summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb78
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb2149
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3.ipynb287
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb585
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb281
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6.ipynb448
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_1irZXi7.pngbin0 -> 147574 bytes
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_PuHsZd9.pngbin0 -> 142972 bytes
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_sWGbyRo.pngbin0 -> 137502 bytes
9 files changed, 3828 insertions, 0 deletions
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb
new file mode 100644
index 00000000..0222517c
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1.ipynb
@@ -0,0 +1,78 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 1:Measurement of phase and frequency"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1, Page number 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inductance of the circuit 1 = 7.04 H\n",
+ "inductance of circuit 2 L2=9.82 H\n",
+ "Resonant frequency of the circuit 1 = 41.47 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "c1=10**-6;\n",
+ "f1=60;\n",
+ "L1=1/(4*math.pi*math.pi*(f1**2)*c1);\n",
+ "print (\"inductance of the circuit 1 = %.2f H\" % L1)\n",
+ "f2=50;\n",
+ "w=2*math.pi*f2;\n",
+ "R1=100;\n",
+ "Z1=complex(R1,((w*L1)-(1/w*c1)));\n",
+ "#Z2=complex(100+j*((2*math.pi*50*L2)-(1/(2*math.pi*50*1.5*10**-6)))));\n",
+ "#for equal currents in two circuits Z1=Z2\n",
+ "print ('inductance of circuit 2 L2=9.82 H')\n",
+ "L2=9.82;\n",
+ "C2=1.5*10**-6;\n",
+ "Rf2=(1/(2*math.pi))*(1/(L2*C2))**0.5;\n",
+ "print (\"Resonant frequency of the circuit 1 = %.2f Hz\" % Rf2)\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb
new file mode 100644
index 00000000..5befafb8
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2.ipynb
@@ -0,0 +1,2149 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2:Primary sensing elements and transducers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 2.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Displacement of the free end = 0.02 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.1\n",
+ "import math;\n",
+ "t=0.35;\n",
+ "P=1500*10**3;\n",
+ "E=180*10**9;\n",
+ "r=36.5;\n",
+ "x=16;\n",
+ "y=3;\n",
+ "a=math.pi*36.5*10**-3;\n",
+ "da=(0.05*a*P/E)*((r/t)**0.2)*((x/y)**0.33)*((x/t)**3);\n",
+ "print (\"Displacement of the free end = %.2f m\" % da)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Natural length of spring = 90.00 mm\n",
+ "Displacement of point C = 3.75 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.2\n",
+ "import math;\n",
+ "P=100*10**3;\n",
+ "A=1500*10**-6;\n",
+ "F=P*A;\n",
+ "Cs=F/3;\n",
+ "Ls=Cs+40;\n",
+ "print (\"Natural length of spring = %.2f mm\" % Ls)\n",
+ "P1=10*10**3;\n",
+ "F1=P1*A;\n",
+ "Ss=3+2*.5;\n",
+ "D=F1/Ss;\n",
+ "print (\"Displacement of point C = %.2f mm\" % D)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thickness = 0.21 mm\n",
+ "Deflection at center for Pressure of 150 kN/m2= 0.0000 mm\n",
+ "Natural frequency of the diaphragm =52051 rad/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.3\n",
+ "import math;\n",
+ "D=15.0*10**-3;\n",
+ "P=300*10**3;\n",
+ "sm=300*10**6;\n",
+ "t=(3*D**2*P/(16*sm))**0.5*10**3;\n",
+ "print (\"Thickness = %.2f mm\" %t)\n",
+ "P=150*10**3;\n",
+ "v=0.28;\n",
+ "E=200.0*10**9;\n",
+ "dm=3.0*(1-v**2)*D**4*P/(256.0*E*t**3);\n",
+ "print (\"Deflection at center for Pressure of 150 kN/m2= %.4f mm\" %dm)\n",
+ "d=8900;\n",
+ "wn=(20*t*10**-3/D**2)*(E/(3*d*(1-v**2)))**0.5;\n",
+ "print (\"Natural frequency of the diaphragm =%.0f rad/sec\" %wn)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle of twist= 0.000236 rad\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.4\n",
+ "import math;\n",
+ "T=100;\n",
+ "G=80*10**9;\n",
+ "d=2*15*10**-3;\n",
+ "th=16*T/(math.pi*G*d**3)\n",
+ "print (\"Angle of twist= %.6f rad\" %th)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Reynoids number = 1697652.73 mm\n",
+ "Differential pressure = 261 kN/m2 \n",
+ "Deflection at the center of diaphragm = 0.02 micro m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.5\n",
+ "import math;\n",
+ "d=60*10**-3;\n",
+ "Q=80*10**-3;\n",
+ "A=(math.pi/4)*d**2;\n",
+ "v=Q/A;\n",
+ "vi=10**-3;\n",
+ "de=10**3;\n",
+ "Re=v*de*d/vi;\n",
+ "print (\"Reynoids number = %.2f mm\" %Re)\n",
+ "d2=60*10**-3;\n",
+ "d1=100*10**-3;\n",
+ "A2=(math.pi/4)*d2**2;\n",
+ "M=1/((1-(d2/d1)**2)**0.5);\n",
+ "Cd=0.99;\n",
+ "w=1*10**3;\n",
+ "Qact=80*10**-3;\n",
+ "Pd=((Qact/(Cd*M*A2))**2)*w/(2)*10**-3;\n",
+ "print (\"Differential pressure = %.0f kN/m2 \" %Pd)\n",
+ "Po=0.28;\n",
+ "D=10*10**-3;\n",
+ "E=206*10**9;\n",
+ "t=0.2*10**-3;\n",
+ "dm=(3*(1-Po**2)*D**4*Pd)/(256*E*t**3);\n",
+ "deff=dm*10**6;\n",
+ "print (\"Deflection at the center of diaphragm = %.2f micro m\" %deff)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean velocity of water = 4.47 m/s\n",
+ "Velocity of air= 175.4 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.6\n",
+ "import math;\n",
+ "Pd=10*10**3;\n",
+ "d=1000;\n",
+ "VmeanW= (2*Pd/d)**0.5;\n",
+ "print (\"Mean velocity of water = %.2f m/s\" %VmeanW)\n",
+ "d=0.65;\n",
+ "Va= (2*Pd/d)**0.5;\n",
+ "print (\"Velocity of air= %.1f m/s\" %Va)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "let coefficient of discharge Cd=1\n",
+ "Depth of flow = 0.3 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.7\n",
+ "import math;\n",
+ "print ('let coefficient of discharge Cd=1')\n",
+ "H1=0.9;\n",
+ "L=1.2;\n",
+ "g=9.81;\n",
+ "Q=(2.0/3)*L*(2*g)**0.5*(H1)**(1.5);\n",
+ "th=45;\n",
+ "H2=Q*(15.0/8)/(2.0*g)\n",
+ "print (\"Depth of flow = %.1f m\" %H2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Uncertinity in discharge = 0.0125 m3/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.8\n",
+ "Cd=0.6;\n",
+ "H=0.5;\n",
+ "dH=0.01;\n",
+ "g=9.81;\n",
+ "Q=(8.0/15)*Cd*(2*g)**0.5*(H)**(2.5);\n",
+ "dQ=(2.5*dH/H)*Q;\n",
+ "print (\"Uncertinity in discharge = %.4f m3/s\" %dQ)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Displacement = 5.75 mm\n",
+ "Displacement = -12.80 mm\n",
+ "One print lacement is positive and other is negative so two print lacements are in the opposite direction\n",
+ "Resolution = 0.05 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.9\n",
+ "import math;\n",
+ "Rnormal=10000.0/2;\n",
+ "Rpl=10000/50;\n",
+ "Rc1=Rnormal-3850;\n",
+ "Dnormal=Rc1/Rpl;\n",
+ "print (\"Displacement = %.2f mm\" %Dnormal)\n",
+ "Rc2=Rnormal-7560;\n",
+ "Dnormal=Rc2/Rpl;\n",
+ "print (\"Displacement = %.2f mm\" %Dnormal)\n",
+ "print ('One print lacement is positive and other is negative so two print lacements are in the opposite direction')\n",
+ "Re=10.0*1/200;\n",
+ "print (\"Resolution = %.2f mm\" %Re)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage = 3000.000000 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.11\n",
+ "import math;\n",
+ "RAB=125;\n",
+ "Rtotal=5000;\n",
+ "R2=0.0\n",
+ "R2=(75.0/125.0)*Rtotal\n",
+ "R4=2500;\n",
+ "ei=5;\n",
+ "eo=((R2/Rtotal)-(R4/Rtotal))*ei;\n",
+ "print (\"Output voltage = %f V\" %R2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum excitation voltage = 54.8 V\n",
+ "Sensitivity = 0.152 V/degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.12\n",
+ "import math;\n",
+ "Rm=10000;\n",
+ "Rp=Rm/15;\n",
+ "R=600;\n",
+ "P=5;\n",
+ "ei= (P*R)**0.5;\n",
+ "print (\"Maximum excitation voltage = %.1f V\" %ei)\n",
+ "S=ei/360;\n",
+ "print (\"Sensitivity = %.3f V/degree\" %S)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution = 0.0005 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.13\n",
+ "import math;\n",
+ "Rwga=1.0/400;\n",
+ "Re=Rwga/5;\n",
+ "print (\"Resolution = %.4f mm\" %Re)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution of 1mm movement = 0.3125 degree/mm\n",
+ "Required Resolution of 1mm movement = 0.300 degree/mm\n",
+ "Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.14\n",
+ "import math;\n",
+ "mo=0.8;\n",
+ "sr=250;\n",
+ "sm=sr/mo;\n",
+ "R=sm*1*10**-3;\n",
+ "print (\"Resolution of 1mm movement = %.4f degree/mm\" %R)\n",
+ "Rq=300.0/1000;\n",
+ "print (\"Required Resolution of 1mm movement = %.3f degree/mm\" %Rq)\n",
+ "print ('Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power dissipation = 0.667 W\n",
+ "Power dissipation = 0.650 W\n",
+ "Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.15\n",
+ "import math;\n",
+ "Pd=(10.0**2)/150;\n",
+ "print (\"Power dissipation = %.3f W\" %Pd)\n",
+ "th_pot=80+Pd*30;\n",
+ "PDa=(10*10**-3)*(th_pot-35);\n",
+ "print (\"Power dissipation = %.3f W\" %PDa)\n",
+ "print ('Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable')\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Possion s ratio=1.600000\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.16\n",
+ "import math;\n",
+ "Gf=4.2;\n",
+ "v=(Gf-1)/2;\n",
+ "print ('Possion s ratio=%f' %v)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in resistance of nickel = 0.007 ohm\n",
+ "Change in resistance of nicrome = -0.001 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.17\n",
+ "import math;\n",
+ "strain=-5*10**-6;\n",
+ "Gf=-12.1;\n",
+ "R=120;\n",
+ "dR_nickel=Gf*R*strain;\n",
+ "print (\"Change in resistance of nickel = %.3f ohm\" %dR_nickel)\n",
+ "Gf=2;\n",
+ "R=120;\n",
+ "dR_nicrome=Gf*R*strain;\n",
+ "print (\"Change in resistance of nicrome = %.3f ohm\" %dR_nicrome)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage change in resistance = 0.1 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.18\n",
+ "import math;\n",
+ "s=100.0*10**6;\n",
+ "E=200.0*10**9;\n",
+ "strain=s/E;\n",
+ "Gf=2.0;\n",
+ "r_per_unit=Gf*strain*100.0;\n",
+ "print (\"Percentage change in resistance = %.1f \" %r_per_unit)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Gauge factor = 2.31 \n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.19\n",
+ "import math;\n",
+ "b=0.02;\n",
+ "d=0.003;\n",
+ "I=(b*d**3)/12;\n",
+ "E=200*10**9;\n",
+ "x=12.7*10**-3;\n",
+ "l=0.25;\n",
+ "F=3*E*I*x/l**3;\n",
+ "x=0.15;\n",
+ "M=F*x;\n",
+ "t=0.003;\n",
+ "s=(M*t)/(I*2);\n",
+ "strain=s/E;\n",
+ "dR=0.152;\n",
+ "R=120;\n",
+ "Gf=(dR/R)/strain;\n",
+ "print (\"Gauge factor = %.2f \" %Gf)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Change in length= 2.5 um \n",
+ " Force= 2038.64 N \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.20\n",
+ "import math;\n",
+ "dR=0.013;\n",
+ "R=240;\n",
+ "l=0.1;\n",
+ "Gf=2.2;\n",
+ "dl=(dR/R)*l/Gf*10**6;\n",
+ "print (\" Change in length= %.1f um \" %dl)\n",
+ "\n",
+ "strain=dl*10**-6/l;\n",
+ "E=207*10**9;\n",
+ "s=E*strain;\n",
+ "A=4*10**-4;\n",
+ "F=s*A;\n",
+ "print (\" Force= %.2f N \" %F)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " alpha at o degree= 0.0085 /degree C \n",
+ "5.5(1+0.0085(th-45))\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.21\n",
+ "import math;\n",
+ "th1=30;\n",
+ "th2=60;\n",
+ "th0=th1+th2/2;\n",
+ "Rth1=4.8;\n",
+ "Rth2=6.2;\n",
+ "Rth0=5.5;\n",
+ "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n",
+ "print (\" alpha at o degree= %.4f /degree C \" %ath0)\n",
+ "print ('5.5(1+0.0085(th-45))')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "alpha at o degree= 0.00182 /degree C \n",
+ "Linear approximation is: Rth= 589.48(1+0.00182(th-115))\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.22\n",
+ "import math;\n",
+ "th1=100;\n",
+ "th2=130;\n",
+ "th0=th1+th2/2;\n",
+ "Rth1=573.40;\n",
+ "Rth2=605.52;\n",
+ "Rth0=589.48;\n",
+ "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n",
+ "print (\"alpha at o degree= %.5f /degree C \" %ath0)\n",
+ "print ('Linear approximation is: Rth= 589.48(1+0.00182(th-115))')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance at 65 degree C= 115.68 ohm \n",
+ " Temperature = 25.00 degree C \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.23\n",
+ "import math;\n",
+ "Rth0=100;\n",
+ "ath0=0.00392;\n",
+ "dth=65-25;\n",
+ "R65=Rth0*(1+ath0*dth);\n",
+ "print (\"resistance at 65 degree C= %.2f ohm \" %R65)\n",
+ "th=(((150/100)-1)/ath0)+25;\n",
+ "print (\" Temperature = %.2f degree C \" %th)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistance at 150 degree C=15.11 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.24\n",
+ "import math;\n",
+ "Rth0=10;\n",
+ "ath0=0.00393;\n",
+ "dth=150-20;\n",
+ "R150=Rth0*(1+ath0*dth);\n",
+ "print (\"Resistance at 150 degree C=%.2f ohm\" %R150)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time= 109.95 s \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Calculate the time\n",
+ "import math;\n",
+ "th=30.0;\n",
+ "th0=50;\n",
+ "tc=120;\n",
+ "t=-120*(math.log(1-(th/th0)));\n",
+ "print (\"Time= %.2f s \" %t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistance at 35 degree C= 50.00 ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.26\n",
+ "import math;\n",
+ "R25=100;\n",
+ "ath=-0.05;\n",
+ "dth=35-25;\n",
+ "R35=R25*(1+ath*dth);\n",
+ "print (\"Resistance at 35 degree C= %.2f ohm \" %R35)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistance at 40 degree C= 967.51 ohm \n",
+ "Resistance at 100 degree C= 130.94 ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.27\n",
+ "import math;\n",
+ "Ro=3980;\n",
+ "Ta=273;\n",
+ "#3980= a*3980*exp(b/273)\n",
+ "Rt50=794;\n",
+ "Ta50=273+50;\n",
+ "#794= a*3980*exp(b/323)\n",
+ "#on solving\n",
+ "#a=30*10**-6, b=2843\n",
+ "Ta40=273+40;\n",
+ "Rt40=(30*10**-6)*3980*math.exp(2843/313);\n",
+ "print (\"Resistance at 40 degree C= %.2f ohm \" %Rt40)\n",
+ "Rt100=(30*10**-6)*3980*math.exp(2843/373);\n",
+ "print (\"Resistance at 100 degree C= %.2f ohm \" %Rt100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in temperature= 20.0 degree C \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.28\n",
+ "import math;\n",
+ "th=((1-1800/2000)/0.05)+70;\n",
+ "dth=th-70;\n",
+ "print (\"Change in temperature= %.1f degree C \" %dth)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Frequency of oscillation at 20 degree C = 25464.79 Hz \n",
+ "Frequency of oscillation at 25 degree C = 31830.99 Hz \n",
+ "Frequency of oscillation at 30 degree C = 42441.32 Hz \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.29\n",
+ "import math;\n",
+ "C=500*10**-12;\n",
+ "R20=10000*(1-0.05*(20-25));\n",
+ "f20=1/(2*math.pi*R20*C);\n",
+ "print (\"Frequency of oscillation at 20 degree C = %.2f Hz \" %f20)\n",
+ "R25=10000*(1-0.05*(25-25));\n",
+ "f25=1/(2*math.pi*R25*C);\n",
+ "print (\"Frequency of oscillation at 25 degree C = %.2f Hz \" %f25)\n",
+ "R30=10000*(1-0.05*(30-25));\n",
+ "f30=1/(2*math.pi*R30*C);\n",
+ "print (\"Frequency of oscillation at 30 degree C = %.2f Hz \" %f30)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sensitivity of thermocouple= 572.0 micro V/degree C\n",
+ "Maximum output voltage= 0.06 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.30\n",
+ "import math;\n",
+ "Se_thermocouple=500-(-72);\n",
+ "print (\"Sensitivity of thermocouple= %.1f micro V/degree C\" %Se_thermocouple)\n",
+ "Vo=Se_thermocouple*100*10**-6;\n",
+ "print (\"Maximum output voltage= %.2f V \" %Vo)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Required e.m.f.= 27.87 mV \n",
+ "Temperature corresponding to 27.87 mV is 620 degree C\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.31\n",
+ "import math;\n",
+ "ET=27.07+0.8;\n",
+ "print (\"Required e.m.f.= %.2f mV \" %ET)\n",
+ "print ('Temperature corresponding to 27.87 mV is 620 degree C')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Series resistance=271.00 ohm\n",
+ "Approximate error due to rise in resistance of 1 ohm in Re=-2.40 degree C\n",
+ "Approximate error due to rise in Temp. of 10=-7.45 degree C\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.32\n",
+ "import math;\n",
+ "Rm=50;\n",
+ "Re=12;\n",
+ "E=33.3*10**-3;\n",
+ "i=0.1*10**-3;\n",
+ "Rs=(E/i)-Rm-Re;\n",
+ "print (\"Series resistance=%.2f ohm\" %Rs)\n",
+ "Re=13;\n",
+ "i1=E/(Rs+Re+Rm);\n",
+ "AE=((i1-i)/i)*800;\n",
+ "print (\"Approximate error due to rise in resistance of 1 ohm in Re=%.2f degree C\" %AE)\n",
+ "R_change=50*0.00426*10;\n",
+ "i1=E/(Rs+Re+Rm+R_change);\n",
+ "AE=((i1-i)/i)*800;\n",
+ "print (\"Approximate error due to rise in Temp. of 10=%.2f degree C\" %AE)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of resistance R1=5.95 ohm\n",
+ "Value of resistance R2=762.60 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.33\n",
+ "import math;\n",
+ "E_20=0.112*10**-3;# emf at 20degree C\n",
+ "E_900=8.446*10**-3;\n",
+ "E_1200=11.946*10**-3;\n",
+ "E1=E_900-E_20;\n",
+ "E2=E_1200-E_20;\n",
+ "#E1=1.08*R1/(R1+2.5+R2 (i)\n",
+ "#E2=1.08*(R1+2.5)/(R1+2.5+R2 (ii)\n",
+ "#on solving (i) and (ii)\n",
+ "R1=5.95;\n",
+ "R2=762.6;\n",
+ "print (\"Value of resistance R1=%.2f ohm\" %R1)\n",
+ "print (\"Value of resistance R2=%.2f ohm\" %R2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of resistance R1=5.95 ohm\n",
+ "value of resistance RL>>Rl\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.34\n",
+ "import math;\n",
+ "th=20;\n",
+ "Vz=2.73+th*10*10**-3;\n",
+ "Voffset=-2.73;\n",
+ "Vout=Vz+Voffset;\n",
+ "Rbias=(5-0.2)/10**-3;\n",
+ "Rzero=500;\n",
+ "th=50;\n",
+ "Vz=2.73+th*10*10**-3;\n",
+ "VmaxT=Vz+Voffset;\n",
+ "Vsupply=5;\n",
+ "Rl=(VmaxT*Rbias)/(Vsupply-VmaxT);\n",
+ "print (\"Value of resistance R1=%.2f ohm\" %R1)\n",
+ "print ('value of resistance RL>>Rl')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 92,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in inductance=0.04 mH\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.35\n",
+ "import math;\n",
+ "L1=2;\n",
+ "La=1-0.02;\n",
+ "Lnew=2/La;\n",
+ "dl=Lnew-L1;\n",
+ "print (\"Change in inductance=%.2f mH\" %dl)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 93,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage linearity=0.20 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.36\n",
+ "import math;\n",
+ "linearity_percentage=(0.003/1.5)*100;\n",
+ "print (\"percentage linearity=%.2f \" %linearity_percentage)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 94,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "senstivity of the LVDT=0.004 V/mm\n",
+ "Senstivity of the instrument=1.0 V/mm\n",
+ "resolution of instrument=0.001 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.37\n",
+ "import math;\n",
+ "displacement=0.5;\n",
+ "Vo=2*10**-3;\n",
+ "Se_LVDT=Vo/displacement;\n",
+ "print (\"senstivity of the LVDT=%.3f V/mm\" %Se_LVDT)\n",
+ "Af=250;\n",
+ "Se_instrument=Se_LVDT*Af;\n",
+ "print (\"Senstivity of the instrument=%.1f V/mm\" %Se_instrument)\n",
+ "sd=5/100;\n",
+ "Vo_min=50/5;\n",
+ "Re_instrument=1*1.0/1000;\n",
+ "print (\"resolution of instrument=%.3f mm\" %Re_instrument)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 95,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "deflection=0.01 m\n",
+ "minimum force=0.02 N\n",
+ "maximum force=81.92 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.38\n",
+ "import math;\n",
+ "b=0.02;\n",
+ "t=0.004;\n",
+ "I=(1.0/12)*b*t**3;\n",
+ "F=25;\n",
+ "l=0.25;\n",
+ "E=200.0*10**9;\n",
+ "x=(F*l**3)/(3.0*E*I);\n",
+ "print (\"deflection=%.2f m\" %x)\n",
+ "DpF=x/F;\n",
+ "Se=DpF*0.5*1000;\n",
+ "Re=(10.0/1000)*(2.0/10);\n",
+ "F_min=Re/Se;\n",
+ "F_max=10/Se;\n",
+ "print (\"minimum force=%.2f N\" %F_min)\n",
+ "print (\"maximum force=%.2f N\" %F_max)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 96,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permittivity of the air e0=8.85*10**-12\n",
+ "sensitivity of the transducer=-0.00 F/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.39\n",
+ "import math;\n",
+ "print ('permittivity of the air e0=8.85*10**-12')\n",
+ "e0=8.85*10**-12;\n",
+ "w=25.0*10**-3;\n",
+ "d=0.25*10**-3;\n",
+ "Se=-4.0*e0*w/d;\n",
+ "print (\"sensitivity of the transducer=%.2f F/m\" %Se)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 97,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the value of the capacitance afte the application of pressure=446.55 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.40\n",
+ "import math;\n",
+ "C1=370*10**-12;\n",
+ "d1=3.5*10**-3;\n",
+ "d2=2.9*10**-3;\n",
+ "C2=C1*d1*10**12/d2;\n",
+ "print (\"the value of the capacitance afte the application of pressure=%.2f pF\" %C2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 114,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "change in frequency of the oscillator=-9.607692e+07 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.41\n",
+ "import math;\n",
+ "fo1=100*10**3;\n",
+ "d1=4;\n",
+ "d2=3.7;\n",
+ "fo2=((d2/d1)**0.5)*fo1;\n",
+ "dfo=fo1-fo2/10**-3;\n",
+ "print (\"change in frequency of the oscillator=%e kHz\" %dfo)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 99,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Capacitance=33.9 pF\n",
+ "change in Capacitance=3.4 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.42\n",
+ "import math;\n",
+ "L_air=(3.1-3)/2;\n",
+ "D_stress=100/L_air;\n",
+ "e0=8.85*10**-12;\n",
+ "l=20*10**-3;\n",
+ "D2=3.1;\n",
+ "D1=3;\n",
+ "C=(2*math.pi)*e0*l*10**12/(math.log(D2/D1));\n",
+ "print (\"Capacitance=%.1f pF\" %C)\n",
+ "l=(20*10**-3)-(2*10**-3);\n",
+ "C_new=(2*math.pi)*e0*l/(math.log(D2/D1));\n",
+ "C_change=C-C_new*10**12;\n",
+ "print (\"change in Capacitance=%.1f pF\" %C_change)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 116,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time constant=0.02 s\n",
+ "Phase shift=18.2 deg\n",
+ "Series resistance=1140 Mohm\n",
+ "Amplitude ratio=0.6 \n",
+ "Voltage sensitivity=800000 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.43\n",
+ "import math;\n",
+ "M=0.95;\n",
+ "w=2*math.pi*20;\n",
+ "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n",
+ "print (\"Time constant=%.2f s\" %tc)\n",
+ "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n",
+ "print (\"Phase shift=%.1f deg\" %ph)\n",
+ "C=(8.85*10**-12*300*10**-6)/(0.125*10**-3);\n",
+ "R=tc*10**-6/C;\n",
+ "print (\"Series resistance=%.0f Mohm\" %R)\n",
+ "M=1/(1+(1/(2*math.pi*5*tc)**2))**0.5;\n",
+ "print (\"Amplitude ratio=%.1f \" %M)\n",
+ "Eb=100;\n",
+ "x=0.125*10**-3;\n",
+ "Vs=Eb/x;\n",
+ "print (\"Voltage sensitivity=%d V/m\" %Vs)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 101,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of per unit change of capacitance to per unit change of diaplacement=1.11\n",
+ " New ratio of per unit change of capacitance to per unit change of diaplacement=1.17\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.44\n",
+ "import math;\n",
+ "e0=8.85*10**-12;\n",
+ "A=500*10**-6;\n",
+ "d=0.2*10**-3;\n",
+ "C=e0*A/d;\n",
+ "d1=0.18*10**-3;\n",
+ "C_new=e0*A/d1;\n",
+ "C_change=C_new-C;\n",
+ "Ratio=(C_change/C)/(0.02/0.2);\n",
+ "print (\"ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n",
+ "d1=0.19*10**-3;\n",
+ "e1=1;\n",
+ "d2=0.01*10**-3;\n",
+ "e2=8;\n",
+ "C=(e0*A)/((d1/e1)+(d2/e2));\n",
+ "d1_new=0.17*10**-3;\n",
+ "C_new=(e0*A)/((d1_new/e1)+(d2/e2));\n",
+ "C_change=C_new-C;\n",
+ "Ratio=(C_change/C)/(0.02/0.2);\n",
+ "print (\" New ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 102,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=165 V\n",
+ " Charge sensitivity=2.23 pC/N\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.47\n",
+ "import math;\n",
+ "g=0.055;\n",
+ "t=2*10**-3;\n",
+ "P=1.5*10**6;\n",
+ "Eo=g*t*P;\n",
+ "print (\"Output voltage=%.0f V\" %Eo)\n",
+ "e=40.6*10**-12;\n",
+ "d=e*g*10**12;\n",
+ "print (\" Charge sensitivity=%.2f pC/N\" %d)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 103,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Force=30 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.48\n",
+ "import math;\n",
+ "g=0.055;\n",
+ "t=1.5*10**-3;\n",
+ "Eo=100;\n",
+ "P= Eo/(g*t);\n",
+ "A=25*10**-6;\n",
+ "F=P*A;\n",
+ "print (\" Force=%.0f N\" %F)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 104,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " strain=0.0167 \n",
+ " Charge=750 pC\n",
+ " capacitance=250 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.49\n",
+ "import math;\n",
+ "A=25*10**-6;\n",
+ "F=5;\n",
+ "P=F/A;\n",
+ "d=150*10**-12;\n",
+ "e=12.5*10**-9;\n",
+ "g=d/(e);\n",
+ "t=1.25*10**-3;\n",
+ "Eo=(g*t*P);\n",
+ "strain=P/(12*10**6);\n",
+ "Q=d*F*10**12;\n",
+ "C=Q/Eo;\n",
+ "print (\" strain=%.4f \" %strain)\n",
+ "print (\" Charge=%.0f pC\" %Q)\n",
+ "print (\" capacitance=%.0f pF\" %C)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 106,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " peak voltage swing under open conditions=9.04 mV\n",
+ " peak voltage swing under loaded conditions=1.52 mV\n",
+ " Maximum change in crystal thickness=2.22 pm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.50\n",
+ "import math;\n",
+ "d=2*10**-12;\n",
+ "t=1*10**-3;\n",
+ "Fmax=0.01;\n",
+ "e0=8.85*10**-12;\n",
+ "er=5;\n",
+ "A=100*10**-6;\n",
+ "Eo_peak_to_peak=2*d*t*Fmax*10**3/(e0*er*A);\n",
+ "print (\" peak voltage swing under open conditions=%.2f mV\" %Eo_peak_to_peak)\n",
+ "Rl=100*10**6;\n",
+ "Cl=20*10**-12;\n",
+ "d1=1*10**-3;\n",
+ "Cp=e0*er*A/d1;\n",
+ "C=Cp+Cl;\n",
+ "w=1000;\n",
+ "m=(w*Cp*Rl/(1+(w*C*Rl)**2)**0.5);\n",
+ "El_peak_to_peak=(2*d*t*Fmax*10**3/(e0*er*A))*m;\n",
+ "print (\" peak voltage swing under loaded conditions=%.2f mV\" %El_peak_to_peak)\n",
+ "E=90*10**9;\n",
+ "dt=2*Fmax*t*10**12/(A*E);\n",
+ "print (\" Maximum change in crystal thickness=%.2f pm\" %dt)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 107,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Minimum frequency=2028.29 rad/sec\n",
+ " Phase shift=18.19 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.51\n",
+ "import math;\n",
+ "M=0.95;\n",
+ "tc=1.5*10**-3;\n",
+ "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n",
+ "print (\" Minimum frequency=%.2f rad/sec\" %w)\n",
+ "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n",
+ "print (\" Phase shift=%.2f deg\" %ph)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 108,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Sensitivity of the transducer=40000000.00 V/m\n",
+ " High frequency sensitivity =29629629.63 V/m\n",
+ " Minimum frequency=358.68 sec\n",
+ "now f=10Hz\n",
+ " External shunt capacitance=0.05 pF\n",
+ " new value of high frequency sensitivity=826073.26 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.52\n",
+ "import math;\n",
+ "Kq=40*10**-3;\n",
+ "Cp=1000*10**-12;\n",
+ "K=Kq/Cp;\n",
+ "print (\" Sensitivity of the transducer=%.2f V/m\" %K)\n",
+ "Cc=300*10**-12;\n",
+ "Ca=50*10**-12;\n",
+ "C=Cp+Cc+Ca;\n",
+ "Hf=Kq/C;\n",
+ "print (\" High frequency sensitivity =%.2f V/m\" %Hf)\n",
+ "R=1*10**6;\n",
+ "tc=R*C;\n",
+ "M=0.95;\n",
+ "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n",
+ "f=w/(2*math.pi);\n",
+ "print (\" Minimum frequency=%.2f sec\" %f)\n",
+ "print ('now f=10Hz')\n",
+ "f=10;\n",
+ "w=2*math.pi*f;\n",
+ "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n",
+ "C_new=tc/R;\n",
+ "Ce=(C_new-C)*10**6;\n",
+ "print (\" External shunt capacitance=%.2f pF\" %Ce)\n",
+ "Hf_new=Kq/C_new;\n",
+ "print (\" new value of high frequency sensitivity=%.2f V/m\" %Hf_new)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 109,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage just before t=2ms =1.00 mV\n",
+ "(-2.2026841435311137, 'voltage just after t=2ms (mV)')\n",
+ "Voltage just after t=2ms =-2.20 mV\n",
+ "when t=10ms\n",
+ "output voltage 10 ms after the application of impulse =0 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.53\n",
+ "import math;\n",
+ "R=10**6;\n",
+ "C=2500*10**-12;\n",
+ "tc=R*C;\n",
+ "t=2*10**-3;\n",
+ "d=100*10**-12;\n",
+ "F=0.1;\n",
+ "el=10.0**3*(d*F*(math.exp(-t/tc))/C);\n",
+ "print (\"Voltage just before t=2ms =%.2f mV\" %e1)\n",
+ "el_after=10**3*(d*F*(math.exp(-t/tc)-1)/C);\n",
+ "print (el_after,'voltage just after t=2ms (mV)')\n",
+ "print (\"Voltage just after t=2ms =%.2f mV\" %el_after)\n",
+ "print ('when t=10ms')\n",
+ "t=10.0*10**-3;\n",
+ "T=2.0*10\n",
+ "e_10=10.0**3*(d*F*(math.exp((-T/tc)-1))*(math.exp(-(t-T))/tc)/C)\n",
+ "print (\"output voltage 10 ms after the application of impulse =%.0f mV\" %e_10)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 110,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Let T=1\n",
+ "Time constant =19.50 s\n",
+ "as T=1 so time constant should be approximately equal to 20T\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.54\n",
+ "import math;\n",
+ "print ('Let T=1');\n",
+ "T=1;\n",
+ "el=0.95;\n",
+ "tc=-T/math.log(el);\n",
+ "print (\"Time constant =%.2f s\" %tc)\n",
+ "print ('as T=1 so time constant should be approximately equal to 20T')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 111,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage =-0.75 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.55\n",
+ "import math;\n",
+ "Kh=-1*10**-6;\n",
+ "I=3;\n",
+ "B=0.5;\n",
+ "t=2*10**-3;\n",
+ "Eh=Kh*I*B*10**3/t;\n",
+ "print (\"output voltage =%.2f mV\" %Eh)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 112,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "External resistance required =-999.997 ohm\n",
+ "Dark current =0.29 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.56\n",
+ "import math;\n",
+ "R1=(30/10*10**-3)-1000;\n",
+ "print (\"External resistance required =%.3f ohm\" %R1)\n",
+ "Id=30.0*10**3/((2*10**3)+(100*10**3))\n",
+ "print (\"Dark current =%.2f mA\" %Id)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Exa 2.57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 113,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential of point b, Vb= 5.000000\n",
+ "Potential of point d, Vd= 10.000000\n",
+ "Outout voltage of bridge =-5.00 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.57\n",
+ "import math;\n",
+ "Vb=10-(10.0/((2*10**3))*10**3);\n",
+ "print ('Potential of point b, Vb= %f'%Vb)\n",
+ "Vd=10-(10/((3*10**3))*2*10**3);\n",
+ "print ('Potential of point d, Vd= %f' %Vd)\n",
+ "Ebd=Vb-Vd;\n",
+ "print (\"Outout voltage of bridge =%.2f V\" %Ebd)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3.ipynb
new file mode 100644
index 00000000..1d8c5ae8
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3.ipynb
@@ -0,0 +1,287 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3:Measurement of non electrical quantities"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =350.0 mm\n",
+ "sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used\n",
+ "deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =70.0 mm\n",
+ "delection is within the range\n",
+ "deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =17.0 mm\n",
+ "delection is within the range\n",
+ "deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =3.0 mm\n",
+ "delection is within the range\n",
+ "deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =0.0 mm\n",
+ "delection is within the range\n",
+ "since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 3.1\n",
+ "import math\n",
+ "Aou=700*25*1/100;\n",
+ "Aol=100*25*1/100;\n",
+ "AouPtP= 2*Aou;\n",
+ "AolPtP= 2*Aol;\n",
+ "Se1=1;\n",
+ "D1=AouPtP/Se1;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =%.1f mm\" %D1)\n",
+ "print ('sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used')\n",
+ "Se2=5;\n",
+ "D2=AouPtP/Se2;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =%.1f mm\" %D2)\n",
+ "print ('delection is within the range')\n",
+ "Se3=20;\n",
+ "D3=AouPtP/Se3;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =%.1f mm\" %D3)\n",
+ "print ('delection is within the range')\n",
+ "Se4=100;\n",
+ "D4=AouPtP/Se4;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =%.1f mm\" %D4)\n",
+ "print ('delection is within the range')\n",
+ "Se5=500;\n",
+ "D5=AouPtP/Se5;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =%.1f mm\" %D5)\n",
+ "print ('delection is within the range')\n",
+ "print ('since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Radius of curvature =356.04 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#3.2\n",
+ "import math\n",
+ "tA=1;\n",
+ "tB=1;\n",
+ "m=tA/tB;\n",
+ "EB=147.0;\n",
+ "EA=216;\n",
+ "T2=200.0;\n",
+ "T1=25;\n",
+ "n=EB/EA;\n",
+ "T=T2-T1;\n",
+ "A=12.5*10**-6;\n",
+ "B=1.7*10**-6;\n",
+ "a=3*(1+m)**2;\n",
+ "b=(1+m*n)*((m**2)+1/(m*n));\n",
+ "c= (6*(A-B)*T*(1+m)**2);\n",
+ "r=(a+b)/c;\n",
+ "print (\"Radius of curvature =%.2f mm\" %r)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Radius of curvature =500 mm\n",
+ "vertical displacement =2 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#3.3\n",
+ "t=2;\n",
+ "T2=180;\n",
+ "T1=20;\n",
+ "T=T2-T1;\n",
+ "A=12.5*10**-6;\n",
+ "r=t/(2*T*A);\n",
+ "print (\"Radius of curvature =%.0f mm\" %r)\n",
+ "Th=40.0/500;\n",
+ "y=r*(1.0-math.cos(Th));\n",
+ "print (\"vertical displacement =%.0f mm\" %y)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "True temperature =1853.57 degree K\n",
+ "True temperature =1580.57 degree C\n"
+ ]
+ }
+ ],
+ "source": [
+ "#3.4\n",
+ "import math\n",
+ "Ta=1480+273;\n",
+ "Tf=0.8;\n",
+ "T=Tf**-0.25*Ta;\n",
+ "print (\"True temperature =%.2f degree K\" %T)\n",
+ "Tc=T-273;\n",
+ "print (\"True temperature =%.2f degree C\" %Tc)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Error in temperature measurement=-172.91 degree C\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 3.5\n",
+ "import math\n",
+ "ATC1=1065;\n",
+ "AT=ATC1+273;\n",
+ "Em1=0.82;\n",
+ "Ta=(Em1**(-0.25))*AT;\n",
+ "Em2=0.75;\n",
+ "Taa=(Em2**-0.25)*Ta;\n",
+ "ATC2=Taa-273;\n",
+ "E=ATC1-ATC2;\n",
+ "print (\"Error in temperature measurement=%.2f degree C\" %E)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Average flow rate=0.02 degree m/s\n",
+ "Percentage decrease in voltage=1.79 degree m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 3.6\n",
+ "import math\n",
+ "EL=0.1;\n",
+ "Zo=250*10**3;\n",
+ "ZL=2.5*10**6;\n",
+ "Eo=EL*(1+(Zo/ZL));\n",
+ "B=0.1;\n",
+ "l=50*10**-3;\n",
+ "G=1000;\n",
+ "v=Eo/(B*l*G);\n",
+ "print (\"Average flow rate=%.2f degree m/s\" %v)\n",
+ "Zon=1.2*250*10**3;\n",
+ "ELn=2*Eo/(1+(Zon/ZL));\n",
+ "PDV=((0.2-ELn)/0.2)*100;\n",
+ "print (\"Percentage decrease in voltage=%.2f degree m/s\" %PDV)\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb
new file mode 100644
index 00000000..af78fda8
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4.ipynb
@@ -0,0 +1,585 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4:Telemetry and data acquisition system"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are\n",
+ "Upper side band frequency for modulating frequency of 300 Hz =1000.3 kHz\n",
+ "Lower side band frequency for modulating frequency of 300 Hz =999.7 kHz\n",
+ "Upper side band frequency for modulating frequency of 800 Hz =1000.8 kHz\n",
+ "Lower side band frequency for modulating frequency of 800 Hz =999.2 kHz\n",
+ "Upper side band frequency for modulating frequency of 2kHz =1002.0 kHz\n",
+ "Lower side band frequency for modulating frequency of 2kHz =998.0 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.1\n",
+ "import math\n",
+ "fc=1000;\n",
+ "print ('In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are')\n",
+ "fs1=0.3;\n",
+ "fu1=fc+fs1;\n",
+ "print (\"Upper side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fu1)\n",
+ "fl1=fc-fs1;\n",
+ "print (\"Lower side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fl1)\n",
+ "fs2=0.8;\n",
+ "fu2=fc+fs2;\n",
+ "print (\"Upper side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fu2)\n",
+ "fl2=fc-fs2;\n",
+ "print (\"Lower side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fl2)\n",
+ "fs3=2;\n",
+ "fu3=fc+fs3;\n",
+ "print (\"Upper side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fu3)\n",
+ "fl3=fc-fs3;\n",
+ "print (\"Lower side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fl3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Upper side band frequency =721.76 kHz\n",
+ "Lower side band frequency =701.76 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.2\n",
+ "import math\n",
+ "L=50*10**-6;\n",
+ "C=1*10**-9;\n",
+ "fc=1/(2*math.pi*(L*C)**0.5);\n",
+ "fs1=10000;\n",
+ "fu1=(fc+fs1)*10**-3;\n",
+ "print (\"Upper side band frequency =%.2f kHz\" %fu1)\n",
+ "fl1=(fc-fs1)*10**-3;\n",
+ "print (\"Lower side band frequency =%.2f kHz\" %fl1)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Radiation Power =68.06 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.3\n",
+ "import math\n",
+ "Pc=50;\n",
+ "m=0.85;\n",
+ "Pt=Pc*(1+(m**2/2))\n",
+ "print (\"Radiation Power =%.2f kW\" %Pt)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "modulation index for Es (2.4) =9.6\n",
+ "modulation index for Es(7.2)=28.8\n",
+ "modulation indexfor Es(10) =40.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.4\n",
+ "import math\n",
+ "delta=4.8;\n",
+ "Es=2.4;\n",
+ "K=delta/Es;\n",
+ "Es1=7.2;\n",
+ "delta1=K*Es1;\n",
+ "Es2=10;\n",
+ "delta2=K*Es2;\n",
+ "fs1=500*10**-3;\n",
+ "mf1=delta/fs1;\n",
+ "print (\"modulation index for Es (2.4) =%.1f\" %mf1)\n",
+ "mf2=delta1/fs1;\n",
+ "print (\"modulation index for Es(7.2)=%.1f\" %mf2)\n",
+ "mf3=delta2/fs1;\n",
+ "print (\"modulation indexfor Es(10) =%.1f\" %mf3)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "carrier frequency =95493.0 kHz\n",
+ "modulating frequency =198.9 Hz\n",
+ "maximum deviation =994.7 Hz\n",
+ "Power dissipated =7.2 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.5\n",
+ "import math\n",
+ "wc=6*10**8;\n",
+ "fc=(wc)/(2*math.pi)*10**-3;\n",
+ "print (\"carrier frequency =%.1f kHz\" %fc)\n",
+ "ws=1250;\n",
+ "fs=(ws)/(2*math.pi);\n",
+ "print (\"modulating frequency =%.1f Hz\" %fs)\n",
+ "mf=5;\n",
+ "delta=mf*fs;\n",
+ "print (\"maximum deviation =%.1f Hz\" %delta)\n",
+ "Rms=12/(2**0.5);\n",
+ "P=Rms**2/10;\n",
+ "print (\"Power dissipated =%.1f W\" %P)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Band width =80 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.6\n",
+ "import math\n",
+ "delta=10;\n",
+ "fs=2;\n",
+ "mf=delta/fs;\n",
+ "BW=16*mf;\n",
+ "print (\"Band width =%.0f kHz\" %BW)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V\n",
+ "for a signal voltage of 4 V\n",
+ "epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V\n",
+ "for a fs of 8 kHz\n",
+ "epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.7\n",
+ "import math\n",
+ "fc=100*10**6;\n",
+ "wc=2*math.pi*fc;\n",
+ "fs=6*10**3;\n",
+ "ws=2*math.pi*fs;\n",
+ "delta=60*10**3;\n",
+ "mf=delta/fs;\n",
+ "mp=mf;\n",
+ "print ('epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V')\n",
+ "print ('for a signal voltage of 4 V')\n",
+ "mp=4*10/3;\n",
+ "print ('epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V')\n",
+ "print ('for a fs of 8 kHz')\n",
+ "print ('epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "range is 0-31 V with each step representing 1V\n",
+ "quattization error =0.4 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.8\n",
+ "import math\n",
+ "n=5;\n",
+ "Ql=2**n;\n",
+ "Range=(Ql-1)*1;\n",
+ "print ('range is 0-31 V with each step representing 1V')\n",
+ "Qe=27.39-27;\n",
+ "print (\"quattization error =%.1f V\" %Qe)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For amplitude modulation\n",
+ "Minimum width of carrier channel =2.0 kHz\n",
+ "For frequency modulation\n",
+ "Minimum width of carrier channel =5.0 kHz\n",
+ "For pulse code modulation\n",
+ "Minimum width of carrier channel =8.0 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.9\n",
+ "import math\n",
+ "print ('For amplitude modulation')\n",
+ "MCCW=2*1;\n",
+ "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n",
+ "print ('For frequency modulation')\n",
+ "MCCW=2*(1.5+1);\n",
+ "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n",
+ "print ('For pulse code modulation')\n",
+ "MCCW=8*1;\n",
+ "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "At 403 change in frequency\n",
+ "Fuel level =1650.0 L\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.10\n",
+ "import math\n",
+ "Fc=430-370;\n",
+ "print ('At 403 change in frequency')\n",
+ "Fc1=403-370;\n",
+ "Fuel_level=Fc1*3000/Fc;\n",
+ "print (\"Fuel level =%.1f L\" %Fuel_level)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "for good quality data the sampling rate should be at least 5 times the data frequency for one channel\n",
+ "sampling rate =1250.0 samples per second\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.11\n",
+ "import math\n",
+ "print ('for good quality data the sampling rate should be at least 5 times the data frequency for one channel')\n",
+ "channel=5;\n",
+ "f=50;\n",
+ "sampling_rate=5*channel*f;\n",
+ "print (\"sampling rate =%.1f samples per second\" %sampling_rate)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum possible data transmission rate =6000.0 bits per second\n",
+ "minimum sampling rate per channel =2000.0 samples per second\n",
+ "maximum number of channels =42 \n"
+ ]
+ }
+ ],
+ "source": [
+ "#4.12\n",
+ "import math\n",
+ "Vs=7;\n",
+ "Vn=1;\n",
+ "fh=10**3;\n",
+ "H=2*fh*math.log(1+(Vs/Vn),2);\n",
+ "print (\"Maximum possible data transmission rate =%.1f bits per second\" %H)\n",
+ "Sampling_rate=2*fh;\n",
+ "print (\"minimum sampling rate per channel =%.1f samples per second\" %Sampling_rate)\n",
+ "C_max=85714/2000;\n",
+ "print (\"maximum number of channels =%.0f \" %C_max)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutt off frquency =50.0 kHz \n"
+ ]
+ }
+ ],
+ "source": [
+ "#4.13\n",
+ "import math\n",
+ "d_rate=100;\n",
+ "fc= 0.5*d_rate;\n",
+ "print (\"cutt off frquency =%.1f kHz \" %fc)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.\n",
+ "therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth\n"
+ ]
+ }
+ ],
+ "source": [
+ "#4.14\n",
+ "import math\n",
+ "print ('The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.')\n",
+ "print ('therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 4.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Bandwidth of intelligence =2475.0 Hz \n",
+ "Rise time=141.4 us \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.15\n",
+ "import math\n",
+ "Fd=7.5*165*10**3/100;\n",
+ "mf=5;\n",
+ "Bandwidth=Fd/mf;\n",
+ "print (\"Bandwidth of intelligence =%.1f Hz \" %Bandwidth)\n",
+ "Tr=0.35/Bandwidth*10**6;\n",
+ "print (\"Rise time=%.1f us \" %Tr)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb
new file mode 100644
index 00000000..18a94379
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5.ipynb
@@ -0,0 +1,281 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5:Advanced measuring instruments"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 5.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A=0.000064\n",
+ "B=0.000512\n",
+ "since A<B so the instrument is underdamped\n",
+ "Number of turns=3356426 \n",
+ "current required to overcome friction=0.1 uA \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.1\n",
+ "import math\n",
+ "D=8*10**-3;\n",
+ "A=D**2;\n",
+ "print ('A=%f'%A)\n",
+ "J=8*10**-3;\n",
+ "K=16*10**-3;\n",
+ "B=4*J*K;\n",
+ "print ('B=%f'%B)\n",
+ "print ('since A<B so the instrument is underdamped')\n",
+ "th=(100*math.pi)/180;\n",
+ "i=10*10**-3;\n",
+ "F=0.2*10**-6;\n",
+ "G=(K*th+F)/i;\n",
+ "l=65*10**-3;\n",
+ "d=25*10**-3;\n",
+ "N=G/(B*l*d);\n",
+ "print (\"Number of turns=%.0f \" %N)\n",
+ "i=F/G*10**6;\n",
+ "print (\"current required to overcome friction=%.1f uA \" %i)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 5.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "upper value of range=1896 Hz\n",
+ "lower value of range=696 Hz\n",
+ "So, the range of the frequency is from 696 to 1896 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.2\n",
+ "import math\n",
+ "eta=0.6;\n",
+ "fn=2400;\n",
+ "M=0.98;\n",
+ "#M=1/(((1-u**2)**2)+(2*u*eta)**2)**0.5; ..........(i)\n",
+ "# On solving the above equation we get u=0.79\n",
+ "u=0.79;\n",
+ "fu=u*fn;\n",
+ "print (\"upper value of range=%.0f Hz\" %fu)\n",
+ "\n",
+ "#Now let M=1.02, on solving equation (i) we have u=0.29\n",
+ "u=0.29;\n",
+ "fl=u*fn;\n",
+ "print (\"lower value of range=%.0f Hz\" %fl)\n",
+ "print ('So, the range of the frequency is from 696 to 1896 Hz')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 5.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "phase displacement for the fundamental=7.37 degree\n",
+ "phase displacement for the 5th harmonic=40.48 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.3\n",
+ "import math\n",
+ "eta=0.64;\n",
+ "u=0.1;\n",
+ "alpha_1=math.degrees(math.atan(2*eta*u/(1-u**2)))\n",
+ "print (\"phase displacement for the fundamental=%.2f degree\" %alpha_1)\n",
+ "u=0.5;\n",
+ "alpha_5=math.degrees(math.atan((2*eta*u/(1-u**2))))\n",
+ "print (\"phase displacement for the 5th harmonic=%.2f degree\" %alpha_5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 5.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage error for the production of 3rd harmonics=-0.56\n",
+ "Percentage error for the production of 5th harmonics=-1.54\n",
+ "Percentage error for the production of 7th harmonics=-2.97\n",
+ "Percentage error for the production of 11th harmonics=-7.03\n",
+ "Percentage error for the production of 13th harmonics=-9.55\n",
+ " Displacement of 13th harmonic=-1.23 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "#5.4\n",
+ "import math\n",
+ "To=1.0/2000;\n",
+ "T=1.0/50;\n",
+ "#Rn=1/(1+n**2*(To/T)**2)\n",
+ "R1=1.0/(1+1.0**2*(To/T)**2);\n",
+ "R3=1.0/(1+3**2*(To/T)**2);\n",
+ "R5=1.0/(1+5**2*(To/T)**2);\n",
+ "R7=1.0/(1+7**2*(To/T)**2);\n",
+ "R11=1.0/(1+11**2*(To/T)**2);\n",
+ "R13=1.0/(1+13**2*(To/T)**2);\n",
+ "PE3=(R3-1/1)*100;\n",
+ "print (\"Percentage error for the production of 3rd harmonics=%.2f\" %PE3)\n",
+ "PE5=(R5-1/1)*100;\n",
+ "print (\"Percentage error for the production of 5th harmonics=%.2f\" %PE5)\n",
+ "PE7=(R7-1/1)*100;\n",
+ "print (\"Percentage error for the production of 7th harmonics=%.2f\" %PE7)\n",
+ "PE11=(R11-1/1)*100;\n",
+ "print (\"Percentage error for the production of 11th harmonics=%.2f\" %PE11)\n",
+ "PE13=(R13-1/1)*100;\n",
+ "print (\"Percentage error for the production of 13th harmonics=%.2f\" %PE13)\n",
+ "#displacement of nth harmonic alpha=atan2*n/((T/To)-n**2*(To/T))\n",
+ "alpha_1=math.degrees(math.atan(2*1/((T/To)-(1**2*(To/T)))));\n",
+ "alpha_13=(math.degrees(math.atan(2*13/((T/To)-(13**2*(To/T))))));\n",
+ "alpha_1_equivalent_13=13*alpha_1;\n",
+ "phase_displacement_13=alpha_13-alpha_1_equivalent_13;\n",
+ "print (\" Displacement of 13th harmonic=%.2f degree\" %phase_displacement_13)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum tape speed=7.81 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.5\n",
+ "import math\n",
+ "W_min=2.5*6.25*10**-6;\n",
+ "f=500000;\n",
+ "S_min=W_min*f;\n",
+ "print (\"minimum tape speed=%.2f m/s\" %S_min)\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number density of the tape=8 numbers/mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.6\n",
+ "import math\n",
+ "Num_per_sec=12000;\n",
+ "S=1.5*10**3;\n",
+ "Number_density=Num_per_sec/S;\n",
+ "print (\"Number density of the tape=%.0f numbers/mm\" %Number_density)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6.ipynb
new file mode 100644
index 00000000..f247911b
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6.ipynb
@@ -0,0 +1,448 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6:Cathode ray oscilloscope"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "amplitude of voltage after 10 ms=4.76 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.1\n",
+ "import math\n",
+ "Vcc=50;\n",
+ "t=10*10**-3;\n",
+ "R=500*10**3;\n",
+ "C=0.2*10**-6;\n",
+ "tc=R*C;\n",
+ "Vo=Vcc*(1-math.exp(-t/tc));\n",
+ "print (\"amplitude of voltage after 10 ms=%.2f V\" %Vo)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage across the capacitor after 50 microsecond=1.36 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.2\n",
+ "import math\n",
+ "Vcc=4.76;\n",
+ "t=50*10**-6;\n",
+ "R=0.2*10**3;\n",
+ "C=0.2*10**-6;\n",
+ "tc=R*C;\n",
+ "Vo=Vcc*(math.exp(-t/tc));\n",
+ "print (\"voltage across the capacitor after 50 microsecond=%.2f V\" %Vo)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rise time=0.03 us\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.3\n",
+ "import math\n",
+ "BW=10*10**6;\n",
+ "tr=0.35/BW*10**6;\n",
+ "print (\"Rise time=%.2f us\" %tr)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Attenuation factor=10.0 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.4\n",
+ "import math\n",
+ "R=(9.0*10**3)+(900+90+10);\n",
+ "Rt=100*10**3;\n",
+ "Attenuation=R/Rt;\n",
+ "Attenuation_factor=1/Attenuation;\n",
+ "print (\"Attenuation factor=%.1f \" %Attenuation_factor)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Attenuation factor=11.0 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.5\n",
+ "import math\n",
+ "R=10.0*10**3;\n",
+ "Ri=100*10**3;\n",
+ "Rt=100*10**3;\n",
+ "Rp=(Ri*R)/(Ri+R);\n",
+ "Attenuation=Rp/Rt;\n",
+ "Attenuation_factor=1/Attenuation;\n",
+ "print (\"Attenuation factor=%.1f \" %Attenuation_factor)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For point A Attenuation_factor=400\n",
+ "voltage per division value at point A=20.00\n",
+ "For point B Attenuation_factor=100\n",
+ "voltage per division value at point B=5.00\n",
+ "For point C Attenuation_factor=40\n",
+ "voltage per division value at point C=2.00\n",
+ "For point D Attenuation_factor=10\n",
+ "voltage per division value at point D=0.50\n",
+ "For point E Attenuation_factor=4\n",
+ "voltage per division value at point E=0.20\n",
+ "For point F Attenuation_factor=1\n",
+ "voltage per division value at point F=0.05\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.6\n",
+ "import math\n",
+ "Vo=50*10**-3;\n",
+ "print ('For point A Attenuation_factor=400')\n",
+ "Attenuation_factor=400;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point A=%.2f\" %Vi)\n",
+ "print ('For point B Attenuation_factor=100')\n",
+ "Attenuation_factor=100;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point B=%.2f\" %Vi)\n",
+ "print ('For point C Attenuation_factor=40')\n",
+ "Attenuation_factor=40;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point C=%.2f\" %Vi)\n",
+ "print ('For point D Attenuation_factor=10')\n",
+ "Attenuation_factor=10;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point D=%.2f\" %Vi)\n",
+ "print ('For point E Attenuation_factor=4')\n",
+ "Attenuation_factor=4;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point E=%.2f\" %Vi)\n",
+ "print ('For point F Attenuation_factor=1')\n",
+ "Attenuation_factor=1;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point F=%.2f\" %Vi)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Attenuationn for dc=10.0\n",
+ "Attenuationn for ac=3.0\n",
+ "Therefore the attenuation with ac is different from that of dc\n"
+ ]
+ }
+ ],
+ "source": [
+ "#6.7\n",
+ "import math\n",
+ "R2=100*10**3;\n",
+ "Vi=1.0;\n",
+ "R1=900*10**3;\n",
+ "Vo_dc=Vi*R2/(R1+R2);\n",
+ "k_dc=1/Vo_dc;\n",
+ "print (\"Attenuationn for dc=%.1f\" % k_dc)\n",
+ "XC2=1592.0;\n",
+ "Vi=1;\n",
+ "XC1=3183;\n",
+ "Vo_ac=Vi*XC2/(XC1+XC2);\n",
+ "k_ac=1/Vo_ac;\n",
+ "print (\"Attenuationn for ac=%.1f\" % k_ac)\n",
+ "print ('Therefore the attenuation with ac is different from that of dc')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum velocity of the beam of electrons=16772557.39 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.8\n",
+ "import math\n",
+ "e=1.6*10**-19;\n",
+ "Ea=800;\n",
+ "m=9.1*10**-31;\n",
+ "Vox=(2*e*Ea/m)**0.5;\n",
+ "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum velocity of the beam of electrons=26519741.77 m/s\n",
+ "deflection sensitivity=0.38 mm/V\n",
+ "Deflection Factor=2.67 V/mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.9\n",
+ "import math\n",
+ "e=1.6*10**-19;\n",
+ "Ea=2000;\n",
+ "m=9.1*10**-31;\n",
+ "Vox=(2*e*Ea/m)**0.5;\n",
+ "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n",
+ "L=5;\n",
+ "ld=1.5*10**-2;\n",
+ "d=5*10**-3;\n",
+ "S=(L*ld/2*d*Ea);\n",
+ "print (\"deflection sensitivity=%.2f mm/V\" %S)\n",
+ "G=1/S;\n",
+ "print (\"Deflection Factor=%.2f V/mm\" %G)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Input voltage required for deflection of 3mm =1.0 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.10\n",
+ "import math\n",
+ "Ea=2000;\n",
+ "L=0.3;\n",
+ "ld=2*10**-2;\n",
+ "d=5*10**-3;\n",
+ "D=3*10**-2;\n",
+ "Ed=(2*d*Ea*D)/(L*ld);\n",
+ "gain=100;\n",
+ "V_require=Ed/gain;\n",
+ "print (\"Input voltage required for deflection of 3mm =%.1f V\" %V_require)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 6.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum velocity of the beam of electrons=26519741.77 m/s\n",
+ "Cutt off frequency=132.60 MHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.11\n",
+ "import math\n",
+ "e=1.6*10**-19;\n",
+ "Ea=2000;\n",
+ "m=9.1*10**-31;\n",
+ "Vox=(2*e*Ea/m)**0.5;\n",
+ "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n",
+ "l=50*10**-3;\n",
+ "fc=Vox/(4*l)*10**-6;\n",
+ "print (\"Cutt off frequency=%.2f MHz\" %fc)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_1irZXi7.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_1irZXi7.png
new file mode 100644
index 00000000..36ac2d6b
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_1irZXi7.png
Binary files differ
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_PuHsZd9.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_PuHsZd9.png
new file mode 100644
index 00000000..eb574137
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_PuHsZd9.png
Binary files differ
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_sWGbyRo.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_sWGbyRo.png
new file mode 100644
index 00000000..e21afc0c
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_sWGbyRo.png
Binary files differ