diff options
Diffstat (limited to '_Theory_Of_Machines/Chapter2.ipynb')
-rwxr-xr-x | _Theory_Of_Machines/Chapter2.ipynb | 824 |
1 files changed, 824 insertions, 0 deletions
diff --git a/_Theory_Of_Machines/Chapter2.ipynb b/_Theory_Of_Machines/Chapter2.ipynb new file mode 100755 index 00000000..0ed80f3b --- /dev/null +++ b/_Theory_Of_Machines/Chapter2.ipynb @@ -0,0 +1,824 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1b022ca97a90c946dcce72b014fa00f7dd7b26ac917f0b5fe9fdd6cabd6dcdfd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2-TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2 ILLUSRTATION 1 PAGE NO 57\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "Na=300.;##driving shaft running speed in rpm\n",
+ "Nb=400.;##driven shaft running speed in rpm\n",
+ "Da=60.;##diameter of driving shaft in mm\n",
+ "t=.8;##belt thickness in mm\n",
+ "s=.05;##slip in percentage(5%)\n",
+ "##==========================================================================================\n",
+ "##calculation\n",
+ "Db=(Da*Na)/Nb;##finding out the diameter of driven shaft without considering the thickness of belt\n",
+ "Db1=(((Da+t)*Na)/Nb)-t##/considering the thickness\n",
+ "Db2=(1.-s)*(Da+t)*(Na/Nb)-t##considering slip also\n",
+ "##=========================================================================================\n",
+ "##output\n",
+ "print'%s %.1f %s'%('the value of Db is',Db,' cm')\n",
+ "print'%s %.1f %s'%('the value of Db1 is',Db1,' cm')\n",
+ "print'%s %.1f %s'%('the value of Db2 is',Db2,' cm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of Db is 45.0 cm\n",
+ "the value of Db1 is 44.8 cm\n",
+ "the value of Db2 is 42.5 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSRTATION 2 PAGE NO 57\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "\n",
+ "##====================================================================================\n",
+ "##input\n",
+ "n1=1200##rpm of motor shaft\n",
+ "d1=40##diameter of motor pulley in cm\n",
+ "d2=70##diameter of 1st pulley on the shaft in cm\n",
+ "s=.03##percentage slip(3%)\n",
+ "d3=45##diameter of 2nd pulley\n",
+ "d4=65##diameter of the pulley on the counnter shaft\n",
+ "##=========================================================================================\n",
+ "##calculation\n",
+ "n2=n1*d1*(1-s)/d2##rpm of driven shaft\n",
+ "n3=n2##both the pulleys are mounted on the same shaft\n",
+ "n4=n3*(1-s)*d3/d4##rpm of counter shaft\n",
+ "\n",
+ "##output\n",
+ "print'%s %.1f %s %.1f %s '%('the speed of driven shaft is',n2,' rpm''the speed of counter shaft is ',n4,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the speed of driven shaft is 665.1 rpmthe speed of counter shaft is 446.7 rpm \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2 ILLUSTRATION 3 PAGE NO:58\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##==============================================================================\n",
+ "##input\n",
+ "d1=30.##diameter of 1st shaft in cm\n",
+ "d2=50.##diameter 2nd shaft in cm\n",
+ "pi=3.141\n",
+ "c=500.##centre distance between the shafts in cm\n",
+ "##==============================================================================\n",
+ "##calculation\n",
+ "L1=((d1+d2)*pi/2.)+(2.*c)+((d1+d2)**2.)/(4.*c)##lenth of cross belt\n",
+ "L2=((d1+d2)*pi/2.)+(2.*c)+((d1-d2)**2.)/(4.*c)##lenth of open belt\n",
+ "r=L1-L2##remedy\n",
+ "##==============================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s '%('length of cross belt is ',L1,'cm '' length of open belt is ',L2,'cm''the length of the belt to be shortened is ',r,' cm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "length of cross belt is 1128.8 cm length of open belt is 1125.8 cmthe length of the belt to be shortened is 3.0 cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "##CHAPTER 2,ILLUSTRATION 4 PAGE 59\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##====================================================================================\n",
+ "##INPUT\n",
+ "D1=.5## DIAMETER OF 1ST SHAFT IN m\n",
+ "D2=.25## DIAMETER OF 2nd SHAFT IN m\n",
+ "C=2.## CENTRE DISTANCE IN m\n",
+ "N1=220.## SPEED OF 1st SHAFT\n",
+ "T1=1250.## TENSION ON TIGHT SIDE IN N\n",
+ "U=.25## COEFFICIENT OF FRICTION\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "##====================================================================================\n",
+ "##CALCULATION\n",
+ "L=(D1+D2)*PI/2.+((D1+D2)**2./(4.*C))+2.*C\n",
+ "F=(D1+D2)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.+(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "T2=T1/(e**(U*THETA))## TENSION ON SLACK SIDE IN N\n",
+ "V=PI*D1*N1/60.## VELOCITY IN m/s\n",
+ "P=(T1-T2)*V/1000.## POWER IN kW\n",
+ "##====================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('LENGTH OF BELT REQUIRED =',L,' m')\n",
+ "print'%s %.1f %s'%('ANGLE OF CONTACT =',THETA,' radians')\n",
+ "print'%s %.1f %s'%('POWER CAN BE TRANSMITTED=',P,' kW')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "LENGTH OF BELT REQUIRED = 5.2 m\n",
+ "ANGLE OF CONTACT = 3.1 radians\n",
+ "POWER CAN BE TRANSMITTED= 3.9 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 5 PAGE 5\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##=====================================================================================================\n",
+ "##input\n",
+ "n1=100.## of driving shaft\n",
+ "n2=240.##speed of driven shaft\n",
+ "p=11000.##power to be transmitted in watts\n",
+ "c=250.##centre distance in cm\n",
+ "d2=60.##diameter in cm\n",
+ "b=11.5*10**-2##width of belt in metres\n",
+ "t=1.2*10**-2##thickness in metres\n",
+ "u=.25##co-efficient of friction \n",
+ "pi=3.141\n",
+ "e=2.71\n",
+ "##===================================================================================================\n",
+ "##calculation for open bely drive\n",
+ "d1=n2*d2/n1\n",
+ "f=(d1-d2)/(2.*c)##sin(alpha) for open bely drive\n",
+ "##angle of arc of contact for open belt drive is,theta=180-2*alpha\n",
+ "alpha=math.asin(f)*57.3\n",
+ "teta=(180.-(2*alpha))*3.147/180.##pi/180 is used to convert into radians\n",
+ "x=(e**(u*teta))##finding out the value of t1/t2\n",
+ "v=pi*d2*10.*n2/60.##finding out the value of t1-t2\n",
+ "y=p*1000./(v)\n",
+ "t1=(y*x)/(x-1.)\n",
+ "Fb=t1/(t*b)/1000.\n",
+ "##=======================================================================================================\n",
+ "##calculation for cross belt drive bely drive\n",
+ "F=(d1+d2)/(2.*c)##for cross belt drive bely drive\n",
+ "ALPHA=math.asin(F)*57.3\n",
+ "THETA=(180.+(2.*ALPHA))*pi/180.##pi/180 is used to convert into radians\n",
+ "X=(e**(u*THETA))##finding out the value of t1/t2\n",
+ "V=pi*d2*10.*n2/60.##finding out the value of t1-t2\n",
+ "Y=p*1000./(V)\n",
+ "T1=(Y*X)/(X-1.)\n",
+ "Fb2=T1/(t*b)/1000.\n",
+ "##========================================================================================================\n",
+ "##output\n",
+ "print('for a open belt drive:')\n",
+ "print'%s %.1f %s %.1f %s'%('the tension in belt is ',t1,'N' 'stress induced is ',Fb,' kN/m**2')\n",
+ "print('for a cross belt drive:')\n",
+ "print'%s %.1f %s %.1f %s '%('the tension in belt is ',T1,'N' 'stress induced is ',Fb2,' kN/m**2')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "for a open belt drive:\n",
+ "the tension in belt is 2898.4 Nstress induced is 2100.3 kN/m**2\n",
+ "for a cross belt drive:\n",
+ "the tension in belt is 2318.8 Nstress induced is 1680.3 kN/m**2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 6 PAGE 61\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##========================================================================================\n",
+ "##INPUT\n",
+ "D1=80.##DIAMETER OF SHAFT IN cm\n",
+ "N1=160.##SPEED OF 1ST SHAFT IN rpm\n",
+ "N2=320.##SPEED OF 2ND SHAFT IN rpm\n",
+ "C=250.##CENTRE DISTANCE IN CM\n",
+ "U=.3##COEFFICIENT OF FRICTION\n",
+ "P=4.##POWER IN KILO WATTS\n",
+ "e=2.71\n",
+ "PI=3.141\n",
+ "f=110.##STRESS PER cm WIDTH OF BELT\n",
+ "##========================================================================================\n",
+ "##CALCULATION\n",
+ "V=PI*D1*math.pow(10,-2)*N1/60.##VELOCITY IN m/s\n",
+ "Y=P*1000./V##Y=T1-T2\n",
+ "D2=D1*(N1/N2)##DIAMETER OF DRIVEN SHAFT\n",
+ "F=(D1-D2)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.-(2.*ALPHA))*PI/180.##ANGLE OF CONTACT IN radians\n",
+ "X=e**(U*THETA)##VALUE OF T1/T2\n",
+ "T1=X*Y/(X-1.)\n",
+ "b=T1/f##WIDTH OF THE BELT REQUIRED \n",
+ "##=======================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('THE WIDTH OF THE BELT IS ',b,' cm')\n",
+ "#apporximate ans is correct "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE WIDTH OF THE BELT IS 8.9 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2 ILLUSRTATION 7 PAGE NO 62\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "m=1000.## MASS OF THE CASTING IN kg\n",
+ "PI=3.141\n",
+ "THETA=2.75*2*PI## ANGLE OF CONTACT IN radians\n",
+ "D=.26## DIAMETER OF DRUM IN m\n",
+ "N=24.## SPEED OF THE DRUM IN rpm\n",
+ "U=.25## COEFFICIENT OF FRICTION\n",
+ "e=2.71\n",
+ "T1=9810## TENSION ON TIGHTSIDE IN N\n",
+ "##=============================================================================================\n",
+ "##CALCULATION\n",
+ "T2=T1/(e**(U*THETA))## tension on slack side of belt in N\n",
+ "W=m*9.81## WEIGHT OF CASTING IN N\n",
+ "R=D/2.## RADIUS OF DRUM IN m\n",
+ "P=2*PI*N*W*R/60000.## POWER REQUIRED IN kW\n",
+ "P2=(T1-T2)*PI*D*N/60000.## POWER SUPPLIED BY DRUM IN kW\n",
+ "##============================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s %.1f %s '%('FORCE REQUIRED BY MAN=',T2,' N'and 'POWER REQUIRED TO RAISE CASTING=',P,' kW' 'POWER SUPPLIED BY DRUM=',P2,' kW')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "FORCE REQUIRED BY MAN= 132.4 POWER REQUIRED TO RAISE CASTING= 3.2 kWPOWER SUPPLIED BY DRUM= 3.2 kW \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 8 PAGE 62\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##INPUT\n",
+ "t=9.##THICKNESS IN mm\n",
+ "b=250.##WIDTH IN mm\n",
+ "D=90.##DIAMETER OF PULLEY IN cm\n",
+ "N=336.##SPEED IN rpm\n",
+ "PI=3.141\n",
+ "U=.35##COEFFICIENT FRICTION\n",
+ "e=2.71\n",
+ "THETA=120.*PI/180.\n",
+ "Fb=2.##STRESS IN MPa\n",
+ "d=1000.##DENSITY IN KG/M**3\n",
+ "\n",
+ "##CALCULATION\n",
+ "M=b*10**-3.*t*10**-3.*d##MASS IN KG\n",
+ "V=PI*D*10**-2.*N/60.##VELOCITY IN m/s\n",
+ "Tc=M*V**2##CENTRIFUGAL TENSION\n",
+ "Tmax=b*t*Fb##MAX TENSION IN N\n",
+ "T1=Tmax-Tc\n",
+ "T2=T1/(e**(U*THETA))\n",
+ "P=(T1-T2)*V/1000.\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('THE TENSION ON TIGHT SIDE OF THE BELT IS',T1,' N')\n",
+ "print'%s %.1f %s'%('THE TENSION ON SLACK SIDE OF THE BELT IS ',T2,' N')\n",
+ "print'%s %.1f %s'%('CENTRIFUGAL TENSION =',Tc,'N')\n",
+ "print'%s %.1f %s'%('THE POWER CAPACITY OF BELT IS ',P,' KW')\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE TENSION ON TIGHT SIDE OF THE BELT IS 3936.1 N\n",
+ "THE TENSION ON SLACK SIDE OF THE BELT IS 1895.6 N\n",
+ "CENTRIFUGAL TENSION = 563.9 N\n",
+ "THE POWER CAPACITY OF BELT IS 32.3 KW\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 9 PAGE 63\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##INPUT\n",
+ "P=35000.##POWER TO BE TRANSMITTED IN WATTS\n",
+ "D=1.5##EFFECTIVE DIAMETER OF PULLEY IN METRES\n",
+ "N=300.##SPEED IN rpm\n",
+ "e=2.71\n",
+ "U=.3##COEFFICIENT OF FRICTION\n",
+ "PI=3.141\n",
+ "THETA=(11/24.)*360.*PI/180.##ANGLE OF CONTACT\n",
+ "density=1.1##density of belt material in Mg/m**3\n",
+ "L=1.##in metre\n",
+ "t=9.5##THICKNESS OF BELT IN mm\n",
+ "Fb=2.5##PERMISSIBLE WORK STRESS IN N/mm**2\n",
+ "\n",
+ "##CALCULATION\n",
+ "V=PI*D*N/60.##VELOCITY IN m/s\n",
+ "X=P/V##X=T1-T2\n",
+ "Y=e**(U*THETA)##Y=T1/T2\n",
+ "T1=X*Y/(Y-1)\n",
+ "Mb=t*density*L/10**3.##value of m/b\n",
+ "Tc=Mb*V**2.##centrifugal tension/b\n",
+ "Tmaxb=t*Fb##max tension/b\n",
+ "b=T1/(Tmaxb-Tc)##thickness in mm\n",
+ "##output\n",
+ "print'%s %.1f %s'%('TENSION IN TIGHT SIDE OF THE BELT =',T1,' N')\n",
+ "print'%s %.1f %s'%('THICKNESS OF THE BELT IS =',b,' mm')\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "TENSION IN TIGHT SIDE OF THE BELT = 2573.5 N\n",
+ "THICKNESS OF THE BELT IS = 143.4 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 10 PAGE 64\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##INPUT\n",
+ "t=5.##THICKNESS OF BELT IN m\n",
+ "PI=3.141\n",
+ "U=.3\n",
+ "e=2.71\n",
+ "THETA=155.*PI/180.##ANGLE OF CONTACT IN radians\n",
+ "V=30.##VELOCITY IN m/s\n",
+ "density=1.##in m/cm**3\n",
+ "L=1.##LENGTH\n",
+ "\n",
+ "##calculation\n",
+ "Xb=80.## (T1-T2)=80b;so let (T1-T2)/b=Xb\n",
+ "Y=e**(U*THETA)## LET Y=T1/T2\n",
+ "Zb=80.*Y/(Y-1.)## LET T1/b=Zb;BY SOLVING THE ABOVE 2 EQUATIONS WE WILL GET THIS EXPRESSION\n",
+ "Mb=t*L*density*10**-2.## m/b in N\n",
+ "Tcb=Mb*V**2.## centrifugal tension/b\n",
+ "Tmaxb=Zb+Tcb## MAX TENSION/b\n",
+ "Fb=Tmaxb/t##STRESS INDUCED IN TIGHT BELT\n",
+ "\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT=',Fb,' N/cm**2')\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT= 37.8 N/cm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11-pg65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 11 PAGE 65\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##INPUT\n",
+ "C=4.5## CENTRE DISTANCE IN metres\n",
+ "D1=1.35## DIAMETER OF LARGER PULLEY IN metres\n",
+ "D2=.9## DIAMETER OF SMALLER PULLEY IN metres\n",
+ "To=2100.## INITIAL TENSION IN newtons\n",
+ "b=12.## WIDTH OF BELT IN cm\n",
+ "t=12.## THICKNESS OF BELT IN mm\n",
+ "d=1.## DENSITY IN gm/cm**3\n",
+ "U=.3## COEFFICIENT OF FRICTION\n",
+ "L=1.## length in metres\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "\n",
+ "##CALCULATION\n",
+ "M=b*t*d*L*10**-2.## mass of belt per metre length in KG\n",
+ "V=(To/3./M)**.5## VELOCITY OF FOR MAX POWER TO BE TRANSMITTED IN m/s\n",
+ "Tc=M*V**2.## CENTRIFUGAL TENSION IN newtons\n",
+ "## LET (T1+T2)=X\n",
+ "X=2.*To-2.*Tc ## THE VALUE OF (T1+T2)\n",
+ "F=(D1-D2)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "## LET T1/T2=Y\n",
+ "Y=e**(U*THETA)## THE VALUE OF T1/T2\n",
+ "T1=X*Y/(Y+1.)## BY SOLVING X AND Y WE WILL GET THIS EQN\n",
+ "T2=X-T1\n",
+ "P=(T1-T2)*V/1000.## MAX POWER TRANSMITTED IN kilowatts\n",
+ "N1=V*60./(PI*D1)## SPEED OF LARGER PULLEY IN rpm\n",
+ "N2=V*60./(PI*D2)## SPEED OF SMALLER PULLEY IN rpm\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%(' MAX POWER TO BE TRANSMITTED =',P,' KW')\n",
+ "print'%s %.1f %s'%(' SPEED OF THE LARGER PULLEY =',N1,' rpm')\n",
+ "print'%s %.1f %s'%(' SPEED OF THE SMALLER PULLEY =',N2,' rpm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " MAX POWER TO BE TRANSMITTED = 27.0 KW\n",
+ " SPEED OF THE LARGER PULLEY = 312.0 rpm\n",
+ " SPEED OF THE SMALLER PULLEY = 468.0 rpm\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12-pg66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 12 PAGE 66\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##============================================================================================================================\n",
+ "##INPUT\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "D1=1.20## DIAMETER OF DRIVING SHAFT IN m\n",
+ "D2=.50## DIAMETER OF DRIVEN SHAFT IN m\n",
+ "C=4.## CENTRE DISTANCE BETWEEN THE SHAFTS IN m\n",
+ "M=.9## MASS OF BELT PER METRE LENGTH IN kg\n",
+ "Tmax=2000## MAX TENSION IN N\n",
+ "U=.3## COEFFICIENT OF FRICTION\n",
+ "N1=200.## SPEED OF DRIVING SHAFT IN rpm\n",
+ "N2=450.## SPEED OF DRIVEN SHAFT IN rpm\n",
+ "##==============================================================================================================================\n",
+ "##CALCULATION\n",
+ "V=PI*D1*N1/60.## VELOCITY OF BELT IN m/s\n",
+ "Tc=M*V**2.## CENTRIFUGAL TENSION IN N\n",
+ "T1=Tmax-Tc## TENSION ON TIGHTSIDE IN N\n",
+ "F=(D1-D2)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "T2=T1/(e**(U*THETA))## TENSION ON SLACK SIDE IN N\n",
+ "TL=(T1-T2)*D1/2.## TORQUE ON THE SHAFT OF LARGER PULLEY IN N-m\n",
+ "TS=(T1-T2)*D2/2.## TORQUE ON THE SHAFT OF SMALLER PULLEY IN N-m\n",
+ "P=(T1-T2)*V/1000.## POWER TRANSMITTED IN kW\n",
+ "Pi=2.*PI*N1*TL/60000.## INPUT POWER\n",
+ "Po=2.*PI*N2*TS/60000.## OUTPUT POWER\n",
+ "Pl=Pi-Po## POWER LOST DUE TO FRICTION IN kW\n",
+ "n=Po/Pi*100.## EFFICIENCY OF DRIVE IN %\n",
+ "##==================================================================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s'%('TORQUE ON LARGER SHAFT =',TL,'N-m')\n",
+ "print'%s %.1f %s'%('TORQUE ON SMALLER SHAFT =',TS,' N-m')\n",
+ "print'%s %.1f %s'%('POWER TRANSMITTED =',P,' kW')\n",
+ "print'%s %.1f %s'%('POWER LOST DUE TO FRICTION =',Pl,' kW')\n",
+ "print'%s %.1f %s'%('EFFICIENCY OF DRINE =',n,' percentage')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "TORQUE ON LARGER SHAFT = 679.0 N-m\n",
+ "TORQUE ON SMALLER SHAFT = 282.9 N-m\n",
+ "POWER TRANSMITTED = 14.2 kW\n",
+ "POWER LOST DUE TO FRICTION = 0.9 kW\n",
+ "EFFICIENCY OF DRINE = 93.8 percentage\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13-pg67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 13 PAGE 67\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##============================================================================================================================\n",
+ "##INPUT\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "P=90## POWER OF A COMPRESSOR IN kW\n",
+ "N2=250.## SPEED OF DRIVEN SHAFT IN rpm\n",
+ "N1=750.## SPEED OF DRIVER SHAFT IN rpm\n",
+ "D2=1.## DIAMETER OF DRIVEN SHAFT IN m\n",
+ "C=1.75## CENTRE DISTANCE IN m\n",
+ "V=1600./60.## VELOCITY IN m/s\n",
+ "a=375.## CROSECTIONAL AREA IN mm**2\n",
+ "density=1000.## BELT DENSITY IN kg/m**3\n",
+ "L=1## length to be considered\n",
+ "Fb=2.5## STRESSS INDUCED IN MPa\n",
+ "beeta=35./2.## THE GROOVE ANGLE OF PULLEY\n",
+ "U=.25## COEFFICIENT OF FRICTION\n",
+ "##=================================================================================================================================\n",
+ "##CALCULATION\n",
+ "D1=N2*D2/N1## DIAMETER OF DRIVING SHAFT IN m\n",
+ "m=a*density*10**-6.*L## MASS OF THE BELT IN kg\n",
+ "Tmax=a*Fb## MAX TENSION IN N\n",
+ "Tc=m*V**2.## CENTRIFUGAL TENSION IN N\n",
+ "T1=Tmax-Tc## TENSION ON TIGHTSIDE OF BELT IN N\n",
+ "F=(D2-D1)/(2.*C)\n",
+ "ALPHA=math.asin(F/57.3)\n",
+ "THETA=(180.-(2.*ALPHA))*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "T2=T1/(e**(U*THETA/math.sin(beeta/57.3)))##TENSION ON SLACKSIDE IN N\n",
+ "P2=(T1-T2)*V/1000.## POWER TRANSMITTED PER BELT kW\n",
+ "N=P/P2## NO OF V-BELTS\n",
+ "N3=N+1.\n",
+ "##======================================================================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s '%('NO OF BELTS REQUIRED TO TRANSMIT POWER=',N,' APPROXIMATELY=',N3,'')\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NO OF BELTS REQUIRED TO TRANSMIT POWER= 5.4 APPROXIMATELY= 6.4 \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14-pg68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 2,ILLUSTRATION 14 PAGE 68\n",
+ "##TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS\n",
+ "import math\n",
+ "##============================================================================================================================\n",
+ "##INPUT\n",
+ "PI=3.141\n",
+ "e=2.71\n",
+ "P=75.## POWER IN kW\n",
+ "D=1.5## DIAMETER OF PULLEY IN m\n",
+ "U=.3## COEFFICIENT OF FRICTION\n",
+ "beeta=45./2.## GROOVE ANGLE\n",
+ "THETA=160.*PI/180.## ANGLE OF CONTACT IN radians\n",
+ "m=.6## MASS OF BELT IN kg/m\n",
+ "Tmax=800.## MAX TENSION IN N\n",
+ "N=200.## SPEED OF SHAFT IN rpm\n",
+ "##=============================================================================================================================\n",
+ "##calculation\n",
+ "V=PI*D*N/60.## VELOCITY OF ROPE IN m/s\n",
+ "Tc=m*V**2.## CENTRIFUGAL TENSION IN N\n",
+ "T1=Tmax-Tc## TENSION ON TIGHT SIDE IN N\n",
+ "T2=T1/(e**(U*THETA/math.sin(beeta/57.3)))##TENSION ON SLACKSIDE IN N\n",
+ "P2=(T1-T2)*V/1000.## POWER TRANSMITTED PER BELT kW\n",
+ "No=P/P2## NO OF V-BELTS\n",
+ "N3=No+1.## ROUNDING OFF\n",
+ "To=(T1+T2+Tc*2.)/2.## INITIAL TENSION\n",
+ "##================================================================================================================================\n",
+ "##OUTPUT\n",
+ "print'%s %.1f %s %.1f %s '%('NO OF BELTS REQUIRED TO TRANSMIT POWER=',No,'' 'APPROXIMATELY=',N3,'')\n",
+ "print'%s %.1f %s'%('INITIAL ROPE TENSION=',To,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "NO OF BELTS REQUIRED TO TRANSMIT POWER= 8.3 APPROXIMATELY= 9.3 \n",
+ "INITIAL ROPE TENSION= 510.8 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |