summaryrefslogtreecommitdiff
path: root/sample_notebooks/Nitin Kumar/Nitin Kumar_version_backup
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /sample_notebooks/Nitin Kumar/Nitin Kumar_version_backup
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'sample_notebooks/Nitin Kumar/Nitin Kumar_version_backup')
-rw-r--r--sample_notebooks/Nitin Kumar/Nitin Kumar_version_backup/chapter2.ipynb680
1 files changed, 680 insertions, 0 deletions
diff --git a/sample_notebooks/Nitin Kumar/Nitin Kumar_version_backup/chapter2.ipynb b/sample_notebooks/Nitin Kumar/Nitin Kumar_version_backup/chapter2.ipynb
new file mode 100644
index 00000000..ddf5a2a5
--- /dev/null
+++ b/sample_notebooks/Nitin Kumar/Nitin Kumar_version_backup/chapter2.ipynb
@@ -0,0 +1,680 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2 - Power Switching Devices & Their Characteristics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.1 page 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "VA = 1.10 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "V1=1 # V across SCR\n",
+ "IG=0 # A\n",
+ "Ih=2 # mA holding current\n",
+ "R=50 # ohm\n",
+ "\n",
+ "# Applying kirchoff law\n",
+ "#VA-(IAK*R)-V1=0\n",
+ "VA=(Ih*10**-3*R)+V1 # V (let IAK=Ih)\n",
+ "print 'VA = %.2f V'%(VA)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.2 page 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Minimum duration of gating pulse = 10 us\n"
+ ]
+ }
+ ],
+ "source": [
+ "diBYdt=1000 # A/s (rate of rise of current)\n",
+ "il=10 # mA (latching current = diBYdt * tp)\n",
+ "tp=il*10**-3/diBYdt # s\n",
+ "print 'Minimum duration of gating pulse = %.f us'%(tp*10**6)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.3 page 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Gate power dissipation = 4 W\n",
+ "\n",
+ " Resistance to be connected = 14 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "m=16 # V/A (gradient)\n",
+ "t_on=4 # us\n",
+ "IG=500 # mA\n",
+ "VS=15 # V\n",
+ "\n",
+ "VG=m*IG/1000 # V\n",
+ "#Load line equation\n",
+ "#VG=VS-IG*RS\n",
+ "RS=(VS-VG)/(IG/1000) # ohm\n",
+ "Pg=VS*(IG/1000)**2 # # W\n",
+ "print 'Gate power dissipation = %.f W'%(Pg)\n",
+ "print '\\n Resistance to be connected = %.f ohm'%(RS)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.4 page 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of resistance to be added in series = 44.11 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from numpy import roots\n",
+ "# VG=0.5+8*IG -- eqn(1)\n",
+ "f=400# # Hz\n",
+ "delta=0.1 # # (Duty Cycle)\n",
+ "P=0.5 # W\n",
+ "VS=12 # V\n",
+ "\n",
+ "Tp=1/f*10**6 # us\n",
+ "# P= VG*IG -- eqn(2)\n",
+ "# solving eqn 1 and 2\n",
+ "#8*IG*IG**2+0.5*IG-P=0\n",
+ "p=[8, 0.5, -P] # polynomial for IG\n",
+ "IG=roots(p) # A \n",
+ "IG=IG[1] # A (discarding -ve value)\n",
+ "VG=0.5+8*IG # V\n",
+ "# VS=VG+IG*RS\n",
+ "RS=(VS-VG)/IG\n",
+ "print 'Value of resistance to be added in series = %.2f ohm'%(RS)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.5 page 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of resistance to be connected in series = 6.97 ohm\n",
+ "\n",
+ " Triggering frequency = 5.00 kHz\n",
+ "\n",
+ " Duty Cycle = 0.1 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt\n",
+ "# VG=10*IG -- eqn(1)\n",
+ "PGM=5 # W\n",
+ "PGav=.5 # W\n",
+ "VS=12 # V\n",
+ "Tp=20 # us\n",
+ "\n",
+ "# PGM = VG*IG where VG=10*IG\n",
+ "\n",
+ "IG=sqrt(PGM/10) # A\n",
+ "VG=10*IG # V\n",
+ "# During the application of pulse VS = VG+(IG*RS)\n",
+ "RS=(VS-VG)/IG # ohm\n",
+ "f=PGav/(PGM*Tp*10**-6)/1000 # kHz\n",
+ "delta=f*1000*Tp*10**-6 # Duty Cycle\n",
+ "print 'Value of resistance to be connected in series = %.2f ohm'%(RS)\n",
+ "print '\\n Triggering frequency = %.2f kHz'%(f)\n",
+ "print '\\n Duty Cycle = %.1f '%(delta)\n",
+ "# Note : ans in the textbook is not accurate."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.6 page 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of R = 31.25 kohm\n",
+ "\n",
+ " Value of C = 1.20e-07 F\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "VS=3 # kV\n",
+ "IS=750 # A\n",
+ "\n",
+ "VD=800 # V\n",
+ "ID=175 # A\n",
+ "dr=30/100 # de-rating factor\n",
+ "IB=8 # mA\n",
+ "delQ=30 # u Coulomb\n",
+ "# dr = 1-IS/np*ID\n",
+ "np = round(IS/(1-dr)/(ID)) # # no. of parallel string\n",
+ "ns = round(VS*1000/(1-dr)/(VD)) # # no. of series string\n",
+ "R=(ns*VD-VS*1000)/(ns-1)/(IB/1000)/1000 # kohm\n",
+ "C=(ns-1)*delQ*10**-6/(ns*VD-VS*1000)\n",
+ "print 'Value of R = %.2f kohm'%(R)\n",
+ "print '\\n Value of C = %.2e F'%(C)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.7 page 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " no. of series connection = 7\n",
+ "\n",
+ " no. of parallel connection = 5\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import ceil\n",
+ "VS=4 # kV\n",
+ "IS=800 # A\n",
+ "\n",
+ "VD=800 # V\n",
+ "ID=200 # A\n",
+ "dr=20/100 # de-rating factor\n",
+ "# for series connection\n",
+ "ns = ceil(VS*1000/(1-dr)/(VD)) # # no. of series string\n",
+ "# for parallel connection\n",
+ "np = round(IS/(1-dr)/(ID)) # # no. of parallel string\n",
+ "print '\\n no. of series connection = %d'%(ns)\n",
+ "print '\\n no. of parallel connection = %d'%(np)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.8 page 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Series resistance = 0.007 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "IS1=100 # A\n",
+ "IS2=150 # A\n",
+ "vd1=2.1 # V\n",
+ "vd2=1.75 # V\n",
+ "I=250 # A\n",
+ "\n",
+ "rf1=vd1/IS1 # ohm\n",
+ "rf2=vd2/IS2 # ohm\n",
+ "# Equating voltage drops\n",
+ "# vd1+IS1*re = vd2+IS2*re\n",
+ "re=(vd1-vd2)/(IS2-IS1)\n",
+ "print ' Series resistance = %.3f ohm'%(re)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.9 page 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Average power loss = 34.8 W\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi\n",
+ "Vf1=1 # V\n",
+ "If1=0 # A\n",
+ "Vf2=1.9 # V\n",
+ "If2=60 # A\n",
+ "IT=20*pi # A\n",
+ "# PAV = 1/T*integrate(VT*IT,0,T)*dt = ITAV+0.015*IRMS**2\n",
+ "ITAV=IT/pi # A\n",
+ "ITRMS=IT/2 # A\n",
+ "dt=ITAV+0.015*ITRMS**2 # W\n",
+ "print 'Average power loss = %.1f W'%(dt)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.10 page 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Minimum gate pulse width = 8.7 us\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "R=10 # ohm\n",
+ "L=0.1 # H\n",
+ "delta_i=20/1000 # A\n",
+ "Vs=230 # V4\n",
+ "f=50 # Hz\n",
+ "theta=45 # degree\n",
+ "\n",
+ "delta_t = L*delta_i/Vs# # s\n",
+ "delta_t = delta_t*10**6 # us\n",
+ "print 'Minimum gate pulse width = %.1f us'%(delta_t)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.11 page 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "gate source resistance = 2.0 kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt\n",
+ "m=3*10**3 # gradient (VG/IG)\n",
+ "VS=10 # V\n",
+ "PG=0.012 # W\n",
+ "# IG = VG/m & PG=VG*IG\n",
+ "VG=sqrt(PG*m)\n",
+ "IG=VG/m # # A\n",
+ "RS=(VS-VG)/IG/1000 # kohm\n",
+ "print 'gate source resistance = %.1f kohm'%(RS)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.12 page 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of resistance = 6.82 kohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "VS=300 # V\n",
+ "delta_i = 50/1000 # A\n",
+ "R=60 # ohm\n",
+ "L=2 # H\n",
+ "TP=40*10**-6 # s\n",
+ "\n",
+ "I1=VS/L*TP # A (at the end of pulse)\n",
+ "# as I1 << delta_i\n",
+ "I2=delta_i # A (anode current with RL load)\n",
+ "\n",
+ "Rdash = VS/(I2-I1)/1000 # kohm\n",
+ "print 'Value of resistance = %.2f kohm'%(Rdash)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.13 page 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "For half sine wave current : \n",
+ "\n",
+ "(i) Average ON State current = 31.83 A\n",
+ "\n",
+ "(ii) Average ON State current = 22.51 A\n",
+ "\n",
+ "(iii) Average ON State current = 12.54 A\n",
+ "\n",
+ "\n",
+ " For rectangular wave current : \n",
+ "\n",
+ "(i) Average ON State current = 35.36 A\n",
+ "\n",
+ "(ii) Average ON State current = 25.00 A\n",
+ "\n",
+ "(i) Average ON State current = 14.43 A\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import pi,sqrt\n",
+ "Im=50 # A\n",
+ "\n",
+ "print 'For half sine wave current : \\n'\n",
+ "# theta=180 # degree\n",
+ "theta=180 # degree\n",
+ "Iav=Im/pi # A\n",
+ "Irms=Im/2 # A\n",
+ "FF=Irms/Iav # form factor\n",
+ "ITav=Im/FF # # A\n",
+ "print '(i) Average ON State current = %.2f A\\n'%(ITav) \n",
+ "\n",
+ "# theta=90 # degree\n",
+ "theta=90 # degree\n",
+ "Iav=Im/2/pi # A\n",
+ "Irms=Im/2/sqrt(2) # A\n",
+ "FF=Irms/Iav # form factor\n",
+ "ITav=Im/FF # # A\n",
+ "print '(ii) Average ON State current = %.2f A\\n'%(ITav) \n",
+ "\n",
+ "# theta=180 # degree\n",
+ "theta=180 # degree\n",
+ "Iav=Im*0.0213 # A\n",
+ "Irms=Im*0.0849 # A\n",
+ "FF=Irms/Iav # form factor\n",
+ "ITav=Im/FF # # A\n",
+ "print '(iii) Average ON State current = %.2f A\\n'%(ITav) \n",
+ "\n",
+ "print '\\n For rectangular wave current : \\n'\n",
+ "# theta=180 # degree\n",
+ "theta=180 # degree\n",
+ "Iav=Im/2 # A\n",
+ "Irms=Im/sqrt(2) # A\n",
+ "FF=Irms/Iav # form factor\n",
+ "ITav=Im/FF # # A\n",
+ "print '(i) Average ON State current = %.2f A\\n'%(ITav) \n",
+ "\n",
+ "# theta=90 # degree\n",
+ "theta=90 # degree\n",
+ "Iav=Im/4 # A\n",
+ "Irms=Im/2 # A\n",
+ "FF=Irms/Iav # form factor\n",
+ "ITav=Im/FF # # A\n",
+ "print '(ii) Average ON State current = %.2f A\\n'%(ITav) \n",
+ "\n",
+ "# theta=180 # degree\n",
+ "theta=180 # degree\n",
+ "Iav=Im/12 # A\n",
+ "Irms=Im/2/sqrt(3) # A\n",
+ "FF=Irms/Iav # form factor\n",
+ "ITav=Im/FF # # A\n",
+ "print '(i) Average ON State current = %.2f A\\n'%(ITav) "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.14 page 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value of L = 16.67 uH\n",
+ "\n",
+ " Value of R = 3.3 ohm\n",
+ "\n",
+ " Value of Ip = 175.0 A is greater than permissible peak current = 125.0 A\n",
+ " change the value of Rs\n",
+ "\n",
+ " Value of C = 0.78 uF\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "VS=500 # V\n",
+ "IP=250 # A\n",
+ "diBYdt=60 # A/us\n",
+ "dvaBYdt=200 # V/us\n",
+ "RL=20 # ohm\n",
+ "r=0.65 # ohm\n",
+ "eps=0.65 # damping ratios\n",
+ "\n",
+ "F=2 # saftety factor\n",
+ "IP=IP/2 # A\n",
+ "diBYdt=60/2 # A/us\n",
+ "dvaBYdt=200/2 # V/us\n",
+ "L=VS/diBYdt # uH\n",
+ "R=L*10**6/VS*dvaBYdt/10**6 # ohm\n",
+ "print 'Value of L = %.2f uH'%(L)\n",
+ "print '\\n Value of R = %.1f ohm'%(R)\n",
+ "\n",
+ "Ip=VS/RL+VS/R # A\n",
+ "if Ip > IP :\n",
+ " print '\\n Value of Ip = %.1f A is greater than permissible peak current = %.1f A\\n change the value of Rs'%(Ip,IP)\n",
+ " Rs=6 # ohm\n",
+ "\n",
+ "Ip=VS/RL+VS/Rs # A\n",
+ "Cs=(2*eps/Rs)**2*L # uF\n",
+ "print '\\n Value of C = %.2f uF'%(Cs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 2.15 page 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "I2t rating = 45000 A**2/s\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import ceil,sqrt\n",
+ "Isb=3000 # A\n",
+ "f=50 # Hz\n",
+ "I=sqrt((Isb**2*1/2/f)*f) # A\n",
+ "I2t=I**2/2/f # A**2/s\n",
+ "print 'I2t rating = %d A**2/s'%(ceil(I2t))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}