diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /sample_notebooks/keerthi vanigundla/r.k.shukla.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'sample_notebooks/keerthi vanigundla/r.k.shukla.ipynb')
-rwxr-xr-x | sample_notebooks/keerthi vanigundla/r.k.shukla.ipynb | 379 |
1 files changed, 0 insertions, 379 deletions
diff --git a/sample_notebooks/keerthi vanigundla/r.k.shukla.ipynb b/sample_notebooks/keerthi vanigundla/r.k.shukla.ipynb deleted file mode 100755 index 19a84998..00000000 --- a/sample_notebooks/keerthi vanigundla/r.k.shukla.ipynb +++ /dev/null @@ -1,379 +0,0 @@ -{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Chapter 4:Behaviour of Dielectric Materials in ac and dc Fields"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example 4.1,Page No:4.8"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dielectric constant of argon = 1.0005466\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "alpha = 1.8*10**-40; #polarisability of argon in Fm**2\n",
- "e0 = 8.85*10**-12; #dielectric constant F/m\n",
- "N1 = 6.02*10**23; #avagadro number in mol**-1\n",
- "x = 22.4*10**3; #volume in m^3\n",
- " \n",
- "#formula\n",
- "#er-1=N*p/e0*E=(N/e0)*alpha\n",
- "#calculation\n",
- "N = N1/float(x); #number of argon atoms in per unit volume in cm**3\n",
- "N2 = N*10**6; #number of argon atoms in per unit volume in m**3\n",
- "er = 1+((N2/float(e0)))*(alpha); #dielectric constant F/m\n",
- "\n",
- "\n",
- "#result\n",
- "print'dielectric constant of argon = %3.7f'%er;"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example 4.2,Page No:4.9"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "displacement = 1.25e-17 m\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "alpha = 1.8*10**-40; #polarisability of argon in F*m^2\n",
- "E = 2*10**5; # in V/m\n",
- "z = 18;\n",
- "e = 1.6*10**-19;\n",
- " \n",
- " \n",
- "#formula\n",
- "#p=18*e*x\n",
- "#calculation\n",
- "p = alpha*E;\n",
- "x = p/float(18*e); #shift of electron in m\n",
- "\n",
- " \n",
- "#result\n",
- "print'displacement = %3.2e'%x,'m';"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example 4.3,Page No:4.9"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "local field of benzene=4.40e+03 V/m\n",
- "local field of water=-1.57e+06 V/m\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "E0 = 300*10**2; #local field in V/m\n",
- "P1 = 3.398*10**-7; #dipole moment Coulomb/m\n",
- "P2 = 2.124*10**-5; #dipole moment Coulomb/m\n",
- "e0 = 8.85*10**-12; #permittivity in F/m\n",
- " \n",
- " \n",
- "#formula\n",
- "#E10Ci=E0-(2*Pi/3*e0)\n",
- "#calculation\n",
- "E10C1 = E0-((2*P1)/float(3*e0)); #local field of benzene in V/m\n",
- "E10C2 = E0-((2*P2)/float(3*e0)); #local field of water in V/m\n",
- " \n",
- "#result\n",
- "print'local field of benzene=%3.2e'%E10C1,'V/m';\n",
- "print'local field of water=%3.2e'%E10C2,'V/m';"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example 4.4,Page No:4.9"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": [
- "# import math\n",
- "\n",
- "#variable declaration\n",
- "p1 = 5.12*10**-34; #p of benzene kg/m**3\n",
- "p2 = 6.34*10**-34; #p of water kg/m**3\n",
- "e10C1 = 4.4*10**3; #local field of benzene in V/m\n",
- "e10C2 = 1570*10**3; #local field of water in V/m\n",
- " \n",
- " \n",
- "#formula\n",
- "#p=alphai*e10Ci\n",
- "#calculation\n",
- "alpha1 = p1/float(e10C1); #polarisability of benzene in F*m**2\n",
- "alpha2 = p2/float(e10C2); #polarisability of water in F*m**2\n",
- " \n",
- "\n",
- "#result\n",
- "print'polarisability of benzene = %3.2e'%alpha1,'F*m**2';\n",
- "print'polarisability of water = %3.2e'%alpha2,'F*m**2';\n",
- "print'Note: mistake in textbok,alpha1 value is printed as 1.16*10**-38 instead of 1.16*10**-37';"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example 4.5,Page No:4.10"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "polarisation of benzene = 6.80e-07 c/m**2\n",
- "polarisation of water = 4.25e-05. c/m**2\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "e0 = 8.85*10**-12; #abslute permitivity in (m**-3)*(kg**-1)*(s**4)*(A**2)\n",
- "E = 600*10**2; #strength in V/cm\n",
- "er1 = 2.28; #dielectric constant of benzene in coulomb/m\n",
- "er2 = 81; #dielectric constant of water in coulomb/m\n",
- "\n",
- "\n",
- "#fomula\n",
- "#p=e0*E*(er-1)\n",
- "#calculation\n",
- "pB = e0*E*(er1-1); #polarisation of benzene in c/m**2\n",
- "pW = e0*E*(er2-1); #polarisation of water in c/m**2\n",
- " \n",
- "\n",
- "#result\n",
- "print'polarisation of benzene = %3.2e'%pB,'c/m**2';\n",
- "print'polarisation of water = %3.2e.'%pW,'c/m**2';"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example 4.6,Page No:4.10"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "percentage contribution from ionic polaristion = 59.82 %\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "er0 = 5.6; #static dielectric cnstant of NaCl \n",
- "n = 1.5; #optical index of refraction\n",
- " \n",
- "\n",
- "#calculation\n",
- "er = er0-n**2;\n",
- "d = ((er/float(er0))*100); #percentage contribution from ionic polaristion in %\n",
- " \n",
- "#result \n",
- "print'percentage contribution from ionic polaristion = %3.2f'%d,'%';\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example 4.7,Page No:4.10"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "separation=1.69e-17 m\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "alpha = 0.18*10**-40; #polarisability of He in F *m**2\n",
- "E = 3*10**5; #constant in V/m\n",
- "N = 2.6*10**25; #number of atoms in per m**3\n",
- "e = 1.6*10**-19;\n",
- " \n",
- " \n",
- "#formula\n",
- "#P=N*p\n",
- "#charge of He=2*electron charge\n",
- "#p=2(e*d)\n",
- "#calculation\n",
- "P = N*alpha*E; #in coul/m**2\n",
- "p = P/float(N); #polarisation of He in coul.m\n",
- "d = p/float(2*e); #separation between charges in m\n",
- " \n",
- " \n",
- "#result \n",
- "print'separation=%3.2e'%d,'m';\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "collapsed": true
- },
- "source": [
- "# Example 4.8,Page No:4.10"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "oriental polarisation=9.66e-08 coul/m**2\n"
- ]
- }
- ],
- "source": [
- "import math\n",
- "\n",
- "#variable declaration\n",
- "N = 10**27; #number of HCl molecules in molecules/m**3\n",
- "E = 10**5; #electric field in V/m\n",
- "P = 1.04*3.33*10**-30; #permanent dipole moment in coul.m\n",
- "T = 300; #temperature in kelvin\n",
- "K = 1.38*10**-23;\n",
- " \n",
- " \n",
- "#calculation\n",
- "P0 = (N*(P**2)*E)/float(3*K*T); #oriental polarisation in coul/m^2\n",
- "\n",
- " \n",
- "#result\n",
- "print'oriental polarisation=%3.2e'%P0,'coul/m**2';"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
|