summaryrefslogtreecommitdiff
path: root/_Theory_Of_Machines
diff options
context:
space:
mode:
authorhardythe12015-06-03 15:27:17 +0530
committerhardythe12015-06-03 15:27:17 +0530
commitdf60071cf1d1c18822d34f943ab8f412a8946b69 (patch)
treeab059cf19bad4a1233a464ccf5d72cf8b3fb323c /_Theory_Of_Machines
parentfba055ce5aa0955e22bac2413c33493b10ae6532 (diff)
downloadPython-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.tar.gz
Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.tar.bz2
Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.zip
add books
Diffstat (limited to '_Theory_Of_Machines')
-rwxr-xr-x_Theory_Of_Machines/Chapter1.ipynb663
-rwxr-xr-x_Theory_Of_Machines/Chapter10.ipynb507
-rwxr-xr-x_Theory_Of_Machines/Chapter11.ipynb450
-rwxr-xr-x_Theory_Of_Machines/Chapter12.ipynb380
-rwxr-xr-x_Theory_Of_Machines/Chapter2.ipynb824
-rwxr-xr-x_Theory_Of_Machines/Chapter3.ipynb782
-rwxr-xr-x_Theory_Of_Machines/Chapter4.ipynb946
-rwxr-xr-x_Theory_Of_Machines/Chapter5.ipynb413
-rwxr-xr-x_Theory_Of_Machines/Chapter6.ipynb486
-rwxr-xr-x_Theory_Of_Machines/Chapter7.ipynb638
-rwxr-xr-x_Theory_Of_Machines/Chapter8.ipynb334
-rwxr-xr-x_Theory_Of_Machines/Chapter9.ipynb151
-rwxr-xr-x_Theory_Of_Machines/screenshots/Chapter1.pngbin0 -> 202671 bytes
-rwxr-xr-x_Theory_Of_Machines/screenshots/Chapter2.pngbin0 -> 204187 bytes
-rwxr-xr-x_Theory_Of_Machines/screenshots/Chapter3.pngbin0 -> 211011 bytes
15 files changed, 6574 insertions, 0 deletions
diff --git a/_Theory_Of_Machines/Chapter1.ipynb b/_Theory_Of_Machines/Chapter1.ipynb
new file mode 100755
index 00000000..1c82cdeb
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter1.ipynb
@@ -0,0 +1,663 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:33bb604c38fad316310d35481ce37e53ae0ade845d03c72c1ef523c0dcf5fe56"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter1-Basic Kinematics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 1 PAGE NO 15\n",
+ "#calculate inclination of slotted bar with vertical \n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.14\n",
+ "import math\n",
+ "pi=3.141\n",
+ "AO=200.## distance between fixed centres in mm\n",
+ "OB1=100.## length of driving crank in mm\n",
+ "AP=400.## length of slotter bar in mm\n",
+ "##====================================\n",
+ "OAB1=math.asin(OB1/AO)*57.3## inclination of slotted bar with vertical in degrees\n",
+ "beeta=(90-OAB1)*2.## angle through which crank turns inreturn stroke in degrees\n",
+ "A=(360.-beeta)/beeta## ratio of time of cutting stroke to the time of return stroke \n",
+ "L=2.*AP*math.sin(90.-beeta/2.)/57.3## length of the stroke in mm\n",
+ "print'%s %.2f %s %.3f %s'%('Inclination of slotted bar with vertical= ',OAB1,' degrees' 'Length of the stroke=',L,' mm')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Inclination of slotted bar with vertical= 30.00 degreesLength of the stroke= -13.790 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 2 PAGE NO 16\n",
+ "#calculate ratio of time taken on the cutting to the return\n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.15\n",
+ "import math\n",
+ "OA=300.## distance between the fixed centres in mm\n",
+ "OB=150.## length of driving crank in mm\n",
+ "##================================\n",
+ "OAB=math.asin(OB/OA)## inclination of slotted bar with vertical in degrees\n",
+ "beeta=(90/57.3-OAB)*2.## angle through which crank turns inreturn stroke in degrees\n",
+ "A=(360/57.3-beeta)/beeta## ratio of time of cutting stroke to the time of return stroke \n",
+ "print'%s %.1f %s'%('Ratio of time taken on the cutting to the return stroke= ',A,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of time taken on the cutting to the return stroke= 2.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 3 PAGE NO 16\n",
+ "#calculate ratio of time taken on the cutting to the return stroke \n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.16\n",
+ "import math\n",
+ "OB=54.6/57.3## distance between the fixed centres in mm\n",
+ "OA=85./57.3## length of driving crank in mm\n",
+ "OA2=OA\n",
+ "CA=160.## length of slotted lever in mm\n",
+ "CD=144.## length of connectin rod in mm\n",
+ "##================================\n",
+ "beeta=2.*(math.cos(OB/OA2))## angle through which crank turns inreturn stroke in degrees\n",
+ "A=(360/57.3-beeta)/beeta## ratio of time of cutting stroke to the time of return stroke \n",
+ "print'%s %.1f %s'%('Ratio of time taken on the cutting to the return stroke= ',A,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of time taken on the cutting to the return stroke= 2.9 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 4 PAGE NO 17\n",
+ "#calculate velocity position and Angular velocity connection\n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.18,1.19\n",
+ "import math\n",
+ "pi=3.141\n",
+ "Nao=180.## speed of the crank in rpm\n",
+ "wAO=2.*pi*Nao/60.## angular speed of the crank in rad/s\n",
+ "AO=.5## crank length in m\n",
+ "AE=.5\n",
+ "Vao=wAO*AO## velocity of A in m/s\n",
+ "##================================\n",
+ "Vb1=8.15## velocity of piston B in m/s by measurment from figure 1.19\n",
+ "Vba=6.8## velocity of B with respect to A in m/s\n",
+ "AB=2## length of connecting rod in m\n",
+ "wBA=Vba/AB## angular velocity of the connecting rod BA in rad/s\n",
+ "ae=AE*Vba/AB## velocity of point e on the connecting rod\n",
+ "oe=8.5## by measurement velocity of point E\n",
+ "Do=.05## diameter of crank shaft in m\n",
+ "Da=.06## diameter of crank pin in m\n",
+ "Db=.03## diameter of cross head pin B m\n",
+ "V1=wAO*Do/2.## velocity of rubbing at the pin of the crankshaft in m/s\n",
+ "V2=wBA*Da/2.## velocity of rubbing at the pin of the crank in m/s\n",
+ "Vb=(wAO+wBA)*Db/2.## velocity of rubbing at the pin of cross head in m/s\n",
+ "ag=5.1## by measurement\n",
+ "AG=AB*ag/Vba## position and linear velocity of point G on the connecting rod in m\n",
+ "##===============================\n",
+ "print'%s %.3f %s %.3f %s %.3f %s %.3f %s %.3f %s %.3f %s %.3f %s'%('Velocity of piston B=',Vb1,' m/s''Angular velocity of connecting rod= ',wBA,' rad/s''velocity of point E=',oe,' m/s'' velocity of rubbing at the pin of the crankshaft=',V1,' m/s' 'velocity of rubbing at the pin of the crank =',V2,' m/s''velocity of rubbing at the pin of cross head =',Vb,' m/s''position and linear velocity of point G on the connecting rod=',AG,' m')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity of piston B= 8.150 m/sAngular velocity of connecting rod= 3.400 rad/svelocity of point E= 8.500 m/s velocity of rubbing at the pin of the crankshaft= 0.471 m/svelocity of rubbing at the pin of the crank = 0.102 m/svelocity of rubbing at the pin of cross head = 0.334 m/sposition and linear velocity of point G on the connecting rod= 1.500 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 5 PAGE NO 19\n",
+ "#calculate linear velocity at various point\n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.20,1.21\n",
+ "import math\n",
+ "pi=3.141\n",
+ "N=120.## speed of crank in rpm\n",
+ "OA=10.## length of crank in cm\n",
+ "BP=48.## from figure 1.20 in cm\n",
+ "BA=40.## from figure 1.20 in cm\n",
+ "##==============\n",
+ "w=2.*pi*N/60.## angular velocity of the crank OA in rad/s\n",
+ "Vao=w*OA## velocity of ao in cm/s\n",
+ "ba=4.5## by measurement from 1.21 in cm\n",
+ "Bp=BP*ba/BA\n",
+ "op=6.8## by measurement in cm from figure 1.21\n",
+ "s=20.## scale of velocity diagram 1cm=20cm/s\n",
+ "Vp=op*s## linear velocity of P in m/s\n",
+ "ob=5.1## by measurement in cm from figure 1.21\n",
+ "Vb=ob*s## linear velocity of slider B\n",
+ "print'%s %.2f %s %.2f %s'%('Linear velocity of slider B= ',Vb,' cm/s''Linear velocity of point P= ',Vp,' cm/s')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Linear velocity of slider B= 102.00 cm/sLinear velocity of point P= 136.00 cm/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate angular velocity at various points\n",
+ "##CHAPTER 1 ILLUSRTATION 6 PAGE NO 20\n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.22,1.23\n",
+ "import math\n",
+ "pi=3.141\n",
+ "AB=6.25## length of link AB in cm\n",
+ "BC=17.5## length of link BC in cm\n",
+ "CD=11.25## length of link CD in cm\n",
+ "DA=20.## length of link DA in cm\n",
+ "CE=10.\n",
+ "N=100.## speed of crank in rpm\n",
+ "##========================\n",
+ "wAB=2.*pi*N/60.## angular velocity of AB in rad/s\n",
+ "Vb=wAB*AB## linear velocity of B with respect to A\n",
+ "s=15.## scale for velocity diagram 1 cm= 15 cm/s\n",
+ "dc=3.## by measurement in cm\n",
+ "Vcd=dc*s\n",
+ "wCD=Vcd/CD## angular velocity of link CD in rad/s\n",
+ "bc=2.5## by measurement in cm\n",
+ "Vbc=bc*s\n",
+ "wBC=Vbc/BC## angular velocity of link BC in rad/s\n",
+ "ce=bc*CE/BC\n",
+ "ae=3.66## by measurement in cm\n",
+ "Ve=ae*s## velocity of point E 10 from c on the link BC\n",
+ "af=2.94## by measurement in cm\n",
+ "Vf=af*s## velocity of point F\n",
+ "print'%s %.3f %s %.3f %s %.3f %s %.3f %s'%('The angular velocity of link CD= ',wCD,' rad/s'' The angular velocity of link BC= ',wBC,'rad/s'' velocity of point E 10 from c on the link BC= ',Ve,' cm/s' ' velocity of point F= ',Vf,' cm/s')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angular velocity of link CD= 4.000 rad/s The angular velocity of link BC= 2.143 rad/s velocity of point E 10 from c on the link BC= 54.900 cm/s velocity of point F= 44.100 cm/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Ex7-pg21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 7 PAGE NO 21\n",
+ "##TITLE:Basic kinematics\n",
+ "#calculate Linear velocity slider and angular velocity of link\n",
+ "##Figure 1.24,1.25\n",
+ "import math\n",
+ "pi=3.141\n",
+ "Noa=600## speed of the crank in rpm\n",
+ "OA=2.8## length of link OA in cm\n",
+ "AB=4.4## length of link AB in cm\n",
+ "BC=4.9## length of link BC in cm\n",
+ "BD=4.6## length of link BD in cm\n",
+ "##=================\n",
+ "wOA=2.*pi*Noa/60.## angular velocity of crank in rad/s\n",
+ "Vao=wOA*OA## The linear velocity of point A with respect to oin m/s\n",
+ "s=50.## scale of velocity diagram in cm\n",
+ "od=2.95## by measurement in cm from figure\n",
+ "Vd=od*s/100.## linear velocity slider in m/s\n",
+ "bd=3.2## by measurement in cm from figure\n",
+ "Vbd=bd*s\n",
+ "wBD=Vbd/BD## angular velocity of link BD\n",
+ "print'%s %.1f %s %.1f %s '%('linear velocity slider D= ',Vd,' m/s' 'angular velocity of link BD= ',wBD,' rad/s')\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "linear velocity slider D= 1.5 m/sangular velocity of link BD= 34.8 rad/s \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 8 PAGE NO 22\n",
+ "#calculate Angular velocity of link CD\n",
+ "##TITLE:Basic kinematics\n",
+ "import math\n",
+ "pi=3.141\n",
+ "Noa=60.## speed of crank in rpm\n",
+ "OA=30.## length of link OA in cm\n",
+ "AB=100.## length of link AB in cm\n",
+ "CD=80.## length of link CD in cm\n",
+ "##AC=CB\n",
+ "##================\n",
+ "wOA=2.*pi*Noa/60.## angular velocity of crank in rad/s\n",
+ "Vao=wOA*OA/100.## linear velocity of point A with respect to O\n",
+ "s=50.## scale for velocity diagram 1 cm= 50 cm/s\n",
+ "ob=3.4## by measurement in cm from figure 1.27\n",
+ "od=.9## by measurement in cm from figure 1.27\n",
+ "Vcd=160.## by measurement in cm/s from figure 1.27\n",
+ "wCD=Vcd/CD## angular velocity of link in rad/s\n",
+ "print'%s %.d %s'%('Angular velocity of link CD= ',wCD,' rad/s')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angular velocity of link CD= 2 rad/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 9 PAGE NO 23\n",
+ "#calculate velcity of Ram and anugular velocity of link and velocity of slidingof the block\n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.28,1.29\n",
+ "import math\n",
+ "pi=3.141\n",
+ "Nao=120.## speed of the crank in rpm\n",
+ "OQ=10.## length of link OQ in cm\n",
+ "OA=20.## length of link OA in cm\n",
+ "QC=15.## length of link QC in cm\n",
+ "CD=50.## length oflink CD in cm\n",
+ "##=============\n",
+ "wOA=2.*pi*Nao/60.## angular speed of crank in rad/s\n",
+ "Vad=wOA*OA/100.## velocity of pin A in m/s\n",
+ "BQ=41.## from figure 1.29 \n",
+ "BC=26.## from firure 1.29 \n",
+ "bq=4.7## from figure 1.29\n",
+ "bc=bq*BC/BQ## from figure 1.29 in cm\n",
+ "s=50.## scale for velocity diagram in cm/s\n",
+ "od=1.525## velocity vector od in cm from figure 1.29\n",
+ "Vd=od*s## velocity of ram D in cm/s\n",
+ "dc=1.925## velocity vector dc in cm from figure 1.29\n",
+ "Vdc=dc*s## velocity of link CD in cm/s\n",
+ "wCD=Vdc/CD## angular velocity of link CD in cm/s\n",
+ "ba=1.8## velocity vector of sliding of the block in cm\n",
+ "Vab=ba*s## velocity of sliding of the block in cm/s\n",
+ "print'%s %.3f %s %.2f %s %.1f %s '%('Velocity of RAM D= ',Vd,' cm/s''angular velocity of link CD= ',wCD,' rad/s'' velocity of sliding of the block= ',Vab,' cm/s')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity of RAM D= 76.250 cm/sangular velocity of link CD= 1.93 rad/s velocity of sliding of the block= 90.0 cm/s \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 10 PAGE NO 24\n",
+ "##TITLE:Basic kinematics\n",
+ "#calculate linear velocity abd radial component of accerlation and anugular velocity of connecting rod and anugular accerlation of connecting rod\n",
+ "##Figure 1.30(a),1.30(b),1.30(c)\n",
+ "import math\n",
+ "pi=3.141\n",
+ "Nao=300.## speed of crank in rpm\n",
+ "AO=.15## length of crank in m\n",
+ "BA=.6## length of connecting rod in m\n",
+ "##===================\n",
+ "wAO=2.*pi*Nao/60.## angular velocity of link in rad/s\n",
+ "Vao=wAO*AO## linear velocity of A with respect to 'o'\n",
+ "ab=3.4## length of vector ab by measurement in m/s\n",
+ "Vba=ab\n",
+ "ob=4.## length of vector ob by measurement in m/s\n",
+ "oc=4.1## length of vector oc by measurement in m/s\n",
+ "fRao=Vao**2./AO## radial component of acceleration of A with respect to O\n",
+ "fRba=Vba**2./BA## radial component of acceleration of B with respect to A\n",
+ "wBA=Vba/BA## angular velocity of connecting rod BA\n",
+ "fTba=103.## by measurement in m/s**2\n",
+ "alphaBA=fTba/BA## angular acceleration of connecting rod BA\n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s '%('linear velocity of A with respect to O= ',Vao,' m/s''radial component of acceleration of A with respect to O= ',fRao,' m/s**2'' radial component of acceleration of B with respect to A=',fRba,' m/s**2'' angular velocity of connecting rod B= ',wBA,' rad/s'' angular acceleration of connecting rod BA= ',alphaBA,' rad/s**2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "linear velocity of A with respect to O= 4.7 m/sradial component of acceleration of A with respect to O= 148.0 m/s**2 radial component of acceleration of B with respect to A= 19.3 m/s**2 angular velocity of connecting rod B= 5.7 rad/s angular acceleration of connecting rod BA= 171.7 rad/s**2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 11 PAGE NO 26\n",
+ "#calcualte Angular accerlation at various point\n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.31(a),1.31(b),1.31(c)\n",
+ "import math\n",
+ "pi=3.141\n",
+ "wAP=10.## angular velocity of crank in rad/s\n",
+ "P1A=30.## length of link P1A in cm\n",
+ "P2B=36.## length of link P2B in cm\n",
+ "AB=36.## length of link AB in cm\n",
+ "P1P2=60.## length of link P1P2 in cm\n",
+ "AP1P2=60.## crank inclination in degrees \n",
+ "alphaP1A=30.## angulare acceleration of crank P1A in rad/s**2\n",
+ "##=====================================\n",
+ "Vap1=wAP*P1A/100.## linear velocity of A with respect to P1 in m/s\n",
+ "Vbp2=2.2## velocity of B with respect to P2 in m/s(measured from figure )\n",
+ "Vba=2.06## velocity of B with respect to A in m/s(measured from figure )\n",
+ "wBP2=Vbp2/(P2B*100.)## angular velocity of P2B in rad/s\n",
+ "wAB=Vba/(AB*100.)## angular velocity of AB in rad/s\n",
+ "fAB1=alphaP1A*P1A/100.## tangential component of the acceleration of A with respect to P1 in m/s**2\n",
+ "frAB1=Vap1**2./(P1A/100.)## radial component of the acceleration of A with respect to P1 in m/s**2\n",
+ "frBA=Vba**2./(AB/100.)## radial component of the acceleration of B with respect to B in m/s**2\n",
+ "frBP2=Vbp2**2./(P2B/100.)## radial component of the acceleration of B with respect to P2 in m/s**2\n",
+ "ftBA=13.62## tangential component of B with respect to A in m/s**2(measured from figure)\n",
+ "ftBP2=26.62## tangential component of B with respect to P2 in m/s**2(measured from figure)\n",
+ "alphaBP2=ftBP2/(P2B/100.)## angular acceleration of P2B in m/s**2\n",
+ "alphaBA=ftBA/(AB/100.)## angular acceleration of AB in m/s**2\n",
+ "##==========================\n",
+ "print'%s %.1f %s %.1f %s'%('Angular acceleration of P2B=',alphaBP2,' rad/s**2''angular acceleration of AB =',alphaBA,' rad/s**2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angular acceleration of P2B= 73.9 rad/s**2angular acceleration of AB = 37.8 rad/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 12 PAGE NO 28\n",
+ "#calculate velocities at various point\n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.32(a),1.32(b),1.32(c)\n",
+ "import math\n",
+ "PI=3.141\n",
+ "AB=12.## length of link AB in cm\n",
+ "BC=48.## length of link BC in cm\n",
+ "CD=18.## length of link CD in cm\n",
+ "DE=36.## length of link DE in cm\n",
+ "EF=12.## length of link EF in cm\n",
+ "FP=36.## length of link FP in cm\n",
+ "Nba=200.## roating speed of link BA IN rpm\n",
+ "wBA=2*PI*200./60.## Angular velocity of BA in rad/s\n",
+ "Vba=wBA*AB/100.## linear velocity of B with respect to A in m/s\n",
+ "Vc=2.428## velocity of c in m/s from diagram 1.32(b)\n",
+ "Vd=2.36## velocity of D in m/s from diagram 1.32(b)\n",
+ "Ve=1## velocity of e in m/s from diagram 1.32(b)\n",
+ "Vf=1.42## velocity of f in m/s from diagram 1.32(b)\n",
+ "Vcb=1.3## velocity of c with respect to b in m/s from figure\n",
+ "fBA=Vba**2.*100./AB## radial component of acceleration of B with respect to A in m/s**2\n",
+ "fCB=Vcb**2*100./BC## radial component of acceleration of C with respect to B in m/s**2\n",
+ "fcb=3.52## radial component of acceleration of C with respect to B in m/s**2 from figure\n",
+ "fC=19.## acceleration of slider in m/s**2 from figure\n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.2f %s %.2f %s'%('velocity of c=',Vc,' m/s''velocity of d=',Vd,' m/s''velocity of e=',Ve,' m/s'' velocity of f=',Vf,' m/s''Acceleration of slider=',Vc,' m/s**2')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of c= 2.4 m/svelocity of d= 2.4 m/svelocity of e= 1.0 m/s velocity of f= 1.42 m/sAcceleration of slider= 2.43 m/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 1 ILLUSRTATION 13 PAGE NO 30\n",
+ "#caculate angular acceleration at varoius points\n",
+ "##TITLE:Basic kinematics\n",
+ "##Figure 1.33(a),1.33(b),1.33(c)\n",
+ "import math\n",
+ "PI=3.141\n",
+ "N=120.## speed of the crank OC in rpm\n",
+ "OC=5.## length of link OC in cm\n",
+ "cp=20.## length of link CP in cm\n",
+ "qa=10.## length of link QA in cm\n",
+ "pa=5.## length of link PA in cm\n",
+ "CP=46.9## velocity of link CP in cm/s\n",
+ "QA=58.3## velocity of link QA in cm/s\n",
+ "Pa=18.3## velocity of link PA in cm/s\n",
+ "Vc=2.*PI*N*OC/60.## velocity of C in m/s\n",
+ "Cco=Vc**2./OC## centripetal acceleration of C relative to O in cm/s**2\n",
+ "Cpc=CP**2./cp## centripetal acceleration of P relative to C in cm/s**2\n",
+ "Caq=QA**2./qa## centripetal acceleration of A relative to Q in cm/s**2\n",
+ "Cap=Pa**2./pa## centripetal acceleration of A relative to P in cm/s**2\n",
+ "pp1=530.\n",
+ "a1a=323.\n",
+ "a2a=207.5\n",
+ "ACP=pp1/cp## angular acceleration of link CP in rad/s**2\n",
+ "APA=a1a/qa## angular acceleration of link PA in rad/s**2\n",
+ "AAQ=a2a/pa## angular acceleration of link AQ in rad/s**2\n",
+ "print'%s %.3f %s %.3f %s %.3f %s'%('angular acceleration of link CP =',ACP,' rad/s**2'' angular acceleration of link CP=',APA,' rad/s**2''angular acceleration of link CP=',AAQ,' rad/s**2')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angular acceleration of link CP = 26.500 rad/s**2 angular acceleration of link CP= 32.300 rad/s**2angular acceleration of link CP= 41.500 rad/s**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter10.ipynb b/_Theory_Of_Machines/Chapter10.ipynb
new file mode 100755
index 00000000..5ae48acb
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter10.ipynb
@@ -0,0 +1,507 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5f892b8e3ed0a74f24a745bdf0e14528cdf96fe8388a860fc7931df67549db87"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter10-Brakes and Dynamometers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 1 PAGE NO 268\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate torque transmitted by the block brake\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d=0.32;##Diameter of the drum in m\n",
+ "qq=90.;##Angle of contact in degree\n",
+ "P=820.;##Force applied in N\n",
+ "U=0.35;##Coefficient of friction\n",
+ "\n",
+ "\n",
+ "U1=((4.*U*math.sin(45/57.3))/((qq*(3.14/180.))+math.sin(90./57.3)));##Equivalent coefficient of friction\n",
+ "F=((P*0.66)/((0.3/U1)-0.06));##Force value in N taking moments\n",
+ "TB=(F*(d/2.));##Torque transmitted in N.m\n",
+ "\n",
+ "print'%s %.4f %s'%('Torque transmitted by the block brake is ',TB,' N.m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Torque transmitted by the block brake is 120.4553 N.m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 2 PAGE NO 269\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate The bicycle travels a distance and makes turns before it comes to rest\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "m=120.;##Mass of rider in kg\n",
+ "v=16.2;##Speed of rider in km/hr\n",
+ "d=0.9;##Diameter of the wheel in m\n",
+ "P=120.;##Pressure applied on the brake in N\n",
+ "U=0.06;##Coefficient of friction\n",
+ "\n",
+ "F=(U*P);##Frictional force in N\n",
+ "KE=((m*(v*(5./18.))**2.)/2.);##Kinematic Energy in N.m\n",
+ "S=(KE/F);##Distance travelled by the bicycle before it comes to rest in m\n",
+ "N=(S/(d*3.14));##Required number of revolutions\n",
+ "\n",
+ "print'%s %.1f %s %.1f %s'%('The bicycle travels a distance of ',S,' m'and'',N,'turns before it comes to rest')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The bicycle travels a distance of 168.8 59.7 turns before it comes to rest\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 3 PAGE NO 270\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#evaluvate maximum torque absorbed\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "S=3500.;##Force on each arm in N\n",
+ "d=0.36;##Diamter of the wheel in m\n",
+ "U=0.4;##Coefficient of friction \n",
+ "qq=100.;##Contact angle in degree\n",
+ "\n",
+ "qqr=(qq*(3.14/180));##Contact angle in radians\n",
+ "UU=((4*U*math.sin(50/57.3))/(qqr+(math.sin(100./57.3))));##Equivalent coefficient of friction\n",
+ "F1=(S*0.45)/((0.2/UU)+((d/2.)-0.04));##Force on fulcrum in N\n",
+ "F2=(S*0.45)/((0.2/UU)-((d/2.)-0.04));##Force on fulcrum in N\n",
+ "TB=(F1+F2)*(d/2.);##Maximum torque absorbed in N.m\n",
+ "\n",
+ "print'%s %.2f %s'%('Maximum torque absorbed is ',TB,' N.m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum torque absorbed is 1412.67 N.m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 4 PAGE NO 271\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate The maximum braking torque on the drum\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "a=0.5;##Length of lever in m\n",
+ "d=0.5;##Diameter of brake drum in m\n",
+ "q=(5/8.)*(2*3.14);##Angle made in radians\n",
+ "b=0.1;##Distance between pin and fulcrum in m\n",
+ "P=2000.;##Effort applied in N\n",
+ "U=0.25;##Coefficient of friction\n",
+ "\n",
+ "T=math.exp(U*q);##Ratios of tension\n",
+ "T2=((P*a)/b);##Tension in N\n",
+ "T1=(T*T2);##Tension in N\n",
+ "TB=((T1-T2)*(d/2.))/1000.;##Maximum braking torque in kNm\n",
+ "\n",
+ "print'%s %.2f %s'%('The maximum braking torque on the drum is',TB,' kNm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum braking torque on the drum is 4.17 kNm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 5 PAGE NO 271\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#caculate the brake is self -locking and tension in the side \n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "q=220.;##Angle of contact in degree\n",
+ "T=340.;##Torque in Nm\n",
+ "d=0.32;##Diameter of drum in m\n",
+ "U=0.3;##Coefficient of friction\n",
+ "\n",
+ "Td=(T/(d/2.));##Difference in tensions in N\n",
+ "Tr=math.exp(U*(q*(3.14/180.)));##Ratio of tensions\n",
+ "T2=(Td/(Tr-1.));##Tension in N\n",
+ "T1=(Tr*T2);##Tension in N\n",
+ "P=((T2*(d/2.))-(T1*0.04))/0.5;##Force applied in N\n",
+ "b=(T1/T2)*4.;##Value of b in cm when the brake is self-locking\n",
+ "\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('The value of b is ',b,' cm' 'when the brake is self-locking ' 'Tensions in the sides are ',T1,' N and',T2,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of b is 12.65 cmwhen the brake is self-locking Tensions in the sides are 3107.70 N and 982.70 N \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg272"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 6 PAGE NO 272\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate torque required and thickness necessary to limit the tensile stress to 70 and secton of the lever taking stress to 60 mpa\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d=0.5;##Drum diamter in m\n",
+ "U=0.3;##Coefficient of friction\n",
+ "q=250;##Angle of contact in degree\n",
+ "P=750;##Force in N\n",
+ "a=0.1;##Band width in m\n",
+ "b=0.8;##Distance in m\n",
+ "ft=(70*10**6);##Tensile stress in Pa\n",
+ "f=(60*10**6);##Stress in Pa\n",
+ "b1=0.1;##Distance in m\n",
+ "\n",
+ "T=math.exp(U*(q*(3.14/180.)));##Tensions ratio\n",
+ "T2=(P*b*10.)/(T+1.);##Tension in N\n",
+ "T1=(T*T2);##Tension in N\n",
+ "TB=(T1-T2)*(d/2.);##Torque in N.m\n",
+ "t=(max(T1,T2)/(ft*a))*1000.;##Thickness in mm\n",
+ "M=(P*b);##bending moment at fulcrum in Nm\n",
+ "X=(M/((1/6.)*f));##Value of th**2\n",
+ "##t varies from 10mm to 15 mm. Taking t=15mm,\n",
+ "h=math.sqrt(X/(0.015))*1000.;##Section of the lever in m\n",
+ "\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('Torque required is ',TB,' N.m' 'Thickness necessary to limit the tensile stress to 70 MPa is ',t,' mm ''Section of the lever taking stress to 60 MPa is ',h,' mm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Torque required is 861.7 N.mThickness necessary to limit the tensile stress to 70 MPa is 0.7 mm Section of the lever taking stress to 60 MPa is 63.2 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg273"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 7 PAGE NO 273\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "#calculate value of x and value of power/bd ratio \n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "P1=30.;##Power in kW\n",
+ "N=1250.;##Speed in r.p.m\n",
+ "P=60.;##Applied force in N\n",
+ "d=0.8;##Drum diameter in m\n",
+ "q=310.;##Contact angle in degree\n",
+ "a=0.03;##Length of a in m\n",
+ "b=0.12;##Length of b in m\n",
+ "U=0.2;##Coefficient of friction\n",
+ "B=10.;##Band width in cm\n",
+ "D=80.;##Diameter in cm\n",
+ "\n",
+ "T=(P1*60000.)/(2.*3.14*N);##Torque in N.m\n",
+ "Td=(T/(d/2.));##Tension difference in N\n",
+ "Tr=math.exp(U*(q*(3.14/180.)));##Tensions ratio\n",
+ "T2=(Td/(Tr-1.));##Tension in N\n",
+ "T1=(Tr*T2);##Tension in N\n",
+ "x=((T2*b)-(T1*a))/P;##Distance in m;\n",
+ "X=(P1/(B*D));##Ratio\n",
+ "\n",
+ "print'%s %.3f %s %.3f %s'%('Value of x is ',x,' m '' Value of (Power/bD) ratio is ',X,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of x is 0.155 m Value of (Power/bD) ratio is 0.037 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg274"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 8 PAGE NO 274\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate time required to bring the shaft to the rest from its running condition\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "m=80.;##Mass of flywheel in kg\n",
+ "k=0.5;##Radius of gyration in m\n",
+ "N=250;##Speed in r.p.m\n",
+ "d=0.32;##Diamter of the drum in m\n",
+ "b=0.05;##Distance of pin in m\n",
+ "q=260.;##Angle of contact in degree\n",
+ "U=0.23;##Coefficient of friction\n",
+ "P=20;##Force in N\n",
+ "a=0.35;##Distance at which force is applied in m\n",
+ "\n",
+ "Tr=math.exp(U*q*(3.14/180.));##Tensions ratio\n",
+ "T2=(P*a)/b;##Tension in N\n",
+ "T1=(Tr*T2);##Tension in N\n",
+ "TB=(T1-T2)*(d/2.);##Torque in N.m\n",
+ "KE=((1/2.)*(m*k**2)*((2.*3.14*N)/60.)**2);##Kinematic energy of the rotating drum in Nm\n",
+ "N1=(KE/(TB*2.*3.14));##Speed in rpm\n",
+ "aa=((2*3.14*N)/60.)**2/(4.*3.14*N1);##Angular acceleration in rad/s**2\n",
+ "t=((2.*3.14*N)/60.)/aa;##Time in seconds\n",
+ "\n",
+ "print'%s %.1f %s'%('Time required to bring the shaft to the rest from its running condition is ',t,' seconds')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time required to bring the shaft to the rest from its running condition is 12.7 seconds\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg275"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 9 PAGE NO 275\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate Minimum force required and Time taken to bring to rest \n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "n=12.;##Number of blocks\n",
+ "q=15.;##Angle subtended in degree\n",
+ "P=185.;##Power in kW\n",
+ "N=300.;##Speed in r.p.m\n",
+ "U=0.25;##Coefficient of friction\n",
+ "d=1.25;##Diamter in m\n",
+ "b1=0.04;##Distance in m\n",
+ "b2=0.14;##Distance in m\n",
+ "a=1.;##Diatance in m\n",
+ "m=2400.;##Mass of rotor in kg\n",
+ "k=0.5;##Radius of gyration in m\n",
+ "\n",
+ "Td=(P*60000.)/(2.*3.14*N*(d/2.));##Tension difference in N\n",
+ "T=Td*(d/2.);##Torque in Nm\n",
+ "Tr=((1+(U*math.tan(7.5/57.3)))/(1.-(U*math.tan(7.5/57.3))))**n;##Tension ratio\n",
+ "To=(Td/(Tr-1.));##Tension in N\n",
+ "Tn=(Tr*To);##Tension in N\n",
+ "P=((To*b2)-(Tn*b1))/a;##Force in N\n",
+ "aa=(T/(m*k**2));##Angular acceleration in rad/s**2\n",
+ "t=((2*3.14*N)/60.)/aa;##Time in seconds\n",
+ "\n",
+ "print'%s %.1f %s %.1f %s'%('Minimum force required is ',P,' N' 'Time taken to bring to rest is ',t,' seconds')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum force required is 406.1 NTime taken to bring to rest is 3.2 seconds\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg275"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 10 PAGE NO 275\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate Maximum braking torque and Angular retardation of the drum and Time taken by the system to come to rest \n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "n=12.;## Number of blocks\n",
+ "q=16.;##Angle subtended in degrees\n",
+ "d=0.9;##Effective diameter in m\n",
+ "m=2000.;##Mass in kg\n",
+ "k=0.5;##Radius of gyration in m\n",
+ "b1=0.7;##Distance in m\n",
+ "b2=0.03;##Distance in m\n",
+ "a=0.1;##Distance in m\n",
+ "P=180.;##Force in N\n",
+ "N=360.;##Speed in r.p.m\n",
+ "U=0.25;##Coefficient of friction\n",
+ "\n",
+ "Tr=((1.+(U*math.tan(8/57.3)))/(1.-(U*math.tan(8/57.3))))**n;##Tensions ratio\n",
+ "T2=(P*b1)/(a-(b2*Tr));##Tension in N\n",
+ "T1=(Tr*T2);##Tension in N\n",
+ "TB=(T1-T2)*(d/2.);##Torque in N.m\n",
+ "aa=(TB/(m*k**2.));##Angular acceleration in rad/s**2\n",
+ "t=((2.*3.14*N)/60.)/aa;##Time in seconds\n",
+ "\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('(i) Maximum braking torque is ',TB,'Nm ''(ii) Angular retardation of the drum is ',aa,' rad/s**2''(iii) Time taken by the system to come to rest is ',t,' s')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Maximum braking torque is 2481.63 Nm (ii) Angular retardation of the drum is 4.96 rad/s**2(iii) Time taken by the system to come to rest is 7.59 s \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter11.ipynb b/_Theory_Of_Machines/Chapter11.ipynb
new file mode 100755
index 00000000..ec8d5927
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter11.ipynb
@@ -0,0 +1,450 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ebcd9b3d07a8d6768db168aed38e578ce5aca1ce1a2df85108f9e88506949f89"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11-VIBRATIONS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg290"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 11 ILLUSRTATION 1 PAGE NO 290\n",
+ "##TITLE:VIBRATIONS\n",
+ "import math\n",
+ "#calculate frequency of longitudinal vibration and transversve vibaration\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "D=.1## DIAMETER OF SHAFT IN m\n",
+ "L=1.10## LENGTH OF SHAFT IN m\n",
+ "W=450## WEIGHT ON THE OTHER END OF SHAFT IN NEWTONS\n",
+ "E=200*10**9## YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+ "## =========================================================================================\n",
+ "A=PI*D**2./4.## AREA OF SHAFT IN mm**2\n",
+ "I=PI*D**4./64.## MOMENT OF INERTIA \n",
+ "delta=W*L/(A*E)## STATIC DEFLECTION IN LONGITUDINAL VIBRATION OF SHAFT IN m\n",
+ "Fn=0.4985/(delta)**.5## FREQUENCY OF LONGITUDINAL VIBRATION IN Hz\n",
+ "delta1=W*L**3./(3.*E*I)## STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m\n",
+ "Fn1=0.4985/(delta1)**.5## FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
+ "##============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.2f %s %.2f %s '%('FREQUENCY OF LONGITUDINAL VIBRATION =',Fn,' Hz' 'FREQUENCY OF TRANSVERSE VIBRATION =',Fn1,'Hz')\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "FREQUENCY OF LONGITUDINAL VIBRATION = 888.78 HzFREQUENCY OF TRANSVERSE VIBRATION = 34.99 Hz \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg290"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 11 ILLUSRTATION 2 PAGE NO 290\n",
+ "##TITLE:VIBRATIONS\n",
+ "##FIGURE 11.10\n",
+ "#calculate natural frequency of transverse vibration\n",
+ "#import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "L=.9## LENGTH OF THE SHAFT IN m\n",
+ "m=100## MASS OF THE BODY IN Kg\n",
+ "L2=.3## LENGTH WHERE THE WEIGHT IS ACTING IN m\n",
+ "L1=L-L2## DISTANCE FROM THE OTHER END\n",
+ "D=.06## DIAMETER OF SHAFT IN m\n",
+ "W=9.81*m## WEGHT IN NEWTON\n",
+ "E=200.*10**9.## YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+ "##==========================================================================================\n",
+ "##CALCULATION\n",
+ "I=PI*D**4./64.## MOMENT OF INERTIA IN m**4\n",
+ "delta=W*L1**2*L2**2./(3.*E*I*L)## STATIC DEFLECTION\n",
+ "Fn=.4985/(delta)**.5## NATURAL FREQUENCY OF TRANSVERSE VIBRATION\n",
+ "##=========================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('NATURAL FREQUENCY OF TRANSVERSE VIBRATION=',Fn,' Hz')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NATURAL FREQUENCY OF TRANSVERSE VIBRATION= 51.9 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg291"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 11 ILLUSRTATION 3 PAGE NO 291 ##TITLE:VIBRATIONS\n",
+ "##FIGURE 11.11\n",
+ "import math\n",
+ "#calculate frequency of longitudnial vibration and frequency of transverse vibration and torisional vibration\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY IN N /m**2\n",
+ "D=.050## DIAMETER OF SHAFT IN m\n",
+ "m=450## WEIGHT OF FLY WHEEL IN IN Kg\n",
+ "K=.5## RADIUS OF GYRATION IN m\n",
+ "L2=.6## FROM FIGURE IN m\n",
+ "L1=.9## FROM FIGURE IN m\n",
+ "L=L1+L2\n",
+ "E=200.*10**9## YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+ "C=84.*10**9## MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals\n",
+ "##=========================================================================================\n",
+ "A=PI*D**2./4.## AREA OF SHAFT IN mm**2\n",
+ "I=PI*D**4./64.## \n",
+ "m1=m*L2/(L1+L2)## MASS OF THE FLYWHEEL CARRIED BY THE LENGTH L1 IN Kg\n",
+ "DELTA=m1*g*L1/(A*E)## EXTENSION OF LENGTH L1 IN m\n",
+ "Fn=0.4985/(DELTA)**.5## FREQUENCY OF LONGITUDINAL VIBRATION IN Hz\n",
+ "DELTA1=(m*g*L1**3*L2**3)/(3*E*I*L**3)## STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m\n",
+ "Fn1=0.4985/(DELTA1)**.5## FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
+ "J=PI*D**4./32.## POLAR MOMENT OF INERTIA IN m**4\n",
+ "Q1=C*J/L1## TORSIONAL STIFFNESS OF SHAFT DUE TO L1 IN N-m\n",
+ "Q2=C*J/L2## TORSIONAL STIFFNESS OF SHAFT DUE TO L2 IN N-m\n",
+ "Q=Q1+Q2## TORSIONAL STIFFNESS OF SHAFT IN Nm\n",
+ "Fn2=(Q/(m*K**2))**.5/(2.*PI)## FREQUENCY OF TORSIONAL VIBRATION IN Hz\n",
+ "##=======================================================================================\n",
+ "print'%s %.3f %s %.3f %s %.3f %s '%('FREQUENCY OF LONGITUDINAL VIBRATION = ',Fn,' Hz''FREQUENCY OF TRANSVERSE VIBRATION = ',Fn1,' Hz'' FREQUENCY OF TORSIONAL VIBRATION = ',Fn2,' Hz')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "FREQUENCY OF LONGITUDINAL VIBRATION = 248.014 HzFREQUENCY OF TRANSVERSE VIBRATION = 14.916 Hz FREQUENCY OF TORSIONAL VIBRATION = 5.673 Hz \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg294"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 11 ILLUSRTATION 6 PAGE NO 294\n",
+ "##TITLE:VIBRATIONS\n",
+ "##FIGURE 11.14\n",
+ "import math\n",
+ "#calculate frequency of transverse vibration\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY IN N /m**2\n",
+ "D=.06## DIAMETER OF SHAFT IN m\n",
+ "L=3.## LENGTH OF SHAFT IN m\n",
+ "W1=1500.## WEIGHT ACTING AT C IN N\n",
+ "W2=2000.## WEIGHT ACTING AT D IN N\n",
+ "W3=1000.## WEIGHT ACTING AT E IN N\n",
+ "L1=1.## LENGTH FROM A TO C IN m\n",
+ "L2=2.## LENGTH FROM A TO D IN m\n",
+ "L3=2.5## LENGTH FROM A TO E IN m\n",
+ "I=PI*D**4./64.\n",
+ "E=200.*10**9.## YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+ "##===========================================================================================\n",
+ "DELTA1=W1*L1**2.*(L-L1)**2./(3.*E*I*L)## STATIC DEFLECTION DUE TO W1\n",
+ "DELTA2=W2*L2**2.*(L-L2)**2./(3.*E*I*L)## STATIC DEFLECTION DUE TO W2\n",
+ "DELTA3=W2*L3**2.*(L-L3)**2./(3.*E*I*L)## STATIC DEFLECTION DUE TO W2\n",
+ "Fn=.4985/(DELTA1+DELTA2+DELTA3)**.5## FREQUENCY OF TRANSVERSE VIBRATION IN Hz\n",
+ "##==========================================================================================\n",
+ "print'%s %.3f %s'%('FREQUENCY OF TRANSVERSE VIBRATION = ',Fn,' Hz')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "FREQUENCY OF TRANSVERSE VIBRATION = 4.080 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg296"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 11 ILLUSRTATION 10 PAGE NO 296\n",
+ "##TITLE:VIBRATIONS\n",
+ "##FIGURE 11.18\n",
+ "import math\n",
+ "#calculate FREQUENCY OF TRANSVERSE VIBRATION\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY IN N /m**2\n",
+ "E=200.*10**9## YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+ "D=.03## DIAMETER OF SHAFT IN m\n",
+ "L=.8## LENGTH OF SHAFT IN m\n",
+ "r=40000.## DENSITY OF SHAFT MATERIAL IN Kg/m**3\n",
+ "W=10.## WEIGHT ACTING AT CENTRE IN N\n",
+ "##===========================================================================================\n",
+ "I=PI*D**4./64.## MOMENT OF INERTIA OF SHAFT IN m**4\n",
+ "m=PI*D**2./4.*r## MASS PER UNIT LENGTH IN Kg/m\n",
+ "w=m*g\n",
+ "DELTA=W*L**3./(48.*E*I)## STATIC DEFLECTION DUE TO W\n",
+ "DELTA1=5.*w*L**4./(384.*E*I)## STATIC DEFLECTION DUE TO WEIGHT OF SHAFT \n",
+ "Fn=.4985/(DELTA+DELTA1/1.27)**.5\n",
+ "##==========================================================================================\n",
+ "print'%s %.3f %s'%('FREQUENCY OF TRANSVERSE VIBRATION = ',Fn,' Hz')\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "FREQUENCY OF TRANSVERSE VIBRATION = 39.426 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg297"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 11 ILLUSRTATION 11 PAGE NO 297\n",
+ "##TITLE:VIBRATIONS\n",
+ "##FIGURE 11.19\n",
+ "import math\n",
+ "#evaluvate CRITICAL SPEED OF SHAFT\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY IN N /m**2\n",
+ "E=210.*10**9.## YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+ "D=.18## DIAMETER OF SHAFT IN m\n",
+ "L=2.5## LENGTH OF SHAFT IN m\n",
+ "M1=25.## MASS ACTING AT E IN Kg\n",
+ "M2=50.## MASS ACTING AT D IN Kg\n",
+ "M3=20.## MASS ACTING AT C IN Kg\n",
+ "W1=M1*g\n",
+ "W2=M2*g\n",
+ "W3=M3*g\n",
+ "L1=.6## LENGTH FROM A TO E IN m\n",
+ "L2=1.5## LENGTH FROM A TO D IN m\n",
+ "L3=2.## LENGTH FROM A TO C IN m\n",
+ "w=1962.## SELF WEIGHT OF SHAFT IN N\n",
+ "##==========================================================================================\n",
+ "I=PI*D**4./64.## MOMENT OF INERTIA OF SHAFT IN m**4\n",
+ "DELTA1=W1*L1**2.*(L-L1)**2./(3.*E*I*L)## STATIC DEFLECTION DUE TO W1\n",
+ "DELTA2=W2*L2**2.*(L-L2)**2./(3.*E*I*L)## STATIC DEFLECTION DUE TO W2\n",
+ "DELTA3=W3*L3**2.*(L-L3)**2./(3.*E*I*L)## STATIC DEFLECTION DUE TO W3\n",
+ "DELTA4=5.*w*L**4./(384.*E*I)## STATIC DEFLECTION DUE TO w\n",
+ "Fn=.4985/(DELTA1+DELTA2+DELTA3+DELTA4/1.27)**.5\n",
+ "Nc=Fn*60## CRITICAL SPEED OF SHAFT IN rpm\n",
+ "##========================================================================================\n",
+ "print'%s %.3f %s'%('CRITICAL SPEED OF SHAFT = ',Nc,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "CRITICAL SPEED OF SHAFT = 3111.629 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg298"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 11 ILLUSRTATION 12 PAGE NO 298\n",
+ "##TITLE:VIBRATIONS\n",
+ "##FIGURE 11.20\n",
+ "import math\n",
+ "#calculate FREQUENCY OF FREE TORSIONAL VIBRATION\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY IN N /m**2\n",
+ "Na=1500.## SPEED OF SHAFT A IN rpm\n",
+ "Nb=500.## SPEED OF SHAFT B IN rpm\n",
+ "G=Na/Nb## GERA RATIO\n",
+ "L1=.18## LENGTH OF SHAFT 1 IN m\n",
+ "L2=.45## LENGTH OF SHAFT 2 IN m\n",
+ "D1=.045## DIAMETER OF SHAFT 1 IN m\n",
+ "D2=.09## DIAMETER OF SHAFT 2 IN m\n",
+ "C=84.*10**9## MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals\n",
+ "Ib=1400.## MOMENT OF INERTIA OF PUMP IN Kg-m**2\n",
+ "Ia=400.## MOMENT OF INERTIA OF MOTOR IN Kg-m**2\n",
+ "\n",
+ "##======================================================================================\n",
+ "J=PI*D1**4./32.## POLAR MOMENT OF INERTIA IN m**4\n",
+ "Ib1=Ib/G**2.## MASS MOMENT OF INERTIA OF EQUIVALENT ROTOR IN m**2\n",
+ "L3=G**2.*L2*(D1/D2)**4.## ADDITIONAL LENGTH OF THE EQUIVALENT SHAFT\n",
+ "L=L1+L3## TOTAL LENGTH OF EQUIVALENT SHAFT\n",
+ "La=L*Ib1/(Ia+Ib1)\n",
+ "Fn=(C*J/(La*Ia))**.5/(2.*PI)## FREQUENCY OF FREE TORSIONAL VIBRATION IN Hz\n",
+ "##===================================================================================\n",
+ "print'%s %.2f %s'%('FREQUENCY OF FREE TORSIONAL VIBRATION = ',Fn,' Hz')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "FREQUENCY OF FREE TORSIONAL VIBRATION = 4.20 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg300"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 11 ILLUSRTATION 13 PAGE NO 300\n",
+ "##TITLE:VIBRATIONS\n",
+ "##FIGURE 11.21\n",
+ "import math\n",
+ "#calculate critical speed of shaft and the range of speed \n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY IN N /m**2\n",
+ "D=.015## DIAMETER OF SHAFT IN m\n",
+ "L=1.00## LENGTH OF SHAFT IN m\n",
+ "M=15.## MASS OF SHAFT IN Kg\n",
+ "W=M*g\n",
+ "e=.0003## ECCENTRICITY IN m\n",
+ "E=200.*10**9.## YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals\n",
+ "f=70.*10**6.## PERMISSIBLE STRESS IN N/m**2\n",
+ "##============================================================================================\n",
+ "I=PI*D**4./64.## MOMENT OF INERTIA OF SHAFT IN m**4\n",
+ "DELTA=W*L**3./(192.*E*I)## STATIC DEFLECTION IN m\n",
+ "Fn=.4985/(DELTA)**.5## NATURAL FREQUENCY OF TRANSVERSE VIBRATION\n",
+ "Nc=Fn*60.## CRITICAL SPEED OF SHAFT IN rpm\n",
+ "M1=16.*f*I/(D*g*L)\n",
+ "W1=M1*g## ADDITIONAL LOAD ACTING\n",
+ "y=W1/W*DELTA## ADDITIONAL DEFLECTION DUE TO W1\n",
+ "N1=Nc/(1.+e/y)**.5## MIN SPEED IN rpm\n",
+ "N2=Nc/(1.-e/y)**.5## MAX SPEED IN rpm\n",
+ "##===========================================================================================\n",
+ "print'%s %.3f %s %.3f %s %.3f %s '%('CRITICAL SPEED OF SHAFT = ',Nc,' rpm''THE RANGE OF SPEED IS FROM',N1,'rpm TO ',N2,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "CRITICAL SPEED OF SHAFT = 762.330 rpmTHE RANGE OF SPEED IS FROM 709.555 rpm TO 828.955 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter12.ipynb b/_Theory_Of_Machines/Chapter12.ipynb
new file mode 100755
index 00000000..6706c05c
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter12.ipynb
@@ -0,0 +1,380 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2fbbfd8e1fae5de695230b7f28341e3abac22cade207682955694bcaba6d0716"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter12-Balancing of reciprocating of masses"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg310"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 12 ILLUSRTATION 1 PAGE NO 310\n",
+ "##TITLE:Balancing of reciprocating of masses\n",
+ "import math\n",
+ "#calculate the magnitude of balance mass required and residual balance error\n",
+ "pi=3.141\n",
+ "N=250.## speed of the reciprocating engine in rpm\n",
+ "s=18.## length of stroke in mm\n",
+ "mR=120.## mass of reciprocating parts in kg\n",
+ "m=70.## mass of revolving parts in kg\n",
+ "r=.09## radius of revolution of revolving parts in m\n",
+ "b=.15## distance at which balancing mass located in m\n",
+ "c=2./3.## portion of reciprocating mass balanced \n",
+ "teeta=30.## crank angle from inner dead centre in degrees\n",
+ "##===============================\n",
+ "B=r*(m+c*mR)/b## balance mass required in kg\n",
+ "w=2.*math.pi*N/60.## angular speed in rad/s\n",
+ "F=mR*w**2.*r*(((1.-c)**2.*(math.cos(teeta/57.3))**2.)+(c**2.*(math.sin(teeta/57.3))**2.))**.5## residual unbalanced forces in N\n",
+ "print'%s %.1f %s %.3f %s'%('Magnitude of balance mass required= ',B,'kg' and 'Residual unbalanced forces= ',F,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Magnitude of balance mass required= 90.0 Residual unbalanced forces= 3263.971 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg310"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 12 ILLUSRTATION 2 PAGE NO 310\n",
+ "##TITLE:Balancing of reciprocating of masses\n",
+ "#calculate speed and swaying couples \n",
+ "pi=3.141\n",
+ "g=10.## acceleration due to gravity approximately in m/s**2\n",
+ "mR=240.## mass of reciprocating parts per cylinder in kg\n",
+ "m=300.## mass of rotating parts per cylinder in kg\n",
+ "a=1.8##distance between cylinder centres in m\n",
+ "c=.67## portion of reciprocating mass to be balanced\n",
+ "b=.60## radius of balance masses in m\n",
+ "r=24.## crank radius in cm\n",
+ "R=.8##radius of thread of wheels in m\n",
+ "M=40.\n",
+ "##=======================================\n",
+ "Ma=m+c*mR## total mass to be balanced in kg\n",
+ "mD=211.9## mass of wheel D from figure in kg\n",
+ "mC=211.9##..... mass of wheel C from figure in kg\n",
+ "theta=171.## angular position of balancing mass C in degrees\n",
+ "Br=c*mR/Ma*mC## balancing mass for reciprocating parts in kg\n",
+ "w=(M*g**3./Br/b)**.5## angular speed in rad/s\n",
+ "v=w*R*3600./1000.## speed in km/h\n",
+ "S=a*(1.-c)*mR*w**2*r/2.**.5/100./1000.## swaying couple in kNm\n",
+ "print'%s %.3f %s %.3f %s'%('speed=',v,' kmph'and ' swaying couple=',S,' kNm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "speed= 86.476 swaying couple= 21.812 kNm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg313"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 12 ILLUSRTATION 3 PAGE NO 313\n",
+ "##TITLE:Balancing of reciprocating of masses\n",
+ "#calculate hammer blow and tractive effort and swaying couple\n",
+ "import math\n",
+ "pi=3.141\n",
+ "g=10.## acceleration due to gravity approximately in m/s**2\n",
+ "a=.70##distance between cylinder centres in m\n",
+ "r=60.## crank radius in cm\n",
+ "m=130.##mass of rotating parts per cylinder in kg\n",
+ "mR=210.## mass of reciprocating parts per cylinder in kg\n",
+ "c=.67## portion of reciprocating mass to be balanced\n",
+ "N=300.##e2engine speed in rpm\n",
+ "b=.64## radius of balance masses in m\n",
+ "##============================\n",
+ "Ma=m+c*mR## total mass to be balanced in kg\n",
+ "mA=100.44## mass of wheel A from figure in kg\n",
+ "Br=c*mR/Ma*mA## balancing mass for reciprocating parts in kg\n",
+ "H=Br*(2.*math.pi*N/60.)**2*b## hammer blow in N\n",
+ "w=(2.*math.pi*N/60.)## angular speed\n",
+ "T=2**.5*(1.-c)*mR*w**2.*r/2./100.##tractive effort in N\n",
+ "S=a*(1.-c)*mR*w**2.*r/2./2.**.5/100.## swaying couple in Nm\n",
+ "\n",
+ "print'%s %.3f %s %.3f %s %.3f %s'%('Hammer blow=',H,' in N' 'tractive effort= ',T,' in N' 'swaying couple= ',S,' in Nm')\n",
+ "print '%s'%(\"The answer is a bit different due to rounding off error in textbook\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hammer blow= 32975.566 in Ntractive effort= 29018.117 in Nswaying couple= 10156.341 in Nm\n",
+ "The answer is a bit different due to rounding off error in textbook\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg314"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 12 ILLUSRTATION 4 PAGE NO 314\n",
+ "##TITLE:Balancing of reciprocating of masses\n",
+ "import math\n",
+ "#calculate maximum unbalanced primary couples\n",
+ "pi=3.141\n",
+ "mR=900.## mass of reciprocating parts in kg\n",
+ "N=90.## speed of the engine in rpm\n",
+ "r=.45##crank radius in m\n",
+ "cP=.9*mR*(2.*math.pi*N/60.)**2.*r*2.**.5/1000.## maximum unbalanced primary couple in kNm\n",
+ "print'%s %.3f %s'%('maximum unbalanced primary couple=',cP,' k Nm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum unbalanced primary couple= 45.788 k Nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 12 ILLUSRTATION 5 PAGE NO 315\n",
+ "##TITLE:Balancing of reciprocating of masses\n",
+ "import math\n",
+ "#calculate maximum unbalanced secondary force and with reasons\n",
+ "pi=3.141\n",
+ "mRA=160.## mass of reciprocating cylinder A in kg\n",
+ "mRD=160.## mass of reciprocating cylinder D in kg\n",
+ "r=.05## stroke lenght in m\n",
+ "l=.2## connecting rod length in m\n",
+ "N=450.## engine speed in rpm\n",
+ "##===========================\n",
+ "theta2=78.69## crank angle between A & B cylinders in degrees\n",
+ "mRB=576.88## mass of cylinder B in kg\n",
+ "n=l/r## ratio between connecting rod length and stroke length\n",
+ "w=2.*math.pi*N/60.## angular speed in rad/s\n",
+ "F=mRB*2.*w**2.*r*math.cos((2.*theta2)/57.3)/n\n",
+ "print'%s %.3f %s'%('Maximum unbalanced secondary force=',F,' N in anticlockwise direction thats why - sign')\n",
+ "print '%s'%(\"The answer is a bit different due to rounding off error in textbook\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum unbalanced secondary force= -29560.284 N in anticlockwise direction thats why - sign\n",
+ "The answer is a bit different due to rounding off error in textbook\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 12 ILLUSRTATION 6 PAGE NO 316\n",
+ "##TITLE:Balancing of reciprocating of masses\n",
+ "import math\n",
+ "pi=3.141\n",
+ "rA=.25## stroke length of A piston in m\n",
+ "rB=.25## stroke length of B piston in m\n",
+ "rC=.25## stroke length C piston in m\n",
+ "N=300.## engine speed in rpm\n",
+ "mRL=280.## mass of reciprocating parts in inside cylinder kg\n",
+ "mRO=240.## mass of reciprocating parts in outside cylinder kg\n",
+ "c=.5## portion ofreciprocating masses to be balanced \n",
+ "b1=.5## radius at which masses to be balanced in m\n",
+ "##======================\n",
+ "mA=c*mRO## mass of the reciprocating parts to be balanced foreach outside cylinder in kg\n",
+ "mB=c*mRL## mass of the reciprocating parts to be balanced foreach inside cylinder in kg\n",
+ "B1=79.4## balancing mass for reciprocating parts in kg\n",
+ "w=2.*math.pi*N/60.## angular speed in rad/s\n",
+ "H=B1*w**2*b1## hammer blow per wheel in N\n",
+ "print'%s %.1f %s'%('Hammer blow per wheel= ',H,' N')\n",
+ "print '%s'%(\"The answer is a bit different due to rounding off error in textbook\")"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hammer blow per wheel= 39182.3 N\n",
+ "The answer is a bit different due to rounding off error in textbook\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg318"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 12 ILLUSRTATION 7 PAGE NO 318\n",
+ "##TITLE:Balancing of reciprocating of masses\n",
+ "import math\n",
+ "\n",
+ "pi=3.141\n",
+ "mR=300.## reciprocating mass per cylinder in kg\n",
+ "r=.3## crank radius in m\n",
+ "D=1.7## driving wheel diameter in m\n",
+ "a=.7## distance between cylinder centre lines in m\n",
+ "H=40.## hammer blow in kN\n",
+ "v=90.## speed in kmph\n",
+ "##=======================================\n",
+ "R=D/2.## radius of driving wheel in m\n",
+ "w=90.*1000./3600./R## angular velocity in rad/s\n",
+ "##Br*b=69.625*c by mearument from diagram\n",
+ "c=H*1000./(w**2.)/69.625## portion of reciprocating mass to be balanced\n",
+ "T=2.**.5*(1-c)*mR*w**2.*r## variation in tractive effort in N\n",
+ "M=a*(1.-c)*mR*w**2.*r/2.**.5## maximum swaying couple in N-m\n",
+ "print'%s %.3f %s %.3f %s %.3f %s'%('portion of reciprocating mass to be balanced=',c,' ''variation in tractive effort=',T,' N'' maximum swaying couple=',M,' N-m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "portion of reciprocating mass to be balanced= 0.664 variation in tractive effort= 36980.420 N maximum swaying couple= 12943.147 N-m\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg320"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 12 ILLUSRTATION 8 PAGE NO 320\n",
+ "##TITLE:Balancing of reciprocating of masses\n",
+ "import math\n",
+ "pi=3.141\n",
+ "N=1800.## speed of the engine in rpm\n",
+ "r=6.## length of crank in cm\n",
+ "l=24.## length of connecting rod in cm\n",
+ "m=1.5## mass of reciprocating cylinder in kg\n",
+ "##====================\n",
+ "w=2.*math.pi*N/60.## angular speed in rad/s\n",
+ "UPC=.019*w**2.## unbalanced primary couple in N-m\n",
+ "n=l/r## ratio of length of crank to the connecting rod \n",
+ "USC=.054*w**2./n## unbalanced secondary couple in N-m\n",
+ "print'%s %.f %s %.3f %s '%('unbalanced primary couple=',UPC,'N-m' 'unbalanced secondary couple=',USC,' N-m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "unbalanced primary couple= 675 N-munbalanced secondary couple= 479.663 N-m \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter2.ipynb b/_Theory_Of_Machines/Chapter2.ipynb
new file mode 100755
index 00000000..0ed80f3b
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter2.ipynb
@@ -0,0 +1,824 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1b022ca97a90c946dcce72b014fa00f7dd7b26ac917f0b5fe9fdd6cabd6dcdfd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2-TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2 ILLUSRTATION 1 PAGE NO 57\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "Na=300.;##driving shaft running speed in rpm\n",
+ "Nb=400.;##driven shaft running speed in rpm\n",
+ "Da=60.;##diameter of driving shaft in mm\n",
+ "t=.8;##belt thickness in mm\n",
+ "s=.05;##slip in percentage(5%)\n",
+ "##==========================================================================================\n",
+ "##calculation\n",
+ "Db=(Da*Na)/Nb;##finding out the diameter of driven shaft without considering the thickness of belt\n",
+ "Db1=(((Da+t)*Na)/Nb)-t##/considering the thickness\n",
+ "Db2=(1.-s)*(Da+t)*(Na/Nb)-t##considering slip also\n",
+ "##=========================================================================================\n",
+ "##output\n",
+ "print'%s %.1f %s'%('the value of Db is',Db,' cm')\n",
+ "print'%s %.1f %s'%('the value of Db1 is',Db1,' cm')\n",
+ "print'%s %.1f %s'%('the value of Db2 is',Db2,' cm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of Db is 45.0 cm\n",
+ "the value of Db1 is 44.8 cm\n",
+ "the value of Db2 is 42.5 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSRTATION 2 PAGE NO 57\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "\n",
+ "##====================================================================================\n",
+ "##input\n",
+ "n1=1200##rpm of motor shaft\n",
+ "d1=40##diameter of motor pulley in cm\n",
+ "d2=70##diameter of 1st pulley on the shaft in cm\n",
+ "s=.03##percentage slip(3%)\n",
+ "d3=45##diameter of 2nd pulley\n",
+ "d4=65##diameter of the pulley on the counnter shaft\n",
+ "##=========================================================================================\n",
+ "##calculation\n",
+ "n2=n1*d1*(1-s)/d2##rpm of driven shaft\n",
+ "n3=n2##both the pulleys are mounted on the same shaft\n",
+ "n4=n3*(1-s)*d3/d4##rpm of counter shaft\n",
+ "\n",
+ "##output\n",
+ "print'%s %.1f %s %.1f %s '%('the speed of driven shaft is',n2,' rpm''the speed of counter shaft is ',n4,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the speed of driven shaft is 665.1 rpmthe speed of counter shaft is 446.7 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2 ILLUSTRATION 3 PAGE NO:58\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##==============================================================================\n",
+ "##input\n",
+ "d1=30.##diameter of 1st shaft in cm\n",
+ "d2=50.##diameter 2nd shaft in cm\n",
+ "pi=3.141\n",
+ "c=500.##centre distance between the shafts in cm\n",
+ "##==============================================================================\n",
+ "##calculation\n",
+ "L1=((d1+d2)*pi/2.)+(2.*c)+((d1+d2)**2.)/(4.*c)##lenth of cross belt\n",
+ "L2=((d1+d2)*pi/2.)+(2.*c)+((d1-d2)**2.)/(4.*c)##lenth of open belt\n",
+ "r=L1-L2##remedy\n",
+ "##==============================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s '%('length of cross belt is ',L1,'cm '' length of open belt is ',L2,'cm''the length of the belt to be shortened is ',r,' cm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "length of cross belt is 1128.8 cm length of open belt is 1125.8 cmthe length of the belt to be shortened is 3.0 cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##CHAPTER 2,ILLUSTRATION 4 PAGE 59\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##====================================================================================\n",
+ "##INPUT\n",
+ "D1=.5## DIAMETER OF 1ST SHAFT IN m\n",
+ "D2=.25## DIAMETER OF 2nd SHAFT IN m\n",
+ "C=2.## CENTRE DISTANCE IN m\n",
+ "N1=220.## SPEED OF 1st SHAFT\n",
+ "T1=1250.## TENSION ON TIGHT SIDE IN N\n",
+ "U=.25## COEFFICIENT OF FRICTION\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "##====================================================================================\n",
+ "##CALCULATION\n",
+ "L=(D1+D2)*PI/2.+((D1+D2)**2./(4.*C))+2.*C\n",
+ "F=(D1+D2)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.+(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "T2=T1/(e**(U*THETA))## TENSION ON SLACK SIDE IN N\n",
+ "V=PI*D1*N1/60.## VELOCITY IN m/s\n",
+ "P=(T1-T2)*V/1000.## POWER IN kW\n",
+ "##====================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('LENGTH OF BELT REQUIRED =',L,' m')\n",
+ "print'%s %.1f %s'%('ANGLE OF CONTACT =',THETA,' radians')\n",
+ "print'%s %.1f %s'%('POWER CAN BE TRANSMITTED=',P,' kW')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "LENGTH OF BELT REQUIRED = 5.2 m\n",
+ "ANGLE OF CONTACT = 3.1 radians\n",
+ "POWER CAN BE TRANSMITTED= 3.9 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 5 PAGE 5\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##=====================================================================================================\n",
+ "##input\n",
+ "n1=100.## of driving shaft\n",
+ "n2=240.##speed of driven shaft\n",
+ "p=11000.##power to be transmitted in watts\n",
+ "c=250.##centre distance in cm\n",
+ "d2=60.##diameter in cm\n",
+ "b=11.5*10**-2##width of belt in metres\n",
+ "t=1.2*10**-2##thickness in metres\n",
+ "u=.25##co-efficient of friction \n",
+ "pi=3.141\n",
+ "e=2.71\n",
+ "##===================================================================================================\n",
+ "##calculation for open bely drive\n",
+ "d1=n2*d2/n1\n",
+ "f=(d1-d2)/(2.*c)##sin(alpha) for open bely drive\n",
+ "##angle of arc of contact for open belt drive is,theta=180-2*alpha\n",
+ "alpha=math.asin(f)*57.3\n",
+ "teta=(180.-(2*alpha))*3.147/180.##pi/180 is used to convert into radians\n",
+ "x=(e**(u*teta))##finding out the value of t1/t2\n",
+ "v=pi*d2*10.*n2/60.##finding out the value of t1-t2\n",
+ "y=p*1000./(v)\n",
+ "t1=(y*x)/(x-1.)\n",
+ "Fb=t1/(t*b)/1000.\n",
+ "##=======================================================================================================\n",
+ "##calculation for cross belt drive bely drive\n",
+ "F=(d1+d2)/(2.*c)##for cross belt drive bely drive\n",
+ "ALPHA=math.asin(F)*57.3\n",
+ "THETA=(180.+(2.*ALPHA))*pi/180.##pi/180 is used to convert into radians\n",
+ "X=(e**(u*THETA))##finding out the value of t1/t2\n",
+ "V=pi*d2*10.*n2/60.##finding out the value of t1-t2\n",
+ "Y=p*1000./(V)\n",
+ "T1=(Y*X)/(X-1.)\n",
+ "Fb2=T1/(t*b)/1000.\n",
+ "##========================================================================================================\n",
+ "##output\n",
+ "print('for a open belt drive:')\n",
+ "print'%s %.1f %s %.1f %s'%('the tension in belt is ',t1,'N' 'stress induced is ',Fb,' kN/m**2')\n",
+ "print('for a cross belt drive:')\n",
+ "print'%s %.1f %s %.1f %s '%('the tension in belt is ',T1,'N' 'stress induced is ',Fb2,' kN/m**2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "for a open belt drive:\n",
+ "the tension in belt is 2898.4 Nstress induced is 2100.3 kN/m**2\n",
+ "for a cross belt drive:\n",
+ "the tension in belt is 2318.8 Nstress induced is 1680.3 kN/m**2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 6 PAGE 61\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##========================================================================================\n",
+ "##INPUT\n",
+ "D1=80.##DIAMETER OF SHAFT IN cm\n",
+ "N1=160.##SPEED OF 1ST SHAFT IN rpm\n",
+ "N2=320.##SPEED OF 2ND SHAFT IN rpm\n",
+ "C=250.##CENTRE DISTANCE IN CM\n",
+ "U=.3##COEFFICIENT OF FRICTION\n",
+ "P=4.##POWER IN KILO WATTS\n",
+ "e=2.71\n",
+ "PI=3.141\n",
+ "f=110.##STRESS PER cm WIDTH OF BELT\n",
+ "##========================================================================================\n",
+ "##CALCULATION\n",
+ "V=PI*D1*math.pow(10,-2)*N1/60.##VELOCITY IN m/s\n",
+ "Y=P*1000./V##Y=T1-T2\n",
+ "D2=D1*(N1/N2)##DIAMETER OF DRIVEN SHAFT\n",
+ "F=(D1-D2)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.-(2.*ALPHA))*PI/180.##ANGLE OF CONTACT IN radians\n",
+ "X=e**(U*THETA)##VALUE OF T1/T2\n",
+ "T1=X*Y/(X-1.)\n",
+ "b=T1/f##WIDTH OF THE BELT REQUIRED \n",
+ "##=======================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('THE WIDTH OF THE BELT IS ',b,' cm')\n",
+ "#apporximate ans is correct "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE WIDTH OF THE BELT IS 8.9 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2 ILLUSRTATION 7 PAGE NO 62\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "m=1000.## MASS OF THE CASTING IN kg\n",
+ "PI=3.141\n",
+ "THETA=2.75*2*PI## ANGLE OF CONTACT IN radians\n",
+ "D=.26## DIAMETER OF DRUM IN m\n",
+ "N=24.## SPEED OF THE DRUM IN rpm\n",
+ "U=.25## COEFFICIENT OF FRICTION\n",
+ "e=2.71\n",
+ "T1=9810## TENSION ON TIGHTSIDE IN N\n",
+ "##=============================================================================================\n",
+ "##CALCULATION\n",
+ "T2=T1/(e**(U*THETA))## tension on slack side of belt in N\n",
+ "W=m*9.81## WEIGHT OF CASTING IN N\n",
+ "R=D/2.## RADIUS OF DRUM IN m\n",
+ "P=2*PI*N*W*R/60000.## POWER REQUIRED IN kW\n",
+ "P2=(T1-T2)*PI*D*N/60000.## POWER SUPPLIED BY DRUM IN kW\n",
+ "##============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s '%('FORCE REQUIRED BY MAN=',T2,' N'and 'POWER REQUIRED TO RAISE CASTING=',P,' kW' 'POWER SUPPLIED BY DRUM=',P2,' kW')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "FORCE REQUIRED BY MAN= 132.4 POWER REQUIRED TO RAISE CASTING= 3.2 kWPOWER SUPPLIED BY DRUM= 3.2 kW \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 8 PAGE 62\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##INPUT\n",
+ "t=9.##THICKNESS IN mm\n",
+ "b=250.##WIDTH IN mm\n",
+ "D=90.##DIAMETER OF PULLEY IN cm\n",
+ "N=336.##SPEED IN rpm\n",
+ "PI=3.141\n",
+ "U=.35##COEFFICIENT FRICTION\n",
+ "e=2.71\n",
+ "THETA=120.*PI/180.\n",
+ "Fb=2.##STRESS IN MPa\n",
+ "d=1000.##DENSITY IN KG/M**3\n",
+ "\n",
+ "##CALCULATION\n",
+ "M=b*10**-3.*t*10**-3.*d##MASS IN KG\n",
+ "V=PI*D*10**-2.*N/60.##VELOCITY IN m/s\n",
+ "Tc=M*V**2##CENTRIFUGAL TENSION\n",
+ "Tmax=b*t*Fb##MAX TENSION IN N\n",
+ "T1=Tmax-Tc\n",
+ "T2=T1/(e**(U*THETA))\n",
+ "P=(T1-T2)*V/1000.\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('THE TENSION ON TIGHT SIDE OF THE BELT IS',T1,' N')\n",
+ "print'%s %.1f %s'%('THE TENSION ON SLACK SIDE OF THE BELT IS ',T2,' N')\n",
+ "print'%s %.1f %s'%('CENTRIFUGAL TENSION =',Tc,'N')\n",
+ "print'%s %.1f %s'%('THE POWER CAPACITY OF BELT IS ',P,' KW')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE TENSION ON TIGHT SIDE OF THE BELT IS 3936.1 N\n",
+ "THE TENSION ON SLACK SIDE OF THE BELT IS 1895.6 N\n",
+ "CENTRIFUGAL TENSION = 563.9 N\n",
+ "THE POWER CAPACITY OF BELT IS 32.3 KW\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 9 PAGE 63\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##INPUT\n",
+ "P=35000.##POWER TO BE TRANSMITTED IN WATTS\n",
+ "D=1.5##EFFECTIVE DIAMETER OF PULLEY IN METRES\n",
+ "N=300.##SPEED IN rpm\n",
+ "e=2.71\n",
+ "U=.3##COEFFICIENT OF FRICTION\n",
+ "PI=3.141\n",
+ "THETA=(11/24.)*360.*PI/180.##ANGLE OF CONTACT\n",
+ "density=1.1##density of belt material in Mg/m**3\n",
+ "L=1.##in metre\n",
+ "t=9.5##THICKNESS OF BELT IN mm\n",
+ "Fb=2.5##PERMISSIBLE WORK STRESS IN N/mm**2\n",
+ "\n",
+ "##CALCULATION\n",
+ "V=PI*D*N/60.##VELOCITY IN m/s\n",
+ "X=P/V##X=T1-T2\n",
+ "Y=e**(U*THETA)##Y=T1/T2\n",
+ "T1=X*Y/(Y-1)\n",
+ "Mb=t*density*L/10**3.##value of m/b\n",
+ "Tc=Mb*V**2.##centrifugal tension/b\n",
+ "Tmaxb=t*Fb##max tension/b\n",
+ "b=T1/(Tmaxb-Tc)##thickness in mm\n",
+ "##output\n",
+ "print'%s %.1f %s'%('TENSION IN TIGHT SIDE OF THE BELT =',T1,' N')\n",
+ "print'%s %.1f %s'%('THICKNESS OF THE BELT IS =',b,' mm')\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "TENSION IN TIGHT SIDE OF THE BELT = 2573.5 N\n",
+ "THICKNESS OF THE BELT IS = 143.4 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 10 PAGE 64\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##INPUT\n",
+ "t=5.##THICKNESS OF BELT IN m\n",
+ "PI=3.141\n",
+ "U=.3\n",
+ "e=2.71\n",
+ "THETA=155.*PI/180.##ANGLE OF CONTACT IN radians\n",
+ "V=30.##VELOCITY IN m/s\n",
+ "density=1.##in m/cm**3\n",
+ "L=1.##LENGTH\n",
+ "\n",
+ "##calculation\n",
+ "Xb=80.## (T1-T2)=80b;so let (T1-T2)/b=Xb\n",
+ "Y=e**(U*THETA)## LET Y=T1/T2\n",
+ "Zb=80.*Y/(Y-1.)## LET T1/b=Zb;BY SOLVING THE ABOVE 2 EQUATIONS WE WILL GET THIS EXPRESSION\n",
+ "Mb=t*L*density*10**-2.## m/b in N\n",
+ "Tcb=Mb*V**2.## centrifugal tension/b\n",
+ "Tmaxb=Zb+Tcb## MAX TENSION/b\n",
+ "Fb=Tmaxb/t##STRESS INDUCED IN TIGHT BELT\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT=',Fb,' N/cm**2')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT= 37.8 N/cm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 11 PAGE 65\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##INPUT\n",
+ "C=4.5## CENTRE DISTANCE IN metres\n",
+ "D1=1.35## DIAMETER OF LARGER PULLEY IN metres\n",
+ "D2=.9## DIAMETER OF SMALLER PULLEY IN metres\n",
+ "To=2100.## INITIAL TENSION IN newtons\n",
+ "b=12.## WIDTH OF BELT IN cm\n",
+ "t=12.## THICKNESS OF BELT IN mm\n",
+ "d=1.## DENSITY IN gm/cm**3\n",
+ "U=.3## COEFFICIENT OF FRICTION\n",
+ "L=1.## length in metres\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "\n",
+ "##CALCULATION\n",
+ "M=b*t*d*L*10**-2.## mass of belt per metre length in KG\n",
+ "V=(To/3./M)**.5## VELOCITY OF FOR MAX POWER TO BE TRANSMITTED IN m/s\n",
+ "Tc=M*V**2.## CENTRIFUGAL TENSION IN newtons\n",
+ "## LET (T1+T2)=X\n",
+ "X=2.*To-2.*Tc ## THE VALUE OF (T1+T2)\n",
+ "F=(D1-D2)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "## LET T1/T2=Y\n",
+ "Y=e**(U*THETA)## THE VALUE OF T1/T2\n",
+ "T1=X*Y/(Y+1.)## BY SOLVING X AND Y WE WILL GET THIS EQN\n",
+ "T2=X-T1\n",
+ "P=(T1-T2)*V/1000.## MAX POWER TRANSMITTED IN kilowatts\n",
+ "N1=V*60./(PI*D1)## SPEED OF LARGER PULLEY IN rpm\n",
+ "N2=V*60./(PI*D2)## SPEED OF SMALLER PULLEY IN rpm\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%(' MAX POWER TO BE TRANSMITTED =',P,' KW')\n",
+ "print'%s %.1f %s'%(' SPEED OF THE LARGER PULLEY =',N1,' rpm')\n",
+ "print'%s %.1f %s'%(' SPEED OF THE SMALLER PULLEY =',N2,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " MAX POWER TO BE TRANSMITTED = 27.0 KW\n",
+ " SPEED OF THE LARGER PULLEY = 312.0 rpm\n",
+ " SPEED OF THE SMALLER PULLEY = 468.0 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 12 PAGE 66\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##============================================================================================================================\n",
+ "##INPUT\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "D1=1.20## DIAMETER OF DRIVING SHAFT IN m\n",
+ "D2=.50## DIAMETER OF DRIVEN SHAFT IN m\n",
+ "C=4.## CENTRE DISTANCE BETWEEN THE SHAFTS IN m\n",
+ "M=.9## MASS OF BELT PER METRE LENGTH IN kg\n",
+ "Tmax=2000## MAX TENSION IN N\n",
+ "U=.3## COEFFICIENT OF FRICTION\n",
+ "N1=200.## SPEED OF DRIVING SHAFT IN rpm\n",
+ "N2=450.## SPEED OF DRIVEN SHAFT IN rpm\n",
+ "##==============================================================================================================================\n",
+ "##CALCULATION\n",
+ "V=PI*D1*N1/60.## VELOCITY OF BELT IN m/s\n",
+ "Tc=M*V**2.## CENTRIFUGAL TENSION IN N\n",
+ "T1=Tmax-Tc## TENSION ON TIGHTSIDE IN N\n",
+ "F=(D1-D2)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "T2=T1/(e**(U*THETA))## TENSION ON SLACK SIDE IN N\n",
+ "TL=(T1-T2)*D1/2.## TORQUE ON THE SHAFT OF LARGER PULLEY IN N-m\n",
+ "TS=(T1-T2)*D2/2.## TORQUE ON THE SHAFT OF SMALLER PULLEY IN N-m\n",
+ "P=(T1-T2)*V/1000.## POWER TRANSMITTED IN kW\n",
+ "Pi=2.*PI*N1*TL/60000.## INPUT POWER\n",
+ "Po=2.*PI*N2*TS/60000.## OUTPUT POWER\n",
+ "Pl=Pi-Po## POWER LOST DUE TO FRICTION IN kW\n",
+ "n=Po/Pi*100.## EFFICIENCY OF DRIVE IN %\n",
+ "##==================================================================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('TORQUE ON LARGER SHAFT =',TL,'N-m')\n",
+ "print'%s %.1f %s'%('TORQUE ON SMALLER SHAFT =',TS,' N-m')\n",
+ "print'%s %.1f %s'%('POWER TRANSMITTED =',P,' kW')\n",
+ "print'%s %.1f %s'%('POWER LOST DUE TO FRICTION =',Pl,' kW')\n",
+ "print'%s %.1f %s'%('EFFICIENCY OF DRINE =',n,' percentage')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "TORQUE ON LARGER SHAFT = 679.0 N-m\n",
+ "TORQUE ON SMALLER SHAFT = 282.9 N-m\n",
+ "POWER TRANSMITTED = 14.2 kW\n",
+ "POWER LOST DUE TO FRICTION = 0.9 kW\n",
+ "EFFICIENCY OF DRINE = 93.8 percentage\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 13 PAGE 67\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##============================================================================================================================\n",
+ "##INPUT\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "P=90## POWER OF A COMPRESSOR IN kW\n",
+ "N2=250.## SPEED OF DRIVEN SHAFT IN rpm\n",
+ "N1=750.## SPEED OF DRIVER SHAFT IN rpm\n",
+ "D2=1.## DIAMETER OF DRIVEN SHAFT IN m\n",
+ "C=1.75## CENTRE DISTANCE IN m\n",
+ "V=1600./60.## VELOCITY IN m/s\n",
+ "a=375.## CROSECTIONAL AREA IN mm**2\n",
+ "density=1000.## BELT DENSITY IN kg/m**3\n",
+ "L=1## length to be considered\n",
+ "Fb=2.5## STRESSS INDUCED IN MPa\n",
+ "beeta=35./2.## THE GROOVE ANGLE OF PULLEY\n",
+ "U=.25## COEFFICIENT OF FRICTION\n",
+ "##=================================================================================================================================\n",
+ "##CALCULATION\n",
+ "D1=N2*D2/N1## DIAMETER OF DRIVING SHAFT IN m\n",
+ "m=a*density*10**-6.*L## MASS OF THE BELT IN kg\n",
+ "Tmax=a*Fb## MAX TENSION IN N\n",
+ "Tc=m*V**2.## CENTRIFUGAL TENSION IN N\n",
+ "T1=Tmax-Tc## TENSION ON TIGHTSIDE OF BELT IN N\n",
+ "F=(D2-D1)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "T2=T1/(e**(U*THETA/math.sin(beeta/57.3)))##TENSION ON SLACKSIDE IN N\n",
+ "P2=(T1-T2)*V/1000.## POWER TRANSMITTED PER BELT kW\n",
+ "N=P/P2## NO OF V-BELTS\n",
+ "N3=N+1.\n",
+ "##======================================================================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s '%('NO OF BELTS REQUIRED TO TRANSMIT POWER=',N,' APPROXIMATELY=',N3,'')\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NO OF BELTS REQUIRED TO TRANSMIT POWER= 5.4 APPROXIMATELY= 6.4 \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 14 PAGE 68\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##============================================================================================================================\n",
+ "##INPUT\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "P=75.## POWER IN kW\n",
+ "D=1.5## DIAMETER OF PULLEY IN m\n",
+ "U=.3## COEFFICIENT OF FRICTION\n",
+ "beeta=45./2.## GROOVE ANGLE\n",
+ "THETA=160.*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "m=.6## MASS OF BELT IN kg/m\n",
+ "Tmax=800.## MAX TENSION IN N\n",
+ "N=200.## SPEED OF SHAFT IN rpm\n",
+ "##=============================================================================================================================\n",
+ "##calculation\n",
+ "V=PI*D*N/60.## VELOCITY OF ROPE IN m/s\n",
+ "Tc=m*V**2.## CENTRIFUGAL TENSION IN N\n",
+ "T1=Tmax-Tc## TENSION ON TIGHT SIDE IN N\n",
+ "T2=T1/(e**(U*THETA/math.sin(beeta/57.3)))##TENSION ON SLACKSIDE IN N\n",
+ "P2=(T1-T2)*V/1000.## POWER TRANSMITTED PER BELT kW\n",
+ "No=P/P2## NO OF V-BELTS\n",
+ "N3=No+1.## ROUNDING OFF\n",
+ "To=(T1+T2+Tc*2.)/2.## INITIAL TENSION\n",
+ "##================================================================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s '%('NO OF BELTS REQUIRED TO TRANSMIT POWER=',No,'' 'APPROXIMATELY=',N3,'')\n",
+ "print'%s %.1f %s'%('INITIAL ROPE TENSION=',To,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NO OF BELTS REQUIRED TO TRANSMIT POWER= 8.3 APPROXIMATELY= 9.3 \n",
+ "INITIAL ROPE TENSION= 510.8 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter3.ipynb b/_Theory_Of_Machines/Chapter3.ipynb
new file mode 100755
index 00000000..74818ab4
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter3.ipynb
@@ -0,0 +1,782 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9f3aa65b257e3f2aa586660a443f5f27bf555a236ce21a3b4fb7b3ab1cf26f12"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter3-FRICTION"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 1 PAGE NO 102\n",
+ "##TITLE:FRICTION\n",
+ "##FIRURE 3.16(a),3.16(b)\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "P1=180.## PULL APPLIED TO THE BODY IN NEWTONS\n",
+ "theta=30.## ANGLE AT WHICH P IS ACTING IN DEGREES\n",
+ "P2=220.## PUSH APPLIED TO THE BODY IN NEWTONS\n",
+ "##Rn= NORMAL REACTION\n",
+ "##F= FORCE OF FRICTION IN NEWTONS\n",
+ "##U= COEFFICIENT OF FRICTION\n",
+ "##W= WEIGHT OF THE BODY IN NEWTON\n",
+ "##==========================================================================================\n",
+ "##CALCULATION\n",
+ "F1=P1*math.cos(theta/57.3)## RESOLVING FORCES HORIZONTALLY FROM 3.16(a)\n",
+ "F2=P2*math.cos(theta/57.3)## RESOLVING FORCES HORIZONTALLY FROM 3.16(b)\n",
+ "## RESOLVING FORCES VERTICALLY Rn1=W-P1*sind(theta) from 3.16(a)\n",
+ "## RESOLVING FORCES VERTICALLY Rn2=W+P1*sind(theta) from 3.16(b)\n",
+ "## USING THE RELATION F1=U*Rn1 & F2=U*Rn2 AND SOLVING FOR W BY DIVIDING THESE TWO EQUATIONS\n",
+ "X=F1/F2## THIS IS THE VALUE OF Rn1/Rn2\n",
+ "Y1=P1*math.sin(theta/57.3)\n",
+ "Y2=P2*math.sin(theta/57.3)\n",
+ "W=(Y2*X+Y1)/(1-X)## BY SOLVING ABOVE 3 EQUATIONS\n",
+ "U=F1/(W-P1*math.sin(theta/57.3))## COEFFICIENT OF FRICTION\n",
+ "##=============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s '%('WEIGHT OF THE BODY =',W,'N''THE COEFFICIENT OF FRICTION =',U,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "WEIGHT OF THE BODY = 989.9 NTHE COEFFICIENT OF FRICTION = 0.2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg103"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 2 PAGE NO 103\n",
+ "##TITLE:FRICTION\n",
+ "##FIRURE 3.17\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "THETA=45## ANGLE OF INCLINATION IN DEGREES\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY IN N/mm**2\n",
+ "U=.1## COEFFICIENT FRICTION\n",
+ "##Rn=NORMAL REACTION\n",
+ "##M=MASS IN NEWTONS\n",
+ "##f=ACCELERATION OF THE BODY\n",
+ "u=0.## INITIAL VELOCITY\n",
+ "V=10.## FINAL VELOCITY IN m/s**2\n",
+ "##===========================================================================================\n",
+ "##CALCULATION\n",
+ "##CONSIDER THE EQUILIBRIUM OF FORCES PERPENDICULAR TO THE PLANE\n",
+ "##Rn=Mgcos(THETA)\n",
+ "##CONSIDER THE EQUILIBRIUM OF FORCES ALONG THE PLANE\n",
+ "##Mgsin(THETA)-U*Rn=M*f.............BY SOLVING THESE 2 EQUATIONS \n",
+ "f=g*math.sin(THETA/57.3)-U*g*math.cos(THETA/57.3)\n",
+ "s=(V**2-u**2)/(2*f)## DISTANCE ALONG THE PLANE IN metres\n",
+ "##==============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('DISTANCE ALONG THE INCLINED PLANE=',s,' m')\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "DISTANCE ALONG THE INCLINED PLANE= 8.0 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg104"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 3 PAGE NO 104\n",
+ "##TITLE:FRICTION\n",
+ "##FIRURE 3.18\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "W=500.## WEGHT IN NEWTONS\n",
+ "THETA=30.## ANGLE OF INCLINATION IN DEGRESS\n",
+ "U=0.2## COEFFICIENT FRICTION\n",
+ "S=15.## DISTANCE IN metres\n",
+ "##============================================================================================\n",
+ "Rn=W*math.cos(THETA/57.3)## NORMAL REACTION IN NEWTONS\n",
+ "P=W*math.sin(THETA/57.3)+U*Rn## PUSHING FORCE ALONG THE DIRECTION OF MOTION\n",
+ "w=P*S\n",
+ "##============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('WORK DONE BY THE FORCE=',w,' N-m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "WORK DONE BY THE FORCE= 5048.8 N-m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg104"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 4 PAGE NO 104\n",
+ "##TITLE:FRICTION\n",
+ "##FIRURE 3.19(a) & 3.19(b)\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "P1=2000.## FORCE ACTING UPWARDS WHEN ANGLE=15 degrees IN NEWTONS\n",
+ "P2=2300.## FORCE ACTING UPWARDS WHEN ANGLE=20 degrees IN NEWTONS\n",
+ "THETA1=15.## ANGLE OF INCLINATION IN 3.19(a)\n",
+ "THETA2=20.## ANGLE OF INCLINATION IN 3.19(b)\n",
+ "##F1= FORCE OF FRICTION IN 3.19(a)\n",
+ "##Rn1= NORMAL REACTION IN 3.19(a)\n",
+ "##F2= FORCE OF FRICTION IN 3.19(b)\n",
+ "##Rn2= NORMAL REACTION IN 3.19(b)\n",
+ "##U= COEFFICIENT OF FRICTION\n",
+ "##===========================================================================================\n",
+ "##CALCULATION\n",
+ "##P1=F1+Rn1 RESOLVING THE FORCES ALONG THE PLANE\n",
+ "##Rn1=W*cosd(THETA1)....NORMAL REACTION IN 3.19(a)\n",
+ "##F1=U*Rn1\n",
+ "##BY SOLVING ABOVE EQUATIONS P1=W(U*cosd(THETA1)+sind(THETA1))---------------------1\n",
+ "##P2=F2+Rn2 RESOLVING THE FORCES PERPENDICULAR TO THE PLANE\n",
+ "##Rn2=W*cosd(THETA2)....NORMAL REACTION IN 3.19(b)\n",
+ "##F2=U*Rn2\n",
+ "##BY SOLVING ABOVE EQUATIONS P2=W(U*cosd(THETA2)+sind(THETA2))----------------------2\n",
+ "##BY SOLVING EQUATIONS 1 AND 2\n",
+ "X=P2/P1\n",
+ "U=(math.sin(THETA2/57.3)-(X*math.sin(THETA1/57.3)))/((X*math.cos(THETA1/57.3)-math.cos(THETA2/57.3)))## COEFFICIENT OF FRICTION\n",
+ "W=P1/(U*math.cos(THETA1/57.3)+math.sin(THETA1/57.3))\n",
+ "##=============================================================================================\n",
+ "##OUTPUT\n",
+ "##print'%s %.1f %s'%('%f',X)\n",
+ "print'%s %.1f %s %.1f %s '%('COEFFICIENT OF FRICTION=',U,'' 'WEIGHT OF THE BODY=',W,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "COEFFICIENT OF FRICTION= 0.3 WEIGHT OF THE BODY= 3927.0 N \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 5 PAGE NO 105\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d=5.## DIAMETER OF SCREW JACK IN cm\n",
+ "p=1.25## PITCH IN cm\n",
+ "l=50.## LENGTH IN cm\n",
+ "U=.1## COEFFICIENT OF FRICTION\n",
+ "W=20000.## LOAD IN NEWTONS\n",
+ "PI=3.147\n",
+ "##=============================================================================================\n",
+ "##CALCULATION\n",
+ "ALPHA=math.atan((p/(PI*d)/57.3))\n",
+ "PY=math.atan(U/57.3)\n",
+ "P=W*math.tan((ALPHA+PY)*57.)\n",
+ "P1=P*d/(2.*l)\n",
+ "##=============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s '%('THE AMOUNT OF EFFORT NEED TO APPLY =',P1,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE AMOUNT OF EFFORT NEED TO APPLY = 180.4 N \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 6 PAGE NO 106\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d=50.## DIAMETER OF SCREW IN mm\n",
+ "p=12.5## PITCH IN mm\n",
+ "U=0.13## COEFFICIENT OF FRICTION\n",
+ "W=25000.## LOAD IN mm\n",
+ "PI=3.147\n",
+ "##===========================================================================================\n",
+ "##CALCULATION\n",
+ "ALPHA=math.atan((p/(PI*d))/57.3)\n",
+ "PY=math.atan(U/57.3)\n",
+ "P=W*math.tan((ALPHA+PY)/57.3)## FORCE REQUIRED TO RAISE THE LOAD IN N\n",
+ "T1=P*d/2.## TORQUE REQUIRED IN Nm\n",
+ "P1=W*math.tan((PY-ALPHA)/57.3)## FORCE REQUIRED TO LOWER THE SCREW IN N\n",
+ "T2=P1*d/2.## TORQUE IN N\n",
+ "X=T1/T2## RATIOS REQUIRED\n",
+ "n=math.tan((ALPHA/(ALPHA+PY))/57.3)## EFFICIENCY\n",
+ "##============================================================================================\n",
+ "print'%s %.1f %s'%('RATIO OF THE TORQUE REQUIRED TO RAISE THE LOAD,TO THE TORQUE REQUIRED TO LOWER THE LOAD =',X,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "RATIO OF THE TORQUE REQUIRED TO RAISE THE LOAD,TO THE TORQUE REQUIRED TO LOWER THE LOAD = 4.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 7 PAGE NO 107\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d=39.## DIAMETER OF THREAD IN mm\n",
+ "p=13.## PITCH IN mm\n",
+ "U=0.1## COEFFICIENT OF FRICTION\n",
+ "W=2500.## LOAD IN mm\n",
+ "PI=3.147\n",
+ "##===========================================================================================\n",
+ "##CALCULATION\n",
+ "ALPHA=math.atan((p/(PI*d))/57.3)\n",
+ "PY=math.atan(U/57.3)\n",
+ "P=W*math.tan((ALPHA+PY)*57.3)## FORCE IN N\n",
+ "T1=P*d/2.## TORQUE REQUIRED IN Nm\n",
+ "T=2.*T1## TORQUE REQUIRED ON THE COUPLING ROD IN Nm\n",
+ "K=2.*p## DISTANCE TRAVELLED FOR ONE REVOLUTION\n",
+ "N=20.8/K## NO OF REVOLUTIONS REQUIRED\n",
+ "w=2.*PI*N*T/100.## WORKDONE BY TORQUE\n",
+ "w1=w*(7500.-2500.)/2500.## WORKDONE TO INCREASE THE LOAD FROM 2500N TO 7500N\n",
+ "n=math.tan(ALPHA/57.3)/math.tan((ALPHA+PY)/57.3)## EFFICIENCY\n",
+ "##============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s '%('workdone against a steady load of 2500N=',w,' N' 'workdone if the load is increased from 2500N to 7500N=',w1,' N' 'efficiency=',n,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "workdone against a steady load of 2500N= 1025.5 Nworkdone if the load is increased from 2500N to 7500N= 2050.9 Nefficiency= 0.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 8 PAGE NO 107\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "W=50000.## WEIGHT OF THE SLUICE GATE IN NEWTON\n",
+ "P=40000.## POWER IN WATTS\n",
+ "N=580.## MAX MOTOR RUNNING SPEEED IN rpm\n",
+ "d=12.5## DIAMETER OF THE SCREW IN cm\n",
+ "p=2.5## PITCH IN cm\n",
+ "PI=3.147\n",
+ "U1=.08## COEFFICIENT OF FRICTION for SCREW\n",
+ "U2=.1## C.O.F BETWEEN GATES AND SCREW\n",
+ "Np=2000000.## NORMAL PRESSURE IN NEWTON\n",
+ "Fl=.15## FRICTION LOSS\n",
+ "n=1.-Fl## EFFICIENCY\n",
+ "ng=80.## NO OF TEETH ON GEAR\n",
+ "##===========================================================================================\n",
+ "##CALCULATION\n",
+ "TV=W+U2*Np## TOTAL VERTICAL HEAD IN NEWTON\n",
+ "ALPHA=math.atan((p/(PI*d))/57.3)## \n",
+ "PY=math.atan(U1/57.3)## \n",
+ "P1=TV*math.tan((ALPHA+PY)*57.3)## FORCE IN N\n",
+ "T=P1*d/2./100.## TORQUE IN N-m\n",
+ "Ng=60000.*n*P*10**-3./(2.*PI*T)## SPEED OF GEAR IN rpm\n",
+ "np=Ng*ng/N## NO OF TEETH ON PINION\n",
+ "##=========================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s '%('NO OF TEETH ON PINION =',np,' say ',np+1,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NO OF TEETH ON PINION = 19.8 say 20.8 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 9 PAGE NO 108\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d=5.## MEAN DIAMETER OF SCREW IN cm\n",
+ "p=1.25## PITCH IN cm\n",
+ "W=10000.## LOAD AVAILABLE IN NEWTONS\n",
+ "dc=6.## MEAN DIAMETER OF COLLAR IN cm\n",
+ "U=.15## COEFFICIENT OF FRICTION OF SCREW\n",
+ "Uc=.18## COEFFICIENT OF FRICTION OF COLLAR\n",
+ "P1=100.## TANGENTIAL FORCE APPLIED IN NEWTON\n",
+ "PI=3.147\n",
+ "##============================================================================================\n",
+ "##CALCULATION\n",
+ "ALPHA=math.atan((p/(PI*d))/57.3)## \n",
+ "PY=math.atan(U/57.3)## \n",
+ "T1=W*d/2*math.tan((ALPHA+PY)/100)*57.3## TORQUE ON SCREW IN NEWTON\n",
+ "Tc=Uc*W*dc/2./100.## TORQUE ON COLLAR IN NEWTON\n",
+ "T=T1+Tc## TOTAL TORQUE\n",
+ "D=2.*T/P1/2.*100.## DIAMETER OF HAND WHEEL IN cm\n",
+ "##============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('SUITABLE DIAMETER OF HAND WHEEL =',D,' cm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "SUITABLE DIAMETER OF HAND WHEEL = 111.4 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 10 PAGE NO 108\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "d=2.5## MEAN DIA OF BOLT IN cm\n",
+ "p=.6## PITCH IN cm\n",
+ "beeta=55/2.## VEE ANGLE\n",
+ "dc=4.## DIA OF COLLAR IN cm\n",
+ "U=.1## COEFFICIENT OF FRICTION OF BOLT\n",
+ "Uc=.18## COEFFICIENT OF FRICTION OF COLLAR\n",
+ "W=6500.## LOAD ON BOLT IN NEWTONS\n",
+ "L=38.## LENGTH OF SPANNER\n",
+ "##=============================================================================================\n",
+ "##CALCULATION\n",
+ "##LET X=tan(py)/tan(beeta)\n",
+ "##y=tan(ALPHA)*X\n",
+ "PY=math.atan(U)*57.3\n",
+ "ALPHA=math.atan((p/(PI*d)))*57.3\n",
+ "X=math.tan(PY/57.3)/math.cos(beeta/57.3)\n",
+ "Y=math.tan(ALPHA/57.3)\n",
+ "T1=W*d/2.*10**-2*(X+Y)/(1.-(X*Y))## TORQUE IN SCREW IN N-m\n",
+ "Tc=Uc*W*dc/2.*10**-2## TORQUE ON BEARING SERVICES IN N-m\n",
+ "T=T1+Tc## TOTAL TORQUE \n",
+ "P1=T/L*100.## FORCE REQUIRED BY @ THE END OF SPANNER\n",
+ "##=============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('FORCE REQUIRED @ THE END OF SPANNER=',P1,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "FORCE REQUIRED @ THE END OF SPANNER= 102.3 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 11 PAGE NO 109\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d1=15.## DIAMETER OF VERTICAL SHAFT IN cm\n",
+ "N=100.## SPEED OF THE MOTOR rpm\n",
+ "W=20000.## LOAD AVILABLE IN N\n",
+ "U=.05## COEFFICIENT OF FRICTION\n",
+ "PI=3.147\n",
+ "##==================================================================================\n",
+ "T=2./3.*U*W*d1/2.## FRICTIONAL TORQUE IN N-m\n",
+ "PL=2.*PI*N*T/100./60.## POWER LOST IN FRICTION IN WATTS\n",
+ "##==================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('POWER LOST IN FRICTION=',PL,' watts')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "POWER LOST IN FRICTION= 524.5 watts\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 12 PAGE NO 109\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "d2=.30## DIAMETER OF SHAFT IN m \n",
+ "W=200000.## LOAD AVAILABLE IN NEWTONS\n",
+ "N=75.## SPEED IN rpm\n",
+ "U=.05## COEFFICIENT OF FRICTION\n",
+ "p=300000.## PRESSURE AVAILABLE IN N/m**2\n",
+ "P=16200.## POWER LOST DUE TO FRICTION IN WATTS\n",
+ "##====================================================================================\n",
+ "##CaLCULATION\n",
+ "T=P*60./2./PI/N## TORQUE INDUCED IN THE SHFT IN N-m\n",
+ "##LET X=(r1**3-r2**3)/(r1**2-r2**2)\n",
+ "X=(3./2.*T/U/W)\n",
+ "r2=.15## SINCE d2=.30 m\n",
+ "c=r2**2.-(X*r2)\n",
+ "b= r2-X\n",
+ "a= 1.\n",
+ "r1=( -b+ math.sqrt (b**2. -4.*a*c ))/(2.* a);## VALUE OF r1 IN m\n",
+ "d1=2*r1*100.## d1 IN cm\n",
+ "n=W/(PI*p*(r1**2.-r2**2.))\n",
+ "##================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('EXTERNAL DIAMETER OF SHAFT =',d1,' cm''NO OF COLLARS REQUIRED =',n,'' '0 or ',n+1,'')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "EXTERNAL DIAMETER OF SHAFT = 50.6 cmNO OF COLLARS REQUIRED = 5.1 0 or 6.1 \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 13 PAGE NO 111\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "W=20000.## LOAD IN NEWTONS\n",
+ "ALPHA=120./2.## CONE ANGLE IN DEGREES\n",
+ "p=350000.## INTENSITY OF PRESSURE\n",
+ "U=.06\n",
+ "N=120.## SPEED OF THE SHAFT IN rpm\n",
+ "##d1=3d2\n",
+ "##r1=3r2\n",
+ "##===================================================================================\n",
+ "##CALCULATION\n",
+ "##LET K=d1/d2\n",
+ "k=3.\n",
+ "Z=W/((k**2.-1.)*PI*p)\n",
+ "r2=Z**.5## INTERNAL RADIUS IN m\n",
+ "r1=3.*r2\n",
+ "T=2.*U*W*(r1**3.-r2**3.)/(3.*math.sin(60/57.3)*(r1**2.-r2**2.))## total frictional torque in N\n",
+ "P=2.*PI*N*T/60000.## power absorbed in friction in kW\n",
+ "##================================================================================\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('THE INTERNAL DIAMETER OF SHAFT =',r2*100,' cm' 'THE EXTERNAL DIAMETER OF SHAFT =',r1*100,' cm' 'POWER ABSORBED IN FRICTION =',P,' kW')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE INTERNAL DIAMETER OF SHAFT = 4.8 cmTHE EXTERNAL DIAMETER OF SHAFT = 14.3 cmPOWER ABSORBED IN FRICTION = 1.8 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 14 PAGE NO 111\n",
+ "##TITLE:FRICTION\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "P=10000.## POWER TRRANSMITTED BY CLUTCH IN WATTS\n",
+ "N=3000.## SPEED IN rpm\n",
+ "p=.09## AXIAL PRESSURE IN N/mm**2\n",
+ "##d1=1.4d2 RELATION BETWEEN DIAMETERS \n",
+ "K=1.4## D1/D2\n",
+ "n=2.\n",
+ "U=.3## COEFFICIENT OF FRICTION\n",
+ "##==========================================================================================\n",
+ "T=P*60000./1000./(2.*PI*N)## ASSUMING UNIFORM WEAR TORQUE IN N-m\n",
+ "r2=(T*2./(n*U*2.*PI*p*10**6.*(K-1.)*(K+1.)))**(1./3.)## INTERNAL RADIUS\n",
+ "\n",
+ "##===========================================================================================\n",
+ "print'%s %.1f %s %.1f %s '%('THE INTERNAL RADIUS =',r2*100,' cm' 'THE EXTERNAL RADIUS =',K*r2*100,' cm')\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE INTERNAL RADIUS = 5.8 cmTHE EXTERNAL RADIUS = 8.1 cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 3 ILLUSRTATION 14 PAGE NO 111\n",
+ "##TITLE:FRICTION\n",
+ "\n",
+ "\n",
+ "\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "n1=3.## NO OF DICS ON DRIVING SHAFTS\n",
+ "n2=2.## NO OF DICS ON DRIVEN SHAFTS\n",
+ "d1=30.## DIAMETER OF DRIVING SHAFT IN cm\n",
+ "d2=15.## DIAMETER OF DRIVEN SHAFT IN cm\n",
+ "r1=d1/2.\n",
+ "r2=d2/2.\n",
+ "U=.3## COEFFICIENT FRICTION\n",
+ "P=30000.## TANSMITTING POWER IN WATTS\n",
+ "N=1800.## SPEED IN rpm\n",
+ "##===========================================================================================\n",
+ "##CALCULATION\n",
+ "n=n1+n2-1.## NO OF PAIRS OF CONTACT SURFACES\n",
+ "T=P*60000./(2.*PI*N)## TORQUE IN N-m\n",
+ "W=2.*T/(n*U*(r1+r2)*10.)## LOAD IN N\n",
+ "k=W/(2.*PI*(r1-r2))\n",
+ "p=k/r2/100.## MAX AXIAL INTENSITY OF PRESSURE IN N/mm**2\n",
+ "##===========================================================================================\n",
+ "## OUTPUT\n",
+ "print'%s %.3f %s'%('MAX AXIAL INTENSITY OF PRESSURE =',p,' N/mm^2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "MAX AXIAL INTENSITY OF PRESSURE = 0.033 N/mm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter4.ipynb b/_Theory_Of_Machines/Chapter4.ipynb
new file mode 100755
index 00000000..de08c088
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter4.ipynb
@@ -0,0 +1,946 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:fdf50666cfa70019db7241b6e1fb1e819c70fb9987ea0caadb1e777e93e7d898"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter4-Gears and Gear Drivers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 1, Page 133\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##INPUT DATA\n",
+ "TA=48.;##Wheel A teeth\n",
+ "TB=30.;##Wheel B teeth\n",
+ "m=5.;##Module pitch in mm\n",
+ "phi=20.;##Pressure angle in degrees\n",
+ "add=m;##Addendum in mm\n",
+ "\n",
+ "##CALCULATIONS\n",
+ "R=(m*TA)/2.;##Pitch circle radius of wheel A in mm\n",
+ "RA=R+add;##Radius of addendum circle of wheel A in mm\n",
+ "r=(m*TB)/2.;##Pitch circle radius of wheel B in mm\n",
+ "rA=r+add;##Radius of addendum circle of wheel B in mm\n",
+ "lp=(math.sqrt((RA**2.)-((R**2.)*(math.cos(phi/57.3)**2.))))+(math.sqrt((rA**2.)-((r**2.)*(math.cos(phi/57.3)**2.))))-((R+r)*math.sin(phi/57.3));##Length of path of contact in mm\n",
+ "la=lp/math.cos(phi/57.3);##Length of arc of contact in mm\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('Length of arc of contact is ',la,' mm')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Length of arc of contact is 26.7 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 2, Page 133\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##INPUT DATA\n",
+ "TA=40.;##Wheel A teeth\n",
+ "TB=TA;##Wheel B teeth\n",
+ "m=6.;##Module pitch in mm\n",
+ "phi=20.;##Pressure angle in degrees\n",
+ "pi=3.141\n",
+ "x=1.75;##Ratio of length of arc of contact to circular pitch\n",
+ "\n",
+ "##CALCULATIONS\n",
+ "Cp=m*pi;##Circular pitch in mm\n",
+ "R=(m*TA)/2.;##Pitch circle radius of wheel A in mm\n",
+ "r=R;##Pitch circle radius of wheel B in mm\n",
+ "la=x*Cp;##Length of arc of contact in mm\n",
+ "lp=la*math.cos(phi/57.3);##Length of path of contact in mm\n",
+ "RA=math.sqrt((((lp/2.)+(R*math.sin(phi/57.3)))**2.)+((R**2.)*(math.cos(phi/57.3))**2.));##Radius of addendum circle of each wheel in mm\n",
+ "add=RA-R;##Addendum in mm\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('Addendum of wheel is ',add,' mm')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Addendum of wheel is 6.1 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 3, Page 134\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##INPUT DATA\n",
+ "TA=48.;##Gear teeth\n",
+ "TB=24.;##Pinion teeth\n",
+ "m=6.;##Module in mm\n",
+ "phi=20.;##Pressure angle in degrees\n",
+ "\n",
+ "##CALCULATIONS\n",
+ "r=(m*TB)/2.;##Pitch circle radius of pinion in mm\n",
+ "R=(m*TA)/2.;##Pitch circle radius of gear in mm\n",
+ "RA=math.sqrt(((((r*math.sin(phi/57.3))/2.)+(R*math.sin(phi/57.3)))**2.)+((R**2)*(math.cos(phi/57.3))**2));##Radius of addendum circle of gear in mm\n",
+ "rA=math.sqrt(((((R*math.sin(phi/57.3))/2.)+(r*math.sin(phi/57.3)))**2.)+((r**2)*(math.cos(phi/57.3))**2));##Radius of addendum circle of pinion in mm\n",
+ "addp=rA-r;##Addendum for pinion in mm\n",
+ "addg=RA-R;##Addendum for gear in mm\n",
+ "lp=((R+r)*math.sin(phi/57.3))/2.;##Length of path of contact in mm\n",
+ "la=lp/math.cos(phi/57.3);##Length of arc of contact in mm\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s '%('Addendum for pinion is',addp,' mm' ' Addendum for gear is ',addg,' mm' ' Length of arc of contact is ',la,' mm')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Addendum for pinion is 11.7 mm Addendum for gear is 4.7 mm Length of arc of contact is 39.3 mm \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 4, Page 135\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##INPUT DATA\n",
+ "x=3.5;##Ratio of teeth of wheels\n",
+ "C=1.2;##Centre distance between axes in m\n",
+ "DP=4.4;##Diametrical pitch in cm\n",
+ "\n",
+ "##CALCULATIONS\n",
+ "D=2*C*100.;##Sum of diameters of wheels in cm\n",
+ "T=D*DP;##Sum of teeth of wheels\n",
+ "TB1=T/(x+1);##Teeth of wheel B\n",
+ "TB=math.floor(TB1);##Teeth of whhel B\n",
+ "TA=x*TB;##Teeth of wheel A\n",
+ "DA=TA/DP;##Diametral pitch of gear A in cm\n",
+ "DB=TB/DP;##Diametral pitch of gear B in cm\n",
+ "Ce=(DA+DB)/2.;##Exact centre distance between shafts in cm\n",
+ "TB2=math.ceil(TB1);##Teeth of wheel B\n",
+ "TA2=T-TB2;##Teeth of wheel A\n",
+ "VR=TA2/TB2;##Velocity ratio\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s%.1f %s%.1f %s'%('Number of teeth on wheel A is ',TA,'' 'Number of teeth on wheel B is ',TB,'' ' Exact centre distance is ',Ce,' cm ' 'If centre distance is ',C,' m' 'then Velocity ratio is',VR,'')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of teeth on wheel A is 819.0 Number of teeth on wheel B is 234.0 Exact centre distance is 119.7 cm If centre distance is 1.2 mthen Velocity ratio is3.5 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg136"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 5, Page 136\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##INPUT DATA\n",
+ "C=600;##Distance between shafts in mm\n",
+ "Cp=30;##Circular pitch in mm\n",
+ "NA=200;##Speed of wheel A in rpm\n",
+ "NB=600;##Speed of wheel B in rpm\n",
+ "F=18;##Tangential pressure in kN\n",
+ "pi=3.141\n",
+ "\n",
+ "##CALCULATIONS\n",
+ "a=Cp/(pi*10.);##Ratio of pitch diameter of wheel A to teeth of wheel A in cm\n",
+ "b=Cp/(pi*10.);##Ratio of pitch diameter of wheel B to teeth of wheel B in cm\n",
+ "T=(2*C)/(a*10.);##Sum of teeth of wheels\n",
+ "r=NB/NA;##Ratio of teeth of wheels\n",
+ "TB=T/(r+1);##Teeth of wheel B\n",
+ "TB1=math.ceil(TB);##Teeth of wheel B\n",
+ "TA=TB1*r;##Teeth of wheel A\n",
+ "DA=a*TA;##Pitch diameter of wheel A in cm\n",
+ "DB=b*TB1;##Pitch diameter of wheel B in cm\n",
+ "CPA=(pi*DA)/TA;##Circular pitch of gear A in cm\n",
+ "CPB=(pi*DB)/TB1;##Circular pitch of gear B in cm\n",
+ "C1=(DA+DB)*10/2.;##Exact centre distance in mm\n",
+ "P=(F*1000.*pi*DA*NA)/(60.*1000.*100.);##Power transmitted in kW\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s '%('Number of teeth on wheel A is ',TA,' '' Number of teeth on wheel B is ',TB1,' '' Pitch diameter of wheel A is ',DA,' cm'' Pitch diameter of wheel B is ',DB,' cm'' Circular pitch of wheel A is',CPA,'cm ' 'Circular pitch of wheel B is ',CPB,' cm '' Exact centre distance between shafts is ',C1,' mm'' Power transmitted is',P,' kW')\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of teeth on wheel A is 96.0 Number of teeth on wheel B is 32.0 Pitch diameter of wheel A is 91.7 cm Pitch diameter of wheel B is 30.6 cm Circular pitch of wheel A is 3.0 cm Circular pitch of wheel B is 3.0 cm Exact centre distance between shafts is 611.3 mm Power transmitted is 172.8 kW \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 6, Page 137\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##INPUT DATA\n",
+ "r=16.;##Speed ratio\n",
+ "mA=4.;##Module of gear A in mm\n",
+ "mB=mA;##Module of gear B in mm\n",
+ "mC=2.5;##Mosule of gear C in mm\n",
+ "mD=mC;##Module of gear D in mm\n",
+ "C=150.;##Distance between shafts in mm\n",
+ "\n",
+ "##CALCULATIONS\n",
+ "t=math.sqrt(r);##Ratio of teeth\n",
+ "T1=(C*2.)/mA;##Sum of teeth of wheels A and B\n",
+ "T2=(C*2.)/mC;##Sum of teeth of wheels C and D\n",
+ "TA=T1/(t+1.);##Teeth of gear A\n",
+ "TB=T1-TA;##Teeth of gear B\n",
+ "TC=T2/(t+1.);##Teeth of gear C\n",
+ "TD=T2-TC;##Teeth of gear D\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.1f %s '%('Number of teeth on gear A is ',TA,' '' Number of teeth on gear B is ',TB,'' 'Number of teeth on gear C is ',TC,'' ' Number of teeth on gear D is ',TD,'')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of teeth on gear A is 15.0 Number of teeth on gear B is 60.0 Number of teeth on gear C is 24.0 Number of teeth on gear D is 96.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 7, Page 138\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##INPUT DATA\n",
+ "N=4.5;##No. of turns\n",
+ "\n",
+ "##CALCULATIONS\n",
+ "Vh=N/2.;##Velocity ratio of main spring spindle to hour hand spindle\n",
+ "Vm=12.;##Velocity ratio of minute hand spindle to hour hand spindle\n",
+ "T1=8.## assumed no of teeth on gear 1\n",
+ "T2=32.## assumed no of teeth on gear 2\n",
+ "T3=(T1+T2)/4.## no of teeth on gear 3\n",
+ "T4=(T1+T2)-T3## no of teeth on gear 4\n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.1f %s '%('no of teeth on gear 1=',T1,'' 'no of teeth on gear 2=',T2,' ''no of teeth on gear 3=',T3,' ''no of teeth on gear 4=',T4,'')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "no of teeth on gear 1= 8.0 no of teeth on gear 2= 32.0 no of teeth on gear 3= 10.0 no of teeth on gear 4= 30.0 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg139"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 8, Page 139\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##Input data\n",
+ "Tb=70.;##Teeth of wheel B\n",
+ "Tc=25.;##Teeth of wheel C\n",
+ "Td=80.;##Teeth of wheel D\n",
+ "Na=-100.;##Speed of arm A in clockwise in rpm\n",
+ "y=-100.##Arm A rotates at 100 rpm clockwise\n",
+ "\n",
+ "##Calculations\n",
+ "Te=(Tc+Td-Tb);##Teeth of wheel E\n",
+ "x=(y/0.5)\n",
+ "Nc=(y-(Td*x)/Tc);##Speed of wheel C in rpm\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.1f %s'%('Speed of wheel C is ',Nc,' rpm ''Direction of wheel C is anti-clockwise')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of wheel C is 540.0 rpm Direction of wheel C is anti-clockwise\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg140"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 9, Page 140\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##Input data\n",
+ "Tb=25.;##Teeth of wheel B\n",
+ "Tc=40.;##Teeth of wheel C\n",
+ "Td=10.;##Teeth of wheel D\n",
+ "Te=25.;##Teeth of wheel E\n",
+ "Tf=30.;##Teeth of wheel F\n",
+ "y=-120.;##Speed of arm A in clockwise in rpm\n",
+ "\n",
+ "##Calculations\n",
+ "x=(-y/4.)\n",
+ "Nb=x+y;##Speed of wheel B in rpm\n",
+ "Nf=(-10/3.)*x+y;##Speed of wheel F in rpm\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.1f %s %.1f %s'%('Speed of wheel B is',Nb,' rpm Direction of wheel B is clockwise' ' Speed of wheel F is ',Nf,' rpm Direction of wheel F is clockwise')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of wheel B is -90.0 rpm Direction of wheel B is clockwise Speed of wheel F is -220.0 rpm Direction of wheel F is clockwise\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg141"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 10, Page 141\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##Input data\n",
+ "Ta=96.;##Teeth of wheel A\n",
+ "Tc=48.;##Teeth of wheel C\n",
+ "y=-20.;##Speed of arm C in rpm in clockwise\n",
+ "\n",
+ "##Calculations\n",
+ "x=(y*Ta)/Tc\n",
+ "Tb=(Ta-Tc)/2.;##Teeth of wheel B\n",
+ "Nb=(-Tc/Tb)*x+y;##Speed of wheel B in rpm\n",
+ "Nc=x+y;##Speed of wheel C in rpm\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.1f %s %.1f %s'%('Speed of wheel B is ',Nb,' rpm' 'Speed of wheel C is ',Nc,' rpm')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "##================================END OF PROGRAM=============================================\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of wheel B is 60.0 rpmSpeed of wheel C is -60.0 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg142"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 11, Page 142\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "import numpy\n",
+ "from numpy.linalg import inv\n",
+ "##Input data\n",
+ "Ta=40.## no of teeth on gear A\n",
+ "Td=90.## no of teeth on gear D\n",
+ "\n",
+ "##Calculations\n",
+ "Tb=(Td-Ta)/2.## no of teeth on gear B\n",
+ "Tc=Tb## no of teeth on gear C\n",
+ "##\n",
+ "##x+y=-1\n",
+ "##-40x+90y=45\n",
+ "\n",
+ "A=([[1, 1],[-Ta, Td]])##Coefficient matrix\n",
+ "\n",
+ "B=([[-1],[Td/2]])##Constant matrix\n",
+ " \n",
+ "X=numpy.dot(inv(A) ,B)##Variable matrix\n",
+ "##\n",
+ "##x+y=-1\n",
+ "##-40x+90y=0\n",
+ "A1=([[1, 1],[-Ta, Td]])##Coefficient matrix\n",
+ "B1=([[-1],[0]])##Constant matrix\n",
+ "X1=numpy.dot(inv(A1) ,B1)##Variable matrix\n",
+ "b=X1[1] \n",
+ "print(X[1]) \n",
+ "print'%s %.4f %s'%('speed of the arm =',b,' revolution clockwise')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "[ 0.03846154]\n",
+ "speed of the arm = -0.3077 revolution clockwise\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg144"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 12, Page 144\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "\n",
+ "\n",
+ "##Input data\n",
+ "Te=30.;##Teeth of wheel E\n",
+ "Tb=24.;##Teeth of wheel B\n",
+ "Tc=22.;##Teeth of wheel C\n",
+ "Td=70.;##Teeth of wheel D\n",
+ "Th=15.;##Teeth of wheel H\n",
+ "Nv=100.;##Speed of shaft V in rpm\n",
+ "Nx=300.;##Speed of spindle X in rpm\n",
+ "\n",
+ "##Calculations\n",
+ "Nh=Nv;##Speed of wheel H in rpm\n",
+ "Ne=(-Th/Te)*Nv;##Speed of wheel E in rpm\n",
+ "Ta=(Tc+Td-Tb);##Teeth of wheel A\n",
+ "##x+y=-50\n",
+ "##y=300\n",
+ "x=(Ne-Nx)\n",
+ "Nz=(187/210.)*x+Nx;##;##Speed of wheel Z in rpm\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.1f %s'%('Speed of wheel Z is ',Nz,' rpm Direction of wheel Z is opposite to that of X')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of wheel Z is -11.7 rpm Direction of wheel Z is opposite to that of X\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg145"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 13, Page 145\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "\n",
+ "\n",
+ "##Input data\n",
+ "Tp=20.;##Teeth of wheel P\n",
+ "Tq=30.;##Teeth of wheel Q\n",
+ "Tr=10.;##Teeth of wheel R\n",
+ "Nx=50.;##Speed of shaft X in rpm\n",
+ "Na=100.;##Speed of arm A in rpm\n",
+ "\n",
+ "##Calculations\n",
+ "##x+y=-50\n",
+ "##y=100\n",
+ "x=(-Nx-Na)\n",
+ "y=(-2.*x+Na);##Speed of Y in rpm\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.1f %s'%('Speed of driven shaft Y is ',y,' rpm Direction of driven shaft Y is anti-clockwise')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed of driven shaft Y is 400.0 rpm Direction of driven shaft Y is anti-clockwise\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 14, Page 146\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##Input data\n",
+ "d=216.;##Ring diameter in mm\n",
+ "m=4.;##Module in mm\n",
+ "\n",
+ "##Calculations\n",
+ "Td=(d/m);##Teeth of wheel D\n",
+ "Tb=Td/4.;##Teeth of wheel B\n",
+ "Tb1=math.ceil(Tb);##Teeth of wheel B\n",
+ "Td1=4.*Tb1;##Teeth of wheel D\n",
+ "Tc1=(Td1-Tb1)/2.;##Teeth of wheel C\n",
+ "d1=m*Td1;##Pitch circle diameter in mm\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.1f %s %.1f %s %.1f %s%.1f %s '%('Teeth of wheel B is ',Tb1,' ' 'Teeth of wheel C is ',Tc1,' ' 'Teeth of wheel D is ',Td1,' '' Exact pitch circle diameter is ',d1,' mm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Teeth of wheel B is 14.0 Teeth of wheel C is 21.0 Teeth of wheel D is 56.0 Exact pitch circle diameter is 224.0 mm \n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex15-pg147"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 15, Page 147\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##Input data\n",
+ "Ta=100.## no of teeth on gear A\n",
+ "Tc=101.## no of teeth on gear C\n",
+ "Td=99.## no of teeth on gear D\n",
+ "Tp=20.## no of teeth on planet gear\n",
+ "y=1.## from table 4.9(arm B makes one revolution)\n",
+ "x=-y## as gear is fixed\n",
+ "\n",
+ "##Calculations\n",
+ "Nc=(Ta*x)/Tc+y## Revolution of gear C \n",
+ "Nd=(Ta*x)/Td+y## Revolution of gear D\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.4f %s %.4f %s '%('Revolution of gear C =',Nc,'' ' Revolution of gear D = ',Nd,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Revolution of gear C = 0.0099 Revolution of gear D = -0.0101 \n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex16-pg148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 16, Page 148\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "\n",
+ "##Input data\n",
+ "Ta=12.## no of teeth on gear A\n",
+ "Tb=60.## no of teeth on gear B\n",
+ "N=1000.## speed of propeller shaft in rpm\n",
+ "Nc=210.## speed of gear C in rpm\n",
+ "\n",
+ "##Calculations\n",
+ "Nb=(Ta*N)/Tb## speed of gear B in rpm\n",
+ "x=(Nb-Nc)\n",
+ "Nd=Nb+x## speed of road wheel driven by D\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.1f %s'%('speed of road wheel driven by D= ',Nd,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "speed of road wheel driven by D= 190.0 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex17-pg148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Chapter-4, Illustration 17, Page 148\n",
+ "##Title: Gears and Gear Drivers\n",
+ "##=============================================================================\n",
+ "import math\n",
+ "import numpy\n",
+ "from numpy.linalg import inv\n",
+ "##Input data\n",
+ "Ta=20.## no of teeth on pinion A\n",
+ "Tb=25.## no of teeth on wheel B\n",
+ "Tc=50.## no of teeth on gear C\n",
+ "Td=60.## no of teeth on gear D\n",
+ "Te=60.## no of teeth on gear E\n",
+ "Na=200.## SPEED of the gear A\n",
+ "Nd=100.## speed of the gear D\n",
+ "\n",
+ "##calculations\n",
+ "##(i)\n",
+ "##(5/6)x+y=0\n",
+ "##(5/4)x+y=200\n",
+ "A1=([[Tc/Td, 1],[Tb/Ta, 1]])##Coefficient matrix\n",
+ "B1=([[0],[Na]]) ##Constant matrix\n",
+ "X1=numpy.dot(inv(A1),B1)##Variable matrix\n",
+ "Ne1=X1[1]-(Tc/Td)*X1[0]## \n",
+ "T1=(-Ne1/Na)## ratio of torques when D is fixed\n",
+ "##(ii)\n",
+ "##(5/4)x+y=200\n",
+ "##(5/6)x+y=100\n",
+ "A2=([[Tc/Td, 1],[Tb/Ta, 1]])##Coefficient matrix\n",
+ "B2=([[Nd],[Na]])##Constant matrix\n",
+ "X2=numpy.dot(inv(A2),B2)##Variable matrix\n",
+ "Ne2=X2[1]-(Tc/Td)*X2[0]\n",
+ "T2=(-Ne2/Na)## ratio of torques when D ratates at 100 rpm\n",
+ "\n",
+ "##Output\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s'%('speed of E= ',Ne1,' rpm in clockwise direction' and 'speed of E in 2nd case(when D rotates at 100 rpm)= ',Ne2,' rpm in clockwise direction' and 'ratio of torques when D is fixed= ',T1,' ' 'ratio of torques when D ratates at 100 rpm= ',T2,'')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "speed of E= -800.00 speed of E in 2nd case(when D rotates at 100 rpm)= -300.00 ratio of torques when D is fixed= 4.00 ratio of torques when D ratates at 100 rpm= 1.50 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter5.ipynb b/_Theory_Of_Machines/Chapter5.ipynb
new file mode 100755
index 00000000..f5d72d04
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter5.ipynb
@@ -0,0 +1,413 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a109b0284cb0a4fc44bb60197ec78d6f24860fb5b5091b8f3432975ce1e08de6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Chapter5-Inertia Force Analysis in Machines"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ex1-pg160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 5 ILLUSRTATION 1 PAGE NO 160\n",
+ "##TITLE:Inertia Force Analysis in Machines\n",
+ "import math\n",
+ "pi=3.141\n",
+ "r=.3## radius of crank in m\n",
+ "l=1.## length of connecting rod in m\n",
+ "N=200.## speed of the engine in rpm\n",
+ "n=l/r\n",
+ "##===================\n",
+ "w=2.*pi*N/60.## angular speed in rad/s\n",
+ "\n",
+ "teeta=math.acos((-n+((n**2)+4*2*1)**.5)/(2*2))*57.3## angle of inclination of crank in degrees\n",
+ "Vp=w*r*(math.sin(teeta/57.3)+(math.sin((2*teeta)/57.3)/n))## maximum velocity of the piston in m/s\n",
+ "print'%s %.1f %s'%('Maximum velocity of the piston = ',Vp,' m/s')\n",
+ "print'%s %.2f %s'%('teeta',teeta,'')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum velocity of the piston = 7.0 m/s\n",
+ "teeta 74.96 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 5 ILLUSRTATION 2 PAGE NO 161\n",
+ "##TITLE:Inertia Force Analysis in Machines\n",
+ "import math\n",
+ "PI=3.141\n",
+ "r=.3## length of crank in metres\n",
+ "l=1.5## length of connecting rod in metres\n",
+ "N=180.## speed of rotation in rpm\n",
+ "teeta=40.## angle of inclination of crank in degrees\n",
+ "##============================\n",
+ "n=l/r\n",
+ "w=2.*PI*N/60## angular speed in rad/s\n",
+ "Vp=w*r*(math.sin(teeta/57.3)+math.sin((2.*teeta/57.3)/(2.*n)))## velocity of piston in m/s\n",
+ "fp=w**2.*r*(math.cos(teeta/57.3)+math.cos(2.*teeta/57.3)/(2.*n))## acceleration of piston in m/s**2\n",
+ "costeeta1=(-n+(n**2.+4.*2.*1.)**.5)/4.\n",
+ "teeta1=math.acos(costeeta1)*(57.3)## position of crank from inner dead centre position for zero acceleration of piston\n",
+ "##===========================\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('Velocity of Piston = ',Vp,' m/s'' Acceleration of piston =',fp,' m/s**2'' position of crank from inner dead centre position for zero acceleration of piston=',teeta1,' degrees')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity of Piston = 4.4 m/s Acceleration of piston = 83.5 m/s**2 position of crank from inner dead centre position for zero acceleration of piston= 79.3 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 5 ILLUSRTATION 3 PAGE NO 161\n",
+ "##TITLE:Inertia Force Analysis in Machines\n",
+ "import math\n",
+ "pi=3.141\n",
+ "D=.3## Diameter of steam engine in m\n",
+ "L=.5## length of stroke in m\n",
+ "r=L/2.\n",
+ "mR=100.## equivalent of mass of reciprocating parts in kg\n",
+ "N=200.## speed of engine in rpm\n",
+ "teeta=45## angle of inclination of crank in degrees\n",
+ "p1=1.*10**6## gas pressure in N/m**2\n",
+ "p2=35.*10**3## back pressure in N/m**2\n",
+ "n=4.## ratio of crank radius to the length of stroke\n",
+ "##=================================\n",
+ "w=2.*pi*N/60## angular speed in rad/s\n",
+ "Fl=pi/4.*D**2.*(p1-p2)## Net load on piston in N\n",
+ "Fi=mR*w**2*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(2*n))## inertia force due to reciprocating parts\n",
+ "Fp=Fl-Fi## Piston effort\n",
+ "T=Fp*r*(math.sin(teeta/57.3)+(math.sin((2*teeta)/57.3))/(2.*(n**2-(math.sin(teeta/57.3))**2)**.5))\n",
+ "print'%s %.1f %s %.1f %s '%('Piston effort = ',Fp,' N' 'Turning moment on the crank shaft = ',T,' N-m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Piston effort = 60447.0 NTurning moment on the crank shaft = 12604.2 N-m \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 5 ILLUSRTATION 4 PAGE NO 162\n",
+ "##TITLE:Inertia Force Analysis in Machines\n",
+ "import math\n",
+ "pi=3.141\n",
+ "D=.10## Diameter of petrol engine in m\n",
+ "L=.12## Stroke length in m\n",
+ "l=.25## length of connecting in m\n",
+ "r=L/2.\n",
+ "mR=1.2## mass of piston in kg\n",
+ "N=1800.## speed in rpm\n",
+ "teeta=25.## angle of inclination of crank in degrees\n",
+ "p=680.*10**3## gas pressure in N/m**2\n",
+ "n=l/r\n",
+ "g=9.81## acceleration due to gravity\n",
+ "##=======================================\n",
+ "w=2.*pi*N/60.## angular speed in rpm\n",
+ "Fl=pi/4.*D**2.*p## force due to gas pressure in N\n",
+ "Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n))## inertia force due to reciprocating parts in N\n",
+ "Fp=Fl-Fi+mR*g## net force on piston in N\n",
+ "Fq=n*Fp/((n**2-(math.sin(teeta/57.3))**2.)**.5)## resultant load on gudgeon pin in N\n",
+ "Fn=Fp*math.sin(teeta/57.3)/((n**2-(math.sin(teeta/57.3))**2.)**.5)## thrust on cylinder walls in N\n",
+ "fi=Fl+mR*g## inertia force of the reciprocating parts before the gudgeon pin load is reversed in N\n",
+ "w1=(fi/mR/r/(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n)))**.5\n",
+ "N1=60.*w1/(2.*pi)\n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.1f %s '%('Net force on piston = ',Fp,' N'' Resultant load on gudgeon pin = ',Fq,' N'' Thrust on cylinder walls = ',Fn,' N'' speed at which other things remining same,the gudgeon pin load would be reversed in directionm= ',N1,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Net force on piston = 2639.3 N Resultant load on gudgeon pin = 2652.9 N Thrust on cylinder walls = 269.1 N speed at which other things remining same,the gudgeon pin load would be reversed in directionm= 2528.4 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 5 ILLUSRTATION 5 PAGE NO 163\n",
+ "##TITLE:Inertia Force Analysis in Machines\n",
+ "##Figure 5.3\n",
+ "import math\n",
+ "pi=3.141\n",
+ "N=1800.## speed of the petrol engine in rpm\n",
+ "r=.06## radius of crank in m\n",
+ "l=.240## length of connecting rod in m\n",
+ "D=.1## diameter of the piston in m\n",
+ "mR=1## mass of piston in kg\n",
+ "p=.8*10**6## gas pressure in N/m**2\n",
+ "x=.012## distance moved by piston in m\n",
+ "##===============================================\n",
+ "w=2.*pi*N/60.## angular velocity of the engine in rad/s\n",
+ "n=l/r\n",
+ "Fl=pi/4.*D**2.*p## load on the piston in N\n",
+ "teeta=32.## by mearument from the figure 5.3\n",
+ "Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/n)## inertia force due to reciprocating parts in N\n",
+ "Fp=Fl-Fi## net load on the gudgeon pin in N\n",
+ "Fq=n*Fp/((n**2.-(math.sin(teeta/57.3))**2.)**.5)## thrust in the connecting rod in N\n",
+ "Fn=Fp*math.sin(teeta/57.3)/((n**2-(math.sin(teeta/57.3))**2)**.5)## reaction between the piston and cylinder in N\n",
+ "w1=(Fl/mR/r/(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n)))**.5\n",
+ "N1=60.*w1/(2.*pi)## \n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.1f %s'%('Net load on the gudgeon pin= ',Fp,' N''Thrust in the connecting rod= ',Fq,' N'' Reaction between the cylinder and piston= ',Fn,' N'' The engine speed at which the above values become zero= ',N1,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Net load on the gudgeon pin= 4241.2 NThrust in the connecting rod= 4278.9 N Reaction between the cylinder and piston= 566.8 N The engine speed at which the above values become zero= 3158.0 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 5 ILLUSRTATION 6 PAGE NO 165\n",
+ "##TITLE:Inertia Force Analysis in Machines\n",
+ "import math\n",
+ "pi=3.141\n",
+ "D=.25## diameter of horizontal steam engine in m\n",
+ "N=180.## speed of the engine in rpm\n",
+ "d=.05## diameter of piston in m\n",
+ "P=36000.## power of the engine in watts\n",
+ "n=3.## ration of length of connecting rod to the crank radius\n",
+ "p1=5.8*10**5## pressure on cover end side in N/m**2\n",
+ "p2=0.5*10**5## pressure on crank end side in N/m**2\n",
+ "teeta=40.## angle of inclination of crank in degrees\n",
+ "m=45.## mass of flywheel in kg\n",
+ "k=.65## radius of gyration in m\n",
+ "##==============================\n",
+ "Fl=(pi/4.*D**2.*p1)-(pi/4.*(D**2.-d**2.)*p2)## load on the piston in N\n",
+ "ph=(math.sin(teeta/57.3)/n)\n",
+ "phi=math.asin(ph)*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
+ "r=1.6*D/2.\n",
+ "T=Fl*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
+ "Fb=Fl*math.cos((teeta+phi)/57.3)/math.cos(phi/57.3)## thrust on the crank shaft bearing in N\n",
+ "TR=P*60./(2.*pi*N)## steady resisting torque in N-m\n",
+ "Ts=T-TR## surplus torque available in N-m\n",
+ "a=Ts/(m*k**2)## acceleration of the flywheel in rad/s**2\n",
+ "print'%s %.1f %s %.1f %s %.1f %s '%('Torque exerted on the crank shaft= ',T,' N-m'' Thrust on the crank shaft bearing= ',Fb,'N''Acceleration of the flywheel= ',a,' rad/s**2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Torque exerted on the crank shaft= 4233.8 N-m Thrust on the crank shaft bearing= 16321.0 NAcceleration of the flywheel= 122.2 rad/s**2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 5 ILLUSRTATION 7 PAGE NO 166\n",
+ "##TITLE:Inertia Force Analysis in Machines\n",
+ "import math\n",
+ "pi=3.141\n",
+ "D=.25## diameter of vertical cylinder of steam engine in m\n",
+ "L=.45## stroke length in m\n",
+ "r=L/2.\n",
+ "n=4.\n",
+ "N=360.## speed of the engine in rpm\n",
+ "teeta=45.## angle of inclination of crank in degrees\n",
+ "p=1050000.## net pressure in N/m**2\n",
+ "mR=180.## mass of reciprocating parts in kg\n",
+ "g=9.81## acceleration due to gravity\n",
+ "##========================\n",
+ "Fl=p*pi*D**2./4.## force on piston due to steam pressure in N\n",
+ "w=2.*pi*N/60.## angular speed in rad/s\n",
+ "Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos((2*teeta)/57.3)/(n))## inertia force due to reciprocating parts in N\n",
+ "Fp=Fl-Fi+mR*g## piston effort in N\n",
+ "phi=math.asin((math.sin(teeta/57.3)/n))*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
+ "T=Fp*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
+ "print'%s %.1f %s'%('Effective turning moment on the crank shaft= ',T,' N-m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Effective turning moment on the crank shaft= 2366.2 N-m\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 5 ILLUSRTATION 8 PAGE NO 166\n",
+ "##TITLE:Inertia Force Analysis in Machines\n",
+ "##figure 5.4\n",
+ "import math\n",
+ "pi=3.141\n",
+ "D=.25## diameter of vertical cylinder of diesel engine in m\n",
+ "L=.40## stroke length in m\n",
+ "r=L/2.\n",
+ "n=4.\n",
+ "N=300.## speed of the engine in rpm\n",
+ "teeta=60.## angle of inclination of crank in degrees\n",
+ "mR=200.## mass of reciprocating parts in kg\n",
+ "g=9.81## acceleration due to gravity\n",
+ "l=.8## length of connecting rod in m\n",
+ "c=14.## compression ratio=v1/v2\n",
+ "p1=.1*10**6.## suction pressure in n/m**2\n",
+ "i=1.35## index of the law of expansion and compression \n",
+ "##==============================================================\n",
+ "Vs=pi/4.*D**2.*L## swept volume in m**3\n",
+ "w=2.*pi*N/60.## angular speed in rad/s\n",
+ "Vc=Vs/(c-1.)\n",
+ "V3=Vc+Vs/10.## volume at the end of injection of fuel in m**3\n",
+ "p2=p1*c**i## final pressure in N/m**2\n",
+ "p3=p2## from figure\n",
+ "x=r*((1.-math.cos(teeta/57.3)+(math.sin(teeta/57.3))**2/(2.*n)))## the displacement of the piston when the crank makes an angle 60 degrees with T.D.C\n",
+ "Va=Vc+pi*D**2.*x/4.\n",
+ "pa=p3*(V3/Va)**i\n",
+ "p=pa-p1## difference of pressues on 2 sides of piston in N/m**2\n",
+ "Fl=p*pi*D**2./4.## net load on piston in N\n",
+ "Fi=mR*w**2.*r*(math.cos(teeta/57.3)+math.cos(2.*teeta/57.3)/(n))## inertia force due to reciprocating parts in N\n",
+ "Fp=Fl-Fi+mR*g## piston effort in N\n",
+ "phi=math.asin((math.sin(teeta/57.3)/n))*57.3## angle of inclination of the connecting rod to the line of stroke in degrees\n",
+ "T=Fp*math.sin((teeta+phi)/57.3)/math.cos(phi/57.3)*r## torque exerted on crank shaft in N-m\n",
+ "print'%s %.1f %s'%('Effective turning moment on the crank shaft= ',T,' N-m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Effective turning moment on the crank shaft= 8850.3 N-m\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter6.ipynb b/_Theory_Of_Machines/Chapter6.ipynb
new file mode 100755
index 00000000..895e2c68
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter6.ipynb
@@ -0,0 +1,486 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a0a25762305b1c74ca417d46a7390eaac10578c3f22cb04bddc542c61d85667c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter6-Turning Moment Diagram and Flywheel"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 1 PAGE NO 175\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "\n",
+ "k=1.## radius of gyration of flywheel in m\n",
+ "m=2000.## mass of the flywheel in kg\n",
+ "T=1000.## torque of the engine in Nm\n",
+ "w1=0.## speedin the begining\n",
+ "t=10.## time duration\n",
+ "##==============================\n",
+ "I=m*k**2.## mass moment of inertia in kg-m**2\n",
+ "a=T/I## angular acceleration of flywheel in rad/s**2\n",
+ "w2=w1+a*t## angular speed after time t in rad/s\n",
+ "K=I*w2**2/2.## kinetic energy of flywheel in Nm\n",
+ "##==============================\n",
+ "print'%s %.1f %s %.1f %s '%('Angular acceleration of the flywheel=',a,' rad/s**2'' Kinetic energy of flywheel= ',K,' N-m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angular acceleration of the flywheel= 0.5 rad/s**2 Kinetic energy of flywheel= 25000.0 N-m \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 2 PAGE NO 176\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "import math\n",
+ "pi=3.141\n",
+ "N1=225.## maximum speed of flywheel in rpm\n",
+ "k=.5## radius of gyration of flywheel in m\n",
+ "n=720.## no of holes punched per hour\n",
+ "E1=15000.## energy required by flywheel in Nm\n",
+ "N2=200.## mimimum speedof flywheel in rpm\n",
+ "t=2.## time taking for punching a hole\n",
+ "##==========================\n",
+ "P=E1*n/3600.## power required by motor per sec in watts\n",
+ "E2=P*t## energy supplied by motor to punch a hole in N-m\n",
+ "E=E1-E2## maximum fluctuation of energy in N-m\n",
+ "N=(N1+N2)/2.## mean speed of the flywheel in rpm\n",
+ "m=E/(pi**2./900.*k**2.*N*(N1-N2))\n",
+ "print'%s %.1f %s %.1f %s'%('Power of the motor= ',P,' watts''Mass of the flywheel required= ',m,' kg')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power of the motor= 3000.0 wattsMass of the flywheel required= 618.2 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 3 PAGE NO 176\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "import math\n",
+ "pi=3.141\n",
+ "d=38.## diameter of hole in cm\n",
+ "t=32.## thickness of hole in cm\n",
+ "e1=7.## energy required to punch one square mm\n",
+ "V=25.## mean speed of the flywheel in m/s\n",
+ "S=100.## stroke of the punch in cm\n",
+ "T=10.## time required to punch a hole in s\n",
+ "Cs=.03## coefficient of fluctuation of speed\n",
+ "##===================\n",
+ "A=pi*d*t## sheared area in mm**2\n",
+ "E1=e1*A## energy required to punch entire area in Nm\n",
+ "P=E1/T## power of motor required in watts\n",
+ "T1=T/(2.*S)*t## time required to punch a hole in 32 mm thick plate\n",
+ "E2=P*T1## energy supplied by motor in T1 seconds\n",
+ "E=E1-E2## maximum fluctuation of energy in Nm\n",
+ "m=E/(V**2.*Cs)## mass of the flywheel required\n",
+ "print'%s %.1f %s'%('Mass of the flywheel required= ',m,' kg')\n",
+ "\n",
+ "\t\t"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass of the flywheel required= 1197.8 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 4 PAGE NO 177\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "##figure 6.4\n",
+ "import math\n",
+ "##===================\n",
+ "pi=3.141\n",
+ "N=480.## speed of the engine in rpm\n",
+ "k=.6## radius of gyration in m\n",
+ "Cs=.03## coefficient of fluctuaion of speed \n",
+ "Ts=6000.## turning moment scale in Nm per one cm\n",
+ "C=30.## crank angle scale in degrees per cm\n",
+ "a=[0.5,-1.22,.9,-1.38,.83,-.7,1.07]## areas between the output torque and mean resistance line in sq.cm\n",
+ "##======================\n",
+ "w=2.*pi*N/60.## angular speed in rad/s\n",
+ "A=Ts*C*pi/180.## 1 cm**2 of turning moment diagram in Nm\n",
+ "E1=a[0]## max energy at B refer figure\n",
+ "E2=a[0]+a[1]+a[2]+a[3]\n",
+ "E=(E1-E2)*A## fluctuation of energy in Nm\n",
+ "m=E/(k**2.*w**2*Cs)## mass of the flywheel in kg\n",
+ "print'%s %.1f %s'%('Mass of the flywheel= ',m,' kg')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass of the flywheel= 195.8 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 5 PAGE NO 178\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "##==============\n",
+ "pi=3.141\n",
+ "P=500.*10**3.## power of the motor in N\n",
+ "k=.6## radius of gyration in m\n",
+ "Cs=.03## coefficient of fluctuation of spped \n",
+ "OA=750.## REFER FIGURE\n",
+ "OF=6.*pi## REFER FIGURE\n",
+ "AG=pi## REFER FIGURE\n",
+ "BG=3000.-750.## REFER FIGURE\n",
+ "GH=2.*pi## REFER FIGURE\n",
+ "CH=3000.-750.## REFER FIGURE\n",
+ "HD=pi## REFER FIGURE\n",
+ "LM=2.*pi## REFER FIGURE\n",
+ "T=OA*OF+1./2.*AG*BG+BG*GH+1./2.*CH*HD## Torque required for one complete cycle in Nm\n",
+ "Tmean=T/(6.*pi)## mean torque in Nm\n",
+ "w=P/Tmean## angular velocity required in rad/s\n",
+ "BL=3000.-1875.## refer figure\n",
+ "KL=BL*AG/BG## From similar trangles\n",
+ "CM=3000.-1875.## refer figure\n",
+ "MN=CM*HD/CH##from similar triangles\n",
+ "E=1./2.*KL*BL+BL*LM+1./2.*CM*MN## Maximum fluctuaion of energy in Nm\n",
+ "m=E*100./(k**2*w**2.*Cs)## mass of flywheel in kg\n",
+ "print'%s %.1f %s'%('Mass of the flywheel= ',m,' kg')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass of the flywheel= 1150.3 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 6 PAGE NO 179\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "import math\n",
+ "pi=3.141\n",
+ "PI=180.##in degrees\n",
+ "theta1=0.\n",
+ "theta2=PI\n",
+ "m=400.## mass of the flywheel in kg\n",
+ "N=250.## speed in rpm\n",
+ "k=.4## radius of gyration in m\n",
+ "n=2.*250./60000.## no of working strokes per minute\n",
+ "W=1000.*pi-150.*math.cos((2*theta2)/57.3)-250.*math.sin((2*theta2)/57.3)-(1000.*theta1-150.*math.cos((2*theta1)/57.3)-250.*math.sin((2*theta1)/57.3))## workdone per stroke in Nm\n",
+ "P=W*n## power in KW\n",
+ "Tmean=W/pi## mean torque in Nm\n",
+ "twotheta=math.atan((500/300)/57.3)## angle at which T-Tmean becomes zero\n",
+ "THETA1=twotheta/2.\n",
+ "THETA2=(180.+twotheta)/2.\n",
+ "E=-150.*math.cos((2.*THETA2)/57.3)-250.*math.sin((2.*THETA2)/57.3)-(-150*math.cos((2.*THETA1)/57.3)-250.*math.sin((2*THETA1)/57.3))## FLUCTUATION OF ENERGY IN Nm\n",
+ "w=2.*pi*N/60.## angular speed in rad/s\n",
+ "Cs1=E*100./(k**2.*w**2.*m)## fluctuation range\n",
+ "Cs=Cs1/2.## tatal percentage of fluctuation of speed\n",
+ "Theta=60.\n",
+ "T1=300.*math.sin((2*Theta)/57.3)-500.*math.cos((2*Theta)/57.3)## Accelerating torque in Nm(T-Tmean)\n",
+ "alpha=T1/(m*k**2.)## angular acceleration in rad/s**2\n",
+ "print'%s %.1f %s %.3f %s %.3f %s '%('Power delivered=',P,' kw''Total percentage of fluctuation speed=',Cs,' ''Angular acceleration=',alpha,'rad/s**2')\n",
+ "#in book ans is given wrong \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power delivered= 26.2 kwTotal percentage of fluctuation speed= 0.342 Angular acceleration= 7.965 rad/s**2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 7 PAGE NO 181\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "\n",
+ "pi=3.141\n",
+ "m=200.## mass of the flywheel in kg\n",
+ "k=.5## radius of gyration in m\n",
+ "N1=360.## upper limit of speed in rpm\n",
+ "N2=240.## lower limit of speed in rpm\n",
+ "##==========\n",
+ "I=m*k**2.## mass moment of inertia in kg m**2\n",
+ "w1=2.*pi*N1/60.\n",
+ "w2=2.*pi*N2/60.\n",
+ "E=1./2.*I*(w1**2.-w2**2.)## fluctuation of energy in Nm\n",
+ "Pmin=E/(4.*1000.)## power in kw\n",
+ "Eex=Pmin*12.*1000.## Energy expended in performing each operation in N-m\n",
+ "print'%s %.1f %s %.1f %s '%('Mimimum power required= ',Pmin,' kw' ' Energy expended in performing each operation= ',Eex,' N-m')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mimimum power required= 4.9 kw Energy expended in performing each operation= 59195.3 N-m \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 8 PAGE NO 182\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "import math\n",
+ "pi=3.141\n",
+ "b=8.## width of the strip in cm\n",
+ "t=2.## thickness of the strip in cm\n",
+ "w=1.2*10**3.## work required per square cm cut\n",
+ "N1=200.## maximum speed of the flywheel in rpm\n",
+ "k=.80## radius of gyration in m\n",
+ "N2=(1.-.15)*N1## minimum speed of the flywheel in rpm\n",
+ "T=3.## time required to punch a hole\n",
+ "##=======================\n",
+ "A=b*t## area cut of each stroke in cm**2\n",
+ "W=w*A## work required to cut a strip in Nm\n",
+ "w1=2.*pi*N1/60.## speed before cut in rpm\n",
+ "w2=2.*pi*N2/60.## speed after cut in rpm\n",
+ "m=2.*W/(k**2.*(w1**2.-w2**2.))## mass of the flywheel required in kg\n",
+ "a=(w1-w2)/T## angular acceleration in rad/s**2\n",
+ "Ta=m*k**2.*a## torque required in Nm\n",
+ "print'%s %.1f %s %.1f %s '%('Mass of the flywheel= ',m,' kg'' Amount of Torque required=',Ta,'Nm')\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass of the flywheel= 493.1 kg Amount of Torque required= 330.4 Nm \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 9 PAGE NO 182\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "\n",
+ "pi=3.141\n",
+ "P=5.*10**3.## power delivered by motor in watts\n",
+ "N1=360.## speed of the flywheel in rpm\n",
+ "I=60.## mass moment of inertia in kg m**2\n",
+ "E1=7500.## energy required by pressing machine for 1 second in Nm\n",
+ "##========================\n",
+ "Ehr=P*60.*60.## energy sipplied per hour in Nm\n",
+ "n=Ehr/E1\n",
+ "E=E1-P## total fluctuation of energy in Nm\n",
+ "w1=2.*pi*N1/60.## angular speed before pressing in rpm \n",
+ "w2=((2.*pi*N1/60.)**2.-(2.*E/I))**.5## angular speed after pressing in rpm \n",
+ "N2=w2*60./(2.*pi)\n",
+ "R=N1-N2## reduction in speed in rpm\n",
+ "print'%s %.1f %s %.1f %s '%('No of pressings that can be made per hour= ',n,' Reduction in speed after the pressing is over= ',R,' rpm ')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "No of pressings that can be made per hour= 2400.0 Reduction in speed after the pressing is over= 10.7 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 6 ILLUSRTATION 10 PAGE NO 183\n",
+ "##TITLE:Turning Moment Diagram and Flywheel\n",
+ "import math\n",
+ "pi=3.141\n",
+ "Cs=.02## coefficient of fluctuation of speed \n",
+ "N=200.## speed of the engine in rpm\n",
+ "\n",
+ "theta1=math.acos(0/57.3)\n",
+ "theta2=math.asin((-6000/16000)/57.3)\n",
+ "theta2=180.-theta2\n",
+ "##===============================================\n",
+ "##largest area,representing fluctuation of energy lies between theta1 and theta2\n",
+ "E=6000.*math.sin(theta2/57.3)-8000./2.*math.cos((2*theta2)/57.3)-(6000.*math.sin((theta1)/57.3)-8000./2.*math.cos((2*theta1)/57.3))## total fluctuation of energy in Nm\n",
+ "Theta=180## angle with which cycle will be repeated in degrees\n",
+ "Theta1=0\n",
+ "Tmean=1/pi*((15000*pi+(-8000*math.cos((2*Theta)/57.3))/2.)-((15000*Theta1+(-8000*math.cos((2*Theta1)/57.3))/2.)))## mean torque of engine in Nm\n",
+ "P=2*pi*N*Tmean/60000.## power of the engine in kw\n",
+ "w=2*pi*N/60.## angular speed of the engine in rad/s\n",
+ "I=E/(w**2.*Cs)## mass moment of inertia of flywheel in kg-m**2\n",
+ "print'%s %.1f %s %.1f %s '%('Power of the engine= ',P,' kw'' minimum mass moment of inertia of flywheel=',-I,' kg-m**2'' E value calculated in the textbook is wrong. Its value is -15,124. In textbook it is given as -1370.28')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power of the engine= 314.1 kw minimum mass moment of inertia of flywheel= 19.5 kg-m**2 E value calculated in the textbook is wrong. Its value is -15,124. In textbook it is given as -1370.28 \n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter7.ipynb b/_Theory_Of_Machines/Chapter7.ipynb
new file mode 100755
index 00000000..064e91a6
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter7.ipynb
@@ -0,0 +1,638 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e7c45b9f9a74c2d06cff538ea39937b4592b2eb0de2281e1b9530b19c7e61df9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter7-GOVERNORS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 1 PAGE NO 196\n",
+ "##TITLE:GOVERNORS\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "L=.4## LENGTH OF UPPER ARM IN m\n",
+ "THETA=30.## INCLINATION TO THE VERTICAL IN degrees\n",
+ "K=.02## RISED LENGTH IN m\n",
+ "##============================================================================================\n",
+ "h2=L*math.cos(THETA/57.3)## GOVERNOR HEIGHT IN m\n",
+ "N2=(895./h2)**.5## SPEED AT h2 IN rpm\n",
+ "h1=h2-K## LENGTH WHEN IT IS RAISED BY 2 cm\n",
+ "N1=(895./h1)**.5## SPEED AT h1 IN rpm\n",
+ "n=(N1-N2)/N2*100.## PERCENTAGE CHANGE IN SPEED\n",
+ "##==========================================================================================\n",
+ "print'%s %.1f %s'%('PERCENTAGE CHANGE IN SPEED=',n,' PERCENTAGE')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "PERCENTAGE CHANGE IN SPEED= 3.0 PERCENTAGE\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 2 PAGE NO 197\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.5(A),7.5(B)\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "OA=.3## LENGTH OF UPPER ARM IN m\n",
+ "m=6.## MASS OF EACH BALL IN Kg\n",
+ "M=18.## MASS OF SLEEVE IN Kg\n",
+ "r2=.2## RADIUS OF ROTATION AT BEGINING IN m\n",
+ "r1=.25## RADIUS OF ROTATION AT MAX SPEED IN m\n",
+ "##===========================================================================================\n",
+ "h1=(OA**2.-r1**2.)**.5## HIEGHT OF GOVERNOR AT MAX SPEED IN m\n",
+ "N1=(895.*(m+M)/(h1*m))**.5## MAX SPEED IN rpm\n",
+ "h2=(OA**2.-r2**2.)**.5## HEIGHT OF GONERNOR AT BEGINING IN m\n",
+ "N2=(895.*(m+M)/(h2*m))**.5## MIN SPEED IN rpm\n",
+ "##===========================================================================================\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('MAX SPEED = ',N1,' rpm'' MIN SPEED = ',N2,' rpm''RANGE OF SPEED = ',N1-N2,' rpm')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "MAX SPEED = 146.9 rpm MIN SPEED = 126.5 rpmRANGE OF SPEED = 20.4 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 3 PAGE NO 197\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.6\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "OA=.25## LENGHT OF UPPER ARM IN m\n",
+ "CD=.03## DISTANCE BETWEEN LEEVE AND LOWER ARM IN m\n",
+ "m=6.## MASS OF BALL IN Kg\n",
+ "M=48.## MASS OF SLEEVE IN Kg\n",
+ "AE=.17## FROM FIGURE 7.6\n",
+ "AE1=.12## FROM FIGURE 7.6\n",
+ "r1=.2## RADIUS OF ROTATION AT MAX SPEED IN m\n",
+ "r2=.15## RADIUS OF ROTATION AT MIN SPEED IN m\n",
+ "##============================================================================================\n",
+ "h1=(OA**2-r1**2)**.5## HIEGHT OF GOVERNOR AT MIN SPEED IN m\n",
+ "TANalpha=r1/h1\n",
+ "TANbeeta=AE/(OA**2-AE**2)**.5\n",
+ "k=TANbeeta/TANalpha\n",
+ "N1=(895.*(m+(M*(1.+k)/2.))/(h1*m))**.5## MIN SPEED IN rpm\n",
+ "h2=(OA**2-r2**2)**.5## HIEGHT OF GOVERNOR AT MAX SPEED IN m\n",
+ "CE=(OA**2-AE1**2)**.5\n",
+ "TANalpha1=r2/h2\n",
+ "TANbeeta1=(r2-CD)/CE\n",
+ "k=TANbeeta1/TANalpha1\n",
+ "N2=(895.*(m+(M*(1.+k)/2.))/(h2*m))**.5## MIN SPEED IN rpm\n",
+ "##========================================================================================================\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('MAX SPEED = ',N1,' rpm'' MIN SPEED = ',N2,' rpm''RANGE OF SPEED = ',N1-N2,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "MAX SPEED = 215.5 rpm MIN SPEED = 188.2 rpmRANGE OF SPEED = 27.2 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg199"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 4 PAGE NO 199\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.7\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY \n",
+ "OA=.20## LENGHT OF UPPER ARM IN m\n",
+ "AC=.20## LENGTH OF LOWER ARM IN m\n",
+ "CD=.025## DISTANCE BETWEEN AXIS AND LOWER ARM IN m\n",
+ "AB=.1## RADIUS OF ROTATION OF BALLS IN m\n",
+ "N2=250## SPEED OF THE GOVERNOR IN rpm\n",
+ "X=.05## SLEEVE LIFT IN m\n",
+ "m=5.## MASS OF BALL IN Kg\n",
+ "M=20.## MASS OF SLEEVE IN Kg\n",
+ "##===========================================================\n",
+ "h2=(OA**2.-AB**2.)**.5## OB DISTANCE IN m IN FIGURE\n",
+ "h21=(AC**2.-(AB-CD)**2.)**.5## BD DISTANCE IN m IN FIGURE\n",
+ "TANbeeta=(AB-CD)/h21## TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL\n",
+ "TANalpha=AB/h2## TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n",
+ "k=TANbeeta/TANalpha\n",
+ "c=X/(2.*(h2*(1.+k)-X))## PERCENTAGE INCREASE IN SPEED \n",
+ "n=c*N2## INCREASE IN SPEED IN rpm\n",
+ "N1=N2+n## SPEED AFTER LIFT OF SLEEVE\n",
+ "E=c*g*((2.*m/(1.+k))+M)## GOVERNOR EFFORT IN N\n",
+ "P=E*X## GOVERNOR POWER IN N-m\n",
+ "\n",
+ "print'%s %.1f %s %.2f %s %.1f %s '%('SPEED OF THE GOVERNOR WHEN SLEEVE IS LIFT BY 5 cm = ',N1,' rpm'' GOVERNOR EFFORT = ',E,' N' 'GOVERNOR POWER = ',P,' N-m')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "SPEED OF THE GOVERNOR WHEN SLEEVE IS LIFT BY 5 cm = 275.6 rpm GOVERNOR EFFORT = 25.95 NGOVERNOR POWER = 1.3 N-m \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 5 PAGE NO 200\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.8\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY \n",
+ "OA=.30## LENGHT OF UPPER ARM IN m\n",
+ "AC=.30## LENGTH OF LOWER ARM IN m\n",
+ "m=10.## MASS OF BALL IN Kg\n",
+ "M=50.## MASS OF SLEEVE IN Kg\n",
+ "r=.2## RADIUS OF ROTATION IN m\n",
+ "CD=.04## DISTANCE BETWEEN AXIS AND LOWER ARM IN m\n",
+ "F=15.## FRICTIONAL LOAD ACTING IN N\n",
+ "##============================================================\n",
+ "h=(OA**2-r**2)**.5## HIEGTH OF THE GOVERNOR IN m\n",
+ "AE=r-CD## AE VALUE IN m\n",
+ "CE=(AC**2-AE**2)**.5## BD DISTANCE IN m\n",
+ "TANalpha=r/h## TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n",
+ "TANbeeta=AE/CE## TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL\n",
+ "k=TANbeeta/TANalpha\n",
+ "N=((895./h)*(m+(M*(1.+k)/2.))/m)**.5## EQULIBRIUM SPEED IN rpm\n",
+ "N1=((895./h)*((m*g)+(M*g+F)/2.)*(1.+k)/(m*g))**.5## MAX SPEED IN rpm\n",
+ "N2=((895./h)*((m*g)+(M*g-F)/2.)*(1.+k)/(m*g))**.5## MIN SPEED IN rpm\n",
+ "R=N1-N2## RANGE OF SPEED\n",
+ "print'%s %.1f %s %.1f %s '%('EQUILIBRIUM SPEED OF GOVERNOR = ',N,' rpm'' RANGE OF SPEED OF GOVERNOR= ',R,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "EQUILIBRIUM SPEED OF GOVERNOR = 145.1 rpm RANGE OF SPEED OF GOVERNOR= 3.4 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 6 PAGE NO 202\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.9\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY \n",
+ "OA=.30## LENGHT OF UPPER ARM IN m\n",
+ "AC=.30## LENGTH OF LOWER ARM IN m\n",
+ "m=5.## MASS OF BALL IN Kg\n",
+ "M=25.## MASS OF SLEEVE IN Kg\n",
+ "X=.05## LIFT OF THE SLEEVE\n",
+ "alpha=30.## ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL\n",
+ "##==============================================\n",
+ "h2=OA*math.cos(alpha/57.3)## HEIGHT OF THE GOVERNOR AT LOWEST POSITION OF SLEEVE\n",
+ "h1=h2-X/2.## HEIGHT OF THE GOVERNOR AT HEIGHT POSITION OF SLEEVE\n",
+ "F=((h2/h1)*(m*g+M*g)-(m*g+M*g))/(1.+h2/h1)## FRICTION AT SLEEVE IN N\n",
+ "N1=((m*g+M*g+F)*895./(h1*m*g))**.5## MAX SPEEED OF THE GOVVERNOR IN rpm\n",
+ "N2=((m*g+M*g-F)*895./(h2*m*g))**.5## MIN SPEEED OF THE GOVVERNOR IN rpm\n",
+ "R=N1-N2## RANGE OF SPEED IN rpm\n",
+ "\n",
+ "print'%s %.1f %s %.1f %s'%('THE VALUE OF FRICTIONAL FORCE= ',F,' F'' RANGE OF SPEED OF THE GOVERNOR = ',R,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE VALUE OF FRICTIONAL FORCE= 14.9 F RANGE OF SPEED OF THE GOVERNOR = 14.9 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg203"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 7 PAGE NO 203\n",
+ "##TITLE:GOVERNORS\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "m=3## MASS OF EACH BALL IN Kg\n",
+ "a=.12## LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n",
+ "b=.08## LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n",
+ "r2=.12## RADIUS OF ROTATION OF THE BALL FOR LOWEST POSITION IN m\n",
+ "N2=320.## SPEED OF GOVERNOR AT THE BEGINING IN rpm\n",
+ "S=20000.## STIFFNESS OF THE SPRING IN N/m\n",
+ "h=.015## SLEEVE LIFT IN m\n",
+ "##==================================================\n",
+ "Fc2=m*(2.*PI*N2/60.)**2*r2## CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N\n",
+ "L=2*a*Fc2/b## INITIAL LOAD ON SPRING IN N\n",
+ "r1=a/b*h+r2## MAX RADIUS OF ROTATION IN m\n",
+ "Fc1=(S*(r1-r2)*(b/a)**2/2)+Fc2## CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N\n",
+ "N1=(Fc1/(m*r1)*(60./2./PI)**2)**.5\n",
+ "print'%s %.1f %s %.1f %s '%('INITIAL LOAD ON SPRING =',L,' N'' EQUILIBRIUM SPEED CORRESPONDING TO LIFT OF 15 cm =',N1,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "INITIAL LOAD ON SPRING = 1217.0 N EQUILIBRIUM SPEED CORRESPONDING TO LIFT OF 15 cm = 327.9 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 8 PAGE NO 204\n",
+ "##TITLE:GOVERNORS\n",
+ "\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "m=3## MASS OF BALL IN Kg\n",
+ "r2=.2## INITIAL RADIUS OF ROTATION IN m\n",
+ "a=.11## LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n",
+ "b=.15## LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n",
+ "h=.004## SLEEVE LIFT IN m\n",
+ "N2=240.## INITIAL SPEED IN rpm\n",
+ "n=7.5## FLUCTUATION OF SPEED IN %\n",
+ "##===================================\n",
+ "w2=2.*PI*N2/60.## INITIAL ANGULAR SPEED IN rad/s\n",
+ "w1=(100.+n)*w2/100.## FINAL ANGULAR SPEED IN rad/s\n",
+ "F=2.*a/b*m*w2**2.*r2## INITIAL COMPRESSIVE FORCE IN N\n",
+ "r1=r2+a/b*h## MAX RDIUS OF ROTATION IN m\n",
+ "S=2.*((m*w1**2.*r1)-(m*w2**2.*r2))/(r1-r2)*(a/b)**2.\n",
+ "print'%s %.1f %s %.1f %s'%('INITIAL COMPRESSIVE FPRCE = ',F,' N'' STIFFNESS OF THE SPRING = ',S/1000,' N/m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "INITIAL COMPRESSIVE FPRCE = 557.8 N STIFFNESS OF THE SPRING = 24.1 N/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 9 PAGE NO 204\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.3(C)\n",
+ "\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY \n",
+ "PI=3.147\n",
+ "r=.14## DISTANCE BETWEEN THE CENTRE OF PIVOT OF BELL CRANK LEVER AND AXIS OF GOVERNOR SPINDLE IN m\n",
+ "r2=.11## INITIAL RADIUS OF ROTATION IN m\n",
+ "a=.12## LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m\n",
+ "b=.10## LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m\n",
+ "h=.05## SLEEVE LIFT IN m\n",
+ "N2=240## INITIAL SPEED IN rpm\n",
+ "F=30## FRICTIONAL FORCE ACTING IN N\n",
+ "m=5## MASS OF EACH BALL IN Kg\n",
+ "##==========================================\n",
+ "r1=r2+a/b*h## MAX RADIUS OF ROTATION IN m\n",
+ "N1=41.*N2/39.## MAX SPEED OF ROTATION IN rpm\n",
+ "N=(N1+N2)/2.## MEAN SPEED IN rpm\n",
+ "Fc1=m*(2.*PI*N1/60.)**2.*r1## CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N\n",
+ "Fc2=m*(2.*PI*N2/60.)**2.*r2## CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N\n",
+ "c1=r1-r## FROM FIGURE 7.3(C) IN m\n",
+ "a1=(a**2.-c1**2.)**.5## FROM FIGURE 7.3(C) IN m\n",
+ "b1=(b**2.-(h/2.)**2.)**.5## FROM FIGURE 7.3(C) IN m\n",
+ "c2=r-r2## FROM FIGURE 7.3(C) IN m\n",
+ "a2=a1## FROM FIGURE 7.3(C) IN m\n",
+ "b2=b1## FROM FIGURE 7.3(C) IN m\n",
+ "S1=2.*((Fc1*a1)-(m*g*c1))/b1## SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS\n",
+ "S2=2.*((Fc2*a2)-(m*g*c2))/b2## SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS\n",
+ "S=(S1-S2)/h## STIFFNESS OF THE SPRING IN N/m\n",
+ "Is=S2/S## INITIAL COMPRESSION OF SPRING IN m\n",
+ "P=S2+(h/2.*S)## SPRING FORCE OF MID PORTION IN N\n",
+ "n1=N*((P+F)/P)**.5## SPEED,WHEN THE SLEEVE BEGINS TO MOVE UPWARDS FROM MID POSITION IN rpm\n",
+ "n2=N*((P-F)/P)**.5## SPEED,WHEN THE SLEEVE BEGINS TO MOVE DOWNWARDS FROM MID POSITION IN rpm\n",
+ "A=n1-n2## ALTERATION IN SPEED IN rpm\n",
+ "print'%s %.1f %s %.1f %s '%('INTIAL COMPRESSION OF SPRING= ',Is*100,' cm''ALTERATION IN SPEED = ',A,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "INTIAL COMPRESSION OF SPRING= 6.8 cmALTERATION IN SPEED = 6.7 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 10 PAGE NO 206\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.10\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "AE=.25## LENGTH OF UPPER ARM IN m\n",
+ "CE=.25## LENGTH OF LOWER ARM IN m\n",
+ "EH=.1## LENGTH OF EXTENDED ARM IN m\n",
+ "EF=.15## RADIUS OF BALL PATH IN m\n",
+ "m=5.## MASS OF EACH BALL IN Kg\n",
+ "M=40.## MASS OF EACH BALL IN Kg\n",
+ "##===================================================================\n",
+ "h=(AE**2.-EF**2.)**.5## HEIGHT OF THE GOVERNOR IN m\n",
+ "EM=h\n",
+ "HM=EH+EM## FROM FIGURE 7.10\n",
+ "N=((895./h)*(EM/HM)*((m+M)/m))**.5\n",
+ "print'%s %.1f %s'%('EQUILIBRIUM SPEED OF GOVERNOR =',N,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "EQUILIBRIUM SPEED OF GOVERNOR = 163.9 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg207"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 11 PAGE NO 207\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.11\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "g=9.81## ACCELERATION DUE TO GRAVITY IN N/mm**2\n",
+ "AE=.25## LENGTH OF UPPER ARM IN m\n",
+ "CE=.25## LENGTH OF LOWER ARM IN m\n",
+ "ER=.175## FROM FIGURE 7.11\n",
+ "AP=.025## FROM FIGURE 7.11\n",
+ "FR=AP## FROM FIGURE 7.11\n",
+ "CQ=FR## FROM FIGURE 7.11\n",
+ "m=3.2## MASS OF BALL IN Kg\n",
+ "M=25.## MASS OF SLEEVE IN Kg\n",
+ "h=.2## VERTICAL HEIGHT OF GOVERNOR IN m\n",
+ "EM=h## FROM FIGURE 7.11\n",
+ "AF=h## FROM FIGURE 7.11\n",
+ "N=160.## SPEED OF THE GOVERNOR IN rpm\n",
+ "HM=(895.*EM*(m+M)/(h*N**2.*m))\n",
+ "x=HM-EM## LENGTH OF EXTENDED LINK IN m\n",
+ "T1=g*(m+M/2.)*AE/AF## TENSION IN UPPER ARM IN N\n",
+ "print'%s %.3f %s %.1f %s'%('LENGTH OF EXTENDED LINK = ',x,' m''TENSION IN UPPER ARM =',T1,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "LENGTH OF EXTENDED LINK = 0.108 mTENSION IN UPPER ARM = 192.5 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 7 ILLUSRTATION 12 PAGE NO 208\n",
+ "##TITLE:GOVERNORS\n",
+ "##FIGURE 7.12,7.13\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "PI=3.147\n",
+ "EF=.20## MINIMUM RADIUS OF ROTATION IN m\n",
+ "AE=.30## LENGTH OF EACH ARM IN m\n",
+ "A1E1=AE## COMPARING FIRUES 7.12&7.13\n",
+ "EC=.30## LENGTH OF EACH ARM IN m\n",
+ "E1C1=EC## LENGTH OF EACH ARM IN m\n",
+ "ED=.165## FROM FIGURE 7.12 IN m\n",
+ "MC=ED## FROM FIGURE 7.12\n",
+ "EH=.10## FROM FIGURE 7.12 IN m\n",
+ "m=8.## MASS OF BALL IN Kg \n",
+ "M=60.## MASS OF SLEEVE IN Kg\n",
+ "DF=.035## SLEEVE DISTANCE FROM AXIS IN m\n",
+ "E1F1=.25## MAX RADIUS OF ROTATION IN m\n",
+ "g=9.81\n",
+ "##=========================================================\n",
+ "alpha=math.asin((EF/AE))*57.3## ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL IN DEGREES\n",
+ "beeta=math.asin((ED/EC))*57.3## ANGLE OF INCLINATION OF THE ARM TO THE HORIZONTAL IN DEGREES\n",
+ "k=math.tan(beeta/57.3)/math.tan(alpha/57.3)\n",
+ "h=(AE**2.-EF**2.)**.5## HEIGHT OF GOVERNOR IN m\n",
+ "EM=(EC**2.-MC**2.)**.5## FROM FIGURE 7.12 IN m\n",
+ "HM=EM+EH\n",
+ "N2=(895.*EM*(m+(M/2.*(1.+k)))/(h*HM*m))**.5## EQUILIBRIUM SPEED AT MAX RADIUS\n",
+ "HC=(HM**2.+MC**2.)**.5## FROM FIGURE 7.13 IN m\n",
+ "H1C1=HC\n",
+ "gama=math.atan((MC/HM))*57.3\n",
+ "alpha1=math.asin((E1F1/A1E1))*57.3\n",
+ "E1D1=E1F1-DF## FROM FIGURE 7.13 IN m\n",
+ "beeta1=math.asin((E1D1/E1C1))*57.3\n",
+ "gama1=gama-beeta+beeta1\n",
+ "r=H1C1*math.sin(gama1/57.3)+DF## RADIUS OF ROTATION IN m\n",
+ "H1M1=H1C1*math.cos((gama1/57.3))\n",
+ "I1C1=E1C1*math.cos(beeta1/57.3)*(math.tan(alpha1/57.3)+math.tan(beeta1/57.3))## FROM FIGURE IN m\n",
+ "M1C1=H1C1*math.sin(gama1/57.3)\n",
+ "w1=(((m*g*(I1C1-M1C1))+(M*g*I1C1)/2.)/(m*r*H1M1))**.5## ANGULAR SPEED IN rad/s\n",
+ "N1=w1*60./(2.*PI)## ##SPEED IN m/s\n",
+ "print'%s %.1f %s %.1f %s '%('MINIMUM SPEED OF ROTATION =',N2,' rpm'' MAXIMUM SPEED OF ROTATION = ',N1,' rpm')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "MINIMUM SPEED OF ROTATION = 146.6 rpm MAXIMUM SPEED OF ROTATION = 156.3 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter8.ipynb b/_Theory_Of_Machines/Chapter8.ipynb
new file mode 100755
index 00000000..9bd9a862
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter8.ipynb
@@ -0,0 +1,334 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1cb0ae5332b03066df5ce763bd8fad0da93c877f86bbb84639588cca0d91016e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Chapter8-BALANCING OF ROTATING MASSES"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 8 ILLUSRTATION 1 PAGE NO 221\n",
+ "##TITLE:BALANCING OF ROTATING MASSES\n",
+ "pi=3.141\n",
+ "import math\n",
+ "mA=12.## mass of A in kg\n",
+ "mB=10.## mass of B in kg\n",
+ "mC=18.## mass of C in kg\n",
+ "mD=15.## mass of D in kg\n",
+ "rA=40.## radius of A in mm\n",
+ "rB=50.## radius of B in mm\n",
+ "rC=60.## radius of C in mm\n",
+ "rD=30.## radius of D in mm\n",
+ "theta1=0.## angle between A-A in degrees\n",
+ "theta2=60.## angle between A-B in degrees\n",
+ "theta3=130.## angle between A-C in degrees\n",
+ "theta4=270.## angle between A-D in degrees\n",
+ "R=100.## radius at which mass to be determined in mm\n",
+ "##====================================================\n",
+ "Fh=(mA*rA*math.cos(theta1/57.3)+mB*rB*math.cos(theta2/57.3)+mC*rC*math.cos(theta3/57.3)+mD*rD*math.cos(theta4/57.3))/10.## vertical component value in kg cm\n",
+ "Fv=(mA*rA*math.sin(theta1/57.3)+mB*rB*math.sin(theta2/57.3)+mC*rC*math.sin(theta3/57.3)+mD*rD*math.sin(theta4/57.3))/10.## horizontal component value in kg cm\n",
+ "mb=(Fh**2.+Fv**2.)**.5/R*10.## unbalanced mass in kg\n",
+ "theta=math.atan(Fv/Fh)*57.3## position in degrees \n",
+ "THETA=180.+theta## angle with mA\n",
+ "print'%s %.1f %s %.1f %s'%('magnitude of unbalaced mass=',mb,' kg'' angle with mA=',THETA,'degrees')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnitude of unbalaced mass= 8.1 kg angle with mA= 267.5 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 8 ILLUSRTATION 2 PAGE NO 222\n",
+ "##TITLE:BALANCING OF ROTATING MASSES\n",
+ "pi=3.141\n",
+ "\n",
+ "mA=5.## mass of A in kg\n",
+ "mB=10.## mass of B in kg\n",
+ "mC=8.## mass of C in kg\n",
+ "rA=10.## radius of A in cm\n",
+ "rB=15.## radius of B in cm\n",
+ "rC=10.## radius of C in cm\n",
+ "rD=10.## radius of D in cm\n",
+ "rE=15.## radius of E in cm\n",
+ "##============================\n",
+ "mD=182./rD## mass of D in kg by mearument\n",
+ "mE=80./rE## mass of E in kg by mearument\n",
+ "print'%s %.1f %s %.1f %s '%('mass of D= ',mD,' kg''mass of E= ',mE,' kg')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mass of D= 18.2 kgmass of E= 5.3 kg \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg223"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 8 ILLUSRTATION 3 PAGE NO 223\n",
+ "##TITLE:BALANCING OF ROTATING MASSES\n",
+ "pi=3.141\n",
+ "\n",
+ "mA=200.## mass of A in kg\n",
+ "mB=300.## mass of B in kg\n",
+ "mC=400.## mass of C in kg\n",
+ "mD=200.## mass of D in kg\n",
+ "rA=80.## radius of A in mm\n",
+ "rB=70.## radius of B in mm\n",
+ "rC=60.## radius of C in mm\n",
+ "rD=80.## radius of D in mm\n",
+ "rX=100.## radius of X in mm\n",
+ "rY=100.## radius of Y in mm\n",
+ "##=====================\n",
+ "mY=7.3/.04## mass of Y in kg by mearurement\n",
+ "mX=35./.1## mass of X in kg by mearurement\n",
+ "thetaX=146.## in degrees by mesurement\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('mass of X=',mX,' kg'' mass of Y=',mY,' kg''angle with mA=',thetaX,' degrees')\n",
+ "\t"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mass of X= 350.0 kg mass of Y= 182.5 kgangle with mA= 146.0 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg225"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 8 ILLUSRTATION 4 PAGE NO 225\n",
+ "##TITLE:BALANCING OF ROTATING MASSES\n",
+ "pi=3.141\n",
+ "\n",
+ "mB=30## mass of B in kg\n",
+ "mC=50## mass of C in kg\n",
+ "mD=40## mass of D in kg\n",
+ "rA=18## radius of A in cm\n",
+ "rB=24## radius of B in cm\n",
+ "rC=12## radius of C in cm\n",
+ "rD=15## radius of D in cm\n",
+ "##=============================\n",
+ "mA=3.6/.18## mass of A by measurement in kg\n",
+ "theta=124.## angle with mass B in degrees by measurement in degrees\n",
+ "y=3.6/(.18*20)## position of A from B\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('mass of A=',mA,' kg'' angle with mass B=',theta,' degrees'' position of A from B=',y,' m towards right of plane B')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "mass of A= 20.0 kg angle with mass B= 124.0 degrees position of A from B= 1.0 m towards right of plane B\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 8 ILLUSRTATION 5 PAGE NO 226\n",
+ "##TITLE:BALANCING OF ROTATING MASSES\n",
+ "pi=3.141\n",
+ "\n",
+ "mB=10.## mass of B in kg\n",
+ "mC=5.## mass of C in kg\n",
+ "mD=4.## mass of D in kg\n",
+ "rA=10.## radius of A in cm\n",
+ "rB=12.5## radius of B in cm\n",
+ "rC=20.## radius of C in cm\n",
+ "rD=15.## radius of D in cm\n",
+ "##=====================================\n",
+ "mA=7.## mass of A in kg by mesurement\n",
+ "BC=118.## angle between B and C in degrees by mesurement\n",
+ "BA=203.5## angle between B and A in degrees by mesurement\n",
+ "BD=260.## angle between B and D in degrees by mesurement\n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.1f %s '%('Mass of A=',mA,' kg'' angle between B and C=',BC,' degrees''angle between B and A= ',BA,' degrees'' angle between B and D=',BD,' degrees')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass of A= 7.0 kg angle between B and C= 118.0 degreesangle between B and A= 203.5 degrees angle between B and D= 260.0 degrees \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 8 ILLUSRTATION 6 PAGE NO 228\n",
+ "##TITLE:BALANCING OF ROTATING MASSES\n",
+ "pi=3.141\n",
+ "\n",
+ "mB=36.## mass of B in kg\n",
+ "mC=25.## mass of C in kg\n",
+ "rA=20.## radius of A in cm\n",
+ "rB=15.## radius of B in cm\n",
+ "rC=15.## radius of C in cm\n",
+ "rD=20.## radius of D in cm\n",
+ "##==================================\n",
+ "mA=3.9/.2## mass of A in kg by measurement\n",
+ "mD=16.5## mass of D in kg by measurement\n",
+ "theta=252.## angular position of D from B by measurement in degrees\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('Mass of A= ',mA,' kg'' Mass od D= ',mD,' kg'' Angular position of D from B= ',theta,' degrees')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass of A= 19.5 kg Mass od D= 16.5 kg Angular position of D from B= 252.0 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 8 ILLUSRTATION 7 PAGE NO 229\n",
+ "##TITLE:BALANCING OF ROTATING MASSES\n",
+ "\n",
+ "\n",
+ "pi=3.141\n",
+ "mA=48.## mass of A in kg\n",
+ "mB=56.## mass of B in kg\n",
+ "mC=20.## mass of C in kg\n",
+ "rA=1.5## radius of A in cm\n",
+ "rB=1.5## radius of B in cm\n",
+ "rC=1.25## radius of C in cm\n",
+ "N=300.## speed in rpm\n",
+ "d=1.8## distance between bearing in cm\n",
+ "##================================\n",
+ "w=2.*pi*N/60.## angular speed in rad/s\n",
+ "BA=164.## angle between pulleys B&A in degrees by measurement\n",
+ "BC=129.## angle between pulleys B&C in degrees by measurement\n",
+ "AC=67.## angle between pulleys A&C in degrees by measurement\n",
+ "C=.88*w**2.## out of balance couple in N\n",
+ "L=C/d## load on each bearing in N\n",
+ "print'%s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s '%('angle between pulleys B&A=',BA,' degrees'' angle between pulleys B&C= ',BC,' degrees'' angle between pulleys A&C=',AC,' degrees'' out of balance couple= ',C,' N'' load on each bearing=',L,' N')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle between pulleys B&A= 164.0 degrees angle between pulleys B&C= 129.0 degrees angle between pulleys A&C= 67.0 degrees out of balance couple= 868.2 N load on each bearing= 482.3 N \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/Chapter9.ipynb b/_Theory_Of_Machines/Chapter9.ipynb
new file mode 100755
index 00000000..0fbeb89f
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter9.ipynb
@@ -0,0 +1,151 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:dda7459eb606339995d5ed2e2c12f6be43bc2a1b7dc283fd0394011879a85b71"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter9-CAMS AND FOLLOWERS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg247"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 9 ILLUSRTATION 2 PAGE NO 247\n",
+ "##TITLE:CAMS AND FOLLOWERS\n",
+ "import math\n",
+ "pi=3.141\n",
+ "s=4.## follower movement in cm\n",
+ "theta=60.## cam rotation in degrees\n",
+ "THETA=60.*pi/180## cam rotation in rad\n",
+ "thetaD=45.## after outstroke in degrees\n",
+ "thetaR=90.##....angle with which it reaches its original position in degrees\n",
+ "THETAR=90.*pi/180## angle with which it reaches its original position in rad\n",
+ "THETAd=360.-theta-thetaD-thetaR## angle after return stroke in degrees\n",
+ "N=300.## speed in rpm\n",
+ "w=2.*pi*N/60.## speed in rad/s\n",
+ "Vo=pi*w*s/2./THETA## Maximum velocity of follower during outstroke in cm/s\n",
+ "Vr=pi*w*s/2./THETAR## Maximum velocity of follower during return stroke in cm/s\n",
+ "Fo=pi**2.*w**2.*s/2./THETA**2./100.##Maximum acceleration of follower during outstroke in m/s**2 \n",
+ "Fr=pi**2.*w**2.*s/2./THETAR**2/100.##Maximum acceleration of follower during return stroke in m/s**2\n",
+ "print'%s %.1f %s %.1f %s '%('Maximum acceleration of follower during outstroke =',Fo,' m/s**2''Maximum acceleration of follower during return stroke= ',Fr,' m/s**2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum acceleration of follower during outstroke = 177.6 m/s**2Maximum acceleration of follower during return stroke= 78.9 m/s**2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg249"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 9 ILLUSRTATION 3 PAGE NO 249\n",
+ "##TITLE:CAMS AND FOLLOWERS\n",
+ "import math\n",
+ "pi=3.141\n",
+ "s=5.## follower movement in cm\n",
+ "theta=120.## cam rotation in degrees\n",
+ "THETA=theta*pi/180.## cam rotation in rad\n",
+ "thetaD=30.## after outstroke in degrees\n",
+ "thetaR=60.##....angle with which it reaches its original position in degrees\n",
+ "THETAR=60.*pi/180.## angle with which it reaches its original position in rad\n",
+ "THETAd=360.-theta-thetaD-thetaR## angle after return stroke in degrees\n",
+ "N=100.## speed in rpm\n",
+ "w=2.*pi*N/60.## speed in rad/s\n",
+ "Vo=pi*w*s/2./THETA## Maximum velocity of follower during outstroke in cm/s\n",
+ "Vr=pi*w*s/2./THETAR## Maximum velocity of follower during return stroke in cm/s\n",
+ "Fo=pi**2.*w**2.*s/2./THETA**2./100.##Maximum acceleration of follower during outstroke in m/s**2\n",
+ "Fr=pi**2*w**2.*s/2./THETAR**2/100.##Maximum acceleration of follower during return stroke in m/s**2\n",
+ "print'%s %.1f %s %.1f %s '%('Maximum acceleration of follower during outstroke =',Fo,' m/s**2''Maximum acceleration of follower during return stroke= ',Fr,' m/s**2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum acceleration of follower during outstroke = 6.2 m/s**2Maximum acceleration of follower during return stroke= 24.7 m/s**2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg252"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 9 ILLUSRTATION 5 PAGE NO 252\n",
+ "##TITLE:CAMS AND FOLLOWERS\n",
+ "import math\n",
+ "pi=3.141\n",
+ "N=1000.## speed of cam in rpm\n",
+ "w=2.*pi*N/60.## angular speed in rad/s\n",
+ "s=2.5## stroke of the follower in cm\n",
+ "THETA=120.*pi/180.## ANGULAR DISPLACEMENT OF CAM DURING OUTSTROKE IN RAD\n",
+ "THETAR=90.*pi/180.##ANGULAR DISPLACEMENT OF CAM DURING DWELL IN RAD\n",
+ "Vo=2.*w*s/THETA## Maximum velocity of follower during outstroke in cm/s\n",
+ "Vr=2.*w*s/THETAR##Maximum velocity of follower during return stroke in cm/s\n",
+ "Fo=4.*w**2.*s/THETA**2.##Maximum acceleration of follower during outstroke in m/s**2\n",
+ "Fr=4.*w**2.*s/THETAR**2.##Maximum acceleration of follower during return stroke in m/s**2\n",
+ "print'%s %.1f %s %.1f %s '%('Maximum acceleration of follower during outstroke =',Fo,' m/s**2''Maximum acceleration of follower during return stroke= ',Fr,' m/s**2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum acceleration of follower during outstroke = 25000.0 m/s**2Maximum acceleration of follower during return stroke= 44444.4 m/s**2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/_Theory_Of_Machines/screenshots/Chapter1.png b/_Theory_Of_Machines/screenshots/Chapter1.png
new file mode 100755
index 00000000..eef4ed79
--- /dev/null
+++ b/_Theory_Of_Machines/screenshots/Chapter1.png
Binary files differ
diff --git a/_Theory_Of_Machines/screenshots/Chapter2.png b/_Theory_Of_Machines/screenshots/Chapter2.png
new file mode 100755
index 00000000..82e1d651
--- /dev/null
+++ b/_Theory_Of_Machines/screenshots/Chapter2.png
Binary files differ
diff --git a/_Theory_Of_Machines/screenshots/Chapter3.png b/_Theory_Of_Machines/screenshots/Chapter3.png
new file mode 100755
index 00000000..a9869d84
--- /dev/null
+++ b/_Theory_Of_Machines/screenshots/Chapter3.png
Binary files differ