVPd\nzl7DMPxDoGs35fC8PXWNV3xsB4qLSJiIZAA6AP+5+avqLapaRFWLAPOAPjEXCCMRZMoE773n/Dk1\nasD+/QGZJnfm3KzqsooQCaHRjEb8efbPRMlp3tyV8XjgAZf2YRhGyiGumMRsz9+duJ1N0V/b4xOs\nqpeAfsBKYD/wvqoeEJHeItLbJ62DjKjHRb8i4uITTz/tamKsXu3/OXDlxme3mU31AtWpPbU2h08c\nvmqMN/ZVqwYbNri4+xNPpJ5cioB8dykIs8+Iq3bT3Z6/YYkVrqrLgeUxzsX6W1FVuyV2HiMOunSB\nwoWhXTu3YDzwgN+nCJEQXrjzBQrmKEjtqbVZ2mkplW+sHP+FMShWDD79FJo1gyNH3M7eDBn8rq5h\nGAnAynKkFb75Bu6+2/l2xo2D0MT3tY6L+fvn8+CyB5lxzwwaF0tcQ4m//oKOHeH8eZd8lyNH/NcY\nhnE1VpbD8J5ixVzK844dLpvtr78CMk2bMm1Y1GERXRd1ZequqYmSkTUrLFzoit7efjscO+ZnJQ3D\n8BpbJFIASeYXzZMHVq6EXLlcd6AA3X1rF6rN+oj1PPPJM4yKHMW6desSLCNdOnjjDeclq1XLJd6l\nRILdp22eVxLvAAAgAElEQVT2Gd7UbrpDRPqLSD8RqZ8UShkBJEMGt9e0XTuoXj1gTYxK5S3F5h6b\nWfLVEp7f9DwXLye8T7eIq4YeFXvfsMH/ehqGETfXjEl4sqEX4BLoonYz3QZkBu5R1aNJoiEWkwgY\nH34IPXrAY4/Bww8HpDfFmQtnaDfXle+Y224u2TJkS5ScVaugc2f3dNG2rT81NIzgJaC1m0RkEbBI\nVafFOH8/0EZVW/oycUKwRSKAHD7snioKFnRPGLly+X2Ki5cv0mdZH3b+tJNFHRdRKGehRMnZvdvt\nfBoyxK1phmHETaAD12ViLhAAqvouUNqXSY3/kqx+0bAw2LgRChSAKlVg1y6/T7Fpwybebv4295a/\nl+qTq7PuUMJjFAAVK8KmTfDWWzB4cMDKUyWIYPdpm31GXIuESCzNjUUkJJ7rjNRGxoyub/bo0a7X\n6Ftv+T2bTUQYUmsIM+6ZQaf5nXhp80sk5umwcGG3pm3bBp06uQokhmEEjrjcTS8DWYFBqnrGcy4b\nMB44p6oDkkxJczclHV9+6Zz+FSvCm28GpOHD4ROHuef9eyiTrwxvN3+bLOmzJFjGuXNw333w66+w\naBHkzu13NQ0j1RNod9NQ4CRwWER2ishO4DBwGhjiy6RGCqZkSdi61e1BrVYtIHtPw3KFsan7JgSh\n1pRaHDp+KMEyMmVyPZYqV4Y6deCHH/yupmEYxLFIqOoFVR0CFAIiPK/CqjpYVS8kjXppgxTnF82S\nxTV8GDzY5VO8955P4mKzL0v6LMy4ZwbdKnaj5pSarP424bWlQkLgpZegZ0/Xl+Lzz31SM1GkuO/O\nz5h9RpyxBU8l2BtVdY/n9ZfnfIUk0c5IXrp3dx3vRo50jan9HAAQEQbWGMictnO4f9H9PLfpuUTF\nKQYNghdfhEaNnLqGYfiPuGIS7XFNgX4F0gPdVPUzz2e7VLVSkilpMYnk5dQpl0/x3Xcwd66rl+Fn\njpw8QusPWnNL7luY0mJKovIpPvnE7eZ98UVX19Aw0jqBjkk8DtymqhWBbsC7ItLal8mMVEqOHPDB\nB9C1q+tPsWiR36comLMgG7ptIEv6LNScUpNv/kx4T9N69WDtWnj8cXj22dRTbtwwUjJxLRKhqvoT\ngOcJoj7wuIgMTBLN0hCpwi8qAgMGuDZyDz/sMtoueldqw1v7MqXLxNQWU+lTpQ+1p9Zm+dfL478o\nBmXLukojs2c7D9mFAEfPUsV35wNmnxHXInFKRIpGHXgWjPpAC6BsoBUzUijVq7tKsgcOQP368OOP\nfhUvIjxU9SHmt59Pz6U9GbNhTILjFDfd5Oo8HT0KDRu6bbKGYSSOuGISFYG/VPXrGOczAO1VdWYS\n6Bc1p8UkUhpXrri+FK++Cu++66LGfuboqaO0nduWm7LfxLSW08ieMXuCVRwxwqm3YAHcdpvfVTSM\nFE1AazelJGyRSMFERrrKe716wZNP+r2Z0flL5xmwfAAbftjAwg4LKZm3ZIJlLFgAvXvD+PEuAc8w\n0goBDVyLyBkROe15nYr2/rSInPJlUuO/pGq/aHi4cz+tXw+NG8fq2/HFvozpMjKp+SQervEwdd+p\ny9IvlyZYRuvWsG6da/n9yCNw6VKi1bmKVP3deYHZZ8SVTJdNVbOranbg26j3npc1lDT+5YYbYPVq\nl6F9222uuJKfeeC2B1jccTF9lvVhVOQormjCqvuVK+fqPe3f78pT/f6731U0jKDEK3dTUudFxDK/\nuZtSCx99BN26ud1PQ4b4vUfFz2d+pu0HbcmTOQ8z7plBzkw5E3T95ctui+wHH7gWqRUsLdQIYqzH\ntZHyaNrU/WSfPx9atYLjx/0q/oZsN7C261oK5SxEtcnVOPBbwmpLhYa6HIoxY9zOpzlz/KqeYQQd\nccUk2ohIaxFpA+SMeh91Pgl1DHqCzi9aqJBLfy5SBG67jchJk/wqPkNoBl5r+hqP1X6MetPqsfDA\nwgTL6NjReciGDYNHH3VPGIkh6L67GJh9Rro4PmsORPl4PvEcR2dBfMJFpDGutEcoMFlVx8X4vCXw\nNHDF8/o/VV3rnepGiiZDBnj5ZVeitWdPtx/1wQf96n7qVqkb5fKXo80Hbdj5005Gho8kNMT73VUV\nK7qHng4d4O67XQKelRw3jP8SsC2wIhIKfAk0BI4C24BOqnog2pis0YoGlgcWqmqxWGRZTCI18/XX\nrkdFmTLw+ut+vxP/+tevtJ/bnizpszCr9SxyZ06Y/EuXYOhQl0y+aJHL2jaMYCClxySqAd+o6mFV\nvQjMAf7TFztqgfCQDbA9J8FI8eKwZQvkzQu33gorVvhVfP6s+Vl932pKXFeCqm9XZd+v+xJ0fbp0\nLofiqafcjt4F8T4jG0baIZCLRAHgSLTjHz3n/oOItBKRA8ByIMm63aUkgt0vGhkZCZkzuxap06a5\nzLYHH4TTp/02R/rQ9Lzc+GVGho+k/vT6zP1iboJl3HcfLF/uSlM9+aR3PbTTxHcXxAS7ff4grpiE\nr3jlH1LVRcAiEakLzABiTamNiIggLCwMgFy5clGxYkXCw8OBf7/o1Hq8e/fuFKVPQO1r0IDIiRPh\n9dcJr1ABpk0j0nM39sd8XW7twt9f/03/N/qzreU2Rt8xmk0bNnl9fZUq8PLLkYwcCbt3hzNzJuza\nlbz/fnZsx94eR0ZGMm3aNIB/7pe+4m2eRG0gjH8XFVXVd+O5pgYwUlUbe46HAVdiBq9jXPMtUE1V\n/4hx3mISwciHH7qnig4dYPRo97ThJ37/+3ciFkXw61+/8l6b9yiW56pQV5xcvOiaGa1Z4+IUpUr5\nTTXDSDKSJCYhIjOB54HaQBXPq6oXsrcDxUUkzFMUsAOwJIbsoiJuu4uIVAaIuUAYQUyzZrBnDxw7\nBpUqwWef+U103ix5WdppKfdXuJ+aU2oyfff0BFWTTZ8eXnsN/u//XJ+KpQmvBmIYwYGqxvkCDuB5\n4kjoC2iC2+H0DTDMc6430NvzfiiwD9gFbACqXkOOBjPr1q1LbhUCilf2zZmjmj+/6hNPqJ4/79f5\n9/y8R8tOLKsd53XU42ePJ/j6zZtVCxRQffpp1cuX//uZfXepm2C3z3PvTPC9O/rLm8D1PuDGRC5A\ny1W1pKoWU9WxnnOTVHWS5/1zqlpOVSupal1V3ZaYeYwgoEMH+Pxz2L3b1YDas8dvostfX55tvbZx\nXebrqDSpEpt+2JSg62vUcPkUy5e7nbx+jLcbRoon3piEiEQCFYHPgPOe06qqLQKr2n900Pj0NIIE\nVbcDauhQGDzY1X9K57/9FUu/XEqvpb3oU6UPj9d7nHQh3ss+fx769YNPP4XFi6FYwsIchpHkJEk/\nCREJ97yNGii4RWK9LxMnBFsk0iDffw/du8Pff8P06VCihN9EHzt9jK6LunL24llmtZ5F4VyFvb5W\nFSZNcs2Mpk931dENI6WSJIFrVY0EDgI5gOzA/qRcINICUVvYgpVE2Ve4sCuu1KUL1K7tOuB5k7jg\nBTdlv4mVXVZyT6l7qPp2Vebs877Kn4hL8Zg/361hDzwQSTD/frH/Ng1vdje1B7YC7YD2wGci0i7Q\nihkGISHQt6/z78yZAw0awOHD/hEtIQyuNZgVXVYwInIE3RZ34/R574MNdeq4zVjr17tigX/9Ff81\nhpEa8cbdtAdoqKq/eo7zAR+r6q1JoF+UDuZuSutcvgwvvgjPP+9qfXfv7rdigWcunOHhFQ+z/vv1\nvNf6PaoW8GaHt+PcOfdksWuXy6coUsQvKhmGX0iq2k0C/Bbt+A/POcNIOkJDXTB73TqYONHlWBw7\n5hfR2TJkY3KLyYxtMJZms5sxbuM4rzvfZcoE77wDPXpA9erODWUYwYQ3i8QKYKWIRIhIN+AjXJ0l\nw08Eu1/Ur/aVK+eKBVap4hLw5szBX0GBtmXasr3Xdj765iMazWjE0VNH470mMjISERgwwCWQDx3q\nnizOnvWLSsmO/bdpeLNIDAUmARWA8sAkVR0aUK0MIy4yZIBRo2DZMnj6aZdj4aem1QVzFmTt/Wu5\nI+wOKr9VmUUHF3l9bbVqsHMnnDzp3n/xhV9UMoxkJWD9JPyJxSSMa3LunCvZOmsWvPkmtPBf+s6W\nH7dw7/x7ubPonYy/azxZ0mfx6jpV54J69FHXJrVnT7+3+jYMrwhonoSIbFLV2iJyhqsruqqq5vBl\n4oRgi4QRLxs2QEQE1K3rOuLlyuUXsafOn+KhZQ+x86edzG4zmwo3VPD62gMH3M6nkiXhrbf8ppJh\neE1AA9eqWtvzN5uqZo/xSrIFIi0Q7H7RJLGvbl1X1iNLFtfYaM0av4jNkTEHM1vPZHjd4TSa0YhX\ntrzyn0KBcdlWujRs3Qr587vwyZYtflEpSbH/Ng1v8iRmeHPOMJKdbNlce9TJk90W2QcfhBMn/CK6\ny61d2NJzC7P3zabpe0355cwvXl2XKZOrJjt+PLRsCePG+S0n0DCSBG/yJHapaqVox+mAPapaJtDK\nRZvT3E1GwjhxAoYNc8kLzz3nMrf9EBi4ePkiT69/mim7pjClxRSaFG/i9bU//ACdO7u2Ge++Czfc\n4LM6hhEnAXU3ichwETkNlBeR01Ev4Fdi9IUwjBRHrlzwxhuuEt/LL0P9+n7ZbpQ+ND3P3PEMs9vM\npveHvXl4xcOcu3TOq2sLFXJpHjVqQOXKsHKlz+oYRsCJKyYxRlWzA8/HiEfkUdXHklDHoCfY/aLJ\nal+1aq5+Rrt2EB7uthydOeOz2NvDbmf3g7vZtWUXNSbXYP9v+726Ll06t2t31iyXgDd0KFy44LM6\nAcP+2zS8yZPYJiL/7MsQkVwi0iqAOhmGfwkNdTWg9u51Wdply8KCBT4n4eXJnIeRt4+kf7X+3D7t\ndiZ+NtHrTO369V3rjAMHXMz9u+98UsUwAoY3MYnPVbVCjHO7VbViQDX773wWkzD8R2QkPPQQhIXB\nhAlQtKjPIr/8/Uu6Le5GupB0TG4xmRLXeVfaXNUVuP3f/5wqHTv6rIph/ENS1m6KSagvkxpGshIe\n7n7Gh4e7gkvPPOOS8nygZN6SbOi2gbZl2lJrSi2e2/Qcl65civc6ERg40MUnnnrKuaCsoqyRkvBm\nkdghIuNFpKiIFBORl4AdgVYsLRHsftEUaV+GDC4gsHOnK+FavjysWpVgMdFtCw0JZUD1AWzrtY01\n362h+uTqfP7z517JqVwZduyAixddWSo/dm/1iRT53fmRYLfPH3izSPQHLgLvA3OAc0DfQCplGElG\noUIuPvHyyy6von17OBp/Yb+4KJK7CCu7rKR/tf40mtGIJ9Y+4dUOqOzZ3dbYYcNc64zXX/db7ULD\nSDRWu8kwojh7FsaOdXfn4cOhf39In94nkT+d/om+H/XlwO8HmNJiCrUK1vLquq++cvGJsDCXG5gn\nj09qGGmUpOpxnR9XCbYMkNlzWlX1Dl8mTgi2SBhJyldfQb9+8PPPbsGoU8dnkfP3z6f/8v60LdOW\nMQ3GkC1DtnivOX8eHnvMPejMmuUXNYw0RlIFrmfhelzfAowEDgPbfZnU+C/B7hdNdfaVKOEiyU8+\n6X7Od+8Ov/0W61BvbWtTpg37HtrHqfOnKP9GeVZ9G3/8I2NGeOkl12OpbVsXX798OSGG+E6q++4S\nSLDb5w+8WSSuU9XJwAVVXa+q3QCvnyJEpLGIHBSRr0Xk0Vg+7ywin4vIHhHZJCJJ1hbVMK6JiEvA\n27/fZW+XLQuTJvlUeClP5jxMazWNN+9+kweWPkC3xd348+yf8V7XrJkLan/8MTRs6HPIxDAShDfu\npi2qWkNEVgGvAseAuaoa7+ZyEQkFvgQaAkeBbUAnVT0QbUxNYL+qnhSRxsBIVa0RQ465m4zkZc8e\n6NMHLl1y5T4qV/ZJ3Onzpxn+8XDmH5jPhCYTaFOmTbzXXL7s+lNMnOjiFM2a+aSCkQZIqphEM2Aj\nUBCYAOTA3cjjrd/kWQBGqGpjz/FjAKr67DXG5wb2qurNMc7bImEkP1euwPTpbvtRu3bO/+Njk4hN\nP2yix5IelMtfjteavsYN2eKv+rdxoysU2KIFPPssZM3qkwpGEBPwmITnSaCEqp5Q1b2qGq6qlb1Z\nIDwUAI5EO/7Rc+5a9MD10E5TBLtfNGjsCwmBbt1cocALF6BMGSIff9ynfaq1C9Vm94O7KXldSW59\n41am7Z5GfD+I6tRxqR0nTrjWGevXJ3r6eAma7+4aBLt9/iBdXB+q6mUR6QSMT6R8r//vEZH6QHeg\ndmyfR0REEBYWBkCuXLmoWLEi4eHhwL9fdGo93r17d4rSx+yL53jvXujUifBu3eC++4hctgwGDSK8\na9dEyduycQuNQhvR7r52dF/cndc+eI0htYbQsVnHOK+fMSOcJUugTZtI6tVzx1mzpoB/HztOtuPI\nyEimTZsG8M/90le8cTe9BKTHJdP9hSvToaq6M17hIjVwrqkod9Mw4Iqqjosx7lZgAdBYVb+JRY65\nm4yUSVSM4umnXfvU4cMhd+5Ei7t4+SLjN4/n+U+f56nbn6Jv1b6EhsRdBefPP11pj08/halT4fbb\nEz29EWQkVUwiklieCFS1frzCXYOiL4EGuID3Z1wduC4ErAW6qGqsDR5tkTBSPD/95IovLV7skhv6\n9nV7WBPJl79/Sc+lPbmiV5jcfDKl85WO95olS1xsvU0blxNosQoj0E2HBnrePqGq9WO+vBGuqpeA\nfsBKYD/wvqoeEJHeItLbM+wpIDfwhojsEpHPEm9O6iTqcTFYCWb7/rHtxhvh7bddhdnISChVymXA\nJXLLbMm8JVkfsZ7O5TtT9526jP5kNBcvX4zzmhYtXDX048f9F6sI5u8Ogt8+fxBX4Lq75+8EXyZQ\n1eWqWlJVi6nqWM+5Sao6yfO+p6pep6qVPK9qvsxnGMlKmTLuJ/306a4GeJUqsGZNokSFSAgPVX2I\nnb13svHIRqq8XYUdx+KurZknD8yY4ZLw7r0XBgywqrKGb1zT3SQis4EquN1I38b4WFU1yZLezN1k\npEpUYd48F6coWhTGjYMKFeK/LlZRysw9MxmyeggRFSIYGT6SzOkzx3mNxSqMgMckROQGYBXQnBh9\nJVT1sC8TJwRbJIxUzYUL8NZbrrPQXXe5/IpChRIl6pczvzBgxQB2/bSLSc0mUb9I/J7fqFhF69aW\nV5HWCHiehKr+rKq3qur3qno4+suXSY3/Eux+0WC2zyvbMmRwBQO/+sotDpUquV4Wx48neL7rs13P\n+23f57lGzxGxOIIO8zrww8kf4rwmKlZx8mTCYxXB/N1B8NvnD7yp3WQYhj/IkcM9Rezd6zLhSpaE\nF19MVFe8VqVacaDvAUrnLU2lSZV4Zv0znL149prj8+RxvSpeftnFKvr3t1iF4R3WT8Iwkov9+12J\nj88/h9GjoVMnl9WdQA6fOMyQVUPY8dMOxt85nlalWiFybQ/Dn3/Cww/Dpk0Wqwh2kiRPItpkWVT1\nb18mSyy2SBhBzYYN8H//52IXzz3nSr0mgjXfrWHgioEUyF6AVxq/Em9uxdKlrhmfxSqClyTpJyEi\ntURkPy4pDhGpKCKv+zKp8V+C3S8azPb5xba6dWHzZrcLqk8fF9z+3Lve2NFpeEtDdvfezd3F76be\ntHo8svIRTp47ec3xzZvHH6sI5u8Ogt8+f+DNs+3LQGPgdwBV3Q3YA6ph+BMR11lo/34Xab7rLuja\nFX6IOygdk/Sh6RlYYyBfPPQFp8+fptTEUkzdNZUrGntSn8UqjPjwpizHZ6paTUR2qWolz7nPVTVx\nG74TgbmbjDTHqVPwwguueUSPHi52kYiaUNuObmPAigFcvnKZCU0mUP3m6tccGz1WMWUKeOrHGamY\npGpf+oOI1PZMmEFEhgAH4rnGMAxfyJHDFQ3ct8/5gxK5E6pqgaps6r6JftX6cc/799BtcTd+PvNz\nrGOjP1V06eKeKs6c8YcxRmrGm0WiD9AXl3l9FKjkOTb8RLD7RYPZvoDbduONrm3q+vUuwF2qFMyc\nmaCaUCESwv0V7udgv4Pky5KPcq+X48VPX+TC5Quxjo+KVZw6BSVKRBLEX19Q/7fpL+JdJFT1N1W9\nV1Xzq2o+Ve2sqn8khXKGYXgoXRoWLXKFmV57zdWEWrEiQQ2PcmTMwXONnmNT902s/m41Fd6swKpv\nV8U6NnduV36qXz/XBa9fP3uqSKvEVbsprsJ+qqoDAqNSrLpYTMIwolCFBQtgxAjIkgWeeML9/I8j\nN+JqEcqHX33IoJWDKJe/HOPvGs8tuW+Jdezx4zBoEKxb5woH3nNPgqYykpGA5kmISAT/9pGIOYmq\n6nRfJk4ItkgYRixcuQILF7qaUOAWi3vuSVBC3rlL53hp80u8sPkF+lTpw7A6w8iaIfaEiXXrXJuM\nsDCYMMHVLDRSNv5YJFBVr15AdiCbt+P9+XJqBi/r1q1LbhUCSjDblyJsu3JFdckS1apVVcuWVX3v\nPdVLlxIk4sjJI3rv/Hu14PiCOmfvHL1y5YqqXm3f+fOq48apXned6siRqmfP+suI5CFFfH8BxHPv\n9On+600yXXkR2QV8AewXkR0iUs6nlckwDP8h4txNW7e6HVATJ7q+FtOnu/aqXnBzjpuZ1XoWs1rP\nYuzGsYRPD+fzn69O6MuQwdUm3LkT9uyBcuVg+XJ/G2SkJLzJk9gMDFfVdZ7jcGCMqtYKvHr/6KDx\n6WkYhgdV1x3v6afh++9djkXXru4O7wWXr1zm7Z1vMyJyBG1Lt+WZO54hT+Y8sY5dvtxtla1QwW2d\nLVjQj3YYPpNUeRJZohYIAFWNBKzKi2GkVESgfn0XRHj3Xdf4qHhxeP11r/IsQkNCebDKgxzoewAR\nofTE0ry5/U0uX7l81dgmTVwqx623ugrozz3nSlAZwYM3i8QhEXlSRMJEpIiIPAF8F2jF0hLBvlc7\nmO1L8bbVqQMrV8Lcue5nf9Gi7if/3/HX6syTOQ9ts7Rl9X2rmbNvDhXerMDig4uJ+VSfKZPbaLV1\nq1uXKlYk1eRWpPjvLwXgzSLRHcgPLADmA/n4t/+1YRipgWrVXNnXDz90SXm33OJ+9nuR/HDr9bey\nrus6xjUcx5PrnqTW1FqsP3x1NcCiReGjj9xmq/vvd1nbP8ee3G2kIqyfhGGkRfbudT0s1q6FAQNc\nYCFnzngvu3zlMnP2zeHJdU9SMm9Jxtwxhko3Vrpq3F9/uf5KU6bAU0+54rbp0gXCECMuAp0nsRSX\nJxHbBKqqLXyZOCHYImEYAeLgQRgzxj0C9O0LAwe6Ik7xcOHyBd7e8Tb/2/A/wsPCeab+MxTLU+yq\ncfv3O7EnTsAbb0CNGoEwwrgWgQ5c1wAKAhuAFzyvF6O9DD8R7H7RYLYv1dtWqpQLbm/dCkePugD3\nsGHw22/Ate3LEJqBvtX68nX/rymXrxw1Jtegz4d9OHb62H/GlSnjHlaGDHHNjXr1gj9SUFGfVP/9\nJQFxLRI3AsOBcrieEo2A31Q1UlW9bqUuIo1F5KCIfC0ij8byeSkR2Swi50RkcEINMAzDDxQtCpMn\nuwSIqP7bgwfHe0fPliEbj9d7nC/7fUm2DNko/0Z5hq0ZxvGzx/8ZI+LqPx044KqIlCnjpkpAjUIj\nGfEqJiEiGYFOuKeJkar6mlfCRUJxHe0a4irIbgM6qeqBaGPyAYWBVsBxVb3qKcXcTYaRxPz4Izz/\nvCso2LkzPPoo3Hxz/Jed+pGn1z/NwoMLGVxzMAOqDyBL+iz/GbNrFzz0kHv/xhtuN5QRGAKeJyEi\nmUSkDTATVx78FWBhAuRXA75R1cOqehGYA7SMPkBdldntwMUEaW4YRuC4+WZ45RUXVMiUySVC9Ojh\nAt5xXZbjZt5q/hYbu21k5087KT6hOG9uf5OLl//937tSJdfYqEcP14Bv4EDXMsNImVxzkRCRGcCn\nuP4RT6tqVVV9RlWPJkB+AeBItOMfPeeMaAS7XzSY7Qtm2wAiDx50TxRffQVFiri7esOGsGxZnP6i\nknlL8kG7D1jScQkLDy6k9MTSzNk35582qiEh0LMnfPGFS9koXRpmzUpQ5XO/EOzfnz+Ia1NaZ+Av\nYCAwUP5bG1hVNYcX8v32lUdERBAWFgZArly5qFixIuGe/opRX3RqPd69e3eK0sfss+NYj594AoYO\nJXLUKBg0iPBBg2DgQCJvuQUyZ471+ttuuo1hNw9jZ+hOXtryEuM2jaNTtk5Uvakq9evXJ29e6Nw5\nkkqV4IUXwpk8GSIiIilcOAXYmwqPIyMjmTZtGsA/90tfCWiehIjUwMUwGnuOhwFXVHVcLGNHAGcs\nJmEYqQBV2LjRZW+vXw/du7vORIUKxXGJsujgIh5f+zj5suZjbIOx1Cr4bwm4S5dcjOLpp50r6okn\nIFu2pDAmeEmq2k2+sB0o7inpkQHoACy5xlhrY2IYqQURqFsX5s+HbdvcHb5SJWjfHj79NFa/kYhw\nT+l72NNnDxEVIug4ryMt57Rk36/7AJds17+/C3scPQolSrhdUJevLhllJCEBXSRU9RLQD1gJ7Afe\nV9UDItJbRHoDiMgNInIEGAQ8ISI/iEia+v0Q9bgYrASzfcFsG3hpX5EiMH48HDrkakXdd5/Lmps9\nGy5evR8lXUg6ulXqxlf9vyK8cDgN3m1A10VdOXziMAA33OA2VS1Z4v5WqODKTgXCmRDs358/CPST\nBKq6XFVLqmoxVR3rOTdJVSd53v+sqgVVNaeq5lbVQqpq3XQNI7WRI4cr8fHVVzB8OLz1lltAxo6N\nNd8iU7pMDKo5iK/7f02RXEWo8lYVBi4fyK9//Qq4Nt6RkS4hfNAguPNO8IS3jCTEajcZhhE4du92\ncYvFi6FDB7fftXTpWIf++tevjNkwhhl7ZtC3al8G1xxMzkyuntTFi871NGoUNG7sigh6kbaR5kkN\nMQnDMNIyFSvCtGku3fqGG1yfiyZNXPnyGD/88mfNz8uNX2bHAzv44eQPFH21KE+sfYLf//6d9Old\nkWGoK4gAABGNSURBVMCvvoICBZwL6okn4NSp5DErLWGLRAog2P2iwWxfMNsGfrTvhhtg5Eg4fNgF\nt4cOhbJlYdKkq3pbhOUKY1qraXzW6zN+//t3SkwowSMrH+HY6WPkyOGK1+7e7ZLCS5RwO6JiCX14\nRbB/f/7AFgnDMJKOTJmgWzd3l5840SXlFS7sYhhH/5une0vuW3iz2Zvs7eOyvMu9Xo4HP3yQQ8cP\nUbCge0BZvtxtsLr1VhfoNq+0/7GYhGEYycvXX8OECTBzpgs4PPywa5IUg9/++o1Xtr7Cm9vfpGnx\npgyrM4zS+UqjCitWuEqz+fLBCy+4oLcR4H4SKQlbJAwjDXDihOtSNGGCCzw89BC0aeOePqJx8txJ\nJm6byCtbX6FuoboMrzucyjdW5tIleOcd10q1fn23K6pw4WSyJYVggesgIdj9osFsXzDbBklsX65c\nrjz5N9/AI4/A9OluC9PAgbBv3z/DcmbKyfC6w/luwHfUKVSHFrNb0GRWE7Yc20ivXi64Xbw4VK7s\niteeOHHtKYP9+/MHtkgYhpGySJfOPUGsWuWyubNnd4UFa9aEqVNdb1Qga4asPFzjYb4d8C33lLqH\nrou6cvu02/n0l1WMGKHs3evSM0qWhFdfhQsXktmuVIq5mwzDSPlcuuRarE6eDBs2uB1SvXrBbbe5\nEiHApSuXmLNvDmM2jCFbhmwMrzucFiVb8MW+EIYOdQ8ozz7rOuRJGikCZDEJwzDSHkePuuDDlCnO\nRdWrl2uMlNMl3l3RKyw6uIjRG0Zz4fIFhtUZRvuy7Vn3cTqGDHFFA198MW3027aYRJAQ7H7RYLYv\nmG2DFGpfgQIuk+7bb2HcOFe7o3BhiIiATZsIQWhdujXbe23n+UbP88b2Nyj1Wim+v24yW7ZdoFcv\naNvWJYC/915k8tqSCrBFwjCM1ElIiCvo9MEHLlpdrpyrMV62LIwfj/zxB42LNWZDtw1MbTmVufvn\nUmJiUU6VfpXdX/xN+fIui/uRR+DPP5PbmJSLuZsMwwgeovpcvP22y65r3Ni5o+rXh5AQth3dxpiN\nY9h8ZDMP13iYtoUf4sUxOZg3zy0W/fq5OHmwYO4mwzCM6ET1uXj33X9Llz/yiNsTO3YsVUNuZmGH\nhay5fw17f91Ljdm3kK/9UyxZ8wd790KxYs6DdcbqUP+DLRIpgBTp9/UjwWxfMNsGqdy+3Lndo8Hu\n3TBnjls0ypSBVq0ot+17ZrV8l1dKvcJPp3/i7hXFyXvfAN5Z/DU7d7rF4oUXriorlSaxRcIwjOBG\nBKpWdf0tfvgBmjVzPVLDwigwfxVvV3iCPX32kC1DNiI21ObvVs3533sfs2WrUrQovPQSnD2b3EYk\nHxaTMAwjbbJnj8u7eO89V+wpIoK/mzRk1jcLeWXrK4gIbQoMZNf0zmzbnJlHH4UHHoDMmZNbce+x\nPAnDMAxfOXsWFixwBQa3bIFmzdB772Vt0RBe3vEaW3/cSvMCPflxYV/2fVqAYcOgZ8+rSkqlSCxw\nHSSkar+vFwSzfcFsG6QR+zJndsl4y5fDwYNQrRry9NM0qHs/Sz8NY0f518ia6zTbqpSn3MhOzNm4\nleLF4fXX4fz55LYg8NgiYRiGEcX110P//rB5M3z6KVx/PQUHjeDV/h9x7EQP7s1WmGM1O5FrSA3e\n3jyHYiUu8uabwV0XytxNhmEYcaEKu3a52MXs2ej11/NFw1sZddNXrD/3A7m+6svfGx9gxP9dR0QE\npE+f3Ar/i8UkDMMwkpLLl2H9erdgLFjA6TLFmFcxA//f3plHWVFccfj7OYigbCpERTEkcQFXcI9L\n3GIO4hbcCHpUNIlEJZq4JOLRSDyu0YjGhbii4AIR0aNo3DGKRkGZAWRRQUejuB2VqCQakZs/qp4+\nm9fztnnz3szc75x3qO6q6rq/7qFud1X3rXN7zGXFh0Ox507mvJFbcPTRteEsan5OQtIgSQslvSrp\n9yll/hLzZ0saWEl7apV2Me7bRmnL2sD1rURdHey1V3graskSup56Jse+uy6NVxmPvTSdffrvxtn1\ne9Jn76ncPG4Fy5dXxOwWpWJOQlIdcDUwCNgMGCapf6LMYGAjM9sYOB4YWyl7apmGhoZqm1BR2rK+\ntqwNXF+TdOoU4o5Pnswqb7xJv2NP5+b3BtI4fgbXfj6cux/qw/oHXcl1t3zaqp1FJZ8kdgAWmVmj\nmX0JTAQOSpQ5ELgVwMyeB3pIWqeCNtUkS5taOqsN0Jb1tWVt4PoKpkcPOO44Vnn8CVZb+CpDfnYW\nkxZ0Zd70M/l8bC/22e8IxoxbzFdfNU9zLUklncT6wL+ytt+K+/KV2aCCNjmO41SW3r3RqafSZc5C\nej5fzzF7/Io76//O4NM34eId+jPmwttYvrz1zLFW0kkUehaSkyqt5+w1E42NjdU2oaK0ZX1tWRu4\nvrLp148el1zBuu99RJ97H2eXtddj2AXDqd9gDWY+8kxl224mKvZ2k6SdgNFmNihujwJWmNklWWX+\nCjxpZhPj9kJgdzN7L3Gsduc4HMdxmoNy327q0FyG5OAFYGNJfYElwFBgWKLMfcBIYGJ0KkuTDgLK\nF+k4juOURsWchJktlzQSeBioA24yswWSRsT868zsQUmDJS0ClgHHVsoex3Ecp3haxcd0juM4TnWo\nauymfB/bSeop6SFJDZJekjQ8kV8nqV7S/S1mdBGUo09SD0mTJS2QND8Ox9UUZeobJWmepLmS7pC0\nWosaXwAF6FtT0j3xQ9DnJW1eaN1aoFR9kvpImhav30uSTm5565umnGsX81t739LU32ZxfYuZVeVH\nGIJaBPQFVgUagP6JMqOBi2K6J/Ah0CEr/1TgduC+aumolD7C9yPHxXQHoHu1NTWXvljnNWC1mDcJ\nOKbamkrQdylwTkxvCjxWaN1q/8rUty4wIKa7AC/Xkr5ytGXlt/a+JVVfsX1LNZ8kCvnY7h2gW0x3\nAz40s+UAkjYABgM3svJrtLVAyfokdQd2M7ObIczvmNm/W8rwAinn+n0CfAmsLqkDsDrwdsuYXTCF\n6OsPTAMws5eBvpK+U2DdalOqvl5m9q6ZNcT9nwELgN4tZ3peStYGbaZvyamvlL6lmk6ikI/tbgA2\nl7QEmA2ckpU3BjgDWFFJI8ugHH3fAz6QNE7SLEk3SFq94hYXR8n6zOwj4M/Am4Q335aa2WMVt7g4\nCtE3GzgYQNIOwHcJH4MWUrfalKPva+LbiwOB5ytkZymUq60t9C1p+oruW6rpJAqZMT8LaDCz3sAA\n4BpJXSXtD7xvZvXUpqeHMvQRHgG3Aa41s20Ib36dWTFLS6NUfV0k/QD4DeFxuTfQRdKRFbO0NArR\ndzEhlEw94VXueuCrAutWm3L0ASCpCzAZOCU+UdQKpWpb0Yb6lrRrV3TfUsnvJPLxNtAna7sPwSNm\nszNwAYCZLZb0OtAv7j9QIUBgJ6CbpPFmdnTlzS6YUvVtGsu9ZWYzY7nJ1J6TKFVff8LdzLNm9iGA\npCmx7O2VNroI8uozs0+B4zLbUd9ioHO+ujVAqfpei+lVgbuB28zs3opbWxzlaBtKG+hbmtDXhWL7\nlipOvnQg/IfqC3Qk9+TL5cC5Mb1OPBFrJcrsDtxfLR2V0gc8BWwS06OBS6qtqbn0AVsDLxE6UxEm\n0k6qtqYS9HUHOsb0L4FbCq1b7V+Z+gSMB8ZUW0dza0uUac19S6q+YvuWaovdl/BmxCJgVNw3AhgR\n0z2B+wnja3OBI1IuZM29gVCuvtiRzox5U6ixt5uaQd/vgHlx/63AqtXWU4K+H8b8hYQ7su5N1a21\nX6n6gF0J4/UNhGGMemBQtfU017XLOkZr7lua+tssqm/xj+kcx3GcVKr6MZ3jOI5T27iTcBzHcVJx\nJ+E4juOk4k7CcRzHScWdhOM4jpOKOwnHcRwnFXcS7RBJKyRNyNruIOmDfGGRJQ2XdFWRbd0ZwxWf\nkr903mOdldhulkWCJd0i6ZDEvs/ivwMkPRtDYs+WdHhWmY6Srojhml+RdK+knDGaJD0gqVuuvJTy\nB0nqn7X9pKRti1e3kp7eku4q4zgjJB2VY39fSXNLPa5Tu1QzLIdTPZYRAu91MrPPgX0IX0Pn+2im\nqI9qJK0LbGdmG+fIqzOzr3JUa4pRwIVfG2O2S5H10zBW1pbZXgYcZSGsyHrAi5IeMrNPoi1rEL5e\nNYX1MqYAO67UgNl+Rdo0hPAh4oKEPaVi0Y4lwGElH8TsujLtcFoZ/iTRfnkQyHRcw4A7iQHNJK0V\n74pnS/qnpC2TlWPY4cmSZsTfzjnaeARYPy7esmu8Gx4jaSZwiqT9JT0Xo1E+GsNsE4MAjpM0J9pw\nsKSLgM7xWBNiuczdsSRdqrCA0ZzM3b6kPWKbdykssHJbE+cjZzA3M3vVzBbH9DvA+0CvGDlzOPBb\ni1+kmtktwBeS9spxvhrjee0bbbk+Pp08LKlTouzOwAHApfHcfD9mHaawgMzLknaNZeui9hnxXB3f\nhMZv3fFL6ixposLCM1Pitdgm+9zG9KGSxsX0aEmnxfS2sc0G4MSm2o3lt4/lV5O0RtS/maRVJF0W\nr99shWWPnRrBnyTaL5OAP0iaCmwJ3ATsFvP+CLxoZj+VtCchTs9Avt2RXkmI3fOMpA2Bh4DNEm0c\nAEw1s4EAkowQfmP7uN3DzHaK6V8QQnWcDpwDfGxmW2WVmyJpZOZYkczd9cGEUANbAb2AmZKeinkD\nol3vAM9I2sXMksNUInTIZ+c49jeFQsjlVeNTxVbAm7Zy9NMXgM2BJxL7s4+3ETDUzI6XNAk4hKzg\nhmb2rKT7CHGDpsS2AerMbEdJ+wLnEp4Af04Itb6Dwup+0yU9YmaNSftzcALwmZltFm8EZqXYm0xn\ntscBJ5rZdEl/yteYmc2Mus4nxO2aYGbzJZ0AbAhsbWYrJK1ZgO1OC+FOop1iZnMV1gIYBjyQyN6F\nGIvezKZJWlshhHk2Pwb6x84LoKuk1c3sP1llct2dT8pK95H0N8JKZx2JEUaBvQnRODO2Ls0jZ1fg\njnhH/76kfwDbExY3mhGHWIh3vH2BpJMw4PRMhxzLfppdIA41jQcKiQaab2jodTObE9MvRptykTx/\nGftmZdX5CbClpEPjdjeCE2oswM7dCM4+8/cwJ0/5bwwLi9d0N7PpcdcEQjyhfJxHcKT/BX4d9+0N\njDWzFdGWjwu1w6k87iTaN/cBlxECmfVK5CU7qGTHJ2BHM/tfkW0uy0pfBVxmZlMl7U6ISJnWflNY\njvIZe7/I2peJp5+L1PYUJpynAmeZ2Yy4ezGwoaQuiaeJbQlzCU2RtKlzSrnkOc/US+oYaWaP5mkz\njTTd2W2n2VfIcZL0JMzj1MXjZm4qanXthnaPz0m0b24GRpvZvMT+p4EjIYzrAx/kGFZ5BDg5syFp\nQIFtZncG3Qgr00EY38/wKHBS1rF7xOSXCsudJnkaGBrHtnsBPwJm0Awdj6SOwD3A+OwnDTNbRohe\ne7mkVWLZo4HOZjat3HaBT/lm6demeBg4MXNeJG2iwlcxfAo4ItbbgjBcl+E9Sf2itiFZ+wXIwpKX\nSyVlXh74etEoSetLSltp8DrgbOAO4JK471FghKS6WN+Hm2oIdxLtk8xE69tmdnXWvszd42hgW0mz\nCW/wHJOjzMnAdnGicR6QNmGa9tZQpp27JL0AfJCVdz6wZpzIbAD2iPuvB+bom9d3MzruAeYQQh8/\nDpxhZu8n7E2zJ5+dhxOGZYYrTJrXS9o65o0CPgdekfQKYW5hCLlJG+NPs2kicIakF7MmrnPVuRGY\nD8yKE9Jjyf20lKv9sYRVAecT56GyypxJeHp6huDILatuJn0sYbXB+sRx1wOWJw2ITvQLM5tIWDlt\n+3gTciNhKds58XoPy2G/UyU8VLjjOABImgacZmaz8hZu+jgnAW+Y2dTmscypJj4n4ThOs2Jm11Tb\nBqf58CcJx3EcJxWfk3Acx3FScSfhOI7jpOJOwnEcx0nFnYTjOI6TijsJx3EcJxV3Eo7jOE4q/wft\njXxqolkTOQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb54be80>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The packed depth is: 1.58 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 135
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.9: Page 327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.9\n",
+ "# Page: 327\n",
+ "\n",
+ "print'Illustration 8.9 - Page: 327\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# C1=CH4 C2=C2H6 C3=n-C3H8 C4=C4H10\n",
+ "Abs=0.15;# [Tot\n",
+ "\n",
+ "# Illustration 10.8\n",
+ "# Page: 539\n",
+ "\n",
+ "print'Illustration 10.8 - Page: 539\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:acetic acid c:Water d:Isopropylether layer\n",
+ "# Water solution (continuous):\n",
+ "C = 8000.0;# [kg/h]\n",
+ "xCn = 0.175;# [mass fraction]\n",
+ "Density_c = 1009;# [kg/cubic m]\n",
+ "viscosity_c = 3.1*10**(-3);# [kg/m.s]\n",
+ "Dc = 1.24*10**(-9);# [square m/s]\n",
+ "\n",
+ "# Isopropyl Ethr Layer:\n",
+ "D = 20000.0;# [kg/h]\n",
+ "xDnPlus1 = 0.05;# [mass fraction]\n",
+ "Density_d = 730;# [kg/cubic m]\n",
+ "viscosity_d = 0.9*10**(-3);# [kg/m.s]\n",
+ "Dd = 1.96*10**(-9);# [square m/s]\n",
+ "\n",
+ "sigma = 0.013;# [/N/m]\n",
+ "m = 2.68;# [Distributon coeffecient]\n",
+ "#*******#\n",
+ "\n",
+ "Ma = 60.1;\n",
+ "g = 9.81;# [m/square s]\n",
+ "cCn = xCn*Density_c/Ma;# [kmol/cubic m]\n",
+ "cDnPlus1 = xDnPlus1*Density_d/Ma;# [kmol/cubic m]\n",
+ "mCD = m*(Density_c/Density_d);# [(kmol/cubic min ether)/(kmol/cubic m in water)]\n",
+ "\n",
+ "# Perforations:\n",
+ "Do = 0.006;# [m]\n",
+ "pitch = 0.015;# [m]\n",
+ "qD = D/(3600.0*Density_d);# [cubic m/s]\n",
+ "delta_Density = Density_c-Density_d;# [kg/cubic m]\n",
+ "Value1 = Do/(sigma/(delta_Density*g))**0.5;\n",
+ "if Value1<0.1785:\n",
+ " # From Eqn. 10.74(a):\n",
+ " doBydj = (0.485*Value1**2)+1;\n",
+ "else:\n",
+ " # From Eqn. 10.74(b)\n",
+ " doBydj = (1.51*Value1)+0.12;\n",
+ "\n",
+ "dj = Do/doBydj;# [m]\n",
+ "Vomax = 2.69*((dj/Do)**2)*(sigma/(dj*((0.5137*Density_d)+(0.4719*Density_c))))**0.5;# [m/s]\n",
+ "# Since Vomax is less than 0.1:\n",
+ "Vo = 0.1;# [m/s]\n",
+ "Ao = qD/Vo;# [square m]\n",
+ "No = Ao/(math.pi*Do**2.0/4);# [square m]\n",
+ "# From Eqn. 6.30:\n",
+ "# Plate area for perforation:\n",
+ "Aa = Ao/(0.907*(Do/pitch)**2);# [square m]\n",
+ "\n",
+ "# Downspout:\n",
+ "dp = 0.0007;# [m]\n",
+ "# From Eqn. 10.75:\n",
+ "U = Density_c**2*sigma**3/(g*viscosity_c**4*delta_Density);\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 1.515;\n",
+ "abcissa = 0.62;\n",
+ "def f74(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vt = fsolve(f74,7);# [m/s]\n",
+ "Vd = Vt;# [m/s]\n",
+ "qC = C/(Density_c*3600);# [cubic m/s]\n",
+ "Ad = qC/Vd;# [square m]\n",
+ "# From Table 6.2 (Pg 169):\n",
+ "# Allowing for supports and unperforated area:\n",
+ "At = Aa/0.65;# [square m]\n",
+ "T = (At*4/math.pi)**0.5;# [m]\n",
+ "An = At-Ad;# [square m]\n",
+ "\n",
+ "\n",
+ "# Drop Size:\n",
+ "alpha1 = 10.76;\n",
+ "alpha2 = 52560;\n",
+ "alpha3 = 1.24*10**6;\n",
+ "alpha4 = 3.281;\n",
+ "abcissa = (alpha2*sigma*Do/delta_Density)+(alpha3*Do**1.12*Vo**0.547*viscosity_c**0.279/delta_Density**1.5);\n",
+ "Parameter = alpha1*Density_d*Vo**2/(delta_Density);\n",
+ "ordinate = 0.024;\n",
+ "dp = ordinate/alpha4;\n",
+ "\n",
+ "# Coalesced layer:\n",
+ "Vn = qD/An;# [m/s]\n",
+ "# From Eqn. 10.80:\n",
+ "ho = (Vo**2-Vn**2)*Density_d/(2*g*0.67**2*delta_Density);# [m]\n",
+ "hD = ho;\n",
+ "# From Eqn. 10.82:\n",
+ "hC = 4.5*Vd**2*Density_c/(2*g*delta_Density);# [m]\n",
+ "# From Eqn. 10.78:\n",
+ "h = hC+hD;\n",
+ "# Since this is very shallow, increase it by placing an orifice at the bottom of the downspout.\n",
+ "# VR: Velocity through the restriction.\n",
+ "# hR: Corresponding depth of the coalesced layer.\n",
+ "# Assume:\n",
+ "Vr = 0.332;# [m/s]\n",
+ "hr = (Vr**2-Vd**2)*Density_c/(2*0.67**2*delta_Density);\n",
+ "Ar = qC/Vr;# [square m]\n",
+ "dr = (4*Ar/math.pi)**0.5;# [m]\n",
+ "h = h+hr;# [m]\n",
+ "# The above results are satisfacyory.\n",
+ "Z = 0.35;# [m]\n",
+ "# Lead the downspout apron to within 0.1 m of the tray below.\n",
+ "\n",
+ "# Dispersed-phase holdup:\n",
+ "# From Eqn. 10.48:\n",
+ "Vsphi_D = Vn;\n",
+ "# From Fig. 10.47 (Pg 534):\n",
+ "ordinate = 165.2;\n",
+ "abcissa = 30.0;\n",
+ "def f75(Vt):\n",
+ " return abcissa-(dp*Vt*Density_c/(viscosity_c*U**0.15))\n",
+ "Vtl = fsolve(f75,7);# [m/s]\n",
+ "# For solids:\n",
+ "# From Fig. 10.48 (Pg 536):\n",
+ "abcissa = dp/(3*viscosity_c**2/(4*Density_c*delta_Density*g))**(1.0/3);\n",
+ "phi_D = [0, 0.1 ,0.2 ,0.3];\n",
+ "# Corresponding ordinates, from Fig. 10.48 (Pg 536):\n",
+ "ordinate1 = [8.8, 5.9 ,4.3 ,3.0];\n",
+ "Value1 = 1.0/(4*viscosity_c*delta_Density*g/(3*Density_c**2))**(1.0/3);\n",
+ "Val = numpy.zeros((size=(4,6));\n",
+ "# Val = [phi_D ordinate Vs(1-phi_D) (Vs for solids) Vs/Vt (Vs for liquids) (Vs*phi_D (for liquids))]\n",
+ "for i in range(1,4):\n",
+ " Val[i,0] = phi_D[i];\n",
+ " Val[i,1] = ordinate1[i];\n",
+ " Val[i,2] = Val[i,1)/Value1;\n",
+ " Val[i,3] = Val[i,2)/(1-Val[i,0]);\n",
+ " Val[i,4] = Val[i,3]/Val[0,3];\n",
+ " Val[i,5] = Vtl*Val[i,4];\n",
+ " Val[i,6] = Val[i,5]*Val[i,0];\n",
+ "\n",
+ "\n",
+ "# By Interpolation:\n",
+ "Phi_D = 0.1;\n",
+ "# Mass transfer:\n",
+ "thetha_f = (math.pi*(dp**3)/6.0)/(qD/No);# [s]\n",
+ "# From Eqn. 10.87:\n",
+ "const = 1.5;\n",
+ "kLDf = const*(Dd/(math.pi*thetha_f))**0.5;# [m/s]\n",
+ "# From Eqn. 10.86\n",
+ "KLDf = 1.0/((1/kLDf)*(1+((1/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# The ordinate of Fig. 10.47 for the drops larger than 70. Hence mass transfer coeffecient during drop rise is given by Eqn. 10.89:\n",
+ "# From Eqn. 10.91:\n",
+ "b = 1.052*dp**0.225;\n",
+ "# From Eqn. 10.90:\n",
+ "omega = (1.0/(2*math.pi))*math.sqrt(192*sigma*b/(dp**3*((3*Density_d)+(2*Density_c))));# [1/s]\n",
+ "del = 0.2;\n",
+ "kLDr = sqrt((4*Dd*omega/%pi)*(1+del+(1/2)*del**2));\n",
+ "KLDr = 1.0/1/((1/kLDr)*(1+((1/mCD)*(Dd/Dc)**0.5)));# [m/s]\n",
+ "# From Eqn. 10.98:\n",
+ "EMD = ((4.4*KLDf/Vo)*(dp/Do)**2)+(6*KLDr*Phi_D*(Z-h)/(dp*Vn))/(1+((0.4*KLDf/Vo)*(dp/Do)**2)+(3*KLDr*Phi_D*(Z-h)/(dp*Vn)));\n",
+ "print\"Stage Efficiency: \",EMDal absorption,kmol]\n",
+ "T=25;# [OC]\n",
+ "y1=0.7;# [mol fraction]\n",
+ "y2=0.15;# [mol fraction]\n",
+ "y3=0.10;# [mol fraction]\n",
+ "y4=0.05;# [mol fraction]\n",
+ "x1=0.01;# [mol fraction]\n",
+ "x_involatile=0.99;# [mol fraction]\n",
+ "L_by_G=3.5;# [mol liquid/mol entering gas]\n",
+ "#******#\n",
+ "\n",
+ "LbyG_top=L_by_G/(1-y2);\n",
+ "LbyG_bottom=(L_by_G+y2)/1;\n",
+ "LbyG_av=(LbyG_top+LbyG_bottom)/2;\n",
+ "# The number of eqb. trays is fixed by C3 absorption:\n",
+ "# For C3 at 25 OC;\n",
+ "m=4.10;\n",
+ "A=LbyG_av/m;\n",
+ "Frabs=0.7;# [Fractional absorption]\n",
+ "X0=0;\n",
+ "# From Eqn. 8.109:\n",
+ "def f43(Np):\n",
+ " return Frabs-((A**Np)-A)/((A**Np)-1)\n",
+ "Np=fsolve(f43,2);\n",
+ "print\"Number of trays required is \\n\",round(Np,2)\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.9 - Page: 327\n",
+ "\n",
+ "\n",
+ "Number of trays required is \n",
+ "3.57\n"
+ ]
+ }
+ ],
+ "prompt_number": 105
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter8_1.ipynb b/Mass_-_Transfer_Operations/Chapter8_1.ipynb
new file mode 100755
index 00000000..727729f8
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter8_1.ipynb
@@ -0,0 +1,1312 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:43251d921fc8d8fdce5626d1c526ed83cb3073914f200034a16dd6e1031bf994"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8: Gas Absorption"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.1: Page 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.1\n",
+ "# Page: 278\n",
+ "\n",
+ "print'Illustration 8.1 - Page: 278\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "P_star = 2*10**(5);# [N/square m]\n",
+ "X_methane = 0.6;\n",
+ "X_ethane = 0.2;\n",
+ "X_propane = 0.08;\n",
+ "X_nbutane = 0.06;\n",
+ "X_npentane = 0.06;\n",
+ "#******#\n",
+ "\n",
+ "MoleFraction = [0.6, 0.2 ,0.08, 0.06 ,0.06]\n",
+ "Heading = [\"Component\", \"Equilibrium Partial Pressure\", \"Vapour Pressue \" ,\"Mole Fraction\"];\n",
+ "Component = [\"Methane\", \"Ethane \" ,\"Propane\" ,\"n-Butane\", \"n-Pentane\"];\n",
+ "VapPressure = [0 ,42.05, 8.96, 2.36 ,0.66];# [N/square m]\n",
+ "Sum = 0;\n",
+ "\n",
+ "print Heading[0],\"\\t \\t \\t \\t\",Heading[1],\"\\t \\t \\t \\t\",Heading[2],\"\\t \\t \\t \\t\",Heading[3],\"\\t \\n\"\n",
+ "\n",
+ "\n",
+ "for i in range(0,5):\n",
+ " print \"\\n \",Component[i],\" \\t \\t \\t \\t \\t\",(\"{:.2e}\".format(MoleFraction[i]*P_star)),\"\\t \\t \\t \\t \\t \\t \\t \\t \",(\"{:.2e}\".format(VapPressure[i]*10**(5))),\n",
+ " if VapPressure[i]==0:\n",
+ " Sum = Sum+0;\n",
+ " else:\n",
+ " \n",
+ " print \"\\t \\t \\t \\t \\t \\t \\t \\t \\t \\t\",(\"{:.2e}\".format((MoleFraction[i]*P_star)/(VapPressure[i]*10**(5)))),\"\\t\",\n",
+ " Sum = Sum+(MoleFraction[i]*P_star)/(VapPressure[i]*10**(5))\n",
+ "\n",
+ "\n",
+ "\n",
+ "print\"\\n Mole Fraction Of solvent Oil is \",round(1-Sum,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.1 - Page: 278\n",
+ "\n",
+ "\n",
+ "Component \t \t \t \tEquilibrium Partial Pressure \t \t \t \tVapour Pressue \t \t \t \tMole Fraction \t \n",
+ "\n",
+ "\n",
+ " Methane \t \t \t \t \t1.20e+05 \t \t \t \t \t \t \t \t 0.00e+00 \n",
+ " Ethane \t \t \t \t \t4.00e+04 \t \t \t \t \t \t \t \t 4.20e+06 \t \t \t \t \t \t \t \t \t \t9.51e-03 \t\n",
+ " Propane \t \t \t \t \t1.60e+04 \t \t \t \t \t \t \t \t 8.96e+05 \t \t \t \t \t \t \t \t \t \t1.79e-02 \t\n",
+ " n-Butane \t \t \t \t \t1.20e+04 \t \t \t \t \t \t \t \t 2.36e+05 \t \t \t \t \t \t \t \t \t \t5.08e-02 \t\n",
+ " n-Pentane \t \t \t \t \t1.20e+04 \t \t \t \t \t \t \t \t 6.60e+04 \t \t \t \t \t \t \t \t \t \t1.82e-01 \t\n",
+ " Mole Fraction Of solvent Oil is 0.74\n"
+ ]
+ }
+ ],
+ "prompt_number": 165
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.2: Page 286"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.2\n",
+ "# Page: 286\n",
+ "\n",
+ "print'Illustration 8.2 - Page: 286\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#****Data****#\n",
+ "# Absorber:\n",
+ "G = 0.250;# [cubic m/s]\n",
+ "Temp1 = 273+26.0;# [K]\n",
+ "Pt = 1.07*10**(5);# [N/square m]\n",
+ "y1 = 0.02;\n",
+ "x2 = 0.005;\n",
+ "#******#\n",
+ "\n",
+ "G1 = G*(273.0/Temp1)*(Pt/(1.0133*10**(5)))*(1/22.41);# [kmol/s]\n",
+ "Y1 = y1/(1-y1);# [kmol benzene/kmol dry gas]\n",
+ "Gs = G1*(1.0-y1);# [kmol dry gas/s]\n",
+ "# For 95% removal of benzene:\n",
+ "Y2 = Y1*0.05;\n",
+ "X2 = x2/(1.0-x2);# [kmol benzene/kmol oil]\n",
+ "# Vapour pressure of benzene:\n",
+ "\n",
+ "P_star = 13330.0;# [N/square m]\n",
+ "X_star = numpy.zeros(20);\n",
+ "Y_star = numpy.zeros(20);\n",
+ "j = -1;\n",
+ "for i in range(1,21,1):\n",
+ " j = j+1;\n",
+ " x = i/100.0;\n",
+ " X_star[j] = i/100.0;\n",
+ " def f27(y):\n",
+ " return (y/(1+y))-(P_star/Pt)*(x/(1+x))\n",
+ " Y_star[j] = fsolve(f27,0.0);\n",
+ "\n",
+ "# For min flow rate:\n",
+ "X1 = 0.176;# [kmolbenzene/kmol oil]\n",
+ "DataMinFlow = numpy.array([[X2, Y2],[X1, Y1]]);\n",
+ "\n",
+ "plt.plot(X_star,Y_star,label=\"Equlibrium Line\")\n",
+ "plt.plot(DataMinFlow[:,0],DataMinFlow[:,1],label=\"Min Flow Rate Line\");\n",
+ "minLs = (Gs*(Y1-Y2)/(X1-X2));# [kmol/s]\n",
+ "# For 1.5 times the minimum:\n",
+ "Ls = 1.5*minLs;# [kmol/s]\n",
+ "X1_prime = (Gs*1.0*(Y1-Y2)/Ls)+X2;# [kmol benzene/kmol oil]\n",
+ "DataOperLine = numpy.array([[X2 ,Y2],[X1_prime ,Y1]]);\n",
+ "plt.plot(DataOperLine[:,0],DataOperLine[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "xlabel(\"moles of benzene / mole wash oil\");\n",
+ "ylabel(\"moles benzene / mole dry gas\");\n",
+ "legend(loc='lower right');\n",
+ "plt.title(\"Absorption\")\n",
+ "plt.show()\n",
+ "print\"The Oil circulation rate is \",(\"{:.2e}\".format(Ls)),\" kmol/s\\n\"\n",
+ "\n",
+ "# Stripping\n",
+ "Temp2 = 122+273;# [K]\n",
+ "# Vapour pressure at 122 OC\n",
+ "P_star = 319.9;# [kN/square m]\n",
+ "Pt = 101.33;# [kN/square m]\n",
+ "X_star = numpy.zeros(7);\n",
+ "Y_star = numpy.zeros(7);\n",
+ "j = -1;\n",
+ "for i in range(0,7,1):\n",
+ " j = j+1;\n",
+ " x = i/10.0;\n",
+ " X_star[j] = i/10.0;\n",
+ " def f28(y):\n",
+ " return (y/(1.0+y))-(P_star/Pt)*(x/(1.0+x))\n",
+ " Y_star[j] = fsolve(f28,0.0);\n",
+ "\n",
+ "X1 = X2;# [kmol benzene/kmol oil]\n",
+ "X2 = X1_prime;# [kmol benzene/kmol oil]\n",
+ "Y1 = 0.0;# [kmol benzene/kmol steam]\n",
+ "# For min. steam rate:\n",
+ "Y2 = 0.45;\n",
+ "DataMinFlow =numpy.array([[X2 ,Y2],[X1 ,Y1]]);\n",
+ "minGs = Ls*(X2-X1)/(Y2-Y1);# [kmol steam/s]\n",
+ "slopeOperat = 1.5*(Y2-Y1)/(X2-X1);\n",
+ "def f29(x):\n",
+ " return slopeOperat*(x-X1)+Y1\n",
+ "x =numpy.arange(0,0.14,0.01)\n",
+ "\n",
+ "plt.plot(Y_star,X_star,label=\"Equlibrium Line\")\n",
+ "plt.plot(DataMinFlow[:,0],DataMinFlow[:,1],label=\"Min Flow Rate Line\")\n",
+ "plt.plot(x,f29(x),label=\"Operating Line\");\n",
+ "plt.grid('on');\n",
+ "xlabel(\"moles of benzene / mole wash oil\");\n",
+ "ylabel(\"moles benzene / mole dry gas\");\n",
+ "plt.legend(loc='lower left');\n",
+ "plt.title(\"Stripping\");\n",
+ "plt.show()\n",
+ "print\"The Steam circulation rate is \",(\"{:.2e}\".format(1.5*minGs)),\" kmol/s\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.2 - Page: 286\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEZCAYAAAC0HgObAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWd4VFUTgN+hiQgYkKa0iBRBaRZEESkqAiqICoiAgH4i\nhiYCIigCgggivSMRQRBQUAHpLRRp0oXQIfTei5Qk8/04m5jElE2ym91Nzvs892HvveeeM3uy7OyZ\nmTMjqorFYrFYLK4inacFsFgsFkvqwioWi8VisbgUq1gsFovF4lKsYrFYLBaLS7GKxWKxWCwuxSoW\ni8VisbgUq1gslhiIyA8i0tvTcsSGiFwVEX9Py2GxxIdVLJY0jYgEicgFEckU5bI6Do/ikO29qNdU\nNZuqhnhIJIvFKaxisaRZHL/8KwBngDoxb7t57PRONPO4crNYkoJVLJa0zDvAEuBHoFmMe7lEZJGI\nXHGsHApF3BCRwSJyWkQui8h2EXnEcf1eEZkkImdEJEREPhMRcdxrLiJ/isggETkH9BSRZo5rw0Xk\nkojsEpHqjvZfAZWBEQ7z1zDH9XARKeLkeKtFZIBjRXZQRGq6dTYtFgdWsVjSMu8A04GfgZdEJLfj\nugCNgS+BXMBWYAqAiLyE+cIvpqr3AvWB847nhgPZgAeBKo7+W0QZrwJwAMgDfOUYpwKwH7gP6AH8\nKiJ+qvoZsApo7TB/tYtFfmfG2+3o+xsgMHHTY7EkDatYLGkSEXkWyA/MVtV9QDBGmUTwh6quVtXb\nwGfA0yKSH7iN+TIvKSLpVHWPqp5ymLYaAl1V9bqqHgYGAk2j9HlCVUeqariq3nRcO6OqQ1U1TFV/\nBvYAr0QVNQ75nRnvsKoGqkkIOAm4X0TyJH62LJbEYRWLJa3SDFikqlcd578Q3Rx2LOKFql4HLgAP\nqOpyYAQwEjgtImNFJBtmZZMROByljyMY5RXB0VjkOB7j/DBwf5TzuPwszox3Ksp7uOF4mTWO/iwW\nl2EViyXNISJ3Aw2A6iJyUkROAh2BMiJSBvNlXjBK+6xATuAEgKoOV9UngFJAcaAzcBa4A/hHGaoQ\nURQUsSuJ/DHOC0eME0f7CM45MZ7F4hGsYrGkRV4DQoGSQFnHURJYjfFTCFBbRCo5wpB7A2tV9biI\nPCEiT4lIRuAGcBMIU9VwjK/mKxHJKiKFgQ7A5ARkySMi7UQko4jUBx4G5jnunQYeiu0hVQ1L4ngW\ni9uxisWSFnkH+F5Vj6nqGcdxGmPiaoz5fzEF40w/D5QHmjiezQ6Mw5jGQjArhwGOe22B68BBjON9\nCjDBcS+uvTHrgWKYFU9v4A1Vvei4NxR40xHVNSSWZxM7ng1ftqQI4s5CX47wxiFAemC8qvaPpc0w\noBbm119zVd0iIgUxzsY8mP8M41Q1ItyyJ/A/zH9EMM7LBW57ExaLmxCR5sB7qlrZ07JYLK4kg7s6\ndkStjABewDgo/xKR2aq6K0qb2kBRVS0mIk8Bo4GKGNtxB1Xd6rBvbxKRRaq6G6NoBqnqIHfJbrFY\nLJak405TWAVgv6qGqOodYBpQN0abOsBEAFVdD/iJSF5VPaWqWx3XrwG7iO7kdOuuaIslhfCK1DEW\ni6txp2LJT/TwymP8NwImtjYFojZwpN0oj7FFR9BWRLaJSKCI+LlKYIslJVHViar6nKflsFhcjTsV\ni7O/xGKuPiKfc5jBZgDtHSsXMOayB4FywEnMpjCLxWKxeAlu87Fg/CoFo5wX5L8x9jHbFHBcwxHO\nOROYrKq/RzRQ1TMRr0VkPDAntsFFxJoYLBaLJZGoarJdDe5csWwEiomIv2MvQENgdow2szGhn4hI\nReCSqp52JNILBIJVNVqYpYhE3ZVcD/g7LgFU1R4uOHr06OFxGVLTYefTzqe3Hq7CbSsWVQ0VkTbA\nQky4caCq7hKRDxz3x6rqPBGpLSL7MfH4EQn0KmH2DWwXkS2OaxFhxf1FpBzGZHYI+MBd78FiCAkJ\n8bQIqQo7n67Fzqf34U5TGKo6H5gf49rYGOdtYnluNXGsplT1HVfKaLFYLBbXYnfeWxKkefPmnhYh\nVWHn07XY+fQ+3Lrz3pOIiKbW92axWCzuQERQL3feW1IJQUFBnhYhVWHn07XY+fQ+rGKxWCwWi0ux\npjCLxWKxANYUZrFYLBYvxSoWS4JYG7ZrsfPpWux8eh9WsVgsFovFpVgfi8VisVgA62OxWCwWi5di\nFYslQawN27XY+XQtdj69D6tYLBaLxeJSrI/FYrFYLID1sVgsFovFS7GKxZIg1obtWux8uhY7n96H\nVSwWi8VicSnWx2KxWCwWwPpYLBaLxeKlWMViSRBrw3Ytdj5di51P78MqFovFYrG4FOtjsVgsFgtg\nfSwWi8Vi8VKsYrEkiLVhuxY7n67Fzqf3YRWLxWKxWFyK9bFYLBaLBbA+FovFYrF4KVaxWBLE2rBd\ni51P12Ln0/uwisVisVgsLsX6WCwWi8UCWB+LxWKxWFxEcDA0aeK6/qxisSSItWG7FjufrsXOZ9LZ\nsgXefBOqVYNSpVzXr1UsFovFksZYtw5efRVefhmeeQYOHoRu3VzXv/WxWCwWSxpAFVauhD59YO9e\n6NIF3n0XMmf+t42rfCwZktuBxWKxWLwXVVi0yCiUU6ega1fjT8mUyX1jJmgKE5FnRSSr43VTERkk\nIoXdJ5LF27A2bNdi59O12PmMnfBwmDULKlSAjz+GDz+EXbvMKsWdSgWcW7GMBsqISFngY2A8MAmo\n4k7BLBaLGwgNhQzWUOEpwsLDSJ8uvXvHCIMZM+Crr8yf+vPP4bXXIF0KetSdGSrU4ax4DRipqiOB\nbM50LiI1RWS3iOwTkS5xtBnmuL9NRMo7rhUUkeUislNEdohIuyjtc4rIYhHZKyKLRMTPGVksSadq\n1aqeFiFV4bH5PH8ennsOUtkvfF/4fF6+eZl289vR9Lembhvjzh2YONFEdw0ZAv36waZN8PrrKatU\nwDnFclVEugFNgD9EJD2QMaGHHO1GADWBUkAjESkZo01toKiqFgNaYlZHAHeADqr6CFARaC0iDzvu\nfQosVtXiwFLHucViiY8jR+DZZ6FyZahijQ0phaoyeftkSo4syc3QmwyvNdzlY9y+DePHQ4kSRrGM\nHg1r1kDt2iDJdsMnDWcUS0PgFvCuqp4C8gPfOvFcBWC/qoao6h1gGlA3Rps6wEQAVV0P+IlIXlU9\npapbHdevAbsc40Z7xvHva07IYkkG1obtWlJ8PnfuNEqlZUvo399z3zZuwls/nzvP7KTaxGoMWjuI\n3xr+xrhXx3Fflvtc1v+tWzBmDBQrBr/8ApMmwbJlUL265//ECRpbVfUkMDDK+RH+/WKPj/zA0Sjn\nx4CnnGhTADgdcUFE/IHywHrHpbyqGnH/NJDXCVkslrTJmjVQrx4MGgSNG3tamjTB1VtX6bWiFxO3\nTaRnlZ60eqKVS/0qN2+aFUr//lCmDEyfDhUruqx7l5CgYhGRp4FhQEngLiA9cE1VsyfwqLObSGLq\n1sjnHNFoM4D2jpVL9IaqKiJxjtO8eXP8/f0B8PPzo1y5cpH22IhfOfY84fOqVat6lTy+fp5i87l2\nLVUHD4YffyTorrsgKMgr3r+rz73l86mqnM1zlo6LOvLI9UcY9/g46lWo57L+b96E3burMmAA+PsH\n8fnn8MEHyZM/4nVISAguRVXjPYBNQDFgC0aptAD6OfFcRWBBlPOuQJcYbcYAb0U5341ZkYDx4ywE\nPorxzG4gn+P1/cDuOMZXiyXN8v33qvnyqa5f72lJ0gS7z+7WFya9oKVHldaVIStd2vfVq6oDBpg/\n5+uvq27e7NLuo+H43kxQLyR0OBUroKr7gPSqGqaqEzAO+YTYCBQTEX8RyYTx1cyO0WY28A6AiFQE\nLqnqaRERIBAIVtUhsTzTzPG6GfC7M+/BknSi/rqxJB+3zqeqCQfq1ctEf1Wo4L6xvARPfj6v375O\nt6XdqPR9JWoXrc2mlpuoXLiyS/q+etX8KR96CP76y2xynDkTypd3SfduxZmA9usichewTUS+AU7x\nX/PVf1DVUBFpg1l1pAcCVXWXiHzguD9WVeeJSG0R2Q9cx6yGACphotC2i8gWx7WuqroA6Af8LCLv\nASFAA2ffrMWSqgkPh44dYckS+PNPyJ8/4WcsSUJVmbVnFh8t+IhnCj7D9g+380C2B1zS9+XLMHw4\nDBsGL74Iy5e7NkFkSpBgrjCH8/w0kAnoAGQHRqnqfncLlxxsrjBLmuL2bWjRAo4ehdmzwc9u73IX\nBy4coN2Cdhy8eJCRtUdS/cHqLun34kUYOhRGjDDJIbt1MyHEKUmK5QpT1RDHy3+Anskd0GKxuJhr\n1+CNN+Duu2HhQvOvxeX8c+cf+v/ZnxEbRtD5mc781vA3MqVPfm6UCxdM0N7o0WaH/Lp1ULSoCwT2\nIM7kCvtbRLY7/o14vVpEBouI64KyLV6L9bG4FpfO59mzZuNCoUImj0caVCop8fmct28ej45+lB1n\ndrD5g810ebZLspXKhQsm3UqxYnDmDGzcCIGBvq9UwDkfywIgFPgJ41t5C8iCMY/9ALzqLuEsFks8\nhIRAjRrQsCF8+aXnd8WlQg5fOsxHCz9ix5kdjKw9kppFnYlbip/z52HwYLNCeeMNk3bFsSsi1eCM\nj2WLqpaP7ZqI/K2qpd0qYRKxPhZLqmb7dpOz49NPoU0bT0uT6rgddpuBawYycO1A2j/Vns6VOpM5\nQ+aEH4yHmAqlWzfvUygpWY8lvYg8pSblCiJSgX9NaKHJFcBisSSSlSuhfn0TOtTABkW6miUHl9Bm\nXhuK3VeMDe9voEiOIsnq7/x540MZMyb1rlBi4sw+lveAQBEJEZEQzP6S90XkHuBrdwpn8Q6sj8W1\nJGs+f//dFCn/6SerVBy46vN5/MpxGs5oyPtz3mfAiwOY02hOspTK+fPw2WdQvLhxhW3aBOPGpX6l\nAk4oFlX9S1UfBcoB5VS1tKpuUNXrqvqz+0W0WCyA+VYKCIAFC+D55z0tTarhTtgdBq4ZSNkxZSme\nszg7A3byaomku46jKpRz59KWQonA1ry3WLwdVVNX9ocfTDhxaggb8hJWhKyg9bzW5M+en+G1hlP8\nvuJJ7iuqyevNN00JYF9TJrbmvcWSFggLg/btzU76P/+EfPk8LVGq4NS1U3Re3JkVISsY/NJgXi/5\nOpLEqLqYCiUt+FASIoXrill8EetjcS1Oz+etW9CoEQQHw4oVVqnEQWI+n6HhoQxfP5zSo0vzQNYH\nCG4dzBul3kiSUrl4Ebp3j+5DGTvWKhVwLm3+JuB74CdVveh+kSwWC1eumDoqOXPCvHmQOXmhrhZY\ne3QtAfMC8Mvsx4rmKyiVO2kJuC5fNqV/hw83O+U3boQHH3SxsD6OM/tYimGSQzbAZCyeACzydgeG\n9bFYfJbTp6FWLVO9afhwSO+6IlFpkbPXz/Lpkk9ZcGABA14cQKNHGyVphXLlikkMOXSoyeXVvbvJ\nPJyacJWPxZmosH2q2g0ojtl9/z1wRER6iUjO5ApgsViicOAAVKpkfgqPHGmVSjIICw9j7MaxPDLq\nEbLflZ1drXfxdum3E61Url0z6euLFoXdu42r64cfUp9ScSVO+VhEpCwwCBgAzATqA1eBZe4TzeIt\nWB+La4lzPrdsgcqVoXNn+OILm6LFSWKbz40nNvJ04NP8uP1HFjddzOCag8l+V0JFb6Nz4wZ8+61R\nINu2GTfX5MnGp2KJH2d9LJeB8ZgKkLcct9aJSCV3CmexpBmWLYO33jKhRa+/7mlpfJYL/1zgs6Wf\n8dvu3+j3Qj/eKfsO6SRxMUr//GP+DN98A88+C0uXwqOPukngVEq8PhYRSQd8qqp9U04k12B9LBaf\n4ZdfTL6vn3+GKlU8LY1PEq7hTNw6ka5Lu/JGyTfoU70POe7Okag+bt6E774zZq8KFaBnTyhb1j3y\neispso9FVcNF5A3A5xSLxeITjBoFffuaurNp7VvMRWw7tY2AeQGEhocy9+25PP7A44l6/tYt+P57\n82coV87USXs8cV1YYuDMGnGxiHQSkYIikjPicLtkFq/B+lhcS1BQkNlN/8UXJm511SqrVJLA5ZuX\n+WjBR1TtVZVmZZux9r21iVIqd+7A+PHGZzJnjqknP2eOVSquwJmd928BCrSOcd1GblssSSEsDD74\nwDjrV6+GPHk8LZFPoar89PdPdF7cmdrFavND3R+o+3hdp58PC4OpU42py9/fvH7mGbeJmyaxucIs\nlpTk5k2zm/76dfMTOVs2T0vkUwSfDab1vNZcvnmZUS+PomKBik4/Gx5uprxHD8iRw6Rfq1bNjcL6\nIG73sTh8K3F+M6vqr8kd3GJJU1y6BHXrQv78MH06ZEp+vfS0wrXb1/hyxZdM2DqBHlV68OETH5I+\nnXN7fFThjz/MhsYMGUxer5destHc7iQ+U9irGMWSB3iGf/esVAPWAFaxpBGCgoKoWrWqp8XwbU6c\ngJo1oVo1gurWpapVKk6hqswInsHHiz6mmn81dny4g7xZ80ZrE9fnUxWWLDF15W/cgN69jV63CsX9\nxKlYVLU5gIgsBkqp6knH+f3AxBSRzmJJDezda34if/ABdOlidtpZEmTv+b20mdeGk9dOMuX1KTxX\n+Dmnn1250qxQTp2CXr1MTbR0NuVuiuFMrrDdQMkIh4Vjb0uwqj6cAvIlGetjsXgFf/0FderAV1/B\nu+96Whqf4MadG/Rd1ZcxG8fQrXI32lZoS8b0GZ16dsMGo1D27TO+lMaNjfnL4hwpWY9lCbBQRH4C\nBGgILE7uwBZLqmfRImjSxMS01qnjaWm8HlVl9p7ZfLTwI57K/xTbWm0jf/b8Tj27dauJ3t682SiW\nFi2sC8uTOBUVJiKvA5UdpytV9Te3SuUC7IrFdVgfSxL46Sfo0AF+/dUklYyCnc//cvDiQdrNb8f+\nC/sZWXskzxdxrvTyrl3w4YdB7NlTlU8/NdZGW2Eg6aRoBUlHBJh11lsszjB0KAwcaPJ/PfKIp6Xx\nam6G3uSbP79h2PphdHqmE782/JVM6RNeahw6ZHwnc+easjVz58I996SAwBansPtYLBZXoQrdusHv\nv5va9IUKeVoir2b+vvm0nd+WMnnLMKTmEArdm/B8nTxp3FVTp0Lr1tCxI9x7bwoIm0awNe8tFm8i\nNBTef9/YZlatgly5PC2R13Lk8hE+WvAR209vZ3it4dQqVivBZy5cMNmGx40z/pPduyF37hQQ1pIk\nnK3HkkVESrhbGIt3YnOFJcCNG8Yec/q0ybGegFJJq/N5O+w2/Vb347Gxj1EuXzl2BOxIUKlcvWp2\nyBcvbmrMb99urIxRlUpanU9vJkHFIiJ1gC3AQsd5eRGZ7W7BLBaf4MIFePFFkyNk1ixr6I+DpQeX\nUmZ0GVYfWc2G9zfwRZUvyJwhbi/7zZsweLCp2rhrF6xbB2PHQoECKSi0Jck4s49lM1AdWK6q5R3X\ndqiqV5e+sT4Wi9s5dsxsfKxdG/r3tzvwYuH4leN0XNSRdcfWMbTmUOqUqBNvaeA7d0zZ3y+/hMce\nM7vly5RJOXnTOilW8x64o6qXYlwLT+7AFotPs2uXCSNu0QIGDLBKJQZ3wu4waO0gyo4py0M5HiK4\ndTB1H64bp1IJD4dp00wQ3bRppvbZrFlWqfgqzvxv2CkijYEMIlJMRIZjcoVZ0gjWhh2DtWtNWtw+\nfaBTp0Q/ntrnc9XhVTw27jEW7F/AmvfW8NXzX5ElY5ZY20YkiCxf3pSmGT3auKkqOp+0ONXPpy/i\nTFRYW+Az4BYwFeNr6e1OoSwWr2XuXLNKmTgRaiUczZSWOH3tNJ8s+YRlh5YxqMYg3iz1Zrxmr6Ag\nE5199aoJIX71VZsgMtWgqm47gJrAbmAf0CWONsMc97cB5aNc/x44Dfwdo31P4BgmoGALUDOOftVi\ncSkTJ6rmzau6bp2nJfEqQsNCdfj64Zrrm1zaaWEnvXLzSrztN21Sfekl1SJFVCdPVg0NTSFBLQni\n+N5M9nd/fPVY5sSvjzTe5Ecikh4YAbwAHAf+EpHZqrorSpvaQFFVLSYiTwGjgYhF8ARgODAp5tjA\nIFUdFN/4FotLGTAARo40P7Mf9ur8qynKumPrCJgbQPa7shPULIhH8sSdaWDfPpPHKyLz8Hvv2Xxe\nqZX4TGED47nnTLhVBWC/qoYAiMg0oC6wK0qbOjhS8KvqehHxE5F8qnpKVVeJiH8cfdsFcwqSpnNb\nhYdD585mJ/3q1S6Jd00N83nuxjm6LunK3H1zGfDiAN4u/XacZq8TJ0yU18yZ8PHHEBjo2qjs1DCf\nqY04nfeqGhRxAGuB88A54E9VdaagRH7gaJTzY45riW0TG21FZJuIBIqInxPtLZbEc/s2vPMOrF9v\ndtPbTRSEazjjNo2j1MhSZMmYhV2td9G4TONYlcrFi/Dpp1C6tEm7smcPdO1qt/qkBRJ03otIVcyq\n4rDjUiERaeaEcnF2E0nMT2RCz40GvnS87o1ZWb3n5FiWJJAmfw1euwZvvmlsNYsWQZbYo5qSgq/O\n56YTmwiYF0B6Sc+iposol69crO1u3IBhw8wO+Xr1YNs29+pkX53P1IwzUWGDgBqqugdARIoD04DH\nEnjuOFAwynlBzIokvjYFHNfiRFXPRLwWkfFAnL6g5s2b4+/vD4Cfnx/lypWL/BBGhCjac3v+n/Nz\n5wiqXBkefJCqv/4KGTJ4l3wpfH7xn4u0GNKClUdWMrDlQJqVa8bKFSsJ2h0UrX1oKOzfX5XevaF4\n8SAGDYKmTT0vvz2P+zzidUhICC4lIe8+sN2Za7G0yQAcAPyBTMBWTCXKqG1qA/McrysC62Lc9+e/\nUWH3R3ndAfgpjvGTHhphicby5cs9LULKERKiWqKEarduquHhbhnCV+YzLDxMJ2yZoHkH5NVWc1rp\n+RvnY28Xpjp1qmrRoqo1aqhu3JiycvrKfPoCuDsqLAqbHCuDyRizVWNgoxMKK1RE2mD2vaQHAlV1\nl4h84Lg/VlXniUhtEdkPXAdaRDwvIlOBKsB9InIU+EJVJwD9RaQcxmR2CPjAifdgsSTM33+b9Cyd\nO0O7dp6WxqNsP72dgLkB3Aq7xZxGc3gy/5P/aaNqYhq6djUWw7FjoXp1Dwhr8TqcyRWWGWgNRJTB\nWwWMUtVbbpYtWdhcYZZEsWqV8akMHQpvveVpaTzGlVtX6LG8B1P+nkLvar3532P/I3269P9pt349\ndOliEjp/9ZXxpdjNjb6Pq3KF2UJfFsusWaaWypQpJlNxGkRVmbpjKp0Xd6bmQzXp90I/ct/z34In\ne/bAZ58ZxdKzJzRrBhlsVadUQ4oloRSRV0Vki4hcFJGrjuNKcge2+A5RHX2pjvHjoVUrmDcvxZSK\nt81n8Nlgnp/0PN/8+Q2/1P+FwLqB/1EqJ0+aaXr2WahQAfbuNRscvUGpeNt8WpxLQjkEaAbcp6rZ\nHEd2N8tlsbgXVejb1xwrV8ITT3haohTn2u1rdFnchSo/VKHew/XY2HIjzxR8Jlqby5fh88/h0Uch\ne3azYvnkE7j7bg8JbfEJnPGxrACqq2pYyojkGqwpzBIn4eHw0UewYgUsWAD33+9piVIUVeXXXb/S\nYWEHqvhXYcCLA8iXNV+0NrdumUzDX39t4hl69YJCCZekt/g4KVnzvgswX0SWA7cd11Rtri6LL3Lr\nltlNf/q0Wance6+nJUpR9p3fR5v5bTh+5Tg/1vuRKv5Vot0PD4epU/9dpSxZYnbOWyyJwRlTWG/g\nGpAZyOo4srlTKIt3kWps2FevwssvQ2ioWal4SKl4Yj5v3LlB92XdeTrwaV4s8iJbPtgSTalEhA4/\n9hgMH26qOM6Z4xtKJdV8PlMRzqxY7lfVtBkqY0k9nDlj6qc8+aTJUpz+vyG0qZU5e+bQbkE7KuSv\nwNZWWymQPXp+lY0bTejwsWPG9GVDhy3JxRkfyzfAUlVdmDIiuQbrY7FEcvCgqU3fuDH06JFmvjUP\nXTxEuwXt2Ht+LyNrj+SFIi9Eu79/vwkdXr3aTMu773pHlJfFc6RkzfsAjI/lpg03tvgcW7dC5com\nX3vPnmlCqdwMvUnvFb154rsneLrA02xvtT2aUjlzBtq0MeV/y5QxocMtW1qlYnEdCSoWVc2qqulU\nNbMNN06b+KwNe/lyqFHD7Kb/8ENPSxOJO+dz4f6FlB5dms2nNrO55Wa6Ve7GXRnuAuD6dejTB0qV\nMpbA3bvNisXX09j77OczFWN/o1hSJzNmQEAATJ8O1ap5Whq3c/TyUTos7MCWU1sYXms4tYvVjrwX\nFmac8T16QKVKZtf8Qw95TlZL6semdLGkPsaMgd69Ye5cKBd7zZDUwu2w2wxeO5gBawbQpkIbulTq\nwt0Zze5FVZg/32xozJnTVFd+6ikPC2zxalJyH4vF4huomp18U6aYpJJFinhaIrey/NByWs9rzYM5\nHmT9/9bzUM5/lyGbNpkkzSdPQv/+8OqracK9ZPES4vSxiMgmERkqIjUdGY4taRSfsGGHhRk/ypw5\nJszJi5VKcufzxNUTvD3zbVrMakHf5/vyR6M/IpVKSIgJfnv1VWjY0FQCqFMndSsVn/h8pjHic95X\nBH4HqgErRGS+iLR3VJC0WLyHmzehQQMTP7t8OeTN62mJ3EJoeCiD1w6mzOgy+Pv5szNgJ689/Boi\nwoUL0KkTPP44FC9uIr0++MBGelk8g9M+FhHJD9QEXgKKYqo9BrhRtmRhfSxphMuXoW5do0wmTYK7\n7vK0RG5h9ZHVBMwNIG/WvIyoNYISuUoARqeOGGHMXW+8YRz0aSz1mcWFeLQei4ikByqq6p/JFcBd\nWMWSBjh50uymf+45GDIE0jmzLcu3OH3tNF2WdGHJwSUMemkQ9UvVR0Qic3p99hmULQv9+kHJkp6W\n1uLrpOQGyf+gqmHerFQsrsUrbdj79pnY2QYNzD4VH1IqzsxnWHgYIzeM5NHRj5IrSy52td5Fg0ca\nICIsW2Yy0wwdChMnmjplaVmpeOXnM41jLbAW32PTJuOd/vJL+N//PC2Ny1l/bD0B8wLImikry5st\n59E8jwJwFkfeAAAgAElEQVSwa5cJHd6506xQ6tdP3U55i+9i97FYfIvFi03Y03ffGd9KKuL8jfN0\nXdqVP/b+wTcvfkPj0o0REc6cMdlofvkFunaF1q1TrSvJ4mFSsjRxCRFZKiI7HedlROTz5A5ssSSa\nadOgSROYOTNVKZVwDWf85vGUGlWKzBkyE9w6mCZlmnDzptCvn0nBkimTScHy8cdWqVi8H2cM098B\n3fi3yNffQCO3SWTxOrzChj1smNnxt2SJSSrpw0Sdz80nN/NM4DMEbglkQeMFDKs1jOyZ/JgyBR5+\nGP76C9auNbEJ993nOZm9Ga/4fFqi4YyPJYuqrheHMVdVVUTuuFcsi8WBqilnOHOm2fhYuLCnJXIJ\nl25e4vNlnzMjeAZ9n+9L83LNSSfpWLkSOnY0vpPJk31eh1rSKM4olrMiUjTiRETeBE66TySLt1G1\nalXPDBwaCq1ame3jq1dDrlyekcOFqCpHchyh0chG1C1Rl+DWweS8Oyd795piW1u2mGJbDRv6VKCb\nR/HY59MSJ84oljbAOOBhETkBHAIau1Uqi+XGDWjUyNSoX7oUsmb1tETJ5u/TfxMwL4B/7vzD7Ldm\n82T+Jzl3Dtp1gZ9+MhFfU6dCZptAyeLjOFOP5YCqPg/kAkqoaiVVDXG7ZBavIcVt2Bcvmjoq2bPD\n7Nk+r1Su3LrCxws/5vlJz9O4dGP6F+1PmVxP8u23Zv9JePi/ocRWqSQe62PxPhJcsTgSUL4B+APp\nxThbVFW/dLNslrTI8eOmjPBLL5k87z5sD1JVpu+cTqdFnajxUA12BuwkV5bc9OgRxPv/g9KljYWv\nRAlPS2qxuBZnat4vBC4Bm4CwiOuqOtC9oiUPu4/FB9m9G2rWNBs1Onf2tDTJYtfZXbSZ34ZzN84x\nqvYoKhWqxLp10KED3L4N336bJuqPWXyMlKzHkl9VX0ruQBZLvKxfb/am9O8PzZp5Wpokc/32dXqv\n7E3glkC6P9edgCcDOHEsA2+/DStXwldfQdOmPr0Qs1gSxJmP9xoRKeN2SSxei9tt2PPnmxQtgYE+\nq1RUlV93/UqpUaU4duUY21tt591H2tHziwyULw/FisGePebtrVwZ5GlxUxXWx+J9OLNiqQy0EJFD\nwC3HNVVVq2wsyefHH43Za9YsePppT0uTJPad30fb+W05euUoE1+bSOWCVZk4Ebp3h+rVYds2KFDA\n01JaLCmHMz4W/9iue3tkmPWx+AADB5od9QsW+GR63n/u/MPXq79m1F+j6FKpCx9V/Ig/V2WkQwe4\n5x4YNAgqVPC0lBaL86SYj0VVQ0SkMlBUVSeISG7At+M/LZ4lPNzsBpw3z4RFFSzoaYkSzR97/6Dd\n/HY88cATbG21lZtnCtDgTdi61biJbOZhS1rGmSSUPYFPgK6OS5mAyW6UyeJluNSGfecOtGgBa9bA\nqlU+p1QOXTxE3Wl1+Xjhx4x5ZQzjXvyZwb0KULEiPPWU2Y/SoEH8SsX6BFyLnU/vwxnnfT2gLnAd\nQFWPA9ncKZQllXL9uon8On/epL/PmdPTEjnNrdBb9FnZhye+e4IKD1Rgy/t/s29BDUqUgGvXTI2U\nTz+1GxwtFnDOeX9LVcMjklCKyD3uFcnibbgkF9P58/Dyy8aXMm4cZMyY/D5TiEUHFtFmXhtK5S7F\nppab2LXWnycfg/z5jX4sk8gwFpvbyrXY+fQ+nFEsv4jIWMBPRFoC7wLjnelcRGoCQ4D0wHhV7R9L\nm2FALeAG0FxVtziufw+8DJxR1dJR2ucEpgOFgRCggapeckYei4c4csTspH/tNejb12ecD8euHKPD\nwg5sOrGJ4bWG82Doy7R6Cw4dMnEHL7/sM2/FYklRnMkVNgCY6TiKA91VdVhCz4lIemAEUBMoBTQS\nkZIx2tTGBAUUA1oCo6PcnuB4NiafAotVtTiw1HFucSPJsmHv3AnPPgsffGDS9vrAN/HtsNt88+c3\nlBtTjlK5SrGq0U4WDH+ZqlWhVi3YsQNeeSXpb8X6BFyLnU/vwxnnfXdgl6p2chyLHSuXhKgA7FfV\nEFW9A0zD+GqiUgeYCKCq6zGronyO81XAxVj6jXzG8e9rTshi8QR//mk2cvTrBx995GlpnCIoJIhy\nY8qxPGQ5q5uvI/fOXpR/9G7CwyE4GNq39ykrnsXiEZwxhbUF3hKRtqq6zHHtQ0wq/fjIDxyNcn4M\neMqJNvmBU/H0m1dVTztenwbyJiCHJZkkyYY9Zw68956pVlWjhstlcjUnr56k0+JOrD6ymiEvDeGe\no6/xRjXh/vtN1v7SpRPuw1msT8C12Pn0PpyJCjsO1Ab6icgniejb2d2JMQ0KTu9qdOyAtLsgvY3v\nv4eWLeGPP7xeqYSGhzJk3RBKjy5NoeyFmP1SMBO61CMgQOjb1zjnXalULJa0gDMrFlT1sIg8B4wR\nkRnA3U48dhyIukmhIGZFEl+bAo5r8XFaRPKp6ikRuR84E1fD5s2b4+/vD4Cfnx/lypWL/HUTYZe1\n5wmfR7Vhx9telarr1sG4cQR98w3cuEFVx3Pe9H4izv8+/TfjL44nV5Zc9Ck4iOXfFeL5pffwySfQ\npk0QmTKBiOvHd3o+7bmdTzefR7wOCQnBpahqvAcmmivqeWvgoBPPZQAOYOq4ZAK2AiVjtKkNzHO8\nrgisi3HfH/g7xrVvgC6O158C/eIYXy2uYfny5Qk3CgtTbd9etXRp1ePH3S5Tcjh97bQ2/7255h+Y\nX3/aNk3Hjg3XfPlU331X9eRJ94/v1HxanMbOp+twfG8mqBcSOhLMFZYcRKQW/4YbB6rq1yLygeNb\nf6yjTUTk2HWghapudlyfClQB7sOsSr5Qk1ImJ/AzUIh4wo1trrAU5PZtaN4cjh0zFR/9/DwtUayE\nhYcxbtM4egT1oGmZpryQoSfdOmUja1YYMgQef9zTElosnsVVucKcSUL5LNADs3qIMJ2pqhZJ7uDu\nxCqWFOLqVXjjDZN18aef4G5nrKQpz4bjGwiYG0CWjFnoVm4kgX1Ls2EDfPNNwilYLJa0gqsUizPO\n+0BgEPAs8KTjsDlb0xBR7bHROHPGhBP7+8Mvv3ilUjl/4zwfzPmAutPq8kG59jy7fwWNXyhN6dIm\nr1fDhimvVOKcT0uSsPPpfTijWC6p6nxVPa2q5yIOt0tm8W4OHTIbH2vVgrFjIYNTcSApRriGE7g5\nkEdGPULG9JnomWsXvV5vypHDwrZt8MUXkCWLp6W0WFInzpjC+mF8JL/yb6EvInwh3oo1hbmRbdtM\nPpOuXU19ei9jy8ktBMwLQFVpW2QUo7o/xq1bpvTLM894WjqLxXtJSR9LELHsFVHVaskd3J1YxeIm\nVqwwTokRI0zRES/i0s1LdF/WnZ+Df6brk33ZOaUFc2ano08fk6k/fXpPS2ixeDcp5mNR1aqqWi3m\nkdyBLb5DpA3711+NMpk61auUiqry47YfKTWyFDfv3KZ9+mC+evM9st6Tjt274X//8y6lYn0CrsXO\np/eRoGHckbvrKyC/qtYUkVLA06oa6HbpLN7D2LHQq5cpI/zYY56WJpIdZ3YQMDeA63eu063I74zu\nVoGQB8zCqlQpT0tnsaRNnDGFLcBkGv5MVcuISEZgi6o+mhICJhVrCnMRqtC7N0yaBAsXwkMPeVoi\nAK7eukrPoJ78uP1H2pXuxebvWrJ1S3oGDTK1xGz4sMWSeFIy3DiXqk4HwgDUZCoOTe7AFh8gLAza\ntIHffzeZir1Aqagq03dMp+TIkpy5doGmV3cwpMmHPFY+PTt3mpIvVqlYLJ7FGcVyTUTuizgRkYrA\nZfeJZPEKbt2Ct96C3bsJ6t0b8no+ifTuc7upMbkGfVf3pWXOaazoMIET+/KwZQt8/rlXbqOJFesT\ncC12Pr0PZxRLR2AOUERE1gA/Au3cKpXFs1y+bPanAMybZ3bVe5Drt6/TdUlXKk+ozGP3vILf9E38\nOuRZJk82cQQFCybch8ViSTmcyhUmIhmAEpgU93sc5jCvxvpYksipU0apPPOM2fjhwXAqVeX33b/z\n0cKPeDLvs2Rd8y3zf76fXr3g/fe9K9LLYkkNuMrH4kxU2N1AACaliwKrRGS0qt5M7uAWL2P/flOb\nvnlzY1vyoLPiwIUDtJ3flpBLIbyZ/gcmf1SNN980aVhy5vSYWBaLxQmcMYVNwtSsH4apYf8Ixhxm\nSU1s3gzPPQeffgrdu0dTKilpw/7nzj/0WN6Dp8Y/RZF0Vcn8w1Y2/FyNRYtg5MjUoVSsT8C12Pn0\nPpxJ8PSIqkbdEbBMRILdJZDFAyxdCo0amb0q9ep5TIy5e+fSbkE7HsnxGNX3beG3oQX55ht4+20b\n6WWx+BLO7GOZDIxU1bWO84pAa1VtmgLyJRnrY3GSn3+Gtm1NduLnnvOICCGXQvhowUcEnw3mhdvD\n+aXfSzRrZhJFZs/uEZEsljSJ230sIvJ3lDZ/ishRjI+lELAnuQNbvIARI6BfP1PYvUyZFB/+Vugt\nvl3zLYPWDaJevg5kCpzOnvvusrvmLRYfJ84Vi4j4x/OcquphdwjkKuyKJR5UzXJg+nSzm/7BB+Nt\nHhQUFFkr21UsPrCYNvPb4J/1Ye4OGsLmZQ8ycCC8+WbqN3u5Yz7TMnY+XYfbVyyqGpLczi1eSGgo\nfPghbN1qdtPnzp2iwx+7coyPF37MxhMbqfrPMGb3fIWWLWHKLo9vl7FYLC7CrTXvPYldscTCP/8Y\nT/iNGzBzJmTNmmJD3wm7w9D1Q+m3uh+1cgXw1+CuPFjgboYOheLFU0wMr0ZS+1LN4lXE9v2YYvtY\nLKmES5egTh0oUMCYwDJlSrGhV4SsIGBeALkzFeTJ7WtZ/Wcxhgwx4tjv0ujYH0OWlMDdP2IS3Mci\nIllFJL3jdQkRqePIcGzxFU6cgMqVTbr7yZMTrVSSuk/g1LVTNPm1CU1+a0q5C735+9P5VCxWjODg\ntJ2B2O67sKR2nNkguRK4S0TyAwuBpsAP7hTK4kL27IFKlaBJExg8GNI58ydPHqHhoQxbP4zSo0tz\n53wBMo3dxbW/XmfjX0KPHr6TLNJisSQNZ/axbFHV8iLSFrhbVb8RkW2qWjZlREwa1scCbNhglgZ9\n+5ravCnAmqNrCJgbwD3pcnLPipEcWFeSYcPg5ZdTZHifxmHf9rQYljRAXJ+1lKzHgog8DTQG5ibm\nOYsHWbgQXnkFvvsuRZTK2etneXfWu9T/uT6lLnzK7m5LeaZYSXbssErFYklrOKMgPgK6Ar+p6k4R\neQhY7l6xLMliyhR45x1ToOuVV5LdXXw+gbDwMMZsHMMjox7h6lk/sk7cxaXVb7FhvdCzpzV7xYb1\nsfxLSEgI6dKlIzw8HIDatWvz448mFeEPP/xA5cqVE9Vf1Oc9xddff83777/vURk8TYJRYaq6Algh\nIvc4zg9g67F4L4MHm2PZMnjkEbcO9dfxvwiYF0C68Mw8HryEDcvKMHRo2nbMp1b8/f05c+YM6aPU\nKmjRogXDhg1z6Tjz5s3z6PPOEhISQpEiRQgNDSVdDL9l165dU0QGb8aZtPnPAOOBbEBBESkHtFTV\nAHcLZ0kEqiYz8Zw5sHo1FCrksq5j7mq+8M8Fui3txqzds6gW3o9FA97h+feFGcF2k6Mz+OIucRHh\njz/+oHr16p4WJVYi/AV2L5B34IwpbAhQEzgHoKpbgSruFMqSSO7cMX6UlSth1SqXKpWohGs432/5\nnlIjS3H2dAbum7aLM4uasXqV0LevVSpplfDwcDp16kTu3Ll56KGHGDlyZDTzlr+/P0uXLo1s37Nn\nT5o2jT2HbdWqVQkMDIw8V1Xatm2Ln58fJUuWZNmyZdHafv7551SqVImsWbNy8ODBaM/HHCem2a1q\n1ap0796dSpUqkS1bNurUqcO5c+do3Lgx9957LxUqVODw4cRnroo6bsSYkyZNonDhwuTOnZu+fftG\ne3/9+vWjaNGi5MqVi4YNG3Lx4sVEj+ltOOWEV9UjMS6FukEWS1K4ccOkuj97FpYsgfvuc/kQQUFB\nbD21lcoTKjNi3Vie3DuPDT1H8MUnfixeDA8/7PIhUzW+6mOJK2Jt3LhxzJ07l61bt7Jx40ZmzJgR\nbeUgIv85j4uYbdevX0/RokU5f/48vXr14vXXX+fSpUuR9ydPnsz48eO5evUqhQsXjva8M6uX6dOn\nM3nyZI4fP86BAwd4+umnee+997hw4QIlS5akV69eCfYR23uIyZ9//snevXtZunQpX375JXv2mDy+\nw4YNY/bs2axcuZKTJ0+SI0cOWrdunegxvQ1nFMsREakEICKZRKQTsMu9Ylmc4sIFeOEFo0x+/90t\nS4bLNy8zbP0wXpr8Ev4Xm3O0x1pKZH+M4GBo0MD6UlISEdccSUFVee2118iRI0fkEbEy+Pnnn+nQ\noQP58+cnR44cdOvWLd6w6cSEVOfJk4f27duTPn16GjRoQIkSJfjjjz8c8yE0b96ckiVLki5dOjJk\niG7Zd2IrBS1atODBBx8ke/bs1KpVi+LFi1O9enXSp09P/fr12bJli9Oyxjdujx49uOuuuyhTpgxl\ny5Zl27ZtAIwZM4Y+ffrwwAMPkDFjRnr06MGMGTMiV1W+ijMpXT4EhgL5gePAIsD3Vaqvc/SoKSP8\nyivQv7/Lv+FVlSl/T+GTxZ9QIfcr3P9dMMcy3cfyZfDooy4dKs2RVB+LJ7e4iAizZs2K1cdy8uRJ\nChYsGHleyIWm2Pz580c7L1y4MCdPnow8jzpuUsibN2/k68yZM5MnT55o59euXUtW/xHky5cv8nWW\nLFki+z18+DD16tWLFgCQIUMGTp8+zf333++SsT2BM1FhZ4G3U0AWi7MEB0OtWtC+PXz8scu733lm\nJ63ntebijSs8FfIb6wc+Rf/+ZvO+XaFYYnL//fdz5Mi/1vKorwHuuecerl+/Hnl+6tQpp/s+fvx4\ntPPDhw9Tt27dyPP4zF1Zs2blxo0bTo/rKsd/YvopVKgQEyZM4Omnn3bJ2N5CnKYwERkez+HaGEOL\n86xdC9Wrw1dfuVypXL11lU6LOlF1YlUKX6vP6T5/8UD4U4wbF0TTplapuIrU5mNp0KABw4YN4/jx\n41y8eJF+/fpF+3ItV64c06ZNIzQ0lI0bNzJz5kynv3zPnDnDsGHDuHPnDr/88gu7d++mdu3aCcoU\nMe7KlSs5evQoly9f5uuvv473PSUl68HNmzejHaqaqH5atWpFt27dIpXx2bNnmT17dqLl8DbiW7Fs\nwlSMBIj5KbB5JzzB3Lkm+mvSJKhZ02Xdqiq/BP9Cx0UdeSLn8xRfvJMd5/MwZxY8+ST46PegxcW8\n+uqr0fax1KhRg5kzZ/L++++zd+9eypYty7333kvHjh1ZvvzfPdS9e/emUaNG5MiRgypVqtC4cWMu\nXLgQeT8uJSMiVKxYkX379pE7d27y5cvHzJkzyZEjR4LPArzwwgs0bNiQMmXKkDt3bj755JNI/0xs\nz8cMHEiofzCroqhtFy1alKhghfbt26Oq1KhRgxMnTpAnTx7eeust6tSpE++43o7T9VhEJBumcqRr\njI5uJtXlCps40exT+f13eOopl3W759we2s5vy4krpyh/ciQLxlbmiy8gIACifIdYUoDUkissvs2D\nFu/A3bnCnNkgWRqYBNznOD8LNFPVHckd3OIEqjBgAIwaBcuXuyy298adG/RZ2Ydxm8ZRL9dn7BvU\nhjtPZmTbNnjgAZcMYbFY0ijO/JwYB3ysqoVUtRDQ0XEtQUSkpojsFpF9ItIljjbDHPe3iUj5hJ4V\nkZ4ickxEtjgO19mEvI3wcOjYEX780ZQRdoFSUVV+3/07pUaWIvhECBU2bSfo6w6MHZ2RadNiVyq+\n6hPwVtLCfNod8GkbZ8KNs6hqpMFUVYMi8obFh6M42AjgBUyY8l8iMltVd0VpUxsoqqrFROQpYDRQ\nMYFnFRikqoOcf5s+yO3bxp9y5IjZUR/FrpxUDl48SNv5bTl44SC1bn/PLx2q06YN/DoRMmd2gcwW\nC2anfVhYmKfFsHgQZxTLIRHpDvyIceI3Bg468VwFYL+qhgCIyDSgLtE3V9YBJgKo6noR8RORfMCD\nCTybun8OXbsGb74Jd90FixYlO0XwzdCb9F/dn+EbhtOgQGeOBv7G/lyZWLPGuXrzvpjbypux82lJ\n7ThjCnsXyAP8CswEcjuuJUR+4GiU82OOa860eSCBZ9s6TGeBIuLnhCy+w9mzJpy4QAGYOTPZSmXe\nvnk8OupRNh37mxqHNvN7py50/SQTixY5p1QsFoslsTizQfIC0DYJfTsb3pLY1cdo4EvH697AQOC9\n2Bo2b94cf39/APz8/ChXrlzkr8UIO7dXnZ86RdUePaB+fYKefx5Wr05yf9P+mMaIDSM4nfs0dTOO\nYEK7zFSpcpDg4EL4+SWuv6g+Aa+aLx89j28+LZaUIuIzFxQUREhIiEv7dqY08ZNAN8CffxWRqmqZ\nBJ6rCPRU1ZqO865AuKr2j9JmDBCkqtMc57sxmZMfTOhZx3V/YI6qlo5lfN8KN96+HWrXhi5doG1S\n9LjhdthtBq4ZyMC1A3n7ofZsHdmZG1cyM2YMPPFE0voMCgqy5hsXEtd8ppZwY4v34+5wY2cUy16g\nE7ADiMyMFuH/iOe5DMAe4HngBLABaBSL876NqtZ2KKIhqloxvmdF5H5VPel4vgPwpKr+J+WMTymW\nVauMT2XYMGjYMMndLDm4hDbz2vCQXzGK7B3K1FFF+OILaN3a7knxBaxisaQUHt/HApxV1UTnGFDV\nUBFpAywE0gOBDsXwgeP+WFWdJyK1RWQ/cB1oEd+zjq77O4qNKXAI+CCxsnkVv/8OLVvCTz+ZTMVJ\n4PiV43y86GM2HN/Aew8MY9Jnr5K5NGzdalw1FktK8eGHH5I/f34+//xzl/abLl069u/fT5EiRVza\nr7fz9ddfc/DgQb777jtPi5I4InLbxHUANYBAoBHwhuN4PaHnPH2Yt+blfPed6v33q27cmKTHb4fe\n1m///Fbv63+ffjznc3272XUtVEh11izXirl8+XLXdpjGiWs+vfkzW7hwYc2UKZOeO3cu2vVy5cqp\niOjhw4eTPUaVKlU0c+bMmjVr1shj3bp1qqoqInrgwIFkjxEXzZo100yZMmnWrFk1R44cWr16dd2x\nY4dTzx46dEhFRMPCwpI0dnKfTwpxfdYc15P9/etMVFgzoCymiuQrjuNVVyu4NIUq9OkDX38NK1bA\n448nuouVh1dSfmx5Fh1YREe/NUx+rzd5c2Zh507w8TRDFi9ERChSpAhTp06NvPb333/zzz//uDQr\n8MiRI7l69Wrk8ZQL0xclNHaXLl24evUqJ06coFChQrRo0SJRfag1Y0bijGJ5AuPHaKaqLSIOdwuW\nagkLM875GTNMbfpixRL1+Klrp2j6W1Oa/NqElsV6cTNwATPHFWf+fBg0CKLkxHMZ1nHvWnx1Pps0\nacKkSZMizydOnMg777wT7Qu1efPmdO/eHTBBCgUKFGDQoEHkzZuXBx54gB9++CHZcly+fJl33nmH\nPHny4O/vz1dffRUpQ+HChdm8eTMAU6ZMIV26dOzaZazogYGB1KtXL8H+M2fOTP369dm5c2fktblz\n51K+fHnuvfdeChUqFK2y5HPPPQeYyNNs2bKxfv16AL7//ntKlSpFzpw5qVmz5n/KCTiDr5Y5dkax\nrAFKuVuQNMGtW/D227Bzp1mpJKKQT2h4KMPXD6f06NLkufsBmlwO5stGb/DG68L69fDYY26U22IB\nKlasyJUrV9i9ezdhYWFMnz6dJk2aRGsTM7Pv6dOnuXLlCidOnCAwMJDWrVtz+fLlOMdw5ld/27Zt\nuXr1KocOHWLFihVMmjSJCRMmANHDuVesWMFDDz3EihUrIs/jU+oRY1+/fp2pU6dGWy1lzZqVyZMn\nc/nyZebOncvo0aOZNWsWAKtWrQKMwotYZc2aNYuvv/6a3377jXPnzlG5cmUaNWqU4HuLic+WOU7I\nVgbsBu4Ae4G/Hcd2V9jh3Hngbfbqy5dVq1dXfeMN1X/+SdSja46s0XJjymnVH6rq93N2avHiqvXq\nqR496iZZY2B9LK4lqT4WeuKSIyn4+/vrkiVLtE+fPtq1a1edP3++1qhRQ0NDQ6P5WJo3b66ff/55\n5Pu8++67o/kO8uTJo+vXr491jCpVqmiWLFnUz89P/fz89PHHH4+8F+FjCQ0N1UyZMumuXbsi740d\nO1arVq2qqqqBgYFap04dVVUtWbKkBgYG6ltvvaWqxk+0ZcuWWMdu1qyZZs6cWf38/DRdunRapEgR\nPXv2bJzz0b59e+3QoYOqxu4jqVmzpgYGBkaeh4WFaZYsWfTIkSP/6Ss+H0uPHj20SZMm0dodP348\n8n6FChV0+vTpqqr68MMP69KlSyPvnThxQjNmzBhrv3F91nCRj8WZqLDUm+QxpTh92uxRqVABRoxw\nOvb33I1zdFnchQUHFvBFxQGsGdeIHsuE4cMhShE9SxpBe3jWhi8iNG3alMqVK3Po0KH/mMFi4777\n7ouWOj9qWd7Y+h8+fDjvvht3Yo9z585x584dChcuHHmtUKFCkZUmn3vuOTp16sSpU6cICwujfv36\n9OzZk8OHD3P58mXKlSsX59idO3fmyy+/5OjRo7z00ktMmjSJjx3F9NavX8+nn37Kzp07uX37Nrdu\n3aJBgwZxynn48GHat29Px44do10/fvx4sssp+0KZ4wRNYaoaEtuRArKlDg4cgEqVjEd91CinlEq4\nhjN241hKjSxFtruy87nfLr6o9zY5cwg7d6a8UvFVn4C34svzWahQIYoUKcL8+fN5/fXXY23jzszG\nuXLlImPGjNF2ih85coQCjrj6okWLkiVLFoYPH06VKlXIli0b+fLlY9y4cVSuXDneviOUZMGCBRk2\nbBi9e/fm6tWrALz99tu89tprHDt2jEuXLtGqVSvCw822vtjeb6FChRg3bhwXL16MPK5fv07FihUT\n9TDUrusAABaRSURBVH4TW+Z4wYIF0ca8ceNGiisVcM7HYkkqW7bAc89Bp07Qo4dTtX03nthIxfEV\n+XH7j3xXeTHb+g9m/MjszJsHgwdDtmwpILfFEg+BgYEsW7aMu2PJY6f/mqKTRELPpk+fngYNGvDZ\nZ59x7do1Dh8+zODBg6P5eqpUqcKIESOoUqUKYBR51HNnxn3hhRcoWrQoo0aNAuDatWvkyJGDTJky\nsWHDBn766afIL/3cuXOTLl06Dhw4EPl8q1at6Nu3L8HBwYDxv/zyyy/xvrfUVObYKhZ3sXw5vPSS\n2U3fqlWCzS/+c5GAuQG88tMrtCwfwIvHVvLeK2WpWxfWr09SRLLLsHmsXIuvz2eRIkV4LEq0SHzl\nfRO7eomvTHEEw4cP55577qFIkSJUrlyZxo0bRwsNrlKlCteuXYuM1op5Hlf/Mcfu3Lkzw4YN486d\nO4waNYovvviC7Nmz07t3bxpGyZCRJUsWPvvsMypVqkSOHDnYsGEDr732Gl26dOGtt97i3nvvpXTp\n0ixcuDDe9541a1ayZMlClixZuOeee1i2bFmiyxzXqVOHGjVqkD17dp5++mk2bNgQ75juwunSxL6G\nR1O6zJhhavv+/DMkYPYI13Ambp1I16VdeaPkG9TJ1oeOATnw9zeWs0KFUkTieLG5wlyLzRVm8TQe\nzxXmq3hMsYweDV99BXPnQtmy8Tbddmobree15k74Hb6pMopfhj7OzJkwZAg0aOCU5cySirCKxZJS\neEOuMIszqELPnibn18qVEE9Oo8s3L9MjqAdTd0yld7Xe5D76P5pUT0eNGmaLS86cKSe2xWKxuBrr\nY3EFYWHGjzJ3rqlNH4dSUVWmbJ9CyZEluXb7Gkvf2Mmir1vySed0TJoEgYHeqVR83Sfgbdj5tKR2\n7Ioludy8aXbTX71qHPZxhG0Fnw2m9bzWXL55mRn1f2XHgopUe88kNv7xx2QXirRYLBavwfpYksOl\nS2ZTyQMPwMSJkCnTf5pcu32NL1d8yYStE+hRpQfVsn7Ih63Sc+sWfPcdlIm3XJolLWF9LJaUwt0+\nFmsKSyonT0KVKsZBP2XKf5SKqjIjeAalRpbi1LVTbP7fDi4ubEOV59Lz5puwZo1VKhaLJXViTWFJ\nYe9eqFkT3n8fPv30P+Fbe8/vpe38tpy4eoLJr08m44nnqFUZ/P1h82bvCCFODDbc2LXY+bSkduyK\nJbH89ZdZqXz2GXTtGk2p3Lhzg8+Xfc4zgc/w0kMvEfTWZqZ/8xyvvw7du8OcOb6nVCwWiyWxWMWS\nGBYvhpdfhrFj4b33ot2avWc2j4x6hP0X9rOt1TaKnv2YcmUycuuWCSFu2NB396XYX9euxc6ne1i1\nahUPP/xwio555MgRsmXLZn1jMXFFimRvPHB12vyfflLNk0d11apolw9cOKCv/PSKlhheQpccWKKn\nT6s2bKhatKjqsmWuFcGSunH5Z9bFTJgwQR999FHNkiWL5suXTz/88EO9dOmSx+Rxd7niqPy/vXMP\nj6q6FvhvERACTUJ4BgyviHpTpbGAvFvCVZFSQUWgsRgRtLT0FuwVW7jVKhSLykcsXqkopSpX8AoI\nKHp5FrFFXvKmiIhUg2JAjY9LkVcSVv84e4bJOEkmZCbJJOv3fefLnn32c83OWbP3Pnutvn376ty5\ncyulrsqgpLFGJbomNh5/HH79a1i3Dvr0AeB04Wl+99ff0e1P3ejdpjd7fraXvI3X0KmTt9y1Zw/0\n61fF7Y4Qdu4issSiPHNycpg0aRI5OTkcP36cLVu2cPjwYa677joKCgoiXl9RUVFY6bSSZgqhbIkZ\nJWOKpTRUvX2U2bM9N8JXXgnAqkOr6DS7E7uP7WbnT3fy47aTuGnQRcyY4Z2RnD4dGjas4rYbRoQ4\nfvw4kydPZtasWfTv35+4uDjatWvHokWLyM3NZf78+YDnRnfo0KFkZWWRmJhIly5d2Lt3r7+cvLw8\nbrnlFlq0aEFaWhpPPPGE/54vb3Z2NklJScybN49t27bRs2dPkpOTad26NePGjfMrMZ9ByYyMDBIS\nEli8eDFvvPFGMV8n7du3Jycnh4yMDBo3bkxWVhZnzpzx358+fTqtW7cmNTWVuXPnUqdOHd5///1y\nycbnLthnQj8zM5MHHniAPn36kJiYyPXXX8/nn3/uT79lyxZ69epFcnIyV111ld+7ZY0jEtOe6nhR\n0WWFggLVUaNUu3VTdZ7kDn91WIcsHKKXPH6Jrji4QouKVGfNUm3aVPWhh1TPnq1YlUbtpsJjNkqs\nXLlS69atG9IT4ciRI/XWW29VVc/bYb169XTJkiVaWFioM2bM0A4dOmhhYaEWFRVp586dderUqVpQ\nUKDvv/++pqWl6erVq4vlfeWVV1RV9dSpU7pjxw7dunWrFhUVaW5urqanp+vMmTP9dQcvha1fv15T\nU1P9n9u3b6/du3fXo0eP6hdffKHp6en61FNP+fuUkpKi+/fv15MnT+qIESO0Tp06JS6tZWZmFvMI\n6SPY+2Pfvn21Y8eO+t577+mpU6c0MzNTJ02apKqqR44c0aZNm+rKlStVVXXt2rXatGnTUj1VRouS\nxhq2FBZFTp6Em2/2zqq8/jpnkxN55M1H6Px0ZzJaZrDv5/voUPQDvv99zzTYhg3eS2L16lV1w40a\njUhkrnKSn59Ps2bNinkm9JGSkkJ+fr7/c9euXRkyZAhxcXHcc889nD59ms2bN7Nt2zby8/O5//77\nqVu3Lh06dOCuu+7ixRdf9Oft1asXgwcPBqBBgwZ07tyZbt26UadOHdq1a8eYMWPK/Qt//PjxpKSk\nkJyczKBBg9i9ezcAixYtYvTo0aSnpxMfH8+UKVMisqwmIowaNYqOHTvSoEEDhg8f7q9z/vz5DBw4\nkAEDPKe81157LV27dmXFihUVrre6YYolmC++gP79oXFjWL6c1z/dSsZTGbz54Zu89ZO3+K9eD/DY\n9Ab06QNZWZ5SSU+v6kZHl1jcE6jOXLA8VSNzlZNmzZqRn5/vX+4J5OjRozRv3tz/2efJEbyHbGpq\nKnl5eXz44Yfk5eWRnJzsvx5++GE+/fTTkHkBDh48yA033ECrVq1ISkrivvvuK7asFA6Bbnzj4+P5\n+uuv/e0OXDYLrrsiBNcZ6Dp48eLFxWSwceNGjh07FrG6qwt2QDKQI0e8g48DBpD3218yYfntbP5o\nM48PeJzBlw9m505hyJ3QqhXs2AEBbrcNo8bSs2dP6tevz5IlSxg2bJg//sSJE6xatYqHH37YH/fR\nRx/5w+fOnePIkSNcfPHFxMXF0aFDBw4ePBiyjlCb42PHjqVLly4sXLiQRo0aMXPmTJYsWRKRPrVq\n1apYWwPD0aJt27ZkZ2czZ86cqNdV1diMxcc770Dv3hTdns1jt7TmO09fRVrjNPb/x376t7uRSZOE\ngQNhwgRYsaJ2KRU7dxFZYk2eSUlJPPjgg4wbN47Vq1dTUFBAbm4uw4cPp02bNmRnZ/vT7tixg2XL\nllFYWMjMmTNp0KABPXr04OqrryYhIYHp06dz6tQpioqK2LdvH9u3bwdCv9114sQJEhISaNiwIQcO\nHGD27NnF7rds2bKYO+Bw8NUzfPhwnn32WQ4cOMDJkyeZOnVqmXkLCgqKuQ4uLCwstY5gbrvtNl59\n9VXWrFlDUVERp0+f5o033uDjjz8uVx9iAVMsAFu2QL9+vHv3bXw3YQGrDq1i052b+P01v2fbpoZk\nZMDhw7B3L2Rnx+5BR8O4UH71q18xbdo07r33XpKSkujRowft2rVj3bp11HObiyLCjTfeyMKFC2nS\npAkLFixg6dKlxMXFERcXx2uvvcbu3btJS0ujefPmjBkzhuPHj/vzBs9YZsyYwQsvvEBiYiJjxowh\nKyurWJrJkyczcuRIkpOTeemll8p8JTjw/oABAxg/fjz9+vXjsssuo2fPngDUr1+/xPxjx471uw5u\n2LAho0ePDllnSa6aU1NTeeWVV5g2bRotWrSgbdu25OTkhFxijHXMuvGKFZwbeTt/+FkGM5sc5LH+\njzH020M5flyYOBFeew3++EfPiHFtxWxbRZaa6pp4ypQpHDp0iOeff76qm1Ju3nnnHTp16sTZs2dD\nvqRQ0zDrxlHk3HPPcTI7i4E/KuTY9zqz/+f7GXbFMA4dEq68Es6dg337ardSMYxwiTWluGzZMs6c\nOcOXX37JxIkTGTx4cK1QKpVBrd28P3z/OC6a/TQTJ2SQc9dzXNHiCv+9Dh1g0SJws+Naj81WIktN\nlWesnU6fM2cOo0aNIi4ujszMTJ588smqblKNoVYuhW2YMIwWC17m7edzuPnacTH1z2DUXGJ9KcyI\nHaK9FFYrFcuxf+yhYXwSia3bV26jYhTbY4ksNXWPxYgdoq1YauVSWMolGVXdBMMwjBpLrZyxGEZ1\nxGYsRmVhMxbDqEXYfp9RE4jqu3UiMkBEDojIeyIysYQ0/+3u7xGR75aVV0SaiMhaETkoImtEpHE0\n+2CYrbBIU5I8I2FVtjZe69evr/I2xOIVTaKmWEQkDpgFDAC+DdwqIulBaQYCHVX1UmAMMDuMvJOA\ntap6GbDOfTaiiM86qxEZTJ6RxeRZ/YjmjKUbcEhVc1W1AHgRCD5qOBiYB6CqW4HGIpJSRl5/Hvf3\npij2wQC++uqrqm5CjcLkGVlMntWPaCqWi4FAk6FHXFw4aVqXkrelqn7iwp8ALSPVYMMwDKPiRFOx\nhLuIF85upYQqT72FQnuNJsrk5uZWdRNqFCbPyGLyrH5E862wj4E2AZ/b4M08SkuT6tLUCxHvsy39\niYikqOoxEWkFfEoJ2Bs2kWPevHllJzLCxuQZWUye1YtoKpbtwKUi0h7IA34E3BqUZjnwC+BFEekB\nfKWqn4jI56XkXQ6MBB51f18OVblG4F1swzAMo/xETbGoaqGI/AJYDcQBf1bVd0Tkp+7+06q6QkQG\nisgh4GtgVGl5XdGPAItE5E4gFxgerT4YhmEY5afGnrw3DMMwqoaYcz4QjUOXtZkKyjNXRPaKyC4R\neavyWl09KUuWIvJvIrJZRE6LyITy5K2NVFCeNjaDCEOeI9z/+F4R2Sgi3wk37zeo6tOf5TwpGgcc\nAtrjbfDvBtKD0gwEVrhwd2BLuHlr21URebrPHwBNqrof1eEKU5bNga7AQ8CE8uStbVdF5Onu2dgs\nvzx7AkkuPKAiz85Ym7FE69BlbeVC5Rl4dshekvAoU5aq+pmqbgcKypu3FlIRefqwsXmecOS5WVX/\n333civc2blh5g4k1xRKtQ5e1lYrIE7wzRH8Rke0i8pOotTI2CEeW0chbU6moTGxsFqe88rwTWHGB\neWPOunEkD10aFZdnH1XNE5HmwFoROaCqGyLUtlijIm/B2Bs036SiMumtqkdtbPoJW54i0g8YDfQu\nb14fsTZjqcihy3Dy1jYuVJ4fA6hqnvv7GbAMb8pcW6nI+LKx+U0qJBNVPer+2tj0CEuebsP+T8Bg\nVf2yPHkDiTXF4j90KSIX4R2cXB6UZjlwO0Dgocsw89Y2LlieItJQRBJcfCOgP/D3ymt6taM84yt4\nBmhj85tcsDxtbIakTHmKSFtgKXCbqh4qT95gYmopTKN36LJWUhF5AinAUmc2py6wQFXXVH4vqgfh\nyNK9RLINSATOicjdwLdV9YSNzeJURJ5AC2xsFiMceQIPAMnAbCe7AlXtdiHPTjsgaRiGYUSUWFsK\nMwzDMKo5plgMwzCMiGKKxTAMw4goplgMwzCMiGKKxTAMw4goplgMwzCMiGKKxagUROQOEXkiiuWP\nF5H9IvJ8ZdYbTUSkh4jMiXCZk4NNzFcmInKiAnkH+Uy2V3U/jNKJqQOSRkwT7QNTY4FrfGZmKrHe\naPIDYGWEy6xqeVxw/ar6KvBqRcsxoo/NWIywcOYcDojIsyLyrogsEJH+ziHQQRG52qVrIiIvO4dB\nm0WkU4iymovISyLylrt6ufi+zjHTLhHZKSLfCpH3HhH5u7vudnFPAWnAKhH5ZYjmtxGR9a6dDwSU\ndZuIbHX1PSUidVz8CRF5SER2uz60cPG7Aq6TIvI9EWkkIs+4cnaKyGCX9g4RWSoiK129jwbU219E\nNonIDhFZ5MyOhOLfgb8E9T9TRP7qZPwPEXlERLKdHPeKSFrA9/W6+x7+IiJtggsXkUtc+7aLyN9E\n5PIQafaKSKJ4fC4i2S7+f0TkWhFp5/LucFdPd7+Vi9/lvqveAWV+Q7ZBdYYcQ7E8+6x1VLUDGrti\n48Jz8lMAXIFnm2k7nmkH8Hy2LHPhJ4DfunA/YJcL3wE84cIv4FmfBWgL7Hfh5UBPF24IxAW1oQuw\nF4gHGgH7gAx3L6RjJ1dvHp6pigZ4NqO6AOmuvjiX7kkg24XPAT904UeB+4LKHAT8FW/GPw0Y4eIb\nA++6tt8B/ANIAOoDuXimxpu5vPEuz0SfvILqaAa8HiI+E/gSaAlchGcgcLK7Nx74gwu/GtCfUQHf\nz4PAPS68Dujowt2BdSHqm43n7O1K4C3gaRd/0H0P8UB9F3cpsM2FJwC/ceE6wLfCkW05xtCDBDn3\nsqv6XLYUZpSHD1T1bQAReZvzv6b34Ske8ExtDwFQ1fUi0lScQcAArgXSRfy2AxPcr/aNwB9EZAGw\nVFU/DsrXx8Wfcm1YCnwf2FNGu9eos9Tq8vQBivAUzHbXjnjgmEt/VlX/z4V3ANf5ChKRS4HpQKZ6\nNpT6A4NE5F6XpD6eslS8B/U/Xb79TkbJePasNrl6LwI2hWhzfzzbTKHYpp5hVcSz4eZLtw/vQQzQ\nA7jJhee7Nvtx8u4FLA74Hi4KUdcGPBkfxlMyY0SkNfClqp4SkSRglohk4Mn0UpfvLeAZEakHvKyq\nvu+oRNkGEM4YMqoxpliM8nAmIHwOOBsQDhxLwdZ7g9fDBeiuqmeD4h8VkdeAHwIbReR6VX03qJzA\nsiVE2cGEqtsXN09VfxMiT6BHQn/f3NLcQuAu34PdMURV3ytWiUh3isuriPMyWquqPy6j3QOAnBLu\nBX8PZwLCpX0PgdTBUw7fLaMdfwN+gTfjug+4GRjq4gH+EziqqtkiEgecBlDVDSLyPeAG4DkReUxV\nn6cE2YagrDFkVGNsj8WINBuAEeDtBwCfqWrwm0Br8JZtcOmucn8vUdW3VXU6ntXa4DX/DcBNIhLv\nfnHf5OJKQ4DrRCRZROLxXKq+ibcMNFQ8R1C+df22ZZT1DPCsqm4MiFsd1BffgzrUQ12BLUBvEbnE\npW/kZkHnG+xNIb4T8Cv/QtgEZLnwCM4rAsEzPvtP4AMRGeqrUzxfHMUbrHoEb1muo6p+gCe7ewPK\nS+T8TO92POu3PhPsn6nqXODPQFkKLJBwxpA586vGmGIxykPwr0YNEZ4MdBGRPXj7DyMD7vvSjAe6\nus3Zt4ExLv5ut9G7B282VOyNKFXdBTyHt8yyBfhTwMO3pF+06tIvwVsye0lVd6pn9vt+YI2rbw2e\nK4BQ/VL3oLwFGC3nN/A7A1OBem6Tex8wJUR/A/uQj7dX8L+u3k18U4F2AXaV0p/S+uq7Nw4Y5eoY\nAdwdIs0I4E4R2Y23jDa4hHK34O2pgKdYWru/4O1NjXRlXA74FEA/YLeI7ASGAY8H1F9WXyZT9hgq\nTQ5GFWNm8w2jmiEi9wHvqeqiqm6LYVwIplgMwzCMiGJLYYZhGEZEMcViGIZhRBRTLIZhGEZEMcVi\nGIZhRBRTLIZhGEZEMcViGIZhRBRTLIZhGEZE+Rflz/wq8/SiYgAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7731ef0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Oil circulation rate is 1.79e-03 kmol/s\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FPX9+PHXO+GGQMJ9EzlUbBXUyiEi8ShGW9F6cAgU\n0HpV0daj3gXFev20tXhioYpSFRUtiiJaJOhXEQXxBhElyKmG+xKT8P79MbNhs+wms9ndzA55Px+P\neTCfmdn5vHey7Gfn8/nM5yOqijHGGONFht8BGGOMCQ4rNIwxxnhmhYYxxhjPrNAwxhjjmRUaxhhj\nPLNCwxhjjGdWaBhTRSLyiIjcnKRzbReR3GScy5hUEntOw9RUInIccA9wGFAKLAX+BPwSuEBV+/sY\nnjFpqZbfARjjBxFpDMwCLgaeA+oC/YE9Hl+foap7UxehMenJqqdMTXUwoKo6XR0/qeqbQAnwCNDX\nrTLaBCAiT7jVUa+JyA7gBHfbBHd/noisEZEbRORHEVkpIueFMnOPfVRE3hCRbSJSICIdw/bvFZHO\nYcc+JCKz3GPfD+1z9w8Uka9EZIt73HwRuaBarpqp8azQMDXVV0Cp+wWdLyI5AKq6FLgEWKCqWara\nNOw1w4AJqtoI+D9A3SWkFdAMaAuMAh4TkYPD9p8H3AY0Bz4G/lNBfEOA8UAOsAL4G4CINAeeB64D\nmrrvo29EHMakjBUapkZS1e3AcThftv8CfhCRmSLSEpBoLwH+q6oL3NeHqrEij71FVYtV9W3gVWBw\n2L5Zqvp/qvozcBPO3Uy7GHm9qKqLVLUUp3Dp6e47DfhcVf+rqntVdSKwIc63b0yVWaFhaixVXaaq\nY1S1A07jd1vgfmL/al9dySk3q+rusPQqoE0oO2BNWN47gU1untF8H7a+G2jkrrcNP48rMm1Mylih\nYQygql8BU3EKj3iqesKPzRGRBmHpTsA6d12ADqEdItIIp3ppHfFZB7QPO4+Ep41JNSs0TI0kIoeI\nyFWh6iER6YDTZrEA51d+exGpHf6SaKeJsv1WEaktIv2B3+C0P4ScJiL9RKQOMAGn3WRtjPPG8hpw\nuIicISK1gMuA1hUcb0xSWaFhaqrtQG9godsbagHwKXA18BbwBbBBRH5wj49s9I62bQOwGedu4Cng\nYlVdHnbs08A4YCNwJDAi4lyxzlu2X1WLgHNxni8pAroDi/DYVdiYRPn6cJ+I5OPUIWcCk1X17oj9\nzYFpOL+kagH3quoT1R2nMZURkTzgKbd9JNr+x4E1qnpLkvPNwGlrOU9V5yfz3MZE49udhohkAg8C\n+ThP5A4Tke4Rh10OLFHVnkAecJ97S25M0FRU5RTfiZznNLJFpC5wo7v5/WSd35iK+Fk91QtYoaqF\nqloMPAucEXHMeqCxu94Y2KiqJdUYozHxqOi2PVqVU1X1xXl240ecdpMzw7oAG5NSvlVPicg5wCmq\neqGbHgH0VtWxYcdk4NQvHwxkAYNVdbYf8RpjjPH3TsNLaXUj8LGqtsV5uOkhEclKbVjGGGNi8bN9\nYC1h/dbd9ciHlI7FHT5BVb8RkZXAITi9RcqIiA2hYIwxcVLVuNva/LzTWAR0E5Fct9/6EODliGOW\nAScDiEgrnALj22gnU9VALuPGjfM9Bovf/zgs/uAtQY5dteq/s32701DVEhG5HJiD0+V2iqouFZGL\n3f2TgDuAx0XkE5wC7i+qusmvmFOhsLDQ7xASYvH7y+L3T5BjT4Sv3VfVadSeHbFtUth6EXB6dcdl\njDEmOnsi3GejR4/2O4SEWPz+svj9E+TYE3FATPcqInogvA9jjKkuIoIGrCHcAAUFBX6HkBCL318W\nv3+CHHsirNAwxhjjmVVPGWNMDWTVU8YYY1LOCg2fBb1e1OL3l8XvnyDHnggrNIwxxnhmbRrGGFMD\nWZuGMcaYlLNCw2dBrxe1+P1l8fsnyLEnwgoNY4wxnlmbhjHG1EDWpmGMMSblrNDwWdDrRS1+f1n8\n/gly7ImwQsMYY4xnvrZpiEg+cD/OzH2TVfXuiP3XAMPdZC2gO9BcVbdEHGdtGsYYE4eqtmn4VmiI\nSCbwFc4c4GuBD4Fhqro0xvG/Bf6kqidH2WeFhjHGxCGIDeG9gBWqWqiqxcCzwBkVHH8e8Ey1RFaN\ngl4vavH7y+L3T5BjT4SfhUY7YHVYeo27bT8i0gA4BZhRDXEZY4yJwc/qqbOBfFW90E2PAHqr6tgo\nxw4BzlPVqHciIqKjRo0iNzcXgOzsbHr27EleXh6w7xeBpS1taUvX1HRovbCwEICpU6cGrk2jDzBe\nVfPd9A3A3sjGcHffS8B0VX02xrmsTcMYY+IQxDaNRUA3EckVkTrAEODlyINEpAlwPDCzmuOrFuG/\nAoLI4veXxe+fIMeeiFp+ZayqJSJyOTAHp8vtFFVdKiIXu/snuYeeCcxR1d0+hWqMMcZlY08ZY0wN\nFMTqKWOMMQFjhYbPgl4vavH7y+L3T5BjT4QVGsYYYzyzNg1jjKmBrE3DGGNMylmh4bOg14ta/P6y\n+P0T5NgTYYWGMcYYz6xNwxhjaiBr0zDGGJNylRYaInKciDRy10eKyN9FpFPqQ6sZgl4vavH7y+L3\nT5BjT4SXO41HgJ0i0gO4CvgGeDKlURljjElLlbZpiMgSVT1SRMYBa1V1soh8pKpHVU+IlbM2DWOM\niU9V2zS8jHK7XURuBEYA/d25vWvHm5Exxpjg81I9NQTYA5yvqhtwpmS9N6VR1SBBrxe1+P1l8fsn\nyLEnotI7DVVdD9wXlv4OmJrKoIwxxqQnL20afYGJQHegLs6ESTtUtXHqw/PG2jSMMSY+qXxO40Hg\nPOBroB5wAfBwvBlFIyL5IrJMRL4WketiHJMnIktE5HMRKUhGvsYYY6rG08N9qvo1kKmqpar6OJCf\naMZug/qD7rkOA4aJSPeIY7KBh4DTVfWXwDmJ5ptugl4vavH7y+L3T5BjT4SX3lM7RaQu8ImI3ANs\nAOK+pYmiF7BCVQsBRORZ4Axgadgx5wEzVHUNgKoWJSFfY4wxVeSlTSMX+B6oA/wZaAw8rKorEspY\n5BzgFFW90E2PAHqr6tiwY/6B0733F0AW8E9VfSrKuQ7YNo0FC6C0FFq3dpZGjfyOyBhzIEjZcxqh\nOwFgNzA+3gwqOrWHY2oDRwEnAQ2ABSLyvltdVs7o0aPJzc0FIDs7m549e5KXlwfsu40MYnrWLJg5\ns4BNm2DLljwyMqBJkwJycuCQQ/Jo3Rp27y6gaVMYMMBJr1xZQHY2DBzof/yWtrSl0yMdWi8sLCQR\nXu40PsP5gg+VSApsAz4EblfVjVXKWKQPMF5V8930DcBeVb077JjrgPqqOt5NTwZeV9UXIs4V2DuN\ngoKCsj9uZVRhxw7YsGHf8v335dOh5YcfnLuS0B1KrKVVK2jeHDIzUx9/OrL4/RXk+IMcO6T2ifDX\ngRLgaZyCYyjOr/7vgSeA0+PN1LUI6OZWf63DeYhwWMQxM4EH3UbzukBv4O9VzC/wRCAry1m6dav4\n2L17YdOm6AXLZ5+VT2/Z4hQcFRUsofUmTZw4jDE1k+exp6JtE5HPVPXwKmcucipwP86zH1NU9U4R\nuRhAVSe5x1wDjAH2Av9S1YlRzhPYO410UFwMP/4Y/Y4l8q5mz57KC5bQUr++3+/MGBNLVe80vBQa\nnwIXqupCN90L58u7R7QCxQ9WaFSfXbtiV4lF3tXUreutcGnZEmp5uec1xiRNKguNY4DHgVC/ne04\nD/h9AfxGVZ+LN9NkC3KhEfR60Vjxq8LWrd4Kl6IiyMmpuGAJLU2bJrd67EC9/kER5PiDHDuktvfU\nh8Av3QftUNUtYbt9LzBMehKB7GxnOfTQio8tLXUKjsiCZe1aWLy4/LYdO5xCpaKCxbonG5M6Nke4\nCZQ9e/bdpVRUTbZ+vVNwVVawhKrH6tb1+50ZU71SVj0VBFZomEjh3ZMrKly8dk8O3dkk0j3ZmHRi\nhUZA30fQ60UPhPiPPz6PzZu99R7bvDl29+TIKrPq6J58IFz/oMYf5NghhW0aIrIY+DfwtKpurkpw\nxqSzjAxo1sxZfvGLio+N1T35m2/g3XfL39VE654crS2mVSto0KB63qsxifLSe6obznMSg3EeyHsc\neCOdftoH+U7DHLhidU+Oti28e3JFjfwtWkBtm2zZJEHKq6dEJAP4LfAIzoN2/8YZQHBTvJkmmxUa\nJsiidU+O1Q4T6p7spfdYTo5zF2VMNCktNESkB87dxqnAHJwhRY4DRqhqz3gzTbYgFxpBrxe1+KtX\nePfk77+HefMKyMnJi1rA7Njh9AzzMv5Yo0b+DA8TtOsfLsixQ+rbNLYCk4HrVHWPu+t9EekXb4bG\nmKrLzNz3nApAnToQ63sr1D058q5l6VKYN6/8NvDWe6xVK+ueXNNVeKfhVkldr6p3VF9I8QvynYYx\n6SBy9ORY7TDffx+7e3JklZl1T05vqRxGZLGqHl3lyKqBFRrGVI+9e6mwe3L4XU207smx2mJs9OTq\nl8pC4y6gCJgO7AxtT4cG8JAgFxpBrxe1+P2VzvHH6p4cXrB8+20B27blleueXFEjfzp1T07na+9F\nKufTGIoz8dJlEdsPijczY0zNUbs2tG3rLLEUFDhtMpHdk0Prn3wCc+bs3z3ZS+8x656cGvZEuDEm\nMELdkysbGibUPTk721vvsaZNa1735KRXT4nI2VQwj7eqvhhvZqlihYYxJlJpKWzc6G14mO3bK+6e\nHH5n41f35GRLRaHxBE6h0RI4FnjL3XUC8J6q/rZqoZbLI599M/dNDp8f3N2fhzPl67fuphmqenuU\n8wS20Ah6vajF7y+LPzn27HEGrqysgX/9euf41q2hfv0CDjkkL2ZbTLp3T056m4aqjnZP/CZwmKqu\nd9NtgKlVjLOMO+/3g8DJwFrgQxF5WVWXRhw6X1UHJZqfMcbEUrcudOjgLJUJdU+ePRvatNlXsHz4\n4f4FTWT35FhtMUHqnuyl99QyoHvop7z77MaXqlrJ1DqVZCzSFxinqvlu+noAVb0r7Jg84GpVPb2S\ncwX2TsMYc2CK1j05VltMZPfkihr6k9U9OZW9p/4HzBGRpwEBhgBvxptRFO2A1WHpNUDviGMUOFZE\nPsG5G7lGVb9MQt7GGJNSVR09ObxgWbkSFizYl161yjk+smDp3h3+9KfUvyfwNt3r5SJyFtDf3TRJ\nVV9KQt5ebg0+Ajqo6i4RORX4L3BwtANHjx5Nbm4uANnZ2fTs2bOsrrSgoAAgLdOh9XSJx+JPr/gs\n/vRNR76HeF/fq1ceRUUwZ04BW7dCu3ZOevFiJ123bh4bN8LKlU56xw7n9VlZBdSqBVlZedSvDz/8\nUOB2La483oKCAgoLC0mEb11uRaQPMD6seuoGYG9kY3jEa1YCR0c+WBjk6qmCNGkIrCqL318Wv3/C\nY9+1y+mpVVS0bwlPR9u3d6/zLEmzZk7VVPPm5dcj082aOQ82JqvnVuBm7hORWsBXwEnAOuADYFh4\nQ7iItAJ+UFUVkV7Ac6qaG+VcgS00jDHpZffuir/so6X37o39ZR/ty7958+QWAFWRyjaNlFDVEhG5\nHGeo9UxgiqouFZGL3f2TgHOAS0WkBNiF83S6McZ4EioA4rkLCC8AIr/8u3WDvn333+d3AVCdvM6n\n0QCnbeGr1IcUvyDfaQT59hwsfr/VpPh3746/CqikJP4qoIYNvRUAQb/2qZxPYxDw/4C6QK6IHAnc\nas9OGGOqKlQArFjhfLFX9uVfVOQcF+vLvls36NNn/31eCwDjnZfnND4CTgTmqeqR7rbPVfWX1RCf\nJ0G+0zAm6H76yfsv/9B6eAHgpf7fCoDkS2WbRrGqbpHyf6298WZkjEl/P/3kvfE3tF5cHPvLv0sX\n6N17/31WAASXl0LjCxEZDtQSkW7AFcB7qQ2r5gh6vajF76+K4o8sALzcBRQXx/7l36UL9Oq1/75E\nBvAL8vUPcuyJ8FJojAVuAvYAz+D0dpqQyqCMMeWFFwDhX/iLFsFLL0UvDH7+OXa1z0EHwTHH7L/v\nQBnB1aSOzadhTDXbsye++v+NG53XVFb/H5m2AsBUJBVDo79Swes0nXpPWaFh/LJnT3xf/kVFzmu8\nNv6G0llZVgCY5EpFoZFXwetUVefHm1mqBLnQCHq96IEUf3gB4LUgiCwAvDwPkMwC4EC6/kET5Ngh\nNfNpFISdvC7OQIEKfKWqxVUJ0pjqEioAKvvy//Zbp+5/40an3SD0xR75hd+pExx99P777A7A1DRe\nntPIw5l0yR2Ul47AKLvTMNUl9KUeTxXQ7t3ef/mH1hs3tgLA1BwpG7DQfbhvWGgIERE5GHhWVY+q\nUqQpYIVGcIQXAF6HhNi9O74v/+bNrQAwpjKpfLivVviYU6q63B2h1iRBkOtFf/4ZXnnFmSfZ613A\nrl2xq4A6dIAjj9x/XyoLgCBff7D4/RTk2BPh5ct/sYhMBqbhzNw3HFiU0qhMtSsujr8KaNcup06/\nTZv9f/mHCoDIgsHuAIwJNi/VU/WAy4B+7qZ3gIdVdU+KY/PMqqfKCy8AvFYB7doFTZvG1w00WXMV\nG2OqX+AmYUqmA7nQCBUA8QwJHVkAeGkPsALAmJollQ3hpwO3Abnsq85SVW0cb2ZRzp0P3I8zCdPk\nWFO9isgxwAJgsKq+GGV/IAqN4mLYtKn8F/x77xXQrFlezLuCnTudAiCeh8EaN3Ymta8OQa/Xtfj9\nFeT4gxw7pLYh/H7gd8Dnqpq00W1FJBN4EDgZWAt8KCIvh0/3Gnbc3cDrOG0qaSG8APB6F7BzJ+Tk\nlP+C37MHjjgC2rVz/o1WBVRdBYAxxlTGy53GfOBEVS1NasYifYFxqprvpq8HUNW7Io77E/AzcAww\nS1VnRDlXQncaoQIgniqgHTuqVgVkBYAxJh2k8k7jOmC2iMzD+fIGp3rq7/FmFqEdsDosvQboHX6A\niLQDzsCZBOoYnCfSK1RSsn8VUGW9grZv31cARH75t2kDhx++/z4rAIwxNZGXQmMCsB2oB9RJYt5e\nbg3uB65XVRVnFqiYpWK3bk4hECoAov3yDxUAkfuys/0rAIJeL2rx+8vi90+QY0+El0Kjjar+OgV5\nrwU6hKU74NxthDsaeNadNbA5cKqIFKvqy5En++UvR3PwwbnUqwc5Odn07Nmz7A9aUFAAUC69Zw90\n6xZ7v6UtbWlLV5QOSZd4vMRbUFBAYWEhifDSpnEPMFdV5ySU0/7nrQV8BZwErAM+wBmuZGmM4x8H\nXgly7yljjEkXqWzT+CNwjYj8DIRGt024y62qlojI5TgzAWYCU1R1qYhc7O6flMj5jTHGJF+lNfmq\n2khVM1S1nqpmuUvCz2i4556tqoeoaldVvdPdNilagaGqY6LdZQRd5K1u0Fj8/rL4/RPk2BNh/X+M\nMcZ4ZsOIGGNMDVTVNg270zDGGONZzEJDRBaLyD9FJN8d6dakQNDrRS1+f1n8/gly7Imo6E6jD/Bf\n4ARgvojMFpEr3Zn7jDHG1ECe2zTcIT3ygVOArsD7qvrHFMbmmbVpGGNMfKp1Pg135Nk+qvpu3C9O\nASs0jDEmPtXaEK6qpelSYARd0OtFLX5/Wfz+CXLsibDeU8YYYzyz5zSMMaYGSln1lIgcIiJzReQL\nN32EiNxclSCNMcYEm5fqqX8BN7JvAqbPgGEpi6iGCXq9qMXvL4vfP0GOPRFeCo0GqrowlHDrgYor\nON4YY8wByst8GrOBscDzqnqkiJwDXKCqp1ZHgF5Ym4YxxsQnZc9piEgX4DHgWGAzsBIYrqqFVYgz\nJazQMMaY+KSsIVxVv1HVk3CmWz1EVfulU4ERdEGvF7X4/WXx+yfIsSei0pn73MEKzwZygUxxJuxW\nVb0t0cxFJB+4H2fmvsmqenfE/jOA24C97nKtqr6VaL7GGGOqxkv11BxgC7AYKA1tV9X7EsrYGYrk\nK+BkYC3wIRFzhItIQ1Xd6a4fDrykql2jnMuqp4wxJg6pnCO8naqeUoWYKtMLWBGq6hKRZ4EzgLJC\nI1RguBoBRSmIwxhjjEdeuty+JyJHpCDvdsDqsPQad1s5InKmiCwFZgNXpCAOXwW9XtTi95fF758g\nx54IL4VGf2CxiCwXkc/c5dMk5O2pPklV/6uq3YHTgaeSkK8xxpgq8tKmkRtte6I9qESkDzBeVfPd\n9A3A3sjG8IjXfAP0UtWNEdt11KhR5OY6oWZnZ9OzZ0/y8vKAfb8ILG1pS1u6pqZD64WFhQBMnTo1\ndfNpiEh/oKuqPi4iLYBGqroy3swizlkLpyH8JGAd8AH7N4R3Ab5VVRWRo3AeMOwS5VzWEG6MMXFI\n5YCF44G/ADe4m+oA0+LNKJKqlgCXA3OAL4HpqrpURC4WkYvdw84GPhORJcA/gaGJ5ptuwn8FBJHF\n7y+L3z9Bjj0RXnpP/Q44EqfLLaq6VkSykpG5qs7GaeAO3zYpbP0e4J5k5GWMMSZxXto0PlDVXiKy\nxB17qiGwQFVT0aOqSqx6yhhj4pPK6V6fF5FJQLaIXATMBSbHm5Exxpjg8zL21P8DZrjLwcAtqjox\n1YHVFEGvF7X4/WXx+yfIsSfCy9hTtwBPqOobYdsuUtXHUhqZMcaYtOOlTeMH4EdgbGiwwFD7RjXE\n54m1aRhjTHxS2aaxFjgNuEtE/hJ3ZMYYYw4YXgoNVHUVcDxwmIi8ANRPaVQ1SNDrRS1+f1n8/gly\n7InwUmiEns/4SVVHA/NwHvAzxhhTw3gaRiTdWZuGMcbEJ2XzaYjIccA4nJn7QserqnaONzNjjDHB\n5qV6agrwd+A44Bh36ZXKoGqSoNeLWvz+svj9E+TYE+Fl7Kkt7hhRxhhjajgvz2ncBWQCLwJ7QttV\n9aPUhuadtWkYY0x8qtqm4aXQKCDKLHuqekK8maWKFRrGGBOflD3cp6p5qnpC5FK1ME2koNeLWvz+\nsvj9E+TYE+FlEqbWIjJFRF5304eJyAWpD80YY0y68VI99TrwOHCTqh4hIrWBJar6y4QzF8kH7sdp\nM5kcOT+4iAzHmTVQgO3Apar6aZTzWPWUMcbEIZVjTzVX1elAKYCqFgMl8WYUSUQygQeBfOAwYJiI\ndI847FvgeHfCpwmAjaxrjDE+8lJo7BCRZqGEiPQBtiYh717AClUtdAuiZ4Ezwg9Q1QWqGsprIdA+\nCfmmlaDXi1r8/rL4/RPk2BPh5TmNq4FXgM4i8h7QAjgnCXm3A1aHpdcAvSs4/gLgtSTka4wxpoo8\njT0lIrWAQ3DaFr5y7wwSy1jkbCBfVS900yOA3qo6NsqxJwAPAf1UdXOU/Tpq1Chyc3MByM7OpmfP\nnuTl5QH7fhFY2tKWtnRNTYfWCwsLAZg6dWrKntOoD/wRZxgRBd4BHlHVn+LNLOK8fYDxqprvpm8A\n9kZpDD8C58HCfFVdEeNc1hBujDFxSGVD+JM4DdUTcRqufwE8FW9GUSwCuolIrojUAYYAL4cfICId\ncQqMEbEKjKAL/xUQRBa/vyx+/wQ59kR4adP4haoeFpZ+S0S+TDRjVS0RkcuBOThdbqeo6lIRudjd\nPwn4K5ADPCIiAMWqaoMlGmOMT7xUT00DHlLVBW66D3CZqo6shvg8seopY4yJT9Ln0xCRz8KOeVdE\nVuO0aXQEvqpSlMYYYwKtojaN093lVKAzMADIc9fzUx5ZDRH0elGL318Wv3+CHHsiYt5pqGphNcZh\njDEmAA7oOcLdxnNjqsWB8H/J1BwpmyM86Ow/sqkO9gPF1BRehkZv5A4uiIgcIiKD3JFujTE+C3q9\nepDjD3LsifDycN/bQF0RaYfzTMVI4IlUBmWMMSY9eXlOY4mqHikiY4H6qnqPiHyiqj2qJ8TKVdSm\nYdVTpjrYZ80ETSqHEUFE+gLDgVfjeZ0xxpgDi5cv/z8BNwAvqeoXItIFmJfasExVFRYWkpGRwd69\newE47bTTeOopZ6iwJ554gv79+8d1vvDX++XOO+/kwgsv9DWGdBX0evUgxx/k2BNRae8pVZ0PzBeR\nhm76G+CKVAd2oMvNzeWHH34gMzOzbNuYMWOYOHFiUvN57bXEpiBJ9PVeFRYW0rlzZ0pKSsjIKP9b\n5oYbbqiWGIwxlau00BCRY4HJQBbQQUR6Ahep6h9THdyBTESYNWsWJ554ot+hRBWqn7eupOktNGdC\nUAU5/iDHnggv1VP34wwbUgSgqh/jDCliUmTv3r1cc801tGjRgi5duvDQQw+Vq3LKzc1l7ty5ZceP\nHz+ekSOjjx+Zl5fHlClTytKqytixY8nOzqZ79+689dZb5Y69+eab6devH40aNeLbb78t9/rIfCKr\nwvLy8rjlllvo168fWVlZDBo0iKKiIoYPH06TJk3o1asXq1ativt6hOcbyvPJJ5+kU6dOtGjRgjvu\nuKPc+7vrrrvo2rUrzZs3Z8iQIWzevN+8XcaYKvLUoK2q30VsKklBLDVOrN42jz32GK+++ioff/wx\nixYt4oUXXij3i19E9kvHEnnswoUL6dq1Kxs3buTWW2/lrLPOYsuWLWX7p02bxuTJk9m+fTudOnUq\n93ovdx3Tp09n2rRprF27lm+++Ya+fftywQUXsGnTJrp3786tt95a6TmivYdI7777LsuXL2fu3Lnc\ndtttfPWVM4bmxIkTefnll3n77bdZv349OTk5XHbZZXHnGRRBr1cPcvxBjj0RXgqN70SkH4CI1BGR\na4ClqQ2reogkZ6kKVeXMM88kJyenbAn9on/uuef485//TLt27cjJyeHGG2+ssDtnPF09W7ZsyZVX\nXklmZiaDBw/mkEMOYdasWe71EEaPHk337t3JyMigVq3ytZceumczZswYDjroIBo3bsypp57KwQcf\nzIknnkhmZibnnnsuS5Ys8RxrRfmOGzeOunXrcsQRR9CjRw8++eQTAB599FFuv/122rZtS+3atRk3\nbhwvvPBC2d2QMSYxXoYRuRT4J9AOWAu8ARwQP9387FYvIsycOTNqm8b69evp0KFDWbpjx45Jy7dd\nu3bl0p06dWL9+vVl6fB8q6JVq1Zl6/Xq1aNly5bl0jt27Ejo/CGtW7cuW2/QoEHZeVetWsXvfve7\nco3ptWovjkWgAAAdIklEQVTV4vvvv6dNmzZJyTudBL1ePcjxBzn2RFR6p6GqP6rqearaUlVbqOpw\nVd2YjMxFJF9ElonI1yJyXZT9h4rIAhH5SUSuTkaeQdCmTRu++25fjWD4OkDDhg3ZuXNnWXrDhg2e\nz7127dpy6VWrVtG2bduydEVVUI0aNWLXrl2e801WI3o85+nYsSOvv/46mzdvLlt27dp1QBYYxvgh\nZqEhIg9UsCTcL9Qdz+pBnEb2w4BhItI94rCNwFjg3kTzS0exqnsGDx7MxIkTWbt2LZs3b+auu+4q\n98XZs2dPnn32WUpKSli0aBEzZszw/MX6ww8/MHHiRIqLi3n++edZtmwZp512WqUxhfJ9++23Wb16\nNVu3buXOO++s8D1V5Qnpn376qdyiqnGd55JLLuHGG28sK2h//PFHXn755UpeFVxBr1cPcvxBjj0R\nFVVPLcaZqQ8g8hspGRU7vYAVoXk7RORZ4AzC2ktU9UfgRxH5TRLySzunn356uec0Bg4cyIwZM7jw\nwgtZvnw5PXr0oEmTJlx99dXMm7fvecoJEyYwbNgwcnJyGDBgAMOHD2fTpk1l+2MVICJCnz59+Prr\nr2nRogWtW7dmxowZ5OTkVPpagJNPPpkhQ4ZwxBFH0KJFC/7yl7+UtYdEe31kI3xl5wfnbib82Dfe\neCOuhv8rr7wSVWXgwIGsW7eOli1bMnToUAYNGlRhvsYYbzzPpyEiWYCqalIqpUXkHOAUVb3QTY8A\neqvq2CjHjgN2qOp9Mc51QI89VdGDbyY9HCifNVNzpGw+DRE5HHgSaOamfwRGqerncUdZXlL/h40e\nPZrc3FwAsrOz6dmzZzJPb4xnoWqLUEOppS2dDunQemFhIYnwMsrtAuBGVZ3npvOAO1T12IQyFukD\njFfVfDd9A7BXVe+OcmyNv9Po0qULxcXFdqeRpvz6rBUUFAS6F0+Q4w9y7JDaUW4bhAoMAFUtABrG\nm1EUi4BuIpIrInWAIUCsFssaPZZFbm4upaWlVmAYY3zn5U7jvziN4k/hfHkPB45W1d8lnLnIqTjD\nlGQCU1T1ThG5GEBVJ4lIa+BDoDGwF9gOHBbZrnKg32mY9GefNRM0Vb3T8FJoNAVuBfq5m97BqVZK\nmwF9rNAwfrPPmgmalFVPqeomVR2rqke5y5XpVGAYU5MF/VmBIMcf5NgT4aX31DHAjUBu2PGqqkek\nMC5jjDFpyEv11HLgGuBznHYFAEIP5aUDq54yfrPPmgmaVPae+lFVX1bVb1W1MLTEH6KpiksvvZTb\nb7896efNyMjg22+/Tfp5051NHWtMYrwUGreKyBQRGSYiZ7vLWSmP7ACXm5tL3bp12bix/NiPRx55\nJBkZGWVjJz3yyCPcfPPNVcojLy+P+vXrk5WVVbYsXLgw4di9GD16NHXr1iUrK4umTZty0kkn8cUX\nX3h6beTkTvGq6PU33HAD//rXv6p03nQU9Hr1IMcf5NgT4aXQGAX0wBlY8Lfucnoqg6oJRITOnTvz\nzDPPlG377LPP2L17d1JHh33ooYfYvn172dK7d++knNtL3tdddx3bt29n3bp1dOzYkTFjxsR1Dqvu\nMSb9eCk0fgUco6qjVHVMaEl1YDXBiBEjePLJJ8vSU6dO5fe//325L8vRo0dzyy23AM4vm/bt2/P3\nv/+dVq1a0bZtW5544omE49i6dSu///3vadmyJbm5ufztb38ri6FTp0589NFHAPznP/8hIyODpUud\nMSWnTJnC735X+eM69erV49xzzy13p/Hqq69y5JFH0qRJEzp27FhuRr/jjz8ecIaDCb87+ve//81h\nhx1G06ZNyc/P32/IeC8OtKljg/xEMgQ7/iDHnggvhcZ7OEOXmyTr06cP27ZtY9myZZSWljJ9+nRG\njBhR7pjIEV6///57tm3bxrp165gyZQqXXXYZW7dujZmHl1/rY8eOZfv27axcuZL58+fz5JNP8vjj\njwPOf4zQbfj8+fPp0qUL8+fPL0tX9B8nlPfOnTt55plnyt3lNGrUiGnTprF161ZeffVVHnnkEWbO\nnAnAO++8AziFWejuaObMmdx555289NJLFBUV0b9/f4YNG1bpe4tkU8cak6DQfAWxFmAZUAwsBz5z\nl08re111Ls7b2F+s7WX7x5OUpSpyc3P1f//7n95+++16ww036OzZs3XgwIFaUlKiIqKrVq1SVdXR\no0frzTffrKqq8+bN0/r162tpaWnZeVq2bKkLFy6MmseAAQO0QYMGmp2drdnZ2Xr00UeX7RMR/eab\nb7SkpETr1KmjS5cuLds3adIkzcvLU1XVKVOm6KBBg1RVtXv37jplyhQdOnSoqqp26tRJlyxZEjXv\nUaNGab169TQ7O1szMjK0c+fO+uOPP8a8HldeeaX++c9/VlXVlStXqoiUe5/5+fk6ZcqUsnRpaak2\naNBAv/vuu/3OFe31IePGjdMRI0aUO27t2rVl+3v16qXTp09XVdVDDz1U586dW7Zv3bp1Wrt27ajn\nreyzlirz5s3zJd9kCXL8QY5dtewzG/f3rZfpXvNTUlqlAR3nb525iDBy5Ej69+/PypUr96uaiqZZ\ns2blxqAKn+o02vkfeOABzj///JjnKyoqori4mE6dOpVt69ixY9kMf8cffzzXXHMNGzZsoLS0lHPP\nPZfx48ezatUqtm7dGnM0YRHh2muv5bbbbmP16tWccsopPPnkk1x11VUALFy4kOuvv54vvviCn3/+\nmT179jB48OCYca5atYorr7ySq68uP4Hj2rVrE56i1qaONcY7L0+EF0ZbqiG2GqFjx4507tyZ2bNn\nc9ZZ0TulJathPJrmzZtTu3btcsMlf/fdd7Rv3x6Arl270qBBAx544AEGDBhAVlYWrVu35rHHHqN/\n//4VnjtUAHbo0IGJEycyYcIEtm/fDsB5553HmWeeyZo1a9iyZQuXXHJJWW+naO+3Y8eOPPbYY+Wm\ncd25cyd9+vSJ6/0eaFPHBr1ePcjxBzn2RNiwqWlgypQpvPXWW9SvX3+/fbqvCq5KKnttZmYmgwcP\n5qabbmLHjh2sWrWKf/zjH+XaVgYMGMCDDz7IgAEDAOc/S3jaS74nn3wyXbt25eGHHwZgx44d5OTk\nUKdOHT744AOefvrpsi/0Fi1akJGRwTfffFP2+ksuuYQ77riDL7/8EnDaO55//vkK35tNHWtM8lmh\nkQY6d+7MUUcdVZauaMrUeO86Kpr6NeSBBx6gYcOGdO7cmf79+zN8+PBy3WMHDBjAjh07yno1RaZj\nnT8y72uvvbZsfvKHH36Yv/71rzRu3JgJEyYwZMiQsuMaNGjATTfdRL9+/cjJyeGDDz7gzDPP5Lrr\nrmPo0KE0adKEww8/nDlz5lT43hs1akSDBg1o0KABDRs25K233op76thBgwYxcOBAGjduTN++ffng\ngw8qzLO6Bf1ZgSDHH+TYE+F5utd0ZsOIGL/ZJExVE+T4gxw7pHBo9CCwQsP4zT5rJmhSOfaUMcYY\nA/hcaIhIvogsE5GvReS6GMdMdPd/IiJHVneMxqSzoNerBzn+IMeeCN8KDRHJBB7EeQ7kMGCYiHSP\nOOY0oKuqdgMuAh6p9kCNMcaU8a1NQ0T6AuNUNd9NXw+gqneFHfMoME9Vp7vpZcAAVf0+4lzWpmF8\nZZ81EzRBbNNoB6wOS69xt1V2TPsUx2WMMSYGL8OIpIrXn2WRJWHU140ePZrc3FzAGR011vAWxqRa\nqK471B0zlenwevXqyM/iZ7+Y0yUeL/EWFBSUG/2hKvysnuoDjA+rnroB2Kuqd4cd8yhQoKrPummr\nnjJpyZ7TqJogxx/k2CGY1VOLgG4ikisidYAhQOQYDS8Dv4eyQmZLZIFhUuedd97h0EMPrdY8v/vu\nO7Kysqyw9yjIX1oQ7PiDHHsifCs0VLUEuByYA3wJTFfVpSJysYhc7B7zGvCtiKwAJgF/9CveVHji\niSc4/PDDadiwIW3atOGPf/xjhXNjpFrkvOH9+/dn2bJlKckrLy+PKVOm7Le9Y8eObN++PaWDNBpj\nqs7X5zRUdbaqHqKqXVX1TnfbJFWdFHbM5e7+Hqr6kX/RJtd9993H9ddfz3333ce2bdt4//33WbVq\nFb/+9a8pLi5Oen6lpaWejquuX/jRxqYy8Qv6swJBjj/IsSfCngj3wbZt2xg/fjwPPvggAwcOJDMz\nk06dOvHcc89RWFjItGnTAGdq0nPOOYehQ4fSuHFjjj76aD799NOy86xbt46zzz6bli1b0rlzZx54\n4IGyfaHXjhw5kiZNmjB16lQ+/PBD+vbtS05ODm3btmXs2LFlBVRo8MEePXqQlZXF888/T0FBQbm5\nKnJzc7nvvvvo0aMH2dnZDB06lD179pTtv+eee2jbti3t27dn8uTJ+925eBGagjU0THpeXh5//etf\nOe6442jcuDGnnHIKGzduLDv+/fff59hjjyUnJ4eePXuWzSpojEmRqszclG4LVZy5zy+zZ8/WWrVq\nRZ0BbtSoUTps2DBVdWaZq127ts6YMUNLSkr03nvv1YMOOkhLSkq0tLRUjzrqKJ0wYYIWFxfrt99+\nq507d9Y5c+aUe+3MmTNVVXX37t26ePFiXbhwoZaWlmphYaF2795d77///rK8Q7P5hcybN0/bt29f\nls7NzdXevXvr+vXrddOmTdq9e3d99NFHy95T69at9csvv9Rdu3bp8OHDNSMjo9z5wuXl5ZWbiS8k\ncta9AQMGaNeuXfXrr7/W3bt3a15enl5//fWqqrpmzRpt1qyZzp49W1VV33zzTW3WrFmFMwSmSrp+\n1oyJhSrO3Fez7zREkrPEqaioiObNm5ebES6kdevWFBUVlaV/9atfcdZZZ5GZmclVV13FTz/9xIIF\nC/jwww8pKiri5ptvplatWhx00EH84Q9/4Nlnny177bHHHsugQYMAqFevHkcddRS9evUiIyODTp06\ncdFFF8X9y/yKK66gdevW5OTkcPrpp/Pxxx8D8Nxzz3H++efTvXt36tevz6233pqUqi4RYcyYMXTt\n2pV69eoxePDgsjynTZvGaaedRn6+M7nkySefzK9+9Stee+21hPM1xkRXswsN1eQscWrevDlFRUVl\nVTDh1q9fT4sWLcrSoRn0wPkCbd++PevWreO7775j3bp15OTklC133nknP/zwQ9TXAixfvpzf/va3\ntGnThiZNmnDTTTeVq+rxInxq1Pr167Nz586yuMOrsiLzTkRknuHTsT7//PPlrsG7777Lhg0bkpZ3\nugt6vXqQ4w9y7Imo2YWGT/r27UvdunWZMWNGue07duzg9ddf56STTirbtnr1vgfi9+7dy5o1a2jX\nrh0dOnTgoIMOKjcV6bZt25g1axYQvaH50ksv5bDDDmPFihVs3bqVv/3tb1ELrqpo06ZNuVjD11Ol\nY8eOjBw5stw12L59O3/5y19SnrcxNZUVGj5o0qQJ48aNY+zYscyZM4fi4mIKCwsZPHgwHTp0YOTI\nkWXHLl68mJdeeomSkhLuv/9+6tWrR58+fTjmmGPIysrinnvuYffu3ZSWlvL555+zaNEiIHovqB07\ndpCVlUWDBg1YtmwZjzxSfvzHVq1alZti1YtQPoMHD+bxxx9n2bJl7Nq1iwkTJlT62uLi4nLTsZaU\nlFSYR6QRI0bwyiuv8MYbb1BaWspPP/1EQUEBa9eujes9BFnQnxUIcvxBjj0RVmj45Nprr+WOO+7g\nmmuuoUmTJvTp04dOnToxd+5cateuDTh3C2eccQbTp0+nadOm/Oc//+HFF18kMzOTzMxMZs2axccf\nf0znzp1p0aIFF110Edu2bSt7beSdxr333svTTz9N48aNueiiixg6dGi5Y8aPH8+oUaPIycnhhRde\nqLRbbPj+/Px8rrjiCk444QQOPvhg+vbtC0DdunVjvv7SSy8tm461QYMGnH/++VHzjDX9bfv27Zk5\ncyZ33HEHLVu2pGPHjtx3331Ju3syxuzPZu5LY7feeisrVqzgqaee8juUuC1dupTDDz+cn3/+OWqD\n/4HGhhGpmiDHH+TYIZjDiJhKBK3Ae+mll9izZw+bN2/muuuuY9CgQTWiwDCmJrH/0WksaE9NP/bY\nY7Rq1YquXbtSu3bt/dpMTPIF+ZcuBDv+IMeeCKueMiYJ7LNmgsaqp4ypgYL+rECQ4w9y7ImwQsMY\nY4xnVj1lTBLYZ80ETVWrp/yc7rVaBKkh2Rhj0p0v1VMi0lRE3hSR5SLyhohkxzju3yLyvYh8VpV8\nqjKCY3Uv8+bN8z0Giz855/JD0OvVgxx/kGNPhF9tGtcDb6rqwcBcNx3N40B+tUXlg9CIrUFl8fvL\n4vdPkGNPhF+FxiBgqrs+FTgz2kGq+g6wubqC8sOWLVv8DiEhFr+/LH7/BDn2RPhVaLRS1e/d9e+B\nVj7FYYwxJg4pawgXkTeB1lF23RSeUHVmjEtVHOmusLDQ7xASYvH7y+L3T5BjT4QvXW5FZBmQp6ob\nRKQNME9VD41xbC7wiqoeXsH5amyhY4wxVaUB6nL7MjAKuNv997+JnKwqb9wYY0z8/GrTuAv4tYgs\nB05004hIWxF5NXSQiDwDvAccLCKrRWSML9EaY4wBDpAnwo0xxlSPwIw9JSL5IrJMRL4WketiHDPR\n3f+JiBxZ3TFWpLL4RSRPRLaKyBJ3udmPOKPx8pBlml/7CuNP52sPICIdRGSeiHwhIp+LyBUxjku7\nv4GX2NP5+otIPRFZKCIfi8iXInJnjOPS7tqDt/jjvv5+P5Hr8UnbTGAFkAvUBj4Gukcccxrwmrve\nG3jf77jjjD8PeNnvWGPE3x84Evgsxv60vfYe40/ba+/G1xro6a43Ar4KyuffY+zpfv0buP/WAt4H\njgvCtY8j/riuf1DuNHoBK1S1UFWLgWeBMyKOKXtgUFUXAtkiki7Pf3iJHyAtG/S18ocs0/nae4kf\n0vTaA6jqBlX92F3fASwF2kYclpZ/A4+xQ3pf/13uah2cH4CbIg5Jy2sf4iF+iOP6B6XQaAesDkuv\ncbdVdkz7FMfllZf4FTjWvb19TUQOq7boEpfO196LwFx7twv6kcDCiF1p/zeoIPa0vv4ikiEiH+M8\niDxPVb+MOCStr72H+OO6/kEZ5dZra31kaZkurfxe4vgI6KCqu0TkVJxuyAenNqykStdr70Ugrr2I\nNAJeAK50f7Xvd0hEOm3+BpXEntbXX1X3Aj1FpAkwR0TyVLUg4rC0vfYe4o/r+gflTmMt0CEs3QGn\nNK/omPbutnRQafyquj10G6mqs4HaItK0+kJMSDpf+0oF4dqLSG1gBjBNVaM915S2f4PKYg/C9QdQ\n1a3Aq8CvInal7bUPFyv+eK9/UAqNRUA3EckVkTrAEJwHBMO9DPweQET6AFt03/hWfqs0fhFpJeJM\n/iEivXC6Q0ere0xH6XztK5Xu196NbQrwpareH+OwtPwbeIk9na+/iDQXd+oGEakP/BpYEnFYWl57\n8BZ/vNc/ENVTqloiIpcDc3Aacqao6lIRudjdP0lVXxOR00RkBbATSJsHAb3ED5wDXCoiJcAuYKhv\nAUcQ5yHLAUBzEVkNjMPpBZb21x4qj580vvaufsAI4FMRCf2HvxHoCGn/N6g0dtL7+rcBpopIBs6P\n7KdUdW5QvnvwED9xXn97uM8YY4xnQameMsYYkwas0DDGGOOZFRrGGGM8s0LDGGOMZ1ZoGGNMwIiH\nQUTDjv172GCEX4lIZUPqVHw+6z1ljDHBIiL9gR3Ak1rBrKZRXnc5zgCSf6hq3nanYZJOREaLyAMp\nPP8V7jDPT1VnvqkkIn1E5LEkn3O8iFydzHPGmX+0oU68vvZ0cacQ8Pt9pKNog3CKSBcRmS0ii0Tk\nbRE5JMpLzwOeSSTvQDzcZwIn1bevlwInqeq6as43lU4FZif5nH5fjyrnr6qvAK8kep4a5jHgYlVd\nISK9gYeBk0I7RaQTzvQMbyWSid1pmP24w50sE5HH3TrQ/4jIQBF5V0SWi8gx7nFNReS/7uiYC0Rk\nv9tkEWkhIi+IyAfucqy7fUBYPetH4gxoF/naq0TkM3e50t32KNAZeF1E/hQl/NCkP8tF5K9h5xoh\nzmQ0S0TkUfcJWURkh4jcLs4kNQtEpKW7fUnYsktE+otIQ7cueaEb8yD32NEi8qL7K2+5iNwdlu9A\nEXlPRBaLyHMi0jDGZT8R+F/E+88TkfnuNf5GRO4SkZHudfxURDqH/b3ecv8O/xORDpEn9/Ir1D1n\nY3FsFJGR7vYnReRkEenkvnaxu/R197dxty9x/1b9ws6537WNyDPqZ0gCfNfoB/f/T1/geXGevH8U\nZy6TcEOB5zXRNonqnhDElvRfcH6NFAO/wBm9cxHO0CfgzB3wkrv+AHCLu34CsMRdHw084K4/DfRz\n1zvijEEEzng9fd31BkBmRAxHA58C9YGGwOdAD3ffSqBplLhHA+uAHKAe8Jl7nu5ufpnucQ8DI931\nvcBv3PW7gZsiznk6MB/nrvwOYLi7PRtnQqEGbr7fAFlAXaAQZ7js5u5r67uvuS50vSLyaA68FWV7\nHk4VRCucuRDWAuPdfVcA/3DXXwl7P2PC/j7jgKvc9blAV3e9NzA3Sn6P4Ewo9EvgA2CSu325+3eo\nD9R1t3UDPnTXrwZudNczgEZerm0cn6FxwNV+/79ItwXn/+ln7npjYF0lx38E9Ek0X6ueMrGsVNUv\nAETkC/b9Cv4c58MKzrhCZwGo6jwRaSYiWRHnORnoLlI2cnSW+2v7XeAfIvIf4EVVjRwV9Dh3+243\nhheB44FPKon7DVXdHPaa44BSnMJjkRtHfWCDe/zPqvqqu74YZ0A33Nd3A+4B8tQZP2wgcLqIXOMe\nUhenIFScL+Ht7uu+dK9RDnAY8J6bbx3gvSgxD8QZlyyaD9Ud/E6csY1Cx32O8yUL0Ac4012f5sZc\nxr3ex+L8Cg1trhMlr3dwrvEqnALkIhFpC2xW1d3iDK39oIj0wLmm3dzXfQD8W5zRbP+rqqG/Ucxr\nG8bLZ8hUQlW3ichKETlHVV8Q5w99uKp+CiAihwI5qvp+onlZoWFi2RO2vhf4OWw9/HNT2TwCAvRW\n1Z8jtt8tIrOA3wDvisgpqvpVxHnCzy1Rzh0pWt6hbVNV9cYorykOWy97b+7t/nTgD1p+xNKzVPXr\ncpk49cfh16uUfdfoTVU9r5K484H7YuyL/DvsCVuv6O8QLgPni7+yuavfBi7HuVO6CfgdzmB2b7v7\n/wysV9WRIpIJ/AROo6w4vXl+CzwhIn9X1aeIcW2jSNu5KNKV7D8I51+B4cAj4szxXRunwftT9yVD\nSLABPMTaNEwi3sH5oCIiecCPuv8EO2/gVKXgHtfT/beLqn6hqvcAHwKRdezvAGeKSH33l/KZ7raK\nCPBrEckRZxjoM4D/w6maOUdEWrh5NxWRjpWc69/A46r6bti2ORHvJfQlHO0LW3HmY+4nIl3c4xu6\ndy/7AnZ+ER4R9uu8Kt5j38ikw9n3JS843eq3AytF5JxQniJyxH4Bq67BqSrrqqorca7dNWHna8y+\nO7Tf44zYjHstf1TVyTjDoFdWOIXz8hlK26lg/aKqw1S1rarWUdUOqvq4OtNJn6qqPVX1F6p6e9jx\nt8b40RQ3KzRMLJG/9jTK+njgaBH5BKe+f1TY/tAxVwC/chs6vwAucrdf6TaafoJzF1Ou55CqLgGe\nwKn6eB/4V9gXa6xfouoePwOnGusFVf1IVZcCNwNvuPm9wb5Gwsj3pe6X4NnA+bKvMfwoYALOBDWf\nisjnwK1R3m/4eyjCqZt/xs33PfYvHI9m//kZysXjYd9YYIybx3DgyijHDAcuEGfaz89x2qaieR+n\nDQOcQqOt+y84bUGj3HMcgvOcADjVZB+LyEfAucA/w/Kv7L2Mp/LPUEXXwVQze7jPGB+JyE3A16r6\nnN+xGOOFFRrGGGM8s+opY4wxnlmhYYwxxjMrNIwxxnhmhYYxxhjPrNAwxhjjmRUaxhhjPLNCwxhj\njGf/H4+Djc3FFZ59AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa623ef0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Steam circulation rate is 6.81e-04 kmol/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.3: Page 292"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.3\n",
+ "# Page: 292\n",
+ "\n",
+ "print'Illustration 8.3 - Page: 292\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "# Since tower is a tray device:\n",
+ "# Following changes in notation is made:\n",
+ "# L1 to LNp\n",
+ "# L2 to L0\n",
+ "# X1 to XNp\n",
+ "# X2 to X0\n",
+ "# G1 to GNpPlus1\n",
+ "# G2 to G1\n",
+ "# Y1 to YNpPlus1\n",
+ "# Y2 to Y1\n",
+ "# x1 to xNp\n",
+ "# x2 to x0\n",
+ "# y1 to yNpPlus1\n",
+ "# y2 to y1\n",
+ "# From Illustration 8.2:\n",
+ "yNpPlus1 = 0.02;\n",
+ "Y1 = 0.00102;\n",
+ "y1 = Y1/(1+Y1);\n",
+ "GNpPlus1 = 0.01075;# [kmol/s]\n",
+ "x0 = 0.005;\n",
+ "m = 0.125;# [m = y_star/x]\n",
+ "Ls = 1.787*10**(-3);# [kmol/s]\n",
+ "Gs = 0.01051;# [kmol/s]\n",
+ "XNp = 0.1190;\n",
+ "LNp = Ls*(1+XNp);# [kmol/s]\n",
+ "ANp = LNp/(m*GNpPlus1);\n",
+ "X0 = x0/(1-x0);\n",
+ "L0 = Ls*(1+X0);# [kmol/s]\n",
+ "G1 = Gs*(1+Y1);# [kmol/s]\n",
+ "A1 = L0/(m*G1);\n",
+ "A = (ANp*A1)**0.5;\n",
+ "# From Eqn. 5.55:\n",
+ "Np = (math.log((yNpPlus1-(m*x0))/(y1-(m*x0))*(1-(1/A))+(1/A)))/math.log(A);\n",
+ "print\"Absorber\\n\"\n",
+ "print\"From Analytical Method, no. of theoretical trays required is \\n\",round(Np,4)\n",
+ "# From Fig. 8.13 (Pg292):\n",
+ "Np = 7.6;\n",
+ "print\"From Graphical Method, no. of theoretical trays required is \\n\",Np\n",
+ "\n",
+ "# Stripper\n",
+ "SNp = 1/ANp;\n",
+ "S1 = 1/A1;\n",
+ "# Due to relative nonconstancy of the stripping factor,graphical method should be used.\n",
+ "print\"Stripper\\n\"\n",
+ "# From Fig. 8.11 (Pg 289):\n",
+ "Np = 6.7;\n",
+ "print\"From Graphical Method, no. of theoretical trays required is \\n\",Np\n",
+ "# From Fig. 5.16 (Pg 129):\n",
+ "Np = 6.0;\n",
+ "print\"From Fig. 5.16, no. of theoretical trays required is \\n\",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.3 - Page: 292\n",
+ "\n",
+ "\n",
+ "Absorber\n",
+ "\n",
+ "From Analytical Method, no. of theoretical trays required is \n",
+ "7.7085\n",
+ "From Graphical Method, no. of theoretical trays required is \n",
+ "7.6\n",
+ "Stripper\n",
+ "\n",
+ "From Graphical Method, no. of theoretical trays required is \n",
+ "6.7\n",
+ "From Fig. 5.16, no. of theoretical trays required is \n",
+ "6.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 102
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.4: Page 295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.4\n",
+ "# Page: 295\n",
+ "\n",
+ "print'Illustration 8.4 - Page: 295\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#****Data****#\n",
+ "# a = CH4 b = C5H12\n",
+ "Tempg = 27.0;# [OC]\n",
+ "Tempo = 0.0;# [base temp,OC]\n",
+ "Templ = 35.0;# [OC]\n",
+ "xa = 0.75;# [mole fraction of CH4 in gas]\n",
+ "xb = 0.25;# [mole fraction of C5H12 in gas]\n",
+ "M_Paraffin = 200.0;# [kg/kmol]\n",
+ "hb = 1.884;# [kJ/kg K]\n",
+ "#********#\n",
+ "\n",
+ "Ha = 35.59;# [kJ/kmol K]\n",
+ "Hbv = 119.75;# [kJ/kmol K]\n",
+ "Hbl = 117.53;# [kJ/kmol K]\n",
+ "Lb = 27820;# [kJ/kmol]\n",
+ "# M = [Temp (OC) m]\n",
+ "M = numpy.array([[20 ,0.575],[25 ,0.69],[30 ,0.81],[35, 0.95],[40, 1.10],[43, 1.25]]);\n",
+ "# Basis: Unit time\n",
+ "GNpPlus1 = 1.0;# [kmol]\n",
+ "yNpPlus1 = 0.25;# [kmol]\n",
+ "HgNpPlus1 = ((1-yNpPlus1)*Ha*(Tempg-Tempo))+(yNpPlus1*(Hbv*(Tempg-Tempo)+Lb));# [kJ/kmol]\n",
+ "L0 = 2.0;# [kmol]\n",
+ "x0 = 0.0;# [kmol]\n",
+ "HL0 = ((1-x0)*hb*M_Paraffin*(Templ-Tempo))+(x0*hb*(Templ-Tempo));# [kJ/kmol]\n",
+ "C5H12_absorbed = 0.98*xb;# [kmol]\n",
+ "C5H12_remained = xb-C5H12_absorbed;\n",
+ "G1 = xa+C5H12_remained;# [kmol]\n",
+ "y1 = C5H12_remained/G1;# [kmol]\n",
+ "LNp = L0+C5H12_absorbed;# [kmol]\n",
+ "xNp = C5H12_absorbed/LNp;# [kmol]\n",
+ "# Assume:\n",
+ "Temp1 = 35.6;# [OC]\n",
+ "Hg1 = ((1-y1)*Ha*(Temp1-Tempo))+(y1*(Hbv*(Temp1-Tempo)+Lb));# [kJ/kmol]\n",
+ "\n",
+ "# Eqn. 8.11:\n",
+ "Qt = 0;\n",
+ "def f30(HlNp):\n",
+ " return ((L0*HL0)+(GNpPlus1*HgNpPlus1))-((LNp*HlNp)+(G1*Hg1)+Qt)\n",
+ "HlNp = fsolve(f30,2);\n",
+ "\n",
+ "def f31(TempNp):\n",
+ " return HlNp-(((1-x0)*hb*M_Paraffin*(TempNp-Tempo))+(x0*hb*(TempNp-Tempo)))\n",
+ "TempNp = fsolve(f31,35.6);\n",
+ "# At Temp = TempNp:\n",
+ "mNp = 1.21;\n",
+ "yNp = mNp*xNp;# [kmol]\n",
+ "GNp = G1/(1-yNp);# [kmol]\n",
+ "HgNp = ((1-yNp)*Ha*(TempNp-Tempo))+(yNp*(Hbv*(TempNp-Tempo)+Lb));# [kJ/kmol]\n",
+ "# Eqn. 8.13 with n = Np-1\n",
+ "def f32(LNpMinus1):\n",
+ " return LNpMinus1+GNpPlus1-(LNp+GNp)\n",
+ "LNpMinus1 = fsolve(f32,2);# [kmol]\n",
+ "\n",
+ "# Eqn. 8.14 with n = Np-1\n",
+ "def f33(xNpMinus1):\n",
+ " return ((LNpMinus1*xNpMinus1)+(GNpPlus1*yNpPlus1))-((LNp*xNp)+(GNp*yNp))\n",
+ "xNpMinus1 = fsolve(f33,0);# [kmol]\n",
+ "\n",
+ "# Eqn. 8.15 with n = Np-1\n",
+ "def f34(HlNpMinus1):\n",
+ " return ((LNpMinus1*HlNpMinus1)+(GNpPlus1*HgNpPlus1))-((LNp*HlNp)+(GNp*HgNp))\n",
+ "HlNpMinus1 = fsolve(f34,0);# [kJ/kmol]\n",
+ "def f35(TempNpMinus1):\n",
+ " return HlNpMinus1-(((1-xNpMinus1)*hb*M_Paraffin*(TempNpMinus1-Tempo))+(xNpMinus1*hb*(TempNpMinus1-Tempo)))\n",
+ "TempNpMinus1 = fsolve(f35,42);# [OC]\n",
+ "\n",
+ "# The computation are continued upward through the tower in this manner until the gas composition falls atleast to 0.00662.\n",
+ "# Results = [Tray No.(n) Tn(OC) xn yn]\n",
+ "Results = numpy.array([[4.0 ,42.3 ,0.1091 ,0.1320],[3 ,39.0, 0.0521 ,0.0568],[2 ,36.8 ,0.0184 ,0.01875],[1 ,35.5, 0.00463 ,0.00450]]);\n",
+ "\n",
+ "plt.plot(Results[:,0],Results[:,3]);\n",
+ "plt.grid('on');\n",
+ "xlabel('Tray Number');\n",
+ "ylabel('mole fraction of C5H12 in gas');\n",
+ "plt.show();\n",
+ "plt.plot(Results[:,0],Results[:,1]);\n",
+ "plt.grid('on');\n",
+ "xlabel('Tray Number');\n",
+ "ylabel('Temperature(OC)');\n",
+ "plt.show();\n",
+ "\n",
+ "# For the required y1\n",
+ "Np = 3.75;\n",
+ "print\"The No. of trays will be \",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.4 - Page: 295\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXfP9x/HXRygqYkrt21BLq5aJJVKE0VoiIlFLI9ZQ\nmiK24qe2JtTe2JeKWmKPotUgEUEmooiEjCALQUgQUZpUrEnm8/vje0ZurlnO3Dtn7j1n3s/H4z7m\nnnO/59zPx5H5zvl+z/f7NXdHRESkOcuUOgAREUkHVRgiIhKLKgwREYlFFYaIiMSiCkNERGJRhSEi\nIrEkWmGYWXczm2Zmb5nZWQ18/lMze8HMvjaz0xv4vIOZTTKzR5OMU0REmpdYhWFmHYAbgO7AFkBf\nM/tZXrFPgZOAwY2c5hRgCqDBIiIiJZbkHUYXYIa7z3T3hcAwoHduAXf/xN0nAgvzDzaz9YAewK2A\nJRiniIjEkGSFsS4wK2d7drQvrquBM4G61gxKREQKk2SFUXAzkpn1BOa6+yR0dyEiUhaWTfDcHwDr\n52yvT7jLiGMnoJeZ9QBWADqZ2V3ufmRuITNT34aISAHcvcV/jCd5hzER2NTMKs3sB0AfYHgjZZcK\n3N3Pcff13X0j4BDgmfzKIqdsZl8DBw4seQzKT/m1x/yynJt74X9nJ3aH4e6LzGwAMAroANzm7lPN\nrH/0+RAzWwuYAHQC6szsFGALd1+Qf7qk4ixnM2fOLHUIiVJ+6Zbl/LKcWzGSbJLC3UcCI/P2Dcl5\nP4elm60aOsdYYGwiAYqISGwa6V3G+vXrV+oQEqX80i3L+WU5t2JYMe1ZpWZmnub4RURKwczwMuv0\nliLV1NSUOoREKb90y3J+Wc6tGKowREQkFjVJiYi0M2qSEhGRRKnCKGNZb0dVfumW5fyynFsxVGGI\niLQjX39d+LHqwxARaScWLYKDD4ZHHlEfhoiINKKuDo49Fr76qvBzqMIoY1lvR1V+6Zbl/LKWmzv8\n4Q/w1lvw8MOFnyfRuaRERKT0LroIxoyBmhpYaaXCz6M+DBGRDLv+erjuOhg3DtZaK+wrdByG7jBE\nRDLqnnvgiiuWriyKoT6MMpa1dtR8yi/dspxfFnJ79FE44wwYNQoqK1vnnLrDEBHJmJoa+O1v4fHH\nYYstWu+86sMQEcmQiROhRw944AHYffeGy2guKRGRdm7qVNhvP/jb3xqvLIqhCqOMZaEdtSnKL92y\nnF8ac3vvPdh7b7jsMujdO5nvUIUhIpJyH38Me+4Jp58ORx2V3PeoD0NEJMXmzQvNT717w6BB8Y4p\ntA9DFYaISEp9+WVohurcGa69FixmFaBO7wxKYztqSyi/dMtyfmnI7dtv4aCDYKON4Jpr4lcWxUi8\nwjCz7mY2zczeMrOzGvj8p2b2gpl9bWan5+xf38zGmNkbZva6mZ2cdKwiImmweDEceSQstxzcdhss\n00Z/+ifaJGVmHYDpwB7AB8AEoK+7T80pszqwIbA/8F93vzLavxawlrvXmllH4GVg/7xj1SQlIu2K\nO5xwAkybBiNHwgortPwc5dok1QWY4e4z3X0hMAxY6oEvd//E3ScCC/P2z3H32uj9AmAqsE7C8YqI\nlLXzzguD8/71r8Iqi2IkXWGsC8zK2Z4d7WsRM6sEOgPjWyWqlEhDO2oxlF+6ZTm/cs1t8GD4xz/C\nnUWnTm3//UnPJVV0e1HUHPUQcEp0p7GUfv36URnNrFVRUUFVVRXV1dXAkoue1u3a2tqyikf5Kb/2\nlF+5bZ95Zg133w0TJ1bz4x+37PiamhqGDh0K8N3vy0Ik3YfRFRjk7t2j7bOBOne/vIGyA4EF9X0Y\n0b7lgMeAke5+TQPHqA9DRDLvoYfg5JPDpIKbbVb8+cq1D2MisKmZVZrZD4A+wPBGyi4VvJkZcBsw\npaHKQkSkPXjySTjxRBgxonUqi2IkWmG4+yJgADAKmAI84O5Tzay/mfWH8DSUmc0CTgPOM7P3o2ao\nnYHDgd3NbFL06p5kvOWm/pYyq5RfumU5v3LJ7YUX4LDDwjrcVVWljqYN1sNw95HAyLx9Q3LezwHW\nb+DQ59DAQhFppyZPhv33h7vugl12KXU0gaYGEREpMzNmwG67wVVXQZ8+rX/+cu3DEBGRFvjgA9hr\nL/jTn5KpLIrRbIVhZh2jEduY2eZm1it6ekkSVi7tqElRfumW5fxKldunn4bK4ne/g/79SxJCk+Lc\nYTwLLG9m6xI6r48AhiYZlIhIe7NgQVhadd994azvzbpXHprtwzCzSe7e2cxOAlZ09yvM7FV336Zt\nQmwyNvVhiEjqff019OwZZp695ZbkZ55NtA/DzH4BHAY83pLjRESkaYsWQd++sOqqcPPNbTNNeaHi\n/OI/FTgb+Ke7v2FmPwHGJBuWQLbbiEH5pV2W82ur3Orq4LjjwkJId98NHTq0ydcWrNlxGO4+Fhib\ns/02oLUpRESK4A5nnAHTp8Po0bD88qWOqHlx+jDWAP4P2AJYMdrt7v7LhGNrlvowRCStLroI/v53\nGDsWfvSjtv3uJPsw7gWmARsDg4CZhDmiRESkADfeCEOHwqhRbV9ZFCNOhbGau98KfOvuY939aKDk\ndxftQZbbiEH5pV2W80syt3vvhcsuC81Qa6+d2NckIs5cUt9GP+eYWU/gQyBFdaKISHl49FE4/XR4\n+unwCG3axOnD2A8YR5gg8HqgE2GNi8amKW8z6sMQkbQYOxYOOggefxy6dCltLIX2YWjyQRGRhL3y\nCnTvDvffD7/6VamjSbDT28yuN7Prop/17/9sZr0LC1XiynIbMSi/tMtyfq2Z27RpYbqPIUPKo7Io\nRpxO7xWAKuBN4C1gG0Lz1G/NTCvhiYg04v33Ye+94dJL4de/LnU0xYvThzEe2DlaPQ8zW5awuNEu\nwGvu/rPEo2w8NjVJiUhZmjsXunWD44+HU08tdTRLS3IcRgXQMWe7I7BqVIF83dIvFBHJuvnzQ59F\nnz7lV1kUI06FcQUwyczuMLOhwCTgL2a2EvBUksG1d1luIwbll3ZZzq+Y3L78EvbbD3beGS64oPVi\nKgdx5pK6zcxGAl0AB8519w+ij89MMjgRkTRZuBAOPhg22ACuvba8Z54thB6rFRFpBXV1cPjhYSGk\nhx+G5cp4XdJC+zDijPQWEZEmuMOAAfDhhzByZHlXFsXQQkhlLMttxKD80i7L+bU0t/PPh/HjYfhw\nWHHF5sunVdwV9zqY2TpmtkH9K+Zx3c1smpm9ZWbfW6XWzH5qZi+Y2ddmdnpLjhURKQdXXgkPPQRP\nPAGdOpU6mmTFGYdxEjAQmAssrt/v7ls1c1wHYDqwB/ABMAHo6+5Tc8qsDmwI7A/8192vjHtsVE59\nGCJSMrffDhdeCOPGwfrrlzqa+JLswzgV2NzdP23hubsAM9x9JoCZDQN6A9/90nf3T4BPzGzflh4r\nIlJKDz8M550HNTXpqiyKEadJ6n3gfwWce11gVs727Ghf0sdmRpbbiEH5pV2W82sut9Gjwwjuxx+H\nzTZrm5jKQZw7jHeBMWb2OEvWxnB3v6qZ44ppK4p9bL9+/aisrASgoqKCqqoqqqurgSUXPa3btbW1\nZRWP8lN+7Sm/xrZXWKGaQw+F88+vYf58gPKKr6Htmpoahg4dCvDd78tCxOnDGBS9rS9ohAqjyTGM\nZtaVsG5G92j7bKDO3S9voOxAYEFOH0asY9WHISJt6bXXYI894I47oEePUkdTuMT6MNx9UEERhXW/\nNzWzSsIqfX2Avo2UzQ+8JceKiCTunXdgn33gmmvSXVkUo9E+DDO7Nvr5aAOvZlfbiyYnHACMAqYA\nD7j7VDPrb2b9o3OvZWazgNOA88zsfTPr2NixxSabNvW3lFml/NIty/nl5/bhh7DnnqGTu287/tO1\nqTuMu6KfVzbwWax2IHcfCYzM2zck5/0cwtoasY4VEWlrn30W1rQ49lj4/e9LHU1paS4pEZFGLFgQ\n+iy6dYMrrsjOZIJa01tEpBV98w307Akbbgh/+1t2KgtIdgElKZEstxGD8ku7LOf39NM1HHoorLJK\nWIs7S5VFMTRbrYhIDncYPBgWL4ZHH4UOHUodUflotEkqWrv7WGA9YKS7/zvns/Pc/aK2CbFxapIS\nkdbkDmecAc8/H0Zzd+zY/DFplEST1BBgV+BT4Dozyx3ZfWBLv0hEpNxdcgk8+WSY8iOrlUUxmqow\nurj7oe5+NdAVWNnM/mFmK7RRbO1eltuIQfmlXdbyu+mmMPvsk0/C5Mk1pQ6nLDVVYXy3ZpS7L3T3\n44BXgacB1b0ikhn33RfuLkaPhrXXLnU05aupPox7gXuiAXS5+48F/uruJV+EUH0YIlKsxx+HY46B\np5+GLbcsdTRtQ+MwRERa6Nln4aCDwtNQO+5Y6mjaTpuOwzCzPQs5Tloma23E+ZRfuqU9v1deCZXF\nffd9v7JIe25JKXTg3u2tGoWISBuaPh323RduvjlM/SHxNNWH8WgTx/3K3X+YTEjxqUlKRFrq/ffD\n3FCDBsHRR5c6mtJIYj2MXYAjgAU5+5ywdkU7au0TkayYOzdMU37qqe23sihGU01S44Ev3b0m5zXW\n3WuA6W0TXvuW9XZU5Zduactv/nzo3h1+8xs47bSmy6Ytt7bS6B1G/fKojXzWLZlwRERa31dfQa9e\nsNNOcOGFpY4mvfRYrYhk2sKF8Otfh5ln774bltEc3a3fh2FmC1iysl5930U9d/dOLf0yEZG2VFcH\n/fqF90OHqrIoVqP/+dy9o7uv7O4rA2/Xv49eqizaQNbbUZVfupV7fu5w8skwezY8+CAs14K5Kco9\nt1LRehgikkl/+hO88AI88wysuGKpo8mGWH0YZjbJ3Tu3QTwtoj4MEWnIVVfBLbfAuHGw+uqljqb8\nJNGHcSBL+i5WMbMDWNKP4e7+j4IiFRFJ0B13wLXXqrJIQlNdQPtFr57Asznve0bvJWFZb0dVfulW\njvn94x9wzjlhTYsNNij8POWYWzloahxGv2JPbmbdgWuADsCt7n55A2WuA/YBvgT6ufukaP/ZwOFA\nHfAacLS7f1NsTCKSTU89Bb//PTzxBGy+eamjyabY4zDMrBvQBXjN3Z+MUb4DYUT4HsAHwASgr7tP\nzSnTAxjg7j3MbEfgWnfvamaVwDPAz9z9GzN7ABjh7nfmfYf6MESE8eOhZ094+GHYdddSR1P+Wn16\nczN7Kef9ccD1hJX2BkZ//TenCzDD3We6+0JgGNA7r0wv4E4Adx8PVJjZmsD/gIXAD81sWeCHhEpH\nRGQpr78OvXuHcRaqLJIVa4lWoD+wp7tfAOwFHBbj3OsCs3K2Z0f7mi3j7p8BVwLvAx8C89z9qRjf\nmSlZb0dVfulWDvm9806YH+rqq8N05a2lHHIrR02Nw+hgZqsSnozq4O6fALj7F2a2KMa547YVfe+2\nyMx+ApwKVALzgQfN7DB3vze/bL9+/aisrASgoqKCqqoqqqurgSUXPa3btbW1ZRWP8lN+5ZTfww/X\ncNJJcP751fTtW/r/HuW8XVNTw9ChQwG++31ZiKbWw5jJ0lOD7OzuH5nZysA4d69q8sRmXYFB9ZMY\nRs1Ydbkd32Z2M1Dj7sOi7WnAbkA14Y7m2Gj/EUBXdz8x7zvUhyHSDn32Gey2GxxyCJx7bqmjSZ9W\n78Nw90p33yh6bezuH0UfLQZ+HePcE4FNzazSzH4A9AGG55UZDhwZJdCV0PT0MaGzvKuZrWhmRug4\nn9KizEQkkxYsCM1Pe+0VHqGVttNUp3eX6CmmfNXAqs2d2N0XAQOAUYRf9g+4+1Qz629m/aMyI4B3\nzGwGMAQ4IdpfC9xFqHQmR6e8JW5SWVF/S5lVyi/dSpHfN9/AAQfAFlvA4MFgLf4bOZ6sX7tCNdWH\ncTnQ0JpUU4A7gN2bO7m7jwRG5u0bkrc9oJFjrwCuaO47RKR9WLwYDjsMVl4ZhgxJrrKQxjXVhzHR\n3bdv5LPX3H2rRCOLQX0YIu2DOxx3HLz3Hjz2GCy/fKkjSrck1vSuaOIzzf0oIm3CHc48M4y3eOop\nVRal1NQ4jKfN7OKo0xkAM1vGzP5MGIUtCct6O6ryS7e2yu+yy2DUKBgxAjp2bJOvzPy1K1RTdxin\nA7cCb5tZbbRvG0JH9LFJByYicvPNcOutYebZVZt91EaS1uxcUtEgup8TxmJMcfe32yKwONSHIZJd\n998fmqKefRY23rjU0WRLoX0YsScfLEeqMESyacQIOPpoePpp2HLLUkeTPa0+cE9KL+vtqMov3ZLK\nb9w4OOoo+Ne/SldZZP3aFaqpgXsbtWUgIiKTJsGBB8J990HXrqWORvI1NQ7jZXffzsyecfdftnFc\nsahJSiQ73nwzzA91441hNLckJ4lxGB3M7FxgMzP7A0vPKuvuflVLv0xEpCGzZoW5oS6+WJVFOWuq\nD+MQwkSDHYCVo1fHnPeSsKy3oyq/dGut/D75BPbcE046CY45plVOWbSsX7tCNbWm9zTgMjObHE0S\nKCLSqv73v7AA0kEHwemnlzoaaU6ccRgVwECgfvHDGuBCd5+fbGjNUx+GSHp99RXss0+YefbGGzWZ\nYFtK8rHa2wlrbB8M/Ab4nDBbrYhIQRYuhD59YJ114IYbVFmkRZwK4yfuPtDd33H3t919EPCThOMS\nst+OqvzSrdD86upCX0VdHdx5JyxThqPBsn7tChXnUn1lZt3qN8xsF+DL5EISkaxyh1NOCdOU//3v\nsNxypY5IWiJOH0YVYfW7VaJd/wWOcvdXE46tWerDEEmXgQNh+HCoqYFVVmm2uCQk8bmkzGwVgHLo\n7K6nCkMkPa65Bv761zD1xxprlDqa9i3xuaTcfX45VRbtQdbbUZVfurUkv6FD4eqrYfTodFQWWb92\nhWpqpLeISNEeeQTOPhvGjIENNih1NFIMTW8uIol5+mno2xdGjoTttit1NFIvibmkck++M1CZU97d\n/a6WfpmItB8vvRQqiwcfVGWRFc32YZjZPcBfgJ2B7aPXDgnHJWS/HVX5pVtT+b3xBvTqBbffHmag\nTZusX7tCxbnD2A7YopC2HzPrDlxDmMDwVne/vIEy1wH7EMZ29HP3SdH+CsKa4vXLwx7j7i+2NAYR\naVvvvhvmh7rySujZs9TRSGuKMw7jQeAUd/+wRSc26wBMB/YAPgAmAH3dfWpOmR7AAHfvYWY7Ate6\ne9foszuBse5+u5ktC6yU/5SW+jBEystHH0G3bnDaaXDiiaWORhqTZB/G6sAUM3sJ+Cba5+7eq5nj\nugAz3H1mFOAwoDcwNadML+DO6ITjzazCzNYEvga6uftR0WeLAD3SK1LG/vtf2Htv6NdPlUVWxRmH\nMQjYH7gYGAxcGb2asy4wK2d7drSvuTLrARsBn5jZHWb2ipn9zcx+GOM7MyXr7ajKL91y8/viC9h3\nX9hjDzj33NLF1Fqyfu0K1ewdhrvXmNlahI5uB15y97kxzh23rSj/tsijuLYlNFdNMLNrgD8Cf8o/\nuF+/flRWVgJQUVFBVVUV1dXVwJKLntbt2trasopH+Sm/hvL7xS+qOeAA6NSphp49waw84tP2ku2a\nmhqGDh0K8N3vy0LE6cP4DeEpqbHRrl2BM939wWaO6woMcvfu0fbZQF1ux7eZ3QzUuPuwaHsasBuh\nEnnB3TeK9u8C/NHde+Z9h/owREpo8WI45JDw8+9/h2U1FDgVkuzDOA/Yof6uwsxWB54GmqwwgInA\npmZWCXwI9AH65pUZDgwAhkUVzDx3/zj6nllmtpm7v0noOH8jVkYi0ibc4fe/D30Xjz2myqI9iNOH\nYcAnOduf8v1mpO+JOqoHAKOAKcAD7j7VzPqbWf+ozAjgHTObAQwBTsg5xUnAvWb2KrA1cEmMWDOl\n/pYyq5Rfuh16aA2TJ8M//wkrrFDqaFpX1q9doeL8TfAEMMrM7iNUFH2AkXFO7u4j88u6+5C87QGN\nHPsqGiAoUnbc4dJL4cUXYeJEWHnlUkckbSVOH4YBBwC7EDqkx7n7P9sgtmapD0Okbf373/B//xee\nihoxIiyxKumT+HoY5UgVhkjbmDYtzDj78svw5z/D4YdDhw6ljkoK1errYZjZv6OfC8zs87zX/4oJ\nVuLJejuq8it/H30E/fuH0ds77QTTp8NRR4XKIgv5NSbLuRWj0T4Md985+tmx7cIRkXLwv//BX/4C\nN90ERx8dKopVVy11VFJqcfow7nb3I5rbVwpqkhJpXd9+C0OGwMUXw157heanDTcsdVTS2pIch7Fl\n3hctS5jBVkQywj2sW3HOObDJJjBqFGyzTamjknLTVB/GOWb2ObBVbv8FMJcw4E4SlvV2VOVXHmpq\nYMcd4fLLw93FE0/EqyzSkl8hspxbMZrqw7gEuMTMLnX3s9swJhFpA6+9Bn/8I0yZEpqgDjkElokz\nlFfarTh9GAcAz7j7vGi7Aqh290faIL4mqQ9DpOVmzYI//Qkefzw0QR1/PCy/fKmjkrbU6o/V5hhY\nX1kARO8HtfSLRKS05s0LdxRVVbD22vDWW3DqqaosJL64c0nl05CdNpD1dlTl1za++Qauugo22wz+\n8x+YPBkuuQRWWaW485ZLfknIcm7FiPOU1MtmdhVwI6HyOBF4OdGoRKRodXVw331w3nmw1VYwZgz8\n/OeljkrSLE4fRkfgfOBX0a7RwEXu/kXCsTVLfRgiDRs9Gs46C5ZbLgzA23XXUkck5URzSYkIkyaF\niuLdd8OMsgceCNbiXwuSdYl1epvZGmY22MxGmNmY6PVMYWFKS2S9HVX5tZ6ZM+GII2CffWD//cOj\nsgcdlGxlkeXrl+XcihGn0/teYBqwMeHpqJmE1fREpMQ+/RROPx222w423jg8+XTCCaEpSqS1xenD\neMXdtzWzye6+dbRvortv3yYRNh2bmqSkXfrqK7juOhg8ONxJDBwIa61V6qgkLZKcS+rb6OccM+tJ\nWJ/7Ry39IhEp3uLFcNddoYLYYQd47jnYfPNSRyXtRZwmqYui0d2nA2cAtwKnJRqVANlvR1V+8bmH\nFe6qquC222DYMHj44dJWFlm+flnOrRhN3mGYWQdgM3d/DJgHVLdFUCKyxIQJYVnUOXPgssugVy89\n+SSlEacPY4K779BG8bSI+jAky95+O8z19NxzMGhQWMho2TiNyCLNSHIuqefM7AYz62Zm25rZdma2\nbQExikgMc+fCSSeFKce33hrefBOOO06VhZRenAqjM/Bz4ELgSmBw9FMSlvV2VOW3tC++gIsugi22\nCE1OU6fCuefCSislE1+xsnz9spxbMZpaQOmU6O157r57/ivOyc2su5lNM7O3zOysRspcF33+qpl1\nzvusg5lNMrNHY2ckkjKLFsEtt4TJAV9/HcaPD4/Mrr56qSMTWVqjfRhm9qq7b2Nmk9y9c4OFmjpx\n6DCfDuwBfABMAPq6+9ScMj2AAe7ew8x2BK519645n/+BsBzsyu7eq4HvUB+GpJY7/OtfcPbZYQzF\nFVeER2VFkpbEOIwpZvYWsK6ZvZb3mdcP4mtCF2CGu8+MAhwG9Aam5pTpBdwZnXC8mVWY2Zru/rGZ\nrQf0AC4G/hA7I5EUeP758OTT/Plw5ZVhSg89+STlrtEmKXfvC3QDZgA9gf1yXt/7a78B6wKzcrZn\nR/vilrkaOBOoi/FdmZT1dtT2mN/06XDAAWE51GOPhdpa6NEjnZVFlq9flnMrRpPPXbj7HKC5O4lG\nD49ZLv+fikUjyue6+yQzq27q4H79+lFZWQlARUUFVVVVVFeHQ+ovelq3a2tryyoe5Vd4fh99BP37\n1zB2LJx7bjX33gvjx9cwblz5xKvrl93tmpoahg4dCvDd78tCJDa9uZl1BQa5e/do+2ygzt0vzylz\nM1Dj7sOi7WmEwYEnA0cAi4AVgE7Aw+5+ZN53qA9Dytrnn4f1KG68Efr1C+MqVlut1FFJe5fkOIxC\nTQQ2NbNKM/sB0AcYnldmOHAkfFfBzHP3Oe5+jruv7+4bAYcAz+RXFiLlbOHCUElsumlYm+Lll0Nf\nhSoLSbPYFYaZ/bAlJ3b3RcAAYBQwBXjA3aeaWX8z6x+VGQG8Y2YzgCHACY2driXfnRX1t5RZlcX8\n3OHBB8NYiqFDa3jiCbj7biiiFaBsZfH61ctybsVoduyome1EmHBwZWB9M6sCfufujf1y/467jwRG\n5u0bkrc9oJlzjAXGNvddIqU2dmx48mnhQrjpprAmRVVVqaMSaT1x5pJ6CTgI+Ff9eAwze8PdS76c\nvPowpBy8/jr88Y/wxhthpHbfvrBMko29IkVKtA/D3d/P27WopV8kkjWzZ8Nvfwu//CX86lcwbRoc\ndpgqC8muOP9rv29mOwOY2Q/M7AyWHnwnCcl6O2pa85s/P4zO3mYbWGONMDngaafB8ssvXS6t+cWV\n5fyynFsx4lQYxwMnEgbUfUCYjPDEJIMSKUfffAPXXBPmfPr4Y3j1Vbj0UqioKHVkIm0jsXEYbUF9\nGNIW6urCCnfnnReefrrsMthyy1JHJVK4Vp9Lysyub+I4d/eTW/plImnz1FNw1lnQoQPccQfstlup\nIxIpnaaapF4mDL6bGL3Pf0nCst6OWs751dbC3nvD8ceHJ6DGj295ZVHO+bWGLOeX5dyK0egdhrsP\nzd02s5XDbl+QdFAipfLee3D++fDkk6EJ6ne/gx/8oNRRiZSHOOMwtgLuAuonNfgEOMrdX084tmap\nD0Nay2efwSWXhGanE0+EM86ATp1KHZVIMpIch3EL8Ad338DdNwBOj/aJpN5XX4WFizbfHBYsCIPw\nLrxQlYVIQ+JUGD909zH1G+5eA5TpKsPZkvV21FLmt3gxDB0aKooXX4Rx4+Dmm2HttVvvO3T90ivL\nuRWj2bmkgHfN7HzgbsLaFYcB7yQalUhC3OGJJ8KTTyuvDPffDzvvXOqoRNIhTh/GqsAFQP0/q3GE\ndS7+m3BszVIfhrTExIlhcsAPPwxjKXr3TudKdyLFKrQPQwP3JPPefhvOPReefRYGDYJjjoFl49xb\ni2RUYp3eZraDmf3TzCaZ2WvRa3JhYUpLZL0dNen8PvkETj4ZunSBn/8c3norPCbbVpWFrl96ZTm3\nYsT5p3OkIHvXAAANxUlEQVQvcAbwOlCXbDgixfviizDn09VXh6nGp04NkwSKSHHi9GH8293LsltQ\nTVKSa9GiMI5i0KDQkX3JJbDJJqWOSqT8tPpcUjkuMLPbgKeAb6N97u7/aOmXiSTBHYYPD1OOr7EG\n/POfoRlKRFpXnHEYRwHbAN2BntFrvySDkiDr7aitkd8LL8Cuu4ZO7b/8BcaMKZ/KQtcvvbKcWzHi\n3GFsD/xUbT9STqZPh3POgZdeCiOzjzwyzCgrIsmJ04dxBzDY3d9om5DiUx9G+zNnDlxwATz4YJjv\n6ZRTYMUVSx2VSLok2YfxC6DWzN4Fvon2ubtv3dIvEynU55/D4MFwww1w1FHhDmO11Zo/TkRaT5w+\njO7ApsBehL6L/YBeSQYlQdbbUePkt3Ah3HRTWBb17bfh5ZfhqqvSUVno+qVXlnMrRrMVhrvPbOgV\n9wvMrLuZTTOzt8zsrEbKXBd9/qqZdY72rW9mY8zsDTN73cy0wl874g4PPRQG3D3yCIwYAffcA5WV\npY5MpP1KdGoQM+sATAf2AD4AJgB93X1qTpkewAB372FmOwLXuntXM1sLWMvda82sI2GVv/3zjlUf\nRgaNGxfmfPr6a7j8cthrr1JHJJItSa6HUYwuwIzormQhMAzonVemF3AngLuPByrMbE13n+PutdH+\nBcBUYJ2E45USmjIFevWCI44Iixi9/LIqC5FyknSFsS4wK2d7drSvuTLr5RYws0qgMzC+1SMsY1lv\nR63P74MP4Nhjobo6vKZNg8MPh2WS/r8zYe3l+mVRlnMrRtLTsMVtL8q/NfruuKg56iHglIbWE+/X\nrx+VUcN2RUUFVVVVVFdXA0suelq3a2tryyqe1t5+4YVa/vY3eOKJao47Dm6/vYaOHWGFFcojPl2/\n9p1flrZramoYOnQowHe/LwuRdB9GV8LaGd2j7bOBOne/PKfMzUCNuw+LtqcBu7n7x2a2HPAYMNLd\nr2ng/OrDSBH3cDcxcSKMHw+33w49eoSBd+uvX+roRNqPJMdhFGMisGnUpPQh0Afom1dmODAAGBZV\nMPOiysKA24ApDVUWUv7mzAmVQ+6rrg522AG23x6eegq22qrUUYpIXIm2Erv7IkJlMAqYAjzg7lPN\nrL+Z9Y/KjADeMbMZwBDghOjwnYHDgd2jtTgmmVn3JOMtN/W3lGnwn//AqFFw0UWw//6w3nrhkdjr\nrw9jKX77W5gwAT7+GB5/PIzW/vTTmlKHnag0Xb9CZDm/LOdWjMSXknH3kcDIvH1D8rYHNHDccyTf\nKS8FmDcvPMGUe+fw2Wew3XbhzuHQQ8Pguo020hKoIlmiJVqlSZ9/DpMmhbuD+sphzhzo3DlUDvWv\nTTZJ/1NNIu2F1vSWon35JdTWLn3n8N57sPXWS1cOP/2pZoYVSbNyHbgnRUiyHfWbb8Jdw1//GvoX\ntt4afvzjsAb2lCmw225w//2h+emFF0JfxFFHhX6J1qosst5OrPzSK8u5FSPxPgwpvYUL4fXXl75z\nmDo1TOi3/fbhqaXjjw9PLC2/fKmjFZFypSapjFm0KIyUrq8YJkwIlUVl5dLNSlVVWkdCpL1SH0Y7\nVFcHb7659J1DbS2su+7SlUPnztCxY6mjFZFyoT6MDMptR3UP60E88ACceSbsvjv86EdhpPTw4bDO\nOmHE9OzZYXGhe++F006Dbt3Kt7LIejux8kuvLOdWDPVhlCF3eP99GDs2DIabODGMe1hppSV9Dmef\nHcY9pGEhIRHJBjVJlYEPP/z+FBrLLLNkCo3ttw+Vw1prlTpSEckC9WGkxNy5368cvv12yZ1DfQWx\nzjoaJS0iyVAfRhn67DMYPRouvRQOPBA23DA8ynrVVWGQ3JFHwvPPwyefwBNPwJ//DL17h05rs+y3\noyq/dMtyflnOrRjqw2gl8+fDK68sfecwdy5su224Yzj44LDc6MYbawoNEUknNUkV4IsvwvxKuZXD\n7NmwzTZLP8662WaaQkNEyo/6MBLy1VcwefLSk++98w5sueXSlcMWW8Cyul8TkRRQH0Yr+Pbb8Pjq\nkCFw3HFhwNtqq4VpMyZPhp12grvuCvMrvfQS3HQTHHNMmIcpicoi6+2oyi/dspxflnMrRrv9m3jR\nojDJXu6dwxtvwE9+suSu4dhjQ2WgKTRERNpJk9TixWH0c26fw6uvhnWkcx9nraoKg+NERLJMfRiR\nurowhUb9xHsTJ4YO6jXXXLrPYdttoVOnEgUuIlJC7bbCeOcdX+rO4eWXYZVVlr5z2HZbWHXVUkfb\ncjU1NVRXV5c6jMQov3TLcn5Zzg0KrzBS34exyy5L7hrOOCNMobHGGqWOSkQke1J/h5Hm+EVESkGP\n1YqISKISrTDMrLuZTTOzt8zsrEbKXBd9/qqZdW7JsVmX9WfBlV+6ZTm/LOdWjMQqDDPrANwAdAe2\nAPqa2c/yyvQANnH3TYHfAX+Ne2x7UFtbW+oQEqX80i3L+WU5t2IkeYfRBZjh7jPdfSEwDOidV6YX\ncCeAu48HKsxsrZjHZt68efNKHUKilF+6ZTm/LOdWjCQrjHWBWTnbs6N9ccqsE+NYERFpQ0lWGHEf\nX9IyQY2YOXNmqUNIlPJLtyznl+XcipHYY7Vm1hUY5O7do+2zgTp3vzynzM1AjbsPi7anAbsBGzV3\nbLRfz9SKiBSg3AbuTQQ2NbNK4EOgD9A3r8xwYAAwLKpg5rn7x2b2aYxjC0pYREQKk1iF4e6LzGwA\nMAroANzm7lPNrH/0+RB3H2FmPcxsBvAFcHRTxyYVq4iINC/VI71FRKTtlP1IbzO73cw+NrPXmijT\n4OC/NGguPzOrNrP5ZjYpep3X1jEWw8zWN7MxZvaGmb1uZic3Ui6V1zBOfmm9hma2gpmNN7NaM5ti\nZpc2Ui6t167Z/NJ67XKZWYco9kcb+Tz+9XP3sn4B3YDOwGuNfN4DGBG93xF4sdQxt3J+1cDwUsdZ\nRH5rAVXR+47AdOBnWbmGMfNL7TUEfhj9XBZ4EdglK9cuZn6pvXY5OfwBuLehPFp6/cr+DsPdxwH/\nbaJIQ4P/1myL2FpDjPwgxY8eu/scd6+N3i8AphLG2eRK7TWMmR+k9Bq6+5fR2x8Q+hM/yyuS2msH\nsfKDlF47ADNbj1Ap3ErDebTo+pV9hRFDQ4P/1itRLElwYKfodnGEmW1R6oAKFT311hkYn/dRJq5h\nE/ml9hqa2TJmVgt8DIxx9yl5RVJ97WLkl9prF7kaOBOoa+TzFl2/LFQY8P2aM0s9+a8A67v7NsD1\nwCMljqcgZtYReAg4JfpL/HtF8rZTdQ2byS+119Dd69y9ivBLZFczq26gWGqvXYz8UnvtzKwnMNfd\nJ9H0XVLs65eFCuMDYP2c7fWifZng7p/X3za7+0hgOTNL1fqBZrYc8DBwj7s39A8u1dewufyycA3d\nfT7wOLB93kepvnb1Gssv5dduJ6CXmb0L3A/80szuyivTouuXhQpjOHAkfDe6fJ67f1zakFqPma1p\nZha970J4FLqhdtayFMV+GzDF3a9ppFhqr2Gc/NJ6Dc3sx2ZWEb1fEdgTmJRXLM3Xrtn80nrtANz9\nHHdf3903Ag4BnnH3I/OKtej6lf0SrWZ2P2G6kB+b2SxgILAcND34Ly2ayw84CDjezBYBXxIufJrs\nDBwOTDaz+n+M5wAbQCauYbP5kd5ruDZwp5ktQ/jj8m53f9piDL5NiWbzI73XriEOUMz108A9ERGJ\nJQtNUiIi0gZUYYiISCyqMEREJBZVGCIiEosqDBERiUUVhoiIxKIKQzLLzFbLmZb6IzObHb1/xcyK\nHoMUTX1dF03BUL/vMTPbrdhzR+eamaJRxdIOlP3APZFCufunhMkAMbOBwOfuflX952bWwd0XF/k1\ns4Fzgcfqv5bWm0vJKXCmVDNb1t0XtVIcIoDuMKR9MTMbamY3m9mLwOVmtoOZPR/ddfzbzDaLCo41\ns21yDnzOzLbKO58DrwLzzGyPBr7suzsEM9vezMZE7weZ2Z1m9mxU5gAzG2xmk81sZN7dz/9F+8eb\n2U+i41c3s4fM7KXotVPOee82s+eIpqwWaU2qMKS9ccJ6Fb9w9zOAaUA3d9+WMC3LJVG524B+AFEl\nsry756+KWP/X/yVAQyuxNXWnsRGwO2E9gnuA0e6+NfAVsG9OuXnR/huA+rmqrgWudvcuhKkrbs0p\n/1PgV+5+WBPfLVIQNUlJe/SgL5kTpwK4y8w2IfyCXy7a/xBwvpmdCRwD3NHYydx9nJlhZjvH/H4H\nRrr7YjN7HVjG3UdFn70GbJhT9v7o5zDC2gYAewA/i+bEA1jZzFaKzjvc3b+JGYdIi6jCkPboy5z3\nfwaedvdfm9mGQA2EldjMbDSwP3AwsG0z57wYOB9YmLNvEUvu4lfIK/9t9D11ZpZ7TB2N/7usr+QM\n2NHdv839MKpAvsw/SKS1qElK2rtOwIfR+/yZOm8FrgNeitZLaJS7jybcrWyds3smS9ZXODBnf3Md\n2Zbzs0/0vg/wfPT+SeDk7wrn9LWIJEkVhrRHuX0LVwCXmtkrhDWdv/vM3V8B5tN4c1T+E1EXs/Ty\nlhcA15rZBMLdhjdyXH5fR265H5nZq8BJwGnR/pOB7S0sG/oG0L+Jc4m0Gk1vLtIIM1uHsM7z5qWO\nRaQc6A5DpAFmdiTwImExJBFBdxgiIhKT7jBERCQWVRgiIhKLKgwREYlFFYaIiMSiCkNERGJRhSEi\nIrH8P0wZNkRyHEDjAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5b6320>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVOWVx/HvASHAuHRGSTCB0OqEJCZiu0RFMbTrKKOY\nCGqciLTbuCQSA7iLBjWIuCWGmKCYNOrgEkHFuAWXQjbRjN0Rd8YRHQYlGkVUiAJ95o97G8q2l+rq\nvnWX+n2epx7q3rp165znPtTb933rPa+5OyIiUt66xB2AiIjET42BiIioMRARETUGIiKCGgMREUGN\ngYiIUILGwMy6mlmdmd0fbl9mZn81s3oze8zM+kUdg4iItM6inmdgZmOA3YAt3H2YmW3h7h+Gr50J\n7OzuJ0cahIiItCrSOwMz6wsMBaYBBtDYEIQ2B96NMgYREWnbZhGf/zrgbGDL/J1m9gtgJLAG2Cvi\nGEREpA2R3RmY2WHA39y9jvCuoJG7X+juXwNqCRoMERGJUWRjBmY2keCv//VAD4K7g5nufnzeMV8D\nHnT37zTzfhVNEhEpgrtb20d9VmR3Bu5+gbv3c/ftgB8Cj7v78Wb29bzDjgDqWjlHZh+XXHJJ7DEo\nN+Wn/LL3KFbUYwaNDGiM8goz+wawAXgNOL1EMSTKsmXL4g4hMlnODZRf2mU9v2KVpDFw9xyQC5+P\nKMVniohI4TQDOSY1NTVxhxCZLOcGyi/tsp5fsSKfdFYsM/OkxiYiklRmhidpAFlal8vl4g4hMlnO\nDZRf2mU9v2KpMRAREXUTiYhkibqJRESkaGoMYpLlfsss5wbKL+2ynl+x1BiIiIjGDEREskRjBiIi\nUjQ1BjHJcr9llnMD5Zd2Wc+vWGoMREREYwYiIlmiMQMRESmaGoOYZLnfMsu5gfJLu6zm5w5//GPx\n7y/V4jYiIhKRtWvh5JPhlVeKP4fGDEREUmzFCvj+92GHHeD3v4devTRmICJSVp55BvbcE444AmbM\ngJ49iz+XGoOYZLXfErKdGyi/tMtKfjNmwNCh8Otfw4UXgrX7XuCzIh8zMLOuwF+A5e5+uJldBRwG\nfAq8Bpzg7h9EHYeISBY0NMBFF8Htt8Njj8HAgZ1z3sjHDMxsDLAbsIW7DzOzg4DH3L3BzCYBuPt5\nzbxPYwYiInk+/BBGjoT33oOZM6F3788fk8h5BmbWFxgKTAMMwN3nuHtDeMhioG+UMYiIZMHrr8Pe\newcNwKOPNt8QdETUYwbXAWcDDS28fiLwYMQxJFJW+i2bk+XcQPmlXRrzmzsXBg2CU06BG2+E7t07\n/zMiawzM7DDgb+5eR3hX0OT1C4FP3X1GVDGIiKTdjTfC0UfDrbfC6NEdHyhuSWRjBmY2ERgJrAd6\nAFsCM939eDOrAU4BDnD3f7Twfh81ahSVlZUAVFRUUFVVRXV1NbCpdde2trWt7Sxub9gA995bzZw5\ncOGFOfr1a/74XC5HbW0tAJWVlUyYMKGoMYOSTDozsyHAuPDXRIcA1wBD3P3dVt6jAWQRKUvvvRfc\nDWy2GdxxB1RUFP7eRA4g5zGg8Zv918DmwBwzqzOzG0oUQ6I0tuxZlOXcQPmlXdLze/nlYCLZwIHw\npz+1ryHoiJLUJnL3HJALn3+9FJ8pIpI2Dz0Eo0bBpElw4oml/WzVJhIRiZk7XHstXHNNUHl0n32K\nP1ex3USqWioiEqNPPoHTToO6Oli0CPr3jycO1SaKSdL7LTsiy7mB8ku7JOW3ciXsvz+sXg3z58fX\nEIAaAxGRWNTVwR57wIEHBl1Dm28ebzwaMxARKbG774bTT4cbboCjjurcc2vMQEQk4Roa4LLL4Oab\n4ZFHYNdd445oE3UTxSRJ/ZadLcu5gfJLu7jy+/hjOOYYePhhePrpZDUEoMZARCRyb74JgwdDr17w\nxBPQp0/cEX2exgxERCK0cCGMGAFjxsDYsdEVmmukMQMRkYSprYVzzgn+HTo07mhap26imGS5XzbL\nuYHyS7tS5LdhA4wbB5dfDrlc8hsC0J2BiEin+uADOPbYYGbx4sWw9dZxR1QYjRmIiHSSpUth2DA4\n4AC47jro1q30MSS9hLWISKY99ljwi6GzzoIpU+JpCDpCjUFMstwvm+XcQPmlXWfn5x58+f/oR3Dn\nnXDqqZ16+pLRmIGISJE+/RTOPBMWLAh+Qrr99nFHVDyNGYiIFOHdd4P5A1tuCbfdFvybBBozEBEp\nkSVLgoqjgwbBPfckpyHoCDUGMclyv2yWcwPll3YdzW/27GANgksvhSuugK5dOyeuuEXeGJhZ13Dh\n+/vD7aPM7AUz22BmCSvVJCLSPPfgy/+MM4KF6o87Lu6IOlfkYwZmNgbYDdjC3YeZ2TeBBmAqMNbd\nn23hfRozEJFEWLsWTj4ZXn0V7r0XvvrVuCNqWSLHDMysLzAUmAYYgLu/7O6vRvm5IiKdZcUKGDIk\nWIvgySeT3RB0RNTdRNcBZxPcCUieLPfLZjk3UH5p1578nnkG9twTjjgCZsyAnj2jiytukc0zMLPD\ngL+5e52ZVRdzjpqaGiorKwGoqKigqqqK6urgVI0XNK3b9fX1iYpH29rW9me3H30Upk6t5qaboKIi\nx9y5yYqvcTuXy1FbWwuw8fuyGJGNGZjZRGAksB7oAWwJzHT348PXn0BjBiKSMA0NcNFFcPvtcN99\nMHBg3BG1T+LWM3D3C4ALAMxsCDCusSHIE/EyDyIihfvwQxg5Et57L1iasnfvuCMqnVLOM3AAM/uB\nmf0vsBfwgJk9VMIYEqPxNi+LspwbKL+0aym/11+HvfcOGoBHHy2vhgBK1Bi4+1x3HxY+v8fd+7l7\nT3fv4+6HliIGEZGWzJ0bzCY+5RS48Ubo3j3uiEpPtYlEpKzdeCOMHx/UFzrooLij6bjEjRmIiCTZ\n+vXws5/BnDkwbx4MGBB3RPFSbaKYZLlfNsu5gfJLu1wux3vvwSGHBCuTPfWUGgJQYyAiZebNN4OJ\nZAMHBjWGKirijigZNGYgImXjoYdg1CiYNAlOPDHuaKKhMQMRkRa4BwvUX311sP7APvvEHVHyqJso\nJlnul81ybqD80uaTT4K7gFtugUWLYN26XNwhJZIaAxHJrJUrg4VoVq+G+fOhf/+4I0oujRmISCbV\n1cH3vw81NXDJJdClTP701ZiBiEjo7rvh9NPhhhvgqKPijiYd2mwrzazCzA41s9PN7DQzO8TMtipF\ncFmWtX7ZfFnODZRfkjU0wIQJMGYMPPJI8w1BmvOLUot3Bma2L8HCNJVAHbCCoMroIGCymS0DJrv7\n/OjDFBFp3ccfB11Cy5cHFUf79Ik7onRpcczAzK4FfuvuS1t4fQBwmruPiSQwjRmISIHefDNYjWzg\nQJg6FXr0iDui+BQ7ZqABZBFJtYULYcSIoGto7FiwMl8lpdjGoMUxAzMba2YnN7P/JDM7q70fJJ+V\n5X7LLOcGyi9Jpk8PfjE0bRqMG1dYQ5Cm/EqptV8T/YhgAZqmbgX+C/hlJBGJiLRhwwY491y4917I\n5WDHHeOOKP1aGzN4zt2bXf3TzJ539+9EGpi6iUSkGR98AMceG8wsvusu2HrruCNKlk7vJgrOaZ8b\njzezLxMuYSkiUkpLl8Jee8H228PDD6sh6EytNQZXEaxRXG1mW4SP/YAHgGtKE152ZbnfMsu5gfKL\ny2OPweDBcNZZMGUKdOtW3HmSml/cWhwzcPdbzOwd4FLg2+HuF4Dx7l7wIvZm1hX4C7Dc3Q83s38G\n7gT6A8uAo919VZHxi0jGucNvfgOXXw533gnV1XFHlE2R/7TUzMYAuwFbuPswM5sMvOvuk83sXOCL\n7n5eM+/TmIFImfv0UzjzTFiwAGbPDrqHpHVRjBlgZkPN7Ekz+3v4mGtm/9aOoPoCQ4FpBLOXAYYB\n08Pn04HvtzdoEcm+d9+Fgw+Gt94K5hKoIYhWa/MMTiHoIvo5sH34mABcYmanFnj+6whKWjTk7fuy\nu68Mn68EvtzOmDMhy/2WWc4NlF8pLFkCe+wBgwYFi9FsuWXnnTsJ+SVRa/MMxgCD3f3vefseN7ND\ngQXA1NZObGaHAX9z9zozq27uGHd3M2uxL6impobKykoAKioqqKqqojrsMGy8oGndrq+vT1Q82tZ2\nUrZnz4aRI3P85Cfwi1/EH0/St3O5HLW1tQAbvy+L0do8g5fc/VvtfS3vmInASGA90APYEpgFfBeo\ndve3zWxb4Al3/2Yz79eYgUgZcQ/WJv7Nb2DmzGDRemm/KMYMVptZVTMftDPwYVsndvcL3L2fu28H\n/BB43N1HArOBUeFho4B72xu0iGTL2rVw3HEwaxYsXqyGIA6tNQZjgfvM7OdmdriZDTOzCQRf5mOL\n+KzGP/MnAQeZ2avA/uF22Wm8zcuiLOcGyq+zrVgBQ4YEaxE8+SR89avRfl7Wr1+xWmwMwnUK9gS6\nAjUEf8V3AfZ093nt+RB3n+vuw8Ln77n7ge4+wN0P1hwDkfL1zDPBXcARR8CMGdCzZ9wRlS+VsBaR\nWMyYAT/9Kdx0U1B5VDpHFCWsHzCzo8ysVzOv/ZOZHWNmD7b3A0WkvDU0wAUXwIUXBiUm1BAkQ2tj\nBicAOwF/MbMlZvZnM5tjZksIykt8i00DwdJOWe63zHJuoPw64sMP4cgjYf78YGnKgc3WRY5W1q9f\nsVqrTfQ34GLg4rB6af/wpTfc/e1SBCci2fH66zBsWFB19K67oHv3uCOSfAWNGZhZJfAv7v5o2G3U\n1d3b/HlphwLTmIFIZsydCz/8IZx/flBrqNyXpoxSJLWJwhP/B/BHNs047ovmBohIgW68EY4+Gm65\nBUaPVkOQVG02BsCPgcHAagB3fxX4UpRBlYMs91tmOTdQfoVavz748r/2Wpg3Dw46qFNO22FZv37F\naq02UaNP3P0TC5tzM9sMrXQmIq147z045hjo2hWeegoqKuKOSNrS5piBmV0FrAKOB34CnAG86O4X\nRhqYxgxEUunll+Hww4PH5MmwWSF/ckqnKXbMoJDGoAtwMnBwuOsRYFrU39RqDETS56GHYNSooODc\niSfGHU15impxm80I7gJudPcR4eMmfUt3XJb7LbOcGyi/5rgHYwMnnRSsP5DkhiDr169Yrd7Auft6\nM3vFzPq7+xulCkpE0uOTT+C006CuDhYtgv79236PJE8h3UTzgF2Ap4GPw93eWHgussDUTSSSeCtX\nBjOK+/SB6dNh883jjkiK7SYqZGhnfBHxiEjG1dUFdYVqauCSS6BLIT9Ul8Rq8/K5e665Rwliy7Qs\n91tmOTdQfhCsRHbwwXD11TBhQroagqxfv2K1eWdgZh+xaV5Bd6Ab8JG7d+IS1SKSBg0NcNllcPPN\n8MgjsOuucUcknaVd6xmEPzMdBuzl7udFFhUaMxBJmo8/DrqEli8PfjHUp0/cEUlzIqtNlM/dG9z9\nXuCQ9n6QiKTXm2/CvvtCr17wxBNqCLKokEJ1w/MeR5nZJGBtCWLLtCz3W2Y5Nyi//BYuDMpO//u/\nQ20t9OgRS1idJuvXr1iF/JrocDaNGawHlgFHtPUmM+sBzAW+QDDWcJ+7n29mOwO/A/4pPNePoi6H\nLSLFmT4dzj47aASGDo07GolSIfMMBrv7/Cb79nH3BW2e3KyXu68JZzLPB8YB1wFj3H2emZ0AbOfu\nFzfzXo0ZiMRkwwY491y4916YPRt23DHuiKRQUY4ZXN/MvimFnNzd14RPuwNdgfeBr7v7vHD/o8Dw\nQs4lIqXxwQdBkbm6Oli8WA1BuWixMTCzQWY2FviSmY0xs7Hh4+etva/JObqYWT2wEnjC3V8AXjCz\nxm6mo4B+HUshnbLcb5nl3CDb+b38Muy0U47tt4eHH4att447os6X5evXEa2NGXQHtiD4i36LvP2r\ngRGFnNzdG4AqM9sKeMTMqoETgevNbDwwG/i0pffX1NRQWVkJQEVFBVVVVVRXVwObLmhat+vr6xMV\nj7bLe/u++3JMnw5PPlnNqFFw+OE5FixITnzabnk7l8tRW1sLsPH7shiFjBlUuvuyoj9h03nGA2vd\n/eq8fQOAW919z2aO15iBSMTWroVf/QquuQaOPRbGj4feveOOSjoiytpEa8zsamBHoGe4z919/zYC\n2gZY7+6rzKwncBAwwcx6u/s74QS2i4DftjdoEemYDRvgttuCL/899gh+Pvr1r8cdlcSpkL7//wRe\nBrYHfk7wc9C/FPC+bYHHwzGDxcD97v4Y8O9m9grwErDc3WvbH3b6Nd7mZVGWc4P05zdnDuy2G0yd\nCnfcAXff/dmGIO35tSXr+RWrkDuDrd19mpmNdve5wFwza7MxcPclwOcql7j7r4BftT9UEemI556D\nc86B114LViI78kiwdncmSFYVMmbwlLvvZWZ/JviZ6Qrgj+6+Q6SBacxApFMsXx50Bz30EFx0EZx6\nKnTrFndUEpUoxwwuN7MKYCzwa2BL4Gft/SARKa3Vq+HKK+F3vwsagFdega22ijsqSaq21kDuCgxw\n91XuvsTdq919V3efXaL4MivL/ZZZzg2Sn9+6dTBlCgwYACtWwF//ChMnFt4QJD2/jsp6fsVqtTFw\n9w3AsSWKRUQ6wB1mzYJvfxvuvz9Yb+APf4C+feOOTNKgkDGD6wgWtLmTYA1kI/hp6bORBqYxA5GC\nLVoE48bBRx/BVVcFq5BJeSp2zKCQxiDHpqqlG7n7fu39sPZQYyDStqVL4fzzgxpCl18Oxx0HXbvG\nHZXEKbJCdeE4wX5NH8WFKY2y3G+Z5dwgGfm9+y6MHg2DBgVzBl59FUaN6pyGIAn5RSnr+RWrkMVt\n+pjZzWb2cLi9o5mdFH1oItLU2rVwxRXwzW8G2y+9FNwZ9OzZ+vtE2lJIN9HDwB+AC919oJl1A+rc\n/TuRBqZuIpGNmpaPuOIKlY+Q5kU5z2Abd7/TzM4DcPd1Zra+3RGKSFHmzAlWG+vVKygfsffecUck\nWVRIbaKPzGxjVXMz2wv4ILqQykOW+y2znBuULr/nnoNDDoEzzgjuCBYsKE1DoOtXngppDMYC9wPb\nm9lC4FZgdKRRiZSx5cvhhBOCn4cedhi8+CIMH646QhKtNscMAMI1jL9BMMfgFXdfF3lgGjOQMtO0\nfMS556p8hLRfZGMG4VoEZwCDCeYbzDOz37r7P9ofpog0tW5dUE768svh0EOD8hGaNSylVkg30S0E\nC9tcD0wBvk3QVSQdkOV+yyznBp2XX1LLR+j6ladCfk30bXffMW/7cTN7MaqARMpBfvmIKVNUPkLi\nV8g8g9uA37j7onB7L+DH7j4y0sA0ZiAZpPIRErXIylEAuwMLzOwNM1sGLAR2N7MlZvZcez9QpBxF\nWT5CpDMU0hgcQrD+8RCgOnx+KHA4MCyyyDIuy/2WWc4N2pdfGstH6PqVpzbHDNx9mZl9EeiXf3xb\nJazNrAcwF/gC0B24z93PN7M9CAaiuwHrgTPc/ZniUxBJnqblIxYtUvkISbZCxgwuA2qA/wEaGvcX\nUrnUzHq5+5pwnsJ8YBxwGTDJ3R8xs0OBc5o7l8YMJK3yy0dcfbXKR0hpRVmb6BhgB3f/tL0nd/c1\n4dPuQFfgfeBtoHEqTQXwf+09r0gSPfdc0Aj8z//ApElw5JGaNSzpUciYwQvAF4s5uZl1MbN6YCXw\nhLu/AJwHXGNmbwJXAecXc+60y3K/ZZZzg8/n11g+4qCD4PDD018+otyunwQKuTOYCNSZ2fPAJ+E+\nd/c2B4/dvQGoMrOtgEfMrBq4CBjt7veY2VHA74GDmnt/TU0NlZWVAFRUVFBVVUV1dTWw6YKmdbu+\nvj5R8Wi7/dsffwwLFlQzdSocckiOm2+Gww5LTnzaLo/tXC5HbW0twMbvy2IUMmbwEvBb4Hk2jRm4\nu89t1weZjQfWAhe7+5bhPgNWufvnKrBozECSKr98xCGHwGWXQb9+cUclEohyzOAjd7++iIC2Ada7\n+6qwvtFBwKXAf5vZkLAx2R94tb3nFomDO9xzD5x3Hmy3XVA+Yued445KpHMUMmYwz8yuMLNBZrZr\n46OA921LULqiHlgM3O/ujwL/AUwO918ebpedxtu8LMpibosWweDBMGECnHJKLtMNQRavX76s51es\nQu4MdiWoVrpXk/2t/rTU3ZeE7226/y/AnoUGKBKn5spHzJsXd1Qina+g9QzioDEDidO778Kll8KM\nGTB2LJx1VrJnDYs0iqw2kZn1MbObzezhcHtHMzupmCBFki6N5SNEOkMhYwa1wJ+Br4TbS4GfRRVQ\nuchyv2Uac9uwAaZPh298A/7rv4Ixguuvh969P39sGvNrD+VXnlocMzCzzdx9PbCNu99pZucBuPs6\nM1tfsghFIpZfPuKOO1Q+QspTi2MGZvasu+9qZjlgBDDH3XcJ1zO40t2HRBqYxgwkYiofIVkUxZhB\n48nGAvcB25vZQoIlL0e3P0SRZMha+QiRztBaY9DbzMYQrGFwDzAZeBC4ETgg+tCyLcv9lknNbfVq\nuOCCYH7AttsGC8z85CfQrVv7zpPU/DqL8itPrc0z6Aps0cz+XhHFIhKJpuUj6utVPkKkqdbGDOrc\nfZcSx5P/+RozkA5pWj5i8uTszhoWaRRlbSKR1Fm4MBgc/ugjmDIFDj447ohEkq21MYMDSxZFGcpy\nv2WcuS1dCiNGwDHHwCmnwLPPdn5DkOVrB8qvXLXYGLj730sZiEhHvPsujB4NgwbBbrvBK69ATQ10\n7Rp3ZCLpoNpEkmpr18IvfwnXXAPHHgsXX9z8rGGRcqExAykrGzbAbbfB+PGwxx7BGMGAAXFHJZJe\nhdQmkghkud8y6tzmzAm6gqZODcpH3H13aRuCLF87UH7lSncGkhoqHyESHY0ZSOItXx50Bz34YPDv\nqae2f9awSLmIbD0Dkbh0VvkIEWmbGoOYZLnfsqO5rVsXTBQbMABWrAjKR0ycCFtt1TnxdVSWrx0o\nv3IV6ZiBmfUA5gJfALoD97n7+WZ2J9A45FcBrIqz9IUkQ375iMpKMr3ovEjSRD5mYGa93H2NmW0G\nzAfGufv8vNevJmgMLm/yPo0ZlJH88hFXXaXyESLFSuw8A3dfEz7tTlAJ9b3G18zMgKOB/aKOQ5Jp\n6dJgjeHFi+Gyy2DkSM0aFolD5GMGZtbFzOqBlcAT7v5i3sv7Aivd/bWo40iaLPdbFpLbO++kt3xE\nlq8dKL9yVYo7gwagysy2Ah4xs2p3z4UvHwvMaOm9NTU1VFZWAlBRUUFVVRXV1dXApgua1u36+vpE\nxVOq7T33rOaXv4RJk3Lsvz+89FI1vXsnJz5taztt27lcjtraWoCN35fFKOk8AzMbD6x196vDMYTl\nwK7uvqKZYzVmkCFNy0dMnKjyESJRSOSYgZltA6x391Vm1hM4CJgQvnwg8FJzDYFky5//DOecA716\nBeUj9t477ohEpKmoxwy2BR4PxwwWA/e7+2Pha8cAt0f8+YnVeJuXRY25Pfcc/Ou/wo9/HNwRLFiQ\njYYgy9cOlF+5ivTOwN2XALu28NoJUX62xOedd+CEE1Q+QiRNVJtIOsXq1fDAAzBzJjz+OJx2Gpx7\nbnJmDYuUi2LHDNQYSNHefx9mzw4agFwOBg8Olpw84gjYeuu4oxMpTypUlzJp7bd85x246aZgLKB/\nf7j3Xjj6aHjzzaBb6MQTYcmSXNxhRiqt165Qyq88aT0DadOKFTBrVnAHUFcXNAQnnxxsb7553NGJ\nSGdQN5E0a9myTQ3ASy/BYYfB8OFBzaCePeOOTkRaojED6bBXXw2+/GfOhDfeCPr+hw+HAw6A7t3j\njk5ECqExg5RJQr+lOzz/PEyYAAMHwpAhwapikyfDW2/BtGlw6KHtbwiSkFuUlF+6ZT2/YmnMoMy4\nB/3+M2cGC8mvXRv89X/DDcGEsC7680CkLKmbqAw0NMDTTwdf/jNnBpVBhw8PHt/9rhaVF8mSRNYm\nkvhs2ADz5wdf/rNmBZO/hg8Pfgo6cKAaABH5LHUKxCSKfst162DOnKD8w1e+AmedBV/6UrDvhRfg\n0kuDZSSjbgiy3ier/NIt6/kVS3cGKffJJ8GX/cyZcP/9sMMOwR3AwoXBcxGRQmjMIIXWrIGHHw4a\ngAcfhJ12ChqAI4+Efv3ijk5E4qR5BhmXXwhuzpxg4Hf4cPjBD6BPn7ijE5Gk0DyDlCmk3/L992H6\ndBg2DPr2DVYKGzoUXnsNHn0UTj89mQ1B1vtklV+6ZT2/YmnMIGHeeSf4xc/MmbBoEey/f1AI7pZb\noKIi7uhEJKvUTZQAzRWCGzEimP2rQnAi0h4aM0iZN97YVAdIheBEpLMkbszAzHqY2WIzqzezF83s\nirzXzjSzl8zseTO7MqoYkmbpUpg0CXbfHQYOzPHii3DRRfD220E30BFHZKMhyHqfrPJLt6znV6zI\nxgzc/R9mtp+7rzGzzYD5ZjYY6AYMAwa6+zoz6x1VDHFzDyZ7Nd4BvPNO8PPPyZOD1w44IO4IRUQC\nJekmMrNewFygBrgYmOruj7fxnlR2E7VUCG74cBWCE5HoJbI2kZl1AZ4FdgB+6+4vmNkA4HtmNhH4\nBzDO3f8SZRxRyy8EN2tW8IU/fDjceqsKwYlIOkT6d6q7N7h7FdCXoAGoJmiAvujuewFnA3dFGUNU\nNmyAuXNh9Gj42tfgpJOgVy+4555gbODKK2GPPVpuCLLcb5nl3ED5pV3W8ytWSeYZuPsHZvYAsDuw\nHJgV7n/GzBrMbGt3/3vT99XU1FBZWQlARUUFVVVVVFdXA5suaCm3168H92ruvhvuuivH1ltDTU01\nc+bAypXB8TvvXNj56uvrSx6/trWt7ext53I5amtrATZ+XxYjsjEDM9sGWO/uq8ysJ/AIMAH4F+Ar\n7n5J2GX0qLt/rZn3J2LMoLlCcCNGBAPBKgQnIkmTxDGDbYHp4bhBF+BWd3/MzJ4Efm9mS4BPgeMj\njKEoLRWCu/RSFYITkWyKbMzA3Ze4+67uXuXuA939qnD/Oncf6e47uftu7p6LKob2WL0abr89+Kt/\n222DZSAHDw4mhD35JPz0p53bEDTe5mVRlnMD5Zd2Wc+vWGVdm+j992H27OAOIJeDffcN7gB+9zvY\nZpu4oxOjqv7dAAAH+0lEQVQRKZ2yK0fRXCG44cODchAqBCciaafaRK1QITgRKReJq00UtzfegGuv\nhX32ge98J5gUdtZZ8NZbcOedcNRR8TYEWe63zHJuoPzSLuv5FStTYwZLl24qA/HGG0Hht4suCmoA\nde8ed3QiIsmV6m6ilgrBDR8O3/sebJappk5EpG1lM2agQnAiIi3L9JhBQwM89RSMGxfM+j366KA2\n0G23Bd1B110XzAlIU0OQ5X7LLOcGyi/tsp5fsRLdkTJ3bnAHMGsWbLVV8Nf/PffAwIGqBCoi0pkS\n3U1UVeUbu4C+9a24IxIRSb6yGTMQEZGWZXrMIIuy3G+Z5dxA+aVd1vMrlhoDERFRN5GISJaom0hE\nRIqmxiAmWe63zHJuoPzSLuv5FUuNgYiIaMxARCRLNGYgIiJFi7QxMLMeZrbYzOrN7EUzuyLc/3Mz\nW25mdeHjkCjjSKIs91tmOTdQfmmX9fyKFWlj4O7/APZz9ypgILCfmQ0GHLjW3XcJHw9HGUcS1dfX\nxx1CZLKcGyi/tMt6fsWKvJvI3deET7sDXYH3w+2yLjW3atWquEOITJZzA+WXdlnPr1iRNwZm1sXM\n6oGVwBPu/kL40plm9lczu9nMtBS9iEiMSnFn0BB2E/UFvmdm1cBvge2AKuAt4Jqo40iaZcuWxR1C\nZLKcGyi/tMt6fsUq6U9LzWw8sNbdr87bVwnc7+47NTlWvysVESlCMT8tjXRxGzPbBljv7qvMrCdw\nEDDBzPq4+9vhYT8AljR9bzHJiIhIcaJe6WxbYLqZdSHokrrV3R8zs1vMrIrgV0WvA6dGHIeIiLQi\nsTOQRUSkdGKdgWxmvzezlWb2uW6ivGOuN7Ol4S+PdillfB3VVn5mVm1mH+RNvruo1DEWy8z6mdkT\nZvaCmT1vZqNbOC6V16+Q/FJ+/ZqdENrMcWm9fm3ml+brB2BmXcO472/h9fZdO3eP7QHsC+wCLGnh\n9aHAg+HzPYGn4ow3gvyqgdlxx1lkbn2AqvD55sArwLeycv0KzC+11y+Mv1f472bAU8DgrFy/AvNL\n+/UbA/xnczkUc+1ivTNw93lsmoTWnGHA9PDYxUCFmX25FLF1hgLyg5ROvnP3t929Pnz+EfAS8JUm\nh6X2+hWYH6T0+kGzE0Lfa3JIaq8fFJQfpPT6mVlfgi/8aTSfQ7uvXdIL1X0V+N+87eUE8xWywoG9\nw9u4B81sx7gDKkb48+BdgMVNXsrE9Wslv1Rfv2YmhL7Y5JBUX78C8kvz9bsOOBtoaOH1dl+7pDcG\n8PlWL0sj3s8C/dx9Z+DXwL0xx9NuZrY5cDfw0/Av6M8d0mQ7VdevjfxSff28+QmhTaX2+hWQXyqv\nn5kdBvzN3eto/c6mXdcu6Y3B/wH98rb7hvsywd0/bLyVdfeHgG5m9s8xh1UwM+sGzARuc/fm/iOl\n+vq1lV/ar18jd/8AeADYvclLqb5+jVrKL8XXb29gmJm9DtwO7G9mtzQ5pt3XLumNwWzgeAAz2wtY\n5e4r4w2p85jZl83Mwud7EPzUt7l+zcQJ474ZeNHdf9nCYam9foXkl/Lrt01jTbC8CaF1TQ5L8/Vr\nM7+0Xj93v8Dd+7n7dsAPgcfd/fgmh7X72kU96axVZnY7MATYxsz+F7gE6Abg7lPd/UEzG2pm/w18\nDJwQX7Tt11Z+wAjgdDNbD6whuLBpsQ9wHPCcmTX+J7sA+Bpk4vq1mR/pvn4tTQg9FTJx/drMj3Rf\nv3wO0NFrp0lnIiKS+G4iEREpATUGIiKixkBERNQYiIgIagxERAQ1BiIighoDSSEz2zqv7PBbZrY8\nfP6smXV47kxY2rghnPbfuO9PZjako+cOz7UsJTNdpYzEOulMpBju/neCwnGY2SXAh+5+bePrZtbV\n3Td08GOWAxcCf2r8WDqvLo9TZLVMM9vM3dd3UhwiG+nOQLLAzKzWzH5nZk8BV5rZd81sYXi3sMDM\nBoQHzjWznfPeON/MdmpyPgf+CqwyswOb+bCNf9mb2e5m9kT4/OdmNt3MngyPOdLMrjaz58zsoSZ3\nLeeE+xeb2Q7h+3ub2d1m9nT42DvvvLea2XzCssQinU2NgWSFE6w3MMjdxwEvA/u6+64EZUAmhsfd\nDNQAhA3EF9y96Up0jX+1TwSaW/2qtTuE7YD9COrJ3wbMcfeBwFrg3/KOWxXunwI01j76FXCdu+9B\nUCphWt7x3wQOcPcftfLZIkVTN5FkyR99U32VCuAWM/sXgi/vbuH+u4HxZnY2cCLwh5ZO5u7zzAwz\n26fAz3fgIXffYGbPA13c/ZHwtSVA/7xjbw//vYOgNj3AgcC3wtppAFuY2T+F553t7p8UGIdIu6kx\nkCxZk/f8MuAxd/+BmfUHchCsfmVmc4DvA0cBu7Zxzl8A44F1efvWs+muukeT4z8NP6fBzPLf00DL\n/98aGzAD9nT3T/NfDBuHNU3fJNKZ1E0kWbUlsCJ83rRi4zTgeuDpsNZ9i9x9DsFdxsC83cvYVBt/\neN7+tgaFLe/fY8LnxwALw+d/BkZvPDhvbEMkamoMJEvy+/InA1eY2bME699ufM3dnwU+oOUuoqa/\nHPoFn10ycALwKzN7huAuwVt4X9OxhfzjvmhmfwXOBH4W7h8N7G7BMowvAKe2ci6RTqUS1lJ2zOwr\nBGvifiPuWESSQncGUlbM7HjgKYKFakQkpDsDERHRnYGIiKgxEBER1BiIiAhqDEREBDUGIiKCGgMR\nEQH+H2FRyOkvfEciAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x785c198>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The No. of trays will be 3.75\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.5: Page 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.5\n",
+ "# Page: 299\n",
+ "\n",
+ "print'Illustration 8.5 - Page: 299\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# a = NH3 b = H2 c = N2 w = water\n",
+ "P = 2.0;# [bars]\n",
+ "Temp = 30.0;# [OC]\n",
+ "L = 6.38;# [kg/s]\n",
+ "W = 0.53;# [weir length,m]\n",
+ "pitch = 12.5/1000;# [m]\n",
+ "D = 0.75;# [Tower diameter,m]\n",
+ "hW = 0.060;# [weir height,m]\n",
+ "t = 0.5;# [tray spacing,m]\n",
+ "#*******#\n",
+ "\n",
+ "# From Geometry of Tray Arrangement:\n",
+ "At = 0.4418;# [Tower Cross section,square m]\n",
+ "Ad = 0.0403;# [Downspout Cross section,square m]\n",
+ "An = At-Ad;# [square m]\n",
+ "Ao = 0.0393;# [perforation area,square m]\n",
+ "Z = 0.5307;# [distance between downspouts,square m]\n",
+ "z = (D+W)/2.0;# [average flow width,m]\n",
+ "h1 = 0.04;# [weir crest,m]\n",
+ "# From Eqn. 6.34\n",
+ "Weff = W*(math.sqrt(((D/W)**2)-((((D/W)**2-1)**0.5)+((2*h1/D)*(D/W)))**2));# [m]\n",
+ "q = Weff*(1.839*h1**(3/2));#[cubic m/s]\n",
+ "# This is a recommended rate because it produces the liquid depth on the tray to 10 cm.\n",
+ "Density_L = 996;# [kg/s]\n",
+ "Mw = 18.02;# [kg/kmol]\n",
+ "L1 = 6.38/Mw;# [kmol/s]\n",
+ "Ma = 17.03;# [kg/kmol]\n",
+ "Mb = 28.02;# [kg/kmol]\n",
+ "Mc = 2.02;# [kg/kmol]\n",
+ "MavG = (0.03*Ma)+(0.97*(1/4)*Mb)+(0.97*(3/4)*Mc);# [kg/kmol]\n",
