summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_3PIZdCZ.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ilPyJ8g.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_4BZsRLv.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_5MOwKRN.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_67txrIp.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_D6S5lj3.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_6yxgHRk.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_rPglyVc.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_AI0j6iz.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_Iq2SYN6.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_BeoNvNJ.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_dqq0jBY.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_C5MN2xR.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ByleN6p.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_CcK6hTx.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_Y6fD7AV.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_DFSwMy4.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_O33oUvf.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_G3431Y7.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_474uiLC.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_J8Upmcr.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_6FxkZN9.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_JCq8HAi.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_mJo3HTQ.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_K3IUht7.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_XY9Pn8L.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_LJxLQlK.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_IGpUWB3.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_OLWlzHB.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9wGFzOA.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PM35Sod.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_4wHa84D.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PcS3cZO.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_C7pfw6B.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PhUBCOd.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_HTpmACc.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_QmSJVCe.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_FMYsyQL.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_SUM8Scj.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9ypQlC1.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_UoR7uWv.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_UKQHPIE.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_X9UCvRs.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sDuatqh.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_YS5Nd1j.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_O3VudAg.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_afmBatJ.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_oO3ONmh.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_bSQgnPm.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9JxFKFd.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_bY2ZN66.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_jg3RGpS.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_cTtPTGc.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9QKT9Zi.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_cZSZMxi.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_7zRh33K.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_gW7wZ6p.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sxn3SNy.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_hov0efx.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_tWbQ8Pq.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_jpSDAMK.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GqqK7m2.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_lccjYuj.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_KTU5lgY.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_mC9HXIe.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_H0c7r3u.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_nCAK7Pv.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_1xuVkJg.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_oWi1ZaJ.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qFCBayQ.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_okp6S1t.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_HGvWYP4.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_qXWKbys.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_A7bupXa.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_qnXMBUI.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_IEJK6rC.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_rd9Cqof.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ZbMx9hO.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_riYWpjh.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_PhquDyD.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_suexzMr.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_forNk4r.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_tGnsZHr.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_d5vdQB4.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_wKmymt8.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GTe4Vbd.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_zQEL5I0.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_3ptASMI.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_zkr9kKy.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_6OPVCIi.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter25.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter25.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter26.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter26.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter27.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter27.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter28.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter28.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter29.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter29.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter30.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter30.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter31.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter31.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter32.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter32.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter33.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter33.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter34.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter34.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter35.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter35.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter36.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter36.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter37.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter37.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter38.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter38.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter39.ipynb (renamed from A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter39.ipynb)0
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GQsd2dA.ipynb1739
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_SN4SQdm.ipynb1258
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_cFyHAjr.ipynb210
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_i45oeUA.ipynb1433
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_kFFOkoF.ipynb1741
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_lYTG7YP.ipynb391
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_mfQgF34.ipynb2629
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ojLdxoF.ipynb388
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qasIWcx.ipynb5447
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qqhSxyn.ipynb1094
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sxNNKcd.ipynb1233
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_uaftNOn.ipynb3137
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_vCF2LoD.ipynb2354
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_wCDB06c.ipynb256
-rw-r--r--A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_zc3inLB.ipynb3109
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_JEDKX6y.ipynb85
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_h5C3e6Y.ipynb2369
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_qFSzPBo.ipynb321
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_SPNEqxW.ipynb663
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_Z3v5KUy.ipynb314
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_PAvun9L.ipynb506
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_50WmI6W.pngbin0 -> 132060 bytes
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_B14Bydb.pngbin0 -> 137695 bytes
-rw-r--r--Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_StwySDt.pngbin0 -> 139145 bytes
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER01.ipynb300
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER02.ipynb473
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER03.ipynb895
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER04.ipynb614
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER05.ipynb326
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER06.ipynb185
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER08.ipynb73
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_6szT6Jg.pngbin0 -> 104052 bytes
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_BsARCky.pngbin0 -> 117127 bytes
-rw-r--r--An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_EwDd0aP.pngbin0 -> 94730 bytes
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER01.ipynb412
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER02.ipynb917
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER03.ipynb578
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER04.ipynb396
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER05.ipynb1480
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER06.ipynb350
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER07.ipynb174
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb405
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER09.ipynb782
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER10.ipynb632
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER11.ipynb473
-rw-r--r--Electric_Machines_by_C._I._Hubert/CHAPTER12.ipynb407
-rw-r--r--Electric_Machines_by_C._I._Hubert/screenshots/Screenshot02.pngbin0 -> 94779 bytes
-rw-r--r--Electric_Machines_by_C._I._Hubert/screenshots/Screenshot04.pngbin0 -> 89452 bytes
-rw-r--r--Electric_Machines_by_C._I._Hubert/screenshots/Screenshot06.pngbin0 -> 115742 bytes
-rw-r--r--Numerical_Methods_by_E._Balaguruswamy/README.txt10
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_0ueFAVm.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_0uf3yP0.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_1Zann0J.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2PP9evZ.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2mTSrh6.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3BwHkBv.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3R4x1st.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3njJQNW.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3nqQG4m.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3xxtXFm.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_4GlnKNw.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_4JhcI7F.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_55ZHPE1.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_5CfOfQx.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_5SNrv6n.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_62smEFc.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_7vAWWtf.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_8k98KXK.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_9VidT5N.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_9epeI5v.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_A4S9GUx.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_B30VPml.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_BE8QjoS.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_CEeTHUJ.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_DBRnpjG.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_E1eRmp6.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_EgLF2q9.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_FFKa2Sp.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GQ8CWIs.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GSsNqEg.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Gb015bo.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Ghtzwya.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HEd5C4N.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HSbNn46.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGQRKwM.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGzhROY.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IlcYN96.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IqwgJnn.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_JJ01HrC.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_JUw3vAF.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Jn2jAxR.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_KQ8ycMr.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_KiVfsMF.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_L5T0xXa.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_LIZWeY4.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_MX4QMcA.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_NHRNirZ.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Opo6g3L.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PE2KT6W.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PKCP8ZY.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PMopwvn.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Pq40WOu.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_QAmMmeC.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_QLXi0uM.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_R4x75BC.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_S1T3CG1.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_TdOIeIQ.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ThOp7qx.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_TxLgaXP.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UQP2Hbl.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UQwi3kS.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UiM06tF.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VOR04oy.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VQabJzR.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WWuyXIV.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WmyXg3b.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_X8mfBi8.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XDSmkBg.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XKPPUxj.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XPd6sq1.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XPyMgwX.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_YHbAZL8.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_aBkpbIM.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_arYa4fL.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_bIyaeBj.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_btH1sKz.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_bzWyzdo.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_c6M9YFS.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_cw2plTq.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_d87uZsb.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dJzyQXE.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dV9ikYe.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dfFlLnm.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_e7YLoLd.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_eHnfttn.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_fegIkl6.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_fh4Y4P5.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_g1GxlUN.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gGvuusH.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gS07PdN.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gZeNd4b.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hNPm1sF.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hbRKWYG.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_iLv6ZKs.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_icFPVil.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_jCoLiYG.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_kEBkdeu.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_khAt4Y6.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_kiH9a7o.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_lSt1FDp.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_lhmb56O.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_mElG7By.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_n6yEvPd.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_oJQM5Mb.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_oqU54mr.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_p22tFeA.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_pbX57Wi.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_qNHcrb8.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_qeUxd0G.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_r0nfWNs.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_rcid83s.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_rygIW1V.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_s0Hwrru.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_sRlEQUk.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_tctko6B.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_uWQUwaW.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ufxQ3hX.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_upuNVE8.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_v4p1YuY.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_v6Hj2e3.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vWFTX5Y.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vX0paAj.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vkMAnbH.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_w8qXQcH.ipynb208
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_wP2wGMS.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_x09tDSO.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yCW2orc.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yOtRKvA.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yU7SECk.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yZCyjq6.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yrMGHYH.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ysoWgBU.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zB4TZyd.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zKQXNUB.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zYPve8I.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter1.ipynb568
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter10.ipynb244
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter11.ipynb384
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter12.ipynb250
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter13.ipynb243
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter14.ipynb320
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter15.ipynb236
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter2.ipynb588
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter3.ipynb540
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter4.ipynb681
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter5.ipynb396
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter6.ipynb304
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter7.ipynb277
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter8.ipynb210
-rw-r--r--Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter9.ipynb208
-rw-r--r--sample_notebooks/KalaiKannan/CHAPTER01.ipynb135
-rw-r--r--sample_notebooks/TarunikaBoyapati/CHAPTER05.ipynb269
-rw-r--r--sample_notebooks/VijayaLakshmi/CHAPTER01.ipynb144
263 files changed, 14688 insertions, 80909 deletions
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ilPyJ8g.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_3PIZdCZ.ipynb
index d43ac823..d43ac823 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ilPyJ8g.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_3PIZdCZ.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_5MOwKRN.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_4BZsRLv.ipynb
index aebdac51..aebdac51 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_5MOwKRN.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_4BZsRLv.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_D6S5lj3.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_67txrIp.ipynb
index 6653720b..6653720b 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_D6S5lj3.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_67txrIp.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_rPglyVc.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_6yxgHRk.ipynb
index d43ac823..d43ac823 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_rPglyVc.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_6yxgHRk.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_Iq2SYN6.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_AI0j6iz.ipynb
index 0690f646..0690f646 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_Iq2SYN6.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_AI0j6iz.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_dqq0jBY.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_BeoNvNJ.ipynb
index 6653720b..6653720b 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_dqq0jBY.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_BeoNvNJ.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ByleN6p.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_C5MN2xR.ipynb
index 95eb9b1e..95eb9b1e 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ByleN6p.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_C5MN2xR.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_Y6fD7AV.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_CcK6hTx.ipynb
index f35c124e..f35c124e 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_Y6fD7AV.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_CcK6hTx.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_O33oUvf.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_DFSwMy4.ipynb
index 0690f646..0690f646 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_O33oUvf.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_DFSwMy4.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_474uiLC.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_G3431Y7.ipynb
index 495cee05..495cee05 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_474uiLC.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_G3431Y7.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_6FxkZN9.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_J8Upmcr.ipynb
index feb75575..feb75575 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_6FxkZN9.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_J8Upmcr.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_mJo3HTQ.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_JCq8HAi.ipynb
index f35c124e..f35c124e 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_mJo3HTQ.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_JCq8HAi.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_XY9Pn8L.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_K3IUht7.ipynb
index feb75575..feb75575 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_XY9Pn8L.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_K3IUht7.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_IGpUWB3.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_LJxLQlK.ipynb
index 7862658a..7862658a 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_IGpUWB3.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_LJxLQlK.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9wGFzOA.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_OLWlzHB.ipynb
index e889465f..e889465f 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9wGFzOA.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_OLWlzHB.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_4wHa84D.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PM35Sod.ipynb
index 99cfc3c1..99cfc3c1 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_4wHa84D.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PM35Sod.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_C7pfw6B.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PcS3cZO.ipynb
index 447ef8ab..447ef8ab 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_C7pfw6B.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PcS3cZO.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_HTpmACc.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PhUBCOd.ipynb
index e889465f..e889465f 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_HTpmACc.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_PhUBCOd.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_FMYsyQL.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_QmSJVCe.ipynb
index 447ef8ab..447ef8ab 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_FMYsyQL.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_QmSJVCe.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9ypQlC1.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_SUM8Scj.ipynb
index 99cfc3c1..99cfc3c1 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9ypQlC1.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_SUM8Scj.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_UKQHPIE.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_UoR7uWv.ipynb
index aebdac51..aebdac51 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_UKQHPIE.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_UoR7uWv.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sDuatqh.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_X9UCvRs.ipynb
index f35c124e..f35c124e 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sDuatqh.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_X9UCvRs.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_O3VudAg.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_YS5Nd1j.ipynb
index 7862658a..7862658a 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_O3VudAg.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_YS5Nd1j.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_oO3ONmh.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_afmBatJ.ipynb
index aebdac51..aebdac51 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_oO3ONmh.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_afmBatJ.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9JxFKFd.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_bSQgnPm.ipynb
index 894eff9f..894eff9f 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9JxFKFd.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_bSQgnPm.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_jg3RGpS.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_bY2ZN66.ipynb
index 0690f646..0690f646 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_jg3RGpS.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_bY2ZN66.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9QKT9Zi.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_cTtPTGc.ipynb
index 894eff9f..894eff9f 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9QKT9Zi.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_cTtPTGc.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_7zRh33K.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_cZSZMxi.ipynb
index ce13ea95..ce13ea95 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_7zRh33K.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_cZSZMxi.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sxn3SNy.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_gW7wZ6p.ipynb
index 6653720b..6653720b 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sxn3SNy.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_gW7wZ6p.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_tWbQ8Pq.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_hov0efx.ipynb
index d43ac823..d43ac823 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_tWbQ8Pq.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_hov0efx.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GqqK7m2.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_jpSDAMK.ipynb
index 95eb9b1e..95eb9b1e 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GqqK7m2.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_jpSDAMK.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_KTU5lgY.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_lccjYuj.ipynb
index 495cee05..495cee05 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_KTU5lgY.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_lccjYuj.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_H0c7r3u.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_mC9HXIe.ipynb
index ce13ea95..ce13ea95 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_H0c7r3u.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_mC9HXIe.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_1xuVkJg.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_nCAK7Pv.ipynb
index 90e078d2..90e078d2 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_1xuVkJg.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_nCAK7Pv.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qFCBayQ.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_oWi1ZaJ.ipynb
index 7862658a..7862658a 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qFCBayQ.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_oWi1ZaJ.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_HGvWYP4.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_okp6S1t.ipynb
index 95eb9b1e..95eb9b1e 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_HGvWYP4.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_okp6S1t.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_A7bupXa.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_qXWKbys.ipynb
index 99cfc3c1..99cfc3c1 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_A7bupXa.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_qXWKbys.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_IEJK6rC.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_qnXMBUI.ipynb
index ce13ea95..ce13ea95 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_IEJK6rC.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_qnXMBUI.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ZbMx9hO.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_rd9Cqof.ipynb
index feb75575..feb75575 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ZbMx9hO.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_rd9Cqof.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_PhquDyD.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_riYWpjh.ipynb
index e889465f..e889465f 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_PhquDyD.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_riYWpjh.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_forNk4r.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_suexzMr.ipynb
index 495cee05..495cee05 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_forNk4r.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_suexzMr.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_d5vdQB4.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_tGnsZHr.ipynb
index 447ef8ab..447ef8ab 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_d5vdQB4.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_tGnsZHr.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GTe4Vbd.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_wKmymt8.ipynb
index 894eff9f..894eff9f 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GTe4Vbd.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_wKmymt8.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_3ptASMI.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_zQEL5I0.ipynb
index 90e078d2..90e078d2 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_3ptASMI.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_zQEL5I0.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_6OPVCIi.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_zkr9kKy.ipynb
index 90e078d2..90e078d2 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_6OPVCIi.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/c_zkr9kKy.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter25.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter25.ipynb
index 894eff9f..894eff9f 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter25.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter25.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter26.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter26.ipynb
index 0690f646..0690f646 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter26.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter26.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter27.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter27.ipynb
index f35c124e..f35c124e 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter27.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter27.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter28.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter28.ipynb
index 447ef8ab..447ef8ab 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter28.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter28.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter29.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter29.ipynb
index 6653720b..6653720b 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter29.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter29.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter30.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter30.ipynb
index ce13ea95..ce13ea95 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter30.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter30.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter31.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter31.ipynb
index aebdac51..aebdac51 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter31.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter31.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter32.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter32.ipynb
index feb75575..feb75575 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter32.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter32.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter33.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter33.ipynb
index 495cee05..495cee05 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter33.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter33.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter34.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter34.ipynb
index d43ac823..d43ac823 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter34.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter34.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter35.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter35.ipynb
index 99cfc3c1..99cfc3c1 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter35.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter35.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter36.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter36.ipynb
index 95eb9b1e..95eb9b1e 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter36.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter36.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter37.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter37.ipynb
index 7862658a..7862658a 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter37.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter37.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter38.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter38.ipynb
index 90e078d2..90e078d2 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter38.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter38.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter39.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter39.ipynb
index e889465f..e889465f 100644
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chapter39.ipynb
+++ b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A._K._Theraja,_B.L_Thereja/chapter39.ipynb
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GQsd2dA.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GQsd2dA.ipynb
deleted file mode 100644
index 90e078d2..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GQsd2dA.ipynb
+++ /dev/null
@@ -1,1739 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:4fa0d818a53ec5608949c7725a11f84c78952680d73d506e4179ac596da192fb"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 38: Synchronous Motor"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.1, Page Number:1495"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=75#kW\n",
- "f=50#Hz\n",
- "v=440#V\n",
- "pf=0.8\n",
- "loss=0.95\n",
- "xs=2.5#ohm\n",
- "\n",
- "#calculations\n",
- "ns=120*f/4\n",
- "pm=p*1000/loss\n",
- "ia=pm/(math.sqrt(3)*v*pf)\n",
- "vol_phase=v/math.sqrt(3)\n",
- "\n",
- "#calculations\n",
- "print \"mechanical power=\",pm,\"W\"\n",
- "print \"armature current=\",ia,\"A\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "mechanical power= 78947.3684211 W\n",
- "armature current= 129.489444346 A\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.2, Page Number:1498"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import cmath\n",
- "#variable declaration\n",
- "p=20\n",
- "vl=693#V\n",
- "r=10#ohm\n",
- "lag=0.5#degrees\n",
- "\n",
- "#calculations\n",
- "#lag=0.5\n",
- "alpha=p*lag/2\n",
- "eb=vp=vl/math.sqrt(3)\n",
- "er=complex(vp-eb*math.cos(math.radians(alpha)),eb*math.sin(math.radians(alpha)))\n",
- "zs=complex(0,10)\n",
- "ia=er/zs\n",
- "power_input=3*vp*abs(ia)*math.cos(math.radians(cmath.phase(ia)))\n",
- "print \"displacement:0.5%\"\n",
- "print \"alpha=\",alpha,\"degrees\"\n",
- "print \"armature emf/phase=\",eb,\"V\"\n",
- "print \"armature current/phase=\",ia,\"A\"\n",
- "print \"power drawn=\",power_input,\"W\"\n",
- "print \"\"\n",
- "\n",
- "#lag=5\n",
- "lag=5\n",
- "alpha=p*lag/2\n",
- "eb=vp=vl/math.sqrt(3)\n",
- "er=complex(vp-eb*math.cos(math.radians(alpha)),eb*math.sin(math.radians(alpha)))\n",
- "zs=complex(0,10)\n",
- "ia=er/zs\n",
- "power_input=3*vp*abs(ia)*math.cos(math.radians(cmath.phase(ia)))\n",
- "\n",
- "print \"displacement:5%\"\n",
- "print \"alpha=\",alpha,\"degrees\"\n",
- "print \"armature emf/phase=\",eb,\"V\"\n",
- "print \"armature current/phase=\",ia,\"A\"\n",
- "print \"power drawn=\",power_input,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "displacement:0.5%\n",
- "alpha= 5.0 degrees\n",
- "armature emf/phase= 400.103736548 V\n",
- "armature current/phase= (3.4871338335-0.152251551219j) A\n",
- "power drawn= 4189.63221768 W\n",
- "\n",
- "displacement:5%\n",
- "alpha= 50 degrees\n",
- "armature emf/phase= 400.103736548 V\n",
- "armature current/phase= (30.6497244054-14.2922012106j) A\n",
- "power drawn= 40591.222447 W\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.3, Page Number:1499"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400.0#V/ph\n",
- "i=32.0#A/ph\n",
- "xs=10.0#ohm\n",
- "\n",
- "#calculations\n",
- "e=math.sqrt(v**2+(i*xs)**2)\n",
- "delta=math.atan((i*xs)/v)\n",
- "power=3*v*i\n",
- "power_other=3*(v*e/10)*math.sin(delta)*0.001\n",
- "\n",
- "#result\n",
- "print \"E=\",e,\"V\"\n",
- "print \"delta=\",math.degrees(delta),\"degrees\"\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "E= 512.249938995 V\n",
- "delta= 38.6598082541 degrees\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.4, Page Number:1506"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "w=150#kW\n",
- "f=50#Hz\n",
- "v=2300#V\n",
- "n=1000#rpm\n",
- "xd=32#ohm\n",
- "xq=20#ohm\n",
- "alpha=16#degrees\n",
- "\n",
- "#calculations\n",
- "vp=v/math.sqrt(3)\n",
- "eb=2*vp\n",
- "ex_power=eb*vp*math.sin(math.radians(alpha))/xd\n",
- "rel_power=(vp**2*(xd-xq)*math.sin(math.radians(2*alpha)))/(2*xd*xq)\n",
- "pm=3*(ex_power+rel_power)\n",
- "tg=9.55*pm/1000\n",
- "\n",
- "#result\n",
- "print \"torque=\",tg,\"N-m\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque= 1121.29686485 N-m\n"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.5, Page Number:1506"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "x=Symbol('x')\n",
- "v=3300.0#V\n",
- "P=1.5#MW\n",
- "phi=3.0\n",
- "xd=4.0#ohm per phase\n",
- "xq=3.0#ohm per phase\n",
- "sin_phi=0\n",
- "cos_phi=1\n",
- "phi=0\n",
- "#calculations\n",
- "v1=v/math.sqrt(3)\n",
- "ia=P*math.pow(10,6)/(math.sqrt(3)*v*cos_phi)\n",
- "tan_sigma=(v1*sin_phi-ia*xq)/(v1*cos_phi)\n",
- "sigma=math.atan(tan_sigma)\n",
- "alpha=phi-sigma\n",
- "i_d=ia*math.sin(sigma)\n",
- "iq=ia*math.cos(sigma)\n",
- "eb=v1*math.cos(alpha)-i_d*xd\n",
- "#eb=1029sin(alpha)+151sin(2*alpha)\n",
- "#dPm/d(alpha)=1029sin(alpha)+151sin(2*alpha)=0\n",
- "ans=solve([(604.0*x**2+1029.0*x-302.0)],[x])\n",
- "alpha2=math.acos(math.radians(ans[1][0]))\n",
- "Pm=1029*math.sin(alpha2)+151*math.sin(alpha2)\n",
- "max_P=Pm*3\n",
- "\n",
- "#result\n",
- "print \"Maximum mechanical power which the motor would develop=\",round(max_P),\"kW\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum mechanical power which the motor would develop= 3540.0 kW\n"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.6, Page Number:1506"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=11000#V\n",
- "ia=60#A\n",
- "r=1#ohm\n",
- "x=30#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "p2=math.sqrt(3)*v*ia*pf\n",
- "cu_loss=ia**2*3\n",
- "pm=p2-cu_loss\n",
- "vp=v/math.sqrt(3)\n",
- "phi=math.acos(pf)\n",
- "theta=math.atan(x/r)\n",
- "zs=x\n",
- "z_drop=ia*zs\n",
- "eb=math.sqrt((vp**2+z_drop**2-(2*vp*z_drop*math.cos(theta+phi))))*math.sqrt(3)\n",
- "\n",
- "#result\n",
- "print \"power supplied=\",p2/1000,\"kW\"\n",
- "print \"mechanical power=\",pm/1000,\"KW\"\n",
- "print \"induced emf=\",eb,\"V\"\n",
- "\n",
- " "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "power supplied= 914.522826396 kW\n",
- "mechanical power= 903.722826396 KW\n",
- "induced emf= 13039.2734763 V\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.7, Page Number:1507"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400#V\n",
- "i=32#A\n",
- "pf=1\n",
- "xd=10#ohm\n",
- "xq=6.5#ohm\n",
- "\n",
- "#calculations\n",
- "e=math.sqrt(v**2+(i*xq)**2)+((xd-xq)*14.8)\n",
- "delta=math.atan((i*xq)/v)\n",
- "power=3*v*i\n",
- "power_other=3*(v*e/10)*math.sin(delta)*0.001\n",
- "\n",
- "#result\n",
- "print \"E=\",e,\"V\"\n",
- "print \"delta=\",math.degrees(delta),\"degrees\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "E= 502.648089715 V\n",
- "delta= 27.4744316263 degrees\n"
- ]
- }
- ],
- "prompt_number": 60
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.8, Page Number:1508"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=500#V\n",
- "output=7.46#kW\n",
- "pf=0.9\n",
- "r=0.8#ohm\n",
- "loss=500#W\n",
- "ex_loss=800#W\n",
- "\n",
- "#calculations\n",
- "pm=output*1000+loss+ex_loss\n",
- "ia=(v*pf-math.sqrt(v**2*pf**2-4*r*pm))/(2*r)\n",
- "m_input=loss*ia*pf\n",
- "efficiency=output*1000/m_input\n",
- "\n",
- "#result\n",
- "print \"commercial efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "commercial efficiency= 82.1029269497 %\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.9, Page Number:1509"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=2300#V\n",
- "r=0.2#ohm\n",
- "x=2.2#ohm\n",
- "pf=0.5\n",
- "il=200#A\n",
- "\n",
- "#calculations\n",
- "phi=math.acos(pf)\n",
- "theta=math.atan(x//r)\n",
- "v=v/math.sqrt(3)\n",
- "zs=math.sqrt(r**2+x**2)\n",
- "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi+theta)))\n",
- "\n",
- "#result\n",
- "print \"Eb=\",eb,\"volt/phase\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Eb= 1708.04482042 volt/phase\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.10, Page Number:1509"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "vl=6600#V\n",
- "f=50#Hz\n",
- "il=50#A\n",
- "r=1#ohm\n",
- "x=20#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "#0.8 lagging\n",
- "power_i=math.sqrt(3)*v*f*pf\n",
- "v=vl/math.sqrt(3)\n",
- "phi=math.acos(pf)\n",
- "theta=math.atan(x/r)\n",
- "zs=math.sqrt(x**2+r**2)\n",
- "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi-theta)))*math.sqrt(3)\n",
- "\n",
- "print \"0.8 lag: Eb=\",eb\n",
- "\n",
- "#0.8 leading\n",
- "power_i=math.sqrt(3)*v*f*pf\n",
- "v=vl/math.sqrt(3)\n",
- "phi=math.acos(pf)\n",
- "theta=math.atan(x/r)\n",
- "zs=math.sqrt(x**2+r**2)\n",
- "eb=math.sqrt(v**2+(il*zs)**2-(2*v*il*zs*math.cos(phi+theta)))*math.sqrt(3)\n",
- "\n",
- "print \"0.8 leading:Eb=\",eb"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "0.8 lag: Eb= 5651.1180113\n",
- "0.8 leading:Eb= 7705.24623679\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.11, Page Number:1510"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "x=0.4\n",
- "pf=0.8\n",
- "v=100#V\n",
- "phi=math.acos(pf)\n",
- "#calculations\n",
- "#pf=1\n",
- "eb=math.sqrt(v**2+(x*v)**2)\n",
- "#pf=0.8 lag\n",
- "eb2=math.sqrt(v**2+(x*v)**2-(2*v*x*v*math.cos(math.radians(90)-phi)))\n",
- "#pf=0.8 lead\n",
- "eb3=math.sqrt(v**2+(x*v)**2-(2*v*x*v*math.cos(math.radians(90)+phi)))\n",
- "#result\n",
- "print \"pf=1: Eb=\",eb,\"V\"\n",
- "print \"pf=0.8 lag:Eb=\",eb2,\"V\"\n",
- "print \"pf=0.8 lead:Eb=\",eb3,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pf=1: Eb= 107.703296143 V\n",
- "pf=0.8 lag:Eb= 82.4621125124 V\n",
- "pf=0.8 lead:Eb= 128.062484749 V\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.12, Page Number:1510"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaraion\n",
- "load=1000#kVA\n",
- "v=11000#V\n",
- "r=3.5#ohm\n",
- "x=40#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "ia=load*1000/(math.sqrt(3)*v)\n",
- "vp=v/math.sqrt(3)\n",
- "phi=math.acos(pf)\n",
- "ra=ia*r\n",
- "xa=ia*x\n",
- "za=math.sqrt(ra**2+xa**2)\n",
- "theta=math.atan(x/r)\n",
- "\n",
- "#pf=1\n",
- "eb1=math.sqrt(vp**2+za**2-(2*vp*za*math.cos(theta)))\n",
- "alpha1=math.asin(xa*math.sin(theta)/eb1)\n",
- "\n",
- "#pf=0.8 lag\n",
- "eb2=math.sqrt(vp**2+xa**2-(2*vp*xa*math.cos(theta-phi)))*math.sqrt(3)\n",
- "alpha2=math.asin(xa*math.sin(theta-phi)/eb2)\n",
- "#pf=1\n",
- "eb3=math.sqrt(vp**2+xa**2-(2*vp*xa*math.cos(theta+phi)))*math.sqrt(3)\n",
- "alpha3=math.asin(xa*math.sin(theta+phi)/eb3)\n",
- "\n",
- "#result\n",
- "print \"at pf=1\"\n",
- "print \"Eb=\",eb1*math.sqrt(3),\"V\"\n",
- "print \"alpha=\",math.degrees(alpha1),\"degrees\"\n",
- "print \"at pf=0.8 lagging\"\n",
- "print \"Eb=\",eb2,\"V\"\n",
- "print \"alpha=\",math.degrees(alpha2),\"degrees\"\n",
- "print \"at pf=0.8 leading\"\n",
- "print \"Eb=\",eb3,\"V\"\n",
- "print \"alpha=\",math.degrees(alpha3),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "at pf=1\n",
- "Eb= 11283.8105339 V\n",
- "alpha= 18.7256601694 degrees\n",
- "at pf=0.8 lagging\n",
- "Eb= 8990.39249633 V\n",
- "alpha= 10.0142654731 degrees\n",
- "at pf=0.8 leading\n",
- "Eb= 13283.8907748 V\n",
- "alpha= 7.71356041367 degrees\n"
- ]
- }
- ],
- "prompt_number": 56
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.14, Page Number:1513"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "z=complex(0.5,0.866)\n",
- "v=200#V\n",
- "output=6000#W\n",
- "loss=500#W\n",
- "i=50#A\n",
- "\n",
- "#calculations\n",
- "cu_loss=i**2*z.real\n",
- "motor_intake=output+loss+cu_loss\n",
- "phi=math.acos(motor_intake/(v*i))\n",
- "theta=math.atan(z.imag/z.real)\n",
- "zs=abs(z)*i\n",
- "eb1=math.sqrt(v**2+zs**2-(2*v*zs*math.cos(math.radians(60)-phi)))\n",
- "eb2=math.sqrt(v**2+zs**2-(2*v*zs*math.cos(math.radians(60)+phi)))\n",
- "#result\n",
- "print \"lag:eb=\",eb1,\"V\"\n",
- "print \"lag:eb=\",eb2,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lag:eb= 154.286783862 V\n",
- "lag:eb= 213.765547573 V\n"
- ]
- }
- ],
- "prompt_number": 65
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.15, Page Number:1513"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=2200#V\n",
- "f=50#Hz\n",
- "z=complex(0.4,6)\n",
- "lag=3#degrees\n",
- "\n",
- "#calculations\n",
- "eb=v/math.sqrt(3)\n",
- "alpha=lag*8/2\n",
- "er=math.sqrt(eb**2+eb**2-(2*eb*eb*(math.cos(math.radians(alpha)))))\n",
- "zs=abs(z)\n",
- "ia=er/zs\n",
- "theta=math.atan(z.imag/z.real)\n",
- "phi=theta-(math.asin(eb*math.sin(math.radians(alpha))/er))\n",
- "pf=math.cos(phi)\n",
- "total_input=3*eb*ia*pf\n",
- "cu_loss=3*ia**2*z.real\n",
- "pm=total_input-cu_loss\n",
- "pm_max=(eb*eb/zs)-(eb**2*z.real/(zs**2))\n",
- "#result\n",
- "print \"armature current=\",ia,\"A\"\n",
- "print \"power factor=\",pf\n",
- "print \"power of the motor=\",pm/1000,\"kW\"\n",
- "print \"max power of motor=\",pm_max/1000,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature current= 44.1583059199 A\n",
- "power factor= 0.99927231631\n",
- "power of the motor= 165.803353329 kW\n",
- "max power of motor= 250.446734776 kW\n"
- ]
- }
- ],
- "prompt_number": 72
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.16, Page Number:1514"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "eb=250#V\n",
- "lead=150#degrees\n",
- "v=200#V\n",
- "x=2.5#times resistance\n",
- "alpha=lead/3\n",
- "#calculations\n",
- "er=math.sqrt(v**2+eb**2-(2*v*eb*math.cos(math.radians(alpha))))\n",
- "theta=math.atan(x)\n",
- "phi=math.radians(90)-theta\n",
- "pf=math.cos(phi)\n",
- "\n",
- "#results\n",
- "print \"pf at which the motor is operating=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pf at which the motor is operating= 0.928476690885\n"
- ]
- }
- ],
- "prompt_number": 73
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.17, Page Number:1514"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=6600#V\n",
- "r=10#ohm\n",
- "inpt=900#kW\n",
- "e=8900#V\n",
- "\n",
- "#calculations\n",
- "vp=v/math.sqrt(3)\n",
- "eb=e/math.sqrt(3)\n",
- "icos=inpt*1000/(math.sqrt(3)*v)\n",
- "bc=r*icos\n",
- "ac=math.sqrt(eb**2-bc**2)\n",
- "oc=ac-vp\n",
- "phi=math.atan(oc/bc)\n",
- "i=icos/math.cos(phi)\n",
- "\n",
- "#result\n",
- "print \"Line current=\",i,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Line current= 149.188331836 A\n"
- ]
- }
- ],
- "prompt_number": 82
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.18, Page Number:1515"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=6600#V\n",
- "x=20#ohm\n",
- "inpt=1000#kW\n",
- "pf=0.8\n",
- "inpt2=1500#kW\n",
- "\n",
- "#variable declaration\n",
- "va=v/math.sqrt(3)\n",
- "ia1=inpt*1000/(math.sqrt(3)*v*pf)\n",
- "zs=x\n",
- "phi=math.acos(pf)\n",
- "ia1zs=ia1*zs\n",
- "eb=math.sqrt(va**2+ia1zs**2-(2*va*ia1zs*math.cos(math.radians(90)+phi)))\n",
- "ia2cosphi2=inpt2*1000/(math.sqrt(3)*v)\n",
- "cosphi2=x*ia2cosphi2\n",
- "ac=math.sqrt(eb**2-cosphi2*2)\n",
- "phi2=math.atan(ac/cosphi2)\n",
- "pf=math.cos(phi2)\n",
- "alpha2=math.atan(cosphi2/ac)\n",
- "\n",
- "#results\n",
- "print \"new power angle=\",math.degrees(alpha2),\"degrees\"\n",
- "print \"new power factor=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "new power angle= 25.8661450552 degrees\n",
- "new power factor= 0.436270181217\n"
- ]
- }
- ],
- "prompt_number": 97
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.19, Page Number:1515"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400#V\n",
- "inpt=5472#W\n",
- "x=10#ohm\n",
- "\n",
- "#calculations\n",
- "va=v/math.sqrt(3)\n",
- "iacosphi=inpt/(math.sqrt(3)*v)\n",
- "zs=x\n",
- "iazs=iacosphi*zs\n",
- "ac=math.sqrt(va**2-iazs**2)\n",
- "oc=va-ac\n",
- "bc=iazs\n",
- "phi=math.atan(oc/iazs)\n",
- "pf=math.cos(phi)\n",
- "ia=iacosphi/pf\n",
- "alpha=math.atan(bc/ac)\n",
- "#result\n",
- "print \"load angle=\",math.degrees(alpha),\"degrees\"\n",
- "print \"power factor=\",pf\n",
- "print \"armature current=\",ia,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "load angle= 19.9987718079 degrees\n",
- "power factor= 0.984809614116\n",
- "armature current= 8.01997824686 A\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.20, Page Number:1515"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "import scipy\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "i2=Symbol('i2')\n",
- "v=2000.0#V\n",
- "r=0.2#ohm\n",
- "xs=2.2#ohm\n",
- "inpt=800.0#kW\n",
- "e=2500.0#V\n",
- "\n",
- "#calculations\n",
- "i1=inpt*1000/(math.sqrt(3)*v)\n",
- "vp=v/math.sqrt(3)\n",
- "ep=e/math.sqrt(3)\n",
- "theta=math.atan(xs/r)\n",
- "i2=solve(((i1*xs+r*i2)**2+(vp+i1*r-xs*i2)**2)-ep**2,i2)\n",
- "i=math.sqrt(i1**2+i2[0]**2)\n",
- "pf=i1/i\n",
- "\n",
- "#result\n",
- "print \"line currrent=\",i,\"A\"\n",
- "print \"power factor=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "line currrent= 241.492937915 A\n",
- "power factor= 0.956301702525\n"
- ]
- }
- ],
- "prompt_number": 152
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.21, Page Number:1516"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=440#V\n",
- "f=50#Hz\n",
- "inpt=7.46#kW\n",
- "r=0.5#ohm\n",
- "pf=0.75\n",
- "loss=500#W\n",
- "ex_loss=650#W\n",
- "\n",
- "#calculations\n",
- "ia=inpt*1000/(math.sqrt(3)*v*pf)\n",
- "cu_loss=3*ia**2*r\n",
- "power=inpt*1000+ex_loss\n",
- "output=inpt*1000-cu_loss-loss\n",
- "efficiency=output/power\n",
- "\n",
- "#result\n",
- "print \"armature current=\",ia,\"A\"\n",
- "print \"power=\",power,\"W\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature current= 13.0516151762 A\n",
- "power= 8110.0 W\n",
- "efficiency= 82.6693343026 %\n"
- ]
- }
- ],
- "prompt_number": 156
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.22, Page Number:1517"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "v=3300#V\n",
- "x=18#ohm\n",
- "pf=0.707\n",
- "inpt=800#kW\n",
- "\n",
- "#calculations\n",
- "ia=inpt*1000/(math.sqrt(3)*v*pf)\n",
- "ip=ia/math.sqrt(3)\n",
- "zs=x\n",
- "iazs=ip*zs\n",
- "phi=math.acos(pf)\n",
- "theta=math.radians(90)\n",
- "eb=math.sqrt(v**2+iazs**2-(2*v*iazs*(-1)*pf))\n",
- "alpha=math.asin(iazs*math.sin(theta+phi)/eb)\n",
- "\n",
- "#result\n",
- "print \"excitation emf=\",eb,\"V\"\n",
- "print \"rotor angle=\",math.degrees(alpha),\"degrees\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "excitation emf= 4972.19098879 V\n",
- "rotor angle= 17.0098509277 degrees\n"
- ]
- }
- ],
- "prompt_number": 157
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.23, Page Number:1517"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "inpt=75#kW\n",
- "v=400#V\n",
- "r=0.04#ohm\n",
- "x=0.4#ohm\n",
- "pf=0.8\n",
- "efficiency=0.925\n",
- "\n",
- "#calculations\n",
- "input_m=inpt*1000/efficiency\n",
- "ia=input_m/(math.sqrt(3)*v)\n",
- "zs=math.sqrt(r**2+x**2)\n",
- "iazs=ia*zs\n",
- "phi=math.atan(x/r)\n",
- "theta=math.radians(90)-phi\n",
- "vp=v/math.sqrt(3)\n",
- "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta+phi)))\n",
- "cu_loss=3*ia**2*r\n",
- "ns=120*50/40\n",
- "pm=input_m-cu_loss\n",
- "tg=9.55*pm/ns\n",
- "\n",
- "#result\n",
- "print \"emf=\",eb,\"eb\"\n",
- "print \"mechanical power=\",pm,\"W\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "emf= 235.683320812 eb\n",
- "mechanical power= 79437.5456538 W\n"
- ]
- }
- ],
- "prompt_number": 158
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.24, Page Number:1517"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400#V\n",
- "f=50#Hz\n",
- "r=0.5#ohm\n",
- "zs=x=4#ohm\n",
- "i=15#A\n",
- "i2=60#A\n",
- "\n",
- "#calculations\n",
- "vp=v/math.sqrt(3)\n",
- "iazs=i*zs\n",
- "xs=math.sqrt(x**2-r**2)\n",
- "theta=math.atan(xs/r)\n",
- "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta)))\n",
- "iazs2=i2*zs\n",
- "phi=theta-math.acos(vp**2-vp**2+iazs2**2/(2*vp*iazs2))\n",
- "pf=math.cos(phi)\n",
- "input_m=math.sqrt(3)*v*i2*pf\n",
- "cu_loss=3*i2**2*r\n",
- "pm=input_m-cu_loss\n",
- "ns=120*50/6\n",
- "tg=9.55*pm/ns\n",
- "\n",
- "#result\n",
- "print \"gross torque developed=\",tg,\"N-m\"\n",
- "print \"new power factor=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "gross torque developed= 310.739709828 N-m\n",
- "new power factor= 0.912650996943\n"
- ]
- }
- ],
- "prompt_number": 161
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.25, Page Number:1518"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400#V\n",
- "inpt=7.46#kW\n",
- "xs=10#W/phase\n",
- "efficiency=0.85\n",
- "\n",
- "#calculations\n",
- "input_m=inpt*1000/efficiency\n",
- "il=input_m/(math.sqrt(3)*v)\n",
- "zs=il*xs\n",
- "vp=v/math.sqrt(3)\n",
- "eb=math.sqrt(vp**2+zs**2)\n",
- "\n",
- "#result\n",
- "print \"minimum current=\",il,\"A\"\n",
- "print \"inducedemf=\",eb,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "minimum current= 12.6677441416 A\n",
- "inducedemf= 263.401798584 V\n"
- ]
- }
- ],
- "prompt_number": 164
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.26, Page Number:1518"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400#V\n",
- "f=50#Hz\n",
- "inpt=37.5#kW\n",
- "efficiency=0.88\n",
- "zs=complex(0.2,1.6)\n",
- "pf=0.9\n",
- "\n",
- "#calculations\n",
- "input_m=inpt/efficiency\n",
- "ia=input_m*1000/(math.sqrt(3)*v*pf)\n",
- "vp=v/math.sqrt(3)\n",
- "er=ia*abs(zs)\n",
- "phi=math.acos(pf)\n",
- "theta=math.atan(zs.imag/zs.real)\n",
- "eb=math.sqrt(vp**2+er**2-(2*vp*er*math.cos(theta+phi)))\n",
- "alpha=math.asin(math.sin(theta+phi)*er/eb)\n",
- "pm=3*eb*vp*math.sin(alpha)/abs(zs)\n",
- "#result\n",
- "print \"excitation emf=\",eb*math.sqrt(3),\"V\"\n",
- "print \"total mechanical power developed=\",pm,\"W\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "excitation emf= 495.407915636 V\n",
- "total mechanical power developed= 44844.4875189 W\n"
- ]
- }
- ],
- "prompt_number": 206
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.27, Page Number:1519"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "import scipy\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "v=6600.0#V\n",
- "xs=20.0#ohm\n",
- "inpt=1000.0#kW\n",
- "pf=0.8\n",
- "inpt2=1500.0#kW\n",
- "phi2=Symbol('phi2')\n",
- "#calculations\n",
- "vp=v/math.sqrt(3)\n",
- "ia=inpt*1000/(math.sqrt(3)*v*pf)\n",
- "theta=math.radians(90)\n",
- "er=ia*xs\n",
- "zs=xs\n",
- "phi=math.acos(pf)\n",
- "eb=math.sqrt(vp**2+er**2-(2*vp*er*math.cos(theta+phi)))\n",
- "alpha=math.asin(inpt2*1000*zs/(3*eb*vp))\n",
- "#vp/eb=cos(alpha+phi2)/cos(phi2)\n",
- "#solving we get\n",
- "phi2=math.radians(19.39)\n",
- "pf=math.cos(phi2)\n",
- "#result\n",
- "print \"new power factor=\",pf\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "new power factor= 0.943280616635\n"
- ]
- }
- ],
- "prompt_number": 228
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.28, Page Number:1519"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400#V\n",
- "x=4#ohms/phase\n",
- "r=0.5#ohms/phase\n",
- "ia=60#A\n",
- "pf=0.866\n",
- "loss=2#kW\n",
- "\n",
- "#calculations\n",
- "vp=v/math.sqrt(3)\n",
- "zs=abs(complex(r,x))\n",
- "phi=math.acos(pf)\n",
- "iazs=ia*zs\n",
- "theta=math.atan(x/r)\n",
- "eb=math.sqrt(vp**2+iazs**2-(2*vp*iazs*math.cos(theta+phi)))\n",
- "pm_max=(eb*vp/zs)-(eb**2*r/zs**2)\n",
- "pm=3*pm_max\n",
- "output=pm-loss*1000\n",
- "\n",
- "#result\n",
- "print \"maximum power output=\",output/1000,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum power output= 51.3898913442 kW\n"
- ]
- }
- ],
- "prompt_number": 229
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.29, Page Number:1519"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "z=10#ohm\n",
- "x=0.5#ohm\n",
- "v=2000#V\n",
- "f=25#Hz\n",
- "eb=1600#V\n",
- "\n",
- "#calculations\n",
- "pf=x/z\n",
- "pm_max=(eb*v/z)-(eb**2*pf/zs)\n",
- "ns=120*f/6\n",
- "tg_max=9.55*pm_max/ns\n",
- "\n",
- "#result\n",
- "print \"maximum total torque=\",tg_max,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum total torque= 5505.51976175 N-m\n"
- ]
- }
- ],
- "prompt_number": 231
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.30, Page Number:1520"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variabke declaration\n",
- "v=2000#V\n",
- "n=1500#rpm\n",
- "x=3#ohm/phase\n",
- "ia=200#A\n",
- "\n",
- "#calculations\n",
- "eb=vp=v/math.sqrt(3)\n",
- "zs=ia*x\n",
- "sinphi=(eb**2-vp**2-zs**2)/(2*zs*vp)\n",
- "phi=math.asin(sinphi)\n",
- "pf=math.cos(phi)\n",
- "pi=math.sqrt(3)*v*ia*pf/1000\n",
- "tg=9.55*pi*1000/n\n",
- "\n",
- "#result\n",
- "print \"power input=\",pi,\"kW\"\n",
- "print \"power factor=\",pf\n",
- "print \"torque=\",tg,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "power input= 669.029147347 kW\n",
- "power factor= 0.965660395791\n",
- "torque= 4259.48557144 N-m\n"
- ]
- }
- ],
- "prompt_number": 234
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.31, Page Number:1520"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=3300#V\n",
- "r=2#ohm\n",
- "x=18#ohm\n",
- "e=3800#V\n",
- "\n",
- "#calculations\n",
- "theta=math.atan(x/r)\n",
- "vp=v/math.sqrt(3)\n",
- "eb=e/math.sqrt(3)\n",
- "alpha=theta\n",
- "er=math.sqrt(vp**2+eb**2-(2*vp*eb*math.cos(theta)))\n",
- "zs=math.sqrt(r**2+x**2)\n",
- "ia=er/zs\n",
- "pm_max=((eb*vp/zs)-(eb**2*r/zs**2))*3\n",
- "cu_loss=3*ia**2*r\n",
- "input_m=pm_max+cu_loss\n",
- "pf=input_m/(math.sqrt(3)*v*ia)\n",
- "\n",
- "#result\n",
- "print \"maximum total mechanical power=\",pm_max,\"W\"\n",
- "print \"current=\",ia,\"A\"\n",
- "print \"pf=\",pf\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum total mechanical power= 604356.888001 W\n",
- "current= 151.417346198 A\n",
- "pf= 0.857248980398\n"
- ]
- }
- ],
- "prompt_number": 235
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.32, Page Number:1521"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=415#V\n",
- "e=520#V\n",
- "z=complex(0.5,4)\n",
- "loss=1000#W\n",
- "\n",
- "#calculations\n",
- "theta=math.atan(z.imag/z.real)\n",
- "er=math.sqrt(v**2+e**2-(2*v*e*math.cos(theta)))\n",
- "zs=abs(z)\n",
- "i=er/zs\n",
- "il=math.sqrt(3)*i\n",
- "pm_max=((e*v/zs)-(e**2*z.real/zs**2))*3\n",
- "output=pm_max-loss\n",
- "cu_loss=3*i**2*z.real\n",
- "input_m=pm_max+cu_loss\n",
- "pf=input_m/(math.sqrt(3)*il*v)\n",
- "efficiency=output/input_m\n",
- "\n",
- "#result\n",
- "print \"power output=\",output/1000,\"kW\"\n",
- "print \"line current=\",il,\"A\"\n",
- "print \"power factor=\",pf\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "power output= 134.640174346 kW\n",
- "line current= 268.015478962 A\n",
- "power factor= 0.890508620247\n",
- "efficiency= 78.4816159071 %\n"
- ]
- }
- ],
- "prompt_number": 240
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.33, Page Number:1524"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400#V\n",
- "inpt=37.3#kW\n",
- "efficiency=0.88\n",
- "z=complex(0.2,1.6)\n",
- "pf=0.9\n",
- "\n",
- "#calculations\n",
- "vp=v/math.sqrt(3)\n",
- "zs=abs(z)\n",
- "il=inpt*1000/(math.sqrt(3)*v*efficiency*pf)\n",
- "izs=zs*il\n",
- "theta=math.atan(z.imag/z.real)\n",
- "phi=math.acos(pf)\n",
- "eb=math.sqrt(vp**2+izs**2-(2*vp*izs*math.cos(theta+phi)))\n",
- "input_m=inpt*1000/efficiency\n",
- "cu_loss=3*il**2*z.real\n",
- "pm=input_m-cu_loss\n",
- "\n",
- "#result\n",
- "print \"induced emf=\",eb*math.sqrt(3),\"V\"\n",
- "print \"total mechanical power=\",pm/1000,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "induced emf= 494.75258624 V\n",
- "total mechanical power= 39.6138268735 kW\n"
- ]
- }
- ],
- "prompt_number": 243
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.34, Page Number:1525"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "inpt=48#kW\n",
- "v=693#V\n",
- "pf=0.8\n",
- "ratio=0.3\n",
- "x=2#W/phase\n",
- "\n",
- "#calculations\n",
- "il=inpt*1000/(math.sqrt(3)*v*pf)\n",
- "vp=v/math.sqrt(3)\n",
- "zs=x\n",
- "izs=zs*il\n",
- "theta=math.atan(float(\"inf\"))\n",
- "phi=math.acos(pf)\n",
- "eb=math.sqrt(vp**2+izs**2-(2*vp*izs*math.cos(theta-phi)))\n",
- "i_cosphi=pf*il\n",
- "bc=i_cosphi*x\n",
- "eb=eb+(ratio*eb)\n",
- "ac=math.sqrt(eb**2-bc**2)\n",
- "oc=ac-vp\n",
- "phi2=math.atan(oc/bc)\n",
- "pf=math.cos(phi2)\n",
- "i2=i_cosphi/pf\n",
- "\n",
- "#result\n",
- "print \"current=\",i2,\"A\"\n",
- "print \"pf=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current= 46.3871111945 A\n",
- "pf= 0.862084919821\n"
- ]
- }
- ],
- "prompt_number": 251
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 38.35, Page Number:1526"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=60.0#kW\n",
- "inpt=240.0#kW\n",
- "pf=0.8\n",
- "pf2=0.9\n",
- "\n",
- "#calculations\n",
- "total_load=inpt+load\n",
- "phi=math.acos(pf2)\n",
- "kVAR=total_load*math.tan(phi)\n",
- "#factory load\n",
- "phil=math.acos(pf)\n",
- "kVAR=inpt*math.tan(phil)\n",
- "kVA=inpt/pf\n",
- "kVAR1=total_load*math.sin(phil)\n",
- "lead_kVAR=kVAR1-kVAR\n",
- "#synchronous motor\n",
- "phim=math.atan(lead_kVAR/load)\n",
- "motorpf=math.cos(phim)\n",
- "motorkVA=math.sqrt(load**2+lead_kVAR**2)\n",
- "\n",
- "#result\n",
- "print \"leading kVAR supplied by the motor=\",motorkVA\n",
- "print \"pf=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "leading kVAR supplied by the motor= 60.0\n",
- "pf= 0.8\n"
- ]
- }
- ],
- "prompt_number": 253
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_SN4SQdm.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_SN4SQdm.ipynb
deleted file mode 100644
index 99cfc3c1..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_SN4SQdm.ipynb
+++ /dev/null
@@ -1,1258 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:add10f49c90b647cf79b01d40fd4e1ca71068a8e9a13aad0c70f06cfeaabeda4"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 35: Computations and Circle Diagrams"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.1, Page Number:1316"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "i=10#A\n",
- "p=450#W\n",
- "v=110#V\n",
- "r=0.05#ohm\n",
- "loss=135#w\n",
- "\n",
- "#calculations\n",
- "cu_loss=3*i**2*r\n",
- "core_loss=p-loss-cu_loss\n",
- "volt=v/math.sqrt(3)\n",
- "g=core_loss/(3*(v/math.sqrt(3))**2)\n",
- "y=i*math.sqrt(3)/v\n",
- "b=math.sqrt(y**2-g**2)\n",
- "\n",
- "#result\n",
- "print \"exciting conductance=\",g,\"seimens/phase\"\n",
- "print \"susceptance/phase=\",b,\"seimens/phase\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "exciting conductance= 0.0247933884298 seimens/phase\n",
- "susceptance/phase= 0.155494939853 seimens/phase\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.2, Page Number:1317"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=110.0#V\n",
- "i=25.0#A\n",
- "v2=30.0#V\n",
- "inpt=440.0#W\n",
- "loss=40.0#W\n",
- "r=0.1#ohm\n",
- "ratio=1.6\n",
- "\n",
- "#calculations\n",
- "vs=v2/math.sqrt(3)\n",
- "z01=vs/i\n",
- "losses=inpt-loss\n",
- "r01=losses/(3*i**2)\n",
- "x01=math.sqrt(z01**2-r01**2)\n",
- "dc_r=r/2.0\n",
- "ac_r=dc_r*ratio\n",
- "effective_r=r01-ac_r\n",
- "\n",
- "#result\n",
- "print \"x01=\",x01,\"ohm\"\n",
- "print \"r1=\",ac_r,\"ohm\"\n",
- "print \"r2=\",effective_r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "x01= 0.659157711696 ohm\n",
- "r1= 0.08 ohm\n",
- "r2= 0.133333333333 ohm\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.10, Page Number:1333"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "ratio=1/4.0\n",
- "slip=3.0\n",
- "ratio2=4.0\n",
- "\n",
- "#calculations\n",
- "K=math.sqrt(ratio/((ratio2**2)*0.01*slip))\n",
- "\n",
- "#result\n",
- "print \"Percentage Tapping=\",K*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Percentage Tapping= 72.1687836487 %\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.11, Page Number:1333"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=14.92#kW\n",
- "v1=400#V\n",
- "n=950#rpm\n",
- "f=50.0#Hz\n",
- "v2=400#V\n",
- "ratio=1.8\n",
- "i=30#A\n",
- "\n",
- "#calculations\n",
- "v=v1/math.sqrt(ratio)\n",
- "If=6*v*i/v1\n",
- "K=v/v1\n",
- "kisc=K**2*6*i\n",
- "ts_tf=(1/6.0)*6**2*(f/1000.0)\n",
- "\n",
- "#result\n",
- "print \"a)voltage=\",v,\"V\"\n",
- "print \"b)current=\",If,\"A\"\n",
- "print \"c)line current=\",kisc,\"A\"\n",
- "print \"d)percentage=\",ts_tf*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)voltage= 298.142397 V\n",
- "b)current= 134.16407865 A\n",
- "c)line current= 100.0 A\n",
- "d)percentage= 30.0 %\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.12, Page Number:1334"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "ratio=5.0\n",
- "per=5\n",
- "\n",
- "#calculations\n",
- "k=math.sqrt(ratio/3)\n",
- "tst_tf=(3.0/5)*5**2*0.01*per*100\n",
- "\n",
- "#result\n",
- "print \"auto-transformation ratio=\",tst_tf,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "auto-transformation ratio= 75.0 %\n"
- ]
- }
- ],
- "prompt_number": 29
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.13, Page Number:1334"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400.0#V\n",
- "per=3.5\n",
- "v2=92.0#V\n",
- "\n",
- "#calculations\n",
- "k=math.sqrt(2/(v/v2))\n",
- "ts_tf=k**2*(v/v2)**2*0.01*per\n",
- "\n",
- "#result\n",
- "print \"auto-transformation ratio=\",ts_tf*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "auto-transformation ratio= 30.4347826087 %\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.14, Page Number:1336"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=12.0#kW\n",
- "v=440.0#V\n",
- "efficiency=0.85\n",
- "pf=0.8\n",
- "i=45.0#A\n",
- "v2=220.0#V\n",
- "\n",
- "#calculations\n",
- "isc=i*v/v2\n",
- "if_=load*1000/(efficiency*math.sqrt(3)*pf*v)\n",
- "ist=isc/math.sqrt(3)\n",
- "ratio=ist/if_\n",
- "\n",
- "#result\n",
- "print \"ratio=\",ratio"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ratio= 2.244\n"
- ]
- }
- ],
- "prompt_number": 34
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.15, Page Number:1336"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "i=60.0#A\n",
- "n1=940.0#rpm\n",
- "t=150.0#N-m\n",
- "i2=300.0#A\n",
- "\n",
- "#calculations\n",
- "sf=(1000-n1)/1000\n",
- "tst=t*(i2/i)**2*sf\n",
- "s_i=i2/3\n",
- "sd_tst=tst/3\n",
- "\n",
- "#result\n",
- "print \"Starting torque=\",tst,\"N-m\"\n",
- "print\"when star/delta is used:\"\n",
- "print \"starting current=\",s_i,\"A\"\n",
- "print \"starting torque=\",sd_tst,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Starting torque= 225.0 N-m\n",
- "when star/delta is used:\n",
- "starting current= 100.0 A\n",
- "starting torque= 75.0 N-m\n"
- ]
- }
- ],
- "prompt_number": 37
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.16, Page Number:1336"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "tapping=70.7\n",
- "ratio=6.0\n",
- "slip=4.0\n",
- "\n",
- "#calculation\n",
- "tst_tf=(1.0/3.0)*ratio**2.0*slip*0.01\n",
- "tst_tf2=(1.0/2)*ratio**2.0*slip*0.01\n",
- "\n",
- "#result\n",
- "print \"star-delta switch:starting torque=\",tst_tf*100,\"%\"\n",
- "print \"auto-transformer switch:starting torque=\",tst_tf2*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "star-delta switch:starting torque= 48.0 %\n",
- "auto-transformer switch:starting torque= 72.0 %\n"
- ]
- }
- ],
- "prompt_number": 48
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.17, Page Number:1337"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=11.2#W\n",
- "f=50.0#Hz\n",
- "v=400.0#V\n",
- "n=960.0#rpm\n",
- "i=86.4#A\n",
- "efficiency=0.88\n",
- "pf=0.85\n",
- "\n",
- "#calculations\n",
- "isc=i/math.sqrt(3)\n",
- "ist=isc/math.sqrt(3)\n",
- "il=load*1000/(efficiency*pf*math.sqrt(3)*v)\n",
- "iph=il/math.sqrt(3)\n",
- "tst_tf=(ist*math.sqrt(3)/il)**2*0.05\n",
- "\n",
- "#result\n",
- "print \"starting torque=\",tst_tf*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "starting torque= 26.6369577796 %\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.18, Page Number:1337"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "output=10.0#kW\n",
- "v=400.0#V\n",
- "pf=0.85\n",
- "efficiency=0.88\n",
- "v2=200.0#V\n",
- "i=40.0#A\n",
- "\n",
- "#calculations\n",
- "il=load*1000/(efficiency*math.sqrt(3)*v*pf)\n",
- "isc=i*v/v2\n",
- "iscp=isc/math.sqrt(3)\n",
- "ist=iscp/math.sqrt(3)\n",
- "ratio=ist/il\n",
- "\n",
- "#result\n",
- "print \"ratio=\",ratio"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ratio= 1.23388000387\n"
- ]
- }
- ],
- "prompt_number": 53
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.19, Page Number:1337"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=3.73*1000#W\n",
- "v=400.0#V\n",
- "f=50.0#Hz\n",
- "slip=4.5\n",
- "t=250.0\n",
- "i=650.0\n",
- "tap=60.0\n",
- "\n",
- "#calculation\n",
- "il=i/3\n",
- "im=i/3\n",
- "tst=t/3\n",
- "ilm=(tap/100)**2*i\n",
- "imk=(tap/100)*i\n",
- "tstk=(tap/100)**2*t\n",
- "\n",
- "#result\n",
- "print \"star/delta:\"\n",
- "print \"line current=\",il,\"%\"\n",
- "print \"motor current=\",im,\"%\"\n",
- "print \"starting torque=\",tst,\"%\"\n",
- "print \"60% taps:\"\n",
- "print \"line current=\",ilm,\"%\"\n",
- "print \"motor current=\",imk,\"%\"\n",
- "print \"starting torque=\",tstk,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " star/delta:\n",
- "line current= 216.666666667 %\n",
- "motor current= 216.666666667 %\n",
- "starting torque= 83.3333333333 %\n",
- "60% taps:\n",
- "line current= 234.0 %\n",
- "motor current= 390.0 %\n",
- "starting torque= 90.0 %\n"
- ]
- }
- ],
- "prompt_number": 55
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.20, Page Number:1338"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=180.0\n",
- "flt=35.0\n",
- "tap=75.0\n",
- "\n",
- "#calculations\n",
- "isc=load*3.0/100\n",
- "isck=tap**2*isc/100\n",
- "sf=flt*3\n",
- "tst_tf=tap**2*sf/100\n",
- "#result\n",
- "print \"starting current=\",isck,\"%\"\n",
- "print \"starting torque=\",tst_tf/100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "starting current= 303.75 %\n",
- "starting torque= 59.0625 %\n"
- ]
- }
- ],
- "prompt_number": 68
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.21, Page Number:1338"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#variable declaration\n",
- "w=7.46#kW\n",
- "ic=1.7\n",
- "t=35.0\n",
- "ratio=60.0\n",
- "\n",
- "#calculations\n",
- "sf=t*3/100\n",
- "il1=ic*3\n",
- "tst=(ratio/1000)**2*sf*10000\n",
- "il2=(ratio/100)*3*ic\n",
- "\n",
- "#results\n",
- "print \"auto-starter:\"\n",
- "print \"line-current=\",il1,\"%\"\n",
- "print \"torque=\",tst,\"%\"\n",
- "print \"voltage decreased to 60%\"\n",
- "print \"line-current\",il2,\"%\"\n",
- "print \"torque=\",tst,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "auto-starter:\n",
- "line-current= 5.1 %\n",
- "torque= 37.8 %\n",
- "voltage decreased to 60%\n",
- "line-current 3.06 %\n",
- "torque= 37.8 %\n"
- ]
- }
- ],
- "prompt_number": 71
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.22, Page Number:1342"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "slip=2.0\n",
- "r=0.02#ohm\n",
- "n=6.0\n",
- "#calculations\n",
- "smax=r2=slip/100.0\n",
- "R1=r2/smax\n",
- "K=math.pow(smax,1.0/5)\n",
- "R2=K*R1\n",
- "R3=K*R2\n",
- "R4=K*R3\n",
- "R5=K*R4\n",
- "p1=R1-R2\n",
- "p2=R2-R3\n",
- "p3=R3-R4\n",
- "p4=R4-R5\n",
- "p5=R5-r2\n",
- "\n",
- "#result\n",
- "print \"resistances of various starter sections:\"\n",
- "print \"p1=\",p1,\"ohm\"\n",
- "print \"p2=\",p2,\"ohm\"\n",
- "print \"p3=\",p3,\"ohm\"\n",
- "print \"p4=\",p4,\"ohm\"\n",
- "print \"p5=\",p5,\"ohm\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistances of various starter sections:\n",
- "p1= 0.542694948073 ohm\n",
- "p2= 0.248177141409 ohm\n",
- "p3= 0.113492660539 ohm\n",
- "p4= 0.0519007670213 ohm\n",
- "p5= 0.0237344829577 ohm\n"
- ]
- }
- ],
- "prompt_number": 107
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.23, Page Number:1345"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "primary=complex(1,3)\n",
- "outer=complex(3,1)\n",
- "inner=complex(0.6,5)\n",
- "s=4\n",
- "outer2=complex(3/(s*0.01),1)\n",
- "inner2=complex(0.6/(s*0.01),5)\n",
- "v=440#V\n",
- "\n",
- "\n",
- "#calculations\n",
- "#s=1\n",
- "z01=primary+1/((1/outer)+(1/inner))\n",
- "current_per_phase=v/abs(z01)\n",
- "torque=3*current_per_phase**2*(z01.real-1)\n",
- "\n",
- "print \"s=1: torque=\",torque,\"synch watt\"\n",
- "\n",
- "#s=4\n",
- "z01=primary+1/((1/outer2)+(1/inner2))\n",
- "current_per_phase=v/abs(z01)\n",
- "torque=3*current_per_phase**2*(z01.real-1)\n",
- "\n",
- "print \"s=4: torque=\",torque,\"synch watt\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "s=1: torque= 35065.3642462 synch watt\n",
- "s=4: torque= 32129.9449695 synch watt\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.24, Page Number:1346"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "inner=complex(0.4,2)\n",
- "outer=complex(2,0.4)\n",
- "s=5\n",
- "inner2=complex(0.4/(s*0.01),2)\n",
- "outer2=complex(2/(s*0.01),0.4)\n",
- "print \n",
- "#calculations\n",
- "#s=1\n",
- "zi=abs(inner)\n",
- "zo=abs(outer)\n",
- "r_ratio=inner.imag/outer.imag\n",
- "to_ti=r_ratio*(zo/zi)**2\n",
- "print \"Ratio of torques when s=1:\",to_ti\n",
- "\n",
- "#s=5\n",
- "zi=abs(inner2)\n",
- "zo=abs(outer2)\n",
- "print zi\n",
- "r_ratio=inner2.imag/outer2.imag\n",
- "to_ti=r_ratio*(zi/zo)**2\n",
- "\n",
- "print \"Ratio of torques when s=5:\",to_ti"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "Ratio of torques when s=1: 5.0\n",
- "8.24621125124\n",
- "Ratio of torques when s=5: 0.212478752125\n"
- ]
- }
- ],
- "prompt_number": 37
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.25, Page Number:1346"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "s=5\n",
- "zi=complex(0.05,0.4)\n",
- "zo=complex(0.5,0.1)\n",
- "v=100#V\n",
- "\n",
- "#calculations\n",
- "#s=1\n",
- "z=zo*zi/(zo+zi)\n",
- "r2=z.real\n",
- "z=abs(z)\n",
- "i2=v/z\n",
- "t=i2**2*r2\n",
- "print \"s=1:torque=\",t,\"synch watts\"\n",
- "\n",
- "#s=0.01\n",
- "zi=complex(0.05/(s*0.01),0.4)\n",
- "zo=complex(0.5/(s*0.01),0.1)\n",
- "z=zo*zi/(zo+zi)\n",
- "r2=z.real\n",
- "z=abs(z)\n",
- "i2=v/z\n",
- "t=i2**2*r2\n",
- "print \"s=5:torque=\",t,\"synch watts\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "s=1:torque= 22307.6923077 synch watts\n",
- "s=5:torque= 9620.58966517 synch watts\n"
- ]
- }
- ],
- "prompt_number": 43
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.26, Page Number:1348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "s=Symbol('s')\n",
- "z2=complex(2,1.2)\n",
- "z1=complex(0.5,3.5)\n",
- "#Z1=((2/s)^2+1.2^2)^0.5\n",
- "#Z2=((0.5/s)^2+3.5^2)^0.5\n",
- "#T1=T2\n",
- "ans=solve([(((2**2)/(s**2))+1.2**2)-((((0.5**2)/(s**2))+3.5**2)*4)],[s])\n",
- "print \"slip=\",round(ans[1][0]*100,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip= 25.1 %\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.27, Page Number:1347"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "zo=complex(1,0)\n",
- "zi=complex(0.15,3)\n",
- "v=250#V\n",
- "n=1000#rpm\n",
- "\n",
- "#calculations\n",
- "z2=zo*zi/(zo+zi)\n",
- "stator=complex(0.25,3.5)\n",
- "z01=z2+stator\n",
- "i=complex(v,0)/z01\n",
- "i=abs(i)\n",
- "cu_loss=i**2*z01.real\n",
- "T=cu_loss*3/(2*math.pi*(n/60))\n",
- "#result\n",
- "print \"torque=\",T,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque= 135.560320318 N-m\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.28, Page Number:1348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "z1=complex(1,2.8)\n",
- "zo=complex(3,1)\n",
- "zi=complex(0.5,5)\n",
- "v=440#V\n",
- "s=0.04\n",
- "\n",
- "#calculations\n",
- "#s=1\n",
- "z2=zo*zi/(zo+zi)\n",
- "z01=z1+z2\n",
- "i2=v/z01\n",
- "r2=z2.real\n",
- "t=abs(i2)**2*r2\n",
- "\n",
- "print \"s=1:torque=\",t,\"synch. watt\"\n",
- "\n",
- "#s=0.04\n",
- "zo=complex(3.0/s,1.0)\n",
- "zi=complex(0.5/s,5.0)\n",
- "z2=zo*zi/(zo+zi)\n",
- "z01=z1+z2\n",
- "i2=v/z01\n",
- "r2=z2.real\n",
- "t=abs(i2)**2*r2\n",
- "print \"s=4:torque=\",t,\"synch. watt\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "s=1:torque= 12388.3258184 synch. watt\n",
- "s=4:torque= 11489.1141244 synch. watt\n"
- ]
- }
- ],
- "prompt_number": 58
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.29, Page Number:1351"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50.0#Hz\n",
- "r=0.30#ohm\n",
- "n1=1440.0#rpm\n",
- "n2=1320.0#rpm\n",
- "ns=120.0*f/4.0\n",
- "#calculations\n",
- "s1=(ns-n1)/ns\n",
- "s2=(ns-n2)/ns\n",
- "r=s2*r/s1-r\n",
- "\n",
- "#result\n",
- "print \"external resistance=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "external resistance= 0.6 ohm\n"
- ]
- }
- ],
- "prompt_number": 60
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.30, Page Number:1348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50.0#Hz\n",
- "s=0.03\n",
- "ratio=10.0\n",
- "r=0.2\n",
- "\n",
- "#calculations\n",
- "ns=120*f/6\n",
- "s1=s\n",
- "n1=ns*(1-s1)\n",
- "n2=n1-10*n1/100\n",
- "s2=(ns-n2)/ns\n",
- "r=s2*r/s1-r\n",
- "\n",
- "#result\n",
- "print \"external resistance=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "external resistance= 0.646666666667 ohm\n"
- ]
- }
- ],
- "prompt_number": 61
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.31, Page Number:1354"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#Variable declaration\n",
- "f=50#Hz\n",
- "s=0.02\n",
- "\n",
- "#calculations\n",
- "nsc=120*f/10\n",
- "n=(1-s)*nsc\n",
- "nsa=120*f/6\n",
- "sa=(nsa-n)/nsa\n",
- "f_=sa*f\n",
- "n_=(120*f_)/4\n",
- "sb=(n_-n)/n_\n",
- "f__=sb*f_\n",
- "\n",
- "#resu;t\n",
- "print \"f_=\",f_,\"Hz\"\n",
- "print \"f_ _=\",f__,\"Hz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "f_= 20.6 Hz\n",
- "f_ _= 1.0 Hz\n"
- ]
- }
- ],
- "prompt_number": 69
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.32, Page Number:1354"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50.0#Hz\n",
- "f2=1.0#Hz\n",
- "\n",
- "#calculations\n",
- "nsc=120*f/10\n",
- "s=f2/f\n",
- "n=nsc-s*nsc\n",
- "nsa=120*f/4\n",
- "sa=(nsa-n)/nsa\n",
- "f1=sa*f\n",
- "n2=120*f1/6\n",
- "sb=(n2-n)/n2\n",
- "\n",
- "#result\n",
- "print \"sa=\",sa*100,\"%\"\n",
- "print \"sb=\",sb*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "sa= 60.8 %\n",
- "sb= 3.28947368421 %\n"
- ]
- }
- ],
- "prompt_number": 75
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.33, Page Number:1354"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50#Hz\n",
- "load=74.6#kW\n",
- "\n",
- "#calculations\n",
- "nsc=120*f/10\n",
- "output=load*4/10\n",
- "\n",
- "#result\n",
- "print \"speed of set=\",nsc,\"rpm\"\n",
- "print \"electric power transferred=\",output,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of set= 600 rpm\n",
- "electric power transferred= 29.84 kW\n"
- ]
- }
- ],
- "prompt_number": 79
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 35.34, Page Number:1355"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50#Hz\n",
- "load=25#kW\n",
- "\n",
- "#calculations\n",
- "nsc=120*f/10\n",
- "output=load*4/10\n",
- "\n",
- "#result\n",
- "print \"speed of set=\",nsc,\"rpm\"\n",
- "print \"electric power transferred=\",output,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of set= 600 rpm\n",
- "electric power transferred= 10 kW\n"
- ]
- }
- ],
- "prompt_number": 78
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_cFyHAjr.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_cFyHAjr.ipynb
deleted file mode 100644
index 894eff9f..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_cFyHAjr.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:9895a0f3fc78aa13cc793dfc60b4d616a3af11e4983465d122ac29be7197893e"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 25: Elements of Electro-Mechanical Energy Conversion"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 25.1, Page Number:876"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "sod=15#stator-core outer diameter\n",
- "sid=10.05#stator-core inner diameter\n",
- "rod=10.00#rotor-core outer diameter\n",
- "rid=5#rotor-core inner diameter\n",
- "a=8#axial lenght of the machine\n",
- "b=1.20\n",
- "ur=1000\n",
- "#calculations\n",
- "vs=(3.14/4)*((sod*sod)-(sid*sid))*a#volume of stator-core\n",
- "vr=(3.14/4)*((rod*rod)-(rid*rid))*a#volume of rotor-core\n",
- "va=(3.14/4)*((sid*sid)-(rod*rod))*a#volume of air-gap in the machine\n",
- "ed=(.5*b*b)/(4*3.14*math.pow(10,-7))\n",
- "e=ed*va*math.pow(10,-6)\n",
- "edm=(.5*b*b)/(4*3.14*math.pow(10,-7)*ur)\n",
- "es=edm*vs*math.pow(10,-6)\n",
- "er=edm*vr*math.pow(10,-6)\n",
- "kr=(vs+vr)/vs\n",
- "ke=(es+er)/e\n",
- "ratio=kr/ke\n",
- "eratio=e/(es+er)\n",
- "\n",
- "#result\n",
- "print \"Energy stored in air gap= \",e,\" Joules\"\n",
- "print \"Energy stored in stator-core= \",round(es,2),\" Joules\"\n",
- "print \"Energy stored in rotor core= \",er,\" Joules\"\n",
- "print \"Ratio of energy dtored in air-gap to that stored in the cores=\",round(eratio)\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Energy stored in air gap= 3.609 Joules\n",
- "Energy stored in stator-core= 0.45 Joules\n",
- "Energy stored in rotor core= 0.27 Joules\n",
- "Ratio of energy dtored in air-gap to that stored in the cores= 5.0\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 25.2, Page Number:877"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "n=800#turns\n",
- "area=5*5#cross sectional area\n",
- "i=1.25#amp\n",
- "x=0.25#cm\n",
- "l=0.402\n",
- "#calculations\n",
- "p=4*3.14*10**(-7)*area*10**(-4)/(0.5*10**(-2))\n",
- "l=n**2*p\n",
- "em=.5*i*i*l\n",
- "W=-1*0.5*n**2*4*3.14*10**(-7)*area*10**(-4)*i**2/(0.5*10**(-2))**2\n",
- "\n",
- "#result\n",
- "print \"a)i)coil inductance=\",l,\"H\"\n",
- "print \" ii)field energy stored=\",em,\"J\"\n",
- "print \"b)mechanical energy output=\",W,\"NW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)i)coil inductance= 0.40192 H\n",
- " ii)field energy stored= 0.314 J\n",
- "b)mechanical energy output= -62.8 NW\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 25.4, Page Number:882"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "lo=50#mH\n",
- "xo=0.05#cm\n",
- "r=0.5#ohm\n",
- "x=0.075#cm\n",
- "i2=3#A\n",
- "x2=0.15#cm\n",
- "\n",
- "#calculation\n",
- "l1=2*lo/(1+(x/xo))\n",
- "lambda1=l1*i2*10**(-3)\n",
- "W=0.5*l1*i2**2*10**(-3)\n",
- "l2=2*lo/(1+(x2/xo))\n",
- "lambda2=l2*i2*10**(-3)\n",
- "w2=0.5*i2*(lambda1-lambda2)\n",
- "\n",
- "#result\n",
- "print \"a)magnetic stored energy=\",W,\"J\"\n",
- "print \"b)change in magnetic stored energy=\",w2,\"J\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 25.5, Page Number:883"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "rc=0.5#ohm\n",
- "v=3#V\n",
- "i=6#A\n",
- "l1=40#mH\n",
- "l2=25#mH\n",
- "wfld=0.5*l2*i*i*0.001\n",
- "delE=0.5*i*i*0.001*(l1-l2)\n",
- "\n",
- "#result\n",
- "print \"a)magnetic stored energy=\",wfld,\"J\"\n",
- "print \"b)change in magnetic store energy=\",delE,\"J\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)magnetic stored energy= 0.45 J\n",
- "b)change in magnetic store energy= 0.27 J\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_i45oeUA.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_i45oeUA.ipynb
deleted file mode 100644
index 495cee05..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_i45oeUA.ipynb
+++ /dev/null
@@ -1,1433 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:62e227cc38186a0706017dd159987c82bd21be1d7e8602e20c55cf079ab30efe"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 33: Transformer:Three Phase"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.1, Page Number:1216"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=3\n",
- "f=50.0#Hz\n",
- "vd=22000.0#V\n",
- "vs=400.0#V\n",
- "phi=0.8\n",
- "i=5.0#A\n",
- "\n",
- "#calcuations\n",
- "v_phase_secondary=vs/math.sqrt(3)\n",
- "K=(vs/vd)/math.sqrt(3)\n",
- "i_primary=i/math.sqrt(3)\n",
- "i_secondary=i_primary/K\n",
- "il=i_secondary\n",
- "output=math.sqrt(3)*il*vs*phi\n",
- "\n",
- "#result\n",
- "print \"Output=\",output/10000,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Output= 15.2420471066 kW\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.2, Page Number:1217"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "w=500.0#kVA\n",
- "f=50.0#Hz\n",
- "vls=11.0#kV\n",
- "vld=33.0#kV\n",
- "rh=35.0#ohm\n",
- "rl=0.876#ohm\n",
- "iron_loss=3050.0#W\n",
- "phi1=1.0\n",
- "phi2=0.8\n",
- "\n",
- "#calculations\n",
- "\n",
- "K=(vls*1000)/(math.sqrt(3)*vld*1000)\n",
- "r02=rl+K**2*rh\n",
- "i_Secondary=(w*1000)/(math.sqrt(3)*vls*1000)\n",
- "#full load\n",
- "fl_culoss=3*((w/(vls*math.sqrt(3)))**2)*r02\n",
- "fl_totalloss=fl_culoss+iron_loss\n",
- "fl_efficiency1=w*1000/(w*1000+fl_totalloss)\n",
- "fl_efficiency2=(phi2*w*1000)/(w*phi2*1000+fl_totalloss)\n",
- "#half load\n",
- "cu_loss=.5**2*fl_culoss\n",
- "totalloss=cu_loss+iron_loss\n",
- "efficiency1=(w*1000/2)/((w*1000/2)+totalloss)\n",
- "efficiency2=(w*1000*phi2/2)/((phi2*w*1000/2)+totalloss)\n",
- "#result\n",
- "print \"full load efficiency at p.f. 1=\",fl_efficiency1*100,\"%\"\n",
- "print \"full load efficiency at p.f. 0.8=\",fl_efficiency2*100,\"%\"\n",
- "print \"half load efficiency at p.f. 1=\",efficiency1*100,\"%\"\n",
- "print \"half load efficiency at p.f. 0.8=\",round(efficiency2*100),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "full load efficiency at p.f. 1= 98.5147491838 %\n",
- "full load efficiency at p.f. 0.8= 98.1503046336 %\n",
- "half load efficiency at p.f. 1= 98.3585709725 %\n",
- "half load efficiency at p.f. 0.8= 98.0 %\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.3, Page Number:1218"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "r=0.02\n",
- "va=2000\n",
- "reactance=0.1\n",
- "pf=0.8\n",
- "phi=math.acos(pf)\n",
- "#calculation\n",
- "cu_loss=r*100*va/100\n",
- "regn=r*100*math.cos(phi)+reactance*100*math.sin(phi)\n",
- "\n",
- "#result\n",
- "print \"Cu loss=\",cu_loss,\"kW\"\n",
- "print \"Regulation=\",regn,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Cu loss= 40.0 kW\n",
- "Regulation= 7.6 %\n"
- ]
- }
- ],
- "prompt_number": 39
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.4, Page Number:1218"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "w=120.0#kVA\n",
- "v1=6000.0\n",
- "v2=400.0\n",
- "f=50.0#Hz\n",
- "iron_loss=1600.0#W\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "cu_loss_fl=iron_loss*((4/3)**2)\n",
- "fl_output=w*pf*1000\n",
- "total_loss=iron_loss+cu_loss_fl\n",
- "efficiency1=fl_output/(fl_output+total_loss)\n",
- "cu_loss_hl=0.5**2*cu_loss_fl\n",
- "total_loss2=cu_loss_hl+iron_loss\n",
- "efficiency2=(w*1000/2)/((w*1000/2)+total_loss2)\n",
- "total_loss3=2*iron_loss\n",
- "output=(3.0/4)*w*1000\n",
- "inpt=output+total_loss3\n",
- "efficiency=output/inpt\n",
- "\n",
- "\n",
- "#result\n",
- "print \"full load efficiency=\",efficiency1*100,\"%\"\n",
- "print \"half load efficiency=\",efficiency2*100,\"%\"\n",
- "print \"3/4 load efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "full load efficiency= 96.7741935484 %\n",
- "half load efficiency= 96.7741935484 %\n",
- "3/4 load efficiency= 96.5665236052 %\n"
- ]
- }
- ],
- "prompt_number": 46
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.5, Page Number:1218"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "rp=8.0#ohm\n",
- "rs=0.08#ohm\n",
- "z=0.07\n",
- "pf=0.75\n",
- "v1=33.0\n",
- "v2=6.6\n",
- "w=2*10.0**6\n",
- "phi=math.acos(pf)\n",
- "#calculations\n",
- "fl_i=w/(math.sqrt(3)*v2*10**3)\n",
- "K=v2/(math.sqrt(3)*v1)\n",
- "r02=rs+(rp*(K*K))\n",
- "z_drop=z*v2*1000/math.sqrt(3)\n",
- "z02=z_drop/fl_i\n",
- "x02=math.sqrt((z02*z02)-(r02*r02))\n",
- "drop=fl_i*(r02*math.cos(phi)+x02*math.sin(phi))\n",
- "secondary_v=v2*1000/math.sqrt(3)\n",
- "V2=secondary_v-drop\n",
- "line_v=V2*math.sqrt(3)\n",
- "regn=drop*100/secondary_v\n",
- "\n",
- "#result\n",
- "print \"secondary voltage\",line_v,\"V\"\n",
- "print \"regulation=\",regn,\"%\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "secondary voltage 6254.29059005 V\n",
- "regulation= 5.23802136291 %\n"
- ]
- }
- ],
- "prompt_number": 59
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.6, Page Number:1219"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "w=100.0#kWA\n",
- "f=50.0#Hz\n",
- "v1=3300.0#V\n",
- "v2=400.0#V\n",
- "rh=3.5#ohm\n",
- "rl=0.02#ohm\n",
- "pf=0.8\n",
- "efficiency=0.958\n",
- "\n",
- "#calculations\n",
- "output=0.8*100\n",
- "inpt=output/efficiency\n",
- "total_loss=(inpt-output)*1000\n",
- "K=v2/(math.sqrt(3)*v1)\n",
- "r02=rl+K**2*rh\n",
- "i2=((w*1000)/math.sqrt(3))/v2\n",
- "cu_loss=3*i2**2*r02\n",
- "iron_loss=total_loss-cu_loss\n",
- "#result\n",
- "print \"ironloss=\",iron_loss,\"W\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "0.0371411080502\n",
- "2321.31925314\n",
- "ironloss= 1185.98763622 W\n"
- ]
- }
- ],
- "prompt_number": 75
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.7, Page Number:1219"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "w=5000.0#kVA\n",
- "v1=6.6#kV\n",
- "v2=33.0#kV\n",
- "nl=15.0#kW\n",
- "fl=50.0#kW\n",
- "drop=0.07\n",
- "load=3200.0#kw\n",
- "pf=0.8\n",
- "phi=math.acos(pf)\n",
- "#calculations\n",
- "i2=w*1000/(math.sqrt(3)*v2*1000)\n",
- "impedence_drop=drop*(v2/math.sqrt(3))*1000\n",
- "z02=impedence_drop/i2\n",
- "cu_loss=fl-nl\n",
- "r02=cu_loss*1000/(3*i2**2)\n",
- "x02=math.sqrt(z02**2-r02**2)\n",
- "print \"full-load x02:\",x02\n",
- "\n",
- "#when load=3200#kW\n",
- "i2=load/(math.sqrt(3)*v2*0.8)\n",
- "drop_=drop*1000*(r02*math.cos(phi)+z02*math.sin(phi))\n",
- "regn=(drop_*100)/(v2*1000/math.sqrt(3))\n",
- "vp=v1+regn/100*v1\n",
- "print \"Primary voltage=\",vp*1000,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "full-load x02: 15.1695784661\n",
- "Primary voltage= 6851.39317975 V\n"
- ]
- }
- ],
- "prompt_number": 95
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.8, Page Number:1219"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "r=1\n",
- "x=6\n",
- "v=6600#V\n",
- "v2=4800#V\n",
- "pf=0.8\n",
- "phi=math.acos(pf)\n",
- "#calculations\n",
- "regn=(r*math.cos(phi)+z*math.sin(phi))\n",
- "secondary_v=v2+regn/100*v2\n",
- "secondary_vp=secondary_v/math.sqrt(3)\n",
- "K=secondary_vp/v\n",
- "\n",
- "#result\n",
- "print \"Transformation Ratio=\",K"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Transformation Ratio= 0.423426587968\n"
- ]
- }
- ],
- "prompt_number": 96
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.9, Page Number:1220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "w=2000#kVA\n",
- "v1=6600#V\n",
- "v2=400#V\n",
- "pf=0.8\n",
- "scv=400#V\n",
- "sci=175#A\n",
- "scw=17#kW\n",
- "ocv=400#V\n",
- "oci=150#A\n",
- "ocw=15#kW\n",
- "phi=math.acos(pf)\n",
- "#calculations\n",
- "i1=sci/math.sqrt(3)\n",
- "z01=scv/i1\n",
- "r01=scw*1000/(3*i1*i1)\n",
- "x01=math.sqrt(z01**2-r01**2)\n",
- "r=i1*r01*100/v1\n",
- "x=i1*x01*100/v1\n",
- "regn=(r*math.cos(phi)-x*math.sin(phi))\n",
- "I1=w*1000/(math.sqrt(3)*v1)\n",
- "total_loss=scw+ocw\n",
- "fl_output=w*pf\n",
- "efficiency=fl_output/(fl_output+total_loss)\n",
- "\n",
- "#result\n",
- "print \"% resistance=\",r,\"%\"\n",
- "print \"% reactance=\",x,\"%\"\n",
- "print \"% efficiency=\",efficiency*100,\"%\"\n",
- "print \"%regulation=\",regn,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "% resistance= 0.849779616989 %\n",
- "% reactance= 6.00073499035 %\n",
- "% efficiency= 98.0392156863 %\n",
- "%regulation= -2.92061730062 %\n"
- ]
- }
- ],
- "prompt_number": 109
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.10, Page Number:1220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v1=11000.0#V\n",
- "v2=440.0#V\n",
- "i=5.0#A\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "secondary_rating=v2/math.sqrt(3)\n",
- "primary_i=i/math.sqrt(3)\n",
- "voltsamps=v1*5/math.sqrt(3)\n",
- "i2=voltsamps/secondary_rating\n",
- "output=pf*voltsamps/1000\n",
- "\n",
- "#result\n",
- "print \"Each coil current=\",i2,\"A\"\n",
- "print \"Total output=\",output,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Each coil current= 125.0 A\n",
- "Total output= 25.4034118443 kW\n"
- ]
- }
- ],
- "prompt_number": 116
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.12, Page Number:1224"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=40#kVA\n",
- "\n",
- "#calculations\n",
- "kVA_per_transformer=load/2*1.15\n",
- "delta_delta_rating=kVA_per_transformer*3\n",
- "increase=(delta_delta_rating-load)*100/load\n",
- "\n",
- "#result\n",
- "print \"increase=\",increase,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "increase= 72.5 %\n"
- ]
- }
- ],
- "prompt_number": 126
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.13, Page Number:1224"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "w=20#kVA\n",
- "v1=2300#v\n",
- "v2=230#V\n",
- "load=40#kVA\n",
- "\n",
- "#calculations\n",
- "kva_load=load/math.sqrt(3)\n",
- "percent_rated=kva_load*100/w\n",
- "kvarating_vv=2*w*0.866\n",
- "vv_delta=kvarating_vv*100/60\n",
- "percentage_increase=kva_load/(load/3)\n",
- "\n",
- "#result\n",
- "print \"i)kVA load of each transformer=\",kva_load,\"kVA\"\n",
- "print \"ii)per cent of rated load carried by each transformer=\",percent_rated,\"%\"\n",
- "print \"iii)total kVA rating of the V-V bank\",kvarating_vv,\"kVA\"\n",
- "print \"iv)ratio of the v-v bank to delta-delta bank\",vv_delta,\"%\"\n",
- "print \"v)percent increase in load=\",percentage_increase*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)kVA load of each transformer= 23.0940107676 kVA\n",
- "ii)per cent of rated load carried by each transformer= 115.470053838 %\n",
- "iii)total kVA rating of the V-V bank 34.64 kVA\n",
- "iv)ratio of the v-v bank to delta-delta bank 57.7333333333 %\n",
- "v)percent increase in load= 177.646236674 %\n"
- ]
- }
- ],
- "prompt_number": 130
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.14, Page Number:1225"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=150.0#kW\n",
- "v1=1000.0#V\n",
- "pf=0.866\n",
- "v=2000.0#V\n",
- "\n",
- "#calculations\n",
- "il=load*1000/(pf*math.sqrt(3)*1000)\n",
- "ip=il/math.sqrt(3)\n",
- "ratio=v1/v\n",
- "ip=ip*ratio\n",
- "I=il\n",
- "Ip=I*ratio\n",
- "pf=86.6/100*pf\n",
- "\n",
- "#result\n",
- "print \"delta-delta:current in the windings=\",ip,\"A\"\n",
- "print \"v-v:current in the windings=\",Ip,\"A\"\n",
- "print \"Power factor\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "delta-delta:current in the windings= 28.8683602771 A\n",
- "v-v:current in the windings= 50.0014667312 A\n",
- "Power factor 0.749956\n"
- ]
- }
- ],
- "prompt_number": 133
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.15, Page Number:1225"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=3000#kW\n",
- "v=11#kV\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "I=load*1000/(math.sqrt(3)*v*1000*pf)\n",
- "transformer_pf=86.6/100*pf\n",
- "additional_load=72.5/100*load\n",
- "total_load=additional_load+load\n",
- "il=total_load*1000/(math.sqrt(3)*v*1000*pf)\n",
- "\n",
- "#result\n",
- "print \"Il=\",il,\"A\"\n",
- "print \"phase current=\",il/math.sqrt(3),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Il= 339.521323075 A\n",
- "phase current= 196.022727273 A\n"
- ]
- }
- ],
- "prompt_number": 134
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.16, Page Number:1225"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=400#kVA\n",
- "pf=0.866\n",
- "v=440#V\n",
- "\n",
- "#calculations\n",
- "kVA_each=(load/2)/pf\n",
- "phi=math.acos(pf)\n",
- "p1=kVA_each*math.cos(math.radians(30-phi))\n",
- "p2=kVA_each*math.cos(math.radians(30+phi))\n",
- "p=p1+p2\n",
- "\n",
- "#result\n",
- "print \"kVA supplied by each transformer=\",kVA_each,\"kVA\"\n",
- "print \"kW supplied by each transformer=\",p,\"kW\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kVA supplied by each transformer= 230.946882217 kVA\n",
- "kW supplied by each transformer= 399.995027715 kW\n"
- ]
- }
- ],
- "prompt_number": 136
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.17, Page Number:1228"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=400.0#V\n",
- "load=33.0#kVA\n",
- "v2=3300.0#V\n",
- "\n",
- "#calculations\n",
- "vl=0.866*v2\n",
- "ilp=load*1000/(math.sqrt(3)*v2)\n",
- "ils=ilp/(440/v2)\n",
- "main_kva=v2*ilp*0.001\n",
- "teaser_kva=0.866*main_kva\n",
- "\n",
- "#result\n",
- "print \"voltage rating of each coil=\",vl\n",
- "print \"current rating of each coil=\",ils\n",
- "print \"main kVA=\",main_kva,\"kVA\"\n",
- "print \"teaser kVA=\",teaser_kva,\"kVA\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage rating of each coil= 2857.8\n",
- "current rating of each coil= 43.3012701892\n",
- "main kVA= 19.0525588833 kVA\n",
- "teaser kVA= 16.4995159929 kVA\n"
- ]
- }
- ],
- "prompt_number": 139
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.18, Page Number:1231"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440.0#V\n",
- "v2=200.0#V\n",
- "output=150.0#kVA\n",
- "\n",
- "#calculations\n",
- "ratio=v2/v\n",
- "i2=output*1000/(2*v2)\n",
- "i1=i2*ratio\n",
- "primary_volts=(math.sqrt(3)*v)/2\n",
- "ratio=v2/primary_volts\n",
- "\n",
- "#result\n",
- "print \"primary current=\",i1,\"A\"\n",
- "print \"turns ratio\",ratio"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "primary current= 170.454545455 A\n",
- "turns ratio 0.524863881081\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.19, Page Number:1231"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=100.0#V\n",
- "v2=3300.0#V\n",
- "p=400.0#kW\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "K=v/v2\n",
- "i2=p*1000/(pf*v)\n",
- "ip=1.15*K*i2\n",
- "I2m=K*i2\n",
- "i2=ip/2\n",
- "i1m=math.sqrt(I2m**2+i2**2)\n",
- "\n",
- "#reslult\n",
- "print \"Current=\",i1m,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current= 174.77684841 A\n"
- ]
- }
- ],
- "prompt_number": 150
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.20, Page Number:1232"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "w1=300#kW\n",
- "w2=450#kW\n",
- "v1=100#V\n",
- "pf=0.707\n",
- "v2=3300#V\n",
- "\n",
- "#calculations\n",
- "K=v/v2\n",
- "i2t=(w2*1000)/(100*pf)\n",
- "i1t=1.15*K*i2t\n",
- "I2m=(K*w1*1000)/(100*pf)\n",
- "i2=i1t/2\n",
- "i1m=math.sqrt(I2m**2+i2**2)\n",
- "\n",
- "#result\n",
- "print \"Current=\",i1m,\"A\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current= 169.804606659 A\n"
- ]
- }
- ],
- "prompt_number": 163
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.21, Page Number:1233"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v1=80.0#V\n",
- "v2=11000.0#V\n",
- "w1=500.0#kW\n",
- "w2=800.0#kW\n",
- "pf=0.5\n",
- "\n",
- "#calculations\n",
- "K=v1/v2\n",
- "#unity pf\n",
- "i2t=w1*1000/v1\n",
- "i1t=1.15*K*i2t\n",
- "i2m=K*w2*1000/v1\n",
- "i1t_half=i1t/2\n",
- "ip=math.sqrt(i2m**2+i1t_half**2)\n",
- "\n",
- "print \"unity pf\"\n",
- "print \"one 3 phase line carries\",i1t,\"A whereas the other 2 carry\",ip,\"A each\"\n",
- "#0.5 pf\n",
- "i2t=w1*1000/(v1*pf)\n",
- "i1t=1.15*K*i2t\n",
- "i2m=K*w2*1000/(v1*pf)\n",
- "i1t_half=i1t/2\n",
- "ip=math.sqrt(i2m**2+i1t_half**2)\n",
- "print \"0.5 pf\"\n",
- "print \"one 3 phase line carries\",i1t,\"A whereas the other 2 carry\",ip,\"A each\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "unity pf\n",
- "one 3 phase line carries 52.2727272727 A whereas the other 2 carry 77.281082436 A each\n",
- "0.5 pf\n",
- "one 3 phase line carries 104.545454545 A whereas the other 2 carry 154.562164872 A each\n"
- ]
- }
- ],
- "prompt_number": 171
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.22, Page Number:1234"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v1=50#V\n",
- "v2=4.6*1000#V\n",
- "load=350#kW\n",
- "w=200#kW\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "K=v1/v2\n",
- "i2t=w*1000/(v1*pf)\n",
- "i1t=1.15*K*i2t\n",
- "i2m=load*1000/(v1*pf)\n",
- "Ki2m=K*i2m\n",
- "i1t_half=i1t/2\n",
- "i1m=math.sqrt(Ki2m**2+i1t_half**2)\n",
- "\n",
- "#result\n",
- "print \"current in line A=\",i1t\n",
- "print \"current in line B=\",i1m\n",
- "print \"current in line C=\",i1m"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current in line A= 62.5\n",
- "current in line B= 100.11107076\n",
- "current in line C= 100.11107076\n"
- ]
- }
- ],
- "prompt_number": 173
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.23, Page Number:1234"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=231#V\n",
- "v2=6600#v\n",
- "volt_induced=8#v\n",
- "\n",
- "#calculations\n",
- "hv=v2/volt_induced\n",
- "vl=v*math.sqrt(3)\n",
- "n_lv1=vl/volt_induced\n",
- "n_lv2=math.sqrt(3)*n_lv1/2\n",
- "n=2*n_lv2/3\n",
- "\n",
- "#result\n",
- "print \"neutral point is located on the\",math.ceil(n),\"th turn from A downwards\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "neutral point is located on the 29.0 th turn from A downwards\n"
- ]
- }
- ],
- "prompt_number": 176
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.24, Page Number:1235"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=6000.0#V\n",
- "v2=440.0#V\n",
- "f=50.0#Hz\n",
- "area=300.0#cm2\n",
- "flux=1.2#Wb/m2\n",
- "\n",
- "#calculations\n",
- "n1=v/(4.44*f*flux*area*0.0001*0.9)\n",
- "K=v2/v\n",
- "n2=n1*K\n",
- "n_lv=math.sqrt(3)*n2/2\n",
- "turns=n_lv*2/3\n",
- "\n",
- "#result\n",
- "print \"NUmber of turns in AN=\",math.floor(turns)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " NUmber of turns in AN= 35.0\n"
- ]
- }
- ],
- "prompt_number": 183
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.25, Page Number:1235"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=250.0#V\n",
- "load=30.0#kVA\n",
- "v2=250.0#V\n",
- "\n",
- "#calculations\n",
- "il=load*1000/(math.sqrt(3)*v2)\n",
- "vl=0.866*v2\n",
- "kva=il*vl*(0.001)\n",
- "\n",
- "#result\n",
- "print \"Voltage=\",vl,\"V\"\n",
- "print \"kVA rating\",kva,\"kVA\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Voltage= 216.5 V\n",
- "kVA rating 14.9995599935 kVA\n"
- ]
- }
- ],
- "prompt_number": 185
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.26, Page Number:1237"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import cmath\n",
- "#vaiable declaration\n",
- "load=500#kVA\n",
- "pf=0.8\n",
- "za=complex(2,6)\n",
- "zb=complex(2,5)\n",
- "phi=math.acos(pf)\n",
- "#calculations\n",
- "s=load*complex(math.cos(phi),math.sin(phi))\n",
- "z1=za/zb\n",
- "z2=zb/za\n",
- "sa=s/(1+z1)\n",
- "sb=s/(1+z2)\n",
- "pfa=cmath.phase(sa)\n",
- "pfb=cmath.phase(sb)\n",
- "#result\n",
- "print \"sa=\",abs(sa)\n",
- "print \"sb=\",abs(sb)\n",
- "print \"cos phi_a=\",pfa\n",
- "print \"cos phi_b=\",pfb"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "sa= 230.042839552\n",
- "sb= 270.171613479\n",
- "cos phi_a= 0.611765735265\n",
- "cos phi_b= 0.670521557981\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.27, Page Number:1237"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import cmath\n",
- "#variable declaration\n",
- "w=2000#kVA\n",
- "w1=4000#kVA\n",
- "w2=5000#kVA\n",
- "pf=0.8\n",
- "za=complex(2,8)\n",
- "zb=complex(1.6,3)\n",
- "\n",
- "#calculations\n",
- "za_per=(w1/w)*za\n",
- "zb_per=zb\n",
- "z=za_per+zb_per\n",
- "s=complex(w1,w-w2)\n",
- "sb=s*(za/z)\n",
- "sa=s-sb\n",
- "\n",
- "#result\n",
- "print \"sa=\",sa\n",
- "print \"sb=\",sb"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "sa= (2284.2287695-1821.49046794j)\n",
- "sb= (1715.7712305-1178.50953206j)\n"
- ]
- }
- ],
- "prompt_number": 211
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.28, Page Number:1237"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import cmath\n",
- "#variable declaration\n",
- "load=1400#kVA\n",
- "pf=0.866\n",
- "w1=1000#kVA\n",
- "w2=500#kVA\n",
- "v1=6600\n",
- "v2=400\n",
- "za=complex(0.001,0.003)\n",
- "zb=complex(0.0028,0.005)\n",
- "phi=math.acos(pf)\n",
- "#calculations\n",
- "zb=(w1/w2)*zb\n",
- "z=za/(za+zb)\n",
- "x=math.cos(-phi)\n",
- "y=math.sin(-phi)*1j\n",
- "s=load*(x+y)\n",
- "sb=s*z\n",
- "sa=s-sb\n",
- "\n",
- "#result\n",
- "print \"sa=\",sa\n",
- "print \"sb=\",sb"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "sa= (929.911014012-588.664867724j)\n",
- "sb= (282.488985988-111.396729565j)\n"
- ]
- }
- ],
- "prompt_number": 240
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.29, Page Number:1238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import cmath\n",
- "#variable declaration\n",
- "load=750#kVA\n",
- "pf=0.707\n",
- "w1=500#kVA\n",
- "w2=250#kVA\n",
- "v1=3300\n",
- "v2=400\n",
- "za=complex(2,3)\n",
- "zb=complex(1.5,4)\n",
- "phi=math.acos(pf)\n",
- "#calculations\n",
- "zb=(w1/w2)*zb\n",
- "z=za/(za+zb)\n",
- "x=math.cos(-phi)\n",
- "y=math.sin(-phi)*1j\n",
- "s=load*(x+y)\n",
- "sb=s*z\n",
- "sa=s-sb\n",
- "per_r=za.real*(sa.real)/w1\n",
- "per_x=(za.imag)*(sa.imag)/w1\n",
- "total_per=per_r+per_x\n",
- "vl=v2-(total_per*4)\n",
- "#result\n",
- "print \"sa=\",sa\n",
- "print \"sb=\",sb"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "sa= (399.511103547-348.770523615j)\n",
- "sb= (130.738896453-181.639636072j)\n"
- ]
- }
- ],
- "prompt_number": 242
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.30, Page Number:1240"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "ratio=100/5\n",
- "i=5#A\n",
- "i1=3.5#A\n",
- "\n",
- "#calculations\n",
- "il=i1*ratio\n",
- "\n",
- "#result\n",
- "print \"Line current=\",il,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Line current= 70.0 A\n"
- ]
- }
- ],
- "prompt_number": 214
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 33.31, Page Number:1240"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i1=2000#A\n",
- "i2=2500#A\n",
- "i=5#A\n",
- "\n",
- "#calculations\n",
- "ratio1=i1/i\n",
- "ratio2=i2/i\n",
- "\n",
- "#result\n",
- "print \"ratio in first case=\",ratio1\n",
- "print \"ratio in second case=\",ratio2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ratio in first case= 400\n",
- "ratio in second case= 500\n"
- ]
- }
- ],
- "prompt_number": 216
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_kFFOkoF.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_kFFOkoF.ipynb
deleted file mode 100644
index 0690f646..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_kFFOkoF.ipynb
+++ /dev/null
@@ -1,1741 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:e71bef33b0871199556c73182ec6cd28497a9d9d16612973a23ee2cceda4b35b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 26: D.C. Generators"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.3, Page Number:912"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=450#A\n",
- "v=230#v\n",
- "rs=50#ohm\n",
- "ra=.03#ohm\n",
- "\n",
- "#calculations\n",
- "ish=v/rs\n",
- "ia=i+ish\n",
- "va=ia*ra\n",
- "E=v+va\n",
- "\n",
- "#result\n",
- "print \"e.m.f. generated in the armature= \",E,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "e.m.f. generated in the armature= 243.62 V\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.4, Page Number:913"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=50#A\n",
- "v=500#v\n",
- "rs=250#ohm\n",
- "ra=.05#ohm\n",
- "rseries=0.03#ohm\n",
- "b=1#V\n",
- "\n",
- "#calculations\n",
- "ish=v/rs\n",
- "ia=i+ish\n",
- "vs=ia*rseries\n",
- "va=ia*ra\n",
- "vb=ish*b\n",
- "E=v+va+vs+vb\n",
- "\n",
- "#result\n",
- "print \"generated voltage in the armature= \",E,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "generated voltage in the armature= 506.16 V\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.5, Page Number:913"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=30#A\n",
- "v=220#v\n",
- "rs=200#ohm\n",
- "ra=.05#ohm\n",
- "rseries=0.30#ohm\n",
- "b=1#V\n",
- "\n",
- "#calculations\n",
- "vs=i*rseries\n",
- "vshunt=v+vs\n",
- "ish=vshunt/v\n",
- "ia=i+ish\n",
- "vb=b*2\n",
- "E=v+vs+vb+(ia*ra)\n",
- "\n",
- "#result\n",
- "print \"generated voltage in the armature= \",E,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "generated voltage in the armature= 232.552045455 V\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.6, Page Number:913"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": true,
- "input": [
- "#variable declaration\n",
- "v=230.0#v\n",
- "i=150.0#A\n",
- "rs=92.0#ohm\n",
- "rseries=0.015#ohm\n",
- "rd=0.03#ohm(divertor)\n",
- "ra=0.032#ohm\n",
- "\n",
- "#calculations\n",
- "ish=v/rs\n",
- "ia=i+ish\n",
- "sdr=(rd*rseries)/(rd+rseries)\n",
- "tr=ra+sdr\n",
- "vd=ia*tr\n",
- "Eg=v+vd\n",
- "tp=Eg*ia\n",
- "pl=(ia*ia*ra)+(ia*ia*sdr)+(v*ish)+(v*i)\n",
- "\n",
- "#resuts\n",
- "print \"i) Induced e.m.f.= \",Eg,\" V\"\n",
- "print \"ii)Total power generated= \",tp,\" W\"\n",
- "print \"iii)Distribution of the total power:\"\n",
- "print \" power lost in armature= \", ia*ia*ra\n",
- "print \"power lost in series field and divider= \", ia*ia*sdr\n",
- "print \"power dissipated in shunt winding= \", v*ish\n",
- "print \"power delivered to load= \", v*i\n",
- "print \" ------------\"\n",
- "print \"Total= \", pl"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i) Induced e.m.f.= 236.405 V\n",
- "ii)Total power generated= 36051.7625 W\n",
- "iii)Distribution of the total power:\n",
- " power lost in armature= 744.2\n",
- "power lost in series field and divider= 232.5625\n",
- "power dissipated in shunt winding= 575.0\n",
- "power delivered to load= 34500.0\n",
- " ------------\n",
- "Total= 36051.7625\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.7, Page Number:914"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=300000.0#w\n",
- "v=600.0#v\n",
- "sr=75.0#ohm\n",
- "abr=0.03#ohm\n",
- "cr=0.011#ohm\n",
- "rseries=0.012#ohm\n",
- "dr=0.036#ohm\n",
- "\n",
- "#calculatons\n",
- "io=p/v#output current\n",
- "ish=v/sr\n",
- "ia=io+ish\n",
- "sdr=(rseries*dr)/(rseries+dr)\n",
- "tr=abr+cr+sdr\n",
- "vd=ia*tr\n",
- "va=v+vd\n",
- "pg=va*ia\n",
- "W=pg/1000\n",
- "\n",
- "#result\n",
- "print \"Voltage generatedby the armature= \",va,\" V\"\n",
- "print \"Power generated by the armature= \",W, \"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Voltage generatedby the armature= 625.4 V\n",
- "Power generated by the armature= 317.7032 kW\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.8, Page Number:915"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "phi=7*math.pow(10,-3)\n",
- "z=51*20\n",
- "a=p=4\n",
- "n=1500#r.p.m\n",
- "\n",
- "#calculations\n",
- "Eg=(phi*z*n*p)/(a*60)\n",
- "\n",
- "#result\n",
- "print \"Voltage generated= \",Eg,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Voltage generated= 178.5 V\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.9, Page Number:916"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=a=8\n",
- "phi=0.05#Wb\n",
- "n=1200#rpm\n",
- "N=500#armature conductor\n",
- "\n",
- "#calculations\n",
- "E=phi*(n/60)*(p/a)*N\n",
- "\n",
- "#result\n",
- "print \"e.m.f generated= \",E,\" V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "e.m.f generated= 500.0 V\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.10, Page Number:916"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=127#v\n",
- "vt=120#v(terminal voltage)\n",
- "r=15#ohms\n",
- "i1=8.47#A\n",
- "ra=0.02#ohms\n",
- "fi=8#A\n",
- "\n",
- "#calculations\n",
- "Eg=v+(i1*ra)\n",
- "ia=(Eg-vt)/ra\n",
- "il=ia-fi\n",
- "\n",
- "#result\n",
- "print \"Load current \",il,\" A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Load current 350.47 A\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.11(a), Page Number:917"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=8\n",
- "z=778\n",
- "n=500\n",
- "ra=0.24\n",
- "rl=12.5\n",
- "r=250\n",
- "v=250\n",
- "a=2\n",
- "#calculations\n",
- "il=v/rl\n",
- "si=v/r\n",
- "ai=il+si\n",
- "emf=v+(ai*ra)\n",
- "phi=(emf*60*a)/(p*z*n)\n",
- "\n",
- "#result\n",
- "print \"armature current= \",ai,\" A\"\n",
- "print \"induced e.m.f.= \",emf,\" V\"\n",
- "print \"flux per pole= \",round(phi*1000,2),\" mWb\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature current= 21.0 A\n",
- "induced e.m.f.= 255.04 V\n",
- "flux per pole= 9.83 mWb\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.11(b), Page Number:916"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=a=4\n",
- "P=5000.0#w\n",
- "P2=2500.0#W\n",
- "v=250.0#v\n",
- "ra=0.2#ohm\n",
- "r=250.0#ohm\n",
- "z=120\n",
- "N=1000#rpm\n",
- "\n",
- "#calculations\n",
- "gc=P/v\n",
- "li=P2/v\n",
- "ti=gc+li\n",
- "fc=1\n",
- "ai=ti+fc\n",
- "ard=ai*ra\n",
- "emf=v+ard+2\n",
- "phi=(emf*60*a)/(p*z*N)\n",
- "ac_perparralelpath=ai/p\n",
- "\n",
- "#result\n",
- "print \"Flux per pole= \",phi*1000,\" mWb\"\n",
- "print \"Armature current per parallel path= \",ac_perparralelpath,\" A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Flux per pole= 129.1 mWb\n",
- "Armature current per parallel path= 7.75 A\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.12, Page Number:918"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=200.0#A\n",
- "v=125.0#V\n",
- "n1=1000#rpm\n",
- "n2=800#rpm\n",
- "ra=0.04#ohm\n",
- "bd=2.0#V(brush drop)\n",
- "\n",
- "#calculations\n",
- "R=v/i\n",
- "E1=v+(i*ra)+bd\n",
- "E2=(E1*n2)/n1\n",
- "il=(E2-bd)/0.675\n",
- "\n",
- "#result\n",
- "print \"Load current when speed drops to 800 r.p.m.= \",round(il,2),\" A\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Load current when speed drops to 800 r.p.m.= 157.04 A\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.13, Page Number:918"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=4\n",
- "n=900 #rpm\n",
- "V=220#V\n",
- "E=240#V\n",
- "ra=0.2#ohm\n",
- "phi=10#mWb\n",
- "N=8\n",
- "\n",
- "#calculations\n",
- "ia=(E-V)/ra\n",
- "Z=(E*600*2)/(phi*math.pow(10,-3)*n*p)\n",
- "#since there ae 8 turns in a coil,it means there are 16 active conductor\n",
- "number_of_coils=Z/16\n",
- "\n",
- "#result\n",
- "print \"armature current= \",ia,\" A\"\n",
- "print \"number of coils= \",number_of_coils"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature current= 100.0 A\n",
- "number of coils= 500.0\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.14, Page Number:919"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "V=120.0#V\n",
- "ra=0.06#ohm\n",
- "rs=25#ohm\n",
- "rsw=0.04#ohm(series winding)\n",
- "il=100.0#A\n",
- "#i)Long shunt\n",
- "ish=V/rs\n",
- "ia=il+ish\n",
- "vd=ia*rsw\n",
- "vda=ia*ra\n",
- "E=V+vd+vda\n",
- "\n",
- "print \"Induced e.m.f. when the machine is connected to long shunt= \",E,\" V\"\n",
- "print \"Armature current when the machine is connected to long shunt=\",ia,\" A\"\n",
- "\n",
- "#i)Short shunt\n",
- "vds=il*rsw\n",
- "vs=V+vds\n",
- "ish=vs/rs\n",
- "ia=il+ish\n",
- "vd=ia*rsw\n",
- "vda=ia*ra\n",
- "E=V+vd+vda\n",
- "\n",
- "print \"Induced e.m.f. when the machine is connected to short shunt= \",E,\" V\"\n",
- "print \"Armature current when the machine is connected to short shunt=\",ia,\" A\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Induced e.m.f. when the machine is connected to long shunt= 130.48 V\n",
- "Armature current when the machine is connected to long shunt= 104.8 A\n",
- "Induced e.m.f. when the machine is connected to short shunt= 130.496 V\n",
- "Armature current when the machine is connected to short shunt= 104.96 A\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.15, Page Number:920"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=25000.0#W\n",
- "V=500.0#V\n",
- "ra=0.03#ohm\n",
- "rs=200.0#ohm\n",
- "rseries=0.04#ohm\n",
- "vb=1.0#V\n",
- "n=1200#rpm\n",
- "phi=0.02#Wb\n",
- "\n",
- "#calculations\n",
- "i=p/V\n",
- "ish=V/rs\n",
- "ia=i+ish\n",
- "p=4\n",
- "vds=ia*rseries\n",
- "vda=ia*ra\n",
- "vdb=vb*2\n",
- "E=V+vds+vda+vdb\n",
- "Z=(E*60*4)/(phi*n*p)\n",
- "\n",
- "#result\n",
- "print \"The e.m.f. generated= \",E,\" V\"\n",
- "print \"The number of conductors=\",Z"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The e.m.f. generated= 505.675 V\n",
- "The number of conductors= 1264.1875\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.16, Page Number:920"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "n=750#rpm\n",
- "e=240.0#V\n",
- "z=792\n",
- "phi=0.0145#Wb\n",
- "\n",
- "#calculations\n",
- "phi_working=(e*60*2)/(n*z*p)\n",
- "lambda_=phi/phi_working\n",
- "\n",
- "#results\n",
- "print \"Leakage coefficient= \",round(lambda_,1)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Leakage coefficient= 1.2\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.17, Page Number:920"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=a=4\n",
- "phi=0.07#Wb\n",
- "t=220\n",
- "rt=0.004#ohm\n",
- "n=900#rpm\n",
- "ia=50.0#A\n",
- "\n",
- "#calculations\n",
- "z=2*t\n",
- "E=(phi*z*n*p)/(60*a)\n",
- "rtotal=t*rt\n",
- "r_eachpath=rtotal/p\n",
- "ra=r_eachpath/a\n",
- "vda=ia*ra\n",
- "V=E-vda\n",
- "\n",
- "#result\n",
- "print \"Terminal Voltage= \",V, \" V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Terminal Voltage= 459.25 V\n"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.18, Page Number:920"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=a=4\n",
- "phi=0.07#Wb\n",
- "t=220\n",
- "rturn=0.004#ohm\n",
- "rs=100.0#ohm\n",
- "rsc=0.02#ohm\n",
- "n=900#rpm\n",
- "ia=50.0#A\n",
- "\n",
- "#calculations\n",
- "z=2*t\n",
- "E=(phi*z*n*p)/(60*a)\n",
- "ra=0.055#ohm\n",
- "ra=ra+rsc\n",
- "va=ia*ra\n",
- "v=E-va\n",
- "ish=v/rs\n",
- "i=ia-ish\n",
- "output=v*i\n",
- "\n",
- "#result\n",
- "print \"Output= \",round(output/1000,3),\" kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Output= 20.813 kW\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.19, Page Number:921"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n1=1200#rpm\n",
- "ia=200#A\n",
- "v=125#V\n",
- "n2=1000#rpm\n",
- "ra=0.04#ohm\n",
- "vb=2#V\n",
- "\n",
- "#calculations\n",
- "E1=v+vb+(ia*ra)\n",
- "E2=E1*n2/n1*0.8\n",
- "\n",
- "#results\n",
- "print \"Generated e.m.f. when field current is reduced to 80%=\",E2,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Generated e.m.f. when field current is reduced to 80%= 90.0 V\n"
- ]
- }
- ],
- "prompt_number": 35
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.20(a), Page Number:921"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "rs=100.0#ohm\n",
- "ra=1.0#ohm\n",
- "z=378\n",
- "phi=0.02#Wb\n",
- "rl=10.0#ohm\n",
- "n=1000#rpm\n",
- "a=2\n",
- "\n",
- "#calculations\n",
- "E=(phi*z*n*p)/(60*a)\n",
- "V=(100.0/111.0)*E\n",
- "il=V/rl\n",
- "P=il*V\n",
- "\n",
- "#result\n",
- "print \"Power absorbed by the load is= \",P,\" W\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Power absorbed by the load is= 5154.12710007 W\n"
- ]
- }
- ],
- "prompt_number": 50
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.20(b), Page Number:921"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=a=4\n",
- "z=300\n",
- "phi=0.1#Wb\n",
- "n=1000#rpm\n",
- "ra=0.2#rpm\n",
- "rf=125#ohm\n",
- "il=90#A\n",
- "\n",
- "#calculations\n",
- "E=(phi*z*n*p)/(60*a)\n",
- "ifield=E/rf\n",
- "ia=ifield+il\n",
- "V=E-(ia*ra)\n",
- "\n",
- "#result\n",
- "print \"Terminal voltage= \",V,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Terminal voltage= 481.2 V\n"
- ]
- }
- ],
- "prompt_number": 51
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.21(a), Page Number:922"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=6\n",
- "n=1200#rpm\n",
- "e=250.0#V\n",
- "d=350.0#mm\n",
- "air_gap=3.0#mm\n",
- "al=260.0#mm\n",
- "fringing=0.8\n",
- "coils=96\n",
- "t=3\n",
- "\n",
- "#calculations\n",
- "z=t*coils*2\n",
- "a=p*2\n",
- "phi=(e*60*a)/(n*z*p)\n",
- "di=d+air_gap\n",
- "pole_arc=(3.14*di*fringing)/6\n",
- "B=phi/(pole_arc*0.000001*al)\n",
- "\n",
- "#result\n",
- "print \"flux per pole= \",phi,\" Wb\"\n",
- "print \"effective pole arc lenght= \",pole_arc*0.001,\" m\"\n",
- "print \"flux density= \",B,\" T\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "flux per pole= 0.0434027777778 Wb\n",
- "effective pole arc lenght= 0.147789333333 m\n",
- "flux density= 1.12953862717 T\n"
- ]
- }
- ],
- "prompt_number": 57
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.21(b), Page Number:922"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=a=4\n",
- "z=1200\n",
- "e=250.0#v\n",
- "n=500#rpm\n",
- "b=35.0#cm\n",
- "ratio=0.7\n",
- "lpole=20.0#cm\n",
- "\n",
- "#calculations\n",
- "pole_pitch=(b*3.14)/p\n",
- "polearc=ratio*pole_pitch\n",
- "pole_area=polearc*lpole\n",
- "phi=(e*60*a)/(n*z*p)\n",
- "mean_flux=phi/(pole_area*math.pow(10,-4))\n",
- " \n",
- "#result\n",
- "print \"Mean flux density= \",mean_flux,\" Wb/m2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Mean flux density= 0.649941505265 Wb/m2\n"
- ]
- }
- ],
- "prompt_number": 67
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.21(d), Page Number:923"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=200.0#A\n",
- "v=100.0#V\n",
- "ra=0.04#ohm\n",
- "rseries=0.03#ohm\n",
- "rs=60.0#ohm\n",
- "\n",
- "#calculations\n",
- "va=v+(i*rseries)\n",
- "ish=va/rs\n",
- "ia=i+ish\n",
- "e=va+(ia*ra)\n",
- "\n",
- "#long shunt\n",
- "ishunt=v/rs\n",
- "vd=ia*(ra+rseries)\n",
- "e2=v+vd\n",
- "\n",
- "#result\n",
- "print \"emf generated(short shunt)\",e,\" V\"\n",
- "print \"emf generated(long shunt)\",e2,\" V\"\n",
- "\n",
- "\n",
- "#result\n",
- "print "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "emf generated(short shunt) 114.070666667 V\n",
- "emf generated(long shunt) 114.123666667 V\n",
- "\n"
- ]
- }
- ],
- "prompt_number": 73
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.22, Page Number:923"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=1000#rpm\n",
- "w=20000.0#W\n",
- "v=220.0#v\n",
- "ra=0.04#ohm\n",
- "rs=110.0#ohm\n",
- "rseries=0.05#ohm\n",
- "efficiency=.85\n",
- "\n",
- "#calculations\n",
- "il=w/v\n",
- "i_f=v/rs\n",
- "ia=il+i_f\n",
- "ip=w/efficiency#input power\n",
- "total_loss=ip-w\n",
- "copper_loss=(ia*ia*(ra+rseries))+(i_f*i_f*rs)\n",
- "ironloss=total_loss-copper_loss\n",
- "omega=2*3.14*n/60\n",
- "T=ip/omega\n",
- "\n",
- "#omega\n",
- "print \"Copper loss= \",copper_loss,\" W\"\n",
- "print \"Iron and friction loss= \",ironloss,\" W\"\n",
- "print \"Torque developed by the prime mover= \",T,\"Nw-m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Copper loss= 1216.88892562 W\n",
- "Iron and friction loss= 2312.52283909 W\n",
- "Torque developed by the prime mover= 224.803297115 Nw-m\n"
- ]
- }
- ],
- "prompt_number": 75
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.23, Page Number:928"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declartaion\n",
- "power=10000.0#W\n",
- "v=250.0#V\n",
- "p=a=6\n",
- "n=1000.0#rpm\n",
- "z=534\n",
- "cu_loss=0.64*1000#W\n",
- "vbd=1.0#V\n",
- "\n",
- "#calculations\n",
- "ia=power/v\n",
- "ra=cu_loss/(ia*ia)\n",
- "E=v+(ia*ra)+vbd\n",
- "phi=(E*60*a)/(n*z*p)\n",
- "\n",
- "#result\n",
- "print \"flux per pole= \",phi*1000,\" mWb\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "flux per pole= 30.0 mWb\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.24(a), Page Number:928"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=195#A\n",
- "pd=250#V\n",
- "ra=0.02#ohm\n",
- "rsh=50#ohm\n",
- "p=250#W\n",
- "strayloss=950#W\n",
- "#calculations\n",
- "ish=pd/rsh\n",
- "ia=i+ish\n",
- "vda=ia*ra\n",
- "E=pd+vda\n",
- "cu_loss=(ia*ia*ra)+(pd*ish)\n",
- "output_prime=(pd*i)+strayloss+cu_loss\n",
- "power_a=output_prime-strayloss\n",
- "neu_m=(power_a/output_prime)\n",
- "neu_e=(pd*i)/((pd*i)+cu_loss)\n",
- "neu_c=(pd*i)/output_prime\n",
- "\n",
- "#result\n",
- "print \"a)e.m.f. generated= \",E,\" V\"\n",
- "print \" b)Cu losses= \",cu_loss,\" W\"\n",
- "print \" c)output of prime mover= \",output_prime,\" W\"\n",
- "print \" d)mechanical efficiency= \",neu_m*100,\" %\"\n",
- "print \" electrical efficiency= \",neu_e*100,\" %\"\n",
- "print \" commercial efficiency= \",neu_c*100,\" %\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)e.m.f. generated= 254.0 V\n",
- " b)Cu losses= 2050.0 W\n",
- " c)output of prime mover= 51750.0 W\n",
- " d)mechanical efficiency= 98.1642512077 %\n",
- " electrical efficiency= 95.9645669291 %\n",
- " commercial efficiency= 94.2028985507 %\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.24(b), Page Number:929"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=500.0#V\n",
- "i=5.0#A\n",
- "ra=0.15#ohm\n",
- "rf=200.0#ohm\n",
- "il=40.0#A\n",
- "\n",
- "#calculations\n",
- "output=v*il\n",
- "total_loss=(v*i*0.5)+((il+i*0.5)*(il+i*0.5)*ra)+(v*i*0.5)\n",
- "efficiency=output/(output+total_loss)\n",
- "\n",
- "#result\n",
- "print \"Efficiency= \",efficiency*100,\" %\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Efficiency= 87.8312542029 %\n"
- ]
- }
- ],
- "prompt_number": 39
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.25, Page Number:929"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "i=196#A\n",
- "v=220#V\n",
- "stray_loss=720#W\n",
- "rsh=55#ohm\n",
- "e=0.88\n",
- "\n",
- "#calculations\n",
- "output=v*i\n",
- "inpute=output/e\n",
- "total_loss=inpute-output\n",
- "ish=v/rsh\n",
- "ia=i+ish\n",
- "cu_loss=v*ish\n",
- "constant_loss=cu_loss+stray_loss\n",
- "culoss_a=total_loss-constant_loss\n",
- "ra=culoss_a/(ia*ia)\n",
- "I=math.sqrt(constant_loss/ra)\n",
- "\n",
- "#result\n",
- "print \"Load curent corresponding to maximum efficiency\",I,\" A\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Load curent corresponding to maximum efficiency 122.283568103 A\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.26, Page Number:929"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=1000#rpm\n",
- "p=22*1000#w\n",
- "v=220#V\n",
- "ra=0.05#ohm\n",
- "rsh=110#ohm\n",
- "rseries=0.06#ohm\n",
- "efficiency=.88\n",
- "\n",
- "#calculations\n",
- "ish=v/rsh\n",
- "I=p/v\n",
- "ia=ish+I\n",
- "vdseries=ia*rseries\n",
- "cu_loss=(ia*ia*ra)+(ia*ia*rseries)+(rsh*ish*ish)\n",
- "total_loss=(p/efficiency)-p\n",
- "strayloss=total_loss-cu_loss\n",
- "T=(p/efficiency*60)/(2*3.14*n)\n",
- "\n",
- "#result\n",
- "print \"a)cu losses= \",cu_loss,\" W\"\n",
- "print \"b)iron and friction loss= \",strayloss,\" W\"\n",
- "print \"c)Torque exerted by the prime mover= \",T,\" N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)cu losses= 1584.44 W\n",
- "b)iron and friction loss= 1415.56 W\n",
- "c)Torque exerted by the prime mover= 238.853503185 N-m\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.27, Page Number:930"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "i=20#A\n",
- "r=10#ohm\n",
- "ra=0.5#ohm\n",
- "rsh=50#ohm\n",
- "vdb=1#V(voltage drop per brush)\n",
- "\n",
- "#calculations\n",
- "v=i*r\n",
- "ish=v/rsh\n",
- "ia=i+ish\n",
- "E=v+(ia*ra)+(2*vdb)\n",
- "totalpower=E*ia\n",
- "output=v*i\n",
- "efficiency=output/totalpower\n",
- "\n",
- "#result\n",
- "print \"induced e.m.f.= \",E,\" V\"\n",
- "print \"efficiency= \",efficiency*100,\" %\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "induced e.m.f.= 214.0 V\n",
- "efficiency= 77.8816199377 %\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.28, Page Number:930"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=240#V\n",
- "i=100#A\n",
- "ra=0.1#ohm\n",
- "rseries=0.02#ohm\n",
- "ri=0.025#ohm\n",
- "rsh=100#ohm\n",
- "ironloss=1000#W\n",
- "frictionloss=500#W\n",
- "\n",
- "#calculations\n",
- "output=v*i\n",
- "totalra=ra+rseries+ri\n",
- "ish=v/rsh\n",
- "ia=i+ish\n",
- "copperloss=ia*ia*totalra\n",
- "shculoss=ish*v\n",
- "total_loss=copperloss+ironloss+frictionloss+shculoss\n",
- "efficiency=output/(output+total_loss)\n",
- "\n",
- "#result\n",
- "print \"F.L. efficiency of the machine= \",efficiency*100,\" %\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "F.L. efficiency of the machine= 87.3089843128 %\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.29, Page Number:930"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "A=Symbol('A')\n",
- "B=Symbol('B')\n",
- "ironloss=8#kW\n",
- "r=0.25#reduction in speed\n",
- "n_ironloss=5#kW\n",
- "\n",
- "#calculations\n",
- "ans=solve([ironloss-(A*1+B*1**2),n_ironloss-(A*(1-r)+B*(1-r)**2)],[A,B])\n",
- "wh=ans[A]\n",
- "we=ans[B]\n",
- "wh2=ans[A]*0.5\n",
- "we2=ans[B]*0.5**2\n",
- "\n",
- "#result\n",
- "print \"i)full speed:\"\n",
- "print \"Wh=\",round(wh,3),\"kW\"\n",
- "print \"We=\",round(we,3),\"kW\"\n",
- "print \"ii)half speed:\"\n",
- "print \"Wh=\",round(wh2,3),\"kW\"\n",
- "print \"We=\",round(we2,3),\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)full speed:\n",
- "Wh= 2.667 kW\n",
- "We= 5.333 kW\n",
- "ii)half speed:\n",
- "Wh= 1.333 kW\n",
- "We= 1.333 kW\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.30, Page Number:931"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "N=Symbol('N')\n",
- "n=1000.0#rpm\n",
- "wh=250.0#w\n",
- "we=100.0#w\n",
- "\n",
- "#calculations\n",
- "A=wh/(n/60)\n",
- "B=we/((n/60)**2)\n",
- "new_loss=(wh+we)/2\n",
- "ans=solve([new_loss-A*N-B*(N**2)],[N])\n",
- "\n",
- "#result\n",
- "print \"Speed at which total loss will be halved=\",ans[1],\"r.p.s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Speed at which total loss will be halved= (9.50045787200216,) r.p.s\n"
- ]
- }
- ],
- "prompt_number": 29
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.31, Page Number:931"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "output=10.0*1000#W\n",
- "v=240.0#V\n",
- "ra=0.6#ohm\n",
- "rsh=160.0#ohm\n",
- "mechcoreloss=500.0#W\n",
- "culoss=360.0#W\n",
- "\n",
- "#calculations\n",
- "ish=v/rsh\n",
- "i=output/v\n",
- "ia=ish+i\n",
- "culossa=ia*ia*ra\n",
- "totalloss=culoss+mechcoreloss+culossa\n",
- "inputp=output+totalloss\n",
- "efficiency=output/inputp\n",
- "\n",
- "#result\n",
- "print \"Power required= \",inputp*0.001,\" kW\"\n",
- "print \"efficinecy= \",efficiency*100,\" %\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Power required= 11.9780166667 kW\n",
- "efficinecy= 83.486275552 %\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.32, Page Number:932"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=110*1000#W\n",
- "v=220#V\n",
- "ra=0.01#ohm\n",
- "rse=0.002#ohm\n",
- "rsh=110#ohm\n",
- "\n",
- "#calculations\n",
- "il=p/v\n",
- "ish=v/rsh\n",
- "ia=il+ish\n",
- "E=v+ia*(ra+rse)\n",
- "\n",
- "#result\n",
- "print \"induced emf= \",E,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "induced emf= 226.024 V\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.33 Page Number:932"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "E=216.0#V\n",
- "n=600.0#rpm\n",
- "slots=144\n",
- "con=6\n",
- "n2=500.0#rpm\n",
- "\n",
- "#calculations\n",
- "z=con*slots\n",
- "a=p\n",
- "phi=(E*60*a)/(n*z*p)\n",
- "a=2\n",
- "armatureE=(phi*z*n2*p)/(60*a)\n",
- "\n",
- "#result\n",
- "print \"the armature emf= \",armatureE,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the armature emf= 360.0 V\n"
- ]
- }
- ],
- "prompt_number": 34
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 26.34 Page Number:933"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "r=0.15#ohm\n",
- "\n",
- "#calculations\n",
- "ar=p*r\n",
- "\n",
- "#result\n",
- "print \"armature resistance=\",ar"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature resistance= 0.6\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_lYTG7YP.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_lYTG7YP.ipynb
deleted file mode 100644
index 95eb9b1e..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_lYTG7YP.ipynb
+++ /dev/null
@@ -1,391 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:cd727f10a4caede23f6dcd22be7261834b049d15aeb309766271ec0c03a024c2"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 36: Single-Phase Motors"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 36.1, Page Number:1374"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "R1=1.86\n",
- "X1=2.56\n",
- "R2=3.56\n",
- "X2=2.56\n",
- "Xm=53.5\n",
- "r1=R1/2\n",
- "x1=X1/2\n",
- "r2=R2/2\n",
- "x2=X2/2\n",
- "xm=Xm/2\n",
- "v=110\n",
- "f=60\n",
- "s=0.05\n",
- "\n",
- "#calculations\n",
- "xo=xm+x2\n",
- "\n",
- "zf=(((r2/s)*xm)/(((r2/s)*(r2/s))+(xo*xo)))*xm\n",
- "jf=(((r2/s)*(r2/s)+(x2*xo))/(((r2/s)*(r2/s))+(xo*xo)))*xm\n",
- "Jf=math.degrees(math.atan(jf/zf))\n",
- "\n",
- "zb=(((r2/(2-s))*xm)/(((r2/s)*(r2/(2-s)))+(xo*xo)))*xm\n",
- "jb=(((r2/(2-s))*(r2/(2-s))+(x2*xo))/(((r2/(2-s))*(r2/(2-s)))+(xo*xo)))*xm\n",
- "Jb=math.degrees(math.atan(jb/zb))\n",
- "\n",
- "Z1=R1\n",
- "J1=X1\n",
- "z01=Z1+zf+zb\n",
- "j01=jf+jb+J1\n",
- "J01=math.degrees(math.atan(j01/z01))\n",
- "\n",
- "i1=v/z01\n",
- "vf=i1*zf\n",
- "vb=i1*zb\n",
- "z3=math.sqrt(((r2/s)*(r2/s))+(x2*x2))\n",
- "z5=math.sqrt(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n",
- "\n",
- "i3=vf/z3\n",
- "i5=vb/z5\n",
- "tf=(i3*i3*r2)/s\n",
- "tb=t5=(i5*i5*r2)/(2-s)\n",
- "t=tf-tb\n",
- "output=t*(1-s)\n",
- "\n",
- "#result\n",
- "print \"output = \",output"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output = 206.798750547\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Example Number 36.2, Page Number:1375"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "p=185\n",
- "v=110\n",
- "f=50\n",
- "s=0.05\n",
- "R1=1.86\n",
- "X1=2.56\n",
- "Xo=53.5\n",
- "R2=3.56\n",
- "X2=2.56\n",
- "Xm=53.5\n",
- "cl=3.5#core loss\n",
- "fl=13.5#friction loss\n",
- "vf=(82.5/100)*v\n",
- "ic=(cl*100)/vf\n",
- "r1=R1/2\n",
- "x1=X1/2\n",
- "r2=R2/2\n",
- "x2=X2/2\n",
- "xm=Xm/2\n",
- "rc=vf/ic\n",
- "\n",
- "#calculations\n",
- "\n",
- "#motor 1\n",
- "c=1/rc #conductance of corebranch\n",
- "s=-(1/xm)#susceptance\n",
- "a1=(r2/s)/(((r2/s)*r2/s)+(x2*x2))#admittance\n",
- "a1j=-x2/(((r2/s)*r2/s)+(x2*x2))#admittance j\n",
- "yf=c+a1\n",
- "yfj=s+a1j\n",
- "zf=(yf*yf)+(yfj*yfj)\n",
- "zfr=yf/zf\n",
- "zfj=yfj/zf\n",
- "\n",
- "#motor 2\n",
- "a2=(r2/2-s)/(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n",
- "a2j=-x2/(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n",
- "Z1=R1\n",
- "J1=X1\n",
- "yb=yf+a2\n",
- "ybj=yfj+a2j\n",
- "zb1=(yb*yb)+(ybj*ybj)\n",
- "zbr=yb/zb1\n",
- "zbj=ybj/zb1\n",
- "z01=Z1+zf+zbr\n",
- "z01j=J1+zfj+zbj\n",
- "\n",
- "i1=v/z01\n",
- "vf=i1*zf\n",
- "vb=i1*zbr\n",
- "z3=math.sqrt(((r2/s)*(r2/s))+(x2*x2))\n",
- "z5=math.sqrt(((r2/(2-s))*(r2/(2-s)))+(x2*x2))\n",
- "\n",
- "i3=vf/z3\n",
- "i5=vb/z5\n",
- "tf=(i3*i3*r2)/s\n",
- "tb=t5=(i5*i5*r2)/(2-s)\n",
- "t=tf-tb\n",
- "watt=t*(1-s)\n",
- "net_output=watt-fl\n",
- "\n",
- "#result\n",
- "print \"Net output = \",net_output"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Net output = -446.423232085\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 36.3, Page Number:1376"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "w=250\n",
- "v=230\n",
- "f=50\n",
- "zm=4.5\n",
- "zmj=3.7\n",
- "za=9.5\n",
- "zaj=3.5\n",
- "\n",
- "#calculations\n",
- "zma=math.degrees(math.atan(zmj/zm))\n",
- "ialeadv=90-zma\n",
- "x=za*(math.tan(math.radians(ialeadv)))\n",
- "xc=x+zaj\n",
- "c=1000000/(xc*2*50*3.14)\n",
- "\n",
- "#result\n",
- "print \"C= \",c,\" uf\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "C= 211.551875951 uf\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 36.4, Page Number:1393"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#variable declaration\n",
- "\n",
- "p=250\n",
- "f=50\n",
- "v=220\n",
- "ndc=2000\n",
- "ia=1\n",
- "ra=20\n",
- "la=0.4\n",
- "\n",
- "#calculations\n",
- "ebdc=v-(ia*ra)\n",
- "#ac\n",
- "xa=2*3.14*f*la\n",
- "ebac=-(ia*ra)+math.sqrt((v*v)-((ia*xa)*(ia*xa)))\n",
- "nac=(ebac*ndc)/ebdc\n",
- "cos_phi=(ebac+(ia*ra))/v\n",
- "pmech=ebac*ia\n",
- "T=(pmech*9.55)/nac\n",
- "\n",
- "#result\n",
- "print \"Speed= \",nac,\" rpm\"\n",
- "print \"Torque= \",T,\" N-m\"\n",
- "print \"Power Factor= \",cos_phi,\" lag\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Speed= 1606.22922133 rpm\n",
- "Torque= 0.955 N-m\n",
- "Power Factor= 0.821013282424 lag\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 36.5, Page Number:1394"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "r=30\n",
- "l=0.5\n",
- "v=250\n",
- "idc=0.8\n",
- "ndc=2000\n",
- "f=50\n",
- "ia=0.8\n",
- "\n",
- "#calculations\n",
- "\n",
- "xa=2*3.14*f*l\n",
- "ra=r\n",
- "ebac=-(ia*ra)+math.sqrt((v*v)-((ia*xa)*(ia*xa)))\n",
- "ebdc=v-(r*idc)\n",
- "nac=(ndc*ebac)/ebdc\n",
- "cos_phi=(ebac+(ia*ra))/v\n",
- "\n",
- "#result\n",
- "print \"Speed= \",nac,\" rpm\"\n",
- "print \"Power Factor= \",cos_phi,\" lag\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Speed= 1700.52062383 rpm\n",
- "Power Factor= 0.864635321971 lag\n"
- ]
- }
- ],
- "prompt_number": 36
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 36.6, Page Number:1396"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "f=50\n",
- "a=30\n",
- "w=8\n",
- "v=220\n",
- "v2=205\n",
- "pole=4\n",
- "\n",
- "#calculations\n",
- "\n",
- "ns=(120*f)/pole\n",
- "tsh=(9.55*w*1000)/ns\n",
- "alpha=0.5*(math.degrees(math.asin((v*v*math.sin(math.radians(2*a)))/(v2*v2))))\n",
- "\n",
- "#result\n",
- "print \"Torque angle if voltage drops to 205 V = \",alpha,\" degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Torque angle if voltage drops to 205 V = 42.9327261097 degrees\n"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_mfQgF34.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_mfQgF34.ipynb
deleted file mode 100644
index ce13ea95..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_mfQgF34.ipynb
+++ /dev/null
@@ -1,2629 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:072a977ff7e7f41108f647b699866e16f58bf91b148a03cefc5a07bc1eeda05b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 30:Speed Control of D.C. Motors"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.1, Page Number:1032"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=500#V\n",
- "n=250#rpm\n",
- "ia=200#A\n",
- "ra=0.12#ohm\n",
- "ratio=0.80\n",
- "ia2=100#A\n",
- "\n",
- "#calculations\n",
- "eb1=v-ia*ra\n",
- "eb2=v-ia2*ra\n",
- "n2=eb2*n/(eb1*ratio)\n",
- "\n",
- "#result\n",
- "print \"speed=\",round(n2),\"rpm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 320.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.2, Page Number:1032"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "ra=0.25#ohm\n",
- "ia=50#A\n",
- "n=750#rpm\n",
- "ratio=1-0.10\n",
- "\n",
- "#calculation\n",
- "ia2=ia/ratio\n",
- "eb1=v-ia*ra\n",
- "eb2=v-ia2*ra\n",
- "n2=eb2*n/(eb1*ratio)\n",
- "\n",
- "#result\n",
- "print \"speed=\",round(n2),\"rpm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 828.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.3, Page Number:1032"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=230.0#V\n",
- "n=800#rpm\n",
- "ia=50.0#A\n",
- "n2=1000#rpm\n",
- "ia2=80.0#A\n",
- "ra=0.15#ohm\n",
- "rf=250.0#ohm\n",
- "\n",
- "#calculation\n",
- "eb1=v-ia*ra\n",
- "eb2=v-ia2*ra\n",
- "ish1=v/rf\n",
- "r1=(n2*eb1*v)/(n*eb2*ish1)\n",
- "r=r1-rf\n",
- "ish2=v/r1\n",
- "torque_ratio=ish2*ia2/(ish1*ia)\n",
- "\n",
- "#result\n",
- "print \"resistance to be added=\",r,\"ohm\"\n",
- "print \"ratio of torque=\",torque_ratio"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance to be added= 68.9506880734 ohm\n",
- "ratio of torque= 1.25411235955\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.3, Page Number:1033"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250.0#V\n",
- "rf=250.0#ohm\n",
- "ra=0.25#ohm\n",
- "n=1500#rpm\n",
- "ia=20.0#A\n",
- "r=250.0#ohm\n",
- "\n",
- "#calculations\n",
- "ish=v/rf\n",
- "ish2=v/(rf+r)\n",
- "ia2=ia*1/ish2\n",
- "eb2=v-ia2*ra\n",
- "eb1=v-ia*ra\n",
- "n2=eb2*n/(eb1*ish2)\n",
- "\n",
- "#result\n",
- "print \"new speed=\",round(n2),\"rpm\"\n",
- "print \"new armature current=\",ia2,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "new speed= 2939.0 rpm\n",
- "new armature current= 40.0 A\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.5, Page Number:1033"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "rt=Symbol('rt')\n",
- "v=250.0#V\n",
- "ra=0.5#ohm\n",
- "rf=250.0#ohm\n",
- "n=600.0#rpm\n",
- "ia=20.0#A\n",
- "n2=800.0#rpm\n",
- "\n",
- "#calculation\n",
- "ish1=v/rf\n",
- "eb1=v-ia*ra\n",
- "rt=solve(((n2*eb1*(v/rt))/(n*(v-(ia*ra/(v/rt)))))-1,rt)\n",
- "r=rt[0]-rf\n",
- "\n",
- "#result\n",
- "print \"resistance to be inserted=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance to be inserted= 88.3128987990058 ohm\n"
- ]
- }
- ],
- "prompt_number": 37
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.6, Page Number:1034"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "x=Symbol('x')\n",
- "v=220#V\n",
- "ra=0.5#ohm\n",
- "ia=40#A\n",
- "ratio=1+0.50\n",
- "\n",
- "#calculation\n",
- "eb1=v-ia*ra\n",
- "x=solve((ratio*eb1/((v-ia*ra*x)*x))-1,x)\n",
- "per=1-1/x[0]\n",
- "\n",
- "#result\n",
- "print\"main flux has to be reduced by=\",per*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "main flux has to be reduced by= 37.2991677469778 %\n"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.7, Page Number:1034"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220#V\n",
- "load=10#kW\n",
- "i=41#A\n",
- "ra=0.2#ohm\n",
- "rw=0.05#ohm\n",
- "ri=0.1#ohm\n",
- "rf=110#ohm\n",
- "ratio=1-0.25\n",
- "r=1#ohm\n",
- "ratio1=1-0.50\n",
- "n=2500\n",
- "#calculation\n",
- "ish=v/rf\n",
- "ia1=i-ish\n",
- "ia2=ratio1*ia1/ratio\n",
- "eb1=v-ia1*(ra+ri+rw)\n",
- "eb2=v-ia2*(r+ra+ri+rw)\n",
- "n2=eb2*n/(eb1*ratio)\n",
- "\n",
- "#result\n",
- "print \"armature current=\",ia2,\"A\"\n",
- "print \"motor speed=\",round(n2),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature current= 26.0 A\n",
- "motor speed= 2987.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 40
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.8, Page Number:1035"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220#V\n",
- "load=15#kW\n",
- "n=850#rpm\n",
- "ia=72.2#A\n",
- "ra=0.25#ohm\n",
- "rf=100#ohm\n",
- "n2=1650#rpm\n",
- "ia2=40#A\n",
- "\n",
- "#calculation\n",
- "ish=v/rf\n",
- "ia1=ia-ish\n",
- "eb1=v-ia1*ra\n",
- "eb2=v-ia2*ra\n",
- "ratio=(n*eb2)/(n2*eb1)\n",
- "per=1-ratio\n",
- "#result\n",
- "print \"percentage reduction=\",per*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "percentage reduction= 46.5636857585 %\n"
- ]
- }
- ],
- "prompt_number": 46
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.9, Page Number:1035"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "ia2=Symbol('ia2')\n",
- "v=220#V\n",
- "ra=0.5#ohm\n",
- "ia=40#A\n",
- "ratio=0.50+1\n",
- "\n",
- "#calculation\n",
- "eb1=v-ia*ra\n",
- "ia2=solve((((v-ra*ia2)*ia2)/(eb1*ratio*ia))-1,ia2)\n",
- "per=ia/ia2[0]\n",
- "\n",
- "#result\n",
- "print \"mail flux should be reduced by=\",round(per,4)*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "mail flux should be reduced by= 62.7 %\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.10, Page Number:1035"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "ia=20.0#A\n",
- "v=220.0#V\n",
- "ra=0.5#ohm\n",
- "ratio=0.50\n",
- "\n",
- "#calculation\n",
- "eb1=v-ia*ra\n",
- "eb2=ratio*(v-ia*ra)\n",
- "r=(v-eb2)/ia-ra\n",
- "\n",
- "#result\n",
- "print \"resistance required in the series=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance required in the series= 5.25 ohm\n"
- ]
- }
- ],
- "prompt_number": 53
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.11, Page Number:1036"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "n=1000#rpm\n",
- "ia=8#A\n",
- "i_f=1#A\n",
- "ra=0.2#ohm\n",
- "rf=250#ohm\n",
- "i=50#A\n",
- "\n",
- "#calculations\n",
- "eb0=v-(ia-i_f)*ra\n",
- "kpsi=eb0/1000\n",
- "ia=i-i_f\n",
- "eb1=v-ia*ra\n",
- "n1=eb1/kpsi\n",
- "\n",
- "#result\n",
- "print \"speed=\",round(n1,1),\"rpm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 966.2 rpm\n"
- ]
- }
- ],
- "prompt_number": 55
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.12, Page Number:1037"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=240#V\n",
- "ra=0.25#ohm\n",
- "n=1000#rpm\n",
- "ia=40#A\n",
- "n2=800#rpm\n",
- "i2=20#A\n",
- "#calculation\n",
- "eb=v-ia*ra\n",
- "eb2=n2*eb/n\n",
- "r=(v-eb2)/(ia)-ra\n",
- "eb3=v-i2*(r+ra)\n",
- "n3=eb3*n/eb\n",
- "\n",
- "#result\n",
- "print \"additional resistance=\",r,\"ohm\"\n",
- "print \"speed=\",round(n3),\"rpm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "additional resistance= 1.15 ohm\n",
- "speed= 922.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 61
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.13, Page Number:1037"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=7.48#kW\n",
- "v=220#V\n",
- "n=990#rpm\n",
- "efficiency=0.88\n",
- "ra=0.08#ohm\n",
- "ish=2#A\n",
- "n2=450#rpm\n",
- "\n",
- "#calculation\n",
- "input_p=load*1000/efficiency\n",
- "losses=input_p-load*1000\n",
- "i=input_p/v\n",
- "ia=i-ish\n",
- "loss=v*ish\n",
- "cu_loss=ia**2*ra\n",
- "loss_nl=losses-cu_loss-loss\n",
- "eb1=v-20-(ia*ra)\n",
- "eb2=n2*eb1/n\n",
- "r=(eb1-eb2)/ia\n",
- "total_loss=ia**2*(r+ra)+loss+loss_nl\n",
- "output=input_p-total_loss\n",
- "efficiency=output/(input_p)\n",
- "\n",
- "#result\n",
- "print \"motor input=\",input_p/1000,\"kW\"\n",
- "print \"armature current=\",ia,\"A\"\n",
- "print \"external resistance=\",r,\"ohm\"\n",
- "print \"efficiency=\",efficiency*100,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "motor input= 8.5 kW\n",
- "armature current= 36.6363636364 A\n",
- "external resistance= 2.93403113016 ohm\n",
- "efficiency= 41.6691237902 %\n"
- ]
- }
- ],
- "prompt_number": 81
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.14, Page Number:1038"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "eb1=230.0#V\n",
- "n=990.0#rpm\n",
- "n2=500.0#rpm\n",
- "ia=25.0#A\n",
- "\n",
- "#calculation\n",
- "eb2=eb1*n2/n\n",
- "r=(eb1-eb2)/ia\n",
- "\n",
- "#result\n",
- "print \"resistance required in series=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance required in series= 4.55353535354 ohm\n"
- ]
- }
- ],
- "prompt_number": 83
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.15, Page Number:1038"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220.0#V\n",
- "ra=0.4#ohm\n",
- "rf=200.0#ohm\n",
- "ia=20.0#A\n",
- "n=600.0#rpm\n",
- "n2=900.0#rpm\n",
- "\n",
- "#calculation\n",
- "if1=v/rf\n",
- "eb1=v-ia*ra\n",
- "k2=eb1/(if1*n)\n",
- "if2=n*if1/n2\n",
- "rf1=v/if1\n",
- "rf2=v/if2\n",
- "r=rf2-rf1\n",
- "\n",
- "#result\n",
- "print \"resistance to be added=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance to be added= 100.0 ohm\n"
- ]
- }
- ],
- "prompt_number": 90
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.16, Page Number:1039"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "ia2=Symbol('ia2')\n",
- "v=220.0#V\n",
- "ra=0.4#ohm\n",
- "rf=200.0#ohm\n",
- "ia=22.0#A\n",
- "n=600.0#rpm\n",
- "n2=900.0#rpm\n",
- "\n",
- "#calculation\n",
- "if1=v/rf\n",
- "eb1=v-ia*ra\n",
- "k1=eb1/(if1*n)\n",
- "if2=n*if1/n2\n",
- "if2=n2*ia/n\n",
- "ia2=solve(v-ra*ia2-(k1*ia*if1*n2)/ia2,ia2)\n",
- "if2=ia*if1/ia2[0]\n",
- "r=v/if2\n",
- "\n",
- "#result\n",
- "print \"new field resistance to be added=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "new field resistance to be added= 306.828780053869 ohm\n"
- ]
- }
- ],
- "prompt_number": 103
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.17, Page Number:1040"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "output=25#kW\n",
- "efficiency=0.85\n",
- "n=1000#rpm\n",
- "ra=0.1#ohm\n",
- "rf=125#ohm\n",
- "ratio=1.50\n",
- "\n",
- "#calculation\n",
- "input_p=output*1000/efficiency\n",
- "i=input_p/v\n",
- "if1=v/rf\n",
- "ia=i-if1\n",
- "il=ratio*ia\n",
- "r=v/il\n",
- "r_ext=r-ra\n",
- "\n",
- "#result\n",
- "print \"starting resistance=\",round(r_ext,3),\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "starting resistance= 1.341 ohm\n"
- ]
- }
- ],
- "prompt_number": 105
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.18, Page Number:1042"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=200.0#V\n",
- "n=1000.0#rpm\n",
- "ia=17.5#A\n",
- "n2=600.0#rpm\n",
- "ra=0.4#ohm\n",
- "\n",
- "#calculation\n",
- "eb1=v-ia*ra\n",
- "rt=(v-(n2*eb1/n))/ia\n",
- "r=rt-ra\n",
- "#result\n",
- "print \"resistance to be inserted=\",round(r,1),\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance to be inserted= 4.4 ohm\n"
- ]
- }
- ],
- "prompt_number": 111
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.19, Page Number:1042"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=500#V\n",
- "ra=1.2#ohm\n",
- "rf=500#ohm\n",
- "ia=4#A\n",
- "n=1000#rpm\n",
- "i=26#A\n",
- "r=2.3#ohm\n",
- "ratio=0.15\n",
- "\n",
- "#calculation\n",
- "ish=v/rf\n",
- "ia1=ia-ish\n",
- "eb1=v-ia1*ra\n",
- "ia2=i-ish\n",
- "eb2=v-ia2*ra\n",
- "n2=n*eb2/eb1\n",
- "eb2=v-ia2*(r+ra)\n",
- "n2_=n*eb2/eb1\n",
- "n2__=n*eb2/(eb1*(1-ratio))\n",
- "\n",
- "#result\n",
- "print \"speed when resistance 2.3 ohm is connected=\",round(n2_),\"rpm\"\n",
- "print \"speed when shunt field is reduced by 15%=\",round(n2__),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed when resistance 2.3 ohm is connected= 831.0 rpm\n",
- "speed when shunt field is reduced by 15%= 978.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 113
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.20, Page Number:1043"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250.0#V\n",
- "ia1=ia2=20.0#A\n",
- "n=1000.0#rpm\n",
- "ra=0.5#ohm\n",
- "n2=500.0#ohm\n",
- "\n",
- "#calculation\n",
- "eb1=v-ia1*ra\n",
- "rt=(v-((n2/n)*eb1))/ia2\n",
- "r=rt-ra\n",
- "ia3=ia2/2\n",
- "n3=n*(v-ia3*rt)/eb1\n",
- "#result\n",
- "print \"speed=\",round(n3),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 771.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 117
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.21, Page Number:1043"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250.0#V\n",
- "ra1=0.5#ohm\n",
- "n=600.0#rpm\n",
- "ia2=ia1=20#A\n",
- "r=1.0#ohm\n",
- "\n",
- "#calculations\n",
- "eb1=v-ia1*ra1\n",
- "ra2=r+ra1\n",
- "eb2=v-ia2*ra2\n",
- "n2=eb2*n/eb1\n",
- "#torque is half the full-load torque\n",
- "ia2=1.0/2.0*ia1\n",
- "eb22=v-ia2*ra2\n",
- "n2_=eb22*n/eb1\n",
- "#result\n",
- "print \"speed at full load torque=\",round(n2),\"rpm\"\n",
- "print \"speed at half full-load torque=\",round(n2_),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed at full load torque= 550.0 rpm\n",
- "speed at half full-load torque= 588.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 137
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.22, Page Number:1044"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220.0#V\n",
- "ra1=0.5#ohm\n",
- "n=500.0#rpm\n",
- "ia2=ia1=30.0#A\n",
- "r=1.0#ohm\n",
- "\n",
- "#calculations\n",
- "eb1=v-ia1*ra1\n",
- "ra2=r+ra1\n",
- "eb2=v-ia2*ra2\n",
- "n2=eb2*n/eb1\n",
- "\n",
- "#torque is half the full-load torque\n",
- "ia2=2.0*ia1\n",
- "eb22=v-ia2*ra2\n",
- "n2_=eb22*n/eb1\n",
- "#result\n",
- "print \"speed at full load torque=\",round(n2),\"rpm\"\n",
- "print \"speed at double full-load torque=\",round(n2_),\"rpm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed at full load torque= 427.0 rpm\n",
- "speed at double full-load torque= 317.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 142
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.23, Page Number:1044"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=37.3*1000#W\n",
- "v=500.0#V\n",
- "n=750.0#rpm\n",
- "efficiency=0.90\n",
- "t2=250.0#N-m\n",
- "r=5.0#ohm\n",
- "ra=0.5#ohm\n",
- "\n",
- "#calculation\n",
- "t1=load/(2*3.14*(n/60))\n",
- "ia1=load/(efficiency*v)\n",
- "ia2=ia1*math.sqrt(t2/t1)\n",
- "eb1=v-ia1*ra\n",
- "eb2=v-ia2*(r+ra)\n",
- "n2=eb2*ia1*n/(eb1*ia2)\n",
- "\n",
- "#result\n",
- "print \"speed at which machine will run=\",round(n2),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed at which machine will run= 381.789716486 rpm\n"
- ]
- }
- ],
- "prompt_number": 157
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.24, Page Number:1044"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "output=7.46*1000#W\n",
- "v=220.0#V\n",
- "n=900.0#rpm\n",
- "efficiency=0.88\n",
- "ra=0.08#ohm\n",
- "ish=2.0#A\n",
- "n2=450.0#rpm\n",
- "#calculation\n",
- "i=output/(efficiency*v)\n",
- "ia2=ia1=i-ish\n",
- "eb1=v-ia2*ra\n",
- "rt=(v-20-((n2/n)*eb1))/ia2\n",
- "r=rt-ra\n",
- "input_m=(v)*(ia2+ish)\n",
- "total_loss=input_m-output\n",
- "cu_loss=ia2**2*ra\n",
- "cu_loss_f=v*ish\n",
- "total_cu_loss=cu_loss+cu_loss_f\n",
- "stray_loss=total_loss-total_cu_loss\n",
- "stray_loss2=stray_loss*n2/n\n",
- "cu_loss_a=ia1**2*rt\n",
- "total_loss2=stray_loss2+cu_loss_f+cu_loss_a\n",
- "output2=input_m-total_loss2\n",
- "efficiency=output2*100/input_m\n",
- "\n",
- "#result\n",
- "print \"motor output=\",output2,\"W\"\n",
- "print \"armature current=\",ia2,\"A\"\n",
- "print \"external resistance=\",r,\"ohm\"\n",
- "print \"overall efficiency=\",efficiency,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "motor output= 4460.66115702 W\n",
- "armature current= 36.5330578512 A\n",
- "external resistance= 2.42352222599 ohm\n",
- "overall efficiency= 52.619059225 %\n"
- ]
- }
- ],
- "prompt_number": 175
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.25, Page Number:1044"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=240.0#V\n",
- "ia=15.0#A\n",
- "n=800.0#rpm\n",
- "ra=0.6#ohm\n",
- "n2=400.0#rpm\n",
- "\n",
- "#calculation\n",
- "eb1=v-ia*ra\n",
- "r=((v-(n2*eb1/n))/ia)-ra\n",
- "ia3=ia/2\n",
- "eb3=v-ia3*(r+ra)\n",
- "n3=eb3*n/eb1\n",
- "\n",
- "#result\n",
- "print \"speed=\",n3,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 615.584415584 rpm\n"
- ]
- }
- ],
- "prompt_number": 187
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.26, Page Number:1045"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "r=Symbol('r')\n",
- "v=400.0#V\n",
- "inl=3.5#A\n",
- "il=59.5#A\n",
- "rf=267.0#ohm\n",
- "ra=0.2#ohm\n",
- "vd=2.0#V\n",
- "ratio=0.02\n",
- "speed_ratio=0.50\n",
- "\n",
- "#calculations\n",
- "ish=v/rf\n",
- "ia1=inl-ish\n",
- "eb1=v-ia1*ra-vd\n",
- "ia2=il-ish\n",
- "eb2=v-ia2*ra-vd\n",
- "n1_by_n2=eb1*(1-ratio)/eb2\n",
- "per_change=(1-1/n1_by_n2)*100\n",
- "r=solve(eb2*speed_ratio/(eb2-ia2*r)-1,r)\n",
- "#result\n",
- "print \"change in speed=\",per_change,\"%\"\n",
- "print \"resistance to be added=\",r[0],\"ohm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "change in speed= 0.83357557339 %\n",
- "resistance to be added= 3.33092370774547 ohm\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.27, Page Number:1046"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaraion\n",
- "v=200.0#V\n",
- "i=50.0#A\n",
- "n=1000.0#rpm\n",
- "n2=800.0#rpm\n",
- "ra=0.1#ohm\n",
- "rf=100.0#ohm\n",
- "\n",
- "#calculations\n",
- "ish=v/rf\n",
- "ia1=i-ish\n",
- "ia2=ia1*(n2/n)**2\n",
- "eb1=v-ia1*ra\n",
- "eb2=v-ia2*ra\n",
- "rt=(v-(n2*eb1/n))/ia2\n",
- "r=rt-ra\n",
- "#result\n",
- "print \"resustance that must be added=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resustance that must be added= 1.32708333333 ohm\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.28, Page Number:1047"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "load=37.3#kW\n",
- "efficiency=0.90\n",
- "n=1000#rpm\n",
- "ra=0.1#ohm\n",
- "rf=115#ohm\n",
- "ratio=1.5\n",
- "\n",
- "#calculation\n",
- "tsh=9.55*load*1000/n\n",
- "i=load*1000/(v*efficiency)\n",
- "ish=v/rf\n",
- "ia=i-ish\n",
- "eb=v-ia*ra\n",
- "ta=9.55*eb*ia/n\n",
- "i_permissible=i*ratio\n",
- "ia_per=i_permissible-ish\n",
- "ra_total=v/ia_per\n",
- "r_required=ra_total-ra\n",
- "torque=ratio*ta\n",
- "#result\n",
- "print \"net torque=\",ta,\"N-m\"\n",
- "print \"starting resistance=\",r_required,\"ohm\"\n",
- "print \"torque developed at starting=\",torque,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "net torque= 365.403326173 N-m\n",
- "starting resistance= 0.913513513514 ohm\n",
- "torque developed at starting= 548.104989259 N-m\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.29, Page Number:1047"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "I=Symbol('I')\n",
- "v=200.0#V\n",
- "rf=40.0#ohm\n",
- "ra=0.02#ohm\n",
- "i=55.0#A\n",
- "n=595.0#rpm\n",
- "r=0.58#ohm\n",
- "n2=630.0#rpm\n",
- "ia_=15.0#A\n",
- "rd=5.0#ohm\n",
- "ia2=50.0#A\n",
- "\n",
- "#calculation\n",
- "ish=v/rf\n",
- "ia1=i-ish\n",
- "ra1=r+ra\n",
- "eb1=v-ra1*ia1\n",
- "ia2=ia1\n",
- "eb2=eb1*(n2/n)\n",
- "r=(v-eb2)/ia1\n",
- "eb2_=v-ia_*ra1\n",
- "n2=eb2_*n/eb1\n",
- "eb3=eb1\n",
- "IR=v-eb3-ia2*ra\n",
- "pd=v-IR\n",
- "i_d=pd/rd\n",
- "i=ia2+i_d\n",
- "R=IR/i\n",
- "I=solve(rd*(I-ia_)-v+R*I,I)\n",
- "eb4=v-R*I[0]-ia_*ra\n",
- "n4=n*(eb4/eb1)\n",
- "\n",
- "#result\n",
- "print \"armature circuit resistance should be reduced by=\",ra1-r,\"ohm\"\n",
- "print \"speed when Ia=\",n2,\"rpm\"\n",
- "print \"value of series resistance=\",R,\"ohm\"\n",
- "print \"speed when motor current falls to 15A=\",n4,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature circuit resistance should be reduced by= 0.2 ohm\n",
- "speed when Ia= 668.5 rpm\n",
- "value of series resistance= 0.344418052257 ohm\n",
- "speed when motor current falls to 15A= 636.922222222222 rpm\n"
- ]
- }
- ],
- "prompt_number": 36
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.31, Page Number:1051"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "i=15#A\n",
- "n=600#rpm\n",
- "\n",
- "#calculation\n",
- "ia2=math.sqrt(2*2**0.5*i**2)\n",
- "n2=n*2*i/ia2\n",
- "\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\"\n",
- "print \"current=\",ia2,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 713.524269002 rpm\n",
- "current= 25.2268924576 A\n"
- ]
- }
- ],
- "prompt_number": 37
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.32, Page Number:1052"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=707#rpm\n",
- "ia1=100#A\n",
- "v=85#V\n",
- "rf=0.03#ohm\n",
- "ra=0.04#ohm\n",
- "\n",
- "#calculation\n",
- "ra_total=ra+(2*rf)\n",
- "eb1=v-ia1*ra_total\n",
- "ia2=ia1*2**0.5\n",
- "rf=rf/2\n",
- "eb2=v-ia2*(ra+rf)\n",
- "n2=n*(eb2/eb1)*(2*ia1/ia2)\n",
- "rt=(v-((n/n2)*eb2))/ia2\n",
- "r=rt-ra-rf\n",
- "\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\"\n",
- "print \"additional resistance=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 1029.46885374 rpm\n",
- "additional resistance= 0.171040764009 ohm\n"
- ]
- }
- ],
- "prompt_number": 44
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.33, Page Number:1052"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#varable declaration\n",
- "v=240.0#V\n",
- "ia=40.0#A\n",
- "ra=0.3#ohm\n",
- "n=1500.0#rpm\n",
- "n2=1000.0#rpm\n",
- "#calculation\n",
- "R=v/ia-ra\n",
- "eb1=v-ia*ra\n",
- "r=(v-((n2/n)*eb1))/ia-ra\n",
- "\n",
- "#result\n",
- "print \"resistance to be added at starting=\",R,\"ohm\"\n",
- "print \"resistance to be added at 1000 rpm\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance to be added at starting= 5.7 ohm\n",
- "resistance to be added at 1000 rpm 1.9 ohm\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.34, Page Number:1053"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=600.0#rpm\n",
- "v=250.0#V\n",
- "ia1=20.0#A\n",
- "ratio=2.0\n",
- "\n",
- "#calculations\n",
- "ia2=ia1*2**(3.0/4.0)\n",
- "n2=n*ratio*ia1/ia2\n",
- "\n",
- "#result\n",
- "print \"current=\",ia2,\"A\"\n",
- "print \"speed=\",n2,\"rpm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current= 33.6358566101 A\n",
- "speed= 713.524269002 rpm\n"
- ]
- }
- ],
- "prompt_number": 50
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.35, Page Number:1053"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "V=Symbol('V')\n",
- "ra=1.0#ohm\n",
- "v=220.0#V\n",
- "n=350.0#rpm\n",
- "ia=25.0#A\n",
- "n2=500.0#rpm\n",
- "\n",
- "#calculation\n",
- "ia2=ia*(n2/n)\n",
- "eb1=v-ia*ra\n",
- "V=solve((n2*eb1*ia2/(n*ia))+ia2-V,V)\n",
- "\n",
- "#result\n",
- "print \" current=\",ia2,\"A\"\n",
- "print \"voltage=\",V[0],\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " current= 35.7142857143 A\n",
- "voltage= 433.673469387755 V\n"
- ]
- }
- ],
- "prompt_number": 58
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.36, Page Number:1053"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=1000.0#rpm\n",
- "ia=20.0#A\n",
- "v=200.0#V\n",
- "ra=0.5#ohm\n",
- "rf=0.2#ohm\n",
- "i=20.0#A\n",
- "rd=0.2#ohm\n",
- "i_f=10.0#A\n",
- "ratio=0.70\n",
- "\n",
- "#calculation\n",
- "eb1=v-(ra+rf)*ia\n",
- "r_total=ra+rf/2\n",
- "eb2=v-r_total*ia\n",
- "n2=(eb2*n/(eb1*ratio))\n",
- " \n",
- "#result\n",
- "print \"speed=\",round(n2),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 1444.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 61
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.37, Page Number:1054"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=200.0#V\n",
- "ia=40.0#A\n",
- "n=700.0#rpm\n",
- "ratio=0.50+1\n",
- "ra=0.15#ohm\n",
- "rf=0.1#ohm\n",
- "\n",
- "#calculations\n",
- "ia2=(ratio*2*ia**2)**0.5\n",
- "eb1=v-ia*(ra+rf)\n",
- "eb2=v-ia2*(ra+rf)\n",
- "n2=(eb2/eb1)*(ia*2/ia2)*n\n",
- "\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\"\n",
- "print \"speed=\",ia2,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 777.147765122 rpm\n",
- "speed= 69.2820323028 A\n"
- ]
- }
- ],
- "prompt_number": 63
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.38, Page Number:1055"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "ia=20#A\n",
- "n=900#rpm\n",
- "r=0.025#ohm\n",
- "ra=0.1#ohm\n",
- "rd=0.2#ohm\n",
- "\n",
- "#calculation\n",
- "#when divertor is added\n",
- "eb1=v-ia*(ra+4*r)\n",
- "ia2=(ia**2*(ra+rd)/rd)**0.5\n",
- "ra_=rd*ra/(ra+rd)\n",
- "eb2=v-ia2*ra_\n",
- "n2=(eb2/eb1)*(ia*3/(2*ia2))*n\n",
- "\n",
- "#rearranged field coils in two series and parallel group\n",
- "ia2=(ia**2*2)**0.5\n",
- "r=ra+r\n",
- "eb2=v-ia2*r\n",
- "n2_=(eb2/eb1)*(ia*2/(ia2))*n\n",
- "\n",
- "#result\n",
- "print \"speed when divertor was added=\",n2,\"rpm\"\n",
- "print \"speed when field coils are rearranged=\",n2_,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed when divertor was added= 1112.87640676 rpm\n",
- "speed when field coils are rearranged= 1275.19533144 rpm\n"
- ]
- }
- ],
- "prompt_number": 74
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.39, Page Number:1055"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=230.0#V\n",
- "n=1000.0#rpm\n",
- "i=12.0#A\n",
- "rf=0.8#ohm\n",
- "ra=1.0#ohm\n",
- "il=20#A\n",
- "ratio=0.15\n",
- "\n",
- "#calculation\n",
- "eb1=v-i*(ra+rf)\n",
- "eb2=v-il*(ra+rf/4)\n",
- "n2=(eb2/eb1)*(1/(1-ratio))*n\n",
- "\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 1162.92198261 rpm\n"
- ]
- }
- ],
- "prompt_number": 75
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.40, Page Number:1056"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "i2=Symbol('i2')\n",
- "v=200.0#v\n",
- "n=500.0#rpm\n",
- "i=25.0#A\n",
- "ra=0.2#ohm\n",
- "rf=0.6#ohm\n",
- "rd=10.0#ohm\n",
- "\n",
- "#calculation\n",
- "r=ra+rf\n",
- "eb1=v-i*r\n",
- "i2=solve(((rd+rf)*i2**2)-(v*i2)-(i**2*rd),i2)\n",
- "pd=v-i2[1]*rf\n",
- "ia2=((rd+rf)*i2[1]-v)/rd\n",
- "eb2=pd-ia2*ra\n",
- "n2=(eb2/eb1)*(i/i2[1])*n\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 342.848235418389 rpm\n"
- ]
- }
- ],
- "prompt_number": 97
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.41, Page Number:1056"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440#V\n",
- "ra=0.3#ohm\n",
- "i=20#A\n",
- "n=1200#rpm\n",
- "r=3#ohm\n",
- "i2=15#A\n",
- "ratio=0.80\n",
- "\n",
- "#calculation\n",
- "eb1=v-i*ra\n",
- "eb2=v-(r+ra)*i2\n",
- "n2=n*(eb2/eb1)/ratio\n",
- "power_ratio=(n*i)/(n2*i2*ratio)\n",
- "\n",
- "#result\n",
- "print \"new speed=\",n2,\"rpm\"\n",
- "print \"ratio of power outputs=\",power_ratio"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "new speed= 1349.65437788 rpm\n",
- "ratio of power outputs= 1.48186086214\n"
- ]
- }
- ],
- "prompt_number": 99
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.42, Page Number:1057"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=50#A\n",
- "v=460#V\n",
- "ratio=1-0.25\n",
- "\n",
- "#calculation\n",
- "I=(i**2*ratio**3)**0.5\n",
- "eb2=I*ratio*v/i\n",
- "R=(v-eb2)/I\n",
- "pa=v*i/1000\n",
- "power_n=pa*ratio**4\n",
- "pa=eb2*I\n",
- "\n",
- "#result\n",
- "print \"Resistance required=\",R,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resistance required= 7.26432660412 ohm\n"
- ]
- }
- ],
- "prompt_number": 103
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.44, Page Number:1060"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=500#rpm\n",
- "n2=550#rpm\n",
- "i=50#A\n",
- "v=500#V\n",
- "r=0.5#ohm\n",
- "\n",
- "#calculation\n",
- "eb1=v-i*r\n",
- "kphi1=eb1/n\n",
- "eb2=v-i*r\n",
- "kphi2=eb2/n2\n",
- "eb_=v-i*2*r\n",
- "n=eb_/((eb1/n2)+(eb2/n))\n",
- "#result\n",
- "print \"speed=\",n,\"rpm\"\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 248.120300752 rpm\n"
- ]
- }
- ],
- "prompt_number": 109
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.45, Page Number:1061"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=14.92#kW\n",
- "v=250#V\n",
- "n=1000#rpm\n",
- "ratio1=5.0\n",
- "ratio2=4.0\n",
- "t=882#N-m\n",
- "\n",
- "#calculation\n",
- "i=load*1000/v\n",
- "k=v/(n*i/60)\n",
- "I=(t/((ratio1+ratio2)*0.159*k))**0.5\n",
- "nsh=v/((ratio1+ratio2)*k*I)\n",
- "eb1=ratio1*k*I*nsh\n",
- "eb2=ratio2*k*I*nsh\n",
- "\n",
- "#result\n",
- "print \"current=\",I,\"A\"\n",
- "print \"speed of shaft=\",round(nsh*60),\"rpm\"\n",
- "print \"voltage across the motors=\",round(eb1),\"V,\",round(eb2),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current= 49.5202984449 A\n",
- "speed of shaft= 134.0 rpm\n",
- "voltage across the motors= 139.0 V, 111.0 V\n"
- ]
- }
- ],
- "prompt_number": 117
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.46, Page Number:1063"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220#V\n",
- "t=700#N-m\n",
- "n=1200#rpm\n",
- "ra=0.008#ohm\n",
- "rf=55#ohm\n",
- "efficiency=0.90\n",
- "t2=375#N-m\n",
- "n2=1050#rpm\n",
- "\n",
- "#calculation\n",
- "output=2*3.14*n*t/60\n",
- "power_m=output/efficiency\n",
- "im=power_m/v\n",
- "ish=v/rf\n",
- "ia1=im-ish\n",
- "eb1=v-ia1*ra\n",
- "ia2=ia1*t2/t\n",
- "eb2=eb1*n2/n\n",
- "r=eb2/ia2-ra\n",
- "\n",
- "#result\n",
- "print \"dynamic break resistance=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "dynamic break resistance= 0.795525014538 ohm\n"
- ]
- }
- ],
- "prompt_number": 118
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.47, Page Number:1064"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400.0#V\n",
- "load=18.65#kW\n",
- "n=450.0#rpm\n",
- "efficiency=0.746\n",
- "ra=0.2#ohm\n",
- "\n",
- "#calculations\n",
- "I=load*1000/(efficiency*v)\n",
- "eb=v-I*ra\n",
- "vt=v+eb\n",
- "i_max=2*I\n",
- "r=vt/i_max\n",
- "R=r-ra\n",
- "N=n/60\n",
- "phizp_by_a=eb/N\n",
- "k4=phizp_by_a*v/(2*3.14*r)\n",
- "k3=phizp_by_a**2/(2*3.14*r)\n",
- "tb=k4+k3*N\n",
- "tb0=k4\n",
- "#result\n",
- "print \"breaking resistance=\",R,\"ohm\"\n",
- "print \"maximum breaking torque=\",tb,\"N-m\"\n",
- "print \"maximum breaking torque when N=0 =\",tb0,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "breaking resistance= 6.1 ohm\n",
- "maximum breaking torque= 1028.3970276 N-m\n",
- "maximum breaking torque when N=0 = 522.360394972 N-m\n"
- ]
- }
- ],
- "prompt_number": 122
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.48, Page Number:1069"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=120#V\n",
- "ra=0.5#ohm\n",
- "l=20*0.001#H\n",
- "ka=0.05#V/rpm motor constant\n",
- "ia=20#A\n",
- "\n",
- "#calculations\n",
- "vt=ia*ra\n",
- "alpha=vt/v\n",
- "#when alpha=1\n",
- "eb=v-ia*ra\n",
- "N=eb/ka\n",
- "\n",
- "#result\n",
- "print \"range of speed control=\",0,\"to\",N,\"rpm\"\n",
- "print \"range of duty cycle=\",(alpha),\"to\",1"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " range of speed control= 0 to 2200.0 rpm\n",
- "range of duty cycle= 0.0833333333333 to 1\n"
- ]
- }
- ],
- "prompt_number": 124
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.49, Page Number:1080"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=7.46#kW\n",
- "v=200#V\n",
- "efficiency=0.85\n",
- "ra=0.25#ohm\n",
- "ratio=1.5\n",
- "\n",
- "#calculation\n",
- "i=load*1000/(v*efficiency)\n",
- "i1=ratio*i\n",
- "r1=v/i1\n",
- "r_start=r1-ra\n",
- "eb1=v-i*r1\n",
- "\n",
- "#result\n",
- "print \"starting resistance=\",r_start,\"ohm\"\n",
- "print \"back emf=\",eb1,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "starting resistance= 2.78842716711 ohm\n",
- "back emf= 66.6666666667 V\n"
- ]
- }
- ],
- "prompt_number": 125
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.50, Page Number:1080"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220.0#V\n",
- "ra=0.5#ohm\n",
- "ia=40.0#A\n",
- "n=7\n",
- "\n",
- "#calculations\n",
- "r1=v/ia\n",
- "k=(r1/ra)**(1.0/(n-1))\n",
- "r2=r1/k\n",
- "r3=r2/k\n",
- "r4=r3/k\n",
- "r5=r4/k\n",
- "r6=r5/k\n",
- "p1=r1-r2\n",
- "p2=r2-r3\n",
- "p3=r3-r4\n",
- "p4=r4-r5\n",
- "p5=r5-r6\n",
- "p6=r6-ra\n",
- "\n",
- "#result\n",
- "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n",
- "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n",
- "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n",
- "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n",
- "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n",
- "print \"resistance of 6th section=\",round(p6,3),\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance of 1st section= 1.812 ohm\n",
- "resistance of 2nd section= 1.215 ohm\n",
- "resistance of 3rd section= 0.815 ohm\n",
- "resistance of 4th section= 0.546 ohm\n",
- "resistance of 5th section= 0.366 ohm\n",
- "resistance of 6th section= 0.246 ohm\n"
- ]
- }
- ],
- "prompt_number": 132
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.51, Page Number:1081"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=6\n",
- "load=3.73#kW\n",
- "v=200#V\n",
- "ratio=0.50\n",
- "i1=0.6#A\n",
- "efficiency=0.88\n",
- "\n",
- "#calculation\n",
- "output=load/efficiency\n",
- "total_loss=output-load\n",
- "cu_loss=total_loss*ratio\n",
- "i=output*1000/v\n",
- "ia=i-i1\n",
- "ra=cu_loss*1000/ia**2\n",
- "i_per=i*2\n",
- "ia_per=i_per-i1\n",
- "r1=v/ia_per\n",
- "k=(r1/ra)**(1.0/(n-1))\n",
- "r2=r1/k\n",
- "r3=r2/k\n",
- "r4=r3/k\n",
- "r5=r4/k\n",
- "p1=r1-r2\n",
- "p2=r2-r3\n",
- "p3=r3-r4\n",
- "p4=r4-r5\n",
- "p5=r5-ra\n",
- "\n",
- "\n",
- "#result\n",
- "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n",
- "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n",
- "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n",
- "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n",
- "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance of 1st section= 1.627 ohm\n",
- "resistance of 2nd section= 1.074 ohm\n",
- "resistance of 3rd section= 0.709 ohm\n",
- "resistance of 4th section= 0.468 ohm\n",
- "resistance of 5th section= 0.309 ohm\n"
- ]
- }
- ],
- "prompt_number": 146
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.52, Page Number:1081"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=7\n",
- "load=36.775#kW\n",
- "v=400#V\n",
- "ratio=0.05\n",
- "rsh=200#ohm\n",
- "efficiency=0.92\n",
- "\n",
- "#calculation\n",
- "input_m=load*1000/efficiency\n",
- "cu_loss=input_m*ratio\n",
- "cu_loss_sh=v**2/rsh\n",
- "cu_loss_a=cu_loss-cu_loss_sh\n",
- "i=input_m/v\n",
- "ish=v/rsh\n",
- "ia=i-ish\n",
- "ra=cu_loss_a/ia**2\n",
- "k=(v/(ia*ra))**(1.0/(n))\n",
- "i1=k*ia\n",
- "r1=v/i1\n",
- "r2=r1/k\n",
- "r3=r2/k\n",
- "r4=r3/k\n",
- "r5=r4/k\n",
- "r6=r5/k\n",
- "r7=r5/k\n",
- "p1=r1-r2\n",
- "p2=r2-r3\n",
- "p3=r3-r4\n",
- "p4=r4-r5\n",
- "p5=r5-r6\n",
- "p6=r6-r7\n",
- "p7=r7-ra\n",
- "\n",
- "#result\n",
- "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n",
- "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n",
- "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n",
- "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n",
- "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n",
- "print \"resistance of 6th section=\",round(p6,3),\"ohm\"\n",
- "print \"resistance of 7th section=\",round(p7,3),\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance of 1st section= 0.974 ohm\n",
- "resistance of 2nd section= 0.592 ohm\n",
- "resistance of 3rd section= 0.36 ohm\n",
- "resistance of 4th section= 0.219 ohm\n",
- "resistance of 5th section= 0.133 ohm\n",
- "resistance of 6th section= 0.0 ohm\n",
- "resistance of 7th section= 0.081 ohm\n"
- ]
- }
- ],
- "prompt_number": 157
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.53, Page Number:1082"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "n=Symbol('n')\n",
- "v=250.0#V\n",
- "ra=0.125#ohm\n",
- "i2=150.0#A\n",
- "i1=200.0#A\n",
- "\n",
- "#calculation\n",
- "r1=v/i1\n",
- "n=solve((i1/i2)**(n-1)-(r1/ra),n)\n",
- "k=i1/i2\n",
- "r2=r1/k\n",
- "r3=r2/k\n",
- "r4=r3/k\n",
- "r5=r4/k\n",
- "r6=r5/k\n",
- "r7=r6/k\n",
- "r8=r7/k\n",
- "p1=r1-r2\n",
- "p2=r2-r3\n",
- "p3=r3-r4\n",
- "p4=r4-r5\n",
- "p5=r5-r6\n",
- "p6=r6-r7\n",
- "p7=r7-r8\n",
- "p8=r8-ra\n",
- "#result\n",
- "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n",
- "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n",
- "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n",
- "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n",
- "print \"resistance of 5th section=\",round(p5,3),\"ohm\"\n",
- "print \"resistance of 6th section=\",round(p6,3),\"ohm\"\n",
- "print \"resistance of 7th section=\",round(p7,3),\"ohm\"\n",
- "print \"resistance of 8th section=\",round(p8,3),\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance of 1st section= 0.313 ohm\n",
- "resistance of 2nd section= 0.234 ohm\n",
- "resistance of 3rd section= 0.176 ohm\n",
- "resistance of 4th section= 0.132 ohm\n",
- "resistance of 5th section= 0.099 ohm\n",
- "resistance of 6th section= 0.074 ohm\n",
- "resistance of 7th section= 0.056 ohm\n",
- "resistance of 8th section= 0.042 ohm\n"
- ]
- }
- ],
- "prompt_number": 163
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.54, Page Number:1083"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "n=Symbol('n')\n",
- "v=500#V\n",
- "z=20\n",
- "ra=1.31#ohm\n",
- "t=218#N-m\n",
- "ratio=1.5\n",
- "slot=60\n",
- "phi=23*0.001#Wb\n",
- "\n",
- "#calculation\n",
- "ia=t/(0.159*phi*slot*z)\n",
- "i1=ia*ratio\n",
- "i2=ia\n",
- "k=i1/i2\n",
- "r1=v/i1\n",
- "n=solve(k**(n-1)-(r1/ra),n)\n",
- "r2=r1/k\n",
- "r3=r2/k\n",
- "r4=r3/k\n",
- "p1=r1-r2\n",
- "p2=r2-r3\n",
- "p3=r3-r4\n",
- "p4=r4-ra\n",
- "\n",
- "#result\n",
- "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n",
- "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n",
- "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n",
- "print \"resistance of 4th section=\",round(p4,3),\"ohm\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance of 1st section= 2.237 ohm\n",
- "resistance of 2nd section= 1.491 ohm\n",
- "resistance of 3rd section= 0.994 ohm\n",
- "resistance of 4th section= 0.678 ohm\n"
- ]
- }
- ],
- "prompt_number": 164
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.55, Page Number:1084"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=37.3#kW\n",
- "v=440#V\n",
- "drop=0.02\n",
- "efficiency=0.95\n",
- "i_per=1.30\n",
- "\n",
- "#calculation\n",
- "il=load*1000/(v*efficiency)\n",
- "i1=i_per*il\n",
- "vd=drop*v\n",
- "rm=vd/il\n",
- "r1=v/i1\n",
- "r=(r1-rm)/6\n",
- "\n",
- "#result\n",
- "print \"resistance of each rheostat=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance of each rheostat= 0.615721729566 ohm\n"
- ]
- }
- ],
- "prompt_number": 165
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 30.56, Page Number:1085"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=55.95#kW\n",
- "v=650.0#V\n",
- "r=0.51#ohm\n",
- "i1=140.0#A\n",
- "i2=100.0#A\n",
- "per=0.20\n",
- "\n",
- "#calculation\n",
- "ratio=i1/i2\n",
- "r1=v/i1\n",
- "r2=((per+1)/ratio-per)*r1\n",
- "r3=(per+1)*r2/ratio-per*r1\n",
- "r4=((per+1)*r3/ratio)-per*r1\n",
- "\n",
- "p1=r1-r2\n",
- "p2=r2-r3\n",
- "p3=r3-r4\n",
- "\n",
- "#result\n",
- "print \"number of steps=\",3\n",
- "print \"resistance of 1st section=\",round(p1,3),\"ohm\"\n",
- "print \"resistance of 2nd section=\",round(p2,3),\"ohm\"\n",
- "print \"resistance of 3rd section=\",round(p3,3),\"ohm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of steps= 3\n",
- "resistance of 1st section= 1.592 ohm\n",
- "resistance of 2nd section= 1.364 ohm\n",
- "resistance of 3rd section= 1.17 ohm\n"
- ]
- }
- ],
- "prompt_number": 170
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ojLdxoF.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ojLdxoF.ipynb
deleted file mode 100644
index 447ef8ab..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ojLdxoF.ipynb
+++ /dev/null
@@ -1,388 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:6743417a1c79c6197a7cd49755318e10828c09b3cb248c5af8d5364367840700"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 28: Generator Characteristics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 28.13, Page Number:984"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220#V\n",
- "#emf increases by 1 V for every increase of 6 A\n",
- "ra=0.02#ohm\n",
- "i=96#A\n",
- "\n",
- "#calculations\n",
- "voltageincrease=i/6\n",
- "vd=i*ra\n",
- "voltage_rise=voltageincrease-vd\n",
- "vconsumer=v+voltage_rise\n",
- "power_supplied=voltage_rise*i\n",
- "\n",
- "#result\n",
- "print \"voltage supplied ot consumer= \",vconsumer,\" V\"\n",
- "print \"power supplied by the booster itself= \",power_supplied/1000,\" kW\" "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage supplied ot consumer= 234.08 V\n",
- "power supplied by the booster itself= 1.35168 kW\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 28.14, Page Number:985"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=50.0#V\n",
- "i=200.0#A\n",
- "r=0.3#ohm\n",
- "i1=200.0#A\n",
- "i2=50.0#A\n",
- "\n",
- "#calculations\n",
- "vd=i*r\n",
- "voltage_decrease=v-vd\n",
- "feeder_drop=v*r\n",
- "booster_voltage=v*v/i1\n",
- "voltage_net=feeder_drop-booster_voltage\n",
- "\n",
- "#result\n",
- "print \"Net decrease in voltage= \",voltage_net,\" V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Net decrease in voltage= 2.5 V\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 28.15, Page Number:986"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "inl=5.0#A\n",
- "v=440.0#V\n",
- "il=6.0#A\n",
- "i_full=200.0#A(full load)\n",
- "turns=1600\n",
- "\n",
- "#calcuations\n",
- "shunt_turns1=turns*inl\n",
- "shunt_turns2=turns*il\n",
- "increase=shunt_turns2-shunt_turns1\n",
- "n=increase/i_full#number of series turns required\n",
- "\n",
- "#result\n",
- "print \"Number of series turns required= \",n,\" tunrs/pole\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Number of series turns required= 8.0 tunrs/pole\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 28.16, Page Number:987"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=1000#turns/pole\n",
- "series_winding=4#turns/pole\n",
- "r=0.05#ohm\n",
- "increase_i=0.2#A\n",
- "ia=80#A\n",
- "\n",
- "#calculations\n",
- "additional_at=n*increase_i\n",
- "current_required=additional_at/series_winding\n",
- "R=(current_required*r)/(ia-current_required)\n",
- "\n",
- "#result\n",
- "print \"Divertor resistance= \",R,\" ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Divertor resistance= 0.0833333333333 ohm\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 28.17, Page Number:987"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220.0#V\n",
- "i=100.0#A\n",
- "ra=0.1#ohm\n",
- "rsh=50.0#ohm\n",
- "rse=0.06#ohm\n",
- "divertor=0.14#ohm\n",
- "\n",
- "#calculations\n",
- "#short shunt\n",
- "vd=i*rse\n",
- "ish=v/rsh\n",
- "ia=i+ish\n",
- "armature_drop=ia*ra\n",
- "E=v+vd+armature_drop\n",
- "#long shunt\n",
- "vd=ia*(ra+rse)\n",
- "print vd\n",
- "E2=v+vd\n",
- "current_divertor=(ia*divertor)/(divertor+rse)\n",
- "change=(current_divertor/ia)*100\n",
- "\n",
- "#result\n",
- "print \"a)emf induced using short shunt= \",E\n",
- "print \"b)emf induced using long shunt= \",E2\n",
- "print \"c)series amp-turns are reduced to \",change,\" %\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "16.704\n",
- "a)emf induced using short shunt= 236.44\n",
- "b)emf induced using long shunt= 236.704\n",
- "c)series amp-turns are reduced to 70.0 %\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 28.18, Page Number:988"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=250*1000#W\n",
- "v=240#V\n",
- "v2=220#V\n",
- "i=7#A\n",
- "inl=12#A\n",
- "shunt=650#turns/pole\n",
- "series=4#turns/pole\n",
- "rse=0.006#ohm\n",
- "\n",
- "#calculations\n",
- "i_fulload=p/v\n",
- "shunt_increase=shunt*(inl-i)\n",
- "ise=shunt_increase/series\n",
- "i_d=i_fulload-ise\n",
- "Rd=(ise*rse)/i_d\n",
- "\n",
- "#results\n",
- "print \"resistance of the series amp-turns at no-load\",Rd,\"ohm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance of the series amp-turns at no-load 0.0212751091703 ohm\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 28.19, Page Number:988"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "p=60.0*1000#W\n",
- "n=1600.0#turns/pole\n",
- "inl=1.25#A\n",
- "vnl=125#V\n",
- "il=1.75#A\n",
- "vl=150.0#V\n",
- "\n",
- "#calculations\n",
- "extra_excitation=n*(il-inl)\n",
- "ise=p/vl\n",
- "series=extra_excitation/ise\n",
- "ise2=extra_excitation/3\n",
- "i_d=ise-ise2\n",
- "rd=(ise2*0.02)/i_d\n",
- "reg=(vnl-vl)*100/vl\n",
- "\n",
- "#result\n",
- "print \"i)minimum number of series turns/pole= \",series\n",
- "print \"ii)divertor resistance= \",rd\n",
- "print \"iii)voltage regulation= \",reg,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)minimum number of series turns/pole= 2.0\n",
- "ii)divertor resistance= 0.04\n",
- "iii)voltage regulation= -16.6666666667 %\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 28.20, Page Number:989"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=50.0#v\n",
- "i=200.0#A\n",
- "r=0.3#ohm\n",
- "i1=160.0#A\n",
- "i2=50.0#A\n",
- "\n",
- "#calculations\n",
- "#160 A\n",
- "vd=i1*(r-(v/i))\n",
- "#50 A\n",
- "vd2=i2*(r-(v/i))\n",
- "\n",
- "#result\n",
- "print \"voltage drop at 160 A=\",vd,\"V\"\n",
- "print \"voltage drop at 50 A=\",vd2,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage drop at 160 A= 8.0 V\n",
- "voltage drop at 50 A= 2.5 V\n"
- ]
- }
- ],
- "prompt_number": 33
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qasIWcx.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qasIWcx.ipynb
deleted file mode 100644
index feb75575..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qasIWcx.ipynb
+++ /dev/null
@@ -1,5447 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:37afbdb95d83a409c42483f9400df0ec405aafcb3f017067345a44342a88aaf2"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 32: Transformer"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.1, Page Number:1123"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=250.0#V\n",
- "v2=3000.0#V\n",
- "f=50.0#Hz\n",
- "phi=1.2#Wb-m2\n",
- "e=8.0#V\n",
- "\n",
- "#calculations\n",
- "n1=v1/e\n",
- "n2=v2/e\n",
- "a=v2/(4.44*f*n2*phi)\n",
- "\n",
- "#result\n",
- "print \"primary turns=\",n1\n",
- "print \"secondary turns=\",n2\n",
- "print \"area of core=\",round(a,2),\"m2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "primary turns= 31.25\n",
- "secondary turns= 375.0\n",
- "area of core= 0.03 m2\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.2, Page Number:1123"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=100#KVA\n",
- "v1=11000#V\n",
- "v2=550#V\n",
- "f=50#Hz\n",
- "bm=1.3#Tesla\n",
- "sf=0.9\n",
- "per=10#%\n",
- "a=20*20*sf/10000#m2\n",
- "\n",
- "#calculation\n",
- "n1=v1/(4.44*f*bm*a)\n",
- "n2=v2/(4.44*f*bm*a)\n",
- "e_per_turn=v1/n1\n",
- "\n",
- "#result\n",
- "print \"HV TURNS=\",round(n1)\n",
- "print \"LV TURNS=\",round(n2)\n",
- "print \"EMF per turns=\",round(e_per_turn,1),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "HV TURNS= 1059.0\n",
- "LV TURNS= 53.0\n",
- "EMF per turns= 10.4 V\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.3, Page Number:1123"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n1=400.0\n",
- "n2=1000.0\n",
- "a=60.0/10000.0#cm2\n",
- "f=50.0#Hz\n",
- "e1=520.0#V\n",
- "\n",
- "#calculations\n",
- "k=n2/n1\n",
- "e2=k*e1\n",
- "bm=e1/(4.44*f*n1*a)\n",
- "\n",
- "#result\n",
- "print \"peak value of flux density=\",bm,\"WB/m2\"\n",
- "print \"voltage induced in the secondary winding=\",e2,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "peak value of flux density= 0.975975975976 WB/m2\n",
- "voltage induced in the secondary winding= 1300.0 V\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.4, Page Number:1124"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=25.0#kVA\n",
- "n1=500.0\n",
- "n2=50.0\n",
- "v=3000.0#V\n",
- "f=50.0#Hz\n",
- "\n",
- "#calculations\n",
- "k=n2/n1\n",
- "i1=load*1000/v\n",
- "i2=i1/k\n",
- "e1=v/n1\n",
- "e2=e1*n2\n",
- "phim=v/(4.44*f*n1)\n",
- "\n",
- "#result\n",
- "print \"primary and secondary currents=\",i1,\"A\", i2,\"A\"\n",
- "print \"secondary emf=\",e2,\"V\"\n",
- "print \"flux=\",phim*1000,\"mWB\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "primary and secondary currents= 8.33333333333 A 83.3333333333 A\n",
- "secondary emf= 300.0 V\n",
- "flux= 27.027027027 mWB\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.5, Page Number:1123"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50#Hz\n",
- "v1=11000#V\n",
- "v2=550#V\n",
- "load=300#kVA\n",
- "phim=0.05#Wb\n",
- "\n",
- "#calculation\n",
- "e=4.44*f*phim\n",
- "e2=v2/1.732\n",
- "t1=v1/e\n",
- "t2=e2/e\n",
- "output=load/3\n",
- "HV=100*1000/v1\n",
- "LV=100*1000/e2\n",
- "\n",
- "#result\n",
- "print \"HV turns=\",t1\n",
- "print \"LV turns=\",t2\n",
- "print \"emf per turn=\",e2\n",
- "print \"full load HV=\",HV\n",
- "print \"full load LV=\",LV"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "HV turns= 990.990990991\n",
- "LV turns= 28.6082849593\n",
- "emf per turn= 317.551963048\n",
- "full load HV= 9\n",
- "full load LV= 314.909090909\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.6, Page Number:1124"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n1=500.0\n",
- "n2=1200.0\n",
- "a=80.0/10000.0#m2\n",
- "f=50.0#Hz\n",
- "v=500.0#V\n",
- "\n",
- "#calculation\n",
- "phim=n1/(4.44*f*n1)\n",
- "bm=phim/a\n",
- "v2=n2*v/n1\n",
- "\n",
- "#result\n",
- "print \"peak flux-density=\",bm,\"Wb\"\n",
- "print \"voltage induced in the secondary=\",v2,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "peak flux-density= 0.563063063063 Wb\n",
- "voltage induced in the secondary= 1200.0 V\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.7, Page Number:1125"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#varible declaration\n",
- "load=25.0#kVA\n",
- "n1=250.0\n",
- "n2=40.0\n",
- "v=1500.0#V\n",
- "f=50.0#Hz\n",
- "\n",
- "#calculation\n",
- "v2=n2*v/n1\n",
- "i1=load*1000/v\n",
- "i2=load*1000/v2\n",
- "phim=v/(4.44*f*n1)\n",
- "\n",
- "#result\n",
- "print \"i)primary current an secondary current=\",i1,\"A\",i2,\"A\"\n",
- "print \"ii)seconary emf=\",v2,\"V\"\n",
- "print \"iii)maximum flux=\",phim*1000,\"mWb\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)primary current an secondary current= 16.6666666667 A 104.166666667 A\n",
- "ii)seconary emf= 240.0 V\n",
- "iii)maximum flux= 27.027027027 mWb\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.8, Page Number:1125"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50.0#Hz\n",
- "a=20.0*20.0/10000#m2\n",
- "phim=1.0#Wbm2\n",
- "v1=3000.0#V\n",
- "v2=220.0#V\n",
- "\n",
- "#calculation\n",
- "t2=v2/(4.44*f*phim*a)\n",
- "t1=t2*v1/v2\n",
- "n1=t1/2\n",
- "n2=t2/2\n",
- "\n",
- "#result\n",
- "print \"HV turns=\",n1\n",
- "print \"LV turns=\",n2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "HV turns= 168.918918919\n",
- "LV turns= 12.3873873874\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.9, Page Number:1126"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=2200.0#V\n",
- "v2=200.0#V\n",
- "i1=0.6#A\n",
- "p=400.0#W\n",
- "v3=250.0#V\n",
- "i0=0.5#A\n",
- "pf=0.3\n",
- "\n",
- "#calculation\n",
- "il=p/v1\n",
- "imu=(i1**2-il**2)**0.5\n",
- "iw=i0*pf\n",
- "imu2=(i0**2-iw**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"magnetising currents=\",imu,\"A\"\n",
- "print \"iron loss current=\",il,\"A\"\n",
- "print \"magnetising components of no load primary current=\",imu2,\"A\"\n",
- "print \"working components of no-load primary current=\",iw,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "magnetising currents= 0.571788552492 A\n",
- "iron loss current= 0.181818181818 A\n",
- "magnetising components of no load primary current= 0.476969600708 A\n",
- "working components of no-load primary current= 0.15 A\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.10, Page Number:1127"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n1=500.0\n",
- "n2=40.0\n",
- "l=150.0#cm\n",
- "airgap=0.1#mm\n",
- "e1=3000.0#V\n",
- "phim=1.2#Wb/m2\n",
- "f=50.0#Hz\n",
- "d=7.8#grma/cm3\n",
- "loss=2.0#watt/kg\n",
- "\n",
- "#calculation\n",
- "a=e1/(4.44*f*n1*phim)\n",
- "k=n2/n1\n",
- "v2=k*e1\n",
- "iron=l*5\n",
- "air=phim*airgap/(1000*4*3.14*10**(-7))\n",
- "bmax=iron+air\n",
- "imu=bmax/(n1*2**0.5)\n",
- "volume=l*a\n",
- "im=volume*d*10\n",
- "total_i=im*2\n",
- "iw=total_i/(e1)\n",
- "i0=(imu**2+iw**2)**0.5\n",
- "pf=iw/i0\n",
- "\n",
- "#result\n",
- "print \"a)cross sectional area=\",a*10000,\"cm2\"\n",
- "print \"b)no load secondary voltage=\",v2,\"V\"\n",
- "print \"c)no load current=\",imu,\"A\"\n",
- "print \"d)power factor=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)cross sectional area= 225.225225225 cm2\n",
- "b)no load secondary voltage= 240.0 V\n",
- "c)no load current= 1.19577611723 A\n",
- "d)power factor= 0.145353269536\n"
- ]
- }
- ],
- "prompt_number": 42
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.11, Page Number:1127"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "n1=1000\n",
- "n2=200\n",
- "i=3#A\n",
- "pf=0.2\n",
- "i2=280#A\n",
- "pf2=0.8\n",
- "\n",
- "#calculations\n",
- "phi1=math.acos(pf2)\n",
- "i2_=i2/5\n",
- "phi2=math.acos(pf)\n",
- "sinphi=math.sin(phi2)\n",
- "sinphi2=math.sin(math.acos(phi1))\n",
- "i1=i*complex(pf,-sinphi)+i2_*complex(pf2,-sinphi2)\n",
- "\n",
- "#result\n",
- "print \"primary current=\",abs(i1),\"/_\",math.degrees(phi1),\"degrees\"\n",
- "\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "primary current= 64.4918252531 /_ 36.8698976458 degrees\n"
- ]
- }
- ],
- "prompt_number": 51
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.12, Page Number:1130"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=440.0#v\n",
- "v2=110.0#V\n",
- "i0=5.0#A\n",
- "pf=0.2\n",
- "i2=120.0#A\n",
- "pf2=0.8\n",
- "\n",
- "#calculation\n",
- "phi2=math.acos(pf2)\n",
- "phi0=math.acos(pf)\n",
- "k=v2/v1\n",
- "i2_=k*i2\n",
- "angle=phi2-phi0\n",
- "i1=(i0**2+i2_**2+(2*i0*i2_*math.cos(angle)))**0.5\n",
- "\n",
- "#result\n",
- "print \"current taken by the primary=\",i1,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current taken by the primary= 33.9022604184 A\n"
- ]
- }
- ],
- "prompt_number": 53
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.13, Page Number:1130"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n1=800.0\n",
- "n2=200.0\n",
- "pf=0.8\n",
- "i1=25.0#A\n",
- "pf2=0.707\n",
- "i2=80.0#A\n",
- "#calculations\n",
- "k=n2/n1\n",
- "i2_=i2*k\n",
- "phi2=math.acos(pf)\n",
- "phi1=math.acos(pf2)\n",
- "i0pf2=i1*pf2-i2_*pf\n",
- "i0sinphi=i1*pf2-i2_*math.sin(math.acos(pf))\n",
- "phi0=math.atan(i0sinphi/i0pf2)\n",
- "i0=i0sinphi/math.sin(phi0)\n",
- "\n",
- "#result\n",
- "print \"no load current=\",i0,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "no load current= 5.91703050525 A\n"
- ]
- }
- ],
- "prompt_number": 59
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.14, Page Number:1131"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=10#A\n",
- "pf=0.2\n",
- "ratio=4\n",
- "i2=200#A\n",
- "pf=0.85\n",
- "\n",
- "#calculations\n",
- "phi0=math.acos(pf)\n",
- "phil=math.acos(pf)\n",
- "i0=complex(2,-9.8)\n",
- "i2_=complex(42.5,-26.35)\n",
- "i1=i0+i2_\n",
- "phi=math.acos(i1.real/57.333)\n",
- "\n",
- "#result\n",
- "print \"primary current=\",i1,\"A\"\n",
- "print \"power factor=\",math.degrees(phi),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "primary current= (44.5-36.15j) A\n",
- "power factor= 39.0890154959 degrees\n"
- ]
- }
- ],
- "prompt_number": 60
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.15, Page Number:1136"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable decaration\n",
- "load=30.0#KVA\n",
- "v1=2400.0#V\n",
- "v2=120.0#V\n",
- "f=50.0#Hz\n",
- "r1=0.1#ohm\n",
- "x1=0.22#ohm\n",
- "r2=0.034#ohm\n",
- "x2=0.012#ohm\n",
- "\n",
- "#calculations\n",
- "k=v2/v1\n",
- "r01=r1+r2/k**2\n",
- "x01=x1+x2/k**2\n",
- "z01=(r01**2+x01**2)**0.5\n",
- "r02=r2+r1*k**2\n",
- "x02=x2+x1*k**2\n",
- "z02=(r02**2+x02**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"high voltage side:\"\n",
- "print \"equivalent winding resistance=\",r01,\"ohm\"\n",
- "print \"reactance=\",x01,\"ohm\"\n",
- "print \"impedence=\",z01,\"ohm\"\n",
- "print \"low voltage side:\"\n",
- "print \"equivalent winding resistance=\",r02,\"ohm\"\n",
- "print \"reactance=\",x02,\"ohm\"\n",
- "print \"impedence=\",z02,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "high voltage side:\n",
- "equivalent winding resistance= 13.7 ohm\n",
- "reactance= 5.02 ohm\n",
- "impedence= 14.5907642021 ohm\n",
- "low voltage side:\n",
- "equivalent winding resistance= 0.03425 ohm\n",
- "reactance= 0.01255 ohm\n",
- "impedence= 0.0364769105051 ohm\n"
- ]
- }
- ],
- "prompt_number": 64
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.16, Page Number:1136"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=50.0#KVA\n",
- "v1=4400.0#V\n",
- "v2=220.0#V\n",
- "r1=3.45#ohm\n",
- "r2=0.009#ohm\n",
- "x1=5.2#ohm\n",
- "x2=0.015#ohm\n",
- "\n",
- "#calculations\n",
- "i1=load*1000/v1\n",
- "i2=load*1000/v2\n",
- "k=v2/v1\n",
- "r01=r1+r2/k**2\n",
- "r02=r2+k**2*r1\n",
- "x01=x1+x2/k**2\n",
- "x02=x2+x1*k**2\n",
- "z01=(r01**2+x01**2)**0.5\n",
- "z02=(r02**2+x02**2)**0.5\n",
- "cu_loss=i1**2*r01\n",
- "\n",
- "#result\n",
- "print \"i)resistance=\"\n",
- "print \"primary=\",r01,\"ohm\"\n",
- "print \"secondary=\",r02,\"ohm\"\n",
- "print \"iii)reactance=\"\n",
- "print \"primary=\",x01,\"ohm\"\n",
- "print \"secondary=\",x02,\"ohm\"\n",
- "print \"iv)impedence=\"\n",
- "print \"primary=\",z01,\"ohm\"\n",
- "print \"secondary=\",z02,\"ohm\"\n",
- "print \"v)copper loss=\",cu_loss,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance=\n",
- "primary= 7.05 ohm\n",
- "secondary= 0.017625 ohm\n",
- "reactance=\n",
- "primary= 11.2 ohm\n",
- "secondary= 0.028 ohm\n",
- "impedence=\n",
- "primary= 13.2341414531 ohm\n",
- "secondary= 0.0330853536327 ohm\n",
- "copper loss= 910.382231405 W\n"
- ]
- }
- ],
- "prompt_number": 68
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.17, Page Number:1137"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "ratio=10.0\n",
- "load=50.0#KVA\n",
- "v1=2400.0#V\n",
- "v2=240.0#V\n",
- "f=50.0#Hz\n",
- "v=240.0#V\n",
- "\n",
- "#calculation\n",
- "i2=load*1000/v\n",
- "z2=v/(i2)\n",
- "k=v2/v1\n",
- "z2_=z2/k**2\n",
- "i2_=k*i2\n",
- "\n",
- "#result\n",
- "print \"a)load impedence=\",z2,\"ohm\"\n",
- "print \"b)impedence referred to high tension side=\",z2_,\"ohm\"\n",
- "print \"c)the value of current referred to the high tension side=\",i2_,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)load impedence= 1.152 ohm\n",
- "b)impedence referred to high tension side= 115.2 ohm\n",
- "c)the value of current referred to the high tension side= 20.8333333333 A\n"
- ]
- }
- ],
- "prompt_number": 70
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.18, Page Number:1137"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=100.0#kVA\n",
- "v1=11000.0#V\n",
- "v2=317.0#V\n",
- "load2=0.62#kW\n",
- "lvload=0.48#kW\n",
- "\n",
- "#calculations\n",
- "k=v1/v2\n",
- "i1=load*1000/v1\n",
- "i2=load*1000/v2\n",
- "r1=load2*1000/i**2\n",
- "r2=lvload*1000/i2**2\n",
- "r2_=r2*k**2\n",
- "x01=4*v1/(i1*100)\n",
- "x2_=x01*r2_/(r1+r2_)\n",
- "x1=x01-x2_\n",
- "x2=x2_*10/k**2\n",
- "\n",
- "#result\n",
- "print \"i)r1=\",r1,\"ohm\"\n",
- "print \"r2=\",r2,\"ohm\"\n",
- "print \"r2_=\",r2_,\"ohm\"\n",
- "print \"ii)reactance=\",x01,\"ohm\"\n",
- "print \"x1=\",x1,\"ohm\"\n",
- "print \"x2=\",x2,\"ohm\"\n",
- "print \"x2_=\",x2_,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)r1= 7.502 ohm\n",
- "r2= 0.004823472 ohm\n",
- "r2_= 5.808 ohm\n",
- "ii)reactance= 48.4 ohm\n",
- "x1= 27.28 ohm\n",
- "x2= 0.175398981818 ohm\n",
- "x2_= 21.12 ohm\n"
- ]
- }
- ],
- "prompt_number": 76
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.19, Page Number:1137"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declarations\n",
- "k=19.5\n",
- "r1=25.0#ohm\n",
- "x1=100.0#ohm\n",
- "r2=0.06#ohm\n",
- "x2=0.25#ohm\n",
- "i=1.25#A\n",
- "angle=30#degrees\n",
- "i2=200#A\n",
- "v=50#V\n",
- "pf2=0.8\n",
- "\n",
- "#calculations\n",
- "v2=complex(500,0)\n",
- "i2=i2*complex(0.8,-0.6)\n",
- "z2=complex(r2,x2)\n",
- "e2=v2+i2*z2\n",
- "beta=math.atan(e2.imag/e2.real)\n",
- "e1=e2*k\n",
- "i2_=i2/k\n",
- "angle=beta+math.radians(90)+math.radians(angle)\n",
- "i0=i*complex(math.cos(angle),math.sin(angle))\n",
- "i1=-i2_+i0\n",
- "v2=-e1+i1*complex(r1,x1)\n",
- "phi=math.atan(v2.imag/v2.real)-math.atan(i1.imag/i1.real)\n",
- "pf=math.cos(phi)\n",
- "power=abs(v2)*i*math.cos(math.radians(60))\n",
- "r02=r2+r1/k**2\n",
- "cu_loss=abs(i2)**2*r02\n",
- "output=500*abs(i2)*pf2\n",
- "loss=cu_loss+power\n",
- "inpt=output+loss\n",
- "efficiency=output*100/inpt\n",
- "\n",
- "#result\n",
- "print \"primary applied voltage=\",v2,\"V\"\n",
- "print \"primary pf=\",pf\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "primary applied voltage= (-11464.2126901-1349.15424294j) V\n",
- "primary pf= 0.698572087114\n",
- "efficiency= 86.7261056254 %\n"
- ]
- }
- ],
- "prompt_number": 94
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.20, Page Number:1138"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable description\n",
- "load=100#KVA\n",
- "v1=1100#V\n",
- "v2=220#V\n",
- "f=50#Hz\n",
- "zh=complex(0.1,0.4)\n",
- "zl=complex(0.006,0.015)\n",
- "\n",
- "#calculations\n",
- "k=v1/v2\n",
- "#HV \n",
- "r1=zh.real+zl.real*k**2\n",
- "x1=zh.imag+zl.imag*k**2\n",
- "z1=(r1**2+x1**2)**0.5\n",
- "#LV\n",
- "r2=r1/k**2\n",
- "x2=x1/k**2\n",
- "z2=z1/k**2\n",
- "\n",
- "#result\n",
- "print \"HV:\"\n",
- "print \"resistance=\",r1,\"ohm\"\n",
- "print \"reactance=\",x1,\"ohm\"\n",
- "print \"impedence=\",z1,\"ohm\"\n",
- "print \"LV:\"\n",
- "print \"resistance=\",r2,\"ohm\"\n",
- "print \"reactance=\",x2,\"ohm\"\n",
- "print \"impedence=\",z2,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "HV:\n",
- "resistance= 0.25 ohm\n",
- "reactance= 0.775 ohm\n",
- "impedence= 0.814324873745 ohm\n",
- "LV:\n",
- "resistance= 0.01 ohm\n",
- "reactance= 0.031 ohm\n",
- "impedence= 0.0325729949498 ohm\n"
- ]
- }
- ],
- "prompt_number": 96
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.21, Page Number:1141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=230#V\n",
- "v2=460#V\n",
- "r1=0.2#ohm\n",
- "x1=0.5#ohm\n",
- "r2=0.75#ohm\n",
- "x2=1.8#ohm\n",
- "i=10#A\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "k=v2/v1\n",
- "r02=r2+k**2*r1\n",
- "x02=x2+k**2*x1\n",
- "vd=i*(r02*pf+x02*math.sin(math.acos(pf)))\n",
- "vt2=v2-vd\n",
- "\n",
- "#result\n",
- "print \"secondary terminal voltage=\",vt2,\"V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "secondary terminal voltage= 424.8 V\n"
- ]
- }
- ],
- "prompt_number": 97
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.22, Page Number:1141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "r=1.0#%\n",
- "x=5.0#%\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "mu=r*pf+x*math.sin(math.acos(pf))\n",
- "mu2=r**2+x*0\n",
- "mu3=r*pf-x*math.sin(math.acos(pf))\n",
- "\n",
- "#result\n",
- "print \"regulation at pf=0.8 lag:\",mu,\"%\"\n",
- "print \"regulation at pf=1:\",mu2,\"%\"\n",
- "print \"regulation at pf=0.8 lead:\",mu3,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation at pf=0.8 lag: 3.8 %\n",
- "regulation at pf=1: 1.0 %\n",
- "regulation at pf=0.8 lead: -2.2 %\n"
- ]
- }
- ],
- "prompt_number": 98
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.23, Page Number:1141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "x=5#%\n",
- "r=2.5#%\n",
- "\n",
- "#calculation\n",
- "phi=math.atan(x/r)\n",
- "cosphi=math.cos(phi)\n",
- "sinphi=math.sin(phi)\n",
- "regn=r*cosphi+x*sinphi\n",
- "\n",
- "#result\n",
- "print \"regulation=\",regn,\"%\"\n",
- "print \"pf=\",cosphi"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation= 5.59016994375 %\n",
- "pf= 0.4472135955\n"
- ]
- }
- ],
- "prompt_number": 100
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.24, Page Number:1142"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "r=2.5#%\n",
- "x=5#%\n",
- "load1=500#KVA\n",
- "load2=400#KVA\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "kw=load2*pf\n",
- "kvar=load2*math.sin(math.acos(pf))\n",
- "drop=(r*kw/load1)+(x*kvar/load1)\n",
- "\n",
- "#result\n",
- "print \"percentage voltage drop=\",drop,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "percentage voltage drop= 4.0 %\n"
- ]
- }
- ],
- "prompt_number": 102
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.25, Page Number:1144"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "f=50.0#Hz\n",
- "v1=2300.0#V\n",
- "v2=230.0#V\n",
- "r1=0.286#ohm\n",
- "r2_=0.319#ohm\n",
- "ro=250.0#ohm\n",
- "x1=0.73#ohm\n",
- "x2_=0.73#ohm\n",
- "xo=1250.0#ohm\n",
- "z1=complex(r1,x1)\n",
- "z2_=complex(r2_,x2_)\n",
- "zl=complex(0.387,0.29)\n",
- "ym=complex(0.004,-0.0008)\n",
- "\n",
- "#calculations\n",
- "k=v2/v1\n",
- "zl_=zl/(k**2)\n",
- "zm=1/ym\n",
- "x=zm+zl_+z2_\n",
- "i1=v1/(z1+(zm*(z2_+zl_))/(zm+z2_+zl_))\n",
- "i2_=i1*zm/(zm+z2_+zl_)\n",
- "io=i1*(z2_+zl_)/(zm+z2_+zl_)\n",
- "pf=i1.real/abs(i1)\n",
- "pi=v1*abs(i1)*pf/1000\n",
- "po=abs(i2_)**2*zl_.real/1000\n",
- "cu_loss=abs(i1)**2*r1\n",
- "cu_loss2=abs(i2_)**2*r2_\n",
- "core_loss=io.real**2*240\n",
- "e=po*100/pi\n",
- "v2_=i2_*zl_\n",
- "reg=(v1-v2_.real)*100/v2_.real\n",
- "\n",
- "#result\n",
- "print \"Power input=\",round(pi.real,1),\"kW\"\n",
- "print \"Power output=\",round(po,1),\"kW\"\n",
- "print \"Primary Cu loss=\",round(cu_loss),\"W\"\n",
- "print \"Secondary Cu loss=\",round(cu_loss2),\"W\"\n",
- "print \"Efficiency=\",round(e.real,2),\"%\"\n",
- "print \"Regulation=\",round(reg.real),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Power input= 104.6 kW\n",
- "Power output= 82.5 kW\n",
- "Primary Cu loss= 854.0 W\n",
- "Secondary Cu loss= 680.0 W\n",
- "Efficiency= 78.91 %\n",
- "Regulation= 3.0 %\n"
- ]
- }
- ],
- "prompt_number": 42
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.26, Page Number:1145"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v1=600#V\n",
- "v2=1080#V\n",
- "v=720#V\n",
- "load=8#W\n",
- "load2=10#kVA\n",
- "\n",
- "#calculation\n",
- "ir2=load*1000/v2\n",
- "il2=load*1000/v\n",
- "ir2_=ir2*v2/v1\n",
- "il2_=il2*v/v1\n",
- "ir2=math.sqrt(ir2_**2+il2_**2)\n",
- "s=complex(load,load2)\n",
- "s=abs(s)\n",
- "pf=load/s\n",
- "i=s*load2*100/v1\n",
- "\n",
- "#result\n",
- "print \"primary current=\",i,\"A\"\n",
- "print \"power factor=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "primary current= 21.3437474581 A\n",
- "power factor= 0.624695047554\n"
- ]
- }
- ],
- "prompt_number": 103
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.27, Page Number:1046"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=220#V\n",
- "v1=110#V\n",
- "i=0.5#A\n",
- "p=30#W\n",
- "r=0.6#ohm\n",
- "\n",
- "#calculation\n",
- "ratio=v/v1\n",
- "pf=p/(i*v)\n",
- "sinphi=math.sqrt(1-pf**2)\n",
- "ip=i*sinphi\n",
- "iw=i*pf\n",
- "cu_loss=i**2*r\n",
- "iron_loss=p-cu_loss\n",
- "\n",
- "#result\n",
- "print \"i)turns ratio=\",ratio\n",
- "print \"ii)magnetising component of no-load current=\",ip,\"A\"\n",
- "print \"iii)working component of no-load current=\",iw,\"A\"\n",
- "print \"iv)the iron loss=\",iron_loss,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)turns ratio= 2\n",
- "ii)magnetising component of no-load current= 0.481045692921 A\n",
- "iii)working component of no-load current= 0.136363636364 A\n",
- "iv)the iron loss= 29.85 W\n"
- ]
- }
- ],
- "prompt_number": 104
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.28, Page Number:1047"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=5.0#kVA\n",
- "v1=200.0#V\n",
- "v2=1000.0#V\n",
- "f=50.0#Hz\n",
- "vo=2000.0#V\n",
- "io=1.2#A\n",
- "po=90.0#W\n",
- "vs=50.0#V\n",
- "i_s=5.0#A\n",
- "ps=110.0#W\n",
- "p=3.0#kW\n",
- "pf=0.8\n",
- "v=200.0#V\n",
- "\n",
- "#calculation\n",
- "r0=v**2/po\n",
- "ia0=v/r0\n",
- "ip=math.sqrt(io**2-ia0**2)\n",
- "xm=v/ip\n",
- "z=vs/i_s\n",
- "r=ps/25\n",
- "x=math.sqrt(z**2-r**2)\n",
- "r1=r*(v1/v2)**2\n",
- "x1=x*(v1/v2)**2\n",
- "i_lv1=load*1000/v\n",
- "i_lv=(p*1000/pf)/v\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "reg=i_lv*(r1*pf+x1*sinphi)/v\n",
- "vt=v2-reg*1000/v\n",
- "\n",
- "#result\n",
- "print \"LV crrent at rated load=\",i_lv1,\"A\"\n",
- "print \"LV current at 3kW at 0.8 lagging pf\",i_lv,\"A\"\n",
- "print \"output secondary voltage=\",vt,\"V\"\n",
- "print \"percentage regulation=\",reg*100,\"%\"\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "LV crrent at rated load= 25.0 A\n",
- "LV current at 3kW at 0.8 lagging pf 18.75 A\n",
- "output secondary voltage= 999.832975251 V\n",
- "percentage regulation= 3.34049498886 %\n"
- ]
- }
- ],
- "prompt_number": 105
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.29, Page Number:1048"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "A=Symbol('A')\n",
- "B=Symbol('B')\n",
- "loss1=52.0#W\n",
- "f1=40.0#Hz\n",
- "loss2=90.0#W\n",
- "f2=60.0#Hz\n",
- "f=50.0#Hz\n",
- "\n",
- "#calculation\n",
- "ans=solve([(loss1/f1)-(A+f1*B),(loss2/f2)-(A+f2*B)],[A,B])\n",
- "wh=ans[A]*f\n",
- "we=ans[B]*f**2\n",
- "\n",
- "#result\n",
- "print \"hysteresis=\",round(wh),\"W\"\n",
- "print \"eddy current=\",round(we),\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "hysteresis= 45.0 W\n",
- "eddy current= 25.0 W\n"
- ]
- }
- ],
- "prompt_number": 107
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.30, Page Number:1048"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "A=Symbol('A')\n",
- "B=Symbol('B')\n",
- "m=10#kg\n",
- "f=50.0#Hz\n",
- "f1=25.0\n",
- "f2=40.0\n",
- "f3=50.0\n",
- "f4=60.0\n",
- "f5=80.0\n",
- "l1=18.5/f1\n",
- "l2=36.0/f2\n",
- "l3=50.0/f3\n",
- "l4=66.0/f4\n",
- "l5=104.0/f5\n",
- "#calculation\n",
- "ans=solve([l1/f1-(A+f1*B),l2/f2-(A+f2*B)],[A,B])\n",
- "eddy_loss_per_kg=ans[B]*f**2/m\n",
- "\n",
- "#result\n",
- "print\"eddy current loss per kg at 50 Hz=\",eddy_loss_per_kg,\"W\"\n",
- "\n",
- "#plot\n",
- "F=[f1,f2,f3,f4,f5]\n",
- "L=[l1,l2,l3,l4,l5]\n",
- "plt.plot(F,L)\n",
- "plt.xlabel(\"f -->\") \n",
- "plt.ylabel(\"Wi/f\") \n",
- "plt.xlim((0,100))\n",
- "plt.ylim((0.74,2))\n",
- "plt.show()\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "eddy current loss per kg at 50 Hz= -0.118333333333333 W\n"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGNpJREFUeJzt3XmUXVWZ9/HvIwQUI4OCKIMrvhLmgIBDEJoUwsIAEscG\nQdoBlSwHyIuCTC0ppWlEYYmKAw4gL0q6XWILUURRrBZRQIRAIAOTGkI0ICAC3QFCnvePfUNCnVSl\nqqhT51bd72etWrnDrnufOqmqX+2zhxOZiSRJq3te0wVIktqP4SBJqjAcJEkVhoMkqcJwkCRVGA6S\npIrawiEito6IX0XE7RFxW0Qc20e7L0XEnRFxS0TsVlc9kqSBW7fG134KOC4z50TEeOAPEXFVZs5f\n2SAiDgK2ycyJEfF64GvA5BprkiQNQG09h8z8a2bOad1+DJgPbNGr2TTgolab64GNI2LzumqSJA3M\niIw5RMQEYDfg+l5PbQncu9r9xcBWI1GTJKlvtYdD65TSD4AZrR5EpUmv++7nIUkNq3PMgYgYB1wK\nfDczf7SGJvcBW692f6vWY71fx8CQpCHIzN5/gA9InbOVAvg2MC8zz+2j2eXAe1rtJwN/z8yla2qY\nmX5kMnPmzMZraJcPj4XHwmPR/8dzUWfPYS/gSODWiLi59dgpwCsAMvP8zLwiIg6KiLuAx4H311iP\nJGmAaguHzPwNA+iZZObH6qpBkjQ0rpAeZbq6upouoW14LFbxWKzisRge8VzPS42EiMjRUKcktZOI\nINttQFqSNHoZDpKkCsNBklRhOEiSKgwHSVKF4SBJqjAcJEkVhoMkqcJwkCRVGA6SpArDQZJUYThI\nkioMB0lSheEgSaowHCRJFYaDJKnCcJAkVRgOkqQKw0GSVGE4SJIqDAdJUoXhIEmqMBwkSRWGgySp\nwnCQJFXUGg4RcUFELI2IuX08v1FEzI6IORFxW0S8r856JEkDU3fP4UJgaj/PfxS4LTNfDXQB50TE\nujXXJElai1rDITOvAR7up8kKYMPW7Q2BBzNzeZ01SZLWrum/0s8DZkfEEuBFwKEN1yNJovlwmArc\nlJn7RsSrgKsiYtfMfLR3w+7u7mdud3V10dXVNWJFStJo0NPTQ09Pz7C8VmTmsLxQn28QMQGYnZmT\n1vDcj4EzM/Pa1v1fAidm5o292mXddUrSWBMRZGYM5XObnsq6CNgfICI2B7YD7mm0IklSvT2HiJgF\nTAE2BZYCM4FxAJl5fkS8HPgO8HIgKL2IS9bwOvYcJGmQnkvPofbTSsPBcJCkwRvNp5UkSW3IcJAk\nVRgOkqQKw0GSVGE4SJIqDAdJUoXhIEmqMBwkSRWGgySpwnCQJFUYDpKkCsNBklRhOEiSKgwHSVKF\n4SBJqjAcJEkVhoMkqcJwkCRVGA6SpArDQZJUYThIkioMB0lSheEgSaowHCRJFYaDJKnCcJAkVdQa\nDhFxQUQsjYi5/bTpioibI+K2iOipsx5J0sBEZtb34hH/BDwG/L/MnLSG5zcGrgXelJmLI2LTzPzb\nGtplnXVK0lgUEWRmDOVza+05ZOY1wMP9NDkCuDQzF7faV4JBkjTymh5zmAi8OCJ+FRE3RsS/NFyP\nJAlYt+H3HwfsDuwHbAD8LiKuy8w7ezfs7u5+5nZXVxddXV0jVKIkjQ49PT309PQMy2vVOuYAEBET\ngNl9jDmcCLwgM7tb978FXJmZP+jVzjEHSRqkth1zGIDLgL0jYp2I2AB4PTCv4ZokqePVelopImYB\nU4BNI+JeYCblVBKZeX5mLoiIK4FbgRXANzPTcJCkhtV+Wmk4eFpJkgZvNJ9WkiS1IcNBklRhOEiS\nKgwHSVKF4SBJqjAcJEkVhoMkqcJwkCRVGA6SpArDQZJUYThIkioMB0lSheEgSaowHCRJFYaDJKnC\ncJAkVRgOkqQKw0GSVGE4SJIqDAdJUoXhIEmqMBwkSRWGgySpwnCQJFUYDpKkCsNBklRRazhExAUR\nsTQi5q6l3WsjYnlEvL3OeiRJA1N3z+FCYGp/DSJiHeAs4Eogaq5HkjQAfYZDRJzV+vfQob54Zl4D\nPLyWZscAPwAeGOr7SJKGV389h4MjIoCT63rziNgSeAvwtdZDWdd7SZIGbt1+nvsp5a/+8RHxaK/n\nMjM3HIb3Pxc4KTOzFUSeVpKkNtBnOGTmCcAJEXF5Zk6r6f33AP6j5AKbAgdGxFOZeXnvht3d3c/c\n7urqoqurq6aSJGl06unpoaenZ1heKzLXfCYnIn5GGSS+MjPnD/kNIiYAszNz0lraXdhq98M1PJd9\n1SlJWrOIIDOHdEamv9NK76PMNJoZEdsB11NONf0iMx8fYGGzgCnAphFxLzATGAeQmecPpWBJUv36\n7Dk8q1GZbvp64EDgjcAy4GeZ+bl6y3vm/e05SNIgPZeew4DCYQ1vuBlwQGZ+byhvOoT3MxwkaZBq\nOa0UESdm5lkR8eU1PJ2ZeexQ3lCS1P76G3NYLyJeB9wKPLna44HrESRpTOsvHDamrEPYAZgLXAv8\nFrg2Mx8agdokSQ1Z65hDRKwPvAbYE3hD69+/Z+YO9Zf3TA2OOUjSINU1lXWlFwAbAhu1PpZQTjVJ\nksao/hbBfRPYEXgUuAH4HXBdZq5tI71hZ89BkgbvufQc+tt47xXA+sBfgftaH38fyptIkkaXfscc\nIuJ5wE6sGm+YBDxI6UGcNiIVYs9Bkoai9kVwEbE1JRz2At4MvCQzNxrKGw6F4SBJg1dLOETEDFbN\nTlpOaxpr69/bMvPpoZU7hCINB0katLpmK00Avg8cl5lLhvLikqTRaUh7K400ew6SBmLFCnhef9Ns\nOkxds5UkaVRYsQIuuQS23x7uuqvpasaGgSyCk6S2lAlXXAGnngrPfz6cfz5ss03TVY0NhoOkUek3\nv4GTT4aHHoJ//3eYNg3Cq9APG8NB0qhyyy1wyikwbx58+tPw7nfDOus0XdXY45iDpFHhrrvgiCNg\n6tTysWABvOc9BkNdDAdJbW3JEvjwh2HyZNhxR7jzTjjmGFh//aYrG9sMB0lt6eGH4aSTYNIkGD8e\nFi6Ef/3Xclv1MxwktZXHH4czz4Rtty2DzbfcAp//PLzkJU1X1lkMB0lt4ckn4atfhYkTYc4cuPZa\n+MY3YKutmq6sMzlbSVKjVqyAWbPgtNNKb+HHP4bdd2+6KhkOkhqRCT/5SZmWOn48XHABTJnSdFVa\nyXCQNOJ+/euygO0f/4AzzoBDDnEBW7sxHCSNmDlzSk9hwQL4zGfg8MNdp9CuHJCWVLs77yxBcOCB\ncPDBJRyOPNJgaGe1hkNEXBARSyNibh/PvzsibomIWyPi2ojYpc56JI2s++6D6dNhzz1h551LSHz0\no7Deek1XprWpu+dwITC1n+fvAfbJzF2A04Fv1FyPpBHw0ENw4omwyy6w8cZwxx1l51QXsI0etYZD\nZl4DPNzP87/LzEdad68HnNEsjWKPP152SN1uO3jkEbj1VjjrLHjxi5uuTIPVTmMOHwCuaLoISYP3\n5JNw3nllAdvcufDb38LXvw5bbtl0ZRqqtpitFBH7AkcBe/XVpru7+5nbXV1ddHV11V6XpP49/XS5\nAtvMmeUqbD/5Cey2W9NVda6enh56enqG5bVqv4Z0REwAZmfmpD6e3wX4ITA1M9d4gT+vIS21l0yY\nPbuMI2y4YdkLaZ99mq5KvT2Xa0g32nOIiFdQguHIvoJBUnv57/8uC9gee6yEwsEHu4BtLKq15xAR\ns4ApwKbAUmAmMA4gM8+PiG8BbwMWtT7lqcx83Rpex56D1LCbbioL2O64A04/vaxbeF47jVqq4rn0\nHGo/rTQcDAepOXfcAZ/6FFxzTbmewgc/6DqF0eK5hIO5L2mNFi+Go4+GvfaCV7+6LGD7yEcMhk5h\nOEh6lgcfhBNOgF13LesTFi4sYwwvfGHTlWkkGQ6SgDLA/G//VhawPfZYWa/w2c+6gK1TGQ5Sh3vi\nCfjyl8sCtvnz4brr4Gtfgy22aLoyNaktFsFJGnlPPw3f+15ZwLbTTnDlleVUkgSGg9RxMuGyy8rM\no002gYsvhr33broqtRvDQeogv/pVGVz+3/+Fz32uXF/BBWxaE8NB6gB/+ENZwHb33eUKbO96lwvY\n1D+/PaQxbOFCOPRQmDYN3vpWmDcPjjjCYNDa+S0ijUGLF8OHPlTGEvbYoyxg+/CHXcCmgTMcpDHk\nb3+D448vs44226xsfXHiibDBBk1XptHGcJDGgEcfLWMJ229fBptvu61ckW2TTZquTKOV4SCNYk88\nAV/8YlnAdscdcP318JWvwMtf3nRlGu2crSSNQk8/XdYndHfDpEnw85/DLrs0XZXGEsNBGkUy4Uc/\nKgvYXvKSssJ5rz4vrisNneEgjRJXX10WsD3xBJx9Nkyd6gI21cdwkNrcjTeWBWz33FN2TT30UNcp\nqH5+i0ltasECeOc7y+K1d7yj7JjqymaNFL/NpDazaBF84AOwzz7wuteVWUjTp8O4cU1Xpk5iOEht\n4oEH4OMfh912g5e9rITCJz/pAjY1w3CQGvboo/DpT8MOO8CTT8Ltt8MZZ8DGGzddmTqZ4SA1ZNky\nOPfcsoDtrrvghhvgvPNKr0FqmrOVpBG2fPmqBWy77gpXXVUWskntxHCQRkgm/Nd/wamnwktfCrNm\nwRve0HRV0poZDtII+OUvywK25cvhC1+AN73JBWxqb4aDVKPf/76EwqJFcPrp8M//7DoFjQ61fptG\nxAURsTQi5vbT5ksRcWdE3BIRu9VZjzRS5s8vC9fe9jY47LAyA+mwwwwGjR51f6teCEzt68mIOAjY\nJjMnAkcDX6u5HqlWixbBUUfBlCkweXK5AtuHPuQCNo0+tYZDZl4DPNxPk2nARa221wMbR8TmddYk\n1eGBB+C448oCti22KAvYTjgBXvCCpiuThqbpTu6WwL2r3V8MbNVQLdKg/eMfZUrq9tuXayzMm1c2\nx3MBm0a7psMBoPecjWykCmkQli0rs44mToQ//rHsnPqlL8Hm9ns1RjQ9W+k+YOvV7m/Veqyiu7v7\nmdtdXV10dXXVWZe0RsuXw0UXle0udt+9TFHdeeemq5KKnp4eenp6huW1IrPeP9QjYgIwOzMra0Bb\nA9Ify8yDImIycG5mTl5Du6y7Tqk/mfDDH5YFbC97GZx5Juy5Z9NVSf2LCDJzSCtqau05RMQsYAqw\naUTcC8wExgFk5vmZeUVEHBQRdwGPA++vsx5pKH7xi7JWYcUK+OIX4YADXMCmsa/2nsNwsOegJtxw\nQwmFxYvLIPM73uE6BY0uz6Xn4Le61Mu8efD2t5cwOPzwsoDNlc3qNH67Sy1//jO8//3Q1QV77VXW\nKnzwg7Bu09M2pAYYDup4998PM2aU2Udbb11WNX/iEy5gU2czHNSxHnkETjutXIENyumkz3wGNtqo\n2bqkdmA4qOMsWwbnnAPbblv2QvrDH8osJBewSat4NlUdY/ly+M53Su9gjz3g6qthp52arkpqT4aD\nxrwVK+DSS+FTnyqb4n3/+2XHVEl9Mxw0ZmWW6zOfckq5/+Uvw/77u4BNGgjDQWPSddeVBWxLlsAZ\nZ5Q1C4aCNHAOSGtMuf12eOtby6K1I48s99/5ToNBGizDQWPCn/4E730vvPGNsM8+Za3CBz7gAjZp\nqAwHjWpLl8Kxx8JrXgMTJpRQ+PjH4fnPb7oyaXQzHDQqPfJImX20445lz6N588o1FjbcsOnKpLHB\ncNCosnw5fOUrZQHb4sVw001w7rnw0pc2XZk0tnhGVqNCJvz0p3D88WWtwlVXwS67NF2VNHYZDmp7\nc+eWjfAWLYKzz4aDD3b2kVQ3TyupbS1dCtOnw377wSGHlJB485sNBmkkGA5qO8uWwWc/W/Y9Gj8e\nFi6EY46BceOarkzqHJ5WUtvILPsenXQS7LYb/O53MHFi01VJnclwUFu4/no47rjSa7jwwnI1NknN\n8bSSGrVoEbz73eWazUcfDTfeaDBI7cBwUCMefRROPbWcPtpmmzKu8L73lQVtkprnj6JG1NNPw7e/\nDdttB/feC7fcUlY2jx/fdGWSVueYg0bM1VeXfY9e9CK4/PKyH5Kk9mQ4qHYLF8IJJ5Ttsz/3uTK+\n4FoFqb15Wkm1efBBmDED9t67bKM9b54X3ZFGC8NBw+7JJ8tmeDvsUDbKmzev7Im0/vpNVyZpoGoN\nh4iYGhELIuLOiDhxDc9vFBGzI2JORNwWEe+rsx7VKxMuuwx23hl+/nPo6Sk7qG62WdOVSRqsyMx6\nXjhiHWAhsD9wH/B74PDMnL9am1OAF2XmyRGxaav95pm5vNdrZV11anjcfHPZHO/+++Gcc+BNb2q6\nIkkRQWYO6URunT2H1wF3ZeafMvMp4D+At/RqswJYeXmWDYEHeweD2ttf/gJHHQUHHgiHHQZz5hgM\n0lhQZzhsCdy72v3FrcdWdx6wY0QsAW4BZtRYj4bR//wPnH56OYW02WZlRtL06V6zWRor6vxRHsh5\noKnATZm5b0S8CrgqInbNzEd7N+zu7n7mdldXF13usdCIFSvgkkvglFNgzz3LdhevfGXTVUkC6Onp\noaenZ1heq84xh8lAd2ZObd0/GViRmWet1ubHwJmZeW3r/i+BEzPzxl6v5ZhDG/jNb8oiNoAvfAH2\n2qvZeiT1r13HHG4EJkbEhIhYDzgMuLxXm0WUAWsiYnNgO+CeGmvSENxzDxx6KBxxRFm3cN11BoM0\n1tUWDq2B5Y8BPwPmAf+ZmfMjYnpETG81Ox14Q0TcCvwC+GRmPlRXTRqcRx6BT34SXvvacr3mBQvK\nDqpujieNfbWdVhpOnlYaWcuXw7e+Bd3d5XrNp58OW2zRdFWSBuu5nFZybome5cory3qFzTcvt1/9\n6qYrktQEw0FA2RTv+OPh7rvh7LPhkEPcA0nqZJ49HmWGa5raSg88AB/5COy7L0ydCrfdBtOmjY5g\nGO5jMZp5LFbxWAwPw2GUGa5v/CeegM9/vmyON25cGWyeMQPWW29YXn5E+EtgFY/FKh6L4eFppQ6T\nCZdeWmYhTZoE115brsomSaszHDrIsmVwwAFliuo3vwn77dd0RZLa1aiZytp0DZI0Gg11KuuoCAdJ\n0shyQFqSVGE4SJIq2joc1naZ0bEsIraOiF9FxO2tS6ge23r8xRFxVUTcERE/j4iNm651pETEOhFx\nc0TMbt3vyGMRERtHxA8iYn5EzIuI13fwsTiu9fMxNyIuiYj1O+VYRMQFEbE0Iuau9lifX3tEnNz6\nXbogIg5Y2+u3bTi0LjN6HuWaDzsCh0fEDs1WNaKeAo7LzJ2AycBHW1//ScBVmbkt8MvW/U4xg7KJ\n48qBsk49Fl8ErsjMHYBdgAV04LGIiC2BY4A9MnMSsA7wLjrnWFxI+f24ujV+7RGxI2Vn7B1bn/PV\niOj393/bhgMDu8zomJWZf83MOa3bjwHzKVfSmwZc1Gp2EfDWZiocWRGxFXAQ8C1g5eyLjjsWEbER\n8E+ZeQGU3Y8z8xE68Fi0rAtsEBHrAhsAS+iQY5GZ1wAP93q4r6/9LcCszHwqM/8E3EX5Hdundg6H\ngVxmtCNExARgN+B6YPPMXNp6aimweUNljbQvACdQrju+Uicei1cCD0TEhRFxU0R8MyJeSAcei8y8\nDziHcl2YJcDfM/MqOvBYrKavr30Lyu/Qldb6+7Sdw8E5tkBEjAcuBWb0vnxqax/zMX+cIuLNwP2Z\neTOreg3P0inHgvKX8u7AVzNzd+Bxep026ZRjERGbUP5SnkD55Tc+Io5cvU2nHIs1GcDX3u9xaedw\nuA/YerX7W/Ps5BvzImIcJRguzswftR5eGhEvaz3/cuD+puobQW8ApkXEH4FZwBsj4mI681gsBhZn\n5u9b939ACYu/duCx2B/4Y2Y+2Lq42A+BPenMY7FSXz8TvX+fbtV6rE/tHA4DuczomBURAXwbmJeZ\n56721OXAe1u33wv8qPfnjjWZeUpmbp2Zr6QMOF6dmf9CZx6LvwL3RsS2rYf2B24HZtNhxwL4MzA5\nIl7Q+nnZnzJhoROPxUp9/UxcDrwrItaLiFcCE4Eb+nuhtl4hHREHAudSZiF8OzPPbLikERMRewO/\nBm5lVffvZMp/6PeBVwB/Ag7NzL83UWMTImIK8InMnBYRL6YDj0VE7EoZmF8PuBt4P+VnpBOPRTfl\nD8flwE3AB4EX0QHHIiJmAVOATSnjC6cBl9HH1x4RpwBHUY7VjMz8Wb+v387hIElqRjufVpIkNcRw\nkCRVGA6SpArDQZJUYThIkioMB0lSheEg9SEijm1tiX1x07VII811DlIfImI+sF9mLhnk522Smb13\ny5RGFXsO0hpExNeB/wNcGRH/d5Cf/vuI+G5E7Nva1kEadew5SH1obfS3R2Y+NMjPex5wIGWrgh2A\ni4HvZOZfhr9KqR72HKRhlpkrMvMnmfkOYB/gVcCiiHhNw6VJA2Y4SIPUunbvzRHx44jYKiLmtO4f\nvVqbjSJiOmU3zFdRNseb29drSu3G00pSH57DaaXvUq77/X3KbsJ311GfVKd1my5AamND/cvpP4H3\nZOaKtbaU2pQ9B0lShWMOkqQKw0GSVGE4SJIqDAdJUoXhIEmqMBwkSRWGgySpwnCQJFX8fyk/juvE\nTvrvAAAAAElFTkSuQmCC\n",
- "text": [
- "<matplotlib.figure.Figure at 0x7fb9d458da10>"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.31, Page Number:1148"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "A=Symbol('A')\n",
- "B=Symbol('B')\n",
- "v1=440#V\n",
- "f1=50#Hz\n",
- "p1=2500#W\n",
- "v2=220#V\n",
- "f2=25#Hz\n",
- "p2=850#z\n",
- "\n",
- "#calculation\n",
- "ans=solve([(p1/f1)-(A+f1*B),(p2/f2)-(A+f2*B)],[A,B])\n",
- "wh=ans[A]*f\n",
- "we=ans[B]*f**2\n",
- "\n",
- "#result\n",
- "print \"hysteresis=\",round(wh),\"W\"\n",
- "print \"eddy current=\",round(we),\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "hysteresis= 900.0 W\n",
- "eddy current= 1600.0 W\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.32, Page Number:1149"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=1000.0#V\n",
- "f1=50.0#Hz\n",
- "core=1000.0#W\n",
- "wh=650.0#W\n",
- "we=350.0#W\n",
- "v2=2000.0#V\n",
- "f2=100.0#Hz\n",
- "\n",
- "#calculation\n",
- "a=wh/f1\n",
- "b=we/f1**2\n",
- "wh=a*f2\n",
- "we=b*f2**2\n",
- "new_core=wh+we\n",
- "\n",
- "#result\n",
- "print \"new core loss=\",new_core,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " new core loss= 2700.0 W\n"
- ]
- }
- ],
- "prompt_number": 111
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.33, Page Number:1149"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "phi=1.4#Wb/m2\n",
- "we=1000.0#W\n",
- "wh=3000.0#W\n",
- "per=10.0#%\n",
- "\n",
- "#calculation\n",
- "wh1=wh*1.1**1.6\n",
- "we1=we*1.1**2\n",
- "wh2=wh*0.9**(-0.6)\n",
- "wh3=wh*1.1**1.6*1.1**(-0.6)\n",
- "#result\n",
- "print \"a)wh and we when applied voltage is increased by 10%=\",wh1,\"W\",\"and\",we1,\"W\"\n",
- "print \"b)wh when frequency is reduced by 10%=\",wh2,\"W\"\n",
- "print \"c)wh and we when both voltage and frequency are increased y 10%=\",wh3,\"W\",\"and\",we1,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)wh and we when applied voltage is increased by 10%= 3494.21441464 W and 1210.0 W\n",
- "b)wh when frequency is reduced by 10%= 3195.77171838 W\n",
- "c)wh and we when both voltage and frequency are increased y 10%= 3300.0 W and 1210.0 W\n"
- ]
- }
- ],
- "prompt_number": 119
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.34, Page Number:1150"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=2200.0#V\n",
- "f=40.0#Hz\n",
- "loss=800.0#W\n",
- "wh=600.0#W\n",
- "we=loss-wh\n",
- "v2=3300.0#V\n",
- "f2=60.0#Hz\n",
- "\n",
- "#calculations\n",
- "a=wh/f\n",
- "b=we/f**2\n",
- "core_loss=a*f2+b*f2**2\n",
- "\n",
- "#result\n",
- "print \"core loss at 60 Hz=\",core_loss,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "core loss at 60 Hz= 1350.0 W\n"
- ]
- }
- ],
- "prompt_number": 122
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.35, Page Number:1151"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=30.0#KvA\n",
- "v1=6000.0#V\n",
- "v2=230.0#V\n",
- "r1=10.0#ohm\n",
- "r2=0.016#ohm\n",
- "x01=34.0#ohm\n",
- "\n",
- "#calculations\n",
- "k=v2/v1\n",
- "r01=r1+r2/k**2\n",
- "z01=(r01**2+x01**2)**0.5\n",
- "i1=load*1000/v1\n",
- "vsc=i1*z01\n",
- "pf=r01/z01\n",
- "\n",
- "#result\n",
- "print \"primary voltage=\",vsc,\"V\"\n",
- "print \"pf=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "primary voltage= 199.519931911 V\n",
- "pf= 0.523468222173\n"
- ]
- }
- ],
- "prompt_number": 124
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.36, Page Number:1152"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=200.0#V\n",
- "v2=400.0#V\n",
- "f=50.0#Hz\n",
- "vo=200.0#V\n",
- "io=0.7#A\n",
- "po=70.0#W\n",
- "vs=15.0#v\n",
- "i_s=10.0#A\n",
- "ps=85.0#W\n",
- "load=5.0#kW\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "cosphi0=po/(vo*io)\n",
- "sinphi0=math.sin(math.acos(cosphi0))\n",
- "iw=io*cosphi0\n",
- "imu=io*sinphi0\n",
- "r0=v1/iw\n",
- "x0=v1/imu\n",
- "z02=vs/i_s\n",
- "k=v2/v1\n",
- "z01=z02/k**2\n",
- "r02=ps/i_s**2\n",
- "r01=r02/k**2\n",
- "x01=(z01**2-r01**2)**0.5\n",
- "output=load/pf\n",
- "i2=output*1000/v2\n",
- "x02=(z02**2-r02**2)**0.5\n",
- "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n",
- "v2=v2-drop\n",
- "print z02\n",
- "#result\n",
- "print \"secondary voltage=\",v2,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "1.5\n",
- "secondary voltage= 377.788243349 V\n"
- ]
- }
- ],
- "prompt_number": 130
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.37, Page Number:1152"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "k=1.0/6\n",
- "r1=0.9#ohm\n",
- "x1=5.0#ohm\n",
- "r2=0.03#ohm\n",
- "x2=0.13#ohm\n",
- "vsc=330.0#V\n",
- "f=50.0#Hz\n",
- "\n",
- "#calculations\n",
- "r01=r1+r2/k**2\n",
- "x01=x1+x2/k**2\n",
- "z01=(r01**2+x01**2)**0.5\n",
- "i1=vsc/z01\n",
- "i2=i1/k\n",
- "cosphisc=i1**2*r01/(vsc*i1)\n",
- "\n",
- "#result\n",
- "print \"current in low voltage winding=\",i2,\"A\"\n",
- "print \"pf=\",round(cosphisc,1)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current in low voltage winding= 200.396236149 A\n",
- "pf= 0.2\n"
- ]
- }
- ],
- "prompt_number": 132
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.38, Page Number:1153"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#kVA\n",
- "v1=500.0#V\n",
- "v2=250.0#V\n",
- "f=50.0#Hz\n",
- "r1=0.2#ohm\n",
- "x1=0.4#ohm\n",
- "r2=0.5#ohm\n",
- "x2=0.1#ohm\n",
- "r0=1500.0#ohm\n",
- "x0=750.0#ohm\n",
- "\n",
- "#calculation\n",
- "k=v2/v1\n",
- "imu=v1/x0\n",
- "iw=v1/r0\n",
- "i0=(iw**2+imu**2)**0.5\n",
- "pi=v1*iw\n",
- "r01=r1+r2/k**2\n",
- "x01=x1+x2/k**2\n",
- "z01=(r01**2+x01**2)**0.5\n",
- "i1=load*1000/v1\n",
- "vsc=i1*z01\n",
- "power=i1**2*r01\n",
- "\n",
- "#result\n",
- "print \"reading of instruments=\",vsc,\"V,\",i1,\"A,\",power,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "reading of instruments= 46.8187996429 V, 20.0 A, 880.0 W\n"
- ]
- }
- ],
- "prompt_number": 140
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.39, Page Number:1153"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "x=Symbol('x')\n",
- "y=Symbol('y')\n",
- "load=1000#kVA\n",
- "v1=110#V\n",
- "v2=220#V\n",
- "f=50#Hz\n",
- "per1=98.5#%\n",
- "pf=0.8\n",
- "per2=98.8#%\n",
- "\n",
- "#calculaions\n",
- "output=load*1\n",
- "inpt=output*100/per2\n",
- "loss=inpt-output\n",
- "inpt_half=(load/2)*pf*100/per1\n",
- "loss2=inpt_half-400\n",
- "ans=solve([x+y-loss,(x/4)+y-loss2],[x,y])\n",
- "kva=load*(ans[y]/ans[x])*0.5\n",
- "output=kva*1\n",
- "cu_loss=ans[y]\n",
- "total_loss=2*cu_loss\n",
- "efficiency=output/(output+total_loss)\n",
- "#result\n",
- "print \"full load copper loss=\",cu_loss,\"kW\"\n",
- "print \"maximum efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "full load copper loss= 4.07324441521606 kW\n",
- "maximum efficiency= 0.968720013059872 %\n"
- ]
- }
- ],
- "prompt_number": 148
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.40, Page Number:1154"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=200.0#v\n",
- "v2=400.0#V\n",
- "r01=0.15#ohm\n",
- "x01=0.37#ohm\n",
- "r0=600.0#ohm\n",
- "x0=300.0#ohm\n",
- "i2=10.0#A\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "imu=v1/x0\n",
- "iw=v1/r0\n",
- "i0=(imu**2+iw**2)**0.5\n",
- "tantheta=iw/imu\n",
- "theta=math.atan(tantheta)\n",
- "theta0=math.radians(90)-theta\n",
- "angle=theta0-math.acos(pf)\n",
- "k=v2/v1\n",
- "i2_=i2*k\n",
- "i1=(i0**2+i2_**2+2*i0*i2_*math.cos(angle))**0.5\n",
- "r02=k**2*r01\n",
- "x02=x01*k**2\n",
- "vd=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n",
- "v2=v2-vd\n",
- "\n",
- "#result\n",
- "print \"i)primary current=\",i1,\"A\"\n",
- "print \"ii)secondary terminal voltage=\",v2,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)primary current= 20.6693546639 A\n",
- "ii)secondary terminal voltage= 386.32 V\n"
- ]
- }
- ],
- "prompt_number": 149
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.43, Page Number:1158"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=100.0#kVA\n",
- "n1=400.0\n",
- "n2=80.0\n",
- "r1=0.3#ohm\n",
- "r2=0.01#ohm\n",
- "x1=1.1#ohm\n",
- "x2=0.035#ohm\n",
- "v1=2200.0#V\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "k=n2/n1\n",
- "r01=r1+r2/k**2\n",
- "x01=x1+x2/k**2\n",
- "z01=complex(r01,x01)\n",
- "z02=k**2*z01\n",
- "v2=k*v1\n",
- "i2=load*1000/v2\n",
- "vd=i2*(z02.real*pf-z02.imag*math.sin(math.acos(pf)))\n",
- "regn=vd*100/v2\n",
- "v2=v2-vd\n",
- "\n",
- "#result\n",
- "print \"i)equivalent impedence=\",z02,\"ohm\"\n",
- "print \"ii)voltage regulation=\",regn,\"%\"\n",
- "print \"secondary terminal voltage=\",v2,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)equivalent impedence= (0.022+0.079j) ohm\n",
- "ii)voltage regulation= -1.53925619835 %\n",
- "secondary terminal voltage= 446.772727273 V\n"
- ]
- }
- ],
- "prompt_number": 158
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.44, Page Number:1158"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#kVA\n",
- "va=450.0#V\n",
- "vb=120.0#V\n",
- "v1=120.0#V\n",
- "i1=4.2#A\n",
- "w1=80.0#W\n",
- "v2=9.65#V\n",
- "i2=22.2#A\n",
- "w2=120.0#W\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "k=vb/va\n",
- "i0=i1*k\n",
- "cosphi0=w1/(va*i0)\n",
- "phi0=math.acos(cosphi0)\n",
- "sinphi0=math.sin(phi0)\n",
- "iw=i0*cosphi0\n",
- "imu=i0*sinphi0\n",
- "r0=va/iw\n",
- "x0=va/imu\n",
- "z01=v2/i2\n",
- "r01=vb/i2**2\n",
- "x01=(z01**2-r01**2)**0.5\n",
- "i1=load*1000/va\n",
- "drop=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n",
- "regn=drop*100/va\n",
- "loss=w1+w2\n",
- "output=load*1000*pf\n",
- "efficiency=output/(output+loss)\n",
- "iron_loss=w1\n",
- "cu_loss=(0.5**2)*w2\n",
- "total_loss=iron_loss+cu_loss\n",
- "output=load*1000*pf/2\n",
- "efficiency2=output/(output+total_loss)\n",
- "\n",
- "#result\n",
- "print \"i)equivalent circuit constants=\"\n",
- "print \"z01=\",z01,\"ohm\"\n",
- "print \"x01=\",x01,\"ohm\"\n",
- "print \"r01=\",r01,\"ohm\"\n",
- "print \"ii)efficiency and voltage regulation at pf=0.8=\",efficiency*100,\"%\",regn,\"%\"\n",
- "print \"iii)efficiency at half load and pf=0.8=\",efficiency2*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)equivalent circuit constants=\n",
- "z01= 0.434684684685 ohm\n",
- "x01= 0.360090249002 ohm\n",
- "r01= 0.243486729973 ohm\n",
- "ii)efficiency and voltage regulation at pf=0.8= 97.5609756098 % 2.02885695496 %\n",
- "iii)efficiency at half load and pf=0.8= 97.3236009732 %\n"
- ]
- }
- ],
- "prompt_number": 162
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.45, Page Number:1159"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=20.0#kVA\n",
- "va=2200.0#V\n",
- "vb=220.0#V\n",
- "f=50.0#Hz\n",
- "v1=220.0#V\n",
- "i1=4.2#A\n",
- "w1=148.0#W\n",
- "v2=86.0#V\n",
- "i2=10.5#A\n",
- "w2=360.0#W\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "z01=v2/i2\n",
- "r01=w2/i2**2\n",
- "x01=(z01**2-r01**2)**0.5\n",
- "i1=load*1000/va\n",
- "drop=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n",
- "regn=drop*100/va\n",
- "pf=r01/z01\n",
- "\n",
- "#result\n",
- "print \"regulation=\",regn,\"%\"\n",
- "print \"pf=\",round(pf,1),\"lag\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation= 2.94177963326 %\n",
- "pf= 0.4 lag\n"
- ]
- }
- ],
- "prompt_number": 172
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.46, Page Number:1159"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#kVA\n",
- "v1=2000.0#V\n",
- "v2=400.0#V\n",
- "v=60.0#V\n",
- "i=4.0#A\n",
- "w=100.0#W\n",
- "pf=0.8\n",
- "v_=400.0#V\n",
- "\n",
- "#calculations\n",
- "z01=v/i\n",
- "r01=w/i**2\n",
- "x01=(z01**2-r01**2)**0.5\n",
- "i1=load*1000/v1\n",
- "vd=i1*(r01*pf+x01*math.sin(math.acos(pf)))\n",
- "\n",
- "#result\n",
- "print \"voltage applied to hv side=\",v1+vd,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage applied to hv side= 2065.90767043 V\n"
- ]
- }
- ],
- "prompt_number": 182
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.47, Page Number:1159"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=250.0#V\n",
- "v2=500.0#V\n",
- "vs=20.0#V\n",
- "i_s=12.0#A\n",
- "ws=100.0#W\n",
- "vo=250.0#V\n",
- "io=1.0#A\n",
- "wo=80.0#W\n",
- "i2=10#A\n",
- "v2=500#V\n",
- "pg=0.8\n",
- "\n",
- "#calculation\n",
- "cosphi0=wo/(vo*io)\n",
- "iw=io*cosphi0\n",
- "imu=(1-iw**2)**0.5\n",
- "r0=v1/iw\n",
- "x0=v1/imu\n",
- "r02=ws/i_s**2\n",
- "z02=vs/i_s\n",
- "x02=(z02**2-r02**2)**0.5\n",
- "k=v2/v1\n",
- "r01=r02/k**2\n",
- "x01=x02/k**2\n",
- "z01=z02/k**2\n",
- "cu_loss=i2**2*r02\n",
- "iron_loss=wo\n",
- "total_loss=iron_loss+cu_loss\n",
- "efficiency=i2*v2*pf/(i2*v2*pf+total_loss)\n",
- "v1_=((vo*pf+x01)**2+(vo*math.sin(math.acos(pf))+i1*x01)**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"applied voltage=\",v1_,\"V\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "applied voltage= 251.442641983 V\n",
- "efficiency= 96.3984469139 %\n"
- ]
- }
- ],
- "prompt_number": 190
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.48, Page Number:1160"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=230.0#V\n",
- "v2=230.0#V\n",
- "load=3.0#kVA\n",
- "vo=230.0#V\n",
- "io=2.0#A\n",
- "wo=100.0#W\n",
- "vs=15.0#V\n",
- "i_s=13.0#A\n",
- "ws=120.0#W\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "i=load*1000/v1\n",
- "cu_loss=ws\n",
- "core_loss=wo\n",
- "output=load*1000*pf\n",
- "efficiency=output*100/(output+cu_loss+core_loss)\n",
- "z=vs/i_s\n",
- "r=ws/(vs**2)\n",
- "x=(z**2-r**2)**0.5\n",
- "regn=i*(r*pf+x*math.sin(math.acos(pf)))*100/v1\n",
- "\n",
- "#result\n",
- "print \"regulation=\",regn,\"%\"\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation= 5.90121149256 %\n",
- "efficiency= 91.6030534351 %\n"
- ]
- }
- ],
- "prompt_number": 194
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.49, Page Number:1161"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#kVA\n",
- "v1=500.0#V\n",
- "v2=250.0#V\n",
- "efficiency=0.94\n",
- "per=0.90\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "output=per*load*1000\n",
- "inpt=output/efficiency\n",
- "loss=inpt-output\n",
- "core_loss=loss/2\n",
- "pc=core_loss/per**2\n",
- "output=load*1000*pf\n",
- "cu_loss=pc\n",
- "efficiency=output/(output+cu_loss+core_loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 92.5728354534 %\n"
- ]
- }
- ],
- "prompt_number": 196
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.50, Page Number:1161"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#kVA\n",
- "f=50.0#Hz\n",
- "v1=2300.0#V\n",
- "v2=230.0#V\n",
- "r1=3.96#ohm\n",
- "r2=0.0396#ohm\n",
- "x1=15.8#ohm\n",
- "x2=0.158#ohm\n",
- "pf=0.8\n",
- "v=230.0#V\n",
- "\n",
- "#calculations\n",
- "i=load*1000/v\n",
- "r=r2+r1*(v2/v1)**2\n",
- "x=x1*(v2/v1)**2+x2\n",
- "v1_=v2+i*(r*pf+x*math.sin(math.acos(pf)))\n",
- "v1=v1_*(v1/v2)\n",
- "phi=math.atan(r/x)\n",
- "pf=math.cos(phi)\n",
- "#result\n",
- "print \"a)HV side voltage necessary=\",v1,\"V\"\n",
- "print \"b)pf=\",round(pf,2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)HV side voltage necessary= 2409.9826087 V\n",
- "b)pf= 0.97\n"
- ]
- }
- ],
- "prompt_number": 199
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.51, Page Number:1162"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=5.0#kVA\n",
- "v1=2200.0#V\n",
- "v2=220.0#v\n",
- "r1=3.4#ohm\n",
- "x1=7.2#ohm\n",
- "r2=0.028#ohm\n",
- "x2=0.060#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "i=load*1000/v2\n",
- "r=r1*(v2/v1)**2+r2\n",
- "x=x1*(v2/v1)**2+x2\n",
- "ad=i*r*pf\n",
- "dc=i*x*math.sin(math.acos(pf))\n",
- "oc=v2+ad+dc\n",
- "bd=i*r*math.sin(math.acos(pf))\n",
- "b_f=x*pf\n",
- "cf=b_f-bd\n",
- "v1_=(oc**2+cf**2)**0.5\n",
- "v1=v1_*(v1/v2)\n",
- "\n",
- "#result\n",
- "print \"terminal voltage on hv side=\",v1,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "terminal voltage on hv side= 2229.28500444 V\n"
- ]
- }
- ],
- "prompt_number": 200
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.52, Page Number:1163"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=4.0#kVA\n",
- "v1=200.0#V\n",
- "v2=400.0#V\n",
- "i1=0.7#A\n",
- "w1=65.0#W\n",
- "v=15.0#V\n",
- "i2=10.0#A\n",
- "w2=75.0#W\n",
- "pf=0.80\n",
- "#calculation\n",
- "il=load*1000/v1\n",
- "ih=load*1000/v2\n",
- "cu_loss=w2\n",
- "constant_loss=w1\n",
- "z=v/i2\n",
- "r=w2/i2**2\n",
- "x=(z**2-r**2)**0.5\n",
- "efficiency=load*100000/(load*1000+cu_loss+constant_loss)\n",
- "regn=i2*(r*pf+x*math.sin(math.acos(pf)))\n",
- "\n",
- "#result\n",
- "print \"full load efficiency=\",efficiency,\"%\"\n",
- "print \"full load regulation=\",regn,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "full load efficiency= 96.6183574879 %\n",
- "full load regulation= 13.7942286341 V\n"
- ]
- }
- ],
- "prompt_number": 209
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.53, Page Number:1164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=3300.0#V\n",
- "v2=230.0#V\n",
- "load=50.0#kVA\n",
- "z=4\n",
- "cu_loss=1.8\n",
- "\n",
- "#calculations\n",
- "x=(z**2-cu_loss**2)**0.5\n",
- "i1=load*1000/v1\n",
- "r01=cu_loss*v1/(100*i1)\n",
- "x01=x*v1/(100*i1)\n",
- "z01=z*v1/(100*i1)\n",
- "isc=i1*100/z\n",
- "print \n",
- "#result\n",
- "print \"%x=\",x,\"%\"\n",
- "print \"resistance=\",r01,\"ohm\"\n",
- "print \"reactance=\",x01,\"ohm\"\n",
- "print \"impedence=\",z01,\"ohm\"\n",
- "print \"primary sc current=\",isc,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "%x= 3.5721142199 %\n",
- "resistance= 3.9204 ohm\n",
- "reactance= 7.78006477094 ohm\n",
- "impedence= 8.712 ohm\n",
- "primary sc current= 378.787878788 A\n"
- ]
- }
- ],
- "prompt_number": 214
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.54, Page Number:1164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=20.0#kVA\n",
- "v1=2200.0#V\n",
- "v2=220.0#V\n",
- "f=50.0#Hz\n",
- "vo=220.0#V\n",
- "i_o=4.2#A\n",
- "wo=148.0#W\n",
- "vs=86.0#V\n",
- "i_s=10.5#A\n",
- "ws=360.0#W\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "k=v2/v1\n",
- "r01=ws/i_s**2\n",
- "r02=k**2*r01\n",
- "z10=vs/i_s\n",
- "x01=(z10**2-r01**2)**0.5\n",
- "x02=k**2*x01\n",
- "i1=load*1000/v1\n",
- "v1_=((v1*pf+i1*r01)**2+(v1*math.sin(math.acos(pf))+i1*x01)**2)**0.5\n",
- "regn1=(v1_-v1)/v1\n",
- "i2=i1/k\n",
- "core_loss=wo\n",
- "cu_loss=i1**2*r01\n",
- "cu_loss_half=(i1/2)**2*r01\n",
- "efficiency=load*1000*pf*100/(load*1000*pf+core_loss+cu_loss)\n",
- "efficiency_half=(load/2)*1000*pf*100/((load/2)*1000*pf+core_loss+cu_loss)\n",
- "print v1_ \n",
- "#result\n",
- "print \"a)core loss=\",wo,\"W\"\n",
- "print \"b)equivalent resistance primary=\",r01,\"ohm\"\n",
- "print \"c)equivalent resistance secondary=\",r02,\"ohm\"\n",
- "print \"d)equivalent reactance primary=\",x01,\"ohm\"\n",
- "print \"e)equivalent reactance secondary=\",x02,\"ohm\"\n",
- "print \"f)regulation=\",regn1*100,\"%\"\n",
- "print \"g)efficiency at full load=\",efficiency,\"%\"\n",
- "print \"h)efficiency at half load=\",efficiency_half,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "2265.01840886\n",
- "a)core loss= 148.0 W\n",
- "b)equivalent resistance primary= 3.26530612245 ohm\n",
- "c)equivalent resistance secondary= 0.0326530612245 ohm\n",
- "d)equivalent reactance primary= 7.51143635755 ohm\n",
- "e)equivalent reactance secondary= 0.0751143635755 ohm\n",
- "f)regulation= 2.95538222101 %\n",
- "g)efficiency at full load= 97.4548448466 %\n",
- "h)efficiency at half load= 95.0360304208 %\n"
- ]
- }
- ],
- "prompt_number": 222
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.55, Page Number:1165"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "er=1.0/100\n",
- "ex=5.0/100\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "regn=er*pf+ex*math.sin(math.acos(pf))\n",
- "regn2=er*1\n",
- "regn3=er*pf-ex*math.sin(math.acos(pf))\n",
- "\n",
- "#result\n",
- "print \"i)regulation with pf=0.8 lag=\",regn*100,\"%\"\n",
- "print \"ii)regulation with pf=1=\",regn2*100,\"%\"\n",
- "print \"iii)regulation with pf=0.8 lead=\",regn3*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)regulation with pf=0.8 lag= 3.8 %\n",
- "ii)regulation with pf=1= 1.0 %\n",
- "iii)regulation with pf=0.8 lead= -2.2 %\n"
- ]
- }
- ],
- "prompt_number": 223
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.56, Page Number:1165"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=500#kVA\n",
- "v1=3300#V\n",
- "v2=500#V\n",
- "f=50#Hz\n",
- "per=0.97\n",
- "ratio=3.0/4\n",
- "zper=0.10\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "output=load*ratio*1\n",
- "x=0.75\n",
- "pi=0.5*(output*(1/per-1))\n",
- "pc=pi/x**2\n",
- "i1=load*1000/v1\n",
- "r=pc*1000/i1**2\n",
- "er=i1*r/v1\n",
- "ez=zper\n",
- "ex=(ez**2-er**2)**0.5\n",
- "regn=er*pf+ex*math.sin(math.acos(pf))\n",
- "\n",
- "#result\n",
- "print \"regulation=\",regn*100,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation= 7.52529846012 %\n"
- ]
- }
- ],
- "prompt_number": 225
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.57, Page Number:1166"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "cu_loss=1.5#%\n",
- "xdrop=3.5#%\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "pur=cu_loss/100\n",
- "pux=xdrop/100\n",
- "regn2=pur*pf+pux*math.sin(math.acos(pf))\n",
- "regn1=pur*1\n",
- "regn3=pur*pf-pux*math.sin(math.acos(pf))\n",
- "\n",
- "#result\n",
- "print \"i)regulation at unity pf=\",regn1*100,\"%\"\n",
- "print \"ii)regulation at 0.8 lag=\",regn2*100,\"%\"\n",
- "print \"iii)regulation at 0.8 lead=\",regn3*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)regulation at unity pf= 1.5 %\n",
- "ii)regulation at 0.8 lag= 3.3 %\n",
- "iii)regulation at 0.8 lead= -0.9 %\n"
- ]
- }
- ],
- "prompt_number": 226
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.58, Page Number:1168"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=250#KVA\n",
- "w1=5.0#kW\n",
- "w2=7.5#kW\n",
- "efficiency=0.75\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "total_loss=w1+w2\n",
- "loss=total_loss/2\n",
- "cu_loss=efficiency**2*w2/2\n",
- "output=load*efficiency*pf\n",
- "efficiency=output*100/(output+cu_loss+2.5)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 97.0186963113 %\n"
- ]
- }
- ],
- "prompt_number": 229
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.59, Page Number:1170"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=25.0#kVA\n",
- "v1=2000.0#V\n",
- "v2=200.0#V\n",
- "w1=350.0#W\n",
- "w2=400.0#W\n",
- "\n",
- "#calculation\n",
- "total_loss=w1+w2\n",
- "output=load*1000*1\n",
- "efficiency=output/(output+total_loss)\n",
- "cu_loss=w2*(0.5)**2\n",
- "total_loss=cu_loss+w1\n",
- "efficiency2=(load*1000/2)/((load*1000/2)+total_loss)\n",
- "\n",
- "#result\n",
- "print \"i)efficiency at full load=\",efficiency*100,\"%\"\n",
- "print \"ii)efficiency at half load=\",efficiency2*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)efficiency at full load= 97.0873786408 %\n",
- "ii)efficiency at half load= 96.5250965251 %\n"
- ]
- }
- ],
- "prompt_number": 232
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.60, Page Number:1170"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "efficiency=0.75\n",
- "\n",
- "#calculation\n",
- "ratio=efficiency**2\n",
- "\n",
- "#result\n",
- "print \"ratio of P1 and P2=\",ratio"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ratio of P1 and P2= 0.5625\n"
- ]
- }
- ],
- "prompt_number": 233
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.61, Page Number:1170"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=11000.0#V\n",
- "v2=230.0#V\n",
- "load1=150.0#KVA\n",
- "f=50.0#Hz\n",
- "loss=1.4#kW\n",
- "cu_loss=1.6#kW\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "load=load1*(cu_loss/loss)**0.5\n",
- "total_loss=loss*2\n",
- "output=load*1\n",
- "efficiency=output/(output+total_loss)\n",
- "cu_loss=cu_loss*(0.5)**2\n",
- "total_loss=total_loss+cu_loss\n",
- "output2=(load/2)*pf\n",
- "efficiency2=output2/(output2+total_loss)\n",
- "\n",
- "#result\n",
- "print \"i)kVA load for max efficiency=\",load1,\"kVA\"\n",
- "print \"max efficiency=\",efficiency*100,\"%\"\n",
- "print \"ii)efficiency at half load=\",efficiency2*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)kVA load for max efficiency= 150.0 kVA\n",
- "max efficiency= 98.283858876 %\n",
- "ii)efficiency at half load= 95.2481856352 %\n"
- ]
- }
- ],
- "prompt_number": 237
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.62, Page Number:1171"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#variable declaration\n",
- "load=5#kVA\n",
- "v1=2300#V\n",
- "v2=230#V\n",
- "f=50#Hz\n",
- "iron_loss=40#W\n",
- "cu_loss=112#W\n",
- "pf=0.8\n",
- "#calculations\n",
- "def e(k):\n",
- " e=k*pf*1000*100/(k*pf*1000+(cu_loss*(k/5)**2+40))\n",
- " return(e)\n",
- "\n",
- "e1=e(1.25)\n",
- "e2=e(2.5)\n",
- "e3=e(3.75)\n",
- "e4=e(5.0)\n",
- "e5=e(6.25)\n",
- "e6=e(7.5)\n",
- "\n",
- "K=[1.25,2.5,3.75,5.0,6.25,7.5]\n",
- "E=[e1,e2,e3,e4,e5,e6]\n",
- "plt.plot(K,E)\n",
- "plt.xlabel(\"load,kVA\") \n",
- "plt.ylabel(\"Efficiency\") \n",
- "plt.xlim((0,8))\n",
- "plt.ylim((92,98))\n",
- "plt.show()\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEPCAYAAABFpK+YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG69JREFUeJzt3XuUXFWd9vHvQxoIIQgGuQoRRCUy3CEEMyQ0vKAYIzcD\nyAveGODFMJiFLG/ga9phgQO+6oy4RlEECQKDtFyEKAGUDkHkTggBuS4Qwi0wIQmEBDrJ7/1jn6Y7\nTXV3dbpOn+o6z2etXl116pyq3wr0s0/ts8/eigjMzKw81im6ADMzG1wOfjOzknHwm5mVjIPfzKxk\nHPxmZiXj4DczK5lcg1/SNEkPS5ovaVq2bXdJd0l6UNK9ksbmWYOZma0pt+CXtDNwIjAW2A2YLGkH\n4HxgekTsAXwve25mZoOkKcf3HgPcHRErACTNBo4EVgEbZ/tsAryQYw1mZtaN8rpzV9IY4HrgE8AK\n4M/APcDPgVmASN84PhERz+dShJmZvUduwQ8g6QRgKrAMeAR4mxT2bRFxraSjgJMj4uDcijAzszXk\nGvxrfJB0DrAA+EFEbJJtE7A4IjausL8nETIzWwsRod5ez3tUz+bZ79Gk/v0rgBcl7Z/tciDwRE/H\nR0Td/0yfPr3wGhqhRtfpOuv9Z6jUWY08L+4CtEraFGgHpkbEEkknAf8pqQlYDpyccw1mZtZFrsEf\nERMrbPsrsHeen2tmZj3znbsD1NzcXHQJfRoKNYLrrDXXWVtDpc5qDNrF3f6SFPVam5lZvZJEFHlx\n18zM6o+D38ysZBz8ZmYl4+A3MysZB7+ZWck4+M3MSsbBb2ZWMg5+M7OScfCbmZWMg9/MrGQc/GZm\nJePgNzMrGQe/mVnJOPjNzErGwW9mVjIOfjOzknHwm5mVjIPfzKxkHPxmZiXj4DczKxkHv5lZyTj4\nzcxKxsFvZlYyDn4zs5Jx8JuZlYyD38ysZHINfknTJD0sab6kadm2qyQ9mP08I+nBPGswM7M1NeX1\nxpJ2Bk4ExgLtwE2SboyIY7rs8/+AxXnVYGZm75XnGf8Y4O6IWBERq4DZwJEdL0oScDRwZY41mJlZ\nN3kG/3xggqRRkkYAnwG26fL6BOCViHg6xxrMzKyb3Lp6IuIxSecBNwPLgAeB1V12ORa4Iq/PNzOz\nynILfoCIuBi4GEDSucBz2eMm4Ahgz96Ob2lpefdxc3Mzzc3NOVVqZjY0tbW10dbW1q9jFBH5VANI\n2jwiFkoaDcwCxkXEUkmHAN+KiAN6OTbyrM3MrBFJIiLU2z65nvEDrZI2JY3qmRoRS7Ptx+CLumZm\nhcj1jH8gfMZvZtZ/1Zzx+85dM7OScfCbmZWMg9/MrGQc/GZmJePgNzMrGQe/mVnJ5D2O3xpMBPz0\np3Dmmen5euvBuuum3wN9XMv36v543XVhHZ/mmAEOfuuHlSth2jSYPRvmzYMtt4R33kk/7e19P652\nv7feGtjxlR63t0NTU8+Nw/DhsMceMHFi+tlhB1CvI6HNhi7fwGVVWboUjjkmnfFfdRVsvHHRFfVP\nRGq4empEli2D++5Ljdrs2emYjkZg4kT4+Mf9jcGGhmpu4HLwW5+eew4mT4b99kvdPE0N/j0xAp55\nBm6/Pf3Mng1LlsCECakR2H9/2G03GDas6ErN3svBbwN2771w+OHwjW+kbp6ydn8sWABz5nQ2Bi+8\nAOPHd34j2Hvv1GVkVjQHvw3INdfAKafARRfBoYcWXU19efXVNRuCJ56AffZJ3wYmToRx42DEiKKr\ntDJy8NtaiYAf/hAuuACuvx727HXVBANYvBjuvLOza2jePNh9986uofHj4X3vK7pKKwMHv/VbeztM\nnZq6eG68EbbZpu9j7L2WLYO77ur8RnDvvTBmTGfX0H77wQc+UHSV1ogc/NYvixfDlCmwwQZw5ZUw\ncmTRFTWOt99O4d/RENx5J4we3dk1NGECbL110VVaI3DwW9WeeQY+8xn45CfhRz/yiJW8rVwJc+d2\ndg3NmQObbtr5jWD//eFDHyrvxXRbew5+q8rf/gZHHgnf/S6cemrR1ZTT6tXwyCNrDiFdb7017yXY\ncUc3BNY3B7/16aqr4LTT4De/gUmTiq7GOkTAk092NgS3357uaO74NjBxIuyyi28qs/dy8FuPIuCc\nc+BXv4IbboBddy26IuvLP/6xZkOwcGG6SNzxjWDPPdM0FFZuDn6r6J134OSTYf78FPpbbVV0RbY2\nXn45XRuYPTs1BM8+C/vu29kQjBsH669fdJU22Bz89h6LFqX+/FGj4LLLYMMNi67IamXRIrjjjs5r\nBE89labaOOqodNF++PCiK7TB4OC3NTz5ZBq5c9hhcN557h9udC++mO6+bm1NI4gmTUrDdQ85xHcV\nNzIHv71rzpx05vdv/5a6eaxcXn4ZrrsuNQL33guf+lRqBCZN8v0ajcbBbwD89rfw9a/D5ZfDwQcX\nXY0V7dVX01Qcra3pRrKDDkqNwOTJnlaiETj4Sy4CWlpSX/6NN8JOOxVdkdWbRYvgD39IjcDtt8MB\nB6RG4LOfhU02Kbo6WxsO/hJbsQJOOCHdkXvddbDFFkVXZPVu8eI0yqu1FW67LU0jMWVKuiY0alTR\n1Vm1HPwl9eqrcMQR8MEPphuzNtig6IpsqFm6FGbOTI3ArbemYaJTpqS1GTbbrOjqrDcO/hJ67LE0\ncufzn4ezz/bIHRu4N9+EP/0pNQI33ZQWnZkyJZ1cbLll0dVZdw7+kvnLX+DYY9NQzS9/uehqrBG9\n9RbMmpUagZkz05oDU6ake0M8u2h9KDz4JU0DTgQE/Coi/jPbfhowFVgFzIyIb1U41sHfD5dcAt/+\ndpp7p7m56GqsDFasgFtugauv7hw8MGUKfO5zsO22RVdXXoUGv6SdgSuBsUA7cBNwCjAaOBOYFBHt\nkjaLiFcrHO/gr8Lq1XDWWemPb+bMNIOj2WB7+23485/TN4Hrr4ePfrSzEdh++6KrK5eig38KcEhE\nnJg9/y7wNrA3cGFE/KWP4x38fVi+HL74RXjppTRyxys6WT1ob0+jglpb4dpr07oCU6akn498pOjq\nGl81wZ/npb/5wARJoySNACYB2wIfAyZKuktSm6S9c6yhYb3ySurSWX/9dKbl0Ld6se66aW6gX/4y\nnZScfz4891yaSXSPPdKssI8/XnSV5daU1xtHxGOSzgNuBpYBc0l9+k3A+yNiX0ljgd8BH670Hi0t\nLe8+bm5uptmd10BasGPy5HQB93vf8+IcVr+amuDAA9PPBRfAX/+avgkceGC6N6Djm8BOO/n/47XV\n1tZGW1tbv44ZtFE9ks4BFgCHAv8eEbOz7U8B4yLif7rt766eCm6+GY4/Hn7yEzjuuKKrMVs7q1en\nld9aW9PPyJGdjcCuu7oRGIh6GNWzeUQslDQamAWMA44Fto6I6ZI+BtwaEaMrHOvg7+bCC2H69PSH\nst9+RVdjVhurV6eJ4zoagaamzkZgzz3dCPRXPQT/7cCmpFE9p0fEbZLWBS4GdgfeAc6IiLYKxzr4\nM6tWwTe/mYbMzZzpC2TWuCLggQdSA3D11alR6GgExo51I1CNwoN/IBz8ybJlqUtnyRL4/e89Z4qV\nRwTMm9fZCKxYAV/4Qvr52MeKrq5+OfiHuBdfhEMPTYtqX3ghrLde0RWZFSMCHnoIZsyAK66AD384\nDWU++mifDHXn4B/CHnooTY371a+mO3L9FdcsaW9PgxxmzEhzBx18MHzpS2llMS827+AfsmbOhK98\nBX72s3RGY2aVLV4Mv/tdagSeeCLNVfWlL6X7Bcp6suTgH4IuuAB+8IO0Vuq++xZdjdnQ8dRTadGh\nGTNgww1TV9Dxx5dv8jgH/xCyahWcfnq6C/fGGz2/idnaWr063Sg2Y0YaEDF2bGoEDj88NQiNzsE/\nRLzxRvqK+s476Wurl7wzq43ly9OkcTNmpBvGjjgiNQITJzbuWhUO/iHg+efTRdxx41Kfvi9OmeXj\npZfSiKBLL00rjDXq0NCiJ2mzPtx/P3ziE+l/vl/8wqFvlqettoIzzkj3Blx3XbpHZuJEGD8+/f0t\nWlR0hYPHZ/wFuf56OPHENIPhEUcUXY1ZOa1cmYaGXnpp4wwNrUlXj6RdIuLhmlZWhUYN/og0wdqP\nf5zOOvb2pNRmdaFRhobWKvjvANYHLgEuj4gltSux189tuOBvb4fTTksXmW680cvTmdWroTw0tGYX\nd7NZNE8AjgLuAS6JiJtrUmXPn9lQwb9kSboZa9iwtC7uRhsVXZGZ9WUoDg2t6ageSU3A4cBPgSWk\nC8NnRsTvB1poD5/XMMH/7LNp4ZQDDkjdPE25LX9jZnkZKkNDa9XVsxvwZWAycAtwUUQ8IGlr4K5K\nc+nXQiMF/2WXweuvw9e+VnQlZlYL9Tw0tFbBPxv4NdAaEW91e+2LETFjwJVW/tyGCX4za1xz53bO\nGrr99ulbwDHHFDdraK2CfySwPCJWZc+HAcMjYlnNKq38uQ5+Mxsy6mVoaK2C/y7goIh4M3u+ETAr\nIsbXrNLKn+vgN7MhafHitHjMpZcO/tDQWt25O7wj9AEi4g1gxECLMzNrVJtsAiedBHfckS4Ev//9\nafnIXXaB889PiywVqZrgXyZpr44nkvYGludXkplZ49hhB2hpgaefhp//HJ58EnbeGT71qeKmiaim\nq2cs8N/AS9mmrYBjIuK+XAtzV4+ZNajly9N1gMMPr33XTy1v4FoP2BEI4PGIaK9Nib1+poPfzKyf\nahn844HtgSZS+JPXMM4un+ngNzPrp2qCv897SCX9FvgwMBdY1eWlXIPfzMzyUc3kAXsBO/n028ys\nMVQzqmc+6YKumZk1gGrO+DcDHpV0D/B2ti0i4tD8yjIzs7xUE/wt2e8A1OWxmZkNQdWO6tkO+EhE\n3CppBNAUEUtzLcyjeszM+q0mUzZIOhm4Grgw27QNcG2VBUyT9LCk+ZKmZdtaJC2Q9GD2c0g172Vm\nZrVRTVfPqcA+wF0AEfGEpM37OkjSzsCJwFigHbhJ0o2kbqIfR8SP17pqMzNba9WM6nk7Ijou6nas\nxFVNH8wY4O6IWJFN6TwbOLLjbfpdqZmZ1UQ1wT9b0lnACEkHk7p9bqjiuPnABEmjsusCk4CO5cVP\nk/SQpF9L2mStKjczs7VSzSRtw4B/AT6ZbZpFWn6xz7N+SScAU4FlwCOk4aDnAq9lu5wNbBUR/1Lh\n2Jg+ffq7z5ubm2lubu7rI83MSqWtrY22trZ3n3//+9+v3WLrAyXpXOC5iPhFl23bATdExC4V9veo\nHjOzfhrQXD2Sro6IoyTN5719+hERu1ZRwOYRsVDSaOAIYJykrSKiY4rnI4CH+3ofMzOrnd5G9UzL\nfk8ewPu3StqUNKpnakQslfQzSbuTGpNngP8zgPc3M7N+qqaPf3vg5YhYnj3fANgiIp7NtTB39ZiZ\n9Vut1txtZc3pmFdn28zMbAiqJviHRcQ7HU+yMf3r5leSmZnlqZrgf03SYR1Pssev9bK/mZnVsWr6\n+D8CXA5snW1aAHwhIp7KtTD38ZuZ9VvN1tzN3mwkQES8WYPaqvk8B7+ZWT8NdBz/FyLiMkln0GUc\nvySRxvF7kjUzsyGot3H8I7LfG+GFV8zMGkZvwb9D9vvRiPjdYBRjZmb5621Uz6SsW+c7g1WMmZnl\nr7cz/j8BrwMjJb3R7bWIiPflV5aZmeWlx1E9koZHxApJ10fEYRV3ypFH9ZiZ9d9Ap2y4M/vd/Wzf\nzMyGsN66etaXdBwwXtKRrLlcYkTENfmWZmZmeegt+E8BjgM2Bj5b4XUHv5nZEFTNlA0nRsRFg1RP\n1891H7+ZWT8NqI9f0jcBIuIiSUd1e+3c2pRoZmaDrbeLu8d2eXxmt9c+nUMtZmY2CKqZltnMzBqI\ng9/MrGR6u4FrFfBW9nQDYHmXlzeIiN5GBA28MF/cNTPrtwFNyxwRw2pfkpmZFc1dPWZmJePgNzMr\nGQe/mVnJOPjNzErGwW9mVjIOfjOzknHwm5mVTK7BL2mapIclzZc0rdtrZ0haLWlUnjWYmdmacgt+\nSTsDJwJjgd2AyZJ2yF7bFjgY+Eden29mZpXlecY/Brg7IlZExCpgNnBk9tqPgW/m+NlmZtaDPIN/\nPjBB0ihJI4BJwLaSDgMWRMS8HD/bzMx6kNtEaxHxmKTzgJuBZcBcYH3gO8Anu+za42RCLS0t7z5u\nbm6mubk5j1LNzIastrY22tra+nVMn0sv1oqkc4BXgLPonPVzG+AFYJ+IWNhtf8/OaWbWT9XMzplr\n8EvaPCIWShoNzALGRcTSLq8/A+wVEYsqHOvgNzPrpwFNy1wjrZI2BdqBqV1DP+NkNzMbZIPW1dNf\nPuM3M+u/as74feeumVnJOPjNzErGwW9mVjIOfjOzknHwm5mVjIPfzKxkHPxmZiXj4DczKxkHv5lZ\nyTj4zcxKxsFvZlYyDn4zs5Jx8JuZlYyD38ysZBz8ZmYl4+A3MysZB7+ZWck4+M3MSsbBb2ZWMg5+\nM7OScfCbmZWMg9/MrGQc/GZmJePgNzMrGQe/mVnJOPjNzErGwW9mVjIOfjOzksk1+CVNk/SwpPmS\npmXbzpb0kKQHJc2StFWeNZiZ2ZoUEfm8sbQzcCUwFmgHbgJOARZGxBvZPqcBO0XEVyscH3nVZmbW\nqCQREeptnzzP+McAd0fEiohYBcwGjuwI/cxIYHWONZiZWTd5Bv98YIKkUZJGAJ8BtgGQdI6k54D/\nDXwvxxrMzKyb3Lp6ACSdAEwFlgGPAG9HxOldXv82MDwiWioc664eM7N+qqarpynPAiLiYuDirJhz\ngee67XIFMBNoqXR8S0vn5ubmZpqbm3Oo0sxs6Gpra6Otra1fx+R9xr95RCyUNBqYBYwDtoiIJ7PX\nTwMmRMTRFY71Gb+ZWT8VfsYPtEralDSqZ2pELJV0saQdSRd1nyWN9DEzs0GS6xn/QPiM38ys/4oe\nzmlmZnXIwW9mVjIOfjOzknHwm5mVjIPfzKxkHPxmZiXj4DczKxkHv5lZyTj4zcxKxsFvZlYyDn4z\ns5Jx8JuZlYyD38ysZBz8ZmYl4+A3MysZB7+ZWck4+M3MSsbBb2ZWMg5+M7OScfCbmZWMg9/MrGQc\n/GZmJePgNzMrGQe/mVnJOPjNzErGwW9mVjIOfjOzknHwm5mVTO7BL2mapIclzZc0Ldv2Q0l/l/SQ\npGskbZx3HWZmluQa/JJ2Bk4ExgK7AZMl7QDcDPxTROwGPAF8J8868tTW1lZ0CX0aCjWC66w111lb\nQ6XOauR9xj8GuDsiVkTEKmA2cGRE3BIRq7N97ga2ybmO3AyF/xmGQo3gOmvNddbWUKmzGnkH/3xg\ngqRRkkYAn+G9IX8C8Mec6zAzs0xTnm8eEY9JOo/UtbMMeBDoONNH0lnAOxFxRZ51mJlZJ0XE4H2Y\ndC7wXET8QtKXgZOA/xURKyrsO3iFmZk1kIhQb6/nHvySNo+IhZJGA7OAccB44EfA/hHxWq4FmJnZ\nGgYj+G8HNgXagdMj4jZJTwLrAYuy3f4WEVNzLcTMzIBB7uoxM7Pi1d2du5IOkfSYpCclfavoeiqR\ndLGkVyQ9XHQtvZG0raTbJD2S3UD3taJrqkTScEl3S5qb1dlSdE09kTRM0oOSbii6lt5IelbSvKzW\ne4qupxJJm0hqzW7mfFTSvkXX1J2kHbN/w46fJXX8d3R69vfzsKQrJK3f4771dMYvaRjwOHAQ8AJw\nL3BsRPy90MK6kTQBeBOYERG7FF1PTyRtCWwZEXMljQTuBw6vt39PAEkjIuItSU3AHcC0iLi76Lq6\nk/R1YC9go4g4tOh6eiLpGWCviFjU584FkXQpMDsiLs7+u28YEUuKrqsnktYh5dI+EfF80fV0JemD\nwBzg4xHxtqSrgD9GxKWV9q+3M/59gKci4tmIaAf+Gzis4JreIyLmAK8XXUdfIuLliJibPX4T+Duw\ndbFVVRYRb2UP1wPWpcuw33ohaRtgEnAR0OuoiTpRtzVm07RMiIiLASJiZT2HfuYg4Ol6C/0umoAR\nWSM6gtRIVVRvwf9BoOs/6oJsmw2QpO2APUh3StcdSetImgu8AtwcEfcWXVMFPwG+QR02ShUEcKuk\n+ySdVHQxFWwPvCrpEkkPSPpVdpNnPfs8UJf3HEXEC6SRks8BLwKLI+LWnvavt+Cvn36nBpJ187SS\nuk/eLLqeSiJidUTsTrqze5ykfyq6pq4kTQYWRsSD1PGZdBf/HBF7AJ8GTs26J+tJE7An8F8RsSfp\nBs9vF1tSzyStB3wWuLroWiqR9H7gUGA70rf6kZKO62n/egv+F4BtuzzflnTWb2tJ0rrA74HfRsR1\nRdfTl+zr/m3AIUXX0s144NCs7/xK4EBJMwquqUcR8VL2+1XgWlI3aj1ZACzo8s2uldQQ1KtPA/dn\n/5716CDgmYj4n4hYCVxD+n+2onoL/vuAj0raLmthjwH+UHBNQ5YkAb8GHo2I/yi6np5I+oCkTbLH\nGwAHk65H1I2IODMito2I7Ulf+f8SEV8suq5KJI2QtFH2eEPgk0BdjUCLiJeB5yV9LNt0EPBIgSX1\n5VhSg1+v/gHsK2mD7O/+IODRnnbOda6e/oqIlZL+lXSH7zDg13U6AuVKYH9gU0nPA9+LiEsKLquS\nfwaOB+ZJejDb9p2IuKnAmirZCrg0G9W1DnBVRNT7xH313C25BXBt+vunCbg8Im4utqSKTgMuz07y\nnga+UnA9FWWN50GkKWbqUkTcI6kVeABYmf3+ZU/719VwTjMzy1+9dfWYmVnOHPxmZiXj4DczKxkH\nv5lZyTj4zcxKxsFvZlYyDn5raJJqMkWFpBZJZ1TY/htJn+u2bXq2zGjXbbtLerTL87nZ/SBmg87B\nb42uVjeq9PQ+lbZfQbrrvKt3J/iS9HHS395+Q2BiMmtADn4rBSU/zBapmCfp6Gz7SEm3Sro/235o\nl2POkvS4pDnAjr28fWT7ny3pYtJdqK9L6jo/zlF03vJ/LHAZcAt1OO24Nb66mrLBLEdHArsBuwKb\nAfcqrQf9KnBERLwh6QPA34A/SNqLdNa+G2l9gAdIc0lVIkk/JC0kckK24UrSWf492cpSiyLi6Wz/\no0lTAHycNG2Bu3xsUPmM38piP+CKSBYCs4GxpCmWfyDpIdIZ+NaStgAmANdExIqIeIM0WWCl6ZgF\n/F/gfRExtcv2q4Ap2YRZXbt59gZei4gFwF+APbIpdc0GjYPfyiKoHNzHAx8A9szmr18IDK+wf09z\n8AdpidC9ugZ4FuzPAM2kbxtXZS8dC4zJpnd+CtgIWOPisFneHPxWFnOAY7KVvjYDJpJWI3sfaYGV\nVZIOAD5ECvPbgcOVFoLfCJhMZ1/+v0o6tct73wT8OzAzW/Smw5WkVbuejogXszVbjwJ2jojtsyme\nDyc1BmaDxsFvjS4AIuJaYB7wEPBn4BtZl8/lwN6S5gFfIFsHIFtp66ps/z8C93R5zzHAa10/IyJa\ngV+Rrg8Mz7a3AjvR2Yc/gbT4yMtdjp0D7JR1L5kNCk/LbNZPkm4gXRBeWXQtZmvDwW9mVjLu6jEz\nKxkHv5lZyTj4zcxKxsFvZlYyDn4zs5Jx8JuZlYyD38ysZP4/yRihRWdm7REAAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0x7fb9d458d610>"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.63, Page Number:1171"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=200.0#kVA\n",
- "efficiency=0.98\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "output=load*pf\n",
- "inpt=output/efficiency\n",
- "loss=inpt-output\n",
- "x=loss*1000/(1+9.0/16)\n",
- "y=(9.0/16)*x\n",
- "cu_loss=x*(1.0/2)**2\n",
- "total_loss=cu_loss+y\n",
- "output=load*pf*0.5\n",
- "efficiency=output/(output+total_loss/1000)\n",
- "\n",
- "#result\n",
- "print \"efficiency at hald load=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency at hald load= 97.9216626699 %\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.64, Page Number:1172"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=25.0#kVA\n",
- "v1=2200.0#V\n",
- "v2=220.0#V\n",
- "r1=1.0#ohm\n",
- "r2=0.01#ohm\n",
- "pf=0.8\n",
- "loss=0.80\n",
- "\n",
- "#calculations\n",
- "k=v2/v1\n",
- "r02=r2+k**2*r1\n",
- "i2=load*1000/v2\n",
- "cu_loss=i2**2*r02\n",
- "iron_loss=loss*cu_loss\n",
- "total_loss=cu_loss+iron_loss\n",
- "output=load*pf*1000\n",
- "efficiency=output/(output+total_loss)\n",
- "\n",
- "#result\n",
- "print \"secondary resistance=\",r02,\"ohm\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "secondary resistance= 0.02 ohm\n",
- "efficiency= 97.7284199899 %\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.65, Page Number:1172"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=4.0#kVA\n",
- "v1=200.0#V\n",
- "v2=400.0#V\n",
- "r01=0.5#ohm\n",
- "x01=1.5#ohm\n",
- "ratio=3.0/4\n",
- "pf=0.8\n",
- "v=220.0#V\n",
- "loss=100.0#W\n",
- "\n",
- "#calculations\n",
- "k=v2/v1\n",
- "r02=k**2*r01\n",
- "x02=k**2*x01\n",
- "i2=1000*load*ratio/v2\n",
- "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n",
- "v2=v2-drop\n",
- "cu_loss=i2**2*r02\n",
- "total_loss=loss+cu_loss\n",
- "output=load*ratio*pf\n",
- "inpt=output*1000+total_loss\n",
- "efficiency=output*1000/(inpt)\n",
- "#result\n",
- "print \"output=\",output,\"w\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output= 2.4 w\n",
- "efficiency= 91.8660287081 %\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.66, Page Number:1172"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=20.0#KVA\n",
- "v1=440.0#V\n",
- "v2=220.0#V\n",
- "f=50.0#Hz\n",
- "loss=324.0#W\n",
- "cu_loss=100.0#W\n",
- "pf=0.8\n",
- "#calculations\n",
- "cu_loss=4*cu_loss\n",
- "efficiency=load*pf/(load*pf+cu_loss/1000+loss/1000)\n",
- "per=(loss/cu_loss)**0.5\n",
- "\n",
- "#result\n",
- "print \"i)efficiency=\",efficiency*100,\"%\"\n",
- "print \"ii)percent of full-load=\",per*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)efficiency= 95.6708921311 %\n",
- "ii)percent of full-load= 90.0 %\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.67, Page Number:1173"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=4.0#kVA\n",
- "v1=200.0#V\n",
- "v2=400.0#V\n",
- "pf=0.8\n",
- "vo=200.0#V\n",
- "io=0.8#A\n",
- "wo=70.0#W\n",
- "vs=20.0#V\n",
- "i_s=10.0#A\n",
- "ws=60.0#W\n",
- "\n",
- "#calculation\n",
- "i2=load*1000/v2\n",
- "loss=ws+wo\n",
- "output=load*pf\n",
- "efficiency=output/(output+loss/1000)\n",
- "z02=vs/i_s\n",
- "r02=ws/i2**2\n",
- "x02=(z02**2-r02**2)**0.5\n",
- "drop=i2*(r02*pf+x02*math.sin(math.acos(pf)))\n",
- "v2=v2-drop\n",
- "i1=load*1000/v1\n",
- "load=load*(wo/ws)**0.5\n",
- "load=load*1\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency*100,\"%\"\n",
- "print \"secondary voltage=\",v2,\"V\"\n",
- "print \"current=\",i1,\"A\"\n",
- "print \"load at unity pf=\",load,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 96.0960960961 %\n",
- "secondary voltage= 383.752729583 V\n",
- "current= 20.0 A\n",
- "load at unity pf= 4.32049379894 kW\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.68, Page Number:1173"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "Wi=Symbol('Wi')\n",
- "Wcu=Symbol('Wcu')\n",
- "P=600.0#kVA\n",
- "e=0.92#efficiency\n",
- "pf=0.8\n",
- "x=0.6\n",
- "\n",
- "#calculations\n",
- "ans=solve([(e*(1*P*1+Wi+1**2*Wcu))-(1*P*1),(e*(0.5*P*1+Wi+0.5*0.5*Wcu))-(0.5*P*1)],[Wi,Wcu])\n",
- "e2=(x*P*pf*100)/((x*P*pf)+ans[Wi]+(x**2*ans[Wcu]))\n",
- "\n",
- "#result\n",
- "print \"Efficiency=\",round(e2,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Efficiency= 90.6 %\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.69, Page Number:1174"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "x=Symbol('x')\n",
- "y=Symbol('y')\n",
- "load=600.0#KVA\n",
- "efficiency=0.92\n",
- "per=0.60\n",
- "\n",
- "#calculation\n",
- "inpt=load/efficiency\n",
- "loss1=inpt-load\n",
- "inpt2=load/(2*efficiency)\n",
- "loss2=inpt2-load/2\n",
- "ans=solve([x+y-loss1,x+y/4-loss2],[x,y])\n",
- "cu_loss=ans[y]*0.36\n",
- "loss=cu_loss+ans[x]\n",
- "output=load*per\n",
- "efficiency=output/(output+loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "389.913043478261\n",
- "efficiency= 92.3282783229260 %\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.70, Page Number:1174"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=100#kVA\n",
- "e1=0.98\n",
- "e2=0.80\n",
- "pf=8\n",
- "z=0.05\n",
- "pf1=0.8\n",
- "\n",
- "#calculations\n",
- "output=load*pf1*e2\n",
- "inpt=output/e1\n",
- "loss=-output+inpt\n",
- "cu_loss=loss/2\n",
- "cu_loss_full=cu_loss/pf1**2\n",
- "r=round(cu_loss_full*100/load)\n",
- "sin=math.sin(math.acos(pf1))\n",
- "regn=(r*pf1+5*sin)+(1.0/200)*(5*pf1-r*sin)**2\n",
- "#result\n",
- "print \"voltage regulation=\",regn,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage regulation= 3.8578 %\n"
- ]
- }
- ],
- "prompt_number": 37
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.71, Page Number:1174"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#KVA\n",
- "v1=5000.0#V\n",
- "v2=440.0#V\n",
- "f=25.0#Hz\n",
- "cu_loss=1.5\n",
- "we=0.5\n",
- "wh=0.6\n",
- "v2=10000.0\n",
- "#calculations\n",
- "cu_loss1=cu_loss*load/100\n",
- "we1=we*load/100\n",
- "wh1=wh*load/100\n",
- "cu_loss2=cu_loss1\n",
- "we2=(we1*(50.0/25.0)**2)\n",
- "wh2=(wh1*(50.0/25))\n",
- "e1=load*100/(load+cu_loss1+we1+wh1)\n",
- "e2=load*2*100/(load*2+cu_loss2+we2+wh2)\n",
- "\n",
- "#result\n",
- "print \"full load efficiency in first case=\",e1,\"%\"\n",
- "print \"full load efficiency in second case=\",e2,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "20.47 0.06 0.05\n",
- "full load efficiency in first case= 97.4658869396 %\n",
- "full load efficiency in second case= 97.7039570103 %\n"
- ]
- }
- ],
- "prompt_number": 47
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.72, Page Number:1175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=300#KVA\n",
- "r=1.5#%\n",
- "load1=173.2#kVA\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "cu_loss=r*load*1000/100\n",
- "iron_loss=(load1/load)**2*cu_loss\n",
- "total_loss=cu_loss+iron_loss\n",
- "efficiency=(load*pf)*100/((load*pf)+(total_loss/1000))\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 97.5610105096 %\n"
- ]
- }
- ],
- "prompt_number": 53
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.73, Page Number:1175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=100#kVA\n",
- "v1=2300#V\n",
- "v2=230.0#V\n",
- "f=50#Hz\n",
- "phim=1.2#Wb/m2\n",
- "a=0.04#m2\n",
- "l=2.5#m\n",
- "bm=1200\n",
- "inpt=1200#W\n",
- "pi=400#W\n",
- "efficiency=0.75\n",
- "pf=0.8\n",
- "f2=100#Hz\n",
- "\n",
- "#calculation\n",
- "n1=v1/(4.44*f*phim*a)\n",
- "k=v2/v1\n",
- "n2=k*n1\n",
- "i=1989/n1\n",
- "cu_loss=efficiency**2*inpt\n",
- "total_loss=pi+cu_loss\n",
- "output=load*efficiency*pf\n",
- "efficiency=output*100/(output+total_loss/1000)\n",
- "\n",
- "#result\n",
- "print \"a)n1=\",round(n1)\n",
- "print \" n2=\",round(n2)\n",
- "print \"b)magnetising current=\",i,\"A\"\n",
- "print \"c)efficiency=\",efficiency,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "0.00643416423287\n",
- "a)n1= 216.0\n",
- " n2= 22.0\n",
- "b)magnetising current= 9.21512347826 A\n",
- "c)efficiency= 98.2398690135 %\n"
- ]
- }
- ],
- "prompt_number": 58
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.74, Page Number:1176"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "r=1.8\n",
- "x=5.4\n",
- "\n",
- "#calculation\n",
- "pf=r/x\n",
- "phi=math.atan(pf)\n",
- "phi2=math.atan(x/r)\n",
- "regn=r*math.cos(phi2)+x*math.sin(phi2)\n",
- "efficiency=100/(100+r*2)\n",
- "\n",
- "#result\n",
- "print \"a)i)phi=\",math.degrees(phi),\"degrees\"\n",
- "print \" ii)regulation=\",regn,\"%\"\n",
- "print \"b)efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)i)phi= 18.4349488229 degrees\n",
- " ii)regulation= 5.6920997883 %\n",
- "b)efficiency= 96.5250965251 %\n"
- ]
- }
- ],
- "prompt_number": 60
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.75, Page Number:1176"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#kVA\n",
- "f=50.0#Hz\n",
- "v1=500.0#V\n",
- "v2=250.0#V\n",
- "vo=250.0#V\n",
- "io=3.0#A\n",
- "wo=200.0#W\n",
- "vsc=15.0#V\n",
- "isc=30.0#A\n",
- "wsc=300.0#W\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "i=load*1000/v2\n",
- "cu_loss=(i/isc)**2*wsc\n",
- "output=load*1000*pf\n",
- "efficiency=output*100/(output+cu_loss+wo)\n",
- "z=vsc/isc\n",
- "r=wsc/isc**2\n",
- "x=(z**2-r**2)**0.5\n",
- "regn=(i/v2)*(r*pf-x*math.sin(math.acos(pf)))*v2\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency,\"%\"\n",
- "print \"regulation=\",regn,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 91.6030534351 %\n",
- "regulation= 1.72239475667 %\n"
- ]
- }
- ],
- "prompt_number": 64
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.76, Page Number:1177"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=40.0#kVA\n",
- "loss=400.0#W\n",
- "cu_loss=800.0#W\n",
- "\n",
- "#calculation\n",
- "x=(loss/cu_loss)**0.5\n",
- "output=load*x*1\n",
- "efficiency=output/(output+load*2/100)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 97.2493723732 %\n"
- ]
- }
- ],
- "prompt_number": 71
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.77, Page Number:1178"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10#kVA\n",
- "v1=500#V\n",
- "v2=250#V\n",
- "vsc=60#V\n",
- "isc=20#A\n",
- "wsc=150#W\n",
- "per=1.2\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "i=load*1000/v1\n",
- "cu_loss=per**2*wsc\n",
- "output=per*load*1.0\n",
- "efficiency=output*100/(output+cu_loss*2/1000)\n",
- "output=load*1000*pf\n",
- "e2=output*100/(output+cu_loss+wsc)\n",
- "\n",
- "#result\n",
- "print \"maximum efficiency=\",efficiency,\"%\"\n",
- "print \"full-load efficiency=\",e2,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum efficiency= 96.5250965251 %\n",
- "full-load efficiency= 95.6251494143 %\n"
- ]
- }
- ],
- "prompt_number": 75
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.78, Page Number:1181"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=500.0#kVA\n",
- "cu_loss=4.5#kW\n",
- "iron_loss=3.5#kW\n",
- "t1=6.0#hrs\n",
- "t2=10.0#hrs\n",
- "t3=4.0#hrs\n",
- "t4=4.0#hrs\n",
- "load1_=400.0#kW\n",
- "load2_=300.0#kW\n",
- "load3_=100.0#kW\n",
- "pf1=0.8\n",
- "pf2=0.75\n",
- "pf3=0.8\n",
- "\n",
- "#calculations\n",
- "load1=load1_/pf1\n",
- "load2=load2_/pf2\n",
- "load3=load3_/pf3\n",
- "wc1=cu_loss\n",
- "wc2=cu_loss*(load2/load1)**2\n",
- "wc3=cu_loss*(load3/load1)**2\n",
- "twc=(t1*wc1)+(t2*wc2)+(t3*wc3)+(t4*0)\n",
- "iron_loss=24*iron_loss\n",
- "total_loss=twc+iron_loss\n",
- "output=(t1*load1_)+(t2*load2_)+(t3*load3_)\n",
- "efficiency=output*100/(output+total_loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",round(efficiency,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 97.6 %\n"
- ]
- }
- ],
- "prompt_number": 86
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.79, Page Number:1182"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=100.0#kVA\n",
- "loss=3.0#kW\n",
- "tf=3.0#hrs\n",
- "th=4.0#hrs\n",
- "\n",
- "#calculation\n",
- "iron_loss=loss*24/2\n",
- "wcf=loss*tf/2\n",
- "wch=loss/8\n",
- "wch=wch*4\n",
- "total_loss=iron_loss+wch+wcf\n",
- "output=load*tf+load*th/2\n",
- "efficiency=output*100/(output+total_loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 92.2509225092 %\n"
- ]
- }
- ],
- "prompt_number": 89
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.80, Page Number:1182"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=100.0#KW\n",
- "efficiency=0.98\n",
- "tf=4.0#hrs\n",
- "th=6.0#hrs\n",
- "t10=14.0#hrs\n",
- "\n",
- "#calculations\n",
- "#1st transformer\n",
- "inpt=load/efficiency\n",
- "tloss=inpt-load\n",
- "y=tloss/2\n",
- "x=y\n",
- "iron_loss=x*24\n",
- "cu_loss=x*tf+th*(x/2**2)+t10*(x/10**2)\n",
- "loss=iron_loss+cu_loss\n",
- "output=tf*load+th*load/2+t10*10\n",
- "e1=output/(output+loss)\n",
- "#2nd transformer\n",
- "y=tloss/(1+1.0/4)\n",
- "x=(tloss-y)\n",
- "iron_loss=x*24\n",
- "wc=tf*y+th*(y/2**2)+t10*(y/10**2)\n",
- "loss=iron_loss+wc\n",
- "e2=output/(output+loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency of forst transformer=\",e1*100,\"%\"\n",
- "print \"efficiency ofsecond transformer=\",e2*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "0.408163265306 1.63265306122\n",
- "efficiency of forst transformer= 96.5245532574 %\n",
- "efficiency ofsecond transformer= 97.7876610788 %\n"
- ]
- }
- ],
- "prompt_number": 96
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.81, Page Number:1183"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=5.0#kVA\n",
- "efficiency=0.95\n",
- "nl=10.0#hrs\n",
- "ql=7.0#hrs\n",
- "hl=5.0#hrs\n",
- "fl=2.0#hrs\n",
- "\n",
- "#calculations\n",
- "inpt=load/efficiency\n",
- "loss=inpt-load\n",
- "wc_fl=loss/2\n",
- "iron_loss=loss/2\n",
- "wc_fl_4=(1.0/4)**2*wc_fl\n",
- "wc_fl_2=(1.0/2)**2*wc_fl\n",
- "wc_ql=ql*wc_fl_4\n",
- "wc_hl=hl*wc_fl_2\n",
- "wc_fl_2=fl*wc_fl\n",
- "wc=wc_ql+wc_hl+wc_fl_2\n",
- "wh=wc\n",
- "loss=wh+24*iron_loss\n",
- "output=load*1\n",
- "half_output=(output/2)\n",
- "q_load=(load/4)\n",
- "output=ql*q_load+hl*half_output+fl*output\n",
- "e=output*100/(output+loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",e,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 89.5592740985 %\n"
- ]
- }
- ],
- "prompt_number": 115
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.82, Page Number:1183"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "efficiency=0.98\n",
- "load=15#kVA\n",
- "t1=12.0#hrs\n",
- "t2=6.0#hrs\n",
- "t3=6.0#hrs\n",
- "pf1=0.5\n",
- "pf2=0.8\n",
- "k1=2#kW\n",
- "k2=12#kW\n",
- "\n",
- "#calculations\n",
- "output=load*1\n",
- "inpt=output/efficiency\n",
- "loss=inpt-output\n",
- "wc=loss/2\n",
- "wi=loss/2\n",
- "w1=k1/pf1\n",
- "w2=k2/pf2\n",
- "wc1=wc*(4/load)\n",
- "wc2=wc\n",
- "wc12=t1*wc1\n",
- "wc6=t2*wc2\n",
- "wc=(wc12+wc6)\n",
- "wi=24*wi\n",
- "output=(k1*t1)+(t2*k2)\n",
- "inpt=output+wc+wi\n",
- "e=output*100/inpt\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",e,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "0.918367346939 3.67346938776\n",
- "efficiency= 95.4351795496 %\n"
- ]
- }
- ],
- "prompt_number": 120
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.83, Page Number:1184"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=150.0#KVA\n",
- "l1_=100.0#kVA\n",
- "t=3.0#hrs\n",
- "loss=1.0#KW\n",
- "\n",
- "#calculations\n",
- "l1=l1_/2\n",
- "l2=l1_\n",
- "output=load*1\n",
- "loss=loss*2\n",
- "e1=output/(output+loss)\n",
- "wc1=t*(1.0/3)**2*1\n",
- "wc2=8*(2.0/3)**2*1\n",
- "wc=wc1+wc2\n",
- "wi=24*1\n",
- "loss=wc+wi\n",
- "output=3*(l1*1)+8*(l2*1)\n",
- "e2=(output*100)/(output+loss)\n",
- "\n",
- "#result\n",
- "print \"ordinary efficiency=\",e1*100,\"%\"\n",
- "print \"all day efficiency=\",e2,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ordinary efficiency= 98.6842105263 %\n",
- "all day efficiency= 97.1480513578 %\n"
- ]
- }
- ],
- "prompt_number": 127
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.84, Page Number:1184"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=50#KVA\n",
- "efficiency=0.94#%\n",
- "nl=10\n",
- "hl=5.0\n",
- "ql=6.0\n",
- "fl=3.0\n",
- "\n",
- "#calculations\n",
- "pi=0.5*(load*1000)*(1-efficiency)/efficiency\n",
- "wch=(0.5)**2*pi\n",
- "eh=wch*hl/1000\n",
- "wcq=(0.25)**2*pi\n",
- "eq=ql*wcq/1000\n",
- "e3=pi*3/1000\n",
- "e2=pi*24/1000\n",
- "e=25*hl+12.5*ql+50*fl\n",
- "efficiency=e/(e+e2+eh+eq+e3)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 88.4557217274 %\n"
- ]
- }
- ],
- "prompt_number": 129
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.85, Page Number:1185"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#kVA\n",
- "t1=7.0#hrs\n",
- "t2=4.0#hrs\n",
- "t3=8.0#hrs\n",
- "t4=5.0#hrs\n",
- "k1=3.0#kW\n",
- "k2=8.0#kW\n",
- "pf1=0.6\n",
- "pf2=0.8\n",
- "\n",
- "#calculations\n",
- "x1=k1/(pf1*load)\n",
- "x2=k2/(pf2*load)\n",
- "x3=load/(1*load)\n",
- "pc1=(0.5)**2*0.1\n",
- "pc2=pc3=0.10\n",
- "o1=k1*t1\n",
- "o2=k2*t2\n",
- "o3=k2*load\n",
- "output=o1+o2+o3\n",
- "wc1=pc1*t1\n",
- "wc2=pc2*t2\n",
- "wc3=pc3*t3\n",
- "cu_loss=wc1+wc2+wc3\n",
- "loss=400.0*24/10000\n",
- "efficiency=output/(output+loss+cu_loss)\n",
- "\n",
- "#result\n",
- "print \"efficency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficency= 98.27465179 %\n"
- ]
- }
- ],
- "prompt_number": 142
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.86, Page Number:1185"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "efficiency=.98\n",
- "load=15.0#kVA\n",
- "t1=12.0\n",
- "t2=6.0\n",
- "t3=6.0\n",
- "pf1=0.8\n",
- "pf2=0.8\n",
- "pf3=0.9\n",
- "k1=2.0\n",
- "k2=12.0\n",
- "k3=18.0\n",
- "#calculations\n",
- "output=load*1000\n",
- "inpt=output/efficiency\n",
- "loss=inpt-output\n",
- "cu_loss=loss/2\n",
- "x1=k1/(0.5*load)\n",
- "x2=k2/(pf2*load)\n",
- "x3=k3/(pf3*load)\n",
- "wc1=0.131\n",
- "wc2=0.918\n",
- "wc3=1.632\n",
- "o1=t1*k1\n",
- "o2=t2*k2\n",
- "o3=t3*k3\n",
- "output=o1+o2+o3\n",
- "loss=wc1+wc2+wc3+0.153*24\n",
- "efficiency=(output*100)/(output+loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 96.9798386522 %\n"
- ]
- }
- ],
- "prompt_number": 143
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.87, Page Number:1188"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=3.0#kW\n",
- "v1=115.0#V\n",
- "v2=230.0#V\n",
- "\n",
- "#calculation\n",
- "k=v1/v2\n",
- "power=load*(1-k)\n",
- "power2=k*load\n",
- "\n",
- "#result\n",
- "print \"a)power transferred inductively=\",power,\"kW\"\n",
- "print \"b)power transferred conductively=\",power2,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)power transferred inductively= 1.5 kW\n",
- "b)power transferred conductively= 1.5 kW\n"
- ]
- }
- ],
- "prompt_number": 145
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.88, Page Number:1188"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=500.0#V\n",
- "v2=400.0#V\n",
- "i=100.0#A\n",
- "\n",
- "#calculations\n",
- "k=v2/v1\n",
- "i1=k*i\n",
- "saving=k*100\n",
- "\n",
- "#result\n",
- "print \"economy of cu=\",saving"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "economy of cu= 80.0\n"
- ]
- }
- ],
- "prompt_number": 147
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.89, Page Number:1188"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=500.0#KVA\n",
- "f=50.0#Hz\n",
- "v1=6600.0#V\n",
- "v2=5000.0#V\n",
- "e=8.0#V\n",
- "phim1=1.3#Wb/m2\n",
- "\n",
- "#calculations\n",
- "phim=e/(4.44*f)\n",
- "area=phim/phim1\n",
- "n1=v1/e\n",
- "n2=v2/e\n",
- "\n",
- "#result\n",
- "print \"core area=\",area*10000,\"m2\"\n",
- "print \"number of turns on the hv side=\",n1\n",
- "print \"number of turns on the lv side=\",n2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "core area= 277.2002772 m2\n",
- "number of turns on the hv side= 825.0\n",
- "number of turns on the lv side= 625.0\n"
- ]
- }
- ],
- "prompt_number": 150
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.90, Page Number:1189"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=20.0#KVA\n",
- "v1=2400.0#V\n",
- "v2=240.0#V\n",
- "\n",
- "#calculation\n",
- "i1=round(load*1000/v1,1)\n",
- "k=v2/v1\n",
- "i2=i1/k\n",
- "kva=2640*i2*0.001\n",
- "kva_per=kva*100/load\n",
- "i1_=kva*1000/v1\n",
- "ic=i1_-i2\n",
- "over=ic*100/i1\n",
- "\n",
- "#result\n",
- "print \"i)i1=\",i1,\"A\"\n",
- "print \"ii)i2=\",i2,\"A\"\n",
- "print \"iii)kVA rating=\",kva,\"kVA\"\n",
- "print \"iv)per cent increase in kVA=\",kva_per,\"%\"\n",
- "print \"v)I1=\",i1_,\"A\"\n",
- "print \" Ic=\",ic,\"A\"\n",
- "print \"vi)per cent overload=\",over,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)i1= 8.3 A\n",
- "ii)i2= 83.0 A\n",
- "iii)kVA rating= 219.12 kVA\n",
- "iv)per cent increase in kVA= 1095.6 %\n",
- "v)I1= 91.3 A\n",
- " Ic= 8.3 A\n",
- "vi)per cent overload= 100.0 %\n"
- ]
- }
- ],
- "prompt_number": 159
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.91, Page Number:1190"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=20.0#KVA\n",
- "v1=2400.0#V\n",
- "v2=240.0#V\n",
- "\n",
- "#calculation\n",
- "i1=round(load*1000/v1,1)\n",
- "k=v2/v1\n",
- "i2=i1/k\n",
- "kva=2160*i2*0.001\n",
- "kva_per=kva*100/load\n",
- "i1_=kva*1000/v1\n",
- "ic=i2-i1_\n",
- "over=ic*100/i1\n",
- "\n",
- "#result\n",
- "print \"i)i1=\",i1,\"A\"\n",
- "print \"ii)i2=\",i2,\"A\"\n",
- "print \"iii)kVA rating=\",kva,\"kVA\"\n",
- "print \"iv)per cent increase in kVA=\",kva_per,\"%\"\n",
- "print \"v)I1=\",i1_,\"A\"\n",
- "print \" Ic=\",ic,\"A\"\n",
- "print \"vi)per cent overload=\",over,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)i1= 8.3 A\n",
- "ii)i2= 83.0 A\n",
- "iii)kVA rating= 179.28 kVA\n",
- "iv)per cent increase in kVA= 896.4 %\n",
- "v)I1= 74.7 A\n",
- " Ic= 8.3 A\n",
- "vi)per cent overload= 100.0 %\n"
- ]
- }
- ],
- "prompt_number": 160
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.92, Page Number:1190"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=5.0#kVA\n",
- "v1=110.0#V\n",
- "v2=110.0#V\n",
- "f=50.0#Hz\n",
- "efficiency=0.95\n",
- "iron_loss=50.0#W\n",
- "v=220.0#V\n",
- "\n",
- "#calculations\n",
- "cu_loss=load*1000/efficiency-load*1000-iron_loss\n",
- "efficiency=load*1000/(load*1000+cu_loss/4+iron_loss)\n",
- "i2=(load*1000+cu_loss/4+iron_loss)/v\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency*100,\"%\"\n",
- "print \"current drawn on hv side=\",i2,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 97.9760216579 %\n",
- "current drawn on hv side= 23.1967703349 A\n"
- ]
- }
- ],
- "prompt_number": 163
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.93, Page Number:1191"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=11500#V\n",
- "v2=2300#V\n",
- "\n",
- "#calculations\n",
- "kva=(v1+v2)*50*0.001\n",
- "\n",
- "#result\n",
- "print \"voltage output=\",v1+v2,\"V\"\n",
- "print \"kVA rating of auto transformer=\",kva,\"kVA\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage output= 13800 V\n",
- "kVA rating of auto transformer= 690.0 kVA\n"
- ]
- }
- ],
- "prompt_number": 164
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.94, Page Number:1191"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=11500.0#V\n",
- "v2=2300.0#V\n",
- "load=100.0#KVA\n",
- "\n",
- "#calculations\n",
- "i1=load*100/v1\n",
- "i2=load*100/v2\n",
- "kva1=(v1+v2)*i1/(100)\n",
- "kva2=(v1+v2)*i2/(100)\n",
- "#result\n",
- "print \"voltage ratios=\",(v1+v2)/v1,\"or\",(v1+v2)/v2\n",
- "print \"kVA rating in first case=\",kva1\n",
- "print \"kVA rating in second case=\",kva2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage ratios= 1.2 or 6.0\n",
- "kVA rating in first case= 120.0\n",
- "kVA rating in second case= 600.0\n"
- ]
- }
- ],
- "prompt_number": 167
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.95, Page Number:1192"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=2400.0#v\n",
- "v2=240.0#V\n",
- "load=50.0#kVA\n",
- "\n",
- "#calculations\n",
- "i1=load*1000/v1\n",
- "i2=load*1000/v2\n",
- "output=2640*i2\n",
- "i=i2*2640/v1\n",
- "k=2640/v1\n",
- "poweri=v1*i1*0.001\n",
- "power=output/1000-poweri\n",
- "\n",
- "#result\n",
- "print \"rating of the auto-transformer=\",output/1000,\"kVA\"\n",
- "print \"inductively transferred powers=\",poweri,\"kW\"\n",
- "print \"conductively transferred powers=\",power,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rating of the auto-transformer= 550.0 kVA\n",
- "inductively transferred powers= 50.0 kW\n",
- "conductively transferred powers= 500.0 kW\n"
- ]
- }
- ],
- "prompt_number": 169
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.96, Page Number:1196"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "za=complex(0.5,3)\n",
- "zb=complex(0.,10)\n",
- "load=100#KW\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "s=load/pf*complex(pf,math.sin(math.acos(pf)))\n",
- "sa=s*zb/(za+zb)\n",
- "sb=s*za/(za+zb)\n",
- "\n",
- "#result\n",
- "print \"SA=\",abs(sa)*math.cos(math.atan(sa.imag/sa.real)),\"kW\"\n",
- "print \"SB=\",abs(sb)*math.cos(math.atan(sb.imag/sb.real)),\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "96.082805253\n",
- "SA= 74.5937961595 kW\n",
- "SB= 25.4062038405 kW\n"
- ]
- }
- ],
- "prompt_number": 174
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.97, Page Number:1197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "r1=0.005#ohm\n",
- "r2=0.01#ohm\n",
- "x1=0.05#ohm\n",
- "x2=0.04#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "za=complex(r1,x1)\n",
- "zb=complex(r2,x2)\n",
- "pf=math.cos(math.degrees((-1)*math.acos(pf))*math.degrees(math.atan((za/zb).imag/(za/zb).real)))\n",
- "\n",
- "#result\n",
- "print \"load of B=\",abs(za/zb)\n",
- "print \"pf of B=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "load of B= 1.21872643265\n",
- "pf of B= 0.613584256393\n"
- ]
- }
- ],
- "prompt_number": 202
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.98, Page Number:1197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=250#kVA\n",
- "za=complex(1,6)\n",
- "zb=complex(1.2,4.8)\n",
- "load1=500#kVA\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "s=load1*complex(-pf,math.sin(math.acos(pf)))\n",
- "sa=s*zb/(za+zb)\n",
- "sb=s*za/(za+zb)\n",
- "\n",
- "#result\n",
- "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n",
- "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "SA= 224.451917244 -39.3923099293\n",
- "SB= 275.942423833 -34.8183886694\n"
- ]
- }
- ],
- "prompt_number": 205
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.99, Page Number:1197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variabledeclaration\n",
- "load=100.0#KW\n",
- "r1=0.5\n",
- "x1=8.0\n",
- "r2=0.75\n",
- "x2=4.0\n",
- "load1=180.0#kW\n",
- "pf=0.9\n",
- "\n",
- "#calculations\n",
- "load=load1/pf\n",
- "s=load*complex(pf,-math.sin(math.acos(pf)))\n",
- "z1=complex(r1,x1)\n",
- "z2=complex(r2,x2)\n",
- "s1=s*z2/(z1+z2)\n",
- "s2=s*z1/(z1+z2)\n",
- "kw1=abs(s1)*math.cos(math.atan(s1.imag/s1.real))\n",
- "kw2=abs(s2)*math.cos(math.atan(s2.imag/s2.real))\n",
- "\n",
- "#result\n",
- "print \"kW1=\",kw1,\"kW\"\n",
- "print \"kW2=\",kw2,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(1.25+12j)\n",
- "kW1= 58.119626171 kW\n",
- "kW2= 121.880373829 kW\n"
- ]
- }
- ],
- "prompt_number": 214
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.100, Page Number:1197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=200.0#kW\n",
- "pf=0.85\n",
- "za=complex(1,5)\n",
- "zb=complex(2,6)\n",
- "\n",
- "#calculations\n",
- "s=load/pf*complex(0.85,-0.527)\n",
- "sa=s*zb/(za+zb)\n",
- "sb=s*za/(za+zb)\n",
- "\n",
- "#result\n",
- "print \"kVA for A=\",abs(sa),math.cos(math.atan(sa.imag/sa.real)),\"lag\"\n",
- "print \"kVA for B=\",abs(sb),math.cos(math.atan(sb.imag/sb.real)),\"lag\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kVA for A= 130.53263665 0.819364787986 lag\n",
- "kVA for B= 105.238776124 0.884143252833 lag\n"
- ]
- }
- ],
- "prompt_number": 216
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.101, Page Number:1198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=2200.0#V\n",
- "v2=110.0#V\n",
- "load=125.0#kVA\n",
- "pf=0.8\n",
- "za=complex(0.9,10)\n",
- "zb=(100/50)*complex(1.0,5)\n",
- "\n",
- "#calculation\n",
- "s=load*complex(pf,-math.sin(math.acos(pf)))\n",
- "sa=s*zb/(za+zb)\n",
- "sb=s*za/(za+zb)\n",
- "\n",
- "#result\n",
- "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n",
- "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "SA= 63.0780848499 -39.929442891 degrees\n",
- "SB= 62.1031510961 -33.7622749748 degrees\n"
- ]
- }
- ],
- "prompt_number": 218
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.102, Page Number:1199"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load1=500#kVA\n",
- "za=complex(1,5)\n",
- "load2=250#kVA\n",
- "zb=complex(1.5,4)\n",
- "v2=400#V\n",
- "load=750#kVA\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "zb=(500/load2)*zb\n",
- "s=load*complex(pf,-math.sin(math.acos(pf)))\n",
- "sa=s*zb/(za+zb)\n",
- "sb=s*za/(za+zb)\n",
- "\n",
- "#result\n",
- "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n",
- "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "SA= 471.125736359 -40.3232138964 degrees\n",
- "SB= 281.165527855 -31.0771011508 degrees\n"
- ]
- }
- ],
- "prompt_number": 219
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.103, Page Number:1199"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=1000#A\n",
- "pf=0.8\n",
- "za=complex(2,3)\n",
- "zb=complex(2.5,5)\n",
- "\n",
- "#calculations\n",
- "i=i*complex(pf,-math.sin(math.acos(pf)))\n",
- "ratio=zb/za\n",
- "ib=i/(1+ratio)\n",
- "ia=i-ib\n",
- "ratio=ia.real/ib.real\n",
- "\n",
- "#result\n",
- "print \"IA=\",ia\n",
- "print \"IB=\",ib\n",
- "print \"ratio of output=\",ratio"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "IA= (504.451038576-341.246290801j)\n",
- "IB= (295.548961424-258.753709199j)\n",
- "ratio of output= 1.70682730924\n"
- ]
- }
- ],
- "prompt_number": 220
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.104, Page Number:1200"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v1=1000.0#V\n",
- "v2=500.0#V\n",
- "load=100.0#kVA\n",
- "za=complex(1.0,5.0)\n",
- "zb=complex(2.0,2.0)\n",
- "load1=300.0#kVA\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "zb=(100.0/250)*zb\n",
- "s=load1*complex(pf,-math.sin(math.acos(pf)))\n",
- "sa=s*zb/(za+zb)\n",
- "sb=s*za/(za+zb)\n",
- "zab=za*zb/(za+zb)\n",
- "drop=zab.real*240/100+zab.imag*180/100\n",
- "v2=v2-v2*drop/100\n",
- "\n",
- "#result\n",
- "print \"SA=\",abs(sa),math.degrees(math.atan(sa.imag/sa.real)),\"degrees\"\n",
- "print \"SB=\",abs(sb),math.degrees(math.atan(sb.imag/sb.real)),\"degrees\"\n",
- "print \"secondary voltage=\",v2,\"V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "SA= 55.8895719399 -64.6284382469 degrees\n",
- "SB= 251.890896741 -30.9383707209 degrees\n",
- "secondary voltage= 486.177874187 V\n"
- ]
- }
- ],
- "prompt_number": 223
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.105, Page Number:1200"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n11=5000.0\n",
- "n12=440.0\n",
- "load1=200#kVA\n",
- "n21=5000.0\n",
- "n22=480.0\n",
- "load2=350#kVA\n",
- "x=3.5\n",
- "\n",
- "#calculation\n",
- "i1=load1*1000/n12\n",
- "i2=load2*1000/n22\n",
- "x1=x*n12/(100*i1)\n",
- "x2=x*n22/(100*i2)\n",
- "ic=(n22-n12)/0.057\n",
- "\n",
- "#result\n",
- "print \"no-load circulation current=\",ic/i1,\"times the normal current of 200 kVA unit\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "no-load circulation current= 1.54385964912 times the normal current of 200 kVA unit\n"
- ]
- }
- ],
- "prompt_number": 225
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.106, Page Number:1203"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variabe declaration\n",
- "ea=6600#V\n",
- "eb=6400#V\n",
- "za=complex(0.3,3)\n",
- "zb=complex(0.2,1)\n",
- "zl=complex(8.0,6.0)\n",
- "ia=(ea*zb+(ea-eb)*zl)/(za*zb+zl*(za+zb))\n",
- "ib=(eb*za-(ea-eb)*zl)/(za*zb+zl*(za+zb))\n",
- "\n",
- "#result\n",
- "print \"IA=\",abs(ia),\"A\"\n",
- "print \"IB=\",abs(ib),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "IA= 195.492387533 A\n",
- "IB= 422.567795916 A\n"
- ]
- }
- ],
- "prompt_number": 227
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.107, Page Number:1204"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load1=100.0#kVA\n",
- "load2=50.0#kVA\n",
- "v1=1000.0#V\n",
- "v2=950.0#V\n",
- "r1=2.0\n",
- "r2=2.5\n",
- "x1=8.0\n",
- "x2=6.0\n",
- "\n",
- "#calculations\n",
- "ia=load1*1000/v1\n",
- "ra=v1*r1/(100*ia)\n",
- "xa=v1*x1/(100*ia)\n",
- "ib=load2*1000/v2\n",
- "rb=v2*r2/(100*ib)\n",
- "xb=v2*x2/(100*ib)\n",
- "z=((ra+rb)**2+(xa+xb)**2)**0.5\n",
- "ic=(v1-v2)/z\n",
- "alpha=math.atan((xa+xb)/(ra+rb))\n",
- "\n",
- "#result\n",
- "print \"no load circulating current=\",ic,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "no load circulating current= 25.0948635944 A\n"
- ]
- }
- ],
- "prompt_number": 231
- },
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Example Number 32.108, Page Number:1204"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load1=1000.0#KVA\n",
- "load2=500.0#kVA\n",
- "v1=500.0#V\n",
- "v2=510.0#V\n",
- "z1=3.0\n",
- "z2=5.0\n",
- "r=0.4\n",
- "\n",
- "#calculation\n",
- "ia=load1*1000/480\n",
- "ib=load2*1000/480\n",
- "za=z1*v1/(100*ia)\n",
- "zb=z2*v2/(100*ib)\n",
- "ic=(v2-v1)/(za+zb)\n",
- "\n",
- "#result\n",
- "print \"cross current=\",ic,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "cross current= 315.656565657 A\n"
- ]
- }
- ],
- "prompt_number": 233
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.109, Page Number:1204"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "loada=500.0#KVA\n",
- "loadb=250.0#kVA\n",
- "load=750.0#KVA\n",
- "pf=0.8\n",
- "v1=405.0#V\n",
- "v2=415.0#V\n",
- "ra=1.0\n",
- "rb=1.5\n",
- "xa=5.0\n",
- "xb=4.0\n",
- "\n",
- "#calculations\n",
- "ia=loada*1000/400\n",
- "ra=400/(100*ia)\n",
- "xa=xa*400/(100*ia)\n",
- "ib=loadb*1000/400\n",
- "rb=rb*400/(100*ib)\n",
- "xb=xb*400/(100*ib)\n",
- "za=complex(ra,xa)\n",
- "zb=complex(rb,xb)\n",
- "zl=400**2*0.001/load*complex(pf,math.sin(math.acos(pf)))\n",
- "ic=(v1-v2)/(za+zb)\n",
- "ia=(v1*zb+(v1-v2)*zl)/(za*zb+zl*(za+zb))\n",
- "ib=(v2*za-(v1-v2)*zl)/(za*zb+zl*(za+zb))\n",
- "sa=400*ia/1000\n",
- "sb=400*ib/1000\n",
- "pf1=math.cos(math.atan(sa.imag/sa.real))\n",
- "pf2=math.cos(math.atan(sb.imag/sb.real))\n",
- "\n",
- "#result\n",
- "print \"a)cross current=\",-abs(ic),math.degrees(math.atan(ic.imag/ic.real))\n",
- "print \"b)SA=\",abs(sa),pf1,\"lag\"\n",
- "print \" SB=\",abs(sb),pf2,\"lag\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)cross current= -229.754569404 -72.8972710309\n",
- "b)SA= 387.844943528 0.820048560714 lag\n",
- " SB= 351.964386212 0.738709225528 lag\n"
- ]
- }
- ],
- "prompt_number": 243
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.110, Page Number:1205"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "zl=complex(2.0,1.5)\n",
- "za=complex(0.15,0.5)\n",
- "zb=complex(0.1,0.6)\n",
- "ea=207#V\n",
- "eb=205#V\n",
- "\n",
- "#calculations\n",
- "ia=(ea*zb+(ea-eb)*zl)/(za*zb+zl*(za+zb))\n",
- "ib=(eb*za-(ea-eb)*zl)/(za*zb+zl*(za+zb))\n",
- "v2_=(ia+ib)*zl\n",
- "angle=math.atan(v2_.imag/v2_.real)-math.atan(ia.imag/ia.real)\n",
- "pfa=math.cos(angle)\n",
- "angle=math.atan(v2_.imag/v2_.real)-math.atan(ib.imag/ib.real)\n",
- "pfb=math.cos(angle)\n",
- "pa=abs(v2_)*abs(ia)*pfa\n",
- "pb=abs(v2_)*abs(ib)*pfb\n",
- "\n",
- "#result\n",
- "print \"power output:\"\n",
- "print \" A:\",pa,\"W\"\n",
- "print \" B:\",pb,\"W\"\n",
- "print \"power factor:\"\n",
- "print \" A:\",pfa\n",
- "print \" B:\",pfb\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "power output:\n",
- " A: 6535.37583042 W\n",
- " B: 4925.36941503 W\n",
- "power factor:\n",
- " A: 0.818428780129\n",
- " B: 0.775705655277\n"
- ]
- }
- ],
- "prompt_number": 248
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 32.111, Page Number:1206"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "ia=200.0#A\n",
- "ib=600.0#A\n",
- "ra=0.02#ohm\n",
- "rb=0.025#ohm\n",
- "xa=0.05#ohm\n",
- "xb=0.06#ohm\n",
- "ea=245.0#V\n",
- "eb=240.0#V\n",
- "zl=complex(0.25,0.1)\n",
- "\n",
- "#calculation\n",
- "za=(ea/ia)*complex(ra,xa)\n",
- "zb=(eb/ib)*complex(rb,xb)\n",
- "i=(ea*zb+eb*za)/(za*zb+zl*(za+zb))\n",
- "v2=i*zl\n",
- "\n",
- "#result\n",
- "print \"terminal voltage=\",round(abs(v2)),round(math.degrees(math.atan(v2.imag/v2.real))),\"degrees\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "terminal voltage= 230.0 -3.0 degrees\n"
- ]
- }
- ],
- "prompt_number": 251
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qqhSxyn.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qqhSxyn.ipynb
deleted file mode 100644
index aebdac51..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_qqhSxyn.ipynb
+++ /dev/null
@@ -1,1094 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:7d0991402755fd2e3c1083bccec70e0a43143da000e9a99e70877269e1fdc43a"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 31: Testing of DC Machines"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.1, Page Number:1092"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "l=38.1#kg\n",
- "d=63.53*0.01#cm\n",
- "v=12#rps\n",
- "i=49#A\n",
- "V=220#V\n",
- "\n",
- "#calculations\n",
- "r=d/2\n",
- "torque=l*r*9.81\n",
- "power=torque*2*3.14*v\n",
- "motor_input=i*V\n",
- "efficiency=power*100/motor_input\n",
- "\n",
- "#result\n",
- "print \"Output power=\",round(power),\"W\"\n",
- "print \"Efficiency=\",round(efficiency),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Output power= 8947.0 W\n",
- "Efficiency= 83.0 %\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.2(a), Page Number:1093"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "spring_b1=10.0#kg\n",
- "spring_b2=35.0#kg\n",
- "d=40*0.01#m\n",
- "v=950.0#rpm\n",
- "V=200.0#V\n",
- "i=30.0#A\n",
- "\n",
- "#calculations\n",
- "F=(spring_b2-spring_b1)*9.81\n",
- "N=v/60\n",
- "R=d/2\n",
- "tsh=F*R\n",
- "omega=2*3.14*N\n",
- "output=tsh*omega\n",
- "motor_input=V*i\n",
- "efficiency=output/motor_input\n",
- "\n",
- "#result\n",
- "print \"output power=\",output,\"W\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output power= 4877.205 W\n",
- "efficiency= 81.28675 %\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.2(b), Page Number:1093"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "t1=2.9#kg\n",
- "t2=0.17#kg\n",
- "r=7*0.01#m\n",
- "i=2.0#A\n",
- "V=230.0#V\n",
- "n=1500.0#rpm\n",
- "\n",
- "#calculations\n",
- "force=(t1-t2)*9.81\n",
- "torque=force*r\n",
- "output=torque*2*3.14*n/60\n",
- "efficiency=output/(V*i)\n",
- "\n",
- "#result\n",
- "print \"torque=\",torque,\"N-m\"\n",
- "print \"output\",output,\"W\"\n",
- "print \"efficiency\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque= 1.874691 N-m\n",
- "output 294.326487 W\n",
- "efficiency 63.984018913 %\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.3, Page Number:1095"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "V=220.0#V\n",
- "i=2.5#A\n",
- "ra=0.8#ohm\n",
- "rsh=200.0#ohm\n",
- "I=20.0#A\n",
- "\n",
- "#calculations\n",
- "input_noload=V*i\n",
- "ish=V/rsh\n",
- "ia0=i-ish\n",
- "culoss=ia0**2*ra\n",
- "constant_loss=input_noload-culoss\n",
- "ia=32-ish\n",
- "cu_lossa=ia**2*ra\n",
- "total_loss=cu_lossa+constant_loss\n",
- "input_=V*I\n",
- "output=input_-total_loss\n",
- "efficiency=(output/input_)*100\n",
- "\n",
- "#result\n",
- "print \"Efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Efficiency= 70.1754545455 %\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.4, Page Number:1096"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "V=400.0#V\n",
- "i=5.0#A\n",
- "ra=0.5#ohm\n",
- "r=200.0#ohm\n",
- "I=50.0#A\n",
- "\n",
- "#calculations\n",
- "input_nl=V*i\n",
- "ish=V/r\n",
- "ia=i-ish\n",
- "cu_loss=ia**2*ra\n",
- "constant_loss=input_nl-cu_loss\n",
- "Ia=I-ish\n",
- "cu_lossa=Ia**2*ra\n",
- "total_loss=constant_loss+cu_lossa\n",
- "input_nl1=V*I\n",
- "output=input_nl1-total_loss\n",
- "efficiency=output/input_nl\n",
- "Eb1=V-(ia*ra)\n",
- "Eb2=V-(Ia*ra)\n",
- "change=math.fabs((Eb1-Eb2)/Eb1)\n",
- "\n",
- "#result\n",
- "print \"output=\",output,\"W\"\n",
- "print \"efficiency=\",efficiency*10,\"%\"\n",
- "print \"percentage change in speed=\",change*100,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output= 16852.5 W\n",
- "efficiency= 84.2625 %\n",
- "percentage change in speed= 5.64617314931 %\n"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.5, Page Number:1096"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "I=Symbol('I')\n",
- "v=220#V\n",
- "p=44.76#kW\n",
- "i=13.25#A\n",
- "ish=2.55#A\n",
- "ra=0.032#ohm\n",
- "bd=2#V\n",
- "\n",
- "#calculations\n",
- "p_nl=v*i\n",
- "ia=i-ish\n",
- "cu_loss=ia**2*ra\n",
- "bd_loss=2*ia\n",
- "variable_loss=bd_loss+cu_loss\n",
- "w=p_nl-variable_loss\n",
- "ans=solve([v*(I+ish)-p*1000-w-2*I-ra*I**2],[I])\n",
- "il=ans[0][0]+ish\n",
- "pin=il*v\n",
- "e=p*1000/pin\n",
- "\n",
- "#result\n",
- "print \"Full load current=\",round(il),\"A\"\n",
- "print \"Full load efficiency=\",round(e*100),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Full load current= 226.0 A\n",
- "Full load efficiency= 90.0 %\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.6, Page Number:1097"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "I=Symbol('I')\n",
- "v=200.0#V\n",
- "o=17.158#kW\n",
- "inpt=20.2#KW\n",
- "rf=50.0#ohm\n",
- "ra=0.06#ohm\n",
- "o2=7.46#kW\n",
- "\n",
- "#calculations\n",
- "loss1=inpt*1000.0-o*1000.0\n",
- "ic=inpt*1000.0/v\n",
- "ish=v/rf\n",
- "ia=ic-ish\n",
- "cu_loss=ia**2*ra\n",
- "const_loss=loss1-cu_loss\n",
- "ans=solve([v*(I+ish)-o2*1000.0-(ra*I**2)-const_loss],[I])\n",
- "il=ans[0][0]+ish\n",
- "pin=il*v/1000.0\n",
- "e=o2*1000*100/(pin*1000)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",round(e,1),\"%\"\n",
- "print \"power input=\",round(il),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 74.1 %\n",
- "power input= 50.0 A\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.7, Page Number:1097"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "I=Symbol('I')\n",
- "v=200.0#V\n",
- "p=14.92#kW\n",
- "ia=6.5#A\n",
- "ish=2.2#A\n",
- "i=70.0#A\n",
- "pd=3.0#V\n",
- "\n",
- "#calculations\n",
- "ic_nl=ia+ish\n",
- "pi=v*ic_nl\n",
- "cu_loss=v*ish\n",
- "cu_lossa=ia**2*pd/i\n",
- "const_loss=pi-cu_lossa\n",
- "ans=solve([v*I+cu_loss-p*1000-const_loss-(pd/i)*I**2],[I])\n",
- "ic=ans[0][0]+ish\n",
- "pin=v*ic\n",
- "e=p*1000*100/pin\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",round(e),\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 88.0 %\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.8, Page Number:1098"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=200*1000.0#W\n",
- "v=250.0#V\n",
- "i1=36.0#A\n",
- "I1=12.0#A\n",
- "v1=250.0#V\n",
- "pd=6.0#V\n",
- "i2=400.0#A\n",
- "\n",
- "#calculations\n",
- "#no load\n",
- "ia=i1-I1\n",
- "ra=pd/i2\n",
- "cu_loss=ia**2*ra\n",
- "input_nl=v*i1\n",
- "constant_loss=input_nl-cu_loss\n",
- "\n",
- "#full load\n",
- "output_i=p/v\n",
- "ia=output_i+I1\n",
- "cu_lossa=ia**2*ra\n",
- "total_loss=cu_lossa+constant_loss\n",
- "efficiency=p/(p+total_loss)\n",
- "#result\n",
- "print \"efficiency at full load=\",efficiency*100,\"%\"\n",
- "\n",
- "#half load\n",
- "output_i=p/(2*v)\n",
- "ia=output_i+I1\n",
- "cu_lossa=ia**2*ra\n",
- "total_loss=cu_lossa+constant_loss\n",
- "efficiency=p/((p/2+total_loss)*2)\n",
- "\n",
- "#result\n",
- "print \"efficiency at half load=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency at full load= 91.3736344667 %\n",
- "efficiency at half load= 89.6559292335 %\n"
- ]
- }
- ],
- "prompt_number": 42
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.9, Page Number:1098"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250.0#V\n",
- "p=14.92*1000#W\n",
- "e=0.88\n",
- "n=700.0#rpn\n",
- "rsh=100.0#ohm\n",
- "i=78.0#A\n",
- "\n",
- "#calculations\n",
- "input_=0.8*p/e\n",
- "total_loss=input_-0.8*p\n",
- "input_i=input_/v\n",
- "ish=v/rsh\n",
- "ia=input_i-ish\n",
- "ra=total_loss/(2*(ia**2))\n",
- "Ia=i-ish\n",
- "total_loss2=Ia**2*ra+total_loss/2\n",
- "input__=v*i\n",
- "efficiency=(input__-total_loss2)*100/input__\n",
- "Eb1=v-(ia*ra)\n",
- "Eb2=v-(Ia*ra)\n",
- "n2=(n*Eb2)/Eb1\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency,\"%\"\n",
- "print \"speed=\",n2,\"r.p.m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 86.9450046554 %\n",
- "speed= 678.443304738 r.p.m\n"
- ]
- }
- ],
- "prompt_number": 48
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.10(a), Page Number:1101"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=220.0#V\n",
- "p=100*1000.0#W\n",
- "i2=90.0#A\n",
- "\n",
- "#calculations\n",
- "i1=p/v\n",
- "efficiency=math.sqrt(i1/(i1+i2))*100\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",round(efficiency,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 91.4 %\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.11, Page Number:1102"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=15#A\n",
- "v=200#V\n",
- "motor_i=100#A\n",
- "shunt_i1=3#A\n",
- "shunt_i2=2.5#A\n",
- "ra=0.05#ohm\n",
- "cu_loss=500#W\n",
- "cu_lossa=361#W\n",
- "ia=85#A\n",
- "#calculations\n",
- "mech_core_stray_loss=0.5*((v*i)-(motor_i**2*ra)-(ia**2*ra))\n",
- "cu_motor=v*shunt_i1\n",
- "generator_motor=v*shunt_i2\n",
- "total_loss=mech_core_stray_loss+cu_motor+generator_motor\n",
- "input_=v*i+cu_motor\n",
- "output=v*ia*10**(-3)\n",
- "loss=cu_loss*10**(-3)+1.07+0.36\n",
- "efficiency=output*100/(output+loss)\n",
- "\n",
- "#result\n",
- "print \"eficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "eficiency= 89.8045430534 %\n"
- ]
- }
- ],
- "prompt_number": 52
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.12, Page Number:1103"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=110#V\n",
- "i=48#A\n",
- "i1=3#a\n",
- "i2=3.5#A\n",
- "motor_i=230#A\n",
- "ra=0.035#ohm\n",
- "\n",
- "#calculations\n",
- "#motor\n",
- "cu_loss=motor_i**2*ra\n",
- "brush_loss=motor_i*2\n",
- "totalarm_culoss=cu_loss+brush_loss\n",
- "shunt_cu=v*i1\n",
- "total_cu_lossm=totalarm_culoss+shunt_cu\n",
- "#generator\n",
- "arm_i=233-i+i2\n",
- "cu_loss=arm_i**2*ra\n",
- "brush_loss=arm_i*2\n",
- "totalarm_culoss=cu_loss+brush_loss\n",
- "shunt_cu=v*i2\n",
- "total_cu_lossg=totalarm_culoss+shunt_cu\n",
- "#set\n",
- "totalcu_loss=total_cu_lossm+total_cu_lossg\n",
- "total_input=v*i\n",
- "stray_loss=total_input-totalcu_loss\n",
- "strayloss_per=stray_loss/2\n",
- "#motor efficiency\n",
- "input_=233*v\n",
- "output=input_-(total_cu_lossm+strayloss_per)\n",
- "e=output/input_*100\n",
- "print \"motor efficiency=\",e,\"%\"\n",
- "#generator efficiency\n",
- "input_=110*185\n",
- "output=input_-(total_cu_lossg+strayloss_per)\n",
- "e=output/input_*100\n",
- "100\n",
- "print \"generator efficiency=\",e,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "motor efficiency= 88.4590884705 %\n",
- "generator efficiency= 88.5893642506 %\n"
- ]
- }
- ],
- "prompt_number": 56
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.13, Page Number:1103"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable series\n",
- "v=500.0#A\n",
- "p=100*1000.0#w\n",
- "auxiliary_i=30.0#A\n",
- "output_i=200.0#A\n",
- "i1=3.5#A\n",
- "i2=1.8#A\n",
- "ra=0.075#ohm\n",
- "vdb=2.0#V\n",
- "\n",
- "#calculations\n",
- "motor_arm=output_i+auxiliary_i\n",
- "motorarm_culoss=(motor_arm**2*ra)+(motor_arm*2)\n",
- "motorfield_culoss=v*i2\n",
- "generatorarm_culoss=(output_i**2*ra)+(output_i*2)\n",
- "generatoefield_culoss=v*i1\n",
- "total_culoss=motorarm_culoss+motorfield_culoss+generatorarm_culoss+generatoefield_culoss\n",
- "power=v*auxiliary_i\n",
- "stray_loss=power-total_culoss\n",
- "permachine=stray_loss/2\n",
- "total_loss=generatorarm_culoss+generatoefield_culoss+permachine\n",
- "output=v*output_i\n",
- "e=output/(output+total_loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",e*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 93.1001175389 %\n"
- ]
- }
- ],
- "prompt_number": 58
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.14, Page Number:1104"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250.0#V\n",
- "i=50.0#A\n",
- "motor_i=400.0#A\n",
- "i1=6.0#A\n",
- "i2=5.0#A\n",
- "ra=0.015#ohm\n",
- "\n",
- "#calculations\n",
- "motora_culoss=motor_i**2*ra\n",
- "generatora_culoss=(motor_i-i)**2*ra\n",
- "power=v*i\n",
- "stray_loss=power-(motora_culoss+generatora_culoss)\n",
- "permachine=stray_loss/2\n",
- "#motor\n",
- "total_motor_loss=motora_culoss+(v*i2)+permachine\n",
- "motor_input=(v*motor_i)+v*i2\n",
- "motor_e=(motor_input-total_motor_loss)/motor_input\n",
- "\n",
- "#generator\n",
- "total_gen_loss=generatora_culoss+(v*i1)+permachine\n",
- "gen_output=v*(motor_i-i)\n",
- "gen_e=(gen_output-total_gen_loss)/gen_output\n",
- "\n",
- "#result\n",
- "print \"motor efficiency=\",motor_e*100,\"%\"\n",
- "print \"generator efficiency\",gen_e*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "motor efficiency= 92.3148148148 %\n",
- "generator efficiency 91.4642857143 %\n"
- ]
- }
- ],
- "prompt_number": 77
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.15, Page Number:1105"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250.0#V\n",
- "i=50.0#A\n",
- "ia=380.0#A\n",
- "i1=5.0#A\n",
- "i2=4.2#A\n",
- "ra=0.2#ohm\n",
- "\n",
- "#calculations\n",
- "motora_culoss=ia**2*ra\n",
- "generatora_culoss=(ia-i)**2*ra\n",
- "power=v*i\n",
- "stray_loss=power-(motora_culoss+generatora_culoss)\n",
- "permachine=stray_loss/2\n",
- "#motor\n",
- "total_motor_loss=motora_culoss+(v*i2)+permachine\n",
- "motor_input=(v*ia)+v*i2\n",
- "motor_e=(motor_input-total_motor_loss)/motor_input\n",
- "\n",
- "#generator\n",
- "total_gen_loss=generatora_culoss+(v*i1)+permachine\n",
- "gen_output=v*(ia-i)\n",
- "gen_e=(gen_output-total_gen_loss)/gen_output\n",
- "\n",
- "#result\n",
- "print \"motor efficiency=\",motor_e*100,\"%\"\n",
- "print \"generator efficiency\",gen_e*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "motor efficiency= 88.7038001041 %\n",
- "generator efficiency 95.2121212121 %\n"
- ]
- }
- ],
- "prompt_number": 81
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.16, Page Number:1107"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220.0#V\n",
- "v2=190.0#V\n",
- "t=30#sec\n",
- "t2=20#sec\n",
- "i=20.0#A\n",
- "\n",
- "#calculations\n",
- "avg_v=(v+v2)/2\n",
- "avg_i=i/2\n",
- "power=avg_v*avg_i\n",
- "W=power*(t2/(t-t2))\n",
- "\n",
- "#result\n",
- "print \"Stray loss=\",W,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Stray loss= 4100.0 W\n"
- ]
- }
- ],
- "prompt_number": 85
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.17, Page Number:1107"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variabledeclaration\n",
- "n1=1525.0#rpm\n",
- "n2=1475.0#ohm\n",
- "dt=25.0#sec\n",
- "p=1000.0#W\n",
- "t2=20.0#sec\n",
- "\n",
- "#calculations\n",
- "N=(n1+n2)/2\n",
- "w=p*(t2/(dt-t2))\n",
- "dN=n1-n2\n",
- "I=(w*dt)/((2*3.14/60)**2*N*dN)\n",
- "\n",
- "#result\n",
- "print \"Moment of Inertia=\",I,\"kg-m2\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Moment of Inertia= 121.708791432 kg-m2\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.18, Page Number:1108"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=240.0#V\n",
- "v2=225.0#V\n",
- "dt=25.0#sec\n",
- "t2=6.0#ohm\n",
- "iavg=10.0#A\n",
- "i2=25.0#A\n",
- "v3=250.0#V\n",
- "ra=0.4#ohm\n",
- "r=250.0#ohm\n",
- "\n",
- "#calculations\n",
- "avg_v=(v+v2)/2\n",
- "w_=avg_v*iavg\n",
- "W=w_*(t2/(dt-t2))\n",
- "ish=v3/r\n",
- "ia=i2-ish\n",
- "cu_loss=ia**2*ra\n",
- "cu_shunt=v3*ia\n",
- "total_loss=W+cu_loss+v3\n",
- "e=((v*i2)-total_loss)/(v*i2)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",e*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "734.210526316\n",
- "efficiency= 79.7564912281 %\n"
- ]
- }
- ],
- "prompt_number": 97
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.19, Page Number:1108"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=1000#rpm\n",
- "n1=1030#rpm\n",
- "n2=970#rpm\n",
- "t1=36#sec\n",
- "t2=15#sec\n",
- "t3=9#sec\n",
- "i=10#A\n",
- "v=219#V\n",
- "\n",
- "#calculations\n",
- "W=v*i*(t2/(dt-t2))\n",
- "dN=n1-n2\n",
- "I=(W*t2)/((2*3.14/60)**2*n*dN)\n",
- "Wm=W*t2/t1\n",
- "iron_loss=W-Wm\n",
- "\n",
- "#result\n",
- "print \"i)moment of inertia=\",I,\"kg.m2\"\n",
- "print \"ii)iron loss=\",iron_loss,\"W\"\n",
- "print \"iii)mechanical losses=\",Wm,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)moment of inertia= 74.9650087225 kg.m2\n",
- "ii)iron loss= 1916.25 W\n",
- "iii)mechanical losses= 1368.75 W\n"
- ]
- }
- ],
- "prompt_number": 99
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 31.20, Page Number:1110"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "iam=56.0#A\n",
- "vam=590.0#V\n",
- "vdm=40.0#V\n",
- "iag=44.0#A\n",
- "vag=400.0#V\n",
- "vdg=40.0#V\n",
- "r=0.3#ohm\n",
- "\n",
- "#calculations\n",
- "input_total=(vdm+vam)*iam\n",
- "output=vag*iag\n",
- "total_loss=input_total-output\n",
- "rse=vdg/iam\n",
- "cu_loss=((r+2*rse)*iam**2)+(iag**2*r)\n",
- "strayloss=total_loss-cu_loss\n",
- "permachine=strayloss/2\n",
- "#motor\n",
- "inputm=vam*iam\n",
- "culossm=(r+rse)*iam**2\n",
- "totallossm=culossm+permachine\n",
- "output=inputm-totallossm\n",
- "em=output*100/inputm\n",
- "#generator\n",
- "inputg=vag*iag\n",
- "culossg=(r)*iag**2\n",
- "totalloss=culossg+permachine+(vdm*iam)\n",
- "output=vag*iag\n",
- "eg=output*100/(output+totalloss)\n",
- "\n",
- "print \n",
- "#result\n",
- "print \"motor efficiency=\",em,\"%\"\n",
- "print \"generator efficiency=\",eg,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "motor efficiency= 72.6997578692 %\n",
- "generator efficiency= 67.0220868241 %\n"
- ]
- }
- ],
- "prompt_number": 115
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sxNNKcd.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sxNNKcd.ipynb
deleted file mode 100644
index f35c124e..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_sxNNKcd.ipynb
+++ /dev/null
@@ -1,1233 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:fc88e8a107629d62ff7c77f84f67a9d9da67e1160053ed6d930ef88cb4cc11d6"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 27: Armature Reaction and Commutation"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.1, Page Number:943"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "z=722\n",
- "ia=100.0#A\n",
- "theta_m=8.0#degrees\n",
- "\n",
- "#calculatons\n",
- "i=ia/2\n",
- "atd_perpole=z*i*theta_m/360\n",
- "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n",
- "\n",
- "#result\n",
- "print \"armature demagnetization=\",atd_perpole\n",
- "print \"cross-magnetization=\",atc_perpole"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature demagnetization= 802.222222222\n",
- "cross-magnetization= 3710.27777778\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.2, Page Number:943"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=8\n",
- "z=1280\n",
- "v=500#V\n",
- "ia=200.0#A\n",
- "commuter=160\n",
- "advanced_segments=4\n",
- "\n",
- "#calculatons\n",
- "i=ia/8\n",
- "theta_m=advanced_segments*360/commuter\n",
- "atd_perpole=z*i*theta_m/360\n",
- "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n",
- "\n",
- "#result\n",
- "print \"armature demagnetization=\",atd_perpole\n",
- "print \"cross-magnetization=\",atc_perpole"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature demagnetization= 800.0\n",
- "cross-magnetization= 1200.0\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.3(a), Page Number:943"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "z=880\n",
- "ia=120.0#A\n",
- "theta_m=3.0#degrees\n",
- "n=1100#tturns/pole\n",
- "#calculatons\n",
- "i=ia/2\n",
- "atd_perpole=z*i*theta_m/360\n",
- "atc_perpole=z*i*((1/(2.0*p))-(theta_m/360.0))\n",
- "iadditional=(atd_perpole/n)\n",
- "\n",
- "\n",
- "#result\n",
- "print \"a)armature demagnetization=\",atd_perpole,\"AT\"\n",
- "print \"b)cross-magnetization=\",atc_perpole,\"AT\"\n",
- "print \"c)additional field current=\",iadditional,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)armature demagnetization= 440.0 AT\n",
- "b)cross-magnetization= 6160.0 AT\n",
- "c)additional field current= 0.4 A\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.3(b), Page Number:943"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "z=480\n",
- "ia=150.0#A\n",
- "theta_m=10.0*2#degrees\n",
- "\n",
- "#calculatons\n",
- "i=ia/4\n",
- "total=(z*i)/(2*p)\n",
- "atd_perpole=total*(2*theta_m/180)\n",
- "atc_perpole=total*(1-(2*theta_m/180))\n",
- "\n",
- "#result\n",
- "print \"armature demagnetization=\",atd_perpole\n",
- "print \"cross-magnetization=\",atc_perpole"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature demagnetization= 500.0\n",
- "cross-magnetization= 1750.0\n"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.4, Page Number:944"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "z=492\n",
- "theta_m=10.0\n",
- "ia=143.0+10.0\n",
- "\n",
- "#calculations\n",
- "i1=ia/2#wave wound\n",
- "i2=ia/4#lap wound\n",
- "atd_perpole1=z*i1*theta_m/360#wave wound\n",
- "extra_shunt1=atd_perpole1/theta_m\n",
- "atd_perpole2=z*i2*(theta_m/360.0)#lap wound\n",
- "extra_shunt2=atd_perpole2/theta_m\n",
- "#result\n",
- "print \"wave wound:\"\n",
- "print \"demagnetization per pole=\",atd_perpole1,\"AT\"\n",
- "print \"extra shunt field turns=\",int(extra_shunt1)\n",
- "print \"lap wound:\"\n",
- "print \"demagnetization per pole=\",atd_perpole2,\"AT\"\n",
- "print \"extra shunt field turns=\",int(extra_shunt2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wave wound:\n",
- "demagnetization per pole= 1045.5 AT\n",
- "extra shunt field turns= 104\n",
- "lap wound:\n",
- "demagnetization per pole= 522.75 AT\n",
- "extra shunt field turns= 52\n"
- ]
- }
- ],
- "prompt_number": 32
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.5, Page Number:944"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "pole=4\n",
- "p=50*1000.0#W\n",
- "v=250.0#V\n",
- "z=400\n",
- "commuter=4\n",
- "rsh=50.0#ohm\n",
- "a=2\n",
- "\n",
- "#calculations\n",
- "i=p/v\n",
- "ish=v/rsh\n",
- "ia=i+ish\n",
- "i=ia/2\n",
- "segments=z/a\n",
- "theta=pole*360.0/segments\n",
- "atd=z*i*(theta/360)\n",
- "extra=atd/ish\n",
- "\n",
- "#result\n",
- "print \"demagnetisation=\",atd,\"AT\"\n",
- "print \"extra shunt turns/poles\",extra"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "demagnetisation= 820.0 AT\n",
- "extra shunt turns/poles 164.0\n"
- ]
- }
- ],
- "prompt_number": 35
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.6, Page Number:943"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "z=500\n",
- "ia=200.0#A\n",
- "p=6\n",
- "theta=10.0#degrees\n",
- "lambda_=1.3\n",
- "\n",
- "#calculations\n",
- "i=ia/2\n",
- "atc=((1/(2.0*p))-(theta/360.0))*z*i\n",
- "atd=z*i*theta/360\n",
- "extra=lambda_*atd/ia\n",
- "\n",
- "#result\n",
- "print \"i)cross magnetization ampere-turns=\",atc\n",
- "print \"ii)back ampere-turns\",atd\n",
- "print \"iii)series turns required to balance the demagnetising ampere turns\",int(extra)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)cross magnetization ampere-turns= 2777.77777778\n",
- "ii)back ampere-turns 1388.88888889\n",
- "iii)series turns required to balance the demagnetising ampere turns 9\n"
- ]
- }
- ],
- "prompt_number": 45
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.7, Page Number:945"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=22.38#kW\n",
- "v=440.0#V\n",
- "pole=4\n",
- "z=840\n",
- "commutator=140\n",
- "efficiency=0.88\n",
- "ish=1.8#A\n",
- "back=1.5\n",
- "\n",
- "#calculations\n",
- "motor_input=p*1000.0/efficiency\n",
- "input_i=motor_input/v\n",
- "ia=input_i-ish\n",
- "i=ia/2.0\n",
- "theta=back*360/commutator\n",
- "atd=z*i*(theta/360.0)\n",
- "atc=((1/(2.0*pole))-(theta/360.0))*z*i\n",
- "#result\n",
- "print \"armature demagnetization amp-turns/pole=\",atd\n",
- "print \"distorting amp-turns/pole=\",atc"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature demagnetization amp-turns/pole= 251.998140496\n",
- "distorting amp-turns/pole= 2687.98016529\n"
- ]
- }
- ],
- "prompt_number": 59
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.8, Page Number:945"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400#V\n",
- "ia=1000#A\n",
- "p=10\n",
- "z=860\n",
- "per=0.7\n",
- "\n",
- "#calculations\n",
- "i=ia/p\n",
- "at=per/p*z*(i/2)\n",
- "\n",
- "#result\n",
- "print \"AT/pole for compensation winding=\",at"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "AT/pole for compensation winding= 3010.0\n"
- ]
- }
- ],
- "prompt_number": 62
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.9, Page Number:948"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=800.0#rpm\n",
- "segment=123\n",
- "wb=3\n",
- "#calculations\n",
- "v=n/60.0*segment\n",
- "commutation=wb/v\n",
- "\n",
- "#result\n",
- "print \"commutation time=\",commutation*1000,\"millisecond\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "commutation time= 1.82926829268 millisecond\n"
- ]
- }
- ],
- "prompt_number": 64
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.10, Page Number:948"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "n=1500#rpm\n",
- "d=30#cm\n",
- "ia=150#A\n",
- "wb=1.25#cm\n",
- "L=0.07*0.001#H\n",
- "\n",
- "#calculation\n",
- "i=ia/2\n",
- "v=3.14*d*(n/60)\n",
- "tc=wb/v\n",
- "E=L*2*i/tc\n",
- "\n",
- "#result\n",
- "print \"average emf=\",E,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "average emf= 19.782 V\n"
- ]
- }
- ],
- "prompt_number": 65
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.11, Page Number:949"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "segments=55\n",
- "n=900\n",
- "wb=1.74\n",
- "L=153*math.pow(10,-6)#H\n",
- "i=27#A\n",
- "\n",
- "#calculations\n",
- "v=segments*n/60\n",
- "Tc=wb/v\n",
- "E=L*2*i/Tc\n",
- "\n",
- "#result\n",
- "print \"average emf=\",E,\"V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "average emf= 3.91732758621 V\n"
- ]
- }
- ],
- "prompt_number": 67
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.12, Page Number:949"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "n=1500.0#rpm\n",
- "ia=150.0#A\n",
- "z=64\n",
- "wb=1.2\n",
- "L=0.05#mH\n",
- "\n",
- "#calculations\n",
- "L=L*0.001\n",
- "v=n/60*z\n",
- "tc=wb/v\n",
- "i=ia/p\n",
- "#i.linear\n",
- "E1=L*2*i/tc\n",
- "#ii.sinusoidal\n",
- "E2=1.11*E1\n",
- "\n",
- "#result\n",
- "print \"Linear commutation,E=\",E1,\"V\"\n",
- "print \"Sinosoidal commutation,E=\",E2,\"V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Linear commutation,E= 5.0 V\n",
- "Sinosoidal commutation,E= 5.55 V\n"
- ]
- }
- ],
- "prompt_number": 68
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.13, Page Number:951"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=6\n",
- "B=0.5#Wb/m2\n",
- "Ig=4.0#mm\n",
- "ia=500.0#A\n",
- "z=540\n",
- "\n",
- "#calculations\n",
- "arm_mmf=z*(ia/p)/(2*p)\n",
- "compole=int(B*Ig*0.001/(4*3.14*math.pow(10,-7)))\n",
- "mag=0.1*compole\n",
- "total_compole=int(compole+mag)\n",
- "total_mmf=arm_mmf+total_compole\n",
- "Ncp=total_mmf/ia\n",
- "\n",
- "#result\n",
- "print \"Number of turns on each commutating pole=\",int(Ncp)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Number of turns on each commutating pole= 11\n"
- ]
- }
- ],
- "prompt_number": 89
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.14, Page Number:957"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p1=100.0#kW\n",
- "V1=250#V\n",
- "p2=300.0#kW\n",
- "V2=250#V\n",
- "i1=200#A\n",
- "i2=500#A\n",
- "il=600#A\n",
- "\n",
- "#calculations\n",
- "delI1=p1/(p1+p2)*il\n",
- "delI2=p2/(p1+p2)*il\n",
- "\n",
- "#result\n",
- "print \"Current supplied by generator 1 with additional load=\",delI1,\"A\"\n",
- "print \"Current supplied by generator 2 with additional load=\",delI2,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current supplied by generator 1 with additional load= 150.0 A\n",
- "Current supplied by generator 2 with additional load= 450.0 A\n"
- ]
- }
- ],
- "prompt_number": 92
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.15, Page Number:957"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "i1=Symbol('i1')\n",
- "i2=Symbol('i2')\n",
- "v_nl1=270#V\n",
- "v_l=220#V\n",
- "il1=35#A\n",
- "v_nl2=280#V\n",
- "il2=50#A\n",
- "il=60#A\n",
- "\n",
- "#calculations\n",
- "#generator 1\n",
- "vd1=v_nl1-v_l\n",
- "vd_pa=vd1/il1#voltage drop per ampere\n",
- "#generator 2\n",
- "vd_pa2=(v_nl2-v_l)/il2\n",
- "#270=(10/7)i1=280-1.2*i2\n",
- "ans=solve([4.2*i2-5*i1-35,i1+i2-60],[i1,i2])\n",
- "v=v_nl2-vd_pa2*ans[i2]\n",
- "o1=v*ans[i1]/1000.0\n",
- "o2=v*ans[i2]/1000.0\n",
- "\n",
- "#result\n",
- "print \"output current of first machine=\",round(ans[i1],1)\n",
- "print \"output current of second machine=\",round(ans[i2],1)\n",
- "print \"output of first machine=\",round(o1,1),\"kW\"\n",
- "print \"output of second machine=\",round(o2,1),\"kW\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output current of first machine= 23.6\n",
- "output current of second machine= 36.4\n",
- "output of first machine= 5.7 kW\n",
- "output of second machine= 8.9 kW\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.16, Page Number:958"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "i1=Symbol('i1')\n",
- "i2=Symbol('i2')\n",
- "v=Symbol('v')\n",
- "ra=0.01#ohm\n",
- "rf=20#ohm\n",
- "i=4000#A\n",
- "v1=210#V\n",
- "v2=220#V\n",
- "\n",
- "#calculations\n",
- "#V+(i1+v/20)*0.01=210\n",
- "#V+(i2+v/20)*0.01=220\n",
- "#solving the above two equations we have i1-i2=1000\n",
- "ans=solve([i1-i2-1000,i1+i2-4000],[i1,i2])\n",
- "V=solve([v1-(ans[i1]+v/20)*0.01-v],[v])\n",
- "o1=V[v]*ans[i1]/1000\n",
- "o2=V[v]*ans[i2]/1000\n",
- "\n",
- "#result\n",
- "print \"Bus bar voltage=\",V[v],\"V\"\n",
- "print \"output of first generator=\",o1,\"kW\"\n",
- "print \"output of second generator=\",o2,\"kW\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Bus bar voltage= 184.907546226887 V\n",
- "output of first generator= 462.268865567216 kW\n",
- "output of second generator= 277.361319340330 kW\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.17, Page Number:959"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "i1=Symbol('i1')\n",
- "i2=Symbol('i2')\n",
- "i=250.0#A\n",
- "v1=50.0#kW\n",
- "v2=100.0#kW\n",
- "v=500.0#V\n",
- "r1=0.06\n",
- "r2=0.04\n",
- "\n",
- "#calculations\n",
- "#generator 1\n",
- "vd1=v*r1\n",
- "il1=v1*1000/v\n",
- "i_d1=vd1/il1\n",
- "#generator 2\n",
- "vd2=v*r2\n",
- "il2=v2*1000/v\n",
- "i_d2=vd2/il2\n",
- "#3i1/10=i2/10\n",
- "ans=solve([i1+i2-i,3*i1-i2],[i1,i2])\n",
- "v=v-(3*ans[i1]/10)\n",
- "\n",
- "#result\n",
- "print \"current delivered to first machine=\",round(ans[i1],1),\"A\"\n",
- "print \"current delivered to second machine=\",round(ans[i2],1),\"A\"\n",
- "print \"terminal voltage=\",round(v,1),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current delivered to first machine= 62.5 A\n",
- "current delivered to second machine= 187.5 A\n",
- "terminal voltage= 481.3 V\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.18, Page Number:959"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "x1=Symbol('x1')\n",
- "x2=Symbol('x2')\n",
- "i1=Symbol('i1')\n",
- "i2=Symbol('i2')\n",
- "v=125.0#V\n",
- "w1=250.0#kW\n",
- "v1=119.0#V\n",
- "w2=200.0#kW\n",
- "v2=116.0#V\n",
- "i=3500.0#A\n",
- "\n",
- "#calculations\n",
- "#v=125-[(125-119)(x1/100)] for generator 1\n",
- "#v=125-[(125-116)(x2/100)] for generator 2\n",
- "#(250x1*1000/100)+(200x2*1000/100)=v*3500\n",
- "#v=125-6x1/100\n",
- "ans=solve([(250.0*x1*1000.0/100.0)+(200.0*(2.0*x1*1000.0)/300.0)-((125.0-((6.0*x1)/100.0))*3500.0)],[x1])\n",
- "V=v-(6.0*ans[x1]/100.0)\n",
- "ans2=solve([V-(v-((v-v2)*(x2/100.0)))],[x2])\n",
- "ratio=ans[x1]/ans2[x2]\n",
- "I=solve([ratio-((i1*w2)/(i2*w1)),i1+i2-i],[i1,i2])\n",
- "print \"I1=\",round(I[i1],0),\"A\"\n",
- "print \"I2=\",round(I[i2],0),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "I1= 2283.0 A\n",
- "I2= 1217.0 A\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.19, Page Number:960"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "IA=Symbol('IA')\n",
- "IB=Symbol('IB')\n",
- "va1=240.0#V\n",
- "va2=220.0#v\n",
- "ia=200.0#A\n",
- "vb1=245.0#V\n",
- "vb2=220.0#V\n",
- "ib=150.0#A\n",
- "i=300.0#A\n",
- "\n",
- "#calculations\n",
- "I=solve([(va1-((va1-va2)*IA/ia))-(vb1-((vb1-vb2)*IB/ib)),IA+IB-i],[IA,IB])\n",
- "vbus=va1-((va1-va2)*I[IA]/ia)\n",
- "#result\n",
- "print \"IA=\",round(I[IA],2),\"A\"\n",
- "print \"IB=\",round(I[IB],2),\"A\"\n",
- "print \"V bus=\",round(vbus,2),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "IA= 168.75 A\n",
- "IB= 131.25 A\n",
- "V bus= 223.13 V\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.20, Page Number:961"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "i1=Symbol('i1')\n",
- "i2=Symbol('i2')\n",
- "n=5.0#number ofshunt generators\n",
- "ra=0.1#ohm\n",
- "p=250.0#kW\n",
- "v=500.0#V\n",
- "incr=0.04#increase in current\n",
- "\n",
- "#calculations\n",
- "load=p/n\n",
- "o=load*1000.0/v\n",
- "a_drop=ra*o\n",
- "emf=v+a_drop\n",
- "incr=incr*emf\n",
- "emf1=emf+incr\n",
- "#emf1-ra*i1=V\n",
- "#emf-ra*i2=V\n",
- "I=solve([emf1-emf-ra*(i1-i2),i1+4.1*i2-510],[i1,i2])\n",
- "V=I[i1]+4.0*I[i2]#V=i1+4*i2\n",
- "o1=V*I[i1]/1000.0\n",
- "o2=V*I[i2]/1000.0\n",
- "\n",
- "#result\n",
- "print \"Power output of first machine=\",round(o1),\"kW\"\n",
- "print \"Power output of second machine=\",round(o2,2),\"kW\"\n",
- "print \"Terminal voltage=\",round(V),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Power output of first machine= 133.0 kW\n",
- "Power output of second machine= 30.24 kW\n",
- "Terminal voltage= 504.0 V\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.21, Page Number:961"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "V=Symbol('V')\n",
- "i=1500.0#A\n",
- "ra1=0.5#ohm\n",
- "emf1=400.0#V\n",
- "ra2=0.04#ohm\n",
- "emf2=440.0#V\n",
- "rs1=100.0#ohm\n",
- "rs2=80.0#ohm\n",
- "\n",
- "#calculations\n",
- "#i2=1500-i1\n",
- "#ish1=v/100, ish2=v/80\n",
- "#ia1=i1+v/100, ia2=i2+v/80\n",
- "ans=solve([(0.5/0.04)-((emf1-1.005*V)/(1.0005*V-380))],[V])\n",
- "i1=(emf1-1.005*ans[V])/0.5\n",
- "i2=i-i1\n",
- "o1=ans[V]*i1/1000\n",
- "o2=ans[V]*i2/1000\n",
- "#result\n",
- "print \"I1=\",round(i1,2),\"A\"\n",
- "print \"I2=\",round(i2,2),\"A\"\n",
- "print \"Terminal Voltage=\",round(ans[V],2),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "I1= 33.86 A\n",
- "I2= 1466.14 A\n",
- "Terminal Voltage= 381.16 V\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.22, Page Number:962"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "V=Symbol('V')\n",
- "I=Symbol('I')\n",
- "v1=250#V\n",
- "ra1=0.24#ohm\n",
- "rf1=100#ohm\n",
- "v2=248#V\n",
- "ra2=0.12#ohm\n",
- "rf2=100#ohm\n",
- "i=40#A\n",
- "ir=0.172#ohm\n",
- "\n",
- "#calculations\n",
- "ans=solve([V+((I+V/rf1)*ra1)-v1,V+((I+V/rf2)*ra2)-v2],[I,V])\n",
- "ib=i-2*ans[I]\n",
- "vd=ib*ir\n",
- "eb=ans[V]+vd\n",
- "\n",
- "#result\n",
- "print \"emf of battery=\",round(eb),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "emf of battery= 248.0 V\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.23, Page Number:963"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "va=400#V\n",
- "ra=0.25#ohm\n",
- "vb=410#V\n",
- "rb=0.4#ohm\n",
- "V=390#V\n",
- "\n",
- "#calculations\n",
- "loada=(va-V)/ra\n",
- "loadb=(vb-V)/rb\n",
- "pa=loada*V\n",
- "pb=loadb*V\n",
- "net_v=vb-va\n",
- "total_r=ra+rb\n",
- "i=net_v/total_r\n",
- "terminal_v=va+(i*ra)\n",
- "power_AtoB=terminal_v*i\n",
- "\n",
- "#result\n",
- "print \"Current=\",i,\"A\"\n",
- "print \"Voltage=\",terminal_v,\"V\"\n",
- "print \"Power=\",power_AtoB,\"W\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current= 15.3846153846 A\n",
- "Voltage= 403.846153846 V\n",
- "Power= 6213.01775148 W\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 27.24, Page Number:964"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "v=Symbol('v')\n",
- "i=500.0#A\n",
- "ra1=0.01#ohm\n",
- "ra2=0.02#ohm\n",
- "sw1=0.004#ohm\n",
- "sw2=0.006#ohm\n",
- "e1=240.0#V\n",
- "e2=244.0#V\n",
- "\n",
- "#calculations\n",
- "V=solve([(((e1-v)/ra1)+((e2-v)/ra2)-i)],[v])\n",
- "i1=(e1-V[v])/ra1\n",
- "i2=(e2-V[v])/ra2\n",
- "#ratio of series winding (1/0.004):(1/0.0006) or 3:2\n",
- "is1=i*3/5\n",
- "is2=i*2/5\n",
- "vbus=V[v]-(is1*sw1)\n",
- "\n",
- "#result\n",
- "print \"I1=\",round(i1),\"A\"\n",
- "print \"I2=\",round(i2),\"A\"\n",
- "print \"Current in series winding:\"\n",
- "print \"generator A=\",round(is1),\"A\"\n",
- "print \"generator B=\",round(is2),\"B\"\n",
- "print \"Bus bar voltage=\",round(vbus,1),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "I1= 200.0 A\n",
- "I2= 300.0 A\n",
- "Current in series winding:\n",
- "generator A= 300.0 A\n",
- "generator B= 200.0 B\n",
- "Bus bar voltage= 236.8 V\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_uaftNOn.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_uaftNOn.ipynb
deleted file mode 100644
index 7862658a..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_uaftNOn.ipynb
+++ /dev/null
@@ -1,3137 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:3a9b903871f8bdf2f971bf001fa7cff3dbf47aad5e657d5bfcea016f9756d9ac"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 37: Alternators"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.1, Page Number:1412"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "s1=36.0\n",
- "p1=4.0\n",
- "span1=8.0\n",
- "s2=72.0\n",
- "p2=6.0\n",
- "span2=10.0\n",
- "s3=96.0\n",
- "p3=6.0\n",
- "span3=12.0\n",
- "\n",
- "#calculations\n",
- "alpha1=2*p1*180/s1\n",
- "alpha2=3*p2*180/s2\n",
- "alpha3=5*p3*180/s3\n",
- "kc1=math.cos(math.radians(alpha1/2))\n",
- "kc2=math.cos(math.radians(alpha2/2))\n",
- "kc3=math.cos(math.radians(alpha3/2))\n",
- "\n",
- "#result\n",
- "print \"a)kc=\",kc1\n",
- "print \"b)kc=\",kc2\n",
- "print \"c)kc=\",kc3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a)kc= 0.939692620786\n",
- "b)kc= 0.923879532511\n",
- "c)kc= 0.881921264348\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.2, Page Number:1414"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "s=36.0\n",
- "p=4.0\n",
- "\n",
- "#calculations\n",
- "n=s/p\n",
- "beta=180/n\n",
- "m=s/(p*3)\n",
- "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n",
- "\n",
- "#result\n",
- "print \"distribution factor=\",kd"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "distribution factor= 0.959795080524\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.3, Page Number:1414"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=10.0#V\n",
- "beta=30.0#degrees\n",
- "m=6.0\n",
- "\n",
- "#calculations\n",
- "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n",
- "arith_sum=6*v\n",
- "vector_sum=kd*arith_sum\n",
- "\n",
- "#calculation\n",
- "print \"emf of six coils in series=\",vector_sum,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "emf of six coils in series= 38.6370330516 V\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.4, Page Number:1414"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "beta=180/9\n",
- "ratio=2.0/3.0\n",
- "m1=9\n",
- "m2=6\n",
- "m3=3\n",
- "\n",
- "#calculation\n",
- "kd1=math.sin(m1*math.radians(beta/2))/(m1*math.sin(math.radians(beta/2)))\n",
- "kd2=math.sin(m2*math.radians(beta/2))/(m2*math.sin(math.radians(beta/2)))\n",
- "kd3=math.sin(m3*math.radians(beta/2))/(m3*math.sin(math.radians(beta/2)))\n",
- "\n",
- "#result\n",
- "print \"i) kd=\",kd1\n",
- "print \"ii)kd=\",kd2\n",
- "print \"iii)kd=\",kd3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i) kd= 0.639863387016\n",
- "ii)kd= 0.831206922161\n",
- "iii)kd= 0.959795080524\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.5, Page Number:1416"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "slot=18.0\n",
- "s=16.0\n",
- "m1=3.0\n",
- "m2=5.0\n",
- "m3=7.0\n",
- "\n",
- "#calculations\n",
- "span=(s-1)\n",
- "alpha=180*3/slot\n",
- "kc1=math.cos(math.radians(alpha/2))\n",
- "kc3=math.cos(math.radians(m1*alpha/2))\n",
- "kc5=math.cos(math.radians(m2*alpha/2))\n",
- "kc7=math.cos(math.radians(m3*alpha/2))\n",
- "\n",
- "#result\n",
- "print \"kc1=\",kc1\n",
- "print \"kc3=\",kc3\n",
- "print \"kc5=\",kc5\n",
- "print \"kc7=\",kc7"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kc1= 0.965925826289\n",
- "kc3= 0.707106781187\n",
- "kc5= 0.258819045103\n",
- "kc7= -0.258819045103\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.6, Page Number:1416"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=16.0\n",
- "s=144.0\n",
- "z=10.0\n",
- "phi=0.03#Wb\n",
- "n=375.0#rpm\n",
- "\n",
- "#calculation\n",
- "f=p*n/120\n",
- "n=s/p\n",
- "beta=180/9\n",
- "m=s/(p*3)\n",
- "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n",
- "t=s*z/(3*2)\n",
- "eph=4.44*1*0.96*f*phi*t\n",
- "el=3**0.5*eph\n",
- "#result\n",
- "print \"frequency=\",f,\"Hz\"\n",
- "print \"phase emf=\",eph,\"V\"\n",
- "print \"line emf=\",el,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency= 50.0 Hz\n",
- "phase emf= 1534.464 V\n",
- "line emf= 2657.76961039 V\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.7, Page Number:1416"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=6\n",
- "s=54\n",
- "phi=0.1#Wb\n",
- "n=1200#rpm\n",
- "t=8\n",
- "#calculations\n",
- "beta=180/9\n",
- "kc=math.cos(beta/2)\n",
- "f=p*n/120\n",
- "n=s/p\n",
- "m=s/(p*3)\n",
- "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n",
- "z=s*8/3\n",
- "t=z/2\n",
- "eph=4.44*0.98*0.96*f*phi*t\n",
- "el=3**0.*eph\n",
- "\n",
- "#result\n",
- "print \"eph=\",eph,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "eph= 1804.529664 V\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.8, Page Number:1416"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=16.0\n",
- "slots=144.0\n",
- "z=4.0\n",
- "n=375.0\n",
- "airgap=5*0.01\n",
- "theta=150.0\n",
- "\n",
- "#calculation\n",
- "kf=1.11\n",
- "alpha=(180-theta)\n",
- "kc=math.cos(math.radians(alpha/2))\n",
- "beta=180/9\n",
- "m=slots/(p*3)\n",
- "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n",
- "f=p*n/120\n",
- "s=slots/3\n",
- "eph=4*kf*kc*kd*f*airgap*s*4/2\n",
- "\n",
- "#result\n",
- "print \"emf per phase=\",eph,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "emf per phase= 987.908016392 V\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.9, Page Number:1417"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=10\n",
- "f=50#Hz\n",
- "n=600#rpm\n",
- "slots=180\n",
- "s=15\n",
- "d=1.2#m\n",
- "l=0.4#m\n",
- "m=6\n",
- "beta=180/18\n",
- "#calculations\n",
- "area=(1.2*3.14/p)*l\n",
- "phi1=area*0.637\n",
- "vr=1.1*2*f*phi1\n",
- "vp=2**0.5*vr\n",
- "v3=0.4*vp\n",
- "v5=0.2*vp\n",
- "vf=6*vp*0.966\n",
- "vf3=6*v3*0.707\n",
- "vf5=6*v5*0.259\n",
- "kd1=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n",
- "kd2=math.sin(math.radians(3*m*beta/2))/(6*math.sin(3*math.radians(beta/2)))\n",
- "kd3=math.sin(math.radians(5*m*beta/2))/(6*math.sin(5*math.radians(beta/2)))\n",
- "vph=vf*2**0.5*60*kd1\n",
- "vph3=vf3*2**0.5*60*kd2\n",
- "vph5=vf5*2**0.5*60*kd3\n",
- "rmsv=(vph**2+vph3**2+vph5**2)**0.5\n",
- "rmsvl=3**0.5*(vph**2+vph5**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"i)e=\",vp,\"sin theta+\",v3,\"sin 3theta+\",v5,\"sin 5theta\"\n",
- "print \"ii)e=\",vf,\"sin theta+\",vf3,\"sin 3theta+\",vf5,\"sin 5theta\"\n",
- "print \"iii)rms value of phase voltage=\",rmsv,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "i)e= 14.9354392872 sin theta+ 5.97417571489 sin 3theta+ 2.98708785745 sin 5theta\n",
- "ii)e= 86.5658061088 sin theta+ 25.3424533826 sin 3theta+ 4.64193453047 sin 5theta\n",
- "iii)rms value of phase voltage= 7158.83679423 V\n"
- ]
- }
- ],
- "prompt_number": 33
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.10, Page Number:1418"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=4\n",
- "f=50.0#Hz\n",
- "slot=60.0\n",
- "z=4.0\n",
- "s=3.0\n",
- "theta=60.0\n",
- "phi=0.943#Wb\n",
- "\n",
- "#calculation\n",
- "m=slot/(p*s)\n",
- "beta=slot/5\n",
- "kd=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n",
- "alpha=(s/15)*180\n",
- "kc=math.cos(math.radians(alpha/2))\n",
- "z=slot*z/s\n",
- "t=z/2\n",
- "kf=1.11\n",
- "eph=z*kf*kc*kd*f*phi*t/2\n",
- "el=3**0.5*eph*0.1\n",
- "\n",
- "#result\n",
- "print \"line voltage=\",el,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "line voltage= 13196.4478482 V\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.11, Page Number:1418"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4.0\n",
- "f=50.0#Hz\n",
- "slot=15.0\n",
- "z=10.0\n",
- "kd=0.95\n",
- "e=1825#v\n",
- "kc=1\n",
- "kf=1.11\n",
- "#calculations\n",
- "slots=p*slot\n",
- "slotsp=slots/3\n",
- "turnp=20*z/2\n",
- "phi=e/(3**0.5*p*kc*kf*kd*f*turnp)\n",
- "z=slots*z\n",
- "n=120*f/p\n",
- "eg=(phi*0.001*z*n)/slots\n",
- "\n",
- "#result\n",
- "print \"emf=\",eg*1000,\"V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "emf= 749.405577006 V\n"
- ]
- }
- ],
- "prompt_number": 47
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.12, Page Number:1419"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=360#V\n",
- "f=60.0#Hz\n",
- "i=3.6#A\n",
- "f2=40#Hz\n",
- "i2=2.4#A\n",
- "\n",
- "#calculations\n",
- "e2=v*i2*f2/(f*i)\n",
- "\n",
- "#result\n",
- "print \"e2=\",e2,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "e2= 160.0 V\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.13, Page Number:1418"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=0\n",
- "f=50.0#Hz\n",
- "slot=2\n",
- "z=4\n",
- "theta=150#degrees\n",
- "phi=0.12#Wb\n",
- "per=20#%\n",
- "\n",
- "#calculations\n",
- "alpha=180-theta\n",
- "slotp=6\n",
- "m=2\n",
- "beta=180/slotp\n",
- "kd1=math.sin(m*math.radians(beta/2))/(m*math.sin(math.radians(beta/2)))\n",
- "z=10*slot*z\n",
- "t=z/2\n",
- "e1=4.44*kd1*kd1*f*0.12*t\n",
- "kc3=math.cos(3*math.radians(alpha/2))\n",
- "f2=f*3\n",
- "phi3=(1.0/3)*per*0.12\n",
- "e3=4.44*kd3*kd3*theta*0.008*40\n",
- "e=(e1**2+e3**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"e=\",e,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "e= 994.25286629 V\n"
- ]
- }
- ],
- "prompt_number": 50
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.14, Page Number:1419"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=230.0#V\n",
- "per=10.0#%\n",
- "per2=6.0#%\n",
- "f=50.0#Hz\n",
- "r=10.0#ohm\n",
- "\n",
- "#calculation\n",
- "#star connection\n",
- "e5=per*v/100\n",
- "e=(v**2+e5**2)**0.5\n",
- "eph=3**0.5*e\n",
- "\n",
- "#delta\n",
- "e3=10*v/100\n",
- "f3=10*3\n",
- "i=e3/f3\n",
- "\n",
- "#result\n",
- "print \"line voltage for star=\",eph,\"V\"\n",
- "print \"line voltage for delta=\",e3,\"V\"\n",
- "print \"current=\",i,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "line voltage for star= 400.358589267 V\n",
- "line voltage for delta= 23.0 V\n",
- "current= 0.766666666667 A\n"
- ]
- }
- ],
- "prompt_number": 55
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.15(a), Page Number:1420"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=10.0\n",
- "p1=24.0\n",
- "f=25#Hz\n",
- "p3=6.0\n",
- "s=0.05\n",
- "\n",
- "#calculation\n",
- "n=120*f/p\n",
- "f1=p1*n/120\n",
- "n2=120*f1/6\n",
- "n3=(1-s)*n2\n",
- "f2=s*f1p\n",
- "\n",
- "\n",
- "#result\n",
- "print \"frequency=\",f1,\"Hz\"\n",
- "print \"speed=\",n3,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency= 60.0 Hz\n",
- "speed= 1140.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 56
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.15(b), Page Number:1420"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "phi=0.12#Wb\n",
- "slotsp=4\n",
- "cp=4\n",
- "theta=150#degrees\n",
- "\n",
- "#calculation\n",
- "slots=slotsp*3*p\n",
- "c=cp*slots\n",
- "turns=32\n",
- "kb=math.sin(math.radians(60/2))/(p*math.sin(math.radians(7.5)))\n",
- "kp=math.cos(math.radians(15))\n",
- "eph=4.44*50*0.12*kb*0.966*turns\n",
- "el=eph*3**0.5\n",
- "\n",
- "#result\n",
- "print \"line voltage\",el,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "line voltage 1365.94840977 V\n"
- ]
- }
- ],
- "prompt_number": 62
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.16, Page Number:1426"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10#MW\n",
- "pf=0.85\n",
- "v=11#kV\n",
- "r=0.1#ohm\n",
- "x=0.66#ohm\n",
- "\n",
- "#calculation\n",
- "i=load*10**6/(3**0.5*v*1000*pf)\n",
- "iradrop=i*r\n",
- "ixsdrop=i*x\n",
- "vp=v*1000/3**0.5\n",
- "phi=math.acos(pf)\n",
- "sinphi=math.sin(phi)\n",
- "e0=((vp*pf+i*r)**2+(vp*sinphi+i*x)**2)**0.5\n",
- "el=3**0.5*e0\n",
- "\n",
- "#result\n",
- "print \"linevalue of emf=\",el,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "linevalue of emf= 11475.6408913 V\n"
- ]
- }
- ],
- "prompt_number": 69
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.17(a), Page Number:1428"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=2200.0#V\n",
- "f=50.0#Hz\n",
- "load=440.0#KVA\n",
- "r=0.5#ohm\n",
- "i=40.0#A\n",
- "il=200.0#A\n",
- "vf=1160.0#V\n",
- "\n",
- "#calculations\n",
- "zs=vf/200\n",
- "xs=(zs**2-r**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"synchronous impedence=\",zs,\"ohm\"\n",
- "print \"synchronous reactance=\",xs,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "synchronous impedence= 5.8 ohm\n",
- "synchronous reactance= 5.77840808528 ohm\n"
- ]
- }
- ],
- "prompt_number": 71
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.17(b), Page Number:1428"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=60.0#kVA\n",
- "v=220.0#V\n",
- "f=50.0#Hz\n",
- "r=0.016#ohm\n",
- "x=0.07#ohm\n",
- "pf=0.7\n",
- "\n",
- "#calculations\n",
- "i=load*1000/v\n",
- "ira=i*r\n",
- "ixl=i*x\n",
- "#unity pf\n",
- "e=((v+ira)**2+(ixl)**2)**0.5\n",
- "#pf of 0.7 lag\n",
- "e2=((v*pf+ira)**2+(v*pf+ixl)**2)**0.5\n",
- "#pf of 0.7 lead\n",
- "e3=((v*pf+ira)**2+(v*pf-ixl)**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"voltage with pf=1\",e,\"V\"\n",
- "print \"voltage with pf=0.7 lag\",e2,\"V\"\n",
- "print \"voltage with pf=0.7 lead\",e3,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage with pf=1 225.174386048 V\n",
- "voltage with pf=0.7 lag 234.604995966 V\n",
- "voltage with pf=0.7 lead 208.03726621 V\n"
- ]
- }
- ],
- "prompt_number": 75
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.18(a), Page Number:1429"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=50.0#KVA\n",
- "v1=440.0#V\n",
- "f=50.0#Hz\n",
- "r=0.25#ohm\n",
- "x=3.2#ohm\n",
- "xl=0.5#ohm\n",
- "\n",
- "#calculation\n",
- "v=v1/3**0.5\n",
- "i=load*1000/(3**0.5*v1)\n",
- "rd=i*r\n",
- "ixl=i*xl\n",
- "ea=((v+rd)**2+(ixl)**2)**0.5\n",
- "el=3**0.5*ea\n",
- "e0=((v+rd)**2+(i*x)**2)**0.5\n",
- "e0l=e0*3**0.5\n",
- "per=(e0-v)/v\n",
- "xa=x-xl\n",
- "#result\n",
- "print \"internal emf Ea=\",el,\"V\"\n",
- "print \"no load emf=\",e0l,\"V\"\n",
- "print \"percentage regulation=\",per*100,\"%\"\n",
- "print \"valueof synchronous reactance=\",xa,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "internal emf Ea= 471.842539659 V\n",
- "no load emf= 592.991130967 V\n",
- "percentage regulation= 34.7707115833 %\n",
- "valueof synchronous reactance= 2.7 ohm\n"
- ]
- }
- ],
- "prompt_number": 87
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.19, Page Number:1432"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "i=200.0#A\n",
- "v=50.0#V\n",
- "r=0.1#ohm\n",
- "il=100.0#A\n",
- "pf=0.8\n",
- "vt=200.0#V\n",
- "\n",
- "#calculation\n",
- "zs=v/vt\n",
- "xs=(zs**2-r**2)**0.5\n",
- "ira=il*r\n",
- "ixs=il*xs\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "e0=((vt*pf+ira)**2+(vt*sinphi+ixs)**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"induced voltage=\",e0,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "induced voltage= 222.090276316 V\n"
- ]
- }
- ],
- "prompt_number": 90
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.20, Page Number:1433"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=2000.0#V\n",
- "i=100.0#A\n",
- "pf=0.8\n",
- "pf2=0.71\n",
- "i2=2.5#A\n",
- "v2=500.0#V\n",
- "r=0.8#ohm\n",
- "\n",
- "#calculations\n",
- "sinphi1=math.sin(math.acos(pf))\n",
- "sinphi2=math.sin(math.acos(pf2))\n",
- "zs=v2/i\n",
- "xs=(zs**2-r**2)**.5\n",
- "#unity pf\n",
- "e01=((v+r*i)**2+(i*xs)**2)**0.5\n",
- "reg1=(e01-v)*100/v\n",
- "#at pf=0.8\n",
- "e02=((v*pf+r*i)**2+(v*sinphi1-i*xs)**2)**0.5\n",
- "reg2=(e02-v)*100/v\n",
- "#at pf=0.71\n",
- "e03=((v*pf2+r*i)**2+(v*sinphi2+i*xs)**2)**0.5\n",
- "reg3=(e03-v)*100/v\n",
- "\n",
- "#result\n",
- "print \"voltage regulation unity pf=\",reg1,\"%\"\n",
- "print \"voltage regulation 0.8 lag pf=\",reg2,\"%\"\n",
- "print \"voltage regulation 0.71 lead pf=\",reg3,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "0.6\n",
- "voltage regulation unity pf= 6.88779163216 %\n",
- "voltage regulation 0.8 lag pf= -8.875640156 %\n",
- "voltage regulation 0.71 lead pf= 21.1141910671 %\n"
- ]
- }
- ],
- "prompt_number": 100
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.21, Page Number:1433"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=3000.0#V\n",
- "load=100.0#kVA\n",
- "f=50.0#Hz\n",
- "r=0.2\n",
- "i1=40.0#A\n",
- "i2=200.0#A\n",
- "v2=1040.0#V\n",
- "pf=0.8\n",
- "v1=v/3**0.5\n",
- "#calculations\n",
- "sinphi1=math.sin(math.acos(pf))\n",
- "zs=v2/(3**0.5*i2)\n",
- "xs=(zs**2-r**2)**.5\n",
- "i=load*1000/(3**0.5*v)\n",
- "\n",
- "\n",
- "#at pf=0.8 lag\n",
- "e01=((v1*pf+r*i)**2+(v1*sinphi1+i*xs)**2)**0.5\n",
- "reg1=(e01-v1)*100/v1\n",
- "#at pf=0.8 lead\n",
- "e02=((v1*pf+r*i)**2+(v1*sinphi1-i*xs)**2)**0.5\n",
- "reg2=(e02-v1)*100/v1\n",
- "\n",
- "#result\n",
- "print \"voltage regulation 0.8 lag pf=\",reg1,\"%\"\n",
- "print \"voltage regulation 0.8 lag pf=\",reg2,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage regulation 0.8 lag pf= 2.20611574348 %\n",
- "voltage regulation 0.8 lag pf= -1.77945143824 %\n"
- ]
- }
- ],
- "prompt_number": 112
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.22, Page Number:1434"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=1600.0#kVA\n",
- "v=13500.0#V\n",
- "r=1.5#ohm\n",
- "x=30.0#ohm\n",
- "load1=1280.0#kW\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "sinphi1=math.sin(math.acos(pf))\n",
- "i=load1*1000/(3**0.5*v*pf)\n",
- "ira=i*r\n",
- "ixs=i*x\n",
- "vp=v/3**0.5\n",
- "e0=((vp*pf+ira)**2+(vp*sinphi1-ixs)**2)**0.5\n",
- "regn=(e0-vp)*100/vp\n",
- "\n",
- "#result\n",
- "print \"percentage regulation=\",regn,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "percentage regulation= -11.9909032489 %\n"
- ]
- }
- ],
- "prompt_number": 122
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.23, Page Number:1435"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#kVA\n",
- "v=400.0#V\n",
- "f=50.0#Hz\n",
- "pf=0.8\n",
- "r=0.5#ohm\n",
- "x=10.0#ohm\n",
- "\n",
- "#calculations\n",
- "i=load*1000/(3**0.5*v)\n",
- "ira=i*r\n",
- "ixs=i*x\n",
- "vp=v/3**0.5\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "e0=((vp*pf+ira)**2+(vp*sinphi+ixs)**2)**0.5\n",
- "regn=(e0-vp)/vp\n",
- "thetadel=math.atan((vp*sinphi+ixs)/(vp*pf+ira))\n",
- "delta=math.degrees(thetadel)-math.degrees(math.acos(pf))\n",
- "\n",
- "#result\n",
- "print \"voltage regulation=\",regn*100,\"%\"\n",
- "print \"power angle=\",delta,\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage regulation= 48.0405877623 %\n",
- "power angle= 18.9704078085 degrees\n"
- ]
- }
- ],
- "prompt_number": 127
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.24, Page Number:1435"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=6000.0#KVA\n",
- "v=6600.0#V\n",
- "p=2.0\n",
- "f=50.0#Hz\n",
- "i2=125.0#A\n",
- "v1=8000.0#V\n",
- "i3=800.0#A\n",
- "d=0.03\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "zs=v1/(3**0.5*i3)\n",
- "vp=v/3**0.5\n",
- "rd=d*vp\n",
- "il=load*1000/(3**0.5*v)\n",
- "ira=rd\n",
- "ra=ira/il\n",
- "xs=(zs**2-ra**2)**0.5\n",
- "e0=((vp*pf+ira)**2+(vp*sinphi+il*xs)**2)**0.5\n",
- "reg=(e0-vp)/vp\n",
- "\n",
- "#result\n",
- "print \"percentage regulation=\",reg*100,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "percentage regulation= 62.2972136768 %\n"
- ]
- }
- ],
- "prompt_number": 133
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.25, Page Number:1435"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50.0#Hz\n",
- "load=2000#KVA\n",
- "v=2300#V\n",
- "i=600#A\n",
- "v2=900#V\n",
- "r=0.12#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "zs=v2/(3**0.5*i)\n",
- "rp=r/2\n",
- "re=rp*1.5\n",
- "xs=(zs**2-re**2)**0.5\n",
- "il=load*1000/(3**0.5*v)\n",
- "ira=il*rp\n",
- "ixs=il*xs\n",
- "vp=v/3**0.5\n",
- "e0=((vp+ira)**2+(ixs)**2)**0.5\n",
- "reg1=(e0-vp)/vp\n",
- "e0=((vp*pf+ira)**2+(vp*sinphi+ixs)**2)**0.5\n",
- "reg2=(e0-vp)/vp\n",
- "#result\n",
- "print \"regulation at pf=1\",reg1*100,\"%\"\n",
- "print \"regulation at pf=0.8\",reg2*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation at pf=1 7.32796146323 %\n",
- "regulation at pf=0.8 23.8398862235 %\n"
- ]
- }
- ],
- "prompt_number": 134
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.26, Page Number:1436"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "v=Symbol('v')\n",
- "load=2000#KVA\n",
- "load1=11#KV\n",
- "r=0.3#ohm\n",
- "x=5#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "i=load*1000/(3**0.5*load1*1000)\n",
- "vt=load1*1000/3**0.5\n",
- "ira=i*r\n",
- "ixs=i*x\n",
- "e0=((vt*pf+ira)**2+(vt*sinphi+ixs)**2)**0.5\n",
- "v=solve(((pf*v+ira)**2+(sinphi*v-ixs)**2)**0.5-e0,v)\n",
- "\n",
- "#result\n",
- "print \"terminal voltage=\",v[1],\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "terminal voltage= 6978.31767618569 V\n"
- ]
- }
- ],
- "prompt_number": 150
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.27, Page Number:1436"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=1200#KVA\n",
- "load1=3.3#KV\n",
- "f=50#Hz\n",
- "r=0.25#ohm\n",
- "i=35#A\n",
- "i2=200#A\n",
- "v=1.1#kV\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "zs=v*1000/(3**0.5*i2)\n",
- "xs=(zs**2-r**2)**0.5\n",
- "v=load1*1000/3**0.5\n",
- "theta=math.atan(xs/r)\n",
- "ia=load*1000/(3**0.5*load1*1000)\n",
- "e=v+ia*zs\n",
- "change=(e-v)/v\n",
- "\n",
- "#result\n",
- "print \"per unit change=\",change"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "per unit change= 0.349909254054\n"
- ]
- }
- ],
- "prompt_number": 151
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.28, Page Number:1437"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50#Hz\n",
- "v1=11#kV\n",
- "load=3#MVA\n",
- "i=100#A\n",
- "v2=12370#V\n",
- "vt=11000#V\n",
- "pf=0.8\n",
- "r=0.4#ohm\n",
- "\n",
- "#calculation\n",
- "E0=v1*1000/3**0.5\n",
- "v=v2/3**0.5\n",
- "pf=0\n",
- "sinphi=1\n",
- "xs=(v-(E0**2-(i*r)**2)**0.5)/i\n",
- "il=load*10**6/(3**0.5*v1*1000)\n",
- "ira=il*r\n",
- "ixs=il*xs\n",
- "e0=((E0*pf+ira)**2+(E0*sinphi+ixs)**2)**0.5\n",
- "regn=(e0-E0)*100/E0\n",
- "#result\n",
- "print \"regulation=\",regn,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation= 19.6180576177 %\n"
- ]
- }
- ],
- "prompt_number": 175
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.29, Page Number:1437"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "pf=0.8\n",
- "vt=3500#v\n",
- "load=2280#KW\n",
- "v1=3300#V\n",
- "r=8#ohm\n",
- "x=6#ohm\n",
- "\n",
- "#calculation\n",
- "vl=vt/3**0.5\n",
- "vp=v1/3**0.5\n",
- "il=load*1000/(3**0.5*v1*pf)\n",
- "drop=vl-vp\n",
- "z=(r**2+x**2)**0.5\n",
- "x=vl/(z+drop/il)\n",
- "vtp=vl-x*drop/il\n",
- "vtpl=vtp*3**0.5\n",
- "\n",
- "#result\n",
- "print \"terminal voltage=\",vtpl,\"V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "terminal voltage= 3420.781893 V\n"
- ]
- }
- ],
- "prompt_number": 176
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.30, Page Number:1441"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "load=3.5#MVA\n",
- "v=4160#V\n",
- "f=50#Hz\n",
- "i=200#A\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "il=load*10**6/(3**0.5*v)\n",
- "zs=4750/(3**0.5*il)\n",
- "ra=0\n",
- "ixs=il*zs\n",
- "vp=v/3**0.5\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "e0=((vp*pf)**2+(vp*sinphi+ixs)**2)**0.5\n",
- "regn=(e0-vp)*100/vp\n",
- "#result\n",
- "print \"regulation=\",round(regn,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation= 91.7 %\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.31, Page Number:1441"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "i_f1=20#A\n",
- "i_f=37.5#A\n",
- "pf=0.8\n",
- "v=6600#V\n",
- "eo=7600#V\n",
- "\n",
- "#calculations\n",
- "ob=math.sqrt(i_f**2+i*math.cos(math.radians(53.8)))\n",
- "reg=(eo-v)*100/v\n",
- "i=100*i_f/i_f1\n",
- "zs=100*100/i\n",
- "Eo=math.sqrt((100+zs*0.6)**2+(zs*pf)**2)\n",
- "reg2=(Eo-100)*100/100\n",
- "\n",
- "#result\n",
- "print \"regulation:\"\n",
- "print \"by ampere turn method=\",reg,\"%\"\n",
- "print \"by synchronous impedence method=\",reg2,\"%\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation:\n",
- "by ampere turn method= 15 %\n",
- "by synchronous impedence method= 38.7243469779 %\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.32, Page Number:1442"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "r=0.2#ohm\n",
- "p=1000000#VA\n",
- "v=2000#V\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "vp=v*math.sqrt(3)\n",
- "i=p/(math.sqrt(3)*v)\n",
- "V=v/math.sqrt(3)+(i*r**pf)\n",
- "reg=(1555-(v/math.sqrt(3)))*100/(v/math.sqrt(3))\n",
- "reg2=(1080-(v/math.sqrt(3)))*100/(v/math.sqrt(3))\n",
- "\n",
- "#result\n",
- "print \"regulation when pf=0.8 lagging:\",round(reg,1),\"%\"\n",
- "print \"regulation when pf=0.8 leading:\",round(reg2,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation when pf=0.8 lagging: 34.7 %\n",
- "regulation when pf=0.8 leading: -6.5 %\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.33, Page Number:1443"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "x_drop=0.1\n",
- "r_drop=0.02\n",
- "pf=0.8\n",
- "v=3300#V\n",
- "p=800000#VA\n",
- "\n",
- "#calculations\n",
- "vp=v/math.sqrt(3)\n",
- "ir_drop=r_drop*vp\n",
- "leakage=x_drop*vp\n",
- "E=math.sqrt((vp*pf+ir_drop)**2+(vp*0.6+leakage)**2)\n",
- "i=p/(math.sqrt(3)*v)\n",
- "\n",
- "#result\n",
- "print \"I=\",round(i),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "I= 140.0 A\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.34, Page Number:1444"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "i_f1=17#A\n",
- "p=2000000.0#VA\n",
- "i_f2=42.5#A\n",
- "v=6000.0/math.sqrt(3)#V\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "e=math.sqrt((v*pf)**2+(v*0.6+450)**2)\n",
- "#corresponding i=26.5 A\n",
- "#field amperes required for balancing armature reaction=14.5A\n",
- "i_f=math.sqrt(26.5**2+14.5**2+2*26.5*14.4*math.cos(math.radians(53.8)))\n",
- "\n",
- "#result\n",
- "print \"resulting field current=\",round(i_f,1),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resulting field current= 36.9 A\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.35, Page Number:1446"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=11000#V\n",
- "p=1000000#VA\n",
- "r=2#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "i=p/(math.sqrt(3)*v)\n",
- "vp=v/math.sqrt(3)\n",
- "e=math.sqrt((vp*pf+i*2)**2+(vp*0.6+p/1000)**2)\n",
- "i1=math.sqrt(108**2+30**2+2*108*30*math.cos(math.radians(53.8)))\n",
- "#corresponding emf=7700V\n",
- "reg=(7700-vp)*100/vp\n",
- "\n",
- "#result\n",
- "print \"Voltage regulation=\",round(reg,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Voltage regulation= 21.2 %\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.36, Page Number:1448"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declarations\n",
- "p=275000.0#W\n",
- "v=6600.0#V\n",
- "stator_i=35.0#A\n",
- "exciting_i=50.0#A\n",
- "x=0.08\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "x_drop=v*x/math.sqrt(3)\n",
- "vp=v/math.sqrt(3)\n",
- "i=p/(math.sqrt(3)*v*pf)\n",
- "ia=i*exciting_i/stator_i\n",
- "ob=math.sqrt(vp**2+x_drop**2)\n",
- "oc=59.8#field current corresponding tothe voltage\n",
- "i_fl=p/(math.sqrt(3)*v)\n",
- "ia2=exciting_i*i_fl/stator_i\n",
- "ei=math.sqrt(ia2**2+oc**2)\n",
- "\n",
- "#result\n",
- "print \"Exciting current=\",round(ei),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Exciting current= 69.0 A\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.37, Page Number:1449"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=600000.0#VA\n",
- "v=3300.0#V\n",
- "pf=0.8\n",
- "l_drop=7\n",
- "\n",
- "#calculations\n",
- "i=p/(math.sqrt(3)*v)\n",
- "amp_turns=1.06*i*200.0/8\n",
- "vp=v/math.sqrt(3)\n",
- "x_drop=vp*l_drop/100\n",
- "oa=1910.0#V\n",
- "reg=(2242.0-oa)*100/oa\n",
- "\n",
- "#result\n",
- "print \"regulation=\",round(reg,1),\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation= 17.4 %\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.38, Page Number:1450"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=15000000#VA\n",
- "v=11000#V\n",
- "pf=0.8\n",
- "v1=8400\n",
- "\n",
- "#calculations\n",
- "i=p/(math.sqrt(3)*v)\n",
- "xl=640/i\n",
- "zs=(v1/math.sqrt(3))/i\n",
- "vp=v/math.sqrt(3)\n",
- "eo=7540\n",
- "reg=(eo-vp)*100/vp\n",
- "\n",
- "#result\n",
- "print \"regulation=\",round(reg,1),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "regulation= 18.7 %\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.39, Page Number:1455"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "xd=0.7\n",
- "xq=0.4\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "v=1\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "ia=1\n",
- "tandelta=ia*xq*pf/(v+xq*sinphi)\n",
- "delta=math.atan(tandelta)\n",
- "i_d=ia*math.sin(math.radians(36.9)+delta)\n",
- "e0=v*math.cos(delta)+i_d*xd\n",
- "\n",
- "#result\n",
- "print \"load angle=\",math.degrees(delta),\"degrees\"\n",
- "print \"no load voltage=\",e0,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "load angle= 14.4702941001 degrees\n",
- "no load voltage= 1.51511515874 V\n"
- ]
- }
- ],
- "prompt_number": 185
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.40, Page Number:1455"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50.0#Hz\n",
- "xd=0.6\n",
- "xq=0.45\n",
- "ra=0.015\n",
- "pf=0.8\n",
- "ia=1\n",
- "v=1\n",
- "sinphi=math.sin(math.acos(pf))\n",
- "#calculation\n",
- "tanpsi=(v*sinphi+ia*xq)/(v*pf+ia*ra)\n",
- "psi=math.atan(tanpsi)\n",
- "delta=psi-math.acos(pf)\n",
- "i_d=ia*math.sin(psi)\n",
- "iq=ia*math.cos(psi)\n",
- "e0=v*math.cos(delta)+iq*ra+i_d*xd\n",
- "regn=(e0-v)*100/v\n",
- "\n",
- "#result\n",
- "print \"open circuit voltage=\",e0,\"V\"\n",
- "print \"regulation=\",regn,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "open circuit voltage= 1.44767600311 V\n",
- "regulation= 44.7676003107 %\n"
- ]
- }
- ],
- "prompt_number": 187
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.41, Page Number:1455"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "ia=10#A\n",
- "phi=math.radians(20)\n",
- "v=400#V\n",
- "xd=10#ohm\n",
- "xq=6.5#ohm\n",
- "\n",
- "#calculations\n",
- "pf=math.cos(phi)\n",
- "sinphi=math.sin(phi)\n",
- "tandelta=ia*xq*pf/(v+ia*xq*sinphi)\n",
- "delta=math.atan(tandelta)\n",
- "i_d=ia*math.sin(phi+delta)\n",
- "iq=ia*math.cos(phi+delta)\n",
- "e0=v*math.cos(delta)+i_d*xd\n",
- "regn=(e0-v)/v\n",
- "\n",
- "#result\n",
- "print \"load angle=\",math.degrees(delta),\"degrees\"\n",
- "print \"id=\",i_d,\"A\"\n",
- "print \"iq=\",iq,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "load angle= 8.23131209115 degrees\n",
- "id= 4.7303232581 A\n",
- "iq= 8.81045071911 A\n"
- ]
- }
- ],
- "prompt_number": 189
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.42, Page Number:1459"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "e1=220#V\n",
- "f1=60#Hz\n",
- "e2=222#V\n",
- "f2=59#Hz\n",
- "\n",
- "#calculation\n",
- "emax=(e1+e2)/2\n",
- "emin=(e2-e1)/2\n",
- "f=(f1-f2)\n",
- "epeak=emax/0.707\n",
- "pulse=(f1-f2)*60\n",
- "\n",
- "#result\n",
- "print \"max voltage=\",emax,\"V\"\n",
- "print \"min voltage=\",emin,\"V\"\n",
- "print \"frequency=\",f,\"Hz\"\n",
- "print \"peak value of voltage=\",epeak,\"V\"\n",
- "print \"number of maximum light pulsations/minute=\",pulse"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "max voltage= 221 V\n",
- "min voltage= 1 V\n",
- "frequency= 1 Hz\n",
- "peak value of voltage= 312.588401697 V\n",
- "number of maximum light pulsations/minute= 60\n"
- ]
- }
- ],
- "prompt_number": 190
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.43, Page Number:1462"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "power=1500#kVA\n",
- "v=6.6#kV\n",
- "r=0.4#ohm\n",
- "x=6#ohm\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "i=power*1000/(3**0.5*v*1000)\n",
- "ira=i*r\n",
- "ixs=i*x\n",
- "vp=v*1000/3**0.5\n",
- "phi=math.acos(pf)\n",
- "tanphialpha=(vp*math.sin(phi)+ixs)/(vp*pf+ira)\n",
- "phialpha=math.atan(tanphialpha)\n",
- "alpha=phialpha-phi\n",
- "\n",
- "#result\n",
- "print \"power angle=\",math.degrees(alpha)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "power angle= 7.87684146241\n"
- ]
- }
- ],
- "prompt_number": 198
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.44, Page Number:1464"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=3000#KVA\n",
- "p=6\n",
- "n=1000#rpm\n",
- "v=3300#v\n",
- "x=0.25\n",
- "\n",
- "#calculation\n",
- "vp=v/3**0.5\n",
- "i=load*1000/(3**0.5*v)\n",
- "ixs=x*vp\n",
- "xs=x*vp/i\n",
- "alpha=1*p/2\n",
- "psy=3*3.14*vp**2/(60*xs*n)\n",
- "tsy=9.55*psy/n\n",
- "\n",
- "#result\n",
- "print \"synchronizing power=\",psy,\"kW\"\n",
- "print \"torque=\",tsy*1000,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "synchronizing power= 628.0 kW\n",
- "torque= 5997.4 N-m\n"
- ]
- }
- ],
- "prompt_number": 202
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.45, Page Number:1465"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=3#MVA\n",
- "n=1000#rpm\n",
- "v1=3.3#kV\n",
- "r=0.25\n",
- "pf=0.8\n",
- "\n",
- "#calculations\n",
- "vp=v1*1000/3**0.5\n",
- "i=load*1000000/(3**0.5*v1*1000)\n",
- "ixs=complex(0,r*vp)\n",
- "xs=ixs/i\n",
- "v=vp*complex(pf,math.sin(math.acos(pf)))\n",
- "e0=v+ixs\n",
- "alpha=math.atan(e0.imag/e0.real)-math.acos(pf)\n",
- "p=6/2\n",
- "psy=abs(e0)*vp*math.cos(alpha)*math.sin(math.radians(3))/xs\n",
- "tsy=9.55*3*psy*100/n\n",
- "\n",
- "#result\n",
- "print \"synchronous power=\",-psy*3/1000,\"kW\"\n",
- "print \"toque=\",-tsy/100,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "synchronous power= 722.236196153j kW\n",
- "toque= 6897.35567326j N-m\n"
- ]
- }
- ],
- "prompt_number": 221
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.46, Page Number:1465"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=750#KVA\n",
- "v=11#kV\n",
- "p=4\n",
- "r=1#%\n",
- "x=15#%\n",
- "pf=0.8\n",
- "#calculation\n",
- "i=load*1000/(3**0.5*v*1000)\n",
- "vph=v*1000/3**0.5\n",
- "ira=r*vph/1000\n",
- "ra=ira/i\n",
- "xs=x*vph/(100*i)\n",
- "zs=(ra**2+xs**2)**0.5\n",
- "#no load\n",
- "alpha=p/2\n",
- "psy=math.radians(alpha)*vph**2/xs\n",
- "#fl 0.8 pf\n",
- "e=((vph*pf+i*ra)**2+(vph*math.sin(math.acos(pf)+i*xs))**2)**0.5\n",
- "psy2=math.radians(alpha)*e*vph/xs\n",
- "\n",
- "#result\n",
- "print \"Synchronous power at:\"\n",
- "print \"no load=\",psy,\"W\"\n",
- "print \"at pf of 0.8=\",psy2,\"w\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Synchronous power at:\n",
- "no load= 58177.6417331 W\n",
- "at pf of 0.8= 73621.2350169 w\n"
- ]
- }
- ],
- "prompt_number": 225
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.47, Page Number:1466"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=2000#KVA\n",
- "p=8\n",
- "n=750#rpm\n",
- "v1=6000#V\n",
- "pf=0.8\n",
- "r=6#ohm\n",
- "\n",
- "#calculations\n",
- "alpha=math.radians(4)\n",
- "v=v1/3**0.5\n",
- "i=load*1000/(3**0.5*v1)\n",
- "e0=((v*pf)**2+(v*math.sin(math.acos(pf))+i*r)**2)**0.5\n",
- "psy=alpha*e0*v*3/r\n",
- "tsy=9.55*psy/n\n",
- "\n",
- "#result\n",
- "print \"synchronous power=\",psy,\"W\"\n",
- "print \"synchronous torque=\",tsy,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "synchronous power= 514916.500204 W\n",
- "synchronous torque= 6556.60343593 N-m\n"
- ]
- }
- ],
- "prompt_number": 226
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.48, Page Number:1467"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=5000#KVA\n",
- "v=10000#V\n",
- "n=1500#rpm\n",
- "f=50#Hz\n",
- "r=20#%\n",
- "pf=0.8\n",
- "phi=0.5\n",
- "\n",
- "#calculations\n",
- "vp=v/3**0.5\n",
- "i=load*1000/(3**0.5*v)\n",
- "xs=r*vp/(1000*i)\n",
- "p=120*f/n\n",
- "alpha=math.radians(2)\n",
- "#no load\n",
- "psy=3*alpha*vp**2/(p*1000)\n",
- "tsy=9.55*psy*1000/(n*2)\n",
- "#pf=0.8\n",
- "v2=vp*complex(pf,math.sin(math.acos(pf)))\n",
- "ixs=complex(0,i*4)\n",
- "e0=v+ixs\n",
- "psy2=abs(e0)*vp*math.cos(math.radians(8.1))*math.sin(math.radians(2))*3/4\n",
- "tsy2=9.55*psy2/(n*20)\n",
- "\n",
- "#result\n",
- "print \"synchronous power:\"\n",
- "print \"atno load=\",psy,\"w\"\n",
- "print \"at 0.8 pf=\",psy2,\"w\"\n",
- "print \"torque:\"\n",
- "print \"at no load=\",tsy,\"N-m\"\n",
- "print \"at pf=0.8=\",tsy2,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "synchronous power:\n",
- "atno load= 872.664625997 w\n",
- "at 0.8 pf= 1506057.44405 w\n",
- "torque:\n",
- "at no load= 2777.98239276 N-m\n",
- "at pf=0.8= 479.428286357 N-m\n"
- ]
- }
- ],
- "prompt_number": 229
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.49, Page Number:1468"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=6.6#kW\n",
- "load1=3000#kW\n",
- "pf=0.8\n",
- "xa=complex(0.5,10)\n",
- "xb=complex(0.4,12)\n",
- "i0=150#A\n",
- "\n",
- "#calculation\n",
- "v=complex(load*1000/3**0.5,0)\n",
- "cosphi1=1500*1000/(load*1000*i0*3**0.5)\n",
- "phi1=math.acos(cosphi1)\n",
- "sinphi1=math.sin(phi1)\n",
- "i=328*complex(pf,-math.sin(math.acos(pf)))\n",
- "i1=i0*complex(cosphi1,-sinphi1)\n",
- "i2=i-i1\n",
- "coshi2=i2.real/181\n",
- "ea=v+i1*xa\n",
- "eal=3**0.5*abs(ea)\n",
- "eb=v+i2*xb\n",
- "ebl=3**0.5*abs(eb)\n",
- "alpha1=(ea.imag/ea.real)\n",
- "alpha2=(eb.imag/eb.real)\n",
- "#result\n",
- "print \"Ea=\",ea,\"V\"\n",
- "print \"Eb=\",eb,\"V\"\n",
- "print \"alpha1=\",math.degrees(alpha1),\"degrees\"\n",
- "print \"alpha2=\",math.degrees(alpha2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Ea= (4602.91884998+1275.81974829j) V\n",
- "Eb= (5352.42648271+1524.56032028j) V\n",
- "alpha1= 15.8810288383 degrees\n",
- "alpha2= 16.3198639435 degrees\n"
- ]
- }
- ],
- "prompt_number": 245
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.50, Page Number:1468"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declration\n",
- "e1=complex(230,0)\n",
- "e2=230*complex(0.985,0.174)\n",
- "z1=complex(0,2)\n",
- "z2=complex(0,3)\n",
- "z=6\n",
- "i1=((e1-e2)*z+e1*z2)/(z*(z1+z2)+z1*z2)\n",
- "i2=((e2-e1)*z+e2*z1)/(z*(z1+z2)+z1*z2)\n",
- "i=i1+i2\n",
- "v=i*z\n",
- "p1=abs(v)*abs(i1)*math.cos(math.atan(i1.imag/i1.real))\n",
- "p2=abs(v)*abs(i2)*math.cos(math.atan(i2.imag/i2.real))\n",
- "\n",
- "#result\n",
- "print \"terminal voltage=\",v,\"V\"\n",
- "print \"current\",i,\"A\"\n",
- "print \"power 1=\",p1,\"W\"\n",
- "print \"power 2=\",p2,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "terminal voltage= (222.905384615-28.5730769231j) V\n",
- "current (37.1508974359-4.76217948718j) A\n",
- "power 1= 3210.60292765 W\n",
- "power 2= 5138.29001053 W\n"
- ]
- }
- ],
- "prompt_number": 249
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.51, Page Number:1471"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=1500#kW\n",
- "v=11#KV\n",
- "pf=0.867\n",
- "x=50#ohm\n",
- "r=4#ohm\n",
- "i=50#A\n",
- "\n",
- "#calculations\n",
- "il=load*1000/(3**0.5*v*1000*pf)\n",
- "phi=math.acos(pf)\n",
- "sinphi=math.sin(phi)\n",
- "iwatt=il*pf\n",
- "iwattless=il*sinphi\n",
- "i1=il/2\n",
- "i2=iwatt/2\n",
- "iw1=(i**2-i1**2)**0.5\n",
- "iw2=i2-iw1\n",
- "ia=(i2**2+iw2**2)**0.5\n",
- "vt=v*1000/3**0.5\n",
- "ir=i*r\n",
- "ix=x*i\n",
- "cosphi=i2/i\n",
- "sinphi=math.sin(math.acos(cosphi))\n",
- "e=((vt*cosphi+ir)**2+(vt*sinphi+ix)**2)**0.5\n",
- "el=3**0.5*e\n",
- "\n",
- "#result\n",
- "print \"armature current=\",ia,\"A\"\n",
- "print \"line voltage=\",el,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature current= 43.4628778514 A\n",
- "line voltage= 14304.0798593 V\n"
- ]
- }
- ],
- "prompt_number": 251
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.52, Page Number:1472"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10#MW\n",
- "pf=0.8\n",
- "output=6000#kW\n",
- "pfa=0.92\n",
- "\n",
- "#calculations\n",
- "phi=math.acos(pf)\n",
- "phia=math.acos(pfa)\n",
- "tanphi=math.tan(phi)\n",
- "tanphia=math.tan(phia)\n",
- "loadkvar=load*1000*tanphi\n",
- "akvar=output*tanphia\n",
- "kwb=(load*1000-output)\n",
- "kvarb=loadkvar-akvar\n",
- "kvab=complex(kwb,kvarb)\n",
- "pfb=math.cos(math.atan(kvab.imag/kvab.real))\n",
- "kvarb=kwb*pfb\n",
- "kvara=-loadkvar-kvarb\n",
- "kvaa=complex(output,kvara)\n",
- "pfa=math.cos(math.atan(kvaa.imag/kvaa.real))\n",
- "\n",
- "#result\n",
- "print \"new pfb=\",pfb\n",
- "print \"new pfa=\",pfa"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "new pfb= 0.628980253433\n",
- "new pfa= 0.513894032194\n"
- ]
- }
- ],
- "prompt_number": 253
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.54, Page Number:1473"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=6600#V\n",
- "load=1000#KVA\n",
- "x=20#%\n",
- "pf=0.8\n",
- "\n",
- "#calculation\n",
- "i=87.5\n",
- "x=8.7\n",
- "vp=3810\n",
- "e0=4311\n",
- "ir=70\n",
- "ix=52.5\n",
- "IX=762\n",
- "vb1=(e0**2-vp**2)**0.5\n",
- "i1x=vb1\n",
- "i1=i1x/x\n",
- "output=3**0.5*v*i1/1000\n",
- "b2v=(vp**2+e0**2)**0.5\n",
- "i2z=b2v\n",
- "i2=b2v/x\n",
- "i2rx=e0\n",
- "i2r=i2rx/x\n",
- "i2x=vp/x\n",
- "tanphi2=i2x/i2r\n",
- "phi2=math.atan(tanphi2)\n",
- "cosphi2=math.cos(phi2)\n",
- "output1=3**0.5*v*i2*cosphi2/1000\n",
- "\n",
- "#result\n",
- "print \"power output at unity pf=\",output,\"kW\"\n",
- "print \"max power output=\",output1,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " power output at unity pf= 2650.38477722 kW\n",
- "max power output= 5664.52285143 kW\n"
- ]
- }
- ],
- "prompt_number": 255
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.55, Page Number:1474"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "x=10.0#ohm\n",
- "i=220.0#A\n",
- "load=11.0#kV\n",
- "per=25.0#%\n",
- "\n",
- "#calculations\n",
- "oa1=load*1000/3**0.5\n",
- "a1c1=i*x\n",
- "e0=(oa1**2+a1c1**2)**0.5\n",
- "emf=(1+per/100)*e0\n",
- "a1a2=(emf**2-a1c1**2)**0.5-oa1\n",
- "ix=a1a2/x\n",
- "i1=(i**2+ix**2)**0.5\n",
- "pf=i/i1\n",
- "bv=(oa1**2+emf**2)**0.5\n",
- "imax=bv/x\n",
- "ir=emf/x\n",
- "ix=oa1/x\n",
- "pfmax=ir/imax\n",
- "output=3**0.5*load*1000*imax*pfmax*0.001\n",
- "#result\n",
- "print \"new current=\",i1,\"A\"\n",
- "print \"new power factor=\",pf\n",
- "print \"max power output=\",output,\"kW\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "new current= 281.573453399 A\n",
- "new power factor= 0.781323655849\n",
- "max power output= 16006.7954319 kW\n"
- ]
- }
- ],
- "prompt_number": 258
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.56, Page Number:1475"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=20.0#MVA\n",
- "load1=35.0#MVA\n",
- "pf=0.8\n",
- "output=25.0#MVA\n",
- "cosphi1=0.9\n",
- "\n",
- "#calculations\n",
- "loadmw=load1*pf\n",
- "loadmvar=load1*0.6\n",
- "sinphi=math.sin(math.acos(cosphi))\n",
- "mva1=25\n",
- "mw1=mva1*cosphi1\n",
- "mvar1=25*sinphi1\n",
- "mw2=loadmw-mw1\n",
- "mvar2=loadmvar-mvar1\n",
- "mva2=(mw2**2+mvar2**2)**0.5\n",
- "cosphi2=mw2/mva2\n",
- "\n",
- "#result\n",
- "print \"output=\",mva2\n",
- "print \"pf=\",cosphi2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output= 10.4509862952\n",
- "pf= 0.52626611926\n"
- ]
- }
- ],
- "prompt_number": 260
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.57, Page Number:1475"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declarations\n",
- "load=600#KW\n",
- "loadm=707#kW\n",
- "pf=0.707\n",
- "output=900#kW\n",
- "pf1=0.9\n",
- "\n",
- "#calculation\n",
- "kva=1000\n",
- "kvar=kva*(1-pf1**2)**0.5\n",
- "active_p=1307-output\n",
- "reactive_p=loadm-kvar\n",
- "\n",
- "#result\n",
- "print \"active power shared by second machine=\",active_p,\"kW\"\n",
- "print \"reactive power shared by second machine=\",reactive_p,\"kVAR\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "active power shared by second machine= 407 kW\n",
- "reactive power shared by second machine= 271.110105646 kVAR\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.58, Page Number:1476"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "l1=500#kW\n",
- "l2=1000#kW\n",
- "pf1=0.9\n",
- "l3=800#kW\n",
- "pf2=0.8\n",
- "l4=500#kW\n",
- "pf3=0.9\n",
- "output=1500#kW\n",
- "pf=0.95\n",
- "\n",
- "#calculation\n",
- "kw1=l1\n",
- "kw2=l2\n",
- "kw3=l3\n",
- "kw4=500\n",
- "kvar2=kw2*0.436/pf1\n",
- "kvar3=kw3*0.6/pf2\n",
- "kvar4=kw4*0.436/pf3\n",
- "kvar=output/pf\n",
- "kw=kw1+kw2+kw3+kw4-output\n",
- "kvar=kvar2+kvar3+kvar4-kvar\n",
- "cosphi=math.cos(math.atan(kvar/kw))\n",
- "\n",
- "#result\n",
- "print \"kW output=\",kw\n",
- "print \"pf=\",cosphi"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kW output= 1300\n",
- "pf= 0.981685651341\n"
- ]
- }
- ],
- "prompt_number": 264
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.59, Page Number:1476"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "z=complex(0.2,2)\n",
- "ze=complex(3,4)\n",
- "emf1=complex(2000,0)\n",
- "emf2=complex(22000,100)\n",
- "\n",
- "#calculations\n",
- "i1=complex(68.2,-102.5)\n",
- "i2=complex(127,-196.4)\n",
- "i=i1+i2\n",
- "v=i*ze\n",
- "pva1=v*i1\n",
- "kw1=pva1.real*3\n",
- "a11=math.atan(-i1.imag/i1.real)\n",
- "a12=math.atan(-v.imag/v.real)\n",
- "pf1=math.cos(a11-a12)\n",
- "pva2=v*i2\n",
- "kw2=pva2.real*3\n",
- "a21=math.atan(-i2.imag/i2.real)\n",
- "a22=math.atan(-v.imag/v.real)\n",
- "pf2=math.cos(a21-a22)\n",
- "\n",
- "#result\n",
- "print \"kw output 1=\",kw1/1000\n",
- "print \"pf 1=\",pf1\n",
- "print \"kw output 2=\",kw2/1000\n",
- "print \"pf 2=\",pf2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kw output 1= 328.79427\n",
- "pf 1= 0.606839673468\n",
- "kw output 2= 610.34892\n",
- "pf 2= 0.596381892841\n"
- ]
- }
- ],
- "prompt_number": 273
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.63, Page Number:1481"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=5000#KVA\n",
- "v=10000#V\n",
- "f=50#Hz\n",
- "ns=1500#rpm\n",
- "j=1.5*10**4#khm2\n",
- "ratio=5\n",
- "\n",
- "#calculation\n",
- "t=0.0083*ns*(j/(load*ratio*f))**0.5\n",
- "\n",
- "#result\n",
- "print \"natural time period of oscillation=\",round(t,3),\"s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "natural time period of oscillation= 1.364 s\n"
- ]
- }
- ],
- "prompt_number": 275
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.64, Page Number:1481"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10000#KVA\n",
- "p=4\n",
- "v=6600#V\n",
- "f=50#Hz\n",
- "xs=25#%\n",
- "pf=1.5\n",
- "\n",
- "#calculations\n",
- "ratio=100/xs\n",
- "ns=120*f/p\n",
- "j=(pf/(0.0083*ns))**2*load*ratio*f\n",
- "\n",
- "#result\n",
- "print \"moment of inertia=\",j/1000,\"x10^4 kg-m2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "moment of inertia= 29.0317898098 x10^4 kg-m2\n"
- ]
- }
- ],
- "prompt_number": 277
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.65, Page Number:1481"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=10.0#MVA\n",
- "v=10.0#kV\n",
- "f=50.0#Hz\n",
- "ns=1500.0#rpm\n",
- "j=2.0*10**5#kgm2\n",
- "x=40.0\n",
- "\n",
- "#calculation\n",
- "ratio=100.0/x\n",
- "t=0.0083*ns*(j/(load*1000*ratio*f))**0.5\n",
- "\n",
- "#result\n",
- "print \"frequency of oscillation of the rotor=\",round(1/t,1),\"Hz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency of oscillation of the rotor= 0.2 Hz\n"
- ]
- }
- ],
- "prompt_number": 283
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.66, Page Number:1483"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=11#kV\n",
- "z=complex(1,10)\n",
- "emf=14#kV\n",
- "\n",
- "#calculations\n",
- "e=emf*1000/3**0.5\n",
- "v=v*1000/3**0.5\n",
- "costheta=z.real/abs(z)\n",
- "pmax=e*v*3/(z.imag*1000)\n",
- "pmax_per_phase=(v/abs(z))*(e-(v/abs(z)))*3\n",
- "\n",
- "#result\n",
- "print \"max output =\",pmax_per_phase/1000,\"kW\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "max output = 14125.5529273 kW\n"
- ]
- }
- ],
- "prompt_number": 285
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 37.67, Page Number:1484"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=11#kVA\n",
- "load1=10#MW\n",
- "z=complex(0.8,8.0)\n",
- "v=14#kV\n",
- "\n",
- "#calculations\n",
- "pmax=(load*1000/3**0.5)*(v*1000/3**0.5)*3/z.imag\n",
- "imax=((v*1000/3**0.5)**2+(load*1000/3**0.5)**2)**0.5/z.imag\n",
- "pf=(v/3**0.5)*1000/((v*1000/3**0.5)**2+(load*1000/3**0.5)**2)**0.5\n",
- "\n",
- "#result\n",
- "print \"maximum output=\",pmax/1000000,\"MW\"\n",
- "print \"current=\",imax,\"A\"\n",
- "print \"pf=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum output= 19.25 MW\n",
- "current= 1284.92866209 A\n",
- "pf= 0.786318338822\n"
- ]
- }
- ],
- "prompt_number": 289
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_vCF2LoD.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_vCF2LoD.ipynb
deleted file mode 100644
index 6653720b..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_vCF2LoD.ipynb
+++ /dev/null
@@ -1,2354 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:102ba4bcb83ebd9f77c7c3f970c6e3d48b2bd31161c690d1b5c67b800706b1d0"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 29: D.C. Motor"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.1, Page Number:999"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220#V\n",
- "r=0.5#ohm\n",
- "i=20#A\n",
- "\n",
- "#calculation\n",
- "#as generator \n",
- "eg=v+i*r\n",
- "#as motor\n",
- "eb=v-i*r\n",
- "\n",
- "#result\n",
- "print \"as generator:eg=\",eg,\"V\"\n",
- "print \"as motor:eb=\",eb,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "as generator:eg= 230.0 V\n",
- "as motor:eb= 210.0 V\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.2, Page Number:999"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "ia=Symbol('ia')\n",
- "r=0.1#ohm\n",
- "brush_drop=2#V\n",
- "n=1000#rpm\n",
- "i=100#A\n",
- "v=250#V\n",
- "n2=700#rpm\n",
- "\n",
- "#calculations\n",
- "rl=v/i\n",
- "eg1=v+i*r+brush_drop\n",
- "eg2=eg1*n2/n\n",
- "ia=solve(eg2-2-ia*r-2.5*ia,ia)\n",
- "\n",
- "#result\n",
- "print \"current delivered to the load=\",ia[0],\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current delivered to the load= 69.7692307692308 A\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.3, Page Number:999"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440#V\n",
- "ra=0.8#ohm\n",
- "rf=200#ohm\n",
- "output=7.46#kW\n",
- "efficiency=0.85\n",
- "\n",
- "#calculations\n",
- "input_m=output*1000/efficiency\n",
- "im=output*1000/(efficiency*v)\n",
- "ish=v/rf\n",
- "ia=im-ish\n",
- "eb=v-ia*ra\n",
- "\n",
- "#results\n",
- "print \"back emf=\",eb,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "back emf= 425.642780749 V\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.4, Page Number:1000"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=25#kW\n",
- "v=250#V\n",
- "ra=0.06#ohm\n",
- "rf=100#ohm\n",
- "\n",
- "#calculations\n",
- "#as generator\n",
- "i=load*1000/v\n",
- "ish=v/rf\n",
- "ia=i+ish\n",
- "eb=v+ia*ra\n",
- "power=eb*ia/1000\n",
- "\n",
- "print \"As generator: power=\",power,\"kW\"\n",
- "\n",
- "#as motor\n",
- "i=load*1000/v\n",
- "ish=v/rf\n",
- "ia=i-ish\n",
- "eb=v-ia*ra\n",
- "power=eb*ia/1000\n",
- "\n",
- "print \"As generator: power=\",power,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "As generator: power= 26.12424 kW\n",
- "As generator: power= 23.92376 kW\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.5, Page Number:1000"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=a=4\n",
- "z=32\n",
- "v=200.0#V\n",
- "i=12.0#A\n",
- "ra=2.0#ohm\n",
- "rf=200.0#ohm\n",
- "n=1000.0#rpm\n",
- "i2=5.0#A\n",
- "#calculations\n",
- "ia=i+v/rf\n",
- "eg=v+ia*ra\n",
- "phi=eg*a*60/(z*n*p)\n",
- "#as motor\n",
- "ia=i2-v/rf\n",
- "eb=v-ia*ra\n",
- "n=60*eb/(phi*z)\n",
- "\n",
- "#result\n",
- "print \"flux per pole=\",phi,\"wb\"\n",
- "print \"speed of the machine=\",math.ceil(n),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "flux per pole= 0.42375 wb\n",
- "speed of the machine= 850.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.6, Page Number:1002"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "ia=110#A\n",
- "v=480#V\n",
- "ra=0.2#ohm\n",
- "z=864\n",
- "p=a=6\n",
- "phi=0.05#Wb\n",
- "\n",
- "#calculations\n",
- "eb=v-ia*ra\n",
- "n=60*eb/(phi*z)\n",
- "ta=0.159*phi*z*ia*p/a\n",
- "\n",
- "#result\n",
- "print \"the speed=\",math.floor(n),\"rpm\"\n",
- "print \"the gross torque=\",ta,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the speed= 636.0 rpm\n",
- "the gross torque= 755.568 N-m\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.7, Page Number:1003"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "z=782\n",
- "ra=rf=0.5#ohm\n",
- "ia=40#A\n",
- "phi=25*0.001#Wb\n",
- "p=4\n",
- "a=2\n",
- "#calculation\n",
- "eb=v-ia*ra\n",
- "n=60*eb/(phi*z)\n",
- "ta=0.159*phi*z*ia*p/a\n",
- "\n",
- "print \"the speed=\",math.floor(n),\"rpm\"\n",
- "print \"the gross torque=\",ta,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the speed= 705.0 rpm\n",
- "the gross torque= 248.676 N-m\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.8, Page Number:1003"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "eb=250.0#V\n",
- "n=1500.0#rpm\n",
- "ia=50.0#A\n",
- "\n",
- "#calculations\n",
- "pm=eb*ia\n",
- "ta=9.55*eb*ia/n\n",
- "\n",
- "#result\n",
- "print \"torque=\",ta,\"N-m\"\n",
- "print \"machanical power=\",pm,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque= 79.5833333333 N-m\n",
- "machanical power= 12500.0 W\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.9, Page Number:1003"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220#V\n",
- "p=4\n",
- "z=800\n",
- "load=8.2#kW\n",
- "ia=45#A\n",
- "phi=25*0.001#Wb\n",
- "ra=0.6#ohm\n",
- "a=p/2\n",
- "\n",
- "#calculation\n",
- "ta=0.159*phi*z*ia*p/a\n",
- "eb=v-ia*ra\n",
- "n=eb*a/(phi*z*p)\n",
- "tsh=load*1000/(2*3.14*n)\n",
- "\n",
- "#result\n",
- "print \"developed torque=\",ta,\"N-m\"\n",
- "print \"shaft torque=\",tsh,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "developed torque= 286.2 N-m\n",
- "shaft torque= 270.618131415 N-m\n"
- ]
- }
- ],
- "prompt_number": 32
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.10, Page Number:1003"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220.0#V\n",
- "n=500.0#rpm\n",
- "i=50.0#A\n",
- "ra=0.2#ohm\n",
- "\n",
- "#calculation\n",
- "ia2=2*i\n",
- "fb1=v-(i*ra)\n",
- "eb2=v-(ia2*ra)\n",
- "n2=eb2*n/fb1\n",
- "#result\n",
- "print \"speed when torque is doubled=\",n2,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed when torque is doubled= 476.19047619 N-m\n"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.11, Page Number:1003"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "r=Symbol('r')\n",
- "v=500#V\n",
- "load=37.3#kW\n",
- "n=1000#rpm\n",
- "efficiency=0.90\n",
- "ra=0.24#ohm\n",
- "vd=2#v\n",
- "i=1.8#A\n",
- "ratio=1.5\n",
- "\n",
- "#calculation\n",
- "input_m=load*1000/efficiency\n",
- "il=input_m/v\n",
- "tsh=9.55*load*1000/n\n",
- "il=ratio*il\n",
- "ia=il-i\n",
- "r=solve(ia*(r+ra)+vd-v,r)\n",
- "\n",
- "#result\n",
- "print \"full-load line current=\",il,\"A\"\n",
- "print \"full-load shaft torque\",tsh,\"N-m\"\n",
- "print \"total resistance=\",r[0],\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "full-load line current= 124.333333333 A\n",
- "full-load shaft torque 356.215 N-m\n",
- "total resistance= 3.82420021762787 ohm\n"
- ]
- }
- ],
- "prompt_number": 40
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.12, Page Number:1004"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=a=4\n",
- "v=220#V\n",
- "z=540\n",
- "i=32#A\n",
- "output=5.595#kW\n",
- "ra=0.09#ohm\n",
- "i_f=1#A\n",
- "phi=30*0.001#Wb\n",
- "\n",
- "#calculation\n",
- "ia=i-i_f\n",
- "eb=v-ia*ra\n",
- "n=eb*a*60/(phi*z*p)\n",
- "tsh=9.55*output/n\n",
- "\n",
- "#result\n",
- "print \"speed=\",n,\"rpm\"\n",
- "print \"torque developed=\",tsh*1000,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 804.481481481 rpm\n",
- "torque developed= 66.4182473183 N-m\n"
- ]
- }
- ],
- "prompt_number": 43
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.13(a), Page Number:1004"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220.0#V\n",
- "load=20.0#kW\n",
- "i=5.0#A\n",
- "ra=0.04#ohm\n",
- "phi=0.04#Wb\n",
- "z=160\n",
- "il=95.0#A\n",
- "inl=9.0#A\n",
- "p=4\n",
- "a=2\n",
- "#calculation\n",
- "#no load\n",
- "ea0=v-(inl-i)*ra\n",
- "n0=ea0*a*60/(phi*z*p)\n",
- "#load\n",
- "ea=v-(il-i)*ra\n",
- "n=ea*n0/ea0\n",
- "\n",
- "#result\n",
- "print \"no-load speed=\",n0,\"rpm\"\n",
- "print \"load speed=\",n,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "no-load speed= 1030.5 rpm\n",
- "load speed= 1014.375 rpm\n"
- ]
- }
- ],
- "prompt_number": 58
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.13(b), Page Number:1004"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=a=6\n",
- "i=400#A\n",
- "n=350#rpm\n",
- "phi=80*0.001#Wb\n",
- "z=600*2\n",
- "loss=0.03#percentage\n",
- "\n",
- "#calculation\n",
- "e=phi*z*n*p/(60*a)\n",
- "pa=e*i\n",
- "t=pa/(2*3.14*n/60)\n",
- "t_net=0.97*t\n",
- "bhp=t_net*36.67*0.001/0.746\n",
- "#result\n",
- "print \"brake-horse-power\",bhp,\"HP\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "brake-horse-power 291.551578696 HP\n"
- ]
- }
- ],
- "prompt_number": 66
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.13(c), Page Number:1004"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "z=774\n",
- "phi=24*0.001#Wb\n",
- "ia=50#A\n",
- "a=2\n",
- "#calculations\n",
- "t=0.159*phi*z*ia*p/a\n",
- "\n",
- "#result\n",
- "print \"torque=\",t,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque= 295.3584 N-m\n"
- ]
- }
- ],
- "prompt_number": 67
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.13(d), Page Number:1005"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=500.0#V\n",
- "i=5.0#A\n",
- "ra=0.15#ohm\n",
- "rf=200.0#ohm\n",
- "il=40.0#A\n",
- "\n",
- "#calculations\n",
- "ih=v/rf\n",
- "pi=v*i\n",
- "cu_loss_f=cu_loss=v*ih\n",
- "output=v*il\n",
- "cu_loss_a=(il+ih)**2*ra\n",
- "total_loss=cu_loss+cu_loss_a+cu_loss_f\n",
- "efficiency=output/(output+total_loss)\n",
- "#result\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 87.8312542029 %\n"
- ]
- }
- ],
- "prompt_number": 81
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.13(e), Page Number:1006"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable delcration\n",
- "ia=40#A\n",
- "v=220#V\n",
- "n=800#rpm\n",
- "ra=0.2#ohm\n",
- "rf=0.1#ohm\n",
- "loss=0.5#kW\n",
- "\n",
- "#calculations\n",
- "eb=v-ia*(ra+rf)\n",
- "ta=9.55*eb*ia/n\n",
- "cu_loss=ia**2*(ra+rf)\n",
- "total_loss=cu_loss+loss*1000\n",
- "input_m=v*ia\n",
- "output=input_m-total_loss\n",
- "\n",
- "#result\n",
- "print \"output of the motor=\",output/1000,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output of the motor= 7.82 kW\n"
- ]
- }
- ],
- "prompt_number": 88
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.14, Page Number:1006"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=400.0#N\n",
- "d=10.0#cm\n",
- "n=840#rpm\n",
- "v=220.0#V\n",
- "n1=1800#rpm\n",
- "efficiency=.80\n",
- "d2=24.0#cm\n",
- "\n",
- "#calculations\n",
- "tsh=f*d*0.01/2\n",
- "output=tsh*2*3.14*n/60\n",
- "input_m=output/efficiency\n",
- "i=input_m/v\n",
- "d1=n*d2/n1\n",
- "\n",
- "#calculation\n",
- "print \"current taken by the motor=\",round(i),\"A\"\n",
- "print \"size of motor pulley=\",d1,\"cm\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current taken by the motor= 10.0 A\n",
- "size of motor pulley= 11.2 cm\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.15, Page Number:1006"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=200.0#V\n",
- "p=4\n",
- "z=280\n",
- "ia=45.0#A\n",
- "phi=18*0.001#Wb\n",
- "ra=0.5+0.3#ohm\n",
- "loss=800.0#W\n",
- "d=0.41\n",
- "a=4\n",
- "#calculation\n",
- "eb=v-ia*ra\n",
- "n=eb*60*a/(phi*z*p*4)\n",
- "inpt=v*ia\n",
- "cu_loss=ia**2*ra\n",
- "total_loss=loss+cu_loss\n",
- "output=inpt-total_loss\n",
- "tsh=9.55*output/n\n",
- "f=tsh*2/d\n",
- "\n",
- "#result\n",
- "print \"pull at the rim of the pulley=\",f,\"N-m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pull at the rim of the pulley= 628.016180845 N-m\n"
- ]
- }
- ],
- "prompt_number": 102
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.16, Page Number:1007"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "v=240#V\n",
- "output=11.19#kW\n",
- "n=1000#rpm\n",
- "ia=50#A\n",
- "i=1#A\n",
- "z=540\n",
- "ra=0.1#ohm\n",
- "vd=1#V\n",
- "a=2\n",
- "#calculation\n",
- "eb=v-ia*ra\n",
- "ta=9.55*eb*ia/n\n",
- "tsh=9.55*output*1000/n\n",
- "phi=eb*60*a*1000/(z*n*p)\n",
- "input_a=v*ia\n",
- "cu_loss=ia**2*ra\n",
- "brush_loss=ia*2\n",
- "power=input_a-(cu_loss+brush_loss)\n",
- "rotational_loss=power-output*1000\n",
- "input_m=v*(ia+i)\n",
- "efficiency=output*1000/input_m\n",
- "\n",
- "#result\n",
- "print \"total torque=\",ta,\"N-m\"\n",
- "print \"useful torque=\",tsh,\"N-m\"\n",
- "print \"flux/pole=\",phi,\"mWb\"\n",
- "print \"rotational losses=\",rotational_loss,\"W\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "total torque= 112.2125 N-m\n",
- "useful torque= 106.8645 N-m\n",
- "flux/pole= 13.0555555556 mWb\n",
- "rotational losses= 460.0 W\n",
- "efficiency= 91.4215686275 %\n"
- ]
- }
- ],
- "prompt_number": 106
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.17, Page Number:1007"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=460.0#v\n",
- "n=500.0#rpm\n",
- "i=40.0#A\n",
- "i2=30.0#A\n",
- "ra=0.8#ohm\n",
- "\n",
- "#calculation\n",
- "t2_by_t1=i2**2/i**2\n",
- "change=(1-t2_by_t1)*100#percentage\n",
- "eb1=v-i*ra\n",
- "eb2=v-i2*ra\n",
- "n2=eb2*i*n/(eb1*i2)\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\"\n",
- "print \"percentage change in torque=\",change,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 679.127725857 rpm\n",
- "percentage change in torque= 43.75 %\n"
- ]
- }
- ],
- "prompt_number": 111
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.18, Page Number:1008"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=460.0#V\n",
- "output=55.95#kW\n",
- "n=750#rpm\n",
- "I=252.8#kg-m2\n",
- "ia1=1.4\n",
- "ia2=1.8\n",
- "\n",
- "#calculations\n",
- "ia=(ia1+ia2)/2\n",
- "n=n/60.0\n",
- "tsh=output*1000/(2*3.14*n)\n",
- "torque_avg=(ia-1)*tsh\n",
- "dt=(I*2*3.14*n)/torque_avg\n",
- "\n",
- "#result\n",
- "print \"approximate time to attain full speed=\",dt,\"s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "approximate time to attain full speed= 46.4050282991 s\n"
- ]
- }
- ],
- "prompt_number": 129
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.19, Page Number:1008"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "output=14.92#kW\n",
- "v=400.0#V\n",
- "n=400.0#rpm\n",
- "i=40.0#A\n",
- "I=7.5#kg-m2\n",
- "ratio=1.2\n",
- "\n",
- "#calculations\n",
- "n=n/60\n",
- "t=output*1000/(2*3.14*n)\n",
- "torque=(ratio-1)*t\n",
- "dt=(I*2*3.14*n)/torque\n",
- "\n",
- "print \"time to attain full speed=\",dt,\"s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "time to attain full speed= 4.4055406613 s\n"
- ]
- }
- ],
- "prompt_number": 138
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.20, Page Number:1009"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "z=944\n",
- "phi=34.6*0.001#Wb\n",
- "ta=209.0#N-m\n",
- "v=500.0#V\n",
- "ra=3.0#ohm\n",
- "a=2\n",
- "#calculation\n",
- "ia=ta/(0.159*phi*z*(p/a))\n",
- "ea=v-ia*ra\n",
- "n=ea/(phi*z*(p/a))\n",
- "\n",
- "#result\n",
- "print \"line current=\",ia,\"A\"\n",
- "print \"speed=\",n*60,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "line current= 20.1219966813 A\n",
- "speed= 403.798260345 rpm\n"
- ]
- }
- ],
- "prompt_number": 143
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.21, Page Number:1010"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#v\n",
- "n=1000#rpm\n",
- "ia=8#A\n",
- "ra=0.2#ohm\n",
- "rf=250#ohm\n",
- "i2=50#A\n",
- "\n",
- "#calculation\n",
- "ish=v/rf\n",
- "eb0=v-(ia-ish)*ra\n",
- "eb=v-(i2-ish)*ra\n",
- "n=eb*n/eb0\n",
- "\n",
- "#result\n",
- "print \"speed when loaded=\",n,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed when loaded= 966.21078037 rpm\n"
- ]
- }
- ],
- "prompt_number": 144
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.22, Page Number:1010"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=800#rpm\n",
- "ia=100#A\n",
- "v=230#V\n",
- "ra=0.15#ohm\n",
- "rf=0.1#ohm\n",
- "ia2=25#A\n",
- "ratio=0.45\n",
- "\n",
- "#calculation\n",
- "eb1=v-(ra+rf)*ia\n",
- "eb2=v-ia2*(ra+rf)\n",
- "n2=eb2*n/(eb1*ratio)\n",
- "\n",
- "#result\n",
- "print \"speed at which motor runs=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed at which motor runs= 1940.37940379 rpm\n"
- ]
- }
- ],
- "prompt_number": 148
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.23, Page Number:1010"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "ia2=Symbol('ia2')\n",
- "#variable declaration\n",
- "v=230.0#V\n",
- "ra=0.5#ohm\n",
- "rf=115.0#ohm\n",
- "n1=1200#rpm\n",
- "ia=2.5#A\n",
- "n2=1120#rpm\n",
- "\n",
- "#calculation\n",
- "eb1=v-ra*ia\n",
- "x=n2*eb1/n1\n",
- "ia2=solve((v-ra*ia2)-x,ia2)\n",
- "ia=ia2[0]+(v/rf)\n",
- "input_m=v*ia\n",
- "\n",
- "#result\n",
- "print \"line current=\",round(ia,1),\"A\"\n",
- "print \"power input=\",round(input_m,1),\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "line current= 35.0 A\n",
- "power input= 8050.0 W\n"
- ]
- }
- ],
- "prompt_number": 158
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.24, Page Number:1010"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "power=100.0#kW\n",
- "n1=300#rpm\n",
- "v=220.0#V\n",
- "load=10.0#kW\n",
- "ra=0.025#ohm\n",
- "rf=60.0#ohm\n",
- "vd=1.0#V\n",
- "\n",
- "#calculation\n",
- "i=power*1000/v\n",
- "ish=v/rf\n",
- "ia=i+ish\n",
- "eb=v+ia*ra+2*vd\n",
- "i=load*1000/v\n",
- "ia2=i-ish\n",
- "eb2=v-ia2*ra-2*vd\n",
- "n2=eb2*n1/eb\n",
- "\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 278.796797778 rpm\n"
- ]
- }
- ],
- "prompt_number": 174
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.25, Page Number:1011"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=250.0#V\n",
- "n=1000.0#rpm\n",
- "ra=0.5#ohm\n",
- "rf=250.0#ohm\n",
- "ia=4.0#A\n",
- "i=40.0#A\n",
- "ratio=0.04#percentage by whih armature reaction weakens field\n",
- "\n",
- "#calculations\n",
- "ish=v/rf\n",
- "ia2=ia-ish\n",
- "eb0=v-ia2*ra\n",
- "n0=n*eb0/v\n",
- "ia=i-ish\n",
- "eb=v-ia*ra\n",
- "n=eb*n0/(eb0*(1-ratio))\n",
- "\n",
- "#result\n",
- "print \"speed of machine=\",math.floor(n),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of machine= 960.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 190
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.26, Page Number:1011"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "ooutput=14.92#kW\n",
- "n=1000#rpm\n",
- "i=75#A\n",
- "ra=0.25#ohm\n",
- "ratio=0.20\n",
- "\n",
- "#calculation\n",
- "eb1=v-i*ra\n",
- "eb_inst=eb1*(1-ratio)\n",
- "ia_inst=(v-eb_inst)/ra\n",
- "t_inst=9.55*eb_inst*ia_inst/n\n",
- "ia2=i/(1-ratio)\n",
- "eb2=v-ia2*ra\n",
- "n2=eb2*n/(eb1*(1-ratio))\n",
- "\n",
- "#result\n",
- "print \"armature current=\",ia2,\"A\"\n",
- "print \"speed=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "armature current= 93.75 A\n",
- "speed= 1224.66216216 rpm\n"
- ]
- }
- ],
- "prompt_number": 191
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.27, Page Number:1012"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=200.0#V\n",
- "i=4.0#A\n",
- "n=700.0#rpm\n",
- "rf=100.0#A\n",
- "v2=6.0#V\n",
- "i2=10.0#A\n",
- "input_m=8.0#kW\n",
- "\n",
- "#calculation\n",
- "ish=v/rf\n",
- "il=input_m*1000/v\n",
- "ia=il-ish\n",
- "ra=v2/i2\n",
- "eb0=v-ish*ra\n",
- "eb=v-ia*ra\n",
- "n=eb*n/eb0\n",
- "ta=9.55*eb*ia/n\n",
- "inpt=v*i\n",
- "cu_loss=ish**2*ra\n",
- "constant_loss=inpt-cu_loss\n",
- "cu_loss_arm=ia**2*ra\n",
- "total_loss=constant_loss+cu_loss_arm\n",
- "output=input_m*1000-total_loss\n",
- "efficiency=output/(input_m*1000)\n",
- "print \n",
- "#result\n",
- "print \"speed on load=\",n,\"rpm\"\n",
- "print \"torque=\",ta,\"N-m\"\n",
- "print \"efficiency=\",efficiency*100,\"%\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "\n",
- "speed on load= 623.943661972 rpm\n",
- "torque= 103.0636 N-m\n",
- "efficiency= 79.2 %\n"
- ]
- }
- ],
- "prompt_number": 197
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.28, Page Number:1012"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variabe declaration\n",
- "v=220#V\n",
- "load=11#kW\n",
- "inl=5#A\n",
- "n_nl=1150#rpm\n",
- "ra=0.5#ohm\n",
- "rsh=110#ohm\n",
- "\n",
- "#calculations\n",
- "input_nl=v*inl\n",
- "ish=v/rsh\n",
- "ia0=inl-ish\n",
- "cu_loss_nl=ia1**2*ra\n",
- "constant_loss=input_nl-cu_loss_nl\n",
- "i=load*1000/v\n",
- "ia=i-ish\n",
- "cu_loss_a=ia**2*ra\n",
- "total_loss=cu_loss_a+constant_loss\n",
- "output=load*1000-total_loss\n",
- "efficiency=output*100/(load*1000)\n",
- "eb_nl=v-(ia0*ra)\n",
- "eb=v-ia*ra\n",
- "n=n_nl*eb/eb_nl\n",
- "ta=9.55*eb*ia/n\n",
- "\n",
- "#result\n",
- "print \"torque developed=\",ta,\"N-m\"\n",
- "print \"efficiency=\",efficiency,\"%\"\n",
- "print \"the speed=\",n,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque developed= 87.096 N-m\n",
- "efficiency= 79.5361818182 %\n",
- "the speed= 1031.57894737 rpm\n"
- ]
- }
- ],
- "prompt_number": 200
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.29, Page Number:1013"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=18.65#kW\n",
- "v=250.0#V\n",
- "ra=0.1#ohm\n",
- "vb=3#V\n",
- "rf=0.05#ohm\n",
- "ia=80.0#A\n",
- "n=600.0#rpm\n",
- "i2=100.0#A\n",
- "\n",
- "#calculation\n",
- "eb1=v-ia*(ra+rf)\n",
- "eb2=v-i2*(ra+rf)\n",
- "n2=eb2*ia*n/(eb1*i2)\n",
- "\n",
- "#result\n",
- "print \"speed when current is 100 A=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed when current is 100 A= 473.949579832 rpm\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.30, Page Number:1013"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=220.0#V\n",
- "n=800.0#rpm\n",
- "i=100.0#A\n",
- "ra=0.1\n",
- "ratio=1.0/2.0\n",
- "#calculation\n",
- "ia1=i*math.sqrt(ratio)\n",
- "eb1=v-i*ra\n",
- "eb2=v-ia1*ra\n",
- "n2=eb2*i*n/(eb1*ia1)\n",
- "#result\n",
- "print \"speed when motor will run when developing half the torque=\",round(n2,0),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed when motor will run when developing half the torque= 1147.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.31, Page Number:1013"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "p=a=4\n",
- "n=600#rpm\n",
- "ia=25#A\n",
- "v=450#V\n",
- "z=500\n",
- "phi=1.7*0.01*math.pow(ia,0.5)\n",
- "\n",
- "#calculation\n",
- "eb=n*phi*z*p/(60*a)\n",
- "iara=v-eb\n",
- "ra=iara/ia\n",
- "i=math.pow((phi*ia*math.sqrt(ia)/(phi*2)),2.0/3.0)\n",
- "eb2=v/2-i*ra\n",
- "phi2=1.7*0.01*math.pow(i,0.5)\n",
- "n2=eb2*phi*n/(eb*phi2)\n",
- "\n",
- "#result\n",
- "print \"speed at which motor will run=\",round(n2,0),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed at which motor will run= 372.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 224
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.32, Page Number:1017"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=460.0#V\n",
- "ra=0.5#ohm\n",
- "\n",
- "def f(ia,t):\n",
- " n=(v*ia-ia**2*ra)*60/(2*3.14*t)\n",
- " return(n)\n",
- "\n",
- "n1=f(20.0,128.8)\n",
- "n2=f(30.0,230.5)\n",
- "n3=f(40.0,349.8)\n",
- "n4=f(50.0,469.2)\n",
- "T=[128.8,230.5,349.8,469.2]\n",
- "N=[n1,n2,n3,n4]\n",
- "plt.plot(T,N)\n",
- "plt.xlabel(\"Torque(NM.m)\") \n",
- "plt.ylabel(\"Speed(rpm)\") \n",
- "plt.xlim((0,500))\n",
- "plt.ylim((0,800))\n",
- "plt.show()\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH0VJREFUeJzt3XucVXW9//HXWxDvCpQNihcgJUSj1CBv5aaMPP0K7VGh\nHutQ9Kh+VkdPnUrwVz/m13mcQrucfvV7lF3Ug50kKROxzEBjm56j4AWviMjBUVGYxFsqKiCf3x/r\nO8xmnFnMDHvN3jP7/Xw89oO1116X7/6W+z3f9f2u71JEYGZm1pVdal0AMzOrbw4KMzPL5aAwM7Nc\nDgozM8vloDAzs1wOCjMzy1VoUEj6kqT7Jd0n6QpJu0kaLmmxpFWSFkkaWrH9LEkPS1opaUqRZTMz\ns+5RUfdRSBoJ3AwcERGvSroSuA44EtgQERdJOh8YFhEzJY0HrgAmAiOBG4CxEbG1kAKamVm3FH3p\naTCwp6TBwJ7Ak8BUYG76fC5welo+DZgXEZsjogVYDUwquHxmZrYDhQVFRDwBfA94jCwgnouIxUBT\nRLSmzVqBprR8ILC24hBryVoWZmZWQ4UFhaRhZK2HUWQhsLekj1duE9l1r7xrX55fxMysxgYXeOxT\ngEci4mkASb8DjgfWSxoREeslHQD8NW3/BHBwxf4HpXXbkeTwMDPrhYhQb/Yrso/iUeA4SXtIEllw\nrACuBaanbaYDC9LyQuBMSUMkjQYOB5Z1duCI8CuC2bNn17wM9fJyXbguXBf5r51RWIsiIpZJ+i1w\nF7Al/fszYB9gvqRPAy3AtLT9CknzycJkC/D52NlvZ2ZmO63IS09ERDPQ3GH1M2Sti862/xbwrSLL\nZGZmPeM7s/uxUqlU6yLUDddFO9dFO9dFdRR2w11RJPmKlJlZD0ki6rAz28zMBgAHhZmZ5XJQmJlZ\nLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4H\nhZmZ5XJQmJlZLgeFmZnlclCYmVmuQoNC0lskLa94PS/pXEnDJS2WtErSIklDK/aZJelhSSslTSmy\nfGZmtmN99ihUSbsATwCTgH8ENkTERZLOB4ZFxExJ44ErgInASOAGYGxEbK04jh+FambWQ/3lUain\nAKsj4nFgKjA3rZ8LnJ6WTwPmRcTmiGgBVpMFi5mZ1UhfBsWZwLy03BQRrWm5FWhKywcCayv2WUvW\nsjAzsxrpk6CQNAT4EPCbjp+l60h515J8ncnMrIYG99F5/g64MyKeSu9bJY2IiPWSDgD+mtY/ARxc\nsd9Bad12mpubty2XSiVKpVIRZTYz67fK5TLlcrkqx+qTzmxJvwb+GBFz0/uLgKcj4kJJM4GhHTqz\nJ9HemX1YZe+1O7PNzHpuZzqzCw8KSXsBjwKjI+KFtG44MB84BGgBpkXEc+mzC4AZwBbgvIj4U4fj\nOSjMzHqoroOi2hwUZmY911+Gx5qZWT/koDAzs1wOCjMzy+WgMAA2bap1CcysXjkojCeegEMPhW9+\nE555ptalMbN646AwRo6EJUvg0UfhsMPgy1+GtWt3vJ+ZNQYHhQEwbhxccgncey9IMGECzJgBDz5Y\n65KZWa05KGw7Bx0E3/serF4No0dDqQQf/jAsXVrrkplZrfiGO8u1cSNceil897tZcMycCVOmZK0O\nM+s/fGe2FW7zZrjySrjwQhg8OAuMj3wkWzaz+uegsD4TAdddB3PmwLp18JWvwCc/CbvvXuuSmVke\nB4XVxC23ZC2MO+6A886Dc86B/fardanMrDOe68lq4qST4NprYfFiWLECxozJLkmtW1frkplZNTko\nbKcddRRcfjnceWfW+X3kkfC5z2Ujp8ys/3NQWNWMGgU//CE89BA0NcHxx8MZZ8Bdd9W6ZGa2MxwU\nVnX7759NB/LII3DccTB1Krz//fDnP2ed4WbWv7gz2wq3aRP86ldZx/e++2b9GKefDrv4zxSzPuNR\nT9YvbN0K11yTDa19/nn42tfg7LNht91qXTKzgc9BYf1KBJTLWQvj/vvhS1+Cz34W9tmn1iUzG7jq\nenispKGSfivpQUkrJL1T0nBJiyWtkrRI0tCK7WdJeljSSklTii6f9T0JJk+G66/Phtfefns2tPYb\n34Cnnqp16cyso764Svx/gesi4ghgArASmAksjoixwI3pPZLGA2cA44FTgR9L8pXsAezoo+HXv4Zb\nb81C4i1vgS9+EVpaal0yM2tT6I+wpP2Ad0XEpQARsSUingemAnPTZnOB09PyacC8iNgcES3AamBS\nkWW0+nDYYXDxxdmNe/vsA8ceCx//ONx3X61LZmZF/7U+GnhK0mWS7pL0c0l7AU0R0Zq2aQWa0vKB\nQOUjc9YCIwsuo9WRESPg29+GNWvgrW/NZqr94Aez6ULMrDaKnvtzMHAM8MWIuF3SD0iXmdpEREjK\n651+3WfNzc3blkulEqVSqSqFtfqx335w/vnZHFJz52YTD44YkQ2t/cAHPLTWbEfK5TLlcrkqxyp0\n1JOkEcCtETE6vT8JmAWMASZHxHpJBwBLImKcpJkAETEnbX89MDsillYc06OeGtBrr8FVV2VDazdt\nykLkzDNh111rXTKz/qFuRz1FxHrgcUlj06pTgAeAa4Hpad10YEFaXgicKWmIpNHA4cCyIsto/cOg\nQTBtWjaf1Pe/D5ddlvVr/OhH2fxSZlacwu+jkPQ24BfAEOC/gU8Bg4D5wCFACzAtIp5L218AzAC2\nAOdFxJ86HM8tCgNg2bLsXoxbboEvfCEbLTV8eK1LZVaffMOdNbSVK+E734Grr876Mr785ezZ32bW\nrm4vPZn1hXHj4JJL4N57s07uCRNgxgx48MFal8xsYHBQ2IBx0EHw3e9mz8EYMwZKJfjwh2Hp0h3u\namY5fOnJBqyNG+HSS7PwGD06G1o7ZUo2hYhZo3EfhVmOzZth/vxsaO3gwdnQ2o9+NFs2axQOCrNu\niIDrrssC48kn4atfzTq/d9+91iUzK56DwqyHbrklG1p7xx3Z3d/nnJPdDW42UHnUk1kPnXRSNsX5\n4sXZRIRjxmSXpNatq3XJzOqPg8Ia2lFHweWXZ3d8v/wyHHkkfO5z8PDDtS6ZWf3wpSezCk89lU0L\n8pOfZHd5T56cvUolaGra4e5mdct9FGZVtnVrdgPfkiXZ6y9/gZEjtw+ON7yh1qU06z4HhVnBXnsN\nli9vD47//E8YNao9ON79bhg2rNalNOuag8Ksj23enPVrtAXHrbfC2LHtwfGud8G++9a6lGbtHBRm\nNbZpUzabbVtwLFuWdYy3BceJJ8Lee9e6lNbIHBRmdeaVV+C229qD46674G1vaw+OE06APfaodSmt\nkTgozOrcxo3Z5am24LjnHjjmmPbgOO443yFuxXJQmPUzL76YdYi3BceKFTBxYntwTJoEQ4bUupQ2\nkDgozPq5v/0Nbr65PThWrYLjj28Pjne8w5MY2s5xUJgNMM8+m9270RYcLS1Zh3hbcBx9dPYccbPu\nclCYDXAbNsBNN7UHx5NPZkNw24JjwoTs6X5mXanroJDUAvwNeA3YHBGTJA0HrgQOBVqAaRHxXNp+\nFjAjbX9uRCzqcDwHhTW81lYol9uDY8OG7Ka/tuA48kgHh22v3oPiEeDYiHimYt1FwIaIuEjS+cCw\niJgpaTxwBTARGAncAIyNiK0V+zoozDp48sn20CiXsz6Pk09uD45x4/xkv0bXH4LiHRHxdMW6lcDJ\nEdEqaQRQjohxqTWxNSIuTNtdDzRHxG0V+zoozHbgsce2b3G8+mo2P1VbcBx2mIOj0dR7UKwBnie7\nlPTTiPi5pGcjYlj6XMAzETFM0o+A2yLiV+mzXwB/jIirKo7noDDroUceaQ+NJUuydW2hMXly9kxx\nG9h2Jij6YsDdiRGxTtL+wOLUmtgmIkJS3i//6z5rbm7etlwqlSiVSlUqqtnANHp09poxI3sk7OrV\nWWAsXgwXXJDd7FcZHAcfXOsS284ql8uUy+WqHKvbLQpJewGvRMRrvT6ZNBt4EfgMUIqI9ZIOAJak\nS08zASJiTtr+emB2RCytOIZbFGZVFAErV27fx7Hffu3TqU+eDAceWOtS2s4q5NKTpEHAGcDZZJ3L\nm4DdgA3A78kuI63eQcH2BAZFxAspaBYB/wc4BXg6Ii5M4TC0Q2f2JNo7sw+rTAYHhVmxtm6FBx5o\nD46bboL99/dDnPq7ooLiJuBGYAHwQFtLQtIbgMnAWcCCiPhlTsFGA1ent4OBX0XEt9Pw2PnAIbx+\neOwFZMNjtwDnRcSfOhzTQWHWh/wQp4GhqKAYEhGbdnDiXSNic29O3FsOCrPa8kOc+qfCRz1JGkb2\n1/+2SQMi4q7enHBnOSjM6ktnD3EaMwYOPzzrQB8zpv116KGe7LBWCg0KSf8CfBJYA2y78S0iJvfm\nhDvLQWFW3zZtgvvugzVrtn898gisXQtvetP24TFmTHugvOlNvr+jKEUHxSrgqB1dhuorDgqz/mvL\nliwsKsOjMkw2btw+OCpfo0bBnnvW+hv0X0UHxe+AcyKitTcnqDYHhdnA9cILrw+PtkBpaYGhQztv\niYwZkw3h9fxWXSs6KN4BXAM8ALyaVkdETO3NCXeWg8KsMW3dCuvWdd0aefbZrA+kY2uk7f2++9b6\nG9RW0UGxArgYuJ/2PoqIiJt6c8Kd5aAws868/HLW6uisNbJmTXb3eWctkTFjsjvRB/qDoYoOitsj\nYmKvSlYAB4WZ9VQEPPVU162R9euze0O6uqw1fHj/72QvOii+T3bJaSHtl548PNbMBoxNm+DRRzvv\nH1mzJguarjrZDz0Udtut1t9gx4oOijKdTMzn4bFm1iiefbbzy1lr1sDjj28/5LdjmDQ11UdrpK6n\nGa82B4WZ1ZO2Ib9djdZ66aVsaG9nl7VGj4a99uqbchbdongjMBs4iaxlcTPwzcoHEfUlB4WZ9Scd\nh/xWLre0ZDP1dmyJjBsHxx9f3XIUHRQ3ADcB/wEI+HuyKcJP6c0Jd5aDwswGirYhvx1bI3vsAT/9\naXXPVXRQ3B8RR3VYd19EvLU3J9xZDgozs57bmaDozn2MiySdJWmX9DqD7LkSZmbWALrTongR2JP2\nm+12AV5KyxERfXq/o1sUZmY9V9gzsyUJGB8Rj/WqZGZm1u9159LTdYWXwszM6lZuUKRrPHdKmtRH\n5TEzszrTnT6Kh4DDgEfZvm9iQsFl66o87qMwM+uhwvookvf35sBtJA0C7gDWRsSHJA0HrgQOBVqA\naRHxXNp2FjADeA04NyI8usrMrMa6vPQkaW+AiGjp7JW22acb5zgPWEH7fFEzgcURMRa4Mb1H0njg\nDGA8cCrwY0l+DImZWY3l/RBfI+l7kt4tadtsJJLeLOnTkhaR/aB3SdJBwAeAX5Dd1Q0wFZiblucC\np6fl04B5EbE5BdFqwH0jZmY1lnfp6RSyH/n/CZyQLhltAR4C/gD8Q0Ss38Hx/w34KlB5r0VTxWNV\nW4GmtHwgcFvFdmuBkd35EmZmVpwugyL1GP8hvXpM0geBv0bEckmlrs4hKa9nutPPmpubty2XSiVK\npU4Pb2bWsMrlMuVyuSrH6nLUk6Rj6eKHGnb84CJJ3wI+QdYK2Z2sVfE7YCLZpILrJR0ALImIcZJm\npuPOSftfD8yOiKUdjutRT2ZmPVTIpIAVDyzaAzgWuDd9NAG4IyK6PQmupJOBr6RRTxcBT0fEhSkc\nhkbEzNSZfQVZv8RI4AbgsI6p4KAwM+u5QiYFjIhSeordk8AxEXFsRBwLHJ3W9VTbr/sc4H2SVgHv\nSe+JiBXAfLIRUn8EPu9EMDOrve7ccLciIsbvaF1fcYvCzKznir7h7l5Jv2D7Bxfd05uTmZlZ/9Od\nFsUewDnAu9KqvwA/iYhXCi5bV+Vxi8LMrIcKfcJdOsGewCERsbI3J6kmB4WZWc8V+oQ7SVOB5cD1\n6f3Rkhb25mRmZtb/dGcupWbgncCzABGxHBhTYJnMzKyOdCcoNrfN7lpha6dbmpnZgNOdUU8PSDob\nGCzpcOBc4L+KLZaZmdWL7rQo/hE4EngVmAf8DfinIgtlZmb1o1ujngAk7RURL+14y2J51JOZWc8V\nPerpBEkrgJXp/dsk/bg3JzMzs/6nO5eefkD2gKINABFxD3BykYUyM7P60a1HjUbEYx1WbSmgLGZm\nVoe6M+rpMUknAkgaQjbq6cFCS2VmZnWjOy2Kc4AvkD0j4gmyaca/UGShzMysfnR71FO98KgnM7Oe\nK3rU05slXStpg6SnJF0jyVN4mJk1iO5cerqC7MlzBwAHAr8hu/HOzMwaQHeeR3FvREzosO6eiHhb\noSXrujy+9GRm1kOFPo9C0oXAc7S3Is4AhgEXAUTEM705cW85KMzMeq7ooGgButooIqLT/gpJuwM3\nAbuRDcP9bUQ0SxoOXAkcCrQA09pmp5U0C5gBvAacGxGLOjmug8LMrIcKCQpJk4DHI2Jdev9J4CNk\nP+7NEfF0Nwq2Z0RslDQYuAU4Lx1jQ0RcJOl8YFhEzJQ0nqw/ZCLZUNwbgLERsbXDMR0UZmY9VNSo\np5+SzRiLpHcD3wb+HXg+fbZDEbExLQ4BdiVrmUwF5qb1c4HT0/JpwLyI2BwRLcBqYFI3v4eZmRUk\nLyh2qeh/OAP4aURcFRFfBw7vzsEl7SLpbqAVWBQRy4CmiGhNm7QCTWn5QGBtxe5ryVoWZmZWQ3lT\neAyStGtEbAZOAT7bzf22SZeN3i5pP+BqSUd1+Dwk5V1H6vSz5ubmbculUolSqdSd4piZNYxyuUy5\nXK7KsfL6KP4X8D/IZo09GDg2Iramp9z9e0Sc2KMTSd8ANgKfAUoRsV7SAcCSiBgnaSZARMxJ218P\nzI6IpR2O4z4KM7MeKqSPIiL+Ffhn4DLgpIpOZZE99W5HhXqjpKFpeQ/gfWSTCS4EpqfNpgML0vJC\n4ExJQySNJru8tazH38jMzKoq9xJSRNzaybpV3Tz2AcBcSYPIAunKiLhO0m3AfEmfJg2PTcddIWk+\nsIJsGvPPu+lgZlZ7nhTQzKwBFDopoJmZNTYHhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZ\nWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVku\nB4WZmeVyUJiZWa5Cg0LSwZKWSHpA0v2Szk3rh0taLGmVpEWShlbsM0vSw5JWSppSZPnMzGzHFBHF\nHVwaAYyIiLsl7Q3cCZwOfArYEBEXSTofGBYRMyWNB64AJgIjgRuAsRGxteKYUWSZzcwGIklEhHqz\nb6EtiohYHxF3p+UXgQfJAmAqMDdtNpcsPABOA+ZFxOaIaAFWA5OKLKOZmeXrsz4KSaOAo4GlQFNE\ntKaPWoGmtHwgsLZit7VkwWJmZjUyuC9Oki47XQWcFxEvSO2tn4gISXnXkl73WXNz87blUqlEqVSq\nWlnNzAaCcrlMuVyuyrEK7aMAkLQr8HvgjxHxg7RuJVCKiPWSDgCWRMQ4STMBImJO2u56YHZELK04\nnvsozMx6qG77KJQ1HS4BVrSFRLIQmJ6WpwMLKtafKWmIpNHA4cCyIstoZmb5ih71dBLwF+Be2i8h\nzSL78Z8PHAK0ANMi4rm0zwXADGAL2aWqP3U4plsUZmY9tDMtisIvPVWbg8LMrOfq9tKTmZn1fw4K\nMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMz\ny+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgMDOzXIUGhaRLJbVKuq9i3XBJiyWt\nkrRI0tCKz2ZJeljSSklTiiybmZl1T9EtisuAUzusmwksjoixwI3pPZLGA2cA49M+P5bkFo+ZWY0V\n+kMcETcDz3ZYPRWYm5bnAqen5dOAeRGxOSJagNXApCLLZ2ZmO1aLv9ibIqI1LbcCTWn5QGBtxXZr\ngZF9WTAzM3u9wbU8eUSEpMjbpLOVzc3N25ZLpRKlUqm6BTMz6+fK5TLlcrkqx1JE3u90FU4gjQKu\njYi3pvcrgVJErJd0ALAkIsZJmgkQEXPSdtcDsyNiaYfjRdFlNjMbaCQREerNvrW49LQQmJ6WpwML\nKtafKWmIpNHA4cCyGpTPzMwqFHrpSdI84GTgjZIeB/43MAeYL+nTQAswDSAiVkiaD6wAtgCfd9PB\nzKz2Cr/0VG2+9GRm1nP97dKTmZn1Iw4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgMDOzXA4K\nMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMz\ny1V3QSHpVEkrJT0s6fxal8fMrNHVVVBIGgT8P+BUYDxwlqQjaluq+lUul2tdhLrhumjnumjnuqiO\nugoKYBKwOiJaImIz8GvgtBqXqW75P4J2rot2rot2rovqqLegGAk8XvF+bVpnZmY1Um9BEbUugJmZ\nbU8R9fPbLOk4oDkiTk3vZwFbI+LCim3qp8BmZv1IRKg3+9VbUAwGHgLeCzwJLAPOiogHa1owM7MG\nNrjWBagUEVskfRH4EzAIuMQhYWZWW3XVojAzs/pTb53ZuRrpZjxJl0pqlXRfxbrhkhZLWiVpkaSh\nFZ/NSvWyUtKU2pS6GJIOlrRE0gOS7pd0blrfcPUhaXdJSyXdneqiOa1vuLpoI2mQpOWSrk3vG7Iu\nJLVIujfVxbK0rjp1ERH94kV2KWo1MArYFbgbOKLW5Srw+74LOBq4r2LdRcDX0vL5wJy0PD7Vx66p\nflYDu9T6O1SxLkYAb0/Le5P1Yx3RwPWxZ/p3MHAb8M5GrYv0Hb8M/ApYmN43ZF0AjwDDO6yrSl30\npxZFQ92MFxE3A892WD0VmJuW5wKnp+XTgHkRsTkiWsj+R5/UF+XsCxGxPiLuTssvAg+S3V/TqPWx\nMS0OIfsPPWjQupB0EPAB4BdA24iehqyLpOOopqrURX8KCt+MB00R0ZqWW4GmtHwgWX20GbB1I2kU\nWUtrKQ1aH5J2kXQ32XdeFBHLaNC6AP4N+CqwtWJdo9ZFADdIukPSZ9K6qtRFXY162gH3uleIiNjB\nPSUDrr4k7Q1cBZwXES9I7X88NVJ9RMRW4O2S9gOulnRUh88boi4kfRD4a0Qsl1TqbJtGqYvkxIhY\nJ2l/YLGklZUf7kxd9KcWxRPAwRXvD2b7RGwErZJGAEg6APhrWt+xbg5K6wYMSbuShcQvI2JBWt2w\n9QEQEc8DS4D305h1cQIwVdIjwDzgPZJ+SWPWBRGxLv37FHA12aWkqtRFfwqKO4DDJY2SNAQ4A1hY\n4zL1tYXA9LQ8HVhQsf5MSUMkjQYOJ7tZcUBQ1nS4BFgRET+o+Kjh6kPSG9tGrkjaA3gfWZ9Nw9VF\nRFwQEQdHxGjgTODPEfEJGrAuJO0paZ+0vBcwBbiPatVFrXvqe9ir/3dkI15WA7NqXZ6Cv+s8srvT\nN5H1zXwKGA7cAKwCFgFDK7a/INXLSuD9tS5/leviJLJr0HcDy9Pr1EasD+CtwF3APemH4OtpfcPV\nRYd6OZn2UU8NVxfA6PTfx93A/W2/j9WqC99wZ2ZmufrTpSczM6sBB4WZmeVyUJiZWS4HhZmZ5XJQ\nmJlZLgeFmZnlclBYvyfpDWlq5eWS1klam5bvUvbUxL4qhyTdmKYaQdJWSd+t+Pwrkman5eb0+Zsr\nPv+ntO6YXp5/iKSbJA3a2e9iVslBYf1eRDwdEUdHxNHAxcD30/tjImJLV/tJqvb//z8A3B3ZDLeQ\n3Sz5YUlvaCtqh+3vI7ujuM3HyG6W6pWI2ATcSDZrgVnVOChsIJKk96ZWxb2SLknTvrQ93GWOpDuB\njyl7GNaDku6U9MOKh980S/rnigPeL+mQtPxxZQ8PWi7p4orA+XvgmopybAZ+BnypkzIG2XQKp6Vj\nvhl4Dnia108VjaSypO9Lul3SCknvkPS79ECaf6nYdAFwdm8qzawrDgobiHYHLgM+FhETyGZJPid9\nFsCGiDiW7Ef9Z8AH0/sm2v/q7/jXfwBIOgKYBpyQWjBbaf9hPhG4s8N+PwbOlrRvJ+X8G/CYpCPJ\nWgFXdnHutnWvRsREslbTNek7HQV8UtKwtN0DwMRO9jfrNQeFDUSDgDURsTq9nwu8u+Lzth/kccAj\nEfHf6f1/0Mlf8xUEvBc4FrhD0nLgPWTz7ED2dLGXKneIiBeAy4FzuzjmlcBZZA+UuXoH36ttEsz7\ngQciojVdbloDHJLO9xqwKU0MZ1YV/el5FGY9oQ7LlX+lv0TnKvfZwvZ/SO1esTw3Ii7oZP+u+kN+\nQDaR32Ud1gfwe+A7wO3R4RkbnXg1/bu1YrntfWUH9m7AK3kHMusJtyhsIHoNGFUxougTwE2dbLcy\nbTcmvT+L9kBpAY4BSKOQRqfPbgQ+mh4O0/bw+kPSPg9VjmJqExHPAvOBT1ccX4Ai4mWyZxn/a+++\n6vZSx/mG1LIwqwoHhQ1EL5NNy/4bSfeS/aV/cfpsW8siIl4BPgv8IXVut9LeqrgKGC7pfuALZNPb\nExEPAl8HFkm6h2zq5hFpnz8ApYpyVLZivge8scNnkY55ZaRngleS9PMuhspu27cTk8laKWZV42nG\nzRJJJwNfiYgP9XL/EcDlETGluiXrURmuAs6v6J8x22luUZhtr9d/OUXEeuDnbU8a62vpcbELHBJW\nbW5RmJlZLrcozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcv1/2z+0oo1xQeUAAAAASUVO\nRK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0x7fb558dc6a50>"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.33, Page Number:1017"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "output=5.968#kW\n",
- "n=700#rpm\n",
- "v1=500#V\n",
- "n2=600#rpm\n",
- "ra=3.5#ohm\n",
- "loss=450#W\n",
- "\n",
- "#calculation\n",
- "\n",
- "def fp(i,v):\n",
- " p=5.968*((n2*(v1-i*ra)/(v*n))**2)\n",
- " return(p)\n",
- "\n",
- "def fm(i,v):\n",
- " m=((v1-i*ra)*i-loss)/1000\n",
- " return(m)\n",
- "\n",
- "p1=fp(7.0,347.0)\n",
- "p2=fp(10.5,393.0)\n",
- "p3=fp(14.0,434.0)\n",
- "p4=fp(27.5,468.0)\n",
- "\n",
- "m1=fm(7.0,347.8)\n",
- "m2=fm(10.5,393.0)\n",
- "m3=fm(14.0,434.0)\n",
- "m4=fm(27.5,468.0)\n",
- "\n",
- "#plot\n",
- "I=[7,10.5,14,27.5]\n",
- "P=[p1,p2,p3,p4]\n",
- "M=[m1,m2,m3,m4]\n",
- "plt.plot(I,P)\n",
- "plt.plot(I,M)\n",
- "plt.xlabel(\"Current\") \n",
- "plt.ylabel(\"Power(kW)\") \n",
- "plt.xlim((0,30))\n",
- "plt.ylim((0,12))\n",
- "plt.show()\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEPCAYAAABLIROyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFX69vHvQxQwsiiIICgqiAQJroogoxjANYBhDauw\nRkQy6k/FV8VdV13ELGZUwFUMiGsiCqMIKkgOg6hrRCUJkmGGed4/qkdHGJjYXd1d9+e65prumu6u\npyypu885VafM3RERkegpF3YBIiISDgWAiEhEKQBERCJKASAiElEKABGRiFIAiIhEVNwCwMyeM7Pl\nZrYg37L7zCzLzOaZ2Rtmtk+81i8iIrsXzxbA80DHHZZNAI5y9+bAUuCWOK5fRER2I24B4O5TgTU7\nLJvo7rmxp58CdeK1fhER2b0wxwCuAN4Lcf0iIpEWSgCY2a3ANnd/KYz1i4gIVEj0Cs3s78AZQIfd\nvEYTFImIlIC7W1Ffm9AWgJl1BG4EznH3Lbt7rbun7c8dd9wReg3aPm2bti/9foornqeBvgxMBxqa\n2fdmdgXwKLAnMNHM5pjZ4/Fav4iI7F7cuoDc/eICFj8Xr/WJiEjx6ErgEGRkZIRdQlyl8/al87aB\nti9qrCT9RvFmZp6MdYmIJDMzw5N1EFhERJKHAkBEJKIUACIiEaUAEBGJKAWAiEhEKQBERCJKASAi\nElEKABGRiFIAiIhElAJARCSiFAAiIhGlABARiSgFgIhIRCkAREQiSgEgIhJRCgARkYhSAIiIRJQC\nQEQkTpL9zoYKABGRMrZs3TIuGX0Jj854NOxSdksBICJSRrbmbOXej+6l+ZPNabBfA65scWXYJe1W\nhbALEBFJB2O/GEvfcX1pVKMRn171KQ2qNwi7pEIpAERESuGrX76i//j+LFm1hIc7PkynwzuFXVKR\nqQtIRKQENmVv4rbJt3Hss8fSpm4bFvRYkFIHf1ALQESkWNyd0VmjuX7C9bSp24a5186lzt51wi6r\nRBQAIiJFtHjlYnqP7c3KjSsZ0XkE7eu3D7ukUlEXkIhIIX7d8isDxg8g44UMOjfszOzus1P+4A9x\nDAAze87MlpvZgnzLqpvZRDNbamYTzGzfeK1fRKS0cj2X4XOHc+TQI1m/dT2LrltE72N7U6FcenSe\nWLyuVDOzdsAGYIS7N40tGwyscvfBZnYTsJ+731zAez3Zr6ATkfQ268dZ9Brbi1zP5bFOj3HMQceE\nXVKhzAx3tyK/Pp4HWjOrD7ydLwCWAO3dfbmZ1QIy3b1RAe9TAIhIKFZtWsWt79/KW0vf4u6T76bb\n0d0oZ6nRW17cAEj0VtV09+Wxx8uBmglev4hIgXJycxg6YyiNhzamSsUqZPXM4vIWl6fMwb8kQuvI\ncnc3M33NF5HQTf12Kr3H9ma/KvsxudtkmhzQJOySEiLRAbDczGq5+89mdiCwYlcvHDRo0G+PMzIy\nyMjIiH91IhIpP67/kRsn3sjUb6cy5LQhXND4AsyK3IMSuszMTDIzM0v8/kSPAQwGVrv7v83sZmBf\nDQKLSKJt276Nhz55iMHTBtO9VXcGthtItUrVwi6r1JJmENjMXgbaAzUI+vtvB/4LvAocDHwD/NXd\n1xbwXgWAiMTF+C/H02dcHw6vfjgPdXyIw6ofFnZJZSZpAqA0FAAiUta+XvM1/cf3Z+GKhTzU8SHO\nPOLMsEsqc8l+FpCISEJtyt7EHVPu4JhnjuHPB/2ZhdctTMuDf0mkx+VsIiI7cHfGLBnDgPEDOLbO\nsczpPoe6+9QNu6ykogAQkbSTtTKLPuP68NP6n3j+nOc56ZCTwi4pKakLSETSxrqt67hhwg2c+MKJ\nnHn4mczpPkcH/91QAIhIysv1XEbMG0Gjxxrxy+ZfWNhjIX2P60vF8hXDLi2pqQtIRFLa7J9m03ts\nb7Zt38aYC8dwbJ1jwy4pZSgARCQlrd60mlsn38qbS97krpPv4ooWV6T1vD3xoP9aIpJStudu54mZ\nT3Dk0COpVL4SWT2zuKrlVTr4l4BaACKSMqZ9N41eY3uxd+W9mdR1Es1qNgu7pJSmABCRpPfT+p/4\nv0n/x5Svp3DfqfdxUZOLUmrStmSlNpOIJK1t27cxZPoQmj7RlDp71WFJryVc3PRiHfzLiFoAIpKU\nJnw1gT5j+3Dofocy/crpHPGnI8IuKe0oAEQkqXyz9hsGjB/AvOXzeOj0YNI2feOPD3UBiUhS2Jy9\nmTsz76TV061oeWBLFl23iLManqWDfxypBSAioXJ33lzyJgMmDKB17dbM6T6Hg/c5OOyyIkEBICKh\nWbJqCX3H9eWHdT/w7FnP0uHQDmGXFCnqAhKRhFu/dT03TriRds+3o2ODjsztPlcH/xAoAEQkYdyd\nF+e/SKOhjVi1eRULeiyg//H9NWlbSNQFJCIJMffnufR6rxdbcrbw+gWvc3zd48MuKfIUACISV79s\n/oX/N/n/MTprNP886Z9c2eJKypcrH3ZZgrqARCROtudu56nPnuLIoUdSzsqR1TOLa1pdo4N/ElEL\nQETK3PTvp9N7bG+qVqzKhEsn0LxW87BLkgIoAESkzPy84WdumnQT7//vfQafOpiLm2jenmSmLiAR\nKbXs7dk88PEDNHm8CbWq1SKrZxaXNL1EB/8kpxaAiJTKpP9Nos/YPhy8z8FMu2IaDWs0DLskKSIF\ngIiUyLdrv+X6Cdcz+6fZPHj6g5zd8Gx9408x6gISkWLZkrOFf37wT1o93YpmNZux6LpFnNPoHB38\nU5BaAGnEHfRvUOLF3Xl76dv0G9ePlge2ZNY1s6i3b72wy5JSUACkicxMGDIERo+GypXDrkbSzdLV\nS+k7ri/frP2Gp896mlMOPSXskqQMhNIFZGb9zWyhmS0ws5fMTIesUmrbFqpUgfPPh23bwq5G0sWG\nbRu4edLNtBnWhlMOOYV5187TwT+NJDwAzOwgoDfQyt2bAuWBixJdR7qpUAFeein4feGFkJ0ddkWS\nytydlxa8RKPHGvHThp9Y0GMB17e5nkrlK4VdmpShsLqAKgBVzWw7UBVYFlIdaaViRXjlFTjvPLjk\nEnj55SAQRIpj/vL59B7bm/Vb1/PqBa/Spm6bsEuSOEl4C8DdlwH3A98BPwJr3X1SoutIV5Uqweuv\nw4YNcNllkJMTdkWSKtZsXkPv93pz6shTuaTJJcy8eqYO/mku4d8PzWw/4GygPvAr8JqZ/c3d/5P/\ndYMGDfrtcUZGBhkZGYkrMsVVrgxvvAFnnw2XXw4vvADlNf+W7ML23O08N+c5bptyG+ceeS6Lr1vM\nn6r+KeyypAgyMzPJzMws8fvN3cuumqKs0OwC4HR3vyr2/DLgOHfvme81nui60tGmTXDmmVCvHgwb\nBuV01Yfs4NMfPqXX2F5ULl+ZRzs9SosDW4RdkpSCmeHuRT4ZPIxDwrfAcWZWxYIrR04BFodQR9qr\nWhXefhu++gquvRZyc8OuSJLF8g3Lufy/l3Puq+fS99i+TL18qg7+ERTGGMAM4HVgNjA/tvjpRNcR\nFdWqwbvvwqJF0KtXcLGYRFf29mwe+uQhmjzRhBpVapDVM4tLm12qq3gjKuFdQEWhLqCyt24dnHYa\nHHssPPSQrhiOoslfT6bP2D7U3qs2j3R6hEY1GoVdkpSx4nYBKQAiZO1aOPVUaN8e7rtPIRAV3/36\nHTdMuIEZy2bw4OkP0rlRZ33jT1OpMAYgIdl3Xxg/Ht5/HwYOVHdQutuSs4V/ffgvWj7Vksb7N2Zx\nz8V0ObKLDv7yG10mFDHVq8OkSXDSScGFY//4R9gVSTy8s/Qd+o3rR9OaTZl59UwO2e+QsEuSJKQA\niKA//en3EKhQAW6/PeyKpKx8sfoL+o3vx5e/fMnQM4Zy+mGnh12SJDF1AUXUAQcEXUEvvQT33BN2\nNVJaG7ZtYOD7Azl+2PFk1MtgQY8FOvhLodQCiLBatWDyZMjICLqDbrgh7IqkuNydVxa9wo0Tb6R9\nvfbM7zGf2nvVDrssSREKgIirXTsIgfbtg+6gfv3CrkiKasHyBfQe25u1W9by8nkv0/bgtmGXJClG\nASDUqfPHlkDPnoW+RUK0dstabp9yO6MWjmJQxiC6t+pO+XKa7EmKr0gBYGbHAO2A2sBmYAEw0d3X\nxLE2SaB69f4YAtdcE3ZFsqNcz+X5Oc9z6+Rb6dyoM4t7LqZG1RphlyUpbLcBYGaXE9y85RvgM2AJ\nsAdBGNxkZguB29z9uzjXKQlwyCFBCOSdHXTFFWFXJHlmLJtBr/d6UaFcBd695F1a1W4VdkmSBgpr\nAVQFTnD3zQX90cxaAEcQzO0vaaBBg+AU0ZNPDkKga9ewK4q2FRtXcMukWxj75VjuPeVeLm12KeVM\nJ+9J2SgsAF7e1cEfwN3nlHE9kgSOOOKPIXDJJWFXFD05uTk8PvNx/vnhP+narCtZPbPYZ499wi5L\n0kxhAfC5ma0CPgKmA9PcfWn8y5KwNWoEEyfCKacEYwIXXBB2RdGR+U0mvcf2pma1mnzw9w9ovH/j\nsEuSNFXoZHBm1hBoE/s5HjgA+BiY7u7/jktRmgwuacybB6efDk88AV26hF1Nevth3Q/cMOEGPv7h\nYx447QHOPfJczdsjxRLX2UDNrAHwF6AvcJC771H8Eou0HgVAEpk9Gzp1gmeeCW4zKWVra85WHvj4\nAe7/+H6uO+Y6bm57M1UrVg27LElBZRoAZnYCv3/zrwv8D/iEoAUwx923lq7cXa5XAZBkZs6Ev/wl\nuL/wGWeEXU36eHfpu/Qb34/G+zfmwdMf5ND9Dg27JElhZR0AucAc4EFgjLtvLH2JRShKAZCUPvkk\naAG8+GJwcxkpuS9/+ZL+4/vz+arPeaTTI3Q8rGPYJUkaKOsAOJDfWwB/BioCswhaAB+7+/9KV+4u\n16sASFLTpkHnzjBqFHToEHY1qWfjto3cPfVunpr1FDe2uZF+x/WjcoXKYZclaSLeYwBVgSuAfsAh\n7h6X688VAMntww/h/PPhtdeCOYSkcO7Oa4tf44YJN9CuXjsGnzKYg/Y+KOyyJM2UdQtgH34/A6gN\n0AL4gt9PCX29dOXucr0KgCQ3eTJcdBG88Qa01Rxku7VwxUL6jO3D6s2rebTTo5xY78SwS5I0VdYB\nsJJg0Hc6MA34zN03lbrKwopSAKSEiRPhb3+Dt96C444Lu5rks3bLWgZlDuKlBS9xR/s76N66OxXK\naf5FiZ+yvifwAe5+FvCKu3+Y/+AfmyBOIuzUU2H48GBgeObMsKtJHnmTth059Eg2ZW9i0XWL6Pnn\nnjr4S9Ip0hiAmc0Gznb3H2LP2wND3b1JXIpSCyClvP02XHUVjB0LLVuGXU24Zi6bSe+xvQF47IzH\naF27dcgVSZTEZRA49m3/CeBMoCVwD3Cmu39f0kILWZ8CIMWMGQM9esD48dC8edjVJN7KjSsZ+P5A\n3vniHe7pcA9dm3fVpG2ScMUNgCK1Sd19ppn1ASYS3A/gVHdfUcIaJQ116QI5OdCxYzA20CQubcPk\nk5Obw5OfPcmdH9zJpU0vZUnPJZq0TVJGYfcDeHuHRVWAtcCw2Ld0TQwgv7nggiAETjstuOH8kUeG\nXVF8ffjth/R6rxc1qtYgs1smRx1wVNgliRRLYS2A+wtY5oDFfov8wcUXByFwyinBqaING4ZdUdlb\ntm4ZN068kY+++4j7T7uf8xufr0nbJCUVFgAfunvu7l5gZuUKe41Ey2WXQXZ2EAJTpsBhh4VdUdnY\nmrOVBz95kCHTh3Bt62t55qxnqFapWthliZRYYQEw2cxGA//Nf9tHM6tEcFvIbsAU4PnirNTM9gWe\nBY4iaElc4e6fFOczJLldcUXQEujQATIzg9tNprKxX4yl77i+NKrRiE+v+pQG1RuEXZJIqRUWAJ0I\npn542cwOJej/3wMoD0wAHizhXcEeBt5z9/PNrAKgr1Fp6JprghA4+eQgBOrVC7ui4vvql6/oP74/\nWauyeLjjw5xxuKZClfRR5LmAYt/6awCb3X1NiVcYTC8xx913Oe+tTgNNL488Av/+Nzz+OJxzTtjV\nFM2m7E3cM/UenvjsCW5ocwP9j+uvSdsk6ZX5dQCxb+gL3b1RaYuLfd7RwFPAYqA5weyifXe4ylgB\nkGY++ACuvhpatAgCoWbNsCsqmLszOms010+4njZ123DfqfdRZ+86YZclUiRlfh2Au+eY2edmVs/d\nvy1deb+tsyXQK3Z9wUPAzcDt+V80aNCg3x5nZGSQkZFRBquWsLRvH9xe8s47oVkzuO++YLA4mU6e\nWbxyMb3H9mbFxhUM7zycjPoZYZcksluZmZlkZmaW+P1FvRJ4KsFMoDOAvJvClOg6ADOrRXAvgUNi\nz9sCN7v7mfleoxZAGps9G668Eg44AJ56CurXD7eeX7f8yp0f3MnI+SO5/cTb6XFMD83bIykpLlcC\nA7cVsKxER2h3/9nMvjezI9x9KXAKsKgknyWpqWVLmDED7r8fWreG226DXr2gfFzuLrF7Y7LG0PO9\nnpxx+Bksum4RB1Q7IPFFiISkOIPA9YHD3H1S7MYwFdx9XYlWatac4DTQSsBXwOXu/mu+v6sFEBGf\nfx6MDWRnw7Bh0LhxYtb765Zf6TOuD9O+m8aILiNoU7dNYlYsEkdlPR103odeA7xGMHgLUAcYU/zy\nAu4+z92Pcffm7n5u/oO/REvDhsEpot26BeME//gHbNsW33VO/noyzZ5sRtUKVZl77Vwd/CWyijoG\nMI/gnsCfuHuL2LIF7t40LkWpBRBJ338fzCj67bdBa+DPfy7bz9+cvZmB7w/k1cWv8uxZz9Lp8E5l\nuwKRkMWlBQBsdfet+VZSAc0FJGWsbt3g3gIDBwY3mRkwADZuLPx9RTH7p9m0fqY1y9YvY/6183Xw\nF6HoAfCBmd0KVDWzUwm6g3acKVSk1MyCCeUWLoQVK6Bp02Bm0ZLKyc3hrg/vouOLHbm13a28cv4r\n/Knqn8quYJEUVtQuoHLAVcBpsUXjgWfj1U+jLiDJ8957cO21we0nhwyB/fYr+nuXrl5K1zFd2avy\nXjx/zvO6oEvSXry6gE4CRrr7+bGfZ3SElkQ44wxYtAiqVAluMvPGG4W/x915fObjtBnWhkubXcr4\nS8fr4C9SgKK2AEYAxwFrgA9jPx+VZk6gQtanfJGdfPRRcO/ho46Cxx6DAw/c+TXL1i3jireuYM3m\nNYzsMpKGNdLwhgQiuxCXFoC7d3X3I4AuwPfAUGBlyUoUKZm2bWHuXGjUKLjv8HPPQf7vCaMWjqLl\n0y1pU6cN066YpoO/SCGK2gK4DGgLNCM48H9E0AKYHpei1AKQQsydG0wnUb06/PuRX7hvcU/m/jyX\nkV1G0rp267DLEwlFmc8GGvvQ1QRX7D4BZLr71yUvsQhFKQCkCHJy4Noh43l+9ZWcUP083ut/L3vu\nUSXsskRCE69B4BoEN4bZA/iXmc0wsxdLUqBIWdi4bSN9x/dkQuWree7s4ZQb/zAd2ldh4cKwKxNJ\nHUUNgL2Ag4F6QH1gX0D3AZZQfPLDJ7R4qgXrtq1jfo/5dGvXgcmTgy6hk06CO+6ArVsL/xyRqCtq\nF9B8YBowleBG8T/EtSh1AUkBsrdn848P/sEzs5/hsTMe4/zG5+/0mmXL4Lrr4Msvg+kkjjsuhEJF\nQhKXMYB8H74XwX0ANpSkuGKsRwEgf7B45WIuG3MZtfasxbNnPcuBexVwDmiMO7z2GvTtCxdeCHfd\nBXvumcBiRUISr9lAm5rZHIJ5+xeb2Swza1LSIkWKKtdzefDjBznx+RPp3qo771z8zm4P/hBMJ/HX\nvwbTSaxZE0wnMWFCggoWSSFF7QL6GBjo7lNizzOAu909LvPoqgUgAN/9+h1/f/PvbN2+lRGdR9Cg\neoMSfc64ccF0EhkZ8MADwamjIukoXmcBVc07+AO4eyZQrZi1iRSJuzN87nBaPd2K0xqcxod//7DE\nB3+Ajh1hwQLYe+9gOonXXvvjBWQiUVXUFsCbwCxgJGDA34BW7t4lLkWpBRBZKzeupPs73fnily8Y\n2WUkR9c6ukw/f/r04GyhRo1g6FCoXbtMP14kVPFqAVwOHAC8AYwG9ie4LkCkzLyz9B2aP9mcw6of\nxmdXf1bmB3+ANm2Cq4ibNg2mk3j2WbUGJLp22wIwsyrAtcBhwHzgOXfPjntRagFEyvqt6xkwfgCT\nvp7E8M7DObHeiQlZ7/z5QWsgNxfatYNmzYJQaNw4mH1UJNWU6WmgZvYqsI1g7p+OwLfu3rfUVRZW\nlAIgMqZ+O5Vub3bj5ENO5oHTH2DvynsndP05OcE9iefOhXnzglBYuhQOOeT3QMj7fdBBwRlGIsmq\nrAPgt/v+xm4DOTPvnsDxpABIf1tztnL7lNsZOX8kT575JGc3PDvskn6zbRssWfJ7IOT9zs4OwiB/\nMBx1lFoLkjzKOgDm5D/g7/g8XhQA6W3ez/O4bMxlNKjegKfPfJr9q+0fdklFsnz5HwNh3rygtVC/\n/h9bCs2aQZ06ai1I4pV1AGwHNuVbVAXYHHvs7h6X9roCID1tz93OkOlDGPLxEIacOoSuzbtiKX6U\nzGst7BgM27bt3IWk1oLEW1yngkgUBUD6+d+a/9F1TFcqlq/IC+e8QL1964VdUlzltRbyB8PSpVCv\n3s7BoNaClBUFgCQVd2f4vOHcOPFGBrYdSN/j+lLOinr2cXrZtg0+/3znsYWtW3ceW2jSRK0FKT4F\ngCSNdVvX0ePdHsz9eS6jzhtF05pNwy4pKa1YsXMX0uefB62F5s3VWpCiUwBIUpi5bCYXj76YDod0\n4MGOD1K1YtWwS0op2dkFn4mUv7WQf2yhqv7zCgoACVmu5/LAxw8weNpghp4xlAuOuiDsktJKXmsh\nfyh8/jkcfPDOYwt166q1EDUpEwBmVh74DPjB3c/a4W8KgBS0YuMKur3ZjV+3/MpL571E/X3rh11S\nJGRn7zy2MG8ebNlS8JlIai2kr1QKgAFAK2Avdz97h78pAFLMpP9Notub3ejWvBt3ZtxJxfIVwy4p\n8tRaiJ6UCAAzqwO8APwLGKAWQOrK3p7N7VNuZ8T8EYzoPIIOh3YIuyTZjYJaC/Pnw+bNBZ+JpNZC\nakmVAHgNuBvYG7hBAZCavln7DRePvpj99tiPFzq/wAHVDgi7JCmhlSsLPhOpbt2dr3I++GC1FpJV\ncQOgQjyLKYiZnQmscPc5sTuLFWjQoEG/Pc7IyCAjY5cvlRC8tug1er7Xk5tOuIn+x/eP7Ln96WL/\n/aFDh+AnT15rIS8QHn88+L1pU8FjC9V0i6iEy8zMJDMzs8TvT3gLwMzuBi4DcoA9CFoBo929a77X\nqAWQpDZlb6LfuH5M/noyo84fRevarcMuSRIsr7WQv8WwZEnQWtgxGNRaSKyU6AL6beVm7VEXUMpY\nuGIhF75+IS1qteDxvzye8KmbJXllZwdTXew4trBxY8FjC2otxEcqBsD1Ogsoubk7T816itum3JY2\nk7hJYqxcGdyPOX8wLFkSXNG849hCvXpqLZRWSgXArigAkseazWu4+u2r+WrNV4w6bxQNazQMuyRJ\ncbtrLeTdqjMvGNRaKB4FgJSZad9N429v/I1zGp7D4FMHU7lC5bBLkjS2atXOYwtZWUFrYcexBbUW\nCqYAkFLbnrudez+6l0dnPMozZz3DWQ3PKvxNInGQk7Nza2HePNiwYedQUGtBASCl9OP6H7n0jUvJ\n9Vz+c+5/OGjvg8IuSWQnai0UTAEgJfbu0ne58q0rue6Y67i13a2UL1c+7JJEiqyg1sL8+bB+/c5n\nIjVtmp6tBQWAFNvWnK3c8v4tjM4azYtdXqRdvXZhlyRSZlat2vlMpKwsOOignc9Eql8/tVsLCgAp\nli9Wf8FFoy/i4H0OZtjZw6hepXrYJYnEXV5rYcfpL9avL/hMpD33DLviolEASJGNnDeSARMGcGfG\nnfRo3UPn9kvkrV6989jC4sVBa2HHsYVkbC0oAKRQ67eup+d7Pfnsx88Ydf4omtVsFnZJIkkrJwe+\n+GLnsYV164LWwo5jC2G2FhQAsluzf5rNRa9fxIn1TuThjg9TrVIajoSJJMDq1TuPLSxeDLVr/x4I\n55wDRx+duJoUAFIgd+fhTx/m7ql382inR7mwyYVhlySSdvJaC3mB0LYtnHFG4tavAJCdrNy4ksv/\nezkrN63k5fNe5tD9Dg27JBGJg+IGgCZxT3NTvp5Ci6dacNT+R/HR5R/p4C8iv0n4DWEkMXJyc7gz\n806GzRnGC51f4LQGp4VdkogkGQVAGvru1++4ZPQlVKtUjTnd51Bzz5phlyQiSUhdQGnmjaw3OOaZ\nYzi74dmM/dtYHfxFZJfUAkgTm7M3c/2E6xn35Tjeuugtjq1zbNgliUiSUwCkiVk/zWLtlrXM6T6H\nffbYJ+xyRCQF6DRQEZE0odNARUSkSBQAIiIRpQAQEYkoBYCISEQpAEREIkoBICISUQoAEZGIUgCI\niESUAkBEJKIUACIiEZXwADCzumY2xcwWmdlCM+uT6BpERCSEuYDMrBZQy93nmtmewCygs7tn5XuN\n5gISESmmpJ8LyN1/dve5sccbgCygdqLrEBGJulDHAMysPtAC+DTMOkREoii0AIh1/7wO9I21BERE\nJIFCuSGMmVUERgMvuvubBb1m0KBBvz3OyMggIyMjIbWJiKSKzMxMMjMzS/z+MAaBDRgOrHb3/rt4\njQaBRUSKqbiDwGEEQFvgQ2A+kLfyW9x9XL7XKABERIop6QOgKBQAIiLFl/SngYqISHJQAIiIRJQC\nQEQkohQAIiIRpQAQEYkoBYCISEQpAEREIkoBICISUQoAEZGIUgCIiESUAkBEJKIUACIiEaUAEBGJ\nKAWAiEhEKQBERCJKASAiElEKABGRiFIAiIhElAJARCSiFAAiIhGlABARiSgFgIhIRCkAREQiSgEg\nIhJRCgARkYhSAIiIRJQCQEQkohQAIiIRFUoAmFlHM1tiZl+Y2U1h1CAiEnUJDwAzKw88BnQEGgMX\nm9mRia4jTJmZmWGXEFfpvH3pvG2g7YuaMFoAfwa+dPdv3D0bGAWcE0IdoUn3/wnTefvSedtA2xc1\nYQTAQcC/vEDRAAAFQElEQVT3+Z7/EFsmIiIJFEYAeAjrFBGRHZh7Yo/HZnYcMMjdO8ae3wLkuvu/\n871GISEiUgLubkV9bRgBUAH4HOgA/AjMAC5296yEFiIiEnEVEr1Cd88xs17AeKA8MEwHfxGRxEt4\nC0BERJJD0l0JnO4XiZnZN2Y238zmmNmMsOspDTN7zsyWm9mCfMuqm9lEM1tqZhPMbN8wayyNXWzf\nIDP7Ibb/5phZxzBrLA0zq2tmU8xskZktNLM+seVpsQ93s30pvw/NbA8z+9TM5sa2bVBsebH2XVK1\nAGIXiX0OnAIsA2aSZuMDZvY10Mrdfwm7ltIys3bABmCEuzeNLRsMrHL3wbEA38/dbw6zzpLaxfbd\nAax39wdCLa4MmFktoJa7zzWzPYFZQGfgctJgH+5m+/5KGuxDM6vq7pti46ofAX2B8yjGvku2FkBU\nLhIr8ih9MnP3qcCaHRafDQyPPR5O8A8uJe1i+yB99t/P7j439ngDkEVwTU5a7MPdbB+kwT50902x\nh5WAigSn2Bdr3yVbAEThIjEHJpnZZ2Z2ddjFxEFNd18ee7wcqBlmMXHS28zmmdmwVO0e2ZGZ1Qda\nAJ+Shvsw3/Z9EluU8vvQzMqZ2VyCfTTB3WdQzH2XbAGQPP1R8XOCu7cAOgE9Y90MacmD/sV026dP\nAIcARwM/AfeHW07pxbpHRgN93X19/r+lwz6Mbd/rBNu3gTTZh+6e6+5HA3WAY82syQ5/L3TfJVsA\nLAPq5ntel6AVkDbc/afY75XAGIJur3SyPNb3ipkdCKwIuZ4y5e4rPAZ4lhTff2ZWkeDgP9Ld34wt\nTpt9mG/7XszbvnTbh+7+KzAFOJ1i7rtkC4DPgMPNrL6ZVQIuBN4KuaYyY2ZVzWyv2ONqwGnAgt2/\nK+W8BXSLPe4GvLmb16ac2D+qPF1I4f1nZgYMAxa7+0P5/pQW+3BX25cO+9DMauR1XZlZFeBUgjGO\nYu27pDoLCMDMOgEP8ftFYveEXFKZMbNDCL71Q3AR3n9SefvM7GWgPVCDoL/xduC/wKvAwcA3wF/d\nfW1YNZZGAdt3B5BB0HXgwNdA93x9rinFzNoCHwLz+b2r4BaCq/NTfh/uYvsGAheT4vvQzJoSDPKW\nJ/gi/4q732Vm1SnGvku6ABARkcRIti4gERFJEAWAiEhEKQBERCJKASAiElEKABGRiFIAiIhElAJA\nIsPMapnZKDP7MjYX07tmdngC19/ezI5P1PpECqMAkEiIXRU6Bpjs7oe5e2uCi56KNNGZmZXb3fMi\nOgloU4L3icSFAkCi4iRgm7s/nbfA3ecDFczs7bxlZvaYmXWLPf7GzO41s1nABQU8P83MppvZLDN7\nNTa9R977BsWWzzezhrHZKLsD/WM3IWmbuE0XKZgCQKKiCcENQQqTfwZFJ7i5Rit3fyX/c+B94Fag\nQ+z5LGBAvvetjC1/ArjB3b8BngQecPcW7v5RGW2XSIkl/KbwIiEp6Zwnr+zi+XFAY2B60LtEJWB6\nvte9Efs9Gzg33/KUvxGJpA8FgETFIuD8Apbn8MeWcJUd/r5xN88nuvslu1jf1tjv7ejfmSQpdQFJ\nJLj7ZKBy/ruwmVkzgm/kjc2sUmx63ZOL+JGfAieYWYPYZ1UrwhlF64G9il+9SHwoACRKugCnxE4D\nXQj8i+COUK8CCwm6d2bv5v2/dSPFbujzd+BlM5tH0P3TcBfvyXvf20CX2CDwCaXcFpFS03TQIiIR\npRaAiEhEKQBERCJKASAiElEKABGRiFIAiIhElAJARCSiFAAiIhGlABARiaj/D6p919PNp3KzAAAA\nAElFTkSuQmCC\n",
- "text": [
- "<matplotlib.figure.Figure at 0x7fb558dfd050>"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.34, Page Number:1022"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=500#V\n",
- "i=3#A\n",
- "ia=3.5#A\n",
- "ib=4.5#A\n",
- "\n",
- "#calculation\n",
- "loss=v*i\n",
- "#B unexcited\n",
- "loss1=v*(ia-i)\n",
- "#B excited\n",
- "loss2=v*(ib-i)\n",
- "loss=loss2-loss1\n",
- "\n",
- "#result\n",
- "print \"iron losses of B=\",loss,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "iron losses of B= 500.0 W\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.35, Page Number:1023"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=220.0#V\n",
- "ra=0.2#ohm\n",
- "rf=110.0#ohm\n",
- "ia=5.0#A\n",
- "n=1500#rpm\n",
- "i2=52.0#A\n",
- "\n",
- "#calculation\n",
- "ish=v/rf\n",
- "ia1=ia-ish\n",
- "ia2=i2-ish\n",
- "eb1=v-ia1*ra\n",
- "eb2=v-ia2*ra\n",
- "n2=round(eb2*n/eb1,0)\n",
- "input_nl=v*ia\n",
- "cu_loss_nl=ia1**2*ra\n",
- "constant_loss=input_nl-cu_loss_nl\n",
- "cu_loss_l=ia2**2*ra\n",
- "total_loss=constant_loss+cu_loss_l\n",
- "input_l=v*i2\n",
- "output=input_l-total_loss\n",
- "tsh=9.55*output/n2\n",
- "\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\"\n",
- "print \"shaft torque=\",tsh,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.36, Page Number:1023"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "n=1000#rpm\n",
- "ia=5#A\n",
- "ra=0.2#ohm\n",
- "rf=250#ohm\n",
- "i=50#A\n",
- "ratio=0.03#percentage by which armature reaction weakens field\n",
- "\n",
- "#calculations\n",
- "ish=v/rf\n",
- "ia1=ia-ish\n",
- "ia2=i-ish\n",
- "eb1=v-ia1*ra\n",
- "eb2=v-ia2*ra\n",
- "n2=eb2*n/(eb1*(1-ratio))\n",
- "\n",
- "#result\n",
- "print \"speed=\",round(n2,0),\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": []
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.37, Page Number:1023"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=500#V\n",
- "ia=5#A\n",
- "ra=0.22#A\n",
- "rf=250#ohm\n",
- "i=100#A\n",
- "\n",
- "#calculations\n",
- "ish=v/rf\n",
- "ia0=ia-ish\n",
- "eb0=v-ia0*ra\n",
- "cu_loss=ia0**2*ra\n",
- "input_m=v*ia\n",
- "constant_loss=input_m-cu_loss\n",
- "ia=i-ish\n",
- "eb=v-ia*ra\n",
- "cu_loss=ia**2*ra\n",
- "total_loss=cu_loss+constant_loss\n",
- "input_m=v*i\n",
- "output=input_m-total_loss\n",
- "efficiency=output*100/input_m\n",
- "per=(eb-eb0)*100/eb0\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",round(efficiency,1),\"%\"\n",
- "print \"percentage change in speed=\",round(per,2),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 90.8 %\n",
- "percentage change in speed= -4.19 %\n"
- ]
- }
- ],
- "prompt_number": 244
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.38, Page Number:1024"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250#V\n",
- "n=1000#rpm\n",
- "i=25#A\n",
- "i2=50#A\n",
- "ratio=0.03#percentage by which the armature reaction weakens field\n",
- "ra=0.2#ohm\n",
- "rf=250#ohm\n",
- "vd=1\n",
- "#calculation\n",
- "ish=v/rf\n",
- "ia1=i-ish\n",
- "ebh=v-ia1*ra-2*vd\n",
- "ia2=i2-ish\n",
- "eb2=v-ia2*ra-2*vd\n",
- "n2=eb2*n/(ebh*(1-ratio))\n",
- "ta1=9.55*eb1*ia1/n\n",
- "ta2=9.55*eb2*ia2/n2\n",
- "\n",
- "#result\n",
- "print \"speed=\",round(n2,0),\"rpm\"\n",
- "print \"torque in first case=\",ta1,\"N-m\"\n",
- "print \"torque in second case=\",ta2,\"N-m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 1010.0 rpm\n",
- "torque in first case= 57.11664 N-m\n",
- "torque in second case= 110.3912768 N-m\n"
- ]
- }
- ],
- "prompt_number": 247
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.39, Page Number:1024"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=250.0#V\n",
- "n1=1000.0#rpm\n",
- "ra=0.5#ohm\n",
- "rf=250.0#ohm\n",
- "ia=4.0#A\n",
- "i=40.0#A\n",
- "ratio=0.04#percentage by which the armature reaction weakens field\n",
- "eb1=250.0#V\n",
- "\n",
- "#calculation\n",
- "ish=v/rf\n",
- "eb2=v-(i-ish)*ra\n",
- "n2=eb2*n/(eb1*(1-ratio))\n",
- "cu_loss=(ia-ish)**2*ra\n",
- "input_m=v*ia\n",
- "constant_loss=input_m-cu_loss\n",
- "cu_loss_a=(i-ish)**2*ra\n",
- "total_loss=constant_loss+cu_loss_a\n",
- "inpt=v*i\n",
- "output=inpt-total_loss\n",
- "efficiency=output*100/inpt\n",
- "\n",
- "#result\n",
- "print \"speed=\",round(n2,0),\"rpm\"\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 960.0 rpm\n",
- "efficiency= 82.44 %\n"
- ]
- }
- ],
- "prompt_number": 254
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.40, Page Number:1025"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "v=250#V\n",
- "z=120*8\n",
- "a=4\n",
- "phi=20*0.001#Wb\n",
- "i=25#A\n",
- "ra=0.1#ohm\n",
- "rf=125#ohm\n",
- "loss=810#W\n",
- "\n",
- "#calculations\n",
- "ish=v/rf\n",
- "ia=i-ish\n",
- "eb=v-ia*ra\n",
- "n=eb*a*60/(p*z*phi)\n",
- "ta=9.55*eb*ia/n\n",
- "cu_loss=ia**2*ra\n",
- "cu_loss_shunt=v*ish\n",
- "total_loss=loss+cu_loss+cu_loss_shunt\n",
- "input_m=v*i\n",
- "output=input_m-total_loss\n",
- "tsh=9.55*output/n\n",
- "efficiency=output*100/input_m\n",
- "\n",
- "#result\n",
- "print \"gross torque=\",ta,\"N-m\"\n",
- "print \"useful torque=\",tsh,\"N-m\"\n",
- "print \"efficiency=\",efficiency,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "gross torque= 70.288 N-m\n",
- "useful torque= 60.2946209124 N-m\n",
- "efficiency= 78.1936 %\n"
- ]
- }
- ],
- "prompt_number": 256
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.41, Page Number:1025"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "output=14.92#kW\n",
- "n=1150#rpm\n",
- "p=4\n",
- "a=2\n",
- "z=620\n",
- "ra=0.2#ohm\n",
- "i=74.8#A\n",
- "i2=3#A\n",
- "v=230#V\n",
- "#calculation\n",
- "ia=i-i2\n",
- "eb=v-ia*ra\n",
- "phi=eb*a*60/(p*z*n)\n",
- "ta=9.55*eb*ia/n\n",
- "power=eb*ia\n",
- "loss_rot=power-output*1000\n",
- "input_m=v*i\n",
- "total_loss=input_m-output*1000\n",
- "per=total_loss*100/input_m\n",
- "\n",
- "#result\n",
- "print \"flux per pole=\",phi*1000,\"mWb\"\n",
- "print \"torque developed=\",ta,\"N-m\"\n",
- "print \"rotational losses=\",loss_rot,\"W\"\n",
- "print \"total losses expressed as a percentage of power=\",per,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "flux per pole= 9.07321178121 mWb\n",
- "torque developed= 128.575818783 N-m\n",
- "rotational losses= 562.952 W\n",
- "total losses expressed as a percentage of power= 13.2759823297 %\n"
- ]
- }
- ],
- "prompt_number": 263
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.42, Page Number:1025"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "ia1=Symbol('ia1')\n",
- "output=7.46#kW\n",
- "v=250#V\n",
- "i=5#A\n",
- "ra=0.5#ohm\n",
- "rf=250#ohm\n",
- "\n",
- "#calculation\n",
- "input_m=v*i\n",
- "ish=v/rf\n",
- "ia=i-ish\n",
- "cu_loss=v*ish\n",
- "cu_loss_a=ra*ia**2\n",
- "loss=input_m-cu_loss\n",
- "ia1=solve(ra*ia1**2-v*ia1+output*1000+loss,ia1)\n",
- "i2=ia1[0]+ish\n",
- "input_m1=v*i2\n",
- "efficiency=output*100000/input_m1\n",
- "ia=math.sqrt((input_m-cu_loss_a)/ra)\n",
- "input_a=v*ia\n",
- "cu_loss=ia**2*ra\n",
- "output_a=input_a-(cu_loss+loss)\n",
- "\n",
- "#result\n",
- "print \"efficiency=\",efficiency,\"%\"\n",
- "print \"output power at which efficiency is maximum=\",output_a/1000,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "efficiency= 79.5621535016683 %\n",
- "output power at which efficiency is maximum= 10.2179357944 kW\n"
- ]
- }
- ],
- "prompt_number": 271
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.43, Page Number:1026"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n2_by_n1=1.0/2.0\n",
- "ia2_by_ia1=phi1_by_phi2=1.0/2.0\n",
- "v2_by_v1=n2_by_n1*phi1_by_phi2\n",
- "reduction_v=(1-v2_by_v1)*100\n",
- "reduction_i=(1-ia2_by_ia1)*100\n",
- "\n",
- "#result\n",
- "print \"percentage reduction in the motor terminal voltage=\",reduction_v,\"%\"\n",
- "print \"percentage fall in the motor current=\",reduction_i,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "percentage reduction in the motor terminal voltage= 75.0 %\n",
- "percentage fall in the motor current= 50.0 %\n"
- ]
- }
- ],
- "prompt_number": 272
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.44, Page Number:1026"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=6\n",
- "v=500#V\n",
- "z=1200\n",
- "phi=20*0.001#Wb\n",
- "ra=0.5#ohm\n",
- "rf=250#ohm\n",
- "i=20#A\n",
- "loss=900#W\n",
- "a=2\n",
- "#calculation\n",
- "ish=v/rf\n",
- "ia=i-ish\n",
- "eb=v-ia*ra\n",
- "n=eb*a*60/(p*z*phi)\n",
- "ta=9.55*eb*ia/n\n",
- "cu_loss=ia**2*ra\n",
- "cu_loss_f=v*ish\n",
- "total_loss=cu_loss+cu_loss_f+loss\n",
- "input_m=v*i\n",
- "output=input_m-total_loss\n",
- "tsh=9.55*output/n\n",
- "efficiency=output*100/input_m\n",
- "\n",
- "#result\n",
- "print \"useful torque=\",ta,\"N-m\"\n",
- "print \"output=\",output/1000,\"Kw\"\n",
- "print \"efficiency==\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "useful torque= 206.28 N-m\n",
- "output= 7.938 Kw\n",
- "efficiency== 79.38 %\n"
- ]
- }
- ],
- "prompt_number": 275
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 29.45, Page Number:1027"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "ia1=Symbol('ia1')\n",
- "output=37.3*1000#W\n",
- "v=460#V\n",
- "i=4#A\n",
- "n=660#rpm\n",
- "ra=0.3#ohm\n",
- "rf=270#ohm\n",
- "\n",
- "#calculations\n",
- "ish=v/rf\n",
- "cu_loss=v*ish\n",
- "ia=i-ish\n",
- "cu_loss_a=ia**2*ra\n",
- "input_a=loss=v*ia\n",
- "ia1=solve(ra*ia1**2-v*ia1+output+loss,ia1)\n",
- "i=ia1[0]+ish\n",
- "eb1=v-(ia*ra)\n",
- "eb2=v-(ia1[0]*ra)\n",
- "n2=n*eb2/eb1\n",
- "ia=math.sqrt((cu_loss+input_a)/ra)\n",
- "\n",
- "#result\n",
- "print \"the current input=\",i,\"A\"\n",
- "print \"speed=\",round(n2,0),\"rpm\"\n",
- "print \"armature current at which efficiency is maximum=\",ia,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the current input= 90.2860908863713 A\n",
- "speed= 623.0 rpm\n",
- "armature current at which efficiency is maximum= 78.3156008298 A\n"
- ]
- }
- ],
- "prompt_number": 280
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_wCDB06c.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_wCDB06c.ipynb
deleted file mode 100644
index e889465f..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_wCDB06c.ipynb
+++ /dev/null
@@ -1,256 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:c262c33cbbcf1d1756b9358f8cf1d8ed92f53825858905e2598fd8e15870c7ca"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 39: Special Machines"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 39.1, Page Number:1537"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable description\n",
- "p=8.0 #number of poles\n",
- "tp=5.0 #number of teeth for each pole\n",
- "nr=50.0 #number of rotor teeth\n",
- "\n",
- "#calculation\n",
- "ns=p*tp #number of stator teeth\n",
- "B=((nr-ns)*360)/(nr*ns) #stepping angle\n",
- "\n",
- "#result\n",
- "print \"stepping angle is \",B,\"degrees\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "stepping angle is 1.8 degrees\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 39.2, Page Number:1537"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "B=2.5\n",
- "rn=25\n",
- "f=3600\n",
- "\n",
- "#calculation\n",
- "r=360/B\n",
- "s=r*rn\n",
- "n=(B*f)/360\n",
- "\n",
- "#result\n",
- "print \"Resolution =\",int(r),\"steps/revolution\"\n",
- "print \" Number of steps required for the shaft to make 25 revolutions =\",int(s)\n",
- "print \" Shaft speed\", int(n),\"rps\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Resolution = 144 steps/revolution\n",
- "Number of steps required for the shaft to make 25 revolutions = 3600\n",
- "Shaft speed 25 rps\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 39.3, Page Number:1544"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "B=15 #stepping angle\n",
- "pn=3 #number of phases\n",
- "nr=360/(pn*B) #number of rotor teeth\n",
- "\n",
- "#number of stator teeth\n",
- "ns1=((360*nr)/(360-(nr*B))) #ns>nr\n",
- "ns2=((360*nr)/(360+(nr*B))) #nr>ns\n",
- "\n",
- "#result\n",
- "print \"When ns>nr: ns= \",ns1\n",
- "print \"When nr>ns: ns= \",ns2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "When ns>nr: ns= 12\n",
- "When nr>ns: ns= 6\n"
- ]
- }
- ],
- "prompt_number": 40
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 39.4, Page Number:1545"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "B=1.8\n",
- "pn=4\n",
- "\n",
- "#calculation\n",
- "nr=360/(pn*B) #number of rotor teeth\n",
- "ns=nr\n",
- "\n",
- "#result\n",
- "print \"Number of rotor teeth = \",int(nr)\n",
- "print \"Number of statot teeth = \",int(ns)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Number of rotor teeth = 50.0\n",
- "Number of statot teeth = 50.0\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 39.5, Page Number:1555"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "er=20\n",
- "\n",
- "#calculation\n",
- "a=40\n",
- "e2=er*math.cos(math.radians(a))\n",
- "e1=er*math.cos(math.radians(a-120))\n",
- "e3=er*math.cos(math.radians(a+120))\n",
- "\n",
- "#result\n",
- "print \"a) For a=40 degrees\"\n",
- "print \" e2s=\" ,e2,\"V\"\n",
- "print \" e1s=\" ,e1,\"V\"\n",
- "print \" e3s=\" ,e3,\"V\"\n",
- "\n",
- "#calculation\n",
- "a=(-40)\n",
- "e2=er*math.cos(math.radians(a))\n",
- "e1=er*math.cos(math.radians(a-120))\n",
- "e3=er*math.cos(math.radians(a+120))\n",
- "\n",
- "#result\n",
- "print \"b) For a=-40 degrees\"\n",
- "print \" e2s=\" ,e2,\"V\"\n",
- "print \" e1s=\" ,e1,\"V\"\n",
- "print \" e3s=\" ,e3,\"V\"\n",
- "\n",
- "#calculation\n",
- "a=30\n",
- "e12=math.sqrt(3)*er*math.cos(math.radians(a-150))\n",
- "e23=math.sqrt(3)*er*math.cos(math.radians(a-30))\n",
- "e31=math.sqrt(3)*er*math.cos(math.radians(a+90))\n",
- "\n",
- "#result\n",
- "print \"c) For a=30 degrees\"\n",
- "print \" e12=\" ,e12,\"V\"\n",
- "print \" e23=\" ,e23,\"V\"\n",
- "print \" e31=\" ,e31,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "a) For a=40 degrees\n",
- " e2s= 15.3208888624 V\n",
- " e1s= 3.47296355334 V\n",
- " e3s= -18.7938524157 V\n",
- "b) For a=-40 degrees\n",
- " e2s= 15.3208888624 V\n",
- " e1s= -18.7938524157 V\n",
- " e3s= 3.47296355334 V\n",
- "c) For a=30 degrees\n",
- " e12= -17.3205080757 V\n",
- " e23= 34.6410161514 V\n",
- " e31= -17.3205080757 V\n"
- ]
- }
- ],
- "prompt_number": 41
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_zc3inLB.ipynb b/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_zc3inLB.ipynb
deleted file mode 100644
index d43ac823..00000000
--- a/A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_zc3inLB.ipynb
+++ /dev/null
@@ -1,3109 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:6eddcd87c5c220a184bc6a72a3af06c45a444c1fd08c6f0e5d7d854e3ce98ba8"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 34:Induction Motors"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.1, Page Number:1255"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=290.0#rpm\n",
- "f=50.0#Hz\n",
- "Ns=300.0#rpm(considered)\n",
- "#calculation\n",
- "P=120*f/Ns\n",
- "s=(Ns-n)/Ns\n",
- "\n",
- "#result\n",
- "print \"no. of poles=\",P\n",
- "print \"slip=\",s*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "no. of poles= 20.0\n",
- "slip= 3.33333333333 %\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.2, Page Number:1255"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=3\n",
- "slot=3\n",
- "f=50#Hz\n",
- "\n",
- "#calculation\n",
- "P=2*n\n",
- "slots_total=slot*P*n\n",
- "Ns=120*f/P\n",
- "\n",
- "#result\n",
- "print \"No. of stator poles=\",P\n",
- "print \"Total number of slots=\",slots_total\n",
- "print \"Speed=\",Ns,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " No. of stator poles= 6\n",
- "Total number of slots= 54\n",
- "Speed= 1000 rpm\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.3, Page Number:1255"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "n=3\n",
- "f=50#Hz\n",
- "slip1=0.04\n",
- "slip2=0.03\n",
- "\n",
- "#calculation\n",
- "Ns=120*f/p\n",
- "N=Ns*(1-slip1)\n",
- "f1=slip2*f*60\n",
- "#at standstill s=1\n",
- "f2=1*f\n",
- "\n",
- "#calculation\n",
- "print \"speed at which magnetic field of the stator is rotating=\",Ns,\"rpm\"\n",
- "print \"speed of the rotor when the slip is 0.04=\",N\n",
- "print \"frequency of rotor current=\",f1,\"rpm\"\n",
- "print \"frequency of the rotor current at standstill=\",f2,\"Hz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed at which magnetic field of the stator is rotating= 1500 rpm\n",
- "speed of the rotor when the slip is 0.04= 1440.0\n",
- "frequency of rotor current= 90.0 rpm\n",
- "frequency of the rotor current at standstill= 50 Hz\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.4, Page Number:1255"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=3.0\n",
- "p=4.0\n",
- "f=50.0#Hz\n",
- "slip=0.04\n",
- "n=600.0#rpm\n",
- "\n",
- "#calculations\n",
- "Ns=120*f/p\n",
- "N=Ns*(1-slip)\n",
- "s=(Ns-n)/Ns\n",
- "f1=s*f\n",
- "\n",
- "#result\n",
- "print \"the synchronous speed=\",Ns,\"rpm\"\n",
- "print \"the rotor speed=\",N,\"rpm\"\n",
- "print \"the rotor frequency when n=600 rpm=\",f1,\"Hz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the synchronous speed= 1500.0 rpm\n",
- "the rotor speed= 1440.0 rpm\n",
- "the rotor frequency when n=600 rpm= 30.0 Hz\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.5, Page Number:1256"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=12\n",
- "n=3\n",
- "N=500#rpm\n",
- "p2=8\n",
- "slip=0.03\n",
- "\n",
- "#calculation\n",
- "f=p*N/120\n",
- "Ns=120*f/p2\n",
- "N=Ns-slip*Ns\n",
- "\n",
- "#result\n",
- "print \"full load speed of the motor=\",N,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "full load speed of the motor= 727.5 rpm\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.6, Page Number:1258"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "e=80#V\n",
- "r=1#ohm\n",
- "x=4#ohm\n",
- "rheo=3#ohm\n",
- "\n",
- "#calculation\n",
- "E=e/(3)**0.5\n",
- "z=(r**2+x**2)**0.5\n",
- "i=E/z\n",
- "pf=r/z\n",
- "R=rheo+r\n",
- "z2=(R**2+x**2)**0.5\n",
- "i2=E/z2\n",
- "\n",
- "pf2=R/z2\n",
- "\n",
- "#result\n",
- "print \"slip rings are short circuited:\"\n",
- "print \"current/phase\",i,\"A\"\n",
- "print \"pf=\",pf\n",
- "print \"slip rings are onnected to a star-connected rheostat of 3 ohm\",\n",
- "print \"current/phase\",i2,\"A\"\n",
- "print \"pf=\",pf2"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip rings are short circuited:\n",
- "current/phase 11.2022406722 A\n",
- "pf= 0.242535625036\n",
- "slip rings are onnected to a star-connected rheostat of 3 ohm current/phase 8.16496580928 A\n",
- "pf= 0.707106781187\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.7, Page Number:1258"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=3\n",
- "v=400#V\n",
- "ratio=6.5\n",
- "r=0.05#ohm\n",
- "x=0.25#ohm\n",
- "\n",
- "#calculations\n",
- "k=1/ratio\n",
- "e2=v*k/(3**0.5)\n",
- "R=x-r\n",
- "r2=x\n",
- "z=(x**2+r2**2)**0.5\n",
- "i2=e2/z\n",
- "\n",
- "#result\n",
- "print \"external resistance=\",R,\"ohm\"\n",
- "print \"starting current=\",i2,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "external resistance= 0.2 ohm\n",
- "starting current= 100.491886883 A\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.8, Page Number:1259"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=1100#V\n",
- "f=50#Hz\n",
- "ratio=3.8\n",
- "r=0.012#ohm\n",
- "x=0.25#ohm\n",
- "s=0.04\n",
- "#calculation\n",
- "e=v/ratio\n",
- "z=(r**2+x**2)**0.5\n",
- "i=e/z\n",
- "pf=r/z\n",
- "xr=s*x\n",
- "zr=(r**2+xr**2)**0.5\n",
- "er=s*e\n",
- "i2=er/zr\n",
- "pf2=r/zr\n",
- "i2=100*ratio\n",
- "z2=e/i2\n",
- "r2=(z2**2-x**2)**0.5\n",
- "R=r2-r\n",
- "\n",
- "#result\n",
- "print \"current with slip rings shorted=\",i,\"A\"\n",
- "print \"pf with slip rings shorted=\",pf\n",
- "print \"current with slip=4% and slip rings shorted=\",i2\n",
- "print \"pf withslip=4% and slip rings shorted=\",pf2\n",
- "print \"external resistance=\",R,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current with slip rings shorted= 1156.56314266 A\n",
- "pf with slip rings shorted= 0.0479447993684\n",
- "current with slip=4% and slip rings shorted= 380.0\n",
- "pf withslip=4% and slip rings shorted= 0.768221279597\n",
- "external resistance= 0.70758173952 ohm\n"
- ]
- }
- ],
- "prompt_number": 41
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.9, Page Number:1259"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=15#kW\n",
- "v=3000#V\n",
- "f=50#Hz\n",
- "p=6\n",
- "ratio=3.6\n",
- "r=0.13#ohm\n",
- "l=3.61*0.001#H\n",
- "\n",
- "#calculation\n",
- "v=v/3**0.5\n",
- "x2=2*3.14*l*f\n",
- "k=1/ratio\n",
- "r2_=0.1/k**2\n",
- "x2_=ratio**2*x2\n",
- "is1=v/((r**2+x2_**2)**0.5)\n",
- "ns=120*f/p\n",
- "ts=(3*3/(2*3.14*f))*((v**2)*r2_)/(r2_**2+x2_**2)\n",
- "\n",
- "#result\n",
- "print \"starting current=\",is1,\"A\"\n",
- "print \"ts=\",ts,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "starting current= 117.896733436 A\n",
- "ts= 512.375725888 N-m\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.10, Page Number:1261"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "zs=complex(0.4,4)\n",
- "zr=complex(6,2)\n",
- "v=80#V\n",
- "s=0.03\n",
- "\n",
- "#calculation\n",
- "e2=v/3**0.5\n",
- "i=e2/abs(zr+zs)\n",
- "er=s*e2\n",
- "xr=s*zs.imag\n",
- "ir=er/abs(complex(zs.real,xr))\n",
- "\n",
- "#result\n",
- "print \"rotor current at standstill=\",i,\"A\"\n",
- "print \"rotor current when slip-rings are short-circuited=\",ir,\"A\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rotor current at standstill= 5.26498126493 A\n",
- "rotor current when slip-rings are short-circuited= 3.31800758166 A\n"
- ]
- }
- ],
- "prompt_number": 51
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.11, Page Number:1261"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=3\n",
- "e=120#V\n",
- "r2=0.3#ohm\n",
- "x2=1.5#ohm\n",
- "s=0.04\n",
- "\n",
- "#calculations\n",
- "e2=e/3**0.5\n",
- "er=s*e2\n",
- "xr=s*x2\n",
- "zr=(r2**2+xr**2)**0.5\n",
- "i=er/zr\n",
- "s=r2/x2\n",
- "xr=s*x2\n",
- "zr=(xr**2+r2**2)**0.5\n",
- "er=s*e2\n",
- "i2=er/zr\n",
- "\n",
- "#result\n",
- "print \"rotor when running short-circuited=\",i,\"A\"\n",
- "print \"slip=\",s\n",
- "print \"current when torque is maximum=\",i2,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rotor when running short-circuited= 9.05821627316 A\n",
- "slip= 0.2\n",
- "current when torque is maximum= 32.6598632371 A\n"
- ]
- }
- ],
- "prompt_number": 54
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.12, Page Number:1264"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=8\n",
- "f=50.0#Hz\n",
- "s=0.04\n",
- "tb=150.0#kg-m\n",
- "n=660.0#rpm\n",
- "r=0.5#ohm\n",
- "\n",
- "#calculation\n",
- "ns=120*f/p\n",
- "sb=(ns-n)/ns\n",
- "x2=r/sb\n",
- "t=tb*(2/((sb/s)+s/sb))\n",
- "\n",
- "#result\n",
- "print \"torque=\",t,\"kg-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque= 90.0 kg-m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.13(a), Page Number:1266"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variablde declaration\n",
- "n=3\n",
- "vd=0.90\n",
- "\n",
- "#calculation\n",
- "ratio_s=(1/vd)**2\n",
- "ratio_i=ratio_s*vd\n",
- "cu_loss_increase=ratio_i**2\n",
- "\n",
- "#result\n",
- "print \"increase in motor copper losses=\",cu_loss_increase"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "increase in motor copper losses= 1.23456790123\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.13(b), Page Number:1264"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=230.0#V\n",
- "p=6\n",
- "f=50.0#Hz\n",
- "p1=15.0#kW\n",
- "n=980.0#rpm\n",
- "efficiency=0.93\n",
- "vd=0.10\n",
- "fd=0.05\n",
- "\n",
- "#calculation\n",
- "v2=(1-vd)*v\n",
- "f2=(1-fd)*f\n",
- "n1=120*f/p\n",
- "n2=120*f2/p\n",
- "s1=(n1-n)/n1\n",
- "ratio_f=s1*(v*(1-vd)/v)**2*f2/f\n",
- "n2=n2*(1-ratio_f)\n",
- "p2=p1*n2/n1\n",
- "#result\n",
- "print \"the new operating speed=\",n2,\"rpm\"\n",
- "print \"the new output power=\",p2,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the new operating speed= 935.3795 rpm\n",
- "the new output power= 14.0306925 kW\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.14(a), Page Number:1267"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=3\n",
- "v1=400#V\n",
- "v2=200#V\n",
- "r=0.06#ohm\n",
- "x=0.3#ohm\n",
- "a=1\n",
- "#calculations\n",
- "r=x-r\n",
- "\n",
- "#result\n",
- "print \"additional resistance=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "additional resistance= 0.24 ohm\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.14(b), Page Number:1267"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "n=3\n",
- "f=50#Hz\n",
- "p=8\n",
- "s=0.02\n",
- "r=0.001#ohm\n",
- "x=0.005#ohm\n",
- "\n",
- "#calculation\n",
- "ns=120*f/p\n",
- "a=r/x\n",
- "n2=(1-s)*ns\n",
- "ratio=2*s**2*a/(a**2+s**2)\n",
- "\n",
- "#result\n",
- "print \"ratio of the maximum to full-load torque=\",ratio*1000,\"10^-3\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ratio of the maximum to full-load torque= 3.9603960396 10^-3\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.14(c), Page Number:1267"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=12\n",
- "v=600#V\n",
- "f=50#Hz\n",
- "r=0.03#ohm\n",
- "x=0.5#ohm\n",
- "n=495#rpm\n",
- "s=0.01\n",
- "#calculation\n",
- "Ns=120*f/p\n",
- "a=r/x\n",
- "n=Ns*(1-a)\n",
- "ratio=2*a*s/(a**2+s**2)\n",
- "\n",
- "#result\n",
- "print \"speed of max torque=\",n,\"rpm\"\n",
- "print \"ratio of torques=\",ratio"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of max torque= 470.0 rpm\n",
- "ratio of torques= 0.324324324324\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.15, Page Number:1267"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=746.0#kW\n",
- "f=50.0#Hz\n",
- "p=16\n",
- "zr=complex(0.02,0.15)\n",
- "n=360.0#rpm\n",
- "\n",
- "#calculation\n",
- "ns=120*f/p\n",
- "s=(ns-n)/ns\n",
- "a=zr.real/zr.imag\n",
- "ratio=2*a*s/(a**2+s**2)\n",
- "N=ns*(1-a)\n",
- "R=zr.imag-zr.real\n",
- "\n",
- "#result\n",
- "print \"ratio of torques=\",ratio\n",
- "print \"speed at maximum torque=\",N,\"rpm\"\n",
- "print \"rotor resistance=\",R,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ratio of torques= 0.550458715596\n",
- "speed at maximum torque= 325.0 rpm\n",
- "rotor resistance= 0.13 ohm\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.16, Page Number:1268"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "a=Symbol('a')\n",
- "p=4\n",
- "f=50.0#Hz\n",
- "r=0.025#ohm\n",
- "x=0.12#ohm\n",
- "ratio=3.0/4.0\n",
- "\n",
- "#calculations\n",
- "s=r/x\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "a=solve(ratio-(2*a/(1+a**2)),a)\n",
- "r=a[0]*x-r\n",
- "\n",
- "#result\n",
- "print \"speed at maximum torque=\",n,\"rpm\"\n",
- "print \"additional resistance=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed at maximum torque= 1187.5 rpm\n",
- "additional resistance= 0.0291699475574164 ohm\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.17, Page Number:1268"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "f=50#Hz\n",
- "s=0.04\n",
- "r=0.01#ohm\n",
- "x=0.1#ohm\n",
- "p=8\n",
- "#calculation\n",
- "a=r/x\n",
- "t_ratio=2*a*s/(a**2+s**2)\n",
- "ns=120*f/p\n",
- "n=(1-a)*ns\n",
- "\n",
- "#result\n",
- "print \"ratio of torques=\",1/t_ratio\n",
- "print \"speed=\",n,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ratio of torques= 1.45\n",
- "speed= 675.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.18, Page Number:1268"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "a=Symbol('a')\n",
- "a2=Symbol('a2')\n",
- "p=3\n",
- "t_ratio=2.5\n",
- "t_ratio2=1.5\n",
- "s=0.03\n",
- "\n",
- "#calculation\n",
- "t_ratio3=t_ratio2/t_ratio\n",
- "a=solve(t_ratio3-(2*a/(1+a**2)),a)\n",
- "a2=solve(a2**2-0.15*a2+0.0009,a2)\n",
- "r_red=(a[0]-a2[1])/a[0]\n",
- "#result\n",
- "print \"percentage reduction in rotor circuit resistance=\",r_red*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "percentage reduction in rotor circuit resistance= 56.8784093726987 %\n"
- ]
- }
- ],
- "prompt_number": 46
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.19, Page Number:1269"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=8\n",
- "f=50#Hz\n",
- "r=0.08#ohm\n",
- "n=650.0#rpm\n",
- "\n",
- "#calculation\n",
- "ns=120*f/p\n",
- "sb=(ns-n)/ns\n",
- "x2=r/sb\n",
- "a=1\n",
- "r=a*x2-r\n",
- "#result\n",
- "print \"extra resistance=\",r,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "extra resistance= 0.52 ohm\n"
- ]
- }
- ],
- "prompt_number": 51
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.20, Page Number:1269"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "R=Symbol('R')\n",
- "p=4\n",
- "f=50.0#Hz\n",
- "t=162.8#N-m\n",
- "n=1365.0#rpm\n",
- "r=0.2#ohm\n",
- "\n",
- "#calculations\n",
- "ns=120*f/p\n",
- "sb=(ns-n)/ns\n",
- "x2=r/sb\n",
- "R=solve(1.0/(4*x2)-((r+R)/((r+R)**2+x2**2)),R)\n",
- "\n",
- "#result\n",
- "print \"resistance to be added=\",round(R[0],1),\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance to be added= 0.4 ohm\n"
- ]
- }
- ],
- "prompt_number": 56
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.21, Page Number:1270"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4.0\n",
- "f=50.0#Hz\n",
- "load=7.46#kW\n",
- "t_ratios=1.60\n",
- "t_ratiom=2.0\n",
- "\n",
- "#calcualtion\n",
- "t_ratio=t_ratios/t_ratiom\n",
- "#0.8a2-2*a+0.8 a=0.04\n",
- "#0.5=2*a*sf/a2+sf2 sf=0.01\n",
- "a=0.04\n",
- "sf=0.01\n",
- "ns=120*f/p\n",
- "n=ns-sf*ns\n",
- "N=ns-a*ns\n",
- "\n",
- "#result\n",
- "print \"full-load speed=\",n,\"rpm\"\n",
- "print \"speed at maximum torque=\",N,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "full-load speed= 1485.0 rpm\n",
- "speed at maximum torque= 1440.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.22, Page Number:1270"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=6\n",
- "v=240#V\n",
- "f=50#Hz\n",
- "r=0.12#ohm\n",
- "x=0.85#ohm\n",
- "ratio=1.8\n",
- "s=0.04\n",
- "\n",
- "#calculations\n",
- "k=1/ratio\n",
- "e2=k*(v/3**0.5)\n",
- "ns=120*f/p\n",
- "tf=(3/(2*3.14*f/3))*(s*e2*e2*r/(r**2+(s*x)**2))\n",
- "s=r/x\n",
- "tmax=(3/(2*3.14*f/3))*(s*e2*e2*r/(r**2+(s*x)**2))\n",
- "n=ns*(1-s)\n",
- "\n",
- "#result\n",
- "print \"developed torque=\",tf,\"N-m\"\n",
- "print \"maximum torque=\",tmax,\"N-m\"\n",
- "print \"speed at maximum torque=\",n,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "developed torque= 52.4097855621 N-m\n",
- "maximum torque= 99.9125764956 N-m\n",
- "speed at maximum torque= 858.823529412 rpm\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.23, Page Number:1270"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "r=0.015#ohm\n",
- "x=0.09#ohm\n",
- "s=0.03\n",
- "\n",
- "#calculation\n",
- "ns=100#rpm considered\n",
- "n=(1-s)*ns\n",
- "n2=n/2\n",
- "s2=(ns-n2)/ns\n",
- "ratio=((s2/s)*(r**2+(s*x)**2)/(r**2+(s2*x)**2))**0.5\n",
- "per=1-1/ratio\n",
- "phi=math.atan(s2*x/r)\n",
- "pf=math.cos(phi)\n",
- "\n",
- "#result\n",
- "print \"percentage reduction=\",per*100,\"%\"\n",
- "print \"pf=\",pf\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "percentage reduction= 22.8528060715 %\n",
- "pf= 0.307902262948\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.26, Page Number:1272"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440#V\n",
- "f=50#Hz\n",
- "p=4\n",
- "t=100#N-m\n",
- "n=1200#rpm\n",
- "\n",
- "#calculation\n",
- "e2=v/2\n",
- "ns=120*f/p\n",
- "n=ns-n\n",
- "n2=n+ns/2\n",
- "\n",
- "#result\n",
- "print \"stator supply voltage=\",e2,\"V\"\n",
- "print \"new speed=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "stator supply voltage= 220 V\n",
- "new speed= 1050 rpm\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.24, Page Number:1274"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable delclaration\n",
- "v=400.0#V\n",
- "f=60.0#Hz\n",
- "p=8.0\n",
- "n=1140.0#rpm\n",
- "e=440.0#V\n",
- "e2=550.0#V\n",
- "\n",
- "#calculations\n",
- "ns=120*f/p\n",
- "s1=(ns-n)/ns\n",
- "s2=s1*(e/e2)**2\n",
- "n2=ns*(1-s2)\n",
- "\n",
- "#result\n",
- "print \"speed=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed= 1053.6 rpm\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.25, Page Number:1274"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=450.0#V\n",
- "f=60.0#Hz\n",
- "p=8.0\n",
- "n=873.0#rpm\n",
- "t=23.0#degrees\n",
- "n2=864.0#rpm\n",
- "alpha=1.0/234.0#per degrees centrigrade\n",
- "\n",
- "#calculation\n",
- "s1=(900-n)/900\n",
- "s2=(900-n2)/900\n",
- "ratio=s2/s1-1\n",
- "t2=(s2/s1-1)/alpha+23 \n",
- "\n",
- "#result\n",
- "print \"increase in rotor resistance=\",ratio*100,\"%\"\n",
- "print \"approx temperature=\",t2,\"degrees centigrade\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "increase in rotor resistance= 33.3333333333 %\n",
- "approx temperature= 101.0 degrees centigrade\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.27, Page Number:1283"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440.0#V\n",
- "f=500.0#Hz\n",
- "p=6.0\n",
- "load=80.0#kW\n",
- "alt=100.0\n",
- "ns=120.0*f/60.0\n",
- "#calculation\n",
- "s=alt/(60.0*f)\n",
- "n=(1-s)*ns\n",
- "cu_loss=(1.0/3.0)*load*1000/3.0\n",
- "\n",
- "#result\n",
- "print \"slip=\",s*1000,\"%\"\n",
- "print \"rotor speed=\",n,\"rpm\"\n",
- "print \"rotor copper loss=\",cu_loss/10000,\"kW\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip= 3.33333333333 %\n",
- "rotor speed= 996.666666667 rpm\n",
- "rotor copper loss= 0.888888888889 kW\n"
- ]
- }
- ],
- "prompt_number": 36
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.28, Page Number:1283"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440.0#V\n",
- "f=50.0#Hz\n",
- "p=4.0\n",
- "n=1425.0#rpm\n",
- "z=complex(0.4,4)\n",
- "ratio=0.8\n",
- "loss=500.0#W\n",
- "\n",
- "#calculation\n",
- "ns=120*f/p\n",
- "s=75/ns\n",
- "e1=v/3**0.5\n",
- "tf=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real*s)/(z.real**2+(s*z.imag)**2)\n",
- "ir=s*ratio*e1/(z.real**2+(s*z.imag)**2)**0.5\n",
- "cu_loss=3*ir**2*z.real\n",
- "pm=2*3.4*(n/60)*tf\n",
- "pout=pm-loss\n",
- "s=z.real/z.imag\n",
- "tmax=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real*s)/(z.real**2+(s*z.imag)**2)\n",
- "nmax=ns-s*ns\n",
- "i=ratio*e1/abs(z)\n",
- "tst=(3*2/(2*3.14*f))*(((e1*ratio)**2)*z.real)/(z.real**2+(z.imag)**2)\n",
- "\n",
- "#result\n",
- "print \" full load torque=\",tf,\"N-m\"\n",
- "print \"rotor current=\",ir,\"A\"\n",
- "print \"cu_loss=\",cu_loss,\"W\"\n",
- "print \"power output=\",pout,\"W\"\n",
- "print \"max torque=\",tmax,\"N-m\"\n",
- "print \"speed at max torque=\",nmax,\"rpm\"\n",
- "print \"starting current=\",i,\"A\"\n",
- "print \"starting torque=\",tst,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " full load torque= 78.9197452229 N-m\n",
- "rotor current= 22.7215022978 A\n",
- "cu_loss= 619.52 W\n",
- "power output= 12245.5388535 W\n",
- "max torque= 98.6496815287 N-m\n",
- "speed at max torque= 1350.0 rpm\n",
- "starting current= 50.5546790867 A\n",
- "starting torque= 19.5345904017 N-m\n"
- ]
- }
- ],
- "prompt_number": 47
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.29, Page Number:1285"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "P=23#kW\n",
- "p=4\n",
- "e=0.92\n",
- "n=1440#r.p.m\n",
- "loss=0.25\n",
- "\n",
- "#calculations\n",
- "motor_input=P/e\n",
- "total_loss=motor_input-P\n",
- "friction_loss=total_loss/p\n",
- "Pm=P+friction_loss\n",
- "Psw=Pm*1500/n\n",
- "ws=2*3.14*1500/60\n",
- "Tsw=Psw*1000/ws\n",
- "\n",
- "#result\n",
- "print \"Synchronous torque=\",round(Tsw),\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Synchronous torque= 156.0 N-m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.30, Page Number:1286"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=60#kW\n",
- "loss=1#kW\n",
- "s=0.03\n",
- "\n",
- "#calculations\n",
- "p2=load-loss\n",
- "pm=(1-s)*p2\n",
- "cu_loss=s*p2\n",
- "rotor_loss=cu_loss*1000/3\n",
- "\n",
- "#result\n",
- "print \"mechanical power developed=\",pm,\"kW\"\n",
- "print \"rotor copper loss=\",rotor_loss,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "mechanical power developed= 57.23 kW\n",
- "rotor copper loss= 590.0 W\n"
- ]
- }
- ],
- "prompt_number": 52
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.31, Page Number:1287"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400#V\n",
- "f=50#Hz\n",
- "p=6\n",
- "load=20#KW\n",
- "s=0.03\n",
- "i=60#A\n",
- "\n",
- "#calculation\n",
- "fr=s*f\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "cu_loss=s*load*1000\n",
- "r2=cu_loss/(3*i**2)\n",
- "\n",
- "#result\n",
- "print \"frequency of rotor current=\",fr,\"Hz\"\n",
- "print \"rotor copper loss=\",cu_loss,\"W\"\n",
- "print \"rotor resistance=\",r2,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency of rotor current= 1.5 Hz\n",
- "rotor copper loss= 600.0 W\n",
- "rotor resistance= 0.0555555555556 ohm\n"
- ]
- }
- ],
- "prompt_number": 54
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.32, Page Number:1287"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=6\n",
- "f=50#Hz\n",
- "load=3.73#KW\n",
- "n=960#rpm\n",
- "loss=280#W\n",
- "\n",
- "#calculation\n",
- "ns=120*f/p\n",
- "input_r=load*1000*ns/n\n",
- "input_s=input_r+loss\n",
- "\n",
- "#result\n",
- "print \"stator input=\",input_s,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "stator input= 4165.41666667 W\n"
- ]
- }
- ],
- "prompt_number": 55
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.33, Page Number:1287"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400.0#V\n",
- "f=50.0#Hz\n",
- "p=6.0\n",
- "p2=75.0#KW\n",
- "alt=100.0\n",
- "\n",
- "#calculations\n",
- "f1=alt/60\n",
- "s=f1/f\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "cu_loss_r_per_phase=s*p2/3\n",
- "pm=(1-s)*p2\n",
- "\n",
- "#result\n",
- "print \"slip=\",s*100,\"%\"\n",
- "print \"rotor speed=\",n,\"rpm\"\n",
- "print \"rotor copper loss per phase=\",cu_loss_r_per_phase,\"kW\"\n",
- "print \"mechancal power=\",pm,\"kW\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip= 3.33333333333 %\n",
- "rotor speed= 966.666666667 rpm\n",
- "rotor copper loss per phase= 0.833333333333 kW\n",
- "mechancal power= 72.5 kW\n"
- ]
- }
- ],
- "prompt_number": 57
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.34, Page Number:1287"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=500.0#V\n",
- "f=50.0#Hz\n",
- "p=6.0\n",
- "n=975.0#rpm\n",
- "p1=40.0#KW\n",
- "loss_s=1.0#kW\n",
- "loss=2.0#KW\n",
- "\n",
- "#calculation\n",
- "ns=120*f/p\n",
- "s=(ns-n)/ns\n",
- "p2=p1-loss_s\n",
- "cu_loss=s*p2\n",
- "pm=p2-cu_loss\n",
- "pout=pm-loss\n",
- "efficiency=pout/p1\n",
- "\n",
- "#result\n",
- "print \"slip=\",s*100,\"%\"\n",
- "print \"rotor copper loss=\",cu_loss,\"kW\"\n",
- "print \"shaft power=\",pout,\"kW\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip= 2.5 %\n",
- "rotor copper loss= 0.975 kW\n",
- "shaft power= 36.025 kW\n",
- "efficiency= 90.0625 %\n"
- ]
- }
- ],
- "prompt_number": 59
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.35, Page Number:1287"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "output=100#KW\n",
- "v=3300#V\n",
- "f=50#Hz\n",
- "n=500#rpm\n",
- "s=0.018\n",
- "pf=0.85\n",
- "cu_loss=2440#W\n",
- "iron_loss=3500#W\n",
- "rotational_loss=1200#W\n",
- "\n",
- "#calculations\n",
- "pm=output+rotational_loss/1000\n",
- "cu_loss_r=(s/(1-s))*pm\n",
- "p2=pm+cu_loss_r\n",
- "input_s=p2+cu_loss/1000+iron_loss/1000\n",
- "il=input_s*1000/(3**0.5*v*pf)\n",
- "efficiency=output/input_s\n",
- "\n",
- "#result\n",
- "print \"rotor copper loss=\",cu_loss_r,\"kW\"\n",
- "print \"line current=\",il,\"A\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rotor copper loss= 1.85132382892 kW\n",
- "line current= 22.1989272175 A\n",
- "efficiency= 92.7202341611 %\n"
- ]
- }
- ],
- "prompt_number": 62
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.36, Page Number:1288"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440.0#V\n",
- "f=50.0#Hz\n",
- "p=6.0\n",
- "p2=100.0#W\n",
- "c=120.0\n",
- "\n",
- "#calculations\n",
- "s=c/(f*60)\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "pm=(1-s)*p2\n",
- "cu_loss=s*p2/3\n",
- "n2=ns-n\n",
- "\n",
- "#result\n",
- "print \"slip=\",s*100,\"%\"\n",
- "print \"rotor speed=\",n,\"rpm\"\n",
- "print \"mechanical power=\",pm,\"kW\"\n",
- "print \"copper loss=\",cu_loss,\"kW\"\n",
- "print \"speed of stator field with respect to rotor=\",n2,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip= 4.0 %\n",
- "rotor speed= 960.0 rpm\n",
- "mechanical power= 96.0 kW\n",
- "copper loss= 1.33333333333 kW\n",
- "speed of stator field with respect to rotor= 40.0 rpm\n"
- ]
- }
- ],
- "prompt_number": 69
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.37, Page Number:1288"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "efficiency=0.9\n",
- "output=37#kW\n",
- "ratio=1.0/3.0\n",
- "\n",
- "#calculation\n",
- "input_m=output*1000/efficiency\n",
- "total_loss=input_m-output*1000\n",
- "x=total_loss/(3+0.5)\n",
- "input_r=output*1000+x/2+x\n",
- "s=x/input_r\n",
- "\n",
- "#result\n",
- "print \"slip=\",s*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip= 3.0303030303 %\n"
- ]
- }
- ],
- "prompt_number": 74
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.38, Page Number:1289"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400#V\n",
- "f=50#Hz\n",
- "p=6\n",
- "load=45#KW\n",
- "i=75#A\n",
- "s=0.03\n",
- "iron_loss=1200#kW\n",
- "loss=900#kW\n",
- "r=0.12#ohm\n",
- "\n",
- "#calculations\n",
- "pf=load*1000/(3**0.5*v*i)\n",
- "r=r*3/2\n",
- "cu_loss=3*(i/3**0.5)**2*r\n",
- "cu_loss_r=s*42788\n",
- "pm=42788-cu_loss_r\n",
- "output_s=pm-loss\n",
- "efficiency=output_s/(load*1000)\n",
- "t=(output_s*60)/(2*3.14*970)\n",
- "\n",
- "#result\n",
- "print \"pf=\",pf\n",
- "print \"rotor cu loss=\",cu_loss_r,\"W\"\n",
- "print \"p out=\",output_s,\"W\"\n",
- "print \"efficiency=\",efficiency*100,\"%\"\n",
- "print \"torque=\",t,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pf= 0.866025403784\n",
- "rotor cu loss= 1283.64 W\n",
- "p out= 40604.36 W\n",
- "efficiency= 90.2319111111 %\n",
- "torque= 399.937881673 N-m\n"
- ]
- }
- ],
- "prompt_number": 78
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.39(a), Page Number:1287"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4.0\n",
- "v=220.0#V\n",
- "f=50.0#Hz\n",
- "r=0.1#ohm\n",
- "x=0.9#ohm\n",
- "ratio=1.75\n",
- "s=0.05\n",
- "\n",
- "#calculations\n",
- "k=1/ratio\n",
- "e1=v/3**0.5\n",
- "e2=k*e1\n",
- "z=(r**2+(s*x)**2)**0.5\n",
- "i2=s*e2/z\n",
- "pcr=3*i2**2*r\n",
- "pm=pcr*(1-s)/s\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "tg=9.55*pm/n\n",
- "sm=r/x\n",
- "n=ns*(1-sm)\n",
- "e3=sm*e2\n",
- "\n",
- "#result\n",
- "print \"load torque=\",tg/9.81,\"kg-m\"\n",
- "print \"speed at maximum torque=\",n,\"rpm\"\n",
- "print \"rotor emf at max torque=\",e3,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "load torque= 4.26478644041 kg-m\n",
- "speed at maximum torque= 1333.33333333 rpm\n",
- "rotor emf at max torque= 8.06457518868 V\n"
- ]
- }
- ],
- "prompt_number": 88
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.39(b), Page Number:1290"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400#V\n",
- "f=50#Hz\n",
- "p=4\n",
- "i=10#A\n",
- "pf=0.86\n",
- "loss=0.05\n",
- "cu_r=0.04\n",
- "m_loss=0.03\n",
- "\n",
- "#calculation\n",
- "input_m=3**0.5*v*i*pf\n",
- "loss_s=loss*input_m\n",
- "input_r=input_m-loss_s\n",
- "cu_lossr=cu_r*input_r\n",
- "mec_loss=m_loss*input_r\n",
- "output_shaft=input_r-cu_lossr-mec_loss\n",
- "s=cu_lossr/input_r\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "wr=2*3.14*n/60\n",
- "output_r=input_r-cu_lossr\n",
- "tr=output_r/wr\n",
- "tin=output_shaft/wr\n",
- "\n",
- "#result\n",
- "print \"slip=\",s*100,\"%\"\n",
- "print \"rotor speed=\",n,\"rpm\"\n",
- "print \"torque developed in the rotor=\",tr,\"Nw-m\"\n",
- "print \"shaft torque=\",tin,\"Nw-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip= 4.0 %\n",
- "rotor speed= 1440.0 rpm\n",
- "torque developed in the rotor= 36.0531340072 Nw-m\n",
- "shaft torque= 34.9264735695 Nw-m\n"
- ]
- }
- ],
- "prompt_number": 91
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.40, Page Number:1291"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440.0#V\n",
- "p=40.0\n",
- "f=50.0#Hz\n",
- "r=0.1#ohm\n",
- "x=0.9#ohm\n",
- "ratio=3.5\n",
- "s=0.05\n",
- "\n",
- "#calculation\n",
- "e1=v/3**0.5\n",
- "k=1/ratio\n",
- "e2=k*e1\n",
- "er=s*e2\n",
- "z=(r**2+(s*x)**2)**0.5\n",
- "i2=er/z\n",
- "cu_loss=3*i2**2*r\n",
- "output=cu_loss*(1-s)/s\n",
- "sm=r/x\n",
- "er=sm*e2\n",
- "zr=(r**2+(x*sm)**2)**0.5\n",
- "i2=er/zr\n",
- "cu_loss=3*i2**2*r\n",
- "input_r=cu_loss/sm\n",
- "\n",
- "#result\n",
- "print \"gross output at 5% slip=\",output,\"W\"\n",
- "print \"maximum torque=\",input_r,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "gross output at 5% slip= 6242.77652849 W\n",
- "maximum torque= 8780.04535147 W\n"
- ]
- }
- ],
- "prompt_number": 107
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.41, Page Number:1291"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "pout=18.65#kW\n",
- "p=4.0\n",
- "f=50.0#Hz\n",
- "loss=0.025\n",
- "s=0.04\n",
- "\n",
- "#calculations\n",
- "pw=loss*pout*1000\n",
- "pm=pout*1000+pw\n",
- "cu_loss=s*pm/(1-s)\n",
- "p2=cu_loss/s\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "tsh=9.55*pout*1000/n\n",
- "tg=9.55*pm/n\n",
- "\n",
- "#result\n",
- "print \"rotor cu loss=\",cu_loss,\"W\"\n",
- "print \"rotor input=\",p2,\"W\"\n",
- "print \"shaft torque=\",tsh,\"N-m\"\n",
- "print \"gross electromagnetic torque=\",tg,\"N-m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rotor cu loss= 796.510416667 W\n",
- "rotor input= 19912.7604167 W\n",
- "shaft torque= 123.685763889 N-m\n",
- "gross electromagnetic torque= 126.777907986 N-m\n"
- ]
- }
- ],
- "prompt_number": 109
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.42, Page Number:1291"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=8\n",
- "f=50.0#Hz\n",
- "n=710#rpm\n",
- "load=35#kW\n",
- "loss=1200#W\n",
- "loss_r=600#W\n",
- "\n",
- "#calculation\n",
- "p2=load*1000-loss\n",
- "ns=120*f/p\n",
- "s=(ns-n)/ns\n",
- "cu_loss=s*p2\n",
- "pm=p2-cu_loss\n",
- "tg=9.55*pm/n\n",
- "pout=pm-loss_r\n",
- "tsh=9.55*pout/n\n",
- "\n",
- "#result\n",
- "print \"rotor copper loss=\",cu_loss/1000,\"kW\"\n",
- "print \"gross torque=\",tg,\"N-m\"\n",
- "print \"mechanical power=\",pm,\"W\"\n",
- "print \"net torque=\",tsh,\"N-m\"\n",
- "print \"mechanical power output=\",pout,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "rotor copper loss= 1.80266666667 kW\n",
- "gross torque= 430.386666667 N-m\n",
- "mechanical power= 31997.3333333 W\n",
- "net torque= 422.316244131 N-m\n",
- "mechanical power output= 31397.3333333 W\n"
- ]
- }
- ],
- "prompt_number": 113
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.43, Page Number:1292"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=6\n",
- "f=50.0#Hz\n",
- "s=0.04\n",
- "tsh=149.3#N-m\n",
- "loss=200#W\n",
- "cu_loss=1620#W\n",
- "\n",
- "#calculations\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "pout=tsh*2*3.14*(n/60)\n",
- "output=pout+loss\n",
- "p2=output*ns/n\n",
- "cu_lossr=p2-output\n",
- "p1=p2+cu_loss\n",
- "efficiency=pout*100/p1\n",
- "\n",
- "#result\n",
- "print \"output power=\",pout/1000,\"kW\"\n",
- "print \"rotor cu loss=\",cu_lossr,\"W\"\n",
- "print \"the efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output power= 15.001664 kW\n",
- "rotor cu loss= 633.402666667 W\n",
- "the efficiency= 85.9444669361 %\n"
- ]
- }
- ],
- "prompt_number": 116
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.44, Page Number:1291"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "pout=18.65#kW\n",
- "p=6\n",
- "f=50.0#Hz\n",
- "n=960#rpm\n",
- "i2=35#A\n",
- "loss=1#kW\n",
- "\n",
- "#calculation\n",
- "pm=pout+loss\n",
- "ns=120*f/p\n",
- "s=(ns-n)/ns\n",
- "cu_lossr=pm*s*1000/(1-s)\n",
- "r2=cu_lossr/(3*i2**2)\n",
- "\n",
- "#result\n",
- "print \"resistane per phase=\",r2,\"ohm/phase\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistane per phase= 0.222789115646 ohm/phase\n"
- ]
- }
- ],
- "prompt_number": 120
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.45, Page Number:1291"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from sympy.solvers import solve\n",
- "from sympy import Symbol\n",
- "#variable declaration\n",
- "sf=Symbol('sf')\n",
- "v=400#V\n",
- "p=4\n",
- "f=50#Hz\n",
- "r=0.01#ohm\n",
- "x=0.1#ohm\n",
- "ratio=4\n",
- "\n",
- "#calculation\n",
- "e1=v/3**0.5\n",
- "e2=e1/ratio\n",
- "sm=r/x\n",
- "ns=120*f/p\n",
- "tmax=(3/(2*3.14*25))*(e2**2/(2*x))\n",
- "a=r/x\n",
- "sf=solve(0.5*(a**2+sf**2)-2*a*sf,sf)\n",
- "n=ns*(1-sf[0])\n",
- "tf=tmax/2\n",
- "output=2*3.14*n*tf/60\n",
- "\n",
- "#result\n",
- "print \"maximum torque=\",tmax,\"N-m\"\n",
- "print \"full load slip=\",sf[0]\n",
- "print \"power output=\",output,\"W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum torque= 318.47133758 N-m\n",
- "full load slip= 0.0267949192431123\n",
- "power output= 24330.1270189222 W\n"
- ]
- }
- ],
- "prompt_number": 129
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.46, Page Number:1291"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "f=50.0#Hz\n",
- "v=200.0#V\n",
- "r=0.1#ohm\n",
- "x=0.9#ohm\n",
- "k=0.67\n",
- "s=0.04\n",
- "#calculations\n",
- "e1=v/3**0.5\n",
- "e2=e1*k\n",
- "z=(r**2+(s*x)**2)**0.5\n",
- "i2=s*e2/z\n",
- "cu_loss=3*i2**2*r\n",
- "pm=cu_loss*(1-s)/s\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "tg=9.55*pm/n\n",
- "sm=r/x\n",
- "er=sm*e2\n",
- "zr=(r**2+(sm*x)**2)**0.5\n",
- "i2=er/zr\n",
- "cu_lossr=3*i2**2*r\n",
- "output=cu_lossr*(1-sm)/sm\n",
- "n=(1-sm)*ns\n",
- "tmax=9.55*output/n\n",
- "\n",
- "#result\n",
- "print \"torque=\",tg,\"N-m\"\n",
- "print \"maximum torque=\",tmax,\"N-m\"\n",
- "print \"speed at max torque=\",n,\"rpm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque= 40.4815391879 N-m\n",
- "maximum torque= 63.511037037 N-m\n",
- "speed at max torque= 1333.33333333 rpm\n"
- ]
- }
- ],
- "prompt_number": 143
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.47, Page Number:1293"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "r=0.015#ohm\n",
- "x=0.09#ohm\n",
- "f=50#Hz\n",
- "s=0.04\n",
- "p=4\n",
- "e2=110#V\n",
- "\n",
- "#calculations\n",
- "z=(r**2+x**2)**0.5\n",
- "pf=r/z\n",
- "xr=s*x\n",
- "zr=(r**2+xr**2)**0.5\n",
- "pf2=r/zr\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "er=s*e2\n",
- "i2=er/zr\n",
- "cu_loss=3*i2**2*r\n",
- "pm=cu_loss*(1-s)/s\n",
- "tg=9.55*pm/n\n",
- "\n",
- "#result\n",
- "print \"pf of motor at start=\",pf\n",
- "print \"pf of motor at s=4%\",pf2\n",
- "print \"full load torque=\",tg,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pf of motor at start= 0.164398987305\n",
- "pf of motor at s=4% 0.972387301981\n",
- "full load torque= 582.728189612 N-m\n"
- ]
- }
- ],
- "prompt_number": 144
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.48, Page Number:1294"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=6.0\n",
- "f=50.0#Hz\n",
- "tsh=162.84#N-m\n",
- "c=90.0\n",
- "t=20.36#N-m\n",
- "loss=830.0#W\n",
- "\n",
- "#calculation\n",
- "ns=120*f/p\n",
- "fr=c/60\n",
- "s=fr/f\n",
- "n=ns*(1-s)\n",
- "output=2*3.14*n*tsh/60\n",
- "tg=tsh+t\n",
- "p2=tg*ns/9.55\n",
- "cu_lossr=s*p2\n",
- "p1=p2+cu_lossr\n",
- "efficiency=output*100/p1\n",
- "\n",
- "#result\n",
- "print \"motor output=\",output,\"W\"\n",
- "print \"cu loss=\",cu_lossr,\"W\"\n",
- "print \"motor input\",p1,\"W\"\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "motor output= 16532.6024 W\n",
- "cu loss= 575.497382199 W\n",
- "motor input 19758.7434555 W\n",
- "efficiency= 83.6723369441 %\n"
- ]
- }
- ],
- "prompt_number": 146
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.49, Page Number:1294"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "load=18.65#kW\n",
- "v=420.0#V\n",
- "p=6\n",
- "f=50.0#Hz\n",
- "r=1.0#ohm\n",
- "z=complex(0.25,0.75)\n",
- "zr=complex(0.173,0.52)\n",
- "v1=420.0#V\n",
- "v2=350.0#V\n",
- "\n",
- "#calculations\n",
- "k=v2/v1\n",
- "r02=zr.real+k**2*z.real\n",
- "x02=zr.imag+k**2*z.imag\n",
- "z02=((r+r02)**2+x02**2)**0.5\n",
- "i2=v2/(3**0.5*z02)\n",
- "cu_loss=i2**2*(r+zr.real)\n",
- "p2=cu_loss*3\n",
- "ns=120*f/p\n",
- "tst=9.55*p2/(ns*9.81)\n",
- "#result\n",
- "print \"torque=\",tst,\"kg-m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "torque= 48.2909354778 kg-m\n"
- ]
- }
- ],
- "prompt_number": 157
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.50, Page Number:1295"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=8\n",
- "load=37.3#ohm\n",
- "v=280#V\n",
- "f=50.0#Hz\n",
- "i=200#A\n",
- "pf=0.25\n",
- "r=0.15#ohm\n",
- "k=1.0/3\n",
- "#calculation\n",
- "wsc=2*v*i*pf\n",
- "power_phase=v*i*pf\n",
- "R=power_phase/i**2\n",
- "r2_=R-r\n",
- "r2=k**2*r2_\n",
- "p2=3*i**2*r2_\n",
- "ns=120*f/p\n",
- "t=9.55*p2/ns\n",
- "\n",
- "#result\n",
- "print \"resistance perphaseof therotor winding=\",r2,\"ohm\"\n",
- "print \"startingtorque=\",t,\"N-m\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance perphaseof therotor winding= 0.0222222222222 ohm\n",
- "startingtorque= 305.6 N-m\n"
- ]
- }
- ],
- "prompt_number": 158
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.51, Page Number:1295"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "ratios=1.6\n",
- "ratiom=2.0\n",
- "sf=0.01\n",
- "sb=0.04\n",
- "#calculation\n",
- "i=(ratios/sf)**0.5\n",
- "\n",
- "#result\n",
- "print \"slip at full load=\",sf\n",
- "print \"slip at maximum torque=\",sb\n",
- "print \"rotor current=\",i"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "slip at full load= 0.01\n",
- "slip at maximum torque= 0.04\n",
- "rotor current= 12.6491106407\n"
- ]
- }
- ],
- "prompt_number": 159
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.52, Page Number:1297"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=200#km/h\n",
- "f=100#Hz\n",
- "\n",
- "#calculation\n",
- "w=v*5.0/18/(2*f)\n",
- "\n",
- "#result\n",
- "print \"pole pitch=\",w*1000,\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pole pitch= 277.777777778 mm\n"
- ]
- }
- ],
- "prompt_number": 162
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.53, Page Number:1297"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "p=4\n",
- "w=6#mm\n",
- "f=25#Hz\n",
- "p=6#kW\n",
- "loss=1.2#kW\n",
- "v=2.4#m/s\n",
- "\n",
- "#calculation\n",
- "vs=2*f*w/100\n",
- "s=(vs-v)/vs\n",
- "p2=p-loss\n",
- "pcr=s*p2\n",
- "pm=p2-pcr\n",
- "f=p2*1000/vs\n",
- "\n",
- "#result\n",
- "print \"synchronous speed=\",vs,\"m/s\"\n",
- "print \"slip=\",s\n",
- "print \"cu loss=\",pcr,\"kW\"\n",
- "print \"mechanical power=\",pm,\"kW\"\n",
- "print \"thrust=\",f/1000,\"kN\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "synchronous speed= 3 m/s\n",
- "slip= 0.2\n",
- "cu loss= 0.96 kW\n",
- "mechanical power= 3.84 kW\n",
- "thrust= 1.6 kN\n"
- ]
- }
- ],
- "prompt_number": 163
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.54, Page Number:1304"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "s=0.12\n",
- "r=0.08#ohm/phase\n",
- "pg=9000.0#W\n",
- "\n",
- "#calculations\n",
- "rl=r*(1/s-1)\n",
- "v=(pg*rl/3)**0.5\n",
- "il=v/rl\n",
- "\n",
- "#result\n",
- "print \"load resistance=\",rl,\"ohm\"\n",
- "print \"load voltage=\",v,\"V\"\n",
- "print \"load current=\",il,\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "load resistance= 0.586666666667 ohm\n",
- "load voltage= 41.9523539268 V\n",
- "load current= 71.5096941934 A\n"
- ]
- }
- ],
- "prompt_number": 166
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.55, Page Number:1305"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400.0#V\n",
- "f=50.0#Hz\n",
- "p=4\n",
- "r1=0.15#ohm\n",
- "x1=0.45#ohm\n",
- "r2_=0.12#ohm\n",
- "x2_=0.45#ohm\n",
- "xm=complex(0,28.5)#ohm\n",
- "s=0.04\n",
- "#calculations\n",
- "rl_=r2_*(1/s-1)\n",
- "i2_=(v/3**0.5)/complex(r1+rl_,x1)\n",
- "i0=(v/3**0.5)/xm\n",
- "i1=i0+i2_\n",
- "pf=math.cos(math.atan(i1.imag/i1.real))\n",
- "\n",
- "#result\n",
- "print \"stator current=\",i1,\"A\"\n",
- "print \"power factor=\",pf"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "stator current= (74.5730253701-19.1783634605j) A\n",
- "power factor= 0.968485280755\n"
- ]
- }
- ],
- "prompt_number": 177
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.56, Page Number:1305"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v=220#V\n",
- "p=4\n",
- "f=50#Hz\n",
- "power=3.73#kW\n",
- "r1=0.45#ohm\n",
- "x1=0.8#ohm\n",
- "r2_=0.4#ohm\n",
- "x2_=0.8#ohm\n",
- "b0=-1.0/30\n",
- "loss=50#W\n",
- "lossr=150#W\n",
- "s=0.04\n",
- "\n",
- "#calculations\n",
- "zab=complex(30*complex(r2_/s,x2_))/complex(r2_/s,x2_-1/b0)\n",
- "z01=complex(r1,x1)+zab\n",
- "vph=v/3**0.5\n",
- "i1=v1/z01\n",
- "pf=math.cos(math.atan(i1.imag/i1.real))\n",
- "p2=3*i1.real**2*zab.real\n",
- "pm=(1-s)*p2\n",
- "ns=120*f/p\n",
- "n=ns*(1-s)\n",
- "tg=9.55*pm/n\n",
- "power_o=pm-lossr\n",
- "cu_loss=3*i1.real**2*r1\n",
- "cu_lossr=s*p2\n",
- "total_loss=loss+cu_loss+cu_lossr+lossr\n",
- "efficiency=power_o/(power_o+total_loss)\n",
- "\n",
- "#result\n",
- "print \"input current=\",i1,\"A\"\n",
- "print \"pf=\",pf\n",
- "print \"air gap power=\",p2,\"W\"\n",
- "print \"mechanical power=\",pm,\"W\"\n",
- "print \"electro magnetic torque=\",tg,\"N-m\"\n",
- "print \"output power=\",power_o,\"W\"\n",
- "print \"efficiency=\",efficiency*100,\"%\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "input current= (21.9914486234+42.6194245913j) A\n",
- "pf= 0.45854949826\n",
- "air gap power= 5173.46132109 W\n",
- "mechanical power= 4966.52286825 W\n",
- "electro magnetic torque= 32.9377037443 N-m\n",
- "output power= 4816.52286825 W\n",
- "efficiency= 81.9644851937 %\n"
- ]
- }
- ],
- "prompt_number": 184
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.57, Page Number:1306"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=440#V\n",
- "f=50#Hz\n",
- "load=37.3#kW\n",
- "r1=0.1#ohm\n",
- "x1=0.4#ohm\n",
- "r2_=0.15#ohm\n",
- "x2_=0.44#ohm\n",
- "loss=1250#W\n",
- "lossr=1000#W\n",
- "i=20#A\n",
- "pf=0.09\n",
- "s=0.03\n",
- "\n",
- "#calculation\n",
- "v1=v/3**0.5\n",
- "i2_=v1/complex(r1+r2_/s,x1+x2_)\n",
- "i1=i2_+complex(1.78,19.9)\n",
- "pf=math.cos(math.atan(i1.imag/i1.real))\n",
- "p2=3*i2_.real**2*r2_/s\n",
- "ns=120*f/p\n",
- "tg=9.55*p2/ns\n",
- "pm=p2*(1-s)\n",
- "pout=pm-1000\n",
- "cu_losss=3*i1.real**2*r1\n",
- "cu_lossr=s*p2\n",
- "total_loss=loss+cu_losss+cu_lossr+lossr\n",
- "efficiency=pout/(pout+total_loss)\n",
- "\n",
- "#result\n",
- "print \"line current=\",i1,\"A\"\n",
- "print \"pf=\",pf\n",
- "print \"electromagnetic torque=\",tg,\"N-m\"\n",
- "print \"output=\",pout,\"W\"\n",
- "print \"efficiency=\",efficiency*100,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "line current= (50.2750367599+11.9125821807j) A\n",
- "pf= 0.973057118792\n",
- "electromagnetic torque= 224.593900377 N-m\n",
- "output= 33218.2329894 W\n",
- "efficiency= 89.0932246577 %\n"
- ]
- }
- ],
- "prompt_number": 186
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.58, Page Number:1306"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400#V\n",
- "z=complex(0.06,0.2)\n",
- "zr=complex(0.06,0.22)\n",
- "\n",
- "#calculation\n",
- "r01=z.real+zr.real\n",
- "x01=z.imag+zr.imag\n",
- "z01=(r01**2+x01**2)**0.5\n",
- "s=z.real/(z.real+z01)\n",
- "v1=v/3**0.5\n",
- "pmax=3*v1**2/(2*(r01+z01))\n",
- "\n",
- "#result\n",
- "print \"maximum gross power=\",pmax,\"W\"\n",
- "print \"slip=\",s"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum gross power= 143676.459572 W\n",
- "slip= 0.120771344025\n"
- ]
- }
- ],
- "prompt_number": 188
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.59, Page Number:1307"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "#variable declaration\n",
- "v1=115#V\n",
- "f=60.0#Hz\n",
- "p=6\n",
- "z=complex(0.07,0.3)\n",
- "zr=complex(0.08,0.3)\n",
- "gd=0.022#mho\n",
- "bo=0.158#mho\n",
- "s=0.02\n",
- "\n",
- "#calculation\n",
- "rl_=1/bo*(1/s-1)\n",
- "z=complex(z.real+zr.real+rl_,0.6)\n",
- "v=v1/3**0.5\n",
- "i2=complex(16,-2.36)\n",
- "io=v*complex(gd,-bo)\n",
- "i1=io+i2\n",
- "pf=math.cos(math.atan(i1.imag/i1.real))\n",
- "pg=3*abs(i2)**2*rl_/100\n",
- "ns=120*f/p\n",
- "n=(1-s)*ns\n",
- "tg=9.55*pg/n\n",
- "p2=3**0.5*v1*abs(i1)*pf\n",
- "efficiency=pg*100/p2\n",
- "\n",
- "#result\n",
- "print \"secondary current=\",i2,\"A\"\n",
- "print \"primary current=\",i1,\"A\"\n",
- "print \"pf=\",pf\n",
- "print \"power output=\",pg,\"W\"\n",
- "print \"torque=\",tg,\"N-m\"\n",
- "print \"input=\",p2,\"W\"\n",
- "print \"efficiency=\",efficiency,\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "secondary current= (16-2.36j) A\n",
- "primary current= (17.460696181-12.8504543912j) A\n",
- "pf= 0.805393212665\n",
- "power output= 2433.59058228 W\n",
- "torque= 19.7625765823 N-m\n",
- "input= 3477.92348593 W\n",
- "efficiency= 69.9725164204 %\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example Number 34.60, Page Number:1308"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#variable declaration\n",
- "v=400.0#V\n",
- "z=complex(0.4,1)\n",
- "zr=complex(0.6,1)\n",
- "zm=complex(10.0,50.0)\n",
- "s=0.05\n",
- "\n",
- "#calculation\n",
- "sm=zr.real/(z.real**2+(z.imag+zr.imag)**2)**0.5\n",
- "v1=v/3**0.5\n",
- "i2=v1/((z.real+zr.real)**2+(zr.imag+z.imag)**2)**0.5\n",
- "tgmax=3*i2**2*z.real*60.0/(sm*2*3.14*1500)\n",
- "#result\n",
- "print \"maximum torque=\",tgmax,\"N-m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum torque= 277.144160399 N-m\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_JEDKX6y.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_JEDKX6y.ipynb
new file mode 100644
index 00000000..ef180637
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_JEDKX6y.ipynb
@@ -0,0 +1,85 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "# Chapter 1:Measurement of phase and frequency"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Example 1.1, Page number 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inductance of the circuit 1 = 7.04 H\n",
+ "inductance of circuit 2 L2=9.82 H\n",
+ "Resonant frequency of the circuit 1 = 41.47 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "c1=10**-6;\n",
+ "f1=60;\n",
+ "L1=1/(4*math.pi*math.pi*(f1**2)*c1);\n",
+ "print (\"inductance of the circuit 1 = %.2f H\" % L1)\n",
+ "f2=50;\n",
+ "w=2*math.pi*f2;\n",
+ "R1=100;\n",
+ "Z1=complex(R1,((w*L1)-(1/w*c1)));\n",
+ "#Z2=complex(100+j*((2*math.pi*50*L2)-(1/(2*math.pi*50*1.5*10**-6)))));\n",
+ "#for equal currents in two circuits Z1=Z2\n",
+ "print ('inductance of circuit 2 L2=9.82 H')\n",
+ "L2=9.82;\n",
+ "C2=1.5*10**-6;\n",
+ "Rf2=(1/(2*math.pi))*(1/(L2*C2))**0.5;\n",
+ "print (\"Resonant frequency of the circuit 1 = %.2f Hz\" % Rf2)\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12+"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_h5C3e6Y.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_h5C3e6Y.ipynb
new file mode 100644
index 00000000..48ce727a
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_h5C3e6Y.ipynb
@@ -0,0 +1,2369 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "# Chapter 2:Primary sensing elements and transducers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Displacement of the free end = 0.02 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.1\n",
+ "import math;\n",
+ "t=0.35;\n",
+ "P=1500*10**3;\n",
+ "E=180*10**9;\n",
+ "r=36.5;\n",
+ "x=16;\n",
+ "y=3;\n",
+ "a=math.pi*36.5*10**-3;\n",
+ "da=(0.05*a*P/E)*((r/t)**0.2)*((x/y)**0.33)*((x/t)**3);\n",
+ "print (\"Displacement of the free end = %.2f m\" % da)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Natural length of spring = 90.00 mm\n",
+ "Displacement of point C = 3.75 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.2\n",
+ "import math;\n",
+ "P=100*10**3;\n",
+ "A=1500*10**-6;\n",
+ "F=P*A;\n",
+ "Cs=F/3;\n",
+ "Ls=Cs+40;\n",
+ "print (\"Natural length of spring = %.2f mm\" % Ls)\n",
+ "P1=10*10**3;\n",
+ "F1=P1*A;\n",
+ "Ss=3+2*.5;\n",
+ "D=F1/Ss;\n",
+ "print (\"Displacement of point C = %.2f mm\" % D)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Thickness = 0.21 mm\n",
+ "Deflection at center for Pressure of 150 kN/m2= 0.0000 mm\n",
+ "Natural frequency of the diaphragm =52051 rad/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.3\n",
+ "import math;\n",
+ "D=15.0*10**-3;\n",
+ "P=300*10**3;\n",
+ "sm=300*10**6;\n",
+ "t=(3*D**2*P/(16*sm))**0.5*10**3;\n",
+ "print (\"Thickness = %.2f mm\" %t)\n",
+ "P=150*10**3;\n",
+ "v=0.28;\n",
+ "E=200.0*10**9;\n",
+ "dm=3.0*(1-v**2)*D**4*P/(256.0*E*t**3);\n",
+ "print (\"Deflection at center for Pressure of 150 kN/m2= %.4f mm\" %dm)\n",
+ "d=8900;\n",
+ "wn=(20*t*10**-3/D**2)*(E/(3*d*(1-v**2)))**0.5;\n",
+ "print (\"Natural frequency of the diaphragm =%.0f rad/sec\" %wn)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Angle of twist= 0.000236 rad\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.4\n",
+ "import math;\n",
+ "T=100;\n",
+ "G=80*10**9;\n",
+ "d=2*15*10**-3;\n",
+ "th=16*T/(math.pi*G*d**3)\n",
+ "print (\"Angle of twist= %.6f rad\" %th)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Reynoids number = 1697652.73 mm\n",
+ "Differential pressure = 261 kN/m2 \n",
+ "Deflection at the center of diaphragm = 0.02 micro m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.5\n",
+ "import math;\n",
+ "d=60*10**-3;\n",
+ "Q=80*10**-3;\n",
+ "A=(math.pi/4)*d**2;\n",
+ "v=Q/A;\n",
+ "vi=10**-3;\n",
+ "de=10**3;\n",
+ "Re=v*de*d/vi;\n",
+ "print (\"Reynoids number = %.2f mm\" %Re)\n",
+ "d2=60*10**-3;\n",
+ "d1=100*10**-3;\n",
+ "A2=(math.pi/4)*d2**2;\n",
+ "M=1/((1-(d2/d1)**2)**0.5);\n",
+ "Cd=0.99;\n",
+ "w=1*10**3;\n",
+ "Qact=80*10**-3;\n",
+ "Pd=((Qact/(Cd*M*A2))**2)*w/(2)*10**-3;\n",
+ "print (\"Differential pressure = %.0f kN/m2 \" %Pd)\n",
+ "Po=0.28;\n",
+ "D=10*10**-3;\n",
+ "E=206*10**9;\n",
+ "t=0.2*10**-3;\n",
+ "dm=(3*(1-Po**2)*D**4*Pd)/(256*E*t**3);\n",
+ "deff=dm*10**6;\n",
+ "print (\"Deflection at the center of diaphragm = %.2f micro m\" %deff)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean velocity of water = 4.47 m/s\n",
+ "Velocity of air= 175.4 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.6\n",
+ "import math;\n",
+ "Pd=10*10**3;\n",
+ "d=1000;\n",
+ "VmeanW= (2*Pd/d)**0.5;\n",
+ "print (\"Mean velocity of water = %.2f m/s\" %VmeanW)\n",
+ "d=0.65;\n",
+ "Va= (2*Pd/d)**0.5;\n",
+ "print (\"Velocity of air= %.1f m/s\" %Va)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "let coefficient of discharge Cd=1\n",
+ "Depth of flow = 0.3 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.7\n",
+ "import math;\n",
+ "print ('let coefficient of discharge Cd=1')\n",
+ "H1=0.9;\n",
+ "L=1.2;\n",
+ "g=9.81;\n",
+ "Q=(2.0/3)*L*(2*g)**0.5*(H1)**(1.5);\n",
+ "th=45;\n",
+ "H2=Q*(15.0/8)/(2.0*g)\n",
+ "print (\"Depth of flow = %.1f m\" %H2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Uncertinity in discharge = 0.0125 m3/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.8\n",
+ "import math\n",
+ "Cd=0.6;\n",
+ "H=0.5;\n",
+ "dH=0.01;\n",
+ "g=9.81;\n",
+ "Q=(8.0/15)*Cd*(2*g)**0.5*(H)**(2.5);\n",
+ "dQ=(2.5*dH/H)*Q;\n",
+ "print (\"Uncertinity in discharge = %.4f m3/s\" %dQ)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Displacement = 5.75 mm\n",
+ "Displacement = -12.80 mm\n",
+ "One print lacement is positive and other is negative so two print lacements are in the opposite direction\n",
+ "Resolution = 0.05 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.9\n",
+ "import math;\n",
+ "Rnormal=10000.0/2;\n",
+ "Rpl=10000/50;\n",
+ "Rc1=Rnormal-3850;\n",
+ "Dnormal=Rc1/Rpl;\n",
+ "print (\"Displacement = %.2f mm\" %Dnormal)\n",
+ "Rc2=Rnormal-7560;\n",
+ "Dnormal=Rc2/Rpl;\n",
+ "print (\"Displacement = %.2f mm\" %Dnormal)\n",
+ "print ('One print lacement is positive and other is negative so two print lacements are in the opposite direction')\n",
+ "Re=10.0*1/200;\n",
+ "print (\"Resolution = %.2f mm\" %Re)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage = 3000.000000 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.11\n",
+ "import math;\n",
+ "RAB=125;\n",
+ "Rtotal=5000;\n",
+ "R2=0.0\n",
+ "R2=(75.0/125.0)*Rtotal\n",
+ "R4=2500;\n",
+ "ei=5;\n",
+ "eo=((R2/Rtotal)-(R4/Rtotal))*ei;\n",
+ "print (\"Output voltage = %f V\" %R2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum excitation voltage = 54.8 V\n",
+ "Sensitivity = 0.152 V/degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.12\n",
+ "import math;\n",
+ "Rm=10000;\n",
+ "Rp=Rm/15;\n",
+ "R=600;\n",
+ "P=5;\n",
+ "ei= (P*R)**0.5;\n",
+ "print (\"Maximum excitation voltage = %.1f V\" %ei)\n",
+ "S=ei/360;\n",
+ "print (\"Sensitivity = %.3f V/degree\" %S)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution = 0.0005 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.13\n",
+ "import math;\n",
+ "Rwga=1.0/400;\n",
+ "Re=Rwga/5;\n",
+ "print (\"Resolution = %.4f mm\" %Re)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resolution of 1mm movement = 0.3125 degree/mm\n",
+ "Required Resolution of 1mm movement = 0.300 degree/mm\n",
+ "Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.14\n",
+ "import math;\n",
+ "mo=0.8;\n",
+ "sr=250;\n",
+ "sm=sr/mo;\n",
+ "R=sm*1*10**-3;\n",
+ "print (\"Resolution of 1mm movement = %.4f degree/mm\" %R)\n",
+ "Rq=300.0/1000;\n",
+ "print (\"Required Resolution of 1mm movement = %.3f degree/mm\" %Rq)\n",
+ "print ('Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power dissipation = 0.667 W\n",
+ "Power dissipation = 0.650 W\n",
+ "Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.15\n",
+ "import math;\n",
+ "Pd=(10.0**2)/150;\n",
+ "print (\"Power dissipation = %.3f W\" %Pd)\n",
+ "th_pot=80+Pd*30;\n",
+ "PDa=(10*10**-3)*(th_pot-35);\n",
+ "print (\"Power dissipation = %.3f W\" %PDa)\n",
+ "print ('Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable')\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Possion s ratio=1.600000\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.16\n",
+ "import math;\n",
+ "Gf=4.2;\n",
+ "v=(Gf-1)/2;\n",
+ "print ('Possion s ratio=%f' %v)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in resistance of nickel = 0.007 ohm\n",
+ "Change in resistance of nicrome = -0.001 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.17\n",
+ "import math;\n",
+ "strain=-5*10**-6;\n",
+ "Gf=-12.1;\n",
+ "R=120;\n",
+ "dR_nickel=Gf*R*strain;\n",
+ "print (\"Change in resistance of nickel = %.3f ohm\" %dR_nickel)\n",
+ "Gf=2;\n",
+ "R=120;\n",
+ "dR_nicrome=Gf*R*strain;\n",
+ "print (\"Change in resistance of nicrome = %.3f ohm\" %dR_nicrome)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage change in resistance = 0.1 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.18\n",
+ "import math;\n",
+ "s=100.0*10**6;\n",
+ "E=200.0*10**9;\n",
+ "strain=s/E;\n",
+ "Gf=2.0;\n",
+ "r_per_unit=Gf*strain*100.0;\n",
+ "print (\"Percentage change in resistance = %.1f \" %r_per_unit)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Gauge factor = 2.31 \n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.19\n",
+ "import math;\n",
+ "b=0.02;\n",
+ "d=0.003;\n",
+ "I=(b*d**3)/12;\n",
+ "E=200*10**9;\n",
+ "x=12.7*10**-3;\n",
+ "l=0.25;\n",
+ "F=3*E*I*x/l**3;\n",
+ "x=0.15;\n",
+ "M=F*x;\n",
+ "t=0.003;\n",
+ "s=(M*t)/(I*2);\n",
+ "strain=s/E;\n",
+ "dR=0.152;\n",
+ "R=120;\n",
+ "Gf=(dR/R)/strain;\n",
+ "print (\"Gauge factor = %.2f \" %Gf)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Change in length= 2.5 um \n",
+ " Force= 2038.64 N \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.20\n",
+ "import math;\n",
+ "dR=0.013;\n",
+ "R=240;\n",
+ "l=0.1;\n",
+ "Gf=2.2;\n",
+ "dl=(dR/R)*l/Gf*10**6;\n",
+ "print (\" Change in length= %.1f um \" %dl)\n",
+ "\n",
+ "strain=dl*10**-6/l;\n",
+ "E=207*10**9;\n",
+ "s=E*strain;\n",
+ "A=4*10**-4;\n",
+ "F=s*A;\n",
+ "print (\" Force= %.2f N \" %F)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " alpha at o degree= 0.0085 /degree C \n",
+ "5.5(1+0.0085(th-45))\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.21\n",
+ "import math;\n",
+ "th1=30;\n",
+ "th2=60;\n",
+ "th0=th1+th2/2;\n",
+ "Rth1=4.8;\n",
+ "Rth2=6.2;\n",
+ "Rth0=5.5;\n",
+ "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n",
+ "print (\" alpha at o degree= %.4f /degree C \" %ath0)\n",
+ "print ('5.5(1+0.0085(th-45))')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "alpha at o degree= 0.00182 /degree C \n",
+ "Linear approximation is: Rth= 589.48(1+0.00182(th-115))\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.22\n",
+ "import math;\n",
+ "th1=100;\n",
+ "th2=130;\n",
+ "th0=th1+th2/2;\n",
+ "Rth1=573.40;\n",
+ "Rth2=605.52;\n",
+ "Rth0=589.48;\n",
+ "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n",
+ "print (\"alpha at o degree= %.5f /degree C \" %ath0)\n",
+ "print ('Linear approximation is: Rth= 589.48(1+0.00182(th-115))')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance at 65 degree C= 115.68 ohm \n",
+ " Temperature = 25.00 degree C \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.23\n",
+ "import math;\n",
+ "Rth0=100;\n",
+ "ath0=0.00392;\n",
+ "dth=65-25;\n",
+ "R65=Rth0*(1+ath0*dth);\n",
+ "print (\"resistance at 65 degree C= %.2f ohm \" %R65)\n",
+ "th=(((150/100)-1)/ath0)+25;\n",
+ "print (\" Temperature = %.2f degree C \" %th)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistance at 150 degree C=15.11 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.24\n",
+ "import math;\n",
+ "Rth0=10;\n",
+ "ath0=0.00393;\n",
+ "dth=150-20;\n",
+ "R150=Rth0*(1+ath0*dth);\n",
+ "print (\"Resistance at 150 degree C=%.2f ohm\" %R150)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time= 109.95 s \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Calculate the time\n",
+ "import math;\n",
+ "th=30.0;\n",
+ "th0=50;\n",
+ "tc=120;\n",
+ "t=-120*(math.log(1-(th/th0)));\n",
+ "print (\"Time= %.2f s \" %t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistance at 35 degree C= 50.00 ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.26\n",
+ "import math;\n",
+ "R25=100;\n",
+ "ath=-0.05;\n",
+ "dth=35-25;\n",
+ "R35=R25*(1+ath*dth);\n",
+ "print (\"Resistance at 35 degree C= %.2f ohm \" %R35)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistance at 40 degree C= 967.51 ohm \n",
+ "Resistance at 100 degree C= 130.94 ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.27\n",
+ "import math;\n",
+ "Ro=3980;\n",
+ "Ta=273;\n",
+ "#3980= a*3980*exp(b/273)\n",
+ "Rt50=794;\n",
+ "Ta50=273+50;\n",
+ "#794= a*3980*exp(b/323)\n",
+ "#on solving\n",
+ "#a=30*10**-6, b=2843\n",
+ "Ta40=273+40;\n",
+ "Rt40=(30*10**-6)*3980*math.exp(2843/313);\n",
+ "print (\"Resistance at 40 degree C= %.2f ohm \" %Rt40)\n",
+ "Rt100=(30*10**-6)*3980*math.exp(2843/373);\n",
+ "print (\"Resistance at 100 degree C= %.2f ohm \" %Rt100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in temperature= 20.0 degree C \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.28\n",
+ "import math;\n",
+ "th=((1-1800/2000)/0.05)+70;\n",
+ "dth=th-70;\n",
+ "print (\"Change in temperature= %.1f degree C \" %dth)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Frequency of oscillation at 20 degree C = 25464.79 Hz \n",
+ "Frequency of oscillation at 25 degree C = 31830.99 Hz \n",
+ "Frequency of oscillation at 30 degree C = 42441.32 Hz \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.29\n",
+ "import math;\n",
+ "C=500*10**-12;\n",
+ "R20=10000*(1-0.05*(20-25));\n",
+ "f20=1/(2*math.pi*R20*C);\n",
+ "print (\"Frequency of oscillation at 20 degree C = %.2f Hz \" %f20)\n",
+ "R25=10000*(1-0.05*(25-25));\n",
+ "f25=1/(2*math.pi*R25*C);\n",
+ "print (\"Frequency of oscillation at 25 degree C = %.2f Hz \" %f25)\n",
+ "R30=10000*(1-0.05*(30-25));\n",
+ "f30=1/(2*math.pi*R30*C);\n",
+ "print (\"Frequency of oscillation at 30 degree C = %.2f Hz \" %f30)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sensitivity of thermocouple= 572.0 micro V/degree C\n",
+ "Maximum output voltage= 0.06 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.30\n",
+ "import math;\n",
+ "Se_thermocouple=500-(-72);\n",
+ "print (\"Sensitivity of thermocouple= %.1f micro V/degree C\" %Se_thermocouple)\n",
+ "Vo=Se_thermocouple*100*10**-6;\n",
+ "print (\"Maximum output voltage= %.2f V \" %Vo)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Required e.m.f.= 27.87 mV \n",
+ "Temperature corresponding to 27.87 mV is 620 degree C\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.31\n",
+ "import math;\n",
+ "ET=27.07+0.8;\n",
+ "print (\"Required e.m.f.= %.2f mV \" %ET)\n",
+ "print ('Temperature corresponding to 27.87 mV is 620 degree C')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Series resistance=271.00 ohm\n",
+ "Approximate error due to rise in resistance of 1 ohm in Re=-2.40 degree C\n",
+ "Approximate error due to rise in Temp. of 10=-7.45 degree C\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.32\n",
+ "import math;\n",
+ "Rm=50;\n",
+ "Re=12;\n",
+ "E=33.3*10**-3;\n",
+ "i=0.1*10**-3;\n",
+ "Rs=(E/i)-Rm-Re;\n",
+ "print (\"Series resistance=%.2f ohm\" %Rs)\n",
+ "Re=13;\n",
+ "i1=E/(Rs+Re+Rm);\n",
+ "AE=((i1-i)/i)*800;\n",
+ "print (\"Approximate error due to rise in resistance of 1 ohm in Re=%.2f degree C\" %AE)\n",
+ "R_change=50*0.00426*10;\n",
+ "i1=E/(Rs+Re+Rm+R_change);\n",
+ "AE=((i1-i)/i)*800;\n",
+ "print (\"Approximate error due to rise in Temp. of 10=%.2f degree C\" %AE)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of resistance R1=5.95 ohm\n",
+ "Value of resistance R2=762.60 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.33\n",
+ "import math;\n",
+ "E_20=0.112*10**-3;# emf at 20degree C\n",
+ "E_900=8.446*10**-3;\n",
+ "E_1200=11.946*10**-3;\n",
+ "E1=E_900-E_20;\n",
+ "E2=E_1200-E_20;\n",
+ "#E1=1.08*R1/(R1+2.5+R2 (i)\n",
+ "#E2=1.08*(R1+2.5)/(R1+2.5+R2 (ii)\n",
+ "#on solving (i) and (ii)\n",
+ "R1=5.95;\n",
+ "R2=762.6;\n",
+ "print (\"Value of resistance R1=%.2f ohm\" %R1)\n",
+ "print (\"Value of resistance R2=%.2f ohm\" %R2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of resistance R1=5.95 ohm\n",
+ "value of resistance RL>>Rl\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.34\n",
+ "import math;\n",
+ "th=20;\n",
+ "Vz=2.73+th*10*10**-3;\n",
+ "Voffset=-2.73;\n",
+ "Vout=Vz+Voffset;\n",
+ "Rbias=(5-0.2)/10**-3;\n",
+ "Rzero=500;\n",
+ "th=50;\n",
+ "Vz=2.73+th*10*10**-3;\n",
+ "VmaxT=Vz+Voffset;\n",
+ "Vsupply=5;\n",
+ "Rl=(VmaxT*Rbias)/(Vsupply-VmaxT);\n",
+ "print (\"Value of resistance R1=%.2f ohm\" %R1)\n",
+ "print ('value of resistance RL>>Rl')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 92,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Change in inductance=0.04 mH\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.35\n",
+ "import math;\n",
+ "L1=2;\n",
+ "La=1-0.02;\n",
+ "Lnew=2/La;\n",
+ "dl=Lnew-L1;\n",
+ "print (\"Change in inductance=%.2f mH\" %dl)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 93,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "percentage linearity=0.20 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.36\n",
+ "import math;\n",
+ "linearity_percentage=(0.003/1.5)*100;\n",
+ "print (\"percentage linearity=%.2f \" %linearity_percentage)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 94,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "senstivity of the LVDT=0.004 V/mm\n",
+ "Senstivity of the instrument=1.0 V/mm\n",
+ "resolution of instrument=0.001 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.37\n",
+ "import math;\n",
+ "displacement=0.5;\n",
+ "Vo=2*10**-3;\n",
+ "Se_LVDT=Vo/displacement;\n",
+ "print (\"senstivity of the LVDT=%.3f V/mm\" %Se_LVDT)\n",
+ "Af=250;\n",
+ "Se_instrument=Se_LVDT*Af;\n",
+ "print (\"Senstivity of the instrument=%.1f V/mm\" %Se_instrument)\n",
+ "sd=5/100;\n",
+ "Vo_min=50/5;\n",
+ "Re_instrument=1*1.0/1000;\n",
+ "print (\"resolution of instrument=%.3f mm\" %Re_instrument)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 95,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "deflection=0.01 m\n",
+ "minimum force=0.02 N\n",
+ "maximum force=81.92 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.38\n",
+ "import math;\n",
+ "b=0.02;\n",
+ "t=0.004;\n",
+ "I=(1.0/12)*b*t**3;\n",
+ "F=25;\n",
+ "l=0.25;\n",
+ "E=200.0*10**9;\n",
+ "x=(F*l**3)/(3.0*E*I);\n",
+ "print (\"deflection=%.2f m\" %x)\n",
+ "DpF=x/F;\n",
+ "Se=DpF*0.5*1000;\n",
+ "Re=(10.0/1000)*(2.0/10);\n",
+ "F_min=Re/Se;\n",
+ "F_max=10/Se;\n",
+ "print (\"minimum force=%.2f N\" %F_min)\n",
+ "print (\"maximum force=%.2f N\" %F_max)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 96,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "permittivity of the air e0=8.85*10**-12\n",
+ "sensitivity of the transducer=-0.00 F/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.39\n",
+ "import math;\n",
+ "print ('permittivity of the air e0=8.85*10**-12')\n",
+ "e0=8.85*10**-12;\n",
+ "w=25.0*10**-3;\n",
+ "d=0.25*10**-3;\n",
+ "Se=-4.0*e0*w/d;\n",
+ "print (\"sensitivity of the transducer=%.2f F/m\" %Se)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 97,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the value of the capacitance afte the application of pressure=446.55 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.40\n",
+ "import math;\n",
+ "C1=370*10**-12;\n",
+ "d1=3.5*10**-3;\n",
+ "d2=2.9*10**-3;\n",
+ "C2=C1*d1*10**12/d2;\n",
+ "print (\"the value of the capacitance afte the application of pressure=%.2f pF\" %C2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 114,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "change in frequency of the oscillator=-9.607692e+07 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.41\n",
+ "import math;\n",
+ "fo1=100*10**3;\n",
+ "d1=4;\n",
+ "d2=3.7;\n",
+ "fo2=((d2/d1)**0.5)*fo1;\n",
+ "dfo=fo1-fo2/10**-3;\n",
+ "print (\"change in frequency of the oscillator=%e kHz\" %dfo)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 99,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Capacitance=33.9 pF\n",
+ "change in Capacitance=3.4 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.42\n",
+ "import math;\n",
+ "L_air=(3.1-3)/2;\n",
+ "D_stress=100/L_air;\n",
+ "e0=8.85*10**-12;\n",
+ "l=20*10**-3;\n",
+ "D2=3.1;\n",
+ "D1=3;\n",
+ "C=(2*math.pi)*e0*l*10**12/(math.log(D2/D1));\n",
+ "print (\"Capacitance=%.1f pF\" %C)\n",
+ "l=(20*10**-3)-(2*10**-3);\n",
+ "C_new=(2*math.pi)*e0*l/(math.log(D2/D1));\n",
+ "C_change=C-C_new*10**12;\n",
+ "print (\"change in Capacitance=%.1f pF\" %C_change)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 116,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time constant=0.02 s\n",
+ "Phase shift=18.2 deg\n",
+ "Series resistance=1140 Mohm\n",
+ "Amplitude ratio=0.6 \n",
+ "Voltage sensitivity=800000 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.43\n",
+ "import math;\n",
+ "M=0.95;\n",
+ "w=2*math.pi*20;\n",
+ "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n",
+ "print (\"Time constant=%.2f s\" %tc)\n",
+ "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n",
+ "print (\"Phase shift=%.1f deg\" %ph)\n",
+ "C=(8.85*10**-12*300*10**-6)/(0.125*10**-3);\n",
+ "R=tc*10**-6/C;\n",
+ "print (\"Series resistance=%.0f Mohm\" %R)\n",
+ "M=1/(1+(1/(2*math.pi*5*tc)**2))**0.5;\n",
+ "print (\"Amplitude ratio=%.1f \" %M)\n",
+ "Eb=100;\n",
+ "x=0.125*10**-3;\n",
+ "Vs=Eb/x;\n",
+ "print (\"Voltage sensitivity=%d V/m\" %Vs)\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 101,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of per unit change of capacitance to per unit change of diaplacement=1.11\n",
+ " New ratio of per unit change of capacitance to per unit change of diaplacement=1.17\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.44\n",
+ "import math;\n",
+ "e0=8.85*10**-12;\n",
+ "A=500*10**-6;\n",
+ "d=0.2*10**-3;\n",
+ "C=e0*A/d;\n",
+ "d1=0.18*10**-3;\n",
+ "C_new=e0*A/d1;\n",
+ "C_change=C_new-C;\n",
+ "Ratio=(C_change/C)/(0.02/0.2);\n",
+ "print (\"ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n",
+ "d1=0.19*10**-3;\n",
+ "e1=1;\n",
+ "d2=0.01*10**-3;\n",
+ "e2=8;\n",
+ "C=(e0*A)/((d1/e1)+(d2/e2));\n",
+ "d1_new=0.17*10**-3;\n",
+ "C_new=(e0*A)/((d1_new/e1)+(d2/e2));\n",
+ "C_change=C_new-C;\n",
+ "Ratio=(C_change/C)/(0.02/0.2);\n",
+ "print (\" New ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 102,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output voltage=165 V\n",
+ " Charge sensitivity=2.23 pC/N\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.47\n",
+ "import math;\n",
+ "g=0.055;\n",
+ "t=2*10**-3;\n",
+ "P=1.5*10**6;\n",
+ "Eo=g*t*P;\n",
+ "print (\"Output voltage=%.0f V\" %Eo)\n",
+ "e=40.6*10**-12;\n",
+ "d=e*g*10**12;\n",
+ "print (\" Charge sensitivity=%.2f pC/N\" %d)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.48"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 103,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Force=30 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.48\n",
+ "import math;\n",
+ "g=0.055;\n",
+ "t=1.5*10**-3;\n",
+ "Eo=100;\n",
+ "P= Eo/(g*t);\n",
+ "A=25*10**-6;\n",
+ "F=P*A;\n",
+ "print (\" Force=%.0f N\" %F)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 104,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " strain=0.0167 \n",
+ " Charge=750 pC\n",
+ " capacitance=250 pF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.49\n",
+ "import math;\n",
+ "A=25*10**-6;\n",
+ "F=5;\n",
+ "P=F/A;\n",
+ "d=150*10**-12;\n",
+ "e=12.5*10**-9;\n",
+ "g=d/(e);\n",
+ "t=1.25*10**-3;\n",
+ "Eo=(g*t*P);\n",
+ "strain=P/(12*10**6);\n",
+ "Q=d*F*10**12;\n",
+ "C=Q/Eo;\n",
+ "print (\" strain=%.4f \" %strain)\n",
+ "print (\" Charge=%.0f pC\" %Q)\n",
+ "print (\" capacitance=%.0f pF\" %C)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 106,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " peak voltage swing under open conditions=9.04 mV\n",
+ " peak voltage swing under loaded conditions=1.52 mV\n",
+ " Maximum change in crystal thickness=2.22 pm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.50\n",
+ "import math;\n",
+ "d=2*10**-12;\n",
+ "t=1*10**-3;\n",
+ "Fmax=0.01;\n",
+ "e0=8.85*10**-12;\n",
+ "er=5;\n",
+ "A=100*10**-6;\n",
+ "Eo_peak_to_peak=2*d*t*Fmax*10**3/(e0*er*A);\n",
+ "print (\" peak voltage swing under open conditions=%.2f mV\" %Eo_peak_to_peak)\n",
+ "Rl=100*10**6;\n",
+ "Cl=20*10**-12;\n",
+ "d1=1*10**-3;\n",
+ "Cp=e0*er*A/d1;\n",
+ "C=Cp+Cl;\n",
+ "w=1000;\n",
+ "m=(w*Cp*Rl/(1+(w*C*Rl)**2)**0.5);\n",
+ "El_peak_to_peak=(2*d*t*Fmax*10**3/(e0*er*A))*m;\n",
+ "print (\" peak voltage swing under loaded conditions=%.2f mV\" %El_peak_to_peak)\n",
+ "E=90*10**9;\n",
+ "dt=2*Fmax*t*10**12/(A*E);\n",
+ "print (\" Maximum change in crystal thickness=%.2f pm\" %dt)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 107,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Minimum frequency=2028.29 rad/sec\n",
+ " Phase shift=18.19 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.51\n",
+ "import math;\n",
+ "M=0.95;\n",
+ "tc=1.5*10**-3;\n",
+ "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n",
+ "print (\" Minimum frequency=%.2f rad/sec\" %w)\n",
+ "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n",
+ "print (\" Phase shift=%.2f deg\" %ph)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 108,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Sensitivity of the transducer=40000000.00 V/m\n",
+ " High frequency sensitivity =29629629.63 V/m\n",
+ " Minimum frequency=358.68 sec\n",
+ "now f=10Hz\n",
+ " External shunt capacitance=0.05 pF\n",
+ " new value of high frequency sensitivity=826073.26 V/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.52\n",
+ "import math;\n",
+ "Kq=40*10**-3;\n",
+ "Cp=1000*10**-12;\n",
+ "K=Kq/Cp;\n",
+ "print (\" Sensitivity of the transducer=%.2f V/m\" %K)\n",
+ "Cc=300*10**-12;\n",
+ "Ca=50*10**-12;\n",
+ "C=Cp+Cc+Ca;\n",
+ "Hf=Kq/C;\n",
+ "print (\" High frequency sensitivity =%.2f V/m\" %Hf)\n",
+ "R=1*10**6;\n",
+ "tc=R*C;\n",
+ "M=0.95;\n",
+ "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n",
+ "f=w/(2*math.pi);\n",
+ "print (\" Minimum frequency=%.2f sec\" %f)\n",
+ "print ('now f=10Hz')\n",
+ "f=10;\n",
+ "w=2*math.pi*f;\n",
+ "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n",
+ "C_new=tc/R;\n",
+ "Ce=(C_new-C)*10**6;\n",
+ "print (\" External shunt capacitance=%.2f pF\" %Ce)\n",
+ "Hf_new=Kq/C_new;\n",
+ "print (\" new value of high frequency sensitivity=%.2f V/m\" %Hf_new)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 109,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage just before t=2ms =1.00 mV\n",
+ "(-2.2026841435311137, 'voltage just after t=2ms (mV)')\n",
+ "Voltage just after t=2ms =-2.20 mV\n",
+ "when t=10ms\n",
+ "output voltage 10 ms after the application of impulse =0 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.53\n",
+ "import math;\n",
+ "R=10**6;\n",
+ "C=2500*10**-12;\n",
+ "tc=R*C;\n",
+ "t=2*10**-3;\n",
+ "d=100*10**-12;\n",
+ "F=0.1;\n",
+ "el=10.0**3*(d*F*(math.exp(-t/tc))/C);\n",
+ "print (\"Voltage just before t=2ms =%.2f mV\" %e1)\n",
+ "el_after=10**3*(d*F*(math.exp(-t/tc)-1)/C);\n",
+ "print (el_after,'voltage just after t=2ms (mV)')\n",
+ "print (\"Voltage just after t=2ms =%.2f mV\" %el_after)\n",
+ "print ('when t=10ms')\n",
+ "t=10.0*10**-3;\n",
+ "T=2.0*10\n",
+ "e_10=10.0**3*(d*F*(math.exp((-T/tc)-1))*(math.exp(-(t-T))/tc)/C)\n",
+ "print (\"output voltage 10 ms after the application of impulse =%.0f mV\" %e_10)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 110,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Let T=1\n",
+ "Time constant =19.50 s\n",
+ "as T=1 so time constant should be approximately equal to 20T\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 2.54\n",
+ "import math;\n",
+ "print ('Let T=1');\n",
+ "T=1;\n",
+ "el=0.95;\n",
+ "tc=-T/math.log(el);\n",
+ "print (\"Time constant =%.2f s\" %tc)\n",
+ "print ('as T=1 so time constant should be approximately equal to 20T')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.55"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 111,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage =-0.75 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.55\n",
+ "import math;\n",
+ "Kh=-1*10**-6;\n",
+ "I=3;\n",
+ "B=0.5;\n",
+ "t=2*10**-3;\n",
+ "Eh=Kh*I*B*10**3/t;\n",
+ "print (\"output voltage =%.2f mV\" %Eh)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 112,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "External resistance required =-999.997 ohm\n",
+ "Dark current =0.29 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.56\n",
+ "import math;\n",
+ "R1=(30/10*10**-3)-1000;\n",
+ "print (\"External resistance required =%.3f ohm\" %R1)\n",
+ "Id=30.0*10**3/((2*10**3)+(100*10**3))\n",
+ "print (\"Dark current =%.2f mA\" %Id)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true,
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 2.57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 113,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Potential of point b, Vb= 5.000000\n",
+ "Potential of point d, Vd= 10.000000\n",
+ "Outout voltage of bridge =-5.00 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#2.57\n",
+ "import math;\n",
+ "Vb=10-(10.0/((2*10**3))*10**3);\n",
+ "print ('Potential of point b, Vb= %f'%Vb)\n",
+ "Vd=10-(10/((3*10**3))*2*10**3);\n",
+ "print ('Potential of point d, Vd= %f' %Vd)\n",
+ "Ebd=Vb-Vd;\n",
+ "print (\"Outout voltage of bridge =%.2f V\" %Ebd)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12+"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_qFSzPBo.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_qFSzPBo.ipynb
new file mode 100644
index 00000000..1a32897b
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_qFSzPBo.ipynb
@@ -0,0 +1,321 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "# Chapter 3:Measurement of non electrical quantities"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 3.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =350.0 mm\n",
+ "sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used\n",
+ "deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =70.0 mm\n",
+ "delection is within the range\n",
+ "deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =17.0 mm\n",
+ "delection is within the range\n",
+ "deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =3.0 mm\n",
+ "delection is within the range\n",
+ "deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =0.0 mm\n",
+ "delection is within the range\n",
+ "since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 3.1\n",
+ "import math\n",
+ "Aou=700*25*1/100;\n",
+ "Aol=100*25*1/100;\n",
+ "AouPtP= 2*Aou;\n",
+ "AolPtP= 2*Aol;\n",
+ "Se1=1;\n",
+ "D1=AouPtP/Se1;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 1mV/mm =%.1f mm\" %D1)\n",
+ "print ('sinch the length of the screen is 100mm so waveform is out of range and hence sensitivity setting of 1mV/mm should not be used')\n",
+ "Se2=5;\n",
+ "D2=AouPtP/Se2;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 5mV/mm =%.1f mm\" %D2)\n",
+ "print ('delection is within the range')\n",
+ "Se3=20;\n",
+ "D3=AouPtP/Se3;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 20mV/mm =%.1f mm\" %D3)\n",
+ "print ('delection is within the range')\n",
+ "Se4=100;\n",
+ "D4=AouPtP/Se4;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 10mV/mm =%.1f mm\" %D4)\n",
+ "print ('delection is within the range')\n",
+ "Se5=500;\n",
+ "D5=AouPtP/Se5;\n",
+ "print (\"deflection of screen corresponding to maximum pressure for sensitivity of 500mV/mm =%.1f mm\" %D5)\n",
+ "print ('delection is within the range')\n",
+ "print ('since the sensitivity of 5mV/mm gives higher deflection so it is the optimum sensitivity')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Radius of curvature =356.04 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#3.2\n",
+ "import math\n",
+ "tA=1;\n",
+ "tB=1;\n",
+ "m=tA/tB;\n",
+ "EB=147.0;\n",
+ "EA=216;\n",
+ "T2=200.0;\n",
+ "T1=25;\n",
+ "n=EB/EA;\n",
+ "T=T2-T1;\n",
+ "A=12.5*10**-6;\n",
+ "B=1.7*10**-6;\n",
+ "a=3*(1+m)**2;\n",
+ "b=(1+m*n)*((m**2)+1/(m*n));\n",
+ "c= (6*(A-B)*T*(1+m)**2);\n",
+ "r=(a+b)/c;\n",
+ "print (\"Radius of curvature =%.2f mm\" %r)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 3.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Radius of curvature =500 mm\n",
+ "vertical displacement =2 mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#3.3\n",
+ "import math\n",
+ "t=2;\n",
+ "T2=180;\n",
+ "T1=20;\n",
+ "T=T2-T1;\n",
+ "A=12.5*10**-6;\n",
+ "r=t/(2*T*A);\n",
+ "print (\"Radius of curvature =%.0f mm\" %r)\n",
+ "Th=40.0/500;\n",
+ "y=r*(1.0-math.cos(Th));\n",
+ "print (\"vertical displacement =%.0f mm\" %y)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 3.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "True temperature =1853.57 degree K\n",
+ "True temperature =1580.57 degree C\n"
+ ]
+ }
+ ],
+ "source": [
+ "#3.4\n",
+ "import math\n",
+ "Ta=1480+273;\n",
+ "Tf=0.8;\n",
+ "T=Tf**-0.25*Ta;\n",
+ "print (\"True temperature =%.2f degree K\" %T)\n",
+ "Tc=T-273;\n",
+ "print (\"True temperature =%.2f degree C\" %Tc)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Error in temperature measurement=-172.91 degree C\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 3.5\n",
+ "import math\n",
+ "ATC1=1065;\n",
+ "AT=ATC1+273;\n",
+ "Em1=0.82;\n",
+ "Ta=(Em1**(-0.25))*AT;\n",
+ "Em2=0.75;\n",
+ "Taa=(Em2**-0.25)*Ta;\n",
+ "ATC2=Taa-273;\n",
+ "E=ATC1-ATC2;\n",
+ "print (\"Error in temperature measurement=%.2f degree C\" %E)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Average flow rate=0.02 degree m/s\n",
+ "Percentage decrease in voltage=1.79 degree m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 3.6\n",
+ "import math\n",
+ "EL=0.1;\n",
+ "Zo=250*10**3;\n",
+ "ZL=2.5*10**6;\n",
+ "Eo=EL*(1+(Zo/ZL));\n",
+ "B=0.1;\n",
+ "l=50*10**-3;\n",
+ "G=1000;\n",
+ "v=Eo/(B*l*G);\n",
+ "print (\"Average flow rate=%.2f degree m/s\" %v)\n",
+ "Zon=1.2*250*10**3;\n",
+ "ELn=2*Eo/(1+(Zon/ZL));\n",
+ "PDV=((0.2-ELn)/0.2)*100;\n",
+ "print (\"Percentage decrease in voltage=%.2f degree m/s\" %PDV)\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12+"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_SPNEqxW.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_SPNEqxW.ipynb
new file mode 100644
index 00000000..c802d84b
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_SPNEqxW.ipynb
@@ -0,0 +1,663 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "# Chapter 4:Telemetry and data acquisition system"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are\n",
+ "Upper side band frequency for modulating frequency of 300 Hz =1000.3 kHz\n",
+ "Lower side band frequency for modulating frequency of 300 Hz =999.7 kHz\n",
+ "Upper side band frequency for modulating frequency of 800 Hz =1000.8 kHz\n",
+ "Lower side band frequency for modulating frequency of 800 Hz =999.2 kHz\n",
+ "Upper side band frequency for modulating frequency of 2kHz =1002.0 kHz\n",
+ "Lower side band frequency for modulating frequency of 2kHz =998.0 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.1\n",
+ "import math\n",
+ "fc=1000;\n",
+ "print ('In addition to carrier frequency of 1000kHz the other upeer and lower frequencies are')\n",
+ "fs1=0.3;\n",
+ "fu1=fc+fs1;\n",
+ "print (\"Upper side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fu1)\n",
+ "fl1=fc-fs1;\n",
+ "print (\"Lower side band frequency for modulating frequency of 300 Hz =%.1f kHz\" %fl1)\n",
+ "fs2=0.8;\n",
+ "fu2=fc+fs2;\n",
+ "print (\"Upper side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fu2)\n",
+ "fl2=fc-fs2;\n",
+ "print (\"Lower side band frequency for modulating frequency of 800 Hz =%.1f kHz\" %fl2)\n",
+ "fs3=2;\n",
+ "fu3=fc+fs3;\n",
+ "print (\"Upper side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fu3)\n",
+ "fl3=fc-fs3;\n",
+ "print (\"Lower side band frequency for modulating frequency of 2kHz =%.1f kHz\" %fl3)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Upper side band frequency =721.76 kHz\n",
+ "Lower side band frequency =701.76 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.2\n",
+ "import math\n",
+ "L=50*10**-6;\n",
+ "C=1*10**-9;\n",
+ "fc=1/(2*math.pi*(L*C)**0.5);\n",
+ "fs1=10000;\n",
+ "fu1=(fc+fs1)*10**-3;\n",
+ "print (\"Upper side band frequency =%.2f kHz\" %fu1)\n",
+ "fl1=(fc-fs1)*10**-3;\n",
+ "print (\"Lower side band frequency =%.2f kHz\" %fl1)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Radiation Power =68.06 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.3\n",
+ "import math\n",
+ "Pc=50;\n",
+ "m=0.85;\n",
+ "Pt=Pc*(1+(m**2/2))\n",
+ "print (\"Radiation Power =%.2f kW\" %Pt)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "modulation index for Es (2.4) =9.6\n",
+ "modulation index for Es(7.2)=28.8\n",
+ "modulation indexfor Es(10) =40.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.4\n",
+ "import math\n",
+ "delta=4.8;\n",
+ "Es=2.4;\n",
+ "K=delta/Es;\n",
+ "Es1=7.2;\n",
+ "delta1=K*Es1;\n",
+ "Es2=10;\n",
+ "delta2=K*Es2;\n",
+ "fs1=500*10**-3;\n",
+ "mf1=delta/fs1;\n",
+ "print (\"modulation index for Es (2.4) =%.1f\" %mf1)\n",
+ "mf2=delta1/fs1;\n",
+ "print (\"modulation index for Es(7.2)=%.1f\" %mf2)\n",
+ "mf3=delta2/fs1;\n",
+ "print (\"modulation indexfor Es(10) =%.1f\" %mf3)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "carrier frequency =95493.0 kHz\n",
+ "modulating frequency =198.9 Hz\n",
+ "maximum deviation =994.7 Hz\n",
+ "Power dissipated =7.2 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.5\n",
+ "import math\n",
+ "wc=6*10**8;\n",
+ "fc=(wc)/(2*math.pi)*10**-3;\n",
+ "print (\"carrier frequency =%.1f kHz\" %fc)\n",
+ "ws=1250;\n",
+ "fs=(ws)/(2*math.pi);\n",
+ "print (\"modulating frequency =%.1f Hz\" %fs)\n",
+ "mf=5;\n",
+ "delta=mf*fs;\n",
+ "print (\"maximum deviation =%.1f Hz\" %delta)\n",
+ "Rms=12/(2**0.5);\n",
+ "P=Rms**2/10;\n",
+ "print (\"Power dissipated =%.1f W\" %P)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Band width =80 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.6\n",
+ "import math\n",
+ "delta=10;\n",
+ "fs=2;\n",
+ "mf=delta/fs;\n",
+ "BW=16*mf;\n",
+ "print (\"Band width =%.0f kHz\" %BW)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V\n",
+ "for a signal voltage of 4 V\n",
+ "epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V\n",
+ "for a fs of 8 kHz\n",
+ "epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.7\n",
+ "import math\n",
+ "fc=100*10**6;\n",
+ "wc=2*math.pi*fc;\n",
+ "fs=6*10**3;\n",
+ "ws=2*math.pi*fs;\n",
+ "delta=60*10**3;\n",
+ "mf=delta/fs;\n",
+ "mp=mf;\n",
+ "print ('epm=8sin(0.6283*10**9t+10 sin 37.7*10**3t)V')\n",
+ "print ('for a signal voltage of 4 V')\n",
+ "mp=4*10/3;\n",
+ "print ('epm=8sin(0.6283*10**9t+13.33 sin 37.7*10**3t)V')\n",
+ "print ('for a fs of 8 kHz')\n",
+ "print ('epm=8sin(0.6283*10**9t+13.33 sin 50.27*10**3t)V')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "range is 0-31 V with each step representing 1V\n",
+ "quattization error =0.4 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.8\n",
+ "import math\n",
+ "n=5;\n",
+ "Ql=2**n;\n",
+ "Range=(Ql-1)*1;\n",
+ "print ('range is 0-31 V with each step representing 1V')\n",
+ "Qe=27.39-27;\n",
+ "print (\"quattization error =%.1f V\" %Qe)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For amplitude modulation\n",
+ "Minimum width of carrier channel =2.0 kHz\n",
+ "For frequency modulation\n",
+ "Minimum width of carrier channel =5.0 kHz\n",
+ "For pulse code modulation\n",
+ "Minimum width of carrier channel =8.0 kHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.9\n",
+ "import math\n",
+ "print ('For amplitude modulation')\n",
+ "MCCW=2*1;\n",
+ "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n",
+ "print ('For frequency modulation')\n",
+ "MCCW=2*(1.5+1);\n",
+ "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n",
+ "print ('For pulse code modulation')\n",
+ "MCCW=8*1;\n",
+ "print (\"Minimum width of carrier channel =%.1f kHz\" %MCCW)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "At 403 change in frequency\n",
+ "Fuel level =1650.0 L\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.10\n",
+ "import math\n",
+ "Fc=430-370;\n",
+ "print ('At 403 change in frequency')\n",
+ "Fc1=403-370;\n",
+ "Fuel_level=Fc1*3000/Fc;\n",
+ "print (\"Fuel level =%.1f L\" %Fuel_level)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "for good quality data the sampling rate should be at least 5 times the data frequency for one channel\n",
+ "sampling rate =1250.0 samples per second\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.11\n",
+ "import math\n",
+ "print ('for good quality data the sampling rate should be at least 5 times the data frequency for one channel')\n",
+ "channel=5;\n",
+ "f=50;\n",
+ "sampling_rate=5*channel*f;\n",
+ "print (\"sampling rate =%.1f samples per second\" %sampling_rate)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Maximum possible data transmission rate =6000.0 bits per second\n",
+ "minimum sampling rate per channel =2000.0 samples per second\n",
+ "maximum number of channels =42 \n"
+ ]
+ }
+ ],
+ "source": [
+ "#4.12\n",
+ "import math\n",
+ "Vs=7;\n",
+ "Vn=1;\n",
+ "fh=10**3;\n",
+ "H=2*fh*math.log(1+(Vs/Vn),2);\n",
+ "print (\"Maximum possible data transmission rate =%.1f bits per second\" %H)\n",
+ "Sampling_rate=2*fh;\n",
+ "print (\"minimum sampling rate per channel =%.1f samples per second\" %Sampling_rate)\n",
+ "C_max=85714/2000;\n",
+ "print (\"maximum number of channels =%.0f \" %C_max)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutt off frquency =50.0 kHz \n"
+ ]
+ }
+ ],
+ "source": [
+ "#4.13\n",
+ "import math\n",
+ "d_rate=100;\n",
+ "fc= 0.5*d_rate;\n",
+ "print (\"cutt off frquency =%.1f kHz \" %fc)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.\n",
+ "therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth\n"
+ ]
+ }
+ ],
+ "source": [
+ "#4.14\n",
+ "import math\n",
+ "print ('The modulated carrier will have a bandwidth of 100MHz+/- 1kHz.')\n",
+ "print ('therefore we can have 5 channels each transmitting a 1KHz data for 5kHz bandwidth')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 4.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Bandwidth of intelligence =2475.0 Hz \n",
+ "Rise time=141.4 us \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 4.15\n",
+ "import math\n",
+ "Fd=7.5*165*10**3/100;\n",
+ "mf=5;\n",
+ "Bandwidth=Fd/mf;\n",
+ "print (\"Bandwidth of intelligence =%.1f Hz \" %Bandwidth)\n",
+ "Tr=0.35/Bandwidth*10**6;\n",
+ "print (\"Rise time=%.1f us \" %Tr)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12+"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_Z3v5KUy.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_Z3v5KUy.ipynb
new file mode 100644
index 00000000..c6229c34
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_Z3v5KUy.ipynb
@@ -0,0 +1,314 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "# Chapter 5:Advanced measuring instruments"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 5.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A=0.000064\n",
+ "B=0.000512\n",
+ "since A<B so the instrument is underdamped\n",
+ "Number of turns=3356426 \n",
+ "current required to overcome friction=0.1 uA \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.1\n",
+ "import math\n",
+ "D=8*10**-3;\n",
+ "A=D**2;\n",
+ "print ('A=%f'%A)\n",
+ "J=8*10**-3;\n",
+ "K=16*10**-3;\n",
+ "B=4*J*K;\n",
+ "print ('B=%f'%B)\n",
+ "print ('since A<B so the instrument is underdamped')\n",
+ "th=(100*math.pi)/180;\n",
+ "i=10*10**-3;\n",
+ "F=0.2*10**-6;\n",
+ "G=(K*th+F)/i;\n",
+ "l=65*10**-3;\n",
+ "d=25*10**-3;\n",
+ "N=G/(B*l*d);\n",
+ "print (\"Number of turns=%.0f \" %N)\n",
+ "i=F/G*10**6;\n",
+ "print (\"current required to overcome friction=%.1f uA \" %i)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 5.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "upper value of range=1896 Hz\n",
+ "lower value of range=696 Hz\n",
+ "So, the range of the frequency is from 696 to 1896 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.2\n",
+ "import math\n",
+ "eta=0.6;\n",
+ "fn=2400;\n",
+ "M=0.98;\n",
+ "#M=1/(((1-u**2)**2)+(2*u*eta)**2)**0.5; ..........(i)\n",
+ "# On solving the above equation we get u=0.79\n",
+ "u=0.79;\n",
+ "fu=u*fn;\n",
+ "print (\"upper value of range=%.0f Hz\" %fu)\n",
+ "\n",
+ "#Now let M=1.02, on solving equation (i) we have u=0.29\n",
+ "u=0.29;\n",
+ "fl=u*fn;\n",
+ "print (\"lower value of range=%.0f Hz\" %fl)\n",
+ "print ('So, the range of the frequency is from 696 to 1896 Hz')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 5.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "phase displacement for the fundamental=7.37 degree\n",
+ "phase displacement for the 5th harmonic=40.48 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.3\n",
+ "import math\n",
+ "eta=0.64;\n",
+ "u=0.1;\n",
+ "alpha_1=math.degrees(math.atan(2*eta*u/(1-u**2)))\n",
+ "print (\"phase displacement for the fundamental=%.2f degree\" %alpha_1)\n",
+ "u=0.5;\n",
+ "alpha_5=math.degrees(math.atan((2*eta*u/(1-u**2))))\n",
+ "print (\"phase displacement for the 5th harmonic=%.2f degree\" %alpha_5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 5.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage error for the production of 3rd harmonics=-0.56\n",
+ "Percentage error for the production of 5th harmonics=-1.54\n",
+ "Percentage error for the production of 7th harmonics=-2.97\n",
+ "Percentage error for the production of 11th harmonics=-7.03\n",
+ "Percentage error for the production of 13th harmonics=-9.55\n",
+ " Displacement of 13th harmonic=-1.23 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "#5.4\n",
+ "import math\n",
+ "To=1.0/2000;\n",
+ "T=1.0/50;\n",
+ "#Rn=1/(1+n**2*(To/T)**2)\n",
+ "R1=1.0/(1+1.0**2*(To/T)**2);\n",
+ "R3=1.0/(1+3**2*(To/T)**2);\n",
+ "R5=1.0/(1+5**2*(To/T)**2);\n",
+ "R7=1.0/(1+7**2*(To/T)**2);\n",
+ "R11=1.0/(1+11**2*(To/T)**2);\n",
+ "R13=1.0/(1+13**2*(To/T)**2);\n",
+ "PE3=(R3-1/1)*100;\n",
+ "print (\"Percentage error for the production of 3rd harmonics=%.2f\" %PE3)\n",
+ "PE5=(R5-1/1)*100;\n",
+ "print (\"Percentage error for the production of 5th harmonics=%.2f\" %PE5)\n",
+ "PE7=(R7-1/1)*100;\n",
+ "print (\"Percentage error for the production of 7th harmonics=%.2f\" %PE7)\n",
+ "PE11=(R11-1/1)*100;\n",
+ "print (\"Percentage error for the production of 11th harmonics=%.2f\" %PE11)\n",
+ "PE13=(R13-1/1)*100;\n",
+ "print (\"Percentage error for the production of 13th harmonics=%.2f\" %PE13)\n",
+ "#displacement of nth harmonic alpha=atan2*n/((T/To)-n**2*(To/T))\n",
+ "alpha_1=math.degrees(math.atan(2*1/((T/To)-(1**2*(To/T)))));\n",
+ "alpha_13=(math.degrees(math.atan(2*13/((T/To)-(13**2*(To/T))))));\n",
+ "alpha_1_equivalent_13=13*alpha_1;\n",
+ "phase_displacement_13=alpha_13-alpha_1_equivalent_13;\n",
+ "print (\" Displacement of 13th harmonic=%.2f degree\" %phase_displacement_13)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 5.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum tape speed=7.81 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.5\n",
+ "import math\n",
+ "W_min=2.5*6.25*10**-6;\n",
+ "f=500000;\n",
+ "S_min=W_min*f;\n",
+ "print (\"minimum tape speed=%.2f m/s\" %S_min)\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 5.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number density of the tape=8 numbers/mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 5.6\n",
+ "import math\n",
+ "Num_per_sec=12000;\n",
+ "S=1.5*10**3;\n",
+ "Number_density=Num_per_sec/S;\n",
+ "print (\"Number density of the tape=%.0f numbers/mm\" %Number_density)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12+"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_PAvun9L.ipynb b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_PAvun9L.ipynb
new file mode 100644
index 00000000..e745546c
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_PAvun9L.ipynb
@@ -0,0 +1,506 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "# Chapter 6:Cathode ray oscilloscope"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "amplitude of voltage after 10 ms=4.76 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.1\n",
+ "import math\n",
+ "Vcc=50;\n",
+ "t=10*10**-3;\n",
+ "R=500*10**3;\n",
+ "C=0.2*10**-6;\n",
+ "tc=R*C;\n",
+ "Vo=Vcc*(1-math.exp(-t/tc));\n",
+ "print (\"amplitude of voltage after 10 ms=%.2f V\" %Vo)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage across the capacitor after 50 microsecond=1.36 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.2\n",
+ "import math\n",
+ "Vcc=4.76;\n",
+ "t=50*10**-6;\n",
+ "R=0.2*10**3;\n",
+ "C=0.2*10**-6;\n",
+ "tc=R*C;\n",
+ "Vo=Vcc*(math.exp(-t/tc));\n",
+ "print (\"voltage across the capacitor after 50 microsecond=%.2f V\" %Vo)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rise time=0.03 us\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.3\n",
+ "import math\n",
+ "BW=10*10**6;\n",
+ "tr=0.35/BW*10**6;\n",
+ "print (\"Rise time=%.2f us\" %tr)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Attenuation factor=10.0 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.4\n",
+ "import math\n",
+ "R=(9.0*10**3)+(900+90+10);\n",
+ "Rt=100*10**3;\n",
+ "Attenuation=R/Rt;\n",
+ "Attenuation_factor=1/Attenuation;\n",
+ "print (\"Attenuation factor=%.1f \" %Attenuation_factor)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Attenuation factor=11.0 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.5\n",
+ "import math\n",
+ "R=10.0*10**3;\n",
+ "Ri=100*10**3;\n",
+ "Rt=100*10**3;\n",
+ "Rp=(Ri*R)/(Ri+R);\n",
+ "Attenuation=Rp/Rt;\n",
+ "Attenuation_factor=1/Attenuation;\n",
+ "print (\"Attenuation factor=%.1f \" %Attenuation_factor)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For point A Attenuation_factor=400\n",
+ "voltage per division value at point A=20.00\n",
+ "For point B Attenuation_factor=100\n",
+ "voltage per division value at point B=5.00\n",
+ "For point C Attenuation_factor=40\n",
+ "voltage per division value at point C=2.00\n",
+ "For point D Attenuation_factor=10\n",
+ "voltage per division value at point D=0.50\n",
+ "For point E Attenuation_factor=4\n",
+ "voltage per division value at point E=0.20\n",
+ "For point F Attenuation_factor=1\n",
+ "voltage per division value at point F=0.05\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.6\n",
+ "import math\n",
+ "Vo=50*10**-3;\n",
+ "print ('For point A Attenuation_factor=400')\n",
+ "Attenuation_factor=400;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point A=%.2f\" %Vi)\n",
+ "print ('For point B Attenuation_factor=100')\n",
+ "Attenuation_factor=100;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point B=%.2f\" %Vi)\n",
+ "print ('For point C Attenuation_factor=40')\n",
+ "Attenuation_factor=40;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point C=%.2f\" %Vi)\n",
+ "print ('For point D Attenuation_factor=10')\n",
+ "Attenuation_factor=10;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point D=%.2f\" %Vi)\n",
+ "print ('For point E Attenuation_factor=4')\n",
+ "Attenuation_factor=4;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point E=%.2f\" %Vi)\n",
+ "print ('For point F Attenuation_factor=1')\n",
+ "Attenuation_factor=1;\n",
+ "Vi=Attenuation_factor*Vo;\n",
+ "print (\"voltage per division value at point F=%.2f\" %Vi)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Attenuationn for dc=10.0\n",
+ "Attenuationn for ac=3.0\n",
+ "Therefore the attenuation with ac is different from that of dc\n"
+ ]
+ }
+ ],
+ "source": [
+ "#6.7\n",
+ "import math\n",
+ "R2=100*10**3;\n",
+ "Vi=1.0;\n",
+ "R1=900*10**3;\n",
+ "Vo_dc=Vi*R2/(R1+R2);\n",
+ "k_dc=1/Vo_dc;\n",
+ "print (\"Attenuationn for dc=%.1f\" % k_dc)\n",
+ "XC2=1592.0;\n",
+ "Vi=1;\n",
+ "XC1=3183;\n",
+ "Vo_ac=Vi*XC2/(XC1+XC2);\n",
+ "k_ac=1/Vo_ac;\n",
+ "print (\"Attenuationn for ac=%.1f\" % k_ac)\n",
+ "print ('Therefore the attenuation with ac is different from that of dc')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum velocity of the beam of electrons=16772557.39 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.8\n",
+ "import math\n",
+ "e=1.6*10**-19;\n",
+ "Ea=800;\n",
+ "m=9.1*10**-31;\n",
+ "Vox=(2*e*Ea/m)**0.5;\n",
+ "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum velocity of the beam of electrons=26519741.77 m/s\n",
+ "deflection sensitivity=0.38 mm/V\n",
+ "Deflection Factor=2.67 V/mm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.9\n",
+ "import math\n",
+ "e=1.6*10**-19;\n",
+ "Ea=2000;\n",
+ "m=9.1*10**-31;\n",
+ "Vox=(2*e*Ea/m)**0.5;\n",
+ "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n",
+ "L=5;\n",
+ "ld=1.5*10**-2;\n",
+ "d=5*10**-3;\n",
+ "S=(L*ld/2*d*Ea);\n",
+ "print (\"deflection sensitivity=%.2f mm/V\" %S)\n",
+ "G=1/S;\n",
+ "print (\"Deflection Factor=%.2f V/mm\" %G)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Input voltage required for deflection of 3mm =1.0 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.10\n",
+ "import math\n",
+ "Ea=2000;\n",
+ "L=0.3;\n",
+ "ld=2*10**-2;\n",
+ "d=5*10**-3;\n",
+ "D=3*10**-2;\n",
+ "Ed=(2*d*Ea*D)/(L*ld);\n",
+ "gain=100;\n",
+ "V_require=Ed/gain;\n",
+ "print (\"Input voltage required for deflection of 3mm =%.1f V\" %V_require)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "deletable": true,
+ "editable": true
+ },
+ "source": [
+ "## Exa 6.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false,
+ "deletable": true,
+ "editable": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum velocity of the beam of electrons=26519741.77 m/s\n",
+ "Cutt off frequency=132.60 MHz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 6.11\n",
+ "import math\n",
+ "e=1.6*10**-19;\n",
+ "Ea=2000;\n",
+ "m=9.1*10**-31;\n",
+ "Vox=(2*e*Ea/m)**0.5;\n",
+ "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n",
+ "l=50*10**-3;\n",
+ "fc=Vox/(4*l)*10**-6;\n",
+ "print (\"Cutt off frequency=%.2f MHz\" %fc)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12+"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_50WmI6W.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_50WmI6W.png
new file mode 100644
index 00000000..2d1a90b0
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_50WmI6W.png
Binary files differ
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_B14Bydb.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_B14Bydb.png
new file mode 100644
index 00000000..97c75b0d
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_B14Bydb.png
Binary files differ
diff --git a/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_StwySDt.png b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_StwySDt.png
new file mode 100644
index 00000000..5471bab5
--- /dev/null
+++ b/Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_StwySDt.png
Binary files differ
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER01.ipynb b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER01.ipynb
new file mode 100644
index 00000000..d1fc5e7f
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER01.ipynb
@@ -0,0 +1,300 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER1:WHAT MACHINES AND TRANSFORMERS HAVE IN COMMON"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 04"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pin= 2230.88144015 W\n",
+ "Pout= 1865.0 W\n",
+ "n= 0.835992431707\n",
+ "Losses=Pin-Pout= 365.881440149 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "horsepower=2.5 # rating of induction motor in horsepower at half load\n",
+ "Vl=230. # terminal voltage of motor in volts\n",
+ "Il=7. # load current of motor in amperes\n",
+ "pf=0.8 # power factor of the machine\n",
+ "Pin=sqrt(3.)*Vl*Il*pf # input power in watts\n",
+ "print\"Pin=\",Pin,\"W\"# The answer may vary due to roundoff error\n",
+ "Whp=746. # watts per hp\n",
+ "Pout=horsepower*Whp # output power in watts\n",
+ "print\"Pout=\",Pout,\"W\"\n",
+ "print\"n=\",Pout/Pin# The answer may vary due to roundoff error # efficiency of the machine\n",
+ "print\"Losses=Pin-Pout=\",Pin-Pout,\"W\"# The answer may vary due to roundoff error # losses in the machine in watts"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 04"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "n=1-(Losses/Input)= 0.836387540175\n",
+ "Pout= 1865.88144015 W\n",
+ "Pout= 2.50118155516 hp\n"
+ ]
+ }
+ ],
+ "source": [
+ "# the below exmaple is an extension of Ex1_1.sce\n",
+ "from math import sqrt \n",
+ "Vl=230. # terminal voltage of machine in volts\n",
+ "Il=7. # current drawn by machine in amperes\n",
+ "pf=0.8 # power factor of machine\n",
+ "Pin=sqrt(3.)*Vl*Il*pf # from Ex1_1 # input power in watts\n",
+ "Losses=365. # in watts\n",
+ "Pout=Pin-Losses # output power in watts\n",
+ "Whp=746. # watts per hp\n",
+ "print\"n=1-(Losses/Input)=\",1.-(Losses/Pin) # The answer may vary due to roundoff error # efficiency of the machine\n",
+ "print\"Pout=\",Pout,\"W\"# The answer may vary due to roundoff error\n",
+ "print\"Pout=\",Pout/Whp,\"hp\"# The asnwer may vary due to roundoff error # output power in horsepower"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 06"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "phimax= 0.00300105438719 Wb\n",
+ "Bmax= 1.20042175488 T\n",
+ "VolA= 0.00125 metre cube\n",
+ "Ph= 53.0597985532 W\n",
+ "Ph= 34.1904136606 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi \n",
+ "f=60. # frequency of voltage source in Hz\n",
+ "x=1.9 # Steinmetz coefficient\n",
+ "V=80. # applied sinusoidal voltage in volts\n",
+ "t=100. # no of turns wound on a coil\n",
+ "hc=500. # hysteresis coefficient \n",
+ "w=2.*pi*f # angular frequency in rads/sec\n",
+ "phimax=(sqrt(2.)*V)/(t*w)# maximum value of flux in the core in webers\n",
+ "print\"phimax=\",phimax,\"Wb\"# the answer may vary due to roundoff error\n",
+ "A1=0.0025 # cross-sectional area of core in metre square\n",
+ "Bmax1=phimax/A1 # flux density in core A in tesla\n",
+ "print\"Bmax=\",Bmax1,\"T\"# the answer may vary due to roundoff error\n",
+ "lfe1=0.5 # mean flux path length of core A in meters\n",
+ "VolA=A1*lfe1 # volume of core A in metre cube\n",
+ "print\"VolA=\",VolA,\"metre cube\"\n",
+ "# for core A\n",
+ "Ph1=VolA*f*hc*(Bmax1**x) # hysteresis loss in core A in watts\n",
+ "print\"Ph=\",Ph1,\"W\"# the answer may vary due to roundoff error\n",
+ "# for core B\n",
+ "A2=A1*3. # cross sectional area of core B in metre square\n",
+ "lfe2=0.866 # mean flux path length of core B in metres\n",
+ "Bmax2=phimax/A2 # flux density in core B in tesla\n",
+ "VolB=A2*lfe2 # volume of core B in metre cubes\n",
+ "Ph2=VolB*f*hc*(Bmax2**x) # hysteresis loss of core B in watts\n",
+ "print\"Ph=\",Ph2,\"W\"# the answer may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 07"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "V2= 120.0 V\n",
+ "Ph+e/f=Ch+Ce*f\n",
+ "Ph= 276.0 W\n",
+ "Pe= 124.0 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "V1=240. # voltage applied to a winding of transformer(three phase) in volts\n",
+ "f1=60. # initial applied frequency in Hz\n",
+ "f2=30. # reduced frequency in Hz\n",
+ "Phe1=400. # core loss in watts at f1 frequency\n",
+ "Phe2=169. # core losses in watts at f2 frequency\n",
+ "print\"V2=\",(f2*V1)/f1,\"V\"# voltage at 30 Hz frequency\n",
+ "print\"Ph+e/f=Ch+Ce*f\"# equation for claculating hysteresis and eddy current loss coefficients\n",
+ "#a=[1 f1;1 f2] # left hand side matix for the equation above\n",
+ "#b=[Phe1/f1;Phe2/f2] # right hand side matrix for the equation above\n",
+ "#c=inv(a)*b\n",
+ "Ch=4.6#c(1,:)# hysteresis loss coefficient in W/Hz\n",
+ "Ce=0.0344#c(2,:)# eddy current loss coefficient in W/(Hz*Hz)\n",
+ "print\"Ph=\",Ch*f1,\"W\"# ans may vary due to roundoff error # hysteresis loss in watts at 60 Hz\n",
+ "print\"Pe=\",round(Ce*f1*f1),\"W\"# ans may vary due to roundoff error # eddy current loss at 60 Hz in watts"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 07"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "I2= 40.0 A\n",
+ "|S|=V2*I2= 9487.0 VA\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt \n",
+ "Pk=75. # core loss of transfomer in watts\n",
+ "R=0.048 # internal resistance in ohms\n",
+ "V2=240.# secondary voltage in volts\n",
+ "I2=sqrt(Pk/R)# secondary current in amperes\n",
+ "print\"I2=\",round(I2),\"A\"# ans may vary due to roundoff error\n",
+ "print\"|S|=V2*I2=\",round(V2*I2),\"VA\"# The answer in the textbook is wrong # output volt ampere of transformer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Voltage Regulation= 0.03064\n"
+ ]
+ }
+ ],
+ "source": [
+ "sfl=1746 # speed at full load in rev/min\n",
+ "snl=1799.5 # speed at no load in rev/min\n",
+ "print\"Voltage Regulation=\",round((snl-sfl)/sfl,5) # the ans may vary due to round of error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(Vnl-Vfl/Vfl)= 0.1375\n",
+ "Voltage Regulation= 0.2167\n"
+ ]
+ }
+ ],
+ "source": [
+ "Vnl=27.3 # no load voltage in volts\n",
+ "Vfl1=24. # full load voltage at power factor 1 in volts\n",
+ "print\"(Vnl-Vfl/Vfl)=\",(Vnl-Vfl1)/Vfl1# ans may vary due to roundoff error\n",
+ "Vfl2=22.1 # full load voltage at power factor 0.7 in volts\n",
+ "print\"Voltage Regulation=\",round((Vnl-Vfl2)/Vfl1,4)"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER02.ipynb b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER02.ipynb
new file mode 100644
index 00000000..054e441a
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER02.ipynb
@@ -0,0 +1,473 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER02 : SYNCHRONOUS MACHINES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "phi= 0.024 Wb\n"
+ ]
+ }
+ ],
+ "source": [
+ "L=0.25 # length of stator stack in metre\n",
+ "r=0.15 # radius of stator stack in metres\n",
+ "BImax=0.96 # peak value of air gap flux density in tesla\n",
+ "P=6. # no of machine poles\n",
+ "phi=(4.*L*r*BImax)/P # flux per pole in webers\n",
+ "print\"phi=\",phi,\"Wb\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "p= 150.0\n",
+ "Kp=sin(p/2)= 0.00999983333417\n",
+ "xcmax=Nc*Kp*phi= 0.00047999200004 Wb turns\n",
+ "f=Hz 50\n",
+ "Ec=sqrt(2)*phi*f*Nc*kp*phi= 0.000814573435545 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# the example below is an extension of Ex2_1\n",
+ "from math import sqrt, sin\n",
+ "L=0.25 # length of stator stack in metres\n",
+ "r=0.15 # radius of stator stack in metres\n",
+ "BImax=0.96 # peak value of air gap flux density in tesla\n",
+ "P=6. # no of machine poles\n",
+ "phi=(4.*L*r*BImax)/P # flux per pole in webers\n",
+ "# above comes from Ex2_1\n",
+ "span=5. # span of each coil given by no of slots\n",
+ "edps=30. # electrical degrees per slot in degrees\n",
+ "p=span*edps# coil pitch in degrees\n",
+ "print\"p=\",span*edps\n",
+ "Nc=2# turns of coil\n",
+ "Kp=sin(((p/2)*phi)/180) # pitch factor # degree being converted to radians before calculation\n",
+ "print\"Kp=sin(p/2)=\",Kp # the ans may vary due to roundoff error\n",
+ "print\"xcmax=Nc*Kp*phi=\",Nc*Kp*phi,\"Wb turns\"# max flux linkage # ans may vary due to roundoff error\n",
+ "ns=1000 # machine speed in rev/min\n",
+ "p=6 # no of poles\n",
+ "f=(p*ns)/120 # frequency at given speed in Hertz\n",
+ "print\"f=Hz\",f\n",
+ "print\"Ec=sqrt(2)*phi*f*Nc*kp*phi=\",sqrt(2)*phi*f*Nc*Kp*phi,\"V\"# ans may vary due to roundoff error # voltage induced at above frequency"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "n=S1/(q1*p)= 2.0 n\n",
+ "kd=sin(n*y/2)/n*sin(y/2)= 0.965925826289\n",
+ "|Egroup|=n*Ec*kd= 19.8972778287 V\n",
+ "|Eo|=p*|Egroup|= 119.383666972 V\n",
+ "sqrt(3)*Eo= 206.77857679 V\n",
+ "No=n*Nc*p= 24.0 turns\n",
+ "|Eo|=sqrt(2)*pi*No*f*o*kp*kd= 119.383666972 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# the example below is an extension of Ex2_1 and Ex2_2\n",
+ "from math import sin, sqrt,pi\n",
+ "S1=36. # no of slots\n",
+ "q1=3. # no of phases\n",
+ "p=6. # no of poles\n",
+ "Nc=2. # no of turns per coil\n",
+ "L=0.25 # length of stator stack in metres\n",
+ "r=0.15 # radius of stator stack in metres\n",
+ "BImax=0.96 # peak value of air gap flux density in tesla\n",
+ "P=6. # no of machine poles\n",
+ "phi=(4.*L*r*BImax)/P # flux per pole in webers\n",
+ "span=5. # span of each coil given by no of slots\n",
+ "edps=30. # electrical degrees per slot in degrees\n",
+ "p=span*edps# coil pitch in degrees\n",
+ "Nc=2.# turns of coil\n",
+ "kp=sin(((p/2.)*pi)/180.) # pitch factor # degree being converted to radians before calculation\n",
+ "ns=1000. # machine speed in rev/min\n",
+ "p=6. # no of poles\n",
+ "f=(p*ns)/120. # frequency at given speed in Hertz\n",
+ "Ec=sqrt(2.)*pi*f*Nc*kp*phi# voltage induced at above frequency\n",
+ "n=S1/(q1*p)\n",
+ "print\"n=S1/(q1*p)=\",n,\"n\" # coils per group\n",
+ "edps=30. # electrical degrees per slot # equal to y as per textbook\n",
+ "kd=(sin((n*edps*pi)/(180.*2.)))/(n*sin((edps/2.)*pi/180.)) # distribution factor of the machine # degree converted to radian for calculation\n",
+ "print\"kd=sin(n*y/2)/n*sin(y/2)=\",kd# ans may vary due to roundoff error\n",
+ "print\"|Egroup|=n*Ec*kd=\",n*Ec*kd,\"V\"# ans may vary due to roundoff error\n",
+ "print\"|Eo|=p*|Egroup|=\",p*n*Ec*kd,\"V\"# ans may vary due to roundoff error\n",
+ "print\"sqrt(3)*Eo=\",sqrt(3.)*n*Ec*kd*p,\"V\"# ans may vary due to roundoff error\n",
+ "stp=n*Nc*p # series turns per phase # equal to No in textbook\n",
+ "print\"No=n*Nc*p=\",stp,\"turns\"\n",
+ "print\"|Eo|=sqrt(2)*pi*No*f*o*kp*kd=\",sqrt(2.)*pi*stp*f*kp*kd*phi,\"V\" # ans may vary due to round off error # induced phase winding"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P= 35.0567083452 KW\n",
+ "HP=P/746= 46.9929066289 hp\n",
+ "Q=|S|sin0om=|S|sin cos-1(pf)= 26.2925312589 kVAR\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt, sin, acos\n",
+ "Vl=2300. # terminal voltage of synchronous motor in volts\n",
+ "Il=8.8 # minimum line current in ampere\n",
+ "P=sqrt(3.)*Vl*Il\n",
+ "print\"P=\",P/1000.,\"KW\"# power drawn from the line # ans may vary due to round off error\n",
+ "pf=0.8 # operating power factor\n",
+ "print\"HP=P/746=\",P/746.,\"hp\"# ans may vary due to round off error # conversion of power to hp requires division by 746\n",
+ "S=P/(pf*1000.) # total volt amperes of motor in kVA\n",
+ "print\"Q=|S|sin0om=|S|sin cos-1(pf)=\",S*sin(acos(pf)),\"kVAR\"# kVAR supplied by motor to the system # ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sp= (5000+3750j) kVA\n",
+ "Pin= 388.541666667 kW\n",
+ "Sm= (388.542+188.179j) kVA\n",
+ "Ss= 97.136 kVA\n",
+ "Sp1= (5000+3271j) kVA\n",
+ "New power factor= 0.837010255529\n",
+ "Percent reduction= 4.40158528511\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt, sin, cos\n",
+ "# the following code contains userdefined fucntion complexstring \n",
+ "Load=5000. # load of the plant in kW\n",
+ "pf1=0.8 # power factor of load(lagging)\n",
+ "pf2=0.9 # power factor of induction motor\n",
+ "pf3=0.8 # power factor of synchronous motor\n",
+ "Hp=500. # rating of induction motor to be replaced in hp\n",
+ "Pout=0.746*Hp # output power of induction motor in kW\n",
+ "Eta=0.96 # efficiency of the induction motor equal to n in textbook\n",
+ "Sp=5000+3750j;#Load+(Load*tan(acos(pf1)))*%i # original complex power of load in kVA\n",
+ "print'Sp=',Sp,\"kVA\"\n",
+ "Pin=Pout/Eta # input power in kW\n",
+ "print\"Pin=\",Pin,\"kW\"# complex power of induction motor # the ans may vary due to round off error\n",
+ "Sm=388.542+188.179j;#Pin+(Pin*tan(acos(pf2)))*%i\n",
+ "print'Sm=',Sm,'kVA'# the ans may vary due to round off error # complex power of induction motor\n",
+ "Ss=388.542-291.406;#Pin-(Pin*tan(acos(pf3)))*%i\n",
+ "print'Ss=',Ss,'kVA'# complex power of synchronous machine # the ans may vary due to round off error\n",
+ "Qm=0 + 188j;#(Pin*tan(acos(pf2)))*%i# reactive power of induction motor in kVAR\n",
+ "Qs=-0 + -291j;#(-1*(Pin*tan(acos(pf3)))*%i)# reactive power of synchronous motor in kVAR\n",
+ "Sp1=Sp-Qm+Qs\n",
+ "print'Sp1=',Sp1,'kVA'# new plant requirement,equal to Sp` in textbook\n",
+ "pha=0.579;#acos(real(Sp1)/abs(Sp1)) # phase angle of Sp1 in radians\n",
+ "print\"New power factor=\",cos(pha)# new power factor # the ans may vary due to round off error\n",
+ "invl=abs(Sp)# initial value of complex power in kVA\n",
+ "fnvl=abs(Sp1) # final value of complex power in kVA \n",
+ "print\"Percent reduction=\",(((invl-fnvl)/invl)*100.)# the ans may vary due to round off error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sp= (5000+3750j) kVA\n",
+ "Qp= 2420.0 kVAR\n",
+ "Qs= -1330.0 kVAR\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt, sin, cos, pi\n",
+ "Load=5000. # load of the plant in kW\n",
+ "pf1=0.8 # power factor of load(lagging)\n",
+ "Sp=5000+3750j;#Load+(Load*tan(acos(pf1)))*%i # original complex power of load in kVA\n",
+ "print'Sp=',Sp,'kVA'\n",
+ "pf2=0.9 # new power factor\n",
+ "Qp1=2.42e+03;#real(Sp)*tan(acos(0.9)) # reactive power,equal to Qp` in textbook\n",
+ "print\"Qp=\",Qp1,\"kVAR\"# the ans vary due to roundoff error\n",
+ "Qp=3.75e+03;#imag(Sp)\n",
+ "print\"Qs=\",Qp1-Qp,\"kVAR\"# KVAR to be supplied by synchronous condenser"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "V1= 1385.64064606 V\n",
+ "I1B= 2255.27448902 A\n",
+ "I1= (1804.22-1353.16j) A\n",
+ "Eo=V1+jI1x1= (1520.96+180.422j) V\n",
+ "sqrt3*|Eo|= (2652.85+0j) V\n",
+ "ks= 1.35454545455\n",
+ "m=|Eo|/Ifs= 10.3 omega\n",
+ "xd=x1+(xdu-x1)/ks= 0.61677852349 omega\n",
+ "Ef= (2220.24+1112.8j) V\n",
+ "If= 241.116841984 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,sin,cos\n",
+ "VLB=2400. # line to base voltage in volts\n",
+ "V1=VLB/sqrt(3.) # reference phasor in volts # ans may vary due to roundoff error\n",
+ "print\"V1=\",V1,\"V\"\n",
+ "kVAB=9375. # rated kVA\n",
+ "I1B=(kVAB*1000.)/(sqrt(3.)*VLB)\n",
+ "pf=0.8 # power factor\n",
+ "print\"I1B=\",I1B,\"A\" # ans may vary due to roundoff error\n",
+ "I1=1804.22-1353.16j;#I1B*exp((-1)*%i*(acos(pf)))\n",
+ "print'I1=',I1,'A'# ans may vary due to roundoff error\n",
+ "x1=0.1# in ohms\n",
+ "print'Eo=V1+jI1x1=',1520.96+180.422j,\"V\";# +complexstring(V1+%i*I1*x1)+'V')# ans may vary due to roundoff error\n",
+ "print'sqrt3*|Eo|=',2652.85+0j,\"V\";#+complexstring((abs(V1+%i*I1*x1))*sqrt(3))+'V')\n",
+ "Ifu=110. # value in ampere,dc\n",
+ "Ifs=149. # value in ampere,dc\n",
+ "ks=Ifs/Ifu\n",
+ "print\"ks=\",ks # ans may vary due to roundoff error\n",
+ "m1=10.3;#(abs((V1+%i*I1*x1)))/Ifs # equal to m in textbook\n",
+ "print\"m=|Eo|/Ifs=\",m1,\"omega\"# ans may vary due to roundoff error\n",
+ "xdu=0.8 # in ohms\n",
+ "xd=x1+((xdu-x1)/ks)\n",
+ "print\"xd=x1+(xdu-x1)/ks=\",xd,\"omega\"# ans may vary due to roundoff error\n",
+ "Ef=2220.24+1112.8j;#V1+(%i*I1*xd)\n",
+ "print'Ef=',Ef,'V'# ans may vary due to roundoff error\n",
+ "print\"If=\",abs(Ef)/m1,\"A\"# ans may vary due to roundoff error\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "xda= 0.691092591549 omega\n",
+ "ma=V1B/Ifv= 11.9451779832 omega\n",
+ "Ef= (2320+1250j) V\n",
+ "If=|Ef|/ma= 220.617710456 A\n",
+ "V1oc= 1708.9567968 V\n",
+ "Efmax= 2866.84271598 V\n",
+ "I1max= 2143.27586207 A\n",
+ "Qmax= 8.90943045057 MVAR\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,sin,cos,exp\n",
+ "VLB=2400. # line to base voltage in volts\n",
+ "Ix=2005. # current in amperes\n",
+ "xda=VLB/(sqrt(3.)*Ix)\n",
+ "print\"xda=\",xda,\"omega\"# ans may vary due to roundoff error\n",
+ "Ifv=116. # current in amperes\n",
+ "ma1=VLB/(sqrt(3.)*Ifv)# equal to ma` in textbook\n",
+ "print\"ma=V1B/Ifv=\",ma1,\"omega\"# ans may vary due to roundoff error\n",
+ "# from ex 2_7\n",
+ "V1=VLB/sqrt(3.) # reference phasor in volts \n",
+ "kVAB=9375. # rated kVA\n",
+ "I1B=(kVAB*1000.)/(sqrt(3.)*VLB)# current in amperes\n",
+ "pf=0.8 # power factor\n",
+ "I1=1.8e+03 + -1.35e+03j;#I1B*exp((-1)*%i*(acos(pf)))# current in amperes\n",
+ "Ef=2.32e+03 + 1.25e+03j;#V1+%i*I1*xda\n",
+ "print'Ef=',Ef,'V'# ans may vary due to roundoff error\n",
+ "print\"If=|Ef|/ma=\",abs(Ef)/ma1,\"A\"# ans may vary due to roundoff error\n",
+ "Voc=2960. # line to line volatge in Volts\n",
+ "print\"V1oc=\",Voc/sqrt(3.),\"V\"# ans may vary due to roundoff error\n",
+ "If=240. # current in amperes\n",
+ "Efmax=ma1*If\n",
+ "print\"Efmax=\",Efmax,\"V\"# ans in textbook is wrong\n",
+ "I1max=(Efmax-V1)/xda # ans in textbook is wrong\n",
+ "print\"I1max=\",I1max,\"A\"# ans may vary due to roundoff error\n",
+ "print\"Qmax=\",sqrt(3)*VLB*I1max*(10**-6),\"MVAR\"# ans may vary due to roundoff error\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E010 : Pg 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Ipu= 5.0 per unit\n",
+ "Ib= 3608.43918244 A\n",
+ "I= 18042.1959122 A\n",
+ "I=Efo/xd= 3.33333333333 per unit\n",
+ "Iss=Efo/xd=1 per unit\n",
+ "I= 3.80549254747 per unit\n",
+ "I= 1.00010593317 per unit\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "xd=1. # in ohms per unit\n",
+ "xd1=0.3 # in ohms per unit\n",
+ "xd2=0.2 # in ohms per unit\n",
+ "Td2=0.03 # time in seconds\n",
+ "Td1=1. # time in seconds\n",
+ "MVA=100. # rating in mega volt ampere\n",
+ "V=16000. # voltage in volts\n",
+ "I2pu=1./xd2\n",
+ "print \"Ipu=\",I2pu,\"per unit\"\n",
+ "Ib=(MVA*(10.**6.))/(math.sqrt(3.)*V)\n",
+ "print\"Ib=\",Ib,\"A\"# ans may vary due to roundoff error\n",
+ "print\"I=\",I2pu*Ib,\"A\"# ans in textbook is wrong\n",
+ "I1=1./xd1 # current in per unit\n",
+ "print\"I=Efo/xd=\",I1,\"per unit\"# ans may vary due to roundoff error\n",
+ "Iss=1/xd# current in per unit\n",
+ "print\"Iss=Efo/xd=1 per unit\"\n",
+ "t=2./60. # time in seconds\n",
+ "print\"I=\",(I2pu-I1)*math.exp(-t/Td2)+(I1-Iss)*math.exp(-t/Td1)+1.,\"per unit\"# ans may vary due to roundoff error\n",
+ "t=10. # time in seconds\n",
+ "print\"I=\",(I2pu-I1)*math.exp(-t/Td2)+(I1-Iss)*math.exp(-t/Td1)+1.,\"per unit\"# ans may vary due to roundoff error"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER03.ipynb b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER03.ipynb
new file mode 100644
index 00000000..e653e861
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER03.ipynb
@@ -0,0 +1,895 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER03 : TRANSFOMERS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Xm1=X11-x1= 19.95 omega\n",
+ "Xm2=X22--x2= 1995.0 omega\n",
+ "X12=sqrt(Xm1*Xm2)= 199.5 omega\n",
+ "I2=ratedkVA*1000/raated V2= 10.0 A\n",
+ "I1=(Zl+r2+jwL22)*I2/wL12*I1= (1800-1350j) A\n",
+ "V1=(r1+jwL11)I1-jwL12I2= 1390.0 V\n",
+ "k1= 0.9975\n",
+ "k2= 0.9975\n",
+ "k=sqrt(k1*k2)= 0.9975\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,sin,cos\n",
+ "X11=20. # in ohm\n",
+ "x1=0.05 # in ohm\n",
+ "X22=2000. # in ohm\n",
+ "x2=5. # in ohm\n",
+ "Xm1=X11-x1\n",
+ "Xm2=X22-x2\n",
+ "print\"Xm1=X11-x1=\",Xm1,\"omega\"\n",
+ "print\"Xm2=X22--x2=\",Xm2,\"omega\"\n",
+ "X12=sqrt(Xm1*Xm2)\n",
+ "print\"X12=sqrt(Xm1*Xm2)=\",X12,\"omega\"# ans may vary due to roundoff error\n",
+ "kVA=10. # rated kVA\n",
+ "V2=1000. # secondary voltage in volts\n",
+ "I2=(kVA*(10.**3.))/V2 # rated current\n",
+ "print\"I2=ratedkVA*1000/raated V2=\",I2,\"A\"\n",
+ "Zl=V2/I2 # load impedence\n",
+ "I1=1.8e+03 + -1.35e+03j;#((Zl+r2+(%i*X22))*I2)/(%i*X12)# ans may vary due to roundoff error\n",
+ "print'I1=(Zl+r2+jwL22)*I2/wL12*I1=',I1,'A'\n",
+ "r1=0.01 # in ohm\n",
+ "V1=1.39e+03;#((r1+(%i*X11))*I1)-(%i*X12*I2)\n",
+ "print'V1=(r1+jwL11)I1-jwL12I2=',V1,'V'# ans may vary due to roundoff error\n",
+ "k1=Xm1/X11\n",
+ "k2=Xm2/X22\n",
+ "print\"k1=\",k1\n",
+ "print\"k2=\",k2\n",
+ "k=sqrt(k1*k2)\n",
+ "print\"k=sqrt(k1*k2)=\",k"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "V2= V 499.924494299\n",
+ "I2= (86.6027-49.9695j) A\n",
+ "Secondary drop I2r2 is= (1.732054-0.99939j) V\n",
+ "x2= omega 0.1131\n",
+ "-E12=I2jx2= (5.65155045+9.79476537j) V\n",
+ "E2= (507.308098749+8.79537537j) V\n",
+ "a=N1/N2= 10.0\n",
+ "E1=aE2= (5073.08098749+87.9537537j) V\n",
+ "I1= (8.74743-5.48921j) A\n",
+ "Actual ratio=I2/I1= 9.6817992273\n",
+ "E11=jwL11I1= (62.0829651+98.9334333j) V\n",
+ "I1r2= (17.49486-10.97842j) V\n",
+ "V1=E1+I1r2+E11= (5152.65881259+175.908767j) V\n",
+ "Actual voltage ratio is V1/V2= 10.3128786614\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi,exp,sqrt\n",
+ "# code contains user defined function complexstring\n",
+ "i2=141.4 # load current max val in amperes\n",
+ "r2=0.02 # secondary resistance in ohms\n",
+ "V2=707./sqrt(2.)\n",
+ "pha=-30 # phase angle of load current with reference with reference voltage in degrees\n",
+ "I2=86.6027-49.9695j;#(i2/sqrt(2.))*exp(1j*pha*3.14/180.)# ans may vary due to roundoff error,conversion of degrees in radian for calculation\n",
+ "print\"V2=\",\"V\",V2\n",
+ "print'I2=',I2,'A'\n",
+ "print'Secondary drop I2r2 is=',I2*r2,'V'# ans may vary due to roundoff error\n",
+ "L12=3.*(10.**(-4.))# secondary leakage inductance in henry\n",
+ "w=377. # angular frequency of the supply in rad/sec\n",
+ "x2=w*L12 # secondary leakage reactance\n",
+ "print\"x2=\",\"omega\",x2\n",
+ "E12=(I2*1j*x2)# ans may vary due to roundoff error\n",
+ "print'-E12=I2jx2=',E12,'V'\n",
+ "E2=V2+(r2+(1j*x2))*I2# ans may vary due to roundoff error\n",
+ "print'E2=',E2,'V'\n",
+ "N1=300.# primary winding turns\n",
+ "N2=30. # secondary turns\n",
+ "a=N1/N2\n",
+ "print\"a=N1/N2=\",a\n",
+ "E1=a*E2# ans may vary due to roundoff error\n",
+ "print'E1=aE2=',E1,'V'\n",
+ "Iex1=0.707 # magnitude of exciting current of transformer in amperes\n",
+ "paex=-80. # phase angle of exciting current in degrees with reference voltage\n",
+ "#Iex=(Iex1/sqrt(2.))*exp(1j*paex*3.14/180.)# ans may vary due to roundoff error,conversion of degrees to radians for calculation\n",
+ "I1=8.74743-5.48921j;#(I2/a)+Iex# ans may vary due to roundoff error\n",
+ "print'I1=',I1,'A'\n",
+ "print\"Actual ratio=I2/I1=\",abs(I2)/abs(I1)# ans may vary due to roundoff error\n",
+ "L11=0.03 # leakage inductance of primary in henry\n",
+ "E11=1j*w*L11*I1# ans may vary due to roundoff error\n",
+ "print'E11=jwL11I1=',E11,'V'\n",
+ "r1=2. # primary winding resistance in ohms\n",
+ "I1r1=I1*r1# ans may vary due to roundoff error\n",
+ "print'I1r2=',I1r1,'V'\n",
+ "V1=E1+I1r1+E11# ans may vary due to roundoff error\n",
+ "print'V1=E1+I1r2+E11=',V1,'V'\n",
+ "print\"Actual voltage ratio is V1/V2=\",abs(V1)/abs(V2)# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a= 10.0\n",
+ "|V2|=|V1|/a= V 220.0\n",
+ "I2= (87.9869-66.0175j) A\n",
+ "I1=I2/a= (8.79869-6.60175j) A\n",
+ "Zin=V1/I1= (159.976117327+120.031769794j) omega\n",
+ "|S2|=|V2||I2|=kVA 24.2000048779\n",
+ "P2=|S2|*cos02=kW 19.3600039023\n",
+ "|S1|=|V2||I1|=kVA 24.2000048779\n",
+ "P1=|S1|cos01=kW 19.3571156185\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import pi,exp,sqrt,cos\n",
+ "# the code uses userdefined function complexstring\n",
+ "E1=2400. # primary voltage rating in volts\n",
+ "E2=240. # secondary voltage rating in volts\n",
+ "z=2. # magnitude of impedance connected to secondary terminals in ohms\n",
+ "pha1=36.9 # phase angle of impedance connected with reference in degrees\n",
+ "a=E1/E2\n",
+ "print\"a=\",a\n",
+ "V1=2200. # applied primary voltage to transformer in volts\n",
+ "V2=V1/a\n",
+ "print\"|V2|=|V1|/a=\",\"V\",V2\n",
+ "I2=87.9869-66.0175j;#V2/(z*exp(pha1*1j*3.14/180.))# ans in textbook is wrong,conversion of degree to radian for calculation\n",
+ "print'I2=',I2,'A'\n",
+ "I1=I2/a # ans may vary due to roundoff error\n",
+ "print'I1=I2/a=',I1,'A'\n",
+ "Zin=V1/I1\n",
+ "print'Zin=V1/I1=',Zin,'omega'\n",
+ "S2=V2*I2\n",
+ "pf=0.8 # power factor of load\n",
+ "print\"|S2|=|V2||I2|=kVA\",(abs(V2)*abs(I2))/1000.\n",
+ "print\"P2=|S2|*cos02=kW\",(abs(S2)*pf)/1000.\n",
+ "print\"|S1|=|V2||I1|=kVA\",(abs(V1)*abs(I1))/1000.\n",
+ "print\"P1=|S1|cos01=kW\",((abs(V1)*abs(I1))*cos(pha1*3.14/180.))/1000.# ans may vary due to roundoff error,conversion of degree to radian for calculation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a=sqrt(Zin/Z)= 11.1803398875\n",
+ "V2=4*P2=V 6.32455532034\n",
+ "V1=aV2=V 70.7106781187\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt \n",
+ "Z=4. # impedance of loudspeaker in ohms\n",
+ "Zin=500. # impedance of audio line in ohms\n",
+ "a=sqrt(Zin/Z)# ans may vary due to roundoff error\n",
+ "print\"a=sqrt(Zin/Z)=\",a# ans may vary due to roundoff error\n",
+ "P2=10. # audio power in watts\n",
+ "V2=sqrt(40.)# ans may vary due to roundoff error\n",
+ "print\"V2=4*P2=V\",V2 # ans may vary due to roundoff error\n",
+ "V1=a*V2\n",
+ "print\"V1=aV2=V\",V1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "I2=kVA/V2=A 138.916666667\n",
+ "E2=V2+I2(r2+jx2)= (120.7209775+3.0006j) V\n",
+ "E1= (7243.25865+180.036j) V\n",
+ "core loss current= (0.0232902207395+0.000578893890675j) A\n",
+ "Core loss Ph+e=|Ih+e|**2*Rc=W 168.801314573\n",
+ "IO=E1/jXm= (0.00328532846715-0.132176252737j) A\n",
+ "Iex=Ih+e+IO= (0.0265755492067-0.131597358847j) A\n",
+ "I1=Iex+I2/a= (2.34185332698-0.131597358847j) A\n",
+ "V1=E1+I1(r1+jx1)= (7297.28958173+359.771318229j) V\n",
+ "Pcu=W 203.03561511\n",
+ "Efficiencyn=output watts/output+losses= 0.978180936057\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,exp,cos,sin\n",
+ "V2=120. # reference voltage in volts\n",
+ "kVA=16.67*(10.**3.) # kVA rating of transformer\n",
+ "I2=kVA/V2 # secondaary current aat unity pf \n",
+ "print\"I2=kVA/V2=A\",I2# ans may be wrong due to roundoff error\n",
+ "r2=0.00519 # secondary winding resistance in ohms\n",
+ "x2=0.0216 # secondary winding reactance in ohms\n",
+ "a=7200./120.\n",
+ "E2=V2+(I2*(r2+(1j*x2)))# secondary induced voltage # ans may be wrong due to roundoff error\n",
+ "print'E2=V2+I2(r2+jx2)=',E2,'V'\n",
+ "E1=a*E2# ans may be wrong due to roundoff error\n",
+ "print'E1=',E1,'V'\n",
+ "Rc=311000.\n",
+ "Ihe=E1/Rc\n",
+ "print'core loss current=',Ihe,'A'\n",
+ "Phe=((abs(Ihe))**2.)*Rc# ans may be wrong due to roundoff error\n",
+ "print\"Core loss Ph+e=|Ih+e|**2*Rc=W\",Phe\n",
+ "Xm=54800.\n",
+ "print'IO=E1/jXm=',E1/(1j*Xm),'A'# ans may be wrong due to roundoff error\n",
+ "Iex=Ihe+(E1/(1j*Xm))\n",
+ "print'Iex=Ih+e+IO=',Iex,'A'# ans may be wrong due to roundoff error\n",
+ "I1=Iex+(I2/a)\n",
+ "print'I1=Iex+I2/a=',I1,'A'# ans may be wrong due to roundoff error\n",
+ "r1=18.7 # primary side resistaance\n",
+ "x1=77.8\n",
+ "V1=E1+(I1*(r1+(1j*x1)))\n",
+ "print'V1=E1+I1(r1+jx1)=',V1,'V'# ans in the textbook is wrong\n",
+ "Pcu=(((abs(I1))**2.)*r1)+(((abs(I2))**2.)*r2)# copper loss\n",
+ "print\"Pcu=W\",Pcu# ans may be wrong due to roundoff error\n",
+ "print\"Efficiencyn=output watts/output+losses=\",16670./(16670.+Pcu+Phe)# ans may be wrong due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "V12= (1010+18005j) V\n",
+ "I1= (100.250626566-5.0626566416j) A\n",
+ "V1= (102.255639098+9.96190476191j) V\n",
+ "Zeq1= (0.02+0.1j) omega\n",
+ "V1= (110.194921326+2.38985329387j) V\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "I2=10.\n",
+ "V2=1000.\n",
+ "r2=1.\n",
+ "X11=20. # in ohm\n",
+ "x1=0.05 # in ohm\n",
+ "X22=2000. # in ohm\n",
+ "x2=5. # in ohm\n",
+ "Xm1=X11-x1\n",
+ "Xm2=X22-x2\n",
+ "X12=sqrt(Xm1*Xm2)\n",
+ "V12=V2+I2*(r2+(1j*(X22-X12)))# ans may vary due to roundof error\n",
+ "print'V12=',V12,'V'\n",
+ "I1=I2+(V12/(1j*X12))# ans may vary due to roundof error\n",
+ "print'I1=',I1,'A'\n",
+ "r1=0.01\n",
+ "V1=V12+(I1*(r1+(1j*(X11-X12))))# ans may vary due to roundof error\n",
+ "print'V1=',V1,'V'\n",
+ "a=0.1\n",
+ "Zeq1=r1+(a*a*r2)+(1j*(x1+(a*a*x2)))# ans may vary due to roundof error\n",
+ "print'Zeq1=',Zeq1,'omega'\n",
+ "V1=(a*V2)+(I2**Zeq1/a)# ans may vary due to roundof error\n",
+ "print'V1=',V1,'V'\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 56"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Zeq2= (0.06+0.3j) omega\n",
+ "I2B=A 41.6666666667\n",
+ "I2= (33.3333-25j) A\n",
+ "V1/a= (249.499998+8.49999j) V\n",
+ "|V1|=V 2496.44745252\n",
+ "V1= (249.499998+8.49999j) V\n",
+ "|V1|=V 2496.44745252\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,exp,acos\n",
+ "# the code uses a userdefined function complexstring\n",
+ "r1=3.\n",
+ "r2=0.03\n",
+ "x1=15.\n",
+ "x2=0.15\n",
+ "V1B=2400. # primary side voltage\n",
+ "V2B=240. # secondary side voltage\n",
+ "a=V1B/V2B\n",
+ "Zeq2=(r1/(a**2))+r2+(1j*((x1/(a**2))+x2))# ans may vary due to roundoff error\n",
+ "print'Zeq2=',Zeq2,'omega'\n",
+ "SB=10000.# rated kva of the trnsformer\n",
+ "V2B=240.\n",
+ "I2B=SB/V2B\n",
+ "print\"I2B=A\",I2B# ans may vary due to roundoff error\n",
+ "# with V2 reference\n",
+ "# 0.8 pf lagging\n",
+ "I2=33.3333-25j;#I2B*exp(1j*(-1)*acos(0.8))# ans may vary due to roundoff error\n",
+ "print'I2=',I2,'A'\n",
+ "V2=240.\n",
+ "V1=a*(V2+I2*Zeq2)# ans may vary due to roundoff error\n",
+ "print'V1/a=',V1/a,'V'\n",
+ "print\"|V1|=V\",abs(V1)\n",
+ "# 0.8 pf leading\n",
+ "I2B=SB/V2B\n",
+ "#I2=I2B*exp(1j*acos(0.8))# ans may vary due to roundoff error\n",
+ "V1=a*(V2+(I2*Zeq2))# ans may vary due to roundoff error\n",
+ "print'V1=',V1/a,'V'\n",
+ "print\"|V1|=V\",abs(V1)# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "|V1/a|= 249.644 V\n",
+ "Regulation=(|V1/a|-V2B)/V2B= 0.0401833333333\n",
+ "V at 0.8 pf leading=V 234.78\n",
+ "Regulation= -0.02175\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "# example below is an extension of Ex3_7\n",
+ "# values below from Ex3_7\n",
+ "V2B=240. # secndary side voltage\n",
+ "a=10.\n",
+ "# 0.8 pf lagging\n",
+ "V1=2496.44\n",
+ "V=V1/a # secondary voltage at full load\n",
+ "print\"|V1/a|=\",V,\"V\"\n",
+ "Regulation=(V-V2B)/V2B # ans may vary due to roundoff error\n",
+ "print\"Regulation=(|V1/a|-V2B)/V2B=\",Regulation\n",
+ "# 0.8 pf leading\n",
+ "V1=2347.8 \n",
+ "V=V1/a\n",
+ "print\"V at 0.8 pf leading=V\",V\n",
+ "print\"Regulation=\",(V-V2B)/V2B"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E09 : Pg 58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "I2pu= (0.8-0.6j) A\n",
+ "Zeqpu= (0.02+0.05j) omega\n",
+ "V1pu= (1.046+0.028j) V\n",
+ "|V1pu|-1= 0.0463746938836\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,acos,exp\n",
+ "# code uses usedefined function\n",
+ "pf=0.8 # power factor of full load\n",
+ "I2=1. # magnitude of load current in amperes in per unit system\n",
+ "I2pu=0.8-0.6j;#I2*exp(1j*(-1.)*acos(pf))# -1 comes due to lagging power factor\n",
+ "print'I2pu=',I2pu,'A'\n",
+ "pres=2. # percent resistance in ohms\n",
+ "preact=5. # percent reactance in ohms\n",
+ "Zeqpu=(pres/100.)+(1j*(preact/100.))\n",
+ "print'Zeqpu=',Zeqpu,'omega'\n",
+ "V1pu=1+(I2pu*Zeqpu)\n",
+ "print'V1pu=',V1pu,'V'\n",
+ "Regulation=abs(V1pu)-1\n",
+ "print\"|V1pu|-1=\",Regulation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E10 : Pg 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ILIB= 25.1021856169 A\n",
+ "IL2B= 1387.86122401 A\n",
+ "Rated kVA=SB/1000= 10000.0 kVA\n",
+ "Rated 11=I1B=ILIB= 25.1021856169 A\n",
+ "Rated I2=I2B=IL2B/sqrt(3)= 801.282051282 A\n",
+ "Rated V1=V1B=VL1/sqrt(3)= 132.790561914 kV\n",
+ "V2=V2B= 4160.0 V\n",
+ "turns ratio=V1B/V2B= 31.9208081523\n",
+ "kVA per phase= 3333 kVA\n",
+ "Rated kVA= 10000.0 kVA\n",
+ "kVa per phase= 3333 kVA\n",
+ "V1B=VL1B= 230.0 kV\n",
+ "V2B=VL2B/sqrt(3)= 2401.77711983 V\n",
+ "I1B=IL1B/sqrt(3)= 14.4927536232 A\n",
+ "I2B=IL2B= 1387.86122401 A\n",
+ "a=V1B/V2B= 95.7624244569\n",
+ "Rated kVA= 10000.0 kVA\n",
+ "kVA per phase= 3333 kVA\n",
+ "V1B= 230.0 kV\n",
+ "V2B= 4160.0 V\n",
+ "I1B= 14.4927536232 A\n",
+ "IL2B= 801.282051282 A\n",
+ "a= 55.2884615385\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,sin,cos\n",
+ "SB=10000000. # rating of transformer\n",
+ "VL1B=230000. # voltage rating\n",
+ "IL1B=SB/(sqrt(3.)*VL1B)\n",
+ "print\"ILIB=\",IL1B,\"A\"\n",
+ "VL2B=4160.\n",
+ "IL2B=SB/(sqrt(3.)*VL2B)\n",
+ "print\"IL2B=\",IL2B,\"A\"\n",
+ "# star delta connected\n",
+ "print\"Rated kVA=SB/1000=\",SB/1000,\"kVA\"\n",
+ "print\"Rated 11=I1B=ILIB=\",IL1B,\"A\"\n",
+ "print\"Rated I2=I2B=IL2B/sqrt(3)=\",IL2B/sqrt(3.),\"A\"\n",
+ "VL1=230. # rating in kV\n",
+ "VL2=4160.# rating in kV\n",
+ "print\"Rated V1=V1B=VL1/sqrt(3)=\",VL1/sqrt(3.),\"kV\"\n",
+ "print\"V2=V2B=\",VL2,\"V\"\n",
+ "print\"turns ratio=V1B/V2B=\",(VL1*1000.)/(VL2*sqrt(3.))\n",
+ "print\"kVA per phase=\",3333,\"kVA\"\n",
+ "# delta star connected\n",
+ "print\"Rated kVA=\",SB/1000,\"kVA\"\n",
+ "print\"kVa per phase=\",3333,\"kVA\"\n",
+ "print\"V1B=VL1B=\",VL1,\"kV\"\n",
+ "print\"V2B=VL2B/sqrt(3)=\",VL2/sqrt(3.),\"V\"\n",
+ "print\"I1B=IL1B/sqrt(3)=\",IL1B/sqrt(3.),\"A\"\n",
+ "print\"I2B=IL2B=\",IL2B,\"A\"\n",
+ "print\"a=V1B/V2B=\",(VL1B*sqrt(3.))/VL2B\n",
+ "# delta delta connected\n",
+ "print\"Rated kVA=\",SB/1000,\"kVA\"\n",
+ "print\"kVA per phase=\",3333,\"kVA\"\n",
+ "print\"V1B=\",VL1B/1000,\"kV\"\n",
+ "print\"V2B=\",VL2B,\"V\"\n",
+ "print\"I1B=\",IL1B/sqrt(3),\"A\"\n",
+ "print\"IL2B=\",IL2B/sqrt(3),\"A\"\n",
+ "print\"a=\",VL1B/VL2B\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E11 : Pg 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "IL1B= 4.00937686937 A\n",
+ "I1B= 2.31481481481 A\n",
+ "V2B= 120.088855991 V\n",
+ "IL2B= 138.786122401 A\n",
+ "a= 59.9556048774\n",
+ "Z2B=V2B/I2B= 0.86528 omega\n",
+ "Zeqpu= 0.0514198405287 omega with phase angle of 76.5042667192 degrees\n",
+ "Zeq2= 0.0444925596127 omega with a phase angle of 76.504267 degrees\n",
+ "I2= 138.786122 A with a phase angle of -36.869898 degress\n",
+ "V1= 121.589415285 V with a phase angle of 1.808403 degrees\n",
+ "Regulation= 0.0132451273757\n",
+ "V1pu= 1.04011730108 V with a phase angle of 1.807117 degrees\n",
+ "Regulation= 0.0124954083478\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt, sin, cos, pi,exp,acos\n",
+ "# delta connected\n",
+ "# sol 1\n",
+ "V1B=7200. # primary voltage in volts\n",
+ "VL1B=7200. # primary voltage in volts\n",
+ "kVA=50. # kva rating \n",
+ "IL1B=(kVA*1000.)/((sqrt(3.))*VL1B)# ans may vary due to roundoff error\n",
+ "print\"IL1B=\",IL1B,\"A\"\n",
+ "I1B=IL1B/sqrt(3.)# ans may vary due to roundoff error\n",
+ "print\"I1B=\",I1B,\"A\"\n",
+ "# star connected\n",
+ "VL2B=208. # seconadry voltage in volts\n",
+ "V2B=VL2B/sqrt(3.)# ans may vary due to roundoff error\n",
+ "print\"V2B=\",VL2B/sqrt(3.),\"V\"\n",
+ "IL2B=(kVA*1000.)/(sqrt(3.)*VL2B)# ans may vary due to roundoff error\n",
+ "print\"IL2B=\",IL2B,\"A\"\n",
+ "I2B=IL2B\n",
+ "a=V1B/V2B# ans may vary due to roundoff error\n",
+ "print\"a=\",a\n",
+ "Z2B=V2B/I2B# ans may vary due to roundoff error\n",
+ "print\"Z2B=V2B/I2B=\",Z2B,\"omega\"\n",
+ "Reqpu=0.012 # percent resistance in ohms\n",
+ "Xeqpu=0.05 # percent reactance in ohms\n",
+ "Zeqpu=0.012 + 0.05j;#Reqpu+(%i*Xeqpu)\n",
+ "print\"Zeqpu=\",abs(Zeqpu),\"omega with phase angle of\",(acos(Reqpu/(abs(Zeqpu))))*180./pi,\"degrees\"# ans may vary due to roundoff error,conversion of radians to degree\n",
+ "Zeq2=Z2B*Zeqpu# ans may vary due to roundoff error\n",
+ "print\"Zeq2=\",abs(Zeq2),\"omega with a phase angle of\",76.504267,\"degrees\"# ans may vary due to roundoff error,conversion of radians to degree\n",
+ "pf=0.8 # power factor of load\n",
+ "I2=138.786122;#IL2B*exp(1j*(-1)*acos(pf))# ans may vary due to roundoff error,-1 comes due to the lagging power factor\n",
+ "print\"I2=\",abs(I2),\"A\",\"with a phase angle of\",-36.869898,\"degress\"# ans may vary due to roundoff error,conversion of radians to degree\n",
+ "V2=120 # seconadry voltage in volts\n",
+ "V1=a*(V2+(I2*Zeq2))# ans may vary due to roundoff error\n",
+ "print\"V1=\",abs(V1/a),\"V\",\"with a phase angle of\",1.808403,\"degrees\"# ans may vary due to roundoff error,conversion of radians to degree\n",
+ "Regulation=(abs(V1/a)-V2)/V2# ans may vary due to roundoff error\n",
+ "print\"Regulation=\",Regulation\n",
+ "# sol 2(per unit method)\n",
+ "I2pu=0.8 + -0.6j;#exp(i*(-1)*acos(pf)) # seconadry current in per unit in amperes\n",
+ "V2pu=1 # seconadry voltage in per unit in volts\n",
+ "V1pu=V2pu+(I2pu*Zeqpu)\n",
+ "print\"V1pu=\",abs(V1pu),\"V\",\"with a phase angle of\",1.807117,\"degrees\"# ans may vary due to roundoff error\n",
+ "Regulation=(abs(V1/(a*V2B))-(V2B/V2B))/(V2B/V2B)\n",
+ "print\"Regulation=\",Regulation# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E12 : Pg 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "IL3= 52.486388 A =|I2| of small transformer\n",
+ "Il3= 2.486388 A with a phase angle of -36.9 degrees\n",
+ "IL3= (41.9726-31.5139j) A\n",
+ "IL1= (453.325+33.2901j) A\n",
+ "IL1= 454.545455 with a phase angle of 4.2 degrees\n",
+ "I2= ((495.297+1.7762j), 'A') A\n",
+ "I2= 495.300507 A with a phase angle of 0.205469 degrees\n",
+ "IL1= ((255.492-375.946j), 'A') A\n",
+ "IL1= 454.545455 with a phase angle of -55.8 degrees\n",
+ "I2= (297.465-407.46j) A\n",
+ "I2= 504.48861 A with a phase angle of 53.868768 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp, sqrt,pi,cos,sin,acos\n",
+ "kVAL=100. # kva required for supply\n",
+ "kVAM=20. # kVA rating of motor of the air conditioning compressor\n",
+ "V=220. # supply voltage in volts\n",
+ "IL3=52.486388;#(kVAM*1000.)/(sqrt(3.)*V)\n",
+ "print\"IL3=\",IL3,\"A\",\"=|I2| of small transformer\"\n",
+ "# abc sequence\n",
+ "ph1=36.9 # phase angle of motor current\n",
+ "IL3=2.486388;#IL3*exp(1j*(-1)*ph1*pi/180)# -1 comes due to the lagging power factor,conversion of degree to radian for calculation\n",
+ "print\"Il3=\",abs(IL3),\"A\",\"with a phase angle of\",-36.900000,\"degrees\"# -1 comes due to the lagging power factor\n",
+ "print'IL3=',41.9726-31.5139j,\"A\" ;#+complexstring(IL3)+'A'\n",
+ "ph2=30-25.8 # phase angle of Il1\n",
+ "#IL1=((kVAL*1000.)/V)*exp(1j*(ph2)*pi/180)\n",
+ "print'IL1=',453.325+33.2901j,\"A\";#+complexstring(IL1)+'A'\n",
+ "print\"IL1=\",454.545455,\" with a phase angle of\",4.200000,\"degrees\"\n",
+ "I2=495.297+1.7762j,\"A\" ;#IL3+IL1\n",
+ "print'I2=',I2,'A'\n",
+ "print\"I2=\",495.300507,\"A\",\" with a phase angle of\",0.205469,\"degrees\"\n",
+ "# acb sequence\n",
+ "ph3=30+25.8 # phase angle of Il1 in degrees\n",
+ "IL1=255.492-375.946j,\"A\";#abs(IL1)*exp(1j*(-1)*(ph3)*pi/180.) # -1 comes due to lagging power factor\n",
+ "print'IL1=',IL1,'A'\n",
+ "print\"IL1=\",454.545455,\"with a phase angle of\",-55.800000,\"degrees\"# -1 comes due to the lagging power factor\n",
+ "I2=297.465-407.46j;#IL3+IL1\n",
+ "print'I2=',I2,'A'\n",
+ "print\"I2=\",504.488610,\"A\",\"with a phase angle of\",53.868768,\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E13 : Pg 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Phepu= 0.009\n",
+ "nfl= 0.975081256771\n",
+ "nfl= 0.972972972973\n",
+ "|S|/SB=sqrt(Phepu/Reqpu)= 0.801783725737 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,exp\n",
+ "SB=300. # rating in kVA at full load\n",
+ "S=150. # kVA at half load\n",
+ "Phe=2.7 # core loss in kW\n",
+ "Phepu=Phe/SB # ans may vary due to roundoff error\n",
+ "print\"Phepu=\",Phepu\n",
+ "Reqpu=0.0140 # per unit resistance in ohms=per unit copper loss at full load in watts\n",
+ "pf=0.9 # power factor at full load\n",
+ "# efficiency at full load\n",
+ "print\"nfl=\",pf/(pf+Phepu+Reqpu)# ans may vary due to roundoff error\n",
+ "# efficiency at half load\n",
+ "a=S/SB # ratio of kVA at half and full load\n",
+ "print\"nfl=\",(a*pf)/((a*pf)+Phepu+(a*a*Reqpu))# ans may vary due to roundoff error\n",
+ "# for max efficiency\n",
+ "print\"|S|/SB=sqrt(Phepu/Reqpu)=\",sqrt(Phepu/Reqpu),\"A\"# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E14 : Pg 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "VOoc=Voc/sqrt(3)= 120.088855991 V\n",
+ "POoc=Poc/3= 166.666666667 W\n",
+ "RcLV=VO*VO/PO= 86.528 omega\n",
+ "Voc**2/Poc= 86.528 omega\n",
+ "sin0oc= 0.984836925134\n",
+ "IO=IOoc *sin0oc= 7.87869540107 A\n",
+ "XmLV=VOoc/IO= 15.2422260131 omega\n",
+ "ReqHV=POsc/IOsc**2= 37.2945976724 omega\n",
+ "|ZeqHV|=VOsc/IOsc= 159.775317577 omega\n",
+ "XeqHV= 155.361723379 omega\n",
+ "NHV/NLV=VHVB/VLVB= 59.9556048774\n",
+ "RcHV=RcLV*aV*aV= 311040.0 omega\n",
+ "XmHV=XmLV*aV*aV= 54790.8420293 omega\n",
+ "ZeqLV= (0.0103749580356+0.0432199691375j) omega\n",
+ "ZeqLV= 0.0444477838197 ohms with a phase angle of 76.501552 degrees\n",
+ "ZLVB= 0.86528 omega\n",
+ "Reqpu= 0.0119902898895 omega\n",
+ "Xeqpu= 0.0499491137406 omega\n",
+ "Zeqpu= (0.0119902898895+0.0499491137406j) omega\n",
+ "Zeqpu= 0.0513680933567 ohms with a pgase angle of 76.501552 degrees\n",
+ "V1pu= (1.03956+0.0327651j)\n",
+ "V1pu= 1.04007622095 V with a phase angle of 1.805262 degrees\n",
+ "Regulation= 0.0400762209463\n",
+ "n=cos0/cos0+Reqpu+Phepu= 0.973247506497\n",
+ "n= 0.973236009732\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,exp,cos,sin,acos\n",
+ "# open ckt short ckt test\n",
+ "# code uses userdefined function complexstring\n",
+ "kVA=50. # kVA rating\n",
+ "Poc=500. # core loss in watts\n",
+ "Voc=208. # open ckt voltage in volts\n",
+ "Vphioc=Voc/sqrt(3.)\n",
+ "print\"VOoc=Voc/sqrt(3)=\",Vphioc,\"V\"# ans may vary due to roundoff error\n",
+ "Pphioc=Poc/3.\n",
+ "print\"POoc=Poc/3=\",Pphioc,\"W\"# ans may vary due to roundoff error\n",
+ "Ioc=8 # open ckt current in amperes\n",
+ "print\"RcLV=VO*VO/PO=\",(Vphioc*Vphioc)/Pphioc,\"omega\"# ans may vary due to roundoff error\n",
+ "print\"Voc**2/Poc=\",(Voc**2)/Poc,\"omega\"# ans may vary due to roundoff error\n",
+ "print\"sin0oc=\",sin(acos(Poc/(sqrt(3)*Ioc*Voc)))# ans may vary due to roundoff error\n",
+ "print\"IO=IOoc *sin0oc=\",Ioc*sin(acos(Poc/(sqrt(3)*Ioc*Voc))),\"A\"# ans may vary due to roundoff error\n",
+ "print\"XmLV=VOoc/IO=\",(Voc/sqrt(3))/(Ioc*sin(acos(Poc/(sqrt(3)*Ioc*Voc)))),\"omega\"# ans may vary due to roundoff error\n",
+ "# short ckt \n",
+ "Psc=600. # copper loss in watts\n",
+ "Isc=4.011 # short circuit current in amperes\n",
+ "Vsc=370. # short circuit voltage in volts\n",
+ "ReqHV=(Psc/3.)/((Isc/sqrt(3.))**2.)\n",
+ "print\"ReqHV=POsc/IOsc**2=\",ReqHV,\"omega\"# ans may vary due to roundoff error\n",
+ "ZeqHV=Vsc/(Isc/sqrt(3.))\n",
+ "print\"|ZeqHV|=VOsc/IOsc=\",ZeqHV,\"omega\"# ans may vary due to roundoff error\n",
+ "XeqHV=sqrt((ZeqHV**2)-(ReqHV**2))\n",
+ "print\"XeqHV=\",XeqHV,\"omega\"# ans may vary due to roundoff error\n",
+ "VHVB=7200.# secondary side voltage in volts\n",
+ "VLVB=208./sqrt(3.)# primary side voltage in volts\n",
+ "aV=VHVB/VLVB\n",
+ "print\"NHV/NLV=VHVB/VLVB=\",aV# ans may vary due to roundoff error\n",
+ "print\"RcHV=RcLV*aV*aV=\",((Vphioc*Vphioc)/Pphioc)*aV*aV,\"omega\"# ans in the textbook is wrong\n",
+ "print\"XmHV=XmLV*aV*aV=\",(Voc/sqrt(3))/(Ioc*sin(acos(Poc/(sqrt(3)*Ioc*Voc))))*aV*aV,\"omega\"# ans in the textbook is wrong\n",
+ "ZeqLV=(ReqHV+(1j*XeqHV))/(aV*aV)\n",
+ "print'ZeqLV=',ZeqLV,'omega'# ans may vary due to roundoff error\n",
+ "print\"ZeqLV=\",abs(ZeqLV),\"ohms with a phase angle of\",76.501552,\"degrees\"\n",
+ "SB=50000. # rating of transformer\n",
+ "ZLVB=(Voc*Voc)/SB\n",
+ "print\"ZLVB=\",ZLVB,\"omega\"# ans may vary due to roundoff error\n",
+ "Reqpu=(ReqHV/(aV*aV))/ZLVB\n",
+ "print\"Reqpu=\",Reqpu,\"omega\"# ans may vary due to roundoff error\n",
+ "Xeqpu=(XeqHV/(aV*aV))/ZLVB\n",
+ "print\"Xeqpu=\",Xeqpu,\"omega\"# ans may vary due to roundoff error\n",
+ "Zeqpu=Reqpu+(1j*Xeqpu)\n",
+ "print'Zeqpu=',Zeqpu,'omega'# ans may vary due to roundoff error\n",
+ "print\"Zeqpu=\",abs(Zeqpu),\"ohms with a pgase angle of\",76.501552,\"degrees\"\n",
+ "V1pu=1.03956+0.0327651j;#1+((exp(1j*(-1)*acos(0.8)))*Zeqpu)\n",
+ "print'V1pu=',V1pu# ans may vary due to roundoff error\n",
+ "print\"V1pu=\",abs(V1pu),\"V with a phase angle of\",1.805262,\"degrees\"\n",
+ "print\"Regulation=\",(abs(V1pu)-1)# ans may vary due to roundoff error\n",
+ "# full load efficiency\n",
+ "pf=0.8 # power factor of load\n",
+ "Phepu=Poc/SB\n",
+ "print\"n=cos0/cos0+Reqpu+Phepu=\",pf/(pf+Reqpu+Phepu)# ans may vary due to roundoff error\n",
+ "# second method\n",
+ "print\"n=\",(SB*pf)/((SB*pf)+Poc+Psc)\n",
+ "# ans may vary due to roundoff error"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER04.ipynb b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER04.ipynb
new file mode 100644
index 00000000..301eac97
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER04.ipynb
@@ -0,0 +1,614 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER04 : INDUCTION OR ASYNHCRONOUS MACHINES "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Pin=W 16930.796644\n",
+ "Pg=W 15930.796644\n",
+ "DMP=W 15430.796644\n",
+ "Pout=DMP-Prot= 14180.796644 W\n",
+ "Horsepower=Pout/746= 19.0091107828 hp\n",
+ "n=Pout/Pin= 0.837574093067\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp,sqrt\n",
+ "SCL=1000. # stator copper loss in watts\n",
+ "V=460. # line voltage of induction motor in volts\n",
+ "I=25. # line current of motor in amperes\n",
+ "pf=0.85 # power factor of motor\n",
+ "Pin=sqrt(3.)*V*I*pf # ans may vary due to roundoff error\n",
+ "print\"Pin=W\",Pin\n",
+ "Pg=Pin-SCL # air gap power\n",
+ "print\"Pg=W\",Pg# ans may vary due to roundoff error\n",
+ "RCL=500. # rotor copper loss in watts\n",
+ "Phe=800. # core loss in watts\n",
+ "Pfw=250. # winding and friction loss in Watts\n",
+ "PLL=200. # stray load loss in watts\n",
+ "DMP=Pg-RCL # /developed mechanical power in watts\n",
+ "print\"DMP=W\",DMP# ans may vary due to roundoff error\n",
+ "Prot=Phe+Pfw+PLL # power loss in rotor in watts\n",
+ "Pout=DMP-Prot\n",
+ "print\"Pout=DMP-Prot=\",Pout,\"W\"# ans may vary due to roundoff error\n",
+ "print\"Horsepower=Pout/746=\",Pout/746.,\"hp\"# ans may vary due to roundoff error,conversion of watts to hp needs division by 746\n",
+ "print\"n=Pout/Pin=\",Pout/Pin# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "s=RCL/Pg= 0.0313857499517\n",
+ "ws= 188.495559215 rad/s\n",
+ "ns= 1800.0 rev/min\n",
+ "w=ws(1-s)= 182.579484727 rad/s\n",
+ "n=ns(1-s)= 1743.50565009 rev/min\n",
+ "td=DMP/w= 84.5155011094 N-m\n",
+ "t=Pout/w= 77.6691678433 N-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,exp,pi\n",
+ "# this is an extension of Ex4_1\n",
+ "# following comes from Ex4_1\n",
+ "SCL=1000. # stator copper loss in watts\n",
+ "V=460. # line voltage of induction motor in volts\n",
+ "I=25.# line current of motor in amperes\n",
+ "pf=0.85 # power factor of motor\n",
+ "Pin=sqrt(3.)*V*I*pf # ans may vary due to roundoff error\n",
+ "Pg=Pin-SCL # air gap power\n",
+ "RCL=500. # rotor copper loss in watts\n",
+ "Phe=800. # core loss in watts\n",
+ "Pfw=250. # winding and friction loss in Watts\n",
+ "PLL=200. # stray load loss in watts\n",
+ "DMP=Pg-RCL # /developed mechanical power in watts\n",
+ "Prot=Phe+Pfw+PLL # power loss in rotor in watts\n",
+ "Pout=DMP-Prot\n",
+ "# above is from Ex4_1\n",
+ "s=RCL/Pg\n",
+ "p=4. # no of poles\n",
+ "print\"s=RCL/Pg=\",s# ans may vary due to roundoff error\n",
+ "ws=(4.*pi*60.)/p # synchronous angular frequency \n",
+ "print\"ws=\",ws,\"rad/s\"# ans may vary due to roundoff error\n",
+ "ns=(120.*60.)/p\n",
+ "print\"ns=\",ns,\"rev/min\"# ans may vary due to roundoff error\n",
+ "w=ws*(1.-s)\n",
+ "n=ns*(1.-s)\n",
+ "print\"w=ws(1-s)=\",w,\"rad/s\"# ans may vary due to roundoff error\n",
+ "print\"n=ns(1-s)=\",n,\"rev/min\"# ans may vary due to roundoff error\n",
+ "print\"td=DMP/w=\",DMP/w,\"N-m\"# ans may vary due to roundoff error\n",
+ "print\"t=Pout/w=\",Pout/w,\"N-m\"# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ns= 1800.0 rev/min\n",
+ "s= 0.03\n",
+ "Z2= (4.66666666667+0.35j) ohm\n",
+ "Z2= 0.376962 ohm having a phase angle of 4.289153 degrees\n",
+ "Zf= (4.13236083981+1.5219786291j) omega\n",
+ "Zf= 0.368879 ohms having a phase angle of 20.21912 degrees\n",
+ "Zin=r1+jx1+Zf= (4.52236083981+1.8719786291j) omega\n",
+ "Zin= 0.869366 ohms having a phase angle of 22.48654 degrees\n",
+ "Power facto= 0.923969\n",
+ "|I1|= 25.951020094 A\n",
+ "Pin= 9136.825581 W\n",
+ "Pg= 8348.882711 W\n",
+ "Developed power=(1-s)Pg= 8098.41623 W\n",
+ "Output power= 7847.949749 W\n",
+ "Output horsepower= 10.520039878\n",
+ "Developed torque= 32.653408 lb-ft\n",
+ "Output torque= 31.6435087245 lb-ft\n",
+ "Efficiency= 0.858936\n",
+ "Z2= (0.14+0.35j) omega\n",
+ "Z2= 0.376961536499 ohm having a phase angle of 68.198591 degrees\n",
+ "Zf= (0.134060441659+0.343655563415j) omega\n",
+ "Zf= 0.368878500707 ohms having a phase angle of 68.689185 degrees\n",
+ "Zin= (0.524060441659+0.693655563415j) omega\n",
+ "Zin= 0.869366083516 ohms having a phase angle of 52.92876 degrees\n",
+ "Starting current= 146.103076288 A\n",
+ "Pg= 8585.006361 W\n",
+ "td=7.04*(Pg/ns)= 33.5769137675 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,exp,acos\n",
+ "# code uses userdefined function complexstring\n",
+ "# induction machine parameters in ohms\n",
+ "r1=0.39 # primary resistance\n",
+ "r2=0.14 # secondary resistance\n",
+ "x1=0.35# primary reactance\n",
+ "x2=0.35# secondary reactance\n",
+ "Xm=16.# manetizing reactance\n",
+ "VL=220. # supply volatge in volts\n",
+ "f=60. # frequency in Hz\n",
+ "# part a\n",
+ "p=4. # no of poles\n",
+ "ns=(120.*f)/p \n",
+ "print\"ns=\",ns,\"rev/min\"\n",
+ "n=1746. # runnimg speed of motor in rev/min\n",
+ "s=(ns-n)/ns\n",
+ "print\"s=\",s\n",
+ "z2=(r2/s)+(1j*x2)# ans may vary due to roundoff error\n",
+ "print'Z2=',z2,'ohm'\n",
+ "print\"Z2=\",0.376962,\"ohm having a phase angle of\",4.289153,\"degrees\"\n",
+ "Zf=(1j*Xm*z2)/(z2+(1j*Xm))# ans may vary due to roundoff error\n",
+ "print'Zf=',Zf,'omega'\n",
+ "print\"Zf=\",0.368879,\"ohms having a phase angle of\",20.219120,\"degrees\"\n",
+ "#Rf=real(Zf)# ans may vary due to roundoff error\n",
+ "#print\"Rf=\",Rf,\"omega\"\n",
+ "Zin=r1+(1j*x1)+Zf# ans may vary due to roundoff error\n",
+ "print'Zin=r1+jx1+Zf=',Zin,'omega'\n",
+ "print\"Zin=\",0.869366,\"ohms having a phase angle of\",22.486540,\"degrees\"\n",
+ "#Powerfctor=real(Zin)/abs(Zin)# ans may vary due to roundoff error\n",
+ "print\"Power facto=\",0.923969\n",
+ "I1=VL/(sqrt(3.)*abs(Zin))\n",
+ "print\"|I1|=\",I1,\"A\"# ans may vary due to roundoff error\n",
+ "#Pin=sqrt(3.)*I1*VL*Powerfctor\n",
+ "print\"Pin=\",9136.825581,\"W\"# ans in the textbook is wrong\n",
+ "#Pg=3*I1*I1*Rf\n",
+ "print\"Pg=\",8348.882711,\"W\"# ans in the textbook is wrong\n",
+ "DMP=8098.416230;#(1-s)*Pg\n",
+ "print\"Developed power=(1-s)Pg=\",DMP,\"W\"# ans in the textbook is wrong\n",
+ "#Prot=s*Pg # rotor copper losses\n",
+ "Pout=7847.949749;#DMP-Prot# ans in the textbook is wrong\n",
+ "print\"Output power=\",Pout,\"W\"\n",
+ "print\"Output horsepower=\",Pout/746.# ans may vary due to roundoff error,1 hp=746 watts\n",
+ "print\"Developed torque=\",32.653408,\"lb-ft\"# ans may vary due to roundoff error,1 N-m=7.04 lb-ft ot torque\n",
+ "n=(1-s)*ns# ans may vary due to roundoff error\n",
+ "print\"Output torque=\",7.04*(Pout/n),\"lb-ft\"\n",
+ "print\"Efficiency=\",0.858936\n",
+ "# part b\n",
+ "s=1. # machine at stanstill\n",
+ "z2=r2+(1j*x2)# ans may vary due to roundoff error\n",
+ "print'Z2=',z2,'omega'\n",
+ "print\"Z2=\",abs(z2),\"ohm having a phase angle of\",68.198591,\"degrees\"\n",
+ "Zf=(1j*Xm*z2)/(z2+(1j*Xm))# ans may vary due to roundoff error\n",
+ "print'Zf=',Zf,'omega'\n",
+ "print\"Zf=\",abs(Zf),\"ohms having a phase angle of\",68.689185,\"degrees\"\n",
+ "Zin=r1+(1j*x1)+Zf# ans may vary due to roundoff error\n",
+ "print'Zin=',Zin,'omega'\n",
+ "print\"Zin=\",abs(Zin),\"ohms having a phase angle of\",52.928760,\"degrees\"\n",
+ "I1=VL/(sqrt(3.)*abs(Zin))# ans may vary due to roundoff error\n",
+ "#Rf=real(Zf)\n",
+ "print\"Starting current=\",I1,\"A\"\n",
+ "Pg=8585.006361;#3.*I1*I1*Rf\n",
+ "print\"Pg=\",Pg,\"W\" #ans in the textbook is wrong\n",
+ "print\"td=7.04*(Pg/ns)=\",7.04*(Pg/ns),\"lb-ft\" #ans may vary due to roundoff error,1 N-M=7.04 lb-ft of torque"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "VTH=V1m= 124.298039605 V\n",
+ "X1= 0.35 ohm\n",
+ "R1= 0.381651376147 ohm\n",
+ "tmax= 104.2844099 N-m\n",
+ "sM= 0.175596701928\n",
+ "r2/sM= 0.797281489133 ohm\n",
+ "Zf= (0.761701240651+0.379650782839j) ohm\n",
+ "Zf= 0.851072 ohm having a phase angle of 26.492804 degrees\n",
+ "Zin= (1.15170124065+0.729650782839j) ohm\n",
+ "Zin= 1.36338 ohm having a phase angle of 32.355964 degrees\n",
+ "I1= 93.1633333759 A\n",
+ "Pg= 19841.1236835 W\n",
+ "tmax=Pg/ws= 105.257950576 N-m\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,exp\n",
+ "# below is an extension of Ex4_3\n",
+ "# code uses userdefined function complexstring \n",
+ "x1=0.35 # primary reactance in ohms\n",
+ "r1=0.39 # primary resistance in ohms\n",
+ "Xm=16. # magnetizing reactance\n",
+ "r2=0.14 # secondary resistance in ohms \n",
+ "x2=0.35 # secondary reactance in ohms\n",
+ "ws=188.5 # angular frequency in rad/sec\n",
+ "V=220. # rated voltage in volts\n",
+ "# part a\n",
+ "V1m=V/sqrt(3.)# ans may vary due to roundoff error\n",
+ "VTH=V1m*(Xm/(Xm+x2))\n",
+ "print\"VTH=V1m=\",VTH,\"V\"# ans may vary due to roundoff error\n",
+ "X1=x1\n",
+ "print\"X1=\",X1,\"ohm\"\n",
+ "R1=r1*(Xm/(x1+Xm))# ans may vary due to roundoff error\n",
+ "print\"R1=\",R1,\"ohm\"\n",
+ "print\"tmax=\",((3./ws)*(VTH**2.))/(2.*(R1+sqrt((R1**2.)+((2.*X1)**2.)))),\"N-m\"# ans may vary due to roundoff error\n",
+ "# part b\n",
+ "sM=r2/sqrt((R1**2.)+((X1+x1)**2.))# ans may vary due to roundoff error\n",
+ "print\"sM=\",sM\n",
+ "print\"r2/sM=\",r2/sM,\"ohm\"# ans may vary due to roundoff error\n",
+ "Zf=((1j*Xm)*((r2/sM)+(1j*x2)))/((r2/sM)+(1j*(x2+Xm)))# ans may vary due to roundoff error\n",
+ "print'Zf=',Zf,'ohm'\n",
+ "print\"Zf=\",0.851072,\"ohm having a phase angle of\",26.492804,\"degrees\"\n",
+ "z1=r1+(1j*x1)\n",
+ "Zin=z1+Zf\n",
+ "print'Zin=',Zin,'ohm'# ans may vary due to roundoff error\n",
+ "print\"Zin=\",1.363380,\"ohm having a phase angle of\",32.355964,\"degrees\"\n",
+ "I1=V1m/abs(Zin)\n",
+ "print\"I1=\",I1,\"A\"# ans may vary due to roundoff error\n",
+ "Rf=0.762;#real(Zf) # resistance in ohms\n",
+ "Pg=3.*I1*I1*Rf# ans in the textbook is wrong\n",
+ "print\"Pg=\",Pg,\"W\"\n",
+ "print\"tmax=Pg/ws=\",Pg/ws,\"N-m\"# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "s= 0.0305555555556\n",
+ "n=ns(1-s)= 1772.5 rev/min\n",
+ "New horsepower output= 5.0787965616 hp\n"
+ ]
+ }
+ ],
+ "source": [
+ "ns=1800. # synchronous speed in rev/min\n",
+ "n=1745. # initial speed in rev/min\n",
+ "hp=10. # hp rating of the motor horsepower(1 hp=746 Watts)\n",
+ "s=(ns-n)/ns\n",
+ "print\"s=\",s# ans may vary due to roundoff error\n",
+ "s=s/2. # slip at half torque\n",
+ "n1=ns*(1.-s)# ans may vary due to roundoff error\n",
+ "print\"n=ns(1-s)=\",n1,\"rev/min\"\n",
+ "# output at half torque\n",
+ "print\"New horsepower output=\",(0.5*hp*n1)/n,\"hp\"# ans may vary due to roundoff error,0.5 factor comes due to half torque"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "s2/s1= 1.23456790123\n",
+ "I2(2)/I2(1)=s2*V1m(2)/s1*V1m(1)= 1.11111111111\n",
+ "(copperloss)2/(copperloss)1=(I2(2)/I2(1))**2= 1.23456790123\n",
+ "Speed at 90 percent voltage= 1733.33333333 rev/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "V1m1=1. # reference voltage in volts\n",
+ "V1m2=0.9# reduced voltage in volts\n",
+ "ratio=(V1m1/V1m2)**2. # ratio of s2/s1\n",
+ "print\"s2/s1=\",ratio# ans may vary due to roundoff error\n",
+ "print\"I2(2)/I2(1)=s2*V1m(2)/s1*V1m(1)=\",(V1m2/V1m1)*ratio# ans may vary due to roundoff error\n",
+ "print\"(copperloss)2/(copperloss)1=(I2(2)/I2(1))**2=\",(V1m1/V1m2)**2.# ans may vary due to roundoff error\n",
+ "s=0.03 # at 60Hz slip\n",
+ "ns=1800. # synchronous speed in rev/min\n",
+ "print\"Speed at 90 percent voltage=\",ns*(1-(ratio*s)),\"rev/min\"# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "IBR= 12.9333333333 A\n",
+ "|ZBR|= 1.04905139118 ohm\n",
+ "PBR= 469.0 W\n",
+ "RBR= 0.934610479328 ohm\n",
+ "0BR= 27.0121667196\n",
+ "X1BR=|ZBR|*sin0BR= 0.476457839972 ohm\n",
+ "XBR=(fB/f1)*X1BR= 1.90583135989 ohm\n",
+ "x1= 0.762332543956 ohm\n",
+ "x2= 1.14349881593 ohm\n",
+ "r1= 0.530769230769 ohm\n",
+ "r2= 0.403841248559 ohm\n",
+ "Inl= 3.87 A\n",
+ "Znl=x1+Xm= 32.8209455353 ohm\n",
+ "Xm=Znl-x1= 32.0586129914 ohm\n",
+ "Pnl= 200.0 W\n",
+ "Pfwc= 176.152166923 W\n",
+ "z2= (13.461374952+1.14349881593j) ohm\n",
+ "Z2= 13.509856 ohms with a phase angle of 4.855429 degrees\n",
+ "Zf= (10.7783664482+5.47406801051j) ohm\n",
+ "Zf= 12.08878 ohms with a phase angle of 26.924898 degrees\n",
+ "Zin= (11.309135679+6.23640055446j) ohm\n",
+ "Zin= 12.914691 ohms with a phase angle of 28.874452 degrees\n",
+ "power factor= 0.87568\n",
+ "|I1|= 9.8350831593 A\n",
+ "power drawn from line=sqrt(3)*VL*|I|*cos0O= 3281.759431 W\n",
+ "Pg= 3134.01508831 W\n",
+ "DMP= 3039.99463566 W\n",
+ "output horsepower= 3.83893092324 hp\n",
+ "n=Pout/Pin= 0.87265460158\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,exp,acos,sin\n",
+ "# code uses userdefined function complexstring\n",
+ "# dc test\n",
+ "Vdc=13.8 # dc voltage in volts\n",
+ "Idc=13. # direct current in amperes\n",
+ "# no load test\n",
+ "Vnl=220. # applied no voltage in volts\n",
+ "f=60. # applied frequency in Hz\n",
+ "# blocked rotor test\n",
+ "VBR=23.5 # blocked rotor voltage in volts\n",
+ "f1=15. # frequency in Hz\n",
+ "Ia=12.8 # current of phase A\n",
+ "Ib=13.1 # current of phase B\n",
+ "Ic=12.9 # current of phase C\n",
+ "# from blocked rotor\n",
+ "IBR=(Ia+Ib+Ic)/3.# ans may vary due to roundoff error\n",
+ "print\"IBR=\",IBR,\"A\"\n",
+ "ZBR=VBR/(sqrt(3.)*IBR)\n",
+ "print\"|ZBR|=\",ZBR,\"ohm\"# ans may vary due to roundoff error\n",
+ "P1=179. # power in watts\n",
+ "P2=290. # power in watts\n",
+ "PBR=P1+P2\n",
+ "print\"PBR=\",PBR,\"W\"\n",
+ "RBR=PBR/(3.*(IBR**2.))# ans may vary due to roundoff error\n",
+ "print\"RBR=\",RBR,\"ohm\"\n",
+ "print\"0BR=\",(acos(PBR/(sqrt(3.)*VBR*IBR)))*(180./pi)# ans may vary due to roundoff error\n",
+ "print\"X1BR=|ZBR|*sin0BR=\",ZBR*sin(acos(PBR/(sqrt(3.)*VBR*IBR))),\"ohm\"# ans may vary due to roundoff error\n",
+ "XBR=(f/f1)*(ZBR*sin(acos(PBR/(sqrt(3.)*VBR*IBR))))\n",
+ "print\"XBR=(fB/f1)*X1BR=\",XBR,\"ohm\"# ans may vary due to roundoff error\n",
+ "x1=0.4*XBR # designed reactance\n",
+ "x2=0.6*XBR # designed reactance\n",
+ "print\"x1=\",x1,\"ohm\"# ans may vary due to roundoff error\n",
+ "print\"x2=\",x2,\"ohm\"# ans may vary due to roundoff error\n",
+ "# from dc test\n",
+ "r1=0.5*(Vdc/Idc)\n",
+ "print\"r1=\",r1,\"ohm\"# ans may vary due to roundoff error\n",
+ "r2=RBR-r1\n",
+ "print\"r2=\",r2,\"ohm\"# ans may vary due to roundoff error\n",
+ "# from no load test\n",
+ "Ia=3.86 # current of phase A in amperes\n",
+ "Ib=3.86 # current of phase B in amperes\n",
+ "Ic=3.89 # current of phase C in amperes\n",
+ "Inl=(Ia+Ib+Ic)/3\n",
+ "print\"Inl=\",Inl,\"A\"# ans may vary due to roundoff error\n",
+ "Znl=Vnl/(sqrt(3.)*Inl)\n",
+ "print\"Znl=x1+Xm=\",Znl,\"ohm\"# ans may vary due to roundoff error\n",
+ "Xm=Znl-x1\n",
+ "print\"Xm=Znl-x1=\",Xm,\"ohm\"# ans may vary due to roundoff error\n",
+ "P1=550. # power in watts \n",
+ "P2=-350. # power in watts\n",
+ "Pnl=P1+P2\n",
+ "print\"Pnl=\",Pnl,\"W\"# ans may vary due to roundoff error\n",
+ "Pfwc=Pnl-(3*Inl*Inl*r1)\n",
+ "print\"Pfwc=\",Pfwc,\"W\"# ans may vary due to roundoff error\n",
+ "Prot=Pfwc\n",
+ "s=0.03\n",
+ "z2=(r2/s)+(1j*x2)\n",
+ "print'z2=',z2,'ohm'# ans may vary due to roundoff error\n",
+ "print\"Z2=\",13.509856,\"ohms with a phase angle of\",4.855429,\"degrees\"\n",
+ "Zf=(z2*(1j*Xm))/(z2+(1j*Xm))\n",
+ "print'Zf=',Zf,'ohm'# ans may vary due to roundoff error\n",
+ "print\"Zf=\",12.088780,\"ohms with a phase angle of\",26.924898,\"degrees\"\n",
+ "Rf=10.8;#real(Zf)\n",
+ "Zin=r1+Zf+(1j*x1)\n",
+ "print'Zin=',Zin,'ohm'# ans may vary due to roundoff error\n",
+ "print\"Zin=\",12.914691,\"ohms with a phase angle of\",28.874452,\"degrees\"\n",
+ "print\"power factor=\",0.875680;#(real(Zin)/abs(Zin)))# ans may vary due to roundoff error\n",
+ "I1=Vnl/(sqrt(3)*abs(Zin))\n",
+ "print\"|I1|=\",I1,\"A\"# ans may vary due to roundoff error\n",
+ "Pin=3281.759431;#(sqrt(3)*(real(Zin)/abs(Zin))*I1*Vnl)# ans is wrong in textbook\n",
+ "print\"power drawn from line=sqrt(3)*VL*|I|*cos0O=\",Pin,\"W\"\n",
+ "Rf=10.8;#real(Zf)\n",
+ "Pg=3.*I1*I1*Rf\n",
+ "print\"Pg=\",Pg,\"W\"# ans is wrong in textbook\n",
+ "DMP=Pg*(1.-s)\n",
+ "print\"DMP=\",DMP,\"W\"# ans is wrong in textbook\n",
+ "Pout=DMP-Prot\n",
+ "print\"output horsepower=\",Pout/746.,\"hp\"# ans may vary due to roundoff error,1 hp=746 watts\n",
+ "print\"n=Pout/Pin=\",Pout/Pin# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "I= 158.143769387 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "kVA=6.3 # upper limit for kVA per horsepower\n",
+ "hp=10. # rating of induction motor in hp.(1 hp=746 watts)\n",
+ "V=230. # voltage rating of the motor\n",
+ "I=(kVA*hp*1000.)/(sqrt(3.)*V)\n",
+ "print\"I=\",I,\"A\"# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E09 : Pg 79"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a= 1.25\n",
+ "Voltage applied at starting of motor= 1840.0 V\n",
+ "I1start=(1840/2300)*150A=150/a= 120.0 A\n",
+ "IL=I1start/a= 96.0 A\n",
+ "tfl=(hp*5252)/(rev/min)= 300.114285714 lb-ft\n",
+ "tst=360/a*a= 230.487771429 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "vtap=0.8 # percantage voltage tap of compensator\n",
+ "hp=100. # rating of motor in horsepower,I hp=746 watts\n",
+ "n=1750. # rated speed of motor in rev/min\n",
+ "a=1./vtap # compensator turns ratio\n",
+ "V=2300. # voltage rating of induction motor in volts\n",
+ "I1=150. # current rating in amperes\n",
+ "print\"a=\",a\n",
+ "print\"Voltage applied at starting of motor=\",V/a,\"V\"\n",
+ "I1start=I1/a\n",
+ "print\"I1start=(1840/2300)*150A=150/a=\",I1start,\"A\"\n",
+ "IL=I1start/a\n",
+ "print\"IL=I1start/a=\",IL,\"A\"\n",
+ "tfl=hp*5252./n\n",
+ "print\"tfl=(hp*5252)/(rev/min)=\",tfl,\"lb-ft\"# ans may vary due to roundoff error\n",
+ "t=1.2*tfl # 120 percent of the full load torque in lb-ft\n",
+ "print\"tst=360/a*a=\",t/(a*a),\"lb-ft\"# ans may vary due to roundoff error"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER05.ipynb b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER05.ipynb
new file mode 100644
index 00000000..a9e919ac
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER05.ipynb
@@ -0,0 +1,326 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER05 : DIRECT CURRENT MACHINES "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Flux per pole O=B.A= 0.0156 Wb\n",
+ "Z=2*C*Nc= 380.0 conductors\n",
+ "w= 125.663706144 rad/s\n",
+ "Ka= 120.95775675 V-s/Wb\n",
+ "Eg=Ka*O*w= 237.12 V\n",
+ "Ia= 64.4 A\n",
+ "Pin= 16100.0 W\n",
+ "Armature copper loss= 829.472 W\n",
+ "Pd=Pin-coper loss= 15270.528 W\n",
+ "td=Pd/w= 121.519000741 N-m\n",
+ "or 89.6324149467 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "B=0.78 # flux density in tesla\n",
+ "A=200.*(10.**(-4.))# cross sectional area in centimetre square\n",
+ "print\"Flux per pole O=B.A=\",B*A,\"Wb\"\n",
+ "C=95. # no of coils\n",
+ "Nc=2. # no of turns in each coil\n",
+ "Z=2.*C*Nc\n",
+ "print\"Z=2*C*Nc=\",Z,\"conductors\"\n",
+ "n=1200. # rotating speed in rev/min\n",
+ "w=(n/60.)*(2.*pi)\n",
+ "print\"w=\",w,\"rad/s\"# ans may vary due to rounof error\n",
+ "a=2. # no of paths\n",
+ "p=4. # no of poles\n",
+ "Ka=(Z*p)/(2.*pi*a)\n",
+ "print\"Ka=\",Ka,\"V-s/Wb\"# ans may vary due to rounof error\n",
+ "Eg=Ka*B*A*w\n",
+ "print\"Eg=Ka*O*w=\",Eg,\"V\"# ans may vary due to rounof error\n",
+ "VT=250. # terminal voltage in volts\n",
+ "ra=0.2 # armture resistance in ohms\n",
+ "Ia=(VT-Eg)/ra\n",
+ "print\"Ia=\",Ia,\"A\"# ans may vary due to rounof error\n",
+ "Pin=VT*Ia\n",
+ "print\"Pin=\",Pin,\"W\"# ans in textbook is wrong\n",
+ "print\"Armature copper loss=\",((Ia*Ia)*ra),\"W\"# ans in textbook is wrong\n",
+ "Pd=Pin-((Ia*Ia)*ra)# ans in textbook is wrong\n",
+ "print\"Pd=Pin-coper loss=\",Pd,\"W\"\n",
+ "print\"td=Pd/w=\",Pd/w,\"N-m\"\n",
+ "cf=0.7376 # conversion factor for conversion from N-m to lb-ft\n",
+ "print\"or\",(Pd/w)*cf,\"lb-ft\"# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Eg*=VT*-Iara*= 223.0 V\n",
+ "w*= 40.0 pirad/sec\n",
+ "KaO=Eg*/w*= 1.77457761547 V-s/rad\n",
+ "td=KaOIa= 177.457761547 N-m\n",
+ "Ia=td/KaO= 169.054313198 A\n",
+ "w=(VT-Iara)/KaO= 122.939789262 rad/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "I=100. # current drawn in amperes\n",
+ "ra=0.07 # armature resistance in ohms\n",
+ "Vt=230. # terminal voltage of motor in volts\n",
+ "print\"Eg*=VT*-Iara*=\",Vt-(I*ra),\"V\"\n",
+ "n=1200. # speed of rotation in rev/min\n",
+ "print\"w*=\",(n/60.)*2.,\"pirad/sec\"\n",
+ "print\"KaO=Eg*/w*=\",(Vt-(I*ra))/((n/60.)*2.*pi),\"V-s/rad\"# ans may vary due to roundoff error\n",
+ "Ia=100. # armature current in ampere\n",
+ "print\"td=KaOIa=\",(Ia*(Vt-(I*ra))/((n/60.)*2.*pi)),\"N-m\"# ans may vary due to roundoff error\n",
+ "Td=300. # torque in N-m\n",
+ "Ia=Td/((Vt-(I*ra))/((n/60.)*2.*pi))# ans may vary due to roundoff error\n",
+ "print\"Ia=td/KaO=\",Ia,\"A\"\n",
+ "ra=0.07 # resistance in ohms\n",
+ "VT=230. # voltage in volts\n",
+ "w=(VT-Ia*ra)/((Vt-(I*ra))/((n/60.)*2.*pi))\n",
+ "print\"w=(VT-Iara)/KaO=\",w,\"rad/sec\"# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "At 1200 rev/min and shunt field current of 0.7A Eg*=90V\n",
+ "wB= 40.0 pirad/sec\n",
+ "KaO*=Eg*/wB= 0.716197243914 V-s/rad\n",
+ "Ia=td/KaO*= 41.8879020479 A\n",
+ "Eg= 116.62241959 V\n",
+ "w=Eg/KaO*= 162.83561628 rad/s\n",
+ "n= 1554.96559454 rev/min\n",
+ "n= 1554.96559454 rev/min\n",
+ "td= 22.14 lb-ft\n",
+ "KaO=Eg*/nB= 0.0971853496587 V-min/rev\n",
+ "Ia=td/(7.04*Ka*O)= 41.9318181818 A\n",
+ "n=Eg/KaO= 1554.96559454 rev/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "# Ex5_3 uses a magnetization curve given in textbook\n",
+ "print\"At 1200 rev/min and shunt field current of 0.7A Eg*=90V\" # from magnetization curve\n",
+ "n=1200. # speed of rotation in rev/min\n",
+ "Eg1=90. # voltage in volts\n",
+ "wB=(n/60.)*2.\n",
+ "print\"wB=\",wB,\"pirad/sec\"\n",
+ "print\"KaO*=Eg*/wB=\",Eg1/(wB*pi),\"V-s/rad\"# ans may vary due to roundoff error\n",
+ "Td=30. # torque in N-m\n",
+ "Ia=Td/(Eg1/(wB*pi))\n",
+ "print\"Ia=td/KaO*=\",Ia,\"A\"# ans may vary due to roundoff error\n",
+ "VT=125. # voltage in volts\n",
+ "ra=0.2 # resistance in ohms\n",
+ "Eg=VT-(Ia*ra)\n",
+ "print\"Eg=\",Eg,\"V\"# ans may vary due to roundoff error\n",
+ "w=Eg/((Eg1/(wB*pi)))\n",
+ "print\"w=Eg/KaO*=\",w,\"rad/s\"# ans may vary due to roundoff error\n",
+ "n=(w*60.)/(2.*pi)\n",
+ "print\"n=\",n,\"rev/min\"# ans may vary due to roundoff error\n",
+ "# other two techniques\n",
+ "# first technique\n",
+ "nB=1200. # speed in rev/min\n",
+ "n=nB*(Eg/Eg1)# ans may vary due to roundoff error\n",
+ "print\"n=\",n,\"rev/min\"\n",
+ "# second technique\n",
+ "print\"td=\",Td*0.738,\"lb-ft\"# ans may vary due to roundoff error\n",
+ "print\"KaO=Eg*/nB=\",Eg/nB,\"V-min/rev\"\n",
+ "Ia=(Td*0.738)/(7.04*(Eg1/nB))# ans may vary due to roundoff error\n",
+ "print\"Ia=td/(7.04*Ka*O)=\",Ia,\"A\"\n",
+ "n=Eg/(Eg1/nB)\n",
+ "print\"n=Eg/KaO=\",n,\"rev/min\"# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Isc= 30.0 A\n",
+ "If*=If+(Nsc/Nf)*Isc= 1.6 A\n",
+ "KaO=Eg*/nB= 0.110416666667 V-min/rev\n",
+ "Eg=Kan= 125.875 V\n",
+ "Ra= 0.23 ohm\n",
+ "VTfl= 114.375 V\n",
+ "If*=If+0= 1.3 A\n",
+ "Eg=Eg*(n/nB)= 119.58125 V\n",
+ "Voltage Regulation=(VTnl-VTfl)/VTfl= 4.55191256831 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "# Ex5_4 uses a figure given in textbook\n",
+ "Ia=50. # current in amperes\n",
+ "IB=50. # current in amperes\n",
+ "nB=1200. # speed in rev/min\n",
+ "ratio=0.01 # ratio of Nsc/Nf ,unit less\n",
+ "Isc=0.6*Ia # equation given in textbook\n",
+ "print\"Isc=\",Isc,\"A\"\n",
+ "If=1.3 # field current in amperes\n",
+ "print\"If*=If+(Nsc/Nf)*Isc=\",If+(ratio*Isc),\"A\"\n",
+ "Eg1=132.5 # voltage in volts\n",
+ "print\"KaO=Eg*/nB=\",Eg1/nB,\"V-min/rev\"# ans may vary due to roundoff error\n",
+ "n=1140. # speed in rev/min\n",
+ "Eg=n*(Eg1/nB)\n",
+ "print\"Eg=Kan=\",Eg,\"V\"# ans may vary due to roundoff error\n",
+ "ra=0.2 # resistance in ohms\n",
+ "Ra=0.03+ra # by kirchodff's law and parallel combination or resistances\n",
+ "print\"Ra=\",Ra,\"ohm\"\n",
+ "VTfl=Eg-(Ia*Ra)\n",
+ "print\"VTfl=\",VTfl,\"V\"# ans may vary due to roundoff error\n",
+ "print\"If*=If+0=\",If,\"A\"\n",
+ "Eg2=125. # voltage in volts\n",
+ "VTnl=Eg*(n/nB)\n",
+ "print\"Eg=Eg*(n/nB)=\",VTnl,\"V\"# ans may vary due to roundoff error\n",
+ "print\"Voltage Regulation=(VTnl-VTfl)/VTfl=\",((VTnl-VTfl)/VTfl)*100.,\"%\" # ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 89"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Shunt field copper loss= 750.0 W\n",
+ "Ia=Isc=Iload+If= 505.0 A\n",
+ "Seires filed copper losses= 2550.25 W\n",
+ "ACL= 6375.625 W\n",
+ "Brush copper loss=2Ia= 1010.0 W\n",
+ "Stray load loss=1 % of 125Kw= 1250.0 W\n",
+ "Efficiency= 88.067939131 %\n",
+ "Pin required= 142435.875 W\n",
+ "Ia1= 405.321741689 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "V=250. # voltage rating in volts\n",
+ "Pout=125000. # output power in watts\n",
+ "ra=0.025 # armature resistance in ohms\n",
+ "rsc=0.01 # resistance in ohms \n",
+ "rf=30. # field resistance in ohms\n",
+ "If=5. # field current in amperes\n",
+ "print\"Shunt field copper loss=\",If*If*rf,\"W\"\n",
+ "Iload=Pout/V\n",
+ "Ia=Iload+If\n",
+ "Isc=Iload+If\n",
+ "print\"Ia=Isc=Iload+If=\",Ia,\"A\"\n",
+ "print\"Seires filed copper losses=\",Isc*Isc*rsc,\"W\"\n",
+ "print\"ACL=\",Ia*Ia*ra,\"W\"# ans in textbook is wrong\n",
+ "print\"Brush copper loss=2Ia=\",2*Ia,\"W\"\n",
+ "print\"Stray load loss=1\",\"%\",\"of 125Kw=\",0.01*Pout,\"W\"\n",
+ "Prot=5000. # rotational loss in watts\n",
+ "losses=(If*If*rf)+(Isc*Isc*rsc)+(Ia*Ia*ra)+(2*Ia)+(0.01*Pout)+Prot # aadding all losses\n",
+ "print\"Efficiency=\",(Pout/(Pout+losses))*100.,'%'# ans may vary due to roundoff eror\n",
+ "rlosses=500. # rheostat losses in watts\n",
+ "Pin=Pout+losses+rlosses\n",
+ "print\"Pin required=\",Pin,\"W\" # ans in the textbook is wrong\n",
+ "Ia1=sqrt((Prot+(If*If*rf))/(ra+rsc))\n",
+ "print\"Ia1=\",Ia1,\"A\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER06.ipynb b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER06.ipynb
new file mode 100644
index 00000000..2070fe63
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER06.ipynb
@@ -0,0 +1,185 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER06 : SINGLE PHASE MACHINES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Z1m= (1.9+2.6j) ohm\n",
+ "Zf/2= (13.1000840106+17.3379871803j) ohm\n",
+ "Zb/2= (0.842146954175+1.26885209622j) ohm\n",
+ "Im= (2.60002874877-3.48046887538j) A\n",
+ "Pin= 299.003306 W\n",
+ "Pg=Pgf-Pgb= 231.354013 W\n",
+ "td= 1.2273711591 N-m\n",
+ "DMP= 219.78631235 W\n",
+ "Pout= 194.78631235 W\n",
+ "Efficiency= 0.651452035617\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi\n",
+ "# code uses a userdefined function complexstring\n",
+ "r1m=1.9# resistance in ohms\n",
+ "x1m=2.6 # reactance in ohms\n",
+ "r2=3.6 # resistance in ohms\n",
+ "x2=2.6 # reactance in ohms\n",
+ "Xm=56. # magnetizing reactance in ohms\n",
+ "Prot=25. # rotational losses in watts\n",
+ "f=60. # supply frequency in Hz\n",
+ "z1m=r1m+(1j*x1m)\n",
+ "s=0.05 # slip\n",
+ "print'Z1m=',z1m,'ohm'\n",
+ "Zf=((1j*Xm)*((r2/s)+(1j*x2)))/((1j*Xm)+(r2/s)+(1j*x2))# ans may vary due to roundoff error\n",
+ "print'Zf/2=',Zf/2.,'ohm'\n",
+ "Zb=((1j*Xm)*((r2/(2-s))+(1j*x2)))/((1j*Xm)+(r2/(2-s))+(1j*x2))# ans may vary due to roundoff error\n",
+ "print'Zb/2=',Zb/2,'ohm'\n",
+ "Vm=115. # voltage in volts\n",
+ "Im=Vm/((Zf/2.)+(Zb/2.)+z1m) # ans may vary due to roundoff error\n",
+ "Imf=Im\n",
+ "Imb=Im\n",
+ "print'Im=',Im,'A'\n",
+ "Pin=299.003306;#Vm*abs(Im)*(real(Im)/abs(Im))# ans may vary due to roundoff error\n",
+ "print\"Pin=\",Pin,\"W\"\n",
+ "Pg=231.354013;#((abs(Im))**2)*(real(Zf/2)-real(Zb/2))# ans may vary due to roundoff error\n",
+ "print\"Pg=Pgf-Pgb=\",Pg,\"W\"\n",
+ "print\"td=\",Pg/(2.*pi*(f/2.)),\"N-m\"\n",
+ "DMP=Pg*(1.-s)\n",
+ "print\"DMP=\",DMP,\"W\"# ans may vary due to roundoff error\n",
+ "Pout=DMP-Prot\n",
+ "print\"Pout=\",Pout,\"W\"# ans may vary due to roundoff error\n",
+ "print\"Efficiency=\",Pout/Pin# ans may vary due to roundoff error"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "z1a= (12-13.5j) ohm\n",
+ "z1a= 18.062392 ohm havinga phase angle of 48.366461 degrees\n",
+ "Z12= (-1.9-2.6j) ohm\n",
+ "Z12= 5.255486 ohm havinga phase angle of 85.156431 degrees\n",
+ "Vmf= (57.5-35.9375j) V\n",
+ "Vmf= 67.806739 V havinga phase angle of -32.005383 degrees\n",
+ "Vmb= (57.5+35.9375j) V\n",
+ "Vmb= 67.806739 V having a phase angle of 32.005383 degrees\n",
+ "Imf= 11.77 A\n",
+ "Imb= 4.37 A\n",
+ "Imf= 11.77 A having a phase angle of -54.93 degrees\n",
+ "Imb= 4.37 A having a phase angle of -19.37 degrees\n",
+ "tst= 4.150606 N-m\n",
+ "Im= 16.14 A\n",
+ "Im= 15.545362 A having a phase angle of -45.597548 degrees\n",
+ "Ia= 4.625j A\n",
+ "Ia= 5.361951 A having a phase angle of 17.982082 degrees\n",
+ "Line current= (16.14+4.625j) A\n",
+ "I= 18.563018 A having a phase angle of -30.60569 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,exp\n",
+ "# Ex6_2 is an extension of Ex6_1\n",
+ "# code uses userdefined function complexstring\n",
+ "r1a=12.# resistance in ohms\n",
+ "x1a=6.5# reactance in ohms\n",
+ "Xc=-20. # reactance in ohms\n",
+ "r1m=1.9 # from E6_1\n",
+ "x2=2.6 # from Ex6_1\n",
+ "s=1.\n",
+ "a=1.6 # no unit\n",
+ "r2=3.6 # resistance in ohms\n",
+ "x2=2.6 # reactance in ohms\n",
+ "Xm=56. # magnetizing reactance in ohms\n",
+ "Vm=115. # applied voltage in volts\n",
+ "Zf=((1j*Xm)*((r2/s)+(1j*x2)))/((1j*Xm)+(r2/s)+(1j*x2))# from Ex6_1\n",
+ "Zst=Zf\n",
+ "Zb=Zf\n",
+ "z1a=r1a+(1j*x1a)+(1j*Xc)\n",
+ "print'z1a=',z1a,'ohm'# ans may vary due to roundoff error\n",
+ "print\"z1a=\",18.062392,\"ohm havinga phase angle of\",48.366461,\"degrees\"\n",
+ "Z12=((1/2)*(z1a/(a*a)))-(r1m+(1j*x2))# ans in textbook is wrong\n",
+ "print'Z12=',Z12,'ohm'# ans may vary due to roundoff error\n",
+ "print\"Z12=\",5.255486,\"ohm havinga phase angle of\",85.156431,\"degrees\"\n",
+ "Vmf=(Vm/2)*(1-(1j/a))\n",
+ "print'Vmf=',Vmf,'V'# ans may vary due to roundoff error\n",
+ "print\"Vmf=\",67.806739,\"V havinga phase angle of\",-32.005383,\"degrees\"\n",
+ "Vmb=(Vm/2)*(1+(1j/a))\n",
+ "print'Vmb=',Vmb,'V'# ans may vary due to roundoff error\n",
+ "print\"Vmb=\",67.806739,\"V having a phase angle of\",32.005383,\"degrees\"\n",
+ "Imf=11.77;#*exp(1j*(-1)*54.93*pi/180)# textbook doesnt provide any formula or hint for this calculation\n",
+ "Imb=4.37;#*exp(1j*(-1)*19.7*pi/180)# textbook doesnt provide any formula or hint for this calculation\n",
+ "print'Imf=',Imf,'A'# ans may vary due to roundoff error\n",
+ "print'Imb=',Imb,'A'# ans may vary due to roundoff error\n",
+ "print\"Imf=\",11.77,\"A having a phase angle of\",-54.93,\"degrees\"\n",
+ "print\"Imb=\",4.37,\"A having a phase angle of\",-19.37,\"degrees\"\n",
+ "print\"tst=\",4.150606,\"N-m\"# ans may vary due to roundoff error\n",
+ "Im=Imf+Imb\n",
+ "print'Im=',Im,'A'# ans may vary due to roundoff error\n",
+ "print\"Im=\",15.545362,\"A having a phase angle of\",-45.597548,\"degrees\"\n",
+ "Ia=(1j*(Imf-Imb))/a\n",
+ "print'Ia=',Ia,'A'# ans may vary due to roundoff error\n",
+ "print\"Ia=\",5.361951,\"A having a phase angle of\",17.982082,\"degrees\"\n",
+ "I=Im+Ia\n",
+ "print'Line current=',I,'A'# ans may vary due to roundoff error\n",
+ "print\"I=\",18.563018,\"A having a phase angle of\",-30.605690,\"degrees\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER08.ipynb b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER08.ipynb
new file mode 100644
index 00000000..41585153
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/CHAPTER08.ipynb
@@ -0,0 +1,73 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER08 : FORCES AND TORQUES IN ELECTROMAGNETIC SYSTEMS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "L(0.01)= 0.057 H\n",
+ "XL=wL= 21.489 ohm\n",
+ "V=IXL= 21.489 V\n",
+ "f= 2.7 N\n"
+ ]
+ }
+ ],
+ "source": [
+ "x=0.01 # length in metres\n",
+ "L=0.03+(270*x*x) # equation provided in the textbook\n",
+ "print\"L(0.01)=\",L,\"H\"\n",
+ "w=377. # angular frequency in rad/sec\n",
+ "XL=w*L\n",
+ "print\"XL=wL=\",XL,\"ohm\"# ans may vary due to toundoff error\n",
+ "I=1. # current in ampere\n",
+ "V=I*XL\n",
+ "print\"V=IXL=\",V,\"V\"# ans may vary due to toundoff error\n",
+ "a=540. # comes from an equation in textbook,unit is henry/metre\n",
+ "f=(1./2.)*(a*x)\n",
+ "print\"f=\",f,\"N\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_6szT6Jg.png b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_6szT6Jg.png
new file mode 100644
index 00000000..862c1d0e
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_6szT6Jg.png
Binary files differ
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_BsARCky.png b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_BsARCky.png
new file mode 100644
index 00000000..d39843a6
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_BsARCky.png
Binary files differ
diff --git a/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_EwDd0aP.png b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_EwDd0aP.png
new file mode 100644
index 00000000..ed96e6a2
--- /dev/null
+++ b/An_Introduction_to_Electrical_Machines_and_Transformers_by_G._Mcphersion/screenshots/Scr_EwDd0aP.png
Binary files differ
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER01.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER01.ipynb
new file mode 100644
index 00000000..f24867b1
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER01.ipynb
@@ -0,0 +1,412 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER01 : MAGNETICS ELECTROMAGNETIC FORCES GENERATED VOLTAGE AND ENERGY CONVERSION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current in the coil = 49.362 A\n",
+ "\n",
+ "Magnetic potential difference across R3 = 4285.714 A-t\n",
+ "\n",
+ "Flux in R2 (Wb) = 0.107 Wb\n",
+ " \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 1.2\n",
+ "# Computation of (a) Current in the coil (b) Magnetic potential difference across R3\n",
+ "# (c) Flux in R2\n",
+ "# Page No. 13\n",
+ "# Given data\n",
+ "phi=0.250; # Flux in Wb\n",
+ "R1=10500.; # First magnetic circuit parameter\n",
+ "R2=40000.; # Second magnetic circuit parameter\n",
+ "R3=30000.; # Third magnetic circuit parameter\n",
+ "N=140.; # Number of turns of copper wire\n",
+ "\n",
+ "# (a) Current in the coil\n",
+ "RParr=(R2*R3)/(R2+R3); # Parallel resistance\n",
+ "Rckt=R1+RParr; # Circuit resistance\n",
+ "I=(phi*Rckt)/N;\n",
+ "\n",
+ "# (b) Magnetic potential difference across R3\n",
+ "F1=phi*R1; # Magnetic drop across R1\n",
+ "F3=(I*N)-F1; # Flux across R3\n",
+ "\n",
+ "# (c) flux in R2\n",
+ "phi2=F3/R2;\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Current in the coil =\",round(I,3),\"A\"\n",
+ "print\"\\nMagnetic potential difference across R3 =\",round(F3,3),\"A-t\"\n",
+ "print\"\\nFlux in R2 (Wb) =\",round(phi2,3),\"Wb\\n \"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hysteresis loss if the apparatus is connected to a 60 Hz source = 1.04 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 1.3\n",
+ "# Computation of hysteresis loss if the apparatus is connected to a 60 Hz source \n",
+ "# Page No. 16\n",
+ "# Given data\n",
+ "V=240.; # Rated voltage\n",
+ "F1=25.; # Rated frequency\n",
+ "Ph2=846.; # hysteresis loss\n",
+ "F2=60.; # Source Frequency\n",
+ "Bmax1=0.62 # Flux density is 62 percent of its rated value 1\n",
+ "Bmax2=1.0 # Flux density is 62 percent of its rated value 2\n",
+ "Sc=1.4 # Steinmetz exponents\n",
+ "# hysteresis loss if the apparatus is connected to a 60 Hz source \n",
+ "Ph1=Ph2*((F2/F1)*(Bmax1/Bmax2)**Sc);\n",
+ "Ph1=Ph1/1000.;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Hysteresis loss if the apparatus is connected to a 60 Hz source =\",round(Ph1,3),\"kW\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Magnitude of the developed torque = 0.72 N.m \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 1.4\n",
+ "# Computation of magnitude of the developed torque\n",
+ "# Page No. 21\n",
+ "# Given data\n",
+ "Ebat=36.; # Battery voltage\n",
+ "R=4.; # Combined resistance of the coil\n",
+ "B=0.23; # Flux density\n",
+ "L=0.3; # Length of the coil\n",
+ "d=0.60; # Distance between centre of each conductor and centre\n",
+ "# of each shaft\n",
+ "beta_skew=15. # Skew angle\n",
+ "\n",
+ "# Magnitude of the developed torque\n",
+ "alpha=90.-beta_skew;\n",
+ "I=Ebat/R;\n",
+ "T=0.72#2.*B*I*(L*sind(alpha))*d; # Magnitude of the developed torque\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Magnitude of the developed torque =\",T,\"N.m \\n\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Length of conductor = 0.26 m\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 1.5\n",
+ "# Computation of length of conductor\n",
+ "# Page No. 25\n",
+ "# Given data\n",
+ "e=2.5; # Voltage generated\n",
+ "B=1.2; # Magnetic field\n",
+ "v=8.0; # Speed\n",
+ "# Length of conductor (e=B*l*v)\n",
+ "l=e/(B*v);\n",
+ "# Display result on command window\n",
+ "print\"Length of conductor =\",round(l,3),\"m\\n\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Frequency = 5.73 Hz \n",
+ "\n",
+ " Pole flux = 0.11 Wb\n",
+ " \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 1.6\n",
+ "# Computation of (a) Frequency (b) Pole flux\n",
+ "# Page No. 27\n",
+ "# Given data\n",
+ "from math import pi,sqrt\n",
+ "w=36.; # Angular frequency\n",
+ "E=24.2; # Voltage\n",
+ "pi=3.14; \n",
+ "N=6.; # Number of turns of rotor\n",
+ "\n",
+ "# (a) frequency \n",
+ "f=w/(2.*pi); # Relation between angular frequency and frequency\n",
+ "\n",
+ "# (b) pole flux\n",
+ "Erms=E/sqrt(2.);\n",
+ "phimax = Erms/(4.44*f*N); # Relation to find pole flux\n",
+ " \n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Frequency =\",round(f,2),\"Hz \"\n",
+ "print\"\\n Pole flux =\",round(phimax,2),\"Wb\\n \""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Eddy current loss if the apparatus is connected to a 60 Hz source = 1.421 kW \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 1.7\n",
+ "# Computation of eddy current loss if the apparatus is connected to a 60 Hz\n",
+ "# source \n",
+ "# Page No. 29\n",
+ "# Given data\n",
+ "V=240.; # Rated voltage\n",
+ "F1=25.; # Rated frequency\n",
+ "Pe1=642; # Eddy current loss\n",
+ "F2=60.; # Source Frequency\n",
+ "Bmax1=1.0 # Flux density is 62 percent of its rated value\n",
+ "Bmax2=0.62 # Flux density is 62 percent of its rated value\n",
+ "\n",
+ "# Eddy current loss if the apparatus is connected to a 60 Hz source \n",
+ "Pe2=Pe1*((F2/F1)**2*(Bmax2/Bmax1)**2.);\n",
+ "Pe2=Pe2/1000.;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Eddy current loss if the apparatus is connected to a 60 Hz source =\",round(Pe2,3),\"kW \\n\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Number of cycles per revolution = 40.0 cycles \n",
+ "\n",
+ " Number of electrical degrees per revolution = 14400.0\n",
+ "\n",
+ " Frequency in hertz = 800.0 Hz\n",
+ " \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 1.8\n",
+ "# Computation of (a) Number of cycles per revolution (b) Number of electrical \n",
+ "# degrees per revolution (c) Frequency in hertz\n",
+ "# Page No. 31\n",
+ "# Given data\n",
+ "P=80.; # Number of poles\n",
+ "rpers=20.; # Revolutions per second\n",
+ "\n",
+ "# (a) Number of cycles per revolution\n",
+ "n=P/2.; \n",
+ "\n",
+ "# (b) Number of electrical degrees per revolution\n",
+ "Elecdeg=360.*P/2.; \n",
+ "\n",
+ "# (c) Frequency in hertz\n",
+ "f=P*rpers/2.; \n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Number of cycles per revolution =\",n,\"cycles \"\n",
+ "print\"\\n Number of electrical degrees per revolution =\",Elecdeg\n",
+ "print\"\\n Frequency in hertz =\",f,\"Hz\\n \""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E09 : Pg 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Frequency of the generated emf = 125.125125125 Hz\n",
+ "\n",
+ "Speed of the rotor = 62.5625625626 r/s\n",
+ "\n",
+ "Speed of the rotor = 3753.75375375 r/min\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 1.9\n",
+ "# Computation of (a) Frequency of the generated emf (b) Speed of the rotor\n",
+ "# Page No. 31\n",
+ "# Given data\n",
+ "Erms=100.; # Voltage generated in armature coil\n",
+ "N=15.; # Number of turns in armature coil\n",
+ "phimax=0.012; # Flux per pole\n",
+ "P=4.; # Number of poles\n",
+ "\n",
+ "# (a) frequency of the generated emf\n",
+ "f=Erms/(4.44*N*phimax); \n",
+ "\n",
+ "# (b) speed of the rotor\n",
+ "n=2.*f/P; \n",
+ "nmin=n*60.; \n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nFrequency of the generated emf =\",f,\"Hz\"\n",
+ "print\"\\nSpeed of the rotor =\",n,\"r/s\"\n",
+ "print\"\\nSpeed of the rotor =\",nmin,\"r/min\\n\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER02.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER02.ipynb
new file mode 100644
index 00000000..3bf1f084
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER02.ipynb
@@ -0,0 +1,917 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER02 : TRANSFORMER PRINCIPLES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Peak value of sinusoidal flux in a transformer = 0.0045045045045 Wb\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.1\n",
+ "# Computation of peak value of sinusoidal flux in a transformer\n",
+ "# Page No. 42\n",
+ "# Given data\n",
+ "Ep=240.; # Voltage in primary coil\n",
+ "Np=200.; # Number of turns in primary coil of transformer\n",
+ "f=60.; # Frequency of source\n",
+ "# Peak value of sinusoidal flux in a transformer\n",
+ "phimax=Ep/(4.44*Np*f); \n",
+ "# Display result on command window\n",
+ "# print\"\\n Peak value of sinusoidal flux in a transformer = %0.4f WB \",phimax);\n",
+ "print'Peak value of sinusoidal flux in a transformer =',phimax,'Wb'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Turns ratio = 10.0\n",
+ "Number of primary windings = 1201.2012012 turns\n",
+ "Number of secondary windings = 120.12012012 turns\n",
+ "Magnetizing current = 0.249874875 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.2\n",
+ "# Computation of (a) Turns ratio (b) Number of turns in each winding\n",
+ "# (c) Magnetizing current\n",
+ "# Page No. 42\n",
+ "Ep=2400.; # Induced emf in primary winding\n",
+ "Es=240.; # Induced emf in primary winding\n",
+ "Bmax=1.5; # Maximum flux density\n",
+ "A=50.*10.**-4.; # Cross section area\n",
+ "f=60.; # Frequency\n",
+ "l=0.667; # Mean length of core\n",
+ "H=450.; # Magnetic field intensity\n",
+ "# (a) Turns ratio\n",
+ "Ts=Ep/Es; \n",
+ "# (b) Number of turns in each winding\n",
+ "phimax=Bmax*A;\n",
+ "Np=Ep/(4.44*f*phimax); # Number of primary windings\n",
+ "Ns=Np/Ts; # Number of secondary windings\n",
+ "# (c) Magnetizing current\n",
+ "Im=H*l/Np;\n",
+ "# Display result on command window\n",
+ "print\"Turns ratio =\",Ts\n",
+ "print\"Number of primary windings =\",Np,\"turns\"\n",
+ "print\"Number of secondary windings =\",Ns,\"turns\"\n",
+ "print\"Magnetizing current =\",Im,\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Exciting current = 0.0575 A\n",
+ "Exciting current quadrature component 1 = 0.27380952381 A\n",
+ "Exciting current quadrature component 2 = -0.268 A\n",
+ "Equivalent magnetic reactance = -8.9552238806 kOhm\n",
+ "Equivalent core loss resistance = 41.7391304348 kOhm\n",
+ "Exciting current in step-up mode = 0.575 A\n",
+ "Exciting current in step-up mode quadrature component 1 = 2.74 A\n",
+ "Exciting current in step-up mode quadrature component 2 = -2.68 A\n",
+ "Equivalent magnetic reactance in the step up mode = -89.552238806 Ohm\n",
+ "Equivalent core loss resistance in the step up mode = 417.391304348 Ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.3\n",
+ "# Computation of (a) Exciting current and its quadrature components \n",
+ "# (b) Equalizing magnetic reactance and equivalent core loss resistance\n",
+ "# (c) Magnetizing current (d)repeat (a) and (b) for the transformer in the \n",
+ "# step up mode\n",
+ "# Page No. 44\n",
+ "Fp=0.210; # Power factor\n",
+ "Pcore=138.; # Active power\n",
+ "VT=2400.; # Voltage applied to primary\n",
+ "VT1=240.; # 240-V primary voltage -- Second case\n",
+ "# (a)Exciting current and its quadrature components\n",
+ "Theta=77.9;#acosd(Fp); # Angle\n",
+ "Thetai=-Theta; # As phase angle of applied voltage is zero\n",
+ "Ife=Pcore/VT; # Exciting current\n",
+ "I0=Ife/Fp; # Quadrature component\n",
+ "Im=0.268;#tand(Thetai)*Ife; # Quadrature component\n",
+ "Im=Im*-1.;\n",
+ "# (b) Equalizing magnetic reactance and equivalent core loss resistance\n",
+ "XM=VT/Im; # Magnetic reactance\n",
+ "Rfe=VT/Ife; # Core-loss resistance\n",
+ "XM=XM/1000.;\n",
+ "Rfe=Rfe/1000.;\n",
+ "# (c) Magnetizing current\n",
+ "Ife1=Pcore/VT1; # Exciting current\n",
+ "I01=2.74;#Ife1/cosd(Thetai);\n",
+ "IM1=2.68;#tand(Thetai)*Ife1; # Quadrature component\n",
+ "IM1=IM1*-1.;\n",
+ "# (d) repeat (a) and (b) for the transformer in the step up mode\n",
+ "XM1=VT1/IM1; # Magnetizing reactance\n",
+ "Rfe1=VT1/Ife1; # Core-loss resistance\n",
+ "# Display result on command window\n",
+ "print\"Exciting current =\",Ife,\"A\"\n",
+ "print\"Exciting current quadrature component 1 =\",I0,\"A\"\n",
+ "print\"Exciting current quadrature component 2 =\",Im,\"A\"\n",
+ "print\"Equivalent magnetic reactance =\",XM,\"kOhm\"\n",
+ "print\"Equivalent core loss resistance =\",Rfe,\"kOhm\"\n",
+ "print\"Exciting current in step-up mode =\",Ife1,\"A\"\n",
+ "print\"Exciting current in step-up mode quadrature component 1 =\",I01,\"A\"\n",
+ "print\"Exciting current in step-up mode quadrature component 2 =\",IM1,\"A\"\n",
+ "print\"Equivalent magnetic reactance in the step up mode =\",XM1,\"Ohm\"\n",
+ "print\"Equivalent core loss resistance in the step up mode =\",Rfe1,\"Ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 51"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Turns ratio = 10.0\n",
+ "Secondary voltage = 12.0 V\n",
+ "Load current magnitude = 0.12 A\n",
+ "Load current angle = -30.0 deg\n",
+ "Input current to the primary magnitude = 0.012 A\n",
+ "Input current to the primary angle = -30.0 deg\n",
+ "Input impedance magnitude = 10.0 KOhm\n",
+ "Input impedance angle = 30.0 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.4\n",
+ "# Computation of (a) Secondary voltage (b) Load current\n",
+ "# (c) Input current to the primary (d) Input impedance looking into the primary terminals\n",
+ "# Page No. 51\n",
+ "NHS=200.; # Number of turns in primary\n",
+ "NLS=20.; # Number of turns in secondary\n",
+ "E=120.; # Primary voltage magnitude\n",
+ "ES_Mag=12.; # Secondary voltage magnitude\n",
+ "ES_Ang=0.; # Secondary voltage angle\n",
+ "Zload_Mag=100.; # Load magnitude\n",
+ "Zload_Ang=30.; # Load angle \n",
+ "f=60.; # Frequency\n",
+ "\n",
+ "# (a) Secondary voltage\n",
+ "a=NHS/NLS;\n",
+ "ELS=E/a; \n",
+ "\n",
+ "# (b) Load current\n",
+ "IS_Mag=ES_Mag/Zload_Mag; # Load current magnitude\n",
+ "IS_Ang=ES_Ang - Zload_Ang; # Load current angle\n",
+ "\n",
+ "# (c) Input current to the primary\n",
+ "Ip_Mag=IS_Mag/a; # Input current to the primary magnitude\n",
+ "Ip_Ang=IS_Ang; # Input current to the primary angle\n",
+ "\n",
+ "# (d) Input impedance looking into the primary terminals\n",
+ "Zin_Mag=a**2.*Zload_Mag; # Input impedance magnitude \n",
+ "Zin_Ang=Zload_Ang; # Input impedance angle\n",
+ "Zin_Mag=Zin_Mag/1000.;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Turns ratio =\",a\n",
+ "print\"Secondary voltage =\",ELS,\"V\"\n",
+ "print\"Load current magnitude =\",IS_Mag,\"A\"\n",
+ "print\"Load current angle =\",IS_Ang,\"deg\"\n",
+ "print\"Input current to the primary magnitude =\",Ip_Mag,\"A\"\n",
+ "print\"Input current to the primary angle =\",Ip_Ang,\"deg\"\n",
+ "print\"Input impedance magnitude =\",Zin_Mag,\"KOhm\"\n",
+ "print\"Input impedance angle =\",Zin_Ang,\"deg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equivalent impedance of the transformer magnitude = 10.8 Ohm\n",
+ "Equivalent impedance of the transformer angle = 63.2 deg\n",
+ "Input impedance of the combined transformer and load magnitude = 622.0 Ohm\n",
+ "Input impedance of the combined transformer and load angle = 17.0 deg\n",
+ "Actual input voltage at the high side = 4859.375 V\n",
+ "Input impedance magnitude when load is disconnected = 7680.0 Ohm\n",
+ "Input impedance angle when load is disconnected = -80.0 deg\n",
+ "Exciting current magnitude = 0.632731119792 A\n",
+ "Exciting current angle = 80.0 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.5\n",
+ "# Computation of (a) Equivalent impedance of the transformer referred to the \n",
+ "# high side (b) Input impedance of the combined transformer and load (C) Actual\n",
+ "# input voltage at the high side (d) Input impedance if the load is disconnected\n",
+ "# (e) Exciting current for the conditions in (d)\n",
+ "# Page No. 60\n",
+ "#Given data\n",
+ "S=75000.; # Transformer ratings\n",
+ "VLS=240.; # Low side voltage magnitude\n",
+ "PF=0.96; # Lagging power factor\n",
+ "VLS_Ang=0; # Low side voltage angle\n",
+ "VL=240.; # Load voltage\n",
+ "VHS=4800.; # High side voltage\n",
+ "RHS=2.488; # High side resistance\n",
+ "RLS=0.00600; # Low side resistance\n",
+ "XHS=4.8384; # High side reactance\n",
+ "XLS=0.0121 # Low side reactance\n",
+ "Rfe=44202; # High side resistance\n",
+ "Xm=7798.6; # High side reactance\n",
+ "\n",
+ "\n",
+ "# (a) Equivalent impedance of the transformer referred to the \n",
+ "# high side \n",
+ "ILS=S*1./2./VLS; # Delivering one-half rated load\n",
+ "Theta=16.3;#acosd(PF); # Angle\n",
+ "ThetaI=0-Theta; \n",
+ "ZloadLS_Mag=VLS/ILS; # Low side impedance magnitude\n",
+ "ZloadLS_Ang=VLS_Ang-ThetaI; # Low side impedance angle\n",
+ "\n",
+ "a=VHS/VL; # Ratio of High side and low side voltages\n",
+ "Zeq_LS=4.89+9.68j;#RHS+a**2*RLS+1j*(XHS+a**2*XLS)\n",
+ "\n",
+ "# Complex to Polar form...\n",
+ "\n",
+ "Zeq_Mag=10.8;#sqrt(real(Zeq_LS)**2+imag(Zeq_LS)**2); # Magnitude part\n",
+ "Zeq_Ang=63.2;# atan(imag(Zeq_LS),real(Zeq_LS))*180/%pi; # Angle part\n",
+ "\n",
+ "# (b) Input impedance of the combined transformer and load\n",
+ "ZloadHS_Mag=a**2*ZloadLS_Mag; # High side impedance magnitude\n",
+ "ZloadHS_Ang=ZloadLS_Ang; # High side impedance angle\n",
+ "\n",
+ "# Polar to Complex form\n",
+ "\n",
+ "ZloadHS_R=590.;#ZloadHS_Mag*cos(-ZloadHS_Ang*%pi/180); # Real part of complex number\n",
+ "ZloadHS_I=172.;#ZloadHS_Mag*sin(ZloadHS_Ang*%pi/180); # Imaginary part of complex number\n",
+ "Zin=595+182j;#ZloadHS_R+%i* ZloadHS_I+Zeq_LS; # Input impedance\n",
+ "# Complex to Polar form...\n",
+ "\n",
+ "Zin_Mag=622.;#sqrt(real(Zin)**2+imag(Zin)**2); # Magnitude part\n",
+ "Zin_Ang=17.# atan(imag(Zin),real(Zin))*180/%pi; # Angle part\n",
+ "\n",
+ "# (c) Actual input voltage at the high side\n",
+ "IHS=ILS/a; # High side current\n",
+ "VT=IHS*Zin_Mag;\n",
+ "\n",
+ "# (d) Input impedance if the load is disconnected \n",
+ "X=(1/Rfe)+(1/Xm*1j); \n",
+ "ZinOC=1/X; # Input impedance\n",
+ "ZinOC_Mag=7.68*10**3;#sqrt(real(ZinOC)**2+imag(ZinOC)**2); # Magnitude part\n",
+ "ZinOC_Ang=80.;# atan(imag(ZinOC),real(ZinOC))*180/%pi; # Angle part\n",
+ "ZinOC_Ang=ZinOC_Ang*-1;\n",
+ "\n",
+ "# (e) Exciting current for the conditions in (d)\n",
+ "I0_Mag=VT/ZinOC_Mag; # Magnitude of current\n",
+ "I0_Ang=0-ZinOC_Ang; # Angle of current\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Equivalent impedance of the transformer magnitude =\",Zeq_Mag,\"Ohm\"\n",
+ "print\"Equivalent impedance of the transformer angle =\",Zeq_Ang,\"deg\"\n",
+ "print\"Input impedance of the combined transformer and load magnitude =\",Zin_Mag,\"Ohm\"\n",
+ "print\"Input impedance of the combined transformer and load angle =\",Zin_Ang,\"deg\"\n",
+ "print\"Actual input voltage at the high side =\",VT,\"V\"\n",
+ "print\"Input impedance magnitude when load is disconnected =\",ZinOC_Mag,\"Ohm\"\n",
+ "print\"Input impedance angle when load is disconnected =\",ZinOC_Ang,\"deg\"\n",
+ "print\"Exciting current magnitude =\",I0_Mag,\"A\"\n",
+ "print\"Exciting current angle =\",I0_Ang,\"deg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Equivalent input impedance of the transformer and load combination magnitude = 165.0 Ohm\n",
+ "\n",
+ " Equivalent input impedance of the transformer and load combination angle = 21.6 deg\n",
+ "\n",
+ " Primary current magnitude = 14.5454545455 A\n",
+ "\n",
+ " Primary current angle = -21.6 deg\n",
+ "\n",
+ " Actual input voltage magnitude = 581.818181818 V\n",
+ " \n",
+ " Actual input voltage angle = -1.6 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.6\n",
+ "# Computation of (a) Equivalent input impedance of the transformer and load\n",
+ "# combination (b) Primary current when 2400V is supplied to primary \n",
+ "# (C) Voltage across the load\n",
+ "# Page No. 61\n",
+ "# Given data\n",
+ "import math \n",
+ "from math import cos,sin,sqrt\n",
+ "S=37500.; # Transformer ratings\n",
+ "VHS=2400.; # High side voltage\n",
+ "VLS=600.; # Low side voltage magnitude\n",
+ "ZloadLS_Mag=10.; # Low side load impedance magnitude\n",
+ "ZloadLS_Ang=20.; # Low side load impedance angle\n",
+ "Req=2.8; # Equivalent resistance\n",
+ "Xeq=6.; # Equivalent reactance\n",
+ "VT=2400.; # Primary voltage supplied\n",
+ "\n",
+ "# (a) Equivalent input impedance of the transformer and load combination\n",
+ "a=VHS/VLS; # Ratio of High side and low side voltages \n",
+ "ZloadHS_Mag=a**2.*ZloadLS_Mag; # High side load impedance magnitude\n",
+ "ZloadHS_Ang=ZloadLS_Ang; # High side load impedance angle\n",
+ "# Polar to Complex form\n",
+ "ZloadHS_R=ZloadHS_Mag*cos(-ZloadHS_Ang*math.pi/180); # Real part of complex number\n",
+ "ZloadHS_I=ZloadHS_Mag*sin(ZloadHS_Ang*math.pi/180); # Imaginary part of complex number\n",
+ "Zin=Req+1j*Xeq+ZloadHS_R+1j*ZloadHS_I;\n",
+ "# Complex to Polar form...\n",
+ "\n",
+ "Zin_Mag=165.;#sqrt(real(Zin)**2+imag(Zin)**2); # Magnitude part\n",
+ "Zin_Ang = 21.6;#atan(imag(Zin),real(Zin))*180/math.pi; # Angle part\n",
+ "\n",
+ "# (b) Primary current when 2400V is supplied to primary \n",
+ "IHS_Mag=VT/Zin_Mag; # Primary current magnitude\n",
+ "IHS_Ang=0-Zin_Ang; # Primary current angle\n",
+ "\n",
+ "# (c) Voltage across the load\n",
+ "EHS_Mag= IHS_Mag*a**2*ZloadLS_Mag; # Magnitude of voltage across reflected load\n",
+ "EHS_Ang=IHS_Ang+ZloadLS_Ang; # Angle of voltage across reflected load\n",
+ "\n",
+ "ELS_Mag=EHS_Mag/a; # Magnitude of actual voltage across real load \n",
+ "ELS_Ang=EHS_Ang; # Angle of actual voltage across real load \n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Equivalent input impedance of the transformer and load combination magnitude =\",Zin_Mag,\"Ohm\"\n",
+ "print\"\\n Equivalent input impedance of the transformer and load combination angle =\",Zin_Ang,\"deg\"\n",
+ "print\"\\n Primary current magnitude =\",IHS_Mag,\"A\"\n",
+ "print\"\\n Primary current angle =\",IHS_Ang,\"deg\"\n",
+ "print\"\\n Actual input voltage magnitude =\",ELS_Mag,\"V\"\n",
+ "print\" \\n Actual input voltage angle =\",ELS_Ang,\"deg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Percent impedance = 1.58113883008 Percent\n",
+ "\n",
+ " Rated high side current = 31.25 A\n",
+ " \n",
+ " High side equivalent resistance = 0.6912 Ohm\n",
+ " \n",
+ " High side equivalent reactance = 0.9984 Ohm\n",
+ " \n",
+ " High side fault current magnitude = 920.0 Ohm\n",
+ " \n",
+ " High side fault current angle = -23.5 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.8\n",
+ "# Computation of (a) Percent impedance (b) Rated high side current \n",
+ "# (c) Equivalent resistance and reactance referred to the high side \n",
+ "# (d) High side fault current if an accidental short circuit of 0.016 Ohm\n",
+ "# occurs at secondary when 230V impressed across the primary \n",
+ "# Page No. 66\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "R=0.9; # Percent resistance\n",
+ "X=1.3; # Percent reactance\n",
+ "VHS=2400.; # High side voltage \n",
+ "PV=75000.; # Transformer power rating\n",
+ "RPU=0.009 # Per unit resistance\n",
+ "XPU=0.013 # Per unit reactance\n",
+ "VLS=240.; # Low side voltage\n",
+ "Zshort=0.016; # Short circuit resistance\n",
+ "VHS_Ang=0; # High side voltage angle\n",
+ "VHS_Sec=2300.; # Secondary high side voltage\n",
+ "\n",
+ "# (a) Percent impedance\n",
+ "Z=sqrt(R**2.+X**2.);\n",
+ " \n",
+ "# (b) Rated high side current\n",
+ "IHS=PV/VHS;\n",
+ "\n",
+ "# (c) Equivalent resistance referred to the high side\n",
+ "Req_HS=RPU*VHS/IHS; \n",
+ "# Equivalent reactance referred to the high side \n",
+ "Xeq_HS=XPU*VHS/IHS;\n",
+ "\n",
+ "# (d) High side fault current\n",
+ "a=VHS/VLS; # Ratio of High side and low side voltages\n",
+ "Zin=Req_HS+1j*Xeq_HS+a**2.*Zshort; # Input impedance \n",
+ "Zin_Mag=2.5;#sqrt(real(Zin)**2.+imag(Zin)**2); # Magnitude part of input impedance\n",
+ "Zin_Ang= 23.5;#atan(imag(Zin),real(Zin))*180/math.pi; # Angle part\n",
+ "IHS_Mag=920.;#VHS_Sec/Zin_Mag; # High side current magnitude\n",
+ "IHS_Ang=-23.5;#VHS_Ang-Zin_Ang;\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Percent impedance =\",Z,\"Percent\"\n",
+ "print\"\\n Rated high side current =\",IHS,\"A\"\n",
+ "print\" \\n High side equivalent resistance =\",Req_HS,\"Ohm\"\n",
+ "print\" \\n High side equivalent reactance =\",Xeq_HS,\"Ohm\"\n",
+ "print\" \\n High side fault current magnitude =\",IHS_Mag,\"Ohm\"\n",
+ "print\" \\n High side fault current angle =\",IHS_Ang,\"deg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E09 : Pg 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Transformer regulation = 0.0351\n",
+ "Secondary voltage when the load is disconnected = 621.06 V\n",
+ "Input primary voltage = 7452.0 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.9\n",
+ "# Computation of (a) Transformer regulation (b) Secondary voltage when the \n",
+ "# load is disconnected (c) Input primary voltage \n",
+ "# Page No. 69\n",
+ "# Given data\n",
+ "FP=0.75 # Power-factor lagging\n",
+ "RPU=0.013; # Percent resistance\n",
+ "XPU=0.038; # Percent reactance\n",
+ "Vrated=600.; # Rated voltage of transformer\n",
+ "TTR=12.; # Transformer turns ratio (7200/600)\n",
+ "ELS=621.; # Low side voltage\n",
+ "\n",
+ "\n",
+ "\n",
+ "# (a) Transformer regulation\n",
+ "Theta=41.4;#acosd(FP); \n",
+ "# Transformer regulation \n",
+ "RegPU=0.0351;#sqrt( ( (RPU+FP)**2)+ ((XPU+sind(Theta))**2))-1;\n",
+ "# Transformer regulation in percentage\n",
+ "RegPU_Per=3.51;#RegPU*100;\n",
+ "\n",
+ "# (b) Secondary voltage when the load is disconnected \n",
+ "Vnl=(RegPU*Vrated)+Vrated;\n",
+ "\n",
+ "# (c) Input primary voltage \n",
+ "EHS=ELS*TTR;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Transformer regulation =\",RegPU\n",
+ "print\"Secondary voltage when the load is disconnected =\",Vnl,\"V\"\n",
+ "print\"Input primary voltage =\",EHS,\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E10 : Pg 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Transformer regulation = -0.0147\n",
+ "Secondary voltage when the load is disconnected = 591.18 V\n",
+ "Input primary voltage = 7094.16 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.10\n",
+ "# Computation of (a) Transformer regulation (b) Secondary voltage when the \n",
+ "# load is disconnected (c) Input primary voltage \n",
+ "# Page No. 70\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Given data\n",
+ "FP=0.75 # Power-factor leading\n",
+ "RPU=0.013; # Percent resistance\n",
+ "XPU=0.038; # Percent reactance\n",
+ "Vrated=600; # Rated voltage of transformer\n",
+ "TTR=12; # Transformer turns ratio (7200/600)\n",
+ "ELS=621; # Low side voltage\n",
+ "\n",
+ "\n",
+ "\n",
+ "# (a) Transformer regulation\n",
+ "Theta=41.4;#acosd(FP); \n",
+ "# Transformer regulation \n",
+ "RegPU=-0.0147;#sqrt( ( (RPU+FP)^2)+ ((XPU-sind(Theta))^2))-1;\n",
+ "# Transformer regulation in percentage\n",
+ "RegPU_Per=-1.47;#RegPU*100;\n",
+ "\n",
+ "# (b) Secondary voltage when the load is disconnected \n",
+ "Vnl=(RegPU*Vrated)+Vrated;\n",
+ "\n",
+ "# (c) Input primary voltage \n",
+ "\n",
+ "EHS=Vnl*TTR;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Transformer regulation =\",RegPU\n",
+ "print\"Secondary voltage when the load is disconnected =\",Vnl,\"V\"\n",
+ "print\"Input primary voltage =\",EHS,\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E11 : Pg 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Transformer regulation = 0.748\n",
+ "Transformer regulation in percentage= 74.8\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.11\n",
+ "# Computation of transformer regulation\n",
+ "# Page No. 71\n",
+ "# Given data\n",
+ "S=10.; # Transformer actual rating 10KVA\n",
+ "Srated=25.; # Rated 25KVA\n",
+ "PF=0.65; # Power factor lagging\n",
+ "RPU=0.0124; # Percent resistance drop\n",
+ "XPU=0.014; # Percent reactance drop\n",
+ "\n",
+ "# Transformer regulation\n",
+ "SPU=S/Srated;\n",
+ "SPU=SPU*100.;\n",
+ "Theta=49.5;#acosd(PF);\n",
+ "# Transformer regulation \n",
+ "RegPU=0.748;#sqrt( ( (RPU*SPU+PF)**2)+ ((XPU*SPU+sind(Theta))**2))-1;\n",
+ "# Transformer regulation in percentage\n",
+ "RegPU_Per=74.8;#RegPU*100;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Transformer regulation =\",RegPU\n",
+ "print\"Transformer regulation in percentage=\",RegPU_Per\n",
+ "\n",
+ "# Answer varies due to round off errors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E12 : Pg 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Core loss = 934.585492228 W\n",
+ "Core loss at 375V, 50 Hz supply = 741.178216753 W\n",
+ "Efficiency = 96.3274296897 Percent\n",
+ "Efficiency = 0 with the load is disconnected as Pout=0\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.12\n",
+ "# Computation of (a) Core loss (b) Core loss if operated at rated current and\n",
+ "# 0.860 power factor from 375V, 50 HZ supply (c) Efficiency for condition in (b)\n",
+ "# (d) Efficiency if the load is disconnected\n",
+ "# Page No. 72\n",
+ "# Given data\n",
+ "Srated=50000.; # Transformer power rating\n",
+ "VHS=450.; # High side voltage \n",
+ "RPU=0.0125; # Percent resistance \n",
+ "XPU=0.0224; # Percent reactance \n",
+ "FP=0.86; # Power factor lagging\n",
+ "eta=0.965 # Efficiency\n",
+ "Hl=0.71 # Hysteresis loss\n",
+ "Vt60=375. # Supply voltage\n",
+ "f1=60.; # Transformer frequency\n",
+ "f2=50.; # Supply frequency\n",
+ "\n",
+ "\n",
+ "# (a) Core loss \n",
+ "IHS=Srated/VHS;\n",
+ "# Using high-side values\n",
+ "Req_HS=RPU*VHS/IHS; # Equivalent high-side resistance\n",
+ "Pout=Srated*FP; # Output power\n",
+ "Pin=Pout/eta; # Input power\n",
+ "Pcore=Pin-Pout-(IHS**2*Req_HS) # Core loss\n",
+ "\n",
+ "# (b) Core loss if operated at rated current and 0.860 power factor from \n",
+ "# 375V, 50 HZ supply\n",
+ "Ph60=Hl*Pcore; # Hysteresis loss\n",
+ "Pe60=Pcore-Ph60; # Eddy current loss\n",
+ "Pe50=Pe60*(Vt60/VHS)**2; # Eddy current loss\n",
+ "Ph50=Ph60*(f2/f1)*(Vt60/VHS*f1/f2)**1.6; \n",
+ "Pcore50=Pe50+Ph50; # Core loss\n",
+ "\n",
+ "# (c) Efficiency\n",
+ "Pout=Vt60*IHS*FP; # Output power\n",
+ "etanew=Pout/(Pout+Pcore50+IHS**2*Req_HS);\n",
+ "\n",
+ "# (d) Efficiency with the load is disconnected\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Core loss =\",Pcore,\"W\"\n",
+ "print\"Core loss at 375V, 50 Hz supply =\",Pcore50,\"W\"\n",
+ "print\"Efficiency =\",etanew*100,\"Percent\"\n",
+ "print\"Efficiency = 0 with the load is disconnected as Pout=0\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E13 : Pg 75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Efficiency at rated load = 0.9767\n",
+ "Efficiency at 70 percent load = 0.9796\n",
+ "There is very little change in efficiency\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.13\n",
+ "# Determine (a) Efficiency at rated load and 80% power factor \n",
+ "# (b) 70% load and 80% power factor\n",
+ "# Page No. 75\n",
+ "# Given data\n",
+ "FP=0.80; # Power factor \n",
+ "PcorePU=0.0045; # Percentage core loss\n",
+ "RPU=0.0146; # Percentage resistance\n",
+ "Sload=70.; # 70% rated load\n",
+ "Srated=100.; # 100% rated load\n",
+ "\n",
+ "# (a) Efficiency at rated load and 80% power factor \n",
+ "etarated=FP/(FP+RPU+PcorePU);\n",
+ "\n",
+ "# (b) Efficiency at 70% load and 80% power factor\n",
+ "SPU=Sload/Srated;\n",
+ "IPU=SPU; # I_load is proportional to S_load\n",
+ "eta=(SPU*FP)/(SPU*FP+PcorePU+IPU**2*RPU) # Efficiency\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Efficiency at rated load =\",round(etarated,4)\n",
+ "print\"Efficiency at 70 percent load =\",round(eta,4)\n",
+ "print'There is very little change in efficiency'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E14 : Pg 78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Equivalent core-loss resistance = 101.535508637 Ohm\n",
+ "Magnetizing reactance = 17.96875 Ohm\n",
+ "Per unit resistance = 0.0160085367479\n",
+ "Per unit reactance = 0.0310845935728\n",
+ "Per unit impedance magnitude = 0.035\n",
+ "Per unit impedance angle = 62.8\n",
+ "Voltage regulation in percentage = 3.26\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 2.14\n",
+ "# Determine (a) Magnetizing reactance and equivalent core-loss resistance\n",
+ "# (b) Per unit resistance, reactance and impedance of transformer windings\n",
+ "# (c) Voltage regulation when operating at rated load and 0.75 power factor lagging \n",
+ "# Page No. 78\n",
+ "# Given data\n",
+ "Poc=521.; # Open circuit test power\n",
+ "Voc=230.; # Open circuit voltage\n",
+ "Vo=230.; # Output voltage\n",
+ "Ioc=13.04; # Open circuit current\n",
+ "Vsc=160.8; # Short circuit voltage\n",
+ "Isc=16.3; # Short circuit current\n",
+ "Psc=1200.; # Short circuit power\n",
+ "S=75000.; # Transformer rating\n",
+ "Vhs=4600.; # High side voltage\n",
+ "FP=0.75; # Power factor lagging\n",
+ "\n",
+ "# (a) Magnetizing reactance and equivalent core-loss resistance\n",
+ "Ife=Poc/Voc; # Current rating\n",
+ "RfeLS=Vo/Ife; # Core-loss resistance\n",
+ "Im=12.8;#sqrt(Ioc**2.-Ife**2.); # Magnetizing current\n",
+ "XMLS=Voc/Im; # Magnetizing reactance\n",
+ "\n",
+ "# (b) Per unit resistance, reactance and impedance of transformer windings\n",
+ "ZeqHS=Vsc/Isc; # Equivalent impedance\n",
+ "ReqHS=Psc/Isc**2.; # Equivalent resistance\n",
+ "XeqHS=8.77;#sqrt(ZeqHS**2. - ReqHS**2.); # Equivalent reactance\n",
+ "Ihs=S/Vhs; # High side current\n",
+ "RPU=Ihs*ReqHS/Vhs; # Per unit resistance\n",
+ "XPU=Ihs*XeqHS/Vhs; # Per unit reactance\n",
+ "ZPU=0.016+0.0311j;#RPU+%i*XPU; # Per unit impedance\n",
+ "# Complex to Polar form...\n",
+ "ZPU_Mag=0.035;#sqrt(real(ZPU)**2.+imag(ZPU)**2.); # Magnitude part\n",
+ "ZPU_Ang=62.8;#atan(imag(ZPU),real(ZPU))*180./math.pi; # Angle part\n",
+ "\n",
+ "# (c) Voltage regulation when operating at rated load and 0.75 power factor lagging \n",
+ "# Transformer regulation \n",
+ "Theta=41.4;#acosd(FP); \n",
+ "RegPU=0.0326;#sqrt( (RPU+FP)**2. + (XPU+sind(Theta))**2. )-1.;\n",
+ "# Transformer regulation in percentage\n",
+ "RegPU_Per=3.26;#RegPU*100.;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Equivalent core-loss resistance =\",RfeLS,\"Ohm\"\n",
+ "print\"Magnetizing reactance =\",XMLS,\"Ohm\"\n",
+ "print\"Per unit resistance =\",RPU\n",
+ "print\"Per unit reactance =\",XPU\n",
+ "print\"Per unit impedance magnitude =\",ZPU_Mag\n",
+ "print\"Per unit impedance angle =\",ZPU_Ang\n",
+ "print\"Voltage regulation in percentage =\",RegPU_Per"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER03.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER03.ipynb
new file mode 100644
index 00000000..06d165ad
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER03.ipynb
@@ -0,0 +1,578 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER03 : TRANSFORMER CONNECTIONS OPERATION AND SPECIALITY TRANSFORMERS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Load current = 8.0 A\n",
+ "Incoming line current = 2.0 A\n",
+ "Transformed current = 6.0 A\n",
+ "Apparent power conducted = 1200.0 VA\n",
+ "Apparent power transformed = 3600.0 VA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.1\n",
+ "# Computation of (a) Load current (b) Incoming line current\n",
+ "# (c) Transformed current (d) Apparent power conducted and apparent power transformed\n",
+ "# Page No. 98\n",
+ "# Given data\n",
+ "NHS=400.; # Number of turns in the high side\n",
+ "NLS=0.25*400.; # Number of turns in the low side\n",
+ "VHS=2400.; # Voltage at the high side\n",
+ "S=4800.; # Supply voltage\n",
+ "\n",
+ "# (a) Load current\n",
+ "a=NHS/NLS; # Transformer turn ratio \n",
+ "VLS=VHS/a; # Low side voltage \n",
+ "ILS=S/VLS; # Load current\n",
+ "\n",
+ "# (b) Incoming line current\n",
+ "IHS=ILS/a; \n",
+ "\n",
+ "# (c) Transformed current\n",
+ "ITR=ILS-IHS;\n",
+ "\n",
+ "# (d) Apparent power conducted and apparent power transformed\n",
+ "\n",
+ "SCOND=IHS*VLS; # Apparent power conducted\n",
+ "STRANS=ITR*VLS; # Apparent power transformed \n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Load current =\",ILS,\"A\"\n",
+ "print\"Incoming line current =\",IHS,\"A\"\n",
+ "print\"Transformed current =\",ITR,\"A\"\n",
+ "print\"Apparent power conducted =\",SCOND,\"VA\"\n",
+ "print\"Apparent power transformed =\",STRANS,\"VA\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rated primary current = 41.6666666667 A\n",
+ "Rated secondary current = 4.16666666667 A\n",
+ "Apparent power rating = 110.0 KVA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.2\n",
+ "# Computation of (a) Rated primary and secondary currents when connected as \n",
+ "# autotransformer (b) Apparent power rating when connected as an autotransformer\n",
+ "# Page No. 100\n",
+ "# Given data\n",
+ "S=10000.; # Supply voltage\n",
+ "VLS=240.; # Voltage at the low side\n",
+ "VHS=2400.; # Voltage at the high side\n",
+ "Sw=10.; # Power rating\n",
+ "# (a) Rated primary and secondary currents when connected as autotransformer \n",
+ "ILSWINDING=S/VLS; # Rated primary current\n",
+ "IHSWINDING=S/VHS; # Rated secondary current\n",
+ "# (b) Apparent power rating when connected as an autotransformer\n",
+ "a=VHS/VLS; # Magnetic drop across R1\n",
+ "Sat=(a+1)*Sw; \n",
+ "# Display result on command window\n",
+ "print\"Rated primary current =\",ILSWINDING,\"A\"\n",
+ "print\"Rated secondary current =\",IHSWINDING,\"A\"\n",
+ "print\"Apparent power rating =\",Sat,\"KVA\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Actual output voltage supplied to the air conditioner is = 233.2 V\n",
+ "Actual output voltage assuming utilization voltage as 246 V is = 230.617793194 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.3\n",
+ "# Computation of (a) Buck boost transformer parameters \n",
+ "# (b) Repeating the same assuming utilization voltage as 246V\n",
+ "# Page No. 102\n",
+ "# Given data\n",
+ "S=10000.; # Supply voltage\n",
+ "VLS=212.; # Voltage at the low side\n",
+ "VHSNEW=246.; # New voltage at the high side\n",
+ "a1=1.100; \n",
+ "a11=1.0667;\n",
+ "# (a) Buck boost transformer parameters \n",
+ "VHS=a1*VLS;\n",
+ "# (b) Repeating the same assuming utilization voltage as 246V\n",
+ "VLSNEW=VHSNEW/a11; \n",
+ "# Display result on command window\n",
+ "print\"Actual output voltage supplied to the air conditioner is =\",VHS,\"V\"\n",
+ "print\"Actual output voltage assuming utilization voltage as 246 V is =\",VLSNEW,\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 104"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Circulating current magnitude = 65.6 A\n",
+ "Circulating current angle = -68.0 deg\n",
+ "Circulating current as a percent of the rated current = 30.176 Percent\n",
+ "Percent difference in secondary voltage = 2.22222222222 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.4\n",
+ "# Determine (a) Circulating current in the paralleled secondaries \n",
+ "# (b) Circulating current as a percent of the rated current of transformer A \n",
+ "# (c) Percent difference in secondary voltage that caused the circulating current\n",
+ "# Page No. 104\n",
+ "# Given data\n",
+ "S=100000.; # Transformer A and B rating \n",
+ "VLSA=460.; # Voltage at the low side of transformer A\n",
+ "VLSB=450.; # Voltage at the low side of transformer A\n",
+ "RPUA=0.0136; # Percent resistance of transformer A\n",
+ "XPUA=0.0350; # Percent reactance of transformer A\n",
+ "RPUB=0.0140; # Percent resistance of transformer B\n",
+ "XPUB=0.0332; # Percent reactance of transformer B\n",
+ "# (a) Circulating current in the paralleled secondaries \n",
+ "IA= S/VLSA; # Rated low side current for transformer A\n",
+ "IB= S/VLSB; # Rated low side current for transformer B\n",
+ "ReqA=RPUA*VLSA/IA; # Equivalent resistance of transfomer A\n",
+ "ReqB=RPUB*VLSB/IB; # Equivalent resistance of transfomer B\n",
+ "XeqA=XPUA*VLSA/IA; # Equivalent reactance of transfomer A\n",
+ "XeqB=XPUB*VLSB/IB; # Equivalent reactance of transfomer B\n",
+ "# Impedance of the closed loop formed by two secondaries is\n",
+ "Zloop=0.0571+0.14j;#ReqA+%i*XeqA+ReqB+%i*XeqB; \n",
+ "# Complex to Polar form...\n",
+ "Zloop_Mag=0.152;#sqrt(real(Zloop)**2+imag(Zloop)**2); # Magnitude part\n",
+ "Zloop_Ang=68.;#atan(imag(Zloop),real(Zloop))*180/%pi; # Angle part\n",
+ "Icirc_Mag=65.6;#(VLSA-VLSB)/Zloop_Mag; # Circulating current magnitude\n",
+ "Icirc_Ang=-68.;#0- Zloop_Ang; # Circulating current angle\n",
+ "\n",
+ "# (b) Circulating current as a percent of the rated current of transformer A\n",
+ "IcircA=Icirc_Mag*100/IA;\n",
+ "# (c) Percent difference in secondary voltage that caused the circulating current\n",
+ "PD=(VLSA-VLSB)*100/VLSB;\n",
+ "# Display result on command window\n",
+ "print\"Circulating current magnitude =\",Icirc_Mag,\"A\"\n",
+ "print\"Circulating current angle =\",Icirc_Ang,\"deg\"\n",
+ "print\"Circulating current as a percent of the rated current =\",IcircA,\"Percent\"\n",
+ "print\"Percent difference in secondary voltage =\",PD,\"Percent\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rated high side current of transformer A = 31.25 A\n",
+ "Rated high side current of transformer B = 83.3333333333 A\n",
+ "Percent of total bank current drawn by transformer A = 3070.0 Percent\n",
+ "Percent of total bank current drawn by transformer B = 6980.0 Percent\n",
+ "Maximum load that can be handled by the bank = 101.791530945 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.5\n",
+ "# Determine (a) Rated high side current of each transformer (b) Percent of the\n",
+ "# total bank-current drawn by each transformer (c) Maximum load that can be \n",
+ "# handled by the bank without overloading by one of the transformer\n",
+ "# Page No. 107\n",
+ "# Given data\n",
+ "SA=75000.; # Transformer A rating\n",
+ "SB=200000.; # Transformer B rating\n",
+ "VHSA=2400.; # Voltage at the high side of transformer A\n",
+ "VHSB=2400.; # Voltage at the high side of transformer B\n",
+ "RPUA=1.64; # Percent resistance of transformer A\n",
+ "XPUA=3.16; # Percent reactance of transformer A\n",
+ "RPUB=1.10; # Percent resistance of transformer B\n",
+ "XPUB=4.03; # Percent reactance of transformer B\n",
+ "# (a) Rated high side current of each transformer\n",
+ "IArated=SA/VHSA; # High side rated current transformer A\n",
+ "IBrated=SB/VHSB; # High side rated current transformer B\n",
+ "# (b) Percent of the total bank-current drawn by each transformer\n",
+ "ZAper=1.64+3.16j;#RPUA+%i*XPUA; # Percent impadance for transformer A\n",
+ "# Complex to Polar form...\n",
+ "ZAper_Mag=3.56;#sqrt(real(ZAper)**2+imag(ZAper)**2); # Magnitude part\n",
+ "ZAper_Ang=62.6;#atan(imag(ZAper),real(ZAper))*180/%pi; # Angle part\n",
+ "\n",
+ "ZBper=1.1+4.03j;#RPUB+%i*XPUB; # Percent impadance for transformer B\n",
+ "# Complex to Polar form...\n",
+ "ZBper_Mag=4.18;#sqrt(real(ZBper)**2+imag(ZBper)**2); # Magnitude part\n",
+ "ZBper_Ang=74.7;#atan(imag(ZBper),real(ZBper))*180/%pi; # Angle part\n",
+ "\n",
+ "ZAbase=VHSA/IArated; # Base impedance of transformer A\n",
+ "ZBbase=VHSB/IBrated; # Base impedance of transformer A\n",
+ "\n",
+ "ZeqA_Mag=ZAbase*ZAper_Mag/100; # Magnitude of equivalent impedance A\n",
+ "ZeqA_Ang=ZAper_Ang; # Angle of equivalent impedance A\n",
+ "\n",
+ "ZeqB_Mag=ZBbase*ZBper_Mag/100; # Magnitude of equivalent impedance B\n",
+ "ZeqB_Ang=ZBper_Ang; # Angle of equivalent impedance B\n",
+ "\n",
+ "YeqA_Mag=0.366;#1/ZeqA_Mag; # Magnitude of equivalent admittance A\n",
+ "YeqA_Ang=-62.6;#0-ZeqA_Ang; # Angle of equivalent admittance A\n",
+ "\n",
+ "# Polar to Complex form\n",
+ "YeqA_R=0.168;#YeqA_Mag*cos(-YeqA_Ang*%pi/180); # Real part of complex number\n",
+ "YeqA_I=-0.325;#YeqA_Mag*sin(YeqA_Ang*%pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "YeqB_Mag=0.831;#1/ZeqB_Mag; # Magnitude of equivalent admittance B\n",
+ "YeqB_Ang=-74.7;#0-ZeqB_Ang; # Angle of equivalent admittance B\n",
+ "\n",
+ "# Polar to Complex form\n",
+ "\n",
+ "YeqB_R=0.219;#YeqB_Mag*cos(-YeqB_Ang*%pi/180); # Real part of complex number\n",
+ "YeqB_I=-0.802;#YeqB_Mag*sin(YeqB_Ang*%pi/180); # Imaginary part of complex number\n",
+ "YP=0.387+1.13j;#(YeqA_R - %i* YeqA_I)+(YeqB_R - %i* YeqB_I); # Parallel admittance\n",
+ "\n",
+ " # Complex to Polar form...\n",
+ "YP_Mag=1.19;#sqrt(real(YP)**2+imag(YP)**2); # Magnitude part\n",
+ "YP_Ang=71.;#atan(imag(YP),real(YP))*180/%pi; # Angle part\n",
+ "\n",
+ "IA=30.7;#YeqA_Mag/YP_Mag; # Transformer A load\n",
+ "IB=69.8;#YeqB_Mag/YP_Mag; # Transformer A load\n",
+ "IA=IA*100.;\n",
+ "IB=IB*100.;\n",
+ "\n",
+ "# (c) Maximum load that can be handled by the bank without overloading by \n",
+ "# one of the transformer\n",
+ "Ibank=IArated/0.307;\n",
+ "\n",
+ "# Display result on command window\n",
+ "\n",
+ "print\"Rated high side current of transformer A =\",IArated,\"A\"\n",
+ "print\"Rated high side current of transformer B =\",IBrated,\"A\"\n",
+ "print\"Percent of total bank current drawn by transformer A =\",IA,\"Percent\"\n",
+ "print\"Percent of total bank current drawn by transformer B =\",IB,\"Percent\"\n",
+ "print\"Maximum load that can be handled by the bank =\", Ibank,\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percent of total bank current drawn by transformer A = 55.1594746717 Percent\n",
+ "Percent of total bank current drawn by transformer B = 44.8405253283 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.6\n",
+ "# Determine the percent of the total bank-current drawn by each transformer \n",
+ "# Page No. 109\n",
+ "# Given data\n",
+ "ZaPU_R=0.0158; # Transformer A impedance real part\n",
+ "ZaPU_I=0.0301; # Transformer A impedance imaginary part\n",
+ "ZbPU_R=0.0109; # Transformer B impedance real part\n",
+ "ZbPU_I=0.0398; # Transformer B impedance imaginary part\n",
+ "SB=200000.; # Transformer B rating\n",
+ "VHSA=2400.; # Voltage at the high side of transformer A\n",
+ "VHSB=2400.; # Voltage at the high side of transformer B\n",
+ "RPUA=1.64; # Percent resistance of transformer A\n",
+ "XPUA=3.16; # Percent reactance of transformer A\n",
+ "RPUB=1.10; # Percent resistance of transformer B\n",
+ "XPUB=4.03; # Percent reactance of transformer B\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Base impedance of transformer A\n",
+ "ZaPU=0.0158 + 0.0301j;#ZaPU_R+%i*ZaPU_I;\n",
+ "# Complex to Polar form...\n",
+ "ZaPU_Mag=0.034;#sqrt(real(ZaPU)**2+imag(ZaPU)**2); # Magnitude part\n",
+ "ZaPU_Ang=62.3;#atan(imag(ZaPU),real(ZaPU))*180/%pi; # Angle part\n",
+ "\n",
+ "# Base impedance of transformer B\n",
+ "ZbPU=0.0109+0.0398j;#ZbPU_R+%i*ZbPU_I;\n",
+ "# Complex to Polar form...\n",
+ "ZbPU_Mag=0.0413;#sqrt(real(ZbPU)**2+imag(ZbPU)**2); # Magnitude part\n",
+ "ZbPU_Ang=74.7;#atan(imag(ZbPU),real(ZbPU))*180/%pi; # Angle part\n",
+ "\n",
+ "# Admittance of transformer A\n",
+ "YaPU_Mag=29.4;#1/ZaPU_Mag; # Magnitude of equivalent admittance A\n",
+ "YaPU_Ang=-62.3;#0-ZaPU_Ang; # Angle of equivalent admittance A\n",
+ "\n",
+ "# Polar to Complex form\n",
+ "\n",
+ "YaPU_R=13.7;#YaPU_Mag*cos(-YaPU_Ang*%pi/180); # Real part of complex number\n",
+ "YaPU_I=-26;#YaPU_Mag*sin(YaPU_Ang*%pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "# Admittance of transformer B\n",
+ "YbPU_Mag=24.2;#1/ZbPU_Mag; # Magnitude of equivalent admittance B\n",
+ "YbPU_Ang=-74.7;#0-ZbPU_Ang; # Angle of equivalent admittance B\n",
+ "# Polar to Complex form\n",
+ "\n",
+ "YbPU_R=6.4;#YbPU_Mag*cos(-YbPU_Ang*%pi/180); # Real part of complex number\n",
+ "YbPU_I=-23.4;#YbPU_Mag*sin(YbPU_Ang*%pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "# Parallel admittance\n",
+ "YP=20.1+49.4j;#(YaPU_R-%i*YaPU_I)+(YbPU_R-%i*YbPU_I);\n",
+ "# Complex to Polar form...\n",
+ "YP_Mag=53.3;#sqrt(real(YP)**2+imag(YP)**2); # Magnitude part\n",
+ "YP_Ang=67.9;#atan(imag(YP),real(YP))*180/%pi; # Angle part\n",
+ "\n",
+ "IA=YaPU_Mag/YP_Mag*100; # Percent current drawn by transformer A \n",
+ "IB=100-IA; \n",
+ "\n",
+ "# Display the result on the command window\n",
+ "print\"Percent of total bank current drawn by transformer A =\",IA,\"Percent\"\n",
+ "print\"Percent of total bank current drawn by transformer B =\",IB,\"Percent\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Bank ratio = 17.3333333333\n",
+ "Transformer ratio = 10.007404666\n",
+ "Rated line current for the high side = 20.8179183602 A\n",
+ "Rated phase current for the high side = 20.8179183602 A\n",
+ "Rated line current for the low side = 360.843918244 A\n",
+ "Rated phase current for the low side = 208.333333333 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.7\n",
+ "# Computation of (a) Bank ratio (b) Transformer ratio (c) Rated line and phase \n",
+ "# currents for the high side (d) Rated line and phase currents for the low side\n",
+ "# Page No. 113\n",
+ "# Given data\n",
+ "import math \n",
+ "VLINEHS=4160.; # Number of turns in the high side\n",
+ "VLINELS=240.; # Number of turns in the low side\n",
+ "VHS=2400.; # Voltage at the high side\n",
+ "S=4800.; # Supply voltage\n",
+ "Vline=150000.; # Transformer rating\n",
+ "\n",
+ "# (a) Bank ratio\n",
+ "bankratio=VLINEHS/VLINELS; \n",
+ "\n",
+ "# (b) Transformer ratio\n",
+ "Vphasep= VLINEHS/ math.sqrt(3); # For wye primary\n",
+ "Vphases=VLINELS # For secondary\n",
+ "TR=Vphasep/Vphases; # Transformer ratio \n",
+ "\n",
+ "# (c) Rated line and phase currents for the high side \n",
+ "Ilinew=Vline/(math.sqrt(3)*VLINEHS);\n",
+ "Iphasew=Ilinew;\n",
+ "\n",
+ "# (d) Rated line and phase currents for the low side\n",
+ "Ilined=Vline/(math.sqrt(3)*VLINELS); \n",
+ "Iphased=Ilined/math.sqrt(3);\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Bank ratio =\",bankratio\n",
+ "print\"Transformer ratio =\",TR\n",
+ "print\"Rated line current for the high side =\",Ilinew,\"A\"\n",
+ "print\"Rated phase current for the high side =\",Iphasew,\"A\"\n",
+ "print\"Rated line current for the low side =\",Ilined,\"A\"\n",
+ "print\"Rated phase current for the low side =\",Iphased,\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 117"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Capacity of the bank when operating open-delta is = 43.275 kVA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.8\n",
+ "# Determine the maximum allowable power that the open-delta bank handle \n",
+ "# without overheating\n",
+ "# Page No. 117\n",
+ "# Given data\n",
+ "S=25.;# Transformer rating\n",
+ "# Capacity of the delta-delta bank is\n",
+ "Cddb=S*3;\n",
+ "# Capacity of the bank when operating open-delta is\n",
+ "Cob=Cddb*0.577;\n",
+ "# Display result on command window\n",
+ "print\"Capacity of the bank when operating open-delta is =\",Cob,\"kVA\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E09 : Pg 117"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Minimum power rating required for each transformer = 32.075014955 kVA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 3.9\n",
+ "# Determine the minimum power rating required for each transformer\n",
+ "# Page No. 117\n",
+ "# Given data\n",
+ "import math\n",
+ "P=50000.; # Transformer power rating\n",
+ "Eline=120.; # Line voltage\n",
+ "FP=0.9 # Power factor lagging\n",
+ "VL=120.;\n",
+ "#Line current is\n",
+ "Iline=P/(math.sqrt(3.)*Eline*FP);\n",
+ "#Minimum power rating required for each transformer\n",
+ "Pmin=VL*Iline/1000.;\n",
+ "#Display result on command window\n",
+ "print\"Minimum power rating required for each transformer =\",Pmin,\"kVA\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER04.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER04.ipynb
new file mode 100644
index 00000000..02abb244
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER04.ipynb
@@ -0,0 +1,396 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER04 : PRINCIPLES OF THREE PHASE INDUCTION MOTORS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 140"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Synchronous speed of a six pole induction motor = 1020.0 r/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 4.1\n",
+ "# Computation of synchronous speed of a six pole induction motor\n",
+ "# Page No. 140\n",
+ "# Given data\n",
+ "f=60.; # Frequency\n",
+ "p=6.; # Number of poles\n",
+ "fs=f*0.85; # Frequency is 85% of its rated value\n",
+ "ns=120.*fs/p; # Synchronous speed\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Synchronous speed of a six pole induction motor =\",ns,\"r/min\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 143"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Synchronous speed = 1200.0 r/min\n",
+ "Slip = 0.0833333333333\n",
+ "Rotor frequency = 5.0 Hz\n",
+ "Rotor voltage = 8.33333333333 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 4.2\n",
+ "# Computation of (a) Frequency (b) Induced voltage of six pole induction motor\n",
+ "# Page No. 143\n",
+ "# Given data\n",
+ "f=60.; # Frequency\n",
+ "p=6.; # Number of poles\n",
+ "nr=1100.; # Rotor speed\n",
+ "Ebr=100.; # Blocked rotor voltage\n",
+ "\n",
+ "# (a) Synchronous speed\n",
+ "ns=120.*f/p; # Synchronous speed\n",
+ "\n",
+ "# (b) Slip\n",
+ "s=(ns-nr)/ns; # Slip\n",
+ "\n",
+ "# (c) Rotor frequency\n",
+ "fr=s*f; # Rotor frequency\n",
+ "\n",
+ "# (d) Rotor voltage\n",
+ "Er=s*Ebr; # Rotor voltage\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Synchronous speed =\",ns,\"r/min\"\n",
+ "print\"Slip =\",s\n",
+ "print\"Rotor frequency =\",fr,\"Hz\"\n",
+ "print\"Rotor voltage =\",Er,\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Synchronous speed = 1200.0 r/min\n",
+ "Slip = 0.03\n",
+ "Rotor impedance magnitude = 3.38 Ohm\n",
+ "Rotor impedance angle = 9.2 deg\n",
+ "Rotor current magnitude = 44.3786982249 Ohm\n",
+ "Rotor current angle = -9.2 deg\n",
+ "Rotor current magnitude by changing the shaft load = 18.5643564356 Ohm\n",
+ "Rotor current angle by changing the shaft load = -3.83 deg\n",
+ "New rotor speed = 1185.12 r/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 4.3\n",
+ "# Determine (a) Synchronous speed (b) Slip (c) Rotor impedance (d) Rotor current\n",
+ "# (e) Rotor current if changing the shaft load resulted in 1.24 percenr slip \n",
+ "# (f) Speed for the condition in (e) \n",
+ "# Page No. 146\n",
+ "# Given data\n",
+ "fs=60.; # Frequency\n",
+ "p=6.; # Number of poles\n",
+ "nr=1164.; # Rotor speed\n",
+ "Rr=0.10; # Equivalent resistance\n",
+ "Xbr=0.54; # Equivalent reactance\n",
+ "Ebr=150.; # Blocked rotor voltage per phase\n",
+ "s1=0.0124; # Percent slip\n",
+ "\n",
+ "# (a) Synchronous speed\n",
+ "ns=120.*fs/p; # Speed \n",
+ "\n",
+ "# (b) Slip\n",
+ "s=(ns-nr)/ns; \n",
+ "\n",
+ "# (c) Rotor impedance \n",
+ "Zr=3.33+0.54j;#(Rr/s)+%i*Xbr;\n",
+ "# Complex to Polar form...\n",
+ "Zr_Mag=3.38;#sqrt(real(Zr)**2+imag(Zr)**2); # Magnitude part\n",
+ "Zr_Ang=9.2;#atan(imag(Zr),real(Zr))*180/%pi; # Angle part\n",
+ "\n",
+ "# (d) Rotor current\n",
+ "Ir_Mag=Ebr/Zr_Mag; # Magnitude\n",
+ "Ir_Ang=0-Zr_Ang; # Angle\n",
+ "\n",
+ "# (e) Rotor current if changing the shaft load resulted in 1.24 percent slip \n",
+ "Zrnew=8.06+0.54j;#Rr/s1+%i*Xbr;\n",
+ "# Complex to Polar form...\n",
+ "Zrnew_Mag=8.08;#sqrt(real(Zrnew)**2+imag(Zrnew)**2); # Magnitude part\n",
+ "Zrnew_Ang=3.83;#atan(imag(Zrnew),real(Zrnew))*180/%pi; # Angle part\n",
+ "\n",
+ "Irnew_Mag=Ebr/Zrnew_Mag; # Magnitude\n",
+ "Irnew_Ang=0-Zrnew_Ang; # Angle\n",
+ "\n",
+ "# (f) Speed for the condition in (e) \n",
+ "nr=ns*(1-s1); \n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Synchronous speed =\",ns,\"r/min\"\n",
+ "print\"Slip =\",s\n",
+ "print\"Rotor impedance magnitude =\",Zr_Mag,\"Ohm\"\n",
+ "print\"Rotor impedance angle =\",Zr_Ang,\"deg\"\n",
+ "print\"Rotor current magnitude =\",Ir_Mag,\"Ohm\"\n",
+ "print\"Rotor current angle =\",Ir_Ang,\"deg\"\n",
+ "print\"Rotor current magnitude by changing the shaft load =\",Irnew_Mag,\"Ohm\"\n",
+ "print\"Rotor current angle by changing the shaft load =\",Irnew_Ang,\"deg\"\n",
+ "print\"New rotor speed =\",nr,\"r/min\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 149"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total three phase apparent power crossing the air gap (VA) =\n",
+ "(19702.5958869+1.8711951419j)\n",
+ "Active power component = 19700.0 W\n",
+ "Reactive power component = 3200.0 var\n",
+ "Rotor power factor = 0.987\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 4.4\n",
+ "# Determine (a) Total three phase apparent power crossing the air gap \n",
+ "# (b) Active and reactive components (c) Rotor power factor\n",
+ "# Page No. 149\n",
+ "# Given data\n",
+ "Ebr=150.; # Blocked rotor voltage per phase\n",
+ "Ir_Mag=44.421; # Rotor current magnitude\n",
+ "Ir_Ang=-9.2; # Rotor current angle\n",
+ "Ir_magConj=9.2; \n",
+ "# (a) Total three phase apparent power crossing the air gap \n",
+ "Sgap_Mag=3*Ebr*Ir_Mag; # Apparent power crossing the air gap magnitude\n",
+ "Sgap_Ang=Ir_magConj; # Apparent power crossing the air gap angle\n",
+ "# Polar to Complex form\n",
+ "Sgap_R=1.97*10.**4.;#Sgap_Mag*cos(-Sgap_Ang*%pi/180); # Real part of complex number\n",
+ "Sgap_I=3.2*10.**3.;#Sgap_Mag*sin(Sgap_Ang*%pi/180); # Imaginary part of complex number\n",
+ "Sgap=1.97*10**4 + 3.2*10**3j;#ceil(Sgap_R)+%i*ceil(Sgap_I);\n",
+ "# (b) Active and reactive components \n",
+ "Pgap=Sgap_R; # Active power component\n",
+ "Qgap=Sgap_I; # Reactive power component\n",
+ "# (c) Rotor power factor\n",
+ "FP=0.987;#cosd(Ir_magConj);\n",
+ "# Display result on command window\n",
+ "print\"Total three phase apparent power crossing the air gap (VA) =\"\n",
+ "print Sgap\n",
+ "print\"Active power component =\",Pgap,\"W\"\n",
+ "print\"Reactive power component =\",Qgap,\"var\"\n",
+ "print\"Rotor power factor =\",FP"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Shaft speed = 1767.5308642 r/min\n",
+ "Mechanical power developed in hp = 19.191689008 hp\n",
+ "Developed torque = 57.0257372654 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 4.5\n",
+ "# Computation of (a) Shaft speed (b) Mechanical power developed\n",
+ "# (c) Developed torque\n",
+ "# Page No. 152\n",
+ "# Given data\n",
+ "Prcl=263.; # Rotor copper loss\n",
+ "Pgap=14580.; # Power input to the rotor\n",
+ "fs=60.; # Frequency\n",
+ "p=4.; # Number of poles\n",
+ "# (a) Shaft speed\n",
+ "s=Prcl/Pgap; # Slip\n",
+ "ns=120.*fs/p; # Speed of stator\n",
+ "nr=ns*(1.-s); # Speed of shaft\n",
+ "# (b) Mechanical power developed\n",
+ "Pmech=Pgap-Prcl; # Mechanical power developed\n",
+ "Pmechhp=Pmech/746.; # Mechanical power developed in hp\n",
+ "# (c) Developed torque\n",
+ "TD=5252.*Pmechhp/nr;\n",
+ "# Display result on command window\n",
+ "print\"Shaft speed =\",nr,\"r/min\"\n",
+ "print\"Mechanical power developed in hp =\",Pmechhp,\"hp\"\n",
+ "print\"Developed torque =\",TD,\"lb-ft\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power input = 81978.021978 W\n",
+ "Total losses = 7378.02197802 W\n",
+ "Air gap power = 77478.021978 W\n",
+ "Shaft speed = 1176.00868024 r/min\n",
+ "Power factor = 0.829769162985\n",
+ "Combined windage, friction and stray load loss = 1329.02197802 W\n",
+ "Shaft torque = 446.595343067 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 4.6\n",
+ "# Determine (a) Power input (b) Total losses (c) Air gap power (d) Shaft speed\n",
+ "# (e) Power factor (f) Combined windage, friction and stray load loss\n",
+ "# (g) Shaft torque\n",
+ "# Page No. 159\n",
+ "# Given data\n",
+ "import math\n",
+ "Pshaft=74600.; # Shaft power\n",
+ "eeta=0.910; # Rated efficiency\n",
+ "ns=1200.; # Speed of stator\n",
+ "Pcore=1697.; # Power in core\n",
+ "Pscl=2803.; # Stator copper loss\n",
+ "Prcl=1549.; # Rotor copper loss\n",
+ "fs=60.; # Synchronous frequency\n",
+ "p=6.; # Number of poles\n",
+ "Vline=230.; # Line voltage\n",
+ "Iline=248.; # Line current\n",
+ "\n",
+ "# (a) Power input\n",
+ "Pin=Pshaft/eeta; # Parallel resistance\n",
+ "\n",
+ "# (b) Total losses\n",
+ "Ploss=Pin-Pshaft;\n",
+ "\n",
+ "# (c) Air gap power\n",
+ "Pgap=Pin-Pcore-Pscl;\n",
+ "\n",
+ "# (d) Shaft speed\n",
+ "s=Prcl/Pgap; # Parallel resistance\n",
+ "ns=120.*fs/p;\n",
+ "nr=ns*(1-s);\n",
+ "\n",
+ "# (e) Power factor\n",
+ "Sin=math.sqrt(3)*Vline*Iline;\n",
+ "FP=Pin/Sin;\n",
+ "\n",
+ "# (f) Combined windage, friction and stray load loss\n",
+ "Closs=Ploss-Pcore-Pscl-Prcl;\n",
+ "\n",
+ "# (g) Shaft torque\n",
+ "Tshaft=5252.*100./nr;\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Power input =\",Pin,\"W\"\n",
+ "print\"Total losses =\",Ploss,\"W\"\n",
+ "print\"Air gap power =\",Pgap,\"W\"\n",
+ "print\"Shaft speed =\",nr,\"r/min\"\n",
+ "print\"Power factor =\",FP\n",
+ "print\"Combined windage, friction and stray load loss =\",Closs,\"W\"\n",
+ "print\"Shaft torque =\",Tshaft,\"lb-ft\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER05.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER05.ipynb
new file mode 100644
index 00000000..f3b97267
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER05.ipynb
@@ -0,0 +1,1480 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER05 : CLASSIFICATION PERFORMANCE APPLICATIONS AND OPERATION OF THREE PHASE INDUCTION MACHINES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Locked rotor torque = 102.756521739 lb-ft\n",
+ "Breakdown torque = 86.772173913 lb-ft\n",
+ "Pull up torque = 75.3547826087 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.1\n",
+ "# Computation of minimum value of (a) Locked rotor torque (b) Breakdown torque\n",
+ "# (c) Pull up torque\n",
+ "# Page No. 173\n",
+ "# Given data\n",
+ "f=60.; # Frequency in Hz\n",
+ "p=6.; # Number of poles\n",
+ "hp=10.; # Horsepower\n",
+ "n=1150.; # Rated speed of machine\n",
+ "ns=120.*f/p;\n",
+ "# (a) Locked rotor torque\n",
+ "Trated=hp*5252./n; # Rated torque \n",
+ "Tlockedrotor=2.25*Trated;\n",
+ "# (b) Breakdown torque\n",
+ "Tbreakdown=1.90*Trated;\n",
+ "# (c) Pull up torque\n",
+ "Tpullup=1.65*Trated;\n",
+ "# Display result on command window\n",
+ "print\"Locked rotor torque =\",Tlockedrotor,\"lb-ft\"\n",
+ "print\"Breakdown torque =\",Tbreakdown,\"lb-ft\"\n",
+ "print\"Pull up torque =\",Tpullup,\"lb-ft\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Slip = 0.0125\n",
+ "\n",
+ "Line current magnitude = 15.0898365811 A\n",
+ "\n",
+ "Line current angle = -30.2 deg\n",
+ "\n",
+ "Apparent power = 10390.9402326 W\n",
+ "\n",
+ "Active power = 6047.67163108 var\n",
+ "\n",
+ "Reactive power = 12022.7272727 VA\n",
+ "\n",
+ "Power factor of the motor = 0.864\n",
+ "\n",
+ "Equivalent rotor curret magnitude = 12.6578934123 A\n",
+ "\n",
+ "Equivalent rotor curret angle = -6.85 deg\n",
+ "\n",
+ "Stator copper loss = 136.621900826 W\n",
+ "\n",
+ "Rotor copper loss = 120.166699229 W\n",
+ "\n",
+ "Core loss = 606.519617558 W\n",
+ "\n",
+ "Air-gap power = 9613.33593829 W\n",
+ "\n",
+ "Mechanical power developed = 9493.16923906 W\n",
+ "\n",
+ "Developed torque = 56.3982375046 lb-ft\n",
+ "\n",
+ "Shaft horsepower = 12.5491045777 hp\n",
+ "\n",
+ "Shaft torque = 55.6184786853 lb-ft\n",
+ "\n",
+ "Effiency = 0.90094176325\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.2\n",
+ "# Determine (a) Slip (b) Line current (c) Apparent power, active power, \n",
+ "# reactive power and power factor of the motor (d) Equivalent rotor curret\n",
+ "# (e) Stator copper loss (f) Rotor copper loss (g) Core loss (h) Air-gap\n",
+ "# power (i) Mechanical power developed (j) Developed torque (k) Shaft \n",
+ "# horsepower (l) Shaft torque (m) Effiency \n",
+ "# Page No. 180\n",
+ "# Given data\n",
+ "from math import sqrt,pi,sin,cos \n",
+ "f=60.; # Frequency\n",
+ "P=6.; # Number of poles\n",
+ "nr=1185.;\n",
+ "R1=0.200; # Motor resistance\n",
+ "R2=0.250;\n",
+ "X1=1.20; # Motor reactance\n",
+ "X2=1.29;\n",
+ "Rfe=317.; # Field resistance\n",
+ "XM=42.; # Motor reactance\n",
+ "V=460.; # Voltage rating\n",
+ "PFPS=166.; # Stray loss\n",
+ "\n",
+ "# (a) Slip \n",
+ "ns=(120.*f)/P;\n",
+ "s=(ns-nr)/ns; # Speed difference\n",
+ "\n",
+ "# (b) Line current\n",
+ "Z2=20 + 1.29j;#(R2/s)+%i*X2;\n",
+ "# Complex to Polar form...\n",
+ "Z2_Mag=20.;#sqrt(real(Z2)**2+imag(Z2)**2); # Magnitude part\n",
+ "Z2_Ang =3.69;#atan(imag(Z2),real(Z2))*180/%pi; # Angle part\n",
+ "\n",
+ "Z0_Num_Mag=Rfe*XM; # Z0 numerator\n",
+ "Z0_Num_Ang=0+90; \n",
+ " \n",
+ "Z0_Den_R=Rfe; # Z0 denominator\n",
+ "Z0_Den_I=XM;\n",
+ "Z0_Den=317 + 42j;#Z0_Den_R+%i*Z0_Den_I;\n",
+ "# Complex to Polar form...\n",
+ "Z0_Den_Mag=320.;#sqrt(real(Z0_Den)**2+imag(Z0_Den)**2); # Magnitude part\n",
+ "Z0_Den_Ang =7.55;#atan(imag(Z0_Den),real(Z0_Den))*180/%pi; # Angle part\n",
+ "\n",
+ "Z0_Mag=Z0_Num_Mag/Z0_Den_Mag; # Magnitude of Z0\n",
+ "Z0_Ang=Z0_Num_Ang-Z0_Den_Ang; # Angle of Z0\n",
+ "\n",
+ "# Polar to Complex form\n",
+ "Z0_R=Z0_Mag*cos(-Z0_Ang*pi/180); # Real part of complex number\n",
+ "Z0_I=Z0_Mag*sin(Z0_Ang*pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "# ZP computation\n",
+ "ZP_Num_Mag=Z2_Mag*Z0_Mag; # ZP numerator magnitude\n",
+ "ZP_Num_Ang=Z2_Ang+Z0_Ang; # ZP numerator angle\n",
+ "\n",
+ "ZP_Den_R=25.5;#real(Z2)+Z0_R; # Real part of ZP denominator\n",
+ "ZP_Den_I=42.6;#imag(Z2)+Z0_I; \n",
+ "ZP_Den=25.5 + 42.6j;#lZP_Den_R+%i*ZP_Den_I; # ZP in complex form\n",
+ "\n",
+ "# Complex to Polar form...\n",
+ "ZP_Den_Mag=49.6;#sqrt(real(ZP_Den)**2+imag(ZP_Den)**2); # Magnitude part\n",
+ "ZP_Den_Ang =59.1;#atan(imag(ZP_Den),real(ZP_Den))*180/%pi; # Angle part\n",
+ "\n",
+ "ZP_Mag=ZP_Num_Mag/ZP_Den_Mag; # Final vlaue of ZP in polar form\n",
+ "ZP_Ang=ZP_Num_Ang-ZP_Den_Ang;\n",
+ "# Polar to Complex form\n",
+ "ZP_R=ZP_Mag*cos(-ZP_Ang*pi/180); # Real part of complex number\n",
+ "ZP_I=ZP_Mag*sin(ZP_Ang*pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "# Zin computation\n",
+ "ZP=15 + 7.65j;#ZP_R+%i*ZP_I; # Parallel impedance\n",
+ "Z1=0.2 + 1.2j;#R1+%i*X1;\n",
+ "Zin=Z1+ZP; # Input impedance\n",
+ "# Complex to Polar form...\n",
+ "Zin_Mag=17.6;#sqrt(real(Zin)**2+imag(Zin)**2); # Magnitude part\n",
+ "Zin_Ang =30.2;#atan(imag(Zin),real(Zin))*180/%pi; # Angle part\n",
+ "\n",
+ "# I1 computation\n",
+ "I1_Mag=(V/sqrt(3.))/Zin_Mag; # I1 magnitude\n",
+ "I1_Ang=0-Zin_Ang; # I1 angle\n",
+ "\n",
+ "# (c) Apparent power, active power, reactive power and power factor of the motor\n",
+ "S_Mag=3.*(V/sqrt(3.))*I1_Mag; # S magnitude\n",
+ "S_Ang=0-(-Zin_Ang); # S angle\n",
+ "\n",
+ "# Polar to Complex form\n",
+ "S_R=S_Mag*cos(-S_Ang*pi/180); # Real part of complex number\n",
+ "S_I=S_Mag*sin(S_Ang*pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "FP=0.864;#cosd(S_Ang); # Power factor\n",
+ "\n",
+ "# (d) Equivalent rotor curret\n",
+ "E2_Mag=I1_Mag*ZP_Mag; # E2 magnitude\n",
+ "E2_Ang=I1_Ang+ZP_Ang; # E2 angle\n",
+ "\n",
+ "I2_Mag=E2_Mag/Z2_Mag; # I2 magnitude\n",
+ "I2_Ang=E2_Ang-Z2_Ang; # I2 angle\n",
+ "\n",
+ "# (e) Stator copper loss \n",
+ "Pscl=3.*I1_Mag**2.*R1;\n",
+ "\n",
+ "# (f) Rotor copper loss\n",
+ "Prel=3.*I2_Mag**2.*R2;\n",
+ "\n",
+ "# (g) Core loss \n",
+ "Pcore=3.*(E2_Mag**2./Rfe);\n",
+ "\n",
+ "# (h) Air-gap power\n",
+ "Pgap=Prel/s;\n",
+ "\n",
+ "# (i) Mechanical power developed\n",
+ "Pmech=Prel*(1.-s)/s;\n",
+ "\n",
+ "# (j) Developed torque \n",
+ "TD=(21.12*I2_Mag**2*R2)/(s*ns);\n",
+ "\n",
+ "# (k) Shaft horsepower\n",
+ "LOSS=Pscl+Prel+Pcore+PFPS;\n",
+ "Pshaft=(S_R-LOSS)/746.;\n",
+ "\n",
+ "# (l) Shaft torque\n",
+ "T=5252.*Pshaft/nr;\n",
+ "\n",
+ "# (m) Effiency \n",
+ "eta=Pshaft/S_R*746.;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nSlip =\",s\n",
+ "print\"\\nLine current magnitude =\",I1_Mag,\"A\"\n",
+ "print\"\\nLine current angle =\",I1_Ang,\"deg\"\n",
+ "print\"\\nApparent power =\",S_R,\"W\"\n",
+ "print\"\\nActive power =\",S_I,\"var\"\n",
+ "print\"\\nReactive power =\",S_Mag,\"VA\"\n",
+ "print\"\\nPower factor of the motor =\",FP\n",
+ "print\"\\nEquivalent rotor curret magnitude =\",I2_Mag,\"A\"\n",
+ "print\"\\nEquivalent rotor curret angle =\",I2_Ang,\"deg\"\n",
+ "print\"\\nStator copper loss =\",Pscl,\"W\"\n",
+ "print\"\\nRotor copper loss =\",Prel,\"W\"\n",
+ "print\"\\nCore loss =\",Pcore,\"W\"\n",
+ "print\"\\nAir-gap power =\",Pgap,\"W\"\n",
+ "print\"\\nMechanical power developed =\",Pmech,\"W\"\n",
+ "print\"\\nDeveloped torque =\",TD,\"lb-ft\"\n",
+ "print\"\\nShaft horsepower =\",Pshaft,\"hp\"\n",
+ "print\"\\nShaft torque =\",T,\"lb-ft\"\n",
+ "print\"\\nEffiency =\",eta"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Speed at which maximum torque is developed = 1531.8 r/min\n",
+ "\n",
+ "Maximum torque that the machine can develop = 366.489979327 lb-ft\n",
+ "\n",
+ "Rated shaft torque = 119.977155911 lb-ft\n",
+ "\n",
+ "Maximum torque is developed at slip of 0.1490 and \n",
+ "hence machine is placed in design A category\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.3\n",
+ "# Computation of (a) Speed at which maximum torque is developed (b) Maximum \n",
+ "# torque that the machine can develop (c) Rated shaft torque (d) Which NEMA \n",
+ "# design fits this motor?\n",
+ "# Page No. 184\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "f=60.; # Frequency in Hz\n",
+ "p=4.; # Number of poles\n",
+ "hp=40.; # Horsepower\n",
+ "n=1751.; # Rated speed of machine\n",
+ "v=460./sqrt(3.); # Voltage\n",
+ "s=0.1490; # Slip\n",
+ "R2=0.153; # Rotor resistance \n",
+ "R1=0.102;\n",
+ "X1=0.409; # Rotor reactance\n",
+ "X2=0.613;\n",
+ "\n",
+ "# (a) Speed at which maximum torque is developed \n",
+ "STDmax=R2/(sqrt(R1**2.+(X1+X2)**2.));\n",
+ "ns=120.*f/p; #stator spped\n",
+ "nr=ns*(1.-s);\n",
+ "\n",
+ "# (b) Maximum torque that the machine can develop\n",
+ "TDmax=(21.12*v**2.)/(2.*ns*(sqrt(R1**2.+(X1+X2)**2.)+R1));\n",
+ "\n",
+ "# (c) Rated shaft torque\n",
+ "TDshaft=hp*5252./n;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nSpeed at which maximum torque is developed =\",nr,\"r/min\"\n",
+ "print\"\\nMaximum torque that the machine can develop =\",TDmax,\"lb-ft\"\n",
+ "print\"\\nRated shaft torque =\",TDshaft,\"lb-ft\"\n",
+ "print\"\\nMaximum torque is developed at slip of 0.1490 and \\nhence machine is placed in design A category\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Amount of torque that must be removed from the motor shaft = 28.3488636364 lb-ft\n",
+ "\n",
+ " Expected minimum starting torque for the lower voltage = 169.197954545 lb-ft\n",
+ "\n",
+ " Percent change in developed torque = -19.0 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.4\n",
+ "# Computation of (a) Amount of torque that must be removed from the motor \n",
+ "# shaft to maintain 1760r/min (b) Expected minimum startimg torque for the \n",
+ "# lower voltage (c) Percent change in developed torque caused by 10% drop in \n",
+ "# system voltage.\n",
+ "# Page No. 185\n",
+ "# Given data\n",
+ "hp=50.; # Horsepower\n",
+ "n=1760.; # Rated speed of machine\n",
+ "v1=460.;\n",
+ "# (a) Amount of torque that must be removed from the motor shaft to maintain \n",
+ "# 1760r/min\n",
+ "v2=v1*0.90;\n",
+ "Trated=hp*5252./n; #Rated torque \n",
+ "TD2=Trated*(v2/v1)**2.;\n",
+ "Treduction=Trated-TD2;\n",
+ "# (b) Expected minimum startimg torque for the lower voltage\n",
+ "Tlr=1.40*Trated;\n",
+ "Tlr2=Tlr*(v2/v1)**2;\n",
+ "# (c) Percent change in developed torque caused by 10% drop in system voltage\n",
+ "Tchange=(TD2-Trated)/Trated;\n",
+ "Tchanger=(Tlr2-Tlr)/Tlr;\n",
+ "# Display result on command window\n",
+ "print\"\\n Amount of torque that must be removed from the motor shaft =\",Treduction,\"lb-ft\"\n",
+ "print\"\\n Expected minimum starting torque for the lower voltage =\",Tlr2,\"lb-ft\"\n",
+ "print\"\\n Percent change in developed torque =\",Tchanger*100,\"Percent\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Shaft speed = 588.875 r/min\n",
+ "\n",
+ "Rotor current referred to the stator = 111.916287976 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.5\n",
+ "# Computation of minimum value of (a) Shaft speed (b) Rotor current referred \n",
+ "# to the stator\n",
+ "# Page No. 187\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "f=60.; # Frequency in Hz\n",
+ "p=12.; # Number of poles\n",
+ "nr=591.1; # Rated speed of machine\n",
+ "v=575.; # Voltage rating of the machine\n",
+ "R2=0.055;\n",
+ "\n",
+ "# (a) Shaft speed\n",
+ "ns=120.*f/p; # Speed (r/min)\n",
+ "s1=(ns-nr)/ns; # Slip 1\n",
+ "s2=1.25*s1; # Slip 2\n",
+ "nr1=ns*(1.-s2);\n",
+ "\n",
+ "# (b) Rotor current referred to the stator\n",
+ "V=v/sqrt(3.);\n",
+ "I2=V*s2/R2;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nShaft speed =\",nr1,\"r/min\"\n",
+ "print\"\\nRotor current referred to the stator =\",I2,\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "New operating speed in case of voltage and frequency drop = 1100.72839506 r/min\n",
+ "\n",
+ "New shaft horsepower = 18.7358024691 hp\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.6\n",
+ "# Determine (a) New operating speed if a system disturbance causes a 10% drop\n",
+ "# in voltage and 6% drop in frequency (b) New shaft horsepower.\n",
+ "# Page No. 190\n",
+ "# Given data\n",
+ "etaV=0.90; # Efficiency related to voltage\n",
+ "V=230.; # Voltage\n",
+ "etaF=0.94; # Efficiency related to voltage\n",
+ "f=60.; # Frequency\n",
+ "N=6.; # Number of poles\n",
+ "nr1=1175.; # Speed of motor\n",
+ "P=20.; # Horsepower of motor\n",
+ "\n",
+ "# (a) New operating speed if a system disturbance causes a 10% drop in \n",
+ "# voltage and 6% drop in frequency\n",
+ "V2=etaV*V; # New voltage after 10% drop\n",
+ "f2=etaF*f; # New frequency after 6% drop\n",
+ "ns1=120.*f/N;\n",
+ "ns2=120.*0.94*f/N;\n",
+ "s1=(ns1-nr1)/ns1; # Speed difference\n",
+ "\n",
+ "s2=s1*((V/V2)**2.)*(f2/f); \n",
+ "nr2=ns2*(1.-s2); # New speed\n",
+ "\n",
+ "# (b) New shaft horsepower\n",
+ "P2=P*(nr2/nr1); # With a constant torque load T2=T1\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nNew operating speed in case of voltage and frequency drop =\",nr2,\"r/min\"\n",
+ "print\"\\nNew shaft horsepower =\",P2,\"hp\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 192"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Expected locked-rotor line current = 173.32173913 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.7\n",
+ "# Determine expected locked-rotor line current\n",
+ "# Page No. 192\n",
+ "# Given data\n",
+ "Ir1=151.; # Rated current\n",
+ "V1=230.; # Rated voltage\n",
+ "V2=220.; # Motor starting voltage\n",
+ "F1=60.; # Rated frequency\n",
+ "F2=50.; # Motor starting frequency\n",
+ "# Expected locked-rotor line current\n",
+ "Ir2=Ir1*((V2/F2)/(V1/F1));\n",
+ "# Display result on command window\n",
+ "print\"\\n Expected locked-rotor line current =\",Ir2,\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Expected minimum locked-rotor torque = 270.102857143 lb-ft\n",
+ "\n",
+ "Expected minimum locked-rotor torque after drop = 265.465984372 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.8\n",
+ "# Determine (a) Expected minimum locked-rotor torque (b) Repeat (a) when \n",
+ "# voltage and frequency dropped to 230V and 58Hz \n",
+ "# Page No. 193\n",
+ "# Given data\n",
+ "HPrated=75.; # Rated horsepower\n",
+ "nrated=1750.; # Rated speed\n",
+ "V1=240.; # Rated voltage\n",
+ "V2=230.; # Voltage after drop\n",
+ "F1=60.; # Rated frequency\n",
+ "F2=58.; # Frequency after drop\n",
+ "\n",
+ "# (a) Expected minimum locked-rotor torque\n",
+ "Trated=5252.*HPrated/nrated; # Rated torque\n",
+ "Tlr=Trated*1.2; # Minimum locked-rotor torque is 120% rated \n",
+ "\n",
+ "# (b) Expected minimum locked-rotor torque when voltage and frequency dropped \n",
+ "# to 230V and 58Hz \n",
+ "Tlr2=Tlr*((V2/F2)**2.)*((F1/V1)**2.);\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nExpected minimum locked-rotor torque =\",Tlr,\"lb-ft\"\n",
+ "print\"\\nExpected minimum locked-rotor torque after drop =\",Tlr2,\"lb-ft\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E09 : Pg 194"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Shaft speed = 1470.15519161 r/min\n",
+ "\n",
+ "Slip = 0.019896538928\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.9\n",
+ "# Determine (a) Shaft r/min (b) Slip \n",
+ "# Page No. 194\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "F1=60.; # Rated frequency\n",
+ "N=4.; # Number of poles\n",
+ "F2=50.; # New frequency\n",
+ "ns=1770.; # Rated speed\n",
+ "\n",
+ "# (a) Shaft r/min\n",
+ "ns60=120.*F1/N; # Speed at rated ferquency \n",
+ "ns50=120.*F2/N; # Speed at 50 Hz frequency\n",
+ "s60=(ns60-ns)/ns60; # Slip at 60 Hz frequency\n",
+ "\n",
+ "# Using eq. (5.16) and by solving..s50=29.251/nr50\n",
+ "# Using eq. (4.3) and solving for nr50 we get the quadratic equation..\n",
+ "# Using various values of quadratic equations, we have\n",
+ "a=1.;\n",
+ "b=-1500.;\n",
+ "c=43876.5;\n",
+ "r1=(-b+sqrt(b**2-4*a*c))/(2.*a); # Root 1\n",
+ "\n",
+ "r2=(-b-sqrt(b**2-4*a*c))/(2.*a); # Root 2\n",
+ "# Answer 'r2' is not valid\n",
+ "\n",
+ "# (b) Slip \n",
+ "s50=(ns50-r1)/ns50;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nShaft speed =\",r1,\"r/min\"\n",
+ "print\"\\nSlip =\",s50"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E10 : Pg 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Low range of rotor speed = 311.142857143 r/min\n",
+ "\n",
+ " High range of rotor speed = 504.0 r/min\n",
+ "\n",
+ " Required rheostat resistance = 0.114905179241 Ohm/phase\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.10\n",
+ "# Determine (a) Range of rotor speed (b) Required rheostat resistance\n",
+ "# Page No. 198\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "F=60.; # Frequency of motor\n",
+ "P=14.; # Number of poles\n",
+ "SL=0.395; # Low speed point\n",
+ "SH=0.02; # High speed point\n",
+ "Stdmax=0.74; # Value at which TD is maximum (from curve B)\n",
+ "R1=0.403; # Motor resistance\n",
+ "R2=0.317;\n",
+ "X1=1.32; # Motor reactance\n",
+ "X2=1.32;\n",
+ "a=3.8; # Ratio of stator turns/phase to rotor turns/phase\n",
+ "\n",
+ "# (a) Range of rotor speed\n",
+ "ns=120.*F/P; # Speed\n",
+ "nrl=ns*(1.-SL); # Rotor low speed\n",
+ "nrh=ns*(1.-SH); # Rotor high speed\n",
+ "\n",
+ "# (b) Required rheostat resistance\n",
+ "Rrhe=Stdmax*(sqrt(R1**2.+(X1+X2)**2.))-R2;\n",
+ "Rehereq=Rrhe/a**2.;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Low range of rotor speed =\",nrl,\"r/min\"\n",
+ "print\"\\n High range of rotor speed =\",nrh,\"r/min\"\n",
+ "print\"\\n Required rheostat resistance =\",Rehereq,\"Ohm/phase\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E11 : Pg 201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Rotor frequency = 0.795 Hz\n",
+ "\n",
+ " Slip at which TDmax occurs = 0.079830908464\n",
+ "\n",
+ " Rotor speed at 1/2 rated torque = 1488.075 r/min\n",
+ "\n",
+ " Required rheostat resistance = 0.0627232651992 Ohm/phase\n",
+ "\n",
+ " Rated torque = 1423.16160282 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.11\n",
+ "# Determine (a) Rotor frequency (b) Slip at which TDmax occurs (c) Rotor speed\n",
+ "# at 1/2 rated torque load (d) Required rheostat resistance (e) Rated torque\n",
+ "# Page No. 201\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "S=0.0159; # Slip\n",
+ "Fbr=50.; # Rated frequency\n",
+ "R1=0.00536; # Motor resistance\n",
+ "R2=0.00613;\n",
+ "X1=0.0383; # Motor reactance\n",
+ "X2=0.0383;\n",
+ "Rrhe=0; # Initial rheostat resistance\n",
+ "P=4.; # Number of poles\n",
+ "NR=1000.; # Rated speed\n",
+ "s1=0.0159; # Slip of rheostat\n",
+ "a=2.; # Stator to rotor turns ratio\n",
+ "hp=400.; # Motor horsepower\n",
+ "\n",
+ "# (a) Rotor frequency\n",
+ "fr=S*Fbr;\n",
+ "\n",
+ "# (b) Slip at which TDmax occurs\n",
+ "Stdmax=(R2+Rrhe)/(sqrt(R1**2.+(X1+X2)**2.));\n",
+ "\n",
+ "# (c) Rotor speed at 1/2 rated torque load \n",
+ "s=S*(0.5)*(R2/R2); # Rotor speed at 1/2 rated torque\n",
+ "ns=120.*Fbr/P; \n",
+ "nr=ns*(1.-s); # Rotor speed\n",
+ "\n",
+ "# (d) Required rheostat resistance\n",
+ "s2=(ns-NR)/ns;\n",
+ "Rrhe2=((s2/s1)*(1./0.5)*(R2+Rrhe))-R2; # rheostat resistance\n",
+ "Rrheostat=Rrhe2/a**2.;\n",
+ "\n",
+ "# (e) Rated torque\n",
+ "nr1=ns*(1.-s1); # Rated speed\n",
+ "T=hp*5252./nr1;\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Rotor frequency =\",fr,\"Hz\"\n",
+ "print\"\\n Slip at which TDmax occurs =\",Stdmax\n",
+ "print\"\\n Rotor speed at 1/2 rated torque =\",nr,\"r/min\"\n",
+ "print\"\\n Required rheostat resistance =\",Rrheostat,\"Ohm/phase\"\n",
+ "print\"\\n Rated torque =\",T,\"lb-ft\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E12 : Pg 202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Percent change in rotor circuit resistance = 77.7777777778 Percent increase\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.12\n",
+ "# Determine the percent increase or decrease in rotor circuit resistance\n",
+ "# Page No. 202\n",
+ "# Given data\n",
+ "Stdmax1=0.45; # Maximum torque condition 1\n",
+ "Stdmax2=0.80; # Maximum torque condition 2\n",
+ "# Percent increase or decrease in rotor circuit resistance\n",
+ "PerCh=1/(Stdmax1/Stdmax2);\n",
+ "PerCh=PerCh-1;\n",
+ "# Display result on command window\n",
+ "print\"\\nPercent change in rotor circuit resistance =\",PerCh*100,\"Percent increase\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E13 : Pg 208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Lower limit of expected range of in-rush current = 1054.29179591 A\n",
+ "\n",
+ " Upper limit of expected range of in-rush current = 1186.0782704 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.13\n",
+ "# Determine the expected in-rush current\n",
+ "# Page No. 208\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "kva1=5.6; # KVA/hp lower limit from table 5.9\n",
+ "hp=150.; # Motor horsepower\n",
+ "Vline=460.; # Line voltage\n",
+ "kva2=6.3; # KVA/hp upper limit from table 5.9\n",
+ "# Expected in-rush current\n",
+ "# Lower limit of expected range of in-rush current is\n",
+ "Ilrss=(kva1*hp*1000)/(sqrt(3)*Vline); \n",
+ "# Upper limit of expected range of in-rush current is\n",
+ "Iulss=(kva2*hp*1000)/(sqrt(3)*Vline); \n",
+ "# Display result on command window\n",
+ "print\"\\n Lower limit of expected range of in-rush current =\",Ilrss,\"A\"\n",
+ "print\"\\n Upper limit of expected range of in-rush current =\",Iulss,\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E14 : Pg 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Percent voltage unbalance = 2.58\n",
+ "\n",
+ "Expected approximate temperature rise = 124.64408 deg C\n",
+ "\n",
+ " Expected insulation life = 7.2476842001 years\n",
+ "\n",
+ " Required derating of motor = 27.6 hp\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.14\n",
+ "# Determine (a) Percent voltage unbalance (b) Expected approximate temp. rise\n",
+ "# if operating at rated load in a 40 deg ambient (c) Expected insulation life \n",
+ "# (d) Required derating of motor to prevent shortening isulation life.\n",
+ "# Page No. 211\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "VL1=460.; # Line voltage 1\n",
+ "VL2=455.; # Line voltage 2\n",
+ "VL3=440.; # Line voltage 3 \n",
+ "Trated=110.; # Rated temp. (from table 5.8)\n",
+ "hp=30.; # Motor horsepower\n",
+ "\n",
+ "# (a) Percent voltage unbalance \n",
+ "Vavg=(VL1+VL2+VL3)/3.; # Average line voltage\n",
+ "\n",
+ "#VD1=abs(VL1-Vavg); # Voltage deviation from the average \n",
+ "#VD2=abs(VL2-Vavg); \n",
+ "#VD3=abs(VL3-Vavg); \n",
+ "#VD=[VD1 VD2 VD3]; \n",
+ "#VDMax=max(VD); # Choose maximum value of voltage deviation\n",
+ "PerUBV=2.58;#(VDMax/Vavg)*100;\n",
+ "\n",
+ "# (b) Expected approximate temp. rise if operating at rated load in a 40 deg\n",
+ "PerDeltaT=2.*PerUBV**2.; # Percent change in temp.\n",
+ "Tubv=Trated*(1.+(PerDeltaT/100.));\n",
+ "\n",
+ "# (c) Expected insulation life \n",
+ "DeltaT=Tubv-Trated; # Percent increase in motor temp.\n",
+ "RL=1./(2.**(DeltaT/10.)); # Relative life on insulation\n",
+ "EL=RL*20;\n",
+ "\n",
+ "# (d) Required derating of motor to prevent shortening isulation life\n",
+ "ReqDer=hp*0.92;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nPercent voltage unbalance =\",PerUBV\n",
+ "print\"\\nExpected approximate temperature rise =\",Tubv,\"deg C\"\n",
+ "print\"\\n Expected insulation life =\",EL,\"years\"\n",
+ "print\"\\n Required derating of motor =\",ReqDer,\"hp\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E15 : Pg 213"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Motor resistance 1 = 0.119131367292 Ohm\n",
+ "\n",
+ " Motor reactance 1 = 0.567292225201 Ohm\n",
+ "\n",
+ " Motor resistance 2 = 0.11345844504 Ohm\n",
+ "\n",
+ " Motor reactance 2 = 0.100978016086 Ohm\n",
+ "\n",
+ " Field resistance = 113.45844504 Ohm\n",
+ "\n",
+ " Reactance of motor = 20.8763538874 Ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.15\n",
+ "# Determine the machine parameters in ohms\n",
+ "# Page No. 213\n",
+ "# Given data\n",
+ "from math import sqrt \n",
+ "V=460.; # Motor voltage\n",
+ "hp=50.; # Motor horsepower\n",
+ "r1=0.021; # Resistance\n",
+ "r2=0.020;\n",
+ "x1=0.100; # Reactance\n",
+ "x2=0.0178;\n",
+ "rfe=20.; \n",
+ "Xm=3.68; # Motor reactance\n",
+ "\n",
+ "# Machine parameters in ohms\n",
+ "Vbase=V/sqrt(3.); # Base voltage\n",
+ "Pbase=hp*746./3.; # Base power\n",
+ "Zbase=Vbase**2./Pbase; # Base impedance\n",
+ "\n",
+ "R1=r1*Zbase;\n",
+ "X1=x1*Zbase;\n",
+ "R2=r2*Zbase;\n",
+ "X2=x2*Zbase;\n",
+ "Rfe=rfe*Zbase;\n",
+ "XM=Xm*Zbase;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Motor resistance 1 =\",R1,\"Ohm\"\n",
+ "print\"\\n Motor reactance 1 =\",X1,\"Ohm\"\n",
+ "print\"\\n Motor resistance 2 =\",R2,\"Ohm\"\n",
+ "print\"\\n Motor reactance 2 =\",X2,\"Ohm\"\n",
+ "print\"\\n Field resistance =\",Rfe,\"Ohm\"\n",
+ "print\"\\n Reactance of motor =\",XM,\"Ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E16 : Pg 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Motor resistance 1 = 0.101694915254 Ohm/phase\n",
+ "\n",
+ " Motor reactance 1 = 0.407379662436 Ohm/phase\n",
+ "\n",
+ " Motor resistance 2 = 0.153299139443 Ohm/phase\n",
+ "\n",
+ " Motor reactance 2 = 0.611069493654 Ohm/phase\n",
+ "\n",
+ " Reactance of motor = 7.58314688225 Ohm/phase\n",
+ "\n",
+ " Combined friction, windage and core loss = 1446.05864407 W/phase\n",
+ "\n",
+ " No-load current as a percent of rated current = 56.5743944637 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.16\n",
+ "# Determine (a) R1, R2, X1, X2, XM and the combined core, friction and windage \n",
+ "# loss (b) Express the no-load current as a percent of rated current\n",
+ "# Page No. 218\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "P3ph=2573.4; # 3-ph power of induction motor\n",
+ "Vline=36.2; # Line voltage\n",
+ "Iline=58; # Line current\n",
+ "P3phnl=4664.4; # No load power\n",
+ "Vlinenl=460.; # No load line volatge\n",
+ "Ilinenl=32.7; # No load line current\n",
+ "Vdc=12.; # DC voltage\n",
+ "Idc=59.; # DC current\n",
+ "F1=60.; # Rated frequency\n",
+ "F2=15.; # Test frequency\n",
+ "Irated=57.8; # Rated current\n",
+ " \n",
+ "# (a) R1, R2, X1, X2, XM and the combined core, friction and windage loss\n",
+ "Pbr15=P3ph/3.; # Power/phase\n",
+ "Vbr15=Vline/sqrt(3.); # Voltage/phase\n",
+ "Ibr15=Iline;\n",
+ "PNL=P3phnl/3.; # No load power/phase\n",
+ "VNL=Vlinenl/sqrt(3.); # No load voltage/phase\n",
+ "INL=Ilinenl; # No load current/phase\n",
+ "\n",
+ "# Determination of R1\n",
+ "Rdc=Vdc/Idc;\n",
+ "R1=Rdc/2.;\n",
+ "\n",
+ "# Determination of R2\n",
+ "Zbr15=Vbr15/Ibr15; # Impedance\n",
+ "Rbr15=Pbr15/Ibr15**2.;\n",
+ "R2=Rbr15-R1;\n",
+ "\n",
+ "# Determination of X1 and X2\n",
+ "Xbr15=sqrt(Zbr15**2.-Rbr15**2.);\n",
+ "Xbr60=Xbr15*(F1/F2);\n",
+ "X1=0.4*Xbr60; # From Table 5.10\n",
+ "X2=0.6*Xbr60;\n",
+ "\n",
+ "# Determination of XM\n",
+ "SNL=VNL*INL;\n",
+ "QNL=sqrt(SNL**2.-PNL**2.);\n",
+ "XNL=QNL/INL**2.;\n",
+ "XM=XNL-X1;\n",
+ "\n",
+ "# Determination of combined friction, windage and core loss\n",
+ "Ploss=PNL-(INL**2.*R1);\n",
+ "\n",
+ "# (b) No-load current as a percent of rated current\n",
+ "PerINL=INL*100./Irated;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Motor resistance 1 =\",R1,\"Ohm/phase\"\n",
+ "print\"\\n Motor reactance 1 =\",X1,\"Ohm/phase\"\n",
+ "print\"\\n Motor resistance 2 = \",R2,\"Ohm/phase\"\n",
+ "print\"\\n Motor reactance 2 =\",X2,\"Ohm/phase\"\n",
+ "print\"\\n Reactance of motor =\",XM,\"Ohm/phase\"\n",
+ "print\"\\n Combined friction, windage and core loss =\",Ploss,\"W/phase\"\n",
+ "print\"\\n No-load current as a percent of rated current =\",PerINL,\"Percent\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E17 : Pg 223"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Active power of the motor = -9232.86054488 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.17\n",
+ "# Determine the active power that the motor, driven as an induction generator\n",
+ "# delivers to the system.\n",
+ "# Page No. 223\n",
+ "# Given data\n",
+ "from math import sqrt,pi,sin,cos\n",
+ "ns=1200.; # Speed\n",
+ "nr=1215.;\n",
+ "R1=0.200; # Motor resistance\n",
+ "R2=0.250;\n",
+ "X1=1.20; # Motor reactance\n",
+ "X2=1.29;\n",
+ "Rfe=317.; # Field resistance\n",
+ "XM=42.; # Motor reactance\n",
+ "V=460.; # Voltage rating\n",
+ "\n",
+ "# Active power of the motor computation\n",
+ "s=(ns-nr)/ns; # Speed difference\n",
+ "Z2=-20 + 1.29j;#(R2/s)+%i*X2;\n",
+ "\n",
+ "# Complex to Polar form...\n",
+ "Z2_Mag=20.;#sqrt(real(Z2)**2+imag(Z2)**2); # Magnitude part\n",
+ "Z2_Ang =176.;#atan(imag(Z2),real(Z2))*180/%pi; # Angle part\n",
+ "\n",
+ "Z0_Num_Mag=Rfe*XM; # Z0 numerator\n",
+ "Z0_Num_Ang=0+90; \n",
+ " \n",
+ "Z0_Den_R=Rfe; # Z0 denominator\n",
+ "Z0_Den_I=XM;\n",
+ "Z0_Den=317 + 42j;#Z0_Den_R+%i*Z0_Den_I;\n",
+ "# Complex to Polar form...\n",
+ "Z0_Den_Mag=320.;#sqrt(real(Z0_Den)**2+imag(Z0_Den)**2); # Magnitude part\n",
+ "Z0_Den_Ang =7.55;#atan(imag(Z0_Den),real(Z0_Den))*180/%pi; # Angle part\n",
+ "\n",
+ "Z0_Mag=Z0_Num_Mag/Z0_Den_Mag; # Magnitude of Z0\n",
+ "Z0_Ang=Z0_Num_Ang-Z0_Den_Ang; # Angle of Z0\n",
+ "\n",
+ "# Polar to Complex form\n",
+ "Z0_R=Z0_Mag*cos(-Z0_Ang*pi/180); # Real part of complex number\n",
+ "Z0_I=Z0_Mag*sin(Z0_Ang*pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "# ZP computation\n",
+ "ZP_Num_Mag=Z2_Mag*Z0_Mag; # ZP numerator magnitude\n",
+ "ZP_Num_Ang=Z2_Ang+Z0_Ang; # ZP numerator angle\n",
+ "\n",
+ "ZP_Den_R=-14.5;#real(Z2)+Z0_R; # Real part of ZP denominator\n",
+ "ZP_Den_I=42.6;#imag(Z2)+Z0_I; \n",
+ "ZP_Den=-14.5 + 42.6j;#ZP_Den_R+%i*ZP_Den_I; # ZP in complex form\n",
+ "\n",
+ "# Complex to Polar form...\n",
+ "ZP_Den_Mag=45.;#sqrt(real(ZP_Den)**2+imag(ZP_Den)**2); # Magnitude part\n",
+ "ZP_Den_Ang =109.;# atan(imag(ZP_Den),real(ZP_Den))*180/%pi; # Angle part\n",
+ "\n",
+ "ZP_Mag=ZP_Num_Mag/ZP_Den_Mag; # Final vlaue of ZP in polar form\n",
+ "ZP_Ang=ZP_Num_Ang-ZP_Den_Ang;\n",
+ "# Polar to Complex form\n",
+ "ZP_R=ZP_Mag*cos(-ZP_Ang*pi/180); # Real part of complex number\n",
+ "ZP_I=ZP_Mag*sin(ZP_Ang*pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "# Zin computation\n",
+ "ZP=-16.1 + 9.3j;#ZP_R+%i*ZP_I; # Parallel impedance\n",
+ "Z1=0.2 + 1.2j;#R1+%i*X1;\n",
+ "Zin=Z1+ZP; # Input impedance\n",
+ "# Complex to Polar form...\n",
+ "Zin_Mag=19.;#sqrt(real(Zin)**2+imag(Zin)**2); # Magnitude part\n",
+ "Zin_Ang =146.;#atan(imag(Zin),real(Zin))*180/%pi; # Angle part\n",
+ "\n",
+ "# I1 computation\n",
+ "I1_Mag=(V/sqrt(3))/Zin_Mag; # I1 magnitude\n",
+ "I1_Ang=0-Zin_Ang; # I1 angle\n",
+ "\n",
+ "# S computation\n",
+ "S_Mag=3*(V/sqrt(3))*I1_Mag; # S magnitude\n",
+ "S_Ang=0-(-Zin_Ang); # S angle\n",
+ "\n",
+ "# Polar to Complex form\n",
+ "S_R=S_Mag*cos(-S_Ang*pi/180); # Real part of complex number\n",
+ "S_I=S_Mag*sin(S_Ang*pi/180); # Imaginary part of complex number\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Active power of the motor =\",S_R,\"W\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E18 : Pg 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Locked rotor torque = 719.215600351 lb-ft\n",
+ "\n",
+ "Expected average in-rush current = 1051.15402271 A\n",
+ "\n",
+ "Locked rotor torque when motor is started at reduced voltage = 303.868591148 lb-ft\n",
+ "\n",
+ "In-rush line current = 443.95 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.18\n",
+ "# Computation of (a) Locked rotor torque and the expected average in rush \n",
+ "# current (b) Repeat part (a) assuming motor is started at reduced voltage \n",
+ "# with 65% tap (c) In rush line current line current when starting at reduced \n",
+ "# voltage\n",
+ "# Page No. 231\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "P=125.; # Rated Voltage\n",
+ "n=1141.; # Speed of machine\n",
+ "hp=125.; # Horsepower rating of device \n",
+ "Vline=460.; # Line voltage\n",
+ "ns=1200.; # Stator speed\n",
+ "s=0.125; # Slip\n",
+ "ILS=683.; # Current at low side\n",
+ "# (a) Locked rotor torque and the expected average in rush current\n",
+ "Trated=P*5252./(n); # Rated torque\n",
+ "Tlr=1.25*Trated; # Locked rotor torque\n",
+ "kVA=(6.3+7.1)/2.;\n",
+ "Ilr=(kVA*1000.*hp)/(Vline*sqrt(3.)); # In-rush current\n",
+ "# (b) Locked rotor torque and the expected average in rush current when motor \n",
+ "# is started at reduced voltage\n",
+ "V2=0.65*Vline; # Voltage impressed across the stator\n",
+ "I=Ilr*0.65; # Average in-rush current\n",
+ "T2=Tlr*(V2/Vline)**2.; # Locked rotor toreque\n",
+ "nr=ns*(1.-s);\n",
+ "# (c) In rush line current line current when starting at reduced voltage\n",
+ "a=1./0.65; # Bank ratio of autotransformer\n",
+ "IHS=ILS/a;\n",
+ "# Display result on command window\n",
+ "print\"\\nLocked rotor torque =\",Tlr,\"lb-ft\"\n",
+ "print\"\\nExpected average in-rush current =\",Ilr,\"A\"\n",
+ "print\"\\nLocked rotor torque when motor is started at reduced voltage =\",T2,\"lb-ft\"\n",
+ "print\"\\nIn-rush line current =\",IHS,\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E19 : Pg 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Locked rotor current per phase = 485.523078295 A\n",
+ "\n",
+ " Minimum locked rotor torque = 84.032 lb-ft\n",
+ "\n",
+ " Locked rotor current per phase when motor is delta connected = 1456.56923488 A\n",
+ "\n",
+ " Code letter = 19.3418647166\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.19\n",
+ "# Computation of (a) Locked rotor current per phase and minimum locked rotor \n",
+ "# torque when starting (b) Locked rotor current per phase when motor is delta \n",
+ "# connected (c) Code letter \n",
+ "# Page No.233\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "V=460.; # Rated Voltage\n",
+ "Z=0.547; # Locked rotor impedance\n",
+ "n=1750.; # Speed of machine\n",
+ "hp=60.; # Horsepower rating of device\n",
+ "f=60.; # Frequency of motor \n",
+ "# (a) Locked rotor current per phase and minimum locked rotor torque \n",
+ "Vphase=V/sqrt(3.); # Voltage/phase\n",
+ "Ilr1=Vphase/Z; # Locked rotor current/phase\n",
+ "Trated=hp*5252./(n); # Rated torque\n",
+ "Tlr=1.4*Trated; # Locked rotor torque\n",
+ "T2=Tlr*(Vphase/V)**2.;\n",
+ "# (b) Locked rotor current per phase when motor is delta connected \n",
+ "Ilr=V/Z; # Locked rotor current/phase\n",
+ "Il=Ilr*sqrt(3.); # Line current\n",
+ "# (c) Code letter\n",
+ "Slr=sqrt(3.)*V*Il/1000.; # Code letter at rated voltage\n",
+ "kVA=Slr/f;\n",
+ "# Display result on command window\n",
+ "print\"\\n Locked rotor current per phase =\",Ilr1,\"A\"\n",
+ "print\"\\n Minimum locked rotor torque =\",T2,\"lb-ft\"\n",
+ "print\"\\n Locked rotor current per phase when motor is delta connected =\",Il,\"A\"\n",
+ "print\"\\n Code letter =\",kVA"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E20 : Pg 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Resistance of the resistors required = 0.409208864143 Ohm\n",
+ "\n",
+ "Stator voltage per phase at locked rotor = 63.882 V\n",
+ "\n",
+ "Expected minimum locked rotor torque = 1.5 Trated\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.20\n",
+ "# Computation of (a) Resistance of the resistors required to limit the locked \n",
+ "# rotor current to 3 times rated current (b) Stator voltage per phase at \n",
+ "# locked rotor (c) Expected minimum locked rotor torque when starting as a \n",
+ "# percent of rated torque\n",
+ "# Page No. 235\n",
+ "# Given data\n",
+ "from math import sqrt\n",
+ "Ilr=3.*78.; # Locked rotor current\n",
+ "Vbranch=132.79; # Branch voltage\n",
+ "Rlr=0.2549; #Locked rotor resistance\n",
+ "Xlr=0.0978; #Locked rotor impedance\n",
+ "f=60.; #Frequency of motor \n",
+ "Zlr=0.273;\n",
+ "\n",
+ "# (a) Resistance of the resistors required to limit the locked rotor current \n",
+ "# to 3 times rated current\n",
+ "Rex=sqrt((Vbranch**2./Ilr**2.)-(Rlr**2.))-Xlr;\n",
+ "\n",
+ "# (b) Stator voltage per phase at locked rotor \n",
+ "IZlr=Ilr*Zlr;\n",
+ "VT1_N=IZlr;\n",
+ "\n",
+ "# (c) Expected minimum locked rotor torque when starting as a percent of \n",
+ "# rated torque\n",
+ "# From table 5.1 --> Minimum locked rotor torque = 150% rated torque\n",
+ "\n",
+ "# Display result on command window\n",
+ "\n",
+ "print\"\\nResistance of the resistors required =\",Rex,\"Ohm\"\n",
+ "print\"\\nStator voltage per phase at locked rotor =\",VT1_N,\"V\"\n",
+ "print'\\nExpected minimum locked rotor torque = 1.5 Trated'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E21 : Pg 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "The inductance of each series connected inductor = 4.44444609821 mH\n",
+ "\n",
+ "The voltage rating of each series connected inductor = 80.4248018577 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 5.21\n",
+ "# Computation of Inductance and voltage rating of each series connected \n",
+ "# inductor required to limit the starting current to approximately 2*Irated. \n",
+ "# Page No. 236\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "KVA=6.7; # Average locked rotor KVA/hp\n",
+ "hp=7.5; # Motor horsepower\n",
+ "Vline=208.; # Line voltage\n",
+ "I=48.; # Total current\n",
+ "Rlr=0.294; # Locked rotor resistance\n",
+ "Xlr=0.809; # Locked rotor impedance\n",
+ "f=60.; # Frequency of motor\n",
+ "\n",
+ "# Corresponding approximate load current\n",
+ "Ilr=KVA*1000.*hp/(sqrt(3.)*Vline); \n",
+ "Vphase=Vline/sqrt(3.); # Voltage/phase\n",
+ "\n",
+ "# Applying ohm's law to one phase\n",
+ "Zlr=Vphase/Ilr; # Impedance\n",
+ "Xex=sqrt((Vphase**2./I**2.)-(Rlr**2.))-Xlr;\n",
+ "L=Xex/(2.*pi*f);\n",
+ "L=L*10.**03;\n",
+ "VXl=I*Xex;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nThe inductance of each series connected inductor =\",L,\"mH\"\n",
+ "print\"\\nThe voltage rating of each series connected inductor =\",VXl,\"V\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER06.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER06.ipynb
new file mode 100644
index 00000000..91939ce1
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER06.ipynb
@@ -0,0 +1,350 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER06 : SINGLE PHASE INDUCTION MOTORS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Main winding current magnitude = 29.8 A\n",
+ "\n",
+ " Main winding current angle = -60.3 deg\n",
+ "\n",
+ " Auxillary winding current magnitude = 9.66 A\n",
+ "\n",
+ " Auxillary winding current angle = -42.6 deg\n",
+ "\n",
+ " Phase displacement angle = 17.7 deg\n",
+ "\n",
+ " Locked rotor torque in terms of the machine constant = 87.4 .Ksp\n",
+ "\n",
+ " External resistance required = 5.25 Ohm\n",
+ "\n",
+ " Locked rotor torque = 22.5 .Ksp\n",
+ "\n",
+ " Percent increase in locked rotor torque = -74.2562929062 Percent increase\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 6.1\n",
+ "# Determine (a) Locked rotor current in each winding (b) Phase displacement\n",
+ "# angle between the two currents (c) Locked rotor torque in terms of the\n",
+ "# machine constant (d) External resistance required in series with the auxillary\n",
+ "# winding in order to obtain a 30 degree phase displacement between the currents\n",
+ "# in the two windings (e) Locked rotor torque for the conditions in (d) \n",
+ "# (f) Percent increase in locked rotor torque due to the addition of external\n",
+ "# resistance \n",
+ "# Page No. 257\n",
+ "# Given data\n",
+ "Zmw=2.00+1j*3.50 # Main winding impedance\n",
+ "Zaw=9.15+1j*8.40 # Auxillary winding impedance\n",
+ "VT=120.; # Transformer voltage\n",
+ "Xaw=8.40; # Auxillary winding reactance\n",
+ "Raw=9.15; # Auxillary winding resistance\n",
+ "# (a) Locked rotor current in each winding\n",
+ "# Main winding impedance in polar form\n",
+ "# Complex to Polar form...\n",
+ "Zmw_Mag=4.03;#sqrt(real(Zmw)**2+imag(Zmw)**2); # Magnitude part\n",
+ "Zmw_Ang=60.3;#atan(imag(Zmw),real(Zmw))*180/%pi; # Angle part\n",
+ "\n",
+ "# Auxillary winding impedance in polar form\n",
+ "# Complex to Polar form...\n",
+ "Zaw_Mag=12.4;#sqrt(real(Zaw)**2+imag(Zaw)**2); # Magnitude part\n",
+ "Zaw_Ang=42.6;#atan(imag(Zaw),real(Zaw))*180/%pi; # Angle part\n",
+ "\n",
+ "# Main winding current\n",
+ "Imw_Mag=29.8;#VT/Zmw_Mag; # Main winding current magnitude\n",
+ "Imw_Ang=-60.3;#0-Zmw_Ang; # Main winding current angle\n",
+ "\n",
+ "# Auxillary winding current\n",
+ "Iaw_Mag=9.66;#VT/Zaw_Mag; # Auxillary winding current magnitude\n",
+ "Iaw_Ang=-42.6;#0-Zaw_Ang; # Auxillary winding current angle\n",
+ "\n",
+ "# (b) Phase displacement angle between the two currents\n",
+ "Alpha=17.7;#abs(Imw_Ang-Iaw_Ang);\n",
+ "\n",
+ "# (c) Locked rotor torque in terms of the machine constant \n",
+ "Tlr=87.4;#Imw_Mag*Iaw_Mag*sind(Alpha);\n",
+ "\n",
+ "# (d) External resistance required in seris with the auxillary winding in \n",
+ "# order to obtain a 30 degree phase displacement between the currents in the\n",
+ "# two windings \n",
+ "Theta_awi=-30.3;#Imw_Ang+30; # Required phase angle\n",
+ "Theta_awz=30.3;#-Theta_awi;\n",
+ "Rx=5.25;#(Xaw/tand(Theta_awz))-Raw;\n",
+ "\n",
+ "# (e) Locked rotor torque for the conditions in (d)\n",
+ "Zawnew=14.4 + 8.4j;#Raw+Rx+1j*Xaw; # Auxillary winding impedance\n",
+ "# Complex to Polar form...\n",
+ "Zmwnew_Mag=16.7;#sqrt(real(Zawnew)**2+imag(Zawnew)**2); # Magnitude part\n",
+ "Zmwnew_Ang=30.3;#atan(imag(Zawnew),real(Zawnew))*180/%pi; # Angle part\n",
+ "\n",
+ "Iawnew_Mag=7.2;#VT/Zmwnew_Mag; # Auxillary winding current magnitude\n",
+ "Iawnew_Ang=-30.3;#0-Zmwnew_Ang; # Auxillary winding current magnitude\n",
+ "Tlenew=22.5;#107;#Imw_Mag*Iawnew_Mag*sind(30);\n",
+ "\n",
+ "# (f) Percent increase in locked rotor torque due to the addition of external\n",
+ "# resistance\n",
+ "PI=(Tlenew-Tlr)/Tlr*100.;\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Main winding current magnitude =\",Imw_Mag,\"A\"\n",
+ "print\"\\n Main winding current angle =\",Imw_Ang,\"deg\"\n",
+ "print\"\\n Auxillary winding current magnitude =\",Iaw_Mag,\"A\"\n",
+ "print\"\\n Auxillary winding current angle =\",Iaw_Ang,\"deg\"\n",
+ "print\"\\n Phase displacement angle =\",Alpha,\"deg\"\n",
+ "print\"\\n Locked rotor torque in terms of the machine constant =\",Tlr,\".Ksp\"\n",
+ "print\"\\n External resistance required =\",Rx,\"Ohm\"\n",
+ "print\"\\n Locked rotor torque =\",Tlenew,\".Ksp\"\n",
+ "print\"\\n Percent increase in locked rotor torque =\",PI,\"Percent increase\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 265"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Required capacitance = 1281.76980266 microF\n",
+ "\n",
+ " Percent increase in locked rotor torque = 216.526610644 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 6.2\n",
+ "# Determine (a) Capacitance required in series with the auxillary winding \n",
+ "# in order to obtain a 90 degree phase displacement between the current in \n",
+ "# the main winding and the current in the auxillary winding at locked rotor \n",
+ "# (b) Locked rotor torque in terms of the machine constant \n",
+ "# Page No. 265\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Zmw=2.00+1j*3.50 # Main winding impedance\n",
+ "Zaw=9.15+1j*8.40 # Auxillary winding impedance\n",
+ "VT=120.; # Transformer voltage\n",
+ "Xaw=8.40; # Auxillary winding reactance\n",
+ "Raw=9.15; # Auxillary winding resistance\n",
+ "f=60.; # Frequency\n",
+ "Tlr=107.1; # Original torque\n",
+ "\n",
+ "# (a) Capacitance required in series with the auxillary winding \n",
+ "# Main winding impedance in polar form\n",
+ "# Complex to Polar form...\n",
+ "Zmw_Mag=4.03;#sqrt(real(Zmw)**2.+imag(Zmw)**2.); # Magnitude part\n",
+ "Zmw_Ang=60.3;#atan(imag(Zmw),real(Zmw))*180./pi; # Angle part\n",
+ "\n",
+ "# Auxillary winding impedance in polar form\n",
+ "# Complex to Polar form...\n",
+ "Zaw_Mag=12.4;#sqrt(real(Zaw)**2.+imag(Zaw)**2.); # Magnitude part\n",
+ "Zaw_Ang=42.6;#atan(imag(Zaw),real(Zaw))*180/pi; # Angle part\n",
+ "\n",
+ "# Main winding current\n",
+ "Imw_Mag=29.8;#VT/Zmw_Mag; # Main winding current magnitude\n",
+ "Imw_Ang=-60.3;#0-Zmw_Ang; # Main winding current angle\n",
+ "\n",
+ "# Auxillary winding current\n",
+ "Iaw_Mag=9.66;#VT/Zaw_Mag; # Auxillary winding current magnitude\n",
+ "Iaw_Ang=-42.6;#0-Zaw_Ang; # Auxillary winding current angle\n",
+ "\n",
+ "Theta_awi=90-60.26; # Required phase angle\n",
+ "Theta_awz=-Theta_awi;\n",
+ "\n",
+ "Xc=13.6;#Xaw-Raw*tand(Theta_awz); # Capacitive reactance\n",
+ "\n",
+ "C=1./2.*pi*f*Xc; # Required capacitance\n",
+ "\n",
+ "\n",
+ "# (b) Locked rotor torque in terms of the machine constant \n",
+ "Zawnew=9.15 + -5.23j;#Raw+1j*Xaw-1j*Xc; # Auxillary winding impedance\n",
+ "# Complex to Polar form...\n",
+ "Zawnew_Mag=10.5;#sqrt(real(Zawnew)**2+imag(Zawnew)**2); # Magnitude part\n",
+ "Zawnew_Ang=-29.7;#atan(imag(Zawnew),real(Zawnew))*180/%pi; # Angle part\n",
+ "\n",
+ "Iawnew_Mag=11.4;#VT/Zawnew_Mag; # Auxillary winding current magnitude\n",
+ "Iawnew_Ang=29.7;#0-Zawnew_Ang; # Auxillary winding current magnitude\n",
+ "\n",
+ "Tlenew=339.;#Imw_Mag*Iawnew_Mag*sind(90);\n",
+ "\n",
+ "# Percent change increase in locked rotor torque \n",
+ "PI=(Tlenew-Tlr)/Tlr*100;\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Required capacitance =\",C,\"microF\"\n",
+ "print\"\\n Percent increase in locked rotor torque =\",PI,\"Percent\"\n",
+ "\n",
+ "#Note: Capacitor computation is wrong in the book"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " NEMA standard horsepower rating of machine = 52.5 hp\n",
+ "\n",
+ " Required running capacitance = 1590.0 microF\n",
+ "\n",
+ " Additional capacitance required for starting = 12210.0 microF\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 6.3\n",
+ "# Determine (a) NEMA standard horsepower rating of machine (b) Required \n",
+ "# running capacitance (c) Additional capacitance required for starting\n",
+ "# Page No. 271\n",
+ "# Given data\n",
+ "hp=35.; # Power in hp\n",
+ "p=3.; # Number of phase\n",
+ "f=60.; # Frequency\n",
+ "# (a) NEMA standard horsepower rating of machine\n",
+ "Prated3ph=hp*p/2.;\n",
+ "# (b)Required running capacitance\n",
+ "C1=26.5*f;\n",
+ "# (c) Additional capacitance required for starting.\n",
+ "C2=230.*f-C1;\n",
+ "# Display result on command window\n",
+ "print\"\\n NEMA standard horsepower rating of machine =\",Prated3ph,\"hp\"\n",
+ "print\"\\n Required running capacitance =\",C1,\"microF\"\n",
+ "print\"\\n Additional capacitance required for starting =\",C2,\"microF\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 274"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Motor line current = 41.4829962669 A\n",
+ "\n",
+ " Motor phase current = 41.4829962669 A\n",
+ "\n",
+ " Motor line current if one line opens = 71.8506571845 A\n",
+ "\n",
+ " Motor phase current if one line opens = 71.8506571845 A\n",
+ "\n",
+ " Line current if the power factor is 82.0 percent = 73.9536032484 A\n",
+ "\n",
+ " Phase current if the power factor is 82.0 percent = 73.9536032484 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 6.4\n",
+ "# Computation of (a) Motor line current and motor phase current (b) Motor line \n",
+ "# current and motor phase current if one line opens (c) Line and phase \n",
+ "# currents if the power factor when single phasing is 82.0 percent.\n",
+ "# Page No. 274\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Vline=2300.; # Line voltage\n",
+ "Fp3ph=3.; # Frequency of three phase\n",
+ "PF=0.844; # Power factor\n",
+ "PF1=0.820; # 82.2 percent power factor\n",
+ "Pin=350.*746./(0.936*2); # Input power\n",
+ "# (a) Motor line current and motor phase current\n",
+ "Iline3ph=Pin/(sqrt(3)*Vline*PF);\n",
+ "Iphase3ph=Iline3ph;\n",
+ "#(b) Motor line current and motor phase current if one line opens\n",
+ "Iline1ph=(sqrt(3)*Iline3ph*PF)/PF;\n",
+ "Iphase1ph=Iline1ph;\n",
+ "# (c) Line and phase currents if the power factoe when single phasing is 82.0 percent.\n",
+ "Iline=(Iline1ph*PF)/PF1;\n",
+ "Iphase=Iline;\n",
+ "# Display result on command window\n",
+ "print\"\\n Motor line current =\",Iline3ph,\"A\"\n",
+ "print\"\\n Motor phase current =\",Iphase3ph,\"A\"\n",
+ "print\"\\n Motor line current if one line opens =\",Iline1ph,\"A\"\n",
+ "print\"\\n Motor phase current if one line opens =\",Iphase1ph,\"A\"\n",
+ "print\"\\n Line current if the power factor is 82.0 percent =\",Iline,\"A\"\n",
+ "print\"\\n Phase current if the power factor is 82.0 percent =\",Iphase,\"A\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER07.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER07.ipynb
new file mode 100644
index 00000000..dc70cc29
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER07.ipynb
@@ -0,0 +1,174 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER07 : SPECIALITY MACHINES "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Torque load on the shaft = 29.1777777778 lb-ft \n",
+ "\n",
+ " Torque angle if the voltage drops to 224V = 41.9 deg\n",
+ "\n",
+ " Because torque angle is less than 45 degree, \n",
+ " the rotor will not pull out of synchronism \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 7.1\n",
+ "# Determine (a) Torque load on the shaft (b) Torque angle if the voltage \n",
+ "# drops to 224V (c) Will the rotor pull out of synchronism?\n",
+ "# Page No. 282\n",
+ "# Given data\n",
+ "f=60.; # Frequency\n",
+ "P=4.; # Number of poles\n",
+ "Pshaft=10.; # Shaft power in hp\n",
+ "V1=240.; # Rated voltage\n",
+ "V2=224.; # New voltage\n",
+ "phirel1=30.; # Torque angle\n",
+ "# (a) Torque load on the shaft\n",
+ "ns=120.*f/P; # speed of machine\n",
+ "Trel=Pshaft*5252./ns;\n",
+ "# (b) Torque angle if the voltage drops to 224V\n",
+ "phirel2=41.9;#asind((V1**2./V2**2.)*sind(2.*phirel1))/2.\n",
+ "# Display result on command window\n",
+ "print\"\\n Torque load on the shaft =\",Trel,\"lb-ft \"\n",
+ "print\"\\n Torque angle if the voltage drops to 224V =\",phirel2,\"deg\"\n",
+ "print\"\\n Because torque angle is less than 45 degree, \\n the rotor will not pull out of synchronism \""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 287"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Resolution = 180.0\n",
+ "\n",
+ " Number of steps required for the rotor to make 20.6 revolutions = 3708.0\n",
+ "\n",
+ " Shaft speed if the stepping frequency is 1800 pulses/s = 10.0 r/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 7.2\n",
+ "# Determine (a) Resolution (b) Number of steps required for the rotor to make \n",
+ "# 20.6 revolutions (c) Shaft speed if the stepping frequency is 1800 pulses/s\n",
+ "# Page No. 287\n",
+ "# Given data\n",
+ "betaa=2.; # Step angle\n",
+ "theta=20.6; # Number of revolutions\n",
+ "fp=1800.; # Stepping frequency\n",
+ "# (a) Resolution\n",
+ "stepsperrev=360./betaa; # Speed of machine\n",
+ "# (b) Number of steps required for the rotor to make 20.6 revolutions\n",
+ "steps=theta*360./betaa;\n",
+ "# (c) Shaft speed if the stepping frequency is 1800 pulses/s.\n",
+ "n=betaa*fp/360.;\n",
+ "# Display result on command window\n",
+ "print\"\\n Resolution =\",stepsperrev\n",
+ "print\"\\n Number of steps required for the rotor to make 20.6 revolutions =\",steps\n",
+ "print\"\\n Shaft speed if the stepping frequency is 1800 pulses/s =\",n,\"r/s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "The synchronous speed = 24.0 m/s\n",
+ "\n",
+ "Rail speed assuming slip of 16.7 percent = 19.992 m/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 7.3\n",
+ "# Determine (a) Synchronous speed (b) Rail speed assuming slip of 16.7%\n",
+ "# Page No. 299\n",
+ "# Given data\n",
+ "f=50.; # Frequency of machine\n",
+ "tau=0.24; # Pole pitch\n",
+ "s=0.167; # Slip\n",
+ "# (a) The synchronous speed \n",
+ "Us=2*tau*f;\n",
+ "# (b) Rail speed assuming slip of 16.7 percent\n",
+ "U=Us*(1-s);\n",
+ "# Display result on command window\n",
+ "print\"\\nThe synchronous speed =\",Us,\"m/s\"\n",
+ "print\"\\nRail speed assuming slip of 16.7 percent =\",U,\"m/s\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb
new file mode 100644
index 00000000..adecb6cf
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER08.ipynb
@@ -0,0 +1,405 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER08 : SYNCHRONOUS MOTORS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Developed torque = 303.935185185 lb-ft\n",
+ "\n",
+ "Armature current magnitude= 122.0 A\n",
+ "\n",
+ "Armature current angle= -36.9 deg\n",
+ "\n",
+ "Excitation voltage magnitude = 535.0 V\n",
+ "\n",
+ "Excitation voltage angle = -29.7 deg\n",
+ "\n",
+ "Power angle = -29.7 deg\n",
+ "\n",
+ "Maximum torque = 614.063151623 lb-ft\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 8.1\n",
+ "# Determine (a) Developed torque (b) Armature current (c) Excitation voltage\n",
+ "# (d) Power angle (e) Maximum torque \n",
+ "# Page No. 317\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "f=60.; # Operating frequency\n",
+ "P=4.; # Number of poles\n",
+ "Pmech=100.; # Mechanical power\n",
+ "eta=0.96; # Efficiency\n",
+ "FP=0.80; # Power factor leading\n",
+ "V=460.; # Motor voltage\n",
+ "Xs_Mag=2.72; # Synchronous reactnace magnitude\n",
+ "Xs_Ang=90.; # Synchronous reactnace magnitude\n",
+ "deltaPull=-90.; # Pullout power angle\n",
+ "# (a) Developed torque\n",
+ "ns=120.*f/P; # Synchronous speed\n",
+ "Td=5252.*Pmech/(ns*eta); \n",
+ "\n",
+ "\n",
+ "# (b) Armature current\n",
+ "S=Pmech*746./(eta*FP);\n",
+ "Theta=-36.9;#-acosd(FP); # Power factor angle (negative as FP is leading)\n",
+ "V1phi=V/sqrt(3.); # Single line voltage\n",
+ "S1phi_Mag=S/3.; # Magnitude \n",
+ "S1phi_Ang=Theta; # Angle\n",
+ "VT_Mag=V1phi;\n",
+ "VT_Ang=0;\n",
+ "Ia_Mag=122.;#S1phi_Mag/VT_Mag; # Armature current magnitude\n",
+ "Ia_Ang=36.9;#S1phi_Ang-VT_Ang; # Armature current angle\n",
+ "Ia_Ang=-Ia_Ang; # Complex conjugate of Ia\n",
+ "# (c) Excitation voltage\n",
+ "Var1_Mag=Ia_Mag*Xs_Mag;\n",
+ "Var1_Ang=Ia_Ang+Xs_Ang;\n",
+ "\n",
+ "####/\n",
+ "N01=266 + 0j;#VT_Mag+1j*VT_Ang;\n",
+ "N02=332 + 127j;#Var1_Mag+1j*Var1_Ang;\n",
+ "# Polar to Complex form\n",
+ "\n",
+ "N01_R=266.;#VT_Mag*cos(-VT_Ang*%pi/180); # Real part of complex number 1\n",
+ "N01_I=0;#VT_Mag*sin(VT_Ang*%pi/180); #Imaginary part of complex number 1\n",
+ "\n",
+ "N02_R=-199.;#Var1_Mag*cos(-Var1_Ang*%pi/180); # Real part of complex number 2\n",
+ "N02_I=265.;#Var1_Mag*sin(Var1_Ang*%pi/180); #Imaginary part of complex number 2\n",
+ "\n",
+ "FinalNo_R=N01_R-N02_R;\n",
+ "FinalNo_I=N01_I-N02_I;\n",
+ "FinNum=465 + -265j;#FinalNo_R+1j*FinalNo_I;\n",
+ "# Complex to Polar form...\n",
+ "FN_M=535.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n",
+ "FN_A =-29.7;# atan(imag(FinNum),real(FinNum))*180/%pi;# Angle part\n",
+ "###\n",
+ "Ef_Mag=FN_M;\n",
+ "Ef_Ang=FN_A;\n",
+ "# (d) Power angle\n",
+ "delta=Ef_Ang;\n",
+ "# (e) Maximum torque \n",
+ "Pin=1.57*10**05;#3.*(-VT_Mag*Ef_Mag/Xs_Mag)*sind(deltaPull); # Active power input\n",
+ "Tpull=5252.*Pin/(746.*ns);\n",
+ "# Display result on command window\n",
+ "print\"\\nDeveloped torque =\",Td,\"lb-ft\"\n",
+ "print\"\\nArmature current magnitude=\",Ia_Mag,\"A\"\n",
+ "print\"\\nArmature current angle=\",Ia_Ang,\"deg\"\n",
+ "print\"\\nExcitation voltage magnitude =\",Ef_Mag,\"V\"\n",
+ "print\"\\nExcitation voltage angle =\",Ef_Ang,\"deg\"\n",
+ "print\"\\nPower angle =\",delta,\"deg\"\n",
+ "print\"\\nMaximum torque =\",Tpull,\"lb-ft\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "The minimum value of excitation = 98.0 V\n",
+ "\n",
+ "The minimum value of excitation using eq.(8.16) = 99.5 V\n",
+ "\n",
+ "The minimum value of excitation using eq.(8.21) = 99.4533076428 V\n",
+ "\n",
+ "Power angle = -34.8 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 8.2\n",
+ "# Determine (a) The minimum value of excitation that will maintain \n",
+ "# synchronism (b) Repeat (a) using eq.(8.16) (c) Repeat (a) using eq.(8.21)\n",
+ "# (d) Power angle if the field excitation voltage is increased to 175% of the\n",
+ "# stability limit determined in (c)\n",
+ "# Page No. 322\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Pin=40.; # Input power\n",
+ "Pin1phase=40./3.; # Single phase power\n",
+ "Xs=1.27; # Synchronous reactnace \n",
+ "VT=220./sqrt(3.); # Voltage\n",
+ "delta=-90.; # Power angle\n",
+ "\n",
+ "f=60.; # Operating frequency\n",
+ "P=4.; # Number of poles\n",
+ "Pmech=100.; # Mechanical power\n",
+ "eta=0.96; # Efficiency\n",
+ "FP=0.80; # Power factor leading\n",
+ "V=460.; # Motor voltage\n",
+ "Xs_Mag=2.72; # Synchronous reactnace magnitude\n",
+ "Xs_Ang=90.; # Synchronous reactnace magnitude\n",
+ "deltaPull=-90.; # Pullout power angle\n",
+ "\n",
+ "# (a) The minimum value of excitation that will maintain synchronism\n",
+ "Ef=98.; # From the graph (Figure 8.13)\n",
+ "\n",
+ "# (b) The minimum value of excitation using eq.(8.16)\n",
+ "Ef816=99.5;#-Pin*Xs*746/(3*VT*sind(delta));\n",
+ "\n",
+ "\n",
+ "# (c) The minimum value of excitation using eq.(8.21)\n",
+ "Ef821=Xs*Pin1phase*746/(VT);\n",
+ "\n",
+ "# (d) Power angle if the field excitation voltage is increased to 175%\n",
+ "#delta2=Ef816*sind(delta)/(1.75*Ef816);\n",
+ "delta2=-34.8;#asind(delta2);\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nThe minimum value of excitation =\",Ef,\"V\"\n",
+ "print\"\\nThe minimum value of excitation using eq.(8.16) =\",Ef816,\"V\"\n",
+ "print\"\\nThe minimum value of excitation using eq.(8.21) =\",Ef821,\"V\"\n",
+ "print\"\\nPower angle =\",delta2,\"deg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 324"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "System active power = 400.174191023 kW\n",
+ "\n",
+ "Power factor of the synchronous motor = 0.828 leading\n",
+ "\n",
+ "System power factor = 0.995 lagging\n",
+ "\n",
+ "Percent change in synchronous field current = 9.24855491329 Percent\n",
+ "\n",
+ "Power angle of the synchronous motor = -15 deg\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 8.3\n",
+ "# Determine (a) System active power (b) Power factor of the synchronous motor\n",
+ "# (c) System power factor (d) Percent change in synchronous field current \n",
+ "# required to adjust the system power factor to unity (e) Power angle of the \n",
+ "# synchronous motor for the conditions in (d) \n",
+ "# Page No. 324\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Php=400.; # Power in hp\n",
+ "eta=0.958; # Efficiency\n",
+ "Pheater=50000.; # Resistance heater power \n",
+ "Vs=300.; # Synchronous motor voltage\n",
+ "eta2=0.96; # Synchronous motor efficiency\n",
+ "Xs=0.667; # Synchronous reactnace\n",
+ "VT=460.; # 3-Phase supply voltage\n",
+ "delta=-16.4; # Power angle\n",
+ "# (a) System active power \n",
+ "Pindmot=Php*0.75*746./(eta); # Motor operating at three quarter rated load\n",
+ "Psynmot=Vs*0.5*746./(eta2); # Synchronous motor power \n",
+ "Psys=Pindmot+Pheater+Psynmot;\n",
+ "Psysk=Psys/1000.;\n",
+ "# (b) Power factor of the synchronous motor\n",
+ "Pin=Psynmot; # Power input\n",
+ "Vtph=VT/sqrt(3); # Voltage per phase\n",
+ "Ef=346.;#-(Pin*Xs)/(3*Vtph*sind(delta));\n",
+ "# Complex to Polar form...\n",
+ "Ef_Mag=Ef; # Magnitude part \n",
+ "Ef_Ang=delta; # Angle part\n",
+ "Vtph_Mag=Vtph; \n",
+ "Vtph_Ang=0;\n",
+ "######\n",
+ "N01=346 + -16.4j;#Ef_Mag+1j*Ef_Ang; # Ef in polar form \n",
+ "N02=266 + 0j;#Vtph_Mag+1j*Vtph_Ang; # Vt in polar for\n",
+ "\n",
+ "N01_R=332.;#Ef_Mag*cos(-Ef_Ang*%pi/180); # Real part of complex number Ef\n",
+ "N01_I=-97.6;#Ef_Mag*sin(Ef_Ang*%pi/180); #Imaginary part of complex number Ef\n",
+ "\n",
+ "N02_R=266.;#Vtph_Mag*cos(-Vtph_Ang*%pi/180); # Real part of complex number Vt\n",
+ "N02_I=0;#Vtph_Mag*sin(Vtph_Ang*%pi/180); #Imaginary part of complex number Vt\n",
+ "FinalNo_R=N01_R-N02_R;\n",
+ "FinalNo_I=N01_I-N02_I;\n",
+ "FinNum=66 + -97.6j;#FinalNo_R+1j*FinalNo_I;\n",
+ "# Complex to Polar form...\n",
+ "FN_M=118.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n",
+ "FN_A =-55.9;#tan(imag(FinNum),real(FinNum))*180/%pi;# Angle part\n",
+ "Ia_Mag=FN_M/Xs; # Magnitude of Ia\n",
+ "Ia_Ang=FN_A-(-90); # Angle of Ia\n",
+ "Theta=0-Ia_Ang;\n",
+ "FP=0.828;#cosd(Theta); # Power factor\n",
+ "# (c) System power factor\n",
+ "ThetaIndMot=27.;#acosd(0.891); # Induction motor power factor\n",
+ "Thetaheat=0;#acosd(1); # Heater power factor\n",
+ "ThetaSyncMot=-34.06; # Synchronous motor power factor\n",
+ "Qindmot=1.19*10**05;#tand(27)*Pindmot; \n",
+ "Qsynmot=-7.88*10**04;#tand(ThetaSyncMot)*Psynmot;\n",
+ "Qsys=Qindmot+Qsynmot;\n",
+ "Ssys=Psys+1j*Qsys; # System variable in complex form\n",
+ "# Complex to Polar form...\n",
+ "Ssys_Mag=4.02*10**05;#sqrt(real(Ssys)**2+imag(Ssys)**2); # Magnitude part\n",
+ "Ssys_Ang =5.74;# atan(imag(Ssys),real(Ssys))*180/%pi; # Angle part\n",
+ "FPsys=0.995;#cosd(Ssys_Ang); # System power factor \n",
+ "# (d) Percent change in synchronous field current required to adjust the \n",
+ "# system power factor to unity\n",
+ "Ssynmot=Psynmot-(1j*(-Qsynmot+Qsys)); # Synchronous motor system\n",
+ "# Complex to Polar form...\n",
+ "Ssynmot_Mag=1.67e+05;#sqrt(real(Ssynmot)**2+imag(Ssynmot)**2); # Magnitude part\n",
+ "Ssynmot_Ang=-45.6;#atan(imag(Ssynmot),real(Ssynmot))*180/%pi; # Angle part\n",
+ "Ssynmot1ph_Mag=5.55e+04;#Ssynmot_Mag/3; # For single phase magnitude\n",
+ "Ssynmot1ph_Ang=-45.6;#Ssynmot_Ang; # For single phase angle\n",
+ "Iastar_Mag=209.;#Ssynmot1ph_Mag/Vtph; # Current magnitude\n",
+ "Iastar_Ang=-45.6;#Ssynmot1ph_Ang-0; # Current angle\n",
+ "IaNew_Mag=209.;#Iastar_Mag;\n",
+ "IaNew_Ang=45.6;#-Iastar_Ang;\n",
+ "IaXs_Mag=IaNew_Mag*Xs;\n",
+ "IaXs_Ang=IaNew_Ang-90;\n",
+ "# Convert these number into complex and then perform addition\n",
+ "# Polar to Complex form\n",
+ "# Y=29.416<-62.3043 #Polar form number\n",
+ "IaXs_R=99.6;#IaXs_Mag*cos(-IaXs_Ang*%pi/180); # Real part of complex number\n",
+ "IaXs_I=-97.6;#IaXs_Mag*sin(IaXs_Ang*%pi/180); # Imaginary part of complex number\n",
+ "Efnew=Vtph+IaXs_R+1j*IaXs_I;\n",
+ "# Complex to Polar form...\n",
+ "\n",
+ "Efnew_Mag=378.;#sqrt(real(Efnew)**2+imag(Efnew)**2); # Magnitude part\n",
+ "Efnew_Ang=-15;#atan(imag(Efnew),real(Efnew))*180/%pi; # Angle part\n",
+ "\n",
+ "DeltaEf=(Efnew_Mag-Ef)/Ef; \n",
+ "\n",
+ "# (e) Power angle of the synchronous motor\n",
+ "deltasynmot=Efnew_Ang;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nSystem active power =\",Psysk,\"kW\"\n",
+ "print\"\\nPower factor of the synchronous motor =\",FP,\"leading\"\n",
+ "print\"\\nSystem power factor =\",FPsys,\"lagging\"\n",
+ "print\"\\nPercent change in synchronous field current =\",DeltaEf*100,\"Percent\"\n",
+ "print\"\\nPower angle of the synchronous motor =\",deltasynmot,\"deg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 328"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Developed torque = 887.004444444 lb-ft\n",
+ "\n",
+ "Developed torque in percent of rated torque = 164.27613941 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 8.4\n",
+ "# Determine (a) Developed torque if the field current is adjusted so that the\n",
+ "# excitation voltage is equal to two times the applied stator voltage, and the\n",
+ "# power angle is -18 degrees (b) Developed torque in percent of rated torque, \n",
+ "# if the load is increased until maximum reluctance torque occurs.\n",
+ "# Page No. 328\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Vt1ph=2300./sqrt(3.); # Applied voltage/phase\n",
+ "Ef1ph=2300./sqrt(3.); # Excitation voltage/phase\n",
+ "Xd=36.66; # Direct axis reactance/phase\n",
+ "delta=-18.; # Power angle\n",
+ "Xq=23.33; # Quadrature-axis reactance/phase\n",
+ "n=900.; # Speed of motor\n",
+ "deltanew=-45.;\n",
+ "RatTor=200.; # Rated torque of motor\n",
+ "# (a) Developed torque\n",
+ "Pmag1ph=2.97e+04;#-((Vt1ph*2.*Ef1ph)/Xd)*sind(delta); # Power \n",
+ "Prel1ph=8.08e+03;#-Vt1ph**2.*( (Xd-Xq) / (2.*Xd*Xq)) *sind(2.*delta); # Reluctance power\n",
+ "Psal3ph=1.13e+05;#3*(Pmag1ph+Prel1ph); # Salient power of motor\n",
+ "Psal3phHP=152.;#Psal3ph/746;\n",
+ "T=(5252*Psal3phHP)/n; # Developed torque\n",
+ "# (b) Developed torque in percent of rated torque\n",
+ "# The reluctance torque has its maximum value at delta= -45 degrees\n",
+ "Pmag1phnew=6.8e+04;#-((Vt1ph*2*Ef1ph)/Xd)*sind(deltanew); # Power\n",
+ "Prel1phnew=1.37e+04;#-Vt1ph**2*( (Xd-Xq) / (2*Xd*Xq)) *sind(2*deltanew); # Reluctance power\n",
+ "Psal3phnew=3*(Pmag1phnew+Prel1phnew); # Salient power of motor\n",
+ "Psal3phHPnew=Psal3phnew/746;\n",
+ "PerRatTorq=Psal3phHPnew*100/RatTor;\n",
+ "# Display result on command window\n",
+ "print\"\\nDeveloped torque =\",T,\"lb-ft\"\n",
+ "print\"\\nDeveloped torque in percent of rated torque =\",PerRatTorq,\"Percent\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER09.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER09.ipynb
new file mode 100644
index 00000000..2315abd4
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER09.ipynb
@@ -0,0 +1,782 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER09 : SYNCHRONOUS GENERATORS "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 342"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Turbine torque supplied to the alternator = 219.028894847 lb-ft\n",
+ "\n",
+ " Excitation voltage = 419.0 V/phase\n",
+ "\n",
+ " Active components of apparent power= 112.0 kW\n",
+ "\n",
+ " Reactive components of apparent power= 72.2 kvar lagging\n",
+ "\n",
+ " Power factor = 0.84 lagging\n",
+ "\n",
+ " Excitation voltage new = 356.15 V/phase\n",
+ "\n",
+ " Turbine speed = 3600.0 r/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.1\n",
+ "# Determine (a) Turbine torque supplied to the alternator (b) Excitation \n",
+ "# voltage (c) Active and reactive components of apparent power (d) Power \n",
+ "# factor (e) Neglecting saturation effects, excitation voltage if the field \n",
+ "# current is reduced to 85% of its voltage in (a) (f) Turbine speed.\n",
+ "# Page No. 342\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "hp=112000.; # Power input\n",
+ "n=746.*3600.; # Speed\n",
+ "VT=460.; # 3-Phase supply voltage\n",
+ "Pout=112000.; # Power\n",
+ "Xs=1.26; # Synchronous reactnace\n",
+ "delta=25.; # Power angle\n",
+ "eta=0.85; # Percent reduction factor\n",
+ "P=2.; # Number of poles\n",
+ "f=60.; # Frequnecy\n",
+ "# (a) Turbine torque supplied to the alternator\n",
+ "T=(hp*5252.)/n;\n",
+ "# (b) Excitation voltage\n",
+ "Vt=VT/sqrt(3); # Voltage/phase\n",
+ "Ef=419.;#(Pout*Xs)/(3*Vt*sind(delta));\n",
+ "# (c) Active and reactive components of apparent power\n",
+ "# Vt=Ef-Ia*j*Xs\n",
+ "# Solving for Vt-Ef\n",
+ "Vt_Mag=Vt;\n",
+ "Vt_Ang=0;\n",
+ "Ef_Mag=Ef;\n",
+ "Ef_Ang=delta;\n",
+ "# \n",
+ "N01=419 + 25j;#Ef_Mag+1j*Ef_Ang; # Ef in polar form \n",
+ "N02=266 + 0j;#Vt_Mag+1j*Vt_Ang; # Vt in polar for\n",
+ "\n",
+ "N01_R=380.;#Ef_Mag*cos(-Ef_Ang*%pi/180); # Real part of complex number Ef\n",
+ "N01_I=177.;#Ef_Mag*sin(Ef_Ang*%pi/180); #Imaginary part of complex number Ef\n",
+ "\n",
+ "N02_R=266.;#Vt_Mag*cos(-Vt_Ang*%pi/180); # Real part of complex number Vt\n",
+ "N02_I=0;#Vt_Mag*sin(Vt_Ang*%pi/180); #Imaginary part of complex number Vt\n",
+ "\n",
+ "FinalNo_R=N01_R-N02_R;\n",
+ "FinalNo_I=N01_I-N02_I;\n",
+ "FinNum=FinalNo_R+1j*FinalNo_I;\n",
+ "\n",
+ "# Now FinNum/Xs in polar form\n",
+ "FinNum_Mag=211.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n",
+ "FinNum_Ang =57.2;# atan(imag(FinNum),real(FinNum))*180/%pi; # Angle part\n",
+ "Ia_Mag=FinNum_Mag/Xs;\n",
+ "Ia_Ang=FinNum_Ang-90;\n",
+ "\n",
+ "# Computation of S=3*Vt*Ia*\n",
+ "S_Mag=3*Vt_Mag*Ia_Mag;\n",
+ "S_Ang=Vt_Ang+-Ia_Ang;\n",
+ "\n",
+ "# Polar to complex form\n",
+ "S_R=1.12e+05;#S_Mag*cos(-S_Ang*%pi/180); # Real part of complex number S\n",
+ "S_I=7.22e+04;#S_Mag*sin(S_Ang*%pi/180); # Imaginary part of complex number S\n",
+ "\n",
+ "# (d) Power factor\n",
+ "Fp=0.84;#cosd(Ia_Ang);\n",
+ "\n",
+ "# (e) Excitation voltage\n",
+ "Efnew=eta*Ef_Mag;\n",
+ "\n",
+ "# (f) Turbine speed\n",
+ "ns=120.*f/P;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Turbine torque supplied to the alternator =\",T,\"lb-ft\"\n",
+ "print\"\\n Excitation voltage =\",Ef,\"V/phase\"\n",
+ "print\"\\n Active components of apparent power=\",S_R/1000,\"kW\"\n",
+ "print\"\\n Reactive components of apparent power=\",S_I/1000,\"kvar lagging\"\n",
+ "print\"\\n Power factor =\",Fp,\"lagging\"\n",
+ "print\"\\n Excitation voltage new =\",Efnew,\"V/phase\"\n",
+ "print\"\\n Turbine speed =\",ns,\"r/min\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Speed regulation = 0.02\n",
+ "\n",
+ "Governor drop = 0.0024 Hz/kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.2\n",
+ "# Determine (a) Speed regulation (b) Governor drop\n",
+ "# Page 351\n",
+ "# Given data\n",
+ "fn1=61.2; # No-load frequency\n",
+ "frated=60.; # Rated requency\n",
+ "deltaP=500.; # Governor rated power\n",
+ "# (a) Speed regulation\n",
+ "GSR=(fn1-frated)/frated;\n",
+ "# (b) Governor drop\n",
+ "deltaF=(fn1-frated); # Frequency difference\n",
+ "GD=deltaF/deltaP;\n",
+ "# Display result on command window\n",
+ "print\"\\nSpeed regulation =\",GSR\n",
+ "print\"\\nGovernor drop =\",GD,\"Hz/kW\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 358"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Frequency of generator A = 60.24 Hz\n",
+ "\n",
+ " Frequency of generator B = 59.76 Hz\n",
+ "\n",
+ " Frequency of bus = 59.76 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.3\n",
+ "# Determine (a) Frequency of generator A (b) Frequency of generator B \n",
+ "# (c) Frequency of bus\n",
+ "# Page 358\n",
+ "# Given data\n",
+ "GSR=0.020; # Governor speed regulation\n",
+ "Frated=60.; # Rated frequency\n",
+ "deltaPa=100.; # Change in load (200-100 =100 KW)\n",
+ "Prated=500.; # Rated power of both generators\n",
+ "# (a) Frequency of generator A \n",
+ "deltaFa=(GSR*Frated*deltaPa)/Prated; # Change in frequency due to change in load\n",
+ "Fa=Frated+deltaFa; # Frequency of generator A\n",
+ "# (b) Frequency of generator B\n",
+ "deltaFb=0.24; # Since both machines are identical\n",
+ "Fb=Frated-deltaFb;\n",
+ "# (c) Frequency of bus\n",
+ "Fbus=Fb; # Bus frequency is frequency of generator B\n",
+ "# Display result on command window\n",
+ "print\"\\n Frequency of generator A =\",Fa,\"Hz\"\n",
+ "print\"\\n Frequency of generator B =\",Fb,\"Hz\"\n",
+ "print\"\\n Frequency of bus =\",Fbus,\"Hz\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 359"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Operating frequency = 60.3177500515 Hz\n",
+ "\n",
+ "Load carried by machine A = 262.499982344 kW\n",
+ "\n",
+ "Load carried by machine B = 237.500017656 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.4\n",
+ "# Determine (a) Operating frequency (b) Load carried by each machine\n",
+ "# Page 359\n",
+ "# Given data\n",
+ "GSR=0.0243; # Governor speed regulation\n",
+ "Frated=60.; # Rated frequency\n",
+ "deltaPa=500.; # Change in load for alternator A\n",
+ "Prateda=500.; # Rated power of alternator A\n",
+ "deltaPb=400.; # Change in load for alternator B\n",
+ "Pratedb=300.; # Rated power of alternator B \n",
+ "Pch=100.; # Change is power (500-400=100 KW)) \n",
+ "Pchmach=200.; # Power difference (500-300=200 KW) \n",
+ "# (a) Operating frequency\n",
+ "# From the curve in figure 9.17\n",
+ "# GSR*Frated/Prated=deltaP/deltaP\n",
+ "deltaF=(deltaPa-deltaPb)/548.697; # Change in frequency\n",
+ "Fbus=60.5-deltaF;\n",
+ "# (b) Load carried by each machine\n",
+ "deltaPa=(deltaF*Prateda)/(GSR*Frated); # Change in power for machine A\n",
+ "deltaPb=Pch-deltaPa; # Change in power for machine B\n",
+ "Pa=Pchmach+deltaPa;\n",
+ "Pb=Pchmach+deltaPb;\n",
+ "# Display result on command window\n",
+ "print\"\\nOperating frequency =\",Fbus,\"Hz\"\n",
+ "print\"\\nLoad carried by machine A =\",Pa,\"kW\"\n",
+ "print\"\\nLoad carried by machine B =\",Pb,\"kW\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Bus frequency = 59.912 Hz\n",
+ "\n",
+ " Load on machine A = 360 kW\n",
+ "\n",
+ " Load on machine B = 360 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.5\n",
+ "# Determine (a) Bus frequency (b) Load on each machine\n",
+ "# Page 360\n",
+ "# Given data\n",
+ "Padd=720; # Additional load connected\n",
+ "GD=0.0008; # Governor droop\n",
+ "f=60.2; # Frequency of machine\n",
+ "Pbus=900; # Bus load\n",
+ "\n",
+ "# (a) Bus frequency\n",
+ "deltaPa=Padd/2; \n",
+ "deltaPb=deltaPa; # Since both machines have identical governor drops \n",
+ "deltaF=GD*deltaPa; # Change in frequency\n",
+ "Fbus=f-deltaF;\n",
+ "\n",
+ "# (b) Load on each machine\n",
+ "Pa=(2/3)*Pbus+deltaPa; # Load on machine A\n",
+ "Pb=(1/3)*Pbus+deltaPb; # Load on machine B\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Bus frequency =\",Fbus,\"Hz\"\n",
+ "print\"\\n Load on machine A =\",Pa,\"kW\"\n",
+ "print\"\\n Load on machine B =\",Pb,\"kW\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 361"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "System kilowatts = 810.0 kW\n",
+ "\n",
+ "System frequency = 59.0649351135 Hz\n",
+ "\n",
+ "Kilowatt loads carried by machine A = 397.272710272 kW\n",
+ "\n",
+ "Kilowatt loads carried by machine B = 233.636355136 kW\n",
+ "\n",
+ "Kilowatt loads carried by machine C = 179.090934593 kW\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.6\n",
+ "# Determine (a) System kilowatts (b) System frequency (c) kilowatt loads\n",
+ "# carried by each machine\n",
+ "# Page 361\n",
+ "# Given data\n",
+ "Pres=440.; # Resistive load\n",
+ "PF=0.8; # Power factor\n",
+ "Pind=200.; # Induction motor power\n",
+ "Palt=210.; # Alternator bus load\n",
+ "deltaPa=70.; # Change in load for machine A\n",
+ "f=60.; # Frequency\n",
+ "deltaPb=70.; # Change in load for machine B\n",
+ "deltaPc=70.; # Change in load for machine C\n",
+ "# (a) System kilowatts \n",
+ "deltaPbus=Pres+PF*Pind; # Increase in bus load\n",
+ "Psys=Palt+deltaPbus;\n",
+ "# (b) System frequency\n",
+ "GDa=(60.2-f)/deltaPa; # Governor droop for machine A\n",
+ "GDb=(60.4-f)/deltaPb; # Governor droop for machine B\n",
+ "GDc=(60.6-f)/deltaPc; # Governor droop for machine C\n",
+ "# From the figure 9.18(b)\n",
+ "deltaF=600./(350.+175.+116.6667) ;\n",
+ "f2=f-deltaF;\n",
+ "# (c) Kilowatt loads carried by each machine\n",
+ "Pa2=deltaPa+350.*deltaF;\n",
+ "Pb2=deltaPb+175.*deltaF;\n",
+ "Pc2=deltaPc+116.6667*deltaF;\n",
+ "# Display result on command window\n",
+ "print\"\\nSystem kilowatts =\",Psys,\"kW\"\n",
+ "print\"\\nSystem frequency =\",f2,\"Hz\"\n",
+ "print\"\\nKilowatt loads carried by machine A =\",Pa2,\"kW\"\n",
+ "print\"\\nKilowatt loads carried by machine B =\",Pb2,\"kW\"\n",
+ "print\"\\nKilowatt loads carried by machine C =\",Pc2,\"kW\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 366"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Active component of the bus load = 670.4 kW\n",
+ "\n",
+ "Reactive component of the bus load = 105.0 kvar\n",
+ "\n",
+ "Reactive power supplied by machine A = 122.0 kvar\n",
+ "\n",
+ "Reactive power supplied by machine B = -17.0 kvar\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.7\n",
+ "# Determine (a) Active and reactive components of the bus load (b) If the \n",
+ "# power factor of generator A is 0.94 lagging, determine the reactive power\n",
+ "# supplied by each machine.\n",
+ "# Page 366\n",
+ "# Given data\n",
+ "Pbuspower=500.; # Power supplied\n",
+ "Pind=200.; # Induction motor power\n",
+ "PF=0.852; # Percent power factor\n",
+ "NA=2.; # Number of alternators\n",
+ "LPF=0.94; # Lagging power factor\n",
+ "# (a) Active and reactive components of the bus load \n",
+ "Pbus=Pbuspower+Pind*PF; # Active component of the bus load\n",
+ "ThetaMot=31.6;#acosd(PF); # Power angle of motor\n",
+ "Qbus=105.#Pind*sind(ThetaMot); # Reactive component the bus load\n",
+ "# (b) Reactive power supplied by each machine\n",
+ "Pa=Pbus/NA; # Alternator A power\n",
+ "ThetaA=19.9;#acosd(LPF); # Alternator A angle\n",
+ "Qa=122.;#tand(ThetaA)*Pa; # Reactive power supplied by machine A\n",
+ "Qb=Qbus-Qa; # Reactive power supplied by machine B \n",
+ "# Display result on command window\n",
+ "print\"\\nActive component of the bus load =\",Pbus,\"kW\"\n",
+ "print\"\\nReactive component of the bus load =\",Qbus,\"kvar\"\n",
+ "print\"\\nReactive power supplied by machine A =\",Qa,\"kvar\"\n",
+ "print\"\\nReactive power supplied by machine B =\",Qb,\"kvar\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 368"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Per-unit impedance magnitude = 0.999 Ohm\n",
+ "\n",
+ "Per-unit impedance angle = 88.0 deg\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.8\n",
+ "# Computation of per-unit impedance of a generator\n",
+ "# Page 368\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "P=100000.; # Power of synchronous generator\n",
+ "V=480.; # Voltage of synchronous generator\n",
+ "Ra=0.0800; # Resistive component\n",
+ "Xs=2.3; # Reactive component\n",
+ "\n",
+ "# Computation of per-unit impedance of a generator\n",
+ "Sbase=P/3.; # Rated apparent power per phase\n",
+ "Vbase=V/sqrt(3.); # Rated voltage per phase\n",
+ "Zbase=Vbase**2./Sbase; # Rated impedance\n",
+ "Rpu=Ra/Zbase; # Per unit resistance\n",
+ "Xpu=Xs/Zbase; # Per unit reactance\n",
+ "\n",
+ "Zpu=0.0347 + 0.998j;#Rpu+1j*Xpu; # Per unit impedance\n",
+ "\n",
+ "# Complex to Polar form...\n",
+ "Zpu_Mag=0.999;#sqrt(real(Zpu)**2+imag(Zpu)**2); # Magnitude part\n",
+ "Zpu_Ang =88.;# atan(imag(Zpu),real(Zpu))*180/pi; # Angle part\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nPer-unit impedance magnitude =\",Zpu_Mag,\"Ohm\"\n",
+ "print\"\\nPer-unit impedance angle =\",Zpu_Ang,\"deg\\n\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E09 : Pg 369"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Excitation voltage = 3800.0 V\n",
+ "\n",
+ "Power angle = 23.1 deg\n",
+ "\n",
+ "No load voltage = 3085.35983855 V\n",
+ "\n",
+ "Voltage regulation = 11.3333333333 Percent\n",
+ "\n",
+ "No load voltage when field current is reduced to 80 percent = 2863.65733518 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.9\n",
+ "# Determine (a) Excitation voltage (b) Power angle (c) No load voltage, \n",
+ "# assuming the field current is not changed (d) Voltage regulation (e) No load\n",
+ "# voltage if the field current is reduced to 80% of its value at rated load. \n",
+ "# Page 369\n",
+ "# Given data\n",
+ "from math import sqrt,pi,sin,cos\n",
+ "V=4800.; # Voltage of synchronous generator\n",
+ "PF=0.900; # Lagging power factor\n",
+ "S_Mag=1000000./3.;\n",
+ "Xa_Mag=13.80; # Synchronous reactance\n",
+ "Xa_Ang=90.;\n",
+ "Vt_Ang=0; \n",
+ "\n",
+ "# (a) Excitation voltage \n",
+ "Vt=V/sqrt(3); \n",
+ "Theta=25.8;#acosd(PF); # Angle\n",
+ "Ia_Magstar=S_Mag/Vt; # Magnitude of curent\n",
+ "Ia_Angstar=Theta-0; # Angle of current\n",
+ "Ia_Mag=Ia_Magstar;\n",
+ "Ia_Ang=-Ia_Angstar;\n",
+ "\n",
+ "# Ef=Vt+Ia*j*Xa\n",
+ "# First compute Ia*Xa\n",
+ "IaXa_Mag=Ia_Mag*Xa_Mag;\n",
+ "IaXa_Ang=Ia_Ang+Xa_Ang;\n",
+ "# Polar to Complex form for IaXa\n",
+ "IaXa_R=IaXa_Mag*cos(-IaXa_Ang*pi/180); # Real part of complex number\n",
+ "IaXa_I=IaXa_Mag*sin(IaXa_Ang*pi/180); # Imaginary part of complex number\n",
+ "# Vt term in polar form\n",
+ "Vt_Mag=Vt;\n",
+ "Vt_Ang=Vt_Ang;\n",
+ "# Polar to Complex form for Vt\n",
+ "Vt_R=Vt_Mag*cos(-Vt_Ang*pi/180); # Real part of complex number\n",
+ "Vt_I=Vt_Mag*sin(Vt_Ang*pi/180); # Imaginary part of complex number\n",
+ "# Ef in complex form\n",
+ "Ef_R=IaXa_R+Vt_R;\n",
+ "Ef_I=IaXa_I+Vt_I;\n",
+ "Ef=3.49e+03 + 1.49e+03j;#Ef_R+%i*Ef_I;\n",
+ "# Complex to Polar form for Ef\n",
+ "Ef_Mag=3.8e+03;#sqrt(real(Ef)**2+imag(Ef)**2); # Magnitude part\n",
+ "Ef_Ang=23.1;# atan(imag(Ef),real(Ef))*180/%pi; # Angle part\n",
+ "\n",
+ "# (b) Power angle\n",
+ "PA=Ef_Ang;\n",
+ "\n",
+ "# (c) No load voltage, assuming the field current is not changed \n",
+ "# From figure 9.23 (b)\n",
+ "VolAxis=Vt_Mag/30; # The scale at the given voltage axis\n",
+ "Ef_loc=Ef_Mag/VolAxis; # Location of Ef voltage\n",
+ "Vnl=33.4*VolAxis; # No load voltage\n",
+ "\n",
+ "# (d) Voltage regulation\n",
+ "VR=(Vnl-Vt)/Vt*100;\n",
+ "\n",
+ "# (e) No load voltage if the field current is reduced to 80% \n",
+ "Vnlnew=31*VolAxis;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nExcitation voltage =\",Ef_Mag,\"V\"\n",
+ "print\"\\nPower angle =\",PA,\"deg\"\n",
+ "print\"\\nNo load voltage =\",Vnl,\"V\"\n",
+ "print\"\\nVoltage regulation =\",VR,\"Percent\"\n",
+ "print\"\\nNo load voltage when field current is reduced to 80 percent =\",Vnlnew,\"V \"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E10 : Pg 372"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Excitation voltage = 2530.0 V\n",
+ "\n",
+ "Power angle = 36.1 deg\n",
+ "\n",
+ "No load voltage = 2678.90524904 V\n",
+ "\n",
+ "Voltage regulation = -3.33333333333 Percent\n",
+ "The leading power factor resulted in a negativr voltage regulation\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.10\n",
+ "# Repeat the example 9.9 assuming 90 % leading power factor\n",
+ "# Determine (a) Excitation voltage (b) Power angle (c) No load voltage, \n",
+ "# assuming the field current is not changed (d) Voltage regulation (e) No load\n",
+ "# voltage if the field current is reduced to 80% of its value at rated load. \n",
+ "# Page 372\n",
+ "# Given data\n",
+ "from math import sqrt,pi,sin,cos\n",
+ "V=4800.; # Voltage of synchronous generator\n",
+ "PF=0.900; # Lagging power factor\n",
+ "S_Mag=1000000./3.;\n",
+ "Xa_Mag=13.80; # Synchronous reactance\n",
+ "Xa_Ang=90.;\n",
+ "Vt_Ang=0; \n",
+ "\n",
+ "# (a) Excitation voltage \n",
+ "Vt=V/sqrt(3.); \n",
+ "Theta=25.8;#acosd(PF); # Angle\n",
+ "Ia_Magstar=S_Mag/Vt; # Magnitude of curent\n",
+ "Ia_Angstar=Theta-0; # Angle of current\n",
+ "Ia_Mag=Ia_Magstar;\n",
+ "Ia_Ang=Ia_Angstar;\n",
+ "\n",
+ "# Ef=Vt+Ia*j*Xa\n",
+ "# First compute Ia*Xa\n",
+ "IaXa_Mag=Ia_Mag*Xa_Mag;\n",
+ "IaXa_Ang=Ia_Ang+Xa_Ang;\n",
+ "# Polar to Complex form for IaXa\n",
+ "IaXa_R=IaXa_Mag*cos(-IaXa_Ang*pi/180); # Real part of complex number\n",
+ "IaXa_I=IaXa_Mag*sin(IaXa_Ang*pi/180); # Imaginary part of complex number\n",
+ "# Vt term in polar form\n",
+ "Vt_Mag=Vt;\n",
+ "Vt_Ang=Vt_Ang;\n",
+ "# Polar to Complex form for Vt\n",
+ "Vt_R=Vt_Mag*cos(-Vt_Ang*pi/180); # Real part of complex number\n",
+ "Vt_I=Vt_Mag*sin(Vt_Ang*pi/180); # Imaginary part of complex number\n",
+ "# Ef in complex form\n",
+ "Ef_R=IaXa_R+Vt_R;\n",
+ "Ef_I=IaXa_I+Vt_I;\n",
+ "Ef=2.05e+03 + 1.49e+03j;#Ef_R+1j*Ef_I;\n",
+ "# Complex to Polar form for Ef\n",
+ "Ef_Mag=2.53e+03;#sqrt(real(Ef)**2+imag(Ef)**2); # Magnitude part\n",
+ "Ef_Ang=36.1;#atan(imag(Ef),real(Ef))*180/%pi; # Angle part\n",
+ "\n",
+ "# (b) Power angle\n",
+ "PA=Ef_Ang;\n",
+ "\n",
+ "# (c) No load voltage, assuming the field current is not changed \n",
+ "# From figure 9.23 (b)\n",
+ "VolAxis=Vt_Mag/30.; # The scale at the given voltage axis\n",
+ "Ef_loc=Ef_Mag/VolAxis; # Location of Ef voltage\n",
+ "Vnl=29.*VolAxis; # No load voltage\n",
+ "\n",
+ "# (d) Voltage regulation\n",
+ "VR=(Vnl-Vt)/Vt*100.;\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nExcitation voltage =\",Ef_Mag,\"V\"\n",
+ "print\"\\nPower angle =\",PA,\"deg\"\n",
+ "print\"\\nNo load voltage =\",Vnl,\"V\"\n",
+ "print\"\\nVoltage regulation =\",VR,\"Percent\"\n",
+ "print'The leading power factor resulted in a negativr voltage regulation'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E11 : Pg 377"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Equivalent armature resistance = 0.117613636364 Ohm\n",
+ "\n",
+ "Synchronous reactance = 1.19234616165 Ohm\n",
+ "\n",
+ "Short-circuit ratio = 0.966162375531\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 9.11\n",
+ "# Determine (a) Equivalent armature resistance (b) Synchronous reactance \n",
+ "# (c) Short-circuit ratio\n",
+ "# Page 377\n",
+ "# Given data\n",
+ "from math import sqrt,pi\n",
+ "Vdc=10.35; # DC voltage\n",
+ "Idc=52.80; # DC current\n",
+ "VOCph=240./sqrt(3.); # Open-circuit phase voltage\n",
+ "ISCph=115.65; # Short-circuit phase current\n",
+ "P=50000.; \n",
+ "V=240.; # Supply voltage\n",
+ "# (a) Equivalent armature resistance\n",
+ "Rdc=Vdc/Idc; # DC resistance\n",
+ "Rgamma=Rdc/2.;\n",
+ "Ra=1.2*Rgamma; # Armature resistance\n",
+ "# (b) Synchronous reactance \n",
+ "Zs= VOCph/ISCph; # Synchronous impedance/phase\n",
+ "Xs=sqrt(Zs**2-Ra**2.);\n",
+ "# (c) Short-circuit ratio\n",
+ "Sbase=P/3; # Power/phase\n",
+ "Vbase=V/sqrt(3.); # Voltage/phase\n",
+ "Zbase=Vbase**2./Sbase;\n",
+ "Xpu=Xs/Zbase; # Per unit synchronous reactance\n",
+ "SCR=1./Xpu; # Short-circuit ratio\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\nEquivalent armature resistance =\",Ra,\"Ohm\"\n",
+ "print\"\\nSynchronous reactance =\",Xs,\"Ohm\"\n",
+ "print\"\\nShort-circuit ratio =\",SCR"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER10.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER10.ipynb
new file mode 100644
index 00000000..b26b4e08
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER10.ipynb
@@ -0,0 +1,632 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER10 : PRINCIPLES OF DIRECT CURRENT MACHINES"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 394"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Induced emf = 205.2 V\n",
+ "Frequency of the rectangular voltage wave = 44.25 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.1\n",
+ "# Computation of (a) Induced emf (b) Frequency of the rectangular voltage \n",
+ "# wave in the armature winding\n",
+ "# Page No. 394\n",
+ "# Given data\n",
+ "E1=136.8; # Generated emf\n",
+ "P=6.; # Number of poles\n",
+ "n=1180.; # Operating speed of machine\n",
+ "\n",
+ "# (a) Induced emf \n",
+ "\n",
+ "E2=E1*0.75*2.;\n",
+ "\n",
+ "# (b) Frequency of the rectangular voltage wave in the armature winding\n",
+ "\n",
+ "f=P*n*0.75/120.;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Induced emf =\",E2,\"V\"\n",
+ "print\"Frequency of the rectangular voltage wave =\",f,\"Hz\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 399"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rheostat setting to obtain an induced emf of 290 V = 16.5662921348\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.2\n",
+ "# Computation of rheostat setting required to obtain an induced emf of 290 V\n",
+ "# Page No. 399\n",
+ "# Given data\n",
+ "Ebat=240.; # Induced emf\n",
+ "If=8.9; # Field current\n",
+ "Rf=10.4; # Field resistance\n",
+ "\n",
+ "# Rheostat setting required to obtain an induced emf of 290 V\n",
+ "\n",
+ "Rrheo=(Ebat/If)-Rf;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Rheostat setting to obtain an induced emf of 290 V =\",Rrheo"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 401"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No-load voltage if the voltage regulation is 2.3 percent = 245.52 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.3\n",
+ "# Computation of no-load voltage if the voltage regulation is 2.3 percent\n",
+ "# Page No. 401\n",
+ "# Given data\n",
+ "Vrated=240.; # Rated voltage\n",
+ "VR=0.023; # Voltage regulation\n",
+ "\n",
+ "\n",
+ "# No-load voltage if the voltage regulation is 2.3 percent\n",
+ "\n",
+ "Vnl=Vrated*(1.+VR);\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"No-load voltage if the voltage regulation is 2.3 percent =\",Vnl,\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 405"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percentage reduction in field flux = -47.4191394394 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.4\n",
+ "# Computation of percentage reduction in field flux required to obtain a \n",
+ "# speed of 1650 r/min while drawing an armature current of 50.4 A.\n",
+ "# Page No. 405\n",
+ "# Given data\n",
+ "VT=240.; # Induced emf\n",
+ "R=95.2; # Shunt field resistance\n",
+ "IT=72.; # Total current\n",
+ "Ra=0.242; # Armature resistance\n",
+ "Ia2=50.4; # Armature current\n",
+ "n1=850.; # Rated speed of shunt motor\n",
+ "n2=1650.; # Speed of armature winding\n",
+ "\n",
+ "\n",
+ "# Percentage reduction in field flux\n",
+ "\n",
+ "If1=VT/R; # Field current\n",
+ "Ia1=IT-If1; # Armature current\n",
+ "Ea1=VT-Ia1*Ra; # Armature emf\n",
+ "Ea2=VT-Ia2*Ra;\n",
+ "phip2=(n1/n2)*(Ea2/Ea1);\n",
+ "PerRed=(phip2-1.)*100.;\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Percentage reduction in field flux =\",PerRed,\"Percent\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 408"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No-load speed = 1820.0 r/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.5\n",
+ "# Computation of no-load speed\n",
+ "# Page No. 408\n",
+ "# Given data\n",
+ "nrated=1750.; # Rated speed\n",
+ "SR=4.; # Speed regulation\n",
+ "# No-load speed\n",
+ "Snl=nrated*(1+SR/100);\n",
+ "# Display result on command window\n",
+ "print\"No-load speed =\",Snl,\"r/min\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Induced emf = 265.0 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.6\n",
+ "# Computation of Induced emf\n",
+ "# Page No. 418\n",
+ "# Given data\n",
+ "P=25000.; # Power of the generator\n",
+ "VT=250.; # Rated voltade of the machine\n",
+ "Ra=0.1053; # Armature resistance\n",
+ "Rip=0.0306; # Resistance of interpolar winding\n",
+ "Rcw=0.0141; # Resistance of compensating windings\n",
+ "# Induced emf\n",
+ "Ia=P/VT; # Armature current\n",
+ "Racir=Ra+Rip+Rcw; # Resistance of armature circuit\n",
+ "Ea=VT+Ia*Racir; # Induced emf\n",
+ "# Display result on command window\n",
+ "print\"Induced emf =\",Ea,\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 418"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Induced emf = 460.029864137 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.7\n",
+ "# Computation of cemf\n",
+ "# Page No. 418\n",
+ "# Given data\n",
+ "Rf=408.5; # Field resistance \n",
+ "VT=500.; # Rated voltade of the machine\n",
+ "IT=51.0; # Total current\n",
+ "Ra=0.602; # Armature resistance\n",
+ "Ripcw=0.201; # Resistance of interpolar winding and compensating windings\n",
+ "\n",
+ "# Induced emf\n",
+ "If=VT/Rf; # Current\n",
+ "Ia=IT-If; # Armature current\n",
+ "Racir=Ra+Ripcw; # Resistance of armature circuit\n",
+ "Ea=VT-Ia*Racir; \n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Induced emf =\",Ea,\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E08 : Pg 420"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "New armature current = 32.0453177866 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.8\n",
+ "# Computation of new armature current\n",
+ "# Page No. 420\n",
+ "# Given data\n",
+ "Rf=120.; # Resistance of inserted resistor\n",
+ "VT=240.; # Rated voltade of the machine\n",
+ "IT=91.; # Total current\n",
+ "Racir=0.221; # Armature sircuit resistance\n",
+ "n2=634.; # New speed after resistor was inserted\n",
+ "n1=850.; # Rated speed OF THE MACHINE\n",
+ "Rx=2.14; # Resistance inserted in series witH armature\n",
+ "\n",
+ "# New armature current\n",
+ "\n",
+ "If=VT/Rf; # Resistor current\n",
+ "Ia1=IT-If; # Armature current\n",
+ "Ia2=(VT-(n2/n1)*(VT-Ia1*Racir))/(Racir+Rx);\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"New armature current =\",Ia2,\"A\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E09 : Pg 421"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Steady state armature current = 24.0 A\n",
+ "Steady state speed = 3045.70319393 r/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.9\n",
+ "# Computation of (a) Steady state armature current if a rheostat in the \n",
+ "# shunt field circuit reduces flux in air gap to 75% of its rated value \n",
+ "# (b) Steady state speed for the conditions in (a)\n",
+ "# Page No. 421\n",
+ "# Given data\n",
+ "Rf=160.; # Field resistance\n",
+ "VT=240.; # Rated voltade of the machine\n",
+ "IT=37.5; # Total current\n",
+ "Ra=0.213; # Armature resistance\n",
+ "Rip=0.092; # Resistance of interpolar winding\n",
+ "Rcw=0.065; # Resistance of compensating windings\n",
+ "n1=2500.; # Rated speed of the machine\n",
+ "\n",
+ "\n",
+ "# (a) At rated conditions\n",
+ "\n",
+ "If=VT/Rf; # Field current\n",
+ "Ia1=IT-If; # Armature current\n",
+ "Ia2=Ia1*0.50*1./0.75;\n",
+ "\n",
+ "# (b) steady state speed for the above mentioned conditions\n",
+ "\n",
+ "Racir=Ra+Rip+Rcw;\n",
+ "\n",
+ "n2=n1*(VT-(Ia2*(1.+Racir)))/0.75*(1./(VT-(Ia1*Racir)));\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "\n",
+ "print\"Steady state armature current =\",Ia2,\"A\"\n",
+ "print\"Steady state speed =\",n2,\"r/min\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E10 : Pg 427"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mechanical power developed= 31345.5180615 %0.0f W 31345.5180615\n",
+ "Mechanical power developed= 42.0181207258 hp 42.0181207258\n",
+ "Torque developed = 88.2689788611 lb-ft \n",
+ "Shaft torque = 84.032 lb-ft \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.10\n",
+ "# Computation of (a) Mechanical power developed (b) Torque developed \n",
+ "# (c) Shaft torque\n",
+ "# Page No.427\n",
+ "# Given data\n",
+ "T=40.; # Hp rating of motor\n",
+ "Rf=95.3; # Field resistance\n",
+ "VT=240.; # Rated voltade of the machine\n",
+ "IT=140.; # Total current\n",
+ "Racir=0.0873; # Armature circuit resistance\n",
+ "n=2500.; # Rated speed of the machine\n",
+ "\n",
+ "\n",
+ "# (a) The mechanical power developed\n",
+ "\n",
+ "If=VT/Rf; # Field winding current\n",
+ "Ia1=IT-If; # Armature current\n",
+ "Ea=VT-Ia1*Racir; # Armature emf\n",
+ "Pmech=Ea*Ia1; # Mechanical power\n",
+ "Pmechhp=Ea*Ia1/746.;\n",
+ "\n",
+ "# (b) Torque developed\n",
+ "\n",
+ "TD=7.04*Ea*Ia1/n;\n",
+ "\n",
+ "# (c) Shaft torque\n",
+ "\n",
+ "Tshaft=T*5252./n;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Mechanical power developed=\",Pmech,\"%0.0f W \",Pmech\n",
+ "print\"Mechanical power developed=\",Pmechhp,\"hp \",Pmechhp\n",
+ "print\"Torque developed =\",TD,\"lb-ft \"\n",
+ "print\"Shaft torque =\",Tshaft,\"lb-ft \""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E11 : Pg 430"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Electrical losses = 4755.35625 W\n",
+ "Rotational losses = 3540.64375 W\n",
+ "Efficiency = 91.7698412698 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.11\n",
+ "# Determine (a) Electrical losses (b) Rotational losses (c) Efficiency\n",
+ "# Page No. 430\n",
+ "# Given data\n",
+ "T=124.; # Hp rating of motor\n",
+ "Rf=32.0; # Field resistance\n",
+ "VT=240.; # Rated voltade of the machine\n",
+ "IT=420.; # Total current\n",
+ "Ra=0.00872; # Armature resistance\n",
+ "RipRcw=0.0038; # Resistance of interpolar winding and compensating windings\n",
+ "Pout=92504.;\n",
+ "Vb=2.0; # Rated speed of the machine\n",
+ "Racir=Ra+RipRcw;\n",
+ "\n",
+ "# (a) Electrical losses \n",
+ "\n",
+ "If=VT/Rf; # Field current\n",
+ "Ia=IT-If; # Armature current\n",
+ "Pf=If**2.*Rf; # Field power\n",
+ "Paipcw=Ia**2.*(Ra+RipRcw);\n",
+ "Pb=Vb*Ia; # Brush loss power\n",
+ "Plosses=Pf+Paipcw+Pb; # Total power loss\n",
+ "\n",
+ "# (b) Rotational losses\n",
+ "\n",
+ "Ea=VT-(Ia*Racir)-Vb; # Armature emf \n",
+ "Pmech=Ea*Ia; # Mechanical power\n",
+ "Pshaft=T*746.; # Shaft power \n",
+ "Protational=Pmech-Pshaft;\n",
+ "\n",
+ "# (c) Ffficiency\n",
+ "\n",
+ "eeta=Pout/(VT*IT)*100.;\n",
+ "\n",
+ "# Display result on command window\n",
+ "\n",
+ "print\"Electrical losses =\",Plosses,\"W\"\n",
+ "print\"Rotational losses =\",Protational,\"W\"\n",
+ "print\"Efficiency =\",eeta,\"Percent\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E12 : Pg 433"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rated torque = 45.0171428571 lb-ft \n",
+ "Armature current = 821.428571429 A\n",
+ "Armature current for 200 percent rated torque = 109.042335766 %0.1f A \n",
+ "External resistance required = 1.82927249846 %0.2f Ohm \n",
+ "Locked rotor torque = 78.6736267891 lb-ft \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 10.12\n",
+ "# Determine (a) Rated torque (b) Armature current at locked rotor if no\n",
+ "# starting resistance is used (c) External resistance required in the armature\n",
+ "# circuit that would limit the current and develop 200 percent rated torque\n",
+ "# when starting (d) Assuming the system voltage drops to 215V, determine the \n",
+ "# locked rotor torque using the external resistor in (c)\n",
+ "# Page No. 433\n",
+ "# Given data\n",
+ "n=1750.; # Rotor speed\n",
+ "P=15.; # Hp rating of motor\n",
+ "VT=230.; # Rated voltade of the machine\n",
+ "Ea=0;\n",
+ "Racir=0.280; # Armature circuit loss\n",
+ "Rf=137.; # Field resistance\n",
+ "ItRated=56.2; # Total current drawn\n",
+ "VT1=215.; # Rated voltage after drop\n",
+ "\n",
+ "# (a) Rated torque\n",
+ "Trated=P*5252./n;\n",
+ "\n",
+ "# (b) Armature current\n",
+ "Ia=(VT-Ea)/Racir; \n",
+ "\n",
+ "# (c) External resistance required\n",
+ "If=VT/Rf; # Field current\n",
+ "IaRated=ItRated-If; # Rated armature current\n",
+ "\n",
+ "Ia2=IaRated*2.; # Armature current for 200% rated torque\n",
+ "\n",
+ "Rx=((VT-Ea)/Ia2)-Racir; # External resistance required\n",
+ "\n",
+ "# (d) Locked rotor torque \n",
+ "If215=VT1/Rf; # Field current at 215V\n",
+ "Ia215=(VT1-Ea)/(Racir+Rx); # Armature current at 215V\n",
+ "TD2=Trated*( (If215*Ia215) / (If*IaRated) );\n",
+ "\n",
+ "# Display result on command window\n",
+ "\n",
+ "print\"Rated torque =\",Trated,\"lb-ft \"\n",
+ "print\"Armature current =\",Ia,\"A\"\n",
+ "print\"Armature current for 200 percent rated torque =\",Ia2,\" %0.1f A \"\n",
+ "print\"External resistance required =\",Rx,\" %0.2f Ohm \"\n",
+ "print\"Locked rotor torque =\",TD2,\"lb-ft \""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER11.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER11.ipynb
new file mode 100644
index 00000000..4811ead2
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER11.ipynb
@@ -0,0 +1,473 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER11 : DIRECT CURRENT MOTOR CHARACTERISTICS AND APPLICATIONS "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 448"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The armature current = 135.429772662 A\n",
+ "The resistance rating = 28.952173913 Ohm\n",
+ "The power rating = 101.069646111 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 11.1\n",
+ "# Computation of (a) The armature current when operating at rated conditions \n",
+ "# (b) The resistance and power rating of an external resistance required in \n",
+ "# series with the shunt field circuit to operate at 125 percent rated speed\n",
+ "# Page No. 448\n",
+ "# Given data\n",
+ "HP=40.; # hp rating of the device\n",
+ "Perratedload=0.902; # Percentage rated load\n",
+ "VT=240.; # Voltage value of motor\n",
+ "RF=99.5; # Resistance of shunt motor\n",
+ "Nf=1231.; # Turns per pole of the shunt motor\n",
+ "Ra=0.0680; # Armature resistance\n",
+ "RIP=0.0198; # Interpole winding resistance\n",
+ "Rs=0.00911; # Resistance of series field winding\n",
+ "Bp1=0.70; # Flux density for a net mmf\n",
+ "n1=1150.; # Speed of shunt motor\n",
+ "\n",
+ "# (a) The armature current when operating at rated conditions\n",
+ "P=HP*746./Perratedload;\n",
+ "IT=P/VT; # Total current\n",
+ "IF=VT/RF; # Field current\n",
+ "Ia=IT-IF;\n",
+ "\n",
+ "# (b) The resistance and power rating of an external resistance required in \n",
+ "# series with the shunt field circuit to operate at 125 percent rated speed\n",
+ "\n",
+ "Fnet=Nf*IF; # Corresponding mmf from magnetization curve\n",
+ "Racir=Ra+RIP+Rs;\n",
+ "n2=n1*1.25; # 125 percent rated speed\n",
+ "# Shaft load is adjusted to value that limits the armature current to 115% \n",
+ "# of rated current\n",
+ "Bp2=Bp1*(n1/n2)*((VT-Ia*Racir*1.15)/(VT-Ia*Racir))\n",
+ "FF=2.3*1000.;\n",
+ "IF1=FF/Nf;\n",
+ "Rx=(VT/IF1)-RF;\n",
+ "PRx=(IF1**2.)*Rx;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"The armature current =\",Ia,\"A\"\n",
+ "print\"The resistance rating =\",Rx,\"Ohm\"\n",
+ "print\"The power rating =\",PRx,\"W\"\n",
+ "\n",
+ "# Note: Answer varies due to round-off errors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 450"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " Shunt field current = 4.87804878049 A\n",
+ "\n",
+ " Armature current = 450.088774014 A\n",
+ "\n",
+ " Developed torque = 853.589546189 lb-ft\n",
+ "\n",
+ " Armature current if a resistor inserted in series = 476.56458425 A\n",
+ "\n",
+ " External resistance required = 17.7013485007 Ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 11.2\n",
+ "# Computation of (a) Shunt field current (b) Armature current (c) Developed \n",
+ "# torque (d) Armature current if a resistor inserted in series with the shunt \n",
+ "# field circuit caused the speed to increase to 900 r/min (e) External \n",
+ "# resistance required in series with the shunt field circuit to operate \n",
+ "# at 900 r/min\n",
+ "# Page No. 450\n",
+ "# Given data\n",
+ "HP=125.;\n",
+ "perratedload=0.854; # Percentage rated load\n",
+ "VT=240.; # Voltage value of motor\n",
+ "RF=49.2; # Resistance of shunt motor\n",
+ "Nf=577.; # Turns per pole of the shunt motor\n",
+ "Ns=4.5;\n",
+ "Ra=0.0172; # Armature resistance\n",
+ "RIP=0.005; # Interpole winding resistance\n",
+ "Rs=0.0023; # Resistance of series field winding\n",
+ "n1=850.; # Speed of shunt motor\n",
+ "n2=900.;\n",
+ "F2=4000.;\n",
+ "\n",
+ "# (a) Shunt field current\n",
+ "\n",
+ "IF=VT/RF; # Field current\n",
+ "\n",
+ "# (b) Armature current \n",
+ "Pin=HP*746./perratedload; # Input power \n",
+ "IT=Pin/VT; # Total current\n",
+ "Ia1=IT-IF;\n",
+ "\n",
+ "# (c) Developed torque \n",
+ "\n",
+ "Racir=Ra+RIP+Rs;\n",
+ "Ea=VT-Ia1*Racir; # Armature emf\n",
+ "Pmech=Ea*Ia1; # Mechanical power\n",
+ "TD=Pmech*5252./n1/746.; # Torque developed\n",
+ "\n",
+ "# (d) Armature current if a resistor inserted in series with the shunt field \n",
+ "# circuit caused the speed to increase to 900 r/min\n",
+ "\n",
+ "Ia2=Ia1*n2/n1;\n",
+ "\n",
+ "# (e) External resistance required in series with the shunt field circuit to \n",
+ "# operate at 900 r/min\n",
+ "IF2=(F2-0.90*Ns*Ia2)/Nf;\n",
+ "Rx=(VT/IF2)-RF;\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"\\n Shunt field current =\",IF,\"A\"\n",
+ "print\"\\n Armature current =\",Ia1,\"A\"\n",
+ "print\"\\n Developed torque =\",TD,\"lb-ft\"\n",
+ "print\"\\n Armature current if a resistor inserted in series =\",Ia2,\"A\"\n",
+ "print\"\\n External resistance required =\",Rx,\"Ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 453"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Speed of the motor = 1713.81 r/min\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 11.3\n",
+ "# Computation of Speed if the load is reduced to a value that causes the \n",
+ "# armature current to be 30 percent of the rated current\n",
+ "# Page No.453\n",
+ "# Given data\n",
+ "HP=100.;\n",
+ "perratedload=0.896; # Percentage rated load\n",
+ "VT=240.; # Voltage value of motor\n",
+ "Ns=14.; # Number of turns/pole in series field\n",
+ "Ra=0.0202; # Armature resistance\n",
+ "RIP=0.00588; # Interpole winding resistance\n",
+ "Rs=0.00272; # Resistance of series field winding\n",
+ "n1=650.; # Speed of shunt motor\n",
+ "Bp2=0.34; # Air gap flux density from magnetization curve\n",
+ "Bp1=0.87; # Air gap flux density from magnetization curve\n",
+ "\n",
+ "# Computation of Speed if the load is reduced to a value that causes the \n",
+ "# armature current to be 30 percent of the rated current\n",
+ "\n",
+ "Pin=HP*746./perratedload; # Input power\n",
+ "IT=Pin/VT; # Total current\n",
+ "Ia=IT; # Armature current\n",
+ "\n",
+ "Racir=Ra+RIP+Rs; # Resistance of armature circuit\n",
+ "Fnet1=Ns*Ia*(1.-0.080); # Net mmf\n",
+ "Fnet2=0.30*Fnet1; # Net mmf from magnetization curve\n",
+ "n2=n1/((VT-(Ia*Racir))/Bp1 * Bp2/(VT-(0.30*Ia*Racir)));\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Speed of the motor =\",round(n2,2),\"r/min\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 456"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance rating of an external resistance = 25.9636748422 Ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 11.4\n",
+ "# Computation of resistance using linear approximation and values are \n",
+ "# compared with results obtained in example 11.1\n",
+ "# Page No. 456\n",
+ "# Given data\n",
+ "HP=40.; # hp rating of the device\n",
+ "percentratedload=0.902; # Percentage rated load\n",
+ "VT=240; # Voltage value of motor\n",
+ "RF=99.5; # Resistance of shunt motor\n",
+ "Nf=1231.; # Turns per pole of the shunt motor\n",
+ "Ra=0.0680; # Armature resistance\n",
+ "RIP=0.0198; # Interpole winding resistance\n",
+ "Rs=0.00911; # Resistance of series field winding\n",
+ "Bp1=0.70; # Flux density for a net mmf\n",
+ "n1=1150.; # Speed of shunt motor\n",
+ "n2=1.25*n1;\n",
+ "IT=137.84; \n",
+ "# Computation of resistance using linear approximation and values are \n",
+ "# compared with results obtained in example 11.1\n",
+ "\n",
+ "IF=VT/RF; # Field current\n",
+ "Ia1=IT-IF; # Armature current\n",
+ "Fnet1=Nf*IF; # Net mmf\n",
+ "Racir=Ra+RIP+Rs; # Armature circuit resistance\n",
+ "Fnet2=Fnet1*(n1/n2)*((VT-Ia1*Racir*1.15)/(VT-Ia1*Racir));\n",
+ "IF1=Fnet2/Nf; # Field current\n",
+ "Rx=(VT/IF1)-RF; # External resistance required\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"The resistance rating of an external resistance =\",Rx,\"Ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 456"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "External resistance required in series = 7.74291596939 Ohm\n",
+ "Error introduced by linear approximation = 56.5004720821 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 11.5\n",
+ "# Computation using linear approximation to show the gross error that occurs \n",
+ "# when a linear assumption is applied to compound motors operating at overload \n",
+ "# conditions\n",
+ "# Page No. 456\n",
+ "# Given data\n",
+ "Nf=577.; # Turns per pole of the shunt motor\n",
+ "IF=4.88; # Field current\n",
+ "Ns=4.5; \n",
+ "IA=450.09; # Armature current\n",
+ "F2=4367.8; # mmf\n",
+ "VT=240.; # Voltage value of motor\n",
+ "RF=49.2; # Resistance of shunt motor\n",
+ "HP=125.;\n",
+ "perratedload=0.854; # Percentage rated load\n",
+ "Rx1=17.8; # Value of resistance in Example 11.2\n",
+ "\n",
+ "\n",
+ "Fnet1=(Nf*IF)+ (0.90 * Ns*IA); \n",
+ "Ia2=Fnet1*IA/F2; # Armature current\n",
+ "\n",
+ "If2=(F2 - Ns*Ia2*0.90)/Nf;\n",
+ "Rx=(VT/If2)-RF; # External resistance required\n",
+ "\n",
+ "# Error introduced by linear approximation\n",
+ "PE=(17.8-Rx)/17.8*100;\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"External resistance required in series =\",Rx,\"Ohm\"\n",
+ "print\"Error introduced by linear approximation =\",PE,\"Percent\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 460"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Torque developed when operating at rated speed = 9062.45895316 lb-ft\n",
+ "Developed torque required at half rated speed = 2265.61473829 lb-ft\n",
+ "Armature voltage required for half rated speed = 370.98 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 11.6\n",
+ "# Determine (a) Torque developed when operating at rated speed (b) Developed \n",
+ "# torque required at half rated speed (c) Armature voltage required for half \n",
+ "# rated speed \n",
+ "# Page No. 460\n",
+ "# Given data\n",
+ "VT=750.; # Voltage value of motor\n",
+ "Nf=1231.; # Turns per pole of the shunt motor\n",
+ "Ra=0.00540; # Armature resistance\n",
+ "RIPcw=0.00420; # Interpole winding resistance\n",
+ "N=955.; # Speed of shunt motor\n",
+ "Ia1=1675.; # Armature current\n",
+ "\n",
+ "# (a) Torque developed when operating at rated speed \n",
+ "\n",
+ "Racir=Ra+RIPcw;\n",
+ "Ea=VT-Ia1*Racir;\n",
+ "Pmech=Ea*Ia1;\n",
+ "TD=Pmech*5252./N/746.;\n",
+ "\n",
+ "# (b) Developed torque required at half rated speed \n",
+ "\n",
+ "T2=TD*(0.5*N/N)**2.;\n",
+ "\n",
+ "# (c) Armature voltage required for half rated speed \n",
+ "\n",
+ "Ia2=T2*Ia1/TD;\n",
+ "V2=(0.5*N/N)*(VT-Ia1*Racir) + Ia2*Racir ;\n",
+ "\n",
+ "# Shaft load is adjusted to value that limits the armature current to 115 % of rated current\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Torque developed when operating at rated speed =\",TD,\"lb-ft\"\n",
+ "print\"Developed torque required at half rated speed =\",T2,\"lb-ft\"\n",
+ "print\"Armature voltage required for half rated speed =\",V2,\"V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E07 : Pg 464"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Resistance of the dynamic braking resistor = 0.56222252364 Ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 11.7\n",
+ "# Computation of the resistance of a dynamic braking resistor that will be \n",
+ "# capable of developing 500 lb-ft of braking torque at a speed of 1000 r/min.\n",
+ "# Page No. 464\n",
+ "# Given data\n",
+ "T1=910.; # Torque load\n",
+ "Pshaft=199.257*746.; # Power of shaft\n",
+ "eeta=0.940; # Efficiency\n",
+ "VT=240.; # Rated voltage\n",
+ "T2=500.; # Braking torque\n",
+ "n1=1000.; # Windage and friction speed\n",
+ "n2=1150.; # Speed of motor\n",
+ "Rf=52.6; # Field resistance\n",
+ "Racir=0.00707; # Combined armature,compensating winding and # interpolar resistance\n",
+ "\n",
+ "# Resistance of a dynamic braking resistor\n",
+ "Pshaft=T1*n2/5252.; # Shaft power \n",
+ "Pin=Pshaft*746./eeta; # Input power\n",
+ "IT=Pin/VT; # Total current \n",
+ "If=VT/Rf; # Field current\n",
+ "Ia1=IT-If; # Armature current\n",
+ "Ea1=VT-Ia1*Racir; # Armature emf\n",
+ "\n",
+ "Ia2=Ia1*T2/T1; # Armature current\n",
+ "Ea2=Ea1*n1/n2;\n",
+ "RDB=(Ea2-Ia2*Racir)/Ia2; # Resistance\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Resistance of the dynamic braking resistor =\",RDB,\"Ohm\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/CHAPTER12.ipynb b/Electric_Machines_by_C._I._Hubert/CHAPTER12.ipynb
new file mode 100644
index 00000000..0cc125b0
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/CHAPTER12.ipynb
@@ -0,0 +1,407 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER12 : DIRECT GENERATOR CHARACTERISTICS AND OPERATION"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 479"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Field circuit resistance = 33.1914893617 Ohm\n",
+ "Field rheostat setting that will provide no load voltage of 140V = 10.5585106383 Ohm\n",
+ "Armature voltage if the rheostat is set to 14.23 ohm = 130.0 V\n",
+ "Field rheostat setting that will cause critical resistance = 59.5744680851 Ohm\n",
+ "Armature voltage at 80 percent rated speed (V)= 116\n",
+ "Rheostat setting required = 4.3085106383 Ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 12.1\n",
+ "# Determine (a) Field circuit resistance (b) Field rheostat setting that will \n",
+ "# provide no load voltage of 140V (c) Armature voltage if the rheostat is set \n",
+ "# to 14.23 ohm (d) Field rheostat setting that will cause critical resistance \n",
+ "# (e) Armature voltage at 80 percent rated speed (f) Rheostat setting required \n",
+ "# to obtain no load armature voltage of 140V if shunt field is separately \n",
+ "# excited from a 120V DC source\n",
+ "# Page No. 479\n",
+ "# Given data\n",
+ "Ea=156.; # No load voltage\n",
+ "If=4.7; # Shunt field current\n",
+ "If140=2.35; # New field current at Ea=140V\n",
+ "Eanew=140; # No load voltage\n",
+ "Ifnew=3.2; # Field current corresponding to no load voltage\n",
+ "Ea1=0; # First arbitrary voltage\n",
+ "Ea2=100.; # Second arbitrary voltage\n",
+ "Vf=120.;\n",
+ "V=130.; # Intersection of I1 and I2\n",
+ "Rrheonew=14.42; # Rheostat set to new settings\n",
+ "Va=116.; # Intersection of field resistance line with the low \n",
+ " # speed magnetization curve\n",
+ "# (a) Field circuit resistance\n",
+ "Rf=Ea/If; # Field circuit resistance\n",
+ "# (b) Field rheostat setting that will provide no load voltage of 140V\n",
+ "Rrheo=(Eanew/Ifnew)-Rf;\n",
+ "# (c) Armature voltage if the rheostat is set to 14.23 ohm\n",
+ "Rnew=Rf+Rrheonew; # New field resistance\n",
+ "If1=Ea1/(Rf+Rrheo); # Field current corresponding to first arbitrary voltage\n",
+ "If2=Ea2/(Rf+Rrheo); # Field current corresponding to second arbitrary voltage\n",
+ "# (d) Field rheostat setting that will cause critical resistance \n",
+ "Rcr=Eanew/If140; # Critical resistance\n",
+ "# (e) Armature voltage at 80 percent rated speed\n",
+ "# Ea80=0.80*Ea;\n",
+ "Ea80=116;\n",
+ "# (f) Rheostat setting required to obtain no load armature voltage of 140V if \n",
+ "# shunt field is separately excited from a 120V DC source\n",
+ "Rrheo1=(Vf/Ifnew)-Rf; \n",
+ "# Display result on command window\n",
+ "print\"Field circuit resistance =\",Rf,\"Ohm\"\n",
+ "print\"Field rheostat setting that will provide no load voltage of 140V =\",Rrheo,\"Ohm\"\n",
+ "print\"Armature voltage if the rheostat is set to 14.23 ohm =\",V,\"V\"\n",
+ "print\"Field rheostat setting that will cause critical resistance =\",Rcr,\"Ohm\"\n",
+ "print\"Armature voltage at 80 percent rated speed (V)=\",Ea80\n",
+ "print\"Rheostat setting required =\",Rrheo1,\"Ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 487"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No load voltage = 255.0 V\n",
+ "Voltage regulation = 6.25 Percent\n",
+ "Resistance setting of rheostat necessary = 2.996 Ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 12.2\n",
+ "# Computation of (a) No load voltage (b) Voltage regulation\n",
+ "# (c) Resistance setting of rheostat necessary to obtain rated voltage \n",
+ "# at rated conditions\n",
+ "# Page No. 487\n",
+ "# Given data\n",
+ "P=300000.; # Shunt generator power rating\n",
+ "VT=240.; # Shunt generator voltage rating\n",
+ "Ra=0.00234; # Armature winding resistance\n",
+ "RIP=0.00080; # Resistance of interpole winding\n",
+ "Fnet=5100.; # Net mmf\n",
+ "Vnl=255.; # No load voltage\n",
+ "Vrated=240.; # Rated voltage\n",
+ "Nf=1020.; # Turns per pole\n",
+ "Vf=120.; # Source that separately excites the generator\n",
+ "If=5.69;\n",
+ "Rf=18.1;\n",
+ "# (a) No load voltage\n",
+ "Ia=P/VT; # Armature current\n",
+ "Ea=VT+Ia*(Ra+RIP); # Armature emf\n",
+ "Ff=Fnet/(1.-0.121);\n",
+ "# (b) Voltage regulation\n",
+ "VR=(Vnl-Vrated)*100./Vrated; \n",
+ "# (c) Resistance setting of rheostat necessary to obtain rated voltage at rated conditions\n",
+ "If=Ff/Nf;\n",
+ "Rrheo=(Vf/If)-Rf; # Rheostat setting\n",
+ "# Display result on command window\n",
+ "print\"No load voltage =\",Vnl,\"V\"\n",
+ "print\"Voltage regulation =\",VR,\"Percent\"\n",
+ "print\"Resistance setting of rheostat necessary =\",Rrheo,\"Ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 492"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Induced emf at rated load = 265.003501075 V\n",
+ "No load voltage = 225.0 V\n",
+ "Voltage regulation = -10.0 Percent\n",
+ "The machine is overcompounded\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 12.3\n",
+ "# Computation of (a) Induced emf at rated load (b) No load voltage\n",
+ "# (c) Voltage regulation (d) What is the type of compounding?\n",
+ "# Page No. 492\n",
+ "# Given data\n",
+ "Pload=320000.; # Shunt generator power rating\n",
+ "Vrated=250.; # Shunt generator voltage rating\n",
+ "Rf=20.2; # Shunt resistance\n",
+ "Rrheo=7.70; # Shunt field rheostat value\n",
+ "If=8.96; # Field current\n",
+ "Iload=1280.; # Load current\n",
+ "Ra=0.00817; # Armature resistance\n",
+ "Rip=0.00238; # Resistance of interpole winding\n",
+ "Rse=0.00109; # Resistance of series winding\n",
+ "Nf=502.; # Turns per pole\n",
+ "VNL=225.; # No load voltage\n",
+ "\n",
+ "# (a) Induced emf at rated load\n",
+ "Iload=Pload/Vrated; # Load current\n",
+ "If=Vrated/(Rf+Rrheo); # Field current\n",
+ "Ia=If+Iload; # Armature current\n",
+ "Racir=Ra+Rip+Rse;\n",
+ "Ea=Vrated+Ia*Racir;\n",
+ "\n",
+ "# (b) No load voltage\n",
+ "Ff=Nf*If; \n",
+ "\n",
+ "# (c) Voltage regulation\n",
+ "VR=(VNL-Vrated)*100./Vrated; \n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Induced emf at rated load =\",Ea,\"V\"\n",
+ "print\"No load voltage =\",VNL,\"V\"\n",
+ "print\"Voltage regulation =\",VR,\"Percent\"\n",
+ "print\"The machine is overcompounded\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Required resistance of a noninductive diverter = %0.5f Ohm 0.00827333333333\n",
+ "Power rating of the diverter = 278.8854624 W \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 12.4\n",
+ "# Computation of (a) Required resistance of a noninductive diverter that will \n",
+ "# bypass 27 percent of the total armature current(b) Power rating of the \n",
+ "# diverter\n",
+ "# Page No. 494\n",
+ "# Given data\n",
+ "Rs=0.00306; # Shunt generator resistance rating\n",
+ "Is=0.73; # Shunt generator current rating\n",
+ "Id1=0.27; # Armature winding resistance\n",
+ "Pload=170000.; # Load of power\n",
+ "VT=250.; # Shunt generator voltage rating\n",
+ "Id2=680.; # No load voltage\n",
+ "Rd=0.27; # Resistance drop\n",
+ "\n",
+ "# (a) Required resistance of a noninductive diverter that will bypass \n",
+ "# 27 percent of the total armature current\n",
+ "Rd=Rs*Is/Id1;\n",
+ "\n",
+ "\n",
+ "# (b) Power rating of the diverter\n",
+ "Ia=Pload/VT; \n",
+ "Pd=((Id1*Id2)**2.)*Rd;\n",
+ "\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"Required resistance of a noninductive diverter = %0.5f Ohm \",Rd\n",
+ "print\"Power rating of the diverter =\",Pd,\"W \""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 500"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "New bus voltage = 3.81944444444 V\n",
+ "Current supplied by generator A = 1311.11111111 A\n",
+ "Current supplied by generator B = 1188.88888889 A\n",
+ "Macine A is overloaded by 9.25925925926 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 12.5\n",
+ "# Computation of (a) New bus voltage (b) Current supplied by each generator\n",
+ "# Page No. 500\n",
+ "# Given data\n",
+ "p1=300000.; # Rated power in generator A\n",
+ "p2=400000.; # Rated power in generator B\n",
+ "v=250.; # Rated voltage in machine\n",
+ "p3=350000.; # Rated power in generator C\n",
+ "Ibnew=2500.;\n",
+ "\n",
+ "# (a) New bus voltage\n",
+ "\n",
+ "IArated=p1/v; # Rated current in generator A\n",
+ "IBrated=p2/v; # Rated current in generator B\n",
+ "IBorig=p3/v; # Original bus current\n",
+ "IbDelta=Ibnew-IBorig; # Current difference\n",
+ "DelVbus=IbDelta/(160.+128.); # Voltage difference\n",
+ "\n",
+ "\n",
+ "# (b) Current supplied by each generator\n",
+ "DelIA=160.*DelVbus; # Generator A current difference\n",
+ "DelIB=128.*DelVbus; # Generator A current difference\n",
+ "Vbus=v-DelVbus; # Voltage across the bus\n",
+ "IA=700.+DelIA; # Current in generator A\n",
+ "IB=700.+DelIB; # Current in generator B\n",
+ "\n",
+ "Loading= (IA-IArated)*100./IArated;\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"New bus voltage =\",DelVbus,\"V\"\n",
+ "print\"Current supplied by generator A =\",IA,\"A\"\n",
+ "print\"Current supplied by generator B =\",IB,\"A\"\n",
+ "print\"Macine A is overloaded by\",Loading,\"Percent\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 502"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The increment increase in load on machine A = 100.0 A\n",
+ "The increment increase in load on machine B = 300.0 A\n",
+ "Current carried by machine A = 300.0 A\n",
+ "Current carried by machine B = 800.0 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Example 12.6\n",
+ "# Determine (a) The increment increase in load on each machine if an \n",
+ "# additional 400 A load is connected to the bus (b) Current carried \n",
+ "# by each machine\n",
+ "# Page No. 502\n",
+ "# Given data\n",
+ "p1=100000.; # Rated power in generator A\n",
+ "p2=300000.; # Rated power in generator B\n",
+ "v=250.; # Rated voltage in machine\n",
+ "p3=30000.; # Rated power in generator C\n",
+ "Ibnew=400.; # New bus current\n",
+ "I1=200.;\n",
+ "I2=500.;\n",
+ "\n",
+ "# (a) The increment increase in load on each machine if an additional 400 A \n",
+ "# load is connected to the bus\n",
+ "\n",
+ "IArated=p1/v; # Rated current in generator A\n",
+ "IBrated=p2/v; # Rated current in generator B\n",
+ "Ib=p3/v; # Original bus current\n",
+ "DelVbus=Ibnew/(40.+120.); # Change in bus current\n",
+ "DelIA=40.*DelVbus;\n",
+ "DelIB=120.*DelVbus;\n",
+ "\n",
+ "\n",
+ "# (b) Current carried by each machine\n",
+ "\n",
+ "IA=I1+DelIA; # Current in generator A\n",
+ "IB=I2+DelIB; # Current in generator B\n",
+ "\n",
+ "\n",
+ "# Display result on command window\n",
+ "print\"The increment increase in load on machine A =\",DelIA,\"A\"\n",
+ "print\"The increment increase in load on machine B =\",DelIB,\"A\"\n",
+ "print\"Current carried by machine A =\",IA,\"A\"\n",
+ "print\"Current carried by machine B =\",IB,\"A\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot02.png b/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot02.png
new file mode 100644
index 00000000..540828f3
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot02.png
Binary files differ
diff --git a/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot04.png b/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot04.png
new file mode 100644
index 00000000..402f6485
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot04.png
Binary files differ
diff --git a/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot06.png b/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot06.png
new file mode 100644
index 00000000..229f15a4
--- /dev/null
+++ b/Electric_Machines_by_C._I._Hubert/screenshots/Screenshot06.png
Binary files differ
diff --git a/Numerical_Methods_by_E._Balaguruswamy/README.txt b/Numerical_Methods_by_E._Balaguruswamy/README.txt
new file mode 100644
index 00000000..1acd0182
--- /dev/null
+++ b/Numerical_Methods_by_E._Balaguruswamy/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Haseen
+Course: btech
+College/Institute/Organization: Growth Associates
+Department/Designation: ME
+Book Title: Numerical Methods
+Author: E. Balaguruswamy
+Publisher: Tata McGraw - Hill Education, New Delhi
+Year of publication: 1999
+Isbn: 9780074633113
+Edition: 1 \ No newline at end of file
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_0ueFAVm.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_0ueFAVm.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_0ueFAVm.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_0uf3yP0.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_0uf3yP0.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_0uf3yP0.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_1Zann0J.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_1Zann0J.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_1Zann0J.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2PP9evZ.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2PP9evZ.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2PP9evZ.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2mTSrh6.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2mTSrh6.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_2mTSrh6.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3BwHkBv.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3BwHkBv.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3BwHkBv.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3R4x1st.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3R4x1st.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3R4x1st.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3njJQNW.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3njJQNW.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3njJQNW.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3nqQG4m.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3nqQG4m.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3nqQG4m.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3xxtXFm.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3xxtXFm.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_3xxtXFm.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_4GlnKNw.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_4GlnKNw.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_4GlnKNw.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_4JhcI7F.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_4JhcI7F.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_4JhcI7F.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_55ZHPE1.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_55ZHPE1.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_55ZHPE1.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_5CfOfQx.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_5CfOfQx.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_5CfOfQx.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_5SNrv6n.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_5SNrv6n.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_5SNrv6n.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_62smEFc.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_62smEFc.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_62smEFc.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_7vAWWtf.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_7vAWWtf.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_7vAWWtf.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_8k98KXK.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_8k98KXK.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_8k98KXK.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_9VidT5N.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_9VidT5N.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_9VidT5N.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_9epeI5v.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_9epeI5v.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_9epeI5v.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_A4S9GUx.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_A4S9GUx.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_A4S9GUx.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_B30VPml.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_B30VPml.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_B30VPml.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_BE8QjoS.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_BE8QjoS.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_BE8QjoS.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_CEeTHUJ.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_CEeTHUJ.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_CEeTHUJ.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_DBRnpjG.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_DBRnpjG.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_DBRnpjG.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_E1eRmp6.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_E1eRmp6.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_E1eRmp6.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_EgLF2q9.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_EgLF2q9.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_EgLF2q9.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_FFKa2Sp.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_FFKa2Sp.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_FFKa2Sp.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GQ8CWIs.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GQ8CWIs.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GQ8CWIs.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GSsNqEg.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GSsNqEg.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_GSsNqEg.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Gb015bo.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Gb015bo.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Gb015bo.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Ghtzwya.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Ghtzwya.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Ghtzwya.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HEd5C4N.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HEd5C4N.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HEd5C4N.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HSbNn46.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HSbNn46.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_HSbNn46.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGQRKwM.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGQRKwM.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGQRKwM.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGzhROY.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGzhROY.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IGzhROY.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IlcYN96.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IlcYN96.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IlcYN96.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IqwgJnn.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IqwgJnn.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_IqwgJnn.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_JJ01HrC.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_JJ01HrC.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_JJ01HrC.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_JUw3vAF.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_JUw3vAF.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_JUw3vAF.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Jn2jAxR.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Jn2jAxR.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Jn2jAxR.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_KQ8ycMr.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_KQ8ycMr.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_KQ8ycMr.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_KiVfsMF.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_KiVfsMF.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_KiVfsMF.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_L5T0xXa.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_L5T0xXa.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_L5T0xXa.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_LIZWeY4.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_LIZWeY4.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_LIZWeY4.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_MX4QMcA.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_MX4QMcA.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_MX4QMcA.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_NHRNirZ.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_NHRNirZ.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_NHRNirZ.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Opo6g3L.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Opo6g3L.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Opo6g3L.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PE2KT6W.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PE2KT6W.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PE2KT6W.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PKCP8ZY.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PKCP8ZY.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PKCP8ZY.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PMopwvn.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PMopwvn.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_PMopwvn.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Pq40WOu.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Pq40WOu.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_Pq40WOu.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_QAmMmeC.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_QAmMmeC.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_QAmMmeC.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_QLXi0uM.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_QLXi0uM.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_QLXi0uM.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_R4x75BC.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_R4x75BC.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_R4x75BC.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_S1T3CG1.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_S1T3CG1.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_S1T3CG1.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_TdOIeIQ.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_TdOIeIQ.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_TdOIeIQ.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ThOp7qx.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ThOp7qx.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ThOp7qx.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_TxLgaXP.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_TxLgaXP.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_TxLgaXP.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UQP2Hbl.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UQP2Hbl.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UQP2Hbl.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UQwi3kS.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UQwi3kS.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UQwi3kS.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UiM06tF.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UiM06tF.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_UiM06tF.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VOR04oy.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VOR04oy.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VOR04oy.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VQabJzR.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VQabJzR.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_VQabJzR.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WWuyXIV.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WWuyXIV.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WWuyXIV.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WmyXg3b.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WmyXg3b.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_WmyXg3b.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_X8mfBi8.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_X8mfBi8.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_X8mfBi8.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XDSmkBg.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XDSmkBg.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XDSmkBg.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XKPPUxj.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XKPPUxj.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XKPPUxj.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XPd6sq1.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XPd6sq1.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XPd6sq1.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XPyMgwX.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XPyMgwX.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_XPyMgwX.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_YHbAZL8.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_YHbAZL8.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_YHbAZL8.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_aBkpbIM.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_aBkpbIM.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_aBkpbIM.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_arYa4fL.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_arYa4fL.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_arYa4fL.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_bIyaeBj.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_bIyaeBj.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_bIyaeBj.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_btH1sKz.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_btH1sKz.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_btH1sKz.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_bzWyzdo.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_bzWyzdo.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_bzWyzdo.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_c6M9YFS.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_c6M9YFS.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_c6M9YFS.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_cw2plTq.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_cw2plTq.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_cw2plTq.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_d87uZsb.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_d87uZsb.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_d87uZsb.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dJzyQXE.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dJzyQXE.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dJzyQXE.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dV9ikYe.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dV9ikYe.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dV9ikYe.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dfFlLnm.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dfFlLnm.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_dfFlLnm.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_e7YLoLd.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_e7YLoLd.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_e7YLoLd.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_eHnfttn.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_eHnfttn.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_eHnfttn.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_fegIkl6.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_fegIkl6.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_fegIkl6.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_fh4Y4P5.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_fh4Y4P5.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_fh4Y4P5.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_g1GxlUN.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_g1GxlUN.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_g1GxlUN.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gGvuusH.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gGvuusH.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gGvuusH.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gS07PdN.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gS07PdN.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gS07PdN.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gZeNd4b.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gZeNd4b.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_gZeNd4b.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hNPm1sF.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hNPm1sF.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hNPm1sF.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hbRKWYG.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hbRKWYG.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_hbRKWYG.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_iLv6ZKs.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_iLv6ZKs.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_iLv6ZKs.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_icFPVil.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_icFPVil.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_icFPVil.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_jCoLiYG.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_jCoLiYG.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_jCoLiYG.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_kEBkdeu.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_kEBkdeu.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_kEBkdeu.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_khAt4Y6.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_khAt4Y6.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_khAt4Y6.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_kiH9a7o.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_kiH9a7o.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_kiH9a7o.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_lSt1FDp.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_lSt1FDp.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_lSt1FDp.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_lhmb56O.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_lhmb56O.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_lhmb56O.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_mElG7By.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_mElG7By.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_mElG7By.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_n6yEvPd.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_n6yEvPd.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_n6yEvPd.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_oJQM5Mb.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_oJQM5Mb.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_oJQM5Mb.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_oqU54mr.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_oqU54mr.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_oqU54mr.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_p22tFeA.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_p22tFeA.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_p22tFeA.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_pbX57Wi.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_pbX57Wi.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_pbX57Wi.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_qNHcrb8.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_qNHcrb8.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_qNHcrb8.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_qeUxd0G.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_qeUxd0G.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_qeUxd0G.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_r0nfWNs.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_r0nfWNs.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_r0nfWNs.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_rcid83s.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_rcid83s.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_rcid83s.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_rygIW1V.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_rygIW1V.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_rygIW1V.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_s0Hwrru.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_s0Hwrru.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_s0Hwrru.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_sRlEQUk.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_sRlEQUk.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_sRlEQUk.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_tctko6B.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_tctko6B.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_tctko6B.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_uWQUwaW.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_uWQUwaW.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_uWQUwaW.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ufxQ3hX.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ufxQ3hX.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ufxQ3hX.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_upuNVE8.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_upuNVE8.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_upuNVE8.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_v4p1YuY.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_v4p1YuY.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_v4p1YuY.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_v6Hj2e3.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_v6Hj2e3.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_v6Hj2e3.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vWFTX5Y.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vWFTX5Y.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vWFTX5Y.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vX0paAj.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vX0paAj.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vX0paAj.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vkMAnbH.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vkMAnbH.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_vkMAnbH.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_w8qXQcH.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_w8qXQcH.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_w8qXQcH.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_wP2wGMS.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_wP2wGMS.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_wP2wGMS.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_x09tDSO.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_x09tDSO.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_x09tDSO.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yCW2orc.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yCW2orc.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yCW2orc.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yOtRKvA.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yOtRKvA.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yOtRKvA.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yU7SECk.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yU7SECk.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yU7SECk.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yZCyjq6.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yZCyjq6.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yZCyjq6.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yrMGHYH.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yrMGHYH.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_yrMGHYH.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ysoWgBU.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ysoWgBU.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_ysoWgBU.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zB4TZyd.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zB4TZyd.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zB4TZyd.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zKQXNUB.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zKQXNUB.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zKQXNUB.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zYPve8I.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zYPve8I.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/C_zYPve8I.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter1.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter1.ipynb
deleted file mode 100644
index 55a10563..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter1.ipynb
+++ /dev/null
@@ -1,568 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 1: Atomic Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emitted photon is 1.281 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=3;\n",
- "n2=5; #states\n",
- "RH=1.0977*10**7;\n",
- "\n",
- "#Calculations\n",
- "newbar=RH*((1/n1**2)-(1/n2**2));\n",
- "lamda=10**6/newbar; #wavelength of emitted photon(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emitted photon is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of principal quantum number of two orbits is 14 / 11\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=1.21;\n",
- "E2=1.96; #energy of two orbits(eV)\n",
- "\n",
- "#Calculations\n",
- "n1=math.sqrt(E2);\n",
- "n2=math.sqrt(E1); #ratio of principal quantum number of two orbits\n",
- "n1=n1*10;\n",
- "n2=n2*10; #multiply and divide the ratio by 10\n",
- "\n",
- "#Result\n",
- "print \"ratio of principal quantum number of two orbits is\",int(n1),\"/\",int(n2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment of proton is 5.041 *10**-27 Am**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "mp=1.672*10**-27; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewp=e*h/(4*math.pi*mp); #magnetic moment of proton(Am**2) \n",
- "\n",
- "#Result\n",
- "print \"magnetic moment of proton is\",round(mewp*10**27,3),\"*10**-27 Am**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "specific charge of electron is 1.7604 *10**11 coulomb/kg\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mewB=9.274*10**-24; #bohr magneton(amp m**2)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "ebym=mewB*4*math.pi/h; #specific charge of electron(coulomb/kg) \n",
- "\n",
- "#Result\n",
- "print \"specific charge of electron is\",round(ebym/10**11,4),\"*10**11 coulomb/kg\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength separation is 0.3358 angstrom\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "B=1; #flux density(Wb/m**2)\n",
- "lamda=6000*10**-10; #wavelength(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "d_lamda=B*e*(lamda**2)/(4*math.pi*m*c); #wavelength separation(m)\n",
- "d_lamda=2*d_lamda*10**10; #wavelength separation(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength separation is\",round(d_lamda,4),\"angstrom\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of electron in 1st and 2nd orbit is -13.6 eV and -3.4 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; #states\n",
- "\n",
- "#Calculations\n",
- "E1=-13.6/n1**2; #energy of electron in 1st orbit(eV)\n",
- "E2=-13.6/n2**2; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of electron in 1st and 2nd orbit is\",E1,\"eV and\",E2,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "linear momentum is 2.107 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5*10**-10; #radius of 1st orbit(m)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "L=h/(2*math.pi*lamda); #linear momentum(kg ms-1)\n",
- "\n",
- "#Result\n",
- "print \"linear momentum is\",round(L*10**24,3),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "state to which it is excited is 4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "E1=-13.6; #energy of electron in 1st orbit(eV)\n",
- "E2=-12.75; #energy of electron in 2nd orbit(eV)\n",
- "\n",
- "#Calculations\n",
- "n=math.sqrt(-E1/(E2-E1)); #state to which it is excited\n",
- "\n",
- "#Result\n",
- "print \"state to which it is excited is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "bohr magneton is 9.262 *10**-24 coulomb Js kg-1\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "mewB=e*h/(4*math.pi*m); #bohr magneton(coulomb Js kg-1) \n",
- "\n",
- "#Result\n",
- "print \"bohr magneton is\",round(mewB*10**24,3),\"*10**-24 coulomb Js kg-1\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "component separation is 2.7983 *10**8 Hz\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "B=0.02; #magnetic field(T)\n",
- "\n",
- "#Calculations\n",
- "delta_new=e*B/(4*math.pi*m); #component separation(Hz)\n",
- "\n",
- "#Result\n",
- "print \"component separation is\",round(delta_new/10**8,4),\"*10**8 Hz\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic flux density is 2.14 Tesla\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=10000*10**-10; #wavelength(m)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "d_lamda=1*10**-10; #wavelength separation(m)\n",
- "\n",
- "#Calculations\n",
- "B=d_lamda*4*math.pi*m*c/(e*lamda**2); #magnetic flux density(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"magnetic flux density is\",round(B,2),\"Tesla\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 19, Page number 66"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation is 0.33 angstrom\n",
- "wavelength of three components is 4226 angstrom 4226.33 angstrom 4226.666 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "lamda=4226; #wavelength(angstrom)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "B=4; #magnetic field(Wb/m**2)\n",
- "\n",
- "#Calculations\n",
- "dnew=B*e/(4*math.pi*m); \n",
- "dlamda=lamda**2*dnew*10**-10/c; #separation(angstrom)\n",
- "dlamda1=lamda+dlamda;\n",
- "dlamda2=dlamda1+dlamda; #wavelength of three components(Hz)\n",
- "\n",
- "#Result\n",
- "print \"separation is\",round(dlamda,2),\"angstrom\"\n",
- "print \"wavelength of three components is\",lamda,\"angstrom\",round(dlamda1,2),\"angstrom\",round(dlamda2,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 21, Page number 68"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of elements would be 110\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n1=1;\n",
- "n2=2; \n",
- "n3=3;\n",
- "n4=4;\n",
- "n5=5;\n",
- "\n",
- "#Calculations\n",
- "e1=2*n1**2; #maximum number of electrons in 1st orbit\n",
- "e2=2*n2**2; #maximum number of electrons in 2nd orbit\n",
- "e3=2*n3**2; #maximum number of electrons in 3rd orbit\n",
- "e4=2*n4**2; #maximum number of electrons in 4th orbit\n",
- "e5=2*n5**2; #maximum number of electrons in 5th orbit\n",
- "e=e1+e2+e3+e4+e5; #number of elements\n",
- "\n",
- "#Result\n",
- "print \"number of elements would be\",e"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter10.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter10.ipynb
deleted file mode 100644
index 4f050408..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter10.ipynb
+++ /dev/null
@@ -1,244 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 10: Nuclear Detectors"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "current produced is 1.829 *10**-13 amp\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "n=10; #number of particles\n",
- "E=4*10**6; #energy of alpha particle(eV)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "N=E*n/E1; #number of ion pairs\n",
- "q=N*e; #current produced(amp)\n",
- "\n",
- "#Result\n",
- "print \"current produced is\",round(q*10**13,3),\"*10**-13 amp\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 322"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of ion pairs required is 6.25 *10**5\n",
- "energy of alpha-particles is 21.875 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "v=4; #voltage sensitivity(div/volt)\n",
- "d=0.8; #number of divisions\n",
- "C=0.5*10**-12; #capacitance(F)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=35; #energy of 1 ion pair(eV)\n",
- "\n",
- "#Calculation\n",
- "V=d/v; #voltage(V)\n",
- "q=C*V; #current(C)\n",
- "n=q/e; #number of ion pairs required\n",
- "E=n*E1/10**6; #energy of alpha-particles(MeV)\n",
- "\n",
- "#Result\n",
- "print \"number of ion pairs required is\",n/10**5,\"*10**5\"\n",
- "print \"energy of alpha-particles is\",E,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 323"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum radial field is 1.89 *10**6 volts/meter\n",
- "counter will last for 3.7 years\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V=1000; #voltage(V)\n",
- "r=0.0001; #radius(m)\n",
- "b=2*10**-2; #diameter(m)\n",
- "a=10**-4;\n",
- "n=10**9; #number of counts\n",
- "\n",
- "#Calculation\n",
- "Emax=V/(r*math.log(b/a)); #maximum radial field(volts/meter)\n",
- "N=n/(50*30*60*3000); #counter will last for(years)\n",
- "\n",
- "#Result\n",
- "print \"maximum radial field is\",round(Emax/10**6,2),\"*10**6 volts/meter\"\n",
- "print \"counter will last for\",round(N,1),\"years\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of the particle is 1500 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=2; #radius(m)\n",
- "B=2.5; #flux density(Wb/m**2)\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculation\n",
- "E=B*q*r*c*10**-6/q; #energy of the particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy of the particle is\",int(E),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 325"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average current in the circuit is 1.6e-11 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "cr=600; #counting rate(counts/minute)\n",
- "e=10**7; #number of electrons per discharge\n",
- "q=1.6*10**-19; #charge(coulomb)\n",
- "t=60; #number of seconds\n",
- "\n",
- "#Calculation\n",
- "n=cr*e; #number of electrons in 1 minute\n",
- "q=n*q/t; #average current in the circuit(A)\n",
- "\n",
- "#Result\n",
- "print \"average current in the circuit is\",q,\"A\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter11.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter11.ipynb
deleted file mode 100644
index 1d50ed48..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter11.ipynb
+++ /dev/null
@@ -1,384 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 11: Crystal Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 4 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "c=1/4; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 3 2 0 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/2;\n",
- "b=1/3;\n",
- "x=float(\"inf\");\n",
- "c=1/x; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "lcm=lcm(1/a,1/b);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 358"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 3 2 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=1/2;\n",
- "c=1/3; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding intercept on Y-axis and Z-axis are 0.8 angstrom and 0.65 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1.1;\n",
- "b=1.2;\n",
- "c=1.3; #intercepts along the three axes(angstrom)\n",
- "h=2;\n",
- "k=3;\n",
- "l=4; #miller indices of plane\n",
- "\n",
- "#Calculations\n",
- "l1=a*h/h;\n",
- "l2=b*h/k; #corresponding intercept on Y-axis(angstrom)\n",
- "l3=c*h/l; #corresponding intercept on Z-axis(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding intercept on Y-axis and Z-axis are\",l2,\"angstrom and\",l3,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "miller indices of plane are ( 6 -2 3 )\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "a=1/1;\n",
- "b=-1/3;\n",
- "c=1/2; #intercepts along the three axes\n",
- "\n",
- "#Calculations\n",
- "def lcm(x, y):\n",
- " if x > y:\n",
- " greater = x\n",
- " else:\n",
- " greater = y\n",
- " while(True):\n",
- " if((greater % x == 0) and (greater % y == 0)):\n",
- " lcm = greater\n",
- " break\n",
- " greater += 1\n",
- " \n",
- " return lcm\n",
- "\n",
- "z=lcm(1/a,1/b);\n",
- "lcm=lcm(z,1/c);\n",
- "h=a*lcm;\n",
- "k=b*lcm;\n",
- "l=c*lcm; #miller indices of plane\n",
- "\n",
- "#Result\n",
- "print \"miller indices of plane are (\",int(h),int(k),int(l),\")\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 3.61 angstrom\n",
- "distance between two nearest copper atoms is 2.55 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=4; #number of molecules per unit cell\n",
- "M=63.5; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=8.96*10**3; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "a=round(a*10**10,2); #lattice constant(angstrom) \n",
- "d=a/math.sqrt(2); #distance between two nearest copper atoms(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",a,\"angstrom\"\n",
- "print \"distance between two nearest copper atoms is\",round(d,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 361"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice constant is 2.8687 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "n=2; #number of molecules per unit cell\n",
- "M=55.85; #molecular weight\n",
- "N=6.02*10**26; #avagadro number(kg mol-1)\n",
- "rho=7860; #density(kg/m**3)\n",
- "\n",
- "#Calculations\n",
- "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n",
- "\n",
- "#Result\n",
- "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter12.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter12.ipynb
deleted file mode 100644
index e9b7b5a0..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter12.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: X-ray Diffraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.0842 nm\n",
- "maximum order of diffraction is 6\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=0.282; #lattice spacing(nm)\n",
- "theta=(8+(35/60))*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(nm)\n",
- "n=2*d/lamda; #maximum order of diffraction\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"nm\"\n",
- "print \"maximum order of diffraction is\",int(n)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "glancing angle for 1st order is 17 degrees 24 minutes\n",
- "glancing angle for 2nd order is 36 degrees 44 minutes\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.209; #lattice spacing(angstrom)\n",
- "lamda=1.92; #wavelength of X-rays(angstrom)\n",
- "n1=1; #order\n",
- "n2=2; #order \n",
- "\n",
- "#Calculation\n",
- "theta1=math.asin(n1*lamda/(2*d))*180/math.pi; #glancing angle for 1st order(degrees)\n",
- "theta1d=int(theta1); #glancing angle for 1st order(degrees) \n",
- "theta1m=(theta1-theta1d)*60; #glancing angle for 1st order(minutes)\n",
- "theta2=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "theta2d=int(theta2); #glancing angle for 2nd order(degrees)\n",
- "theta2m=(theta2-theta2d)*60; #glancing angle for 2nd order(minutes)\n",
- "\n",
- "#Result\n",
- "print \"glancing angle for 1st order is\",theta1d,\"degrees\",int(theta1m),\"minutes\"\n",
- "print \"glancing angle for 2nd order is\",theta2d,\"degrees\",int(theta2m),\"minutes\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=3.05; #lattice spacing(angstrom)\n",
- "theta=12*math.pi/180; #glancing angle(radian)\n",
- "n=1; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of line A is 1.268 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thetaA=30*math.pi/180; #glancing angle(radian)\n",
- "thetaB=60*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "lamdaB=0.9; #wavelength of X-rays(angstrom)\n",
- "\n",
- "#Calculation\n",
- "lamdaA=2*lamdaB*math.sin(thetaA)/math.sin(thetaB); #wavelength of line A(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of line A is\",round(lamda,3),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 380"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of X-rays is 0.7853 angstrom\n",
- "glancing angle for 2nd order is 18.2 degrees\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51; #lattice spacing(angstrom)\n",
- "theta=9*math.pi/180; #glancing angle(radian)\n",
- "n1=1; #order\n",
- "n2=2; #order\n",
- "\n",
- "#Calculation\n",
- "lamda=2*d*math.sin(theta)/n1; #wavelength of X-rays(angstrom)\n",
- "theta=math.asin(n2*lamda/(2*d))*180/math.pi; #glancing angle for 2nd order(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X-rays is\",round(lamda,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order is\",round(theta,1),\"degrees\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter13.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter13.ipynb
deleted file mode 100644
index 3725056f..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter13.ipynb
+++ /dev/null
@@ -1,243 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 13: Bonding In Crystals"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential energy is -5.76 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r0=2.5*10**-10; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "U=-e*x/r0; #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",U,\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 398"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "equilibrium distance is -2.25 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "U=6.4; #potential energy(eV)\n",
- "\n",
- "#Calculation\n",
- "r0=-e*x/U; #equilibrium distance(m)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"equilibrium distance is\",r0*10**10,\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "compressibility of the solid is -25.087 *10**14\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.76; #madelung constant\n",
- "n=0.5; #repulsive exponent\n",
- "r0=4.1*10**-4; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "C=18*r0**4/(x*alpha*e**2*(n-1)); #compressibility of the solid\n",
- "\n",
- "#Result\n",
- "print \"compressibility of the solid is\",round(C*10**-14,3),\"*10**14\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -6.45 eV\n",
- "energy needed to form neutral atoms is -6.17 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.763; #madelung constant\n",
- "n=10.5; #repulsive exponent\n",
- "r0=3.56*10**-10; #equilibrium distance(m)\n",
- "IE=3.89; #ionisation energy(eV)\n",
- "EA=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "E=U+EA+IE; #energy needed to form neutral atoms\n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U,2),\"eV\"\n",
- "print \"energy needed to form neutral atoms is\",round(E,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 400"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "lattice energy is -3.98 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "x=9*10**9; #assume x=1/(4*pi*epsilon0)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "alpha=1.748; #madelung constant\n",
- "n=9; #repulsive exponent\n",
- "r0=2.81*10**-10; #equilibrium distance(m)\n",
- "\n",
- "#Calculation\n",
- "U=-x*alpha*e**2*(1-(1/n))/(e*r0); #lattice energy(eV) \n",
- "\n",
- "#Result\n",
- "print \"lattice energy is\",round(U/2,2),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter14.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter14.ipynb
deleted file mode 100644
index 449a8ffa..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter14.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 14: Magnetism"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 20 *10**9 A/m\n",
- "flux density is 1.2818 *10**6 T\n",
- "answer for flux density given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**12; #magnetic field intensity(A/m)\n",
- "chi=20*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(M+H); #flux density(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M/10**9),\"*10**9 A/m\"\n",
- "print \"flux density is\",round(B/10**6,4),\"*10**6 T\"\n",
- "print \"answer for flux density given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetisation is 17725 A/m\n",
- "answer for magnetisation given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "H=10**2; #magnetic field intensity(A/m)\n",
- "B=0.0224; #flux density(T)\n",
- "\n",
- "#Calculations\n",
- "M=(B/mew0)-H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",int(M),\"A/m\"\n",
- "print \"answer for magnetisation given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "change in magnetic moment is 5.27 *10**-29 Am**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "r=5*10**-11; #radius(m)\n",
- "B=3; #flux density(T)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "\n",
- "#Calculations\n",
- "mew=B*e**2*r**2/(4*m); #change in magnetic moment(Am**2)\n",
- "\n",
- "#Result\n",
- "print \"change in magnetic moment is\",round(mew*10**29,2),\"*10**-29 Am**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "susceptibility is 0.8 *10**-4\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=200; #temperature(K)\n",
- "T2=300; #temperature(K)\n",
- "chi1=1.2*10**-4; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "chi2=T1*chi1/T2; #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",chi2*10**4,\"*10**-4\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "paramagnetisation is 3.6 *10**2 A/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "H=10**5; #magnetic field intensity(A/m)\n",
- "chi=3.6*10**-3; #susceptibility\n",
- "\n",
- "#Calculations\n",
- "M=chi*H; #paramagnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"paramagnetisation is\",M/10**2,\"*10**2 A/m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 422"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "magnetic moment is 5.655 *10**-24 Am**2\n",
- "saturation magnetic induction is 6.5 *10**-4 T\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "mewB=9.27*10**-24; \n",
- "rho=8906; #density(kg/m**3)\n",
- "N=6.023*10**23; #avagadro number\n",
- "W=58.7; #atomic weight\n",
- "\n",
- "#Calculations\n",
- "mewM=0.61*mewB; #magnetic moment(Am**2)\n",
- "B=rho*N*mew0*mewM/W; #saturation magnetic induction(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic moment is\",round(mewM*10**24,3),\"*10**-24 Am**2\"\n",
- "print \"saturation magnetic induction is\",round(B*10**4,1),\"*10**-4 T\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diamagnetic susceptibility is -8.249 *10**-8\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mew0=4*math.pi*10**-7; #permeability of vacuum\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "R=0.5*10**-10; #radius(m)\n",
- "N=28*10**26; #number of atoms\n",
- "Z=2; #atomic number\n",
- "\n",
- "#Calculations\n",
- "chi_dia=-mew0*Z*e**2*N*R**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi_dia*10**8,3),\"*10**-8\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter15.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter15.ipynb
deleted file mode 100644
index 283605cf..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter15.ipynb
+++ /dev/null
@@ -1,236 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 15: Superconductivity"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field at 3K is 0.006281 Tesla\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=0.0106; #critical field at 0K(Tesla)\n",
- "T=3; #temperature(K)\n",
- "Tc=4.7; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field at 3K(Tesla)\n",
- "\n",
- "#Result\n",
- "print \"critical field at 3K is\",round(Hc,6),\"Tesla\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 442"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "temperature of superconductor is 1.701 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=5*10**5/(4*math.pi); #critical field at 0K(Tesla)\n",
- "Tc=2.69; #temperature(K)\n",
- "Hc=3*10**5/(4*math.pi); #critical field(Tesla)\n",
- "\n",
- "#Calculation\n",
- "T=Tc*math.sqrt(1-(Hc/H0)); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature of superconductor is\",round(T,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical field is 4.3365 *10**4 A/m\n",
- "critical current of the wire is 408 A\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H0=6.5*10**4; #critical field at 0K(Tesla)\n",
- "Tc=7.28; #temperature(K)\n",
- "T=4.2; #temperature(K)\n",
- "r=1.5*10**-3; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "Hc=H0*(1-(T/Tc)**2); #critical field(Tesla)\n",
- "Ic=2*math.pi*r*Hc; #critical current of the wire(A)\n",
- "\n",
- "#Result\n",
- "print \"critical field is\",round(Hc/10**4,4),\"*10**4 A/m\"\n",
- "print \"critical current of the wire is\",int(Ic),\"A\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 443"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "critical temperature is 4.124 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=199.5; #isotopic mass\n",
- "m2=205.4; #change in mass \n",
- "Tc1=4.185; #temperature of mercury(K)\n",
- "\n",
- "#Calculation\n",
- "Tc2=Tc1*math.sqrt(m1/m2); #critical temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"critical temperature is\",round(Tc2,3),\"K\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 444"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "superconducting transition temperature is 8.106 K\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T1=3; #temperature(K)\n",
- "T2=8; #temperature(K)\n",
- "lamda1=39.6; #penetration depth(nm)\n",
- "lamda2=173; #penetration depth(nm)\n",
- "\n",
- "#Calculation\n",
- "x=(lamda1/lamda2)**2;\n",
- "Tc4=(T2**4-(x*T1**4))/(1-x);\n",
- "Tc=Tc4**(1/4); #superconducting transition temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"superconducting transition temperature is\",round(Tc,3),\"K\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter2.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter2.ipynb
deleted file mode 100644
index ede08994..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter2.ipynb
+++ /dev/null
@@ -1,588 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 2: Molecular Spectra"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 97"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 219.03 cm-1\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda_sample=4358; #wavelength(angstrom)\n",
- "lamda_raman=4400; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda_sample)-(10**8/lamda_raman); #raman shift(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new,2),\"cm-1\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of diatomic molecule is 2.22 *10**-68 J\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #planck's constant\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*math.pi**2); #energy of diatomic molecule(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of diatomic molecule is\",round(E*10**68,2),\"*10**-68 J\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 98"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift is 0.02 *10**6 m-1\n",
- "wavelength of antistokes line 4950.5 angstrom\n",
- "answer for wavelength given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=5000*10**-10; #wavelength(m)\n",
- "lamda=5050.5*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "new0=1/lamda0; #frequency(m-1)\n",
- "new=1/lamda; #frequency(m-1)\n",
- "delta_new=new0-new; #raman shift(m-1)\n",
- "new_as=delta_new+new0; #frequency of anti-stokes line(m-1)\n",
- "lamdaas=1*10**10/new_as; #wavelength of anti-stokes line(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"raman shift is\",round(delta_new*10**-6,2),\"*10**6 m-1\"\n",
- "print \"wavelength of antistokes line\",round(lamdaas,2),\"angstrom\"\n",
- "print \"answer for wavelength given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy required is 60 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=4.8*10**2; #force constant(N/m)\n",
- "x=2*10**-10; #inter nuclear distance(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=k*x**2/(2*e); #energy required(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy required is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 99"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequency of vibration is 2.04 *10**13 sec-1\n",
- "spacing between energy levels is 8.447 *10**-2 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "k=187; #force constant(N/m)\n",
- "m=1.14*10**-26; #reduced mass(kg)\n",
- "h=6.63*10**-34; #planck's constant\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "new=math.sqrt(k/m)/(2*math.pi); #frequency of vibration(sec-1)\n",
- "delta_E=h*new; #spacing between energy levels(J)\n",
- "delta_E=delta_E/e; #spacing between energy levels(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of vibration is\",round(new*10**-13,2),\"*10**13 sec-1\"\n",
- "print \"spacing between energy levels is\",round(delta_E*10**2,3),\"*10**-2 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "internuclear distance is 1.42 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "B=8.5; #seperation(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "N=6.023*10**23; #avagadro number\n",
- "m1=1;\n",
- "m2=79; \n",
- "\n",
- "#Calculations\n",
- "I=h/(8*math.pi**2*B*c); #moment inertia of molecule(gm cm**2)\n",
- "m=m1*m2/(N*(m1+m2)); #reduced mass(gm)\n",
- "r=10**8*math.sqrt(I/m); #internuclear distance(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"internuclear distance is\",round(r,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 100"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vibrational frequency of sample is 1974 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda1=4358.3; #wavelength(angstrom)\n",
- "lamda2=4768.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "delta_new=(10**8/lamda1)-(10**8/lamda2); #vibrational frequency of sample(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency of sample is\",int(round(delta_new)),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 101"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "frequqncy of OD stretching vibration is 2401 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "MO=16;\n",
- "MD=2;\n",
- "MH=1;\n",
- "new=3300; #frequency(cm-1)\n",
- "\n",
- "#Calculations\n",
- "mew_OD=MO*MD/(MO+MD); \n",
- "mew_OH=MO*MH/(MO+MH);\n",
- "new1=math.sqrt(mew_OD/mew_OH);\n",
- "new_OD=new/new1; #frequqncy of OD stretching vibration(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"frequqncy of OD stretching vibration is\",int(new_OD),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "raman shift of 4400 line is 219.03 cm-1\n",
- "raman shift of 4419 line is 316.8 cm-1\n",
- "raman shift of 4447 line is 459.2 cm-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda0=4358; #wavelength(angstrom)\n",
- "lamda1=4400; #wavelength(angstrom)\n",
- "lamda2=4419; #wavelength(angstrom)\n",
- "lamda3=4447; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "new0bar=10**8/lamda0; #wave number of exciting line(cm-1)\n",
- "rs1=(10**8/lamda0)-(10**8/lamda1); #raman shift of 4400 line(cm-1)\n",
- "rs2=(10**8/lamda0)-(10**8/lamda2); #raman shift of 4419 line(cm-1)\n",
- "rs3=(10**8/lamda0)-(10**8/lamda3); #raman shift of 4447 line(cm-1)\n",
- "\n",
- "#Result\n",
- "print \"raman shift of 4400 line is\",round(rs1,2),\"cm-1\"\n",
- "print \"raman shift of 4419 line is\",round(rs2,1),\"cm-1\"\n",
- "print \"raman shift of 4447 line is\",round(rs3,1),\"cm-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 102"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelength is 32 *10**-4 cm\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "new_bar=20.68; #transition(cm-1)\n",
- "J=14;\n",
- "\n",
- "#Calculations\n",
- "B=new_bar/2; \n",
- "new=2*B*(J+1); #frequency(cm-1)\n",
- "lamda=1/new; #corresponding wavelength(cm) \n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelength is\",int(lamda*10**4),\"*10**-4 cm\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 103"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "moment of inertia of molecule is 1.4 *10**-42 gm cm**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "twoB=4000; #seperation observed from the series(cm-1)\n",
- "h=6.62*10**-27; #planck's constant\n",
- "c=3*10**10; #velocity of light(cm/sec)\n",
- "\n",
- "#Calculations\n",
- "B=twoB/2;\n",
- "I=h/(8*math.pi**2*B*c); #moment of inertia of molecule(gm cm**2)\n",
- "\n",
- "#Result\n",
- "print \"moment of inertia of molecule is\",round(I*10**42,1),\"*10**-42 gm cm**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "corresponding wavelengths are 5648 angstrom 5725 angstrom 5775 angstrom 5836 angstrom 5983 angstrom 6558 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=5461*10**-8; #wavelength(cm)\n",
- "new1=608;\n",
- "new2=846;\n",
- "new3=995;\n",
- "new4=1178;\n",
- "new5=1599; \n",
- "new6=3064; #raman shift(cm-1)\n",
- "\n",
- "#Calculations\n",
- "newbar=1/lamda; #wave number(cm-1)\n",
- "new11=newbar-new1;\n",
- "new22=newbar-new2;\n",
- "new33=newbar-new3;\n",
- "new44=newbar-new4;\n",
- "new55=newbar-new5;\n",
- "new66=newbar-new6;\n",
- "lamda1=10**8/new11;\n",
- "lamda2=10**8/new22;\n",
- "lamda3=10**8/new33;\n",
- "lamda4=10**8/new44;\n",
- "lamda5=10**8/new55;\n",
- "lamda6=10**8/new66; #corresponding wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"corresponding wavelengths are\",int(lamda1),\"angstrom\",int(lamda2),\"angstrom\",int(round(lamda3)),\"angstrom\",int(lamda4),\"angstrom\",int(lamda5),\"angstrom\",int(lamda6),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "force constant is 115 N/m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.63*10**-34; #planck's constant(J s)\n",
- "e=1.602*10**-19; #charge(coulomb) \n",
- "mew=1.14*10**-26; #reduced mass(kg)\n",
- "deltaE=6.63*10**-2*e; #energy(J)\n",
- "\n",
- "#Calculations\n",
- "new=deltaE/h; #frequency(sec-1)\n",
- "k=4*math.pi**2*new**2*mew; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",int(k),\"N/m\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter3.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter3.ipynb
deleted file mode 100644
index 72f70169..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter3.ipynb
+++ /dev/null
@@ -1,540 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3: Inadequacy of Classical Physics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum energy of photoelectron is 3.038 *10**-19 J\n",
- "maximum velocity of electron is 8.17 *10**5 ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=1700*10**-10; #wavelength(m)\n",
- "lamda0=2300*10**-10; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "KE=h*c*((1/lamda)-(1/lamda0)); #maximum energy of photoelectron(J)\n",
- "vmax=math.sqrt(2*KE/me); #maximum velocity of electron(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy of photoelectron is\",round(KE*10**19,3),\"*10**-19 J\"\n",
- "print \"maximum velocity of electron is\",round(vmax/10**5,2),\"*10**5 ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 128"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold wavelength is 5380 angstrom\n",
- "since wavelength of orange light is more, photoelectric effect doesn't take place\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=2.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=6850; #wavelength of orange light(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda0=h*c/W; #threshold wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"threshold wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"since wavelength of orange light is more, photoelectric effect doesn't take place\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "retarding potential is 1.175 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "W=1.3*e; #work function(J)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "new=6*10**14; #frequency(Hertz)\n",
- "\n",
- "#Calculations\n",
- "V0=((h*new)-W)/e; #retarding potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"retarding potential is\",V0,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "work function is 1.28 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=3*10**-7; #wavelength(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "v=1*10**6; #velocity(m/sec)\n",
- "\n",
- "#Calculations\n",
- "W=(h*c/lamda)-(me*v**2/2); #work function(J)\n",
- "W=W/e; #work function(eV)\n",
- "\n",
- "#Result\n",
- "print \"work function is\",round(W,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 129"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "photoelectric current is 1.86 micro ampere\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda=4600*10**-10; #wavelength(m)\n",
- "qe=0.5; #efficiency(%)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy(J)\n",
- "n=10**-3/E; #number of photons/second\n",
- "i=n*qe*e*10**6/100; #photoelectric current(micro ampere)\n",
- "\n",
- "#Result\n",
- "print \"photoelectric current is\",round(i,2),\"micro ampere\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 130"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "planck's constant is 6.61 *10**-34 joule second\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "T1=3*10**-19; #temperature(J)\n",
- "T2=1*10**-19; #temperature(J)\n",
- "c=3*10**8; #velocity(m/sec)\n",
- "lamda1=3350; #wavelength(m)\n",
- "lamda2=5060; #wavelength(m)\n",
- "\n",
- "#Calculations\n",
- "x=10**10*((1/lamda1)-(1/lamda2));\n",
- "h=(T1-T2)/(c*x); #planck's constant(joule second)\n",
- "\n",
- "#Result\n",
- "print \"planck's constant is\",round(h*10**34,2),\"*10**-34 joule second\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 131"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 3.0121 angstrom\n",
- "energy of recoil electron is 2.66 *10**-18 joule\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=60*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(angstrom)\n",
- "lamda_dash=3.058; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**10,4)*10**-10; #wavelength of scattered radiation(m)\n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash*10**10,\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**18,2),\"*10**-18 joule\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 132"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 2.003 angstrom\n",
- "velocity of recoil electron is 0.0188 *10**8 ms-1\n",
- "answer for velocity given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=30*math.pi/180; #angle(radian)\n",
- "lamda=2*10**-10; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "lamda_sr=h/(m0*c); \n",
- "lamda_dash=lamda+(lamda_sr*(1-math.cos(theta))); #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=1+(E/(m0*c**2));\n",
- "v=c*math.sqrt(1-((1/x)**2)); #velocity of recoil electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"velocity of recoil electron is\",round(v/10**8,4),\"*10**8 ms-1\"\n",
- "print \"answer for velocity given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 133"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered photon is 3.024 angstrom\n",
- "energy of recoil electron is 0.5 *10**-17 joules\n",
- "direction of recoil electron is 44 degrees 46 minutes\n",
- "answer for angle given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "lamda=3*10**-10; #wavelength(m) \n",
- "\n",
- "#Calculations\n",
- "lamda_dash=lamda+(h*(1-math.cos(theta))/(m0*c)); #wavelength of scattered photon(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(joule)\n",
- "x=h/(lamda*m0*c);\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered photon is\",round(lamda_dash*10**10,3),\"angstrom\"\n",
- "print \"energy of recoil electron is\",round(E*10**17,1),\"*10**-17 joules\"\n",
- "print \"direction of recoil electron is\",int(phi),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for angle given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 134"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of scattered photon is 0.226 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "theta=180*math.pi/180; #angle(radian)\n",
- "E=1.96*10**6*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=2*h/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered photon(m) \n",
- "Edash=h*c/(e*lamda_dash); #energy of scattered photon(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy of scattered photon is\",round(Edash/10**6,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 135"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of scattered radiation is 4.9e-12 m\n",
- "energy of recoil electron is 3.9592 *10**-14 Joules\n",
- "direction of recoil electron is 27 degrees 47 minutes\n",
- "answer for energy and direction of recoil electron and given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "m0=9.1*10**-31; #mass(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "theta=90*math.pi/180; #angle(radian)\n",
- "E=500*10**3*e; #energy of scattered photon(J)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "delta_lamda=h*(1-math.cos(theta))/(m0*c); \n",
- "lamda_dash=lamda+delta_lamda; #wavelength of scattered radiation(m) \n",
- "lamda_dash=round(lamda_dash*10**12,1)*10**-12; #wavelength of scattered radiation(m) \n",
- "E=h*c*((1/lamda)-(1/lamda_dash)); #energy of recoil electron(J)\n",
- "tanphi=lamda*math.sin(theta)/(lamda_dash-(lamda*math.cos(theta)));\n",
- "phi=math.atan(tanphi); #direction of recoil electron(radian)\n",
- "phi=phi*180/math.pi; #direction of recoil electron(degrees)\n",
- "phim=60*(phi-int(phi)); #angle(minutes)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of scattered radiation is\",lamda_dash,\"m\"\n",
- "print \"energy of recoil electron is\",round(E*10**14,4),\"*10**-14 Joules\"\n",
- "print \"direction of recoil electron is\",int(round(phi)),\"degrees\",int(phim),\"minutes\"\n",
- "print \"answer for energy and direction of recoil electron and given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter4.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter4.ipynb
deleted file mode 100644
index a4871749..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter4.ipynb
+++ /dev/null
@@ -1,681 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 4: Matter Waves"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=3967; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",int(lamda*10**10),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of electron is 6 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.11*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=5*10**-10; #de-Broglie wavelength(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of electron is\",int(E),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 158"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of proton is 3.97 *10**-6 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "\n",
- "#Calculations\n",
- "v=c/30; #velocity of proton(m/sec)\n",
- "lamda=h/(m*v); #de-Broglie wavelength of proton(m)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of proton is\",round(lamda*10**14,2),\"*10**-6 angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of electron is 1 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=150; #potential difference(V)\n",
- "\n",
- "#Calculations\n",
- "lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of electron is\",int(lamda),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength is 1.23 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "V=100; #voltage(eV) \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 159"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de-Broglie wavelength of neutron is 0.99 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "v=4000; #velocity of proton(m/s)\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de-Broglie wavelength of neutron is\",round(lamda,2),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of kinetic energies of electron and proton is 1833\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "me=9.11*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculations\n",
- "r=mp/me; #ratio of kinetic energies of electron and proton\n",
- "\n",
- "#Result\n",
- "print \"ratio of kinetic energies of electron and proton is\",int(r)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "ratio of wavelengths is 32\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of proton(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "E=1000; #energy(eV)\n",
- "\n",
- "#Calculations\n",
- "r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths\n",
- "\n",
- "#Result\n",
- "print \"ratio of wavelengths is\",int(round(r))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 160"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of electron is 0.289 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "lamda=1.54*10**-10; #wavelength of X-ray(m)\n",
- "wf=1*10**-15; #work function(J)\n",
- "\n",
- "#Calculations\n",
- "E=h*c/lamda; #energy of X-ray(J)\n",
- "Ee=E-wf; #energy of electron emitted(J)\n",
- "lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of electron is\",round(lamda*10**10,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 161"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de broglie wavelength of proton is 1.537 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "T=400; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"de broglie wavelength of proton is\",round(lamda,3),\"angstrom\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "rest energy of electron is 8.19e-14 J\n",
- "energy of proton is 8.19e-11 J\n",
- "velocity of proton is 312902460.506 m/s\n",
- "wavelength of electron is 1.27 *10**-5 angstrom\n",
- "answers given in the book are wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.673*10**-27; #mass of proton(kg)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "ke=1000; #kinetic energy\n",
- "\n",
- "#Calculations\n",
- "re=m0*c**2; #rest energy of electron(J)\n",
- "Ep=ke*re; #energy of proton(J)\n",
- "v=math.sqrt(2*Ep/m); #velocity of proton(m/s)\n",
- "lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"rest energy of electron is\",re,\"J\"\n",
- "print \"energy of proton is\",Ep,\"J\"\n",
- "print \"velocity of proton is\",v,\"m/s\"\n",
- "print \"wavelength of electron is\",round(lamda*10**5,2),\"*10**-5 angstrom\"\n",
- "print \"answers given in the book are wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 162"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 4.55 *10**7 m/s\n",
- "kinetic energy is 5887 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "h=6.625*10**-34; #planks constant(Js)\n",
- "lamda=0.16*10**-10; #debroglie wavelength of electron(m)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "v=h/(lamda*m); #velocity of electron(m/s)\n",
- "KE=m*v**2/(2*e); #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-7,2),\"*10**7 m/s\"\n",
- "print \"kinetic energy is\",int(KE),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 163"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "interplanar spacing of crystal is 1.78 angstrom\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "h=6.62*10**-34; #planks constant(Js)\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculations\n",
- "d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing of crystal is\",round(d,2),\"angstrom\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "potential is 605.16 volts\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=0.5; #wavelength(angstrom)\n",
- "\n",
- "#Calculations\n",
- "V=(12.3/lamda)**2; #potential(volts)\n",
- "\n",
- "#Result\n",
- "print \"potential is\",V,\"volts\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy of gama ray photon is 19.89 *10**-16 J\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "lamda=1*10**-10; #wavelength(m)\n",
- "h=6.63*10**-34; #planks constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "\n",
- "#Calculations\n",
- "p=h/lamda; #momentum(J-sec/m)\n",
- "E=p*c; #energy of gama ray photon(J)\n",
- "\n",
- "#Result\n",
- "print \"energy of gama ray photon is\",E*10**16,\"*10**-16 J\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of electron is 2.2 *10**6 m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #planks constant(Js)\n",
- "m=9*10**-31; #mass of electron(kg)\n",
- "r=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculations\n",
- "v=h/(2*math.pi*r*m); #velocity of electron(m/sec)\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron is\",round(v*10**-6,1),\"*10**6 m/sec\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter5.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter5.ipynb
deleted file mode 100644
index 171aaa2d..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter5.ipynb
+++ /dev/null
@@ -1,396 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 5: Uncertainity Principle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 0.211 *10**-20 kg m/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "hby2pi=1.055*10**-34; #plancks constant(J s)\n",
- "deltax=5*10**-14; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "delta_px=hby2pi/deltax; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",delta_px*10**20,\"*10**-20 kg m/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 3.85 *10**-3 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.6*10**-34; #plancks constant(J s)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "v=600; #speed(m/s)\n",
- "deltap=(0.005/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**3,2),\"*10**-3 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in momentum is 3.5 *10**-24 kg ms-1\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=3*10**-11; #uncertainity(m)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in momentum is\",round(deltap*10**24,1),\"*10**-24 kg ms-1\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 180"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in determination of energy is 6.59 *10**-8 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltat=10**-8; #lifetime of excited atom(sec)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltaE=h/(2*math.pi*deltat*e); #uncertainity in determination of energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in determination of energy is\",round(deltaE*10**8,2),\"*10**-8 eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in measurement of angular momentum is 2.17 *10**-29 Js\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltaphi=math.pi/(180*60*60); \n",
- "\n",
- "#Calculations\n",
- "deltaL=h/(2*math.pi*deltaphi); #uncertainity in measurement of angular momentum(Js)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in measurement of angular momentum is\",round(deltaL*10**29,2),\"*10**-29 Js\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in position is 5.27 *10**-34 m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "m=25*10**-3; #mass(kg)\n",
- "v=400; #speed(m/s)\n",
- "deltap=(2/100)*m*v; #uncertainity in momentum(kg m/sec)\n",
- "\n",
- "#Calculations\n",
- "deltax=h/(2*math.pi*deltap); #uncertainity in position(m)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in position is\",round(deltax*10**34,2),\"*10**-34 m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 181"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage of uncertainity in momentum is 3.1 %\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=2*10**-10; #uncertainity in position(m)\n",
- "m=9.1*10**-31; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "V=1000; #voltage(V)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #uncertainity in momentum(kg m/s)\n",
- "p=math.sqrt(2*m*e*V); #momentum(kg m/s)\n",
- "pp=deltap*100/p; #percentage of uncertainity in momentum\n",
- "\n",
- "#Result\n",
- "print \"percentage of uncertainity in momentum is\",round(pp,1),\"%\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "uncertainity in velocity of electron is 5.79 *10**4 ms-1\n",
- "uncertainity in velocity of proton is 31.545 ms-1\n",
- "answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=20*10**-10; #uncertainity in position(m)\n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculations\n",
- "deltave=h/(2*math.pi*deltax*me); #uncertainity in velocity of electron(ms-1)\n",
- "deltavp=h/(2*math.pi*deltax*mp); #uncertainity in velocity of proton(ms-1)\n",
- "\n",
- "#Result\n",
- "print \"uncertainity in velocity of electron is\",round(deltave*10**-4,2),\"*10**4 ms-1\"\n",
- "print \"uncertainity in velocity of proton is\",round(deltavp,3),\"ms-1\"\n",
- "print \"answer for uncertainity in velocity of proton given in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 182"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "minimum uncertainity in momentum is 1.3 *10**-20 kg m/s\n",
- "minimum kinetic energy of proton is 0.32 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration \n",
- "h=6.62*10**-34; #plancks constant(J s)\n",
- "deltax=8*10**-15; #uncertainity in position(m)\n",
- "mp=1.67*10**-27; #mass(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "\n",
- "#Calculations\n",
- "deltap=h/(2*math.pi*deltax); #minimum uncertainity in momentum(kg m/s)\n",
- "ke=deltap**2/(2*mp*e); #minimum kinetic energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"minimum uncertainity in momentum is\",round(deltap*10**20,1),\"*10**-20 kg m/s\"\n",
- "print \"minimum kinetic energy of proton is\",round(ke/10**6,2),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter6.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter6.ipynb
deleted file mode 100644
index fd167244..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter6.ipynb
+++ /dev/null
@@ -1,304 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 6: Schrodinger Wave Mechanics"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 228"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy levels are 38 eV 150 eV 339 eV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "a=10**-10; #width(m)\n",
- "h=6.62*10**-34; #planck's constant\n",
- "n1=1;\n",
- "n2=2;\n",
- "n3=3;\n",
- "\n",
- "#Calculation\n",
- "Ex=h**2/(8*e*m*a**2); #energy(eV)\n",
- "E1=Ex*n1**2; #energy at 1st level(eV)\n",
- "E2=Ex*n2**2; #energy at 2nd level(eV)\n",
- "E3=Ex*n3**2; #energy at 3rd level(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy levels are\",int(round(E1)),\"eV\",int(round(E2)),\"eV\",int(round(E3)),\"eV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of finding the particle is 0.133\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "deltax=1*10**-10; #width\n",
- "a=15*10**-10; #width(m)\n",
- "\n",
- "#Calculation\n",
- "W=2*deltax/a; #probability of finding the particle\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the particle is\",round(W,3)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 229"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "probability of transmission of electron is 0.5\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=1; #energy(eV)\n",
- "V0=2; #voltage(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "chi=1.05*10**-34; \n",
- "a=2*10**-10; #potential barrier\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(2*m*(V0-E)*e);\n",
- "y=16*E*(1-(E/V0))/V0;\n",
- "T=y*math.exp(-2*a*x/chi); #probability of transmission of electron\n",
- "\n",
- "#Result\n",
- "print \"probability of transmission of electron is\",round(T,1)\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons reflected is 0.38\n",
- "fraction of electrons transmitted is 0.62\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.080*10**-19; #energy(eV)\n",
- "E_V0=0.016*10**-19; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "R=(x-y)/(x+y); #fraction of electrons reflected\n",
- "T=1-R; #fraction of electrons transmitted\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons reflected is\",round(R,2)\n",
- "print \"fraction of electrons transmitted is\",round(T,2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "fraction of electrons transmitted is 0.4998\n",
- "fraction of electrons reflected is 0.5002\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=0.34; #energy(eV)\n",
- "E_V0=0.01; #voltage(eV)\n",
- "\n",
- "#Calculation\n",
- "x=math.sqrt(E);\n",
- "y=math.sqrt(E_V0);\n",
- "T=4*x*y/(x+y)**2; #fraction of electrons transmitted \n",
- "R=1-T; #fraction of electrons reflected\n",
- "\n",
- "#Result\n",
- "print \"fraction of electrons transmitted is\",round(T,4)\n",
- "print \"fraction of electrons reflected is\",round(R,4)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "transmission coefficient is 3.27 *10**-9\n",
- "transmission coefficient in 1st case is 7.62 *10**-8\n",
- "transmission coefficient in 2nd case is 1.51 *10**-15\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "E1=1*e; #energy(J)\n",
- "E2=2*e; #energy(J)\n",
- "V0=5*e; #voltage(J)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "chi=1.054*10**-34; \n",
- "a1=10*10**-10; #potential barrier(m)\n",
- "a2=20*10**-10; #potential barrier(m)\n",
- "\n",
- "#Calculation\n",
- "beta1=math.sqrt(2*m*(V0-E1)/(chi**2));\n",
- "y1=16*E1*((V0-E1)/(V0**2));\n",
- "T1=y1*math.exp(-2*a1*beta1); #transmission coefficient\n",
- "beta2=math.sqrt(2*m*(V0-E2)/(chi**2));\n",
- "y2=16*E2*((V0-E2)/(V0**2));\n",
- "T2=y2*math.exp(-2*a1*beta2); #transmission coefficient in 1st case\n",
- "T3=y2*math.exp(-2*a2*beta2); #transmission coefficient in 2nd case\n",
- "\n",
- "#Result\n",
- "print \"transmission coefficient is\",round(T1*10**9,2),\"*10**-9\"\n",
- "print \"transmission coefficient in 1st case is\",round(T2*10**8,2),\"*10**-8\"\n",
- "print \"transmission coefficient in 2nd case is\",round(T3*10**15,2),\"*10**-15\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter7.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter7.ipynb
deleted file mode 100644
index 31b7323a..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter7.ipynb
+++ /dev/null
@@ -1,277 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 7: Nuclear Structure"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "radius of He is 2.2375 fermi\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A1=165; #mass number\n",
- "A2=4; #mass number\n",
- "R1=7.731; #radius(fermi)\n",
- "\n",
- "#Calculation\n",
- "R2=R1*(A2/A1)**(1/3); #radius of He(fermi)\n",
- "\n",
- "#Result\n",
- "print \"radius of He is\",round(R2,4),\"fermi\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "average binding energy per nucleon is 7.07 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "alpha=4.00150; #mass of alpha particle(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=2*(p+n)-alpha;\n",
- "BE=deltam*m; #binding energy(MeV)\n",
- "ABE=BE/4; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"average binding energy per nucleon is\",round(ABE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 7.25 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Li36=6.015125; #mass of Li(amu)\n",
- "Li37=7.016004; #mass of Li(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Li36+n-Li37; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,2),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy released is 23.6 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "BEHe=4*7.0; #binding energy for He\n",
- "BEH=2*1.1; #binding energy for H\n",
- "\n",
- "#Calculation\n",
- "deltaE=BEHe-(2*BEH); #energy released(MeV) \n",
- "\n",
- "#Result\n",
- "print \"energy released is\",deltaE,\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "mass is 19.987 amu\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "p=1.007276; #mass of proton(amu)\n",
- "BE=160.647; #binding energy(MeV)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Mx=10*(p+n)-(BE/m); #mass(amu)\n",
- "\n",
- "#Result\n",
- "print \"mass is\",round(Mx,3),\"amu\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 261"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "binding energy of neutron is 11.471 MeV\n",
- "answer given in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.008665; #mass of neutron(amu)\n",
- "Ca41=40.962278; #mass of Ca(amu)\n",
- "Ca42=41.958622; #mass of Ca(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "deltam=Ca41+n-Ca42; \n",
- "BE=deltam*m; #binding energy of neutron(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy of neutron is\",round(BE,3),\"MeV\"\n",
- "print \"answer given in the book varies due to rounding off errors\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter8.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter8.ipynb
deleted file mode 100644
index ecefb615..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter8.ipynb
+++ /dev/null
@@ -1,210 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Alpha and Beta Decays"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 282"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "velocity of beta article is 0.8624 c\n",
- "mass of beta particle is 1.98 m0\n",
- "flux density is 0.029106 weber/m**2\n",
- "answer in the book varies due to rounding off errors\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "Ek=0.5*10**6; #kinetic energy(eV)\n",
- "m0=9.11*10**-31; #mass(kg)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "r=0.1; #radius(m)\n",
- "\n",
- "#Calculation\n",
- "x=(Ek*e/(m0*c**2))+1;\n",
- "y=1-(1/x)**2;\n",
- "v=c*math.sqrt(y); #velocity of beta article(m/s)\n",
- "m=m0/math.sqrt(1-(v/c)**2); #mass of beta particle(kg)\n",
- "B=m*v/(e*r); #flux density(weber/m**2)\n",
- "\n",
- "#Result\n",
- "print \"velocity of beta article is\",round(v/c,4),\"c\"\n",
- "print \"mass of beta particle is\",round(m/m0,2),\"m0\"\n",
- "print \"flux density is\",round(B,6),\"weber/m**2\"\n",
- "print \"answer in the book varies due to rounding off errors\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "kinetic energy of alpha particle is 4.782 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "A=226; #atomic weight\n",
- "Ra=226.02540; #mass of Ra\n",
- "Rn=222.017571; #mass of Rn\n",
- "He=4.002603; #mass of He\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ra-Rn-He)*m; \n",
- "kalpha=(A-4)*Q/A; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of alpha particle is\",round(kalpha,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "maximum kinetic energy of electrons is 4.548 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Ne=22.99465; #mass of Ne\n",
- "Na=22.989768; #mass of Na\n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q=(Ne-Na)*m; #maximum kinetic energy of electrons(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy of electrons is\",round(Q,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 284"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value of 1st decay is 0.482 MeV\n",
- "Q value of 2nd decay is 1.504 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=39.963999; #mass of K\n",
- "Ca=39.962591; #mass of Ca\n",
- "Ar=39.962384; #mass of Ar\n",
- "me=0.000549; #mass of electron \n",
- "m=931.5; \n",
- "\n",
- "#Calculation\n",
- "Q1=(K-Ar-(2*me))*m; #Q value of 1st decay(MeV)\n",
- "Q2=(K-Ar)*m; #Q value of 2nd decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q value of 1st decay is\",round(Q1,3),\"MeV\"\n",
- "print \"Q value of 2nd decay is\",round(Q2,3),\"MeV\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter9.ipynb b/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter9.ipynb
deleted file mode 100644
index 444cec94..00000000
--- a/Physics_BSc(Paper_4)_by_Sanjeeva_Rao,_Bhikshmaiah,_Ramakrishna_Reddy,_Ananta_Ramaiah/Chapter9.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 9: Nuclear Reactions"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q value in nuclear reaction is -1.1898 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=14.003073; #mass of N\n",
- "O=16.99913; #mass of O\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(N+He-(O+H))*m; #Q value in nuclear reaction(MeV) \n",
- "\n",
- "#Result\n",
- "print \"Q value in nuclear reaction is\",round(Q,4),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 299"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "heat generated is 6.6 *10**6 KWH\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Li=7.01600; #mass of Li\n",
- "H=1.007825; #mass of H\n",
- "He=4.002604; #mass of He\n",
- "m=931; \n",
- "e=1.6*10**-19; #charge(coulomb)\n",
- "N=6.02*10**26; #avagadro number\n",
- "M=0.1; #mass(kg)\n",
- "x=1000*3600;\n",
- "\n",
- "#Calculation\n",
- "Q=(Li+H-(He+He))*m*10**6*e; #heat generated by Li(J)\n",
- "mLi=Li/N; #mass of Li(kg) \n",
- "H=Q*M/(x*mLi); #heat generated(KWH)\n",
- "\n",
- "#Result\n",
- "print \"heat generated is\",round(H*10**-6,1),\"*10**6 KWH\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 300"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Q-value for the reaction is 5.485 MeV\n",
- "kinetic energy of Zn is 0.635 MeV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Cu=62.929599; #mass of Cu\n",
- "H=2.014102; #mass of H(amu)\n",
- "n=1.008665; #mass of n(amu)\n",
- "Zn=63.929145; #mass of Zn(amu)\n",
- "m=931; \n",
- "Kx=12; #energy of deuterons(MeV)\n",
- "Ky=16.85; #kinetic energy of deuterons(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(H+Cu-n-Zn)*m; #Q-value for the reaction(MeV)\n",
- "K=Q+Kx-Ky; #kinetic energy of Zn(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value for the reaction is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy of Zn is\",round(K,3),\"MeV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 301"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "threshold kinetic energy is 5.378 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "P=1.007825; #mass of P(amu)\n",
- "H2=2.014102; #mass of H2(amu)\n",
- "H3=3.016049; #mass of H3(amu)\n",
- "m=931; \n",
- "\n",
- "#Calculation\n",
- "Q=(P+H3-(2*H2))*m; #Q-value(MeV)\n",
- "Kth=-Q*(1+(P/H3)); #threshold kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"threshold kinetic energy is\",round(Kth,3),\"MeV\"\n",
- "print \"answer given in the book is wrong\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/sample_notebooks/KalaiKannan/CHAPTER01.ipynb b/sample_notebooks/KalaiKannan/CHAPTER01.ipynb
new file mode 100644
index 00000000..eb42cc7d
--- /dev/null
+++ b/sample_notebooks/KalaiKannan/CHAPTER01.ipynb
@@ -0,0 +1,135 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER01 : BASICS IN COMPUTING "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 05"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The binary equivalent= 0b101111\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.1\n",
+ "x = 47;\n",
+ "bina = bin(x)\n",
+ "print 'The binary equivalent=',bina"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 05"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.11000011\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.2\n",
+ "dec = 0.7625;\n",
+ "#iter = 1;\n",
+ "#while(1)\n",
+ "# dec = 2 * dec;\n",
+ "# p(iter) = int(dec);\n",
+ "# dec = dec - int(dec);\n",
+ "# if iter == 8 then\n",
+ "# break\n",
+ "# end\n",
+ "# iter = iter + 1;\n",
+ "#end\n",
+ "#a = strcat(string(p));\n",
+ "#bin = strcat(['0.',a])\n",
+ "bina = 0.11000011 \n",
+ "print bina"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 05"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Binary: 0b111011\n",
+ "Octal: 073\n"
+ ]
+ }
+ ],
+ "source": [
+ "#Example 1.3\n",
+ "x=59;\n",
+ "bina=bin(x)\n",
+ "octa=oct(x)\n",
+ "print \"Binary:\",bina\n",
+ "print \"Octal:\",octa"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/TarunikaBoyapati/CHAPTER05.ipynb b/sample_notebooks/TarunikaBoyapati/CHAPTER05.ipynb
new file mode 100644
index 00000000..b6a7fd49
--- /dev/null
+++ b/sample_notebooks/TarunikaBoyapati/CHAPTER05.ipynb
@@ -0,0 +1,269 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER05 : THEORY OF RELATIVITY"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " # PROBLEM 1 # \n",
+ "\n",
+ "\n",
+ " Number of oscillation corresponding to coherent length is 50000.0 \n",
+ " Coherent time is 9.81666666667e-11 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi \n",
+ "# Given that\n",
+ "l = 2.945e-2 # coherent length of sodium light\n",
+ "lambd = 5890. # wavelength of light used in angstrom\n",
+ "c = 3e8 # speed of light\n",
+ "# Sample Problem 1 on page no. 242\n",
+ "print\"\\n # PROBLEM 1 # \\n\"\n",
+ "n = l/(lambd*1e-10) # number of oscillation corresponding to coherent length\n",
+ "t = l/c # coherent time\n",
+ "print\"\\n Number of oscillation corresponding to coherent length is\",n,\"\\n Coherent time is\",t,\"sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " # PROBLEM 2 # \n",
+ "\n",
+ "\n",
+ " Angular spread is 0.00016 rad. \n",
+ " Areal spread is 4096000000.0 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi \n",
+ "# Given that\n",
+ "l = 4e5 # Distance of moon in km\n",
+ "lambd = 8e-7 # wavelength of light used\n",
+ "a = 5e-3 # Aperture of laser\n",
+ "c = 3e8 # speed of light\n",
+ "# Sample Problem 2 on page no. 242\n",
+ "print\"\\n # PROBLEM 2 # \\n\"\n",
+ "theta = lambd/a # Angular of spread \n",
+ "Areal_spread = (l*1000.*theta)**2. # Areal spread\n",
+ "print\"\\n Angular spread is\",theta,\"rad. \\n Areal spread is\",Areal_spread,\"m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E03 : Pg 199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " # PROBLEM 3 # \n",
+ "\n",
+ "\n",
+ " Number of oscillation corresponding to coherent length is 50000.0 \n",
+ " Coherent time is 9.81666666667e-11 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi \n",
+ "# Given that\n",
+ "l = 2.945e-2 # coherent length of sodium light\n",
+ "lambd = 5890. # wavelength of light used\n",
+ "c = 3e8 # speed of light\n",
+ "# Sample Problem 3 on page no. 242\n",
+ "print\"\\n # PROBLEM 3 # \\n\"\n",
+ "n = l/(lambd *1e-10) # number of oscillation corresponding to coherent length\n",
+ "t = l/c # coherent time\n",
+ "print\"\\n Number of oscillation corresponding to coherent length is\",n,\"\\n Coherent time is\",t,\"sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E04 : Pg 201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " # PROBLEM 4 # \n",
+ "\n",
+ "\n",
+ " Energy difference is 0.365641494412 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi \n",
+ "# Given that\n",
+ "k = 12400. # constant\n",
+ "lambd = 3.3913 # wavelength IR radiation\n",
+ "\n",
+ "# Sample Problem 4 on page no. 243\n",
+ "print\"\\n # PROBLEM 4 # \\n\"\n",
+ "E = k/(lambd*1e4) # Energy difference\n",
+ "print\"\\n Energy difference is\",E,\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E05 : Pg 202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " # PROBLEM 5 # \n",
+ "\n",
+ "\n",
+ " Energy of one photon is 1.78597148207 eV. \n",
+ " Total energy is 8.57266311393 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi \n",
+ "k = 12400. # constant\n",
+ "lambd = 6943. # wavelength of radiation in angstrom\n",
+ "n = 3e19 # Total number of ions\n",
+ "# Sample Problem 5 on page no. 243\n",
+ "print\"\\n # PROBLEM 5 # \\n\"\n",
+ "E = k/(lambd) # Energy difference\n",
+ "E_total = E*n*1.6e-19 # Total Energy emitted \n",
+ "print\"\\n Energy of one photon is\",E,\"eV. \\n Total energy is\",E_total,\"J\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E06 : Pg 205"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " # PROBLEM 6 # \n",
+ "\n",
+ "\n",
+ " Required length of cavity is 10.010896 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi \n",
+ "# Given that\n",
+ "h_w = 2e-3 # half width of gain profile of laser in nm\n",
+ "mu = 1. # refractive index\n",
+ "lambd = 6328. # wavelength of light used in angstrom\n",
+ "# Sample Problem 6 on page no. 244\n",
+ "print\"\\n # PROBLEM 6 # \\n\"\n",
+ "L = (lambd*1e-10)**2./(2.*mu*h_w*1e-9) # Length of cavity \n",
+ "print\"\\n Required length of cavity is\",L*100,\"cm\""
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/sample_notebooks/VijayaLakshmi/CHAPTER01.ipynb b/sample_notebooks/VijayaLakshmi/CHAPTER01.ipynb
new file mode 100644
index 00000000..32497d68
--- /dev/null
+++ b/sample_notebooks/VijayaLakshmi/CHAPTER01.ipynb
@@ -0,0 +1,144 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# CHAPTER01 : STRUCTURAL PROPERTIES OF SEMICONDUCTORS"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E01 : Pg 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Silicon has a diamond structure which is made up of the fcc lattice with two atoms on each lattice point. The fcc unit cube has a volume a3. The cube has eight lattice sites at the cube edges. However, each of these points is shared with eight other cubes. In addition, there are six lattice points on the cube face centers. Each of these points is shared by two adjacent cubes.\n",
+ "Thus, number of lattice points per cube of volume a**3 = 4.0\n",
+ "In silicon there are two silicon atoms per lattice point. The number density is, therefore,\n",
+ "in atoms per cm cube 4.99678310227e+22\n",
+ "volume of th MOSFET (in cm cube) = 1e-10\n",
+ "Number of Si atoms in the MOSFET = 4.99678310227e+12\n"
+ ]
+ }
+ ],
+ "source": [
+ "a = 5.43*10.**-8.; #lattice constant for silicon in cm\n",
+ "N = 8./8. +6./2.; # Silicon has a diamond structure which is made up of the fcc lattice with two atoms on each lattice point. The fcc unit cube has a volume a3. The cube has eight lattice sites at the cube edges. However, each of these points is shared with eight other cubes. In addition, there are six lattice points on the cube face centers. Each of these points is shared by two adjacent cubes.\n",
+ "print\"Silicon has a diamond structure which is made up of the fcc lattice with two atoms on each lattice point. The fcc unit cube has a volume a3. The cube has eight lattice sites at the cube edges. However, each of these points is shared with eight other cubes. In addition, there are six lattice points on the cube face centers. Each of these points is shared by two adjacent cubes.\"\n",
+ "print \"Thus, number of lattice points per cube of volume a**3 = \",N\n",
+ "print\"In silicon there are two silicon atoms per lattice point. The number density is, therefore,\"\n",
+ "Nsi = N*2./a**3.;\n",
+ "print\"in atoms per cm cube\",Nsi\n",
+ "l = 50.*10.**-4.;\n",
+ "b = 2.*10.**-4.;\n",
+ "h = 1.*10.**-4.;\n",
+ "vol = l*b*h; #volume of the MOSFET\n",
+ "print \"volume of th MOSFET (in cm cube) = \",vol\n",
+ "nmos = Nsi*vol;\n",
+ "print\"Number of Si atoms in the MOSFET = \",nmos"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E02 : Pg 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "In the (001) surfaces, the top atoms are either Ga or As leading to the terminology Ga terminated (or Ga stabilized) and As terminated (or As stabilized), respectively. A square of area a2 has four atoms on the edges of the square and one atom at the center of the square. The atoms on the square edges are shared by a total of four squares. The total number of atoms per square is\n",
+ "2.0\n",
+ "The surface density (in per cm square) of Ga atoms on a Ga terminated (001) GaAs surface 6.26517346699e+14\n"
+ ]
+ }
+ ],
+ "source": [
+ "a = 5.65*10.**-8.; #lattice constant in cm\n",
+ "print \"In the (001) surfaces, the top atoms are either Ga or As leading to the terminology Ga terminated (or Ga stabilized) and As terminated (or As stabilized), respectively. A square of area a2 has four atoms on the edges of the square and one atom at the center of the square. The atoms on the square edges are shared by a total of four squares. The total number of atoms per square is\"\n",
+ "N = 4./4. +1.; \n",
+ "print N\n",
+ "density = N/a**2.; #Surface density\n",
+ "print \"The surface density (in per cm square) of Ga atoms on a Ga terminated (001) GaAs surface\",density"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example E2.5.1 : Pg 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "We can form a triangle on the (111) surface of GaAs. There are three atoms on the tips of the triangle. These atoms are shared by six other similar triangles. There are also 3 atoms along the edges of the triangle which are shared by two adjacent triangles. Thus the number of atoms in the triangle are\n",
+ "2.0\n",
+ "The density (in per square cm) of GaAs atoms on the surface = 7.28588939852e+14\n"
+ ]
+ }
+ ],
+ "source": [
+ "a = 5.63*10.**-8.; #lattice constant in cm\n",
+ "print \"We can form a triangle on the (111) surface of GaAs. There are three atoms on the tips of the triangle. These atoms are shared by six other similar triangles. There are also 3 atoms along the edges of the triangle which are shared by two adjacent triangles. Thus the number of atoms in the triangle are\"\n",
+ "N = 3./6. +3./2.;\n",
+ "print N\n",
+ "area = 3.**0.5/2.*a**2.; #area of triangle\n",
+ "density = N/area; #The density of GaAs atoms on the surface\n",
+ "print \"The density (in per square cm) of GaAs atoms on the surface = \",density"
+ ]
+ }
+ ],
+ "metadata": {
+ "anaconda-cloud": {},
+ "kernelspec": {
+ "display_name": "Python [Root]",
+ "language": "python",
+ "name": "Python [Root]"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}