summaryrefslogtreecommitdiff
path: root/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-09-04 22:04:10 +0530
committerThomas Stephen Lee2015-09-04 22:04:10 +0530
commit64419e47f762802600b3a2b6d8c433a16ccd3d55 (patch)
tree14ad7c37c9547cd516f141494f3fa375621edbaa /Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb
parent10f6fb8cd1d840a3042651dfaa6fd5af4924b94a (diff)
downloadPython-Textbook-Companions-64419e47f762802600b3a2b6d8c433a16ccd3d55.tar.gz
Python-Textbook-Companions-64419e47f762802600b3a2b6d8c433a16ccd3d55.tar.bz2
Python-Textbook-Companions-64419e47f762802600b3a2b6d8c433a16ccd3d55.zip
add/remove/update books
Diffstat (limited to 'Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb')
-rwxr-xr-xFluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb265
1 files changed, 265 insertions, 0 deletions
diff --git a/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb b/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb
new file mode 100755
index 00000000..5087d780
--- /dev/null
+++ b/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch9.ipynb
@@ -0,0 +1,265 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:52ff353152f32e41c2e832a90f993fbd3f11b7f2a5fbb5e4f20eb7599a61f880"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9 : Solid Movement Mixing Segregation and Staging"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 1, Page 218\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "umf=0.015; #Velocity at minimum fluidization condition in m/s\n",
+ "ephsilonmf=0.5; #Void fraction at minimum fluidization condition\n",
+ "uo=0.1; #Superficial gas velocity in m/s\n",
+ "delta=0.2; #Bed fraction in bubbles\n",
+ "db=0.06; #Equilibrium bubble size in m\n",
+ "dt=[0.1,0.3,0.6,1.5]; #Various vessel sizes in m\n",
+ "ub=[0.4,0.75,0.85,1.1]; #Bubble velocity in m/s\n",
+ "Dsv=[0.03,0.11,0.14,0.23]; #Reported values of vertical dispersion coefficient\n",
+ "\n",
+ "#CALCULATION\n",
+ "n=len(ub);\n",
+ "i=0;\n",
+ "fw1=2;#Wake fraction from Hamilton et al.\n",
+ "fw2=0.32;#Wake fraction from Fig.(5.8)\n",
+ "fw=(fw1+fw2)*0.5;#Average value of wake fraction\n",
+ "Dsv1 = []\n",
+ "Dsv2 = []\n",
+ "while i<n:\n",
+ " Dsv1.append(12*((uo*100)**0.5)*((dt[i]*100)**0.9));#Vertical distribution coefficient from Eqn.(3)\n",
+ " Dsv2.append((fw**2*ephsilonmf*delta*db*ub[i]**2)/(3*umf));#Vertical distribution coefficient from Eqn.(12)\n",
+ " i=i+1;\n",
+ "\n",
+ "print Dsv1\n",
+ "\n",
+ "#OUTPUT\n",
+ "print '\\t\\tVertical dispersion coefficient(m**2/s)'\n",
+ "print 'Vessel Size(m)',\n",
+ "print '\\tFrom Experiment',\n",
+ "print '\\tFrom Eqn.(3)',\n",
+ "print '\\tFrom Eqn.(12)'\n",
+ "i=0;\n",
+ "while i<n:\n",
+ " print '%.2f'%dt[i],\n",
+ " print '\\t%.3f'%Dsv[i],\n",
+ " print '\\t%.2f'%(Dsv1[i]/10**4),\n",
+ " print '\\t%.2f'%Dsv2[i]\n",
+ " i=i+1; \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "[301.42637178114967, 810.1965234492834, 1511.8801720132121, 3448.7632274996104]\n",
+ "\t\tVertical dispersion coefficient(m**2/s)\n",
+ "Vessel Size(m) \tFrom Experiment \tFrom Eqn.(3) \tFrom Eqn.(12)\n",
+ "0.10 \t0.030 \t0.03 \t0.03\n",
+ "0.30 \t0.110 \t0.08 \t0.10\n",
+ "0.60 \t0.140 \t0.15 \t0.13\n",
+ "1.50 \t0.230 \t0.34 \t0.22\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2, Page 222\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "Lmf=0.83; #Length of bed at minimum fluidization condition in m\n",
+ "dp=450.0; #Average particle size in micrometer\n",
+ "ephsilonmf=0.42; #Void fraction at minimum fluidization condition\n",
+ "umf=0.17; #Velocity at minimum fluidization condition in m/s\n",
+ "uo=[0.37,0.47,0.57,0.67]; #Superficial gas velocity in m/s\n",
+ "Dsh=[0.0012,0.0018,0.0021,0.0025]; #Horizontal Drift Coefficient from Experiment in m**2/s\n",
+ "db=[0.10,0.14]; #Equilibrium bubble size in m\n",
+ "g=9.81; #Acceleration due to gravity in m/s**2\n",
+ "\n",
+ "\n",
+ "#CALCULATION\n",
+ "n=len(uo);\n",
+ "m=len(db);\n",
+ "k=0;\n",
+ "alpha=0.77;#Since we are not dealing with Geldart A or AB solids\n",
+ "uf=umf/ephsilonmf;\n",
+ "ubr = []\n",
+ "ub = []\n",
+ "delta = []\n",
+ "Dshc = []\n",
+ "for j in range(m):\n",
+ " for i in range(n):\n",
+ " ubr.append(0.711*(db[j]*g)**0.5);#Rise velocity of a single bubble in m/s\n",
+ " ub.append(uo[i]-umf+ubr[k]);#Rise velocity of bubbles in a bubbling bed\n",
+ " delta.append((uo[i]-umf)/(ub[k]+umf));#Bed fraction in bubbles\n",
+ " if ubr[i]>uf:\n",
+ " Dshc.append((3/16.0)*(delta[k]/(1-delta[k]))*((alpha**2*db[j]*ubr[k]*((((ubr[k]+2*uf)/(ubr[k]-uf))**(1.0/3))-1))));\n",
+ " #Horizontal Distribution coeff. from Eqn.(14)\n",
+ " else:\n",
+ " Dsh.append((3.0/16)*(delta/(1-delta))*(alpha**2*umf*db/ephsilonmf))\n",
+ " #Horizontal Distribution coeff. from Eqn.(15)\n",
+ " Dshc.append((3/16.0)*(delta[k]/(1-delta[k]))*((alpha**2*db[j]*ubr[k]*((((ubr[k]+2*uf)/(ubr[k]-uf))**(1/3.0))-1))));#Horizontal Distribution coeff. from Eqn.(14)\n",
+ " k=k+1;\n",
+ "i=0;\n",
+ "j=0;\n",
+ "k=0;\n",
+ "while k<m*n:\n",
+ " print 'Snce we do not have ub=%fm/s>>uf=%fm/s we use Eqn.(14).'%(ub[k],uf)\n",
+ " print 'Gas Velocity(m/s)'\n",
+ " print '\\tHorizontal Drift Coefficient Calculated(m**2/s)'\n",
+ " print '\\tHorizontal Drift Coefficient from Experiment(m**2/s)'\n",
+ " while j<m:\n",
+ " print 'db=%fm'%db[j]\n",
+ " while i<n:\n",
+ " print '%f'%uo[i],\n",
+ " print '\\t\\t%f'%Dshc[k],\n",
+ " print '\\t\\t\\t\\t\\t%f'%Dsh[i]\n",
+ " i=i+1; \n",
+ " k=k+1;\n",
+ " i=0;\n",
+ " j=j+1;\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Snce we do not have ub=0.904213m/s>>uf=0.404762m/s we use Eqn.(14).\n",
+ "Gas Velocity(m/s)\n",
+ "\tHorizontal Drift Coefficient Calculated(m**2/s)\n",
+ "\tHorizontal Drift Coefficient from Experiment(m**2/s)\n",
+ "db=0.100000m\n",
+ "0.370000 \t\t0.001283 \t\t\t\t\t0.001200\n",
+ "0.470000 \t\t0.001283 \t\t\t\t\t0.001800\n",
+ "0.570000 \t\t0.001924 \t\t\t\t\t0.002100\n",
+ "0.670000 \t\t0.001924 \t\t\t\t\t0.002500\n",
+ "db=0.140000m\n",
+ "0.370000 \t\t0.002566 \t\t\t\t\t0.001200\n",
+ "0.470000 \t\t0.002566 \t\t\t\t\t0.001800\n",
+ "0.570000 \t\t0.003207 \t\t\t\t\t0.002100\n",
+ "0.670000 \t\t0.003207 \t\t\t\t\t0.002500\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3, Page 232\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Gsup=1.5; #Solid interchange rate in kg/m**2plate s\n",
+ "dor=19.1; #Orifice diameter in mm\n",
+ "dp=210; #Particle size in micrometer\n",
+ "uo=0.4; #Superficial gas velocity in m/s\n",
+ "fopen=[0.12,0.17,0.26]; #Open area fraction \n",
+ "pi=3.14;\n",
+ "\n",
+ "#CALCULATION\n",
+ "n=len(fopen);\n",
+ "uor = []\n",
+ "ls1 = []\n",
+ "i=0\n",
+ "while i<n:\n",
+ " uor.append(uo/fopen[i]); #Gas velocity through the orifice\n",
+ " ls1.append(Gsup/fopen[i]);#Flux of solids through the holes\n",
+ " i=i+1;\n",
+ "\n",
+ "ls2=[12,20,25]; #Flux of solids through holes from Fig.13(c) for different uor values\n",
+ "fopen1=0.12; #Open area fraction which gives reasonable fit\n",
+ "lor=math.sqrt(((math.pi/4)*dor**2)/fopen1);#Orifice spacing\n",
+ "\n",
+ "#OUTPUT\n",
+ "print 'fopen',\n",
+ "print '\\t\\tuor(m/s)',\n",
+ "print '\\tls from Eqn.(18)',\n",
+ "print '\\tls from Fig.13(c)'\n",
+ "i=0;\n",
+ "while i<n:\n",
+ " print '%f'%fopen[i],\n",
+ " print '\\t%f'%uor[i],\n",
+ " print '\\t%f'%ls1[i],\n",
+ " print '\\t\\t%f'%ls2[i]\n",
+ " i=i+1; \n",
+ "\n",
+ "print '\\nFor square pitch, the orifice spacing should be %fmm'%lor\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fopen \t\tuor(m/s) \tls from Eqn.(18) \tls from Fig.13(c)\n",
+ "0.120000 \t3.333333 \t12.500000 \t\t12.000000\n",
+ "0.170000 \t2.352941 \t8.823529 \t\t20.000000\n",
+ "0.260000 \t1.538462 \t5.769231 \t\t25.000000\n",
+ "\n",
+ "For square pitch, the orifice spacing should be 48.863850mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file