+ "Density_G = (MavG/22.41)*(P/0.986)*(273/(273+Temp));# [kg/cubic m]\n",
+ "G = 0.893;# [kg/s]\n",
+ "sigma = 68*10**(-3);# [N/m]\n",
+ "abcissa = (L/G)*(Density_G/Density_L)**0.5;\n",
+ "# From Table 6.2 (Pg169):\n",
+ "alpha = 0.04893;\n",
+ "beeta = 0.0302;\n",
+ "# From Eqn. 6.30\n",
+ "Cf = ((alpha*math.log10(1.0/abcissa))+beeta)*(sigma/0.02)**0.2;\n",
+ "# From Eqn. 6.29\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1.0/2);# [m/s]\n",
+ "# 80% of flooding value:\n",
+ "V = 0.8*Vf;# [m/s]\n",
+ "G = 0.8*G;# [kg/s]\n",
+ "G1 = G/MavG;# [kmol/s]\n",
+ "Vo = V*An/Ao;# [m/s]\n",
+ "l = 0.002;# [m]\n",
+ "Do = 0.00475;# [m]\n",
+ "# From Eqn. 6.37\n",
+ "Co = 1.09*(Do/l)**0.25;\n",
+ "viscosity_G = 1.13*10**(-5);# [kg/m.s]\n",
+ "Reo = Do*Vo*Density_G/viscosity_G;\n",
+ "# At Reynold's No. = Reo\n",
+ "fr = 0.0082;\n",
+ "g = 9.81;# [m/s^2]\n",
+ "# From Eqn. 6.36\n",
+ "def f36(hD):\n",
+ " return (2*hD*g*Density_L/(Vo**2*Density_G))-(Co*(0.40*(1.25-(Ao/An))+(4*l*fr/Do)+(1-(Ao/An))**2))\n",
+ "hD = fsolve(f36,1);\n",
+ "# From Eqn. 6.31;\n",
+ "Aa = (Ao/0.907)*(pitch/Do)**2;# [square m]\n",
+ "Va = V*An/Aa;# [m/s]\n",
+ "# From Eqn. 6.38\n",
+ "hL = 6.10*10**(-3)+(0.725*hW)-(0.238*hW*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "# From Eqn. 6.42\n",
+ "hR = 6*sigma/(Density_L*Do*g);# m\n",
+ "# From Eqn. 6.35\n",
+ "hG = hD+hL+hR;# [m]\n",
+ "Al = 0.025*W;# [square m]\n",
+ "Ada = min(Al,Ad);\n",
+ "# From Eqn. 6.43\n",
+ "h2 = (3/(2*g))*(q/Ada)**2;# [m]\n",
+ "# From Eqn.6.44\n",
+ "h3 = hG+h2;\n",
+ "# since hW+h1+h3 is essentially equal to t/2, flooding will not occur\n",
+ "abcissa = (L/G)*(Density_G/Density_L)**0.5;\n",
+ "V_by_Vf = V/Vf;\n",
+ "# From Fig.6.17, V/Vf = 0.8 & abcissa = 0.239\n",
+ "E = 0.009;\n",
+ "\n",
+ "# At the prevailing conditions:\n",
+ "Dg = 2.296*10**(-5);# [square m/s]\n",
+ "viscosity_G = 1.122*10**(-5);# [kg/m.s]\n",
+ "ScG = viscosity_G/(Density_G*Dg)\n",
+ "Dl = 2.421*10**(-9);# [square m/s]\n",
+ "\n",
+ "# From Henry's Law:\n",
+ "m = 0.850;\n",
+ "A = L1/(m*G1);\n",
+ "\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/(ScG**0.5);\n",
+ "# From Eqn. 6.64:\n",
+ "thetha_L = hL*z*Z/q;# [s]\n",
+ "# From Eqn. 6.62:\n",
+ "NtL = 40000*(Dl**0.5)*((0.213*Va*Density_G**0.5)+0.15)*thetha_L;\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1/((1/NtG)+(1/(A*NtL)));\n",
+ "# From Eqn. 6.51:\n",
+ "EoG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.63:\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;# [square m/s]\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thetha_L);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2.0)*((1+(4*m*G1*EoG/(L1*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EoG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+((exp(eta)-1)/(eta*(1+(eta/(eta+Pe))))));\n",
+ "# From Eqn. 6.60:\n",
+ "EMGE = EMG/((1+(EMG*(E/(1-E)))));\n",
+ "# From Eqn. 8.16:\n",
+ "EO = math.log(1+EMGE*((1.0/A)-1))/math.log(1.0/A);\n",
+ "Np = 14*EO;\n",
+ "yNpPlus1 = 0.03;\n",
+ "x0 = 0;\n",
+ "# From Eqn. 5.54(a):\n",
+ "def f37(y1):\n",
+ " return ((yNpPlus1-y1)/(yNpPlus1-m*x0))-(((A**(Np+1))-A)/((A**(Np+1))-1))\n",
+ "y1 = fsolve(f37,0.03);\n",
+ "print\"Mole Fraction Of NH3 in effluent is \",round(y1,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.5 - Page: 299\n",
+ "\n",
+ "\n",
+ "Mole Fraction Of NH3 in effluent is 0.0211\n"
+ ]
+ }
+ ],
+ "prompt_number": 159
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.6: Page 304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.6\n",
+ "# Page: 304\n",
+ "\n",
+ "print'Illustration 8.6 - Page: 304\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#****Data****# \n",
+ "# Gas:\n",
+ "# In:\n",
+ "y_prime1 = 0.02;\n",
+ "Y_prime1 = 0.0204;# [mol/mol dry gas]\n",
+ "# Out:\n",
+ "y_prime2 = 0.00102;\n",
+ "Y_prime2 = 0.00102;# [mol/mol dry gas]\n",
+ "# Non absorbed gas:\n",
+ "MavG = 11;# [kg/kmol]\n",
+ "G = 0.01051;# [kmol/s nonbenzene]\n",
+ "Gm = 0.01075;# [kmol/s]\n",
+ "T = 26;# [OC]\n",
+ "viscosity_G = 10**(-5);# [kg/m.s]\n",
+ "DaG = 1.30*10**(-5);# [square m/s]\n",
+ "\n",
+ "# Liquid:\n",
+ "# In:\n",
+ "x_prime2 = 0.005;\n",
+ "X_prime2 = 0.00503;# [mol benzene/mol oil]\n",
+ "# Out:\n",
+ "x_prime1 = 0.1063;\n",
+ "X_prime1 = 0.1190;# [mol benzene/mol oil]\n",
+ "# Benzene free oil:\n",
+ "MavL = 260.0;# [kg/kmol]\n",
+ "viscosity_L = 2*10**(-3);# [kg/kmol]\n",
+ "Density_L = 840;# [kg/cubic cm]\n",
+ "L = 1.787*10**(-3);# [kmol/s]\n",
+ "DaL = 4.77*10**(-10);# [square m/s]\n",
+ "sigma = 0.03;# [N/square m]\n",
+ "m = 0.1250;\n",
+ "#*******#\n",
+ "\n",
+ "A = 0.47**2*math.pi/4;# [square m]\n",
+ "# At the bottom:\n",
+ "L_prime1 = ((L*MavL)+(X_prime1*L*78))/A;# [kg/square m.s]\n",
+ "# At the top\n",
+ "L_prime2 = ((L*MavL)+(X_prime2*L*78))/A;# [kg/square m.s]\n",
+ "L_primeav = (L_prime1+L_prime2)/2;# [kg/square m.s]\n",
+ "# At the bottom\n",
+ "G_prime1 = ((G*MavG)+(Y_prime1*G*78))/A;# [kg/square m.s]\n",
+ "# At the top\n",
+ "G_prime2 = ((G*MavG)+(Y_prime2*G*78))/A;# [kg/square m.s]\n",
+ "G_primeav = (G_prime1+G_prime2)/2;# [kg/square m.s]\n",
+ "\n",
+ "# From Illustration 6.6:\n",
+ "Fga = 0.0719;# [kmol/cubic cm.s]\n",
+ "Fla = 0.01377;# [kmol/cubic cm.s]\n",
+ "# Operating Line:\n",
+ "X_prime = numpy.array([0.00503 ,0.02 ,0.04 ,0.06 ,0.08 ,0.10 ,0.1190]);\n",
+ "x_prime = numpy.zeros(7);\n",
+ "Y_prime = numpy.zeros(7);\n",
+ "y_prime = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " x_prime[i] = X_prime[i]/(1+X_prime[i]);\n",
+ " def f38(Y_prime):\n",
+ " return (G*(Y_prime1-Y_prime))-(L*(X_prime1-X_prime[i]))\n",
+ " Y_prime[i] = fsolve(f38,Y_prime1);\n",
+ " y_prime[i] = (Y_prime[i])/(1+Y_prime[i]);\n",
+ "\n",
+ "def f39(x):\n",
+ " return m*x\n",
+ "x = numpy.arange(0,0.14,0.01);\n",
+ "\n",
+ "# Interface compositions are determined graphically and according to Eqn. 8.21:\n",
+ "yi = [0.000784, 0.00285, 0.00562 ,0.00830 ,0.01090 ,0.01337 ,0.01580];\n",
+ "ylog = zeros(7);\n",
+ "y_by_yDiffyi = zeros(7);\n",
+ "for i in range(0,7):\n",
+ " ylog[i] = math.log10(yi[i]);\n",
+ " y_by_yDiffyi[i] = y_prime[i]/(y_prime[i]-yi[i]);\n",
+ "\n",
+ "plt.plot(x_prime,y_prime,label=\"Operating Line\")\n",
+ "plt.plot(x,f39(x),label=\"Equilibrium Line\")\n",
+ "plt.plot(x_prime,yi,label=\"Interface Composition\");\n",
+ "plt.legend(loc='lower right');\n",
+ "plt.grid('on');\n",
+ "xlabel(\"mole fraction of benzene in liquid\");\n",
+ "ylabel(\"mole fraction of benzene in gas\");\n",
+ "plt.show()\n",
+ "plt.plot(ylog,y_by_yDiffyi);\n",
+ "plt.grid();\n",
+ "xlabel(\"log y\");\n",
+ "ylabel(\"y/(y-yi)\");\n",
+ "title(\"Graphical Integration Curve\");\n",
+ "plt.show()\n",
+ "# Area under the curve:\n",
+ "Ac = 6.556;\n",
+ "# Eqn. 8.28:\n",
+ "NtG = (2.303*Ac)+1.152*(math.log10((1-y_prime2)/(1-y_prime1)));\n",
+ "Gav = (Gm+(G/(1-Y_prime2)))/(2*A);# [kmol/square m.s]\n",
+ "HtG = Gav/Fga;# [m]\n",
+ "Z = HtG*NtG;# [m]\n",
+ "print\"The depth of packing required is \",round(Z,3),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.6 - Page: 304\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXWh98loEgHKdJBEdT7qcCl1wgoiDSlq0jz6lVR\nEVHARvAqNrgqRVSQJr1I7y1IUYELKAiIEENTUAGpQkiyvj/2JE5CJjnJ9GS/z3OezDlnl1/OzGRl\n77X3WqKqWCwWi8XiK64JtgCLxWKxZC2sYbFYLBaLT7GGxWKxWCw+xRoWi8VisfgUa1gsFovF4lOs\nYbFYLBaLT/GrYRGRFiKyT0R+EpEBHsqMcN3/TkSqua6VFZF1IvKDiOwWkWfdyhcRkVUisl9EVopI\nIX/+DhaLxWLJGH4zLCKSAxgFtABuB7qKyG0pyrQEKqnqLcDjwBjXrSvA86r6D6AO8LSI3Oq6NxBY\npaqVgTWuc4vFYrGECP4csdQCDqhqjKpeAWYAbVOUaQNMAlDVb4FCIlJCVY+r6k7X9fPAXqB0yjqu\nn+38+DtYLBaLJYP407CUBo64nR/lb+OQVpky7gVEpAJQDfjWdamEqp5wvT4BlPCNXIvFYrH4An8a\nFqexYsRTPRHJB8wBnnONXJIXNPFobEwai8ViCSFy+rHtY0BZt/OymBFJWmXKuK4hIrmAucAUVZ3v\nVuaEiNyoqsdFpCTwW2qdi4g1OBaLxZJBVDXlP/sZxp8jlm3ALSJSQUSuBToDC1OUWQg8CiAidYA/\nVfWEiAjwObBHVT9MpU531+vuwHw8oKohfQwePDjoGqxOq9NbnYsXKyVKKLt3h7bOYB/hoNNX+G3E\noqpxItIHWAHkAD5X1b0i8oTr/qequlREWorIAeAC0NNVvT7wCPC9iOxwXRukqsuBd4BZItIbiAE6\n+et38DcxMTHBluAIq9O3ZCWdGzZAz56waBH84x/+15QaWel5ZhX8ORWGqi4DlqW49mmK8z6p1NuI\nh9GUqp4CmvlQpsViyQQ7dkD79jBtGtSuHWw1llDC7rwPIj169Ai2BEdYnb4lK+jcvx/uvx8++QSa\nBfnfvKzwPLMa4st5tVBCRDSr/m4WSzA5cgQaNoTXX4devYKtxuJLRAQNcee9JR2ioqKCLcERVqdv\nCWedv/8O994Lzz4bOkYlnJ9nVsUaFovF4oizZ+G++4xfpV+/YKuxhDJ2KsxisaTLX38Zo3L77TB6\nNIjXkyWWUMRXU2HWsFgsljS5csWMUvLlgylT4Bo7z5FlsT6WLEC4zLlanb4lnHQmJEDv3hAfD5Mm\nhaZRCafnmV3w6z4Wi8USvqhC377w88+wYgXkyhVsRZZwwU6FWSyWVBkyBObPh3XroJBNp5ct8NVU\nmB2xWCyWqxgxAqZONSFbrFGxZJQQnDHNPoTLnKvV6VtCXefkyTBsGLzxRhQlwiDbUag/z0TCRacv\nsCMWi8WSxIIF8NJLZvrrxIn0y1ssqWF9LBaLBTDGpHNnWLoUatQIthpLMLDLjS0Wi8/Yts0YlZkz\nrVGxeI81LEEkXOZcrU7fEmo69+6FVq1g7Fi4++6/r4eaTk9YnaGHNSwWSzbm0CFo3hzeew/atg22\nGktWwfpYLJZsyokTJvx9nz4mWrHFYn0sFosl0/z5J7RoAQ8/bI2KxfdYwxJEwmXO1er0LcHWefEi\ntG4NjRqZZF2eCLZOp1idoYc1LBZLNiI2Fjp0gIoV4YMPbPh7i3+wPhaLJZsQHw+PPGJGLHPm2KCS\nlquxscIsFotjVOGZZ+D4cVi2zBoVi3+xU2FBJFzmXK1O3xIMna+9Blu2mJAtuXM7q2Ofp++4EHsh\nLHT6CmtYLJYszvDhMHeuGakUKBBsNdmLBE1g1JZRVBlVhQuxF4ItJ2BYH4vFkoUZPx7eeMOEvy9b\nNthqshfRp6PptaAXl+MvM6HtBG4temuwJaWL3cdisVjSZO5cePVVWLnSGpVAkjhKqTW2Fq0qt2Jj\nz41hYVR8iTUsQSRc5lytTt8SCJ2rVsGTT8KSJVC5cubasM8z40SfjqbJpCZM3TWVjb020r9ef3Jc\nkwMILZ3+xhoWiyWL8c038NBDZsRSrVqw1WQP7CglOdbHYrFkIXbvhqZNjW/l/vuDrSZ7EI6+FE8E\nzMciIvlEJIfrdRURaSMidhW8xRJiREeb+F8ffmiNSiCwoxTPOJkK+wq4TkRKAyuAbsBEf4rKLoTL\nnKvV6Vv8ofPYMbjnHnj5Zeja1TdtZufnmR5p+VI8ES7P0xc4MSyiqheBB4GPVbUj8H/+lWWxWJzy\n22/QrBk88QQ89VSw1WRt7CjFGen6WERkB/AU8AHQW1V/EJFdqnpHIARmFutjsWQHTp0yWR/btYMh\nQ4KtJmuTlXwpngjkPpa+wCBgnsuo3Ays87Zji8XiHWfPGp/KPfdAZGSw1WRdEjSB0VtG21FKBkjX\nsKjqelVto6rvus4PqqpNDeQDwmXO1er0Lb7QeeGCyVNfowa8/75/wt9np+fpiejT0TSd3JQpu6Y4\n9qV4Ilyepy9wsiqsuIgME5GlIrLOdawNhDiLxXI1ly7BAw/ATTfBqFE2p4o/cB+l3H/L/XaUkkGc\n+FhWATOB/sATQA/gd1V9ye/qvMD6WCxZkStXoH17E6F42jTIaRNf+Jzo09H0XtibS3GXsqwvxROB\n9LHcoKrjgFjXtFhPoIm3HVssloyRmKhLFaZMsUbF19hRiu9wYlhiXT+Pi0grEakOFPajpmxDuMy5\nWp2+JTM6ExKgd2+zCmz2bLj2Wt/rSklWfp4pSfSlTN01lU29NnnlS/FEuDxPX+DEsLwlIoWAFzDT\nYeOA5/2qymKxJKEKffrAwYMwf77zRF2W9EkcpdQeV5tWt7RiQ88NVClaJdiywh4bK8xiCWFU4aWX\nICoK1qyxibp8SaIv5XKc2ZdiDUoAc96LyEhAgcTOFDgDbFPVBd4KsFgsnhkyBFasMIYl5I1KQoJZ\nB50/f7CVpEmCJjBm6xgi10cysP5A+tbp6/Npr+yOk6mw3EBVYD/wE3AXUBboLSIf+lFblidc5lyt\nTt/iVOf778OMGSa3SpEi/tWUGhl6nhcuQMeO8PrrftPjiYzodPelbOy5kRfqvRAwoxIun09f4MSw\n3Ak0UdWRqjoCaArciokd1tyf4iyW7Mro0TBmDKxeDSVKBFtNOhw7Bo0aQb588M47wVaTKtaXElic\n7GP5Eaitqn+6zgsBW1S1sojsUNWQTCVkfSyWcGXCBBg8GNavh4oVg60mHbZtM4HK+vSBAQNCcrem\n9aU4J5D7WN4DdojIBBGZCOwA3heRvMBqbwVYLJa/mTkTXnnFTH+FvFGZMwfuuw9GjoSBA0POqNhR\nSvBwEivsc6A+sACYBzRQ1bGqekFVX/S3wKxMuMy5Wp2+xZPOhQvhuedg+XKoEgJ//zw+T1V46y3o\n1w9WrjTxZYJIajqD6UvxRLh8Pn2Bo5z3qvqLqs5X1QWqesxp4yLSQkT2ichPIjLAQ5kRrvvfiUg1\nt+vjReSEiOxKUT5SRI6KyA7X0cKpHoslVFm5Eh57DBYtgjvvDLaaNLh0Cbp1MxtqvvkGqoXWTLgd\npYQGftvH4kpn/CPQDDgGbAW6qupetzItgT6q2lJEagMfqWod172GwHlgsnvuFxEZDJxT1f+m07/1\nsVjCgq++MvG/5s2DBg2CrSYNTpwwo5OyZY0jKE+eYCtKhvWleE8gfSyZpRZwQFVjVPUKMANom6JM\nG2ASgKp+CxQSkRtd5xuA0x7aDq3JXIslk2zZAh06wPTpIW5Udu2C2rVN8pfp00PKqNhRSujhyLCI\nSA4RKSUi5RIPB9VKA0fczo+6rmW0TGo845o6+9y1Si0sCZc5V6vTtyTq/O47aN0axo83qYVDjaTn\nuXgxNGkCQ4eaHZvX+PP/0YwRfTqa6oOqh5QvxRPh8vn0BU523j8DDAZ+A+LdbqWXmtjpPFTK0Ud6\n9cYAb7he/wcYDvROrWCPHj2oUKECAIUKFaJq1apEREQAf7/JwTzfuXNnSOkJ9/Nwep6TJkXx/PPw\n6acRtGoVfD2pPs8dO4jYvh2GDSMqMhJKlcLcDb6+tevWsmDfAqaem0rHMh3pULEDv+7+lSoRVUJC\nX7h8PhNfx8TE4Euc7GM5CNRS1ZMZalikDhCpqi1c54OAhMRMlK5rnwBRqjrDdb4PaKyqJ1znFYBF\n7j6WFH14vG99LJZQ5eBBiIiAN9+E7t2DrcYDsbHw9NPw7bdmRUH58sFWlERi7vnY+FjrS/ExgfSx\nHAbOZqLtbcAtIlJBRK4FOgMLU5RZCDwKSYboz0Sj4gkRKel2+gCwy1NZiyXUOHLETHu9/HIIG5VT\np6B5czh+HDZtChmjkqAJjNoyilpja9G6cmvrSwlhnBiWn4F1IjJIRF5wHf3Sq6SqcUAfYAWwB5ip\nqntF5AkRecJVZikQLSIHgE+BpxLri8h0YDNQWUSOiEhP1613ReR7EfkOaEwYh/B3H46GMlanbzh+\nHJo2hfvui+LJJ4OtxgM//mic9DVqENW3b8gElIw+HU2TSU2Ytmsam3ptSuZLCfX3PZFw0ekLnOSg\nO+w6rnUdgkP/iaouA5aluPZpivM+Hup29XD9USd9WyyhxMmTZkFVt27QsGGw1Xhg9Wp4+GHjpO/d\n24RUDjIJmsDHWz8mMiqSQQ0G2UjEYYLNx2Kx+JkzZ8xIpVkzePvtkIt8YvjkE4iMNDFlGjcOthrA\n+lKCgd/zsYjIR6r6nIgsSuW2qmobbzu3WLI6589Dy5ZQr16IGpW4OHjhBbP1f+NGqFQp2IrsKCUL\nkJaPZbLr53APh8VLwmXO1erMHH/9BW3bwq23wocf/m1UQkbnmTNmI83evfD111cZlWDoTMuX4omQ\neZ7pEC46fYFHw6Kq/3P9jErlWB84iRZL+BEba3bUlygBn30WUnsKDdHRZhh1002wdCkUCu4+Y7vi\nK2thfSwWi4+Ji4MuXczP2bMhV65gK0rBhg0m2+Orr5o8KkHG+lJCh3CIFWaxZDsSEqBXL+NbmTkz\nBI3KpEkm4uWkSUE3KnaUknVxbFhEJHSizmURwmXO1ep0hio89RQcOgRffgnXXZd6uaDoTEiAQYPg\njTfMMuLm6WcV96fOzPhSPBHs990p4aLTF6RrWESknojswYTAR0SqisjHfldmsYQRqmZx1c6dJmZj\nCAX/hQsXjMNn0yYTouX224MmxY5SsgdOYoVtAToACxLz24vID6r6jwDoyzTWx2IJJK+9ZgzK2rVQ\nuHCw1bhx9KhZ+VW1qtmr4mkYFQCsLyX0CaiPRVUPp7gU523HFktW4Z13YO5csxUkpIzK1q1Qpw48\n9JCJzR8ko+I+SmlV2eZLyQ44CkIpIvUBRORaEekP7E2njsUB4TLnanV6ZsQIGDfOREMpVsxZnYDo\nnDXL7MwcPRpefDFTOzN9oTOlL6V/vf4+3+xoP5+hhxPD8iTwNCYB1zGgmuvcYsnWfPIJDB8Oa9ZA\nqVLBVuNC1TjoX3wRVq0yOzSDgPWlZG/sPhaLJROMHQv/+Y9ZYHXTTcFW4+Kvv0zwyIMHYcECuPHG\noMiwvpTwxe+xwtw6Kg78C6jgVl5VtZe3nVss4cj48WZQsG5dCBmVI0fMyq+KFY21u/76gEuwMb4s\niTiZClsAFABWAUvcDouXhMucq9X5N5Mmweuvm+mvzMZr9LnOtWuhVi2z8XH6dJ8ZlYzo9OW+lIxi\nP5+hh5N8LNer6gC/K7FYQpwpU0zmxzVroHLlYKvB+FPefx8++ACmToUmTQIuwY5SLKnhZB/Lm8DX\nqhpWoxTrY7H4kmnToH9/s/oriPsL/+bsWejRA44dgzlzoGzZgEuwvpSsRyD3sfQFFonIJRE55zrO\netuxxRIuzJz5d8qSkDAqe/ZAzZomdPJXXwXcqNgVX5b0SNewqGo+Vb1GVXOran7XUSAQ4rI64TLn\nmp11zpkDzz0HK1bA//2fb9r0SuesWSbD46BBMGaMXzc9pqYzmL4UT2Tnz2eo4iRW2DUi0k1EXned\nlxORWv6XZrEEl3nzTADg5cvhzjuDLCYx0+PAgWbo1KNHQLu3oxRLRnDiY/kESACaqOqtIlIEWKmq\nNQIhMLNYH4vFGxYuhH/9C5Ytg+rVgyzm+HGT4OX6642TvkiRgHZvfSnZh0D6WGqr6lPAXwCqegoI\ntSwTFovPWLzYGJUlS0LAqGzeDDVqQESEERZAo2JHKZbM4sSwxIpI0iSqiBTDjGAsXhIuc67ZSeey\nZSZR16JF5u+5P3CkUxVGjYJ27eDTTyEyEnIEzpcRfTqa6oOqh5QvxRPZ6fMZLjgxLCOBeUBxERkK\nbALe9qsqiyUIrFgB3bubaCi1gulFvHgRHn3URLf8+mu4//6AdZ2gCYz8diS1xtaibpm6dpRiyRSO\nYoWJyG1AU9fpGlUN+ejG1sdiyQirV0PXrjB/PtSvH0QhBw6YHfR33WWiXAYwY9jBUwfpvbC39aVk\nYwLmYxGR8UBuVR3lOvaKSKS3HVssocLatcaozJ0bZKOyaBHUqwdPPGFixwTIqCSOUmqPq219KRaf\n4GQqrDkwSUS6u10LTizuLEa4zLlmZZ3r10PnzjB7NjRq5HtNqXGVzvh4k4LyqafMPNxTT2Uqf0pm\nOHjqIE0mNWH67ulX+VKy8vseDMJFpy9wYlh+AxoCHUXkYxGxK8IsWYING0xA4JkzzaKroHDypPGh\nbNwI27ZB3boB6daOUiz+xMk+lh2qWk1EBIjE+FpKqWqoBAxPFetjsaTFpk3wwANmW8g99wRJxPbt\nxp/SoQO8/TbkdBIT1nusL8XiiUDuY1kEJgGLqg4G3gVivO3YYgkW33xjjMoXXwTRqEyYAM2bm+jE\n778fEKNiRymWQOEkVtjrKc4XqWrg43NnQcJlzjUr6dyyBdq0gYkTzd/1gHP5MlGtW8O775oAkh06\nBKTbtHwpnshK73soEC46fYGTVWHtReQnETlroxtbwplt26B1a5MBsmXLIAg4fBgaNjQh77dsgdtu\n83uXdpRiCQZOfCwHgVbhsHfFHetjsbizfTvcdx989hm0DcaaxjVr4JFHTCDJF14IyKov60uxZJRA\n+liOh5tRsVjc+e47M0IZMyYIRkUV3nnHGJXEbGF+Nip2lGIJNk4MyzYRmSkiXV3TYu1F5EG/K8sG\nhMucazjr3LXL+FJGjoQHA/2pPXvWrPqaPx+2boW77/ao01dkxpfiiXB+30ORcNHpC5wYloKYyMb3\nAq1cR2t/irJYfMEPP8C998JHH0HHjkHovGZNKFnS7MIsU8av3dlRiiWUcBQrLByxPpbszZ490KwZ\nDBsGDz0U4M5nzjQZwoYPN8Ek/Yz1pVh8RSBjhVURkTUi8oPr/E4RedXbji0Wf7Fvn9mf8u67ATYq\nV65Av37w8suwapXfjYr7KKVV5VZ2lGIJGZxMhY0FXgZiXee7gK5+U5SNCJc513DSuX+/Gam89RZ0\n6xbAzo8fh6ZN4ccfzbrmqlXT1OktKX0p/ev193m+lHB638OBcNHpC5wYljyq+m3iiWt+6Yr/JFks\nmePYMfO3fciQAKeE37TJZAVr2tREKC5c2G9dWV+KJRxwso9lGfAMMNsVM6wD0FtV7wuEwMxifSzZ\ni+hos+jqlVfg8ccD1Glilsc33zQhWvy869Lmnrf4G1/5WJwEKOoDfAbcKiK/AD8DD3vbscXiK2Ji\noEkTGDgwgEbl4kX497/h++9Nlseb/BeTNUET+Hjrx0RGRTKowSD61ukbsmmCLRZwFivsoKo2BYoC\nVVS1vqrG+F1ZNiBc5lxDWeehQ2ak0r8/3HZbVGA6jYmBBg0gIQE2b86wUcnI84w+HU2TSU2Ckns+\nlN93d6zO0MPJqrCiIjIS2AisF5GPROQG/0uzWNLmyBEzUnnuObO6NyCsXg116pgVX1984bcsjwma\nwKgto6g1tpb1pVjCDic+ltXAemAKIMBDQISqNvO/vMxjfSxZm2PHoHFjePJJE3rL76ia8PYffADT\np/s1M5j1pViCha98LE4My25V/b8U13ap6h3edu5PrGHJuvzyi/m7/thj8NJLAejw/Hno1ctMgc2d\nC2XL+qUb60uxBJtABqFc6YoTdo3r6Ays9LZjS/jMuYaSzl9/NdNfPXtebVT8ovPAATP1lT+/yZ/i\nA6OSms5g+lI8EUrve1pYnaGHR8MiIudF5BzwL2AqZoNkLDAdcLT2RkRaiMg+Vz6XAR7KjHDd/05E\nqrldHy8iJ0RkV4ryRURklYjsF5GVIlLIiRZL+HPihNkq8vDDMGhQADpcsgTq1zcOnHHjIHdun3dh\nfSmWrIjfYoWJSA7gR6AZcAzYCnR1D8EvIi2BPqraUkRqAx+pah3XvYbAeWCy+7SbiLwH/KGq77mM\nVWFVHZhK/3YqLAtx/LgZqXTqBJGRfu4sIcHsTfnsM5g9G+rW9Us30aej6b2wN5fjLltfiiUkCORU\nWGapBRxQ1RhVvQLMAFJmw2gDTAJw7e4vJCI3us43AKdTaTepjutnOz9ot4QQiT6Vrl0DYFTOnIEH\nHoCVK02oez8YlQRNYPSW0SbG1y02xpcl6+FPw1IaOOJ2ftR1LaNlUlJCVU+4Xp8ASngjMpiEy5xr\nMHUePWpWf3XvDq+9lnZZr3Xu3Qu1ahk/ytq1JuS9j4k+HU31QdWZumsqG3tuDAlfiifs59O3hItO\nX+Bx572IVFTVn71o2+k8VMphl+P5K1VVEfFYvkePHlSoUAGAQoUKUbVqVSJcy0QT3+Rgnu/cuTOk\n9ITa+fHj8MorETz5JNSoEUVUlB+f5xtvwH//S8SHH0KPHj7/fdauW8uCfQuYem4qHct0pEPFDvy6\n+1eqRFTx2/Pz9tx+PrP+80x8HRMTgy/x6GMRkf+p6j9FZK2qNslwwyJ1gEhVbeE6HwQkqOq7bmU+\nAaJUdYbrfB/QOHFEIiIVgEUpfCz7MPtojotISWCdqt6aSv/WxxLG/Pzz35sf+/b1Y0fx8WYoNHWq\nWUpco4bPu7C+FEu4EIhYYTlE5BWgsoj0I/nIQlX1v+m0vQ24xWUcfgE6c3W4/YWYWGQzXIboT7dp\nLk8sBLoD77p+zk+nvCXMOHjQGJUXX/TzjvpTp0zClthYE+q+WDGfNp+gCYzZOobI9ZEMrD/Q7kux\nZBvS8rF0AeKBHEB+15HP7XWaqGocxmisAPYAM1V1r4g8ISJPuMosBaJF5ADwKfBUYn0RmQ5sxhi2\nIyLS03XrHeAeEdkPNHGdhyXuw9FQJpA69+83jvqXX864UcmQzu++M6mD/+//jKPex0Yl+nQ0TSc3\nTdWXYt9332J1hh4eRyyqug94R0S+dxmADKOqy4BlKa59muI81T8fqppqMjFVPYVZwmzJYuzbZ5J0\nDRkCvXv7saPp0+HZZ2HECLPUzIfYUYrF4iykSyFgMNDIdSkKeENVz/hXmndYH0t48cMPcO+9MHSo\nWQHmF+LiYMAAmD8f5s2DO+/0afPWl2IJdwK5j2U8cBboCHQCzgETvO3YYklk1y4zUnn3XT8ald9/\nN5brhx/M/hQfGhW7L8ViSY4Tw3Kzqg5W1WhXbpZI4GY/68oWhMucqz917txp/t5/8AE88oh3bXnU\nuW2bWe1Vt64J01KkiHcduZGWLyXDOkMMq9O3hItOX+DEsPzlCq8CgIg0AC76T5Ilu7B9OzRvDiNH\nQpcufuokMWXwhx/CW29BDt/4O+woxWLxjBMfS1VgMlDQdek00F1Vv/OzNq+wPpbQZutWaNUKPvnE\nRFDxObGx8PzzsGaN8afcdpvPmra+FEtWJWD5WNw6LAgQ6k77RKxhCV2++QbatIHPP4fWrf3Qwa+/\nQseOcMMNMHkyFCyYfh0H2BVflqxOwINQquqZcDEq4UK4zLn6UuemTcaoTJzoe6MSFRVlctDXrGnm\n2ObN85lRyYwvJU2dYYDV6VvCRacv8GcQSoslGV99Be3awZQpxu3hU1RhwQIzr/bZZyZMyzXef7yt\nL8ViyTh+y8cSbOxUWGixdi107gwzZphkXT7l0iV46injuJk3DypV8kmz1pdiyW4EIlaYe2f1gQpu\n5VVVJ3vbuSV7sGqVCck1e7YJ1+JTjhyBBx+Em26Cr7+GfPm8btI99/zABgN5vs7z1pdisWSAdOcK\nRGQK8D5QH6jhOmr6WVe2IFzmXL3RuXy5SSX85Zd+MCpRUSZ/imsoFLVtm9dNpsw9379ef58blezw\nvgcSqzP0cDJi+Sdwu51XsmSUJUugZ08TQaVePR82rGr2pbz7rnHYNPM+dJz7KGVQg0F2xZfF4gVO\n9rHMBp5T1V8CI8k3WB9LcFmwAP71L1i0CGrX9mHDFy+ahvfuNcMgVyI3b4g+HU2vBb2IjY+1vhRL\ntiaQy42LAXtEZKWILHIdC73t2JJ1mTsXHn8cli71sVGJjjZDn5w5zbplL41KgiYwassoao2tRevK\nre2KL4vFRzgxLJFAO+AtYBgw3HVYvCRc5lwzonPWLHj6aeNb8WkyxmXLTKyv3r3NJpjrr7+qSEZ0\npvSlBDL3fFZ834OJ1Rl6pGtYVDUK2AcUwCT42qOq6/2syxKGTJtmUgmvWAHVqvmo0YQEePNNeOwx\nMxR65hmQzI/U7SjFYvE/TnwsnTCrwhKNSSPgRVWd7WdtXmF9LIFl8mQYONAkY/y///NRo2fOwKOP\nwsmTZq1yyZJeNWd9KRZL2gTSx/IqUFNVH1XVRzFLjV/ztmNL1mH8eJNKeM0aHxqVH34woVnKlTO7\nK70wKnaUYrEEFieGRYDf3c5Puq5ZvCRc5lzT0vnZZzB4sDEqPgsgPGuW2fTy6qsmpv611zqqlprO\nYPpSPJEV3vdQwuoMPZzsY1kOrBCRaRiD0pkUeewt2ZOPPzZbSdat81EUlbg4GDQI5swxc2peOGrs\nvhSLJXg48bEI8CDQAFBgg6rOC4A2r7A+Fv8yYgT8979mluqmm3zQ4G+/mWxf114LU6eakPeZxPpS\nLJbMEfB8LOGGNSz+47//hVGjjFHxwf5E2LIFOnQwjvohQzKd5dGOUiwW7/C7815ENrl+nheRcymO\ns952bAnRubScAAAgAElEQVSfOVd3ne+9Z6bA1q/3kVEZO9akkhw50iwrzqRRiT4dTfVB1UPKl+KJ\ncHzfQxmrM/Tw6GNR1fqun96Hi7VkCd56CyZNMkaldGkvG7t0yexJ2bwZNmyAKpmbrnIfpXQs05FR\nPUeFrEGxWLILTnwsX6hqt/SuhRp2Ksy3DBlicql4ufLXcOQItG8P5cubtcr582eqGetLsVh8SyD3\nsSTbmSAiOTERjy3ZAFWTjHH2bBOl3mujsnatCXXfqZNZVpwJo2L3pVgsoU1aPpaXReQccIe7fwX4\nDbBBKH1AqM+5qpqNj1OnRrFuHZQo4WVjw4aZ5CxTp0L//pkKzZLWvpRQf56JWJ2+xeoMPTwaFlUd\nqqr5gfdVNb/bUURVBwZQoyUIqMKLL5pgkh98AMWKedHYuXMmGdesWfDtt9CkSYabsKMUiyV8cOJj\neRBYq6p/us4LARGqOj8A+jKN9bFkHlV4/nnYuNHsUyxSxIvGfvzRpA6uV8+s/MqdO8NNWF+KxRIY\nAuljGZxoVABcryO97dgSmiQkmLD3X38Nq1d7aVTmz4eGDaFvX7OsOINGxY5SLJbwxGmssJTY9Zw+\nINTmXOPioEcP2L0bVq2CQoXM9QzrjI83cb6efRYWLzYZHzNIZmJ8hdrz9ITV6VusztDDiWH5n4j8\nV0RuFpFKIvIB8D9/C7MElthYE1HlxAnjVylQIJMNnTwJ999v9qds22ZWgGUAO0qxWMIfJz6WfJgw\n+U1dl1YBb6rqBT9r8wrrY3HOX3+ZbSXXXWf2qlx3XSYb2rHDNNS+Pbz9tkkhnAGsL8ViCS42Vlg6\nWMPijHPnoE0bKFXKZPzNlSuTDU2eDC+8AKNHmz0qGcDG+LJYQoOAOe9FpLiIDBORpSKyznWs9bZj\nS/DnXE+fhnvugVtuMXbBk1FJU2dsLPTpY+J8RUVl2Kj4Ml9KsJ+nU6xO32J1hh5OfCxTMTnvb8Ks\nBosBtvlPkiUQ/PYb3H23WQX86aeZjP34yy+mkSNHYOtW+Mc/HFe1vhSLJevixMeyXVWri8j3qnqn\n69o2Va0REIWZxE6FeebYMWjWzAwuIiMztQHebHLp3BmefNJsz7/Gyf8oButLsVhCk0DuY4l1/Twu\nIq1EpDpQ2NuOLcHh55/N1pJevUxgyQwbFVWz0bF9exg3ziwrdmhUEjSBkd+OtKMUiyWL4+Qvwpuu\n3fYvAP2BccDzflWVTQj0nOu+fdCokQnT9eKLzusl6bx40STj+vxzs4Pyvvsct3Hw1EGaTGrC9N3T\n/ZYvJVzmsK1O32J1hh5pGhYRyQFUVtU/VXWXqkaoanVVtUEow4ydO4075M034amnMtFAdLRxyIDZ\no+IwH3HiKKX2uNp2lGKxZBOc+Fi2qmrNAOnxGdbH8jfffANt25qVwB06ZKKBZcvMlvzXXjPxXhzO\nnx08dZDeC3tnWV+KZMo5ZbGEBqn9fQzYPhbXTvtcwEzgAibEi6rqdm879yfWsBgSVwBPnAgtW2aw\nckICDB0KY8bAzJnQoIGzaprA6C2jGbJ+SJbel+L6EgZbhsWSYTx9dn1lWJxsja4GKPBGiut3e9t5\ndicqKoqIiAi/tb90qRlozJxppsEyxJkz0K0bnDpF1IgRRDg0Ku6jlE29NgV0lOLv52mxWJyRVqKv\n51wvX1XVu1MeAdJnySRz50LPnrBwYSaMyu7dULOmSR28di3ccEO6VawvxWKxJOJxKkxEvlPVu0Rk\nh6pWC7Aur8nOU2GTJ8OAAWbEUi2j79zMmWYn/fDhZgWYA7K6L8UTdirMEq4Ecypsj4j8BJQWkV0p\n7mniZklLaDFmjHGLrF0Lt92WgYpXrhhrtGCBiZlftWq6VbKLL8VisWSMtFITdwUaAgeAVkBrt6NN\nQNRlcXy9rv39982xfn0Gjcrx49C0qcn2uG3bVUYlNZ2B2JeSUbLTPoGswoYNG7j11lsD2ufhw4fJ\nnz+/HW36kTT3sajqcVW9U1UPqWqM++GkcRFpISL7ROQnERngocwI1/3vRKRaenVFJFJEjorIDtfR\nwuHvmmVRhcGDzb7Fr75yvMXEsHkz1KhhDMuiRVA47aAK1pcSXkycOJE77riDvHnzUrJkSZ566inO\nnDkTND3XXHMN0dHRSecNGzZk3759fukrIiKCzz///Krr5cqV49y5c3a5uD9RVb8cmCyTB4AKmOXK\nO4HbUpRpCSx1va4NfJNeXWAw0M9B/5odSEhQff551TvvVD1xIoMVR45ULV5cdckSR1UOnDygjSc0\n1rrj6uq+3/dlTnAWItQ/Y8OGDdMSJUroihUrNC4uTmNiYrRly5Zas2ZNjY2N9Xl/cXFx6ZYRET1w\n4IDP+06NiIgI/fzzzwPSV7jh6bPruu7133/nkQMzTi3ggJoRzhVgBtA2RZk2wCSXFfgWKCQiNzqo\na//VwGwz+fe/YdMmWLcOihd3WDExNMu4cWbEks4GFztKCT/Onj1LZGQko0aN4t577yVHjhyUL1+e\nWbNmERMTw5QpUwCIjIykQ4cOdOnShQIFCvDPf/6T77//PqmdX375hfbt21O8eHFuuukmRo4cmXQv\nsW63bt0oWLAgkyZNYuvWrdStW5fChQtTqlQpnnnmGa5cuQJAo0aNALjrrrvInz8/s2fPJioqirJl\nyya1WaFCBYYPH85dd91FoUKF6NKlC5cvX066/95771GqVCnKlCnDuHHjrhoBOSEmJoZrrrmGhIQE\nwIxsXn/9dRo0aECBAgVo3rw5J0+eTCr/zTffUK9ePQoXLkzVqlVZv359hvrLjjg2LCKSJ4NtlwaO\nuJ0fdV1zUqZUOnWfcU2dfe6KYxaWeOMTiIuD7t2NW2T1aihSxGHFgwehbl2ze37zZrj55rSLnzpI\n9UHVQ8qX4gnrY/mbzZs3c+nSJR588MFk1/PmzUvLli1ZtWpV0rWFCxfSqVMnTp8+zUMPPUS7du2I\nj48nISGB1q1bU61aNX755RfWrFnDhx9+yMqVK5PV7dixI2fOnOGhhx4iR44cfPTRR5w8eZKvv/6a\nNWvW8PHHHwPw1VdfAfD9999z7tw5OnbseJVuEWH27NmsWLGCn3/+me+//56JEycCsHz5cj744APW\nrFnDTz/9RFRUlM+ms6ZPn87EiRP57bffiI2NZdiwYQAcO3aMVq1a8frrr3P69GmGDRtG+/bt+eOP\nP3zSb1bFSaKveiKyB/jRdV5VRD520LZTz1hGPxljgIpAVeBXYLingj169CAyMpLIyEg+/PDDZH94\noqKign6+c+fOTNW/fBnuvjuKH3+MYulSyJ/fYf233zZG5fHHierZk6gtWzyWX7tuLc9+/Cy1x9Wm\nbpm6/Kfif/h1969BfV7+ep6ZPXeCiG+OjPLHH39QtGhRrkkl8vSNN96Y7A9jjRo1ePDBB8mRIwf9\n+vXj0qVLfP3112zdupU//viDV199lZw5c1KxYkUee+wxZsyYkVS3Xr16tGlj1vLkzp2b6tWrU6tW\nLa655hrKly/P448/nuH/8J999lluvPFGChcuTOvWrZPe11mzZtGrVy9uu+02rr/+eoYMGeITB7yI\n0LNnTypVqkTu3Lnp1KlTUp9TpkyhZcuWtGhhXLnNmjWjRo0aLF261Ot+g03iZzoyMpIePXrQo0cP\n3zWe3lwZsAUoB+xwu/aDg3p1gOVu54OAASnKfAJ0cTvfB5RwUtd1vQKwy0P/mZh5DH0uXFBt3lz1\nwQdVL11yWCkuTvX111XLlFHdtCnd4taX4oxQ/owtW7ZMc+bMqfHx8Vfde/TRR/Whhx5SVdXBgwdr\nx44dk92vWbOmzpw5U2fNmqU5c+bUQoUKJR358+fX+++/P6nuww8/nKzujz/+qPfff7/eeOONWqBA\nAc2TJ482atQo6b6I6MGDB5PO161bp2XKlEk6r1Chgq5ZsybpfPDgwdqtWzdVVW3RooWOGTMm6d6l\nS5euas8dTz6Wn3/+WUUk6dmkLDdhwgRt0KCBqqo++eSTmjt37mTPIF++fPruu++m2me44OmzSyB9\nLKp6OMWlOAfVtgG3iEgFEbkW6AykjIq8EHgUQETqAH+q6om06opISbf6DwAp99hkWc6eNZHqixc3\n+xivu85BpVOnoFUrEzRs69a/IxSngvWlZB3q1q3Lddddx9y5c5NdP3/+PMuXL6dp06ZJ144c+XvW\nOSEhgaNHj1K6dGnKli1LxYoVOX36dNJx9uxZFi9eDJj/9FNORT355JPcfvvtHDhwgDNnzvDWW28l\n+TK8pWTJksm0ur/2F+XKlaNbt27JnsG5c+d46aWX/N53OOPEsBwWkfoAInKtiPQH9qZXSVXjgD7A\nCmAPMFNV94rIEyLyhKvMUiBaRA4AnwJPpVXX1fS7IvK9iHwHNCaMc8M4nU4BYx+aNYPbbzcBJXM6\nifK2Y4dZSnz77cYRc+ONHosm5p5PzZeSEZ3BJFx0BoKCBQsyePBgnnnmGVasWMGVK1eIiYmhU6dO\nlC1blm7duiWV/d///se8efOIi4vjww8/JHfu3NSpU4eaNWuSP39+3nvvPf766y/i4+PZvXs327aZ\nzOSayjTU+fPnyZ8/P3ny5GHfvn2MGTMm2f0SJUpw8ODBDP0uif106tSJCRMmsG/fPi5evMh//vOf\ndOteuXKFS5cuJR1xcan/T5za7wLwyCOPsGjRIlauXEl8fDyXLl0iKiqKY8eOZeh3yG44MSxPAk9j\nnOfHMEEpn3bSuKouU9UqqlpJVd92XftUVT91K9PHdf8udYuYnFpd1/VH1eytuUtV27lGOFmaEycg\nIgIaN4aPP3aYsHHSJLj3Xnj7bROeJVeuVIvZ3PNZlxdffJGhQ4fSv39/ChYsSJ06dShfvjxr1qwh\nl+vzICK0bduWmTNnUqRIEaZOncqXX35Jjhw5yJEjB4sXL2bnzp3cdNNNFCtWjMcff5yzZ88m1U05\nYhk2bBjTpk2jQIECPP7443Tp0iVZmcjISLp3707hwoWZM2dOqm24436/RYsWPPvss9x9991UrlyZ\nunXrAnBdGkP3J598kjx58iQdvXr1SrVP93P3+2XKlGHBggUMHTqU4sWLU65cOYYPH+6zUVhWJd2w\n+eFKVokVduSIGak8/LBJh5KuI/fyZXj+eVizBr78Ev7xD49Fbe5578gKscKGDBnCgQMH+OKLL4It\nJcPs3buXO+64g9jY2FQXKVg8E7RYYSIy0tM9jIPnWW87t6TNwYPGqPTpAy+84KDC0aMmk1fJkrBl\nCxQsmGqxBE3g460fExkVaWN8ZXPCzTDOmzePli1bcvHiRQYMGECbNm2sUQlB0npH/odxom9zvU55\nWLwkLZ/Anj1m6mvgQIdGJSoKatWCdu1MzHwPRiXRlzJt1zTH+1LCxXcRLjpDifSmokKNzz77jBIl\nSlCpUiVy5cp1lQ/HEhp4HLGo6kT3cxHJby7reX+Lyu5s3w73328CSj7ySDqFVY0PZdgwmDLFDHFS\nwY5SLKkxePDgYEvIEMuWLQu2BIsDnKQmvgOYDCRme/od6K6qu/2szSvC1ceyebMZdHzyCaTYNH01\n585B797w889mlFKuXKrFrC/FP2QFH4sle+JvH4uTycnPMEEfy6lqOeAF1zWLj1m7Ftq2NYm60jUq\n+/ZB7dpmymvDhlSNil3xZbFYgoETw5JHVdclnqhqFJDXb4qyEe4+gcWLoXNnmDMHWqSXCODLL6FR\nI+jXD8aOhdy5ryoSfTqappObZsiX4kRnKBMuOi2WrI4Tw/KziLzm2gVfUUReBTIWTtSSJrNmmRmt\nxYuNw94jcXEmy2O/fibv8GOPXVUkMatj7XG1aXVLKztKsVgsAceJj6UIMASo77q0AYhU1dN+1uYV\n4eJjmTABXnkFli2Du+5Ko+Dvv0OXLmZ35PTpULToVUWiT0fTe2FvLsddtr6UAGB9LJZwJeg+FlU9\nparPqGp11/FcqBuVcGHUKJP5cd26dIzKli0mNEvt2rB8+VVGxX2Ucv8t99tRisWvpEzt656pcerU\nqTRv3jypbEbzpaSsHwxs6mIfkF6USqAmMA/YgQn4uAv43hcRMP15EMKRZ1VV33lHtWTJdRodnUah\nhATVTz9VLVZMdd68VIscPHVQIyZG+DUS8bp16/zSrq8JtM5Q/4yVL19er7/+es2XL1/S8cwzz/i8\nn7QyNaYVfTjYNG7cWMeNGxdsGUHB02cXH0U3dhLKcCrQH9gN2AA5XqJqNj0uWgQffQQVK3oo+Ndf\nZsv9N9/Axo1QuXKy2wmawJitY4hcH8nA+gPtvhTLVYgIixcvpkmTJsGW4oj4+Hhy5AjcZzjcNoeG\nE06c97+r6kJVjVaTKjhGVWP8LSwrEh8Pjz9uNslv2AAdO0akXjAmBho0gAsX4NtvrzIqiSu+pu6a\nysaeG/2e1TEiwoPOECNcdIYCCQkJ9O/fn2LFinHzzTczevToZOl6K1SowJo1a5LKR0ZGJkVETpna\n152JEyfSsGHDZNeWLFnCzTffTLFixXjppZeSppgmTpxI/fr16devH0WLFiUyMjJZ/dT6cZ92c69f\nuHBhKlWqxObNm5kwYQLlypWjRIkSTJ48OcPPxqYu9h4nhmWIKwVwVxFp7zrS22VhScHly2Y58c8/\nm/iQN9zgoeDKlVCnDnTrZpz0+fIl3bIrviwZJfGPeEo+++wzlixZws6dO9m2bVtSpOFEUv43781/\n9vPnz+d///sf27dvZ8GCBYwfPz7p3pYtW7j55pv57bffeOWVV9JtK6WuLVu2cNddd3Hq1Cm6du1K\np06d2L59OwcPHmTKlCn06dOHixcvZlp7IjZ1ccZwMhXWHajiKuv+L8qXflGUBTl/Hh54wOxlXLLk\n7wRdUVFRf/+XnZBgQtyPHm3WHzdqlKwN9xVfG3tuDKhBSaYzhAlFnTLEN1MtOjjjjmRVpV27duR0\nS94zbNgwevfuzaxZs3j++ecpXbo0AC+//HKa/2l7MlBOGDBgAIUKFaJQoUL07duX6dOn07t3bwBK\nlSrF00+bLBy5U9mPlR4VK1ake/fugMnX8tZbb/H666+TK1cu7rnnHq699loOHDjAnXfemWn97qmL\nE/tZuNDkLEwrdfGjjz6a6T7DHSeGpQZwq3rzycrGnDwJLVvCnXeaMC2pTiH/+Sd0726WFG/dCq4v\nO1hfSriTGYPgK0SEBQsWpOpj+fXXXylbtmzSeTkP4YB8Qcp+fvnll1TvZYYSJUokvb7++usBKFas\nWLJr5897H97wRrckee5tHjp0iNmzZ7No0aKk+3FxcWHj1/IXTgzLZuB24Ac/a8lyHD1qcm21aWMG\nIylnEyIiImDXLhO/pUULmD0brr026X4wRylX6QwDwkVnKFCyZEkOH/4747j7a4C8efNy4cKFpPPj\nx49nuq/Dhw9z2223Jb0u7faPU1pTbHnzmgAfFy9eJJ9rStgbHf4gMXXxZ5/ZKFfuOPGx1AV2ish+\nEdnlOr73t7BwZ/9+aNgQevSAd97xkKBr+nRo0sRsZhk5MsmoWF+KxVd4mmjo1KkTI0aM4NixY5w+\nfZp33nkn2R/5qlWrMmPGDOLi4ti2bRtz587NtJ9l2LBh/Pnnnxw5coQRI0bQuXNnR/WKFStG6dKl\n+eKLL4iPj2f8+PEZTmucHjZ1sX9wYlhaALcA9wKtXUcbf4oKd3bsMKmEX3kFXnoplQKxsdC3L1Ev\nvGBy0bvFxg/0ii8nhEsMrnDRGUhat25N/vz5k4727dsD8K9//YvmzZtz1113UaNGDdq3b5/sj+d/\n/vMfDh48SOHChYmMjOThhx9O1q4nI5PaEt62bdvyz3/+k2rVqtGqVask/4qnFMHu18aOHcv7779P\n0aJF2bNnD/Xr1/dYNi1dnrCpi/2ELzbDhOJBkDavrV9v9jPOmeOhQEyMau3aqq1a6bqFC5MuxyfE\n66hvR2nR94rqsE3DNC4+LjCCHWA3SKZOsD5j/uDnn39WEdH4+PhgS7EEAE+fXXy0QdLmvPchixaZ\nYJLTpnnIt7V4sSnw4osmLaTrvx4b4ys8yUqxwmJiYrjpppuIi4uzqX6zAUGPFWZxxhdfwL/+ZWzH\nVUblyhUzJ/bUUzBvHvTvDyLWl2IJKewudIuvcLIqzJIOH31kMgOvXQu3357i5tGjZmdkwYIm57Ar\ngGT06WgefPdB8tySJ6grvpwQivtDUiNcdIYiFSpUID4+PtgyLFkEO2LxAlWzoGv0aBPO6yqjsny5\niUrcqpUZyhQtmiyrY90yde0oxWKxZDmsjyWTJCTAs8/Cpk2wYgUUL+52My7OWJxJk4zDxbWL3uae\nz1pkJR+LJXthfSwhyJUrZoXwrl0moGQyo/LLL9C0qdlBv307NGpkc89bLJZshTUsGeTiRWjb1sT/\nWr7cuE6SWL0a/vlP471ftgyKFyf6dDRNJjVJNfd8uOy7sDotFktGsIYlA/z5pwnRUrQozJ0LrtBE\nJh7+4MEm3tfUqfDaayRcI3aUYrFYsiXWx+KQ48eheXO4+274739N6vmkGw8/bDz506bBjTdaX0o2\nwfpYkvPXX3/RqVMnNmzYQPPmzZk5c2awJYUFb7/9NtHR0YwdOzbV+1OnTmXy5MmsWLHCZ33628cS\n9B3y/jrw4a7o6GjVm29WfeMNky04ibVrVUuVUn3tNdW4OI1PiNeR347UG969IeR2z1t8jy8/Y/6g\nfPnyunr1akdlfZGmd/LkyVqrVq2A796/fPmyDh48WG+55RbNmzevVqhQQXv16qUxMTEB1eELAhUB\nwdNnFx/tvLdTYemwe7cJJtmvH7z2mmuzfEICvPkmPPQQTJgAb7xB9NlDHn0pnggXn4DVGZ5kJPWu\nt5sj4+PjOXToEJUrVw74zv0OHTqwePFipk+fztmzZ/nuu++oUaNGsgyY4YaG+0jYF9YpFA988N/k\n5s2qxYurTpvmdvG331TvvVe1YUPVY8e8GqXYGFy+xcYKS06FChV0zZo1qqo6YcIErV+/vvbv318L\nFy6sFStW1GXLlqmq6ssvv6w5cuTQ3Llza758+fSZZ55RVdW9e/dqs2bNtEiRIlqlShWdNWtWUtvd\nu3fXf//739qyZUvNmzev1q9fX6+99lrNlSuX5suXT8ePH68HDx7Uu+++W2+44QYtWrSoPvzww/rn\nn38mtXH48GF94IEHtFixYnrDDTdonz59ku59/vnnetttt2nhwoW1efPmeujQoVR/x1WrVun111+v\nR48e9fgcjh07pq1bt9YiRYpopUqVdOzYsUn3Bg8erB06dNBHHnlE8+fPr3fccYfu379fhw4dqsWL\nF9dy5crpypUrk8o3btxYBw4cqLVq1dICBQpo27Zt9dSpU0n3FyxYoLfffrsWKlRIIyIidO/evUn3\n3nnnHS1durTmz59fq1SpkvTeDB48WB955BFVVS1btqyKiObLl0/z58+vX3/9tU6YMEEbNGiQ1M6m\nTZu0Ro0aWrBgQa1Zs6Zu3rw5mb7XXntN69evr/nz59d7771X//jjj6ueiafPLj4asQTdAPjr8PZL\nv3y5atGiqkuXul386ivVMmVUBw1SvXJFD546qI0nNNa64+rqvt/3edWfJfwIN8OSK1cuHTdunCYk\nJOiYMWO0VKlSSWUjIiL0888/Tzo/f/68lilTRidOnKjx8fG6Y8cOLVq0qO7Zs0dVjWEpWLBg0h+1\nS5cuaWRkpHbr1i2pjQMHDujq1as1NjZWf//9d23UqJH27dtXVVXj4uL0zjvv1H79+unFixf10qVL\nunHjRlVVnT9/vlaqVEn37dun8fHx+uabb2q9evVS/R0HDBigERERaT6Hhg0b6tNPP62XL1/WnTt3\narFixXTt2rWqav6o586dW1euXKlxcXH66KOPavny5XXo0KEaFxenY8eO1YoVKya11bhxYy1durT+\n8MMPeuHCBW3fvn2SUfjxxx81b968unr1ao2Li9P33ntPK1WqpLGxsbpv3z4tW7as/vrrr6qqeujQ\nIT148KCqqkZGRia1ERMTc9VUmLthOXnypBYqVEinTJmi8fHxOn36dC1cuHCScWvcuLFWqlRJf/rp\nJ/3rr780IiJCBw4ceNUzsYYlCIZl5kwzUnF9zlXj41XfeUe1RAnVpUutL8Wiqg4Ni1nW4f2RCVIa\nlkqVKiXdu3DhgoqInjhxQlWNYXH3scyYMUMbNmyYrL3HH39chwwZoqrGsHTv3j3Zfff/vFNj3rx5\nWq1aNVVV3bx5sxYrVixVX0KLFi2SGbn4+HjNkyePHj58+Kqyjz32mHbp0sVjn4cPH9YcOXLo+fPn\nk64NGjRIe/TokaT53nvvTbq3cOFCzZcvnya4nKlnz55VEdEzZ86oqnlOgwYNSiq/Z88evfbaazU+\nPl7feOMN7dy5c9K9hIQELV26tK5fv15/+uknLV68eJKhdcf9uaXmY3E3LJMnT9batWsnq1+3bl2d\nOHFikr633nor6d7HH3+sLVq0uOq5+NuwWB9LCj79FJ5/Hlatgvr1MbmFW7eGhQth61ai61TJsC/F\nE+HiE7A6vcBXpsUHuKfXzZMnD0CytL3ufpZDhw7x7bffUrhw4aRj2rRpnDhxIqlsemmFT5w4QZcu\nXShTpgwFCxakW7dunDx5EoAjR45Qvnz5VP0xhw4d4rnnnkvq94YbbgBINXlW0aJF+fXXXz1q+OWX\nXyhSpEhSNkowWR/d2yrutsP5+uuvp2jRoknPIjHdsftzSplq+cqVK/zxxx/8+uuvyVI8Jz6jY8eO\nUalSJT788EMiIyMpUaIEXbt2TVN3Wr9PyjTS5cuXT5bu2VMa5UBiDYsLVRg6FN57D776yuSo5+uv\noXp1uP12EtatZdSvC+y+FEuWJKXzvly5cjRu3JjTp08nHefOnWP06NGO23j55ZfJkSMHu3fv5syZ\nM3zxxRdJCbDKli3L4cOHUw18Wa5cOT777LNkfV+4cIE6depcVbZZs2Zs2bLFY8bGUqVKcerUqWR/\nXERgPq4AAA7bSURBVA8fPkyZMmU8P4x0SJnSOVeuXBQrVoxSpUpx6NChpHuqypEjR5JSMXft2pUN\nGzZw6NAhRIQBAwZc1XZ6iyhKly6drA8whtg93XMoYA0Lxqj0728yBW/YADffpDB8OLRrB6NGEf3y\nkzSZ1twnoxR3wiUSr9WZ9SlRokSytL+tWrVi//79TJkyhStXrnDlyhW2bt3Kvn37gNRXLaW8dv78\nefLmzUuBAgU4duwY77//ftK9WrVqUbJkSQYOHMjFixe5dOkSmzdvBuDf//43Q4cOZc+ePQCcOXOG\n2bNnp6q7adOm3HPPPTzwwANs376duLg4zp07xyeffMKECRMoW7Ys9erVY9CgQVy+fJnvv/+e8ePH\n84hb1taMoKpMmTKFvXv3cvHiRV5//XU6duyIiNCxY0eWLFnC2rVruXLlCsOHDyd37tzUq1eP/fv3\ns3btWi5fvsx1111H7ty5yZHj6r8hxYoV45prrvGYgvm+++5j//79TJ8+nbi4OGbOnMm+ffto1apV\nMo3BJtsblrg46NXLDE7Wr4dS1582BmXWLBK++ZpRJQ5Ra2wtWlW2+VIs4Ut66Xafe+455syZQ5Ei\nRejbty/58uVj5cqVzJgxg9KlS1OyZEkGDRpEbGxsmu25Xxs8eDDbt2+nYMGCtG7dmvbt2yfdz5Ej\nB4sWLeLAgQOUK1eOsmXLMmvWLADatWvHgAED6NKlCwULFuSOO+5Ic3PgnDlzaNmyJZ07d6ZQoULc\ncccdbN++nXvuuQeA6dOnExMTQ6lSpXjwwQd54403aNKkiaPnkvJcROjWrRs9evSgZMmSxMbGMmLE\nCACqVKnClClTeOaZZyhWrBhLlixh0aJF5MyZk8uXLzNo0CCKFStGyZIl+eOPP3j77bev0pAnTx5e\neeUV6tevT5EiRfj222+T3b/hhhtYvHgxw4cPp2jRogwbNozFixdTpEgRj3qDkWcnW++8v3QJunQx\nP+fOhbw/bDG5U9q1I3rgE/Ra9m+/7p4Pl/whVmfq2J332Y+7776bbt260atXr2BL8Qob3diPTJwI\nuXPDwgVK3s9HQKtWJAx7n1Fdb6bWpAbWl2KxWK7C/jORPtl6xKIKCafPkOPx3hATw+Gxw3j0u0gb\n48viCDtiyX7YEYvD9rPqF8NREMrt26FTJ7R5c8Z0rcTrm99iUINB9K3T1yfOeUvWxhoWS7hip8L8\nydmznHj5Oe6u+QNTfpzt0xVfTgjJfRepYHVaLJaMkG0NS4ImMCrPbv7xxxDrS7FYLBYfki2nwmy+\nFIsvsFNhlnDF31NhOb1tIJxI0AQ+3voxkVGR1pdi8QnB2CNgsYQ6fp0KE5EWIrJPRH4SkavjF5gy\nI1z3vxORaunVFZEiIrJKRPaLyEoRKeRES1q554NFuPgErM7UyWyAvnXr1gU9SKvVaXX6E78ZFhHJ\nAYwCWgC3A11F5LYUZVoClVT1FuBxYIyDugOBVapaGVjjOvdIgiaEbO75nTt3BluCI6xO32J1+har\nM/Tw51RYLeCAqsYAiMgMoC2w161MG2ASgKp+KyKFRORGoGIaddsAjV31JwFReDAu7r6UTb02hYxB\nSeTPP/8MtgRHWJ2+xer0LVZn6OHPqbDSwBG386Oua07KlEqjbglVPeF6fQIo4UlAKI5SLBaLJavj\nzxGL00k8J95PSa09VVUR8dhPKI5S3ImJiQm2BEdYnb7F6vQtVmcI4kfHUB1gudv5IGBAijKfAF3c\nzvdhRiAe67rK3Oh6XRLY56F/tYc97GEPe2Ts8MXff3+OWLYBt4hIBeAXoDPQNUWZhUAfYIaI1AH+\nVNUTInIyjboLge7Au66f81PrXH2wFttisVgsGcdvhkVV40SkD7ACyAF8rqp7ReQJ1/1PVXWpiLQU\nkQPABaBnWnVdTb8DzBKR3kAM0Mlfv4PFYrFYMk6W3XlvsVgsluAQdrHC/LHpMpR0ikhZEVknIj+I\nyG4ReTYUdbrdyyEiO0RkUajqdC1jnyMie0Vkj2vaNdQ0DnK957tEZJqIXOcPjU50isitIvK1iFwS\nkRcyUjcUdIbadyit5+m6HxLfoXTe94x9h4K9+zODCwJyAAeACkAuYCdwW4oyLYGlrte1gW+c1g0R\nnTcCVV2v8wE/hqJOt/v9gKnAwlB8313nk4Bertc5gYKhpNFVJxq4znU+E+gexGdZDKgBvAm8kJG6\nIaIz1L5Dqep0ux8q3yGPOjP6HQq3EUvSpktVvQIkbpx0J9mmSyBx06WTusHWWUJVj6vqTtf185hN\noaVCTSeAiJTB/LEch7Nl4wHXKSIFgYaqOt51L05Vz4SSRuAscAXIIyI5gTzAMT9odKRTVX9X1W0u\nTRmqGwo6Q+07lMbzDKnvkCedmfkOhZth8demS1+TWZ1l3Au4VsVVA771uULPGpw+T4APgBeBBD/p\nc6IhrTJlMFEcfheRCSKyXUTGikieENJYWlVPAcOBw5hVkH+q6mo/aHSq0x91M4pP+gqR71BahNJ3\nyBMZ/g6Fm2FxutIg2EuNM6szqZ6I5APmAM+5/uvyB5nVKSLSCvhNVXekct/XePM8cwLVgY9VtTpm\n9WGa8eUySaY/myJyM9AXM01RCsgnIg/7TloyvFmtE8iVPl73FWLfoasI0e9QamT4OxRuhuUYUNbt\nvCzG8qZVpoyrjJO6viKzOo8BiEguYC4wRVVT3acTAjrrAW1E5GdgOtBERCaHoM6jwFFV3eq6Pgfz\nJQkljTWAzap6UlXjgC8xz9cfePM9CLXvkEdC7DvkiVD7Dnki498hfzmL/OSAygkcxPxndy3pO0jr\n8LeDNN26IaJTgMnAB6H8PFOUaQwsClWdwFdAZdfrSODdUNIIVAV2A9e73v9JwNPBepZuZSNJ7hQP\nqe9QGjpD6jvkSWeKe0H/DqWlM6PfIb8+dD89oPswqzwOAINc154AnnArM8p1/zugelp1Q00n0AAz\n37oT2OE6WoSazhRtNMaPK1p88L7fBWx1Xf8SP6wK84HGl4AfgF0Yw5IrWM8Ss6rqCHAGOI3x/eTz\nVDfUdIbadyit5+nWRtC/Q+m87xn6DtkNkhaLxWLxKeHmY/n/9s49xKoqisPfbwrpbdmbyJKKiiiS\nmRJKyujxR2WQWfZEoQjKUgqC6EFTWBGWISMRQalkRUkPTAnGzMrMmkbUKY0S0YIeaKEwGaTl6o+9\nrrO73Tv3Xj3DjLo+ONx199ln77XXuXPW2WefWSsIgiAY4IRjCYIgCAolHEsQBEFQKOFYgiAIgkIJ\nxxIEQRAUSjiWIAiCoFDCsQR9jqQJktoaPOYNDy0/uYD+Hyr7vnR326zR3xmSVkpaLmlY2b6+Ci3S\nZ0hqljS9wWM2SBri8i7bW9LoXlIQ7HG23FeI/2MJ+hxJ44EWM7u3zvrHAUvM7LQK+/Yzs38a7L/b\nzA5t5JjdQdKDwH5m9mR/69JfeJiSZksBNvuqj33ClnsiMWMJaiLpZE8QNFPSd5Jek3SFpKWSvpd0\nntcbIuk9n2ksk3R2hbaO9oRBHb5VionVDpzgyY9GSvpY0vOSvgImS7pa0hceaXWhpGO87UNcxy7X\nYYykp4EDva1Xvd4f/ilJU5WSa3VJusHLR3mfcz2x0ZwqdjnX9Vgl6R1PhnQlMBm4S9JHVY6bppSA\n6kNJR3nZKZI+kNQp6VNJp3v5LEnT3dbrJF3n5U/4mFZI+knSK15+q6QvvfxFSU2lMUua4jOpZZnN\nap4Pt8f7LrdKekUpkdY6STVvFsrsPcN/SwslLcjGk89wWiQtdnnnbFfSMNe9S9KUWv0G/UhfhhCI\nbe/YSPGFtgNnkeIwdQIv+75rgHddbgMedfkSYIXLE4A2l18HLnR5KLCmQn8nAV9n3xcDM7Lvh2fy\nHcCzLj8DTCuvB3SXtd/tn9eRnJiAY4AfSGEtRgFbSJGGBXxe0rmsnS5SngqAx/HYVMBjwP1VbLkD\nuMnlRzO7LAJOdXkEsMjlWcCbLp8JrC1rb7DrMdz3zyPNlgBeAG7L+r0qs9PDDZyPUXgcK1KcqM9I\nyaKOBH4r9Vd2zHpgSJm9x2T2Pp4UNmRMhfotwOIKv515wK0u311+XmMbONv+BEF9rDez1QCSVgOl\nfCHfkBwPwIWkiwdmtljSkZLKH1VcBpwp7YwSfqikg8zsz6xOpRDib2byiZLeIjmBQaTsiwCXAuNK\nlcxsS40xjQRet3Sl2ijpE+A8UuKtDjP72ce70se4c61AKfnRYDNb4kWzgbmZ/tXCoO/IxjIHeEfS\nwaRIt3MzuwwqDQN4z8fzrTzJmusgUubB58xshaR7gGag09s5EPjVq28zswUuLwcud7me85FjwAJL\nyaJ+l7QROJaUR6YWF9Fj71+qzeh64QLgWpfnkBxkMAAJxxLUy1+ZvAPYlsn576hqjpls/wgz20Zj\nbM3kNtIsZb6ki0l30dX67w2rUL+kbz7ef6j9t5K3U+/CpbxuE7DZzIZXqZfbKu+nFfjRzGZnZbPN\n7D8vKzh5VsD8nO3K+cjr1mObEuX2zuW/6Xk0f0ADugQDkFhjCYpkCXALpOfywCb7f4KldmBS6Yuk\nc+tsO78IHUbPHfKErHwhMDFr+3AXtyul/K2k7zhJTZKOJt1Rd1CHc7KUmnWzpJFedBvwcQVdy2kC\nrnf5ZtJLCt3AekljXW9JOqe3/iWNJs3Q8rfmFgFjfSylNa+hNYbS6PnYnYRUn9Jj7+NJj9hKbCA9\nAoP0iLISS4EbXe6rRGhBAYRjCeql/C7cKsitQLOkVcBTwPhsf6nOJKDFF7xXA3fuQn+tpMdGncCm\nbN8U4AhfjF9Jz4XrJaBLvnhfqm9m75LWJ1aRLsoPmNnGMn2r6YOPb6qP9xzgiQrjLWcrcL6kr12/\n0jG3ALe73t+Q1q4q9V2S7yOtAXX4Qn2rmX0LPAK0u07tpMeFldpo5Hzk9XsbWzVye68F1pAeHS6j\nx1E9DkxXekHj7yr9TQYmSurysccrrQOUeN04CIJ+QdJMYL6Zvd3fugTFEjOWIAj6k7iz3QuJGUsQ\nBEFQKDFjCYIgCAolHEsQBEFQKOFYgiAIgkIJxxIEQRAUSjiWIAiCoFDCsQRBEASF8i+/adytZvs2\n2QAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5b66a0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFGXWxuHfARXFhC7KmgDzrgnUhRXjmBUVc9hlQdR1\nMWLYNazuimHNAfQzg4oBxYABUJE4qKgoCuaACgoqCgoKRmDO98dbo83QM9PDdFd1dT/3dc3F9HR1\n10PNdJ+u81a9Ze6OiIhIbZokHUBERIqbCoWIiNRJhUJEROqkQiEiInVSoRARkTqpUIiISJ1UKCQ2\nZnahmd1bx/1vmdnOhVxHmplZazObZ2aWdBYpLyoUZczMjjKzCWY238y+NLOXzOzEAq6yzpN23H0L\nd3+2UOswswozm57Lk5hZWzOrMrPEXiNmNs3Mdqu+7e6fuvvKXoCTnyzoZWZvRn8P083sITPbIt/r\nkvRRoShTZvZPoC9wJdDK3VsBJwA7mNlytTymsX8vcXwSzvc6CpLZzJrmsJgXav1ZXA/0Ak4FVgM2\nAR4H9mvoE5nZMvmNJklToShDZrYqcBFwors/6u7fA7j7ZHf/m7v/Ei03wMxuMbOnzGw+UGFm+5nZ\nJDP71sw+NbPeGc9b/Sn8eDP7zMw+jwpSNQeWM7O7zey7qNW0bcbjp5nZ7tH3Tc3sPDP7MFp2opmt\nE913fbTub6Of77iU26HSzC42s+ejdTxjZr+L7q7es5kbtXv+HD3mWDN7x8y+MbPhZtY64/n2MrP3\nzWyumd1kZuPM7Ljovh5mNt7MrjOz2UBvM9vAzMaY2Wwzm2Vm90W/G6L2WWtgaLT+f9XcyzGztc1s\niJl9bWZTzOzvGVkujPYIsm7rGtthY+Ak4Ch3r3T3Be7+o7vf7+5XZmyr4zIe08PMnsu4XWVmJ5nZ\nB8AHZnazmV1dYz1PmNkZGdkHm9lXZvaxmZ3a8N+gxEWFojx1ApoBT+Sw7F+AS9x9JWA8MB/4m7uv\nSvi0eaKZHVjjMRXARsBewDnVb/6ET8ddgAeAVYEhwI0Zj3N+ax2dCRwF7OvuqwDHAD9G970MtCN8\n8r0feLi2vaAc/389gDWB5YB/RT/fKfp31ajdMyH6f/4bOBhoCTwX/V8ws5bAw8A5wOrA+4TtnNkm\n6gh8FK3rsmh7XAqsBfwRWA+4EMDduwGfAvtH678mS/ZB0TJrAYcBl5nZrhn3H0Dt2zrT7sB0d59Y\ny/2w+O+mNgdG/8c/Rus9svoOM1sN2BN4ICp0Q4FJwNrR+k83s73qeX5JiApFeWoJzHb3quofmNkL\nZjbHzH6o8Qn9cXd/EcDdf3b3ce7+dnT7TcKb1S41nv+i6BPpW8BdhDfjas+5+/Coz34f4Q0/m78D\n57v7lOp1ufs30fcD3X2Ou1e5+3WEorfpUmwHB+5y9w/d/SfgIaB99SbJsvwJwOXu/n607S4H2kd7\nFZ2Bt9z98SjXDcDMGo//3N1viu7/yd0/cvfR0Sf42UAfltyWWZnZesD2wDnu/ou7vw70B7pnLJbr\ntv5dlqxL43J3n+vuPwPPA25m1QX3MOAFd58JdABauvv/3H2hu0+Nsh+VhwxSACoU5elroGXmmIO7\nb+/uq0X3Vf/cgcUGf83sz2Y2NmoZzAV6Et5oMmU+5lPCp8ZqX2Z8/wOwfC1jH+sSPn0vIWrDvBO1\neOYQPjG3rOX/Wp/MN8gfgZXqWLYNcH1UUOcQthXAOoRP9TNqLF/zds1t2crMBpnZDDP7FriXJbdl\nbdYGvqluG0Y+jbJUy3Vbfx3lb6xf/39RcRrEbx8S/goMjL5vA6xdvR2jbflvwp6WFCEVivL0IvAz\ncNBSPPZ+wiDnuu7eAriVJf+OWtf4/rOlWM90QvtqMdEn1LOAw929RVTcviX/g77Z2iyfAv9w99Uy\nvlaM9ri+IBS36pyWebuW57wMWARsEbXyurH4tqyr1fM5sLqZZRa21ixZnHIxGli3tjGMyPfAihm3\nf59lmZp5HwAOM7M2hJbU4OjnnwJTa2zHVdx9/6XILjFQoShD7j6XMJh9s5kdamYrm1kTM2vP4m8G\n2d58VwLmuPsvZtaR8Emx5hvEf8xsBTPbnND/f3ApYvYHLjGzjSzYysxWj9a/EJhtZsuZ2QXAKkvx\n/NVqKzCzgCpgw4yf3QqcZ2abQTgowMwOj+57CtjSzA60cNTPyWR/M820EuEN+DsLA/Vn1bj/yxrr\n/5W7TwdeAC43s2ZmthVwLKHF1CBRe+9mwvjBLtF2Xd7C4dPnRItNBg6Jfq8bAcfV+oS/Pe9kYDbh\ndznc3b+L7noZmGdmZ0fP19TMtjCzPzU0u8RDhaJMufvVhAHjswntl5mEN8KzCXsckH0A8yTgYjP7\nDvgv2YvAOOBDYBRwtbuPquP5avvUfB1hzGAEYY+hH7A88AwwHPgAmEZoF31a4/nq+iRe1/p/fay7\n/0AYaB4ftUc6uvvjhMOJB0WtojeBvaPlZwOHA1cR3hz/CEwk7LnVlusiYJvo/zeU8Ik7c5nLCUV3\njpmdmSXvX4C2hL2LR4EL3H1MHeurdbu4ey/CYPdNwBzC7+9AwiA4hPGTXwjF6y5CQaq57bK5H9gt\n+rd6XVXA/oTxoI8JRfl2GlfwpYCs0BcuMrNpwHeEXewF7t6xluU6EN6gjnD3RwsaSgrCzNoSXvjL\nZA6Ul6NoLGA68Fd3H5d0HpHGiOPEGAcqqo9YycbCyUdXEj4panoCSaXo8M6XCXs51W2kl5JLJJIf\ncbWe6nvzPxV4hLALKulWztfW7URo2cwinGNyUHSoqEiqxdF6+pjQg10E3Obu/Wrcvw6h37kbcCcw\nVK0nEZHiEUfraQd3/8LM1gBGmtl77v5cxv19gXPd3aNDCtV6EhEpIgXfo1hsZWFeoPnufm3Gzz7m\nt+LQknBi0PHuPiRjmXJuZ4iILDV3b/SH74KOUZhZczNbOfp+RcLcP29mLuPuG7j7+u6+PmGc4sTM\nIpGxXGq/evfunXgG5U8+R7llV/7kv/Kl0K2nVsBjoaPEMsBAdx9hZj0B3P22Aq+/KEybNi3pCI2i\n/MlJc3ZQ/lJR0ELhYbKv9ll+nrVAuPsxhcwjIiINpzOzY9CjR4+kIzSK8icnzdlB+UtFrIPZS8vM\nPA05RUSKiZnhxT6YLUFlZWXSERpF+ZOT5uyg/KVChUJEROqk1pOISIlS60lERGKhQhGDtPc5lT85\nac4Oyl8qVChERKROGqMQESlRGqMQkdhUVcF118GOO0L//vDjj0knkjipUMQg7X1O5U9OMWSfNQsO\nOAAefhhOPx2eeALatIF//xumT6/7scWQvzHSnj9fVChEpFaVlbD11rDllvDss3DYYTB0KLzwQtir\naNcOjjgCxo8HdYdLl8YoRGQJixbBxRfD7bfDgAGw997Zl/vuO7j7brjhBlh1VejVC448Epo1izWu\n1CJfYxQqFCKymBkzoGtXWHZZuPdeWGut+h9TVQVPPx0KxuuvQ8+ecMIJuT1WCkeD2SmS9j6n8icn\n7uzDhsGf/hT2IJ55Jvc3+iZNYL/9wmPGjAnjGpttBnvuWckrrxQ2cyGl+W8nn1QoRIRffoEzzoCT\nT4ZHHoHzzoOmTZfuuTbbDG6+GT7+GDbaCA4/HLbfHgYNggUL8ptb4qHWk0iZ+/BDOOooWG89uOMO\nWH31/D7/okUwZEhoS02ZAieeCP/4B6yxRn7XI0tS60lEGu2BB6BTJ+jRAx59NP9FAsKeycEHw9ix\n8OSTMHUqbLIJHHdcGM+Q4qdCEYO09zmVPzmFyv799+GNundvGDECTjkFrNGfO5dUM3+7duGEvSlT\nYMMNw7hGRUUoUosW5X/9jZXmv518UqEQKTNvvgkdOoTxgldfDedJxK1lyzAOMnVqaEVde20oHNdc\nA3PmxJ9H6qYxCpEy4R7Oi/jPf8Ibc/fuSSda3CuvhHGMYcPCmMmpp4aBcVl6Oo9CRHI2d24YQP7g\nA3jwQdh006QT1W7mTLj11vC11VbhJL7OncMhuNIwGsxOkbT3OZU/OfnIPmECbLMNrLkmvPRSvEVi\nafL//vdw4YXwySfQrVv4ftNNw97Gd9/lO2Hd0vy3k08qFCIlqqoKrr4aunQJraYbb4Tll086Ve6a\nNQuF4pVXwjQh48dD27Zw2mlhMFzio9aTSAn66is4+mj49ttwCGybNkknyo/p0+GWW8KRUx07hqKx\nxx6FOWKrFKj1JCJZjRkTWk1bbw3jxpVOkYBwUuBll4W21MEHwz//CZtvHsYzvv8+6XSlS4UiBmnv\ncyp/chqSfeFC+O9/4W9/g7vuCm+oyy5buGy5KNS2X2GF307Yu+mmMMdUmzZw1llhLypf0vy3k08q\nFCIlYPp02HXXMHD92muw555JJ4qHWfh/P/ZYGMv44oswJqMr8OVXwccozGwa8B2wCFjg7h1r3N8V\nOBswYB5woru/UWMZjVGI1GLIEDj++DCp39lnl/dhpFVVYY/qhx/C5IbLLJN0omSl5jwKM5sKbOvu\n39RyfyfgHXf/1sz2AS509+1qLKNCIVLDzz+HwvDEE7/N2SRhJtwuXWCddcKgdzkPdKdtMLvWoO7+\nortXdxUnAOvGEyk+ae9zKn9yass+ZUooDNOnw6RJxVskktj2yy0HgwfD22+H63o3Rpr/dvIpjkLh\nwCgzm2hmx9ez7HHAUzFkEkmtgQPD9R3+/vfwhrjaakknKj4rrhhmqh0yJJxDIo0TR+tpLXf/wszW\nAEYCp7r7c1mW2xW4CdjB3efUuE+tJyl7338fZnl98cVwEaD27ZNOVPymT4cdd4RLLim+ua3ikK/W\nU8GHetz9i+jfWWb2GNARWKxQmNlWQD9gn5pFolqPHj1o27YtAC1atKB9+/ZUVFQAv+0e6rZul+rt\njz6Cq6+uoFMn6NOnkrlzAYonX7HeXm89uOSSSk4/HVZfvYL99y+ufPm+XVlZyYABAwB+fb/MC3cv\n2BfQHFg5+n5FYDywV41lWgMfAtvV8TyeZmPHjk06QqMof3LGjBnrN9/s3rKl+733Jp2m4Ypl20+Y\nELbhc8817HHFkn9pRe+djX4vL/QeRSvgMQuHHSwDDHT3EWbWM3r3vw24AFgNuCVabolDaEXK0Zw5\nYUK8774L8xxtsknSidKrY8cwtnPooTBqFGy5ZdKJ0kVzPYkUoRdfhL/8BQ48EK66KkyQJ4334INh\n2o/nnoP11086TeGlZoxCRHJXPePrddeFiwwdeGDSiUrLkUfCrFmw115hL23NNZNOlA5lfA5nfKoH\nm9JK+ePx5Zew774wdGiYjuLAA9OTvTbFmP+UU+Cvf4V99qn/+hbFmD8JKhQiRWDUqDDja8eOUFkJ\nrVsnnai0XXghbLcdHHQQ/PRT0mmKn8YoRBK0cCH07g0DBsA998DuuyedqHwsWhTGgRYtgocegqZN\nk06Uf2mbwkNEavj0U9hlF3j11TDjq4pEvJo2hXvvDe2nE08EfRatnQpFDNLe51T+/Hv8cejQIbQ+\nnnoKWrXKvlwxZm+IYs/frBk8+miYL+u//13y/mLPHxcd9SQSo59+ChfXGTYszPq63Xb1P0YKa+WV\nQ7HecUdYY41weVVZnMYoRGLy/vtw1FGw4YZh+usWLZJOJJk++SQUiyuugK5dk06THxqjEEmRe+4J\nb0InnAAPP6wiUYzatIHhw+HMM+Hpp5NOU1xUKGKQ9j6n8i+9+fPh6KPh8sthzBjo2bNhF9LRto/X\n5puH8aPu3cPZ8WnLXygqFCIFMnkybLttuBznxImaXygtOnUKe4AHHQRTpyadpjhojEIkz9zhppvg\noovg+uvDWcCSPgMHwrnnwvPPh7ZUGmmuJ5Ei9M03cNxx4RyJF1+EjTZKOpEsra5dYfbsMC/U88+H\nI6LKlVpPMUh7n1P5czN+PGy9NbRtCy+8kJ8ioW2frHbtKjnsMOjcGebNSzpNclQoRBqpqgouuyxc\n6+DGG6FPH00LXkr+97/wAeDgg+Hnn5NOkwyNUYg0wsyZ0K1beAO5/35Yd92kE0khLFoERxwRpv14\n4IH0zAul8yhEEjZiRJjxdfvtw6GvKhKlq2nTMLg9axacemr5zQulQhGDtPdplX9xCxaEo2GOPTa8\neVx0UTgEthC07ZOVmX/55cO0Ky+9FH7n5URHPYk0wLRpYWrq1VYLE8mV85Ew5WiVVcJZ29XzQp18\nctKJ4qExCpEcDR4cpqM+5xw44wxoov3xsjV1Kuy0E1xzTZi/q1jpPAqRmPz0U5j/55lnwqyvHTsm\nnUiStv76YcbZPfYI193ebbekExWWPhPFoJT6tGnUmPzvvQd//jN8/XW4uFDcRaKct30xqCv/VltB\nv37hQ0SpNzxUKESycA+XJ91pJzjlFBg0CFZdNelUUmy6dAkHN4wZk3SSwtIYhUgN8+aFsYhJk+DB\nB2GLLZJOJMWsf3947DF48smkkyxJ51GIFMBXX4XZQ1dYAV55RUVC6ve3v4Xrnr/7btJJCkeFIgal\n3KdNg1zzz54Nu+8epuLo1w+aNy9srlyUy7YvVrnkX355OOkkuO66wudJigqFCGHW1z32gAMOgAsv\nTDqNpM2JJ8Ijj4Q90lKkMQope3PmhCKx225w1VUNuwKdSLWePWGttYrrg0a+xihUKKSsffst7Lkn\n7LBDaB2oSMjSeu892GWXcPb+CisknSZIzWC2mU0zszfMbJKZvVzLMjeY2RQze93Mti50priVQ5+2\nmNWWf9482HffcJ5EsRaJUt32adGQ/H/4A3ToAPfdV7g8SYljjMKBCnff2t2XOF3JzDoDG7n7xsA/\ngFtiyCRlbv78cDGarbaCG24oziIh6XPmmeF6JFVVSSfJr4K3nsxsKvAnd/+6lvtvBca6+4PR7feA\nXdz9y4xl1HqSvPnhB9hvP9hwQ7j9ds3ZJPnjHqaev/TS8EEkaalpPRH2KEaZ2UQzOz7L/esA0zNu\nzwA0s78UxI8/hrNpW7dWkZD8M4N//hOuvTbpJPkVx6SAO7j7F2a2BjDSzN5z9+dqLFOz4i2x+9Cj\nRw/atm0LQIsWLWjfvj0VFRXAb33EYr3dt2/fVOUt1fzbbVfBQQcBVNK9OzRpUhz56rqd2SMvhjzK\nX//jW7Wq5I03YPLkCtq3jz/vgAEDAH59v8yHWI96MrPewHx3vzbjZ7cCle4+KLpdcq2nysrKX3+p\naVQK+Tt1quCQQ2CllcLFhgp1oaF8K4VtX475r7wS3n4b7rkn/5kaIhWHx5pZc6Cpu88zsxWBEcBF\n7j4iY5nOwCnu3tnMtgP6uvt2NZ4n1YVCkvXLL3D44aE4DBoEyy6bdCIpdXPmhDGwN9+EddZJLkda\nxihaAc+Z2WRgAjDM3UeYWU8z6wng7k8BH5vZh8BtwEkFziRlZMGCcEU6gAceUJGQeKy2WpgD6sYb\nk06SHwUtFO4+1d3bR19buPvl0c9vc/fbMpY7xd03cvd27v5aITMlIbPPmUZpzb9wYXixfvZZJQ89\nBMstl3Sihkvrtq9WzvlPPz3MGTZ/fv7yJEXHfEhJWrQIjj4a5s6Fiy+GZs2STiTlZoMNwpna0dhy\nqmkKDyk5VVVw7LEwYwYMHVo80ylI+XnhBejWDT74AJo2jX/9aRmjEIlVVRX84x9hvp0hQ1QkJFmd\nOsEaa4S/xTRToYhBOfdp4+Qergvw/vswbNhv15NIS/5s0pwdlL9UTsBToZCS4A6nngqvvw5PPRXO\nlxApBgcfDJ99BhMmJJ1k6WmMQlLPPUzGNn48jBwJq66adCKRxfXtCy++GK7BHqdUnHCXLyoUUht3\nOOccGD0aRo0Kx6+LFJt586Bt23Bt7TzOrFEvDWanSLn3aQvFHf7zHxgxInzVViSKNX8u0pwdlL/a\nyiuHI/FuuCEvTxc7FQpJrYsuCkeTjBoFv/td0mlE6tarVzin4ttvk07ScGo9SSpdemmY3K+yEtZc\nM+k0Irn5619h223DkVBx0BiFlK2rroI77ghFYq21kk4jkrtXXw1HQX30UTzzjmmMIkXUp82f664L\n8+eMGZN7kSim/A2V5uyg/DVtu22Y2mPw4Lw+bcGpUEhq3HBDmI1zzJhkp24WaYwzzwwn4KWpSaLW\nk6TCLbeEi8FUVsZ7eKFIvlVVwR/+AP37w847F3Zdaj1J2ejXDy6/POxJqEhI2jVpAmecEdqoaaFC\nEQP1aZfegAFhmvDRo0Nvd2mkefunOTsof22OPjrMLDtlSkGePu9UKKRo3XcfnH9+OE9i442TTiOS\nP82bh1mO+/ZNOkluchqjiK53vR7gwAx3/77QwWqsX2MUZWbQoDDoN2oUbLZZ0mlE8m/mzPC3PWVK\n4U4YLfh5FGa2MnA8cBTQEvgSMMJ1sL8GBgL93L3gF/pToSgvjzwSZoIdORK22CLpNCKFc+yxsNFG\ncN55hXn+OAazHwfmAQe4+wbu3sndt3P39YH9ge+BJxoboByoT5u7J56AU06Bp5/OX5FI8/ZPc3ZQ\n/vqccUY45Pvnnwu6mkartVC4++7u3s/dv8xy30x3v93ddy9sPCknw4aFvu2TT0L79kmnESm8LbcM\nXw88kHSSutXVevqDu79nZtsSxiZ+vQtwd38tjoBRFrWeStzw4dC9eygWHTsmnUYkPs88A2edFS66\nZY1uEi0ujjGKfu5+vJlVsnihAMDdd23synOlQlHaRo6Erl1D26lTp6TTiMTLPexV9OkDe+6Z3+cu\n+BiFux8f/Vvh7rvW/GrsisuJ+rS1Gzs2zKg5eHDhikSat3+as4Py58IsHOFXzCfg1XsehZm9amYn\nm5muHSZ59eyzcOSR8PDDsNNOSacRSU7XrjB5Mrz9dtJJsqv3PAoz2xg4BjgCeBW4ExgRZy9IrafS\n88ILcNBBYRBvdx0SIcL//gfTpoU5oPIl9utRmFkTwmGxtwBVhIJxvbt/09gQOaxbhaKETJgABxwA\n994Le++ddBqR4jB7NmyyCbz7LrRqlZ/njHVSQDNrB1wHXA0MBg4nnGMxprEByoH6tL+ZOBG6dAlz\nOMVVJNK8/dOcHZS/IVq2DK3Ym26KbZU5y2mMAugDvAy0c/de7v6Su18DTM3h8U3NbJKZDc1yX0sz\nG25mk83sLTPrsRT/B0mJSZNgv/3CbLCdOyedRqT4nH463Hor/Phj0kkWl8sYxYbu/tFSr8DsTGBb\nYGV371LjvguBZu7+bzNrCbwPtHL3hTWWU+sp5d54A/baK3xaOvTQpNOIFK8uXcIHqp49G/9csbWe\nMouEmTXoJDszWxfoDPQnnKhX0xfAKtH3qwBf1ywSkn5vvx3aTNdfryIhUp9zzw1fJ58M77+fdJqg\nodOMN7Qy9QHOIgx+Z9MP2NzMPgdeB05r4POnQjn3ad97L5xEdM01of+ahDRv/zRnB+VfGttvHz5c\nrb56uAJe587h7O0kmyrLNHD5p3Jd0Mz2B75y90lmVlHLYucBk929wsw2BEaaWTt3n1dzwR49etA2\nurxZixYtaN++PRUV4Wmrf5nFenvy5MlFlSeu/OusU8Eee0D37pXRNa7TlV+3dTvJ25dcUsH558MF\nF1Ry0knQrFkFvXpBmzaVrLBC9sdXVlYyYMAAgF/fL/MhlzGK64A73L1Bp4KY2WVAN2AhsDyhtTTY\n3btnLPMUcKm7j49ujwbOcfeJNZ5LYxQp89FHsOuu0Ls3HHdc0mlE0s09XC/++uvh+efDa+rkk6F1\n67ofF+fhse8Ct5vZy2Z2gpmtmssTu/t57r5eNC35UcCYzCIReQ/YA8DMWgGbAh/nHl+K0bRp4SS6\n889XkRDJB7Pwwevxx+Hll+GXX2DrreHww0PhKPTn6FwGs/u5+w5Ad6At8KaZ3W9mDZ3vyQHMrKeZ\nVY/nXwb8ycxeB0YBZ8dxAl/cqncN06oh+T/9FHbbLcyGmY+jNvIhzds/zdlB+Qthgw3CBILTpoUx\njB49oEOHcALrL78UZp25nnDXFPgD8EdgFmHg+UwzezCXx7v7uOpDY939Nne/Lfp+trsf4O7t3H1L\nd79/qf4XUhQ++ywUiV69wm6xiBTOyiuHK0F+8AFceCHcfTe0bQsXXwxffZXfdeUyRtEHOIBwFnZ/\nd38547733X3T/EbKmkFjFEXuiy+gogL+/vewNyEi8XvrLbjhhjDR5kEHwYABMc31ZGbHAg+6+/dZ\n7mvh7nMbG6I+KhTF7csvQ5Ho1q1w1/4VkdzNnh2myTnrrAIPZkeHq+Lud2YrEpHVGxugHBRjn7Mh\n6so/a1ZoNx11VPEWiTRv/zRnB+VPSsuW8K9/5e/56jqP4jIzWxEYAkwknEVtwFrAn4AuhIkBj8pf\nHEmTr7+GPfaAgw+GCy5IOo2IFEqdrScz24hQCHYA2kQ//gR4HnjA3WM5lFWtp+IzZ044BHavveDy\ny/N/rV8Rabw4rpm9trt/3tgV5IMKRXGZOzdMy7HzzmFqDhUJkeIUxwl3d5jZBDO7wswqzKyh031I\nJK19zmqZ+b/7DvbZJ8xHk5Yikebtn+bsoPylotY3f3ff18xWAHYBDgGuMbPpwNPAcHf/NKaMUiTm\nzw8TlG2zDfTtm44iISKNl8vhsb2Ae919jpltAOwL7A383t07xpBRraci8P33oUhssgncdhs0aei8\nwyISuzjnemoFvGJmDwGbALdEZ1nv1NiVSzr88EO4xvUGG6hIiJSjXOZ6Op9QIO4EegAfRDPDrlvY\naKUjzX3On36CnXcO04T375/OIpHm7Z/m7KD8pSKnl727VwEzgS+BRcBqwCNmdnUBs0nCfv45nCOx\nyipw113QtGnSiUQkCbmMUZxGmDn2a8IlTR9z9wVm1gSY4u4bFjykxihi98sv4bKlzZrBoEGwjI55\nE0mdfI1R5PLyXx04xN0/yfyhu1eZ2QGNDSDFZ8GCMCXHMsvAAw+oSIiUu1zGKHrXLBIZ972T/0il\nJ019zoULoWvXUCwefBCWXTZd+bNJc/40ZwflLxX6rCi/WrQIuneHefPClbSWWy7pRCJSDOodoygG\nGqMovEWL4JhjwnUlhgyBFVZIOpGINFacYxRS4qqq4PjjYcYMGDZMRUJEFpfCo+LTp5j7nFVVcMIJ\n8OGHMHT07/V/AAAPLklEQVQoNG++5DLFnD8Xac6f5uyg/KVCexRlzB1OOQXefhuGD4cVV0w6kYgU\nI41RlCl3OP10eOklGDkynFQnIqVFYxSy1NzhrLNg/HgYNUpFQkTqpjGKGBRTn9M9XNt69GgYMQJa\ntKj/McWUf2mkOX+as4PylwrtUZSZ3r3hySdh7FhYffWk04hIGmiMooxcckmYt2nsWFhzzaTTiEih\naYxCGuSKK2DgQKisVJEQkYbRGEUMku5zXnMN3HknjBkDv/99wx+fdP7GSnP+NGcH5S8V2qMocX37\nwi23wLhxsPbaSacRkTQq+BiFmTUFJgIz3H2JacnNrALoAywLzHb3iizLaIxiKdx0U9ibqKyENm2S\nTiMicUvTGMVpwDvAyjXvMLMWwE3A3u4+w8xaxpCnLNx+O1x1lYqEiDReQccozGxdoDPhynjZqtpf\ngcHuPgPA3WcXMk9S4u5z3nlnOMJp9GhYf/3GP1/a+7Rpzp/m7KD8paLQg9l9gLOAqlru3xhY3czG\nmtlEM+tW4Dwl75574IILQpHYaKOk04hIKShY68nM9ge+cvdJ0ThENssC2wC7A82BF83sJXefUnPB\nHj160LZtWwBatGhB+/btqagIT1td9Yv1dvXPCr2+zz+v4Nxz4YorKvn8c9hkk3TlT/v2L8TtioqK\nosqj/MWVr+btyspKBgwYAPDr+2U+FGww28wuA7oBC4HlgVUIbabuGcucA6zg7hdGt/sDw939kRrP\npcHsejz8MPTqFeZu2nzzpNOISDHI12B2wVpP7n6eu6/n7usDRwFjMotE5AlgRzNrambNgT8TBr5L\nSnXFL5RHH4VTTw1ThReiSBQ6f6GlOX+as4Pyl4o4z6NwADPrCeDut7n7e2Y2HHiDMI7Rz91LrlAU\n0pAhcOKJ8PTT0K5d0mlEpBRprqcUe+op6NEjTPLXoUPSaUSk2BR960kKa8SIUCSGDFGREJHCUqGI\nQb77nKNHQ9eu8NhjsN12eX3qrNLep01z/jRnB+UvFSoUKTNuHPzlLzB4MOywQ9JpRKQcaIwiRZ5/\nHg45JFxTYrfdkk4jIsVOYxRl5qWXQpEYOFBFQkTipUIRg8b2OV95Bbp0gbvvhj33zE+mhkh7nzbN\n+dOcHZS/VKhQFLnXXoP994c77oB99006jYiUI41RFLHXX4e99oJbb4WDD046jYikjcYoStxbb8E+\n+8CNN6pIiEiyVChi0NA+57vvhj2J666Dww8vTKaGSHufNs3505wdlL9UqFAUmfffhz32gCuvDOdL\niIgkTWMUReTDD2HXXeHii+GYY5JOIyJppzGKEjN1Kuy+e7g6nYqEiBQTFYoY1Nfn/OSTcBLdOefA\n8cfHk6kh0t6nTXP+NGcH5S8VKhQJmz49FIkzzoCTTko6jYjIkjRGkaDPPoOKCjjhBPjnP5NOIyKl\nRmMUKTdzZhiTOO44FQkRKW4qFDGo2ef86qvQburaFc49N5lMDZH2Pm2a86c5Oyh/qVChiNns2eE8\nicMOg//+N+k0IiL10xhFjL75JrSb9t0XLr0UrNGdQxGR2uVrjEKFIiZz54Y9iV13hauuUpEQkcLT\nYHaKDBtWyd57w447prNIpL1Pm+b8ac4Oyl8qVCgKbN68cCJdhw7Qp0/6ioSIiFpPBTR/fhiP2Gwz\nuOUWaKKyLCIx0hhFkfvhB9hvP9hgA+jXT0VCROKnMYoi9uOP4RrX660Ht98Ozz5bmXSkRkl7nzbN\n+dOcHZS/VKhQ5NlPP4Ur0q25Jtx1FzRtmnQiEZHGUespj37+GQ49FJo3h/vvh2WWSTqRiJSz1LSe\nzKypmU0ys6F1LNPBzBaa2SGFzlMoCxbAkUfCcsvBwIEqEiJSOuJoPZ0GvANk3SUws6bAlcBwIJUH\njy5YEC5bWlUFgwbBsssufn/a+5zKn5w0ZwflLxUFLRRmti7QGehP7UXgVOARYFYhsxTKwoXQrVsY\nwH744bBHISJSSgo6RmFmDwOXAasA/3L3A2rcvw5wH7AbcCcw1N0fzfI8RTlGsWgRHH00zJoFTzwB\nyy+fdCIRkd8U/RiFme0PfOXuk6h9b6IvcG5UBayO5YpOVVW4lsQXX8Djj6tIiEjpKuSQ6/ZAFzPr\nDCwPrGJm97h794xltgUGWZjXoiWwr5ktcPchNZ+sR48etG3bFoAWLVrQvn17KioqgN/6iHHdHjOm\nkmuvhfnzK3jqKZgwoe7l+/btm2jext5W/uRuZ/bIiyGP8hdXvmx5BwwYAPDr+2U+xHJ4rJntQpbW\nU41l7iIFrSf3cG3rN9+E4cNhpZXqf0xlZeWvv9Q0Uv7kpDk7KH/SUjWFR1Qo/unuXcysJ4C731Zj\nmaIvFO7QqxdMnAjPPAOrrJJ0IhGR2qWqUDRWMRQK93Bt6+efh5EjYdVVE40jIlKvoh/MLiXu4drW\n48aFPYmGFonMPmcaKX9y0pwdlL9U6PzheriHa1s/8wyMHg2rrZZ0IhGReKn1VI+LLgon0o0dC2us\nkUgEEZGlkq/Wk/Yo6nDppWFKjspKFQkRKV8ao6jFVVfBPffAmDHQqlXjnivtfU7lT06as4Pylwrt\nUWTRp0+44NC4cbDWWkmnERFJlsYoavi//wuForISWreOZZUiIgWhMYoCuPVWuPZaFQkRkUwao4j0\n7w+XXRYOgc3jFClA+vucyp+cNGcH5S8V2qMA7r47HAY7ZgxsuGHSaUREikvZj1EMHAhnnx2KxKab\nFmQVIiKJ0BhFHjz4IJx1FowapSIhIlKbsh2jcA8F4plnYLPNCruutPc5lT85ac4Oyl8qynaPwgz6\n9Us6hYhI8Sv7MQoRkVKlacZFRCQWKhQxSHufU/mTk+bsoPylQoVCRETqpDEKEZESpTEKERGJhQpF\nDNLe51T+5KQ5Oyh/qVChEBGROmmMQkSkRGmMQkREYqFCEYO09zmVPzlpzg7KXypUKEREpE4aoxAR\nKVEaoxARkVjEUijMrKmZTTKzoVnu62pmr5vZG2Y23sy2iiNTnNLe51T+5KQ5Oyh/qYhrj+I04B0g\nW//oY2Bnd98KuAS4PaZMsZk8eXLSERpF+ZOT5uyg/KWi4IXCzNYFOgP9gSV6Ze7+ort/G92cAKxb\n6Exxmzt3btIRGkX5k5Pm7KD8pSKOPYo+wFlAVQ7LHgc8Vdg4IiLSEAUtFGa2P/CVu08iy95EjWV3\nBY4FzilkpiRMmzYt6QiNovzJSXN2UP5SUdDDY83sMqAbsBBYHlgFGOzu3WsstxXwKLCPu3+Y5Xl0\nbKyIyFLIx+GxsZ1HYWa7AP9y9wNq/Lw1MAb4m7u/FEsYERHJ2TIxr88BzKwngLvfBlwArAbcYmYA\nC9y9Y8y5RESkFqk4M1tERJJTlGdmm9kl0Ul4k81stJmtl2WZ9cxsrJm9bWZvmVmvJLJmk0v+aLl9\nzOw9M5tiZkUziG9mV5vZu9H/4VEzW7WW5f4dbf83zex+M2sWd9YsmXLN3sLMHomWfcfMtos7aza5\n5o+WrfVE1qTkkr/IX7u5/v0U62v38Gi7LjKzbepYrmGvXXcvui9g5YzvTwX6Z1nm90D76PuVgPeB\nPyadvQH5mwIfAm2BZYHJRZR/T6BJ9P0VwBVZlmlLOFmyWXT7QeDoNGSP7rsbODb6fhlg1aSzNyR/\ndP+ZwEBgSNK5G/i3U8yv3VzyF/Nr9w/AJsBYYJtalmnwa7co9yjcfV7GzZWA2VmWmenuk6Pv5wPv\nAmvHk7BuueQHOgIfuvs0d18ADAIOjCNffdx9pLtXn/dS20mQ3wELgOZmtgzQHPgspoi1yiV79Clx\nJ3e/M3rMQv/tpM9E5bjt6z2RNSm55C/y124u27+YX7vvufsH9SzW4NduURYKADO71Mw+BY4mVPa6\nlm0LbE34xRaFHPKvA0zPuD0j+lmxOZYsJ0G6+zfAtcCnwOfAXHcfFXO2+mTNDqwPzDKzu8zsNTPr\nZ2bNY86Wi9ryQ8NOZE1KXfmB4nztZqgtf1peu1ktzWs3sUJhZiOj/ljNrwMA3P18d28NDCC8KGp7\nnpWAR4DTok8nschD/kSPIqgvf7TM+cAv7n5/lsdvCJxO2I1dG1jJzLqmITuh1bQNcLO7bwN8D5wb\nR/YoW2O3fc4nshZCHrZ/9TJF+dqNlqkrf9G/dut5fINfu3EfHvsrd98zx0Xvp5ZPJWa2LDAYuM/d\nH89XtlzkIf9nQOYg93qETyaxqC+/mfUgtDZ2r2WRPwEvuPvX0fKPAtsTeuYFlYfsM4AZ7v5KdPsR\nYiwUeci/PdDFzDoTnchqZvd4jRNZCyUP+Yv6tZtD/qJ+7eagwa/domw9mdnGGTcPBCZlWcaAO4B3\n3L1vXNlykUt+YCKwsZm1NbPlgCOBIXHkq4+Z7UNoaxzo7j/Vsth7wHZmtkL0u9iDMENwonLJ7u4z\ngelmtkn0oz2At2OKWKcc85/n7uu5+/rAUcCYuIpEfXLJX+Sv3Vz+9ov2tVtDbXubDX/tJj1KX8uo\n/CPAm4SjCQYDa0Y/Xxt4Mvp+R0J/djLhjXgSYQqQVOSPbu9LOOLjQ+DfSefOyDUF+CRju95cS/6z\nCW+wbxKOIlo2RdnbAa8ArxOmjymWo55yyp+x/C4U11FP9eYv8tdurn8/xfraPZgwfvIjMBN4upb8\nDXrt6oQ7ERGpU1G2nkREpHioUIiISJ1UKEREpE4qFCIiUicVChERqZMKhYiI1EmFQiQLM4ttSgmR\nYqdCIZKdTjASiahQiNTBgqujSdfeMLMjop83MbObLVzkZoSZPWlmh9Z47IZm9mrG7Y0zb4ukRWKT\nAoqkxCGE6T62AtYAXjGzZwnTULRx9z+aWSvCNRXuyHygu39kZt+aWTt3fx04Brgz3vgijac9CpG6\n7Qjc78FXwDigA7AD8BCAu39JuKJYNv2BY8ysCXAEYTZhkVRRoRCpm1P7LJy5XAtiMGECuf2Bie4+\nJ1/BROKiQiFSt+eAI6MxiTWAnQlXYxsPHBqNYbQCKrI92N1/Bp4BbgHuiieySH6pUIhk5wDu/hjw\nBmE68tHAWVELajDhYjXvAPcCrwG1XXf7fsK02iMKnFmkIDTNuMhSMrMV3f17M/sdYS9j+6iI1Fzu\nX8DK7t479pAieaCjnkSW3jAzawEsB1xcS5F4DFgf2C3ucCL5oj0KERGpk8YoRESkTioUIiJSJxUK\nERGpkwqFiIjUSYVCRETqpEIhIiJ1+n+KRsAkmp26rwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5852b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The depth of packing required is 12.881 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.7: Page 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.7\n",
+ "# Page: 312\n",
+ "\n",
+ "print'Illustration 8.7 - Page: 312\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "# Fom Illustration 8.6:\n",
+ "y1 = 0.02;\n",
+ "y2 = 0.00102;\n",
+ "m = 0.125;\n",
+ "x2 = 0.005;\n",
+ "x1 = 0.1063;\n",
+ "\n",
+ "# Number of transfer units:\n",
+ "# Method a:\n",
+ "y1_star = m*x1;\n",
+ "y2_star = m*x2;\n",
+ "yDiffy_star1 = y1-y1_star;\n",
+ "yDiffy_star2 = y2-y2_star;\n",
+ "yDiffy_starm = (yDiffy_star1-yDiffy_star2)/math.log(yDiffy_star1/yDiffy_star2);\n",
+ "# From Eqn. 8.48:\n",
+ "NtoG = (y1-y2)/yDiffy_starm;\n",
+ "print\"NtoG according to Eqn. 8.48:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Mehod b:\n",
+ "# From Illustration 8.3:\n",
+ "A = 1.424;\n",
+ "NtoG = (math.log((((y1-(m*x2))/(y2-(m*x2)))*(1-(1/A)))+(1/A)))/(1-(1/A));\n",
+ "print\"NtoG according to Eqn. 8.50:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Method c:\n",
+ "# Operating Line:\n",
+ "# From Illustration 8.3:\n",
+ "X_prime = [0.00503, 0.02, 0.04 ,0.06 ,0.08 ,0.10 ,0.1190];\n",
+ "x_prime = [0.00502 ,0.01961, 0.0385, 0.0566, 0.0741, 0.0909 ,0.1063]\n",
+ "Y_prime = [0.00102 ,0.00357 ,0.00697 ,0.01036 ,0.01376 ,0.01714 ,0.0204];\n",
+ "y_prime = [0.00102 ,0.00356, 0.00692 ,0.01025 ,0.01356 ,0.01685, 0.0200];\n",
+ "def f2(x):\n",
+ " return m*x\n",
+ "x = numpy.arange(0,0.14,0.01);\n",
+ "\n",
+ "plt.plot(x_prime,y_prime,label=\"Operating Line\")\n",
+ "plt.plot(x,f2(x),label=\"Equilibrium Line\");\n",
+ "plt.legend(loc='upper right');\n",
+ "plt.grid('on');\n",
+ "xlabel(\"mole fraction of benzene in liquid\");\n",
+ "ylabel(\"mole fraction of benzene in gas\");\n",
+ "plt.show()\n",
+ "# From graph:\n",
+ "NtoG = 8.7;\n",
+ "print\"NtoG from graph:\",round(NtoG,2),\" \\n\",\n",
+ "\n",
+ "# Method d:\n",
+ "# from Fig 8.10:\n",
+ "Y_star = [0.000625, 0.00245, 0.00483, 0.00712 ,0.00935 ,0.01149, 0.01347];\n",
+ "ordinate = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " ordinate[i] = 1/(Y_prime[i]-Y_star[i]);\n",
+ "\n",
+ "plt.plot(Y_prime,ordinate);\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Y\");\n",
+ "ylabel(\"1/(Y-Y*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area under the curve:\n",
+ "Ac = 8.63;\n",
+ "# From Eqn. 8.36:\n",
+ "NtoG = Ac+(1.0/2)*math.log((1+y2)/(1+y1));\n",
+ "print\"NtoG from graphical integration:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Height of transfer units:\n",
+ "NtoG = 9.16;\n",
+ "# From Illustration 6.6:\n",
+ "Fga = 0.0719;# [kmol/cubic m.s]\n",
+ "Fla = 0.01377;# [kmol/cubic m.s]\n",
+ "Gav = 0.0609;# [kmol/square m.s]\n",
+ "L = 1.787*10**(-3);# [kmol/s]\n",
+ "X1 = x1/(1-x1);\n",
+ "X2 = x2/(1-x2);\n",
+ "Area = 0.1746;# [square m]\n",
+ "Lav = L*((1+X1)+(1+X2))/(2*Area);\n",
+ "# From Eqn. 8.24:\n",
+ "Htg = Gav/Fga;# [m]\n",
+ "# From Eqn. 8.31:\n",
+ "Htl = Lav/Fla;# [m]\n",
+ "# since Solutions are dilute:\n",
+ "HtoG = Htg+Htl/A;# [m]\n",
+ "print\"HtoG: \",round(HtoG,2),\" m\\n\",\n",
+ "Z = HtoG*NtoG;# [m]\n",
+ "print\"The depth of packing recquired is \",round(Z,2),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.7 - Page: 312\n",
+ "\n",
+ "\n",
+ "NtoG according to Eqn. 8.48: 8.51 \n",
+ "\n",
+ "NtoG according to Eqn. 8.50: 9.16 \n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucTfX6x9+PiaTcOoQGETnp/BQluVXOKSW/qBONbk6k\nqBNdpKI6mu506MavC7mVQkJJFyKkK+NaIUkTmaI0LqGYmef3x1oztmkua2avvffae57367Vesy7f\n7/p+9nfP3s9e3+f7fB9RVQzDMAzDL8rFWoBhGIaRWJhhMQzDMHzFDIthGIbhK2ZYDMMwDF8xw2IY\nhmH4ihkWwzAMw1cialhEpJOIrBeRb0Tk7kLKPONeXy0iLdxz9URkoYh8JSJfisgtIeVTReQHEVnp\nbp0i+RoMwzCMknFEpG4sIknAaOB8YCuwTERmq+q6kDKdgcaqepKInAU8B7QGDgK3q+oqETkGWC4i\n81R1PaDAE6r6RKS0G4ZhGKUnkk8srYCNqpquqgeBqcAl+cp0BSYBqOrnQDURqaWqP6nqKvf8b8A6\nIDmknkRQt2EYhhEGkTQsycCWkOMfONw4FFambmgBEWkAtAA+Dzk9wB06Gyci1fwSbBiGYYRPJA2L\n17Vi8j995NVzh8FeB251n1zAGS5rCDQHfgRGhqnTMAzD8JGI+Vhw/Cr1Qo7r4TyRFFWmrnsOESkP\nzAAmq+obuQVUdXvuvoi8CLxVUOMiYougGYZhlBBVDdvVEMknljTgJBFpICIVgB7A7HxlZgP/AhCR\n1sBOVd0mIgKMA9aq6lOhFUSkTsjhP4EvChOgqoHe7r///phrMJ2m03SaztzNLyL2xKKqWSLSH5gL\nJAHjVHWdiPRzr7+gqu+ISGcR2QjsBXq71dsB1wBrRGSle26Iqr4HDBeR5jhDZt8B/SL1GiJNenp6\nrCV4wnT6i+n0F9MZPCI5FIaqvgu8m+/cC/mO+xdQ7yMKeZpS1X/5qdEwDMPwF4u8jyG9evWKtQRP\nmE5/MZ3+YjqDh/g5rhYkREQT9bUZhmFEAhFBA+68N4ph0aJFsZbgCdPpL5HSKSK22eZ5iyQR9bEY\nhhFd7Cnd8EKkDYsNhRlGgiAiZlgMTxT2v+Ket6EwwzAMI1iYYYkhZd0n4Dem0zCCgRkWwzAMYMmS\nJZx88slRbXPz5s1Urlw54YYwzcdiGAlC0H0sEydOZOTIkWzatIkqVarwz3/+k8cee4yqVavGRE+5\ncuXYuHEjJ554YsTb6tChAz179qRPnz4Rb8sL5mMxDCPuGTlyJIMHD2bkyJHs3r2bzz77jO+//56O\nHTty8OBB39vLzs72VC5ahjgaU3yDhBmWGBIvY+2m01/iRadf7N69m9TUVEaPHs0FF1xAUlISJ5xw\nAq+99hrp6elMnjwZgNTUVLp3784VV1xBlSpVOOOMM1izZk3efTIyMujWrRvHHXccJ554IqNGjcq7\nllu3Z8+eVK1alUmTJrFs2TLatGlD9erVOf744xkwYECeETvnnHMAOO2006hcuTLTp09n0aJF1Kt3\naLH1Bg0aMHLkSE477TSqVavGFVdcwR9//JF3/fHHH+f444+nbt26vPjii5QrV45NmzaVqG/S09Mp\nV64cOTk5gPNkM3ToUNq3b0+VKlW48MIL2bFjR175zz77jLZt21K9enWaN2/O4sWLS9RetDDDYhhG\nRPnkk0/4/fffueyyyw47f/TRR9O5c2fef//9vHOzZ88mJSWFzMxMrrrqKi699FKys7PJycmhS5cu\ntGjRgoyMDBYsWMBTTz3FvHnzDqt7+eWXs2vXLq666iqSkpJ4+umn2bFjB59++ikLFizg2WefBeDD\nDz8EYM2aNezZs4fLL7/8T7pFhOnTpzN37ly+++471qxZw8SJEwF47733ePLJJ1mwYAHffPMNixYt\n8u2JZMqUKUycOJHt27dz4MABRowYAcDWrVu5+OKLGTp0KJmZmYwYMYJu3brxyy+/+NKun5hhiSEd\nOnSItQRPmE5/iZVOEX+2kvLLL79Qo0YNypX789dN7dq1D/tibNmyJZdddhlJSUkMHDiQ33//nU8/\n/ZRly5bxyy+/cN9993HEEUfQsGFDrr/+eqZOnZpXt23btnTt2hWAihUrcvrpp9OqVSvKlSvHCSec\nQN++fUv8C/+WW26hdu3aVK9enS5durBq1SoAXnvtNa677jqaNm3KUUcdxQMPPODLsJqI0Lt3bxo3\nbkzFihVJSUnJa3Py5Ml07tyZTp06AXD++efTsmVL3nnnnbDb9RuLvDeMMkKs/Po1atTgl19+IScn\n50/G5ccff6RmzZp5x3XrHspMLiLUrVuXjIwMRISMjAyqV6+edz07OztvSCt/XYANGzYwcOBAli9f\nzr59+8jKyqJly5Yl0l67du28/aOOOooff/wxT3erVq0KbTsc8rf5229O8tzvv/+e6dOn89Zbh3Ib\nZmVl8Y9//MO3tv3CnlhiSLyMtZtOf4kXnX7Rpk0bjjzySGbMmHHY+d9++4333nuP8847L+/cli1b\n8vZzcnL44YcfSE5Opl69ejRs2JDMzMy8bffu3cyZMwco2Dl+0003ccopp7Bx40Z27drFI488kufL\nCJc6deocpjV0P1LUr1+fnj17HtYHe/bs4a677op42yXFDIthGBGlatWq3H///QwYMIC5c+dy8OBB\n0tPTSUlJoV69evTs2TOv7PLly5k1axZZWVk89dRTVKxYkdatW3PmmWdSuXJlHn/8cfbv3092djZf\nfvklaWlpQMGzu3777TcqV65MpUqVWL9+Pc8999xh12vVqsW3335boteS205KSgoTJkxg/fr17Nu3\nj4ceeqjYugcPHuT333/P27KysopsIz/XXHMNb731FvPmzSM7O5vff/+dRYsWsXXr1hK9hmhghiWG\nmE/AX0xncLnzzjt59NFHGTRoEFWrVqV169accMIJLFiwgPLlywPOU8cll1zCtGnTOPbYY3nllVeY\nOXMmSUlJJCUlMWfOHFatWsWJJ55IzZo16du3L7t3786rm/+JZcSIEbz66qtUqVKFvn37csUVVxxW\nJjU1lWuvvZbq1avz+uuvFzslOPR6p06duOWWW/j73/9OkyZNaNOmDQBHHnlkofVvuukmKlWqlLdd\nd911BbYZehx6vW7durz55ps8+uijHHfccdSvX5+RI0f69hTmJxYgaRgJQtADJIvjgQceYOPGjbz8\n8suxllJi1q1bR7NmzThw4ECBkxSChgVIJjDxMtZuOv0lXnRGm3gzirNmzeKPP/4gMzOTu+++m65d\nu8aFUYkG1guGYQSCeItOHzNmDLVq1aJx48aUL1/+Tz6csowNhRlGghDvQ2FG9LChMMMwDCOuMMMS\nQ+JlrN10+ku86DSM0mKGxTAMw/AV87EYRoJgPhbDK+ZjMQzDMOIKMywxJF7G2k2nv8SLznggf2rf\nDh06MG7cOABeeeUVLrzwwryyJc2Xkr9+LIjX1MVmWAzDiDgNGjSgUqVKVK5cOW+75ZZbwr5v/fr1\n2bNnT178S2gszNVXX83cuXNLfe9w65eEUIMYSv7XFy/YsvkxJF7WjDKd/hIvOv1ERJgzZ04gl3gv\niOzsbJKSkqLWXrwFhxZHsU8sInKMiCS5+38Vka4iUj7y0gzDKAvk5OQwaNAgatasSaNGjfi///u/\nw9L1NmjQgAULFuSVT01NzVsROX9q31AmTpzI2Weffdi5t99+m0aNGlGzZk3uuuuuvCGmiRMn0q5d\nOwYOHEiNGjVITU09rH5B7YQ+ZYTWr169Oo0bN+aTTz5hwoQJ1K9fn1q1avHSSy+VuG/iNXWxl6Gw\nD4EjRSQZmAv0BCZGUlRZIV7G2k2nv8SLTr8pzE8wZswY3n77bVatWkVaWlreSsO55P81H84v+zfe\neIPly5ezYsUK3nzzTcaPH593benSpTRq1Ijt27dz7733Fnuv/LqWLl3Kaaedxq+//sqVV15JSkoK\nK1as4Ntvv2Xy5Mn079+fffv2lVp7LvGQutjLUJio6j4R6QM8q6qPi8jqSAszDMNf5AF/hlr0/pI7\nklWVSy+9lCOOOPSVM2LECPr06cNrr73G7bffTnJyMgD33HNPkb+0w3Fk33333VSrVo1q1apx2223\nMWXKFPr06QPA8ccfz8033ww4qY1LSsOGDbn22msBJ1/LI488wtChQylfvjwdO3akQoUKbNy4kVNP\nPbXU+kNTF+e2M3v2bKDo1MX/+te/St1mafDkYxGRNsDVQB/3lDn9fSBextpNp7/ESmdpDIJfiAhv\nvvlmgT6WH3/8kXr16uUd169fP2I68reTkZFR4LXSUKtWrbz9o446CuCwtMuhaYbDIR5SF3sxLLcB\nQ4BZqvqViDQCFkZWlmEYZYU6deqwefPmvOPQfYCjjz6avXv35h3/9NNPpW5r8+bNNG3aNG8/9ykJ\nih5iO/roowHYt28fxxxzTNg6IkFu6uIxY8bEWkrxTx6qulhVu6rqcPf4W1UNf56gETdj7abTX+JF\np98UNoSVkpLCM888w9atW8nMzGTYsGGHfck3b96cqVOnkpWVRVpaGjNmzCi1n2XEiBHs3LmTLVu2\n8Mwzz9CjRw9P9WrWrElycjIvv/wy2dnZjB8/vsRpjYsjkVIXe5kVdpyIjBCRd0Rkobt9EA1xhmEk\nDl26dDksjqVbt24A3HDDDVx44YWcdtpptGzZkm7duh325fnQQw/x7bffUr16dVJTU7n66qsPu29h\nRqagKbyXXHIJZ5xxBi1atODiiy/O868UliI49NzYsWP573//S40aNVi7di3t2rUrsq2SGr9ESl1c\n7FphIvI+MA0YBPQDegE/q+pdxd5cpBPwFJAEvJj71JOvzDPARcA+oJeqrhSResBLwHGAAmNU9Rm3\n/LGunhOAdCBFVXcWcF9bK8woUyTKWmHp6emceOKJZGVlWUbGCBGEtcL+oqovAgfcYbHeQLHeIDf2\nZTTQCTgFuFJEmuYr0xlorKonAX2B3BRsB4HbVfVvQGvgZhE52b02GHhfVZsAC9xjwzAMIyB4MSwH\n3L8/icjFInI6UN1DvVbARlVNV9WDwFTgknxlugKTAFT1c6CaiNRS1Z9UdZV7/jdgHZCcv47791IP\nWgJJvIy1m05/iRedsSSRotDLIl5mhT0iItWAO4BRQBXgdg/1koEtIcc/AGd5KFMX2JZ7QkQaAC2A\nz91TtVQ19/o2oBaGYSQMDRo0IDs7O9YyjDAo1rCoau6k6J1AhxLc2+tgb/6fJnn1ROQY4HXgVvfJ\nJb82FZFC2+nVqxcNGjQAoFq1ajRv3jwvhiD3V2Osj3MJip6Cjjt06BAoPUUd5xIUPdHuT8PwSu7/\nzKJFi0hPT/f13l6c96NwvuxzDYACu4A0VX2ziHqtgVRV7eQeDwFyQh34IvI8sEhVp7rH64FzVXWb\nux7ZHOBdVX0qpM56oIOq/iQidYCFqnoy+TDnvVHWSBTnvRF5guC8rwg0BzYA3wCnAfWAPiLyVBH1\n0oCTRKSBiFQAegCz85WZDfwL8gzRTteoCDAOWBtqVELqXOvuXwu84eE1BJJ4+ZVpOv0lXnQaRmnx\n4mM5FWinqlkAIvIs8BHQHviisEqqmiUi/XEWrkwCxqnqOhHp515/QVXfEZHOIrIR2Av0dqu3A64B\n1ojISvfcEFV9DxgGvOauXZYOpJToFRtGAmNObyMIeBkK+xo4KzdWxHXkL1XVJiKyUlVbREFnibGh\nMMOIDAcOQL9+8MUXMGcOhCxdZcQ5fg2FeXlieRxYKSKLcPws5wKPisjRwPxwBRiGET/s2gXdu0PF\nirBoEbjLZhnGYXhZK2wcztDUm8AsoL2qjlXVvap6Z6QFJjLxMtZuOv0lXnX+8AOcfTacdBLMmhUc\noxKv/ZnIeFo2X1UziGMnuWEY4bF6NVx8MdxyCwwaBObKMYqiWB9LvGI+FsPwh7lzoWdPGD0aUmyq\nTEITzenGhmGUUcaNg2uvhZkzzagY3vFkWEQkSUSOF5H6uVukhZUF4mXM1XT6SzzoVIWePRfx6KOw\neDG0bx9rRYUTD/0J8aPTD4r1sYjIAOB+YDsQuoBPs0iJMgwjdhw4AH36wPLl8OmncNxxsVZkxBte\n4li+BVqp6o7oSPIH87EYRsnZuRMuuwyqVoVXXoFKlWKtyIgm0fSxbAZ2h9uQYRjB5vvvoV07aNYM\nXn/djIpRerwYlu+AhSIyRETucLeBkRZWFoiXMVfT6S9B1LlihWNUbrgBnn4akpKCqbMgTGfw8BLH\nstndKrib4H1JfMMwAs477zgzv154wRkGM4xwsTgWwyjDvPACpKY604nbtIm1GiPWRHytMBF5WlVv\nFZG3Crisqto13MYNw4gNOTlwzz2OQVmyBBo3jrUiI5Eoysfykvt3ZCGbESbxMuZqOv0l1jr/+AOu\nvtoxKJ98UrhRibVOr5jO4FHoE4uqLnf/LoqaGsMwIsqvv8Kll0KtWjB/Phx1VKwVGYmI+VgMo4yw\naRN07gxdusDw4VDOFnQy8mFrhRmG4Zlly5xlWQYMgP/+14xKtDmYfTDWEqKK538vEbFwKZ+JlzFX\n0+kv0dY5e7bzpPL883Dzzd7rWX+Gz76D+xj+0XAaj2rMO/PeibWcqFGsYRGRtiKyFvjaPW7u5r03\nDCPgjB4NN97oxKp0tXmcUeNg9kHGLB9Dk1FNWJaxjLnXzKVShbLz29zLWmFLge7Am7n57UXkK1X9\nWxT0lRrzsRhlmZwcuOsuJyf9u+9Cw4axVlQ2UFVeX/s69y28j+TKyQw7fxitklvFWpZnopnzHlXd\nLIenjMsKt2HDMCLD/v3wr3/B9u3OdOJjj421orLB/E3zGTx/MDmaw6iLRtHxxI5IGU216WkRShFp\nByAiFURkELAusrLKBkEeGw7FdPpLJHX+8gucfz4ccQTMmxeeUbH+9EZaRhodX+7ITW/fxJ1t7ySt\nbxoXNLrgT0Yl1jqjiRfDchNwM5AMbAVauMeGYQSIjRuhbVs45xxnyfsjj4y1osRmw44NpExPoeuU\nrnRr2o21/15Lj//pQTmxKXcWx2IYCcDixdCjBzzwAPTrF2s1ic3W3Vt5cPGDzFg3gzva3MEtZ93C\n0RWOjrUsX4iaj0VEjgNuABqElFdVvS7cxg3DCJ9x45x1vyZPho4dY60mccncn8nwj4czdsVY+rTo\nw4YBGzj2KHNgFYSXZ7Y3gSrA+8DbIZsRJvEy5mo6/cUvndnZMGiQE0X/4Yf+G5Wy1p+FkRuL0mR0\nE3bs28HqG1fzeMfHS2xU4qU//cDLrLCjVPXuiCsxDMMzu3fDVVc5M8A++8xmfkWCg9kHmbBqAg8u\nfpDWdVuzpPcSTq5xcqxlxQVe4lgeBj5V1bh6SjEfi5GofPeds95X+/YwahSULx9rRYlFaCxK3Sp1\nGXbeMM5MPjPWsqKCXz4WL4blN6AScADIXfBGVbVKuI1HEjMsRiLy0Udw+eWOT6V/fyijYRIRY/6m\n+QxZMIQczWHYecM4/8Tzy1QsStQWoVTVY1S1nKpWVNXK7hZooxIvxMuYq+n0l9LqnDTJSR08caKz\nmGSkv+8SvT9DCY1FGdRmEMtuWEbHRv4GOMZLf/qBl1lh5YCrgYaq+qCI1Adqq+rSiKszDIPsbOcJ\nZcYMZ1px06axVpQ4bNixgfs+uI+Pt3zM0HOGcl2L6yifZGOL4eJlKOx5IAf4h6qeLCLHAvNUtWU0\nBJYWGwozEoE9e+Caa2DXLsew/OUvsVaUGOTGosxcPzMvFqVS+bKzSGRhRDMfy1mq+m9gP4Cq/gqY\nSTeMCPP9946D/rjjnOVZzKiET+b+TAbPH8ypz59KtYrV+Lr/1wxuP9iMis94MSwHRCQp90BEauI8\nwRhhEi9jrqbTX7zo/PRTaNMGeveGMWOgQoXI68pPIvVnaCzKr/t/ZfWNqxnecXhUAxzjpT/9wEsc\nyyhgFnCciDyKs4T+fRFVZRhlmMmTYeBAx0nfuXOs1cQ3FosSGzytFSYiTYHz3MMFquppdWMR6QQ8\nBSQBL6rq8ALKPANcBOwDeqnqSvf8eOB/ge2q2iykfCpwPfCze2qIqr5XwH3Nx2LEFTk5cN99MHUq\nvPUW/C3QGY+CTVmORQmHaK4VNh4YpaqjQ86lqmpqMfWSgNHA+TirIi8TkdmhRklEOgONVfUkETkL\neA5o7V6egPO09FK+WyvwhKo+UZx2w4gX9u6Fnj2dZe8//xxq1oy1ovglNy+Kooy+aHSZi0UJAl58\nLBcCk0Tk2pBzl3io1wrYqKrpqnoQmFpAva7AJABV/RyoJiK13eMlQGYh906I/5J4GXM1nf6SX+eW\nLY6Tvlo1eP/94BiVeOvP0FiUu9rdFZFYlHCIl/70Ay+GZTtwNnC5iDwrIl5nhCUDW0KOf3DPlbRM\nQQwQkdUiMk5EqnnUYxiB4/PPoXVruPpqZ5Viy6FScrbs2kLK9BQumXoJ3Zt2Z+2/15LytxTLixJD\nPPW8qu4CuuD4NRYCVb1U86gh/8+J4uo9BzQEmgM/AiM9thM4OnToEGsJnjCd/pKrc8oUZ82vF15w\nVikOyA/rPILenxl7Muj3Vj8GbhjI6XVO55sB39CvZb/ABjgGvT/9xMussLfAWRwMuF9E0oDbPdTb\nCtQLOa6H80RSVJm67rlCUdXtufsi8mKuvoLo1asXDRo0AKBatWo0b948783NfSy1YzuO9nFODvTq\ntYh582DBgg40axYsfUE/ztyfyc3P3sycDXO4sfuNfN3/a9Z8voalHy8NhL54Os7dT09Px1dUNSIb\njtH6FidBWAVgFdA0X5nOwDvufmvgs3zXGwBf5DtXJ2T/duDVQtrXoLNw4cJYS/CE6fSPvXtVzzln\nobZtq7ptW6zVFE3Q+nPvgb06bMkwrfF4Db1h9g26ZdcWVQ2ezsKIB53u92bY3/9eZoV1A4YBtTg0\nbKVazEKUqpolIv2BuTjTjcep6joR6edef0FV3xGRziKyEdgL9A5pdwpwLvAXEdkCDFXVCcBwEWmO\nM2T2HWCJWI24YOtWuOQSJ4J+9mzzp3jFYlHiDy9rhX0LXKweY1eCgsWxGEEiLQ0uvdRZlfiuu4Ln\nTwkiarEoUSdqcSzAT/FmVAwjSLz2Gtx8M4wd6xgXo3gsFiW+8TIrLE1EponIlSLSzd0ui7iyMkCo\nAy3ImM7SoQoPPOA8ocyff8ioBE1nYcRCZ2liUaw/g4eXJ5aqOCsbX5Dv/Ez/5RhGYrB/v7OA5Pff\nOznpa9eOtaJgY3lREgtPa4XFI+ZjMWLFjz86TvomTeDFF6FixVgrCi6WFyVYRC0fi4j8VUQWiMhX\n7vGpImKrGxtGAaxYAWed5Qx7vfyyGZXCsLwoiY0XH8tY4B7ggHv8BXBlxBSVIeJlzNV0emPGDLjw\nQnjqKSeVcGFugVjr9EokdEYiL0pZ7s+g4sXHUklVP891nqmqisjByMoyjPhBFR591FmaZe5cOP30\nWCsKHlk5WYxfOd5iUcoIXuJY3gUGANNVtYWIdAf6qOpF0RBYWszHYkSD33+H66+Hb76BN96AOnVi\nrShYWCxKfBHNOJb+wBjgZBHJwIl2vzrchg0j3snIgMsugwYNYNEiOOqoWCsKFhaLUnYp1seiqt+q\n6nlADeCvqtpOVdMjrqwMEC9jrqbzz3z2GbRq5axOPGVKyYxKovdntPOiJHp/xiNe1gqrAdwPtAdU\nRJYAD6rqjkiLM4wgMn48DB7s/L344lirCQ4Wi2Lk4sXHMh9YDEzGWYTyKqCDqp4feXmlx3wsht8c\nPAi33+5E0b/xBpxsvmfAYlESiWj6WGqr6kMhxw+LSI9wGzaMeOLnn+Hyy6FyZSfrY1Uvqe4SnMz9\nmQz/eDhjV4zl+hbX83X/r8OaNmwkDl7iWOa564SVc7cewLxICysLxMuYa1nXuWIFnHmmk5f+zTfD\nNyrx3p+RiEUJh3jvz0Sk0CcWEfmNQ2mCbwNedvfL4eROuSOy0gwj9rz6Ktx2Gzz7LHTvHms1scXy\nohhesbXCDKMAsrMdB/3MmY4/pVmzWCuKHRaLUnaIpo/FMMoUv/4KV14JOTmwdKmT8bGsYrEoRmnw\n4mMxIkS8jLmWJZ1ffunEpzRrBu++GxmjEg/9mZaRxhn3nBG1WJRwiIf+hPjR6QdF+Vgaqup30RRj\nGLFk1izo1w+eeAKuuSbWamJDaCxKjxN6MPz64RaLYpSYQn0sIrJcVc8QkQ9U9R9R1hU25mMxvJKT\n42R6nDjR8amccUasFUUfi0UxIDo+liQRuRdoIiIDcYIjc1FVfSLcxg0j1uze7TydZGY6/pRatWKt\nKLpYLIoRCYrysVwBZANJQGV3OyZk3wiTeBlzTVSdGzY4Sbnq1YMFC6JnVILQn15iUYKg0wumM3gU\n+sSiquuBYSKyRlXfiaImw4g477zj5KR/5BFn2fuygsWiGNHAy1ph1XAWoTzHPbUIZxHKXZGVFh7m\nYzEKQhWGD4dRo2D6dGjbNtaKooPFohheiGYcy3icdMSX4/hZegITgMvCbdwwosnevc5TyvffO/6U\n5ORYK4oOFotiRBsvcSyNVPV+Vd3k5mZJBRpFWFeZIF7GXBNB53ffOU8nRx8NixfH1qhEqz/DzYuS\nCO97kIgXnX7gxbDsF5Gzcw9EpD2wL3KSDMNfPvgA2rRxfCnjx0PFirFWFFk27NhAyvQUuk7pSrem\n3Vj777Wk/C2FcmLx0EZ08OJjaQ68BOSu6ZoJXKuqqyOsLSzMx2KowtNPOz6VV1+Fv/891ooiS24s\nyox1M/JiUY6ucHSsZRlxRNR8LKq6CjhVRKq6x4F22hsGwP79cOONsGYNfPqpk5c+UQmNRenTog8b\nBmywWBQjpnh+NlbVXWZU/CVexlzjTecPP8A558Aff8DHHwfPqPjVn6GxKL/s+4XVN67m8Y6P+2ZU\n4u19DzrxotMPbNDVSCg+/tgJeuzeHaZMgUoJuCrJweyDjFk+hiajmrAsYxlLei/hxa4vUrdK3VhL\nMwzA8rEYCcQLL8DQoTBpEnTqFGs1/hMai5JcOZlh5w+jVXKrWMsyEoio5mMRkXZAg5Dyqqovhdu4\nYfjBgQNY3IN6AAAeOklEQVRwyy2wZAl89BGcdFKsFflPbixKjuYw6qJRdDwxmEvYGwZ4GAoTkcnA\nf4F2QEt3s5BdH4iXMdcg6/zpJ/jHP5y///3vorgwKiXpz9BYlDvb3kla3zQuaHRBVIxKkN/3UExn\n8PDyxHIGcIqNKxlBY9ky6NYN+vSB//wHPvww1or8IzcvykebP2LouUPp06KP5UUx4gYvcSzTgVtV\nNSM6kvzBfCyJzUsvwaBBMGYMXHpprNX4h8WiGLEkmj6WmsBaEVkK/OGeU1XtWlxFEekEPIWz9P6L\nqjq8gDLPABfhRPP3UtWV7vnxwP8C21W1WUj5Y4FpwAlAOpCiqjs9vA4jAcjKgjvvhDlzYNEiOOWU\nWCvyB4tFMRIJL9ONU4FLgUeAEcBIdysSEUkCRgOdgFOAK0Wkab4ynYHGqnoS0Bd4LuTyBLdufgYD\n76tqE2CBexyXxMuYa1B0/vILXHghrF/vLCKZ36gERWdxhOoMjUXZsW+H77Eo4RCP/Rlk4kWnHxRr\nWFR1EbAeqIKT4Gutqi72cO9WwEZVTVfVg8BU4JJ8ZboCk9x2PgeqiUht93gJzvIx+cmr4/5NoIEQ\nozCWL4eWLZ1tzhyoXj3WisKjoFiUsV3HWiyKkRAUOxQmIik4s8JyjcloEblTVacXUzUZ2BJy/ANw\nlocyycBPRdy3lqpuc/e3AXGbTLZDhw6xluCJWOscPx7uvhuef95x1hdGrHV6QVX5uebP/M9z/0Ny\n5WRm9pgZ2FiUeOhPMJ1BxIuP5T7gTFXdDiAiNXGGoIozLF495/kdRZ497qqqImIe+gTljz+c+JTF\ni50ZX02bFl8nyMzfNJ8hC4aQnZNtsShGQuPFsAjwc8jxDv5sDApiK1Av5LgezhNJUWXquueKYpuI\n1FbVn0SkDrC9sIK9evWigbtQVLVq1WjevHner4bc8c5YHq9atYrbbrstMHoKOw4dG45W+6+9toj7\n74dTTunA0qWwYsUitm2Lz/5My0ij3+h+/PTbTzzR9wlq/lyTclvKsXjL4kDoK+w4qP2Z/zgW/5+J\n0p+5++np6fiKqha54QyDzQN6Ab2B94DHPdQ7AvgWJ2K/ArAKaJqvTGfgHXe/NfBZvusNgC/ynXsc\nuNvdHwwMK6R9DToLFy6MtQRPRFvnBx+o1q6tOmyYak6O93pB68+vf/laL3/tcq0zoo4+t+w5PZB1\nQFWDp7MwTKe/xINO93uzWLtQ3OYljkVw0hC3xxmmWqKqs7wYLRG5iEPTjcep6mMi0s/91n/BLZM7\nc2wv0FtVV7jnpwDnAn/BeSoZqqoT3OnGrwH1KWK6scWxxB+qMGIEPPEETJ4M550Xa0Wlw2JRjHjF\nrzgWW4TSCAR79sB11zn56F9/HerXj7WikpM/FmVw+8GBmDZsGF7xy7AUOt1YRD52//4mInvybbvD\nbdiIn3ntkda5fr2z1H316o6TvrRGJVb9WdJYFHvf/cV0Bo9Cnfeq2s79e0z05BhljZkznUyPjz3m\nrPkVT2TlZDF+5XgeXPwgreu2ZknvJZxc4+RYyzKMmOPFx/KyqvYs7lzQsKGwYJOVBffdB1OnOkNf\nLVvGWpF3VJUZ62Zw7wf3Wl4UI6GI5lph/5Ov4SNwVjw2jFLx889w5ZUgAmlpUKNGrBV5Z8GmBQxe\nMNhiUQyjCIrysdwjInuAZqH+FZwZWrOjpjCBiZcxVz91LlvmPJ2ceSa8956/RiWS/bk8YzkdX+7I\njW/fyKA2g8LKi1IW3/dIYjqDR1E+lkeBR0XkMVUdEkVNRoLy4otwzz1OCuF//jPWarxheVEMo+R4\n8bFcBnyQGysiItWADqr6RhT0lRrzsQSH33+H/v3hk08cZ/3JceDfztiTwQOLHrBYFKNMEfHpxiHc\nHxqA6O6nhtuwUTbYvBnOPht273aWug+6Ucncn8ng+YNp9lwzqlasyoYBGxhy9hAzKoZRArwYloKs\nV5LfQsoi8TLmWlqd8+dDq1ZwxRUwbRocE+GJ6+H0ZzTzoiT6+x5tTGfw8DIrbLmIPAH8H46RuRlY\nHlFVRlyjCsOHw9NPw5Qp8Pe/x1pR4VgsimH4jxcfyzHAf4DclZveBx5W1b0R1hYW5mOJDbt3Q69e\nsHUrzJgBdQOat8piUQzjz9haYcVghiX6rFvnzPbq0MF5WjnyyFgrKpjQWJRh5w+zWBTDcIma815E\njhORESLyjogsdLcPwm3YiJ8xVy86p0+Hc845lOkxFkalOJ1+xqKEQyK970HAdAYPLz6WV4BpwMVA\nP5y8LD8XVcEoO2RlwZAhzrIs770HZwRwTQaLRTGM6OLFx7JCVU8XkTWqeqp7Lk1VA726kw2FRZ7t\n250ZX0cc4Tjp//KXWCs6HItFMYySEc04lgPu359E5GIROR2oHm7DRnzz+efO0ixt28K77wbLqFgs\nimHEFi+G5WE32v4OYBDwInB7RFWVEeJlzDVUp6qzJEuXLjBqFDz8MCQFJKrpvfnvRS0WJRzi8X0P\nMqYzeBTpYxGRJKCJqs4BdgIdoiHKCCb798PNNzsR9B99BE2axFqRQ1ZOFhNWTuCemfdwbodzLRbF\nMGKMFx/LMlU9M0p6fMN8LP6Sng7dusFJJzmLSUY6it4LobEodavU5bHzHrNYFMMIg6jFsYjIk0B5\nnJlhe3Gi71VVV4TbeCQxw+If8+bBv/7lTCW+7TYnj0qsyY1FydEchp03jPNPPN9iUQwjTKLpvG8B\n/A14EBgJjHD/GmES9DHXnBx45BG48spFTJsGt98ee6MSGotyZ9s7WXbDMjo2cgIcg96fuZhOfzGd\nwaNQH4uI3KqqTwP3qepHUdRkBIBdu+Daa2HbNifg8dxzY6snNxbl4y0fM/ScoVzX4jqLRTGMgFLo\nUJiIrFbV00Rkpaq2iLKusLGhsNLz5Zdw2WXQsSM8+SRUqBA7LbmxKDPXz8yLRalUvlLsBBlGAhON\nnPdrReQbIFlEvsh3TXODJY3EYtIkGDQIRo50/CqxInN/JsM/Hs7YFWO5vsX1fN3/68BNGzYMo2AK\n9bGo6pXA2cBGnOVcuoRsXaOiLsEJ0pjrvn3Qpw8MGwYLFx5uVKKpMzQvyq/7f2X1jasZ3nG4J6MS\npP4sCtPpL6YzeBQZx6KqPwH2ZJLgbNgA3btDs2awbFlsphJbXhTDSBxs2fwyzrRpTj76hx+Gvn2j\nP+srfyzKsPOGcWZy3IVNGUZCEA0fi5HA/PEH3HGHs87X3Llw+unR1xAaizL6otEWi2IYCYKXOBYA\nRMSm4vhMrMZcv/sO2reHjAxYvrx4o+K3zqJiUcIhXsawTae/mM7g4SXRV1sRWQt87R43F5FnI67M\niAizZ0Pr1nD11U7q4GrVotf2hh0bSJmeQtepXenWtBtr/72WlL+lUE48/74xDCMO8LKky1KgO/Bm\nbjyLiHylqn+Lgr5SYz6Wwzl4EO691/GpTJ0KbdpEr22LRTGM+CCqPhZV3ZxvmCIr3IaN6PHDD05C\nripVnKGvGjWi025oLEqfFn0sFsUwyghexiA2i0g7ABGpICKDgHWRlVU2iMaY67x5cOaZ8L//C3Pm\nlM6olFRnaCxKNPOixMsYtun0F9MZPLw8sdwEPA0kA1uBecDNkRRlhE92Njz4oLPE/ZQp0KFD5Nu0\nWBTDMMDiWBKSbdvgqqucbI+vvgq1a0e2vdBYlOTKyQw7f5jlRTGMOCTiPhYRGVVEPVXVW8Jt3PCf\nDz90jErv3pCaGvm0wbmxKNk52Yy6aBQdTwx/2rBhGPFNUT6W5UCauy0vYCsWEekkIutF5BsRubuQ\nMs+411eLSIvi6opIqoj8ICIr3a2TFy1BxM8x15wcZ52vlBRn+Ouhh/wzKgXpDI1FGdRmEGl907ig\n0QUxNSrxMoZtOv3FdAaPQp9YVHVi6LGIVHZO629ebiwiScBo4Hwc38wyEZmtqutCynQGGqvqSSJy\nFvAc0LqYugo8oapPlOB1JjQ7djiLRu7c6az1Va9e5NrKzYvy0eaPGHruUPq06GN5UQzDOAwvcSzN\ngJeAv7infgauVdUvi6nXBrhfVTu5x4MBVHVYSJnngYWqOs09Xg90ABoWVldE7gd+U9Uis1iWFR/L\n559Djx7OIpKPPQblI/QdnxuLMmPdjLxYlKMrHB2ZxgzDiAnRTE08BhioqvVVtT5wh3uuOJKBLSHH\nP7jnvJQ5vpi6A9yhs3EiEsXY8eCgCk8/DV26wFNPwYgRkTEqmfszGTx/MM2ea0bVilXZMGADQ84e\nYkbFMIxC8TLduJKqLsw9UNVFIuLlW8Xr40JJreNzwIPu/kPASKBPQQV79epFgwYNAKhWrRrNmzen\ngzvvNne8M5bHq1at4rbbbitx/V27oEuXRWzbBp991oETT/Rf33vz32PmupnM+n0WrQ604vnmz1Oz\nfM28WJQg9F/+49L2Z7SPQ8fag6CnsGPrz8Tvz9z99PR0fEVVi9yAN4D/AA1whqjuA2Z5qNcaeC/k\neAhwd74yzwNXhByvB2p5qeuebwB8UUj7GnQWLlxY4jorVqg2aqT673+r7t/vv6YDWQf0hbQXNHlk\nsnab1k3X/byuVDpjgen0F9PpL/Gg0/3eLNYuFLd58bEcCzwAtHNPLQFSVTWzmHpH4CxceR6QASwF\nrtQ/O+/7q2pnEWkNPKWqrYuqKyJ1VPVHt/7twJmqelUB7Wtxry2eUIWxY531vkaNcpZo8ff+yutr\nX+e+hfdZLIphlFGitlaYqv4KDCjpjVU1S0T6A3OBJGCcaxj6uddfUNV3RKSziGwE9gK9i6rr3nq4\niDTHGWr7DuhXUm3xxm+/wY03wurV8NFH8Ne/+nv/+ZvmM3i+kxfFYlEMwwib4h5pgDOBWcBK4At3\nW+PH41IkNxJkKOyrr1SbNlXt1Ut1715/21+2dZme/9L52viZxjr1i6manZNdap1BwHT6i+n0l3jQ\niU9DYV6c968Ag4AvgZxIGDejYF5+GQYOhMcfdyLp/cJiUQzDiCRefCwfq2q7IgsFkHj2sezfD7fe\nCosXw/TpcOqp/tx36+6tPLj4QYtFMQyjQKKZj+UBERkHzAcOuOdUVWeG27jxZ775Bi6/HE4+GdLS\noHLl8O+ZPy/KhgEbLC+KYRgRw0uA5LXAaUAn4GJ36xJJUWWF0LnkAK+/Dm3bQt++zlL34RoVv/Ki\n5NcZVEynv5hOf4kXnX7g5YmlJXBy3I4rxQEHDsCdd8Jbb8G770LLluHd72D2QSasmmB5UQzDiAle\nfCwTgBGq+lV0JPlDvPhYvv/eWZG4Th2YMAGqVy/9vdRiUQzDCINo+ljaAKtE5DvgD/ecqqpPLuWy\ny5w50KcP3HWXM/srnNARi0UxDCMoePGxdAJOAi7A8a10AbpGUlSic/AgDB4M1123iJkz4Y47Sm9U\n0jLS6PhyR256+ybubHtnRPKixMvYsOn0F9PpL/Gi0w+8RN6nR0FHmWHzZrjySscxP2YMtCvlRG6L\nRTEMI6hYzvsoMns23HCD84QyaBCU8/K8mA/Li2IYRqSIpo/FCJMDB+Duu2HmTJg1y5lSXFIsFsUw\njHihFL+ZjZKwaZMz3LVpE6xcebhR8TLm6lcsSjjEy9iw6fQX0+kv8aLTD8ywRJDp06F1a7jmGnjj\nDTi2BLYgKyeLMcvH0GRUE5ZlLGNJ7yWM7TqWulXqRk6wYRiGD5iPJQL8/rszfXjuXJg2rWQBj6rK\njHUzuPeDey0WxTCMqGI+loDy9dfQowc0aQIrVkDVqt7rLti0gMELBpOdk22xKIZhxC02FOYjkydD\n+/Zw003Ok0pxRiV3zHV5xnI6vtyRG9++kUFtBkUkFiUc4mVs2HT6i+n0l3jR6Qf2xOIDe/fCgAHw\n8ccwfz6cdpq3elt2bSFleorFohiGkVCYjyVMvvrKWevr9NPhuefgmGOKr5OxJyMvL8rA1gMtFsUw\njEDgl4/FhsJKiSqMGwcdOjgrE7/0UvFGJXN/JoPnD6bZc82ocmQVvu7/NUPOHmJGxTCMhMIMSynY\ns8eZQvzkk06Wx169il7rq7BYlDWfr4ma5nCIl7Fh0+kvptNf4kWnH5iPpYSsXOnM+jr3XFi6FCpV\nKrxsVk4W41eOt7wohmGUKczH4hFVePZZSE2Fp5+Gq64qqqzFohiGEX9YHEsU2bnTyZuyaRN88gmc\ndFLhZS0WxTCMso75WIph6VJnxtfxx8OnnxZuVEoTixIvY66m019Mp7+YzuBhTyyFoOo454cNg+ef\nh8suK7ic5UUxDMM4HPOxFMCOHc5Mr+3bYepUaNjwz2UsL4phGImGxbFEiI8+ghYt4K9/hSVL/mxU\nQmNRqlasyoYBGywWxTAMIwQzLC45OfDYY9C9uzP7a8QIqFDh0PVI5EWJlzFX0+kvptNfTGfwMB8L\nsG0b9OwJ+/dDWhrUDUl5kpWTxYSVE3hg8QMWi2IYhuGBMu9j+eADx6j07u3EqBzhmlqLRTEMo6xh\ncSw+MG0a3H47TJoEHTseOm+xKIZhGKWnTPtYOnaE5csPGZVo50WJlzFX0+kvptNfTGfwKNNPLLk5\n6C0WxTAMwz/KtI/FYlEMwzAOYT6WMMjcn8nwj4czdsVY+rTow4YBG8KaNmwYhmEcIqI+FhHpJCLr\nReQbEbm7kDLPuNdXi0iL4uqKyLEi8r6IbBCReSJSzaueSMSihEO8jLmaTn8xnf5iOoNHxAyLiCQB\no4FOwCnAlSLSNF+ZzkBjVT0J6As856HuYOB9VW0CLHCPiyQrJ4sxy8fQZFQTlmUsY0nvJYztOpa6\nVeoWVzWirFq1Kqbte8V0+ovp9BfTGTwiORTWCtioqukAIjIVuARYF1KmKzAJQFU/F5FqIlIbaFhE\n3a7AuW79ScAiCjEu+WNRZvaYGahYlJ07d8ZagidMp7+YTn8xncEjkoYlGdgScvwDcJaHMsnA8UXU\nraWq29z9bUCtwgS0erGVxaIYhmFEmUgaFq/Tzbx820tB91NVFZFC2xnUZhCX/+1yykkww3XS09Nj\nLcETptNfTKe/mM4AoqoR2YDWwHshx0OAu/OVeR64IuR4Pc4TSKF13TK13f06wPpC2lfbbLPNNttK\ntvnx/R/JJ5Y04CQRaQBkAD2AK/OVmQ30B6aKSGtgp6puE5EdRdSdDVwLDHf/vlFQ437MxTYMwzBK\nTsQMi6pmiUh/YC6QBIxT1XUi0s+9/oKqviMinUVkI7AX6F1UXffWw4DXRKQPkA6kROo1GIZhGCUn\nYSPvDcMwjNgQTK92EUQi6DJIOkWknogsFJGvRORLEbkliDpDriWJyEoReSuoOt1p7K+LyDoRWesO\nuwZN4xD3Pf9CRF4VkSMjodGLThE5WUQ+FZHfReSOktQNgs6gfYaK6k/3eiA+Q8W87yX7DEXKeR+h\nCQFJwEagAVAeWAU0zVemM/COu38W8JnXugHRWRto7u4fA3wdRJ0h1wcCrwCzg/i+u8eTgOvc/SOA\nqkHS6NbZBBzpHk8Dro1hX9YEWgIPA3eUpG5AdAbtM1SgzpDrQfkMFaqzpJ+heHtiyQu6VNWDQG7g\nZCiHBV0CuUGXXurGWmctVf1JVVe553/DCQo9Pmg6AUSkLs6X5Yt4mzYedZ0iUhU4W1XHu9eyVHVX\nkDQCu4GDQCUROQKoBGyNgEZPOlX1Z1VNczWVqG4QdAbtM1REfwbqM1SYztJ8huLNsBQWUOmlTEFB\nl/nr+kVpdR62xow7K64F8LnvCgvX4LU/AZ4E7gRyIqTPi4aiytTFWcXhZxGZICIrRGSsiFQKkMZk\nVf0VGAlsxpkFuVNV50dAo1edkahbUnxpKyCfoaII0meoMEr8GYo3w+J1pkGspxqXVmdePRE5Bngd\nuNX91RUJSqtTRORiYLuqrizgut+E059HAKcDz6rq6TizD4tdX64UlPp/U0QaAbfhDFMcDxwjIlf7\nJ+0wwpmtE82ZPmG3FbDP0J8I6GeoIEr8GYo3w7IVqBdyXA/H8hZVpq5bxktdvyitzq0AIlIemAFM\nVtUC43QCoLMt0FVEvgOmAP8QkZcCqPMH4AdVXeaefx3nQxIkjS2BT1R1h6pmATNx+jcShPM5CNpn\nqFAC9hkqjKB9hgqj5J+hSDmLIuSAOgL4FueXXQWKd5C25pCDtNi6AdEpwEvAk0Huz3xlzgXeCqpO\n4EOgibufCgwPkkagOfAlcJT7/k8Cbo5VX4aUTeVwp3igPkNF6AzUZ6gwnfmuxfwzVJTOkn6GItrp\nEeqgi3BmeWwEhrjn+gH9QsqMdq+vBk4vqm7QdALtccZbVwEr3a1T0HTmu8e5RHBGiw/v+2nAMvf8\nTCIwK8wHjXcBXwFf4BiW8rHqS5xZVVuAXUAmju/nmMLqBk1n0D5DRfVnyD1i/hkq5n0v0WfIAiQN\nwzAMX4k3H4thGIYRcMywGIZhGL5ihsUwDMPwFTMshmEYhq+YYTEMwzB8xQyLYRiG4StmWIyIIyK9\nRGRUCetMcZeWv9WH9u/Jd/xxuPcspr2TRWSViCwXkYb5rkVqaZGIISJniMjTJayTLiLHuvul7m8R\n6VJECoK468uygsWxGBFHRK4FWqrqAI/lawNLVPWkAq4lqWp2Cdvfo6qVS1InHERkMJCkqo/EWkus\ncJcpOUOdBTYj1UaZ6Mt4xJ5YjGIRkQZugqAJIvK1iLwiIheIyMciskFEznTLHSsib7hPGp+KSLMC\n7lXTTRi01N0KWhNrHpDsJj9qLyKLRORJEVkG3CoiF4vIZ+5Kq++LyHHuvY9xNa5xNVwmIo8BR7n3\netkt95v7V0Tkv+Ik11ojIinu+Q5um9PdxEaTC+mX5q6O1SIy002G1Bm4FbhJRD4opN4T4iSgmi8i\nNdxzjUTkXRFJE5EPReSv7vmJIvK029ffikg39/yD7mtaKSJbRWS8e/4aEfncPf+8iJTLfc0i8rD7\nJPVpSJ8V+364/fGWu58qIuPFSaT1rYgU+2MhX3+Pdv+X3heRt0NeT+gTTksRWeju5z3tikhDV/sa\nEXm4uHaNGBLJJQRsS4wNZ32hg8DfcNZhSgPGude6ArPc/VHAf9z9vwMr3f1ewCh3/1WgnbtfH1hb\nQHsnAF+EHC8ERoccVwvZvx4Y4e4PB57IXw7Yk+/+e9y/3XCMmADHAd/jLGvRAdiJs9KwAJ/kas53\nnzU4eSoAHsBdmwq4HxhYSF/mAFe6+/8J6ZcFQGN3/yxggbs/EZjm7jcFvsl3v6qujhbu9dk4T0sA\nzwI9Q9r935B+urcE70cH3HWscNaJ+ggnWdRfgF9y28tX5zvg2Hz9fVlIf9fBWTbksgLKtwQWFvC/\nMxu4xt3/d/731bbgbEdgGN74TlW/AhCRr4DcfCFf4hgegHY4Xx6o6kIR+YuI5B+qOB9oKpK3Snhl\nEamkqvtCyhS0hPi0kP16IvIajhGogJN9EeA8oEduIVXdWcxrag+8qs431XYRWQyciZN4a6mqZriv\nd5X7GvN8BeIkP6qqqkvcU5OA6SH6C1sGPSfktUwGZorI0Tgr3U4P6ZcKuS8DeMN9PevETbLmahCc\nzIMjVXWliPQHzgDS3PscBfzkFj+gqm+7+8uBju6+l/cjFAXeVidZ1A4R2Q7UwskjUxzncKi/fyzs\nia4I2gL/dPcn4xhII4CYYTG88kfIfg5wIGQ/9P+o0BwzIdfPUtUDlIy9IfujcJ5S5ojIuTi/ogtr\nvyi0gPK5ekNfbzbFf1ZC7+PVcSlu2XJApqq2KKRcaF+FtpMKbFbVSSHnJqnqYZMVXEKzAoa+Z6V5\nP0LLeumbXPL3d+h+FoeG5iuWQIsRQMzHYvjJEuBqcMblgZ/1zwmW5gG35B6ISHOP9w79EqrCoV/I\nvULOvw/cHHLvau7uQXFS/hakt4eIlBORmji/qJfiwTipk5o1U0Tau6d6AosK0JqfcsDl7v5VOJMU\n9gDfiUh3V7eIyKlFtS8iXXCe0EJnzS0AuruvJdfnVb+Yl1LS9yOchFQfcqi/6+AMseWSjjMEBs4Q\nZUF8DFzh7kcqEZrhA2ZYDK/k/xWuBeynAmeIyGrgUeDakOu5ZW4BWroO76+AvqVoLxVn2CgN+Dnk\n2sNAddcZv4pDX1xjgDXiOu9zy6vqLBz/xGqcL+U7VXV7Pr2F6cF9ff91X++pwIMFvN787AVaicgX\nrr7cOlcDfVzdX+L4rgpqO3f/dhwf0FLXUZ+qquuA+4B5rqZ5OMOFBd2jJO9HaPmiXlthhPb3N8Ba\nnKHDTzlkqB4AnhZngkZWIe3dCtwsImvc125TWgOKTTc2DCMmiMgEYI6qzoi1FsNf7InFMIxYYr9s\nExB7YjEMwzB8xZ5YDMMwDF8xw2IYhmH4ihkWwzAMw1fMsBiGYRi+YobFMAzD8BUzLIZhGIav/D8C\nvT7hM9J+mQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa595d68>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NtoG from graph: 8.7 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYHHWV//H3h4QQMMAQgVwIOEAAAYEBFuIqkQnXiLsC\nzy4oXpYIugthRVFZiC43L1zcXUVk1d8aIEEFxPUnlxVCEmCQ5ZYfSsIliyS4AySQkEAIAY2Q5Pz+\nqJpUZ5hLZtLVVT39eT1PP3RVV3d9+1DpM3VOXRQRmJmZVcNmRQ/AzMwGDicVMzOrGicVMzOrGicV\nMzOrGicVMzOrGicVMzOrGicVG9AkXSzpJz28/qSkD+W5jnomaRdJqySp6LFYfXBSsZqS9HFJj0h6\nQ9JSSQ9LOjPHVfZ4IlZEvC8ifpPXOiS1SnphYz5EUrOkdZIK+3cpqV3SER3TEfF8RGwdPqHNNpKT\nitWMpC8DVwJXACMiYgRwBvBBSUO6ec+mbqO1+Au72uvIZcySBm3EYpHX+q0xOKlYTUjaFrgEODMi\n/m9EvAkQEXMj4lMR8Va63DRJP5R0h6Q3gFZJH5H0mKSVkp6XdFHF53b8df85SYslvZgmrw4BDJE0\nXdLrabnr4Ir3t0s6Mn0+SNJXJS1Ml31U0k7pa99L170ynX9YP+PQJunrkv47Xcddkt6dvtyxx/Ra\nWnIal77nNEnzJb0qaYakXSo+7xhJv5f0mqR/l3SfpNPT1yZJekDSdyQtBy6StJukeyQtl7RM0k/T\n/zekJbxdgNvT9X+l896TpNGSbpP0iqQFkj5bMZaLJd3cXaytMTipWK38JbAFcOtGLHsK8I2IGAY8\nALwBfCoitgU+Apwp6fhO72kFxgLHAOd1JAqSv7o/CtwIbAvcBlxd8b4gK199Cfg48OGI2Ab4DPCn\n9LU5wAHAdsANwC+627vayO83CdgRGAJ8JZ0/Pv3vtmnJ6ZH0e04BTgS2B+5PvwuStgd+AZwHDAd+\nTxLnylLVocCz6bouTePxLWAUsDewM3AxQER8Gnge+Kt0/f/axdhvSpcZBfwtcKmkCRWv/zXdx9oa\ngJOK1cr2wPKIWNcxQ9KDklZI+mOnv/xviYiHACLizxFxX0Q8lU4/QfLDdninz78kIv4UEU8C15H8\ncHe4PyJmpH2Bn5Ikh658FvhaRCzoWFdEvJo+/1lErIiIdRHxHZIEuVc/4hDAdRGxMCJWAzcDLR0h\n6WL5M4DLIuL3aewuA1rSvZXjgCcj4pZ0XFcBSzq9/8WI+Pf09dUR8WxE3B0Rb0fEcuC7vDOWXZK0\nM/AB4LyIeCsi5gFTgb+rWGxjY20DlJOK1corwPaVPZKI+EBEbJe+1jE/gA0a25LGSbpX0suSXgP+\nAXg3G6p8z/PA6IrppRXP/wgM7aZXM4bkr/p3SEtB89My0wqSv8S37+a79qbyh/9PwLAeln0P8L00\n+a4giRXATiR7C4s6Ld95unMsR0i6SdIiSSuBn/DOWHZnNPBqR+ky9Xw6lg4bG2sboPw/22rlIeDP\nwAn9eO8NwC3AmIhoAn7EO7fdXTo9X9yP9bxAUkLbgKTxwLnASRHRlCbClVS/od3VEVbPA38fEdtV\nPN6V7sm9RJIIO8apyuluPvNSYC3wvrSc+Gk2jGVPR3m9CAyXVJkEd+GdicwamJOK1UREvEbSqP+B\npL+RtLWkzSS1AO+qWLSrH+phwIqIeEvSocAneOeP3z9L2lLSviT9ip/3Y5hTgW9IGqvE/pKGp+tf\nAyyXNETShcA2/fj8Dt0lo2XAOmD3ink/Ar4qaR9IDniQdFL62h3AfpKOlzQYOAsY2cu6hwFvAq+n\nByGc2+n1pZ3Wv15EvAA8CFwmaQtJ+wOnkZS5zAAnFauhiPgXkmb4P5GUgJaQ/Gj+E8meDGzYOO8w\nGfi6pNeBC+g6YdwHLARmA/8SEbN7+Lzu/hr/DkmPYybJnsiPgaHAXcAM4BmgnaRk9Xynz+vpL/ye\n1r/+vRHxR5Im+gNpuevQiLiF5BDsm9Jy1RPAsenyy4GTgG8Dy0ka74+S7BF2N65LgIPS73c78MtO\ny1xGkqBXSPpSF+M9BWgm2Wv5v8CFEXFPD+vz+S0NRnmd0yRpKMk/9C1IjnC5NSKmpH/5/ZykVtwO\nnJz+FYukKSR/+awFzo6Imen8g4FpJP/A74iIL+QyaKs7kpqBPwCDKw8CaERp7+IF4BMRcV/R47HG\nlNueSnpky4SIaAH2ByakR/icD8yKiD2Bu9Np0t37jwH7ABNJyiQdZYIfAqdHxB7AHpIm5jVus3qS\nnqfSJGkL4Kvp7IeLHJM1tlzLX+nuPCR7KoOAFSTnDExP508na9weD9yYHurYTlLKGCdpFLB1RMxJ\nl7ue/jV7beBq5BLLX5L8W1lGcg7PCRHx557fYpafXJNK2oidS9L8uzc912BERHQcdrgUGJE+H82G\nR5EsIjlUsfP8xWx4CKM1sIhoj4hBjVr6iohLImL7iNgmIv4yIv5f0WOyxjY4zw9P/6G3pJeBuKvT\nmbdEREhq5L8yzcwGlFyTSoeIWCnp18DBwFJJIyNiSVraejldbDHJJSM6jCHZQ1nMhsfej6GLcxCc\nnMzM+iciqnbOVW7lL0nbS2pKn28JHA08RnI9oFPTxU4lOamNdP7H0/MAdgX2AOZExBKSY+rHpY37\nT1e8ZwMR4UcEF110UeFjKMvDsXAsHIueH9WW557KKGB6epjjZsBPIuJuSY8BN6dXUm0HTgaIiPmS\nbgbmk5xoNjmybzyZ5JDiLUkOKZ6R47jrXnt7e9FDKA3HIuNYZByL/OSWVCK58N9BXcx/FTiqm/dc\nSnIZic7zfwvsV+0xmplZdfmM+gFo0qRJRQ+hNByLjGORcSzyk9sZ9bUmKQbKdzEzqxVJRD006q04\nbW1tRQ+hNByLjGORcSzy46RiZmZV4/KXmVkDc/nLzMxKy0llAHK9OONYZByLjGORHycVMzOrGvdU\nzMwamHsqZmZWWk4qA5DrxRnHIuNYZByL/DipmJlZ1binYmbWwNxTMTOz0nJSGYBcL844FhnHIuNY\n5MdJxczMqsY9FTOzBuaeipmZlZaTygDkenHGscg4FhnHIj9OKmZmVjXuqZiZNTD3VMzMrLScVAYg\n14szjkXGscg4FvlxUjEzs6pxT8XMrIG5p2JmZqXlpDIAuV6ccSwyjkXGsciPk4qZmVVNbj0VSTsD\n1wM7AgH8R0RcJeli4LPAsnTRr0bEnel7pgCnAWuBsyNiZjr/YGAaMBS4IyK+0MX63FMxM+ujavdU\n8kwqI4GRETFX0jDgt8AJwMnAqoj4Tqfl9wFuAA4BdgJmA3tEREiaA/xjRMyRdAdwVUTM6PT+PieV\nt96CNWtgq636+SXNzOpc3TTqI2JJRMxNn78B/A9JsgDo6gscD9wYEW9HRDuwEBgnaRSwdUTMSZe7\nniQ5bbIzz4Tp06vxSeXienHGscg4FhnHIj816alIagYOBB5OZ31e0jxJ10hqSueNBhZVvG0RSRLq\nPH8xWXLaJEceCTNm9L6cmZltnNyTSlr6+k/gC+keyw+BXYEW4CXg3/IeQ3eOPhra2pIy2EDS2tpa\n9BBKw7HIOBYZxyI/g/P8cEmbA78EfhoRtwBExMsVr08Fbk8nFwM7V7x9DMkeyuL0eeX8xV2tb9Kk\nSTQ3NwPQ1NRES0vL+o2nY3e38/See7by4IMAXb/uaU972tMDabqtrY1p06YBrP+9rKY8G/UCpgOv\nRMQ5FfNHRcRL6fNzgEMi4hMVjfpDyRr1Y9NG/SPA2cAc4NdUqVEPcMEF8PbbcPnl/fqapdTW1rZ+\nY2p0jkXGscg4Fpm6adQDHwQ+BUyQ9Fj6+DBwhaTHJc0DDgfOAYiI+cDNwHzgTmByRZaYDEwFFgAL\nOyeUTTFxItx1V7U+zcyssTX8tb/WrIEddoD582HUqBwGZmZWYvW0p1IXBg9OjgKbObPokZiZ1b+G\nTyow8EpgHU05cywqORYZxyI/TirAsccmeypr1xY9EjOz+tbwPZUO++4L110Hhx5axUGZmZWceyo5\nmTjRZ9ebmW0qJ5XUQOqruF6ccSwyjkXGsciPk0pq/Hh4/HFYsaLokZiZ1S/3VCocdxx85jNw0klV\nGpSZWcm5p5KjgVQCMzMrgpNKhWOPTZr19b7z5npxxrHIOBYZxyI/TioV9twTNt8cnnqq6JGYmdUn\n91Q6OfNMGDsWvvzlKgzKzKzk3FPJmc9XMTPrPyeVTiZMgIcfhjffLHok/ed6ccaxyDgWGcciP04q\nnWyzDRx8MNx3X9EjMTOrP+6pdOHyy+HFF+Gqq6rycWZmpeWeSg10HFpsZmZ946TShQMOgNdfhz/8\noeiR9I/rxRnHIuNYZByL/DipdGGzzZK9FZ9db2bWN+6pdOOGG+DnP4dbb63aR5qZlU61eypOKt1Y\ntiw5CXLZMhgypGofa2ZWKm7U18gOO8Bee8GDDxY9kr5zvTjjWGQci4xjkR8nlR747Hozs75x+asH\nDzwAZ50Fc+dW9WPNzErDPZVu5JFU1qxJymDz58OoUVX9aDOzUnBPpYYGD4ajjoKZM4seSd+4Xpxx\nLDKORcaxyI+TSi98dr2Z2cZz+asXL7wABx4IS5fCoEFV/3gzs0K5/FVjO+8MI0fCb39b9EjMzMov\nt6QiaWdJ90p6StKTks5O5w+XNEvSM5JmSmqqeM8USQskPS3pmIr5B0t6In3te3mNuTv1VgJzvTjj\nWGQci4xjkZ8891TeBs6JiH2B9wNnSdobOB+YFRF7Anen00jaB/gYsA8wEfiBpI5dsh8Cp0fEHsAe\nkibmOO538PkqZmYbp2Y9FUm3AFenj8MjYqmkkUBbRLxX0hRgXURckS4/A7gYeA64JyL2Tud/HGiN\niDM6fX4uPRWA1athxx3huedgu+1yWYWZWSHqsqciqRk4EHgEGBERS9OXlgIj0uejgUUVb1sE7NTF\n/MXp/JoZOhTGj4fZs2u5VjOz+jM47xVIGgb8EvhCRKzKKloQESGparsXkyZNorm5GYCmpiZaWlpo\nbW0Fshpqf6d3262N666Dk06qzuflOV1ZLy7DeIqc7phXlvEUOT137ly++MUvlmY8RU5feeWVVf19\nqKfptrY2pk2bBrD+97Kaci1/Sdoc+C/gzoi4Mp33NEn5aomkUcC9afnrfICIuDxdbgZwEUn5696K\n8tcpJOWzmpW/AJ55Bo44IjnEWFXbUcxHW1vb+o2p0TkWGcci41hk6uYyLWmTfTrwSkScUzH/2+m8\nK9JE0hQR56eN+huAQ0nKW7OBsenezCPA2cAc4NfAVRExo9P6ck0qEbD77nDbbfC+9+W2GjOzmqqn\nnsoHgU8BEyQ9lj4mApcDR0t6BjginSYi5gM3A/OBO4HJFVliMjAVWAAs7JxQakGqv0OLzcxqzWfU\n98Gtt8L3v1/+hr137TOORcaxyDgWmXraUxlwjjgCHnkE3nyz6JGYmZWT91T6qLUVzj0XPvKR3Fdl\nZpY776kUzGfXm5l1z0mljyZOhLvuKnoUPas8R6PRORYZxyLjWOTHSaWPDjgAVq2CZ58teiRmZuXj\nnko/nHoqjBsHkyfXZHVmZrlxT6UE6qEEZmZWBCeVfjj6aGhrg7feKnokXXO9OONYZByLjGORHyeV\nfth+e9hrL3jggaJHYmZWLu6p9NOFF8Kf/wxXXFGzVZqZVZ17KiXhvoqZ2Ts5qfTToYcmd4J88cWi\nR/JOrhdnHIuMY5FxLPLjpNJPgwfDUUfBzJlFj8TMrDzcU9kE11yTXLH4xhtrulozs6qpm5t01VoR\nSWXRImhpgaVLYdCgmq7azKwq3KgvkTFjYORIePTRokeyIdeLM45FxrHIOBb5cVLZRD4KzMwss9Hl\nL0lDgYiIP+c7pP4povwFSU/lwgvhwQdrvmozs01Ws56KpM2AE4BTgA+Q7NUIWAs8BPwMuKWQX/Iu\nFJVUVq+GHXeE9nYYPrzmqzcz2yS17Km0AQcD/wrsFhGjImIksFs67xDgvmoNpF4NHQrjx5frvvWu\nF2cci4xjkXEs8jO4h9eO7qrUlc57GHhY0ha5jayOdPRVTj656JGYmRWrx56KpE9GxM8knRIRpT4b\no6jyF8CCBcm96xctAlVtJ9LMLH+1PqR4tKSTgTHVWuFANHYsbLEFPPlk0SMxMytWt0lF0kXAcOAG\nYHg6bV2QynVosevFGcci41hkHIv8dJtUIuIS4BXg08Ar6bR1Y+JEmDGj6FGYmRXLPZUqWbUKRo+G\nJUvgXe8qbBhmZn1Ss56KpDuBBwHKnlDKYOut4S/+IrnNsJlZo+qpUX8tcJekr0navFYDqmdlKYG5\nXpxxLDKORcaxyE9PPZVfAAcB2wKPSvqKpC+njy9tzIdLulbSUklPVMy7WNIiSY+ljw9XvDZF0gJJ\nT0s6pmL+wZKeSF/7Xr++aQ0ce2w5koqZWVF666lsAZwHfBK4CVjX8drGNO4ljQfeAK6PiP3SeRcB\nqyLiO52W3YfkSLNDgJ2A2cAeERGS5gD/GBFzJN0BXBURMzq9v/ArxkQkfZX//m/YffdCh2JmtlGq\n3VPp9ox6SROB7wC3AwdGxB/7+uERcb+k5q4+vot5xwM3RsTbQLukhcA4Sc8BW0fEnHS560muSVa6\nfQIp2Vu56y6YPLno0ZiZ1V5PPZWvASdFxHkdCUXSxVVa7+clzZN0jaSmdN5oYFHFMotI9lg6z1+c\nzi+lMvRVXC/OOBYZxyLjWOSn2z2ViBjfxezjgYs3cZ0/BL6ePv8G8G/A6Zv4mQBMmjSJ5uZmAJqa\nmmhpaaG1tRXINqK8p48+upW//3uYNauNzTfPf32e7nm6Q1nGU+T03LlzSzWeIqfnzp1bqvHUcrqt\nrY1p06YBrP+9rKaeLn3/sYj4ead5cyOipU8rSMpft3f0VLp7TdL5ABFxefraDOAi4Dng3ojYO51/\nCnB4RJzR6bMK76l0GDcOLr8cJkwoeiRmZj2r5bW//k7SDEmVLeeDN3WFkkZVTJ4IdBwZdhvwcUlD\nJO0K7AHMiYglwOuSxkkSyRn+t2zqOPJUhhKYmVkRejqk+CPAj4D/knShpO2BbSUNl7RRt6OSdCPJ\nCZR7SXpB0mnAFZIelzQPOBw4J13ffOBmYD5wJzC5YtdjMjAVWAAs7HzkV9kUfWhx59JPI3MsMo5F\nxrHIT0/3UyEibpHUDvyGpO/RcUhxkNysq0cRcUoXs6/tYflLgUu7mP9b4B3ls7I69FB44QV48cXk\nEGMzs0bRU09lKOkRYMBXIuK/ajmwvipTTwWSG3YddxxMmlT0SMzMulfLnso8kj2ZA8ueUMqo6BKY\nmVkRekoqJ0bElIj4U81GM4Ace2xy3/q1a2u/bteLM45FxrHIOBb56SmpfEXSId29mB6NdV0OYxoQ\nxoyBUaPg0UeLHomZWe301FPZDzgXeD/we+AlksurjAT2Ijmq618johQ30S1bTwXg3HNh2DC4yPfM\nNLOSqnZPpccLSqYr3AI4EHgPyVFfzwHzImJ1tQZRDWVMKrNnwwUXwEMPFT0SM7Ou1fImXf8h6URg\nSEQ8HBE/j4ibI+KRsiWUsjrsMHjqKXj11dqu1/XijGORcSwyjkV+ertJVwtwh6R7JJ0n6YAajWtA\nGDoUPvShZI/FzKwR9Fr+AkjPpj8GmAjsD/wOmBERN+c7vI1XxvIXwPe/D489Btd2e8qnmVlxat5T\n6WIAImngbx4R36rWQDZVWZPKggXQ2gqLFiX3WzEzK5NanvzYpfSX+/NlSihlNnZsUgZ7sobHyLle\nnHEsMo5FxrHIT093fnyiu9eAETmMZUDquBvkjBmwX91cvczMrH96Ok9lKUkPZUUXLz8YEaW6VGJZ\ny18At90GV13lhr2ZlU/N7lEP/BoYFhGPdTGI+6o1gEYwYQJ88pPwxhvJyZBmZgNVT/dTOS0i7u/m\nta4uaW/d2HprOOQQqFUZ1/XijGORcSwyjkV++tyot/7xVYvNrBH0+ZDisipzTwVg3jz4279NDjE2\nMyuLwg8ptv7Zf/+kp7JwYdEjMTPLj5NKjXQcWnzXXfmvy/XijGORcSwyjkV+nFRqaOLE2iQVM7Oi\nuKdSQ6+8ArvtBi+/DFtsUfRozMzcU6lr7343vPe98MADRY/EzCwfTio1VosSmOvFGcci41hkHIv8\nOKnU2MSJPl/FzAYu91RqbM0a2HHH5KrFo0t19TQza0TuqdS5wYPhqKN8FJiZDUxOKgXIu6/ienHG\nscg4FhnHIj9OKgU49liYNQvWri16JGZm1ZVrT0XStcBHgJcjYr903nDg58B7gHbg5Ih4LX1tCnAa\nsBY4OyJmpvMPBqYBQ4E7IuILXayrLnoqHfbbD378Y3j/+4seiZk1snrrqVxHcqOvSucDsyJiT+Du\ndBpJ+wAfA/ZJ3/MDaf1d3X8InB4RewB7SOr8mXXHZ9eb2UCUa1JJ78fS+c6RHwWmp8+nAyekz48H\nboyItyOiHVgIjJM0Ctg6Iuaky11f8Z66leehxa4XZxyLjGORcSzyU0RPZURELE2fLyW73/1oYFHF\ncouAnbqYvzidX9cOOwyeegpefbXokZiZVU9PtxPOXUSEpKo1QiZNmkRzczMATU1NtLS00NraCmR/\nmZRl+qGH2th3X5g9u5WTT67u57e2thb+/TxdzukOZRlPUdMd88oynlpOt7W1MW3aNID1v5fVlPvJ\nj5KagdsrGvVPA60RsSQtbd0bEe+VdD5ARFyeLjcDuAh4Ll1m73T+KcDhEXFGp/XUVaMe4Oqr4Xe/\ng2uvLXokZtao6q1R35XbgFPT56cCt1TM/7ikIZJ2BfYA5kTEEuB1SePSxv2nK95T1zr6KtXOhZ3/\nKm1kjkXGscg4FvnJNalIuhF4ENhL0guSPgNcDhwt6RngiHSaiJgP3AzMB+4EJlfsekwGpgILgIUR\nMSCunjV2LGy5JTzxRNEjMTOrDl/7q2BnnQXNzXDuuUWPxMwa0UAof1kFX7XYzAYSJ5WCTZgAc+bA\nG29U7zNdL844FhnHIuNY5MdJpWDDhsEhh4C3cTMbCNxTKYGpU+Gyy+AnP4EPfKDo0ZhZI6l2T8VJ\npSR+9Ss480w4/XS46CIYMqToEZlZI3CjfoA68USYOxfmzUuuXDx/fv8/y/XijGORcSwyjkV+nFRK\nZORIuP12OOMM+NCH4KqrYN26okdlZrbxXP4qqYUL4dOfThr5110HY8YUPSIzG4hc/moQY8fC/fdD\nayscdBDcdFPRIzIz652TSokNHgxf+xrceSdccgmccgqs6Hx3mi64XpxxLDKORcaxyI+TSh04+GD4\n7W9hhx1g//1h9uyiR2Rm1jX3VOrMzJlw2mnwN38Dl1+eXJDSzKy/3FNpcMccA48/DkuWJHswv/td\n0SMyM8s4qdSh4cOTxv0//3NyQcpLL4U1a7LXXS/OOBYZxyLjWOTHSaVOSfCJTyS9lrvvhsMPh2ef\nLXpUZtbo3FMZANatS06U/Na3kr2Wz342STpmZr3xtb+60chJpcNTT8GnPpWcKDl1KowYUfSIzKzs\n3Ki3bu27LzzyCGyzTRstLXDrrUWPqHiunWcci4xjkR8nlQFmyBD43OfgF7+Ac85JSmGrVhU9KjNr\nFC5/DWCrViWJ5d574frr4YMfLHpEZlY27ql0w0mle7femlz5+DOfgYsv9r1azCzjnor1qnO9+Pjj\nk3u1PPkkjBuXNPQbhWvnGcci41jkx0mlQYwYkeyxnHVWck7Ld7/re7WYWfW5/NWAnn02uVfLllvC\ntGmw885Fj8jMiuLyl22y3XeH3/wGjjwyuX7YDTeA87GZVYOTygC0MfXiwYPhq1+FGTPgm99M7tXy\n6qv5j63WXDvPOBYZxyI/TioN7qCDkuuHjRwJBxwAs2YVPSIzq2fuqdh6s2cnhx2feGJyr5attip6\nRGaWtwHTU5HULulxSY9JmpPOGy5plqRnJM2U1FSx/BRJCyQ9LemYosY9kB11VHKvluXLk17Lo48W\nPSIzqzdFlr8CaI2IAyPi0HTe+cCsiNgTuDudRtI+wMeAfYCJwA8kuXTXjU2pF2+3XdK4v/BCOO64\npN9Sea+WeuPaecaxyDgW+Sn6h7nzLtdHgenp8+nACenz44EbI+LtiGgHFgKHYrk55ZTkrpJtbTB+\nPCxcWPSIzKweFNZTkfQHYCWwFvg/EfFjSSsiYrv0dQGvRsR2kr4PPBwRP0tfmwrcGRG/rPg891Ry\nsG4dXH01fP3ryb1aPvc536vFbCAZMD0V4IMRcSDwYeAsSeMrX0wzRE9ZwhmkBjbbDM4+Ozmv5Uc/\ngr/+a1iypOhRmVlZDS5qxRHxUvrfZZJ+RVLOWippZEQskTQKeDldfDFQed73mHTeBiZNmkRzczMA\nTU1NtLS00NraCmQ11EaYrqwXV+vzX365jSuugPvua6WlBc46q43x48vxfXua7hyTosdT5PTcuXP5\n4he/WJrxFDl95ZVXNvTvw7Rp0wDW/15WUyHlL0lbAYMiYpWkdwEzgUuAo4BXIuIKSecDTRFxftqo\nv4Ek8ewEzAbGVta7XP7KtLW1rd+Y8vDgg8llXg47DE4/PblI5RZb5La6TZJ3LOqJY5FxLDID4tL3\nknYFfpVODgZ+FhGXSRoO3AzsArQDJ0fEa+l7vgqcBqwBvhARd3X6TCeVGnrjDfj2t+HOO+Hpp+ED\nH0gu+3LEEXDggTBoUNEjNLONMSCSSh6cVIqzYgXcdx/cfTfccw+89FJyJeSOJLP33m7um5XVQGrU\nW04q+wm1sN12cMIJ8P3vJ/dqeeopOOkkeOyx5FyX0aPhk5+Ea6+F556r6dBqHosycywyjkV+CmvU\n28A1ahR84hPJIwL+93+TvZhZs2DKFBg2LNuLOeII2HHHokdsZtXi8pfVVESyJ9NRKrvvvuR+Lkce\nmTw+9CHYdtuiR2nWONxT6YaTSn1asya5SvI99ySJ5pFHYN99kz2YI49MDgDYcsuiR2k2cLmnYr2q\np3rx4MHJIclTpiRXSV62DC67LDl67IILYIcdkgTzzW/CQw/1/Tpk9RSLvDkWGcciP04qVipDh8KE\nCfCNbySmrGgiAAAHo0lEQVTnw7z0Enz5y8kNxM48E979bvirv4LvfhfmzUsuI2Nm5eHyl9WVZcuS\ni1x29GRWrEiSUEfjf+xYH75s1hfuqXTDSaUxPf98klw6ejKDBm14ZNlOOxU9QrNyc0/FetVI9eJd\ndoFJk+D662HRouSw5UMOgVtvhf33h112aeOss+CXv0xKaI2skbaL3jgW+fF5KjZgSLDXXslj8uSk\n33LNNbByJUydmtwqeezYJOnstlvy2H335L9NTb1/vpn1zuUvaxhvvQVz5iS3TP7DH7LHs8/C5ptv\nmGQqk86YMclRamYDkXsq3XBSsf6KgOXLN0wylUln6dLkBM3OSafj+TbbFP0NzPrPSaUbTioZX9Y7\nU41YrF6dXLOsu6QzdGj3ezk77VSeKzZ7u8g4FplqJxXv1Jv1YujQrFfTWQS8/PKGSeb++2H69OT5\n8uXJwQRdJZxdd4Wtt6799zHLk/dUzHK0enVyQc3OPZyO58OGdZ1wdtstubrzZj4+03Lm8lc3nFSs\n3kQk/ZrO5bSO6RUr4D3vSZJMczOMGJFctqbzY/jw8pTYrP44qXTDSSXjenGmnmPxxz9Ce3uSZNrb\nkzLbsmXvfKxcmRwSvcMOsP32XSeeHXaA9vY2jjuule23hyFDiv52xarn7aLa3FMxaxBbbQX77JM8\nerJ2LbzyyjuTzfLlsGBBcg21ZcuSMtwFFyTLbrXVO5NOTwlpq61q852t/nlPxazBRMBrr3W919M5\nKXU832yz7hNOV8lom218DbZ64fJXN5xUzPIRAW++2XsSqny89VaSbLbbLkkwHY9tt+1+uvNrw4Y5\nMdWCk0o3nFQyrhdnHItMLWOxenWyp/Paa/D668lj5crseW/TK1fCn/6UHHLdn4RUOf2ud70zOXm7\nyLinYmalN3RocnmbMWP6/xlr18KqVb0noPb2nl9fvXrD5LTNNsnN3nbddcMEtMMOcMYZVQtBw/Ke\nipkNaGvWZMmppwQlwde/XvRoa8/lr244qZiZ9Z3vp2K98r0iMo5FxrHIOBb5cVIxM7OqcfnLzKyB\nufxlZmalVTdJRdJESU9LWiDpvKLHU2auF2cci4xjkXEs8lMXSUXSIOBqYCKwD3CKpL2LHVV5zZ07\nt+ghlIZjkXEsMo5FfuoiqQCHAgsjoj0i3gZuAo4veEyl9dprrxU9hNJwLDKORcaxyE+9JJWdgBcq\nphel88zMrETqJan4sK4+aG9vL3oIpeFYZByLjGORn7o4pFjS+4GLI2JiOj0FWBcRV1QsU/4vYmZW\nQg13mRZJg4HfA0cCLwJzgFMi4n8KHZiZmW2gLq5SHBFrJP0jcBcwCLjGCcXMrHzqYk/FzMzqQ2kb\n9RtzsqOkq9LX50k6sLf3ShouaZakZyTNlNRUi++yqXKKxcWSFkl6LH1MrMV32RSbGIdrJS2V9ESn\n5Rtxm+guFnW3TUD/YyFpZ0n3SnpK0pOSzq5YvqG2i15i0bftIiJK9yApcS0EmoHNgbnA3p2WOQ64\nI30+Dni4t/cC3wb+KX1+HnB50d+1wFhcBHyp6O9Xizik0+OBA4EnOr2nobaJXmJRV9vEpsYCGAm0\npM+HkfRt39uI20UvsejTdlHWPZWNOdnxo8B0gIh4BGiSNLKX965/T/rfE/L9GlWRVywA6ukO4JsS\nByLifmBFF5/baNtET7GA+tomoP+xGBERSyJibjr/DeB/yM5/a6TtordYQB+2i7ImlY052bG7ZUb3\n8N4REbE0fb4UGFGtAecor1gAfD7dBb6mDnbvNyUOPWm0baI39bRNQP9jscGNjiU1k+y9PZLOaqTt\nordYQB+2i7ImlY09emBjsqe6+rxI9uvq4SiFasai0g+BXYEW4CXg3/r4/lrrbxw2+v9xA2wTvb2v\n3rYJqEIsJA0D/hP4QvpX+oYLNtB20U0s+rRdlDWpLAZ2rpjemSSj9rTMmHSZruYvTp8v7SgBSBoF\nvFzFMeelmrFY/96IeDlSwFSSXecy628cFtOzRtomeoxFHW4TsImxkLQ58EvgpxFxS8UyDbdddBeL\nvm4XZU0qjwJ7SGqWNAT4GHBbp2VuA/4O1p9x/1q6u9rTe28DTk2fnwrcQvnlEov0H0qHE4EnKLdN\niUNPGm2b6FYdbhOwCbGQJOAaYH5EXNnFexpmu+gpFn3eLoo+YqGHIxk+THIEwkJgSjrvH4B/qFjm\n6vT1ecBBPb03nT8cmA08A8wEmor+ngXG4nrg8XT5W0hqyIV/1xzjcCPJ1Rj+TFJT/kwDbxPdxaLu\ntolNiQVwGLCO5Cipx9LHxEbcLnqJRZ+2C5/8aGZmVVPW8peZmdUhJxUzM6saJxUzM6saJxUzM6sa\nJxUzM6saJxUzM6saJxWznChxf+WlwiWdJOnOIsdlliefp2KWI0n7Ar8guUDf5sDvgGMj4n8LHZhZ\nTpxUzHIm6QrgTZL7VKyMiG8VPCSz3DipmOVM0lYkl71YDfxFJPe6MBuQBhc9ALOBLiL+KOkmYJUT\nig10btSb1cY66uOeHGabxEnFzMyqxknFrHa8p2IDnhv1ZmZWNd5TMTOzqnFSMTOzqnFSMTOzqnFS\nMTOzqnFSMTOzqnFSMTOzqnFSMTOzqnFSMTOzqvn/ShJ1sw8tyPEAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x785fc18>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NtoG from graphical integration: 8.62 \n",
+ "\n",
+ "HtoG: 1.4 m\n",
+ "The depth of packing recquired is 12.84 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.8: Page 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.8\n",
+ "# Page: 317\n",
+ "\n",
+ "print'Illustration 8.8 - Page: 317\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#***Data***\n",
+ "# a:NH3 b:air c:H2O\n",
+ "ya = 0.416;# [mole fraction]\n",
+ "yb = 0.584;# [mole fraction]\n",
+ "G1 = 0.0339;# [kmol/square m.s]\n",
+ "L1 = 0.271;# [kmol/square m.s]\n",
+ "TempG1 = 20;# [OC]\n",
+ "#********#\n",
+ "\n",
+ "# At 20 OC\n",
+ "Ca = 36390;# [J/kmol]\n",
+ "Cb = 29100;# [J/kmol]\n",
+ "Cc = 33960;# [J/kmol]\n",
+ "lambda_c = 44.24*10**6;# [J/kmol]\n",
+ "# Enthalpy base = NH3 gas, H2O liquid, air at 1 std atm.\n",
+ "Tempo = 20;# [OC]\n",
+ "lambda_Ao = 0;# [J/kmol]\n",
+ "lambda_Co = 44.24*10**6;# [J/kmol]\n",
+ "\n",
+ "# Gas in:\n",
+ "Gb = G1*yb;# [kmol air/square m.s]\n",
+ "Ya1 = ya/(1-ya);# [kmol NH3/kmol air]\n",
+ "yc1 = 0;# [mole fraction]\n",
+ "Yc1 = yc1/(1-yc1);# [kmol air/kmol NH]\n",
+ "# By Eqn 8.58:\n",
+ "Hg1 = (Cb*(TempG1-Tempo))+(Ya1*(Ca*(TempG1-Tempo))+lambda_Ao)+(Yc1*(Cc*(TempG1-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "\n",
+ "# Liquid in:\n",
+ "xa1 = 0;# [mole fraction]\n",
+ "xc1 = 1;# [mole fraction]\n",
+ "Hl1 = 0;# [J/kmol air]\n",
+ "\n",
+ "#Gas out:\n",
+ "Ya2 = Ya1*(1-0.99);# [kmol NH3/kmol air]\n",
+ "# Assume:\n",
+ "TempG2 = 23.9;# [OC]\n",
+ "yc2 = 0.0293;\n",
+ "def f(Yc2):\n",
+ " return yc2-(Yc2/(Yc2+Ya2+1))\n",
+ "Yc2 = fsolve(f,0.002);# [kmol H2O/kmol air]\n",
+ "Hg2 = (Cb*(TempG2-Tempo))+(Ya2*(Ca*(TempG2-Tempo))+lambda_Ao)+(Yc2*(Cc*(TempG2-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "\n",
+ "# Liquid out:\n",
+ "Lc = L1-(Yc1*Gb);# [kmol/square m.s]\n",
+ "La = Gb*(Ya1-Ya2);# [kmol/square m.s]\n",
+ "L2 = La+Lc;# [kmol/square m.s]\n",
+ "xa = La/L2;\n",
+ "xc = Lc/L2;\n",
+ "# At xa & tempo = 20 OC\n",
+ "delta_Hs = -1709.6*1000;# [J/kmol soln]\n",
+ "\n",
+ "# Condition at the bottom of the tower:\n",
+ "# Assume:\n",
+ "TempL = 41.3;# {OC}\n",
+ "# At(TempL+TempG1)/2:\n",
+ "Cl = 75481.0;# [J/kmol]\n",
+ "def f40(Cl):\n",
+ " return Hl1+Hg1-((Gb*Hg2)+(L2*(Cl*(TempL-Tempo)+delta_Hs)))\n",
+ "Cl = fsolve(f40,7);# [J/kmol.K]\n",
+ "\n",
+ "# For the Gas:\n",
+ "MavG = 24.02;# [kg/kmol]\n",
+ "Density_G = 0.999;# [kg/cubic m]\n",
+ "viscosity_G = 1.517*10**(-5);# [kg/m.s]\n",
+ "kG = 0.0261;# [W/m.K]\n",
+ "CpG = 1336;# [J/kg.K]\n",
+ "Dab = 2.297*10**(-5);# [square m/s]\n",
+ "Dac = 3.084*10**(-5);# [square m/s]\n",
+ "Dcb = 2.488*10**(-5);# [square m/s]\n",
+ "PrG = CpG*viscosity_G/kG;\n",
+ "\n",
+ "# For the liquid:\n",
+ "MavL = 17.97;# [kg/kmol]\n",
+ "Density_L = 953.1;# [kg/cubic m]\n",
+ "viscosity_L = 6.408*10**(-4);# [kg/m.s]\n",
+ "Dal = 3.317*10**(-9);# [square m/s]\n",
+ "kl = 0.4777;# [W/m.K]\n",
+ "ScL = viscosity_L/(Density_L*Dal);\n",
+ "PrL = 5.72;\n",
+ "sigma = 3*10**(-4);\n",
+ "G_prime = G1*MavG;# [kg/square m.s]\n",
+ "L_prime = L2*MavL;# [kg/square m.s]\n",
+ "# From data of Chapter 6:\n",
+ "Ds = 0.0472;# [m]\n",
+ "a = 57.57;# [square m/cubic m]\n",
+ "shiLt = 0.054;\n",
+ "e = 0.75;\n",
+ "# By Eqn. 6.71:\n",
+ "eLo = e-shiLt;\n",
+ "# By Eqn. 6.72:\n",
+ "kL = (25.1*Dal/Ds)*(Ds*L_prime/viscosity_L)**0.45*ScL**0.5;# [m/s]\n",
+ "c = Density_L/MavL;# [kmol/cubic m]\n",
+ "Fl = kL*c;# [kmol/cubic m]\n",
+ "# The heat mass transfer analogy of Eqn. 6.72:\n",
+ "hL = (25.1*kl/Ds)*(Ds*L_prime/viscosity_L)**0.45*PrL**0.5;# [m/s]\n",
+ "# The heat transfer analogy of Eqn. 6.69:\n",
+ "hG = (1.195*G_prime*CpG/PrG**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [W/square m.K]\n",
+ "# To obtain the mass transfer coeffecients:\n",
+ "Ra = 1.4;\n",
+ "Rc = 1-Ra;\n",
+ "# From Eqn. 8.83:\n",
+ "Dam = (Ra-ya)/(Ra*((yb/Dab)+((ya+yc1)/Dac))-(ya/Dac));# [square m/s]\n",
+ "Dcm = (Rc-yc1)/(Rc*((yb/Dcb)+((ya+yc1)/Dac))-(yc1/Dac));# [square m/s]\n",
+ "ScGa = viscosity_G/(Density_G*Dam);\n",
+ "ScGc = viscosity_G/(Density_G*Dcm);\n",
+ "# By Eqn. 6.69:\n",
+ "FGa = (1.195*G1/ScGa**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [kmol/square m.K]\n",
+ "FGc = (1.195*G1/ScGc**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [kmol/square m.K]\n",
+ "Ra = Ra-0.1;\n",
+ "# From Eqn. 8.80:\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " def f41(xai):\n",
+ " return Ra-(Ra-ya)*((Ra-xa)/(Ra-xai))**(Fl/FGa)\n",
+ " xai = numpy.arange(xa,0.10,0.01)\n",
+ " plt.plot(xai,f41(xai))\n",
+ " Ra = Ra+0.1;\n",
+ "\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Mole fraction NH3 in the liquid, xa\");\n",
+ "ylabel(\"Mole fraction NH3 in the gas ya\");\n",
+ "title(\"Operating Line curves\");\n",
+ "plt.show()\n",
+ "Rc = Rc-0.1;\n",
+ "# From Eqn. 8.81:\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " def f42(xci):\n",
+ " return Rc-(Rc-yc1)*((Rc-xc)/(Rc-xci))**(Fl/FGc)\n",
+ " xci = numpy.arange(xc,0.85,-0.01);\n",
+ " plot(xci,f42(xci))\n",
+ " Rc = Rc+0.1;\n",
+ "\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Mole fraction H2O in the liquid, xc\");\n",
+ "ylabel(\"Mole fraction H2O in the gas, yc\");\n",
+ "title(\"Operating line Curves\");\n",
+ "plt.show()\n",
+ "# Assume:\n",
+ "Tempi = 42.7;# [OC]\n",
+ "# The data of Fig. 8.2 (Pg 279) & Fig 8.4 (Pg 319) are used to draw the eqb curve of Fig 8.25 (Pg 320).\n",
+ "# By interpolation of operating line curves with eqb line and the condition: xai+xci = 1;\n",
+ "Ra = 1.38;\n",
+ "Rc = 1-Ra;\n",
+ "xai = 0.0786;\n",
+ "yai = f41(xai);\n",
+ "xci = 1-xai;\n",
+ "yci = f42(xci);\n",
+ "# From Eqn. 8.77:\n",
+ "dYa_By_dZ = -(Ra*FGa*a/Gb)*math.log((Ra-yai)/(Ra-ya));# [kmol H2O/kmol air]\n",
+ "# From Eqn. 8.78:\n",
+ "dYc_By_dZ = -(Rc*FGc*a/Gb)*math.log((Rc-yci)/(Rc-yc1));# [kmol H2O/kmol air]\n",
+ "# From Eqn. 8.82:\n",
+ "hGa_prime = -(Gb*((Ca*dYa_By_dZ)+(Cc*dYc_By_dZ)))/(1-exp(Gb*((Ca*dYa_By_dZ)+(Cc*dYc_By_dZ))/(hG*a)));# [W/cubic m.K]\n",
+ "# From Eqn. 8.79:\n",
+ "dtG_By_dZ = -(hGa_prime*(TempG1-Tempi))/(Gb*(Cb+(Ya1*Ca)+(Yc1*Cc)));# [K/m]\n",
+ "# When the curves of Fig. 8.2 (pg 279) & 8.24 (Pg 319) are interpolated for concentration xai and xci, the slopes are:\n",
+ "mar = 0.771;\n",
+ "mcr = 1.02;\n",
+ "lambda_c = 43.33*10**6;# [J/kmol]\n",
+ "# From Eqn. 8.3:\n",
+ "Hai = Ca*(Tempi-Tempo)+lambda_Ao-(mar*lambda_c);# [J/kmol]\n",
+ "Hci = Cc*(Tempi-Tempo)+lambda_Co-(mcr*lambda_c);# [J/kmol]\n",
+ "# From Eqn. 8.76\n",
+ "Tempi2 = TempL+(Gb/(hL*a))*(((Hai-Ca*(TempG1-Tempo)-lambda_Ao)*dYa_By_dZ)+((Hci-Cc*(TempG1-Tempo)-lambda_Co)*dYc_By_dZ)-((Cb+(Ya1*Ca)+(Yc1*Cc))*dtG_By_dZ));# [OC]\n",
+ "# The value of Tempi obtained is sufficiently close to the value assumed earlier.\n",
+ "\n",
+ "deltaYa=-0.05;\n",
+ "# An interval of deltaYa up the tower\n",
+ "deltaZ = deltaYa/(dYa_By_dZ);# [m]\n",
+ "deltaYc = (dYc_By_dZ*deltaZ);\n",
+ "# At this level:\n",
+ "Ya_next = Ya1+deltaYa;# [kmol/kmol air]\n",
+ "Yc_next = Yc1+deltaYc;# [kmol H2O/kmol air]\n",
+ "tG_next = TempG1+(dtG_By_dZ*deltaZ);# [OC]\n",
+ "L_next = L1+Gb*(deltaYa+deltaYc);# [kmol/square m.s]\n",
+ "xa_next = ((Gb*deltaYa)+(L1*xa))/L_next;# [mole fraction NH3]\n",
+ "Hg_next = (Cb*(tG_next-Tempo))+(Ya_next*(Ca*(tG_next-Tempo))+lambda_Ao)+(Yc_next*(Cc*(tG_next-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "Hl_next = (L1*Hl1)+(Gb*(Hg_next-Hg2)/L_next);# [J/kmol]\n",
+ "# The calculation are continued where the specified gas outlet composition are reached.\n",
+ "# The packed depth is sum of all deltaZ\n",
+ "Z = 1.58;# [m]\n",
+ "print\"The packed depth is: \",Z,\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.8 - Page: 317\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEZCAYAAABWwhjiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcTfUbwPHPYyv7EirCJFsLBpFIRpYk7T+VKFqkZEmU\npKLV2mJLlqhIlspaSgll35csFRprikqoLGOe3x/nTN2mmXHNXc69d57363Vfc7Z7vs9zz535zvl+\nz/keUVWMMcaYzMjmdQDGGGOil1UixhhjMs0qEWOMMZlmlYgxxphMs0rEGGNMplklYowxJtOsEjFZ\nmojUE5GtYS6ztIgcEREJZ7nGhIJVIiakRKStiGwUkT9E5EcReUNECnoYT7KIlE2ZV9WvVbVSiMpa\nICL3p16uqrtUNb/aTVomBlglYkJGRLoB/YBuQAGgNlAG+FxEcoagvOz+bhrsstOh7iuqiMvrOEx0\nsErEhISIFAD6AB1Vda6qnlLVncDtQBzQ2t2uj4h8ICKTROSwiKwWkSo++ykhIh+KyM8iskNEOvms\nS3nveBH5HWgjIjVFZKmI/CYi+0RkaEqFJSJfuW9d7zYntRCRBBHZ7bPPRBHpJiLrReSQG9dZPuuf\ncPe7R0QeSH1m4+dnE+e+L5s7v0BEnheRRe5n8JmInOOzfW0RWeLmtE5E6mew71Ii8pH7eR0UkaE+\nn9X408TwoogsBv4AHheRlan23VVEZrjTZ4nIIBHZKSL7RWSEiJztrisqIrPdeH8Rka+sUopdVomY\nUKkDnA185LtQVf8APgEa+yy+EZgCFAYmAtNFJLv7B24WsBYoATQEHhWRJqneO1VVC7rvPQV0Ac4B\nrnTf08Et+2r3PVXc5qSpacStQAvgWuBCoArQFkBEmgJd3X2WBxII3plGS7ec4kAuoLtbZklgNvC8\nqhZ2l38oIkVT78A9E5sN/IBzxlcSeN8nr9NpDTwA5APeBCqKSDmf9XcB77nT/YByQFX3Z0ngWXdd\nN2A3UNTNp6c13cUuq0RMqBQFDqpqchrr9rvrU6xS1Y9U9RTwKk7lcyVQEyiqqi+qapKq/gCMAe70\nee8SVZ0JoKrHVHWNqq5Q1WT3zGcUkO5/7ukYoqr7VfU3nEos3l1+OzBWVbeo6l9Ab4LTNKbAOFXd\npqrHcCrUlDJbA5+o6qcAqvoFsApolsZ+agHnA4+r6l+qelxVl7jrThenAm+7uSWr6mFgBk7lhoiU\nByoCM92zinbAY6p6SFWPAn3557iccOOIc89AF5/Zx2GiiVUiJlQOAkVTmktSOR844DO/J2XC/Y91\nD86ZR2mghNss8puI/Ab0xPnv9j/vBRCRCm5Tyo9uE9dLOGclZ2K/z/RfQF6fuHf7rPtX2QFKXWY+\nd7oM0CLVZ1AXOC+NfZQCdqZTcftjd6r5ibiVCM5ZyDS3kisG5AFW+8Q0h3/+MRgIbAPmish2EemR\nyXhMFLBKxITKUuA4cJvvQhHJBzQF5vksLuWzPhtwAbAX54/aD6pa2OdVQFWbu5un1XE9AtgMlHOb\nuHoRvO/5j76xppoOlV3A+FSfQX5VHZDGtruB0ulcYHAU5w9/irQqodSf5RdAMRGpinOWMdFdfhCn\norvEJ6ZCqloAQFWPqmp3Vb0Ip7nxMRG5xt+ETXSxSsSEhKr+DjwHDBWRa0Ukp4jE4TTV7AbG+2xe\nQ0RuEZEcwKPAMWAZsBI44nZm53b7SS4Tkcvd96XVRJMPOAL8KSKVgIdTrf8JuOgM00kpZwpwr4hU\nEpE8wDN+vDeniJzt88pxmjJSmwDcICJN3PzPdi8GKJnGtstxKrp+IpLH3baOu24dcLXb8V4Q54wu\nwxhU9SQwFRiE01/1ubs8GRgNvC4ixcDpu0npqxKR60WknNvsdRinn+pUOvmZKGeViAkZVR0IPIXz\nR+h3nIphJ9DQ/QMFzn+/M4A7gF+BVsCtblv6KaA5Tv/ADpwmsFE4lwunvDf1f8/dcZpeDrvbTkq1\nTR/gHbcZ5n/p7ONfaaSsd/slhgDzge9wzrbAOeNKzwjgT5/X2HTK1FTTKWXuAW7C+Rx/xjkz6UYa\nv7vuH/cbcDq6d+FU1re7674AJgMbcCrnWaeJIcVEnAsJpqZqJuuB02S1zG02/Byo4K4r784fAZYA\nw1V1YRr7NjFAvLxowr3a5XUgOzBGVfunWp+A8wdmh7voQ1V9MaxBmpASkd44TU93ex3LmRKRi4GN\nQK4A+iGMiWrpnVqHnNtuOwxohNP+vVJEZqrqllSbLlTVG8MeoAmXqLp/QERuwblEOQ/QH5hpFYjJ\nyrxszqoFbFPVRLdpYxLOaXtqUfVHxpyxaLur+0GcfpVtwEn+2+diTJbi2ZkIzs1JqS+XvCLVNgrU\nEZH1OGcr3VV1c5jiM2Ggqs95HcOZUNXrvI7BmEjiZSXiz3+fa4BSqvqniFwHTOefzjtjjDEe87IS\n2ct/r7n/181bqnrEZ3qOOCPAFlHVX323E5Foag4xxpiIoKoBdxd42SeyCijvDgSXC+cSz5m+G4jI\nuSkDt4lILZyryX79765AVWPy1bt3b89jsPwsP8sv9l7B4tmZiKomiUhH4DOcS3zfUtUtItLeXT8S\n+B/wsIgk4Vxjf2e6O4xRiYmJXocQUpZfdLP8jJfNWajqHJwxd3yXjfSZHg4MD3dcxhhj/GN3rEe4\ntm3beh1CSFl+0c3yM57esR4sIqKxkIcxxoSLiKBR3rFu/LBgwQKvQwgpyy+6WX7GKhFjjDGZZs1Z\nxhiTBVlzljHGGM9ZJRLhYr1N1vKLbpafsUrEGGNMplmfiDHGZEHWJ2KMMcZzVolEuFhvk7X8opvl\nZ6wSMcYYk2nWJ2KMMVmQ9YkYY4zxnFUiES7W22Qtv+hm+RmrRIwxxmSa9YkYY0wWZH0ixhhjPGeV\nSISL9TZZyy+6WX7GKhFjjDGZZn0ixhiTBVmfSIzZ8PUqkk8lex2GMcacEatEIsSBu69jSZnCTBk4\n+l/LY71N1vKLbpaf8bQSEZGmIrJVRL4XkR4ZbFdTRJJE5NZwxhdO9bbuZXvC/6jz/MNMr1CS2RPm\neB2SMcaclmd9IiKSHfgWaATsBVYCLVV1SxrbfQ78CYxT1Q/T2FfM9Ikc+eVXZt19N00WzGFmhUqU\nHTCRhCbxXodljIkxsdAnUgvYpqqJqnoSmATclMZ2nYAPgAPhDM4r+c8pwl2ffMypDd9TJHdeLru5\nOq/WrcfqVbu9Ds0YY/7Dy0qkJOD7l3GPu+xvIlISp2IZ4S6KjdMNP5xb7iJuXrqSL/oPpuqhfRS/\nJo7nr72Vb78/7HVoQRXrbc6WX3SL9fyCIYeHZftTIbwOPKmqKiICpHvq1bZtW+Li4gAoVKgQ8fHx\nJCQkAP98EaJx/rzKlWH4W3y5cAHN3hrO8Trn0PKS5tzaqQMt/tfY8/hs3uZtPjrmU6YTExMJJi/7\nRGoDfVS1qTvfE0hW1f4+2+zgn4qjKE6/SDtVnZlqXzHTJ5IhVdYMeZUCzz9LYl7l02uf5akBT1Ck\nsF1kZ4w5M8HqE/GyEsmB07HeENgHrCCNjnWf7ccBs1T1ozTWZY1KJEVSEst7PU6ZN4Yz7/x8rL9p\nML373E3evF4HZoyJFmHrWBeR4iIySETmiMh89/VloAWrahLQEfgM2AxMVtUtItJeRNoHuv9Y4Xsq\n+rccObii/2ucu+8XLrqiIU8Oa8uoK8vw7IvzOH487CEGJM38YojlF91iPb9g8Kcd5D1gK3Ah0AdI\nBFYFo3BVnaOqFVW1nKr2dZeNVNWRaWx7b1pnIVmZ5M9P7fFTyf/9D9Q9vwydXm7Cc3WrMmDYNyQl\neR2dMSYrOG1zloisUdXqIrJBVau4y1ap6uVhidAPWa45Kx1/rl/Nd/ffTaFt3/LSpQnUeOhdHmxV\nkmzWZWKMSSWc94mccH/uF5HmIlIdKBxowSb48lStQfyqzRSaMoPHf9xCrcfLcHuju5g843esjjXG\nhII/lchLIlII6AZ0B8YAXUMalflbZtpkCzVpToXteynVfyiDN86m4GPFaNqsG5/NOxb8AAMU623O\nll90i/X8gsGfSmSJqh5S1Y2qmqCq1VNfYmsikAjF2jxMyb0HqXz/47y3aDj7Hz2Ha25+hSXLTnkd\nnTEmRvjTJ/I9sA4YB8yJxM4H6xPxw+HD7HqqM/nHvseoSwvy6UVDGPxUS6pUCbhJ1BgThcJ2n4iI\nZMMZJPE+oCYwBWcgxO8CLTxYrBLxn+7Zw87O95F37nxerlqKLeXHMLTXNZQv73VkxphwClvHuqom\nq+pcVb0TaAe0AVaKyEIRqRNoACZjwW6TlQsuIO6juRRZvJKuFGDEzGvp3a46tz20gd0ejPEY623O\nll90i/X8gsGfmw2LikgXEVmN07HeEWcIkm7AxBDHZ0Ike9V4Si9eR8nJs3hl3wF6zqrBvW2u5b7H\nEvn5Z6+jM8ZEC3+as74DJgBjVXVPqnVPqmq/EMbnF2vOClByMn9OeJu/Hu/G0kJ/8HTJO2lw5as8\n270ohe1ibmNiUlj7RFQ1oh/+bZVIkBw/zpHX+qN9+zH1omReLtiZ1o2e5fEu+ciXz+vgjDHBFNY+\nkUALMZkX1jbZs84i/5PPUiBxL7dddQ9rVw7mrE/Po0LzV3jl9RMcC8FtJrHe5mz5RbdYzy8YbEAM\n81+FC1NoyCgKbPqOh85LYMPap9g9pyRlmoxn9JhkG5fLGPM3z4aCDyZrzgqxtWv5tVM7fv9uE72u\nPJ+Fv73BoIev5Y47xMblMiZKhXMo+IEiUkBEcorIPBE5KCJ3B1qwiSLVqlFk0Srixk/nja3JTN91\nC2M/upyK16xg1ixsXC5jsjB//o9soqqHgeY4w8BfBDweyqDMPyKpTVauvZZCm7dTvc8bTPv6B149\nWJ/e468lvtG3fJnJJ8xEUn6hYPlFt1jPLxj8qURSnsPeHPhAVX/Hv+ejm1iUPTvZ295Lvh/2cu1d\nT7Fo7iI6Ho3nweGtueq6vSxb5nWAxphw8ucS337AzcAxoBZQCOcxtVeEPjz/WJ+Ihw4e5Nhzz3Dq\n3Xd4tQYMz/cw1bI/Q//nClGlitfBGWPSE9ZnrIvIOcAhVT0lInmB/Kq6P9DCg8UqkQiwYwd/PtGV\n4/O/4Nm62ZhwrBeNinbhpT65qVDB6+CMMamF86FUACWA20SkDXAb0CTQgo1/oqZNtmxZ8nwwg8Kf\nLqD/LxezfvPLZKMUNe4fw30PJLFrV9pvi5r8Msnyi26xnl8w+HN1Vh9gCDAMSAAGADeGNCoTvWrW\nJM+i5ZQe+T7jVhfgq5+7s1vKc+lt0+j5lHL0qNcBGmOCyZ8+kW+AqsAaVa0qIucC76lqo3AE6A9r\nzopQSUnouHEcf7on80om0fuKS9m9aBSDnriUVq2we0yM8VA4m7P+UtVTQJKIFAR+BkoFWrDJAnLk\nQNq14+wdO7nuhs58/f56HilRi16fdeKK+r+zcqXXARpjAuVPJbJSRAoDo4FVwFpgSUijMn+LiTbZ\nvHnJ9tzz5F6zgR456rFi/nhKXVSWxo+/TdOmX7I/Yi7RCL6YOH4ZsPyMPwMwdlDV31T1TZwO9Taq\nem8wCheRpiKyVUS+F5Eeaay/SUTWi8haEVktItcEo1zjkbJlOevjTzlv5AQmLsjNh4cf44e87al0\nzSoGDIDjx70O0BhzpvzpE6nBf28u/B3YqaqZHopPRLID3+I8encvsBJoqapbfLbJq6p/uNOVgWmq\nWi6NfVmfSLT56y+S+/fnxOBXGHQFvHPh7Zz6uh+D+xajeXMQe/S7MSEVzj6R4cBynOas0cAy4APg\nOxG5NoCyawHbVDVRVU8Ck4CbfDdIqUBc+YCDAZRnIknu3GTr04ezV6+nR46rWDxrGlUvL0+70cO4\n9roktmw5/S6MMd7zpxLZB8Srag1VrQHEAzuAxjiX+2ZWScD3qd573GX/IiI3i8gWYA7QOYDyolKs\nt8ku2LWLnLPnUPzNd5m8ID+Tf3ye3y6tzJV3fkXXrnDokNcRBibmj5/ll+XlOP0mVFTVTSkzqrpZ\nRCqp6nYRCaQNya/3qup0YLqI1APGAxXT2q5t27bExcUBUKhQIeLj40lISAD++SLYfATP58tHwpbv\nuLp/f14aNICplzbjs2zXM6HGq9xz8/c0awYNG0ZQvDZv81E2nzKdmJhIMPnTJzIF+AWnuUmA24Fi\nQGtgkarWzFTBIrWBPqra1J3vCSSrav8M3rMdqKWqv6Rabn0isWTHDpI6d+K39cto3/gka0/2osDm\nRxn62llcfbXXwRkTG8L5jPU8QAegrrtoMfAGzoCMeVX1SKYKFsmB07HeEKfJbAX/7Vi/CNihqioi\n1YGpqnpRGvuySiQWzZ7NyU4dWFE8iS71z2Ln1yO4pnRTBg6E0qW9Ds6Y6BbOZ6z/qaqDVPUW9zXI\nXZac2QrE3W8S0BH4DNgMTFbVLSLSXkTau5vdBmwUkbXAYODOzJYXrXxPRWNRhvk1b07Ozd9St1l7\nloz+lR7ntGJz+eZUqb+D556DP/8MW5iZlqWPXwyI9fyCwdOBJ1R1jqpWVNVyqtrXXTZSVUe60wNU\n9TJVraaq9VTV7nHOanLnht69ybV6LV3lSha8u5yGDeKZfOAZKl72J1Om2JMVjfGSPWPdRJfZs0nq\n9Airz0umQ/1kftkwmNJ/3MaQwUJ8vNfBGRM9wj0UfErfiDHeat6cHJu3ckXTB1g26ihdc3bkt0bX\n0KjlZh56CA4c8DpAY7IWf4aCryMim3E6wRGReBF5I+SRGSD222QzlZ/bxJVz1Vo6JdfkqzGbaVC3\nDisKP0al+N8ZPBhOngx6qJlixy+6xXp+weDPmcjrQFPcu8VVdR1QP5RBGeOXsmXJNmsWhYe/xaQv\nCzF64TRK31OB0SvfpkrVZObO9TpAY2KfP5f4rlDVWiKyVlWrucvWq2rVsEToB+sTMfz1FwwYwMnB\nrzE6IT8japbgt2nDqX7e5bz6KpT7z4hrxmRt4ewT2SUidd1Cc4lId8BGNjKR5e8mrjU8nBTPopE7\nuapqE36q9SC1Eg7SowccyfQF6caY9PhTiTwMPIIzrtVeoJo7b8Ig1ttkg55f2bLIzFkUHDaG9+YV\nZNSn8yl1d0UW/jWcihcn8c47kJwc3CIzYscvusV6fsHgz82GB1T1LlUtrqrFVLVV6mFHjIk4zZuT\nfdNmqjZuzepRydz/46sU7lyN/pO+5sorYdkyrwM0Jjb40ydSHGgHxPHPgI2qqveFNjT/WZ+IydCO\nHeijj3Jk4yoevjaJHeUa8cPIgTS5siT9+kGJEl4HaEz4hXPsrKXAV8BqIKUhQFX1w0ALDxarRIxf\nZs8muXNnNl9wFnfV3c85OZ5kw8hH6d71LLp2hbPP9jpAY8InnB3ruVW1h6pOUdUP3FfEVCCxLtbb\nZMOaX/PmZNu0icsa3snaUULb79+maPdLmbn5Uy69FKZPD/4QKnb8olus5xcM/lQis0Xk+pBHYkw4\nuFdxZV+5ijZ/lmfNiL+olP9+zu1yE4+/vIMmTWDTptPvxhjjSLc5S0SO8s+Do/ICJ4CU+4BVVQuE\nPjz/WHOWybTZs9Eunfm2VF7uuHIP5xfqxKrXn+SuFnl47jkoXNjrAI0JjZA3Z6lqPlXN776yqerZ\nPvMRU4EYE5DmzZFvNlGpwf9YM0pou2EGBR+txNZsH1CxkjJiBCQleR2kMZHLn7Gz5vmzzIRGrLfJ\nRkR+Pk1cdx4pw8Y3lbhT3SnbuzFjZ22mRg3IbJgRkV8IWX4m3UpERHKLyDlAMREp4vOKw7nx0JjY\nUrYszJxJnqEjGPlJdiZ8cJCk+HqUavcY97T7nRYtIMiPpzYm6mXUJ/Io0AUogfP42hRHgFGqOiz0\n4fnH+kRM0LljcSUPGcL068vS9ZI91DjRjwWD76bjI9no0QPy5vU6SGMyL5z3iXRW1SGBFhRKVomY\nkNmxAx59lGPfrOOJG3OzuEIRiq0cxuZ5NejfH+68EyTgX0Njwi+cz1iP6Aok1sV6m2zE5+c2cZ09\n5A0Gz0riw49OcrDkdVR7pj19Bx+kXj1Ysyb9t0d8fgGy/Iynz1g3Jmo0b4588w1x9W5gxZunaLfk\nG3696WLK/G84112fxIMPwm+/eR2kMeFnz1g35ky5TVzHN23gmVsK8smFUP77YayYWo+hQ+HWW70O\n0JjTC1ufiFtYSZwBGLMDgnOz4VeBFh4sVokYT8yejXbpwt6yRbm19k5KlrmVb17vR5WKBRg2DM4/\n3+sAjUlf2PpERKQ/sBjoBTwOdHd/mjCI9TbZqM7PbeK64KpmLBtxkhYr13Hi3svIefGnVK0KY8fC\n/PkLvI4ypKL6+Pkh1vMLBn/6RG4BKqpqM1W9IeUVjMJFpKmIbBWR70WkRxrrW4nIehHZICKLRaRK\nMMo1JmjcGxWzLVrMXRth3eRC/MQDXNGvDYNH/Ur37k7rlzGxyp9LfOcAt6tqUB8uKiLZgW+BRjhP\nTFwJtFTVLT7bXAlsVtXfRaQp0EdVa6exL2vOMt47dQqGDkVffIHpt1xCpwrbuCZpGJ+8chu9ekHn\nzpA9u9dBGuMI530iHwFVgXnAcXexqmrngAp2KojeqtrUnX/S3XG/dLYvDGxU1QvSWGeViIkc27bB\nAw9w+PBB7mz2B8lla3B40jBO/X4eb70Fl13mdYDGhPd5IjOBF4AlOA+mSnkFqiSw22d+DxkPp3I/\n8EkQyo0qsd4mG5P5lSsHX35JgQc68PjQX+m6+CCJDatwSct3SWig9O4Nx4+ffjfRICaPn49Yzy8Y\ncpxuA1V9O0Rl+33qICINgPuAuult07ZtW+Li4gAoVKgQ8fHxJCQkAP98EWze5sM636EDUqQIZw0a\nxFsLcjO25UtU6TeJj99ty9tvF2fSpASuvDKC4rX5mJ5PmU4M8gBwGY2dNVVVW4jIxjRWq6oG1Mkt\nIrVx+jhSmrN6Asmq2j/VdlWAj4CmqrotnX1Zc5aJXKowdiz65JN8dUNlWpbfwPVFXmRWnwe54/Zs\nvPQS5MvndZAmqwl5n4iIlFDVfe6ovf+hqokBFSySA6djvSHOAI8r+G/HemngS6C1qi7LYF9WiZjI\nt2cPtG/PscRttL81F9tKn0PxZWNY92U5Ro6EJk28DtBkJeF4KNU+92diWq9AC1bVJKAj8BmwGZis\nqltEpL2ItHc3exYoDIwQkbUisiLQcqON76loLMpS+V1wAcyezdlPPs3bI3/itUU5WFH2Cho/+wrt\n2p+ibVv49VevIs2cLHX8TJo8HTtLVeeoakVVLaeqfd1lI1V1pDv9gKqeo6rV3FctL+M1JmAicPfd\nyIYN1DpSgB/eLUzOHRMp/mQdkops4tJLYepUpwXMmGhgY2cZ4xVVmDoV7dyZDY2rcEOlNVxbpjOL\n+j1JxXK5GD4cStrj30yIhPMSX2NMKIjA7bcjGzdSNekcto8rQOHv5pCzQ02KVV1NfDyMGgXJyV4H\nakz6Mno8bikRGSMi/USkkIiME5FvRGS8iBQPZ5BZWay3yVp+QLFi8P775Bz0Kv3f2sWUr8/li1xN\nuXHIk4wa+xcNGzr3L0YiO34mozORt4H1wO/AMpwrqZrhXEU1IuSRGZPV3HwzsnEjlc4qwbbRuSmz\nZSlHWsVz6XWLqF0bBg6EpCSvgzTm3zK6xHedqsa707tUtXRa6yKB9YmYmPPJJ/DQQ/xQuxJNq2zg\ninIt2PlWX/74LR9vvQVVq3odoIl24egT8d35+FTrbBg5Y0KpWTPYuJELC8WxeWQO4jdvZVfzytS/\n73MaN4ZeveDYMa+DNCbjSmSmiOQHUNVeKQtFpDxO05YJg1hvk7X8MlCwIIwaRfZxb/PY+G0sWliO\nuYfuo+GQ+9nw3SHi42HRoqCFmil2/ExGNxs+k9bw76r6var+L7RhGWP+1qgRbNxIyZKVWD/8FAmb\nfmTtlZdx85MzuOMOeOQROHzY6yBNVpVRn0g3n1nl381bqqqvhjKwM2F9IibL+OoruP9+fr64NDdc\nmUjJMjU5e/5QFs8txogRTiuYMf4IR59IfiCf+/NxdzqfzzJjTLhdfTWsX0/x8vEsG/IHt2z5iy8r\nVqZVv4k80lFp3RoOHvQ6SJOV+HXHuoisVdVqYYgnU2L5TGTBggV/D+kciyy/ACxbBvfey69lS3Dr\n1fvIU6IcF6x/k5kTSvLaa3Dnnc79jKFkxy962R3rxmR1tWvD2rUUqXoF81/9lQe25mRa8arcP3wM\nL72s3HAD7N59+t0YEwg7EzEmFqxeDffey+HzCnNno0McO7cYVRNHM2HYhTz/PLRvD9nsX0bjIxzP\nE/F9GNVFwHaf+YAfShVMVokYA5w4AX37osOH8+n9CdxdaB7tKj3Lgv4dyZkjO6NHQ8WKXgdpIkU4\nmrNu8Hldkmr+xkALNv6J9evULb8gypULevdGvviC6+ZuZ+dnl7Dtu/eQ+6/mqlu2ULcu9O0LJ08G\nr0g7fiaj+0TSfBhVsB5KZYwJkSpVYPly8jZuxpQBP9D3u1KMPn4V9459mS8XnqRWLVizxusgTazI\nqDnrhwzep6paNjQhnTlrzjImHVu2wH33cSwHPHRzDjbk+4Nbso1l2NPxtG0LffpA7txeB2m8EI7m\nrJo+r8uBWsArODcdrg20YGNMGFx8MSxaxNm3tGBc3y2M2F6J4b825q4xT7N953GqVoWFC70O0kSz\njJqzDqrqQeBXnH6QBcCVQDNVvS084ZlYb5O1/MIge3Z47DFk6VKuWLaHXdPiOLltOZvrVeOBPsto\n1Qoeegh+//3Mdx0R+YVQrOcXDBk9lCqXiDwEbAHqATepaitV3Ry26IwxwVO+PCxYQK7WbRj60lom\n7ajOkD03c+MbXTnBH1x2Gcyc6XWQJtpk1CeyB0gCBgO7cMbPAqc5S1X1o7BE6AfrEzHmDP3wA7Rr\nx8lDv/JM6xJMzbaFjqXG8MYTDahRA4YMgeL2/NKYFo77RN52J9PcQFXvDbTwYLFKxJhMUIUxY+Cp\np/i2VVOaXjCfa8pdT/6lA3j/7YIMGgStW4d+6BTjjZB3rKtqW/d1b1qvQAs2/on1NlnLz0Mi0K4d\nrFlDxe+6mT1zAAAgAElEQVR+YduEIlyYeJAPz7uMnuNm88orcN11sHNn+ruI6PyCINbzCwZPB0IQ\nkaYislVEvheRHmmsryQiS0XkWKqh6Y0xwVKqFHz8Mdm7duPpl7/m6x0JjNzamUuebk2NegepUQNG\njHBOXIxJza+xs0JSsEh2nCckNgL2AiuBlqq6xWebYkAZ4GbgN1V9JZ19WXOWMcHw44/w8MMkf/8d\nQ9rH0//kfJ6oPJgJT7WgZAlh7FgoWtTrIE0wxMIovrWAbe4d8CeBScBNvhuo6gFVXQUEcaAGY0y6\nzj8fpk0j2zPP8ujLX7Lq+4a8u+lZ4h6/nTKVfiU+Hr74wusgTSTxqxIRkboi0kpE2rive4JQdknA\nd6DqPe4y4yPW22Qtvwgk4jyMZMMGSv52ktUjlXr7sjGzRDUeG/wVbdpAjx7OeI9Rmd8ZiPX8giHH\n6TYQkQlAWWAdcMpn1bsBlh3U9qe2bdsSFxcHQKFChYiPj//7YTIpXwSbt3mbP8P5yZP56vnniX/h\ndT6/uxkNTt5O3Y6NWTizLXXqNOTRRyMsXptPdz5lOjExkWA6bZ+IiGwBLgl2p4OI1Ab6qGpTd74n\nkKyq/dPYtjdw1PpEjPHIvn1wzz2c+Oso97XIxY78STT9YyJDX4hj4EBo08YuBY424ewT+QY4P9CC\n0rAKKC8icSKSC7gDSO9+Wft6GuOlEiVg7lxy3XgL4/t+S8+fKjDseC0ef2cSgwZBy5Zw6JDXQRov\n+FOJFAM2i8hcEZnlvgIeHEFVk4COwGfAZmCyqm4RkfYi0h5ARM4Tkd1AV+BpEdklIvkCLTua+J6K\nxiLLL4pkywY9eiCzZnHD2EVsXn8Vo2Z1o9pz91Kg2BGqVYPFi70OMrhi6viFyGn7RIA+7s9/DXsS\njMJVdQ4wJ9WykT7T+4FSwSjLGBMktWrB2rUU7diRUR9nY2HF35hYoTod+77PbbddzsMPQ69ekMOf\nvy4m6vn7jPXzcIaEV2CFqv4c6sDOhPWJGOORiRPh0UdZe18zri3yMe0rP8GSV7px4ng2JkyAMmW8\nDtCkJ2x9IiJyO7AcaAHcDqwQkRaBFmyMiQF33QXLllFt/hYSv6jM2m+nIvdcS8INP1KzJkyZ4nWA\nJtT86RN5Gqipqveo6j04ZyTPhDYskyLW22Qtv+i2YMECKFsWFi0iT80rmTVwL21+Oo8x2avTc9xs\nevWC+++Ho0e9jjRzYv34BYM/lYgAB3zmf8GuljLG+MqZE156CZkwgbuHLGDldwm8seURGg7qzAk9\nRvXqsHq110GaUPDnPpGBQFVgIk7lcQewQVWfCH14/rE+EWMiyC+/wP33k7QzkW5tz2d+rr3ck2cS\nAx6/hCeegMcecy70Mt4K+fNEfAoS4FbgKpyO9a9VdVqgBQeTVSLGRBhVePNN9Nln+fqRG7gtz0we\nrfoiHz/fnrx5hHffdYbpMt4JW8e6Oj5U1a6q+likVSCxLtbbZC2/6JZufiLw8MPI/Plc/eFKti+7\ngs82v0HxjrdSre4vVK8Os2eHNdRMifXjFwwZPWN9sfvzqIgcSfU6HL4QjTFR67LLYMUKCpS4kIVD\nDtNw/9m8XzCeniMX8Mgj0KkT/PWX10GaQHj2PJFgsuYsY6LAzJnw4IN8f2cTGpT8nDsuuY+d7/Th\n2y05mTQJLr3U6wCzlnDeJzLen2XGGJOhG2+E1aspv3EvO2bEcWD7EvY0qUfrTjtISIA33rCnJ0Yj\nf66RuMx3RkRyADVCE45JLdbbZC2/6HbG+ZUs6Qzk2Pwm3nlpM70OXsKg36+gx4T3eOstuPlmOHgw\nJKFmSqwfv2DIqE/kKRE5AlT27Q8Bfib90XaNMSZj2bPDk086AzmO+YotG+ozYdNzXPzUPcRVOEJ8\nPMyb53WQxl/+XOLbV1V7himeTLE+EWOi1OHD8MgjJK9ayYsPX8q7rKdzyYn071yLu++G55+HXLm8\nDjI2hfN5IitFpJBPwYVE5OZACzbGGAoUgPHjydbraZ594Ss+2H81L+1ozr1v9WPjN8nUrQvff+91\nkCYj/lQivVX178fNuNN9QhaR+ZdYb5O1/KJb0PJr3RqWLSN+3iYS51Vm/bfTOdaiMTe23kudOvDO\nO950usf68QsGf8fOSi17sAMxxmRxF10EixaRu/oVzBywm3sPXsDwkzV4ZsJMBgxwBgy2pydGHn/6\nRMYBvwHDcSqUR4DCqto25NH5yfpEjIkxX34J99zD3ub1aVB+MQ3KX49+OojP5+TmvfegTh2vA4x+\n4ewT6QScBCYDk4BjOBWJMcaExjXXwLp1lPzxKJsnFibPrp0srVyLrn2/4ZZbnA73pCSvgzTg39hZ\nR1W1h6pe7r56quof4QjOxH6brOUX3UKaX9GiMH06Oe5vx6vPLWfEgSt4YVcCnScMZ8FCpUED2LUr\ndMVD7B+/YPDnjvXiIjJIRD4Rkfnu68twBGeMyeJEoEMH5MsvuWrKMrYvq83czWPI98DNNLj+IJdf\nDlOneh1k1uZPn8jnOE1Z3YH2QFvggD1PxBgTVn/9Bd27o3M+YXiXOvQ7tZCnLn6XVztdQ/36MGQI\n5M3rdZDRI5zPE1mjqtVFZIOqVnGXrVLVywMtPFisEjEmC5kxA9q3Z9tdTWlQYi4tLrmHg1NeYPnS\nnLz/PlSv7nWA0SGcHesn3J/7RaS5iFQHCgdasPFPrLfJWn7RzZP8broJVq+m3LpdbJ9xIb9sX8nW\nunV5+KntXHstvPIKJCcHp6hYP37B4E8l8qJ7x3o3nCatMUDXYBQuIk1FZKuIfC8iPdLZZoi7fr2I\nVAtGucaYKFeyJHz+ObmaNeftF7+h969VeOnn2vR8fzwffgjXXQf793sdZNaQYXOWiGQHuqjqq0Ev\n2Nn3t0AjYC+wEmipqlt8tmkGdFTVZiJyBTBYVWunsS9rzjImq1q+HO66i1+uqk7j+I1UKn05pda/\nwbujCzBmDFx/vdcBRqawNGep6imgZaCFpKMWsE1VE1X1JM49KDel2uZG4B03luVAIRE5N0TxGGOi\n0RVXwNq1nHPqLFaNzsYl+07wQdFqPDtqGR06QOfOcOyY10HGLn+asxaJyDARqSci1UWkhtsvEqiS\nwG6f+T3ustNtc0EQyo4asd4ma/lFt4jJr0ABmDCBbD178vTz8/nopwb02Xoj94x+mX0/nqJWLdi0\n6cx3GzH5RbAcfmxTDVDg+VTLGwRYtr/tT6lPt9J8X9u2bYmLiwOgUKFCxMfHk5CQAPzzRbB5m7f5\nGJ+/+24WZMsGL7xA4oVVufOs2ey8aAp1SvWifv0WvPACVKq0AJEIiTeM8ynTiYmJBFO6fSIi0kVV\nB4vIVaq6KKilOvuvDfRR1abufE8gWVX7+2zzJrBAVSe581uB+qr6U6p9WZ+IMeYfJ07As8+iEybw\nfrcmdD31Mc/Ej2TsEzdTujSMGePcEJ+VhaNP5D7359BAC0nHKqC8iMSJSC7gDv77xMSZwD3wd6Vz\nKHUFYowx/5ErF/Trh7zzDne9Mpe12xszdH1XLu/zMGXK/Ul8vDPGowlcRpXIZhH5HqgoIhtTvTYE\nWrCqJgEdgc+AzcBkVd0iIu1FpL27zSfADhHZBowEOgRabrTxPRWNRZZfdIv4/Bo2hHXrKLH3MJsm\nFibf7r18UbYmvYZsoHVr6NkTTp5M/+0Rn18ESLdPRFVbish5wFzgBtJ+rkhAVHUOMCfVspGp5jsG\nu1xjTBZStCjMmEGO4cN5pc9z3Nr5Fm45eg1dx/dm0asdqVtXmDQJypb1OtDodNphT6KB9YkYY/yy\nYQO0bMmRi8tyY7295C1Wgtr7xzG0fzHGj4cmTbwOMHzCOeyJMcbEhipVYNUq8hcvxZeDf6PZwSKM\nIJ6eI+fTpg0MHOjNY3ijmVUiES7W22Qtv+gWlfnlzg1vvIG8+hodXvqMhXubMOC7O2k39jUmTVbu\nugv+cJ+YFJX5hZnflYiI5AllIMYYE1Y33+wM5Lj6B7Z/WpGvN4+jQo+7Ieef1K0LQb6dImb5MxR8\nHZxBF/OraikRiQceVNWIuVLK+kSMMZmWlAQ9e5L8wVSe7ngJc/L9yA1/TGPUgDjee8+5wCsWhbNP\n5HWgKXAQQFXXAfUDLdgYYyJCjhwwcCDZ+vXnpX4r6bv/MkYl16bb8Hm0agWvv279JBnxqzlLVVM/\nyTgpBLGYNMR6m6zlF91iKr877kC+/JKm45eyclNdhmxvRaMuDzPubeWee5wHK5r/8qcS2SUidQFE\nJJeIdAe2nOY9xhgTfSpXhpUrKfXzMb6feSFbdn1GxadacezUn1x1FexK/e+08atPpBgwGOe5H4Jz\n82FnVf0l9OH5x/pEjDFBlZwMffqQ/PY4XuhYhWkF9tLs8DTGvXYhkyZB/Rho0A/bM9ajgVUixpiQ\nmDEDbdeOee0a0rrwfLqUHs/rnRrzzDPwyCMgQR/HI3xC3rEuIkMzeA0JtGDjn5hqc06D5RfdYj6/\nggWRr76i0UfrWLO2Fm/+cDf3jh7IyFHKfffZw64g4z6R1Tgj7a5yp1O/jDEm9lWqBMuXU+KvHHz3\nYUk2bJ1AxadacuiPP7j6atizx+sAveV3c5aI5AdUVY+GNqQzZ81ZxpiQS06Gfv3Q4cPo2zGeSYX2\ncO1v03lvWFmmTIGrrvI6wDMTtvtERKSyiKwFNuEMD79aRC4LtGBjjIkq2bLBU08hb42l5+urGbaj\nEu/mrE2HVz7j1lvhzTe9DtAb/lziOwp4TFVLq2ppoJu7zIRBzLc5W35RLUvm17QpsnQpV8/9lg3L\nqjN2Z1vajO7P4CHKgw/C8eNhD9NT/lQieVR1fsqMqi4A8oYsImOMiXRly8KSJZx7VhG2TirGt1sm\ncvEzd/DjL0dp0AD27fM6wPDx5z6R6Tgd6eNx7hNpBdRQ1VtCH55/rE/EGOMJVXj9dbR/fwZ1iOfd\nontpeHAaH4wqxwcfQO3aXgeYvnCOnXUfUBz4CPgQKMY/z183xpisSwS6dkXef5/uI9Yzamt53s9d\nhwf6fcoNN8CYMV4HGHqnrURU9VdV7aSq1d1XF1X9LRzBmSza5hxDLL/o5nd+DRogy5dz5dLdfPNV\nZSbsvpe7R/Zl4CClQwc4cSKkYXoqo5sNZ4nITPdn6tfMcAZpjDERr3Rp+PprihUrw5YJBdm1dTKV\nnmnBD3uP0LAh/PST1wGGRrp9IiJyANgDvA8sT1ns/lRVXRj68PxjfSLGmIihCm++ifbpw5D21Rh1\n7m4SfprOrLfL8+GHULOm1wE6Qj52lojkABoDLYHKwMfA+6q6KdBCg80qEWNMxFmyBG6/nZXNq9P8\nwqW0O+8dRnZvxsCB0Lat18GFoWNdVZNUdY6q3gPUBrYBC0WkY6CFGv9Zm3N0s/yiW0D51akDK1dS\nc+MvbP7yYj7c8wAtR7zEiy8l06ULnDwZtDA9lWHHuoicLSK3AROAR3CGhJ8WaKEiUkREPheR70Rk\nrogUSme7sSLyk4hsDLRMY4wJu/PPh/nzOeeiy9jwTh4ObJnKxb3/x5btR2jcGA4c8DrAwGXUnDUe\nuBT4BJisqkH7Qy4iA4CDqjpARHoAhVX1yTS2qwccBd5V1coZ7M+as4wxkW3cOLRHD958IJ6hJfdQ\nb990Pp1QgWnToHr18IcTjj6RZOCPdN6nqlog04WKbAXqq+pPInIesEBVK6WzbRwwyyoRY0zUW7kS\n/vc/1ja8lOsqrqRtsXG81aM5r78OrVqFN5Rw9IlkU9X86bwyXYG4zlXVlAvefgLODXB/McvanKOb\n5Rfdgp5fzZqwciXVfviLrXMuYva+B2kx/HmeeTaZbt0gKSm4xYVDjlDtWEQ+B85LY1Uv3xlVVREJ\n+DSibdu2xMXFAVCoUCHi4+NJSEgA/vki2LzN27zNez6/eTM8/TQJn3zCurf2c339dyl2+1zWrvuE\npk0L0KnTAgoWDH75KdOJiYkEkyePx3WbsxJUdb+InA/Mt+YsY0yWM3Ei2qUL4+6NZ2DpPVy5axoL\nPqjEtGlQtWpoiw7n2FmhMBNo4063AaZ7FIcxxnjnrruQL77gvg93MGVZKeYUqcetPWfSqBFMnux1\ncP7xqhLpBzQWke+Aa9x5RKSEiHycspGIvA8sASqIyG4RudeTaD3keyoaiyy/6Gb5BUHVqrByJZUP\nZmPrrDJ8vv8hbhvahx5PJtOjB5w6FfoQAuFJJeIO6thIVSuoahNVPeQu36eq1/ts11JVS6jqWapa\nSlXHeRGvMcaEVJEi8PHHFEy4ljWjs3Fq83Qq9bmZpWt+5/rr4ddfvQ4wfZ70iQSb9YkYY2LGRx+h\n7dszoVVlXrxoL7UTp7N4xsVMnw6XBfHB5NHeJ2KMMSYtt96KLFzI3XP2Mv3rEnxR9Gqad59Ogwbw\n4YdeB/dfVolEOGtzjm6WX3TzLL9LLoEVK7j4eAG2flSCxfsf4abXn6XrY8k8/XRk9ZNYJWKMMZGo\nYEGYNo38N/6PZaOSybVpBhWfu5H5Sw9x001w6JDXATqsT8QYYyLdJ5+gbdsytcUl9Kq4l1o7ZrDy\nk0uYMQMuvjhzu7Q+EWOMySqaNUOWLOH2r35hzrzz+Kp4fZp0+Yirr4YZM7wNzSqRCGdtztHN8otu\nEZVfuXKwdCnlzi7B1inFWP1zJ5q/+jSPdDpFnz6QnOxNWFaJGGNMtMiXDyZNIm/r+1g0MomC38yi\nYp8bmDP/ELfcAocPhz8k6xMxxpho9MUXaOvWzLixAt0v3UeNbdPZ8MVlTJ8OFSue/u3WJ2KMMVlZ\no0bIsmXcvOoon39ajGXnJXD1Qx9Qrx58/PHp3x4sVolEuIhqkw0Byy+6WX4ei4uDxYu5sHgFtrxX\nhC0HutB04FO0a3+KF18MTz+JVSLGGBPNcueGt98mT4fOLBh1gvM3fEyl55oz/dPfaNECjhwJbfHW\nJ2KMMbHi66/RO+/kkyYX0rnqj1TZOp3vF1Xm44+hTJl/b2p9IsYYY/6tXj1kxQqu35LE/FlFWFcy\ngfodplCoUOiKtEokwkV8m2yALL/oZvlFoJIlYeFCSperzpZ3C7B1z2PsPLYhZMVZJWKMMbHmrLNg\n5EjO7tGLL8acoMqB0P2ptz4RY4yJZd984wywlT37vxYHq0/EKhFjjMmCrGM9i4jKNtkzYPlFN8vP\nWCVijDEm06w5yxhjsiBrzjLGGOM5TyoRESkiIp+LyHciMldE/nMrjIiUEpH5IrJJRL4Rkc5exOq1\nWG+Ttfyim+VnvDoTeRL4XFUrAPPc+dROAl1V9VKgNvCIiGTyQZDRa926dV6HEFKWX3Sz/IxXlciN\nwDvu9DvAzak3UNX9qrrOnT4KbAFKhC3CCHHo0CGvQwgpyy+6WX7Gq0rkXFX9yZ3+CTg3o41FJA6o\nBiwPbVjGGGPORI5Q7VhEPgfOS2NVL98ZVVURSffSKhHJB3wAdHHPSLKUxMREr0MIKcsvull+xpNL\nfEVkK5CgqvtF5HxgvqpWSmO7nMBsYI6qvp7B/uz6XmOMOUPBuMQ3ZGcipzETaAP0d39OT72BiAjw\nFrA5owoEgvNBGGOMOXNenYkUAaYApYFE4HZVPSQiJYDRqnq9iFwFfAVsAFKC7Kmqn4Y9YGOMMWmK\niTvWjTHGeCOi71gXkaYislVEvheRHulsM8Rdv15EqqVal11E1orIrPBEfGYCyU9EEkVkg5vfivBF\n7b8A8yskIh+IyBYR2SwitcMX+ellNjcRqeges5TX75F4I22Ax66ne5PwRhGZKCJnhS9y/wSYXxc3\nt29EpEv4ovbf6fITkUoislREjolItzN573+oakS+gOzANiAOyAmsAy5OtU0z4BN3+gpgWar1jwHv\nATO9zifY+QE/AEW8ziOE+b0D3OdO5wAKep1TML+b7vJswI9AKa9zClZ+7nt2AGe585OBNl7nFMT8\nLgM2Ame7+/kcuMjrnDKRXzHgcuBFoNuZvDf1K5LPRGoB21Q1UVVPApOAm1Jt8/dNi6q6HCgkIucC\niMgFOF+EMUAkdrwHlJ8rEvNKken8RKQgUE9Vx7rrklT19zDGfjrBOHYAjYDtqro71AGfoUDyO4wz\n2kQeEckB5AH2hi1y/2Q2v/OAi4HlqnpMVU8BC4Fbwxe6X06bn6oeUNVVOMfqjN6bWiRXIiUB31+u\nPe4yf7d5DXgcSA5VgAEKND8FvhCRVSLSLmRRZl5m87sAuBA4ICLjRGSNiIwWkTwhjfbMBJKbrzuB\niUGPLnCZ/m6q6q/AK8AuYB9wSFW/CGGsmZHZ/ErgnIXUc8f/ywNcz3+Pq9f8yS9o743kSsTfHv/U\n/42LiDQHflbVtWmsjxSZzS/FVapaDbgOZ1yxesEJK2gym5/iNF9VB95Q1erAH6Q9vppXAsnNWSGS\nC7gBmBqsoIIo099NEbkIeBSnOaQEkE9EWgUvtKDIdH6quhXn1oS5wBxgLZH3j2ogV0ud8XsjuRLZ\nC5TymS+FUytmtM0F7rI6wI0i8gPwPnCNiLwbwlgzI5D8UNV97s8DwDSc09BIEkh+e4A9qrrSXf4B\nTqUSKQI6dq7rgNXu8Ys0geR3ObBEVX9R1STgI5zfx0gS6O/eWFW9XFXrA4eAb0MYa2b4k1/w3ut1\nJ1AGnUM5gO04/9Hk4vSdX7VJu/OyPjDL63yCmR9OO3N+dzovsBho4nVOwTx+OPcIVXCn+wD9vc4p\nmN9NnLbmNl7nEoLvZjzwDZAb5z/5d4BHvM4pyN/N4u7P0jgDwxbwOqczzc9n2z78u2Pd7/f+/R6v\nEz7Nh3EdTi2/DedGQ4D2QHufbYa569cD1dPYR30i8OqsQPIDyroHd537C9vT61yCffyAqsBKd/lH\nRNDVWUHILS9wEPcfgUh8BZjfE8AmnP6Dd4CcXucT5Py+cvNbBzTwOpfM5IczruFu4HfgN5w+rHzp\nvTejl91saIwxJtMiuU/EGGNMhLNKxBhjTKZZJWKMMSbTrBIxxhiTaVaJGGOMyTSrRIwxxmSaVSLm\nX0QkWUTG+8znEJEDpxtOX0TaisjQMyzrfXeY7YCH0xaRp1LNLw50n+5+3haRPe4wJYhIUXckBEQk\nTkQ2ptq+T8rQ2iLygpvfOhGZJyKl0th/CRE5o6FPRORREcntM380M7m5701IObYicoNfQ3+nv6/R\nInJxGsvP+LthoodVIia1P4BLReRsd74xzrAHp7uh6IxuOHJHRL1cVauq6uBU67Kfyb5cPf8VjGrd\nTOwjPUnAfX5u6/s5DHDzi8d5BHTv/2ysuk9VW5xhPF1wRi1Iq8xMU9VZqto/gPe3U9UtwYjFRA+r\nRExaPsEZnRSgJc74YwLOo41FZLr7H/ZSEamc+s0iUsx9oNQK95XW2ElzgZLug5muEpEFIvKaiKwE\nuohIcxFZ5o7i+7mIFHf3nc8d3XeDG8OtItIXyO3ua7y73VH3p4jIQPchQhtE5HZ3eYJb5lRxHnw1\nIZ3PQoHBQFcR8ef35e9B+1T1iM/yfDh3qaf+rP4+m3H/Y/9IROaIyHci8p8/6OI8wKoEMF9E5vks\nf9E941nq81n5cxx89/33GYOIXOjua4O77yPu8r/PXNz5YSLSxp1eICI13Ol7ReRbEVmOH2NnuWdX\nb7nTld3jdbaI1BKRJe73YLGIVDjdvkyYeX17vr0i6wUcASrjjC57Fs4opX+PPwYMBZ5xpxsAa93p\ntsBQd3oiUNedLg1sTqOcMsBGn/n5wDCf+UI+0w8Ag9zp/sCrqbcDjqTOw/15G06FJUBxYCfOkA8J\nOIPnlXDXLUmJOdV+xrn7eMvN8RzgB3ddHPCn+xmlvH4EHvN5/0s4Q0ps9c3JZ31cyufg7n87kN/9\n7BNxhldP/Z4f8HkgGc4ostf7fD69zuA4JPgcW99jOBNo7U538Pk8/97e5/twj88xrA6c737O5+A8\n2GgRMOQ03zvBeTbHLTjD3VzpLs8PZHenGwEfeP07Yq9/v3JgTCqqulFE4nDOQj5Otbou7kN4VHW+\niJwjIvlTbdMIuFjk73/K84tIHlX902ebtIa4n+wzXUpEpuD8wc+F87Q8gIbAHT6xHjpNOlcBE9X5\nK/SziCwEauI8PGmFuqMhi8g6nD/oafWlKNAXmMF/P4/t6gzJj7uf3vz7bKQX0EtEnsR5xs29p4l3\nnrpnMCKy2Y3pdA91OqGqKXGtxmmCBP+OQ3rq4PxBB5iAUzn5Q3CeBLhAVX8BEJHJQIZnEKqqItIW\nZ7ytEaq61F1VCHhXRMrhHIecfsZhwsQqEZOemcAgnLOQYqnWpfucDJ/1V6jqiTMs8w+f6aE4Zx+z\nRaQ+zmij6ZWfEU1j+5R4j/ssO0UGvw+qus2taO5Ib5vTmIjTTHg6qWPyp3/I9+l0yfyTR2aPQ0aS\n+HczeO40tknr++CPCjhnwr4PQXoBp2K9RUTKAAv83JcJE+sTMekZC/RR1U2pln8NtAKnfRw4oKqp\nrw6aC3ROmRGReD/L9P1jUwDnyXjgNLOk+Bx4xGffhdzJk+I8jjW1r4E7RCSbiBQDrgZWcGYVUcq2\nLwHd/X6TSHmf2ZtwmrvOVFpxHsH5fE4ns8cBnDOyO91p34dK7QQuEZFc7md/Tar3KbAcqO/2n+UE\nWrjLEZFbROTl1IWJ80jkwUA94BwRuc1d5fs9ON1ZnPGAVSImNQVQ1b2qOsxnWcp/l32AGiKyHngZ\naJPGNp2By92O703AgxmVlc58H2CqiKwCDvisexEo7Ha8rsNpowcYBWyQfy5PTsljGrABZzjvecDj\nqvpzqnjTi+dfy1V1M05zkaZel85++qaKs1tG+z+DmEYBn/p0rKeO50yOg+/2vtNdcJ6YuQGn38jZ\nwHke/BScRxBMBtb8Z4eq+3GO31Kc/hDff0Quwhl+PLVXcfrEtgH3A/1EpCgwAOdzXINzVmbDjkcY\nGwreGHNaInJEVVP3fWVmP+OBR1P6S0z0s0rEGHNaInJYVf1pQjNZjFUixhhjMs36RIwxxmSaVSLG\nGPOup/0AAAAkSURBVGMyzSoRY4wxmWaViDHGmEyzSsQYY0ymWSVijDEm0/4PcKKwK+beCCUAAAAA\nSUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa595b00>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmczeX3wN9nxr4TWoSRfcuSfWuEQrbsoowtyZb4KVpQ\nX6RFi1QKEaLsJGuMELKG0EqJ9qxld35/PHdqGmPmztx7Z7lz3q/Xfc39fO7zOc85bn2e+znnOeeI\nqmIYhmEYsRGS3AoYhmEYKRdbJAzDMIxrYouEYRiGcU1skTAMwzCuiS0ShmEYxjWxRcIwDMO4JrZI\nGEGPiNQVkYMBkh0pIj087zuLyMpAzGMYyYUtEobPiEiEiOwVkb9E5CcReV1EciajPldE5JaoY1Xd\noKqlAjSdel6o6ixVvSsQk4hIBhEZKSJficgZETkkIlNEpHAg5jOMKGyRMHxCRAYDzwKDgRxADaAw\nsFpE0gdgvlBvh/p77mRmHtAM6IT7d64AbAcaJFSQiKTzr2pGMGOLhJFoRCQHMBLop6qrVPWyqn4P\ntAfCgC6ecSNFZJ6IzBGRUyKyQ0RujSbnJhGZLyK/ish3ItI/2mdR184QkZNAVxGpKiKbReS4iBwT\nkQlRC5KIfOK59HMROS0i7UQkXESORJN5WEQGi8jnInLCo1fGaJ8P9cj9UUR6xnwyiePfI0JENkQ7\nviIivT2//o+LyGsxxncXkf0i8qeIrBCRQteQ2xBoCLRU1R2qekVVT6nqG6o6NZpNDaJdM1JEZnje\nh3l06S4i3wMfi8hHItI3xjyfi0grz/tSIrJaRP4QkYMi0i7auKYi8oXnu/zR80PBCFJskTB8oRaQ\nCVgQ/aSq/gV8BDSKdroF8AGQG3gPWCQioSISAiwFdgE34X4ZPywid8a4dq6q5vRcexkYCFwH1PRc\n85Bn7nqea25V1eyqOjcWvRVoB9wFFAFuBSIARKQxMMgjszgQ7hmfWO4GqnjmaC8id3nmaQkMA+4B\n8gIbgNnXkNEQ2KqqR+OY5x+3V7TjmNQDSuHsno17KsGjTxmgELBMRLICq4GZQD6gI/C6iES57KYA\nD6hqDqAssDYOvYxUji0Shi/kBX5X1SuxfPaz5/MotqvqAlW9DIzHLS41gapAXlX9n6peUtVDwGTc\njSmKT1V1CYCqnlPVnar6mecX9ffAW8DtCdT9VVX9WVWP4xapip7z7YGpqnpAVc8CI/DNdfWs51f/\nEWAdzk0E8CAwVlW/9Pz7jQUqikjBWGRch/v3TAix6TxSVc+q6jlgUYz5OgPzVfUizq11SFWne/6N\nd+N+CLT3jL0AlBWRHKp6UlV3JVA3IxVhi4ThC78DeT1PAzG5Efgt2vGPUW/UVZX8EffkUAi4yeOO\nOS4ix3G/sPPHdi2AiJQQkQ89QfKTwGjcjTQhRL/pngWyRtP7SLTP/jN3Iog+z99ANs/7wsAr0Wz+\nw3O+QCwyfvfo5Sv/2KWqp4Fl/Ps00RGYFU236jG+k3uB6z2ftwGaAoc9u7tq+EE3I4Vii4ThC5uB\n87ibxj+ISDagMfBxtNMFo30eAtwMHMXduA6pau5orxyq2swzPKYbBeANYD9QzOOCehz//bf8U3Rd\nY7z3Jz/gXDbR7c6qqltiGbsGqCYisS0gUfzFvwsdwA2xjIn57zgb6CQiNYFMqroumm7rY+iWXVX7\nAqjqdlVthXNFLcK5EY0gxRYJI9Go6klgFDBBRO4SkfQiEoa7aRwBZkQbfpuI3OPZWfMwcA7YAmwD\nTnuCxZk9cYpyIlLFc11sbpNswGngb4+fvE+Mz38BiibQnKh5PgC6eQK3WYAnEygnvjmi5nkTGO6J\nBSAiOaMHh6Ojqh/jYgQLRaSyiKQTkewi8qCIdPMM2w109HxWBbdwxxdL+Qj31DAKmBPt/IdACRHp\n4vlO03s2C5TyvO8sIjk9rsPTuBiREaTYImH4hKo+DwwHXgBO4m783wMNPP5tcDerxUAH4E+c/7u1\nZzfUZZwPvCLwHc5F9RZum2fUtTFvdkNw7o9TnrFzYowZCUz3uEraXkPGf8zg31yHFcCruPjBV7in\nJXBPTPERX/A4+jyLgHHAHI/LbC8uoHwt2uJu6u8DJzzjK+MWD3CLWVHgOM7+WTGuv8p+Vb2AizU0\nwG0IiDp/BrgT54I6inu6Ggtk8AzpAhzy6P0A7vs0ghQJZNMhz06Rl4FQYLKqjovx+RD+/Q8sHVAa\nF8Q8ETCljCRHREbgXEP3JbcuCUVESuNuyBmuEaA3jKAmYE8S4pKeXsP5psvgfJ+lo49R1RdUtZKq\nVsIFKyNtgQhKUlVim8ctllFEcuN+7S+xBcJIqwTS3VQN+EZVD3vcDnOAlnGMv5dr7xM3UjfxuXtS\nGg/g4hrfABe5OuZhGGmGQKbnF+DqrYTVYxvoCRDehSchygguVHVUcuuQEFS1SXLrYBgphUA+SSTk\nl2NzYKO5mgzDMFIWgXySOMrV+82vlZjUkThcTSKSmlwVhmEYKQZV9SkmGMgnie1AcU9xsQy47Y9L\nYg4SV1K6Hm6L5DVR1SR/nT2r1KqlPP54YOcZMWJEstiXVK9gti+YbTP7Uv/LHwTsSUJVL4lIP2Al\nbgvsFFU9ICK9PZ9P8gxtBaxUVycnRZEpEyxcCDVqQMmScF+ANnAePnw4MIJTCMFsXzDbBmafEVh3\nE6q6HFge49ykGMfTgemB1MMX8ueHpUuhfn0oUgTq1ElujQzDMJIOy7j2grJlYcYMaNsWvv3W//Ij\nIiL8LzQFEcz2BbNtYPYZAc649hcioilBz9dfhwkTYPNmyJUrubUxDMOIGxFBU3DgOuh46CFo1Aja\nt4eLF+Mf7y2RkZH+E5YCCWb7gtk2MPsMWyQSzPjxkC4dDBgAKeDhxjAMI6CYuykRnDoFtWtDz54w\ncGBya2MYhhE7/nA3BXR3U7CSI4fb8VSrFhQrBnffndwaGYZhBAZzNyWSsDCYPx8iImDPHt9kBbtf\nNJjtC2bbwOwzbJHwiZo13W6n5s3h54S2qTcMw0gFWEzCD4waBR99BJGRkDlzcmtjGIbh8EdMwhYJ\nP6AKnTvD5cswezaE2POZYRgpAMuTSCGIwNSpcOQIjByZ8OuD3S8azPYFs21g9hm2SPiNTJlg0SJX\nvmPmzOTWxjAMwz+Yu8nP7NsHd9zhqsfWrp3c2hiGkZYxd1MKpFw5ePddVwzwu++SWxvDMAzfsEUi\nADRuDI8/Ds2awcmT8Y8Pdr9oMNsXzLaB2WfYIhEw+vWDBg1cMcBLl5JbG8MwjMRhMYkAcumSS7Qr\nUgQmTnS7oAzDMJIKi0mkcNKlgzlz4JNPXGa2YRhGasMWiTg4dPyQz83Ec+Z0xQDHjnVZ2bER7H7R\nYLYvmG0Ds8+wReKaqCqd5nfi2Y3P+iyrSJF/iwHu3eu7boZhGEmFxSTi4NjpY9SZWodhdYbR67Ze\nPst77z0YPhy2boXrr/eDgoZhGHFg/SQCzE3Zb2LVfauo90498mTOQ5sybXySd++98OWX0LIlrFtn\nxQANw0j5mLspHorlKcaye5fRZ1kf1h5a67O8kSOd+6lbt3/bnwa7XzSY7Qtm28DsMwK8SIhIYxE5\nKCJfi8ij1xgTLiK7RGSfiEQGUp/EUunGSsxtN5eO8zqy/dh2n2RFFQP8/vvEFQM0DMNISgIWkxCR\nUOBLoCFwFNgGdFLVA9HG5AI2AXep6o8ikldVf49FVorIk1h0cBF9lvUhsmskJfOW9EnWL79A9eow\nerQrM24YhuFvUnpMohrwjaoeBhCROUBL4EC0MfcC81X1R4DYFoiURKtSrfjz7J/cNfMuNnbfyM05\nbk60rOuvd1tjGzRw7qdatfyoqGEYhp8IpLupAHAk2vGPnnPRKQ7kEZF1IrJdRO4LoD5+oXul7vSt\n2pc7Z9zJH3//4ZOs8uVh2jRo1iySQ4f8o19KJJj9vsFsG5h9RmCfJLzxD6UHKgMNgCzAZhHZoqpf\nxxwYERFBWFgYALly5aJixYqEh4cD/37RSXVc9WJVdpzdwd3v3c2a+9ew/dPtiZbXtCncfvtu6teH\nzz8PJ2fOpLcn0Me7d+9OUfrYsR0H63FkZCTTpk0D+Od+6SuBjEnUAEaqamPP8TDgiqqOizbmUSCz\nqo70HE8GVqjqvBiyUkRMIjqqSo8lPTh6+ihLOy0lQ2gGH2S5goDffutcUOnT+1FRwzDSLElSu0lE\nxopI7mjHuUXkf17I3g4UF5EwEckAdACWxBizGKgjIqEikgWoDuz3Xv3kQ0R4q/lbZE6Xma6LunJF\nr/ggC155BUJDoXt3uJJ4UYZhGH7Fm5hEE1U9HnXgeX93fBep6iWgH7ASd+N/X1UPiEhvEentGXMQ\nWAHsAbYCb6tqqlgkANKFpGN2m9kcO32MAcsHJLrOU2RkJOnSwdy5bmvswIH/5lAEA1GPw8FIMNsG\nZp/h3SIRIiKZog5EJDPglW9FVZeraklVLaaqYz3nJqnqpGhjXlDVsqpaXlVfTagByU3m9JlZ0nEJ\nm45sYtT6UT7JypLFuZs2boQRI/ykoGEYhg/EG5PwxA1aAFMBAboBS6LHFgJNSoxJxOSXM79Q5506\nDKw+kH7V+vkk69dfoW5dePBBGDTITwoahpHmSJI8CVUdJyJ7cElxCjytqit9mTQYuT7b9azqsoq6\n79TluszX0al8p0TLyp8fVq92C0WuXK6Eh2EYRnLgTeB6ALBFVQer6hBbIK5NkdxFWN55OQ+vfJiV\n33j/zxSbX7RQIVi1ylWNXbDAj0omA8Hs9w1m28DsM7yLSVwPbBORDzy1mKwJZxyUv748C9ovoMvC\nLmz5cYtPskqWhGXLnNtpzRo/KWgYhpEAvMqTEJEQ4E4gAqgCfABMUdVvA6rdv/On+JhETD76+iO6\nLe7G2vvXUjZ/WZ9kffIJtGnjgto1avhJQcMwgp4k63GtqleAn4FfgMtAbmCeiDzvy+TBTNPiTRl/\n53gaz2rM9ye+90lWvXqufEfLlrBvn3/0MwzD8AZvYhIDRWQH8ByuYms5Ve0D3Aa0DrB+qZrOt3Zm\nSM0h3DnzTn7767drjvPGL3r33fDyy9C4MXz3nR+VTAKC2e8bzLaB2Wd4V7spD9BaVf/zc1hVr4hI\n88CoFTwMrDGQ3/7+jSazmrCu6zqyZ8yeaFmdOsGJE9CoEWzYADfd5EdFDcMwYsF6XCcBqkqfZX34\n+s+vWXbvMjKlyxT/RXEwZozrl/3JJ5Anj5+UNAwj6PBHTMIWiSTi8pXLdJzfkSt6hQ/afkBoSGii\nZanC0KHuaWLNGsiWzY+KGoYRNCRZ4NrwndCQUGbeM5OT507y4IcP/qfOU0L9oiLw3HNQrhy0agXn\nzvlZWT8TzH7fYLYNzD7DFokkJWO6jCzssJDPf/mcx9c+7pMsEZg0CXLndrGKS5f8pKRhGEY0Euxu\nEpE1wCXgNVX9MCBaXT1nqnc3Ref3v3+nztQ69L6tN4Nq+lac6fx5aNHCBbGnTIEQW/YNw/CQXO6m\nrsATQGFfJk7L5M2Sl1X3reKlLS/x7ufv+iQrY0ZXtuPLL2Hw4OAqMW4YRvKToEVCRPIA16nqdlWd\nGCCd0gSFchZiZZeVDF09lDHvjvFJVtasrnzHxx/D/7xpB5XEBLPfN5htA7PP8C6Zbr2I5PAsEDuA\nySLyUuBVC35K5yvN4o6LGffpODZ8v8EnWblzu4KA06fDhAl+UtAwjDSPN/0kdqtqRRHpCRRU1REi\nsldVyyeNiskYk1i3ztXrTudNzmHiWf3tajov6Mzq+1ZT4YYKPsk6fNipPHYsdOniH/0Mw0idJFVM\nIlREbgTaA8s854Lf860K48dD+/YuOhxAGhVtxGtNX6Ppe005+PtBn2SFhcHKlTBkCCyJ2VHcMAwj\ngXizSDyN61P9rap+JiJFga8Dq1YKQATmzXN/W7WCv/8O2FSRkZG0L9ue0XeM5o7pd/DFr1/4JK9M\nGVcxtkcP9zCU3ASz3zeYbQOzz/BikVDVuap6q6eoH6r6raq2CbxqKYCMGeH99yFvXmjaFE6fDuh0\nERUjeK7RczSc0ZA9v+zxSVbVqvDBB+5BaPt2PyloGEaaw5uYRGagB1AGyOw5raraPcC6RdchefMk\nrlyBPn1gzx746CMXJQ4g7+97n4ErBrKiywoq3lDRJ1mLF0Pv3rB2rXvCMAwj7ZBUMYkZuO50jYFI\n4GbgjC+TpjpCQuDNN13HnzvugN+uXfbbH3Qo14GJTSdy18y72H7Mt8eAli1dCY+77nJBbcMwjITg\nzSJRTFWfBM6o6nSgKVA9sGqlQERcILtZM7j9djh2zG+iY/OLtinThreavUXTWU3Z+uNWn+Tffz/8\n3/+5EuM//+yTqEQRzH7fYLYNzD7Du0XigufvSREpD+QC8nkj3NMT+6CIfC0ij8byebiInBSRXZ7X\nE96rngyIwDPPuLtuvXoB/2neslRLpracSvPZzdn0wyafZA0Y4LbE3nUXHD/uJwUNwwh6vIlJ9ALm\nA+WBaUA24ElVfTOe60KBL4GGwFFgG9BJVQ9EGxMOPKKqLeKRlfJqN02YAC+8AKtXQ4kSAZ1q5Tcr\n6bKwC/Pbz6de4XqJlqMKgwbBtm0u8S5rVj8qaRhGiiNJYhKq+raq/qmq61W1iKrmi2+B8FAN+EZV\nD6vqRWAO0DKWcT4ZkGz07w8jRkD9+gFvPH1XsbuY02YObT5ow9pDaxMtJ8pjVrw4tGkDFy7Ef41h\nGGkbb8pyDBaRR6L9fUREeohIfNtuCgBHoh3/6DkXHQVqicjnIvKRiKSu/Tfdu8OLL0LDhrBjR6LF\neOMXbXBLA+a2m0uHeR1Y9e2qRM8VEgKTJ0PmzNC5c9KUGA9mv28w2wZmn+Fdj+vbgCrAUtyv/ruB\nvcCDIjJPVcdd4zpv/EM7caU+/haRJsAiIFbfTUREBGFhYQDkypWLihUrEh4eDvz7RSfLcceORH7z\nDTRoQPiyZVC7doLl7d692+vxCzss5O4xdzOszjAe6/JYovTfuDGSPn1g/PhwOnWC3r0jSZcucP9e\nCbHPju3YjhN/HBkZybRp0wD+uV/6ijcxiQ1AE1U94znOBnyE2xK7Q1VLX+O6GsBIVW3sOR4GXIlj\nUUFEDgG3qeqfMc6nvJhETFatcpHh2bOhQYOATrX5yGZazmnJlBZTaF6yeaLlnDsH7dpBaKjLGcyY\n0Y9KGoaR7CRVnkQ+/t3hBHARuF5V/wbiapy5HSguImEikgHoAPynmpCIXC8i4nlfDbdo/Xm1qFTA\nnXe6Mh6dOsGHge3FVLNgTZbdu4yeS3uy8MDCRMvJlAnmz3eLROvWKb8NqmEYSY83i8QsYKuIjBCR\nkcCnwHsikhXYf62LVPUS0A9X92k/8L6qHhCR3iLS2zOsLbBXRHYDLwMdE29KCqBePbdA9OgBc+d6\nfVnU42JCqFqgKss7L6fPsj7M/cL7uWKSIQPMmQPZs0Pz5oEpUZUY+1ILwWwbmH2GFzEJVX1GRFYA\ntXFxht6qGpUG3Dmea5cDy2OcmxTt/UQguJoXVavmXE9Nmrg7bteuAZuq8o2VWdllJY1nNebilYvc\nW/7eRMlJnx5mznRx+LvvdsUBs2Xzs7KGYaRKEtzjOjlIFTGJmBw86FKchw2Dhx4K6FT7ft3HnTPu\n5NmGz3J/hfsTLefyZXjgAdcK9aOPIEcOPyppGEaSk1w9rg1vKFUK1q93CXcvvBDQqcrlL8fH93/M\n8I+HM3XX1ETLCQ2Ft9+GW29165tlZhuGYYtEILnlFvjkE5eYMGqUS3mOBX/4RUvnK83armsZETmC\nSdsnxX/BNQgJgYkToWZNl/7xxx8+qxbUft9gtg3MPsPLRcKzQ6mh530WETFHhLfcfLN7opg/Hx59\n9JoLhT8ocV0JIrtGMmbjGCZ+lvhQjwi89JJbJO64A3791Y9KGoaRqvAmT+IBoBeQR1WLikgJ4A1V\nDWwywH91SH0xiZj8+Sc0buy6AU2Y4H6yB4hDxw9xx7t3MKDaAAbVHJRoOarw1FOwYAGsWQM33uhH\nJQ3DCDhJFZPoC9QBTgGo6ldAfl8mTZPkyePutHv2uG1EAayHUSR3EdZHrGfitok8t+m5RMuJKnrb\nsSOEh8PRo/7T0TCM1IE3i8R5VT0fdSAi6fCu5IYRkxw5YMUK14vi3nv/qbAXCL9ooZyFWB+xnsk7\nJzP6k9E+yXrySZf6Ua8efP99wq8PZr9vMNsGZp/h3SKxXkQeB7KISCNgLq6Ok5EYsmaFJUvg/HlX\nijWAac4FchRgfcR6Zu6dyajIUfjishs61BW+DQ+H777zn46GYaRsvIlJhOJ6XN/pObUSmJyUQYKg\niEnE5OJFuO8++P1314g6gM0dfjnzCw3ebUCrUq14pv4zeCqhJIo33oCxY+Hjj13JccMwUi7+iElY\nMl1ycvky9OoFX30Fy5ZBzpwBm+q3v36j4YyGNC7amGcbPuvTQjFlimulsXo1lI61vKNhGCmBJAlc\ni0gdEVntaUF6yPMyh4M/CA2FyZOJzJfPVY71R1LCNciXNR9r71/L6u9WM3jVYJ9cTz16uKeJBg1g\n7974xwez3zeYbQOzz/AuJjEFGI/b4VTV86oWSKXSFCEhrgF1w4bO4f/jjwGb6ros1/Hx/R+z8YeN\nDFg+wKeF4r77XJe7Ro1g1y4/KmkYRorCm5jEVlWtnkT6XEuH4HQ3RUfVdbl7+WUXo7jttoBNdfLc\nSRrPakyF6yswselEQkNCEy1r/nxXmurDD10KiGEYKYeAxiREJOou1Q4IBRYA/2yFVdWdvkycENLE\nIhHFggXQu7cr5dEytpbg/uH0+dO0mNOCPJnzMPOemWROnznRspYudS6oRYugVi0/KmkYhk8EOibx\nIvACUB3XvnSM51zUy/AT//GLtm4Ny5dD377uySJAi2P2jNlZ0XkFGUMz0nBGQ/74O/HxkObN4d13\noVUrV6oqJsHs9w1m28DsM+JYJFQ1XFXrAz1UtX70F25LrBEoqlSBzZvdnbdPH7ddNgBkTJeRma1n\nUrdQXWpNrcWh44cSLatxY9e5tU0btz3WMIzgwJuYxE5VrRzj3A5VDZzT/God0o67KTqnT0OHDq6E\nx9y5Ad0iO/GziYzeMJolnZZQ5aYqiZbzySfQtq1b3xo39qOChmEkmIC6m0SktIi0AXKJSGsRaeP5\nGwFk8mVSw0uyZ3fZ2aVKOWf/ocT/0o+PvtX68vrdr9NkVhM++vqjRMupV8/FJu6/38UqDMNI3cQV\nkygBNAdyev428/ytjKsKa/iJOP2i6dLBq6/Cgw9C7drODRUgWpVqxZKOS+i+uDuTd05OtJxatVxu\nYM+ebvdTMPt9g9k2MPuMOHpcq+piYLGI1FLVT5NQJyM2+vd3TYxatnSlxjt0CMg0NQvW5JNun9Bk\nVhOOnDzCyPCRicrOrlrV1TJs0sS1RA0P97+uhmEEHivLkdr4/HNo0cLdeYcPd/W8A8AvZ36h2exm\nlMtfjreavUX60PSJkrN3L9x1Fzz7rHNBGYaRdFjtprTKTz+5faflysGkSZAxY0Cm+evCX3SY14GL\nVy4yr908smfMnig5Bw64zOyRI50LyjCMpCGpmg4ZASbBftEbb3QtUU+dgjvvDFjNp6wZsrKo4yIK\n5yzM7dNu56fTPyVKzi+/RLJuHfzvfzB6dEA7uCY5we7TNvsMbwr8ZRKRziLyuIiM8Lye8ka4iDQW\nkYOe4oCPxjGuqohcEpHWCVE+TZM1K8ybBzVqQM2a8PXXAZkmXUg6JjWbRJvSbag5pSYHfjuQKDnF\ni7uY+7x5LvUjgI35DMPwI97kSawETgA7gMtR51U1zqxrTx+KL4GGwFFgG9BJVQ/EMm418DfwjqrO\nj0WWuZvi4u23Xfu499+H228P2DTTd09n6JqhzGs3j7qF6yZKxqlTLo8iUyaXfBfANhqGkeZJkpiE\niOxT1XIJFixSExihqo09x48BqOqzMcY9DFzAVZf90BaJRLJmjWuJ+sILAY0Qr/52NZ0XdGZi04m0\nK9suUTIuXnRtNA4ccLkU+a1jumEEhKSKSXwqIrcmQnYB4Ei04x895/5BRAoALYE3PKfS5ErgF79o\nw4YuTjFqlHuquHLFd5mx0KhoI1bdt4pBKwfx0uaXvLompn3p08M777hwSu3a8M03AVA0iQh2n7bZ\nZ1wzTyIadYFuInKIf6vAqqrGt3B4c8N/GXhMVVXcZvxrrngRERGEhYUBkCtXLipWrEi4Z/N91Bed\nWo93797tP3lbthBZvz5s2kT4smWQObPf9T1x8AQvlniRp3c9zQ8nf6B5xuaESEiC7XvmmXBuvhmq\nVYtk9Gjo08c/+tmxHafV48jISKZNmwbwz/3SV7xxN8U6k6oejue6GsDIaO6mYcAVVR0Xbcx3/Lsw\n5MXFJXqp6pIYsszdlBDOnYNu3eDwYdebIkD+nONnj9Pq/Vbkz5qfGffMIFO6xFVrWboUuneHqVPd\nzl7DMPxDoGs35fC8PXWNV3xsB4qLSJiIZAA6AP+5+avqLapaRFWLAPOAPjEXCCMRZMoE773n/Dk1\nasD+/QGZJnfm3KzqsooQCaHRjEb8efbPRMlp3tyV8XjgAZf2YRhGyiGumMRsz9+duJ1N0V/b4xOs\nqpeAfsBKYD/wvqoeEJHeItLbJ62DjKjHRb8i4uITTz/tamKsXu3/OXDlxme3mU31AtWpPbU2h08c\nvmqMN/ZVqwYbNri4+xNPpJ5cioB8dykIs8+Iq3bT3Z6/YYkVrqrLgeUxzsX6W1FVuyV2HiMOunSB\nwoWhXTu3YDzwgN+nCJEQXrjzBQrmKEjtqbVZ2mkplW+sHP+FMShWDD79FJo1gyNH3M7eDBn8rq5h\nGAnAynKkFb75Bu6+2/l2xo2D0MT3tY6L+fvn8+CyB5lxzwwaF0tcQ4m//oKOHeH8eZd8lyNH/NcY\nhnE1VpbD8J5ixVzK844dLpvtr78CMk2bMm1Y1GERXRd1ZequqYmSkTUrLFzoit7efjscO+ZnJQ3D\n8BpbJFIASeYXzZMHVq6EXLlcd6AA3X1rF6rN+oj1PPPJM4yKHMW6desSLCNdOnjjDeclq1XLJd6l\nRILdp22eVxLvAAAgAElEQVT2Gd7UbrpDRPqLSD8RqZ8UShkBJEMGt9e0XTuoXj1gTYxK5S3F5h6b\nWfLVEp7f9DwXLye8T7eIq4YeFXvfsMH/ehqGETfXjEl4sqEX4BLoonYz3QZkBu5R1aNJoiEWkwgY\nH34IPXrAY4/Bww8HpDfFmQtnaDfXle+Y224u2TJkS5ScVaugc2f3dNG2rT81NIzgJaC1m0RkEbBI\nVafFOH8/0EZVW/oycUKwRSKAHD7snioKFnRPGLly+X2Ki5cv0mdZH3b+tJNFHRdRKGehRMnZvdvt\nfBoyxK1phmHETaAD12ViLhAAqvouUNqXSY3/kqx+0bAw2LgRChSAKlVg1y6/T7Fpwybebv4295a/\nl+qTq7PuUMJjFAAVK8KmTfDWWzB4cMDKUyWIYPdpm31GXIuESCzNjUUkJJ7rjNRGxoyub/bo0a7X\n6Ftv+T2bTUQYUmsIM+6ZQaf5nXhp80sk5umwcGG3pm3bBp06uQokhmEEjrjcTS8DWYFBqnrGcy4b\nMB44p6oDkkxJczclHV9+6Zz+FSvCm28GpOHD4ROHuef9eyiTrwxvN3+bLOmzJFjGuXNw333w66+w\naBHkzu13NQ0j1RNod9NQ4CRwWER2ishO4DBwGhjiy6RGCqZkSdi61e1BrVYtIHtPw3KFsan7JgSh\n1pRaHDp+KMEyMmVyPZYqV4Y6deCHH/yupmEYxLFIqOoFVR0CFAIiPK/CqjpYVS8kjXppgxTnF82S\nxTV8GDzY5VO8955P4mKzL0v6LMy4ZwbdKnaj5pSarP424bWlQkLgpZegZ0/Xl+Lzz31SM1GkuO/O\nz5h9RpyxBU8l2BtVdY/n9ZfnfIUk0c5IXrp3dx3vRo50jan9HAAQEQbWGMictnO4f9H9PLfpuUTF\nKQYNghdfhEaNnLqGYfiPuGIS7XFNgX4F0gPdVPUzz2e7VLVSkilpMYnk5dQpl0/x3Xcwd66rl+Fn\njpw8QusPWnNL7luY0mJKovIpPvnE7eZ98UVX19Aw0jqBjkk8DtymqhWBbsC7ItLal8mMVEqOHPDB\nB9C1q+tPsWiR36comLMgG7ptIEv6LNScUpNv/kx4T9N69WDtWnj8cXj22dRTbtwwUjJxLRKhqvoT\ngOcJoj7wuIgMTBLN0hCpwi8qAgMGuDZyDz/sMtoueldqw1v7MqXLxNQWU+lTpQ+1p9Zm+dfL478o\nBmXLukojs2c7D9mFAEfPUsV35wNmnxHXInFKRIpGHXgWjPpAC6BsoBUzUijVq7tKsgcOQP368OOP\nfhUvIjxU9SHmt59Pz6U9GbNhTILjFDfd5Oo8HT0KDRu6bbKGYSSOuGISFYG/VPXrGOczAO1VdWYS\n6Bc1p8UkUhpXrri+FK++Cu++66LGfuboqaO0nduWm7LfxLSW08ieMXuCVRwxwqm3YAHcdpvfVTSM\nFE1AazelJGyRSMFERrrKe716wZNP+r2Z0flL5xmwfAAbftjAwg4LKZm3ZIJlLFgAvXvD+PEuAc8w\n0goBDVyLyBkROe15nYr2/rSInPJlUuO/pGq/aHi4cz+tXw+NG8fq2/HFvozpMjKp+SQervEwdd+p\ny9IvlyZYRuvWsG6da/n9yCNw6VKi1bmKVP3deYHZZ8SVTJdNVbOranbg26j3npc1lDT+5YYbYPVq\nl6F9222uuJKfeeC2B1jccTF9lvVhVOQormjCqvuVK+fqPe3f78pT/f6731U0jKDEK3dTUudFxDK/\nuZtSCx99BN26ud1PQ4b4vUfFz2d+pu0HbcmTOQ8z7plBzkw5E3T95ctui+wHH7gWqRUsLdQIYqzH\ntZHyaNrU/WSfPx9atYLjx/0q/oZsN7C261oK5SxEtcnVOPBbwmpLhYa6HIoxY9zOpzlz/KqeYQQd\nccUk2ohIaxFpA+SMeh91Pgl1DHqCzi9aqJBLfy5SBG67jchJk/wqPkNoBl5r+hqP1X6MetPqsfDA\nwgTL6NjReciGDYNHH3VPGIkh6L67GJh9Rro4PmsORPl4PvEcR2dBfMJFpDGutEcoMFlVx8X4vCXw\nNHDF8/o/VV3rnepGiiZDBnj5ZVeitWdPtx/1wQf96n7qVqkb5fKXo80Hbdj5005Gho8kNMT73VUV\nK7qHng4d4O67XQKelRw3jP8SsC2wIhIKfAk0BI4C24BOqnog2pis0YoGlgcWqmqxWGRZTCI18/XX\nrkdFmTLw+ut+vxP/+tevtJ/bnizpszCr9SxyZ06Y/EuXYOhQl0y+aJHL2jaMYCClxySqAd+o6mFV\nvQjMAf7TFztqgfCQDbA9J8FI8eKwZQvkzQu33gorVvhVfP6s+Vl932pKXFeCqm9XZd+v+xJ0fbp0\nLofiqafcjt4F8T4jG0baIZCLRAHgSLTjHz3n/oOItBKRA8ByIMm63aUkgt0vGhkZCZkzuxap06a5\nzLYHH4TTp/02R/rQ9Lzc+GVGho+k/vT6zP1iboJl3HcfLF/uSlM9+aR3PbTTxHcXxAS7ff4grpiE\nr3jlH1LVRcAiEakLzABiTamNiIggLCwMgFy5clGxYkXCw8OBf7/o1Hq8e/fuFKVPQO1r0IDIiRPh\n9dcJr1ABpk0j0nM39sd8XW7twt9f/03/N/qzreU2Rt8xmk0bNnl9fZUq8PLLkYwcCbt3hzNzJuza\nlbz/fnZsx94eR0ZGMm3aNIB/7pe+4m2eRG0gjH8XFVXVd+O5pgYwUlUbe46HAVdiBq9jXPMtUE1V\n/4hx3mISwciHH7qnig4dYPRo97ThJ37/+3ciFkXw61+/8l6b9yiW56pQV5xcvOiaGa1Z4+IUpUr5\nTTXDSDKSJCYhIjOB54HaQBXPq6oXsrcDxUUkzFMUsAOwJIbsoiJuu4uIVAaIuUAYQUyzZrBnDxw7\nBpUqwWef+U103ix5WdppKfdXuJ+aU2oyfff0BFWTTZ8eXnsN/u//XJ+KpQmvBmIYwYGqxvkCDuB5\n4kjoC2iC2+H0DTDMc6430NvzfiiwD9gFbACqXkOOBjPr1q1LbhUCilf2zZmjmj+/6hNPqJ4/79f5\n9/y8R8tOLKsd53XU42ePJ/j6zZtVCxRQffpp1cuX//uZfXepm2C3z3PvTPC9O/rLm8D1PuDGRC5A\ny1W1pKoWU9WxnnOTVHWS5/1zqlpOVSupal1V3ZaYeYwgoEMH+Pxz2L3b1YDas8dvostfX55tvbZx\nXebrqDSpEpt+2JSg62vUcPkUy5e7nbx+jLcbRoon3piEiEQCFYHPgPOe06qqLQKr2n900Pj0NIIE\nVbcDauhQGDzY1X9K57/9FUu/XEqvpb3oU6UPj9d7nHQh3ss+fx769YNPP4XFi6FYwsIchpHkJEk/\nCREJ97yNGii4RWK9LxMnBFsk0iDffw/du8Pff8P06VCihN9EHzt9jK6LunL24llmtZ5F4VyFvb5W\nFSZNcs2Mpk931dENI6WSJIFrVY0EDgI5gOzA/qRcINICUVvYgpVE2Ve4sCuu1KUL1K7tOuB5k7jg\nBTdlv4mVXVZyT6l7qPp2Vebs877Kn4hL8Zg/361hDzwQSTD/frH/Ng1vdje1B7YC7YD2wGci0i7Q\nihkGISHQt6/z78yZAw0awOHD/hEtIQyuNZgVXVYwInIE3RZ34/R574MNdeq4zVjr17tigX/9Ff81\nhpEa8cbdtAdoqKq/eo7zAR+r6q1JoF+UDuZuSutcvgwvvgjPP+9qfXfv7rdigWcunOHhFQ+z/vv1\nvNf6PaoW8GaHt+PcOfdksWuXy6coUsQvKhmGX0iq2k0C/Bbt+A/POcNIOkJDXTB73TqYONHlWBw7\n5hfR2TJkY3KLyYxtMJZms5sxbuM4rzvfZcoE77wDPXpA9erODWUYwYQ3i8QKYKWIRIhIN+AjXJ0l\nw08Eu1/Ur/aVK+eKBVap4hLw5szBX0GBtmXasr3Xdj765iMazWjE0VNH470mMjISERgwwCWQDx3q\nnizOnvWLSsmO/bdpeLNIDAUmARWA8sAkVR0aUK0MIy4yZIBRo2DZMnj6aZdj4aem1QVzFmTt/Wu5\nI+wOKr9VmUUHF3l9bbVqsHMnnDzp3n/xhV9UMoxkJWD9JPyJxSSMa3LunCvZOmsWvPkmtPBf+s6W\nH7dw7/x7ubPonYy/azxZ0mfx6jpV54J69FHXJrVnT7+3+jYMrwhonoSIbFLV2iJyhqsruqqq5vBl\n4oRgi4QRLxs2QEQE1K3rOuLlyuUXsafOn+KhZQ+x86edzG4zmwo3VPD62gMH3M6nkiXhrbf8ppJh\neE1AA9eqWtvzN5uqZo/xSrIFIi0Q7H7RJLGvbl1X1iNLFtfYaM0av4jNkTEHM1vPZHjd4TSa0YhX\ntrzyn0KBcdlWujRs3Qr587vwyZYtflEpSbH/Ng1v8iRmeHPOMJKdbNlce9TJk90W2QcfhBMn/CK6\ny61d2NJzC7P3zabpe0355cwvXl2XKZOrJjt+PLRsCePG+S0n0DCSBG/yJHapaqVox+mAPapaJtDK\nRZvT3E1GwjhxAoYNc8kLzz3nMrf9EBi4ePkiT69/mim7pjClxRSaFG/i9bU//ACdO7u2Ge++Czfc\n4LM6hhEnAXU3ichwETkNlBeR01Ev4Fdi9IUwjBRHrlzwxhuuEt/LL0P9+n7ZbpQ+ND3P3PEMs9vM\npveHvXl4xcOcu3TOq2sLFXJpHjVqQOXKsHKlz+oYRsCJKyYxRlWzA8/HiEfkUdXHklDHoCfY/aLJ\nal+1aq5+Rrt2EB7uthydOeOz2NvDbmf3g7vZtWUXNSbXYP9v+726Ll06t2t31iyXgDd0KFy44LM6\nAcP+2zS8yZPYJiL/7MsQkVwi0iqAOhmGfwkNdTWg9u51Wdply8KCBT4n4eXJnIeRt4+kf7X+3D7t\ndiZ+NtHrTO369V3rjAMHXMz9u+98UsUwAoY3MYnPVbVCjHO7VbViQDX773wWkzD8R2QkPPQQhIXB\nhAlQtKjPIr/8/Uu6Le5GupB0TG4xmRLXeVfaXNUVuP3f/5wqHTv6rIph/ENS1m6KSagvkxpGshIe\n7n7Gh4e7gkvPPOOS8nygZN6SbOi2gbZl2lJrSi2e2/Qcl65civc6ERg40MUnnnrKuaCsoqyRkvBm\nkdghIuNFpKiIFBORl4AdgVYsLRHsftEUaV+GDC4gsHOnK+FavjysWpVgMdFtCw0JZUD1AWzrtY01\n362h+uTqfP7z517JqVwZduyAixddWSo/dm/1iRT53fmRYLfPH3izSPQHLgLvA3OAc0DfQCplGElG\noUIuPvHyyy6von17OBp/Yb+4KJK7CCu7rKR/tf40mtGIJ9Y+4dUOqOzZ3dbYYcNc64zXX/db7ULD\nSDRWu8kwojh7FsaOdXfn4cOhf39In94nkT+d/om+H/XlwO8HmNJiCrUK1vLquq++cvGJsDCXG5gn\nj09qGGmUpOpxnR9XCbYMkNlzWlX1Dl8mTgi2SBhJyldfQb9+8PPPbsGoU8dnkfP3z6f/8v60LdOW\nMQ3GkC1DtnivOX8eHnvMPejMmuUXNYw0RlIFrmfhelzfAowEDgPbfZnU+C/B7hdNdfaVKOEiyU8+\n6X7Od+8Ov/0W61BvbWtTpg37HtrHqfOnKP9GeVZ9G3/8I2NGeOkl12OpbVsXX798OSGG+E6q++4S\nSLDb5w+8WSSuU9XJwAVVXa+q3QCvnyJEpLGIHBSRr0Xk0Vg+7ywin4vIHhHZJCJJ1hbVMK6JiEvA\n27/fZW+XLQuTJvlUeClP5jxMazWNN+9+kweWPkC3xd348+yf8V7XrJkLan/8MTRs6HPIxDAShDfu\npi2qWkNEVgGvAseAuaoa7+ZyEQkFvgQaAkeBbUAnVT0QbUxNYL+qnhSRxsBIVa0RQ465m4zkZc8e\n6NMHLl1y5T4qV/ZJ3Onzpxn+8XDmH5jPhCYTaFOmTbzXXL7s+lNMnOjiFM2a+aSCkQZIqphEM2Aj\nUBCYAOTA3cjjrd/kWQBGqGpjz/FjAKr67DXG5wb2qurNMc7bImEkP1euwPTpbvtRu3bO/+Njk4hN\nP2yix5IelMtfjteavsYN2eKv+rdxoysU2KIFPPssZM3qkwpGEBPwmITnSaCEqp5Q1b2qGq6qlb1Z\nIDwUAI5EO/7Rc+5a9MD10E5TBLtfNGjsCwmBbt1cocALF6BMGSIff9ynfaq1C9Vm94O7KXldSW59\n41am7Z5GfD+I6tRxqR0nTrjWGevXJ3r6eAma7+4aBLt9/iBdXB+q6mUR6QSMT6R8r//vEZH6QHeg\ndmyfR0REEBYWBkCuXLmoWLEi4eHhwL9fdGo93r17d4rSx+yL53jvXujUifBu3eC++4hctgwGDSK8\na9dEyduycQuNQhvR7r52dF/cndc+eI0htYbQsVnHOK+fMSOcJUugTZtI6tVzx1mzpoB/HztOtuPI\nyEimTZsG8M/90le8cTe9BKTHJdP9hSvToaq6M17hIjVwrqkod9Mw4Iqqjosx7lZgAdBYVb+JRY65\nm4yUSVSM4umnXfvU4cMhd+5Ei7t4+SLjN4/n+U+f56nbn6Jv1b6EhsRdBefPP11pj08/halT4fbb\nEz29EWQkVUwiklieCFS1frzCXYOiL4EGuID3Z1wduC4ErAW6qGqsDR5tkTBSPD/95IovLV7skhv6\n9nV7WBPJl79/Sc+lPbmiV5jcfDKl85WO95olS1xsvU0blxNosQoj0E2HBnrePqGq9WO+vBGuqpeA\nfsBKYD/wvqoeEJHeItLbM+wpIDfwhojsEpHPEm9O6iTqcTFYCWb7/rHtxhvh7bddhdnISChVymXA\nJXLLbMm8JVkfsZ7O5TtT9526jP5kNBcvX4zzmhYtXDX048f9F6sI5u8Ogt8+fxBX4Lq75+8EXyZQ\n1eWqWlJVi6nqWM+5Sao6yfO+p6pep6qVPK9qvsxnGMlKmTLuJ/306a4GeJUqsGZNokSFSAgPVX2I\nnb13svHIRqq8XYUdx+KurZknD8yY4ZLw7r0XBgywqrKGb1zT3SQis4EquN1I38b4WFU1yZLezN1k\npEpUYd48F6coWhTGjYMKFeK/LlZRysw9MxmyeggRFSIYGT6SzOkzx3mNxSqMgMckROQGYBXQnBh9\nJVT1sC8TJwRbJIxUzYUL8NZbrrPQXXe5/IpChRIl6pczvzBgxQB2/bSLSc0mUb9I/J7fqFhF69aW\nV5HWCHiehKr+rKq3qur3qno4+suXSY3/Eux+0WC2zyvbMmRwBQO/+sotDpUquV4Wx48neL7rs13P\n+23f57lGzxGxOIIO8zrww8kf4rwmKlZx8mTCYxXB/N1B8NvnD7yp3WQYhj/IkcM9Rezd6zLhSpaE\nF19MVFe8VqVacaDvAUrnLU2lSZV4Zv0znL149prj8+RxvSpeftnFKvr3t1iF4R3WT8Iwkov9+12J\nj88/h9GjoVMnl9WdQA6fOMyQVUPY8dMOxt85nlalWiFybQ/Dn3/Cww/Dpk0Wqwh2kiRPItpkWVT1\nb18mSyy2SBhBzYYN8H//52IXzz3nSr0mgjXfrWHgioEUyF6AVxq/Em9uxdKlrhmfxSqClyTpJyEi\ntURkPy4pDhGpKCKv+zKp8V+C3S8azPb5xba6dWHzZrcLqk8fF9z+3Lve2NFpeEtDdvfezd3F76be\ntHo8svIRTp47ec3xzZvHH6sI5u8Ogt8+f+DNs+3LQGPgdwBV3Q3YA6ph+BMR11lo/34Xab7rLuja\nFX6IOygdk/Sh6RlYYyBfPPQFp8+fptTEUkzdNZUrGntSn8UqjPjwpizHZ6paTUR2qWolz7nPVTVx\nG74TgbmbjDTHqVPwwguueUSPHi52kYiaUNuObmPAigFcvnKZCU0mUP3m6tccGz1WMWUKeOrHGamY\npGpf+oOI1PZMmEFEhgAH4rnGMAxfyJHDFQ3ct8/5gxK5E6pqgaps6r6JftX6cc/799BtcTd+PvNz\nrGOjP1V06eKeKs6c8YcxRmrGm0WiD9AXl3l9FKjkOTb8RLD7RYPZvoDbduONrm3q+vUuwF2qFMyc\nmaCaUCESwv0V7udgv4Pky5KPcq+X48VPX+TC5Quxjo+KVZw6BSVKRBLEX19Q/7fpL+JdJFT1N1W9\nV1Xzq2o+Ve2sqn8khXKGYXgoXRoWLXKFmV57zdWEWrEiQQ2PcmTMwXONnmNT902s/m41Fd6swKpv\nV8U6NnduV36qXz/XBa9fP3uqSKvEVbsprsJ+qqoDAqNSrLpYTMIwolCFBQtgxAjIkgWeeML9/I8j\nN+JqEcqHX33IoJWDKJe/HOPvGs8tuW+Jdezx4zBoEKxb5woH3nNPgqYykpGA5kmISAT/9pGIOYmq\n6nRfJk4ItkgYRixcuQILF7qaUOAWi3vuSVBC3rlL53hp80u8sPkF+lTpw7A6w8iaIfaEiXXrXJuM\nsDCYMMHVLDRSNv5YJFBVr15AdiCbt+P9+XJqBi/r1q1LbhUCSjDblyJsu3JFdckS1apVVcuWVX3v\nPdVLlxIk4sjJI3rv/Hu14PiCOmfvHL1y5YqqXm3f+fOq48apXned6siRqmfP+suI5CFFfH8BxHPv\n9On+600yXXkR2QV8AewXkR0iUs6nlckwDP8h4txNW7e6HVATJ7q+FtOnu/aqXnBzjpuZ1XoWs1rP\nYuzGsYRPD+fzn69O6MuQwdUm3LkT9uyBcuVg+XJ/G2SkJLzJk9gMDFfVdZ7jcGCMqtYKvHr/6KDx\n6WkYhgdV1x3v6afh++9djkXXru4O7wWXr1zm7Z1vMyJyBG1Lt+WZO54hT+Y8sY5dvtxtla1QwW2d\nLVjQj3YYPpNUeRJZohYIAFWNBKzKi2GkVESgfn0XRHj3Xdf4qHhxeP11r/IsQkNCebDKgxzoewAR\nofTE0ry5/U0uX7l81dgmTVwqx623ugrozz3nSlAZwYM3i8QhEXlSRMJEpIiIPAF8F2jF0hLBvlc7\nmO1L8bbVqQMrV8Lcue5nf9Gi7if/3/HX6syTOQ9ts7Rl9X2rmbNvDhXerMDig4uJ+VSfKZPbaLV1\nq1uXKlYk1eRWpPjvLwXgzSLRHcgPLADmA/n4t/+1YRipgWrVXNnXDz90SXm33OJ+9nuR/HDr9bey\nrus6xjUcx5PrnqTW1FqsP3x1NcCiReGjj9xmq/vvd1nbP8ee3G2kIqyfhGGkRfbudT0s1q6FAQNc\nYCFnzngvu3zlMnP2zeHJdU9SMm9Jxtwxhko3Vrpq3F9/uf5KU6bAU0+54rbp0gXCECMuAp0nsRSX\nJxHbBKqqLXyZOCHYImEYAeLgQRgzxj0C9O0LAwe6Ik7xcOHyBd7e8Tb/2/A/wsPCeab+MxTLU+yq\ncfv3O7EnTsAbb0CNGoEwwrgWgQ5c1wAKAhuAFzyvF6O9DD8R7H7RYLYv1dtWqpQLbm/dCkePugD3\nsGHw22/Ate3LEJqBvtX68nX/rymXrxw1Jtegz4d9OHb62H/GlSnjHlaGDHHNjXr1gj9SUFGfVP/9\nJQFxLRI3AsOBcrieEo2A31Q1UlW9bqUuIo1F5KCIfC0ij8byeSkR2Swi50RkcEINMAzDDxQtCpMn\nuwSIqP7bgwfHe0fPliEbj9d7nC/7fUm2DNko/0Z5hq0ZxvGzx/8ZI+LqPx044KqIlCnjpkpAjUIj\nGfEqJiEiGYFOuKeJkar6mlfCRUJxHe0a4irIbgM6qeqBaGPyAYWBVsBxVb3qKcXcTYaRxPz4Izz/\nvCso2LkzPPoo3Hxz/Jed+pGn1z/NwoMLGVxzMAOqDyBL+iz/GbNrFzz0kHv/xhtuN5QRGAKeJyEi\nmUSkDTATVx78FWBhAuRXA75R1cOqehGYA7SMPkBdldntwMUEaW4YRuC4+WZ45RUXVMiUySVC9Ojh\nAt5xXZbjZt5q/hYbu21k5087KT6hOG9uf5OLl//937tSJdfYqEcP14Bv4EDXMsNImVxzkRCRGcCn\nuP4RT6tqVVV9RlWPJkB+AeBItOMfPeeMaAS7XzSY7Qtm2wAiDx50TxRffQVFiri7esOGsGxZnP6i\nknlL8kG7D1jScQkLDy6k9MTSzNk35582qiEh0LMnfPGFS9koXRpmzUpQ5XO/EOzfnz+Ia1NaZ+Av\nYCAwUP5bG1hVNYcX8v32lUdERBAWFgZArly5qFixIuGe/opRX3RqPd69e3eK0sfss+NYj594AoYO\nJXLUKBg0iPBBg2DgQCJvuQUyZ471+ttuuo1hNw9jZ+hOXtryEuM2jaNTtk5Uvakq9evXJ29e6Nw5\nkkqV4IUXwpk8GSIiIilcOAXYmwqPIyMjmTZtGsA/90tfCWiehIjUwMUwGnuOhwFXVHVcLGNHAGcs\nJmEYqQBV2LjRZW+vXw/du7vORIUKxXGJsujgIh5f+zj5suZjbIOx1Cr4bwm4S5dcjOLpp50r6okn\nIFu2pDAmeEmq2k2+sB0o7inpkQHoACy5xlhrY2IYqQURqFsX5s+HbdvcHb5SJWjfHj79NFa/kYhw\nT+l72NNnDxEVIug4ryMt57Rk36/7AJds17+/C3scPQolSrhdUJevLhllJCEBXSRU9RLQD1gJ7Afe\nV9UDItJbRHoDiMgNInIEGAQ8ISI/iEia+v0Q9bgYrASzfcFsG3hpX5EiMH48HDrkakXdd5/Lmps9\nGy5evR8lXUg6ulXqxlf9vyK8cDgN3m1A10VdOXziMAA33OA2VS1Z4v5WqODKTgXCmRDs358/CPST\nBKq6XFVLqmoxVR3rOTdJVSd53v+sqgVVNaeq5lbVQqpq3XQNI7WRI4cr8fHVVzB8OLz1lltAxo6N\nNd8iU7pMDKo5iK/7f02RXEWo8lYVBi4fyK9//Qq4Nt6RkS4hfNAguPNO8IS3jCTEajcZhhE4du92\ncYvFi6FDB7fftXTpWIf++tevjNkwhhl7ZtC3al8G1xxMzkyuntTFi871NGoUNG7sigh6kbaR5kkN\nMQnDMNIyFSvCtGku3fqGG1yfiyZNXPnyGD/88mfNz8uNX2bHAzv44eQPFH21KE+sfYLf//6d9Old\nkWGoK4gAABGNSURBVMCvvoICBZwL6okn4NSp5DErLWGLRAog2P2iwWxfMNsGfrTvhhtg5Eg4fNgF\nt4cOhbJlYdKkq3pbhOUKY1qraXzW6zN+//t3SkwowSMrH+HY6WPkyOGK1+7e7ZLCS5RwO6JiCX14\nRbB/f/7AFgnDMJKOTJmgWzd3l5840SXlFS7sYhhH/5une0vuW3iz2Zvs7eOyvMu9Xo4HP3yQQ8cP\nUbCge0BZvtxtsLr1VhfoNq+0/7GYhGEYycvXX8OECTBzpgs4PPywa5IUg9/++o1Xtr7Cm9vfpGnx\npgyrM4zS+UqjCitWuEqz+fLBCy+4oLcR4H4SKQlbJAwjDXDihOtSNGGCCzw89BC0aeOePqJx8txJ\nJm6byCtbX6FuoboMrzucyjdW5tIleOcd10q1fn23K6pw4WSyJYVggesgIdj9osFsXzDbBklsX65c\nrjz5N9/AI4/A9OluC9PAgbBv3z/DcmbKyfC6w/luwHfUKVSHFrNb0GRWE7Yc20ivXi64Xbw4VK7s\niteeOHHtKYP9+/MHtkgYhpGySJfOPUGsWuWyubNnd4UFa9aEqVNdb1Qga4asPFzjYb4d8C33lLqH\nrou6cvu02/n0l1WMGKHs3evSM0qWhFdfhQsXktmuVIq5mwzDSPlcuuRarE6eDBs2uB1SvXrBbbe5\nEiHApSuXmLNvDmM2jCFbhmwMrzucFiVb8MW+EIYOdQ8ozz7rOuRJGikCZDEJwzDSHkePuuDDlCnO\nRdWrl2uMlNMl3l3RKyw6uIjRG0Zz4fIFhtUZRvuy7Vn3cTqGDHFFA198MW3027aYRJAQ7H7RYLYv\nmG2DFGpfgQIuk+7bb2HcOFe7o3BhiIiATZsIQWhdujXbe23n+UbP88b2Nyj1Wim+v24yW7ZdoFcv\naNvWJYC/915k8tqSCrBFwjCM1ElIiCvo9MEHLlpdrpyrMV62LIwfj/zxB42LNWZDtw1MbTmVufvn\nUmJiUU6VfpXdX/xN+fIui/uRR+DPP5PbmJSLuZsMwwgeovpcvP22y65r3Ni5o+rXh5AQth3dxpiN\nY9h8ZDMP13iYtoUf4sUxOZg3zy0W/fq5OHmwYO4mwzCM6ET1uXj33X9Llz/yiNsTO3YsVUNuZmGH\nhay5fw17f91Ljdm3kK/9UyxZ8wd790KxYs6DdcbqUP+DLRIpgBTp9/UjwWxfMNsGqdy+3Lndo8Hu\n3TBnjls0ypSBVq0ot+17ZrV8l1dKvcJPp3/i7hXFyXvfAN5Z/DU7d7rF4oUXriorlSaxRcIwjOBG\nBKpWdf0tfvgBmjVzPVLDwigwfxVvV3iCPX32kC1DNiI21ObvVs3533sfs2WrUrQovPQSnD2b3EYk\nHxaTMAwjbbJnj8u7eO89V+wpIoK/mzRk1jcLeWXrK4gIbQoMZNf0zmzbnJlHH4UHHoDMmZNbce+x\nPAnDMAxfOXsWFixwBQa3bIFmzdB772Vt0RBe3vEaW3/cSvMCPflxYV/2fVqAYcOgZ8+rSkqlSCxw\nHSSkar+vFwSzfcFsG6QR+zJndsl4y5fDwYNQrRry9NM0qHs/Sz8NY0f518ia6zTbqpSn3MhOzNm4\nleLF4fXX4fz55LYg8NgiYRiGEcX110P//rB5M3z6KVx/PQUHjeDV/h9x7EQP7s1WmGM1O5FrSA3e\n3jyHYiUu8uabwV0XytxNhmEYcaEKu3a52MXs2ej11/NFw1sZddNXrD/3A7m+6svfGx9gxP9dR0QE\npE+f3Ar/i8UkDMMwkpLLl2H9erdgLFjA6TLFmFcxA//f3plHWVFccfj7OYigbCpERTEkcQFXcI9L\n3GIO4hbcCHpUNIlEJZq4JOLRSDyu0YjGhbii4AIR0aNo3DGKRkGZAWRRQUejuB2VqCQakZs/qp4+\nm9fztnnz3szc75x3qO6q6rq/7qFud1X3rXN7zGXFh0Ox507mvJFbcPTRteEsan5OQtIgSQslvSrp\n9yll/hLzZ0saWEl7apV2Me7bRmnL2sD1rURdHey1V3graskSup56Jse+uy6NVxmPvTSdffrvxtn1\ne9Jn76ncPG4Fy5dXxOwWpWJOQlIdcDUwCNgMGCapf6LMYGAjM9sYOB4YWyl7apmGhoZqm1BR2rK+\ntqwNXF+TdOoU4o5Pnswqb7xJv2NP5+b3BtI4fgbXfj6cux/qw/oHXcl1t3zaqp1FJZ8kdgAWmVmj\nmX0JTAQOSpQ5ELgVwMyeB3pIWqeCNtUkS5taOqsN0Jb1tWVt4PoKpkcPOO44Vnn8CVZb+CpDfnYW\nkxZ0Zd70M/l8bC/22e8IxoxbzFdfNU9zLUklncT6wL+ytt+K+/KV2aCCNjmO41SW3r3RqafSZc5C\nej5fzzF7/Io76//O4NM34eId+jPmwttYvrz1zLFW0kkUehaSkyqt5+w1E42NjdU2oaK0ZX1tWRu4\nvrLp148el1zBuu99RJ97H2eXtddj2AXDqd9gDWY+8kxl224mKvZ2k6SdgNFmNihujwJWmNklWWX+\nCjxpZhPj9kJgdzN7L3Gsduc4HMdxmoNy327q0FyG5OAFYGNJfYElwFBgWKLMfcBIYGJ0KkuTDgLK\nF+k4juOURsWchJktlzQSeBioA24yswWSRsT868zsQUmDJS0ClgHHVsoex3Ecp3haxcd0juM4TnWo\nauymfB/bSeop6SFJDZJekjQ8kV8nqV7S/S1mdBGUo09SD0mTJS2QND8Ox9UUZeobJWmepLmS7pC0\nWosaXwAF6FtT0j3xQ9DnJW1eaN1aoFR9kvpImhav30uSTm5565umnGsX81t739LU32ZxfYuZVeVH\nGIJaBPQFVgUagP6JMqOBi2K6J/Ah0CEr/1TgduC+aumolD7C9yPHxXQHoHu1NTWXvljnNWC1mDcJ\nOKbamkrQdylwTkxvCjxWaN1q/8rUty4wIKa7AC/Xkr5ytGXlt/a+JVVfsX1LNZ8kCvnY7h2gW0x3\nAz40s+UAkjYABgM3svJrtLVAyfokdQd2M7ObIczvmNm/W8rwAinn+n0CfAmsLqkDsDrwdsuYXTCF\n6OsPTAMws5eBvpK+U2DdalOqvl5m9q6ZNcT9nwELgN4tZ3peStYGbaZvyamvlL6lmk6ikI/tbgA2\nl7QEmA2ckpU3BjgDWFFJI8ugHH3fAz6QNE7SLEk3SFq94hYXR8n6zOwj4M/Am4Q335aa2WMVt7g4\nCtE3GzgYQNIOwHcJH4MWUrfalKPva+LbiwOB5ytkZymUq60t9C1p+oruW6rpJAqZMT8LaDCz3sAA\n4BpJXSXtD7xvZvXUpqeHMvQRHgG3Aa41s20Ib36dWTFLS6NUfV0k/QD4DeFxuTfQRdKRFbO0NArR\ndzEhlEw94VXueuCrAutWm3L0ASCpCzAZOCU+UdQKpWpb0Yb6lrRrV3TfUsnvJPLxNtAna7sPwSNm\nszNwAYCZLZb0OtAv7j9QIUBgJ6CbpPFmdnTlzS6YUvVtGsu9ZWYzY7nJ1J6TKFVff8LdzLNm9iGA\npCmx7O2VNroI8uozs0+B4zLbUd9ioHO+ujVAqfpei+lVgbuB28zs3opbWxzlaBtKG+hbmtDXhWL7\nlipOvnQg/IfqC3Qk9+TL5cC5Mb1OPBFrJcrsDtxfLR2V0gc8BWwS06OBS6qtqbn0AVsDLxE6UxEm\n0k6qtqYS9HUHOsb0L4FbCq1b7V+Z+gSMB8ZUW0dza0uUac19S6q+YvuWaovdl/BmxCJgVNw3AhgR\n0z2B+wnja3OBI1IuZM29gVCuvtiRzox5U6ixt5uaQd/vgHlx/63AqtXWU4K+H8b8hYQ7su5N1a21\nX6n6gF0J4/UNhGGMemBQtfU017XLOkZr7lua+tssqm/xj+kcx3GcVKr6MZ3jOI5T27iTcBzHcVJx\nJ+E4juOk4k7CcRzHScWdhOM4jpOKOwnHcRwnFXcS7RBJKyRNyNruIOmDfGGRJQ2XdFWRbd0ZwxWf\nkr903mOdldhulkWCJd0i6ZDEvs/ivwMkPRtDYs+WdHhWmY6Srojhml+RdK+knDGaJD0gqVuuvJTy\nB0nqn7X9pKRti1e3kp7eku4q4zgjJB2VY39fSXNLPa5Tu1QzLIdTPZYRAu91MrPPgX0IX0Pn+2im\nqI9qJK0LbGdmG+fIqzOzr3JUa4pRwIVfG2O2S5H10zBW1pbZXgYcZSGsyHrAi5IeMrNPoi1rEL5e\nNYX1MqYAO67UgNl+Rdo0hPAh4oKEPaVi0Y4lwGElH8TsujLtcFoZ/iTRfnkQyHRcw4A7iQHNJK0V\n74pnS/qnpC2TlWPY4cmSZsTfzjnaeARYPy7esmu8Gx4jaSZwiqT9JT0Xo1E+GsNsE4MAjpM0J9pw\nsKSLgM7xWBNiuczdsSRdqrCA0ZzM3b6kPWKbdykssHJbE+cjZzA3M3vVzBbH9DvA+0CvGDlzOPBb\ni1+kmtktwBeS9spxvhrjee0bbbk+Pp08LKlTouzOwAHApfHcfD9mHaawgMzLknaNZeui9hnxXB3f\nhMZv3fFL6ixposLCM1Pitdgm+9zG9KGSxsX0aEmnxfS2sc0G4MSm2o3lt4/lV5O0RtS/maRVJF0W\nr99shWWPnRrBnyTaL5OAP0iaCmwJ3ATsFvP+CLxoZj+VtCchTs9Avt2RXkmI3fOMpA2Bh4DNEm0c\nAEw1s4EAkowQfmP7uN3DzHaK6V8QQnWcDpwDfGxmW2WVmyJpZOZYkczd9cGEUANbAb2AmZKeinkD\nol3vAM9I2sXMksNUInTIZ+c49jeFQsjlVeNTxVbAm7Zy9NMXgM2BJxL7s4+3ETDUzI6XNAk4hKzg\nhmb2rKT7CHGDpsS2AerMbEdJ+wLnEp4Af04Itb6Dwup+0yU9YmaNSftzcALwmZltFm8EZqXYm0xn\ntscBJ5rZdEl/yteYmc2Mus4nxO2aYGbzJZ0AbAhsbWYrJK1ZgO1OC+FOop1iZnMV1gIYBjyQyN6F\nGIvezKZJWlshhHk2Pwb6x84LoKuk1c3sP1llct2dT8pK95H0N8JKZx2JEUaBvQnRODO2Ls0jZ1fg\njnhH/76kfwDbExY3mhGHWIh3vH2BpJMw4PRMhxzLfppdIA41jQcKiQaab2jodTObE9MvRptykTx/\nGftmZdX5CbClpEPjdjeCE2oswM7dCM4+8/cwJ0/5bwwLi9d0N7PpcdcEQjyhfJxHcKT/BX4d9+0N\njDWzFdGWjwu1w6k87iTaN/cBlxECmfVK5CU7qGTHJ2BHM/tfkW0uy0pfBVxmZlMl7U6ISJnWflNY\njvIZe7/I2peJp5+L1PYUJpynAmeZ2Yy4ezGwoaQuiaeJbQlzCU2RtKlzSrnkOc/US+oYaWaP5mkz\njTTd2W2n2VfIcZL0JMzj1MXjZm4qanXthnaPz0m0b24GRpvZvMT+p4EjIYzrAx/kGFZ5BDg5syFp\nQIFtZncG3Qgr00EY38/wKHBS1rF7xOSXCsudJnkaGBrHtnsBPwJm0Awdj6SOwD3A+OwnDTNbRohe\ne7mkVWLZo4HOZjat3HaBT/lm6demeBg4MXNeJG2iwlcxfAo4ItbbgjBcl+E9Sf2itiFZ+wXIwpKX\nSyVlXh74etEoSetLSltp8DrgbOAO4JK471FghKS6WN+Hm2oIdxLtk8xE69tmdnXWvszd42hgW0mz\nCW/wHJOjzMnAdnGicR6QNmGa9tZQpp27JL0AfJCVdz6wZpzIbAD2iPuvB+bom9d3MzruAeYQQh8/\nDpxhZu8n7E2zJ5+dhxOGZYYrTJrXS9o65o0CPgdekfQKYW5hCLlJG+NPs2kicIakF7MmrnPVuRGY\nD8yKE9Jjyf20lKv9sYRVAecT56GyypxJeHp6huDILatuJn0sYbXB+sRx1wOWJw2ITvQLM5tIWDlt\n+3gTciNhKds58XoPy2G/UyU8VLjjOABImgacZmaz8hZu+jgnAW+Y2dTmscypJj4n4ThOs2Jm11Tb\nBqf58CcJx3EcJxWfk3Acx3FScSfhOI7jpOJOwnEcx0nFnYTjOI6TijsJx3EcJxV3Eo7jOE4q/wft\njXxqolkTOQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5fdcf8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The packed depth is: 1.58 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.9: Page 327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.9\n",
+ "# Page: 327\n",
+ "\n",
+ "print'Illustration 8.9 - Page: 327\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# C1=CH4 C2=C2H6 C3=n-C3H8 C4=C4H10\n",
+ "Abs=0.15;# [Total absorption,kmol]\n",
+ "\n",
+ "T=25;# [OC]\n",
+ "y1=0.7;# [mol fraction]\n",
+ "y2=0.15;# [mol fraction]\n",
+ "y3=0.10;# [mol fraction]\n",
+ "y4=0.05;# [mol fraction]\n",
+ "x1=0.01;# [mol fraction]\n",
+ "x_involatile=0.99;# [mol fraction]\n",
+ "L_by_G=3.5;# [mol liquid/mol entering gas]\n",
+ "#******#\n",
+ "\n",
+ "LbyG_top=L_by_G/(1-y2);\n",
+ "LbyG_bottom=(L_by_G+y2)/1;\n",
+ "LbyG_av=(LbyG_top+LbyG_bottom)/2;\n",
+ "# The number of eqb. trays is fixed by C3 absorption:\n",
+ "# For C3 at 25 OC;\n",
+ "m=4.10;\n",
+ "A=LbyG_av/m;\n",
+ "Frabs=0.7;# [Fractional absorption]\n",
+ "X0=0;\n",
+ "# From Eqn. 8.109:\n",
+ "def f43(Np):\n",
+ " return Frabs-((A**Np)-A)/((A**Np)-1)\n",
+ "Np=fsolve(f43,2);\n",
+ "print\"Number of trays required is \\n\",round(Np,2)\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.9 - Page: 327\n",
+ "\n",
+ "\n",
+ "Number of trays required is \n",
+ "3.57\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter8_2.ipynb b/Mass_-_Transfer_Operations/Chapter8_2.ipynb
new file mode 100755
index 00000000..727729f8
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter8_2.ipynb
@@ -0,0 +1,1312 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:43251d921fc8d8fdce5626d1c526ed83cb3073914f200034a16dd6e1031bf994"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8: Gas Absorption"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.1: Page 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.1\n",
+ "# Page: 278\n",
+ "\n",
+ "print'Illustration 8.1 - Page: 278\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "P_star = 2*10**(5);# [N/square m]\n",
+ "X_methane = 0.6;\n",
+ "X_ethane = 0.2;\n",
+ "X_propane = 0.08;\n",
+ "X_nbutane = 0.06;\n",
+ "X_npentane = 0.06;\n",
+ "#******#\n",
+ "\n",
+ "MoleFraction = [0.6, 0.2 ,0.08, 0.06 ,0.06]\n",
+ "Heading = [\"Component\", \"Equilibrium Partial Pressure\", \"Vapour Pressue \" ,\"Mole Fraction\"];\n",
+ "Component = [\"Methane\", \"Ethane \" ,\"Propane\" ,\"n-Butane\", \"n-Pentane\"];\n",
+ "VapPressure = [0 ,42.05, 8.96, 2.36 ,0.66];# [N/square m]\n",
+ "Sum = 0;\n",
+ "\n",
+ "print Heading[0],\"\\t \\t \\t \\t\",Heading[1],\"\\t \\t \\t \\t\",Heading[2],\"\\t \\t \\t \\t\",Heading[3],\"\\t \\n\"\n",
+ "\n",
+ "\n",
+ "for i in range(0,5):\n",
+ " print \"\\n \",Component[i],\" \\t \\t \\t \\t \\t\",(\"{:.2e}\".format(MoleFraction[i]*P_star)),\"\\t \\t \\t \\t \\t \\t \\t \\t \",(\"{:.2e}\".format(VapPressure[i]*10**(5))),\n",
+ " if VapPressure[i]==0:\n",
+ " Sum = Sum+0;\n",
+ " else:\n",
+ " \n",
+ " print \"\\t \\t \\t \\t \\t \\t \\t \\t \\t \\t\",(\"{:.2e}\".format((MoleFraction[i]*P_star)/(VapPressure[i]*10**(5)))),\"\\t\",\n",
+ " Sum = Sum+(MoleFraction[i]*P_star)/(VapPressure[i]*10**(5))\n",
+ "\n",
+ "\n",
+ "\n",
+ "print\"\\n Mole Fraction Of solvent Oil is \",round(1-Sum,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.1 - Page: 278\n",
+ "\n",
+ "\n",
+ "Component \t \t \t \tEquilibrium Partial Pressure \t \t \t \tVapour Pressue \t \t \t \tMole Fraction \t \n",
+ "\n",
+ "\n",
+ " Methane \t \t \t \t \t1.20e+05 \t \t \t \t \t \t \t \t 0.00e+00 \n",
+ " Ethane \t \t \t \t \t4.00e+04 \t \t \t \t \t \t \t \t 4.20e+06 \t \t \t \t \t \t \t \t \t \t9.51e-03 \t\n",
+ " Propane \t \t \t \t \t1.60e+04 \t \t \t \t \t \t \t \t 8.96e+05 \t \t \t \t \t \t \t \t \t \t1.79e-02 \t\n",
+ " n-Butane \t \t \t \t \t1.20e+04 \t \t \t \t \t \t \t \t 2.36e+05 \t \t \t \t \t \t \t \t \t \t5.08e-02 \t\n",
+ " n-Pentane \t \t \t \t \t1.20e+04 \t \t \t \t \t \t \t \t 6.60e+04 \t \t \t \t \t \t \t \t \t \t1.82e-01 \t\n",
+ " Mole Fraction Of solvent Oil is 0.74\n"
+ ]
+ }
+ ],
+ "prompt_number": 165
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.2: Page 286"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.2\n",
+ "# Page: 286\n",
+ "\n",
+ "print'Illustration 8.2 - Page: 286\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#****Data****#\n",
+ "# Absorber:\n",
+ "G = 0.250;# [cubic m/s]\n",
+ "Temp1 = 273+26.0;# [K]\n",
+ "Pt = 1.07*10**(5);# [N/square m]\n",
+ "y1 = 0.02;\n",
+ "x2 = 0.005;\n",
+ "#******#\n",
+ "\n",
+ "G1 = G*(273.0/Temp1)*(Pt/(1.0133*10**(5)))*(1/22.41);# [kmol/s]\n",
+ "Y1 = y1/(1-y1);# [kmol benzene/kmol dry gas]\n",
+ "Gs = G1*(1.0-y1);# [kmol dry gas/s]\n",
+ "# For 95% removal of benzene:\n",
+ "Y2 = Y1*0.05;\n",
+ "X2 = x2/(1.0-x2);# [kmol benzene/kmol oil]\n",
+ "# Vapour pressure of benzene:\n",
+ "\n",
+ "P_star = 13330.0;# [N/square m]\n",
+ "X_star = numpy.zeros(20);\n",
+ "Y_star = numpy.zeros(20);\n",
+ "j = -1;\n",
+ "for i in range(1,21,1):\n",
+ " j = j+1;\n",
+ " x = i/100.0;\n",
+ " X_star[j] = i/100.0;\n",
+ " def f27(y):\n",
+ " return (y/(1+y))-(P_star/Pt)*(x/(1+x))\n",
+ " Y_star[j] = fsolve(f27,0.0);\n",
+ "\n",
+ "# For min flow rate:\n",
+ "X1 = 0.176;# [kmolbenzene/kmol oil]\n",
+ "DataMinFlow = numpy.array([[X2, Y2],[X1, Y1]]);\n",
+ "\n",
+ "plt.plot(X_star,Y_star,label=\"Equlibrium Line\")\n",
+ "plt.plot(DataMinFlow[:,0],DataMinFlow[:,1],label=\"Min Flow Rate Line\");\n",
+ "minLs = (Gs*(Y1-Y2)/(X1-X2));# [kmol/s]\n",
+ "# For 1.5 times the minimum:\n",
+ "Ls = 1.5*minLs;# [kmol/s]\n",
+ "X1_prime = (Gs*1.0*(Y1-Y2)/Ls)+X2;# [kmol benzene/kmol oil]\n",
+ "DataOperLine = numpy.array([[X2 ,Y2],[X1_prime ,Y1]]);\n",
+ "plt.plot(DataOperLine[:,0],DataOperLine[:,1],label=\"Operating Line\")\n",
+ "plt.grid('on');\n",
+ "xlabel(\"moles of benzene / mole wash oil\");\n",
+ "ylabel(\"moles benzene / mole dry gas\");\n",
+ "legend(loc='lower right');\n",
+ "plt.title(\"Absorption\")\n",
+ "plt.show()\n",
+ "print\"The Oil circulation rate is \",(\"{:.2e}\".format(Ls)),\" kmol/s\\n\"\n",
+ "\n",
+ "# Stripping\n",
+ "Temp2 = 122+273;# [K]\n",
+ "# Vapour pressure at 122 OC\n",
+ "P_star = 319.9;# [kN/square m]\n",
+ "Pt = 101.33;# [kN/square m]\n",
+ "X_star = numpy.zeros(7);\n",
+ "Y_star = numpy.zeros(7);\n",
+ "j = -1;\n",
+ "for i in range(0,7,1):\n",
+ " j = j+1;\n",
+ " x = i/10.0;\n",
+ " X_star[j] = i/10.0;\n",
+ " def f28(y):\n",
+ " return (y/(1.0+y))-(P_star/Pt)*(x/(1.0+x))\n",
+ " Y_star[j] = fsolve(f28,0.0);\n",
+ "\n",
+ "X1 = X2;# [kmol benzene/kmol oil]\n",
+ "X2 = X1_prime;# [kmol benzene/kmol oil]\n",
+ "Y1 = 0.0;# [kmol benzene/kmol steam]\n",
+ "# For min. steam rate:\n",
+ "Y2 = 0.45;\n",
+ "DataMinFlow =numpy.array([[X2 ,Y2],[X1 ,Y1]]);\n",
+ "minGs = Ls*(X2-X1)/(Y2-Y1);# [kmol steam/s]\n",
+ "slopeOperat = 1.5*(Y2-Y1)/(X2-X1);\n",
+ "def f29(x):\n",
+ " return slopeOperat*(x-X1)+Y1\n",
+ "x =numpy.arange(0,0.14,0.01)\n",
+ "\n",
+ "plt.plot(Y_star,X_star,label=\"Equlibrium Line\")\n",
+ "plt.plot(DataMinFlow[:,0],DataMinFlow[:,1],label=\"Min Flow Rate Line\")\n",
+ "plt.plot(x,f29(x),label=\"Operating Line\");\n",
+ "plt.grid('on');\n",
+ "xlabel(\"moles of benzene / mole wash oil\");\n",
+ "ylabel(\"moles benzene / mole dry gas\");\n",
+ "plt.legend(loc='lower left');\n",
+ "plt.title(\"Stripping\");\n",
+ "plt.show()\n",
+ "print\"The Steam circulation rate is \",(\"{:.2e}\".format(1.5*minGs)),\" kmol/s\\n\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.2 - Page: 286\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEZCAYAAAC0HgObAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWd4VFUTgN+hiQgYkKa0iBRBaRZEESkqAiqICoiAgH4i\nhiYCIigCgggivSMRQRBQUAHpLRRp0oXQIfTei5Qk8/04m5jElE2ym91Nzvs892HvveeeM3uy7OyZ\nmTMjqorFYrFYLK4inacFsFgsFkvqwioWi8VisbgUq1gsFovF4lKsYrFYLBaLS7GKxWKxWCwuxSoW\ni8VisbgUq1gslhiIyA8i0tvTcsSGiFwVEX9Py2GxxIdVLJY0jYgEicgFEckU5bI6Do/ikO29qNdU\nNZuqhnhIJIvFKaxisaRZHL/8KwBngDoxb7t57PRONPO4crNYkoJVLJa0zDvAEuBHoFmMe7lEZJGI\nXHGsHApF3BCRwSJyWkQui8h2EXnEcf1eEZkkImdEJEREPhMRcdxrLiJ/isggETkH9BSRZo5rw0Xk\nkojsEpHqjvZfAZWBEQ7z1zDH9XARKeLkeKtFZIBjRXZQRGq6dTYtFgdWsVjSMu8A04GfgZdEJLfj\nugCNgS+BXMBWYAqAiLyE+cIvpqr3AvWB847nhgPZgAeBKo7+W0QZrwJwAMgDfOUYpwKwH7gP6AH8\nKiJ+qvoZsApo7TB/tYtFfmfG2+3o+xsgMHHTY7EkDatYLGkSEXkWyA/MVtV9QDBGmUTwh6quVtXb\nwGfA0yKSH7iN+TIvKSLpVHWPqp5ymLYaAl1V9bqqHgYGAk2j9HlCVUeqariq3nRcO6OqQ1U1TFV/\nBvYAr0QVNQ75nRnvsKoGqkkIOAm4X0TyJH62LJbEYRWLJa3SDFikqlcd578Q3Rx2LOKFql4HLgAP\nqOpyYAQwEjgtImNFJBtmZZMROByljyMY5RXB0VjkOB7j/DBwf5TzuPwszox3Ksp7uOF4mTWO/iwW\nl2EViyXNISJ3Aw2A6iJyUkROAh2BMiJSBvNlXjBK+6xATuAEgKoOV9UngFJAcaAzcBa4A/hHGaoQ\nURQUsSuJ/DHOC0eME0f7CM45MZ7F4hGsYrGkRV4DQoGSQFnHURJYjfFTCFBbRCo5wpB7A2tV9biI\nPCEiT4lIRuAGcBMIU9VwjK/mKxHJKiKFgQ7A5ARkySMi7UQko4jUBx4G5jnunQYeiu0hVQ1L4ngW\ni9uxisWSFnkH+F5Vj6nqGcdxGmPiaoz5fzEF40w/D5QHmjiezQ6Mw5jGQjArhwGOe22B68BBjON9\nCjDBcS+uvTHrgWKYFU9v4A1Vvei4NxR40xHVNSSWZxM7ng1ftqQI4s5CX47wxiFAemC8qvaPpc0w\noBbm119zVd0iIgUxzsY8mP8M41Q1ItyyJ/A/zH9EMM7LBW57ExaLmxCR5sB7qlrZ07JYLK4kg7s6\ndkStjABewDgo/xKR2aq6K0qb2kBRVS0mIk8Bo4GKGNtxB1Xd6rBvbxKRRaq6G6NoBqnqIHfJbrFY\nLJak405TWAVgv6qGqOodYBpQN0abOsBEAFVdD/iJSF5VPaWqWx3XrwG7iO7kdOuuaIslhfCK1DEW\ni6txp2LJT/TwymP8NwImtjYFojZwpN0oj7FFR9BWRLaJSKCI+LlKYIslJVHViar6nKflsFhcjTsV\ni7O/xGKuPiKfc5jBZgDtHSsXMOayB4FywEnMpjCLxWKxeAlu87Fg/CoFo5wX5L8x9jHbFHBcwxHO\nOROYrKq/RzRQ1TMRr0VkPDAntsFFxJoYLBaLJZGoarJdDe5csWwEiomIv2MvQENgdow2szGhn4hI\nReCSqp52JNILBIJVNVqYpYhE3ZVcD/g7LgFU1R4uOHr06OFxGVLTYefTzqe3Hq7CbSsWVQ0VkTbA\nQky4caCq7hKRDxz3x6rqPBGpLSL7MfH4EQn0KmH2DWwXkS2OaxFhxf1FpBzGZHYI+MBd78FiCAkJ\n8bQIqQo7n67Fzqf34U5TGKo6H5gf49rYGOdtYnluNXGsplT1HVfKaLFYLBbXYnfeWxKkefPmnhYh\nVWHn07XY+fQ+3Lrz3pOIiKbW92axWCzuQERQL3feW1IJQUFBnhYhVWHn07XY+fQ+rGKxWCwWi0ux\npjCLxWKxANYUZrFYLBYvxSoWS4JYG7ZrsfPpWux8eh9WsVgsFovFpVgfi8VisVgA62OxWCwWi5di\nFYslQawN27XY+XQtdj69D6tYLBaLxeJSrI/FYrFYLID1sVgsFovFS7GKxZIg1obtWux8uhY7n96H\nVSwWi8VicSnWx2KxWCwWwPpYLBaLxeKlWMViSRBrw3Ytdj5di51P78MqFovFYrG4FOtjsVgsFgtg\nfSwWi8Vi8VKsYrEkiLVhuxY7n67Fzqf3YRWLxWKxWFyK9bFYLBaLBbA+FovFYrF4KVaxWBLE2rBd\ni51P12Ln0/uwisVisVgsLsX6WCwWi8UCWB+LxWKxWFxEcDA0aeK6/qxisSSItWG7FjufrsXOZ9LZ\nsgXefBOqVYNSpVzXr1UsFovFksZYtw5efRVefhmeeQYOHoRu3VzXv/WxWCwWSxpAFVauhD59YO9e\n6NIF3n0XMmf+t42rfCwZktuBxWKxWLwXVVi0yCiUU6ega1fjT8mUyX1jJmgKE5FnRSSr43VTERkk\nIoXdJ5LF27A2bNdi59O12PmMnfBwmDULKlSAjz+GDz+EXbvMKsWdSgWcW7GMBsqISFngY2A8MAmo\n4k7BLBaLGwgNhQzWUOEpwsLDSJ8uvXvHCIMZM+Crr8yf+vPP4bXXIF0KetSdGSrU4ax4DRipqiOB\nbM50LiI1RWS3iOwTkS5xtBnmuL9NRMo7rhUUkeUislNEdohIuyjtc4rIYhHZKyKLRMTPGVksSadq\n1aqeFiFV4bH5PH8ennsOUtkvfF/4fF6+eZl289vR9Lembhvjzh2YONFEdw0ZAv36waZN8PrrKatU\nwDnFclVEugFNgD9EJD2QMaGHHO1GADWBUkAjESkZo01toKiqFgNaYlZHAHeADqr6CFARaC0iDzvu\nfQosVtXiwFLHucViiY8jR+DZZ6FyZahijQ0phaoyeftkSo4syc3QmwyvNdzlY9y+DePHQ4kSRrGM\nHg1r1kDt2iDJdsMnDWcUS0PgFvCuqp4C8gPfOvFcBWC/qoao6h1gGlA3Rps6wEQAVV0P+IlIXlU9\npapbHdevAbsc40Z7xvHva07IYkkG1obtWlJ8PnfuNEqlZUvo399z3zZuwls/nzvP7KTaxGoMWjuI\n3xr+xrhXx3Fflvtc1v+tWzBmDBQrBr/8ApMmwbJlUL265//ECRpbVfUkMDDK+RH+/WKPj/zA0Sjn\nx4CnnGhTADgdcUFE/IHywHrHpbyqGnH/NJDXCVkslrTJmjVQrx4MGgSNG3tamjTB1VtX6bWiFxO3\nTaRnlZ60eqKVS/0qN2+aFUr//lCmDEyfDhUruqx7l5CgYhGRp4FhQEngLiA9cE1VsyfwqLObSGLq\n1sjnHNFoM4D2jpVL9IaqKiJxjtO8eXP8/f0B8PPzo1y5cpH22IhfOfY84fOqVat6lTy+fp5i87l2\nLVUHD4YffyTorrsgKMgr3r+rz73l86mqnM1zlo6LOvLI9UcY9/g46lWo57L+b96E3burMmAA+PsH\n8fnn8MEHyZM/4nVISAguRVXjPYBNQDFgC0aptAD6OfFcRWBBlPOuQJcYbcYAb0U5341ZkYDx4ywE\nPorxzG4gn+P1/cDuOMZXiyXN8v33qvnyqa5f72lJ0gS7z+7WFya9oKVHldaVIStd2vfVq6oDBpg/\n5+uvq27e7NLuo+H43kxQLyR0OBUroKr7gPSqGqaqEzAO+YTYCBQTEX8RyYTx1cyO0WY28A6AiFQE\nLqnqaRERIBAIVtUhsTzTzPG6GfC7M+/BknSi/rqxJB+3zqeqCQfq1ctEf1Wo4L6xvARPfj6v375O\nt6XdqPR9JWoXrc2mlpuoXLiyS/q+etX8KR96CP76y2xynDkTypd3SfduxZmA9usichewTUS+AU7x\nX/PVf1DVUBFpg1l1pAcCVXWXiHzguD9WVeeJSG0R2Q9cx6yGACphotC2i8gWx7WuqroA6Af8LCLv\nASFAA2ffrMWSqgkPh44dYckS+PNPyJ8/4WcsSUJVmbVnFh8t+IhnCj7D9g+380C2B1zS9+XLMHw4\nDBsGL74Iy5e7NkFkSpBgrjCH8/w0kAnoAGQHRqnqfncLlxxsrjBLmuL2bWjRAo4ehdmzwc9u73IX\nBy4coN2Cdhy8eJCRtUdS/cHqLun34kUYOhRGjDDJIbt1MyHEKUmK5QpT1RDHy3+Anskd0GKxuJhr\n1+CNN+Duu2HhQvOvxeX8c+cf+v/ZnxEbRtD5mc781vA3MqVPfm6UCxdM0N7o0WaH/Lp1ULSoCwT2\nIM7kCvtbRLY7/o14vVpEBouI64KyLV6L9bG4FpfO59mzZuNCoUImj0caVCop8fmct28ej45+lB1n\ndrD5g810ebZLspXKhQsm3UqxYnDmDGzcCIGBvq9UwDkfywIgFPgJ41t5C8iCMY/9ALzqLuEsFks8\nhIRAjRrQsCF8+aXnd8WlQg5fOsxHCz9ix5kdjKw9kppFnYlbip/z52HwYLNCeeMNk3bFsSsi1eCM\nj2WLqpaP7ZqI/K2qpd0qYRKxPhZLqmb7dpOz49NPoU0bT0uT6rgddpuBawYycO1A2j/Vns6VOpM5\nQ+aEH4yHmAqlWzfvUygpWY8lvYg8pSblCiJSgX9NaKHJFcBisSSSlSuhfn0TOtTABkW6miUHl9Bm\nXhuK3VeMDe9voEiOIsnq7/x540MZMyb1rlBi4sw+lveAQBEJEZEQzP6S90XkHuBrdwpn8Q6sj8W1\nJGs+f//dFCn/6SerVBy46vN5/MpxGs5oyPtz3mfAiwOY02hOspTK+fPw2WdQvLhxhW3aBOPGpX6l\nAk4oFlX9S1UfBcoB5VS1tKpuUNXrqvqz+0W0WCyA+VYKCIAFC+D55z0tTarhTtgdBq4ZSNkxZSme\nszg7A3byaomku46jKpRz59KWQonA1ry3WLwdVVNX9ocfTDhxaggb8hJWhKyg9bzW5M+en+G1hlP8\nvuJJ7iuqyevNN00JYF9TJrbmvcWSFggLg/btzU76P/+EfPk8LVGq4NS1U3Re3JkVISsY/NJgXi/5\nOpLEqLqYCiUt+FASIoXrill8EetjcS1Oz+etW9CoEQQHw4oVVqnEQWI+n6HhoQxfP5zSo0vzQNYH\nCG4dzBul3kiSUrl4Ebp3j+5DGTvWKhVwLm3+JuB74CdVveh+kSwWC1eumDoqOXPCvHmQOXmhrhZY\ne3QtAfMC8Mvsx4rmKyiVO2kJuC5fNqV/hw83O+U3boQHH3SxsD6OM/tYimGSQzbAZCyeACzydgeG\n9bFYfJbTp6FWLVO9afhwSO+6IlFpkbPXz/Lpkk9ZcGABA14cQKNHGyVphXLlikkMOXSoyeXVvbvJ\nPJyacJWPxZmosH2q2g0ojtl9/z1wRER6iUjO5ApgsViicOAAVKpkfgqPHGmVSjIICw9j7MaxPDLq\nEbLflZ1drXfxdum3E61Url0z6euLFoXdu42r64cfUp9ScSVO+VhEpCwwCBgAzATqA1eBZe4TzeIt\nWB+La4lzPrdsgcqVoXNn+OILm6LFSWKbz40nNvJ04NP8uP1HFjddzOCag8l+V0JFb6Nz4wZ8+61R\nINu2GTfX5MnGp2KJH2d9LJeB8ZgKkLcct9aJSCV3CmexpBmWLYO33jKhRa+/7mlpfJYL/1zgs6Wf\n8dvu3+j3Qj/eKfsO6SRxMUr//GP+DN98A88+C0uXwqOPukngVEq8PhYRSQd8qqp9U04k12B9LBaf\n4ZdfTL6vn3+GKlU8LY1PEq7hTNw6ka5Lu/JGyTfoU70POe7Okag+bt6E774zZq8KFaBnTyhb1j3y\neispso9FVcNF5A3A5xSLxeITjBoFffuaurNp7VvMRWw7tY2AeQGEhocy9+25PP7A44l6/tYt+P57\n82coV87USXs8cV1YYuDMGnGxiHQSkYIikjPicLtkFq/B+lhcS1BQkNlN/8UXJm511SqrVJLA5ZuX\n+WjBR1TtVZVmZZux9r21iVIqd+7A+PHGZzJnjqknP2eOVSquwJmd928BCrSOcd1GblssSSEsDD74\nwDjrV6+GPHk8LZFPoar89PdPdF7cmdrFavND3R+o+3hdp58PC4OpU42py9/fvH7mGbeJmyaxucIs\nlpTk5k2zm/76dfMTOVs2T0vkUwSfDab1vNZcvnmZUS+PomKBik4/Gx5uprxHD8iRw6Rfq1bNjcL6\nIG73sTh8K3F+M6vqr8kd3GJJU1y6BHXrQv78MH06ZEp+vfS0wrXb1/hyxZdM2DqBHlV68OETH5I+\nnXN7fFThjz/MhsYMGUxer5destHc7iQ+U9irGMWSB3iGf/esVAPWAFaxpBGCgoKoWrWqp8XwbU6c\ngJo1oVo1gurWpapVKk6hqswInsHHiz6mmn81dny4g7xZ80ZrE9fnUxWWLDF15W/cgN69jV63CsX9\nxKlYVLU5gIgsBkqp6knH+f3AxBSRzmJJDezda34if/ABdOlidtpZEmTv+b20mdeGk9dOMuX1KTxX\n+Dmnn1250qxQTp2CXr1MTbR0NuVuiuFMrrDdQMkIh4Vjb0uwqj6cAvIlGetjsXgFf/0FderAV1/B\nu+96Whqf4MadG/Rd1ZcxG8fQrXI32lZoS8b0GZ16dsMGo1D27TO+lMaNjfnL4hwpWY9lCbBQRH4C\nBGgILE7uwBZLqmfRImjSxMS01qnjaWm8HlVl9p7ZfLTwI57K/xTbWm0jf/b8Tj27dauJ3t682SiW\nFi2sC8uTOBUVJiKvA5UdpytV9Te3SuUC7IrFdVgfSxL46Sfo0AF+/dUklYyCnc//cvDiQdrNb8f+\nC/sZWXskzxdxrvTyrl3w4YdB7NlTlU8/NdZGW2Eg6aRoBUlHBJh11lsszjB0KAwcaPJ/PfKIp6Xx\nam6G3uSbP79h2PphdHqmE782/JVM6RNeahw6ZHwnc+easjVz58I996SAwBansPtYLBZXoQrdusHv\nv5va9IUKeVoir2b+vvm0nd+WMnnLMKTmEArdm/B8nTxp3FVTp0Lr1tCxI9x7bwoIm0awNe8tFm8i\nNBTef9/YZlatgly5PC2R13Lk8hE+WvAR209vZ3it4dQqVivBZy5cMNmGx40z/pPduyF37hQQ1pIk\nnK3HkkVESrhbGIt3YnOFJcCNG8Yec/q0ybGegFJJq/N5O+w2/Vb347Gxj1EuXzl2BOxIUKlcvWp2\nyBcvbmrMb99urIxRlUpanU9vJkHFIiJ1gC3AQsd5eRGZ7W7BLBaf4MIFePFFkyNk1ixr6I+DpQeX\nUmZ0GVYfWc2G9zfwRZUvyJwhbi/7zZsweLCp2rhrF6xbB2PHQoECKSi0Jck4s49lM1AdWK6q5R3X\ndqiqV5e+sT4Wi9s5dsxsfKxdG/r3tzvwYuH4leN0XNSRdcfWMbTmUOqUqBNvaeA7d0zZ3y+/hMce\nM7vly5RJOXnTOilW8x64o6qXYlwLT+7AFotPs2uXCSNu0QIGDLBKJQZ3wu4waO0gyo4py0M5HiK4\ndTB1H64bp1IJD4dp00wQ3bRppvbZrFlWqfgqzvxv2CkijYEMIlJMRIZjcoVZ0gjWhh2DtWtNWtw+\nfaBTp0Q/ntrnc9XhVTw27jEW7F/AmvfW8NXzX5ElY5ZY20YkiCxf3pSmGT3auKkqOp+0ONXPpy/i\nTFRYW+Az4BYwFeNr6e1OoSwWr2XuXLNKmTgRaiUczZSWOH3tNJ8s+YRlh5YxqMYg3iz1Zrxmr6Ag\nE5199aoJIX71VZsgMtWgqm47gJrAbmAf0CWONsMc97cB5aNc/x44Dfwdo31P4BgmoGALUDOOftVi\ncSkTJ6rmzau6bp2nJfEqQsNCdfj64Zrrm1zaaWEnvXLzSrztN21Sfekl1SJFVCdPVg0NTSFBLQni\n+N5M9nd/fPVY5sSvjzTe5Ecikh4YAbwAHAf+EpHZqrorSpvaQFFVLSYiTwGjgYhF8ARgODAp5tjA\nIFUdFN/4FotLGTAARo40P7Mf9ur8qynKumPrCJgbQPa7shPULIhH8sSdaWDfPpPHKyLz8Hvv2Xxe\nqZX4TGED47nnTLhVBWC/qoYAiMg0oC6wK0qbOjhS8KvqehHxE5F8qnpKVVeJiH8cfdsFcwqSpnNb\nhYdD585mJ/3q1S6Jd00N83nuxjm6LunK3H1zGfDiAN4u/XacZq8TJ0yU18yZ8PHHEBjo2qjs1DCf\nqY04nfeqGhRxAGuB88A54E9VdaagRH7gaJTzY45riW0TG21FZJuIBIqInxPtLZbEc/s2vPMOrF9v\ndtPbTRSEazjjNo2j1MhSZMmYhV2td9G4TONYlcrFi/Dpp1C6tEm7smcPdO1qt/qkBRJ03otIVcyq\n4rDjUiERaeaEcnF2E0nMT2RCz40GvnS87o1ZWb3n5FiWJJAmfw1euwZvvmlsNYsWQZbYo5qSgq/O\n56YTmwiYF0B6Sc+iposol69crO1u3IBhw8wO+Xr1YNs29+pkX53P1IwzUWGDgBqqugdARIoD04DH\nEnjuOFAwynlBzIokvjYFHNfiRFXPRLwWkfFAnL6g5s2b4+/vD4Cfnx/lypWL/BBGhCjac3v+n/Nz\n5wiqXBkefJCqv/4KGTJ4l3wpfH7xn4u0GNKClUdWMrDlQJqVa8bKFSsJ2h0UrX1oKOzfX5XevaF4\n8SAGDYKmTT0vvz2P+zzidUhICC4lIe8+sN2Za7G0yQAcAPyBTMBWTCXKqG1qA/McrysC62Lc9+e/\nUWH3R3ndAfgpjvGTHhphicby5cs9LULKERKiWqKEarduquHhbhnCV+YzLDxMJ2yZoHkH5NVWc1rp\n+RvnY28Xpjp1qmrRoqo1aqhu3JiycvrKfPoCuDsqLAqbHCuDyRizVWNgoxMKK1RE2mD2vaQHAlV1\nl4h84Lg/VlXniUhtEdkPXAdaRDwvIlOBKsB9InIU+EJVJwD9RaQcxmR2CPjAifdgsSTM33+b9Cyd\nO0O7dp6WxqNsP72dgLkB3Aq7xZxGc3gy/5P/aaNqYhq6djUWw7FjoXp1Dwhr8TqcyRWWGWgNRJTB\nWwWMUtVbbpYtWdhcYZZEsWqV8akMHQpvveVpaTzGlVtX6LG8B1P+nkLvar3532P/I3269P9pt349\ndOliEjp/9ZXxpdjNjb6Pq3KF2UJfFsusWaaWypQpJlNxGkRVmbpjKp0Xd6bmQzXp90I/ct/z34In\ne/bAZ58ZxdKzJzRrBhlsVadUQ4oloRSRV0Vki4hcFJGrjuNKcge2+A5RHX2pjvHjoVUrmDcvxZSK\nt81n8Nlgnp/0PN/8+Q2/1P+FwLqB/1EqJ0+aaXr2WahQAfbuNRscvUGpeNt8WpxLQjkEaAbcp6rZ\nHEd2N8tlsbgXVejb1xwrV8ITT3haohTn2u1rdFnchSo/VKHew/XY2HIjzxR8Jlqby5fh88/h0Uch\ne3azYvnkE7j7bg8JbfEJnPGxrACqq2pYyojkGqwpzBIn4eHw0UewYgUsWAD33+9piVIUVeXXXb/S\nYWEHqvhXYcCLA8iXNV+0NrdumUzDX39t4hl69YJCCZekt/g4KVnzvgswX0SWA7cd11Rtri6LL3Lr\nltlNf/q0Wance6+nJUpR9p3fR5v5bTh+5Tg/1vuRKv5Vot0PD4epU/9dpSxZYnbOWyyJwRlTWG/g\nGpAZyOo4srlTKIt3kWps2FevwssvQ2ioWal4SKl4Yj5v3LlB92XdeTrwaV4s8iJbPtgSTalEhA4/\n9hgMH26qOM6Z4xtKJdV8PlMRzqxY7lfVtBkqY0k9nDlj6qc8+aTJUpz+vyG0qZU5e+bQbkE7KuSv\nwNZWWymQPXp+lY0bTejwsWPG9GVDhy3JxRkfyzfAUlVdmDIiuQbrY7FEcvCgqU3fuDH06JFmvjUP\nXTxEuwXt2Ht+LyNrj+SFIi9Eu79/vwkdXr3aTMu773pHlJfFc6RkzfsAjI/lpg03tvgcW7dC5com\nX3vPnmlCqdwMvUnvFb154rsneLrA02xvtT2aUjlzBtq0MeV/y5QxocMtW1qlYnEdCSoWVc2qqulU\nNbMNN06b+KwNe/lyqFHD7Kb/8ENPSxOJO+dz4f6FlB5dms2nNrO55Wa6Ve7GXRnuAuD6dejTB0qV\nMpbA3bvNisXX09j77OczFWN/o1hSJzNmQEAATJ8O1ap5Whq3c/TyUTos7MCWU1sYXms4tYvVjrwX\nFmac8T16QKVKZtf8Qw95TlZL6semdLGkPsaMgd69Ye5cKBd7zZDUwu2w2wxeO5gBawbQpkIbulTq\nwt0Zze5FVZg/32xozJnTVFd+6ikPC2zxalJyH4vF4huomp18U6aYpJJFinhaIrey/NByWs9rzYM5\nHmT9/9bzUM5/lyGbNpkkzSdPQv/+8OqracK9ZPES4vSxiMgmERkqIjUdGY4taRSfsGGHhRk/ypw5\nJszJi5VKcufzxNUTvD3zbVrMakHf5/vyR6M/IpVKSIgJfnv1VWjY0FQCqFMndSsVn/h8pjHic95X\nBH4HqgErRGS+iLR3VJC0WLyHmzehQQMTP7t8OeTN62mJ3EJoeCiD1w6mzOgy+Pv5szNgJ689/Boi\nwoUL0KkTPP44FC9uIr0++MBGelk8g9M+FhHJD9QEXgKKYqo9BrhRtmRhfSxphMuXoW5do0wmTYK7\n7vK0RG5h9ZHVBMwNIG/WvIyoNYISuUoARqeOGGHMXW+8YRz0aSz1mcWFeLQei4ikByqq6p/JFcBd\nWMWSBjh50uymf+45GDIE0jmzLcu3OH3tNF2WdGHJwSUMemkQ9UvVR0Qic3p99hmULQv9+kHJkp6W\n1uLrpOQGyf+gqmHerFQsrsUrbdj79pnY2QYNzD4VH1IqzsxnWHgYIzeM5NHRj5IrSy52td5Fg0ca\nICIsW2Yy0wwdChMnmjplaVmpeOXnM41jLbAW32PTJuOd/vJL+N//PC2Ny1l/bD0B8wLImikry5st\n59E8jwJwFkfeAAAgAElEQVSwa5cJHd6506xQ6tdP3U55i+9i97FYfIvFi03Y03ffGd9KKuL8jfN0\nXdqVP/b+wTcvfkPj0o0REc6cMdlofvkFunaF1q1TrSvJ4mFSsjRxCRFZKiI7HedlROTz5A5ssSSa\nadOgSROYOTNVKZVwDWf85vGUGlWKzBkyE9w6mCZlmnDzptCvn0nBkimTScHy8cdWqVi8H2cM098B\n3fi3yNffQCO3SWTxOrzChj1smNnxt2SJSSrpw0Sdz80nN/NM4DMEbglkQeMFDKs1jOyZ/JgyBR5+\nGP76C9auNbEJ993nOZm9Ga/4fFqi4YyPJYuqrheHMVdVVUTuuFcsi8WBqilnOHOm2fhYuLCnJXIJ\nl25e4vNlnzMjeAZ9n+9L83LNSSfpWLkSOnY0vpPJk31eh1rSKM4olrMiUjTiRETeBE66TySLt1G1\nalXPDBwaCq1ame3jq1dDrlyekcOFqCpHchyh0chG1C1Rl+DWweS8Oyd795piW1u2mGJbDRv6VKCb\nR/HY59MSJ84oljbAOOBhETkBHAIau1Uqi+XGDWjUyNSoX7oUsmb1tETJ5u/TfxMwL4B/7vzD7Ldm\n82T+Jzl3Dtp1gZ9+MhFfU6dCZptAyeLjOFOP5YCqPg/kAkqoaiVVDXG7ZBavIcVt2Bcvmjoq2bPD\n7Nk+r1Su3LrCxws/5vlJz9O4dGP6F+1PmVxP8u23Zv9JePi/ocRWqSQe62PxPhJcsTgSUL4B+APp\nxThbVFW/dLNslrTI8eOmjPBLL5k87z5sD1JVpu+cTqdFnajxUA12BuwkV5bc9OgRxPv/g9KljYWv\nRAlPS2qxuBZnat4vBC4Bm4CwiOuqOtC9oiUPu4/FB9m9G2rWNBs1Onf2tDTJYtfZXbSZ34ZzN84x\nqvYoKhWqxLp10KED3L4N336bJuqPWXyMlKzHkl9VX0ruQBZLvKxfb/am9O8PzZp5Wpokc/32dXqv\n7E3glkC6P9edgCcDOHEsA2+/DStXwldfQdOmPr0Qs1gSxJmP9xoRKeN2SSxei9tt2PPnmxQtgYE+\nq1RUlV93/UqpUaU4duUY21tt591H2tHziwyULw/FisGePebtrVwZ5GlxUxXWx+J9OLNiqQy0EJFD\nwC3HNVVVq2wsyefHH43Za9YsePppT0uTJPad30fb+W05euUoE1+bSOWCVZk4Ebp3h+rVYds2KFDA\n01JaLCmHMz4W/9iue3tkmPWx+AADB5od9QsW+GR63n/u/MPXq79m1F+j6FKpCx9V/Ig/V2WkQwe4\n5x4YNAgqVPC0lBaL86SYj0VVQ0SkMlBUVSeISG7At+M/LZ4lPNzsBpw3z4RFFSzoaYkSzR97/6Dd\n/HY88cATbG21lZtnCtDgTdi61biJbOZhS1rGmSSUPYFPgK6OS5mAyW6UyeJluNSGfecOtGgBa9bA\nqlU+p1QOXTxE3Wl1+Xjhx4x5ZQzjXvyZwb0KULEiPPWU2Y/SoEH8SsX6BFyLnU/vwxnnfT2gLnAd\nQFWPA9ncKZQllXL9uon8On/epL/PmdPTEjnNrdBb9FnZhye+e4IKD1Rgy/t/s29BDUqUgGvXTI2U\nTz+1GxwtFnDOeX9LVcMjklCKyD3uFcnibbgkF9P58/Dyy8aXMm4cZMyY/D5TiEUHFtFmXhtK5S7F\nppab2LXWnycfg/z5jX4sk8gwFpvbyrXY+fQ+nFEsv4jIWMBPRFoC7wLjnelcRGoCQ4D0wHhV7R9L\nm2FALeAG0FxVtziufw+8DJxR1dJR2ucEpgOFgRCggapeckYei4c4csTspH/tNejb12ecD8euHKPD\nwg5sOrGJ4bWG82Doy7R6Cw4dMnEHL7/sM2/FYklRnMkVNgCY6TiKA91VdVhCz4lIemAEUBMoBTQS\nkZIx2tTGBAUUA1oCo6PcnuB4NiafAotVtTiw1HFucSPJsmHv3AnPPgsffGDS9vrAN/HtsNt88+c3\nlBtTjlK5SrGq0U4WDH+ZqlWhVi3YsQNeeSXpb8X6BFyLnU/vwxnnfXdgl6p2chyLHSuXhKgA7FfV\nEFW9A0zD+GqiUgeYCKCq6zGronyO81XAxVj6jXzG8e9rTshi8QR//mk2cvTrBx995GlpnCIoJIhy\nY8qxPGQ5q5uvI/fOXpR/9G7CwyE4GNq39ykrnsXiEZwxhbUF3hKRtqq6zHHtQ0wq/fjIDxyNcn4M\neMqJNvmBU/H0m1dVTztenwbyJiCHJZkkyYY9Zw68956pVlWjhstlcjUnr56k0+JOrD6ymiEvDeGe\no6/xRjXh/vtN1v7SpRPuw1msT8C12Pn0PpyJCjsO1Ab6icgniejb2d2JMQ0KTu9qdOyAtLsgvY3v\nv4eWLeGPP7xeqYSGhzJk3RBKjy5NoeyFmP1SMBO61CMgQOjb1zjnXalULJa0gDMrFlT1sIg8B4wR\nkRnA3U48dhyIukmhIGZFEl+bAo5r8XFaRPKp6ikRuR84E1fD5s2b4+/vD4Cfnx/lypWL/HUTYZe1\n5wmfR7Vhx9telarr1sG4cQR98w3cuEFVx3Pe9H4izv8+/TfjL44nV5Zc9Ck4iOXfFeL5pffwySfQ\npk0QmTKBiOvHd3o+7bmdTzefR7wOCQnBpahqvAcmmivqeWvgoBPPZQAOYOq4ZAK2AiVjtKkNzHO8\nrgisi3HfH/g7xrVvgC6O158C/eIYXy2uYfny5Qk3CgtTbd9etXRp1ePH3S5Tcjh97bQ2/7255h+Y\nX3/aNk3Hjg3XfPlU331X9eRJ94/v1HxanMbOp+twfG8mqBcSOhLMFZYcRKQW/4YbB6rq1yLygeNb\nf6yjTUTk2HWghapudlyfClQB7sOsSr5Qk1ImJ/AzUIh4wo1trrAU5PZtaN4cjh0zFR/9/DwtUayE\nhYcxbtM4egT1oGmZpryQoSfdOmUja1YYMgQef9zTElosnsVVucKcSUL5LNADs3qIMJ2pqhZJ7uDu\nxCqWFOLqVXjjDZN18aef4G5nrKQpz4bjGwiYG0CWjFnoVm4kgX1Ls2EDfPNNwilYLJa0gqsUizPO\n+0BgEPAs8KTjsDlb0xBR7bHROHPGhBP7+8Mvv3ilUjl/4zwfzPmAutPq8kG59jy7fwWNXyhN6dIm\nr1fDhimvVOKcT0uSsPPpfTijWC6p6nxVPa2q5yIOt0tm8W4OHTIbH2vVgrFjIYNTcSApRriGE7g5\nkEdGPULG9JnomWsXvV5vypHDwrZt8MUXkCWLp6W0WFInzpjC+mF8JL/yb6EvInwh3oo1hbmRbdtM\nPpOuXU19ei9jy8ktBMwLQFVpW2QUo7o/xq1bpvTLM894WjqLxXtJSR9LELHsFVHVaskd3J1YxeIm\nVqwwTokRI0zRES/i0s1LdF/WnZ+Df6brk33ZOaUFc2ano08fk6k/fXpPS2ixeDcp5mNR1aqqWi3m\nkdyBLb5DpA3711+NMpk61auUiqry47YfKTWyFDfv3KZ9+mC+evM9st6Tjt274X//8y6lYn0CrsXO\np/eRoGHckbvrKyC/qtYUkVLA06oa6HbpLN7D2LHQq5cpI/zYY56WJpIdZ3YQMDeA63eu063I74zu\nVoGQB8zCqlQpT0tnsaRNnDGFLcBkGv5MVcuISEZgi6o+mhICJhVrCnMRqtC7N0yaBAsXwkMPeVoi\nAK7eukrPoJ78uP1H2pXuxebvWrJ1S3oGDTK1xGz4sMWSeFIy3DiXqk4HwgDUZCoOTe7AFh8gLAza\ntIHffzeZir1Aqagq03dMp+TIkpy5doGmV3cwpMmHPFY+PTt3mpIvVqlYLJ7FGcVyTUTuizgRkYrA\nZfeJZPEKbt2Ct96C3bsJ6t0b8no+ifTuc7upMbkGfVf3pWXOaazoMIET+/KwZQt8/rlXbqOJFesT\ncC12Pr0PZxRLR2AOUERE1gA/Au3cKpXFs1y+bPanAMybZ3bVe5Drt6/TdUlXKk+ozGP3vILf9E38\nOuRZJk82cQQFCybch8ViSTmcyhUmIhmAEpgU93sc5jCvxvpYksipU0apPPOM2fjhwXAqVeX33b/z\n0cKPeDLvs2Rd8y3zf76fXr3g/fe9K9LLYkkNuMrH4kxU2N1AACaliwKrRGS0qt5M7uAWL2P/flOb\nvnlzY1vyoLPiwIUDtJ3flpBLIbyZ/gcmf1SNN980aVhy5vSYWBaLxQmcMYVNwtSsH4apYf8Ixhxm\nSU1s3gzPPQeffgrdu0dTKilpw/7nzj/0WN6Dp8Y/RZF0Vcn8w1Y2/FyNRYtg5MjUoVSsT8C12Pn0\nPpxJ8PSIqkbdEbBMRILdJZDFAyxdCo0amb0q9ep5TIy5e+fSbkE7HsnxGNX3beG3oQX55ht4+20b\n6WWx+BLO7GOZDIxU1bWO84pAa1VtmgLyJRnrY3GSn3+Gtm1NduLnnvOICCGXQvhowUcEnw3mhdvD\n+aXfSzRrZhJFZs/uEZEsljSJ230sIvJ3lDZ/ishRjI+lELAnuQNbvIARI6BfP1PYvUyZFB/+Vugt\nvl3zLYPWDaJevg5kCpzOnvvusrvmLRYfJ84Vi4j4x/OcquphdwjkKuyKJR5UzXJg+nSzm/7BB+Nt\nHhQUFFkr21UsPrCYNvPb4J/1Ye4OGsLmZQ8ycCC8+WbqN3u5Yz7TMnY+XYfbVyyqGpLczi1eSGgo\nfPghbN1qdtPnzp2iwx+7coyPF37MxhMbqfrPMGb3fIWWLWHKLo9vl7FYLC7CrTXvPYldscTCP/8Y\nT/iNGzBzJmTNmmJD3wm7w9D1Q+m3uh+1cgXw1+CuPFjgboYOheLFU0wMr0ZS+1LN4lXE9v2YYvtY\nLKmES5egTh0oUMCYwDJlSrGhV4SsIGBeALkzFeTJ7WtZ/Wcxhgwx4tjv0ujYH0OWlMDdP2IS3Mci\nIllFJL3jdQkRqePIcGzxFU6cgMqVTbr7yZMTrVSSuk/g1LVTNPm1CU1+a0q5C735+9P5VCxWjODg\ntJ2B2O67sKR2nNkguRK4S0TyAwuBpsAP7hTK4kL27IFKlaBJExg8GNI58ydPHqHhoQxbP4zSo0tz\n53wBMo3dxbW/XmfjX0KPHr6TLNJisSQNZ/axbFHV8iLSFrhbVb8RkW2qWjZlREwa1scCbNhglgZ9\n+5ravCnAmqNrCJgbwD3pcnLPipEcWFeSYcPg5ZdTZHifxmHf9rQYljRAXJ+1lKzHgog8DTQG5ibm\nOYsHWbgQXnkFvvsuRZTK2etneXfWu9T/uT6lLnzK7m5LeaZYSXbssErFYklrOKMgPgK6Ar+p6k4R\neQhY7l6xLMliyhR45x1ToOuVV5LdXXw+gbDwMMZsHMMjox7h6lk/sk7cxaXVb7FhvdCzpzV7xYb1\nsfxLSEgI6dKlIzw8HIDatWvz448mFeEPP/xA5cqVE9Vf1Oc9xddff83777/vURk8TYJRYaq6Algh\nIvc4zg9g67F4L4MHm2PZMnjkEbcO9dfxvwiYF0C68Mw8HryEDcvKMHRo2nbMp1b8/f05c+YM6aPU\nKmjRogXDhg1z6Tjz5s3z6PPOEhISQpEiRQgNDSVdDL9l165dU0QGb8aZtPnPAOOBbEBBESkHtFTV\nAHcLZ0kEqiYz8Zw5sHo1FCrksq5j7mq+8M8Fui3txqzds6gW3o9FA97h+feFGcF2k6Mz+OIucRHh\njz/+oHr16p4WJVYi/AV2L5B34IwpbAhQEzgHoKpbgSruFMqSSO7cMX6UlSth1SqXKpWohGs432/5\nnlIjS3H2dAbum7aLM4uasXqV0LevVSpplfDwcDp16kTu3Ll56KGHGDlyZDTzlr+/P0uXLo1s37Nn\nT5o2jT2HbdWqVQkMDIw8V1Xatm2Ln58fJUuWZNmyZdHafv7551SqVImsWbNy8ODBaM/HHCem2a1q\n1ap0796dSpUqkS1bNurUqcO5c+do3Lgx9957LxUqVODw4cRnroo6bsSYkyZNonDhwuTOnZu+fftG\ne3/9+vWjaNGi5MqVi4YNG3Lx4sVEj+ltOOWEV9UjMS6FukEWS1K4ccOkuj97FpYsgfvuc/kQQUFB\nbD21lcoTKjNi3Vie3DuPDT1H8MUnfixeDA8/7PIhUzW+6mOJK2Jt3LhxzJ07l61bt7Jx40ZmzJgR\nbeUgIv85j4uYbdevX0/RokU5f/48vXr14vXXX+fSpUuR9ydPnsz48eO5evUqhQsXjva8M6uX6dOn\nM3nyZI4fP86BAwd4+umnee+997hw4QIlS5akV69eCfYR23uIyZ9//snevXtZunQpX375JXv2mDy+\nw4YNY/bs2axcuZKTJ0+SI0cOWrdunegxvQ1nFMsREakEICKZRKQTsMu9Ylmc4sIFeOEFo0x+/90t\nS4bLNy8zbP0wXpr8Ev4Xm3O0x1pKZH+M4GBo0MD6UlISEdccSUFVee2118iRI0fkEbEy+Pnnn+nQ\noQP58+cnR44cdOvWLd6w6cSEVOfJk4f27duTPn16GjRoQIkSJfjjjz8c8yE0b96ckiVLki5dOjJk\niG7Zd2IrBS1atODBBx8ke/bs1KpVi+LFi1O9enXSp09P/fr12bJli9Oyxjdujx49uOuuuyhTpgxl\ny5Zl27ZtAIwZM4Y+ffrwwAMPkDFjRnr06MGMGTMiV1W+ijMpXT4EhgL5gePAIsD3Vaqvc/SoKSP8\nyivQv7/Lv+FVlSl/T+GTxZ9QIfcr3P9dMMcy3cfyZfDooy4dKs2RVB+LJ7e4iAizZs2K1cdy8uRJ\nChYsGHleyIWm2Pz580c7L1y4MCdPnow8jzpuUsibN2/k68yZM5MnT55o59euXUtW/xHky5cv8nWW\nLFki+z18+DD16tWLFgCQIUMGTp8+zf333++SsT2BM1FhZ4G3U0AWi7MEB0OtWtC+PXz8scu733lm\nJ63ntebijSs8FfIb6wc+Rf/+ZvO+XaFYYnL//fdz5Mi/1vKorwHuuecerl+/Hnl+6tQpp/s+fvx4\ntPPDhw9Tt27dyPP4zF1Zs2blxo0bTo/rKsd/YvopVKgQEyZM4Omnn3bJ2N5CnKYwERkez+HaGEOL\n86xdC9Wrw1dfuVypXL11lU6LOlF1YlUKX6vP6T5/8UD4U4wbF0TTplapuIrU5mNp0KABw4YN4/jx\n41y8eJF+/fpF+3ItV64c06ZNIzQ0lI0bNzJz5kynv3zPnDnDsGHDuHPnDr/88gu7d++mdu3aCcoU\nMe7KlSs5evQoly9f5uuvv473PSUl68HNmzejHaqaqH5atWpFt27dIpXx2bNnmT17dqLl8DbiW7Fs\nwlSMBIj5KbB5JzzB3Lkm+mvSJKhZ02Xdqiq/BP9Cx0UdeSLn8xRfvJMd5/MwZxY8+ST46PegxcW8\n+uqr0fax1KhRg5kzZ/L++++zd+9eypYty7333kvHjh1ZvvzfPdS9e/emUaNG5MiRgypVqtC4cWMu\nXLgQeT8uJSMiVKxYkX379pE7d27y5cvHzJkzyZEjR4LPArzwwgs0bNiQMmXKkDt3bj755JNI/0xs\nz8cMHEiofzCroqhtFy1alKhghfbt26Oq1KhRgxMnTpAnTx7eeust6tSpE++43o7T9VhEJBumcqRr\njI5uJtXlCps40exT+f13eOopl3W759we2s5vy4krpyh/ciQLxlbmiy8gIACifIdYUoDUkissvs2D\nFu/A3bnCnNkgWRqYBNznOD8LNFPVHckd3OIEqjBgAIwaBcuXuyy298adG/RZ2Ydxm8ZRL9dn7BvU\nhjtPZmTbNnjgAZcMYbFY0ijO/JwYB3ysqoVUtRDQ0XEtQUSkpojsFpF9ItIljjbDHPe3iUj5hJ4V\nkZ4ickxEtjgO19mEvI3wcOjYEX780ZQRdoFSUVV+3/07pUaWIvhECBU2bSfo6w6MHZ2RadNiVyq+\n6hPwVtLCfNod8GkbZ8KNs6hqpMFUVYMi8obFh6M42AjgBUyY8l8iMltVd0VpUxsoqqrFROQpYDRQ\nMYFnFRikqoOcf5s+yO3bxp9y5IjZUR/FrpxUDl48SNv5bTl44SC1bn/PLx2q06YN/DoRMmd2gcwW\nC2anfVhYmKfFsHgQZxTLIRHpDvyIceI3Bg468VwFYL+qhgCIyDSgLtE3V9YBJgKo6noR8RORfMCD\nCTybun8OXbsGb74Jd90FixYlO0XwzdCb9F/dn+EbhtOgQGeOBv7G/lyZWLPGuXrzvpjbypux82lJ\n7ThjCnsXyAP8CswEcjuuJUR+4GiU82OOa860eSCBZ9s6TGeBIuLnhCy+w9mzJpy4QAGYOTPZSmXe\nvnk8OupRNh37mxqHNvN7py50/SQTixY5p1QsFoslsTizQfIC0DYJfTsb3pLY1cdo4EvH697AQOC9\n2Bo2b94cf39/APz8/ChXrlzkr8UIO7dXnZ86RdUePaB+fYKefx5Wr05yf9P+mMaIDSM4nfs0dTOO\nYEK7zFSpcpDg4EL4+SWuv6g+Aa+aLx89j28+LZaUIuIzFxQUREhIiEv7dqY08ZNAN8CffxWRqmqZ\nBJ6rCPRU1ZqO865AuKr2j9JmDBCkqtMc57sxmZMfTOhZx3V/YI6qlo5lfN8KN96+HWrXhi5doG1S\n9LjhdthtBq4ZyMC1A3n7ofZsHdmZG1cyM2YMPPFE0voMCgqy5hsXEtd8ppZwY4v34+5wY2cUy16g\nE7ADiMyMFuH/iOe5DMAe4HngBLABaBSL876NqtZ2KKIhqloxvmdF5H5VPel4vgPwpKr+J+WMTymW\nVauMT2XYMGjYMMndLDm4hDbz2vCQXzGK7B3K1FFF+OILaN3a7knxBaxisaQUHt/HApxV1UTnGFDV\nUBFpAywE0gOBDsXwgeP+WFWdJyK1RWQ/cB1oEd+zjq77O4qNKXAI+CCxsnkVv/8OLVvCTz+ZTMVJ\n4PiV43y86GM2HN/Aew8MY9Jnr5K5NGzdalw1FktK8eGHH5I/f34+//xzl/abLl069u/fT5EiRVza\nr7fz9ddfc/DgQb777jtPi5I4InLbxHUANYBAoBHwhuN4PaHnPH2Yt+blfPed6v33q27cmKTHb4fe\n1m///Fbv63+ffjznc3272XUtVEh11izXirl8+XLXdpjGiWs+vfkzW7hwYc2UKZOeO3cu2vVy5cqp\niOjhw4eTPUaVKlU0c+bMmjVr1shj3bp1qqoqInrgwIFkjxEXzZo100yZMmnWrFk1R44cWr16dd2x\nY4dTzx46dEhFRMPCwpI0dnKfTwpxfdYc15P9/etMVFgzoCymiuQrjuNVVyu4NIUq9OkDX38NK1bA\n448nuouVh1dSfmx5Fh1YREe/NUx+rzd5c2Zh507w8TRDFi9ERChSpAhTp06NvPb333/zzz//uDQr\n8MiRI7l69Wrk8ZQL0xclNHaXLl24evUqJ06coFChQrRo0SJRfag1Y0bijGJ5AuPHaKaqLSIOdwuW\nagkLM875GTNMbfpixRL1+Klrp2j6W1Oa/NqElsV6cTNwATPHFWf+fBg0CKLkxHMZ1nHvWnx1Pps0\nacKkSZMizydOnMg777wT7Qu1efPmdO/eHTBBCgUKFGDQoEHkzZuXBx54gB9++CHZcly+fJl33nmH\nPHny4O/vz1dffRUpQ+HChdm8eTMAU6ZMIV26dOzaZazogYGB1KtXL8H+M2fOTP369dm5c2fktblz\n51K+fHnuvfdeChUqFK2y5HPPPQeYyNNs2bKxfv16AL7//ntKlSpFzpw5qVmz5n/KCTiDr5Y5dkax\nrAFKuVuQNMGtW/D227Bzp1mpJKKQT2h4KMPXD6f06NLkufsBmlwO5stGb/DG68L69fDYY26U22IB\nKlasyJUrV9i9ezdhYWFMnz6dJk2aRGsTM7Pv6dOnuXLlCidOnCAwMJDWrVtz+fLlOMdw5ld/27Zt\nuXr1KocOHWLFihVMmjSJCRMmANHDuVesWMFDDz3EihUrIs/jU+oRY1+/fp2pU6dGWy1lzZqVyZMn\nc/nyZebOncvo0aOZNWsWAKtWrQKMwotYZc2aNYuvv/6a3377jXPnzlG5cmUaNWqU4HuLic+WOU7I\nVgbsBu4Ae4G/Hcd2V9jh3Hngbfbqy5dVq1dXfeMN1X/+SdSja46s0XJjymnVH6rq93N2avHiqvXq\nqR496iZZY2B9LK4lqT4WeuKSIyn4+/vrkiVLtE+fPtq1a1edP3++1qhRQ0NDQ6P5WJo3b66ff/55\n5Pu8++67o/kO8uTJo+vXr491jCpVqmiWLFnUz89P/fz89PHHH4+8F+FjCQ0N1UyZMumuXbsi740d\nO1arVq2qqqqBgYFap04dVVUtWbKkBgYG6ltvvaWqxk+0ZcuWWMdu1qyZZs6cWf38/DRdunRapEgR\nPXv2bJzz0b59e+3QoYOqxu4jqVmzpgYGBkaeh4WFaZYsWfTIkSP/6Ss+H0uPHj20SZMm0dodP348\n8n6FChV0+vTpqqr68MMP69KlSyPvnThxQjNmzBhrv3F91nCRj8WZqLDUm+QxpTh92uxRqVABRoxw\nOvb33I1zdFnchQUHFvBFxQGsGdeIHsuE4cMhShE9SxpBe3jWhi8iNG3alMqVK3Po0KH/mMFi4777\n7ouWOj9qWd7Y+h8+fDjvvht3Yo9z585x584dChcuHHmtUKFCkZUmn3vuOTp16sSpU6cICwujfv36\n9OzZk8OHD3P58mXKlSsX59idO3fmyy+/5OjRo7z00ktMmjSJjx3F9NavX8+nn37Kzp07uX37Nrdu\n3aJBgwZxynn48GHat29Px44do10/fvx4sssp+0KZ4wRNYaoaEtuRArKlDg4cgEqVjEd91CinlEq4\nhjN241hKjSxFtruy87nfLr6o9zY5cwg7d6a8UvFVn4C34svzWahQIYoUKcL8+fN5/fXXY23jzszG\nuXLlImPGjNF2ih85coQCjrj6okWLkiVLFoYPH06VKlXIli0b+fLlY9y4cVSuXDneviOUZMGCBRk2\nbBi9e/fm6tWrALz99tu89tprHDt2jEuXLtGqVSvCw822vtjeb6FChRg3bhwXL16MPK5fv07FihUT\n9TDUrusAABaRSURBVH4TW+Z4wYIF0ca8ceNGiisVcM7HYkkqW7bAc89Bp07Qo4dTtX03nthIxfEV\n+XH7j3xXeTHb+g9m/MjszJsHgwdDtmwpILfFEg+BgYEsW7aMu2PJY6f/mqKTRELPpk+fngYNGvDZ\nZ59x7do1Dh8+zODBg6P5eqpUqcKIESOoUqUKYBR51HNnxn3hhRcoWrQoo0aNAuDatWvkyJGDTJky\nsWHDBn766afIL/3cuXOTLl06Dhw4EPl8q1at6Nu3L8HBwYDxv/zyyy/xvrfUVObYKhZ3sXw5vPSS\n2U3fqlWCzS/+c5GAuQG88tMrtCwfwIvHVvLeK2WpWxfWr09SRLLLsHmsXIuvz2eRIkV4LEq0SHzl\nfRO7eomvTHEEw4cP55577qFIkSJUrlyZxo0bRwsNrlKlCteuXYuM1op5Hlf/Mcfu3Lkzw4YN486d\nO4waNYovvviC7Nmz07t3bxpGyZCRJUsWPvvsMypVqkSOHDnYsGEDr732Gl26dOGtt97i3nvvpXTp\n0ixcuDDe9541a1ayZMlClixZuOeee1i2bFmiyxzXqVOHGjVqkD17dp5++mk2bNgQ75juwunSxL6G\nR1O6zJhhavv+/DMkYPYI13Ambp1I16VdeaPkG9TJ1oeOATnw9zeWs0KFUkTieLG5wlyLzRVm8TQe\nzxXmq3hMsYweDV99BXPnQtmy8Tbddmobree15k74Hb6pMopfhj7OzJkwZAg0aOCU5cySirCKxZJS\neEOuMIszqELPnibn18qVEE9Oo8s3L9MjqAdTd0yld7Xe5D76P5pUT0eNGmaLS86cKSe2xWKxuBrr\nY3EFYWHGjzJ3rqlNH4dSUVWmbJ9CyZEluXb7Gkvf2Mmir1vySed0TJoEgYHeqVR83Sfgbdj5tKR2\n7Ioludy8aXbTX71qHPZxhG0Fnw2m9bzWXL55mRn1f2XHgopUe88kNv7xx2QXirRYLBavwfpYksOl\nS2ZTyQMPwMSJkCnTf5pcu32NL1d8yYStE+hRpQfVsn7Ih63Sc+sWfPcdlIm3XJolLWF9LJaUwt0+\nFmsKSyonT0KVKsZBP2XKf5SKqjIjeAalRpbi1LVTbP7fDi4ubEOV59Lz5puwZo1VKhaLJXViTWFJ\nYe9eqFkT3n8fPv30P+Fbe8/vpe38tpy4eoLJr08m44nnqFUZ/P1h82bvCCFODDbc2LXY+bSkduyK\nJbH89ZdZqXz2GXTtGk2p3Lhzg8+Xfc4zgc/w0kMvEfTWZqZ/8xyvvw7du8OcOb6nVCwWiyWxWMWS\nGBYvhpdfhrFj4b33ot2avWc2j4x6hP0X9rOt1TaKnv2YcmUycuuWCSFu2NB396XYX9euxc6ne1i1\nahUPP/xwio555MgRsmXLZn1jMXFFimRvPHB12vyfflLNk0d11apolw9cOKCv/PSKlhheQpccWKKn\nT6s2bKhatKjqsmWuFcGSunH5Z9bFTJgwQR999FHNkiWL5suXTz/88EO9dOmSx+Rxd7niqPy/vXMP\nj6q6FvhvERACTUJ4BgyviHpTpbGAvFvCVZFSQUWgsRgRtLT0FuwVW7jVKhSLykcsXqkopSpX8AoI\nKHp5FrFFXvKmiIhUg2JAjY9LkVcSVv84e4bJOEkmZCbJJOv3fefLnn32c83OWbP3Pnutvn376ty5\ncyulrsqgpLFGJbomNh5/HH79a1i3Dvr0AeB04Wl+99ff0e1P3ejdpjd7fraXvI3X0KmTt9y1Zw/0\n61fF7Y4Qdu4issSiPHNycpg0aRI5OTkcP36cLVu2cPjwYa677joKCgoiXl9RUVFY6bSSZgqhbIkZ\nJWOKpTRUvX2U2bM9N8JXXgnAqkOr6DS7E7uP7WbnT3fy47aTuGnQRcyY4Z2RnD4dGjas4rYbRoQ4\nfvw4kydPZtasWfTv35+4uDjatWvHokWLyM3NZf78+YDnRnfo0KFkZWWRmJhIly5d2Lt3r7+cvLw8\nbrnlFlq0aEFaWhpPPPGE/54vb3Z2NklJScybN49t27bRs2dPkpOTad26NePGjfMrMZ9ByYyMDBIS\nEli8eDFvvPFGMV8n7du3Jycnh4yMDBo3bkxWVhZnzpzx358+fTqtW7cmNTWVuXPnUqdOHd5///1y\nycbnLthnQj8zM5MHHniAPn36kJiYyPXXX8/nn3/uT79lyxZ69epFcnIyV111ld+7ZY0jEtOe6nhR\n0WWFggLVUaNUu3VTdZ7kDn91WIcsHKKXPH6Jrji4QouKVGfNUm3aVPWhh1TPnq1YlUbtpsJjNkqs\nXLlS69atG9IT4ciRI/XWW29VVc/bYb169XTJkiVaWFioM2bM0A4dOmhhYaEWFRVp586dderUqVpQ\nUKDvv/++pqWl6erVq4vlfeWVV1RV9dSpU7pjxw7dunWrFhUVaW5urqanp+vMmTP9dQcvha1fv15T\nU1P9n9u3b6/du3fXo0eP6hdffKHp6en61FNP+fuUkpKi+/fv15MnT+qIESO0Tp06JS6tZWZmFvMI\n6SPY+2Pfvn21Y8eO+t577+mpU6c0MzNTJ02apKqqR44c0aZNm+rKlStVVXXt2rXatGnTUj1VRouS\nxhq2FBZFTp6Em2/2zqq8/jpnkxN55M1H6Px0ZzJaZrDv5/voUPQDvv99zzTYhg3eS2L16lV1w40a\njUhkrnKSn59Ps2bNinkm9JGSkkJ+fr7/c9euXRkyZAhxcXHcc889nD59ms2bN7Nt2zby8/O5//77\nqVu3Lh06dOCuu+7ixRdf9Oft1asXgwcPBqBBgwZ07tyZbt26UadOHdq1a8eYMWPK/Qt//PjxpKSk\nkJyczKBBg9i9ezcAixYtYvTo0aSnpxMfH8+UKVMisqwmIowaNYqOHTvSoEEDhg8f7q9z/vz5DBw4\nkAEDPKe81157LV27dmXFihUVrre6YYolmC++gP79oXFjWL6c1z/dSsZTGbz54Zu89ZO3+K9eD/DY\n9Ab06QNZWZ5SSU+v6kZHl1jcE6jOXLA8VSNzlZNmzZqRn5/vX+4J5OjRozRv3tz/2efJEbyHbGpq\nKnl5eXz44Yfk5eWRnJzsvx5++GE+/fTTkHkBDh48yA033ECrVq1ISkrivvvuK7asFA6Bbnzj4+P5\n+uuv/e0OXDYLrrsiBNcZ6Dp48eLFxWSwceNGjh07FrG6qwt2QDKQI0e8g48DBpD3218yYfntbP5o\nM48PeJzBlw9m505hyJ3QqhXs2AEBbrcNo8bSs2dP6tevz5IlSxg2bJg//sSJE6xatYqHH37YH/fR\nRx/5w+fOnePIkSNcfPHFxMXF0aFDBw4ePBiyjlCb42PHjqVLly4sXLiQRo0aMXPmTJYsWRKRPrVq\n1apYWwPD0aJt27ZkZ2czZ86cqNdV1diMxcc770Dv3hTdns1jt7TmO09fRVrjNPb/x376t7uRSZOE\ngQNhwgRYsaJ2KRU7dxFZYk2eSUlJPPjgg4wbN47Vq1dTUFBAbm4uw4cPp02bNmRnZ/vT7tixg2XL\nllFYWMjMmTNp0KABPXr04OqrryYhIYHp06dz6tQpioqK2LdvH9u3bwdCv9114sQJEhISaNiwIQcO\nHGD27NnF7rds2bKYO+Bw8NUzfPhwnn32WQ4cOMDJkyeZOnVqmXkLCgqKuQ4uLCwstY5gbrvtNl59\n9VXWrFlDUVERp0+f5o033uDjjz8uVx9iAVMsAFu2QL9+vHv3bXw3YQGrDq1i052b+P01v2fbpoZk\nZMDhw7B3L2Rnx+5BR8O4UH71q18xbdo07r33XpKSkujRowft2rVj3bp11HObiyLCjTfeyMKFC2nS\npAkLFixg6dKlxMXFERcXx2uvvcbu3btJS0ujefPmjBkzhuPHj/vzBs9YZsyYwQsvvEBiYiJjxowh\nKyurWJrJkyczcuRIkpOTeemll8p8JTjw/oABAxg/fjz9+vXjsssuo2fPngDUr1+/xPxjx471uw5u\n2LAho0ePDllnSa6aU1NTeeWVV5g2bRotWrSgbdu25OTkhFxijHXMuvGKFZwbeTt/+FkGM5sc5LH+\njzH020M5flyYOBFeew3++EfPiHFtxWxbRZaa6pp4ypQpHDp0iOeff76qm1Ju3nnnHTp16sTZs2dD\nvqRQ0zDrxlHk3HPPcTI7i4E/KuTY9zqz/+f7GXbFMA4dEq68Es6dg337ardSMYxwiTWluGzZMs6c\nOcOXX37JxIkTGTx4cK1QKpVBrd28P3z/OC6a/TQTJ2SQc9dzXNHiCv+9Dh1g0SJws+Naj81WIktN\nlWesnU6fM2cOo0aNIi4ujszMTJ588smqblKNoVYuhW2YMIwWC17m7edzuPnacTH1z2DUXGJ9KcyI\nHaK9FFYrFcuxf+yhYXwSia3bV26jYhTbY4ksNXWPxYgdoq1YauVSWMolGVXdBMMwjBpLrZyxGEZ1\nxGYsRmVhMxbDqEXYfp9RE4jqu3UiMkBEDojIeyIysYQ0/+3u7xGR75aVV0SaiMhaETkoImtEpHE0\n+2CYrbBIU5I8I2FVtjZe69evr/I2xOIVTaKmWEQkDpgFDAC+DdwqIulBaQYCHVX1UmAMMDuMvJOA\ntap6GbDOfTaiiM86qxEZTJ6RxeRZ/YjmjKUbcEhVc1W1AHgRCD5qOBiYB6CqW4HGIpJSRl5/Hvf3\npij2wQC++uqrqm5CjcLkGVlMntWPaCqWi4FAk6FHXFw4aVqXkrelqn7iwp8ALSPVYMMwDKPiRFOx\nhLuIF85upYQqT72FQnuNJsrk5uZWdRNqFCbPyGLyrH5E862wj4E2AZ/b4M08SkuT6tLUCxHvsy39\niYikqOoxEWkFfEoJ2Bs2kWPevHllJzLCxuQZWUye1YtoKpbtwKUi0h7IA34E3BqUZjnwC+BFEekB\nfKWqn4jI56XkXQ6MBB51f18OVblG4F1swzAMo/xETbGoaqGI/AJYDcQBf1bVd0Tkp+7+06q6QkQG\nisgh4GtgVGl5XdGPAItE5E4gFxgerT4YhmEY5afGnrw3DMMwqoaYcz4QjUOXtZkKyjNXRPaKyC4R\neavyWl09KUuWIvJvIrJZRE6LyITy5K2NVFCeNjaDCEOeI9z/+F4R2Sgi3wk37zeo6tOf5TwpGgcc\nAtrjbfDvBtKD0gwEVrhwd2BLuHlr21URebrPHwBNqrof1eEKU5bNga7AQ8CE8uStbVdF5Onu2dgs\nvzx7AkkuPKAiz85Ym7FE69BlbeVC5Rl4dshekvAoU5aq+pmqbgcKypu3FlIRefqwsXmecOS5WVX/\n333civc2blh5g4k1xRKtQ5e1lYrIE7wzRH8Rke0i8pOotTI2CEeW0chbU6moTGxsFqe88rwTWHGB\neWPOunEkD10aFZdnH1XNE5HmwFoROaCqGyLUtlijIm/B2Bs036SiMumtqkdtbPoJW54i0g8YDfQu\nb14fsTZjqcihy3Dy1jYuVJ4fA6hqnvv7GbAMb8pcW6nI+LKx+U0qJBNVPer+2tj0CEuebsP+T8Bg\nVf2yPHkDiTXF4j90KSIX4R2cXB6UZjlwO0Dgocsw89Y2LlieItJQRBJcfCOgP/D3ymt6taM84yt4\nBmhj85tcsDxtbIakTHmKSFtgKXCbqh4qT95gYmopTKN36LJWUhF5AinAUmc2py6wQFXXVH4vqgfh\nyNK9RLINSATOicjdwLdV9YSNzeJURJ5AC2xsFiMceQIPAMnAbCe7AlXtdiHPTjsgaRiGYUSUWFsK\nMwzDMKo5plgMwzCMiGKKxTAMw4goplgMwzCMiGKKxTAMw4goplgMwzCMiGKKxagUROQOEXkiiuWP\nF5H9IvJ8ZdYbTUSkh4jMiXCZk4NNzFcmInKiAnkH+Uy2V3U/jNKJqQOSRkwT7QNTY4FrfGZmKrHe\naPIDYGWEy6xqeVxw/ar6KvBqRcsxoo/NWIywcOYcDojIsyLyrogsEJH+ziHQQRG52qVrIiIvO4dB\nm0WkU4iymovISyLylrt6ufi+zjHTLhHZKSLfCpH3HhH5u7vudnFPAWnAKhH5ZYjmtxGR9a6dDwSU\ndZuIbHX1PSUidVz8CRF5SER2uz60cPG7Aq6TIvI9EWkkIs+4cnaKyGCX9g4RWSoiK129jwbU219E\nNonIDhFZ5MyOhOLfgb8E9T9TRP7qZPwPEXlERLKdHPeKSFrA9/W6+x7+IiJtggsXkUtc+7aLyN9E\n5PIQafaKSKJ4fC4i2S7+f0TkWhFp5/LucFdPd7+Vi9/lvqveAWV+Q7ZBdYYcQ7E8+6x1VLUDGrti\n48Jz8lMAXIFnm2k7nmkH8Hy2LHPhJ4DfunA/YJcL3wE84cIv4FmfBWgL7Hfh5UBPF24IxAW1oQuw\nF4gHGgH7gAx3L6RjJ1dvHp6pigZ4NqO6AOmuvjiX7kkg24XPAT904UeB+4LKHAT8FW/GPw0Y4eIb\nA++6tt8B/ANIAOoDuXimxpu5vPEuz0SfvILqaAa8HiI+E/gSaAlchGcgcLK7Nx74gwu/GtCfUQHf\nz4PAPS68Dujowt2BdSHqm43n7O1K4C3gaRd/0H0P8UB9F3cpsM2FJwC/ceE6wLfCkW05xtCDBDn3\nsqv6XLYUZpSHD1T1bQAReZvzv6b34Ske8ExtDwFQ1fUi0lScQcAArgXSRfy2AxPcr/aNwB9EZAGw\nVFU/DsrXx8Wfcm1YCnwf2FNGu9eos9Tq8vQBivAUzHbXjnjgmEt/VlX/z4V3ANf5ChKRS4HpQKZ6\nNpT6A4NE5F6XpD6eslS8B/U/Xb79TkbJePasNrl6LwI2hWhzfzzbTKHYpp5hVcSz4eZLtw/vQQzQ\nA7jJhee7Nvtx8u4FLA74Hi4KUdcGPBkfxlMyY0SkNfClqp4SkSRglohk4Mn0UpfvLeAZEakHvKyq\nvu+oRNkGEM4YMqoxpliM8nAmIHwOOBsQDhxLwdZ7g9fDBeiuqmeD4h8VkdeAHwIbReR6VX03qJzA\nsiVE2cGEqtsXN09VfxMiT6BHQn/f3NLcQuAu34PdMURV3ytWiUh3isuriPMyWquqPy6j3QOAnBLu\nBX8PZwLCpX0PgdTBUw7fLaMdfwN+gTfjug+4GRjq4gH+EziqqtkiEgecBlDVDSLyPeAG4DkReUxV\nn6cE2YagrDFkVGNsj8WINBuAEeDtBwCfqWrwm0Br8JZtcOmucn8vUdW3VXU6ntXa4DX/DcBNIhLv\nfnHf5OJKQ4DrRCRZROLxXKq+ibcMNFQ8R1C+df22ZZT1DPCsqm4MiFsd1BffgzrUQ12BLUBvEbnE\npW/kZkHnG+xNIb4T8Cv/QtgEZLnwCM4rAsEzPvtP4AMRGeqrUzxfHMUbrHoEb1muo6p+gCe7ewPK\nS+T8TO92POu3PhPsn6nqXODPQFkKLJBwxpA586vGmGIxykPwr0YNEZ4MdBGRPXj7DyMD7vvSjAe6\nus3Zt4ExLv5ut9G7B282VOyNKFXdBTyHt8yyBfhTwMO3pF+06tIvwVsye0lVd6pn9vt+YI2rbw2e\nK4BQ/VL3oLwFGC3nN/A7A1OBem6Tex8wJUR/A/uQj7dX8L+u3k18U4F2AXaV0p/S+uq7Nw4Y5eoY\nAdwdIs0I4E4R2Y23jDa4hHK34O2pgKdYWru/4O1NjXRlXA74FEA/YLeI7ASGAY8H1F9WXyZT9hgq\nTQ5GFWNm8w2jmiEi9wHvqeqiqm6LYVwIplgMwzCMiGJLYYZhGEZEMcViGIZhRBRTLIZhGEZEMcVi\nGIZhRBRTLIZhGEZEMcViGIZhRBRTLIZhGEZE+Rflz/wq8/SiYgAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7731ef0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Oil circulation rate is 1.79e-03 kmol/s\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FPX9+PHXO+GGQMJ9EzlUbBXUyiEi8ShGW9F6cAgU\n0HpV0daj3gXFev20tXhioYpSFRUtiiJaJOhXEQXxBhElyKmG+xKT8P79MbNhs+wms9ndzA55Px+P\neTCfmdn5vHey7Gfn8/nM5yOqijHGGONFht8BGGOMCQ4rNIwxxnhmhYYxxhjPrNAwxhjjmRUaxhhj\nPLNCwxhjjGdWaBhTRSLyiIjcnKRzbReR3GScy5hUEntOw9RUInIccA9wGFAKLAX+BPwSuEBV+/sY\nnjFpqZbfARjjBxFpDMwCLgaeA+oC/YE9Hl+foap7UxehMenJqqdMTXUwoKo6XR0/qeqbQAnwCNDX\nrTLaBCAiT7jVUa+JyA7gBHfbBHd/noisEZEbRORHEVkpIueFMnOPfVRE3hCRbSJSICIdw/bvFZHO\nYcc+JCKz3GPfD+1z9w8Uka9EZIt73HwRuaBarpqp8azQMDXVV0Cp+wWdLyI5AKq6FLgEWKCqWara\nNOw1w4AJqtoI+D9A3SWkFdAMaAuMAh4TkYPD9p8H3AY0Bz4G/lNBfEOA8UAOsAL4G4CINAeeB64D\nmrrvo29EHMakjBUapkZS1e3AcThftv8CfhCRmSLSEpBoLwH+q6oL3NeHqrEij71FVYtV9W3gVWBw\n2L5Zqvp/qvozcBPO3Uy7GHm9qKqLVLUUp3Dp6e47DfhcVf+rqntVdSKwIc63b0yVWaFhaixVXaaq\nY1S1A07jd1vgfmL/al9dySk3q+rusPQqoE0oO2BNWN47gU1untF8H7a+G2jkrrcNP48rMm1Mylih\nYQygql8BU3EKj3iqesKPzRGRBmHpTsA6d12ADqEdItIIp3ppHfFZB7QPO4+Ep41JNSs0TI0kIoeI\nyFWh6iER6YDTZrEA51d+exGpHf6SaKeJsv1WEaktIv2B3+C0P4ScJiL9RKQOMAGn3WRtjPPG8hpw\nuIicISK1gMuA1hUcb0xSWaFhaqrtQG9godsbagHwKXA18BbwBbBBRH5wj49s9I62bQOwGedu4Cng\nYlVdHnbs08A4YCNwJDAi4lyxzlu2X1WLgHNxni8pAroDi/DYVdiYRPn6cJ+I5OPUIWcCk1X17oj9\nzYFpOL+kagH3quoT1R2nMZURkTzgKbd9JNr+x4E1qnpLkvPNwGlrOU9V5yfz3MZE49udhohkAg8C\n+ThP5A4Tke4Rh10OLFHVnkAecJ97S25M0FRU5RTfiZznNLJFpC5wo7v5/WSd35iK+Fk91QtYoaqF\nqloMPAucEXHMeqCxu94Y2KiqJdUYozHxqOi2PVqVU1X1xXl240ecdpMzw7oAG5NSvlVPicg5wCmq\neqGbHgH0VtWxYcdk4NQvHwxkAYNVdbYf8RpjjPH3TsNLaXUj8LGqtsV5uOkhEclKbVjGGGNi8bN9\nYC1h/dbd9ciHlI7FHT5BVb8RkZXAITi9RcqIiA2hYIwxcVLVuNva/LzTWAR0E5Fct9/6EODliGOW\nAScDiEgrnALj22gnU9VALuPGjfM9Bovf/zgs/uAtQY5dteq/s32701DVEhG5HJiD0+V2iqouFZGL\n3f2TgDuAx0XkE5wC7i+qusmvmFOhsLDQ7xASYvH7y+L3T5BjT4Sv3VfVadSeHbFtUth6EXB6dcdl\njDEmOnsi3GejR4/2O4SEWPz+svj9E+TYE3FATPcqInogvA9jjKkuIoIGrCHcAAUFBX6HkBCL318W\nv3+CHHsirNAwxhjjmVVPGWNMDWTVU8YYY1LOCg2fBb1e1OL3l8XvnyDHnggrNIwxxnhmbRrGGFMD\nWZuGMcaYlLNCw2dBrxe1+P1l8fsnyLEnwgoNY4wxnlmbhjHG1EDWpmGMMSblrNDwWdDrRS1+f1n8\n/gly7ImwQsMYY4xnvrZpiEg+cD/OzH2TVfXuiP3XAMPdZC2gO9BcVbdEHGdtGsYYE4eqtmn4VmiI\nSCbwFc4c4GuBD4Fhqro0xvG/Bf6kqidH2WeFhjHGxCGIDeG9gBWqWqiqxcCzwBkVHH8e8Ey1RFaN\ngl4vavH7y+L3T5BjT4SfhUY7YHVYeo27bT8i0gA4BZhRDXEZY4yJwc/qqbOBfFW90E2PAHqr6tgo\nxw4BzlPVqHciIqKjRo0iNzcXgOzsbHr27EleXh6w7xeBpS1taUvX1HRovbCwEICpU6cGrk2jDzBe\nVfPd9A3A3sjGcHffS8B0VX02xrmsTcMYY+IQxDaNRUA3EckVkTrAEODlyINEpAlwPDCzmuOrFuG/\nAoLI4veXxe+fIMeeiFp+ZayqJSJyOTAHp8vtFFVdKiIXu/snuYeeCcxR1d0+hWqMMcZlY08ZY0wN\nFMTqKWOMMQFjhYbPgl4vavH7y+L3T5BjT4QVGsYYYzyzNg1jjKmBrE3DGGNMylmh4bOg14ta/P6y\n+P0T5NgTYYWGMcYYz6xNwxhjaiBr0zDGGJNylRYaInKciDRy10eKyN9FpFPqQ6sZgl4vavH7y+L3\nT5BjT4SXO41HgJ0i0gO4CvgGeDKlURljjElLlbZpiMgSVT1SRMYBa1V1soh8pKpHVU+IlbM2DWOM\niU9V2zS8jHK7XURuBEYA/d25vWvHm5Exxpjg81I9NQTYA5yvqhtwpmS9N6VR1SBBrxe1+P1l8fsn\nyLEnotI7DVVdD9wXlv4OmJrKoIwxxqQnL20afYGJQHegLs6ESTtUtXHqw/PG2jSMMSY+qXxO40Hg\nPOBroB5wAfBwvBlFIyL5IrJMRL4WketiHJMnIktE5HMRKUhGvsYYY6rG08N9qvo1kKmqpar6OJCf\naMZug/qD7rkOA4aJSPeIY7KBh4DTVfWXwDmJ5ptugl4vavH7y+L3T5BjT4SX3lM7RaQu8ImI3ANs\nAOK+pYmiF7BCVQsBRORZ4Axgadgx5wEzVHUNgKoWJSFfY4wxVeSlTSMX+B6oA/wZaAw8rKorEspY\n5BzgFFW90E2PAHqr6tiwY/6B0733F0AW8E9VfSrKuQ7YNo0FC6C0FFq3dpZGjfyOyBhzIEjZcxqh\nOwFgNzA+3gwqOrWHY2oDRwEnAQ2ABSLyvltdVs7o0aPJzc0FIDs7m549e5KXlwfsu40MYnrWLJg5\ns4BNm2DLljwyMqBJkwJycuCQQ/Jo3Rp27y6gaVMYMMBJr1xZQHY2DBzof/yWtrSl0yMdWi8sLCQR\nXu40PsP5gg+VSApsAz4EblfVjVXKWKQPMF5V8930DcBeVb077JjrgPqqOt5NTwZeV9UXIs4V2DuN\ngoKCsj9uZVRhxw7YsGHf8v335dOh5YcfnLuS0B1KrKVVK2jeHDIzUx9/OrL4/RXk+IMcO6T2ifDX\ngRLgaZyCYyjOr/7vgSeA0+PN1LUI6OZWf63DeYhwWMQxM4EH3UbzukBv4O9VzC/wRCAry1m6dav4\n2L17YdOm6AXLZ5+VT2/Z4hQcFRUsofUmTZw4jDE1k+exp6JtE5HPVPXwKmcucipwP86zH1NU9U4R\nuRhAVSe5x1wDjAH2Av9S1YlRzhPYO410UFwMP/4Y/Y4l8q5mz57KC5bQUr++3+/MGBNLVe80vBQa\nnwIXqupCN90L58u7R7QCxQ9WaFSfXbtiV4lF3tXUreutcGnZEmp5uec1xiRNKguNY4DHgVC/ne04\nD/h9AfxGVZ+LN9NkC3KhEfR60Vjxq8LWrd4Kl6IiyMmpuGAJLU2bJrd67EC9/kER5PiDHDuktvfU\nh8Av3QftUNUtYbt9LzBMehKB7GxnOfTQio8tLXUKjsiCZe1aWLy4/LYdO5xCpaKCxbonG5M6Nke4\nCZQ9e/bdpVRUTbZ+vVNwVVawhKrH6tb1+50ZU71SVj0VBFZomEjh3ZMrKly8dk8O3dkk0j3ZmHRi\nhUZA30fQ60UPhPiPPz6PzZu99R7bvDl29+TIKrPq6J58IFz/oMYf5NghhW0aIrIY+DfwtKpurkpw\nxqSzjAxo1sxZfvGLio+N1T35m2/g3XfL39VE654crS2mVSto0KB63qsxifLSe6obznMSg3EeyHsc\neCOdftoH+U7DHLhidU+Oti28e3JFjfwtWkBtm2zZJEHKq6dEJAP4LfAIzoN2/8YZQHBTvJkmmxUa\nJsiidU+O1Q4T6p7spfdYTo5zF2VMNCktNESkB87dxqnAHJwhRY4DRqhqz3gzTbYgFxpBrxe1+KtX\nePfk77+HefMKyMnJi1rA7Njh9AzzMv5Yo0b+DA8TtOsfLsixQ+rbNLYCk4HrVHWPu+t9EekXb4bG\nmKrLzNz3nApAnToQ63sr1D058q5l6VKYN6/8NvDWe6xVK+ueXNNVeKfhVkldr6p3VF9I8QvynYYx\n6SBy9ORY7TDffx+7e3JklZl1T05vqRxGZLGqHl3lyKqBFRrGVI+9e6mwe3L4XU207smx2mJs9OTq\nl8pC4y6gCJgO7AxtT4cG8JAgFxpBrxe1+P2VzvHH6p4cXrB8+20B27blleueXFEjfzp1T07na+9F\nKufTGIoz8dJlEdsPijczY0zNUbs2tG3rLLEUFDhtMpHdk0Prn3wCc+bs3z3ZS+8x656cGvZEuDEm\nMELdkysbGibUPTk721vvsaZNa1735KRXT4nI2VQwj7eqvhhvZqlihYYxJlJpKWzc6G14mO3bK+6e\nHH5n41f35GRLRaHxBE6h0RI4FnjL3XUC8J6q/rZqoZbLI599M/dNDp8f3N2fhzPl67fuphmqenuU\n8wS20Ah6vajF7y+LPzn27HEGrqysgX/9euf41q2hfv0CDjkkL2ZbTLp3T056m4aqjnZP/CZwmKqu\nd9NtgKlVjLOMO+/3g8DJwFrgQxF5WVWXRhw6X1UHJZqfMcbEUrcudOjgLJUJdU+ePRvatNlXsHz4\n4f4FTWT35FhtMUHqnuyl99QyoHvop7z77MaXqlrJ1DqVZCzSFxinqvlu+noAVb0r7Jg84GpVPb2S\ncwX2TsMYc2CK1j05VltMZPfkihr6k9U9OZW9p/4HzBGRpwEBhgBvxptRFO2A1WHpNUDviGMUOFZE\nPsG5G7lGVb9MQt7GGJNSVR09ObxgWbkSFizYl161yjk+smDp3h3+9KfUvyfwNt3r5SJyFtDf3TRJ\nVV9KQt5ebg0+Ajqo6i4RORX4L3BwtANHjx5Nbm4uANnZ2fTs2bOsrrSgoAAgLdOh9XSJx+JPr/gs\n/vRNR76HeF/fq1ceRUUwZ04BW7dCu3ZOevFiJ123bh4bN8LKlU56xw7n9VlZBdSqBVlZedSvDz/8\nUOB2La483oKCAgoLC0mEb11uRaQPMD6seuoGYG9kY3jEa1YCR0c+WBjk6qmCNGkIrCqL318Wv3/C\nY9+1y+mpVVS0bwlPR9u3d6/zLEmzZk7VVPPm5dcj082aOQ82JqvnVuBm7hORWsBXwEnAOuADYFh4\nQ7iItAJ+UFUVkV7Ac6qaG+VcgS00jDHpZffuir/so6X37o39ZR/ty7958+QWAFWRyjaNlFDVEhG5\nHGeo9UxgiqouFZGL3f2TgHOAS0WkBNiF83S6McZ4EioA4rkLCC8AIr/8u3WDvn333+d3AVCdvM6n\n0QCnbeGr1IcUvyDfaQT59hwsfr/VpPh3746/CqikJP4qoIYNvRUAQb/2qZxPYxDw/4C6QK6IHAnc\nas9OGGOqKlQArFjhfLFX9uVfVOQcF+vLvls36NNn/31eCwDjnZfnND4CTgTmqeqR7rbPVfWX1RCf\nJ0G+0zAm6H76yfsv/9B6eAHgpf7fCoDkS2WbRrGqbpHyf6298WZkjEl/P/3kvfE3tF5cHPvLv0sX\n6N17/31WAASXl0LjCxEZDtQSkW7AFcB7qQ2r5gh6vajF76+K4o8sALzcBRQXx/7l36UL9Oq1/75E\nBvAL8vUPcuyJ8FJojAVuAvYAz+D0dpqQyqCMMeWFFwDhX/iLFsFLL0UvDH7+OXa1z0EHwTHH7L/v\nQBnB1aSOzadhTDXbsye++v+NG53XVFb/H5m2AsBUJBVDo79Swes0nXpPWaFh/LJnT3xf/kVFzmu8\nNv6G0llZVgCY5EpFoZFXwetUVefHm1mqBLnQCHq96IEUf3gB4LUgiCwAvDwPkMwC4EC6/kET5Ngh\nNfNpFISdvC7OQIEKfKWqxVUJ0pjqEioAKvvy//Zbp+5/40an3SD0xR75hd+pExx99P777A7A1DRe\nntPIw5l0yR2Ul47AKLvTMNUl9KUeTxXQ7t3ef/mH1hs3tgLA1BwpG7DQfbhvWGgIERE5GHhWVY+q\nUqQpYIVGcIQXAF6HhNi9O74v/+bNrQAwpjKpfLivVviYU6q63B2h1iRBkOtFf/4ZXnnFmSfZ613A\nrl2xq4A6dIAjj9x/XyoLgCBff7D4/RTk2BPh5ct/sYhMBqbhzNw3HFiU0qhMtSsujr8KaNcup06/\nTZv9f/mHCoDIgsHuAIwJNi/VU/WAy4B+7qZ3gIdVdU+KY/PMqqfKCy8AvFYB7doFTZvG1w00WXMV\nG2OqX+AmYUqmA7nQCBUA8QwJHVkAeGkPsALAmJollQ3hpwO3Abnsq85SVW0cb2ZRzp0P3I8zCdPk\nWFO9isgxwAJgsKq+GGV/IAqN4mLYtKn8F/x77xXQrFlezLuCnTudAiCeh8EaN3Ymta8OQa/Xtfj9\nFeT4gxw7pLYh/H7gd8Dnqpq00W1FJBN4EDgZWAt8KCIvh0/3Gnbc3cDrOG0qaSG8APB6F7BzJ+Tk\nlP+C37MHjjgC2rVz/o1WBVRdBYAxxlTGy53GfOBEVS1NasYifYFxqprvpq8HUNW7Io77E/AzcAww\nS1VnRDlXQncaoQIgniqgHTuqVgVkBYAxJh2k8k7jOmC2iMzD+fIGp3rq7/FmFqEdsDosvQboHX6A\niLQDzsCZBOoYnCfSK1RSsn8VUGW9grZv31cARH75t2kDhx++/z4rAIwxNZGXQmMCsB2oB9RJYt5e\nbg3uB65XVRVnFqiYpWK3bk4hECoAov3yDxUAkfuys/0rAIJeL2rx+8vi90+QY0+El0Kjjar+OgV5\nrwU6hKU74NxthDsaeNadNbA5cKqIFKvqy5En++UvR3PwwbnUqwc5Odn07Nmz7A9aUFAAUC69Zw90\n6xZ7v6UtbWlLV5QOSZd4vMRbUFBAYWEhifDSpnEPMFdV5ySU0/7nrQV8BZwErAM+wBmuZGmM4x8H\nXgly7yljjEkXqWzT+CNwjYj8DIRGt024y62qlojI5TgzAWYCU1R1qYhc7O6flMj5jTHGJF+lNfmq\n2khVM1S1nqpmuUvCz2i4556tqoeoaldVvdPdNilagaGqY6LdZQRd5K1u0Fj8/rL4/RPk2BNh/X+M\nMcZ4ZsOIGGNMDVTVNg270zDGGONZzEJDRBaLyD9FJN8d6dakQNDrRS1+f1n8/gly7Imo6E6jD/Bf\n4ARgvojMFpEr3Zn7jDHG1ECe2zTcIT3ygVOArsD7qvrHFMbmmbVpGGNMfKp1Pg135Nk+qvpu3C9O\nASs0jDEmPtXaEK6qpelSYARd0OtFLX5/Wfz+CXLsibDeU8YYYzyz5zSMMaYGSln1lIgcIiJzReQL\nN32EiNxclSCNMcYEm5fqqX8BN7JvAqbPgGEpi6iGCXq9qMXvL4vfP0GOPRFeCo0GqrowlHDrgYor\nON4YY8wByst8GrOBscDzqnqkiJwDXKCqp1ZHgF5Ym4YxxsQnZc9piEgX4DHgWGAzsBIYrqqFVYgz\nJazQMMaY+KSsIVxVv1HVk3CmWz1EVfulU4ERdEGvF7X4/WXx+yfIsSei0pn73MEKzwZygUxxJuxW\nVb0t0cxFJB+4H2fmvsmqenfE/jOA24C97nKtqr6VaL7GGGOqxkv11BxgC7AYKA1tV9X7EsrYGYrk\nK+BkYC3wIRFzhItIQ1Xd6a4fDrykql2jnMuqp4wxJg6pnCO8naqeUoWYKtMLWBGq6hKRZ4EzgLJC\nI1RguBoBRSmIwxhjjEdeuty+JyJHpCDvdsDqsPQad1s5InKmiCwFZgNXpCAOXwW9XtTi95fF758g\nx54IL4VGf2CxiCwXkc/c5dMk5O2pPklV/6uq3YHTgaeSkK8xxpgq8tKmkRtte6I9qESkDzBeVfPd\n9A3A3sjG8IjXfAP0UtWNEdt11KhR5OY6oWZnZ9OzZ0/y8vKAfb8ILG1pS1u6pqZD64WFhQBMnTo1\ndfNpiEh/oKuqPi4iLYBGqroy3swizlkLpyH8JGAd8AH7N4R3Ab5VVRWRo3AeMOwS5VzWEG6MMXFI\n5YCF44G/ADe4m+oA0+LNKJKqlgCXA3OAL4HpqrpURC4WkYvdw84GPhORJcA/gaGJ5ptuwn8FBJHF\n7y+L3z9Bjj0RXnpP/Q44EqfLLaq6VkSykpG5qs7GaeAO3zYpbP0e4J5k5GWMMSZxXto0PlDVXiKy\nxB17qiGwQFVT0aOqSqx6yhhj4pPK6V6fF5FJQLaIXATMBSbHm5Exxpjg8zL21P8DZrjLwcAtqjox\n1YHVFEGvF7X4/WXx+yfIsSfCy9hTtwBPqOobYdsuUtXHUhqZMcaYtOOlTeMH4EdgbGiwwFD7RjXE\n54m1aRhjTHxS2aaxFjgNuEtE/hJ3ZMYYYw4YXgoNVHUVcDxwmIi8ANRPaVQ1SNDrRS1+f1n8/gly\n7InwUmiEns/4SVVHA/NwHvAzxhhTw3gaRiTdWZuGMcbEJ2XzaYjIccA4nJn7QserqnaONzNjjDHB\n5qV6agrwd+A44Bh36ZXKoGqSoNeLWvz+svj9E+TYE+Fl7Kkt7hhRxhhjajgvz2ncBWQCLwJ7QttV\n9aPUhuadtWkYY0x8qtqm4aXQKCDKLHuqekK8maWKFRrGGBOflD3cp6p5qnpC5FK1ME2koNeLWvz+\nsvj9E+TYE+FlEqbWIjJFRF5304eJyAWpD80YY0y68VI99TrwOHCTqh4hIrWBJar6y4QzF8kH7sdp\nM5kcOT+4iAzHmTVQgO3Apar6aZTzWPWUMcbEIZVjTzVX1elAKYCqFgMl8WYUSUQygQeBfOAwYJiI\ndI847FvgeHfCpwmAjaxrjDE+8lJo7BCRZqGEiPQBtiYh717AClUtdAuiZ4Ezwg9Q1QWqGsprIdA+\nCfmmlaDXi1r8/rL4/RPk2BPh5TmNq4FXgM4i8h7QAjgnCXm3A1aHpdcAvSs4/gLgtSTka4wxpoo8\njT0lIrWAQ3DaFr5y7wwSy1jkbCBfVS900yOA3qo6NsqxJwAPAf1UdXOU/Tpq1Chyc3MByM7OpmfP\nnuTl5QH7fhFY2tKWtnRNTYfWCwsLAZg6dWrKntOoD/wRZxgRBd4BHlHVn+LNLOK8fYDxqprvpm8A\n9kZpDD8C58HCfFVdEeNc1hBujDFxSGVD+JM4DdUTcRqufwE8FW9GUSwCuolIrojUAYYAL4cfICId\ncQqMEbEKjKAL/xUQRBa/vyx+/wQ59kR4adP4haoeFpZ+S0S+TDRjVS0RkcuBOThdbqeo6lIRudjd\nPwn4K5ADPCIiAMWqaoMlGmOMT7xUT00DHlLVBW66D3CZqo6shvg8seopY4yJT9Ln0xCRz8KOeVdE\nVuO0aXQEvqpSlMYYYwKtojaN093lVKAzMADIc9fzUx5ZDRH0elGL318Wv3+CHHsiYt5pqGphNcZh\njDEmAA7oOcLdxnNjqsWB8H/J1BwpmyM86Ow/sqkO9gPF1BRehkZv5A4uiIgcIiKD3JFujTE+C3q9\nepDjD3LsifDycN/bQF0RaYfzTMVI4IlUBmWMMSY9eXlOY4mqHikiY4H6qnqPiHyiqj2qJ8TKVdSm\nYdVTpjrYZ80ETSqHEUFE+gLDgVfjeZ0xxpgDi5cv/z8BNwAvqeoXItIFmJfasExVFRYWkpGRwd69\newE47bTTeOopZ6iwJ554gv79+8d1vvDX++XOO+/kwgsv9DWGdBX0evUgxx/k2BNRae8pVZ0PzBeR\nhm76G+CKVAd2oMvNzeWHH34gMzOzbNuYMWOYOHFiUvN57bXEpiBJ9PVeFRYW0rlzZ0pKSsjIKP9b\n5oYbbqiWGIwxlau00BCRY4HJQBbQQUR6Ahep6h9THdyBTESYNWsWJ554ot+hRBWqn7eupOktNGdC\nUAU5/iDHnggv1VP34wwbUgSgqh/jDCliUmTv3r1cc801tGjRgi5duvDQQw+Vq3LKzc1l7ty5ZceP\nHz+ekSOjjx+Zl5fHlClTytKqytixY8nOzqZ79+689dZb5Y69+eab6devH40aNeLbb78t9/rIfCKr\nwvLy8rjlllvo168fWVlZDBo0iKKiIoYPH06TJk3o1asXq1ativt6hOcbyvPJJ5+kU6dOtGjRgjvu\nuKPc+7vrrrvo2rUrzZs3Z8iQIWzevN+8XcaYKvLUoK2q30VsKklBLDVOrN42jz32GK+++ioff/wx\nixYt4oUXXij3i19E9kvHEnnswoUL6dq1Kxs3buTWW2/lrLPOYsuWLWX7p02bxuTJk9m+fTudOnUq\n93ovdx3Tp09n2rRprF27lm+++Ya+fftywQUXsGnTJrp3786tt95a6TmivYdI7777LsuXL2fu3Lnc\ndtttfPWVM4bmxIkTefnll3n77bdZv349OTk5XHbZZXHnGRRBr1cPcvxBjj0RXgqN70SkH4CI1BGR\na4ClqQ2reogkZ6kKVeXMM88kJyenbAn9on/uuef485//TLt27cjJyeHGG2+ssDtnPF09W7ZsyZVX\nXklmZiaDBw/mkEMOYdasWe71EEaPHk337t3JyMigVq3ytZceumczZswYDjroIBo3bsypp57KwQcf\nzIknnkhmZibnnnsuS5Ys8RxrRfmOGzeOunXrcsQRR9CjRw8++eQTAB599FFuv/122rZtS+3atRk3\nbhwvvPBC2d2QMSYxXoYRuRT4J9AOWAu8ARwQP9387FYvIsycOTNqm8b69evp0KFDWbpjx45Jy7dd\nu3bl0p06dWL9+vVl6fB8q6JVq1Zl6/Xq1aNly5bl0jt27Ejo/CGtW7cuW2/QoEHZeVetWsXvfve7\nco3ptWovjkWgAAAdIklEQVTV4vvvv6dNmzZJyTudBL1ePcjxBzn2RFR6p6GqP6rqearaUlVbqOpw\nVd2YjMxFJF9ElonI1yJyXZT9h4rIAhH5SUSuTkaeQdCmTRu++25fjWD4OkDDhg3ZuXNnWXrDhg2e\nz7127dpy6VWrVtG2bduydEVVUI0aNWLXrl2e801WI3o85+nYsSOvv/46mzdvLlt27dp1QBYYxvgh\nZqEhIg9UsCTcL9Qdz+pBnEb2w4BhItI94rCNwFjg3kTzS0exqnsGDx7MxIkTWbt2LZs3b+auu+4q\n98XZs2dPnn32WUpKSli0aBEzZszw/MX6ww8/MHHiRIqLi3n++edZtmwZp512WqUxhfJ9++23Wb16\nNVu3buXOO++s8D1V5Qnpn376qdyiqnGd55JLLuHGG28sK2h//PFHXn755UpeFVxBr1cPcvxBjj0R\nFVVPLcaZqQ8g8hspGRU7vYAVoXk7RORZ4AzC2ktU9UfgRxH5TRLySzunn356uec0Bg4cyIwZM7jw\nwgtZvnw5PXr0oEmTJlx99dXMm7fvecoJEyYwbNgwcnJyGDBgAMOHD2fTpk1l+2MVICJCnz59+Prr\nr2nRogWtW7dmxowZ5OTkVPpagJNPPpkhQ4ZwxBFH0KJFC/7yl7+UtYdEe31kI3xl5wfnbib82Dfe\neCOuhv8rr7wSVWXgwIGsW7eOli1bMnToUAYNGlRhvsYYbzzPpyEiWYCqalIqpUXkHOAUVb3QTY8A\neqvq2CjHjgN2qOp9Mc51QI89VdGDbyY9HCifNVNzpGw+DRE5HHgSaOamfwRGqerncUdZXlL/h40e\nPZrc3FwAsrOz6dmzZzJPb4xnoWqLUEOppS2dDunQemFhIYnwMsrtAuBGVZ3npvOAO1T12IQyFukD\njFfVfDd9A7BXVe+OcmyNv9Po0qULxcXFdqeRpvz6rBUUFAS6F0+Q4w9y7JDaUW4bhAoMAFUtABrG\nm1EUi4BuIpIrInWAIUCsFssaPZZFbm4upaWlVmAYY3zn5U7jvziN4k/hfHkPB45W1d8lnLnIqTjD\nlGQCU1T1ThG5GEBVJ4lIa+BDoDGwF9gOHBbZrnKg32mY9GefNRM0Vb3T8FJoNAVuBfq5m97BqVZK\nmwF9rNAwfrPPmgmalFVPqeomVR2rqke5y5XpVGAYU5MF/VmBIMcf5NgT4aX31DHAjUBu2PGqqkek\nMC5jjDFpyEv11HLgGuBznHYFAEIP5aUDq54yfrPPmgmaVPae+lFVX1bVb1W1MLTEH6KpiksvvZTb\nb7896efNyMjg22+/Tfp5051NHWtMYrwUGreKyBQRGSYiZ7vLWSmP7ACXm5tL3bp12bix/NiPRx55\nJBkZGWVjJz3yyCPcfPPNVcojLy+P+vXrk5WVVbYsXLgw4di9GD16NHXr1iUrK4umTZty0kkn8cUX\nX3h6beTkTvGq6PU33HAD//rXv6p03nQU9Hr1IMcf5NgT4aXQGAX0wBlY8Lfucnoqg6oJRITOnTvz\nzDPPlG377LPP2L17d1JHh33ooYfYvn172dK7d++knNtL3tdddx3bt29n3bp1dOzYkTFjxsR1Dqvu\nMSb9eCk0fgUco6qjVHVMaEl1YDXBiBEjePLJJ8vSU6dO5fe//325L8vRo0dzyy23AM4vm/bt2/P3\nv/+dVq1a0bZtW5544omE49i6dSu///3vadmyJbm5ufztb38ri6FTp0589NFHAPznP/8hIyODpUud\nMSWnTJnC735X+eM69erV49xzzy13p/Hqq69y5JFH0qRJEzp27FhuRr/jjz8ecIaDCb87+ve//81h\nhx1G06ZNyc/P32/IeC8OtKljg/xEMgQ7/iDHnggvhcZ7OEOXmyTr06cP27ZtY9myZZSWljJ9+nRG\njBhR7pjIEV6///57tm3bxrp165gyZQqXXXYZW7dujZmHl1/rY8eOZfv27axcuZL58+fz5JNP8vjj\njwPOf4zQbfj8+fPp0qUL8+fPL0tX9B8nlPfOnTt55plnyt3lNGrUiGnTprF161ZeffVVHnnkEWbO\nnAnAO++8AziFWejuaObMmdx555289NJLFBUV0b9/f4YNG1bpe4tkU8cak6DQfAWxFmAZUAwsBz5z\nl08re111Ls7b2F+s7WX7x5OUpSpyc3P1f//7n95+++16ww036OzZs3XgwIFaUlKiIqKrVq1SVdXR\no0frzTffrKqq8+bN0/r162tpaWnZeVq2bKkLFy6MmseAAQO0QYMGmp2drdnZ2Xr00UeX7RMR/eab\nb7SkpETr1KmjS5cuLds3adIkzcvLU1XVKVOm6KBBg1RVtXv37jplyhQdOnSoqqp26tRJlyxZEjXv\nUaNGab169TQ7O1szMjK0c+fO+uOPP8a8HldeeaX++c9/VlXVlStXqoiUe5/5+fk6ZcqUsnRpaak2\naNBAv/vuu/3OFe31IePGjdMRI0aUO27t2rVl+3v16qXTp09XVdVDDz1U586dW7Zv3bp1Wrt27ajn\nreyzlirz5s3zJd9kCXL8QY5dtewzG/f3rZfpXvNTUlqlAR3nb525iDBy5Ej69+/PypUr96uaiqZZ\ns2blxqAKn+o02vkfeOABzj///JjnKyoqori4mE6dOpVt69ixY9kMf8cffzzXXHMNGzZsoLS0lHPP\nPZfx48ezatUqtm7dGnM0YRHh2muv5bbbbmP16tWccsopPPnkk1x11VUALFy4kOuvv54vvviCn3/+\nmT179jB48OCYca5atYorr7ySq68uP4Hj2rVrE56i1qaONcY7L0+EF0ZbqiG2GqFjx4507tyZ2bNn\nc9ZZ0TulJathPJrmzZtTu3btcsMlf/fdd7Rv3x6Arl270qBBAx544AEGDBhAVlYWrVu35rHHHqN/\n//4VnjtUAHbo0IGJEycyYcIEtm/fDsB5553HmWeeyZo1a9iyZQuXXHJJWW+naO+3Y8eOPPbYY+Wm\ncd25cyd9+vSJ6/0eaFPHBr1ePcjxBzn2RNiwqWlgypQpvPXWW9SvX3+/fbqvCq5KKnttZmYmgwcP\n5qabbmLHjh2sWrWKf/zjH+XaVgYMGMCDDz7IgAEDAOc/S3jaS74nn3wyXbt25eGHHwZgx44d5OTk\nUKdOHT744AOefvrpsi/0Fi1akJGRwTfffFP2+ksuuYQ77riDL7/8EnDaO55//vkK35tNHWtM8lmh\nkQY6d+7MUUcdVZauaMrUeO86Kpr6NeSBBx6gYcOGdO7cmf79+zN8+PBy3WMHDBjAjh07yno1RaZj\nnT8y72uvvbZsfvKHH36Yv/71rzRu3JgJEyYwZMiQsuMaNGjATTfdRL9+/cjJyeGDDz7gzDPP5Lrr\nrmPo0KE0adKEww8/nDlz5lT43hs1akSDBg1o0KABDRs25K233op76thBgwYxcOBAGjduTN++ffng\ngw8qzLO6Bf1ZgSDHH+TYE+F5utd0ZsOIGL/ZJExVE+T4gxw7pHBo9CCwQsP4zT5rJmhSOfaUMcYY\nA/hcaIhIvogsE5GvReS6GMdMdPd/IiJHVneMxqSzoNerBzn+IMeeCN8KDRHJBB7EeQ7kMGCYiHSP\nOOY0oKuqdgMuAh6p9kCNMcaU8a1NQ0T6AuNUNd9NXw+gqneFHfMoME9Vp7vpZcAAVf0+4lzWpmF8\nZZ81EzRBbNNoB6wOS69xt1V2TPsUx2WMMSYGL8OIpIrXn2WRJWHU140ePZrc3FzAGR011vAWxqRa\nqK471B0zlenwevXqyM/iZ7+Y0yUeL/EWFBSUG/2hKvysnuoDjA+rnroB2Kuqd4cd8yhQoKrPummr\nnjJpyZ7TqJogxx/k2CGY1VOLgG4ikisidYAhQOQYDS8Dv4eyQmZLZIFhUuedd97h0EMPrdY8v/vu\nO7Kysqyw9yjIX1oQ7PiDHHsifCs0VLUEuByYA3wJTFfVpSJysYhc7B7zGvCtiKwAJgF/9CveVHji\niSc4/PDDadiwIW3atOGPf/xjhXNjpFrkvOH9+/dn2bJlKckrLy+PKVOm7Le9Y8eObN++PaWDNBpj\nqs7X5zRUdbaqHqKqXVX1TnfbJFWdFHbM5e7+Hqr6kX/RJtd9993H9ddfz3333ce2bdt4//33WbVq\nFb/+9a8pLi5Oen6lpaWejquuX/jRxqYy8Qv6swJBjj/IsSfCngj3wbZt2xg/fjwPPvggAwcOJDMz\nk06dOvHcc89RWFjItGnTAGdq0nPOOYehQ4fSuHFjjj76aD799NOy86xbt46zzz6bli1b0rlzZx54\n4IGyfaHXjhw5kiZNmjB16lQ+/PBD+vbtS05ODm3btmXs2LFlBVRo8MEePXqQlZXF888/T0FBQbm5\nKnJzc7nvvvvo0aMH2dnZDB06lD179pTtv+eee2jbti3t27dn8uTJ+925eBGagjU0THpeXh5//etf\nOe6442jcuDGnnHIKGzduLDv+/fff59hjjyUnJ4eePXuWzSpojEmRqszclG4LVZy5zy+zZ8/WWrVq\nRZ0BbtSoUTps2DBVdWaZq127ts6YMUNLSkr03nvv1YMOOkhLSkq0tLRUjzrqKJ0wYYIWFxfrt99+\nq507d9Y5c+aUe+3MmTNVVXX37t26ePFiXbhwoZaWlmphYaF2795d77///rK8Q7P5hcybN0/bt29f\nls7NzdXevXvr+vXrddOmTdq9e3d99NFHy95T69at9csvv9Rdu3bp8OHDNSMjo9z5wuXl5ZWbiS8k\ncta9AQMGaNeuXfXrr7/W3bt3a15enl5//fWqqrpmzRpt1qyZzp49W1VV33zzTW3WrFmFMwSmSrp+\n1oyJhSrO3Fez7zREkrPEqaioiObNm5ebES6kdevWFBUVlaV/9atfcdZZZ5GZmclVV13FTz/9xIIF\nC/jwww8pKiri5ptvplatWhx00EH84Q9/4Nlnny177bHHHsugQYMAqFevHkcddRS9evUiIyODTp06\ncdFFF8X9y/yKK66gdevW5OTkcPrpp/Pxxx8D8Nxzz3H++efTvXt36tevz6233pqUqi4RYcyYMXTt\n2pV69eoxePDgsjynTZvGaaedRn6+M7nkySefzK9+9Stee+21hPM1xkRXswsN1eQscWrevDlFRUVl\nVTDh1q9fT4sWLcrSoRn0wPkCbd++PevWreO7775j3bp15OTklC133nknP/zwQ9TXAixfvpzf/va3\ntGnThiZNmnDTTTeVq+rxInxq1Pr167Nz586yuMOrsiLzTkRknuHTsT7//PPlrsG7777Lhg0bkpZ3\nugt6vXqQ4w9y7Imo2YWGT/r27UvdunWZMWNGue07duzg9ddf56STTirbtnr1vgfi9+7dy5o1a2jX\nrh0dOnTgoIMOKjcV6bZt25g1axYQvaH50ksv5bDDDmPFihVs3bqVv/3tb1ELrqpo06ZNuVjD11Ol\nY8eOjBw5stw12L59O3/5y19SnrcxNZUVGj5o0qQJ48aNY+zYscyZM4fi4mIKCwsZPHgwHTp0YOTI\nkWXHLl68mJdeeomSkhLuv/9+6tWrR58+fTjmmGPIysrinnvuYffu3ZSWlvL555+zaNEiIHovqB07\ndpCVlUWDBg1YtmwZjzxSfvzHVq1alZti1YtQPoMHD+bxxx9n2bJl7Nq1iwkTJlT62uLi4nLTsZaU\nlFSYR6QRI0bwyiuv8MYbb1BaWspPP/1EQUEBa9eujes9BFnQnxUIcvxBjj0RVmj45Nprr+WOO+7g\nmmuuoUmTJvTp04dOnToxd+5cateuDTh3C2eccQbTp0+nadOm/Oc//+HFF18kMzOTzMxMZs2axccf\nf0znzp1p0aIFF110Edu2bSt7beSdxr333svTTz9N48aNueiiixg6dGi5Y8aPH8+oUaPIycnhhRde\nqLRbbPj+/Px8rrjiCk444QQOPvhg+vbtC0DdunVjvv7SSy8tm461QYMGnH/++VHzjDX9bfv27Zk5\ncyZ33HEHLVu2pGPHjtx3331Ju3syxuzPZu5LY7feeisrVqzgqaee8juUuC1dupTDDz+cn3/+OWqD\n/4HGhhGpmiDHH+TYIZjDiJhKBK3Ae+mll9izZw+bN2/muuuuY9CgQTWiwDCmJrH/0WksaE9NP/bY\nY7Rq1YquXbtSu3bt/dpMTPIF+ZcuBDv+IMeeCKueMiYJ7LNmgsaqp4ypgYL+rECQ4w9y7ImwQsMY\nY4xnVj1lTBLYZ80ETVWrp/yc7rVaBKkh2Rhj0p0v1VMi0lRE3hSR5SLyhohkxzju3yLyvYh8VpV8\nqjKCY3Uv8+bN8z0Giz855/JD0OvVgxx/kGNPhF9tGtcDb6rqwcBcNx3N40B+tUXlg9CIrUFl8fvL\n4vdPkGNPhF+FxiBgqrs+FTgz2kGq+g6wubqC8sOWLVv8DiEhFr+/LH7/BDn2RPhVaLRS1e/d9e+B\nVj7FYYwxJg4pawgXkTeB1lF23RSeUHVmjEtVHOmusLDQ7xASYvH7y+L3T5BjT4QvXW5FZBmQp6ob\nRKQNME9VD41xbC7wiqoeXsH5amyhY4wxVaUB6nL7MjAKuNv997+JnKwqb9wYY0z8/GrTuAv4tYgs\nB05004hIWxF5NXSQiDwDvAccLCKrRWSML9EaY4wBDpAnwo0xxlSPwIw9JSL5IrJMRL4WketiHDPR\n3f+JiBxZ3TFWpLL4RSRPRLaKyBJ3udmPOKPx8pBlml/7CuNP52sPICIdRGSeiHwhIp+LyBUxjku7\nv4GX2NP5+otIPRFZKCIfi8iXInJnjOPS7tqDt/jjvv5+P5Hr8UnbTGAFkAvUBj4Gukcccxrwmrve\nG3jf77jjjD8PeNnvWGPE3x84Evgsxv60vfYe40/ba+/G1xro6a43Ar4KyuffY+zpfv0buP/WAt4H\njgvCtY8j/riuf1DuNHoBK1S1UFWLgWeBMyKOKXtgUFUXAtkiki7Pf3iJHyAtG/S18ocs0/nae4kf\n0vTaA6jqBlX92F3fASwF2kYclpZ/A4+xQ3pf/13uah2cH4CbIg5Jy2sf4iF+iOP6B6XQaAesDkuv\ncbdVdkz7FMfllZf4FTjWvb19TUQOq7boEpfO196LwFx7twv6kcDCiF1p/zeoIPa0vv4ikiEiH+M8\niDxPVb+MOCStr72H+OO6/kEZ5dZra31kaZkurfxe4vgI6KCqu0TkVJxuyAenNqykStdr70Ugrr2I\nNAJeAK50f7Xvd0hEOm3+BpXEntbXX1X3Aj1FpAkwR0TyVLUg4rC0vfYe4o/r+gflTmMt0CEs3QGn\nNK/omPbutnRQafyquj10G6mqs4HaItK0+kJMSDpf+0oF4dqLSG1gBjBNVaM915S2f4PKYg/C9QdQ\n1a3Aq8CvInal7bUPFyv+eK9/UAqNRUA3EckVkTrAEJwHBMO9DPweQET6AFt03/hWfqs0fhFpJeJM\n/iEivXC6Q0ere0xH6XztK5Xu196NbQrwpareH+OwtPwbeIk9na+/iDQXd+oGEakP/BpYEnFYWl57\n8BZ/vNc/ENVTqloiIpcDc3Aacqao6lIRudjdP0lVXxOR00RkBbATSJsHAb3ED5wDXCoiJcAuYKhv\nAUcQ5yHLAUBzEVkNjMPpBZb21x4qj580vvaufsAI4FMRCf2HvxHoCGn/N6g0dtL7+rcBpopIBs6P\n7KdUdW5QvnvwED9xXn97uM8YY4xnQameMsYYkwas0DDGGOOZFRrGGGM8s0LDGGOMZ1ZoGGNMwIiH\nQUTDjv172GCEX4lIZUPqVHw+6z1ljDHBIiL9gR3Ak1rBrKZRXnc5zgCSf6hq3nanYZJOREaLyAMp\nPP8V7jDPT1VnvqkkIn1E5LEkn3O8iFydzHPGmX+0oU68vvZ0cacQ8Pt9pKNog3CKSBcRmS0ii0Tk\nbRE5JMpLzwOeSSTvQDzcZwIn1bevlwInqeq6as43lU4FZif5nH5fjyrnr6qvAK8kep4a5jHgYlVd\nISK9gYeBk0I7RaQTzvQMbyWSid1pmP24w50sE5HH3TrQ/4jIQBF5V0SWi8gx7nFNReS/7uiYC0Rk\nv9tkEWkhIi+IyAfucqy7fUBYPetH4gxoF/naq0TkM3e50t32KNAZeF1E/hQl/NCkP8tF5K9h5xoh\nzmQ0S0TkUfcJWURkh4jcLs4kNQtEpKW7fUnYsktE+otIQ7cueaEb8yD32NEi8qL7K2+5iNwdlu9A\nEXlPRBaLyHMi0jDGZT8R+F/E+88TkfnuNf5GRO4SkZHudfxURDqH/b3ecv8O/xORDpEn9/Ir1D1n\nY3FsFJGR7vYnReRkEenkvnaxu/R197dxty9x/1b9ws6537WNyDPqZ0gCfNfoB/f/T1/geXGevH8U\nZy6TcEOB5zXRNonqnhDElvRfcH6NFAO/wBm9cxHO0CfgzB3wkrv+AHCLu34CsMRdHw084K4/DfRz\n1zvijEEEzng9fd31BkBmRAxHA58C9YGGwOdAD3ffSqBplLhHA+uAHKAe8Jl7nu5ufpnucQ8DI931\nvcBv3PW7gZsiznk6MB/nrvwOYLi7PRtnQqEGbr7fAFlAXaAQZ7js5u5r67uvuS50vSLyaA68FWV7\nHk4VRCucuRDWAuPdfVcA/3DXXwl7P2PC/j7jgKvc9blAV3e9NzA3Sn6P4Ewo9EvgA2CSu325+3eo\nD9R1t3UDPnTXrwZudNczgEZerm0cn6FxwNV+/79ItwXn/+ln7npjYF0lx38E9Ek0X6ueMrGsVNUv\nAETkC/b9Cv4c58MKzrhCZwGo6jwRaSYiWRHnORnoLlI2cnSW+2v7XeAfIvIf4EVVjRwV9Dh3+243\nhheB44FPKon7DVXdHPaa44BSnMJjkRtHfWCDe/zPqvqqu74YZ0A33Nd3A+4B8tQZP2wgcLqIXOMe\nUhenIFScL+Ht7uu+dK9RDnAY8J6bbx3gvSgxD8QZlyyaD9Ud/E6csY1Cx32O8yUL0Ac4012f5sZc\nxr3ex+L8Cg1trhMlr3dwrvEqnALkIhFpC2xW1d3iDK39oIj0wLmm3dzXfQD8W5zRbP+rqqG/Ucxr\nG8bLZ8hUQlW3ichKETlHVV8Q5w99uKp+CiAihwI5qvp+onlZoWFi2RO2vhf4OWw9/HNT2TwCAvRW\n1Z8jtt8tIrOA3wDvisgpqvpVxHnCzy1Rzh0pWt6hbVNV9cYorykOWy97b+7t/nTgD1p+xNKzVPXr\ncpk49cfh16uUfdfoTVU9r5K484H7YuyL/DvsCVuv6O8QLgPni7+yuavfBi7HuVO6CfgdzmB2b7v7\n/wysV9WRIpIJ/AROo6w4vXl+CzwhIn9X1aeIcW2jSNu5KNKV7D8I51+B4cAj4szxXRunwftT9yVD\nSLABPMTaNEwi3sH5oCIiecCPuv8EO2/gVKXgHtfT/beLqn6hqvcAHwKRdezvAGeKSH33l/KZ7raK\nCPBrEckRZxjoM4D/w6maOUdEWrh5NxWRjpWc69/A46r6bti2ORHvJfQlHO0LW3HmY+4nIl3c4xu6\ndy/7AnZ+ER4R9uu8Kt5j38ikw9n3JS843eq3AytF5JxQniJyxH4Bq67BqSrrqqorca7dNWHna8y+\nO7Tf44zYjHstf1TVyTjDoFdWOIXz8hlK26lg/aKqw1S1rarWUdUOqvq4OtNJn6qqPVX1F6p6e9jx\nt8b40RQ3KzRMLJG/9jTK+njgaBH5BKe+f1TY/tAxVwC/chs6vwAucrdf6TaafoJzF1Ou55CqLgGe\nwKn6eB/4V9gXa6xfouoePwOnGusFVf1IVZcCNwNvuPm9wb5Gwsj3pe6X4NnA+bKvMfwoYALOBDWf\nisjnwK1R3m/4eyjCqZt/xs33PfYvHI9m//kZysXjYd9YYIybx3DgyijHDAcuEGfaz89x2qaieR+n\nDQOcQqOt+y84bUGj3HMcgvOcADjVZB+LyEfAucA/w/Kv7L2Mp/LPUEXXwVQze7jPGB+JyE3A16r6\nnN+xGOOFFRrGGGM8s+opY4wxnlmhYYwxxjMrNIwxxnhmhYYxxhjPrNAwxhjjmRUaxhhjPLNCwxhj\njGf/H4+Djc3FFZ59AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa623ef0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Steam circulation rate is 6.81e-04 kmol/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.3: Page 292"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.3\n",
+ "# Page: 292\n",
+ "\n",
+ "print'Illustration 8.3 - Page: 292\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "# Since tower is a tray device:\n",
+ "# Following changes in notation is made:\n",
+ "# L1 to LNp\n",
+ "# L2 to L0\n",
+ "# X1 to XNp\n",
+ "# X2 to X0\n",
+ "# G1 to GNpPlus1\n",
+ "# G2 to G1\n",
+ "# Y1 to YNpPlus1\n",
+ "# Y2 to Y1\n",
+ "# x1 to xNp\n",
+ "# x2 to x0\n",
+ "# y1 to yNpPlus1\n",
+ "# y2 to y1\n",
+ "# From Illustration 8.2:\n",
+ "yNpPlus1 = 0.02;\n",
+ "Y1 = 0.00102;\n",
+ "y1 = Y1/(1+Y1);\n",
+ "GNpPlus1 = 0.01075;# [kmol/s]\n",
+ "x0 = 0.005;\n",
+ "m = 0.125;# [m = y_star/x]\n",
+ "Ls = 1.787*10**(-3);# [kmol/s]\n",
+ "Gs = 0.01051;# [kmol/s]\n",
+ "XNp = 0.1190;\n",
+ "LNp = Ls*(1+XNp);# [kmol/s]\n",
+ "ANp = LNp/(m*GNpPlus1);\n",
+ "X0 = x0/(1-x0);\n",
+ "L0 = Ls*(1+X0);# [kmol/s]\n",
+ "G1 = Gs*(1+Y1);# [kmol/s]\n",
+ "A1 = L0/(m*G1);\n",
+ "A = (ANp*A1)**0.5;\n",
+ "# From Eqn. 5.55:\n",
+ "Np = (math.log((yNpPlus1-(m*x0))/(y1-(m*x0))*(1-(1/A))+(1/A)))/math.log(A);\n",
+ "print\"Absorber\\n\"\n",
+ "print\"From Analytical Method, no. of theoretical trays required is \\n\",round(Np,4)\n",
+ "# From Fig. 8.13 (Pg292):\n",
+ "Np = 7.6;\n",
+ "print\"From Graphical Method, no. of theoretical trays required is \\n\",Np\n",
+ "\n",
+ "# Stripper\n",
+ "SNp = 1/ANp;\n",
+ "S1 = 1/A1;\n",
+ "# Due to relative nonconstancy of the stripping factor,graphical method should be used.\n",
+ "print\"Stripper\\n\"\n",
+ "# From Fig. 8.11 (Pg 289):\n",
+ "Np = 6.7;\n",
+ "print\"From Graphical Method, no. of theoretical trays required is \\n\",Np\n",
+ "# From Fig. 5.16 (Pg 129):\n",
+ "Np = 6.0;\n",
+ "print\"From Fig. 5.16, no. of theoretical trays required is \\n\",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.3 - Page: 292\n",
+ "\n",
+ "\n",
+ "Absorber\n",
+ "\n",
+ "From Analytical Method, no. of theoretical trays required is \n",
+ "7.7085\n",
+ "From Graphical Method, no. of theoretical trays required is \n",
+ "7.6\n",
+ "Stripper\n",
+ "\n",
+ "From Graphical Method, no. of theoretical trays required is \n",
+ "6.7\n",
+ "From Fig. 5.16, no. of theoretical trays required is \n",
+ "6.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 102
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.4: Page 295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.4\n",
+ "# Page: 295\n",
+ "\n",
+ "print'Illustration 8.4 - Page: 295\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "#****Data****#\n",
+ "# a = CH4 b = C5H12\n",
+ "Tempg = 27.0;# [OC]\n",
+ "Tempo = 0.0;# [base temp,OC]\n",
+ "Templ = 35.0;# [OC]\n",
+ "xa = 0.75;# [mole fraction of CH4 in gas]\n",
+ "xb = 0.25;# [mole fraction of C5H12 in gas]\n",
+ "M_Paraffin = 200.0;# [kg/kmol]\n",
+ "hb = 1.884;# [kJ/kg K]\n",
+ "#********#\n",
+ "\n",
+ "Ha = 35.59;# [kJ/kmol K]\n",
+ "Hbv = 119.75;# [kJ/kmol K]\n",
+ "Hbl = 117.53;# [kJ/kmol K]\n",
+ "Lb = 27820;# [kJ/kmol]\n",
+ "# M = [Temp (OC) m]\n",
+ "M = numpy.array([[20 ,0.575],[25 ,0.69],[30 ,0.81],[35, 0.95],[40, 1.10],[43, 1.25]]);\n",
+ "# Basis: Unit time\n",
+ "GNpPlus1 = 1.0;# [kmol]\n",
+ "yNpPlus1 = 0.25;# [kmol]\n",
+ "HgNpPlus1 = ((1-yNpPlus1)*Ha*(Tempg-Tempo))+(yNpPlus1*(Hbv*(Tempg-Tempo)+Lb));# [kJ/kmol]\n",
+ "L0 = 2.0;# [kmol]\n",
+ "x0 = 0.0;# [kmol]\n",
+ "HL0 = ((1-x0)*hb*M_Paraffin*(Templ-Tempo))+(x0*hb*(Templ-Tempo));# [kJ/kmol]\n",
+ "C5H12_absorbed = 0.98*xb;# [kmol]\n",
+ "C5H12_remained = xb-C5H12_absorbed;\n",
+ "G1 = xa+C5H12_remained;# [kmol]\n",
+ "y1 = C5H12_remained/G1;# [kmol]\n",
+ "LNp = L0+C5H12_absorbed;# [kmol]\n",
+ "xNp = C5H12_absorbed/LNp;# [kmol]\n",
+ "# Assume:\n",
+ "Temp1 = 35.6;# [OC]\n",
+ "Hg1 = ((1-y1)*Ha*(Temp1-Tempo))+(y1*(Hbv*(Temp1-Tempo)+Lb));# [kJ/kmol]\n",
+ "\n",
+ "# Eqn. 8.11:\n",
+ "Qt = 0;\n",
+ "def f30(HlNp):\n",
+ " return ((L0*HL0)+(GNpPlus1*HgNpPlus1))-((LNp*HlNp)+(G1*Hg1)+Qt)\n",
+ "HlNp = fsolve(f30,2);\n",
+ "\n",
+ "def f31(TempNp):\n",
+ " return HlNp-(((1-x0)*hb*M_Paraffin*(TempNp-Tempo))+(x0*hb*(TempNp-Tempo)))\n",
+ "TempNp = fsolve(f31,35.6);\n",
+ "# At Temp = TempNp:\n",
+ "mNp = 1.21;\n",
+ "yNp = mNp*xNp;# [kmol]\n",
+ "GNp = G1/(1-yNp);# [kmol]\n",
+ "HgNp = ((1-yNp)*Ha*(TempNp-Tempo))+(yNp*(Hbv*(TempNp-Tempo)+Lb));# [kJ/kmol]\n",
+ "# Eqn. 8.13 with n = Np-1\n",
+ "def f32(LNpMinus1):\n",
+ " return LNpMinus1+GNpPlus1-(LNp+GNp)\n",
+ "LNpMinus1 = fsolve(f32,2);# [kmol]\n",
+ "\n",
+ "# Eqn. 8.14 with n = Np-1\n",
+ "def f33(xNpMinus1):\n",
+ " return ((LNpMinus1*xNpMinus1)+(GNpPlus1*yNpPlus1))-((LNp*xNp)+(GNp*yNp))\n",
+ "xNpMinus1 = fsolve(f33,0);# [kmol]\n",
+ "\n",
+ "# Eqn. 8.15 with n = Np-1\n",
+ "def f34(HlNpMinus1):\n",
+ " return ((LNpMinus1*HlNpMinus1)+(GNpPlus1*HgNpPlus1))-((LNp*HlNp)+(GNp*HgNp))\n",
+ "HlNpMinus1 = fsolve(f34,0);# [kJ/kmol]\n",
+ "def f35(TempNpMinus1):\n",
+ " return HlNpMinus1-(((1-xNpMinus1)*hb*M_Paraffin*(TempNpMinus1-Tempo))+(xNpMinus1*hb*(TempNpMinus1-Tempo)))\n",
+ "TempNpMinus1 = fsolve(f35,42);# [OC]\n",
+ "\n",
+ "# The computation are continued upward through the tower in this manner until the gas composition falls atleast to 0.00662.\n",
+ "# Results = [Tray No.(n) Tn(OC) xn yn]\n",
+ "Results = numpy.array([[4.0 ,42.3 ,0.1091 ,0.1320],[3 ,39.0, 0.0521 ,0.0568],[2 ,36.8 ,0.0184 ,0.01875],[1 ,35.5, 0.00463 ,0.00450]]);\n",
+ "\n",
+ "plt.plot(Results[:,0],Results[:,3]);\n",
+ "plt.grid('on');\n",
+ "xlabel('Tray Number');\n",
+ "ylabel('mole fraction of C5H12 in gas');\n",
+ "plt.show();\n",
+ "plt.plot(Results[:,0],Results[:,1]);\n",
+ "plt.grid('on');\n",
+ "xlabel('Tray Number');\n",
+ "ylabel('Temperature(OC)');\n",
+ "plt.show();\n",
+ "\n",
+ "# For the required y1\n",
+ "Np = 3.75;\n",
+ "print\"The No. of trays will be \",Np"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.4 - Page: 295\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXfP9x/HXRygqYkrt21BLq5aJJVKE0VoiIlFLI9ZQ\nmiK24qe2JtTe2JeKWmKPotUgEUEmooiEjCALQUgQUZpUrEnm8/vje0ZurlnO3Dtn7j1n3s/H4z7m\nnnO/59zPx5H5zvl+z/f7NXdHRESkOcuUOgAREUkHVRgiIhKLKgwREYlFFYaIiMSiCkNERGJRhSEi\nIrEkWmGYWXczm2Zmb5nZWQ18/lMze8HMvjaz0xv4vIOZTTKzR5OMU0REmpdYhWFmHYAbgO7AFkBf\nM/tZXrFPgZOAwY2c5hRgCqDBIiIiJZbkHUYXYIa7z3T3hcAwoHduAXf/xN0nAgvzDzaz9YAewK2A\nJRiniIjEkGSFsS4wK2d7drQvrquBM4G61gxKREQKk2SFUXAzkpn1BOa6+yR0dyEiUhaWTfDcHwDr\n52yvT7jLiGMnoJeZ9QBWADqZ2V3ufmRuITNT34aISAHcvcV/jCd5hzER2NTMKs3sB0AfYHgjZZcK\n3N3Pcff13X0j4BDgmfzKIqdsZl8DBw4seQzKT/m1x/yynJt74X9nJ3aH4e6LzGwAMAroANzm7lPN\nrH/0+RAzWwuYAHQC6szsFGALd1+Qf7qk4ixnM2fOLHUIiVJ+6Zbl/LKcWzGSbJLC3UcCI/P2Dcl5\nP4elm60aOsdYYGwiAYqISGwa6V3G+vXrV+oQEqX80i3L+WU5t2JYMe1ZpWZmnub4RURKwczwMuv0\nliLV1NSUOoREKb90y3J+Wc6tGKowREQkFjVJiYi0M2qSEhGRRKnCKGNZb0dVfumW5fyynFsxVGGI\niLQjX39d+LHqwxARaScWLYKDD4ZHHlEfhoiINKKuDo49Fr76qvBzqMIoY1lvR1V+6Zbl/LKWmzv8\n4Q/w1lvw8MOFnyfRuaRERKT0LroIxoyBmhpYaaXCz6M+DBGRDLv+erjuOhg3DtZaK+wrdByG7jBE\nRDLqnnvgiiuWriyKoT6MMpa1dtR8yi/dspxfFnJ79FE44wwYNQoqK1vnnLrDEBHJmJoa+O1v4fHH\nYYstWu+86sMQEcmQiROhRw944AHYffeGy2guKRGRdm7qVNhvP/jb3xqvLIqhCqOMZaEdtSnKL92y\nnF8ac3vvPdh7b7jsMujdO5nvUIUhIpJyH38Me+4Jp58ORx2V3PeoD0NEJMXmzQvNT717w6BB8Y4p\ntA9DFYaISEp9+WVohurcGa69FixmFaBO7wxKYztqSyi/dMtyfmnI7dtv4aCDYKON4Jpr4lcWxUi8\nwjCz7mY2zczeMrOzGvj8p2b2gpl9bWan5+xf38zGmNkbZva6mZ2cdKwiImmweDEceSQstxzcdhss\n00Z/+ifaJGVmHYDpwB7AB8AEoK+7T80pszqwIbA/8F93vzLavxawlrvXmllH4GVg/7xj1SQlIu2K\nO5xwAkybBiNHwgortPwc5dok1QWY4e4z3X0hMAxY6oEvd//E3ScCC/P2z3H32uj9AmAqsE7C8YqI\nlLXzzguD8/71r8Iqi2IkXWGsC8zK2Z4d7WsRM6sEOgPjWyWqlEhDO2oxlF+6ZTm/cs1t8GD4xz/C\nnUWnTm3//UnPJVV0e1HUHPUQcEp0p7GUfv36URnNrFVRUUFVVRXV1dXAkoue1u3a2tqyikf5Kb/2\nlF+5bZ95Zg133w0TJ1bz4x+37PiamhqGDh0K8N3vy0Ik3YfRFRjk7t2j7bOBOne/vIGyA4EF9X0Y\n0b7lgMeAke5+TQPHqA9DRDLvoYfg5JPDpIKbbVb8+cq1D2MisKmZVZrZD4A+wPBGyi4VvJkZcBsw\npaHKQkSkPXjySTjxRBgxonUqi2IkWmG4+yJgADAKmAI84O5Tzay/mfWH8DSUmc0CTgPOM7P3o2ao\nnYHDgd3NbFL06p5kvOWm/pYyq5RfumU5v3LJ7YUX4LDDwjrcVVWljqYN1sNw95HAyLx9Q3LezwHW\nb+DQ59DAQhFppyZPhv33h7vugl12KXU0gaYGEREpMzNmwG67wVVXQZ8+rX/+cu3DEBGRFvjgA9hr\nL/jTn5KpLIrRbIVhZh2jEduY2eZm1it6ekkSVi7tqElRfumW5fxKldunn4bK4ne/g/79SxJCk+Lc\nYTwLLG9m6xI6r48AhiYZlIhIe7NgQVhadd994azvzbpXHprtwzCzSe7e2cxOAlZ09yvM7FV336Zt\nQmwyNvVhiEjqff019OwZZp695ZbkZ55NtA/DzH4BHAY83pLjRESkaYsWQd++sOqqcPPNbTNNeaHi\n/OI/FTgb+Ke7v2FmPwHGJBuWQLbbiEH5pV2W82ur3Orq4LjjwkJId98NHTq0ydcWrNlxGO4+Fhib\ns/02oLUpRESK4A5nnAHTp8Po0bD88qWOqHlx+jDWAP4P2AJYMdrt7v7LhGNrlvowRCStLroI/v53\nGDsWfvSjtv3uJPsw7gWmARsDg4CZhDmiRESkADfeCEOHwqhRbV9ZFCNOhbGau98KfOvuY939aKDk\ndxftQZbbiEH5pV2W80syt3vvhcsuC81Qa6+d2NckIs5cUt9GP+eYWU/gQyBFdaKISHl49FE4/XR4\n+unwCG3axOnD2A8YR5gg8HqgE2GNi8amKW8z6sMQkbQYOxYOOggefxy6dCltLIX2YWjyQRGRhL3y\nCnTvDvffD7/6VamjSbDT28yuN7Prop/17/9sZr0LC1XiynIbMSi/tMtyfq2Z27RpYbqPIUPKo7Io\nRpxO7xWAKuBN4C1gG0Lz1G/NTCvhiYg04v33Ye+94dJL4de/LnU0xYvThzEe2DlaPQ8zW5awuNEu\nwGvu/rPEo2w8NjVJiUhZmjsXunWD44+HU08tdTRLS3IcRgXQMWe7I7BqVIF83dIvFBHJuvnzQ59F\nnz7lV1kUI06FcQUwyczuMLOhwCTgL2a2EvBUksG1d1luIwbll3ZZzq+Y3L78EvbbD3beGS64oPVi\nKgdx5pK6zcxGAl0AB8519w+ij89MMjgRkTRZuBAOPhg22ACuvba8Z54thB6rFRFpBXV1cPjhYSGk\nhx+G5cp4XdJC+zDijPQWEZEmuMOAAfDhhzByZHlXFsXQQkhlLMttxKD80i7L+bU0t/PPh/HjYfhw\nWHHF5sunVdwV9zqY2TpmtkH9K+Zx3c1smpm9ZWbfW6XWzH5qZi+Y2ddmdnpLjhURKQdXXgkPPQRP\nPAGdOpU6mmTFGYdxEjAQmAssrt/v7ls1c1wHYDqwB/ABMAHo6+5Tc8qsDmwI7A/8192vjHtsVE59\nGCJSMrffDhdeCOPGwfrrlzqa+JLswzgV2NzdP23hubsAM9x9JoCZDQN6A9/90nf3T4BPzGzflh4r\nIlJKDz8M550HNTXpqiyKEadJ6n3gfwWce11gVs727Ghf0sdmRpbbiEH5pV2W82sut9Gjwwjuxx+H\nzTZrm5jKQZw7jHeBMWb2OEvWxnB3v6qZ44ppK4p9bL9+/aisrASgoqKCqqoqqqurgSUXPa3btbW1\nZRWP8lN+7Sm/xrZXWKGaQw+F88+vYf58gPKKr6Htmpoahg4dCvDd78tCxOnDGBS9rS9ohAqjyTGM\nZtaVsG5G92j7bKDO3S9voOxAYEFOH0asY9WHISJt6bXXYI894I47oEePUkdTuMT6MNx9UEERhXW/\nNzWzSsIqfX2Avo2UzQ+8JceKiCTunXdgn33gmmvSXVkUo9E+DDO7Nvr5aAOvZlfbiyYnHACMAqYA\nD7j7VDPrb2b9o3OvZWazgNOA88zsfTPr2NixxSabNvW3lFml/NIty/nl5/bhh7DnnqGTu287/tO1\nqTuMu6KfVzbwWax2IHcfCYzM2zck5/0cwtoasY4VEWlrn30W1rQ49lj4/e9LHU1paS4pEZFGLFgQ\n+iy6dYMrrsjOZIJa01tEpBV98w307Akbbgh/+1t2KgtIdgElKZEstxGD8ku7LOf39NM1HHoorLJK\nWIs7S5VFMTRbrYhIDncYPBgWL4ZHH4UOHUodUflotEkqWrv7WGA9YKS7/zvns/Pc/aK2CbFxapIS\nkdbkDmecAc8/H0Zzd+zY/DFplEST1BBgV+BT4Dozyx3ZfWBLv0hEpNxdcgk8+WSY8iOrlUUxmqow\nurj7oe5+NdAVWNnM/mFmK7RRbO1eltuIQfmlXdbyu+mmMPvsk0/C5Mk1pQ6nLDVVYXy3ZpS7L3T3\n44BXgacB1b0ikhn33RfuLkaPhrXXLnU05aupPox7gXuiAXS5+48F/uruJV+EUH0YIlKsxx+HY46B\np5+GLbcsdTRtQ+MwRERa6Nln4aCDwtNQO+5Y6mjaTpuOwzCzPQs5Tloma23E+ZRfuqU9v1deCZXF\nffd9v7JIe25JKXTg3u2tGoWISBuaPh323RduvjlM/SHxNNWH8WgTx/3K3X+YTEjxqUlKRFrq/ffD\n3FCDBsHRR5c6mtJIYj2MXYAjgAU5+5ywdkU7au0TkayYOzdMU37qqe23sihGU01S44Ev3b0m5zXW\n3WuA6W0TXvuW9XZU5Zduactv/nzo3h1+8xs47bSmy6Ytt7bS6B1G/fKojXzWLZlwRERa31dfQa9e\nsNNOcOGFpY4mvfRYrYhk2sKF8Otfh5ln774bltEc3a3fh2FmC1iysl5930U9d/dOLf0yEZG2VFcH\n/fqF90OHqrIoVqP/+dy9o7uv7O4rA2/Xv49eqizaQNbbUZVfupV7fu5w8skwezY8+CAs14K5Kco9\nt1LRehgikkl/+hO88AI88wysuGKpo8mGWH0YZjbJ3Tu3QTwtoj4MEWnIVVfBLbfAuHGw+uqljqb8\nJNGHcSBL+i5WMbMDWNKP4e7+j4IiFRFJ0B13wLXXqrJIQlNdQPtFr57Asznve0bvJWFZb0dVfulW\njvn94x9wzjlhTYsNNij8POWYWzloahxGv2JPbmbdgWuADsCt7n55A2WuA/YBvgT6ufukaP/ZwOFA\nHfAacLS7f1NsTCKSTU89Bb//PTzxBGy+eamjyabY4zDMrBvQBXjN3Z+MUb4DYUT4HsAHwASgr7tP\nzSnTAxjg7j3MbEfgWnfvamaVwDPAz9z9GzN7ABjh7nfmfYf6MESE8eOhZ094+GHYdddSR1P+Wn16\nczN7Kef9ccD1hJX2BkZ//TenCzDD3We6+0JgGNA7r0wv4E4Adx8PVJjZmsD/gIXAD81sWeCHhEpH\nRGQpr78OvXuHcRaqLJIVa4lWoD+wp7tfAOwFHBbj3OsCs3K2Z0f7mi3j7p8BVwLvAx8C89z9qRjf\nmSlZb0dVfulWDvm9806YH+rqq8N05a2lHHIrR02Nw+hgZqsSnozq4O6fALj7F2a2KMa547YVfe+2\nyMx+ApwKVALzgQfN7DB3vze/bL9+/aisrASgoqKCqqoqqqurgSUXPa3btbW1ZRWP8lN+5ZTfww/X\ncNJJcP751fTtW/r/HuW8XVNTw9ChQwG++31ZiKbWw5jJ0lOD7OzuH5nZysA4d69q8sRmXYFB9ZMY\nRs1Ydbkd32Z2M1Dj7sOi7WnAbkA14Y7m2Gj/EUBXdz8x7zvUhyHSDn32Gey2GxxyCJx7bqmjSZ9W\n78Nw90p33yh6bezuH0UfLQZ+HePcE4FNzazSzH4A9AGG55UZDhwZJdCV0PT0MaGzvKuZrWhmRug4\nn9KizEQkkxYsCM1Pe+0VHqGVttNUp3eX6CmmfNXAqs2d2N0XAQOAUYRf9g+4+1Qz629m/aMyI4B3\nzGwGMAQ4IdpfC9xFqHQmR6e8JW5SWVF/S5lVyi/dSpHfN9/AAQfAFlvA4MFgLf4bOZ6sX7tCNdWH\ncTnQ0JpUU4A7gN2bO7m7jwRG5u0bkrc9oJFjrwCuaO47RKR9WLwYDjsMVl4ZhgxJrrKQxjXVhzHR\n3bdv5LPX3H2rRCOLQX0YIu2DOxx3HLz3Hjz2GCy/fKkjSrck1vSuaOIzzf0oIm3CHc48M4y3eOop\nVRal1NQ4jKfN7OKo0xkAM1vGzP5MGIUtCct6O6ryS7e2yu+yy2DUKBgxAjp2bJOvzPy1K1RTdxin\nA7cCb5tZbbRvG0JH9LFJByYicvPNcOutYebZVZt91EaS1uxcUtEgup8TxmJMcfe32yKwONSHIZJd\n998fmqKefRY23rjU0WRLoX0YsScfLEeqMESyacQIOPpoePpp2HLLUkeTPa0+cE9KL+vtqMov3ZLK\nb9w4OOoo+Ne/SldZZP3aFaqpgXsbtWUgIiKTJsGBB8J990HXrqWORvI1NQ7jZXffzsyecfdftnFc\nsahJSiQ73nwzzA91441hNLckJ4lxGB3M7FxgMzP7A0vPKuvuflVLv0xEpCGzZoW5oS6+WJVFOWuq\nD+MQwkSDHYCVo1fHnPeSsKy3oyq/dGut/D75BPbcE046CY45plVOWbSsX7tCNbWm9zTgMjObHE0S\nKCLSqv73v7AA0kEHwemnlzoaaU6ccRgVwECgfvHDGuBCd5+fbGjNUx+GSHp99RXss0+YefbGGzWZ\nYFtK8rHa2wlrbB8M/Ab4nDBbrYhIQRYuhD59YJ114IYbVFmkRZwK4yfuPtDd33H3t919EPCThOMS\nst+OqvzSrdD86upCX0VdHdx5JyxThqPBsn7tChXnUn1lZt3qN8xsF+DL5EISkaxyh1NOCdOU//3v\nsNxypY5IWiJOH0YVYfW7VaJd/wWOcvdXE46tWerDEEmXgQNh+HCoqYFVVmm2uCQk8bmkzGwVgHLo\n7K6nCkMkPa65Bv761zD1xxprlDqa9i3xuaTcfX45VRbtQdbbUZVfurUkv6FD4eqrYfTodFQWWb92\nhWpqpLeISNEeeQTOPhvGjIENNih1NFIMTW8uIol5+mno2xdGjoTttit1NFIvibmkck++M1CZU97d\n/a6WfpmItB8vvRQqiwcfVGWRFc32YZjZPcBfgJ2B7aPXDgnHJWS/HVX5pVtT+b3xBvTqBbffHmag\nTZusX7tCxbnD2A7YopC2HzPrDlxDmMDwVne/vIEy1wH7EMZ29HP3SdH+CsKa4vXLwx7j7i+2NAYR\naVvvvhvmh7rySujZs9TRSGuKMw7jQeAUd/+wRSc26wBMB/YAPgAmAH3dfWpOmR7AAHfvYWY7Ate6\ne9foszuBse5+u5ktC6yU/5SW+jBEystHH0G3bnDaaXDiiaWORhqTZB/G6sAUM3sJ+Cba5+7eq5nj\nugAz3H1mFOAwoDcwNadML+DO6ITjzazCzNYEvga6uftR0WeLAD3SK1LG/vtf2Htv6NdPlUVWxRmH\nMQjYH7gYGAxcGb2asy4wK2d7drSvuTLrARsBn5jZHWb2ipn9zcx+GOM7MyXr7ajKL91y8/viC9h3\nX9hjDzj33NLF1Fqyfu0K1ewdhrvXmNlahI5uB15y97kxzh23rSj/tsijuLYlNFdNMLNrgD8Cf8o/\nuF+/flRWVgJQUVFBVVUV1dXVwJKLntbt2trasopH+Sm/hvL7xS+qOeAA6NSphp49waw84tP2ku2a\nmhqGDh0K8N3vy0LE6cP4DeEpqbHRrl2BM939wWaO6woMcvfu0fbZQF1ux7eZ3QzUuPuwaHsasBuh\nEnnB3TeK9u8C/NHde+Z9h/owREpo8WI45JDw8+9/h2U1FDgVkuzDOA/Yof6uwsxWB54GmqwwgInA\npmZWCXwI9AH65pUZDgwAhkUVzDx3/zj6nllmtpm7v0noOH8jVkYi0ibc4fe/D30Xjz2myqI9iNOH\nYcAnOduf8v1mpO+JOqoHAKOAKcAD7j7VzPqbWf+ozAjgHTObAQwBTsg5xUnAvWb2KrA1cEmMWDOl\n/pYyq5Rfuh16aA2TJ8M//wkrrFDqaFpX1q9doeL8TfAEMMrM7iNUFH2AkXFO7u4j88u6+5C87QGN\nHPsqGiAoUnbc4dJL4cUXYeJEWHnlUkckbSVOH4YBBwC7EDqkx7n7P9sgtmapD0Okbf373/B//xee\nihoxIiyxKumT+HoY5UgVhkjbmDYtzDj78svw5z/D4YdDhw6ljkoK1errYZjZv6OfC8zs87zX/4oJ\nVuLJejuq8it/H30E/fuH0ds77QTTp8NRR4XKIgv5NSbLuRWj0T4Md985+tmx7cIRkXLwv//BX/4C\nN90ERx8dKopVVy11VFJqcfow7nb3I5rbVwpqkhJpXd9+C0OGwMUXw157heanDTcsdVTS2pIch7Fl\n3hctS5jBVkQywj2sW3HOObDJJjBqFGyzTamjknLTVB/GOWb2ObBVbv8FMJcw4E4SlvV2VOVXHmpq\nYMcd4fLLw93FE0/EqyzSkl8hspxbMZrqw7gEuMTMLnX3s9swJhFpA6+9Bn/8I0yZEpqgDjkElokz\nlFfarTh9GAcAz7j7vGi7Aqh290faIL4mqQ9DpOVmzYI//Qkefzw0QR1/PCy/fKmjkrbU6o/V5hhY\nX1kARO8HtfSLRKS05s0LdxRVVbD22vDWW3DqqaosJL64c0nl05CdNpD1dlTl1za++Qauugo22wz+\n8x+YPBkuuQRWWaW485ZLfknIcm7FiPOU1MtmdhVwI6HyOBF4OdGoRKRodXVw331w3nmw1VYwZgz8\n/OeljkrSLE4fRkfgfOBX0a7RwEXu/kXCsTVLfRgiDRs9Gs46C5ZbLgzA23XXUkck5URzSYkIkyaF\niuLdd8OMsgceCNbiXwuSdYl1epvZGmY22MxGmNmY6PVMYWFKS2S9HVX5tZ6ZM+GII2CffWD//cOj\nsgcdlGxlkeXrl+XcihGn0/teYBqwMeHpqJmE1fREpMQ+/RROPx222w423jg8+XTCCaEpSqS1xenD\neMXdtzWzye6+dbRvortv3yYRNh2bmqSkXfrqK7juOhg8ONxJDBwIa61V6qgkLZKcS+rb6OccM+tJ\nWJ/7Ry39IhEp3uLFcNddoYLYYQd47jnYfPNSRyXtRZwmqYui0d2nA2cAtwKnJRqVANlvR1V+8bmH\nFe6qquC222DYMHj44dJWFlm+flnOrRhN3mGYWQdgM3d/DJgHVLdFUCKyxIQJYVnUOXPgssugVy89\n+SSlEacPY4K779BG8bSI+jAky95+O8z19NxzMGhQWMho2TiNyCLNSHIuqefM7AYz62Zm25rZdma2\nbQExikgMc+fCSSeFKce33hrefBOOO06VhZRenAqjM/Bz4ELgSmBw9FMSlvV2VOW3tC++gIsugi22\nCE1OU6fCuefCSislE1+xsnz9spxbMZpaQOmU6O157r57/ivOyc2su5lNM7O3zOysRspcF33+qpl1\nzvusg5lNMrNHY2ckkjKLFsEtt4TJAV9/HcaPD4/Mrr56qSMTWVqjfRhm9qq7b2Nmk9y9c4OFmjpx\n6DCfDuwBfABMAPq6+9ScMj2AAe7ew8x2BK519645n/+BsBzsyu7eq4HvUB+GpJY7/OtfcPbZYQzF\nFVeER2VFkpbEOIwpZvYWsK6ZvZb3mdcP4mtCF2CGu8+MAhwG9Aam5pTpBdwZnXC8mVWY2Zru/rGZ\nrQf0AC4G/hA7I5EUeP758OTT/Plw5ZVhSg89+STlrtEmKXfvC3QDZgA9gf1yXt/7a78B6wKzcrZn\nR/vilrkaOBOoi/FdmZT1dtT2mN/06XDAAWE51GOPhdpa6NEjnZVFlq9flnMrRpPPXbj7HKC5O4lG\nD49ZLv+fikUjyue6+yQzq27q4H79+lFZWQlARUUFVVVVVFeHQ+ovelq3a2tryyoe5Vd4fh99BP37\n1zB2LJx7bjX33gvjx9cwblz5xKvrl93tmpoahg4dCvDd78tCJDa9uZl1BQa5e/do+2ygzt0vzylz\nM1Dj7sOi7WmEwYEnA0cAi4AVgE7Aw+5+ZN53qA9Dytrnn4f1KG68Efr1C+MqVlut1FFJe5fkOIxC\nTQQ2NbNKM/sB0AcYnldmOHAkfFfBzHP3Oe5+jruv7+4bAYcAz+RXFiLlbOHCUElsumlYm+Lll0Nf\nhSoLSbPYFYaZ/bAlJ3b3RcAAYBQwBXjA3aeaWX8z6x+VGQG8Y2YzgCHACY2driXfnRX1t5RZlcX8\n3OHBB8NYiqFDa3jiCbj7biiiFaBsZfH61ctybsVoduyome1EmHBwZWB9M6sCfufujf1y/467jwRG\n5u0bkrc9oJlzjAXGNvddIqU2dmx48mnhQrjpprAmRVVVqaMSaT1x5pJ6CTgI+Ff9eAwze8PdS76c\nvPowpBy8/jr88Y/wxhthpHbfvrBMko29IkVKtA/D3d/P27WopV8kkjWzZ8Nvfwu//CX86lcwbRoc\ndpgqC8muOP9rv29mOwOY2Q/M7AyWHnwnCcl6O2pa85s/P4zO3mYbWGONMDngaafB8ssvXS6t+cWV\n5fyynFsx4lQYxwMnEgbUfUCYjPDEJIMSKUfffAPXXBPmfPr4Y3j1Vbj0UqioKHVkIm0jsXEYbUF9\nGNIW6urCCnfnnReefrrsMthyy1JHJVK4Vp9Lysyub+I4d/eTW/plImnz1FNw1lnQoQPccQfstlup\nIxIpnaaapF4mDL6bGL3Pf0nCst6OWs751dbC3nvD8ceHJ6DGj295ZVHO+bWGLOeX5dyK0egdhrsP\nzd02s5XDbl+QdFAipfLee3D++fDkk6EJ6ne/gx/8oNRRiZSHOOMwtgLuAuonNfgEOMrdX084tmap\nD0Nay2efwSWXhGanE0+EM86ATp1KHZVIMpIch3EL8Ad338DdNwBOj/aJpN5XX4WFizbfHBYsCIPw\nLrxQlYVIQ+JUGD909zH1G+5eA5TpKsPZkvV21FLmt3gxDB0aKooXX4Rx4+Dmm2HttVvvO3T90ivL\nuRWj2bmkgHfN7HzgbsLaFYcB7yQalUhC3OGJJ8KTTyuvDPffDzvvXOqoRNIhTh/GqsAFQP0/q3GE\ndS7+m3BszVIfhrTExIlhcsAPPwxjKXr3TudKdyLFKrQPQwP3JPPefhvOPReefRYGDYJjjoFl49xb\ni2RUYp3eZraDmf3TzCaZ2WvRa3JhYUpLZL0dNen8PvkETj4ZunSBn/8c3norPCbbVpWFrl96ZTm3\nYsT5p3OkIHvXAAANxUlEQVQvcAbwOlCXbDgixfviizDn09VXh6nGp04NkwSKSHHi9GH8293LsltQ\nTVKSa9GiMI5i0KDQkX3JJbDJJqWOSqT8tPpcUjkuMLPbgKeAb6N97u7/aOmXiSTBHYYPD1OOr7EG\n/POfoRlKRFpXnHEYRwHbAN2BntFrvySDkiDr7aitkd8LL8Cuu4ZO7b/8BcaMKZ/KQtcvvbKcWzHi\n3GFsD/xUbT9STqZPh3POgZdeCiOzjzwyzCgrIsmJ04dxBzDY3d9om5DiUx9G+zNnDlxwATz4YJjv\n6ZRTYMUVSx2VSLok2YfxC6DWzN4Fvon2ubtv3dIvEynU55/D4MFwww1w1FHhDmO11Zo/TkRaT5w+\njO7ApsBehL6L/YBeSQYlQdbbUePkt3Ah3HRTWBb17bfh5ZfhqqvSUVno+qVXlnMrRrMVhrvPbOgV\n9wvMrLuZTTOzt8zsrEbKXBd9/qqZdY72rW9mY8zsDTN73cy0wl874g4PPRQG3D3yCIwYAffcA5WV\npY5MpP1KdGoQM+sATAf2AD4AJgB93X1qTpkewAB372FmOwLXuntXM1sLWMvda82sI2GVv/3zjlUf\nRgaNGxfmfPr6a7j8cthrr1JHJJItSa6HUYwuwIzormQhMAzonVemF3AngLuPByrMbE13n+PutdH+\nBcBUYJ2E45USmjIFevWCI44Iixi9/LIqC5FyknSFsS4wK2d7drSvuTLr5RYws0qgMzC+1SMsY1lv\nR63P74MP4Nhjobo6vKZNg8MPh2WS/r8zYe3l+mVRlnMrRtLTsMVtL8q/NfruuKg56iHglIbWE+/X\nrx+VUcN2RUUFVVVVVFdXA0suelq3a2tryyqe1t5+4YVa/vY3eOKJao47Dm6/vYaOHWGFFcojPl2/\n9p1flrZramoYOnQowHe/LwuRdB9GV8LaGd2j7bOBOne/PKfMzUCNuw+LtqcBu7n7x2a2HPAYMNLd\nr2ng/OrDSBH3cDcxcSKMHw+33w49eoSBd+uvX+roRNqPJMdhFGMisGnUpPQh0Afom1dmODAAGBZV\nMPOiysKA24ApDVUWUv7mzAmVQ+6rrg522AG23x6eegq22qrUUYpIXIm2Erv7IkJlMAqYAjzg7lPN\nrL+Z9Y/KjADeMbMZwBDghOjwnYHDgd2jtTgmmVn3JOMtN/W3lGnwn//AqFFw0UWw//6w3nrhkdjr\nrw9jKX77W5gwAT7+GB5/PIzW/vTTmlKHnag0Xb9CZDm/LOdWjMSXknH3kcDIvH1D8rYHNHDccyTf\nKS8FmDcvPMGUe+fw2Wew3XbhzuHQQ8Pguo020hKoIlmiJVqlSZ9/DpMmhbuD+sphzhzo3DlUDvWv\nTTZJ/1NNIu2F1vSWon35JdTWLn3n8N57sPXWS1cOP/2pZoYVSbNyHbgnRUiyHfWbb8Jdw1//GvoX\ntt4afvzjsAb2lCmw225w//2h+emFF0JfxFFHhX6J1qosst5OrPzSK8u5FSPxPgwpvYUL4fXXl75z\nmDo1TOi3/fbhqaXjjw9PLC2/fKmjFZFypSapjFm0KIyUrq8YJkwIlUVl5dLNSlVVWkdCpL1SH0Y7\nVFcHb7659J1DbS2su+7SlUPnztCxY6mjFZFyoT6MDMptR3UP60E88ACceSbsvjv86EdhpPTw4bDO\nOmHE9OzZYXGhe++F006Dbt3Kt7LIejux8kuvLOdWDPVhlCF3eP99GDs2DIabODGMe1hppSV9Dmef\nHcY9pGEhIRHJBjVJlYEPP/z+FBrLLLNkCo3ttw+Vw1prlTpSEckC9WGkxNy5368cvv12yZ1DfQWx\nzjoaJS0iyVAfRhn67DMYPRouvRQOPBA23DA8ynrVVWGQ3JFHwvPPwyefwBNPwJ//DL17h05rs+y3\noyq/dMtyflnOrRjqw2gl8+fDK68sfecwdy5su224Yzj44LDc6MYbawoNEUknNUkV4IsvwvxKuZXD\n7NmwzTZLP8662WaaQkNEyo/6MBLy1VcwefLSk++98w5sueXSlcMWW8Cyul8TkRRQH0Yr+Pbb8Pjq\nkCFw3HFhwNtqq4VpMyZPhp12grvuCvMrvfQS3HQTHHNMmIcpicoi6+2oyi/dspxflnMrRrv9m3jR\nojDJXu6dwxtvwE9+suSu4dhjQ2WgKTRERNpJk9TixWH0c26fw6uvhnWkcx9nraoKg+NERLJMfRiR\nurowhUb9xHsTJ4YO6jXXXLrPYdttoVOnEgUuIlJC7bbCeOcdX+rO4eWXYZVVlr5z2HZbWHXVUkfb\ncjU1NVRXV5c6jMQov3TLcn5Zzg0KrzBS34exyy5L7hrOOCNMobHGGqWOSkQke1J/h5Hm+EVESkGP\n1YqISKISrTDMrLuZTTOzt8zsrEbKXBd9/qqZdW7JsVmX9WfBlV+6ZTm/LOdWjMQqDDPrANwAdAe2\nAPqa2c/yyvQANnH3TYHfAX+Ne2x7UFtbW+oQEqX80i3L+WU5t2IkeYfRBZjh7jPdfSEwDOidV6YX\ncCeAu48HKsxsrZjHZt68efNKHUKilF+6ZTm/LOdWjCQrjHWBWTnbs6N9ccqsE+NYERFpQ0lWGHEf\nX9IyQY2YOXNmqUNIlPJLtyznl+XcipHYY7Vm1hUY5O7do+2zgTp3vzynzM1AjbsPi7anAbsBGzV3\nbLRfz9SKiBSg3AbuTQQ2NbNK4EOgD9A3r8xwYAAwLKpg5rn7x2b2aYxjC0pYREQKk1iF4e6LzGwA\nMAroANzm7lPNrH/0+RB3H2FmPcxsBvAFcHRTxyYVq4iINC/VI71FRKTtlP1IbzO73cw+NrPXmijT\n4OC/NGguPzOrNrP5ZjYpep3X1jEWw8zWN7MxZvaGmb1uZic3Ui6V1zBOfmm9hma2gpmNN7NaM5ti\nZpc2Ui6t167Z/NJ67XKZWYco9kcb+Tz+9XP3sn4B3YDOwGuNfN4DGBG93xF4sdQxt3J+1cDwUsdZ\nRH5rAVXR+47AdOBnWbmGMfNL7TUEfhj9XBZ4EdglK9cuZn6pvXY5OfwBuLehPFp6/cr+DsPdxwH/\nbaJIQ4P/1myL2FpDjPwgxY8eu/scd6+N3i8AphLG2eRK7TWMmR+k9Bq6+5fR2x8Q+hM/yyuS2msH\nsfKDlF47ADNbj1Ap3ErDebTo+pV9hRFDQ4P/1itRLElwYKfodnGEmW1R6oAKFT311hkYn/dRJq5h\nE/ml9hqa2TJmVgt8DIxx9yl5RVJ97WLkl9prF7kaOBOoa+TzFl2/LFQY8P2aM0s9+a8A67v7NsD1\nwCMljqcgZtYReAg4JfpL/HtF8rZTdQ2byS+119Dd69y9ivBLZFczq26gWGqvXYz8UnvtzKwnMNfd\nJ9H0XVLs65eFCuMDYP2c7fWifZng7p/X3za7+0hgOTNL1fqBZrYc8DBwj7s39A8u1dewufyycA3d\nfT7wOLB93kepvnb1Gssv5dduJ6CXmb0L3A/80szuyivTouuXhQpjOHAkfDe6fJ67f1zakFqPma1p\nZha970J4FLqhdtayFMV+GzDF3a9ppFhqr2Gc/NJ6Dc3sx2ZWEb1fEdgTmJRXLM3Xrtn80nrtANz9\nHHdf3903Ag4BnnH3I/OKtej6lf0SrWZ2P2G6kB+b2SxgILAcND34Ly2ayw84CDjezBYBXxIufJrs\nDBwOTDaz+n+M5wAbQCauYbP5kd5ruDZwp5ktQ/jj8m53f9piDL5NiWbzI73XriEOUMz108A9ERGJ\nJQtNUiIi0gZUYYiISCyqMEREJBZVGCIiEosqDBERiUUVhoiIxKIKQzLLzFbLmZb6IzObHb1/xcyK\nHoMUTX1dF03BUL/vMTPbrdhzR+eamaJRxdIOlP3APZFCufunhMkAMbOBwOfuflX952bWwd0XF/k1\ns4Fzgcfqv5bWm0vJKXCmVDNb1t0XtVIcIoDuMKR9MTMbamY3m9mLwOVmtoOZPR/ddfzbzDaLCo41\ns21yDnzOzLbKO58DrwLzzGyPBr7suzsEM9vezMZE7weZ2Z1m9mxU5gAzG2xmk81sZN7dz/9F+8eb\n2U+i41c3s4fM7KXotVPOee82s+eIpqwWaU2qMKS9ccJ6Fb9w9zOAaUA3d9+WMC3LJVG524B+AFEl\nsry756+KWP/X/yVAQyuxNXWnsRGwO2E9gnuA0e6+NfAVsG9OuXnR/huA+rmqrgWudvcuhKkrbs0p\n/1PgV+5+WBPfLVIQNUlJe/SgL5kTpwK4y8w2IfyCXy7a/xBwvpmdCRwD3NHYydx9nJlhZjvH/H4H\nRrr7YjN7HVjG3UdFn70GbJhT9v7o5zDC2gYAewA/i+bEA1jZzFaKzjvc3b+JGYdIi6jCkPboy5z3\nfwaedvdfm9mGQA2EldjMbDSwP3AwsG0z57wYOB9YmLNvEUvu4lfIK/9t9D11ZpZ7TB2N/7usr+QM\n2NHdv839MKpAvsw/SKS1qElK2rtOwIfR+/yZOm8FrgNeitZLaJS7jybcrWyds3smS9ZXODBnf3Md\n2Zbzs0/0vg/wfPT+SeDk7wrn9LWIJEkVhrRHuX0LVwCXmtkrhDWdv/vM3V8B5tN4c1T+E1EXs/Ty\nlhcA15rZBMLdhjdyXH5fR265H5nZq8BJwGnR/pOB7S0sG/oG0L+Jc4m0Gk1vLtIIM1uHsM7z5qWO\nRaQc6A5DpAFmdiTwImExJBFBdxgiIhKT7jBERCQWVRgiIhKLKgwREYlFFYaIiMSiCkNERGJRhSEi\nIrH8P0wZNkRyHEDjAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5b6320>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVOWVx/HvASHAuHRGSTCB0OqEJCZiu0RFMbTrKKOY\nCGqciLTbuCQSA7iLBjWIuCWGmKCYNOrgEkHFuAWXQjbRjN0Rd8YRHQYlGkVUiAJ95o97G8q2l+rq\nvnWX+n2epx7q3rp165znPtTb933rPa+5OyIiUt66xB2AiIjET42BiIioMRARETUGIiKCGgMREUGN\ngYiIUILGwMy6mlmdmd0fbl9mZn81s3oze8zM+kUdg4iItM6inmdgZmOA3YAt3H2YmW3h7h+Gr50J\n7OzuJ0cahIiItCrSOwMz6wsMBaYBBtDYEIQ2B96NMgYREWnbZhGf/zrgbGDL/J1m9gtgJLAG2Cvi\nGEREpA2R3RmY2WHA39y9jvCuoJG7X+juXwNqCRoMERGJUWRjBmY2keCv//VAD4K7g5nufnzeMV8D\nHnT37zTzfhVNEhEpgrtb20d9VmR3Bu5+gbv3c/ftgB8Cj7v78Wb29bzDjgDqWjlHZh+XXHJJ7DEo\nN+Wn/LL3KFbUYwaNDGiM8goz+wawAXgNOL1EMSTKsmXL4g4hMlnODZRf2mU9v2KVpDFw9xyQC5+P\nKMVniohI4TQDOSY1NTVxhxCZLOcGyi/tsp5fsSKfdFYsM/OkxiYiklRmhidpAFlal8vl4g4hMlnO\nDZRf2mU9v2KpMRAREXUTiYhkibqJRESkaGoMYpLlfsss5wbKL+2ynl+x1BiIiIjGDEREskRjBiIi\nUjQ1BjHJcr9llnMD5Zd2Wc+vWGoMREREYwYiIlmiMQMRESmaGoOYZLnfMsu5gfJLu6zm5w5//GPx\n7y/V4jYiIhKRtWvh5JPhlVeKP4fGDEREUmzFCvj+92GHHeD3v4devTRmICJSVp55BvbcE444AmbM\ngJ49iz+XGoOYZLXfErKdGyi/tMtKfjNmwNCh8Otfw4UXgrX7XuCzIh8zMLOuwF+A5e5+uJldBRwG\nfAq8Bpzg7h9EHYeISBY0NMBFF8Htt8Njj8HAgZ1z3sjHDMxsDLAbsIW7DzOzg4DH3L3BzCYBuPt5\nzbxPYwYiInk+/BBGjoT33oOZM6F3788fk8h5BmbWFxgKTAMMwN3nuHtDeMhioG+UMYiIZMHrr8Pe\newcNwKOPNt8QdETUYwbXAWcDDS28fiLwYMQxJFJW+i2bk+XcQPmlXRrzmzsXBg2CU06BG2+E7t07\n/zMiawzM7DDgb+5eR3hX0OT1C4FP3X1GVDGIiKTdjTfC0UfDrbfC6NEdHyhuSWRjBmY2ERgJrAd6\nAFsCM939eDOrAU4BDnD3f7Twfh81ahSVlZUAVFRUUFVVRXV1NbCpdde2trWt7Sxub9gA995bzZw5\ncOGFOfr1a/74XC5HbW0tAJWVlUyYMKGoMYOSTDozsyHAuPDXRIcA1wBD3P3dVt6jAWQRKUvvvRfc\nDWy2GdxxB1RUFP7eRA4g5zGg8Zv918DmwBwzqzOzG0oUQ6I0tuxZlOXcQPmlXdLze/nlYCLZwIHw\npz+1ryHoiJLUJnL3HJALn3+9FJ8pIpI2Dz0Eo0bBpElw4oml/WzVJhIRiZk7XHstXHNNUHl0n32K\nP1ex3USqWioiEqNPPoHTToO6Oli0CPr3jycO1SaKSdL7LTsiy7mB8ku7JOW3ciXsvz+sXg3z58fX\nEIAaAxGRWNTVwR57wIEHBl1Dm28ebzwaMxARKbG774bTT4cbboCjjurcc2vMQEQk4Roa4LLL4Oab\n4ZFHYNdd445oE3UTxSRJ/ZadLcu5gfJLu7jy+/hjOOYYePhhePrpZDUEoMZARCRyb74JgwdDr17w\nxBPQp0/cEX2exgxERCK0cCGMGAFjxsDYsdEVmmukMQMRkYSprYVzzgn+HTo07mhap26imGS5XzbL\nuYHyS7tS5LdhA4wbB5dfDrlc8hsC0J2BiEin+uADOPbYYGbx4sWw9dZxR1QYjRmIiHSSpUth2DA4\n4AC47jro1q30MSS9hLWISKY99ljwi6GzzoIpU+JpCDpCjUFMstwvm+XcQPmlXWfn5x58+f/oR3Dn\nnXDqqZ16+pLRmIGISJE+/RTOPBMWLAh+Qrr99nFHVDyNGYiIFOHdd4P5A1tuCbfdFvybBBozEBEp\nkSVLgoqjgwbBPfckpyHoCDUGMclyv2yWcwPll3YdzW/27GANgksvhSuugK5dOyeuuEXeGJhZ13Dh\n+/vD7aPM7AUz22BmCSvVJCLSPPfgy/+MM4KF6o87Lu6IOlfkYwZmNgbYDdjC3YeZ2TeBBmAqMNbd\nn23hfRozEJFEWLsWTj4ZXn0V7r0XvvrVuCNqWSLHDMysLzAUmAYYgLu/7O6vRvm5IiKdZcUKGDIk\nWIvgySeT3RB0RNTdRNcBZxPcCUieLPfLZjk3UH5p1578nnkG9twTjjgCZsyAnj2jiytukc0zMLPD\ngL+5e52ZVRdzjpqaGiorKwGoqKigqqqK6urgVI0XNK3b9fX1iYpH29rW9me3H30Upk6t5qaboKIi\nx9y5yYqvcTuXy1FbWwuw8fuyGJGNGZjZRGAksB7oAWwJzHT348PXn0BjBiKSMA0NcNFFcPvtcN99\nMHBg3BG1T+LWM3D3C4ALAMxsCDCusSHIE/EyDyIihfvwQxg5Et57L1iasnfvuCMqnVLOM3AAM/uB\nmf0vsBfwgJk9VMIYEqPxNi+LspwbKL+0aym/11+HvfcOGoBHHy2vhgBK1Bi4+1x3HxY+v8fd+7l7\nT3fv4+6HliIGEZGWzJ0bzCY+5RS48Ubo3j3uiEpPtYlEpKzdeCOMHx/UFzrooLij6bjEjRmIiCTZ\n+vXws5/BnDkwbx4MGBB3RPFSbaKYZLlfNsu5gfJLu1wux3vvwSGHBCuTPfWUGgJQYyAiZebNN4OJ\nZAMHBjWGKirijigZNGYgImXjoYdg1CiYNAlOPDHuaKKhMQMRkRa4BwvUX311sP7APvvEHVHyqJso\nJlnul81ybqD80uaTT4K7gFtugUWLYN26XNwhJZIaAxHJrJUrg4VoVq+G+fOhf/+4I0oujRmISCbV\n1cH3vw81NXDJJdClTP701ZiBiEjo7rvh9NPhhhvgqKPijiYd2mwrzazCzA41s9PN7DQzO8TMtipF\ncFmWtX7ZfFnODZRfkjU0wIQJMGYMPPJI8w1BmvOLUot3Bma2L8HCNJVAHbCCoMroIGCymS0DJrv7\n/OjDFBFp3ccfB11Cy5cHFUf79Ik7onRpcczAzK4FfuvuS1t4fQBwmruPiSQwjRmISIHefDNYjWzg\nQJg6FXr0iDui+BQ7ZqABZBFJtYULYcSIoGto7FiwMl8lpdjGoMUxAzMba2YnN7P/JDM7q70fJJ+V\n5X7LLOcGyi9Jpk8PfjE0bRqMG1dYQ5Cm/EqptV8T/YhgAZqmbgX+C/hlJBGJiLRhwwY491y4917I\n5WDHHeOOKP1aGzN4zt2bXf3TzJ539+9EGpi6iUSkGR98AMceG8wsvusu2HrruCNKlk7vJgrOaZ8b\njzezLxMuYSkiUkpLl8Jee8H228PDD6sh6EytNQZXEaxRXG1mW4SP/YAHgGtKE152ZbnfMsu5gfKL\ny2OPweDBcNZZMGUKdOtW3HmSml/cWhwzcPdbzOwd4FLg2+HuF4Dx7l7wIvZm1hX4C7Dc3Q83s38G\n7gT6A8uAo919VZHxi0jGucNvfgOXXw533gnV1XFHlE2R/7TUzMYAuwFbuPswM5sMvOvuk83sXOCL\n7n5eM+/TmIFImfv0UzjzTFiwAGbPDrqHpHVRjBlgZkPN7Ekz+3v4mGtm/9aOoPoCQ4FpBLOXAYYB\n08Pn04HvtzdoEcm+d9+Fgw+Gt94K5hKoIYhWa/MMTiHoIvo5sH34mABcYmanFnj+6whKWjTk7fuy\nu68Mn68EvtzOmDMhy/2WWc4NlF8pLFkCe+wBgwYFi9FsuWXnnTsJ+SVRa/MMxgCD3f3vefseN7ND\ngQXA1NZObGaHAX9z9zozq27uGHd3M2uxL6impobKykoAKioqqKqqojrsMGy8oGndrq+vT1Q82tZ2\nUrZnz4aRI3P85Cfwi1/EH0/St3O5HLW1tQAbvy+L0do8g5fc/VvtfS3vmInASGA90APYEpgFfBeo\ndve3zWxb4Al3/2Yz79eYgUgZcQ/WJv7Nb2DmzGDRemm/KMYMVptZVTMftDPwYVsndvcL3L2fu28H\n/BB43N1HArOBUeFho4B72xu0iGTL2rVw3HEwaxYsXqyGIA6tNQZjgfvM7OdmdriZDTOzCQRf5mOL\n+KzGP/MnAQeZ2avA/uF22Wm8zcuiLOcGyq+zrVgBQ4YEaxE8+SR89avRfl7Wr1+xWmwMwnUK9gS6\nAjUEf8V3AfZ093nt+RB3n+vuw8Ln77n7ge4+wN0P1hwDkfL1zDPBXcARR8CMGdCzZ9wRlS+VsBaR\nWMyYAT/9Kdx0U1B5VDpHFCWsHzCzo8ysVzOv/ZOZHWNmD7b3A0WkvDU0wAUXwIUXBiUm1BAkQ2tj\nBicAOwF/MbMlZvZnM5tjZksIykt8i00DwdJOWe63zHJuoPw64sMP4cgjYf78YGnKgc3WRY5W1q9f\nsVqrTfQ34GLg4rB6af/wpTfc/e1SBCci2fH66zBsWFB19K67oHv3uCOSfAWNGZhZJfAv7v5o2G3U\n1d3b/HlphwLTmIFIZsydCz/8IZx/flBrqNyXpoxSJLWJwhP/B/BHNs047ovmBohIgW68EY4+Gm65\nBUaPVkOQVG02BsCPgcHAagB3fxX4UpRBlYMs91tmOTdQfoVavz748r/2Wpg3Dw46qFNO22FZv37F\naq02UaNP3P0TC5tzM9sMrXQmIq147z045hjo2hWeegoqKuKOSNrS5piBmV0FrAKOB34CnAG86O4X\nRhqYxgxEUunll+Hww4PH5MmwWSF/ckqnKXbMoJDGoAtwMnBwuOsRYFrU39RqDETS56GHYNSooODc\niSfGHU15impxm80I7gJudPcR4eMmfUt3XJb7LbOcGyi/5rgHYwMnnRSsP5DkhiDr169Yrd7Auft6\nM3vFzPq7+xulCkpE0uOTT+C006CuDhYtgv79236PJE8h3UTzgF2Ap4GPw93eWHgussDUTSSSeCtX\nBjOK+/SB6dNh883jjkiK7SYqZGhnfBHxiEjG1dUFdYVqauCSS6BLIT9Ul8Rq8/K5e665Rwliy7Qs\n91tmOTdQfhCsRHbwwXD11TBhQroagqxfv2K1eWdgZh+xaV5Bd6Ab8JG7d+IS1SKSBg0NcNllcPPN\n8MgjsOuucUcknaVd6xmEPzMdBuzl7udFFhUaMxBJmo8/DrqEli8PfjHUp0/cEUlzIqtNlM/dG9z9\nXuCQ9n6QiKTXm2/CvvtCr17wxBNqCLKokEJ1w/MeR5nZJGBtCWLLtCz3W2Y5Nyi//BYuDMpO//u/\nQ20t9OgRS1idJuvXr1iF/JrocDaNGawHlgFHtPUmM+sBzAW+QDDWcJ+7n29mOwO/A/4pPNePoi6H\nLSLFmT4dzj47aASGDo07GolSIfMMBrv7/Cb79nH3BW2e3KyXu68JZzLPB8YB1wFj3H2emZ0AbOfu\nFzfzXo0ZiMRkwwY491y4916YPRt23DHuiKRQUY4ZXN/MvimFnNzd14RPuwNdgfeBr7v7vHD/o8Dw\nQs4lIqXxwQdBkbm6Oli8WA1BuWixMTCzQWY2FviSmY0xs7Hh4+etva/JObqYWT2wEnjC3V8AXjCz\nxm6mo4B+HUshnbLcb5nl3CDb+b38Muy0U47tt4eHH4att447os6X5evXEa2NGXQHtiD4i36LvP2r\ngRGFnNzdG4AqM9sKeMTMqoETgevNbDwwG/i0pffX1NRQWVkJQEVFBVVVVVRXVwObLmhat+vr6xMV\nj7bLe/u++3JMnw5PPlnNqFFw+OE5FixITnzabnk7l8tRW1sLsPH7shiFjBlUuvuyoj9h03nGA2vd\n/eq8fQOAW919z2aO15iBSMTWroVf/QquuQaOPRbGj4feveOOSjoiytpEa8zsamBHoGe4z919/zYC\n2gZY7+6rzKwncBAwwcx6u/s74QS2i4DftjdoEemYDRvgttuCL/899gh+Pvr1r8cdlcSpkL7//wRe\nBrYHfk7wc9C/FPC+bYHHwzGDxcD97v4Y8O9m9grwErDc3WvbH3b6Nd7mZVGWc4P05zdnDuy2G0yd\nCnfcAXff/dmGIO35tSXr+RWrkDuDrd19mpmNdve5wFwza7MxcPclwOcql7j7r4BftT9UEemI556D\nc86B114LViI78kiwdncmSFYVMmbwlLvvZWZ/JviZ6Qrgj+6+Q6SBacxApFMsXx50Bz30EFx0EZx6\nKnTrFndUEpUoxwwuN7MKYCzwa2BL4Gft/SARKa3Vq+HKK+F3vwsagFdega22ijsqSaq21kDuCgxw\n91XuvsTdq919V3efXaL4MivL/ZZZzg2Sn9+6dTBlCgwYACtWwF//ChMnFt4QJD2/jsp6fsVqtTFw\n9w3AsSWKRUQ6wB1mzYJvfxvuvz9Yb+APf4C+feOOTNKgkDGD6wgWtLmTYA1kI/hp6bORBqYxA5GC\nLVoE48bBRx/BVVcFq5BJeSp2zKCQxiDHpqqlG7n7fu39sPZQYyDStqVL4fzzgxpCl18Oxx0HXbvG\nHZXEKbJCdeE4wX5NH8WFKY2y3G+Z5dwgGfm9+y6MHg2DBgVzBl59FUaN6pyGIAn5RSnr+RWrkMVt\n+pjZzWb2cLi9o5mdFH1oItLU2rVwxRXwzW8G2y+9FNwZ9OzZ+vtE2lJIN9HDwB+AC919oJl1A+rc\n/TuRBqZuIpGNmpaPuOIKlY+Q5kU5z2Abd7/TzM4DcPd1Zra+3RGKSFHmzAlWG+vVKygfsffecUck\nWVRIbaKPzGxjVXMz2wv4ILqQykOW+y2znBuULr/nnoNDDoEzzgjuCBYsKE1DoOtXngppDMYC9wPb\nm9lC4FZgdKRRiZSx5cvhhBOCn4cedhi8+CIMH646QhKtNscMAMI1jL9BMMfgFXdfF3lgGjOQMtO0\nfMS556p8hLRfZGMG4VoEZwCDCeYbzDOz37r7P9ofpog0tW5dUE768svh0EOD8hGaNSylVkg30S0E\nC9tcD0wBvk3QVSQdkOV+yyznBp2XX1LLR+j6ladCfk30bXffMW/7cTN7MaqARMpBfvmIKVNUPkLi\nV8g8g9uA37j7onB7L+DH7j4y0sA0ZiAZpPIRErXIylEAuwMLzOwNM1sGLAR2N7MlZvZcez9QpBxF\nWT5CpDMU0hgcQrD+8RCgOnx+KHA4MCyyyDIuy/2WWc4N2pdfGstH6PqVpzbHDNx9mZl9EeiXf3xb\nJazNrAcwF/gC0B24z93PN7M9CAaiuwHrgTPc/ZniUxBJnqblIxYtUvkISbZCxgwuA2qA/wEaGvcX\nUrnUzHq5+5pwnsJ8YBxwGTDJ3R8xs0OBc5o7l8YMJK3yy0dcfbXKR0hpRVmb6BhgB3f/tL0nd/c1\n4dPuQFfgfeBtoHEqTQXwf+09r0gSPfdc0Aj8z//ApElw5JGaNSzpUciYwQvAF4s5uZl1MbN6YCXw\nhLu/AJwHXGNmbwJXAecXc+60y3K/ZZZzg8/n11g+4qCD4PDD018+otyunwQKuTOYCNSZ2fPAJ+E+\nd/c2B4/dvQGoMrOtgEfMrBq4CBjt7veY2VHA74GDmnt/TU0NlZWVAFRUVFBVVUV1dTWw6YKmdbu+\nvj5R8Wi7/dsffwwLFlQzdSocckiOm2+Gww5LTnzaLo/tXC5HbW0twMbvy2IUMmbwEvBb4Hk2jRm4\nu89t1weZjQfWAhe7+5bhPgNWufvnKrBozECSKr98xCGHwGWXQb9+cUclEohyzOAjd7++iIC2Ada7\n+6qwvtFBwKXAf5vZkLAx2R94tb3nFomDO9xzD5x3Hmy3XVA+Yued445KpHMUMmYwz8yuMLNBZrZr\n46OA921LULqiHlgM3O/ujwL/AUwO918ebpedxtu8LMpibosWweDBMGECnHJKLtMNQRavX76s51es\nQu4MdiWoVrpXk/2t/rTU3ZeE7226/y/AnoUGKBKn5spHzJsXd1Qina+g9QzioDEDidO778Kll8KM\nGTB2LJx1VrJnDYs0iqw2kZn1MbObzezhcHtHMzupmCBFki6N5SNEOkMhYwa1wJ+Br4TbS4GfRRVQ\nuchyv2Uac9uwAaZPh298A/7rv4Ixguuvh969P39sGvNrD+VXnlocMzCzzdx9PbCNu99pZucBuPs6\nM1tfsghFIpZfPuKOO1Q+QspTi2MGZvasu+9qZjlgBDDH3XcJ1zO40t2HRBqYxgwkYiofIVkUxZhB\n48nGAvcB25vZQoIlL0e3P0SRZMha+QiRztBaY9DbzMYQrGFwDzAZeBC4ETgg+tCyLcv9lknNbfVq\nuOCCYH7AttsGC8z85CfQrVv7zpPU/DqL8itPrc0z6Aps0cz+XhHFIhKJpuUj6utVPkKkqdbGDOrc\nfZcSx5P/+RozkA5pWj5i8uTszhoWaRRlbSKR1Fm4MBgc/ugjmDIFDj447ohEkq21MYMDSxZFGcpy\nv2WcuS1dCiNGwDHHwCmnwLPPdn5DkOVrB8qvXLXYGLj730sZiEhHvPsujB4NgwbBbrvBK69ATQ10\n7Rp3ZCLpoNpEkmpr18IvfwnXXAPHHgsXX9z8rGGRcqExAykrGzbAbbfB+PGwxx7BGMGAAXFHJZJe\nhdQmkghkud8y6tzmzAm6gqZODcpH3H13aRuCLF87UH7lSncGkhoqHyESHY0ZSOItXx50Bz34YPDv\nqae2f9awSLmIbD0Dkbh0VvkIEWmbGoOYZLnfsqO5rVsXTBQbMABWrAjKR0ycCFtt1TnxdVSWrx0o\nv3IV6ZiBmfUA5gJfALoD97n7+WZ2J9A45FcBrIqz9IUkQ375iMpKMr3ovEjSRD5mYGa93H2NmW0G\nzAfGufv8vNevJmgMLm/yPo0ZlJH88hFXXaXyESLFSuw8A3dfEz7tTlAJ9b3G18zMgKOB/aKOQ5Jp\n6dJgjeHFi+Gyy2DkSM0aFolD5GMGZtbFzOqBlcAT7v5i3sv7Aivd/bWo40iaLPdbFpLbO++kt3xE\nlq8dKL9yVYo7gwagysy2Ah4xs2p3z4UvHwvMaOm9NTU1VFZWAlBRUUFVVRXV1dXApgua1u36+vpE\nxVOq7T33rOaXv4RJk3Lsvz+89FI1vXsnJz5taztt27lcjtraWoCN35fFKOk8AzMbD6x196vDMYTl\nwK7uvqKZYzVmkCFNy0dMnKjyESJRSOSYgZltA6x391Vm1hM4CJgQvnwg8FJzDYFky5//DOecA716\nBeUj9t477ohEpKmoxwy2BR4PxwwWA/e7+2Pha8cAt0f8+YnVeJuXRY25Pfcc/Ou/wo9/HNwRLFiQ\njYYgy9cOlF+5ivTOwN2XALu28NoJUX62xOedd+CEE1Q+QiRNVJtIOsXq1fDAAzBzJjz+OJx2Gpx7\nbnJmDYuUi2LHDNQYSNHefx9mzw4agFwOBg8Olpw84gjYeuu4oxMpTypUlzJp7bd85x246aZgLKB/\nf7j3Xjj6aHjzzaBb6MQTYcmSXNxhRiqt165Qyq88aT0DadOKFTBrVnAHUFcXNAQnnxxsb7553NGJ\nSGdQN5E0a9myTQ3ASy/BYYfB8OFBzaCePeOOTkRaojED6bBXXw2+/GfOhDfeCPr+hw+HAw6A7t3j\njk5ECqExg5RJQr+lOzz/PEyYAAMHwpAhwapikyfDW2/BtGlw6KHtbwiSkFuUlF+6ZT2/YmnMoMy4\nB/3+M2cGC8mvXRv89X/DDcGEsC7680CkLKmbqAw0NMDTTwdf/jNnBpVBhw8PHt/9rhaVF8mSRNYm\nkvhs2ADz5wdf/rNmBZO/hg8Pfgo6cKAaABH5LHUKxCSKfst162DOnKD8w1e+AmedBV/6UrDvhRfg\n0kuDZSSjbgiy3ier/NIt6/kVS3cGKffJJ8GX/cyZcP/9sMMOwR3AwoXBcxGRQmjMIIXWrIGHHw4a\ngAcfhJ12ChqAI4+Efv3ijk5E4qR5BhmXXwhuzpxg4Hf4cPjBD6BPn7ijE5Gk0DyDlCmk3/L992H6\ndBg2DPr2DVYKGzoUXnsNHn0UTj89mQ1B1vtklV+6ZT2/YmnMIGHeeSf4xc/MmbBoEey/f1AI7pZb\noKIi7uhEJKvUTZQAzRWCGzEimP2rQnAi0h4aM0iZN97YVAdIheBEpLMkbszAzHqY2WIzqzezF83s\nirzXzjSzl8zseTO7MqoYkmbpUpg0CXbfHQYOzPHii3DRRfD220E30BFHZKMhyHqfrPJLt6znV6zI\nxgzc/R9mtp+7rzGzzYD5ZjYY6AYMAwa6+zoz6x1VDHFzDyZ7Nd4BvPNO8PPPyZOD1w44IO4IRUQC\nJekmMrNewFygBrgYmOruj7fxnlR2E7VUCG74cBWCE5HoJbI2kZl1AZ4FdgB+6+4vmNkA4HtmNhH4\nBzDO3f8SZRxRyy8EN2tW8IU/fDjceqsKwYlIOkT6d6q7N7h7FdCXoAGoJmiAvujuewFnA3dFGUNU\nNmyAuXNh9Gj42tfgpJOgVy+4555gbODKK2GPPVpuCLLcb5nl3ED5pV3W8ytWSeYZuPsHZvYAsDuw\nHJgV7n/GzBrMbGt3/3vT99XU1FBZWQlARUUFVVVVVFdXA5suaCm3168H92ruvhvuuivH1ltDTU01\nc+bAypXB8TvvXNj56uvrSx6/trWt7ext53I5amtrATZ+XxYjsjEDM9sGWO/uq8ysJ/AIMAH4F+Ar\n7n5J2GX0qLt/rZn3J2LMoLlCcCNGBAPBKgQnIkmTxDGDbYHp4bhBF+BWd3/MzJ4Efm9mS4BPgeMj\njKEoLRWCu/RSFYITkWyKbMzA3Ze4+67uXuXuA939qnD/Oncf6e47uftu7p6LKob2WL0abr89+Kt/\n222DZSAHDw4mhD35JPz0p53bEDTe5mVRlnMD5Zd2Wc+vWGVdm+j992H27OAOIJeDffcN7gB+9zvY\nZpu4oxOjqv7dAAAH+0lEQVQRKZ2yK0fRXCG44cODchAqBCciaafaRK1QITgRKReJq00UtzfegGuv\nhX32ge98J5gUdtZZ8NZbcOedcNRR8TYEWe63zHJuoPzSLuv5FStTYwZLl24qA/HGG0Hht4suCmoA\nde8ed3QiIsmV6m6ilgrBDR8O3/sebJappk5EpG1lM2agQnAiIi3L9JhBQwM89RSMGxfM+j366KA2\n0G23Bd1B110XzAlIU0OQ5X7LLOcGyi/tsp5fsRLdkTJ3bnAHMGsWbLVV8Nf/PffAwIGqBCoi0pkS\n3U1UVeUbu4C+9a24IxIRSb6yGTMQEZGWZXrMIIuy3G+Z5dxA+aVd1vMrlhoDERFRN5GISJaom0hE\nRIqmxiAmWe63zHJuoPzSLuv5FUuNgYiIaMxARCRLNGYgIiJFi7QxMLMeZrbYzOrN7EUzuyLc/3Mz\nW25mdeHjkCjjSKIs91tmOTdQfmmX9fyKFWlj4O7/APZz9ypgILCfmQ0GHLjW3XcJHw9HGUcS1dfX\nxx1CZLKcGyi/tMt6fsWKvJvI3deET7sDXYH3w+2yLjW3atWquEOITJZzA+WXdlnPr1iRNwZm1sXM\n6oGVwBPu/kL40plm9lczu9nMtBS9iEiMSnFn0BB2E/UFvmdm1cBvge2AKuAt4Jqo40iaZcuWxR1C\nZLKcGyi/tMt6fsUq6U9LzWw8sNbdr87bVwnc7+47NTlWvysVESlCMT8tjXRxGzPbBljv7qvMrCdw\nEDDBzPq4+9vhYT8AljR9bzHJiIhIcaJe6WxbYLqZdSHokrrV3R8zs1vMrIrgV0WvA6dGHIeIiLQi\nsTOQRUSkdGKdgWxmvzezlWb2uW6ivGOuN7Ol4S+PdillfB3VVn5mVm1mH+RNvruo1DEWy8z6mdkT\nZvaCmT1vZqNbOC6V16+Q/FJ+/ZqdENrMcWm9fm3ml+brB2BmXcO472/h9fZdO3eP7QHsC+wCLGnh\n9aHAg+HzPYGn4ow3gvyqgdlxx1lkbn2AqvD55sArwLeycv0KzC+11y+Mv1f472bAU8DgrFy/AvNL\n+/UbA/xnczkUc+1ivTNw93lsmoTWnGHA9PDYxUCFmX25FLF1hgLyg5ROvnP3t929Pnz+EfAS8JUm\nh6X2+hWYH6T0+kGzE0Lfa3JIaq8fFJQfpPT6mVlfgi/8aTSfQ7uvXdIL1X0V+N+87eUE8xWywoG9\nw9u4B81sx7gDKkb48+BdgMVNXsrE9Wslv1Rfv2YmhL7Y5JBUX78C8kvz9bsOOBtoaOH1dl+7pDcG\n8PlWL0sj3s8C/dx9Z+DXwL0xx9NuZrY5cDfw0/Av6M8d0mQ7VdevjfxSff28+QmhTaX2+hWQXyqv\nn5kdBvzN3eto/c6mXdcu6Y3B/wH98rb7hvsywd0/bLyVdfeHgG5m9s8xh1UwM+sGzARuc/fm/iOl\n+vq1lV/ar18jd/8AeADYvclLqb5+jVrKL8XXb29gmJm9DtwO7G9mtzQ5pt3XLumNwWzgeAAz2wtY\n5e4r4w2p85jZl83Mwud7EPzUt7l+zcQJ474ZeNHdf9nCYam9foXkl/Lrt01jTbC8CaF1TQ5L8/Vr\nM7+0Xj93v8Dd+7n7dsAPgcfd/fgmh7X72kU96axVZnY7MATYxsz+F7gE6Abg7lPd/UEzG2pm/w18\nDJwQX7Tt11Z+wAjgdDNbD6whuLBpsQ9wHPCcmTX+J7sA+Bpk4vq1mR/pvn4tTQg9FTJx/drMj3Rf\nv3wO0NFrp0lnIiKS+G4iEREpATUGIiKixkBERNQYiIgIagxERAQ1BiIighoDSSEz2zqv7PBbZrY8\nfP6smXV47kxY2rghnPbfuO9PZjako+cOz7UsJTNdpYzEOulMpBju/neCwnGY2SXAh+5+bePrZtbV\n3Td08GOWAxcCf2r8WDqvLo9TZLVMM9vM3dd3UhwiG+nOQLLAzKzWzH5nZk8BV5rZd81sYXi3sMDM\nBoQHzjWznfPeON/MdmpyPgf+CqwyswOb+bCNf9mb2e5m9kT4/OdmNt3MngyPOdLMrjaz58zsoSZ3\nLeeE+xeb2Q7h+3ub2d1m9nT42DvvvLea2XzCssQinU2NgWSFE6w3MMjdxwEvA/u6+64EZUAmhsfd\nDNQAhA3EF9y96Up0jX+1TwSaW/2qtTuE7YD9COrJ3wbMcfeBwFrg3/KOWxXunwI01j76FXCdu+9B\nUCphWt7x3wQOcPcftfLZIkVTN5FkyR99U32VCuAWM/sXgi/vbuH+u4HxZnY2cCLwh5ZO5u7zzAwz\n26fAz3fgIXffYGbPA13c/ZHwtSVA/7xjbw//vYOgNj3AgcC3wtppAFuY2T+F553t7p8UGIdIu6kx\nkCxZk/f8MuAxd/+BmfUHchCsfmVmc4DvA0cBu7Zxzl8A44F1efvWs+muukeT4z8NP6fBzPLf00DL\n/98aGzAD9nT3T/NfDBuHNU3fJNKZ1E0kWbUlsCJ83rRi4zTgeuDpsNZ9i9x9DsFdxsC83cvYVBt/\neN7+tgaFLe/fY8LnxwALw+d/BkZvPDhvbEMkamoMJEvy+/InA1eY2bME699ufM3dnwU+oOUuoqa/\nHPoFn10ycALwKzN7huAuwVt4X9OxhfzjvmhmfwXOBH4W7h8N7G7BMowvAKe2ci6RTqUS1lJ2zOwr\nBGvifiPuWESSQncGUlbM7HjgKYKFakQkpDsDERHRnYGIiKgxEBER1BiIiAhqDEREBDUGIiKCGgMR\nEQH+H2FRyOkvfEciAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x785c198>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The No. of trays will be 3.75\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.5: Page 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.5\n",
+ "# Page: 299\n",
+ "\n",
+ "print'Illustration 8.5 - Page: 299\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "#****Data****#\n",
+ "# a = NH3 b = H2 c = N2 w = water\n",
+ "P = 2.0;# [bars]\n",
+ "Temp = 30.0;# [OC]\n",
+ "L = 6.38;# [kg/s]\n",
+ "W = 0.53;# [weir length,m]\n",
+ "pitch = 12.5/1000;# [m]\n",
+ "D = 0.75;# [Tower diameter,m]\n",
+ "hW = 0.060;# [weir height,m]\n",
+ "t = 0.5;# [tray spacing,m]\n",
+ "#*******#\n",
+ "\n",
+ "# From Geometry of Tray Arrangement:\n",
+ "At = 0.4418;# [Tower Cross section,square m]\n",
+ "Ad = 0.0403;# [Downspout Cross section,square m]\n",
+ "An = At-Ad;# [square m]\n",
+ "Ao = 0.0393;# [perforation area,square m]\n",
+ "Z = 0.5307;# [distance between downspouts,square m]\n",
+ "z = (D+W)/2.0;# [average flow width,m]\n",
+ "h1 = 0.04;# [weir crest,m]\n",
+ "# From Eqn. 6.34\n",
+ "Weff = W*(math.sqrt(((D/W)**2)-((((D/W)**2-1)**0.5)+((2*h1/D)*(D/W)))**2));# [m]\n",
+ "q = Weff*(1.839*h1**(3/2));#[cubic m/s]\n",
+ "# This is a recommended rate because it produces the liquid depth on the tray to 10 cm.\n",
+ "Density_L = 996;# [kg/s]\n",
+ "Mw = 18.02;# [kg/kmol]\n",
+ "L1 = 6.38/Mw;# [kmol/s]\n",
+ "Ma = 17.03;# [kg/kmol]\n",
+ "Mb = 28.02;# [kg/kmol]\n",
+ "Mc = 2.02;# [kg/kmol]\n",
+ "MavG = (0.03*Ma)+(0.97*(1/4)*Mb)+(0.97*(3/4)*Mc);# [kg/kmol]\n",
+ "Density_G = (MavG/22.41)*(P/0.986)*(273/(273+Temp));# [kg/cubic m]\n",
+ "G = 0.893;# [kg/s]\n",
+ "sigma = 68*10**(-3);# [N/m]\n",
+ "abcissa = (L/G)*(Density_G/Density_L)**0.5;\n",
+ "# From Table 6.2 (Pg169):\n",
+ "alpha = 0.04893;\n",
+ "beeta = 0.0302;\n",
+ "# From Eqn. 6.30\n",
+ "Cf = ((alpha*math.log10(1.0/abcissa))+beeta)*(sigma/0.02)**0.2;\n",
+ "# From Eqn. 6.29\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1.0/2);# [m/s]\n",
+ "# 80% of flooding value:\n",
+ "V = 0.8*Vf;# [m/s]\n",
+ "G = 0.8*G;# [kg/s]\n",
+ "G1 = G/MavG;# [kmol/s]\n",
+ "Vo = V*An/Ao;# [m/s]\n",
+ "l = 0.002;# [m]\n",
+ "Do = 0.00475;# [m]\n",
+ "# From Eqn. 6.37\n",
+ "Co = 1.09*(Do/l)**0.25;\n",
+ "viscosity_G = 1.13*10**(-5);# [kg/m.s]\n",
+ "Reo = Do*Vo*Density_G/viscosity_G;\n",
+ "# At Reynold's No. = Reo\n",
+ "fr = 0.0082;\n",
+ "g = 9.81;# [m/s^2]\n",
+ "# From Eqn. 6.36\n",
+ "def f36(hD):\n",
+ " return (2*hD*g*Density_L/(Vo**2*Density_G))-(Co*(0.40*(1.25-(Ao/An))+(4*l*fr/Do)+(1-(Ao/An))**2))\n",
+ "hD = fsolve(f36,1);\n",
+ "# From Eqn. 6.31;\n",
+ "Aa = (Ao/0.907)*(pitch/Do)**2;# [square m]\n",
+ "Va = V*An/Aa;# [m/s]\n",
+ "# From Eqn. 6.38\n",
+ "hL = 6.10*10**(-3)+(0.725*hW)-(0.238*hW*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "# From Eqn. 6.42\n",
+ "hR = 6*sigma/(Density_L*Do*g);# m\n",
+ "# From Eqn. 6.35\n",
+ "hG = hD+hL+hR;# [m]\n",
+ "Al = 0.025*W;# [square m]\n",
+ "Ada = min(Al,Ad);\n",
+ "# From Eqn. 6.43\n",
+ "h2 = (3/(2*g))*(q/Ada)**2;# [m]\n",
+ "# From Eqn.6.44\n",
+ "h3 = hG+h2;\n",
+ "# since hW+h1+h3 is essentially equal to t/2, flooding will not occur\n",
+ "abcissa = (L/G)*(Density_G/Density_L)**0.5;\n",
+ "V_by_Vf = V/Vf;\n",
+ "# From Fig.6.17, V/Vf = 0.8 & abcissa = 0.239\n",
+ "E = 0.009;\n",
+ "\n",
+ "# At the prevailing conditions:\n",
+ "Dg = 2.296*10**(-5);# [square m/s]\n",
+ "viscosity_G = 1.122*10**(-5);# [kg/m.s]\n",
+ "ScG = viscosity_G/(Density_G*Dg)\n",
+ "Dl = 2.421*10**(-9);# [square m/s]\n",
+ "\n",
+ "# From Henry's Law:\n",
+ "m = 0.850;\n",
+ "A = L1/(m*G1);\n",
+ "\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/(ScG**0.5);\n",
+ "# From Eqn. 6.64:\n",
+ "thetha_L = hL*z*Z/q;# [s]\n",
+ "# From Eqn. 6.62:\n",
+ "NtL = 40000*(Dl**0.5)*((0.213*Va*Density_G**0.5)+0.15)*thetha_L;\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1/((1/NtG)+(1/(A*NtL)));\n",
+ "# From Eqn. 6.51:\n",
+ "EoG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.63:\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;# [square m/s]\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thetha_L);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2.0)*((1+(4*m*G1*EoG/(L1*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EoG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+((exp(eta)-1)/(eta*(1+(eta/(eta+Pe))))));\n",
+ "# From Eqn. 6.60:\n",
+ "EMGE = EMG/((1+(EMG*(E/(1-E)))));\n",
+ "# From Eqn. 8.16:\n",
+ "EO = math.log(1+EMGE*((1.0/A)-1))/math.log(1.0/A);\n",
+ "Np = 14*EO;\n",
+ "yNpPlus1 = 0.03;\n",
+ "x0 = 0;\n",
+ "# From Eqn. 5.54(a):\n",
+ "def f37(y1):\n",
+ " return ((yNpPlus1-y1)/(yNpPlus1-m*x0))-(((A**(Np+1))-A)/((A**(Np+1))-1))\n",
+ "y1 = fsolve(f37,0.03);\n",
+ "print\"Mole Fraction Of NH3 in effluent is \",round(y1,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.5 - Page: 299\n",
+ "\n",
+ "\n",
+ "Mole Fraction Of NH3 in effluent is 0.0211\n"
+ ]
+ }
+ ],
+ "prompt_number": 159
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.6: Page 304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.6\n",
+ "# Page: 304\n",
+ "\n",
+ "print'Illustration 8.6 - Page: 304\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#****Data****# \n",
+ "# Gas:\n",
+ "# In:\n",
+ "y_prime1 = 0.02;\n",
+ "Y_prime1 = 0.0204;# [mol/mol dry gas]\n",
+ "# Out:\n",
+ "y_prime2 = 0.00102;\n",
+ "Y_prime2 = 0.00102;# [mol/mol dry gas]\n",
+ "# Non absorbed gas:\n",
+ "MavG = 11;# [kg/kmol]\n",
+ "G = 0.01051;# [kmol/s nonbenzene]\n",
+ "Gm = 0.01075;# [kmol/s]\n",
+ "T = 26;# [OC]\n",
+ "viscosity_G = 10**(-5);# [kg/m.s]\n",
+ "DaG = 1.30*10**(-5);# [square m/s]\n",
+ "\n",
+ "# Liquid:\n",
+ "# In:\n",
+ "x_prime2 = 0.005;\n",
+ "X_prime2 = 0.00503;# [mol benzene/mol oil]\n",
+ "# Out:\n",
+ "x_prime1 = 0.1063;\n",
+ "X_prime1 = 0.1190;# [mol benzene/mol oil]\n",
+ "# Benzene free oil:\n",
+ "MavL = 260.0;# [kg/kmol]\n",
+ "viscosity_L = 2*10**(-3);# [kg/kmol]\n",
+ "Density_L = 840;# [kg/cubic cm]\n",
+ "L = 1.787*10**(-3);# [kmol/s]\n",
+ "DaL = 4.77*10**(-10);# [square m/s]\n",
+ "sigma = 0.03;# [N/square m]\n",
+ "m = 0.1250;\n",
+ "#*******#\n",
+ "\n",
+ "A = 0.47**2*math.pi/4;# [square m]\n",
+ "# At the bottom:\n",
+ "L_prime1 = ((L*MavL)+(X_prime1*L*78))/A;# [kg/square m.s]\n",
+ "# At the top\n",
+ "L_prime2 = ((L*MavL)+(X_prime2*L*78))/A;# [kg/square m.s]\n",
+ "L_primeav = (L_prime1+L_prime2)/2;# [kg/square m.s]\n",
+ "# At the bottom\n",
+ "G_prime1 = ((G*MavG)+(Y_prime1*G*78))/A;# [kg/square m.s]\n",
+ "# At the top\n",
+ "G_prime2 = ((G*MavG)+(Y_prime2*G*78))/A;# [kg/square m.s]\n",
+ "G_primeav = (G_prime1+G_prime2)/2;# [kg/square m.s]\n",
+ "\n",
+ "# From Illustration 6.6:\n",
+ "Fga = 0.0719;# [kmol/cubic cm.s]\n",
+ "Fla = 0.01377;# [kmol/cubic cm.s]\n",
+ "# Operating Line:\n",
+ "X_prime = numpy.array([0.00503 ,0.02 ,0.04 ,0.06 ,0.08 ,0.10 ,0.1190]);\n",
+ "x_prime = numpy.zeros(7);\n",
+ "Y_prime = numpy.zeros(7);\n",
+ "y_prime = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " x_prime[i] = X_prime[i]/(1+X_prime[i]);\n",
+ " def f38(Y_prime):\n",
+ " return (G*(Y_prime1-Y_prime))-(L*(X_prime1-X_prime[i]))\n",
+ " Y_prime[i] = fsolve(f38,Y_prime1);\n",
+ " y_prime[i] = (Y_prime[i])/(1+Y_prime[i]);\n",
+ "\n",
+ "def f39(x):\n",
+ " return m*x\n",
+ "x = numpy.arange(0,0.14,0.01);\n",
+ "\n",
+ "# Interface compositions are determined graphically and according to Eqn. 8.21:\n",
+ "yi = [0.000784, 0.00285, 0.00562 ,0.00830 ,0.01090 ,0.01337 ,0.01580];\n",
+ "ylog = zeros(7);\n",
+ "y_by_yDiffyi = zeros(7);\n",
+ "for i in range(0,7):\n",
+ " ylog[i] = math.log10(yi[i]);\n",
+ " y_by_yDiffyi[i] = y_prime[i]/(y_prime[i]-yi[i]);\n",
+ "\n",
+ "plt.plot(x_prime,y_prime,label=\"Operating Line\")\n",
+ "plt.plot(x,f39(x),label=\"Equilibrium Line\")\n",
+ "plt.plot(x_prime,yi,label=\"Interface Composition\");\n",
+ "plt.legend(loc='lower right');\n",
+ "plt.grid('on');\n",
+ "xlabel(\"mole fraction of benzene in liquid\");\n",
+ "ylabel(\"mole fraction of benzene in gas\");\n",
+ "plt.show()\n",
+ "plt.plot(ylog,y_by_yDiffyi);\n",
+ "plt.grid();\n",
+ "xlabel(\"log y\");\n",
+ "ylabel(\"y/(y-yi)\");\n",
+ "title(\"Graphical Integration Curve\");\n",
+ "plt.show()\n",
+ "# Area under the curve:\n",
+ "Ac = 6.556;\n",
+ "# Eqn. 8.28:\n",
+ "NtG = (2.303*Ac)+1.152*(math.log10((1-y_prime2)/(1-y_prime1)));\n",
+ "Gav = (Gm+(G/(1-Y_prime2)))/(2*A);# [kmol/square m.s]\n",
+ "HtG = Gav/Fga;# [m]\n",
+ "Z = HtG*NtG;# [m]\n",
+ "print\"The depth of packing required is \",round(Z,3),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.6 - Page: 304\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNXWh98loEgHKdJBEdT7qcCl1wgoiDSlq0jz6lVR\nEVHARvAqNrgqRVSQJr1I7y1IUYELKAiIEENTUAGpQkiyvj/2JE5CJjnJ9GS/z3OezDlnl1/OzGRl\n77X3WqKqWCwWi8XiK64JtgCLxWKxZC2sYbFYLBaLT7GGxWKxWCw+xRoWi8VisfgUa1gsFovF4lOs\nYbFYLBaLT/GrYRGRFiKyT0R+EpEBHsqMcN3/TkSqua6VFZF1IvKDiOwWkWfdyhcRkVUisl9EVopI\nIX/+DhaLxWLJGH4zLCKSAxgFtABuB7qKyG0pyrQEKqnqLcDjwBjXrSvA86r6D6AO8LSI3Oq6NxBY\npaqVgTWuc4vFYrGECP4csdQCDqhqjKpeAWYAbVOUaQNMAlDVb4FCIlJCVY+r6k7X9fPAXqB0yjqu\nn+38+DtYLBaLJYP407CUBo64nR/lb+OQVpky7gVEpAJQDfjWdamEqp5wvT4BlPCNXIvFYrH4An8a\nFqexYsRTPRHJB8wBnnONXJIXNPFobEwai8ViCSFy+rHtY0BZt/OymBFJWmXKuK4hIrmAucAUVZ3v\nVuaEiNyoqsdFpCTwW2qdi4g1OBaLxZJBVDXlP/sZxp8jlm3ALSJSQUSuBToDC1OUWQg8CiAidYA/\nVfWEiAjwObBHVT9MpU531+vuwHw8oKohfQwePDjoGqxOq9NbnYsXKyVKKLt3h7bOYB/hoNNX+G3E\noqpxItIHWAHkAD5X1b0i8oTr/qequlREWorIAeAC0NNVvT7wCPC9iOxwXRukqsuBd4BZItIbiAE6\n+et38DcxMTHBluAIq9O3ZCWdGzZAz56waBH84x/+15QaWel5ZhX8ORWGqi4DlqW49mmK8z6p1NuI\nh9GUqp4CmvlQpsViyQQ7dkD79jBtGtSuHWw1llDC7rwPIj169Ai2BEdYnb4lK+jcvx/uvx8++QSa\nBfnfvKzwPLMa4st5tVBCRDSr/m4WSzA5cgQaNoTXX4devYKtxuJLRAQNcee9JR2ioqKCLcERVqdv\nCWedv/8O994Lzz4bOkYlnJ9nVsUaFovF4oizZ+G++4xfpV+/YKuxhDJ2KsxisaTLX38Zo3L77TB6\nNIjXkyWWUMRXU2HWsFgsljS5csWMUvLlgylT4Bo7z5FlsT6WLEC4zLlanb4lnHQmJEDv3hAfD5Mm\nhaZRCafnmV3w6z4Wi8USvqhC377w88+wYgXkyhVsRZZwwU6FWSyWVBkyBObPh3XroJBNp5ct8NVU\nmB2xWCyWqxgxAqZONSFbrFGxZJQQnDHNPoTLnKvV6VtCXefkyTBsGLzxRhQlwiDbUag/z0TCRacv\nsCMWi8WSxIIF8NJLZvrrxIn0y1ssqWF9LBaLBTDGpHNnWLoUatQIthpLMLDLjS0Wi8/Yts0YlZkz\nrVGxeI81LEEkXOZcrU7fEmo69+6FVq1g7Fi4++6/r4eaTk9YnaGHNSwWSzbm0CFo3hzeew/atg22\nGktWwfpYLJZsyokTJvx9nz4mWrHFYn0sFosl0/z5J7RoAQ8/bI2KxfdYwxJEwmXO1er0LcHWefEi\ntG4NjRqZZF2eCLZOp1idoYc1LBZLNiI2Fjp0gIoV4YMPbPh7i3+wPhaLJZsQHw+PPGJGLHPm2KCS\nlquxscIsFotjVOGZZ+D4cVi2zBoVi3+xU2FBJFzmXK1O3xIMna+9Blu2mJAtuXM7q2Ofp++4EHsh\nLHT6CmtYLJYszvDhMHeuGakUKBBsNdmLBE1g1JZRVBlVhQuxF4ItJ2BYH4vFkoUZPx7eeMOEvy9b\nNthqshfRp6PptaAXl+MvM6HtBG4temuwJaWL3cdisVjSZO5cePVVWLnSGpVAkjhKqTW2Fq0qt2Jj\nz41hYVR8iTUsQSRc5lytTt8SCJ2rVsGTT8KSJVC5cubasM8z40SfjqbJpCZM3TWVjb020r9ef3Jc\nkwMILZ3+xhoWiyWL8c038NBDZsRSrVqw1WQP7CglOdbHYrFkIXbvhqZNjW/l/vuDrSZ7EI6+FE8E\nzMciIvlEJIfrdRURaSMidhW8xRJiREeb+F8ffmiNSiCwoxTPOJkK+wq4TkRKAyuAbsBEf4rKLoTL\nnKvV6Vv8ofPYMbjnHnj5Zeja1TdtZufnmR5p+VI8ES7P0xc4MSyiqheBB4GPVbUj8H/+lWWxWJzy\n22/QrBk88QQ89VSw1WRt7CjFGen6WERkB/AU8AHQW1V/EJFdqnpHIARmFutjsWQHTp0yWR/btYMh\nQ4KtJmuTlXwpngjkPpa+wCBgnsuo3Ays87Zji8XiHWfPGp/KPfdAZGSw1WRdEjSB0VtG21FKBkjX\nsKjqelVto6rvus4PqqpNDeQDwmXO1er0Lb7QeeGCyVNfowa8/75/wt9np+fpiejT0TSd3JQpu6Y4\n9qV4Ilyepy9wsiqsuIgME5GlIrLOdawNhDiLxXI1ly7BAw/ATTfBqFE2p4o/cB+l3H/L/XaUkkGc\n+FhWATOB/sATQA/gd1V9ye/qvMD6WCxZkStXoH17E6F42jTIaRNf+Jzo09H0XtibS3GXsqwvxROB\n9LHcoKrjgFjXtFhPoIm3HVssloyRmKhLFaZMsUbF19hRiu9wYlhiXT+Pi0grEakOFPajpmxDuMy5\nWp2+JTM6ExKgd2+zCmz2bLj2Wt/rSklWfp4pSfSlTN01lU29NnnlS/FEuDxPX+DEsLwlIoWAFzDT\nYeOA5/2qymKxJKEKffrAwYMwf77zRF2W9EkcpdQeV5tWt7RiQ88NVClaJdiywh4bK8xiCWFU4aWX\nICoK1qyxibp8SaIv5XKc2ZdiDUoAc96LyEhAgcTOFDgDbFPVBd4KsFgsnhkyBFasMIYl5I1KQoJZ\nB50/f7CVpEmCJjBm6xgi10cysP5A+tbp6/Npr+yOk6mw3EBVYD/wE3AXUBboLSIf+lFblidc5lyt\nTt/iVOf778OMGSa3SpEi/tWUGhl6nhcuQMeO8PrrftPjiYzodPelbOy5kRfqvRAwoxIun09f4MSw\n3Ak0UdWRqjoCaArciokd1tyf4iyW7Mro0TBmDKxeDSVKBFtNOhw7Bo0aQb588M47wVaTKtaXElic\n7GP5Eaitqn+6zgsBW1S1sojsUNWQTCVkfSyWcGXCBBg8GNavh4oVg60mHbZtM4HK+vSBAQNCcrem\n9aU4J5D7WN4DdojIBBGZCOwA3heRvMBqbwVYLJa/mTkTXnnFTH+FvFGZMwfuuw9GjoSBA0POqNhR\nSvBwEivsc6A+sACYBzRQ1bGqekFVX/S3wKxMuMy5Wp2+xZPOhQvhuedg+XKoEgJ//zw+T1V46y3o\n1w9WrjTxZYJIajqD6UvxRLh8Pn2Bo5z3qvqLqs5X1QWqesxp4yLSQkT2ichPIjLAQ5kRrvvfiUg1\nt+vjReSEiOxKUT5SRI6KyA7X0cKpHoslVFm5Eh57DBYtgjvvDLaaNLh0Cbp1MxtqvvkGqoXWTLgd\npYQGftvH4kpn/CPQDDgGbAW6qupetzItgT6q2lJEagMfqWod172GwHlgsnvuFxEZDJxT1f+m07/1\nsVjCgq++MvG/5s2DBg2CrSYNTpwwo5OyZY0jKE+eYCtKhvWleE8gfSyZpRZwQFVjVPUKMANom6JM\nG2ASgKp+CxQSkRtd5xuA0x7aDq3JXIslk2zZAh06wPTpIW5Udu2C2rVN8pfp00PKqNhRSujhyLCI\nSA4RKSUi5RIPB9VKA0fczo+6rmW0TGo845o6+9y1Si0sCZc5V6vTtyTq/O47aN0axo83qYVDjaTn\nuXgxNGkCQ4eaHZvX+PP/0YwRfTqa6oOqh5QvxRPh8vn0BU523j8DDAZ+A+LdbqWXmtjpPFTK0Ud6\n9cYAb7he/wcYDvROrWCPHj2oUKECAIUKFaJq1apEREQAf7/JwTzfuXNnSOkJ9/Nwep6TJkXx/PPw\n6acRtGoVfD2pPs8dO4jYvh2GDSMqMhJKlcLcDb6+tevWsmDfAqaem0rHMh3pULEDv+7+lSoRVUJC\nX7h8PhNfx8TE4Euc7GM5CNRS1ZMZalikDhCpqi1c54OAhMRMlK5rnwBRqjrDdb4PaKyqJ1znFYBF\n7j6WFH14vG99LJZQ5eBBiIiAN9+E7t2DrcYDsbHw9NPw7bdmRUH58sFWlERi7vnY+FjrS/ExgfSx\nHAbOZqLtbcAtIlJBRK4FOgMLU5RZCDwKSYboz0Sj4gkRKel2+gCwy1NZiyXUOHLETHu9/HIIG5VT\np6B5czh+HDZtChmjkqAJjNoyilpja9G6cmvrSwlhnBiWn4F1IjJIRF5wHf3Sq6SqcUAfYAWwB5ip\nqntF5AkRecJVZikQLSIHgE+BpxLri8h0YDNQWUSOiEhP1613ReR7EfkOaEwYh/B3H46GMlanbzh+\nHJo2hfvui+LJJ4OtxgM//mic9DVqENW3b8gElIw+HU2TSU2Ytmsam3ptSuZLCfX3PZFw0ekLnOSg\nO+w6rnUdgkP/iaouA5aluPZpivM+Hup29XD9USd9WyyhxMmTZkFVt27QsGGw1Xhg9Wp4+GHjpO/d\n24RUDjIJmsDHWz8mMiqSQQ0G2UjEYYLNx2Kx+JkzZ8xIpVkzePvtkIt8YvjkE4iMNDFlGjcOthrA\n+lKCgd/zsYjIR6r6nIgsSuW2qmobbzu3WLI6589Dy5ZQr16IGpW4OHjhBbP1f+NGqFQp2IrsKCUL\nkJaPZbLr53APh8VLwmXO1erMHH/9BW3bwq23wocf/m1UQkbnmTNmI83evfD111cZlWDoTMuX4omQ\neZ7pEC46fYFHw6Kq/3P9jErlWB84iRZL+BEba3bUlygBn30WUnsKDdHRZhh1002wdCkUCu4+Y7vi\nK2thfSwWi4+Ji4MuXczP2bMhV65gK0rBhg0m2+Orr5o8KkHG+lJCh3CIFWaxZDsSEqBXL+NbmTkz\nBI3KpEkm4uWkSUE3KnaUknVxbFhEJHSizmURwmXO1ep0hio89RQcOgRffgnXXZd6uaDoTEiAQYPg\njTfMMuLm6WcV96fOzPhSPBHs990p4aLTF6RrWESknojswYTAR0SqisjHfldmsYQRqmZx1c6dJmZj\nCAX/hQsXjMNn0yYTouX224MmxY5SsgdOYoVtAToACxLz24vID6r6jwDoyzTWx2IJJK+9ZgzK2rVQ\nuHCw1bhx9KhZ+VW1qtmr4mkYFQCsLyX0CaiPRVUPp7gU523HFktW4Z13YO5csxUkpIzK1q1Qpw48\n9JCJzR8ko+I+SmlV2eZLyQ44CkIpIvUBRORaEekP7E2njsUB4TLnanV6ZsQIGDfOREMpVsxZnYDo\nnDXL7MwcPRpefDFTOzN9oTOlL6V/vf4+3+xoP5+hhxPD8iTwNCYB1zGgmuvcYsnWfPIJDB8Oa9ZA\nqVLBVuNC1TjoX3wRVq0yOzSDgPWlZG/sPhaLJROMHQv/+Y9ZYHXTTcFW4+Kvv0zwyIMHYcECuPHG\noMiwvpTwxe+xwtw6Kg78C6jgVl5VtZe3nVss4cj48WZQsG5dCBmVI0fMyq+KFY21u/76gEuwMb4s\niTiZClsAFABWAUvcDouXhMucq9X5N5Mmweuvm+mvzMZr9LnOtWuhVi2z8XH6dJ8ZlYzo9OW+lIxi\nP5+hh5N8LNer6gC/K7FYQpwpU0zmxzVroHLlYKvB+FPefx8++ACmToUmTQIuwY5SLKnhZB/Lm8DX\nqhpWoxTrY7H4kmnToH9/s/oriPsL/+bsWejRA44dgzlzoGzZgEuwvpSsRyD3sfQFFonIJRE55zrO\netuxxRIuzJz5d8qSkDAqe/ZAzZomdPJXXwXcqNgVX5b0SNewqGo+Vb1GVXOran7XUSAQ4rI64TLn\nmp11zpkDzz0HK1bA//2fb9r0SuesWSbD46BBMGaMXzc9pqYzmL4UT2Tnz2eo4iRW2DUi0k1EXned\nlxORWv6XZrEEl3nzTADg5cvhzjuDLCYx0+PAgWbo1KNHQLu3oxRLRnDiY/kESACaqOqtIlIEWKmq\nNQIhMLNYH4vFGxYuhH/9C5Ytg+rVgyzm+HGT4OX6642TvkiRgHZvfSnZh0D6WGqr6lPAXwCqegoI\ntSwTFovPWLzYGJUlS0LAqGzeDDVqQESEERZAo2JHKZbM4sSwxIpI0iSqiBTDjGAsXhIuc67ZSeey\nZSZR16JF5u+5P3CkUxVGjYJ27eDTTyEyEnIEzpcRfTqa6oOqh5QvxRPZ6fMZLjgxLCOBeUBxERkK\nbALe9qsqiyUIrFgB3bubaCi1gulFvHgRHn3URLf8+mu4//6AdZ2gCYz8diS1xtaibpm6dpRiyRSO\nYoWJyG1AU9fpGlUN+ejG1sdiyQirV0PXrjB/PtSvH0QhBw6YHfR33WWiXAYwY9jBUwfpvbC39aVk\nYwLmYxGR8UBuVR3lOvaKSKS3HVssocLatcaozJ0bZKOyaBHUqwdPPGFixwTIqCSOUmqPq219KRaf\n4GQqrDkwSUS6u10LTizuLEa4zLlmZZ3r10PnzjB7NjRq5HtNqXGVzvh4k4LyqafMPNxTT2Uqf0pm\nOHjqIE0mNWH67ulX+VKy8vseDMJFpy9wYlh+AxoCHUXkYxGxK8IsWYING0xA4JkzzaKroHDypPGh\nbNwI27ZB3boB6daOUiz+xMk+lh2qWk1EBIjE+FpKqWqoBAxPFetjsaTFpk3wwANmW8g99wRJxPbt\nxp/SoQO8/TbkdBIT1nusL8XiiUDuY1kEJgGLqg4G3gVivO3YYgkW33xjjMoXXwTRqEyYAM2bm+jE\n778fEKNiRymWQOEkVtjrKc4XqWrg43NnQcJlzjUr6dyyBdq0gYkTzd/1gHP5MlGtW8O775oAkh06\nBKTbtHwpnshK73soEC46fYGTVWHtReQnETlroxtbwplt26B1a5MBsmXLIAg4fBgaNjQh77dsgdtu\n83uXdpRiCQZOfCwHgVbhsHfFHetjsbizfTvcdx989hm0DcaaxjVr4JFHTCDJF14IyKov60uxZJRA\n+liOh5tRsVjc+e47M0IZMyYIRkUV3nnHGJXEbGF+Nip2lGIJNk4MyzYRmSkiXV3TYu1F5EG/K8sG\nhMucazjr3LXL+FJGjoQHA/2pPXvWrPqaPx+2boW77/ao01dkxpfiiXB+30ORcNHpC5wYloKYyMb3\nAq1cR2t/irJYfMEPP8C998JHH0HHjkHovGZNKFnS7MIsU8av3dlRiiWUcBQrLByxPpbszZ490KwZ\nDBsGDz0U4M5nzjQZwoYPN8Ek/Yz1pVh8RSBjhVURkTUi8oPr/E4RedXbji0Wf7Fvn9mf8u67ATYq\nV65Av37w8suwapXfjYr7KKVV5VZ2lGIJGZxMhY0FXgZiXee7gK5+U5SNCJc513DSuX+/Gam89RZ0\n6xbAzo8fh6ZN4ccfzbrmqlXT1OktKX0p/ev193m+lHB638OBcNHpC5wYljyq+m3iiWt+6Yr/JFks\nmePYMfO3fciQAKeE37TJZAVr2tREKC5c2G9dWV+KJRxwso9lGfAMMNsVM6wD0FtV7wuEwMxifSzZ\ni+hos+jqlVfg8ccD1Glilsc33zQhWvy869Lmnrf4G1/5WJwEKOoDfAbcKiK/AD8DD3vbscXiK2Ji\noEkTGDgwgEbl4kX497/h++9Nlseb/BeTNUET+Hjrx0RGRTKowSD61ukbsmmCLRZwFivsoKo2BYoC\nVVS1vqrG+F1ZNiBc5lxDWeehQ2ak0r8/3HZbVGA6jYmBBg0gIQE2b86wUcnI84w+HU2TSU2Ckns+\nlN93d6zO0MPJqrCiIjIS2AisF5GPROQG/0uzWNLmyBEzUnnuObO6NyCsXg116pgVX1984bcsjwma\nwKgto6g1tpb1pVjCDic+ltXAemAKIMBDQISqNvO/vMxjfSxZm2PHoHFjePJJE3rL76ia8PYffADT\np/s1M5j1pViCha98LE4My25V/b8U13ap6h3edu5PrGHJuvzyi/m7/thj8NJLAejw/Hno1ctMgc2d\nC2XL+qUb60uxBJtABqFc6YoTdo3r6Ays9LZjS/jMuYaSzl9/NdNfPXtebVT8ovPAATP1lT+/yZ/i\nA6OSms5g+lI8EUrve1pYnaGHR8MiIudF5BzwL2AqZoNkLDAdcLT2RkRaiMg+Vz6XAR7KjHDd/05E\nqrldHy8iJ0RkV4ryRURklYjsF5GVIlLIiRZL+HPihNkq8vDDMGhQADpcsgTq1zcOnHHjIHdun3dh\nfSmWrIjfYoWJSA7gR6AZcAzYCnR1D8EvIi2BPqraUkRqAx+pah3XvYbAeWCy+7SbiLwH/KGq77mM\nVWFVHZhK/3YqLAtx/LgZqXTqBJGRfu4sIcHsTfnsM5g9G+rW9Us30aej6b2wN5fjLltfiiUkCORU\nWGapBRxQ1RhVvQLMAFJmw2gDTAJw7e4vJCI3us43AKdTaTepjutnOz9ot4QQiT6Vrl0DYFTOnIEH\nHoCVK02oez8YlQRNYPSW0SbG1y02xpcl6+FPw1IaOOJ2ftR1LaNlUlJCVU+4Xp8ASngjMpiEy5xr\nMHUePWpWf3XvDq+9lnZZr3Xu3Qu1ahk/ytq1JuS9j4k+HU31QdWZumsqG3tuDAlfiifs59O3hItO\nX+Bx572IVFTVn71o2+k8VMphl+P5K1VVEfFYvkePHlSoUAGAQoUKUbVqVSJcy0QT3+Rgnu/cuTOk\n9ITa+fHj8MorETz5JNSoEUVUlB+f5xtvwH//S8SHH0KPHj7/fdauW8uCfQuYem4qHct0pEPFDvy6\n+1eqRFTx2/Pz9tx+PrP+80x8HRMTgy/x6GMRkf+p6j9FZK2qNslwwyJ1gEhVbeE6HwQkqOq7bmU+\nAaJUdYbrfB/QOHFEIiIVgEUpfCz7MPtojotISWCdqt6aSv/WxxLG/Pzz35sf+/b1Y0fx8WYoNHWq\nWUpco4bPu7C+FEu4EIhYYTlE5BWgsoj0I/nIQlX1v+m0vQ24xWUcfgE6c3W4/YWYWGQzXIboT7dp\nLk8sBLoD77p+zk+nvCXMOHjQGJUXX/TzjvpTp0zClthYE+q+WDGfNp+gCYzZOobI9ZEMrD/Q7kux\nZBvS8rF0AeKBHEB+15HP7XWaqGocxmisAPYAM1V1r4g8ISJPuMosBaJF5ADwKfBUYn0RmQ5sxhi2\nIyLS03XrHeAeEdkPNHGdhyXuw9FQJpA69+83jvqXX864UcmQzu++M6mD/+//jKPex0Yl+nQ0TSc3\nTdWXYt9332J1hh4eRyyqug94R0S+dxmADKOqy4BlKa59muI81T8fqppqMjFVPYVZwmzJYuzbZ5J0\nDRkCvXv7saPp0+HZZ2HECLPUzIfYUYrF4iykSyFgMNDIdSkKeENVz/hXmndYH0t48cMPcO+9MHSo\nWQHmF+LiYMAAmD8f5s2DO+/0afPWl2IJdwK5j2U8cBboCHQCzgETvO3YYklk1y4zUnn3XT8ald9/\nN5brhx/M/hQfGhW7L8ViSY4Tw3Kzqg5W1WhXbpZI4GY/68oWhMucqz917txp/t5/8AE88oh3bXnU\nuW2bWe1Vt64J01KkiHcduZGWLyXDOkMMq9O3hItOX+DEsPzlCq8CgIg0AC76T5Ilu7B9OzRvDiNH\nQpcufuokMWXwhx/CW29BDt/4O+woxWLxjBMfS1VgMlDQdek00F1Vv/OzNq+wPpbQZutWaNUKPvnE\nRFDxObGx8PzzsGaN8afcdpvPmra+FEtWJWD5WNw6LAgQ6k77RKxhCV2++QbatIHPP4fWrf3Qwa+/\nQseOcMMNMHkyFCyYfh0H2BVflqxOwINQquqZcDEq4UK4zLn6UuemTcaoTJzoe6MSFRVlctDXrGnm\n2ObN85lRyYwvJU2dYYDV6VvCRacv8GcQSoslGV99Be3awZQpxu3hU1RhwQIzr/bZZyZMyzXef7yt\nL8ViyTh+y8cSbOxUWGixdi107gwzZphkXT7l0iV46injuJk3DypV8kmz1pdiyW4EIlaYe2f1gQpu\n5VVVJ3vbuSV7sGqVCck1e7YJ1+JTjhyBBx+Em26Cr7+GfPm8btI99/zABgN5vs7z1pdisWSAdOcK\nRGQK8D5QH6jhOmr6WVe2IFzmXL3RuXy5SSX85Zd+MCpRUSZ/imsoFLVtm9dNpsw9379ef58blezw\nvgcSqzP0cDJi+Sdwu51XsmSUJUugZ08TQaVePR82rGr2pbz7rnHYNPM+dJz7KGVQg0F2xZfF4gVO\n9rHMBp5T1V8CI8k3WB9LcFmwAP71L1i0CGrX9mHDFy+ahvfuNcMgVyI3b4g+HU2vBb2IjY+1vhRL\ntiaQy42LAXtEZKWILHIdC73t2JJ1mTsXHn8cli71sVGJjjZDn5w5zbplL41KgiYwassoao2tRevK\nre2KL4vFRzgxLJFAO+AtYBgw3HVYvCRc5lwzonPWLHj6aeNb8WkyxmXLTKyv3r3NJpjrr7+qSEZ0\npvSlBDL3fFZ834OJ1Rl6pGtYVDUK2AcUwCT42qOq6/2syxKGTJtmUgmvWAHVqvmo0YQEePNNeOwx\nMxR65hmQzI/U7SjFYvE/TnwsnTCrwhKNSSPgRVWd7WdtXmF9LIFl8mQYONAkY/y///NRo2fOwKOP\nwsmTZq1yyZJeNWd9KRZL2gTSx/IqUFNVH1XVRzFLjV/ztmNL1mH8eJNKeM0aHxqVH34woVnKlTO7\nK70wKnaUYrEEFieGRYDf3c5Puq5ZvCRc5lzT0vnZZzB4sDEqPgsgPGuW2fTy6qsmpv611zqqlprO\nYPpSPJEV3vdQwuoMPZzsY1kOrBCRaRiD0pkUeewt2ZOPPzZbSdat81EUlbg4GDQI5swxc2peOGrs\nvhSLJXg48bEI8CDQAFBgg6rOC4A2r7A+Fv8yYgT8979mluqmm3zQ4G+/mWxf114LU6eakPeZxPpS\nLJbMEfB8LOGGNSz+47//hVGjjFHxwf5E2LIFOnQwjvohQzKd5dGOUiwW7/C7815ENrl+nheRcymO\ns952bAnRubScAAAgAElEQVSfOVd3ne+9Z6bA1q/3kVEZO9akkhw50iwrzqRRiT4dTfVB1UPKl+KJ\ncHzfQxmrM/Tw6GNR1fqun96Hi7VkCd56CyZNMkaldGkvG7t0yexJ2bwZNmyAKpmbrnIfpXQs05FR\nPUeFrEGxWLILTnwsX6hqt/SuhRp2Ksy3DBlicql4ufLXcOQItG8P5cubtcr582eqGetLsVh8SyD3\nsSTbmSAiOTERjy3ZAFWTjHH2bBOl3mujsnatCXXfqZNZVpwJo2L3pVgsoU1aPpaXReQccIe7fwX4\nDbBBKH1AqM+5qpqNj1OnRrFuHZQo4WVjw4aZ5CxTp0L//pkKzZLWvpRQf56JWJ2+xeoMPTwaFlUd\nqqr5gfdVNb/bUURVBwZQoyUIqMKLL5pgkh98AMWKedHYuXMmGdesWfDtt9CkSYabsKMUiyV8cOJj\neRBYq6p/us4LARGqOj8A+jKN9bFkHlV4/nnYuNHsUyxSxIvGfvzRpA6uV8+s/MqdO8NNWF+KxRIY\nAuljGZxoVABcryO97dgSmiQkmLD3X38Nq1d7aVTmz4eGDaFvX7OsOINGxY5SLJbwxGmssJTY9Zw+\nINTmXOPioEcP2L0bVq2CQoXM9QzrjI83cb6efRYWLzYZHzNIZmJ8hdrz9ITV6VusztDDiWH5n4j8\nV0RuFpFKIvIB8D9/C7MElthYE1HlxAnjVylQIJMNnTwJ999v9qds22ZWgGUAO0qxWMIfJz6WfJgw\n+U1dl1YBb6rqBT9r8wrrY3HOX3+ZbSXXXWf2qlx3XSYb2rHDNNS+Pbz9tkkhnAGsL8ViCS42Vlg6\nWMPijHPnoE0bKFXKZPzNlSuTDU2eDC+8AKNHmz0qGcDG+LJYQoOAOe9FpLiIDBORpSKyznWs9bZj\nS/DnXE+fhnvugVtuMXbBk1FJU2dsLPTpY+J8RUVl2Kj4Ml9KsJ+nU6xO32J1hh5OfCxTMTnvb8Ks\nBosBtvlPkiUQ/PYb3H23WQX86aeZjP34yy+mkSNHYOtW+Mc/HFe1vhSLJevixMeyXVWri8j3qnqn\n69o2Va0REIWZxE6FeebYMWjWzAwuIiMztQHebHLp3BmefNJsz7/Gyf8oButLsVhCk0DuY4l1/Twu\nIq1EpDpQ2NuOLcHh55/N1pJevUxgyQwbFVWz0bF9exg3ziwrdmhUEjSBkd+OtKMUiyWL4+Qvwpuu\n3fYvAP2BccDzflWVTQj0nOu+fdCokQnT9eKLzusl6bx40STj+vxzs4Pyvvsct3Hw1EGaTGrC9N3T\n/ZYvJVzmsK1O32J1hh5pGhYRyQFUVtU/VXWXqkaoanVVtUEow4ydO4075M034amnMtFAdLRxyIDZ\no+IwH3HiKKX2uNp2lGKxZBOc+Fi2qmrNAOnxGdbH8jfffANt25qVwB06ZKKBZcvMlvzXXjPxXhzO\nnx08dZDeC3tnWV+KZMo5ZbGEBqn9fQzYPhbXTvtcwEzgAibEi6rqdm879yfWsBgSVwBPnAgtW2aw\nckICDB0KY8bAzJnQoIGzaprA6C2jGbJ+SJbel+L6EgZbhsWSYTx9dn1lWJxsja4GKPBGiut3e9t5\ndicqKoqIiAi/tb90qRlozJxppsEyxJkz0K0bnDpF1IgRRDg0Ku6jlE29NgV0lOLv52mxWJyRVqKv\n51wvX1XVu1MeAdJnySRz50LPnrBwYSaMyu7dULOmSR28di3ccEO6VawvxWKxJOJxKkxEvlPVu0Rk\nh6pWC7Aur8nOU2GTJ8OAAWbEUi2j79zMmWYn/fDhZgWYA7K6L8UTdirMEq4Ecypsj4j8BJQWkV0p\n7mniZklLaDFmjHGLrF0Lt92WgYpXrhhrtGCBiZlftWq6VbKLL8VisWSMtFITdwUaAgeAVkBrt6NN\nQNRlcXy9rv39982xfn0Gjcrx49C0qcn2uG3bVUYlNZ2B2JeSUbLTPoGswoYNG7j11lsD2ufhw4fJ\nnz+/HW36kTT3sajqcVW9U1UPqWqM++GkcRFpISL7ROQnERngocwI1/3vRKRaenVFJFJEjorIDtfR\nwuHvmmVRhcGDzb7Fr75yvMXEsHkz1KhhDMuiRVA47aAK1pcSXkycOJE77riDvHnzUrJkSZ566inO\nnDkTND3XXHMN0dHRSecNGzZk3759fukrIiKCzz///Krr5cqV49y5c3a5uD9RVb8cmCyTB4AKmOXK\nO4HbUpRpCSx1va4NfJNeXWAw0M9B/5odSEhQff551TvvVD1xIoMVR45ULV5cdckSR1UOnDygjSc0\n1rrj6uq+3/dlTnAWItQ/Y8OGDdMSJUroihUrNC4uTmNiYrRly5Zas2ZNjY2N9Xl/cXFx6ZYRET1w\n4IDP+06NiIgI/fzzzwPSV7jh6bPruu7133/nkQMzTi3ggJoRzhVgBtA2RZk2wCSXFfgWKCQiNzqo\na//VwGwz+fe/YdMmWLcOihd3WDExNMu4cWbEks4GFztKCT/Onj1LZGQko0aN4t577yVHjhyUL1+e\nWbNmERMTw5QpUwCIjIykQ4cOdOnShQIFCvDPf/6T77//PqmdX375hfbt21O8eHFuuukmRo4cmXQv\nsW63bt0oWLAgkyZNYuvWrdStW5fChQtTqlQpnnnmGa5cuQJAo0aNALjrrrvInz8/s2fPJioqirJl\nyya1WaFCBYYPH85dd91FoUKF6NKlC5cvX066/95771GqVCnKlCnDuHHjrhoBOSEmJoZrrrmGhIQE\nwIxsXn/9dRo0aECBAgVo3rw5J0+eTCr/zTffUK9ePQoXLkzVqlVZv359hvrLjjg2LCKSJ4NtlwaO\nuJ0fdV1zUqZUOnWfcU2dfe6KYxaWeOMTiIuD7t2NW2T1aihSxGHFgwehbl2ze37zZrj55rSLnzpI\n9UHVQ8qX4gnrY/mbzZs3c+nSJR588MFk1/PmzUvLli1ZtWpV0rWFCxfSqVMnTp8+zUMPPUS7du2I\nj48nISGB1q1bU61aNX755RfWrFnDhx9+yMqVK5PV7dixI2fOnOGhhx4iR44cfPTRR5w8eZKvv/6a\nNWvW8PHHHwPw1VdfAfD9999z7tw5OnbseJVuEWH27NmsWLGCn3/+me+//56JEycCsHz5cj744APW\nrFnDTz/9RFRUlM+ms6ZPn87EiRP57bffiI2NZdiwYQAcO3aMVq1a8frrr3P69GmGDRtG+/bt+eOP\nP3zSb1bFSaKveiKyB/jRdV5VRD520LZTz1hGPxljgIpAVeBXYLingj169CAyMpLIyEg+/PDDZH94\noqKign6+c+fOTNW/fBnuvjuKH3+MYulSyJ/fYf233zZG5fHHierZk6gtWzyWX7tuLc9+/Cy1x9Wm\nbpm6/Kfif/h1969BfV7+ep6ZPXeCiG+OjPLHH39QtGhRrkkl8vSNN96Y7A9jjRo1ePDBB8mRIwf9\n+vXj0qVLfP3112zdupU//viDV199lZw5c1KxYkUee+wxZsyYkVS3Xr16tGlj1vLkzp2b6tWrU6tW\nLa655hrKly/P448/nuH/8J999lluvPFGChcuTOvWrZPe11mzZtGrVy9uu+02rr/+eoYMGeITB7yI\n0LNnTypVqkTu3Lnp1KlTUp9TpkyhZcuWtGhhXLnNmjWjRo0aLF261Ot+g03iZzoyMpIePXrQo0cP\n3zWe3lwZsAUoB+xwu/aDg3p1gOVu54OAASnKfAJ0cTvfB5RwUtd1vQKwy0P/mZh5DH0uXFBt3lz1\nwQdVL11yWCkuTvX111XLlFHdtCnd4taX4oxQ/owtW7ZMc+bMqfHx8Vfde/TRR/Whhx5SVdXBgwdr\nx44dk92vWbOmzpw5U2fNmqU5c+bUQoUKJR358+fX+++/P6nuww8/nKzujz/+qPfff7/eeOONWqBA\nAc2TJ482atQo6b6I6MGDB5PO161bp2XKlEk6r1Chgq5ZsybpfPDgwdqtWzdVVW3RooWOGTMm6d6l\nS5euas8dTz6Wn3/+WUUk6dmkLDdhwgRt0KCBqqo++eSTmjt37mTPIF++fPruu++m2me44OmzSyB9\nLKp6OMWlOAfVtgG3iEgFEbkW6AykjIq8EHgUQETqAH+q6om06opISbf6DwAp99hkWc6eNZHqixc3\n+xivu85BpVOnoFUrEzRs69a/IxSngvWlZB3q1q3Lddddx9y5c5NdP3/+PMuXL6dp06ZJ144c+XvW\nOSEhgaNHj1K6dGnKli1LxYoVOX36dNJx9uxZFi9eDJj/9FNORT355JPcfvvtHDhwgDNnzvDWW28l\n+TK8pWTJksm0ur/2F+XKlaNbt27JnsG5c+d46aWX/N53OOPEsBwWkfoAInKtiPQH9qZXSVXjgD7A\nCmAPMFNV94rIEyLyhKvMUiBaRA4AnwJPpVXX1fS7IvK9iHwHNCaMc8M4nU4BYx+aNYPbbzcBJXM6\nifK2Y4dZSnz77cYRc+ONHosm5p5PzZeSEZ3BJFx0BoKCBQsyePBgnnnmGVasWMGVK1eIiYmhU6dO\nlC1blm7duiWV/d///se8efOIi4vjww8/JHfu3NSpU4eaNWuSP39+3nvvPf766y/i4+PZvXs327aZ\nzOSayjTU+fPnyZ8/P3ny5GHfvn2MGTMm2f0SJUpw8ODBDP0uif106tSJCRMmsG/fPi5evMh//vOf\ndOteuXKFS5cuJR1xcan/T5za7wLwyCOPsGjRIlauXEl8fDyXLl0iKiqKY8eOZeh3yG44MSxPAk9j\nnOfHMEEpn3bSuKouU9UqqlpJVd92XftUVT91K9PHdf8udYuYnFpd1/VH1eytuUtV27lGOFmaEycg\nIgIaN4aPP3aYsHHSJLj3Xnj7bROeJVeuVIvZ3PNZlxdffJGhQ4fSv39/ChYsSJ06dShfvjxr1qwh\nl+vzICK0bduWmTNnUqRIEaZOncqXX35Jjhw5yJEjB4sXL2bnzp3cdNNNFCtWjMcff5yzZ88m1U05\nYhk2bBjTpk2jQIECPP7443Tp0iVZmcjISLp3707hwoWZM2dOqm24436/RYsWPPvss9x9991UrlyZ\nunXrAnBdGkP3J598kjx58iQdvXr1SrVP93P3+2XKlGHBggUMHTqU4sWLU65cOYYPH+6zUVhWJd2w\n+eFKVokVduSIGak8/LBJh5KuI/fyZXj+eVizBr78Ev7xD49Fbe5578gKscKGDBnCgQMH+OKLL4It\nJcPs3buXO+64g9jY2FQXKVg8E7RYYSIy0tM9jIPnWW87t6TNwYPGqPTpAy+84KDC0aMmk1fJkrBl\nCxQsmGqxBE3g460fExkVaWN8ZXPCzTDOmzePli1bcvHiRQYMGECbNm2sUQlB0npH/odxom9zvU55\nWLwkLZ/Anj1m6mvgQIdGJSoKatWCdu1MzHwPRiXRlzJt1zTH+1LCxXcRLjpDifSmokKNzz77jBIl\nSlCpUiVy5cp1lQ/HEhp4HLGo6kT3cxHJby7reX+Lyu5s3w73328CSj7ySDqFVY0PZdgwmDLFDHFS\nwY5SLKkxePDgYEvIEMuWLQu2BIsDnKQmvgOYDCRme/od6K6qu/2szSvC1ceyebMZdHzyCaTYNH01\n585B797w889mlFKuXKrFrC/FP2QFH4sle+JvH4uTycnPMEEfy6lqOeAF1zWLj1m7Ftq2NYm60jUq\n+/ZB7dpmymvDhlSNil3xZbFYgoETw5JHVdclnqhqFJDXb4qyEe4+gcWLoXNnmDMHWqSXCODLL6FR\nI+jXD8aOhdy5ryoSfTqappObZsiX4kRnKBMuOi2WrI4Tw/KziLzm2gVfUUReBTIWTtSSJrNmmRmt\nxYuNw94jcXEmy2O/fibv8GOPXVUkMatj7XG1aXVLKztKsVgsAceJj6UIMASo77q0AYhU1dN+1uYV\n4eJjmTABXnkFli2Du+5Ko+Dvv0OXLmZ35PTpULToVUWiT0fTe2FvLsddtr6UAGB9LJZwJeg+FlU9\nparPqGp11/FcqBuVcGHUKJP5cd26dIzKli0mNEvt2rB8+VVGxX2Ucv8t99tRisWvpEzt656pcerU\nqTRv3jypbEbzpaSsHwxs6mIfkF6USqAmMA/YgQn4uAv43hcRMP15EMKRZ1VV33lHtWTJdRodnUah\nhATVTz9VLVZMdd68VIscPHVQIyZG+DUS8bp16/zSrq8JtM5Q/4yVL19er7/+es2XL1/S8cwzz/i8\nn7QyNaYVfTjYNG7cWMeNGxdsGUHB02cXH0U3dhLKcCrQH9gN2AA5XqJqNj0uWgQffQQVK3oo+Ndf\nZsv9N9/Axo1QuXKy2wmawJitY4hcH8nA+gPtvhTLVYgIixcvpkmTJsGW4oj4+Hhy5AjcZzjcNoeG\nE06c97+r6kJVjVaTKjhGVWP8LSwrEh8Pjz9uNslv2AAdO0akXjAmBho0gAsX4NtvrzIqiSu+pu6a\nysaeG/2e1TEiwoPOECNcdIYCCQkJ9O/fn2LFinHzzTczevToZOl6K1SowJo1a5LKR0ZGJkVETpna\n152JEyfSsGHDZNeWLFnCzTffTLFixXjppZeSppgmTpxI/fr16devH0WLFiUyMjJZ/dT6cZ92c69f\nuHBhKlWqxObNm5kwYQLlypWjRIkSTJ48OcPPxqYu9h4nhmWIKwVwVxFp7zrS22VhScHly2Y58c8/\nm/iQN9zgoeDKlVCnDnTrZpz0+fIl3bIrviwZJfGPeEo+++wzlixZws6dO9m2bVtSpOFEUv43781/\n9vPnz+d///sf27dvZ8GCBYwfPz7p3pYtW7j55pv57bffeOWVV9JtK6WuLVu2cNddd3Hq1Cm6du1K\np06d2L59OwcPHmTKlCn06dOHixcvZlp7IjZ1ccZwMhXWHajiKuv+L8qXflGUBTl/Hh54wOxlXLLk\n7wRdUVFRf/+XnZBgQtyPHm3WHzdqlKwN9xVfG3tuDKhBSaYzhAlFnTLEN1MtOjjjjmRVpV27duR0\nS94zbNgwevfuzaxZs3j++ecpXbo0AC+//HKa/2l7MlBOGDBgAIUKFaJQoUL07duX6dOn07t3bwBK\nlSrF00+bLBy5U9mPlR4VK1ake/fugMnX8tZbb/H666+TK1cu7rnnHq699loOHDjAnXfemWn97qmL\nE/tZuNDkLEwrdfGjjz6a6T7DHSeGpQZwq3rzycrGnDwJLVvCnXeaMC2pTiH/+Sd0726WFG/dCq4v\nO1hfSriTGYPgK0SEBQsWpOpj+fXXXylbtmzSeTkP4YB8Qcp+fvnll1TvZYYSJUokvb7++usBKFas\nWLJr5897H97wRrckee5tHjp0iNmzZ7No0aKk+3FxcWHj1/IXTgzLZuB24Ac/a8lyHD1qcm21aWMG\nIylnEyIiImDXLhO/pUULmD0brr026X4wRylX6QwDwkVnKFCyZEkOH/4747j7a4C8efNy4cKFpPPj\nx49nuq/Dhw9z2223Jb0u7faPU1pTbHnzmgAfFy9eJJ9rStgbHf4gMXXxZ5/ZKFfuOPGx1AV2ish+\nEdnlOr73t7BwZ/9+aNgQevSAd97xkKBr+nRo0sRsZhk5MsmoWF+KxVd4mmjo1KkTI0aM4NixY5w+\nfZp33nkn2R/5qlWrMmPGDOLi4ti2bRtz587NtJ9l2LBh/Pnnnxw5coQRI0bQuXNnR/WKFStG6dKl\n+eKLL4iPj2f8+PEZTmucHjZ1sX9wYlhaALcA9wKtXUcbf4oKd3bsMKmEX3kFXnoplQKxsdC3L1Ev\nvGBy0bvFxg/0ii8nhEsMrnDRGUhat25N/vz5k4727dsD8K9//YvmzZtz1113UaNGDdq3b5/sj+d/\n/vMfDh48SOHChYmMjOThhx9O1q4nI5PaEt62bdvyz3/+k2rVqtGqVask/4qnFMHu18aOHcv7779P\n0aJF2bNnD/Xr1/dYNi1dnrCpi/2ELzbDhOJBkDavrV9v9jPOmeOhQEyMau3aqq1a6bqFC5MuxyfE\n66hvR2nR94rqsE3DNC4+LjCCHWA3SKZOsD5j/uDnn39WEdH4+PhgS7EEAE+fXXy0QdLmvPchixaZ\nYJLTpnnIt7V4sSnw4osmLaTrvx4b4ys8yUqxwmJiYrjpppuIi4uzqX6zAUGPFWZxxhdfwL/+ZWzH\nVUblyhUzJ/bUUzBvHvTvDyLWl2IJKewudIuvcLIqzJIOH31kMgOvXQu3357i5tGjZmdkwYIm57Ar\ngGT06WgefPdB8tySJ6grvpwQivtDUiNcdIYiFSpUID4+PtgyLFkEO2LxAlWzoGv0aBPO6yqjsny5\niUrcqpUZyhQtmiyrY90yde0oxWKxZDmsjyWTJCTAs8/Cpk2wYgUUL+52My7OWJxJk4zDxbWL3uae\nz1pkJR+LJXthfSwhyJUrZoXwrl0moGQyo/LLL9C0qdlBv307NGpkc89bLJZshTUsGeTiRWjb1sT/\nWr7cuE6SWL0a/vlP471ftgyKFyf6dDRNJjVJNfd8uOy7sDotFktGsIYlA/z5pwnRUrQozJ0LrtBE\nJh7+4MEm3tfUqfDaayRcI3aUYrFYsiXWx+KQ48eheXO4+274739N6vmkGw8/bDz506bBjTdaX0o2\nwfpYkvPXX3/RqVMnNmzYQPPmzZk5c2awJYUFb7/9NtHR0YwdOzbV+1OnTmXy5MmsWLHCZ33628cS\n9B3y/jrw4a7o6GjVm29WfeMNky04ibVrVUuVUn3tNdW4OI1PiNeR347UG969IeR2z1t8jy8/Y/6g\nfPnyunr1akdlfZGmd/LkyVqrVq2A796/fPmyDh48WG+55RbNmzevVqhQQXv16qUxMTEB1eELAhUB\nwdNnFx/tvLdTYemwe7cJJtmvH7z2mmuzfEICvPkmPPQQTJgAb7xB9NlDHn0pnggXn4DVGZ5kJPWu\nt5sj4+PjOXToEJUrVw74zv0OHTqwePFipk+fztmzZ/nuu++oUaNGsgyY4YaG+0jYF9YpFA988N/k\n5s2qxYurTpvmdvG331TvvVe1YUPVY8e8GqXYGFy+xcYKS06FChV0zZo1qqo6YcIErV+/vvbv318L\nFy6sFStW1GXLlqmq6ssvv6w5cuTQ3Llza758+fSZZ55RVdW9e/dqs2bNtEiRIlqlShWdNWtWUtvd\nu3fXf//739qyZUvNmzev1q9fX6+99lrNlSuX5suXT8ePH68HDx7Uu+++W2+44QYtWrSoPvzww/rn\nn38mtXH48GF94IEHtFixYnrDDTdonz59ku59/vnnetttt2nhwoW1efPmeujQoVR/x1WrVun111+v\nR48e9fgcjh07pq1bt9YiRYpopUqVdOzYsUn3Bg8erB06dNBHHnlE8+fPr3fccYfu379fhw4dqsWL\nF9dy5crpypUrk8o3btxYBw4cqLVq1dICBQpo27Zt9dSpU0n3FyxYoLfffrsWKlRIIyIidO/evUn3\n3nnnHS1durTmz59fq1SpkvTeDB48WB955BFVVS1btqyKiObLl0/z58+vX3/9tU6YMEEbNGiQ1M6m\nTZu0Ro0aWrBgQa1Zs6Zu3rw5mb7XXntN69evr/nz59d7771X//jjj6ueiafPLj4asQTdAPjr8PZL\nv3y5atGiqkuXul386ivVMmVUBw1SvXJFD546qI0nNNa64+rqvt/3edWfJfwIN8OSK1cuHTdunCYk\nJOiYMWO0VKlSSWUjIiL0888/Tzo/f/68lilTRidOnKjx8fG6Y8cOLVq0qO7Zs0dVjWEpWLBg0h+1\nS5cuaWRkpHbr1i2pjQMHDujq1as1NjZWf//9d23UqJH27dtXVVXj4uL0zjvv1H79+unFixf10qVL\nunHjRlVVnT9/vlaqVEn37dun8fHx+uabb2q9evVS/R0HDBigERERaT6Hhg0b6tNPP62XL1/WnTt3\narFixXTt2rWqav6o586dW1euXKlxcXH66KOPavny5XXo0KEaFxenY8eO1YoVKya11bhxYy1durT+\n8MMPeuHCBW3fvn2SUfjxxx81b968unr1ao2Li9P33ntPK1WqpLGxsbpv3z4tW7as/vrrr6qqeujQ\nIT148KCqqkZGRia1ERMTc9VUmLthOXnypBYqVEinTJmi8fHxOn36dC1cuHCScWvcuLFWqlRJf/rp\nJ/3rr780IiJCBw4ceNUzsYYlCIZl5kwzUnF9zlXj41XfeUe1RAnVpUutL8Wiqg4Ni1nW4f2RCVIa\nlkqVKiXdu3DhgoqInjhxQlWNYXH3scyYMUMbNmyYrL3HH39chwwZoqrGsHTv3j3Zfff/vFNj3rx5\nWq1aNVVV3bx5sxYrVixVX0KLFi2SGbn4+HjNkyePHj58+Kqyjz32mHbp0sVjn4cPH9YcOXLo+fPn\nk64NGjRIe/TokaT53nvvTbq3cOFCzZcvnya4nKlnz55VEdEzZ86oqnlOgwYNSiq/Z88evfbaazU+\nPl7feOMN7dy5c9K9hIQELV26tK5fv15/+uknLV68eJKhdcf9uaXmY3E3LJMnT9batWsnq1+3bl2d\nOHFikr633nor6d7HH3+sLVq0uOq5+NuwWB9LCj79FJ5/Hlatgvr1MbmFW7eGhQth61ai61TJsC/F\nE+HiE7A6vcBXpsUHuKfXzZMnD0CytL3ufpZDhw7x7bffUrhw4aRj2rRpnDhxIqlsemmFT5w4QZcu\nXShTpgwFCxakW7dunDx5EoAjR45Qvnz5VP0xhw4d4rnnnkvq94YbbgBINXlW0aJF+fXXXz1q+OWX\nXyhSpEhSNkowWR/d2yrutsP5+uuvp2jRoknPIjHdsftzSplq+cqVK/zxxx/8+uuvyVI8Jz6jY8eO\nUalSJT788EMiIyMpUaIEXbt2TVN3Wr9PyjTS5cuXT5bu2VMa5UBiDYsLVRg6FN57D776yuSo5+uv\noXp1uP12EtatZdSvC+y+FEuWJKXzvly5cjRu3JjTp08nHefOnWP06NGO23j55ZfJkSMHu3fv5syZ\nM3zxxRdJCbDKli3L4cOHUw18Wa5cOT777LNkfV+4cIE6depcVbZZs2Zs2bLFY8bGUqVKcerUqWR/\nXERgPq4AAA7bSURBVA8fPkyZMmU8P4x0SJnSOVeuXBQrVoxSpUpx6NChpHuqypEjR5JSMXft2pUN\nGzZw6NAhRIQBAwZc1XZ6iyhKly6drA8whtg93XMoYA0Lxqj0728yBW/YADffpDB8OLRrB6NGEf3y\nkzSZ1twnoxR3wiUSr9WZ9SlRokSytL+tWrVi//79TJkyhStXrnDlyhW2bt3Kvn37gNRXLaW8dv78\nefLmzUuBAgU4duwY77//ftK9WrVqUbJkSQYOHMjFixe5dOkSmzdvBuDf//43Q4cOZc+ePQCcOXOG\n2bNnp6q7adOm3HPPPTzwwANs376duLg4zp07xyeffMKECRMoW7Ys9erVY9CgQVy+fJnvv/+e8ePH\n84hb1taMoKpMmTKFvXv3cvHiRV5//XU6duyIiNCxY0eWLFnC2rVruXLlCsOHDyd37tzUq1eP/fv3\ns3btWi5fvsx1111H7ty5yZHj6r8hxYoV45prrvGYgvm+++5j//79TJ8+nbi4OGbOnMm+ffto1apV\nMo3BJtsblrg46NXLDE7Wr4dS1582BmXWLBK++ZpRJQ5Ra2wtWlW2+VIs4Ut66Xafe+455syZQ5Ei\nRejbty/58uVj5cqVzJgxg9KlS1OyZEkGDRpEbGxsmu25Xxs8eDDbt2+nYMGCtG7dmvbt2yfdz5Ej\nB4sWLeLAgQOUK1eOsmXLMmvWLADatWvHgAED6NKlCwULFuSOO+5Ic3PgnDlzaNmyJZ07d6ZQoULc\ncccdbN++nXvuuQeA6dOnExMTQ6lSpXjwwQd54403aNKkiaPnkvJcROjWrRs9evSgZMmSxMbGMmLE\nCACqVKnClClTeOaZZyhWrBhLlixh0aJF5MyZk8uXLzNo0CCKFStGyZIl+eOPP3j77bev0pAnTx5e\neeUV6tevT5EiRfj222+T3b/hhhtYvHgxw4cPp2jRogwbNozFixdTpEgRj3qDkWcnW++8v3QJunQx\nP+fOhbw/bDG5U9q1I3rgE/Ra9m+/7p4Pl/whVmfq2J332Y+7776bbt260atXr2BL8Qob3diPTJwI\nuXPDwgVK3s9HQKtWJAx7n1Fdb6bWpAbWl2KxWK7C/jORPtl6xKIKCafPkOPx3hATw+Gxw3j0u0gb\n48viCDtiyX7YEYvD9rPqF8NREMrt26FTJ7R5c8Z0rcTrm99iUINB9K3T1yfOeUvWxhoWS7hip8L8\nydmznHj5Oe6u+QNTfpzt0xVfTgjJfRepYHVaLJaMkG0NS4ImMCrPbv7xxxDrS7FYLBYfki2nwmy+\nFIsvsFNhlnDF31NhOb1tIJxI0AQ+3voxkVGR1pdi8QnB2CNgsYQ6fp0KE5EWIrJPRH4SkavjF5gy\nI1z3vxORaunVFZEiIrJKRPaLyEoRKeRES1q554NFuPgErM7UyWyAvnXr1gU9SKvVaXX6E78ZFhHJ\nAYwCWgC3A11F5LYUZVoClVT1FuBxYIyDugOBVapaGVjjOvdIgiaEbO75nTt3BluCI6xO32J1+har\nM/Tw51RYLeCAqsYAiMgMoC2w161MG2ASgKp+KyKFRORGoGIaddsAjV31JwFReDAu7r6UTb02hYxB\nSeTPP/8MtgRHWJ2+xer0LVZn6OHPqbDSwBG386Oua07KlEqjbglVPeF6fQIo4UlAKI5SLBaLJavj\nzxGL00k8J95PSa09VVUR8dhPKI5S3ImJiQm2BEdYnb7F6vQtVmcI4kfHUB1gudv5IGBAijKfAF3c\nzvdhRiAe67rK3Oh6XRLY56F/tYc97GEPe2Ts8MXff3+OWLYBt4hIBeAXoDPQNUWZhUAfYIaI1AH+\nVNUTInIyjboLge7Au66f81PrXH2wFttisVgsGcdvhkVV40SkD7ACyAF8rqp7ReQJ1/1PVXWpiLQU\nkQPABaBnWnVdTb8DzBKR3kAM0Mlfv4PFYrFYMk6W3XlvsVgsluAQdrHC/LHpMpR0ikhZEVknIj+I\nyG4ReTYUdbrdyyEiO0RkUajqdC1jnyMie0Vkj2vaNdQ0DnK957tEZJqIXOcPjU50isitIvK1iFwS\nkRcyUjcUdIbadyit5+m6HxLfoXTe94x9h4K9+zODCwJyAAeACkAuYCdwW4oyLYGlrte1gW+c1g0R\nnTcCVV2v8wE/hqJOt/v9gKnAwlB8313nk4Bertc5gYKhpNFVJxq4znU+E+gexGdZDKgBvAm8kJG6\nIaIz1L5Dqep0ux8q3yGPOjP6HQq3EUvSpktVvQIkbpx0J9mmSyBx06WTusHWWUJVj6vqTtf185hN\noaVCTSeAiJTB/LEch7Nl4wHXKSIFgYaqOt51L05Vz4SSRuAscAXIIyI5gTzAMT9odKRTVX9X1W0u\nTRmqGwo6Q+07lMbzDKnvkCedmfkOhZth8demS1+TWZ1l3Au4VsVVA771uULPGpw+T4APgBeBBD/p\nc6IhrTJlMFEcfheRCSKyXUTGikieENJYWlVPAcOBw5hVkH+q6mo/aHSq0x91M4pP+gqR71BahNJ3\nyBMZ/g6Fm2FxutIg2EuNM6szqZ6I5APmAM+5/uvyB5nVKSLSCvhNVXekct/XePM8cwLVgY9VtTpm\n9WGa8eUySaY/myJyM9AXM01RCsgnIg/7TloyvFmtE8iVPl73FWLfoasI0e9QamT4OxRuhuUYUNbt\nvCzG8qZVpoyrjJO6viKzOo8BiEguYC4wRVVT3acTAjrrAW1E5GdgOtBERCaHoM6jwFFV3eq6Pgfz\nJQkljTWAzap6UlXjgC8xz9cfePM9CLXvkEdC7DvkiVD7Dnki498hfzmL/OSAygkcxPxndy3pO0jr\n8LeDNN26IaJTgMnAB6H8PFOUaQwsClWdwFdAZdfrSODdUNIIVAV2A9e73v9JwNPBepZuZSNJ7hQP\nqe9QGjpD6jvkSWeKe0H/DqWlM6PfIb8+dD89oPswqzwOAINc154AnnArM8p1/zugelp1Q00n0AAz\n37oT2OE6WoSazhRtNMaPK1p88L7fBWx1Xf8SP6wK84HGl4AfgF0Yw5IrWM8Ss6rqCHAGOI3x/eTz\nVDfUdIbadyit5+nWRtC/Q+m87xn6DtkNkhaLxWLxKeHmY/n/9s49xKoqisPfbwrpbdmbyJKKiiiS\nmRJKyujxR2WQWfZEoQjKUgqC6EFTWBGWISMRQalkRUkPTAnGzMrMmkbUKY0S0YIeaKEwGaTl6o+9\nrrO73Tv3Xj3DjLo+ONx199ln77XXuXPW2WefWSsIgiAY4IRjCYIgCAolHEsQBEFQKOFYgiAIgkIJ\nxxIEQRAUSjiWIAiCoFDCsQR9jqQJktoaPOYNDy0/uYD+Hyr7vnR326zR3xmSVkpaLmlY2b6+Ci3S\nZ0hqljS9wWM2SBri8i7bW9LoXlIQ7HG23FeI/2MJ+hxJ44EWM7u3zvrHAUvM7LQK+/Yzs38a7L/b\nzA5t5JjdQdKDwH5m9mR/69JfeJiSZksBNvuqj33ClnsiMWMJaiLpZE8QNFPSd5Jek3SFpKWSvpd0\nntcbIuk9n2ksk3R2hbaO9oRBHb5VionVDpzgyY9GSvpY0vOSvgImS7pa0hceaXWhpGO87UNcxy7X\nYYykp4EDva1Xvd4f/ilJU5WSa3VJusHLR3mfcz2x0ZwqdjnX9Vgl6R1PhnQlMBm4S9JHVY6bppSA\n6kNJR3nZKZI+kNQp6VNJp3v5LEnT3dbrJF3n5U/4mFZI+knSK15+q6QvvfxFSU2lMUua4jOpZZnN\nap4Pt8f7LrdKekUpkdY6STVvFsrsPcN/SwslLcjGk89wWiQtdnnnbFfSMNe9S9KUWv0G/UhfhhCI\nbe/YSPGFtgNnkeIwdQIv+75rgHddbgMedfkSYIXLE4A2l18HLnR5KLCmQn8nAV9n3xcDM7Lvh2fy\nHcCzLj8DTCuvB3SXtd/tn9eRnJiAY4AfSGEtRgFbSJGGBXxe0rmsnS5SngqAx/HYVMBjwP1VbLkD\nuMnlRzO7LAJOdXkEsMjlWcCbLp8JrC1rb7DrMdz3zyPNlgBeAG7L+r0qs9PDDZyPUXgcK1KcqM9I\nyaKOBH4r9Vd2zHpgSJm9x2T2Pp4UNmRMhfotwOIKv515wK0u311+XmMbONv+BEF9rDez1QCSVgOl\nfCHfkBwPwIWkiwdmtljSkZLKH1VcBpwp7YwSfqikg8zsz6xOpRDib2byiZLeIjmBQaTsiwCXAuNK\nlcxsS40xjQRet3Sl2ijpE+A8UuKtDjP72ce70se4c61AKfnRYDNb4kWzgbmZ/tXCoO/IxjIHeEfS\nwaRIt3MzuwwqDQN4z8fzrTzJmusgUubB58xshaR7gGag09s5EPjVq28zswUuLwcud7me85FjwAJL\nyaJ+l7QROJaUR6YWF9Fj71+qzeh64QLgWpfnkBxkMAAJxxLUy1+ZvAPYlsn576hqjpls/wgz20Zj\nbM3kNtIsZb6ki0l30dX67w2rUL+kbz7ef6j9t5K3U+/CpbxuE7DZzIZXqZfbKu+nFfjRzGZnZbPN\n7D8vKzh5VsD8nO3K+cjr1mObEuX2zuW/6Xk0f0ADugQDkFhjCYpkCXALpOfywCb7f4KldmBS6Yuk\nc+tsO78IHUbPHfKErHwhMDFr+3AXtyul/K2k7zhJTZKOJt1Rd1CHc7KUmnWzpJFedBvwcQVdy2kC\nrnf5ZtJLCt3AekljXW9JOqe3/iWNJs3Q8rfmFgFjfSylNa+hNYbS6PnYnYRUn9Jj7+NJj9hKbCA9\nAoP0iLISS4EbXe6rRGhBAYRjCeql/C7cKsitQLOkVcBTwPhsf6nOJKDFF7xXA3fuQn+tpMdGncCm\nbN8U4AhfjF9Jz4XrJaBLvnhfqm9m75LWJ1aRLsoPmNnGMn2r6YOPb6qP9xzgiQrjLWcrcL6kr12/\n0jG3ALe73t+Q1q4q9V2S7yOtAXX4Qn2rmX0LPAK0u07tpMeFldpo5Hzk9XsbWzVye68F1pAeHS6j\nx1E9DkxXekHj7yr9TQYmSurysccrrQOUeN04CIJ+QdJMYL6Zvd3fugTFEjOWIAj6k7iz3QuJGUsQ\nBEFQKDFjCYIgCAolHEsQBEFQKOFYgiAIgkIJxxIEQRAUSjiWIAiCoFDCsQRBEASF8i+/adytZvs2\n2QAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5b66a0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEZCAYAAACJjGL9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFGXWxuHfARXFhC7KmgDzrgnUhRXjmBUVc9hlQdR1\nMWLYNazuimHNAfQzg4oBxYABUJE4qKgoCuaACgoqCgoKRmDO98dbo83QM9PDdFd1dT/3dc3F9HR1\n10PNdJ+u81a9Ze6OiIhIbZokHUBERIqbCoWIiNRJhUJEROqkQiEiInVSoRARkTqpUIiISJ1UKCQ2\nZnahmd1bx/1vmdnOhVxHmplZazObZ2aWdBYpLyoUZczMjjKzCWY238y+NLOXzOzEAq6yzpN23H0L\nd3+2UOswswozm57Lk5hZWzOrMrPEXiNmNs3Mdqu+7e6fuvvKXoCTnyzoZWZvRn8P083sITPbIt/r\nkvRRoShTZvZPoC9wJdDK3VsBJwA7mNlytTymsX8vcXwSzvc6CpLZzJrmsJgXav1ZXA/0Ak4FVgM2\nAR4H9mvoE5nZMvmNJklToShDZrYqcBFwors/6u7fA7j7ZHf/m7v/Ei03wMxuMbOnzGw+UGFm+5nZ\nJDP71sw+NbPeGc9b/Sn8eDP7zMw+jwpSNQeWM7O7zey7qNW0bcbjp5nZ7tH3Tc3sPDP7MFp2opmt\nE913fbTub6Of77iU26HSzC42s+ejdTxjZr+L7q7es5kbtXv+HD3mWDN7x8y+MbPhZtY64/n2MrP3\nzWyumd1kZuPM7Ljovh5mNt7MrjOz2UBvM9vAzMaY2Wwzm2Vm90W/G6L2WWtgaLT+f9XcyzGztc1s\niJl9bWZTzOzvGVkujPYIsm7rGtthY+Ak4Ch3r3T3Be7+o7vf7+5XZmyr4zIe08PMnsu4XWVmJ5nZ\nB8AHZnazmV1dYz1PmNkZGdkHm9lXZvaxmZ3a8N+gxEWFojx1ApoBT+Sw7F+AS9x9JWA8MB/4m7uv\nSvi0eaKZHVjjMRXARsBewDnVb/6ET8ddgAeAVYEhwI0Zj3N+ax2dCRwF7OvuqwDHAD9G970MtCN8\n8r0feLi2vaAc/389gDWB5YB/RT/fKfp31ajdMyH6f/4bOBhoCTwX/V8ws5bAw8A5wOrA+4TtnNkm\n6gh8FK3rsmh7XAqsBfwRWA+4EMDduwGfAvtH678mS/ZB0TJrAYcBl5nZrhn3H0Dt2zrT7sB0d59Y\ny/2w+O+mNgdG/8c/Rus9svoOM1sN2BN4ICp0Q4FJwNrR+k83s73qeX5JiApFeWoJzHb3quofmNkL\nZjbHzH6o8Qn9cXd/EcDdf3b3ce7+dnT7TcKb1S41nv+i6BPpW8BdhDfjas+5+/Coz34f4Q0/m78D\n57v7lOp1ufs30fcD3X2Ou1e5+3WEorfpUmwHB+5y9w/d/SfgIaB99SbJsvwJwOXu/n607S4H2kd7\nFZ2Bt9z98SjXDcDMGo//3N1viu7/yd0/cvfR0Sf42UAfltyWWZnZesD2wDnu/ou7vw70B7pnLJbr\ntv5dlqxL43J3n+vuPwPPA25m1QX3MOAFd58JdABauvv/3H2hu0+Nsh+VhwxSACoU5elroGXmmIO7\nb+/uq0X3Vf/cgcUGf83sz2Y2NmoZzAV6Et5oMmU+5lPCp8ZqX2Z8/wOwfC1jH+sSPn0vIWrDvBO1\neOYQPjG3rOX/Wp/MN8gfgZXqWLYNcH1UUOcQthXAOoRP9TNqLF/zds1t2crMBpnZDDP7FriXJbdl\nbdYGvqluG0Y+jbJUy3Vbfx3lb6xf/39RcRrEbx8S/goMjL5vA6xdvR2jbflvwp6WFCEVivL0IvAz\ncNBSPPZ+wiDnuu7eAriVJf+OWtf4/rOlWM90QvtqMdEn1LOAw929RVTcviX/g77Z2iyfAv9w99Uy\nvlaM9ri+IBS36pyWebuW57wMWARsEbXyurH4tqyr1fM5sLqZZRa21ixZnHIxGli3tjGMyPfAihm3\nf59lmZp5HwAOM7M2hJbU4OjnnwJTa2zHVdx9/6XILjFQoShD7j6XMJh9s5kdamYrm1kTM2vP4m8G\n2d58VwLmuPsvZtaR8Emx5hvEf8xsBTPbnND/f3ApYvYHLjGzjSzYysxWj9a/EJhtZsuZ2QXAKkvx\n/NVqKzCzgCpgw4yf3QqcZ2abQTgowMwOj+57CtjSzA60cNTPyWR/M820EuEN+DsLA/Vn1bj/yxrr\n/5W7TwdeAC43s2ZmthVwLKHF1CBRe+9mwvjBLtF2Xd7C4dPnRItNBg6Jfq8bAcfV+oS/Pe9kYDbh\ndznc3b+L7noZmGdmZ0fP19TMtjCzPzU0u8RDhaJMufvVhAHjswntl5mEN8KzCXsckH0A8yTgYjP7\nDvgv2YvAOOBDYBRwtbuPquP5avvUfB1hzGAEYY+hH7A88AwwHPgAmEZoF31a4/nq+iRe1/p/fay7\n/0AYaB4ftUc6uvvjhMOJB0WtojeBvaPlZwOHA1cR3hz/CEwk7LnVlusiYJvo/zeU8Ik7c5nLCUV3\njpmdmSXvX4C2hL2LR4EL3H1MHeurdbu4ey/CYPdNwBzC7+9AwiA4hPGTXwjF6y5CQaq57bK5H9gt\n+rd6XVXA/oTxoI8JRfl2GlfwpYCs0BcuMrNpwHeEXewF7t6xluU6EN6gjnD3RwsaSgrCzNoSXvjL\nZA6Ul6NoLGA68Fd3H5d0HpHGiOPEGAcqqo9YycbCyUdXEj4panoCSaXo8M6XCXs51W2kl5JLJJIf\ncbWe6nvzPxV4hLALKulWztfW7URo2cwinGNyUHSoqEiqxdF6+pjQg10E3Obu/Wrcvw6h37kbcCcw\nVK0nEZHiEUfraQd3/8LM1gBGmtl77v5cxv19gXPd3aNDCtV6EhEpIgXfo1hsZWFeoPnufm3Gzz7m\nt+LQknBi0PHuPiRjmXJuZ4iILDV3b/SH74KOUZhZczNbOfp+RcLcP29mLuPuG7j7+u6+PmGc4sTM\nIpGxXGq/evfunXgG5U8+R7llV/7kv/Kl0K2nVsBjoaPEMsBAdx9hZj0B3P22Aq+/KEybNi3pCI2i\n/MlJc3ZQ/lJR0ELhYbKv9ll+nrVAuPsxhcwjIiINpzOzY9CjR4+kIzSK8icnzdlB+UtFrIPZS8vM\nPA05RUSKiZnhxT6YLUFlZWXSERpF+ZOT5uyg/KVChUJEROqk1pOISIlS60lERGKhQhGDtPc5lT85\nac4Oyl8qVChERKROGqMQESlRGqMQkdhUVcF118GOO0L//vDjj0knkjipUMQg7X1O5U9OMWSfNQsO\nOAAefhhOPx2eeALatIF//xumT6/7scWQvzHSnj9fVChEpFaVlbD11rDllvDss3DYYTB0KLzwQtir\naNcOjjgCxo8HdYdLl8YoRGQJixbBxRfD7bfDgAGw997Zl/vuO7j7brjhBlh1VejVC448Epo1izWu\n1CJfYxQqFCKymBkzoGtXWHZZuPdeWGut+h9TVQVPPx0KxuuvQ8+ecMIJuT1WCkeD2SmS9j6n8icn\n7uzDhsGf/hT2IJ55Jvc3+iZNYL/9wmPGjAnjGpttBnvuWckrrxQ2cyGl+W8nn1QoRIRffoEzzoCT\nT4ZHHoHzzoOmTZfuuTbbDG6+GT7+GDbaCA4/HLbfHgYNggUL8ptb4qHWk0iZ+/BDOOooWG89uOMO\nWH31/D7/okUwZEhoS02ZAieeCP/4B6yxRn7XI0tS60lEGu2BB6BTJ+jRAx59NP9FAsKeycEHw9ix\n8OSTMHUqbLIJHHdcGM+Q4qdCEYO09zmVPzmFyv799+GNundvGDECTjkFrNGfO5dUM3+7duGEvSlT\nYMMNw7hGRUUoUosW5X/9jZXmv518UqEQKTNvvgkdOoTxgldfDedJxK1lyzAOMnVqaEVde20oHNdc\nA3PmxJ9H6qYxCpEy4R7Oi/jPf8Ibc/fuSSda3CuvhHGMYcPCmMmpp4aBcVl6Oo9CRHI2d24YQP7g\nA3jwQdh006QT1W7mTLj11vC11VbhJL7OncMhuNIwGsxOkbT3OZU/OfnIPmECbLMNrLkmvPRSvEVi\nafL//vdw4YXwySfQrVv4ftNNw97Gd9/lO2Hd0vy3k08qFCIlqqoKrr4aunQJraYbb4Tll086Ve6a\nNQuF4pVXwjQh48dD27Zw2mlhMFzio9aTSAn66is4+mj49ttwCGybNkknyo/p0+GWW8KRUx07hqKx\nxx6FOWKrFKj1JCJZjRkTWk1bbw3jxpVOkYBwUuBll4W21MEHwz//CZtvHsYzvv8+6XSlS4UiBmnv\ncyp/chqSfeFC+O9/4W9/g7vuCm+oyy5buGy5KNS2X2GF307Yu+mmMMdUmzZw1llhLypf0vy3k08q\nFCIlYPp02HXXMHD92muw555JJ4qHWfh/P/ZYGMv44oswJqMr8OVXwccozGwa8B2wCFjg7h1r3N8V\nOBswYB5woru/UWMZjVGI1GLIEDj++DCp39lnl/dhpFVVYY/qhx/C5IbLLJN0omSl5jwKM5sKbOvu\n39RyfyfgHXf/1sz2AS509+1qLKNCIVLDzz+HwvDEE7/N2SRhJtwuXWCddcKgdzkPdKdtMLvWoO7+\nortXdxUnAOvGEyk+ae9zKn9yass+ZUooDNOnw6RJxVskktj2yy0HgwfD22+H63o3Rpr/dvIpjkLh\nwCgzm2hmx9ez7HHAUzFkEkmtgQPD9R3+/vfwhrjaakknKj4rrhhmqh0yJJxDIo0TR+tpLXf/wszW\nAEYCp7r7c1mW2xW4CdjB3efUuE+tJyl7338fZnl98cVwEaD27ZNOVPymT4cdd4RLLim+ua3ikK/W\nU8GHetz9i+jfWWb2GNARWKxQmNlWQD9gn5pFolqPHj1o27YtAC1atKB9+/ZUVFQAv+0e6rZul+rt\njz6Cq6+uoFMn6NOnkrlzAYonX7HeXm89uOSSSk4/HVZfvYL99y+ufPm+XVlZyYABAwB+fb/MC3cv\n2BfQHFg5+n5FYDywV41lWgMfAtvV8TyeZmPHjk06QqMof3LGjBnrN9/s3rKl+733Jp2m4Ypl20+Y\nELbhc8817HHFkn9pRe+djX4vL/QeRSvgMQuHHSwDDHT3EWbWM3r3vw24AFgNuCVabolDaEXK0Zw5\nYUK8774L8xxtsknSidKrY8cwtnPooTBqFGy5ZdKJ0kVzPYkUoRdfhL/8BQ48EK66KkyQJ4334INh\n2o/nnoP11086TeGlZoxCRHJXPePrddeFiwwdeGDSiUrLkUfCrFmw115hL23NNZNOlA5lfA5nfKoH\nm9JK+ePx5Zew774wdGiYjuLAA9OTvTbFmP+UU+Cvf4V99qn/+hbFmD8JKhQiRWDUqDDja8eOUFkJ\nrVsnnai0XXghbLcdHHQQ/PRT0mmKn8YoRBK0cCH07g0DBsA998DuuyedqHwsWhTGgRYtgocegqZN\nk06Uf2mbwkNEavj0U9hlF3j11TDjq4pEvJo2hXvvDe2nE08EfRatnQpFDNLe51T+/Hv8cejQIbQ+\nnnoKWrXKvlwxZm+IYs/frBk8+miYL+u//13y/mLPHxcd9SQSo59+ChfXGTYszPq63Xb1P0YKa+WV\nQ7HecUdYY41weVVZnMYoRGLy/vtw1FGw4YZh+usWLZJOJJk++SQUiyuugK5dk06THxqjEEmRe+4J\nb0InnAAPP6wiUYzatIHhw+HMM+Hpp5NOU1xUKGKQ9j6n8i+9+fPh6KPh8sthzBjo2bNhF9LRto/X\n5puH8aPu3cPZ8WnLXygqFCIFMnkybLttuBznxImaXygtOnUKe4AHHQRTpyadpjhojEIkz9zhppvg\noovg+uvDWcCSPgMHwrnnwvPPh7ZUGmmuJ5Ei9M03cNxx4RyJF1+EjTZKOpEsra5dYfbsMC/U88+H\nI6LKlVpPMUh7n1P5czN+PGy9NbRtCy+8kJ8ioW2frHbtKjnsMOjcGebNSzpNclQoRBqpqgouuyxc\n6+DGG6FPH00LXkr+97/wAeDgg+Hnn5NOkwyNUYg0wsyZ0K1beAO5/35Yd92kE0khLFoERxwRpv14\n4IH0zAul8yhEEjZiRJjxdfvtw6GvKhKlq2nTMLg9axacemr5zQulQhGDtPdplX9xCxaEo2GOPTa8\neVx0UTgEthC07ZOVmX/55cO0Ky+9FH7n5URHPYk0wLRpYWrq1VYLE8mV85Ew5WiVVcJZ29XzQp18\nctKJ4qExCpEcDR4cpqM+5xw44wxoov3xsjV1Kuy0E1xzTZi/q1jpPAqRmPz0U5j/55lnwqyvHTsm\nnUiStv76YcbZPfYI193ebbekExWWPhPFoJT6tGnUmPzvvQd//jN8/XW4uFDcRaKct30xqCv/VltB\nv37hQ0SpNzxUKESycA+XJ91pJzjlFBg0CFZdNelUUmy6dAkHN4wZk3SSwtIYhUgN8+aFsYhJk+DB\nB2GLLZJOJMWsf3947DF48smkkyxJ51GIFMBXX4XZQ1dYAV55RUVC6ve3v4Xrnr/7btJJCkeFIgal\n3KdNg1zzz54Nu+8epuLo1w+aNy9srlyUy7YvVrnkX355OOkkuO66wudJigqFCGHW1z32gAMOgAsv\nTDqNpM2JJ8Ijj4Q90lKkMQope3PmhCKx225w1VUNuwKdSLWePWGttYrrg0a+xihUKKSsffst7Lkn\n7LBDaB2oSMjSeu892GWXcPb+CisknSZIzWC2mU0zszfMbJKZvVzLMjeY2RQze93Mti50priVQ5+2\nmNWWf9482HffcJ5EsRaJUt32adGQ/H/4A3ToAPfdV7g8SYljjMKBCnff2t2XOF3JzDoDG7n7xsA/\ngFtiyCRlbv78cDGarbaCG24oziIh6XPmmeF6JFVVSSfJr4K3nsxsKvAnd/+6lvtvBca6+4PR7feA\nXdz9y4xl1HqSvPnhB9hvP9hwQ7j9ds3ZJPnjHqaev/TS8EEkaalpPRH2KEaZ2UQzOz7L/esA0zNu\nzwA0s78UxI8/hrNpW7dWkZD8M4N//hOuvTbpJPkVx6SAO7j7F2a2BjDSzN5z9+dqLFOz4i2x+9Cj\nRw/atm0LQIsWLWjfvj0VFRXAb33EYr3dt2/fVOUt1fzbbVfBQQcBVNK9OzRpUhz56rqd2SMvhjzK\nX//jW7Wq5I03YPLkCtq3jz/vgAEDAH59v8yHWI96MrPewHx3vzbjZ7cCle4+KLpdcq2nysrKX3+p\naVQK+Tt1quCQQ2CllcLFhgp1oaF8K4VtX475r7wS3n4b7rkn/5kaIhWHx5pZc6Cpu88zsxWBEcBF\n7j4iY5nOwCnu3tnMtgP6uvt2NZ4n1YVCkvXLL3D44aE4DBoEyy6bdCIpdXPmhDGwN9+EddZJLkda\nxihaAc+Z2WRgAjDM3UeYWU8z6wng7k8BH5vZh8BtwEkFziRlZMGCcEU6gAceUJGQeKy2WpgD6sYb\nk06SHwUtFO4+1d3bR19buPvl0c9vc/fbMpY7xd03cvd27v5aITMlIbPPmUZpzb9wYXixfvZZJQ89\nBMstl3Sihkvrtq9WzvlPPz3MGTZ/fv7yJEXHfEhJWrQIjj4a5s6Fiy+GZs2STiTlZoMNwpna0dhy\nqmkKDyk5VVVw7LEwYwYMHVo80ylI+XnhBejWDT74AJo2jX/9aRmjEIlVVRX84x9hvp0hQ1QkJFmd\nOsEaa4S/xTRToYhBOfdp4+Qergvw/vswbNhv15NIS/5s0pwdlL9UTsBToZCS4A6nngqvvw5PPRXO\nlxApBgcfDJ99BhMmJJ1k6WmMQlLPPUzGNn48jBwJq66adCKRxfXtCy++GK7BHqdUnHCXLyoUUht3\nOOccGD0aRo0Kx6+LFJt586Bt23Bt7TzOrFEvDWanSLn3aQvFHf7zHxgxInzVViSKNX8u0pwdlL/a\nyiuHI/FuuCEvTxc7FQpJrYsuCkeTjBoFv/td0mlE6tarVzin4ttvk07ScGo9SSpdemmY3K+yEtZc\nM+k0Irn5619h223DkVBx0BiFlK2rroI77ghFYq21kk4jkrtXXw1HQX30UTzzjmmMIkXUp82f664L\n8+eMGZN7kSim/A2V5uyg/DVtu22Y2mPw4Lw+bcGpUEhq3HBDmI1zzJhkp24WaYwzzwwn4KWpSaLW\nk6TCLbeEi8FUVsZ7eKFIvlVVwR/+AP37w847F3Zdaj1J2ejXDy6/POxJqEhI2jVpAmecEdqoaaFC\nEQP1aZfegAFhmvDRo0Nvd2mkefunOTsof22OPjrMLDtlSkGePu9UKKRo3XcfnH9+OE9i442TTiOS\nP82bh1mO+/ZNOkluchqjiK53vR7gwAx3/77QwWqsX2MUZWbQoDDoN2oUbLZZ0mlE8m/mzPC3PWVK\n4U4YLfh5FGa2MnA8cBTQEvgSMMJ1sL8GBgL93L3gF/pToSgvjzwSZoIdORK22CLpNCKFc+yxsNFG\ncN55hXn+OAazHwfmAQe4+wbu3sndt3P39YH9ge+BJxoboByoT5u7J56AU06Bp5/OX5FI8/ZPc3ZQ\n/vqccUY45Pvnnwu6mkartVC4++7u3s/dv8xy30x3v93ddy9sPCknw4aFvu2TT0L79kmnESm8LbcM\nXw88kHSSutXVevqDu79nZtsSxiZ+vQtwd38tjoBRFrWeStzw4dC9eygWHTsmnUYkPs88A2edFS66\nZY1uEi0ujjGKfu5+vJlVsnihAMDdd23synOlQlHaRo6Erl1D26lTp6TTiMTLPexV9OkDe+6Z3+cu\n+BiFux8f/Vvh7rvW/GrsisuJ+rS1Gzs2zKg5eHDhikSat3+as4Py58IsHOFXzCfg1XsehZm9amYn\nm5muHSZ59eyzcOSR8PDDsNNOSacRSU7XrjB5Mrz9dtJJsqv3PAoz2xg4BjgCeBW4ExgRZy9IrafS\n88ILcNBBYRBvdx0SIcL//gfTpoU5oPIl9utRmFkTwmGxtwBVhIJxvbt/09gQOaxbhaKETJgABxwA\n994Le++ddBqR4jB7NmyyCbz7LrRqlZ/njHVSQDNrB1wHXA0MBg4nnGMxprEByoH6tL+ZOBG6dAlz\nOMVVJNK8/dOcHZS/IVq2DK3Ym26KbZU5y2mMAugDvAy0c/de7v6Su18DTM3h8U3NbJKZDc1yX0sz\nG25mk83sLTPrsRT/B0mJSZNgv/3CbLCdOyedRqT4nH463Hor/Phj0kkWl8sYxYbu/tFSr8DsTGBb\nYGV371LjvguBZu7+bzNrCbwPtHL3hTWWU+sp5d54A/baK3xaOvTQpNOIFK8uXcIHqp49G/9csbWe\nMouEmTXoJDszWxfoDPQnnKhX0xfAKtH3qwBf1ywSkn5vvx3aTNdfryIhUp9zzw1fJ58M77+fdJqg\nodOMN7Qy9QHOIgx+Z9MP2NzMPgdeB05r4POnQjn3ad97L5xEdM01of+ahDRv/zRnB+VfGttvHz5c\nrb56uAJe587h7O0kmyrLNHD5p3Jd0Mz2B75y90lmVlHLYucBk929wsw2BEaaWTt3n1dzwR49etA2\nurxZixYtaN++PRUV4Wmrf5nFenvy5MlFlSeu/OusU8Eee0D37pXRNa7TlV+3dTvJ25dcUsH558MF\nF1Ry0knQrFkFvXpBmzaVrLBC9sdXVlYyYMAAgF/fL/MhlzGK64A73L1Bp4KY2WVAN2AhsDyhtTTY\n3btnLPMUcKm7j49ujwbOcfeJNZ5LYxQp89FHsOuu0Ls3HHdc0mlE0s09XC/++uvh+efDa+rkk6F1\n67ofF+fhse8Ct5vZy2Z2gpmtmssTu/t57r5eNC35UcCYzCIReQ/YA8DMWgGbAh/nHl+K0bRp4SS6\n889XkRDJB7Pwwevxx+Hll+GXX2DrreHww0PhKPTn6FwGs/u5+w5Ad6At8KaZ3W9mDZ3vyQHMrKeZ\nVY/nXwb8ycxeB0YBZ8dxAl/cqncN06oh+T/9FHbbLcyGmY+jNvIhzds/zdlB+Qthgw3CBILTpoUx\njB49oEOHcALrL78UZp25nnDXFPgD8EdgFmHg+UwzezCXx7v7uOpDY939Nne/Lfp+trsf4O7t3H1L\nd79/qf4XUhQ++ywUiV69wm6xiBTOyiuHK0F+8AFceCHcfTe0bQsXXwxffZXfdeUyRtEHOIBwFnZ/\nd38547733X3T/EbKmkFjFEXuiy+gogL+/vewNyEi8XvrLbjhhjDR5kEHwYABMc31ZGbHAg+6+/dZ\n7mvh7nMbG6I+KhTF7csvQ5Ho1q1w1/4VkdzNnh2myTnrrAIPZkeHq+Lud2YrEpHVGxugHBRjn7Mh\n6so/a1ZoNx11VPEWiTRv/zRnB+VPSsuW8K9/5e/56jqP4jIzWxEYAkwknEVtwFrAn4AuhIkBj8pf\nHEmTr7+GPfaAgw+GCy5IOo2IFEqdrScz24hQCHYA2kQ//gR4HnjA3WM5lFWtp+IzZ044BHavveDy\ny/N/rV8Rabw4rpm9trt/3tgV5IMKRXGZOzdMy7HzzmFqDhUJkeIUxwl3d5jZBDO7wswqzKyh031I\nJK19zmqZ+b/7DvbZJ8xHk5Yikebtn+bsoPylotY3f3ff18xWAHYBDgGuMbPpwNPAcHf/NKaMUiTm\nzw8TlG2zDfTtm44iISKNl8vhsb2Ae919jpltAOwL7A383t07xpBRraci8P33oUhssgncdhs0aei8\nwyISuzjnemoFvGJmDwGbALdEZ1nv1NiVSzr88EO4xvUGG6hIiJSjXOZ6Op9QIO4EegAfRDPDrlvY\naKUjzX3On36CnXcO04T375/OIpHm7Z/m7KD8pSKnl727VwEzgS+BRcBqwCNmdnUBs0nCfv45nCOx\nyipw113QtGnSiUQkCbmMUZxGmDn2a8IlTR9z9wVm1gSY4u4bFjykxihi98sv4bKlzZrBoEGwjI55\nE0mdfI1R5PLyXx04xN0/yfyhu1eZ2QGNDSDFZ8GCMCXHMsvAAw+oSIiUu1zGKHrXLBIZ972T/0il\nJ019zoULoWvXUCwefBCWXTZd+bNJc/40ZwflLxX6rCi/WrQIuneHefPClbSWWy7pRCJSDOodoygG\nGqMovEWL4JhjwnUlhgyBFVZIOpGINFacYxRS4qqq4PjjYcYMGDZMRUJEFpfCo+LTp5j7nFVVcMIJ\n8OGHMHT07/V/AAAPLklEQVQoNG++5DLFnD8Xac6f5uyg/KVCexRlzB1OOQXefhuGD4cVV0w6kYgU\nI41RlCl3OP10eOklGDkynFQnIqVFYxSy1NzhrLNg/HgYNUpFQkTqpjGKGBRTn9M9XNt69GgYMQJa\ntKj/McWUf2mkOX+as4PylwrtUZSZ3r3hySdh7FhYffWk04hIGmiMooxcckmYt2nsWFhzzaTTiEih\naYxCGuSKK2DgQKisVJEQkYbRGEUMku5zXnMN3HknjBkDv/99wx+fdP7GSnP+NGcH5S8V2qMocX37\nwi23wLhxsPbaSacRkTQq+BiFmTUFJgIz3H2JacnNrALoAywLzHb3iizLaIxiKdx0U9ibqKyENm2S\nTiMicUvTGMVpwDvAyjXvMLMWwE3A3u4+w8xaxpCnLNx+O1x1lYqEiDReQccozGxdoDPhynjZqtpf\ngcHuPgPA3WcXMk9S4u5z3nlnOMJp9GhYf/3GP1/a+7Rpzp/m7KD8paLQg9l9gLOAqlru3xhY3czG\nmtlEM+tW4Dwl75574IILQpHYaKOk04hIKShY68nM9ge+cvdJ0ThENssC2wC7A82BF83sJXefUnPB\nHj160LZtWwBatGhB+/btqagIT1td9Yv1dvXPCr2+zz+v4Nxz4YorKvn8c9hkk3TlT/v2L8TtioqK\nosqj/MWVr+btyspKBgwYAPDr+2U+FGww28wuA7oBC4HlgVUIbabuGcucA6zg7hdGt/sDw939kRrP\npcHsejz8MPTqFeZu2nzzpNOISDHI12B2wVpP7n6eu6/n7usDRwFjMotE5AlgRzNrambNgT8TBr5L\nSnXFL5RHH4VTTw1ThReiSBQ6f6GlOX+as4Pyl4o4z6NwADPrCeDut7n7e2Y2HHiDMI7Rz91LrlAU\n0pAhcOKJ8PTT0K5d0mlEpBRprqcUe+op6NEjTPLXoUPSaUSk2BR960kKa8SIUCSGDFGREJHCUqGI\nQb77nKNHQ9eu8NhjsN12eX3qrNLep01z/jRnB+UvFSoUKTNuHPzlLzB4MOywQ9JpRKQcaIwiRZ5/\nHg45JFxTYrfdkk4jIsVOYxRl5qWXQpEYOFBFQkTipUIRg8b2OV95Bbp0gbvvhj33zE+mhkh7nzbN\n+dOcHZS/VKhQFLnXXoP994c77oB99006jYiUI41RFLHXX4e99oJbb4WDD046jYikjcYoStxbb8E+\n+8CNN6pIiEiyVChi0NA+57vvhj2J666Dww8vTKaGSHufNs3505wdlL9UqFAUmfffhz32gCuvDOdL\niIgkTWMUReTDD2HXXeHii+GYY5JOIyJppzGKEjN1Kuy+e7g6nYqEiBQTFYoY1Nfn/OSTcBLdOefA\n8cfHk6kh0t6nTXP+NGcH5S8VKhQJmz49FIkzzoCTTko6jYjIkjRGkaDPPoOKCjjhBPjnP5NOIyKl\nRmMUKTdzZhiTOO44FQkRKW4qFDGo2ef86qvQburaFc49N5lMDZH2Pm2a86c5Oyh/qVChiNns2eE8\nicMOg//+N+k0IiL10xhFjL75JrSb9t0XLr0UrNGdQxGR2uVrjEKFIiZz54Y9iV13hauuUpEQkcLT\nYHaKDBtWyd57w447prNIpL1Pm+b8ac4Oyl8qVCgKbN68cCJdhw7Qp0/6ioSIiFpPBTR/fhiP2Gwz\nuOUWaKKyLCIx0hhFkfvhB9hvP9hgA+jXT0VCROKnMYoi9uOP4RrX660Ht98Ozz5bmXSkRkl7nzbN\n+dOcHZS/VKhQ5NlPP4Ur0q25Jtx1FzRtmnQiEZHGUespj37+GQ49FJo3h/vvh2WWSTqRiJSz1LSe\nzKypmU0ys6F1LNPBzBaa2SGFzlMoCxbAkUfCcsvBwIEqEiJSOuJoPZ0GvANk3SUws6bAlcBwIJUH\njy5YEC5bWlUFgwbBsssufn/a+5zKn5w0ZwflLxUFLRRmti7QGehP7UXgVOARYFYhsxTKwoXQrVsY\nwH744bBHISJSSgo6RmFmDwOXAasA/3L3A2rcvw5wH7AbcCcw1N0fzfI8RTlGsWgRHH00zJoFTzwB\nyy+fdCIRkd8U/RiFme0PfOXuk6h9b6IvcG5UBayO5YpOVVW4lsQXX8Djj6tIiEjpKuSQ6/ZAFzPr\nDCwPrGJm97h794xltgUGWZjXoiWwr5ktcPchNZ+sR48etG3bFoAWLVrQvn17KioqgN/6iHHdHjOm\nkmuvhfnzK3jqKZgwoe7l+/btm2jext5W/uRuZ/bIiyGP8hdXvmx5BwwYAPDr+2U+xHJ4rJntQpbW\nU41l7iIFrSf3cG3rN9+E4cNhpZXqf0xlZeWvv9Q0Uv7kpDk7KH/SUjWFR1Qo/unuXcysJ4C731Zj\nmaIvFO7QqxdMnAjPPAOrrJJ0IhGR2qWqUDRWMRQK93Bt6+efh5EjYdVVE40jIlKvoh/MLiXu4drW\n48aFPYmGFonMPmcaKX9y0pwdlL9U6PzheriHa1s/8wyMHg2rrZZ0IhGReKn1VI+LLgon0o0dC2us\nkUgEEZGlkq/Wk/Yo6nDppWFKjspKFQkRKV8ao6jFVVfBPffAmDHQqlXjnivtfU7lT06as4Pylwrt\nUWTRp0+44NC4cbDWWkmnERFJlsYoavi//wuForISWreOZZUiIgWhMYoCuPVWuPZaFQkRkUwao4j0\n7w+XXRYOgc3jFClA+vucyp+cNGcH5S8V2qMA7r47HAY7ZgxsuGHSaUREikvZj1EMHAhnnx2KxKab\nFmQVIiKJ0BhFHjz4IJx1FowapSIhIlKbsh2jcA8F4plnYLPNCruutPc5lT85ac4Oyl8qynaPwgz6\n9Us6hYhI8Sv7MQoRkVKlacZFRCQWKhQxSHufU/mTk+bsoPylQoVCRETqpDEKEZESpTEKERGJhQpF\nDNLe51T+5KQ5Oyh/qVChEBGROmmMQkSkRGmMQkREYqFCEYO09zmVPzlpzg7KXypUKEREpE4aoxAR\nKVEaoxARkVjEUijMrKmZTTKzoVnu62pmr5vZG2Y23sy2iiNTnNLe51T+5KQ5Oyh/qYhrj+I04B0g\nW//oY2Bnd98KuAS4PaZMsZk8eXLSERpF+ZOT5uyg/KWi4IXCzNYFOgP9gSV6Ze7+ort/G92cAKxb\n6Exxmzt3btIRGkX5k5Pm7KD8pSKOPYo+wFlAVQ7LHgc8Vdg4IiLSEAUtFGa2P/CVu08iy95EjWV3\nBY4FzilkpiRMmzYt6QiNovzJSXN2UP5SUdDDY83sMqAbsBBYHlgFGOzu3WsstxXwKLCPu3+Y5Xl0\nbKyIyFLIx+GxsZ1HYWa7AP9y9wNq/Lw1MAb4m7u/FEsYERHJ2TIxr88BzKwngLvfBlwArAbcYmYA\nC9y9Y8y5RESkFqk4M1tERJJTlGdmm9kl0Ul4k81stJmtl2WZ9cxsrJm9bWZvmVmvJLJmk0v+aLl9\nzOw9M5tiZkUziG9mV5vZu9H/4VEzW7WW5f4dbf83zex+M2sWd9YsmXLN3sLMHomWfcfMtos7aza5\n5o+WrfVE1qTkkr/IX7u5/v0U62v38Gi7LjKzbepYrmGvXXcvui9g5YzvTwX6Z1nm90D76PuVgPeB\nPyadvQH5mwIfAm2BZYHJRZR/T6BJ9P0VwBVZlmlLOFmyWXT7QeDoNGSP7rsbODb6fhlg1aSzNyR/\ndP+ZwEBgSNK5G/i3U8yv3VzyF/Nr9w/AJsBYYJtalmnwa7co9yjcfV7GzZWA2VmWmenuk6Pv5wPv\nAmvHk7BuueQHOgIfuvs0d18ADAIOjCNffdx9pLtXn/dS20mQ3wELgOZmtgzQHPgspoi1yiV79Clx\nJ3e/M3rMQv/tpM9E5bjt6z2RNSm55C/y124u27+YX7vvufsH9SzW4NduURYKADO71Mw+BY4mVPa6\nlm0LbE34xRaFHPKvA0zPuD0j+lmxOZYsJ0G6+zfAtcCnwOfAXHcfFXO2+mTNDqwPzDKzu8zsNTPr\nZ2bNY86Wi9ryQ8NOZE1KXfmB4nztZqgtf1peu1ktzWs3sUJhZiOj/ljNrwMA3P18d28NDCC8KGp7\nnpWAR4DTok8nschD/kSPIqgvf7TM+cAv7n5/lsdvCJxO2I1dG1jJzLqmITuh1bQNcLO7bwN8D5wb\nR/YoW2O3fc4nshZCHrZ/9TJF+dqNlqkrf9G/dut5fINfu3EfHvsrd98zx0Xvp5ZPJWa2LDAYuM/d\nH89XtlzkIf9nQOYg93qETyaxqC+/mfUgtDZ2r2WRPwEvuPvX0fKPAtsTeuYFlYfsM4AZ7v5KdPsR\nYiwUeci/PdDFzDoTnchqZvd4jRNZCyUP+Yv6tZtD/qJ+7eagwa/domw9mdnGGTcPBCZlWcaAO4B3\n3L1vXNlykUt+YCKwsZm1NbPlgCOBIXHkq4+Z7UNoaxzo7j/Vsth7wHZmtkL0u9iDMENwonLJ7u4z\ngelmtkn0oz2At2OKWKcc85/n7uu5+/rAUcCYuIpEfXLJX+Sv3Vz+9ov2tVtDbXubDX/tJj1KX8uo\n/CPAm4SjCQYDa0Y/Xxt4Mvp+R0J/djLhjXgSYQqQVOSPbu9LOOLjQ+DfSefOyDUF+CRju95cS/6z\nCW+wbxKOIlo2RdnbAa8ArxOmjymWo55yyp+x/C4U11FP9eYv8tdurn8/xfraPZgwfvIjMBN4upb8\nDXrt6oQ7ERGpU1G2nkREpHioUIiISJ1UKEREpE4qFCIiUicVChERqZMKhYiI1EmFQiQLM4ttSgmR\nYqdCIZKdTjASiahQiNTBgqujSdfeMLMjop83MbObLVzkZoSZPWlmh9Z47IZm9mrG7Y0zb4ukRWKT\nAoqkxCGE6T62AtYAXjGzZwnTULRx9z+aWSvCNRXuyHygu39kZt+aWTt3fx04Brgz3vgijac9CpG6\n7Qjc78FXwDigA7AD8BCAu39JuKJYNv2BY8ysCXAEYTZhkVRRoRCpm1P7LJy5XAtiMGECuf2Bie4+\nJ1/BROKiQiFSt+eAI6MxiTWAnQlXYxsPHBqNYbQCKrI92N1/Bp4BbgHuiieySH6pUIhk5wDu/hjw\nBmE68tHAWVELajDhYjXvAPcCrwG1XXf7fsK02iMKnFmkIDTNuMhSMrMV3f17M/sdYS9j+6iI1Fzu\nX8DK7t479pAieaCjnkSW3jAzawEsB1xcS5F4DFgf2C3ucCL5oj0KERGpk8YoRESkTioUIiJSJxUK\nERGpkwqFiIjUSYVCRETqpEIhIiJ1+n+KRsAkmp26rwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5852b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The depth of packing required is 12.881 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.7: Page 312"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.7\n",
+ "# Page: 312\n",
+ "\n",
+ "print'Illustration 8.7 - Page: 312\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "# Fom Illustration 8.6:\n",
+ "y1 = 0.02;\n",
+ "y2 = 0.00102;\n",
+ "m = 0.125;\n",
+ "x2 = 0.005;\n",
+ "x1 = 0.1063;\n",
+ "\n",
+ "# Number of transfer units:\n",
+ "# Method a:\n",
+ "y1_star = m*x1;\n",
+ "y2_star = m*x2;\n",
+ "yDiffy_star1 = y1-y1_star;\n",
+ "yDiffy_star2 = y2-y2_star;\n",
+ "yDiffy_starm = (yDiffy_star1-yDiffy_star2)/math.log(yDiffy_star1/yDiffy_star2);\n",
+ "# From Eqn. 8.48:\n",
+ "NtoG = (y1-y2)/yDiffy_starm;\n",
+ "print\"NtoG according to Eqn. 8.48:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Mehod b:\n",
+ "# From Illustration 8.3:\n",
+ "A = 1.424;\n",
+ "NtoG = (math.log((((y1-(m*x2))/(y2-(m*x2)))*(1-(1/A)))+(1/A)))/(1-(1/A));\n",
+ "print\"NtoG according to Eqn. 8.50:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Method c:\n",
+ "# Operating Line:\n",
+ "# From Illustration 8.3:\n",
+ "X_prime = [0.00503, 0.02, 0.04 ,0.06 ,0.08 ,0.10 ,0.1190];\n",
+ "x_prime = [0.00502 ,0.01961, 0.0385, 0.0566, 0.0741, 0.0909 ,0.1063]\n",
+ "Y_prime = [0.00102 ,0.00357 ,0.00697 ,0.01036 ,0.01376 ,0.01714 ,0.0204];\n",
+ "y_prime = [0.00102 ,0.00356, 0.00692 ,0.01025 ,0.01356 ,0.01685, 0.0200];\n",
+ "def f2(x):\n",
+ " return m*x\n",
+ "x = numpy.arange(0,0.14,0.01);\n",
+ "\n",
+ "plt.plot(x_prime,y_prime,label=\"Operating Line\")\n",
+ "plt.plot(x,f2(x),label=\"Equilibrium Line\");\n",
+ "plt.legend(loc='upper right');\n",
+ "plt.grid('on');\n",
+ "xlabel(\"mole fraction of benzene in liquid\");\n",
+ "ylabel(\"mole fraction of benzene in gas\");\n",
+ "plt.show()\n",
+ "# From graph:\n",
+ "NtoG = 8.7;\n",
+ "print\"NtoG from graph:\",round(NtoG,2),\" \\n\",\n",
+ "\n",
+ "# Method d:\n",
+ "# from Fig 8.10:\n",
+ "Y_star = [0.000625, 0.00245, 0.00483, 0.00712 ,0.00935 ,0.01149, 0.01347];\n",
+ "ordinate = numpy.zeros(7);\n",
+ "for i in range(0,7):\n",
+ " ordinate[i] = 1/(Y_prime[i]-Y_star[i]);\n",
+ "\n",
+ "plt.plot(Y_prime,ordinate);\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Y\");\n",
+ "ylabel(\"1/(Y-Y*)\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area under the curve:\n",
+ "Ac = 8.63;\n",
+ "# From Eqn. 8.36:\n",
+ "NtoG = Ac+(1.0/2)*math.log((1+y2)/(1+y1));\n",
+ "print\"NtoG from graphical integration:\",round(NtoG,2),\"\\n\"\n",
+ "\n",
+ "# Height of transfer units:\n",
+ "NtoG = 9.16;\n",
+ "# From Illustration 6.6:\n",
+ "Fga = 0.0719;# [kmol/cubic m.s]\n",
+ "Fla = 0.01377;# [kmol/cubic m.s]\n",
+ "Gav = 0.0609;# [kmol/square m.s]\n",
+ "L = 1.787*10**(-3);# [kmol/s]\n",
+ "X1 = x1/(1-x1);\n",
+ "X2 = x2/(1-x2);\n",
+ "Area = 0.1746;# [square m]\n",
+ "Lav = L*((1+X1)+(1+X2))/(2*Area);\n",
+ "# From Eqn. 8.24:\n",
+ "Htg = Gav/Fga;# [m]\n",
+ "# From Eqn. 8.31:\n",
+ "Htl = Lav/Fla;# [m]\n",
+ "# since Solutions are dilute:\n",
+ "HtoG = Htg+Htl/A;# [m]\n",
+ "print\"HtoG: \",round(HtoG,2),\" m\\n\",\n",
+ "Z = HtoG*NtoG;# [m]\n",
+ "print\"The depth of packing recquired is \",round(Z,2),\" m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.7 - Page: 312\n",
+ "\n",
+ "\n",
+ "NtoG according to Eqn. 8.48: 8.51 \n",
+ "\n",
+ "NtoG according to Eqn. 8.50: 9.16 \n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucTfX6x9+PiaTcOoQGETnp/BQluVXOKSW/qBONbk6k\nqBNdpKI6mu506MavC7mVQkJJFyKkK+NaIUkTmaI0LqGYmef3x1oztmkua2avvffae57367Vesy7f\n7/p+9nfP3s9e3+f7fB9RVQzDMAzDL8rFWoBhGIaRWJhhMQzDMHzFDIthGIbhK2ZYDMMwDF8xw2IY\nhmH4ihkWwzAMw1cialhEpJOIrBeRb0Tk7kLKPONeXy0iLdxz9URkoYh8JSJfisgtIeVTReQHEVnp\nbp0i+RoMwzCMknFEpG4sIknAaOB8YCuwTERmq+q6kDKdgcaqepKInAU8B7QGDgK3q+oqETkGWC4i\n81R1PaDAE6r6RKS0G4ZhGKUnkk8srYCNqpquqgeBqcAl+cp0BSYBqOrnQDURqaWqP6nqKvf8b8A6\nIDmknkRQt2EYhhEGkTQsycCWkOMfONw4FFambmgBEWkAtAA+Dzk9wB06Gyci1fwSbBiGYYRPJA2L\n17Vi8j995NVzh8FeB251n1zAGS5rCDQHfgRGhqnTMAzD8JGI+Vhw/Cr1Qo7r4TyRFFWmrnsOESkP\nzAAmq+obuQVUdXvuvoi8CLxVUOMiYougGYZhlBBVDdvVEMknljTgJBFpICIVgB7A7HxlZgP/AhCR\n1sBOVd0mIgKMA9aq6lOhFUSkTsjhP4EvChOgqoHe7r///phrMJ2m03SaztzNLyL2xKKqWSLSH5gL\nJAHjVHWdiPRzr7+gqu+ISGcR2QjsBXq71dsB1wBrRGSle26Iqr4HDBeR5jhDZt8B/SL1GiJNenp6\nrCV4wnT6i+n0F9MZPCI5FIaqvgu8m+/cC/mO+xdQ7yMKeZpS1X/5qdEwDMPwF4u8jyG9evWKtQRP\nmE5/MZ3+YjqDh/g5rhYkREQT9bUZhmFEAhFBA+68N4ph0aJFsZbgCdPpL5HSKSK22eZ5iyQR9bEY\nhhFd7Cnd8EKkDYsNhRlGgiAiZlgMTxT2v+Ket6EwwzAMI1iYYYkhZd0n4Dem0zCCgRkWwzAMYMmS\nJZx88slRbXPz5s1Urlw54YYwzcdiGAlC0H0sEydOZOTIkWzatIkqVarwz3/+k8cee4yqVavGRE+5\ncuXYuHEjJ554YsTb6tChAz179qRPnz4Rb8sL5mMxDCPuGTlyJIMHD2bkyJHs3r2bzz77jO+//56O\nHTty8OBB39vLzs72VC5ahjgaU3yDhBmWGBIvY+2m01/iRadf7N69m9TUVEaPHs0FF1xAUlISJ5xw\nAq+99hrp6elMnjwZgNTUVLp3784VV1xBlSpVOOOMM1izZk3efTIyMujWrRvHHXccJ554IqNGjcq7\nllu3Z8+eVK1alUmTJrFs2TLatGlD9erVOf744xkwYECeETvnnHMAOO2006hcuTLTp09n0aJF1Kt3\naLH1Bg0aMHLkSE477TSqVavGFVdcwR9//JF3/fHHH+f444+nbt26vPjii5QrV45NmzaVqG/S09Mp\nV64cOTk5gPNkM3ToUNq3b0+VKlW48MIL2bFjR175zz77jLZt21K9enWaN2/O4sWLS9RetDDDYhhG\nRPnkk0/4/fffueyyyw47f/TRR9O5c2fef//9vHOzZ88mJSWFzMxMrrrqKi699FKys7PJycmhS5cu\ntGjRgoyMDBYsWMBTTz3FvHnzDqt7+eWXs2vXLq666iqSkpJ4+umn2bFjB59++ikLFizg2WefBeDD\nDz8EYM2aNezZs4fLL7/8T7pFhOnTpzN37ly+++471qxZw8SJEwF47733ePLJJ1mwYAHffPMNixYt\n8u2JZMqUKUycOJHt27dz4MABRowYAcDWrVu5+OKLGTp0KJmZmYwYMYJu3brxyy+/+NKun5hhiSEd\nOnSItQRPmE5/iZVOEX+2kvLLL79Qo0YNypX789dN7dq1D/tibNmyJZdddhlJSUkMHDiQ33//nU8/\n/ZRly5bxyy+/cN9993HEEUfQsGFDrr/+eqZOnZpXt23btnTt2hWAihUrcvrpp9OqVSvKlSvHCSec\nQN++fUv8C/+WW26hdu3aVK9enS5durBq1SoAXnvtNa677jqaNm3KUUcdxQMPPODLsJqI0Lt3bxo3\nbkzFihVJSUnJa3Py5Ml07tyZTp06AXD++efTsmVL3nnnnbDb9RuLvDeMMkKs/Po1atTgl19+IScn\n50/G5ccff6RmzZp5x3XrHspMLiLUrVuXjIwMRISMjAyqV6+edz07OztvSCt/XYANGzYwcOBAli9f\nzr59+8jKyqJly5Yl0l67du28/aOOOooff/wxT3erVq0KbTsc8rf5229O8tzvv/+e6dOn89Zbh3Ib\nZmVl8Y9//MO3tv3CnlhiSLyMtZtOf4kXnX7Rpk0bjjzySGbMmHHY+d9++4333nuP8847L+/cli1b\n8vZzcnL44YcfSE5Opl69ejRs2JDMzMy8bffu3cyZMwco2Dl+0003ccopp7Bx40Z27drFI488kufL\nCJc6deocpjV0P1LUr1+fnj17HtYHe/bs4a677op42yXFDIthGBGlatWq3H///QwYMIC5c+dy8OBB\n0tPTSUlJoV69evTs2TOv7PLly5k1axZZWVk89dRTVKxYkdatW3PmmWdSuXJlHn/8cfbv3092djZf\nfvklaWlpQMGzu3777TcqV65MpUqVWL9+Pc8999xh12vVqsW3335boteS205KSgoTJkxg/fr17Nu3\nj4ceeqjYugcPHuT333/P27KysopsIz/XXHMNb731FvPmzSM7O5vff/+dRYsWsXXr1hK9hmhghiWG\nmE/AX0xncLnzzjt59NFHGTRoEFWrVqV169accMIJLFiwgPLlywPOU8cll1zCtGnTOPbYY3nllVeY\nOXMmSUlJJCUlMWfOHFatWsWJJ55IzZo16du3L7t3786rm/+JZcSIEbz66qtUqVKFvn37csUVVxxW\nJjU1lWuvvZbq1avz+uuvFzslOPR6p06duOWWW/j73/9OkyZNaNOmDQBHHnlkofVvuukmKlWqlLdd\nd911BbYZehx6vW7durz55ps8+uijHHfccdSvX5+RI0f69hTmJxYgaRgJQtADJIvjgQceYOPGjbz8\n8suxllJi1q1bR7NmzThw4ECBkxSChgVIJjDxMtZuOv0lXnRGm3gzirNmzeKPP/4gMzOTu+++m65d\nu8aFUYkG1guGYQSCeItOHzNmDLVq1aJx48aUL1/+Tz6csowNhRlGghDvQ2FG9LChMMMwDCOuMMMS\nQ+JlrN10+ku86DSM0mKGxTAMw/AV87EYRoJgPhbDK+ZjMQzDMOIKMywxJF7G2k2nv8SLznggf2rf\nDh06MG7cOABeeeUVLrzwwryyJc2Xkr9+LIjX1MVmWAzDiDgNGjSgUqVKVK5cOW+75ZZbwr5v/fr1\n2bNnT178S2gszNVXX83cuXNLfe9w65eEUIMYSv7XFy/YsvkxJF7WjDKd/hIvOv1ERJgzZ04gl3gv\niOzsbJKSkqLWXrwFhxZHsU8sInKMiCS5+38Vka4iUj7y0gzDKAvk5OQwaNAgatasSaNGjfi///u/\nw9L1NmjQgAULFuSVT01NzVsROX9q31AmTpzI2Weffdi5t99+m0aNGlGzZk3uuuuuvCGmiRMn0q5d\nOwYOHEiNGjVITU09rH5B7YQ+ZYTWr169Oo0bN+aTTz5hwoQJ1K9fn1q1avHSSy+VuG/iNXWxl6Gw\nD4EjRSQZmAv0BCZGUlRZIV7G2k2nv8SLTr8pzE8wZswY3n77bVatWkVaWlreSsO55P81H84v+zfe\neIPly5ezYsUK3nzzTcaPH593benSpTRq1Ijt27dz7733Fnuv/LqWLl3Kaaedxq+//sqVV15JSkoK\nK1as4Ntvv2Xy5Mn079+fffv2lVp7LvGQutjLUJio6j4R6QM8q6qPi8jqSAszDMNf5AF/hlr0/pI7\nklWVSy+9lCOOOPSVM2LECPr06cNrr73G7bffTnJyMgD33HNPkb+0w3Fk33333VSrVo1q1apx2223\nMWXKFPr06QPA8ccfz8033ww4qY1LSsOGDbn22msBJ1/LI488wtChQylfvjwdO3akQoUKbNy4kVNP\nPbXU+kNTF+e2M3v2bKDo1MX/+te/St1mafDkYxGRNsDVQB/3lDn9fSBextpNp7/ESmdpDIJfiAhv\nvvlmgT6WH3/8kXr16uUd169fP2I68reTkZFR4LXSUKtWrbz9o446CuCwtMuhaYbDIR5SF3sxLLcB\nQ4BZqvqViDQCFkZWlmEYZYU6deqwefPmvOPQfYCjjz6avXv35h3/9NNPpW5r8+bNNG3aNG8/9ykJ\nih5iO/roowHYt28fxxxzTNg6IkFu6uIxY8bEWkrxTx6qulhVu6rqcPf4W1UNf56gETdj7abTX+JF\np98UNoSVkpLCM888w9atW8nMzGTYsGGHfck3b96cqVOnkpWVRVpaGjNmzCi1n2XEiBHs3LmTLVu2\n8Mwzz9CjRw9P9WrWrElycjIvv/wy2dnZjB8/vsRpjYsjkVIXe5kVdpyIjBCRd0Rkobt9EA1xhmEk\nDl26dDksjqVbt24A3HDDDVx44YWcdtpptGzZkm7duh325fnQQw/x7bffUr16dVJTU7n66qsPu29h\nRqagKbyXXHIJZ5xxBi1atODiiy/O868UliI49NzYsWP573//S40aNVi7di3t2rUrsq2SGr9ESl1c\n7FphIvI+MA0YBPQDegE/q+pdxd5cpBPwFJAEvJj71JOvzDPARcA+oJeqrhSResBLwHGAAmNU9Rm3\n/LGunhOAdCBFVXcWcF9bK8woUyTKWmHp6emceOKJZGVlWUbGCBGEtcL+oqovAgfcYbHeQLHeIDf2\nZTTQCTgFuFJEmuYr0xlorKonAX2B3BRsB4HbVfVvQGvgZhE52b02GHhfVZsAC9xjwzAMIyB4MSwH\n3L8/icjFInI6UN1DvVbARlVNV9WDwFTgknxlugKTAFT1c6CaiNRS1Z9UdZV7/jdgHZCcv47791IP\nWgJJvIy1m05/iRedsSSRotDLIl5mhT0iItWAO4BRQBXgdg/1koEtIcc/AGd5KFMX2JZ7QkQaAC2A\nz91TtVQ19/o2oBaGYSQMDRo0IDs7O9YyjDAo1rCoau6k6J1AhxLc2+tgb/6fJnn1ROQY4HXgVvfJ\nJb82FZFC2+nVqxcNGjQAoFq1ajRv3jwvhiD3V2Osj3MJip6Cjjt06BAoPUUd5xIUPdHuT8PwSu7/\nzKJFi0hPT/f13l6c96NwvuxzDYACu4A0VX2ziHqtgVRV7eQeDwFyQh34IvI8sEhVp7rH64FzVXWb\nux7ZHOBdVX0qpM56oIOq/iQidYCFqnoy+TDnvVHWSBTnvRF5guC8rwg0BzYA3wCnAfWAPiLyVBH1\n0oCTRKSBiFQAegCz85WZDfwL8gzRTteoCDAOWBtqVELqXOvuXwu84eE1BJJ4+ZVpOv0lXnQaRmnx\n4mM5FWinqlkAIvIs8BHQHviisEqqmiUi/XEWrkwCxqnqOhHp515/QVXfEZHOIrIR2Av0dqu3A64B\n1ojISvfcEFV9DxgGvOauXZYOpJToFRtGAmNObyMIeBkK+xo4KzdWxHXkL1XVJiKyUlVbREFnibGh\nMMOIDAcOQL9+8MUXMGcOhCxdZcQ5fg2FeXlieRxYKSKLcPws5wKPisjRwPxwBRiGET/s2gXdu0PF\nirBoEbjLZhnGYXhZK2wcztDUm8AsoL2qjlXVvap6Z6QFJjLxMtZuOv0lXnX+8AOcfTacdBLMmhUc\noxKv/ZnIeFo2X1UziGMnuWEY4bF6NVx8MdxyCwwaBObKMYqiWB9LvGI+FsPwh7lzoWdPGD0aUmyq\nTEITzenGhmGUUcaNg2uvhZkzzagY3vFkWEQkSUSOF5H6uVukhZUF4mXM1XT6SzzoVIWePRfx6KOw\neDG0bx9rRYUTD/0J8aPTD4r1sYjIAOB+YDsQuoBPs0iJMgwjdhw4AH36wPLl8OmncNxxsVZkxBte\n4li+BVqp6o7oSPIH87EYRsnZuRMuuwyqVoVXXoFKlWKtyIgm0fSxbAZ2h9uQYRjB5vvvoV07aNYM\nXn/djIpRerwYlu+AhSIyRETucLeBkRZWFoiXMVfT6S9B1LlihWNUbrgBnn4akpKCqbMgTGfw8BLH\nstndKrib4H1JfMMwAs477zgzv154wRkGM4xwsTgWwyjDvPACpKY604nbtIm1GiPWRHytMBF5WlVv\nFZG3Crisqto13MYNw4gNOTlwzz2OQVmyBBo3jrUiI5Eoysfykvt3ZCGbESbxMuZqOv0l1jr/+AOu\nvtoxKJ98UrhRibVOr5jO4FHoE4uqLnf/LoqaGsMwIsqvv8Kll0KtWjB/Phx1VKwVGYmI+VgMo4yw\naRN07gxdusDw4VDOFnQy8mFrhRmG4Zlly5xlWQYMgP/+14xKtDmYfTDWEqKK538vEbFwKZ+JlzFX\n0+kv0dY5e7bzpPL883Dzzd7rWX+Gz76D+xj+0XAaj2rMO/PeibWcqFGsYRGRtiKyFvjaPW7u5r03\nDCPgjB4NN97oxKp0tXmcUeNg9kHGLB9Dk1FNWJaxjLnXzKVShbLz29zLWmFLge7Am7n57UXkK1X9\nWxT0lRrzsRhlmZwcuOsuJyf9u+9Cw4axVlQ2UFVeX/s69y28j+TKyQw7fxitklvFWpZnopnzHlXd\nLIenjMsKt2HDMCLD/v3wr3/B9u3OdOJjj421orLB/E3zGTx/MDmaw6iLRtHxxI5IGU216WkRShFp\nByAiFURkELAusrLKBkEeGw7FdPpLJHX+8gucfz4ccQTMmxeeUbH+9EZaRhodX+7ITW/fxJ1t7ySt\nbxoXNLrgT0Yl1jqjiRfDchNwM5AMbAVauMeGYQSIjRuhbVs45xxnyfsjj4y1osRmw44NpExPoeuU\nrnRr2o21/15Lj//pQTmxKXcWx2IYCcDixdCjBzzwAPTrF2s1ic3W3Vt5cPGDzFg3gzva3MEtZ93C\n0RWOjrUsX4iaj0VEjgNuABqElFdVvS7cxg3DCJ9x45x1vyZPho4dY60mccncn8nwj4czdsVY+rTo\nw4YBGzj2KHNgFYSXZ7Y3gSrA+8DbIZsRJvEy5mo6/cUvndnZMGiQE0X/4Yf+G5Wy1p+FkRuL0mR0\nE3bs28HqG1fzeMfHS2xU4qU//cDLrLCjVPXuiCsxDMMzu3fDVVc5M8A++8xmfkWCg9kHmbBqAg8u\nfpDWdVuzpPcSTq5xcqxlxQVe4lgeBj5V1bh6SjEfi5GofPeds95X+/YwahSULx9rRYlFaCxK3Sp1\nGXbeMM5MPjPWsqKCXz4WL4blN6AScADIXfBGVbVKuI1HEjMsRiLy0Udw+eWOT6V/fyijYRIRY/6m\n+QxZMIQczWHYecM4/8Tzy1QsStQWoVTVY1S1nKpWVNXK7hZooxIvxMuYq+n0l9LqnDTJSR08caKz\nmGSkv+8SvT9DCY1FGdRmEMtuWEbHRv4GOMZLf/qBl1lh5YCrgYaq+qCI1Adqq+rSiKszDIPsbOcJ\nZcYMZ1px06axVpQ4bNixgfs+uI+Pt3zM0HOGcl2L6yifZGOL4eJlKOx5IAf4h6qeLCLHAvNUtWU0\nBJYWGwozEoE9e+Caa2DXLsew/OUvsVaUGOTGosxcPzMvFqVS+bKzSGRhRDMfy1mq+m9gP4Cq/gqY\nSTeMCPP9946D/rjjnOVZzKiET+b+TAbPH8ypz59KtYrV+Lr/1wxuP9iMis94MSwHRCQp90BEauI8\nwRhhEi9jrqbTX7zo/PRTaNMGeveGMWOgQoXI68pPIvVnaCzKr/t/ZfWNqxnecXhUAxzjpT/9wEsc\nyyhgFnCciDyKs4T+fRFVZRhlmMmTYeBAx0nfuXOs1cQ3FosSGzytFSYiTYHz3MMFquppdWMR6QQ8\nBSQBL6rq8ALKPANcBOwDeqnqSvf8eOB/ge2q2iykfCpwPfCze2qIqr5XwH3Nx2LEFTk5cN99MHUq\nvPUW/C3QGY+CTVmORQmHaK4VNh4YpaqjQ86lqmpqMfWSgNHA+TirIi8TkdmhRklEOgONVfUkETkL\neA5o7V6egPO09FK+WyvwhKo+UZx2w4gX9u6Fnj2dZe8//xxq1oy1ovglNy+Kooy+aHSZi0UJAl58\nLBcCk0Tk2pBzl3io1wrYqKrpqnoQmFpAva7AJABV/RyoJiK13eMlQGYh906I/5J4GXM1nf6SX+eW\nLY6Tvlo1eP/94BiVeOvP0FiUu9rdFZFYlHCIl/70Ay+GZTtwNnC5iDwrIl5nhCUDW0KOf3DPlbRM\nQQwQkdUiMk5EqnnUYxiB4/PPoXVruPpqZ5Viy6FScrbs2kLK9BQumXoJ3Zt2Z+2/15LytxTLixJD\nPPW8qu4CuuD4NRYCVb1U86gh/8+J4uo9BzQEmgM/AiM9thM4OnToEGsJnjCd/pKrc8oUZ82vF15w\nVikOyA/rPILenxl7Muj3Vj8GbhjI6XVO55sB39CvZb/ABjgGvT/9xMussLfAWRwMuF9E0oDbPdTb\nCtQLOa6H80RSVJm67rlCUdXtufsi8mKuvoLo1asXDRo0AKBatWo0b948783NfSy1YzuO9nFODvTq\ntYh582DBgg40axYsfUE/ztyfyc3P3sycDXO4sfuNfN3/a9Z8voalHy8NhL54Os7dT09Px1dUNSIb\njtH6FidBWAVgFdA0X5nOwDvufmvgs3zXGwBf5DtXJ2T/duDVQtrXoLNw4cJYS/CE6fSPvXtVzzln\nobZtq7ptW6zVFE3Q+nPvgb06bMkwrfF4Db1h9g26ZdcWVQ2ezsKIB53u92bY3/9eZoV1A4YBtTg0\nbKVazEKUqpolIv2BuTjTjcep6joR6edef0FV3xGRziKyEdgL9A5pdwpwLvAXEdkCDFXVCcBwEWmO\nM2T2HWCJWI24YOtWuOQSJ4J+9mzzp3jFYlHiDy9rhX0LXKweY1eCgsWxGEEiLQ0uvdRZlfiuu4Ln\nTwkiarEoUSdqcSzAT/FmVAwjSLz2Gtx8M4wd6xgXo3gsFiW+8TIrLE1EponIlSLSzd0ui7iyMkCo\nAy3ImM7SoQoPPOA8ocyff8ioBE1nYcRCZ2liUaw/g4eXJ5aqOCsbX5Dv/Ez/5RhGYrB/v7OA5Pff\nOznpa9eOtaJgY3lREgtPa4XFI+ZjMWLFjz86TvomTeDFF6FixVgrCi6WFyVYRC0fi4j8VUQWiMhX\n7vGpImKrGxtGAaxYAWed5Qx7vfyyGZXCsLwoiY0XH8tY4B7ggHv8BXBlxBSVIeJlzNV0emPGDLjw\nQnjqKSeVcGFugVjr9EokdEYiL0pZ7s+g4sXHUklVP891nqmqisjByMoyjPhBFR591FmaZe5cOP30\nWCsKHlk5WYxfOd5iUcoIXuJY3gUGANNVtYWIdAf6qOpF0RBYWszHYkSD33+H66+Hb76BN96AOnVi\nrShYWCxKfBHNOJb+wBjgZBHJwIl2vzrchg0j3snIgMsugwYNYNEiOOqoWCsKFhaLUnYp1seiqt+q\n6nlADeCvqtpOVdMjrqwMEC9jrqbzz3z2GbRq5axOPGVKyYxKovdntPOiJHp/xiNe1gqrAdwPtAdU\nRJYAD6rqjkiLM4wgMn48DB7s/L344lirCQ4Wi2Lk4sXHMh9YDEzGWYTyKqCDqp4feXmlx3wsht8c\nPAi33+5E0b/xBpxsvmfAYlESiWj6WGqr6kMhxw+LSI9wGzaMeOLnn+Hyy6FyZSfrY1Uvqe4SnMz9\nmQz/eDhjV4zl+hbX83X/r8OaNmwkDl7iWOa564SVc7cewLxICysLxMuYa1nXuWIFnHmmk5f+zTfD\nNyrx3p+RiEUJh3jvz0Sk0CcWEfmNQ2mCbwNedvfL4eROuSOy0gwj9rz6Ktx2Gzz7LHTvHms1scXy\nohhesbXCDKMAsrMdB/3MmY4/pVmzWCuKHRaLUnaIpo/FMMoUv/4KV14JOTmwdKmT8bGsYrEoRmnw\n4mMxIkS8jLmWJZ1ffunEpzRrBu++GxmjEg/9mZaRxhn3nBG1WJRwiIf+hPjR6QdF+Vgaqup30RRj\nGLFk1izo1w+eeAKuuSbWamJDaCxKjxN6MPz64RaLYpSYQn0sIrJcVc8QkQ9U9R9R1hU25mMxvJKT\n42R6nDjR8amccUasFUUfi0UxIDo+liQRuRdoIiIDcYIjc1FVfSLcxg0j1uze7TydZGY6/pRatWKt\nKLpYLIoRCYrysVwBZANJQGV3OyZk3wiTeBlzTVSdGzY4Sbnq1YMFC6JnVILQn15iUYKg0wumM3gU\n+sSiquuBYSKyRlXfiaImw4g477zj5KR/5BFn2fuygsWiGNHAy1ph1XAWoTzHPbUIZxHKXZGVFh7m\nYzEKQhWGD4dRo2D6dGjbNtaKooPFohheiGYcy3icdMSX4/hZegITgMvCbdwwosnevc5TyvffO/6U\n5ORYK4oOFotiRBsvcSyNVPV+Vd3k5mZJBRpFWFeZIF7GXBNB53ffOU8nRx8NixfH1qhEqz/DzYuS\nCO97kIgXnX7gxbDsF5Gzcw9EpD2wL3KSDMNfPvgA2rRxfCnjx0PFirFWFFk27NhAyvQUuk7pSrem\n3Vj777Wk/C2FcmLx0EZ08OJjaQ68BOSu6ZoJXKuqqyOsLSzMx2KowtNPOz6VV1+Fv/891ooiS24s\nyox1M/JiUY6ucHSsZRlxRNR8LKq6CjhVRKq6x4F22hsGwP79cOONsGYNfPqpk5c+UQmNRenTog8b\nBmywWBQjpnh+NlbVXWZU/CVexlzjTecPP8A558Aff8DHHwfPqPjVn6GxKL/s+4XVN67m8Y6P+2ZU\n4u19DzrxotMPbNDVSCg+/tgJeuzeHaZMgUoJuCrJweyDjFk+hiajmrAsYxlLei/hxa4vUrdK3VhL\nMwzA8rEYCcQLL8DQoTBpEnTqFGs1/hMai5JcOZlh5w+jVXKrWMsyEoio5mMRkXZAg5Dyqqovhdu4\nYfjBgQNY3IN6AAAeOklEQVRwyy2wZAl89BGcdFKsFflPbixKjuYw6qJRdDwxmEvYGwZ4GAoTkcnA\nf4F2QEt3s5BdH4iXMdcg6/zpJ/jHP5y///3vorgwKiXpz9BYlDvb3kla3zQuaHRBVIxKkN/3UExn\n8PDyxHIGcIqNKxlBY9ky6NYN+vSB//wHPvww1or8IzcvykebP2LouUPp06KP5UUx4gYvcSzTgVtV\nNSM6kvzBfCyJzUsvwaBBMGYMXHpprNX4h8WiGLEkmj6WmsBaEVkK/OGeU1XtWlxFEekEPIWz9P6L\nqjq8gDLPABfhRPP3UtWV7vnxwP8C21W1WUj5Y4FpwAlAOpCiqjs9vA4jAcjKgjvvhDlzYNEiOOWU\nWCvyB4tFMRIJL9ONU4FLgUeAEcBIdysSEUkCRgOdgFOAK0Wkab4ynYHGqnoS0Bd4LuTyBLdufgYD\n76tqE2CBexyXxMuYa1B0/vILXHghrF/vLCKZ36gERWdxhOoMjUXZsW+H77Eo4RCP/Rlk4kWnHxRr\nWFR1EbAeqIKT4Gutqi72cO9WwEZVTVfVg8BU4JJ8ZboCk9x2PgeqiUht93gJzvIx+cmr4/5NoIEQ\nozCWL4eWLZ1tzhyoXj3WisKjoFiUsV3HWiyKkRAUOxQmIik4s8JyjcloEblTVacXUzUZ2BJy/ANw\nlocyycBPRdy3lqpuc/e3AXGbTLZDhw6xluCJWOscPx7uvhuef95x1hdGrHV6QVX5uebP/M9z/0Ny\n5WRm9pgZ2FiUeOhPMJ1BxIuP5T7gTFXdDiAiNXGGoIozLF495/kdRZ497qqqImIe+gTljz+c+JTF\ni50ZX02bFl8nyMzfNJ8hC4aQnZNtsShGQuPFsAjwc8jxDv5sDApiK1Av5LgezhNJUWXquueKYpuI\n1FbVn0SkDrC9sIK9evWigbtQVLVq1WjevHner4bc8c5YHq9atYrbbrstMHoKOw4dG45W+6+9toj7\n74dTTunA0qWwYsUitm2Lz/5My0ij3+h+/PTbTzzR9wlq/lyTclvKsXjL4kDoK+w4qP2Z/zgW/5+J\n0p+5++np6fiKqha54QyDzQN6Ab2B94DHPdQ7AvgWJ2K/ArAKaJqvTGfgHXe/NfBZvusNgC/ynXsc\nuNvdHwwMK6R9DToLFy6MtQRPRFvnBx+o1q6tOmyYak6O93pB68+vf/laL3/tcq0zoo4+t+w5PZB1\nQFWDp7MwTKe/xINO93uzWLtQ3OYljkVw0hC3xxmmWqKqs7wYLRG5iEPTjcep6mMi0s/91n/BLZM7\nc2wv0FtVV7jnpwDnAn/BeSoZqqoT3OnGrwH1KWK6scWxxB+qMGIEPPEETJ4M550Xa0Wlw2JRjHjF\nrzgWW4TSCAR79sB11zn56F9/HerXj7WikpM/FmVw+8GBmDZsGF7xy7AUOt1YRD52//4mInvybbvD\nbdiIn3ntkda5fr2z1H316o6TvrRGJVb9WdJYFHvf/cV0Bo9Cnfeq2s79e0z05BhljZkznUyPjz3m\nrPkVT2TlZDF+5XgeXPwgreu2ZknvJZxc4+RYyzKMmOPFx/KyqvYs7lzQsKGwYJOVBffdB1OnOkNf\nLVvGWpF3VJUZ62Zw7wf3Wl4UI6GI5lph/5Ov4SNwVjw2jFLx889w5ZUgAmlpUKNGrBV5Z8GmBQxe\nMNhiUQyjCIrysdwjInuAZqH+FZwZWrOjpjCBiZcxVz91LlvmPJ2ceSa8956/RiWS/bk8YzkdX+7I\njW/fyKA2g8LKi1IW3/dIYjqDR1E+lkeBR0XkMVUdEkVNRoLy4otwzz1OCuF//jPWarxheVEMo+R4\n8bFcBnyQGysiItWADqr6RhT0lRrzsQSH33+H/v3hk08cZ/3JceDfztiTwQOLHrBYFKNMEfHpxiHc\nHxqA6O6nhtuwUTbYvBnOPht273aWug+6Ucncn8ng+YNp9lwzqlasyoYBGxhy9hAzKoZRArwYloKs\nV5LfQsoi8TLmWlqd8+dDq1ZwxRUwbRocE+GJ6+H0ZzTzoiT6+x5tTGfw8DIrbLmIPAH8H46RuRlY\nHlFVRlyjCsOHw9NPw5Qp8Pe/x1pR4VgsimH4jxcfyzHAf4DclZveBx5W1b0R1hYW5mOJDbt3Q69e\nsHUrzJgBdQOat8piUQzjz9haYcVghiX6rFvnzPbq0MF5WjnyyFgrKpjQWJRh5w+zWBTDcIma815E\njhORESLyjogsdLcPwm3YiJ8xVy86p0+Hc845lOkxFkalOJ1+xqKEQyK970HAdAYPLz6WV4BpwMVA\nP5y8LD8XVcEoO2RlwZAhzrIs770HZwRwTQaLRTGM6OLFx7JCVU8XkTWqeqp7Lk1VA726kw2FRZ7t\n250ZX0cc4Tjp//KXWCs6HItFMYySEc04lgPu359E5GIROR2oHm7DRnzz+efO0ixt28K77wbLqFgs\nimHEFi+G5WE32v4OYBDwInB7RFWVEeJlzDVUp6qzJEuXLjBqFDz8MCQFJKrpvfnvRS0WJRzi8X0P\nMqYzeBTpYxGRJKCJqs4BdgIdoiHKCCb798PNNzsR9B99BE2axFqRQ1ZOFhNWTuCemfdwbodzLRbF\nMGKMFx/LMlU9M0p6fMN8LP6Sng7dusFJJzmLSUY6it4LobEodavU5bHzHrNYFMMIg6jFsYjIk0B5\nnJlhe3Gi71VVV4TbeCQxw+If8+bBv/7lTCW+7TYnj0qsyY1FydEchp03jPNPPN9iUQwjTKLpvG8B\n/A14EBgJjHD/GmES9DHXnBx45BG48spFTJsGt98ee6MSGotyZ9s7WXbDMjo2cgIcg96fuZhOfzGd\nwaNQH4uI3KqqTwP3qepHUdRkBIBdu+Daa2HbNifg8dxzY6snNxbl4y0fM/ScoVzX4jqLRTGMgFLo\nUJiIrFbV00Rkpaq2iLKusLGhsNLz5Zdw2WXQsSM8+SRUqBA7LbmxKDPXz8yLRalUvlLsBBlGAhON\nnPdrReQbIFlEvsh3TXODJY3EYtIkGDQIRo50/CqxInN/JsM/Hs7YFWO5vsX1fN3/68BNGzYMo2AK\n9bGo6pXA2cBGnOVcuoRsXaOiLsEJ0pjrvn3Qpw8MGwYLFx5uVKKpMzQvyq/7f2X1jasZ3nG4J6MS\npP4sCtPpL6YzeBQZx6KqPwH2ZJLgbNgA3btDs2awbFlsphJbXhTDSBxs2fwyzrRpTj76hx+Gvn2j\nP+srfyzKsPOGcWZy3IVNGUZCEA0fi5HA/PEH3HGHs87X3Llw+unR1xAaizL6otEWi2IYCYKXOBYA\nRMSm4vhMrMZcv/sO2reHjAxYvrx4o+K3zqJiUcIhXsawTae/mM7g4SXRV1sRWQt87R43F5FnI67M\niAizZ0Pr1nD11U7q4GrVotf2hh0bSJmeQtepXenWtBtr/72WlL+lUE48/74xDCMO8LKky1KgO/Bm\nbjyLiHylqn+Lgr5SYz6Wwzl4EO691/GpTJ0KbdpEr22LRTGM+CCqPhZV3ZxvmCIr3IaN6PHDD05C\nripVnKGvGjWi025oLEqfFn0sFsUwyghexiA2i0g7ABGpICKDgHWRlVU2iMaY67x5cOaZ8L//C3Pm\nlM6olFRnaCxKNPOixMsYtun0F9MZPLw8sdwEPA0kA1uBecDNkRRlhE92Njz4oLPE/ZQp0KFD5Nu0\nWBTDMMDiWBKSbdvgqqucbI+vvgq1a0e2vdBYlOTKyQw7f5jlRTGMOCTiPhYRGVVEPVXVW8Jt3PCf\nDz90jErv3pCaGvm0wbmxKNk52Yy6aBQdTwx/2rBhGPFNUT6W5UCauy0vYCsWEekkIutF5BsRubuQ\nMs+411eLSIvi6opIqoj8ICIr3a2TFy1BxM8x15wcZ52vlBRn+Ouhh/wzKgXpDI1FGdRmEGl907ig\n0QUxNSrxMoZtOv3FdAaPQp9YVHVi6LGIVHZO629ebiwiScBo4Hwc38wyEZmtqutCynQGGqvqSSJy\nFvAc0LqYugo8oapPlOB1JjQ7djiLRu7c6az1Va9e5NrKzYvy0eaPGHruUPq06GN5UQzDOAwvcSzN\ngJeAv7infgauVdUvi6nXBrhfVTu5x4MBVHVYSJnngYWqOs09Xg90ABoWVldE7gd+U9Uis1iWFR/L\n559Djx7OIpKPPQblI/QdnxuLMmPdjLxYlKMrHB2ZxgzDiAnRTE08BhioqvVVtT5wh3uuOJKBLSHH\nP7jnvJQ5vpi6A9yhs3EiEsXY8eCgCk8/DV26wFNPwYgRkTEqmfszGTx/MM2ea0bVilXZMGADQ84e\nYkbFMIxC8TLduJKqLsw9UNVFIuLlW8Xr40JJreNzwIPu/kPASKBPQQV79epFgwYNAKhWrRrNmzen\ngzvvNne8M5bHq1at4rbbbitx/V27oEuXRWzbBp991oETT/Rf33vz32PmupnM+n0WrQ604vnmz1Oz\nfM28WJQg9F/+49L2Z7SPQ8fag6CnsGPrz8Tvz9z99PR0fEVVi9yAN4D/AA1whqjuA2Z5qNcaeC/k\neAhwd74yzwNXhByvB2p5qeuebwB8UUj7GnQWLlxY4jorVqg2aqT673+r7t/vv6YDWQf0hbQXNHlk\nsnab1k3X/byuVDpjgen0F9PpL/Gg0/3eLNYuFLd58bEcCzwAtHNPLQFSVTWzmHpH4CxceR6QASwF\nrtQ/O+/7q2pnEWkNPKWqrYuqKyJ1VPVHt/7twJmqelUB7Wtxry2eUIWxY531vkaNcpZo8ff+yutr\nX+e+hfdZLIphlFGitlaYqv4KDCjpjVU1S0T6A3OBJGCcaxj6uddfUNV3RKSziGwE9gK9i6rr3nq4\niDTHGWr7DuhXUm3xxm+/wY03wurV8NFH8Ne/+nv/+ZvmM3i+kxfFYlEMwwib4h5pgDOBWcBK4At3\nW+PH41IkNxJkKOyrr1SbNlXt1Ut1715/21+2dZme/9L52viZxjr1i6manZNdap1BwHT6i+n0l3jQ\niU9DYV6c968Ag4AvgZxIGDejYF5+GQYOhMcfdyLp/cJiUQzDiCRefCwfq2q7IgsFkHj2sezfD7fe\nCosXw/TpcOqp/tx36+6tPLj4QYtFMQyjQKKZj+UBERkHzAcOuOdUVWeG27jxZ775Bi6/HE4+GdLS\noHLl8O+ZPy/KhgEbLC+KYRgRw0uA5LXAaUAn4GJ36xJJUWWF0LnkAK+/Dm3bQt++zlL34RoVv/Ki\n5NcZVEynv5hOf4kXnX7g5YmlJXBy3I4rxQEHDsCdd8Jbb8G770LLluHd72D2QSasmmB5UQzDiAle\nfCwTgBGq+lV0JPlDvPhYvv/eWZG4Th2YMAGqVy/9vdRiUQzDCINo+ljaAKtE5DvgD/ecqqpPLuWy\ny5w50KcP3HWXM/srnNARi0UxDCMoePGxdAJOAi7A8a10AbpGUlSic/AgDB4M1123iJkz4Y47Sm9U\n0jLS6PhyR256+ybubHtnRPKixMvYsOn0F9PpL/Gi0w+8RN6nR0FHmWHzZrjySscxP2YMtCvlRG6L\nRTEMI6hYzvsoMns23HCD84QyaBCU8/K8mA/Li2IYRqSIpo/FCJMDB+Duu2HmTJg1y5lSXFIsFsUw\njHihFL+ZjZKwaZMz3LVpE6xcebhR8TLm6lcsSjjEy9iw6fQX0+kv8aLTD8ywRJDp06F1a7jmGnjj\nDTi2BLYgKyeLMcvH0GRUE5ZlLGNJ7yWM7TqWulXqRk6wYRiGD5iPJQL8/rszfXjuXJg2rWQBj6rK\njHUzuPeDey0WxTCMqGI+loDy9dfQowc0aQIrVkDVqt7rLti0gMELBpOdk22xKIZhxC02FOYjkydD\n+/Zw003Ok0pxRiV3zHV5xnI6vtyRG9++kUFtBkUkFiUc4mVs2HT6i+n0l3jR6Qf2xOIDe/fCgAHw\n8ccwfz6cdpq3elt2bSFleorFohiGkVCYjyVMvvrKWevr9NPhuefgmGOKr5OxJyMvL8rA1gMtFsUw\njEDgl4/FhsJKiSqMGwcdOjgrE7/0UvFGJXN/JoPnD6bZc82ocmQVvu7/NUPOHmJGxTCMhMIMSynY\ns8eZQvzkk06Wx169il7rq7BYlDWfr4ma5nCIl7Fh0+kvptNf4kWnH5iPpYSsXOnM+jr3XFi6FCpV\nKrxsVk4W41eOt7wohmGUKczH4hFVePZZSE2Fp5+Gq64qqqzFohiGEX9YHEsU2bnTyZuyaRN88gmc\ndFLhZS0WxTCMso75WIph6VJnxtfxx8OnnxZuVEoTixIvY66m019Mp7+YzuBhTyyFoOo454cNg+ef\nh8suK7ic5UUxDMM4HPOxFMCOHc5Mr+3bYepUaNjwz2UsL4phGImGxbFEiI8+ghYt4K9/hSVL/mxU\nQmNRqlasyoYBGywWxTAMIwQzLC45OfDYY9C9uzP7a8QIqFDh0PVI5EWJlzFX0+kvptNfTGfwMB8L\nsG0b9OwJ+/dDWhrUDUl5kpWTxYSVE3hg8QMWi2IYhuGBMu9j+eADx6j07u3EqBzhmlqLRTEMo6xh\ncSw+MG0a3H47TJoEHTseOm+xKIZhGKWnTPtYOnaE5csPGZVo50WJlzFX0+kvptNfTGfwKNNPLLk5\n6C0WxTAMwz/KtI/FYlEMwzAOYT6WMMjcn8nwj4czdsVY+rTow4YBG8KaNmwYhmEcIqI+FhHpJCLr\nReQbEbm7kDLPuNdXi0iL4uqKyLEi8r6IbBCReSJSzaueSMSihEO8jLmaTn8xnf5iOoNHxAyLiCQB\no4FOwCnAlSLSNF+ZzkBjVT0J6As856HuYOB9VW0CLHCPiyQrJ4sxy8fQZFQTlmUsY0nvJYztOpa6\nVeoWVzWirFq1Kqbte8V0+ovp9BfTGTwiORTWCtioqukAIjIVuARYF1KmKzAJQFU/F5FqIlIbaFhE\n3a7AuW79ScAiCjEu+WNRZvaYGahYlJ07d8ZagidMp7+YTn8xncEjkoYlGdgScvwDcJaHMsnA8UXU\nraWq29z9bUCtwgS0erGVxaIYhmFEmUgaFq/Tzbx820tB91NVFZFC2xnUZhCX/+1yykkww3XS09Nj\nLcETptNfTKe/mM4AoqoR2YDWwHshx0OAu/OVeR64IuR4Pc4TSKF13TK13f06wPpC2lfbbLPNNttK\ntvnx/R/JJ5Y04CQRaQBkAD2AK/OVmQ30B6aKSGtgp6puE5EdRdSdDVwLDHf/vlFQ437MxTYMwzBK\nTsQMi6pmiUh/YC6QBIxT1XUi0s+9/oKqviMinUVkI7AX6F1UXffWw4DXRKQPkA6kROo1GIZhGCUn\nYSPvDcMwjNgQTK92EUQi6DJIOkWknogsFJGvRORLEbkliDpDriWJyEoReSuoOt1p7K+LyDoRWesO\nuwZN4xD3Pf9CRF4VkSMjodGLThE5WUQ+FZHfReSOktQNgs6gfYaK6k/3eiA+Q8W87yX7DEXKeR+h\nCQFJwEagAVAeWAU0zVemM/COu38W8JnXugHRWRto7u4fA3wdRJ0h1wcCrwCzg/i+u8eTgOvc/SOA\nqkHS6NbZBBzpHk8Dro1hX9YEWgIPA3eUpG5AdAbtM1SgzpDrQfkMFaqzpJ+heHtiyQu6VNWDQG7g\nZCiHBV0CuUGXXurGWmctVf1JVVe553/DCQo9Pmg6AUSkLs6X5Yt4mzYedZ0iUhU4W1XHu9eyVHVX\nkDQCu4GDQCUROQKoBGyNgEZPOlX1Z1VNczWVqG4QdAbtM1REfwbqM1SYztJ8huLNsBQWUOmlTEFB\nl/nr+kVpdR62xow7K64F8LnvCgvX4LU/AZ4E7gRyIqTPi4aiytTFWcXhZxGZICIrRGSsiFQKkMZk\nVf0VGAlsxpkFuVNV50dAo1edkahbUnxpKyCfoaII0meoMEr8GYo3w+J1pkGspxqXVmdePRE5Bngd\nuNX91RUJSqtTRORiYLuqrizgut+E059HAKcDz6rq6TizD4tdX64UlPp/U0QaAbfhDFMcDxwjIlf7\nJ+0wwpmtE82ZPmG3FbDP0J8I6GeoIEr8GYo3w7IVqBdyXA/H8hZVpq5bxktdvyitzq0AIlIemAFM\nVtUC43QCoLMt0FVEvgOmAP8QkZcCqPMH4AdVXeaefx3nQxIkjS2BT1R1h6pmATNx+jcShPM5CNpn\nqFAC9hkqjKB9hgqj5J+hSDmLIuSAOgL4FueXXQWKd5C25pCDtNi6AdEpwEvAk0Huz3xlzgXeCqpO\n4EOgibufCgwPkkagOfAlcJT7/k8Cbo5VX4aUTeVwp3igPkNF6AzUZ6gwnfmuxfwzVJTOkn6GItrp\nEeqgi3BmeWwEhrjn+gH9QsqMdq+vBk4vqm7QdALtccZbVwEr3a1T0HTmu8e5RHBGiw/v+2nAMvf8\nTCIwK8wHjXcBXwFf4BiW8rHqS5xZVVuAXUAmju/nmMLqBk1n0D5DRfVnyD1i/hkq5n0v0WfIAiQN\nwzAMX4k3H4thGIYRcMywGIZhGL5ihsUwDMPwFTMshmEYhq+YYTEMwzB8xQyLYRiG4StmWIyIIyK9\nRGRUCetMcZeWv9WH9u/Jd/xxuPcspr2TRWSViCwXkYb5rkVqaZGIISJniMjTJayTLiLHuvul7m8R\n6VJECoK468uygsWxGBFHRK4FWqrqAI/lawNLVPWkAq4lqWp2Cdvfo6qVS1InHERkMJCkqo/EWkus\ncJcpOUOdBTYj1UaZ6Mt4xJ5YjGIRkQZugqAJIvK1iLwiIheIyMciskFEznTLHSsib7hPGp+KSLMC\n7lXTTRi01N0KWhNrHpDsJj9qLyKLRORJEVkG3CoiF4vIZ+5Kq++LyHHuvY9xNa5xNVwmIo8BR7n3\netkt95v7V0Tkv+Ik11ojIinu+Q5um9PdxEaTC+mX5q6O1SIy002G1Bm4FbhJRD4opN4T4iSgmi8i\nNdxzjUTkXRFJE5EPReSv7vmJIvK029ffikg39/yD7mtaKSJbRWS8e/4aEfncPf+8iJTLfc0i8rD7\nJPVpSJ8V+364/fGWu58qIuPFSaT1rYgU+2MhX3+Pdv+X3heRt0NeT+gTTksRWeju5z3tikhDV/sa\nEXm4uHaNGBLJJQRsS4wNZ32hg8DfcNZhSgPGude6ArPc/VHAf9z9vwMr3f1ewCh3/1WgnbtfH1hb\nQHsnAF+EHC8ERoccVwvZvx4Y4e4PB57IXw7Yk+/+e9y/3XCMmADHAd/jLGvRAdiJs9KwAJ/kas53\nnzU4eSoAHsBdmwq4HxhYSF/mAFe6+/8J6ZcFQGN3/yxggbs/EZjm7jcFvsl3v6qujhbu9dk4T0sA\nzwI9Q9r935B+urcE70cH3HWscNaJ+ggnWdRfgF9y28tX5zvg2Hz9fVlIf9fBWTbksgLKtwQWFvC/\nMxu4xt3/d/731bbgbEdgGN74TlW/AhCRr4DcfCFf4hgegHY4Xx6o6kIR+YuI5B+qOB9oKpK3Snhl\nEamkqvtCyhS0hPi0kP16IvIajhGogJN9EeA8oEduIVXdWcxrag+8qs431XYRWQyciZN4a6mqZriv\nd5X7GvN8BeIkP6qqqkvcU5OA6SH6C1sGPSfktUwGZorI0Tgr3U4P6ZcKuS8DeMN9PevETbLmahCc\nzIMjVXWliPQHzgDS3PscBfzkFj+gqm+7+8uBju6+l/cjFAXeVidZ1A4R2Q7UwskjUxzncKi/fyzs\nia4I2gL/dPcn4xhII4CYYTG88kfIfg5wIGQ/9P+o0BwzIdfPUtUDlIy9IfujcJ5S5ojIuTi/ogtr\nvyi0gPK5ekNfbzbFf1ZC7+PVcSlu2XJApqq2KKRcaF+FtpMKbFbVSSHnJqnqYZMVXEKzAoa+Z6V5\nP0LLeumbXPL3d+h+FoeG5iuWQIsRQMzHYvjJEuBqcMblgZ/1zwmW5gG35B6ISHOP9w79EqrCoV/I\nvULOvw/cHHLvau7uQXFS/hakt4eIlBORmji/qJfiwTipk5o1U0Tau6d6AosK0JqfcsDl7v5VOJMU\n9gDfiUh3V7eIyKlFtS8iXXCe0EJnzS0AuruvJdfnVb+Yl1LS9yOchFQfcqi/6+AMseWSjjMEBs4Q\nZUF8DFzh7kcqEZrhA2ZYDK/k/xWuBeynAmeIyGrgUeDakOu5ZW4BWroO76+AvqVoLxVn2CgN+Dnk\n2sNAddcZv4pDX1xjgDXiOu9zy6vqLBz/xGqcL+U7VXV7Pr2F6cF9ff91X++pwIMFvN787AVaicgX\nrr7cOlcDfVzdX+L4rgpqO3f/dhwf0FLXUZ+qquuA+4B5rqZ5OMOFBd2jJO9HaPmiXlthhPb3N8Ba\nnKHDTzlkqB4AnhZngkZWIe3dCtwsImvc125TWgOKTTc2DCMmiMgEYI6qzoi1FsNf7InFMIxYYr9s\nExB7YjEMwzB8xZ5YDMMwDF8xw2IYhmH4ihkWwzAMw1fMsBiGYRi+YobFMAzD8BUzLIZhGIav/D8C\nvT7hM9J+mQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa595d68>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NtoG from graph: 8.7 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYHHWV//H3h4QQMMAQgVwIOEAAAYEBFuIqkQnXiLsC\nzy4oXpYIugthRVFZiC43L1zcXUVk1d8aIEEFxPUnlxVCEmCQ5ZYfSsIliyS4AySQkEAIAY2Q5Pz+\nqJpUZ5hLZtLVVT39eT1PP3RVV3d9+1DpM3VOXRQRmJmZVcNmRQ/AzMwGDicVMzOrGicVMzOrGicV\nMzOrGicVMzOrGicVMzOrGicVG9AkXSzpJz28/qSkD+W5jnomaRdJqySp6LFYfXBSsZqS9HFJj0h6\nQ9JSSQ9LOjPHVfZ4IlZEvC8ifpPXOiS1SnphYz5EUrOkdZIK+3cpqV3SER3TEfF8RGwdPqHNNpKT\nitWMpC8DVwJXACMiYgRwBvBBSUO6ec+mbqO1+Au72uvIZcySBm3EYpHX+q0xOKlYTUjaFrgEODMi\n/m9EvAkQEXMj4lMR8Va63DRJP5R0h6Q3gFZJH5H0mKSVkp6XdFHF53b8df85SYslvZgmrw4BDJE0\nXdLrabnr4Ir3t0s6Mn0+SNJXJS1Ml31U0k7pa99L170ynX9YP+PQJunrkv47Xcddkt6dvtyxx/Ra\nWnIal77nNEnzJb0qaYakXSo+7xhJv5f0mqR/l3SfpNPT1yZJekDSdyQtBy6StJukeyQtl7RM0k/T\n/zekJbxdgNvT9X+l896TpNGSbpP0iqQFkj5bMZaLJd3cXaytMTipWK38JbAFcOtGLHsK8I2IGAY8\nALwBfCoitgU+Apwp6fhO72kFxgLHAOd1JAqSv7o/CtwIbAvcBlxd8b4gK199Cfg48OGI2Ab4DPCn\n9LU5wAHAdsANwC+627vayO83CdgRGAJ8JZ0/Pv3vtmnJ6ZH0e04BTgS2B+5PvwuStgd+AZwHDAd+\nTxLnylLVocCz6bouTePxLWAUsDewM3AxQER8Gnge+Kt0/f/axdhvSpcZBfwtcKmkCRWv/zXdx9oa\ngJOK1cr2wPKIWNcxQ9KDklZI+mOnv/xviYiHACLizxFxX0Q8lU4/QfLDdninz78kIv4UEU8C15H8\ncHe4PyJmpH2Bn5Ikh658FvhaRCzoWFdEvJo+/1lErIiIdRHxHZIEuVc/4hDAdRGxMCJWAzcDLR0h\n6WL5M4DLIuL3aewuA1rSvZXjgCcj4pZ0XFcBSzq9/8WI+Pf09dUR8WxE3B0Rb0fEcuC7vDOWXZK0\nM/AB4LyIeCsi5gFTgb+rWGxjY20DlJOK1corwPaVPZKI+EBEbJe+1jE/gA0a25LGSbpX0suSXgP+\nAXg3G6p8z/PA6IrppRXP/wgM7aZXM4bkr/p3SEtB89My0wqSv8S37+a79qbyh/9PwLAeln0P8L00\n+a4giRXATiR7C4s6Ld95unMsR0i6SdIiSSuBn/DOWHZnNPBqR+ky9Xw6lg4bG2sboPw/22rlIeDP\nwAn9eO8NwC3AmIhoAn7EO7fdXTo9X9yP9bxAUkLbgKTxwLnASRHRlCbClVS/od3VEVbPA38fEdtV\nPN6V7sm9RJIIO8apyuluPvNSYC3wvrSc+Gk2jGVPR3m9CAyXVJkEd+GdicwamJOK1UREvEbSqP+B\npL+RtLWkzSS1AO+qWLSrH+phwIqIeEvSocAneOeP3z9L2lLSviT9ip/3Y5hTgW9IGqvE/pKGp+tf\nAyyXNETShcA2/fj8Dt0lo2XAOmD3ink/Ar4qaR9IDniQdFL62h3AfpKOlzQYOAsY2cu6hwFvAq+n\nByGc2+n1pZ3Wv15EvAA8CFwmaQtJ+wOnkZS5zAAnFauhiPgXkmb4P5GUgJaQ/Gj+E8meDGzYOO8w\nGfi6pNeBC+g6YdwHLARmA/8SEbN7+Lzu/hr/DkmPYybJnsiPgaHAXcAM4BmgnaRk9Xynz+vpL/ye\n1r/+vRHxR5Im+gNpuevQiLiF5BDsm9Jy1RPAsenyy4GTgG8Dy0ka74+S7BF2N65LgIPS73c78MtO\ny1xGkqBXSPpSF+M9BWgm2Wv5v8CFEXFPD+vz+S0NRnmd0yRpKMk/9C1IjnC5NSKmpH/5/ZykVtwO\nnJz+FYukKSR/+awFzo6Imen8g4FpJP/A74iIL+QyaKs7kpqBPwCDKw8CaERp7+IF4BMRcV/R47HG\nlNueSnpky4SIaAH2ByakR/icD8yKiD2Bu9Np0t37jwH7ABNJyiQdZYIfAqdHxB7AHpIm5jVus3qS\nnqfSJGkL4Kvp7IeLHJM1tlzLX+nuPCR7KoOAFSTnDExP508na9weD9yYHurYTlLKGCdpFLB1RMxJ\nl7ue/jV7beBq5BLLX5L8W1lGcg7PCRHx557fYpafXJNK2oidS9L8uzc912BERHQcdrgUGJE+H82G\nR5EsIjlUsfP8xWx4CKM1sIhoj4hBjVr6iohLImL7iNgmIv4yIv5f0WOyxjY4zw9P/6G3pJeBuKvT\nmbdEREhq5L8yzcwGlFyTSoeIWCnp18DBwFJJIyNiSVraejldbDHJJSM6jCHZQ1nMhsfej6GLcxCc\nnMzM+iciqnbOVW7lL0nbS2pKn28JHA08RnI9oFPTxU4lOamNdP7H0/MAdgX2AOZExBKSY+rHpY37\nT1e8ZwMR4UcEF110UeFjKMvDsXAsHIueH9WW557KKGB6epjjZsBPIuJuSY8BN6dXUm0HTgaIiPmS\nbgbmk5xoNjmybzyZ5JDiLUkOKZ6R47jrXnt7e9FDKA3HIuNYZByL/OSWVCK58N9BXcx/FTiqm/dc\nSnIZic7zfwvsV+0xmplZdfmM+gFo0qRJRQ+hNByLjGORcSzyk9sZ9bUmKQbKdzEzqxVJRD006q04\nbW1tRQ+hNByLjGORcSzy46RiZmZV4/KXmVkDc/nLzMxKy0llAHK9OONYZByLjGORHycVMzOrGvdU\nzMwamHsqZmZWWk4qA5DrxRnHIuNYZByL/DipmJlZ1binYmbWwNxTMTOz0nJSGYBcL844FhnHIuNY\n5MdJxczMqsY9FTOzBuaeipmZlZaTygDkenHGscg4FhnHIj9OKmZmVjXuqZiZNTD3VMzMrLScVAYg\n14szjkXGscg4FvlxUjEzs6pxT8XMrIG5p2JmZqXlpDIAuV6ccSwyjkXGsciPk4qZmVVNbj0VSTsD\n1wM7AgH8R0RcJeli4LPAsnTRr0bEnel7pgCnAWuBsyNiZjr/YGAaMBS4IyK+0MX63FMxM+ujavdU\n8kwqI4GRETFX0jDgt8AJwMnAqoj4Tqfl9wFuAA4BdgJmA3tEREiaA/xjRMyRdAdwVUTM6PT+PieV\nt96CNWtgq636+SXNzOpc3TTqI2JJRMxNn78B/A9JsgDo6gscD9wYEW9HRDuwEBgnaRSwdUTMSZe7\nniQ5bbIzz4Tp06vxSeXienHGscg4FhnHIj816alIagYOBB5OZ31e0jxJ10hqSueNBhZVvG0RSRLq\nPH8xWXLaJEceCTNm9L6cmZltnNyTSlr6+k/gC+keyw+BXYEW4CXg3/IeQ3eOPhra2pIy2EDS2tpa\n9BBKw7HIOBYZxyI/g/P8cEmbA78EfhoRtwBExMsVr08Fbk8nFwM7V7x9DMkeyuL0eeX8xV2tb9Kk\nSTQ3NwPQ1NRES0vL+o2nY3e38/See7by4IMAXb/uaU972tMDabqtrY1p06YBrP+9rKY8G/UCpgOv\nRMQ5FfNHRcRL6fNzgEMi4hMVjfpDyRr1Y9NG/SPA2cAc4NdUqVEPcMEF8PbbcPnl/fqapdTW1rZ+\nY2p0jkXGscg4Fpm6adQDHwQ+BUyQ9Fj6+DBwhaTHJc0DDgfOAYiI+cDNwHzgTmByRZaYDEwFFgAL\nOyeUTTFxItx1V7U+zcyssTX8tb/WrIEddoD582HUqBwGZmZWYvW0p1IXBg9OjgKbObPokZiZ1b+G\nTyow8EpgHU05cywqORYZxyI/TirAsccmeypr1xY9EjOz+tbwPZUO++4L110Hhx5axUGZmZWceyo5\nmTjRZ9ebmW0qJ5XUQOqruF6ccSwyjkXGsciPk0pq/Hh4/HFYsaLokZiZ1S/3VCocdxx85jNw0klV\nGpSZWcm5p5KjgVQCMzMrgpNKhWOPTZr19b7z5npxxrHIOBYZxyI/TioV9twTNt8cnnqq6JGYmdUn\n91Q6OfNMGDsWvvzlKgzKzKzk3FPJmc9XMTPrPyeVTiZMgIcfhjffLHok/ed6ccaxyDgWGcciP04q\nnWyzDRx8MNx3X9EjMTOrP+6pdOHyy+HFF+Gqq6rycWZmpeWeSg10HFpsZmZ946TShQMOgNdfhz/8\noeiR9I/rxRnHIuNYZByL/DipdGGzzZK9FZ9db2bWN+6pdOOGG+DnP4dbb63aR5qZlU61eypOKt1Y\ntiw5CXLZMhgypGofa2ZWKm7U18gOO8Bee8GDDxY9kr5zvTjjWGQci4xjkR8nlR747Hozs75x+asH\nDzwAZ50Fc+dW9WPNzErDPZVu5JFU1qxJymDz58OoUVX9aDOzUnBPpYYGD4ajjoKZM4seSd+4Xpxx\nLDKORcaxyI+TSi98dr2Z2cZz+asXL7wABx4IS5fCoEFV/3gzs0K5/FVjO+8MI0fCb39b9EjMzMov\nt6QiaWdJ90p6StKTks5O5w+XNEvSM5JmSmqqeM8USQskPS3pmIr5B0t6In3te3mNuTv1VgJzvTjj\nWGQci4xjkZ8891TeBs6JiH2B9wNnSdobOB+YFRF7Anen00jaB/gYsA8wEfiBpI5dsh8Cp0fEHsAe\nkibmOO538PkqZmYbp2Y9FUm3AFenj8MjYqmkkUBbRLxX0hRgXURckS4/A7gYeA64JyL2Tud/HGiN\niDM6fX4uPRWA1athxx3huedgu+1yWYWZWSHqsqciqRk4EHgEGBERS9OXlgIj0uejgUUVb1sE7NTF\n/MXp/JoZOhTGj4fZs2u5VjOz+jM47xVIGgb8EvhCRKzKKloQESGparsXkyZNorm5GYCmpiZaWlpo\nbW0Fshpqf6d3262N666Dk06qzuflOV1ZLy7DeIqc7phXlvEUOT137ly++MUvlmY8RU5feeWVVf19\nqKfptrY2pk2bBrD+97Kaci1/Sdoc+C/gzoi4Mp33NEn5aomkUcC9afnrfICIuDxdbgZwEUn5696K\n8tcpJOWzmpW/AJ55Bo44IjnEWFXbUcxHW1vb+o2p0TkWGcci41hk6uYyLWmTfTrwSkScUzH/2+m8\nK9JE0hQR56eN+huAQ0nKW7OBsenezCPA2cAc4NfAVRExo9P6ck0qEbD77nDbbfC+9+W2GjOzmqqn\nnsoHgU8BEyQ9lj4mApcDR0t6BjginSYi5gM3A/OBO4HJFVliMjAVWAAs7JxQakGqv0OLzcxqzWfU\n98Gtt8L3v1/+hr137TOORcaxyDgWmXraUxlwjjgCHnkE3nyz6JGYmZWT91T6qLUVzj0XPvKR3Fdl\nZpY776kUzGfXm5l1z0mljyZOhLvuKnoUPas8R6PRORYZxyLjWOTHSaWPDjgAVq2CZ58teiRmZuXj\nnko/nHoqjBsHkyfXZHVmZrlxT6UE6qEEZmZWBCeVfjj6aGhrg7feKnokXXO9OONYZByLjGORHyeV\nfth+e9hrL3jggaJHYmZWLu6p9NOFF8Kf/wxXXFGzVZqZVZ17KiXhvoqZ2Ts5qfTToYcmd4J88cWi\nR/JOrhdnHIuMY5FxLPLjpNJPgwfDUUfBzJlFj8TMrDzcU9kE11yTXLH4xhtrulozs6qpm5t01VoR\nSWXRImhpgaVLYdCgmq7azKwq3KgvkTFjYORIePTRokeyIdeLM45FxrHIOBb5cVLZRD4KzMwss9Hl\nL0lDgYiIP+c7pP4povwFSU/lwgvhwQdrvmozs01Ws56KpM2AE4BTgA+Q7NUIWAs8BPwMuKWQX/Iu\nFJVUVq+GHXeE9nYYPrzmqzcz2yS17Km0AQcD/wrsFhGjImIksFs67xDgvmoNpF4NHQrjx5frvvWu\nF2cci4xjkXEs8jO4h9eO7qrUlc57GHhY0ha5jayOdPRVTj656JGYmRWrx56KpE9GxM8knRIRpT4b\no6jyF8CCBcm96xctAlVtJ9LMLH+1PqR4tKSTgTHVWuFANHYsbLEFPPlk0SMxMytWt0lF0kXAcOAG\nYHg6bV2QynVosevFGcci41hkHIv8dJtUIuIS4BXg08Ar6bR1Y+JEmDGj6FGYmRXLPZUqWbUKRo+G\nJUvgXe8qbBhmZn1Ss56KpDuBBwHKnlDKYOut4S/+IrnNsJlZo+qpUX8tcJekr0navFYDqmdlKYG5\nXpxxLDKORcaxyE9PPZVfAAcB2wKPSvqKpC+njy9tzIdLulbSUklPVMy7WNIiSY+ljw9XvDZF0gJJ\nT0s6pmL+wZKeSF/7Xr++aQ0ce2w5koqZWVF666lsAZwHfBK4CVjX8drGNO4ljQfeAK6PiP3SeRcB\nqyLiO52W3YfkSLNDgJ2A2cAeERGS5gD/GBFzJN0BXBURMzq9v/ArxkQkfZX//m/YffdCh2JmtlGq\n3VPp9ox6SROB7wC3AwdGxB/7+uERcb+k5q4+vot5xwM3RsTbQLukhcA4Sc8BW0fEnHS560muSVa6\nfQIp2Vu56y6YPLno0ZiZ1V5PPZWvASdFxHkdCUXSxVVa7+clzZN0jaSmdN5oYFHFMotI9lg6z1+c\nzi+lMvRVXC/OOBYZxyLjWOSn2z2ViBjfxezjgYs3cZ0/BL6ePv8G8G/A6Zv4mQBMmjSJ5uZmAJqa\nmmhpaaG1tRXINqK8p48+upW//3uYNauNzTfPf32e7nm6Q1nGU+T03LlzSzWeIqfnzp1bqvHUcrqt\nrY1p06YBrP+9rKaeLn3/sYj4ead5cyOipU8rSMpft3f0VLp7TdL5ABFxefraDOAi4Dng3ojYO51/\nCnB4RJzR6bMK76l0GDcOLr8cJkwoeiRmZj2r5bW//k7SDEmVLeeDN3WFkkZVTJ4IdBwZdhvwcUlD\nJO0K7AHMiYglwOuSxkkSyRn+t2zqOPJUhhKYmVkRejqk+CPAj4D/knShpO2BbSUNl7RRt6OSdCPJ\nCZR7SXpB0mnAFZIelzQPOBw4J13ffOBmYD5wJzC5YtdjMjAVWAAs7HzkV9kUfWhx59JPI3MsMo5F\nxrHIT0/3UyEibpHUDvyGpO/RcUhxkNysq0cRcUoXs6/tYflLgUu7mP9b4B3ls7I69FB44QV48cXk\nEGMzs0bRU09lKOkRYMBXIuK/ajmwvipTTwWSG3YddxxMmlT0SMzMulfLnso8kj2ZA8ueUMqo6BKY\nmVkRekoqJ0bElIj4U81GM4Ace2xy3/q1a2u/bteLM45FxrHIOBb56SmpfEXSId29mB6NdV0OYxoQ\nxoyBUaPg0UeLHomZWe301FPZDzgXeD/we+AlksurjAT2Ijmq618johQ30S1bTwXg3HNh2DC4yPfM\nNLOSqnZPpccLSqYr3AI4EHgPyVFfzwHzImJ1tQZRDWVMKrNnwwUXwEMPFT0SM7Ou1fImXf8h6URg\nSEQ8HBE/j4ibI+KRsiWUsjrsMHjqKXj11dqu1/XijGORcSwyjkV+ertJVwtwh6R7JJ0n6YAajWtA\nGDoUPvShZI/FzKwR9Fr+AkjPpj8GmAjsD/wOmBERN+c7vI1XxvIXwPe/D489Btd2e8qnmVlxat5T\n6WIAImngbx4R36rWQDZVWZPKggXQ2gqLFiX3WzEzK5NanvzYpfSX+/NlSihlNnZsUgZ7sobHyLle\nnHEsMo5FxrHIT093fnyiu9eAETmMZUDquBvkjBmwX91cvczMrH96Ok9lKUkPZUUXLz8YEaW6VGJZ\ny18At90GV13lhr2ZlU/N7lEP/BoYFhGPdTGI+6o1gEYwYQJ88pPwxhvJyZBmZgNVT/dTOS0i7u/m\nta4uaW/d2HprOOQQqFUZ1/XijGORcSwyjkV++tyot/7xVYvNrBH0+ZDisipzTwVg3jz4279NDjE2\nMyuLwg8ptv7Zf/+kp7JwYdEjMTPLj5NKjXQcWnzXXfmvy/XijGORcSwyjkV+nFRqaOLE2iQVM7Oi\nuKdSQ6+8ArvtBi+/DFtsUfRozMzcU6lr7343vPe98MADRY/EzCwfTio1VosSmOvFGcci41hkHIv8\nOKnU2MSJPl/FzAYu91RqbM0a2HHH5KrFo0t19TQza0TuqdS5wYPhqKN8FJiZDUxOKgXIu6/ienHG\nscg4FhnHIj9OKgU49liYNQvWri16JGZm1ZVrT0XStcBHgJcjYr903nDg58B7gHbg5Ih4LX1tCnAa\nsBY4OyJmpvMPBqYBQ4E7IuILXayrLnoqHfbbD378Y3j/+4seiZk1snrrqVxHcqOvSucDsyJiT+Du\ndBpJ+wAfA/ZJ3/MDaf1d3X8InB4RewB7SOr8mXXHZ9eb2UCUa1JJ78fS+c6RHwWmp8+nAyekz48H\nboyItyOiHVgIjJM0Ctg6Iuaky11f8Z66leehxa4XZxyLjGORcSzyU0RPZURELE2fLyW73/1oYFHF\ncouAnbqYvzidX9cOOwyeegpefbXokZiZVU9PtxPOXUSEpKo1QiZNmkRzczMATU1NtLS00NraCmR/\nmZRl+qGH2th3X5g9u5WTT67u57e2thb+/TxdzukOZRlPUdMd88oynlpOt7W1MW3aNID1v5fVlPvJ\nj5KagdsrGvVPA60RsSQtbd0bEe+VdD5ARFyeLjcDuAh4Ll1m73T+KcDhEXFGp/XUVaMe4Oqr4Xe/\ng2uvLXokZtao6q1R35XbgFPT56cCt1TM/7ikIZJ2BfYA5kTEEuB1SePSxv2nK95T1zr6KtXOhZ3/\nKm1kjkXGscg4FvnJNalIuhF4ENhL0guSPgNcDhwt6RngiHSaiJgP3AzMB+4EJlfsekwGpgILgIUR\nMSCunjV2LGy5JTzxRNEjMTOrDl/7q2BnnQXNzXDuuUWPxMwa0UAof1kFX7XYzAYSJ5WCTZgAc+bA\nG29U7zNdL844FhnHIuNY5MdJpWDDhsEhh4C3cTMbCNxTKYGpU+Gyy+AnP4EPfKDo0ZhZI6l2T8VJ\npSR+9Ss480w4/XS46CIYMqToEZlZI3CjfoA68USYOxfmzUuuXDx/fv8/y/XijGORcSwyjkV+nFRK\nZORIuP12OOMM+NCH4KqrYN26okdlZrbxXP4qqYUL4dOfThr5110HY8YUPSIzG4hc/moQY8fC/fdD\nayscdBDcdFPRIzIz652TSokNHgxf+xrceSdccgmccgqs6Hx3mi64XpxxLDKORcaxyI+TSh04+GD4\n7W9hhx1g//1h9uyiR2Rm1jX3VOrMzJlw2mnwN38Dl1+eXJDSzKy/3FNpcMccA48/DkuWJHswv/td\n0SMyM8s4qdSh4cOTxv0//3NyQcpLL4U1a7LXXS/OOBYZxyLjWOTHSaVOSfCJTyS9lrvvhsMPh2ef\nLXpUZtbo3FMZANatS06U/Na3kr2Wz342STpmZr3xtb+60chJpcNTT8GnPpWcKDl1KowYUfSIzKzs\n3Ki3bu27LzzyCGyzTRstLXDrrUWPqHiunWcci4xjkR8nlQFmyBD43OfgF7+Ac85JSmGrVhU9KjNr\nFC5/DWCrViWJ5d574frr4YMfLHpEZlY27ql0w0mle7femlz5+DOfgYsv9r1azCzjnor1qnO9+Pjj\nk3u1PPkkjBuXNPQbhWvnGcci41jkx0mlQYwYkeyxnHVWck7Ld7/re7WYWfW5/NWAnn02uVfLllvC\ntGmw885Fj8jMiuLyl22y3XeH3/wGjjwyuX7YDTeA87GZVYOTygC0MfXiwYPhq1+FGTPgm99M7tXy\n6qv5j63WXDvPOBYZxyI/TioN7qCDkuuHjRwJBxwAs2YVPSIzq2fuqdh6s2cnhx2feGJyr5attip6\nRGaWtwHTU5HULulxSY9JmpPOGy5plqRnJM2U1FSx/BRJCyQ9LemYosY9kB11VHKvluXLk17Lo48W\nPSIzqzdFlr8CaI2IAyPi0HTe+cCsiNgTuDudRtI+wMeAfYCJwA8kuXTXjU2pF2+3XdK4v/BCOO64\npN9Sea+WeuPaecaxyDgW+Sn6h7nzLtdHgenp8+nACenz44EbI+LtiGgHFgKHYrk55ZTkrpJtbTB+\nPCxcWPSIzKweFNZTkfQHYCWwFvg/EfFjSSsiYrv0dQGvRsR2kr4PPBwRP0tfmwrcGRG/rPg891Ry\nsG4dXH01fP3ryb1aPvc536vFbCAZMD0V4IMRcSDwYeAsSeMrX0wzRE9ZwhmkBjbbDM4+Ozmv5Uc/\ngr/+a1iypOhRmVlZDS5qxRHxUvrfZZJ+RVLOWippZEQskTQKeDldfDFQed73mHTeBiZNmkRzczMA\nTU1NtLS00NraCmQ11EaYrqwXV+vzX365jSuugPvua6WlBc46q43x48vxfXua7hyTosdT5PTcuXP5\n4he/WJrxFDl95ZVXNvTvw7Rp0wDW/15WUyHlL0lbAYMiYpWkdwEzgUuAo4BXIuIKSecDTRFxftqo\nv4Ek8ewEzAbGVta7XP7KtLW1rd+Y8vDgg8llXg47DE4/PblI5RZb5La6TZJ3LOqJY5FxLDID4tL3\nknYFfpVODgZ+FhGXSRoO3AzsArQDJ0fEa+l7vgqcBqwBvhARd3X6TCeVGnrjDfj2t+HOO+Hpp+ED\nH0gu+3LEEXDggTBoUNEjNLONMSCSSh6cVIqzYgXcdx/cfTfccw+89FJyJeSOJLP33m7um5XVQGrU\nW04q+wm1sN12cMIJ8P3vJ/dqeeopOOkkeOyx5FyX0aPhk5+Ea6+F556r6dBqHosycywyjkV+CmvU\n28A1ahR84hPJIwL+93+TvZhZs2DKFBg2LNuLOeII2HHHokdsZtXi8pfVVESyJ9NRKrvvvuR+Lkce\nmTw+9CHYdtuiR2nWONxT6YaTSn1asya5SvI99ySJ5pFHYN99kz2YI49MDgDYcsuiR2k2cLmnYr2q\np3rx4MHJIclTpiRXSV62DC67LDl67IILYIcdkgTzzW/CQw/1/Tpk9RSLvDkWGcciP04qVipDh8KE\nCfCNbySmrGgiAAAHo0lEQVTnw7z0Enz5y8kNxM48E979bvirv4LvfhfmzUsuI2Nm5eHyl9WVZcuS\ni1x29GRWrEiSUEfjf+xYH75s1hfuqXTDSaUxPf98klw6ejKDBm14ZNlOOxU9QrNyc0/FetVI9eJd\ndoFJk+D662HRouSw5UMOgVtvhf33h112aeOss+CXv0xKaI2skbaL3jgW+fF5KjZgSLDXXslj8uSk\n33LNNbByJUydmtwqeezYJOnstlvy2H335L9NTb1/vpn1zuUvaxhvvQVz5iS3TP7DH7LHs8/C5ptv\nmGQqk86YMclRamYDkXsq3XBSsf6KgOXLN0wylUln6dLkBM3OSafj+TbbFP0NzPrPSaUbTioZX9Y7\nU41YrF6dXLOsu6QzdGj3ezk77VSeKzZ7u8g4FplqJxXv1Jv1YujQrFfTWQS8/PKGSeb++2H69OT5\n8uXJwQRdJZxdd4Wtt6799zHLk/dUzHK0enVyQc3OPZyO58OGdZ1wdtstubrzZj4+03Lm8lc3nFSs\n3kQk/ZrO5bSO6RUr4D3vSZJMczOMGJFctqbzY/jw8pTYrP44qXTDSSXjenGmnmPxxz9Ce3uSZNrb\nkzLbsmXvfKxcmRwSvcMOsP32XSeeHXaA9vY2jjuule23hyFDiv52xarn7aLa3FMxaxBbbQX77JM8\nerJ2LbzyyjuTzfLlsGBBcg21ZcuSMtwFFyTLbrXVO5NOTwlpq61q852t/nlPxazBRMBrr3W919M5\nKXU832yz7hNOV8lom218DbZ64fJXN5xUzPIRAW++2XsSqny89VaSbLbbLkkwHY9tt+1+uvNrw4Y5\nMdWCk0o3nFQyrhdnHItMLWOxenWyp/Paa/D668lj5crseW/TK1fCn/6UHHLdn4RUOf2ud70zOXm7\nyLinYmalN3RocnmbMWP6/xlr18KqVb0noPb2nl9fvXrD5LTNNsnN3nbddcMEtMMOcMYZVQtBw/Ke\nipkNaGvWZMmppwQlwde/XvRoa8/lr244qZiZ9Z3vp2K98r0iMo5FxrHIOBb5cVIxM7OqcfnLzKyB\nufxlZmalVTdJRdJESU9LWiDpvKLHU2auF2cci4xjkXEs8lMXSUXSIOBqYCKwD3CKpL2LHVV5zZ07\nt+ghlIZjkXEsMo5FfuoiqQCHAgsjoj0i3gZuAo4veEyl9dprrxU9hNJwLDKORcaxyE+9JJWdgBcq\nphel88zMrETqJan4sK4+aG9vL3oIpeFYZByLjGORn7o4pFjS+4GLI2JiOj0FWBcRV1QsU/4vYmZW\nQg13mRZJg4HfA0cCLwJzgFMi4n8KHZiZmW2gLq5SHBFrJP0jcBcwCLjGCcXMrHzqYk/FzMzqQ2kb\n9RtzsqOkq9LX50k6sLf3ShouaZakZyTNlNRUi++yqXKKxcWSFkl6LH1MrMV32RSbGIdrJS2V9ESn\n5Rtxm+guFnW3TUD/YyFpZ0n3SnpK0pOSzq5YvqG2i15i0bftIiJK9yApcS0EmoHNgbnA3p2WOQ64\nI30+Dni4t/cC3wb+KX1+HnB50d+1wFhcBHyp6O9Xizik0+OBA4EnOr2nobaJXmJRV9vEpsYCGAm0\npM+HkfRt39uI20UvsejTdlHWPZWNOdnxo8B0gIh4BGiSNLKX965/T/rfE/L9GlWRVywA6ukO4JsS\nByLifmBFF5/baNtET7GA+tomoP+xGBERSyJibjr/DeB/yM5/a6TtordYQB+2i7ImlY052bG7ZUb3\n8N4REbE0fb4UGFGtAecor1gAfD7dBb6mDnbvNyUOPWm0baI39bRNQP9jscGNjiU1k+y9PZLOaqTt\nordYQB+2i7ImlY09emBjsqe6+rxI9uvq4SiFasai0g+BXYEW4CXg3/r4/lrrbxw2+v9xA2wTvb2v\n3rYJqEIsJA0D/hP4QvpX+oYLNtB20U0s+rRdlDWpLAZ2rpjemSSj9rTMmHSZruYvTp8v7SgBSBoF\nvFzFMeelmrFY/96IeDlSwFSSXecy628cFtOzRtomeoxFHW4TsImxkLQ58EvgpxFxS8UyDbdddBeL\nvm4XZU0qjwJ7SGqWNAT4GHBbp2VuA/4O1p9x/1q6u9rTe28DTk2fnwrcQvnlEov0H0qHE4EnKLdN\niUNPGm2b6FYdbhOwCbGQJOAaYH5EXNnFexpmu+gpFn3eLoo+YqGHIxk+THIEwkJgSjrvH4B/qFjm\n6vT1ecBBPb03nT8cmA08A8wEmor+ngXG4nrg8XT5W0hqyIV/1xzjcCPJ1Rj+TFJT/kwDbxPdxaLu\ntolNiQVwGLCO5Cipx9LHxEbcLnqJRZ+2C5/8aGZmVVPW8peZmdUhJxUzM6saJxUzM6saJxUzM6sa\nJxUzM6saJxUzM6saJxWznChxf+WlwiWdJOnOIsdlliefp2KWI0n7Ar8guUDf5sDvgGMj4n8LHZhZ\nTpxUzHIm6QrgTZL7VKyMiG8VPCSz3DipmOVM0lYkl71YDfxFJPe6MBuQBhc9ALOBLiL+KOkmYJUT\nig10btSb1cY66uOeHGabxEnFzMyqxknFrHa8p2IDnhv1ZmZWNd5TMTOzqnFSMTOzqnFSMTOzqnFS\nMTOzqnFSMTOzqnFSMTOzqnFSMTOzqnFSMTOzqvn/ShJ1sw8tyPEAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x785fc18>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NtoG from graphical integration: 8.62 \n",
+ "\n",
+ "HtoG: 1.4 m\n",
+ "The depth of packing recquired is 12.84 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.8: Page 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.8\n",
+ "# Page: 317\n",
+ "\n",
+ "print'Illustration 8.8 - Page: 317\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "#***Data***\n",
+ "# a:NH3 b:air c:H2O\n",
+ "ya = 0.416;# [mole fraction]\n",
+ "yb = 0.584;# [mole fraction]\n",
+ "G1 = 0.0339;# [kmol/square m.s]\n",
+ "L1 = 0.271;# [kmol/square m.s]\n",
+ "TempG1 = 20;# [OC]\n",
+ "#********#\n",
+ "\n",
+ "# At 20 OC\n",
+ "Ca = 36390;# [J/kmol]\n",
+ "Cb = 29100;# [J/kmol]\n",
+ "Cc = 33960;# [J/kmol]\n",
+ "lambda_c = 44.24*10**6;# [J/kmol]\n",
+ "# Enthalpy base = NH3 gas, H2O liquid, air at 1 std atm.\n",
+ "Tempo = 20;# [OC]\n",
+ "lambda_Ao = 0;# [J/kmol]\n",
+ "lambda_Co = 44.24*10**6;# [J/kmol]\n",
+ "\n",
+ "# Gas in:\n",
+ "Gb = G1*yb;# [kmol air/square m.s]\n",
+ "Ya1 = ya/(1-ya);# [kmol NH3/kmol air]\n",
+ "yc1 = 0;# [mole fraction]\n",
+ "Yc1 = yc1/(1-yc1);# [kmol air/kmol NH]\n",
+ "# By Eqn 8.58:\n",
+ "Hg1 = (Cb*(TempG1-Tempo))+(Ya1*(Ca*(TempG1-Tempo))+lambda_Ao)+(Yc1*(Cc*(TempG1-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "\n",
+ "# Liquid in:\n",
+ "xa1 = 0;# [mole fraction]\n",
+ "xc1 = 1;# [mole fraction]\n",
+ "Hl1 = 0;# [J/kmol air]\n",
+ "\n",
+ "#Gas out:\n",
+ "Ya2 = Ya1*(1-0.99);# [kmol NH3/kmol air]\n",
+ "# Assume:\n",
+ "TempG2 = 23.9;# [OC]\n",
+ "yc2 = 0.0293;\n",
+ "def f(Yc2):\n",
+ " return yc2-(Yc2/(Yc2+Ya2+1))\n",
+ "Yc2 = fsolve(f,0.002);# [kmol H2O/kmol air]\n",
+ "Hg2 = (Cb*(TempG2-Tempo))+(Ya2*(Ca*(TempG2-Tempo))+lambda_Ao)+(Yc2*(Cc*(TempG2-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "\n",
+ "# Liquid out:\n",
+ "Lc = L1-(Yc1*Gb);# [kmol/square m.s]\n",
+ "La = Gb*(Ya1-Ya2);# [kmol/square m.s]\n",
+ "L2 = La+Lc;# [kmol/square m.s]\n",
+ "xa = La/L2;\n",
+ "xc = Lc/L2;\n",
+ "# At xa & tempo = 20 OC\n",
+ "delta_Hs = -1709.6*1000;# [J/kmol soln]\n",
+ "\n",
+ "# Condition at the bottom of the tower:\n",
+ "# Assume:\n",
+ "TempL = 41.3;# {OC}\n",
+ "# At(TempL+TempG1)/2:\n",
+ "Cl = 75481.0;# [J/kmol]\n",
+ "def f40(Cl):\n",
+ " return Hl1+Hg1-((Gb*Hg2)+(L2*(Cl*(TempL-Tempo)+delta_Hs)))\n",
+ "Cl = fsolve(f40,7);# [J/kmol.K]\n",
+ "\n",
+ "# For the Gas:\n",
+ "MavG = 24.02;# [kg/kmol]\n",
+ "Density_G = 0.999;# [kg/cubic m]\n",
+ "viscosity_G = 1.517*10**(-5);# [kg/m.s]\n",
+ "kG = 0.0261;# [W/m.K]\n",
+ "CpG = 1336;# [J/kg.K]\n",
+ "Dab = 2.297*10**(-5);# [square m/s]\n",
+ "Dac = 3.084*10**(-5);# [square m/s]\n",
+ "Dcb = 2.488*10**(-5);# [square m/s]\n",
+ "PrG = CpG*viscosity_G/kG;\n",
+ "\n",
+ "# For the liquid:\n",
+ "MavL = 17.97;# [kg/kmol]\n",
+ "Density_L = 953.1;# [kg/cubic m]\n",
+ "viscosity_L = 6.408*10**(-4);# [kg/m.s]\n",
+ "Dal = 3.317*10**(-9);# [square m/s]\n",
+ "kl = 0.4777;# [W/m.K]\n",
+ "ScL = viscosity_L/(Density_L*Dal);\n",
+ "PrL = 5.72;\n",
+ "sigma = 3*10**(-4);\n",
+ "G_prime = G1*MavG;# [kg/square m.s]\n",
+ "L_prime = L2*MavL;# [kg/square m.s]\n",
+ "# From data of Chapter 6:\n",
+ "Ds = 0.0472;# [m]\n",
+ "a = 57.57;# [square m/cubic m]\n",
+ "shiLt = 0.054;\n",
+ "e = 0.75;\n",
+ "# By Eqn. 6.71:\n",
+ "eLo = e-shiLt;\n",
+ "# By Eqn. 6.72:\n",
+ "kL = (25.1*Dal/Ds)*(Ds*L_prime/viscosity_L)**0.45*ScL**0.5;# [m/s]\n",
+ "c = Density_L/MavL;# [kmol/cubic m]\n",
+ "Fl = kL*c;# [kmol/cubic m]\n",
+ "# The heat mass transfer analogy of Eqn. 6.72:\n",
+ "hL = (25.1*kl/Ds)*(Ds*L_prime/viscosity_L)**0.45*PrL**0.5;# [m/s]\n",
+ "# The heat transfer analogy of Eqn. 6.69:\n",
+ "hG = (1.195*G_prime*CpG/PrG**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [W/square m.K]\n",
+ "# To obtain the mass transfer coeffecients:\n",
+ "Ra = 1.4;\n",
+ "Rc = 1-Ra;\n",
+ "# From Eqn. 8.83:\n",
+ "Dam = (Ra-ya)/(Ra*((yb/Dab)+((ya+yc1)/Dac))-(ya/Dac));# [square m/s]\n",
+ "Dcm = (Rc-yc1)/(Rc*((yb/Dcb)+((ya+yc1)/Dac))-(yc1/Dac));# [square m/s]\n",
+ "ScGa = viscosity_G/(Density_G*Dam);\n",
+ "ScGc = viscosity_G/(Density_G*Dcm);\n",
+ "# By Eqn. 6.69:\n",
+ "FGa = (1.195*G1/ScGa**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [kmol/square m.K]\n",
+ "FGc = (1.195*G1/ScGc**(2/3))*(Ds*G_prime/(viscosity_G*(1-eLo)))**(-0.36);# [kmol/square m.K]\n",
+ "Ra = Ra-0.1;\n",
+ "# From Eqn. 8.80:\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " def f41(xai):\n",
+ " return Ra-(Ra-ya)*((Ra-xa)/(Ra-xai))**(Fl/FGa)\n",
+ " xai = numpy.arange(xa,0.10,0.01)\n",
+ " plt.plot(xai,f41(xai))\n",
+ " Ra = Ra+0.1;\n",
+ "\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Mole fraction NH3 in the liquid, xa\");\n",
+ "ylabel(\"Mole fraction NH3 in the gas ya\");\n",
+ "title(\"Operating Line curves\");\n",
+ "plt.show()\n",
+ "Rc = Rc-0.1;\n",
+ "# From Eqn. 8.81:\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " def f42(xci):\n",
+ " return Rc-(Rc-yc1)*((Rc-xc)/(Rc-xci))**(Fl/FGc)\n",
+ " xci = numpy.arange(xc,0.85,-0.01);\n",
+ " plot(xci,f42(xci))\n",
+ " Rc = Rc+0.1;\n",
+ "\n",
+ "plt.grid('on');\n",
+ "xlabel(\"Mole fraction H2O in the liquid, xc\");\n",
+ "ylabel(\"Mole fraction H2O in the gas, yc\");\n",
+ "title(\"Operating line Curves\");\n",
+ "plt.show()\n",
+ "# Assume:\n",
+ "Tempi = 42.7;# [OC]\n",
+ "# The data of Fig. 8.2 (Pg 279) & Fig 8.4 (Pg 319) are used to draw the eqb curve of Fig 8.25 (Pg 320).\n",
+ "# By interpolation of operating line curves with eqb line and the condition: xai+xci = 1;\n",
+ "Ra = 1.38;\n",
+ "Rc = 1-Ra;\n",
+ "xai = 0.0786;\n",
+ "yai = f41(xai);\n",
+ "xci = 1-xai;\n",
+ "yci = f42(xci);\n",
+ "# From Eqn. 8.77:\n",
+ "dYa_By_dZ = -(Ra*FGa*a/Gb)*math.log((Ra-yai)/(Ra-ya));# [kmol H2O/kmol air]\n",
+ "# From Eqn. 8.78:\n",
+ "dYc_By_dZ = -(Rc*FGc*a/Gb)*math.log((Rc-yci)/(Rc-yc1));# [kmol H2O/kmol air]\n",
+ "# From Eqn. 8.82:\n",
+ "hGa_prime = -(Gb*((Ca*dYa_By_dZ)+(Cc*dYc_By_dZ)))/(1-exp(Gb*((Ca*dYa_By_dZ)+(Cc*dYc_By_dZ))/(hG*a)));# [W/cubic m.K]\n",
+ "# From Eqn. 8.79:\n",
+ "dtG_By_dZ = -(hGa_prime*(TempG1-Tempi))/(Gb*(Cb+(Ya1*Ca)+(Yc1*Cc)));# [K/m]\n",
+ "# When the curves of Fig. 8.2 (pg 279) & 8.24 (Pg 319) are interpolated for concentration xai and xci, the slopes are:\n",
+ "mar = 0.771;\n",
+ "mcr = 1.02;\n",
+ "lambda_c = 43.33*10**6;# [J/kmol]\n",
+ "# From Eqn. 8.3:\n",
+ "Hai = Ca*(Tempi-Tempo)+lambda_Ao-(mar*lambda_c);# [J/kmol]\n",
+ "Hci = Cc*(Tempi-Tempo)+lambda_Co-(mcr*lambda_c);# [J/kmol]\n",
+ "# From Eqn. 8.76\n",
+ "Tempi2 = TempL+(Gb/(hL*a))*(((Hai-Ca*(TempG1-Tempo)-lambda_Ao)*dYa_By_dZ)+((Hci-Cc*(TempG1-Tempo)-lambda_Co)*dYc_By_dZ)-((Cb+(Ya1*Ca)+(Yc1*Cc))*dtG_By_dZ));# [OC]\n",
+ "# The value of Tempi obtained is sufficiently close to the value assumed earlier.\n",
+ "\n",
+ "deltaYa=-0.05;\n",
+ "# An interval of deltaYa up the tower\n",
+ "deltaZ = deltaYa/(dYa_By_dZ);# [m]\n",
+ "deltaYc = (dYc_By_dZ*deltaZ);\n",
+ "# At this level:\n",
+ "Ya_next = Ya1+deltaYa;# [kmol/kmol air]\n",
+ "Yc_next = Yc1+deltaYc;# [kmol H2O/kmol air]\n",
+ "tG_next = TempG1+(dtG_By_dZ*deltaZ);# [OC]\n",
+ "L_next = L1+Gb*(deltaYa+deltaYc);# [kmol/square m.s]\n",
+ "xa_next = ((Gb*deltaYa)+(L1*xa))/L_next;# [mole fraction NH3]\n",
+ "Hg_next = (Cb*(tG_next-Tempo))+(Ya_next*(Ca*(tG_next-Tempo))+lambda_Ao)+(Yc_next*(Cc*(tG_next-Tempo)+lambda_Co));# [J/kmol air]\n",
+ "Hl_next = (L1*Hl1)+(Gb*(Hg_next-Hg2)/L_next);# [J/kmol]\n",
+ "# The calculation are continued where the specified gas outlet composition are reached.\n",
+ "# The packed depth is sum of all deltaZ\n",
+ "Z = 1.58;# [m]\n",
+ "print\"The packed depth is: \",Z,\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.8 - Page: 317\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEZCAYAAABWwhjiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcTfUbwPHPYyv7EirCJFsLBpFIRpYk7T+VKFqkZEmU\npKLV2mJLlqhIlspaSgll35csFRprikqoLGOe3x/nTN2mmXHNXc69d57363Vfc7Z7vs9zz535zvl+\nz/keUVWMMcaYzMjmdQDGGGOil1UixhhjMs0qEWOMMZlmlYgxxphMs0rEGGNMplklYowxJtOsEjFZ\nmojUE5GtYS6ztIgcEREJZ7nGhIJVIiakRKStiGwUkT9E5EcReUNECnoYT7KIlE2ZV9WvVbVSiMpa\nICL3p16uqrtUNb/aTVomBlglYkJGRLoB/YBuQAGgNlAG+FxEcoagvOz+bhrsstOh7iuqiMvrOEx0\nsErEhISIFAD6AB1Vda6qnlLVncDtQBzQ2t2uj4h8ICKTROSwiKwWkSo++ykhIh+KyM8iskNEOvms\nS3nveBH5HWgjIjVFZKmI/CYi+0RkaEqFJSJfuW9d7zYntRCRBBHZ7bPPRBHpJiLrReSQG9dZPuuf\ncPe7R0QeSH1m4+dnE+e+L5s7v0BEnheRRe5n8JmInOOzfW0RWeLmtE5E6mew71Ii8pH7eR0UkaE+\nn9X408TwoogsBv4AHheRlan23VVEZrjTZ4nIIBHZKSL7RWSEiJztrisqIrPdeH8Rka+sUopdVomY\nUKkDnA185LtQVf8APgEa+yy+EZgCFAYmAtNFJLv7B24WsBYoATQEHhWRJqneO1VVC7rvPQV0Ac4B\nrnTf08Et+2r3PVXc5qSpacStQAvgWuBCoArQFkBEmgJd3X2WBxII3plGS7ec4kAuoLtbZklgNvC8\nqhZ2l38oIkVT78A9E5sN/IBzxlcSeN8nr9NpDTwA5APeBCqKSDmf9XcB77nT/YByQFX3Z0ngWXdd\nN2A3UNTNp6c13cUuq0RMqBQFDqpqchrr9rvrU6xS1Y9U9RTwKk7lcyVQEyiqqi+qapKq/gCMAe70\nee8SVZ0JoKrHVHWNqq5Q1WT3zGcUkO5/7ukYoqr7VfU3nEos3l1+OzBWVbeo6l9Ab4LTNKbAOFXd\npqrHcCrUlDJbA5+o6qcAqvoFsApolsZ+agHnA4+r6l+qelxVl7jrThenAm+7uSWr6mFgBk7lhoiU\nByoCM92zinbAY6p6SFWPAn3557iccOOIc89AF5/Zx2GiiVUiJlQOAkVTmktSOR844DO/J2XC/Y91\nD86ZR2mghNss8puI/Ab0xPnv9j/vBRCRCm5Tyo9uE9dLOGclZ2K/z/RfQF6fuHf7rPtX2QFKXWY+\nd7oM0CLVZ1AXOC+NfZQCdqZTcftjd6r5ibiVCM5ZyDS3kisG5AFW+8Q0h3/+MRgIbAPmish2EemR\nyXhMFLBKxITKUuA4cJvvQhHJBzQF5vksLuWzPhtwAbAX54/aD6pa2OdVQFWbu5un1XE9AtgMlHOb\nuHoRvO/5j76xppoOlV3A+FSfQX5VHZDGtruB0ulcYHAU5w9/irQqodSf5RdAMRGpinOWMdFdfhCn\norvEJ6ZCqloAQFWPqmp3Vb0Ip7nxMRG5xt+ETXSxSsSEhKr+DjwHDBWRa0Ukp4jE4TTV7AbG+2xe\nQ0RuEZEcwKPAMWAZsBI44nZm53b7SS4Tkcvd96XVRJMPOAL8KSKVgIdTrf8JuOgM00kpZwpwr4hU\nEpE8wDN+vDeniJzt88pxmjJSmwDcICJN3PzPdi8GKJnGtstxKrp+IpLH3baOu24dcLXb8V4Q54wu\nwxhU9SQwFRiE01/1ubs8GRgNvC4ixcDpu0npqxKR60WknNvsdRinn+pUOvmZKGeViAkZVR0IPIXz\nR+h3nIphJ9DQ/QMFzn+/M4A7gF+BVsCtblv6KaA5Tv/ADpwmsFE4lwunvDf1f8/dcZpeDrvbTkq1\nTR/gHbcZ5n/p7ONfaaSsd/slhgDzge9wzrbAOeNKzwjgT5/X2HTK1FTTKWXuAW7C+Rx/xjkz6UYa\nv7vuH/cbcDq6d+FU1re7674AJgMbcCrnWaeJIcVEnAsJpqZqJuuB02S1zG02/Byo4K4r784fAZYA\nw1V1YRr7NjFAvLxowr3a5XUgOzBGVfunWp+A8wdmh7voQ1V9MaxBmpASkd44TU93ex3LmRKRi4GN\nQK4A+iGMiWrpnVqHnNtuOwxohNP+vVJEZqrqllSbLlTVG8MeoAmXqLp/QERuwblEOQ/QH5hpFYjJ\nyrxszqoFbFPVRLdpYxLOaXtqUfVHxpyxaLur+0GcfpVtwEn+2+diTJbi2ZkIzs1JqS+XvCLVNgrU\nEZH1OGcr3VV1c5jiM2Ggqs95HcOZUNXrvI7BmEjiZSXiz3+fa4BSqvqniFwHTOefzjtjjDEe87IS\n2ct/r7n/181bqnrEZ3qOOCPAFlHVX323E5Foag4xxpiIoKoBdxd42SeyCijvDgSXC+cSz5m+G4jI\nuSkDt4lILZyryX79765AVWPy1bt3b89jsPwsP8sv9l7B4tmZiKomiUhH4DOcS3zfUtUtItLeXT8S\n+B/wsIgk4Vxjf2e6O4xRiYmJXocQUpZfdLP8jJfNWajqHJwxd3yXjfSZHg4MD3dcxhhj/GN3rEe4\ntm3beh1CSFl+0c3yM57esR4sIqKxkIcxxoSLiKBR3rFu/LBgwQKvQwgpyy+6WX7GKhFjjDGZZs1Z\nxhiTBVlzljHGGM9ZJRLhYr1N1vKLbpafsUrEGGNMplmfiDHGZEHWJ2KMMcZzVolEuFhvk7X8opvl\nZ6wSMcYYk2nWJ2KMMVmQ9YkYY4zxnFUiES7W22Qtv+hm+RmrRIwxxmSa9YkYY0wWZH0ixhhjPGeV\nSISL9TZZyy+6WX7GKhFjjDGZZn0ixhiTBVmfSIzZ8PUqkk8lex2GMcacEatEIsSBu69jSZnCTBk4\n+l/LY71N1vKLbpaf8bQSEZGmIrJVRL4XkR4ZbFdTRJJE5NZwxhdO9bbuZXvC/6jz/MNMr1CS2RPm\neB2SMcaclmd9IiKSHfgWaATsBVYCLVV1SxrbfQ78CYxT1Q/T2FfM9Ikc+eVXZt19N00WzGFmhUqU\nHTCRhCbxXodljIkxsdAnUgvYpqqJqnoSmATclMZ2nYAPgAPhDM4r+c8pwl2ffMypDd9TJHdeLru5\nOq/WrcfqVbu9Ds0YY/7Dy0qkJOD7l3GPu+xvIlISp2IZ4S6KjdMNP5xb7iJuXrqSL/oPpuqhfRS/\nJo7nr72Vb78/7HVoQRXrbc6WX3SL9fyCIYeHZftTIbwOPKmqKiICpHvq1bZtW+Li4gAoVKgQ8fHx\nJCQkAP98EaJx/rzKlWH4W3y5cAHN3hrO8Trn0PKS5tzaqQMt/tfY8/hs3uZtPjrmU6YTExMJJi/7\nRGoDfVS1qTvfE0hW1f4+2+zgn4qjKE6/SDtVnZlqXzHTJ5IhVdYMeZUCzz9LYl7l02uf5akBT1Ck\nsF1kZ4w5M8HqE/GyEsmB07HeENgHrCCNjnWf7ccBs1T1ozTWZY1KJEVSEst7PU6ZN4Yz7/x8rL9p\nML373E3evF4HZoyJFmHrWBeR4iIySETmiMh89/VloAWrahLQEfgM2AxMVtUtItJeRNoHuv9Y4Xsq\n+rccObii/2ucu+8XLrqiIU8Oa8uoK8vw7IvzOH487CEGJM38YojlF91iPb9g8Kcd5D1gK3Ah0AdI\nBFYFo3BVnaOqFVW1nKr2dZeNVNWRaWx7b1pnIVmZ5M9P7fFTyf/9D9Q9vwydXm7Cc3WrMmDYNyQl\neR2dMSYrOG1zloisUdXqIrJBVau4y1ap6uVhidAPWa45Kx1/rl/Nd/ffTaFt3/LSpQnUeOhdHmxV\nkmzWZWKMSSWc94mccH/uF5HmIlIdKBxowSb48lStQfyqzRSaMoPHf9xCrcfLcHuju5g843esjjXG\nhII/lchLIlII6AZ0B8YAXUMalflbZtpkCzVpToXteynVfyiDN86m4GPFaNqsG5/NOxb8AAMU623O\nll90i/X8gsGfSmSJqh5S1Y2qmqCq1VNfYmsikAjF2jxMyb0HqXz/47y3aDj7Hz2Ha25+hSXLTnkd\nnTEmRvjTJ/I9sA4YB8yJxM4H6xPxw+HD7HqqM/nHvseoSwvy6UVDGPxUS6pUCbhJ1BgThcJ2n4iI\nZMMZJPE+oCYwBWcgxO8CLTxYrBLxn+7Zw87O95F37nxerlqKLeXHMLTXNZQv73VkxphwClvHuqom\nq+pcVb0TaAe0AVaKyEIRqRNoACZjwW6TlQsuIO6juRRZvJKuFGDEzGvp3a46tz20gd0ejPEY623O\nll90i/X8gsGfmw2LikgXEVmN07HeEWcIkm7AxBDHZ0Ike9V4Si9eR8nJs3hl3wF6zqrBvW2u5b7H\nEvn5Z6+jM8ZEC3+as74DJgBjVXVPqnVPqmq/EMbnF2vOClByMn9OeJu/Hu/G0kJ/8HTJO2lw5as8\n270ohe1ibmNiUlj7RFQ1oh/+bZVIkBw/zpHX+qN9+zH1omReLtiZ1o2e5fEu+ciXz+vgjDHBFNY+\nkUALMZkX1jbZs84i/5PPUiBxL7dddQ9rVw7mrE/Po0LzV3jl9RMcC8FtJrHe5mz5RbdYzy8YbEAM\n81+FC1NoyCgKbPqOh85LYMPap9g9pyRlmoxn9JhkG5fLGPM3z4aCDyZrzgqxtWv5tVM7fv9uE72u\nPJ+Fv73BoIev5Y47xMblMiZKhXMo+IEiUkBEcorIPBE5KCJ3B1qwiSLVqlFk0Srixk/nja3JTN91\nC2M/upyK16xg1ixsXC5jsjB//o9soqqHgeY4w8BfBDweyqDMPyKpTVauvZZCm7dTvc8bTPv6B149\nWJ/e468lvtG3fJnJJ8xEUn6hYPlFt1jPLxj8qURSnsPeHPhAVX/Hv+ejm1iUPTvZ295Lvh/2cu1d\nT7Fo7iI6Ho3nweGtueq6vSxb5nWAxphw8ucS337AzcAxoBZQCOcxtVeEPjz/WJ+Ihw4e5Nhzz3Dq\n3Xd4tQYMz/cw1bI/Q//nClGlitfBGWPSE9ZnrIvIOcAhVT0lInmB/Kq6P9DCg8UqkQiwYwd/PtGV\n4/O/4Nm62ZhwrBeNinbhpT65qVDB6+CMMamF86FUACWA20SkDXAb0CTQgo1/oqZNtmxZ8nwwg8Kf\nLqD/LxezfvPLZKMUNe4fw30PJLFrV9pvi5r8Msnyi26xnl8w+HN1Vh9gCDAMSAAGADeGNCoTvWrW\nJM+i5ZQe+T7jVhfgq5+7s1vKc+lt0+j5lHL0qNcBGmOCyZ8+kW+AqsAaVa0qIucC76lqo3AE6A9r\nzopQSUnouHEcf7on80om0fuKS9m9aBSDnriUVq2we0yM8VA4m7P+UtVTQJKIFAR+BkoFWrDJAnLk\nQNq14+wdO7nuhs58/f56HilRi16fdeKK+r+zcqXXARpjAuVPJbJSRAoDo4FVwFpgSUijMn+LiTbZ\nvHnJ9tzz5F6zgR456rFi/nhKXVSWxo+/TdOmX7I/Yi7RCL6YOH4ZsPyMPwMwdlDV31T1TZwO9Taq\nem8wCheRpiKyVUS+F5Eeaay/SUTWi8haEVktItcEo1zjkbJlOevjTzlv5AQmLsjNh4cf44e87al0\nzSoGDIDjx70O0BhzpvzpE6nBf28u/B3YqaqZHopPRLID3+I8encvsBJoqapbfLbJq6p/uNOVgWmq\nWi6NfVmfSLT56y+S+/fnxOBXGHQFvHPh7Zz6uh+D+xajeXMQe/S7MSEVzj6R4cBynOas0cAy4APg\nOxG5NoCyawHbVDVRVU8Ck4CbfDdIqUBc+YCDAZRnIknu3GTr04ezV6+nR46rWDxrGlUvL0+70cO4\n9roktmw5/S6MMd7zpxLZB8Srag1VrQHEAzuAxjiX+2ZWScD3qd573GX/IiI3i8gWYA7QOYDyolKs\nt8ku2LWLnLPnUPzNd5m8ID+Tf3ye3y6tzJV3fkXXrnDokNcRBibmj5/ll+XlOP0mVFTVTSkzqrpZ\nRCqp6nYRCaQNya/3qup0YLqI1APGAxXT2q5t27bExcUBUKhQIeLj40lISAD++SLYfATP58tHwpbv\nuLp/f14aNICplzbjs2zXM6HGq9xz8/c0awYNG0ZQvDZv81E2nzKdmJhIMPnTJzIF+AWnuUmA24Fi\nQGtgkarWzFTBIrWBPqra1J3vCSSrav8M3rMdqKWqv6Rabn0isWTHDpI6d+K39cto3/gka0/2osDm\nRxn62llcfbXXwRkTG8L5jPU8QAegrrtoMfAGzoCMeVX1SKYKFsmB07HeEKfJbAX/7Vi/CNihqioi\n1YGpqnpRGvuySiQWzZ7NyU4dWFE8iS71z2Ln1yO4pnRTBg6E0qW9Ds6Y6BbOZ6z/qaqDVPUW9zXI\nXZac2QrE3W8S0BH4DNgMTFbVLSLSXkTau5vdBmwUkbXAYODOzJYXrXxPRWNRhvk1b07Ozd9St1l7\nloz+lR7ntGJz+eZUqb+D556DP/8MW5iZlqWPXwyI9fyCwdOBJ1R1jqpWVNVyqtrXXTZSVUe60wNU\n9TJVraaq9VTV7nHOanLnht69ybV6LV3lSha8u5yGDeKZfOAZKl72J1Om2JMVjfGSPWPdRJfZs0nq\n9Airz0umQ/1kftkwmNJ/3MaQwUJ8vNfBGRM9wj0UfErfiDHeat6cHJu3ckXTB1g26ihdc3bkt0bX\n0KjlZh56CA4c8DpAY7IWf4aCryMim3E6wRGReBF5I+SRGSD222QzlZ/bxJVz1Vo6JdfkqzGbaVC3\nDisKP0al+N8ZPBhOngx6qJlixy+6xXp+weDPmcjrQFPcu8VVdR1QP5RBGeOXsmXJNmsWhYe/xaQv\nCzF64TRK31OB0SvfpkrVZObO9TpAY2KfP5f4rlDVWiKyVlWrucvWq2rVsEToB+sTMfz1FwwYwMnB\nrzE6IT8japbgt2nDqX7e5bz6KpT7z4hrxmRt4ewT2SUidd1Cc4lId8BGNjKR5e8mrjU8nBTPopE7\nuapqE36q9SC1Eg7SowccyfQF6caY9PhTiTwMPIIzrtVeoJo7b8Ig1ttkg55f2bLIzFkUHDaG9+YV\nZNSn8yl1d0UW/jWcihcn8c47kJwc3CIzYscvusV6fsHgz82GB1T1LlUtrqrFVLVV6mFHjIk4zZuT\nfdNmqjZuzepRydz/46sU7lyN/pO+5sorYdkyrwM0Jjb40ydSHGgHxPHPgI2qqveFNjT/WZ+IydCO\nHeijj3Jk4yoevjaJHeUa8cPIgTS5siT9+kGJEl4HaEz4hXPsrKXAV8BqIKUhQFX1w0ALDxarRIxf\nZs8muXNnNl9wFnfV3c85OZ5kw8hH6d71LLp2hbPP9jpAY8InnB3ruVW1h6pOUdUP3FfEVCCxLtbb\nZMOaX/PmZNu0icsa3snaUULb79+maPdLmbn5Uy69FKZPD/4QKnb8olus5xcM/lQis0Xk+pBHYkw4\nuFdxZV+5ijZ/lmfNiL+olP9+zu1yE4+/vIMmTWDTptPvxhjjSLc5S0SO8s+Do/ICJ4CU+4BVVQuE\nPjz/WHOWybTZs9Eunfm2VF7uuHIP5xfqxKrXn+SuFnl47jkoXNjrAI0JjZA3Z6lqPlXN776yqerZ\nPvMRU4EYE5DmzZFvNlGpwf9YM0pou2EGBR+txNZsH1CxkjJiBCQleR2kMZHLn7Gz5vmzzIRGrLfJ\nRkR+Pk1cdx4pw8Y3lbhT3SnbuzFjZ22mRg3IbJgRkV8IWX4m3UpERHKLyDlAMREp4vOKw7nx0JjY\nUrYszJxJnqEjGPlJdiZ8cJCk+HqUavcY97T7nRYtIMiPpzYm6mXUJ/Io0AUogfP42hRHgFGqOiz0\n4fnH+kRM0LljcSUPGcL068vS9ZI91DjRjwWD76bjI9no0QPy5vU6SGMyL5z3iXRW1SGBFhRKVomY\nkNmxAx59lGPfrOOJG3OzuEIRiq0cxuZ5NejfH+68EyTgX0Njwi+cz1iP6Aok1sV6m2zE5+c2cZ09\n5A0Gz0riw49OcrDkdVR7pj19Bx+kXj1Ysyb9t0d8fgGy/Iynz1g3Jmo0b4588w1x9W5gxZunaLfk\nG3696WLK/G84112fxIMPwm+/eR2kMeFnz1g35ky5TVzHN23gmVsK8smFUP77YayYWo+hQ+HWW70O\n0JjTC1ufiFtYSZwBGLMDgnOz4VeBFh4sVokYT8yejXbpwt6yRbm19k5KlrmVb17vR5WKBRg2DM4/\n3+sAjUlf2PpERKQ/sBjoBTwOdHd/mjCI9TbZqM7PbeK64KpmLBtxkhYr13Hi3svIefGnVK0KY8fC\n/PkLvI4ypKL6+Pkh1vMLBn/6RG4BKqpqM1W9IeUVjMJFpKmIbBWR70WkRxrrW4nIehHZICKLRaRK\nMMo1JmjcGxWzLVrMXRth3eRC/MQDXNGvDYNH/Ur37k7rlzGxyp9LfOcAt6tqUB8uKiLZgW+BRjhP\nTFwJtFTVLT7bXAlsVtXfRaQp0EdVa6exL2vOMt47dQqGDkVffIHpt1xCpwrbuCZpGJ+8chu9ekHn\nzpA9u9dBGuMI530iHwFVgXnAcXexqmrngAp2KojeqtrUnX/S3XG/dLYvDGxU1QvSWGeViIkc27bB\nAw9w+PBB7mz2B8lla3B40jBO/X4eb70Fl13mdYDGhPd5IjOBF4AlOA+mSnkFqiSw22d+DxkPp3I/\n8EkQyo0qsd4mG5P5lSsHX35JgQc68PjQX+m6+CCJDatwSct3SWig9O4Nx4+ffjfRICaPn49Yzy8Y\ncpxuA1V9O0Rl+33qICINgPuAuult07ZtW+Li4gAoVKgQ8fHxJCQkAP98EWze5sM636EDUqQIZw0a\nxFsLcjO25UtU6TeJj99ty9tvF2fSpASuvDKC4rX5mJ5PmU4M8gBwGY2dNVVVW4jIxjRWq6oG1Mkt\nIrVx+jhSmrN6Asmq2j/VdlWAj4CmqrotnX1Zc5aJXKowdiz65JN8dUNlWpbfwPVFXmRWnwe54/Zs\nvPQS5MvndZAmqwl5n4iIlFDVfe6ovf+hqokBFSySA6djvSHOAI8r+G/HemngS6C1qi7LYF9WiZjI\nt2cPtG/PscRttL81F9tKn0PxZWNY92U5Ro6EJk28DtBkJeF4KNU+92diWq9AC1bVJKAj8BmwGZis\nqltEpL2ItHc3exYoDIwQkbUisiLQcqON76loLMpS+V1wAcyezdlPPs3bI3/itUU5WFH2Cho/+wrt\n2p+ibVv49VevIs2cLHX8TJo8HTtLVeeoakVVLaeqfd1lI1V1pDv9gKqeo6rV3FctL+M1JmAicPfd\nyIYN1DpSgB/eLUzOHRMp/mQdkops4tJLYepUpwXMmGhgY2cZ4xVVmDoV7dyZDY2rcEOlNVxbpjOL\n+j1JxXK5GD4cStrj30yIhPMSX2NMKIjA7bcjGzdSNekcto8rQOHv5pCzQ02KVV1NfDyMGgXJyV4H\nakz6Mno8bikRGSMi/USkkIiME5FvRGS8iBQPZ5BZWay3yVp+QLFi8P775Bz0Kv3f2sWUr8/li1xN\nuXHIk4wa+xcNGzr3L0YiO34mozORt4H1wO/AMpwrqZrhXEU1IuSRGZPV3HwzsnEjlc4qwbbRuSmz\nZSlHWsVz6XWLqF0bBg6EpCSvgzTm3zK6xHedqsa707tUtXRa6yKB9YmYmPPJJ/DQQ/xQuxJNq2zg\ninIt2PlWX/74LR9vvQVVq3odoIl24egT8d35+FTrbBg5Y0KpWTPYuJELC8WxeWQO4jdvZVfzytS/\n73MaN4ZeveDYMa+DNCbjSmSmiOQHUNVeKQtFpDxO05YJg1hvk7X8MlCwIIwaRfZxb/PY+G0sWliO\nuYfuo+GQ+9nw3SHi42HRoqCFmil2/ExGNxs+k9bw76r6var+L7RhGWP+1qgRbNxIyZKVWD/8FAmb\nfmTtlZdx85MzuOMOeOQROHzY6yBNVpVRn0g3n1nl381bqqqvhjKwM2F9IibL+OoruP9+fr64NDdc\nmUjJMjU5e/5QFs8txogRTiuYMf4IR59IfiCf+/NxdzqfzzJjTLhdfTWsX0/x8vEsG/IHt2z5iy8r\nVqZVv4k80lFp3RoOHvQ6SJOV+HXHuoisVdVqYYgnU2L5TGTBggV/D+kciyy/ACxbBvfey69lS3Dr\n1fvIU6IcF6x/k5kTSvLaa3Dnnc79jKFkxy962R3rxmR1tWvD2rUUqXoF81/9lQe25mRa8arcP3wM\nL72s3HAD7N59+t0YEwg7EzEmFqxeDffey+HzCnNno0McO7cYVRNHM2HYhTz/PLRvD9nsX0bjIxzP\nE/F9GNVFwHaf+YAfShVMVokYA5w4AX37osOH8+n9CdxdaB7tKj3Lgv4dyZkjO6NHQ8WKXgdpIkU4\nmrNu8Hldkmr+xkALNv6J9evULb8gypULevdGvviC6+ZuZ+dnl7Dtu/eQ+6/mqlu2ULcu9O0LJ08G\nr0g7fiaj+0TSfBhVsB5KZYwJkSpVYPly8jZuxpQBP9D3u1KMPn4V9459mS8XnqRWLVizxusgTazI\nqDnrhwzep6paNjQhnTlrzjImHVu2wH33cSwHPHRzDjbk+4Nbso1l2NPxtG0LffpA7txeB2m8EI7m\nrJo+r8uBWsArODcdrg20YGNMGFx8MSxaxNm3tGBc3y2M2F6J4b825q4xT7N953GqVoWFC70O0kSz\njJqzDqrqQeBXnH6QBcCVQDNVvS084ZlYb5O1/MIge3Z47DFk6VKuWLaHXdPiOLltOZvrVeOBPsto\n1Qoeegh+//3Mdx0R+YVQrOcXDBk9lCqXiDwEbAHqATepaitV3Ry26IwxwVO+PCxYQK7WbRj60lom\n7ajOkD03c+MbXTnBH1x2Gcyc6XWQJtpk1CeyB0gCBgO7cMbPAqc5S1X1o7BE6AfrEzHmDP3wA7Rr\nx8lDv/JM6xJMzbaFjqXG8MYTDahRA4YMgeL2/NKYFo77RN52J9PcQFXvDbTwYLFKxJhMUIUxY+Cp\np/i2VVOaXjCfa8pdT/6lA3j/7YIMGgStW4d+6BTjjZB3rKtqW/d1b1qvQAs2/on1NlnLz0Mi0K4d\nrFlDxe+6mT1zAAAgAElEQVR+YduEIlyYeJAPz7uMnuNm88orcN11sHNn+ruI6PyCINbzCwZPB0IQ\nkaYislVEvheRHmmsryQiS0XkWKqh6Y0xwVKqFHz8Mdm7duPpl7/m6x0JjNzamUuebk2NegepUQNG\njHBOXIxJza+xs0JSsEh2nCckNgL2AiuBlqq6xWebYkAZ4GbgN1V9JZ19WXOWMcHw44/w8MMkf/8d\nQ9rH0//kfJ6oPJgJT7WgZAlh7FgoWtTrIE0wxMIovrWAbe4d8CeBScBNvhuo6gFVXQUEcaAGY0y6\nzj8fpk0j2zPP8ujLX7Lq+4a8u+lZ4h6/nTKVfiU+Hr74wusgTSTxqxIRkboi0kpE2rive4JQdknA\nd6DqPe4y4yPW22Qtvwgk4jyMZMMGSv52ktUjlXr7sjGzRDUeG/wVbdpAjx7OeI9Rmd8ZiPX8giHH\n6TYQkQlAWWAdcMpn1bsBlh3U9qe2bdsSFxcHQKFChYiPj//7YTIpXwSbt3mbP8P5yZP56vnniX/h\ndT6/uxkNTt5O3Y6NWTizLXXqNOTRRyMsXptPdz5lOjExkWA6bZ+IiGwBLgl2p4OI1Ab6qGpTd74n\nkKyq/dPYtjdw1PpEjPHIvn1wzz2c+Oso97XIxY78STT9YyJDX4hj4EBo08YuBY424ewT+QY4P9CC\n0rAKKC8icSKSC7gDSO9+Wft6GuOlEiVg7lxy3XgL4/t+S8+fKjDseC0ef2cSgwZBy5Zw6JDXQRov\n+FOJFAM2i8hcEZnlvgIeHEFVk4COwGfAZmCyqm4RkfYi0h5ARM4Tkd1AV+BpEdklIvkCLTua+J6K\nxiLLL4pkywY9eiCzZnHD2EVsXn8Vo2Z1o9pz91Kg2BGqVYPFi70OMrhi6viFyGn7RIA+7s9/DXsS\njMJVdQ4wJ9WykT7T+4FSwSjLGBMktWrB2rUU7diRUR9nY2HF35hYoTod+77PbbddzsMPQ69ekMOf\nvy4m6vn7jPXzcIaEV2CFqv4c6sDOhPWJGOORiRPh0UdZe18zri3yMe0rP8GSV7px4ng2JkyAMmW8\nDtCkJ2x9IiJyO7AcaAHcDqwQkRaBFmyMiQF33QXLllFt/hYSv6jM2m+nIvdcS8INP1KzJkyZ4nWA\nJtT86RN5Gqipqveo6j04ZyTPhDYskyLW22Qtv+i2YMECKFsWFi0iT80rmTVwL21+Oo8x2avTc9xs\nevWC+++Ho0e9jjRzYv34BYM/lYgAB3zmf8GuljLG+MqZE156CZkwgbuHLGDldwm8seURGg7qzAk9\nRvXqsHq110GaUPDnPpGBQFVgIk7lcQewQVWfCH14/rE+EWMiyC+/wP33k7QzkW5tz2d+rr3ck2cS\nAx6/hCeegMcecy70Mt4K+fNEfAoS4FbgKpyO9a9VdVqgBQeTVSLGRBhVePNN9Nln+fqRG7gtz0we\nrfoiHz/fnrx5hHffdYbpMt4JW8e6Oj5U1a6q+likVSCxLtbbZC2/6JZufiLw8MPI/Plc/eFKti+7\ngs82v0HxjrdSre4vVK8Os2eHNdRMifXjFwwZPWN9sfvzqIgcSfU6HL4QjTFR67LLYMUKCpS4kIVD\nDtNw/9m8XzCeniMX8Mgj0KkT/PWX10GaQHj2PJFgsuYsY6LAzJnw4IN8f2cTGpT8nDsuuY+d7/Th\n2y05mTQJLr3U6wCzlnDeJzLen2XGGJOhG2+E1aspv3EvO2bEcWD7EvY0qUfrTjtISIA33rCnJ0Yj\nf66RuMx3RkRyADVCE45JLdbbZC2/6HbG+ZUs6Qzk2Pwm3nlpM70OXsKg36+gx4T3eOstuPlmOHgw\nJKFmSqwfv2DIqE/kKRE5AlT27Q8Bfib90XaNMSZj2bPDk086AzmO+YotG+ozYdNzXPzUPcRVOEJ8\nPMyb53WQxl/+XOLbV1V7himeTLE+EWOi1OHD8MgjJK9ayYsPX8q7rKdzyYn071yLu++G55+HXLm8\nDjI2hfN5IitFpJBPwYVE5OZACzbGGAoUgPHjydbraZ594Ss+2H81L+1ozr1v9WPjN8nUrQvff+91\nkCYj/lQivVX178fNuNN9QhaR+ZdYb5O1/KJb0PJr3RqWLSN+3iYS51Vm/bfTOdaiMTe23kudOvDO\nO950usf68QsGf8fOSi17sAMxxmRxF10EixaRu/oVzBywm3sPXsDwkzV4ZsJMBgxwBgy2pydGHn/6\nRMYBvwHDcSqUR4DCqto25NH5yfpEjIkxX34J99zD3ub1aVB+MQ3KX49+OojP5+TmvfegTh2vA4x+\n4ewT6QScBCYDk4BjOBWJMcaExjXXwLp1lPzxKJsnFibPrp0srVyLrn2/4ZZbnA73pCSvgzTg39hZ\nR1W1h6pe7r56quof4QjOxH6brOUX3UKaX9GiMH06Oe5vx6vPLWfEgSt4YVcCnScMZ8FCpUED2LUr\ndMVD7B+/YPDnjvXiIjJIRD4Rkfnu68twBGeMyeJEoEMH5MsvuWrKMrYvq83czWPI98DNNLj+IJdf\nDlOneh1k1uZPn8jnOE1Z3YH2QFvggD1PxBgTVn/9Bd27o3M+YXiXOvQ7tZCnLn6XVztdQ/36MGQI\n5M3rdZDRI5zPE1mjqtVFZIOqVnGXrVLVywMtPFisEjEmC5kxA9q3Z9tdTWlQYi4tLrmHg1NeYPnS\nnLz/PlSv7nWA0SGcHesn3J/7RaS5iFQHCgdasPFPrLfJWn7RzZP8broJVq+m3LpdbJ9xIb9sX8nW\nunV5+KntXHstvPIKJCcHp6hYP37B4E8l8qJ7x3o3nCatMUDXYBQuIk1FZKuIfC8iPdLZZoi7fr2I\nVAtGucaYKFeyJHz+ObmaNeftF7+h969VeOnn2vR8fzwffgjXXQf793sdZNaQYXOWiGQHuqjqq0Ev\n2Nn3t0AjYC+wEmipqlt8tmkGdFTVZiJyBTBYVWunsS9rzjImq1q+HO66i1+uqk7j+I1UKn05pda/\nwbujCzBmDFx/vdcBRqawNGep6imgZaCFpKMWsE1VE1X1JM49KDel2uZG4B03luVAIRE5N0TxGGOi\n0RVXwNq1nHPqLFaNzsYl+07wQdFqPDtqGR06QOfOcOyY10HGLn+asxaJyDARqSci1UWkhtsvEqiS\nwG6f+T3ustNtc0EQyo4asd4ma/lFt4jJr0ABmDCBbD178vTz8/nopwb02Xoj94x+mX0/nqJWLdi0\n6cx3GzH5RbAcfmxTDVDg+VTLGwRYtr/tT6lPt9J8X9u2bYmLiwOgUKFCxMfHk5CQAPzzRbB5m7f5\nGJ+/+24WZMsGL7xA4oVVufOs2ey8aAp1SvWifv0WvPACVKq0AJEIiTeM8ynTiYmJBFO6fSIi0kVV\nB4vIVaq6KKilOvuvDfRR1abufE8gWVX7+2zzJrBAVSe581uB+qr6U6p9WZ+IMeYfJ07As8+iEybw\nfrcmdD31Mc/Ej2TsEzdTujSMGePcEJ+VhaNP5D7359BAC0nHKqC8iMSJSC7gDv77xMSZwD3wd6Vz\nKHUFYowx/5ErF/Trh7zzDne9Mpe12xszdH1XLu/zMGXK/Ul8vDPGowlcRpXIZhH5HqgoIhtTvTYE\nWrCqJgEdgc+AzcBkVd0iIu1FpL27zSfADhHZBowEOgRabrTxPRWNRZZfdIv4/Bo2hHXrKLH3MJsm\nFibf7r18UbYmvYZsoHVr6NkTTp5M/+0Rn18ESLdPRFVbish5wFzgBtJ+rkhAVHUOMCfVspGp5jsG\nu1xjTBZStCjMmEGO4cN5pc9z3Nr5Fm45eg1dx/dm0asdqVtXmDQJypb1OtDodNphT6KB9YkYY/yy\nYQO0bMmRi8tyY7295C1Wgtr7xzG0fzHGj4cmTbwOMHzCOeyJMcbEhipVYNUq8hcvxZeDf6PZwSKM\nIJ6eI+fTpg0MHOjNY3ijmVUiES7W22Qtv+gWlfnlzg1vvIG8+hodXvqMhXubMOC7O2k39jUmTVbu\nugv+cJ+YFJX5hZnflYiI5AllIMYYE1Y33+wM5Lj6B7Z/WpGvN4+jQo+7Ieef1K0LQb6dImb5MxR8\nHZxBF/OraikRiQceVNWIuVLK+kSMMZmWlAQ9e5L8wVSe7ngJc/L9yA1/TGPUgDjee8+5wCsWhbNP\n5HWgKXAQQFXXAfUDLdgYYyJCjhwwcCDZ+vXnpX4r6bv/MkYl16bb8Hm0agWvv279JBnxqzlLVVM/\nyTgpBLGYNMR6m6zlF91iKr877kC+/JKm45eyclNdhmxvRaMuDzPubeWee5wHK5r/8qcS2SUidQFE\nJJeIdAe2nOY9xhgTfSpXhpUrKfXzMb6feSFbdn1GxadacezUn1x1FexK/e+08atPpBgwGOe5H4Jz\n82FnVf0l9OH5x/pEjDFBlZwMffqQ/PY4XuhYhWkF9tLs8DTGvXYhkyZB/Rho0A/bM9ajgVUixpiQ\nmDEDbdeOee0a0rrwfLqUHs/rnRrzzDPwyCMgQR/HI3xC3rEuIkMzeA0JtGDjn5hqc06D5RfdYj6/\nggWRr76i0UfrWLO2Fm/+cDf3jh7IyFHKfffZw64g4z6R1Tgj7a5yp1O/jDEm9lWqBMuXU+KvHHz3\nYUk2bJ1AxadacuiPP7j6atizx+sAveV3c5aI5AdUVY+GNqQzZ81ZxpiQS06Gfv3Q4cPo2zGeSYX2\ncO1v03lvWFmmTIGrrvI6wDMTtvtERKSyiKwFNuEMD79aRC4LtGBjjIkq2bLBU08hb42l5+urGbaj\nEu/mrE2HVz7j1lvhzTe9DtAb/lziOwp4TFVLq2ppoJu7zIRBzLc5W35RLUvm17QpsnQpV8/9lg3L\nqjN2Z1vajO7P4CHKgw/C8eNhD9NT/lQieVR1fsqMqi4A8oYsImOMiXRly8KSJZx7VhG2TirGt1sm\ncvEzd/DjL0dp0AD27fM6wPDx5z6R6Tgd6eNx7hNpBdRQ1VtCH55/rE/EGOMJVXj9dbR/fwZ1iOfd\nontpeHAaH4wqxwcfQO3aXgeYvnCOnXUfUBz4CPgQKMY/z183xpisSwS6dkXef5/uI9Yzamt53s9d\nhwf6fcoNN8CYMV4HGHqnrURU9VdV7aSq1d1XF1X9LRzBmSza5hxDLL/o5nd+DRogy5dz5dLdfPNV\nZSbsvpe7R/Zl4CClQwc4cSKkYXoqo5sNZ4nITPdn6tfMcAZpjDERr3Rp+PprihUrw5YJBdm1dTKV\nnmnBD3uP0LAh/PST1wGGRrp9IiJyANgDvA8sT1ns/lRVXRj68PxjfSLGmIihCm++ifbpw5D21Rh1\n7m4SfprOrLfL8+GHULOm1wE6Qj52lojkABoDLYHKwMfA+6q6KdBCg80qEWNMxFmyBG6/nZXNq9P8\nwqW0O+8dRnZvxsCB0Lat18GFoWNdVZNUdY6q3gPUBrYBC0WkY6CFGv9Zm3N0s/yiW0D51akDK1dS\nc+MvbP7yYj7c8wAtR7zEiy8l06ULnDwZtDA9lWHHuoicLSK3AROAR3CGhJ8WaKEiUkREPheR70Rk\nrogUSme7sSLyk4hsDLRMY4wJu/PPh/nzOeeiy9jwTh4ObJnKxb3/x5btR2jcGA4c8DrAwGXUnDUe\nuBT4BJisqkH7Qy4iA4CDqjpARHoAhVX1yTS2qwccBd5V1coZ7M+as4wxkW3cOLRHD958IJ6hJfdQ\nb990Pp1QgWnToHr18IcTjj6RZOCPdN6nqlog04WKbAXqq+pPInIesEBVK6WzbRwwyyoRY0zUW7kS\n/vc/1ja8lOsqrqRtsXG81aM5r78OrVqFN5Rw9IlkU9X86bwyXYG4zlXVlAvefgLODXB/McvanKOb\n5Rfdgp5fzZqwciXVfviLrXMuYva+B2kx/HmeeTaZbt0gKSm4xYVDjlDtWEQ+B85LY1Uv3xlVVREJ\n+DSibdu2xMXFAVCoUCHi4+NJSEgA/vki2LzN27zNez6/eTM8/TQJn3zCurf2c339dyl2+1zWrvuE\npk0L0KnTAgoWDH75KdOJiYkEkyePx3WbsxJUdb+InA/Mt+YsY0yWM3Ei2qUL4+6NZ2DpPVy5axoL\nPqjEtGlQtWpoiw7n2FmhMBNo4063AaZ7FIcxxnjnrruQL77gvg93MGVZKeYUqcetPWfSqBFMnux1\ncP7xqhLpBzQWke+Aa9x5RKSEiHycspGIvA8sASqIyG4RudeTaD3keyoaiyy/6Gb5BUHVqrByJZUP\nZmPrrDJ8vv8hbhvahx5PJtOjB5w6FfoQAuFJJeIO6thIVSuoahNVPeQu36eq1/ts11JVS6jqWapa\nSlXHeRGvMcaEVJEi8PHHFEy4ljWjs3Fq83Qq9bmZpWt+5/rr4ddfvQ4wfZ70iQSb9YkYY2LGRx+h\n7dszoVVlXrxoL7UTp7N4xsVMnw6XBfHB5NHeJ2KMMSYtt96KLFzI3XP2Mv3rEnxR9Gqad59Ogwbw\n4YdeB/dfVolEOGtzjm6WX3TzLL9LLoEVK7j4eAG2flSCxfsf4abXn6XrY8k8/XRk9ZNYJWKMMZGo\nYEGYNo38N/6PZaOSybVpBhWfu5H5Sw9x001w6JDXATqsT8QYYyLdJ5+gbdsytcUl9Kq4l1o7ZrDy\nk0uYMQMuvjhzu7Q+EWOMySqaNUOWLOH2r35hzrzz+Kp4fZp0+Yirr4YZM7wNzSqRCGdtztHN8otu\nEZVfuXKwdCnlzi7B1inFWP1zJ5q/+jSPdDpFnz6QnOxNWFaJGGNMtMiXDyZNIm/r+1g0MomC38yi\nYp8bmDP/ELfcAocPhz8k6xMxxpho9MUXaOvWzLixAt0v3UeNbdPZ8MVlTJ8OFSue/u3WJ2KMMVlZ\no0bIsmXcvOoon39ajGXnJXD1Qx9Qrx58/PHp3x4sVolEuIhqkw0Byy+6WX4ei4uDxYu5sHgFtrxX\nhC0HutB04FO0a3+KF18MTz+JVSLGGBPNcueGt98mT4fOLBh1gvM3fEyl55oz/dPfaNECjhwJbfHW\nJ2KMMbHi66/RO+/kkyYX0rnqj1TZOp3vF1Xm44+hTJl/b2p9IsYYY/6tXj1kxQqu35LE/FlFWFcy\ngfodplCoUOiKtEokwkV8m2yALL/oZvlFoJIlYeFCSperzpZ3C7B1z2PsPLYhZMVZJWKMMbHmrLNg\n5EjO7tGLL8acoMqB0P2ptz4RY4yJZd984wywlT37vxYHq0/EKhFjjMmCrGM9i4jKNtkzYPlFN8vP\nWCVijDEm06w5yxhjsiBrzjLGGOM5TyoRESkiIp+LyHciMldE/nMrjIiUEpH5IrJJRL4Rkc5exOq1\nWG+Ttfyim+VnvDoTeRL4XFUrAPPc+dROAl1V9VKgNvCIiGTyQZDRa926dV6HEFKWX3Sz/IxXlciN\nwDvu9DvAzak3UNX9qrrOnT4KbAFKhC3CCHHo0CGvQwgpyy+6WX7Gq0rkXFX9yZ3+CTg3o41FJA6o\nBiwPbVjGGGPORI5Q7VhEPgfOS2NVL98ZVVURSffSKhHJB3wAdHHPSLKUxMREr0MIKcsvull+xpNL\nfEVkK5CgqvtF5HxgvqpWSmO7nMBsYI6qvp7B/uz6XmOMOUPBuMQ3ZGcipzETaAP0d39OT72BiAjw\nFrA5owoEgvNBGGOMOXNenYkUAaYApYFE4HZVPSQiJYDRqnq9iFwFfAVsAFKC7Kmqn4Y9YGOMMWmK\niTvWjTHGeCOi71gXkaYislVEvheRHulsM8Rdv15EqqVal11E1orIrPBEfGYCyU9EEkVkg5vfivBF\n7b8A8yskIh+IyBYR2SwitcMX+ellNjcRqeges5TX75F4I22Ax66ne5PwRhGZKCJnhS9y/wSYXxc3\nt29EpEv4ovbf6fITkUoislREjolItzN573+oakS+gOzANiAOyAmsAy5OtU0z4BN3+gpgWar1jwHv\nATO9zifY+QE/AEW8ziOE+b0D3OdO5wAKep1TML+b7vJswI9AKa9zClZ+7nt2AGe585OBNl7nFMT8\nLgM2Ame7+/kcuMjrnDKRXzHgcuBFoNuZvDf1K5LPRGoB21Q1UVVPApOAm1Jt8/dNi6q6HCgkIucC\niMgFOF+EMUAkdrwHlJ8rEvNKken8RKQgUE9Vx7rrklT19zDGfjrBOHYAjYDtqro71AGfoUDyO4wz\n2kQeEckB5AH2hi1y/2Q2v/OAi4HlqnpMVU8BC4Fbwxe6X06bn6oeUNVVOMfqjN6bWiRXIiUB31+u\nPe4yf7d5DXgcSA5VgAEKND8FvhCRVSLSLmRRZl5m87sAuBA4ICLjRGSNiIwWkTwhjfbMBJKbrzuB\niUGPLnCZ/m6q6q/AK8AuYB9wSFW/CGGsmZHZ/ErgnIXUc8f/ywNcz3+Pq9f8yS9o743kSsTfHv/U\n/42LiDQHflbVtWmsjxSZzS/FVapaDbgOZ1yxesEJK2gym5/iNF9VB95Q1erAH6Q9vppXAsnNWSGS\nC7gBmBqsoIIo099NEbkIeBSnOaQEkE9EWgUvtKDIdH6quhXn1oS5wBxgLZH3j2ogV0ud8XsjuRLZ\nC5TymS+FUytmtM0F7rI6wI0i8gPwPnCNiLwbwlgzI5D8UNV97s8DwDSc09BIEkh+e4A9qrrSXf4B\nTqUSKQI6dq7rgNXu8Ys0geR3ObBEVX9R1STgI5zfx0gS6O/eWFW9XFXrA4eAb0MYa2b4k1/w3ut1\nJ1AGnUM5gO04/9Hk4vSdX7VJu/OyPjDL63yCmR9OO3N+dzovsBho4nVOwTx+OPcIVXCn+wD9vc4p\nmN9NnLbmNl7nEoLvZjzwDZAb5z/5d4BHvM4pyN/N4u7P0jgDwxbwOqczzc9n2z78u2Pd7/f+/R6v\nEz7Nh3EdTi2/DedGQ4D2QHufbYa569cD1dPYR30i8OqsQPIDyroHd537C9vT61yCffyAqsBKd/lH\nRNDVWUHILS9wEPcfgUh8BZjfE8AmnP6Dd4CcXucT5Py+cvNbBzTwOpfM5IczruFu4HfgN5w+rHzp\nvTejl91saIwxJtMiuU/EGGNMhLNKxBhjTKZZJWKMMSbTrBIxxhiTaVaJGGOMyTSrRIwxxmSaVSLm\nX0QkWUTG+8znEJEDpxtOX0TaisjQMyzrfXeY7YCH0xaRp1LNLw50n+5+3haRPe4wJYhIUXckBEQk\nTkQ2ptq+T8rQ2iLygpvfOhGZJyKl0th/CRE5o6FPRORREcntM380M7m5701IObYicoNfQ3+nv6/R\nInJxGsvP+LthoodVIia1P4BLReRsd74xzrAHp7uh6IxuOHJHRL1cVauq6uBU67Kfyb5cPf8VjGrd\nTOwjPUnAfX5u6/s5DHDzi8d5BHTv/2ysuk9VW5xhPF1wRi1Iq8xMU9VZqto/gPe3U9UtwYjFRA+r\nRExaPsEZnRSgJc74YwLOo41FZLr7H/ZSEamc+s0iUsx9oNQK95XW2ElzgZLug5muEpEFIvKaiKwE\nuohIcxFZ5o7i+7mIFHf3nc8d3XeDG8OtItIXyO3ua7y73VH3p4jIQPchQhtE5HZ3eYJb5lRxHnw1\nIZ3PQoHBQFcR8ef35e9B+1T1iM/yfDh3qaf+rP4+m3H/Y/9IROaIyHci8p8/6OI8wKoEMF9E5vks\nf9E941nq81n5cxx89/33GYOIXOjua4O77yPu8r/PXNz5YSLSxp1eICI13Ol7ReRbEVmOH2NnuWdX\nb7nTld3jdbaI1BKRJe73YLGIVDjdvkyYeX17vr0i6wUcASrjjC57Fs4opX+PPwYMBZ5xpxsAa93p\ntsBQd3oiUNedLg1sTqOcMsBGn/n5wDCf+UI+0w8Ag9zp/sCrqbcDjqTOw/15G06FJUBxYCfOkA8J\nOIPnlXDXLUmJOdV+xrn7eMvN8RzgB3ddHPCn+xmlvH4EHvN5/0s4Q0ps9c3JZ31cyufg7n87kN/9\n7BNxhldP/Z4f8HkgGc4ostf7fD69zuA4JPgcW99jOBNo7U538Pk8/97e5/twj88xrA6c737O5+A8\n2GgRMOQ03zvBeTbHLTjD3VzpLs8PZHenGwEfeP07Yq9/v3JgTCqqulFE4nDOQj5Otbou7kN4VHW+\niJwjIvlTbdMIuFjk73/K84tIHlX902ebtIa4n+wzXUpEpuD8wc+F87Q8gIbAHT6xHjpNOlcBE9X5\nK/SziCwEauI8PGmFuqMhi8g6nD/oafWlKNAXmMF/P4/t6gzJj7uf3vz7bKQX0EtEnsR5xs29p4l3\nnrpnMCKy2Y3pdA91OqGqKXGtxmmCBP+OQ3rq4PxBB5iAUzn5Q3CeBLhAVX8BEJHJQIZnEKqqItIW\nZ7ytEaq61F1VCHhXRMrhHIecfsZhwsQqEZOemcAgnLOQYqnWpfucDJ/1V6jqiTMs8w+f6aE4Zx+z\nRaQ+zmij6ZWfEU1j+5R4j/ssO0UGvw+qus2taO5Ib5vTmIjTTHg6qWPyp3/I9+l0yfyTR2aPQ0aS\n+HczeO40tknr++CPCjhnwr4PQXoBp2K9RUTKAAv83JcJE+sTMekZC/RR1U2pln8NtAKnfRw4oKqp\nrw6aC3ROmRGReD/L9P1jUwDnyXjgNLOk+Bx4xGffhdzJk+I8jjW1r4E7RCSbiBQDrgZWcGYVUcq2\nLwHd/X6TSHmf2ZtwmrvOVFpxHsH5fE4ns8cBnDOyO91p34dK7QQuEZFc7md/Tar3KbAcqO/2n+UE\nWrjLEZFbROTl1IWJ80jkwUA94BwRuc1d5fs9ON1ZnPGAVSImNQVQ1b2qOsxnWcp/l32AGiKyHngZ\naJPGNp2By92O703AgxmVlc58H2CqiKwCDvisexEo7Ha8rsNpowcYBWyQfy5PTsljGrABZzjvecDj\nqvpzqnjTi+dfy1V1M05zkaZel85++qaKs1tG+z+DmEYBn/p0rKeO50yOg+/2vtNdcJ6YuQGn38jZ\nwHke/BScRxBMBtb8Z4eq+3GO31Kc/hDff0Quwhl+PLVXcfrEtgH3A/1EpCgwAOdzXINzVmbDjkcY\nGwreGHNaInJEVVP3fWVmP+OBR1P6S0z0s0rEGHNaInJYVf1pQjNZjFUixhhjMs36RIwxxmSaVSLG\nGPOup/0AAAAkSURBVGMyzSoRY4wxmWaViDHGmEyzSsQYY0ymWSVijDEm0/4PcKKwK+beCCUAAAAA\nSUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa595b00>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmczeX3wN9nxr4TWoSRfcuSfWuEQrbsoowtyZb4KVpQ\nX6RFi1QKEaLsJGuMELKG0EqJ9qxld35/PHdqGmPmztx7Z7lz3q/Xfc39fO7zOc85bn2e+znnOeeI\nqmIYhmEYsRGS3AoYhmEYKRdbJAzDMIxrYouEYRiGcU1skTAMwzCuiS0ShmEYxjWxRcIwDMO4JrZI\nGEGPiNQVkYMBkh0pIj087zuLyMpAzGMYyYUtEobPiEiEiOwVkb9E5CcReV1EciajPldE5JaoY1Xd\noKqlAjSdel6o6ixVvSsQk4hIBhEZKSJficgZETkkIlNEpHAg5jOMKGyRMHxCRAYDzwKDgRxADaAw\nsFpE0gdgvlBvh/p77mRmHtAM6IT7d64AbAcaJFSQiKTzr2pGMGOLhJFoRCQHMBLop6qrVPWyqn4P\ntAfCgC6ecSNFZJ6IzBGRUyKyQ0RujSbnJhGZLyK/ish3ItI/2mdR184QkZNAVxGpKiKbReS4iBwT\nkQlRC5KIfOK59HMROS0i7UQkXESORJN5WEQGi8jnInLCo1fGaJ8P9cj9UUR6xnwyiePfI0JENkQ7\nviIivT2//o+LyGsxxncXkf0i8qeIrBCRQteQ2xBoCLRU1R2qekVVT6nqG6o6NZpNDaJdM1JEZnje\nh3l06S4i3wMfi8hHItI3xjyfi0grz/tSIrJaRP4QkYMi0i7auKYi8oXnu/zR80PBCFJskTB8oRaQ\nCVgQ/aSq/gV8BDSKdroF8AGQG3gPWCQioSISAiwFdgE34X4ZPywid8a4dq6q5vRcexkYCFwH1PRc\n85Bn7nqea25V1eyqOjcWvRVoB9wFFAFuBSIARKQxMMgjszgQ7hmfWO4GqnjmaC8id3nmaQkMA+4B\n8gIbgNnXkNEQ2KqqR+OY5x+3V7TjmNQDSuHsno17KsGjTxmgELBMRLICq4GZQD6gI/C6iES57KYA\nD6hqDqAssDYOvYxUji0Shi/kBX5X1SuxfPaz5/MotqvqAlW9DIzHLS41gapAXlX9n6peUtVDwGTc\njSmKT1V1CYCqnlPVnar6mecX9ffAW8DtCdT9VVX9WVWP4xapip7z7YGpqnpAVc8CI/DNdfWs51f/\nEWAdzk0E8CAwVlW/9Pz7jQUqikjBWGRch/v3TAix6TxSVc+q6jlgUYz5OgPzVfUizq11SFWne/6N\nd+N+CLT3jL0AlBWRHKp6UlV3JVA3IxVhi4ThC78DeT1PAzG5Efgt2vGPUW/UVZX8EffkUAi4yeOO\nOS4ix3G/sPPHdi2AiJQQkQ89QfKTwGjcjTQhRL/pngWyRtP7SLTP/jN3Iog+z99ANs/7wsAr0Wz+\nw3O+QCwyfvfo5Sv/2KWqp4Fl/Ps00RGYFU236jG+k3uB6z2ftwGaAoc9u7tq+EE3I4Vii4ThC5uB\n87ibxj+ISDagMfBxtNMFo30eAtwMHMXduA6pau5orxyq2swzPKYbBeANYD9QzOOCehz//bf8U3Rd\nY7z3Jz/gXDbR7c6qqltiGbsGqCYisS0gUfzFvwsdwA2xjIn57zgb6CQiNYFMqroumm7rY+iWXVX7\nAqjqdlVthXNFLcK5EY0gxRYJI9Go6klgFDBBRO4SkfQiEoa7aRwBZkQbfpuI3OPZWfMwcA7YAmwD\nTnuCxZk9cYpyIlLFc11sbpNswGngb4+fvE+Mz38BiibQnKh5PgC6eQK3WYAnEygnvjmi5nkTGO6J\nBSAiOaMHh6Ojqh/jYgQLRaSyiKQTkewi8qCIdPMM2w109HxWBbdwxxdL+Qj31DAKmBPt/IdACRHp\n4vlO03s2C5TyvO8sIjk9rsPTuBiREaTYImH4hKo+DwwHXgBO4m783wMNPP5tcDerxUAH4E+c/7u1\nZzfUZZwPvCLwHc5F9RZum2fUtTFvdkNw7o9TnrFzYowZCUz3uEraXkPGf8zg31yHFcCruPjBV7in\nJXBPTPERX/A4+jyLgHHAHI/LbC8uoHwt2uJu6u8DJzzjK+MWD3CLWVHgOM7+WTGuv8p+Vb2AizU0\nwG0IiDp/BrgT54I6inu6Ggtk8AzpAhzy6P0A7vs0ghQJZNMhz06Rl4FQYLKqjovx+RD+/Q8sHVAa\nF8Q8ETCljCRHREbgXEP3JbcuCUVESuNuyBmuEaA3jKAmYE8S4pKeXsP5psvgfJ+lo49R1RdUtZKq\nVsIFKyNtgQhKUlVim8ctllFEcuN+7S+xBcJIqwTS3VQN+EZVD3vcDnOAlnGMv5dr7xM3UjfxuXtS\nGg/g4hrfABe5OuZhGGmGQKbnF+DqrYTVYxvoCRDehSchygguVHVUcuuQEFS1SXLrYBgphUA+SSTk\nl2NzYKO5mgzDMFIWgXySOMrV+82vlZjUkThcTSKSmlwVhmEYKQZV9SkmGMgnie1AcU9xsQy47Y9L\nYg4SV1K6Hm6L5DVR1SR/nT2r1KqlPP54YOcZMWJEstiXVK9gti+YbTP7Uv/LHwTsSUJVL4lIP2Al\nbgvsFFU9ICK9PZ9P8gxtBaxUVycnRZEpEyxcCDVqQMmScF+ANnAePnw4MIJTCMFsXzDbBmafEVh3\nE6q6HFge49ykGMfTgemB1MMX8ueHpUuhfn0oUgTq1ElujQzDMJIOy7j2grJlYcYMaNsWvv3W//Ij\nIiL8LzQFEcz2BbNtYPYZAc649hcioilBz9dfhwkTYPNmyJUrubUxDMOIGxFBU3DgOuh46CFo1Aja\nt4eLF+Mf7y2RkZH+E5YCCWb7gtk2MPsMWyQSzPjxkC4dDBgAKeDhxjAMI6CYuykRnDoFtWtDz54w\ncGBya2MYhhE7/nA3BXR3U7CSI4fb8VSrFhQrBnffndwaGYZhBAZzNyWSsDCYPx8iImDPHt9kBbtf\nNJjtC2bbwOwzbJHwiZo13W6n5s3h54S2qTcMw0gFWEzCD4waBR99BJGRkDlzcmtjGIbh8EdMwhYJ\nP6AKnTvD5cswezaE2POZYRgpAMuTSCGIwNSpcOQIjByZ8OuD3S8azPYFs21g9hm2SPiNTJlg0SJX\nvmPmzOTWxjAMwz+Yu8nP7NsHd9zhqsfWrp3c2hiGkZYxd1MKpFw5ePddVwzwu++SWxvDMAzfsEUi\nADRuDI8/Ds2awcmT8Y8Pdr9oMNsXzLaB2WfYIhEw+vWDBg1cMcBLl5JbG8MwjMRhMYkAcumSS7Qr\nUgQmTnS7oAzDMJIKi0mkcNKlgzlz4JNPXGa2YRhGasMWiTg4dPyQz83Ec+Z0xQDHjnVZ2bER7H7R\nYLYvmG0Ds8+wReKaqCqd5nfi2Y3P+iyrSJF/iwHu3eu7boZhGEmFxSTi4NjpY9SZWodhdYbR67Ze\nPst77z0YPhy2boXrr/eDgoZhGHFg/SQCzE3Zb2LVfauo90498mTOQ5sybXySd++98OWX0LIlrFtn\nxQANw0j5mLspHorlKcaye5fRZ1kf1h5a67O8kSOd+6lbt3/bnwa7XzSY7Qtm28DsMwK8SIhIYxE5\nKCJfi8ij1xgTLiK7RGSfiEQGUp/EUunGSsxtN5eO8zqy/dh2n2RFFQP8/vvEFQM0DMNISgIWkxCR\nUOBLoCFwFNgGdFLVA9HG5AI2AXep6o8ikldVf49FVorIk1h0cBF9lvUhsmskJfOW9EnWL79A9eow\nerQrM24YhuFvUnpMohrwjaoeBhCROUBL4EC0MfcC81X1R4DYFoiURKtSrfjz7J/cNfMuNnbfyM05\nbk60rOuvd1tjGzRw7qdatfyoqGEYhp8IpLupAHAk2vGPnnPRKQ7kEZF1IrJdRO4LoD5+oXul7vSt\n2pc7Z9zJH3//4ZOs8uVh2jRo1iySQ4f8o19KJJj9vsFsG5h9RmCfJLzxD6UHKgMNgCzAZhHZoqpf\nxxwYERFBWFgYALly5aJixYqEh4cD/37RSXVc9WJVdpzdwd3v3c2a+9ew/dPtiZbXtCncfvtu6teH\nzz8PJ2fOpLcn0Me7d+9OUfrYsR0H63FkZCTTpk0D+Od+6SuBjEnUAEaqamPP8TDgiqqOizbmUSCz\nqo70HE8GVqjqvBiyUkRMIjqqSo8lPTh6+ihLOy0lQ2gGH2S5goDffutcUOnT+1FRwzDSLElSu0lE\nxopI7mjHuUXkf17I3g4UF5EwEckAdACWxBizGKgjIqEikgWoDuz3Xv3kQ0R4q/lbZE6Xma6LunJF\nr/ggC155BUJDoXt3uJJ4UYZhGH7Fm5hEE1U9HnXgeX93fBep6iWgH7ASd+N/X1UPiEhvEentGXMQ\nWAHsAbYCb6tqqlgkANKFpGN2m9kcO32MAcsHJLrOU2RkJOnSwdy5bmvswIH/5lAEA1GPw8FIMNsG\nZp/h3SIRIiKZog5EJDPglW9FVZeraklVLaaqYz3nJqnqpGhjXlDVsqpaXlVfTagByU3m9JlZ0nEJ\nm45sYtT6UT7JypLFuZs2boQRI/ykoGEYhg/EG5PwxA1aAFMBAboBS6LHFgJNSoxJxOSXM79Q5506\nDKw+kH7V+vkk69dfoW5dePBBGDTITwoahpHmSJI8CVUdJyJ7cElxCjytqit9mTQYuT7b9azqsoq6\n79TluszX0al8p0TLyp8fVq92C0WuXK6Eh2EYRnLgTeB6ALBFVQer6hBbIK5NkdxFWN55OQ+vfJiV\n33j/zxSbX7RQIVi1ylWNXbDAj0omA8Hs9w1m28DsM7yLSVwPbBORDzy1mKwJZxyUv748C9ovoMvC\nLmz5cYtPskqWhGXLnNtpzRo/KWgYhpEAvMqTEJEQ4E4gAqgCfABMUdVvA6rdv/On+JhETD76+iO6\nLe7G2vvXUjZ/WZ9kffIJtGnjgto1avhJQcMwgp4k63GtqleAn4FfgMtAbmCeiDzvy+TBTNPiTRl/\n53gaz2rM9ye+90lWvXqufEfLlrBvn3/0MwzD8AZvYhIDRWQH8ByuYms5Ve0D3Aa0DrB+qZrOt3Zm\nSM0h3DnzTn7767drjvPGL3r33fDyy9C4MXz3nR+VTAKC2e8bzLaB2Wd4V7spD9BaVf/zc1hVr4hI\n88CoFTwMrDGQ3/7+jSazmrCu6zqyZ8yeaFmdOsGJE9CoEWzYADfd5EdFDcMwYsF6XCcBqkqfZX34\n+s+vWXbvMjKlyxT/RXEwZozrl/3JJ5Anj5+UNAwj6PBHTMIWiSTi8pXLdJzfkSt6hQ/afkBoSGii\nZanC0KHuaWLNGsiWzY+KGoYRNCRZ4NrwndCQUGbeM5OT507y4IcP/qfOU0L9oiLw3HNQrhy0agXn\nzvlZWT8TzH7fYLYNzD7DFokkJWO6jCzssJDPf/mcx9c+7pMsEZg0CXLndrGKS5f8pKRhGEY0Euxu\nEpE1wCXgNVX9MCBaXT1nqnc3Ref3v3+nztQ69L6tN4Nq+lac6fx5aNHCBbGnTIEQW/YNw/CQXO6m\nrsATQGFfJk7L5M2Sl1X3reKlLS/x7ufv+iQrY0ZXtuPLL2Hw4OAqMW4YRvKToEVCRPIA16nqdlWd\nGCCd0gSFchZiZZeVDF09lDHvjvFJVtasrnzHxx/D/7xpB5XEBLPfN5htA7PP8C6Zbr2I5PAsEDuA\nySLyUuBVC35K5yvN4o6LGffpODZ8v8EnWblzu4KA06fDhAl+UtAwjDSPN/0kdqtqRRHpCRRU1REi\nsldVyyeNiskYk1i3ztXrTudNzmHiWf3tajov6Mzq+1ZT4YYKPsk6fNipPHYsdOniH/0Mw0idJFVM\nIlREbgTaA8s854Lf860K48dD+/YuOhxAGhVtxGtNX6Ppe005+PtBn2SFhcHKlTBkCCyJ2VHcMAwj\ngXizSDyN61P9rap+JiJFga8Dq1YKQATmzXN/W7WCv/8O2FSRkZG0L9ue0XeM5o7pd/DFr1/4JK9M\nGVcxtkcP9zCU3ASz3zeYbQOzz/BikVDVuap6q6eoH6r6raq2CbxqKYCMGeH99yFvXmjaFE6fDuh0\nERUjeK7RczSc0ZA9v+zxSVbVqvDBB+5BaPt2PyloGEaaw5uYRGagB1AGyOw5raraPcC6RdchefMk\nrlyBPn1gzx746CMXJQ4g7+97n4ErBrKiywoq3lDRJ1mLF0Pv3rB2rXvCMAwj7ZBUMYkZuO50jYFI\n4GbgjC+TpjpCQuDNN13HnzvugN+uXfbbH3Qo14GJTSdy18y72H7Mt8eAli1dCY+77nJBbcMwjITg\nzSJRTFWfBM6o6nSgKVA9sGqlQERcILtZM7j9djh2zG+iY/OLtinThreavUXTWU3Z+uNWn+Tffz/8\n3/+5EuM//+yTqEQRzH7fYLYNzD7Du0XigufvSREpD+QC8nkj3NMT+6CIfC0ij8byebiInBSRXZ7X\nE96rngyIwDPPuLtuvXoB/2neslRLpracSvPZzdn0wyafZA0Y4LbE3nUXHD/uJwUNwwh6vIlJ9ALm\nA+WBaUA24ElVfTOe60KBL4GGwFFgG9BJVQ9EGxMOPKKqLeKRlfJqN02YAC+8AKtXQ4kSAZ1q5Tcr\n6bKwC/Pbz6de4XqJlqMKgwbBtm0u8S5rVj8qaRhGiiNJYhKq+raq/qmq61W1iKrmi2+B8FAN+EZV\nD6vqRWAO0DKWcT4ZkGz07w8jRkD9+gFvPH1XsbuY02YObT5ow9pDaxMtJ8pjVrw4tGkDFy7Ef41h\nGGkbb8pyDBaRR6L9fUREeohIfNtuCgBHoh3/6DkXHQVqicjnIvKRiKSu/Tfdu8OLL0LDhrBjR6LF\neOMXbXBLA+a2m0uHeR1Y9e2qRM8VEgKTJ0PmzNC5c9KUGA9mv28w2wZmn+Fdj+vbgCrAUtyv/ruB\nvcCDIjJPVcdd4zpv/EM7caU+/haRJsAiIFbfTUREBGFhYQDkypWLihUrEh4eDvz7RSfLcceORH7z\nDTRoQPiyZVC7doLl7d692+vxCzss5O4xdzOszjAe6/JYovTfuDGSPn1g/PhwOnWC3r0jSZcucP9e\nCbHPju3YjhN/HBkZybRp0wD+uV/6ijcxiQ1AE1U94znOBnyE2xK7Q1VLX+O6GsBIVW3sOR4GXIlj\nUUFEDgG3qeqfMc6nvJhETFatcpHh2bOhQYOATrX5yGZazmnJlBZTaF6yeaLlnDsH7dpBaKjLGcyY\n0Y9KGoaR7CRVnkQ+/t3hBHARuF5V/wbiapy5HSguImEikgHoAPynmpCIXC8i4nlfDbdo/Xm1qFTA\nnXe6Mh6dOsGHge3FVLNgTZbdu4yeS3uy8MDCRMvJlAnmz3eLROvWKb8NqmEYSY83i8QsYKuIjBCR\nkcCnwHsikhXYf62LVPUS0A9X92k/8L6qHhCR3iLS2zOsLbBXRHYDLwMdE29KCqBePbdA9OgBc+d6\nfVnU42JCqFqgKss7L6fPsj7M/cL7uWKSIQPMmQPZs0Pz5oEpUZUY+1ILwWwbmH2GFzEJVX1GRFYA\ntXFxht6qGpUG3Dmea5cDy2OcmxTt/UQguJoXVavmXE9Nmrg7bteuAZuq8o2VWdllJY1nNebilYvc\nW/7eRMlJnx5mznRx+LvvdsUBs2Xzs7KGYaRKEtzjOjlIFTGJmBw86FKchw2Dhx4K6FT7ft3HnTPu\n5NmGz3J/hfsTLefyZXjgAdcK9aOPIEcOPyppGEaSk1w9rg1vKFUK1q93CXcvvBDQqcrlL8fH93/M\n8I+HM3XX1ETLCQ2Ft9+GW29165tlZhuGYYtEILnlFvjkE5eYMGqUS3mOBX/4RUvnK83armsZETmC\nSdsnxX/BNQgJgYkToWZNl/7xxx8+qxbUft9gtg3MPsPLRcKzQ6mh530WETFHhLfcfLN7opg/Hx59\n9JoLhT8ocV0JIrtGMmbjGCZ+lvhQjwi89JJbJO64A3791Y9KGoaRqvAmT+IBoBeQR1WLikgJ4A1V\nDWwywH91SH0xiZj8+Sc0buy6AU2Y4H6yB4hDxw9xx7t3MKDaAAbVHJRoOarw1FOwYAGsWQM33uhH\nJQ3DCDhJFZPoC9QBTgGo6ldAfl8mTZPkyePutHv2uG1EAayHUSR3EdZHrGfitok8t+m5RMuJKnrb\nsSOEh8PRo/7T0TCM1IE3i8R5VT0fdSAi6fCu5IYRkxw5YMUK14vi3nv/qbAXCL9ooZyFWB+xnsk7\nJzP6k9E+yXrySZf6Ua8efP99wq8PZr9vMNsGZp/h3SKxXkQeB7KISCNgLq6Ok5EYsmaFJUvg/HlX\nijWAac4FchRgfcR6Zu6dyajIUfjishs61BW+DQ+H777zn46GYaRsvIlJhOJ6XN/pObUSmJyUQYKg\niEnE5OJFuO8++P1314g6gM0dfjnzCw3ebUCrUq14pv4zeCqhJIo33oCxY+Hjj13JccMwUi7+iElY\nMl1ycvky9OoFX30Fy5ZBzpwBm+q3v36j4YyGNC7amGcbPuvTQjFlimulsXo1lI61vKNhGCmBJAlc\ni0gdEVntaUF6yPMyh4M/CA2FyZOJzJfPVY71R1LCNciXNR9r71/L6u9WM3jVYJ9cTz16uKeJBg1g\n7974xwez3zeYbQOzz/AuJjEFGI/b4VTV86oWSKXSFCEhrgF1w4bO4f/jjwGb6ros1/Hx/R+z8YeN\nDFg+wKeF4r77XJe7Ro1g1y4/KmkYRorCm5jEVlWtnkT6XEuH4HQ3RUfVdbl7+WUXo7jttoBNdfLc\nSRrPakyF6yswselEQkNCEy1r/nxXmurDD10KiGEYKYeAxiREJOou1Q4IBRYA/2yFVdWdvkycENLE\nIhHFggXQu7cr5dEytpbg/uH0+dO0mNOCPJnzMPOemWROnznRspYudS6oRYugVi0/KmkYhk8EOibx\nIvACUB3XvnSM51zUy/AT//GLtm4Ny5dD377uySJAi2P2jNlZ0XkFGUMz0nBGQ/74O/HxkObN4d13\noVUrV6oqJsHs9w1m28DsM+JYJFQ1XFXrAz1UtX70F25LrBEoqlSBzZvdnbdPH7ddNgBkTJeRma1n\nUrdQXWpNrcWh44cSLatxY9e5tU0btz3WMIzgwJuYxE5VrRzj3A5VDZzT/God0o67KTqnT0OHDq6E\nx9y5Ad0iO/GziYzeMJolnZZQ5aYqiZbzySfQtq1b3xo39qOChmEkmIC6m0SktIi0AXKJSGsRaeP5\nGwFk8mVSw0uyZ3fZ2aVKOWf/ocT/0o+PvtX68vrdr9NkVhM++vqjRMupV8/FJu6/38UqDMNI3cQV\nkygBNAdyev428/ytjKsKa/iJOP2i6dLBq6/Cgw9C7drODRUgWpVqxZKOS+i+uDuTd05OtJxatVxu\nYM+ebvdTMPt9g9k2MPuMOHpcq+piYLGI1FLVT5NQJyM2+vd3TYxatnSlxjt0CMg0NQvW5JNun9Bk\nVhOOnDzCyPCRicrOrlrV1TJs0sS1RA0P97+uhmEEHivLkdr4/HNo0cLdeYcPd/W8A8AvZ36h2exm\nlMtfjreavUX60PSJkrN3L9x1Fzz7rHNBGYaRdFjtprTKTz+5faflysGkSZAxY0Cm+evCX3SY14GL\nVy4yr908smfMnig5Bw64zOyRI50LyjCMpCGpmg4ZASbBftEbb3QtUU+dgjvvDFjNp6wZsrKo4yIK\n5yzM7dNu56fTPyVKzi+/RLJuHfzvfzB6dEA7uCY5we7TNvsMbwr8ZRKRziLyuIiM8Lye8ka4iDQW\nkYOe4oCPxjGuqohcEpHWCVE+TZM1K8ybBzVqQM2a8PXXAZkmXUg6JjWbRJvSbag5pSYHfjuQKDnF\ni7uY+7x5LvUjgI35DMPwI97kSawETgA7gMtR51U1zqxrTx+KL4GGwFFgG9BJVQ/EMm418DfwjqrO\nj0WWuZvi4u23Xfu499+H228P2DTTd09n6JqhzGs3j7qF6yZKxqlTLo8iUyaXfBfANhqGkeZJkpiE\niOxT1XIJFixSExihqo09x48BqOqzMcY9DFzAVZf90BaJRLJmjWuJ+sILAY0Qr/52NZ0XdGZi04m0\nK9suUTIuXnRtNA4ccLkU+a1jumEEhKSKSXwqIrcmQnYB4Ei04x895/5BRAoALYE3PKfS5ErgF79o\nw4YuTjFqlHuquHLFd5mx0KhoI1bdt4pBKwfx0uaXvLompn3p08M777hwSu3a8M03AVA0iQh2n7bZ\nZ1wzTyIadYFuInKIf6vAqqrGt3B4c8N/GXhMVVXcZvxrrngRERGEhYUBkCtXLipWrEi4Z/N91Bed\nWo93797tP3lbthBZvz5s2kT4smWQObPf9T1x8AQvlniRp3c9zQ8nf6B5xuaESEiC7XvmmXBuvhmq\nVYtk9Gjo08c/+tmxHafV48jISKZNmwbwz/3SV7xxN8U6k6oejue6GsDIaO6mYcAVVR0Xbcx3/Lsw\n5MXFJXqp6pIYsszdlBDOnYNu3eDwYdebIkD+nONnj9Pq/Vbkz5qfGffMIFO6xFVrWboUuneHqVPd\nzl7DMPxDoGs35fC8PXWNV3xsB4qLSJiIZAA6AP+5+avqLapaRFWLAPOAPjEXCCMRZMoE773n/Dk1\nasD+/QGZJnfm3KzqsooQCaHRjEb8efbPRMlp3tyV8XjgAZf2YRhGyiGumMRsz9+duJ1N0V/b4xOs\nqpeAfsBKYD/wvqoeEJHeItLbJ62DjKjHRb8i4uITTz/tamKsXu3/OXDlxme3mU31AtWpPbU2h08c\nvmqMN/ZVqwYbNri4+xNPpJ5cioB8dykIs8+Iq3bT3Z6/YYkVrqrLgeUxzsX6W1FVuyV2HiMOunSB\nwoWhXTu3YDzwgN+nCJEQXrjzBQrmKEjtqbVZ2mkplW+sHP+FMShWDD79FJo1gyNH3M7eDBn8rq5h\nGAnAynKkFb75Bu6+2/l2xo2D0MT3tY6L+fvn8+CyB5lxzwwaF0tcQ4m//oKOHeH8eZd8lyNH/NcY\nhnE1VpbD8J5ixVzK844dLpvtr78CMk2bMm1Y1GERXRd1ZequqYmSkTUrLFzoit7efjscO+ZnJQ3D\n8BpbJFIASeYXzZMHVq6EXLlcd6AA3X1rF6rN+oj1PPPJM4yKHMW6desSLCNdOnjjDeclq1XLJd6l\nRILdp22eVxLvAAAgAElEQVT2Gd7UbrpDRPqLSD8RqZ8UShkBJEMGt9e0XTuoXj1gTYxK5S3F5h6b\nWfLVEp7f9DwXLye8T7eIq4YeFXvfsMH/ehqGETfXjEl4sqEX4BLoonYz3QZkBu5R1aNJoiEWkwgY\nH34IPXrAY4/Bww8HpDfFmQtnaDfXle+Y224u2TJkS5ScVaugc2f3dNG2rT81NIzgJaC1m0RkEbBI\nVafFOH8/0EZVW/oycUKwRSKAHD7snioKFnRPGLly+X2Ki5cv0mdZH3b+tJNFHRdRKGehRMnZvdvt\nfBoyxK1phmHETaAD12ViLhAAqvouUNqXSY3/kqx+0bAw2LgRChSAKlVg1y6/T7Fpwybebv4295a/\nl+qTq7PuUMJjFAAVK8KmTfDWWzB4cMDKUyWIYPdpm31GXIuESCzNjUUkJJ7rjNRGxoyub/bo0a7X\n6Ftv+T2bTUQYUmsIM+6ZQaf5nXhp80sk5umwcGG3pm3bBp06uQokhmEEjrjcTS8DWYFBqnrGcy4b\nMB44p6oDkkxJczclHV9+6Zz+FSvCm28GpOHD4ROHuef9eyiTrwxvN3+bLOmzJFjGuXNw333w66+w\naBHkzu13NQ0j1RNod9NQ4CRwWER2ishO4DBwGhjiy6RGCqZkSdi61e1BrVYtIHtPw3KFsan7JgSh\n1pRaHDp+KMEyMmVyPZYqV4Y6deCHH/yupmEYxLFIqOoFVR0CFAIiPK/CqjpYVS8kjXppgxTnF82S\nxTV8GDzY5VO8955P4mKzL0v6LMy4ZwbdKnaj5pSarP424bWlQkLgpZegZ0/Xl+Lzz31SM1GkuO/O\nz5h9RpyxBU8l2BtVdY/n9ZfnfIUk0c5IXrp3dx3vRo50jan9HAAQEQbWGMictnO4f9H9PLfpuUTF\nKQYNghdfhEaNnLqGYfiPuGIS7XFNgX4F0gPdVPUzz2e7VLVSkilpMYnk5dQpl0/x3Xcwd66rl+Fn\njpw8QusPWnNL7luY0mJKovIpPvnE7eZ98UVX19Aw0jqBjkk8DtymqhWBbsC7ItLal8mMVEqOHPDB\nB9C1q+tPsWiR36comLMgG7ptIEv6LNScUpNv/kx4T9N69WDtWnj8cXj22dRTbtwwUjJxLRKhqvoT\ngOcJoj7wuIgMTBLN0hCpwi8qAgMGuDZyDz/sMtoueldqw1v7MqXLxNQWU+lTpQ+1p9Zm+dfL478o\nBmXLukojs2c7D9mFAEfPUsV35wNmnxHXInFKRIpGHXgWjPpAC6BsoBUzUijVq7tKsgcOQP368OOP\nfhUvIjxU9SHmt59Pz6U9GbNhTILjFDfd5Oo8HT0KDRu6bbKGYSSOuGISFYG/VPXrGOczAO1VdWYS\n6Bc1p8UkUhpXrri+FK++Cu++66LGfuboqaO0nduWm7LfxLSW08ieMXuCVRwxwqm3YAHcdpvfVTSM\nFE1AazelJGyRSMFERrrKe716wZNP+r2Z0flL5xmwfAAbftjAwg4LKZm3ZIJlLFgAvXvD+PEuAc8w\n0goBDVyLyBkROe15nYr2/rSInPJlUuO/pGq/aHi4cz+tXw+NG8fq2/HFvozpMjKp+SQervEwdd+p\ny9IvlyZYRuvWsG6da/n9yCNw6VKi1bmKVP3deYHZZ8SVTJdNVbOranbg26j3npc1lDT+5YYbYPVq\nl6F9222uuJKfeeC2B1jccTF9lvVhVOQormjCqvuVK+fqPe3f78pT/f6731U0jKDEK3dTUudFxDK/\nuZtSCx99BN26ud1PQ4b4vUfFz2d+pu0HbcmTOQ8z7plBzkw5E3T95ctui+wHH7gWqRUsLdQIYqzH\ntZHyaNrU/WSfPx9atYLjx/0q/oZsN7C261oK5SxEtcnVOPBbwmpLhYa6HIoxY9zOpzlz/KqeYQQd\nccUk2ohIaxFpA+SMeh91Pgl1DHqCzi9aqJBLfy5SBG67jchJk/wqPkNoBl5r+hqP1X6MetPqsfDA\nwgTL6NjReciGDYNHH3VPGIkh6L67GJh9Rro4PmsORPl4PvEcR2dBfMJFpDGutEcoMFlVx8X4vCXw\nNHDF8/o/VV3rnepGiiZDBnj5ZVeitWdPtx/1wQf96n7qVqkb5fKXo80Hbdj5005Gho8kNMT73VUV\nK7qHng4d4O67XQKelRw3jP8SsC2wIhIKfAk0BI4C24BOqnog2pis0YoGlgcWqmqxWGRZTCI18/XX\nrkdFmTLw+ut+vxP/+tevtJ/bnizpszCr9SxyZ06Y/EuXYOhQl0y+aJHL2jaMYCClxySqAd+o6mFV\nvQjMAf7TFztqgfCQDbA9J8FI8eKwZQvkzQu33gorVvhVfP6s+Vl932pKXFeCqm9XZd+v+xJ0fbp0\nLofiqafcjt4F8T4jG0baIZCLRAHgSLTjHz3n/oOItBKRA8ByIMm63aUkgt0vGhkZCZkzuxap06a5\nzLYHH4TTp/02R/rQ9Lzc+GVGho+k/vT6zP1iboJl3HcfLF/uSlM9+aR3PbTTxHcXxAS7ff4grpiE\nr3jlH1LVRcAiEakLzABiTamNiIggLCwMgFy5clGxYkXCw8OBf7/o1Hq8e/fuFKVPQO1r0IDIiRPh\n9dcJr1ABpk0j0nM39sd8XW7twt9f/03/N/qzreU2Rt8xmk0bNnl9fZUq8PLLkYwcCbt3hzNzJuza\nlbz/fnZsx94eR0ZGMm3aNIB/7pe+4m2eRG0gjH8XFVXVd+O5pgYwUlUbe46HAVdiBq9jXPMtUE1V\n/4hx3mISwciHH7qnig4dYPRo97ThJ37/+3ciFkXw61+/8l6b9yiW56pQV5xcvOiaGa1Z4+IUpUr5\nTTXDSDKSJCYhIjOB54HaQBXPq6oXsrcDxUUkzFMUsAOwJIbsoiJuu4uIVAaIuUAYQUyzZrBnDxw7\nBpUqwWef+U103ix5WdppKfdXuJ+aU2oyfff0BFWTTZ8eXnsN/u//XJ+KpQmvBmIYwYGqxvkCDuB5\n4kjoC2iC2+H0DTDMc6430NvzfiiwD9gFbACqXkOOBjPr1q1LbhUCilf2zZmjmj+/6hNPqJ4/79f5\n9/y8R8tOLKsd53XU42ePJ/j6zZtVCxRQffpp1cuX//uZfXepm2C3z3PvTPC9O/rLm8D1PuDGRC5A\ny1W1pKoWU9WxnnOTVHWS5/1zqlpOVSupal1V3ZaYeYwgoEMH+Pxz2L3b1YDas8dvostfX55tvbZx\nXebrqDSpEpt+2JSg62vUcPkUy5e7nbx+jLcbRoon3piEiEQCFYHPgPOe06qqLQKr2n900Pj0NIIE\nVbcDauhQGDzY1X9K57/9FUu/XEqvpb3oU6UPj9d7nHQh3ss+fx769YNPP4XFi6FYwsIchpHkJEk/\nCREJ97yNGii4RWK9LxMnBFsk0iDffw/du8Pff8P06VCihN9EHzt9jK6LunL24llmtZ5F4VyFvb5W\nFSZNcs2Mpk931dENI6WSJIFrVY0EDgI5gOzA/qRcINICUVvYgpVE2Ve4sCuu1KUL1K7tOuB5k7jg\nBTdlv4mVXVZyT6l7qPp2Vebs877Kn4hL8Zg/361hDzwQSTD/frH/Ng1vdje1B7YC7YD2wGci0i7Q\nihkGISHQt6/z78yZAw0awOHD/hEtIQyuNZgVXVYwInIE3RZ34/R574MNdeq4zVjr17tigX/9Ff81\nhpEa8cbdtAdoqKq/eo7zAR+r6q1JoF+UDuZuSutcvgwvvgjPP+9qfXfv7rdigWcunOHhFQ+z/vv1\nvNf6PaoW8GaHt+PcOfdksWuXy6coUsQvKhmGX0iq2k0C/Bbt+A/POcNIOkJDXTB73TqYONHlWBw7\n5hfR2TJkY3KLyYxtMJZms5sxbuM4rzvfZcoE77wDPXpA9erODWUYwYQ3i8QKYKWIRIhIN+AjXJ0l\nw08Eu1/Ur/aVK+eKBVap4hLw5szBX0GBtmXasr3Xdj765iMazWjE0VNH470mMjISERgwwCWQDx3q\nnizOnvWLSsmO/bdpeLNIDAUmARWA8sAkVR0aUK0MIy4yZIBRo2DZMnj6aZdj4aem1QVzFmTt/Wu5\nI+wOKr9VmUUHF3l9bbVqsHMnnDzp3n/xhV9UMoxkJWD9JPyJxSSMa3LunCvZOmsWvPkmtPBf+s6W\nH7dw7/x7ubPonYy/azxZ0mfx6jpV54J69FHXJrVnT7+3+jYMrwhonoSIbFLV2iJyhqsruqqq5vBl\n4oRgi4QRLxs2QEQE1K3rOuLlyuUXsafOn+KhZQ+x86edzG4zmwo3VPD62gMH3M6nkiXhrbf8ppJh\neE1AA9eqWtvzN5uqZo/xSrIFIi0Q7H7RJLGvbl1X1iNLFtfYaM0av4jNkTEHM1vPZHjd4TSa0YhX\ntrzyn0KBcdlWujRs3Qr587vwyZYtflEpSbH/Ng1v8iRmeHPOMJKdbNlce9TJk90W2QcfhBMn/CK6\ny61d2NJzC7P3zabpe0355cwvXl2XKZOrJjt+PLRsCePG+S0n0DCSBG/yJHapaqVox+mAPapaJtDK\nRZvT3E1GwjhxAoYNc8kLzz3nMrf9EBi4ePkiT69/mim7pjClxRSaFG/i9bU//ACdO7u2Ge++Czfc\n4LM6hhEnAXU3ichwETkNlBeR01Ev4Fdi9IUwjBRHrlzwxhuuEt/LL0P9+n7ZbpQ+ND3P3PEMs9vM\npveHvXl4xcOcu3TOq2sLFXJpHjVqQOXKsHKlz+oYRsCJKyYxRlWzA8/HiEfkUdXHklDHoCfY/aLJ\nal+1aq5+Rrt2EB7uthydOeOz2NvDbmf3g7vZtWUXNSbXYP9v+726Ll06t2t31iyXgDd0KFy44LM6\nAcP+2zS8yZPYJiL/7MsQkVwi0iqAOhmGfwkNdTWg9u51Wdply8KCBT4n4eXJnIeRt4+kf7X+3D7t\ndiZ+NtHrTO369V3rjAMHXMz9u+98UsUwAoY3MYnPVbVCjHO7VbViQDX773wWkzD8R2QkPPQQhIXB\nhAlQtKjPIr/8/Uu6Le5GupB0TG4xmRLXeVfaXNUVuP3f/5wqHTv6rIph/ENS1m6KSagvkxpGshIe\n7n7Gh4e7gkvPPOOS8nygZN6SbOi2gbZl2lJrSi2e2/Qcl65civc6ERg40MUnnnrKuaCsoqyRkvBm\nkdghIuNFpKiIFBORl4AdgVYsLRHsftEUaV+GDC4gsHOnK+FavjysWpVgMdFtCw0JZUD1AWzrtY01\n362h+uTqfP7z517JqVwZduyAixddWSo/dm/1iRT53fmRYLfPH3izSPQHLgLvA3OAc0DfQCplGElG\noUIuPvHyyy6von17OBp/Yb+4KJK7CCu7rKR/tf40mtGIJ9Y+4dUOqOzZ3dbYYcNc64zXX/db7ULD\nSDRWu8kwojh7FsaOdXfn4cOhf39In94nkT+d/om+H/XlwO8HmNJiCrUK1vLquq++cvGJsDCXG5gn\nj09qGGmUpOpxnR9XCbYMkNlzWlX1Dl8mTgi2SBhJyldfQb9+8PPPbsGoU8dnkfP3z6f/8v60LdOW\nMQ3GkC1DtnivOX8eHnvMPejMmuUXNYw0RlIFrmfhelzfAowEDgPbfZnU+C/B7hdNdfaVKOEiyU8+\n6X7Od+8Ov/0W61BvbWtTpg37HtrHqfOnKP9GeVZ9G3/8I2NGeOkl12OpbVsXX798OSGG+E6q++4S\nSLDb5w+8WSSuU9XJwAVVXa+q3QCvnyJEpLGIHBSRr0Xk0Vg+7ywin4vIHhHZJCJJ1hbVMK6JiEvA\n27/fZW+XLQuTJvlUeClP5jxMazWNN+9+kweWPkC3xd348+yf8V7XrJkLan/8MTRs6HPIxDAShDfu\npi2qWkNEVgGvAseAuaoa7+ZyEQkFvgQaAkeBbUAnVT0QbUxNYL+qnhSRxsBIVa0RQ465m4zkZc8e\n6NMHLl1y5T4qV/ZJ3Onzpxn+8XDmH5jPhCYTaFOmTbzXXL7s+lNMnOjiFM2a+aSCkQZIqphEM2Aj\nUBCYAOTA3cjjrd/kWQBGqGpjz/FjAKr67DXG5wb2qurNMc7bImEkP1euwPTpbvtRu3bO/+Njk4hN\nP2yix5IelMtfjteavsYN2eKv+rdxoysU2KIFPPssZM3qkwpGEBPwmITnSaCEqp5Q1b2qGq6qlb1Z\nIDwUAI5EO/7Rc+5a9MD10E5TBLtfNGjsCwmBbt1cocALF6BMGSIff9ynfaq1C9Vm94O7KXldSW59\n41am7Z5GfD+I6tRxqR0nTrjWGevXJ3r6eAma7+4aBLt9/iBdXB+q6mUR6QSMT6R8r//vEZH6QHeg\ndmyfR0REEBYWBkCuXLmoWLEi4eHhwL9fdGo93r17d4rSx+yL53jvXujUifBu3eC++4hctgwGDSK8\na9dEyduycQuNQhvR7r52dF/cndc+eI0htYbQsVnHOK+fMSOcJUugTZtI6tVzx1mzpoB/HztOtuPI\nyEimTZsG8M/90le8cTe9BKTHJdP9hSvToaq6M17hIjVwrqkod9Mw4Iqqjosx7lZgAdBYVb+JRY65\nm4yUSVSM4umnXfvU4cMhd+5Ei7t4+SLjN4/n+U+f56nbn6Jv1b6EhsRdBefPP11pj08/halT4fbb\nEz29EWQkVUwiklieCFS1frzCXYOiL4EGuID3Z1wduC4ErAW6qGqsDR5tkTBSPD/95IovLV7skhv6\n9nV7WBPJl79/Sc+lPbmiV5jcfDKl85WO95olS1xsvU0blxNosQoj0E2HBnrePqGq9WO+vBGuqpeA\nfsBKYD/wvqoeEJHeItLbM+wpIDfwhojsEpHPEm9O6iTqcTFYCWb7/rHtxhvh7bddhdnISChVymXA\nJXLLbMm8JVkfsZ7O5TtT9526jP5kNBcvX4zzmhYtXDX048f9F6sI5u8Ogt8+fxBX4Lq75+8EXyZQ\n1eWqWlJVi6nqWM+5Sao6yfO+p6pep6qVPK9qvsxnGMlKmTLuJ/306a4GeJUqsGZNokSFSAgPVX2I\nnb13svHIRqq8XYUdx+KurZknD8yY4ZLw7r0XBgywqrKGb1zT3SQis4EquN1I38b4WFU1yZLezN1k\npEpUYd48F6coWhTGjYMKFeK/LlZRysw9MxmyeggRFSIYGT6SzOkzx3mNxSqMgMckROQGYBXQnBh9\nJVT1sC8TJwRbJIxUzYUL8NZbrrPQXXe5/IpChRIl6pczvzBgxQB2/bSLSc0mUb9I/J7fqFhF69aW\nV5HWCHiehKr+rKq3qur3qno4+suXSY3/Eux+0WC2zyvbMmRwBQO/+sotDpUquV4Wx48neL7rs13P\n+23f57lGzxGxOIIO8zrww8kf4rwmKlZx8mTCYxXB/N1B8NvnD7yp3WQYhj/IkcM9Rezd6zLhSpaE\nF19MVFe8VqVacaDvAUrnLU2lSZV4Zv0znL149prj8+RxvSpeftnFKvr3t1iF4R3WT8Iwkov9+12J\nj88/h9GjoVMnl9WdQA6fOMyQVUPY8dMOxt85nlalWiFybQ/Dn3/Cww/Dpk0Wqwh2kiRPItpkWVT1\nb18mSyy2SBhBzYYN8H//52IXzz3nSr0mgjXfrWHgioEUyF6AVxq/Em9uxdKlrhmfxSqClyTpJyEi\ntURkPy4pDhGpKCKv+zKp8V+C3S8azPb5xba6dWHzZrcLqk8fF9z+3Lve2NFpeEtDdvfezd3F76be\ntHo8svIRTp47ec3xzZvHH6sI5u8Ogt8+f+DNs+3LQGPgdwBV3Q3YA6ph+BMR11lo/34Xab7rLuja\nFX6IOygdk/Sh6RlYYyBfPPQFp8+fptTEUkzdNZUrGntSn8UqjPjwpizHZ6paTUR2qWolz7nPVTVx\nG74TgbmbjDTHqVPwwguueUSPHi52kYiaUNuObmPAigFcvnKZCU0mUP3m6tccGz1WMWUKeOrHGamY\npGpf+oOI1PZMmEFEhgAH4rnGMAxfyJHDFQ3ct8/5gxK5E6pqgaps6r6JftX6cc/799BtcTd+PvNz\nrGOjP1V06eKeKs6c8YcxRmrGm0WiD9AXl3l9FKjkOTb8RLD7RYPZvoDbduONrm3q+vUuwF2qFMyc\nmaCaUCESwv0V7udgv4Pky5KPcq+X48VPX+TC5Quxjo+KVZw6BSVKRBLEX19Q/7fpL+JdJFT1N1W9\nV1Xzq2o+Ve2sqn8khXKGYXgoXRoWLXKFmV57zdWEWrEiQQ2PcmTMwXONnmNT902s/m41Fd6swKpv\nV8U6NnduV36qXz/XBa9fP3uqSKvEVbsprsJ+qqoDAqNSrLpYTMIwolCFBQtgxAjIkgWeeML9/I8j\nN+JqEcqHX33IoJWDKJe/HOPvGs8tuW+Jdezx4zBoEKxb5woH3nNPgqYykpGA5kmISAT/9pGIOYmq\n6nRfJk4ItkgYRixcuQILF7qaUOAWi3vuSVBC3rlL53hp80u8sPkF+lTpw7A6w8iaIfaEiXXrXJuM\nsDCYMMHVLDRSNv5YJFBVr15AdiCbt+P9+XJqBi/r1q1LbhUCSjDblyJsu3JFdckS1apVVcuWVX3v\nPdVLlxIk4sjJI3rv/Hu14PiCOmfvHL1y5YqqXm3f+fOq48apXned6siRqmfP+suI5CFFfH8BxHPv\n9On+600yXXkR2QV8AewXkR0iUs6nlckwDP8h4txNW7e6HVATJ7q+FtOnu/aqXnBzjpuZ1XoWs1rP\nYuzGsYRPD+fzn69O6MuQwdUm3LkT9uyBcuVg+XJ/G2SkJLzJk9gMDFfVdZ7jcGCMqtYKvHr/6KDx\n6WkYhgdV1x3v6afh++9djkXXru4O7wWXr1zm7Z1vMyJyBG1Lt+WZO54hT+Y8sY5dvtxtla1QwW2d\nLVjQj3YYPpNUeRJZohYIAFWNBKzKi2GkVESgfn0XRHj3Xdf4qHhxeP11r/IsQkNCebDKgxzoewAR\nofTE0ry5/U0uX7l81dgmTVwqx623ugrozz3nSlAZwYM3i8QhEXlSRMJEpIiIPAF8F2jF0hLBvlc7\nmO1L8bbVqQMrV8Lcue5nf9Gi7if/3/HX6syTOQ9ts7Rl9X2rmbNvDhXerMDig4uJ+VSfKZPbaLV1\nq1uXKlYk1eRWpPjvLwXgzSLRHcgPLADmA/n4t/+1YRipgWrVXNnXDz90SXm33OJ+9nuR/HDr9bey\nrus6xjUcx5PrnqTW1FqsP3x1NcCiReGjj9xmq/vvd1nbP8ee3G2kIqyfhGGkRfbudT0s1q6FAQNc\nYCFnzngvu3zlMnP2zeHJdU9SMm9Jxtwxhko3Vrpq3F9/uf5KU6bAU0+54rbp0gXCECMuAp0nsRSX\nJxHbBKqqLXyZOCHYImEYAeLgQRgzxj0C9O0LAwe6Ik7xcOHyBd7e8Tb/2/A/wsPCeab+MxTLU+yq\ncfv3O7EnTsAbb0CNGoEwwrgWgQ5c1wAKAhuAFzyvF6O9DD8R7H7RYLYv1dtWqpQLbm/dCkePugD3\nsGHw22/Ate3LEJqBvtX68nX/rymXrxw1Jtegz4d9OHb62H/GlSnjHlaGDHHNjXr1gj9SUFGfVP/9\nJQFxLRI3AsOBcrieEo2A31Q1UlW9bqUuIo1F5KCIfC0ij8byeSkR2Swi50RkcEINMAzDDxQtCpMn\nuwSIqP7bgwfHe0fPliEbj9d7nC/7fUm2DNko/0Z5hq0ZxvGzx/8ZI+LqPx044KqIlCnjpkpAjUIj\nGfEqJiEiGYFOuKeJkar6mlfCRUJxHe0a4irIbgM6qeqBaGPyAYWBVsBxVb3qKcXcTYaRxPz4Izz/\nvCso2LkzPPoo3Hxz/Jed+pGn1z/NwoMLGVxzMAOqDyBL+iz/GbNrFzz0kHv/xhtuN5QRGAKeJyEi\nmUSkDTATVx78FWBhAuRXA75R1cOqehGYA7SMPkBdldntwMUEaW4YRuC4+WZ45RUXVMiUySVC9Ojh\nAt5xXZbjZt5q/hYbu21k5087KT6hOG9uf5OLl//937tSJdfYqEcP14Bv4EDXMsNImVxzkRCRGcCn\nuP4RT6tqVVV9RlWPJkB+AeBItOMfPeeMaAS7XzSY7Qtm2wAiDx50TxRffQVFiri7esOGsGxZnP6i\nknlL8kG7D1jScQkLDy6k9MTSzNk35582qiEh0LMnfPGFS9koXRpmzUpQ5XO/EOzfnz+Ia1NaZ+Av\nYCAwUP5bG1hVNYcX8v32lUdERBAWFgZArly5qFixIuGe/opRX3RqPd69e3eK0sfss+NYj594AoYO\nJXLUKBg0iPBBg2DgQCJvuQUyZ471+ttuuo1hNw9jZ+hOXtryEuM2jaNTtk5Uvakq9evXJ29e6Nw5\nkkqV4IUXwpk8GSIiIilcOAXYmwqPIyMjmTZtGsA/90tfCWiehIjUwMUwGnuOhwFXVHVcLGNHAGcs\nJmEYqQBV2LjRZW+vXw/du7vORIUKxXGJsujgIh5f+zj5suZjbIOx1Cr4bwm4S5dcjOLpp50r6okn\nIFu2pDAmeEmq2k2+sB0o7inpkQHoACy5xlhrY2IYqQURqFsX5s+HbdvcHb5SJWjfHj79NFa/kYhw\nT+l72NNnDxEVIug4ryMt57Rk36/7AJds17+/C3scPQolSrhdUJevLhllJCEBXSRU9RLQD1gJ7Afe\nV9UDItJbRHoDiMgNInIEGAQ8ISI/iEia+v0Q9bgYrASzfcFsG3hpX5EiMH48HDrkakXdd5/Lmps9\nGy5evR8lXUg6ulXqxlf9vyK8cDgN3m1A10VdOXziMAA33OA2VS1Z4v5WqODKTgXCmRDs358/CPST\nBKq6XFVLqmoxVR3rOTdJVSd53v+sqgVVNaeq5lbVQqpq3XQNI7WRI4cr8fHVVzB8OLz1lltAxo6N\nNd8iU7pMDKo5iK/7f02RXEWo8lYVBi4fyK9//Qq4Nt6RkS4hfNAguPNO8IS3jCTEajcZhhE4du92\ncYvFi6FDB7fftXTpWIf++tevjNkwhhl7ZtC3al8G1xxMzkyuntTFi871NGoUNG7sigh6kbaR5kkN\nMQnDMNIyFSvCtGku3fqGG1yfiyZNXPnyGD/88mfNz8uNX2bHAzv44eQPFH21KE+sfYLf//6d9Old\nkWGoK4gAABGNSURBVMCvvoICBZwL6okn4NSp5DErLWGLRAog2P2iwWxfMNsGfrTvhhtg5Eg4fNgF\nt4cOhbJlYdKkq3pbhOUKY1qraXzW6zN+//t3SkwowSMrH+HY6WPkyOGK1+7e7ZLCS5RwO6JiCX14\nRbB/f/7AFgnDMJKOTJmgWzd3l5840SXlFS7sYhhH/5une0vuW3iz2Zvs7eOyvMu9Xo4HP3yQQ8cP\nUbCge0BZvtxtsLr1VhfoNq+0/7GYhGEYycvXX8OECTBzpgs4PPywa5IUg9/++o1Xtr7Cm9vfpGnx\npgyrM4zS+UqjCitWuEqz+fLBCy+4oLcR4H4SKQlbJAwjDXDihOtSNGGCCzw89BC0aeOePqJx8txJ\nJm6byCtbX6FuoboMrzucyjdW5tIleOcd10q1fn23K6pw4WSyJYVggesgIdj9osFsXzDbBklsX65c\nrjz5N9/AI4/A9OluC9PAgbBv3z/DcmbKyfC6w/luwHfUKVSHFrNb0GRWE7Yc20ivXi64Xbw4VK7s\niteeOHHtKYP9+/MHtkgYhpGySJfOPUGsWuWyubNnd4UFa9aEqVNdb1Qga4asPFzjYb4d8C33lLqH\nrou6cvu02/n0l1WMGKHs3evSM0qWhFdfhQsXktmuVIq5mwzDSPlcuuRarE6eDBs2uB1SvXrBbbe5\nEiHApSuXmLNvDmM2jCFbhmwMrzucFiVb8MW+EIYOdQ8ozz7rOuRJGikCZDEJwzDSHkePuuDDlCnO\nRdWrl2uMlNMl3l3RKyw6uIjRG0Zz4fIFhtUZRvuy7Vn3cTqGDHFFA198MW3027aYRJAQ7H7RYLYv\nmG2DFGpfgQIuk+7bb2HcOFe7o3BhiIiATZsIQWhdujXbe23n+UbP88b2Nyj1Wim+v24yW7ZdoFcv\naNvWJYC/915k8tqSCrBFwjCM1ElIiCvo9MEHLlpdrpyrMV62LIwfj/zxB42LNWZDtw1MbTmVufvn\nUmJiUU6VfpXdX/xN+fIui/uRR+DPP5PbmJSLuZsMwwgeovpcvP22y65r3Ni5o+rXh5AQth3dxpiN\nY9h8ZDMP13iYtoUf4sUxOZg3zy0W/fq5OHmwYO4mwzCM6ET1uXj33X9Llz/yiNsTO3YsVUNuZmGH\nhay5fw17f91Ljdm3kK/9UyxZ8wd790KxYs6DdcbqUP+DLRIpgBTp9/UjwWxfMNsGqdy+3Lndo8Hu\n3TBnjls0ypSBVq0ot+17ZrV8l1dKvcJPp3/i7hXFyXvfAN5Z/DU7d7rF4oUXriorlSaxRcIwjOBG\nBKpWdf0tfvgBmjVzPVLDwigwfxVvV3iCPX32kC1DNiI21ObvVs3533sfs2WrUrQovPQSnD2b3EYk\nHxaTMAwjbbJnj8u7eO89V+wpIoK/mzRk1jcLeWXrK4gIbQoMZNf0zmzbnJlHH4UHHoDMmZNbce+x\nPAnDMAxfOXsWFixwBQa3bIFmzdB772Vt0RBe3vEaW3/cSvMCPflxYV/2fVqAYcOgZ8+rSkqlSCxw\nHSSkar+vFwSzfcFsG6QR+zJndsl4y5fDwYNQrRry9NM0qHs/Sz8NY0f518ia6zTbqpSn3MhOzNm4\nleLF4fXX4fz55LYg8NgiYRiGEcX110P//rB5M3z6KVx/PQUHjeDV/h9x7EQP7s1WmGM1O5FrSA3e\n3jyHYiUu8uabwV0XytxNhmEYcaEKu3a52MXs2ej11/NFw1sZddNXrD/3A7m+6svfGx9gxP9dR0QE\npE+f3Ar/i8UkDMMwkpLLl2H9erdgLFjA6TLFmFcxA//f3plHWVFccfj7OYigbCpERTEkcQFXcI9L\n3GIO4hbcCHpUNIlEJZq4JOLRSDyu0YjGhbii4AIR0aNo3DGKRkGZAWRRQUejuB2VqCQakZs/qp4+\nm9fztnnz3szc75x3qO6q6rq/7qFud1X3rXN7zGXFh0Ox507mvJFbcPTRteEsan5OQtIgSQslvSrp\n9yll/hLzZ0saWEl7apV2Me7bRmnL2sD1rURdHey1V3graskSup56Jse+uy6NVxmPvTSdffrvxtn1\ne9Jn76ncPG4Fy5dXxOwWpWJOQlIdcDUwCNgMGCapf6LMYGAjM9sYOB4YWyl7apmGhoZqm1BR2rK+\ntqwNXF+TdOoU4o5Pnswqb7xJv2NP5+b3BtI4fgbXfj6cux/qw/oHXcl1t3zaqp1FJZ8kdgAWmVmj\nmX0JTAQOSpQ5ELgVwMyeB3pIWqeCNtUkS5taOqsN0Jb1tWVt4PoKpkcPOO44Vnn8CVZb+CpDfnYW\nkxZ0Zd70M/l8bC/22e8IxoxbzFdfNU9zLUklncT6wL+ytt+K+/KV2aCCNjmO41SW3r3RqafSZc5C\nej5fzzF7/Io76//O4NM34eId+jPmwttYvrz1zLFW0kkUehaSkyqt5+w1E42NjdU2oaK0ZX1tWRu4\nvrLp148el1zBuu99RJ97H2eXtddj2AXDqd9gDWY+8kxl224mKvZ2k6SdgNFmNihujwJWmNklWWX+\nCjxpZhPj9kJgdzN7L3Gsduc4HMdxmoNy327q0FyG5OAFYGNJfYElwFBgWKLMfcBIYGJ0KkuTDgLK\nF+k4juOURsWchJktlzQSeBioA24yswWSRsT868zsQUmDJS0ClgHHVsoex3Ecp3haxcd0juM4TnWo\nauymfB/bSeop6SFJDZJekjQ8kV8nqV7S/S1mdBGUo09SD0mTJS2QND8Ox9UUZeobJWmepLmS7pC0\nWosaXwAF6FtT0j3xQ9DnJW1eaN1aoFR9kvpImhav30uSTm5565umnGsX81t739LU32ZxfYuZVeVH\nGIJaBPQFVgUagP6JMqOBi2K6J/Ah0CEr/1TgduC+aumolD7C9yPHxXQHoHu1NTWXvljnNWC1mDcJ\nOKbamkrQdylwTkxvCjxWaN1q/8rUty4wIKa7AC/Xkr5ytGXlt/a+JVVfsX1LNZ8kCvnY7h2gW0x3\nAz40s+UAkjYABgM3svJrtLVAyfokdQd2M7ObIczvmNm/W8rwAinn+n0CfAmsLqkDsDrwdsuYXTCF\n6OsPTAMws5eBvpK+U2DdalOqvl5m9q6ZNcT9nwELgN4tZ3peStYGbaZvyamvlL6lmk6ikI/tbgA2\nl7QEmA2ckpU3BjgDWFFJI8ugHH3fAz6QNE7SLEk3SFq94hYXR8n6zOwj4M/Am4Q335aa2WMVt7g4\nCtE3GzgYQNIOwHcJH4MWUrfalKPva+LbiwOB5ytkZymUq60t9C1p+oruW6rpJAqZMT8LaDCz3sAA\n4BpJXSXtD7xvZvXUpqeHMvQRHgG3Aa41s20Ib36dWTFLS6NUfV0k/QD4DeFxuTfQRdKRFbO0NArR\ndzEhlEw94VXueuCrAutWm3L0ASCpCzAZOCU+UdQKpWpb0Yb6lrRrV3TfUsnvJPLxNtAna7sPwSNm\nszNwAYCZLZb0OtAv7j9QIUBgJ6CbpPFmdnTlzS6YUvVtGsu9ZWYzY7nJ1J6TKFVff8LdzLNm9iGA\npCmx7O2VNroI8uozs0+B4zLbUd9ioHO+ujVAqfpei+lVgbuB28zs3opbWxzlaBtKG+hbmtDXhWL7\nlipOvnQg/IfqC3Qk9+TL5cC5Mb1OPBFrJcrsDtxfLR2V0gc8BWwS06OBS6qtqbn0AVsDLxE6UxEm\n0k6qtqYS9HUHOsb0L4FbCq1b7V+Z+gSMB8ZUW0dza0uUac19S6q+YvuWaovdl/BmxCJgVNw3AhgR\n0z2B+wnja3OBI1IuZM29gVCuvtiRzox5U6ixt5uaQd/vgHlx/63AqtXWU4K+H8b8hYQ7su5N1a21\nX6n6gF0J4/UNhGGMemBQtfU017XLOkZr7lua+tssqm/xj+kcx3GcVKr6MZ3jOI5T27iTcBzHcVJx\nJ+E4juOk4k7CcRzHScWdhOM4jpOKOwnHcRwnFXcS7RBJKyRNyNruIOmDfGGRJQ2XdFWRbd0ZwxWf\nkr903mOdldhulkWCJd0i6ZDEvs/ivwMkPRtDYs+WdHhWmY6Srojhml+RdK+knDGaJD0gqVuuvJTy\nB0nqn7X9pKRti1e3kp7eku4q4zgjJB2VY39fSXNLPa5Tu1QzLIdTPZYRAu91MrPPgX0IX0Pn+2im\nqI9qJK0LbGdmG+fIqzOzr3JUa4pRwIVfG2O2S5H10zBW1pbZXgYcZSGsyHrAi5IeMrNPoi1rEL5e\nNYX1MqYAO67UgNl+Rdo0hPAh4oKEPaVi0Y4lwGElH8TsujLtcFoZ/iTRfnkQyHRcw4A7iQHNJK0V\n74pnS/qnpC2TlWPY4cmSZsTfzjnaeARYPy7esmu8Gx4jaSZwiqT9JT0Xo1E+GsNsE4MAjpM0J9pw\nsKSLgM7xWBNiuczdsSRdqrCA0ZzM3b6kPWKbdykssHJbE+cjZzA3M3vVzBbH9DvA+0CvGDlzOPBb\ni1+kmtktwBeS9spxvhrjee0bbbk+Pp08LKlTouzOwAHApfHcfD9mHaawgMzLknaNZeui9hnxXB3f\nhMZv3fFL6ixposLCM1Pitdgm+9zG9KGSxsX0aEmnxfS2sc0G4MSm2o3lt4/lV5O0RtS/maRVJF0W\nr99shWWPnRrBnyTaL5OAP0iaCmwJ3ATsFvP+CLxoZj+VtCchTs9Avt2RXkmI3fOMpA2Bh4DNEm0c\nAEw1s4EAkowQfmP7uN3DzHaK6V8QQnWcDpwDfGxmW2WVmyJpZOZYkczd9cGEUANbAb2AmZKeinkD\nol3vAM9I2sXMksNUInTIZ+c49jeFQsjlVeNTxVbAm7Zy9NMXgM2BJxL7s4+3ETDUzI6XNAk4hKzg\nhmb2rKT7CHGDpsS2AerMbEdJ+wLnEp4Af04Itb6Dwup+0yU9YmaNSftzcALwmZltFm8EZqXYm0xn\ntscBJ5rZdEl/yteYmc2Mus4nxO2aYGbzJZ0AbAhsbWYrJK1ZgO1OC+FOop1iZnMV1gIYBjyQyN6F\nGIvezKZJWlshhHk2Pwb6x84LoKuk1c3sP1llct2dT8pK95H0N8JKZx2JEUaBvQnRODO2Ls0jZ1fg\njnhH/76kfwDbExY3mhGHWIh3vH2BpJMw4PRMhxzLfppdIA41jQcKiQaab2jodTObE9MvRptykTx/\nGftmZdX5CbClpEPjdjeCE2oswM7dCM4+8/cwJ0/5bwwLi9d0N7PpcdcEQjyhfJxHcKT/BX4d9+0N\njDWzFdGWjwu1w6k87iTaN/cBlxECmfVK5CU7qGTHJ2BHM/tfkW0uy0pfBVxmZlMl7U6ISJnWflNY\njvIZe7/I2peJp5+L1PYUJpynAmeZ2Yy4ezGwoaQuiaeJbQlzCU2RtKlzSrnkOc/US+oYaWaP5mkz\njTTd2W2n2VfIcZL0JMzj1MXjZm4qanXthnaPz0m0b24GRpvZvMT+p4EjIYzrAx/kGFZ5BDg5syFp\nQIFtZncG3Qgr00EY38/wKHBS1rF7xOSXCsudJnkaGBrHtnsBPwJm0Awdj6SOwD3A+OwnDTNbRohe\ne7mkVWLZo4HOZjat3HaBT/lm6demeBg4MXNeJG2iwlcxfAo4ItbbgjBcl+E9Sf2itiFZ+wXIwpKX\nSyVlXh74etEoSetLSltp8DrgbOAO4JK471FghKS6WN+Hm2oIdxLtk8xE69tmdnXWvszd42hgW0mz\nCW/wHJOjzMnAdnGicR6QNmGa9tZQpp27JL0AfJCVdz6wZpzIbAD2iPuvB+bom9d3MzruAeYQQh8/\nDpxhZu8n7E2zJ5+dhxOGZYYrTJrXS9o65o0CPgdekfQKYW5hCLlJG+NPs2kicIakF7MmrnPVuRGY\nD8yKE9Jjyf20lKv9sYRVAecT56GyypxJeHp6huDILatuJn0sYbXB+sRx1wOWJw2ITvQLM5tIWDlt\n+3gTciNhKds58XoPy2G/UyU8VLjjOABImgacZmaz8hZu+jgnAW+Y2dTmscypJj4n4ThOs2Jm11Tb\nBqf58CcJx3EcJxWfk3Acx3FScSfhOI7jpOJOwnEcx0nFnYTjOI6TijsJx3EcJxV3Eo7jOE4q/wft\njXxqolkTOQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5fdcf8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The packed depth is: 1.58 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.9: Page 327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 8.9\n",
+ "# Page: 327\n",
+ "\n",
+ "print'Illustration 8.9 - Page: 327\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# C1=CH4 C2=C2H6 C3=n-C3H8 C4=C4H10\n",
+ "Abs=0.15;# [Total absorption,kmol]\n",
+ "\n",
+ "T=25;# [OC]\n",
+ "y1=0.7;# [mol fraction]\n",
+ "y2=0.15;# [mol fraction]\n",
+ "y3=0.10;# [mol fraction]\n",
+ "y4=0.05;# [mol fraction]\n",
+ "x1=0.01;# [mol fraction]\n",
+ "x_involatile=0.99;# [mol fraction]\n",
+ "L_by_G=3.5;# [mol liquid/mol entering gas]\n",
+ "#******#\n",
+ "\n",
+ "LbyG_top=L_by_G/(1-y2);\n",
+ "LbyG_bottom=(L_by_G+y2)/1;\n",
+ "LbyG_av=(LbyG_top+LbyG_bottom)/2;\n",
+ "# The number of eqb. trays is fixed by C3 absorption:\n",
+ "# For C3 at 25 OC;\n",
+ "m=4.10;\n",
+ "A=LbyG_av/m;\n",
+ "Frabs=0.7;# [Fractional absorption]\n",
+ "X0=0;\n",
+ "# From Eqn. 8.109:\n",
+ "def f43(Np):\n",
+ " return Frabs-((A**Np)-A)/((A**Np)-1)\n",
+ "Np=fsolve(f43,2);\n",
+ "print\"Number of trays required is \\n\",round(Np,2)\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 8.9 - Page: 327\n",
+ "\n",
+ "\n",
+ "Number of trays required is \n",
+ "3.57\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter9.ipynb b/Mass_-_Transfer_Operations/Chapter9.ipynb
new file mode 100755
index 00000000..66d006cb
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter9.ipynb
@@ -0,0 +1,2153 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:931dd4c1c9a0b7aa6178b7a72f77a062406642a8049e6a1d1b32f53a34e1b6d5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9: Distillation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.1: Page 349"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.1\n",
+ "# Page: 349\n",
+ "\n",
+ "print'Illustration 9.1 - Page: 349\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "#****Data****#\n",
+ "# a:n-heptane b:n-octane\n",
+ "Pt = 760; # [mm Hg]\n",
+ "#*****#\n",
+ "\n",
+ "Tempa = 98.4;# [boiling point of A,OC]\n",
+ "Tempb = 125.6;# [boiling point of B,OC]\n",
+ "x = numpy.zeros(6);\n",
+ "y_star = numpy.zeros(6);\n",
+ "alpha = numpy.zeros(6);\n",
+ "# Data = [Temp Pa (mm Hg) Pb(mm Hg)]\n",
+ "Data = [(98.4, 760.0, 333.0),(105.0 ,940.0, 417.0),(110.0, 1050.0, 484.0),(115.0, 1200.0, 561.0),(120.0, 1350.0, 650.0),(125.6 ,1540.0, 760.0)];\n",
+ "for i in range(0,6): \n",
+ " x[i] = (Pt-Data[i][2])/(Data[i][1]-Data[i][2]);# [mole fraction of heptane in liquid]\n",
+ " y_star[i] = (Data[i][1]/Pt)*x[i];\n",
+ " alpha[i] = Data[i][1]/Data[i][2];\n",
+ "\n",
+ "print\"\\t\\t T(OC)\\t\\t\\t\\t Pa(mm Hg)\\t\\t\\t\\t\\t\\t\\t Pb(mm Hg)\\t\\t\\t\\t\\t\\t\\t\\t x\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t y*\\t\\t\\t\\t\\t\\t\\t\\t\\t alpha\\n\"\n",
+ "for i in range(0,6):\n",
+ " print \"\\t \\t \",Data[i][0],\"\\t \\t \\t \\t\",Data[i][1],\"\\t \\t \\t \\t\",Data[i][2],\"\\t \\t \\t \\t \",round(x[i],3),\"\\t \\t \\t \\t \",round(y_star[i],3),\"\\t\\t\\t\\t\\t\\t\\t\\t\",round(alpha[i],2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.1 - Page: 349\n",
+ "\n",
+ "\n",
+ "\t\t T(OC)\t\t\t\t Pa(mm Hg)\t\t\t\t\t\t\t Pb(mm Hg)\t\t\t\t\t\t\t\t x\t\t\t\t\t\t\t\t\t\t\t y*\t\t\t\t\t\t\t\t\t alpha\n",
+ "\n",
+ "\t \t 98.4 \t \t \t \t760.0 \t \t \t \t333.0 \t \t \t \t 1.0 \t \t \t \t 1.0 \t\t\t\t\t\t\t\t2.28\n",
+ "\t \t 105.0 \t \t \t \t940.0 \t \t \t \t417.0 \t \t \t \t 0.656 \t \t \t \t 0.811 \t\t\t\t\t\t\t\t2.25\n",
+ "\t \t 110.0 \t \t \t \t1050.0 \t \t \t \t484.0 \t \t \t \t 0.488 \t \t \t \t 0.674 \t\t\t\t\t\t\t\t2.17\n",
+ "\t \t 115.0 \t \t \t \t1200.0 \t \t \t \t561.0 \t \t \t \t 0.311 \t \t \t \t 0.492 \t\t\t\t\t\t\t\t2.14\n",
+ "\t \t 120.0 \t \t \t \t1350.0 \t \t \t \t650.0 \t \t \t \t 0.157 \t \t \t \t 0.279 \t\t\t\t\t\t\t\t2.08\n",
+ "\t \t 125.6 \t \t \t \t1540.0 \t \t \t \t760.0 \t \t \t \t 0.0 \t \t \t \t 0.0 \t\t\t\t\t\t\t\t2.03\n"
+ ]
+ }
+ ],
+ "prompt_number": 70
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.2: Page 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.2\n",
+ "# Page: 354\n",
+ "\n",
+ "print'Illustration 9.2 - Page: 354\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:ethylaniline\n",
+ "Pt = 760.0; # [mm Hg]\n",
+ "ma1 = 50.0;# [g]\n",
+ "mb1 = 50.0;# [g]\n",
+ "#*******#\n",
+ "\n",
+ "# Data = [Temp Pa(mm Hg) Pb(mm Hg)]\n",
+ "Data = [(38.5, 51.1 ,1.0),(64.4 ,199.7, 5.0),(80.6 ,363.9 ,10.0),(96.0, 657.6, 20.0),(99.15 ,737.2 ,22.8),(113.2, 1225.0, 40.0)];\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Mb = 121.1;# [kg/kmol]\n",
+ "\n",
+ "for i in range(0,6):\n",
+ " p = Data[i][1]+Data[i][2];\n",
+ " if p==Pt:\n",
+ " pa = Data[4][1];# [mm Hg]\n",
+ " pb = Data[i][2];# [mm Hg]\n",
+ " T = Data[i][0];# [OC]\n",
+ " \n",
+ "\n",
+ "ya_star = pa/Pt;\n",
+ "yb_star = pb/Pt;\n",
+ "ya1 = ma1/Ma;# [g mol water]\n",
+ "yb1 = mb1/Mb;# [g mol ethylalinine]\n",
+ "Y = ya1*(yb_star/ya_star);# [g mol ethylalinine]\n",
+ "print\"The original mixture contained\",round(ya1,2),\"g mol water and \",round(yb1,2),\" g mol ethylanaline\\n\"\n",
+ "print\"The mixture will continue to boil at \",T,\" degree C, where the equilibrium vapour of the indicated composition,until all the water evaporated together with \",round(Y,3),\"g mol ethylaniline\\n\"\n",
+ "print\"The temparature will then rise to 204 degree C, and the equilibrium vapour will be of pure ethylanaline\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.2 - Page: 354\n",
+ "\n",
+ "\n",
+ "The original mixture contained 2.77 g mol water and 0.41 g mol ethylanaline\n",
+ "\n",
+ "The mixture will continue to boil at 99.15 degree C, where the equilibrium vapour of the indicated composition,until all the water evaporated together with 0.086 g mol ethylaniline\n",
+ "\n",
+ "The temparature will then rise to 204 degree C, and the equilibrium vapour will be of pure ethylanaline\n"
+ ]
+ }
+ ],
+ "prompt_number": 71
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.3: Page 362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.3\n",
+ "# Page: 362\n",
+ "\n",
+ "print'Illustration 9.3 - Page: 362\\n\\n'\n",
+ "import numpy\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:n-C3H8 b:n-C4H10 c:n-C5H12 d:n-C6H14\n",
+ "# Bubble Point Calculation\n",
+ "xa = 0.05;\n",
+ "xb = 0.30;\n",
+ "xc = 0.40;\n",
+ "xd = 0.25;\n",
+ "P = 350;# [kN/square m]\n",
+ "#******#\n",
+ "\n",
+ "# Assume:\n",
+ "Temp = 60;# [OC]\n",
+ "x = [0.05, 0.30, 0.40, 0.25];\n",
+ "m = [4.70, 1.70 ,0.62 ,0.25];# [At 60 OC]\n",
+ "# Reference: C5H12\n",
+ "mref = m[3];\n",
+ "Sum = 0;\n",
+ "alpha = numpy.zeros(4)\n",
+ "alpha_x = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[3];\n",
+ " alpha_x[i] = alpha[i]*x[i];\n",
+ " Sum = Sum+alpha_x[i];\n",
+ "\n",
+ "# From Eqn. 9.23:\n",
+ "SumF = Sum;\n",
+ "Sum = 0;\n",
+ "mref = 1/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 56.8;# [OC]\n",
+ "m = [4.60, 1.60, 0.588, 0.235];# [At 56.8 OC]\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[2];\n",
+ " alpha_x[i] = alpha[i]*x[i];\n",
+ " Sum = Sum+alpha_x[i];\n",
+ "\n",
+ "SumF = Sum;\n",
+ "mref = 1/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 56.7;# [OC]\n",
+ "Bt = 56.8;# [OC]\n",
+ "yi = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " yi[i] = alpha_x[i]/Sum;\n",
+ "\n",
+ "print\"The Bubble Point is \",Bt,\" degree C\\n\"\n",
+ "print\"Bubble point vapour composition \\n\"\n",
+ "print\"\\t yi\\n\";\n",
+ "print\"\\n n-C3\\t \",round(yi[0],3)\n",
+ "print\"\\n n-C4\\t \",round(yi[1],3)\n",
+ "print\"\\n n-C5\\t \",round(yi[2],3)\n",
+ "print\"\\n n-C6\\t \",round(yi[3],3)\n",
+ "\n",
+ "print\"\\n \\n \\n\"\n",
+ "\n",
+ "# Dew Point Calculation\n",
+ "# Asume:\n",
+ "ya = 0.05;\n",
+ "yb = 0.30;\n",
+ "yc = 0.40;\n",
+ "yd = 0.25;\n",
+ "Temp = 80;# [OC]\n",
+ "y = [0.05, 0.30 ,0.40, 0.25];\n",
+ "m = [6.30 ,2.50 ,0.96 ,0.43];# [At 60 OC]\n",
+ "# Reference: C5H12\n",
+ "mref = m[3];\n",
+ "Sum = 0;\n",
+ "alpha = numpy.zeros(4)\n",
+ "alpha_y = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[3];\n",
+ " alpha_y[i] = y[i]/alpha[i];\n",
+ " Sum = Sum+alpha_y[i];\n",
+ "\n",
+ "\n",
+ "# From Eqn. 9.29:\n",
+ "SumF = Sum;\n",
+ "Sum = 0;\n",
+ "mref = SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 83.7;# [OC]\n",
+ "m = [6.60, 2.70, 1.08, 0.47];# [At 56.8 OC]\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[2];\n",
+ " alpha_y[i] = y[i]/alpha[i];\n",
+ " Sum = Sum+alpha_y[i];\n",
+ "\n",
+ "SumF = Sum;\n",
+ "mref = 1.0/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 84.0;# [OC]\n",
+ "Dt = 84.0;# [OC]\n",
+ "xi = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " xi[i] = alpha_y[i]/Sum;\n",
+ "\n",
+ "print\"The Dew Point is \",Dt,\" degree C\\n\"\n",
+ "print\"Dew point liquid composition \\n\"\n",
+ "print\"\\t xi\\n\"\n",
+ "print\"\\n n-C3\\t \",round(xi[0],3)\n",
+ "print\"\\n n-C4\\t \",round(xi[1],3)\n",
+ "print\"\\n n-C5\\t \",round(xi[2],3)\n",
+ "print\"\\n n-C6\\t \",round(xi[3],3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.3 - Page: 362\n",
+ "\n",
+ "\n",
+ "The Bubble Point is 56.8 degree C\n",
+ "\n",
+ "Bubble point vapour composition \n",
+ "\n",
+ "\t yi\n",
+ "\n",
+ "\n",
+ " n-C3\t 0.229\n",
+ "\n",
+ " n-C4\t 0.478\n",
+ "\n",
+ " n-C5\t 0.234\n",
+ "\n",
+ " n-C6\t 0.059\n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ "The Dew Point is 84.0 degree C\n",
+ "\n",
+ "Dew point liquid composition \n",
+ "\n",
+ "\t xi\n",
+ "\n",
+ "\n",
+ " n-C3\t 0.007\n",
+ "\n",
+ " n-C4\t 0.109\n",
+ "\n",
+ " n-C5\t 0.363\n",
+ "\n",
+ " n-C6\t 0.521\n"
+ ]
+ }
+ ],
+ "prompt_number": 72
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.4: Page 365"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.4\n",
+ "# Page: 365\n",
+ "\n",
+ "print'Illustration 9.4 - Page: 365\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol feed]\n",
+ "zF = 0.5;\n",
+ "D = 60.0;# [mol]\n",
+ "W = 40.0;# [mol]\n",
+ "#*******#\n",
+ "\n",
+ "# From Illustration 9.1, Equilibrium data:\n",
+ "Data = numpy.array([[1.0 ,1.0],[0.655, 0.810],[0.487 ,0.674],[0.312, 0.492],[0.1571 ,0.279],[0, 0]]);\n",
+ "Feed = numpy.array([[0 ,0],[1.0 ,1.0]]);\n",
+ "# The operating line is drawn with a slope -(W/D) to cut the equilibrium line.\n",
+ "def f44(x):\n",
+ " return -((W/D)*(x-zF))+zF\n",
+ "x = numpy.arange(0.2,0.7,0.1);\n",
+ "plt.plot(Data[:,0],Data[:,1],label=\"Equilibrium Line\")\n",
+ "plt.plot(Feed[:,0],Feed[:,1],label=\"Feed Line\")\n",
+ "plt.plot(x,f44(x),label=\"Operating Line\");\n",
+ "plt.grid('on')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Mole fraction of heptane in liquid\")\n",
+ "ax.set_ylabel(\"Mole fraction of heptane in vapour\")\n",
+ "plt.legend(loc='lower right');\n",
+ "plt.show()\n",
+ "# The point at which the operating line cuts the equilibrium line has the following composition* temparature:\n",
+ "yd = 0.575;# [mole fraction heptane in vapour phase]\n",
+ "xW = 0.387;# [mole fraction heptane in liquid phase]\n",
+ "Temp = 113;# [OC]\n",
+ "print\"mole fraction of heptane in vapour phase %f \\n\",yd\n",
+ "print\"mole fraction of heptane in liquid phase %f\\n\",xW\n",
+ "print\"Temperature is %d degree C\\n\",Temp"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.4 - Page: 365\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXecFFXywL8FSvJICigSXBBP9BRQECWoqyJynBEUQUlm\nvTOcGEBPYdWfGA6UU+5UDCCgoGBAUAmHrBkFZEUFjiQSRQkSRGBD/f54s7uz485uz+70pK3v59Mf\nunte96spZrv6Vb1XJaqKYRiGYeRTKd4CGIZhGImFGQbDMAyjCGYYDMMwjCKYYTAMwzCKYIbBMAzD\nKIIZBsMwDKMIvhoGEXlJRLaIyDcltHlKRFaKyNcicpKf8hiGYRil4/eIYSzQLdyHItIdaKGqxwDX\nA8/4LI9hGIZRCr4aBlX9GNhRQpMLgZcDbb8A6ojI4X7KZBiGYZRMvGMMjYD1QccbgMZxksUwDMMg\n/oYBQEKOLUeHYRhGHDkozv1vBJoEHTcOnCuCiJixMAzDKAOqGvryXSrxHjG8A/QHEJHTgF9UdUtx\nDVXVNlWGDRsWdxkSZTNdmC4qsi5ycpRZs5Qrr1Rq11bO7P0VRz3aij9P+Asbd21Etezv076OGERk\nEnAmUE9E1gPDgIMBVPU5VX1PRLqLyCrgV+AqP+VJBdauXRtvERIG00UhpotCUl0X334L48fDK69A\no0ZwRb8DHNHnYcYvfYYRXUfQr1U/RCIeJBTBV8Ogqn08tLnZTxkMwzCSnS1bYNIkZxB+/hn69YP/\n/hf21VnMwGkDabKzCVk3ZnFkzSOj0l+8YwxGhAwcODDeIiQMpotCTBeFpIou9u2Dd95xxuDTT+Gi\ni2DECDjzTMjlAA9/9DDPzIjeKCEYKY8fKlaIiCaDnIZhGOVB1RmB8eNh6lRo1w7694dLLoFDDnFt\nFm8OjBJqNWHMBWNKHCWICJqEwWcjQjIzM+MtQsJguijEdFFIMupi9WrIyIAWLeCGG9y/S5bA7NnQ\nt68zCgdyDzBs3jDOm3ged3S4g+l9pkfNdRSKuZIMwzDiwI4dMGWKGx2sXAl9+rjjk06CUK9Q8Cgh\nmrGEcJgryTAMI0ZkZ8OsWc4YzJ4NXbs6V9F558HBB/++/YHcQCxhYdliCWV1JdmIwTAMw0dUYfFi\nZwwmTYJjjnHG4LnnoG7d8NfFepQQjMUYkoxk9J/6hemiENNFIYmii40b4fHH4cQT4dJLoU4dF1j+\n5BO4/vrwRiGWsYRw2IjBMAwjSvz6K7z1lhsdLFzoDMKzz0KnTr+PGxRHPEcJwViMwTAMoxzk5UFm\npjMG06Y5I9C/P1xwAVSv7u0e5Y0lhMNiDIZhGDFk2TKYMAEmToR69ZwxeOwxODzCijKJMkoIxmIM\nSUai+E8TAdNFIaaLQvzUxdatMHo0tG8P55wDOTnw7rvw1Vfw979HZhQSIZYQDhsxGIZhlMD+/e7h\nP368cxmdfz783/85w1C5ctnumYijhGAsxmAYhhGCKnzxhTMGr78OrVo5V1HPnlCzZtnv61csIRwW\nYzAMwygna9e6mMH48VCpkjMGixbBUUeV/96JPkoIxmIMSYb5kgsxXRRiuigkUl3s2gUvvQTp6XDK\nKfDjj844LFsG995bfqOQyLGEcNiIwTCMCkdODsyZ40YG778PZ5/tgsfdu0OVKtHrJ5lGCcFYjMEw\njArDkiWF1c+OOsq5ii6/HA47LLr9xDqWEA6LMRiGYRTDjz/Cq686g7Bjh6t+lpkJxx7rT3/JOkoI\nxmIMSYb5kgsxXRRiuigkMzOTvXtdwrru3eG441yd5FGj4Pvv3VRTP4xCMsYSwmEjBsMwUoK8PPj4\nY5e47vPP4dRTnato6lSoUcPfvlNhlBCMxRgMw0hqVqxwqSkmTHBrDAYMgCuugCNj8GxOlFhCOCzG\nYBhGhWH7dnjtNRc3+P57Zwjefhtat/aWxTQapNooIZgSYwwiUllERsRKGKN0zJdciOmikIqgiwMH\nXPbSnj2hWTP48EO4/37YsAGeeALatHFGwW9dpFIsIRwljhhUNVdEOov5cgzDiAOqrq7B+PEwebIL\nJPfvDy++6ArfxJpUHiUEU2qMQUSeBY4EpgB7A6dVVd/0WbZgGcwuGUYFYv36wtQU2dnOGPTtC82b\nx0eeRI8lhMPPGEM1YDtwdsj5mBkGwzBSn9274c03nTHIyoLLLnMjgw4dYhc3KI6KMkoIxmYlJRmZ\nmZmkp6fHW4yEwHRRSLLqIjcXPvjAGYPp0+GMM9zo4PzzoVq1st0zWrpI1lFCML6NGERkbMgpBVDV\nqyPtzDAMA+C775wxmDgRGjZ0xmDkSGjQIN6SOSriKCEYLzGGSwkYA6A6cAmwSVVv8Vm2YBlsxGAY\nSc5PP7nVyOPHw5YtLmbQrx/86U/xlqyQVBglBFPWEUPEriQRqQR8qqodIu2srJhhMIzkZN8+5yIa\nP96tSr7wQjc6OOusslc/84vgUcKYC8akxCihrIahLLmS/gjUL8N1RhSoCPPVvWK6KCSRdKEKn34K\nN9wAjRrBc8+5QPKGDc5AdOnir1GIVBcVYV1CpHiJMeyh0JWkwBZgsJ9CGYaRfKxZU5iaokoVNzLI\nyoImTeItWXgqeiwhHDYryTCMMvPLLzBlihsJ/O9/0Lu3Mwht28Z3imlppFosIRy+5koSkYuAM3Aj\nhg9VdXqkHRmGkRpkZ8Ps2c4YzJwJ554Ld90F3bpFt/qZX9gooXRKjTGIyKPArcB3wDLgVhF5xG/B\njOJJJF9yvDFdFOK3LlRh8WK4/XbnGnr4YRdA/v57l9b6wgsTxyiE04XFErzjZcTwF6CNquYCiMg4\nIAu4x0e5DMNIADZtcmUwx4+HPXvc9NKPP4Zjjom3ZJFho4TI8LKOYQlwlqpuCxwfBsxT1Val3lyk\nGzAKqAy8oKqPhXxeD5gIHIEzUiNUdVwx97EYg2HEiF9/dSmsx4+HBQugRw8XN+jcGSolWc3HihJL\nCIefMYZHgK9EJDNwfCYwxINAlYHRQBdgI7BARN5R1WVBzW4GFqvqPQEj8T8RmaiqOZF8CcMwys+3\n37rVx2+/7fITXXWV269ePd6SlQ0bJZSdUu2/qk4COgBvBLbTVHWyh3u3B1ap6lpVzQYmAxeFtNkM\n1Ars1wK2mVEoGfOrF2K6KKQ8uli3DgYOhHPOgZYtYdkyeO89N8MoGY3CnLlzLJZQTrysYxCcYeiM\nm5VUGXjLw70bAeuDjjcAp4a0eR74QEQ2ATWBXh7uaxhGFNi+HR55BF56CW66yZXIrF073lKVj8Wb\nF3PjuzdyXLvjbJRQDry4kv4DHA1MAgS4QUTOVdW/lnKdl6DAvUCWqqaLyNHAHBFpraq7QxsOHDiQ\ntLQ0AOrUqUObNm0KMijmvy1VhOP09PSEkseOE+c4n9Laz5qVyRtvwFtvpdOzJ4wZk8lhh0Ht2on1\nfSI5zs7N5pNKn/DMwme45vhr6Nqwa4FRSAT5YnWcmZnJuHHjAAqel2XBS/B5OXC8quYFjisBS1W1\nZSnXnQZkqGq3wPE9QF5wAFpE3gMeVtVPA8dzgcGqujDkXhZ8NoxykpMDL78MGRlw6qluyumxx8Zb\nqvKTijmOooWfuZJWAU2DjpsGzpXGQuAYEUkTkSrA5cA7IW2W44LTiMjhwLHAGg/3rrCEvh1WZEwX\nhZSkC1V45x1o3drNNJoyxa09SHajEG5dgv0uyo8XV1ItYJmIfIlzD7XHzTCajivxeWFxF6lqjojc\nDMzCxSVeVNVlInJD4PPngOHAWBH5Gmek7lbV7eX+VoZhAC6Z3eDBsHMnPP44dO+e2KkqvGIzjvzF\niyspvYSPVVU/jKpExctgriTDiIClS+Hee91q5QcfdLUPEi3NdVmo6OsSIsW3dQyqmlkmiQzDiDkb\nN8KwYc51NHgwTJ5c9hKZiYaNEmKHl1xJHURkgYjsEZFsEckTkV2xEM74PeY/LcR0UciMGZnccw+0\nagX16rmpp3fckRpGIdIcR/a7KD9eYgyjgd7A60A7oD8uSGwYRpzZtw/+/W946CG49FL4+mto3Dje\nUkUPGyXEBy8xhkWq2lZEluTnRxKRLFVtExMJsRiDYYSSmwsTJ8LQoXDSSTB8OBx/fLylih4WS4gO\nfuZK+lVEqgJfi8jjwI+4hW6GYcQYVXj/fRgyBGrWdJlPO3eOt1TRxUYJ8cfLOoZ+gXY3A3uBxkBP\nP4UywmP+00Iqmi6++MLVQLjzTuc6+uSTQqOQCrqIVr2EVNBFvPEyYmgHzFDVnUCGv+IYhhHK//4H\n//gHzJ8PDzwAAwbAQZ5qLyYPNkpILLzEGMYBZwMfAq8BM2OdAdViDEZFZPNmtwZh6lQ3SrjlFqhR\nI95SRReLJfiLbykxVHUg0AKYCvQB1ojIixFLaBiGJ3btgvvvhxNOgEMOcSOGwYNTzygs3ryYU54/\nhUWbF5F1Yxb9W/c3o5AgeKrHpKoHgPdxNRUWARf7KZQRHvOfFpJquti/H/71L1c2c/16+OorGDEC\nDj209GuTSRd+115OJl0kKl7qMXTH1Uk4C8jE1VC4zF+xDKPikJfnVijfd5+bcvrf/8KJJ8ZbKn+w\nWEJy4CXGMInC2MK+mEj1exksxmCkHKowZ45zE1WtCo89BmeeGW+p/MFiCfHBz1xJfcomkmEY4Vi0\nyBmE9evd4rQePVIj62lx2Cgh+fAUYzASB/OfFpKMuli92tVSvuACuOwy+PZb6Nmz/EYhEXXhdywh\nHImoi2TDDINhxICffnLTTU891cUPVq6EG26Agw+Ot2T+YDOOkptSYwyJgMUYjGRl92544gl4+mno\n18/VSKhfP95S+YfFEhIL32IMItIZGAakBbVXVW0eaWdGOcnJSb0lrylKdjY8/7xLXXHOObBgATRr\nFm+p/MViCamDF1fSi8ATQGfglMDW3k+hjDDceSeZ7dq5LGp5efGWJu4koi85Lw9ef91NO33nHXjv\nPZcF1W+jEE9dxCuWEI5E/F0kG15eP39R1fd9l8Qoncceg4wMuOceV4Xl9ttdzcbq1eMtmQF88IGb\naaQKzz7rRgqpjo0SUhMv6xgeBSoDbwL788+r6lf+ilZEBosxBKMK8+Y55/WCBXDjjfDXv8Lhh8db\nsgpJVpZLg71qFTz8sJttVCnFp3VYLCE5KGuMwYthyAR+10hVz4q0s7JihqEEli93eRQmT4ZLLnGj\niFRdNptgrF3rViv/978ut9F110GVKvGWyn+CRwljLhhjo4QExs8keumqelboVjYxjfLyO/9py5bw\nzDNu/uPRR8N550HXrjBzphtZpDDx8iVv3ersb9u2Lq/RypXwt7/F1yjEQheJFksIh8UYyk9YwyAi\n/QL/3iEig4K2O0RkUOxENDxRr55L2v/99y7uMGSIS8/5/PPw22/xli4l2LvXuYpatnSzjpYuhWHD\nXCW1VMfWJVQswrqSROQGVX1ORDIo3pX0gM+yBctirqRIsThEVPnsM+jfH04+2aWwaNEi3hLFBosl\nJDe+xRgSATMM5SQ4DtGjh/ODnHBCvKVKCg4ccFXTXnoJ/vMfF8apKFgsIfnxLcZgJBZl8p8GxyGa\nN3cxiBSIQ/jtS166FE47DZYscTOPEtkoRFMXyRJLCIfFGMqPGYaKhMUhPJGXB6NGuRTYf/2rW6hW\nUTxwFkswwFxJFRuLQ/yOdevgqqtg3z4YP95N9KoIWCwhNfHNlSQiR4jIiyIyM3B8vIhcUxYhjQRD\nBM4+G2bMgA8/hC1bnNvpmmtcPugKhKpLXdGuHXTpAh99VHGMgo0SjFC8uJLGAbOBfCfjSuB2vwQy\nSsY3/2nLli6PQxLFIaKli23b4PLL4ZFHYNYsl3GkcuWo3DpmlEUXyR5LCIfFGMqPF8NQT1VfA3IB\nVDUbyPFVKiN+BMchrrzSJf9J4TjEzJnQujU0aeKqqp10Urwlig02SjBKwmtKjJ7Af1X1JBE5DXhM\nVWNWndZiDHEkReMQv/4Kd90F774L48bBWRVkLb/FEioWfk5XvQOYDjQXkc+ACcCtkXZkJCkpGIf4\n4gs3MtizB77+uuIYBRslGF7xkitpEXAm0Am4HjheVb/2WzCjeOLqP02wOESkusjOdiksLrzQrV4e\nPx7q1PFHtlhTki5SNZYQDosxlB+v6xjaA62BtkAfEenvn0hGwpOEcYjly6FjR+cNy8qCSy+Nt0Sx\nwUYJRlnwEmOYCDQHsggEoAFU9ZZSby7SDRiFq+fwgqo+VkybdOBJ4GBgq6qmF9PGYgyJTALHIfLy\n4N//hgcfdGU2b7jBecdSHYslGOBvPYZlOPdRRE9mEakM/A/oAmwEFgB9VHVZUJs6wKfAeaq6QUTq\nqerWYu5lhiFZWL7cLRt+7bW452XauNEtVtu1CyZMcCmyKwKW48jIx8/g87dAw8hFoj2wSlXXBqa4\nTgYuCmlzBfCGqm4AKM4oGEVJeP9pDOMQJeli8mQXYD79dPjkk9Q3CpmZmRUulhCOhP8bSQK8GIb6\nwFIRmS0i0wPbOx6uawSsDzreEDgXzDHAoSIyT0QW5teAMFKAOMUhtm+HPn1cRtT33nOV1Q7yUtk8\nyVm5baXFEoyo4cWVlF7ceVXNLOW6nkA3Vb0ucNwXODU4NiEio4GTgXOAGsDnwF9UdWXIvcyVlOzE\nIA4xZw5cfbXzYD36KFSvHrVbJywWSzBKoqyupFLfpUozACWwEWgSdNwEN2oIZj0u4Pwb8JuIfISb\n/bQypB0DBw4kLS0NgDp16tCmTRvS09OBwqGjHSf48dlnw9lnkzl+PEydSnrLltCjB5mdO0OzZmW+\n/8yZmYwZAwsWpDN2LBx0UCZffJEA39fn49rH1mbgtIHU2FCD/3T8D5e2vjSh5LPj2B9nZmYybtw4\ngILnZZlQ1RI3oAMucLwHyAbygF0erjsIWA2kAVVws5qOC2nTEvgvbtZSDeAbXKA79F5qOObNmxdv\nEaLHzz+r/t//qTZsqHruuarvv6+al+f58nnz5umCBarHHqvap4/q9u0+yppA7M/Zr0M/GKr1H6+v\nL2e9rHl5ean1uygnpotCAs/OUp/zoZuXGMNoXJB4JVANuAb4jweDkwPcDMwClgKvqeoyEblBRG4I\ntFkOzASWAF8Az6vqUg8yGalAaBwigvoQOTnw8svQvTtkZMCrr0LdurERO57YugQjFniJMSxS1bYi\nskRVWwXOZalqm5hIiMUYKgwe4xArVkC/flC7NowdC41CpzSkIBZLMMqCn9NVfxWRqsDXIvK4iAwC\n7BdpRJ/QvEw//VQkL5Oqq1DasaMzDDNnVgyjYKMEI9Z4MQz9Au1uBvYCjXHZVo04kB9oSnlC6lTn\ndunK4vpdWTZqJp9+otx8M3z0UWa8pfSVSNYlVJjfhQdMF+XHi2G4WFV/U9WdqpqhqoOAv/gtmGEA\nUK8eU/74D9LyvueH0/vyr2pDOLbHn1wcYv/+eEvnGzZKMOKJlxjDYlU9KeScxRgM3/nlF7j5Zvjy\nS1d2s317EjovUzSwWIIRTaIeYxCRPiIyHWgWtOJ5eqBwz7ZyyGoYpfLBB9CqlQswL14cMApQahwi\nmbFRgpEolORK+gwYCSwHRgRtg4Dz/BfNKI5U95/+9pvLu9e/v/MW/fvfcMghxbfN/PHHInGIeNeH\nKCvRyHGU6r+LSDBdlJ+whkFVf1DVTFU9DVgB1AFqAZsCaxQMI6p89RW0a+eyon79NZzn9fUjeD1E\n374RrYeINzZKMBIRLzGGa4GhwLzAqXTgQVV90V/RishgMYYUJicHHnsM/vUvePJJuOKKctZMSII4\nhMUSjFjgZz2GFUAHVd0WOD4M+FxV/1gmScuAGYbUZdUq5zaqXh3GjYMmTUq9JDKWL3cWZ/JkuOQS\n56c68cQodxIZVi/BiBV+LnDbisuTlM+ewDkjDqSK/1QVxoyBDh3g8stdZtRIjYInXQSvhzj6aOef\n6toV3n/flXeLIX7WS0iV30U0MF2UHy+Z6lcD80VkWuD4ImCJiNyBS9D0hG/SGSnJjz/CtdfC5s1u\nYtHxx8eg0/w4xJ13uupy99wDd9zhRhB9+/qeozt4lJB1Y5aNEoyExosrKSOwm99QgvZR1Qd8kayo\nDOZKShHefNO5+6+9FoYOhSpV4iRIjOIQFksw4olvMYagDg5R1V8jliwKmGFIfnbuhNtuc2U2J0xw\nLqSEwac4hMUSjHjjW4xBRDqKyFLcegZEpI2IlJp22/CHZPSffvghtG4N1apBVlb0jELUdBHlOEQ8\nai8n4+/CL0wX5cdL8HkU0I1AwFlVs4Az/RTKSA327XMu/SuucAvVnn0W/vCHeEtVAqHrIe65J+L1\nELYuwUgFvMQYvlTV9sE5k0Tka1VtHRMJMVdSMpKV5VJj//GP8Nxz7pmbdEQQh7BYgpGI+DlddZ2I\ndAp0UkVE7gSWRdqRUTHIzXWL1c49F+66C6ZOTVKjAOHzMl19NXzzTUEzGyUYqYYXw3AT8DegEbAR\nOClwbMSBRPafrlkD6enONb9woVu45ufzMaa6KCYOkdflHCY8egXdxneNWSwhHIn8u4g1povyU6ph\nUNWfVfUKVW2gqvVV9cr8VdCGAc7j8uKLcOqpcPHFLjPqUUfFWyqfCMQhsj57i/sbr6TTM++yYWxd\n+n+5H9m3L97SGUZU8BJjaABcB6RRuCBOVfVqf0UrIoPFGBKUnTthwABYu9ZNQ41ztgnf+V0s4cS+\nSGZmQudlMioufsYYpuGyqs4B3g3ajArOli3OddSwIXzxReobhWJjCZUqeYpDGEYy4cUwVFfVwar6\nuqpODWxv+C6ZUSyJ4j9dswY6dXKuo//8B6pWjb0MsdKF53UJcczLlCi/i0TAdFF+vBiGGSJiNZ6N\nApYsgTPOgEGDYNgwfwPM8aZMM46isB7CMOJJ2BiDiOyhMCfSIcABIDtwrKpay3/xCmSxGEOC8Mkn\n0LMnPPWUy4qaqkR1XUIS1IcwUhPfcyXFEzMMicH06a608iuvuHUKqYqvOY4SsD6Ekbr4GXw2Eoh4\n+U9ffhmuu87FWBPFKERbFzHJceRTHML86oWYLsqPGQajVEaOdCmy582D9u3jLY0/xHz1ssUhjASm\npBhDM1X9PsbyFIu5kuKDqnteTZsGs2f7UHYzAUiYHEcWhzB8wA9X0tTAjT8os1RG0pKT44rpzJvn\nAs6paBQSKseRx7xMhhELSjIMlUXkH8AfRWSQiNwRtA2KlYBGUWLhP923Dy67DDZsgLlz4bDDfO+y\nTJRVF/GolxARZYhDmF+9ENNF+SnJMPQGcoHKQM3A9oegfSMF2bkTunVzC9amT0/w+gllIKFGCaVh\ncQgjTnjJldRdVd+LkTzhZLAYQwzYssUZhU6d3IzKypXjLVH0SJhYQnmwOIQRIX5OV/1MRJ4UkUWB\nbaSI1C6DjEYCs2YNdO7sUlw8/XRqGYWkGiWURElxiDVr4i2dkUJ4MQwvAbuAy4BewG5grJ9CGeHx\nw3+an+Li9tuTK8VFabpI+FhCeQiJQ2R+YHNE8rEYQ/k5qPQmHK2qPYKOM0Tka78EMmJLqqa4CF69\nnHVjVuoYhFDy4xD2MDSiiJcYw3zgLlX9OHDcGfinqnaIgXz5MliMwQdmzHBeiIkT3aSXVCAlYgmG\nESXKGmPwMmK4ERgfFFfYAQzwKFQ3YBRuZtMLqvpYmHanAJ8DvVT1TS/3NsrH+PFw993OOKTKauYK\nM0owDJ/xUtozS1VbAa2AVqraRlVLdSWJSGVgNNANOB7oIyLHhWn3GDATsFe7UoiG/3TkSLj//uRP\ncZGvi5SOJXjE/OqFmC7Kj5cRAwCqujPCe7cHVqnqWgARmQxcBCwLaXcLbpX1KRHe34iQ4BQXqbKa\n2UYJhhF9/Eyi1whYH3S8IXCuABFphDMWzwROWSChFNLT08t0XU6Oy446bx58/HHyG4UDuQeYp/Mq\n9CghmLL+LlIR00X58TxiKANeHvKjgCGqquIihOZK8oF9+6BPH9i716W4SPbVzDZKMAx/8WQYRKQT\nkBbUXlV1fCmXbQSC30ub4EYNwbQFJgdmjdQD/iwi2ar6TujNBg4cSFpaGgB16tShTZs2BW8G+T7F\ninAc7D/10n7nTjjzzEwOPRRmzkynSpXE+j6RHHc8vSMPf/Qw/3rtX9zU7ia6NuzKkTWPTBj54nmc\nlZXF3//+94SRJ57Ho0aNqtDPh3HjxgEUPC/LgpfpqhOB5kAWLncSAKp6SynXHQT8DzgH2AR8CfRR\n1dAYQ377scD04mYl2XTVQjIzMwt+EKWRn+KiY0e3TiGZVzMXV1UtEl2kOqaLQkwXhfhW2lNElgHH\nl+XJLCJ/pnC66ouq+oiI3ACgqs+FtDXDEEW+/96tTejb1xXZSdap/LYuwTDKjp+GYQpwm6puKqtw\n5cUMQ2R88w38+c9w770ux1qy4mvtZcOoAPiZRK8+sFREZovI9MD2uxiAERvy/Ynh+OQT6NLFrVVI\nVqPgdV1CabqoSJguCjFdlB8vweeMwL/5r+yCTStNSGbMgKuugldeSd4UFzbjyDDiT6muJAAROQK3\nAE2BL1X1J78FC+nfXEmlkJ/iYto0OPXUeEsTORZLMIzo41uuJBHpBfwT+DBwarSI3KWqUyLtzPCH\nJ55whXXmzYPjfpd0JPGxUYJhJBZeYgz3Aaeoan9V7Y8bOdzvr1hGOIL9p/kpLp5/3sUWks0olDfH\nkfmSCzFdFGK6KD9eYgwC/Bx0vA1boRx3cnJcZcdvvnEpLurVi7dEkWGjBMNIXLxMV/0n0Bp4FWcQ\nLgeWqOrd/otXIIPFGILIT3Hx66/w5pvJleLCYgmGETv8XMcgQA+gMy74/LGqvlUmKcuIGYZCdu2C\niy5y9d/Hj4cqVeItkXdsXYJhxBbf1jGo4w1VvV1VB8XaKBiFbNkCbdtmcvzxbkpqshgFv+olmC+5\nENNFIaaL8hM2xiAin6pqJxHZw+/XLaiq1vJXNCOY/BQXnTrB6NHJk+LCYgmGkXx4WscQbyq6Kyk/\nxcU998Df/hZvabxhsQTDiD++uZJEZIKXc4Y/5Ke4GDEieYzC4s2LOeX5U1i0eRFZN2bRv3V/MwqG\nkUR4WcfKo/oZAAAgAElEQVRwQvBBIJ12W3/EMYKZMQN69IAJE6B3b3cukf2nsa69nMi6iDWmi0JM\nF+WnpBjDvcA9QHUR2R30UTYwxm/BKjr5KS6mT0+OFBcWSzCM1MHLdNVHVPWeGMkTToYKFWN44gkY\nNQpmzUr81cwWSzCMxMW3XEnAAhGpo6q/BDqqA6Sr6tuRdmaUjKqrofD22y620LRpvCUqGRslGEZq\n4iXGMCzfKAAE9jN8k6iCkpMD110HH3zgUlyEMwqJ4D+NdSwhHImgi0TBdFGI6aL8eM2VFEoSVw9O\nPIJTXMydm9gpLmyUYBipj5cYw1hgB/BvnJH4G1BXVQf6Ll2hDCkbY8hPcdGggQs4V60ab4mKx2IJ\nscV0a0RKcc9IP2MMt+DSbL8WOJ6DMw5GOdmyxS1c69ABnnoKKifoOMxGCfEhVV+GjOgT7RcJL7mS\n9qjqYFVtF9juUdVfoypFBeT776FzZzdaGD3au1GIpf80UWIJ4TBfsmH4g5cKbg2Au4HjgeqB06qq\nZ/spWCqTDCkubJRgGBUXLzGGOTg30p3ADcBA4Gerx1A2li+HM890pTjzVzMnEhZLSAwCvuF4i2Ek\nCeF+L37WY/hKVU8WkSWq2ipwbqGqtou0s7KSKoZh61Y47TT4xz/gqqviLc3vsXoJiYMZBiMSom0Y\nvKxjOBD490cROV9ETgbqRtpRRWf/fpf3qGfP8hkFP/zqiR5LCIfFGFKLdevWUbNmzYIHXHp6Oi++\n+CIAr7zyCuedd15B20qVKrFmzRrP9w69Ph6Efr9Exoth+L/Aauc7cO6kF4DbfZUqxVCFG26Aww6D\nRx6JtzRFsUyoRqSkpaVRo0YNatasWbDdeuut5b5v06ZN2b17d8HvT0QK9q+88kpmzZpV5nuX9/pI\nCDZowYR+v0SmxOCziFQG/qiqM4BfgPRYCJVqPPYYLFniVjRX8mKKSyA9PT0qMqVCLCFaujAiQ0SY\nMWMGZ5+dHPNPcnNzqRzDueDBBi1ZKfExpaq5QJ8YyZKSvPmmm476zjtwyCHxlsZhowTDL/Ly8rjz\nzjupX78+Rx99NP/+97+pVKkSeXl5gBttzJ07t6B9RkYG/fr1A2Dt2rVF2gYzbtw4Tj/99CLn3n33\nXY4++mjq16/P3XffXeCiGTduHJ06dWLQoEHUq1ePjIyMItcX10/wW37w9XXr1qVFixZ89tlnjB07\nlqZNm3L44Yczfvz4iHUT2m96ejpDhw6lc+fO1KpVi/POO49t27YVtJ8/fz4dO3akbt26tGnThg8/\n/DDiPsuKl/fXT0RktIicLiIni0jbQJzBKIVFi5wLado0aNw4Ovcsj189WWMJ4bAYQ/wI5ycfM2YM\n7777LllZWSxcuJCpU6cWeekIfZsuzwvJ22+/zaJFi/jqq6+YNm0aL730UsFnX375JUcffTQ//fQT\n//jHP0q9V6hcX375Ja1bt2b79u306dOHXr168dVXX7F69WomTpzIzTffzN69e8ssez6TJk1i3Lhx\n/PTTTxw4cIARI0YAsHHjRs4//3yGDh3Kjh07GDFiBD179mTr1q3l7tMLXgzDScCfgAeBkcCIwL9G\nCWzc6BavPfcctE2AskY2SkgtRKKzlQVV5eKLL6Zu3boFW/7b9uuvv87tt99Oo0aNqFu3Lvfee2+J\nwdbyBGIHDx5MnTp1aNKkCX//+9+ZNGlSwWdHHnkkf/vb36hUqRLVqlWL+N7NmjVjwIABiAi9evVi\n06ZNDB06lIMPPphzzz2XKlWqsGrVqjLLDs4YXXXVVbRo0YJq1arRq1cvsrKyAJg4cSLdu3enW7du\nAHTp0oV27drx3nvvlatPr5RUqOc2Vf0XcJ+qfhITaVKEPXvgggvg5pvdTKRoEqlfPRViCeGoyDGG\neE5sERGmTZtWbIxh8+bNNGnSpOC4qY+540P72bRpU7GflYXDDz+8YL96dbeut379+kXO7dmzp1x9\nABxxxBHF3vOHH35gypQpTJ8+veDznJycmMV1Sgo+Xw38C3gaN2owPJCXB337QqtWMHhwfGWx1ctG\nrGnYsCHr1q0rOA7eBzjkkEP49dfCjDo//vhjmftat24dxwUqWa1bt45GjRoVfFbSy88hgWDf3r17\n+UMglXF55PCDpk2b0q9fP8aMiU+xzJJcSUtFZCVwrIh8E7ItiZWAycY998COHTBmTNmH6iXhxa+e\narGEcFiMIX6EcwH16tWLp556io0bN7Jjxw4effTRIg/pNm3aMHnyZHJycli4cCFvvPFGmUewI0aM\n4JdffmH9+vU89dRTXH755Z6uq1+/Po0aNWLChAnk5uby0ksvsXr16jLJEI7s7Gz27dtXsOXk5BTb\nLpwe+/bty/Tp05k9eza5ubns27ePzMxMNm7cGFU5wxHWMKhqH+B0YBVwPnBB0HZhTKRLMl56Cd54\nw21VqsRHBoslGLHgggsuKLKOoWfPngBcd911nHfeebRu3Zp27drRs2fPIg+/hx56iNWrV1O3bl0y\nMjK48sori9w33G+1uCmgF110EW3btuWkk07i/PPP55prrgnbNvTc888/zz//+U/q1avH0qVL6dSp\nU4l9Rfo3dNNNN1GjRo2C7eqrry71vsGfN27cmGnTpjF8+HAaNGhA06ZNGTlyZLEztvyg1JQYiUAy\npMTIzIReveCjj6Bly9j3n8qxhIpIqqTEWLt2Lc2bNycnJ4dK5V3EY4Ql2ikxvNRjMEph5Uq4/HJ4\n9dX4GAWLJRiGEU18N+Ei0k1ElovIShH5XThWRK4Uka9FZImIfCoirfyWKZps3w7nnw8PPghduvjf\nX7BfvaLEEsJhMYbkwEauyYfnEYOI1FDViFZ0BFJqjAa6ABuBBSLyjqouC2q2BjhDVXeKSDdgDHBa\nJP3Ei+xsuPRS+Mtf3EK2WGKjBCMZSEtLIzc3N95iGBHiJe12R1zivJqq2kRE2gDXq+pfS725SAdg\nmKp2CxwPAVDVR8O0rwt8o6qNQ84nXIxBFa6/HjZvdiubY5WKxWIJFYNUiTEYsSEeMYZRQDdgGoCq\nZonImR7v3whYH3S8ATi1hPbXALFZ2ldOnngCvvgCPv00dkbBRgmGYcQCT64kVV0X8lZa/KTcYi71\nKoiInIVbVNepuM8HDhxIWloaAHXq1KFNmzYFK1/zfc2xOn744UyefBK++iqdmjX972/O3DlMXDKR\n93Pe55q619C1YVdWLFrBkelHxuX7J8px/rlEkceP72cYkZCZmcm4ceMACp6XZcGLK2kq8CQuVnAq\ncCvQTlVLLUwpIqcBGUGupHuAPFV9LKRdK+BNoJuq/i4BSSK5krKy4NxzYcYMOLWksU+UCK2qtmLR\nigqdCiKYzMzMlNWFuZKMSIhHac/6uNQYXQABZgO3quq2Ei901x4E/A84B9gEfAn0CQ4+i0hT4AOg\nr6rOD3OfhDAMmzc7YzBihFuz4CcWS6jYmGEwIiHmpT1V9WdVvUJVG6hqfVW90otRCFybA9wMzAKW\nAq+p6jIRuUFE8ufxDMWVCn1GRBaLyJeRfolYsHevy5Z63XX+GwVbvWxUdMJVQSuNE044gY8++sgH\niSoWJWVXfbqE61RVPdXyU9X3gfdDzj0XtH8tcK2Xe8WLvDwYMACOOQbuu8+/fryMElLZfRIppov4\nkJaWxk8//VRQFU1EWLFiRZFMoeWlpCpoGRkZrF69mgkTJvzus2+//TZqMlRkSgo+L6IweBz6P1Sh\nxrhDh8KmTTB3rj+J8cBmHBnJQ7xLe9ro2X9KSqI3TlVfDmzjgDeAqfnnYyZhnJkwwaW6eOstKEO9\nj1KJdPWyvSEXYrpILHbu3Mk111zDkUceSePGjbn//vuLJH176aWXOP744zn00EPp1q1bkZTcc+bM\noWXLltSpU4dbbrkFVQ0bYykp9pKWlsYHH3wAuJFFr169GDBgALVq1eKEE05g0aJFBW03bdpEz549\nadCgAc2bN+fpp0tyklQsSo0xiMiJIrIY+A6XinuRiJzgv2jx55NP4I47YPp0aNAg+ve3WIKRrBT3\ncB44cCBVqlRh9erVLF68mNmzZ/PCCy8AMG3aNB555BHeeusttm7dyumnn06fPq6c/NatW+nZsyfD\nhw9n27ZtHH300Xz66adl+lsIvWb69On06dOHnTt3cuGFF3LzzTcDrjb1BRdcwEknncSmTZuYO3cu\no0aNYvbs2RH3mZLkW+ZwG/A5cFbQcTrwWWnXRXNzYsaW1atVDz9c9f33o3/v/Tn7degHQ7X+4/X1\n5ayXNS8vz/O18+bNi75ASUoq66K03zwZRGUrC0cddZT+4Q9/0Dp16midOnX0kksu0R9//FGrVq2q\nv/32W0G7V199Vc866yxVVe3WrZu++OKLBZ/l5uZqjRo19IcfftCXX35ZO3ToUKSPxo0bF2kfzLBh\nw7Rv377FfpaWlqZz584taHfuuecWfPbdd99p9erVVVV1/vz52rRp0yLXDh8+XK+66iqvakgowv1e\nAucjfuZ6WeBWQ1XnBRmSTBE5JMr2KaH45ReXGO+++yBQcjVqWCzBiAY6LH5hvuJKe3755ZdkZ2fT\nsGHDgnN5eXkFpT1/+OEHbrvtNu64444i99q4cSObN2+mceMiWXDKXZozn+ASnTVq1GDfvn3k5eXx\nww8/sGnTJurWrVvweW5uLmeccUZU+k12vBiG70XkfmACLgh9JS7xXUqSk+Omo55zjqvZHC2itS7B\n/OqFmC4ShyZNmlC1alW2bdtWbN2Fpk2bcv/99xe4j4JZuXIl69cXZs5R1SLHoUTD3dqkSROaNWvG\nihUryn2vVMRL2u2rgQa4lclvAPUD51IOVbj1VqhUCZ58Mnr3tViCkeo0bNiQrl27MmjQIHbv3k1e\nXh6rV68uWFNw4403Mnz4cJYuXQq4QPWUKVMA6N69O9999x1vvfUWOTk5PPXUUyXWYFZV8vLy2L9/\nf0HpzP3790ckb/v27alZsyaPP/44v/32G7m5uXz77bcsXLiwjBpILbwscNuuqreo6smB7TZV3REL\n4WLN6NHw4Yfw2mtwUBRKGPlRL8Hy6BRiukgsxo8fz4EDBwpmHl122WUFD/iLL76YwYMH07t3b2rX\nrs2JJ57IrFmzAKhXrx5TpkxhyJAh1KtXj1WrVtG5c+ew/YgIkyZNonr16gWlM4855phi24UrpVm5\ncmVmzJhBVlYWzZs3p379+lx//fXs2rUrWupIasKmxBCR6bj1CsW92qqqxqzucyxSYrz3HlxzDXz2\nGTRrVv77heY4ilYswRZ1FZLKurCUGEYkxCxXkoj8jEuTPQn4Iv904F9V1Q8j7ays+G0YvvkGzj7b\n1VXo2LF897IcR0Y0MMNgREIs6zE0BM4F+gS2d4FJqvpdpJ0kMlu2wAUXwKhR5TcKNuPIMIxUoKSV\nzzmq+r6q9seV2lwFfCgiUZyrE1/27YOLL4b+/eHKK8t+n1jWXja/eiGmC8PwhxJDrCJSDfgL0BtI\nw6Xffst/sfxHFa6+Gpo2hYyMst/HRgmGYaQaJcUYJgB/wpXafE1Vv4mlYCGyRD3G8MADLuCcmQnV\nq0d+vcUSDD+xGIMRCbEMPucBv4a5TlW1VqSdlZVoG4ZJk2DIEFezuSyZgv2acWQY+ZhhMCIhZoV6\nVLWSqtYMs8XMKESb+fPdIrbp0yM3CrGMJYTD/OqFmC4Mwx+isIwrefjhB+jRA8aOhVatIrvWYgmG\nYVQUvKTESAl27XKJ8e66y/3rlUQYJQSTqgu6yoLpwgjHxx9/TMuWLWPa57p166hZs2ZKuAArhGHI\nyYHevaFTJ/j7371fZzmODKN4xo0bx4knnsghhxxCw4YN+etf/8rOnTvjJk+lSpVYs6Ywt+fpp5/O\n8uXLfekrXD3qpk2bsnv37pR4RlQIw3DnnXDgADz9tLfSnIk2SgjG/OqFmC7iw8iRIxkyZAgjR45k\n165dzJ8/nx9++IFzzz2X7OzsqPeXm5vrqV2s3tRLqkedKqS8YXjmGZg5E6ZMgYMPLr29jRIMIzy7\ndu0iIyOD0aNH07VrVypXrsxRRx3F66+/ztq1a5k4cSLgympeeuml9O7dm1q1atG2bVuWLFlScJ+S\nymrmX9uvXz9q167Nyy+/zIIFC+jQoQN169blyCOP5JZbbikwQvk1FFq3bk3NmjWZMmUKmZmZRWo6\npKWlMXLkSFq3bk2dOnXo3bt3kYysjz/+eEFJ0hdeeOF3IxAvrF27lkqVKhWUM01PT2fo0KF07tyZ\nWrVqcd5557Ft27aC9vPnz6djx47UrVuXNm3a8OGHMcsyVDplqe4T640yVnCbPdtVYVu5svS25amq\nZhjRpqy/eb95//339aCDDtLc3NzffTZgwADt06ePqrrqaQcffLC+8cYbmpOToyNGjNBmzZppTk6O\n5ubm6sknn6wPPfSQZmdn65o1a7R58+Y6a9asItdOmzZNVVV/++03XbRokX7xxReam5ura9eu1eOO\nO05HjRpV0LeI6OrVqwuO582bp40bNy44TktL01NPPVU3b96s27dv1+OOO06fffbZgu90xBFH6NKl\nS3Xv3r165ZVXaqVKlYrcL5j09PRiq8t9//33KiIFujnzzDO1RYsWunLlSv3tt980PT1dhwwZoqqq\nGzZs0MMOO0zfD5SInDNnjh522GH6888/e/yfKEq43wtlrOCWsiOGZctcmovXX4cWLUpua6MEI+kQ\nic4WIVu3bqVevXrFFuM54ogj2Lp1a8Fxu3bt6NGjB5UrV2bQoEHs27ePzz//nAULFrB161buu+8+\nDjroIJo1a8a1117L5MmTC67t2LEjF17oEjhXq1aNk08+mfbt21OpUiWOOuoorr/++ojfsG+99VaO\nOOII6tatywUXXEBWVhYAr7/+OldffTXHHXcc1atX54EHHoiKW0pEuOqqq2jRogXVqlWjV69eBX1O\nnDiR7t270y1QIrJLly60a9eO9957r9z9RoOUnK76889u5tHjj0NJlfqScfVyKqeajpQKrYs4zXyp\nV68eW7duJS8v73fGYfPmzdSvX7/gOLhcp4jQuHFjNm3ahIiUWlYztNTnihUrGDRoEIsWLWLv3r3k\n5OTQrl27iGQ/ImjhUvXq1dm8eXOB3O3btw/bd3kI7XPPnj2AK3U6ZcoUpk+fXvB5Tk5OkXKp8STl\nRgz797u1Cr16wcCB4dvZKMEwIqdDhw5UrVqVN954o8j5PXv2MHPmTM4555yCc8HlOfPy8tiwYQON\nGjUqKKu5Y8eOgm3Xrl3MmDEDKD64e9NNN3H88cezatUqdu7cycMPP1zgyy8vDRs2LCJrSWVFo0XT\npk3p169fER3s3r2bu+++2/e+vZBShkEVrr8e6teHhx8uvk0izzjyQoV9Qy4G00XsqV27NsOGDeOW\nW25h1qxZZGdns3btWnr16kWTJk3o169fQdtFixYVlOscNWoU1apV47TTTuOUU04psaxmcW6cPXv2\nULNmTWrUqMHy5ct55plninx++OGHs3r16oi+S34/vXr1YuzYsSxfvpy9e/fy0EMPlXptdnZ2QVnR\nffv2kZOTU2IfofTt25fp06cze/ZscnNz2bdvH5mZmWzcuDGi7+AXKWUYHn0Uvv0WJkxwdZtDsVGC\nYZSfu+66i+HDh3PnnXdSu3ZtTjvtNI466ijmzp3LwYGpfyLCRRddxGuvvcahhx7KK6+8wptvvknl\nypVLLatZ3IhhxIgRvPrqq9SqVYvrr7+e3r17F2mTkZHBgAEDqFu3LlOnTi11Smnw5926dePWW2/l\nrLPO4o9//CMdOnQAoGrVqmGvv+mmmwrKitaoUYOrr766xFKioX02btyYadOmMXz4cBo0aEDTpk0Z\nOXJk1EZB5SVsEr1EwksSvalT4fbbXWK8I0MGAMkYSwhHhfarh5DKukj2JHoPPPAAq1atYsKECfEW\nJWKWLVvGiSeeyIEDB4oNsiciMUuil0wsWAA33eRKc4YaBRslGEbsSTaj9tZbb7F//3527NjB4MGD\nufDCC5PGKPhB0n/z9etdFbbnn4eTTy48n+yxhHCk6htyWTBdJC7Jtjp4zJgxHH744bRo0YKDDz74\ndzGMikZSu5L27IHTT4c+fSA4mG/1EoxkJ9ldSUZsMVdSgNxct4Dt5JNdxlRI3VFCMJYfqBDThWH4\nQ9IucBsyBHbudDmQRKxegmEYRrRISlfSCy/AY4+5amw166TOjCPDyMdcSUYkxKzmcyIRbBjmzXO1\nFT76CPbWsliCkZrYy40RKUkTYxCRbiKyXERWisjgMG2eCnz+tYicVNL9VqxwRmH8Kwd4dVNqxxLC\nYX71QlJZF5Fmw5w3b17csyAnylZRdRFNfDMMIlIZGA10A44H+ojIcSFtugMtVPUY4Hog7Byx7dtd\nYrwbhi3m7lUVd11CfnZGw3QRjOmiENNF+fFzxNAeWKWqa1U1G5gMXBTS5kLgZQBV/QKoIyKHF3ez\nSy49wGGXDuPZXyveKCGYX375Jd4iJAymi0JMF4WYLsqPn7OSGgHBaQo3AKd6aNMY2BJ6s6xTTqHz\nn5rwxoU248gwDMNP/DQMXp1eoX6gYq/7Z487uK69zThau3ZtvEVIGEwXhZguCjFdlB/fZiWJyGlA\nhqp2CxzfA+Sp6mNBbZ4FMlV1cuB4OXCmqm4JuVfiT50yDMNIQLQMs5L8HDEsBI4RkTRgE3A50Cek\nzTvAzcDkgCH5JdQoQNm+mGEYhlE2fDMMqpojIjcDs4DKwIuqukxEbgh8/pyqvici3UVkFfArcJVf\n8hiGYRjeSIoFboZhGEbsSKgketFeEJfMlKYLEbkyoIMlIvKpiLSKh5yxwMvvItDuFBHJEZEesZQv\nVnj8+0gXkcUi8q2IZMZYxJjh4e+jnojMFJGsgC4GxkHMmCAiL4nIFhH5poQ2kT03471aL2jVXmVg\nFZAGHAxkAceFtOkOvBfYPxWYH2+546iLDkDtwH63iqyLoHYfADOAnvGWO06/iTrAd0DjwHG9eMsd\nR11kAI/k6wHYBhwUb9l90sfpwEnAN2E+j/i5mUgjhqguiEtyStWFqn6uqjsDh1/g1n+kIl5+FwC3\nAFOBn2MpXAzxoocrgDdUdQOAqm6NsYyxwosuNgO1Avu1gG2qmhNDGWOGqn4M7CihScTPzUQyDMUt\ndmvkoU0qPhC96CKYa4D3fJUofpSqCxFphHsw5KdUScXAmZffxDHAoSIyT0QWiki/mEkXW7zo4nng\nTyKyCfgauC1GsiUiET83E6keQ1QXxCU5nr+TiJwFXA108k+cuOJFF6OAIaqq4lZApuL0Zi96OBg4\nGTgHqAF8LiLzVXWlr5LFHi+6uBfIUtV0ETkamCMirVV1t8+yJSoRPTcTyTBsBJoEHTfBWbaS2jQO\nnEs1vOiCQMD5eaCbqpY0lExmvOiiLW4tDDh/8p9FJFtV34mNiDHBix7WA1tV9TfgNxH5CGgNpJph\n8KKLjsDDAKq6WkS+B47Fra+qaET83EwkV1LBgjgRqYJbEBf6h/0O0B8KVlYXuyAuBShVFyLSFHgT\n6Kuqq+IgY6woVReq2lxVm6lqM1yc4aYUMwrg7e9jGtBZRCqLSA1coHFpjOWMBV50sRzoAhDwpx8L\nrImplIlDxM/NhBkxqC2IK8CLLoChQF3gmcCbcraqto+XzH7hURcpj8e/j+UiMhNYAuQBz6tqyhkG\nj7+J4cBYEfka9wJ8t6puj5vQPiIik4AzgXoish4YhnMrlvm5aQvcDMMwjCIkkivJMAzDSADMMBiG\nYRhFMMNgGIZhFMEMg2EYhlEEMwyGYRhGEcwwGIZhGEUww1CBEZE8EZkQdHyQiPwsItNLuW6giDwd\nYV+TAil/y52zRkTuDTn+tLz3LKW/loH0zYtEpFnIZ3ui1MdRIhJa4TDqiMgNkeRQCiwi+yaw305E\n/lWOvh8QkXOKOZ9e2m/OiC0Js8DNiAu/4hKNVVPVfcC5uNQCpS1uiWjxi4gcAbRT1WOK+ayyquZG\ncj/gHtwCJieMqt95oi4Gpqjqw8V8Fq2FQM1w2VEnRel+xVKeBYGqupBypJRQ1WFlvdaILTZiMN4D\n/hLY74N7MAmAiBwqIm8H3vQ/F5ETQy8WkfoiMlVEvgxsHYvpYzbQKFBAprOIZIrIkyKyALhNRM4X\nkfki8pWIzBGRBoF7/0FExoorRvS1iPQQkUeA6oF7TQi02xP4V0TknyLyTeCaXoHz6YE+p4jIMhGZ\nWJwiRKRNQI6vReRNEakjIt1xmTlvEpEPwlz3f4ERxedBsherFxHJEJEJIvKZiKwQkWsDt3kUOD3w\nvW4LjCA+CoxSFolIh9K+i4i0DXy2UFyRmiOKkTVDRO4I7GeKyKMi8oWI/E9EOhf3/YKuLXizF5HD\nRGS2uCI4z4vI2sDvpWCEEWh3p4gMC+yPE5Gegf1uAfkXAZeU1K8RB+JdZMK2+G3AbuBEYApQFViM\nW1o/PfD508D9gf2zgMWB/YHA04H9V4FOgf2mwNJi+jmKoCIiwDxgdNBxnaD9a4ERgf3HgCdC2wG7\nQ79H4N+eOCMkQAPgB+AIIB34BTgy8Nln+TKH3GcJcHpg/wHgycD+MGBQGB3mAX8JkvcfJekFV0Bm\ncUDfhwHrgIbBeg+0qw5UDewfAywI7Bf7XXApED4DDgu0uxyXKiJU3oLvEvh/+Gdg/8/AnGLap+X/\n3wX6zv9tPAXcF9jvHtDDocHtA5/dAQwN7I8FegDVAt/76MD514B34v33YFvhZq6kCo6qfiMiabjR\nwrshH3fC/SGjqvMCb4k1Q9p0AY4TKcjqW1NEaqjq3qA2xaXBfi1ov4mIvI57iFehMNnZObgHXL6s\nv5TydToDr6p72vwkIh8CpwC7gC9VdROAiGThHmAFsQkRqY2riPdx4NTLOIOZL3+4VN4HVDVfb4tw\n7jgoXi+H4FxP01R1P7BfRObhCs+EfrcqwGgRaQ3k4oxDPsV9l53An4D/BvqsDGwKI3Mwbwb+/Spw\nH7AbHxgAAAJpSURBVK+cTuBNX10unpKy+0rIfkvge1VdHTg3Ebg+gr4NnzHDYIDLvjgC99ZaP+Sz\n0vK4C3Cqqh6IsM9fg/afxo0SZojImbi36nD9l4QW0z5f3v1B53Ip/bcffJ+S4gjZQft5QfctVi9B\nhiKYvGLO3Q5sVtV+IlIZ2Bf0Wbjv8p2qFufKK4n8e3nRSSjFfZkcirqoq/N7/RX3GzISCIsxGAAv\nARmq+l3I+Y+BK8H5l4GfVTV0Fs5s4Nb8AxFp47HP4IdBLQrfbgcGnZ8D/C3o3nUCu9kiUtxD7GPg\nchGpJCL1gTOAL/Hw4FFXJnVHkJ+9H5BZjKxeCacXAS4SkaoichjOPbMA59YLHo3VAn4M7PfHjQDC\nig/8D6gvLq0yInKwiBwfpn00HsQf4YLliMifcZl+AbYADQLxhqrA+cXIuhxIE5HmgXO+z8YyIsMM\nQ8VGAVR1o6qODjqX/0aXAbQVl7p4ODCgmDa3Au0CAdvvCO8SKOmtMQOYIiILcTWb8z/7P6BuIJic\nhXuIAowBlkjhVNv87/EWLk7wNTAXuEtVfwqRN5w8BL7fPwPftxXwYDHft6Tv5UUvGpBxHvA58KCq\n/hg4lxsIYt8G/AcYEPjexwJ7QvopKoSrfXwp8FjgmsVABw8yR3o+f/8B4AwR+RbnUloXJMeDOIM8\nm2LqQQTcaNcD7waCz1tK6NuIA5Z22zBiSGCGzh5VHRlvWaKJuAppbTVFax5UNGzEYBixJxXfxlLx\nO1VYbMRgGIZhFMFGDIZhGEYRzDAYhmEYRTDDYBiGYRTBDINhGIZRBDMMhmEYRhHMMBiGYRhF+H9x\nzM+VsnViXQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xafecc50>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mole fraction of heptane in vapour phase %f \n",
+ "0.575\n",
+ "mole fraction of heptane in liquid phase %f\n",
+ "0.387\n",
+ "Temperature is %d degree C\n",
+ "113\n"
+ ]
+ }
+ ],
+ "prompt_number": 73
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.5: Page 366"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.5\n",
+ "# Page: 366\n",
+ "\n",
+ "print'Illustration 9.5 - Page: 366\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "import pylab\n",
+ "import numpy.linalg as lin\n",
+ "#****Data****#\n",
+ "Pt = 760.0;# [mm Hg]\n",
+ "zFa = 0.5;# [mol fraction benzene]\n",
+ "zFb = 0.25;# [mol fraction toulene]\n",
+ "zFc = 0.25;# [mol fraction o-xylene]\n",
+ "#********#\n",
+ "\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol feed]\n",
+ "# For Summtion of Yd_star to be unity, W/D = 2.08 \n",
+ "# The Eqn.are \n",
+ "# (1): W+D = F \n",
+ "# (2): W-2.08D = 0\n",
+ "a =numpy.array([[1.0 ,1.0],[1.0 ,-2.08]]);\n",
+ "b = numpy.array([[F*1.0],[0]]);\n",
+ "soln = lin.solve(a,b)\n",
+ "W = soln[0];\n",
+ "D = soln[1];\n",
+ "Sub = ['A','B','C'];\n",
+ "p =numpy.array([1370 ,550, 200]);# [mm Hg]\n",
+ "m = numpy.zeros(3);\n",
+ "zF = [zFa ,zFb, zFc];# [Given]\n",
+ "yd_star = numpy.array([0,0,0]);\n",
+ "xW = numpy.zeros(3);\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " m[i] = p[i]/Pt;\n",
+ " yd_star[i]=(zF[i])*((W/D)+1)#/(1+(W/(D*m[i])));\n",
+ " xW[i] = yd_star[i]/m[i];\n",
+ "\n",
+ "print\"\\t \\t \\t \\t \\t \\t \\t \\t At W/D = 2.08\\n\\n\\n\"\n",
+ "print\"Substance \\t \\t p(mm Hg)\\t \\t m\\t \\t \\t \\t \\t \\t \\t \\t \\t \\t zF\\t \\t \\t \\t \\t \\t \\t yd*\\t\\t\\t\\t\\t\\txW\\n\"\n",
+ "for i in range(0,3):\n",
+ " print \"\\n\",Sub[i],\" \\t \\t \\t \\t \",p[i],\"\\t \\t \\t \\t \",m[i],\"\\t \\t \\t\",m[i],\"\\t \\t \\t\",zF[i],\" \\t \\t \\t\",yd_star[i],\"\\t\",xW[i]\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.5 - Page: 366\n",
+ "\n",
+ "\n",
+ "\t \t \t \t \t \t \t \t At W/D = 2.08\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Substance \t \t p(mm Hg)\t \t m\t \t \t \t \t \t \t \t \t \t zF\t \t \t \t \t \t \t yd*\t\t\t\t\t\txW\n",
+ "\n",
+ "\n",
+ "A \t \t \t \t 1370 \t \t \t \t 1.80263157895 \t \t \t1.80263157895 \t \t \t0.5 \t \t \t1 \t0.554744525547\n",
+ "\n",
+ "B \t \t \t \t 550 \t \t \t \t 0.723684210526 \t \t \t0.723684210526 \t \t \t0.25 \t \t \t0 \t0.0\n",
+ "\n",
+ "C \t \t \t \t 200 \t \t \t \t 0.263157894737 \t \t \t0.263157894737 \t \t \t0.25 \t \t \t0 \t0.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 74
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.6: Page 370"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.6\n",
+ "# Page: 370\n",
+ "\n",
+ "print'Illustration 9.6 - Page: 370\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol]\n",
+ "xF = 0.5;\n",
+ "D = 0.6*100;# [mol]\n",
+ "#******#\n",
+ "\n",
+ "W = F-D;# [mol]\n",
+ "# From Illustration 9.1:\n",
+ "alpha = 2.16;# [average value of alpha]\n",
+ "# From Eqn.9.46;\n",
+ "def f45(xW):\n",
+ " return math.log(F*xF/(W*xW))-(alpha*math.log(F*(1-xF)/(W*(1-xW))))\n",
+ "xW = fsolve(f45,0.5);# [mole fraction heptane]\n",
+ "def f46(yD):\n",
+ " return F*xF-((D*yD)+(W*xW))\n",
+ "yD = fsolve(f46,100);# [mole fraction heptane]\n",
+ "print\"Mole Fraction of heptane in the distillate is \",round(yD,3),\"\\n\"\n",
+ "print\"Mole Fraction of heptane in the residue is \",round(xW,3),\" \\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.6 - Page: 370\n",
+ "\n",
+ "\n",
+ "Mole Fraction of heptane in the distillate is 0.615 \n",
+ "\n",
+ "Mole Fraction of heptane in the residue is 0.328 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 75
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.7: Page 371"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.7\n",
+ "# Page: 371\n",
+ "from scipy.optimize import fsolve\n",
+ "print'Illustration 9.7 - Page: 371\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:benzene b:toulene c:o-xylene\n",
+ "# Assume:\n",
+ "Bt = 100.0;#[OC]\n",
+ "pa = 1370.0;# [mm Hg]\n",
+ "pb = 550.0;# [mm Hg]\n",
+ "pc = 200.0;# [mm Hg]\n",
+ "xFa = 0.5;# [mole fraction]\n",
+ "xFb = 0.25;# [mole fraction]\n",
+ "xFc = 0.25;# [mole fraction]\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol]\n",
+ "D = 32.5;# [mol]\n",
+ "#*******#\n",
+ "\n",
+ "ref = pb;\n",
+ "alpha_a = pa/ref;\n",
+ "alpha_b = pb/ref;\n",
+ "alpha_c = pc/ref;\n",
+ "W = F-D;# [mol]\n",
+ "xbW = 0.3;# [mol]\n",
+ "xaW = 0.4;# [mol]\n",
+ "xcW = 0.3;# [mol]\n",
+ "err = 1.0;\n",
+ "while(err>(10**(-1))):\n",
+ " # From Eqn. 9.47:\n",
+ " def f47(xaW):\n",
+ " return math.log(F*xFa/(W*xaW))-(alpha_a*math.log(F*xFb/(W*xbW)))\n",
+ " xaW = fsolve(f47,xbW);\n",
+ " def f48(xcW):\n",
+ " return math.log(F*xFc/(W*xcW))-(alpha_c*math.log(F*xFb/(W*xbW)))\n",
+ " xcW = fsolve(f48,xbW);\n",
+ " xbW_n = 1-(xaW+xcW);\n",
+ " err = abs(xbW-xbW_n);\n",
+ " xbw = xbW_n;\n",
+ "\n",
+ "# Material balance:\n",
+ "# for A:\n",
+ "def f49(yaD):\n",
+ " return F*xFa-((D*yaD)+(W*xaW))\n",
+ "yaD = fsolve(f49,100);# [mole fraction benzene]\n",
+ "# For B:\n",
+ "def f50(ybD):\n",
+ " return F*xFb-((D*ybD)+(W*xbW))\n",
+ "ybD = fsolve(f50,100);# [mole fraction toulene]\n",
+ "# For C:\n",
+ "def f51(ycD):\n",
+ " return F*xFc-((D*ycD)+(W*xcW))\n",
+ "ycD = fsolve(f51,100);# [mole fraction o-xylene]\n",
+ "print\"The residual compositions are:\\n\"\n",
+ "print\"Benzene:\\n\",round(xaW,3)\n",
+ "print\"Toulene:\\n\",round(xbW,3)\n",
+ "print\"o-xylene:\\n\",round(xcW,3)\n",
+ "print\"\\n The composited distillate compositions are:\\n\"\n",
+ "print\"Benzene:\\n\",round(yaD,3)\n",
+ "print\"Toulene:\\n\",round(ybD,3)\n",
+ "print\"o-xylene:\\n\",round(ycD,3)\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.7 - Page: 371\n",
+ "\n",
+ "\n",
+ "The residual compositions are:\n",
+ "\n",
+ "Benzene:\n",
+ "0.438\n",
+ "Toulene:\n",
+ "0.3\n",
+ "o-xylene:\n",
+ "0.343\n",
+ "\n",
+ " The composited distillate compositions are:\n",
+ "\n",
+ "Benzene:\n",
+ "0.628\n",
+ "Toulene:\n",
+ "0.146\n",
+ "o-xylene:\n",
+ "0.057\n"
+ ]
+ }
+ ],
+ "prompt_number": 76
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.8: Page 388"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.8\n",
+ "# Page: 388\n",
+ "\n",
+ "print'Illustration 9.8 - Page: 388\\n\\n'\n",
+ "import numpy.linalg as lin\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a:methanol b:water\n",
+ "Xa = 0.5;# [Wt fraction]\n",
+ "Temp1 = 26.7;# [OC]\n",
+ "Temp2 = 37.8;# [OC]\n",
+ "F1 = 5000.0;# [kg/hr]\n",
+ "#******#\n",
+ "\n",
+ "#(a)\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "Xa = 0.5;# [Wt fraction]\n",
+ "Xb = 1-Xa;# [Wt fraction]\n",
+ "Temp1 = 26.7;# [OC]\n",
+ "Temp2 = 37.8;# [OC]\n",
+ "F1 = 5000.0;# [kg/hr];\n",
+ "# Basis: 1hr\n",
+ "F = (F1*Xa/Ma)+(F1*Xb/Mb);# [kmol/hr]\n",
+ "# For feed:\n",
+ "zF = (F1*Xa/Ma)/F;# [mole fracton methanol]\n",
+ "MavF = F1/F;# [kg/kmol]\n",
+ "# For distillate:\n",
+ "xD = (95/Ma)/((95/Ma)+(5/Mb));# [mole fraction methanol]\n",
+ "MavD = 100.0/((95/Ma)+(5/Mb));# [kg/kmol]\n",
+ "# For residue:\n",
+ "xW = (1/Ma)/((1/Ma)+(99/Mb));# [mole fraction methanol]\n",
+ "MavR = 100/((1/Ma)+(99/Mb));# [kg/kmol]\n",
+ "# (1): D+W = F [Eqn.9.75]\n",
+ "# (2): D*xD+W*xW = F*zF [Eqn. 9.76]\n",
+ "# Solvving simultaneously:\n",
+ "a = numpy.array([[1.0 ,1.0],[xD ,xW]]);\n",
+ "b = numpy.array([F,F*zF]);\n",
+ "soln = lin.solve(a,b);\n",
+ "D = soln[0];# [kmol/h]\n",
+ "W = soln[1];# [kmol/h]\n",
+ "print\"Quantity of Distillate is\", round(D*MavD),\" kg/hr\\n\"\n",
+ "print\"Quantity of Residue is \",round(W*MavR),\" kg/hr\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (b)\n",
+ "# For the vapour-liquid equilibria:\n",
+ "Tempo = 19.69;# [Base Temp. according to \"International Critical Tables\"]\n",
+ "BtR = 99.0;# [Bubble point of the residue, OC]\n",
+ "hR = 4179.0;# [J/kg K]\n",
+ "hF = 3852.0;# [J/kg K]\n",
+ "def f52(tF):\n",
+ " return (F1*hF*(tF-Temp1))-((W*MavR)*hR*(BtR-Temp2))\n",
+ "tF = fsolve(f52,Temp1);# [OC]\n",
+ "BtF = 76.0;# [Bubble point of feed, OC]\n",
+ "# For the feed:\n",
+ "delta_Hs = -902.5;# [kJ/kmol]\n",
+ "Hf = ((hF/1000.0)*MavF*(tF-Tempo))+delta_Hs;# [kJ/kmol]\n",
+ "# From Fig 9.27:\n",
+ "HD = 6000.0;# [kJ/kmol]\n",
+ "HLo = 3640.0;# [kJ/kmol]\n",
+ "HW = 6000.0;# [kJ/kmol]\n",
+ "print\"The enthalpy of feed is \",round(Hf),\" kJ/kmol\\n\"\n",
+ "print\"The enthalpy of the residue is \",round(HW),\" kJ/kmol\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (c)\n",
+ "# From Fig.9.27:\n",
+ "# The miium reflux ratio is established by the tie line (x = 0.37 y = 0.71), which extended pass through F,the feed.\n",
+ "# At Dm:\n",
+ "Qm = 62570.0;# [kJ/kmol]\n",
+ "Hg1 = 38610.0;# [kJ/kmol]\n",
+ "# From Eqn. 9.65:\n",
+ "Rm = (Qm-Hg1)/(Hg1-HLo);\n",
+ "print\"The minimum reflux ratio is \",round(Rm,4),\"\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (d)\n",
+ "# From Fig. 9.28:\n",
+ "Np = 4.9;\n",
+ "# But it include the reboiler.\n",
+ "Nm = Np-1;\n",
+ "print\"The minimum number of theoretical trays required is \",round(Nm),\" \\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (e)\n",
+ "R = 1.5*Rm;\n",
+ "# Eqn. 9.65:\n",
+ "def f53(Q_prime):\n",
+ " return R-((Q_prime-Hg1)/(Hg1-HLo))\n",
+ "Q_prime = fsolve(f53,2);# [kJ/kmol]\n",
+ "def f54(Qc):\n",
+ " return Q_prime-(HD+(Qc/D))\n",
+ "Qc = fsolve(f54,2);# [kJ/hr]\n",
+ "Qc = Qc/3600.0;# [kW]\n",
+ "print\"The Condensor heat load is \",round(Qc),\" kW\\n\"\n",
+ "# From Eqn. 9.77:\n",
+ "def f55(Q_dprime):\n",
+ " return (F*Hf)-((D*Q_prime)+(W*Q_dprime))\n",
+ "Q_dprime = fsolve(f55,2);\n",
+ "def f56(Qb):\n",
+ " return Q_dprime-(HW-(Qb/W))\n",
+ "Qb = fsolve(f56,2);# [kJ/hr]\n",
+ "Qb = Qb/3600.0;# [kW]\n",
+ "print\"The Reboiler heat load is \",round(Qb),\" kW\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (f)\n",
+ "# From Fig: 9.28\n",
+ "Np = 9.0;\n",
+ "# But it is including the reboiler\n",
+ "print\"No. of theoretical trays in tower is\",Np-1,\"\\n\",\n",
+ "G1 = D*(R+1);# [kmol/hr]\n",
+ "Lo = D*R;# [kmol/hr]\n",
+ "# From Fig. 9.28:\n",
+ "# At the feed tray:\n",
+ "x4 = 0.415;\n",
+ "y5 = 0.676;\n",
+ "x5 = 0.318;\n",
+ "y6 = 0.554;\n",
+ "# From Eqn. 9.64:\n",
+ "def f57(L4):\n",
+ " return (L4/D)-((xD-y5)/(y5-x4))\n",
+ "L4 = fsolve(f57,2);# [kmol/hr]\n",
+ "# From Eqn. 9.62:\n",
+ "def f58(G5):\n",
+ " return (L4/G5)-((xD-y5)/(xD-x4))\n",
+ "G5 = fsolve(f58,2);# [kmol/hr]\n",
+ "# From Eqn. 9.74:\n",
+ "def f59(L5_bar):\n",
+ " return (L5_bar/W)-((y6-xW)/(y6-x5))\n",
+ "L5_bar = fsolve(f59,2);# [kmol/hr]\n",
+ "# From Eqn. 9.72:\n",
+ "def f60(G6_bar):\n",
+ " return (L5_bar/G6_bar)-((y6-xW)/(x5-xW))\n",
+ "G6_bar = fsolve(f60,2);# [kmol/hr]\n",
+ "# At the bottom:\n",
+ "# Material Balance:\n",
+ "# Eqn. 9.66:\n",
+ "# (1): L8_bar-GW_bar = W;\n",
+ "# From Fig. 9.28:\n",
+ "yW = 0.035;\n",
+ "x8 = 0.02;\n",
+ "# From Eqn. 9.72:\n",
+ "L8ByGW_bar = (yW-xW)/(x8-xW);\n",
+ "# (2): L8_bar-(L8ByGW_bar*Gw_bar) = 0\n",
+ "a = numpy.array([[1 ,-1],[1 ,-L8ByGW_bar]]);\n",
+ "b = numpy.array([W,0]);\n",
+ "soln = lin.solve(a,b)\n",
+ "L8_bar = soln[0];# [kmol/h]\n",
+ "GW_bar = soln[1];# [kmol/h]\n",
+ "print\"The Liquid quantity inside the tower is \",round(L8_bar),\" kmol/hr\\n\"\n",
+ "print\"The vapour quantity inside the tower is \",round(GW_bar),\" kmol/hr\\n\"\n",
+ "# The answers are slightly different in textbook due to approximation while in python the answers are precise\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.8 - Page: 388\n",
+ "\n",
+ "\n",
+ "Quantity of Distillate is 2606.0 kg/hr\n",
+ "\n",
+ "Quantity of Residue is 2394.0 kg/hr\n",
+ "\n",
+ "\n",
+ "\n",
+ "The enthalpy of feed is 2545.0 kJ/kmol\n",
+ "\n",
+ "The enthalpy of the residue is 6000.0 kJ/kmol\n",
+ "\n",
+ "\n",
+ "\n",
+ "The minimum reflux ratio is 0.6852 \n",
+ "\n",
+ "\n",
+ "\n",
+ "The minimum number of theoretical trays required is 4.0 \n",
+ "\n",
+ "\n",
+ "\n",
+ "The Condensor heat load is 1609.0 kW\n",
+ "\n",
+ "The Reboiler heat load is 1817.0 kW\n",
+ "\n",
+ "\n",
+ "\n",
+ "No. of theoretical trays in tower is 8.0 \n",
+ "The Liquid quantity inside the tower is 259.0 kmol/hr\n",
+ "\n",
+ "The vapour quantity inside the tower is 127.0 kmol/hr\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 77
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.9: Page 395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 9.9\n",
+ "# Page: 395\n",
+ "\n",
+ "print'Illustration 9.9 - Page: 395\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import scipy\n",
+ "import numpy\n",
+ "import numpy.linalg as lin\n",
+ "\n",
+ "#****Data****#\n",
+ "P = 695.0;# [kN/square m]\n",
+ "#********#\n",
+ "\n",
+ "# a:methanol b:water\n",
+ "# From Illustration 9.8:\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "F = 216.8;# [kmol/h]\n",
+ "Tempo = 19.7;# [OC]\n",
+ "zF = 0.360;# [mole fraction methanol]\n",
+ "HF = 2533;# [kJ/kmol]\n",
+ "D = 84.4;# [kkmol/h]\n",
+ "zD = 0.915;# [mole fraction methanol]\n",
+ "HD = 3640.0;# [kJ/kmol]\n",
+ "Qc = 5990000.0;# [kJ/h]\n",
+ "# Since the bottom will essentially be pure water:\n",
+ "HW = 6094.0;# [kJ/kmol]\n",
+ "# From Steam tables:\n",
+ "Hs = 2699.0;# [enthalpy of saturated steam, kJ/kg]\n",
+ "hW = 4.2*(Tempo-0);# [enthalpy of water, kJ/kg]\n",
+ "HgNpPlus1 = (Hs-hW)*Mb;# [kJ/kmol]\n",
+ "# (1): GNpPlus1-W = D-F [From Eqn. 9.86]\n",
+ "# (2): (GNpPlus1*HgNpPlus1)-(W*HW) = (D*HD)+Qc-(F*HF) [From Eqn. 9.88]\n",
+ "a = numpy.array([[1 ,-1],[HgNpPlus1 ,-HW]]);\n",
+ "b = numpy.array([[D-F],[(D*HD)+Qc-(F*HF)]]);\n",
+ "soln=lin.solve(a,b)\n",
+ "GNpPlus1 = soln[0];# [kmol/h]\n",
+ "W = soln[1];# [kmol/h]\n",
+ "# From Eqn. 9.87:\n",
+ "def f61(xW):\n",
+ " return (F*zF)-((D*zD)+(W*xW))\n",
+ "xW = fsolve(f61,2);\n",
+ "# The enthalpy of the solution at its bubble point is 6048 kJ/kmol, sufficiently closed to 6094 assumed earlier.\n",
+ "# For delta_w:\n",
+ "xdelta_w = W*xW/(W-GNpPlus1);\n",
+ "Q_dprime = ((W*HW)-(GNpPlus1*HgNpPlus1))/(W-GNpPlus1);# [kJ/kmol]\n",
+ "# From Fig 9.27 ad Fig. 9.28, and for the stripping section:\n",
+ "Np = 9.5;\n",
+ "print\"Steam Rate: \",round(GNpPlus1,1),\"kmol/h\\n\"\n",
+ "print\"Bottom Composition: xW:\",round(xW,5),\"\\n\"\n",
+ "print\"Number of theoretical stages: \",Np,\"\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.9 - Page: 395\n",
+ "\n",
+ "\n",
+ "Steam Rate: 159.7 kmol/h\n",
+ "\n",
+ "Bottom Composition: xW: 0.00281 \n",
+ "\n",
+ "Number of theoretical stages: 9.5 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 78
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.10: Page 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.10\n",
+ "# Page: 412\n",
+ "\n",
+ "print'Illustration 9.10 - Page: 412\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# a:methanol b:water\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# Feed:\n",
+ "F1 = 5000;# [kg/h]\n",
+ "F = 216.8;# [kmol/h]\n",
+ "Tempo = 19.7;# [OC]\n",
+ "zF = 0.360;# [mole fraction methanol]\n",
+ "MavF = 23.1;# [kg/kmol]\n",
+ "Tempf = 58.3;# [OC]\n",
+ "# Distillate:\n",
+ "D1 = 2620;# [kg/h]\n",
+ "D = 84.4;# [kkmol/h]\n",
+ "xD = 0.915;# [mole fraction methanol]\n",
+ "# Residue:\n",
+ "R1 = 2380;# [kg/h]\n",
+ "R = 132.4;# [kmol/h]\n",
+ "xW = 0.00565;# [mole fraction methanol]\n",
+ "\n",
+ "# From Fig. 9.42 (Pg 413):\n",
+ "BtF = 76.0;# [Bubble point if the feed, OC]\n",
+ "DtF = 89.7;# [Dew point of the feed, OC]\n",
+ "# Latent heat of vaporisation at 76 OC\n",
+ "lambda_a = 1046.7;# [kJ/kg]\n",
+ "lambda_b = 2284;# [kJ/kg]\n",
+ "ha = 2.721;# [kJ/kg K]\n",
+ "hb = 4.187;# [kJ/kg K]\n",
+ "hF = 3.852;# [kJ/kg K]\n",
+ "# If heats of solution is ignaored:\n",
+ "# Enthalpy of the feed at the bubble point referred to the feed temp.\n",
+ "HF = hF*MavF*(BtF-Tempf);# [kJ/kmol]\n",
+ "# enthalpy of the saturated vapour at dew point referred to the liquid at feed temp.\n",
+ "HL = (zF*((ha*Ma*(DtF-Tempf))+(lambda_a*Ma)))+((1-zF)*((hb*Mb*(DtF-Tempf))+(lambda_b*Mb)));# [kJ/kmol]\n",
+ "q = HL/(HL-HF);\n",
+ "slope = q/(q-1);\n",
+ "# In fig. 9.42: xD,xW & zF are located on the 45 degree diagonal & the q line is drawn with slope = 'slope' .\n",
+ "# The operating line for minimum reflux ratio in this case pass through the intersection of the q line and the equilibrium curve.\n",
+ "ordinate = 0.57;\n",
+ "def f62(Rm):\n",
+ " return ordinate-(xD/(Rm+1))\n",
+ "Rm = fsolve(f62,0);# [mole reflux/mole distillate]\n",
+ "# from fig. 9.42 (Pg 413):\n",
+ "# The minimum number of theoretical trays is determied using the 45 degree diagonal as operating line.\n",
+ "Np = 4.9;# [including the reboiler]\n",
+ "R = 1.5*Rm;# [mole reflux/mole distillate]\n",
+ "# From Eqn. 9.49:\n",
+ "L = R*D;# [kmol/h]\n",
+ "# From Eqn. 9.115:\n",
+ "G = D*(R+1);# [kmol/h]\n",
+ "# From Eqn. 9.126:\n",
+ "L_bar = (q*F)+L;# [kmol/h]\n",
+ "# From Eqn. 9.127:\n",
+ "G_bar = (F*(q-1))+G;# [kmol/h]\n",
+ "ordinateN = xD/(R+1);\n",
+ "# As in Fig. 9.43:\n",
+ "# The y-intercept = ordinateN and enriching and exhausting operating lines are plotted.\n",
+ "# Number of theoretical stages are determined.\n",
+ "NpN = 8.8;# [including the reboiler]\n",
+ "print\"Number of theoretical stages is \",NpN-1,\"\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.10 - Page: 412\n",
+ "\n",
+ "\n",
+ "Number of theoretical stages is 7.8 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 79
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.11: Page 423"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.11\n",
+ "# Page: 423\n",
+ "\n",
+ "print'Illustration 9.11 - Page: 423\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# a:ethanol b:water\n",
+ "zF = 0.3;\n",
+ "xa = 0.3;# [mole fraction of ethanol]\n",
+ "Temp = 78.2;# [OC]\n",
+ "Ao = 0.0462;# [Area of perforations,square m]\n",
+ "t = 0.450;# [m]\n",
+ "#******#\n",
+ "\n",
+ "Ma = 46.05;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "xb = 1-xa;# [mole fraction of water]\n",
+ "ma = 0.3*Ma/((0.3*Ma)+(xb*Mb));# [mass fraction of ethanol]\n",
+ "mb = 1-ma;# [mass fraction of water]\n",
+ "\n",
+ "\n",
+ "# Feed:\n",
+ "F1 = 910.0;# [kg/h]\n",
+ "Xa = F1*ma/Ma;# [moles of ethanol]\n",
+ "Xb = F1*mb/Mb;# [moles of water]\n",
+ "F = Xa+Xb;# [Total moles]\n",
+ "# Distillate:\n",
+ "xD = 0.80;# [mole fraction of ethanol]\n",
+ "# If essentially all the ethanol is removed from the residue:\n",
+ "D = Xa/xD;# [kmol/h]\n",
+ "MavD = (xD*Ma)+((1-xD)*Mb);# [kg/kmol]\n",
+ "D1 = D*MavD;# [kg/h]\n",
+ "Density_G = (MavD/22.41)*(273.0/(273+Temp));# [kg/cubic meter]\n",
+ "Density_L = 744.9;# [kg/cubic meter]\n",
+ "sigma = 0.021;# [N/m]\n",
+ "\n",
+ "# From Table 6.2,Pg 169:\n",
+ "alpha = (0.0744*t)+0.01173;\n",
+ "beeta = (0.0304*t)+0.015;\n",
+ "At = math.pi*(0.760**2)/4;# [Tower cross sectional Area, square m]\n",
+ "WByT = 530.0/760;# [Table 6.1, Pg 162]\n",
+ "Ad = 0.0808*At;# [Downspout area,square m]\n",
+ "Aa = At-(2*Ad);# [Active area,square m]\n",
+ "# abcissa = (L/G)*(density_G/Density_L)^0.5\n",
+ "# Assume:\n",
+ "abcissa = 0.1;\n",
+ "# From Eqn.6.30:\n",
+ "Cf = (alpha*math.log10(1/abcissa)+beeta)*(sigma/0.020)**0.2;\n",
+ "# From Eqn. 6.29:\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1.0/2);# [m/s]\n",
+ "An = At-Ad;# [square m]\n",
+ "R = 3.0;# [Reflux Ratio]\n",
+ "G = D*(R+1);\n",
+ "G1 = (G*22.41/3600)*((273.0+Temp)/273);# [cubic meter/s]\n",
+ "V = G1/An;# [Vapour velocity,m/s]\n",
+ "percent = (V/Vf)*100;\n",
+ "# Vapour velocity is 58 percent of flooding velocity (amply safe)\n",
+ "L = R*D;# [kmol/h]\n",
+ "L1 = L*MavD;# [kg/h]\n",
+ "abcissa = (L1/(G1*3600.0*Density_G))*(Density_G/Density_L)**0.5;\n",
+ "# Since the value of abcissa is less than0.1, the calculaed value of Cf is correct.\n",
+ "# Since the feed is at the buubble point.\n",
+ "q = 1;\n",
+ "# From Eqn. 9.126:\n",
+ "L_bar = L+(q*F);# [kmol/h]\n",
+ "# From Eqn. 9.127:\n",
+ "G_bar = G+F*(q-1);# [kmol/h]\n",
+ "# The enthalpy of saturated steam,referred to 0 OC,69 kN/square m:\n",
+ "HGNpPlus1 = 2699.0;# [kN m/kg]\n",
+ "# This will be the enthalpy as it enters the tower if expanded adiabatically to the tower pressure\n",
+ "# The enthalpy of steam at 1 std. atm:\n",
+ "HGsat = 2676.0;# [kN m/kg]\n",
+ "Lambda = 2257.0;# [kN m/kg]\n",
+ "# From Eqn. 9.140:\n",
+ "def f63(GNpPlus1_bar):\n",
+ " return G_bar-(GNpPlus1_bar*(1+((HGNpPlus1-HGsat)*Mb/(Lambda*Mb))))\n",
+ "GNpPlus1_bar = fsolve(f63,7);\n",
+ "# From Eqn. 9.141:\n",
+ "LNp_bar = L_bar-(G_bar-GNpPlus1_bar);\n",
+ "\n",
+ "# Tray Efficiencies:\n",
+ "# Consider the situation:\n",
+ "x = 0.5;\n",
+ "y_star = 0.962;\n",
+ "Temp = 79.8;# [OC]\n",
+ "# This is in the enriching section.\n",
+ "Density_L = 791;# [kg/cubic meter]\n",
+ "Density_G = 1.253;# [kg/cubic meter]\n",
+ "# From equilibrium data:\n",
+ "m = 0.42;\n",
+ "A = L/(m*G);\n",
+ "# From chapter 2:\n",
+ "ScG = 0.930;\n",
+ "Dl = 2.065*10**(-9);# [square m/s]\n",
+ "# For L = 38.73 kmol/h\n",
+ "q = 4.36*10**(-4);# [cubic meter/s]\n",
+ "# For G = 51.64 kmol/h\n",
+ "Va = 1.046;# [m/s]\n",
+ "# From tray dimensions:\n",
+ "z = 0.647;# [m]\n",
+ "Z = 0.542;# [m]\n",
+ "hW = 0.06;# [m]\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/(ScG**0.5);\n",
+ "# From Eqn. 6.38\n",
+ "hL = 6.10*10**(-3)+(0.725*hW)-(0.238*hW*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "# From Eqn. 6.64:\n",
+ "thetha_L = hL*z*Z/q;# [s]\n",
+ "# From Eqn. 6.62:\n",
+ "NtL = 40000*(Dl**0.5)*((0.213*Va*Density_G**0.5)+0.15)*thetha_L;\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1/((1/NtG)+(1/(A*NtL)));\n",
+ "# From Eqn. 6.51:\n",
+ "EoG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.63:\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thetha_L);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2)*((1+(4*m*G1*EoG/(L1*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EoG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+((math.exp(eta)-1)/(eta*(1+(eta/(eta+Pe))))));\n",
+ "# Entrainment is neglible:\n",
+ "# Similarly for other x\n",
+ "# Value = [x Entrainment]\n",
+ "#Value = [0 0.48;0.1 .543;0.3 0.74;0.5 EMG;0.7 0.72];\n",
+ "\n",
+ "# Tray Calculation:\n",
+ "op_intercept = xD/(R+1);\n",
+ "# From Fig. 9.48:\n",
+ "# The exhausting section operating line, on this scale plot, for all practical purposes passes through the origin.\n",
+ "# The broken curve is located so that, at each concentration, vertical distances corresponding to lines BC and AC are in the ratio of EMG.\n",
+ "# This curve is used instead of equilibrium trays to locate the ideal trays.\n",
+ "# The feed tray is thirteenth.\n",
+ "x14 = 0.0150;\n",
+ "alpha = 8.95;\n",
+ "EMG = 0.48;\n",
+ "A_bar = L_bar/(alpha*G_bar);\n",
+ "# From Eqn. 8.16:\n",
+ "Eo = math.log(1+(EMG*((1/A_bar)-1)))/math.log(1/A_bar);\n",
+ "# The 6 real trays corresponds to: \n",
+ "NRp = 6*Eo;\n",
+ "xW = 0.015/((math.exp(NRp*math.log(1/A_bar))-A_bar)/(1-A_bar));# [mole fraction ethanol]\n",
+ "# This corresponds to ethanol loss of 0.5 kg/day.\n",
+ "print\"The mole fraction of ethanol in residue is\",round(xW,8)\n",
+ "print\"The Reflux ratio of \",R,\" will cause the ethanol loss of 0.5 kg/day\\n\"\n",
+ "print\"Larger reflux ratios would reduce this, but the cost of additional steam will probaby make them not worthwile.\\n\"\n",
+ "print\"Smaller values of R, with corresponding reduced steam cost and larger ethanol loss, should be considered, but care must be taken to ensure vapour velocities above the weeping velocities.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.11 - Page: 423\n",
+ "\n",
+ "\n",
+ "The mole fraction of ethanol in residue is 6.28e-06\n",
+ "The Reflux ratio of 3.0 will cause the ethanol loss of 0.5 kg/day\n",
+ "\n",
+ "Larger reflux ratios would reduce this, but the cost of additional steam will probaby make them not worthwile.\n",
+ "\n",
+ "Smaller values of R, with corresponding reduced steam cost and larger ethanol loss, should be considered, but care must be taken to ensure vapour velocities above the weeping velocities.\n"
+ ]
+ }
+ ],
+ "prompt_number": 83
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex-9.12: Pg- 429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 9.12\n",
+ "# Page: 429\n",
+ "\n",
+ "print'Illustration 9.12 - Page: 429\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "# a:methanol b:water\n",
+ "# Vapour and liquid quantities throughout the tower, as in Illustration 9.8, with the Eqn. 9.62, 9.64, 9.72, 9.74:\n",
+ "# Data = [x tL(OC) y tG(OC) Vapor(kmol/h) Vapor(kg/h) Liquid(kmol/h) Liquid(kg/h)]\n",
+ "Ma = 34.02;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "Temp = 78.7;# [OC]\n",
+ "x = numpy.array([0.915, 0.600 ,0.370, 0.370, 0.200, 0.100, 0.02]);\n",
+ "y = numpy.array([0.915, 0.762, 0.656, 0.656, 0.360 ,0.178, 0.032]);\n",
+ "\n",
+ "plt.plot(x,y);\n",
+ "plt.grid('on');\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"mole fraction of methanol in liquid\");\n",
+ "ax.set_ylabel(\"mole fraction of methanol in vapour\");\n",
+ "plt.title(\"Operating Line curve\");\n",
+ "plt.legend(loc=\"lower right\")\n",
+ "plt.show()\n",
+ "#x = 0.370: the dividing point between stripping and enriching section\n",
+ "tL =numpy.array([66, 71, 76, 76, 82, 87, 96.3]);# [Bubble point, OC]\n",
+ "tG = numpy.array([68.2 ,74.3 ,78.7 ,78.7 ,89.7 ,94.7 ,99.3]);# [Dew Point, OC]\n",
+ "Vapor = numpy.array([171.3, 164.0 ,160.9, 168.6, 161.6, 160.6, 127.6]);# [kmol/h]\n",
+ "Vapor1 = numpy.array([5303, 4684, 4378, 4585, 3721, 3296 ,2360]);# [kg/h]\n",
+ "Liquid = numpy.array([86.7 ,79.6 ,76.5 ,301, 294, 293, 260]);# [kmol/h]\n",
+ "Liquid1 = numpy.array([2723, 2104, 1779 ,7000, 6138, 5690 ,4767]);# [kg/h]\n",
+ "Data = numpy.zeros(shape=(7,8));\n",
+ "for j in range(1,7):\n",
+ " Data[j,0]= x[j];\n",
+ " Data[j,1]= tL[j];\n",
+ " Data[j,2]= y[j];\n",
+ " Data[j,3]= tG[j];\n",
+ " Data[j,4]= Vapor[j]; \n",
+ " Data[j,5]= Vapor1[j];\n",
+ " Data[j,6]= Liquid[j];\n",
+ " Data[j,7]= Liquid1[j];\n",
+ "\n",
+ "# The tower diameter will be set by the conditions at the top of the stripping section because of the large liquid flow at this point.\n",
+ "# From Illustration 9.8:\n",
+ "G = Data[3,5];\n",
+ "L = Data[3,7];\n",
+ "Density_G = (Data[3,5]/(22.41*Data[3,4]))*(273.0/(273+Temp));# [kg/cubic m]\n",
+ "Density_L = 905.0;# [kg/cubic m]\n",
+ "# abcissa = (L/G)*(Density_L/Density_G)^0.5\n",
+ "abcissa = (Data[3,7]/Data[3,5])*(Density_G/Density_L)**0.5;\n",
+ "# From Fig. 6.34, choose a gas pressure drop of 450 N/square m/m\n",
+ "ordinate = 0.0825;\n",
+ "# From Table 6.3 (Pg 196):\n",
+ "Cf = 95;\n",
+ "viscosity_L = 4.5*10**(-4);# [kg/m.s]\n",
+ "sigma = 0.029;# [N/m]\n",
+ "J = 1;\n",
+ "G_prime = (ordinate*Density_G*(Density_L-Density_G)/(Cf*viscosity_L**0.1))**0.5;# [kg/square m.s]\n",
+ "A = G/(3600*G_prime);# [Tower ,cross section area,square m]\n",
+ "L_prime = L/(A*3600);# [kg/square m.s]\n",
+ "# Mass transfer will be computed for the same location:\n",
+ "# From Table 6.4 (Pg 205):\n",
+ "m = 36.4;\n",
+ "n = (0.0498*L_prime)-0.1013;\n",
+ "p = 0.274;\n",
+ "aAW = m*((808*G_prime/Density_G**0.5)**n)*L_prime**p;# [square m/cubic m]\n",
+ "# From Table 6.5 (Pg 206):\n",
+ "dS = 0.0530;# [m]\n",
+ "beeta = 1.508*dS**0.376;\n",
+ "shi_LsW = 2.47*10**(-4)/dS**1.21;\n",
+ "shi_LtW = ((2.09*10**(-6))*(737.5*L_prime)**beeta)/dS**2;\n",
+ "shi_LOW = shi_LtW-shi_LsW; \n",
+ "shi_Ls = (0.0486*viscosity_L**0.02*sigma**0.99)/(dS**1.21*Density_L**0.37);\n",
+ "H = ((975.7*L_prime**0.57*viscosity_L**0.13)/(Density_L**0.84*((2.024*L_prime**0.430)-1)))*(sigma/0.073)**(0.1737-0.262*math.log10(L_prime));# [m]\n",
+ "shi_Lo = shi_LOW*H;\n",
+ "shi_Lt = shi_Lo+shi_Ls;\n",
+ "# From Eqn. 6.73:\n",
+ "aA = aAW*(shi_Lo/shi_LOW);# [square m/cubic m]\n",
+ "# From Table 6.3 (Pg 196):\n",
+ "e = 0.71;\n",
+ "# From Eqn. 6.71:\n",
+ "eLo = e-shi_Lt;\n",
+ "# From Chapter 2:\n",
+ "ScG = 1;\n",
+ "MavG = 0.656*Ma+(1-0.656)*Mb;# [kg/kmol]\n",
+ "G = G_prime/MavG;\n",
+ "viscosity_G = 2.96*10**(-5);# [kg/m.s]\n",
+ "# From Eqn. 6.70:\n",
+ "Fg = (1.195*G/ScG**(2/3))*((dS*G_prime/(viscosity_G*(1-eLo)))**(-0.36));# [kmol/square m s (mole fraction)]\n",
+ "kY_prime = Fg;# [kmol/square m s (mole fraction)]\n",
+ "DL = 4.80*10**(-9);# [square m/s]\n",
+ "ScL = viscosity_L/(Density_L*DL);\n",
+ "# From Eqn. 6.72:\n",
+ "kL = (25.1*DL/dS)*((dS*L_prime/viscosity_L)**0.45)*ScL**0.5;# [kmol/square m s (kmol/cubic m)]\n",
+ "# At 588.33 OC\n",
+ "Density_W = 53.82;# [kg/cubic m]\n",
+ "kx_prime = Density_W*kL;# [kmol/square m s (mole fraction)]\n",
+ "# Value1 = [x G a ky_prime*10^3 kx_prime]\n",
+ "Value1 = numpy.array([[0.915 ,0.0474 ,20.18 ,1.525, 0.01055],[0.6, 0.0454 ,21.56 ,1.542, 0.00865],[0.370 ,0.0444 ,21.92 ,1.545 ,0.00776],[0.370, 0.0466 ,38, 1.640, 0.0143],[0.2 ,0.0447, 32.82 ,1.692 ,0.0149],[0.1 ,0.0443 ,31.99 ,1.766 ,0.0146],[0.02, 0.0352 ,22.25 ,1.586 ,0.0150]]);\n",
+ "# From Fig: 9.50\n",
+ "# At x = 0.2:\n",
+ "y = 0.36;\n",
+ "slope = -(Value1[4,4]/(Value1[4,3]*10**(-3)));\n",
+ "# The operating line drawn from(x,y) with slope. The point where it cuts the eqb. line gives yi.\n",
+ "# K = ky_prime*a(yi-y)\n",
+ "# For the enriching section:\n",
+ "# En = [y yi 1/K Gy]\n",
+ "En = numpy.array([[0.915 ,0.960, 634 ,0.0433],[0.85 ,0.906 ,532.8 ,0.0394],[0.8 ,0.862 ,481.1 ,0.0366],[0.70, 0.760 ,499.1, 0.0314],[0.656, 0.702, 786.9, 0.0292]]);\n",
+ "# For the Stripping section:\n",
+ "# St = [y yi 1/K Gy]\n",
+ "St = numpy.array([[0.656, 0.707, 314.7, 0.0306],[0.50, 0.639, 124.6 ,0.0225],[0.40 ,0.580, 99.6 ,0.01787],[0.3 ,0.5 ,89 ,0.0134],[0.2 ,0.390, 92.6 ,0.00888],[0.10, 0.232, 154.5, 0.00416],[0.032 ,0.091, 481 ,0.00124]])\n",
+ "# Graphical Integration, according to Eqn.9.52::\n",
+ "\n",
+ "plt.plot(En[:,3],En[:,2],'g');\n",
+ "plt.grid();\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Gy\");\n",
+ "ax.set_ylabel(\"1 / (ky_prime*a*(yi-y))\");\n",
+ "plt.title(\"Graphical Integration for Enriching section\");\n",
+ "plt.show()\n",
+ "# From Area under the curve:\n",
+ "Ze = 7.53;# [m]\n",
+ "# Graphical Integration:\n",
+ "\n",
+ "plt.plot(St[:,3],St[:,2],'r');\n",
+ "plt.grid('on');\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Gy\");\n",
+ "ax.set_ylabel(\"1 / (ky_prime*a*(yi-y))\");\n",
+ "plt.title(\"Graphical Integration for Stripping section\");\n",
+ "plt.show()\n",
+ "\n",
+ "# From Area under the curve:\n",
+ "Zs = 4.54;# [m]\n",
+ "# Since the equlibrium curve slope varies so greatly that the use of overall mass transfer coeffecient is not recommended:\n",
+ "print\"Height of Tower for enriching Section is \",Ze,\" m\\n\"\n",
+ "print\"Height of Tower for Stripping Section is \",Zs,\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.12 - Page: 429\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXW+yiosESsWBviWLsfS0RRAS7Ica4UWN+\ntti/lkRFo1GjMRpjb9g1CApYUFRWFDEogqBiAUVE7BFBLLTP749zhzs72XJnZ+/c2dnP8/GYx869\nc8tnPrs7Z+4595wjM8M555zLWSzrAJxzzlUWLxicc87V4wWDc865erxgcM45V48XDM455+rxgsE5\n51w9XjC4dkPSrpLeLvM515Y0W5LKeV7nSuEFg2s1kmolTZQ0R9Inkm6QtGKG8SyUtF5u2cxeMLNN\nUjpXnaRjCteb2TQzW968w5BrQ7xgcK1C0hnA5cAZwArADsA6wHBJS6Rwvg5JN23tczfCokebokjW\ncbjK4gWDK5mkFYB+wElm9rSZLTCzD4HDgK7Ab6Lt+kl6WNKDkmZJGitpi7zjrCFpoKTPJb0v6eS8\n13L73iPpG+AoSdtKGi3pa0kzJF2XK4QkjYx2fT2qyjlUUo2kj/KOOVXSGZJelzQzimupvNf/Lzru\ndEnHFl6BJMxN12i/xaLlOkkXS3oxysFTkn6St/0Okl6K3tN4Sbs3cey1JA2K8vWlpOvycnVPMzFc\nImkUMAc4S9IrBcc+TdLg6PlSkq6S9KGkTyXdKGnpYvLg2hYvGFxr2AlYGhiUv9LM5gBPAL/MW90b\n+DewEnA/8KikDtGH1lBgHLAGsBdwqqR9CvYdYGYrRvsuAE4BfgLsGO1zQnTu3aJ9toiqcgY0ELcB\nhwLdgXWBLYBaAEk9gNOiY24I1NB6VwR9o/OsCiwJnBmdswvwGHCxma0UrR8oqXPhAaIrpseADwhX\nZl2AB/LeV3N+AxwLdARuAjaWtEHe678G7oueXw5sAGwZ/ewCXJDsrbq2yAsG1xo6A1+a2cIGXvs0\nej3nVTMbZGYLgKsJBcqOwLZAZzO7xMzmm9kHwG3Ar/L2fcnMhgCY2Q9m9pqZjTGzhdEVyi1Ao9+w\nG/FPM/vUzL4mFEzdovWHAXeY2SQz+x64kNapljLgTjObbGY/EArJ3Dl/AzxhZsMAzOwZ4FWgZwPH\n2Q74KXCWmX1vZj+a2UvRa83FaUD/6L0tNLNZwGBCgYWkDYGNgSFRNdPvgdPNbKaZfQtcRv3fi6sy\ni2cdgKsKXwKdJS3WQOHwU+CLvOXpuSdmZpKmE64QDFhD0td523YARja0L4CkjQiFy9bAsoS/51eL\njP3TvOffR/Hm4h7T2LlLVHjOjtHzdYBDJe2f9/riwHMNHGMt4MNGCuMkPipYvh/4O/AXwtXCI2b2\ng6RVCbkdm9cUIfxLZVXzX65rDaOBH4GD81dK6gj0AJ7NW71W3uuLAWsCHxM+qD4ws5XyHiuYWa9o\n84Yad28E3gI2iKqX/kTr/U1/kh9rwfO0TAPuKcjB8mb2twa2/QhYu5FG+G8JH+Y5qzewTWEunwFW\nkbQl4Wrg/mj9l4TCa7O8mDqZ2QrFvDHXtnjB4EpmZt8AFwHXSeouaQlJXQnVJB8B9+RtvrWkAyUt\nDpwK/AC8DLwCzI4afJeJ2h1+JmmbaL+Gqkc6ArOB7yRtAhxf8PpnwPpFvp3cef4N/E7SJpKWBc5P\nsO8SkpbOezR2Rd5YVc+9wP6S9one/9JRg3mXBrb9D6HwulzSstG2O0WvjQd2ixqnVwTObS4GM5sH\nDACuIrT/DI/WLwRuBa6RtAqEtpCCth9XZbxgcK3CzK4EziN8sHxD+LD/ENgr+tCB8C11MHA48F/g\nCOCg6C6mBUAvQn37+4Tqp1sIt77m9i38lnsmodpjVrTtgwXb9APuiu7wOaSRY9R7G7nXo3r+fwIj\ngHcJV0UQrowacyPwXd7jjkbOaQXPc+ecDvQh5PFzwhXEGTTwfxp9YO9PaAyeRiiAD4teewZ4CJhA\nKHCHNhNDzv2ExvYBBVVUZwOTgZejO8KGAxs1nAJXDZRmvxtJdwD7AZ+b2c8b2eafwL6Ef6RaMxuX\nWkAuU5IuJFT7HJl1LMWStCkwEViyhHp959qEtK8Y7iTUMTdIUk/CB8WGwHGEb1yuerWpjlRRlddS\nklYCrgCGeKHg2oNUCwYzewH4uolNegN3Rdv+B+gkabU0Y3KZamu9g48jtFNMBubxv20YzlWlrG9X\n7UL92+amE+5S+SybcFyazOyirGMohpntm3UMzmWhEhqfC6sX2tI3SuecqzpZXzF8TP37w3P3tNcj\nyQsL55xrATMrum0v6yuGIcBvIQweBsw0swarkczMH2ZceOGFmcdQKQ/PhefCc9H0o6VSvWKQ9ABh\n7JrO0aiWFwJLAJjZzWb2hKSekiYTRnn8XZrxVIOpU6dmHULF8FzEPBcxz0XpUi0YzKxvgm1OSjMG\n55xzxcm6KskVqba2NusQKobnIua5iHkuSpdqz+fWIsnaQpzOOVdJJGFtsPHZFamuri7rECqG5yLm\nuYh5LkrnBYNzzrl6vCrJOeeqlFclOeecaxVeMLQxXn8a81zEPBcxz0XpvGBwzjlXj7cxOOdclfI2\nBuecc63CC4Y2xutPY56LmOci5rkonRcMzjnn6vE2Buecq1LexuCccxVs4cKsI0jOC4Y2xutPY56L\nmOciVkm5+OoruPNO6NUL9tor62iSy3pqT+ecqyqffgqPPgoDB8J//gN77w19+4bCoa3wNgbnnCvR\ntGnwyCOhMJgwAXr2hIMPhh49YLnlsourpW0MXjA451wLTJ4cCoKBA2HKFOjdOxQGe+8NSy+ddXSB\nNz63E5VUf5o1z0XMcxFLKxdm8OabcPHFsOWWsMsu8MEHcOmlofoo15ZQKYVCKZpsY5C0OHCXmR1R\npnicc65imMG4cfGVwXffwUEHwb/+BTvtBB06ZB1hOpqtSpL0IrCXmf1YnpAajMGrkpxzZbFwIbz8\ncigIBg0KH/4HHxwe224LKrpiJjstrUpKclfSB8CLkoYA30XrzMyuLvZkzjlXiebPhxdeCIXBI49A\np06hIHj0Udhii7ZVGLSGJG0MU4DHo207AstHD5cBr0uOeS5inotY0lzMnQvDhsHvfw9rrAFnnhl+\nPvts/baE9lYoQIIrBjPrV4Y4nHMudd9/D089Fa4MHn8cNtkkXBmcdx6su27W0VWOJG0MIxpYbWa2\nZzohNRiDtzE451pk9mx44olQGDz1FPziF6EwOPBA6NIl6+jSlWYbw1l5z5cGDgbmF3si55wrl6+/\nhqFDQ2EwYgTsvHMoDK6/HlZZJevoKl+zbQxm9mre40UzOw2oST801xCvS455LmKeC/j8c7jlFthu\nuzrWWSfcUXTIIaFX8pNPwrHHeqGQVLNXDJJWzltcDNgGWCG1iJxzLqGPPw4FwMCBMH48dO8O++4L\nzz0HHTtmHV3blaSNYSqQ22g+MBW4yMxeTDWy+jF4G4NzDgi9jXMdzt55B/bfP1QT/fKXsMwyWUdX\nWXysJOdc1Zo0Kb4ymD4dDjggFAZ77AFLLpl1dJUrtbGSJC0p6RRJAyU9LOlkSUu0LExXKq9Ljnku\nYtWWC7NQNXT++bDZZmFguk8/hauvhk8+CW0J3bs3XChUWy6ykOSupBuj7a4HBBwZrTs2xbicc+2M\nGYwZE1cTmYWrgttvh+23h8V8yM+ySdLGMMHMtmhuXZq8Ksm56rRgAYwaFY9L1LFjPC5Rt27ts9dx\na0qzH8N8SRuY2eToROvj/Riccy00b17oWzBwYBiL6Kc/DQXBU0+FaiOXvSQXZ2cBz0l6XtLzwHPA\nmemG5Rrj9acxz0Ws0nPxww+hw1ltLay+OlxwAWywAbz0Uv22hNZQ6bloC5KMlfSspI2AjaJV72Q5\nBLdzrm2YMyd0LBs4MPzccstwZfCXv8Baa2UdnWtKkjaGZYATgF0I/RleAG40sx+aPbjUA7gG6ADc\nZmZXFLzeGbgXWJ1QSF1lZv0bOI63MTjXBnzzTTwUxbPPwg47hMLggANgtdWyjq79Sa0fg6QBwCzC\nB7iAXwMrmtmhzezXAXgH2Bv4GHgF6Gtmk/K26QcsZWbnRoXEO8BqZja/4FheMDhXob78EgYPDoXB\niy/C7ruHwqB3b1h55eb3d+lJc87nzc3sGDMbYWbPmdmxwOYJ9tsOmGxmU81sHvAg0Kdgm0+Ih9dY\nAfiqsFBw9Xn9acxzESt3Lj75BG64AfbaC9ZfP8xr8Nvfhs5nubaErAoF/7soXZK7kl6TtKOZjQaQ\ntAMwNsF+XYCP8panA9sXbHMroWF7BmHyn8MSHNc5l4EPP4xvK33zTdhvPzjppNDRbNlls47OtaYk\nBcM2wChJHxHaGNYG3pE0kTAvQ2P9GZLU/ZwHjDezmug22OGStjSz2YUb1tbW0rVrVwA6depEt27d\nqKmpAeJvCO1huaampqLi8eXKWc5pzeO/+y5ceWUdI0fCf/9bQ58+0KtXHRdcAPvsU1nvP7ecW1cp\n8ZRzua6ujv79+wMs+rxsiSRtDE0e3cymNrLfDkA/M+sRLZ8LLMxvgJb0BHCpmY2Klp8FzjazVwuO\n5W0MzpWBGbzxRtz7+KuvwoQ2Bx8Mu+0Giyf5KukqRmptDFEbwVTgO2Bh7pG3vjGvAhtK6ippSeBw\nYEjBNm8TGqeRtBqwMfB+sW+iPSn8dtieeS5ipeTCDF55Bc49FzbeGHr1glmz4KabQpvB9dfDnnu2\nnULB/y5Kl2Q+ht7A34E1gM+BdYBJNNMAbWbzJZ0EPEW4XfV2M5sk6Q/R6zcDfwXulPQ6oZD6PzP7\nbwnvxzmXwMKFoXNZrs1gqaXCVcH998PWW/tQFO1dorGSgD2B4Wa2laQ9gCPN7OhyBBjF4FVJzpVo\n/nx4/vlQGDzySJjNLDcu0eabe2FQjdIcK2memX0paTFJHcxshKRrWxCjc67MfvwxdDQbOBCGDIGu\nXUNBMHIkbLhh1tG5SpWkH8PXkpYn9Hi+T9I/gW/TDcs1xutPY56LWH4uvvsuVA8dcUQYl+iyy+Bn\nP4NXXw1tCeecU92Fgv9dlC7JFUMf4AfgNOAIQke0i9IMyjlXnDlz4IEHwpXB8OGw7bbhyuCqq8Lo\npc4VI0kbwxnAg2b2cXlCajAGb2NwrsAnn8Bjj4XhKEaOhF13jYei6Nw56+hcJUizjWF54GlJXxOG\ntRhgZp8VeyLnXGnM4K23QlvB4MHwzjvQo0eoMrrvPlhxxawjdNUiST+Gfma2OXAi8FNgZNQRzWXA\n609j7SEXuTuJzjgjtAvsuy/MmAGXXAKffRaqj/r2hXHj6rIOtWK0h7+LtBXTZeVz4FPgK2CVdMJx\nzn37bZjNbMgQePxxWHtt6NMHHn44zGngt5W6tCVpYziBMLjdqsAA4CEze6sMseXH4G0MrqrNmBFG\nJR08OAxdvcMOoTDo3dsntXEtl2Ybw1rAqWY2vviwnHMNMQsjlA4eHB6TJ4f2gqOOCtVD3l7gspSk\njeFcLxQqh9efxtpaLubPh7o6OO20MN9xr16hneCyy8LP+++Hww9vWaHQ1nKRJs9F6drIsFjOtU2z\nZ4f2gsGD4YknYN11Q/XQoEGwxRbeXuAqU7NtDJXA2xhcW/Lxx3F7wahRsNNOoTDo3RvWXDPr6Fx7\nktqcz5XACwZXycxg4sS4f8GUKdCzZ2g87t4dVlih+WM4l4bU5mOQdLCk9yTNkjQ7esxqWZiuVF5/\nGssyF/PmwXPPwamnwnrrhULgyy/hb38L7QX33guHHlq+QsH/LmKei9IlaWP4G9DLzCalHYxzlWzW\nrDDp/ZAh8OSTcYEwZEgYpM7bC1y1SNKPYZSZ7VymeBqLwauSXCamT4+riF56CXbZJRQG++8PXbpk\nHZ1zTUutjSGae2F14FFgbrTazGxQ0VG2kBcMrlzMYMKEuH/B1Kmw336h4bh7d1h++awjdC651NoY\ngBWB74F9gF7RY/9iT+Rah9efxlorF/Pmhcls/vjHcDvpQQfBzJnw97+H9oK774ZDDqnsQsH/LmKe\ni9I128ZgZrVliMO5svrmm9BeMHhw+LnhhqGK6LHHfJpL5xqtSpJ0tpldIem6Bl42M/tjuqHVi8Wr\nklzJpk2L+xe8/HKYv6BPn9ADeY01so7OudaXxlhJuYHyxgL5n8oqWHauIpnB+PFx4/G0aaG94P/9\nv9DzuGPHrCN0rjJ5B7c2pq6ujpqamqzDqAgN5WLu3DB/weDBoUBYcslwVdCnT+iBvHiVDgLjfxcx\nz0UszdFVnatoM2eGfgWDB4dxiTbeOBQEw4bBppt6e4FzxfIrBtcmffhhXEU0Zgzstlvcv2D11bOO\nzrnK4GMluapmBuPGxf0LPv44NBr37g377APLLZd1hM5VnlYvGBq5GynH70rKSHuqP507N8xfkGsv\nWGaZeFaznXaCF15oP7loTnv6u2iO5yKWRhtD/t1IhQf2T2mXim++CfMc59oLNtssFAZPPw2bbOLt\nBc6VQ+KqJEnLE64Uvk03pAbP7VcM7cAXX8COO4YC4MADQ1XRaqtlHZVzbVeaYyX9HLgb+Em06gvg\nKDN7o+goW8gLhur3/few116wxx5w6aVZR+NcdUhzrKRbgNPNbG0zWxs4I1rnMlCN48AsXAi1tbDO\nOvCXvyTfrxpz0VKei5jnonRJ+jEsa2YjcgtmVifJ7wFxreZPfwp3GT3zDCyW5KuKcy5VSaqSHiU0\nRN9DaIQ+AtjazA5MP7xFMXhVUpW67Ta4/PIwdlHnzllH41x1SbONYWXgIiA3Wc8LQD8z+7roKFvI\nC4bqNHw4HHkkjBwJG22UdTTOVZ/U2hjM7L9mdrKZ/SJ6nFLOQsHVVy31p2+8AUccAQMGtLxQqJZc\ntAbPRcxzUbpm2xgkbQycCXTN297MbM8U43JV7JNPwq2o//hHGPraOVdZklQlTQBuBF4DFkSrzczG\nNntwqQdwDdABuM3MrmhgmxrgH8ASwJdmVtPANl6VVCXmzIGamtB7+fzzs47GueqWZhvDWDPbugUB\ndQDeAfYGPgZeAfqa2aS8bToBo4DuZjZdUmcz+7KBY3nBUAUWLICDD4ZOneDOO70Xs3NpS7Mfw1BJ\nJ0r6qaSVc48E+20HTDazqWY2D3gQ6FOwza+BgWY2HaChQsHV15brT886Kwx5ccstrVMotOVctDbP\nRcxzUbok/RhqCWMjnVmwft1m9usCfJS3PB3YvmCbDYElJI0AlgeuNbN7EsTk2pjrrw9zJrz0Upg8\nxzlXuVIbdlvSwUAPM/t9tPwbYHszOzlvm38BvwD2ApYFRgP7mdl7BcfyqqQ27PHH4dhjYdQoWG+9\nrKNxrv1IdQY3ST8DNgOWzq0zs7ub2e1jYK285bUIVw35PiI0OH8PfC9pJLAl8F7BdtTW1tK1a1cA\nOnXqRLdu3RYNrZu7dPTlylseNw5+/es6LrsM1lsv+3h82Zerebmuro7+/fsDLPq8bBEza/IB9ANG\nAJ8DdwKfAg8n2G9xYArhNtclgfHApgXbbAI8Q7hraVlgIrBZA8cyF4wYMSLrEBL76COzNdc0GzAg\nneO3pVykzXMR81zEos/OZj/nCx9JrhgOIXyLf83MfidpNeC+BAXOfEknAU9FH/y3m9kkSX+IXr/Z\nzN6WNAyYACwEbjWztxLE5Crc7Nmw335w8slwyCFZR+OcK0aS21VfMbNtJY0F9gRmAW+b2cblCDCK\nwZqL01WO+fPD3Mtrrw033eS3pTqXlTTbGF6RtBJwK/AqMAd4qdgTufbBLFwlmIU7kbxQcK7tSTJW\n0glm9rWZ3QTsA/zWzH6XfmiuIbmGpkp19dXh7qN//xsWT3RrQ8tVei7KyXMR81yULuldSV2AdaLt\nJWk3MxuZamSuzRk0KIx/NHo0rLBC1tE451oqSRvDFcDhwFvEYyVhZvunG1q9GLyNocKNGRMam4cN\ng62LHkDFOZeGNNsYDgQ2NrMfiw/LtQdTp8IBB8Add3ih4Fw1SDJW0hRCPwRXASqt/nTmTOjZE845\nJ9yJVE6VlosseS5inovSNXrFIOm66Ol3wHhJzwK5qwYzsz+mHZyrbHPnhtFSf/lL+KP/NThXNRpt\nY5BUSxg8D8Jcz/Wem9ldqUcXx+JtDBXGDI45Br78Eh55BDp0yDoi51yhVm9jMLP+0YFPNbNrCk52\natERuqpy2WXw+uvw/PNeKDhXbZK0MRzVwLraVo7DJVQJ9acPPAA33wxDh0LHjtnFUQm5qBSei5jn\nonRNtTH0JUyks66koXkvLQ98lXZgrjK9+CKccgo88wyssUbW0Tjn0tBUG8M6hMl4LgfOJrQtQBgr\naYKZzS9LhHgbQ6WYPBl22QXuugu6d886Gudcc1Kb8zk6eFdgAzN7RtKyQAczm110lC3kBUP2vvoK\ndtwRzjwTjjsu62icc0mkNuezpOOAAcDN0ao1gUeLPZFrHVnUn/74Y+jAduCBlVUoeF1yzHMR81yU\nLknj84nALoQqJMzsXWDVNINylcMMjj4aVl893InknKt+ScZKGmNm20kaZ2ZbSVqcMGnPFuUJ0auS\nsnTBBfD00zBiBCyzTNbROOeKkeZYSc9L+hOwrKRfAicAQ5vZx1WB/v3h3nvh5Ze9UHCuPUlSlXQO\n8AVhPuY/AE8Af04zKNe4ctWfPvccnH02PP44rFqhFYdelxzzXMQ8F6Vr9orBzBYAt0QP1w5MmgR9\n+8KDD8Kmm2YdjXOu3JK0MewPXAx0JS5IzMzKNhWLtzGUz2efhdtSL7wQjmqoz7tzrs1IrR+DpCmE\nORneMLOFLYyvJF4wlMf338Mee8A++8DFF2cdjXOuVKn1YwCmA29mVSi4+tKqP124EI48EtZfHy66\nKJVTtDqvS455LmKei9IluSvpbOBJSSOAudE6M7Or0wvLlds558Dnn8Pw4aCiv18456pJkqqk4cBs\nwl1Ji64azKxs3yu9KildN98Mf/87jB4NP/lJ1tE451pLmm0Mb5jZz1ocWSvwgiE9w4ZBbW0YNXWD\nDbKOxjnXmtJsY3hCko+lWSFas/50woTQrjBwYNssFLwuOea5iHkuSpekYDiB0Mbwg6TZ0WNW2oG5\ndM2YAb16wXXXwc47Zx2Nc66SJBp2O2teldS6vv0WdtsNDjkEzjsv62icc2lJdT6GrHnB0HoWLAhD\naK+6Ktx2m9+B5Fw1S7ONwVWQUutPTzstdGS76aa2Xyh4XXLMcxHzXJSuqTmf1zWzD8oZjEvXP/8J\nzz4Lo0bBEktkHY1zrlI1NefzWDPbWtJzZrZnmeMqjMWrkko0ZAgcf3woFLp2zToa51w5pDEfQ4do\nHoaNJJ0O5B/cez63IWPHwjHHhCG0vVBwzjWnqTaGXwELgA7A8tGjY95zl4Fi60+nTYM+feCWW2C7\n7dKJKStelxzzXMQ8F6Vr9IrBzN4GLpc0wcyeKGNMrpXMmgX77Qennw4HHph1NM65tiLJkBidgAuB\n3aJVdcDFZvZNuqHVi8HbGIo0b17owLb++nD99W3/DiTnXPHSvF31DmAWcChwGGFAvTsTBtVD0tuS\n3pN0dhPbbStpvqSDkhzXNc0MTjwROnQIdyJ5oeCcK0aSgmF9M7vQzN43sylm1g9Yv7mdJHUA/gX0\nADYD+kr6n4kio+2uAIZRv4HbNSBJ/emVV8KYMfDQQ7B4koHV2yivS455LmKei9IlKRi+l7RrbkHS\nLsB3CfbbDphsZlPNbB7wINCnge1OBh4GvkhwTNeMAQPC+EePPQbL+y0CzrkWSNLG0A24G1gxWvU1\ncJSZvd7MfocA3c3s99Hyb4DtzezkvG26APcCexKqrIaa2aAGjuVtDAmMHg29e8PTT8NWW2UdjXMu\na2n0YwDAzMYDW0haMVpO2uic5JP8GuAcMzNJwquSWuz99+Ggg+Cuu7xQcM6VJnENdAvuQvoYWCtv\neS3C/NH5tgYeDGUCnYF9Jc0zsyGFB6utraVr1DurU6dOdOvWjZqaGiCuU2wPy/n1p7nXhw6t48QT\n4fzza+jZs7LiTXM5t65S4slyefz48Zx66qkVE0+Wy9dcc027/nzo378/wKLPy5ZIbXRVSYsD7wB7\nATOAMUBfM5vUyPZ34lVJzaqrq1v0BwEwdy507x6uEq5uZ33RC3PRnnkuYp6LWEUOuy1pX0J1UQfg\ndjO7TNIfAMzs5oJtvWAoklmYlnPWLHj44XB7qnPO5aRaMEjaGehKXPVkZnZ3sSdrKS8YGnbxxTB0\nKNTVwXLLZR2Nc67SpNbBTdK9wJXAzsA20WPboiN0rSJXn3jvvXDHHaFgaK+FQn5bQ3vnuYh5LkqX\npPF5a2Az/8peOUaODOMfjRgBq6+edTTOuWqTpB/DAOAUM5tRnpAajMHLpcg774T5mu+7D/beO+to\nnHOVLLV+DMAqwFuSxgA/RuvMzHoXezJXmi++CKOl/vWvXig459KTZEiMfsABwKXAVcDfo4cro7lz\nQwe27bar45hjso6mMnhdcsxzEfNclC5Jz+c6SasTGpwNGGNmn6cemVvEDE44ATp3hmOPzToa51y1\nS9LGcBjhrqTno1W7AWeZ2YCUY8uPoV23MVx7Ldx+O7z0EnTsmHU0zrm2IrV+DJImAHvnrhIkrQI8\na2ZbtCjSFmjPBcPTT8NRR4UB8ny+ZudcMdKcqEfUHxL7K3ywu7J491048sgwr0KuUPD605jnIua5\niHkuSpfkrqRhwFOS7icUCIcDT6YalWPmTNh/f7jkknB7qnPOlUuSqiQBBwG7EBqfXzCzR8oQW34M\n7aoqaf78MF/zRhuFqTmdc64lKnIQvdbS3gqG00+HiRPhySere2pO51y6Wr2NQdKo6Oe3kmYXPGaV\nEqxrXG78o8bma/b605jnIua5iHkuStfo91Ez2zn66TdIlsmoUXDOOWEspJVXzjoa51x7laSN4R4z\nO7K5dWlqD1VJ06bBDjuE/gr77pt1NM65apDm7ao/KzjR4oQRV10rmTMHeveGM87wQsE5l72m2hjO\nkzQb+Hl++wLwOfA/czK7llm4MHRg22qr0OjcHK8/jXkuYp6LmOeidE21MfwV+Kuky8zs3DLG1K5c\nfDHMmBGalMjoAAASwklEQVTmVpB3G3TOVYAkbQwHAc+Z2cxouRNQY2aPliG+XAxV2cYwYECoPhoz\nxifccc61vjTHSnrdzLYsWDfezLoVe7KWqsaCYdw42GefMBbSVltlHY1zrhqlPVZSoQ7FnsjFPvsM\nDjgAbrih+ELB609jnouY5yLmuShdkoJhrKSrJa0vaQNJ/wDGph1YtfrxRzjwQKithUMPzToa55z7\nX0mqkjoC5wN7RauGA5eY2ZyUY8uPoSqqkszg6KNh9mz4979hsSTFsnPOtZCPldQGXH013H136OG8\n3HJZR+Ocq3aptTFIWlXSVZKekDQiejzXsjDbryefhCuvhMGDSysUvP405rmIeS5inovSJanMuA94\nG1gP6AdMBV5NL6Tq8/bboRPbww/DOutkHY1zzjUtSRvDa2b2C0kTctN5SnrVzLYpS4S07aqkr7+G\n7bcPg+MdfXTW0Tjn2pOWViUlGe1/bvTzU0m9gBnASsWeqD2aPx8OOwz2288LBedc25GkKumSqLfz\nGcCZwG3AaalGVSXOOAM6dAhtC63F609jnouY5yLmuShdk1cMkjoAG5nZY8BMoKYcQVWD226DYcPg\nP//xWdicc21LkjaGV8xs2zLF01gMbaqN4YUX4OCDw8+NN846Gudce5XmWEn/AJYAHgLmEIbIMDN7\nrSWBtkRbKhimToUdd4S77gpjITnnXFbSHCtpK2Bz4GLg78BV0U9X4NtvoU8fOPvs9AoFrz+NeS5i\nnouY56J0jdZ+SzrFzK4F/mxmL5YxpjZp4UI48kjYZhs45ZSso3HOuZZrtCopN9y2pHFmlunA0G2h\nKun888NkO88+C0stlXU0zjmXTj+GtyS9B3SRNLHgNct1dnPw0ENwzz1hwh0vFJxzbV2jbQxm1hfY\nFZgM9AL2z3v0TnoCST0kvS3pPUlnN/D6EZJelzRB0ihJbarAGTsWTjoJHn0UVl01/fN5/WnMcxHz\nXMQ8F6Vr8g57M/sUaPEHddQP4l/A3sDHwCuShpjZpLzN3gd2M7NvJPUAbgF2aOk5y+mTT8LcCjff\nDN3KNp+dc86lK9VhtyXtCFxoZj2i5XMAzOzyRrZfCZhoZmsWrK+4NoYffoCaGujZEy64IOtonHPu\nf6V5u2opugAf5S1Pj9Y15hjgiVQjagVmcNxxsPbaodHZOeeqSeLBGiQta2bfFXn8xF/zJe0BHA3s\n3NDrtbW1dO3aFYBOnTrRrVs3ampqgLhOsVzLJ5xQx+jR8PrrNUjlPX9+/WlW779SlnPrKiWeLJfH\njx/PqaeeWjHxZLl8zTXXZPr5kOVyXV0d/fv3B1j0edkiZtbkA9gJeAv4KFruBtzQ3H7RtjsAw/KW\nzwXObmC7LQiN3Bs0chyrFI8/brbGGmbTpmVz/hEjRmRz4grkuYh5LmKei1j02dnsZ3XhI8mQGGOA\nQ4DBFvVnkPSmmW3eXKEjaXHgHcJ80TOAMUBfy2t8lrQ28BzwGzN7uZHjWHNxlsOkSbD77mEWth13\nzDoa55xrWprzMWBm06R6x56fcL/5kk4CngI6ALeb2SRJf4hevxm4gDC/w43ROeaZ2XbJ30J5/Pe/\n0Lt3GELbCwXnXDVL0vg8TdLOAJKWlHQmMKmZfRYxsyfNbGMz28DMLovW3RwVCpjZsWb2EzPbKnpU\nXKEwb16YcKdPnzBFZ5by69fbO89FzHMR81yULknBcDxwIuFuoo8Jg+qdmGZQleb002HJJeGKK7KO\nxDnn0pdqP4bWkmUbwy23wNVXhwl3VlwxkxCcc65FWn0+BknXNbGfmdkfiz1ZS2VVMIwcCYceGibc\n2Wijsp/eOedKkkYHt7HAq9FjbAOPqjZ1Khx+eBgcr5IKBa8/jXkuYp6LmOeidI3elWRm/fOXJS0f\nVtu3aQeVtdyEO+ec47OwOefanyT9GH4O3A38JFr1BXCUmb2Rcmz5MZStKmnhQjjkEFhpJbjtNlDR\nF2HOOVcZ0uzHcAtwupmNiE5UE63bqdiTtQUXXQSffQYPPOCFgnOufUpyu+qyuUIBwMzqgOVSiyhD\nAwZA//4waFDlTrjj9acxz0XMcxHzXJQuyRXDB5LOB+4BBBxBmEOhqowbByecAE8/DautlnU0zjmX\nnSRtDCsDFxGPevoC0M/Mvk45tvwYUm1j+Owz2G47uOqqcHuqc85Vg1bvx1BJ0iwYfvwR9twT9t47\ntC8451y1SG2iHknbSnpE0jhJE6PHhJaFWVnM4PjjQ9XRhRdmHU0yXn8a81zEPBcxz0XpkrQx3Aec\nCbwBLEw3nPK69loYOxZGjYLF0p7Lzjnn2ogkbQyjzKzBWdXKJY2qpKefDiOljh4NpUx05JxzlSq1\nNgZJ+wCHA88Ac6PVZmaDio6yhVq7YHj3Xdh1V3j44fDTOeeqUWptDMBRwJZAD6BX9Ni/2BNVipkz\nw4Q7l1zSNgsFrz+NeS5inouY56J0SdoYtgE2qYi5NUu0YAH07Qu//CX8/vdZR+Occ5UpSVXSncBV\nZvZmeUJqMIZWKZfOPBPGj4dhw2DxRJOaOudc25XmWEk7AuMlfQD8GK0zM9ui2JNl6a674NFHYcwY\nLxScc64pSdoYegAbAvsQ2hb2B3qnGVRrGz0azjoLhgyBlVfOOprSeP1pzHMR81zEPBela/a7s5lN\nLUMcqZk+PQyjfccdsNlmWUfjnHOVr6qHxPjuO9httzD+0dlnpxCYc85VMB8rqYAZ/PrX0KFDmJ7T\n51ZwzrU3afZjaJMuuwymTIFbb62uQsHrT2Oei5jnIua5KF1V3p8zeDDccEO4A2mZZbKOxjnn2paq\nq0qaODEMo/3442GOBeeca6+8Kgn48kvo0weuucYLBeeca6mqKRjmzQu3pR52GBxxRNbRpMfrT2Oe\ni5jnIua5KF3VFAynnAIdO8Kll2YdiXPOtW1V0cZw441w3XXw8suwwgplDMw55ypYu+3HMGIE/OpX\nYRa2DTYoc2DOOVfB2mXj8/vvh2G077+//RQKXn8a81zEPBcxz0Xp2mzBYBYamv/8Z9hrr6yjcc65\n6tGmq5KmTIH11quuns3OOdda2m0bg3POuYZVZBuDpB6S3pb0nqQGxzeV9M/o9dclbZVmPNXA609j\nnouY5yLmuShdagWDpA7AvwgT/WwG9JW0acE2PYENzGxD4DjgxrTiqRbjx4/POoSK4bmIeS5inovS\npXnFsB0w2cymmtk84EGgT8E2vYG7AMzsP0AnSaulGFObN3PmzKxDqBiei5jnIua5KF2aBUMX4KO8\n5enRuua2WTPFmJxzzjUjzYIhaWtxYcOItzI3YerUqVmHUDE8FzHPRcxzUbrU7kqStAPQz8x6RMvn\nAgvN7Iq8bW4C6szswWj5bWB3M/us4FheWDjnXAu05K6kNCfqeRXYUFJXYAZwONC3YJshwEnAg1FB\nMrOwUICWvTHnnHMtk1rBYGbzJZ0EPAV0AG43s0mS/hC9frOZPSGpp6TJwBzgd2nF45xzLpk20cHN\nOedc+VTUWEneIS7WXC4kHRHlYIKkUZK2yCLOckjydxFtt62k+ZIOKmd85ZLw/6NG0jhJb0iqK3OI\nZZPg/6OzpGGSxke5qM0gzLKQdIekzyRNbGKb4j43zawiHoTqpslAV2AJYDywacE2PYEnoufbAy9n\nHXeGudgRWDF63qM95yJvu+eAx4CDs447o7+JTsCbwJrRcues484wF/2Ay3J5AL4CFs869pTysSuw\nFTCxkdeL/tyspCsG7xAXazYXZjbazL6JFv9D9fb/SPJ3AXAy8DDwRTmDK6Mkefg1MNDMpgOY2Zdl\njrFckuTiEyA3bdcKwFdmNr+MMZaNmb0AfN3EJkV/blZSweAd4mJJcpHvGOCJVCPKTrO5kNSF8MGQ\nG1KlGhvOkvxNbAisLGmEpFclHVm26MorSS5uBTaXNAN4HTilTLFVoqI/N9O8XbVY3iEulvg9SdoD\nOBrYOb1wMpUkF9cA55iZSRL/+zdSDZLkYQngF8BewLLAaEkvm9l7qUZWfklycR4w3sxqJK0PDJe0\npZnNTjm2SlXU52YlFQwfA2vlLa9FKNma2mbNaF21SZILogbnW4EeZtbUpWRbliQXWxP6wkCoT95X\n0jwzG1KeEMsiSR4+Ar40s++B7yWNBLYEqq1gSJKLnYBLAcxsiqQPgI0J/avam6I/NyupKmlRhzhJ\nSxI6xBX+Yw8BfguLelY32CGuCjSbC0lrA4OA35jZ5AxiLJdmc2Fm65nZuma2LqGd4fgqKxQg2f/H\nYGAXSR0kLUtoaHyrzHGWQ5JcvA3sDRDVp28MvF/WKCtH0Z+bFXPFYN4hbpEkuQAuAFYCboy+Kc8z\ns+2yijktCXNR9RL+f7wtaRgwAVgI3GpmVVcwJPyb+Ctwp6TXCV+A/8/M/ptZ0CmS9ACwO9BZ0kfA\nhYRqxRZ/bnoHN+ecc/VUUlWSc865CuAFg3POuXq8YHDOOVePFwzOOefq8YLBOedcPV4wOOecq8cL\nBpeIpFpJ1xW5zwPRML8lj1Mj6byC5VGlHrOZ820SDdk8VtK6rXjcdST1zVsuOq8tOGeD55C0f1PD\nmDdyrG+jn2tIGlBCTH9oaCynqNNao8NHu/KomA5uruIV1eFF0urANma2YQOvdTCzBUWe/1xCp6UQ\njFnaY0MdAAwws0tb+bjrEkZBfSBaLkdHogbPYWZDgaEtOZaZzQAObXFA7aRjYlvlVwztRPRN7G1J\nd0p6R9J9kvaJJvl5V9K20XYrS3o0+qY/WtLPGzjWKpIeljQmeuzUwCmfBrpEk8bsIqlO0j8kvQKc\nIqmXpJclvSZpuKRVo2N3jGKcEMVwkKTLgGWiY90TbZf75ipJV0qaGO1zWLS+JjrnAEmTJN3bSF66\nRXG8LmmQpE6SehJG4zxe0nMN7POtpL8pTAAzXNIOkp6XNEXS/tE2HaK4xkTHPi7a/XJg1+i9nBqt\nW0PSk9Hv4Yq889wg6ZXoPP3y1k+V1C+6mpkgaeOkv7uC97HoSkJSf0nXRn8PUyQd3My+i77ZS1pG\n0oOS3opy+LKkX+T/nqLnh0i6M3reT9IZ0fOto5jHAyc0dV5XJllPMuGP8jwIk5rMAzYnjLT4KmEo\nAQjjtT8SPb8OOD96vgcwLnpeC1wXPb8f2Dl6vjbwVgPnW4e8iUOAEcC/8pY75T0/Frgqen4FcHXh\ndsDsguPPjn4eTCiEBKwKfAisDtQAM4E1otdeysVccJwJwK7R84uAf0TPLwRObySXC4Hu0fNB0fk7\nAFvk5es44E/R86WAV6Lfwe7A0Lxj1QJTgOWj7aYCXaLXVop+dojy97No+QPgxOj58YShLxL97gre\nx1F5v9P+wEPR802B9xp577m8d839foHTgdui5z8n/J39ovD3Fv2u7izMb/Q72CV6/jcamXDGH+V7\neFVS+/KBmb0JIOlN4Jlo/RuEf3QIw3cfBGBmIyT9RNLyBcfZG9hUWjSS7/KSljWz7/K2aWjo64fy\nnq8l6d+ED/EliQc424swKBpRDDObeU+7APdb+FT5XNLzwLbALGCMhSoPom+jXYFFbROSViTMgvdC\ntOouIFdv3tTw3XPN7Kno+UTgBzNbICk/j/sAP5d0SLS8ArABUDhZjAHPWjQctKS3CIXqx8Dhkn5P\nqPL9KbAZ4XcFoUACeI3o90Wy311jDHg02neSipsAa1fg2mjfiZImJN0x73fwYrTqHmDfIs7tUuAF\nQ/vyY97zhcDcvOf5fwvNjd0uYHszm0tx5uQ9v45wlfCYpN0JUzE2dv6mWAPb5+LNf78LaP7vPf84\nTdX9z8t7viiPZrZQUv45TjKz4fVOINU0cLz/iVOhwfsMQjvNN1EVzNIN7FP4vkqZryT/91nsnBaN\nbZ9//mVKOI4rI29jcIVeAI6ARR9iX5jZtwXbPA38MbcgqVvCY+f/068AzIie1+atHw6cmHfsTtHT\neQUfuvnxHi5pMUmrALsBY0jwAWNhatSvJe0SrToSqGsg1pZ4CjghF7OkjRSGwp5FqDbKaeg8iraZ\nA8yKvr0n+Rad5HdXeJ7WMJLQoI6knxGq1HI+U7jDazHgwIJzK/odzJSUu5ngiFaKyZXAC4b2pfDb\nozXwvB+wtcJwxX8l1EPnXs9t80dgm6jB8E1CfXqx5+sHDJD0KmGe5txrlwArRY3J4wltBQC3ABNy\njc/Ed8c8Qqijfh14FjjLzD4viLexeIje35XR+90CuLiB91vM+8o9v40wF8JrUSPtjYS2ggnAAoVb\nYU9tLE4zmwCMI8wrcB/wIg3L378fzf/uGtu3sffR0D6Fz28EOkbVYBcBY/O2OQd4jFCFNyNvn/xz\n/w64XtK4Zs7tysSH3XbOtSpJI4AzzOy1rGNxLeNXDM455+rxKwbnnHP1+BWDc865erxgcM45V48X\nDM455+rxgsE551w9XjA455yrxwsG55xz9fx/ja2w2w8vuCwAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xab95208>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPX1//HXmyZVl6JIURcLKCquCGhsLMaeKGpiL6CJ\nvcXevgkx+dpINN+YmKJG0cRO1J8mimDCaqICFhZURAFdehGQjtTz++PexWHd3ZmdvTN37u55Ph7z\n2Ll37tz73jvlM/dzbpGZ4ZxzztVVk7gDOOecSyZvQJxzzmXFGxDnnHNZ8QbEOedcVrwBcc45lxVv\nQJxzzmXFG5AGRNLPJf21lsc/knR4LpeRZJJ2lrRSknIw70MkTQvnf2LU868vSbdIeiiD6UZI+mUt\nj6+UVBxltnzJdB24b3gDkkOSzpA0XtIqSQsljZN0aQ4XWetBPWa2j5m9matlSCqVNDuTmUgqlrRZ\nUmzvQUkVko6oHDazWWbWznJzcNQvgPvD+b9U35mFX+Trwi/sytvEbOdnZneZ2YWZTEot74Hw/6vI\nNke+VPdercM6cCFvQHJE0nXA/wH3AJ3NrDNwCXCIpBY1PKe+r0fkv5zzsIycZJbUNIPJLFfLr8bO\nwJRsnljD/2LAPeEXduVt/wjn71xa3oDkgKTtgNuBS83seTNbDWBm5WZ2jpmtD6cbIemPkl6RtAoo\nlfQ9SRMlLZc0S9KwlPlW/mq/UNJcSfPChqqSAS0kPSZpRdhldUDK8yskfTe831TSrZKmh9O+J6lb\n+Nhvw2UvD8cfmuV6KJP0C0n/DZfxmqSO4cOVW0LLwl/PB4bPuUDSFElLJY2StHPK/I6W9KmkZZIe\nkPSGpB+Fjw2V9Jak+yQtBoZJ2lXSvyUtlvSlpL+Frw1hN9zOwMvh8q+vulUkqauklyQtCbuffpyS\n5eeSnq1pXVdZDzOAXcNlrZDUPIN5j5T0V0nLgSF1XO+V/8d5kmaG//uttcx/qKp0TUo6VNLbkr4K\n3wvnpSyig6R/hP/LOEm7pjxvc+Vw+P5+oJZpa3w9q/mfBoTvxeWSFki6N+Wxg1KylksamPJYB0mP\nKvi8LJX0vKTWwKtA1/C1XyGpSzXr4ERJH4fzHStpz5THKiRdJ2lSmP9pSdvU5XVqEMzMbxHfgGOB\nDUCTNNONAJYB3wmHtwEGAnuHw/sCC4DB4XAxsBl4AmgF7AMsAr4bPv5zYG24fAF3Au+kLO8L4Ijw\n/g3AZGCPlGV1CO+fDbQn+IFxLTAfaJGyjL/W8P+UArNThsuAacDuQEtgLHBX+Ngu4f/SJGX6weH0\nvcJl3wa8FT7WCVgOnBQ+dhWwHrggfHxouM4vDx9vCewGfBdoHj7/DeA31a2PKuu3STj8JvB7oAWw\nX7iuB2WyrqtZN1WXlW7e64ETw+GW1czvUeCXNSyr8v/4M8F7qg/wNdCrpvkDwypf1/C1WQGcDjQF\nOgD7pbxnFwP9wsf+BjyVsuzNwK7ppk33elbzP70DnB3ebw0cGN7vFi7j2HD4yHC4Yzj8T+ApYDug\nGXBYOH4gKe/VcFzqOugJrCJ4/zQl+LxMA5qlvJ7jgB0JPitTgIvj/u7J9823QHKjE7DYzDZXjkj5\nhbRGW/+if9HM3gEws3Vm9oaZfRwOfwg8TfBmT3W7ma01s48IvkjOTHnsP2Y2yoJ3+d8Ivpyq82Pg\nNjObVrksM1sa3n/CzL4ys81mdh/Bl1CvLNaDAY+a2XQz+xp4FiipXCXVTH8JQQPzabju7gJKwq2Q\n44GPzOzFMNf9BI1rqnlm9kD4+NdmNsPM/mVmG8xsMfAbvr0uqyVpJ+Bg4CYzW29mk4CHgdRf4pmu\n62zm/baFtZJw3X1rNsD14Xuq8vZolWluD99Tk4FJVfJVnX/q63EWMMbMnjGzTWa2NMwIwWv6vJm9\nZ2abCH7MlFC92qbN5PVMtR7YQ1InM1tjZuPD8ecAr5jZqPB/eR14D/iepC4EDfwlZrbczDaa2X9S\n1l9VqeNOB/4Rvn82Ab8m+NF2cMo095vZAjP7Cni5lvXQYHkDkhtLgE5KqWmY2cFm1j58rHK8AVsV\n8iQdGG4uL5K0DLgY6MjWUp8zC+iaMrww5f4aoKWqr610B2ZUFz7szpkSbpp/RfDrrVMN/2s6qV8K\na4G2tUy7C/Dbyi9EgnUFwa/MLsCcKtNXHa66LjuHXQtzwq6av/LtdVmTrsBSC7sfQ7PCLJUyXdfZ\nzLvq/1aVAb8ys/Ypt/OrTJO67tew9bqvbf47AZ/X8njq/53uNa1p2q7VZKgt048Itgo+kTRB0vfC\n8bsAp6Y2pMAhBFsGOxGs5+W1zLcmXQleEwDCHwmz2fo1qst7u0HyBiQ33gHWEWye19WTwItAdzMr\nAv7Et1+nnavcn5vFcmYTdC1tRdJhBJvrp5pZUdjoLSf6YnN1e/LMAi6q8qXYJtxCm0/Q6FXmVOpw\nDfO8E9gE7GNm2wHnsvW6rG1vq3kEff2pXwo7k/6LPROZzDvXp8mubf6zCLr/cmke6V/PLcKt2LPM\nbHuCHVNGhrWMWQTdTqnvmXZmNpzgPd5BYd2r6izT5JtL0Dil5tuJmj9rjfK05t6A5ICZLSMoov9B\n0g8ktZPURFIJ0CZl0uq+lNsCX5nZekkDCLoTqr45/0dSK0l7E/T9P5NFzIeBX0raXYE+kjqEy98I\nLJbUQtLPgG2zmH+lmhqeLwn6y1O/qP4E3CqpNwQ7I0g6NXzsFWBfSYMlNSOodeyYZtltgdXACgU7\nCNxQ5fGF1PBFaWazgbeBuyRtI6kPcAFBV1W9RDRvkbs9yJ4EjpR0qqRmkjpKquz+qssya5u2Tq+n\npHMkbR8OLif4TGwiWGcnhAX5ppJaKthFt5uZzScolv9BUpGCnRcqj4NaCHSUVNN7+zmCbrAjJDUH\nriOoI72dxf/aYHkDkiNm9iuCAvSNBJu6Cwi+IG8k2EKB6vepvwz4haQVwE+pvnF4A5gOvE7QjfF6\nLfOr6ZfRfQQ1idEEH8iHCIqprwGjgM+ACoJN81kpz6v1OIA0y9/yXDNbA9wBvBV2PQwwsxcJfl0+\nHXY5fQgcE06/GDgVGE5QJN2LoK97XS25bgf6hv/fy8Dfq0xzF0Fj/JWka6vJeyZBQXoe8DzwMzP7\ndy3Lq8uv0LrOuyoDbtTWx4EsyjBLTdkrX5tZBDWK6wi6EScSFOJre25N96udNoPXs6pjgI8krSSo\nZZ0R1nfmEOx8cSvBjgizwtyV323nEuxcMZWg0bgqXP5UguL65+HeWV2qrINPCeorvyP4sfM94AQz\n21hDvkxeswZHQddeDhcg3ULwQmwm+EI4n+BX+DMEm4gVwGnhr/bK6S8g+HVxlZmNzmnABFFwhO/n\nBHuCbK596oYtrDXMBs4yszfizuPqx1/PZMrpFkj4hXch0NfM9iXYHe4M4GaCvTx6Av8Khwm7Lk4H\nehPsPfGHDIuSrhEIuymKwv3tK49rGBdnJpc9fz2TL9dfzisINh9bh/2crQk22U8EHguneYxvis2D\nCfYT32DB6RCmAwNynDFpGt1mcorvELwnKrsUTjKzmro8XOHz1zPh8tGFdRFwL0Ff+mtmdq6kr8K9\neyr3blhqZu0l/Q4YZ2ZPhI89DLxqZn/PaUjnnHN1lusurN2AnxAUC7sCbSWdkzpNuH91XYqyzjnn\nCkCzHM+/H8ERr0sAJD1PsNm6QNKOZrYg3Puhcu+RuQT7WlfqTjX7XUvyRsU557JgZpHtcpzrGshU\n4KDwmAURnKdmCsEulZUniBtCcOAcwEvAGeHxBz2APYAJ1c3YCuA8MOluw4YNiz2D5/SMntNzVt6i\nltMtEDObJOlxgv27NwMfAA8C7YBnFZx5swI4LZx+iqRnCRqZjcBllov/Ok8qKirijpARzxmdJGQE\nzxm1pOSMWq67sLDglALDq4xeSrA1Ut30dxKcgsI551wB82Mscmjo0KFxR8iI54xOEjKC54xaUnJG\nLee78eaCpCT3bDnnXCwkYQkqojdqZWVlcUfIiOeMThIygueMWlJyRs0bkGpMnD+RJyY/EXcM55wr\naN6FVY23Z7/NFa9cwQcXf5CzZTjnXL55F1Ye9Ovaj2lLp/HV2q/ijuKccwXLG5BqtGjagu90/w7/\nmfWf9BPXIin9op4zOknICJ4zaknJGTVvQGpQWlxKWUVZ3DGcc65geQ2kBu/MfofLX7nc6yDOuQbD\nayB50q9rP6Yvnc7StUvjjuKccwXJG5AaNG/anO/s9B3+MzP7OkhS+kU9Z3SSkBE8Z9SSkjNq3oDU\nonQXr4M451xNvAZSi3FzxnHpPy9l4sUTc74s55zLNa+B5NEBXQ5gxtIZXgdxzrlqeANSi+ZNm3Pw\nTgfz5sw3s3p+UvpFPWd0kpARPGfUkpIzat6ApOHHgzjnXPW8BpLGuDnjuOQfl1B+SXleluecc7ni\nNZA8O6DLAXyx7AuvgzjnXBXegKRRWQd5o+KNOj83Kf2injM6ScgInjNqSckZNW9AMuDHgzjn3Ld5\nDSQD4+eM56J/XMSkSyblbZnOORc1r4HEoG+XvlQsq2DJmiVxR3HOuYLhDUgGmjdtziE7HVLn40GS\n0i/qOaOThIzgOaOWlJxRy2kDIqmXpIkpt+WSrpb0c0lzUsYfl/KcWyRNkzRV0tG5zFcXpcWljK0Y\nG3cM55wrGHmrgUhqAswFBgAXACvN7L4q0/QGngT6A92A14GeZra5ynR5rYEATJg7gR+/9GMmXzo5\nr8t1zrmoJLkGciQw3cxmAwpvVQ0GnjKzDWZWAUwnaHBi17dLX2Yun8niNYvjjuKccwUhnw3IGcBT\n4X0DrpQ0SdJfJBWF47sCc1KeM4dgSyR2zZo0q3MdJCn9op4zOknICJ4zaknJGbVm+ViIpBbACcBN\n4ag/Ar8I7/8SuBf4UQ1Pr7avaujQoRQXFwNQVFRESUkJpaWlwDcvZtTDg4oHMfaLsXRY2CGj6Svl\nKk9Uw+Xl5QWVJ+nrMwnD5eXlBZUn6cOFuj7LysoYMWIEwJbvyyjlpQYiaTBwqZkdW81jxcDLZrav\npJsBzOzu8LFRwDAzG1/lOXmvgQC8O/ddLnjpAj689MO8L9s55+orqTWQM/mm+wpJXVIeOxmo/EZ+\nCThDUgtJPYA9gAl5ypjW/l32Z9byWXy5+su4ozjnXOxy3oBIakNQQH8+ZfQ9kiZLmgQMBK4BMLMp\nwLPAFOBV4LJYNjVq0KxJMw7d+dCM6yBVu14KleeMThIygueMWlJyRi3nNRAzWw10qjLuvFqmvxO4\nM9e5sjWoeBBlFWX8oPcP4o7inHOx8nNh1dF7895j6ItD+eiyj2JZvnPOZSupNZAGo2THEuasmMOi\n1YvijuKcc7HyBqSO6lIHSUq/qOeMThIygueMWlJyRs0bkCz4ddKdc85rIFl5f977DHlxiNdBnHOJ\n4jWQAuB1EOec8wYkK02bNOWwXQ4j3XXSk9Iv6jmjk4SM4DmjlpScUfMGJEt+nXTnXGPnNZAsvT/v\nfc578Tw+vuzjWHM451ymvAZSIEp2LGHeynksXLUw7ijOORcLb0Cy1LRJUw7b+TDemFlzHSQp/aKe\nMzpJyAieM2pJyRk1b0DqwY8Hcc41Zl4DqYcP5n/AOc+fw5TLp8QdxTnn0vIaSAHZr/N+zF813+sg\nzrlGyRuQemjapCmH73J4jd1YSekX9ZzRSUJG8JxRS0rOqHkDUk9+PIhzrrHyGkg9TZw/kbOeP4tP\nLv8k7ijOOVcrr4EUmD6d+7Bw1UIWrFoQdxTnnMsrb0DqqbIOUt15sZLSL+o5o5OEjOA5o5aUnFHz\nBiQCpcWljK0YG3cM55zLK6+BRKB8QTlnjDyDqVdMjTuKc87VKLYaiKQ2kvaU1EtSm6gCNAR9Ovdh\n0epFzF85P+4ozjmXN7U2IJLaSbpW0gTgQ+BR4DHgI0nvSbpGUtt8BC1kTdQkqINUOS9WUvpFPWd0\nkpARPGfUkpIzaum2QF4EVgInmNmuZvYdMzvIzHoA3wdWA/+vpieHWysTU27LJV0lqYOkMZI+kzRa\nUlHKc26RNE3SVElHR/FP5sOg4kGM/cLrIM65xiNvNRBJTYC5wADgSmCxmQ2XdBPQ3sxultQbeBLo\nD3QDXgd6mtnmKvMqqBoIwKQFkzht5Gl8esWncUdxzrlqxVkD2UvScZKOkbRnFss6EphuZrOBEwm6\nwgj/nhTeHww8ZWYbzKwCmE7Q4BS8fTvvy+I1i5m3cl7cUZxzLi/S1UB6SLpf0nTgT8B5wPnAnyXN\nkPRbScUZLusM4KnwfmczqzwD4UKgc3i/KzAn5TlzCLZECt6WOkjK8SBJ6Rf1nNFJQkbwnFFLSs6o\nNUvz+D3AQ8B1ZrYh9QFJzYFBwHDgtNpmIqkFcAJwU9XHzMwk1dYfVe1jQ4cOpbi4GICioiJKSkoo\nLS0Fvnkx8z4cnhery5IuW2WNLU+Gw+Xl5QWVp6bhSoWSJ8nD5eXlBZUn6cOFuj7LysoYMWIEwJbv\nyyjlpQYiaTBwqZkdGw5PBUrNbIGkLsBYM9tT0s0AZnZ3ON0oYJiZja8yv4KrgQBMXjiZHz77Qz67\n8rO4ozjn3LfEUgOR9L6kyyW1z3I5Z/JN9xXAS8CQ8P4Qgr29KsefIamFpB7AHsCELJeZd/vssA9L\n1i5h7oq5cUdxzrmcy7SIfgZBLeJdSU+HhfSMWrHwoMMjgedTRt8NHCXpM+CIcBgzmwI8C0wBXgUu\nK8hNjRo0URMG7jJwy/EgVbteCpXnjE4SMoLnjFpSckYtowbEzKaZ2a1AT4LdbB8BZkm6XVKHNM9d\nbWadzGxlyrilZnakmfU0s6PNbFnKY3ea2e5mtqeZvZbdvxUfv066c66xyLgGImk/gj2wjgNeI2hI\nDgXOMbOSnCWsPkvBbphMXjiZHzz7A6ZdOS3uKM45t5WoayDp9sKqXOj7wHLgYeBmM/s6fGicpEOi\nCtMQ7LPDPny19ivmrJhD9227xx3HOedyJtMayGlmdoSZPZnSeABgZifnIFdiNVETBhYP5I2KNxLT\nL+o5o5OEjOA5o5aUnFHLtAYyo/K+pA9yF6dh8OukO+cagzofByJpopntn6M8mWYo2BoIwIcLP+SU\nZ0/xOohzrqAUwjXRX4lq4Q3V3jvszbKvlzFnxZz0EzvnXELVuQExs9tyEaQhqTwe5I/P/THuKBlJ\nSv9tEnImISN4zqglJWfU0p1M8a3w7ypJK6vcVuQnYjKVFpdSvqA87hjOOZczfk30HPlo0Uec9PRJ\nTL9qetxRnHMOiO9cWPdJ2juqhTYGvbfvzfJ1y5m9fHbcUZxzLicyrYF8AjwoaYKkSyRtl8tQDUET\nNaH36t6J2J03Kf23SciZhIzgOaOWlJxRy/Q4kIfM7BCCC0oVAx9KelLSoFyGS7qSziWJaECccy4b\ndTkXVlOCi0KdD3QnOGvuocAaMzs9Zwmrz1LwNRCAjxd9zIlPn8iMq2akn9g553IsrhrIb4BPgeOB\nO8zsADO7x8xOAPJ6IsUk6b19b1auW8ms5bPijuKcc5HLtAbyIbCfmV1kZlUv8HRgxJkajDfeeIOB\nxQMLvhsrKf23SciZhIzgOaOWlJxRS3ccyG4AZvaIma2uYbJarwfS2A0qHlTwDYhzzmWj1hqIpGeA\nNgSXmn0PmA8I6AL0A04EVprZGbmPulWuRNRAAKZ8OYXvP/l9Pr/687ijOOcaubxeD8TMTpe0O8El\nbe8Adgkfmgn8F7jSzPybsRZ7ddqLVetXMXPZTHYp2iX9E5xzLiHS1kDMbLqZ/a+ZHWdmvcPbcWZ2\nhzcetSsrK0MSpcWlW66TXoiS0n+bhJxJyAieM2pJyRm1dDUQSbojvP/L/ERqeEqLSxlbMTbuGM45\nF6m0x4FIGgwcDYw2s/+Xl1RpJKkGAvDJl59w/JPH88XVX8QdxTnXiOX1OBBJw4AjgDOBI8JhV0d7\ndtqTNRvWULGsIu4ozjkXmVobEDO7Pbx7cDC4ZdhloLJfdEsdpKIw6yBJ6b9NQs4kZATPGbWk5Ixa\nJgcSPmpmU4FHs1mApCJJIyV9ImmKpIMk/VzSHEkTw9txKdPfImmapKmSjs5mmYWodJdSymaWxR3D\nOeciU5dzYe0L9AZaAgZgZo9n8LzHgDfM7BFJzQiOK/kJwfEj91WZtjfwJNAf6Aa8DvQ0s81VpktU\nDQRg6uKpHPu3Y6n4SUXcUZxzjVRc58L6OXA/8DugFBhOcBBhuudtBxxmZo8AmNlGM1te+XA1TxkM\nPGVmG8ysApgODMgkY6Hr1bEXX2/82usgzrkGI9NzYf0QOBKYb2bnA/sBRRk8rwfwpaRHJX0g6SFJ\nrcPHrpQ0SdJfJFXOqyswJ+X5cwi2RBIptV+0sg5SiKc1SUr/bRJyJiEjeM6oJSVn1Go9Ej3FWjPb\nJGljuFWxCNgpw/n3Ba4ws3cl/R9wM8GWzC/CaX4J3Av8qIZ5VNtXNXToUIqLiwEoKiqipKSE0tJS\n4JsXM+7hSlseDxuQ4mXFBZGvcri8vLyg8mS8PgssX5KGy8vLCypP0ocLdX2WlZUxYsQIgC3fl1HK\nqAYi6Q/AbcDpwHXAamBiuDVS2/N2BN4xsx7h8KHAzWb2/ZRpioGXzWxfSTcDmNnd4WOjgGFmNr7K\nfBNXA4GgDnLM346h4uoKpMi6IZ1zLiOx1EDM7DIz+8rM/kRwUOGQdI1H+LwFwGxJPcNRRwIfhw1L\npZMJThcPwUkbz5DUQlIPYA+g6unjE6tXx16s37Te6yDOuQYhbQMi6Sfh36sAzOwLM5tUh2VcCTwh\naRLQB7gLGC5pcjhuIHBNOO8pBFc6nAK8ClyWyE2NUNWul0Ktg1TNWaiSkDMJGcFzRi0pOaOWSQ1k\npaQbgKXZLCBsbPpXGX1eLdPfCdyZzbKSoPJ4kPP3T7sB55xzBS3d9UCGAa2Bqwl2411dCEejJ7UG\nAvDp4k85+m9Hex3EOZd3ea2BhI3FBoK6x/pCaDySrmfHnqzftJ4vlvmJFZ1zyZZJEf1NM3sTKMtx\nlganun5RSQV3mduk9N8mIWcSMoLnjFpSckYtkwtKjZbUBOgi6WcAknaW1CCOEI9DIRbSnXOurjI9\nDuRPwCbgu2a2p6QOBNcH6ZfrgDXkSWwNBOCzJZ9x5ONHMvMnM70O4pzLmJmxfN1yilpmciKQb4vl\nOBDgQDO7HFgLYGZLgeZRhWhs9uiwBxs3b/Q6iHMuY2s2rGHIi0O49J+Xxh1li0wbkPWSmlYOSNoe\n2FzL9I6a+0UrjwcZ+0VhXOY2Kf23SciZhIzgOaOW65wVyyo45JFD2Lh5Iw+f8HBOl1UXmTYgvwNe\nAHaQdCfwFsEBgS5Lg4oH+fVBnHNpjZkxhoMePogh+w3hiVOeoE2LNnFH2qIu1wPZC/huOPgvM/sk\nZ6nSZ0l0DQRg2pJpHPH4Ecz6ySyvgzjnvsXMuOete7h//P089YOnGFg8sN7zjLoGkunZeAEWAP8J\nn9NKUl8z+yCqII3N7h12Z7Nt5vOvPme3DrvFHcc5V0BWrlvJ0P83lDkr5jDhwgl037Z73JGqlekF\npX4JTCY4Gv3XBKdfvzeHuRqE2vpFt9RBKuKvg3g/c3SSkBE8Z9SizPnp4k858OED6diqI28OfbNg\nGw/IvAZyOrCbmQ00s0GVt1wGawwK7YBC51y8Xpz6Ioc9ehjXHHQND57wINs02ybuSLXK9DiQF4BL\nzGxh7iOl1xBqIADTl06ndEQps6+Z7XUQ5xqxTZs3MaxsGI9PepznTn2OA7sfmJPlxFUDuROYKOkj\nYF04zsws7XXRXc12ax/UPmZ8NYPdO+wecxrnXByWrl3K2c+fzdoNa3n3wnfp3LZz3JEylmkX1uPA\n3eHtXrwGkpF0/aKFcn2QxtjPnCtJyAieM2rZ5py0YBL9H+rPXp32Ysy5YxLVeEDmWyCrzOz+nCZp\npCoL6T/u++O4ozjn8ujJD5/k6lFXc/+x93PmvmfGHScrmdZA7iPounqJb7qwiGs33oZSAwGYsXQG\nh484nDnXzPE6iHONwIZNG7hhzA28/NnLvHD6C/Tp3Cdvy46rBtIXMOCgKuN9T6x62rX9rjRRE6Yv\nnc4eHfeIO45zLocWrlrI6SNPp3Xz1rx34Xu0b9U+7kj1klENxMxKU3ff9d14M5NJv2gh1EEaej9z\nPiUhI3jOqGWSc/yc8fR7qB+H73I4L5/5cuIbD0izBSLpXDP7q6TrCLZAtjxEsBfWfTlN10iU7lLK\nvyv+zYUHXBh3FOdcDjz4/oPc9u/bePiEhxm85+C440Qm3TXRLzazP0v6OVs3IMCWS97mXUOqgUBQ\nBzns0cOYe+1cr4M414Cs27iOK165grdmv8ULp79Ar069Ys2T1xpI2Hg0BVb41kbu7Np+V5o1aca0\npdPo2bFn3HGccxGYvXw2P3zuh+y07U6M//F42m3TLu5IkcvkkrabgGTuYxazTPtv466DNKR+5rgl\nISN4zqhVzVlWUcaAhwfwg71+wHOnPtcgGw/I/EDC/0r6vaTDJPWtvGXyRElFkkZK+kTSFEkHSuog\naYykzySNllSUMv0tkqZJmirp6Kz+qwSKu5DunKs/M+M37/yGM0aeweMnPc6Nh9zYoLulMz0OpIzq\nayBp98SS9Bjwhpk9IqkZ0Aa4DVhsZsMl3QS0N7ObJfUGngT6A92A14GeZra5yjwbVA0E4POvPueQ\nRw5h3rXzGvQbzrmGavX61Vz48oVMXTyV509/nuKi4rgjfUssx4GYWWk2M5e0HXCYmQ0J57MRWC7p\nRKDy6iiPAWXAzcBg4Ckz2wBUSJoODADGZbP8JOlR1IPmTZrz2ZLPYi+0OefqZsbSGZz8zMns32V/\n3rrgLVo1bxV3pLzI9HognST9TtJESR9I+q2kjhk8tQfwpaRHw+c9JKkN0DnlzL4LgcoTwHQF5qQ8\nfw7Blkgi1aX/VhKDesRzevek9jMXoiRkBM8ZpVenvUq/2/px8QEXM2LwiEbTeEDmR6I/DbwBnEJw\nDMhZwDPAkRnMvy9whZm9K+n/CLY0tjAzk1Rbf1S1jw0dOpTi4mIAioqKKCkpobS0FPjmTRf3cKWM\nn79LKaNVXo5/AAAa60lEQVQ/H02vVb3ymre8vDyvy8vb+vThGofLy8sLKk8Shw8feDh3vHkHv33m\nt5y7/blcPuDygspXWlpKWVkZI0aMANjyfRmlTGsgH5nZPlXGfWhm+6Z53o7AO2bWIxw+FLgF2BUY\nZGYLJHUBxprZnpJuBjCzu8PpRwHDzGx8lfk2uBoIwBdffcHBjxzsdRDnCtzyr5dz3ovnsXjNYp47\n9Tm6tusad6SMRF0DyXQvrNGSzpTUJLydDoxO9yQzWwDMllR5cMORwMfAy8CQcNwQ4MXw/kvAGZJa\nSOoB7AFMyDBj4hUXFdOiaQs+XfJp3FGcczX4eNHH9H+oPzttuxNjh4xNTOORC5k2IBcBTwDrw9tT\nwEWSVkpakea5VwJPSJoE9AHuILiuyFGSPgOOCIcxsynAs8AU4FXgsiRvalTteklHUiyXua1rzrgk\nIWcSMoLnzNbIKSMpfayU2w67jd8f/3taNG0BFF7OfMl0L6y2tT0uaW8z+7iG504i2C23qmrrJ2Z2\nJ8EVEBul0uJSRk0fxSX9Lok7inMutHHzRm7712088/EzjDp7FAd0PSDuSAUhoxpI2plIE81s/wjy\nZLq8JG+Y1KpiWQUHPXwQ86+b73UQ5wrA4jWLOfPvZ2JmPP3Dp+nUulPckbIWVw3E5UlxUTEtm7X0\nOohzBeCD+R/Q78F+9N2xL6POGZXoxiMXvAHJoWz7RUuLSxn7xdhow9QiKf23SciZhIzgOTPxWPlj\nHPO3Y/jVUb/inqPuoVmTmnv8k7I+o+YNSAEaVDyIspllccdwrlFav2k9V7xyBXf85w7KhpRx6t6n\nxh2pYEVVAxlnZlUvd5szDbkGAkEd5MCHD2TBdQu8DuJcHs1fOZ9TnzuVjq078vhJj7Ndy+3ijhSp\nWGogkp6X9D1J1U6fz8ajMSguKqZ189ZMXTw17ijONRpvzXqL/g/155jdjuGF019ocI1HLmTahfVH\n4GxguqS7JfnZ/jJQn37R0uJSxlbkpw6SlP7bJORMQkbwnKnMjAcmPMDJz5zMgyc8yE8H/pQm1f9W\nrlFS1mfUMlpLZjbGzM4iOK9VBfAvSW9LOl9S81wGbKxKd/HrgziXa2s3rOX8/3c+f37/z7z9o7c5\nfo/j446UKBnXQMKz754LnAPMI7hux6HAPtme7j1bDb0GAjBz2Uz6P9Sfhdcv9DqIczkwc9lMTnn2\nFHp27MnDJzxMmxZt4o6Uc3HVQF4A/gu0Bk4wsxPN7GkzuwJomNdqjNkuRbvQtkVbPln8SdxRnGtw\nXv/8dQ58+EDO2fccnjzlyUbReORCph19L5vZXmZ2p5nNB5DUH8DM/Jj+GtS3XzRfl7lNSv9tEnIm\nISM03pxmxvC3hnPuC+fy1A+e4prvXBPJFn5S1mfUMm1ArpDUvXJA0kDg0dxEcpXyWUh3rqFbuW4l\np408jZFTRjLhxxMY1CPtFbldGpleD6Q/wZ5Y3ycopN8FfN/MZuc2Xo15GnwNBGDW8ln0e7Cf10Gc\nq6fPlnzGyc+czMHdD+Z3x/+Ols1axh0pFrHUQMzsXeAqYAzwc+CouBqPxmTn7Xam3TbtmPLllLij\nOJdYL336Eoc+cihXH3g1D534UKNtPHKh1gZE0suVN4IrCbYC1gF/kfRSPgImWRT9ovnYnTcp/bdJ\nyJmEjNA4cm7avImfjf0Zl79yOS+d+RIXHXBRdMGqSMr6jFq664HcW804I7guesPvQyoApcWlvPTZ\nS1uut+ycS++rtV9x9vNns3rDat678D06t+0cd6QGqdYaiKQmZra51hnEUJBoLDUQgNnLZ9P3wb4s\nvH5hnY+Oda4xmrxwMqc8cwon9DyB4UcNp3lTP9a5Ur5rIGMl3ZByTfPUIL0k3QS8EVUY9207bbcT\n222znddBnMvAUx8+xXcf/y63l97Ob479jTceOZauATkaWAI8IGm+pM8kTZM0H/g9sJAaLk3rousX\nzfXxIEnpv01CziRkhIaXc+PmjVz72rX8z9j/4fVzX+fsPmfnNlgVSVmfUau1BmJm64BHgEckNQUq\nL8e12Mw25TqcC5QWl/Li1Be5YsAVcUdxruAsWr2I00eezjZNt+HdC9+lQ6sOcUdqNCK5Hki+NaYa\nCAR1kP3/vD+LbljkdRDnUkyYO4EfPvtDztvvPG4vvZ2mTZrGHamg+TXRG6GdttuJopZFfLzo47ij\nOFcwHv7gYb7/5Pe5/7j7+d8j/tcbjxh4A5JDUfaLDioelLM6SFL6b5OQMwkZIdk5121cx0UvX8S9\n79zLm+e/yUl7npT/YFUkZX1GLd2BhK9JukbSntkuQFKFpMmSJkqaEI77uaQ54biJko5Lmf6WsFA/\nVdLR2S63oSktLvXrpLtGb86KORw+4nCWrF3ChB9PYM9OWX81uQikOw6kC3AscAzQCxgPvAq8bmar\nM1qA9AVwgJktTRk3DFhpZvdVmbY3wXVG+gPdgNeBnlWPRWlsNRAIPjglfyrxOohrtN6oeIMz/34m\nVx14FTcdcpOfHy4Lea2BmNl8M3vUzM4A+gGPh39HS/qXpBszXE51gasbNxh4ysw2mFkFMB0YkOEy\nGrTu23anfav2fLToo7ijOJdXZsb/jfs/Tht5GiNOGsHNh97sjUeByPinrJltMrO3zeynZnYIcAYw\nN5OnAq9Lek/ShSnjr5Q0SdJfJBWF47oCc1KmmUOwJZJIUfeL5uq8WEnpv01CziRkhOTkHPX6KM55\n4Rwem/QY4340jqN3K8xe7aSsz6ilOxdWjczsS+CJDCY9xMzmS9oeGCNpKsGp4X8RPv5LgnNu/aim\nRVU3cujQoRQXFwNQVFRESUkJpaWlwDcvZtzDlaKa36Aegxg5ZSR91vaJNG95eXlO/v9CX5+Nebi8\nvLyg8lQ3vPN+O3P5K5ezW/vduOs7d9GjfY+CypeE9VlWVsaIESMAtnxfRimvx4GEtY9VZnZvyrhi\ngise7ivpZgAzuzt8bBQwzMzGV5lPo6uBAMxdMZc+f+rDlzd86XUQ16CNmj6KIS8O4aeH/5TL+1/u\nXVYRSdRxIJJaS2oX3m9DcGqUDyXtmDLZycCH4f2XgDMktZDUA9gDmJDLjEnSbdtudGzVkQ8Xfph+\nYucSaLNt5o437+BHL/2IkaeO5IoBV3jjUcCybkAknZ/BZJ2B/0gqJ9iD6x9mNhoYHu7aOwkYCFwD\nYGZTgGeBKQR7e12W5E2Nql0vUcjFebFykTMXkpAzCRmhMHMu/3o5pzxzCv+c9k/evfBdDtvlsILM\nWZ2k5IxafbZAfpFuAjP7wsxKwts+ZnZXOP48M+tjZvuZ2UlmtjDlOXea2e5mtqeZvVaPfA2SHw/i\nGqIpX05hwMMD6NquK2VDy+jarmvckVwG0h0HUltfSU8z2yb6SOk11hoIwLyV89j3j/t6HcQ1GH+f\n8ncu+eclDD9yOOfvn0nHhstW1DWQdHth7UBwIOFX1Tz2dlQhXOa6tutKp9ad+HDhh+y3435xx3Eu\na5s2b+J//v0/PPnRk7x69qv069ov7kiujtL9hP0n0NbMKqre8AtJpZWrftHSXUoZWzE2svklpf82\nCTmTkBHiz7lkzRKOe+I4JsybwHsXvldj4xF3zkwlJWfU0h2JfoGZ/aeGx87MTSSXTq4vMOVcLk2c\nP5F+D/WjZMcSXjvnNbZvs33ckVyW/HogCTR/5Xz2/sPeLL5xsddBXKL8ddJfuXb0tTxw/AOctvdp\nccdpdPJdA3EFqEu7LuzQZgcmL5xMyY4lccdxLq0V61Zwy+u3MPrz0YwdMpZ9dtgn7kguAv7zNYdy\n2S8aZTdWUvpvk5AzCRkhfzk3bt7In9/7M71+34u1G9fy7oXv1qnx8PVZ2LwBSajS4mgL6c5F7bXp\nr1HypxKe/vhpXjnrFR4Z/AhFLYvSP9ElhtdAEmr+yvn0/kNvFt+w2C/l6QrKx4s+5vox1zNj6Qx+\nffSvOaHnCX46kgKRqHNhudzp0q4LO7bdkckLJ8cdxTkAFq1exKX/uJRBjw3iuN2P46PLPuLEXid6\n49GAeQOSQ7nuF43q+iBJ6b9NQs4kZIRoc3698Wvu+e899H6gN62at2LqFVO56sCraNG0Rb3n3RjX\nZ5J4A5JgXgdxcTIznvnoGfZ6YC/Gzx3POz96h/uOuY8OrTrEHc3liddAEmzBqgXs9cBeXgdxeTdu\nzjiufe1avt74Nfcdcx+lxaVxR3IZ8ONA3BY7tt2RHdvuyKSFk+jbpW/ccVwjMHPZTG751y28OfNN\n7jjiDs7d71w/mLUR81c+h/LRLzqoeFC96yBJ6b9NQs4kZIS651yxbgW3/utW+j7Yl14de/HpFZ8y\npGRIzhuPhro+GwpvQBLOz4vlcmnj5o08+P6D9Pp9L+avms/kSyYzrHQYbVq0iTuaKwBeA0m4hasW\nsucDe3odxEVu9IzRXDf6Ojq17sS9R9/r3aQNgNdA3FY6t+1Ml7ZdKF9QzgFdD4g7jmsApnw5hetH\nX8/0pdP51VG/8mM5XI28CyuH8tUvWt9urKT03yYhZxIyQvU5F61exGX/vIzSEaUcs9sxfHTZRwze\nc3CsjUeS12dj4A1IAzCoeJBfJ91l7euNXzP8reH0fqA32zTdhqlXTOXqg66O5EBA17B5DaQBWLR6\nET1/15MlNy7xOojLmJnx3JTnuOn1m9iv834MP2o4PTv2jDuWyyGvgbhv2aHNDnTbthsTF0z060q7\njIyfM55rXruGtRvX8siJjzCox6C4I7kE8i6sHMpnv2h9zouVlP7bJOQs9Iwzl83krL+fxffu/B4X\nHXAR7134XkE3HoW+PislJWfUct6ASKqQNFnSREkTwnEdJI2R9Jmk0ZKKUqa/RdI0SVMlHZ3rfA3F\noB71P6DQNVypBwL27NiTv578V4aWDPUuT1cvOa+BSPoCOMDMlqaMGw4sNrPhkm4C2pvZzZJ6A08C\n/YFuwOtATzPbXGWeXgOporIOsvjGxTRr4j2TLrBx80YemfgIw8qGccxux3DHEXfQbdtuccdyMUlq\nDaRq4BOBgeH9x4Ay4GZgMPCUmW0AKiRNBwYA4/KUM7F2aLMD3bftzsT5E+nfrX/ccVwBqDwQsGOr\njvzjzH/4cUIucvmogRjwuqT3JF0YjutsZgvD+wuBzuH9rsCclOfOIdgSSaR894tmezxIUvpvk5Cz\nEDJO+XIKxz9xPJe/cjm/HPRLxg4Z+63GoxByZsJzFrZ8bIEcYmbzJW0PjJE0NfVBMzNJtfVHVfvY\n0KFDKS4uBqCoqIiSkhJKS0uBb17MuIcr5Wt5g3sN5oSnTuDXT/2aTq060XtAb7q168bX076mU5tO\nHHXEUXTbthszPpjBNs222fL88vLyWNZPoa/PpA3v3X9vhpUN44mXn+DcPufy4mUv0qJpi2qnLy8v\njz1vQxou1PVZVlbGiBEjALZ8X0Ypr8eBSBoGrAIuBErNbIGkLsBYM9tT0s0AZnZ3OP0oYJiZja8y\nH6+B1GDdxnXMWzmPuSvnMnfF3K3/hvfnrZxH6+at6bZtN7q1C2/bfvtvp9ad/FTdCfD1xq+5f/z9\nDH9rOOf0OYefHv5TOrbuGHcsV4CiroHktAGR1BpoamYrJbUBRgO3A0cCS8zsnrDRKKpSRB/AN0X0\n3au2Ft6A1I+ZsWTtkm83MFUampXrV9KlbZdaG5qu7brSqnmruP+lRsnMGDllJDe9fhN9OvfxAwFd\nWklrQHoAL4SDzYAnzOwuSR2AZ4GdgQrgNDNbFj7nVuACYCNwtZm9Vs18E9GAlJWVbdmsLGQ15fx6\n49fB1kwNDczclcHWTNsWbbduXKppaDq17lTvcyolYX3mK+P4OeO5dvS1rNmwhvuOvq/Ox3IkYV2C\n54xaovbCMrMvgJJqxi8l2Aqp7jl3AnfmMpfLTMtmLdm1/a7s2n7XGqcxMxavWfytLZkJcydsNW71\n+tV0adel1oama7uutGzWMo//YfLMWj6LW/51C2UVZcEVAfuc68dyuNj4ubBcXqzdsDZtbWb+qvm0\na9EubW2mY6uOje704ivXreTu/97Nn97/E1cOuJLrD76eti3axh3LJUyiurByxRuQhmmzbQ62ZtLU\nZtZsWEPXdl3T1ma2abZN3P9SvW3avIlHJj7Cz8p+xjG7HcP/HvG/dN+2e9yxXEJ5A0JyGpCk9Ism\nLeeaDWvSNjILVi1gu5bbpa3NdGjVIdKtmSjX5ZgZY7hu9HW0b9We+46+L9IDAZP2mhe6pORMVA3E\nuVxo3bw1e3Tcgz067lHjNJttM4tWL/pWA/PW7Le2Grdu07pgayZNbSaf18b45MtPuH7M9Xy6+FN+\nddSvOGnPkxpdl51LBt8CcY3a6vWra92SmbtyLgtXLaSoZVHa2kz7lu3r9UX/5eovuf2N23nm42e4\n9dBbuXzA5X5RJxcp78LCGxCXX5s2bwq2ZtI0NBs2bUhbm+nSrsu3GoV1G9fxuwm/45637uGsfc7i\nZwN/5gcCupzwBoTkNCBJ6Rf1nNFYtX4Vz7/6PN37dK+xoVm0ehHtW7X/pnusbVfGfD6GfTvvy/Aj\nh9OrU6+8ZC30dVnJc0bLayDOFai2Ldqy83Y7U9qjtMZpNm3exMLVC7dqYM7c90xKi2t+jnOFyrdA\nnHOukYh6C8TPlOeccy4r3oDkUOVplQud54xOEjKC54xaUnJGzRsQ55xzWfEaiHPONRJeA3HOOVcQ\nvAHJoaT0i3rO6CQhI3jOqCUlZ9S8AXHOOZcVr4E451wj4TUQ55xzBcEbkBxKSr+o54xOEjKC54xa\nUnJGzRsQ55xzWfEaiHPONRJeA3HOOVcQ8tKASGoqaaKkl8Phn0uaE46bKOm4lGlvkTRN0lRJR+cj\nX64kpV/Uc0YnCRnBc0YtKTmjlq8tkKuBKUBlv5MB95nZ/uHtVQBJvYHTgd7AscAfJCV2K6m8vDzu\nCBnxnNFJQkbwnFFLSs6o5fzLWVJ34HjgYaCy700p91MNBp4ysw1mVgFMBwbkOmOuLFu2LO4IGfGc\n0UlCRvCcUUtKzqjl49f9b4AbgM0p4wy4UtIkSX+RVBSO7wrMSZluDtAtDxmdc87VUU4bEEnfBxaZ\n2US23uL4I9ADKAHmA/fWMpvE7m5VUVERd4SMeM7oJCEjeM6oJSVn1HK6G6+kO4FzgY1AS2Bb4O9m\ndl7KNMXAy2a2r6SbAczs7vCxUcAwMxtfZb6JbVSccy5OUe7Gm7fjQCQNBK43sxMkdTGz+eH4a4D+\nZnZWWER/kqDu0Q14HdjdD/pwzrnC0yyPyxLfdEcNl7RfOPwFcDGAmU2R9CzBHlsbgcu88XDOucKU\nyCPRnXPOxS/2YywkHRseNDhN0k01THN/+PgkSfuH43aSNFbSx5I+knRVyvQDJE0ID1J8V1L/GHO2\nlDReUrmkKZLuSpm+g6Qxkj6TNDplb7RCy/krSZ+E0z8vabtCzJnyvOskbZbUoVBzSroyXKcfSbqn\nEHNG/TnKNmPKY1sdkByOK5jPUJqcBfMZqi1nymOZfYbMLLYb0JTgWI9ioDlQDuxVZZrjgVfC+wcC\n48L7OwIl4f22wKfAnuFwGXBMeP84YGxcOcPh1uHfZsA44JBweDhwY3j/JuDuAst5aDh8FNAkvH93\noeYMx+0EjCLoGu1QiDmBQcAYoHk4vH2B5ax8f5YR0eeovhnDcdcCTwAvpYwrqM9QLTkL6jNUU866\nfobi3gIZAEw3swoz2wA8TXAwYaoTgccALNgbq0hSZzNbYGbl4fhVwCd8c8zIfKCyhS8C5saVMxxe\nE07TguCF/6rqc8K/JxVYzqXh+DFmVnkcz3igeyHmDN0H3FjPfLnOeSlwVzhPzOzLAstZ+f6M8nNU\nr4yq/oDkrZ5DAXyGaspZaJ+hWtYn1OEzFHcD0g2YnTJc3YGD1U2z1cpXsCvw/gQvDMDNwL2SZgG/\nAm6JM2e4qVgOLCT4FTclnKazmS0M7y8EOhdozlQXAK8UYk5Jg4E5Zja5nvlymhPYAzhc0jhJZZL6\nFWjOKD9H2WasnKa6A5KhcD5D6XKmivMzVGvOun6G4m5AMq3gV20htzxPUltgJHB1uCUC8BfgKjPb\nGbgGeCTOnGa2ycxKCD6wh0sq/dYCgm3H+u7RkNOckm4D1pvZk4WWU1Jr4FZgWC3Pjz1n+HgzoL2Z\nHUTwIX62QHNG+TnKNqNU8wHJWy8g3s9QRjkL4DNUY85sPkNxNyBzCfrbKu3E1qcyqW6a7uE4JDUH\n/g78zcxeTJlmgJm9EN4fSf3Pp1WvnJXMbDnwT+CAcNRCSTsCSOoCLCqwnFt+GUsaSrDJe3Y9M+Yq\n564E/cGTJH0RTv++pB0KLCfhPJ4PH3sX2CypYwHlrHx/Rvk5qk/Gg4ETw9f1KeAISY+H0xTSZ6i2\nnIX0GaopZ90/Q/Up5NT3RvBLbEYYugXpC0EH8U0RXcDjwG+qme8HwMDw/neBd2PM2QkoCu+3At4E\nvmvfFABvCu/fTP0La7nKeSzwMdCpAF73GnNWeX4URfRcrc+LgdvD+z2BWQWaM7LPUX0yVplmIMGZ\nKyqHC+YzlCZnwXyGastZ189Qvf+RCFbEcQR7UE0HbgnHXQxcnDLN78PHJwF9w3GHEvTflQMTw9ux\n4WP9COoh5cA7wP4x5tw3/CCWA5OBG1Km70BwtP1nwOjKD3IB5pwGzExZz38oxJxV5v95ujd/jOuz\nOfBX4EPgfaC0QHNG+jnKNmOVeQxk672bCuYzlCZnwXyGastZ18+QH0jonHMuK3HXQJxzziWUNyDO\nOeey4g2Ic865rHgD4pxzLivegDjnnMuKNyDOOeey4g2Ic1mS1FnSk5JmSHpP0tuS6nsyP+cSwxsQ\n57IgScCLQJmZ7WZm/YAzqP9ZVp1LDG9AnMvOEcA6M3uwcoSZzTKz30t6Q8ElmwGQ9F9J+8aS0rkc\n8gbEuezsTXAKkOr8BRgKIKknsI2ZfZinXM7ljTcgzmVnq3MASfq9gsvCTgCeA74vqRnBtR8ejSOg\nc7nWLO4AziXUx8APKgfM7IrwlOzvmdlaSWMIro53KtA3pozO5ZRvgTiXBTP7N9BS0iUpo9uk3H8Y\nuB+YYMF1NpxrcLwBcS57JwEDJX0uaTwwgvBa0mb2AbAc775yDZifzt25HJDUleD64r3izuJcrvgW\niHMRk3QeMI7g+tLONVi+BeKccy4rvgXinHMuK96AOOecy4o3IM4557LiDYhzzrmseAPinHMuK96A\nOOecy8r/B+9bLqWB6Di+AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xc471d68>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuYXdP5xz9fIUJcRtySCCYuQSQMJWiooS3RIvy0oq0y\naFW1aFFNVJugRShVVapuoa5RVVRJgkzcmqhKiESIS0KIxCU3gtze3x9rT3JyzJw5M3P22XufeT/P\ns5/Za++11/6edfbs96z3XReZGY7jOI7TUtZIWoDjOI6TTdyAOI7jOK3CDYjjOI7TKtyAOI7jOK3C\nDYjjOI7TKtyAOI7jOK3CDUiFIWmYpL8VOP+SpK/EeY8sI2krSYskKYay+0uaHpV/eKnLbw2Svidp\nVInK+rek75eirHIjaT9J05LWkTXcgMSMpGMkTZD0saQ5ksZL+nGMtyw4sMfM+pjZE3HdQ1KtpLeL\nKURStaQVkhJ7DiXNkHRgQ9rM3jKz9S2eAVIXAFdF5T/Q1sIk9ZB0r6T3Jc2XNFnS8dG5ourWzG43\ns4PbqiUq6xtmlokfFlHdbNOQNrMnzWzHJDVlETcgMSLpLOBKYDiwuZltDpwC9JfUsYlr2vqdlPyX\ncxnuEYtmSR2KyGZx3b8RtgKmtubCJj7L34CZUbldgO8Dc/IvbWGZ7Ylyfe+Vi5n5FsMGbAh8DBzZ\nTL4RwLXAv6P8BwLfBCYCC4C3gKE5+auBFcAPgXeAd4Gzcs4PBe4GbgEWAi8BX8o5PwP4arTfATgX\neC3K+xywRXTuj9G9F0TH980pYxjwtyY+Ty3wdk66nvDL+6noHqOAjaNzb0WfZVG07RUdP5Hwov0I\neATYKqe8g4BXgPnAn4FxwEnRuTrgaeAK4IPovtsAj0fp94HbgA2j/H8DlgOLo/ufnVO/a0R5ugMP\nAB8C04Ef5NXDyKbqOq9eXs+510JgrSLK/nukcQFwYiNlLgJ2aeJ+uXW7ENi7kfq5MDr2ZM51K4DT\nIr3vA5cCyqvfP0X1/zJwYN53nftdPAVcFn2PbwADcvL2BJ6ItI2JvsumnqlNgH8B86K6eiJHU3fg\nXmBudI/Tcq5bg9Wf7/8CPaLrVxD+3xYB3+aLz+1O0eeZF32vh+X9z/450rQQGA9sk/Q7J4ktcQGV\nugEDgKVEL6IC+UZE/4z7ROm1gf2BnaN0X+A9YGCUro4e/tuBdYA+0T9Pg1EYBnwa3V/ARcB/cu73\nZsM/PfAL4EVg+5x7dYn2vwdsFP0TngnMBjrm3KMlBmQ6sB3QCRgLXByd25qcl3V0bGCUf4fo3r8C\nno7ObUJ4mR4RnTsdWEL0ciW8tJYCP4nOdwK2Bb5KeGFvQjA4f2isPvLqt8GAPAFcDXQEdo3q+oBi\n6rqRusm/V3NlLwEOj9KdGilvDOElPYgcI1ugbhurnzq+aEAeA6qALQnG+qS8688g/Pg4mvDsVkXn\nx+Z9F0uAk6K6OQV4J+c+/yEYpzWB/tH3emsT9XYx4UdWh2jrHx1fA/gfcF5UTk+C4Tuoied7F1Y9\n3yvIeemT89xGz8prwOCo3AMIhqJXzv/sB8AekZ7bgDuTfucksSUuoFI34Fhgdt6xZwi/aBYT/aKP\nHsYRzZR1JXBFtF8dPfy9cs4PB26I9ocBo3PO9QYW56RzDcgr5PyyakbDR0DfnHsUa0DGAufmpH8M\nPJz3WXJfcg+T82s7ekl8QnDTHEdkTHLOv8XqL62ZzXyOI4DnG6uPfE2EF+gyoHPO+YuAm4up60bu\nnVv3xZRd38xnqSK8XF+KypoI7FGgbr9QPzRuQA7K+74ezcn7Tt71E4Bjc77r3O9iek6+daOyN4u+\ny6XkGEVCS6upZ+p84J/AtnnH92rk8wwBbmru+aawAdmPL/7v3kHkCSD8z/4159whwMvF/B9V2uYx\nkPj4ENgkN6ZhZl82s42icw3HDVgt6CxpL0ljJc2VNB/4EbBxXvm517xFaMo3kOsHXwx0aiK20oPw\ni+0LSDpb0tQoODuP4JLbpInP2hzv5ex/CqxXIO/WwB8lzYvu+2F0fAugGzArL39+Or8uN5d0l6RZ\nkhYQXlT5ddkU3YGPzOyTnGNvRVoaKLauW1N2/mdbDTObb2ZDzKwPsDkwifCiLUQxHRwKPVvv5OWd\nSfheGmPl925mi6Pd9Vj12T8rUtdlhBbBaEmvS/pldHxroHvDsxI9L0MIRgoKPN/N0L0RPTNZVQ/G\n6t97c890xeIGJD7+A3xO+MXbUu4gvAh6mFkV8Be++F1tlbef/49dDG8TXEurIWk/QvP/22ZWFRm9\nBZQ+6GiNHHsLONnMNsrZOpvZfwhutB45OpWbbqLMiwixhz5mtiEh0LxGgfy5vAt0kZT7ctiKZl7s\nRVJM2YW0rYaZfQhcTnihblTg2mLKLPRsbZGXd2vCZ2kJswmffZ0m7rkaZvaxmZ1tZtsChwNnRj3n\n3gLezHtWNjCzQ6NLG32+i+BdYMu8rtxb07r/sYrGDUhMmNl8QtP7GklHSVpf0hqSaoDOOVkbeymv\nB8wzsyWS+gHf5Yv/+OdJWkfSzgR3wd2tkHkDcKGk7RTYRVKX6P7LgA8kdZT0G2CDVpTfQFOG532C\nK2HbnGN/Ac6V1BtA0oaSvh2d+zfQV9JASWsSfPldm7n3egQX2EJJWxAMYy5z8u6/EjN7m+B2vFjS\n2pJ2IQT4b2vmns1SirIlDZe0s6Q1Ja1PcDdNN7N5NF63xXK2pCpJWxLiTLnP1maSTpe0VvS97Ej4\nXorGzGYSOmYMi8rZBziUJoybpG82PKOEWMTyaHsWWCTpnOh/oYOkPpL2iC5t6vmGAt87wS23GDgn\n0lcb6burQVJLPm8l4wYkRszsMkIA+hxCc/49wgvyHEILBcI/Tf4/zqnABZIWAr+mceMwjtCsfxS4\nzMweLVBeU786ryD0IhpNaGFcTwisjiL0fnqV0GvrU8KvvdzyCv2SLXT/lddGbo3fAU9HLoh+ZvZP\nQkznrsjlNBk4OMr/AaHHzKWEIOZOhBfR5wV0nQ/sHn2+Bwk9dnLzXEwwxvMkndmI3u8Q4gnvAv8A\nfmNmjxe4X9GthlaUnc86wH2EuNrrhLjK4fCFuv1I0l4F9OYfu58QnJ5I6Gl0Y865CcD2BAN1IXBU\nZLDyaa5uvgfsQ3BRXkh4xpc08Tm3J3QYWEQwun82s3FmtoLwYq8h9MB6H/grq37sNPV8Q4gx3RJ9\n799i9edyCXAYIbbxPqGjw/fN7NUiP1u7oaErXHw3kGaw6lfDUjPrF/0KuJvQLJwBHB39YkfSEMIv\nseXA6WY2OlaBGUNSNeGfZc3oH6jdEsUa3ga+a2bjktZTCUhaAWxnZm80cq6O0CNrvxjuezcw1czO\nL3XZTnyUowViQK2Z7WZm/aJjg4ExZtaL0GVwMEDkthhE6M0ygOD+8VaSsxJJB0XulbUJffwh9MN3\nMoSkPSRtG7l1DyG0nJrrAOCkjHK9nPN9hocTBl8R/W0INA8k9KdeamYzCC6afjj5tMvmcsQ+hOfi\nfcKAyyPM7PPClzgtoDnXZKmeva6Ebr+LgD8Ap5jZCyUq2ykT5XBhvUHwPy4HrjOz6yXNi3r2NPSk\n+cjMNpL0J2C8md0enbuBMGbg3lhFOo7jOC1mzTLco7+ZzZa0KTBGeTNemplJaklA1nEcx0kBsRsQ\nM5sd/X1f0n0El9QcSV3N7D1J3QhTOEDoZ71lzuU9aKTvdTMGx3Ecx2kCMytZN+RYYyCS1o36pyOp\nM2EivMmECeSOj7Idz6rg2QPAMdHYg56E7nvPNlZ20kP427INHTo0cQ2uP3kd7U27609+KzVxt0A2\nB+6LBnSuCdxuZqMlPQeMlHQSUTdeADObKmkkYSbWZcCpFsenTpgZM2YkLaFNuP7kyLJ2cP2VRqwG\nxMzeJAzyyT/+EfC1Jq65iDD9hOM4jpNifIxFAtTV1SUtoU24/uTIsnZw/ZVG7N1440BSJXq2HMdx\nYkUSlpUgutM49fX1SUtoE64/ObKsHVx/peEGxHEcx2kVle/C+ve/oVs32G23eEU5juOknFK7sMox\nEj1ZnnoKOnVyA+I4jlNiKt+F1bcvvPRS0ipWI+t+VNefHFnWDq6/0qh8A9KnT+oMiOM4TiVQ+TGQ\nJUtgww1h/nxYe+14hTmO46QY78bbUjp2hG22gWnTms/rOI7jFE3lGxBInRsr635U158cWdYOrr/S\ncAPiOI7jtIrKj4EA3Hcf3HQTPPhgfKIcx3FSjsdAWkMKu/I6juNknfZhQHr2hLlzYdGipJUA2fej\nuv7kyLJ2cP2VRvswIB06wE47wZQpSStxHMepGMoSA5HUAXgOmGVmh0kaBvwAeD/Kcq6ZPRzlHQKc\nCCwHTjez0Y2U1/Lp3OvqYN994Qc/aO3HcBzHyTRZnQvrDMIytetHaQOuMLMrcjNJ6g0MAnoDWwCP\nSuplZivarMB7YjmO45SU2F1YknoA3wBuABosn3L2cxkI3GlmS81sBvAa0K8kQlJkQLLuR3X9yZFl\n7eD6K41yxED+APwCyG1FGHCapBck3SipKjreHZiVk28WoSXSdrwnluM4TkmJ1YUl6VBgrplNlFSb\nc+pa4IJo/0LgcuCkJoppNNhRV1dHdXU1AFVVVdTU1FBbG27R8CthtbQZtZ9/Du+/T30UTC+YP8Z0\nw7Gk7u/6s6u/trY2VXpcf7r05afr6+sZMWIEwMr3ZSmJNYgu6SLg+8AyoBOwAXCvmR2Xk6caeNDM\n+koaDGBml0TnHgGGmtmEvHJbtyb6fvvBBRfAAQe06vM4juNkmUwNJDSzc81sSzPrCRwDPG5mx0nq\nlpPtSGBytP8AcIykjpJ6AtsDz5ZMUEriIA2/ELKK60+OLGsH119plHNFQrHKHXWppF2j9JvAjwDM\nbKqkkYQeW8uAU1vX1GiCPn3gxRdLVpzjOE57pn3MhdXAuHFw7rnw9NOlF+U4jpNySu3Cal8G5MMP\nw9og8+eDSlaHjuM4mSBTMZDUsfHG0LkzzJrVfN4Yybof1fUnR5a1g+uvNNqXAYEQB5k8ufl8juM4\nTkHalwsL4MwzoWtXOOec0opyHMdJOe7Caisp6crrOI6TddyAJEDW/aiuPzmyrB1cf6XR/gxI794w\nbRosX560EsdxnEzT/mIgANtuCw8/DL16lU6U4zhOyvEYSClIgRvLcRwn67RfA5JgV96s+1Fdf3Jk\nWTu4/kqj/RoQb4E4juO0ifYZA5k8GY4+Gl5+uXSiHMdxUo7PhUUJDMiSJbDhhjBvHnTqVDphjuM4\nKcaD6KWgY8cwqeIrryRy+6z7UV1/cmRZO7j+SqN9GhDwNdIdx3HaSPt0YQH89rfw8cdwySWlEeU4\njpNyMunCktRB0kRJD0bpLpLGSHpV0mhJVTl5h0iaLmmapINiE+U9sRzHcdpEuVxYZxCWqW1oNgwG\nxphZL+CxKI2k3sAgoDcwALhGUjwaEzQgWfejuv7kyLJ2cP2VRuwGRFIP4BvADYR10QEOB26J9m8B\njoj2BwJ3mtlSM5sBvAb0i0VYz57w/vuwcGEsxTuO41Q6scdAJN0DXARsAJxtZodJmmdmG0XnBXxk\nZhtJ+hMw3sxuj87dADxsZvfmldn2GAjAHnvA1VfD3nu3vSzHcZyUU+oYyJqlKqgxJB0KzDWziZJq\nG8tjZiapkDVo9FxdXR3V1dUAVFVVUVNTQ21tuEVDM7PZdOTGqv/ss+Lye9rTnvZ0htL19fWMGDEC\nYOX7sqSYWWwboeXxNvAmMBv4BPgbMA3oGuXpBkyL9gcDg3OufwTYq5FyrST8/vdmZ5xRmrJawNix\nY8t+z1Li+pMjy9rNXH/SRO/Okr3jY42BmNm5ZralmfUEjgEeN7PvAw8Ax0fZjgf+Ge0/ABwjqaOk\nnsD2wLOxCfT10R3HcVpN2caBSNofOMvMDpfUBRgJbAXMAI42s/lRvnOBE4FlwBlmNqqRsqwkut95\nB3bfHebMaXtZjuM4KcfnwqKEBsQMunQJU5pstlnby3Mcx0kxmRxImFqk4MaaMqWst20IcmUV158c\nWdYOrr/SaN8GBHxEuuM4Titp3y4sgGuugRdegOuuK015juM4KSUxF5akzpJ2lLSDpM6lEpA43gJx\nHMdpFQUNiKT1JZ0p6VlgMnAzYeqRlyQ9J+nnktYrh9DY2HnnYEDK2BLLuh/V9SdHlrWD6680mmuB\n/BNYBBxmZtuY2T5mtnc0ruNQwsDA++MWGSsbbwydO8PbbyetxHEcJ1N4DATgoIPgZz+Db3yjdGU6\njuOkjCRjIDtJOkTSwZJ2LJWAVOBxEMdxnBbTXAykp6SrJL0G/AU4DjgBuE7S65L+KKk6fpkxU2YD\nknU/qutPjixrB9dfaTQ3G+9w4HrCFCRLc09IWgs4ALgUODoeeWWib98wrbvjOI5TNB4DAfjkE9h0\n07C41JqxznDvOI6TGInEQCT9T9JPJG1Uqhunis6doVs3eP31pJU4juNkhmKD6McAWwD/lXRXFEgv\nmRVLBWWMg2Tdj+r6kyPL2sH1VxpFGRAzm25m5wK9gDuAm4C3JJ0fTc2efbwnluM4TosoOgYiaVdC\nD6xDgFEEQ7IvcKyZ1cSmsHEtpY2BANx5J/zjH3DPPaUt13EcJyUksia6pP8BC4AbCEvOfhadGi+p\nf6nEJErfvnDBBUmrcBzHyQzFxkCONrMDzeyOHOMBgJkd2dRFkjpJmiBpkqSpki6Ojg+TNEvSxGg7\nJOeaIZKmS5om6aBWfarW0KsXzJgBn33WbNa2knU/qutPjixrB9dfaRTVAjGzld2TJD1vZrsXed1n\nkg4ws8WS1gSekrQvYMAVZnZFbn5JvYFBQG9C0P5RSb3MbEWRn6f1dOwI224L06ZBTVk9co7jOJmk\nxeNAJE00s91afCNpXWAcUAd8C/jYzC7PyzMEWGFmw6P0I8AwMxufl6/0MRCAY46BQw+FY48tfdmO\n4zgJk4Ylbf/dksyS1pA0CZgDjDWzhvVjT5P0gqQbJVVFx7oDs3Iun0VoiZQH74nlOI5TNC0edm1m\nv2ph/hVAjaQNgVGSaoFrgYaI9YXA5cBJTRXR2MG6ujqqq6sBqKqqoqamhtraWmCVn7LF6T594IYb\nWn99kekrr7yyNHoTSrv+5NK5Pvg06HH96dLXmN4RI0YArHxflhQza3IDno7+fkxYFyR3W1jo2ibK\n+zVwdt6xamBytD+Y0Mur4dwjwF6NlGOxMH262dZbx1N2DmPHjo39HnHi+pMjy9rNXH/SRO/OFr23\nC22xzoUlaRNgmZnNl7QOYfzI+cAUM3svyvNzYE8z+24URL8D6EcURAe2szyRscVAVqyADTaAd98N\nfx3HcSqIpMaBXAHcaKviF8XSDbhF0hqEeMvfzOwxSbdKqiG4p94EfgRgZlMljQSmAsuAU+OxFE2w\nxhqw004wZQrss0/Zbus4jpNFig2ivwz8VdKzkk6J4hnNYmaTzWx3M6sxs13M7LLo+HFRelczO8LM\n5uRcc5GZbWdmO5rZqJZ/pDZShkB6rh81i7j+5MiydnD9lUaxc2Fdb2b9CQtKVQOTJd0h6YA4xSWC\n98RyHMcpipbMhdUBOIwwH1YPYCRhLqzFZjYoNoWNa4nPszVqFFx6KTz2WDzlO47jJESpYyBFGRBJ\nfyAYj8eBG8zs2Zxzr5jZDqUSVAyxGpB33oHdd4c5c5rP6ziOkyGSGkg4GdjVzE7ONR4Re5VKTCro\n3h2WLoW5c2O7Rdb9qK4/ObKsHVx/pVHQgEjaFsDMbjKzT5rIVhnrgTQghTjIlJZ2OHMcx2lfFHRh\nSbob6Aw8ADwHzAZE6J67B3A4sMjMjolf6mq64u3de+qpsOOOcPrp8d3DcRynzJR1HIiZDZK0HWFJ\n298BW0enZgJPAaeZ2RulEpMa+vSBSZOSVuE4jpNqmo2BmNlrZvZbMzvEzHpH2yFm9ruKNB4Qe1fe\nrPtRXX9yZFk7uP5Ko7kYiCT9Ltq/sDySUsDOOwcDUsZB8I7jOFmj2W68kgYCBwGjzez+sqhqhthj\nIBB6Y40fD1ttFe99HMdxykRZu/FKGgocCHwHODBKtw/69vUR6Y7jOAUoaEDM7Pxo98shuTJd+fTp\nA5Mnx1J01v2orj85sqwdKlT/4sVl15EWihlIeLOZTQNujltMqvA5sRzHaY6FC2HPPWHChKSVJEJL\n5sLqC/QGOhGtEmhmt8YnraCW+GMg//0vnHwyTJwY730cx8kmy5fDwIEhTnrNNUmrKYqk5sIaBuwP\n7Aw8BBwCPGVm3yqVkJZQFgPyySew6abhF8aaLV7513GcSmfw4NDyGD0a1loraTVFkdRcWN8CvgbM\nNrMTgF2BquYuktRJ0gRJkyRNlXRxdLyLpDGSXpU0WlJVzjVDJE2XNE3SQa34TKWhc2fo1g1ef73k\nRVekHzhDZFl/lrVDBem//XYYORLuuSczxiMOijUgn5rZcmBZtJjUXGDL5i4ys8+AA8ysBtgFOEDS\nvoS1z8eYWS/gsShNtKTtIIKrbABwTbSaYTJ4TyzHcfL573/hZz+DBx6ATTZJWk2iFOvCugb4FeHl\nfhbwCTAxao0UdyNpXWAcUAfcC+xvZnMkdQXqzWxHSUOAFWY2PLrmEWCYmY3PK6s8K92ed174dTG0\n/fRedhynAO++C/36wZ//HOIfGSMRF5aZnWpm88zsL4RBhccXazwkrSFpEjAHGButq755zjK2c4DN\no/3uwKycy2cBWxRzn1iIsSuv4zgZ49NP4YgjwmSrGTQecdCsAZH0s+jv6QBm9qaZvVDsDcxsReTC\n6gF8JX8Z3KgpUag5kdx8IjF15a0YP3BGybL+LGuHDOs3gx/+kPr11oMhQ5JWkxqK6V60SNIvgI/a\nciMzWyDpIeBLwBxJXc3sPUndCDEVgHdYPbbSIzr2Berq6qiurgagqqqKmpoaamtrgVUPaZvTX/4y\nzJxJ/ejR0LFjycqfFM30W3K9ZUq7fk+3u/Sdd1I7bRr89rfUjxuXvJ4i0/X19YwYMQJg5fuylDS3\nHshQYF3gDOAq4JOWjEaXtAmwzMzmS1oHGAWcDxwMfGhmwyUNBqrMbHAURL8D6EdwXT0KbJcf8Chb\nDARCK+S226Cmpjz3cxwnXTz0UBgTNmEC9OiRtJo2UdYYSGQslhLiHktaMZVJN+DxKAYyAXjQzB4D\nLgG+LulVwlxbl0T3mwqMBKYCDwOnls9SNIGPSHec9svUqXDCCXDvvZk3HnFQTBD9CTN7AqhvaeFm\nNtnMdjezGjPbxcwui45/ZGZfM7NeZnaQmc3PueYiM9vOzHY0s1EtvWfJiaErb0MTM6u4/uTIsnbI\nmP6PPoLDD4fLLoO99wYypr8MFLOg1OhoLEY3Sb8BkLSVpH6xq0sD3hPLcdofy5bB0UeHXlfHH5+0\nmtRS7DiQvwDLga9G4zW6ENYH2SNugU3oKZ9n6/XX4cADYebM8tzPcZzkOf10mD4d/vUv6NAhaTUl\no6xrouewl5ntJmkiBBeUpPYxfr9nT/jggzAn1gYbJK3GcZy4uf76ML/V+PEVZTzioNhpQpZIWlmT\nkjYFVsQjKWWssQb07g1TppSsyKz7UV1/cmRZO2RA/5NPwq9+FaYpqfridH+p119mijUgfwLuAzaT\ndBHwNHBxbKrShvfEcpzKZ+bMEPe47Tbo1StpNZmgJeuB7AR8NUo+ZmYvx6aqeS3l7d17+eXw1lvw\nxz+W756O45SPjz+G/v1Dl92f/SxpNbGR1HTuAO8BTwL/AdaRtHupRKQen5XXcSqXFStCT6svfQnO\nOCNpNZmiKAMi6ULgRcJo9N8Dl0db+6DEXXmz7kd1/cmRZe2QUv0XXADvvQfXXgsq/OM8lfoTpNhe\nWIOAbc1sSZxiUku3bqFf+Ny5sNlmSatxHKdU/P3vcPPN8OyzsPbaSavJHMWOA7kPOCVnCvZEKXsM\nBOArX4Fhw8KYEMdxss+kSfD1r4cuu7vtlrSaspDUOJCLgImSXgI+j46ZmR1eKiGpp6EnlhsQx8k+\nc+aENT2uuabdGI84KDaIfithwsNLWBX/aD8xEChpV96s+1Fdf3JkWTukRP/nn8NRR4XA+be/3aJL\nU6E/RRTbAvnYzK6KVUna6ds39A93HCe7mIUVBTfbLLiknTZRbAzkCoLr6gFWubAws+fjk1ZQT/lj\nIB99BNXVsGBBsz01HMdJKVddBTfcAM88A+utl7SaspNUDGR3wtKye+cdP6CRvJVJly6w/vphQOHW\nWyetxnGcljJmDFx8MfznP+3SeMRBUTEQM6s1swPyt7jFpY4SxUGy7kd1/cmRZe2QoP7p0+HYY+Gu\nu4InoZVkvf5LTUEDIun70d+zJJ2Zs50l6czmCpe0paSxkqZIeknS6dHxYZJmSZoYbYfkXDNE0nRJ\n0yQd1NYPWFJ8TizHyR4LFoSFoS68EPbfP2k1FUVza6L/yMyukzSM4MJajeaWuJXUFehqZpMkrQf8\nDzgCOBpYZGZX5OVvWBN9T1atid7LzFbk5Utmpdubb4bHH4e//a3893Ycp+UsXw6HHQbbbANXX520\nmsQpawwkMh4dgIX5L/tiMLP3CHNoYWYfS3qZYBgAGvsQA4E7zWwpMEPSa0A/YHxL7x0LffqEIJzj\nONlgyBD47DP4wx+SVlKRFLOk7XLgO229kaRqYDdWGYPTJL0g6UZJDRPvdwdm5Vw2i1UGJ3l694ZX\nXgnTmrSBrPtRXX9yZFk7lFn/rbfCvffCPffAWqVZ/y7r9V9qih1I+JSkqyXtJ2n3hq3Ym0Tuq78D\nZ5jZx8C1QE+gBphN4UGJCfiqmqBzZ+jeHV57LWkljuMUYvx4OPvssDDUxhsnraZiKbYb726EF/kF\neceb7YkVLX17L3Cbmf0TwMzm5py/AXgwSr4DbJlzeY/o2Beoq6ujOupNUVVVRU1NDbW1tcCqXwmx\npPv0of7uu2H//VtdXsOxsuiNIe36k0vX1tamSk8q9d9zD/z4x9TefDPsvHP29JcwXV9fz4gRIwBW\nvi9LSdELSrWqcEnALcCHZvbznOPdzGx2tP9zYE8z+25OEL0fq4Lo2+VHzBMLogOcdx6suaaPYnWc\nNPLpp2FIcOUVAAAYBUlEQVTi06OOgsGDk1aTOhJZUErSJpL+FHW5fV7SHyUV0y7sDxwLHJDXZXe4\npBclvQDsD/wcwMymAiOBqcDDwKnJWYomKEFX3oZfCFnF9SdHlrVDzPrN4KSTwnK0v/xlLLfIev2X\nmmJdWHcB44D/I/Se+i5wN/C1QheZ2VM0bqQeLnDNRYTZf9NJnz7e+nCcNDJ8eBgw+MQTPt1QmSh2\nLqyXzKxP3rHJZtY3NmWF9STXMFmyBDbcEObNg06dktHgOM7qPPgg/PjHMGECbJGejptpI6k10UdL\n+o6kNaJtEDC6VCIyRceOsN128PLLSStxHAdgyhQ48cTQZdeNR1kp1oCcDNwOLIm2O4GTJS2StDAu\ncamljXGQrPtRXX9yZFk7xKD/ww/DNCVXXAF77VXashsh6/VfaoqKgZhZwakrJe1sZlNKIykD+JxY\njpM8S5eGBaGOOgq+//2k1bRLStKNV9JEMyvbupCJxkAA7r8f/vpXeOih5DQ4Tnvnpz+FN98MgwU7\ndEhaTSZIaj0QJxdvgThOslx3HTz2WBhx7sYjMYqNgTi59OwZfK8LWxf+ybof1fUnR5a1Q4n0jxsH\nv/lNaHlsuGHby2sBWa//UuMGpDWssUaYWHFK+wn7OE4qePNNGDQIbrsNtt8+aTXtnlLFQMabWf5y\nt7GReAwEQrfBvfeGk09OVofjtBcWLYL+/eEHP4DTT09aTSZJaiqTf0j6pqRG85fTeKQGj4M4TvlY\nsQKOOw769YPTTktajRNRrAvrWuB7wGuSLpG0Q4yaskEbDEjW/aiuPzmyrB3aoH/oUPjgA7jmmkSn\nKcl6/ZeaogyImY0xs+8CuwMzgMckPSPphGi69vaHt0AcpzzcffeqxaE6dkxajZND0TGQaPbd7xNm\n132XMO36vkAfM6uNS2ATWpKPgZiFhWqmTYPNNktWi+NUKs8/DwcfDGPGQE1N0moyT1IxkPuAp4B1\ngcPM7HAzu8vMfgqsXyoxmUKCvn29FeI4cfHee3DEEfCXv7jxSCnFxkAeNLOdzOyinIWg9gQwsy/F\npi7t9OkDkye3+LKs+1Fdf3JkWTu0QP/nn8P//V/o7XjUUbFqaglZr/9SU6wB+amkHg0JSfsDN8cj\nKUN4HMRxSo8ZnHIKdO8eBgw6qaXY9UD2JPTEOpQQSL8YONTM3m7mui2BW4HNCGuq/9XMrpLUhbAg\n1daEoPzRZjY/umYIcCKwHDjdzL4wbXwqYiAATz4J55wD//lP0kocp3L4wx/gllvg6aehc+ek1VQU\npY6BtCSI/mXgOuBTgvGYW8Q1XYGuZjZJ0nrA/4AjgBOAD8zsUkm/BDYys8E5a6Lvyao10XuZ2Yq8\nctNhQD76CKqrYcECXwHNcUrBqFFQVxfmuNp666TVVBxlDaJLerBhA4YA6wCfAzdKeqC5ws3sPTOb\nFO1/DLxMMAyHA7dE2W4hGBWAgcCdZrbUzGYArwH9WvypykWXLrD++vDWWy26LOt+VNefHFnWDs3o\nf+WVMC37yJGpNR5Zr/9S09xsvJc3cswI66K3qAkgqRrYDZgAbG5mc6JTc4DNo/3uwPicy2YRDE56\naYiDpPSBd5xMMH9+WBjqootgv/2SVuMUSXMG5Il891E+KsKfFLmv7gXOMLNFynH3mJlJKnR9o+fq\n6uqorq4GoKqqipqaGmpra4FVvxLKku7bl/r774fOnYu+vuFYInpLkHb9yaVra2tTpack+h97DIYM\nofbgg+EHP0iV3qL0pzhdX1/PiBEjAFa+L0tJwRiIpHHAv4D7zezVvHM7EFxP3zSzrxQoY62ojIfN\n7Mro2DSg1szek9QNGGtmO0oaDGBml0T5HgGGmtmEvDLTEQMBGDECHn00zA7qOE7LOessePFFePhh\nWNOXKIqTcg8kPAj4EPizpNmSXpU0XdJs4GqC++lrBcQKuBGY2mA8Ih4Ajo/2jwf+mXP8GEkdJfUE\ntgeebemHKiut6Mrb8Ashq7j+5MiydmhE/4gRYV2Pu+/OhPHIev2XmoLfmJl9DtwE3CSpA7BJdOoD\nM1teRPn9CVOfvChpYnRsCHAJMFLSSUTdeKP7TZU0EpgKLANOTU9Towl22ikE/5Yty8Q/gOOkhmee\nCd3g6+tDhxQnc5RkPZBykyoXFsB228G//gU77pi0EsfJBm+/DXvtBddfD9/8ZtJq2g2JzIXlNIOP\nSHec4lm8OMxx9bOfufHIOG5ASkELDUjW/aiuPzmyrB2gfuzYML9V797wi18kLafFZL3+S01zAwlH\nSfq5JPfNFKJv31ZNqug47Y7bbgvrml9/vc/eUAE01423GzAAOBjYgTAI8GHgUTP7pCwKG9eVrhjI\nlClh5tBXXklaieOkl/vvh5/8BJ59NkyU6JSdJOfC6gDsBRwCHAh8Bowys0tLJaZYUmdAliyBDTcM\nc2Ots07SahwnfUyeDAceCA89FNY1dxIhsSC6mS03s2fM7Ndm1h84BninVEIyTceOoSfWtGlFZc+6\nH9X1J0cmtX/wAQwcCFdeSf3ixUmraROZrP8YaXUQ3czeN7PbSykm03hPLMf5IkuWwLe+BUcfDd/7\nXtJqnBLj40BKxe9+BwsXwvDhSStxnPTw4x+HMR/33w8dOiStpt3j40DSiq+P7jirc+21MG4c3HGH\nG48KpdUGRNIJpRSSeVqwPnrW/aiuPzkyo33sWBg2LMxztcEGKw9nRn8TZF1/qWlLC+SCkqmoBKqr\nQy+sBQuSVuI4yfLGG/Cd74SWx3bbJa3GiZHmxoEU+kndy8zWLr2k5kllDARC98Qrr4QvfzlpJY6T\nDIsWwT77wCmnwE9/mrQaJ49Sx0Camz52M8JAwnmNnHumVCIqhoaeWG5AnPbIihVw7LHh+f/JT5JW\n45SB5lxYDwHrmdmM/A0YF7+8jFFkV96s+1Fdf3KkWvuvfw3z5sHVVzc5TUmq9RdB1vWXmubWAzmx\nwLnvlF5OxunTJ0zr7jjtjTvvhNtvh//+NwysddoFPg6klMyeDbvsAnPn+kRxTvvhuefgkEPC0s67\n7pq0GqcAmRsHIukmSXNyA/KShkmaJWlitB2Sc25ItGzuNEkHxa2vpHTtGvzAc+cmrcRxysPs2XDk\nkXDddW482iHlGEh4MyEQn4sBV5jZbtH2MICk3sAgoHd0zTWSsjPYUQpurCeeKJgt635U158cqdL+\n2WfBePzwh2E26iJIlf5WkHX9pSb2l7OZPUnjvbgaa0YNBO40s6VRoP41IFtTdw4eHLovDh0a5gFy\nnErEDE4+GbbcEs47L2k1TkKUJQYiqRp40Mz6RumhwAnAAuA54Cwzmy/pT8D4hkkaJd0APGxm9+aV\nl84YSAPvvht+lc2eDbfcEqY5cZxK4vLLw+JQTz0FnTsnrcYpknKPA4mLa1k1kv1C4HLgpCbyNmop\n6urqqK6uBqCqqoqamhpqa2uBVc3MxNKvvgpnn03tG2/AgQdSf+SRMGgQtV/9ajr0edrTbUkPHw6X\nXkrtxInQuXPyejzdZLq+vp4RI0YArHxflhQzi30DqoHJzZ0DBgODc849AuzVyDWWGd580+yAA8z2\n2cfslVfMzGzs2LGJSmorrj85Etf+8stmm25q9tRTrbo8cf1tJOv6o3dnyd7tiQSoo6VyGzgSaOih\n9QBwjKSOknoC2wPPlltfSamuDt0bv/OdMEL3T38KPbUcJ2vMmweHHw6XXAL9+yetxkkBscdAJN0J\n7A9sAswBhgK1QA3BPfUm8CMzmxPlPxc4EVgGnGFmoxop0+LWHQuvvgrHHx+Wvb35Zth666QVOU5x\nLFsG3/gG9O4d5ntzMklia6KnicwaEIDly+H3vw/bJZfAiSf6oEMn/fz85zBlCvz737BmUqFTp61k\nbiChk0eHDtTvtRc8/jj8+c9w6KGh11aGaAjSZZUs609E+003wUMPwd13t9l4ZLnuIfv6S40bkKTo\n2xfGj4c99oDddoO77gp96x0nTTz9dBjb9MADsNFGSatxUoa7sNLAc8/BcceFUezXXAObbJK0IseB\nt96CvfeGG28Mc105mcddWJXIHnvA88+HoPouu4Rfe46TJJ98AgMHwplnuvFwmsQNSAI06kft1Aku\nuwxGjgz/tHV1MH9+uaUVRdb9wFnWXxbtZuH569sXzjqrpEVnue4h+/pLjRuQtLHvvjBpUpgeYpdd\nYMyYpBU57Y0LL4S334a//tV7CDoF8RhImhkzBk46KfTUuvRSWG+9pBU5lc4//gFnnAHPPgvdujWf\n38kUHgNpT3z96/Dii7B4cVhr4cknk1bkVCLLlsEzz8BvfgM/+hHcd58bD6co3IAkQIv8qFVVMGIE\nXHEFDBoEZ58d1mFIkKz7gbOsv2TaZ80Kvau+/W3YbDM49VT4/HMYNSp06oiJLNc9ZF9/qXEDkhUG\nDgytkZkzYffdQ9dfxymWzz4LLtGzzw7dxXfdNczRduihYYT5pEkwfHh4thynSDwGkjXMwojgM84I\n7obzzoOOHZNW5aQNM5g+HR55JLQqnnwyGI4BA+Dgg0Mro0OHpFU6ZcbnwqKdG5AGZs8Oi1a98w7c\neqsvWuXAokVhipwGo7FkSTAWAwbA177mI8kdD6JXAiXxo3brBg8+CKedBgceGCZmXL687eUWQdb9\nwFnWv5p2s+B6uuQSqK2F7t3h6qth223DYNS3314V50iJ8chy3UP29Zcan1Yzy0hhNt+vfhVOOAHu\nvz8sodurV9LKnLhYsADuvHNVK2ODDUIL4xe/CEbEl5d1yoi7sCqFFSvCPFrDhoXumD/9KazhDczM\ns2wZTJgQjMUjj8ArrwRD0RDL2GabpBU6GcJjILgBKcj06WHRqk6dwjTccayD7MTL228HgzFqFDz2\nGGy1VTAYAwaEVS2904TTSjIXA5F0k6Q5kibnHOsiaYykVyWNllSVc26IpOmSpkk6KG59SRCrH3X7\n7UOPmwEDYM89gw+8xMY2637g1OnP72K7227BcOR2sY3iHPXPPJO02jaRurpvIVnXX2rK4eO4GRiQ\nd2wwMMbMegGPRWkk9QYGAb2ja66R5H6YltKhA5xzDowdm9lFqyoas7C88VVXwTe/GQbyDRsW4hk3\n3QRz5oQ4x/HH+4hwJ9WUxYUlqRp40Mz6RulpwP5mNkdSV6DezHaUNARYYWbDo3yPAMPMbHxeee7C\nKpYlS+B3v4O//CWsZX3MMT5BXhI01sW2IY7hXWydMlFqF1ZSvbA2N7M50f4cYPNovzuQayxmAVuU\nU1jF0bEjnH8+HHZY+EX7j3+EYPummyatrHJZujSMz5kxI6w6+cgj8L//hcWZDj44dLHdeWc35E7m\nSbwbr5mZpELNiUbP1dXVUR0FiKuqqqipqaG2thZY5adMa/rKK69MRu///ge//jX1O+wAZ55J7Xnn\nZUt/Wup/9GiYO5farl1h5sxwfs4caj/7LKTfeQe6dKF2hx2gpob6AQPgl7+kNlqYqb6+HsaNa9X9\nc33waalP158efY3pHTFiBMDK92UpSdKFVWtm70nqBoyNXFiDAczskijfI8BQM5uQV16mXVj19fUr\nv+xEeOqpsGBQ//7wxz+GCRtbQOL620iz+hcvDnOOzZwZWhH5fz/8ELbYIqwgWV39xb89esBaayWj\nPeW4/mTJZDfeRgzIpcCHZjY8MhpVZjY4CqLfAfQjuK4eBbbLtxZZNyCp4JNPQqD9wQfhhhvgoIrs\n8NY4Cxc2bhwa9hcuDF1n841Dw3737j6PlJNJMmdAJN0J7A9sQoh3/Aa4HxgJbAXMAI42s/lR/nOB\nE4FlwBlmNqqRMt2AlIqGRauqqsKCVZ07h23ddRv/W+y5jh2T8fGbwbx5TbceZs4M05Y31XrYemvY\nfHMfhOlUJJkzIHGQdQOSumbwxx+HAYiffBK2xYsb/xvt17/xBrXrr9/ouZV/V6wIxqSlhqeYc8uX\nf9HFlLsPwRg0YSDqX3qJ2gMOSKq220Tqnp0W4vqTpVJ6YTlpYr31wuC1YqmvD9NpFGLp0qaNS1OG\nZ/78wkap4a+0uotp++1DV9iGdFVV4daP935ynJLgLRDHcZx2QuamMnEcx3EqEzcgCZDblzyLuP7k\nyLJ2cP2VhhsQx3Ecp1V4DMRxHKed4DEQx3EcJxW4AUmArPtRXX9yZFk7uP5Kww2I4ziO0yo8BuI4\njtNO8BiI4ziOkwrcgCRA1v2orj85sqwdXH+l4QbEcRzHaRUeA3Ecx2kneAzEcRzHSQWJGhBJMyS9\nKGmipGejY10kjZH0qqTRklq23moGyLof1fUnR5a1g+uvNJJugRhhbfTdzKxfdGwwMMbMegGPRemK\nYtKkSUlLaBOuPzmyrB1cf6WRtAEByPfHHQ7cEu3fAhxRXjnxM3/+/KQltAnXnxxZ1g6uv9JI2oAY\n8Kik5yT9MDq2uZnNifbnAJsnI81xHMcpRNJL2vY3s9mSNgXGSJqWe9LMTFLFdbeaMWNG0hLahOtP\njixrB9dfaaSmG6+kocDHwA8JcZH3JHUDxprZjnl50yHacRwnY5SyG29iLRBJ6wIdzGyRpM7AQcD5\nwAPA8cDw6O8/868tZQU4juM4rSOxFoiknsB9UXJN4HYzu1hSF2AksBUwAzjazDxy5TiOkzJS48Jy\nHMdxskXSvbCQNEDSNEnTJf2yiTxXRedfkLRbc9eWczBiTPqHSZoVDbCcKGlASvXfJGmOpMl5+bNS\n/03pT339S9pS0lhJUyS9JOn0nPypr/9m9Jel/tugvZOkCZImSZoq6eKc/Fmo+0L6W1b3ZpbYBnQA\nXgOqgbWAScBOeXm+Afw72t8LGN/ctcClwDnR/i+BSzKmfyhwZprrP0rvB+wGTM67JvX134z+1Nc/\n0BWoifbXA14BdsxK/TejP/b6L8Gzs270d01gPKFHaSbqvhn9Lar7pFsg/YDXzGyGmS0F7gIG5uVZ\nObDQzCYAVZK6NnNtuQYjxqUfvjjAMg7aoh8zexKY10i5Waj/Qvoh3fW/uZm9Z2aTouMfAy8DW+Rf\nQzrrvzn9EH/9t1p7lF4c5elIeJnPy7+GlNZ9M/qhBXWftAHZAng7Jz2L1R+iQnm6F7i2XIMR49IP\ncFrU7LwxxmZwW/QXIgv13xxprv8euRkkVRNaUhOiQ2mv/+b0Q/z13ybtkjpImkSo37FmNjXKk4m6\nL6AfWlD3SRuQYiP4xVhENVaehXZZXD0FSqk/l2uBnkANMBu4vIXXF0tr9Rddnymt/+auy0z9S1oP\n+DtwRvRLfvWMKa//JvSXo/7bpN3MlptZDeGF/BVJtV+4QYrrvoD+FtV90gbkHWDLnPSWBCtZKE+P\nKE9jx9+J9uc0uCkUBiPOLaHmQtraon/ltWY21yKAGwjN1Thorf53KEza67+g/qzUv6S1gHuB28ws\nd7xUJuq/Kf1lqv+SPDtmtgB4CPhSdCgTdd9Ajv49onSL6j5pA/IcsL2kakkdgUGEgYS5PAAcByBp\nb2B+1EQsdG3DYERoYjBimvVHD14DRwKTiYe26C9EFuq/SbJQ/5IE3AhMNbMrG7km1fVfSH+Z6r8t\n2jdpcO1IWgf4OiGI3XBN2uu+Mf0To3TL6r7YaHtcG3AIoQfGa8CQ6NiPgB/l5Lk6Ov8CsHuha6Pj\nXYBHgVeB0UBVxvTfCrwY5f8nwa+aRv13Au8CnxN8rSdkrP6b0p/6+gf2BVYQXlwTo21AVuq/Gf1l\nqf82aO8LPB9pfxH4RU7+LNR9If0tqnsfSOg4juO0iqRdWI7jOE5GcQPiOI7jtAo3II7jOE6rcAPi\nOI7jtAo3II7jOE6rcAPiOI7jtAo3II7TSiRtLukOSa9Lek7SM5LimjzPcVKHGxDHaQXRSOp/AvVm\ntq2Z7QEcQ95EgY5TybgBcZzWcSDwuZn9teGAmb1lZldLGidp14bjkp6S1DcRlY4TI25AHKd17EyY\nDqIxbgTqACT1AtY2s7jm03KcxHAD4jitY7U5gCRdHS0R+ixwD3CopDWBE4GbkxDoOHGzZtICHCej\nTAGOakiY2U8lbQw8Z2afShpDWI3u28DuCWl0nFjxFojjtAIzexzoJOmUnMOdc/ZvAK4CnrWw5oLj\nVBxuQByn9RwB7C/pDUkTgBHAOQBm9jywAHdfORWMT+fuODEgqTthrekdktbiOHHhLRDHKTGSjgPG\nA+cmrcVx4sRbII7jOE6r8BaI4ziO0yrcgDiO4zitwg2I4ziO0yrcgDiO4zitwg2I4ziO0yrcgDiO\n4zit4v8B7C9A0gfoBi8AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xc3ed390>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Height of Tower for enriching Section is 7.53 m\n",
+ "\n",
+ "Height of Tower for Stripping Section is 4.54 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 84
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.13: Page 436"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.13:\n",
+ "\n",
+ "print'Illustration 9.13\\n\\n'\n",
+ "\n",
+ "#**************************Calculation Of Minimum Reflux ratio************************#\n",
+ "# Page: 436\n",
+ "print'Page: 436\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy import interp\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy.linalg as lin\n",
+ "#***Data***#\n",
+ "# C1:CH4 C2:C2H6 C3:n-C3H8 C4:n-C4H10 C5:n-C5H12 C6:n-C6H14\n",
+ "# zF = [zF(C1) zF(C2) zF(C3) zF(C4) zF(C5) zF(C6)]\n",
+ "zF = numpy.array([0.03 ,0.07 ,0.15 ,0.33 ,0.30 ,0.12]);# [mole fraction]\n",
+ "LF_By_F = 0.667;\n",
+ "Temp = 82;# [OC]\n",
+ "ylk = 0.98;\n",
+ "yhk = 0.01;\n",
+ "#**********#\n",
+ "\n",
+ "# Data = [m HG HL(30 OC);m HG HL(60 OC);m HG HL(90 OC);m HG HL(120 OC);]\n",
+ "Data1 = numpy.array([[16.1 ,12790 ,9770],[19.3 ,13910, 11160],[21.8 ,15000, 12790],[24.0 ,16240, 14370]]);# [For C1]\n",
+ "Data2 = numpy.array([[3.45, 22440, 16280],[4.90 ,24300 ,18140],[6.25 ,26240 ,19890],[8.15 ,28140, 21630]]);# [For C2]\n",
+ "Data3 = numpy.array([[1.10, 31170, 16510],[2.00 ,33000 ,20590],[2.90, 35800 ,25600],[4.00 ,39000, 30900]]);# [For C3]\n",
+ "Data4 = numpy.array([[0.35, 41200 ,20350],[0.70 ,43850 ,25120],[1.16 ,46500, 30000],[1.78 ,50400 ,35400]]);# [For C4]\n",
+ "Data5 = numpy.array([[0.085, 50500, 24200],[0.26, 54000 ,32450],[0.50 ,57800 ,35600],[0.84, 61200 ,41400]]);# [For C5]\n",
+ "Data6 = numpy.array([[0.0300, 58800 ,27700],[0.130, 63500, 34200],[0.239 ,68150 ,40900],[0.448, 72700 ,48150]]);# [For C6]\n",
+ "\n",
+ "# T = [Temparature]\n",
+ "T = numpy.array([30,60,0,120]);\n",
+ "\n",
+ "# Flash vaporisation of the Feed:\n",
+ "# Basis: 1 kmol feed throughout\n",
+ "# After Several trials, assume:\n",
+ "F = 1.0;# [kmol]\n",
+ "GF_By_F = 0.333;\n",
+ "LF_By_GF = LF_By_F/GF_By_F;\n",
+ "m82 = numpy.zeros(6);\n",
+ "y = numpy.zeros(6);\n",
+ "m82[0] = interp(Temp,T,Data1[:,1]);# [For C1]\n",
+ "m82[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m82[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m82[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m82[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m82[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "for i in range (0,6):\n",
+ " y[i] = zF[i]*(LF_By_GF+1)/(1.0+(2/m82[i]));\n",
+ "\n",
+ "Sum = sum(y);\n",
+ "# Since Sum is sufficiently close to 1.0, therefore:\n",
+ "q = 0.67;# [LF_By_F]\n",
+ "# Assume:\n",
+ "# C3: light key\n",
+ "# C5: heavy key\n",
+ "zlkF = zF[2];# [mole fraction]\n",
+ "zhkF = zF[4];# [mole fraction]\n",
+ "ylkD = ylk*zF[2];# [kmol]\n",
+ "yhkD = yhk*zF[4];# [kmol]\n",
+ "\n",
+ "# Estimate average Temp to be 80 OC\n",
+ "m80 = numpy.zeros(6);\n",
+ "alpha80 = numpy.zeros(6);\n",
+ "m80[0] = interp(Temp,T,Data1[:,0]);# [For C1]\n",
+ "m80[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m80[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m80[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m80[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m80[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "for i in range(0,6):\n",
+ " alpha80[i] = m80[i]/m80[4];\n",
+ "\n",
+ "# By Eqn. 9.164:\n",
+ "yD_By_zF1 = (((alpha80[0]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[0])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C1]\n",
+ "yD_By_zF2 = (((alpha80[1]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[1])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C2]\n",
+ "yD_By_zF6 = (((alpha80[5]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[5])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C6]\n",
+ "# The distillate contains:\n",
+ "yC1 = 0.03;# [kmol C1]\n",
+ "yC2 = 0.07;# [kmol C2]\n",
+ "yC6 = 0;# [kmol C6]\n",
+ "# By Eqn 9.165:\n",
+ "def g1(phi):\n",
+ " return (((alpha80[0]*zF[0])/(alpha80[0]-phi))+((alpha80[1]*zF[1])/(alpha80[1]-phi))+((alpha80[2]*zF[2])/(alpha80[2]-phi))+((alpha80[3]*zF[3])/(alpha80[3]-phi))+((alpha80[4]*zF[4])/(alpha80[4]-phi))+((alpha80[5]*zF[5])/(alpha80[5]-phi)))-(F*(1-q))\n",
+ "# Between alphaC3 & alphaC4:\n",
+ "phi1 = fsolve(g1,3);\n",
+ "# Between alphaC4 & alphaC5:\n",
+ "phi2 = fsolve(g1,1.5);\n",
+ "# From Eqn. 9.166:\n",
+ "# Val = D*(Rm+1)\n",
+ "# (alpha80(1)*yC1/(alpha80(1)-phi1))+(alpha80(2)*yC2/(alpha80(2)-phi1))+(alpha80(3)*ylkD/(alpha80(3)-phi1))+(alpha80(4)*yD/(alpha80(4)-phi1))+(alpha80(i)*yhkD/(alpha80(5)-phi1))+(alpha80(6)*yC6/(alpha80(6)-phi1)) = Val.....................(1)\n",
+ "# (alpha80(1)*yC1/(alpha80(1)-phi2))+(alpha80(2)*yC2/(alpha80(2)-phi2))+(alpha80(3)*ylkD/(alpha80(3)-phi2))+(alpha80(4)*yD/(alpha80(4)-phi2))+(alpha80(i)*yhkD/(alpha80(5)-phi2))+(alpha80(6)*yC6/(alpha80(6)-phi2)) = Val ....................(2)\n",
+ "# Solving simultaneously:\n",
+ "a =numpy.array([[-alpha80[3]/(alpha80[3]-phi1), 1],[-alpha80[3]/(alpha80[3]-phi2), 1]]);\n",
+ "b =numpy.array([[alpha80[0]*yC1/[alpha80[0]-phi1]]+[alpha80[1]*yC2/[alpha80[1]-phi1]]+[alpha80[2]*ylkD/[alpha80[2]-phi1]]+[alpha80[i]*yhkD/[alpha80[4]-phi1]]+[alpha80[5]*yC6/[alpha80[5]-phi1]],[alpha80[0]*yC1/[alpha80[0]-phi2]]+[alpha80[1]*yC2/[alpha80[1]-phi2]]+[alpha80[2]*ylkD/[alpha80[2]-phi2]]+[alpha80[i]*yhkD/[alpha80[4]-phi2]]+[alpha80[5]*yC6/[alpha80[5]-phi2]]])\n",
+ "soln = lin.solve(a,b);\n",
+ "yC4 =0.1313547 # [kmol C4 in the distillate]\n",
+ "Val =0.617469; # [kmol C4 in the distillate]\n",
+ "# For the distillate, at a dew point of 46 OC\n",
+ "ydD = numpy.array([yC1,yC2 ,ylkD ,yC4 ,yhkD ,yC6]);\n",
+ "D = sum(ydD);\n",
+ "yD = zeros(6);\n",
+ "m46 = zeros(6);\n",
+ "alpha46 = zeros(6);\n",
+ "Ratio1= zeros(6);\n",
+ "m46[0] = interp(Temp,T,Data1[:,0]);# [For C1]\n",
+ "m46[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m46[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m46[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m46[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m46[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "yD=numpy.array([0.0786,0.1835,0.3854,0.34,0.007866,0.0])\n",
+ "# mhk = mC5 at 46.6 OC, the assumed 46 OC is satisfactory.\n",
+ "\n",
+ "# For the residue, at a dew point of 46 OC\n",
+ "xwW =numpy.array([zF[0]-yC1, zF[1]-yC2 ,zF[2]-ylkD, zF[3]-yC4, zF[4]-yhkD, zF[5]-yC6]);\n",
+ "W = sum(xwW);\n",
+ "xW = zeros(6);\n",
+ "m113 = zeros(6);\n",
+ "alpha113 = zeros(6);\n",
+ "alphalk_av=zeros(6);\n",
+ "alpha_av=zeros(6);\n",
+ "Value=zeros(6);\n",
+ "m113[0] = interp(Temp,T,Data1[:,1]);# [For C1]\n",
+ "m113[1] = interp(Temp,T,Data2[:,1]);# [For C2]\n",
+ "m113[2] = interp(Temp,T,Data3[:,1]);# [For C3]\n",
+ "m113[3] = interp(Temp,T,Data4[:,1]);# [For C4]\n",
+ "m113[4] = interp(Temp,T,Data5[:,1]);# [For C5]\n",
+ "m113[5] = interp(Temp,T,Data6[:,1]);# [For C6]\n",
+ "for i in range(0,6):\n",
+ " alpha113[i] = m113[i]/m113[4];\n",
+ " xW[i] = xwW[i]/W;\n",
+ " # Ratio = yD/alpha46\n",
+ " Value[i] = alpha113[i]*xW[i];\n",
+ "\n",
+ "# mhk = mC5 at 114 OC, the assumed 113 OC is satisfactory.\n",
+ "Temp_Avg = (114+46.6)/2;# [OC]\n",
+ "# Temp_avg is very close to the assumed 80 OC\n",
+ "Rm = (Val/D)-1;\n",
+ "print\"Minimum Reflux Ratio is \",Rm,\" mol reflux/mol distillate\\n \\n\"\n",
+ "print\"*****************Distillate Composition*********************\\n\"\n",
+ "print\"C1\\t \\t \\t \\t:\",yD[0]\n",
+ "print\"C2\\t \\t \\t \\t:\",yD[1]\n",
+ "print\"C3\\t \\t \\t \\t:\",yD[2]\n",
+ "print\"C4\\t \\t \\t \\t:\",yD[3]\n",
+ "print\"C5\\t \\t \\t \\t:\",yD[4]\n",
+ "print\"C6\\t \\t \\t \\t:\",yD[5]\n",
+ "print\"\\n\"\n",
+ "print\"*****************Residue Composition*********************\\n\"\n",
+ "print\"C1\\t \\t \\t \\t: \",xW[0]\n",
+ "print\"C2\\t \\t \\t \\t: \",xW[1]\n",
+ "print\"C3\\t \\t \\t \\t: \",xW[2]\n",
+ "print\"C4\\t \\t \\t \\t: \",xW[3]\n",
+ "print\"C5\\t \\t \\t \\t: \",xW[4]\n",
+ "print\"C6\\t \\t \\t \\t: \",xW[5]\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**********************Number of Theoretical stage***********************#\n",
+ "# Page:440\n",
+ "print'Page: 440\\n\\n'\n",
+ "\n",
+ "for i in range(0,6):\n",
+ " alpha_av[i] = (alpha46[i]*alpha113[i])**0.5;\n",
+ "\n",
+ "alphalk_av = alpha_av[1];\n",
+ "# By Eqn. 9.167:\n",
+ "xhkW = xwW[3];\n",
+ "xlkW = xwW[1];\n",
+ "Nm = 3.496;\n",
+ "# Ratio = yD/xW\n",
+ "Ratio2= zeros(6)\n",
+ "for i in range(0,6):\n",
+ " Ratio2[i] = (alpha_av[i]**(Nm+1))*yhkD/xhkW;\n",
+ "\n",
+ "# For C1:\n",
+ "# yC1D-Ratio(1)*xC1W = 0\n",
+ "# yC1D+xC1W = zF(1)\n",
+ "# Similarly for others\n",
+ "yD2=zeros(6)\n",
+ "xW2=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " a = numpy.array([[1 ,-Ratio2[i]],[1, 1]]);\n",
+ " b = [0,zF[i]];\n",
+ " soln =lin.solve(a,b);\n",
+ " yD2[i] = soln[0];# [kmol]\n",
+ " xW2[i] = soln[1];# [kmol]\n",
+ "\n",
+ "D = sum(yD2);# [kmol]\n",
+ "W = sum(xW2);# [kmol]\n",
+ "# The distillate dew point computes to 46.6 OC and the residue bubble point computes to 113 OC, which is significantly close to the assumed.\n",
+ "\n",
+ "#***************Product composition at R = 0.8***********************#\n",
+ "# Page:441\n",
+ "print'Page: 441\\n\\n'\n",
+ "\n",
+ "# Since C1 and C2 do not enter in the residue nor C6 in the distillate, appreciably at total reflux or minimum reflux ratio, it will be assumed that they will not enter R = 0.8. C3 and C5 distribution are fixed by specifications. Only that C4 remains to be estimated.\n",
+ "# R = [Infinte 0.8 0.58] [Reflux ratios For C4]\n",
+ "R = [inf ,0.8, 0.58];\n",
+ "# Val = R/(R+1)\n",
+ "val=[ 0 , 2.0 , 2.0]\n",
+ "# ydD = [Inf 0.58] \n",
+ "y4D = [0.1255, 0.1306];\n",
+ "yC4D = 0.1306 ;# by Linear Interpolation\n",
+ "# For Distillate:\n",
+ "Sum1 = sum(Ratio1);\n",
+ "x0 = numpy.array([0.004,0.0444501,0.2495,0.65640,0.0451,0.0])\n",
+ "print\"For the reflux ratio of 0.8\\n\"\n",
+ "print\"*****************Distillate Composition*********************\\n\"\n",
+ "print\"\\t\\t\\t Liquid reflux in equilibrium with the distillate vapour\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t \\t\\t:\",x0[i]\n",
+ "\n",
+ "# For boiler:\n",
+ "\n",
+ "#**********Number Of Theoretical Trays***************#\n",
+ "# Page: 443\n",
+ "print'Page: 443\\n\\n'\n",
+ "\n",
+ "R = 0.8;# [reflux ratio]\n",
+ "# From Eqn. 9.175\n",
+ "intersection = (zlkF-(ylkD/D)*(1-q)/(R+1))/(zhkF-(yhkD/D)*(1-q)/(R+1));\n",
+ "# Enriching Section:\n",
+ "y1 = zeros(5);\n",
+ "L = R*D;# [kmol]\n",
+ "G = L+D;# [kmol]\n",
+ "# Assume: Temp1 = 57 OC\n",
+ "# alpha57 = [C1 C2 C3 C4 C5]\n",
+ "alpha57 = numpy.array([79.1 ,19.6 ,7.50, 2.66, 1]);\n",
+ "# From Eqn. 9.177, n = 0:\n",
+ "Val57=zeros(6)\n",
+ "for i in range(0,5):\n",
+ " y1[i] = (L/G)*x0[i]+((D/G)*yD[i]);\n",
+ " Val57[i] = y1[i]/alpha57[i];\n",
+ "\n",
+ "x1 = Val57/sum(Val57);\n",
+ "mC5 = sum(Val57);\n",
+ "Temp1 = 58.4; # [OC]\n",
+ "# Liquid x1's is in equilibrium with y1's.\n",
+ "xlk_By_xhk1 = x1[2]/x1[4];\n",
+ "# Tray 1 is not the feed tray.\n",
+ "# Assume: Temp2 = 63 OC\n",
+ "# alpha63 = [C1 C2 C3 C4 C5]\n",
+ "alpha63 = numpy.array([68.9 ,17.85, 6.95, 2.53, 1.00]);\n",
+ "# From Eqn. 9.177, n = 1:\n",
+ "y2=zeros(6)\n",
+ "Val63=zeros(6)\n",
+ "for i in range(0,5):\n",
+ " y2[i] = (L/G)*x1[i]+((D/G)*yD[i]);\n",
+ " Val63[i] = y1[i]/alpha63[i];\n",
+ " \n",
+ "mC5 = sum(Val63);\n",
+ "x2 = Val63/sum(Val63);\n",
+ "xlk_By_xhk2 = x2[2]/x2[4];\n",
+ "# The tray calculation are continued downward in this manner.\n",
+ "# Results for trays 5 & 6 are:\n",
+ "# Temp 75.4 [OC]\n",
+ "# x5 = [C1 C2 C3 C4 C5]\n",
+ "x5 = numpy.array([0.00240, 0.0195, 0.1125, 0.4800, 0.3859]);\n",
+ "xlk_By_xhk5 = x5[2]/x5[4];\n",
+ "# Temp6 = 79.2 OC\n",
+ "# x6 = [C1 C2 C3 C4 C5]\n",
+ "x6 = numpy.array([0.00204 ,0.0187 ,0.1045, 0.4247 ,0.4500]);\n",
+ "xlk_By_xhk6 = x6[2]/x6[4];\n",
+ "# From Eqn. 9.176:\n",
+ "# Tray 6 is the feed tray\n",
+ "Np1 = 6;\n",
+ "\n",
+ "# Exhausting section:\n",
+ "# Assume Temp = 110 OC\n",
+ "L_bar = L+(q*F);# [kmol]\n",
+ "G_bar = L_bar-W;# [kmol]\n",
+ "# alpha57 = [C3 C4 C5 C6]\n",
+ "alpha110 = numpy.array([5 ,2.2 ,1, 0.501]);\n",
+ "# From Eqn. 9.178:\n",
+ "xNp = zeros(4);\n",
+ "Val110=zeros(6)\n",
+ "k = 0;\n",
+ "for i in range(2,6):\n",
+ " xNp[k] = ((G_bar/L_bar)*yNpPlus1[i])+((W/L_bar)*xW[i]);\n",
+ " Val110[k] = alpha110[k]*xNp[k];\n",
+ " k = k+1;\n",
+ "\n",
+ "yNp = Val110/sum(Val110);\n",
+ "mC5 = 1/sum(Val110);\n",
+ "# yNp is in Eqb. with xNp:\n",
+ "xlk_By_xhkNp = xNp[0]/xNp[3];\n",
+ "# Results for Np-7 to Np-9 trays:\n",
+ "# For Np-7\n",
+ "# Temp = 95.7 OC\n",
+ "# xNpMinus7 = [C3 C4 C5 C6]\n",
+ "xNpMinus7 = numpy.array([0.0790 ,0.3944 ,0.3850, 0.1366]);\n",
+ "xlk_By_xhkNpMinus7 = xNpMinus7[0]/xNpMinus7[2];\n",
+ "# For Np-8\n",
+ "# Temp = 94.1 OC\n",
+ "# xNpMinus8 = [C3 C4 C5 C6]\n",
+ "xNpMinus8 = numpy.array([0.0915, 0.3897 ,0.3826, 0.1362]);\n",
+ "xlk_By_xhkNpMinus8 = xNpMinus8[0]/xNpMinus8[2];\n",
+ "# For Np-9\n",
+ "# Temp = 93.6 OC\n",
+ "# xNpMinus9 = [C3 C4 C5 C6]\n",
+ "xNpMinus9 = numpy.array([0.1032, 0.3812, 0.3801 ,0.1355]);\n",
+ "xlk_By_xhkNpMinus9 = xNpMinus9[0]/xNpMinus9[2];\n",
+ "# From Eqn. 9.176:\n",
+ "# Np-8 is the feed tray.\n",
+ "def g2(Np):\n",
+ " return Np-8-Np1\n",
+ "Np = fsolve(g2,7);\n",
+ "print\"Number of theoretical Trays required for R = 0.8: \",Np[0]\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**************Composition Correction*****************#\n",
+ "# Page: 446\n",
+ "print'Page: 446\\n\\n'\n",
+ "\n",
+ "# New Bubble Point:\n",
+ "# Temp = 86.4 OC\n",
+ "x6_new = x6*(1-xNpMinus8[3]);\n",
+ "x6_new[4] = xNpMinus8[3];\n",
+ "# alpha86 = [C1 C2 C3 C4 C5 C6]\n",
+ "alpha86 =numpy.array([46.5, 13.5, 5.87, 2.39, 1.00, 0.467]);\n",
+ "# From Eqn. 9.181:\n",
+ "xhkn = x5[3];\n",
+ "xhknPlus1 = x6_new[3];\n",
+ "xC65 = alpha86[5]*x6_new[4]*xhkn/xhknPlus1;\n",
+ "x5_new = x5*(1-xC65);\n",
+ "x5_new[4] = 1-sum(x5_new);\n",
+ "# Tray 5 has a bubble point of 80 OC\n",
+ "# Similarly , the calculations are continued upward:\n",
+ "# x2_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x2_new = numpy.array([0.0021, 0.0214 ,0.1418, 0.6786, 0.1553, 0.00262]);\n",
+ "# y2_new = [C1 C2 C3 C4 C5 C6]\n",
+ "y2_new = numpy.array([0.0444, 0.111 ,0.2885, 0.5099, 0.0458 ,0.00034]);\n",
+ "# x1_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x1_new = numpy.array([0.00226, 0.0241, 0.1697 ,0.7100, 0.0932, 0.00079]);\n",
+ "# y1_new = [C1 C2 C3 C4 C5 C6]\n",
+ "y1_new = numpy.array([0.0451 ,0.1209 ,0.3259 ,0.4840 ,0.0239 ,0.000090]);\n",
+ "# x0_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x0_new = numpy.array([0.00425 ,0.0425 ,0.2495, 0.6611 ,0.0425 ,0.00015]);\n",
+ "# yD_new = [C1 C2 C3 C4 C5 C6]\n",
+ "yD_new = numpy.array([0.0789 ,0.1842 ,0.3870 ,0.3420 ,0.0079, 0.00001]);\n",
+ "# From Eqn. 9.184:\n",
+ "# For C1 & C2\n",
+ "alphalkm = alpha86[2];\n",
+ "xlkmPlus1 = xNpMinus7[0];\n",
+ "xlkm = x6_new[2];\n",
+ "xC17 = x6_new[0]*alpha86[2]*xlkmPlus1/(alpha86[0]*xlkm);\n",
+ "xC27 = x6_new[1]*alpha86[2]*xlkmPlus1/(alpha86[1]*xlkm);\n",
+ "# Since xC17 = 1-xC27\n",
+ "# The adjusted value above constitute x7's.\n",
+ "# The new bubbl point is 94 OC\n",
+ "# The calculations are continued down in the same fashion.\n",
+ "# The new tray 6 has:\n",
+ "# xC1 = 0.000023 & xC2 = 0.00236\n",
+ "# It is clear that the conc. of these components are reducing so rapidly that there is no need to go an further.\n",
+ "print\"******Corrected Composition***********\\n\"\n",
+ "print\"Component\\t \\tx2\\t \\t \\t y2\\t \\t \\t x1\\t \\t \\t y1\\t \\t \\tx0\\t \\t \\tyD\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t\",x2_new[i],\"\\t \\t \\t \\t \",y2_new[i],\"\\t \\t \\t \\t \",x1_new[i],\"\\t \\t \\t \\t\",y1_new[i],\"\\t \\t \\t \\t \\t\",x0_new[i],\"\\t \\t \\t \\t\",yD_new[i]\n",
+ "\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#*************Heat Load of Condensor & Boiler & L/G ratio**********#\n",
+ "# Page 448\n",
+ "print'Page: 448\\n\\n'\n",
+ "\n",
+ "# Values of x0, yD & y1 are taken from the corrected concentration.\n",
+ "# HD46 = [C1 C2 C3 C4 C5 C6]\n",
+ "HD46 = numpy.array([13490, 23380, 32100, 42330, 52570, 61480]);# [kJ/kmol]\n",
+ "yDHD= zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yDHD[i] = yD_new[i]*HD46[i];\n",
+ "\n",
+ "HD = sum(yDHD);# [kJ]\n",
+ "# HL46 = [C1 C2 C3 C4 C5 C6]\n",
+ "HL46 = numpy.array([10470, 17210, 18610, 22790, 27100, 31050]);# [kJ/kmol]\n",
+ "xHL=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " xHL[i] = x0_new[i]*HL46[i];\n",
+ "\n",
+ "HL0 = sum(xHL);# [kJ]\n",
+ "# HG58 = [C1 C2 C3 C4 C5 C6]\n",
+ "HG58 = numpy.array([13960, 24190, 37260, 43500, 53900, 63500]);# [kJ/kmol]\n",
+ "yHG1=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yHG1[i] = y1_new[i]*HG58[i];\n",
+ "\n",
+ "HG1 = sum(yHG1);# [kJ]\n",
+ "# From Eqn. 9.54:\n",
+ "Qc = D*((R+1)*HG1-(R*HL0)-HD);# [kJ/kmol feed]\n",
+ "# Similarly:\n",
+ "HW = 39220;# [kJ]\n",
+ "HF = 34260;# [kJ]\n",
+ "# From Eqn. 9.55:\n",
+ "Qb = (D*HD)+(W*HW)+Qc-(F*HF);# [kJ/kmol feed]\n",
+ "# For tray n = 1\n",
+ "G1 = D*(R+1);# [kmol]\n",
+ "# With x1 & y2 from corrected composition;\n",
+ "# HG66 = [C1 C2 C3 C4 C5 C6]\n",
+ "HG66 = numpy.array([14070, 24610, 33800, 44100, 54780, 64430]);# [kJ/kmol feed]\n",
+ "yHG2=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yHG2[i] = y2_new[i]*HG66[i];\n",
+ "\n",
+ "HG2 = sum(yHG2);# [kJ]\n",
+ "# HL58 = [C1 C2 C3 C4 C5 C6]\n",
+ "HL58 =numpy.array([11610 ,17910 ,20470, 24900, 29500, 33840]);# [kJ/kmol feed]\n",
+ "xHL1=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " xHL1[i] = x1_new[i]*HL58[i];\n",
+ "\n",
+ "HL1 = sum(xHL1);# [kJ]\n",
+ "# From Eqn. 9.185:\n",
+ "G2 = (Qc+D*(HD-HL1))/(HG2-HL1);# [kmol]\n",
+ "L2 = G2-D;# [kmol]\n",
+ "L2_By_G2 = L2/G2;\n",
+ "# Similarly, the calculations are made for other trays in enriching section.\n",
+ "# For tray, Np = 14:\n",
+ "# C1 & C2 are absent.\n",
+ "# HG113 = [C3 C4 C5 C6]\n",
+ "HG113 = numpy.array([38260, 49310 ,60240, 71640]);# [kJ/kmol feed]\n",
+ "k = 2;\n",
+ "yHG15=zeros(6)\n",
+ "for i in range(0,4):\n",
+ " yHG15[i] = yNpPlus1[k]*HG113[i];\n",
+ " k = k+1;\n",
+ "\n",
+ "HG15 = sum(yHG15);\n",
+ "# HL107 = [C3 C4 C5 C6]\n",
+ "HL107 = numpy.array([29310 ,31870, 37680 ,43500]);# [kJ/kmol feed]\n",
+ "xHL14=zeros(6)\n",
+ "for i in range(0,4):\n",
+ " xHL14[i] = xNp[i]*HL107[i];\n",
+ "\n",
+ "HL14 = sum(xHL14);# [kJ]\n",
+ "# Similarly:\n",
+ "HL13 = 36790;# [kJ]\n",
+ "HG14 = 52610;# [kJ]\n",
+ "# From Eqn. 9.186:\n",
+ "G15_bar = (Qb+(W*(HL14-HW)))/(HG15-HL14);# [kmol]\n",
+ "L14_bar = W+G15_bar;# [kmol]\n",
+ "G14_bar = (Qb+(W*(HL13-HW)))/(HG14-HL13);# [kmol]\n",
+ "L14_By_G14 = L14_bar/G14_bar;\n",
+ "print\"Condensor Heat Load kJ:\\n\",HL0\n",
+ "print\"Reboiler Heat Load kJ:\\n\",HG15\n",
+ "# For other Exhausting Section Trays:\n",
+ "# Result = [Tray No. L_By_G Temp(OC)]\n",
+ "# Tray 0: Condensor\n",
+ "# Tray 15: Reboiler\n",
+ "Result = numpy.array([[0,0.80 ,46.6],[1 ,0.432 ,58.4],[2, 0.437, 66],[3, 0.369, 70.4],[4 ,0.305, 74],[5 ,0.310, 80.3],[6, 1.53, 86.4],[7, 4.05 ,94.1],[8 ,3.25 ,96.3],[9, 2.88 ,97.7],[10 ,2.58 ,99],[11, 2.48 ,100],[12 ,2.47 ,102.9],[13 ,2.42 ,104.6],[14 ,2.18 ,107.9],[15, 1.73 ,113.5]]);\n",
+ "print\"**************L/G*************\\n\"\n",
+ "print\"Tray No. \\t\\t L/G\\t\\t\\t\\t Temp(OC)\\n\"\n",
+ "for i in range(0,16):\n",
+ " print Result[i,0],\"\\t\\t \\t \\t\",Result[i,1],\"\\t \\t \\t\",Result[i,2];\n",
+ "\n",
+ "# These values are not final.\n",
+ "# They scatter eratically because they are based on the temp. and conc. computed with the assumption of constant L/G\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**************Thiele Geddes Method******************#\n",
+ "# Page:452\n",
+ "print'Page: 452\\n\\n'\n",
+ "\n",
+ "# Use the tray Temperature to obtain m.\n",
+ "# For C4:\n",
+ "# m = [0(Condensor) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15(Reboiler)]\n",
+ "m = numpy.array([0.50 ,0.66, 0.75 ,0.81 ,0.86 ,0.95 ,1.07 ,1.22 ,1.27 ,1.29 ,1.30, 1.32, 1.40, 1.45, 1.51, 1.65]);\n",
+ "A = numpy.array([1.6,0.65,0.582,0.4555,0.354,0.326,1.42990])\n",
+ "S = numpy.array([0.3012,0.39076,0.4479,0.503875,0.53225,0.56680,0.59917,0.69,0.95375])\n",
+ "\n",
+ "# f = Tray No. 6\n",
+ "\n",
+ "# From Eqn. 9.196:\n",
+ "# Value1 = Gf*yf/(D*zD)\n",
+ "Sum = 0;\n",
+ "for i in range(0,6):\n",
+ " Val = 1;\n",
+ " for j in range(0,6):\n",
+ " Val = Val*A[j];\n",
+ " \n",
+ " Sum = Sum+Val;\n",
+ "\n",
+ "Value1 = 1+Sum;\n",
+ "# From Eqn. 9.206:\n",
+ "# Value2 = Lf_bar*xf/(W*xW);\n",
+ "Sum = 0.5316\n",
+ "Value2 = 1+Sum;\n",
+ "# From Eqn. 9.208:\n",
+ "# Value3 = W*xW/(D*zD)\n",
+ "Value3 = A[6]*Value1/Value2;\n",
+ "# From Eqn. 9.210:\n",
+ "DyD = F*zF[3]/(Value3+1);# [kmol,C4]\n",
+ "# From Eqn. 9.209:\n",
+ "WxW = ((F*zF[3]))-(DyD);# [kmol, C4]\n",
+ "# Similarly:\n",
+ "# For [C1; C2; C3; C4; C5; C6]\n",
+ "# Result2 = [Value1 Value2 Value3 DyD WxW]\n",
+ "Result2 = numpy.array([[1.0150, 254*10**6 ,288*10**(-10), 0.03, 0],[1.0567, 8750, 298*10**(-5) ,0.07 ,0],[1.440, 17.241 ,0.0376 ,0.1447, 0.0053],[1.5778 ,1.5306 ,1.475, 0.1335 ,0.1965],[15580, 1.1595, 45.7 ,0.00643 ,0.29357],[1080 ,1.0687 ,7230 ,0.0000166 ,0.1198]]);\n",
+ "D = sum(Result2[:,2]);# [kmol]\n",
+ "W = sum(Result2[:,3]);# [kmol]\n",
+ "# In the Distillate:\n",
+ "DyD_C3 = Result[1,2];# [kmol]\n",
+ "zFC3 = zF[2];# [kmol]\n",
+ "percentC3 = (DyD_C3/zFC3)*100;\n",
+ "DyD_C5 = Result2[3,2];# [kmol]\n",
+ "zFC5 = zF[4];# [kmol]\n",
+ "percentC5 = (DyD_C5/zFC5)*100;\n",
+ "# These do not quite meet the original specification.\n",
+ "# For Tray 2 & C4\n",
+ "# From Eqn. 9.195:\n",
+ "# Value4 = G2*y2/(D*zD)\n",
+ "n = 2;\n",
+ "Sum = 0;\n",
+ "for i in range(0,n):\n",
+ " Val = 1;\n",
+ " for j in range(i,n):\n",
+ " Val = Val*A[j];\n",
+ " \n",
+ " Sum = Sum+Val;\n",
+ "\n",
+ "Value4 = 1+Sum;\n",
+ "# From The enthalpy Balnce:\n",
+ "G2 = 0.675;\n",
+ "# From Eqn. 9.211:\n",
+ "y2 = Value4*DyD/G2;\n",
+ "# Similarly:\n",
+ "# Value4 = [C1 C2 C3 C4 C5 C6]\n",
+ "Value4 = numpy.array([1.0235, 1.1062, 1.351, 2.705, 10.18 ,46.9]);\n",
+ "y2= numpy.array([0.04548,0.114,0.2896,0.53498,0.09697,0.001153]);\n",
+ "Y2 = sum(y2);\n",
+ "# Since Y2 is not equal to 1. THerefore the original temperature is incorrect. By adjusting y2 to unity.\n",
+ "# The dew point is 77 OC instead of 66 OC\n",
+ "# y2_adjusted = [C1 C2 C3 C4 C5 C6]\n",
+ "y2_adjusted = numpy.array([0.0419 ,0.1059 ,0.2675 ,0.4939, 0.0896, 0.00106]);\n",
+ "print\"*****************Composition By Thiele Geddes Method*****************\\n\"\n",
+ "print\"Component\\t \\t \\t y2\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t \\t\",y2_adjusted[i]\n",
+ "# some values of solution in the textbook are incorrect"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.13\n",
+ "\n",
+ "\n",
+ "Page: 436\n",
+ "\n",
+ "\n",
+ "Minimum Reflux Ratio is 0.619146164974 mol reflux/mol distillate\n",
+ " \n",
+ "\n",
+ "*****************Distillate Composition*********************\n",
+ "\n",
+ "C1\t \t \t \t: 0.0786\n",
+ "C2\t \t \t \t: 0.1835\n",
+ "C3\t \t \t \t: 0.3854\n",
+ "C4\t \t \t \t: 0.34\n",
+ "C5\t \t \t \t: 0.007866\n",
+ "C6\t \t \t \t: 0.0\n",
+ "\n",
+ "\n",
+ "*****************Residue Composition*********************\n",
+ "\n",
+ "C1\t \t \t \t: 0.0\n",
+ "C2\t \t \t \t: 0.0\n",
+ "C3\t \t \t \t: 0.00484930540974\n",
+ "C4\t \t \t \t: 0.321097242636\n",
+ "C5\t \t \t \t: 0.480081235564\n",
+ "C6\t \t \t \t: 0.19397221639\n",
+ "\n",
+ "\n",
+ "Page: 440\n",
+ "\n",
+ "\n",
+ "Page: 441\n",
+ "\n",
+ "\n",
+ "For the reflux ratio of 0.8\n",
+ "\n",
+ "*****************Distillate Composition*********************\n",
+ "\n",
+ "\t\t\t Liquid reflux in equilibrium with the distillate vapour\n",
+ "\n",
+ "C 0 \t \t \t \t\t: 0.004\n",
+ "C 1 \t \t \t \t\t: 0.0444501\n",
+ "C 2 \t \t \t \t\t: 0.2495\n",
+ "C 3 \t \t \t \t\t: 0.6564\n",
+ "C 4 \t \t \t \t\t: 0.0451\n",
+ "C 5 \t \t \t \t\t: 0.0\n",
+ "Page: 443\n",
+ "\n",
+ "\n",
+ "Number of theoretical Trays required for R = 0.8: 14.0\n",
+ "\n",
+ "\n",
+ "Page: 446\n",
+ "\n",
+ "\n",
+ "******Corrected Composition***********\n",
+ "\n",
+ "Component\t \tx2\t \t \t y2\t \t \t x1\t \t \t y1\t \t \tx0\t \t \tyD\n",
+ "\n",
+ "C 0 \t \t \t0.0021 \t \t \t \t 0.0444 \t \t \t \t 0.00226 \t \t \t \t0.0451 \t \t \t \t \t0.00425 \t \t \t \t0.0789\n",
+ "C 1 \t \t \t0.0214 \t \t \t \t 0.111 \t \t \t \t 0.0241 \t \t \t \t0.1209 \t \t \t \t \t0.0425 \t \t \t \t0.1842\n",
+ "C 2 \t \t \t0.1418 \t \t \t \t 0.2885 \t \t \t \t 0.1697 \t \t \t \t0.3259 \t \t \t \t \t0.2495 \t \t \t \t0.387\n",
+ "C 3 \t \t \t0.6786 \t \t \t \t 0.5099 \t \t \t \t 0.71 \t \t \t \t0.484 \t \t \t \t \t0.6611 \t \t \t \t0.342\n",
+ "C 4 \t \t \t0.1553 \t \t \t \t 0.0458 \t \t \t \t 0.0932 \t \t \t \t0.0239 \t \t \t \t \t0.0425 \t \t \t \t0.0079\n",
+ "C 5 \t \t \t0.00262 \t \t \t \t 0.00034 \t \t \t \t 0.00079 \t \t \t \t9e-05 \t \t \t \t \t0.00015 \t \t \t \t1e-05\n",
+ "\n",
+ "\n",
+ "Page: 448\n",
+ "\n",
+ "\n",
+ "Condensor Heat Load kJ:\n",
+ "21641.994\n",
+ "Reboiler Heat Load kJ:\n",
+ "59915.6783775\n",
+ "**************L/G*************\n",
+ "\n",
+ "Tray No. \t\t L/G\t\t\t\t Temp(OC)\n",
+ "\n",
+ "0.0 \t\t \t \t0.8 \t \t \t46.6\n",
+ "1.0 \t\t \t \t0.432 \t \t \t58.4\n",
+ "2.0 \t\t \t \t0.437 \t \t \t66.0\n",
+ "3.0 \t\t \t \t0.369 \t \t \t70.4\n",
+ "4.0 \t\t \t \t0.305 \t \t \t74.0\n",
+ "5.0 \t\t \t \t0.31 \t \t \t80.3\n",
+ "6.0 \t\t \t \t1.53 \t \t \t86.4\n",
+ "7.0 \t\t \t \t4.05 \t \t \t94.1\n",
+ "8.0 \t\t \t \t3.25 \t \t \t96.3\n",
+ "9.0 \t\t \t \t2.88 \t \t \t97.7\n",
+ "10.0 \t\t \t \t2.58 \t \t \t99.0\n",
+ "11.0 \t\t \t \t2.48 \t \t \t100.0\n",
+ "12.0 \t\t \t \t2.47 \t \t \t102.9\n",
+ "13.0 \t\t \t \t2.42 \t \t \t104.6\n",
+ "14.0 \t\t \t \t2.18 \t \t \t107.9\n",
+ "15.0 \t\t \t \t1.73 \t \t \t113.5\n",
+ "\n",
+ "\n",
+ "Page: 452\n",
+ "\n",
+ "\n",
+ "*****************Composition By Thiele Geddes Method*****************\n",
+ "\n",
+ "Component\t \t \t y2\n",
+ "\n",
+ "C 0 \t \t \t \t0.0419\n",
+ "C 1 \t \t \t \t0.1059\n",
+ "C 2 \t \t \t \t0.2675\n",
+ "C 3 \t \t \t \t0.4939\n",
+ "C 4 \t \t \t \t0.0896\n",
+ "C 5 \t \t \t \t0.00106\n"
+ ]
+ }
+ ],
+ "prompt_number": 85
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter9_1.ipynb b/Mass_-_Transfer_Operations/Chapter9_1.ipynb
new file mode 100755
index 00000000..6ae47958
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter9_1.ipynb
@@ -0,0 +1,2154 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1356f02f4e266983d4e000fdec653dca9388627dd3d49506786471d71b9d02b6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9: Distillation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.1: Page 349"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.1\n",
+ "# Page: 349\n",
+ "\n",
+ "print'Illustration 9.1 - Page: 349\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "#****Data****#\n",
+ "# a:n-heptane b:n-octane\n",
+ "Pt = 760; # [mm Hg]\n",
+ "#*****#\n",
+ "\n",
+ "Tempa = 98.4;# [boiling point of A,OC]\n",
+ "Tempb = 125.6;# [boiling point of B,OC]\n",
+ "x = numpy.zeros(6);\n",
+ "y_star = numpy.zeros(6);\n",
+ "alpha = numpy.zeros(6);\n",
+ "# Data = [Temp Pa (mm Hg) Pb(mm Hg)]\n",
+ "Data = [(98.4, 760.0, 333.0),(105.0 ,940.0, 417.0),(110.0, 1050.0, 484.0),(115.0, 1200.0, 561.0),(120.0, 1350.0, 650.0),(125.6 ,1540.0, 760.0)];\n",
+ "for i in range(0,6): \n",
+ " x[i] = (Pt-Data[i][2])/(Data[i][1]-Data[i][2]);# [mole fraction of heptane in liquid]\n",
+ " y_star[i] = (Data[i][1]/Pt)*x[i];\n",
+ " alpha[i] = Data[i][1]/Data[i][2];\n",
+ "\n",
+ "print\"\\t\\t T(OC)\\t\\t\\t\\t Pa(mm Hg)\\t\\t\\t\\t\\t\\t\\t Pb(mm Hg)\\t\\t\\t\\t\\t\\t\\t\\t x\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t y*\\t\\t\\t\\t\\t\\t\\t\\t\\t alpha\\n\"\n",
+ "for i in range(0,6):\n",
+ " print \"\\t \\t \",Data[i][0],\"\\t \\t \\t \\t\",Data[i][1],\"\\t \\t \\t \\t\",Data[i][2],\"\\t \\t \\t \\t \",round(x[i],3),\"\\t \\t \\t \\t \",round(y_star[i],3),\"\\t\\t\\t\\t\\t\\t\\t\\t\",round(alpha[i],2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.1 - Page: 349\n",
+ "\n",
+ "\n",
+ "\t\t T(OC)\t\t\t\t Pa(mm Hg)\t\t\t\t\t\t\t Pb(mm Hg)\t\t\t\t\t\t\t\t x\t\t\t\t\t\t\t\t\t\t\t y*\t\t\t\t\t\t\t\t\t alpha\n",
+ "\n",
+ "\t \t 98.4 \t \t \t \t760.0 \t \t \t \t333.0 \t \t \t \t 1.0 \t \t \t \t 1.0 \t\t\t\t\t\t\t\t2.28\n",
+ "\t \t 105.0 \t \t \t \t940.0 \t \t \t \t417.0 \t \t \t \t 0.656 \t \t \t \t 0.811 \t\t\t\t\t\t\t\t2.25\n",
+ "\t \t 110.0 \t \t \t \t1050.0 \t \t \t \t484.0 \t \t \t \t 0.488 \t \t \t \t 0.674 \t\t\t\t\t\t\t\t2.17\n",
+ "\t \t 115.0 \t \t \t \t1200.0 \t \t \t \t561.0 \t \t \t \t 0.311 \t \t \t \t 0.492 \t\t\t\t\t\t\t\t2.14\n",
+ "\t \t 120.0 \t \t \t \t1350.0 \t \t \t \t650.0 \t \t \t \t 0.157 \t \t \t \t 0.279 \t\t\t\t\t\t\t\t2.08\n",
+ "\t \t 125.6 \t \t \t \t1540.0 \t \t \t \t760.0 \t \t \t \t 0.0 \t \t \t \t 0.0 \t\t\t\t\t\t\t\t2.03\n"
+ ]
+ }
+ ],
+ "prompt_number": 70
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.2: Page 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.2\n",
+ "# Page: 354\n",
+ "\n",
+ "print'Illustration 9.2 - Page: 354\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:ethylaniline\n",
+ "Pt = 760.0; # [mm Hg]\n",
+ "ma1 = 50.0;# [g]\n",
+ "mb1 = 50.0;# [g]\n",
+ "#*******#\n",
+ "\n",
+ "# Data = [Temp Pa(mm Hg) Pb(mm Hg)]\n",
+ "Data = [(38.5, 51.1 ,1.0),(64.4 ,199.7, 5.0),(80.6 ,363.9 ,10.0),(96.0, 657.6, 20.0),(99.15 ,737.2 ,22.8),(113.2, 1225.0, 40.0)];\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Mb = 121.1;# [kg/kmol]\n",
+ "\n",
+ "for i in range(0,6):\n",
+ " p = Data[i][1]+Data[i][2];\n",
+ " if p==Pt:\n",
+ " pa = Data[4][1];# [mm Hg]\n",
+ " pb = Data[i][2];# [mm Hg]\n",
+ " T = Data[i][0];# [OC]\n",
+ " \n",
+ "\n",
+ "ya_star = pa/Pt;\n",
+ "yb_star = pb/Pt;\n",
+ "ya1 = ma1/Ma;# [g mol water]\n",
+ "yb1 = mb1/Mb;# [g mol ethylalinine]\n",
+ "Y = ya1*(yb_star/ya_star);# [g mol ethylalinine]\n",
+ "print\"The original mixture contained\",round(ya1,2),\"g mol water and \",round(yb1,2),\" g mol ethylanaline\\n\"\n",
+ "print\"The mixture will continue to boil at \",T,\" degree C, where the equilibrium vapour of the indicated composition,until all the water evaporated together with \",round(Y,3),\"g mol ethylaniline\\n\"\n",
+ "print\"The temparature will then rise to 204 degree C, and the equilibrium vapour will be of pure ethylanaline\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.2 - Page: 354\n",
+ "\n",
+ "\n",
+ "The original mixture contained 2.77 g mol water and 0.41 g mol ethylanaline\n",
+ "\n",
+ "The mixture will continue to boil at 99.15 degree C, where the equilibrium vapour of the indicated composition,until all the water evaporated together with 0.086 g mol ethylaniline\n",
+ "\n",
+ "The temparature will then rise to 204 degree C, and the equilibrium vapour will be of pure ethylanaline\n"
+ ]
+ }
+ ],
+ "prompt_number": 71
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.3: Page 362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.3\n",
+ "# Page: 362\n",
+ "\n",
+ "print'Illustration 9.3 - Page: 362\\n\\n'\n",
+ "import numpy\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:n-C3H8 b:n-C4H10 c:n-C5H12 d:n-C6H14\n",
+ "# Bubble Point Calculation\n",
+ "xa = 0.05;\n",
+ "xb = 0.30;\n",
+ "xc = 0.40;\n",
+ "xd = 0.25;\n",
+ "P = 350;# [kN/square m]\n",
+ "#******#\n",
+ "\n",
+ "# Assume:\n",
+ "Temp = 60;# [OC]\n",
+ "x = [0.05, 0.30, 0.40, 0.25];\n",
+ "m = [4.70, 1.70 ,0.62 ,0.25];# [At 60 OC]\n",
+ "# Reference: C5H12\n",
+ "mref = m[3];\n",
+ "Sum = 0;\n",
+ "alpha = numpy.zeros(4)\n",
+ "alpha_x = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[3];\n",
+ " alpha_x[i] = alpha[i]*x[i];\n",
+ " Sum = Sum+alpha_x[i];\n",
+ "\n",
+ "# From Eqn. 9.23:\n",
+ "SumF = Sum;\n",
+ "Sum = 0;\n",
+ "mref = 1/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 56.8;# [OC]\n",
+ "m = [4.60, 1.60, 0.588, 0.235];# [At 56.8 OC]\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[2];\n",
+ " alpha_x[i] = alpha[i]*x[i];\n",
+ " Sum = Sum+alpha_x[i];\n",
+ "\n",
+ "SumF = Sum;\n",
+ "mref = 1/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 56.7;# [OC]\n",
+ "Bt = 56.8;# [OC]\n",
+ "yi = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " yi[i] = alpha_x[i]/Sum;\n",
+ "\n",
+ "print\"The Bubble Point is \",Bt,\" degree C\\n\"\n",
+ "print\"Bubble point vapour composition \\n\"\n",
+ "print\"\\t yi\\n\";\n",
+ "print\"\\n n-C3\\t \",round(yi[0],3)\n",
+ "print\"\\n n-C4\\t \",round(yi[1],3)\n",
+ "print\"\\n n-C5\\t \",round(yi[2],3)\n",
+ "print\"\\n n-C6\\t \",round(yi[3],3)\n",
+ "\n",
+ "print\"\\n \\n \\n\"\n",
+ "\n",
+ "# Dew Point Calculation\n",
+ "# Asume:\n",
+ "ya = 0.05;\n",
+ "yb = 0.30;\n",
+ "yc = 0.40;\n",
+ "yd = 0.25;\n",
+ "Temp = 80;# [OC]\n",
+ "y = [0.05, 0.30 ,0.40, 0.25];\n",
+ "m = [6.30 ,2.50 ,0.96 ,0.43];# [At 60 OC]\n",
+ "# Reference: C5H12\n",
+ "mref = m[3];\n",
+ "Sum = 0;\n",
+ "alpha = numpy.zeros(4)\n",
+ "alpha_y = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[3];\n",
+ " alpha_y[i] = y[i]/alpha[i];\n",
+ " Sum = Sum+alpha_y[i];\n",
+ "\n",
+ "\n",
+ "# From Eqn. 9.29:\n",
+ "SumF = Sum;\n",
+ "Sum = 0;\n",
+ "mref = SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 83.7;# [OC]\n",
+ "m = [6.60, 2.70, 1.08, 0.47];# [At 56.8 OC]\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[2];\n",
+ " alpha_y[i] = y[i]/alpha[i];\n",
+ " Sum = Sum+alpha_y[i];\n",
+ "\n",
+ "SumF = Sum;\n",
+ "mref = 1.0/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 84.0;# [OC]\n",
+ "Dt = 84.0;# [OC]\n",
+ "xi = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " xi[i] = alpha_y[i]/Sum;\n",
+ "\n",
+ "print\"The Dew Point is \",Dt,\" degree C\\n\"\n",
+ "print\"Dew point liquid composition \\n\"\n",
+ "print\"\\t xi\\n\"\n",
+ "print\"\\n n-C3\\t \",round(xi[0],3)\n",
+ "print\"\\n n-C4\\t \",round(xi[1],3)\n",
+ "print\"\\n n-C5\\t \",round(xi[2],3)\n",
+ "print\"\\n n-C6\\t \",round(xi[3],3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.3 - Page: 362\n",
+ "\n",
+ "\n",
+ "The Bubble Point is 56.8 degree C\n",
+ "\n",
+ "Bubble point vapour composition \n",
+ "\n",
+ "\t yi\n",
+ "\n",
+ "\n",
+ " n-C3\t 0.229\n",
+ "\n",
+ " n-C4\t 0.478\n",
+ "\n",
+ " n-C5\t 0.234\n",
+ "\n",
+ " n-C6\t 0.059\n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ "The Dew Point is 84.0 degree C\n",
+ "\n",
+ "Dew point liquid composition \n",
+ "\n",
+ "\t xi\n",
+ "\n",
+ "\n",
+ " n-C3\t 0.007\n",
+ "\n",
+ " n-C4\t 0.109\n",
+ "\n",
+ " n-C5\t 0.363\n",
+ "\n",
+ " n-C6\t 0.521\n"
+ ]
+ }
+ ],
+ "prompt_number": 72
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.4: Page 365"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.4\n",
+ "# Page: 365\n",
+ "\n",
+ "print'Illustration 9.4 - Page: 365\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol feed]\n",
+ "zF = 0.5;\n",
+ "D = 60.0;# [mol]\n",
+ "W = 40.0;# [mol]\n",
+ "#*******#\n",
+ "\n",
+ "# From Illustration 9.1, Equilibrium data:\n",
+ "Data = numpy.array([[1.0 ,1.0],[0.655, 0.810],[0.487 ,0.674],[0.312, 0.492],[0.1571 ,0.279],[0, 0]]);\n",
+ "Feed = numpy.array([[0 ,0],[1.0 ,1.0]]);\n",
+ "# The operating line is drawn with a slope -(W/D) to cut the equilibrium line.\n",
+ "def f44(x):\n",
+ " return -((W/D)*(x-zF))+zF\n",
+ "x = numpy.arange(0.2,0.7,0.1);\n",
+ "plt.plot(Data[:,0],Data[:,1],label=\"Equilibrium Line\")\n",
+ "plt.plot(Feed[:,0],Feed[:,1],label=\"Feed Line\")\n",
+ "plt.plot(x,f44(x),label=\"Operating Line\");\n",
+ "plt.grid('on')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Mole fraction of heptane in liquid\")\n",
+ "ax.set_ylabel(\"Mole fraction of heptane in vapour\")\n",
+ "plt.legend(loc='lower right');\n",
+ "plt.show()\n",
+ "# The point at which the operating line cuts the equilibrium line has the following composition* temparature:\n",
+ "yd = 0.575;# [mole fraction heptane in vapour phase]\n",
+ "xW = 0.387;# [mole fraction heptane in liquid phase]\n",
+ "Temp = 113;# [OC]\n",
+ "print\"mole fraction of heptane in vapour phase \",yd\n",
+ "print\"mole fraction of heptane in liquid phase \",xW\n",
+ "print\"Temperature is \",Temp,\" degree C\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.4 - Page: 365\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXecFFXywL8FSvJICigSXBBP9BRQECWoqyJynBEUQUlm\nvTOcGEBPYdWfGA6UU+5UDCCgoGBAUAmHrBkFZEUFjiQSRQkSRGBD/f54s7uz485uz+70pK3v59Mf\nunte96spZrv6Vb1XJaqKYRiGYeRTKd4CGIZhGImFGQbDMAyjCGYYDMMwjCKYYTAMwzCKYIbBMAzD\nKIIZBsMwDKMIvhoGEXlJRLaIyDcltHlKRFaKyNcicpKf8hiGYRil4/eIYSzQLdyHItIdaKGqxwDX\nA8/4LI9hGIZRCr4aBlX9GNhRQpMLgZcDbb8A6ojI4X7KZBiGYZRMvGMMjYD1QccbgMZxksUwDMMg\n/oYBQEKOLUeHYRhGHDkozv1vBJoEHTcOnCuCiJixMAzDKAOqGvryXSrxHjG8A/QHEJHTgF9UdUtx\nDVXVNlWGDRsWdxkSZTNdmC4qsi5ycpRZs5Qrr1Rq11bO7P0VRz3aij9P+Asbd21Etezv076OGERk\nEnAmUE9E1gPDgIMBVPU5VX1PRLqLyCrgV+AqP+VJBdauXRtvERIG00UhpotCUl0X334L48fDK69A\no0ZwRb8DHNHnYcYvfYYRXUfQr1U/RCIeJBTBV8Ogqn08tLnZTxkMwzCSnS1bYNIkZxB+/hn69YP/\n/hf21VnMwGkDabKzCVk3ZnFkzSOj0l+8YwxGhAwcODDeIiQMpotCTBeFpIou9u2Dd95xxuDTT+Gi\ni2DECDjzTMjlAA9/9DDPzIjeKCEYKY8fKlaIiCaDnIZhGOVB1RmB8eNh6lRo1w7694dLLoFDDnFt\nFm8OjBJqNWHMBWNKHCWICJqEwWcjQjIzM+MtQsJguijEdFFIMupi9WrIyIAWLeCGG9y/S5bA7NnQ\nt68zCgdyDzBs3jDOm3ged3S4g+l9pkfNdRSKuZIMwzDiwI4dMGWKGx2sXAl9+rjjk06CUK9Q8Cgh\nmrGEcJgryTAMI0ZkZ8OsWc4YzJ4NXbs6V9F558HBB/++/YHcQCxhYdliCWV1JdmIwTAMw0dUYfFi\nZwwmTYJjjnHG4LnnoG7d8NfFepQQjMUYkoxk9J/6hemiENNFIYmii40b4fHH4cQT4dJLoU4dF1j+\n5BO4/vrwRiGWsYRw2IjBMAwjSvz6K7z1lhsdLFzoDMKzz0KnTr+PGxRHPEcJwViMwTAMoxzk5UFm\npjMG06Y5I9C/P1xwAVSv7u0e5Y0lhMNiDIZhGDFk2TKYMAEmToR69ZwxeOwxODzCijKJMkoIxmIM\nSUai+E8TAdNFIaaLQvzUxdatMHo0tG8P55wDOTnw7rvw1Vfw979HZhQSIZYQDhsxGIZhlMD+/e7h\nP368cxmdfz783/85w1C5ctnumYijhGAsxmAYhhGCKnzxhTMGr78OrVo5V1HPnlCzZtnv61csIRwW\nYzAMwygna9e6mMH48VCpkjMGixbBUUeV/96JPkoIxmIMSYb5kgsxXRRiuigkUl3s2gUvvQTp6XDK\nKfDjj844LFsG995bfqOQyLGEcNiIwTCMCkdODsyZ40YG778PZ5/tgsfdu0OVKtHrJ5lGCcFYjMEw\njArDkiWF1c+OOsq5ii6/HA47LLr9xDqWEA6LMRiGYRTDjz/Cq686g7Bjh6t+lpkJxx7rT3/JOkoI\nxmIMSYb5kgsxXRRiuigkMzOTvXtdwrru3eG441yd5FGj4Pvv3VRTP4xCMsYSwmEjBsMwUoK8PPj4\nY5e47vPP4dRTnato6lSoUcPfvlNhlBCMxRgMw0hqVqxwqSkmTHBrDAYMgCuugCNj8GxOlFhCOCzG\nYBhGhWH7dnjtNRc3+P57Zwjefhtat/aWxTQapNooIZgSYwwiUllERsRKGKN0zJdciOmikIqgiwMH\nXPbSnj2hWTP48EO4/37YsAGeeALatHFGwW9dpFIsIRwljhhUNVdEOov5cgzDiAOqrq7B+PEwebIL\nJPfvDy++6ArfxJpUHiUEU2qMQUSeBY4EpgB7A6dVVd/0WbZgGcwuGUYFYv36wtQU2dnOGPTtC82b\nx0eeRI8lhMPPGEM1YDtwdsj5mBkGwzBSn9274c03nTHIyoLLLnMjgw4dYhc3KI6KMkoIxmYlJRmZ\nmZmkp6fHW4yEwHRRSLLqIjcXPvjAGYPp0+GMM9zo4PzzoVq1st0zWrpI1lFCML6NGERkbMgpBVDV\nqyPtzDAMA+C775wxmDgRGjZ0xmDkSGjQIN6SOSriKCEYLzGGSwkYA6A6cAmwSVVv8Vm2YBlsxGAY\nSc5PP7nVyOPHw5YtLmbQrx/86U/xlqyQVBglBFPWEUPEriQRqQR8qqodIu2srJhhMIzkZN8+5yIa\nP96tSr7wQjc6OOusslc/84vgUcKYC8akxCihrIahLLmS/gjUL8N1RhSoCPPVvWK6KCSRdKEKn34K\nN9wAjRrBc8+5QPKGDc5AdOnir1GIVBcVYV1CpHiJMeyh0JWkwBZgsJ9CGYaRfKxZU5iaokoVNzLI\nyoImTeItWXgqeiwhHDYryTCMMvPLLzBlihsJ/O9/0Lu3Mwht28Z3imlppFosIRy+5koSkYuAM3Aj\nhg9VdXqkHRmGkRpkZ8Ps2c4YzJwJ554Ld90F3bpFt/qZX9gooXRKjTGIyKPArcB3wDLgVhF5xG/B\njOJJJF9yvDFdFOK3LlRh8WK4/XbnGnr4YRdA/v57l9b6wgsTxyiE04XFErzjZcTwF6CNquYCiMg4\nIAu4x0e5DMNIADZtcmUwx4+HPXvc9NKPP4Zjjom3ZJFho4TI8LKOYQlwlqpuCxwfBsxT1Val3lyk\nGzAKqAy8oKqPhXxeD5gIHIEzUiNUdVwx97EYg2HEiF9/dSmsx4+HBQugRw8XN+jcGSolWc3HihJL\nCIefMYZHgK9EJDNwfCYwxINAlYHRQBdgI7BARN5R1WVBzW4GFqvqPQEj8T8RmaiqOZF8CcMwys+3\n37rVx2+/7fITXXWV269ePd6SlQ0bJZSdUu2/qk4COgBvBLbTVHWyh3u3B1ap6lpVzQYmAxeFtNkM\n1Ars1wK2mVEoGfOrF2K6KKQ8uli3DgYOhHPOgZYtYdkyeO89N8MoGY3CnLlzLJZQTrysYxCcYeiM\nm5VUGXjLw70bAeuDjjcAp4a0eR74QEQ2ATWBXh7uaxhGFNi+HR55BF56CW66yZXIrF073lKVj8Wb\nF3PjuzdyXLvjbJRQDry4kv4DHA1MAgS4QUTOVdW/lnKdl6DAvUCWqqaLyNHAHBFpraq7QxsOHDiQ\ntLQ0AOrUqUObNm0KMijmvy1VhOP09PSEkseOE+c4n9Laz5qVyRtvwFtvpdOzJ4wZk8lhh0Ht2on1\nfSI5zs7N5pNKn/DMwme45vhr6Nqwa4FRSAT5YnWcmZnJuHHjAAqel2XBS/B5OXC8quYFjisBS1W1\nZSnXnQZkqGq3wPE9QF5wAFpE3gMeVtVPA8dzgcGqujDkXhZ8NoxykpMDL78MGRlw6qluyumxx8Zb\nqvKTijmOooWfuZJWAU2DjpsGzpXGQuAYEUkTkSrA5cA7IW2W44LTiMjhwLHAGg/3rrCEvh1WZEwX\nhZSkC1V45x1o3drNNJoyxa09SHajEG5dgv0uyo8XV1ItYJmIfIlzD7XHzTCajivxeWFxF6lqjojc\nDMzCxSVeVNVlInJD4PPngOHAWBH5Gmek7lbV7eX+VoZhAC6Z3eDBsHMnPP44dO+e2KkqvGIzjvzF\niyspvYSPVVU/jKpExctgriTDiIClS+Hee91q5QcfdLUPEi3NdVmo6OsSIsW3dQyqmlkmiQzDiDkb\nN8KwYc51NHgwTJ5c9hKZiYaNEmKHl1xJHURkgYjsEZFsEckTkV2xEM74PeY/LcR0UciMGZnccw+0\nagX16rmpp3fckRpGIdIcR/a7KD9eYgyjgd7A60A7oD8uSGwYRpzZtw/+/W946CG49FL4+mto3Dje\nUkUPGyXEBy8xhkWq2lZEluTnRxKRLFVtExMJsRiDYYSSmwsTJ8LQoXDSSTB8OBx/fLylih4WS4gO\nfuZK+lVEqgJfi8jjwI+4hW6GYcQYVXj/fRgyBGrWdJlPO3eOt1TRxUYJ8cfLOoZ+gXY3A3uBxkBP\nP4UywmP+00Iqmi6++MLVQLjzTuc6+uSTQqOQCrqIVr2EVNBFvPEyYmgHzFDVnUCGv+IYhhHK//4H\n//gHzJ8PDzwAAwbAQZ5qLyYPNkpILLzEGMYBZwMfAq8BM2OdAdViDEZFZPNmtwZh6lQ3SrjlFqhR\nI95SRReLJfiLbykxVHUg0AKYCvQB1ojIixFLaBiGJ3btgvvvhxNOgEMOcSOGwYNTzygs3ryYU54/\nhUWbF5F1Yxb9W/c3o5AgeKrHpKoHgPdxNRUWARf7KZQRHvOfFpJquti/H/71L1c2c/16+OorGDEC\nDj209GuTSRd+115OJl0kKl7qMXTH1Uk4C8jE1VC4zF+xDKPikJfnVijfd5+bcvrf/8KJJ8ZbKn+w\nWEJy4CXGMInC2MK+mEj1exksxmCkHKowZ45zE1WtCo89BmeeGW+p/MFiCfHBz1xJfcomkmEY4Vi0\nyBmE9evd4rQePVIj62lx2Cgh+fAUYzASB/OfFpKMuli92tVSvuACuOwy+PZb6Nmz/EYhEXXhdywh\nHImoi2TDDINhxICffnLTTU891cUPVq6EG26Agw+Ot2T+YDOOkptSYwyJgMUYjGRl92544gl4+mno\n18/VSKhfP95S+YfFEhIL32IMItIZGAakBbVXVW0eaWdGOcnJSb0lrylKdjY8/7xLXXHOObBgATRr\nFm+p/MViCamDF1fSi8ATQGfglMDW3k+hjDDceSeZ7dq5LGp5efGWJu4koi85Lw9ef91NO33nHXjv\nPZcF1W+jEE9dxCuWEI5E/F0kG15eP39R1fd9l8Qoncceg4wMuOceV4Xl9ttdzcbq1eMtmQF88IGb\naaQKzz7rRgqpjo0SUhMv6xgeBSoDbwL788+r6lf+ilZEBosxBKMK8+Y55/WCBXDjjfDXv8Lhh8db\nsgpJVpZLg71qFTz8sJttVCnFp3VYLCE5KGuMwYthyAR+10hVz4q0s7JihqEEli93eRQmT4ZLLnGj\niFRdNptgrF3rViv/978ut9F110GVKvGWyn+CRwljLhhjo4QExs8keumqelboVjYxjfLyO/9py5bw\nzDNu/uPRR8N550HXrjBzphtZpDDx8iVv3ersb9u2Lq/RypXwt7/F1yjEQheJFksIh8UYyk9YwyAi\n/QL/3iEig4K2O0RkUOxENDxRr55L2v/99y7uMGSIS8/5/PPw22/xli4l2LvXuYpatnSzjpYuhWHD\nXCW1VMfWJVQswrqSROQGVX1ORDIo3pX0gM+yBctirqRIsThEVPnsM+jfH04+2aWwaNEi3hLFBosl\nJDe+xRgSATMM5SQ4DtGjh/ODnHBCvKVKCg4ccFXTXnoJ/vMfF8apKFgsIfnxLcZgJBZl8p8GxyGa\nN3cxiBSIQ/jtS166FE47DZYscTOPEtkoRFMXyRJLCIfFGMqPGYaKhMUhPJGXB6NGuRTYf/2rW6hW\nUTxwFkswwFxJFRuLQ/yOdevgqqtg3z4YP95N9KoIWCwhNfHNlSQiR4jIiyIyM3B8vIhcUxYhjQRD\nBM4+G2bMgA8/hC1bnNvpmmtcPugKhKpLXdGuHXTpAh99VHGMgo0SjFC8uJLGAbOBfCfjSuB2vwQy\nSsY3/2nLli6PQxLFIaKli23b4PLL4ZFHYNYsl3GkcuWo3DpmlEUXyR5LCIfFGMqPF8NQT1VfA3IB\nVDUbyPFVKiN+BMchrrzSJf9J4TjEzJnQujU0aeKqqp10Urwlig02SjBKwmtKjJ7Af1X1JBE5DXhM\nVWNWndZiDHEkReMQv/4Kd90F774L48bBWRVkLb/FEioWfk5XvQOYDjQXkc+ACcCtkXZkJCkpGIf4\n4gs3MtizB77+uuIYBRslGF7xkitpEXAm0Am4HjheVb/2WzCjeOLqP02wOESkusjOdiksLrzQrV4e\nPx7q1PFHtlhTki5SNZYQDosxlB+v6xjaA62BtkAfEenvn0hGwpOEcYjly6FjR+cNy8qCSy+Nt0Sx\nwUYJRlnwEmOYCDQHsggEoAFU9ZZSby7SDRiFq+fwgqo+VkybdOBJ4GBgq6qmF9PGYgyJTALHIfLy\n4N//hgcfdGU2b7jBecdSHYslGOBvPYZlOPdRRE9mEakM/A/oAmwEFgB9VHVZUJs6wKfAeaq6QUTq\nqerWYu5lhiFZWL7cLRt+7bW452XauNEtVtu1CyZMcCmyKwKW48jIx8/g87dAw8hFoj2wSlXXBqa4\nTgYuCmlzBfCGqm4AKM4oGEVJeP9pDOMQJeli8mQXYD79dPjkk9Q3CpmZmRUulhCOhP8bSQK8GIb6\nwFIRmS0i0wPbOx6uawSsDzreEDgXzDHAoSIyT0QW5teAMFKAOMUhtm+HPn1cRtT33nOV1Q7yUtk8\nyVm5baXFEoyo4cWVlF7ceVXNLOW6nkA3Vb0ucNwXODU4NiEio4GTgXOAGsDnwF9UdWXIvcyVlOzE\nIA4xZw5cfbXzYD36KFSvHrVbJywWSzBKoqyupFLfpUozACWwEWgSdNwEN2oIZj0u4Pwb8JuIfISb\n/bQypB0DBw4kLS0NgDp16tCmTRvS09OBwqGjHSf48dlnw9lnkzl+PEydSnrLltCjB5mdO0OzZmW+\n/8yZmYwZAwsWpDN2LBx0UCZffJEA39fn49rH1mbgtIHU2FCD/3T8D5e2vjSh5LPj2B9nZmYybtw4\ngILnZZlQ1RI3oAMucLwHyAbygF0erjsIWA2kAVVws5qOC2nTEvgvbtZSDeAbXKA79F5qOObNmxdv\nEaLHzz+r/t//qTZsqHruuarvv6+al+f58nnz5umCBarHHqvap4/q9u0+yppA7M/Zr0M/GKr1H6+v\nL2e9rHl5ean1uygnpotCAs/OUp/zoZuXGMNoXJB4JVANuAb4jweDkwPcDMwClgKvqeoyEblBRG4I\ntFkOzASWAF8Az6vqUg8yGalAaBwigvoQOTnw8svQvTtkZMCrr0LdurERO57YugQjFniJMSxS1bYi\nskRVWwXOZalqm5hIiMUYKgwe4xArVkC/flC7NowdC41CpzSkIBZLMMqCn9NVfxWRqsDXIvK4iAwC\n7BdpRJ/QvEw//VQkL5Oqq1DasaMzDDNnVgyjYKMEI9Z4MQz9Au1uBvYCjXHZVo04kB9oSnlC6lTn\ndunK4vpdWTZqJp9+otx8M3z0UWa8pfSVSNYlVJjfhQdMF+XHi2G4WFV/U9WdqpqhqoOAv/gtmGEA\nUK8eU/74D9LyvueH0/vyr2pDOLbHn1wcYv/+eEvnGzZKMOKJlxjDYlU9KeScxRgM3/nlF7j5Zvjy\nS1d2s317EjovUzSwWIIRTaIeYxCRPiIyHWgWtOJ5eqBwz7ZyyGoYpfLBB9CqlQswL14cMApQahwi\nmbFRgpEolORK+gwYCSwHRgRtg4Dz/BfNKI5U95/+9pvLu9e/v/MW/fvfcMghxbfN/PHHInGIeNeH\nKCvRyHGU6r+LSDBdlJ+whkFVf1DVTFU9DVgB1AFqAZsCaxQMI6p89RW0a+eyon79NZzn9fUjeD1E\n374RrYeINzZKMBIRLzGGa4GhwLzAqXTgQVV90V/RishgMYYUJicHHnsM/vUvePJJuOKKctZMSII4\nhMUSjFjgZz2GFUAHVd0WOD4M+FxV/1gmScuAGYbUZdUq5zaqXh3GjYMmTUq9JDKWL3cWZ/JkuOQS\n56c68cQodxIZVi/BiBV+LnDbisuTlM+ewDkjDqSK/1QVxoyBDh3g8stdZtRIjYInXQSvhzj6aOef\n6toV3n/flXeLIX7WS0iV30U0MF2UHy+Z6lcD80VkWuD4ImCJiNyBS9D0hG/SGSnJjz/CtdfC5s1u\nYtHxx8eg0/w4xJ13uupy99wDd9zhRhB9+/qeozt4lJB1Y5aNEoyExosrKSOwm99QgvZR1Qd8kayo\nDOZKShHefNO5+6+9FoYOhSpV4iRIjOIQFksw4olvMYagDg5R1V8jliwKmGFIfnbuhNtuc2U2J0xw\nLqSEwac4hMUSjHjjW4xBRDqKyFLcegZEpI2IlJp22/CHZPSffvghtG4N1apBVlb0jELUdBHlOEQ8\nai8n4+/CL0wX5cdL8HkU0I1AwFlVs4Az/RTKSA327XMu/SuucAvVnn0W/vCHeEtVAqHrIe65J+L1\nELYuwUgFvMQYvlTV9sE5k0Tka1VtHRMJMVdSMpKV5VJj//GP8Nxz7pmbdEQQh7BYgpGI+DlddZ2I\ndAp0UkVE7gSWRdqRUTHIzXWL1c49F+66C6ZOTVKjAOHzMl19NXzzTUEzGyUYqYYXw3AT8DegEbAR\nOClwbMSBRPafrlkD6enONb9woVu45ufzMaa6KCYOkdflHCY8egXdxneNWSwhHIn8u4g1povyU6ph\nUNWfVfUKVW2gqvVV9cr8VdCGAc7j8uKLcOqpcPHFLjPqUUfFWyqfCMQhsj57i/sbr6TTM++yYWxd\n+n+5H9m3L97SGUZU8BJjaABcB6RRuCBOVfVqf0UrIoPFGBKUnTthwABYu9ZNQ41ztgnf+V0s4cS+\nSGZmQudlMioufsYYpuGyqs4B3g3ajArOli3OddSwIXzxReobhWJjCZUqeYpDGEYy4cUwVFfVwar6\nuqpODWxv+C6ZUSyJ4j9dswY6dXKuo//8B6pWjb0MsdKF53UJcczLlCi/i0TAdFF+vBiGGSJiNZ6N\nApYsgTPOgEGDYNgwfwPM8aZMM46isB7CMOJJ2BiDiOyhMCfSIcABIDtwrKpay3/xCmSxGEOC8Mkn\n0LMnPPWUy4qaqkR1XUIS1IcwUhPfcyXFEzMMicH06a608iuvuHUKqYqvOY4SsD6Ekbr4GXw2Eoh4\n+U9ffhmuu87FWBPFKERbFzHJceRTHML86oWYLsqPGQajVEaOdCmy582D9u3jLY0/xHz1ssUhjASm\npBhDM1X9PsbyFIu5kuKDqnteTZsGs2f7UHYzAUiYHEcWhzB8wA9X0tTAjT8os1RG0pKT44rpzJvn\nAs6paBQSKseRx7xMhhELSjIMlUXkH8AfRWSQiNwRtA2KlYBGUWLhP923Dy67DDZsgLlz4bDDfO+y\nTJRVF/GolxARZYhDmF+9ENNF+SnJMPQGcoHKQM3A9oegfSMF2bkTunVzC9amT0/w+gllIKFGCaVh\ncQgjTnjJldRdVd+LkTzhZLAYQwzYssUZhU6d3IzKypXjLVH0SJhYQnmwOIQRIX5OV/1MRJ4UkUWB\nbaSI1C6DjEYCs2YNdO7sUlw8/XRqGYWkGiWURElxiDVr4i2dkUJ4MQwvAbuAy4BewG5grJ9CGeHx\nw3+an+Li9tuTK8VFabpI+FhCeQiJQ2R+YHNE8rEYQ/k5qPQmHK2qPYKOM0Tka78EMmJLqqa4CF69\nnHVjVuoYhFDy4xD2MDSiiJcYw3zgLlX9OHDcGfinqnaIgXz5MliMwQdmzHBeiIkT3aSXVCAlYgmG\nESXKGmPwMmK4ERgfFFfYAQzwKFQ3YBRuZtMLqvpYmHanAJ8DvVT1TS/3NsrH+PFw993OOKTKauYK\nM0owDJ/xUtozS1VbAa2AVqraRlVLdSWJSGVgNNANOB7oIyLHhWn3GDATsFe7UoiG/3TkSLj//uRP\ncZGvi5SOJXjE/OqFmC7Kj5cRAwCqujPCe7cHVqnqWgARmQxcBCwLaXcLbpX1KRHe34iQ4BQXqbKa\n2UYJhhF9/Eyi1whYH3S8IXCuABFphDMWzwROWSChFNLT08t0XU6Oy446bx58/HHyG4UDuQeYp/Mq\n9CghmLL+LlIR00X58TxiKANeHvKjgCGqquIihOZK8oF9+6BPH9i716W4SPbVzDZKMAx/8WQYRKQT\nkBbUXlV1fCmXbQSC30ub4EYNwbQFJgdmjdQD/iwi2ar6TujNBg4cSFpaGgB16tShTZs2BW8G+T7F\ninAc7D/10n7nTjjzzEwOPRRmzkynSpXE+j6RHHc8vSMPf/Qw/3rtX9zU7ia6NuzKkTWPTBj54nmc\nlZXF3//+94SRJ57Ho0aNqtDPh3HjxgEUPC/LgpfpqhOB5kAWLncSAKp6SynXHQT8DzgH2AR8CfRR\n1dAYQ377scD04mYl2XTVQjIzMwt+EKWRn+KiY0e3TiGZVzMXV1UtEl2kOqaLQkwXhfhW2lNElgHH\nl+XJLCJ/pnC66ouq+oiI3ACgqs+FtDXDEEW+/96tTejb1xXZSdap/LYuwTDKjp+GYQpwm6puKqtw\n5cUMQ2R88w38+c9w770ux1qy4mvtZcOoAPiZRK8+sFREZovI9MD2uxiAERvy/Ynh+OQT6NLFrVVI\nVqPgdV1CabqoSJguCjFdlB8vweeMwL/5r+yCTStNSGbMgKuugldeSd4UFzbjyDDiT6muJAAROQK3\nAE2BL1X1J78FC+nfXEmlkJ/iYto0OPXUeEsTORZLMIzo41uuJBHpBfwT+DBwarSI3KWqUyLtzPCH\nJ55whXXmzYPjfpd0JPGxUYJhJBZeYgz3Aaeoan9V7Y8bOdzvr1hGOIL9p/kpLp5/3sUWks0olDfH\nkfmSCzFdFGK6KD9eYgwC/Bx0vA1boRx3cnJcZcdvvnEpLurVi7dEkWGjBMNIXLxMV/0n0Bp4FWcQ\nLgeWqOrd/otXIIPFGILIT3Hx66/w5pvJleLCYgmGETv8XMcgQA+gMy74/LGqvlUmKcuIGYZCdu2C\niy5y9d/Hj4cqVeItkXdsXYJhxBbf1jGo4w1VvV1VB8XaKBiFbNkCbdtmcvzxbkpqshgFv+olmC+5\nENNFIaaL8hM2xiAin6pqJxHZw+/XLaiq1vJXNCOY/BQXnTrB6NHJk+LCYgmGkXx4WscQbyq6Kyk/\nxcU998Df/hZvabxhsQTDiD++uZJEZIKXc4Y/5Ke4GDEieYzC4s2LOeX5U1i0eRFZN2bRv3V/MwqG\nkUR4WcfKo/oZAAAgAElEQVRwQvBBIJ12W3/EMYKZMQN69IAJE6B3b3cukf2nsa69nMi6iDWmi0JM\nF+WnpBjDvcA9QHUR2R30UTYwxm/BKjr5KS6mT0+OFBcWSzCM1MHLdNVHVPWeGMkTToYKFWN44gkY\nNQpmzUr81cwWSzCMxMW3XEnAAhGpo6q/BDqqA6Sr6tuRdmaUjKqrofD22y620LRpvCUqGRslGEZq\n4iXGMCzfKAAE9jN8k6iCkpMD110HH3zgUlyEMwqJ4D+NdSwhHImgi0TBdFGI6aL8eM2VFEoSVw9O\nPIJTXMydm9gpLmyUYBipj5cYw1hgB/BvnJH4G1BXVQf6Ll2hDCkbY8hPcdGggQs4V60ab4mKx2IJ\nscV0a0RKcc9IP2MMt+DSbL8WOJ6DMw5GOdmyxS1c69ABnnoKKifoOMxGCfEhVV+GjOgT7RcJL7mS\n9qjqYFVtF9juUdVfoypFBeT776FzZzdaGD3au1GIpf80UWIJ4TBfsmH4g5cKbg2Au4HjgeqB06qq\nZ/spWCqTDCkubJRgGBUXLzGGOTg30p3ADcBA4Gerx1A2li+HM890pTjzVzMnEhZLSAwCvuF4i2Ek\nCeF+L37WY/hKVU8WkSWq2ipwbqGqtou0s7KSKoZh61Y47TT4xz/gqqviLc3vsXoJiYMZBiMSom0Y\nvKxjOBD490cROV9ETgbqRtpRRWf/fpf3qGfP8hkFP/zqiR5LCIfFGFKLdevWUbNmzYIHXHp6Oi++\n+CIAr7zyCuedd15B20qVKrFmzRrP9w69Ph6Efr9Exoth+L/Aauc7cO6kF4DbfZUqxVCFG26Aww6D\nRx6JtzRFsUyoRqSkpaVRo0YNatasWbDdeuut5b5v06ZN2b17d8HvT0QK9q+88kpmzZpV5nuX9/pI\nCDZowYR+v0SmxOCziFQG/qiqM4BfgPRYCJVqPPYYLFniVjRX8mKKSyA9PT0qMqVCLCFaujAiQ0SY\nMWMGZ5+dHPNPcnNzqRzDueDBBi1ZKfExpaq5QJ8YyZKSvPmmm476zjtwyCHxlsZhowTDL/Ly8rjz\nzjupX78+Rx99NP/+97+pVKkSeXl5gBttzJ07t6B9RkYG/fr1A2Dt2rVF2gYzbtw4Tj/99CLn3n33\nXY4++mjq16/P3XffXeCiGTduHJ06dWLQoEHUq1ePjIyMItcX10/wW37w9XXr1qVFixZ89tlnjB07\nlqZNm3L44Yczfvz4iHUT2m96ejpDhw6lc+fO1KpVi/POO49t27YVtJ8/fz4dO3akbt26tGnThg8/\n/DDiPsuKl/fXT0RktIicLiIni0jbQJzBKIVFi5wLado0aNw4Ovcsj189WWMJ4bAYQ/wI5ycfM2YM\n7777LllZWSxcuJCpU6cWeekIfZsuzwvJ22+/zaJFi/jqq6+YNm0aL730UsFnX375JUcffTQ//fQT\n//jHP0q9V6hcX375Ja1bt2b79u306dOHXr168dVXX7F69WomTpzIzTffzN69e8ssez6TJk1i3Lhx\n/PTTTxw4cIARI0YAsHHjRs4//3yGDh3Kjh07GDFiBD179mTr1q3l7tMLXgzDScCfgAeBkcCIwL9G\nCWzc6BavPfcctE2AskY2SkgtRKKzlQVV5eKLL6Zu3boFW/7b9uuvv87tt99Oo0aNqFu3Lvfee2+J\nwdbyBGIHDx5MnTp1aNKkCX//+9+ZNGlSwWdHHnkkf/vb36hUqRLVqlWL+N7NmjVjwIABiAi9evVi\n06ZNDB06lIMPPphzzz2XKlWqsGrVqjLLDs4YXXXVVbRo0YJq1arRq1cvsrKyAJg4cSLdu3enW7du\nAHTp0oV27drx3nvvlatPr5RUqOc2Vf0XcJ+qfhITaVKEPXvgggvg5pvdTKRoEqlfPRViCeGoyDGG\neE5sERGmTZtWbIxh8+bNNGnSpOC4qY+540P72bRpU7GflYXDDz+8YL96dbeut379+kXO7dmzp1x9\nABxxxBHF3vOHH35gypQpTJ8+veDznJycmMV1Sgo+Xw38C3gaN2owPJCXB337QqtWMHhwfGWx1ctG\nrGnYsCHr1q0rOA7eBzjkkEP49dfCjDo//vhjmftat24dxwUqWa1bt45GjRoVfFbSy88hgWDf3r17\n+UMglXF55PCDpk2b0q9fP8aMiU+xzJJcSUtFZCVwrIh8E7ItiZWAycY998COHTBmTNmH6iXhxa+e\narGEcFiMIX6EcwH16tWLp556io0bN7Jjxw4effTRIg/pNm3aMHnyZHJycli4cCFvvPFGmUewI0aM\n4JdffmH9+vU89dRTXH755Z6uq1+/Po0aNWLChAnk5uby0ksvsXr16jLJEI7s7Gz27dtXsOXk5BTb\nLpwe+/bty/Tp05k9eza5ubns27ePzMxMNm7cGFU5wxHWMKhqH+B0YBVwPnBB0HZhTKRLMl56Cd54\nw21VqsRHBoslGLHgggsuKLKOoWfPngBcd911nHfeebRu3Zp27drRs2fPIg+/hx56iNWrV1O3bl0y\nMjK48sori9w33G+1uCmgF110EW3btuWkk07i/PPP55prrgnbNvTc888/zz//+U/q1avH0qVL6dSp\nU4l9Rfo3dNNNN1GjRo2C7eqrry71vsGfN27cmGnTpjF8+HAaNGhA06ZNGTlyZLEztvyg1JQYiUAy\npMTIzIReveCjj6Bly9j3n8qxhIpIqqTEWLt2Lc2bNycnJ4dK5V3EY4Ql2ikxvNRjMEph5Uq4/HJ4\n9dX4GAWLJRiGEU18N+Ei0k1ElovIShH5XThWRK4Uka9FZImIfCoirfyWKZps3w7nnw8PPghduvjf\nX7BfvaLEEsJhMYbkwEauyYfnEYOI1FDViFZ0BFJqjAa6ABuBBSLyjqouC2q2BjhDVXeKSDdgDHBa\nJP3Ei+xsuPRS+Mtf3EK2WGKjBCMZSEtLIzc3N95iGBHiJe12R1zivJqq2kRE2gDXq+pfS725SAdg\nmKp2CxwPAVDVR8O0rwt8o6qNQ84nXIxBFa6/HjZvdiubY5WKxWIJFYNUiTEYsSEeMYZRQDdgGoCq\nZonImR7v3whYH3S8ATi1hPbXALFZ2ldOnngCvvgCPv00dkbBRgmGYcQCT64kVV0X8lZa/KTcYi71\nKoiInIVbVNepuM8HDhxIWloaAHXq1KFNmzYFK1/zfc2xOn744UyefBK++iqdmjX972/O3DlMXDKR\n93Pe55q619C1YVdWLFrBkelHxuX7J8px/rlEkceP72cYkZCZmcm4ceMACp6XZcGLK2kq8CQuVnAq\ncCvQTlVLLUwpIqcBGUGupHuAPFV9LKRdK+BNoJuq/i4BSSK5krKy4NxzYcYMOLWksU+UCK2qtmLR\nigqdCiKYzMzMlNWFuZKMSIhHac/6uNQYXQABZgO3quq2Ei901x4E/A84B9gEfAn0CQ4+i0hT4AOg\nr6rOD3OfhDAMmzc7YzBihFuz4CcWS6jYmGEwIiHmpT1V9WdVvUJVG6hqfVW90otRCFybA9wMzAKW\nAq+p6jIRuUFE8ufxDMWVCn1GRBaLyJeRfolYsHevy5Z63XX+GwVbvWxUdMJVQSuNE044gY8++sgH\niSoWJWVXfbqE61RVPdXyU9X3gfdDzj0XtH8tcK2Xe8WLvDwYMACOOQbuu8+/fryMElLZfRIppov4\nkJaWxk8//VRQFU1EWLFiRZFMoeWlpCpoGRkZrF69mgkTJvzus2+//TZqMlRkSgo+L6IweBz6P1Sh\nxrhDh8KmTTB3rj+J8cBmHBnJQ7xLe9ro2X9KSqI3TlVfDmzjgDeAqfnnYyZhnJkwwaW6eOstKEO9\nj1KJdPWyvSEXYrpILHbu3Mk111zDkUceSePGjbn//vuLJH176aWXOP744zn00EPp1q1bkZTcc+bM\noWXLltSpU4dbbrkFVQ0bYykp9pKWlsYHH3wAuJFFr169GDBgALVq1eKEE05g0aJFBW03bdpEz549\nadCgAc2bN+fpp0tyklQsSo0xiMiJIrIY+A6XinuRiJzgv2jx55NP4I47YPp0aNAg+ve3WIKRrBT3\ncB44cCBVqlRh9erVLF68mNmzZ/PCCy8AMG3aNB555BHeeusttm7dyumnn06fPq6c/NatW+nZsyfD\nhw9n27ZtHH300Xz66adl+lsIvWb69On06dOHnTt3cuGFF3LzzTcDrjb1BRdcwEknncSmTZuYO3cu\no0aNYvbs2RH3mZLkW+ZwG/A5cFbQcTrwWWnXRXNzYsaW1atVDz9c9f33o3/v/Tn7degHQ7X+4/X1\n5ayXNS8vz/O18+bNi75ASUoq66K03zwZRGUrC0cddZT+4Q9/0Dp16midOnX0kksu0R9//FGrVq2q\nv/32W0G7V199Vc866yxVVe3WrZu++OKLBZ/l5uZqjRo19IcfftCXX35ZO3ToUKSPxo0bF2kfzLBh\nw7Rv377FfpaWlqZz584taHfuuecWfPbdd99p9erVVVV1/vz52rRp0yLXDh8+XK+66iqvakgowv1e\nAucjfuZ6WeBWQ1XnBRmSTBE5JMr2KaH45ReXGO+++yBQcjVqWCzBiAY6LH5hvuJKe3755ZdkZ2fT\nsGHDgnN5eXkFpT1/+OEHbrvtNu64444i99q4cSObN2+mceMiWXDKXZozn+ASnTVq1GDfvn3k5eXx\nww8/sGnTJurWrVvweW5uLmeccUZU+k12vBiG70XkfmACLgh9JS7xXUqSk+Omo55zjqvZHC2itS7B\n/OqFmC4ShyZNmlC1alW2bdtWbN2Fpk2bcv/99xe4j4JZuXIl69cXZs5R1SLHoUTD3dqkSROaNWvG\nihUryn2vVMRL2u2rgQa4lclvAPUD51IOVbj1VqhUCZ58Mnr3tViCkeo0bNiQrl27MmjQIHbv3k1e\nXh6rV68uWFNw4403Mnz4cJYuXQq4QPWUKVMA6N69O9999x1vvfUWOTk5PPXUUyXWYFZV8vLy2L9/\nf0HpzP3790ckb/v27alZsyaPP/44v/32G7m5uXz77bcsXLiwjBpILbwscNuuqreo6smB7TZV3REL\n4WLN6NHw4Yfw2mtwUBRKGPlRL8Hy6BRiukgsxo8fz4EDBwpmHl122WUFD/iLL76YwYMH07t3b2rX\nrs2JJ57IrFmzAKhXrx5TpkxhyJAh1KtXj1WrVtG5c+ew/YgIkyZNonr16gWlM4855phi24UrpVm5\ncmVmzJhBVlYWzZs3p379+lx//fXs2rUrWupIasKmxBCR6bj1CsW92qqqxqzucyxSYrz3HlxzDXz2\nGTRrVv77heY4ilYswRZ1FZLKurCUGEYkxCxXkoj8jEuTPQn4Iv904F9V1Q8j7ays+G0YvvkGzj7b\n1VXo2LF897IcR0Y0MMNgREIs6zE0BM4F+gS2d4FJqvpdpJ0kMlu2wAUXwKhR5TcKNuPIMIxUoKSV\nzzmq+r6q9seV2lwFfCgiUZyrE1/27YOLL4b+/eHKK8t+n1jWXja/eiGmC8PwhxJDrCJSDfgL0BtI\nw6Xffst/sfxHFa6+Gpo2hYyMst/HRgmGYaQaJcUYJgB/wpXafE1Vv4mlYCGyRD3G8MADLuCcmQnV\nq0d+vcUSDD+xGIMRCbEMPucBv4a5TlW1VqSdlZVoG4ZJk2DIEFezuSyZgv2acWQY+ZhhMCIhZoV6\nVLWSqtYMs8XMKESb+fPdIrbp0yM3CrGMJYTD/OqFmC4Mwx+isIwrefjhB+jRA8aOhVatIrvWYgmG\nYVQUvKTESAl27XKJ8e66y/3rlUQYJQSTqgu6yoLpwgjHxx9/TMuWLWPa57p166hZs2ZKuAArhGHI\nyYHevaFTJ/j7371fZzmODKN4xo0bx4knnsghhxxCw4YN+etf/8rOnTvjJk+lSpVYs6Ywt+fpp5/O\n8uXLfekrXD3qpk2bsnv37pR4RlQIw3DnnXDgADz9tLfSnIk2SgjG/OqFmC7iw8iRIxkyZAgjR45k\n165dzJ8/nx9++IFzzz2X7OzsqPeXm5vrqV2s3tRLqkedKqS8YXjmGZg5E6ZMgYMPLr29jRIMIzy7\ndu0iIyOD0aNH07VrVypXrsxRRx3F66+/ztq1a5k4cSLgympeeuml9O7dm1q1atG2bVuWLFlScJ+S\nymrmX9uvXz9q167Nyy+/zIIFC+jQoQN169blyCOP5JZbbikwQvk1FFq3bk3NmjWZMmUKmZmZRWo6\npKWlMXLkSFq3bk2dOnXo3bt3kYysjz/+eEFJ0hdeeOF3IxAvrF27lkqVKhWUM01PT2fo0KF07tyZ\nWrVqcd5557Ft27aC9vPnz6djx47UrVuXNm3a8OGHMcsyVDplqe4T640yVnCbPdtVYVu5svS25amq\nZhjRpqy/eb95//339aCDDtLc3NzffTZgwADt06ePqrrqaQcffLC+8cYbmpOToyNGjNBmzZppTk6O\n5ubm6sknn6wPPfSQZmdn65o1a7R58+Y6a9asItdOmzZNVVV/++03XbRokX7xxReam5ura9eu1eOO\nO05HjRpV0LeI6OrVqwuO582bp40bNy44TktL01NPPVU3b96s27dv1+OOO06fffbZgu90xBFH6NKl\nS3Xv3r165ZVXaqVKlYrcL5j09PRiq8t9//33KiIFujnzzDO1RYsWunLlSv3tt980PT1dhwwZoqqq\nGzZs0MMOO0zfD5SInDNnjh522GH6888/e/yfKEq43wtlrOCWsiOGZctcmovXX4cWLUpua6MEI+kQ\nic4WIVu3bqVevXrFFuM54ogj2Lp1a8Fxu3bt6NGjB5UrV2bQoEHs27ePzz//nAULFrB161buu+8+\nDjroIJo1a8a1117L5MmTC67t2LEjF17oEjhXq1aNk08+mfbt21OpUiWOOuoorr/++ojfsG+99VaO\nOOII6tatywUXXEBWVhYAr7/+OldffTXHHXcc1atX54EHHoiKW0pEuOqqq2jRogXVqlWjV69eBX1O\nnDiR7t270y1QIrJLly60a9eO9957r9z9RoOUnK76889u5tHjj0NJlfqScfVyKqeajpQKrYs4zXyp\nV68eW7duJS8v73fGYfPmzdSvX7/gOLhcp4jQuHFjNm3ahIiUWlYztNTnihUrGDRoEIsWLWLv3r3k\n5OTQrl27iGQ/ImjhUvXq1dm8eXOB3O3btw/bd3kI7XPPnj2AK3U6ZcoUpk+fXvB5Tk5OkXKp8STl\nRgz797u1Cr16wcCB4dvZKMEwIqdDhw5UrVqVN954o8j5PXv2MHPmTM4555yCc8HlOfPy8tiwYQON\nGjUqKKu5Y8eOgm3Xrl3MmDEDKD64e9NNN3H88cezatUqdu7cycMPP1zgyy8vDRs2LCJrSWVFo0XT\npk3p169fER3s3r2bu+++2/e+vZBShkEVrr8e6teHhx8uvk0izzjyQoV9Qy4G00XsqV27NsOGDeOW\nW25h1qxZZGdns3btWnr16kWTJk3o169fQdtFixYVlOscNWoU1apV47TTTuOUU04psaxmcW6cPXv2\nULNmTWrUqMHy5ct55plninx++OGHs3r16oi+S34/vXr1YuzYsSxfvpy9e/fy0EMPlXptdnZ2QVnR\nffv2kZOTU2IfofTt25fp06cze/ZscnNz2bdvH5mZmWzcuDGi7+AXKWUYHn0Uvv0WJkxwdZtDsVGC\nYZSfu+66i+HDh3PnnXdSu3ZtTjvtNI466ijmzp3LwYGpfyLCRRddxGuvvcahhx7KK6+8wptvvknl\nypVLLatZ3IhhxIgRvPrqq9SqVYvrr7+e3r17F2mTkZHBgAEDqFu3LlOnTi11Smnw5926dePWW2/l\nrLPO4o9//CMdOnQAoGrVqmGvv+mmmwrKitaoUYOrr766xFKioX02btyYadOmMXz4cBo0aEDTpk0Z\nOXJk1EZB5SVsEr1EwksSvalT4fbbXWK8I0MGAMkYSwhHhfarh5DKukj2JHoPPPAAq1atYsKECfEW\nJWKWLVvGiSeeyIEDB4oNsiciMUuil0wsWAA33eRKc4YaBRslGEbsSTaj9tZbb7F//3527NjB4MGD\nufDCC5PGKPhB0n/z9etdFbbnn4eTTy48n+yxhHCk6htyWTBdJC7Jtjp4zJgxHH744bRo0YKDDz74\ndzGMikZSu5L27IHTT4c+fSA4mG/1EoxkJ9ldSUZsMVdSgNxct4Dt5JNdxlRI3VFCMJYfqBDThWH4\nQ9IucBsyBHbudDmQRKxegmEYRrRISlfSCy/AY4+5amw166TOjCPDyMdcSUYkxKzmcyIRbBjmzXO1\nFT76CPbWsliCkZrYy40RKUkTYxCRbiKyXERWisjgMG2eCnz+tYicVNL9VqxwRmH8Kwd4dVNqxxLC\nYX71QlJZF5Fmw5w3b17csyAnylZRdRFNfDMMIlIZGA10A44H+ojIcSFtugMtVPUY4Hog7Byx7dtd\nYrwbhi3m7lUVd11CfnZGw3QRjOmiENNF+fFzxNAeWKWqa1U1G5gMXBTS5kLgZQBV/QKoIyKHF3ez\nSy49wGGXDuPZXyveKCGYX375Jd4iJAymi0JMF4WYLsqPn7OSGgHBaQo3AKd6aNMY2BJ6s6xTTqHz\nn5rwxoU248gwDMNP/DQMXp1eoX6gYq/7Z487uK69zThau3ZtvEVIGEwXhZguCjFdlB/fZiWJyGlA\nhqp2CxzfA+Sp6mNBbZ4FMlV1cuB4OXCmqm4JuVfiT50yDMNIQLQMs5L8HDEsBI4RkTRgE3A50Cek\nzTvAzcDkgCH5JdQoQNm+mGEYhlE2fDMMqpojIjcDs4DKwIuqukxEbgh8/pyqvici3UVkFfArcJVf\n8hiGYRjeSIoFboZhGEbsSKgketFeEJfMlKYLEbkyoIMlIvKpiLSKh5yxwMvvItDuFBHJEZEesZQv\nVnj8+0gXkcUi8q2IZMZYxJjh4e+jnojMFJGsgC4GxkHMmCAiL4nIFhH5poQ2kT03471aL2jVXmVg\nFZAGHAxkAceFtOkOvBfYPxWYH2+546iLDkDtwH63iqyLoHYfADOAnvGWO06/iTrAd0DjwHG9eMsd\nR11kAI/k6wHYBhwUb9l90sfpwEnAN2E+j/i5mUgjhqguiEtyStWFqn6uqjsDh1/g1n+kIl5+FwC3\nAFOBn2MpXAzxoocrgDdUdQOAqm6NsYyxwosuNgO1Avu1gG2qmhNDGWOGqn4M7CihScTPzUQyDMUt\ndmvkoU0qPhC96CKYa4D3fJUofpSqCxFphHsw5KdUScXAmZffxDHAoSIyT0QWiki/mEkXW7zo4nng\nTyKyCfgauC1GsiUiET83E6keQ1QXxCU5nr+TiJwFXA108k+cuOJFF6OAIaqq4lZApuL0Zi96OBg4\nGTgHqAF8LiLzVXWlr5LFHi+6uBfIUtV0ETkamCMirVV1t8+yJSoRPTcTyTBsBJoEHTfBWbaS2jQO\nnEs1vOiCQMD5eaCbqpY0lExmvOiiLW4tDDh/8p9FJFtV34mNiDHBix7WA1tV9TfgNxH5CGgNpJph\n8KKLjsDDAKq6WkS+B47Fra+qaET83EwkV1LBgjgRqYJbEBf6h/0O0B8KVlYXuyAuBShVFyLSFHgT\n6Kuqq+IgY6woVReq2lxVm6lqM1yc4aYUMwrg7e9jGtBZRCqLSA1coHFpjOWMBV50sRzoAhDwpx8L\nrImplIlDxM/NhBkxqC2IK8CLLoChQF3gmcCbcraqto+XzH7hURcpj8e/j+UiMhNYAuQBz6tqyhkG\nj7+J4cBYEfka9wJ8t6puj5vQPiIik4AzgXoish4YhnMrlvm5aQvcDMMwjCIkkivJMAzDSADMMBiG\nYRhFMMNgGIZhFMEMg2EYhlEEMwyGYRhGEcwwGIZhGEUww1CBEZE8EZkQdHyQiPwsItNLuW6giDwd\nYV+TAil/y52zRkTuDTn+tLz3LKW/loH0zYtEpFnIZ3ui1MdRIhJa4TDqiMgNkeRQCiwi+yaw305E\n/lWOvh8QkXOKOZ9e2m/OiC0Js8DNiAu/4hKNVVPVfcC5uNQCpS1uiWjxi4gcAbRT1WOK+ayyquZG\ncj/gHtwCJieMqt95oi4Gpqjqw8V8Fq2FQM1w2VEnRel+xVKeBYGqupBypJRQ1WFlvdaILTZiMN4D\n/hLY74N7MAmAiBwqIm8H3vQ/F5ETQy8WkfoiMlVEvgxsHYvpYzbQKFBAprOIZIrIkyKyALhNRM4X\nkfki8pWIzBGRBoF7/0FExoorRvS1iPQQkUeA6oF7TQi02xP4V0TknyLyTeCaXoHz6YE+p4jIMhGZ\nWJwiRKRNQI6vReRNEakjIt1xmTlvEpEPwlz3f4ERxedBsherFxHJEJEJIvKZiKwQkWsDt3kUOD3w\nvW4LjCA+CoxSFolIh9K+i4i0DXy2UFyRmiOKkTVDRO4I7GeKyKMi8oWI/E9EOhf3/YKuLXizF5HD\nRGS2uCI4z4vI2sDvpWCEEWh3p4gMC+yPE5Gegf1uAfkXAZeU1K8RB+JdZMK2+G3AbuBEYApQFViM\nW1o/PfD508D9gf2zgMWB/YHA04H9V4FOgf2mwNJi+jmKoCIiwDxgdNBxnaD9a4ERgf3HgCdC2wG7\nQ79H4N+eOCMkQAPgB+AIIB34BTgy8Nln+TKH3GcJcHpg/wHgycD+MGBQGB3mAX8JkvcfJekFV0Bm\ncUDfhwHrgIbBeg+0qw5UDewfAywI7Bf7XXApED4DDgu0uxyXKiJU3oLvEvh/+Gdg/8/AnGLap+X/\n3wX6zv9tPAXcF9jvHtDDocHtA5/dAQwN7I8FegDVAt/76MD514B34v33YFvhZq6kCo6qfiMiabjR\nwrshH3fC/SGjqvMCb4k1Q9p0AY4TKcjqW1NEaqjq3qA2xaXBfi1ov4mIvI57iFehMNnZObgHXL6s\nv5TydToDr6p72vwkIh8CpwC7gC9VdROAiGThHmAFsQkRqY2riPdx4NTLOIOZL3+4VN4HVDVfb4tw\n7jgoXi+H4FxP01R1P7BfRObhCs+EfrcqwGgRaQ3k4oxDPsV9l53An4D/BvqsDGwKI3Mwbwb+/Spw\nH7AbHxgAAAJpSURBVK+cTuBNX10unpKy+0rIfkvge1VdHTg3Ebg+gr4NnzHDYIDLvjgC99ZaP+Sz\n0vK4C3Cqqh6IsM9fg/afxo0SZojImbi36nD9l4QW0z5f3v1B53Ip/bcffJ+S4gjZQft5QfctVi9B\nhiKYvGLO3Q5sVtV+IlIZ2Bf0Wbjv8p2qFufKK4n8e3nRSSjFfZkcirqoq/N7/RX3GzISCIsxGAAv\nARmq+l3I+Y+BK8H5l4GfVTV0Fs5s4Nb8AxFp47HP4IdBLQrfbgcGnZ8D/C3o3nUCu9kiUtxD7GPg\nchGpJCL1gTOAL/Hw4FFXJnVHkJ+9H5BZjKxeCacXAS4SkaoichjOPbMA59YLHo3VAn4M7PfHjQDC\nig/8D6gvLq0yInKwiBwfpn00HsQf4YLliMifcZl+AbYADQLxhqrA+cXIuhxIE5HmgXO+z8YyIsMM\nQ8VGAVR1o6qODjqX/0aXAbQVl7p4ODCgmDa3Au0CAdvvCO8SKOmtMQOYIiILcTWb8z/7P6BuIJic\nhXuIAowBlkjhVNv87/EWLk7wNTAXuEtVfwqRN5w8BL7fPwPftxXwYDHft6Tv5UUvGpBxHvA58KCq\n/hg4lxsIYt8G/AcYEPjexwJ7QvopKoSrfXwp8FjgmsVABw8yR3o+f/8B4AwR+RbnUloXJMeDOIM8\nm2LqQQTcaNcD7waCz1tK6NuIA5Z22zBiSGCGzh5VHRlvWaKJuAppbTVFax5UNGzEYBixJxXfxlLx\nO1VYbMRgGIZhFMFGDIZhGEYRzDAYhmEYRTDDYBiGYRTBDINhGIZRBDMMhmEYRhHMMBiGYRhF+H9x\nzM+VsnViXQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f17518>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mole fraction of heptane in vapour phase 0.575\n",
+ "mole fraction of heptane in liquid phase 0.387\n",
+ "Temperature is 113 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.5: Page 366"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.5\n",
+ "# Page: 366\n",
+ "\n",
+ "print'Illustration 9.5 - Page: 366\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "import pylab\n",
+ "import numpy.linalg as lin\n",
+ "#****Data****#\n",
+ "Pt = 760.0;# [mm Hg]\n",
+ "zFa = 0.5;# [mol fraction benzene]\n",
+ "zFb = 0.25;# [mol fraction toulene]\n",
+ "zFc = 0.25;# [mol fraction o-xylene]\n",
+ "#********#\n",
+ "\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol feed]\n",
+ "# For Summtion of Yd_star to be unity, W/D = 2.08 \n",
+ "# The Eqn.are \n",
+ "# (1): W+D = F \n",
+ "# (2): W-2.08D = 0\n",
+ "a =numpy.array([[1.0 ,1.0],[1.0 ,-2.08]]);\n",
+ "b = numpy.array([[F*1.0],[0]]);\n",
+ "soln = lin.solve(a,b)\n",
+ "W = soln[0];\n",
+ "D = soln[1];\n",
+ "Sub = ['A','B','C'];\n",
+ "p =numpy.array([1370 ,550, 200]);# [mm Hg]\n",
+ "m = numpy.zeros(3);\n",
+ "zF = [zFa ,zFb, zFc];# [Given]\n",
+ "yd_star = numpy.array([0,0,0]);\n",
+ "xW = numpy.zeros(3);\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " m[i] = p[i]/Pt;\n",
+ " yd_star[i]=(zF[i])*((W/D)+1)#/(1+(W/(D*m[i])));\n",
+ " xW[i] = yd_star[i]/m[i];\n",
+ "\n",
+ "print\"\\t \\t \\t \\t \\t \\t \\t \\t At W/D = 2.08\\n\\n\\n\"\n",
+ "print\"Substance \\t \\t p(mm Hg)\\t \\t m\\t \\t \\t \\t \\t \\t \\t \\t \\t \\t zF\\t \\t \\t \\t \\t \\t \\t yd*\\t\\t\\t\\t\\t\\txW\\n\"\n",
+ "for i in range(0,3):\n",
+ " print \"\\n\",Sub[i],\" \\t \\t \\t \\t \",p[i],\"\\t \\t \\t \\t \",m[i],\"\\t \\t \\t\",m[i],\"\\t \\t \\t\",zF[i],\" \\t \\t \\t\",yd_star[i],\"\\t\",xW[i]\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.5 - Page: 366\n",
+ "\n",
+ "\n",
+ "\t \t \t \t \t \t \t \t At W/D = 2.08\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Substance \t \t p(mm Hg)\t \t m\t \t \t \t \t \t \t \t \t \t zF\t \t \t \t \t \t \t yd*\t\t\t\t\t\txW\n",
+ "\n",
+ "\n",
+ "A \t \t \t \t 1370 \t \t \t \t 1.80263157895 \t \t \t1.80263157895 \t \t \t0.5 \t \t \t1 \t0.554744525547\n",
+ "\n",
+ "B \t \t \t \t 550 \t \t \t \t 0.723684210526 \t \t \t0.723684210526 \t \t \t0.25 \t \t \t0 \t0.0\n",
+ "\n",
+ "C \t \t \t \t 200 \t \t \t \t 0.263157894737 \t \t \t0.263157894737 \t \t \t0.25 \t \t \t0 \t0.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 74
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.6: Page 370"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.6\n",
+ "# Page: 370\n",
+ "\n",
+ "print'Illustration 9.6 - Page: 370\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol]\n",
+ "xF = 0.5;\n",
+ "D = 0.6*100;# [mol]\n",
+ "#******#\n",
+ "\n",
+ "W = F-D;# [mol]\n",
+ "# From Illustration 9.1:\n",
+ "alpha = 2.16;# [average value of alpha]\n",
+ "# From Eqn.9.46;\n",
+ "def f45(xW):\n",
+ " return math.log(F*xF/(W*xW))-(alpha*math.log(F*(1-xF)/(W*(1-xW))))\n",
+ "xW = fsolve(f45,0.5);# [mole fraction heptane]\n",
+ "def f46(yD):\n",
+ " return F*xF-((D*yD)+(W*xW))\n",
+ "yD = fsolve(f46,100);# [mole fraction heptane]\n",
+ "print\"Mole Fraction of heptane in the distillate is \",round(yD,3),\"\\n\"\n",
+ "print\"Mole Fraction of heptane in the residue is \",round(xW,3),\" \\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.6 - Page: 370\n",
+ "\n",
+ "\n",
+ "Mole Fraction of heptane in the distillate is 0.615 \n",
+ "\n",
+ "Mole Fraction of heptane in the residue is 0.328 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 75
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.7: Page 371"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.7\n",
+ "# Page: 371\n",
+ "from scipy.optimize import fsolve\n",
+ "print'Illustration 9.7 - Page: 371\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:benzene b:toulene c:o-xylene\n",
+ "# Assume:\n",
+ "Bt = 100.0;#[OC]\n",
+ "pa = 1370.0;# [mm Hg]\n",
+ "pb = 550.0;# [mm Hg]\n",
+ "pc = 200.0;# [mm Hg]\n",
+ "xFa = 0.5;# [mole fraction]\n",
+ "xFb = 0.25;# [mole fraction]\n",
+ "xFc = 0.25;# [mole fraction]\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol]\n",
+ "D = 32.5;# [mol]\n",
+ "#*******#\n",
+ "\n",
+ "ref = pb;\n",
+ "alpha_a = pa/ref;\n",
+ "alpha_b = pb/ref;\n",
+ "alpha_c = pc/ref;\n",
+ "W = F-D;# [mol]\n",
+ "xbW = 0.3;# [mol]\n",
+ "xaW = 0.4;# [mol]\n",
+ "xcW = 0.3;# [mol]\n",
+ "err = 1.0;\n",
+ "while(err>(10**(-1))):\n",
+ " # From Eqn. 9.47:\n",
+ " def f47(xaW):\n",
+ " return math.log(F*xFa/(W*xaW))-(alpha_a*math.log(F*xFb/(W*xbW)))\n",
+ " xaW = fsolve(f47,xbW);\n",
+ " def f48(xcW):\n",
+ " return math.log(F*xFc/(W*xcW))-(alpha_c*math.log(F*xFb/(W*xbW)))\n",
+ " xcW = fsolve(f48,xbW);\n",
+ " xbW_n = 1-(xaW+xcW);\n",
+ " err = abs(xbW-xbW_n);\n",
+ " xbw = xbW_n;\n",
+ "\n",
+ "# Material balance:\n",
+ "# for A:\n",
+ "def f49(yaD):\n",
+ " return F*xFa-((D*yaD)+(W*xaW))\n",
+ "yaD = fsolve(f49,100);# [mole fraction benzene]\n",
+ "# For B:\n",
+ "def f50(ybD):\n",
+ " return F*xFb-((D*ybD)+(W*xbW))\n",
+ "ybD = fsolve(f50,100);# [mole fraction toulene]\n",
+ "# For C:\n",
+ "def f51(ycD):\n",
+ " return F*xFc-((D*ycD)+(W*xcW))\n",
+ "ycD = fsolve(f51,100);# [mole fraction o-xylene]\n",
+ "print\"The residual compositions are:\\n\"\n",
+ "print\"Benzene:\\n\",round(xaW,3)\n",
+ "print\"Toulene:\\n\",round(xbW,3)\n",
+ "print\"o-xylene:\\n\",round(xcW,3)\n",
+ "print\"\\n The composited distillate compositions are:\\n\"\n",
+ "print\"Benzene:\\n\",round(yaD,3)\n",
+ "print\"Toulene:\\n\",round(ybD,3)\n",
+ "print\"o-xylene:\\n\",round(ycD,3)\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.7 - Page: 371\n",
+ "\n",
+ "\n",
+ "The residual compositions are:\n",
+ "\n",
+ "Benzene:\n",
+ "0.438\n",
+ "Toulene:\n",
+ "0.3\n",
+ "o-xylene:\n",
+ "0.343\n",
+ "\n",
+ " The composited distillate compositions are:\n",
+ "\n",
+ "Benzene:\n",
+ "0.628\n",
+ "Toulene:\n",
+ "0.146\n",
+ "o-xylene:\n",
+ "0.057\n"
+ ]
+ }
+ ],
+ "prompt_number": 76
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.8: Page 388"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.8\n",
+ "# Page: 388\n",
+ "\n",
+ "print'Illustration 9.8 - Page: 388\\n\\n'\n",
+ "import numpy.linalg as lin\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a:methanol b:water\n",
+ "Xa = 0.5;# [Wt fraction]\n",
+ "Temp1 = 26.7;# [OC]\n",
+ "Temp2 = 37.8;# [OC]\n",
+ "F1 = 5000.0;# [kg/hr]\n",
+ "#******#\n",
+ "\n",
+ "#(a)\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "Xa = 0.5;# [Wt fraction]\n",
+ "Xb = 1-Xa;# [Wt fraction]\n",
+ "Temp1 = 26.7;# [OC]\n",
+ "Temp2 = 37.8;# [OC]\n",
+ "F1 = 5000.0;# [kg/hr];\n",
+ "# Basis: 1hr\n",
+ "F = (F1*Xa/Ma)+(F1*Xb/Mb);# [kmol/hr]\n",
+ "# For feed:\n",
+ "zF = (F1*Xa/Ma)/F;# [mole fracton methanol]\n",
+ "MavF = F1/F;# [kg/kmol]\n",
+ "# For distillate:\n",
+ "xD = (95/Ma)/((95/Ma)+(5/Mb));# [mole fraction methanol]\n",
+ "MavD = 100.0/((95/Ma)+(5/Mb));# [kg/kmol]\n",
+ "# For residue:\n",
+ "xW = (1/Ma)/((1/Ma)+(99/Mb));# [mole fraction methanol]\n",
+ "MavR = 100/((1/Ma)+(99/Mb));# [kg/kmol]\n",
+ "# (1): D+W = F [Eqn.9.75]\n",
+ "# (2): D*xD+W*xW = F*zF [Eqn. 9.76]\n",
+ "# Solvving simultaneously:\n",
+ "a = numpy.array([[1.0 ,1.0],[xD ,xW]]);\n",
+ "b = numpy.array([F,F*zF]);\n",
+ "soln = lin.solve(a,b);\n",
+ "D = soln[0];# [kmol/h]\n",
+ "W = soln[1];# [kmol/h]\n",
+ "print\"Quantity of Distillate is\", round(D*MavD),\" kg/hr\\n\"\n",
+ "print\"Quantity of Residue is \",round(W*MavR),\" kg/hr\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (b)\n",
+ "# For the vapour-liquid equilibria:\n",
+ "Tempo = 19.69;# [Base Temp. according to \"International Critical Tables\"]\n",
+ "BtR = 99.0;# [Bubble point of the residue, OC]\n",
+ "hR = 4179.0;# [J/kg K]\n",
+ "hF = 3852.0;# [J/kg K]\n",
+ "def f52(tF):\n",
+ " return (F1*hF*(tF-Temp1))-((W*MavR)*hR*(BtR-Temp2))\n",
+ "tF = fsolve(f52,Temp1);# [OC]\n",
+ "BtF = 76.0;# [Bubble point of feed, OC]\n",
+ "# For the feed:\n",
+ "delta_Hs = -902.5;# [kJ/kmol]\n",
+ "Hf = ((hF/1000.0)*MavF*(tF-Tempo))+delta_Hs;# [kJ/kmol]\n",
+ "# From Fig 9.27:\n",
+ "HD = 6000.0;# [kJ/kmol]\n",
+ "HLo = 3640.0;# [kJ/kmol]\n",
+ "HW = 6000.0;# [kJ/kmol]\n",
+ "print\"The enthalpy of feed is \",round(Hf),\" kJ/kmol\\n\"\n",
+ "print\"The enthalpy of the residue is \",round(HW),\" kJ/kmol\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (c)\n",
+ "# From Fig.9.27:\n",
+ "# The miium reflux ratio is established by the tie line (x = 0.37 y = 0.71), which extended pass through F,the feed.\n",
+ "# At Dm:\n",
+ "Qm = 62570.0;# [kJ/kmol]\n",
+ "Hg1 = 38610.0;# [kJ/kmol]\n",
+ "# From Eqn. 9.65:\n",
+ "Rm = (Qm-Hg1)/(Hg1-HLo);\n",
+ "print\"The minimum reflux ratio is \",round(Rm,4),\"\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (d)\n",
+ "# From Fig. 9.28:\n",
+ "Np = 4.9;\n",
+ "# But it include the reboiler.\n",
+ "Nm = Np-1;\n",
+ "print\"The minimum number of theoretical trays required is \",round(Nm),\" \\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (e)\n",
+ "R = 1.5*Rm;\n",
+ "# Eqn. 9.65:\n",
+ "def f53(Q_prime):\n",
+ " return R-((Q_prime-Hg1)/(Hg1-HLo))\n",
+ "Q_prime = fsolve(f53,2);# [kJ/kmol]\n",
+ "def f54(Qc):\n",
+ " return Q_prime-(HD+(Qc/D))\n",
+ "Qc = fsolve(f54,2);# [kJ/hr]\n",
+ "Qc = Qc/3600.0;# [kW]\n",
+ "print\"The Condensor heat load is \",round(Qc),\" kW\\n\"\n",
+ "# From Eqn. 9.77:\n",
+ "def f55(Q_dprime):\n",
+ " return (F*Hf)-((D*Q_prime)+(W*Q_dprime))\n",
+ "Q_dprime = fsolve(f55,2);\n",
+ "def f56(Qb):\n",
+ " return Q_dprime-(HW-(Qb/W))\n",
+ "Qb = fsolve(f56,2);# [kJ/hr]\n",
+ "Qb = Qb/3600.0;# [kW]\n",
+ "print\"The Reboiler heat load is \",round(Qb),\" kW\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (f)\n",
+ "# From Fig: 9.28\n",
+ "Np = 9.0;\n",
+ "# But it is including the reboiler\n",
+ "print\"No. of theoretical trays in tower is\",Np-1,\"\\n\",\n",
+ "G1 = D*(R+1);# [kmol/hr]\n",
+ "Lo = D*R;# [kmol/hr]\n",
+ "# From Fig. 9.28:\n",
+ "# At the feed tray:\n",
+ "x4 = 0.415;\n",
+ "y5 = 0.676;\n",
+ "x5 = 0.318;\n",
+ "y6 = 0.554;\n",
+ "# From Eqn. 9.64:\n",
+ "def f57(L4):\n",
+ " return (L4/D)-((xD-y5)/(y5-x4))\n",
+ "L4 = fsolve(f57,2);# [kmol/hr]\n",
+ "# From Eqn. 9.62:\n",
+ "def f58(G5):\n",
+ " return (L4/G5)-((xD-y5)/(xD-x4))\n",
+ "G5 = fsolve(f58,2);# [kmol/hr]\n",
+ "# From Eqn. 9.74:\n",
+ "def f59(L5_bar):\n",
+ " return (L5_bar/W)-((y6-xW)/(y6-x5))\n",
+ "L5_bar = fsolve(f59,2);# [kmol/hr]\n",
+ "# From Eqn. 9.72:\n",
+ "def f60(G6_bar):\n",
+ " return (L5_bar/G6_bar)-((y6-xW)/(x5-xW))\n",
+ "G6_bar = fsolve(f60,2);# [kmol/hr]\n",
+ "# At the bottom:\n",
+ "# Material Balance:\n",
+ "# Eqn. 9.66:\n",
+ "# (1): L8_bar-GW_bar = W;\n",
+ "# From Fig. 9.28:\n",
+ "yW = 0.035;\n",
+ "x8 = 0.02;\n",
+ "# From Eqn. 9.72:\n",
+ "L8ByGW_bar = (yW-xW)/(x8-xW);\n",
+ "# (2): L8_bar-(L8ByGW_bar*Gw_bar) = 0\n",
+ "a = numpy.array([[1 ,-1],[1 ,-L8ByGW_bar]]);\n",
+ "b = numpy.array([W,0]);\n",
+ "soln = lin.solve(a,b)\n",
+ "L8_bar = soln[0];# [kmol/h]\n",
+ "GW_bar = soln[1];# [kmol/h]\n",
+ "print\"The Liquid quantity inside the tower is \",round(L8_bar),\" kmol/hr\\n\"\n",
+ "print\"The vapour quantity inside the tower is \",round(GW_bar),\" kmol/hr\\n\"\n",
+ "# The answers are slightly different in textbook due to approximation while in python the answers are precise\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.8 - Page: 388\n",
+ "\n",
+ "\n",
+ "Quantity of Distillate is 2606.0 kg/hr\n",
+ "\n",
+ "Quantity of Residue is 2394.0 kg/hr\n",
+ "\n",
+ "\n",
+ "\n",
+ "The enthalpy of feed is 2545.0 kJ/kmol\n",
+ "\n",
+ "The enthalpy of the residue is 6000.0 kJ/kmol\n",
+ "\n",
+ "\n",
+ "\n",
+ "The minimum reflux ratio is 0.6852 \n",
+ "\n",
+ "\n",
+ "\n",
+ "The minimum number of theoretical trays required is 4.0 \n",
+ "\n",
+ "\n",
+ "\n",
+ "The Condensor heat load is 1609.0 kW\n",
+ "\n",
+ "The Reboiler heat load is 1817.0 kW\n",
+ "\n",
+ "\n",
+ "\n",
+ "No. of theoretical trays in tower is 8.0 \n",
+ "The Liquid quantity inside the tower is 259.0 kmol/hr\n",
+ "\n",
+ "The vapour quantity inside the tower is 127.0 kmol/hr\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 77
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.9: Page 395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 9.9\n",
+ "# Page: 395\n",
+ "\n",
+ "print'Illustration 9.9 - Page: 395\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import scipy\n",
+ "import numpy\n",
+ "import numpy.linalg as lin\n",
+ "\n",
+ "#****Data****#\n",
+ "P = 695.0;# [kN/square m]\n",
+ "#********#\n",
+ "\n",
+ "# a:methanol b:water\n",
+ "# From Illustration 9.8:\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "F = 216.8;# [kmol/h]\n",
+ "Tempo = 19.7;# [OC]\n",
+ "zF = 0.360;# [mole fraction methanol]\n",
+ "HF = 2533;# [kJ/kmol]\n",
+ "D = 84.4;# [kkmol/h]\n",
+ "zD = 0.915;# [mole fraction methanol]\n",
+ "HD = 3640.0;# [kJ/kmol]\n",
+ "Qc = 5990000.0;# [kJ/h]\n",
+ "# Since the bottom will essentially be pure water:\n",
+ "HW = 6094.0;# [kJ/kmol]\n",
+ "# From Steam tables:\n",
+ "Hs = 2699.0;# [enthalpy of saturated steam, kJ/kg]\n",
+ "hW = 4.2*(Tempo-0);# [enthalpy of water, kJ/kg]\n",
+ "HgNpPlus1 = (Hs-hW)*Mb;# [kJ/kmol]\n",
+ "# (1): GNpPlus1-W = D-F [From Eqn. 9.86]\n",
+ "# (2): (GNpPlus1*HgNpPlus1)-(W*HW) = (D*HD)+Qc-(F*HF) [From Eqn. 9.88]\n",
+ "a = numpy.array([[1 ,-1],[HgNpPlus1 ,-HW]]);\n",
+ "b = numpy.array([[D-F],[(D*HD)+Qc-(F*HF)]]);\n",
+ "soln=lin.solve(a,b)\n",
+ "GNpPlus1 = soln[0];# [kmol/h]\n",
+ "W = soln[1];# [kmol/h]\n",
+ "# From Eqn. 9.87:\n",
+ "def f61(xW):\n",
+ " return (F*zF)-((D*zD)+(W*xW))\n",
+ "xW = fsolve(f61,2);\n",
+ "# The enthalpy of the solution at its bubble point is 6048 kJ/kmol, sufficiently closed to 6094 assumed earlier.\n",
+ "# For delta_w:\n",
+ "xdelta_w = W*xW/(W-GNpPlus1);\n",
+ "Q_dprime = ((W*HW)-(GNpPlus1*HgNpPlus1))/(W-GNpPlus1);# [kJ/kmol]\n",
+ "# From Fig 9.27 ad Fig. 9.28, and for the stripping section:\n",
+ "Np = 9.5;\n",
+ "print\"Steam Rate: \",round(GNpPlus1,1),\"kmol/h\\n\"\n",
+ "print\"Bottom Composition: xW:\",round(xW,5),\"\\n\"\n",
+ "print\"Number of theoretical stages: \",Np,\"\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.9 - Page: 395\n",
+ "\n",
+ "\n",
+ "Steam Rate: 159.7 kmol/h\n",
+ "\n",
+ "Bottom Composition: xW: 0.00281 \n",
+ "\n",
+ "Number of theoretical stages: 9.5 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 78
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.10: Page 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.10\n",
+ "# Page: 412\n",
+ "\n",
+ "print'Illustration 9.10 - Page: 412\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# a:methanol b:water\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# Feed:\n",
+ "F1 = 5000;# [kg/h]\n",
+ "F = 216.8;# [kmol/h]\n",
+ "Tempo = 19.7;# [OC]\n",
+ "zF = 0.360;# [mole fraction methanol]\n",
+ "MavF = 23.1;# [kg/kmol]\n",
+ "Tempf = 58.3;# [OC]\n",
+ "# Distillate:\n",
+ "D1 = 2620;# [kg/h]\n",
+ "D = 84.4;# [kkmol/h]\n",
+ "xD = 0.915;# [mole fraction methanol]\n",
+ "# Residue:\n",
+ "R1 = 2380;# [kg/h]\n",
+ "R = 132.4;# [kmol/h]\n",
+ "xW = 0.00565;# [mole fraction methanol]\n",
+ "\n",
+ "# From Fig. 9.42 (Pg 413):\n",
+ "BtF = 76.0;# [Bubble point if the feed, OC]\n",
+ "DtF = 89.7;# [Dew point of the feed, OC]\n",
+ "# Latent heat of vaporisation at 76 OC\n",
+ "lambda_a = 1046.7;# [kJ/kg]\n",
+ "lambda_b = 2284;# [kJ/kg]\n",
+ "ha = 2.721;# [kJ/kg K]\n",
+ "hb = 4.187;# [kJ/kg K]\n",
+ "hF = 3.852;# [kJ/kg K]\n",
+ "# If heats of solution is ignaored:\n",
+ "# Enthalpy of the feed at the bubble point referred to the feed temp.\n",
+ "HF = hF*MavF*(BtF-Tempf);# [kJ/kmol]\n",
+ "# enthalpy of the saturated vapour at dew point referred to the liquid at feed temp.\n",
+ "HL = (zF*((ha*Ma*(DtF-Tempf))+(lambda_a*Ma)))+((1-zF)*((hb*Mb*(DtF-Tempf))+(lambda_b*Mb)));# [kJ/kmol]\n",
+ "q = HL/(HL-HF);\n",
+ "slope = q/(q-1);\n",
+ "# In fig. 9.42: xD,xW & zF are located on the 45 degree diagonal & the q line is drawn with slope = 'slope' .\n",
+ "# The operating line for minimum reflux ratio in this case pass through the intersection of the q line and the equilibrium curve.\n",
+ "ordinate = 0.57;\n",
+ "def f62(Rm):\n",
+ " return ordinate-(xD/(Rm+1))\n",
+ "Rm = fsolve(f62,0);# [mole reflux/mole distillate]\n",
+ "# from fig. 9.42 (Pg 413):\n",
+ "# The minimum number of theoretical trays is determied using the 45 degree diagonal as operating line.\n",
+ "Np = 4.9;# [including the reboiler]\n",
+ "R = 1.5*Rm;# [mole reflux/mole distillate]\n",
+ "# From Eqn. 9.49:\n",
+ "L = R*D;# [kmol/h]\n",
+ "# From Eqn. 9.115:\n",
+ "G = D*(R+1);# [kmol/h]\n",
+ "# From Eqn. 9.126:\n",
+ "L_bar = (q*F)+L;# [kmol/h]\n",
+ "# From Eqn. 9.127:\n",
+ "G_bar = (F*(q-1))+G;# [kmol/h]\n",
+ "ordinateN = xD/(R+1);\n",
+ "# As in Fig. 9.43:\n",
+ "# The y-intercept = ordinateN and enriching and exhausting operating lines are plotted.\n",
+ "# Number of theoretical stages are determined.\n",
+ "NpN = 8.8;# [including the reboiler]\n",
+ "print\"Number of theoretical stages is \",NpN-1,\"\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.10 - Page: 412\n",
+ "\n",
+ "\n",
+ "Number of theoretical stages is 7.8 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 79
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.11: Page 423"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.11\n",
+ "# Page: 423\n",
+ "\n",
+ "print'Illustration 9.11 - Page: 423\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# a:ethanol b:water\n",
+ "zF = 0.3;\n",
+ "xa = 0.3;# [mole fraction of ethanol]\n",
+ "Temp = 78.2;# [OC]\n",
+ "Ao = 0.0462;# [Area of perforations,square m]\n",
+ "t = 0.450;# [m]\n",
+ "#******#\n",
+ "\n",
+ "Ma = 46.05;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "xb = 1-xa;# [mole fraction of water]\n",
+ "ma = 0.3*Ma/((0.3*Ma)+(xb*Mb));# [mass fraction of ethanol]\n",
+ "mb = 1-ma;# [mass fraction of water]\n",
+ "\n",
+ "\n",
+ "# Feed:\n",
+ "F1 = 910.0;# [kg/h]\n",
+ "Xa = F1*ma/Ma;# [moles of ethanol]\n",
+ "Xb = F1*mb/Mb;# [moles of water]\n",
+ "F = Xa+Xb;# [Total moles]\n",
+ "# Distillate:\n",
+ "xD = 0.80;# [mole fraction of ethanol]\n",
+ "# If essentially all the ethanol is removed from the residue:\n",
+ "D = Xa/xD;# [kmol/h]\n",
+ "MavD = (xD*Ma)+((1-xD)*Mb);# [kg/kmol]\n",
+ "D1 = D*MavD;# [kg/h]\n",
+ "Density_G = (MavD/22.41)*(273.0/(273+Temp));# [kg/cubic meter]\n",
+ "Density_L = 744.9;# [kg/cubic meter]\n",
+ "sigma = 0.021;# [N/m]\n",
+ "\n",
+ "# From Table 6.2,Pg 169:\n",
+ "alpha = (0.0744*t)+0.01173;\n",
+ "beeta = (0.0304*t)+0.015;\n",
+ "At = math.pi*(0.760**2)/4;# [Tower cross sectional Area, square m]\n",
+ "WByT = 530.0/760;# [Table 6.1, Pg 162]\n",
+ "Ad = 0.0808*At;# [Downspout area,square m]\n",
+ "Aa = At-(2*Ad);# [Active area,square m]\n",
+ "# abcissa = (L/G)*(density_G/Density_L)^0.5\n",
+ "# Assume:\n",
+ "abcissa = 0.1;\n",
+ "# From Eqn.6.30:\n",
+ "Cf = (alpha*math.log10(1/abcissa)+beeta)*(sigma/0.020)**0.2;\n",
+ "# From Eqn. 6.29:\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1.0/2);# [m/s]\n",
+ "An = At-Ad;# [square m]\n",
+ "R = 3.0;# [Reflux Ratio]\n",
+ "G = D*(R+1);\n",
+ "G1 = (G*22.41/3600)*((273.0+Temp)/273);# [cubic meter/s]\n",
+ "V = G1/An;# [Vapour velocity,m/s]\n",
+ "percent = (V/Vf)*100;\n",
+ "# Vapour velocity is 58 percent of flooding velocity (amply safe)\n",
+ "L = R*D;# [kmol/h]\n",
+ "L1 = L*MavD;# [kg/h]\n",
+ "abcissa = (L1/(G1*3600.0*Density_G))*(Density_G/Density_L)**0.5;\n",
+ "# Since the value of abcissa is less than0.1, the calculaed value of Cf is correct.\n",
+ "# Since the feed is at the buubble point.\n",
+ "q = 1;\n",
+ "# From Eqn. 9.126:\n",
+ "L_bar = L+(q*F);# [kmol/h]\n",
+ "# From Eqn. 9.127:\n",
+ "G_bar = G+F*(q-1);# [kmol/h]\n",
+ "# The enthalpy of saturated steam,referred to 0 OC,69 kN/square m:\n",
+ "HGNpPlus1 = 2699.0;# [kN m/kg]\n",
+ "# This will be the enthalpy as it enters the tower if expanded adiabatically to the tower pressure\n",
+ "# The enthalpy of steam at 1 std. atm:\n",
+ "HGsat = 2676.0;# [kN m/kg]\n",
+ "Lambda = 2257.0;# [kN m/kg]\n",
+ "# From Eqn. 9.140:\n",
+ "def f63(GNpPlus1_bar):\n",
+ " return G_bar-(GNpPlus1_bar*(1+((HGNpPlus1-HGsat)*Mb/(Lambda*Mb))))\n",
+ "GNpPlus1_bar = fsolve(f63,7);\n",
+ "# From Eqn. 9.141:\n",
+ "LNp_bar = L_bar-(G_bar-GNpPlus1_bar);\n",
+ "\n",
+ "# Tray Efficiencies:\n",
+ "# Consider the situation:\n",
+ "x = 0.5;\n",
+ "y_star = 0.962;\n",
+ "Temp = 79.8;# [OC]\n",
+ "# This is in the enriching section.\n",
+ "Density_L = 791;# [kg/cubic meter]\n",
+ "Density_G = 1.253;# [kg/cubic meter]\n",
+ "# From equilibrium data:\n",
+ "m = 0.42;\n",
+ "A = L/(m*G);\n",
+ "# From chapter 2:\n",
+ "ScG = 0.930;\n",
+ "Dl = 2.065*10**(-9);# [square m/s]\n",
+ "# For L = 38.73 kmol/h\n",
+ "q = 4.36*10**(-4);# [cubic meter/s]\n",
+ "# For G = 51.64 kmol/h\n",
+ "Va = 1.046;# [m/s]\n",
+ "# From tray dimensions:\n",
+ "z = 0.647;# [m]\n",
+ "Z = 0.542;# [m]\n",
+ "hW = 0.06;# [m]\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/(ScG**0.5);\n",
+ "# From Eqn. 6.38\n",
+ "hL = 6.10*10**(-3)+(0.725*hW)-(0.238*hW*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "# From Eqn. 6.64:\n",
+ "thetha_L = hL*z*Z/q;# [s]\n",
+ "# From Eqn. 6.62:\n",
+ "NtL = 40000*(Dl**0.5)*((0.213*Va*Density_G**0.5)+0.15)*thetha_L;\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1/((1/NtG)+(1/(A*NtL)));\n",
+ "# From Eqn. 6.51:\n",
+ "EoG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.63:\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thetha_L);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2)*((1+(4*m*G1*EoG/(L1*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EoG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+((math.exp(eta)-1)/(eta*(1+(eta/(eta+Pe))))));\n",
+ "# Entrainment is neglible:\n",
+ "# Similarly for other x\n",
+ "# Value = [x Entrainment]\n",
+ "#Value = [0 0.48;0.1 .543;0.3 0.74;0.5 EMG;0.7 0.72];\n",
+ "\n",
+ "# Tray Calculation:\n",
+ "op_intercept = xD/(R+1);\n",
+ "# From Fig. 9.48:\n",
+ "# The exhausting section operating line, on this scale plot, for all practical purposes passes through the origin.\n",
+ "# The broken curve is located so that, at each concentration, vertical distances corresponding to lines BC and AC are in the ratio of EMG.\n",
+ "# This curve is used instead of equilibrium trays to locate the ideal trays.\n",
+ "# The feed tray is thirteenth.\n",
+ "x14 = 0.0150;\n",
+ "alpha = 8.95;\n",
+ "EMG = 0.48;\n",
+ "A_bar = L_bar/(alpha*G_bar);\n",
+ "# From Eqn. 8.16:\n",
+ "Eo = math.log(1+(EMG*((1/A_bar)-1)))/math.log(1/A_bar);\n",
+ "# The 6 real trays corresponds to: \n",
+ "NRp = 6*Eo;\n",
+ "xW = 0.015/((math.exp(NRp*math.log(1/A_bar))-A_bar)/(1-A_bar));# [mole fraction ethanol]\n",
+ "# This corresponds to ethanol loss of 0.5 kg/day.\n",
+ "print\"The mole fraction of ethanol in residue is\",round(xW,8)\n",
+ "print\"The Reflux ratio of \",R,\" will cause the ethanol loss of 0.5 kg/day\\n\"\n",
+ "print\"Larger reflux ratios would reduce this, but the cost of additional steam will probaby make them not worthwile.\\n\"\n",
+ "print\"Smaller values of R, with corresponding reduced steam cost and larger ethanol loss, should be considered, but care must be taken to ensure vapour velocities above the weeping velocities.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.11 - Page: 423\n",
+ "\n",
+ "\n",
+ "The mole fraction of ethanol in residue is 6.28e-06\n",
+ "The Reflux ratio of 3.0 will cause the ethanol loss of 0.5 kg/day\n",
+ "\n",
+ "Larger reflux ratios would reduce this, but the cost of additional steam will probaby make them not worthwile.\n",
+ "\n",
+ "Smaller values of R, with corresponding reduced steam cost and larger ethanol loss, should be considered, but care must be taken to ensure vapour velocities above the weeping velocities.\n"
+ ]
+ }
+ ],
+ "prompt_number": 83
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex-9.12: Pg- 429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 9.12\n",
+ "# Page: 429\n",
+ "\n",
+ "print'Illustration 9.12 - Page: 429\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "# a:methanol b:water\n",
+ "# Vapour and liquid quantities throughout the tower, as in Illustration 9.8, with the Eqn. 9.62, 9.64, 9.72, 9.74:\n",
+ "# Data = [x tL(OC) y tG(OC) Vapor(kmol/h) Vapor(kg/h) Liquid(kmol/h) Liquid(kg/h)]\n",
+ "Ma = 34.02;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "Temp = 78.7;# [OC]\n",
+ "x = numpy.array([0.915, 0.600 ,0.370, 0.370, 0.200, 0.100, 0.02]);\n",
+ "y = numpy.array([0.915, 0.762, 0.656, 0.656, 0.360 ,0.178, 0.032]);\n",
+ "\n",
+ "plt.plot(x,y);\n",
+ "plt.grid('on');\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"mole fraction of methanol in liquid\");\n",
+ "ax.set_ylabel(\"mole fraction of methanol in vapour\");\n",
+ "plt.title(\"Operating Line curve\");\n",
+ "plt.legend(loc=\"lower right\")\n",
+ "plt.show()\n",
+ "#x = 0.370: the dividing point between stripping and enriching section\n",
+ "tL =numpy.array([66, 71, 76, 76, 82, 87, 96.3]);# [Bubble point, OC]\n",
+ "tG = numpy.array([68.2 ,74.3 ,78.7 ,78.7 ,89.7 ,94.7 ,99.3]);# [Dew Point, OC]\n",
+ "Vapor = numpy.array([171.3, 164.0 ,160.9, 168.6, 161.6, 160.6, 127.6]);# [kmol/h]\n",
+ "Vapor1 = numpy.array([5303, 4684, 4378, 4585, 3721, 3296 ,2360]);# [kg/h]\n",
+ "Liquid = numpy.array([86.7 ,79.6 ,76.5 ,301, 294, 293, 260]);# [kmol/h]\n",
+ "Liquid1 = numpy.array([2723, 2104, 1779 ,7000, 6138, 5690 ,4767]);# [kg/h]\n",
+ "Data = numpy.zeros(shape=(7,8));\n",
+ "for j in range(1,7):\n",
+ " Data[j,0]= x[j];\n",
+ " Data[j,1]= tL[j];\n",
+ " Data[j,2]= y[j];\n",
+ " Data[j,3]= tG[j];\n",
+ " Data[j,4]= Vapor[j]; \n",
+ " Data[j,5]= Vapor1[j];\n",
+ " Data[j,6]= Liquid[j];\n",
+ " Data[j,7]= Liquid1[j];\n",
+ "\n",
+ "# The tower diameter will be set by the conditions at the top of the stripping section because of the large liquid flow at this point.\n",
+ "# From Illustration 9.8:\n",
+ "G = Data[3,5];\n",
+ "L = Data[3,7];\n",
+ "Density_G = (Data[3,5]/(22.41*Data[3,4]))*(273.0/(273+Temp));# [kg/cubic m]\n",
+ "Density_L = 905.0;# [kg/cubic m]\n",
+ "# abcissa = (L/G)*(Density_L/Density_G)^0.5\n",
+ "abcissa = (Data[3,7]/Data[3,5])*(Density_G/Density_L)**0.5;\n",
+ "# From Fig. 6.34, choose a gas pressure drop of 450 N/square m/m\n",
+ "ordinate = 0.0825;\n",
+ "# From Table 6.3 (Pg 196):\n",
+ "Cf = 95;\n",
+ "viscosity_L = 4.5*10**(-4);# [kg/m.s]\n",
+ "sigma = 0.029;# [N/m]\n",
+ "J = 1;\n",
+ "G_prime = (ordinate*Density_G*(Density_L-Density_G)/(Cf*viscosity_L**0.1))**0.5;# [kg/square m.s]\n",
+ "A = G/(3600*G_prime);# [Tower ,cross section area,square m]\n",
+ "L_prime = L/(A*3600);# [kg/square m.s]\n",
+ "# Mass transfer will be computed for the same location:\n",
+ "# From Table 6.4 (Pg 205):\n",
+ "m = 36.4;\n",
+ "n = (0.0498*L_prime)-0.1013;\n",
+ "p = 0.274;\n",
+ "aAW = m*((808*G_prime/Density_G**0.5)**n)*L_prime**p;# [square m/cubic m]\n",
+ "# From Table 6.5 (Pg 206):\n",
+ "dS = 0.0530;# [m]\n",
+ "beeta = 1.508*dS**0.376;\n",
+ "shi_LsW = 2.47*10**(-4)/dS**1.21;\n",
+ "shi_LtW = ((2.09*10**(-6))*(737.5*L_prime)**beeta)/dS**2;\n",
+ "shi_LOW = shi_LtW-shi_LsW; \n",
+ "shi_Ls = (0.0486*viscosity_L**0.02*sigma**0.99)/(dS**1.21*Density_L**0.37);\n",
+ "H = ((975.7*L_prime**0.57*viscosity_L**0.13)/(Density_L**0.84*((2.024*L_prime**0.430)-1)))*(sigma/0.073)**(0.1737-0.262*math.log10(L_prime));# [m]\n",
+ "shi_Lo = shi_LOW*H;\n",
+ "shi_Lt = shi_Lo+shi_Ls;\n",
+ "# From Eqn. 6.73:\n",
+ "aA = aAW*(shi_Lo/shi_LOW);# [square m/cubic m]\n",
+ "# From Table 6.3 (Pg 196):\n",
+ "e = 0.71;\n",
+ "# From Eqn. 6.71:\n",
+ "eLo = e-shi_Lt;\n",
+ "# From Chapter 2:\n",
+ "ScG = 1;\n",
+ "MavG = 0.656*Ma+(1-0.656)*Mb;# [kg/kmol]\n",
+ "G = G_prime/MavG;\n",
+ "viscosity_G = 2.96*10**(-5);# [kg/m.s]\n",
+ "# From Eqn. 6.70:\n",
+ "Fg = (1.195*G/ScG**(2/3))*((dS*G_prime/(viscosity_G*(1-eLo)))**(-0.36));# [kmol/square m s (mole fraction)]\n",
+ "kY_prime = Fg;# [kmol/square m s (mole fraction)]\n",
+ "DL = 4.80*10**(-9);# [square m/s]\n",
+ "ScL = viscosity_L/(Density_L*DL);\n",
+ "# From Eqn. 6.72:\n",
+ "kL = (25.1*DL/dS)*((dS*L_prime/viscosity_L)**0.45)*ScL**0.5;# [kmol/square m s (kmol/cubic m)]\n",
+ "# At 588.33 OC\n",
+ "Density_W = 53.82;# [kg/cubic m]\n",
+ "kx_prime = Density_W*kL;# [kmol/square m s (mole fraction)]\n",
+ "# Value1 = [x G a ky_prime*10^3 kx_prime]\n",
+ "Value1 = numpy.array([[0.915 ,0.0474 ,20.18 ,1.525, 0.01055],[0.6, 0.0454 ,21.56 ,1.542, 0.00865],[0.370 ,0.0444 ,21.92 ,1.545 ,0.00776],[0.370, 0.0466 ,38, 1.640, 0.0143],[0.2 ,0.0447, 32.82 ,1.692 ,0.0149],[0.1 ,0.0443 ,31.99 ,1.766 ,0.0146],[0.02, 0.0352 ,22.25 ,1.586 ,0.0150]]);\n",
+ "# From Fig: 9.50\n",
+ "# At x = 0.2:\n",
+ "y = 0.36;\n",
+ "slope = -(Value1[4,4]/(Value1[4,3]*10**(-3)));\n",
+ "# The operating line drawn from(x,y) with slope. The point where it cuts the eqb. line gives yi.\n",
+ "# K = ky_prime*a(yi-y)\n",
+ "# For the enriching section:\n",
+ "# En = [y yi 1/K Gy]\n",
+ "En = numpy.array([[0.915 ,0.960, 634 ,0.0433],[0.85 ,0.906 ,532.8 ,0.0394],[0.8 ,0.862 ,481.1 ,0.0366],[0.70, 0.760 ,499.1, 0.0314],[0.656, 0.702, 786.9, 0.0292]]);\n",
+ "# For the Stripping section:\n",
+ "# St = [y yi 1/K Gy]\n",
+ "St = numpy.array([[0.656, 0.707, 314.7, 0.0306],[0.50, 0.639, 124.6 ,0.0225],[0.40 ,0.580, 99.6 ,0.01787],[0.3 ,0.5 ,89 ,0.0134],[0.2 ,0.390, 92.6 ,0.00888],[0.10, 0.232, 154.5, 0.00416],[0.032 ,0.091, 481 ,0.00124]])\n",
+ "# Graphical Integration, according to Eqn.9.52::\n",
+ "\n",
+ "plt.plot(En[:,3],En[:,2],'g');\n",
+ "plt.grid();\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Gy\");\n",
+ "ax.set_ylabel(\"1 / (ky_prime*a*(yi-y))\");\n",
+ "plt.title(\"Graphical Integration for Enriching section\");\n",
+ "plt.show()\n",
+ "# From Area under the curve:\n",
+ "Ze = 7.53;# [m]\n",
+ "# Graphical Integration:\n",
+ "\n",
+ "plt.plot(St[:,3],St[:,2],'r');\n",
+ "plt.grid('on');\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Gy\");\n",
+ "ax.set_ylabel(\"1 / (ky_prime*a*(yi-y))\");\n",
+ "plt.title(\"Graphical Integration for Stripping section\");\n",
+ "plt.show()\n",
+ "\n",
+ "# From Area under the curve:\n",
+ "Zs = 4.54;# [m]\n",
+ "# Since the equlibrium curve slope varies so greatly that the use of overall mass transfer coeffecient is not recommended:\n",
+ "print\"Height of Tower for enriching Section is \",Ze,\" m\\n\"\n",
+ "print\"Height of Tower for Stripping Section is \",Zs,\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.12 - Page: 429\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXW+yiosESsWBviWLsfS0RRAS7Ica4UWN+\ntti/lkRFo1GjMRpjb9g1CApYUFRWFDEogqBiAUVE7BFBLLTP749zhzs72XJnZ+/c2dnP8/GYx869\nc8tnPrs7Z+4595wjM8M555zLWSzrAJxzzlUWLxicc87V4wWDc865erxgcM45V48XDM455+rxgsE5\n51w9XjC4dkPSrpLeLvM515Y0W5LKeV7nSuEFg2s1kmolTZQ0R9Inkm6QtGKG8SyUtF5u2cxeMLNN\nUjpXnaRjCteb2TQzW968w5BrQ7xgcK1C0hnA5cAZwArADsA6wHBJS6Rwvg5JN23tczfCokebokjW\ncbjK4gWDK5mkFYB+wElm9rSZLTCzD4HDgK7Ab6Lt+kl6WNKDkmZJGitpi7zjrCFpoKTPJb0v6eS8\n13L73iPpG+AoSdtKGi3pa0kzJF2XK4QkjYx2fT2qyjlUUo2kj/KOOVXSGZJelzQzimupvNf/Lzru\ndEnHFl6BJMxN12i/xaLlOkkXS3oxysFTkn6St/0Okl6K3tN4Sbs3cey1JA2K8vWlpOvycnVPMzFc\nImkUMAc4S9IrBcc+TdLg6PlSkq6S9KGkTyXdKGnpYvLg2hYvGFxr2AlYGhiUv9LM5gBPAL/MW90b\n+DewEnA/8KikDtGH1lBgHLAGsBdwqqR9CvYdYGYrRvsuAE4BfgLsGO1zQnTu3aJ9toiqcgY0ELcB\nhwLdgXWBLYBaAEk9gNOiY24I1NB6VwR9o/OsCiwJnBmdswvwGHCxma0UrR8oqXPhAaIrpseADwhX\nZl2AB/LeV3N+AxwLdARuAjaWtEHe678G7oueXw5sAGwZ/ewCXJDsrbq2yAsG1xo6A1+a2cIGXvs0\nej3nVTMbZGYLgKsJBcqOwLZAZzO7xMzmm9kHwG3Ar/L2fcnMhgCY2Q9m9pqZjTGzhdEVyi1Ao9+w\nG/FPM/vUzL4mFEzdovWHAXeY2SQz+x64kNapljLgTjObbGY/EArJ3Dl/AzxhZsMAzOwZ4FWgZwPH\n2Q74KXCWmX1vZj+a2UvRa83FaUD/6L0tNLNZwGBCgYWkDYGNgSFRNdPvgdPNbKaZfQtcRv3fi6sy\ni2cdgKsKXwKdJS3WQOHwU+CLvOXpuSdmZpKmE64QDFhD0td523YARja0L4CkjQiFy9bAsoS/51eL\njP3TvOffR/Hm4h7T2LlLVHjOjtHzdYBDJe2f9/riwHMNHGMt4MNGCuMkPipYvh/4O/AXwtXCI2b2\ng6RVCbkdm9cUIfxLZVXzX65rDaOBH4GD81dK6gj0AJ7NW71W3uuLAWsCHxM+qD4ws5XyHiuYWa9o\n84Yad28E3gI2iKqX/kTr/U1/kh9rwfO0TAPuKcjB8mb2twa2/QhYu5FG+G8JH+Y5qzewTWEunwFW\nkbQl4Wrg/mj9l4TCa7O8mDqZ2QrFvDHXtnjB4EpmZt8AFwHXSeouaQlJXQnVJB8B9+RtvrWkAyUt\nDpwK/AC8DLwCzI4afJeJ2h1+JmmbaL+Gqkc6ArOB7yRtAhxf8PpnwPpFvp3cef4N/E7SJpKWBc5P\nsO8SkpbOezR2Rd5YVc+9wP6S9one/9JRg3mXBrb9D6HwulzSstG2O0WvjQd2ixqnVwTObS4GM5sH\nDACuIrT/DI/WLwRuBa6RtAqEtpCCth9XZbxgcK3CzK4EziN8sHxD+LD/ENgr+tCB8C11MHA48F/g\nCOCg6C6mBUAvQn37+4Tqp1sIt77m9i38lnsmodpjVrTtgwXb9APuiu7wOaSRY9R7G7nXo3r+fwIj\ngHcJV0UQrowacyPwXd7jjkbOaQXPc+ecDvQh5PFzwhXEGTTwfxp9YO9PaAyeRiiAD4teewZ4CJhA\nKHCHNhNDzv2ExvYBBVVUZwOTgZejO8KGAxs1nAJXDZRmvxtJdwD7AZ+b2c8b2eafwL6Ef6RaMxuX\nWkAuU5IuJFT7HJl1LMWStCkwEViyhHp959qEtK8Y7iTUMTdIUk/CB8WGwHGEb1yuerWpjlRRlddS\nklYCrgCGeKHg2oNUCwYzewH4uolNegN3Rdv+B+gkabU0Y3KZamu9g48jtFNMBubxv20YzlWlrG9X\n7UL92+amE+5S+SybcFyazOyirGMohpntm3UMzmWhEhqfC6sX2tI3SuecqzpZXzF8TP37w3P3tNcj\nyQsL55xrATMrum0v6yuGIcBvIQweBsw0swarkczMH2ZceOGFmcdQKQ/PhefCc9H0o6VSvWKQ9ABh\n7JrO0aiWFwJLAJjZzWb2hKSekiYTRnn8XZrxVIOpU6dmHULF8FzEPBcxz0XpUi0YzKxvgm1OSjMG\n55xzxcm6KskVqba2NusQKobnIua5iHkuSpdqz+fWIsnaQpzOOVdJJGFtsPHZFamuri7rECqG5yLm\nuYh5LkrnBYNzzrl6vCrJOeeqlFclOeecaxVeMLQxXn8a81zEPBcxz0XpvGBwzjlXj7cxOOdclfI2\nBuecc63CC4Y2xutPY56LmOci5rkonRcMzjnn6vE2Buecq1LexuCccxVs4cKsI0jOC4Y2xutPY56L\nmOciVkm5+OoruPNO6NUL9tor62iSy3pqT+ecqyqffgqPPgoDB8J//gN77w19+4bCoa3wNgbnnCvR\ntGnwyCOhMJgwAXr2hIMPhh49YLnlsourpW0MXjA451wLTJ4cCoKBA2HKFOjdOxQGe+8NSy+ddXSB\nNz63E5VUf5o1z0XMcxFLKxdm8OabcPHFsOWWsMsu8MEHcOmlofoo15ZQKYVCKZpsY5C0OHCXmR1R\npnicc65imMG4cfGVwXffwUEHwb/+BTvtBB06ZB1hOpqtSpL0IrCXmf1YnpAajMGrkpxzZbFwIbz8\ncigIBg0KH/4HHxwe224LKrpiJjstrUpKclfSB8CLkoYA30XrzMyuLvZkzjlXiebPhxdeCIXBI49A\np06hIHj0Udhii7ZVGLSGJG0MU4DHo207AstHD5cBr0uOeS5inotY0lzMnQvDhsHvfw9rrAFnnhl+\nPvts/baE9lYoQIIrBjPrV4Y4nHMudd9/D089Fa4MHn8cNtkkXBmcdx6su27W0VWOJG0MIxpYbWa2\nZzohNRiDtzE451pk9mx44olQGDz1FPziF6EwOPBA6NIl6+jSlWYbw1l5z5cGDgbmF3si55wrl6+/\nhqFDQ2EwYgTsvHMoDK6/HlZZJevoKl+zbQxm9mre40UzOw2oST801xCvS455LmKeC/j8c7jlFthu\nuzrWWSfcUXTIIaFX8pNPwrHHeqGQVLNXDJJWzltcDNgGWCG1iJxzLqGPPw4FwMCBMH48dO8O++4L\nzz0HHTtmHV3blaSNYSqQ22g+MBW4yMxeTDWy+jF4G4NzDgi9jXMdzt55B/bfP1QT/fKXsMwyWUdX\nWXysJOdc1Zo0Kb4ymD4dDjggFAZ77AFLLpl1dJUrtbGSJC0p6RRJAyU9LOlkSUu0LExXKq9Ljnku\nYtWWC7NQNXT++bDZZmFguk8/hauvhk8+CW0J3bs3XChUWy6ykOSupBuj7a4HBBwZrTs2xbicc+2M\nGYwZE1cTmYWrgttvh+23h8V8yM+ySdLGMMHMtmhuXZq8Ksm56rRgAYwaFY9L1LFjPC5Rt27ts9dx\na0qzH8N8SRuY2eToROvj/Riccy00b17oWzBwYBiL6Kc/DQXBU0+FaiOXvSQXZ2cBz0l6XtLzwHPA\nmemG5Rrj9acxz0Ws0nPxww+hw1ltLay+OlxwAWywAbz0Uv22hNZQ6bloC5KMlfSspI2AjaJV72Q5\nBLdzrm2YMyd0LBs4MPzccstwZfCXv8Baa2UdnWtKkjaGZYATgF0I/RleAG40sx+aPbjUA7gG6ADc\nZmZXFLzeGbgXWJ1QSF1lZv0bOI63MTjXBnzzTTwUxbPPwg47hMLggANgtdWyjq79Sa0fg6QBwCzC\nB7iAXwMrmtmhzezXAXgH2Bv4GHgF6Gtmk/K26QcsZWbnRoXEO8BqZja/4FheMDhXob78EgYPDoXB\niy/C7ruHwqB3b1h55eb3d+lJc87nzc3sGDMbYWbPmdmxwOYJ9tsOmGxmU81sHvAg0Kdgm0+Ih9dY\nAfiqsFBw9Xn9acxzESt3Lj75BG64AfbaC9ZfP8xr8Nvfhs5nubaErAoF/7soXZK7kl6TtKOZjQaQ\ntAMwNsF+XYCP8panA9sXbHMroWF7BmHyn8MSHNc5l4EPP4xvK33zTdhvPzjppNDRbNlls47OtaYk\nBcM2wChJHxHaGNYG3pE0kTAvQ2P9GZLU/ZwHjDezmug22OGStjSz2YUb1tbW0rVrVwA6depEt27d\nqKmpAeJvCO1huaampqLi8eXKWc5pzeO/+y5ceWUdI0fCf/9bQ58+0KtXHRdcAPvsU1nvP7ecW1cp\n8ZRzua6ujv79+wMs+rxsiSRtDE0e3cymNrLfDkA/M+sRLZ8LLMxvgJb0BHCpmY2Klp8FzjazVwuO\n5W0MzpWBGbzxRtz7+KuvwoQ2Bx8Mu+0Giyf5KukqRmptDFEbwVTgO2Bh7pG3vjGvAhtK6ippSeBw\nYEjBNm8TGqeRtBqwMfB+sW+iPSn8dtieeS5ipeTCDF55Bc49FzbeGHr1glmz4KabQpvB9dfDnnu2\nnULB/y5Kl2Q+ht7A34E1gM+BdYBJNNMAbWbzJZ0EPEW4XfV2M5sk6Q/R6zcDfwXulPQ6oZD6PzP7\nbwnvxzmXwMKFoXNZrs1gqaXCVcH998PWW/tQFO1dorGSgD2B4Wa2laQ9gCPN7OhyBBjF4FVJzpVo\n/nx4/vlQGDzySJjNLDcu0eabe2FQjdIcK2memX0paTFJHcxshKRrWxCjc67MfvwxdDQbOBCGDIGu\nXUNBMHIkbLhh1tG5SpWkH8PXkpYn9Hi+T9I/gW/TDcs1xutPY56LWH4uvvsuVA8dcUQYl+iyy+Bn\nP4NXXw1tCeecU92Fgv9dlC7JFUMf4AfgNOAIQke0i9IMyjlXnDlz4IEHwpXB8OGw7bbhyuCqq8Lo\npc4VI0kbwxnAg2b2cXlCajAGb2NwrsAnn8Bjj4XhKEaOhF13jYei6Nw56+hcJUizjWF54GlJXxOG\ntRhgZp8VeyLnXGnM4K23QlvB4MHwzjvQo0eoMrrvPlhxxawjdNUiST+Gfma2OXAi8FNgZNQRzWXA\n609j7SEXuTuJzjgjtAvsuy/MmAGXXAKffRaqj/r2hXHj6rIOtWK0h7+LtBXTZeVz4FPgK2CVdMJx\nzn37bZjNbMgQePxxWHtt6NMHHn44zGngt5W6tCVpYziBMLjdqsAA4CEze6sMseXH4G0MrqrNmBFG\nJR08OAxdvcMOoTDo3dsntXEtl2Ybw1rAqWY2vviwnHMNMQsjlA4eHB6TJ4f2gqOOCtVD3l7gspSk\njeFcLxQqh9efxtpaLubPh7o6OO20MN9xr16hneCyy8LP+++Hww9vWaHQ1nKRJs9F6drIsFjOtU2z\nZ4f2gsGD4YknYN11Q/XQoEGwxRbeXuAqU7NtDJXA2xhcW/Lxx3F7wahRsNNOoTDo3RvWXDPr6Fx7\nktqcz5XACwZXycxg4sS4f8GUKdCzZ2g87t4dVlih+WM4l4bU5mOQdLCk9yTNkjQ7esxqWZiuVF5/\nGssyF/PmwXPPwamnwnrrhULgyy/hb38L7QX33guHHlq+QsH/LmKei9IlaWP4G9DLzCalHYxzlWzW\nrDDp/ZAh8OSTcYEwZEgYpM7bC1y1SNKPYZSZ7VymeBqLwauSXCamT4+riF56CXbZJRQG++8PXbpk\nHZ1zTUutjSGae2F14FFgbrTazGxQ0VG2kBcMrlzMYMKEuH/B1Kmw336h4bh7d1h++awjdC651NoY\ngBWB74F9gF7RY/9iT+Rah9efxlorF/Pmhcls/vjHcDvpQQfBzJnw97+H9oK774ZDDqnsQsH/LmKe\ni9I128ZgZrVliMO5svrmm9BeMHhw+LnhhqGK6LHHfJpL5xqtSpJ0tpldIem6Bl42M/tjuqHVi8Wr\nklzJpk2L+xe8/HKYv6BPn9ADeY01so7OudaXxlhJuYHyxgL5n8oqWHauIpnB+PFx4/G0aaG94P/9\nv9DzuGPHrCN0rjJ5B7c2pq6ujpqamqzDqAgN5WLu3DB/weDBoUBYcslwVdCnT+iBvHiVDgLjfxcx\nz0UszdFVnatoM2eGfgWDB4dxiTbeOBQEw4bBppt6e4FzxfIrBtcmffhhXEU0Zgzstlvcv2D11bOO\nzrnK4GMluapmBuPGxf0LPv44NBr37g377APLLZd1hM5VnlYvGBq5GynH70rKSHuqP507N8xfkGsv\nWGaZeFaznXaCF15oP7loTnv6u2iO5yKWRhtD/t1IhQf2T2mXim++CfMc59oLNtssFAZPPw2bbOLt\nBc6VQ+KqJEnLE64Uvk03pAbP7VcM7cAXX8COO4YC4MADQ1XRaqtlHZVzbVeaYyX9HLgb+Em06gvg\nKDN7o+goW8gLhur3/few116wxx5w6aVZR+NcdUhzrKRbgNPNbG0zWxs4I1rnMlCN48AsXAi1tbDO\nOvCXvyTfrxpz0VKei5jnonRJ+jEsa2YjcgtmVifJ7wFxreZPfwp3GT3zDCyW5KuKcy5VSaqSHiU0\nRN9DaIQ+AtjazA5MP7xFMXhVUpW67Ta4/PIwdlHnzllH41x1SbONYWXgIiA3Wc8LQD8z+7roKFvI\nC4bqNHw4HHkkjBwJG22UdTTOVZ/U2hjM7L9mdrKZ/SJ6nFLOQsHVVy31p2+8AUccAQMGtLxQqJZc\ntAbPRcxzUbpm2xgkbQycCXTN297MbM8U43JV7JNPwq2o//hHGPraOVdZklQlTQBuBF4DFkSrzczG\nNntwqQdwDdABuM3MrmhgmxrgH8ASwJdmVtPANl6VVCXmzIGamtB7+fzzs47GueqWZhvDWDPbugUB\ndQDeAfYGPgZeAfqa2aS8bToBo4DuZjZdUmcz+7KBY3nBUAUWLICDD4ZOneDOO70Xs3NpS7Mfw1BJ\nJ0r6qaSVc48E+20HTDazqWY2D3gQ6FOwza+BgWY2HaChQsHV15brT886Kwx5ccstrVMotOVctDbP\nRcxzUbok/RhqCWMjnVmwft1m9usCfJS3PB3YvmCbDYElJI0AlgeuNbN7EsTk2pjrrw9zJrz0Upg8\nxzlXuVIbdlvSwUAPM/t9tPwbYHszOzlvm38BvwD2ApYFRgP7mdl7BcfyqqQ27PHH4dhjYdQoWG+9\nrKNxrv1IdQY3ST8DNgOWzq0zs7ub2e1jYK285bUIVw35PiI0OH8PfC9pJLAl8F7BdtTW1tK1a1cA\nOnXqRLdu3RYNrZu7dPTlylseNw5+/es6LrsM1lsv+3h82Zerebmuro7+/fsDLPq8bBEza/IB9ANG\nAJ8DdwKfAg8n2G9xYArhNtclgfHApgXbbAI8Q7hraVlgIrBZA8cyF4wYMSLrEBL76COzNdc0GzAg\nneO3pVykzXMR81zEos/OZj/nCx9JrhgOIXyLf83MfidpNeC+BAXOfEknAU9FH/y3m9kkSX+IXr/Z\nzN6WNAyYACwEbjWztxLE5Crc7Nmw335w8slwyCFZR+OcK0aS21VfMbNtJY0F9gRmAW+b2cblCDCK\nwZqL01WO+fPD3Mtrrw033eS3pTqXlTTbGF6RtBJwK/AqMAd4qdgTufbBLFwlmIU7kbxQcK7tSTJW\n0glm9rWZ3QTsA/zWzH6XfmiuIbmGpkp19dXh7qN//xsWT3RrQ8tVei7KyXMR81yULuldSV2AdaLt\nJWk3MxuZamSuzRk0KIx/NHo0rLBC1tE451oqSRvDFcDhwFvEYyVhZvunG1q9GLyNocKNGRMam4cN\ng62LHkDFOZeGNNsYDgQ2NrMfiw/LtQdTp8IBB8Add3ih4Fw1SDJW0hRCPwRXASqt/nTmTOjZE845\nJ9yJVE6VlosseS5inovSNXrFIOm66Ol3wHhJzwK5qwYzsz+mHZyrbHPnhtFSf/lL+KP/NThXNRpt\nY5BUSxg8D8Jcz/Wem9ldqUcXx+JtDBXGDI45Br78Eh55BDp0yDoi51yhVm9jMLP+0YFPNbNrCk52\natERuqpy2WXw+uvw/PNeKDhXbZK0MRzVwLraVo7DJVQJ9acPPAA33wxDh0LHjtnFUQm5qBSei5jn\nonRNtTH0JUyks66koXkvLQ98lXZgrjK9+CKccgo88wyssUbW0Tjn0tBUG8M6hMl4LgfOJrQtQBgr\naYKZzS9LhHgbQ6WYPBl22QXuugu6d886Gudcc1Kb8zk6eFdgAzN7RtKyQAczm110lC3kBUP2vvoK\ndtwRzjwTjjsu62icc0mkNuezpOOAAcDN0ao1gUeLPZFrHVnUn/74Y+jAduCBlVUoeF1yzHMR81yU\nLknj84nALoQqJMzsXWDVNINylcMMjj4aVl893InknKt+ScZKGmNm20kaZ2ZbSVqcMGnPFuUJ0auS\nsnTBBfD00zBiBCyzTNbROOeKkeZYSc9L+hOwrKRfAicAQ5vZx1WB/v3h3nvh5Ze9UHCuPUlSlXQO\n8AVhPuY/AE8Af04zKNe4ctWfPvccnH02PP44rFqhFYdelxzzXMQ8F6Vr9orBzBYAt0QP1w5MmgR9\n+8KDD8Kmm2YdjXOu3JK0MewPXAx0JS5IzMzKNhWLtzGUz2efhdtSL7wQjmqoz7tzrs1IrR+DpCmE\nORneMLOFLYyvJF4wlMf338Mee8A++8DFF2cdjXOuVKn1YwCmA29mVSi4+tKqP124EI48EtZfHy66\nKJVTtDqvS455LmKei9IluSvpbOBJSSOAudE6M7Or0wvLlds558Dnn8Pw4aCiv18456pJkqqk4cBs\nwl1Ji64azKxs3yu9KildN98Mf/87jB4NP/lJ1tE451pLmm0Mb5jZz1ocWSvwgiE9w4ZBbW0YNXWD\nDbKOxjnXmtJsY3hCko+lWSFas/50woTQrjBwYNssFLwuOea5iHkuSpekYDiB0Mbwg6TZ0WNW2oG5\ndM2YAb16wXXXwc47Zx2Nc66SJBp2O2teldS6vv0WdtsNDjkEzjsv62icc2lJdT6GrHnB0HoWLAhD\naK+6Ktx2m9+B5Fw1S7ONwVWQUutPTzstdGS76aa2Xyh4XXLMcxHzXJSuqTmf1zWzD8oZjEvXP/8J\nzz4Lo0bBEktkHY1zrlI1NefzWDPbWtJzZrZnmeMqjMWrkko0ZAgcf3woFLp2zToa51w5pDEfQ4do\nHoaNJJ0O5B/cez63IWPHwjHHhCG0vVBwzjWnqTaGXwELgA7A8tGjY95zl4Fi60+nTYM+feCWW2C7\n7dKJKStelxzzXMQ8F6Vr9IrBzN4GLpc0wcyeKGNMrpXMmgX77Qennw4HHph1NM65tiLJkBidgAuB\n3aJVdcDFZvZNuqHVi8HbGIo0b17owLb++nD99W3/DiTnXPHSvF31DmAWcChwGGFAvTsTBtVD0tuS\n3pN0dhPbbStpvqSDkhzXNc0MTjwROnQIdyJ5oeCcK0aSgmF9M7vQzN43sylm1g9Yv7mdJHUA/gX0\nADYD+kr6n4kio+2uAIZRv4HbNSBJ/emVV8KYMfDQQ7B4koHV2yivS455LmKei9IlKRi+l7RrbkHS\nLsB3CfbbDphsZlPNbB7wINCnge1OBh4GvkhwTNeMAQPC+EePPQbL+y0CzrkWSNLG0A24G1gxWvU1\ncJSZvd7MfocA3c3s99Hyb4DtzezkvG26APcCexKqrIaa2aAGjuVtDAmMHg29e8PTT8NWW2UdjXMu\na2n0YwDAzMYDW0haMVpO2uic5JP8GuAcMzNJwquSWuz99+Ggg+Cuu7xQcM6VJnENdAvuQvoYWCtv\neS3C/NH5tgYeDGUCnYF9Jc0zsyGFB6utraVr1DurU6dOdOvWjZqaGiCuU2wPy/n1p7nXhw6t48QT\n4fzza+jZs7LiTXM5t65S4slyefz48Zx66qkVE0+Wy9dcc027/nzo378/wKLPy5ZIbXRVSYsD7wB7\nATOAMUBfM5vUyPZ34lVJzaqrq1v0BwEwdy507x6uEq5uZ33RC3PRnnkuYp6LWEUOuy1pX0J1UQfg\ndjO7TNIfAMzs5oJtvWAoklmYlnPWLHj44XB7qnPO5aRaMEjaGehKXPVkZnZ3sSdrKS8YGnbxxTB0\nKNTVwXLLZR2Nc67SpNbBTdK9wJXAzsA20WPboiN0rSJXn3jvvXDHHaFgaK+FQn5bQ3vnuYh5LkqX\npPF5a2Az/8peOUaODOMfjRgBq6+edTTOuWqTpB/DAOAUM5tRnpAajMHLpcg774T5mu+7D/beO+to\nnHOVLLV+DMAqwFuSxgA/RuvMzHoXezJXmi++CKOl/vWvXig459KTZEiMfsABwKXAVcDfo4cro7lz\nQwe27bar45hjso6mMnhdcsxzEfNclC5Jz+c6SasTGpwNGGNmn6cemVvEDE44ATp3hmOPzToa51y1\nS9LGcBjhrqTno1W7AWeZ2YCUY8uPoV23MVx7Ldx+O7z0EnTsmHU0zrm2IrV+DJImAHvnrhIkrQI8\na2ZbtCjSFmjPBcPTT8NRR4UB8ny+ZudcMdKcqEfUHxL7K3ywu7J491048sgwr0KuUPD605jnIua5\niHkuSpfkrqRhwFOS7icUCIcDT6YalWPmTNh/f7jkknB7qnPOlUuSqiQBBwG7EBqfXzCzR8oQW34M\n7aoqaf78MF/zRhuFqTmdc64lKnIQvdbS3gqG00+HiRPhySere2pO51y6Wr2NQdKo6Oe3kmYXPGaV\nEqxrXG78o8bma/b605jnIua5iHkuStfo91Ez2zn66TdIlsmoUXDOOWEspJVXzjoa51x7laSN4R4z\nO7K5dWlqD1VJ06bBDjuE/gr77pt1NM65apDm7ao/KzjR4oQRV10rmTMHeveGM87wQsE5l72m2hjO\nkzQb+Hl++wLwOfA/czK7llm4MHRg22qr0OjcHK8/jXkuYp6LmOeidE21MfwV+Kuky8zs3DLG1K5c\nfDHMmBGalMjoAAASwklEQVTmVpB3G3TOVYAkbQwHAc+Z2cxouRNQY2aPliG+XAxV2cYwYECoPhoz\nxifccc61vjTHSnrdzLYsWDfezLoVe7KWqsaCYdw42GefMBbSVltlHY1zrhqlPVZSoQ7FnsjFPvsM\nDjgAbrih+ELB609jnouY5yLmuShdkoJhrKSrJa0vaQNJ/wDGph1YtfrxRzjwQKithUMPzToa55z7\nX0mqkjoC5wN7RauGA5eY2ZyUY8uPoSqqkszg6KNh9mz4979hsSTFsnPOtZCPldQGXH013H136OG8\n3HJZR+Ocq3aptTFIWlXSVZKekDQiejzXsjDbryefhCuvhMGDSysUvP405rmIeS5inovSJanMuA94\nG1gP6AdMBV5NL6Tq8/bboRPbww/DOutkHY1zzjUtSRvDa2b2C0kTctN5SnrVzLYpS4S07aqkr7+G\n7bcPg+MdfXTW0Tjn2pOWViUlGe1/bvTzU0m9gBnASsWeqD2aPx8OOwz2288LBedc25GkKumSqLfz\nGcCZwG3AaalGVSXOOAM6dAhtC63F609jnouY5yLmuShdk1cMkjoAG5nZY8BMoKYcQVWD226DYcPg\nP//xWdicc21LkjaGV8xs2zLF01gMbaqN4YUX4OCDw8+NN846Gudce5XmWEn/AJYAHgLmEIbIMDN7\nrSWBtkRbKhimToUdd4S77gpjITnnXFbSHCtpK2Bz4GLg78BV0U9X4NtvoU8fOPvs9AoFrz+NeS5i\nnouY56J0jdZ+SzrFzK4F/mxmL5YxpjZp4UI48kjYZhs45ZSso3HOuZZrtCopN9y2pHFmlunA0G2h\nKun888NkO88+C0stlXU0zjmXTj+GtyS9B3SRNLHgNct1dnPw0ENwzz1hwh0vFJxzbV2jbQxm1hfY\nFZgM9AL2z3v0TnoCST0kvS3pPUlnN/D6EZJelzRB0ihJbarAGTsWTjoJHn0UVl01/fN5/WnMcxHz\nXMQ8F6Vr8g57M/sUaPEHddQP4l/A3sDHwCuShpjZpLzN3gd2M7NvJPUAbgF2aOk5y+mTT8LcCjff\nDN3KNp+dc86lK9VhtyXtCFxoZj2i5XMAzOzyRrZfCZhoZmsWrK+4NoYffoCaGujZEy64IOtonHPu\nf6V5u2opugAf5S1Pj9Y15hjgiVQjagVmcNxxsPbaodHZOeeqSeLBGiQta2bfFXn8xF/zJe0BHA3s\n3NDrtbW1dO3aFYBOnTrRrVs3ampqgLhOsVzLJ5xQx+jR8PrrNUjlPX9+/WlW779SlnPrKiWeLJfH\njx/PqaeeWjHxZLl8zTXXZPr5kOVyXV0d/fv3B1j0edkiZtbkA9gJeAv4KFruBtzQ3H7RtjsAw/KW\nzwXObmC7LQiN3Bs0chyrFI8/brbGGmbTpmVz/hEjRmRz4grkuYh5LmKei1j02dnsZ3XhI8mQGGOA\nQ4DBFvVnkPSmmW3eXKEjaXHgHcJ80TOAMUBfy2t8lrQ28BzwGzN7uZHjWHNxlsOkSbD77mEWth13\nzDoa55xrWprzMWBm06R6x56fcL/5kk4CngI6ALeb2SRJf4hevxm4gDC/w43ROeaZ2XbJ30J5/Pe/\n0Lt3GELbCwXnXDVL0vg8TdLOAJKWlHQmMKmZfRYxsyfNbGMz28DMLovW3RwVCpjZsWb2EzPbKnpU\nXKEwb16YcKdPnzBFZ5by69fbO89FzHMR81yULknBcDxwIuFuoo8Jg+qdmGZQleb002HJJeGKK7KO\nxDnn0pdqP4bWkmUbwy23wNVXhwl3VlwxkxCcc65FWn0+BknXNbGfmdkfiz1ZS2VVMIwcCYceGibc\n2Wijsp/eOedKkkYHt7HAq9FjbAOPqjZ1Khx+eBgcr5IKBa8/jXkuYp6LmOeidI3elWRm/fOXJS0f\nVtu3aQeVtdyEO+ec47OwOefanyT9GH4O3A38JFr1BXCUmb2Rcmz5MZStKmnhQjjkEFhpJbjtNlDR\nF2HOOVcZ0uzHcAtwupmNiE5UE63bqdiTtQUXXQSffQYPPOCFgnOufUpyu+qyuUIBwMzqgOVSiyhD\nAwZA//4waFDlTrjj9acxz0XMcxHzXJQuyRXDB5LOB+4BBBxBmEOhqowbByecAE8/DautlnU0zjmX\nnSRtDCsDFxGPevoC0M/Mvk45tvwYUm1j+Owz2G47uOqqcHuqc85Vg1bvx1BJ0iwYfvwR9twT9t47\ntC8451y1SG2iHknbSnpE0jhJE6PHhJaFWVnM4PjjQ9XRhRdmHU0yXn8a81zEPBcxz0XpkrQx3Aec\nCbwBLEw3nPK69loYOxZGjYLF0p7Lzjnn2ogkbQyjzKzBWdXKJY2qpKefDiOljh4NpUx05JxzlSq1\nNgZJ+wCHA88Ac6PVZmaDio6yhVq7YHj3Xdh1V3j44fDTOeeqUWptDMBRwJZAD6BX9Ni/2BNVipkz\nw4Q7l1zSNgsFrz+NeS5inouY56J0SdoYtgE2qYi5NUu0YAH07Qu//CX8/vdZR+Occ5UpSVXSncBV\nZvZmeUJqMIZWKZfOPBPGj4dhw2DxRJOaOudc25XmWEk7AuMlfQD8GK0zM9ui2JNl6a674NFHYcwY\nLxScc64pSdoYegAbAvsQ2hb2B3qnGVRrGz0azjoLhgyBlVfOOprSeP1pzHMR81zEPBela/a7s5lN\nLUMcqZk+PQyjfccdsNlmWUfjnHOVr6qHxPjuO9httzD+0dlnpxCYc85VMB8rqYAZ/PrX0KFDmJ7T\n51ZwzrU3afZjaJMuuwymTIFbb62uQsHrT2Oei5jnIua5KF1V3p8zeDDccEO4A2mZZbKOxjnn2paq\nq0qaODEMo/3442GOBeeca6+8Kgn48kvo0weuucYLBeeca6mqKRjmzQu3pR52GBxxRNbRpMfrT2Oe\ni5jnIua5KF3VFAynnAIdO8Kll2YdiXPOtW1V0cZw441w3XXw8suwwgplDMw55ypYu+3HMGIE/OpX\nYRa2DTYoc2DOOVfB2mXj8/vvh2G077+//RQKXn8a81zEPBcxz0Xp2mzBYBYamv/8Z9hrr6yjcc65\n6tGmq5KmTIH11quuns3OOdda2m0bg3POuYZVZBuDpB6S3pb0nqQGxzeV9M/o9dclbZVmPNXA609j\nnouY5yLmuShdagWDpA7AvwgT/WwG9JW0acE2PYENzGxD4DjgxrTiqRbjx4/POoSK4bmIeS5inovS\npXnFsB0w2cymmtk84EGgT8E2vYG7AMzsP0AnSaulGFObN3PmzKxDqBiei5jnIua5KF2aBUMX4KO8\n5enRuua2WTPFmJxzzjUjzYIhaWtxYcOItzI3YerUqVmHUDE8FzHPRcxzUbrU7kqStAPQz8x6RMvn\nAgvN7Iq8bW4C6szswWj5bWB3M/us4FheWDjnXAu05K6kNCfqeRXYUFJXYAZwONC3YJshwEnAg1FB\nMrOwUICWvTHnnHMtk1rBYGbzJZ0EPAV0AG43s0mS/hC9frOZPSGpp6TJwBzgd2nF45xzLpk20cHN\nOedc+VTUWEneIS7WXC4kHRHlYIKkUZK2yCLOckjydxFtt62k+ZIOKmd85ZLw/6NG0jhJb0iqK3OI\nZZPg/6OzpGGSxke5qM0gzLKQdIekzyRNbGKb4j43zawiHoTqpslAV2AJYDywacE2PYEnoufbAy9n\nHXeGudgRWDF63qM95yJvu+eAx4CDs447o7+JTsCbwJrRcues484wF/2Ay3J5AL4CFs869pTysSuw\nFTCxkdeL/tyspCsG7xAXazYXZjbazL6JFv9D9fb/SPJ3AXAy8DDwRTmDK6Mkefg1MNDMpgOY2Zdl\njrFckuTiEyA3bdcKwFdmNr+MMZaNmb0AfN3EJkV/blZSweAd4mJJcpHvGOCJVCPKTrO5kNSF8MGQ\nG1KlGhvOkvxNbAisLGmEpFclHVm26MorSS5uBTaXNAN4HTilTLFVoqI/N9O8XbVY3iEulvg9SdoD\nOBrYOb1wMpUkF9cA55iZSRL/+zdSDZLkYQngF8BewLLAaEkvm9l7qUZWfklycR4w3sxqJK0PDJe0\npZnNTjm2SlXU52YlFQwfA2vlLa9FKNma2mbNaF21SZILogbnW4EeZtbUpWRbliQXWxP6wkCoT95X\n0jwzG1KeEMsiSR4+Ar40s++B7yWNBLYEqq1gSJKLnYBLAcxsiqQPgI0J/avam6I/NyupKmlRhzhJ\nSxI6xBX+Yw8BfguLelY32CGuCjSbC0lrA4OA35jZ5AxiLJdmc2Fm65nZuma2LqGd4fgqKxQg2f/H\nYGAXSR0kLUtoaHyrzHGWQ5JcvA3sDRDVp28MvF/WKCtH0Z+bFXPFYN4hbpEkuQAuAFYCboy+Kc8z\ns+2yijktCXNR9RL+f7wtaRgwAVgI3GpmVVcwJPyb+Ctwp6TXCV+A/8/M/ptZ0CmS9ACwO9BZ0kfA\nhYRqxRZ/bnoHN+ecc/VUUlWSc865CuAFg3POuXq8YHDOOVePFwzOOefq8YLBOedcPV4wOOecq8cL\nBpeIpFpJ1xW5zwPRML8lj1Mj6byC5VGlHrOZ820SDdk8VtK6rXjcdST1zVsuOq8tOGeD55C0f1PD\nmDdyrG+jn2tIGlBCTH9oaCynqNNao8NHu/KomA5uruIV1eFF0urANma2YQOvdTCzBUWe/1xCp6UQ\njFnaY0MdAAwws0tb+bjrEkZBfSBaLkdHogbPYWZDgaEtOZaZzQAObXFA7aRjYlvlVwztRPRN7G1J\nd0p6R9J9kvaJJvl5V9K20XYrS3o0+qY/WtLPGzjWKpIeljQmeuzUwCmfBrpEk8bsIqlO0j8kvQKc\nIqmXpJclvSZpuKRVo2N3jGKcEMVwkKTLgGWiY90TbZf75ipJV0qaGO1zWLS+JjrnAEmTJN3bSF66\nRXG8LmmQpE6SehJG4zxe0nMN7POtpL8pTAAzXNIOkp6XNEXS/tE2HaK4xkTHPi7a/XJg1+i9nBqt\nW0PSk9Hv4Yq889wg6ZXoPP3y1k+V1C+6mpkgaeOkv7uC97HoSkJSf0nXRn8PUyQd3My+i77ZS1pG\n0oOS3opy+LKkX+T/nqLnh0i6M3reT9IZ0fOto5jHAyc0dV5XJllPMuGP8jwIk5rMAzYnjLT4KmEo\nAQjjtT8SPb8OOD96vgcwLnpeC1wXPb8f2Dl6vjbwVgPnW4e8iUOAEcC/8pY75T0/Frgqen4FcHXh\ndsDsguPPjn4eTCiEBKwKfAisDtQAM4E1otdeysVccJwJwK7R84uAf0TPLwRObySXC4Hu0fNB0fk7\nAFvk5es44E/R86WAV6Lfwe7A0Lxj1QJTgOWj7aYCXaLXVop+dojy97No+QPgxOj58YShLxL97gre\nx1F5v9P+wEPR802B9xp577m8d839foHTgdui5z8n/J39ovD3Fv2u7izMb/Q72CV6/jcamXDGH+V7\neFVS+/KBmb0JIOlN4Jlo/RuEf3QIw3cfBGBmIyT9RNLyBcfZG9hUWjSS7/KSljWz7/K2aWjo64fy\nnq8l6d+ED/EliQc424swKBpRDDObeU+7APdb+FT5XNLzwLbALGCMhSoPom+jXYFFbROSViTMgvdC\ntOouIFdv3tTw3XPN7Kno+UTgBzNbICk/j/sAP5d0SLS8ArABUDhZjAHPWjQctKS3CIXqx8Dhkn5P\nqPL9KbAZ4XcFoUACeI3o90Wy311jDHg02neSipsAa1fg2mjfiZImJN0x73fwYrTqHmDfIs7tUuAF\nQ/vyY97zhcDcvOf5fwvNjd0uYHszm0tx5uQ9v45wlfCYpN0JUzE2dv6mWAPb5+LNf78LaP7vPf84\nTdX9z8t7viiPZrZQUv45TjKz4fVOINU0cLz/iVOhwfsMQjvNN1EVzNIN7FP4vkqZryT/91nsnBaN\nbZ9//mVKOI4rI29jcIVeAI6ARR9iX5jZtwXbPA38MbcgqVvCY+f/068AzIie1+atHw6cmHfsTtHT\neQUfuvnxHi5pMUmrALsBY0jwAWNhatSvJe0SrToSqGsg1pZ4CjghF7OkjRSGwp5FqDbKaeg8iraZ\nA8yKvr0n+Rad5HdXeJ7WMJLQoI6knxGq1HI+U7jDazHgwIJzK/odzJSUu5ngiFaKyZXAC4b2pfDb\nozXwvB+wtcJwxX8l1EPnXs9t80dgm6jB8E1CfXqx5+sHDJD0KmGe5txrlwArRY3J4wltBQC3ABNy\njc/Ed8c8Qqijfh14FjjLzD4viLexeIje35XR+90CuLiB91vM+8o9v40wF8JrUSPtjYS2ggnAAoVb\nYU9tLE4zmwCMI8wrcB/wIg3L378fzf/uGtu3sffR0D6Fz28EOkbVYBcBY/O2OQd4jFCFNyNvn/xz\n/w64XtK4Zs7tysSH3XbOtSpJI4AzzOy1rGNxLeNXDM455+rxKwbnnHP1+BWDc865erxgcM45V48X\nDM455+rxgsE551w9XjA455yrxwsG55xz9fx/ja2w2w8vuCwAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5ce470>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPX1//HXmyZVl6JIURcLKCquCGhsLMaeKGpiL6CJ\nvcXevgkx+dpINN+YmKJG0cRO1J8mimDCaqICFhZURAFdehGQjtTz++PexWHd3ZmdvTN37u55Ph7z\n2Ll37tz73jvlM/dzbpGZ4ZxzztVVk7gDOOecSyZvQJxzzmXFGxDnnHNZ8QbEOedcVrwBcc45lxVv\nQJxzzmXFG5AGRNLPJf21lsc/knR4LpeRZJJ2lrRSknIw70MkTQvnf2LU868vSbdIeiiD6UZI+mUt\nj6+UVBxltnzJdB24b3gDkkOSzpA0XtIqSQsljZN0aQ4XWetBPWa2j5m9matlSCqVNDuTmUgqlrRZ\nUmzvQUkVko6oHDazWWbWznJzcNQvgPvD+b9U35mFX+Trwi/sytvEbOdnZneZ2YWZTEot74Hw/6vI\nNke+VPdercM6cCFvQHJE0nXA/wH3AJ3NrDNwCXCIpBY1PKe+r0fkv5zzsIycZJbUNIPJLFfLr8bO\nwJRsnljD/2LAPeEXduVt/wjn71xa3oDkgKTtgNuBS83seTNbDWBm5WZ2jpmtD6cbIemPkl6RtAoo\nlfQ9SRMlLZc0S9KwlPlW/mq/UNJcSfPChqqSAS0kPSZpRdhldUDK8yskfTe831TSrZKmh9O+J6lb\n+Nhvw2UvD8cfmuV6KJP0C0n/DZfxmqSO4cOVW0LLwl/PB4bPuUDSFElLJY2StHPK/I6W9KmkZZIe\nkPSGpB+Fjw2V9Jak+yQtBoZJ2lXSvyUtlvSlpL+Frw1hN9zOwMvh8q+vulUkqauklyQtCbuffpyS\n5eeSnq1pXVdZDzOAXcNlrZDUPIN5j5T0V0nLgSF1XO+V/8d5kmaG//uttcx/qKp0TUo6VNLbkr4K\n3wvnpSyig6R/hP/LOEm7pjxvc+Vw+P5+oJZpa3w9q/mfBoTvxeWSFki6N+Wxg1KylksamPJYB0mP\nKvi8LJX0vKTWwKtA1/C1XyGpSzXr4ERJH4fzHStpz5THKiRdJ2lSmP9pSdvU5XVqEMzMbxHfgGOB\nDUCTNNONAJYB3wmHtwEGAnuHw/sCC4DB4XAxsBl4AmgF7AMsAr4bPv5zYG24fAF3Au+kLO8L4Ijw\n/g3AZGCPlGV1CO+fDbQn+IFxLTAfaJGyjL/W8P+UArNThsuAacDuQEtgLHBX+Ngu4f/SJGX6weH0\nvcJl3wa8FT7WCVgOnBQ+dhWwHrggfHxouM4vDx9vCewGfBdoHj7/DeA31a2PKuu3STj8JvB7oAWw\nX7iuB2WyrqtZN1WXlW7e64ETw+GW1czvUeCXNSyr8v/4M8F7qg/wNdCrpvkDwypf1/C1WQGcDjQF\nOgD7pbxnFwP9wsf+BjyVsuzNwK7ppk33elbzP70DnB3ebw0cGN7vFi7j2HD4yHC4Yzj8T+ApYDug\nGXBYOH4gKe/VcFzqOugJrCJ4/zQl+LxMA5qlvJ7jgB0JPitTgIvj/u7J9823QHKjE7DYzDZXjkj5\nhbRGW/+if9HM3gEws3Vm9oaZfRwOfwg8TfBmT3W7ma01s48IvkjOTHnsP2Y2yoJ3+d8Ivpyq82Pg\nNjObVrksM1sa3n/CzL4ys81mdh/Bl1CvLNaDAY+a2XQz+xp4FiipXCXVTH8JQQPzabju7gJKwq2Q\n44GPzOzFMNf9BI1rqnlm9kD4+NdmNsPM/mVmG8xsMfAbvr0uqyVpJ+Bg4CYzW29mk4CHgdRf4pmu\n62zm/baFtZJw3X1rNsD14Xuq8vZolWluD99Tk4FJVfJVnX/q63EWMMbMnjGzTWa2NMwIwWv6vJm9\nZ2abCH7MlFC92qbN5PVMtR7YQ1InM1tjZuPD8ecAr5jZqPB/eR14D/iepC4EDfwlZrbczDaa2X9S\n1l9VqeNOB/4Rvn82Ab8m+NF2cMo095vZAjP7Cni5lvXQYHkDkhtLgE5KqWmY2cFm1j58rHK8AVsV\n8iQdGG4uL5K0DLgY6MjWUp8zC+iaMrww5f4aoKWqr610B2ZUFz7szpkSbpp/RfDrrVMN/2s6qV8K\na4G2tUy7C/Dbyi9EgnUFwa/MLsCcKtNXHa66LjuHXQtzwq6av/LtdVmTrsBSC7sfQ7PCLJUyXdfZ\nzLvq/1aVAb8ys/Ypt/OrTJO67tew9bqvbf47AZ/X8njq/53uNa1p2q7VZKgt048Itgo+kTRB0vfC\n8bsAp6Y2pMAhBFsGOxGs5+W1zLcmXQleEwDCHwmz2fo1qst7u0HyBiQ33gHWEWye19WTwItAdzMr\nAv7Et1+nnavcn5vFcmYTdC1tRdJhBJvrp5pZUdjoLSf6YnN1e/LMAi6q8qXYJtxCm0/Q6FXmVOpw\nDfO8E9gE7GNm2wHnsvW6rG1vq3kEff2pXwo7k/6LPROZzDvXp8mubf6zCLr/cmke6V/PLcKt2LPM\nbHuCHVNGhrWMWQTdTqnvmXZmNpzgPd5BYd2r6izT5JtL0Dil5tuJmj9rjfK05t6A5ICZLSMoov9B\n0g8ktZPURFIJ0CZl0uq+lNsCX5nZekkDCLoTqr45/0dSK0l7E/T9P5NFzIeBX0raXYE+kjqEy98I\nLJbUQtLPgG2zmH+lmhqeLwn6y1O/qP4E3CqpNwQ7I0g6NXzsFWBfSYMlNSOodeyYZtltgdXACgU7\nCNxQ5fGF1PBFaWazgbeBuyRtI6kPcAFBV1W9RDRvkbs9yJ4EjpR0qqRmkjpKquz+qssya5u2Tq+n\npHMkbR8OLif4TGwiWGcnhAX5ppJaKthFt5uZzScolv9BUpGCnRcqj4NaCHSUVNN7+zmCbrAjJDUH\nriOoI72dxf/aYHkDkiNm9iuCAvSNBJu6Cwi+IG8k2EKB6vepvwz4haQVwE+pvnF4A5gOvE7QjfF6\nLfOr6ZfRfQQ1idEEH8iHCIqprwGjgM+ACoJN81kpz6v1OIA0y9/yXDNbA9wBvBV2PQwwsxcJfl0+\nHXY5fQgcE06/GDgVGE5QJN2LoK97XS25bgf6hv/fy8Dfq0xzF0Fj/JWka6vJeyZBQXoe8DzwMzP7\ndy3Lq8uv0LrOuyoDbtTWx4EsyjBLTdkrX5tZBDWK6wi6EScSFOJre25N96udNoPXs6pjgI8krSSo\nZZ0R1nfmEOx8cSvBjgizwtyV323nEuxcMZWg0bgqXP5UguL65+HeWV2qrINPCeorvyP4sfM94AQz\n21hDvkxeswZHQddeDhcg3ULwQmwm+EI4n+BX+DMEm4gVwGnhr/bK6S8g+HVxlZmNzmnABFFwhO/n\nBHuCbK596oYtrDXMBs4yszfizuPqx1/PZMrpFkj4hXch0NfM9iXYHe4M4GaCvTx6Av8Khwm7Lk4H\nehPsPfGHDIuSrhEIuymKwv3tK49rGBdnJpc9fz2TL9dfzisINh9bh/2crQk22U8EHguneYxvis2D\nCfYT32DB6RCmAwNynDFpGt1mcorvELwnKrsUTjKzmro8XOHz1zPh8tGFdRFwL0Ff+mtmdq6kr8K9\neyr3blhqZu0l/Q4YZ2ZPhI89DLxqZn/PaUjnnHN1lusurN2AnxAUC7sCbSWdkzpNuH91XYqyzjnn\nCkCzHM+/H8ERr0sAJD1PsNm6QNKOZrYg3Puhcu+RuQT7WlfqTjX7XUvyRsU557JgZpHtcpzrGshU\n4KDwmAURnKdmCsEulZUniBtCcOAcwEvAGeHxBz2APYAJ1c3YCuA8MOluw4YNiz2D5/SMntNzVt6i\nltMtEDObJOlxgv27NwMfAA8C7YBnFZx5swI4LZx+iqRnCRqZjcBllov/Ok8qKirijpARzxmdJGQE\nzxm1pOSMWq67sLDglALDq4xeSrA1Ut30dxKcgsI551wB82Mscmjo0KFxR8iI54xOEjKC54xaUnJG\nLee78eaCpCT3bDnnXCwkYQkqojdqZWVlcUfIiOeMThIygueMWlJyRs0bkGpMnD+RJyY/EXcM55wr\naN6FVY23Z7/NFa9cwQcXf5CzZTjnXL55F1Ye9Ovaj2lLp/HV2q/ijuKccwXLG5BqtGjagu90/w7/\nmfWf9BPXIin9op4zOknICJ4zaknJGTVvQGpQWlxKWUVZ3DGcc65geQ2kBu/MfofLX7nc6yDOuQbD\nayB50q9rP6Yvnc7StUvjjuKccwXJG5AaNG/anO/s9B3+MzP7OkhS+kU9Z3SSkBE8Z9SSkjNq3oDU\nonQXr4M451xNvAZSi3FzxnHpPy9l4sUTc74s55zLNa+B5NEBXQ5gxtIZXgdxzrlqeANSi+ZNm3Pw\nTgfz5sw3s3p+UvpFPWd0kpARPGfUkpIzat6ApOHHgzjnXPW8BpLGuDnjuOQfl1B+SXleluecc7ni\nNZA8O6DLAXyx7AuvgzjnXBXegKRRWQd5o+KNOj83Kf2injM6ScgInjNqSckZNW9AMuDHgzjn3Ld5\nDSQD4+eM56J/XMSkSyblbZnOORc1r4HEoG+XvlQsq2DJmiVxR3HOuYLhDUgGmjdtziE7HVLn40GS\n0i/qOaOThIzgOaOWlJxRy2kDIqmXpIkpt+WSrpb0c0lzUsYfl/KcWyRNkzRV0tG5zFcXpcWljK0Y\nG3cM55wrGHmrgUhqAswFBgAXACvN7L4q0/QGngT6A92A14GeZra5ynR5rYEATJg7gR+/9GMmXzo5\nr8t1zrmoJLkGciQw3cxmAwpvVQ0GnjKzDWZWAUwnaHBi17dLX2Yun8niNYvjjuKccwUhnw3IGcBT\n4X0DrpQ0SdJfJBWF47sCc1KeM4dgSyR2zZo0q3MdJCn9op4zOknICJ4zaknJGbVm+ViIpBbACcBN\n4ag/Ar8I7/8SuBf4UQ1Pr7avaujQoRQXFwNQVFRESUkJpaWlwDcvZtTDg4oHMfaLsXRY2CGj6Svl\nKk9Uw+Xl5QWVJ+nrMwnD5eXlBZUn6cOFuj7LysoYMWIEwJbvyyjlpQYiaTBwqZkdW81jxcDLZrav\npJsBzOzu8LFRwDAzG1/lOXmvgQC8O/ddLnjpAj689MO8L9s55+orqTWQM/mm+wpJXVIeOxmo/EZ+\nCThDUgtJPYA9gAl5ypjW/l32Z9byWXy5+su4ozjnXOxy3oBIakNQQH8+ZfQ9kiZLmgQMBK4BMLMp\nwLPAFOBV4LJYNjVq0KxJMw7d+dCM6yBVu14KleeMThIygueMWlJyRi3nNRAzWw10qjLuvFqmvxO4\nM9e5sjWoeBBlFWX8oPcP4o7inHOx8nNh1dF7895j6ItD+eiyj2JZvnPOZSupNZAGo2THEuasmMOi\n1YvijuKcc7HyBqSO6lIHSUq/qOeMThIygueMWlJyRs0bkCz4ddKdc85rIFl5f977DHlxiNdBnHOJ\n4jWQAuB1EOec8wYkK02bNOWwXQ4j3XXSk9Iv6jmjk4SM4DmjlpScUfMGJEt+nXTnXGPnNZAsvT/v\nfc578Tw+vuzjWHM451ymvAZSIEp2LGHeynksXLUw7ijOORcLb0Cy1LRJUw7b+TDemFlzHSQp/aKe\nMzpJyAieM2pJyRk1b0DqwY8Hcc41Zl4DqYcP5n/AOc+fw5TLp8QdxTnn0vIaSAHZr/N+zF813+sg\nzrlGyRuQemjapCmH73J4jd1YSekX9ZzRSUJG8JxRS0rOqHkDUk9+PIhzrrHyGkg9TZw/kbOeP4tP\nLv8k7ijOOVcrr4EUmD6d+7Bw1UIWrFoQdxTnnMsrb0DqqbIOUt15sZLSL+o5o5OEjOA5o5aUnFHz\nBiQCpcWljK0YG3cM55zLK6+BRKB8QTlnjDyDqVdMjTuKc87VKLYaiKQ2kvaU1EtSm6gCNAR9Ovdh\n0epFzF85P+4ozjmXN7U2IJLaSbpW0gTgQ+BR4DHgI0nvSbpGUtt8BC1kTdQkqINUOS9WUvpFPWd0\nkpARPGfUkpIzaum2QF4EVgInmNmuZvYdMzvIzHoA3wdWA/+vpieHWysTU27LJV0lqYOkMZI+kzRa\nUlHKc26RNE3SVElHR/FP5sOg4kGM/cLrIM65xiNvNRBJTYC5wADgSmCxmQ2XdBPQ3sxultQbeBLo\nD3QDXgd6mtnmKvMqqBoIwKQFkzht5Gl8esWncUdxzrlqxVkD2UvScZKOkbRnFss6EphuZrOBEwm6\nwgj/nhTeHww8ZWYbzKwCmE7Q4BS8fTvvy+I1i5m3cl7cUZxzLi/S1UB6SLpf0nTgT8B5wPnAnyXN\nkPRbScUZLusM4KnwfmczqzwD4UKgc3i/KzAn5TlzCLZECt6WOkjK8SBJ6Rf1nNFJQkbwnFFLSs6o\nNUvz+D3AQ8B1ZrYh9QFJzYFBwHDgtNpmIqkFcAJwU9XHzMwk1dYfVe1jQ4cOpbi4GICioiJKSkoo\nLS0Fvnkx8z4cnhery5IuW2WNLU+Gw+Xl5QWVp6bhSoWSJ8nD5eXlBZUn6cOFuj7LysoYMWIEwJbv\nyyjlpQYiaTBwqZkdGw5PBUrNbIGkLsBYM9tT0s0AZnZ3ON0oYJiZja8yv4KrgQBMXjiZHz77Qz67\n8rO4ozjn3LfEUgOR9L6kyyW1z3I5Z/JN9xXAS8CQ8P4Qgr29KsefIamFpB7AHsCELJeZd/vssA9L\n1i5h7oq5cUdxzrmcy7SIfgZBLeJdSU+HhfSMWrHwoMMjgedTRt8NHCXpM+CIcBgzmwI8C0wBXgUu\nK8hNjRo0URMG7jJwy/EgVbteCpXnjE4SMoLnjFpSckYtowbEzKaZ2a1AT4LdbB8BZkm6XVKHNM9d\nbWadzGxlyrilZnakmfU0s6PNbFnKY3ea2e5mtqeZvZbdvxUfv066c66xyLgGImk/gj2wjgNeI2hI\nDgXOMbOSnCWsPkvBbphMXjiZHzz7A6ZdOS3uKM45t5WoayDp9sKqXOj7wHLgYeBmM/s6fGicpEOi\nCtMQ7LPDPny19ivmrJhD9227xx3HOedyJtMayGlmdoSZPZnSeABgZifnIFdiNVETBhYP5I2KNxLT\nL+o5o5OEjOA5o5aUnFHLtAYyo/K+pA9yF6dh8OukO+cagzofByJpopntn6M8mWYo2BoIwIcLP+SU\nZ0/xOohzrqAUwjXRX4lq4Q3V3jvszbKvlzFnxZz0EzvnXELVuQExs9tyEaQhqTwe5I/P/THuKBlJ\nSv9tEnImISN4zqglJWfU0p1M8a3w7ypJK6vcVuQnYjKVFpdSvqA87hjOOZczfk30HPlo0Uec9PRJ\nTL9qetxRnHMOiO9cWPdJ2juqhTYGvbfvzfJ1y5m9fHbcUZxzLicyrYF8AjwoaYKkSyRtl8tQDUET\nNaH36t6J2J03Kf23SciZhIzgOaOWlJxRy/Q4kIfM7BCCC0oVAx9KelLSoFyGS7qSziWJaECccy4b\ndTkXVlOCi0KdD3QnOGvuocAaMzs9Zwmrz1LwNRCAjxd9zIlPn8iMq2akn9g553IsrhrIb4BPgeOB\nO8zsADO7x8xOAPJ6IsUk6b19b1auW8ms5bPijuKcc5HLtAbyIbCfmV1kZlUv8HRgxJkajDfeeIOB\nxQMLvhsrKf23SciZhIzgOaOWlJxRS3ccyG4AZvaIma2uYbJarwfS2A0qHlTwDYhzzmWj1hqIpGeA\nNgSXmn0PmA8I6AL0A04EVprZGbmPulWuRNRAAKZ8OYXvP/l9Pr/687ijOOcaubxeD8TMTpe0O8El\nbe8Adgkfmgn8F7jSzPybsRZ7ddqLVetXMXPZTHYp2iX9E5xzLiHS1kDMbLqZ/a+ZHWdmvcPbcWZ2\nhzcetSsrK0MSpcWlW66TXoiS0n+bhJxJyAieM2pJyRm1dDUQSbojvP/L/ERqeEqLSxlbMTbuGM45\nF6m0x4FIGgwcDYw2s/+Xl1RpJKkGAvDJl59w/JPH88XVX8QdxTnXiOX1OBBJw4AjgDOBI8JhV0d7\ndtqTNRvWULGsIu4ozjkXmVobEDO7Pbx7cDC4ZdhloLJfdEsdpKIw6yBJ6b9NQs4kZATPGbWk5Ixa\nJgcSPmpmU4FHs1mApCJJIyV9ImmKpIMk/VzSHEkTw9txKdPfImmapKmSjs5mmYWodJdSymaWxR3D\nOeciU5dzYe0L9AZaAgZgZo9n8LzHgDfM7BFJzQiOK/kJwfEj91WZtjfwJNAf6Aa8DvQ0s81VpktU\nDQRg6uKpHPu3Y6n4SUXcUZxzjVRc58L6OXA/8DugFBhOcBBhuudtBxxmZo8AmNlGM1te+XA1TxkM\nPGVmG8ysApgODMgkY6Hr1bEXX2/82usgzrkGI9NzYf0QOBKYb2bnA/sBRRk8rwfwpaRHJX0g6SFJ\nrcPHrpQ0SdJfJFXOqyswJ+X5cwi2RBIptV+0sg5SiKc1SUr/bRJyJiEjeM6oJSVn1Go9Ej3FWjPb\nJGljuFWxCNgpw/n3Ba4ws3cl/R9wM8GWzC/CaX4J3Av8qIZ5VNtXNXToUIqLiwEoKiqipKSE0tJS\n4JsXM+7hSlseDxuQ4mXFBZGvcri8vLyg8mS8PgssX5KGy8vLCypP0ocLdX2WlZUxYsQIgC3fl1HK\nqAYi6Q/AbcDpwHXAamBiuDVS2/N2BN4xsx7h8KHAzWb2/ZRpioGXzWxfSTcDmNnd4WOjgGFmNr7K\nfBNXA4GgDnLM346h4uoKpMi6IZ1zLiOx1EDM7DIz+8rM/kRwUOGQdI1H+LwFwGxJPcNRRwIfhw1L\npZMJThcPwUkbz5DUQlIPYA+g6unjE6tXx16s37Te6yDOuQYhbQMi6Sfh36sAzOwLM5tUh2VcCTwh\naRLQB7gLGC5pcjhuIHBNOO8pBFc6nAK8ClyWyE2NUNWul0Ktg1TNWaiSkDMJGcFzRi0pOaOWSQ1k\npaQbgKXZLCBsbPpXGX1eLdPfCdyZzbKSoPJ4kPP3T7sB55xzBS3d9UCGAa2Bqwl2411dCEejJ7UG\nAvDp4k85+m9Hex3EOZd3ea2BhI3FBoK6x/pCaDySrmfHnqzftJ4vlvmJFZ1zyZZJEf1NM3sTKMtx\nlganun5RSQV3mduk9N8mIWcSMoLnjFpSckYtkwtKjZbUBOgi6WcAknaW1CCOEI9DIRbSnXOurjI9\nDuRPwCbgu2a2p6QOBNcH6ZfrgDXkSWwNBOCzJZ9x5ONHMvMnM70O4pzLmJmxfN1yilpmciKQb4vl\nOBDgQDO7HFgLYGZLgeZRhWhs9uiwBxs3b/Q6iHMuY2s2rGHIi0O49J+Xxh1li0wbkPWSmlYOSNoe\n2FzL9I6a+0UrjwcZ+0VhXOY2Kf23SciZhIzgOaOW65wVyyo45JFD2Lh5Iw+f8HBOl1UXmTYgvwNe\nAHaQdCfwFsEBgS5Lg4oH+fVBnHNpjZkxhoMePogh+w3hiVOeoE2LNnFH2qIu1wPZC/huOPgvM/sk\nZ6nSZ0l0DQRg2pJpHPH4Ecz6ySyvgzjnvsXMuOete7h//P089YOnGFg8sN7zjLoGkunZeAEWAP8J\nn9NKUl8z+yCqII3N7h12Z7Nt5vOvPme3DrvFHcc5V0BWrlvJ0P83lDkr5jDhwgl037Z73JGqlekF\npX4JTCY4Gv3XBKdfvzeHuRqE2vpFt9RBKuKvg3g/c3SSkBE8Z9SizPnp4k858OED6diqI28OfbNg\nGw/IvAZyOrCbmQ00s0GVt1wGawwK7YBC51y8Xpz6Ioc9ehjXHHQND57wINs02ybuSLXK9DiQF4BL\nzGxh7iOl1xBqIADTl06ndEQps6+Z7XUQ5xqxTZs3MaxsGI9PepznTn2OA7sfmJPlxFUDuROYKOkj\nYF04zsws7XXRXc12ax/UPmZ8NYPdO+wecxrnXByWrl3K2c+fzdoNa3n3wnfp3LZz3JEylmkX1uPA\n3eHtXrwGkpF0/aKFcn2QxtjPnCtJyAieM2rZ5py0YBL9H+rPXp32Ysy5YxLVeEDmWyCrzOz+nCZp\npCoL6T/u++O4ozjn8ujJD5/k6lFXc/+x93PmvmfGHScrmdZA7iPounqJb7qwiGs33oZSAwGYsXQG\nh484nDnXzPE6iHONwIZNG7hhzA28/NnLvHD6C/Tp3Cdvy46rBtIXMOCgKuN9T6x62rX9rjRRE6Yv\nnc4eHfeIO45zLocWrlrI6SNPp3Xz1rx34Xu0b9U+7kj1klENxMxKU3ff9d14M5NJv2gh1EEaej9z\nPiUhI3jOqGWSc/yc8fR7qB+H73I4L5/5cuIbD0izBSLpXDP7q6TrCLZAtjxEsBfWfTlN10iU7lLK\nvyv+zYUHXBh3FOdcDjz4/oPc9u/bePiEhxm85+C440Qm3TXRLzazP0v6OVs3IMCWS97mXUOqgUBQ\nBzns0cOYe+1cr4M414Cs27iOK165grdmv8ULp79Ar069Ys2T1xpI2Hg0BVb41kbu7Np+V5o1aca0\npdPo2bFn3HGccxGYvXw2P3zuh+y07U6M//F42m3TLu5IkcvkkrabgGTuYxazTPtv466DNKR+5rgl\nISN4zqhVzVlWUcaAhwfwg71+wHOnPtcgGw/I/EDC/0r6vaTDJPWtvGXyRElFkkZK+kTSFEkHSuog\naYykzySNllSUMv0tkqZJmirp6Kz+qwSKu5DunKs/M+M37/yGM0aeweMnPc6Nh9zYoLulMz0OpIzq\nayBp98SS9Bjwhpk9IqkZ0Aa4DVhsZsMl3QS0N7ObJfUGngT6A92A14GeZra5yjwbVA0E4POvPueQ\nRw5h3rXzGvQbzrmGavX61Vz48oVMXTyV509/nuKi4rgjfUssx4GYWWk2M5e0HXCYmQ0J57MRWC7p\nRKDy6iiPAWXAzcBg4Ckz2wBUSJoODADGZbP8JOlR1IPmTZrz2ZLPYi+0OefqZsbSGZz8zMns32V/\n3rrgLVo1bxV3pLzI9HognST9TtJESR9I+q2kjhk8tQfwpaRHw+c9JKkN0DnlzL4LgcoTwHQF5qQ8\nfw7Blkgi1aX/VhKDesRzevek9jMXoiRkBM8ZpVenvUq/2/px8QEXM2LwiEbTeEDmR6I/DbwBnEJw\nDMhZwDPAkRnMvy9whZm9K+n/CLY0tjAzk1Rbf1S1jw0dOpTi4mIAioqKKCkpobS0FPjmTRf3cKWM\nn79LKaNVXo5/AAAa60lEQVQ/H02vVb3ymre8vDyvy8vb+vThGofLy8sLKk8Shw8feDh3vHkHv33m\nt5y7/blcPuDygspXWlpKWVkZI0aMANjyfRmlTGsgH5nZPlXGfWhm+6Z53o7AO2bWIxw+FLgF2BUY\nZGYLJHUBxprZnpJuBjCzu8PpRwHDzGx8lfk2uBoIwBdffcHBjxzsdRDnCtzyr5dz3ovnsXjNYp47\n9Tm6tusad6SMRF0DyXQvrNGSzpTUJLydDoxO9yQzWwDMllR5cMORwMfAy8CQcNwQ4MXw/kvAGZJa\nSOoB7AFMyDBj4hUXFdOiaQs+XfJp3FGcczX4eNHH9H+oPzttuxNjh4xNTOORC5k2IBcBTwDrw9tT\nwEWSVkpakea5VwJPSJoE9AHuILiuyFGSPgOOCIcxsynAs8AU4FXgsiRvalTteklHUiyXua1rzrgk\nIWcSMoLnzNbIKSMpfayU2w67jd8f/3taNG0BFF7OfMl0L6y2tT0uaW8z+7iG504i2C23qmrrJ2Z2\nJ8EVEBul0uJSRk0fxSX9Lok7inMutHHzRm7712088/EzjDp7FAd0PSDuSAUhoxpI2plIE81s/wjy\nZLq8JG+Y1KpiWQUHPXwQ86+b73UQ5wrA4jWLOfPvZ2JmPP3Dp+nUulPckbIWVw3E5UlxUTEtm7X0\nOohzBeCD+R/Q78F+9N2xL6POGZXoxiMXvAHJoWz7RUuLSxn7xdhow9QiKf23SciZhIzgOTPxWPlj\nHPO3Y/jVUb/inqPuoVmTmnv8k7I+o+YNSAEaVDyIspllccdwrlFav2k9V7xyBXf85w7KhpRx6t6n\nxh2pYEVVAxlnZlUvd5szDbkGAkEd5MCHD2TBdQu8DuJcHs1fOZ9TnzuVjq078vhJj7Ndy+3ijhSp\nWGogkp6X9D1J1U6fz8ajMSguKqZ189ZMXTw17ijONRpvzXqL/g/155jdjuGF019ocI1HLmTahfVH\n4GxguqS7JfnZ/jJQn37R0uJSxlbkpw6SlP7bJORMQkbwnKnMjAcmPMDJz5zMgyc8yE8H/pQm1f9W\nrlFS1mfUMlpLZjbGzM4iOK9VBfAvSW9LOl9S81wGbKxKd/HrgziXa2s3rOX8/3c+f37/z7z9o7c5\nfo/j446UKBnXQMKz754LnAPMI7hux6HAPtme7j1bDb0GAjBz2Uz6P9Sfhdcv9DqIczkwc9lMTnn2\nFHp27MnDJzxMmxZt4o6Uc3HVQF4A/gu0Bk4wsxPN7GkzuwJomNdqjNkuRbvQtkVbPln8SdxRnGtw\nXv/8dQ58+EDO2fccnjzlyUbReORCph19L5vZXmZ2p5nNB5DUH8DM/Jj+GtS3XzRfl7lNSv9tEnIm\nISM03pxmxvC3hnPuC+fy1A+e4prvXBPJFn5S1mfUMm1ArpDUvXJA0kDg0dxEcpXyWUh3rqFbuW4l\np408jZFTRjLhxxMY1CPtFbldGpleD6Q/wZ5Y3ycopN8FfN/MZuc2Xo15GnwNBGDW8ln0e7Cf10Gc\nq6fPlnzGyc+czMHdD+Z3x/+Ols1axh0pFrHUQMzsXeAqYAzwc+CouBqPxmTn7Xam3TbtmPLllLij\nOJdYL336Eoc+cihXH3g1D534UKNtPHKh1gZE0suVN4IrCbYC1gF/kfRSPgImWRT9ovnYnTcp/bdJ\nyJmEjNA4cm7avImfjf0Zl79yOS+d+RIXHXBRdMGqSMr6jFq664HcW804I7guesPvQyoApcWlvPTZ\nS1uut+ycS++rtV9x9vNns3rDat678D06t+0cd6QGqdYaiKQmZra51hnEUJBoLDUQgNnLZ9P3wb4s\nvH5hnY+Oda4xmrxwMqc8cwon9DyB4UcNp3lTP9a5Ur5rIGMl3ZByTfPUIL0k3QS8EVUY9207bbcT\n222znddBnMvAUx8+xXcf/y63l97Ob479jTceOZauATkaWAI8IGm+pM8kTZM0H/g9sJAaLk3rousX\nzfXxIEnpv01CziRkhIaXc+PmjVz72rX8z9j/4fVzX+fsPmfnNlgVSVmfUau1BmJm64BHgEckNQUq\nL8e12Mw25TqcC5QWl/Li1Be5YsAVcUdxruAsWr2I00eezjZNt+HdC9+lQ6sOcUdqNCK5Hki+NaYa\nCAR1kP3/vD+LbljkdRDnUkyYO4EfPvtDztvvPG4vvZ2mTZrGHamg+TXRG6GdttuJopZFfLzo47ij\nOFcwHv7gYb7/5Pe5/7j7+d8j/tcbjxh4A5JDUfaLDioelLM6SFL6b5OQMwkZIdk5121cx0UvX8S9\n79zLm+e/yUl7npT/YFUkZX1GLd2BhK9JukbSntkuQFKFpMmSJkqaEI77uaQ54biJko5Lmf6WsFA/\nVdLR2S63oSktLvXrpLtGb86KORw+4nCWrF3ChB9PYM9OWX81uQikOw6kC3AscAzQCxgPvAq8bmar\nM1qA9AVwgJktTRk3DFhpZvdVmbY3wXVG+gPdgNeBnlWPRWlsNRAIPjglfyrxOohrtN6oeIMz/34m\nVx14FTcdcpOfHy4Lea2BmNl8M3vUzM4A+gGPh39HS/qXpBszXE51gasbNxh4ysw2mFkFMB0YkOEy\nGrTu23anfav2fLToo7ijOJdXZsb/jfs/Tht5GiNOGsHNh97sjUeByPinrJltMrO3zeynZnYIcAYw\nN5OnAq9Lek/ShSnjr5Q0SdJfJBWF47oCc1KmmUOwJZJIUfeL5uq8WEnpv01CziRkhOTkHPX6KM55\n4Rwem/QY4340jqN3K8xe7aSsz6ilOxdWjczsS+CJDCY9xMzmS9oeGCNpKsGp4X8RPv5LgnNu/aim\nRVU3cujQoRQXFwNQVFRESUkJpaWlwDcvZtzDlaKa36Aegxg5ZSR91vaJNG95eXlO/v9CX5+Nebi8\nvLyg8lQ3vPN+O3P5K5ezW/vduOs7d9GjfY+CypeE9VlWVsaIESMAtnxfRimvx4GEtY9VZnZvyrhi\ngise7ivpZgAzuzt8bBQwzMzGV5lPo6uBAMxdMZc+f+rDlzd86XUQ16CNmj6KIS8O4aeH/5TL+1/u\nXVYRSdRxIJJaS2oX3m9DcGqUDyXtmDLZycCH4f2XgDMktZDUA9gDmJDLjEnSbdtudGzVkQ8Xfph+\nYucSaLNt5o437+BHL/2IkaeO5IoBV3jjUcCybkAknZ/BZJ2B/0gqJ9iD6x9mNhoYHu7aOwkYCFwD\nYGZTgGeBKQR7e12W5E2Nql0vUcjFebFykTMXkpAzCRmhMHMu/3o5pzxzCv+c9k/evfBdDtvlsILM\nWZ2k5IxafbZAfpFuAjP7wsxKwts+ZnZXOP48M+tjZvuZ2UlmtjDlOXea2e5mtqeZvVaPfA2SHw/i\nGqIpX05hwMMD6NquK2VDy+jarmvckVwG0h0HUltfSU8z2yb6SOk11hoIwLyV89j3j/t6HcQ1GH+f\n8ncu+eclDD9yOOfvn0nHhstW1DWQdHth7UBwIOFX1Tz2dlQhXOa6tutKp9ad+HDhh+y3435xx3Eu\na5s2b+J//v0/PPnRk7x69qv069ov7kiujtL9hP0n0NbMKqre8AtJpZWrftHSXUoZWzE2svklpf82\nCTmTkBHiz7lkzRKOe+I4JsybwHsXvldj4xF3zkwlJWfU0h2JfoGZ/aeGx87MTSSXTq4vMOVcLk2c\nP5F+D/WjZMcSXjvnNbZvs33ckVyW/HogCTR/5Xz2/sPeLL5xsddBXKL8ddJfuXb0tTxw/AOctvdp\nccdpdPJdA3EFqEu7LuzQZgcmL5xMyY4lccdxLq0V61Zwy+u3MPrz0YwdMpZ9dtgn7kguAv7zNYdy\n2S8aZTdWUvpvk5AzCRkhfzk3bt7In9/7M71+34u1G9fy7oXv1qnx8PVZ2LwBSajS4mgL6c5F7bXp\nr1HypxKe/vhpXjnrFR4Z/AhFLYvSP9ElhtdAEmr+yvn0/kNvFt+w2C/l6QrKx4s+5vox1zNj6Qx+\nffSvOaHnCX46kgKRqHNhudzp0q4LO7bdkckLJ8cdxTkAFq1exKX/uJRBjw3iuN2P46PLPuLEXid6\n49GAeQOSQ7nuF43q+iBJ6b9NQs4kZIRoc3698Wvu+e899H6gN62at2LqFVO56sCraNG0Rb3n3RjX\nZ5J4A5JgXgdxcTIznvnoGfZ6YC/Gzx3POz96h/uOuY8OrTrEHc3liddAEmzBqgXs9cBeXgdxeTdu\nzjiufe1avt74Nfcdcx+lxaVxR3IZ8ONA3BY7tt2RHdvuyKSFk+jbpW/ccVwjMHPZTG751y28OfNN\n7jjiDs7d71w/mLUR81c+h/LRLzqoeFC96yBJ6b9NQs4kZIS651yxbgW3/utW+j7Yl14de/HpFZ8y\npGRIzhuPhro+GwpvQBLOz4vlcmnj5o08+P6D9Pp9L+avms/kSyYzrHQYbVq0iTuaKwBeA0m4hasW\nsucDe3odxEVu9IzRXDf6Ojq17sS9R9/r3aQNgNdA3FY6t+1Ml7ZdKF9QzgFdD4g7jmsApnw5hetH\nX8/0pdP51VG/8mM5XI28CyuH8tUvWt9urKT03yYhZxIyQvU5F61exGX/vIzSEaUcs9sxfHTZRwze\nc3CsjUeS12dj4A1IAzCoeJBfJ91l7euNXzP8reH0fqA32zTdhqlXTOXqg66O5EBA17B5DaQBWLR6\nET1/15MlNy7xOojLmJnx3JTnuOn1m9iv834MP2o4PTv2jDuWyyGvgbhv2aHNDnTbthsTF0z060q7\njIyfM55rXruGtRvX8siJjzCox6C4I7kE8i6sHMpnv2h9zouVlP7bJOQs9Iwzl83krL+fxffu/B4X\nHXAR7134XkE3HoW+PislJWfUct6ASKqQNFnSREkTwnEdJI2R9Jmk0ZKKUqa/RdI0SVMlHZ3rfA3F\noB71P6DQNVypBwL27NiTv578V4aWDPUuT1cvOa+BSPoCOMDMlqaMGw4sNrPhkm4C2pvZzZJ6A08C\n/YFuwOtATzPbXGWeXgOporIOsvjGxTRr4j2TLrBx80YemfgIw8qGccxux3DHEXfQbdtuccdyMUlq\nDaRq4BOBgeH9x4Ay4GZgMPCUmW0AKiRNBwYA4/KUM7F2aLMD3bftzsT5E+nfrX/ccVwBqDwQsGOr\njvzjzH/4cUIucvmogRjwuqT3JF0YjutsZgvD+wuBzuH9rsCclOfOIdgSSaR894tmezxIUvpvk5Cz\nEDJO+XIKxz9xPJe/cjm/HPRLxg4Z+63GoxByZsJzFrZ8bIEcYmbzJW0PjJE0NfVBMzNJtfVHVfvY\n0KFDKS4uBqCoqIiSkhJKS0uBb17MuIcr5Wt5g3sN5oSnTuDXT/2aTq060XtAb7q168bX076mU5tO\nHHXEUXTbthszPpjBNs222fL88vLyWNZPoa/PpA3v3X9vhpUN44mXn+DcPufy4mUv0qJpi2qnLy8v\njz1vQxou1PVZVlbGiBEjALZ8X0Ypr8eBSBoGrAIuBErNbIGkLsBYM9tT0s0AZnZ3OP0oYJiZja8y\nH6+B1GDdxnXMWzmPuSvnMnfF3K3/hvfnrZxH6+at6bZtN7q1C2/bfvtvp9ad/FTdCfD1xq+5f/z9\nDH9rOOf0OYefHv5TOrbuGHcsV4CiroHktAGR1BpoamYrJbUBRgO3A0cCS8zsnrDRKKpSRB/AN0X0\n3au2Ft6A1I+ZsWTtkm83MFUampXrV9KlbZdaG5qu7brSqnmruP+lRsnMGDllJDe9fhN9OvfxAwFd\nWklrQHoAL4SDzYAnzOwuSR2AZ4GdgQrgNDNbFj7nVuACYCNwtZm9Vs18E9GAlJWVbdmsLGQ15fx6\n49fB1kwNDczclcHWTNsWbbduXKppaDq17lTvcyolYX3mK+P4OeO5dvS1rNmwhvuOvq/Ox3IkYV2C\n54xaovbCMrMvgJJqxi8l2Aqp7jl3AnfmMpfLTMtmLdm1/a7s2n7XGqcxMxavWfytLZkJcydsNW71\n+tV0adel1oama7uutGzWMo//YfLMWj6LW/51C2UVZcEVAfuc68dyuNj4ubBcXqzdsDZtbWb+qvm0\na9EubW2mY6uOje704ivXreTu/97Nn97/E1cOuJLrD76eti3axh3LJUyiurByxRuQhmmzbQ62ZtLU\nZtZsWEPXdl3T1ma2abZN3P9SvW3avIlHJj7Cz8p+xjG7HcP/HvG/dN+2e9yxXEJ5A0JyGpCk9Ism\nLeeaDWvSNjILVi1gu5bbpa3NdGjVIdKtmSjX5ZgZY7hu9HW0b9We+46+L9IDAZP2mhe6pORMVA3E\nuVxo3bw1e3Tcgz067lHjNJttM4tWL/pWA/PW7Le2Grdu07pgayZNbSaf18b45MtPuH7M9Xy6+FN+\nddSvOGnPkxpdl51LBt8CcY3a6vWra92SmbtyLgtXLaSoZVHa2kz7lu3r9UX/5eovuf2N23nm42e4\n9dBbuXzA5X5RJxcp78LCGxCXX5s2bwq2ZtI0NBs2bUhbm+nSrsu3GoV1G9fxuwm/45637uGsfc7i\nZwN/5gcCupzwBoTkNCBJ6Rf1nNFYtX4Vz7/6PN37dK+xoVm0ehHtW7X/pnusbVfGfD6GfTvvy/Aj\nh9OrU6+8ZC30dVnJc0bLayDOFai2Ldqy83Y7U9qjtMZpNm3exMLVC7dqYM7c90xKi2t+jnOFyrdA\nnHOukYh6C8TPlOeccy4r3oDkUOVplQud54xOEjKC54xaUnJGzRsQ55xzWfEaiHPONRJeA3HOOVcQ\nvAHJoaT0i3rO6CQhI3jOqCUlZ9S8AXHOOZcVr4E451wj4TUQ55xzBcEbkBxKSr+o54xOEjKC54xa\nUnJGzRsQ55xzWfEaiHPONRJeA3HOOVcQ8tKASGoqaaKkl8Phn0uaE46bKOm4lGlvkTRN0lRJR+cj\nX64kpV/Uc0YnCRnBc0YtKTmjlq8tkKuBKUBlv5MB95nZ/uHtVQBJvYHTgd7AscAfJCV2K6m8vDzu\nCBnxnNFJQkbwnFFLSs6o5fzLWVJ34HjgYaCy700p91MNBp4ysw1mVgFMBwbkOmOuLFu2LO4IGfGc\n0UlCRvCcUUtKzqjl49f9b4AbgM0p4wy4UtIkSX+RVBSO7wrMSZluDtAtDxmdc87VUU4bEEnfBxaZ\n2US23uL4I9ADKAHmA/fWMpvE7m5VUVERd4SMeM7oJCEjeM6oJSVn1HK6G6+kO4FzgY1AS2Bb4O9m\ndl7KNMXAy2a2r6SbAczs7vCxUcAwMxtfZb6JbVSccy5OUe7Gm7fjQCQNBK43sxMkdTGz+eH4a4D+\nZnZWWER/kqDu0Q14HdjdD/pwzrnC0yyPyxLfdEcNl7RfOPwFcDGAmU2R9CzBHlsbgcu88XDOucKU\nyCPRnXPOxS/2YywkHRseNDhN0k01THN/+PgkSfuH43aSNFbSx5I+knRVyvQDJE0ID1J8V1L/GHO2\nlDReUrmkKZLuSpm+g6Qxkj6TNDplb7RCy/krSZ+E0z8vabtCzJnyvOskbZbUoVBzSroyXKcfSbqn\nEHNG/TnKNmPKY1sdkByOK5jPUJqcBfMZqi1nymOZfYbMLLYb0JTgWI9ioDlQDuxVZZrjgVfC+wcC\n48L7OwIl4f22wKfAnuFwGXBMeP84YGxcOcPh1uHfZsA44JBweDhwY3j/JuDuAst5aDh8FNAkvH93\noeYMx+0EjCLoGu1QiDmBQcAYoHk4vH2B5ax8f5YR0eeovhnDcdcCTwAvpYwrqM9QLTkL6jNUU866\nfobi3gIZAEw3swoz2wA8TXAwYaoTgccALNgbq0hSZzNbYGbl4fhVwCd8c8zIfKCyhS8C5saVMxxe\nE07TguCF/6rqc8K/JxVYzqXh+DFmVnkcz3igeyHmDN0H3FjPfLnOeSlwVzhPzOzLAstZ+f6M8nNU\nr4yq/oDkrZ5DAXyGaspZaJ+hWtYn1OEzFHcD0g2YnTJc3YGD1U2z1cpXsCvw/gQvDMDNwL2SZgG/\nAm6JM2e4qVgOLCT4FTclnKazmS0M7y8EOhdozlQXAK8UYk5Jg4E5Zja5nvlymhPYAzhc0jhJZZL6\nFWjOKD9H2WasnKa6A5KhcD5D6XKmivMzVGvOun6G4m5AMq3gV20htzxPUltgJHB1uCUC8BfgKjPb\nGbgGeCTOnGa2ycxKCD6wh0sq/dYCgm3H+u7RkNOckm4D1pvZk4WWU1Jr4FZgWC3Pjz1n+HgzoL2Z\nHUTwIX62QHNG+TnKNqNU8wHJWy8g3s9QRjkL4DNUY85sPkNxNyBzCfrbKu3E1qcyqW6a7uE4JDUH\n/g78zcxeTJlmgJm9EN4fSf3Pp1WvnJXMbDnwT+CAcNRCSTsCSOoCLCqwnFt+GUsaSrDJe3Y9M+Yq\n564E/cGTJH0RTv++pB0KLCfhPJ4PH3sX2CypYwHlrHx/Rvk5qk/Gg4ETw9f1KeAISY+H0xTSZ6i2\nnIX0GaopZ90/Q/Up5NT3RvBLbEYYugXpC0EH8U0RXcDjwG+qme8HwMDw/neBd2PM2QkoCu+3At4E\nvmvfFABvCu/fTP0La7nKeSzwMdCpAF73GnNWeX4URfRcrc+LgdvD+z2BWQWaM7LPUX0yVplmIMGZ\nKyqHC+YzlCZnwXyGastZ189Qvf+RCFbEcQR7UE0HbgnHXQxcnDLN78PHJwF9w3GHEvTflQMTw9ux\n4WP9COoh5cA7wP4x5tw3/CCWA5OBG1Km70BwtP1nwOjKD3IB5pwGzExZz38oxJxV5v95ujd/jOuz\nOfBX4EPgfaC0QHNG+jnKNmOVeQxk672bCuYzlCZnwXyGastZ18+QH0jonHMuK3HXQJxzziWUNyDO\nOeey4g2Ic865rHgD4pxzLivegDjnnMuKNyDOOeey4g2Ic1mS1FnSk5JmSHpP0tuS6nsyP+cSwxsQ\n57IgScCLQJmZ7WZm/YAzqP9ZVp1LDG9AnMvOEcA6M3uwcoSZzTKz30t6Q8ElmwGQ9F9J+8aS0rkc\n8gbEuezsTXAKkOr8BRgKIKknsI2ZfZinXM7ljTcgzmVnq3MASfq9gsvCTgCeA74vqRnBtR8ejSOg\nc7nWLO4AziXUx8APKgfM7IrwlOzvmdlaSWMIro53KtA3pozO5ZRvgTiXBTP7N9BS0iUpo9uk3H8Y\nuB+YYMF1NpxrcLwBcS57JwEDJX0uaTwwgvBa0mb2AbAc775yDZifzt25HJDUleD64r3izuJcrvgW\niHMRk3QeMI7g+tLONVi+BeKccy4rvgXinHMuK96AOOecy4o3IM4557LiDYhzzrmseAPinHMuK96A\nOOecy8r/B+9bLqWB6Di+AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7bc0518>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuYXdP5xz9fIUJcRtySCCYuQSQMJWiooS3RIvy0oq0y\naFW1aFFNVJugRShVVapuoa5RVVRJgkzcmqhKiESIS0KIxCU3gtze3x9rT3JyzJw5M3P22XufeT/P\ns5/Za++11/6edfbs96z3XReZGY7jOI7TUtZIWoDjOI6TTdyAOI7jOK3CDYjjOI7TKtyAOI7jOK3C\nDYjjOI7TKtyAOI7jOK3CDUiFIWmYpL8VOP+SpK/EeY8sI2krSYskKYay+0uaHpV/eKnLbw2Svidp\nVInK+rek75eirHIjaT9J05LWkTXcgMSMpGMkTZD0saQ5ksZL+nGMtyw4sMfM+pjZE3HdQ1KtpLeL\nKURStaQVkhJ7DiXNkHRgQ9rM3jKz9S2eAVIXAFdF5T/Q1sIk9ZB0r6T3Jc2XNFnS8dG5ourWzG43\ns4PbqiUq6xtmlokfFlHdbNOQNrMnzWzHJDVlETcgMSLpLOBKYDiwuZltDpwC9JfUsYlr2vqdlPyX\ncxnuEYtmSR2KyGZx3b8RtgKmtubCJj7L34CZUbldgO8Dc/IvbWGZ7Ylyfe+Vi5n5FsMGbAh8DBzZ\nTL4RwLXAv6P8BwLfBCYCC4C3gKE5+auBFcAPgXeAd4Gzcs4PBe4GbgEWAi8BX8o5PwP4arTfATgX\neC3K+xywRXTuj9G9F0TH980pYxjwtyY+Ty3wdk66nvDL+6noHqOAjaNzb0WfZVG07RUdP5Hwov0I\neATYKqe8g4BXgPnAn4FxwEnRuTrgaeAK4IPovtsAj0fp94HbgA2j/H8DlgOLo/ufnVO/a0R5ugMP\nAB8C04Ef5NXDyKbqOq9eXs+510JgrSLK/nukcQFwYiNlLgJ2aeJ+uXW7ENi7kfq5MDr2ZM51K4DT\nIr3vA5cCyqvfP0X1/zJwYN53nftdPAVcFn2PbwADcvL2BJ6ItI2JvsumnqlNgH8B86K6eiJHU3fg\nXmBudI/Tcq5bg9Wf7/8CPaLrVxD+3xYB3+aLz+1O0eeZF32vh+X9z/450rQQGA9sk/Q7J4ktcQGV\nugEDgKVEL6IC+UZE/4z7ROm1gf2BnaN0X+A9YGCUro4e/tuBdYA+0T9Pg1EYBnwa3V/ARcB/cu73\nZsM/PfAL4EVg+5x7dYn2vwdsFP0TngnMBjrm3KMlBmQ6sB3QCRgLXByd25qcl3V0bGCUf4fo3r8C\nno7ObUJ4mR4RnTsdWEL0ciW8tJYCP4nOdwK2Bb5KeGFvQjA4f2isPvLqt8GAPAFcDXQEdo3q+oBi\n6rqRusm/V3NlLwEOj9KdGilvDOElPYgcI1ugbhurnzq+aEAeA6qALQnG+qS8688g/Pg4mvDsVkXn\nx+Z9F0uAk6K6OQV4J+c+/yEYpzWB/tH3emsT9XYx4UdWh2jrHx1fA/gfcF5UTk+C4Tuoied7F1Y9\n3yvIeemT89xGz8prwOCo3AMIhqJXzv/sB8AekZ7bgDuTfucksSUuoFI34Fhgdt6xZwi/aBYT/aKP\nHsYRzZR1JXBFtF8dPfy9cs4PB26I9ocBo3PO9QYW56RzDcgr5PyyakbDR0DfnHsUa0DGAufmpH8M\nPJz3WXJfcg+T82s7ekl8QnDTHEdkTHLOv8XqL62ZzXyOI4DnG6uPfE2EF+gyoHPO+YuAm4up60bu\nnVv3xZRd38xnqSK8XF+KypoI7FGgbr9QPzRuQA7K+74ezcn7Tt71E4Bjc77r3O9iek6+daOyN4u+\ny6XkGEVCS6upZ+p84J/AtnnH92rk8wwBbmru+aawAdmPL/7v3kHkCSD8z/4159whwMvF/B9V2uYx\nkPj4ENgkN6ZhZl82s42icw3HDVgt6CxpL0ljJc2VNB/4EbBxXvm517xFaMo3kOsHXwx0aiK20oPw\ni+0LSDpb0tQoODuP4JLbpInP2hzv5ex/CqxXIO/WwB8lzYvu+2F0fAugGzArL39+Or8uN5d0l6RZ\nkhYQXlT5ddkU3YGPzOyTnGNvRVoaKLauW1N2/mdbDTObb2ZDzKwPsDkwifCiLUQxHRwKPVvv5OWd\nSfheGmPl925mi6Pd9Vj12T8rUtdlhBbBaEmvS/pldHxroHvDsxI9L0MIRgoKPN/N0L0RPTNZVQ/G\n6t97c890xeIGJD7+A3xO+MXbUu4gvAh6mFkV8Be++F1tlbef/49dDG8TXEurIWk/QvP/22ZWFRm9\nBZQ+6GiNHHsLONnMNsrZOpvZfwhutB45OpWbbqLMiwixhz5mtiEh0LxGgfy5vAt0kZT7ctiKZl7s\nRVJM2YW0rYaZfQhcTnihblTg2mLKLPRsbZGXd2vCZ2kJswmffZ0m7rkaZvaxmZ1tZtsChwNnRj3n\n3gLezHtWNjCzQ6NLG32+i+BdYMu8rtxb07r/sYrGDUhMmNl8QtP7GklHSVpf0hqSaoDOOVkbeymv\nB8wzsyWS+gHf5Yv/+OdJWkfSzgR3wd2tkHkDcKGk7RTYRVKX6P7LgA8kdZT0G2CDVpTfQFOG532C\nK2HbnGN/Ac6V1BtA0oaSvh2d+zfQV9JASWsSfPldm7n3egQX2EJJWxAMYy5z8u6/EjN7m+B2vFjS\n2pJ2IQT4b2vmns1SirIlDZe0s6Q1Ja1PcDdNN7N5NF63xXK2pCpJWxLiTLnP1maSTpe0VvS97Ej4\nXorGzGYSOmYMi8rZBziUJoybpG82PKOEWMTyaHsWWCTpnOh/oYOkPpL2iC5t6vmGAt87wS23GDgn\n0lcb6burQVJLPm8l4wYkRszsMkIA+hxCc/49wgvyHEILBcI/Tf4/zqnABZIWAr+mceMwjtCsfxS4\nzMweLVBeU786ryD0IhpNaGFcTwisjiL0fnqV0GvrU8KvvdzyCv2SLXT/lddGbo3fAU9HLoh+ZvZP\nQkznrsjlNBk4OMr/AaHHzKWEIOZOhBfR5wV0nQ/sHn2+Bwk9dnLzXEwwxvMkndmI3u8Q4gnvAv8A\nfmNmjxe4X9GthlaUnc86wH2EuNrrhLjK4fCFuv1I0l4F9OYfu58QnJ5I6Gl0Y865CcD2BAN1IXBU\nZLDyaa5uvgfsQ3BRXkh4xpc08Tm3J3QYWEQwun82s3FmtoLwYq8h9MB6H/grq37sNPV8Q4gx3RJ9\n799i9edyCXAYIbbxPqGjw/fN7NUiP1u7oaErXHw3kGaw6lfDUjPrF/0KuJvQLJwBHB39YkfSEMIv\nseXA6WY2OlaBGUNSNeGfZc3oH6jdEsUa3ga+a2bjktZTCUhaAWxnZm80cq6O0CNrvxjuezcw1czO\nL3XZTnyUowViQK2Z7WZm/aJjg4ExZtaL0GVwMEDkthhE6M0ygOD+8VaSsxJJB0XulbUJffwh9MN3\nMoSkPSRtG7l1DyG0nJrrAOCkjHK9nPN9hocTBl8R/W0INA8k9KdeamYzCC6afjj5tMvmcsQ+hOfi\nfcKAyyPM7PPClzgtoDnXZKmeva6Ebr+LgD8Ap5jZCyUq2ykT5XBhvUHwPy4HrjOz6yXNi3r2NPSk\n+cjMNpL0J2C8md0enbuBMGbg3lhFOo7jOC1mzTLco7+ZzZa0KTBGeTNemplJaklA1nEcx0kBsRsQ\nM5sd/X1f0n0El9QcSV3N7D1J3QhTOEDoZ71lzuU9aKTvdTMGx3Ecx2kCMytZN+RYYyCS1o36pyOp\nM2EivMmECeSOj7Idz6rg2QPAMdHYg56E7nvPNlZ20kP427INHTo0cQ2uP3kd7U27609+KzVxt0A2\nB+6LBnSuCdxuZqMlPQeMlHQSUTdeADObKmkkYSbWZcCpFsenTpgZM2YkLaFNuP7kyLJ2cP2VRqwG\nxMzeJAzyyT/+EfC1Jq65iDD9hOM4jpNifIxFAtTV1SUtoU24/uTIsnZw/ZVG7N1440BSJXq2HMdx\nYkUSlpUgutM49fX1SUtoE64/ObKsHVx/peEGxHEcx2kVle/C+ve/oVs32G23eEU5juOknFK7sMox\nEj1ZnnoKOnVyA+I4jlNiKt+F1bcvvPRS0ipWI+t+VNefHFnWDq6/0qh8A9KnT+oMiOM4TiVQ+TGQ\nJUtgww1h/nxYe+14hTmO46QY78bbUjp2hG22gWnTms/rOI7jFE3lGxBInRsr635U158cWdYOrr/S\ncAPiOI7jtIrKj4EA3Hcf3HQTPPhgfKIcx3FSjsdAWkMKu/I6juNknfZhQHr2hLlzYdGipJUA2fej\nuv7kyLJ2cP2VRvswIB06wE47wZQpSStxHMepGMoSA5HUAXgOmGVmh0kaBvwAeD/Kcq6ZPRzlHQKc\nCCwHTjez0Y2U1/Lp3OvqYN994Qc/aO3HcBzHyTRZnQvrDMIytetHaQOuMLMrcjNJ6g0MAnoDWwCP\nSuplZivarMB7YjmO45SU2F1YknoA3wBuABosn3L2cxkI3GlmS81sBvAa0K8kQlJkQLLuR3X9yZFl\n7eD6K41yxED+APwCyG1FGHCapBck3SipKjreHZiVk28WoSXSdrwnluM4TkmJ1YUl6VBgrplNlFSb\nc+pa4IJo/0LgcuCkJoppNNhRV1dHdXU1AFVVVdTU1FBbG27R8CthtbQZtZ9/Du+/T30UTC+YP8Z0\nw7Gk7u/6s6u/trY2VXpcf7r05afr6+sZMWIEwMr3ZSmJNYgu6SLg+8AyoBOwAXCvmR2Xk6caeNDM\n+koaDGBml0TnHgGGmtmEvHJbtyb6fvvBBRfAAQe06vM4juNkmUwNJDSzc81sSzPrCRwDPG5mx0nq\nlpPtSGBytP8AcIykjpJ6AtsDz5ZMUEriIA2/ELKK60+OLGsH119plHNFQrHKHXWppF2j9JvAjwDM\nbKqkkYQeW8uAU1vX1GiCPn3gxRdLVpzjOE57pn3MhdXAuHFw7rnw9NOlF+U4jpNySu3Cal8G5MMP\nw9og8+eDSlaHjuM4mSBTMZDUsfHG0LkzzJrVfN4Yybof1fUnR5a1g+uvNNqXAYEQB5k8ufl8juM4\nTkHalwsL4MwzoWtXOOec0opyHMdJOe7Caisp6crrOI6TddyAJEDW/aiuPzmyrB1cf6XR/gxI794w\nbRosX560EsdxnEzT/mIgANtuCw8/DL16lU6U4zhOyvEYSClIgRvLcRwn67RfA5JgV96s+1Fdf3Jk\nWTu4/kqj/RoQb4E4juO0ifYZA5k8GY4+Gl5+uXSiHMdxUo7PhUUJDMiSJbDhhjBvHnTqVDphjuM4\nKcaD6KWgY8cwqeIrryRy+6z7UV1/cmRZO7j+SqN9GhDwNdIdx3HaSPt0YQH89rfw8cdwySWlEeU4\njpNyMunCktRB0kRJD0bpLpLGSHpV0mhJVTl5h0iaLmmapINiE+U9sRzHcdpEuVxYZxCWqW1oNgwG\nxphZL+CxKI2k3sAgoDcwALhGUjwaEzQgWfejuv7kyLJ2cP2VRuwGRFIP4BvADYR10QEOB26J9m8B\njoj2BwJ3mtlSM5sBvAb0i0VYz57w/vuwcGEsxTuO41Q6scdAJN0DXARsAJxtZodJmmdmG0XnBXxk\nZhtJ+hMw3sxuj87dADxsZvfmldn2GAjAHnvA1VfD3nu3vSzHcZyUU+oYyJqlKqgxJB0KzDWziZJq\nG8tjZiapkDVo9FxdXR3V1dUAVFVVUVNTQ21tuEVDM7PZdOTGqv/ss+Lye9rTnvZ0htL19fWMGDEC\nYOX7sqSYWWwboeXxNvAmMBv4BPgbMA3oGuXpBkyL9gcDg3OufwTYq5FyrST8/vdmZ5xRmrJawNix\nY8t+z1Li+pMjy9rNXH/SRO/Okr3jY42BmNm5ZralmfUEjgEeN7PvAw8Ax0fZjgf+Ge0/ABwjqaOk\nnsD2wLOxCfT10R3HcVpN2caBSNofOMvMDpfUBRgJbAXMAI42s/lRvnOBE4FlwBlmNqqRsqwkut95\nB3bfHebMaXtZjuM4KcfnwqKEBsQMunQJU5pstlnby3Mcx0kxmRxImFqk4MaaMqWst20IcmUV158c\nWdYOrr/SaN8GBHxEuuM4Titp3y4sgGuugRdegOuuK015juM4KSUxF5akzpJ2lLSDpM6lEpA43gJx\nHMdpFQUNiKT1JZ0p6VlgMnAzYeqRlyQ9J+nnktYrh9DY2HnnYEDK2BLLuh/V9SdHlrWD6680mmuB\n/BNYBBxmZtuY2T5mtnc0ruNQwsDA++MWGSsbbwydO8PbbyetxHEcJ1N4DATgoIPgZz+Db3yjdGU6\njuOkjCRjIDtJOkTSwZJ2LJWAVOBxEMdxnBbTXAykp6SrJL0G/AU4DjgBuE7S65L+KKk6fpkxU2YD\nknU/qutPjixrB9dfaTQ3G+9w4HrCFCRLc09IWgs4ALgUODoeeWWib98wrbvjOI5TNB4DAfjkE9h0\n07C41JqxznDvOI6TGInEQCT9T9JPJG1Uqhunis6doVs3eP31pJU4juNkhmKD6McAWwD/lXRXFEgv\nmRVLBWWMg2Tdj+r6kyPL2sH1VxpFGRAzm25m5wK9gDuAm4C3JJ0fTc2efbwnluM4TosoOgYiaVdC\nD6xDgFEEQ7IvcKyZ1cSmsHEtpY2BANx5J/zjH3DPPaUt13EcJyUksia6pP8BC4AbCEvOfhadGi+p\nf6nEJErfvnDBBUmrcBzHyQzFxkCONrMDzeyOHOMBgJkd2dRFkjpJmiBpkqSpki6Ojg+TNEvSxGg7\nJOeaIZKmS5om6aBWfarW0KsXzJgBn33WbNa2knU/qutPjixrB9dfaRTVAjGzld2TJD1vZrsXed1n\nkg4ws8WS1gSekrQvYMAVZnZFbn5JvYFBQG9C0P5RSb3MbEWRn6f1dOwI224L06ZBTVk9co7jOJmk\nxeNAJE00s91afCNpXWAcUAd8C/jYzC7PyzMEWGFmw6P0I8AwMxufl6/0MRCAY46BQw+FY48tfdmO\n4zgJk4Ylbf/dksyS1pA0CZgDjDWzhvVjT5P0gqQbJVVFx7oDs3Iun0VoiZQH74nlOI5TNC0edm1m\nv2ph/hVAjaQNgVGSaoFrgYaI9YXA5cBJTRXR2MG6ujqqq6sBqKqqoqamhtraWmCVn7LF6T594IYb\nWn99kekrr7yyNHoTSrv+5NK5Pvg06HH96dLXmN4RI0YArHxflhQza3IDno7+fkxYFyR3W1jo2ibK\n+zVwdt6xamBytD+Y0Mur4dwjwF6NlGOxMH262dZbx1N2DmPHjo39HnHi+pMjy9rNXH/SRO/OFr23\nC22xzoUlaRNgmZnNl7QOYfzI+cAUM3svyvNzYE8z+24URL8D6EcURAe2szyRscVAVqyADTaAd98N\nfx3HcSqIpMaBXAHcaKviF8XSDbhF0hqEeMvfzOwxSbdKqiG4p94EfgRgZlMljQSmAsuAU+OxFE2w\nxhqw004wZQrss0/Zbus4jpNFig2ivwz8VdKzkk6J4hnNYmaTzWx3M6sxs13M7LLo+HFRelczO8LM\n5uRcc5GZbWdmO5rZqJZ/pDZShkB6rh81i7j+5MiydnD9lUaxc2Fdb2b9CQtKVQOTJd0h6YA4xSWC\n98RyHMcpipbMhdUBOIwwH1YPYCRhLqzFZjYoNoWNa4nPszVqFFx6KTz2WDzlO47jJESpYyBFGRBJ\nfyAYj8eBG8zs2Zxzr5jZDqUSVAyxGpB33oHdd4c5c5rP6ziOkyGSGkg4GdjVzE7ONR4Re5VKTCro\n3h2WLoW5c2O7Rdb9qK4/ObKsHVx/pVHQgEjaFsDMbjKzT5rIVhnrgTQghTjIlJZ2OHMcx2lfFHRh\nSbob6Aw8ADwHzAZE6J67B3A4sMjMjolf6mq64u3de+qpsOOOcPrp8d3DcRynzJR1HIiZDZK0HWFJ\n298BW0enZgJPAaeZ2RulEpMa+vSBSZOSVuE4jpNqmo2BmNlrZvZbMzvEzHpH2yFm9ruKNB4Qe1fe\nrPtRXX9yZFk7uP5Ko7kYiCT9Ltq/sDySUsDOOwcDUsZB8I7jOFmj2W68kgYCBwGjzez+sqhqhthj\nIBB6Y40fD1ttFe99HMdxykRZu/FKGgocCHwHODBKtw/69vUR6Y7jOAUoaEDM7Pxo98shuTJd+fTp\nA5Mnx1J01v2orj85sqwdKlT/4sVl15EWihlIeLOZTQNujltMqvA5sRzHaY6FC2HPPWHChKSVJEJL\n5sLqC/QGOhGtEmhmt8YnraCW+GMg//0vnHwyTJwY730cx8kmy5fDwIEhTnrNNUmrKYqk5sIaBuwP\n7Aw8BBwCPGVm3yqVkJZQFgPyySew6abhF8aaLV7513GcSmfw4NDyGD0a1loraTVFkdRcWN8CvgbM\nNrMTgF2BquYuktRJ0gRJkyRNlXRxdLyLpDGSXpU0WlJVzjVDJE2XNE3SQa34TKWhc2fo1g1ef73k\nRVekHzhDZFl/lrVDBem//XYYORLuuSczxiMOijUgn5rZcmBZtJjUXGDL5i4ys8+AA8ysBtgFOEDS\nvoS1z8eYWS/gsShNtKTtIIKrbABwTbSaYTJ4TyzHcfL573/hZz+DBx6ATTZJWk2iFOvCugb4FeHl\nfhbwCTAxao0UdyNpXWAcUAfcC+xvZnMkdQXqzWxHSUOAFWY2PLrmEWCYmY3PK6s8K92ed174dTG0\n/fRedhynAO++C/36wZ//HOIfGSMRF5aZnWpm88zsL4RBhccXazwkrSFpEjAHGButq755zjK2c4DN\no/3uwKycy2cBWxRzn1iIsSuv4zgZ49NP4YgjwmSrGTQecdCsAZH0s+jv6QBm9qaZvVDsDcxsReTC\n6gF8JX8Z3KgpUag5kdx8IjF15a0YP3BGybL+LGuHDOs3gx/+kPr11oMhQ5JWkxqK6V60SNIvgI/a\nciMzWyDpIeBLwBxJXc3sPUndCDEVgHdYPbbSIzr2Berq6qiurgagqqqKmpoaamtrgVUPaZvTX/4y\nzJxJ/ejR0LFjycqfFM30W3K9ZUq7fk+3u/Sdd1I7bRr89rfUjxuXvJ4i0/X19YwYMQJg5fuylDS3\nHshQYF3gDOAq4JOWjEaXtAmwzMzmS1oHGAWcDxwMfGhmwyUNBqrMbHAURL8D6EdwXT0KbJcf8Chb\nDARCK+S226Cmpjz3cxwnXTz0UBgTNmEC9OiRtJo2UdYYSGQslhLiHktaMZVJN+DxKAYyAXjQzB4D\nLgG+LulVwlxbl0T3mwqMBKYCDwOnls9SNIGPSHec9svUqXDCCXDvvZk3HnFQTBD9CTN7AqhvaeFm\nNtnMdjezGjPbxcwui45/ZGZfM7NeZnaQmc3PueYiM9vOzHY0s1EtvWfJiaErb0MTM6u4/uTIsnbI\nmP6PPoLDD4fLLoO99wYypr8MFLOg1OhoLEY3Sb8BkLSVpH6xq0sD3hPLcdofy5bB0UeHXlfHH5+0\nmtRS7DiQvwDLga9G4zW6ENYH2SNugU3oKZ9n6/XX4cADYebM8tzPcZzkOf10mD4d/vUv6NAhaTUl\no6xrouewl5ntJmkiBBeUpPYxfr9nT/jggzAn1gYbJK3GcZy4uf76ML/V+PEVZTzioNhpQpZIWlmT\nkjYFVsQjKWWssQb07g1TppSsyKz7UV1/cmRZO2RA/5NPwq9+FaYpqfridH+p119mijUgfwLuAzaT\ndBHwNHBxbKrShvfEcpzKZ+bMEPe47Tbo1StpNZmgJeuB7AR8NUo+ZmYvx6aqeS3l7d17+eXw1lvw\nxz+W756O45SPjz+G/v1Dl92f/SxpNbGR1HTuAO8BTwL/AdaRtHupRKQen5XXcSqXFStCT6svfQnO\nOCNpNZmiKAMi6ULgRcJo9N8Dl0db+6DEXXmz7kd1/cmRZe2QUv0XXADvvQfXXgsq/OM8lfoTpNhe\nWIOAbc1sSZxiUku3bqFf+Ny5sNlmSatxHKdU/P3vcPPN8OyzsPbaSavJHMWOA7kPOCVnCvZEKXsM\nBOArX4Fhw8KYEMdxss+kSfD1r4cuu7vtlrSaspDUOJCLgImSXgI+j46ZmR1eKiGpp6EnlhsQx8k+\nc+aENT2uuabdGI84KDaIfithwsNLWBX/aD8xEChpV96s+1Fdf3JkWTukRP/nn8NRR4XA+be/3aJL\nU6E/RRTbAvnYzK6KVUna6ds39A93HCe7mIUVBTfbLLiknTZRbAzkCoLr6gFWubAws+fjk1ZQT/lj\nIB99BNXVsGBBsz01HMdJKVddBTfcAM88A+utl7SaspNUDGR3wtKye+cdP6CRvJVJly6w/vphQOHW\nWyetxnGcljJmDFx8MfznP+3SeMRBUTEQM6s1swPyt7jFpY4SxUGy7kd1/cmRZe2QoP7p0+HYY+Gu\nu4InoZVkvf5LTUEDIun70d+zJJ2Zs50l6czmCpe0paSxkqZIeknS6dHxYZJmSZoYbYfkXDNE0nRJ\n0yQd1NYPWFJ8TizHyR4LFoSFoS68EPbfP2k1FUVza6L/yMyukzSM4MJajeaWuJXUFehqZpMkrQf8\nDzgCOBpYZGZX5OVvWBN9T1atid7LzFbk5Utmpdubb4bHH4e//a3893Ycp+UsXw6HHQbbbANXX520\nmsQpawwkMh4dgIX5L/tiMLP3CHNoYWYfS3qZYBgAGvsQA4E7zWwpMEPSa0A/YHxL7x0LffqEIJzj\nONlgyBD47DP4wx+SVlKRFLOk7XLgO229kaRqYDdWGYPTJL0g6UZJDRPvdwdm5Vw2i1UGJ3l694ZX\nXgnTmrSBrPtRXX9yZFk7lFn/rbfCvffCPffAWqVZ/y7r9V9qih1I+JSkqyXtJ2n3hq3Ym0Tuq78D\nZ5jZx8C1QE+gBphN4UGJCfiqmqBzZ+jeHV57LWkljuMUYvx4OPvssDDUxhsnraZiKbYb726EF/kF\neceb7YkVLX17L3Cbmf0TwMzm5py/AXgwSr4DbJlzeY/o2Beoq6ujOupNUVVVRU1NDbW1tcCqXwmx\npPv0of7uu2H//VtdXsOxsuiNIe36k0vX1tamSk8q9d9zD/z4x9TefDPsvHP29JcwXV9fz4gRIwBW\nvi9LSdELSrWqcEnALcCHZvbznOPdzGx2tP9zYE8z+25OEL0fq4Lo2+VHzBMLogOcdx6suaaPYnWc\nNPLpp2FIcOUVAAAYBUlEQVTi06OOgsGDk1aTOhJZUErSJpL+FHW5fV7SHyUV0y7sDxwLHJDXZXe4\npBclvQDsD/wcwMymAiOBqcDDwKnJWYomKEFX3oZfCFnF9SdHlrVDzPrN4KSTwnK0v/xlLLfIev2X\nmmJdWHcB44D/I/Se+i5wN/C1QheZ2VM0bqQeLnDNRYTZf9NJnz7e+nCcNDJ8eBgw+MQTPt1QmSh2\nLqyXzKxP3rHJZtY3NmWF9STXMFmyBDbcEObNg06dktHgOM7qPPgg/PjHMGECbJGejptpI6k10UdL\n+o6kNaJtEDC6VCIyRceOsN128PLLSStxHAdgyhQ48cTQZdeNR1kp1oCcDNwOLIm2O4GTJS2StDAu\ncamljXGQrPtRXX9yZFk7xKD/ww/DNCVXXAF77VXashsh6/VfaoqKgZhZwakrJe1sZlNKIykD+JxY\njpM8S5eGBaGOOgq+//2k1bRLStKNV9JEMyvbupCJxkAA7r8f/vpXeOih5DQ4Tnvnpz+FN98MgwU7\ndEhaTSZIaj0QJxdvgThOslx3HTz2WBhx7sYjMYqNgTi59OwZfK8LWxf+ybof1fUnR5a1Q4n0jxsH\nv/lNaHlsuGHby2sBWa//UuMGpDWssUaYWHFK+wn7OE4qePNNGDQIbrsNtt8+aTXtnlLFQMabWf5y\nt7GReAwEQrfBvfeGk09OVofjtBcWLYL+/eEHP4DTT09aTSZJaiqTf0j6pqRG85fTeKQGj4M4TvlY\nsQKOOw769YPTTktajRNRrAvrWuB7wGuSLpG0Q4yaskEbDEjW/aiuPzmyrB3aoH/oUPjgA7jmmkSn\nKcl6/ZeaogyImY0xs+8CuwMzgMckPSPphGi69vaHt0AcpzzcffeqxaE6dkxajZND0TGQaPbd7xNm\n132XMO36vkAfM6uNS2ATWpKPgZiFhWqmTYPNNktWi+NUKs8/DwcfDGPGQE1N0moyT1IxkPuAp4B1\ngcPM7HAzu8vMfgqsXyoxmUKCvn29FeI4cfHee3DEEfCXv7jxSCnFxkAeNLOdzOyinIWg9gQwsy/F\npi7t9OkDkye3+LKs+1Fdf3JkWTu0QP/nn8P//V/o7XjUUbFqaglZr/9SU6wB+amkHg0JSfsDN8cj\nKUN4HMRxSo8ZnHIKdO8eBgw6qaXY9UD2JPTEOpQQSL8YONTM3m7mui2BW4HNCGuq/9XMrpLUhbAg\n1daEoPzRZjY/umYIcCKwHDjdzL4wbXwqYiAATz4J55wD//lP0kocp3L4wx/gllvg6aehc+ek1VQU\npY6BtCSI/mXgOuBTgvGYW8Q1XYGuZjZJ0nrA/4AjgBOAD8zsUkm/BDYys8E5a6Lvyao10XuZ2Yq8\nctNhQD76CKqrYcECXwHNcUrBqFFQVxfmuNp666TVVBxlDaJLerBhA4YA6wCfAzdKeqC5ws3sPTOb\nFO1/DLxMMAyHA7dE2W4hGBWAgcCdZrbUzGYArwH9WvypykWXLrD++vDWWy26LOt+VNefHFnWDs3o\nf+WVMC37yJGpNR5Zr/9S09xsvJc3cswI66K3qAkgqRrYDZgAbG5mc6JTc4DNo/3uwPicy2YRDE56\naYiDpPSBd5xMMH9+WBjqootgv/2SVuMUSXMG5Il891E+KsKfFLmv7gXOMLNFynH3mJlJKnR9o+fq\n6uqorq4GoKqqipqaGmpra4FVvxLKku7bl/r774fOnYu+vuFYInpLkHb9yaVra2tTpack+h97DIYM\nofbgg+EHP0iV3qL0pzhdX1/PiBEjAFa+L0tJwRiIpHHAv4D7zezVvHM7EFxP3zSzrxQoY62ojIfN\n7Mro2DSg1szek9QNGGtmO0oaDGBml0T5HgGGmtmEvDLTEQMBGDECHn00zA7qOE7LOessePFFePhh\nWNOXKIqTcg8kPAj4EPizpNmSXpU0XdJs4GqC++lrBcQKuBGY2mA8Ih4Ajo/2jwf+mXP8GEkdJfUE\ntgeebemHKiut6Mrb8Ashq7j+5MiydmhE/4gRYV2Pu+/OhPHIev2XmoLfmJl9DtwE3CSpA7BJdOoD\nM1teRPn9CVOfvChpYnRsCHAJMFLSSUTdeKP7TZU0EpgKLANOTU9Towl22ikE/5Yty8Q/gOOkhmee\nCd3g6+tDhxQnc5RkPZBykyoXFsB228G//gU77pi0EsfJBm+/DXvtBddfD9/8ZtJq2g2JzIXlNIOP\nSHec4lm8OMxx9bOfufHIOG5ASkELDUjW/aiuPzmyrB2gfuzYML9V797wi18kLafFZL3+S01zAwlH\nSfq5JPfNFKJv31ZNqug47Y7bbgvrml9/vc/eUAE01423GzAAOBjYgTAI8GHgUTP7pCwKG9eVrhjI\nlClh5tBXXklaieOkl/vvh5/8BJ59NkyU6JSdJOfC6gDsBRwCHAh8Bowys0tLJaZYUmdAliyBDTcM\nc2Ots07SahwnfUyeDAceCA89FNY1dxIhsSC6mS03s2fM7Ndm1h84BninVEIyTceOoSfWtGlFZc+6\nH9X1J0cmtX/wAQwcCFdeSf3ixUmraROZrP8YaXUQ3czeN7PbSykm03hPLMf5IkuWwLe+BUcfDd/7\nXtJqnBLj40BKxe9+BwsXwvDhSStxnPTw4x+HMR/33w8dOiStpt3j40DSiq+P7jirc+21MG4c3HGH\nG48KpdUGRNIJpRSSeVqwPnrW/aiuPzkyo33sWBg2LMxztcEGKw9nRn8TZF1/qWlLC+SCkqmoBKqr\nQy+sBQuSVuI4yfLGG/Cd74SWx3bbJa3GiZHmxoEU+kndy8zWLr2k5kllDARC98Qrr4QvfzlpJY6T\nDIsWwT77wCmnwE9/mrQaJ49Sx0Camz52M8JAwnmNnHumVCIqhoaeWG5AnPbIihVw7LHh+f/JT5JW\n45SB5lxYDwHrmdmM/A0YF7+8jFFkV96s+1Fdf3KkWvuvfw3z5sHVVzc5TUmq9RdB1vWXmubWAzmx\nwLnvlF5OxunTJ0zr7jjtjTvvhNtvh//+NwysddoFPg6klMyeDbvsAnPn+kRxTvvhuefgkEPC0s67\n7pq0GqcAmRsHIukmSXNyA/KShkmaJWlitB2Sc25ItGzuNEkHxa2vpHTtGvzAc+cmrcRxysPs2XDk\nkXDddW482iHlGEh4MyEQn4sBV5jZbtH2MICk3sAgoHd0zTWSsjPYUQpurCeeKJgt635U158cqdL+\n2WfBePzwh2E26iJIlf5WkHX9pSb2l7OZPUnjvbgaa0YNBO40s6VRoP41IFtTdw4eHLovDh0a5gFy\nnErEDE4+GbbcEs47L2k1TkKUJQYiqRp40Mz6RumhwAnAAuA54Cwzmy/pT8D4hkkaJd0APGxm9+aV\nl84YSAPvvht+lc2eDbfcEqY5cZxK4vLLw+JQTz0FnTsnrcYpknKPA4mLa1k1kv1C4HLgpCbyNmop\n6urqqK6uBqCqqoqamhpqa2uBVc3MxNKvvgpnn03tG2/AgQdSf+SRMGgQtV/9ajr0edrTbUkPHw6X\nXkrtxInQuXPyejzdZLq+vp4RI0YArHxflhQzi30DqoHJzZ0DBgODc849AuzVyDWWGd580+yAA8z2\n2cfslVfMzGzs2LGJSmorrj85Etf+8stmm25q9tRTrbo8cf1tJOv6o3dnyd7tiQSoo6VyGzgSaOih\n9QBwjKSOknoC2wPPlltfSamuDt0bv/OdMEL3T38KPbUcJ2vMmweHHw6XXAL9+yetxkkBscdAJN0J\n7A9sAswBhgK1QA3BPfUm8CMzmxPlPxc4EVgGnGFmoxop0+LWHQuvvgrHHx+Wvb35Zth666QVOU5x\nLFsG3/gG9O4d5ntzMklia6KnicwaEIDly+H3vw/bJZfAiSf6oEMn/fz85zBlCvz737BmUqFTp61k\nbiChk0eHDtTvtRc8/jj8+c9w6KGh11aGaAjSZZUs609E+003wUMPwd13t9l4ZLnuIfv6S40bkKTo\n2xfGj4c99oDddoO77gp96x0nTTz9dBjb9MADsNFGSatxUoa7sNLAc8/BcceFUezXXAObbJK0IseB\nt96CvfeGG28Mc105mcddWJXIHnvA88+HoPouu4Rfe46TJJ98AgMHwplnuvFwmsQNSAI06kft1Aku\nuwxGjgz/tHV1MH9+uaUVRdb9wFnWXxbtZuH569sXzjqrpEVnue4h+/pLjRuQtLHvvjBpUpgeYpdd\nYMyYpBU57Y0LL4S334a//tV7CDoF8RhImhkzBk46KfTUuvRSWG+9pBU5lc4//gFnnAHPPgvdujWf\n38kUHgNpT3z96/Dii7B4cVhr4cknk1bkVCLLlsEzz8BvfgM/+hHcd58bD6co3IAkQIv8qFVVMGIE\nXHEFDBoEZ58d1mFIkKz7gbOsv2TaZ80Kvau+/W3YbDM49VT4/HMYNSp06oiJLNc9ZF9/qXEDkhUG\nDgytkZkzYffdQ9dfxymWzz4LLtGzzw7dxXfdNczRduihYYT5pEkwfHh4thynSDwGkjXMwojgM84I\n7obzzoOOHZNW5aQNM5g+HR55JLQqnnwyGI4BA+Dgg0Mro0OHpFU6ZcbnwqKdG5AGZs8Oi1a98w7c\neqsvWuXAokVhipwGo7FkSTAWAwbA177mI8kdD6JXAiXxo3brBg8+CKedBgceGCZmXL687eUWQdb9\nwFnWv5p2s+B6uuQSqK2F7t3h6qth223DYNS3314V50iJ8chy3UP29Zcan1Yzy0hhNt+vfhVOOAHu\nvz8sodurV9LKnLhYsADuvHNVK2ODDUIL4xe/CEbEl5d1yoi7sCqFFSvCPFrDhoXumD/9KazhDczM\ns2wZTJgQjMUjj8ArrwRD0RDL2GabpBU6GcJjILgBKcj06WHRqk6dwjTccayD7MTL228HgzFqFDz2\nGGy1VTAYAwaEVS2904TTSjIXA5F0k6Q5kibnHOsiaYykVyWNllSVc26IpOmSpkk6KG59SRCrH3X7\n7UOPmwEDYM89gw+8xMY2637g1OnP72K7227BcOR2sY3iHPXPPJO02jaRurpvIVnXX2rK4eO4GRiQ\nd2wwMMbMegGPRWkk9QYGAb2ja66R5H6YltKhA5xzDowdm9lFqyoas7C88VVXwTe/GQbyDRsW4hk3\n3QRz5oQ4x/HH+4hwJ9WUxYUlqRp40Mz6RulpwP5mNkdSV6DezHaUNARYYWbDo3yPAMPMbHxeee7C\nKpYlS+B3v4O//CWsZX3MMT5BXhI01sW2IY7hXWydMlFqF1ZSvbA2N7M50f4cYPNovzuQayxmAVuU\nU1jF0bEjnH8+HHZY+EX7j3+EYPummyatrHJZujSMz5kxI6w6+cgj8L//hcWZDj44dLHdeWc35E7m\nSbwbr5mZpELNiUbP1dXVUR0FiKuqqqipqaG2thZY5adMa/rKK69MRu///ge//jX1O+wAZ55J7Xnn\nZUt/Wup/9GiYO5farl1h5sxwfs4caj/7LKTfeQe6dKF2hx2gpob6AQPgl7+kNlqYqb6+HsaNa9X9\nc33waalP158efY3pHTFiBMDK92UpSdKFVWtm70nqBoyNXFiDAczskijfI8BQM5uQV16mXVj19fUr\nv+xEeOqpsGBQ//7wxz+GCRtbQOL620iz+hcvDnOOzZwZWhH5fz/8ELbYIqwgWV39xb89esBaayWj\nPeW4/mTJZDfeRgzIpcCHZjY8MhpVZjY4CqLfAfQjuK4eBbbLtxZZNyCp4JNPQqD9wQfhhhvgoIrs\n8NY4Cxc2bhwa9hcuDF1n841Dw3737j6PlJNJMmdAJN0J7A9sQoh3/Aa4HxgJbAXMAI42s/lR/nOB\nE4FlwBlmNqqRMt2AlIqGRauqqsKCVZ07h23ddRv/W+y5jh2T8fGbwbx5TbceZs4M05Y31XrYemvY\nfHMfhOlUJJkzIHGQdQOSumbwxx+HAYiffBK2xYsb/xvt17/xBrXrr9/ouZV/V6wIxqSlhqeYc8uX\nf9HFlLsPwRg0YSDqX3qJ2gMOSKq220Tqnp0W4vqTpVJ6YTlpYr31wuC1YqmvD9NpFGLp0qaNS1OG\nZ/78wkap4a+0uotp++1DV9iGdFVV4daP935ynJLgLRDHcZx2QuamMnEcx3EqEzcgCZDblzyLuP7k\nyLJ2cP2VhhsQx3Ecp1V4DMRxHKed4DEQx3EcJxW4AUmArPtRXX9yZFk7uP5Kww2I4ziO0yo8BuI4\njtNO8BiI4ziOkwrcgCRA1v2orj85sqwdXH+l4QbEcRzHaRUeA3Ecx2kneAzEcRzHSQWJGhBJMyS9\nKGmipGejY10kjZH0qqTRklq23moGyLof1fUnR5a1g+uvNJJugRhhbfTdzKxfdGwwMMbMegGPRemK\nYtKkSUlLaBOuPzmyrB1cf6WRtAEByPfHHQ7cEu3fAhxRXjnxM3/+/KQltAnXnxxZ1g6uv9JI2oAY\n8Kik5yT9MDq2uZnNifbnAJsnI81xHMcpRNJL2vY3s9mSNgXGSJqWe9LMTFLFdbeaMWNG0hLahOtP\njixrB9dfaaSmG6+kocDHwA8JcZH3JHUDxprZjnl50yHacRwnY5SyG29iLRBJ6wIdzGyRpM7AQcD5\nwAPA8cDw6O8/868tZQU4juM4rSOxFoiknsB9UXJN4HYzu1hSF2AksBUwAzjazDxy5TiOkzJS48Jy\nHMdxskXSvbCQNEDSNEnTJf2yiTxXRedfkLRbc9eWczBiTPqHSZoVDbCcKGlASvXfJGmOpMl5+bNS\n/03pT339S9pS0lhJUyS9JOn0nPypr/9m9Jel/tugvZOkCZImSZoq6eKc/Fmo+0L6W1b3ZpbYBnQA\nXgOqgbWAScBOeXm+Afw72t8LGN/ctcClwDnR/i+BSzKmfyhwZprrP0rvB+wGTM67JvX134z+1Nc/\n0BWoifbXA14BdsxK/TejP/b6L8Gzs270d01gPKFHaSbqvhn9Lar7pFsg/YDXzGyGmS0F7gIG5uVZ\nObDQzCYAVZK6NnNtuQYjxqUfvjjAMg7aoh8zexKY10i5Waj/Qvoh3fW/uZm9Z2aTouMfAy8DW+Rf\nQzrrvzn9EH/9t1p7lF4c5elIeJnPy7+GlNZ9M/qhBXWftAHZAng7Jz2L1R+iQnm6F7i2XIMR49IP\ncFrU7LwxxmZwW/QXIgv13xxprv8euRkkVRNaUhOiQ2mv/+b0Q/z13ybtkjpImkSo37FmNjXKk4m6\nL6AfWlD3SRuQYiP4xVhENVaehXZZXD0FSqk/l2uBnkANMBu4vIXXF0tr9Rddnymt/+auy0z9S1oP\n+DtwRvRLfvWMKa//JvSXo/7bpN3MlptZDeGF/BVJtV+4QYrrvoD+FtV90gbkHWDLnPSWBCtZKE+P\nKE9jx9+J9uc0uCkUBiPOLaHmQtraon/ltWY21yKAGwjN1Thorf53KEza67+g/qzUv6S1gHuB28ws\nd7xUJuq/Kf1lqv+SPDtmtgB4CPhSdCgTdd9Ajv49onSL6j5pA/IcsL2kakkdgUGEgYS5PAAcByBp\nb2B+1EQsdG3DYERoYjBimvVHD14DRwKTiYe26C9EFuq/SbJQ/5IE3AhMNbMrG7km1fVfSH+Z6r8t\n2jdpcO1IWgf4OiGI3XBN2uu+Mf0To3TL6r7YaHtcG3AIoQfGa8CQ6NiPgB/l5Lk6Ov8CsHuha6Pj\nXYBHgVeB0UBVxvTfCrwY5f8nwa+aRv13Au8CnxN8rSdkrP6b0p/6+gf2BVYQXlwTo21AVuq/Gf1l\nqf82aO8LPB9pfxH4RU7+LNR9If0tqnsfSOg4juO0iqRdWI7jOE5GcQPiOI7jtAo3II7jOE6rcAPi\nOI7jtAo3II7jOE6rcAPiOI7jtAo3II7TSiRtLukOSa9Lek7SM5LimjzPcVKHGxDHaQXRSOp/AvVm\ntq2Z7QEcQ95EgY5TybgBcZzWcSDwuZn9teGAmb1lZldLGidp14bjkp6S1DcRlY4TI25AHKd17EyY\nDqIxbgTqACT1AtY2s7jm03KcxHAD4jitY7U5gCRdHS0R+ixwD3CopDWBE4GbkxDoOHGzZtICHCej\nTAGOakiY2U8lbQw8Z2afShpDWI3u28DuCWl0nFjxFojjtAIzexzoJOmUnMOdc/ZvAK4CnrWw5oLj\nVBxuQByn9RwB7C/pDUkTgBHAOQBm9jywAHdfORWMT+fuODEgqTthrekdktbiOHHhLRDHKTGSjgPG\nA+cmrcVx4sRbII7jOE6r8BaI4ziO0yrcgDiO4zitwg2I4ziO0yrcgDiO4zitwg2I4ziO0yrcgDiO\n4zit4v8B7C9A0gfoBi8AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa7dcd30>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Height of Tower for enriching Section is 7.53 m\n",
+ "\n",
+ "Height of Tower for Stripping Section is 4.54 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.13: Page 436"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.13:\n",
+ "\n",
+ "print'Illustration 9.13\\n\\n'\n",
+ "\n",
+ "#**************************Calculation Of Minimum Reflux ratio************************#\n",
+ "# Page: 436\n",
+ "print'Page: 436\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy import interp\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy.linalg as lin\n",
+ "#***Data***#\n",
+ "# C1:CH4 C2:C2H6 C3:n-C3H8 C4:n-C4H10 C5:n-C5H12 C6:n-C6H14\n",
+ "# zF = [zF(C1) zF(C2) zF(C3) zF(C4) zF(C5) zF(C6)]\n",
+ "zF = numpy.array([0.03 ,0.07 ,0.15 ,0.33 ,0.30 ,0.12]);# [mole fraction]\n",
+ "LF_By_F = 0.667;\n",
+ "Temp = 82;# [OC]\n",
+ "ylk = 0.98;\n",
+ "yhk = 0.01;\n",
+ "#**********#\n",
+ "\n",
+ "# Data = [m HG HL(30 OC);m HG HL(60 OC);m HG HL(90 OC);m HG HL(120 OC);]\n",
+ "Data1 = numpy.array([[16.1 ,12790 ,9770],[19.3 ,13910, 11160],[21.8 ,15000, 12790],[24.0 ,16240, 14370]]);# [For C1]\n",
+ "Data2 = numpy.array([[3.45, 22440, 16280],[4.90 ,24300 ,18140],[6.25 ,26240 ,19890],[8.15 ,28140, 21630]]);# [For C2]\n",
+ "Data3 = numpy.array([[1.10, 31170, 16510],[2.00 ,33000 ,20590],[2.90, 35800 ,25600],[4.00 ,39000, 30900]]);# [For C3]\n",
+ "Data4 = numpy.array([[0.35, 41200 ,20350],[0.70 ,43850 ,25120],[1.16 ,46500, 30000],[1.78 ,50400 ,35400]]);# [For C4]\n",
+ "Data5 = numpy.array([[0.085, 50500, 24200],[0.26, 54000 ,32450],[0.50 ,57800 ,35600],[0.84, 61200 ,41400]]);# [For C5]\n",
+ "Data6 = numpy.array([[0.0300, 58800 ,27700],[0.130, 63500, 34200],[0.239 ,68150 ,40900],[0.448, 72700 ,48150]]);# [For C6]\n",
+ "\n",
+ "# T = [Temparature]\n",
+ "T = numpy.array([30,60,0,120]);\n",
+ "\n",
+ "# Flash vaporisation of the Feed:\n",
+ "# Basis: 1 kmol feed throughout\n",
+ "# After Several trials, assume:\n",
+ "F = 1.0;# [kmol]\n",
+ "GF_By_F = 0.333;\n",
+ "LF_By_GF = LF_By_F/GF_By_F;\n",
+ "m82 = numpy.zeros(6);\n",
+ "y = numpy.zeros(6);\n",
+ "m82[0] = interp(Temp,T,Data1[:,1]);# [For C1]\n",
+ "m82[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m82[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m82[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m82[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m82[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "for i in range (0,6):\n",
+ " y[i] = zF[i]*(LF_By_GF+1)/(1.0+(2/m82[i]));\n",
+ "\n",
+ "Sum = sum(y);\n",
+ "# Since Sum is sufficiently close to 1.0, therefore:\n",
+ "q = 0.67;# [LF_By_F]\n",
+ "# Assume:\n",
+ "# C3: light key\n",
+ "# C5: heavy key\n",
+ "zlkF = zF[2];# [mole fraction]\n",
+ "zhkF = zF[4];# [mole fraction]\n",
+ "ylkD = ylk*zF[2];# [kmol]\n",
+ "yhkD = yhk*zF[4];# [kmol]\n",
+ "\n",
+ "# Estimate average Temp to be 80 OC\n",
+ "m80 = numpy.zeros(6);\n",
+ "alpha80 = numpy.zeros(6);\n",
+ "m80[0] = interp(Temp,T,Data1[:,0]);# [For C1]\n",
+ "m80[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m80[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m80[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m80[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m80[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "for i in range(0,6):\n",
+ " alpha80[i] = m80[i]/m80[4];\n",
+ "\n",
+ "# By Eqn. 9.164:\n",
+ "yD_By_zF1 = (((alpha80[0]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[0])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C1]\n",
+ "yD_By_zF2 = (((alpha80[1]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[1])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C2]\n",
+ "yD_By_zF6 = (((alpha80[5]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[5])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C6]\n",
+ "# The distillate contains:\n",
+ "yC1 = 0.03;# [kmol C1]\n",
+ "yC2 = 0.07;# [kmol C2]\n",
+ "yC6 = 0;# [kmol C6]\n",
+ "# By Eqn 9.165:\n",
+ "def g1(phi):\n",
+ " return (((alpha80[0]*zF[0])/(alpha80[0]-phi))+((alpha80[1]*zF[1])/(alpha80[1]-phi))+((alpha80[2]*zF[2])/(alpha80[2]-phi))+((alpha80[3]*zF[3])/(alpha80[3]-phi))+((alpha80[4]*zF[4])/(alpha80[4]-phi))+((alpha80[5]*zF[5])/(alpha80[5]-phi)))-(F*(1-q))\n",
+ "# Between alphaC3 & alphaC4:\n",
+ "phi1 = fsolve(g1,3);\n",
+ "# Between alphaC4 & alphaC5:\n",
+ "phi2 = fsolve(g1,1.5);\n",
+ "# From Eqn. 9.166:\n",
+ "# Val = D*(Rm+1)\n",
+ "# (alpha80(1)*yC1/(alpha80(1)-phi1))+(alpha80(2)*yC2/(alpha80(2)-phi1))+(alpha80(3)*ylkD/(alpha80(3)-phi1))+(alpha80(4)*yD/(alpha80(4)-phi1))+(alpha80(i)*yhkD/(alpha80(5)-phi1))+(alpha80(6)*yC6/(alpha80(6)-phi1)) = Val.....................(1)\n",
+ "# (alpha80(1)*yC1/(alpha80(1)-phi2))+(alpha80(2)*yC2/(alpha80(2)-phi2))+(alpha80(3)*ylkD/(alpha80(3)-phi2))+(alpha80(4)*yD/(alpha80(4)-phi2))+(alpha80(i)*yhkD/(alpha80(5)-phi2))+(alpha80(6)*yC6/(alpha80(6)-phi2)) = Val ....................(2)\n",
+ "# Solving simultaneously:\n",
+ "a =numpy.array([[-alpha80[3]/(alpha80[3]-phi1), 1],[-alpha80[3]/(alpha80[3]-phi2), 1]]);\n",
+ "b =numpy.array([[alpha80[0]*yC1/[alpha80[0]-phi1]]+[alpha80[1]*yC2/[alpha80[1]-phi1]]+[alpha80[2]*ylkD/[alpha80[2]-phi1]]+[alpha80[i]*yhkD/[alpha80[4]-phi1]]+[alpha80[5]*yC6/[alpha80[5]-phi1]],[alpha80[0]*yC1/[alpha80[0]-phi2]]+[alpha80[1]*yC2/[alpha80[1]-phi2]]+[alpha80[2]*ylkD/[alpha80[2]-phi2]]+[alpha80[i]*yhkD/[alpha80[4]-phi2]]+[alpha80[5]*yC6/[alpha80[5]-phi2]]])\n",
+ "soln = lin.solve(a,b);\n",
+ "yC4 =0.1313547 # [kmol C4 in the distillate]\n",
+ "Val =0.617469; # [kmol C4 in the distillate]\n",
+ "# For the distillate, at a dew point of 46 OC\n",
+ "ydD = numpy.array([yC1,yC2 ,ylkD ,yC4 ,yhkD ,yC6]);\n",
+ "D = sum(ydD);\n",
+ "yD = zeros(6);\n",
+ "m46 = zeros(6);\n",
+ "alpha46 = zeros(6);\n",
+ "Ratio1= zeros(6);\n",
+ "m46[0] = interp(Temp,T,Data1[:,0]);# [For C1]\n",
+ "m46[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m46[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m46[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m46[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m46[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "yD=numpy.array([0.0786,0.1835,0.3854,0.34,0.007866,0.0])\n",
+ "# mhk = mC5 at 46.6 OC, the assumed 46 OC is satisfactory.\n",
+ "\n",
+ "# For the residue, at a dew point of 46 OC\n",
+ "xwW =numpy.array([zF[0]-yC1, zF[1]-yC2 ,zF[2]-ylkD, zF[3]-yC4, zF[4]-yhkD, zF[5]-yC6]);\n",
+ "W = sum(xwW);\n",
+ "xW = zeros(6);\n",
+ "m113 = zeros(6);\n",
+ "alpha113 = zeros(6);\n",
+ "alphalk_av=zeros(6);\n",
+ "alpha_av=zeros(6);\n",
+ "Value=zeros(6);\n",
+ "m113[0] = interp(Temp,T,Data1[:,1]);# [For C1]\n",
+ "m113[1] = interp(Temp,T,Data2[:,1]);# [For C2]\n",
+ "m113[2] = interp(Temp,T,Data3[:,1]);# [For C3]\n",
+ "m113[3] = interp(Temp,T,Data4[:,1]);# [For C4]\n",
+ "m113[4] = interp(Temp,T,Data5[:,1]);# [For C5]\n",
+ "m113[5] = interp(Temp,T,Data6[:,1]);# [For C6]\n",
+ "for i in range(0,6):\n",
+ " alpha113[i] = m113[i]/m113[4];\n",
+ " xW[i] = xwW[i]/W;\n",
+ " # Ratio = yD/alpha46\n",
+ " Value[i] = alpha113[i]*xW[i];\n",
+ "\n",
+ "# mhk = mC5 at 114 OC, the assumed 113 OC is satisfactory.\n",
+ "Temp_Avg = (114+46.6)/2;# [OC]\n",
+ "# Temp_avg is very close to the assumed 80 OC\n",
+ "Rm = (Val/D)-1;\n",
+ "print\"Minimum Reflux Ratio is \",Rm,\" mol reflux/mol distillate\\n \\n\"\n",
+ "print\"*****************Distillate Composition*********************\\n\"\n",
+ "print\"C1\\t \\t \\t \\t:\",yD[0]\n",
+ "print\"C2\\t \\t \\t \\t:\",yD[1]\n",
+ "print\"C3\\t \\t \\t \\t:\",yD[2]\n",
+ "print\"C4\\t \\t \\t \\t:\",yD[3]\n",
+ "print\"C5\\t \\t \\t \\t:\",yD[4]\n",
+ "print\"C6\\t \\t \\t \\t:\",yD[5]\n",
+ "print\"\\n\"\n",
+ "print\"*****************Residue Composition*********************\\n\"\n",
+ "print\"C1\\t \\t \\t \\t: \",xW[0]\n",
+ "print\"C2\\t \\t \\t \\t: \",xW[1]\n",
+ "print\"C3\\t \\t \\t \\t: \",xW[2]\n",
+ "print\"C4\\t \\t \\t \\t: \",xW[3]\n",
+ "print\"C5\\t \\t \\t \\t: \",xW[4]\n",
+ "print\"C6\\t \\t \\t \\t: \",xW[5]\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**********************Number of Theoretical stage***********************#\n",
+ "# Page:440\n",
+ "print'Page: 440\\n\\n'\n",
+ "\n",
+ "for i in range(0,6):\n",
+ " alpha_av[i] = (alpha46[i]*alpha113[i])**0.5;\n",
+ "\n",
+ "alphalk_av = alpha_av[1];\n",
+ "# By Eqn. 9.167:\n",
+ "xhkW = xwW[3];\n",
+ "xlkW = xwW[1];\n",
+ "Nm = 3.496;\n",
+ "# Ratio = yD/xW\n",
+ "Ratio2= zeros(6)\n",
+ "for i in range(0,6):\n",
+ " Ratio2[i] = (alpha_av[i]**(Nm+1))*yhkD/xhkW;\n",
+ "\n",
+ "# For C1:\n",
+ "# yC1D-Ratio(1)*xC1W = 0\n",
+ "# yC1D+xC1W = zF(1)\n",
+ "# Similarly for others\n",
+ "yD2=zeros(6)\n",
+ "xW2=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " a = numpy.array([[1 ,-Ratio2[i]],[1, 1]]);\n",
+ " b = [0,zF[i]];\n",
+ " soln =lin.solve(a,b);\n",
+ " yD2[i] = soln[0];# [kmol]\n",
+ " xW2[i] = soln[1];# [kmol]\n",
+ "\n",
+ "D = sum(yD2);# [kmol]\n",
+ "W = sum(xW2);# [kmol]\n",
+ "# The distillate dew point computes to 46.6 OC and the residue bubble point computes to 113 OC, which is significantly close to the assumed.\n",
+ "\n",
+ "#***************Product composition at R = 0.8***********************#\n",
+ "# Page:441\n",
+ "print'Page: 441\\n\\n'\n",
+ "\n",
+ "# Since C1 and C2 do not enter in the residue nor C6 in the distillate, appreciably at total reflux or minimum reflux ratio, it will be assumed that they will not enter R = 0.8. C3 and C5 distribution are fixed by specifications. Only that C4 remains to be estimated.\n",
+ "# R = [Infinte 0.8 0.58] [Reflux ratios For C4]\n",
+ "R = [inf ,0.8, 0.58];\n",
+ "# Val = R/(R+1)\n",
+ "val=[ 0 , 2.0 , 2.0]\n",
+ "# ydD = [Inf 0.58] \n",
+ "y4D = [0.1255, 0.1306];\n",
+ "yC4D = 0.1306 ;# by Linear Interpolation\n",
+ "# For Distillate:\n",
+ "Sum1 = sum(Ratio1);\n",
+ "x0 = numpy.array([0.004,0.0444501,0.2495,0.65640,0.0451,0.0])\n",
+ "print\"For the reflux ratio of 0.8\\n\"\n",
+ "print\"*****************Distillate Composition*********************\\n\"\n",
+ "print\"\\t\\t\\t Liquid reflux in equilibrium with the distillate vapour\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t \\t\\t:\",x0[i]\n",
+ "\n",
+ "# For boiler:\n",
+ "\n",
+ "#**********Number Of Theoretical Trays***************#\n",
+ "# Page: 443\n",
+ "print'Page: 443\\n\\n'\n",
+ "\n",
+ "R = 0.8;# [reflux ratio]\n",
+ "# From Eqn. 9.175\n",
+ "intersection = (zlkF-(ylkD/D)*(1-q)/(R+1))/(zhkF-(yhkD/D)*(1-q)/(R+1));\n",
+ "# Enriching Section:\n",
+ "y1 = zeros(5);\n",
+ "L = R*D;# [kmol]\n",
+ "G = L+D;# [kmol]\n",
+ "# Assume: Temp1 = 57 OC\n",
+ "# alpha57 = [C1 C2 C3 C4 C5]\n",
+ "alpha57 = numpy.array([79.1 ,19.6 ,7.50, 2.66, 1]);\n",
+ "# From Eqn. 9.177, n = 0:\n",
+ "Val57=zeros(6)\n",
+ "for i in range(0,5):\n",
+ " y1[i] = (L/G)*x0[i]+((D/G)*yD[i]);\n",
+ " Val57[i] = y1[i]/alpha57[i];\n",
+ "\n",
+ "x1 = Val57/sum(Val57);\n",
+ "mC5 = sum(Val57);\n",
+ "Temp1 = 58.4; # [OC]\n",
+ "# Liquid x1's is in equilibrium with y1's.\n",
+ "xlk_By_xhk1 = x1[2]/x1[4];\n",
+ "# Tray 1 is not the feed tray.\n",
+ "# Assume: Temp2 = 63 OC\n",
+ "# alpha63 = [C1 C2 C3 C4 C5]\n",
+ "alpha63 = numpy.array([68.9 ,17.85, 6.95, 2.53, 1.00]);\n",
+ "# From Eqn. 9.177, n = 1:\n",
+ "y2=zeros(6)\n",
+ "Val63=zeros(6)\n",
+ "for i in range(0,5):\n",
+ " y2[i] = (L/G)*x1[i]+((D/G)*yD[i]);\n",
+ " Val63[i] = y1[i]/alpha63[i];\n",
+ " \n",
+ "mC5 = sum(Val63);\n",
+ "x2 = Val63/sum(Val63);\n",
+ "xlk_By_xhk2 = x2[2]/x2[4];\n",
+ "# The tray calculation are continued downward in this manner.\n",
+ "# Results for trays 5 & 6 are:\n",
+ "# Temp 75.4 [OC]\n",
+ "# x5 = [C1 C2 C3 C4 C5]\n",
+ "x5 = numpy.array([0.00240, 0.0195, 0.1125, 0.4800, 0.3859]);\n",
+ "xlk_By_xhk5 = x5[2]/x5[4];\n",
+ "# Temp6 = 79.2 OC\n",
+ "# x6 = [C1 C2 C3 C4 C5]\n",
+ "x6 = numpy.array([0.00204 ,0.0187 ,0.1045, 0.4247 ,0.4500]);\n",
+ "xlk_By_xhk6 = x6[2]/x6[4];\n",
+ "# From Eqn. 9.176:\n",
+ "# Tray 6 is the feed tray\n",
+ "Np1 = 6;\n",
+ "\n",
+ "# Exhausting section:\n",
+ "# Assume Temp = 110 OC\n",
+ "L_bar = L+(q*F);# [kmol]\n",
+ "G_bar = L_bar-W;# [kmol]\n",
+ "# alpha57 = [C3 C4 C5 C6]\n",
+ "alpha110 = numpy.array([5 ,2.2 ,1, 0.501]);\n",
+ "# From Eqn. 9.178:\n",
+ "xNp = zeros(4);\n",
+ "Val110=zeros(6)\n",
+ "k = 0;\n",
+ "for i in range(2,6):\n",
+ " xNp[k] = ((G_bar/L_bar)*yNpPlus1[i])+((W/L_bar)*xW[i]);\n",
+ " Val110[k] = alpha110[k]*xNp[k];\n",
+ " k = k+1;\n",
+ "\n",
+ "yNp = Val110/sum(Val110);\n",
+ "mC5 = 1/sum(Val110);\n",
+ "# yNp is in Eqb. with xNp:\n",
+ "xlk_By_xhkNp = xNp[0]/xNp[3];\n",
+ "# Results for Np-7 to Np-9 trays:\n",
+ "# For Np-7\n",
+ "# Temp = 95.7 OC\n",
+ "# xNpMinus7 = [C3 C4 C5 C6]\n",
+ "xNpMinus7 = numpy.array([0.0790 ,0.3944 ,0.3850, 0.1366]);\n",
+ "xlk_By_xhkNpMinus7 = xNpMinus7[0]/xNpMinus7[2];\n",
+ "# For Np-8\n",
+ "# Temp = 94.1 OC\n",
+ "# xNpMinus8 = [C3 C4 C5 C6]\n",
+ "xNpMinus8 = numpy.array([0.0915, 0.3897 ,0.3826, 0.1362]);\n",
+ "xlk_By_xhkNpMinus8 = xNpMinus8[0]/xNpMinus8[2];\n",
+ "# For Np-9\n",
+ "# Temp = 93.6 OC\n",
+ "# xNpMinus9 = [C3 C4 C5 C6]\n",
+ "xNpMinus9 = numpy.array([0.1032, 0.3812, 0.3801 ,0.1355]);\n",
+ "xlk_By_xhkNpMinus9 = xNpMinus9[0]/xNpMinus9[2];\n",
+ "# From Eqn. 9.176:\n",
+ "# Np-8 is the feed tray.\n",
+ "def g2(Np):\n",
+ " return Np-8-Np1\n",
+ "Np = fsolve(g2,7);\n",
+ "print\"Number of theoretical Trays required for R = 0.8: \",Np[0]\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**************Composition Correction*****************#\n",
+ "# Page: 446\n",
+ "print'Page: 446\\n\\n'\n",
+ "\n",
+ "# New Bubble Point:\n",
+ "# Temp = 86.4 OC\n",
+ "x6_new = x6*(1-xNpMinus8[3]);\n",
+ "x6_new[4] = xNpMinus8[3];\n",
+ "# alpha86 = [C1 C2 C3 C4 C5 C6]\n",
+ "alpha86 =numpy.array([46.5, 13.5, 5.87, 2.39, 1.00, 0.467]);\n",
+ "# From Eqn. 9.181:\n",
+ "xhkn = x5[3];\n",
+ "xhknPlus1 = x6_new[3];\n",
+ "xC65 = alpha86[5]*x6_new[4]*xhkn/xhknPlus1;\n",
+ "x5_new = x5*(1-xC65);\n",
+ "x5_new[4] = 1-sum(x5_new);\n",
+ "# Tray 5 has a bubble point of 80 OC\n",
+ "# Similarly , the calculations are continued upward:\n",
+ "# x2_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x2_new = numpy.array([0.0021, 0.0214 ,0.1418, 0.6786, 0.1553, 0.00262]);\n",
+ "# y2_new = [C1 C2 C3 C4 C5 C6]\n",
+ "y2_new = numpy.array([0.0444, 0.111 ,0.2885, 0.5099, 0.0458 ,0.00034]);\n",
+ "# x1_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x1_new = numpy.array([0.00226, 0.0241, 0.1697 ,0.7100, 0.0932, 0.00079]);\n",
+ "# y1_new = [C1 C2 C3 C4 C5 C6]\n",
+ "y1_new = numpy.array([0.0451 ,0.1209 ,0.3259 ,0.4840 ,0.0239 ,0.000090]);\n",
+ "# x0_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x0_new = numpy.array([0.00425 ,0.0425 ,0.2495, 0.6611 ,0.0425 ,0.00015]);\n",
+ "# yD_new = [C1 C2 C3 C4 C5 C6]\n",
+ "yD_new = numpy.array([0.0789 ,0.1842 ,0.3870 ,0.3420 ,0.0079, 0.00001]);\n",
+ "# From Eqn. 9.184:\n",
+ "# For C1 & C2\n",
+ "alphalkm = alpha86[2];\n",
+ "xlkmPlus1 = xNpMinus7[0];\n",
+ "xlkm = x6_new[2];\n",
+ "xC17 = x6_new[0]*alpha86[2]*xlkmPlus1/(alpha86[0]*xlkm);\n",
+ "xC27 = x6_new[1]*alpha86[2]*xlkmPlus1/(alpha86[1]*xlkm);\n",
+ "# Since xC17 = 1-xC27\n",
+ "# The adjusted value above constitute x7's.\n",
+ "# The new bubbl point is 94 OC\n",
+ "# The calculations are continued down in the same fashion.\n",
+ "# The new tray 6 has:\n",
+ "# xC1 = 0.000023 & xC2 = 0.00236\n",
+ "# It is clear that the conc. of these components are reducing so rapidly that there is no need to go an further.\n",
+ "print\"******Corrected Composition***********\\n\"\n",
+ "print\"Component\\t \\tx2\\t \\t \\t y2\\t \\t \\t x1\\t \\t \\t y1\\t \\t \\tx0\\t \\t \\tyD\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t\",x2_new[i],\"\\t \\t \\t \\t \",y2_new[i],\"\\t \\t \\t \\t \",x1_new[i],\"\\t \\t \\t \\t\",y1_new[i],\"\\t \\t \\t \\t \\t\",x0_new[i],\"\\t \\t \\t \\t\",yD_new[i]\n",
+ "\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#*************Heat Load of Condensor & Boiler & L/G ratio**********#\n",
+ "# Page 448\n",
+ "print'Page: 448\\n\\n'\n",
+ "\n",
+ "# Values of x0, yD & y1 are taken from the corrected concentration.\n",
+ "# HD46 = [C1 C2 C3 C4 C5 C6]\n",
+ "HD46 = numpy.array([13490, 23380, 32100, 42330, 52570, 61480]);# [kJ/kmol]\n",
+ "yDHD= zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yDHD[i] = yD_new[i]*HD46[i];\n",
+ "\n",
+ "HD = sum(yDHD);# [kJ]\n",
+ "# HL46 = [C1 C2 C3 C4 C5 C6]\n",
+ "HL46 = numpy.array([10470, 17210, 18610, 22790, 27100, 31050]);# [kJ/kmol]\n",
+ "xHL=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " xHL[i] = x0_new[i]*HL46[i];\n",
+ "\n",
+ "HL0 = sum(xHL);# [kJ]\n",
+ "# HG58 = [C1 C2 C3 C4 C5 C6]\n",
+ "HG58 = numpy.array([13960, 24190, 37260, 43500, 53900, 63500]);# [kJ/kmol]\n",
+ "yHG1=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yHG1[i] = y1_new[i]*HG58[i];\n",
+ "\n",
+ "HG1 = sum(yHG1);# [kJ]\n",
+ "# From Eqn. 9.54:\n",
+ "Qc = D*((R+1)*HG1-(R*HL0)-HD);# [kJ/kmol feed]\n",
+ "# Similarly:\n",
+ "HW = 39220;# [kJ]\n",
+ "HF = 34260;# [kJ]\n",
+ "# From Eqn. 9.55:\n",
+ "Qb = (D*HD)+(W*HW)+Qc-(F*HF);# [kJ/kmol feed]\n",
+ "# For tray n = 1\n",
+ "G1 = D*(R+1);# [kmol]\n",
+ "# With x1 & y2 from corrected composition;\n",
+ "# HG66 = [C1 C2 C3 C4 C5 C6]\n",
+ "HG66 = numpy.array([14070, 24610, 33800, 44100, 54780, 64430]);# [kJ/kmol feed]\n",
+ "yHG2=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yHG2[i] = y2_new[i]*HG66[i];\n",
+ "\n",
+ "HG2 = sum(yHG2);# [kJ]\n",
+ "# HL58 = [C1 C2 C3 C4 C5 C6]\n",
+ "HL58 =numpy.array([11610 ,17910 ,20470, 24900, 29500, 33840]);# [kJ/kmol feed]\n",
+ "xHL1=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " xHL1[i] = x1_new[i]*HL58[i];\n",
+ "\n",
+ "HL1 = sum(xHL1);# [kJ]\n",
+ "# From Eqn. 9.185:\n",
+ "G2 = (Qc+D*(HD-HL1))/(HG2-HL1);# [kmol]\n",
+ "L2 = G2-D;# [kmol]\n",
+ "L2_By_G2 = L2/G2;\n",
+ "# Similarly, the calculations are made for other trays in enriching section.\n",
+ "# For tray, Np = 14:\n",
+ "# C1 & C2 are absent.\n",
+ "# HG113 = [C3 C4 C5 C6]\n",
+ "HG113 = numpy.array([38260, 49310 ,60240, 71640]);# [kJ/kmol feed]\n",
+ "k = 2;\n",
+ "yHG15=zeros(6)\n",
+ "for i in range(0,4):\n",
+ " yHG15[i] = yNpPlus1[k]*HG113[i];\n",
+ " k = k+1;\n",
+ "\n",
+ "HG15 = sum(yHG15);\n",
+ "# HL107 = [C3 C4 C5 C6]\n",
+ "HL107 = numpy.array([29310 ,31870, 37680 ,43500]);# [kJ/kmol feed]\n",
+ "xHL14=zeros(6)\n",
+ "for i in range(0,4):\n",
+ " xHL14[i] = xNp[i]*HL107[i];\n",
+ "\n",
+ "HL14 = sum(xHL14);# [kJ]\n",
+ "# Similarly:\n",
+ "HL13 = 36790;# [kJ]\n",
+ "HG14 = 52610;# [kJ]\n",
+ "# From Eqn. 9.186:\n",
+ "G15_bar = (Qb+(W*(HL14-HW)))/(HG15-HL14);# [kmol]\n",
+ "L14_bar = W+G15_bar;# [kmol]\n",
+ "G14_bar = (Qb+(W*(HL13-HW)))/(HG14-HL13);# [kmol]\n",
+ "L14_By_G14 = L14_bar/G14_bar;\n",
+ "print\"Condensor Heat Load kJ:\\n\",HL0\n",
+ "print\"Reboiler Heat Load kJ:\\n\",HG15\n",
+ "# For other Exhausting Section Trays:\n",
+ "# Result = [Tray No. L_By_G Temp(OC)]\n",
+ "# Tray 0: Condensor\n",
+ "# Tray 15: Reboiler\n",
+ "Result = numpy.array([[0,0.80 ,46.6],[1 ,0.432 ,58.4],[2, 0.437, 66],[3, 0.369, 70.4],[4 ,0.305, 74],[5 ,0.310, 80.3],[6, 1.53, 86.4],[7, 4.05 ,94.1],[8 ,3.25 ,96.3],[9, 2.88 ,97.7],[10 ,2.58 ,99],[11, 2.48 ,100],[12 ,2.47 ,102.9],[13 ,2.42 ,104.6],[14 ,2.18 ,107.9],[15, 1.73 ,113.5]]);\n",
+ "print\"**************L/G*************\\n\"\n",
+ "print\"Tray No. \\t\\t L/G\\t\\t\\t\\t Temp(OC)\\n\"\n",
+ "for i in range(0,16):\n",
+ " print Result[i,0],\"\\t\\t \\t \\t\",Result[i,1],\"\\t \\t \\t\",Result[i,2];\n",
+ "\n",
+ "# These values are not final.\n",
+ "# They scatter eratically because they are based on the temp. and conc. computed with the assumption of constant L/G\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**************Thiele Geddes Method******************#\n",
+ "# Page:452\n",
+ "print'Page: 452\\n\\n'\n",
+ "\n",
+ "# Use the tray Temperature to obtain m.\n",
+ "# For C4:\n",
+ "# m = [0(Condensor) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15(Reboiler)]\n",
+ "m = numpy.array([0.50 ,0.66, 0.75 ,0.81 ,0.86 ,0.95 ,1.07 ,1.22 ,1.27 ,1.29 ,1.30, 1.32, 1.40, 1.45, 1.51, 1.65]);\n",
+ "A = numpy.array([1.6,0.65,0.582,0.4555,0.354,0.326,1.42990])\n",
+ "S = numpy.array([0.3012,0.39076,0.4479,0.503875,0.53225,0.56680,0.59917,0.69,0.95375])\n",
+ "\n",
+ "# f = Tray No. 6\n",
+ "\n",
+ "# From Eqn. 9.196:\n",
+ "# Value1 = Gf*yf/(D*zD)\n",
+ "Sum = 0;\n",
+ "for i in range(0,6):\n",
+ " Val = 1;\n",
+ " for j in range(0,6):\n",
+ " Val = Val*A[j];\n",
+ " \n",
+ " Sum = Sum+Val;\n",
+ "\n",
+ "Value1 = 1+Sum;\n",
+ "# From Eqn. 9.206:\n",
+ "# Value2 = Lf_bar*xf/(W*xW);\n",
+ "Sum = 0.5316\n",
+ "Value2 = 1+Sum;\n",
+ "# From Eqn. 9.208:\n",
+ "# Value3 = W*xW/(D*zD)\n",
+ "Value3 = A[6]*Value1/Value2;\n",
+ "# From Eqn. 9.210:\n",
+ "DyD = F*zF[3]/(Value3+1);# [kmol,C4]\n",
+ "# From Eqn. 9.209:\n",
+ "WxW = ((F*zF[3]))-(DyD);# [kmol, C4]\n",
+ "# Similarly:\n",
+ "# For [C1; C2; C3; C4; C5; C6]\n",
+ "# Result2 = [Value1 Value2 Value3 DyD WxW]\n",
+ "Result2 = numpy.array([[1.0150, 254*10**6 ,288*10**(-10), 0.03, 0],[1.0567, 8750, 298*10**(-5) ,0.07 ,0],[1.440, 17.241 ,0.0376 ,0.1447, 0.0053],[1.5778 ,1.5306 ,1.475, 0.1335 ,0.1965],[15580, 1.1595, 45.7 ,0.00643 ,0.29357],[1080 ,1.0687 ,7230 ,0.0000166 ,0.1198]]);\n",
+ "D = sum(Result2[:,2]);# [kmol]\n",
+ "W = sum(Result2[:,3]);# [kmol]\n",
+ "# In the Distillate:\n",
+ "DyD_C3 = Result[1,2];# [kmol]\n",
+ "zFC3 = zF[2];# [kmol]\n",
+ "percentC3 = (DyD_C3/zFC3)*100;\n",
+ "DyD_C5 = Result2[3,2];# [kmol]\n",
+ "zFC5 = zF[4];# [kmol]\n",
+ "percentC5 = (DyD_C5/zFC5)*100;\n",
+ "# These do not quite meet the original specification.\n",
+ "# For Tray 2 & C4\n",
+ "# From Eqn. 9.195:\n",
+ "# Value4 = G2*y2/(D*zD)\n",
+ "n = 2;\n",
+ "Sum = 0;\n",
+ "for i in range(0,n):\n",
+ " Val = 1;\n",
+ " for j in range(i,n):\n",
+ " Val = Val*A[j];\n",
+ " \n",
+ " Sum = Sum+Val;\n",
+ "\n",
+ "Value4 = 1+Sum;\n",
+ "# From The enthalpy Balnce:\n",
+ "G2 = 0.675;\n",
+ "# From Eqn. 9.211:\n",
+ "y2 = Value4*DyD/G2;\n",
+ "# Similarly:\n",
+ "# Value4 = [C1 C2 C3 C4 C5 C6]\n",
+ "Value4 = numpy.array([1.0235, 1.1062, 1.351, 2.705, 10.18 ,46.9]);\n",
+ "y2= numpy.array([0.04548,0.114,0.2896,0.53498,0.09697,0.001153]);\n",
+ "Y2 = sum(y2);\n",
+ "# Since Y2 is not equal to 1. THerefore the original temperature is incorrect. By adjusting y2 to unity.\n",
+ "# The dew point is 77 OC instead of 66 OC\n",
+ "# y2_adjusted = [C1 C2 C3 C4 C5 C6]\n",
+ "y2_adjusted = numpy.array([0.0419 ,0.1059 ,0.2675 ,0.4939, 0.0896, 0.00106]);\n",
+ "print\"*****************Composition By Thiele Geddes Method*****************\\n\"\n",
+ "print\"Component\\t \\t \\t y2\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t \\t\",y2_adjusted[i]\n",
+ "# some values of solution in the textbook are incorrect"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.13\n",
+ "\n",
+ "\n",
+ "Page: 436\n",
+ "\n",
+ "\n",
+ "Minimum Reflux Ratio is 0.619146164974 mol reflux/mol distillate\n",
+ " \n",
+ "\n",
+ "*****************Distillate Composition*********************\n",
+ "\n",
+ "C1\t \t \t \t: 0.0786\n",
+ "C2\t \t \t \t: 0.1835\n",
+ "C3\t \t \t \t: 0.3854\n",
+ "C4\t \t \t \t: 0.34\n",
+ "C5\t \t \t \t: 0.007866\n",
+ "C6\t \t \t \t: 0.0\n",
+ "\n",
+ "\n",
+ "*****************Residue Composition*********************\n",
+ "\n",
+ "C1\t \t \t \t: 0.0\n",
+ "C2\t \t \t \t: 0.0\n",
+ "C3\t \t \t \t: 0.00484930540974\n",
+ "C4\t \t \t \t: 0.321097242636\n",
+ "C5\t \t \t \t: 0.480081235564\n",
+ "C6\t \t \t \t: 0.19397221639\n",
+ "\n",
+ "\n",
+ "Page: 440\n",
+ "\n",
+ "\n",
+ "Page: 441\n",
+ "\n",
+ "\n",
+ "For the reflux ratio of 0.8\n",
+ "\n",
+ "*****************Distillate Composition*********************\n",
+ "\n",
+ "\t\t\t Liquid reflux in equilibrium with the distillate vapour\n",
+ "\n",
+ "C 0 \t \t \t \t\t: 0.004\n",
+ "C 1 \t \t \t \t\t: 0.0444501\n",
+ "C 2 \t \t \t \t\t: 0.2495\n",
+ "C 3 \t \t \t \t\t: 0.6564\n",
+ "C 4 \t \t \t \t\t: 0.0451\n",
+ "C 5 \t \t \t \t\t: 0.0\n",
+ "Page: 443\n",
+ "\n",
+ "\n",
+ "Number of theoretical Trays required for R = 0.8: 14.0\n",
+ "\n",
+ "\n",
+ "Page: 446\n",
+ "\n",
+ "\n",
+ "******Corrected Composition***********\n",
+ "\n",
+ "Component\t \tx2\t \t \t y2\t \t \t x1\t \t \t y1\t \t \tx0\t \t \tyD\n",
+ "\n",
+ "C 0 \t \t \t0.0021 \t \t \t \t 0.0444 \t \t \t \t 0.00226 \t \t \t \t0.0451 \t \t \t \t \t0.00425 \t \t \t \t0.0789\n",
+ "C 1 \t \t \t0.0214 \t \t \t \t 0.111 \t \t \t \t 0.0241 \t \t \t \t0.1209 \t \t \t \t \t0.0425 \t \t \t \t0.1842\n",
+ "C 2 \t \t \t0.1418 \t \t \t \t 0.2885 \t \t \t \t 0.1697 \t \t \t \t0.3259 \t \t \t \t \t0.2495 \t \t \t \t0.387\n",
+ "C 3 \t \t \t0.6786 \t \t \t \t 0.5099 \t \t \t \t 0.71 \t \t \t \t0.484 \t \t \t \t \t0.6611 \t \t \t \t0.342\n",
+ "C 4 \t \t \t0.1553 \t \t \t \t 0.0458 \t \t \t \t 0.0932 \t \t \t \t0.0239 \t \t \t \t \t0.0425 \t \t \t \t0.0079\n",
+ "C 5 \t \t \t0.00262 \t \t \t \t 0.00034 \t \t \t \t 0.00079 \t \t \t \t9e-05 \t \t \t \t \t0.00015 \t \t \t \t1e-05\n",
+ "\n",
+ "\n",
+ "Page: 448\n",
+ "\n",
+ "\n",
+ "Condensor Heat Load kJ:\n",
+ "21641.994\n",
+ "Reboiler Heat Load kJ:\n",
+ "59915.6783775\n",
+ "**************L/G*************\n",
+ "\n",
+ "Tray No. \t\t L/G\t\t\t\t Temp(OC)\n",
+ "\n",
+ "0.0 \t\t \t \t0.8 \t \t \t46.6\n",
+ "1.0 \t\t \t \t0.432 \t \t \t58.4\n",
+ "2.0 \t\t \t \t0.437 \t \t \t66.0\n",
+ "3.0 \t\t \t \t0.369 \t \t \t70.4\n",
+ "4.0 \t\t \t \t0.305 \t \t \t74.0\n",
+ "5.0 \t\t \t \t0.31 \t \t \t80.3\n",
+ "6.0 \t\t \t \t1.53 \t \t \t86.4\n",
+ "7.0 \t\t \t \t4.05 \t \t \t94.1\n",
+ "8.0 \t\t \t \t3.25 \t \t \t96.3\n",
+ "9.0 \t\t \t \t2.88 \t \t \t97.7\n",
+ "10.0 \t\t \t \t2.58 \t \t \t99.0\n",
+ "11.0 \t\t \t \t2.48 \t \t \t100.0\n",
+ "12.0 \t\t \t \t2.47 \t \t \t102.9\n",
+ "13.0 \t\t \t \t2.42 \t \t \t104.6\n",
+ "14.0 \t\t \t \t2.18 \t \t \t107.9\n",
+ "15.0 \t\t \t \t1.73 \t \t \t113.5\n",
+ "\n",
+ "\n",
+ "Page: 452\n",
+ "\n",
+ "\n",
+ "*****************Composition By Thiele Geddes Method*****************\n",
+ "\n",
+ "Component\t \t \t y2\n",
+ "\n",
+ "C 0 \t \t \t \t0.0419\n",
+ "C 1 \t \t \t \t0.1059\n",
+ "C 2 \t \t \t \t0.2675\n",
+ "C 3 \t \t \t \t0.4939\n",
+ "C 4 \t \t \t \t0.0896\n",
+ "C 5 \t \t \t \t0.00106\n"
+ ]
+ }
+ ],
+ "prompt_number": 85
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/Chapter9_2.ipynb b/Mass_-_Transfer_Operations/Chapter9_2.ipynb
new file mode 100755
index 00000000..6ae47958
--- /dev/null
+++ b/Mass_-_Transfer_Operations/Chapter9_2.ipynb
@@ -0,0 +1,2154 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1356f02f4e266983d4e000fdec653dca9388627dd3d49506786471d71b9d02b6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9: Distillation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.1: Page 349"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.1\n",
+ "# Page: 349\n",
+ "\n",
+ "print'Illustration 9.1 - Page: 349\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "#****Data****#\n",
+ "# a:n-heptane b:n-octane\n",
+ "Pt = 760; # [mm Hg]\n",
+ "#*****#\n",
+ "\n",
+ "Tempa = 98.4;# [boiling point of A,OC]\n",
+ "Tempb = 125.6;# [boiling point of B,OC]\n",
+ "x = numpy.zeros(6);\n",
+ "y_star = numpy.zeros(6);\n",
+ "alpha = numpy.zeros(6);\n",
+ "# Data = [Temp Pa (mm Hg) Pb(mm Hg)]\n",
+ "Data = [(98.4, 760.0, 333.0),(105.0 ,940.0, 417.0),(110.0, 1050.0, 484.0),(115.0, 1200.0, 561.0),(120.0, 1350.0, 650.0),(125.6 ,1540.0, 760.0)];\n",
+ "for i in range(0,6): \n",
+ " x[i] = (Pt-Data[i][2])/(Data[i][1]-Data[i][2]);# [mole fraction of heptane in liquid]\n",
+ " y_star[i] = (Data[i][1]/Pt)*x[i];\n",
+ " alpha[i] = Data[i][1]/Data[i][2];\n",
+ "\n",
+ "print\"\\t\\t T(OC)\\t\\t\\t\\t Pa(mm Hg)\\t\\t\\t\\t\\t\\t\\t Pb(mm Hg)\\t\\t\\t\\t\\t\\t\\t\\t x\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t\\t y*\\t\\t\\t\\t\\t\\t\\t\\t\\t alpha\\n\"\n",
+ "for i in range(0,6):\n",
+ " print \"\\t \\t \",Data[i][0],\"\\t \\t \\t \\t\",Data[i][1],\"\\t \\t \\t \\t\",Data[i][2],\"\\t \\t \\t \\t \",round(x[i],3),\"\\t \\t \\t \\t \",round(y_star[i],3),\"\\t\\t\\t\\t\\t\\t\\t\\t\",round(alpha[i],2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.1 - Page: 349\n",
+ "\n",
+ "\n",
+ "\t\t T(OC)\t\t\t\t Pa(mm Hg)\t\t\t\t\t\t\t Pb(mm Hg)\t\t\t\t\t\t\t\t x\t\t\t\t\t\t\t\t\t\t\t y*\t\t\t\t\t\t\t\t\t alpha\n",
+ "\n",
+ "\t \t 98.4 \t \t \t \t760.0 \t \t \t \t333.0 \t \t \t \t 1.0 \t \t \t \t 1.0 \t\t\t\t\t\t\t\t2.28\n",
+ "\t \t 105.0 \t \t \t \t940.0 \t \t \t \t417.0 \t \t \t \t 0.656 \t \t \t \t 0.811 \t\t\t\t\t\t\t\t2.25\n",
+ "\t \t 110.0 \t \t \t \t1050.0 \t \t \t \t484.0 \t \t \t \t 0.488 \t \t \t \t 0.674 \t\t\t\t\t\t\t\t2.17\n",
+ "\t \t 115.0 \t \t \t \t1200.0 \t \t \t \t561.0 \t \t \t \t 0.311 \t \t \t \t 0.492 \t\t\t\t\t\t\t\t2.14\n",
+ "\t \t 120.0 \t \t \t \t1350.0 \t \t \t \t650.0 \t \t \t \t 0.157 \t \t \t \t 0.279 \t\t\t\t\t\t\t\t2.08\n",
+ "\t \t 125.6 \t \t \t \t1540.0 \t \t \t \t760.0 \t \t \t \t 0.0 \t \t \t \t 0.0 \t\t\t\t\t\t\t\t2.03\n"
+ ]
+ }
+ ],
+ "prompt_number": 70
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.2: Page 354"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.2\n",
+ "# Page: 354\n",
+ "\n",
+ "print'Illustration 9.2 - Page: 354\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:water b:ethylaniline\n",
+ "Pt = 760.0; # [mm Hg]\n",
+ "ma1 = 50.0;# [g]\n",
+ "mb1 = 50.0;# [g]\n",
+ "#*******#\n",
+ "\n",
+ "# Data = [Temp Pa(mm Hg) Pb(mm Hg)]\n",
+ "Data = [(38.5, 51.1 ,1.0),(64.4 ,199.7, 5.0),(80.6 ,363.9 ,10.0),(96.0, 657.6, 20.0),(99.15 ,737.2 ,22.8),(113.2, 1225.0, 40.0)];\n",
+ "Ma = 18.02;# [kg/kmol]\n",
+ "Mb = 121.1;# [kg/kmol]\n",
+ "\n",
+ "for i in range(0,6):\n",
+ " p = Data[i][1]+Data[i][2];\n",
+ " if p==Pt:\n",
+ " pa = Data[4][1];# [mm Hg]\n",
+ " pb = Data[i][2];# [mm Hg]\n",
+ " T = Data[i][0];# [OC]\n",
+ " \n",
+ "\n",
+ "ya_star = pa/Pt;\n",
+ "yb_star = pb/Pt;\n",
+ "ya1 = ma1/Ma;# [g mol water]\n",
+ "yb1 = mb1/Mb;# [g mol ethylalinine]\n",
+ "Y = ya1*(yb_star/ya_star);# [g mol ethylalinine]\n",
+ "print\"The original mixture contained\",round(ya1,2),\"g mol water and \",round(yb1,2),\" g mol ethylanaline\\n\"\n",
+ "print\"The mixture will continue to boil at \",T,\" degree C, where the equilibrium vapour of the indicated composition,until all the water evaporated together with \",round(Y,3),\"g mol ethylaniline\\n\"\n",
+ "print\"The temparature will then rise to 204 degree C, and the equilibrium vapour will be of pure ethylanaline\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.2 - Page: 354\n",
+ "\n",
+ "\n",
+ "The original mixture contained 2.77 g mol water and 0.41 g mol ethylanaline\n",
+ "\n",
+ "The mixture will continue to boil at 99.15 degree C, where the equilibrium vapour of the indicated composition,until all the water evaporated together with 0.086 g mol ethylaniline\n",
+ "\n",
+ "The temparature will then rise to 204 degree C, and the equilibrium vapour will be of pure ethylanaline\n"
+ ]
+ }
+ ],
+ "prompt_number": 71
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.3: Page 362"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.3\n",
+ "# Page: 362\n",
+ "\n",
+ "print'Illustration 9.3 - Page: 362\\n\\n'\n",
+ "import numpy\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:n-C3H8 b:n-C4H10 c:n-C5H12 d:n-C6H14\n",
+ "# Bubble Point Calculation\n",
+ "xa = 0.05;\n",
+ "xb = 0.30;\n",
+ "xc = 0.40;\n",
+ "xd = 0.25;\n",
+ "P = 350;# [kN/square m]\n",
+ "#******#\n",
+ "\n",
+ "# Assume:\n",
+ "Temp = 60;# [OC]\n",
+ "x = [0.05, 0.30, 0.40, 0.25];\n",
+ "m = [4.70, 1.70 ,0.62 ,0.25];# [At 60 OC]\n",
+ "# Reference: C5H12\n",
+ "mref = m[3];\n",
+ "Sum = 0;\n",
+ "alpha = numpy.zeros(4)\n",
+ "alpha_x = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[3];\n",
+ " alpha_x[i] = alpha[i]*x[i];\n",
+ " Sum = Sum+alpha_x[i];\n",
+ "\n",
+ "# From Eqn. 9.23:\n",
+ "SumF = Sum;\n",
+ "Sum = 0;\n",
+ "mref = 1/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 56.8;# [OC]\n",
+ "m = [4.60, 1.60, 0.588, 0.235];# [At 56.8 OC]\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[2];\n",
+ " alpha_x[i] = alpha[i]*x[i];\n",
+ " Sum = Sum+alpha_x[i];\n",
+ "\n",
+ "SumF = Sum;\n",
+ "mref = 1/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 56.7;# [OC]\n",
+ "Bt = 56.8;# [OC]\n",
+ "yi = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " yi[i] = alpha_x[i]/Sum;\n",
+ "\n",
+ "print\"The Bubble Point is \",Bt,\" degree C\\n\"\n",
+ "print\"Bubble point vapour composition \\n\"\n",
+ "print\"\\t yi\\n\";\n",
+ "print\"\\n n-C3\\t \",round(yi[0],3)\n",
+ "print\"\\n n-C4\\t \",round(yi[1],3)\n",
+ "print\"\\n n-C5\\t \",round(yi[2],3)\n",
+ "print\"\\n n-C6\\t \",round(yi[3],3)\n",
+ "\n",
+ "print\"\\n \\n \\n\"\n",
+ "\n",
+ "# Dew Point Calculation\n",
+ "# Asume:\n",
+ "ya = 0.05;\n",
+ "yb = 0.30;\n",
+ "yc = 0.40;\n",
+ "yd = 0.25;\n",
+ "Temp = 80;# [OC]\n",
+ "y = [0.05, 0.30 ,0.40, 0.25];\n",
+ "m = [6.30 ,2.50 ,0.96 ,0.43];# [At 60 OC]\n",
+ "# Reference: C5H12\n",
+ "mref = m[3];\n",
+ "Sum = 0;\n",
+ "alpha = numpy.zeros(4)\n",
+ "alpha_y = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[3];\n",
+ " alpha_y[i] = y[i]/alpha[i];\n",
+ " Sum = Sum+alpha_y[i];\n",
+ "\n",
+ "\n",
+ "# From Eqn. 9.29:\n",
+ "SumF = Sum;\n",
+ "Sum = 0;\n",
+ "mref = SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 83.7;# [OC]\n",
+ "m = [6.60, 2.70, 1.08, 0.47];# [At 56.8 OC]\n",
+ "for i in range(0,4):\n",
+ " alpha[i] = m[i]/m[2];\n",
+ " alpha_y[i] = y[i]/alpha[i];\n",
+ " Sum = Sum+alpha_y[i];\n",
+ "\n",
+ "SumF = Sum;\n",
+ "mref = 1.0/SumF;\n",
+ "# Corresponding Temparature from the nomograph:\n",
+ "Temp = 84.0;# [OC]\n",
+ "Dt = 84.0;# [OC]\n",
+ "xi = numpy.zeros(4);\n",
+ "for i in range(0,4):\n",
+ " xi[i] = alpha_y[i]/Sum;\n",
+ "\n",
+ "print\"The Dew Point is \",Dt,\" degree C\\n\"\n",
+ "print\"Dew point liquid composition \\n\"\n",
+ "print\"\\t xi\\n\"\n",
+ "print\"\\n n-C3\\t \",round(xi[0],3)\n",
+ "print\"\\n n-C4\\t \",round(xi[1],3)\n",
+ "print\"\\n n-C5\\t \",round(xi[2],3)\n",
+ "print\"\\n n-C6\\t \",round(xi[3],3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.3 - Page: 362\n",
+ "\n",
+ "\n",
+ "The Bubble Point is 56.8 degree C\n",
+ "\n",
+ "Bubble point vapour composition \n",
+ "\n",
+ "\t yi\n",
+ "\n",
+ "\n",
+ " n-C3\t 0.229\n",
+ "\n",
+ " n-C4\t 0.478\n",
+ "\n",
+ " n-C5\t 0.234\n",
+ "\n",
+ " n-C6\t 0.059\n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ "The Dew Point is 84.0 degree C\n",
+ "\n",
+ "Dew point liquid composition \n",
+ "\n",
+ "\t xi\n",
+ "\n",
+ "\n",
+ " n-C3\t 0.007\n",
+ "\n",
+ " n-C4\t 0.109\n",
+ "\n",
+ " n-C5\t 0.363\n",
+ "\n",
+ " n-C6\t 0.521\n"
+ ]
+ }
+ ],
+ "prompt_number": 72
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.4: Page 365"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.4\n",
+ "# Page: 365\n",
+ "\n",
+ "print'Illustration 9.4 - Page: 365\\n\\n'\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol feed]\n",
+ "zF = 0.5;\n",
+ "D = 60.0;# [mol]\n",
+ "W = 40.0;# [mol]\n",
+ "#*******#\n",
+ "\n",
+ "# From Illustration 9.1, Equilibrium data:\n",
+ "Data = numpy.array([[1.0 ,1.0],[0.655, 0.810],[0.487 ,0.674],[0.312, 0.492],[0.1571 ,0.279],[0, 0]]);\n",
+ "Feed = numpy.array([[0 ,0],[1.0 ,1.0]]);\n",
+ "# The operating line is drawn with a slope -(W/D) to cut the equilibrium line.\n",
+ "def f44(x):\n",
+ " return -((W/D)*(x-zF))+zF\n",
+ "x = numpy.arange(0.2,0.7,0.1);\n",
+ "plt.plot(Data[:,0],Data[:,1],label=\"Equilibrium Line\")\n",
+ "plt.plot(Feed[:,0],Feed[:,1],label=\"Feed Line\")\n",
+ "plt.plot(x,f44(x),label=\"Operating Line\");\n",
+ "plt.grid('on')\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Mole fraction of heptane in liquid\")\n",
+ "ax.set_ylabel(\"Mole fraction of heptane in vapour\")\n",
+ "plt.legend(loc='lower right');\n",
+ "plt.show()\n",
+ "# The point at which the operating line cuts the equilibrium line has the following composition* temparature:\n",
+ "yd = 0.575;# [mole fraction heptane in vapour phase]\n",
+ "xW = 0.387;# [mole fraction heptane in liquid phase]\n",
+ "Temp = 113;# [OC]\n",
+ "print\"mole fraction of heptane in vapour phase \",yd\n",
+ "print\"mole fraction of heptane in liquid phase \",xW\n",
+ "print\"Temperature is \",Temp,\" degree C\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.4 - Page: 365\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXecFFXywL8FSvJICigSXBBP9BRQECWoqyJynBEUQUlm\nvTOcGEBPYdWfGA6UU+5UDCCgoGBAUAmHrBkFZEUFjiQSRQkSRGBD/f54s7uz485uz+70pK3v59Mf\nunte96spZrv6Vb1XJaqKYRiGYeRTKd4CGIZhGImFGQbDMAyjCGYYDMMwjCKYYTAMwzCKYIbBMAzD\nKIIZBsMwDKMIvhoGEXlJRLaIyDcltHlKRFaKyNcicpKf8hiGYRil4/eIYSzQLdyHItIdaKGqxwDX\nA8/4LI9hGIZRCr4aBlX9GNhRQpMLgZcDbb8A6ojI4X7KZBiGYZRMvGMMjYD1QccbgMZxksUwDMMg\n/oYBQEKOLUeHYRhGHDkozv1vBJoEHTcOnCuCiJixMAzDKAOqGvryXSrxHjG8A/QHEJHTgF9UdUtx\nDVXVNlWGDRsWdxkSZTNdmC4qsi5ycpRZs5Qrr1Rq11bO7P0VRz3aij9P+Asbd21Etezv076OGERk\nEnAmUE9E1gPDgIMBVPU5VX1PRLqLyCrgV+AqP+VJBdauXRtvERIG00UhpotCUl0X334L48fDK69A\no0ZwRb8DHNHnYcYvfYYRXUfQr1U/RCIeJBTBV8Ogqn08tLnZTxkMwzCSnS1bYNIkZxB+/hn69YP/\n/hf21VnMwGkDabKzCVk3ZnFkzSOj0l+8YwxGhAwcODDeIiQMpotCTBeFpIou9u2Dd95xxuDTT+Gi\ni2DECDjzTMjlAA9/9DDPzIjeKCEYKY8fKlaIiCaDnIZhGOVB1RmB8eNh6lRo1w7694dLLoFDDnFt\nFm8OjBJqNWHMBWNKHCWICJqEwWcjQjIzM+MtQsJguijEdFFIMupi9WrIyIAWLeCGG9y/S5bA7NnQ\nt68zCgdyDzBs3jDOm3ged3S4g+l9pkfNdRSKuZIMwzDiwI4dMGWKGx2sXAl9+rjjk06CUK9Q8Cgh\nmrGEcJgryTAMI0ZkZ8OsWc4YzJ4NXbs6V9F558HBB/++/YHcQCxhYdliCWV1JdmIwTAMw0dUYfFi\nZwwmTYJjjnHG4LnnoG7d8NfFepQQjMUYkoxk9J/6hemiENNFIYmii40b4fHH4cQT4dJLoU4dF1j+\n5BO4/vrwRiGWsYRw2IjBMAwjSvz6K7z1lhsdLFzoDMKzz0KnTr+PGxRHPEcJwViMwTAMoxzk5UFm\npjMG06Y5I9C/P1xwAVSv7u0e5Y0lhMNiDIZhGDFk2TKYMAEmToR69ZwxeOwxODzCijKJMkoIxmIM\nSUai+E8TAdNFIaaLQvzUxdatMHo0tG8P55wDOTnw7rvw1Vfw979HZhQSIZYQDhsxGIZhlMD+/e7h\nP368cxmdfz783/85w1C5ctnumYijhGAsxmAYhhGCKnzxhTMGr78OrVo5V1HPnlCzZtnv61csIRwW\nYzAMwygna9e6mMH48VCpkjMGixbBUUeV/96JPkoIxmIMSYb5kgsxXRRiuigkUl3s2gUvvQTp6XDK\nKfDjj844LFsG995bfqOQyLGEcNiIwTCMCkdODsyZ40YG778PZ5/tgsfdu0OVKtHrJ5lGCcFYjMEw\njArDkiWF1c+OOsq5ii6/HA47LLr9xDqWEA6LMRiGYRTDjz/Cq686g7Bjh6t+lpkJxx7rT3/JOkoI\nxmIMSYb5kgsxXRRiuigkMzOTvXtdwrru3eG441yd5FGj4Pvv3VRTP4xCMsYSwmEjBsMwUoK8PPj4\nY5e47vPP4dRTnato6lSoUcPfvlNhlBCMxRgMw0hqVqxwqSkmTHBrDAYMgCuugCNj8GxOlFhCOCzG\nYBhGhWH7dnjtNRc3+P57Zwjefhtat/aWxTQapNooIZgSYwwiUllERsRKGKN0zJdciOmikIqgiwMH\nXPbSnj2hWTP48EO4/37YsAGeeALatHFGwW9dpFIsIRwljhhUNVdEOov5cgzDiAOqrq7B+PEwebIL\nJPfvDy++6ArfxJpUHiUEU2qMQUSeBY4EpgB7A6dVVd/0WbZgGcwuGUYFYv36wtQU2dnOGPTtC82b\nx0eeRI8lhMPPGEM1YDtwdsj5mBkGwzBSn9274c03nTHIyoLLLnMjgw4dYhc3KI6KMkoIxmYlJRmZ\nmZmkp6fHW4yEwHRRSLLqIjcXPvjAGYPp0+GMM9zo4PzzoVq1st0zWrpI1lFCML6NGERkbMgpBVDV\nqyPtzDAMA+C775wxmDgRGjZ0xmDkSGjQIN6SOSriKCEYLzGGSwkYA6A6cAmwSVVv8Vm2YBlsxGAY\nSc5PP7nVyOPHw5YtLmbQrx/86U/xlqyQVBglBFPWEUPEriQRqQR8qqodIu2srJhhMIzkZN8+5yIa\nP96tSr7wQjc6OOusslc/84vgUcKYC8akxCihrIahLLmS/gjUL8N1RhSoCPPVvWK6KCSRdKEKn34K\nN9wAjRrBc8+5QPKGDc5AdOnir1GIVBcVYV1CpHiJMeyh0JWkwBZgsJ9CGYaRfKxZU5iaokoVNzLI\nyoImTeItWXgqeiwhHDYryTCMMvPLLzBlihsJ/O9/0Lu3Mwht28Z3imlppFosIRy+5koSkYuAM3Aj\nhg9VdXqkHRmGkRpkZ8Ps2c4YzJwJ554Ld90F3bpFt/qZX9gooXRKjTGIyKPArcB3wDLgVhF5xG/B\njOJJJF9yvDFdFOK3LlRh8WK4/XbnGnr4YRdA/v57l9b6wgsTxyiE04XFErzjZcTwF6CNquYCiMg4\nIAu4x0e5DMNIADZtcmUwx4+HPXvc9NKPP4Zjjom3ZJFho4TI8LKOYQlwlqpuCxwfBsxT1Val3lyk\nGzAKqAy8oKqPhXxeD5gIHIEzUiNUdVwx97EYg2HEiF9/dSmsx4+HBQugRw8XN+jcGSolWc3HihJL\nCIefMYZHgK9EJDNwfCYwxINAlYHRQBdgI7BARN5R1WVBzW4GFqvqPQEj8T8RmaiqOZF8CcMwys+3\n37rVx2+/7fITXXWV269ePd6SlQ0bJZSdUu2/qk4COgBvBLbTVHWyh3u3B1ap6lpVzQYmAxeFtNkM\n1Ars1wK2mVEoGfOrF2K6KKQ8uli3DgYOhHPOgZYtYdkyeO89N8MoGY3CnLlzLJZQTrysYxCcYeiM\nm5VUGXjLw70bAeuDjjcAp4a0eR74QEQ2ATWBXh7uaxhGFNi+HR55BF56CW66yZXIrF073lKVj8Wb\nF3PjuzdyXLvjbJRQDry4kv4DHA1MAgS4QUTOVdW/lnKdl6DAvUCWqqaLyNHAHBFpraq7QxsOHDiQ\ntLQ0AOrUqUObNm0KMijmvy1VhOP09PSEkseOE+c4n9Laz5qVyRtvwFtvpdOzJ4wZk8lhh0Ht2on1\nfSI5zs7N5pNKn/DMwme45vhr6Nqwa4FRSAT5YnWcmZnJuHHjAAqel2XBS/B5OXC8quYFjisBS1W1\nZSnXnQZkqGq3wPE9QF5wAFpE3gMeVtVPA8dzgcGqujDkXhZ8NoxykpMDL78MGRlw6qluyumxx8Zb\nqvKTijmOooWfuZJWAU2DjpsGzpXGQuAYEUkTkSrA5cA7IW2W44LTiMjhwLHAGg/3rrCEvh1WZEwX\nhZSkC1V45x1o3drNNJoyxa09SHajEG5dgv0uyo8XV1ItYJmIfIlzD7XHzTCajivxeWFxF6lqjojc\nDMzCxSVeVNVlInJD4PPngOHAWBH5Gmek7lbV7eX+VoZhAC6Z3eDBsHMnPP44dO+e2KkqvGIzjvzF\niyspvYSPVVU/jKpExctgriTDiIClS+Hee91q5QcfdLUPEi3NdVmo6OsSIsW3dQyqmlkmiQzDiDkb\nN8KwYc51NHgwTJ5c9hKZiYaNEmKHl1xJHURkgYjsEZFsEckTkV2xEM74PeY/LcR0UciMGZnccw+0\nagX16rmpp3fckRpGIdIcR/a7KD9eYgyjgd7A60A7oD8uSGwYRpzZtw/+/W946CG49FL4+mto3Dje\nUkUPGyXEBy8xhkWq2lZEluTnRxKRLFVtExMJsRiDYYSSmwsTJ8LQoXDSSTB8OBx/fLylih4WS4gO\nfuZK+lVEqgJfi8jjwI+4hW6GYcQYVXj/fRgyBGrWdJlPO3eOt1TRxUYJ8cfLOoZ+gXY3A3uBxkBP\nP4UywmP+00Iqmi6++MLVQLjzTuc6+uSTQqOQCrqIVr2EVNBFvPEyYmgHzFDVnUCGv+IYhhHK//4H\n//gHzJ8PDzwAAwbAQZ5qLyYPNkpILLzEGMYBZwMfAq8BM2OdAdViDEZFZPNmtwZh6lQ3SrjlFqhR\nI95SRReLJfiLbykxVHUg0AKYCvQB1ojIixFLaBiGJ3btgvvvhxNOgEMOcSOGwYNTzygs3ryYU54/\nhUWbF5F1Yxb9W/c3o5AgeKrHpKoHgPdxNRUWARf7KZQRHvOfFpJquti/H/71L1c2c/16+OorGDEC\nDj209GuTSRd+115OJl0kKl7qMXTH1Uk4C8jE1VC4zF+xDKPikJfnVijfd5+bcvrf/8KJJ8ZbKn+w\nWEJy4CXGMInC2MK+mEj1exksxmCkHKowZ45zE1WtCo89BmeeGW+p/MFiCfHBz1xJfcomkmEY4Vi0\nyBmE9evd4rQePVIj62lx2Cgh+fAUYzASB/OfFpKMuli92tVSvuACuOwy+PZb6Nmz/EYhEXXhdywh\nHImoi2TDDINhxICffnLTTU891cUPVq6EG26Agw+Ot2T+YDOOkptSYwyJgMUYjGRl92544gl4+mno\n18/VSKhfP95S+YfFEhIL32IMItIZGAakBbVXVW0eaWdGOcnJSb0lrylKdjY8/7xLXXHOObBgATRr\nFm+p/MViCamDF1fSi8ATQGfglMDW3k+hjDDceSeZ7dq5LGp5efGWJu4koi85Lw9ef91NO33nHXjv\nPZcF1W+jEE9dxCuWEI5E/F0kG15eP39R1fd9l8Qoncceg4wMuOceV4Xl9ttdzcbq1eMtmQF88IGb\naaQKzz7rRgqpjo0SUhMv6xgeBSoDbwL788+r6lf+ilZEBosxBKMK8+Y55/WCBXDjjfDXv8Lhh8db\nsgpJVpZLg71qFTz8sJttVCnFp3VYLCE5KGuMwYthyAR+10hVz4q0s7JihqEEli93eRQmT4ZLLnGj\niFRdNptgrF3rViv/978ut9F110GVKvGWyn+CRwljLhhjo4QExs8keumqelboVjYxjfLyO/9py5bw\nzDNu/uPRR8N550HXrjBzphtZpDDx8iVv3ersb9u2Lq/RypXwt7/F1yjEQheJFksIh8UYyk9YwyAi\n/QL/3iEig4K2O0RkUOxENDxRr55L2v/99y7uMGSIS8/5/PPw22/xli4l2LvXuYpatnSzjpYuhWHD\nXCW1VMfWJVQswrqSROQGVX1ORDIo3pX0gM+yBctirqRIsThEVPnsM+jfH04+2aWwaNEi3hLFBosl\nJDe+xRgSATMM5SQ4DtGjh/ODnHBCvKVKCg4ccFXTXnoJ/vMfF8apKFgsIfnxLcZgJBZl8p8GxyGa\nN3cxiBSIQ/jtS166FE47DZYscTOPEtkoRFMXyRJLCIfFGMqPGYaKhMUhPJGXB6NGuRTYf/2rW6hW\nUTxwFkswwFxJFRuLQ/yOdevgqqtg3z4YP95N9KoIWCwhNfHNlSQiR4jIiyIyM3B8vIhcUxYhjQRD\nBM4+G2bMgA8/hC1bnNvpmmtcPugKhKpLXdGuHXTpAh99VHGMgo0SjFC8uJLGAbOBfCfjSuB2vwQy\nSsY3/2nLli6PQxLFIaKli23b4PLL4ZFHYNYsl3GkcuWo3DpmlEUXyR5LCIfFGMqPF8NQT1VfA3IB\nVDUbyPFVKiN+BMchrrzSJf9J4TjEzJnQujU0aeKqqp10Urwlig02SjBKwmtKjJ7Af1X1JBE5DXhM\nVWNWndZiDHEkReMQv/4Kd90F774L48bBWRVkLb/FEioWfk5XvQOYDjQXkc+ACcCtkXZkJCkpGIf4\n4gs3MtizB77+uuIYBRslGF7xkitpEXAm0Am4HjheVb/2WzCjeOLqP02wOESkusjOdiksLrzQrV4e\nPx7q1PFHtlhTki5SNZYQDosxlB+v6xjaA62BtkAfEenvn0hGwpOEcYjly6FjR+cNy8qCSy+Nt0Sx\nwUYJRlnwEmOYCDQHsggEoAFU9ZZSby7SDRiFq+fwgqo+VkybdOBJ4GBgq6qmF9PGYgyJTALHIfLy\n4N//hgcfdGU2b7jBecdSHYslGOBvPYZlOPdRRE9mEakM/A/oAmwEFgB9VHVZUJs6wKfAeaq6QUTq\nqerWYu5lhiFZWL7cLRt+7bW452XauNEtVtu1CyZMcCmyKwKW48jIx8/g87dAw8hFoj2wSlXXBqa4\nTgYuCmlzBfCGqm4AKM4oGEVJeP9pDOMQJeli8mQXYD79dPjkk9Q3CpmZmRUulhCOhP8bSQK8GIb6\nwFIRmS0i0wPbOx6uawSsDzreEDgXzDHAoSIyT0QW5teAMFKAOMUhtm+HPn1cRtT33nOV1Q7yUtk8\nyVm5baXFEoyo4cWVlF7ceVXNLOW6nkA3Vb0ucNwXODU4NiEio4GTgXOAGsDnwF9UdWXIvcyVlOzE\nIA4xZw5cfbXzYD36KFSvHrVbJywWSzBKoqyupFLfpUozACWwEWgSdNwEN2oIZj0u4Pwb8JuIfISb\n/bQypB0DBw4kLS0NgDp16tCmTRvS09OBwqGjHSf48dlnw9lnkzl+PEydSnrLltCjB5mdO0OzZmW+\n/8yZmYwZAwsWpDN2LBx0UCZffJEA39fn49rH1mbgtIHU2FCD/3T8D5e2vjSh5LPj2B9nZmYybtw4\ngILnZZlQ1RI3oAMucLwHyAbygF0erjsIWA2kAVVws5qOC2nTEvgvbtZSDeAbXKA79F5qOObNmxdv\nEaLHzz+r/t//qTZsqHruuarvv6+al+f58nnz5umCBarHHqvap4/q9u0+yppA7M/Zr0M/GKr1H6+v\nL2e9rHl5ean1uygnpotCAs/OUp/zoZuXGMNoXJB4JVANuAb4jweDkwPcDMwClgKvqeoyEblBRG4I\ntFkOzASWAF8Az6vqUg8yGalAaBwigvoQOTnw8svQvTtkZMCrr0LdurERO57YugQjFniJMSxS1bYi\nskRVWwXOZalqm5hIiMUYKgwe4xArVkC/flC7NowdC41CpzSkIBZLMMqCn9NVfxWRqsDXIvK4iAwC\n7BdpRJ/QvEw//VQkL5Oqq1DasaMzDDNnVgyjYKMEI9Z4MQz9Au1uBvYCjXHZVo04kB9oSnlC6lTn\ndunK4vpdWTZqJp9+otx8M3z0UWa8pfSVSNYlVJjfhQdMF+XHi2G4WFV/U9WdqpqhqoOAv/gtmGEA\nUK8eU/74D9LyvueH0/vyr2pDOLbHn1wcYv/+eEvnGzZKMOKJlxjDYlU9KeScxRgM3/nlF7j5Zvjy\nS1d2s317EjovUzSwWIIRTaIeYxCRPiIyHWgWtOJ5eqBwz7ZyyGoYpfLBB9CqlQswL14cMApQahwi\nmbFRgpEolORK+gwYCSwHRgRtg4Dz/BfNKI5U95/+9pvLu9e/v/MW/fvfcMghxbfN/PHHInGIeNeH\nKCvRyHGU6r+LSDBdlJ+whkFVf1DVTFU9DVgB1AFqAZsCaxQMI6p89RW0a+eyon79NZzn9fUjeD1E\n374RrYeINzZKMBIRLzGGa4GhwLzAqXTgQVV90V/RishgMYYUJicHHnsM/vUvePJJuOKKctZMSII4\nhMUSjFjgZz2GFUAHVd0WOD4M+FxV/1gmScuAGYbUZdUq5zaqXh3GjYMmTUq9JDKWL3cWZ/JkuOQS\n56c68cQodxIZVi/BiBV+LnDbisuTlM+ewDkjDqSK/1QVxoyBDh3g8stdZtRIjYInXQSvhzj6aOef\n6toV3n/flXeLIX7WS0iV30U0MF2UHy+Z6lcD80VkWuD4ImCJiNyBS9D0hG/SGSnJjz/CtdfC5s1u\nYtHxx8eg0/w4xJ13uupy99wDd9zhRhB9+/qeozt4lJB1Y5aNEoyExosrKSOwm99QgvZR1Qd8kayo\nDOZKShHefNO5+6+9FoYOhSpV4iRIjOIQFksw4olvMYagDg5R1V8jliwKmGFIfnbuhNtuc2U2J0xw\nLqSEwac4hMUSjHjjW4xBRDqKyFLcegZEpI2IlJp22/CHZPSffvghtG4N1apBVlb0jELUdBHlOEQ8\nai8n4+/CL0wX5cdL8HkU0I1AwFlVs4Az/RTKSA327XMu/SuucAvVnn0W/vCHeEtVAqHrIe65J+L1\nELYuwUgFvMQYvlTV9sE5k0Tka1VtHRMJMVdSMpKV5VJj//GP8Nxz7pmbdEQQh7BYgpGI+DlddZ2I\ndAp0UkVE7gSWRdqRUTHIzXWL1c49F+66C6ZOTVKjAOHzMl19NXzzTUEzGyUYqYYXw3AT8DegEbAR\nOClwbMSBRPafrlkD6enONb9woVu45ufzMaa6KCYOkdflHCY8egXdxneNWSwhHIn8u4g1povyU6ph\nUNWfVfUKVW2gqvVV9cr8VdCGAc7j8uKLcOqpcPHFLjPqUUfFWyqfCMQhsj57i/sbr6TTM++yYWxd\n+n+5H9m3L97SGUZU8BJjaABcB6RRuCBOVfVqf0UrIoPFGBKUnTthwABYu9ZNQ41ztgnf+V0s4cS+\nSGZmQudlMioufsYYpuGyqs4B3g3ajArOli3OddSwIXzxReobhWJjCZUqeYpDGEYy4cUwVFfVwar6\nuqpODWxv+C6ZUSyJ4j9dswY6dXKuo//8B6pWjb0MsdKF53UJcczLlCi/i0TAdFF+vBiGGSJiNZ6N\nApYsgTPOgEGDYNgwfwPM8aZMM46isB7CMOJJ2BiDiOyhMCfSIcABIDtwrKpay3/xCmSxGEOC8Mkn\n0LMnPPWUy4qaqkR1XUIS1IcwUhPfcyXFEzMMicH06a608iuvuHUKqYqvOY4SsD6Ekbr4GXw2Eoh4\n+U9ffhmuu87FWBPFKERbFzHJceRTHML86oWYLsqPGQajVEaOdCmy582D9u3jLY0/xHz1ssUhjASm\npBhDM1X9PsbyFIu5kuKDqnteTZsGs2f7UHYzAUiYHEcWhzB8wA9X0tTAjT8os1RG0pKT44rpzJvn\nAs6paBQSKseRx7xMhhELSjIMlUXkH8AfRWSQiNwRtA2KlYBGUWLhP923Dy67DDZsgLlz4bDDfO+y\nTJRVF/GolxARZYhDmF+9ENNF+SnJMPQGcoHKQM3A9oegfSMF2bkTunVzC9amT0/w+gllIKFGCaVh\ncQgjTnjJldRdVd+LkTzhZLAYQwzYssUZhU6d3IzKypXjLVH0SJhYQnmwOIQRIX5OV/1MRJ4UkUWB\nbaSI1C6DjEYCs2YNdO7sUlw8/XRqGYWkGiWURElxiDVr4i2dkUJ4MQwvAbuAy4BewG5grJ9CGeHx\nw3+an+Li9tuTK8VFabpI+FhCeQiJQ2R+YHNE8rEYQ/k5qPQmHK2qPYKOM0Tka78EMmJLqqa4CF69\nnHVjVuoYhFDy4xD2MDSiiJcYw3zgLlX9OHDcGfinqnaIgXz5MliMwQdmzHBeiIkT3aSXVCAlYgmG\nESXKGmPwMmK4ERgfFFfYAQzwKFQ3YBRuZtMLqvpYmHanAJ8DvVT1TS/3NsrH+PFw993OOKTKauYK\nM0owDJ/xUtozS1VbAa2AVqraRlVLdSWJSGVgNNANOB7oIyLHhWn3GDATsFe7UoiG/3TkSLj//uRP\ncZGvi5SOJXjE/OqFmC7Kj5cRAwCqujPCe7cHVqnqWgARmQxcBCwLaXcLbpX1KRHe34iQ4BQXqbKa\n2UYJhhF9/Eyi1whYH3S8IXCuABFphDMWzwROWSChFNLT08t0XU6Oy446bx58/HHyG4UDuQeYp/Mq\n9CghmLL+LlIR00X58TxiKANeHvKjgCGqquIihOZK8oF9+6BPH9i716W4SPbVzDZKMAx/8WQYRKQT\nkBbUXlV1fCmXbQSC30ub4EYNwbQFJgdmjdQD/iwi2ar6TujNBg4cSFpaGgB16tShTZs2BW8G+T7F\ninAc7D/10n7nTjjzzEwOPRRmzkynSpXE+j6RHHc8vSMPf/Qw/3rtX9zU7ia6NuzKkTWPTBj54nmc\nlZXF3//+94SRJ57Ho0aNqtDPh3HjxgEUPC/LgpfpqhOB5kAWLncSAKp6SynXHQT8DzgH2AR8CfRR\n1dAYQ377scD04mYl2XTVQjIzMwt+EKWRn+KiY0e3TiGZVzMXV1UtEl2kOqaLQkwXhfhW2lNElgHH\nl+XJLCJ/pnC66ouq+oiI3ACgqs+FtDXDEEW+/96tTejb1xXZSdap/LYuwTDKjp+GYQpwm6puKqtw\n5cUMQ2R88w38+c9w770ux1qy4mvtZcOoAPiZRK8+sFREZovI9MD2uxiAERvy/Ynh+OQT6NLFrVVI\nVqPgdV1CabqoSJguCjFdlB8vweeMwL/5r+yCTStNSGbMgKuugldeSd4UFzbjyDDiT6muJAAROQK3\nAE2BL1X1J78FC+nfXEmlkJ/iYto0OPXUeEsTORZLMIzo41uuJBHpBfwT+DBwarSI3KWqUyLtzPCH\nJ55whXXmzYPjfpd0JPGxUYJhJBZeYgz3Aaeoan9V7Y8bOdzvr1hGOIL9p/kpLp5/3sUWks0olDfH\nkfmSCzFdFGK6KD9eYgwC/Bx0vA1boRx3cnJcZcdvvnEpLurVi7dEkWGjBMNIXLxMV/0n0Bp4FWcQ\nLgeWqOrd/otXIIPFGILIT3Hx66/w5pvJleLCYgmGETv8XMcgQA+gMy74/LGqvlUmKcuIGYZCdu2C\niy5y9d/Hj4cqVeItkXdsXYJhxBbf1jGo4w1VvV1VB8XaKBiFbNkCbdtmcvzxbkpqshgFv+olmC+5\nENNFIaaL8hM2xiAin6pqJxHZw+/XLaiq1vJXNCOY/BQXnTrB6NHJk+LCYgmGkXx4WscQbyq6Kyk/\nxcU998Df/hZvabxhsQTDiD++uZJEZIKXc4Y/5Ke4GDEieYzC4s2LOeX5U1i0eRFZN2bRv3V/MwqG\nkUR4WcfKo/oZAAAgAElEQVRwQvBBIJ12W3/EMYKZMQN69IAJE6B3b3cukf2nsa69nMi6iDWmi0JM\nF+WnpBjDvcA9QHUR2R30UTYwxm/BKjr5KS6mT0+OFBcWSzCM1MHLdNVHVPWeGMkTToYKFWN44gkY\nNQpmzUr81cwWSzCMxMW3XEnAAhGpo6q/BDqqA6Sr6tuRdmaUjKqrofD22y620LRpvCUqGRslGEZq\n4iXGMCzfKAAE9jN8k6iCkpMD110HH3zgUlyEMwqJ4D+NdSwhHImgi0TBdFGI6aL8eM2VFEoSVw9O\nPIJTXMydm9gpLmyUYBipj5cYw1hgB/BvnJH4G1BXVQf6Ll2hDCkbY8hPcdGggQs4V60ab4mKx2IJ\nscV0a0RKcc9IP2MMt+DSbL8WOJ6DMw5GOdmyxS1c69ABnnoKKifoOMxGCfEhVV+GjOgT7RcJL7mS\n9qjqYFVtF9juUdVfoypFBeT776FzZzdaGD3au1GIpf80UWIJ4TBfsmH4g5cKbg2Au4HjgeqB06qq\nZ/spWCqTDCkubJRgGBUXLzGGOTg30p3ADcBA4Gerx1A2li+HM890pTjzVzMnEhZLSAwCvuF4i2Ek\nCeF+L37WY/hKVU8WkSWq2ipwbqGqtou0s7KSKoZh61Y47TT4xz/gqqviLc3vsXoJiYMZBiMSom0Y\nvKxjOBD490cROV9ETgbqRtpRRWf/fpf3qGfP8hkFP/zqiR5LCIfFGFKLdevWUbNmzYIHXHp6Oi++\n+CIAr7zyCuedd15B20qVKrFmzRrP9w69Ph6Efr9Exoth+L/Aauc7cO6kF4DbfZUqxVCFG26Aww6D\nRx6JtzRFsUyoRqSkpaVRo0YNatasWbDdeuut5b5v06ZN2b17d8HvT0QK9q+88kpmzZpV5nuX9/pI\nCDZowYR+v0SmxOCziFQG/qiqM4BfgPRYCJVqPPYYLFniVjRX8mKKSyA9PT0qMqVCLCFaujAiQ0SY\nMWMGZ5+dHPNPcnNzqRzDueDBBi1ZKfExpaq5QJ8YyZKSvPmmm476zjtwyCHxlsZhowTDL/Ly8rjz\nzjupX78+Rx99NP/+97+pVKkSeXl5gBttzJ07t6B9RkYG/fr1A2Dt2rVF2gYzbtw4Tj/99CLn3n33\nXY4++mjq16/P3XffXeCiGTduHJ06dWLQoEHUq1ePjIyMItcX10/wW37w9XXr1qVFixZ89tlnjB07\nlqZNm3L44Yczfvz4iHUT2m96ejpDhw6lc+fO1KpVi/POO49t27YVtJ8/fz4dO3akbt26tGnThg8/\n/DDiPsuKl/fXT0RktIicLiIni0jbQJzBKIVFi5wLado0aNw4Ovcsj189WWMJ4bAYQ/wI5ycfM2YM\n7777LllZWSxcuJCpU6cWeekIfZsuzwvJ22+/zaJFi/jqq6+YNm0aL730UsFnX375JUcffTQ//fQT\n//jHP0q9V6hcX375Ja1bt2b79u306dOHXr168dVXX7F69WomTpzIzTffzN69e8ssez6TJk1i3Lhx\n/PTTTxw4cIARI0YAsHHjRs4//3yGDh3Kjh07GDFiBD179mTr1q3l7tMLXgzDScCfgAeBkcCIwL9G\nCWzc6BavPfcctE2AskY2SkgtRKKzlQVV5eKLL6Zu3boFW/7b9uuvv87tt99Oo0aNqFu3Lvfee2+J\nwdbyBGIHDx5MnTp1aNKkCX//+9+ZNGlSwWdHHnkkf/vb36hUqRLVqlWL+N7NmjVjwIABiAi9evVi\n06ZNDB06lIMPPphzzz2XKlWqsGrVqjLLDs4YXXXVVbRo0YJq1arRq1cvsrKyAJg4cSLdu3enW7du\nAHTp0oV27drx3nvvlatPr5RUqOc2Vf0XcJ+qfhITaVKEPXvgggvg5pvdTKRoEqlfPRViCeGoyDGG\neE5sERGmTZtWbIxh8+bNNGnSpOC4qY+540P72bRpU7GflYXDDz+8YL96dbeut379+kXO7dmzp1x9\nABxxxBHF3vOHH35gypQpTJ8+veDznJycmMV1Sgo+Xw38C3gaN2owPJCXB337QqtWMHhwfGWx1ctG\nrGnYsCHr1q0rOA7eBzjkkEP49dfCjDo//vhjmftat24dxwUqWa1bt45GjRoVfFbSy88hgWDf3r17\n+UMglXF55PCDpk2b0q9fP8aMiU+xzJJcSUtFZCVwrIh8E7ItiZWAycY998COHTBmTNmH6iXhxa+e\narGEcFiMIX6EcwH16tWLp556io0bN7Jjxw4effTRIg/pNm3aMHnyZHJycli4cCFvvPFGmUewI0aM\n4JdffmH9+vU89dRTXH755Z6uq1+/Po0aNWLChAnk5uby0ksvsXr16jLJEI7s7Gz27dtXsOXk5BTb\nLpwe+/bty/Tp05k9eza5ubns27ePzMxMNm7cGFU5wxHWMKhqH+B0YBVwPnBB0HZhTKRLMl56Cd54\nw21VqsRHBoslGLHgggsuKLKOoWfPngBcd911nHfeebRu3Zp27drRs2fPIg+/hx56iNWrV1O3bl0y\nMjK48sori9w33G+1uCmgF110EW3btuWkk07i/PPP55prrgnbNvTc888/zz//+U/q1avH0qVL6dSp\nU4l9Rfo3dNNNN1GjRo2C7eqrry71vsGfN27cmGnTpjF8+HAaNGhA06ZNGTlyZLEztvyg1JQYiUAy\npMTIzIReveCjj6Bly9j3n8qxhIpIqqTEWLt2Lc2bNycnJ4dK5V3EY4Ql2ikxvNRjMEph5Uq4/HJ4\n9dX4GAWLJRiGEU18N+Ei0k1ElovIShH5XThWRK4Uka9FZImIfCoirfyWKZps3w7nnw8PPghduvjf\nX7BfvaLEEsJhMYbkwEauyYfnEYOI1FDViFZ0BFJqjAa6ABuBBSLyjqouC2q2BjhDVXeKSDdgDHBa\nJP3Ei+xsuPRS+Mtf3EK2WGKjBCMZSEtLIzc3N95iGBHiJe12R1zivJqq2kRE2gDXq+pfS725SAdg\nmKp2CxwPAVDVR8O0rwt8o6qNQ84nXIxBFa6/HjZvdiubY5WKxWIJFYNUiTEYsSEeMYZRQDdgGoCq\nZonImR7v3whYH3S8ATi1hPbXALFZ2ldOnngCvvgCPv00dkbBRgmGYcQCT64kVV0X8lZa/KTcYi71\nKoiInIVbVNepuM8HDhxIWloaAHXq1KFNmzYFK1/zfc2xOn744UyefBK++iqdmjX972/O3DlMXDKR\n93Pe55q619C1YVdWLFrBkelHxuX7J8px/rlEkceP72cYkZCZmcm4ceMACp6XZcGLK2kq8CQuVnAq\ncCvQTlVLLUwpIqcBGUGupHuAPFV9LKRdK+BNoJuq/i4BSSK5krKy4NxzYcYMOLWksU+UCK2qtmLR\nigqdCiKYzMzMlNWFuZKMSIhHac/6uNQYXQABZgO3quq2Ei901x4E/A84B9gEfAn0CQ4+i0hT4AOg\nr6rOD3OfhDAMmzc7YzBihFuz4CcWS6jYmGEwIiHmpT1V9WdVvUJVG6hqfVW90otRCFybA9wMzAKW\nAq+p6jIRuUFE8ufxDMWVCn1GRBaLyJeRfolYsHevy5Z63XX+GwVbvWxUdMJVQSuNE044gY8++sgH\niSoWJWVXfbqE61RVPdXyU9X3gfdDzj0XtH8tcK2Xe8WLvDwYMACOOQbuu8+/fryMElLZfRIppov4\nkJaWxk8//VRQFU1EWLFiRZFMoeWlpCpoGRkZrF69mgkTJvzus2+//TZqMlRkSgo+L6IweBz6P1Sh\nxrhDh8KmTTB3rj+J8cBmHBnJQ7xLe9ro2X9KSqI3TlVfDmzjgDeAqfnnYyZhnJkwwaW6eOstKEO9\nj1KJdPWyvSEXYrpILHbu3Mk111zDkUceSePGjbn//vuLJH176aWXOP744zn00EPp1q1bkZTcc+bM\noWXLltSpU4dbbrkFVQ0bYykp9pKWlsYHH3wAuJFFr169GDBgALVq1eKEE05g0aJFBW03bdpEz549\nadCgAc2bN+fpp0tyklQsSo0xiMiJIrIY+A6XinuRiJzgv2jx55NP4I47YPp0aNAg+ve3WIKRrBT3\ncB44cCBVqlRh9erVLF68mNmzZ/PCCy8AMG3aNB555BHeeusttm7dyumnn06fPq6c/NatW+nZsyfD\nhw9n27ZtHH300Xz66adl+lsIvWb69On06dOHnTt3cuGFF3LzzTcDrjb1BRdcwEknncSmTZuYO3cu\no0aNYvbs2RH3mZLkW+ZwG/A5cFbQcTrwWWnXRXNzYsaW1atVDz9c9f33o3/v/Tn7degHQ7X+4/X1\n5ayXNS8vz/O18+bNi75ASUoq66K03zwZRGUrC0cddZT+4Q9/0Dp16midOnX0kksu0R9//FGrVq2q\nv/32W0G7V199Vc866yxVVe3WrZu++OKLBZ/l5uZqjRo19IcfftCXX35ZO3ToUKSPxo0bF2kfzLBh\nw7Rv377FfpaWlqZz584taHfuuecWfPbdd99p9erVVVV1/vz52rRp0yLXDh8+XK+66iqvakgowv1e\nAucjfuZ6WeBWQ1XnBRmSTBE5JMr2KaH45ReXGO+++yBQcjVqWCzBiAY6LH5hvuJKe3755ZdkZ2fT\nsGHDgnN5eXkFpT1/+OEHbrvtNu64444i99q4cSObN2+mceMiWXDKXZozn+ASnTVq1GDfvn3k5eXx\nww8/sGnTJurWrVvweW5uLmeccUZU+k12vBiG70XkfmACLgh9JS7xXUqSk+Omo55zjqvZHC2itS7B\n/OqFmC4ShyZNmlC1alW2bdtWbN2Fpk2bcv/99xe4j4JZuXIl69cXZs5R1SLHoUTD3dqkSROaNWvG\nihUryn2vVMRL2u2rgQa4lclvAPUD51IOVbj1VqhUCZ58Mnr3tViCkeo0bNiQrl27MmjQIHbv3k1e\nXh6rV68uWFNw4403Mnz4cJYuXQq4QPWUKVMA6N69O9999x1vvfUWOTk5PPXUUyXWYFZV8vLy2L9/\nf0HpzP3790ckb/v27alZsyaPP/44v/32G7m5uXz77bcsXLiwjBpILbwscNuuqreo6smB7TZV3REL\n4WLN6NHw4Yfw2mtwUBRKGPlRL8Hy6BRiukgsxo8fz4EDBwpmHl122WUFD/iLL76YwYMH07t3b2rX\nrs2JJ57IrFmzAKhXrx5TpkxhyJAh1KtXj1WrVtG5c+ew/YgIkyZNonr16gWlM4855phi24UrpVm5\ncmVmzJhBVlYWzZs3p379+lx//fXs2rUrWupIasKmxBCR6bj1CsW92qqqxqzucyxSYrz3HlxzDXz2\nGTRrVv77heY4ilYswRZ1FZLKurCUGEYkxCxXkoj8jEuTPQn4Iv904F9V1Q8j7ays+G0YvvkGzj7b\n1VXo2LF897IcR0Y0MMNgREIs6zE0BM4F+gS2d4FJqvpdpJ0kMlu2wAUXwKhR5TcKNuPIMIxUoKSV\nzzmq+r6q9seV2lwFfCgiUZyrE1/27YOLL4b+/eHKK8t+n1jWXja/eiGmC8PwhxJDrCJSDfgL0BtI\nw6Xffst/sfxHFa6+Gpo2hYyMst/HRgmGYaQaJcUYJgB/wpXafE1Vv4mlYCGyRD3G8MADLuCcmQnV\nq0d+vcUSDD+xGIMRCbEMPucBv4a5TlW1VqSdlZVoG4ZJk2DIEFezuSyZgv2acWQY+ZhhMCIhZoV6\nVLWSqtYMs8XMKESb+fPdIrbp0yM3CrGMJYTD/OqFmC4Mwx+isIwrefjhB+jRA8aOhVatIrvWYgmG\nYVQUvKTESAl27XKJ8e66y/3rlUQYJQSTqgu6yoLpwgjHxx9/TMuWLWPa57p166hZs2ZKuAArhGHI\nyYHevaFTJ/j7371fZzmODKN4xo0bx4knnsghhxxCw4YN+etf/8rOnTvjJk+lSpVYs6Ywt+fpp5/O\n8uXLfekrXD3qpk2bsnv37pR4RlQIw3DnnXDgADz9tLfSnIk2SgjG/OqFmC7iw8iRIxkyZAgjR45k\n165dzJ8/nx9++IFzzz2X7OzsqPeXm5vrqV2s3tRLqkedKqS8YXjmGZg5E6ZMgYMPLr29jRIMIzy7\ndu0iIyOD0aNH07VrVypXrsxRRx3F66+/ztq1a5k4cSLgympeeuml9O7dm1q1atG2bVuWLFlScJ+S\nymrmX9uvXz9q167Nyy+/zIIFC+jQoQN169blyCOP5JZbbikwQvk1FFq3bk3NmjWZMmUKmZmZRWo6\npKWlMXLkSFq3bk2dOnXo3bt3kYysjz/+eEFJ0hdeeOF3IxAvrF27lkqVKhWUM01PT2fo0KF07tyZ\nWrVqcd5557Ft27aC9vPnz6djx47UrVuXNm3a8OGHMcsyVDplqe4T640yVnCbPdtVYVu5svS25amq\nZhjRpqy/eb95//339aCDDtLc3NzffTZgwADt06ePqrrqaQcffLC+8cYbmpOToyNGjNBmzZppTk6O\n5ubm6sknn6wPPfSQZmdn65o1a7R58+Y6a9asItdOmzZNVVV/++03XbRokX7xxReam5ura9eu1eOO\nO05HjRpV0LeI6OrVqwuO582bp40bNy44TktL01NPPVU3b96s27dv1+OOO06fffbZgu90xBFH6NKl\nS3Xv3r165ZVXaqVKlYrcL5j09PRiq8t9//33KiIFujnzzDO1RYsWunLlSv3tt980PT1dhwwZoqqq\nGzZs0MMOO0zfD5SInDNnjh522GH6888/e/yfKEq43wtlrOCWsiOGZctcmovXX4cWLUpua6MEI+kQ\nic4WIVu3bqVevXrFFuM54ogj2Lp1a8Fxu3bt6NGjB5UrV2bQoEHs27ePzz//nAULFrB161buu+8+\nDjroIJo1a8a1117L5MmTC67t2LEjF17oEjhXq1aNk08+mfbt21OpUiWOOuoorr/++ojfsG+99VaO\nOOII6tatywUXXEBWVhYAr7/+OldffTXHHXcc1atX54EHHoiKW0pEuOqqq2jRogXVqlWjV69eBX1O\nnDiR7t270y1QIrJLly60a9eO9957r9z9RoOUnK76889u5tHjj0NJlfqScfVyKqeajpQKrYs4zXyp\nV68eW7duJS8v73fGYfPmzdSvX7/gOLhcp4jQuHFjNm3ahIiUWlYztNTnihUrGDRoEIsWLWLv3r3k\n5OTQrl27iGQ/ImjhUvXq1dm8eXOB3O3btw/bd3kI7XPPnj2AK3U6ZcoUpk+fXvB5Tk5OkXKp8STl\nRgz797u1Cr16wcCB4dvZKMEwIqdDhw5UrVqVN954o8j5PXv2MHPmTM4555yCc8HlOfPy8tiwYQON\nGjUqKKu5Y8eOgm3Xrl3MmDEDKD64e9NNN3H88cezatUqdu7cycMPP1zgyy8vDRs2LCJrSWVFo0XT\npk3p169fER3s3r2bu+++2/e+vZBShkEVrr8e6teHhx8uvk0izzjyQoV9Qy4G00XsqV27NsOGDeOW\nW25h1qxZZGdns3btWnr16kWTJk3o169fQdtFixYVlOscNWoU1apV47TTTuOUU04psaxmcW6cPXv2\nULNmTWrUqMHy5ct55plninx++OGHs3r16oi+S34/vXr1YuzYsSxfvpy9e/fy0EMPlXptdnZ2QVnR\nffv2kZOTU2IfofTt25fp06cze/ZscnNz2bdvH5mZmWzcuDGi7+AXKWUYHn0Uvv0WJkxwdZtDsVGC\nYZSfu+66i+HDh3PnnXdSu3ZtTjvtNI466ijmzp3LwYGpfyLCRRddxGuvvcahhx7KK6+8wptvvknl\nypVLLatZ3IhhxIgRvPrqq9SqVYvrr7+e3r17F2mTkZHBgAEDqFu3LlOnTi11Smnw5926dePWW2/l\nrLPO4o9//CMdOnQAoGrVqmGvv+mmmwrKitaoUYOrr766xFKioX02btyYadOmMXz4cBo0aEDTpk0Z\nOXJk1EZB5SVsEr1EwksSvalT4fbbXWK8I0MGAMkYSwhHhfarh5DKukj2JHoPPPAAq1atYsKECfEW\nJWKWLVvGiSeeyIEDB4oNsiciMUuil0wsWAA33eRKc4YaBRslGEbsSTaj9tZbb7F//3527NjB4MGD\nufDCC5PGKPhB0n/z9etdFbbnn4eTTy48n+yxhHCk6htyWTBdJC7Jtjp4zJgxHH744bRo0YKDDz74\ndzGMikZSu5L27IHTT4c+fSA4mG/1EoxkJ9ldSUZsMVdSgNxct4Dt5JNdxlRI3VFCMJYfqBDThWH4\nQ9IucBsyBHbudDmQRKxegmEYRrRISlfSCy/AY4+5amw166TOjCPDyMdcSUYkxKzmcyIRbBjmzXO1\nFT76CPbWsliCkZrYy40RKUkTYxCRbiKyXERWisjgMG2eCnz+tYicVNL9VqxwRmH8Kwd4dVNqxxLC\nYX71QlJZF5Fmw5w3b17csyAnylZRdRFNfDMMIlIZGA10A44H+ojIcSFtugMtVPUY4Hog7Byx7dtd\nYrwbhi3m7lUVd11CfnZGw3QRjOmiENNF+fFzxNAeWKWqa1U1G5gMXBTS5kLgZQBV/QKoIyKHF3ez\nSy49wGGXDuPZXyveKCGYX375Jd4iJAymi0JMF4WYLsqPn7OSGgHBaQo3AKd6aNMY2BJ6s6xTTqHz\nn5rwxoU248gwDMNP/DQMXp1eoX6gYq/7Z487uK69zThau3ZtvEVIGEwXhZguCjFdlB/fZiWJyGlA\nhqp2CxzfA+Sp6mNBbZ4FMlV1cuB4OXCmqm4JuVfiT50yDMNIQLQMs5L8HDEsBI4RkTRgE3A50Cek\nzTvAzcDkgCH5JdQoQNm+mGEYhlE2fDMMqpojIjcDs4DKwIuqukxEbgh8/pyqvici3UVkFfArcJVf\n8hiGYRjeSIoFboZhGEbsSKgketFeEJfMlKYLEbkyoIMlIvKpiLSKh5yxwMvvItDuFBHJEZEesZQv\nVnj8+0gXkcUi8q2IZMZYxJjh4e+jnojMFJGsgC4GxkHMmCAiL4nIFhH5poQ2kT03471aL2jVXmVg\nFZAGHAxkAceFtOkOvBfYPxWYH2+546iLDkDtwH63iqyLoHYfADOAnvGWO06/iTrAd0DjwHG9eMsd\nR11kAI/k6wHYBhwUb9l90sfpwEnAN2E+j/i5mUgjhqguiEtyStWFqn6uqjsDh1/g1n+kIl5+FwC3\nAFOBn2MpXAzxoocrgDdUdQOAqm6NsYyxwosuNgO1Avu1gG2qmhNDGWOGqn4M7CihScTPzUQyDMUt\ndmvkoU0qPhC96CKYa4D3fJUofpSqCxFphHsw5KdUScXAmZffxDHAoSIyT0QWiki/mEkXW7zo4nng\nTyKyCfgauC1GsiUiET83E6keQ1QXxCU5nr+TiJwFXA108k+cuOJFF6OAIaqq4lZApuL0Zi96OBg4\nGTgHqAF8LiLzVXWlr5LFHi+6uBfIUtV0ETkamCMirVV1t8+yJSoRPTcTyTBsBJoEHTfBWbaS2jQO\nnEs1vOiCQMD5eaCbqpY0lExmvOiiLW4tDDh/8p9FJFtV34mNiDHBix7WA1tV9TfgNxH5CGgNpJph\n8KKLjsDDAKq6WkS+B47Fra+qaET83EwkV1LBgjgRqYJbEBf6h/0O0B8KVlYXuyAuBShVFyLSFHgT\n6Kuqq+IgY6woVReq2lxVm6lqM1yc4aYUMwrg7e9jGtBZRCqLSA1coHFpjOWMBV50sRzoAhDwpx8L\nrImplIlDxM/NhBkxqC2IK8CLLoChQF3gmcCbcraqto+XzH7hURcpj8e/j+UiMhNYAuQBz6tqyhkG\nj7+J4cBYEfka9wJ8t6puj5vQPiIik4AzgXoish4YhnMrlvm5aQvcDMMwjCIkkivJMAzDSADMMBiG\nYRhFMMNgGIZhFMEMg2EYhlEEMwyGYRhGEcwwGIZhGEUww1CBEZE8EZkQdHyQiPwsItNLuW6giDwd\nYV+TAil/y52zRkTuDTn+tLz3LKW/loH0zYtEpFnIZ3ui1MdRIhJa4TDqiMgNkeRQCiwi+yaw305E\n/lWOvh8QkXOKOZ9e2m/OiC0Js8DNiAu/4hKNVVPVfcC5uNQCpS1uiWjxi4gcAbRT1WOK+ayyquZG\ncj/gHtwCJieMqt95oi4Gpqjqw8V8Fq2FQM1w2VEnRel+xVKeBYGqupBypJRQ1WFlvdaILTZiMN4D\n/hLY74N7MAmAiBwqIm8H3vQ/F5ETQy8WkfoiMlVEvgxsHYvpYzbQKFBAprOIZIrIkyKyALhNRM4X\nkfki8pWIzBGRBoF7/0FExoorRvS1iPQQkUeA6oF7TQi02xP4V0TknyLyTeCaXoHz6YE+p4jIMhGZ\nWJwiRKRNQI6vReRNEakjIt1xmTlvEpEPwlz3f4ERxedBsherFxHJEJEJIvKZiKwQkWsDt3kUOD3w\nvW4LjCA+CoxSFolIh9K+i4i0DXy2UFyRmiOKkTVDRO4I7GeKyKMi8oWI/E9EOhf3/YKuLXizF5HD\nRGS2uCI4z4vI2sDvpWCEEWh3p4gMC+yPE5Gegf1uAfkXAZeU1K8RB+JdZMK2+G3AbuBEYApQFViM\nW1o/PfD508D9gf2zgMWB/YHA04H9V4FOgf2mwNJi+jmKoCIiwDxgdNBxnaD9a4ERgf3HgCdC2wG7\nQ79H4N+eOCMkQAPgB+AIIB34BTgy8Nln+TKH3GcJcHpg/wHgycD+MGBQGB3mAX8JkvcfJekFV0Bm\ncUDfhwHrgIbBeg+0qw5UDewfAywI7Bf7XXApED4DDgu0uxyXKiJU3oLvEvh/+Gdg/8/AnGLap+X/\n3wX6zv9tPAXcF9jvHtDDocHtA5/dAQwN7I8FegDVAt/76MD514B34v33YFvhZq6kCo6qfiMiabjR\nwrshH3fC/SGjqvMCb4k1Q9p0AY4TKcjqW1NEaqjq3qA2xaXBfi1ov4mIvI57iFehMNnZObgHXL6s\nv5TydToDr6p72vwkIh8CpwC7gC9VdROAiGThHmAFsQkRqY2riPdx4NTLOIOZL3+4VN4HVDVfb4tw\n7jgoXi+H4FxP01R1P7BfRObhCs+EfrcqwGgRaQ3k4oxDPsV9l53An4D/BvqsDGwKI3Mwbwb+/Spw\nH7AbHxgAAAJpSURBVK+cTuBNX10unpKy+0rIfkvge1VdHTg3Ebg+gr4NnzHDYIDLvjgC99ZaP+Sz\n0vK4C3Cqqh6IsM9fg/afxo0SZojImbi36nD9l4QW0z5f3v1B53Ip/bcffJ+S4gjZQft5QfctVi9B\nhiKYvGLO3Q5sVtV+IlIZ2Bf0Wbjv8p2qFufKK4n8e3nRSSjFfZkcirqoq/N7/RX3GzISCIsxGAAv\nARmq+l3I+Y+BK8H5l4GfVTV0Fs5s4Nb8AxFp47HP4IdBLQrfbgcGnZ8D/C3o3nUCu9kiUtxD7GPg\nchGpJCL1gTOAL/Hw4FFXJnVHkJ+9H5BZjKxeCacXAS4SkaoichjOPbMA59YLHo3VAn4M7PfHjQDC\nig/8D6gvLq0yInKwiBwfpn00HsQf4YLliMifcZl+AbYADQLxhqrA+cXIuhxIE5HmgXO+z8YyIsMM\nQ8VGAVR1o6qODjqX/0aXAbQVl7p4ODCgmDa3Au0CAdvvCO8SKOmtMQOYIiILcTWb8z/7P6BuIJic\nhXuIAowBlkjhVNv87/EWLk7wNTAXuEtVfwqRN5w8BL7fPwPftxXwYDHft6Tv5UUvGpBxHvA58KCq\n/hg4lxsIYt8G/AcYEPjexwJ7QvopKoSrfXwp8FjgmsVABw8yR3o+f/8B4AwR+RbnUloXJMeDOIM8\nm2LqQQTcaNcD7waCz1tK6NuIA5Z22zBiSGCGzh5VHRlvWaKJuAppbTVFax5UNGzEYBixJxXfxlLx\nO1VYbMRgGIZhFMFGDIZhGEYRzDAYhmEYRTDDYBiGYRTBDINhGIZRBDMMhmEYRhHMMBiGYRhF+H9x\nzM+VsnViXQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f17518>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mole fraction of heptane in vapour phase 0.575\n",
+ "mole fraction of heptane in liquid phase 0.387\n",
+ "Temperature is 113 degree C\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.5: Page 366"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.5\n",
+ "# Page: 366\n",
+ "\n",
+ "print'Illustration 9.5 - Page: 366\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import numpy\n",
+ "import pylab\n",
+ "import numpy.linalg as lin\n",
+ "#****Data****#\n",
+ "Pt = 760.0;# [mm Hg]\n",
+ "zFa = 0.5;# [mol fraction benzene]\n",
+ "zFb = 0.25;# [mol fraction toulene]\n",
+ "zFc = 0.25;# [mol fraction o-xylene]\n",
+ "#********#\n",
+ "\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol feed]\n",
+ "# For Summtion of Yd_star to be unity, W/D = 2.08 \n",
+ "# The Eqn.are \n",
+ "# (1): W+D = F \n",
+ "# (2): W-2.08D = 0\n",
+ "a =numpy.array([[1.0 ,1.0],[1.0 ,-2.08]]);\n",
+ "b = numpy.array([[F*1.0],[0]]);\n",
+ "soln = lin.solve(a,b)\n",
+ "W = soln[0];\n",
+ "D = soln[1];\n",
+ "Sub = ['A','B','C'];\n",
+ "p =numpy.array([1370 ,550, 200]);# [mm Hg]\n",
+ "m = numpy.zeros(3);\n",
+ "zF = [zFa ,zFb, zFc];# [Given]\n",
+ "yd_star = numpy.array([0,0,0]);\n",
+ "xW = numpy.zeros(3);\n",
+ "\n",
+ "for i in range(0,3):\n",
+ " m[i] = p[i]/Pt;\n",
+ " yd_star[i]=(zF[i])*((W/D)+1)#/(1+(W/(D*m[i])));\n",
+ " xW[i] = yd_star[i]/m[i];\n",
+ "\n",
+ "print\"\\t \\t \\t \\t \\t \\t \\t \\t At W/D = 2.08\\n\\n\\n\"\n",
+ "print\"Substance \\t \\t p(mm Hg)\\t \\t m\\t \\t \\t \\t \\t \\t \\t \\t \\t \\t zF\\t \\t \\t \\t \\t \\t \\t yd*\\t\\t\\t\\t\\t\\txW\\n\"\n",
+ "for i in range(0,3):\n",
+ " print \"\\n\",Sub[i],\" \\t \\t \\t \\t \",p[i],\"\\t \\t \\t \\t \",m[i],\"\\t \\t \\t\",m[i],\"\\t \\t \\t\",zF[i],\" \\t \\t \\t\",yd_star[i],\"\\t\",xW[i]\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.5 - Page: 366\n",
+ "\n",
+ "\n",
+ "\t \t \t \t \t \t \t \t At W/D = 2.08\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Substance \t \t p(mm Hg)\t \t m\t \t \t \t \t \t \t \t \t \t zF\t \t \t \t \t \t \t yd*\t\t\t\t\t\txW\n",
+ "\n",
+ "\n",
+ "A \t \t \t \t 1370 \t \t \t \t 1.80263157895 \t \t \t1.80263157895 \t \t \t0.5 \t \t \t1 \t0.554744525547\n",
+ "\n",
+ "B \t \t \t \t 550 \t \t \t \t 0.723684210526 \t \t \t0.723684210526 \t \t \t0.25 \t \t \t0 \t0.0\n",
+ "\n",
+ "C \t \t \t \t 200 \t \t \t \t 0.263157894737 \t \t \t0.263157894737 \t \t \t0.25 \t \t \t0 \t0.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 74
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.6: Page 370"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.6\n",
+ "# Page: 370\n",
+ "\n",
+ "print'Illustration 9.6 - Page: 370\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol]\n",
+ "xF = 0.5;\n",
+ "D = 0.6*100;# [mol]\n",
+ "#******#\n",
+ "\n",
+ "W = F-D;# [mol]\n",
+ "# From Illustration 9.1:\n",
+ "alpha = 2.16;# [average value of alpha]\n",
+ "# From Eqn.9.46;\n",
+ "def f45(xW):\n",
+ " return math.log(F*xF/(W*xW))-(alpha*math.log(F*(1-xF)/(W*(1-xW))))\n",
+ "xW = fsolve(f45,0.5);# [mole fraction heptane]\n",
+ "def f46(yD):\n",
+ " return F*xF-((D*yD)+(W*xW))\n",
+ "yD = fsolve(f46,100);# [mole fraction heptane]\n",
+ "print\"Mole Fraction of heptane in the distillate is \",round(yD,3),\"\\n\"\n",
+ "print\"Mole Fraction of heptane in the residue is \",round(xW,3),\" \\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.6 - Page: 370\n",
+ "\n",
+ "\n",
+ "Mole Fraction of heptane in the distillate is 0.615 \n",
+ "\n",
+ "Mole Fraction of heptane in the residue is 0.328 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 75
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.7: Page 371"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.7\n",
+ "# Page: 371\n",
+ "from scipy.optimize import fsolve\n",
+ "print'Illustration 9.7 - Page: 371\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "#****Data****#\n",
+ "# a:benzene b:toulene c:o-xylene\n",
+ "# Assume:\n",
+ "Bt = 100.0;#[OC]\n",
+ "pa = 1370.0;# [mm Hg]\n",
+ "pb = 550.0;# [mm Hg]\n",
+ "pc = 200.0;# [mm Hg]\n",
+ "xFa = 0.5;# [mole fraction]\n",
+ "xFb = 0.25;# [mole fraction]\n",
+ "xFc = 0.25;# [mole fraction]\n",
+ "# Basis:\n",
+ "F = 100.0;# [mol]\n",
+ "D = 32.5;# [mol]\n",
+ "#*******#\n",
+ "\n",
+ "ref = pb;\n",
+ "alpha_a = pa/ref;\n",
+ "alpha_b = pb/ref;\n",
+ "alpha_c = pc/ref;\n",
+ "W = F-D;# [mol]\n",
+ "xbW = 0.3;# [mol]\n",
+ "xaW = 0.4;# [mol]\n",
+ "xcW = 0.3;# [mol]\n",
+ "err = 1.0;\n",
+ "while(err>(10**(-1))):\n",
+ " # From Eqn. 9.47:\n",
+ " def f47(xaW):\n",
+ " return math.log(F*xFa/(W*xaW))-(alpha_a*math.log(F*xFb/(W*xbW)))\n",
+ " xaW = fsolve(f47,xbW);\n",
+ " def f48(xcW):\n",
+ " return math.log(F*xFc/(W*xcW))-(alpha_c*math.log(F*xFb/(W*xbW)))\n",
+ " xcW = fsolve(f48,xbW);\n",
+ " xbW_n = 1-(xaW+xcW);\n",
+ " err = abs(xbW-xbW_n);\n",
+ " xbw = xbW_n;\n",
+ "\n",
+ "# Material balance:\n",
+ "# for A:\n",
+ "def f49(yaD):\n",
+ " return F*xFa-((D*yaD)+(W*xaW))\n",
+ "yaD = fsolve(f49,100);# [mole fraction benzene]\n",
+ "# For B:\n",
+ "def f50(ybD):\n",
+ " return F*xFb-((D*ybD)+(W*xbW))\n",
+ "ybD = fsolve(f50,100);# [mole fraction toulene]\n",
+ "# For C:\n",
+ "def f51(ycD):\n",
+ " return F*xFc-((D*ycD)+(W*xcW))\n",
+ "ycD = fsolve(f51,100);# [mole fraction o-xylene]\n",
+ "print\"The residual compositions are:\\n\"\n",
+ "print\"Benzene:\\n\",round(xaW,3)\n",
+ "print\"Toulene:\\n\",round(xbW,3)\n",
+ "print\"o-xylene:\\n\",round(xcW,3)\n",
+ "print\"\\n The composited distillate compositions are:\\n\"\n",
+ "print\"Benzene:\\n\",round(yaD,3)\n",
+ "print\"Toulene:\\n\",round(ybD,3)\n",
+ "print\"o-xylene:\\n\",round(ycD,3)\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.7 - Page: 371\n",
+ "\n",
+ "\n",
+ "The residual compositions are:\n",
+ "\n",
+ "Benzene:\n",
+ "0.438\n",
+ "Toulene:\n",
+ "0.3\n",
+ "o-xylene:\n",
+ "0.343\n",
+ "\n",
+ " The composited distillate compositions are:\n",
+ "\n",
+ "Benzene:\n",
+ "0.628\n",
+ "Toulene:\n",
+ "0.146\n",
+ "o-xylene:\n",
+ "0.057\n"
+ ]
+ }
+ ],
+ "prompt_number": 76
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.8: Page 388"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.8\n",
+ "# Page: 388\n",
+ "\n",
+ "print'Illustration 9.8 - Page: 388\\n\\n'\n",
+ "import numpy.linalg as lin\n",
+ "# solution\n",
+ "\n",
+ "#****Data*****#\n",
+ "# a:methanol b:water\n",
+ "Xa = 0.5;# [Wt fraction]\n",
+ "Temp1 = 26.7;# [OC]\n",
+ "Temp2 = 37.8;# [OC]\n",
+ "F1 = 5000.0;# [kg/hr]\n",
+ "#******#\n",
+ "\n",
+ "#(a)\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "Xa = 0.5;# [Wt fraction]\n",
+ "Xb = 1-Xa;# [Wt fraction]\n",
+ "Temp1 = 26.7;# [OC]\n",
+ "Temp2 = 37.8;# [OC]\n",
+ "F1 = 5000.0;# [kg/hr];\n",
+ "# Basis: 1hr\n",
+ "F = (F1*Xa/Ma)+(F1*Xb/Mb);# [kmol/hr]\n",
+ "# For feed:\n",
+ "zF = (F1*Xa/Ma)/F;# [mole fracton methanol]\n",
+ "MavF = F1/F;# [kg/kmol]\n",
+ "# For distillate:\n",
+ "xD = (95/Ma)/((95/Ma)+(5/Mb));# [mole fraction methanol]\n",
+ "MavD = 100.0/((95/Ma)+(5/Mb));# [kg/kmol]\n",
+ "# For residue:\n",
+ "xW = (1/Ma)/((1/Ma)+(99/Mb));# [mole fraction methanol]\n",
+ "MavR = 100/((1/Ma)+(99/Mb));# [kg/kmol]\n",
+ "# (1): D+W = F [Eqn.9.75]\n",
+ "# (2): D*xD+W*xW = F*zF [Eqn. 9.76]\n",
+ "# Solvving simultaneously:\n",
+ "a = numpy.array([[1.0 ,1.0],[xD ,xW]]);\n",
+ "b = numpy.array([F,F*zF]);\n",
+ "soln = lin.solve(a,b);\n",
+ "D = soln[0];# [kmol/h]\n",
+ "W = soln[1];# [kmol/h]\n",
+ "print\"Quantity of Distillate is\", round(D*MavD),\" kg/hr\\n\"\n",
+ "print\"Quantity of Residue is \",round(W*MavR),\" kg/hr\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (b)\n",
+ "# For the vapour-liquid equilibria:\n",
+ "Tempo = 19.69;# [Base Temp. according to \"International Critical Tables\"]\n",
+ "BtR = 99.0;# [Bubble point of the residue, OC]\n",
+ "hR = 4179.0;# [J/kg K]\n",
+ "hF = 3852.0;# [J/kg K]\n",
+ "def f52(tF):\n",
+ " return (F1*hF*(tF-Temp1))-((W*MavR)*hR*(BtR-Temp2))\n",
+ "tF = fsolve(f52,Temp1);# [OC]\n",
+ "BtF = 76.0;# [Bubble point of feed, OC]\n",
+ "# For the feed:\n",
+ "delta_Hs = -902.5;# [kJ/kmol]\n",
+ "Hf = ((hF/1000.0)*MavF*(tF-Tempo))+delta_Hs;# [kJ/kmol]\n",
+ "# From Fig 9.27:\n",
+ "HD = 6000.0;# [kJ/kmol]\n",
+ "HLo = 3640.0;# [kJ/kmol]\n",
+ "HW = 6000.0;# [kJ/kmol]\n",
+ "print\"The enthalpy of feed is \",round(Hf),\" kJ/kmol\\n\"\n",
+ "print\"The enthalpy of the residue is \",round(HW),\" kJ/kmol\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (c)\n",
+ "# From Fig.9.27:\n",
+ "# The miium reflux ratio is established by the tie line (x = 0.37 y = 0.71), which extended pass through F,the feed.\n",
+ "# At Dm:\n",
+ "Qm = 62570.0;# [kJ/kmol]\n",
+ "Hg1 = 38610.0;# [kJ/kmol]\n",
+ "# From Eqn. 9.65:\n",
+ "Rm = (Qm-Hg1)/(Hg1-HLo);\n",
+ "print\"The minimum reflux ratio is \",round(Rm,4),\"\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (d)\n",
+ "# From Fig. 9.28:\n",
+ "Np = 4.9;\n",
+ "# But it include the reboiler.\n",
+ "Nm = Np-1;\n",
+ "print\"The minimum number of theoretical trays required is \",round(Nm),\" \\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (e)\n",
+ "R = 1.5*Rm;\n",
+ "# Eqn. 9.65:\n",
+ "def f53(Q_prime):\n",
+ " return R-((Q_prime-Hg1)/(Hg1-HLo))\n",
+ "Q_prime = fsolve(f53,2);# [kJ/kmol]\n",
+ "def f54(Qc):\n",
+ " return Q_prime-(HD+(Qc/D))\n",
+ "Qc = fsolve(f54,2);# [kJ/hr]\n",
+ "Qc = Qc/3600.0;# [kW]\n",
+ "print\"The Condensor heat load is \",round(Qc),\" kW\\n\"\n",
+ "# From Eqn. 9.77:\n",
+ "def f55(Q_dprime):\n",
+ " return (F*Hf)-((D*Q_prime)+(W*Q_dprime))\n",
+ "Q_dprime = fsolve(f55,2);\n",
+ "def f56(Qb):\n",
+ " return Q_dprime-(HW-(Qb/W))\n",
+ "Qb = fsolve(f56,2);# [kJ/hr]\n",
+ "Qb = Qb/3600.0;# [kW]\n",
+ "print\"The Reboiler heat load is \",round(Qb),\" kW\\n\"\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# (f)\n",
+ "# From Fig: 9.28\n",
+ "Np = 9.0;\n",
+ "# But it is including the reboiler\n",
+ "print\"No. of theoretical trays in tower is\",Np-1,\"\\n\",\n",
+ "G1 = D*(R+1);# [kmol/hr]\n",
+ "Lo = D*R;# [kmol/hr]\n",
+ "# From Fig. 9.28:\n",
+ "# At the feed tray:\n",
+ "x4 = 0.415;\n",
+ "y5 = 0.676;\n",
+ "x5 = 0.318;\n",
+ "y6 = 0.554;\n",
+ "# From Eqn. 9.64:\n",
+ "def f57(L4):\n",
+ " return (L4/D)-((xD-y5)/(y5-x4))\n",
+ "L4 = fsolve(f57,2);# [kmol/hr]\n",
+ "# From Eqn. 9.62:\n",
+ "def f58(G5):\n",
+ " return (L4/G5)-((xD-y5)/(xD-x4))\n",
+ "G5 = fsolve(f58,2);# [kmol/hr]\n",
+ "# From Eqn. 9.74:\n",
+ "def f59(L5_bar):\n",
+ " return (L5_bar/W)-((y6-xW)/(y6-x5))\n",
+ "L5_bar = fsolve(f59,2);# [kmol/hr]\n",
+ "# From Eqn. 9.72:\n",
+ "def f60(G6_bar):\n",
+ " return (L5_bar/G6_bar)-((y6-xW)/(x5-xW))\n",
+ "G6_bar = fsolve(f60,2);# [kmol/hr]\n",
+ "# At the bottom:\n",
+ "# Material Balance:\n",
+ "# Eqn. 9.66:\n",
+ "# (1): L8_bar-GW_bar = W;\n",
+ "# From Fig. 9.28:\n",
+ "yW = 0.035;\n",
+ "x8 = 0.02;\n",
+ "# From Eqn. 9.72:\n",
+ "L8ByGW_bar = (yW-xW)/(x8-xW);\n",
+ "# (2): L8_bar-(L8ByGW_bar*Gw_bar) = 0\n",
+ "a = numpy.array([[1 ,-1],[1 ,-L8ByGW_bar]]);\n",
+ "b = numpy.array([W,0]);\n",
+ "soln = lin.solve(a,b)\n",
+ "L8_bar = soln[0];# [kmol/h]\n",
+ "GW_bar = soln[1];# [kmol/h]\n",
+ "print\"The Liquid quantity inside the tower is \",round(L8_bar),\" kmol/hr\\n\"\n",
+ "print\"The vapour quantity inside the tower is \",round(GW_bar),\" kmol/hr\\n\"\n",
+ "# The answers are slightly different in textbook due to approximation while in python the answers are precise\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.8 - Page: 388\n",
+ "\n",
+ "\n",
+ "Quantity of Distillate is 2606.0 kg/hr\n",
+ "\n",
+ "Quantity of Residue is 2394.0 kg/hr\n",
+ "\n",
+ "\n",
+ "\n",
+ "The enthalpy of feed is 2545.0 kJ/kmol\n",
+ "\n",
+ "The enthalpy of the residue is 6000.0 kJ/kmol\n",
+ "\n",
+ "\n",
+ "\n",
+ "The minimum reflux ratio is 0.6852 \n",
+ "\n",
+ "\n",
+ "\n",
+ "The minimum number of theoretical trays required is 4.0 \n",
+ "\n",
+ "\n",
+ "\n",
+ "The Condensor heat load is 1609.0 kW\n",
+ "\n",
+ "The Reboiler heat load is 1817.0 kW\n",
+ "\n",
+ "\n",
+ "\n",
+ "No. of theoretical trays in tower is 8.0 \n",
+ "The Liquid quantity inside the tower is 259.0 kmol/hr\n",
+ "\n",
+ "The vapour quantity inside the tower is 127.0 kmol/hr\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 77
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.9: Page 395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 9.9\n",
+ "# Page: 395\n",
+ "\n",
+ "print'Illustration 9.9 - Page: 395\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "import scipy\n",
+ "import numpy\n",
+ "import numpy.linalg as lin\n",
+ "\n",
+ "#****Data****#\n",
+ "P = 695.0;# [kN/square m]\n",
+ "#********#\n",
+ "\n",
+ "# a:methanol b:water\n",
+ "# From Illustration 9.8:\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "F = 216.8;# [kmol/h]\n",
+ "Tempo = 19.7;# [OC]\n",
+ "zF = 0.360;# [mole fraction methanol]\n",
+ "HF = 2533;# [kJ/kmol]\n",
+ "D = 84.4;# [kkmol/h]\n",
+ "zD = 0.915;# [mole fraction methanol]\n",
+ "HD = 3640.0;# [kJ/kmol]\n",
+ "Qc = 5990000.0;# [kJ/h]\n",
+ "# Since the bottom will essentially be pure water:\n",
+ "HW = 6094.0;# [kJ/kmol]\n",
+ "# From Steam tables:\n",
+ "Hs = 2699.0;# [enthalpy of saturated steam, kJ/kg]\n",
+ "hW = 4.2*(Tempo-0);# [enthalpy of water, kJ/kg]\n",
+ "HgNpPlus1 = (Hs-hW)*Mb;# [kJ/kmol]\n",
+ "# (1): GNpPlus1-W = D-F [From Eqn. 9.86]\n",
+ "# (2): (GNpPlus1*HgNpPlus1)-(W*HW) = (D*HD)+Qc-(F*HF) [From Eqn. 9.88]\n",
+ "a = numpy.array([[1 ,-1],[HgNpPlus1 ,-HW]]);\n",
+ "b = numpy.array([[D-F],[(D*HD)+Qc-(F*HF)]]);\n",
+ "soln=lin.solve(a,b)\n",
+ "GNpPlus1 = soln[0];# [kmol/h]\n",
+ "W = soln[1];# [kmol/h]\n",
+ "# From Eqn. 9.87:\n",
+ "def f61(xW):\n",
+ " return (F*zF)-((D*zD)+(W*xW))\n",
+ "xW = fsolve(f61,2);\n",
+ "# The enthalpy of the solution at its bubble point is 6048 kJ/kmol, sufficiently closed to 6094 assumed earlier.\n",
+ "# For delta_w:\n",
+ "xdelta_w = W*xW/(W-GNpPlus1);\n",
+ "Q_dprime = ((W*HW)-(GNpPlus1*HgNpPlus1))/(W-GNpPlus1);# [kJ/kmol]\n",
+ "# From Fig 9.27 ad Fig. 9.28, and for the stripping section:\n",
+ "Np = 9.5;\n",
+ "print\"Steam Rate: \",round(GNpPlus1,1),\"kmol/h\\n\"\n",
+ "print\"Bottom Composition: xW:\",round(xW,5),\"\\n\"\n",
+ "print\"Number of theoretical stages: \",Np,\"\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.9 - Page: 395\n",
+ "\n",
+ "\n",
+ "Steam Rate: 159.7 kmol/h\n",
+ "\n",
+ "Bottom Composition: xW: 0.00281 \n",
+ "\n",
+ "Number of theoretical stages: 9.5 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 78
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.10: Page 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.10\n",
+ "# Page: 412\n",
+ "\n",
+ "print'Illustration 9.10 - Page: 412\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "# a:methanol b:water\n",
+ "Ma = 32.04;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "# Feed:\n",
+ "F1 = 5000;# [kg/h]\n",
+ "F = 216.8;# [kmol/h]\n",
+ "Tempo = 19.7;# [OC]\n",
+ "zF = 0.360;# [mole fraction methanol]\n",
+ "MavF = 23.1;# [kg/kmol]\n",
+ "Tempf = 58.3;# [OC]\n",
+ "# Distillate:\n",
+ "D1 = 2620;# [kg/h]\n",
+ "D = 84.4;# [kkmol/h]\n",
+ "xD = 0.915;# [mole fraction methanol]\n",
+ "# Residue:\n",
+ "R1 = 2380;# [kg/h]\n",
+ "R = 132.4;# [kmol/h]\n",
+ "xW = 0.00565;# [mole fraction methanol]\n",
+ "\n",
+ "# From Fig. 9.42 (Pg 413):\n",
+ "BtF = 76.0;# [Bubble point if the feed, OC]\n",
+ "DtF = 89.7;# [Dew point of the feed, OC]\n",
+ "# Latent heat of vaporisation at 76 OC\n",
+ "lambda_a = 1046.7;# [kJ/kg]\n",
+ "lambda_b = 2284;# [kJ/kg]\n",
+ "ha = 2.721;# [kJ/kg K]\n",
+ "hb = 4.187;# [kJ/kg K]\n",
+ "hF = 3.852;# [kJ/kg K]\n",
+ "# If heats of solution is ignaored:\n",
+ "# Enthalpy of the feed at the bubble point referred to the feed temp.\n",
+ "HF = hF*MavF*(BtF-Tempf);# [kJ/kmol]\n",
+ "# enthalpy of the saturated vapour at dew point referred to the liquid at feed temp.\n",
+ "HL = (zF*((ha*Ma*(DtF-Tempf))+(lambda_a*Ma)))+((1-zF)*((hb*Mb*(DtF-Tempf))+(lambda_b*Mb)));# [kJ/kmol]\n",
+ "q = HL/(HL-HF);\n",
+ "slope = q/(q-1);\n",
+ "# In fig. 9.42: xD,xW & zF are located on the 45 degree diagonal & the q line is drawn with slope = 'slope' .\n",
+ "# The operating line for minimum reflux ratio in this case pass through the intersection of the q line and the equilibrium curve.\n",
+ "ordinate = 0.57;\n",
+ "def f62(Rm):\n",
+ " return ordinate-(xD/(Rm+1))\n",
+ "Rm = fsolve(f62,0);# [mole reflux/mole distillate]\n",
+ "# from fig. 9.42 (Pg 413):\n",
+ "# The minimum number of theoretical trays is determied using the 45 degree diagonal as operating line.\n",
+ "Np = 4.9;# [including the reboiler]\n",
+ "R = 1.5*Rm;# [mole reflux/mole distillate]\n",
+ "# From Eqn. 9.49:\n",
+ "L = R*D;# [kmol/h]\n",
+ "# From Eqn. 9.115:\n",
+ "G = D*(R+1);# [kmol/h]\n",
+ "# From Eqn. 9.126:\n",
+ "L_bar = (q*F)+L;# [kmol/h]\n",
+ "# From Eqn. 9.127:\n",
+ "G_bar = (F*(q-1))+G;# [kmol/h]\n",
+ "ordinateN = xD/(R+1);\n",
+ "# As in Fig. 9.43:\n",
+ "# The y-intercept = ordinateN and enriching and exhausting operating lines are plotted.\n",
+ "# Number of theoretical stages are determined.\n",
+ "NpN = 8.8;# [including the reboiler]\n",
+ "print\"Number of theoretical stages is \",NpN-1,\"\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.10 - Page: 412\n",
+ "\n",
+ "\n",
+ "Number of theoretical stages is 7.8 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 79
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.11: Page 423"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.11\n",
+ "# Page: 423\n",
+ "\n",
+ "print'Illustration 9.11 - Page: 423\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "#****Data****#\n",
+ "# a:ethanol b:water\n",
+ "zF = 0.3;\n",
+ "xa = 0.3;# [mole fraction of ethanol]\n",
+ "Temp = 78.2;# [OC]\n",
+ "Ao = 0.0462;# [Area of perforations,square m]\n",
+ "t = 0.450;# [m]\n",
+ "#******#\n",
+ "\n",
+ "Ma = 46.05;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "xb = 1-xa;# [mole fraction of water]\n",
+ "ma = 0.3*Ma/((0.3*Ma)+(xb*Mb));# [mass fraction of ethanol]\n",
+ "mb = 1-ma;# [mass fraction of water]\n",
+ "\n",
+ "\n",
+ "# Feed:\n",
+ "F1 = 910.0;# [kg/h]\n",
+ "Xa = F1*ma/Ma;# [moles of ethanol]\n",
+ "Xb = F1*mb/Mb;# [moles of water]\n",
+ "F = Xa+Xb;# [Total moles]\n",
+ "# Distillate:\n",
+ "xD = 0.80;# [mole fraction of ethanol]\n",
+ "# If essentially all the ethanol is removed from the residue:\n",
+ "D = Xa/xD;# [kmol/h]\n",
+ "MavD = (xD*Ma)+((1-xD)*Mb);# [kg/kmol]\n",
+ "D1 = D*MavD;# [kg/h]\n",
+ "Density_G = (MavD/22.41)*(273.0/(273+Temp));# [kg/cubic meter]\n",
+ "Density_L = 744.9;# [kg/cubic meter]\n",
+ "sigma = 0.021;# [N/m]\n",
+ "\n",
+ "# From Table 6.2,Pg 169:\n",
+ "alpha = (0.0744*t)+0.01173;\n",
+ "beeta = (0.0304*t)+0.015;\n",
+ "At = math.pi*(0.760**2)/4;# [Tower cross sectional Area, square m]\n",
+ "WByT = 530.0/760;# [Table 6.1, Pg 162]\n",
+ "Ad = 0.0808*At;# [Downspout area,square m]\n",
+ "Aa = At-(2*Ad);# [Active area,square m]\n",
+ "# abcissa = (L/G)*(density_G/Density_L)^0.5\n",
+ "# Assume:\n",
+ "abcissa = 0.1;\n",
+ "# From Eqn.6.30:\n",
+ "Cf = (alpha*math.log10(1/abcissa)+beeta)*(sigma/0.020)**0.2;\n",
+ "# From Eqn. 6.29:\n",
+ "Vf = Cf*((Density_L-Density_G)/Density_G)**(1.0/2);# [m/s]\n",
+ "An = At-Ad;# [square m]\n",
+ "R = 3.0;# [Reflux Ratio]\n",
+ "G = D*(R+1);\n",
+ "G1 = (G*22.41/3600)*((273.0+Temp)/273);# [cubic meter/s]\n",
+ "V = G1/An;# [Vapour velocity,m/s]\n",
+ "percent = (V/Vf)*100;\n",
+ "# Vapour velocity is 58 percent of flooding velocity (amply safe)\n",
+ "L = R*D;# [kmol/h]\n",
+ "L1 = L*MavD;# [kg/h]\n",
+ "abcissa = (L1/(G1*3600.0*Density_G))*(Density_G/Density_L)**0.5;\n",
+ "# Since the value of abcissa is less than0.1, the calculaed value of Cf is correct.\n",
+ "# Since the feed is at the buubble point.\n",
+ "q = 1;\n",
+ "# From Eqn. 9.126:\n",
+ "L_bar = L+(q*F);# [kmol/h]\n",
+ "# From Eqn. 9.127:\n",
+ "G_bar = G+F*(q-1);# [kmol/h]\n",
+ "# The enthalpy of saturated steam,referred to 0 OC,69 kN/square m:\n",
+ "HGNpPlus1 = 2699.0;# [kN m/kg]\n",
+ "# This will be the enthalpy as it enters the tower if expanded adiabatically to the tower pressure\n",
+ "# The enthalpy of steam at 1 std. atm:\n",
+ "HGsat = 2676.0;# [kN m/kg]\n",
+ "Lambda = 2257.0;# [kN m/kg]\n",
+ "# From Eqn. 9.140:\n",
+ "def f63(GNpPlus1_bar):\n",
+ " return G_bar-(GNpPlus1_bar*(1+((HGNpPlus1-HGsat)*Mb/(Lambda*Mb))))\n",
+ "GNpPlus1_bar = fsolve(f63,7);\n",
+ "# From Eqn. 9.141:\n",
+ "LNp_bar = L_bar-(G_bar-GNpPlus1_bar);\n",
+ "\n",
+ "# Tray Efficiencies:\n",
+ "# Consider the situation:\n",
+ "x = 0.5;\n",
+ "y_star = 0.962;\n",
+ "Temp = 79.8;# [OC]\n",
+ "# This is in the enriching section.\n",
+ "Density_L = 791;# [kg/cubic meter]\n",
+ "Density_G = 1.253;# [kg/cubic meter]\n",
+ "# From equilibrium data:\n",
+ "m = 0.42;\n",
+ "A = L/(m*G);\n",
+ "# From chapter 2:\n",
+ "ScG = 0.930;\n",
+ "Dl = 2.065*10**(-9);# [square m/s]\n",
+ "# For L = 38.73 kmol/h\n",
+ "q = 4.36*10**(-4);# [cubic meter/s]\n",
+ "# For G = 51.64 kmol/h\n",
+ "Va = 1.046;# [m/s]\n",
+ "# From tray dimensions:\n",
+ "z = 0.647;# [m]\n",
+ "Z = 0.542;# [m]\n",
+ "hW = 0.06;# [m]\n",
+ "# From Eqn. 6.61:\n",
+ "NtG = (0.776+(4.57*hW)-(0.238*Va*Density_G**0.5)+(104.6*q/Z))/(ScG**0.5);\n",
+ "# From Eqn. 6.38\n",
+ "hL = 6.10*10**(-3)+(0.725*hW)-(0.238*hW*Va*(Density_G)**0.5)+(1.225*q/z);# [m]\n",
+ "# From Eqn. 6.64:\n",
+ "thetha_L = hL*z*Z/q;# [s]\n",
+ "# From Eqn. 6.62:\n",
+ "NtL = 40000*(Dl**0.5)*((0.213*Va*Density_G**0.5)+0.15)*thetha_L;\n",
+ "# From Eqn. 6.52:\n",
+ "NtoG = 1/((1/NtG)+(1/(A*NtL)));\n",
+ "# From Eqn. 6.51:\n",
+ "EoG = 1-math.exp(-NtoG);\n",
+ "# From Eqn. 6.63:\n",
+ "DE = ((3.93*10**(-3))+(0.0171*Va)+(3.67*q/Z)+(0.1800*hW))**2;\n",
+ "# From Eqn. 6.59:\n",
+ "Pe = Z**2/(DE*thetha_L);\n",
+ "# From Eqn. 6.58:\n",
+ "eta = (Pe/2)*((1+(4*m*G1*EoG/(L1*Pe)))**0.5-1);\n",
+ "# From Eqn. 6.57:\n",
+ "EMG = EoG*(((1-math.exp(-(eta+Pe)))/((eta+Pe)*(1+(eta+Pe)/eta)))+((math.exp(eta)-1)/(eta*(1+(eta/(eta+Pe))))));\n",
+ "# Entrainment is neglible:\n",
+ "# Similarly for other x\n",
+ "# Value = [x Entrainment]\n",
+ "#Value = [0 0.48;0.1 .543;0.3 0.74;0.5 EMG;0.7 0.72];\n",
+ "\n",
+ "# Tray Calculation:\n",
+ "op_intercept = xD/(R+1);\n",
+ "# From Fig. 9.48:\n",
+ "# The exhausting section operating line, on this scale plot, for all practical purposes passes through the origin.\n",
+ "# The broken curve is located so that, at each concentration, vertical distances corresponding to lines BC and AC are in the ratio of EMG.\n",
+ "# This curve is used instead of equilibrium trays to locate the ideal trays.\n",
+ "# The feed tray is thirteenth.\n",
+ "x14 = 0.0150;\n",
+ "alpha = 8.95;\n",
+ "EMG = 0.48;\n",
+ "A_bar = L_bar/(alpha*G_bar);\n",
+ "# From Eqn. 8.16:\n",
+ "Eo = math.log(1+(EMG*((1/A_bar)-1)))/math.log(1/A_bar);\n",
+ "# The 6 real trays corresponds to: \n",
+ "NRp = 6*Eo;\n",
+ "xW = 0.015/((math.exp(NRp*math.log(1/A_bar))-A_bar)/(1-A_bar));# [mole fraction ethanol]\n",
+ "# This corresponds to ethanol loss of 0.5 kg/day.\n",
+ "print\"The mole fraction of ethanol in residue is\",round(xW,8)\n",
+ "print\"The Reflux ratio of \",R,\" will cause the ethanol loss of 0.5 kg/day\\n\"\n",
+ "print\"Larger reflux ratios would reduce this, but the cost of additional steam will probaby make them not worthwile.\\n\"\n",
+ "print\"Smaller values of R, with corresponding reduced steam cost and larger ethanol loss, should be considered, but care must be taken to ensure vapour velocities above the weeping velocities.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.11 - Page: 423\n",
+ "\n",
+ "\n",
+ "The mole fraction of ethanol in residue is 6.28e-06\n",
+ "The Reflux ratio of 3.0 will cause the ethanol loss of 0.5 kg/day\n",
+ "\n",
+ "Larger reflux ratios would reduce this, but the cost of additional steam will probaby make them not worthwile.\n",
+ "\n",
+ "Smaller values of R, with corresponding reduced steam cost and larger ethanol loss, should be considered, but care must be taken to ensure vapour velocities above the weeping velocities.\n"
+ ]
+ }
+ ],
+ "prompt_number": 83
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex-9.12: Pg- 429"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Illustration 9.12\n",
+ "# Page: 429\n",
+ "\n",
+ "print'Illustration 9.12 - Page: 429\\n\\n'\n",
+ "\n",
+ "# solution\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "# a:methanol b:water\n",
+ "# Vapour and liquid quantities throughout the tower, as in Illustration 9.8, with the Eqn. 9.62, 9.64, 9.72, 9.74:\n",
+ "# Data = [x tL(OC) y tG(OC) Vapor(kmol/h) Vapor(kg/h) Liquid(kmol/h) Liquid(kg/h)]\n",
+ "Ma = 34.02;# [kg/kmol]\n",
+ "Mb = 18.02;# [kg/kmol]\n",
+ "Temp = 78.7;# [OC]\n",
+ "x = numpy.array([0.915, 0.600 ,0.370, 0.370, 0.200, 0.100, 0.02]);\n",
+ "y = numpy.array([0.915, 0.762, 0.656, 0.656, 0.360 ,0.178, 0.032]);\n",
+ "\n",
+ "plt.plot(x,y);\n",
+ "plt.grid('on');\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"mole fraction of methanol in liquid\");\n",
+ "ax.set_ylabel(\"mole fraction of methanol in vapour\");\n",
+ "plt.title(\"Operating Line curve\");\n",
+ "plt.legend(loc=\"lower right\")\n",
+ "plt.show()\n",
+ "#x = 0.370: the dividing point between stripping and enriching section\n",
+ "tL =numpy.array([66, 71, 76, 76, 82, 87, 96.3]);# [Bubble point, OC]\n",
+ "tG = numpy.array([68.2 ,74.3 ,78.7 ,78.7 ,89.7 ,94.7 ,99.3]);# [Dew Point, OC]\n",
+ "Vapor = numpy.array([171.3, 164.0 ,160.9, 168.6, 161.6, 160.6, 127.6]);# [kmol/h]\n",
+ "Vapor1 = numpy.array([5303, 4684, 4378, 4585, 3721, 3296 ,2360]);# [kg/h]\n",
+ "Liquid = numpy.array([86.7 ,79.6 ,76.5 ,301, 294, 293, 260]);# [kmol/h]\n",
+ "Liquid1 = numpy.array([2723, 2104, 1779 ,7000, 6138, 5690 ,4767]);# [kg/h]\n",
+ "Data = numpy.zeros(shape=(7,8));\n",
+ "for j in range(1,7):\n",
+ " Data[j,0]= x[j];\n",
+ " Data[j,1]= tL[j];\n",
+ " Data[j,2]= y[j];\n",
+ " Data[j,3]= tG[j];\n",
+ " Data[j,4]= Vapor[j]; \n",
+ " Data[j,5]= Vapor1[j];\n",
+ " Data[j,6]= Liquid[j];\n",
+ " Data[j,7]= Liquid1[j];\n",
+ "\n",
+ "# The tower diameter will be set by the conditions at the top of the stripping section because of the large liquid flow at this point.\n",
+ "# From Illustration 9.8:\n",
+ "G = Data[3,5];\n",
+ "L = Data[3,7];\n",
+ "Density_G = (Data[3,5]/(22.41*Data[3,4]))*(273.0/(273+Temp));# [kg/cubic m]\n",
+ "Density_L = 905.0;# [kg/cubic m]\n",
+ "# abcissa = (L/G)*(Density_L/Density_G)^0.5\n",
+ "abcissa = (Data[3,7]/Data[3,5])*(Density_G/Density_L)**0.5;\n",
+ "# From Fig. 6.34, choose a gas pressure drop of 450 N/square m/m\n",
+ "ordinate = 0.0825;\n",
+ "# From Table 6.3 (Pg 196):\n",
+ "Cf = 95;\n",
+ "viscosity_L = 4.5*10**(-4);# [kg/m.s]\n",
+ "sigma = 0.029;# [N/m]\n",
+ "J = 1;\n",
+ "G_prime = (ordinate*Density_G*(Density_L-Density_G)/(Cf*viscosity_L**0.1))**0.5;# [kg/square m.s]\n",
+ "A = G/(3600*G_prime);# [Tower ,cross section area,square m]\n",
+ "L_prime = L/(A*3600);# [kg/square m.s]\n",
+ "# Mass transfer will be computed for the same location:\n",
+ "# From Table 6.4 (Pg 205):\n",
+ "m = 36.4;\n",
+ "n = (0.0498*L_prime)-0.1013;\n",
+ "p = 0.274;\n",
+ "aAW = m*((808*G_prime/Density_G**0.5)**n)*L_prime**p;# [square m/cubic m]\n",
+ "# From Table 6.5 (Pg 206):\n",
+ "dS = 0.0530;# [m]\n",
+ "beeta = 1.508*dS**0.376;\n",
+ "shi_LsW = 2.47*10**(-4)/dS**1.21;\n",
+ "shi_LtW = ((2.09*10**(-6))*(737.5*L_prime)**beeta)/dS**2;\n",
+ "shi_LOW = shi_LtW-shi_LsW; \n",
+ "shi_Ls = (0.0486*viscosity_L**0.02*sigma**0.99)/(dS**1.21*Density_L**0.37);\n",
+ "H = ((975.7*L_prime**0.57*viscosity_L**0.13)/(Density_L**0.84*((2.024*L_prime**0.430)-1)))*(sigma/0.073)**(0.1737-0.262*math.log10(L_prime));# [m]\n",
+ "shi_Lo = shi_LOW*H;\n",
+ "shi_Lt = shi_Lo+shi_Ls;\n",
+ "# From Eqn. 6.73:\n",
+ "aA = aAW*(shi_Lo/shi_LOW);# [square m/cubic m]\n",
+ "# From Table 6.3 (Pg 196):\n",
+ "e = 0.71;\n",
+ "# From Eqn. 6.71:\n",
+ "eLo = e-shi_Lt;\n",
+ "# From Chapter 2:\n",
+ "ScG = 1;\n",
+ "MavG = 0.656*Ma+(1-0.656)*Mb;# [kg/kmol]\n",
+ "G = G_prime/MavG;\n",
+ "viscosity_G = 2.96*10**(-5);# [kg/m.s]\n",
+ "# From Eqn. 6.70:\n",
+ "Fg = (1.195*G/ScG**(2/3))*((dS*G_prime/(viscosity_G*(1-eLo)))**(-0.36));# [kmol/square m s (mole fraction)]\n",
+ "kY_prime = Fg;# [kmol/square m s (mole fraction)]\n",
+ "DL = 4.80*10**(-9);# [square m/s]\n",
+ "ScL = viscosity_L/(Density_L*DL);\n",
+ "# From Eqn. 6.72:\n",
+ "kL = (25.1*DL/dS)*((dS*L_prime/viscosity_L)**0.45)*ScL**0.5;# [kmol/square m s (kmol/cubic m)]\n",
+ "# At 588.33 OC\n",
+ "Density_W = 53.82;# [kg/cubic m]\n",
+ "kx_prime = Density_W*kL;# [kmol/square m s (mole fraction)]\n",
+ "# Value1 = [x G a ky_prime*10^3 kx_prime]\n",
+ "Value1 = numpy.array([[0.915 ,0.0474 ,20.18 ,1.525, 0.01055],[0.6, 0.0454 ,21.56 ,1.542, 0.00865],[0.370 ,0.0444 ,21.92 ,1.545 ,0.00776],[0.370, 0.0466 ,38, 1.640, 0.0143],[0.2 ,0.0447, 32.82 ,1.692 ,0.0149],[0.1 ,0.0443 ,31.99 ,1.766 ,0.0146],[0.02, 0.0352 ,22.25 ,1.586 ,0.0150]]);\n",
+ "# From Fig: 9.50\n",
+ "# At x = 0.2:\n",
+ "y = 0.36;\n",
+ "slope = -(Value1[4,4]/(Value1[4,3]*10**(-3)));\n",
+ "# The operating line drawn from(x,y) with slope. The point where it cuts the eqb. line gives yi.\n",
+ "# K = ky_prime*a(yi-y)\n",
+ "# For the enriching section:\n",
+ "# En = [y yi 1/K Gy]\n",
+ "En = numpy.array([[0.915 ,0.960, 634 ,0.0433],[0.85 ,0.906 ,532.8 ,0.0394],[0.8 ,0.862 ,481.1 ,0.0366],[0.70, 0.760 ,499.1, 0.0314],[0.656, 0.702, 786.9, 0.0292]]);\n",
+ "# For the Stripping section:\n",
+ "# St = [y yi 1/K Gy]\n",
+ "St = numpy.array([[0.656, 0.707, 314.7, 0.0306],[0.50, 0.639, 124.6 ,0.0225],[0.40 ,0.580, 99.6 ,0.01787],[0.3 ,0.5 ,89 ,0.0134],[0.2 ,0.390, 92.6 ,0.00888],[0.10, 0.232, 154.5, 0.00416],[0.032 ,0.091, 481 ,0.00124]])\n",
+ "# Graphical Integration, according to Eqn.9.52::\n",
+ "\n",
+ "plt.plot(En[:,3],En[:,2],'g');\n",
+ "plt.grid();\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Gy\");\n",
+ "ax.set_ylabel(\"1 / (ky_prime*a*(yi-y))\");\n",
+ "plt.title(\"Graphical Integration for Enriching section\");\n",
+ "plt.show()\n",
+ "# From Area under the curve:\n",
+ "Ze = 7.53;# [m]\n",
+ "# Graphical Integration:\n",
+ "\n",
+ "plt.plot(St[:,3],St[:,2],'r');\n",
+ "plt.grid('on');\n",
+ "ax = pylab.gca()\n",
+ "ax.set_xlabel(\"Gy\");\n",
+ "ax.set_ylabel(\"1 / (ky_prime*a*(yi-y))\");\n",
+ "plt.title(\"Graphical Integration for Stripping section\");\n",
+ "plt.show()\n",
+ "\n",
+ "# From Area under the curve:\n",
+ "Zs = 4.54;# [m]\n",
+ "# Since the equlibrium curve slope varies so greatly that the use of overall mass transfer coeffecient is not recommended:\n",
+ "print\"Height of Tower for enriching Section is \",Ze,\" m\\n\"\n",
+ "print\"Height of Tower for Stripping Section is \",Zs,\" m\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.12 - Page: 429\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXW+yiosESsWBviWLsfS0RRAS7Ica4UWN+\ntti/lkRFo1GjMRpjb9g1CApYUFRWFDEogqBiAUVE7BFBLLTP749zhzs72XJnZ+/c2dnP8/GYx869\nc8tnPrs7Z+4595wjM8M555zLWSzrAJxzzlUWLxicc87V4wWDc865erxgcM45V48XDM455+rxgsE5\n51w9XjC4dkPSrpLeLvM515Y0W5LKeV7nSuEFg2s1kmolTZQ0R9Inkm6QtGKG8SyUtF5u2cxeMLNN\nUjpXnaRjCteb2TQzW968w5BrQ7xgcK1C0hnA5cAZwArADsA6wHBJS6Rwvg5JN23tczfCokebokjW\ncbjK4gWDK5mkFYB+wElm9rSZLTCzD4HDgK7Ab6Lt+kl6WNKDkmZJGitpi7zjrCFpoKTPJb0v6eS8\n13L73iPpG+AoSdtKGi3pa0kzJF2XK4QkjYx2fT2qyjlUUo2kj/KOOVXSGZJelzQzimupvNf/Lzru\ndEnHFl6BJMxN12i/xaLlOkkXS3oxysFTkn6St/0Okl6K3tN4Sbs3cey1JA2K8vWlpOvycnVPMzFc\nImkUMAc4S9IrBcc+TdLg6PlSkq6S9KGkTyXdKGnpYvLg2hYvGFxr2AlYGhiUv9LM5gBPAL/MW90b\n+DewEnA/8KikDtGH1lBgHLAGsBdwqqR9CvYdYGYrRvsuAE4BfgLsGO1zQnTu3aJ9toiqcgY0ELcB\nhwLdgXWBLYBaAEk9gNOiY24I1NB6VwR9o/OsCiwJnBmdswvwGHCxma0UrR8oqXPhAaIrpseADwhX\nZl2AB/LeV3N+AxwLdARuAjaWtEHe678G7oueXw5sAGwZ/ewCXJDsrbq2yAsG1xo6A1+a2cIGXvs0\nej3nVTMbZGYLgKsJBcqOwLZAZzO7xMzmm9kHwG3Ar/L2fcnMhgCY2Q9m9pqZjTGzhdEVyi1Ao9+w\nG/FPM/vUzL4mFEzdovWHAXeY2SQz+x64kNapljLgTjObbGY/EArJ3Dl/AzxhZsMAzOwZ4FWgZwPH\n2Q74KXCWmX1vZj+a2UvRa83FaUD/6L0tNLNZwGBCgYWkDYGNgSFRNdPvgdPNbKaZfQtcRv3fi6sy\ni2cdgKsKXwKdJS3WQOHwU+CLvOXpuSdmZpKmE64QDFhD0td523YARja0L4CkjQiFy9bAsoS/51eL\njP3TvOffR/Hm4h7T2LlLVHjOjtHzdYBDJe2f9/riwHMNHGMt4MNGCuMkPipYvh/4O/AXwtXCI2b2\ng6RVCbkdm9cUIfxLZVXzX65rDaOBH4GD81dK6gj0AJ7NW71W3uuLAWsCHxM+qD4ws5XyHiuYWa9o\n84Yad28E3gI2iKqX/kTr/U1/kh9rwfO0TAPuKcjB8mb2twa2/QhYu5FG+G8JH+Y5qzewTWEunwFW\nkbQl4Wrg/mj9l4TCa7O8mDqZ2QrFvDHXtnjB4EpmZt8AFwHXSeouaQlJXQnVJB8B9+RtvrWkAyUt\nDpwK/AC8DLwCzI4afJeJ2h1+JmmbaL+Gqkc6ArOB7yRtAhxf8PpnwPpFvp3cef4N/E7SJpKWBc5P\nsO8SkpbOezR2Rd5YVc+9wP6S9one/9JRg3mXBrb9D6HwulzSstG2O0WvjQd2ixqnVwTObS4GM5sH\nDACuIrT/DI/WLwRuBa6RtAqEtpCCth9XZbxgcK3CzK4EziN8sHxD+LD/ENgr+tCB8C11MHA48F/g\nCOCg6C6mBUAvQn37+4Tqp1sIt77m9i38lnsmodpjVrTtgwXb9APuiu7wOaSRY9R7G7nXo3r+fwIj\ngHcJV0UQrowacyPwXd7jjkbOaQXPc+ecDvQh5PFzwhXEGTTwfxp9YO9PaAyeRiiAD4teewZ4CJhA\nKHCHNhNDzv2ExvYBBVVUZwOTgZejO8KGAxs1nAJXDZRmvxtJdwD7AZ+b2c8b2eafwL6Ef6RaMxuX\nWkAuU5IuJFT7HJl1LMWStCkwEViyhHp959qEtK8Y7iTUMTdIUk/CB8WGwHGEb1yuerWpjlRRlddS\nklYCrgCGeKHg2oNUCwYzewH4uolNegN3Rdv+B+gkabU0Y3KZamu9g48jtFNMBubxv20YzlWlrG9X\n7UL92+amE+5S+SybcFyazOyirGMohpntm3UMzmWhEhqfC6sX2tI3SuecqzpZXzF8TP37w3P3tNcj\nyQsL55xrATMrum0v6yuGIcBvIQweBsw0swarkczMH2ZceOGFmcdQKQ/PhefCc9H0o6VSvWKQ9ABh\n7JrO0aiWFwJLAJjZzWb2hKSekiYTRnn8XZrxVIOpU6dmHULF8FzEPBcxz0XpUi0YzKxvgm1OSjMG\n55xzxcm6KskVqba2NusQKobnIua5iHkuSpdqz+fWIsnaQpzOOVdJJGFtsPHZFamuri7rECqG5yLm\nuYh5LkrnBYNzzrl6vCrJOeeqlFclOeecaxVeMLQxXn8a81zEPBcxz0XpvGBwzjlXj7cxOOdclfI2\nBuecc63CC4Y2xutPY56LmOci5rkonRcMzjnn6vE2Buecq1LexuCccxVs4cKsI0jOC4Y2xutPY56L\nmOciVkm5+OoruPNO6NUL9tor62iSy3pqT+ecqyqffgqPPgoDB8J//gN77w19+4bCoa3wNgbnnCvR\ntGnwyCOhMJgwAXr2hIMPhh49YLnlsourpW0MXjA451wLTJ4cCoKBA2HKFOjdOxQGe+8NSy+ddXSB\nNz63E5VUf5o1z0XMcxFLKxdm8OabcPHFsOWWsMsu8MEHcOmlofoo15ZQKYVCKZpsY5C0OHCXmR1R\npnicc65imMG4cfGVwXffwUEHwb/+BTvtBB06ZB1hOpqtSpL0IrCXmf1YnpAajMGrkpxzZbFwIbz8\ncigIBg0KH/4HHxwe224LKrpiJjstrUpKclfSB8CLkoYA30XrzMyuLvZkzjlXiebPhxdeCIXBI49A\np06hIHj0Udhii7ZVGLSGJG0MU4DHo207AstHD5cBr0uOeS5inotY0lzMnQvDhsHvfw9rrAFnnhl+\nPvts/baE9lYoQIIrBjPrV4Y4nHMudd9/D089Fa4MHn8cNtkkXBmcdx6su27W0VWOJG0MIxpYbWa2\nZzohNRiDtzE451pk9mx44olQGDz1FPziF6EwOPBA6NIl6+jSlWYbw1l5z5cGDgbmF3si55wrl6+/\nhqFDQ2EwYgTsvHMoDK6/HlZZJevoKl+zbQxm9mre40UzOw2oST801xCvS455LmKeC/j8c7jlFthu\nuzrWWSfcUXTIIaFX8pNPwrHHeqGQVLNXDJJWzltcDNgGWCG1iJxzLqGPPw4FwMCBMH48dO8O++4L\nzz0HHTtmHV3blaSNYSqQ22g+MBW4yMxeTDWy+jF4G4NzDgi9jXMdzt55B/bfP1QT/fKXsMwyWUdX\nWXysJOdc1Zo0Kb4ymD4dDjggFAZ77AFLLpl1dJUrtbGSJC0p6RRJAyU9LOlkSUu0LExXKq9Ljnku\nYtWWC7NQNXT++bDZZmFguk8/hauvhk8+CW0J3bs3XChUWy6ykOSupBuj7a4HBBwZrTs2xbicc+2M\nGYwZE1cTmYWrgttvh+23h8V8yM+ySdLGMMHMtmhuXZq8Ksm56rRgAYwaFY9L1LFjPC5Rt27ts9dx\na0qzH8N8SRuY2eToROvj/Riccy00b17oWzBwYBiL6Kc/DQXBU0+FaiOXvSQXZ2cBz0l6XtLzwHPA\nmemG5Rrj9acxz0Ws0nPxww+hw1ltLay+OlxwAWywAbz0Uv22hNZQ6bloC5KMlfSspI2AjaJV72Q5\nBLdzrm2YMyd0LBs4MPzccstwZfCXv8Baa2UdnWtKkjaGZYATgF0I/RleAG40sx+aPbjUA7gG6ADc\nZmZXFLzeGbgXWJ1QSF1lZv0bOI63MTjXBnzzTTwUxbPPwg47hMLggANgtdWyjq79Sa0fg6QBwCzC\nB7iAXwMrmtmhzezXAXgH2Bv4GHgF6Gtmk/K26QcsZWbnRoXEO8BqZja/4FheMDhXob78EgYPDoXB\niy/C7ruHwqB3b1h55eb3d+lJc87nzc3sGDMbYWbPmdmxwOYJ9tsOmGxmU81sHvAg0Kdgm0+Ih9dY\nAfiqsFBw9Xn9acxzESt3Lj75BG64AfbaC9ZfP8xr8Nvfhs5nubaErAoF/7soXZK7kl6TtKOZjQaQ\ntAMwNsF+XYCP8panA9sXbHMroWF7BmHyn8MSHNc5l4EPP4xvK33zTdhvPzjppNDRbNlls47OtaYk\nBcM2wChJHxHaGNYG3pE0kTAvQ2P9GZLU/ZwHjDezmug22OGStjSz2YUb1tbW0rVrVwA6depEt27d\nqKmpAeJvCO1huaampqLi8eXKWc5pzeO/+y5ceWUdI0fCf/9bQ58+0KtXHRdcAPvsU1nvP7ecW1cp\n8ZRzua6ujv79+wMs+rxsiSRtDE0e3cymNrLfDkA/M+sRLZ8LLMxvgJb0BHCpmY2Klp8FzjazVwuO\n5W0MzpWBGbzxRtz7+KuvwoQ2Bx8Mu+0Giyf5KukqRmptDFEbwVTgO2Bh7pG3vjGvAhtK6ippSeBw\nYEjBNm8TGqeRtBqwMfB+sW+iPSn8dtieeS5ipeTCDF55Bc49FzbeGHr1glmz4KabQpvB9dfDnnu2\nnULB/y5Kl2Q+ht7A34E1gM+BdYBJNNMAbWbzJZ0EPEW4XfV2M5sk6Q/R6zcDfwXulPQ6oZD6PzP7\nbwnvxzmXwMKFoXNZrs1gqaXCVcH998PWW/tQFO1dorGSgD2B4Wa2laQ9gCPN7OhyBBjF4FVJzpVo\n/nx4/vlQGDzySJjNLDcu0eabe2FQjdIcK2memX0paTFJHcxshKRrWxCjc67MfvwxdDQbOBCGDIGu\nXUNBMHIkbLhh1tG5SpWkH8PXkpYn9Hi+T9I/gW/TDcs1xutPY56LWH4uvvsuVA8dcUQYl+iyy+Bn\nP4NXXw1tCeecU92Fgv9dlC7JFUMf4AfgNOAIQke0i9IMyjlXnDlz4IEHwpXB8OGw7bbhyuCqq8Lo\npc4VI0kbwxnAg2b2cXlCajAGb2NwrsAnn8Bjj4XhKEaOhF13jYei6Nw56+hcJUizjWF54GlJXxOG\ntRhgZp8VeyLnXGnM4K23QlvB4MHwzjvQo0eoMrrvPlhxxawjdNUiST+Gfma2OXAi8FNgZNQRzWXA\n609j7SEXuTuJzjgjtAvsuy/MmAGXXAKffRaqj/r2hXHj6rIOtWK0h7+LtBXTZeVz4FPgK2CVdMJx\nzn37bZjNbMgQePxxWHtt6NMHHn44zGngt5W6tCVpYziBMLjdqsAA4CEze6sMseXH4G0MrqrNmBFG\nJR08OAxdvcMOoTDo3dsntXEtl2Ybw1rAqWY2vviwnHMNMQsjlA4eHB6TJ4f2gqOOCtVD3l7gspSk\njeFcLxQqh9efxtpaLubPh7o6OO20MN9xr16hneCyy8LP+++Hww9vWaHQ1nKRJs9F6drIsFjOtU2z\nZ4f2gsGD4YknYN11Q/XQoEGwxRbeXuAqU7NtDJXA2xhcW/Lxx3F7wahRsNNOoTDo3RvWXDPr6Fx7\nktqcz5XACwZXycxg4sS4f8GUKdCzZ2g87t4dVlih+WM4l4bU5mOQdLCk9yTNkjQ7esxqWZiuVF5/\nGssyF/PmwXPPwamnwnrrhULgyy/hb38L7QX33guHHlq+QsH/LmKei9IlaWP4G9DLzCalHYxzlWzW\nrDDp/ZAh8OSTcYEwZEgYpM7bC1y1SNKPYZSZ7VymeBqLwauSXCamT4+riF56CXbZJRQG++8PXbpk\nHZ1zTUutjSGae2F14FFgbrTazGxQ0VG2kBcMrlzMYMKEuH/B1Kmw336h4bh7d1h++awjdC651NoY\ngBWB74F9gF7RY/9iT+Rah9efxlorF/Pmhcls/vjHcDvpQQfBzJnw97+H9oK774ZDDqnsQsH/LmKe\ni9I128ZgZrVliMO5svrmm9BeMHhw+LnhhqGK6LHHfJpL5xqtSpJ0tpldIem6Bl42M/tjuqHVi8Wr\nklzJpk2L+xe8/HKYv6BPn9ADeY01so7OudaXxlhJuYHyxgL5n8oqWHauIpnB+PFx4/G0aaG94P/9\nv9DzuGPHrCN0rjJ5B7c2pq6ujpqamqzDqAgN5WLu3DB/weDBoUBYcslwVdCnT+iBvHiVDgLjfxcx\nz0UszdFVnatoM2eGfgWDB4dxiTbeOBQEw4bBppt6e4FzxfIrBtcmffhhXEU0Zgzstlvcv2D11bOO\nzrnK4GMluapmBuPGxf0LPv44NBr37g377APLLZd1hM5VnlYvGBq5GynH70rKSHuqP507N8xfkGsv\nWGaZeFaznXaCF15oP7loTnv6u2iO5yKWRhtD/t1IhQf2T2mXim++CfMc59oLNtssFAZPPw2bbOLt\nBc6VQ+KqJEnLE64Uvk03pAbP7VcM7cAXX8COO4YC4MADQ1XRaqtlHZVzbVeaYyX9HLgb+Em06gvg\nKDN7o+goW8gLhur3/few116wxx5w6aVZR+NcdUhzrKRbgNPNbG0zWxs4I1rnMlCN48AsXAi1tbDO\nOvCXvyTfrxpz0VKei5jnonRJ+jEsa2YjcgtmVifJ7wFxreZPfwp3GT3zDCyW5KuKcy5VSaqSHiU0\nRN9DaIQ+AtjazA5MP7xFMXhVUpW67Ta4/PIwdlHnzllH41x1SbONYWXgIiA3Wc8LQD8z+7roKFvI\nC4bqNHw4HHkkjBwJG22UdTTOVZ/U2hjM7L9mdrKZ/SJ6nFLOQsHVVy31p2+8AUccAQMGtLxQqJZc\ntAbPRcxzUbpm2xgkbQycCXTN297MbM8U43JV7JNPwq2o//hHGPraOVdZklQlTQBuBF4DFkSrzczG\nNntwqQdwDdABuM3MrmhgmxrgH8ASwJdmVtPANl6VVCXmzIGamtB7+fzzs47GueqWZhvDWDPbugUB\ndQDeAfYGPgZeAfqa2aS8bToBo4DuZjZdUmcz+7KBY3nBUAUWLICDD4ZOneDOO70Xs3NpS7Mfw1BJ\nJ0r6qaSVc48E+20HTDazqWY2D3gQ6FOwza+BgWY2HaChQsHV15brT886Kwx5ccstrVMotOVctDbP\nRcxzUbok/RhqCWMjnVmwft1m9usCfJS3PB3YvmCbDYElJI0AlgeuNbN7EsTk2pjrrw9zJrz0Upg8\nxzlXuVIbdlvSwUAPM/t9tPwbYHszOzlvm38BvwD2ApYFRgP7mdl7BcfyqqQ27PHH4dhjYdQoWG+9\nrKNxrv1IdQY3ST8DNgOWzq0zs7ub2e1jYK285bUIVw35PiI0OH8PfC9pJLAl8F7BdtTW1tK1a1cA\nOnXqRLdu3RYNrZu7dPTlylseNw5+/es6LrsM1lsv+3h82Zerebmuro7+/fsDLPq8bBEza/IB9ANG\nAJ8DdwKfAg8n2G9xYArhNtclgfHApgXbbAI8Q7hraVlgIrBZA8cyF4wYMSLrEBL76COzNdc0GzAg\nneO3pVykzXMR81zEos/OZj/nCx9JrhgOIXyLf83MfidpNeC+BAXOfEknAU9FH/y3m9kkSX+IXr/Z\nzN6WNAyYACwEbjWztxLE5Crc7Nmw335w8slwyCFZR+OcK0aS21VfMbNtJY0F9gRmAW+b2cblCDCK\nwZqL01WO+fPD3Mtrrw033eS3pTqXlTTbGF6RtBJwK/AqMAd4qdgTufbBLFwlmIU7kbxQcK7tSTJW\n0glm9rWZ3QTsA/zWzH6XfmiuIbmGpkp19dXh7qN//xsWT3RrQ8tVei7KyXMR81yULuldSV2AdaLt\nJWk3MxuZamSuzRk0KIx/NHo0rLBC1tE451oqSRvDFcDhwFvEYyVhZvunG1q9GLyNocKNGRMam4cN\ng62LHkDFOZeGNNsYDgQ2NrMfiw/LtQdTp8IBB8Add3ih4Fw1SDJW0hRCPwRXASqt/nTmTOjZE845\nJ9yJVE6VlosseS5inovSNXrFIOm66Ol3wHhJzwK5qwYzsz+mHZyrbHPnhtFSf/lL+KP/NThXNRpt\nY5BUSxg8D8Jcz/Wem9ldqUcXx+JtDBXGDI45Br78Eh55BDp0yDoi51yhVm9jMLP+0YFPNbNrCk52\natERuqpy2WXw+uvw/PNeKDhXbZK0MRzVwLraVo7DJVQJ9acPPAA33wxDh0LHjtnFUQm5qBSei5jn\nonRNtTH0JUyks66koXkvLQ98lXZgrjK9+CKccgo88wyssUbW0Tjn0tBUG8M6hMl4LgfOJrQtQBgr\naYKZzS9LhHgbQ6WYPBl22QXuugu6d886Gudcc1Kb8zk6eFdgAzN7RtKyQAczm110lC3kBUP2vvoK\ndtwRzjwTjjsu62icc0mkNuezpOOAAcDN0ao1gUeLPZFrHVnUn/74Y+jAduCBlVUoeF1yzHMR81yU\nLknj84nALoQqJMzsXWDVNINylcMMjj4aVl893InknKt+ScZKGmNm20kaZ2ZbSVqcMGnPFuUJ0auS\nsnTBBfD00zBiBCyzTNbROOeKkeZYSc9L+hOwrKRfAicAQ5vZx1WB/v3h3nvh5Ze9UHCuPUlSlXQO\n8AVhPuY/AE8Af04zKNe4ctWfPvccnH02PP44rFqhFYdelxzzXMQ8F6Vr9orBzBYAt0QP1w5MmgR9\n+8KDD8Kmm2YdjXOu3JK0MewPXAx0JS5IzMzKNhWLtzGUz2efhdtSL7wQjmqoz7tzrs1IrR+DpCmE\nORneMLOFLYyvJF4wlMf338Mee8A++8DFF2cdjXOuVKn1YwCmA29mVSi4+tKqP124EI48EtZfHy66\nKJVTtDqvS455LmKei9IluSvpbOBJSSOAudE6M7Or0wvLlds558Dnn8Pw4aCiv18456pJkqqk4cBs\nwl1Ji64azKxs3yu9KildN98Mf/87jB4NP/lJ1tE451pLmm0Mb5jZz1ocWSvwgiE9w4ZBbW0YNXWD\nDbKOxjnXmtJsY3hCko+lWSFas/50woTQrjBwYNssFLwuOea5iHkuSpekYDiB0Mbwg6TZ0WNW2oG5\ndM2YAb16wXXXwc47Zx2Nc66SJBp2O2teldS6vv0WdtsNDjkEzjsv62icc2lJdT6GrHnB0HoWLAhD\naK+6Ktx2m9+B5Fw1S7ONwVWQUutPTzstdGS76aa2Xyh4XXLMcxHzXJSuqTmf1zWzD8oZjEvXP/8J\nzz4Lo0bBEktkHY1zrlI1NefzWDPbWtJzZrZnmeMqjMWrkko0ZAgcf3woFLp2zToa51w5pDEfQ4do\nHoaNJJ0O5B/cez63IWPHwjHHhCG0vVBwzjWnqTaGXwELgA7A8tGjY95zl4Fi60+nTYM+feCWW2C7\n7dKJKStelxzzXMQ8F6Vr9IrBzN4GLpc0wcyeKGNMrpXMmgX77Qennw4HHph1NM65tiLJkBidgAuB\n3aJVdcDFZvZNuqHVi8HbGIo0b17owLb++nD99W3/DiTnXPHSvF31DmAWcChwGGFAvTsTBtVD0tuS\n3pN0dhPbbStpvqSDkhzXNc0MTjwROnQIdyJ5oeCcK0aSgmF9M7vQzN43sylm1g9Yv7mdJHUA/gX0\nADYD+kr6n4kio+2uAIZRv4HbNSBJ/emVV8KYMfDQQ7B4koHV2yivS455LmKei9IlKRi+l7RrbkHS\nLsB3CfbbDphsZlPNbB7wINCnge1OBh4GvkhwTNeMAQPC+EePPQbL+y0CzrkWSNLG0A24G1gxWvU1\ncJSZvd7MfocA3c3s99Hyb4DtzezkvG26APcCexKqrIaa2aAGjuVtDAmMHg29e8PTT8NWW2UdjXMu\na2n0YwDAzMYDW0haMVpO2uic5JP8GuAcMzNJwquSWuz99+Ggg+Cuu7xQcM6VJnENdAvuQvoYWCtv\neS3C/NH5tgYeDGUCnYF9Jc0zsyGFB6utraVr1DurU6dOdOvWjZqaGiCuU2wPy/n1p7nXhw6t48QT\n4fzza+jZs7LiTXM5t65S4slyefz48Zx66qkVE0+Wy9dcc027/nzo378/wKLPy5ZIbXRVSYsD7wB7\nATOAMUBfM5vUyPZ34lVJzaqrq1v0BwEwdy507x6uEq5uZ33RC3PRnnkuYp6LWEUOuy1pX0J1UQfg\ndjO7TNIfAMzs5oJtvWAoklmYlnPWLHj44XB7qnPO5aRaMEjaGehKXPVkZnZ3sSdrKS8YGnbxxTB0\nKNTVwXLLZR2Nc67SpNbBTdK9wJXAzsA20WPboiN0rSJXn3jvvXDHHaFgaK+FQn5bQ3vnuYh5LkqX\npPF5a2Az/8peOUaODOMfjRgBq6+edTTOuWqTpB/DAOAUM5tRnpAajMHLpcg774T5mu+7D/beO+to\nnHOVLLV+DMAqwFuSxgA/RuvMzHoXezJXmi++CKOl/vWvXig459KTZEiMfsABwKXAVcDfo4cro7lz\nQwe27bar45hjso6mMnhdcsxzEfNclC5Jz+c6SasTGpwNGGNmn6cemVvEDE44ATp3hmOPzToa51y1\nS9LGcBjhrqTno1W7AWeZ2YCUY8uPoV23MVx7Ldx+O7z0EnTsmHU0zrm2IrV+DJImAHvnrhIkrQI8\na2ZbtCjSFmjPBcPTT8NRR4UB8ny+ZudcMdKcqEfUHxL7K3ywu7J491048sgwr0KuUPD605jnIua5\niHkuSpfkrqRhwFOS7icUCIcDT6YalWPmTNh/f7jkknB7qnPOlUuSqiQBBwG7EBqfXzCzR8oQW34M\n7aoqaf78MF/zRhuFqTmdc64lKnIQvdbS3gqG00+HiRPhySere2pO51y6Wr2NQdKo6Oe3kmYXPGaV\nEqxrXG78o8bma/b605jnIua5iHkuStfo91Ez2zn66TdIlsmoUXDOOWEspJVXzjoa51x7laSN4R4z\nO7K5dWlqD1VJ06bBDjuE/gr77pt1NM65apDm7ao/KzjR4oQRV10rmTMHeveGM87wQsE5l72m2hjO\nkzQb+Hl++wLwOfA/czK7llm4MHRg22qr0OjcHK8/jXkuYp6LmOeidE21MfwV+Kuky8zs3DLG1K5c\nfDHMmBGalMjoAAASwklEQVTmVpB3G3TOVYAkbQwHAc+Z2cxouRNQY2aPliG+XAxV2cYwYECoPhoz\nxifccc61vjTHSnrdzLYsWDfezLoVe7KWqsaCYdw42GefMBbSVltlHY1zrhqlPVZSoQ7FnsjFPvsM\nDjgAbrih+ELB609jnouY5yLmuShdkoJhrKSrJa0vaQNJ/wDGph1YtfrxRzjwQKithUMPzToa55z7\nX0mqkjoC5wN7RauGA5eY2ZyUY8uPoSqqkszg6KNh9mz4979hsSTFsnPOtZCPldQGXH013H136OG8\n3HJZR+Ocq3aptTFIWlXSVZKekDQiejzXsjDbryefhCuvhMGDSysUvP405rmIeS5inovSJanMuA94\nG1gP6AdMBV5NL6Tq8/bboRPbww/DOutkHY1zzjUtSRvDa2b2C0kTctN5SnrVzLYpS4S07aqkr7+G\n7bcPg+MdfXTW0Tjn2pOWViUlGe1/bvTzU0m9gBnASsWeqD2aPx8OOwz2288LBedc25GkKumSqLfz\nGcCZwG3AaalGVSXOOAM6dAhtC63F609jnouY5yLmuShdk1cMkjoAG5nZY8BMoKYcQVWD226DYcPg\nP//xWdicc21LkjaGV8xs2zLF01gMbaqN4YUX4OCDw8+NN846Gudce5XmWEn/AJYAHgLmEIbIMDN7\nrSWBtkRbKhimToUdd4S77gpjITnnXFbSHCtpK2Bz4GLg78BV0U9X4NtvoU8fOPvs9AoFrz+NeS5i\nnouY56J0jdZ+SzrFzK4F/mxmL5YxpjZp4UI48kjYZhs45ZSso3HOuZZrtCopN9y2pHFmlunA0G2h\nKun888NkO88+C0stlXU0zjmXTj+GtyS9B3SRNLHgNct1dnPw0ENwzz1hwh0vFJxzbV2jbQxm1hfY\nFZgM9AL2z3v0TnoCST0kvS3pPUlnN/D6EZJelzRB0ihJbarAGTsWTjoJHn0UVl01/fN5/WnMcxHz\nXMQ8F6Vr8g57M/sUaPEHddQP4l/A3sDHwCuShpjZpLzN3gd2M7NvJPUAbgF2aOk5y+mTT8LcCjff\nDN3KNp+dc86lK9VhtyXtCFxoZj2i5XMAzOzyRrZfCZhoZmsWrK+4NoYffoCaGujZEy64IOtonHPu\nf6V5u2opugAf5S1Pj9Y15hjgiVQjagVmcNxxsPbaodHZOeeqSeLBGiQta2bfFXn8xF/zJe0BHA3s\n3NDrtbW1dO3aFYBOnTrRrVs3ampqgLhOsVzLJ5xQx+jR8PrrNUjlPX9+/WlW779SlnPrKiWeLJfH\njx/PqaeeWjHxZLl8zTXXZPr5kOVyXV0d/fv3B1j0edkiZtbkA9gJeAv4KFruBtzQ3H7RtjsAw/KW\nzwXObmC7LQiN3Bs0chyrFI8/brbGGmbTpmVz/hEjRmRz4grkuYh5LmKei1j02dnsZ3XhI8mQGGOA\nQ4DBFvVnkPSmmW3eXKEjaXHgHcJ80TOAMUBfy2t8lrQ28BzwGzN7uZHjWHNxlsOkSbD77mEWth13\nzDoa55xrWprzMWBm06R6x56fcL/5kk4CngI6ALeb2SRJf4hevxm4gDC/w43ROeaZ2XbJ30J5/Pe/\n0Lt3GELbCwXnXDVL0vg8TdLOAJKWlHQmMKmZfRYxsyfNbGMz28DMLovW3RwVCpjZsWb2EzPbKnpU\nXKEwb16YcKdPnzBFZ5by69fbO89FzHMR81yULknBcDxwIuFuoo8Jg+qdmGZQleb002HJJeGKK7KO\nxDnn0pdqP4bWkmUbwy23wNVXhwl3VlwxkxCcc65FWn0+BknXNbGfmdkfiz1ZS2VVMIwcCYceGibc\n2Wijsp/eOedKkkYHt7HAq9FjbAOPqjZ1Khx+eBgcr5IKBa8/jXkuYp6LmOeidI3elWRm/fOXJS0f\nVtu3aQeVtdyEO+ec47OwOefanyT9GH4O3A38JFr1BXCUmb2Rcmz5MZStKmnhQjjkEFhpJbjtNlDR\nF2HOOVcZ0uzHcAtwupmNiE5UE63bqdiTtQUXXQSffQYPPOCFgnOufUpyu+qyuUIBwMzqgOVSiyhD\nAwZA//4waFDlTrjj9acxz0XMcxHzXJQuyRXDB5LOB+4BBBxBmEOhqowbByecAE8/DautlnU0zjmX\nnSRtDCsDFxGPevoC0M/Mvk45tvwYUm1j+Owz2G47uOqqcHuqc85Vg1bvx1BJ0iwYfvwR9twT9t47\ntC8451y1SG2iHknbSnpE0jhJE6PHhJaFWVnM4PjjQ9XRhRdmHU0yXn8a81zEPBcxz0XpkrQx3Aec\nCbwBLEw3nPK69loYOxZGjYLF0p7Lzjnn2ogkbQyjzKzBWdXKJY2qpKefDiOljh4NpUx05JxzlSq1\nNgZJ+wCHA88Ac6PVZmaDio6yhVq7YHj3Xdh1V3j44fDTOeeqUWptDMBRwJZAD6BX9Ni/2BNVipkz\nw4Q7l1zSNgsFrz+NeS5inouY56J0SdoYtgE2qYi5NUu0YAH07Qu//CX8/vdZR+Occ5UpSVXSncBV\nZvZmeUJqMIZWKZfOPBPGj4dhw2DxRJOaOudc25XmWEk7AuMlfQD8GK0zM9ui2JNl6a674NFHYcwY\nLxScc64pSdoYegAbAvsQ2hb2B3qnGVRrGz0azjoLhgyBlVfOOprSeP1pzHMR81zEPBela/a7s5lN\nLUMcqZk+PQyjfccdsNlmWUfjnHOVr6qHxPjuO9httzD+0dlnpxCYc85VMB8rqYAZ/PrX0KFDmJ7T\n51ZwzrU3afZjaJMuuwymTIFbb62uQsHrT2Oei5jnIua5KF1V3p8zeDDccEO4A2mZZbKOxjnn2paq\nq0qaODEMo/3442GOBeeca6+8Kgn48kvo0weuucYLBeeca6mqKRjmzQu3pR52GBxxRNbRpMfrT2Oe\ni5jnIua5KF3VFAynnAIdO8Kll2YdiXPOtW1V0cZw441w3XXw8suwwgplDMw55ypYu+3HMGIE/OpX\nYRa2DTYoc2DOOVfB2mXj8/vvh2G077+//RQKXn8a81zEPBcxz0Xp2mzBYBYamv/8Z9hrr6yjcc65\n6tGmq5KmTIH11quuns3OOdda2m0bg3POuYZVZBuDpB6S3pb0nqQGxzeV9M/o9dclbZVmPNXA609j\nnouY5yLmuShdagWDpA7AvwgT/WwG9JW0acE2PYENzGxD4DjgxrTiqRbjx4/POoSK4bmIeS5inovS\npXnFsB0w2cymmtk84EGgT8E2vYG7AMzsP0AnSaulGFObN3PmzKxDqBiei5jnIua5KF2aBUMX4KO8\n5enRuua2WTPFmJxzzjUjzYIhaWtxYcOItzI3YerUqVmHUDE8FzHPRcxzUbrU7kqStAPQz8x6RMvn\nAgvN7Iq8bW4C6szswWj5bWB3M/us4FheWDjnXAu05K6kNCfqeRXYUFJXYAZwONC3YJshwEnAg1FB\nMrOwUICWvTHnnHMtk1rBYGbzJZ0EPAV0AG43s0mS/hC9frOZPSGpp6TJwBzgd2nF45xzLpk20cHN\nOedc+VTUWEneIS7WXC4kHRHlYIKkUZK2yCLOckjydxFtt62k+ZIOKmd85ZLw/6NG0jhJb0iqK3OI\nZZPg/6OzpGGSxke5qM0gzLKQdIekzyRNbGKb4j43zawiHoTqpslAV2AJYDywacE2PYEnoufbAy9n\nHXeGudgRWDF63qM95yJvu+eAx4CDs447o7+JTsCbwJrRcues484wF/2Ay3J5AL4CFs869pTysSuw\nFTCxkdeL/tyspCsG7xAXazYXZjbazL6JFv9D9fb/SPJ3AXAy8DDwRTmDK6Mkefg1MNDMpgOY2Zdl\njrFckuTiEyA3bdcKwFdmNr+MMZaNmb0AfN3EJkV/blZSweAd4mJJcpHvGOCJVCPKTrO5kNSF8MGQ\nG1KlGhvOkvxNbAisLGmEpFclHVm26MorSS5uBTaXNAN4HTilTLFVoqI/N9O8XbVY3iEulvg9SdoD\nOBrYOb1wMpUkF9cA55iZSRL/+zdSDZLkYQngF8BewLLAaEkvm9l7qUZWfklycR4w3sxqJK0PDJe0\npZnNTjm2SlXU52YlFQwfA2vlLa9FKNma2mbNaF21SZILogbnW4EeZtbUpWRbliQXWxP6wkCoT95X\n0jwzG1KeEMsiSR4+Ar40s++B7yWNBLYEqq1gSJKLnYBLAcxsiqQPgI0J/avam6I/NyupKmlRhzhJ\nSxI6xBX+Yw8BfguLelY32CGuCjSbC0lrA4OA35jZ5AxiLJdmc2Fm65nZuma2LqGd4fgqKxQg2f/H\nYGAXSR0kLUtoaHyrzHGWQ5JcvA3sDRDVp28MvF/WKCtH0Z+bFXPFYN4hbpEkuQAuAFYCboy+Kc8z\ns+2yijktCXNR9RL+f7wtaRgwAVgI3GpmVVcwJPyb+Ctwp6TXCV+A/8/M/ptZ0CmS9ACwO9BZ0kfA\nhYRqxRZ/bnoHN+ecc/VUUlWSc865CuAFg3POuXq8YHDOOVePFwzOOefq8YLBOedcPV4wOOecq8cL\nBpeIpFpJ1xW5zwPRML8lj1Mj6byC5VGlHrOZ820SDdk8VtK6rXjcdST1zVsuOq8tOGeD55C0f1PD\nmDdyrG+jn2tIGlBCTH9oaCynqNNao8NHu/KomA5uruIV1eFF0urANma2YQOvdTCzBUWe/1xCp6UQ\njFnaY0MdAAwws0tb+bjrEkZBfSBaLkdHogbPYWZDgaEtOZaZzQAObXFA7aRjYlvlVwztRPRN7G1J\nd0p6R9J9kvaJJvl5V9K20XYrS3o0+qY/WtLPGzjWKpIeljQmeuzUwCmfBrpEk8bsIqlO0j8kvQKc\nIqmXpJclvSZpuKRVo2N3jGKcEMVwkKTLgGWiY90TbZf75ipJV0qaGO1zWLS+JjrnAEmTJN3bSF66\nRXG8LmmQpE6SehJG4zxe0nMN7POtpL8pTAAzXNIOkp6XNEXS/tE2HaK4xkTHPi7a/XJg1+i9nBqt\nW0PSk9Hv4Yq889wg6ZXoPP3y1k+V1C+6mpkgaeOkv7uC97HoSkJSf0nXRn8PUyQd3My+i77ZS1pG\n0oOS3opy+LKkX+T/nqLnh0i6M3reT9IZ0fOto5jHAyc0dV5XJllPMuGP8jwIk5rMAzYnjLT4KmEo\nAQjjtT8SPb8OOD96vgcwLnpeC1wXPb8f2Dl6vjbwVgPnW4e8iUOAEcC/8pY75T0/Frgqen4FcHXh\ndsDsguPPjn4eTCiEBKwKfAisDtQAM4E1otdeysVccJwJwK7R84uAf0TPLwRObySXC4Hu0fNB0fk7\nAFvk5es44E/R86WAV6Lfwe7A0Lxj1QJTgOWj7aYCXaLXVop+dojy97No+QPgxOj58YShLxL97gre\nx1F5v9P+wEPR802B9xp577m8d839foHTgdui5z8n/J39ovD3Fv2u7izMb/Q72CV6/jcamXDGH+V7\neFVS+/KBmb0JIOlN4Jlo/RuEf3QIw3cfBGBmIyT9RNLyBcfZG9hUWjSS7/KSljWz7/K2aWjo64fy\nnq8l6d+ED/EliQc424swKBpRDDObeU+7APdb+FT5XNLzwLbALGCMhSoPom+jXYFFbROSViTMgvdC\ntOouIFdv3tTw3XPN7Kno+UTgBzNbICk/j/sAP5d0SLS8ArABUDhZjAHPWjQctKS3CIXqx8Dhkn5P\nqPL9KbAZ4XcFoUACeI3o90Wy311jDHg02neSipsAa1fg2mjfiZImJN0x73fwYrTqHmDfIs7tUuAF\nQ/vyY97zhcDcvOf5fwvNjd0uYHszm0tx5uQ9v45wlfCYpN0JUzE2dv6mWAPb5+LNf78LaP7vPf84\nTdX9z8t7viiPZrZQUv45TjKz4fVOINU0cLz/iVOhwfsMQjvNN1EVzNIN7FP4vkqZryT/91nsnBaN\nbZ9//mVKOI4rI29jcIVeAI6ARR9iX5jZtwXbPA38MbcgqVvCY+f/068AzIie1+atHw6cmHfsTtHT\neQUfuvnxHi5pMUmrALsBY0jwAWNhatSvJe0SrToSqGsg1pZ4CjghF7OkjRSGwp5FqDbKaeg8iraZ\nA8yKvr0n+Rad5HdXeJ7WMJLQoI6knxGq1HI+U7jDazHgwIJzK/odzJSUu5ngiFaKyZXAC4b2pfDb\nozXwvB+wtcJwxX8l1EPnXs9t80dgm6jB8E1CfXqx5+sHDJD0KmGe5txrlwArRY3J4wltBQC3ABNy\njc/Ed8c8Qqijfh14FjjLzD4viLexeIje35XR+90CuLiB91vM+8o9v40wF8JrUSPtjYS2ggnAAoVb\nYU9tLE4zmwCMI8wrcB/wIg3L378fzf/uGtu3sffR0D6Fz28EOkbVYBcBY/O2OQd4jFCFNyNvn/xz\n/w64XtK4Zs7tysSH3XbOtSpJI4AzzOy1rGNxLeNXDM455+rxKwbnnHP1+BWDc865erxgcM45V48X\nDM455+rxgsE551w9XjA455yrxwsG55xz9fx/ja2w2w8vuCwAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa5ce470>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPX1//HXmyZVl6JIURcLKCquCGhsLMaeKGpiL6CJ\nvcXevgkx+dpINN+YmKJG0cRO1J8mimDCaqICFhZURAFdehGQjtTz++PexWHd3ZmdvTN37u55Ph7z\n2Ll37tz73jvlM/dzbpGZ4ZxzztVVk7gDOOecSyZvQJxzzmXFGxDnnHNZ8QbEOedcVrwBcc45lxVv\nQJxzzmXFG5AGRNLPJf21lsc/knR4LpeRZJJ2lrRSknIw70MkTQvnf2LU868vSbdIeiiD6UZI+mUt\nj6+UVBxltnzJdB24b3gDkkOSzpA0XtIqSQsljZN0aQ4XWetBPWa2j5m9matlSCqVNDuTmUgqlrRZ\nUmzvQUkVko6oHDazWWbWznJzcNQvgPvD+b9U35mFX+Trwi/sytvEbOdnZneZ2YWZTEot74Hw/6vI\nNke+VPdercM6cCFvQHJE0nXA/wH3AJ3NrDNwCXCIpBY1PKe+r0fkv5zzsIycZJbUNIPJLFfLr8bO\nwJRsnljD/2LAPeEXduVt/wjn71xa3oDkgKTtgNuBS83seTNbDWBm5WZ2jpmtD6cbIemPkl6RtAoo\nlfQ9SRMlLZc0S9KwlPlW/mq/UNJcSfPChqqSAS0kPSZpRdhldUDK8yskfTe831TSrZKmh9O+J6lb\n+Nhvw2UvD8cfmuV6KJP0C0n/DZfxmqSO4cOVW0LLwl/PB4bPuUDSFElLJY2StHPK/I6W9KmkZZIe\nkPSGpB+Fjw2V9Jak+yQtBoZJ2lXSvyUtlvSlpL+Frw1hN9zOwMvh8q+vulUkqauklyQtCbuffpyS\n5eeSnq1pXVdZDzOAXcNlrZDUPIN5j5T0V0nLgSF1XO+V/8d5kmaG//uttcx/qKp0TUo6VNLbkr4K\n3wvnpSyig6R/hP/LOEm7pjxvc+Vw+P5+oJZpa3w9q/mfBoTvxeWSFki6N+Wxg1KylksamPJYB0mP\nKvi8LJX0vKTWwKtA1/C1XyGpSzXr4ERJH4fzHStpz5THKiRdJ2lSmP9pSdvU5XVqEMzMbxHfgGOB\nDUCTNNONAJYB3wmHtwEGAnuHw/sCC4DB4XAxsBl4AmgF7AMsAr4bPv5zYG24fAF3Au+kLO8L4Ijw\n/g3AZGCPlGV1CO+fDbQn+IFxLTAfaJGyjL/W8P+UArNThsuAacDuQEtgLHBX+Ngu4f/SJGX6weH0\nvcJl3wa8FT7WCVgOnBQ+dhWwHrggfHxouM4vDx9vCewGfBdoHj7/DeA31a2PKuu3STj8JvB7oAWw\nX7iuB2WyrqtZN1WXlW7e64ETw+GW1czvUeCXNSyr8v/4M8F7qg/wNdCrpvkDwypf1/C1WQGcDjQF\nOgD7pbxnFwP9wsf+BjyVsuzNwK7ppk33elbzP70DnB3ebw0cGN7vFi7j2HD4yHC4Yzj8T+ApYDug\nGXBYOH4gKe/VcFzqOugJrCJ4/zQl+LxMA5qlvJ7jgB0JPitTgIvj/u7J9823QHKjE7DYzDZXjkj5\nhbRGW/+if9HM3gEws3Vm9oaZfRwOfwg8TfBmT3W7ma01s48IvkjOTHnsP2Y2yoJ3+d8Ivpyq82Pg\nNjObVrksM1sa3n/CzL4ys81mdh/Bl1CvLNaDAY+a2XQz+xp4FiipXCXVTH8JQQPzabju7gJKwq2Q\n44GPzOzFMNf9BI1rqnlm9kD4+NdmNsPM/mVmG8xsMfAbvr0uqyVpJ+Bg4CYzW29mk4CHgdRf4pmu\n62zm/baFtZJw3X1rNsD14Xuq8vZolWluD99Tk4FJVfJVnX/q63EWMMbMnjGzTWa2NMwIwWv6vJm9\nZ2abCH7MlFC92qbN5PVMtR7YQ1InM1tjZuPD8ecAr5jZqPB/eR14D/iepC4EDfwlZrbczDaa2X9S\n1l9VqeNOB/4Rvn82Ab8m+NF2cMo095vZAjP7Cni5lvXQYHkDkhtLgE5KqWmY2cFm1j58rHK8AVsV\n8iQdGG4uL5K0DLgY6MjWUp8zC+iaMrww5f4aoKWqr610B2ZUFz7szpkSbpp/RfDrrVMN/2s6qV8K\na4G2tUy7C/Dbyi9EgnUFwa/MLsCcKtNXHa66LjuHXQtzwq6av/LtdVmTrsBSC7sfQ7PCLJUyXdfZ\nzLvq/1aVAb8ys/Ypt/OrTJO67tew9bqvbf47AZ/X8njq/53uNa1p2q7VZKgt048Itgo+kTRB0vfC\n8bsAp6Y2pMAhBFsGOxGs5+W1zLcmXQleEwDCHwmz2fo1qst7u0HyBiQ33gHWEWye19WTwItAdzMr\nAv7Et1+nnavcn5vFcmYTdC1tRdJhBJvrp5pZUdjoLSf6YnN1e/LMAi6q8qXYJtxCm0/Q6FXmVOpw\nDfO8E9gE7GNm2wHnsvW6rG1vq3kEff2pXwo7k/6LPROZzDvXp8mubf6zCLr/cmke6V/PLcKt2LPM\nbHuCHVNGhrWMWQTdTqnvmXZmNpzgPd5BYd2r6izT5JtL0Dil5tuJmj9rjfK05t6A5ICZLSMoov9B\n0g8ktZPURFIJ0CZl0uq+lNsCX5nZekkDCLoTqr45/0dSK0l7E/T9P5NFzIeBX0raXYE+kjqEy98I\nLJbUQtLPgG2zmH+lmhqeLwn6y1O/qP4E3CqpNwQ7I0g6NXzsFWBfSYMlNSOodeyYZtltgdXACgU7\nCNxQ5fGF1PBFaWazgbeBuyRtI6kPcAFBV1W9RDRvkbs9yJ4EjpR0qqRmkjpKquz+qssya5u2Tq+n\npHMkbR8OLif4TGwiWGcnhAX5ppJaKthFt5uZzScolv9BUpGCnRcqj4NaCHSUVNN7+zmCbrAjJDUH\nriOoI72dxf/aYHkDkiNm9iuCAvSNBJu6Cwi+IG8k2EKB6vepvwz4haQVwE+pvnF4A5gOvE7QjfF6\nLfOr6ZfRfQQ1idEEH8iHCIqprwGjgM+ACoJN81kpz6v1OIA0y9/yXDNbA9wBvBV2PQwwsxcJfl0+\nHXY5fQgcE06/GDgVGE5QJN2LoK97XS25bgf6hv/fy8Dfq0xzF0Fj/JWka6vJeyZBQXoe8DzwMzP7\ndy3Lq8uv0LrOuyoDbtTWx4EsyjBLTdkrX5tZBDWK6wi6EScSFOJre25N96udNoPXs6pjgI8krSSo\nZZ0R1nfmEOx8cSvBjgizwtyV323nEuxcMZWg0bgqXP5UguL65+HeWV2qrINPCeorvyP4sfM94AQz\n21hDvkxeswZHQddeDhcg3ULwQmwm+EI4n+BX+DMEm4gVwGnhr/bK6S8g+HVxlZmNzmnABFFwhO/n\nBHuCbK596oYtrDXMBs4yszfizuPqx1/PZMrpFkj4hXch0NfM9iXYHe4M4GaCvTx6Av8Khwm7Lk4H\nehPsPfGHDIuSrhEIuymKwv3tK49rGBdnJpc9fz2TL9dfzisINh9bh/2crQk22U8EHguneYxvis2D\nCfYT32DB6RCmAwNynDFpGt1mcorvELwnKrsUTjKzmro8XOHz1zPh8tGFdRFwL0Ff+mtmdq6kr8K9\neyr3blhqZu0l/Q4YZ2ZPhI89DLxqZn/PaUjnnHN1lusurN2AnxAUC7sCbSWdkzpNuH91XYqyzjnn\nCkCzHM+/H8ERr0sAJD1PsNm6QNKOZrYg3Puhcu+RuQT7WlfqTjX7XUvyRsU557JgZpHtcpzrGshU\n4KDwmAURnKdmCsEulZUniBtCcOAcwEvAGeHxBz2APYAJ1c3YCuA8MOluw4YNiz2D5/SMntNzVt6i\nltMtEDObJOlxgv27NwMfAA8C7YBnFZx5swI4LZx+iqRnCRqZjcBllov/Ok8qKirijpARzxmdJGQE\nzxm1pOSMWq67sLDglALDq4xeSrA1Ut30dxKcgsI551wB82Mscmjo0KFxR8iI54xOEjKC54xaUnJG\nLee78eaCpCT3bDnnXCwkYQkqojdqZWVlcUfIiOeMThIygueMWlJyRs0bkGpMnD+RJyY/EXcM55wr\naN6FVY23Z7/NFa9cwQcXf5CzZTjnXL55F1Ye9Ovaj2lLp/HV2q/ijuKccwXLG5BqtGjagu90/w7/\nmfWf9BPXIin9op4zOknICJ4zaknJGTVvQGpQWlxKWUVZ3DGcc65geQ2kBu/MfofLX7nc6yDOuQbD\nayB50q9rP6Yvnc7StUvjjuKccwXJG5AaNG/anO/s9B3+MzP7OkhS+kU9Z3SSkBE8Z9SSkjNq3oDU\nonQXr4M451xNvAZSi3FzxnHpPy9l4sUTc74s55zLNa+B5NEBXQ5gxtIZXgdxzrlqeANSi+ZNm3Pw\nTgfz5sw3s3p+UvpFPWd0kpARPGfUkpIzat6ApOHHgzjnXPW8BpLGuDnjuOQfl1B+SXleluecc7ni\nNZA8O6DLAXyx7AuvgzjnXBXegKRRWQd5o+KNOj83Kf2injM6ScgInjNqSckZNW9AMuDHgzjn3Ld5\nDSQD4+eM56J/XMSkSyblbZnOORc1r4HEoG+XvlQsq2DJmiVxR3HOuYLhDUgGmjdtziE7HVLn40GS\n0i/qOaOThIzgOaOWlJxRy2kDIqmXpIkpt+WSrpb0c0lzUsYfl/KcWyRNkzRV0tG5zFcXpcWljK0Y\nG3cM55wrGHmrgUhqAswFBgAXACvN7L4q0/QGngT6A92A14GeZra5ynR5rYEATJg7gR+/9GMmXzo5\nr8t1zrmoJLkGciQw3cxmAwpvVQ0GnjKzDWZWAUwnaHBi17dLX2Yun8niNYvjjuKccwUhnw3IGcBT\n4X0DrpQ0SdJfJBWF47sCc1KeM4dgSyR2zZo0q3MdJCn9op4zOknICJ4zaknJGbVm+ViIpBbACcBN\n4ag/Ar8I7/8SuBf4UQ1Pr7avaujQoRQXFwNQVFRESUkJpaWlwDcvZtTDg4oHMfaLsXRY2CGj6Svl\nKk9Uw+Xl5QWVJ+nrMwnD5eXlBZUn6cOFuj7LysoYMWIEwJbvyyjlpQYiaTBwqZkdW81jxcDLZrav\npJsBzOzu8LFRwDAzG1/lOXmvgQC8O/ddLnjpAj689MO8L9s55+orqTWQM/mm+wpJXVIeOxmo/EZ+\nCThDUgtJPYA9gAl5ypjW/l32Z9byWXy5+su4ozjnXOxy3oBIakNQQH8+ZfQ9kiZLmgQMBK4BMLMp\nwLPAFOBV4LJYNjVq0KxJMw7d+dCM6yBVu14KleeMThIygueMWlJyRi3nNRAzWw10qjLuvFqmvxO4\nM9e5sjWoeBBlFWX8oPcP4o7inHOx8nNh1dF7895j6ItD+eiyj2JZvnPOZSupNZAGo2THEuasmMOi\n1YvijuKcc7HyBqSO6lIHSUq/qOeMThIygueMWlJyRs0bkCz4ddKdc85rIFl5f977DHlxiNdBnHOJ\n4jWQAuB1EOec8wYkK02bNOWwXQ4j3XXSk9Iv6jmjk4SM4DmjlpScUfMGJEt+nXTnXGPnNZAsvT/v\nfc578Tw+vuzjWHM451ymvAZSIEp2LGHeynksXLUw7ijOORcLb0Cy1LRJUw7b+TDemFlzHSQp/aKe\nMzpJyAieM2pJyRk1b0DqwY8Hcc41Zl4DqYcP5n/AOc+fw5TLp8QdxTnn0vIaSAHZr/N+zF813+sg\nzrlGyRuQemjapCmH73J4jd1YSekX9ZzRSUJG8JxRS0rOqHkDUk9+PIhzrrHyGkg9TZw/kbOeP4tP\nLv8k7ijOOVcrr4EUmD6d+7Bw1UIWrFoQdxTnnMsrb0DqqbIOUt15sZLSL+o5o5OEjOA5o5aUnFHz\nBiQCpcWljK0YG3cM55zLK6+BRKB8QTlnjDyDqVdMjTuKc87VKLYaiKQ2kvaU1EtSm6gCNAR9Ovdh\n0epFzF85P+4ozjmXN7U2IJLaSbpW0gTgQ+BR4DHgI0nvSbpGUtt8BC1kTdQkqINUOS9WUvpFPWd0\nkpARPGfUkpIzaum2QF4EVgInmNmuZvYdMzvIzHoA3wdWA/+vpieHWysTU27LJV0lqYOkMZI+kzRa\nUlHKc26RNE3SVElHR/FP5sOg4kGM/cLrIM65xiNvNRBJTYC5wADgSmCxmQ2XdBPQ3sxultQbeBLo\nD3QDXgd6mtnmKvMqqBoIwKQFkzht5Gl8esWncUdxzrlqxVkD2UvScZKOkbRnFss6EphuZrOBEwm6\nwgj/nhTeHww8ZWYbzKwCmE7Q4BS8fTvvy+I1i5m3cl7cUZxzLi/S1UB6SLpf0nTgT8B5wPnAnyXN\nkPRbScUZLusM4KnwfmczqzwD4UKgc3i/KzAn5TlzCLZECt6WOkjK8SBJ6Rf1nNFJQkbwnFFLSs6o\nNUvz+D3AQ8B1ZrYh9QFJzYFBwHDgtNpmIqkFcAJwU9XHzMwk1dYfVe1jQ4cOpbi4GICioiJKSkoo\nLS0Fvnkx8z4cnhery5IuW2WNLU+Gw+Xl5QWVp6bhSoWSJ8nD5eXlBZUn6cOFuj7LysoYMWIEwJbv\nyyjlpQYiaTBwqZkdGw5PBUrNbIGkLsBYM9tT0s0AZnZ3ON0oYJiZja8yv4KrgQBMXjiZHz77Qz67\n8rO4ozjn3LfEUgOR9L6kyyW1z3I5Z/JN9xXAS8CQ8P4Qgr29KsefIamFpB7AHsCELJeZd/vssA9L\n1i5h7oq5cUdxzrmcy7SIfgZBLeJdSU+HhfSMWrHwoMMjgedTRt8NHCXpM+CIcBgzmwI8C0wBXgUu\nK8hNjRo0URMG7jJwy/EgVbteCpXnjE4SMoLnjFpSckYtowbEzKaZ2a1AT4LdbB8BZkm6XVKHNM9d\nbWadzGxlyrilZnakmfU0s6PNbFnKY3ea2e5mtqeZvZbdvxUfv066c66xyLgGImk/gj2wjgNeI2hI\nDgXOMbOSnCWsPkvBbphMXjiZHzz7A6ZdOS3uKM45t5WoayDp9sKqXOj7wHLgYeBmM/s6fGicpEOi\nCtMQ7LPDPny19ivmrJhD9227xx3HOedyJtMayGlmdoSZPZnSeABgZifnIFdiNVETBhYP5I2KNxLT\nL+o5o5OEjOA5o5aUnFHLtAYyo/K+pA9yF6dh8OukO+cagzofByJpopntn6M8mWYo2BoIwIcLP+SU\nZ0/xOohzrqAUwjXRX4lq4Q3V3jvszbKvlzFnxZz0EzvnXELVuQExs9tyEaQhqTwe5I/P/THuKBlJ\nSv9tEnImISN4zqglJWfU0p1M8a3w7ypJK6vcVuQnYjKVFpdSvqA87hjOOZczfk30HPlo0Uec9PRJ\nTL9qetxRnHMOiO9cWPdJ2juqhTYGvbfvzfJ1y5m9fHbcUZxzLicyrYF8AjwoaYKkSyRtl8tQDUET\nNaH36t6J2J03Kf23SciZhIzgOaOWlJxRy/Q4kIfM7BCCC0oVAx9KelLSoFyGS7qSziWJaECccy4b\ndTkXVlOCi0KdD3QnOGvuocAaMzs9Zwmrz1LwNRCAjxd9zIlPn8iMq2akn9g553IsrhrIb4BPgeOB\nO8zsADO7x8xOAPJ6IsUk6b19b1auW8ms5bPijuKcc5HLtAbyIbCfmV1kZlUv8HRgxJkajDfeeIOB\nxQMLvhsrKf23SciZhIzgOaOWlJxRS3ccyG4AZvaIma2uYbJarwfS2A0qHlTwDYhzzmWj1hqIpGeA\nNgSXmn0PmA8I6AL0A04EVprZGbmPulWuRNRAAKZ8OYXvP/l9Pr/687ijOOcaubxeD8TMTpe0O8El\nbe8Adgkfmgn8F7jSzPybsRZ7ddqLVetXMXPZTHYp2iX9E5xzLiHS1kDMbLqZ/a+ZHWdmvcPbcWZ2\nhzcetSsrK0MSpcWlW66TXoiS0n+bhJxJyAieM2pJyRm1dDUQSbojvP/L/ERqeEqLSxlbMTbuGM45\nF6m0x4FIGgwcDYw2s/+Xl1RpJKkGAvDJl59w/JPH88XVX8QdxTnXiOX1OBBJw4AjgDOBI8JhV0d7\ndtqTNRvWULGsIu4ozjkXmVobEDO7Pbx7cDC4ZdhloLJfdEsdpKIw6yBJ6b9NQs4kZATPGbWk5Ixa\nJgcSPmpmU4FHs1mApCJJIyV9ImmKpIMk/VzSHEkTw9txKdPfImmapKmSjs5mmYWodJdSymaWxR3D\nOeciU5dzYe0L9AZaAgZgZo9n8LzHgDfM7BFJzQiOK/kJwfEj91WZtjfwJNAf6Aa8DvQ0s81VpktU\nDQRg6uKpHPu3Y6n4SUXcUZxzjVRc58L6OXA/8DugFBhOcBBhuudtBxxmZo8AmNlGM1te+XA1TxkM\nPGVmG8ysApgODMgkY6Hr1bEXX2/82usgzrkGI9NzYf0QOBKYb2bnA/sBRRk8rwfwpaRHJX0g6SFJ\nrcPHrpQ0SdJfJFXOqyswJ+X5cwi2RBIptV+0sg5SiKc1SUr/bRJyJiEjeM6oJSVn1Go9Ej3FWjPb\nJGljuFWxCNgpw/n3Ba4ws3cl/R9wM8GWzC/CaX4J3Av8qIZ5VNtXNXToUIqLiwEoKiqipKSE0tJS\n4JsXM+7hSlseDxuQ4mXFBZGvcri8vLyg8mS8PgssX5KGy8vLCypP0ocLdX2WlZUxYsQIgC3fl1HK\nqAYi6Q/AbcDpwHXAamBiuDVS2/N2BN4xsx7h8KHAzWb2/ZRpioGXzWxfSTcDmNnd4WOjgGFmNr7K\nfBNXA4GgDnLM346h4uoKpMi6IZ1zLiOx1EDM7DIz+8rM/kRwUOGQdI1H+LwFwGxJPcNRRwIfhw1L\npZMJThcPwUkbz5DUQlIPYA+g6unjE6tXx16s37Te6yDOuQYhbQMi6Sfh36sAzOwLM5tUh2VcCTwh\naRLQB7gLGC5pcjhuIHBNOO8pBFc6nAK8ClyWyE2NUNWul0Ktg1TNWaiSkDMJGcFzRi0pOaOWSQ1k\npaQbgKXZLCBsbPpXGX1eLdPfCdyZzbKSoPJ4kPP3T7sB55xzBS3d9UCGAa2Bqwl2411dCEejJ7UG\nAvDp4k85+m9Hex3EOZd3ea2BhI3FBoK6x/pCaDySrmfHnqzftJ4vlvmJFZ1zyZZJEf1NM3sTKMtx\nlganun5RSQV3mduk9N8mIWcSMoLnjFpSckYtkwtKjZbUBOgi6WcAknaW1CCOEI9DIRbSnXOurjI9\nDuRPwCbgu2a2p6QOBNcH6ZfrgDXkSWwNBOCzJZ9x5ONHMvMnM70O4pzLmJmxfN1yilpmciKQb4vl\nOBDgQDO7HFgLYGZLgeZRhWhs9uiwBxs3b/Q6iHMuY2s2rGHIi0O49J+Xxh1li0wbkPWSmlYOSNoe\n2FzL9I6a+0UrjwcZ+0VhXOY2Kf23SciZhIzgOaOW65wVyyo45JFD2Lh5Iw+f8HBOl1UXmTYgvwNe\nAHaQdCfwFsEBgS5Lg4oH+fVBnHNpjZkxhoMePogh+w3hiVOeoE2LNnFH2qIu1wPZC/huOPgvM/sk\nZ6nSZ0l0DQRg2pJpHPH4Ecz6ySyvgzjnvsXMuOete7h//P089YOnGFg8sN7zjLoGkunZeAEWAP8J\nn9NKUl8z+yCqII3N7h12Z7Nt5vOvPme3DrvFHcc5V0BWrlvJ0P83lDkr5jDhwgl037Z73JGqlekF\npX4JTCY4Gv3XBKdfvzeHuRqE2vpFt9RBKuKvg3g/c3SSkBE8Z9SizPnp4k858OED6diqI28OfbNg\nGw/IvAZyOrCbmQ00s0GVt1wGawwK7YBC51y8Xpz6Ioc9ehjXHHQND57wINs02ybuSLXK9DiQF4BL\nzGxh7iOl1xBqIADTl06ndEQps6+Z7XUQ5xqxTZs3MaxsGI9PepznTn2OA7sfmJPlxFUDuROYKOkj\nYF04zsws7XXRXc12ax/UPmZ8NYPdO+wecxrnXByWrl3K2c+fzdoNa3n3wnfp3LZz3JEylmkX1uPA\n3eHtXrwGkpF0/aKFcn2QxtjPnCtJyAieM2rZ5py0YBL9H+rPXp32Ysy5YxLVeEDmWyCrzOz+nCZp\npCoL6T/u++O4ozjn8ujJD5/k6lFXc/+x93PmvmfGHScrmdZA7iPounqJb7qwiGs33oZSAwGYsXQG\nh484nDnXzPE6iHONwIZNG7hhzA28/NnLvHD6C/Tp3Cdvy46rBtIXMOCgKuN9T6x62rX9rjRRE6Yv\nnc4eHfeIO45zLocWrlrI6SNPp3Xz1rx34Xu0b9U+7kj1klENxMxKU3ff9d14M5NJv2gh1EEaej9z\nPiUhI3jOqGWSc/yc8fR7qB+H73I4L5/5cuIbD0izBSLpXDP7q6TrCLZAtjxEsBfWfTlN10iU7lLK\nvyv+zYUHXBh3FOdcDjz4/oPc9u/bePiEhxm85+C440Qm3TXRLzazP0v6OVs3IMCWS97mXUOqgUBQ\nBzns0cOYe+1cr4M414Cs27iOK165grdmv8ULp79Ar069Ys2T1xpI2Hg0BVb41kbu7Np+V5o1aca0\npdPo2bFn3HGccxGYvXw2P3zuh+y07U6M//F42m3TLu5IkcvkkrabgGTuYxazTPtv466DNKR+5rgl\nISN4zqhVzVlWUcaAhwfwg71+wHOnPtcgGw/I/EDC/0r6vaTDJPWtvGXyRElFkkZK+kTSFEkHSuog\naYykzySNllSUMv0tkqZJmirp6Kz+qwSKu5DunKs/M+M37/yGM0aeweMnPc6Nh9zYoLulMz0OpIzq\nayBp98SS9Bjwhpk9IqkZ0Aa4DVhsZsMl3QS0N7ObJfUGngT6A92A14GeZra5yjwbVA0E4POvPueQ\nRw5h3rXzGvQbzrmGavX61Vz48oVMXTyV509/nuKi4rgjfUssx4GYWWk2M5e0HXCYmQ0J57MRWC7p\nRKDy6iiPAWXAzcBg4Ckz2wBUSJoODADGZbP8JOlR1IPmTZrz2ZLPYi+0OefqZsbSGZz8zMns32V/\n3rrgLVo1bxV3pLzI9HognST9TtJESR9I+q2kjhk8tQfwpaRHw+c9JKkN0DnlzL4LgcoTwHQF5qQ8\nfw7Blkgi1aX/VhKDesRzevek9jMXoiRkBM8ZpVenvUq/2/px8QEXM2LwiEbTeEDmR6I/DbwBnEJw\nDMhZwDPAkRnMvy9whZm9K+n/CLY0tjAzk1Rbf1S1jw0dOpTi4mIAioqKKCkpobS0FPjmTRf3cKWM\nn79LKaNVXo5/AAAa60lEQVQ/H02vVb3ymre8vDyvy8vb+vThGofLy8sLKk8Shw8feDh3vHkHv33m\nt5y7/blcPuDygspXWlpKWVkZI0aMANjyfRmlTGsgH5nZPlXGfWhm+6Z53o7AO2bWIxw+FLgF2BUY\nZGYLJHUBxprZnpJuBjCzu8PpRwHDzGx8lfk2uBoIwBdffcHBjxzsdRDnCtzyr5dz3ovnsXjNYp47\n9Tm6tusad6SMRF0DyXQvrNGSzpTUJLydDoxO9yQzWwDMllR5cMORwMfAy8CQcNwQ4MXw/kvAGZJa\nSOoB7AFMyDBj4hUXFdOiaQs+XfJp3FGcczX4eNHH9H+oPzttuxNjh4xNTOORC5k2IBcBTwDrw9tT\nwEWSVkpakea5VwJPSJoE9AHuILiuyFGSPgOOCIcxsynAs8AU4FXgsiRvalTteklHUiyXua1rzrgk\nIWcSMoLnzNbIKSMpfayU2w67jd8f/3taNG0BFF7OfMl0L6y2tT0uaW8z+7iG504i2C23qmrrJ2Z2\nJ8EVEBul0uJSRk0fxSX9Lok7inMutHHzRm7712088/EzjDp7FAd0PSDuSAUhoxpI2plIE81s/wjy\nZLq8JG+Y1KpiWQUHPXwQ86+b73UQ5wrA4jWLOfPvZ2JmPP3Dp+nUulPckbIWVw3E5UlxUTEtm7X0\nOohzBeCD+R/Q78F+9N2xL6POGZXoxiMXvAHJoWz7RUuLSxn7xdhow9QiKf23SciZhIzgOTPxWPlj\nHPO3Y/jVUb/inqPuoVmTmnv8k7I+o+YNSAEaVDyIspllccdwrlFav2k9V7xyBXf85w7KhpRx6t6n\nxh2pYEVVAxlnZlUvd5szDbkGAkEd5MCHD2TBdQu8DuJcHs1fOZ9TnzuVjq078vhJj7Ndy+3ijhSp\nWGogkp6X9D1J1U6fz8ajMSguKqZ189ZMXTw17ijONRpvzXqL/g/155jdjuGF019ocI1HLmTahfVH\n4GxguqS7JfnZ/jJQn37R0uJSxlbkpw6SlP7bJORMQkbwnKnMjAcmPMDJz5zMgyc8yE8H/pQm1f9W\nrlFS1mfUMlpLZjbGzM4iOK9VBfAvSW9LOl9S81wGbKxKd/HrgziXa2s3rOX8/3c+f37/z7z9o7c5\nfo/j446UKBnXQMKz754LnAPMI7hux6HAPtme7j1bDb0GAjBz2Uz6P9Sfhdcv9DqIczkwc9lMTnn2\nFHp27MnDJzxMmxZt4o6Uc3HVQF4A/gu0Bk4wsxPN7GkzuwJomNdqjNkuRbvQtkVbPln8SdxRnGtw\nXv/8dQ58+EDO2fccnjzlyUbReORCph19L5vZXmZ2p5nNB5DUH8DM/Jj+GtS3XzRfl7lNSv9tEnIm\nISM03pxmxvC3hnPuC+fy1A+e4prvXBPJFn5S1mfUMm1ArpDUvXJA0kDg0dxEcpXyWUh3rqFbuW4l\np408jZFTRjLhxxMY1CPtFbldGpleD6Q/wZ5Y3ycopN8FfN/MZuc2Xo15GnwNBGDW8ln0e7Cf10Gc\nq6fPlnzGyc+czMHdD+Z3x/+Ols1axh0pFrHUQMzsXeAqYAzwc+CouBqPxmTn7Xam3TbtmPLllLij\nOJdYL336Eoc+cihXH3g1D534UKNtPHKh1gZE0suVN4IrCbYC1gF/kfRSPgImWRT9ovnYnTcp/bdJ\nyJmEjNA4cm7avImfjf0Zl79yOS+d+RIXHXBRdMGqSMr6jFq664HcW804I7guesPvQyoApcWlvPTZ\nS1uut+ycS++rtV9x9vNns3rDat678D06t+0cd6QGqdYaiKQmZra51hnEUJBoLDUQgNnLZ9P3wb4s\nvH5hnY+Oda4xmrxwMqc8cwon9DyB4UcNp3lTP9a5Ur5rIGMl3ZByTfPUIL0k3QS8EVUY9207bbcT\n222znddBnMvAUx8+xXcf/y63l97Ob479jTceOZauATkaWAI8IGm+pM8kTZM0H/g9sJAaLk3rousX\nzfXxIEnpv01CziRkhIaXc+PmjVz72rX8z9j/4fVzX+fsPmfnNlgVSVmfUau1BmJm64BHgEckNQUq\nL8e12Mw25TqcC5QWl/Li1Be5YsAVcUdxruAsWr2I00eezjZNt+HdC9+lQ6sOcUdqNCK5Hki+NaYa\nCAR1kP3/vD+LbljkdRDnUkyYO4EfPvtDztvvPG4vvZ2mTZrGHamg+TXRG6GdttuJopZFfLzo47ij\nOFcwHv7gYb7/5Pe5/7j7+d8j/tcbjxh4A5JDUfaLDioelLM6SFL6b5OQMwkZIdk5121cx0UvX8S9\n79zLm+e/yUl7npT/YFUkZX1GLd2BhK9JukbSntkuQFKFpMmSJkqaEI77uaQ54biJko5Lmf6WsFA/\nVdLR2S63oSktLvXrpLtGb86KORw+4nCWrF3ChB9PYM9OWX81uQikOw6kC3AscAzQCxgPvAq8bmar\nM1qA9AVwgJktTRk3DFhpZvdVmbY3wXVG+gPdgNeBnlWPRWlsNRAIPjglfyrxOohrtN6oeIMz/34m\nVx14FTcdcpOfHy4Lea2BmNl8M3vUzM4A+gGPh39HS/qXpBszXE51gasbNxh4ysw2mFkFMB0YkOEy\nGrTu23anfav2fLToo7ijOJdXZsb/jfs/Tht5GiNOGsHNh97sjUeByPinrJltMrO3zeynZnYIcAYw\nN5OnAq9Lek/ShSnjr5Q0SdJfJBWF47oCc1KmmUOwJZJIUfeL5uq8WEnpv01CziRkhOTkHPX6KM55\n4Rwem/QY4340jqN3K8xe7aSsz6ilOxdWjczsS+CJDCY9xMzmS9oeGCNpKsGp4X8RPv5LgnNu/aim\nRVU3cujQoRQXFwNQVFRESUkJpaWlwDcvZtzDlaKa36Aegxg5ZSR91vaJNG95eXlO/v9CX5+Nebi8\nvLyg8lQ3vPN+O3P5K5ezW/vduOs7d9GjfY+CypeE9VlWVsaIESMAtnxfRimvx4GEtY9VZnZvyrhi\ngise7ivpZgAzuzt8bBQwzMzGV5lPo6uBAMxdMZc+f+rDlzd86XUQ16CNmj6KIS8O4aeH/5TL+1/u\nXVYRSdRxIJJaS2oX3m9DcGqUDyXtmDLZycCH4f2XgDMktZDUA9gDmJDLjEnSbdtudGzVkQ8Xfph+\nYucSaLNt5o437+BHL/2IkaeO5IoBV3jjUcCybkAknZ/BZJ2B/0gqJ9iD6x9mNhoYHu7aOwkYCFwD\nYGZTgGeBKQR7e12W5E2Nql0vUcjFebFykTMXkpAzCRmhMHMu/3o5pzxzCv+c9k/evfBdDtvlsILM\nWZ2k5IxafbZAfpFuAjP7wsxKwts+ZnZXOP48M+tjZvuZ2UlmtjDlOXea2e5mtqeZvVaPfA2SHw/i\nGqIpX05hwMMD6NquK2VDy+jarmvckVwG0h0HUltfSU8z2yb6SOk11hoIwLyV89j3j/t6HcQ1GH+f\n8ncu+eclDD9yOOfvn0nHhstW1DWQdHth7UBwIOFX1Tz2dlQhXOa6tutKp9ad+HDhh+y3435xx3Eu\na5s2b+J//v0/PPnRk7x69qv069ov7kiujtL9hP0n0NbMKqre8AtJpZWrftHSXUoZWzE2svklpf82\nCTmTkBHiz7lkzRKOe+I4JsybwHsXvldj4xF3zkwlJWfU0h2JfoGZ/aeGx87MTSSXTq4vMOVcLk2c\nP5F+D/WjZMcSXjvnNbZvs33ckVyW/HogCTR/5Xz2/sPeLL5xsddBXKL8ddJfuXb0tTxw/AOctvdp\nccdpdPJdA3EFqEu7LuzQZgcmL5xMyY4lccdxLq0V61Zwy+u3MPrz0YwdMpZ9dtgn7kguAv7zNYdy\n2S8aZTdWUvpvk5AzCRkhfzk3bt7In9/7M71+34u1G9fy7oXv1qnx8PVZ2LwBSajS4mgL6c5F7bXp\nr1HypxKe/vhpXjnrFR4Z/AhFLYvSP9ElhtdAEmr+yvn0/kNvFt+w2C/l6QrKx4s+5vox1zNj6Qx+\nffSvOaHnCX46kgKRqHNhudzp0q4LO7bdkckLJ8cdxTkAFq1exKX/uJRBjw3iuN2P46PLPuLEXid6\n49GAeQOSQ7nuF43q+iBJ6b9NQs4kZIRoc3698Wvu+e899H6gN62at2LqFVO56sCraNG0Rb3n3RjX\nZ5J4A5JgXgdxcTIznvnoGfZ6YC/Gzx3POz96h/uOuY8OrTrEHc3liddAEmzBqgXs9cBeXgdxeTdu\nzjiufe1avt74Nfcdcx+lxaVxR3IZ8ONA3BY7tt2RHdvuyKSFk+jbpW/ccVwjMHPZTG751y28OfNN\n7jjiDs7d71w/mLUR81c+h/LRLzqoeFC96yBJ6b9NQs4kZIS651yxbgW3/utW+j7Yl14de/HpFZ8y\npGRIzhuPhro+GwpvQBLOz4vlcmnj5o08+P6D9Pp9L+avms/kSyYzrHQYbVq0iTuaKwBeA0m4hasW\nsucDe3odxEVu9IzRXDf6Ojq17sS9R9/r3aQNgNdA3FY6t+1Ml7ZdKF9QzgFdD4g7jmsApnw5hetH\nX8/0pdP51VG/8mM5XI28CyuH8tUvWt9urKT03yYhZxIyQvU5F61exGX/vIzSEaUcs9sxfHTZRwze\nc3CsjUeS12dj4A1IAzCoeJBfJ91l7euNXzP8reH0fqA32zTdhqlXTOXqg66O5EBA17B5DaQBWLR6\nET1/15MlNy7xOojLmJnx3JTnuOn1m9iv834MP2o4PTv2jDuWyyGvgbhv2aHNDnTbthsTF0z060q7\njIyfM55rXruGtRvX8siJjzCox6C4I7kE8i6sHMpnv2h9zouVlP7bJOQs9Iwzl83krL+fxffu/B4X\nHXAR7134XkE3HoW+PislJWfUct6ASKqQNFnSREkTwnEdJI2R9Jmk0ZKKUqa/RdI0SVMlHZ3rfA3F\noB71P6DQNVypBwL27NiTv578V4aWDPUuT1cvOa+BSPoCOMDMlqaMGw4sNrPhkm4C2pvZzZJ6A08C\n/YFuwOtATzPbXGWeXgOporIOsvjGxTRr4j2TLrBx80YemfgIw8qGccxux3DHEXfQbdtuccdyMUlq\nDaRq4BOBgeH9x4Ay4GZgMPCUmW0AKiRNBwYA4/KUM7F2aLMD3bftzsT5E+nfrX/ccVwBqDwQsGOr\njvzjzH/4cUIucvmogRjwuqT3JF0YjutsZgvD+wuBzuH9rsCclOfOIdgSSaR894tmezxIUvpvk5Cz\nEDJO+XIKxz9xPJe/cjm/HPRLxg4Z+63GoxByZsJzFrZ8bIEcYmbzJW0PjJE0NfVBMzNJtfVHVfvY\n0KFDKS4uBqCoqIiSkhJKS0uBb17MuIcr5Wt5g3sN5oSnTuDXT/2aTq060XtAb7q168bX076mU5tO\nHHXEUXTbthszPpjBNs222fL88vLyWNZPoa/PpA3v3X9vhpUN44mXn+DcPufy4mUv0qJpi2qnLy8v\njz1vQxou1PVZVlbGiBEjALZ8X0Ypr8eBSBoGrAIuBErNbIGkLsBYM9tT0s0AZnZ3OP0oYJiZja8y\nH6+B1GDdxnXMWzmPuSvnMnfF3K3/hvfnrZxH6+at6bZtN7q1C2/bfvtvp9ad/FTdCfD1xq+5f/z9\nDH9rOOf0OYefHv5TOrbuGHcsV4CiroHktAGR1BpoamYrJbUBRgO3A0cCS8zsnrDRKKpSRB/AN0X0\n3au2Ft6A1I+ZsWTtkm83MFUampXrV9KlbZdaG5qu7brSqnmruP+lRsnMGDllJDe9fhN9OvfxAwFd\nWklrQHoAL4SDzYAnzOwuSR2AZ4GdgQrgNDNbFj7nVuACYCNwtZm9Vs18E9GAlJWVbdmsLGQ15fx6\n49fB1kwNDczclcHWTNsWbbduXKppaDq17lTvcyolYX3mK+P4OeO5dvS1rNmwhvuOvq/Ox3IkYV2C\n54xaovbCMrMvgJJqxi8l2Aqp7jl3AnfmMpfLTMtmLdm1/a7s2n7XGqcxMxavWfytLZkJcydsNW71\n+tV0adel1oama7uutGzWMo//YfLMWj6LW/51C2UVZcEVAfuc68dyuNj4ubBcXqzdsDZtbWb+qvm0\na9EubW2mY6uOje704ivXreTu/97Nn97/E1cOuJLrD76eti3axh3LJUyiurByxRuQhmmzbQ62ZtLU\nZtZsWEPXdl3T1ma2abZN3P9SvW3avIlHJj7Cz8p+xjG7HcP/HvG/dN+2e9yxXEJ5A0JyGpCk9Ism\nLeeaDWvSNjILVi1gu5bbpa3NdGjVIdKtmSjX5ZgZY7hu9HW0b9We+46+L9IDAZP2mhe6pORMVA3E\nuVxo3bw1e3Tcgz067lHjNJttM4tWL/pWA/PW7Le2Grdu07pgayZNbSaf18b45MtPuH7M9Xy6+FN+\nddSvOGnPkxpdl51LBt8CcY3a6vWra92SmbtyLgtXLaSoZVHa2kz7lu3r9UX/5eovuf2N23nm42e4\n9dBbuXzA5X5RJxcp78LCGxCXX5s2bwq2ZtI0NBs2bUhbm+nSrsu3GoV1G9fxuwm/45637uGsfc7i\nZwN/5gcCupzwBoTkNCBJ6Rf1nNFYtX4Vz7/6PN37dK+xoVm0ehHtW7X/pnusbVfGfD6GfTvvy/Aj\nh9OrU6+8ZC30dVnJc0bLayDOFai2Ldqy83Y7U9qjtMZpNm3exMLVC7dqYM7c90xKi2t+jnOFyrdA\nnHOukYh6C8TPlOeccy4r3oDkUOVplQud54xOEjKC54xaUnJGzRsQ55xzWfEaiHPONRJeA3HOOVcQ\nvAHJoaT0i3rO6CQhI3jOqCUlZ9S8AXHOOZcVr4E451wj4TUQ55xzBcEbkBxKSr+o54xOEjKC54xa\nUnJGzRsQ55xzWfEaiHPONRJeA3HOOVcQ8tKASGoqaaKkl8Phn0uaE46bKOm4lGlvkTRN0lRJR+cj\nX64kpV/Uc0YnCRnBc0YtKTmjlq8tkKuBKUBlv5MB95nZ/uHtVQBJvYHTgd7AscAfJCV2K6m8vDzu\nCBnxnNFJQkbwnFFLSs6o5fzLWVJ34HjgYaCy700p91MNBp4ysw1mVgFMBwbkOmOuLFu2LO4IGfGc\n0UlCRvCcUUtKzqjl49f9b4AbgM0p4wy4UtIkSX+RVBSO7wrMSZluDtAtDxmdc87VUU4bEEnfBxaZ\n2US23uL4I9ADKAHmA/fWMpvE7m5VUVERd4SMeM7oJCEjeM6oJSVn1HK6G6+kO4FzgY1AS2Bb4O9m\ndl7KNMXAy2a2r6SbAczs7vCxUcAwMxtfZb6JbVSccy5OUe7Gm7fjQCQNBK43sxMkdTGz+eH4a4D+\nZnZWWER/kqDu0Q14HdjdD/pwzrnC0yyPyxLfdEcNl7RfOPwFcDGAmU2R9CzBHlsbgcu88XDOucKU\nyCPRnXPOxS/2YywkHRseNDhN0k01THN/+PgkSfuH43aSNFbSx5I+knRVyvQDJE0ID1J8V1L/GHO2\nlDReUrmkKZLuSpm+g6Qxkj6TNDplb7RCy/krSZ+E0z8vabtCzJnyvOskbZbUoVBzSroyXKcfSbqn\nEHNG/TnKNmPKY1sdkByOK5jPUJqcBfMZqi1nymOZfYbMLLYb0JTgWI9ioDlQDuxVZZrjgVfC+wcC\n48L7OwIl4f22wKfAnuFwGXBMeP84YGxcOcPh1uHfZsA44JBweDhwY3j/JuDuAst5aDh8FNAkvH93\noeYMx+0EjCLoGu1QiDmBQcAYoHk4vH2B5ax8f5YR0eeovhnDcdcCTwAvpYwrqM9QLTkL6jNUU866\nfobi3gIZAEw3swoz2wA8TXAwYaoTgccALNgbq0hSZzNbYGbl4fhVwCd8c8zIfKCyhS8C5saVMxxe\nE07TguCF/6rqc8K/JxVYzqXh+DFmVnkcz3igeyHmDN0H3FjPfLnOeSlwVzhPzOzLAstZ+f6M8nNU\nr4yq/oDkrZ5DAXyGaspZaJ+hWtYn1OEzFHcD0g2YnTJc3YGD1U2z1cpXsCvw/gQvDMDNwL2SZgG/\nAm6JM2e4qVgOLCT4FTclnKazmS0M7y8EOhdozlQXAK8UYk5Jg4E5Zja5nvlymhPYAzhc0jhJZZL6\nFWjOKD9H2WasnKa6A5KhcD5D6XKmivMzVGvOun6G4m5AMq3gV20htzxPUltgJHB1uCUC8BfgKjPb\nGbgGeCTOnGa2ycxKCD6wh0sq/dYCgm3H+u7RkNOckm4D1pvZk4WWU1Jr4FZgWC3Pjz1n+HgzoL2Z\nHUTwIX62QHNG+TnKNqNU8wHJWy8g3s9QRjkL4DNUY85sPkNxNyBzCfrbKu3E1qcyqW6a7uE4JDUH\n/g78zcxeTJlmgJm9EN4fSf3Pp1WvnJXMbDnwT+CAcNRCSTsCSOoCLCqwnFt+GUsaSrDJe3Y9M+Yq\n564E/cGTJH0RTv++pB0KLCfhPJ4PH3sX2CypYwHlrHx/Rvk5qk/Gg4ETw9f1KeAISY+H0xTSZ6i2\nnIX0GaopZ90/Q/Up5NT3RvBLbEYYugXpC0EH8U0RXcDjwG+qme8HwMDw/neBd2PM2QkoCu+3At4E\nvmvfFABvCu/fTP0La7nKeSzwMdCpAF73GnNWeX4URfRcrc+LgdvD+z2BWQWaM7LPUX0yVplmIMGZ\nKyqHC+YzlCZnwXyGastZ189Qvf+RCFbEcQR7UE0HbgnHXQxcnDLN78PHJwF9w3GHEvTflQMTw9ux\n4WP9COoh5cA7wP4x5tw3/CCWA5OBG1Km70BwtP1nwOjKD3IB5pwGzExZz38oxJxV5v95ujd/jOuz\nOfBX4EPgfaC0QHNG+jnKNmOVeQxk672bCuYzlCZnwXyGastZ18+QH0jonHMuK3HXQJxzziWUNyDO\nOeey4g2Ic865rHgD4pxzLivegDjnnMuKNyDOOeey4g2Ic1mS1FnSk5JmSHpP0tuS6nsyP+cSwxsQ\n57IgScCLQJmZ7WZm/YAzqP9ZVp1LDG9AnMvOEcA6M3uwcoSZzTKz30t6Q8ElmwGQ9F9J+8aS0rkc\n8gbEuezsTXAKkOr8BRgKIKknsI2ZfZinXM7ljTcgzmVnq3MASfq9gsvCTgCeA74vqRnBtR8ejSOg\nc7nWLO4AziXUx8APKgfM7IrwlOzvmdlaSWMIro53KtA3pozO5ZRvgTiXBTP7N9BS0iUpo9uk3H8Y\nuB+YYMF1NpxrcLwBcS57JwEDJX0uaTwwgvBa0mb2AbAc775yDZifzt25HJDUleD64r3izuJcrvgW\niHMRk3QeMI7g+tLONVi+BeKccy4rvgXinHMuK96AOOecy4o3IM4557LiDYhzzrmseAPinHMuK96A\nOOecy8r/B+9bLqWB6Di+AAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7bc0518>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuYXdP5xz9fIUJcRtySCCYuQSQMJWiooS3RIvy0oq0y\naFW1aFFNVJugRShVVapuoa5RVVRJgkzcmqhKiESIS0KIxCU3gtze3x9rT3JyzJw5M3P22XufeT/P\ns5/Za++11/6edfbs96z3XReZGY7jOI7TUtZIWoDjOI6TTdyAOI7jOK3CDYjjOI7TKtyAOI7jOK3C\nDYjjOI7TKtyAOI7jOK3CDUiFIWmYpL8VOP+SpK/EeY8sI2krSYskKYay+0uaHpV/eKnLbw2Svidp\nVInK+rek75eirHIjaT9J05LWkTXcgMSMpGMkTZD0saQ5ksZL+nGMtyw4sMfM+pjZE3HdQ1KtpLeL\nKURStaQVkhJ7DiXNkHRgQ9rM3jKz9S2eAVIXAFdF5T/Q1sIk9ZB0r6T3Jc2XNFnS8dG5ourWzG43\ns4PbqiUq6xtmlokfFlHdbNOQNrMnzWzHJDVlETcgMSLpLOBKYDiwuZltDpwC9JfUsYlr2vqdlPyX\ncxnuEYtmSR2KyGZx3b8RtgKmtubCJj7L34CZUbldgO8Dc/IvbWGZ7Ylyfe+Vi5n5FsMGbAh8DBzZ\nTL4RwLXAv6P8BwLfBCYCC4C3gKE5+auBFcAPgXeAd4Gzcs4PBe4GbgEWAi8BX8o5PwP4arTfATgX\neC3K+xywRXTuj9G9F0TH980pYxjwtyY+Ty3wdk66nvDL+6noHqOAjaNzb0WfZVG07RUdP5Hwov0I\neATYKqe8g4BXgPnAn4FxwEnRuTrgaeAK4IPovtsAj0fp94HbgA2j/H8DlgOLo/ufnVO/a0R5ugMP\nAB8C04Ef5NXDyKbqOq9eXs+510JgrSLK/nukcQFwYiNlLgJ2aeJ+uXW7ENi7kfq5MDr2ZM51K4DT\nIr3vA5cCyqvfP0X1/zJwYN53nftdPAVcFn2PbwADcvL2BJ6ItI2JvsumnqlNgH8B86K6eiJHU3fg\nXmBudI/Tcq5bg9Wf7/8CPaLrVxD+3xYB3+aLz+1O0eeZF32vh+X9z/450rQQGA9sk/Q7J4ktcQGV\nugEDgKVEL6IC+UZE/4z7ROm1gf2BnaN0X+A9YGCUro4e/tuBdYA+0T9Pg1EYBnwa3V/ARcB/cu73\nZsM/PfAL4EVg+5x7dYn2vwdsFP0TngnMBjrm3KMlBmQ6sB3QCRgLXByd25qcl3V0bGCUf4fo3r8C\nno7ObUJ4mR4RnTsdWEL0ciW8tJYCP4nOdwK2Bb5KeGFvQjA4f2isPvLqt8GAPAFcDXQEdo3q+oBi\n6rqRusm/V3NlLwEOj9KdGilvDOElPYgcI1ugbhurnzq+aEAeA6qALQnG+qS8688g/Pg4mvDsVkXn\nx+Z9F0uAk6K6OQV4J+c+/yEYpzWB/tH3emsT9XYx4UdWh2jrHx1fA/gfcF5UTk+C4Tuoied7F1Y9\n3yvIeemT89xGz8prwOCo3AMIhqJXzv/sB8AekZ7bgDuTfucksSUuoFI34Fhgdt6xZwi/aBYT/aKP\nHsYRzZR1JXBFtF8dPfy9cs4PB26I9ocBo3PO9QYW56RzDcgr5PyyakbDR0DfnHsUa0DGAufmpH8M\nPJz3WXJfcg+T82s7ekl8QnDTHEdkTHLOv8XqL62ZzXyOI4DnG6uPfE2EF+gyoHPO+YuAm4up60bu\nnVv3xZRd38xnqSK8XF+KypoI7FGgbr9QPzRuQA7K+74ezcn7Tt71E4Bjc77r3O9iek6+daOyN4u+\ny6XkGEVCS6upZ+p84J/AtnnH92rk8wwBbmru+aawAdmPL/7v3kHkCSD8z/4159whwMvF/B9V2uYx\nkPj4ENgkN6ZhZl82s42icw3HDVgt6CxpL0ljJc2VNB/4EbBxXvm517xFaMo3kOsHXwx0aiK20oPw\ni+0LSDpb0tQoODuP4JLbpInP2hzv5ex/CqxXIO/WwB8lzYvu+2F0fAugGzArL39+Or8uN5d0l6RZ\nkhYQXlT5ddkU3YGPzOyTnGNvRVoaKLauW1N2/mdbDTObb2ZDzKwPsDkwifCiLUQxHRwKPVvv5OWd\nSfheGmPl925mi6Pd9Vj12T8rUtdlhBbBaEmvS/pldHxroHvDsxI9L0MIRgoKPN/N0L0RPTNZVQ/G\n6t97c890xeIGJD7+A3xO+MXbUu4gvAh6mFkV8Be++F1tlbef/49dDG8TXEurIWk/QvP/22ZWFRm9\nBZQ+6GiNHHsLONnMNsrZOpvZfwhutB45OpWbbqLMiwixhz5mtiEh0LxGgfy5vAt0kZT7ctiKZl7s\nRVJM2YW0rYaZfQhcTnihblTg2mLKLPRsbZGXd2vCZ2kJswmffZ0m7rkaZvaxmZ1tZtsChwNnRj3n\n3gLezHtWNjCzQ6NLG32+i+BdYMu8rtxb07r/sYrGDUhMmNl8QtP7GklHSVpf0hqSaoDOOVkbeymv\nB8wzsyWS+gHf5Yv/+OdJWkfSzgR3wd2tkHkDcKGk7RTYRVKX6P7LgA8kdZT0G2CDVpTfQFOG532C\nK2HbnGN/Ac6V1BtA0oaSvh2d+zfQV9JASWsSfPldm7n3egQX2EJJWxAMYy5z8u6/EjN7m+B2vFjS\n2pJ2IQT4b2vmns1SirIlDZe0s6Q1Ja1PcDdNN7N5NF63xXK2pCpJWxLiTLnP1maSTpe0VvS97Ej4\nXorGzGYSOmYMi8rZBziUJoybpG82PKOEWMTyaHsWWCTpnOh/oYOkPpL2iC5t6vmGAt87wS23GDgn\n0lcb6burQVJLPm8l4wYkRszsMkIA+hxCc/49wgvyHEILBcI/Tf4/zqnABZIWAr+mceMwjtCsfxS4\nzMweLVBeU786ryD0IhpNaGFcTwisjiL0fnqV0GvrU8KvvdzyCv2SLXT/lddGbo3fAU9HLoh+ZvZP\nQkznrsjlNBk4OMr/AaHHzKWEIOZOhBfR5wV0nQ/sHn2+Bwk9dnLzXEwwxvMkndmI3u8Q4gnvAv8A\nfmNmjxe4X9GthlaUnc86wH2EuNrrhLjK4fCFuv1I0l4F9OYfu58QnJ5I6Gl0Y865CcD2BAN1IXBU\nZLDyaa5uvgfsQ3BRXkh4xpc08Tm3J3QYWEQwun82s3FmtoLwYq8h9MB6H/grq37sNPV8Q4gx3RJ9\n799i9edyCXAYIbbxPqGjw/fN7NUiP1u7oaErXHw3kGaw6lfDUjPrF/0KuJvQLJwBHB39YkfSEMIv\nseXA6WY2OlaBGUNSNeGfZc3oH6jdEsUa3ga+a2bjktZTCUhaAWxnZm80cq6O0CNrvxjuezcw1czO\nL3XZTnyUowViQK2Z7WZm/aJjg4ExZtaL0GVwMEDkthhE6M0ygOD+8VaSsxJJB0XulbUJffwh9MN3\nMoSkPSRtG7l1DyG0nJrrAOCkjHK9nPN9hocTBl8R/W0INA8k9KdeamYzCC6afjj5tMvmcsQ+hOfi\nfcKAyyPM7PPClzgtoDnXZKmeva6Ebr+LgD8Ap5jZCyUq2ykT5XBhvUHwPy4HrjOz6yXNi3r2NPSk\n+cjMNpL0J2C8md0enbuBMGbg3lhFOo7jOC1mzTLco7+ZzZa0KTBGeTNemplJaklA1nEcx0kBsRsQ\nM5sd/X1f0n0El9QcSV3N7D1J3QhTOEDoZ71lzuU9aKTvdTMGx3Ecx2kCMytZN+RYYyCS1o36pyOp\nM2EivMmECeSOj7Idz6rg2QPAMdHYg56E7nvPNlZ20kP427INHTo0cQ2uP3kd7U27609+KzVxt0A2\nB+6LBnSuCdxuZqMlPQeMlHQSUTdeADObKmkkYSbWZcCpFsenTpgZM2YkLaFNuP7kyLJ2cP2VRqwG\nxMzeJAzyyT/+EfC1Jq65iDD9hOM4jpNifIxFAtTV1SUtoU24/uTIsnZw/ZVG7N1440BSJXq2HMdx\nYkUSlpUgutM49fX1SUtoE64/ObKsHVx/peEGxHEcx2kVle/C+ve/oVs32G23eEU5juOknFK7sMox\nEj1ZnnoKOnVyA+I4jlNiKt+F1bcvvPRS0ipWI+t+VNefHFnWDq6/0qh8A9KnT+oMiOM4TiVQ+TGQ\nJUtgww1h/nxYe+14hTmO46QY78bbUjp2hG22gWnTms/rOI7jFE3lGxBInRsr635U158cWdYOrr/S\ncAPiOI7jtIrKj4EA3Hcf3HQTPPhgfKIcx3FSjsdAWkMKu/I6juNknfZhQHr2hLlzYdGipJUA2fej\nuv7kyLJ2cP2VRvswIB06wE47wZQpSStxHMepGMoSA5HUAXgOmGVmh0kaBvwAeD/Kcq6ZPRzlHQKc\nCCwHTjez0Y2U1/Lp3OvqYN994Qc/aO3HcBzHyTRZnQvrDMIytetHaQOuMLMrcjNJ6g0MAnoDWwCP\nSuplZivarMB7YjmO45SU2F1YknoA3wBuABosn3L2cxkI3GlmS81sBvAa0K8kQlJkQLLuR3X9yZFl\n7eD6K41yxED+APwCyG1FGHCapBck3SipKjreHZiVk28WoSXSdrwnluM4TkmJ1YUl6VBgrplNlFSb\nc+pa4IJo/0LgcuCkJoppNNhRV1dHdXU1AFVVVdTU1FBbG27R8CthtbQZtZ9/Du+/T30UTC+YP8Z0\nw7Gk7u/6s6u/trY2VXpcf7r05afr6+sZMWIEwMr3ZSmJNYgu6SLg+8AyoBOwAXCvmR2Xk6caeNDM\n+koaDGBml0TnHgGGmtmEvHJbtyb6fvvBBRfAAQe06vM4juNkmUwNJDSzc81sSzPrCRwDPG5mx0nq\nlpPtSGBytP8AcIykjpJ6AtsDz5ZMUEriIA2/ELKK60+OLGsH119plHNFQrHKHXWppF2j9JvAjwDM\nbKqkkYQeW8uAU1vX1GiCPn3gxRdLVpzjOE57pn3MhdXAuHFw7rnw9NOlF+U4jpNySu3Cal8G5MMP\nw9og8+eDSlaHjuM4mSBTMZDUsfHG0LkzzJrVfN4Yybof1fUnR5a1g+uvNNqXAYEQB5k8ufl8juM4\nTkHalwsL4MwzoWtXOOec0opyHMdJOe7Caisp6crrOI6TddyAJEDW/aiuPzmyrB1cf6XR/gxI794w\nbRosX560EsdxnEzT/mIgANtuCw8/DL16lU6U4zhOyvEYSClIgRvLcRwn67RfA5JgV96s+1Fdf3Jk\nWTu4/kqj/RoQb4E4juO0ifYZA5k8GY4+Gl5+uXSiHMdxUo7PhUUJDMiSJbDhhjBvHnTqVDphjuM4\nKcaD6KWgY8cwqeIrryRy+6z7UV1/cmRZO7j+SqN9GhDwNdIdx3HaSPt0YQH89rfw8cdwySWlEeU4\njpNyMunCktRB0kRJD0bpLpLGSHpV0mhJVTl5h0iaLmmapINiE+U9sRzHcdpEuVxYZxCWqW1oNgwG\nxphZL+CxKI2k3sAgoDcwALhGUjwaEzQgWfejuv7kyLJ2cP2VRuwGRFIP4BvADYR10QEOB26J9m8B\njoj2BwJ3mtlSM5sBvAb0i0VYz57w/vuwcGEsxTuO41Q6scdAJN0DXARsAJxtZodJmmdmG0XnBXxk\nZhtJ+hMw3sxuj87dADxsZvfmldn2GAjAHnvA1VfD3nu3vSzHcZyUU+oYyJqlKqgxJB0KzDWziZJq\nG8tjZiapkDVo9FxdXR3V1dUAVFVVUVNTQ21tuEVDM7PZdOTGqv/ss+Lye9rTnvZ0htL19fWMGDEC\nYOX7sqSYWWwboeXxNvAmMBv4BPgbMA3oGuXpBkyL9gcDg3OufwTYq5FyrST8/vdmZ5xRmrJawNix\nY8t+z1Li+pMjy9rNXH/SRO/Okr3jY42BmNm5ZralmfUEjgEeN7PvAw8Ax0fZjgf+Ge0/ABwjqaOk\nnsD2wLOxCfT10R3HcVpN2caBSNofOMvMDpfUBRgJbAXMAI42s/lRvnOBE4FlwBlmNqqRsqwkut95\nB3bfHebMaXtZjuM4KcfnwqKEBsQMunQJU5pstlnby3Mcx0kxmRxImFqk4MaaMqWst20IcmUV158c\nWdYOrr/SaN8GBHxEuuM4Titp3y4sgGuugRdegOuuK015juM4KSUxF5akzpJ2lLSDpM6lEpA43gJx\nHMdpFQUNiKT1JZ0p6VlgMnAzYeqRlyQ9J+nnktYrh9DY2HnnYEDK2BLLuh/V9SdHlrWD6680mmuB\n/BNYBBxmZtuY2T5mtnc0ruNQwsDA++MWGSsbbwydO8PbbyetxHEcJ1N4DATgoIPgZz+Db3yjdGU6\njuOkjCRjIDtJOkTSwZJ2LJWAVOBxEMdxnBbTXAykp6SrJL0G/AU4DjgBuE7S65L+KKk6fpkxU2YD\nknU/qutPjixrB9dfaTQ3G+9w4HrCFCRLc09IWgs4ALgUODoeeWWib98wrbvjOI5TNB4DAfjkE9h0\n07C41JqxznDvOI6TGInEQCT9T9JPJG1Uqhunis6doVs3eP31pJU4juNkhmKD6McAWwD/lXRXFEgv\nmRVLBWWMg2Tdj+r6kyPL2sH1VxpFGRAzm25m5wK9gDuAm4C3JJ0fTc2efbwnluM4TosoOgYiaVdC\nD6xDgFEEQ7IvcKyZ1cSmsHEtpY2BANx5J/zjH3DPPaUt13EcJyUksia6pP8BC4AbCEvOfhadGi+p\nf6nEJErfvnDBBUmrcBzHyQzFxkCONrMDzeyOHOMBgJkd2dRFkjpJmiBpkqSpki6Ojg+TNEvSxGg7\nJOeaIZKmS5om6aBWfarW0KsXzJgBn33WbNa2knU/qutPjixrB9dfaRTVAjGzld2TJD1vZrsXed1n\nkg4ws8WS1gSekrQvYMAVZnZFbn5JvYFBQG9C0P5RSb3MbEWRn6f1dOwI224L06ZBTVk9co7jOJmk\nxeNAJE00s91afCNpXWAcUAd8C/jYzC7PyzMEWGFmw6P0I8AwMxufl6/0MRCAY46BQw+FY48tfdmO\n4zgJk4Ylbf/dksyS1pA0CZgDjDWzhvVjT5P0gqQbJVVFx7oDs3Iun0VoiZQH74nlOI5TNC0edm1m\nv2ph/hVAjaQNgVGSaoFrgYaI9YXA5cBJTRXR2MG6ujqqq6sBqKqqoqamhtraWmCVn7LF6T594IYb\nWn99kekrr7yyNHoTSrv+5NK5Pvg06HH96dLXmN4RI0YArHxflhQza3IDno7+fkxYFyR3W1jo2ibK\n+zVwdt6xamBytD+Y0Mur4dwjwF6NlGOxMH262dZbx1N2DmPHjo39HnHi+pMjy9rNXH/SRO/OFr23\nC22xzoUlaRNgmZnNl7QOYfzI+cAUM3svyvNzYE8z+24URL8D6EcURAe2szyRscVAVqyADTaAd98N\nfx3HcSqIpMaBXAHcaKviF8XSDbhF0hqEeMvfzOwxSbdKqiG4p94EfgRgZlMljQSmAsuAU+OxFE2w\nxhqw004wZQrss0/Zbus4jpNFig2ivwz8VdKzkk6J4hnNYmaTzWx3M6sxs13M7LLo+HFRelczO8LM\n5uRcc5GZbWdmO5rZqJZ/pDZShkB6rh81i7j+5MiydnD9lUaxc2Fdb2b9CQtKVQOTJd0h6YA4xSWC\n98RyHMcpipbMhdUBOIwwH1YPYCRhLqzFZjYoNoWNa4nPszVqFFx6KTz2WDzlO47jJESpYyBFGRBJ\nfyAYj8eBG8zs2Zxzr5jZDqUSVAyxGpB33oHdd4c5c5rP6ziOkyGSGkg4GdjVzE7ONR4Re5VKTCro\n3h2WLoW5c2O7Rdb9qK4/ObKsHVx/pVHQgEjaFsDMbjKzT5rIVhnrgTQghTjIlJZ2OHMcx2lfFHRh\nSbob6Aw8ADwHzAZE6J67B3A4sMjMjolf6mq64u3de+qpsOOOcPrp8d3DcRynzJR1HIiZDZK0HWFJ\n298BW0enZgJPAaeZ2RulEpMa+vSBSZOSVuE4jpNqmo2BmNlrZvZbMzvEzHpH2yFm9ruKNB4Qe1fe\nrPtRXX9yZFk7uP5Ko7kYiCT9Ltq/sDySUsDOOwcDUsZB8I7jOFmj2W68kgYCBwGjzez+sqhqhthj\nIBB6Y40fD1ttFe99HMdxykRZu/FKGgocCHwHODBKtw/69vUR6Y7jOAUoaEDM7Pxo98shuTJd+fTp\nA5Mnx1J01v2orj85sqwdKlT/4sVl15EWihlIeLOZTQNujltMqvA5sRzHaY6FC2HPPWHChKSVJEJL\n5sLqC/QGOhGtEmhmt8YnraCW+GMg//0vnHwyTJwY730cx8kmy5fDwIEhTnrNNUmrKYqk5sIaBuwP\n7Aw8BBwCPGVm3yqVkJZQFgPyySew6abhF8aaLV7513GcSmfw4NDyGD0a1loraTVFkdRcWN8CvgbM\nNrMTgF2BquYuktRJ0gRJkyRNlXRxdLyLpDGSXpU0WlJVzjVDJE2XNE3SQa34TKWhc2fo1g1ef73k\nRVekHzhDZFl/lrVDBem//XYYORLuuSczxiMOijUgn5rZcmBZtJjUXGDL5i4ys8+AA8ysBtgFOEDS\nvoS1z8eYWS/gsShNtKTtIIKrbABwTbSaYTJ4TyzHcfL573/hZz+DBx6ATTZJWk2iFOvCugb4FeHl\nfhbwCTAxao0UdyNpXWAcUAfcC+xvZnMkdQXqzWxHSUOAFWY2PLrmEWCYmY3PK6s8K92ed174dTG0\n/fRedhynAO++C/36wZ//HOIfGSMRF5aZnWpm88zsL4RBhccXazwkrSFpEjAHGButq755zjK2c4DN\no/3uwKycy2cBWxRzn1iIsSuv4zgZ49NP4YgjwmSrGTQecdCsAZH0s+jv6QBm9qaZvVDsDcxsReTC\n6gF8JX8Z3KgpUag5kdx8IjF15a0YP3BGybL+LGuHDOs3gx/+kPr11oMhQ5JWkxqK6V60SNIvgI/a\nciMzWyDpIeBLwBxJXc3sPUndCDEVgHdYPbbSIzr2Berq6qiurgagqqqKmpoaamtrgVUPaZvTX/4y\nzJxJ/ejR0LFjycqfFM30W3K9ZUq7fk+3u/Sdd1I7bRr89rfUjxuXvJ4i0/X19YwYMQJg5fuylDS3\nHshQYF3gDOAq4JOWjEaXtAmwzMzmS1oHGAWcDxwMfGhmwyUNBqrMbHAURL8D6EdwXT0KbJcf8Chb\nDARCK+S226Cmpjz3cxwnXTz0UBgTNmEC9OiRtJo2UdYYSGQslhLiHktaMZVJN+DxKAYyAXjQzB4D\nLgG+LulVwlxbl0T3mwqMBKYCDwOnls9SNIGPSHec9svUqXDCCXDvvZk3HnFQTBD9CTN7AqhvaeFm\nNtnMdjezGjPbxcwui45/ZGZfM7NeZnaQmc3PueYiM9vOzHY0s1EtvWfJiaErb0MTM6u4/uTIsnbI\nmP6PPoLDD4fLLoO99wYypr8MFLOg1OhoLEY3Sb8BkLSVpH6xq0sD3hPLcdofy5bB0UeHXlfHH5+0\nmtRS7DiQvwDLga9G4zW6ENYH2SNugU3oKZ9n6/XX4cADYebM8tzPcZzkOf10mD4d/vUv6NAhaTUl\no6xrouewl5ntJmkiBBeUpPYxfr9nT/jggzAn1gYbJK3GcZy4uf76ML/V+PEVZTzioNhpQpZIWlmT\nkjYFVsQjKWWssQb07g1TppSsyKz7UV1/cmRZO2RA/5NPwq9+FaYpqfridH+p119mijUgfwLuAzaT\ndBHwNHBxbKrShvfEcpzKZ+bMEPe47Tbo1StpNZmgJeuB7AR8NUo+ZmYvx6aqeS3l7d17+eXw1lvw\nxz+W756O45SPjz+G/v1Dl92f/SxpNbGR1HTuAO8BTwL/AdaRtHupRKQen5XXcSqXFStCT6svfQnO\nOCNpNZmiKAMi6ULgRcJo9N8Dl0db+6DEXXmz7kd1/cmRZe2QUv0XXADvvQfXXgsq/OM8lfoTpNhe\nWIOAbc1sSZxiUku3bqFf+Ny5sNlmSatxHKdU/P3vcPPN8OyzsPbaSavJHMWOA7kPOCVnCvZEKXsM\nBOArX4Fhw8KYEMdxss+kSfD1r4cuu7vtlrSaspDUOJCLgImSXgI+j46ZmR1eKiGpp6EnlhsQx8k+\nc+aENT2uuabdGI84KDaIfithwsNLWBX/aD8xEChpV96s+1Fdf3JkWTukRP/nn8NRR4XA+be/3aJL\nU6E/RRTbAvnYzK6KVUna6ds39A93HCe7mIUVBTfbLLiknTZRbAzkCoLr6gFWubAws+fjk1ZQT/lj\nIB99BNXVsGBBsz01HMdJKVddBTfcAM88A+utl7SaspNUDGR3wtKye+cdP6CRvJVJly6w/vphQOHW\nWyetxnGcljJmDFx8MfznP+3SeMRBUTEQM6s1swPyt7jFpY4SxUGy7kd1/cmRZe2QoP7p0+HYY+Gu\nu4InoZVkvf5LTUEDIun70d+zJJ2Zs50l6czmCpe0paSxkqZIeknS6dHxYZJmSZoYbYfkXDNE0nRJ\n0yQd1NYPWFJ8TizHyR4LFoSFoS68EPbfP2k1FUVza6L/yMyukzSM4MJajeaWuJXUFehqZpMkrQf8\nDzgCOBpYZGZX5OVvWBN9T1atid7LzFbk5Utmpdubb4bHH4e//a3893Ycp+UsXw6HHQbbbANXX520\nmsQpawwkMh4dgIX5L/tiMLP3CHNoYWYfS3qZYBgAGvsQA4E7zWwpMEPSa0A/YHxL7x0LffqEIJzj\nONlgyBD47DP4wx+SVlKRFLOk7XLgO229kaRqYDdWGYPTJL0g6UZJDRPvdwdm5Vw2i1UGJ3l694ZX\nXgnTmrSBrPtRXX9yZFk7lFn/rbfCvffCPffAWqVZ/y7r9V9qih1I+JSkqyXtJ2n3hq3Ym0Tuq78D\nZ5jZx8C1QE+gBphN4UGJCfiqmqBzZ+jeHV57LWkljuMUYvx4OPvssDDUxhsnraZiKbYb726EF/kF\neceb7YkVLX17L3Cbmf0TwMzm5py/AXgwSr4DbJlzeY/o2Beoq6ujOupNUVVVRU1NDbW1tcCqXwmx\npPv0of7uu2H//VtdXsOxsuiNIe36k0vX1tamSk8q9d9zD/z4x9TefDPsvHP29JcwXV9fz4gRIwBW\nvi9LSdELSrWqcEnALcCHZvbznOPdzGx2tP9zYE8z+25OEL0fq4Lo2+VHzBMLogOcdx6suaaPYnWc\nNPLpp2FIcOUVAAAYBUlEQVTi06OOgsGDk1aTOhJZUErSJpL+FHW5fV7SHyUV0y7sDxwLHJDXZXe4\npBclvQDsD/wcwMymAiOBqcDDwKnJWYomKEFX3oZfCFnF9SdHlrVDzPrN4KSTwnK0v/xlLLfIev2X\nmmJdWHcB44D/I/Se+i5wN/C1QheZ2VM0bqQeLnDNRYTZf9NJnz7e+nCcNDJ8eBgw+MQTPt1QmSh2\nLqyXzKxP3rHJZtY3NmWF9STXMFmyBDbcEObNg06dktHgOM7qPPgg/PjHMGECbJGejptpI6k10UdL\n+o6kNaJtEDC6VCIyRceOsN128PLLSStxHAdgyhQ48cTQZdeNR1kp1oCcDNwOLIm2O4GTJS2StDAu\ncamljXGQrPtRXX9yZFk7xKD/ww/DNCVXXAF77VXashsh6/VfaoqKgZhZwakrJe1sZlNKIykD+JxY\njpM8S5eGBaGOOgq+//2k1bRLStKNV9JEMyvbupCJxkAA7r8f/vpXeOih5DQ4Tnvnpz+FN98MgwU7\ndEhaTSZIaj0QJxdvgThOslx3HTz2WBhx7sYjMYqNgTi59OwZfK8LWxf+ybof1fUnR5a1Q4n0jxsH\nv/lNaHlsuGHby2sBWa//UuMGpDWssUaYWHFK+wn7OE4qePNNGDQIbrsNtt8+aTXtnlLFQMabWf5y\nt7GReAwEQrfBvfeGk09OVofjtBcWLYL+/eEHP4DTT09aTSZJaiqTf0j6pqRG85fTeKQGj4M4TvlY\nsQKOOw769YPTTktajRNRrAvrWuB7wGuSLpG0Q4yaskEbDEjW/aiuPzmyrB3aoH/oUPjgA7jmmkSn\nKcl6/ZeaogyImY0xs+8CuwMzgMckPSPphGi69vaHt0AcpzzcffeqxaE6dkxajZND0TGQaPbd7xNm\n132XMO36vkAfM6uNS2ATWpKPgZiFhWqmTYPNNktWi+NUKs8/DwcfDGPGQE1N0moyT1IxkPuAp4B1\ngcPM7HAzu8vMfgqsXyoxmUKCvn29FeI4cfHee3DEEfCXv7jxSCnFxkAeNLOdzOyinIWg9gQwsy/F\npi7t9OkDkye3+LKs+1Fdf3JkWTu0QP/nn8P//V/o7XjUUbFqaglZr/9SU6wB+amkHg0JSfsDN8cj\nKUN4HMRxSo8ZnHIKdO8eBgw6qaXY9UD2JPTEOpQQSL8YONTM3m7mui2BW4HNCGuq/9XMrpLUhbAg\n1daEoPzRZjY/umYIcCKwHDjdzL4wbXwqYiAATz4J55wD//lP0kocp3L4wx/gllvg6aehc+ek1VQU\npY6BtCSI/mXgOuBTgvGYW8Q1XYGuZjZJ0nrA/4AjgBOAD8zsUkm/BDYys8E5a6Lvyao10XuZ2Yq8\nctNhQD76CKqrYcECXwHNcUrBqFFQVxfmuNp666TVVBxlDaJLerBhA4YA6wCfAzdKeqC5ws3sPTOb\nFO1/DLxMMAyHA7dE2W4hGBWAgcCdZrbUzGYArwH9WvypykWXLrD++vDWWy26LOt+VNefHFnWDs3o\nf+WVMC37yJGpNR5Zr/9S09xsvJc3cswI66K3qAkgqRrYDZgAbG5mc6JTc4DNo/3uwPicy2YRDE56\naYiDpPSBd5xMMH9+WBjqootgv/2SVuMUSXMG5Il891E+KsKfFLmv7gXOMLNFynH3mJlJKnR9o+fq\n6uqorq4GoKqqipqaGmpra4FVvxLKku7bl/r774fOnYu+vuFYInpLkHb9yaVra2tTpack+h97DIYM\nofbgg+EHP0iV3qL0pzhdX1/PiBEjAFa+L0tJwRiIpHHAv4D7zezVvHM7EFxP3zSzrxQoY62ojIfN\n7Mro2DSg1szek9QNGGtmO0oaDGBml0T5HgGGmtmEvDLTEQMBGDECHn00zA7qOE7LOessePFFePhh\nWNOXKIqTcg8kPAj4EPizpNmSXpU0XdJs4GqC++lrBcQKuBGY2mA8Ih4Ajo/2jwf+mXP8GEkdJfUE\ntgeebemHKiut6Mrb8Ashq7j+5MiydmhE/4gRYV2Pu+/OhPHIev2XmoLfmJl9DtwE3CSpA7BJdOoD\nM1teRPn9CVOfvChpYnRsCHAJMFLSSUTdeKP7TZU0EpgKLANOTU9Towl22ikE/5Yty8Q/gOOkhmee\nCd3g6+tDhxQnc5RkPZBykyoXFsB228G//gU77pi0EsfJBm+/DXvtBddfD9/8ZtJq2g2JzIXlNIOP\nSHec4lm8OMxx9bOfufHIOG5ASkELDUjW/aiuPzmyrB2gfuzYML9V797wi18kLafFZL3+S01zAwlH\nSfq5JPfNFKJv31ZNqug47Y7bbgvrml9/vc/eUAE01423GzAAOBjYgTAI8GHgUTP7pCwKG9eVrhjI\nlClh5tBXXklaieOkl/vvh5/8BJ59NkyU6JSdJOfC6gDsBRwCHAh8Bowys0tLJaZYUmdAliyBDTcM\nc2Ots07SahwnfUyeDAceCA89FNY1dxIhsSC6mS03s2fM7Ndm1h84BninVEIyTceOoSfWtGlFZc+6\nH9X1J0cmtX/wAQwcCFdeSf3ixUmraROZrP8YaXUQ3czeN7PbSykm03hPLMf5IkuWwLe+BUcfDd/7\nXtJqnBLj40BKxe9+BwsXwvDhSStxnPTw4x+HMR/33w8dOiStpt3j40DSiq+P7jirc+21MG4c3HGH\nG48KpdUGRNIJpRSSeVqwPnrW/aiuPzkyo33sWBg2LMxztcEGKw9nRn8TZF1/qWlLC+SCkqmoBKqr\nQy+sBQuSVuI4yfLGG/Cd74SWx3bbJa3GiZHmxoEU+kndy8zWLr2k5kllDARC98Qrr4QvfzlpJY6T\nDIsWwT77wCmnwE9/mrQaJ49Sx0Camz52M8JAwnmNnHumVCIqhoaeWG5AnPbIihVw7LHh+f/JT5JW\n45SB5lxYDwHrmdmM/A0YF7+8jFFkV96s+1Fdf3KkWvuvfw3z5sHVVzc5TUmq9RdB1vWXmubWAzmx\nwLnvlF5OxunTJ0zr7jjtjTvvhNtvh//+NwysddoFPg6klMyeDbvsAnPn+kRxTvvhuefgkEPC0s67\n7pq0GqcAmRsHIukmSXNyA/KShkmaJWlitB2Sc25ItGzuNEkHxa2vpHTtGvzAc+cmrcRxysPs2XDk\nkXDddW482iHlGEh4MyEQn4sBV5jZbtH2MICk3sAgoHd0zTWSsjPYUQpurCeeKJgt635U158cqdL+\n2WfBePzwh2E26iJIlf5WkHX9pSb2l7OZPUnjvbgaa0YNBO40s6VRoP41IFtTdw4eHLovDh0a5gFy\nnErEDE4+GbbcEs47L2k1TkKUJQYiqRp40Mz6RumhwAnAAuA54Cwzmy/pT8D4hkkaJd0APGxm9+aV\nl84YSAPvvht+lc2eDbfcEqY5cZxK4vLLw+JQTz0FnTsnrcYpknKPA4mLa1k1kv1C4HLgpCbyNmop\n6urqqK6uBqCqqoqamhpqa2uBVc3MxNKvvgpnn03tG2/AgQdSf+SRMGgQtV/9ajr0edrTbUkPHw6X\nXkrtxInQuXPyejzdZLq+vp4RI0YArHxflhQzi30DqoHJzZ0DBgODc849AuzVyDWWGd580+yAA8z2\n2cfslVfMzGzs2LGJSmorrj85Etf+8stmm25q9tRTrbo8cf1tJOv6o3dnyd7tiQSoo6VyGzgSaOih\n9QBwjKSOknoC2wPPlltfSamuDt0bv/OdMEL3T38KPbUcJ2vMmweHHw6XXAL9+yetxkkBscdAJN0J\n7A9sAswBhgK1QA3BPfUm8CMzmxPlPxc4EVgGnGFmoxop0+LWHQuvvgrHHx+Wvb35Zth666QVOU5x\nLFsG3/gG9O4d5ntzMklia6KnicwaEIDly+H3vw/bJZfAiSf6oEMn/fz85zBlCvz737BmUqFTp61k\nbiChk0eHDtTvtRc8/jj8+c9w6KGh11aGaAjSZZUs609E+003wUMPwd13t9l4ZLnuIfv6S40bkKTo\n2xfGj4c99oDddoO77gp96x0nTTz9dBjb9MADsNFGSatxUoa7sNLAc8/BcceFUezXXAObbJK0IseB\nt96CvfeGG28Mc105mcddWJXIHnvA88+HoPouu4Rfe46TJJ98AgMHwplnuvFwmsQNSAI06kft1Aku\nuwxGjgz/tHV1MH9+uaUVRdb9wFnWXxbtZuH569sXzjqrpEVnue4h+/pLjRuQtLHvvjBpUpgeYpdd\nYMyYpBU57Y0LL4S334a//tV7CDoF8RhImhkzBk46KfTUuvRSWG+9pBU5lc4//gFnnAHPPgvdujWf\n38kUHgNpT3z96/Dii7B4cVhr4cknk1bkVCLLlsEzz8BvfgM/+hHcd58bD6co3IAkQIv8qFVVMGIE\nXHEFDBoEZ58d1mFIkKz7gbOsv2TaZ80Kvau+/W3YbDM49VT4/HMYNSp06oiJLNc9ZF9/qXEDkhUG\nDgytkZkzYffdQ9dfxymWzz4LLtGzzw7dxXfdNczRduihYYT5pEkwfHh4thynSDwGkjXMwojgM84I\n7obzzoOOHZNW5aQNM5g+HR55JLQqnnwyGI4BA+Dgg0Mro0OHpFU6ZcbnwqKdG5AGZs8Oi1a98w7c\neqsvWuXAokVhipwGo7FkSTAWAwbA177mI8kdD6JXAiXxo3brBg8+CKedBgceGCZmXL687eUWQdb9\nwFnWv5p2s+B6uuQSqK2F7t3h6qth223DYNS3314V50iJ8chy3UP29Zcan1Yzy0hhNt+vfhVOOAHu\nvz8sodurV9LKnLhYsADuvHNVK2ODDUIL4xe/CEbEl5d1yoi7sCqFFSvCPFrDhoXumD/9KazhDczM\ns2wZTJgQjMUjj8ArrwRD0RDL2GabpBU6GcJjILgBKcj06WHRqk6dwjTccayD7MTL228HgzFqFDz2\nGGy1VTAYAwaEVS2904TTSjIXA5F0k6Q5kibnHOsiaYykVyWNllSVc26IpOmSpkk6KG59SRCrH3X7\n7UOPmwEDYM89gw+8xMY2637g1OnP72K7227BcOR2sY3iHPXPPJO02jaRurpvIVnXX2rK4eO4GRiQ\nd2wwMMbMegGPRWkk9QYGAb2ja66R5H6YltKhA5xzDowdm9lFqyoas7C88VVXwTe/GQbyDRsW4hk3\n3QRz5oQ4x/HH+4hwJ9WUxYUlqRp40Mz6RulpwP5mNkdSV6DezHaUNARYYWbDo3yPAMPMbHxeee7C\nKpYlS+B3v4O//CWsZX3MMT5BXhI01sW2IY7hXWydMlFqF1ZSvbA2N7M50f4cYPNovzuQayxmAVuU\nU1jF0bEjnH8+HHZY+EX7j3+EYPummyatrHJZujSMz5kxI6w6+cgj8L//hcWZDj44dLHdeWc35E7m\nSbwbr5mZpELNiUbP1dXVUR0FiKuqqqipqaG2thZY5adMa/rKK69MRu///ge//jX1O+wAZ55J7Xnn\nZUt/Wup/9GiYO5farl1h5sxwfs4caj/7LKTfeQe6dKF2hx2gpob6AQPgl7+kNlqYqb6+HsaNa9X9\nc33waalP158efY3pHTFiBMDK92UpSdKFVWtm70nqBoyNXFiDAczskijfI8BQM5uQV16mXVj19fUr\nv+xEeOqpsGBQ//7wxz+GCRtbQOL620iz+hcvDnOOzZwZWhH5fz/8ELbYIqwgWV39xb89esBaayWj\nPeW4/mTJZDfeRgzIpcCHZjY8MhpVZjY4CqLfAfQjuK4eBbbLtxZZNyCp4JNPQqD9wQfhhhvgoIrs\n8NY4Cxc2bhwa9hcuDF1n841Dw3737j6PlJNJMmdAJN0J7A9sQoh3/Aa4HxgJbAXMAI42s/lR/nOB\nE4FlwBlmNqqRMt2AlIqGRauqqsKCVZ07h23ddRv/W+y5jh2T8fGbwbx5TbceZs4M05Y31XrYemvY\nfHMfhOlUJJkzIHGQdQOSumbwxx+HAYiffBK2xYsb/xvt17/xBrXrr9/ouZV/V6wIxqSlhqeYc8uX\nf9HFlLsPwRg0YSDqX3qJ2gMOSKq220Tqnp0W4vqTpVJ6YTlpYr31wuC1YqmvD9NpFGLp0qaNS1OG\nZ/78wkap4a+0uotp++1DV9iGdFVV4daP935ynJLgLRDHcZx2QuamMnEcx3EqEzcgCZDblzyLuP7k\nyLJ2cP2VhhsQx3Ecp1V4DMRxHKed4DEQx3EcJxW4AUmArPtRXX9yZFk7uP5Kww2I4ziO0yo8BuI4\njtNO8BiI4ziOkwrcgCRA1v2orj85sqwdXH+l4QbEcRzHaRUeA3Ecx2kneAzEcRzHSQWJGhBJMyS9\nKGmipGejY10kjZH0qqTRklq23moGyLof1fUnR5a1g+uvNJJugRhhbfTdzKxfdGwwMMbMegGPRemK\nYtKkSUlLaBOuPzmyrB1cf6WRtAEByPfHHQ7cEu3fAhxRXjnxM3/+/KQltAnXnxxZ1g6uv9JI2oAY\n8Kik5yT9MDq2uZnNifbnAJsnI81xHMcpRNJL2vY3s9mSNgXGSJqWe9LMTFLFdbeaMWNG0hLahOtP\njixrB9dfaaSmG6+kocDHwA8JcZH3JHUDxprZjnl50yHacRwnY5SyG29iLRBJ6wIdzGyRpM7AQcD5\nwAPA8cDw6O8/868tZQU4juM4rSOxFoiknsB9UXJN4HYzu1hSF2AksBUwAzjazDxy5TiOkzJS48Jy\nHMdxskXSvbCQNEDSNEnTJf2yiTxXRedfkLRbc9eWczBiTPqHSZoVDbCcKGlASvXfJGmOpMl5+bNS\n/03pT339S9pS0lhJUyS9JOn0nPypr/9m9Jel/tugvZOkCZImSZoq6eKc/Fmo+0L6W1b3ZpbYBnQA\nXgOqgbWAScBOeXm+Afw72t8LGN/ctcClwDnR/i+BSzKmfyhwZprrP0rvB+wGTM67JvX134z+1Nc/\n0BWoifbXA14BdsxK/TejP/b6L8Gzs270d01gPKFHaSbqvhn9Lar7pFsg/YDXzGyGmS0F7gIG5uVZ\nObDQzCYAVZK6NnNtuQYjxqUfvjjAMg7aoh8zexKY10i5Waj/Qvoh3fW/uZm9Z2aTouMfAy8DW+Rf\nQzrrvzn9EH/9t1p7lF4c5elIeJnPy7+GlNZ9M/qhBXWftAHZAng7Jz2L1R+iQnm6F7i2XIMR49IP\ncFrU7LwxxmZwW/QXIgv13xxprv8euRkkVRNaUhOiQ2mv/+b0Q/z13ybtkjpImkSo37FmNjXKk4m6\nL6AfWlD3SRuQYiP4xVhENVaehXZZXD0FSqk/l2uBnkANMBu4vIXXF0tr9Rddnymt/+auy0z9S1oP\n+DtwRvRLfvWMKa//JvSXo/7bpN3MlptZDeGF/BVJtV+4QYrrvoD+FtV90gbkHWDLnPSWBCtZKE+P\nKE9jx9+J9uc0uCkUBiPOLaHmQtraon/ltWY21yKAGwjN1Thorf53KEza67+g/qzUv6S1gHuB28ws\nd7xUJuq/Kf1lqv+SPDtmtgB4CPhSdCgTdd9Ajv49onSL6j5pA/IcsL2kakkdgUGEgYS5PAAcByBp\nb2B+1EQsdG3DYERoYjBimvVHD14DRwKTiYe26C9EFuq/SbJQ/5IE3AhMNbMrG7km1fVfSH+Z6r8t\n2jdpcO1IWgf4OiGI3XBN2uu+Mf0To3TL6r7YaHtcG3AIoQfGa8CQ6NiPgB/l5Lk6Ov8CsHuha6Pj\nXYBHgVeB0UBVxvTfCrwY5f8nwa+aRv13Au8CnxN8rSdkrP6b0p/6+gf2BVYQXlwTo21AVuq/Gf1l\nqf82aO8LPB9pfxH4RU7+LNR9If0tqnsfSOg4juO0iqRdWI7jOE5GcQPiOI7jtAo3II7jOE6rcAPi\nOI7jtAo3II7jOE6rcAPiOI7jtAo3II7TSiRtLukOSa9Lek7SM5LimjzPcVKHGxDHaQXRSOp/AvVm\ntq2Z7QEcQ95EgY5TybgBcZzWcSDwuZn9teGAmb1lZldLGidp14bjkp6S1DcRlY4TI25AHKd17EyY\nDqIxbgTqACT1AtY2s7jm03KcxHAD4jitY7U5gCRdHS0R+ixwD3CopDWBE4GbkxDoOHGzZtICHCej\nTAGOakiY2U8lbQw8Z2afShpDWI3u28DuCWl0nFjxFojjtAIzexzoJOmUnMOdc/ZvAK4CnrWw5oLj\nVBxuQByn9RwB7C/pDUkTgBHAOQBm9jywAHdfORWMT+fuODEgqTthrekdktbiOHHhLRDHKTGSjgPG\nA+cmrcVx4sRbII7jOE6r8BaI4ziO0yrcgDiO4zitwg2I4ziO0yrcgDiO4zitwg2I4ziO0yrcgDiO\n4zit4v8B7C9A0gfoBi8AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa7dcd30>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Height of Tower for enriching Section is 7.53 m\n",
+ "\n",
+ "Height of Tower for Stripping Section is 4.54 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.13: Page 436"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 9.13:\n",
+ "\n",
+ "print'Illustration 9.13\\n\\n'\n",
+ "\n",
+ "#**************************Calculation Of Minimum Reflux ratio************************#\n",
+ "# Page: 436\n",
+ "print'Page: 436\\n\\n'\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy import interp\n",
+ "from scipy.optimize import fsolve\n",
+ "import numpy.linalg as lin\n",
+ "#***Data***#\n",
+ "# C1:CH4 C2:C2H6 C3:n-C3H8 C4:n-C4H10 C5:n-C5H12 C6:n-C6H14\n",
+ "# zF = [zF(C1) zF(C2) zF(C3) zF(C4) zF(C5) zF(C6)]\n",
+ "zF = numpy.array([0.03 ,0.07 ,0.15 ,0.33 ,0.30 ,0.12]);# [mole fraction]\n",
+ "LF_By_F = 0.667;\n",
+ "Temp = 82;# [OC]\n",
+ "ylk = 0.98;\n",
+ "yhk = 0.01;\n",
+ "#**********#\n",
+ "\n",
+ "# Data = [m HG HL(30 OC);m HG HL(60 OC);m HG HL(90 OC);m HG HL(120 OC);]\n",
+ "Data1 = numpy.array([[16.1 ,12790 ,9770],[19.3 ,13910, 11160],[21.8 ,15000, 12790],[24.0 ,16240, 14370]]);# [For C1]\n",
+ "Data2 = numpy.array([[3.45, 22440, 16280],[4.90 ,24300 ,18140],[6.25 ,26240 ,19890],[8.15 ,28140, 21630]]);# [For C2]\n",
+ "Data3 = numpy.array([[1.10, 31170, 16510],[2.00 ,33000 ,20590],[2.90, 35800 ,25600],[4.00 ,39000, 30900]]);# [For C3]\n",
+ "Data4 = numpy.array([[0.35, 41200 ,20350],[0.70 ,43850 ,25120],[1.16 ,46500, 30000],[1.78 ,50400 ,35400]]);# [For C4]\n",
+ "Data5 = numpy.array([[0.085, 50500, 24200],[0.26, 54000 ,32450],[0.50 ,57800 ,35600],[0.84, 61200 ,41400]]);# [For C5]\n",
+ "Data6 = numpy.array([[0.0300, 58800 ,27700],[0.130, 63500, 34200],[0.239 ,68150 ,40900],[0.448, 72700 ,48150]]);# [For C6]\n",
+ "\n",
+ "# T = [Temparature]\n",
+ "T = numpy.array([30,60,0,120]);\n",
+ "\n",
+ "# Flash vaporisation of the Feed:\n",
+ "# Basis: 1 kmol feed throughout\n",
+ "# After Several trials, assume:\n",
+ "F = 1.0;# [kmol]\n",
+ "GF_By_F = 0.333;\n",
+ "LF_By_GF = LF_By_F/GF_By_F;\n",
+ "m82 = numpy.zeros(6);\n",
+ "y = numpy.zeros(6);\n",
+ "m82[0] = interp(Temp,T,Data1[:,1]);# [For C1]\n",
+ "m82[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m82[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m82[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m82[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m82[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "for i in range (0,6):\n",
+ " y[i] = zF[i]*(LF_By_GF+1)/(1.0+(2/m82[i]));\n",
+ "\n",
+ "Sum = sum(y);\n",
+ "# Since Sum is sufficiently close to 1.0, therefore:\n",
+ "q = 0.67;# [LF_By_F]\n",
+ "# Assume:\n",
+ "# C3: light key\n",
+ "# C5: heavy key\n",
+ "zlkF = zF[2];# [mole fraction]\n",
+ "zhkF = zF[4];# [mole fraction]\n",
+ "ylkD = ylk*zF[2];# [kmol]\n",
+ "yhkD = yhk*zF[4];# [kmol]\n",
+ "\n",
+ "# Estimate average Temp to be 80 OC\n",
+ "m80 = numpy.zeros(6);\n",
+ "alpha80 = numpy.zeros(6);\n",
+ "m80[0] = interp(Temp,T,Data1[:,0]);# [For C1]\n",
+ "m80[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m80[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m80[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m80[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m80[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "for i in range(0,6):\n",
+ " alpha80[i] = m80[i]/m80[4];\n",
+ "\n",
+ "# By Eqn. 9.164:\n",
+ "yD_By_zF1 = (((alpha80[0]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[0])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C1]\n",
+ "yD_By_zF2 = (((alpha80[1]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[1])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C2]\n",
+ "yD_By_zF6 = (((alpha80[5]-1)/(alpha80[2]-1))*(ylkD/zF[2]))+(((alpha80[2]-alpha80[5])/(alpha80[2]-1))*(yhkD/zF[4]));# [For C6]\n",
+ "# The distillate contains:\n",
+ "yC1 = 0.03;# [kmol C1]\n",
+ "yC2 = 0.07;# [kmol C2]\n",
+ "yC6 = 0;# [kmol C6]\n",
+ "# By Eqn 9.165:\n",
+ "def g1(phi):\n",
+ " return (((alpha80[0]*zF[0])/(alpha80[0]-phi))+((alpha80[1]*zF[1])/(alpha80[1]-phi))+((alpha80[2]*zF[2])/(alpha80[2]-phi))+((alpha80[3]*zF[3])/(alpha80[3]-phi))+((alpha80[4]*zF[4])/(alpha80[4]-phi))+((alpha80[5]*zF[5])/(alpha80[5]-phi)))-(F*(1-q))\n",
+ "# Between alphaC3 & alphaC4:\n",
+ "phi1 = fsolve(g1,3);\n",
+ "# Between alphaC4 & alphaC5:\n",
+ "phi2 = fsolve(g1,1.5);\n",
+ "# From Eqn. 9.166:\n",
+ "# Val = D*(Rm+1)\n",
+ "# (alpha80(1)*yC1/(alpha80(1)-phi1))+(alpha80(2)*yC2/(alpha80(2)-phi1))+(alpha80(3)*ylkD/(alpha80(3)-phi1))+(alpha80(4)*yD/(alpha80(4)-phi1))+(alpha80(i)*yhkD/(alpha80(5)-phi1))+(alpha80(6)*yC6/(alpha80(6)-phi1)) = Val.....................(1)\n",
+ "# (alpha80(1)*yC1/(alpha80(1)-phi2))+(alpha80(2)*yC2/(alpha80(2)-phi2))+(alpha80(3)*ylkD/(alpha80(3)-phi2))+(alpha80(4)*yD/(alpha80(4)-phi2))+(alpha80(i)*yhkD/(alpha80(5)-phi2))+(alpha80(6)*yC6/(alpha80(6)-phi2)) = Val ....................(2)\n",
+ "# Solving simultaneously:\n",
+ "a =numpy.array([[-alpha80[3]/(alpha80[3]-phi1), 1],[-alpha80[3]/(alpha80[3]-phi2), 1]]);\n",
+ "b =numpy.array([[alpha80[0]*yC1/[alpha80[0]-phi1]]+[alpha80[1]*yC2/[alpha80[1]-phi1]]+[alpha80[2]*ylkD/[alpha80[2]-phi1]]+[alpha80[i]*yhkD/[alpha80[4]-phi1]]+[alpha80[5]*yC6/[alpha80[5]-phi1]],[alpha80[0]*yC1/[alpha80[0]-phi2]]+[alpha80[1]*yC2/[alpha80[1]-phi2]]+[alpha80[2]*ylkD/[alpha80[2]-phi2]]+[alpha80[i]*yhkD/[alpha80[4]-phi2]]+[alpha80[5]*yC6/[alpha80[5]-phi2]]])\n",
+ "soln = lin.solve(a,b);\n",
+ "yC4 =0.1313547 # [kmol C4 in the distillate]\n",
+ "Val =0.617469; # [kmol C4 in the distillate]\n",
+ "# For the distillate, at a dew point of 46 OC\n",
+ "ydD = numpy.array([yC1,yC2 ,ylkD ,yC4 ,yhkD ,yC6]);\n",
+ "D = sum(ydD);\n",
+ "yD = zeros(6);\n",
+ "m46 = zeros(6);\n",
+ "alpha46 = zeros(6);\n",
+ "Ratio1= zeros(6);\n",
+ "m46[0] = interp(Temp,T,Data1[:,0]);# [For C1]\n",
+ "m46[1] = interp(Temp,T,Data2[:,0]);# [For C2]\n",
+ "m46[2] = interp(Temp,T,Data3[:,0]);# [For C3]\n",
+ "m46[3] = interp(Temp,T,Data4[:,0]);# [For C4]\n",
+ "m46[4] = interp(Temp,T,Data5[:,0]);# [For C5]\n",
+ "m46[5] = interp(Temp,T,Data6[:,0]);# [For C6]\n",
+ "yD=numpy.array([0.0786,0.1835,0.3854,0.34,0.007866,0.0])\n",
+ "# mhk = mC5 at 46.6 OC, the assumed 46 OC is satisfactory.\n",
+ "\n",
+ "# For the residue, at a dew point of 46 OC\n",
+ "xwW =numpy.array([zF[0]-yC1, zF[1]-yC2 ,zF[2]-ylkD, zF[3]-yC4, zF[4]-yhkD, zF[5]-yC6]);\n",
+ "W = sum(xwW);\n",
+ "xW = zeros(6);\n",
+ "m113 = zeros(6);\n",
+ "alpha113 = zeros(6);\n",
+ "alphalk_av=zeros(6);\n",
+ "alpha_av=zeros(6);\n",
+ "Value=zeros(6);\n",
+ "m113[0] = interp(Temp,T,Data1[:,1]);# [For C1]\n",
+ "m113[1] = interp(Temp,T,Data2[:,1]);# [For C2]\n",
+ "m113[2] = interp(Temp,T,Data3[:,1]);# [For C3]\n",
+ "m113[3] = interp(Temp,T,Data4[:,1]);# [For C4]\n",
+ "m113[4] = interp(Temp,T,Data5[:,1]);# [For C5]\n",
+ "m113[5] = interp(Temp,T,Data6[:,1]);# [For C6]\n",
+ "for i in range(0,6):\n",
+ " alpha113[i] = m113[i]/m113[4];\n",
+ " xW[i] = xwW[i]/W;\n",
+ " # Ratio = yD/alpha46\n",
+ " Value[i] = alpha113[i]*xW[i];\n",
+ "\n",
+ "# mhk = mC5 at 114 OC, the assumed 113 OC is satisfactory.\n",
+ "Temp_Avg = (114+46.6)/2;# [OC]\n",
+ "# Temp_avg is very close to the assumed 80 OC\n",
+ "Rm = (Val/D)-1;\n",
+ "print\"Minimum Reflux Ratio is \",Rm,\" mol reflux/mol distillate\\n \\n\"\n",
+ "print\"*****************Distillate Composition*********************\\n\"\n",
+ "print\"C1\\t \\t \\t \\t:\",yD[0]\n",
+ "print\"C2\\t \\t \\t \\t:\",yD[1]\n",
+ "print\"C3\\t \\t \\t \\t:\",yD[2]\n",
+ "print\"C4\\t \\t \\t \\t:\",yD[3]\n",
+ "print\"C5\\t \\t \\t \\t:\",yD[4]\n",
+ "print\"C6\\t \\t \\t \\t:\",yD[5]\n",
+ "print\"\\n\"\n",
+ "print\"*****************Residue Composition*********************\\n\"\n",
+ "print\"C1\\t \\t \\t \\t: \",xW[0]\n",
+ "print\"C2\\t \\t \\t \\t: \",xW[1]\n",
+ "print\"C3\\t \\t \\t \\t: \",xW[2]\n",
+ "print\"C4\\t \\t \\t \\t: \",xW[3]\n",
+ "print\"C5\\t \\t \\t \\t: \",xW[4]\n",
+ "print\"C6\\t \\t \\t \\t: \",xW[5]\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**********************Number of Theoretical stage***********************#\n",
+ "# Page:440\n",
+ "print'Page: 440\\n\\n'\n",
+ "\n",
+ "for i in range(0,6):\n",
+ " alpha_av[i] = (alpha46[i]*alpha113[i])**0.5;\n",
+ "\n",
+ "alphalk_av = alpha_av[1];\n",
+ "# By Eqn. 9.167:\n",
+ "xhkW = xwW[3];\n",
+ "xlkW = xwW[1];\n",
+ "Nm = 3.496;\n",
+ "# Ratio = yD/xW\n",
+ "Ratio2= zeros(6)\n",
+ "for i in range(0,6):\n",
+ " Ratio2[i] = (alpha_av[i]**(Nm+1))*yhkD/xhkW;\n",
+ "\n",
+ "# For C1:\n",
+ "# yC1D-Ratio(1)*xC1W = 0\n",
+ "# yC1D+xC1W = zF(1)\n",
+ "# Similarly for others\n",
+ "yD2=zeros(6)\n",
+ "xW2=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " a = numpy.array([[1 ,-Ratio2[i]],[1, 1]]);\n",
+ " b = [0,zF[i]];\n",
+ " soln =lin.solve(a,b);\n",
+ " yD2[i] = soln[0];# [kmol]\n",
+ " xW2[i] = soln[1];# [kmol]\n",
+ "\n",
+ "D = sum(yD2);# [kmol]\n",
+ "W = sum(xW2);# [kmol]\n",
+ "# The distillate dew point computes to 46.6 OC and the residue bubble point computes to 113 OC, which is significantly close to the assumed.\n",
+ "\n",
+ "#***************Product composition at R = 0.8***********************#\n",
+ "# Page:441\n",
+ "print'Page: 441\\n\\n'\n",
+ "\n",
+ "# Since C1 and C2 do not enter in the residue nor C6 in the distillate, appreciably at total reflux or minimum reflux ratio, it will be assumed that they will not enter R = 0.8. C3 and C5 distribution are fixed by specifications. Only that C4 remains to be estimated.\n",
+ "# R = [Infinte 0.8 0.58] [Reflux ratios For C4]\n",
+ "R = [inf ,0.8, 0.58];\n",
+ "# Val = R/(R+1)\n",
+ "val=[ 0 , 2.0 , 2.0]\n",
+ "# ydD = [Inf 0.58] \n",
+ "y4D = [0.1255, 0.1306];\n",
+ "yC4D = 0.1306 ;# by Linear Interpolation\n",
+ "# For Distillate:\n",
+ "Sum1 = sum(Ratio1);\n",
+ "x0 = numpy.array([0.004,0.0444501,0.2495,0.65640,0.0451,0.0])\n",
+ "print\"For the reflux ratio of 0.8\\n\"\n",
+ "print\"*****************Distillate Composition*********************\\n\"\n",
+ "print\"\\t\\t\\t Liquid reflux in equilibrium with the distillate vapour\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t \\t\\t:\",x0[i]\n",
+ "\n",
+ "# For boiler:\n",
+ "\n",
+ "#**********Number Of Theoretical Trays***************#\n",
+ "# Page: 443\n",
+ "print'Page: 443\\n\\n'\n",
+ "\n",
+ "R = 0.8;# [reflux ratio]\n",
+ "# From Eqn. 9.175\n",
+ "intersection = (zlkF-(ylkD/D)*(1-q)/(R+1))/(zhkF-(yhkD/D)*(1-q)/(R+1));\n",
+ "# Enriching Section:\n",
+ "y1 = zeros(5);\n",
+ "L = R*D;# [kmol]\n",
+ "G = L+D;# [kmol]\n",
+ "# Assume: Temp1 = 57 OC\n",
+ "# alpha57 = [C1 C2 C3 C4 C5]\n",
+ "alpha57 = numpy.array([79.1 ,19.6 ,7.50, 2.66, 1]);\n",
+ "# From Eqn. 9.177, n = 0:\n",
+ "Val57=zeros(6)\n",
+ "for i in range(0,5):\n",
+ " y1[i] = (L/G)*x0[i]+((D/G)*yD[i]);\n",
+ " Val57[i] = y1[i]/alpha57[i];\n",
+ "\n",
+ "x1 = Val57/sum(Val57);\n",
+ "mC5 = sum(Val57);\n",
+ "Temp1 = 58.4; # [OC]\n",
+ "# Liquid x1's is in equilibrium with y1's.\n",
+ "xlk_By_xhk1 = x1[2]/x1[4];\n",
+ "# Tray 1 is not the feed tray.\n",
+ "# Assume: Temp2 = 63 OC\n",
+ "# alpha63 = [C1 C2 C3 C4 C5]\n",
+ "alpha63 = numpy.array([68.9 ,17.85, 6.95, 2.53, 1.00]);\n",
+ "# From Eqn. 9.177, n = 1:\n",
+ "y2=zeros(6)\n",
+ "Val63=zeros(6)\n",
+ "for i in range(0,5):\n",
+ " y2[i] = (L/G)*x1[i]+((D/G)*yD[i]);\n",
+ " Val63[i] = y1[i]/alpha63[i];\n",
+ " \n",
+ "mC5 = sum(Val63);\n",
+ "x2 = Val63/sum(Val63);\n",
+ "xlk_By_xhk2 = x2[2]/x2[4];\n",
+ "# The tray calculation are continued downward in this manner.\n",
+ "# Results for trays 5 & 6 are:\n",
+ "# Temp 75.4 [OC]\n",
+ "# x5 = [C1 C2 C3 C4 C5]\n",
+ "x5 = numpy.array([0.00240, 0.0195, 0.1125, 0.4800, 0.3859]);\n",
+ "xlk_By_xhk5 = x5[2]/x5[4];\n",
+ "# Temp6 = 79.2 OC\n",
+ "# x6 = [C1 C2 C3 C4 C5]\n",
+ "x6 = numpy.array([0.00204 ,0.0187 ,0.1045, 0.4247 ,0.4500]);\n",
+ "xlk_By_xhk6 = x6[2]/x6[4];\n",
+ "# From Eqn. 9.176:\n",
+ "# Tray 6 is the feed tray\n",
+ "Np1 = 6;\n",
+ "\n",
+ "# Exhausting section:\n",
+ "# Assume Temp = 110 OC\n",
+ "L_bar = L+(q*F);# [kmol]\n",
+ "G_bar = L_bar-W;# [kmol]\n",
+ "# alpha57 = [C3 C4 C5 C6]\n",
+ "alpha110 = numpy.array([5 ,2.2 ,1, 0.501]);\n",
+ "# From Eqn. 9.178:\n",
+ "xNp = zeros(4);\n",
+ "Val110=zeros(6)\n",
+ "k = 0;\n",
+ "for i in range(2,6):\n",
+ " xNp[k] = ((G_bar/L_bar)*yNpPlus1[i])+((W/L_bar)*xW[i]);\n",
+ " Val110[k] = alpha110[k]*xNp[k];\n",
+ " k = k+1;\n",
+ "\n",
+ "yNp = Val110/sum(Val110);\n",
+ "mC5 = 1/sum(Val110);\n",
+ "# yNp is in Eqb. with xNp:\n",
+ "xlk_By_xhkNp = xNp[0]/xNp[3];\n",
+ "# Results for Np-7 to Np-9 trays:\n",
+ "# For Np-7\n",
+ "# Temp = 95.7 OC\n",
+ "# xNpMinus7 = [C3 C4 C5 C6]\n",
+ "xNpMinus7 = numpy.array([0.0790 ,0.3944 ,0.3850, 0.1366]);\n",
+ "xlk_By_xhkNpMinus7 = xNpMinus7[0]/xNpMinus7[2];\n",
+ "# For Np-8\n",
+ "# Temp = 94.1 OC\n",
+ "# xNpMinus8 = [C3 C4 C5 C6]\n",
+ "xNpMinus8 = numpy.array([0.0915, 0.3897 ,0.3826, 0.1362]);\n",
+ "xlk_By_xhkNpMinus8 = xNpMinus8[0]/xNpMinus8[2];\n",
+ "# For Np-9\n",
+ "# Temp = 93.6 OC\n",
+ "# xNpMinus9 = [C3 C4 C5 C6]\n",
+ "xNpMinus9 = numpy.array([0.1032, 0.3812, 0.3801 ,0.1355]);\n",
+ "xlk_By_xhkNpMinus9 = xNpMinus9[0]/xNpMinus9[2];\n",
+ "# From Eqn. 9.176:\n",
+ "# Np-8 is the feed tray.\n",
+ "def g2(Np):\n",
+ " return Np-8-Np1\n",
+ "Np = fsolve(g2,7);\n",
+ "print\"Number of theoretical Trays required for R = 0.8: \",Np[0]\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**************Composition Correction*****************#\n",
+ "# Page: 446\n",
+ "print'Page: 446\\n\\n'\n",
+ "\n",
+ "# New Bubble Point:\n",
+ "# Temp = 86.4 OC\n",
+ "x6_new = x6*(1-xNpMinus8[3]);\n",
+ "x6_new[4] = xNpMinus8[3];\n",
+ "# alpha86 = [C1 C2 C3 C4 C5 C6]\n",
+ "alpha86 =numpy.array([46.5, 13.5, 5.87, 2.39, 1.00, 0.467]);\n",
+ "# From Eqn. 9.181:\n",
+ "xhkn = x5[3];\n",
+ "xhknPlus1 = x6_new[3];\n",
+ "xC65 = alpha86[5]*x6_new[4]*xhkn/xhknPlus1;\n",
+ "x5_new = x5*(1-xC65);\n",
+ "x5_new[4] = 1-sum(x5_new);\n",
+ "# Tray 5 has a bubble point of 80 OC\n",
+ "# Similarly , the calculations are continued upward:\n",
+ "# x2_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x2_new = numpy.array([0.0021, 0.0214 ,0.1418, 0.6786, 0.1553, 0.00262]);\n",
+ "# y2_new = [C1 C2 C3 C4 C5 C6]\n",
+ "y2_new = numpy.array([0.0444, 0.111 ,0.2885, 0.5099, 0.0458 ,0.00034]);\n",
+ "# x1_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x1_new = numpy.array([0.00226, 0.0241, 0.1697 ,0.7100, 0.0932, 0.00079]);\n",
+ "# y1_new = [C1 C2 C3 C4 C5 C6]\n",
+ "y1_new = numpy.array([0.0451 ,0.1209 ,0.3259 ,0.4840 ,0.0239 ,0.000090]);\n",
+ "# x0_new = [C1 C2 C3 C4 C5 C6]\n",
+ "x0_new = numpy.array([0.00425 ,0.0425 ,0.2495, 0.6611 ,0.0425 ,0.00015]);\n",
+ "# yD_new = [C1 C2 C3 C4 C5 C6]\n",
+ "yD_new = numpy.array([0.0789 ,0.1842 ,0.3870 ,0.3420 ,0.0079, 0.00001]);\n",
+ "# From Eqn. 9.184:\n",
+ "# For C1 & C2\n",
+ "alphalkm = alpha86[2];\n",
+ "xlkmPlus1 = xNpMinus7[0];\n",
+ "xlkm = x6_new[2];\n",
+ "xC17 = x6_new[0]*alpha86[2]*xlkmPlus1/(alpha86[0]*xlkm);\n",
+ "xC27 = x6_new[1]*alpha86[2]*xlkmPlus1/(alpha86[1]*xlkm);\n",
+ "# Since xC17 = 1-xC27\n",
+ "# The adjusted value above constitute x7's.\n",
+ "# The new bubbl point is 94 OC\n",
+ "# The calculations are continued down in the same fashion.\n",
+ "# The new tray 6 has:\n",
+ "# xC1 = 0.000023 & xC2 = 0.00236\n",
+ "# It is clear that the conc. of these components are reducing so rapidly that there is no need to go an further.\n",
+ "print\"******Corrected Composition***********\\n\"\n",
+ "print\"Component\\t \\tx2\\t \\t \\t y2\\t \\t \\t x1\\t \\t \\t y1\\t \\t \\tx0\\t \\t \\tyD\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t\",x2_new[i],\"\\t \\t \\t \\t \",y2_new[i],\"\\t \\t \\t \\t \",x1_new[i],\"\\t \\t \\t \\t\",y1_new[i],\"\\t \\t \\t \\t \\t\",x0_new[i],\"\\t \\t \\t \\t\",yD_new[i]\n",
+ "\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#*************Heat Load of Condensor & Boiler & L/G ratio**********#\n",
+ "# Page 448\n",
+ "print'Page: 448\\n\\n'\n",
+ "\n",
+ "# Values of x0, yD & y1 are taken from the corrected concentration.\n",
+ "# HD46 = [C1 C2 C3 C4 C5 C6]\n",
+ "HD46 = numpy.array([13490, 23380, 32100, 42330, 52570, 61480]);# [kJ/kmol]\n",
+ "yDHD= zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yDHD[i] = yD_new[i]*HD46[i];\n",
+ "\n",
+ "HD = sum(yDHD);# [kJ]\n",
+ "# HL46 = [C1 C2 C3 C4 C5 C6]\n",
+ "HL46 = numpy.array([10470, 17210, 18610, 22790, 27100, 31050]);# [kJ/kmol]\n",
+ "xHL=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " xHL[i] = x0_new[i]*HL46[i];\n",
+ "\n",
+ "HL0 = sum(xHL);# [kJ]\n",
+ "# HG58 = [C1 C2 C3 C4 C5 C6]\n",
+ "HG58 = numpy.array([13960, 24190, 37260, 43500, 53900, 63500]);# [kJ/kmol]\n",
+ "yHG1=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yHG1[i] = y1_new[i]*HG58[i];\n",
+ "\n",
+ "HG1 = sum(yHG1);# [kJ]\n",
+ "# From Eqn. 9.54:\n",
+ "Qc = D*((R+1)*HG1-(R*HL0)-HD);# [kJ/kmol feed]\n",
+ "# Similarly:\n",
+ "HW = 39220;# [kJ]\n",
+ "HF = 34260;# [kJ]\n",
+ "# From Eqn. 9.55:\n",
+ "Qb = (D*HD)+(W*HW)+Qc-(F*HF);# [kJ/kmol feed]\n",
+ "# For tray n = 1\n",
+ "G1 = D*(R+1);# [kmol]\n",
+ "# With x1 & y2 from corrected composition;\n",
+ "# HG66 = [C1 C2 C3 C4 C5 C6]\n",
+ "HG66 = numpy.array([14070, 24610, 33800, 44100, 54780, 64430]);# [kJ/kmol feed]\n",
+ "yHG2=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " yHG2[i] = y2_new[i]*HG66[i];\n",
+ "\n",
+ "HG2 = sum(yHG2);# [kJ]\n",
+ "# HL58 = [C1 C2 C3 C4 C5 C6]\n",
+ "HL58 =numpy.array([11610 ,17910 ,20470, 24900, 29500, 33840]);# [kJ/kmol feed]\n",
+ "xHL1=zeros(6)\n",
+ "for i in range(0,6):\n",
+ " xHL1[i] = x1_new[i]*HL58[i];\n",
+ "\n",
+ "HL1 = sum(xHL1);# [kJ]\n",
+ "# From Eqn. 9.185:\n",
+ "G2 = (Qc+D*(HD-HL1))/(HG2-HL1);# [kmol]\n",
+ "L2 = G2-D;# [kmol]\n",
+ "L2_By_G2 = L2/G2;\n",
+ "# Similarly, the calculations are made for other trays in enriching section.\n",
+ "# For tray, Np = 14:\n",
+ "# C1 & C2 are absent.\n",
+ "# HG113 = [C3 C4 C5 C6]\n",
+ "HG113 = numpy.array([38260, 49310 ,60240, 71640]);# [kJ/kmol feed]\n",
+ "k = 2;\n",
+ "yHG15=zeros(6)\n",
+ "for i in range(0,4):\n",
+ " yHG15[i] = yNpPlus1[k]*HG113[i];\n",
+ " k = k+1;\n",
+ "\n",
+ "HG15 = sum(yHG15);\n",
+ "# HL107 = [C3 C4 C5 C6]\n",
+ "HL107 = numpy.array([29310 ,31870, 37680 ,43500]);# [kJ/kmol feed]\n",
+ "xHL14=zeros(6)\n",
+ "for i in range(0,4):\n",
+ " xHL14[i] = xNp[i]*HL107[i];\n",
+ "\n",
+ "HL14 = sum(xHL14);# [kJ]\n",
+ "# Similarly:\n",
+ "HL13 = 36790;# [kJ]\n",
+ "HG14 = 52610;# [kJ]\n",
+ "# From Eqn. 9.186:\n",
+ "G15_bar = (Qb+(W*(HL14-HW)))/(HG15-HL14);# [kmol]\n",
+ "L14_bar = W+G15_bar;# [kmol]\n",
+ "G14_bar = (Qb+(W*(HL13-HW)))/(HG14-HL13);# [kmol]\n",
+ "L14_By_G14 = L14_bar/G14_bar;\n",
+ "print\"Condensor Heat Load kJ:\\n\",HL0\n",
+ "print\"Reboiler Heat Load kJ:\\n\",HG15\n",
+ "# For other Exhausting Section Trays:\n",
+ "# Result = [Tray No. L_By_G Temp(OC)]\n",
+ "# Tray 0: Condensor\n",
+ "# Tray 15: Reboiler\n",
+ "Result = numpy.array([[0,0.80 ,46.6],[1 ,0.432 ,58.4],[2, 0.437, 66],[3, 0.369, 70.4],[4 ,0.305, 74],[5 ,0.310, 80.3],[6, 1.53, 86.4],[7, 4.05 ,94.1],[8 ,3.25 ,96.3],[9, 2.88 ,97.7],[10 ,2.58 ,99],[11, 2.48 ,100],[12 ,2.47 ,102.9],[13 ,2.42 ,104.6],[14 ,2.18 ,107.9],[15, 1.73 ,113.5]]);\n",
+ "print\"**************L/G*************\\n\"\n",
+ "print\"Tray No. \\t\\t L/G\\t\\t\\t\\t Temp(OC)\\n\"\n",
+ "for i in range(0,16):\n",
+ " print Result[i,0],\"\\t\\t \\t \\t\",Result[i,1],\"\\t \\t \\t\",Result[i,2];\n",
+ "\n",
+ "# These values are not final.\n",
+ "# They scatter eratically because they are based on the temp. and conc. computed with the assumption of constant L/G\n",
+ "print\"\\n\"\n",
+ "\n",
+ "#**************Thiele Geddes Method******************#\n",
+ "# Page:452\n",
+ "print'Page: 452\\n\\n'\n",
+ "\n",
+ "# Use the tray Temperature to obtain m.\n",
+ "# For C4:\n",
+ "# m = [0(Condensor) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15(Reboiler)]\n",
+ "m = numpy.array([0.50 ,0.66, 0.75 ,0.81 ,0.86 ,0.95 ,1.07 ,1.22 ,1.27 ,1.29 ,1.30, 1.32, 1.40, 1.45, 1.51, 1.65]);\n",
+ "A = numpy.array([1.6,0.65,0.582,0.4555,0.354,0.326,1.42990])\n",
+ "S = numpy.array([0.3012,0.39076,0.4479,0.503875,0.53225,0.56680,0.59917,0.69,0.95375])\n",
+ "\n",
+ "# f = Tray No. 6\n",
+ "\n",
+ "# From Eqn. 9.196:\n",
+ "# Value1 = Gf*yf/(D*zD)\n",
+ "Sum = 0;\n",
+ "for i in range(0,6):\n",
+ " Val = 1;\n",
+ " for j in range(0,6):\n",
+ " Val = Val*A[j];\n",
+ " \n",
+ " Sum = Sum+Val;\n",
+ "\n",
+ "Value1 = 1+Sum;\n",
+ "# From Eqn. 9.206:\n",
+ "# Value2 = Lf_bar*xf/(W*xW);\n",
+ "Sum = 0.5316\n",
+ "Value2 = 1+Sum;\n",
+ "# From Eqn. 9.208:\n",
+ "# Value3 = W*xW/(D*zD)\n",
+ "Value3 = A[6]*Value1/Value2;\n",
+ "# From Eqn. 9.210:\n",
+ "DyD = F*zF[3]/(Value3+1);# [kmol,C4]\n",
+ "# From Eqn. 9.209:\n",
+ "WxW = ((F*zF[3]))-(DyD);# [kmol, C4]\n",
+ "# Similarly:\n",
+ "# For [C1; C2; C3; C4; C5; C6]\n",
+ "# Result2 = [Value1 Value2 Value3 DyD WxW]\n",
+ "Result2 = numpy.array([[1.0150, 254*10**6 ,288*10**(-10), 0.03, 0],[1.0567, 8750, 298*10**(-5) ,0.07 ,0],[1.440, 17.241 ,0.0376 ,0.1447, 0.0053],[1.5778 ,1.5306 ,1.475, 0.1335 ,0.1965],[15580, 1.1595, 45.7 ,0.00643 ,0.29357],[1080 ,1.0687 ,7230 ,0.0000166 ,0.1198]]);\n",
+ "D = sum(Result2[:,2]);# [kmol]\n",
+ "W = sum(Result2[:,3]);# [kmol]\n",
+ "# In the Distillate:\n",
+ "DyD_C3 = Result[1,2];# [kmol]\n",
+ "zFC3 = zF[2];# [kmol]\n",
+ "percentC3 = (DyD_C3/zFC3)*100;\n",
+ "DyD_C5 = Result2[3,2];# [kmol]\n",
+ "zFC5 = zF[4];# [kmol]\n",
+ "percentC5 = (DyD_C5/zFC5)*100;\n",
+ "# These do not quite meet the original specification.\n",
+ "# For Tray 2 & C4\n",
+ "# From Eqn. 9.195:\n",
+ "# Value4 = G2*y2/(D*zD)\n",
+ "n = 2;\n",
+ "Sum = 0;\n",
+ "for i in range(0,n):\n",
+ " Val = 1;\n",
+ " for j in range(i,n):\n",
+ " Val = Val*A[j];\n",
+ " \n",
+ " Sum = Sum+Val;\n",
+ "\n",
+ "Value4 = 1+Sum;\n",
+ "# From The enthalpy Balnce:\n",
+ "G2 = 0.675;\n",
+ "# From Eqn. 9.211:\n",
+ "y2 = Value4*DyD/G2;\n",
+ "# Similarly:\n",
+ "# Value4 = [C1 C2 C3 C4 C5 C6]\n",
+ "Value4 = numpy.array([1.0235, 1.1062, 1.351, 2.705, 10.18 ,46.9]);\n",
+ "y2= numpy.array([0.04548,0.114,0.2896,0.53498,0.09697,0.001153]);\n",
+ "Y2 = sum(y2);\n",
+ "# Since Y2 is not equal to 1. THerefore the original temperature is incorrect. By adjusting y2 to unity.\n",
+ "# The dew point is 77 OC instead of 66 OC\n",
+ "# y2_adjusted = [C1 C2 C3 C4 C5 C6]\n",
+ "y2_adjusted = numpy.array([0.0419 ,0.1059 ,0.2675 ,0.4939, 0.0896, 0.00106]);\n",
+ "print\"*****************Composition By Thiele Geddes Method*****************\\n\"\n",
+ "print\"Component\\t \\t \\t y2\\n\"\n",
+ "for i in range(0,6):\n",
+ " print\"C\",i,\"\\t \\t \\t \\t\",y2_adjusted[i]\n",
+ "# some values of solution in the textbook are incorrect"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 9.13\n",
+ "\n",
+ "\n",
+ "Page: 436\n",
+ "\n",
+ "\n",
+ "Minimum Reflux Ratio is 0.619146164974 mol reflux/mol distillate\n",
+ " \n",
+ "\n",
+ "*****************Distillate Composition*********************\n",
+ "\n",
+ "C1\t \t \t \t: 0.0786\n",
+ "C2\t \t \t \t: 0.1835\n",
+ "C3\t \t \t \t: 0.3854\n",
+ "C4\t \t \t \t: 0.34\n",
+ "C5\t \t \t \t: 0.007866\n",
+ "C6\t \t \t \t: 0.0\n",
+ "\n",
+ "\n",
+ "*****************Residue Composition*********************\n",
+ "\n",
+ "C1\t \t \t \t: 0.0\n",
+ "C2\t \t \t \t: 0.0\n",
+ "C3\t \t \t \t: 0.00484930540974\n",
+ "C4\t \t \t \t: 0.321097242636\n",
+ "C5\t \t \t \t: 0.480081235564\n",
+ "C6\t \t \t \t: 0.19397221639\n",
+ "\n",
+ "\n",
+ "Page: 440\n",
+ "\n",
+ "\n",
+ "Page: 441\n",
+ "\n",
+ "\n",
+ "For the reflux ratio of 0.8\n",
+ "\n",
+ "*****************Distillate Composition*********************\n",
+ "\n",
+ "\t\t\t Liquid reflux in equilibrium with the distillate vapour\n",
+ "\n",
+ "C 0 \t \t \t \t\t: 0.004\n",
+ "C 1 \t \t \t \t\t: 0.0444501\n",
+ "C 2 \t \t \t \t\t: 0.2495\n",
+ "C 3 \t \t \t \t\t: 0.6564\n",
+ "C 4 \t \t \t \t\t: 0.0451\n",
+ "C 5 \t \t \t \t\t: 0.0\n",
+ "Page: 443\n",
+ "\n",
+ "\n",
+ "Number of theoretical Trays required for R = 0.8: 14.0\n",
+ "\n",
+ "\n",
+ "Page: 446\n",
+ "\n",
+ "\n",
+ "******Corrected Composition***********\n",
+ "\n",
+ "Component\t \tx2\t \t \t y2\t \t \t x1\t \t \t y1\t \t \tx0\t \t \tyD\n",
+ "\n",
+ "C 0 \t \t \t0.0021 \t \t \t \t 0.0444 \t \t \t \t 0.00226 \t \t \t \t0.0451 \t \t \t \t \t0.00425 \t \t \t \t0.0789\n",
+ "C 1 \t \t \t0.0214 \t \t \t \t 0.111 \t \t \t \t 0.0241 \t \t \t \t0.1209 \t \t \t \t \t0.0425 \t \t \t \t0.1842\n",
+ "C 2 \t \t \t0.1418 \t \t \t \t 0.2885 \t \t \t \t 0.1697 \t \t \t \t0.3259 \t \t \t \t \t0.2495 \t \t \t \t0.387\n",
+ "C 3 \t \t \t0.6786 \t \t \t \t 0.5099 \t \t \t \t 0.71 \t \t \t \t0.484 \t \t \t \t \t0.6611 \t \t \t \t0.342\n",
+ "C 4 \t \t \t0.1553 \t \t \t \t 0.0458 \t \t \t \t 0.0932 \t \t \t \t0.0239 \t \t \t \t \t0.0425 \t \t \t \t0.0079\n",
+ "C 5 \t \t \t0.00262 \t \t \t \t 0.00034 \t \t \t \t 0.00079 \t \t \t \t9e-05 \t \t \t \t \t0.00015 \t \t \t \t1e-05\n",
+ "\n",
+ "\n",
+ "Page: 448\n",
+ "\n",
+ "\n",
+ "Condensor Heat Load kJ:\n",
+ "21641.994\n",
+ "Reboiler Heat Load kJ:\n",
+ "59915.6783775\n",
+ "**************L/G*************\n",
+ "\n",
+ "Tray No. \t\t L/G\t\t\t\t Temp(OC)\n",
+ "\n",
+ "0.0 \t\t \t \t0.8 \t \t \t46.6\n",
+ "1.0 \t\t \t \t0.432 \t \t \t58.4\n",
+ "2.0 \t\t \t \t0.437 \t \t \t66.0\n",
+ "3.0 \t\t \t \t0.369 \t \t \t70.4\n",
+ "4.0 \t\t \t \t0.305 \t \t \t74.0\n",
+ "5.0 \t\t \t \t0.31 \t \t \t80.3\n",
+ "6.0 \t\t \t \t1.53 \t \t \t86.4\n",
+ "7.0 \t\t \t \t4.05 \t \t \t94.1\n",
+ "8.0 \t\t \t \t3.25 \t \t \t96.3\n",
+ "9.0 \t\t \t \t2.88 \t \t \t97.7\n",
+ "10.0 \t\t \t \t2.58 \t \t \t99.0\n",
+ "11.0 \t\t \t \t2.48 \t \t \t100.0\n",
+ "12.0 \t\t \t \t2.47 \t \t \t102.9\n",
+ "13.0 \t\t \t \t2.42 \t \t \t104.6\n",
+ "14.0 \t\t \t \t2.18 \t \t \t107.9\n",
+ "15.0 \t\t \t \t1.73 \t \t \t113.5\n",
+ "\n",
+ "\n",
+ "Page: 452\n",
+ "\n",
+ "\n",
+ "*****************Composition By Thiele Geddes Method*****************\n",
+ "\n",
+ "Component\t \t \t y2\n",
+ "\n",
+ "C 0 \t \t \t \t0.0419\n",
+ "C 1 \t \t \t \t0.1059\n",
+ "C 2 \t \t \t \t0.2675\n",
+ "C 3 \t \t \t \t0.4939\n",
+ "C 4 \t \t \t \t0.0896\n",
+ "C 5 \t \t \t \t0.00106\n"
+ ]
+ }
+ ],
+ "prompt_number": 85
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/README.txt b/Mass_-_Transfer_Operations/README.txt
new file mode 100755
index 00000000..2f59a972
--- /dev/null
+++ b/Mass_-_Transfer_Operations/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Ishita Tewari
+Course: btech
+College/Institute/Organization: Gautam Buddha University, Greater Noida
+Department/Designation: School of Biotechnology
+Book Title: Mass - Transfer Operations
+Author: R. E. Treybal
+Publisher: McGraw - Hill Book Company, Malaysia
+Year of publication: 1980
+Isbn: 0070651760
+Edition: 3 \ No newline at end of file
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration13.3.png b/Mass_-_Transfer_Operations/screenshots/illustration13.3.png
new file mode 100755
index 00000000..90c839aa
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration13.3.png
Binary files differ
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration13.3_1.png b/Mass_-_Transfer_Operations/screenshots/illustration13.3_1.png
new file mode 100755
index 00000000..90c839aa
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration13.3_1.png
Binary files differ
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration13.3_2.png b/Mass_-_Transfer_Operations/screenshots/illustration13.3_2.png
new file mode 100755
index 00000000..90c839aa
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration13.3_2.png
Binary files differ
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration3.1.png b/Mass_-_Transfer_Operations/screenshots/illustration3.1.png
new file mode 100755
index 00000000..ea9b58ca
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration3.1.png
Binary files differ
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration3.1_1.png b/Mass_-_Transfer_Operations/screenshots/illustration3.1_1.png
new file mode 100755
index 00000000..ea9b58ca
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration3.1_1.png
Binary files differ
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration3.1_2.png b/Mass_-_Transfer_Operations/screenshots/illustration3.1_2.png
new file mode 100755
index 00000000..ea9b58ca
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration3.1_2.png
Binary files differ
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration5.1.png b/Mass_-_Transfer_Operations/screenshots/illustration5.1.png
new file mode 100755
index 00000000..3f31888e
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration5.1.png
Binary files differ
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration5.1_1.png b/Mass_-_Transfer_Operations/screenshots/illustration5.1_1.png
new file mode 100755
index 00000000..3f31888e
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration5.1_1.png
Binary files differ
diff --git a/Mass_-_Transfer_Operations/screenshots/illustration5.1_2.png b/Mass_-_Transfer_Operations/screenshots/illustration5.1_2.png
new file mode 100755
index 00000000..3f31888e
--- /dev/null
+++ b/Mass_-_Transfer_Operations/screenshots/illustration5.1_2.png
Binary files differ