diff options
Diffstat (limited to 'Introduction_to_Electric_Drives_by_J._S._Katre/chapter1.ipynb')
-rwxr-xr-x | Introduction_to_Electric_Drives_by_J._S._Katre/chapter1.ipynb | 249 |
1 files changed, 0 insertions, 249 deletions
diff --git a/Introduction_to_Electric_Drives_by_J._S._Katre/chapter1.ipynb b/Introduction_to_Electric_Drives_by_J._S._Katre/chapter1.ipynb deleted file mode 100755 index 07476ab0..00000000 --- a/Introduction_to_Electric_Drives_by_J._S._Katre/chapter1.ipynb +++ /dev/null @@ -1,249 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:1ede18939970cf3dcd5883a4a0c1fb987d10a2324079f20686384266546536c0" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter1, Thyristors" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.11.1 : page 1-29 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "#peak reverse recovery current\n", - "#given data :\n", - "itt=10 # time in micro seconds\n", - "qtt=150 #charge in micro colums\n", - "prrc=((2*qtt)/itt) #peak reverse recovery current in amperes\n", - "print \"Peak reverse recovery current = %0.f A\" %prrc" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Peak reverse recovery current = 30 A\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Examples 1.18.1: page 1-44" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "from math import pi, sqrt, cos\n", - "#voltage of the capacitor\n", - "r=10 #in ohms\n", - "l=10 #/inductance in mH\n", - "c=10 #capacitance in micro farads\n", - "v=100 #in volts\n", - "t=((pi)/(sqrt((1/(l*10**-3*c*10**-6))-(r**2/(4*(l*10**-3)**2))))) # time in seconds\n", - "vc= v*(1-cos(t/(sqrt(l*10**-3*c*10**-6))*pi/180)) #in volts\n", - "print \"The capacitor voltage = %0.2f V\" %vc\n", - "#answer is wrong in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The capacitor voltage = 0.15 V\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.18.2: page 1-45" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "from math import pi, sqrt, cos\n", - "#voltage of the capacitor\n", - "r=15 #in ohms\n", - "l=12 #/inductance in mH\n", - "c=8 #capacitance in micro farads\n", - "v=100 #in volts\n", - "t=((pi)/(sqrt((1/(l*10**-3*c*10**-6))-(r**2/(4*(l*10**-3)**2))))) # time in seconds\n", - "vc= v*(1-cos(t/(sqrt(l*10**-3*c*10**-6))*pi/180)) #in volts\n", - "print \"The capacitor voltage = %0.2f V\" %vc\n", - "#this question is not solved in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The capacitor voltage = 0.16 V\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.20.1: page 1-52" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "#Turn Off Time\n", - "#given data :\n", - "Vs=200 #in volts\n", - "R1=10 # in ohm\n", - "R2=R1 \n", - "C=5 # in micro-farad\n", - "Tc=(R1*C)/1.44 \n", - "print \"The Circuit Turn Off Time, Tc = %0.2f micro-sec\" %Tc" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Circuit Turn Off Time, Tc = 34.72 micro-sec\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.20.2: page 1-52" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "#Peak Current and turn off time\n", - "#given data :\n", - "Vs=200 #in volts\n", - "R1=10 # in ohm\n", - "R2=R1 \n", - "Vc=200 #in volts\n", - "C=10 # in micro-farad\n", - "I1=Vs/R1 \n", - "I2=(Vs+Vc)/R2 \n", - "It1=I1+I2 \n", - "print \"Peak Current, It1 = %0.2f A \" %It1\n", - "Tc=(R1*C)/1.44 \n", - "print \"The Circuit Turn Off Time, Tc = %0.2f micro-sec \" %Tc" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Peak Current, It1 = 60.00 A \n", - "The Circuit Turn Off Time, Tc = 69.44 micro-sec \n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.21.1: page 1-59" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "from math import pi\n", - "#L and C\n", - "#given data :\n", - "V=100 # in volts\n", - "Irm=40 # in A\n", - "tq=40 # in micro-sec\n", - "Del_t=(50/100)*tq # in micro-sec\n", - "C=(Irm*(tq+Del_t))/V \n", - "print \"Capacitance, C = %0.f micro-farad \" %C\n", - "L_min=(V/Irm)**2*C \n", - "print \"Minimum inductance, L_min = %0.f micro-Henry\" %L_min\n", - "T=2.5 # assume one cycle period in ms\n", - "L_max=((0.01*(T*10**-3)**2)/(pi**2*C*10**-6))*10**6 \n", - "print \"Maximum inductance, L_max = %0.2f micro-Henry \" %L_max" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Capacitance, C = 24 micro-farad \n", - "Minimum inductance, L_min = 150 micro-Henry\n", - "Maximum inductance, L_max = 263.86 micro-Henry \n" - ] - } - ], - "prompt_number": 6 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |