summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb180
1 files changed, 11 insertions, 169 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb
index 7d76afa3..2944362a 100644
--- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb
@@ -46,10 +46,6 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 1\"\n",
@@ -90,18 +86,7 @@
"print\"Reynolds no. is\"\n",
"ReL=(4*mdotc)/(mu)\n",
"print\"Therefore the flow is laminar and hence the use of the equation is justified\"\n",
- "print\"ReL=\",ReL\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"ReL=\",ReL"
]
},
{
@@ -137,10 +122,6 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 2\"\n",
@@ -178,19 +159,7 @@
"#Re is reynolds number\n",
"print\"Reynolds number is\"\n",
"Re=(4*mdotc)/(mu*P)\n",
- "print\"Re=\",Re\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"Re=\",Re"
]
},
{
@@ -228,10 +197,6 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 3\"\n",
@@ -278,29 +243,7 @@
"#v is the average flow velocity\n",
"print\"Hence the average flow velocity at the trailing edge in m/s is\"\n",
"v=(mdotc)/(rho*delta*B)\n",
- "print\"v=\",v\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"v=\",v"
]
},
{
@@ -334,10 +277,6 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 4\"\n",
@@ -373,29 +312,7 @@
"#The rate of condensation is given by mdotc=(hbar*(pi*D*L)*(Tg-Tw))/hfg\n",
"print\"The total rate of condensation in kg/hr\"\n",
"mdotc=((hbar*(math.pi*D*L)*(Tg-Tw))/hfg)*3600\n",
- "print\"mdotc=\",mdotc\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"mdotc=\",mdotc"
]
},
{
@@ -423,10 +340,6 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 5\"\n",
@@ -445,15 +358,7 @@
"#h is heat transfer coefficient\n",
"print\"Heat transfer coefficient in W/m**2 is\"\n",
"h=(E*I)/(A*(T1-T2))\n",
- "print\"h=\",h\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"h=\",h"
]
},
{
@@ -483,10 +388,6 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 6\"\n",
@@ -513,23 +414,7 @@
"#E is the burn out voltage\n",
"print\"The burn out voltage in Volts is \"\n",
"E=(qc*A)/I\n",
- "print\"E=\",E\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"E=\",E"
]
},
{
@@ -558,10 +443,6 @@
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 7\"\n",
@@ -587,20 +468,7 @@
"print\"Heat flux q in W/m**2 is\"\n",
"q=(mul*hfg)*(((rhol-rhov)*g)/sigma)**(1/2)*((cpl*(T1-T2))/(csf*hfg*Prl**n))**3 \n",
"print\"The peak heat flux for water at one atmospheric pressure is qc=1.24*10**6(found in example 9.6).Since q<qc,The regime of boiling is nucleate.\"\n",
- "print\"q=\",q\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "print\"q=\",q"
]
},
{
@@ -612,7 +480,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 21,
"metadata": {
"collapsed": false
},
@@ -627,15 +495,11 @@
"The surface temprature in °C is\n",
"Tw= 120.0\n",
"The value of the coefficient csf is \n",
- "csf= 0.0151329179422\n"
+ "csf= 0.0214423761571\n"
]
}
],
"source": [
- " \n",
- " \n",
- " \n",
- " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 8\"\n",
@@ -676,30 +540,8 @@
"#Now we use following equation to determine csf,q=(mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2)*((cpl*(Tw-T))/(csf*hfg*Prl**n))**3 \n",
"#Manipulating above equation to find csf we get csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2))**(1/3))*hfg*Prl**n))\n",
"print\"The value of the coefficient csf is \"\n",
- "csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1.0/2)))**(1.0/3))*hfg*Prl**n))#[NOTE:The answer in the book is incorrect.(Calcultion mistake)]\n",
- "print\"csf=\",csf\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
+ "csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2)))**(1/3))*hfg*Prl**n))#[NOTE:The answer in the book is incorrect.(Calcultion mistake)]\n",
+ "print\"csf=\",csf"
]
}
],