diff options
Diffstat (limited to 'Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb')
-rw-r--r-- | Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb | 281 |
1 files changed, 281 insertions, 0 deletions
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb new file mode 100644 index 00000000..18a94379 --- /dev/null +++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5:Advanced measuring instruments" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A=0.000064\n", + "B=0.000512\n", + "since A<B so the instrument is underdamped\n", + "Number of turns=3356426 \n", + "current required to overcome friction=0.1 uA \n" + ] + } + ], + "source": [ + "# 5.1\n", + "import math\n", + "D=8*10**-3;\n", + "A=D**2;\n", + "print ('A=%f'%A)\n", + "J=8*10**-3;\n", + "K=16*10**-3;\n", + "B=4*J*K;\n", + "print ('B=%f'%B)\n", + "print ('since A<B so the instrument is underdamped')\n", + "th=(100*math.pi)/180;\n", + "i=10*10**-3;\n", + "F=0.2*10**-6;\n", + "G=(K*th+F)/i;\n", + "l=65*10**-3;\n", + "d=25*10**-3;\n", + "N=G/(B*l*d);\n", + "print (\"Number of turns=%.0f \" %N)\n", + "i=F/G*10**6;\n", + "print (\"current required to overcome friction=%.1f uA \" %i)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "upper value of range=1896 Hz\n", + "lower value of range=696 Hz\n", + "So, the range of the frequency is from 696 to 1896 Hz\n" + ] + } + ], + "source": [ + "# 5.2\n", + "import math\n", + "eta=0.6;\n", + "fn=2400;\n", + "M=0.98;\n", + "#M=1/(((1-u**2)**2)+(2*u*eta)**2)**0.5; ..........(i)\n", + "# On solving the above equation we get u=0.79\n", + "u=0.79;\n", + "fu=u*fn;\n", + "print (\"upper value of range=%.0f Hz\" %fu)\n", + "\n", + "#Now let M=1.02, on solving equation (i) we have u=0.29\n", + "u=0.29;\n", + "fl=u*fn;\n", + "print (\"lower value of range=%.0f Hz\" %fl)\n", + "print ('So, the range of the frequency is from 696 to 1896 Hz')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.3" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "phase displacement for the fundamental=7.37 degree\n", + "phase displacement for the 5th harmonic=40.48 degree\n" + ] + } + ], + "source": [ + "# 5.3\n", + "import math\n", + "eta=0.64;\n", + "u=0.1;\n", + "alpha_1=math.degrees(math.atan(2*eta*u/(1-u**2)))\n", + "print (\"phase displacement for the fundamental=%.2f degree\" %alpha_1)\n", + "u=0.5;\n", + "alpha_5=math.degrees(math.atan((2*eta*u/(1-u**2))))\n", + "print (\"phase displacement for the 5th harmonic=%.2f degree\" %alpha_5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.4" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Percentage error for the production of 3rd harmonics=-0.56\n", + "Percentage error for the production of 5th harmonics=-1.54\n", + "Percentage error for the production of 7th harmonics=-2.97\n", + "Percentage error for the production of 11th harmonics=-7.03\n", + "Percentage error for the production of 13th harmonics=-9.55\n", + " Displacement of 13th harmonic=-1.23 degree\n" + ] + } + ], + "source": [ + "#5.4\n", + "import math\n", + "To=1.0/2000;\n", + "T=1.0/50;\n", + "#Rn=1/(1+n**2*(To/T)**2)\n", + "R1=1.0/(1+1.0**2*(To/T)**2);\n", + "R3=1.0/(1+3**2*(To/T)**2);\n", + "R5=1.0/(1+5**2*(To/T)**2);\n", + "R7=1.0/(1+7**2*(To/T)**2);\n", + "R11=1.0/(1+11**2*(To/T)**2);\n", + "R13=1.0/(1+13**2*(To/T)**2);\n", + "PE3=(R3-1/1)*100;\n", + "print (\"Percentage error for the production of 3rd harmonics=%.2f\" %PE3)\n", + "PE5=(R5-1/1)*100;\n", + "print (\"Percentage error for the production of 5th harmonics=%.2f\" %PE5)\n", + "PE7=(R7-1/1)*100;\n", + "print (\"Percentage error for the production of 7th harmonics=%.2f\" %PE7)\n", + "PE11=(R11-1/1)*100;\n", + "print (\"Percentage error for the production of 11th harmonics=%.2f\" %PE11)\n", + "PE13=(R13-1/1)*100;\n", + "print (\"Percentage error for the production of 13th harmonics=%.2f\" %PE13)\n", + "#displacement of nth harmonic alpha=atan2*n/((T/To)-n**2*(To/T))\n", + "alpha_1=math.degrees(math.atan(2*1/((T/To)-(1**2*(To/T)))));\n", + "alpha_13=(math.degrees(math.atan(2*13/((T/To)-(13**2*(To/T))))));\n", + "alpha_1_equivalent_13=13*alpha_1;\n", + "phase_displacement_13=alpha_13-alpha_1_equivalent_13;\n", + "print (\" Displacement of 13th harmonic=%.2f degree\" %phase_displacement_13)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.5" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum tape speed=7.81 m/s\n" + ] + } + ], + "source": [ + "# 5.5\n", + "import math\n", + "W_min=2.5*6.25*10**-6;\n", + "f=500000;\n", + "S_min=W_min*f;\n", + "print (\"minimum tape speed=%.2f m/s\" %S_min)\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exa 5.6" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number density of the tape=8 numbers/mm\n" + ] + } + ], + "source": [ + "# 5.6\n", + "import math\n", + "Num_per_sec=12000;\n", + "S=1.5*10**3;\n", + "Number_density=Num_per_sec/S;\n", + "print (\"Number density of the tape=%.0f numbers/mm\" %Number_density)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |