summaryrefslogtreecommitdiff
path: root/Thermodynamics_Demystified/Chapter1.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-09-04 22:04:10 +0530
committerThomas Stephen Lee2015-09-04 22:04:10 +0530
commit41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch)
treef4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /Thermodynamics_Demystified/Chapter1.ipynb
parent9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff)
downloadPython-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip
add/remove/update books
Diffstat (limited to 'Thermodynamics_Demystified/Chapter1.ipynb')
-rwxr-xr-xThermodynamics_Demystified/Chapter1.ipynb209
1 files changed, 0 insertions, 209 deletions
diff --git a/Thermodynamics_Demystified/Chapter1.ipynb b/Thermodynamics_Demystified/Chapter1.ipynb
deleted file mode 100755
index 68c66861..00000000
--- a/Thermodynamics_Demystified/Chapter1.ipynb
+++ /dev/null
@@ -1,209 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:2622b864e241f67942d9af83d84aabbbf519132ac138f1180d8869df35c708b4"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "CHAPTER 1 : Basic Principles"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1.2 : PG-9 "
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# initialization of variables\n",
- "m=10 # mass in Kg\n",
- "V=5 # velocity in m/s\n",
- "\n",
- "KE=m*V**2/2 # kinetic energy in N-m \n",
- "print \"The Kinetic Energy is \",round(KE),\" N.m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Kinetic Energy is 125.0 N.m\n"
- ]
- }
- ],
- "prompt_number": 77
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1.3 : PG-10"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# initialization of variables\n",
- "V= 3*5*20; # Volume of air in m^3 from dimensions\n",
- "m= 350.0; # mass in kg\n",
- "g= 9.81; # gavitational acceleration in m/s^2\n",
- "\n",
- "rho=m/V;# density\n",
- "print \" The Density is \",round(rho,3),\"kg/m^3 \\n\"\n",
- "\n",
- "v= 1/rho # specific volume of air\n",
- "print \" The specific volume is\", round(v,3),\"m^3/kg \\n\"\n",
- "\n",
- "gama= rho*g # specific weight of air\n",
- "print \" The specific weight is\", round(gama,2),\" N/m^3\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " The Density is 1.167 kg/m^3 \n",
- "\n",
- " The specific volume is 0.857 m^3/kg \n",
- "\n",
- " The specific weight is 11.45 N/m^3\n"
- ]
- }
- ],
- "prompt_number": 78
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1.4 : PG-13"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# initialization of variables\n",
- "h=0.020 # height of mercury in m\n",
- "gammawater=9810 # specific weight of water in N/m^3\n",
- "Patm=0.7846*101.3 # atmospheric pressure in kPa from table B.1\n",
- "\n",
- "Pgauge=13.6*gammawater*h/1000 # pressure in Pascal from condition gammaHg=13.6*gammawater\n",
- "\n",
- "P=(Pgauge+Patm)# absolute pressure in KPa\n",
- "#result\n",
- "print \"The Pressure is\",round(P,2),\" kPa\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Pressure is 82.15 kPa\n"
- ]
- }
- ],
- "prompt_number": 79
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1.5 : PG-13"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "# initialization of variables\n",
- "d=10.0/100 # diameter of cylinder in 'm'\n",
- "P=600 # pressure in KPa\n",
- "Patm=100 # atmospheric pressure in Kpa\n",
- "K=4.8*1000 # spring constant in N/m \n",
- "\n",
- "deltax=(P-Patm)*(math.pi*1000*d**2)/(4*K) # by balancing forces on piston\n",
- "#result\n",
- "print \"The Compression in spring is\",round(deltax,3),\" m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Compression in spring is 0.818 m\n"
- ]
- }
- ],
- "prompt_number": 80
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex1.6 : PG-16"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# initialization of variables\n",
- "ma=2200 # mass of Automobile 'a' in kg\n",
- "va=25 #velocity of Automobile 'a' in m/s before collision\n",
- "va1=13.89 # velocity of Automobile 'a' after collision in m/s\n",
- "mb=1000 # mass of Automobile 'b' in kg\n",
- "vb=24.44 #velocity of Automobile 'b' after collision in m/s\n",
- "\n",
- "KE1=(ma*va**2)/2 # kinetic energy before collision\n",
- "KE2=(ma*va1**2)/2+(mb*vb**2)/2 # kinetic energy after collision\n",
- "U=(KE1-KE2)/1000 # internal energy from conservation of energy principle in kJ\n",
- "#result\n",
- "print \"The increase in kinetic energy is of\",round(U,1),\" kJ\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The increase in kinetic energy is of 176.6 kJ\n"
- ]
- }
- ],
- "prompt_number": 81
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file