diff options
Diffstat (limited to 'Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter4.ipynb')
-rw-r--r-- | Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter4.ipynb | 218 |
1 files changed, 218 insertions, 0 deletions
diff --git a/Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter4.ipynb b/Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter4.ipynb new file mode 100644 index 00000000..8a02517e --- /dev/null +++ b/Fiber_Optics_and_Optoelectronics_by_R._P._Khare/Chapter4.ipynb @@ -0,0 +1,218 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter4 - Wave propagation in cylindrical waveguides" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1 : Page 70" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "part (a)\n", + "normalised frequency parameter = 3.01\n", + "part (b)\n", + "propogation constants are Bo1 = 5.911e+06 and B11 = 5.885e+06\n", + "part (c)\n", + "phase velocity are (Vp)01 = 2.06e+08 ms**-1 and (Vp)11 = 2.07e+08 ms**-1 \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "from math import pi, sqrt\n", + "#normalised frequency,propagation constants and phase velocity\n", + "print \"part (a)\"\n", + "n1=1.46#core refrative index\n", + "di=7.2#core diameter \n", + "n=1.46#core refrative index\n", + "d=1#relative differnce\n", + "h=1.55 # in micro meter\n", + "v=((2*pi*(di*10**-6)/2)*n*sqrt(2*(d/100)))/(h*10**-6)#normalised frequency parameter\n", + "print \"normalised frequency parameter = %0.2f\"%v\n", + "print \"part (b)\"\n", + "b1=(2*pi*n1)/(h*10**-6)# in m**-1\n", + "n2=n1-(d/100)#cladding refrative index\n", + "b2=(2*pi*n2)/(h*10**-6)# in m**-1\n", + "bo1=0.82#\n", + "b11=0.18#\n", + "B01=(b2**2+(bo1*(b1**2-b2**2)))**(1/2)#\n", + "B11=(b2**2+(b11*(b1**2-b2**2)))**(1/2)#\n", + "print \"propogation constants are Bo1 = %0.3e\"%(B01),\" and B11 = %0.3e\"%(B11)\n", + "#propogation constants are calculated wrong in the text bOOK\n", + "print \"part (c)\"\n", + "c=3*10**8# in ms**-1\n", + "vp1=(2*pi*c)/(h*10**-6*B01)#IN MS**-1\n", + "vp2=(2*pi*c)/(h*10**-6*B11)#IN MS**-1\n", + "print \"phase velocity are (Vp)01 = %0.2e \"%(vp1),\" ms**-1 and (Vp)11 = %0.2e\"%(vp2),\" ms**-1 \"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2 : Page 73" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "power for LP01 mode is = 11 %\n", + "power for LP11 mode is = 35 %\n" + ] + } + ], + "source": [ + "#frational power\n", + "p01=0.11#from the graph\n", + "p11=0.347#from the graph\n", + "print \"power for LP01 mode is = %0.f %%\"%(p01*100)\n", + "print \"power for LP11 mode is = %0.f %%\" %(p11*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3 : Page 76" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of modes : 1974\n" + ] + } + ], + "source": [ + "#Number of the modes\n", + "h= 0.85# Wavelenght in micrometers\n", + "a= 50# Core radius in micrometers\n", + "NA=0.17#\n", + "v1=(2*pi*a*NA)/h#\n", + "m2= round((v1**2)/2)#\n", + "print \"Number of modes : %d\"%m2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4 : Page 76" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "core diameter = 62 micro meter\n" + ] + } + ], + "source": [ + "#core diameter\n", + "d=0.02#difference\n", + "n1=1.5#core refrative index\n", + "m=1000# number of modes\n", + "h= 1.3# Wavelenght in micrometers\n", + "a=((h/(pi*n1))*(m/d)**(1/2))#core diamter in micro meter\n", + "print \"core diameter = %0.f micro meter\"%a" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5 : Page 76" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum core diameter = 4.82 micro meter\n" + ] + } + ], + "source": [ + "#core diameter\n", + "d=0.02#difference\n", + "a1=75#in micro meter\n", + "n1=1.45#core refrative index\n", + "m=700# number of modes\n", + "v=sqrt(4*m)#\n", + "h=((2*pi*(a1/2)*n1*sqrt(2*(d/100)))/v)#in micro meter\n", + "vc=2.405*sqrt(2)#for single mode fiber\n", + "a=((vc*h)/(pi*n1*sqrt(2*(d/100))))#core diamter in micro meter\n", + "print \"maximum core diameter = %0.2f micro meter\"%a" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |