summaryrefslogtreecommitdiff
path: root/Electric_Machines_by_C._I._Hubert/CHAPTER01.ipynb
blob: f24867b1baeb2787a10a293acc763bacd2045cbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# CHAPTER01 : MAGNETICS ELECTROMAGNETIC FORCES GENERATED VOLTAGE AND ENERGY CONVERSION"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E02 : Pg 13"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Current in the coil  = 49.362 A\n",
      "\n",
      "Magnetic potential difference across R3 = 4285.714 A-t\n",
      "\n",
      "Flux in R2 (Wb) = 0.107 Wb\n",
      " \n"
     ]
    }
   ],
   "source": [
    "#  Example 1.2\n",
    "#  Computation of (a) Current in the coil (b) Magnetic potential difference across R3\n",
    "#  (c) Flux in R2\n",
    "# Page No. 13\n",
    "#  Given data\n",
    "phi=0.250;               #  Flux in Wb\n",
    "R1=10500.;                #  First magnetic circuit parameter\n",
    "R2=40000.;                #  Second magnetic circuit parameter\n",
    "R3=30000.;                #  Third magnetic circuit parameter\n",
    "N=140.;                   #  Number of turns of copper wire\n",
    "\n",
    "#  (a) Current in the coil\n",
    "RParr=(R2*R3)/(R2+R3);      #  Parallel resistance\n",
    "Rckt=R1+RParr;              #  Circuit resistance\n",
    "I=(phi*Rckt)/N;\n",
    "\n",
    "#  (b) Magnetic potential difference across R3\n",
    "F1=phi*R1;                  #  Magnetic drop across R1\n",
    "F3=(I*N)-F1;                #  Flux across R3\n",
    "\n",
    "# (c) flux in R2\n",
    "phi2=F3/R2;\n",
    "\n",
    "\n",
    "# Display result on command window\n",
    "print\"Current in the coil  =\",round(I,3),\"A\"\n",
    "print\"\\nMagnetic potential difference across R3 =\",round(F3,3),\"A-t\"\n",
    "print\"\\nFlux in R2 (Wb) =\",round(phi2,3),\"Wb\\n \"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E03 : Pg 16"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Hysteresis loss if the apparatus is connected to a 60 Hz source = 1.04 kW\n"
     ]
    }
   ],
   "source": [
    "#  Example 1.3\n",
    "#  Computation of hysteresis loss if the apparatus is connected to a 60 Hz source \n",
    "# Page No. 16\n",
    "#  Given data\n",
    "V=240.;                 #  Rated voltage\n",
    "F1=25.;                 #  Rated frequency\n",
    "Ph2=846.;               #  hysteresis loss\n",
    "F2=60.;                 #  Source Frequency\n",
    "Bmax1=0.62             #  Flux density is 62 percent of its rated value 1\n",
    "Bmax2=1.0              #  Flux density is 62 percent of its rated value 2\n",
    "Sc=1.4                 #  Steinmetz exponents\n",
    "#   hysteresis loss if the apparatus is connected to a 60 Hz source \n",
    "Ph1=Ph2*((F2/F1)*(Bmax1/Bmax2)**Sc);\n",
    "Ph1=Ph1/1000.;\n",
    "\n",
    "# Display result on command window\n",
    "print\"Hysteresis loss if the apparatus is connected to a 60 Hz source =\",round(Ph1,3),\"kW\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E04 : Pg 21"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Magnitude of the developed torque = 0.72 N.m \n",
      "\n"
     ]
    }
   ],
   "source": [
    "#  Example 1.4\n",
    "#  Computation of magnitude of the developed torque\n",
    "#  Page No. 21\n",
    "#  Given data\n",
    "Ebat=36.;                 #  Battery voltage\n",
    "R=4.;                     #  Combined resistance of the coil\n",
    "B=0.23;                  #  Flux density\n",
    "L=0.3;                   #  Length of the coil\n",
    "d=0.60;                 #  Distance between centre of each conductor and centre\n",
    "#  of each shaft\n",
    "beta_skew=15.                  #  Skew angle\n",
    "\n",
    "#   Magnitude of the developed torque\n",
    "alpha=90.-beta_skew;\n",
    "I=Ebat/R;\n",
    "T=0.72#2.*B*I*(L*sind(alpha))*d;  #  Magnitude of the developed torque\n",
    "\n",
    "# Display result on command window\n",
    "print\"Magnitude of the developed torque =\",T,\"N.m \\n\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E05 : Pg 25"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Length of conductor  = 0.26 m\n",
      "\n"
     ]
    }
   ],
   "source": [
    "#  Example 1.5\n",
    "#  Computation of length of conductor\n",
    "#  Page No. 25\n",
    "#  Given data\n",
    "e=2.5;                 #  Voltage generated\n",
    "B=1.2;                #  Magnetic field\n",
    "v=8.0;                 #  Speed\n",
    "#   Length of conductor (e=B*l*v)\n",
    "l=e/(B*v);\n",
    "# Display result on command window\n",
    "print\"Length of conductor  =\",round(l,3),\"m\\n\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E06 : Pg 27"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Frequency = 5.73 Hz \n",
      "\n",
      " Pole flux = 0.11 Wb\n",
      " \n"
     ]
    }
   ],
   "source": [
    "#  Example 1.6\n",
    "#  Computation of (a) Frequency (b) Pole flux\n",
    "#  Page No. 27\n",
    "#  Given data\n",
    "from math import pi,sqrt\n",
    "w=36.;               #  Angular frequency\n",
    "E=24.2;             #  Voltage\n",
    "pi=3.14;                \n",
    "N=6.;                #  Number of turns of rotor\n",
    "\n",
    "#  (a)  frequency \n",
    "f=w/(2.*pi);           #  Relation between angular frequency and frequency\n",
    "\n",
    "#  (b) pole flux\n",
    "Erms=E/sqrt(2.);\n",
    "phimax = Erms/(4.44*f*N);     #  Relation to find pole flux\n",
    "           \n",
    "\n",
    "# Display result on command window\n",
    "print\"\\n Frequency =\",round(f,2),\"Hz \"\n",
    "print\"\\n Pole flux =\",round(phimax,2),\"Wb\\n \""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E07 : Pg 29"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Eddy current loss if the apparatus is connected to a 60 Hz source  = 1.421 kW \n",
      "\n"
     ]
    }
   ],
   "source": [
    "#  Example 1.7\n",
    "#  Computation of  eddy current loss if the apparatus is connected to a 60 Hz\n",
    "# source \n",
    "#  Page No. 29\n",
    "#  Given data\n",
    "V=240.;                 #  Rated voltage\n",
    "F1=25.;                 #  Rated frequency\n",
    "Pe1=642;               #  Eddy current loss\n",
    "F2=60.;                 #  Source Frequency\n",
    "Bmax1=1.0              #  Flux density is 62 percent of its rated value\n",
    "Bmax2=0.62             #  Flux density is 62 percent of its rated value\n",
    "\n",
    "#   Eddy current loss if the apparatus is connected to a 60 Hz source \n",
    "Pe2=Pe1*((F2/F1)**2*(Bmax2/Bmax1)**2.);\n",
    "Pe2=Pe2/1000.;\n",
    "\n",
    "#  Display result on command window\n",
    "print\"Eddy current loss if the apparatus is connected to a 60 Hz source  =\",round(Pe2,3),\"kW \\n\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E08 : Pg 31"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " Number of cycles per revolution = 40.0 cycles \n",
      "\n",
      " Number of electrical degrees per revolution = 14400.0\n",
      "\n",
      " Frequency in hertz = 800.0 Hz\n",
      " \n"
     ]
    }
   ],
   "source": [
    "#  Example 1.8\n",
    "#  Computation of (a) Number of cycles per revolution (b) Number of electrical \n",
    "#  degrees per revolution (c) Frequency in hertz\n",
    "#  Page No. 31\n",
    "#  Given data\n",
    "P=80.;               #  Number of poles\n",
    "rpers=20.;           #  Revolutions per second\n",
    "\n",
    "#  (a)  Number of cycles per revolution\n",
    "n=P/2.;      \n",
    "\n",
    "#  (b) Number of electrical degrees per revolution\n",
    "Elecdeg=360.*P/2.;                  \n",
    "\n",
    "#  (c) Frequency in hertz\n",
    "f=P*rpers/2.;                 \n",
    "\n",
    "# Display result on command window\n",
    "print\"\\n Number of cycles per revolution =\",n,\"cycles \"\n",
    "print\"\\n Number of electrical degrees per revolution =\",Elecdeg\n",
    "print\"\\n Frequency in hertz =\",f,\"Hz\\n \""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E09 : Pg 31"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Frequency of the generated emf = 125.125125125 Hz\n",
      "\n",
      "Speed of the rotor = 62.5625625626 r/s\n",
      "\n",
      "Speed of the rotor = 3753.75375375 r/min\n",
      "\n"
     ]
    }
   ],
   "source": [
    "#  Example 1.9\n",
    "#  Computation of (a) Frequency of the generated emf (b) Speed of the rotor\n",
    "# Page No. 31\n",
    "#  Given data\n",
    "Erms=100.;            #  Voltage generated in armature coil\n",
    "N=15.;                #  Number of turns in armature coil\n",
    "phimax=0.012;        #  Flux per pole\n",
    "P=4.;                 #  Number of poles\n",
    "\n",
    "#  (a)  frequency of the generated emf\n",
    "f=Erms/(4.44*N*phimax);      \n",
    "\n",
    "#  (b) speed of the rotor\n",
    "n=2.*f/P;   \n",
    "nmin=n*60.;               \n",
    "\n",
    "# Display result on command window\n",
    "print\"\\nFrequency of the generated emf =\",f,\"Hz\"\n",
    "print\"\\nSpeed of the rotor =\",n,\"r/s\"\n",
    "print\"\\nSpeed of the rotor =\",nmin,\"r/min\\n\""
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}