diff options
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb | 180 |
1 files changed, 11 insertions, 169 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb index 7d76afa3..2944362a 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb @@ -46,10 +46,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 1\"\n", @@ -90,18 +86,7 @@ "print\"Reynolds no. is\"\n", "ReL=(4*mdotc)/(mu)\n", "print\"Therefore the flow is laminar and hence the use of the equation is justified\"\n", - "print\"ReL=\",ReL\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"ReL=\",ReL" ] }, { @@ -137,10 +122,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 2\"\n", @@ -178,19 +159,7 @@ "#Re is reynolds number\n", "print\"Reynolds number is\"\n", "Re=(4*mdotc)/(mu*P)\n", - "print\"Re=\",Re\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Re=\",Re" ] }, { @@ -228,10 +197,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 3\"\n", @@ -278,29 +243,7 @@ "#v is the average flow velocity\n", "print\"Hence the average flow velocity at the trailing edge in m/s is\"\n", "v=(mdotc)/(rho*delta*B)\n", - "print\"v=\",v\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"v=\",v" ] }, { @@ -334,10 +277,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 4\"\n", @@ -373,29 +312,7 @@ "#The rate of condensation is given by mdotc=(hbar*(pi*D*L)*(Tg-Tw))/hfg\n", "print\"The total rate of condensation in kg/hr\"\n", "mdotc=((hbar*(math.pi*D*L)*(Tg-Tw))/hfg)*3600\n", - "print\"mdotc=\",mdotc\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"mdotc=\",mdotc" ] }, { @@ -423,10 +340,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 5\"\n", @@ -445,15 +358,7 @@ "#h is heat transfer coefficient\n", "print\"Heat transfer coefficient in W/m**2 is\"\n", "h=(E*I)/(A*(T1-T2))\n", - "print\"h=\",h\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"h=\",h" ] }, { @@ -483,10 +388,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 6\"\n", @@ -513,23 +414,7 @@ "#E is the burn out voltage\n", "print\"The burn out voltage in Volts is \"\n", "E=(qc*A)/I\n", - "print\"E=\",E\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"E=\",E" ] }, { @@ -558,10 +443,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 7\"\n", @@ -587,20 +468,7 @@ "print\"Heat flux q in W/m**2 is\"\n", "q=(mul*hfg)*(((rhol-rhov)*g)/sigma)**(1/2)*((cpl*(T1-T2))/(csf*hfg*Prl**n))**3 \n", "print\"The peak heat flux for water at one atmospheric pressure is qc=1.24*10**6(found in example 9.6).Since q<qc,The regime of boiling is nucleate.\"\n", - "print\"q=\",q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"q=\",q" ] }, { @@ -612,7 +480,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 21, "metadata": { "collapsed": false }, @@ -627,15 +495,11 @@ "The surface temprature in °C is\n", "Tw= 120.0\n", "The value of the coefficient csf is \n", - "csf= 0.0151329179422\n" + "csf= 0.0214423761571\n" ] } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 8\"\n", @@ -676,30 +540,8 @@ "#Now we use following equation to determine csf,q=(mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2)*((cpl*(Tw-T))/(csf*hfg*Prl**n))**3 \n", "#Manipulating above equation to find csf we get csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2))**(1/3))*hfg*Prl**n))\n", "print\"The value of the coefficient csf is \"\n", - "csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1.0/2)))**(1.0/3))*hfg*Prl**n))#[NOTE:The answer in the book is incorrect.(Calcultion mistake)]\n", - "print\"csf=\",csf\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2)))**(1/3))*hfg*Prl**n))#[NOTE:The answer in the book is incorrect.(Calcultion mistake)]\n", + "print\"csf=\",csf" ] } ], |