diff options
Diffstat (limited to 'Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb')
-rw-r--r-- | Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb | 580 |
1 files changed, 580 insertions, 0 deletions
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb new file mode 100644 index 00000000..c35a6a24 --- /dev/null +++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb @@ -0,0 +1,580 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8 - Refrigeration and liquifaction processes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.1 Page: 297" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.1 - Page: 297\n", + "\n", + "\n", + "The coeffecient of performance of the cycle is 7.91\n", + "\n", + "The power required is 3.79 kW\n", + "\n", + "The rate of heat rejection in the room is 33.79 kW\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "print \"Example: 8.1 - Page: 297\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "Tl = 273 - 4## [K]\n", + "Th = 273 + 30## [K]\n", + "Ql = 30## [kW]\n", + "#*************\n", + "\n", + "# Solution (a)\n", + "COP = Tl/(Th - Tl)#\n", + "print \"The coeffecient of performance of the cycle is %.2f\\n\"%(COP)\n", + "\n", + "# Solution (b)\n", + "Wnet = Ql/COP## [kW]\n", + "print \"The power required is %.2f kW\\n\"%(Wnet)\n", + "\n", + "# Solution (c)\n", + "Qh = Wnet + Ql## [kW]\n", + "print \"The rate of heat rejection in the room is %.2f kW\"%(Qh)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.2 Page: 298" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.2 - Page: 298\n", + "\n", + "\n", + "The power consumption is 0.735 kW\n", + "\n", + "Cooling Effect produced is 2.862 kW\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 8.2 - Page: 298\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "Tl = -10 + 273## [K]\n", + "Th = 45 + 273## [K]\n", + "Ql = 1## [ton]\n", + "#*************\n", + "\n", + "# Solution (a)\n", + "COP = Tl/(Th - Tl)#\n", + "Wnet = Ql*3.516/COP## [kW]\n", + "print \"The power consumption is %.3f kW\\n\"%(Wnet)\n", + "\n", + "# Solution (b)\n", + "Tl = -20 + 273## [K]\n", + "Th = 45 + 273## [K]\n", + "COP = Tl/(Th - Tl)#\n", + "Ql = Wnet*COP## [kW]\n", + "print \"Cooling Effect produced is %.3f kW\\n\"%(Ql)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.3 Page: 298" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.3 - Page: 298\n", + "\n", + "\n", + "Increase in percentage of work output is 22.97 %\n" + ] + } + ], + "source": [ + "print \"Example: 8.3 - Page: 298\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "# From Example 8.2:\n", + "\n", + "# For refrigerated space:\n", + "# Wnet = Ql/4.78 = 0.209*Ql\n", + "\n", + "# For freezer box.\n", + "# Wnet = Ql/3.89 = 0.257*Ql\n", + "\n", + "percent = ((0.257 - 0.209)/0.209)*100#\n", + "print \"Increase in percentage of work output is %.2f %%\"%(percent)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.4 Page: 299" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.4 - Page: 299\n", + "\n", + "\n", + "Coeffecient of performance of Carnot Heat Pump is 12.38\n", + "\n", + "Power input can be estimated as 2.02 kW\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 8.4 - Page: 299\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "Th = 273 + 24## [K]\n", + "Tl = 0 + 273## [K]\n", + "Qh = 25## [kW]\n", + "#*************\n", + "\n", + "COP = Th/(Th - Tl)#\n", + "Wnet = Qh/COP## [kW]\n", + "print \"Coeffecient of performance of Carnot Heat Pump is %.2f\\n\"%(COP)#\n", + "print \"Power input can be estimated as %.2f kW\\n\"%(Wnet)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.5 Page: 299" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.5 - Page: 299\n", + "\n", + "\n", + "Minimum Power input required is 1.669 kW\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 8.5 - Page: 299\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "Tl = -2 + 273## [K]\n", + "Th = 20 + 273## [K]\n", + "Qh = 80000## [kJ/h]\n", + "#*************\n", + "\n", + "Ql = Qh*Tl/Th## [kJ/h]\n", + "Wnet = Qh - Ql## [kJ/h]\n", + "print \"Minimum Power input required is %.3f kW\\n\"%(Wnet/3600)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.6 Page: 303" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.6 - Page: 303\n", + "\n", + "\n", + "Enthalpy of saturated vapour is 6.65\n", + "\n", + "Refrigerating Effect is 113 kJ/kg\n", + "\n", + "The COP of an ideal Carnot refrigerator is 6.83\n", + "\n", + "Work done by the compression is 17.00 kJ/kg\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 8.6 - Page: 303\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "Tl = 273## [K]\n", + "Th = 313## [K]\n", + "H1 = 187## [Enthalpy of saturated vapour at 273 K, kJ/kg]\n", + "H3 = 74## [Enthalpy of saturated liquid at 313 K,kJ/kg]\n", + "H4 = H3## [kJ/kg]\n", + "H2 = 204## [Enthalpy of Supersaturated Vapour at 273 K, kJ/kg]\n", + "#****************\n", + "\n", + "# Solution (i)\n", + "# COP = Ql/Wnet#\n", + "COP = ((H1 - H4)/(H2 - H1))#\n", + "print \"Enthalpy of saturated vapour is %.2f\\n\"%(COP)\n", + "\n", + "# Solution (ii)\n", + "Ref_Effect = H1 - H4## [kJ/kg]\n", + "print \"Refrigerating Effect is %d kJ/kg\\n\"%(Ref_Effect)\n", + "\n", + "# Solution (iii)\n", + "COP = Tl/(Th - Tl)#\n", + "print \"The COP of an ideal Carnot refrigerator is %.2f\\n\"%(COP)\n", + "\n", + "# Solution (iv)\n", + "W = H2 - H1## [kJ/kg]\n", + "print \"Work done by the compression is %.2f kJ/kg\\n\"%(W)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.7 Page: 304" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.7 - Page: 304\n", + "\n", + "\n", + "Amount of heat removed from cold space is 9.18 kW\n", + "\n", + "THe power input required is 1.92 kW\n", + "\n", + "COP of refrigeration of cycle is 4.77\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 8.7 - Page: 304\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "P1 = 0.18## [MPa]\n", + "T1 = -10 + 273## [K]\n", + "mdot = 0.06## [kg/s]\n", + "P2 = 1## [MPa]\n", + "T2 = 45 + 273## [K]\n", + "T = 273 + 29## [K]\n", + "P = 0.75## [MPa]\n", + "H1 = 245.16## [Enthalpy of superheated vapour at -10 OC & 0.18 MPa, kJ/kg]\n", + "H2 = 277.2## [Enthalpy of superheated vapour at 45 OC & 1 MPa, kJ/kg]\n", + "H3 = 92.22## [Enthalpy of saturated liquid at 29 OC & 0.75 MPa, kJ/kg]\n", + "H4 = H3## [kJ/kg]\n", + "#*************\n", + "\n", + "# Solution (a)\n", + "Ql = mdot*(H1 - H4)## [kW]\n", + "print \"Amount of heat removed from cold space is %.2f kW\\n\"%(Ql)\n", + "\n", + "# Solution (b)\n", + "Wnet = mdot*(H2 - H1)## [kW]\n", + "print \"THe power input required is %.2f kW\\n\"%(Wnet)\n", + "\n", + "# Solution (c)\n", + "COP = Ql/Wnet#\n", + "print \"COP of refrigeration of cycle is %.2f\\n\"%(COP)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.8 Page: 305" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.8 - Page: 305\n", + "\n", + "\n", + "Mass flow rate of the refrigerant is 0.1546 kg/s\n", + "\n", + "Power consumption in the compression is 4.57 kW\n", + "\n", + "The amount of heat rejected in the condenser is 22.15 kW\n", + "\n", + "Relative COP is 0.78\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 8.8 - Page: 305\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "Ql = 5## [tons]\n", + "Tl = -10 + 273## [K]\n", + "Th = 35 + 273## [K]\n", + "eta = 0.85#\n", + "H1 = 183.2## [Enthalpy of saturated vapour at 263 K, kJ/kg]\n", + "H2 = 208.3## [Enthalpy of superheated vapour, kJ/kg]\n", + "H3 = 69.5## [Enthalpy of saturated vapour at 308 K, kJ/kg]\n", + "H4 = H3## [kJ/kg]\n", + "#***************\n", + "\n", + "# Solution (a)\n", + "# Mass flow rate:\n", + "Ql = Ql*3.516## [kW]\n", + "mdot = Ql/(H1 - H4)## [kW]\n", + "print \"Mass flow rate of the refrigerant is %.4f kg/s\\n\"%(mdot)\n", + "\n", + "# Solution (b)\n", + "W = H2 - H1## [kJ/kg]\n", + "Wnet = W*mdot/eta## [kW]\n", + "print \"Power consumption in the compression is %.2f kW\\n\"%(Wnet)\n", + "\n", + "# Solution (c)\n", + "Qh = Ql + Wnet## [kW]\n", + "print \"The amount of heat rejected in the condenser is %.2f kW\\n\"%(Qh)\n", + "\n", + "# Solution (d)\n", + "COP_VapourCompression = (H1 - H4)/(H2 - H1)#\n", + "COP_Carnot = Tl/(Th - Tl)#\n", + "COP_relative = COP_VapourCompression/COP_Carnot#\n", + "print \"Relative COP is %.2f\\n\"%(COP_relative)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.9 Page: 308" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.9 - Page: 308\n", + "\n", + "\n", + "Claim is Valid and reasonable\n" + ] + } + ], + "source": [ + "print \"Example: 8.9 - Page: 308\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "Th = 273 + 125## [K]\n", + "Tl = 273 - 5## [K]\n", + "Ts = 273 + 28## [K]\n", + "COP = 2#\n", + "#*************\n", + "\n", + "COP_absorption = (Tl/(Ts - Tl))*((Th - Ts)/Th)#\n", + "if ((COP - 0.1) < COP_absorption) or ((COP + 0.1) > COP_absorption):\n", + " print \"Claim is Valid and reasonable\"\n", + "else:\n", + " print \"Claim is not Valid\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 8.10 Page: 313" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 8.10 - Page: 313\n", + "\n", + "\n", + "COP of Air Refrigeration System is 2.06\n", + "\n", + "Mass flow rate of the refrigerant is 1279.07 kg/h\n", + "\n", + "The work of Compression is 26.13 kW\n", + "\n", + "The work of expansion is 17.58 kW\n", + "\n", + "Net work of the system is 8.55 kW\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 8.10 - Page: 313\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data******#\n", + "Q = 5## [tons]\n", + "T1 = 253## [Temperature of the working fluid leaving the evaporator, K]\n", + "T2 = 303## [Temperature of the working fluid leaving the evaporator, K]\n", + "T3 = 303## [K]\n", + "Pressure_Ratio = 4#\n", + "C = 1.008## [kJ/kg]\n", + "gama = 1.4#\n", + "#**************\n", + "\n", + "# Solution (a)\n", + "T2 = T1*((Pressure_Ratio)**((gama - 1)/gama))## [K]\n", + "T2 = T1*(Pressure_Ratio)**((gama - 1)/gama)## [K]\n", + "T4 = T3/((Pressure_Ratio)**((gama - 1)/gama))## [K]\n", + "COP = T1/(T2 - T1)#\n", + "print \"COP of Air Refrigeration System is %.2f\\n\"%(COP)\n", + "\n", + "# Solution (b)\n", + "mdot = Q*12660/(C*(T1 - T4))## [kg/h]\n", + "print \"Mass flow rate of the refrigerant is %.2f kg/h\\n\"%(mdot)\n", + "\n", + "# Solution (c)\n", + "Wcompression = mdot*C*(T2 - T3)## [kJ/h]\n", + "print \"The work of Compression is %.2f kW\\n\"%(Wcompression/3600)\n", + "\n", + "# Solution (d)\n", + "Wexpansion = mdot*C*(T1 - T4)## [kJ/h]\n", + "print \"The work of expansion is %.2f kW\\n\"%(Wexpansion/3600)\n", + "\n", + "# Solution (e)\n", + "Wnet = Wcompression - Wexpansion## [kJ/h]\n", + "print \"Net work of the system is %.2f kW\\n\"%(Wnet/3600)#" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |