diff options
Diffstat (limited to 'Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb')
-rwxr-xr-x | Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb | 265 |
1 files changed, 265 insertions, 0 deletions
diff --git a/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb b/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb new file mode 100755 index 00000000..5087d780 --- /dev/null +++ b/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb @@ -0,0 +1,265 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:52ff353152f32e41c2e832a90f993fbd3f11b7f2a5fbb5e4f20eb7599a61f880" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 9 : Solid Movement Mixing Segregation and Staging" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1, Page 218\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "umf=0.015; #Velocity at minimum fluidization condition in m/s\n", + "ephsilonmf=0.5; #Void fraction at minimum fluidization condition\n", + "uo=0.1; #Superficial gas velocity in m/s\n", + "delta=0.2; #Bed fraction in bubbles\n", + "db=0.06; #Equilibrium bubble size in m\n", + "dt=[0.1,0.3,0.6,1.5]; #Various vessel sizes in m\n", + "ub=[0.4,0.75,0.85,1.1]; #Bubble velocity in m/s\n", + "Dsv=[0.03,0.11,0.14,0.23]; #Reported values of vertical dispersion coefficient\n", + "\n", + "#CALCULATION\n", + "n=len(ub);\n", + "i=0;\n", + "fw1=2;#Wake fraction from Hamilton et al.\n", + "fw2=0.32;#Wake fraction from Fig.(5.8)\n", + "fw=(fw1+fw2)*0.5;#Average value of wake fraction\n", + "Dsv1 = []\n", + "Dsv2 = []\n", + "while i<n:\n", + " Dsv1.append(12*((uo*100)**0.5)*((dt[i]*100)**0.9));#Vertical distribution coefficient from Eqn.(3)\n", + " Dsv2.append((fw**2*ephsilonmf*delta*db*ub[i]**2)/(3*umf));#Vertical distribution coefficient from Eqn.(12)\n", + " i=i+1;\n", + "\n", + "print Dsv1\n", + "\n", + "#OUTPUT\n", + "print '\\t\\tVertical dispersion coefficient(m**2/s)'\n", + "print 'Vessel Size(m)',\n", + "print '\\tFrom Experiment',\n", + "print '\\tFrom Eqn.(3)',\n", + "print '\\tFrom Eqn.(12)'\n", + "i=0;\n", + "while i<n:\n", + " print '%.2f'%dt[i],\n", + " print '\\t%.3f'%Dsv[i],\n", + " print '\\t%.2f'%(Dsv1[i]/10**4),\n", + " print '\\t%.2f'%Dsv2[i]\n", + " i=i+1; \n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "[301.42637178114967, 810.1965234492834, 1511.8801720132121, 3448.7632274996104]\n", + "\t\tVertical dispersion coefficient(m**2/s)\n", + "Vessel Size(m) \tFrom Experiment \tFrom Eqn.(3) \tFrom Eqn.(12)\n", + "0.10 \t0.030 \t0.03 \t0.03\n", + "0.30 \t0.110 \t0.08 \t0.10\n", + "0.60 \t0.140 \t0.15 \t0.13\n", + "1.50 \t0.230 \t0.34 \t0.22\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2, Page 222\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "Lmf=0.83; #Length of bed at minimum fluidization condition in m\n", + "dp=450.0; #Average particle size in micrometer\n", + "ephsilonmf=0.42; #Void fraction at minimum fluidization condition\n", + "umf=0.17; #Velocity at minimum fluidization condition in m/s\n", + "uo=[0.37,0.47,0.57,0.67]; #Superficial gas velocity in m/s\n", + "Dsh=[0.0012,0.0018,0.0021,0.0025]; #Horizontal Drift Coefficient from Experiment in m**2/s\n", + "db=[0.10,0.14]; #Equilibrium bubble size in m\n", + "g=9.81; #Acceleration due to gravity in m/s**2\n", + "\n", + "\n", + "#CALCULATION\n", + "n=len(uo);\n", + "m=len(db);\n", + "k=0;\n", + "alpha=0.77;#Since we are not dealing with Geldart A or AB solids\n", + "uf=umf/ephsilonmf;\n", + "ubr = []\n", + "ub = []\n", + "delta = []\n", + "Dshc = []\n", + "for j in range(m):\n", + " for i in range(n):\n", + " ubr.append(0.711*(db[j]*g)**0.5);#Rise velocity of a single bubble in m/s\n", + " ub.append(uo[i]-umf+ubr[k]);#Rise velocity of bubbles in a bubbling bed\n", + " delta.append((uo[i]-umf)/(ub[k]+umf));#Bed fraction in bubbles\n", + " if ubr[i]>uf:\n", + " Dshc.append((3/16.0)*(delta[k]/(1-delta[k]))*((alpha**2*db[j]*ubr[k]*((((ubr[k]+2*uf)/(ubr[k]-uf))**(1.0/3))-1))));\n", + " #Horizontal Distribution coeff. from Eqn.(14)\n", + " else:\n", + " Dsh.append((3.0/16)*(delta/(1-delta))*(alpha**2*umf*db/ephsilonmf))\n", + " #Horizontal Distribution coeff. from Eqn.(15)\n", + " Dshc.append((3/16.0)*(delta[k]/(1-delta[k]))*((alpha**2*db[j]*ubr[k]*((((ubr[k]+2*uf)/(ubr[k]-uf))**(1/3.0))-1))));#Horizontal Distribution coeff. from Eqn.(14)\n", + " k=k+1;\n", + "i=0;\n", + "j=0;\n", + "k=0;\n", + "while k<m*n:\n", + " print 'Snce we do not have ub=%fm/s>>uf=%fm/s we use Eqn.(14).'%(ub[k],uf)\n", + " print 'Gas Velocity(m/s)'\n", + " print '\\tHorizontal Drift Coefficient Calculated(m**2/s)'\n", + " print '\\tHorizontal Drift Coefficient from Experiment(m**2/s)'\n", + " while j<m:\n", + " print 'db=%fm'%db[j]\n", + " while i<n:\n", + " print '%f'%uo[i],\n", + " print '\\t\\t%f'%Dshc[k],\n", + " print '\\t\\t\\t\\t\\t%f'%Dsh[i]\n", + " i=i+1; \n", + " k=k+1;\n", + " i=0;\n", + " j=j+1;\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Snce we do not have ub=0.904213m/s>>uf=0.404762m/s we use Eqn.(14).\n", + "Gas Velocity(m/s)\n", + "\tHorizontal Drift Coefficient Calculated(m**2/s)\n", + "\tHorizontal Drift Coefficient from Experiment(m**2/s)\n", + "db=0.100000m\n", + "0.370000 \t\t0.001283 \t\t\t\t\t0.001200\n", + "0.470000 \t\t0.001283 \t\t\t\t\t0.001800\n", + "0.570000 \t\t0.001924 \t\t\t\t\t0.002100\n", + "0.670000 \t\t0.001924 \t\t\t\t\t0.002500\n", + "db=0.140000m\n", + "0.370000 \t\t0.002566 \t\t\t\t\t0.001200\n", + "0.470000 \t\t0.002566 \t\t\t\t\t0.001800\n", + "0.570000 \t\t0.003207 \t\t\t\t\t0.002100\n", + "0.670000 \t\t0.003207 \t\t\t\t\t0.002500\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3, Page 232\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "Gsup=1.5; #Solid interchange rate in kg/m**2plate s\n", + "dor=19.1; #Orifice diameter in mm\n", + "dp=210; #Particle size in micrometer\n", + "uo=0.4; #Superficial gas velocity in m/s\n", + "fopen=[0.12,0.17,0.26]; #Open area fraction \n", + "pi=3.14;\n", + "\n", + "#CALCULATION\n", + "n=len(fopen);\n", + "uor = []\n", + "ls1 = []\n", + "i=0\n", + "while i<n:\n", + " uor.append(uo/fopen[i]); #Gas velocity through the orifice\n", + " ls1.append(Gsup/fopen[i]);#Flux of solids through the holes\n", + " i=i+1;\n", + "\n", + "ls2=[12,20,25]; #Flux of solids through holes from Fig.13(c) for different uor values\n", + "fopen1=0.12; #Open area fraction which gives reasonable fit\n", + "lor=math.sqrt(((math.pi/4)*dor**2)/fopen1);#Orifice spacing\n", + "\n", + "#OUTPUT\n", + "print 'fopen',\n", + "print '\\t\\tuor(m/s)',\n", + "print '\\tls from Eqn.(18)',\n", + "print '\\tls from Fig.13(c)'\n", + "i=0;\n", + "while i<n:\n", + " print '%f'%fopen[i],\n", + " print '\\t%f'%uor[i],\n", + " print '\\t%f'%ls1[i],\n", + " print '\\t\\t%f'%ls2[i]\n", + " i=i+1; \n", + "\n", + "print '\\nFor square pitch, the orifice spacing should be %fmm'%lor\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fopen \t\tuor(m/s) \tls from Eqn.(18) \tls from Fig.13(c)\n", + "0.120000 \t3.333333 \t12.500000 \t\t12.000000\n", + "0.170000 \t2.352941 \t8.823529 \t\t20.000000\n", + "0.260000 \t1.538462 \t5.769231 \t\t25.000000\n", + "\n", + "For square pitch, the orifice spacing should be 48.863850mm\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |