diff options
Diffstat (limited to 'Mass_-_Transfer_Operations/Chapter12.ipynb')
-rwxr-xr-x | Mass_-_Transfer_Operations/Chapter12.ipynb | 922 |
1 files changed, 922 insertions, 0 deletions
diff --git a/Mass_-_Transfer_Operations/Chapter12.ipynb b/Mass_-_Transfer_Operations/Chapter12.ipynb new file mode 100755 index 00000000..62994f86 --- /dev/null +++ b/Mass_-_Transfer_Operations/Chapter12.ipynb @@ -0,0 +1,922 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:648d6196f9fbdd06162570014332196a676f8de89932a2e6d95cd0329cdf5ac2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12: Drying"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.1: Page 660"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.1\n",
+ "# Page: 660\n",
+ "\n",
+ "print'Illustration 12.1 - Page: 660\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "#****Data****#\n",
+ "F=1000;# [kg]\n",
+ "Xo=0.8;# [wt. fraction water]\n",
+ "X1=0.05;# [wt. fraction water]\n",
+ "#************#\n",
+ "\n",
+ "Yo=Xo/(1-Xo);# [kg water/kg dry solid]\n",
+ "Y1=X1/(1-X1);# [kg water/kg dry solid]\n",
+ "solid=F*(1-X1);# [kg]\n",
+ "print\"Moisture to be evaporated: \",solid*(Yo-Y1),\" kg\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.1 - Page: 660\n",
+ "\n",
+ "\n",
+ "Moisture to be evaporated: 3750.0 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.2: Page 665"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.2\n",
+ "# Page: 665\n",
+ "\n",
+ "print'Illustration 12.2 - Page: 665\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "\n",
+ "# ***Data***#\n",
+ "Y1 = 0.05;# [kg water/kg dry air]\n",
+ "Yair = 0.01;# [kg water/kg dry air]\n",
+ "TempG1 = 95;# [OC]\n",
+ "width = 1;# [m]\n",
+ "apart = 100.0/1000;# [m]\n",
+ "deep = 38.0/1000;# [m]\n",
+ "Rate_evaporation=7.5*10**(-3);# [kg/s]\n",
+ "#*****************#\n",
+ "\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "vH = (0.00283+(0.00456*Y1))*(TempG1+273);# [cubic m/kg dry air]\n",
+ "freeArea = width*(apart-deep)*11;# [square m]\n",
+ "# Rate of air flow at 1:\n",
+ "Rate_air1 = 3*freeArea/vH;# [square m]\n",
+ "Y2 = Y1+(Rate_evaporation/Rate_air1);# [kg water/kg dry air]\n",
+ "# Assuming adiabatic drying:\n",
+ "# From adiabatic saturation curve, Fig 7.5: (Pg 232)\n",
+ "TempG2 = 86.0;# [OC]\n",
+ "# Overall Water Balance:\n",
+ "G = Rate_evaporation/(Y1-Yair);# [kg dry air/s]\n",
+ "# Rate of air flow at 3:\n",
+ "Rate_air3 = Rate_air1+G;# [kg dry air/s]\n",
+ "# Rate of air flow at 4:\n",
+ "Rate_air4 = Rate_air3;# [kg dry air/s]\n",
+ "# Volumetric Rate through fan:\n",
+ "Rate_fan = Rate_air3/vH;# [cubic m/s]\n",
+ "print\"Percentage of air recycled is:\",round((Rate_air1/Rate_air3)*100,2),\"%\\n\",\n",
+ "print\"\\n\"\n",
+ "\n",
+ "# From Fig. 7.5 (page 232):\n",
+ "# Saturated enthalpy at adiabatic saturation temp.\n",
+ "Enthalpy1 = 233.0;# [kJ/kg dry air]\n",
+ "Enthalpy2 = 233.0;# [kJ/kg dry air]\n",
+ "# Enthalpy of fresh air:\n",
+ "Enthalpy_air = 50.0;# [kJ/kg dry air]\n",
+ "# Assuming complete mixing, by Enthalpy mixing:\n",
+ "Enthalpy3 = ((Enthalpy1*Rate_air1)+(Enthalpy_air*G))/Rate_air3;# [kJ/kg dry air]\n",
+ "Enthalpy4 = Enthalpy3;# [kJ/kg dry air]\n",
+ "# From table 7.1: (Pg 234)\n",
+ "Temp_dry = ((Enthalpy3*1000.0)-(2502300.0*Y1))/(1005.0+(1884.0*Y1));\n",
+ "Power = (Enthalpy2-Enthalpy3)*Rate_air3;# [kW]\n",
+ "# From Fig. 7.5, (Pg 232)\n",
+ "DewPoint1 = 40.4;# [OC]\n",
+ "DewPoint2 = 41.8;# [OC]\n",
+ "DewPoint3 = 40.4;# [OC]\n",
+ "DewPoint4 = 40.4;# [OC]\n",
+ "print\"At Point 1\\n\"\n",
+ "print\"Enthalpy of air:\",Enthalpy1,\" kJ/kg dry air\\n\",\n",
+ "print\"Dew Point of air: \",DewPoint1,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 2\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy2,\" kJ/kg dry air\\n\"\n",
+ "print\"Dew Point of air: \",DewPoint2,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 3\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy3,\" kJ/kg dry air\\n\",\n",
+ "print\"Dew Point of air: \",DewPoint3,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"At Point 4\\n\"\n",
+ "print\"Enthalpy of air: \",Enthalpy4,\" kJ/kg dry air\\n\"\n",
+ "print\"Dew Point of air: \",DewPoint4,\" degree C\\n\"\n",
+ "print\"\\n\"\n",
+ "print\"Dry bulb temparature of air: \",Temp_dry,\" OC\\n\"\n",
+ "print\"Power delivered by heater: \",Power,\" kW\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.2 - Page: 665\n",
+ "\n",
+ "\n",
+ "Percentage of air recycled is: 90.65 %\n",
+ "\n",
+ "\n",
+ "At Point 1\n",
+ "\n",
+ "Enthalpy of air: 233.0 kJ/kg dry air\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 2\n",
+ "\n",
+ "Enthalpy of air: 233.0 kJ/kg dry air\n",
+ "\n",
+ "Dew Point of air: 41.8 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 3\n",
+ "\n",
+ "Enthalpy of air: 215.89174489 kJ/kg dry air\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "At Point 4\n",
+ "\n",
+ "Enthalpy of air: 215.89174489 kJ/kg dry air\n",
+ "\n",
+ "Dew Point of air: 40.4 degree C\n",
+ "\n",
+ "\n",
+ "\n",
+ "Dry bulb temparature of air: 82.5843748998 OC\n",
+ "\n",
+ "Power delivered by heater: 34.3125 kW\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.3: Page 671"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.3\n",
+ "# Page: 671\n",
+ "\n",
+ "print'Illustration 12.3 - Page: 671\\n\\n'\n",
+ "\n",
+ "# Solution\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "# ***Data***#\n",
+ "SsByA = 40;\n",
+ "x1 = 0.25;# [moisture fraction]\n",
+ "x2 = 0.06;# [moisture fraction]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg moisture/kg dry solid]\n",
+ "X2 = x2/(1-x2);# [kg moisture/kg dry solid]\n",
+ "# Fig. 12.10 (Pg 668) indicates that both constant and falling rate periods are involved.\n",
+ "\n",
+ "# Constant Rate period:\n",
+ "# From Fig. 12.10 (Pg 668):\n",
+ "Xc = 0.200;# [kg moisture/kg dry solid]\n",
+ "Nc = 0.3*10**(-3);# [kg/square m.s]\n",
+ "# From Eqn. 12.4:\n",
+ "thetha1 = SsByA*(X1-Xc)/Nc;# [s]\n",
+ "\n",
+ "# Falling Rate Period:\n",
+ "# From Fig. 12.10 (Pg 668):\n",
+ "# Data=[x N*10^3]\n",
+ "Data = numpy.array([[0.2 ,0.3],[0.18 ,0.266],[0.16 ,0.239],[0.14 ,0.208],[0.12, 0.180],[0.10 ,0.150],[0.09 ,0.097],[0.08, 0.070],[0.07 ,0.043],[0.064 ,0.025]]);\n",
+ "Val = zeros(10);\n",
+ "# Val=[(1/N)*10^(-3)]\n",
+ "for i in range(0,10):\n",
+ " Val[i] = 1/Data[i,1];\n",
+ "\n",
+ "plt.plot(Data[:,0],Val);\n",
+ "plt.grid();\n",
+ "plt.xlabel(\"x [kg moisture / kg dry solid]\");\n",
+ "plt.ylabel(\"10^(-3) / N\");\n",
+ "plt.title(\"Graphical Integration Falling Rate Period\");\n",
+ "# Area under the curve:\n",
+ "Area = 1060.0;\n",
+ "# From Eqn. 12.3:\n",
+ "thetha2 = SsByA*Area;# [s]\n",
+ "thetha = thetha1+thetha2;# [s]\n",
+ "print\"Total Drying Time: \",round(thetha/3600,2),\"h\\n\",\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.3 - Page: 671\n",
+ "\n",
+ "\n",
+ "Total Drying Time: 16.72 h\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHFW9//H3JwshkJBJQgghgQxEVgXDqkGRISwGlM37\ncwGRRFwQULiCCFe8gnBVwOuOIBeQgIKACAjKFiSD7IowEIIsEcKaBEIWEhJDSL6/P0510tPp6emZ\nPt1VNfN9PU8/07V/unq6T9c5VadkZjjnnHMFfdIO4JxzLlu8YHDOOdeOFwzOOefa8YLBOedcO14w\nOOeca8cLBuecc+14wdBDSDpL0m8qTH9S0kfquY08k7SFpCWSlHYWAEmzJU1Mnq/Z71nLmVXJPmru\nxnLNklZL6tXfjb36xdeTpM9IeljSUknzJD0k6bg6brLiBSlm9j4z+2u9tiGpRdLL1awkCx++4i9e\nADN7ycwGWx0u7Ele69Lky2qJpAVVLGblntc551RJKwoZJf1F0nurXLam97Ro+cI+ekHSad1ZF0Cy\nj2Z3d/nezguGOpB0CvBT4DxgpJmNBL4CfEjSeh0sU+t70YhfkLG3UZfMkvpWMZvVa/sd2Cn5shps\nZsO6uGyjchpwnpkNBjYDXgIu7+I6as06JNn+EcB3JH20SxuX+tW4fYcXDNFJGgJ8FzjOzG4ws7cB\nzKzNzI4ys3eS+aZKukjSrZKWAi2SPibpMUmLJb0k6cyi9RZ+UX1J0quSXksKoAID1pN0haS3kqqj\nXYuWny1p3+R5X0nfkjQrmfcRSaOTaT9Ltr04Gf/hbu6HVklnS7ov2cYdkoYnkwtHLouSX4cfSJY5\nRtJTya/V2yVtUbS+AyQ9I2mRpF9KukfSF5JpUyTdL+nHkuYDZ0raStLdkuZLekPSb5P3hqRaZgvg\nlmT73yj9xStpM0k3S3pT0nOSvliU5SxJ13W0r6vcP+M6ytfJcqU5K+1nJB0t6cVkO98u/j+oxMz+\nDfweWHPEUOn/k268p51s/yFgZmH7nfxvrJZ0vKTngGeKxm2VPB8i6UpJryev/wwpVMVJ6iPpf5P3\n4F/Ax6rJ1+OZmT8iPoBJwEqgTyfzTQUWAROS4QHA3sB7k+EdgbnAoclwM7AauAoYCLwPeB3YN5l+\nFrA82b6A7wMPFm3vBWBi8vxU4Alg66JtDUuefxYYSvjRcDIwB1ivaBu/6eD1tAAvFw23As8B7wHW\nB6YDP0imjU1eS5+i+Q9N5t822fYZwP3JtI2BxcBhybQTgXeAY5LpU5J9fkIyfX1gHLAv0D9Z/h7g\nJ+X2R8n+7ZMM/xW4AFgPeH+yr/epZl+X2TergXEl46rOV7zfy+SstJ93AJYAeybb+WGy3yZ2kPNy\n4Jzk+YbAb4C7i6ZX+v/s0ntaZtuF19U32acfAt4G9ulsPclydwBNwICicVslz68Ebkxe01hC4VH4\n3/kK8E9gNOH/fjqwik4+vz39kXqAnvYAjgLmlIx7AFgILAM+nIybCkztZF0/BX6cPC98cLYpmn4e\ncGny/CzgzqJpOwDLioaLv2ieAQ6u8vUsAHYs2ka1BcN04FtFw8cBt5W8luIvkdsKH9ZkuE/yxbAF\ncHTpFwqhmqO4YHixk9dxGPBouf1RmgnYHHgX2LBo+veBy6vZ12W2vZpQsC1MHj/tSj4qFwyV9vN3\ngKuKpg0EVtBxwTCVUOAtJHw5/gvYuIv/n9W8p5uXWVdh+YXJ/9xTwFerWU+yXEuZfb4VoaBZAWxX\nNO3LwPTk+d3Al4um7V/6Onrjw6uS4nsT2FhFbQZmtqeZDU2mFcYb0K6xVtIHJE1PDnkXAccCw2mv\neJmXCHXBBfOKni8D1lf5tosxhA/9OpJqlaeSKpuFwBDCL9rumFv0fDkwqMK8Y4GfSVqYbPfNZPxo\nYBTwSsn8pcOl+3KkpGskvSJpMeHXb+m+7MhmwAJLqgETLyVZCqrd1wU7m9nQ5PGfNeYr1dF+3oyi\n/WRmy1m7X8sx4IfJ/2oz4Qv16MLEKv8/i1V6Tzsy3MyGmdkOZnZBF9bT0YkPGxOOll4sGlf8Xo5i\n3c9Ur+cFQ3wPEj5Qh3Vj2auBm4AxZtYE/Ip136MtSp6/2o3tvEyoemhH0l6EaqZPmllT8gWxmPiN\nn+XOqHmJ8MttaNFjQzN7kFCdNaYop4qHO1jn9wm/et9nZkOAz9F+X1Y6q+c1YJik4oJsC9YtjGrR\nWb4YXqP9fhtI54WPAMzsZUKV3X9LGpxMq/T/2ZX39KEuvo5q1tPR+zmfUM3YXDSu+L2cw7qfqV7P\nC4bIzGwRofH5Qkn/IWlw0sA1nlDHWVDuy3YQsNDM3pG0B3Ak6/7Df1vSQIXTCKcA13Yj5qXAOZLe\no2AnScOS7b8LzJe0nqTvABt1Y/0FHRUob5DUuxeN+xXwLUk7wJoGw08m024FdpR0qMJZJycAm3ay\n7UGE6oa3FBrWTy2ZPq9k+2skX4oPAD+QNEDSTsAxwG872WZXdJavKzraz38ADpY0QeFsuLMqzLvO\neszsLmAWcHxR5o7+P7v6nnZFt9djZquA64DvSRokaSzwdda+l9cBJ0oaLWkocHo38vU4XjDUgZn9\nkNBw+03CYf5cwj/3NwlHFBA+UKVf+scDZ0t6C/hvyn/p30P4sN5FOOy/q8L6OvoV9WPCB+JOwhHB\nJYSGyzuA24FngdmEaoniQ+ty26i0PSt5bgBmtgz4HnB/Uj2wh5ndRGgzuSapWpkBfDSZfz7wSeB8\nwi/A7YFHCEdmHeX6LrBL8vpuIXxJFs/zA0Ihu1DSyWXyHkH4lfkacAPwHTO7u8L2urJfqslXunzp\nvuxo/cX7eSbwNeCa5HUsITSir6C8cq/rh4Qvzv5U+P/s6ntaYfvrjux8PeWWKx73NUIh/DxwL+EE\njsuTaZcQ/u8fJ/xPVXofeg0lDS7120A4p/wR4BUzOzj5ZXotod5wNvCp5Fe2q0DhKs7ngX5mtjrd\nNOlK6vJfBo40s3vSzpMXSdXYQuA9ZvZiZ/O73qsRRwwnEc4wKJRApwPTzGwb4C/4oZurgsJ1DE2S\nBgDfSkZ3ta6615F0sKQNJG0I/C/whBcKrjN1LRgkjQEOItRpF+ovDwGuSJ5fQfcaaXur3nyIO4FQ\nhfYG4SKkw8ysoyoRt9YhhBMUXiXU/38m3TguD+palSTp94SzLzYCvpFUJS1MznYpnF2yoDDsnHMu\nfXU7YpD0ceB1M3uMDs6EsFAq9eZfwc45lzn17HBqT+AQSQcRznjZSKGPmnmSNjWzuZJGEc6SWIck\nLzCcc64bzKyma4/qdsRgZt8ys83NbEtCvebdZvY54GZgcjLbZMIFMx2to+zjxReN0aPTv2zczDjz\nzDNTz9ATMnpOz5n1R15yxtDI6xgKic8F9pf0LDAxGe6S0aNh/nxYvjxmvO6ZPXt22hE6lYeM4Dlj\n85xx5SVnDA3pu9zCueb3JM8XAPvVsr6+fWHsWJg9G7bfPkJA55xza+T2yuettoJ/le0GrrGmTJmS\ndoRO5SEjeM7YPGdceckZQ92vfO4uSVYp2wknwLbbwoknNjCUc85lnCQsq43P9TZuHDz/fNopoLW1\nNe0IncpDRvCcsXnOuPKSM4bcFgxZqUpyzrmeJrdVSTNmwGc+AzNnNjCUc85lXIyqpNwWDEuXwiab\nhL99cnvc45xzcfXqNoZBg2DwYJg7t/N56ykP9Y55yAieMzbPGVdecsaQ24IBstMA7ZxzPUluq5IA\njjoK9t8fJk+uOJtzzvUavboqCfyIwTnn6iHXBUMWTlnNQ71jHjKC54zNc8aVl5wx5L5g8CMG55yL\nK9dtDK+9Brvskv6ZSc45lxW9vo1h003hrbfCtQzOOefiyHXB0KcPbLklvPBCehnyUO+Yh4zgOWPz\nnHHlJWcMuS4YIBsN0M4515Pkuo0B4KSTwk17Tj65AaGccy7jen0bA/i1DM45F1vuC4a0q5LyUO+Y\nh4zgOWPznHHlJWcMdS0YJK0v6WFJbZKekvSDZPxZkl6R9FjymNTdbfgRg3POxVX3NgZJG5jZMkn9\ngPuAbwD7AkvM7McVlquqjWH5chg6FN5+G/r2jRbbOedyKRdtDGa2LHm6HtAXWJgM1xS8YOBAGD4c\nXn01xtqcc87VvWCQ1EdSGzAPmG5mhXuufU3S45Iuk9RUyzbSrE7KQ71jHjKC54zNc8aVl5wxNOKI\nYbWZjQfGAB+R1AJcBGwJjAfmAD+qZRtpN0A751xP0q9RGzKzxZL+DOxmZq2F8ZIuBW4pt8yUKVNo\nbm4GoKmpifHjx9PS0gKsLb1bWloYNw6mT29l3DjKTu/twy0tLZnKU2m4ICt5fH/Wf9j3Z23Dra2t\nTJ06FWDN92Wt6tr4LGlj4F0zWyRpIHAH8F1gppnNTeb5OrC7mR1ZsmxVjc8AV10Ft9wC11wTN79z\nzuVNHhqfRwF3J20MDwO3mNlfgPMlPSHpcWBv4Ou1bCTN7rdLf0lkUR4ygueMzXPGlZecMdS1KsnM\nZgC7lBl/dMzt+LUMzjkXT+77SgIwg402gldegSFD6hzMOecyLA9VSQ0h+d3cnHMulh5RMEB6p6zm\nod4xDxnBc8bmOePKS84YelTB4EcMzjlXux7RxgBw4YXwxBPwq1/VMZRzzmWctzEU8aufnXMujh5V\nMKRRlZSHesc8ZATPGZvnjCsvOWPoMQVDc3M4XXXlyrSTOOdcvvWYNgYI936ePj0cPTjnXG/kbQwl\n/Apo55yrXY8qGNJogM5DvWMeMoLnjM1zxpWXnDH0uILBjxicc642PaqN4dpr4fe/h+uvr1Mo55zL\nOG9jKOFHDM45V7seVTCMGxfaGBp5EJSHesc8ZATPGZvnjCsvOWPoUQXD0KGhp9UFC9JO4pxz+dWj\n2hgAdtkFLr4Ydt+9DqGccy7jvI2hjEJ1knPOue7pcQVDoxug81DvmIeM4Dlj85xx5SVnDHUrGCSt\nL+lhSW2SnpL0g2T8MEnTJD0r6U5JTTG361c/O+dcberaxiBpAzNbJqkfcB/wDeAQYL6ZnS/pNGCo\nmZ1eZtlutTHcdRd873uhzyTnnOttMt/GYGbLkqfrAX2BhYSC4Ypk/BXAYTG36dcyOOdcbepaMEjq\nI6kNmAdMN7OZwEgzm5fMMg8YGXObW2wBc+fCihUx19qxPNQ75iEjeM7YPGdceckZQ796rtzMVgPj\nJQ0B7pC0T8l0k9RhfdGUKVNobm4GoKmpifHjx9PS0gKsfZPKDY8ZA9dd18rmm5efHnO4oF7r703D\nbW1tmcqT92Hfn71jf7a2tjJ16lSANd+XtWrYdQyS/htYDnwRaDGzuZJGEY4ktiszf7faGAAOOABO\nPhkmTaopsnPO5U6m2xgkbVw440jSQGB/4DHgZmByMttk4KbY2/b7PzvnXPfVs41hFHB30sbwMHCL\nmf0FOBfYX9KzwMRkOKpGNkAXDumyLA8ZwXPG5jnjykvOGOrWxmBmM4BdyoxfAOxXr+1CuJbhgQfq\nuQXnnOu5elxfSQCPPQaTJ8MTT0QO5ZxzGRejjaFHFgyLF8Po0bBkSeht1TnneotMNz6nacgQWH99\neP31+m8rD/WOecgInjM2zxlXXnLG0CMLBvAroJ1zrrt6ZFUSwBFHwMc+BkcdFTGUc85lnFclVeBH\nDM451z09tmBoVPfbeah3zENG8Jyxec648pIzhh5bMPjVz8451z09to3hpZdgwgR49dWIoZxzLuP8\nOoYKVq2CDTeEhQth4MCIwZxzLsO88bmCvn1h7Fh44YX6bicP9Y55yAieMzbPGVdecsbQYwsG8DOT\nnHOuO3psVRLAV78KW28NJ50UKZRzzmWcVyV1wo8YnHOu63p0wTBuXP1PWc1DvWMeMoLnjM1zxpWX\nnDH06ILBjxicc67renQbw9KlMGIEvP029OnRRaBzzgXextCJQYNCF9xz5qSdxDnn8qNHFwxQ/+qk\nPNQ75iEjeM7YPGdceckZQ10LBkmbS5ouaaakJyWdmIw/S9Irkh5LHpPqlaERDdDOOdeT1LWNQdKm\nwKZm1iZpEPAP4DDgU8ASM/txhWVrbmMAOPNMMIOzz655Vc45l3mZb2Mws7lm1pY8Xwr8ExidTG7I\n3Zj9zCTnnOuahrUxSGoGdgYeSkZ9TdLjki6T1FSv7da7KikP9Y55yAieMzbPGVdecsbQrxEbSaqR\nrgdOMrOlki4CCpU75wA/Ar5QutyUKVNobm4GoKmpifHjx9PS0gKsfZM6G95mmxaef776+bs6XFCv\n9fem4ba2tkzlyfuw78/esT9bW1uZOnUqwJrvy1rV/ToGSf2BPwG3mdlPy0xvBm4xsx1LxkdpYzAL\n3W/PmweDB9e8Ouecy7S6tjFIWippSZnHckmrqgwo4DLgqeJCQdKootkOB2Z09wV0ngG23LL+3W87\n51xP0WHBYGaDzGxw4QGMAr4HzAXW+eXfgQ8BRwH7FJ2aeiBwnqQnJD0O7A18vbaXUVk9G6ALh3RZ\nloeM4Dlj85xx5SVnDJ22MSQNw/8JTAauBnYzszerWbmZ3Uf5wue2roSslV/L4Jxz1euwjUHSCOAU\n4NPAr4Gfm9nihgWL1MYA8POfwzPPwC9/GWV1zjmXWTHaGCodMcwG5hMKhWXAF5I2AwCrdHFa1owb\nB7femnYK55zLh0rXMfwQuDx5PggYnPwtPM8Nb2NoTTtCVTxnXJ4zrrzkjKHDIwYzO6uBOeqquRle\neglWrYK+fdNO45xz2daj78dQbMwYuO++UEg451xPlfm+krLkwx+GW25JO4VzzmVfpQvc9ixqbM69\n446DCy8MV0LHlId6xzxkBM8Zm+eMKy85Y6h0xHA08KikayVNSbrQzq2PfCS0L9x9d9pJnHMu2zpt\nY5C0PXAgcADQBNwN3A7cb2ZVdY3RrWCR2xgALroIpk2DG26IulrnnMuMGG0MXWp8lrQBsA+hoJhg\nZrvWsvFOthW9YFiyBMaOhccfh803j7pq55zLhIY3PpvZMjP7s5l9tZ6FQr0MHgyf/SxcfHG8deah\n3jEPGcFzxuY548pLzhh6zVlJBccfD5deCitWpJ3EOeeyqddcx1Bsv/3gmGPgyCPrsnrnnEtNQ6uS\nJK0vaUAtG8uKE07wDvWcc64jla5j6CPpE5J+L+lV4AXgRUmvSrpe0uF5vc7h4IPh5Zehra32deWh\n3jEPGcFzxuY548pLzhgqHTG0ArsC/wtsZWajzGxTYKtk3O7APXVPWAf9+sGxx/pRg3POlVPpfgwD\nzKxiE20183Q7WB3bGCDcA3q77UKvq0OH1m0zzjnXUHVtYyj3hS9peGfz5MXIkXDQQTB1atpJnHMu\nWyq1MUyUNEvSQ5L2kPQM8DdJ/5K0ewMz1s0JJ4T+k1av7v468lDvmIeM4Dlj85xx5SVnDJ3dqOdw\n4OvAncAXzWwc8Emgqru3Sdpc0nRJMyU9KenEZPwwSdMkPSvpzuS+0g03YQIMGhS6yXDOORdUamN4\nzMx2Tp7/08y2Lzet4spDx3ubmlmbpEHAP4DDgM8D883sfEmnAUPN7PSSZevaxlBw6aVw883h4Zxz\neVfv6xiKp/1X0UYF9K9m5WY218zakudLgX8Co4FDgCuS2a4gFBapOPJIeOABmD07rQTOOZctlQqG\n70jaEMDMbioavxVwZVc3JKkZ2Bl4GBhpZvOSSfOAkV1dXywbbABHHw2/+lX3ls9DvWMeMoLnjM1z\nxpWXnDFUuufzH0vHSdrUzP4FnN+VjSTVSH8ATjKzJcXXxZmZSSpbZzRlyhSak3txNjU1MX78eFpa\nWoC1b1KM4eOOg913b2XiRDjggK4tXxAzT28dbmtry1SevA/7/uwd+7O1tZWpyemVzZHuXdzVbrcf\nNbNdurQBqT/wJ+A2M/tpMu5poMXM5koaBUw3s+1KlmtIG0PBpEmhWunooxu2Seeciy6Nez53aWNJ\ne8RlwFOFQiFxMzA5eT4ZuKl02Ubz/pOccy7oasFwSRfn/xBwFLCPpMeSxyTgXGB/Sc8CE5PhVB10\nULga+pFHurZc4ZAuy/KQETxnbJ4zrrzkjKHDNgZJg81sSfE4M7uws3lK5r+Pjguf/boStN769oXj\njgtHDZdfnnYa55xLT6XrGO4CngH+CDxiZguS8cOB3QinmG5tZnX5gm90GwPA/Pmw9dYwaxYMH975\n/M45lzV1v+ezpInAkYQqoc2S0a8B9wFXmVlrLRuvGCyFggFg8mR43/vg1FMbvmnnnKtZ3Rufzexu\nM/uimW1vZkOSx/Zm9qV6FgppOuEEuOgiWLWquvnzUO+Yh4zgOWPznHHlJWcMve6ez53ZY49QjXT7\n7Wkncc65dHRWldQPuMTMPt+4SGu2nUpVEoSuuK+9Fm67LZXNO+dct9W1Kim5WvlPwN9r2UAeffrT\n4bTVWbPSTuKcc41XqSrpHuDW0lNUe4OBA+Hznw9tDZ3JQ71jHjKC54zNc8aVl5wxVCoYhgAvNypI\n1hx3HFxxBSxblnYS55xrrErXMYwCbgTOLeldtSHSbGMo+PjH4fDD4QtfSDWGc85Vrd73fJ4D7A/0\n2q/FQv9JKZdPzjnXUJ1dx7AE+ESDsmTORz8Kb70FDz3U8Tx5qHfMQ0bwnLF5zrjykjOGTq9jMLOV\njQiSRX36rO0/yTnneotKbQxNwOmEPpFGAga8Tugi+1wzW1TXYBloYwBYsADGjYNnnoFNNkk7jXPO\nVVbvLjGuAxYCLcAwMxsG7AMsSqb1CsOGwSc+AZdemnYS55xrjEoFQ7OZnWdmcws/3c1sjpmdCzQ3\nJF1GnHBCuCf0u++uOy0P9Y55yAieMzbPGVdecsZQqWB4UdI3JY0sjJC0qaTTgJfqHy07dtkFRo+G\nP/0p7STOOVd/ldoYhhHaGA4htDEAzCPclvPcwv0Z6hYsI20MBVddFfpQmjYt7STOOdexut+PIU1Z\nKxhWrICxY+Gee2DbbdNO45xz5dX9fgwVNtzw3lbTNmBAuAL6wpKeo/JQ75iHjOA5Y/OcceUlZwzd\nvR/D2dXMJOnXkuZJmlE07ixJr0h6LHlM6maGhjv2WPjtb2Hp0rSTOOdc/VRqY5hRdkKwjZkN6HTl\n0l7AUuBKM9sxGXcmsMTMftzJspmqSio4/HCYNCkUEs45lzUxqpL6VZi2CTCJcC1DqQeqWbmZ3Sup\nucykmkKn6YQT4OST4ctfBuX2VTjnXMcqVSX9GRhkZrNLH4R7NdTia5Iel3RZcoV1buy7L7zzDtx3\nXxjOQ71jHjKC54zNc8aVl5wxdHjEYGbHVJh2RA3bvIi1bRTnAD+igx5cp0yZQnNzMwBNTU2MHz+e\nlpYWYO2blMbw8cfDmWe28p3vrM2aZp6eMtzW1papPHkf9v3ZO/Zna2srU6dOBVjzfVmrup+umlQl\n3VJoY+jCtEy2MQAsXgzNzfDUUzBqVNppnHNurdROV61FcgOggsOBSo3cmTRkSLgv9CWXpJ3EOefi\nq2vBIOl3hIbqbSW9LOkY4DxJT0h6HNgb+Ho9M9TLCSfAxRfDnXe2ph2lU4XDzqzznHF5zrjykjOG\nSmcl1ayDtohf13ObjbLjjrD33nDOOTBxIvSr6550zrnG8S4xarBiBRx6KIwcCZdfHm7s45xzacpl\nG0NPMmAA3HADPP88nHii3xvaOdczeMFQo7/9rZU//QkefBC+/e2005SXl7pRzxmX54wrLzlj8Jrx\nCIYMgdtvD20OG20Ep52WdiLnnOs+b2OI6NVXYa+94NRT4bjj0k7jnOuN6t1Xkuui0aPhrrvCkcPg\nwXDUUWkncs65rvM2hhqV1jtutRXccQd84xtw003pZCqVl7pRzxmX54wrLzlj8COGOthhB/jzn+HA\nA2HQINhvv7QTOedc9byNoY7uvRc+8Qn44x9hzz3TTuOc6w38OoaM22sv+M1vws192trSTuOcc9Xx\ngqFGndU7TpoEv/xlqFZ6+unGZCqVl7pRzxmX54wrLzlj8DaGBvh//y/cJ/qAA0L10tixaSdyzrmO\neRtDA/385/CLX8Bf/+r3cXDO1Ydfx5AzJ54Ib70VjhzuuQeGDUs7kXPOrcvbGGrU1XrHM84I7Q6T\nJsGSJfXJVCovdaOeMy7PGVdecsbgBUODSXD++bDzznDwwbB8edqJnHOuPW9jSMmqVXD00eH+0Tfc\nAOutl3Yi51xP4Ncx5FjfvjB1ari5z+c+FwoK55zLAi8YalRLvWP//nDddTB/PnzlK/W70U9e6kY9\nZ1yeM6685IyhrgWDpF9LmidpRtG4YZKmSXpW0p2SmuqZIevWXz90mTFjBpxyit8FzjmXvrq2MUja\nC1gKXGlmOybjzgfmm9n5kk4DhprZ6WWW7dFtDKUWLIB99gl9K515ZtppnHN5lfk2BjO7F1hYMvoQ\n4Irk+RXAYfXMkBfDhsGdd8Lvfgdnn+1HDs659KTRxjDSzOYlz+cBI1PIEE3MeseRI6G1Fa69Ntw/\nOlbhkJe6Uc8Zl+eMKy85Y0j1ymczM0kdfv1NmTKF5uZmAJqamhg/fjwtLS3A2jcp7eGCmOtvbYUJ\nE1qZNQuuuaYFKTuvt57DbW1tmcqT92Hfn71jf7a2tjJ16lSANd+Xtar7dQySmoFbitoYngZazGyu\npFHAdDPbrsxyvaqNodSCBaHrjAkT4Gc/C6e1OudcZzLfxtCBm4HJyfPJQEZugJktw4bBX/4C//hH\nOJV19eq0Eznneot6n676O+ABYFtJL0v6PHAusL+kZ4GJyXBuFQ7p6mHIkHD/6GeegWOO6f5FcPXM\nGJPnjMtzxpWXnDHUtY3BzI7oYJLfBblKgwfDrbfCoYfCUUfBlVeGC+Occ65evK+knFi+PFzjsMEG\n4ZTW9bxvJedcGXltY3DdMHAg3HQTvPsu/Md/wL//nXYi51xP5QVDjRpZ7zhgAFx/fSgkDj20+i67\n81I36jnj8pxx5SVnDF4w5Ez//nD11TBiBHzsY/D222kncs71NN7GkFOrVsGXvgTPPQd//jNstFHa\niZxzWeBtDL1Y375w6aXwvveFC+EWLUo7kXOup/CCoUZp1jv26QMXXggf/CDsuy+8+Wb5+fJSN+o5\n4/KcceVF+uFGAAAPdElEQVQlZwxeMOScBD/5Cey3H0ycCK+/nnYi51zeeRtDD2EW7uNw/fWhK41R\no9JO5JxLQ4w2hlR7V3XxSOE+DgMGwN57w913w5gxaadyzuWRVyXVKGv1jmecAcceGwqH2bPDuKxl\n7IjnjMtzxpWXnDH4EUMPdMop4cihpQXuuivtNM65vPE2hh7s//4PzjkHpk2D7da544VzrifyNgZX\n0Ze/HI4cJkyAnXaCbbZp/9hqqzDdOeeKeRtDjbJe7zh5Mlx2WStnngm77gpz5oQL4w47LNzvYdw4\nOPBAOOkkuOACuPPO0DbR3Xs/1CLr+7LAc8blObPHjxh6gWHDQnvDxIntx69cGQqBZ58Nj5kz4cYb\nw/P580OhUXqUsc02oZ8m1XSg6pzLMm9jcGW9/TbMmrW20Ch+rFrVvqDYeuu1f73PJufSFaONwQsG\n12Vvvhk67ystMJ57LhQM5Y4yvD3DucbIdcEgaTbwFrAKWGlme5RMz0XB0NraSktLS9oxKmpUxtWr\n4bXXyh9lvPQSjB5dvtDYfPPQ71Me9iV4ztg8Z1x5PyvJgBYzW5BiBhdRnz7hausxY8q3Z7zwwtoj\niyefhBtuaN+eMWQIvP/9sNlmoUuP4r8bbxzW75yrvzSPGF4AdjOzsn2C5uWIwdWu0J7xr3+FI445\nc9b9u3gxjBy5boFR+nfECC9AXO+W96qk54HFhKqki83skpLpXjC4Nd55B+bODQVFR4XHa6+FAmST\nTSoXHqNGhQKkb9+0X5Vz8eW9YBhlZnMkjQCmAV8zs3uLpueiYMhDvWMeMkKcnIUCpKOCo/B30aJQ\nOBQXGB0dgZQWIL1pfzaC54wr120MZjYn+fuGpBuBPYB7i+eZMmUKzc3NADQ1NTF+/Pg1b0zhYpO0\nhwuykifPw21tbVHWt8UW8PzzrQwdCocfXn7+adNaWbgQxo5tYc6cMP255+DFF8Pws8+28uabsHRp\nC5tsAoMGtTJ8OOy4Ywv//jfceGMrTU1hfSNGwHPPtbLRRrDvvj1vf/pwtvdna2srU6dOBVjzfVmr\nVI4YJG0A9DWzJZI2BO4EvmtmdxbNk4sjBtezrVwJ8+a1P9qYOxfeeCPcFOmNN9Y+Fi6EpqZQlTVi\nxNpHR8PDh0M/v8TURZbbqiRJWwI3JoP9gKvM7Acl83jB4HJl1apwjUe5QqN4uPC8UJBUU4iMGBHO\nzPKCxHUmtwVDNfJSMLTmoN4xDxmh9+VctQoWLChfaJQbXrAgnNJbTSGyySYwY0Yr++9fe856623v\ne73luo3Bud6ub9+1X+TVKBQk5QqNZ56B++5rP+3NN6F//1CYbLRR9/8OHuxncPU2fsTgXA9lBsuX\nw1tvhdN4u/K3+PnSpbDBBuULjq4UMgMHeueLjeBVSc65ulu9OhQOXS1cSv+uXBkKie4evRSe9++f\n9h7JNi8YMiAP9Y55yAieM7as5Vy5ct2jkcWL4aGHWhk9uqXqAqZ//84Lj87+DhrU9Svks7Y/O+Jt\nDM653OjfP5yiO3x4+/GDB4f7hVSjUD3WWeHx2mvw9NNhuNw8y5aF7XblqKU3nRHmRwzOuV5n1SpY\nsmTdAqNSgXP++aE34KzzqiTnnHPtxCgYvB/KGhUuTc+yPGQEzxmb54wrLzlj8ILBOedcO16V5Jxz\nPYhXJTnnnIvOC4Ya5aHeMQ8ZwXPG5jnjykvOGLxgcM451463MTjnXA/ibQzOOeei84KhRnmod8xD\nRvCcsXnOuPKSMwYvGJxzzrXjbQzOOdeDeBuDc8656FIrGCRNkvS0pOcknZZWjlrlod4xDxnBc8bm\nOePKS84YUikYJPUFLgAmATsAR0jaPo0stWpra0s7QqfykBE8Z2yeM6685IwhrSOGPYBZZjbbzFYC\n1wCHppSlJosWLUo7QqfykBE8Z2yeM6685IwhrYJhNPBy0fAryTjnnHMpS6tg6DGnG82ePTvtCJ3K\nQ0bwnLF5zrjykjOGVE5XlfRB4Cwzm5QM/xew2szOK5qnxxQezjnXSLm8taekfsAzwL7Aa8DfgCPM\n7J8ND+Occ66dfmls1MzelfRV4A6gL3CZFwrOOZcNmb3y2TnnXDoa3vhczYVtkn6eTH9c0s5F45sk\nXS/pn5KeStoqspjzvyTNlDRD0tWSBqSVU9J2kh6U9G9Jp3Rl2SzklLS5pOnJ/nxS0olZzFk0va+k\nxyTdksWMWfoMdZIzS5+hzyaf8Sck3S9pp2qXzULObn2GzKxhD0K10SygGegPtAHbl8xzEHBr8vwD\nwENF064Ajkme9wOGZC1nsszzwIBk+Fpgcoo5RwC7Af8DnNKVZTOSc1NgfPJ8EKFtKnM5i6afDFwF\n3JzFjBn7DHX0nmftMzShsJ8IF+U+VO2yGcnZ5c9Qo48Yqrmw7RDCPy9m9jDQJGmkpCHAXmb262Ta\nu2a2OGs5gbeAlcAGSSP7BsCraeU0szfM7JEkU5eWzUJOM5trZm3J86XAP4HNspYTQNIYwg+GS4Ga\nzgqpR8asfYYq7MusfYYeLNpPDwNjql02Czm78xlqdMFQzYVt5eYZA2wJvCHpckmPSrpE0gYZyzna\nzBYAPwJeIpxxtcjM7koxZz2W7aoo25LUDOxM+Kevh1pz/gQ4FVgdM1SJWjJm7TNUVsY/Q18Abu3m\nsrWoJeca1X6GGl0wVNvSXfprywiHvbsAF5rZLsDbwOkRs5Vurxrr/CqUNA74T8Ih32bAIEmfjRet\nnVrOHGjkWQc1b0vSIOB64KTkV089dDunpI8Dr5vZY9TvaAFq25dZ/AytI6ufIUn7AMcAhfr9TH6G\nyuQsjK/6M9ToguFVYPOi4c0JJV+lecYk414BXjGzvyfjryf8k2ct527AA2b2ppm9C9wA7Jliznos\n21U1bUtSf+APwG/N7KbI2YrVknNP4BBJLwC/AyZKujJyPqgtY9Y+Qx3J3Gcoaci9BDjEzBZ2ZdkM\n5OzyZ6jRBcMjwNaSmiWtB3wauLlknpuBo2HNFdKLzGyemc0FXpa0TTLffsDMrOUkNOx8UNJASUpy\nPpVizoLSX7FdWTa1nMk+vAx4ysx+Wqd8Bd3OaWbfMrPNzWxL4DPA3WZ2dMYyZu0zVDYn8DQZ+gxJ\n2oJQOB1lZrO6smwWcnbrM1SPFvROWtcPJHx5zgL+Kxl3LHBs0TwXJNMfB3YpGv9+4O/J+Buo0xkV\nEXJ+k/CBm0FooO6fVk7CGQkvA4uBhYR620EdLZu1nMCHCXX2bcBjyWNS1nKWrGNv6nRWUoT3PDOf\noU5yZukzdCnwZtH/398qLZu1nN35DPkFbs4559rxW3s655xrxwsG55xz7XjB4Jxzrh0vGJxzzrXj\nBYNzzrl2vGBwzjnXjhcMrtuSi22WS3q0aHhGSlk2k/T7CtOHSDquzhk+KOn/Ssa1KFIX3JKmSPpF\njHVVsa0176Wk3ST9rIP5ZksallyM1iZphaRhjcjo6scLBlerWRb63UmVmb1mZp+sMMtQ4PiurldS\nVz4jBwK3dXUbtZLUt57rN7NHzOykjiYn8yw3s/GETu9cznnB4MqStHty048BkjZMbvCxQxeW3yrp\nwXNXSRtIui65UcgNkh6StGuZZWZL+r7CjW4ekbSLpDslzZJ0bDKPJP1Q4QYuT0j6VDK++BfueyU9\nnKynTdJ7gHOBccm48yXtXfxLXtIFkiYX5ThX0j+AT0o6QNIDkv6RvI4NO3jZE4EOewFN9umjkraU\nNELStGS/XlL45V1mmc9LekbSwxT1FyRpqqRfSXoIOF/Ss5I2Tqb1UbiZy/CSde2dvP7HkhwbdrQ/\nS5Zbc9QjaXjynjwp6RLq22GgS0kq93x22Wdmf5d0M+EmKgOB35hZVf3VSNqW0JHcZDObIekbwJtm\n9l5J7yVcml/uknsDXjSznSX9GJhKuPnIQOBJ4GLgE4RuHXYi3Ojl75LuKVnPV4CfmdnVCv359yP0\nNPleM9s5ydhSZttW9Hy+me2afNn+AdjXzJYr3DnrZOCckte8MbDSzJZ0sE/2BH5O6NzsFUkXAHeZ\n2XmSPkroJrl0mVHAWYSO7t4CpgOPFs2yGTDBzEzSYuCzwM8IfQu1mdmbJas8BTjezB5U6G57BdXt\nz2JnAn81s/+RdFC53C7//IjBVXI2cACht8vzq1xmE+Am4EgzK7Q3fIhwYxHMbCbwRIXlCx2DzQAe\nNLO3zWw+sELhRjMfAq624HXgHsJNTIo9AHxL0jeBZjP7N13/ZXtt8veDwA7AA5IeI3ScuEWZ+Q8A\n7uhgXdsTCrWPm1mhR8zifXIHoa+gUh8AplvoZXRlkqnwOgz4va3t0+bXSTYIXS5fXmZ99wM/kfQ1\nYKiZraK6/VlsL+C3Se5bO8jtcs4LBlfJxsCGhM7sBla5zCLgRcIXSLFqv5hXJH9XA+8UjV/N2iPc\ncvfrWDtg9jvgYGA5cKtC//Sl3qX9/3/p63u76Pk0M9s5ebzXzL5UZn2TgNvLjDdgTpKltC2ms31i\nJfOUzr9szYyhwJknaSKwO2XaOszsPMIv/IHA/cmRXbn1dtaBmlcf9XBeMLhKLga+DVwNnFflMu8Q\nqieOlnREMu5+oNAWsAOwYxXrKfflY8C9wKeTevQRwEeAv7VbUNrKzF4ws18Af0y29xYwuGi2F4Ed\nJK0nqYnQPlDOw8CHFG4eQ1Ivv3XJ9gTsZGaPd/A6FgEfB34gae9kfPE+OYDQOF7qb8DeCmf99Ac+\nSeUv7UsJv+avKzqSKM45zsxmmtn5hB5Wt6OK/Vnir8CRyfoO7CC3yzlvY3BlSToaWGFm1yicmfOA\npBYza+1kUTOzZQp3NJsmaQlwIXCFpJmEvvZnErpaXmfZkuelw5jZjZImELqNNuBUM3td4ZaFhfk/\nJekown2D5wDfM7NFku5PGqhvNbPTJF1HaLt4gfZ198Uv5g1JU4DfSRqQjD4DeK5otl0JXRmXXUWy\nT15P9sltkj4PfDdZ5+eAB4G5QLv2CTObI+msZPqiMtso/fK/hVCFVK4aCeCk5OhpNeF132pmK6vY\nn8XbKuQ+glBl92IH23I55t1uu25LvjxuMbOKRwBJwdLfzFYkv7ynAdtYuDtX7kk6A3jOzK7rwjLr\nAavMbFXyxfzLWk/7lbQb8CMz27vTmetE4Q52u1q4b7PLKT9icLV4Fxgi6dFOvtQ2BO5OqkMEHNdT\nCgUAM/teNxbbArguKTTfAcq1W1RN0umEs7GOrGU9NWx/feAhwnfK6jQyuHj8iME551w73vjsnHOu\nHS8YnHPOteMFg3POuXa8YHDOOdeOFwzOOefa8YLBOedcO/8fn0E/Bf9S/E0AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7786b00>"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.4: Page 676"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.4\n",
+ "# Page: 676\n",
+ "\n",
+ "print'Illustration 12.4 - Page: 676\\n\\n'\n",
+ "\n",
+ "# Solution (a)\n",
+ "\n",
+ "#***Data***#\n",
+ "# For rectangular pan:\n",
+ "l = 0.7;# [m]\n",
+ "b = 0.7;# [m]\n",
+ "zS = 0.025;# [m]\n",
+ "zM = 0.0008;# [m]\n",
+ "d = 0.1;# [m]\n",
+ "Y1 = 0.01;# [kg water/kg dry air]\n",
+ "TempG = 65.0;# [OC]\n",
+ "v = 3.0;# [m/s]\n",
+ "TempR = 120.0;# [OC]\n",
+ "#*************#\n",
+ "\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "vH = (0.00283+(0.00456*Y1))*(TempG+273.0);# [cubic m/kg dry air]\n",
+ "Density_G = (1+Y1)/vH;# [kg/cubic m]\n",
+ "G = v*Density_G;# [kg/square m.s]\n",
+ "de = 4*d*l/(2*(l+d));# [m]\n",
+ "# From Eqn. 12.20:\n",
+ "hc = 5.90*G**0.71/de**0.29;# [W/square m.K]\n",
+ "# Assume:\n",
+ "e = 0.94;\n",
+ "# Estimate:\n",
+ "TempS = 38;# [OC]\n",
+ "# From Eqn. 12.14:\n",
+ "hR = e*5.729*10**(-8)*((273+TempR)**4-(273+TempS)**4)/((273.0+TempR)-(273+TempS));\n",
+ "A = l*b;# [square m]\n",
+ "Am = A;# [square m]\n",
+ "As = 4*l*zS;# [square m]\n",
+ "Au = Am+As;# [square m]\n",
+ "# Thermal Coductivities:\n",
+ "kM = 45;# [W/m.K]\n",
+ "kS = 3.5;# [W/m.K]\n",
+ "# By Eqn. 12.16:\n",
+ "Uk = 1/(((1/hc)*(A/Au))+((zM/kM)*(A/Au))+((zS/kS)*(A/Am)));# [W/squre m.K]\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "Cs = 1005+(1884*Y1);# [kJ/kg]\n",
+ "# At estimated 38 OC\n",
+ "lambdaS = 2411.4;# [kJ/kg]\n",
+ "# From Eqn. 12.18:\n",
+ "# (Ys-Y1)*lambdaS*10^3/Cs = ((1+(Uk/hc))*(TempG-Temps))+((hR/hC)*(TempR-TempS))\n",
+ "# On Simplifying:\n",
+ "# Ys = 0.0864-(10.194*10**(-4)*TempS)\n",
+ "# The eqn. is solved simultaneously with the saturated humidity curve of the psychometric chart for the air water mixture.\n",
+ "# From Fig. 12.12: (Pg 677)\n",
+ "Ys = 0.0460;# [kg water/kg dry air]\n",
+ "TempS = 39;# [OC]\n",
+ "# At 39 OC\n",
+ "lambdaS = 2409.7;# [kJ/kg]\n",
+ "# From Eqn. 12.17:\n",
+ "Nc = (((hc+Uk)*(TempG-TempS))+(hR*(TempR-TempS)))/(lambdaS*10**(3));# [kg water evaporated/square m.s]\n",
+ "print\"The Evaporation Rate: \",round(Nc*A,8),\" kg/s\\n\"\n",
+ "\n",
+ "# Solution (b)\n",
+ "# When no radiation or conduction of heat through the solid occurs, the drying surface assumes wet bulb temparature of the air.\n",
+ "# From Fig. 12.12 (Pg 677)\n",
+ "TempS = 28.5;# [OC]\n",
+ "Ys = 0.025;# [kg water/kg dry air]\n",
+ "lambdaS = 2435;# [kJ/kg]\n",
+ "# From Eqn. 12.17:\n",
+ "Nc = hc*(TempG-TempS)/(lambdaS*10**3);# [kg/aquare m.s]\n",
+ "print\"The Evaporation Rate: \",round(Nc*A,8), \"kg/s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.4 - Page: 676\n",
+ "\n",
+ "\n",
+ "The Evaporation Rate: 0.0003851 kg/s\n",
+ "\n",
+ "The Evaporation Rate: 0.00016105 kg/s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.5: Page 684"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.5\n",
+ "# Page: 684\n",
+ "\n",
+ "print'Illustration 12.5 - Page: 684\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "from scipy import integrate\n",
+ "import math\n",
+ "#***Data***#\n",
+ "x1 = 0.025;# [moisture fraction]\n",
+ "x2 = 0.001;# [moisture fraction]\n",
+ "zS = 0.018;# [m]\n",
+ "dp = 2*10**(-4);# [m]\n",
+ "Density_S = 1350;# [kg dry solid/cubic m]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg water/kg dry air]\n",
+ "X2 = x2/(1-x2);# [kg water/kg dry air]\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Y1 = 0.0153;# [kg water/kg dry air]\n",
+ "Tempas = 24;# [OC]\n",
+ "Yas = 0.0190;# [kg water/kg dry air]\n",
+ "Gs = 0.24;# [kg dry air/square m.s]\n",
+ "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg dry air/square m.s]\n",
+ "# From Eqn. 12.26:\n",
+ "Nmax = Gs*(Yas-Y1);# [kg evaporated/square m.s]\n",
+ "viscosity_air = 1.8*10**(-5);# [kg/m.s]\n",
+ "X3=lambda X : 1/(Nmax*(1-math.exp(-(0.273/dp**0.35)*((dp*Gav/viscosity_air)**0.215)*(Density_S*zS*X)**0.64)));\n",
+ "Value = integrate.quad(X3,X2,X1);\n",
+ "# From Eqn. 12.3:\n",
+ "thetha = Density_S*zS*Value[0];# [s]\n",
+ "print\"The time for drying: \",round(thetha/60,3),\" min\\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.5 - Page: 684\n",
+ "\n",
+ "\n",
+ "The time for drying: 12.593 min\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.6: Page 685"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.6\n",
+ "# Page: 685\n",
+ "\n",
+ "print'Illustration 12.6 - Page: 685\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "import math\n",
+ "#***Data***#\n",
+ "Y1 = 0.01;# [kg water/kg dry air]\n",
+ "Gs = 1.1;# [kg dry air/square m.s]\n",
+ "dia = 13.5/1000;# [m]\n",
+ "l = 13.0/1000;# [m]\n",
+ "zS = 50.0/1000;# [m]\n",
+ "Density_S = 600.0;# [kg dry solid/square m.s]\n",
+ "a = 280.0;# [square m/cubic m]\n",
+ "#************#\n",
+ "\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Yas = 0.031;# [kg water/kg dry air]\n",
+ "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg/square m.s]\n",
+ "viscosity_air = 1.9*10**(-5);# [kg/m.s]\n",
+ "Area = (2.0*math.pi*dia**2.0/4)+(math.pi*dia*l);# [square m]\n",
+ "dp = (Area/math.pi)**0.5;# [m]\n",
+ "# From Table 3.3 (Pg 74)\n",
+ "Re = dp*Gav/viscosity_air;\n",
+ "e = 1.0-(dp*a/6);# [fraction voids]\n",
+ "jD = (2.06/e)*Re**(-0.575);\n",
+ "# For air water mixture:\n",
+ "Sc = 0.6;\n",
+ "# From Eqn. 12.33:\n",
+ "kY = jD*Gs/Sc**(2.0/3);# [kg H2O/square m.s.deltaX]\n",
+ "# From Eqn. 12.30:\n",
+ "NtG = kY*a*zS/Gs;\n",
+ "# From Eqn. 12.25:\n",
+ "Nmax = Gs*(Yas-Y1);# [kg/square m.s]\n",
+ "# From Eqn. 12.31:\n",
+ "N = Nmax*(1-math.exp(-NtG));# [kg water evaporated/square m.s]\n",
+ "Y2 = (Yas-Y1)*(N/Nmax)+Y1;# [kg water/kg dry air]\n",
+ "# From Fig 7.5 (Pg 232)\n",
+ "Tempas = 33.0;# [OC]\n",
+ "# From eqn. 12.2:\n",
+ "Rate = N/(Density_S*zS);# [kg H2O/(kg dry solid).s]\n",
+ "print\"Humidity of the exit air: \",round(Y2,4),\" kg water/kg dry air\\n\"\n",
+ "print\"Temparature of exit air: \",Tempas,\" degree C\\n\"\n",
+ "print\"Rate of Drying: \",round(Rate,7),\" kg H2O/(kg dry solid).s\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.6 - Page: 685\n",
+ "\n",
+ "\n",
+ "Humidity of the exit air: 0.0302 kg water/kg dry air\n",
+ "\n",
+ "Temparature of exit air: 33.0 degree C\n",
+ "\n",
+ "Rate of Drying: 0.0007409 kg H2O/(kg dry solid).s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.7: Page 700"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.7\n",
+ "# Page: 700\n",
+ "\n",
+ "print'Illustration 12.7 - Page: 700\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "import math\n",
+ "from numpy.linalg import inv\n",
+ "#***Data***#\n",
+ "x1 = 3.5;# [percent moisture]\n",
+ "x2 = 0.2;# [percent moisture]\n",
+ "dia = 1.2;# [m]\n",
+ "l = 6.7;# [m]\n",
+ "Rate_prod = 900.0;# [kg/h]\n",
+ "y2 = 0.5;# [Humidity]\n",
+ "TempG2 = 90.0;# [OC]\n",
+ "TempG1 = 32.0;# [OC]\n",
+ "TempS1 = 25.0;# [OC]\n",
+ "TempS2 = 60.0;# [OC]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(100.0-x1);# [kg H2O/kg dry solid]\n",
+ "X2 = x2/(100.0-x2);# [kg H2O/kg dry solid]\n",
+ "Ss = Rate_prod*(1-X2);# [kg dry solid/h]\n",
+ "Rate_drying = Ss*(X1-X2);# [kg water evaporated/h]\n",
+ "Y2 = (y2/(1-y2))/100.0;# [kg water/kg dry air]\n",
+ "Tempo = 0.0;# [Base temp,OC]\n",
+ "# From Table 7.1: (Pg 234)\n",
+ "# Enthalpy of air entering the drier:\n",
+ "HG2 = (1005.0+(1884.0*Y2))*(TempG2-Tempo)+(2502300.0*Y2);# [J/kg dry air]\n",
+ "# For the outlet air:\n",
+ "# HG1 = (1005.0+(1884*Y1))*(TempG1-Tempo)+(2502300*Y1); [J/kg dry air]\n",
+ "# HG1 = (1005.0*TempG1)+((1884+TempG1)+2502300)*Y1; [J/kg dry air]\n",
+ "CsNH4 = 1507.0;# [J/kg.K]\n",
+ "CsH2O = 4187.0;# [J/kg.K]\n",
+ "# From Eqn. 11.45:\n",
+ "HS2 = CsNH4*(TempS2-Tempo)+(X2*CsH2O*(TempS2-Tempo));# [J/kg dry air]\n",
+ "HS1 = CsNH4*(TempS1-Tempo)+(X1*CsH2O*(TempS1-Tempo));# [J/kg dry air]\n",
+ "# The estimated combined natural convection and radiation heat transfer coeffecient from the drier to the surrounding:\n",
+ "h = 12.0;# [W/square m.K]\n",
+ "deltaTemp = ((TempG2-TempS1)+(TempG1-TempS1))/2;# [OC]\n",
+ "Ae = math.pi*dia*l;# [square m]\n",
+ "Q = h*3600.0*Ae*deltaTemp;# [kJ/h]\n",
+ "# Moisture Balance, Eqn. 12.39:\n",
+ "# Ss*(X1-X2) = Gs(Y1-Y2)\n",
+ "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",
+ "# Enthalapy Balance, Eqn. 12.40:\n",
+ "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",
+ "# Gs*(HG2-HG1) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-((1005*TempG1)+((1884+TempG1)+2502300)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-(1005*TempG1))-(Gs*Y1*((1884+TempG1)+2502300)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",
+ "# Solving Simultaneously:\n",
+ "a = numpy.array([[HG2-(1005.0*TempG1),-((1884.0+TempG1)+2502300.0)],[(-Y2), 1.0]]);\n",
+ "b = numpy.array([[((Ss*HS2)+Q-(Ss*HS1))],[(Ss*(X1-X2))]]);\n",
+ "c=inv(a)\n",
+ "soln =np.dot(c, b)\n",
+ "Gs = soln[0];# [kg dry air/h]\n",
+ "Y1 = soln[1]/soln[0];# [kg water/kg dry air]\n",
+ "# From Fig. 7.5 (Pg 232)\n",
+ "Enthalpy_air = 56.0;# [kJ/kg dry air]\n",
+ "HeatLoad = Gs*(HG2-Enthalpy_air*1000);# [W]\n",
+ "print\"Air Flow Rate: \",round(Gs,2),\" kg/h\\n\"\n",
+ "print\"Moisture content of air: \",round(Y1,2),\" kg water/kg dry air \\n\"\n",
+ "print\"Heat Load of drier: \",round(HeatLoad/1000),\" kW\"\n",
+ "#the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.7 - Page: 700\n",
+ "\n",
+ "\n",
+ "Air Flow Rate: 2681.03 kg/h\n",
+ "\n",
+ "Moisture content of air: 0.02 kg water/kg dry air \n",
+ "\n",
+ "Heat Load of drier: 163995.0 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 50
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.8: Page 705"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.8\n",
+ "# Page: 705\n",
+ "\n",
+ "print'Illustration 12.8 - Page: 705\\n\\n'\n",
+ "\n",
+ "# Solution \n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "from numpy.linalg import inv\n",
+ "import numpy as np\n",
+ "#***Data***#\n",
+ "x1 = 8.0;# [percent moisture]\n",
+ "x2 = 0.5;# [percent moisture]\n",
+ "Rate_prod = 0.63;# [kg/s]\n",
+ "# Drying Gas:\n",
+ "xCO2 = 0.025;# [mole fraction]\n",
+ "xO2 = 0.147;# [mole fraction]\n",
+ "xN2 = 0.760;# [mole fraction]\n",
+ "xH2O = 0.068;# [mole fraction]\n",
+ "TempG2 = 480.0;# [OC]\n",
+ "Cs = 0.837;# [kJ/kg.K]\n",
+ "Temp1 = 27.0;# [OC]\n",
+ "Temp2 = 150.0;# [OC]\n",
+ "dp = 200.0*10**(-6);# [m]\n",
+ "Density_S = 1300.0;# [kg/cubic m]\n",
+ "#***********#\n",
+ "\n",
+ "X1 = x1/(100-x1);# [kg water/kg dry solid]\n",
+ "X2 = x2/(100-x2);# [kg water/kg dry solid]\n",
+ "Ss = Rate_prod*(1-X2);# [kg dry solid/s]\n",
+ "Water_evap = Ss*(X1-X2);# [kg/s]\n",
+ "# Basis: 1 kmol of dry gas:\n",
+ "xDry = 1.0-xH2O;# [kmol]\n",
+ "XCO2 = 44.0*xCO2;# [kg]\n",
+ "XO2 = 32.0*xO2;# [kg]\n",
+ "XN2 = 28.0*xN2;# [kg]\n",
+ "Xdry = XCO2+XO2+XN2;# [kg]\n",
+ "cCO2 = 45.6;# [kJ/kmol.K]\n",
+ "cO2 = 29.9;# [kJ/kmol.K]\n",
+ "cN2 = 29.9;# [kJ/kmol.K]\n",
+ "cH2O = 4.187;# [kJ/kg.K]\n",
+ "Mav = Xdry/xDry;# [kg/kmol]\n",
+ "Y2 = xH2O*18.02/(xDry*Mav);# [kg water/kg dry gas]\n",
+ "cav = ((xCO2*cCO2)+(xO2*cO2)+(xN2*cN2))/(xDry*Mav);# [kJ/kmol.K]\n",
+ "# Assume:\n",
+ "TempG1 = 120.0;# [OC]\n",
+ "cDry = 1.005;# [kJ/kmol.K]\n",
+ "Tempo = 0;# [Base Temp,OC]\n",
+ "# By Eqn. 7.13:\n",
+ "HG2 = (cav+(1.97*Y2))*(TempG2-Tempo)+(2502.3*Y2);# [kJ/kg dry air]\n",
+ "# For the outlet air:\n",
+ "# HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1); [kJ/kg dry air]\n",
+ "# HG1 = (1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1; [kJ/kg dry air]\n",
+ "# By Eqn. 11.45:\n",
+ "HS1 = (Cs*(Temp1-Tempo))+(cH2O*X1*(Temp1-Tempo));# [kJ/kg dry air]\n",
+ "HS2 = (Cs*(Temp2-Tempo))+(cH2O*X2*(Temp2-Tempo));# [kJ/kg dry air]\n",
+ "# Q = 0.15*HG2*Gs; [kJ/s]\n",
+ "# Moisture Balance, Eqn. 12.39:\n",
+ "# Ss*(X1-X2) = Gs(Y1-Y2)\n",
+ "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",
+ "# Enthalapy Balance, Eqn. 12.40:\n",
+ "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",
+ "# Gs*(HG2-HG1) = (Ss*HS2)+(0.15*HG2*Gs)-(Ss*HS1)\n",
+ "# Gs*(HG2-(0.15*HG2)-((1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",
+ "# Gs*(HG2-(0.15*HG2)-(1.005*TempG1))-(Gs*Y1*((1.884+TempG1)+2502.3)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",
+ "a = np.array([[(HG2-(0.15*HG2)-(1.005*TempG1)),-((1.884+TempG1)+2502.3)],[(-Y2), 1.0]]);\n",
+ "b = np.array([(Ss*HS2)-(Ss*HS1),(Ss*(X1-X2))]);\n",
+ "c=inv(a)\n",
+ "soln = np.dot(c, b)\n",
+ "Gs = soln[0];# [kg dry air/s]\n",
+ "Y1 = soln[1]/soln[0];# [kg water/kg dry gas]\n",
+ "HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1);# [kJ/kg dry air]\n",
+ "Q = 0.15*HG2*Gs;# [kJ/s]\n",
+ "# Assuming the sychrometric ratio of the gas as same as that of air:\n",
+ "# For Zone II:\n",
+ "Tempw = 65.0;# [OC]\n",
+ "Temp_A = 68.0;# [OC]\n",
+ "# At point A, Fig. 12.28 (Pg 702)\n",
+ "Enthalpy_A = Cs*(Temp_A-Tempo)+(X1*cH2O*(Temp_A-Tempo));# [kJ/kg dry air]\n",
+ "# At point B, Fig. 12.28 (Pg 702)\n",
+ "Temp_B = Temp_A;# [OC]\n",
+ "Enthalpy_B = Cs*(Temp_B-Tempo)+(X2*cH2O*(Temp_B-Tempo));# [kJ/kg dry air]\n",
+ "\n",
+ "# Assuming that the heat losses in the three zones are propotional to the number of transfer units in each zone and to the average temp. difference between the gas and the surrounding air.\n",
+ "# Fractional heat loss in each Zone:\n",
+ "fr1 = 0.14;\n",
+ "fr2 = 0.65;\n",
+ "fr3 = 0.20;\n",
+ "# Calculations for zone III:\n",
+ "Cs3 = cav+(1.97*Y2);# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "def f1(TempGD):\n",
+ " return (Gs*Cs3*(TempG2-TempGD))-(Ss*(HS2-Enthalpy_B)+(fr3*Q))\n",
+ "TempGD = fsolve(f1,7);# [OC]\n",
+ "delta_TempG = Ss*(HS2-Enthalpy_B)/(Gs*Cs3);# [OC]\n",
+ "delta_TempM = ((TempG2-Temp2)+(TempGD-Temp_A))/2;# [OC]\n",
+ "NtoG3 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "# Calculations for zone I:\n",
+ "Cs1 = 1.005+(1.884*Y1);# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "def f2(TempGC):\n",
+ " return (Gs*Cs1*(TempGC-TempG1))-(Ss*(Enthalpy_A-HS1)+(fr1*Q))\n",
+ "TempGC = fsolve(f2,7);# [OC]\n",
+ "delta_TempG = Ss*(Enthalpy_A-HS1)/(Gs*Cs1);# [OC]\n",
+ "delta_TempM = ((TempGC-Temp_A)+(TempG1-Temp1))/2;# [OC]\n",
+ "NtoG1 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "# Calculations for zone II:\n",
+ "Cs2 = (cav+Cs1)/2.0;# [kJ/(kg dry gas).K]\n",
+ "# Heat balance:\n",
+ "True_deltaTemp = TempGD-TempGC;# [OC]\n",
+ "delta_Temp = fr2*Q/(Cs1*Gs);# [Change in temp resulting from heat loss,OC]\n",
+ "delta_TempG = True_deltaTemp-delta_Temp;# [OC]\n",
+ "delta_TempM = ((TempGD-Temp_A)-(TempGC-Temp_A))/log((TempGD-Temp_A)/(TempGC-Temp_A));# [OC]\n",
+ "NtoG2 = delta_TempG/delta_TempM;\n",
+ "\n",
+ "NtoG = NtoG1+NtoG2+NtoG3;\n",
+ "\n",
+ "# Standard diameters are availaible at 1, 1.2 & 1.4 m.\n",
+ "Td = 1.2;# [m]\n",
+ "Area = math.pi*Td**2.0/4;# [square m]\n",
+ "Gs = Gs/Area;# [kg/square m.s]\n",
+ "Ss = Ss/Area;# [kg/square m.s]\n",
+ "Gav = Gs*(1+(Y1+Y2)/2.0);# [kg/square m.s]\n",
+ "# From Eqn. 12.47:\n",
+ "Ua = 237.0*Gav**0.417/Td;# [W/square m.K]\n",
+ "HtoG = Gs*Cs2*1000.0/Ua;# [m]\n",
+ "Z = NtoG*HtoG;# [m]\n",
+ "# Assume:\n",
+ "v = 0.35;# [m/s]\n",
+ "N = v/(math.pi*Td);# [1/s]\n",
+ "# From Eqn. 12.37:\n",
+ "K = 0.6085/(Density_S*dp**(1.0/2));\n",
+ "# Take:\n",
+ "phi_D = 0.05;\n",
+ "# From Eqn. 12.35:\n",
+ "phi_DO = phi_D-(K*Gav);\n",
+ "# From Eqn. 12.35:\n",
+ "s = 0.3344*Ss/(phi_DO*Density_S*N**0.9*Td);# [m/s]\n",
+ "print\"Height of the drier: \",round(Z,2),\" m\\n\"\n",
+ "print\"Drier Slope: \",round(s,5),\" m/m \\n\","
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.8 - Page: 705\n",
+ "\n",
+ "\n",
+ "Height of the drier: 5.89 m\n",
+ "\n",
+ "Drier Slope: 0.03304 m/m \n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.9: Page 709"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "# Illustration 12.9\n",
+ "# Page: 709\n",
+ "\n",
+ "print'Illustration 12.9 - Page: 709\\n\\n'\n",
+ "import numpy as np\n",
+ "from scipy.optimize import fsolve\n",
+ "import matplotlib.pyplot as plt\n",
+ "# Solution \n",
+ "\n",
+ "#***Data***#\n",
+ "x1 = 0.46;# [fraction moisture]\n",
+ "x2 = 0.085;# [fraction moisture]\n",
+ "Y1 = 0.08;# [kg water/kg dry solid]\n",
+ "Y2 = 0.03;# [kg water/kg dry solid]\n",
+ "G = 1.36;# [kg/square m.s]\n",
+ "#**********#\n",
+ "\n",
+ "X1 = x1/(1-x1);# [kg water/kg dry solid]\n",
+ "X2 = x2/(1-x2);# [kg water/kg dry solid]\n",
+ "# By water balance:\n",
+ "SsByGs = (Y1-Y2)/(X1-X2);# [kg dry solid/kg air]\n",
+ "# Since the initial moisture content of the rayon is less than the critical, drying takes place entirely within zone III.\n",
+ "# Comparing with Eqn. 12.22:\n",
+ "# (kY*A/(Ss(Xc-X*)))=0.0137*G**1.47\n",
+ "# thetha=integrate('(1/(0.0137*G**1.47))*(1/((X-X_star)*(Yw-Y)))','X',X2,X1) # [s]\n",
+ "X = np.array([X1, 0.80, 0.60, 0.40, 0.20 ,X2]);# [kg water/kg dry solid]\n",
+ "Y = zeros(6);\n",
+ "for i in range(0,6):\n",
+ " # From Eqn. 12.54:\n",
+ " Y[i] = Y2+((X[i]-X2)*SsByGs);# [kg water/kg dry gas]\n",
+ "\n",
+ "# From Fig. 7.5 (Pg 232):\n",
+ "Yw = np.array([0.0950, 0.0920, 0.0790, 0.0680, 0.0550, 0.0490]);# [kg water/kg dry gas]\n",
+ "X_star = zeros(6);\n",
+ "RH=zeros(6)\n",
+ "Val = zeros(6);\n",
+ "P = 51780.0;# [vapour pressure, kN/square m]\n",
+ "for i in range(0,6):\n",
+ " # From Eqn 7.8:\n",
+ " def f(p):\n",
+ " return Y[i]-((p/(101330.0-p))*(18.0/29))\n",
+ " p = fsolve(f,7);# [kN/square m]\n",
+ " RH[i] = (p/P)*100.0;\n",
+ " X_star[i] = (RH[i]/4)/(100.0-(RH[i]/4));# [kg water/kg dry solid]\n",
+ " Val[i] = 1/((X[i]-X_star[i])*(Yw[i]-Y[i]));\n",
+ "\n",
+ "plt.plot(X,Val);\n",
+ "plt.grid();\n",
+ "plt.xlabel(\"X kg water/kg dry solid\");\n",
+ "plt.ylabel(\"1/((X-X*)*(Yw-Y))\");\n",
+ "plt.title(\"Graphical Integration\");\n",
+ "plt.show()\n",
+ "# Area Under the curve:\n",
+ "Area = 151.6;\n",
+ "# From Eqn. 12.59:\n",
+ "thetha = Area/(0.0137*G**1.47);\n",
+ "print\"Time required for drying: \",round(thetha/3600,2),\" h\\n\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Illustration 12.9 - Page: 709\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cVHXd//HXGxBv8GYhDMW7RRMR71ZNvK+11Eu7zJtS\nU0tF07ryujIzCzQLLTXUvOtXWVkK3YjiTablLcp6D6SyiCAhJireoKiQ5h20n98f3zMyDDvD2dk5\nc767+3k+Hvtgzpkz57z3DDvfOZ/vOd8jM8M555xrT6+8AzjnnIuXNxLOOefK8kbCOedcWd5IOOec\nK8sbCeecc2V5I+Gcc64sbyRctyDpHEl/qPD8U5I+leU2ujJJm0p6W5LyzuLi4o2Ey4SkoyRNlfSO\npIWSpkj6RoabrHjBj5lta2YPZLUNSc2SXkyzEkmNktok5fb3J2m+pM8Ups3sBTNbx/zCKVfCGwlX\nc5K+A1wOXAgMMrNBwP8Ae0rqW+Y1nf2/WI9vwLXeRiaZJfVOsZhltX3XvXgj4WpK0nrAucA3zOxm\nM/s3gJm1mtlXzOzDZLlxkq6UdLukd4BmSf8tabqkJZJekDSmaL2Fb98nS3pJ0stJY1RgQF9J4yX9\nKykv7Vz0+vmSPps87i3pLEnzkmUfk7RR8twVybaXJPP3qnI/tEj6kaSHkm3cJeljydOFI5rFSYln\n1+Q1J0qaLelNSXdK2rRofftL+oekxZJ+Iel+SV9Nnhsp6WFJl0paBIyRtLmk+yQtkvS6pD8m7w1J\nyWxT4LZk+2eUHt1IGizpVklvSHpG0klFWc6RNLHcvnbdizcSrtZ2B1YH/pJi2aOBH5vZ2sDDwDvA\nV8xsPeC/gW9IOqTkNc3AJ4D9gVGFD37Ct+KDgQnAesCtwM+LXmcsLxedDhwFHGhm6wInAO8lz00D\ndgD6A9cCN5Q7+kn5+40EPg70Bc5I5u+d/LteUuKZmvyeZwKHAQOBB5PfBUkDgRuAUcAA4B+E/Vxc\nGhoBPJts64Jkf5wPbAhsDWwCnANgZscCLwAHJdv/aTvZr0uW2RA4HLhA0j5Fz3+e8vvadSPeSLha\nGwgsMrO2wgxJj0h6S9K7Jd/MbzGzRwHM7AMzu9/MZiXTMwkfVJ8uWf+5ZvaemT0FXEP4IC540Mzu\nTOrqfyR82LfnJOD7ZvZMYVtm9mby+E9m9paZtZnZpYQGb6sq9oMB15jZPDN7H5gINBV2STvL/w/w\nEzP7R7LvfgI0JUcTnwOeMrNbklw/A14tef3LZvaL5Pn3zexZM7vXzJaa2SLgMlbel+2StAmwBzDK\nzD40sxnAb4HjihZLu69dF+eNhKu1N4CBxX0MZraHmfVPnivMN2CFjl5Ju0qaLOk1SYuBrwMfY0XF\nr3kBGFw0vbDo8bvAGmX6OjYmfOteSVJ6mZ2Udd4ifFMeWOZ3XZXiD/L3gLUrLLsZcEXSmL5F2FcA\nGxG+zS8oWb50unRfDpJ0naQFkpYAf2DlfVnOYODNQqkw8UKSpSDtvnZdnL+prtYeBT4ADq3itdcC\ntwAbm1kD8CtW/j+6acnjl6rYzouEktUKJO0NfBc4wswakoZtCbXv4G3vDKIXgK+ZWf+in37JkdYr\nhIatkFPF02XWeQHwH2DbpHx3LCvuy0pnMb0MDJBU3KhtysoNk+sBvJFwNWVmiwkd17+U9EVJ60jq\nJakJ6Fe0aHsfvGsDb5nZh5JGAMew8ofZ2ZLWlLQNod5/fRUxfwv8WNInFGwvaUCy/WXAIkl9Jf0Q\nWLeK9ReUa1xeB9qALYrm/Qo4S9JwCCcASDoiee52YDtJh0jqA/wvsMEqtr028G/gX0mn/HdLnl9Y\nsv2PmNmLwCPATyStLml74ERCWcn1MN5IuJozs4sJncPfI5RcXiV8CH6PcKQBK3YkF5wC/EjSv4Af\n0H4DcD8wD5gEXGxmkyqsr9y35UsJfQR3E44UrgLWAO4C7gTmAvMJJaIXStZX6Rt4pe1/9Foze5fQ\nqfxwUl4aYWa3EE4Zvi4pD80E/itZfhFwBHARsIjQEf0Y4YitXK5zgZ2S3+824KaSZX5CaHDfknR6\nO3mPBhoJRxU3Az80s/sqbM+vr+imlOW1M5LOBL5C+NY0k3AWST/CH/9mhD/EI5Nvn4XlTyQcJp9q\nZndnFs51KZIagX8CfYo7xXuipPb/InCMmd2fdx7XvWV2JJH8UZ8M7GRm2wG9CacdjgbuMbOhwL3J\nNMlh9peA4cABhHKFH+k4x0fXSTRIWh04K5k9Jc9MrmfI8kP4X8BSYK2kjroW4dD1YGB8ssx4lndw\nHgJMSE7Zm08oKYzIMJ/renpySWN3wt/E64RrSA41sw8qv8S5zsuskUjOO7+EUNN9GVhsZvcQhmko\nnD63EBiUPB7MimdPLGDFU+5cD2Zm882sd08tNZnZuWY20MzWNbPdzezveWdyPUOW5aYtgNMInV+D\ngbUlfaV4meRCnI50BDrnnKujPhmu+5PAI2b2BoCkmwmHzK9K2sDMXpW0IfBasvxLhKEDCjamnXPg\nJXnD4ZxzVTCzDl/zk2WfxBxgt+ScdgH7ArMJp+MdnyxzPOHiKQjjvxyVnJ8+BNiSMI7OSswsqp8x\nY8bknqGr5PJMnqkn5IoxU7UyO5IwsxmSfk84n7sNeAL4DbAOMDEZwXI+cGSy/GxJEwkNyTLgFOvM\nb1ZH8+fPzztCu2LM5ZnS8UzpxZgrxkzVyrLchJldRLgAqNibhKOK9pa/gDCcgHPOuQj4dQg1MHLk\nyLwjtCvGXJ4pHc+UXoy5YsxUrUyvuM6CpK5ShXLOuWhIwiLruO4xWlpa8o7QrhhzeaZ0PFN6MeaK\nMVO1vJFwzjlXlpebnHOuB/Byk3POuZrzRqIGYq0/xpjLM6XjmdKLMVeMmarljUSV3nsP2nrkUHPO\nuZ7E+ySqtOuucNllsMceeSdxzrlV8z6JOvvc5+CGG/JO4Zxz2fJGokpHHBEaiba2eOuPMebyTOl4\npvRizBVjpmp5I1Gl4cNhvfVgit9A0jnXjXmfRCeccw4sWRL6JpxzLmbV9kl4I9EJs2bBAQfA889D\nLz8mc85FzDuuc7DNNrDOOnDllS15R2lXjHVRz5SOZ0ovxlwxZqqWNxKddOSR0I3+Pzjn3Aq83NRJ\nXnJyznUFXm7KSaHkNHVq3kmcc672vJGogV12aYnywroY66KeKR3PlF6MuWLMVK1MGwlJW0maXvSz\nRNKpkgZIukfSXEl3S2ooes2Zkp6RNEfS/lnmq5XmZrjxRh/LyTnX/dStT0JSL+AlYATwTWCRmV0k\naRTQ38xGSxoOXAvsAmwETAKGmllb0Xqi6pMAMAtlp6uvht12yzuNc86trCv0SewLzDOzF4GDgfHJ\n/PHAocnjQ4AJZrbUzOYD8wiNStSkMEzHxIl5J3HOudqqZyNxFDAheTzIzBYmjxcCg5LHg4EFRa9Z\nQDiiiFpLSwtHHBFfySnGuqhnSsczpRdjrhgzVasujYSkvsDngZW6d5PaUaX6UVy1pTK22Qb69YNp\n0/JO4pxztdOnTts5EHjczF5PphdK2sDMXpW0IfBaMv8lYJOi122czFvByJEjaWxsBKChoYGmpiaa\nm5uB5S14vacLJadLL23hlFPqv/32ppubm3PdfnvThXmx5Cn9xhdLnhinY/z/5O9f+emWlhbGjRsH\n8NHnZTXq0nEt6TrgDjMbn0xfBLxhZhdKGg00lHRcj2B5x/UninuqY+y4Lpg5Ew46CObPD42Gc87F\nItqOa0n9CJ3WNxfNHgvsJ2ku8JlkGjObDUwEZgN3AKdE2yIUKbTe224La60VT8mp9FtWDDxTOp4p\nvRhzxZipWpmXm8zs38DAknlvEhqO9pa/ALgg61xZKD7Laddd807jnHOd52M31ZiXnJxzMYq23NTT\nbLstrLlmPCUn55zrDG8kaqC4/lgoOcUwllOMdVHPlI5nSi/GXDFmqpY3Ehk48sjQSERcFXPOuVS8\nTyIDZrD11jB+vHdgO+fi4H0SEYmp5OScc53hjUQNtFd/LIzllOdBT4x1Uc+UjmdKL8ZcMWaqljcS\nGdluO1h9dfj73/NO4pxz1fM+iQz94Afw/vtw8cV5J3HO9XTV9kl4I5GhJ5+Egw+G557zC+ucc/ny\njusclas/5l1yirEu6pnS8UzpxZgrxkzV8kYiQ36Wk3Ouq/NyU8ZmzIBDDvGSk3MuX15uitT220Pf\nvvDYY3kncc65jvNGogYq1R+l5cN01FuMdVHPlI5nSi/GXDFmqpY3EnVQuMdEF6qSOecc4H0SdWEG\nW20Ff/oT7LJL3mmccz2R90lEzM9ycs51Vd5I1ECa+mOhkajnQVCMdVHPlI5nSi/GXDFmqlbmjYSk\nBkk3Snpa0mxJu0oaIOkeSXMl3S2poWj5MyU9I2mOpP2zzlcvO+wAq60Gjz+edxLnnEsv8z4JSeOB\n+83sakl9gH7A94FFZnaRpFFAfzMbLWk4cC2wC7ARMAkYamZtRevrcn0SBd//PixdChddlHcS51xP\nE2WfhKT1gL3N7GoAM1tmZkuAg4HxyWLjgUOTx4cAE8xsqZnNB+YBI7LMWE95lJycc64zsi43DQFe\nl3SNpCckXSWpHzDIzBYmyywEBiWPBwMLil6/gHBEEbW09ccddoA+fepXcoqxLuqZ0vFM6cWYK8ZM\n1epTh/XvBPyfmf1d0uXA6OIFzMwkVfpuvdJzI0eOpLGxEYCGhgaamppobm4Glr859ZxubW1NtbwE\nI0a0cMklMGFCfnnznG5tbY0qT0fev3pOF8SSJ+Zpf//an25paWHcuHEAH31eViPTPglJGwCPmtmQ\nZHov4Exgc2AfM3tV0obAZDMbJmk0gJmNTZa/ExhjZlOL1tll+yQApk+HL34Rnn3Wx3JyztVPlH0S\nZvYq8KKkocmsfYFZwG3A8cm844Fbkse3AkdJ6itpCLAlMC3LjPXW1AS9e/tZTs65rqEe10l8E/iT\npBnA9sD5wFhgP0lzgc8k05jZbGAiMBu4AzilKxw2lB5iVlLPC+s6kqtePFM6nim9GHPFmKlaWfdJ\nYGYzCKe0ltq3zPIXABdkGipnRxwRSk5jx3rJyTkXNx+7KQdmsOWWcP31sPPOeadxzvUEUfZJuPb5\nWE7Oua7CG4kaqKb+WLjHRJYHRTHWRT1TOp4pvRhzxZipWt5I5KSpKRxRPPFE3kmcc64875PI0Zln\nhiOJsWPzTuKc6+68T6IL8rGcnHOx80aiBqqtP+64Y/h3+vTaZSkWY13UM6XjmdKLMVeMmarljUSO\n/Cwn51zsvE8iZ088ERqKefP8wjrnXHa8T6KLyrrk5JxzneGNRA10pv6YZckpxrqoZ0rHM6UXY64Y\nM1XLG4kI+FlOzrlYeZ9EBMxgiy3gppuWl5+cc66WMu2TkNRP0jBJWyW3H3U1JIVhOiZOzDuJc86t\nqGwjIWkdSadLmgbMBK4BxgNPSXpM0rclrV2voDGrRf0xi5JTjHVRz5SOZ0ovxlwxZqpWpSOJW4C3\ngc+b2eZmtruZ7ZbcivQg4N/AX+oRsifYaSdoa4PkFtDOORcF75OIyKhR4damF3TrWy455/JQbZ9E\nqkZC0tZAI9AGPG9mczqcsEa6cyPx2GNw9NEwd65fWOecq62ad1xLGiLpZ5LmAb8CjgNOAH4t6VlJ\nV0hqrDZwd1Kr+uPOO8OyZTBjRk1WF2Vd1DOl45nSizFXjJmqValP4kLgNmBrM/u0mR1tZkeZ2aeB\nYcDfgItWtQFJ8yU9KWl60gmOpAGS7pE0V9LdkhqKlj9T0jOS5kjav3O/XtfiZzk552JTttwkaT0z\nW9LpDUjPATub2ZtF8y4CFpnZRZJGAf3NbLSk4cC1wC7ARsAkYKiZtRW9ttuWm8BLTs65bGRxncQT\nko7uRKZipcEOJpxOS/LvocnjQ4AJZrbUzOYD84ARNcrQJdS65OScc51RqZH4DPClpCy0ZSe2YcCk\n5NqKk5N5g8xsYfJ4ITAoeTwYWFD02gWEI4qo1bL+WMuxnGKsi3qmdDxTejHmijFTtfqUe8LMngcO\nlfQ54GFJfyec3ZQ8bQen3MaeZvaKpPWBeyStcGaUmZmkSvWjlZ4bOXIkjY2NADQ0NNDU1ERzczOw\n/M2p53Rra2tN17f55nDppc2cdx7cf3/9f58sp1uTC0FiyZPF+1eL6YJY8sQ87e9f+9MtLS2MGzcO\n4KPPy2pUPAVW0jDgF8Bbyb+Fhc3M7u/wxqQxwDvAyUCzmb0qaUNgspkNkzQ6WfnYZPk7gTFmNrVo\nHd26TwLCVdebbw5//jM0NeWdxjnXHWRxCuxYwlXXPzWzw81sspm1JD+pGghJa0laJ3ncD9ifMMTH\nrcDxyWLHJ9shmX+UpL6ShgBbAtM6+kt1dX7HOudcLCr1SSwDmszsjsIMSX/t4PoHAQ9KagWmAn81\ns7uBscB+kuYS+j7GApjZbGAiMBu4AzilKxw2lB5i1kItxnLKIldneaZ0PFN6MeaKMVO1KvVJnN3O\n7A51IpvZc8BKBZPkdNh9y7zmAqDHD0zxyU/C0qXw5JOwww55p3HO9VQdGrtJ0jVmdkKGedJk6AoH\nFzXx3e/C6qvDeeflncQ519Vldj8JSftKWhMg7waipznySL9jnXMuX2luOnQcMEPSVEkXS/q8pP5Z\nB+tKsqo/fvKT8OGHoeRUjRjrop4pHc+UXoy5YsxUrVU2EmZ2nJkNBQ4DXiScCvt61sFcOMvp8MP9\nLCfnXH5W2Sch6VhgL2B7QuPwEPCQmT2Sfbx28/SYPgmAadPg2GNhzhwfy8k5V73M7ich6Q3gWeBK\noCU5Yyk3Pa2RMIMhQ+DWW2H77fNO45zrqjLruAYGAicCawDnS5om6Y8d3VB3lmX9sTMlpxjrop4p\nHc+UXoy5YsxUrTSNxDrApsBmhLvTNbB8DCdXB4V7TPSgAyjnXCTSlJueBB4GHgQeMLMFFV+QsZ5W\nbgIvOTnnOq/aclPZK64lfcnMrjcz/1jKWXHJyRsJ51w9VSo3HSfpTklb1C1NF1WP+mM1YznFWBf1\nTOl4pvRizBVjpmqVbSTM7L+BXwF/lfRDSQOTe1MPkDSgfhEdwIgR8N578NRTeSdxzvUkafokmoAH\nCPeUKL7p0OYZZyuXp8f1SRSccQasuSb8+Md5J3HOdTVZ3E9iDUk/Bq4DjjGzzcxsSPKTSwPR09Vi\n+HDnnOuISn0SMwgd2zuaWUfvI9Gj1Kv+2NGSU4x1Uc+UjmdKL8ZcMWaqVtmzm4DDkpsAuUgUn+W0\n3XZ5p3HO9QRl+yQkXQ1caWZ/L/P8rsD/1Hv48J7cJwEwZQqccALMnu1jOTnn0qv52E2StgO+C+wG\n/AN4BRCwAbAV8Ajh/td1Pd+mpzcSZrDZZnD77bDttnmncc51FTXvuDazmWZ2HLAdcD5wL3APcB6w\nvZmNrHcDEat61h+l0IE9ceKql42xLuqZ0vFM6cWYK8ZM1ao4dpOk7c3sA+Dd5OrriWY21czeT7sB\nSb0lTZd0WzI9QNI9kuZKultSQ9GyZ0p6RtIcSftX/Vt1c36Wk3OuXipeJyHpCuDnwP+Z2beq2oB0\nOrAzsI6ZHSzpImCRmV0kaRTQ38xGSxoOXAvsAmwETAKGmllbyfp6dLkJvOTknOu4LK6TGJM8PzVM\nakwVoTYGPgf8ltCfAXAwMD55PB44NHl8CDDBzJaa2XxgHjCio9vsCfyOdc65eqnUJ3EuoQ/iemBS\nMt1RlxE6v4uPBgaZ2cLk8UJgUPJ4MFA8wuwCwhFF9PKoP6YpOcVYF/VM6Xim9GLMFWOmalW6TgJg\nVzP7RnLl9a0dWbGkg4DXzGy6pOb2ljEzk1SpdtTucyNHjqSxsRGAhoYGmpqaaG4Omyi8OfWcbm1t\nrfv2P/WpZt55B8aNa2HIkPr+vp2Zbm1tjSpPXu/fqqYLYskT87S/f+1Pt7S0MG7cOICPPi+rscqx\nm6pesXQBcCywjHBXu3WBmwl9Ds1m9qqkDYHJZjZM0mgAMxubvP5OYIyZTS1Zb4/vkyg4/XRYZx04\nt5pjPOdcj5LJ7Usl7STpYklTJS2U9Gry+GJJO1Z6rZmdZWabmNkQ4CjgPjM7lnBEcnyy2PHALcnj\nW4GjJPWVNATYEpjW0V+oJymUnJxzLiuVOq5vB74DPAYcTbh96ZDk8ePAGZL+1oFtFb7+jwX2kzQX\n+EwyTTIEyERgNnAHcEpXOWQoPcSsl113hbffhlmz2n8+r1yVeKZ0PFN6MeaKMVO1KvVJnFDUwVzs\nn8nPdZI+nmYjZnY/cH/y+E1g3zLLXQBckGadDnr1Wn6W0zbb5J3GOdcdreo6iX3NbFLh3zrmKsv7\nJFb0yCNw0klhLCfnnCsnkz4JoFnSnkBzValc5nbbrXLJyTnnOmNVF9P1JYzZ1Leai+l6ijzrj8Ul\np1Ix1kU9UzqeKb0Yc8WYqVqruphuDnAOMKfKi+lcHfhZTs65rKyqT+I0M7tc0qlm9rM65irL+yRW\n1tYGm24Kd98Nw4fnncY5F6Msxm7a1MwuByhtICTt3fGILiuVSk7OOdcZlTquWySNktS7MEPSBpL+\nCFyefbSuI4b645FHrnyPiRhylfJM6Xim9GLMFWOmalVqJHYGNgdaJX1W0mmEEWGnEIbWcBHZbTdY\nssRPhXXO1dYqx25KGodLgZeB3c3sxXoEq5DH+yTKOO006N8fxvh5aM65Eln0SfSX9GvgBOBA4Ebg\nDkmfrT6my5Kf5eScq7VK5abHCTf+2dnM7jKz04CvAOdJmlCXdF1ELPXH3XeHxYuXl5xiyVXMM6Xj\nmdKLMVeMmapVqZH4tJldbGbLCjPMrBXYA5iceTLXYb16wRe/6EcTzrna6dD9JCQ9YWY7ZZgnTQbv\nk6jg4Yfh61+Hp57KO4lzLiZZjd200nY6ugFXX4WS09NP553EOdcddLSRuD2TFF1cTPXH4pJTTLkK\nPFM6nim9GHPFmKlalc5u+rmkdYvnmdn3JW0t6d7so7lqHXFEuLCurS3vJM65rq5sn4Sk7wNfBX5g\nZn+S1A8YA3wB+K6Z/bl+MVfI5X0Sq9DWBsl90fnNb2DYsFzjOOciUPM+CTM7n3AHuWMkPQDMAP4D\nbJ9XA+HS6dULJk8ORxR77QXnngsffJB3KudcV7SqPgkjdFavBvQGZpvZu5mn6mJirD/27g3bbdfC\n9Onw+OOw447w0EN5p4pzX3mmdGLMBHHmijFTtSr1SfwAmAT83sx2B/YGDpV0v6RV3lFZ0hqSpkpq\nlTRb0k+S+QMk3SNprqS7JTUUveZMSc9ImiNp/87/em6TTeAvf4Ef/Qi+9CX4xjfCGE/OOZdGpT6J\nK4CzzeztkvkHApeZ2Sor3ZLWMrN3JfUBHgLOAA4GFpnZRZJGAf3NbLSk4cC1hMEDNyI0UEPNrK1k\nnd4nUaXFi2HUKPjb3+BnP4PDDgP5Sc3O9QjV9kl06GK6oo2tYWbvd2D5tYD7gZHATYSruRdK2gBo\nMbNhks4E2szswuQ1dwLnmNmUknV5I9FJDz4IX/sabLUV/PznsPHGeSdyzmUtiwH+zpE0qL3nzOx9\nSRtKqnhLU0m9JLUCC4HJZjYLGGRmC5NFFgKFbQwGFhS9fAHhiCJ6sdYfy+Xae29obYWmptBX8Ytf\nwH/+k2+mPHmmdGLMBHHmijFTtfpUeO4x4DpJfYEngFcIndgbADsBHwA/rbTypFTUJGk94C5J+5Q8\nb5IqHRa0+9zIkSNpbGwEoKGhgaamJpqTcz4Lb049p1tbW3PdfrXT55wDjY0tXHIJ/PGPzVx1FSxa\nlO32W1tbo/n9C9Mxvn8FseSJedrfv/anW1paGDduHMBHn5fVSHM/iU2APYFNk1nPAw+b2YLyr2p3\nPT8A3gNOAprN7FVJGxKOMIZJGg1gZmOT5e8ExpjZ1JL1eLmpxtra4Kqr4Oyzw7hPZ58Na6yRdyrn\nXC3VtU8i1YqlgcAyM1ssaU3gLuBc4L+AN8zswqRhaCjpuB7B8o7rT5S2CN5IZOfll+HUU+HJJ8NF\neIUL8pxzXV8WfRJXSyp7m1JJu0q6psK6NwTuS/okpgK3mdm9wFhgP0lzgc8k05jZbGAiMBu4Azil\nq7QGpYeYsehorsGD4cYb4eKL4dhj4aST4M03881UD54pnRgzQZy5YsxUrUp9EpcB35W0G/APVuyT\n2Ap4hAp9EmY2k9B3UTr/TcKV3O295gLggrThXTYOOQT22Qe+/33YZhu47LJwjYWfLutcz5OmT2J1\nYEdgM0JH8vPAjI6cAltLXm6qr0cfhZNPhs02g1/+MvzrnOt6sig3/UbSYUBfM5tiZteb2UQzm5pX\nA+Hqb/fd4YknYI89YOedw1HFsmWrfp1zrnuoNHbT1UATcLuk+ySNkrRDnXJ1KbHWH2uVq2/fUHp6\n5BG49VbYbbdwnUWemWrJM6UTYyaIM1eMmapVaRTYKWY2xsz2Bo4EXgS+k4zFdLWkI+uW0kVh6FC4\n7z445RTYf/8wxMe7Ptyjc91ah0+BlSTgu8BqyXDideV9EnFYuBBOOw2mToVf/xr22y/vRM65Suo9\ndtOLZrZJh19YA95IxOX228ORxac+BZdcAuuvn3ci51x7sui4nlnuh+XjLTnirT/WI9fnPgdPPQUD\nB8K228Lvfw+V2vAY95VnSifGTBBnrhgzVavSdRIfBw4A3mrnuUeyieO6orXXhksvhWOOCafL/uEP\n8KtfwRZb5J3MOddZle4ncTVwjZk92M5zE8zs6KzDtcfLTXFbuhQuvxwuvBC+9z349rdhtdXyTuWc\ni27spqx4I9E1PPtsuAvea6+FwQN3KTvAi3OuHmreJ+HSi7X+mGeuLbaAu+6C73wHDjooHFG8806c\n+8ozpRNjJogzV4yZquWNhMuMFAYKnDUrDBS47bYwZcqqX+eci4eXm1zdTJoU7lexyy5wxRUwyM+R\nc65uvNzkorfvvjBzJjQ2wnbbwe9+V/l0Wedc/ryRqIFY648x5po2rYWxY+Huu8NpsvvsA3Pn5psp\nxv3kmdKLMVeMmarljYTLRVNT6J849NAwwux558GHH+adyjlXyvskXO6efz4M7fH88+F02d13zzuR\nc92PXyd5yFWSAAAS80lEQVThujQzmDgxDBr4hS/AT34C666bdyrnug/vuM5RrPXHGHOVyySFW6TO\nmhXKTttsA7fckm+mPHmm9GLMFWOmamXaSEjaRNJkSbMkPSXp1GT+AEn3SJor6W5JDUWvOVPSM5Lm\nSNo/y3wuPgMGhJLTH/4Q7lfxhS/Ayy/nncq5nivTcpOkDYANzKxV0trA48ChwAnAIjO7SNIooL+Z\njZY0HLgW2AXYCJgEDDWztqJ1ermph3j/fTj//HAW1I9+FK6x6OXHvs5VJcpyk5m9amatyeN3gKcJ\nH/4HA+OTxcYTGg6AQ4AJZrbUzOYD84ARWWZ08VpjDfjxj2Hy5HBksffeMHt23qmc61nq9r1MUiOw\nIzAVGGRmC5OnFrL8/hSDgQVFL1tAaFSiFmv9McZc1WTadlt46CH48pfh05+GMWPCUUaembLmmdKL\nMVeMmapV6X4SNZOUmm4CvmVmb4c7oAZmZpIq1Y9Wem7kyJE0NjYC0NDQQFNTE83NzcDyN6ee062t\nrbluvytNt7a2Vv36U06B9ddv4Yor4Prrm/nNb6CtrfP5Ynz/CmLJE/O0v3/tT7e0tDBu3DiAjz4v\nq5H5KbCSVgP+CtxhZpcn8+YAzWb2qqQNgclmNkzSaAAzG5ssdycwxsymFq3P+yQcf/4zfPOb4c54\nF14I/fvnnci5uEXZJ6FwyPA7YHahgUjcChyfPD4euKVo/lGS+koaAmwJTMsyo+uaDjssnC7bp084\nXfaGG3wcKOeykHWfxJ7AV4B9JE1Pfg4AxgL7SZoLfCaZxsxmAxOB2cAdwCld4bCh9BAzFjHmqmWm\n9daDX/4yNBBjxsDBB8OLL+abqVY8U3ox5ooxU7Uy7ZMws4co3xDtW+Y1FwAXZBbKdTt77gnTp4ey\n0447wg9/CP/7v9C7d97JnOv6fFgO163MmQNf+xp88EG4KG/77fNO5FwcouyTcK7ehg2DlhY46ST4\n7GfhzDPhvffyTuVc1+WNRA3EWn+MMVc9MvXqBSefDE8+Cf/8Z7jB0b335pupozxTejHmijFTtbyR\ncN3WhhvC9dfDZZfBCSfAyJHwxht5p3Kua/E+CdcjvP02nH12aDQuuQSOOSaMPOtcT+H3k3AuhWnT\nQilqww3hyithyJC8EzlXH95xnaNY648x5so704gR8Nhj0NwMu+wCP/0p3HNPvpnak/d+ak+MmSDO\nXDFmqlZdxm5yLiarrQajR8Phh4frKc46CzbbDIYOhS23DP8Wfjbe2Icndz2bl5tcj/fhh+EsqGee\ngblzV/x56y34xCdWbjyGDoWBA71fw3Ud3ifhXAbeeQfmzVu58Zg7N4wV1V7jseWWsM46eSd3bkXe\nSOSopaXlo6F6YxJjru6U6Y032m885s2Ddddtv/HYYgtYffXsMmUpxkwQZ64YM1XbSHifhHNV+tjH\nYPfdw0+xtrZwX+7ihuP++0M56/nnYfDglRuPoUNh0019vCkXHz+ScK6Oli6F+fOXNx7F/SCvvw6b\nb75y4zF0KAwa5P0frnO83ORcF/fuuyv2fxQ3IB980H7jseWW0NCQd3LXFfh1EjmK9ZzoGHN5pvLW\nWiuMWnv44bDHHi1ccw08/HA4wpg/H37xCzjwwNBhfttt8PWvh1N0Bw2CvfaCE0+EsWPh5pvhqadq\nP7BhLPupVIy5YsxULe+TcK4LGDAAdt01/BQzg1deWfGoY/z48O9zz4UGpLQDfejQcF1IH//rdyl4\nucm5bmrZMnjhhfbPwHr1VWhsbP8MrMGDvf+jO/I+Cedcau+/D88+u3Lj8cwz4dqQ0n6PoUPDRYUf\n+5g3IF1VlI2EpKuB/wZeM7PtknkDgOuBzYD5wJFmtjh57kzgROA/wKlmdnc764yukYjxnGiIM5dn\nSifPTEuWrHz1+TPPwNNPt/Cf/zSz0UahL2TjjWn38aBB9T2V19+/dGK9TuIa4P8Bvy+aNxq4x8wu\nkjQqmR4taTjwJWA4sBEwSdJQM2vLOKNzrsh668EnPxl+irW0hEERX3oJFiwIPy+9FG4ZO2nS8vlv\nvhkainKNyMYbh5JWmosKXf4yLzdJagRuKzqSmAN82swWStoAaDGzYclRRJuZXZgsdydwjplNKVlf\ndEcSzrnlPvwwdKYXGpHiBqXw+JVXwqm75RqSwr8+vEntxHok0Z5BZrYwebwQGJQ8HgwUNwgLCEcU\nzrkupG/fcPbUZpuVX6atDV57beXG4777VmxU+vQpfzRSeOz9JNnK9SQ4MzNJlQ4LusQhQ4z1R4gz\nl2dKp7tn6tULNtgg/JSWtQrMYPHiFRuSl14K9wO55Zbl8955p4VNNmmuWN4aNKi+p/zG+P5VK49G\nYqGkDczsVUkbAq8l818CNilabuNk3kpGjhxJY2MjAA0NDTQ1NX30hhQuYqnndGtra67b70rTra2t\nUeWJ9f0riCVPHtMSzJgRpg84oPzy06a1cthhzSxYEG4gtWgRvPtuM/fdFzrbX38d3n67mUGDYN11\nWxg4EHbcMTQqS5a0sP768PnPNzN4MEyZUpv8BXnuv5aWFsaNGwfw0edlNfLok7gIeMPMLpQ0Gmgw\ns0LH9bXACJKOa+ATpR0Q3ifhnOuopUuX95OU6yt55ZUweu+qylvrrpv3b1OdWE+BnQB8GhhI6H/4\nIfAXYCKwKSufAnsW4RTYZcC3zOyudtbpjYRzruba2sIQKJU63BcsCKf3lnawl3a69+8f7oAYkygb\niSzE2Ei0RFp/jDGXZ0rHM6VXz1xm4TqSSg3JSy/B4sUt9OnTTL9+sPbaK/6kmVc8vdFG8PGPdz57\nVzq7yTnnuiQpnLrb0ADbblt+ucmTw31G3nkH/v3v8G/hp73pt96CF19sf5njjoPTT6/f71jKjySc\nc64H8KHCnXPO1Zw3EjVQetpbLGLM5ZnS8UzpxZgrxkzV8kbCOedcWd4n4ZxzPYD3STjnnKs5byRq\nINb6Y4y5PFM6nim9GHPFmKla3kg455wry/sknHOuB/A+CeecczXnjUQNxFp/jDGXZ0rHM6UXY64Y\nM1XLGwnnnHNleZ+Ec871AN4n4Zxzrua8kaiBWOuPMebyTOl4pvRizBVjpmp5I+Gcc64s75Nwzrke\nwPsknHPO1Vx0jYSkAyTNkfSMpFF550kj1vpjjLk8UzqeKb0Yc8WYqVpRNRKSegM/Bw4AhgNHS9o6\n31Sr1tramneEdsWYyzOl45nSizFXjJmqFVUjAYwA5pnZfDNbClwHHJJzplVavHhx3hHaFWMuz5SO\nZ0ovxlwxZqpWbI3ERsCLRdMLknnOOedyEFsj0SVPW5o/f37eEdoVYy7PlI5nSi/GXDFmqlZUp8BK\n2g04x8wOSKbPBNrM7MKiZeIJ7JxzXUg1p8DG1kj0Af4BfBZ4GZgGHG1mT+cazDnneqg+eQcoZmbL\nJP0fcBfQG/idNxDOOZefqI4knHPOxSW2juuPpLmoTtLPkudnSNox70yShkl6VNL7kr6TdZ6Umb6c\n7J8nJT0safsIMh2SZJou6XFJn8k6U5pcRcvtImmZpC/knUlSs6Qlyb6aLunsvDMV5Zou6SlJLXln\nknRG0T6ambx/DTlnGijpTkmtyX4amWWeDuTqL+nPyd/gVEnbVFyhmUX3Qyg1zQMagdWAVmDrkmU+\nB9yePN4VmBJBpvWBTwLnAd+JZD/tDqyXPD4gkv3Ur+jxdoRrY3LfV0XL3Qf8Ffhi3pmAZuDWrPdP\nBzM1ALOAjZPpgXlnKln+IGBS3pmAc4CfFPYR8AbQJ4JcFwM/SB5vtap9FeuRRJqL6g4GxgOY2VSg\nQdKgPDOZ2etm9hiwNMMcHc30qJktSSanAhtHkOnfRZNrA4syzpQqV+KbwI3A6xFl6vAZKRlnOga4\nycwWAJhZ1u9fRy+yPQaYEEGmV4B1k8frAm+Y2bIIcm0NTAYws38AjZLWL7fCWBuJNBfVtbdMlh+A\nMV7o19FMXwVuzzRRykySDpX0NHAHcGrGmVLlkrQR4Q/qymRW1h12afaVAXskpYHbJQ2PINOWwABJ\nkyU9JunYCDIBIGkt4L+AmyLIdBWwjaSXgRnAtzLOlDbXDOALAJJGAJtR4bMzqrObiqT94yz9hpXl\nH3WMPfypM0naBzgR2DO7OEDKTGZ2C3CLpL2BPxAOe7OUJtflwGgzM0ki+2/waTI9AWxiZu9KOhC4\nBRiac6bVgJ0Ip6qvBTwqaYqZPZNjpoLPAw+ZWdbjYqTJdBbQambNkrYA7pG0g5m9nXOuscAVkqYD\nM4HpwH/KLRxrI/ESsEnR9CaEFrHSMhsn8/LMVG+pMiWd1VcBB5jZWzFkKjCzByX1kfQxM3sj51w7\nA9eF9oGBwIGSlprZrXllKv5AMbM7JP1S0gAzezOvTIRvqovM7D3gPUkPADsAWTUSHfk/dRTZl5og\nXaY9gPMBzOxZSc8Rvgw9lmeu5P/UiYXpJNc/y64xy06UTnS+9AGeJXS+9GXVHde7kX2H7CozFS17\nDvXpuE6znzYldGTtFtF7twXLT7/eCXg2hlwly18DfCHvTMCgon01ApgfQaZhwCRCJ+lahG+jw/N+\n74D1CJ3Da8bw/wm4FBhT9D4uAAZEkGs9oG/y+GRgXMV1Zr0zO/HLHki4+noecGYy7+vA14uW+Xny\n/Axgp7wzARsQvmUtAd4CXgDWzjnTb5M/nOnJz7QI9tP3gKeSPA8Cu8Tyf6po2cwbiZT76n+TfdUK\nPEIdGvuUf3tnEM5wmgmcGkmm44Fr6/F/KeV7NxC4Lfl8mgkcE0mu3ZPn5xBO0liv0vr8YjrnnHNl\nxXp2k3POuQh4I+Gcc64sbyScc86V5Y2Ec865sryRcM45V5Y3Es4558ryRsLVhaRNJP1TUv9kun8y\nvWnJco2SZuaQ7xBJW1f52tWSIc83q1X2ZCju22qxrpTbeyf5d7CkG8os0yJp53plcnHwRsLVhZm9\nSBg4b2wyayzwazN7Ib9UKzgM6NDgeZJ6Jw/3Ah6qeaL2t5nVUDoGYGYvm9kRFZbxC6t6GG8kXD1d\nBuwm6TTCuDY/rbSwpM0lPSFpZ0lrSZooaZakmyVNKf1Wm9ws6Kbk8SGS3k3GhVpD0rPJ/JMlTUtu\nBHOjpDUl7UEYGO7i5KY1QyRtIemOZJTTByRtlbx+nKRfSZoCXJhs+gDCaLaqNnvymgMkPS3pcUKj\nVZh/jqQ/SHoI+L2k+yXtUPT8Q5K2K1nXNskNZaYnI8hukcw/XeGmPDMlrTQqafGRXLJvrpM0W9LN\nwJpkP+ihi0ysA/y5bsjCPcy/R/hA3c/Myo48mXwoTwCON7OZks4gjMe/jcKdtFpZ+VvtdKApebw3\nYSiEEYRRS6ck828ys6uSbfwY+KqZ/VzSrcBtZnZz8ty9hGEM5knaFfglYdRTgMHA7rZ8uIJmYAxh\nWJaqsktaA/gNsI+FweCuL1lmGLCXmX0g6ThgJPBtSUOB1c2stMz1deAKM7s2OfrokzRMI5N90guY\nKqnFzGa09x4A3wDeMbPhSSP0RGlu1/35kYSrtwOBlwl3pCvn44QhsY8p+vDbk3ADFcxsFvBk6Yss\n3NDlWUnDgF0IA6x9ilAOejBZbDtJD0p6EvgyK5aYBCBpbcL4Njckwyn/iqQBIHxI3lBoIBTuQfGm\nmb3fmeyERuA5M3s2mf4jy7+1G+HudB8k0zcCByUf/icSxpkq9ShwVtIoNyb59gJuNrP3LNz46eZk\n/5Szd5KD5HdpL7fr5ryRcHUjqQnYl/AB/G1JG5RZdDHwPOFDaoVVpNjMA4QRgpcC9ybrKG4kxgGn\nmNn2wLmEEkpB4VtyL2Cxme1Y9FN8H+B3ix4fANxZg+yl39BLl/9om2b2LnAPcChwBPCnlVZmNoFQ\nQnsPuF3hfiJWsl61s91SXl7q4byRcHUhSYSO628lndgXU75P4kPCnbOOk3R0Mu9h4MhkXcMpfyTy\nIHAa8IiF22p+DNgq+QYP4Xapr0paDfgKyz8k3ya51aSZ/Qt4TtLhhewK9+Roz38RymedzV64jeTm\nyfTRRc+190H9W+BnhFF9l5Q+KWmImT1nZv8P+EuyzQeBQ5O+hn6ERubB0tcWeYBwK1AkbQuU2weu\nG/M+CVcvJxPuhXBvMv1L4ARJe5tZ6QeVWbgT20GEu3m9nSw/XtIswhDHswhDspeaRij5PJBMzyCM\n5V/wA8K9vl9P/l07mX8dcJWkbwKHE0pRV0o6m9CnMYHl5ZZCqak38Akzm9vZ7Gb2vqSvAX+T9C7h\nw7tf0fasZPknJC2h/VITwJEKtxVdSrjX8vlmtljSuGQfAVxV1B9RvP7C4yuBayTNBp4m25vluEj5\nUOGuS5DUC1gt6bjdglBuGWrZ31i+UqY9gS+b2SmrWK7m2SUNBiabWda3fXU9nB9JuK6iH3BfUiYS\n8I08GwgAM3uYUEpalZpmT85uOg/4drXrcC4tP5JwzjlXlndcO+ecK8sbCeecc2V5I+Gcc64sbySc\nc86V5Y2Ec865sryRcM45V9b/B77dKwo9Y8ZFAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7a843c8>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time required for drying: 1.96 h\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 66
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |