summaryrefslogtreecommitdiff
path: root/_Theory_Of_Machines/Chapter10.ipynb
diff options
context:
space:
mode:
authorhardythe12015-06-03 15:27:17 +0530
committerhardythe12015-06-03 15:27:17 +0530
commitdf60071cf1d1c18822d34f943ab8f412a8946b69 (patch)
treeab059cf19bad4a1233a464ccf5d72cf8b3fb323c /_Theory_Of_Machines/Chapter10.ipynb
parentfba055ce5aa0955e22bac2413c33493b10ae6532 (diff)
downloadPython-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.tar.gz
Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.tar.bz2
Python-Textbook-Companions-df60071cf1d1c18822d34f943ab8f412a8946b69.zip
add books
Diffstat (limited to '_Theory_Of_Machines/Chapter10.ipynb')
-rwxr-xr-x_Theory_Of_Machines/Chapter10.ipynb507
1 files changed, 507 insertions, 0 deletions
diff --git a/_Theory_Of_Machines/Chapter10.ipynb b/_Theory_Of_Machines/Chapter10.ipynb
new file mode 100755
index 00000000..5ae48acb
--- /dev/null
+++ b/_Theory_Of_Machines/Chapter10.ipynb
@@ -0,0 +1,507 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5f892b8e3ed0a74f24a745bdf0e14528cdf96fe8388a860fc7931df67549db87"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter10-Brakes and Dynamometers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 1 PAGE NO 268\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate torque transmitted by the block brake\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d=0.32;##Diameter of the drum in m\n",
+ "qq=90.;##Angle of contact in degree\n",
+ "P=820.;##Force applied in N\n",
+ "U=0.35;##Coefficient of friction\n",
+ "\n",
+ "\n",
+ "U1=((4.*U*math.sin(45/57.3))/((qq*(3.14/180.))+math.sin(90./57.3)));##Equivalent coefficient of friction\n",
+ "F=((P*0.66)/((0.3/U1)-0.06));##Force value in N taking moments\n",
+ "TB=(F*(d/2.));##Torque transmitted in N.m\n",
+ "\n",
+ "print'%s %.4f %s'%('Torque transmitted by the block brake is ',TB,' N.m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Torque transmitted by the block brake is 120.4553 N.m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 2 PAGE NO 269\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate The bicycle travels a distance and makes turns before it comes to rest\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "m=120.;##Mass of rider in kg\n",
+ "v=16.2;##Speed of rider in km/hr\n",
+ "d=0.9;##Diameter of the wheel in m\n",
+ "P=120.;##Pressure applied on the brake in N\n",
+ "U=0.06;##Coefficient of friction\n",
+ "\n",
+ "F=(U*P);##Frictional force in N\n",
+ "KE=((m*(v*(5./18.))**2.)/2.);##Kinematic Energy in N.m\n",
+ "S=(KE/F);##Distance travelled by the bicycle before it comes to rest in m\n",
+ "N=(S/(d*3.14));##Required number of revolutions\n",
+ "\n",
+ "print'%s %.1f %s %.1f %s'%('The bicycle travels a distance of ',S,' m'and'',N,'turns before it comes to rest')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The bicycle travels a distance of 168.8 59.7 turns before it comes to rest\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 3 PAGE NO 270\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#evaluvate maximum torque absorbed\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "S=3500.;##Force on each arm in N\n",
+ "d=0.36;##Diamter of the wheel in m\n",
+ "U=0.4;##Coefficient of friction \n",
+ "qq=100.;##Contact angle in degree\n",
+ "\n",
+ "qqr=(qq*(3.14/180));##Contact angle in radians\n",
+ "UU=((4*U*math.sin(50/57.3))/(qqr+(math.sin(100./57.3))));##Equivalent coefficient of friction\n",
+ "F1=(S*0.45)/((0.2/UU)+((d/2.)-0.04));##Force on fulcrum in N\n",
+ "F2=(S*0.45)/((0.2/UU)-((d/2.)-0.04));##Force on fulcrum in N\n",
+ "TB=(F1+F2)*(d/2.);##Maximum torque absorbed in N.m\n",
+ "\n",
+ "print'%s %.2f %s'%('Maximum torque absorbed is ',TB,' N.m')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum torque absorbed is 1412.67 N.m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 4 PAGE NO 271\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate The maximum braking torque on the drum\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "a=0.5;##Length of lever in m\n",
+ "d=0.5;##Diameter of brake drum in m\n",
+ "q=(5/8.)*(2*3.14);##Angle made in radians\n",
+ "b=0.1;##Distance between pin and fulcrum in m\n",
+ "P=2000.;##Effort applied in N\n",
+ "U=0.25;##Coefficient of friction\n",
+ "\n",
+ "T=math.exp(U*q);##Ratios of tension\n",
+ "T2=((P*a)/b);##Tension in N\n",
+ "T1=(T*T2);##Tension in N\n",
+ "TB=((T1-T2)*(d/2.))/1000.;##Maximum braking torque in kNm\n",
+ "\n",
+ "print'%s %.2f %s'%('The maximum braking torque on the drum is',TB,' kNm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum braking torque on the drum is 4.17 kNm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 5 PAGE NO 271\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#caculate the brake is self -locking and tension in the side \n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "q=220.;##Angle of contact in degree\n",
+ "T=340.;##Torque in Nm\n",
+ "d=0.32;##Diameter of drum in m\n",
+ "U=0.3;##Coefficient of friction\n",
+ "\n",
+ "Td=(T/(d/2.));##Difference in tensions in N\n",
+ "Tr=math.exp(U*(q*(3.14/180.)));##Ratio of tensions\n",
+ "T2=(Td/(Tr-1.));##Tension in N\n",
+ "T1=(Tr*T2);##Tension in N\n",
+ "P=((T2*(d/2.))-(T1*0.04))/0.5;##Force applied in N\n",
+ "b=(T1/T2)*4.;##Value of b in cm when the brake is self-locking\n",
+ "\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('The value of b is ',b,' cm' 'when the brake is self-locking ' 'Tensions in the sides are ',T1,' N and',T2,' N')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of b is 12.65 cmwhen the brake is self-locking Tensions in the sides are 3107.70 N and 982.70 N \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg272"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 6 PAGE NO 272\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate torque required and thickness necessary to limit the tensile stress to 70 and secton of the lever taking stress to 60 mpa\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "d=0.5;##Drum diamter in m\n",
+ "U=0.3;##Coefficient of friction\n",
+ "q=250;##Angle of contact in degree\n",
+ "P=750;##Force in N\n",
+ "a=0.1;##Band width in m\n",
+ "b=0.8;##Distance in m\n",
+ "ft=(70*10**6);##Tensile stress in Pa\n",
+ "f=(60*10**6);##Stress in Pa\n",
+ "b1=0.1;##Distance in m\n",
+ "\n",
+ "T=math.exp(U*(q*(3.14/180.)));##Tensions ratio\n",
+ "T2=(P*b*10.)/(T+1.);##Tension in N\n",
+ "T1=(T*T2);##Tension in N\n",
+ "TB=(T1-T2)*(d/2.);##Torque in N.m\n",
+ "t=(max(T1,T2)/(ft*a))*1000.;##Thickness in mm\n",
+ "M=(P*b);##bending moment at fulcrum in Nm\n",
+ "X=(M/((1/6.)*f));##Value of th**2\n",
+ "##t varies from 10mm to 15 mm. Taking t=15mm,\n",
+ "h=math.sqrt(X/(0.015))*1000.;##Section of the lever in m\n",
+ "\n",
+ "print'%s %.1f %s %.1f %s %.1f %s'%('Torque required is ',TB,' N.m' 'Thickness necessary to limit the tensile stress to 70 MPa is ',t,' mm ''Section of the lever taking stress to 60 MPa is ',h,' mm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Torque required is 861.7 N.mThickness necessary to limit the tensile stress to 70 MPa is 0.7 mm Section of the lever taking stress to 60 MPa is 63.2 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg273"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 7 PAGE NO 273\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "#calculate value of x and value of power/bd ratio \n",
+ "import math\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "P1=30.;##Power in kW\n",
+ "N=1250.;##Speed in r.p.m\n",
+ "P=60.;##Applied force in N\n",
+ "d=0.8;##Drum diameter in m\n",
+ "q=310.;##Contact angle in degree\n",
+ "a=0.03;##Length of a in m\n",
+ "b=0.12;##Length of b in m\n",
+ "U=0.2;##Coefficient of friction\n",
+ "B=10.;##Band width in cm\n",
+ "D=80.;##Diameter in cm\n",
+ "\n",
+ "T=(P1*60000.)/(2.*3.14*N);##Torque in N.m\n",
+ "Td=(T/(d/2.));##Tension difference in N\n",
+ "Tr=math.exp(U*(q*(3.14/180.)));##Tensions ratio\n",
+ "T2=(Td/(Tr-1.));##Tension in N\n",
+ "T1=(Tr*T2);##Tension in N\n",
+ "x=((T2*b)-(T1*a))/P;##Distance in m;\n",
+ "X=(P1/(B*D));##Ratio\n",
+ "\n",
+ "print'%s %.3f %s %.3f %s'%('Value of x is ',x,' m '' Value of (Power/bD) ratio is ',X,'')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of x is 0.155 m Value of (Power/bD) ratio is 0.037 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg274"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 8 PAGE NO 274\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate time required to bring the shaft to the rest from its running condition\n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "m=80.;##Mass of flywheel in kg\n",
+ "k=0.5;##Radius of gyration in m\n",
+ "N=250;##Speed in r.p.m\n",
+ "d=0.32;##Diamter of the drum in m\n",
+ "b=0.05;##Distance of pin in m\n",
+ "q=260.;##Angle of contact in degree\n",
+ "U=0.23;##Coefficient of friction\n",
+ "P=20;##Force in N\n",
+ "a=0.35;##Distance at which force is applied in m\n",
+ "\n",
+ "Tr=math.exp(U*q*(3.14/180.));##Tensions ratio\n",
+ "T2=(P*a)/b;##Tension in N\n",
+ "T1=(Tr*T2);##Tension in N\n",
+ "TB=(T1-T2)*(d/2.);##Torque in N.m\n",
+ "KE=((1/2.)*(m*k**2)*((2.*3.14*N)/60.)**2);##Kinematic energy of the rotating drum in Nm\n",
+ "N1=(KE/(TB*2.*3.14));##Speed in rpm\n",
+ "aa=((2*3.14*N)/60.)**2/(4.*3.14*N1);##Angular acceleration in rad/s**2\n",
+ "t=((2.*3.14*N)/60.)/aa;##Time in seconds\n",
+ "\n",
+ "print'%s %.1f %s'%('Time required to bring the shaft to the rest from its running condition is ',t,' seconds')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time required to bring the shaft to the rest from its running condition is 12.7 seconds\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg275"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 9 PAGE NO 275\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate Minimum force required and Time taken to bring to rest \n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "n=12.;##Number of blocks\n",
+ "q=15.;##Angle subtended in degree\n",
+ "P=185.;##Power in kW\n",
+ "N=300.;##Speed in r.p.m\n",
+ "U=0.25;##Coefficient of friction\n",
+ "d=1.25;##Diamter in m\n",
+ "b1=0.04;##Distance in m\n",
+ "b2=0.14;##Distance in m\n",
+ "a=1.;##Diatance in m\n",
+ "m=2400.;##Mass of rotor in kg\n",
+ "k=0.5;##Radius of gyration in m\n",
+ "\n",
+ "Td=(P*60000.)/(2.*3.14*N*(d/2.));##Tension difference in N\n",
+ "T=Td*(d/2.);##Torque in Nm\n",
+ "Tr=((1+(U*math.tan(7.5/57.3)))/(1.-(U*math.tan(7.5/57.3))))**n;##Tension ratio\n",
+ "To=(Td/(Tr-1.));##Tension in N\n",
+ "Tn=(Tr*To);##Tension in N\n",
+ "P=((To*b2)-(Tn*b1))/a;##Force in N\n",
+ "aa=(T/(m*k**2));##Angular acceleration in rad/s**2\n",
+ "t=((2*3.14*N)/60.)/aa;##Time in seconds\n",
+ "\n",
+ "print'%s %.1f %s %.1f %s'%('Minimum force required is ',P,' N' 'Time taken to bring to rest is ',t,' seconds')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum force required is 406.1 NTime taken to bring to rest is 3.2 seconds\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg275"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##CHAPTER 10 ILLUSRTATION 10 PAGE NO 275\n",
+ "##TITLE:Brakes and Dynamometers\n",
+ "import math\n",
+ "#calculate Maximum braking torque and Angular retardation of the drum and Time taken by the system to come to rest \n",
+ "##===========================================================================================\n",
+ "##INPUT DATA\n",
+ "n=12.;## Number of blocks\n",
+ "q=16.;##Angle subtended in degrees\n",
+ "d=0.9;##Effective diameter in m\n",
+ "m=2000.;##Mass in kg\n",
+ "k=0.5;##Radius of gyration in m\n",
+ "b1=0.7;##Distance in m\n",
+ "b2=0.03;##Distance in m\n",
+ "a=0.1;##Distance in m\n",
+ "P=180.;##Force in N\n",
+ "N=360.;##Speed in r.p.m\n",
+ "U=0.25;##Coefficient of friction\n",
+ "\n",
+ "Tr=((1.+(U*math.tan(8/57.3)))/(1.-(U*math.tan(8/57.3))))**n;##Tensions ratio\n",
+ "T2=(P*b1)/(a-(b2*Tr));##Tension in N\n",
+ "T1=(Tr*T2);##Tension in N\n",
+ "TB=(T1-T2)*(d/2.);##Torque in N.m\n",
+ "aa=(TB/(m*k**2.));##Angular acceleration in rad/s**2\n",
+ "t=((2.*3.14*N)/60.)/aa;##Time in seconds\n",
+ "\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('(i) Maximum braking torque is ',TB,'Nm ''(ii) Angular retardation of the drum is ',aa,' rad/s**2''(iii) Time taken by the system to come to rest is ',t,' s')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) Maximum braking torque is 2481.63 Nm (ii) Angular retardation of the drum is 4.96 rad/s**2(iii) Time taken by the system to come to rest is 7.59 s \n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file