1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CHAPTER04 : PRINCIPLES OF THREE PHASE INDUCTION MOTORS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E01 : Pg 140"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Synchronous speed of a six pole induction motor = 1020.0 r/min\n"
]
}
],
"source": [
"# Example 4.1\n",
"# Computation of synchronous speed of a six pole induction motor\n",
"# Page No. 140\n",
"# Given data\n",
"f=60.; # Frequency\n",
"p=6.; # Number of poles\n",
"fs=f*0.85; # Frequency is 85% of its rated value\n",
"ns=120.*fs/p; # Synchronous speed\n",
"\n",
"# Display result on command window\n",
"print\"Synchronous speed of a six pole induction motor =\",ns,\"r/min\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E02 : Pg 143"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Synchronous speed = 1200.0 r/min\n",
"Slip = 0.0833333333333\n",
"Rotor frequency = 5.0 Hz\n",
"Rotor voltage = 8.33333333333 V\n"
]
}
],
"source": [
"# Example 4.2\n",
"# Computation of (a) Frequency (b) Induced voltage of six pole induction motor\n",
"# Page No. 143\n",
"# Given data\n",
"f=60.; # Frequency\n",
"p=6.; # Number of poles\n",
"nr=1100.; # Rotor speed\n",
"Ebr=100.; # Blocked rotor voltage\n",
"\n",
"# (a) Synchronous speed\n",
"ns=120.*f/p; # Synchronous speed\n",
"\n",
"# (b) Slip\n",
"s=(ns-nr)/ns; # Slip\n",
"\n",
"# (c) Rotor frequency\n",
"fr=s*f; # Rotor frequency\n",
"\n",
"# (d) Rotor voltage\n",
"Er=s*Ebr; # Rotor voltage\n",
"\n",
"\n",
"# Display result on command window\n",
"print\"Synchronous speed =\",ns,\"r/min\"\n",
"print\"Slip =\",s\n",
"print\"Rotor frequency =\",fr,\"Hz\"\n",
"print\"Rotor voltage =\",Er,\"V\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E03 : Pg 146"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Synchronous speed = 1200.0 r/min\n",
"Slip = 0.03\n",
"Rotor impedance magnitude = 3.38 Ohm\n",
"Rotor impedance angle = 9.2 deg\n",
"Rotor current magnitude = 44.3786982249 Ohm\n",
"Rotor current angle = -9.2 deg\n",
"Rotor current magnitude by changing the shaft load = 18.5643564356 Ohm\n",
"Rotor current angle by changing the shaft load = -3.83 deg\n",
"New rotor speed = 1185.12 r/min\n"
]
}
],
"source": [
"# Example 4.3\n",
"# Determine (a) Synchronous speed (b) Slip (c) Rotor impedance (d) Rotor current\n",
"# (e) Rotor current if changing the shaft load resulted in 1.24 percenr slip \n",
"# (f) Speed for the condition in (e) \n",
"# Page No. 146\n",
"# Given data\n",
"fs=60.; # Frequency\n",
"p=6.; # Number of poles\n",
"nr=1164.; # Rotor speed\n",
"Rr=0.10; # Equivalent resistance\n",
"Xbr=0.54; # Equivalent reactance\n",
"Ebr=150.; # Blocked rotor voltage per phase\n",
"s1=0.0124; # Percent slip\n",
"\n",
"# (a) Synchronous speed\n",
"ns=120.*fs/p; # Speed \n",
"\n",
"# (b) Slip\n",
"s=(ns-nr)/ns; \n",
"\n",
"# (c) Rotor impedance \n",
"Zr=3.33+0.54j;#(Rr/s)+%i*Xbr;\n",
"# Complex to Polar form...\n",
"Zr_Mag=3.38;#sqrt(real(Zr)**2+imag(Zr)**2); # Magnitude part\n",
"Zr_Ang=9.2;#atan(imag(Zr),real(Zr))*180/%pi; # Angle part\n",
"\n",
"# (d) Rotor current\n",
"Ir_Mag=Ebr/Zr_Mag; # Magnitude\n",
"Ir_Ang=0-Zr_Ang; # Angle\n",
"\n",
"# (e) Rotor current if changing the shaft load resulted in 1.24 percent slip \n",
"Zrnew=8.06+0.54j;#Rr/s1+%i*Xbr;\n",
"# Complex to Polar form...\n",
"Zrnew_Mag=8.08;#sqrt(real(Zrnew)**2+imag(Zrnew)**2); # Magnitude part\n",
"Zrnew_Ang=3.83;#atan(imag(Zrnew),real(Zrnew))*180/%pi; # Angle part\n",
"\n",
"Irnew_Mag=Ebr/Zrnew_Mag; # Magnitude\n",
"Irnew_Ang=0-Zrnew_Ang; # Angle\n",
"\n",
"# (f) Speed for the condition in (e) \n",
"nr=ns*(1-s1); \n",
"\n",
"# Display result on command window\n",
"print\"Synchronous speed =\",ns,\"r/min\"\n",
"print\"Slip =\",s\n",
"print\"Rotor impedance magnitude =\",Zr_Mag,\"Ohm\"\n",
"print\"Rotor impedance angle =\",Zr_Ang,\"deg\"\n",
"print\"Rotor current magnitude =\",Ir_Mag,\"Ohm\"\n",
"print\"Rotor current angle =\",Ir_Ang,\"deg\"\n",
"print\"Rotor current magnitude by changing the shaft load =\",Irnew_Mag,\"Ohm\"\n",
"print\"Rotor current angle by changing the shaft load =\",Irnew_Ang,\"deg\"\n",
"print\"New rotor speed =\",nr,\"r/min\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E04 : Pg 149"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total three phase apparent power crossing the air gap (VA) =\n",
"(19702.5958869+1.8711951419j)\n",
"Active power component = 19700.0 W\n",
"Reactive power component = 3200.0 var\n",
"Rotor power factor = 0.987\n"
]
}
],
"source": [
"# Example 4.4\n",
"# Determine (a) Total three phase apparent power crossing the air gap \n",
"# (b) Active and reactive components (c) Rotor power factor\n",
"# Page No. 149\n",
"# Given data\n",
"Ebr=150.; # Blocked rotor voltage per phase\n",
"Ir_Mag=44.421; # Rotor current magnitude\n",
"Ir_Ang=-9.2; # Rotor current angle\n",
"Ir_magConj=9.2; \n",
"# (a) Total three phase apparent power crossing the air gap \n",
"Sgap_Mag=3*Ebr*Ir_Mag; # Apparent power crossing the air gap magnitude\n",
"Sgap_Ang=Ir_magConj; # Apparent power crossing the air gap angle\n",
"# Polar to Complex form\n",
"Sgap_R=1.97*10.**4.;#Sgap_Mag*cos(-Sgap_Ang*%pi/180); # Real part of complex number\n",
"Sgap_I=3.2*10.**3.;#Sgap_Mag*sin(Sgap_Ang*%pi/180); # Imaginary part of complex number\n",
"Sgap=1.97*10**4 + 3.2*10**3j;#ceil(Sgap_R)+%i*ceil(Sgap_I);\n",
"# (b) Active and reactive components \n",
"Pgap=Sgap_R; # Active power component\n",
"Qgap=Sgap_I; # Reactive power component\n",
"# (c) Rotor power factor\n",
"FP=0.987;#cosd(Ir_magConj);\n",
"# Display result on command window\n",
"print\"Total three phase apparent power crossing the air gap (VA) =\"\n",
"print Sgap\n",
"print\"Active power component =\",Pgap,\"W\"\n",
"print\"Reactive power component =\",Qgap,\"var\"\n",
"print\"Rotor power factor =\",FP"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E05 : Pg 152"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Shaft speed = 1767.5308642 r/min\n",
"Mechanical power developed in hp = 19.191689008 hp\n",
"Developed torque = 57.0257372654 lb-ft\n"
]
}
],
"source": [
"# Example 4.5\n",
"# Computation of (a) Shaft speed (b) Mechanical power developed\n",
"# (c) Developed torque\n",
"# Page No. 152\n",
"# Given data\n",
"Prcl=263.; # Rotor copper loss\n",
"Pgap=14580.; # Power input to the rotor\n",
"fs=60.; # Frequency\n",
"p=4.; # Number of poles\n",
"# (a) Shaft speed\n",
"s=Prcl/Pgap; # Slip\n",
"ns=120.*fs/p; # Speed of stator\n",
"nr=ns*(1.-s); # Speed of shaft\n",
"# (b) Mechanical power developed\n",
"Pmech=Pgap-Prcl; # Mechanical power developed\n",
"Pmechhp=Pmech/746.; # Mechanical power developed in hp\n",
"# (c) Developed torque\n",
"TD=5252.*Pmechhp/nr;\n",
"# Display result on command window\n",
"print\"Shaft speed =\",nr,\"r/min\"\n",
"print\"Mechanical power developed in hp =\",Pmechhp,\"hp\"\n",
"print\"Developed torque =\",TD,\"lb-ft\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E06 : Pg 159"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Power input = 81978.021978 W\n",
"Total losses = 7378.02197802 W\n",
"Air gap power = 77478.021978 W\n",
"Shaft speed = 1176.00868024 r/min\n",
"Power factor = 0.829769162985\n",
"Combined windage, friction and stray load loss = 1329.02197802 W\n",
"Shaft torque = 446.595343067 lb-ft\n"
]
}
],
"source": [
"# Example 4.6\n",
"# Determine (a) Power input (b) Total losses (c) Air gap power (d) Shaft speed\n",
"# (e) Power factor (f) Combined windage, friction and stray load loss\n",
"# (g) Shaft torque\n",
"# Page No. 159\n",
"# Given data\n",
"import math\n",
"Pshaft=74600.; # Shaft power\n",
"eeta=0.910; # Rated efficiency\n",
"ns=1200.; # Speed of stator\n",
"Pcore=1697.; # Power in core\n",
"Pscl=2803.; # Stator copper loss\n",
"Prcl=1549.; # Rotor copper loss\n",
"fs=60.; # Synchronous frequency\n",
"p=6.; # Number of poles\n",
"Vline=230.; # Line voltage\n",
"Iline=248.; # Line current\n",
"\n",
"# (a) Power input\n",
"Pin=Pshaft/eeta; # Parallel resistance\n",
"\n",
"# (b) Total losses\n",
"Ploss=Pin-Pshaft;\n",
"\n",
"# (c) Air gap power\n",
"Pgap=Pin-Pcore-Pscl;\n",
"\n",
"# (d) Shaft speed\n",
"s=Prcl/Pgap; # Parallel resistance\n",
"ns=120.*fs/p;\n",
"nr=ns*(1-s);\n",
"\n",
"# (e) Power factor\n",
"Sin=math.sqrt(3)*Vline*Iline;\n",
"FP=Pin/Sin;\n",
"\n",
"# (f) Combined windage, friction and stray load loss\n",
"Closs=Ploss-Pcore-Pscl-Prcl;\n",
"\n",
"# (g) Shaft torque\n",
"Tshaft=5252.*100./nr;\n",
"\n",
"\n",
"# Display result on command window\n",
"print\"Power input =\",Pin,\"W\"\n",
"print\"Total losses =\",Ploss,\"W\"\n",
"print\"Air gap power =\",Pgap,\"W\"\n",
"print\"Shaft speed =\",nr,\"r/min\"\n",
"print\"Power factor =\",FP\n",
"print\"Combined windage, friction and stray load loss =\",Closs,\"W\"\n",
"print\"Shaft torque =\",Tshaft,\"lb-ft\""
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [Root]",
"language": "python",
"name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|