summaryrefslogtreecommitdiff
path: root/Thermal_Engineering_by_A._V._Arasu/ch5.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-06-01 23:30:10 +0600
committerTrupti Kini2016-06-01 23:30:10 +0600
commit5b6fb21462221711dd740ab4a57b303b3c4660a1 (patch)
treecf8b44770b1712c432901e077ee8743ac36c5cb4 /Thermal_Engineering_by_A._V._Arasu/ch5.ipynb
parentdfe37e794e1b33b0404d411cd96a0a734c25aedd (diff)
downloadPython-Textbook-Companions-5b6fb21462221711dd740ab4a57b303b3c4660a1.tar.gz
Python-Textbook-Companions-5b6fb21462221711dd740ab4a57b303b3c4660a1.tar.bz2
Python-Textbook-Companions-5b6fb21462221711dd740ab4a57b303b3c4660a1.zip
Added(A)/Deleted(D) following books
A Engineering_Mechanics_of_Solids_by_Popov_E_P/Chapter1_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter10_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter11_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter12_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter13_4.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter2_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter4_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter5_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter6_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter7_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter8_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/chapter9_5.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/charpter_3_6.ipynb A Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/1_3.PNG A Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/2_3.PNG A Engineering_Mechanics_of_Solids_by_Popov_E_P/screenshots/3_3.PNG A Thermal_Engineering_by_A._V._Arasu/README.txt A Thermal_Engineering_by_A._V._Arasu/ch1.ipynb A Thermal_Engineering_by_A._V._Arasu/ch2.ipynb A Thermal_Engineering_by_A._V._Arasu/ch3.ipynb A Thermal_Engineering_by_A._V._Arasu/ch4.ipynb A Thermal_Engineering_by_A._V._Arasu/ch5.ipynb A Thermal_Engineering_by_A._V._Arasu/ch6.ipynb A Thermal_Engineering_by_A._V._Arasu/ch7.ipynb A Thermal_Engineering_by_A._V._Arasu/screenshots/1.png A Thermal_Engineering_by_A._V._Arasu/screenshots/2.png A Thermal_Engineering_by_A._V._Arasu/screenshots/3.png
Diffstat (limited to 'Thermal_Engineering_by_A._V._Arasu/ch5.ipynb')
-rw-r--r--Thermal_Engineering_by_A._V._Arasu/ch5.ipynb1100
1 files changed, 1100 insertions, 0 deletions
diff --git a/Thermal_Engineering_by_A._V._Arasu/ch5.ipynb b/Thermal_Engineering_by_A._V._Arasu/ch5.ipynb
new file mode 100644
index 00000000..1c3b2dbf
--- /dev/null
+++ b/Thermal_Engineering_by_A._V._Arasu/ch5.ipynb
@@ -0,0 +1,1100 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2b6bc93922bd7b11c4334e4b77fa7e0b05d2efd84a162a89a3c4553815d1a094"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 :\n",
+ "Air Compressors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page no : 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "D = 0.2;\t\t\t#Cylinder diameter in m\n",
+ "L = 0.3;\t\t\t#Cylinder Stroke in m\n",
+ "P1 = 1.;\t\t\t#Pressure at entry in bar\n",
+ "T1 = 300.;\t\t\t#Temperature at entry in K\n",
+ "P2 = 8.;\t\t\t#Pressure at exit in bar\n",
+ "n = 1.25;\t\t\t#Adiabatic gas constant\n",
+ "N = 100.;\t\t\t#Speed in rpm\n",
+ "R = 287.;\t\t\t#Universal gas constant in J/kg-K\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "V1 = (3.147*L*(D**2))/4;\t\t\t#Volume of cylinder in m**3/cycle\n",
+ "W = (P1*(10**5)*V1*(((P2/P1)**x)-1))/x;\t\t\t#Work done in J/cycle\n",
+ "Pc = (W*100)/(60*1000);\t\t\t#Indicated power of compressor in kW\n",
+ "m = (P1*(10**5)*V1)/(R*T1);\t\t\t#Mass of air delivered in kg/cycle\n",
+ "md = m*N;\t\t\t#Mass delivered per minute in kg\n",
+ "T2 = T1*((P2/P1)**x);\t\t\t#Temperature of air delivered in K\n",
+ "\n",
+ "# Results\n",
+ "print 'Indicated power of compressor is %3.2f kW \\\n",
+ "\\nMass of air delivered by compressor per minute is %3.2f kg \\\n",
+ "\\nTemperature of air delivered is %3.1fK'%(Pc,md,T2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Indicated power of compressor is 4.06 kW \n",
+ "Mass of air delivered by compressor per minute is 1.10 kg \n",
+ "Temperature of air delivered is 454.7K\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page no : 251"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "IP = 37.;\t\t\t#Indicated power in kW\n",
+ "P1 = 0.98;\t\t\t#Pressure at entry in bar\n",
+ "T1 = 288.;\t\t\t#Temperature at entry in K\n",
+ "P2 = 5.8;\t\t\t#Pressure at exit in bar\n",
+ "n = 1.2;\t\t\t#Adiabatic gas constant\n",
+ "N = 100.;\t\t\t#Speed in rpm\n",
+ "Ps = 151.5;\t\t\t#Piston speed in m/min\n",
+ "a = 2.;\t\t\t#For double acting compressor\n",
+ "\n",
+ "# Calculations\n",
+ "L = Ps/(2*N);\t\t\t#Stroke length in m\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "r = (3.147*L)/4;\t\t\t#Ratio of volume to bore\n",
+ "D = math.sqrt((IP*1000*60*x)/(N*a*r*P1*(10**5)*(((P2/P1)**x)-1)));\t\t\t#Cylinder diameter in m\n",
+ "\n",
+ "# Results\n",
+ "print 'Stroke length of cylinder is %3.4f m \\\n",
+ "\\nCylinder diameter is %3.4f m'%(L,D)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stroke length of cylinder is 0.7575 m \n",
+ "Cylinder diameter is 0.3030 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3 Page no : 251"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "IP = 11.;\t\t\t#Indicated power in kW\n",
+ "P1 = 1.;\t\t\t#Pressure at entry in bar\n",
+ "P2 = 7.;\t\t\t#Pressure at exit in bar\n",
+ "n = 1.2;\t\t\t#Adiabatic gas consmath.tant\n",
+ "Ps = 150.;\t\t\t#Piston speed in m/s\n",
+ "a = 2.; \t\t\t#For double acting compressor\n",
+ "r = 1.5;\t\t\t#Storke to bore ratio\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "y = 3.147/(4*(r**2));\t\t\t#Ratio of volume to the cube of stroke\n",
+ "z = (P1*(10**2)*y*(((P2/P1)**x)-1))/x;\t\t\t#Ratio of workdone to the cube of stroke\n",
+ "L = (math.sqrt(IP/(z*Ps)))*1000;\t\t\t#Stroke in mm\n",
+ "D = (L/r);\t\t\t#Bore in mm\n",
+ "\n",
+ "# Results\n",
+ "print 'Stroke length of cylinder is %3.0f mm \\\n",
+ "\\nBore diameter of cylinder is %3.0f mm'%(L,D)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Stroke length of cylinder is 30 mm \n",
+ "Bore diameter of cylinder is 20 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4 Page no : 252"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "x = 0.05 # ratio\n",
+ "P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
+ "T1 = 310.;\t\t\t#Temperature at point 1 in K\n",
+ "n = 1.2;\t\t\t#Adiabatic gas constant\n",
+ "P2 = 7.;\t\t\t#Pressure at point 2 in bar\n",
+ "Pa = 1.01325;\t\t\t#Atmospheric pressure in bar\n",
+ "Ta = 288.;\t\t\t#Atmospheric temperature in K\n",
+ "\n",
+ "# Calculations\n",
+ "V1 = 1+x;\t\t\t#Ratio of volume of air sucked to stroke volume\n",
+ "V4 = ((P2/P1)**(1/n))/20;\t\t\t#Ratio of volume delivered to stroke volume\n",
+ "DV = V1-V4;\t\t\t#Difference in volumes\n",
+ "nv1 = DV*100;\t\t\t#Volumetric efficiency\n",
+ "V = (P1*DV*Ta)/(T1*Pa);\t\t\t#Ratio of volumes referred to atmospheric conditions\n",
+ "nv2 = V*100;\t\t\t#Volumetric efficiency referred to atmospheric conditions\n",
+ "W = (n*0.287*T1*((P2/P1)**((n-1)/n)-1))/(n-1);\t\t\t#Work required in kJ/kg\n",
+ "\n",
+ "# Results\n",
+ "print 'Volumetric efficiency is %3.1f percent \\\n",
+ "\\nVolumetric efficiency referred to atmospheric conditions is %3.1f percent \\\n",
+ "\\nWork required is %3.1f kJ/kg'%(nv1,nv2,W)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Volumetric efficiency is 79.7 percent \n",
+ "Volumetric efficiency referred to atmospheric conditions is 73.1 percent \n",
+ "Work required is 204.5 kJ/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5 Page no : 253"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "D = 0.2;\t\t\t#Bore in m\n",
+ "L = 0.3;\t\t\t#Stroke in m\n",
+ "P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
+ "P2 = 7.;\t\t\t#Pressure at point 2 in bar\n",
+ "n = 1.25;\t\t\t#Adiabatic gas constant\n",
+ "lc = 0.015\n",
+ "\n",
+ "# Calculations\n",
+ "V3 = (3.147*(D**2)*lc)/4.;\t\t\t#Clearance volume in m**3\n",
+ "Vs = (3.147*(D**2)*L)/4.;\t\t\t#Stoke volume in m**3\n",
+ "C = V3/Vs;\t\t\t#Clearance ratio\n",
+ "nv = (1+C-(C*((P2/P1)**(1/n))))*100;\t\t\t#Volumetric efficiency\n",
+ "DV = (nv*Vs)/100.;\t\t\t#Volume of air taken in (m**3)/stroke\n",
+ "\n",
+ "# Results\n",
+ "print 'Theoretical volume of air taken in per stroke is %.2e m**3/stroke'%(DV)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Theoretical volume of air taken in per stroke is 7.67e-03 m**3/stroke\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.6 Page no : 254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "D = 0.2;\t\t\t#Bore in m\n",
+ "L = 0.3;\t\t\t#Stroke in m\n",
+ "P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
+ "r = 0.05 # ratio\n",
+ "T1 = 293.;\t\t\t#Temperature at point 1 in K\n",
+ "P2 = 5.5;\t\t\t#Pressure at point 2 in bar\n",
+ "n = 1.3;\t\t\t#Adiabatic gas constant\n",
+ "N = 500.;\t\t\t#Speed of compressor in rpm\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "Vs = (3.147*L*(D**2))/4;\t\t\t#Stroke volume in m**3\n",
+ "Vc = r*Vs;\t\t\t#Clearance volume in m**3\n",
+ "V1 = Vc+Vs;\t\t\t#Volume at point 1 in m**3\n",
+ "V4 = Vc*((P2/P1)**(1/n));\t\t\t#Volume at point 4 in m**3\n",
+ "EVs = V1-V4;\t\t\t#Effective swept volume in m**3\n",
+ "W = (P1*(10**5)*EVs*(((P2/P1)**x)-1))/x;\t\t\t#Work done in J/cycle\n",
+ "MEP = (W/Vs)/(10**5);\t\t\t#Mean effective pressure in bar\n",
+ "P = (W*N)/(60*1000);\t\t\t#Power required in kW\n",
+ "\n",
+ "# Results\n",
+ "print 'Mean effective pressure is %3.2f bar \\\n",
+ "\\nPower required is %3.2f kW'%(MEP,P)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mean effective pressure is 1.81 bar \n",
+ "Power required is 14.21 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.7 Page no : 255"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "D = 0.2;\t\t\t#Bore in m\n",
+ "L = 0.3;\t\t\t#Stroke in m\n",
+ "P1 = 97.;\t\t\t#Pressure at entry in kN/(m**2)\n",
+ "P4 = P1;\t\t\t#Pressure at point 4 in kN/(m**2)\n",
+ "T1 = 293.;\t\t\t#Temperature at point 1 in K\n",
+ "P2 = 550.;\t\t\t#Compression Pressure in kN/(m**2)\n",
+ "P3 = P2;\t\t\t#Pressure at point 3 in kN/(m**2)\n",
+ "n = 1.3;\t\t\t#Adiabatic gas constant\n",
+ "N = 500.;\t\t\t#Speed of compressor in rpm\n",
+ "Pa = 101.325;\t\t\t#Air pressure in kN/(m**2)\n",
+ "Ta = 288.;\t\t\t#Air temperature in K\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "DV = (3.147*L*(D**2))/4;\t\t\t#Difference in volumes in m**3\n",
+ "V3 = r*DV;\t\t\t#Clearance volume in m**3\n",
+ "V1 = V3+DV;\t\t\t#Volume at point 1 in m**3\n",
+ "V4 = V3*((P3/P4)**(1/n));\t\t\t#Volume at point 4 in m**3\n",
+ "Vs = V1-V4;\t\t\t#Effective swept volume in m**3\n",
+ "EVs = Vs*N;\t\t\t#Effective swept volume per min\n",
+ "Va = (P1*EVs*Ta)/(Pa*T1);\t\t\t#Free air delivered in (m**3)/min\n",
+ "nV = ((V1-V4)/(V1-V3))*100;\t\t\t#Volumetric effciency\n",
+ "T2 = T1*((P2/P1)**x);\t\t\t#Air delivery temperature in K\n",
+ "t2 = T2-273;\t\t\t#Air delivery temperature in oC\n",
+ "W = (n*P1*(V1-V4)*(((P2/P1)**x)-1))*N/((n-1)*60);\t\t\t#Cycle power in kW\n",
+ "Wiso = P1*V1*(math.log(P2/P1));\t\t\t#Isothermal workdone\n",
+ "niso = (Wiso/(4.33*0.493))*100;\t\t\t#Isothermal efficiency\n",
+ "\n",
+ "# Results\n",
+ "print 'Free air delivered is %3.3f m**3/min \\\n",
+ "\\nVolumetric efficiency is %3.0f percent \\\n",
+ "\\nAir delivery temperature is %3.1f oC \\\n",
+ "\\nCycle power is %3.0f kW \\\n",
+ "\\nIsothermal efficiency is %3.1f percent'%(Va,nV,t2,W,round(niso,-1))\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Free air delivered is 3.820 m**3/min \n",
+ "Volumetric efficiency is 86 percent \n",
+ "Air delivery temperature is 164.3 oC \n",
+ "Cycle power is 14 kW \n",
+ "Isothermal efficiency is 80.0 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.8 Page no : 257"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Ve = 30.;\t\t\t#Volume of air entering compressor per hour in m**3\n",
+ "P1 = 1.;\t\t\t#Presure of air entering compressor in bar\n",
+ "N = 450.;\t\t\t#Speed in rpm\n",
+ "P2 = 6.5;\t\t\t#Pressure at point 2 in bar\n",
+ "nm = 0.8;\t\t\t#Mechanical efficiency\n",
+ "nv = 0.75;\t\t\t#Volumetric efficiency\n",
+ "niso = 0.76;\t\t\t#Isothermal efficiency\n",
+ "\n",
+ "# Calculations\n",
+ "Vs = Ve/(nv*3600);\t\t\t#Swept volume per sec in (m**3)/s\n",
+ "V = (Vs*60)/N;\t\t\t#Swept volume per cycle in m**3\n",
+ "V1 = (Ve*60)/(3600*N);\t\t\t#Volume at point 1 in m**3\n",
+ "Wiso = P1*100*V1*math.log(P2/P1);\t\t\t#Isothermal workdone per cycle\n",
+ "Wact = Wiso/niso;\t\t\t#Actual workdone per cycle on air\n",
+ "MEP = (Wact/V)/100;\t\t\t#Mean effective pressure in bar\n",
+ "IP = (Wact*N)/60;\t\t\t#Indicated power in kW\n",
+ "BP = IP/nm;\t\t\t#Brake power in kW\n",
+ "\n",
+ "# Results\n",
+ "print 'Mean effective pressure is %3.3f bar \\\n",
+ "\\nBrake power is %3.2f kW'%(MEP,BP)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mean effective pressure is 1.847 bar \n",
+ "Brake power is 2.57 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.9 Page no : 258"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Va = 15.;\t\t\t#Volume of air in (m**3)/min\n",
+ "Pa = 1.01325;\t\t\t#Pressure of air in bar\n",
+ "Ta = 302.;\t\t\t#Air temperature in K\n",
+ "P1 = 0.985;\t\t\t#Pressure at point 1 in bar\n",
+ "r = 0.04 # ratio\n",
+ "T1 = 313.;\t\t\t#Temperature at point 1 in K\n",
+ "y = 1.3;\t\t\t#Ratio of stroke to bore diameter\n",
+ "N = 300.;\t\t\t#Speed in rpm\n",
+ "n = 1.3;\t\t\t#Adiabatic gas constant\n",
+ "P2 = 7.5;\t\t\t#Pressure at point 2 in bar\n",
+ "\n",
+ "# Calculations\n",
+ "x=((P2/P1)**(1./n))-1;\n",
+ "a = x*r;\t\t\t#Ratio of volume at point 4 to swept volume\n",
+ "nv = 1-a;\t\t\t#Volumetric efficiency\n",
+ "V1 = (Pa*Va*T1)/(Ta*P1);\t\t\t#Volume at point 1 in (m**3)/min\n",
+ "Vs = V1/(nv*N*2);\t\t\t#Swept volume in m**3\n",
+ "D = ((Vs*4)/(math.pi*y))**(1./3);\t\t\t#Bore in m\n",
+ "L = y*D;\t\t\t#Stroke in m\n",
+ "\n",
+ "# Results\n",
+ "print 'Cylinder bore in %3.3f m \\\n",
+ "\\nCylinder stroke %3.3f m'%(D,L)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Cylinder bore in 0.313 m \n",
+ "Cylinder stroke 0.407 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.10 Page no : 259"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "P1 = 0.98;\t\t\t#Pressure at point 1 in bar\n",
+ "P4 = P1;\t\t\t#Pressure at point 4 in bar\n",
+ "P2 = 7.;\t\t\t#Pressure at point 2 in bar\n",
+ "P3 = P2;\t\t\t#Pressure at point 3 in bar\n",
+ "n = 1.3;\t\t\t#Adiabatic gas consmath.tant\n",
+ "Ta = 300.;\t\t\t#Air temperature in K\n",
+ "Pa = 1.013;\t\t\t#Air pressure in bar\n",
+ "T1 = 313.;\t\t\t#Temperature at point 1 in K\n",
+ "Va = 15.;\t\t\t#Volume of air delivered in m**3\n",
+ "R = 0.287;\t\t\t#Universal gas constant in kJ/kg-K\n",
+ "c = 0.04\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "r = (P2/P1)**(1/n);\t\t\t#Ratio of volumes\n",
+ "a = r*c;\t\t\t#Ratio of volume at point 4 to swept volume\n",
+ "DV = 1+c-a;\t\t\t#Difference in volumes\n",
+ "V = (P1*DV*Ta)/(T1*Pa);\t\t\t#Volume of air delivered per cycle\n",
+ "nv = V*100;\t\t\t#Volumetric efficiency\n",
+ "DV1 = (Pa*Va*T1)/(Ta*P1);\t\t\t#Difference in volumes\n",
+ "T2 = T1*((P2/P1)**x);\t\t\t#Temperature at point 2 in K\n",
+ "ma = (Pa*100*Va)/(R*Ta);\t\t\t#Mass of air delivered in kg/min\n",
+ "IP = (ma*R*(T2-T1))/(x*60);\t\t\t#Indicated power in kW\n",
+ "Piso = (ma*R*T1*math.log(P2/P1))/60;\t\t\t#Isothermal indicated power in kW\n",
+ "niso = (Piso/IP)*100;\t\t\t#Isothermal efficiency\n",
+ "\n",
+ "# Results\n",
+ "print 'Volumetric efficiency is %3.1f percent \\\n",
+ "\\nIndicated power is %3.2f kW \\\n",
+ "\\nIsothermal efficiency is %3.0f percent'%(nv,IP,niso)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Volumetric efficiency is 79.6 percent \n",
+ "Indicated power is 65.74 kW \n",
+ "Isothermal efficiency is 79 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.11 Page no : 261"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "V1 = 7.*(10**-3);\t\t\t#Volume of air in (m**3)/s\n",
+ "P1 = 1.013;\t\t\t#Pressure of air in bar\n",
+ "T1 = 288.;\t\t\t#Air temperature in K\n",
+ "P2 = 14.;\t\t\t#Pressure at point 2 in bar\n",
+ "n = 1.3;\t\t\t#Adiabatic gas constant\n",
+ "nm = 0.82;\t\t\t#Mechanical efficiency\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "W = (P1*100*V1*(((P2/P1)**x)-1))/x;\t\t\t#Work done by compressor in kW\n",
+ "P = W/nm;\t\t\t#Power requred to drive compressor in kW\n",
+ "\n",
+ "# Results\n",
+ "print 'Power requred to drive compressor is %3.2f kW'%(P)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power requred to drive compressor is 3.12 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.12 Page no : 261"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "L = 0.15;\t\t\t#Stroke in mm\n",
+ "D = 0.15;\t\t\t#Bore in mm\n",
+ "N = 8.;\t\t\t#Speed in rps\n",
+ "P1 = 100.;\t\t\t#Pressure at point 1 in kN/(m**2)\n",
+ "P2 = 550.;\t\t\t#Pressure at point 2 in kN/(m**2)\n",
+ "n = 1.32;\t\t\t#Adiabatic gas constant\n",
+ "C = 0.06 # RATIO\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "nv = (1+C-(C*((P2/P1)**(1/n))))*100;\t\t\t#Volumetric efficiency\n",
+ "DV = (3.147*(D**2)*L)/4;\t\t\t#Difference in volumes at points 1 and 3\n",
+ "DV1 = (nv*DV)/100;\t\t\t#Difference in volumes at points 1 and 4\n",
+ "V2 = DV1*((P1/P2)**(1/n))*N;\t\t\t#Volume of air delivered per second\n",
+ "W = (P1*DV1*(((P2/P1)**x)-1))*N/x;\t\t\t#Power of compressor in kW\n",
+ "\n",
+ "# Results\n",
+ "print 'Theoretical volume efficiency is %3.1f percent \\\n",
+ "\\nVolume of air delivered is %3.5f m**3/s \\\n",
+ "\\nPower of compressor is %3.3f kW'%(nv,V2,W)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Theoretical volume efficiency is 84.2 percent \n",
+ "Volume of air delivered is 0.00491 m**3/s \n",
+ "Power of compressor is 3.774 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.13 Page no : 262"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "V = 16.;\t\t\t#Volume of air compresssed in m**3\n",
+ "P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
+ "P3 = 10.5;\t\t\t#Pressure at point 3 in bar\n",
+ "T1 = 294.;\t\t\t#Temperature at point 1 in K\n",
+ "Tc = 25.;\t\t\t#Temperature of cooling water in oC\n",
+ "n = 1.35;\t\t\t#Adiabatics gas constant\n",
+ "R = 0.287;\t\t\t#Universal gas constant in kJ/kg-K\n",
+ "Cp = 1.005;\t\t\t#Specific heat at constant pressure in kJ/kg-K\n",
+ "Cw = 4.187;\t\t\t#Specific heat of water in kJ/kg-K\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "P2 = math.sqrt(P1*P3);\t\t\t#Pressure at point 2 in bar\n",
+ "W1 = (2*P1*100*V*(((P2/P1)**x)-1))/(x*60);\t\t\t#Indicated power of compressor from P1 to P2 in kW\n",
+ "W2 = (P1*100*V*(((P3/P1)**x)-1))/(x*60);\t\t\t#Indicated power of compressor from P1 to P3 in kW\n",
+ "T4 = T1*((P2/P1)**x);\t\t\t#Maximum temperature for two stage compression in K\n",
+ "T2 = T1*((P3/P1)**x);\t\t\t#Maximum temperature for single stage compression in K\n",
+ "m = (P1*100*V)/(R*T1);\t\t\t#Mass of air compressed in kg/min\n",
+ "Q = m*Cp*(T4-T1);\t\t\t#Heat rejected by air in kJ/min\n",
+ "mc = Q/(Cw*Tc);\t\t\t#Mass of cooling water in kg/min\n",
+ "\n",
+ "# Results\n",
+ "print 'Minimum indicated power required for 2 stage compression is %3.1f kW \\\n",
+ "\\nPower required for single stage compression is 18 percent more than that for \\\n",
+ "two stage compression with perfect intercooling \\\n",
+ "\\nMaximum temperature for two stage compression is %3.1f K \\\n",
+ "\\nMaximum temperature for single stage compression is %3.1f K \\\n",
+ "\\nHeat rejected by air is %3.1f kJ/min \\\n",
+ "\\nMass of cooling water required is %3.1f kg/min'%(W1,T4,T2,Q,mc)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum indicated power required for 2 stage compression is 73.3 kW \n",
+ "Power required for single stage compression is 18 percent more than that for two stage compression with perfect intercooling \n",
+ "Maximum temperature for two stage compression is 398.8 K \n",
+ "Maximum temperature for single stage compression is 540.9 K \n",
+ "Heat rejected by air is 1996.6 kJ/min \n",
+ "Mass of cooling water required is 19.1 kg/min\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.14 Page no : 264"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "V = 0.2;\t\t\t#Air flow rate in (m**3)/s\n",
+ "P1 = 0.1;\t\t\t#Intake pressure in MN/(m**2)\n",
+ "P3 = 0.7;\t\t\t#Final pressure in MN/(m**2)\n",
+ "T1 = 289.;\t\t\t#Intake temperature in K\n",
+ "n = 1.25;\t\t\t#Adiabatic gas constant\n",
+ "N = 10.;\t\t\t#Compressor speed in rps\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "P2 = math.sqrt(P1*P3);\t\t\t#Intermediate pressure in MN/(m**2)\n",
+ "V1 = (V/N)*1000;\t\t\t#Total volume of LP cylinder in litres\n",
+ "V2 = ((P1*V1)/P2);\t\t\t#Total volume of HP cylinder in litres\n",
+ "W = ((2*P1*V*(((P2/P1)**x)-1))/x)*1000;\t\t\t#Cycle power in kW\n",
+ "\n",
+ "# Results\n",
+ "print 'Intermediate pressure is %3.3f MN/m**2 \\\n",
+ "\\nTotal volume of LP cylinder is %3.0f litres \\\n",
+ "\\nTotal volume of HP cylinder is %3.1f litres \\\n",
+ "\\nCycle power is %3.0f kW'%(P2,V1,V2,W)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Intermediate pressure is 0.265 MN/m**2 \n",
+ "Total volume of LP cylinder is 20 litres \n",
+ "Total volume of HP cylinder is 7.6 litres \n",
+ "Cycle power is 43 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.15 Page no : 265"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
+ "T1 = 290.;\t\t\t#Temperature at point 1 in K\n",
+ "P3 = 60.;\t\t\t#Pressure at point 3 in bar\n",
+ "P2 = 8.;\t\t\t#Pressure at point 2 in bar\n",
+ "T2 = 310.;\t\t\t#Temperature at point 2 in K\n",
+ "L = 0.2;\t\t\t#Stroke in m\n",
+ "D = 0.15;\t\t\t#Bore in m\n",
+ "n = 1.35;\t\t\t#Adiabatic gas constant\n",
+ "N = 200.;\t\t\t#Speed in rpm\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t \t\t#Ratio\n",
+ "V1 = (3.147*(D**2)*L)/4;\t\t\t#Volume at point 1 in m**3\n",
+ "V2 = (P1*V1*T2)/(T1*P2);\t\t\t#Volume of air entering LP cylinder in m**3\n",
+ "W = ((P1*(10**5)*V1*(((P2/P1)**x)-1))/x)+((P2*(10**5)*V2*(((P3/P2)**x)-1))/x);\t\t\t#Workdone by compressor per cycle in J\n",
+ "P = (W*N)/(60*1000);\t\t \t#Power of compressor in kW\n",
+ "\n",
+ "# Results\n",
+ "print 'Power of compressor is %3.2f kW'%(P)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power of compressor is 6.59 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.16 Page no : 265"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "N = 220.;\t\t\t#Speed of compressor in rpm\n",
+ "P1 = 1.;\t\t\t#Pressure entering LP cylinder in bar\n",
+ "T1 = 300.;\t\t\t#Temperature at point 1 in K\n",
+ "Dlp = 0.36;\t\t\t#Bore of LP cylinder in m\n",
+ "Llp = 0.4;\t\t\t#Stroke of LP cylinder in m\n",
+ "Lhp = 0.4;\t\t\t#Stoke of HP cylinder in m\n",
+ "P2 = 4.;\t\t\t#Pressure leaving LP cylinder in bar\n",
+ "P5 = 3.8;\t\t\t#Pressure entering HP cylinder in bar\n",
+ "T3 = 300.;\t\t\t#Temperature entering HP cylinder in K\n",
+ "P6 = 15.2;\t\t\t#Dicharge pressure in bar\n",
+ "n = 1.3;\t\t\t#Adiabatic gas constant\n",
+ "Cp = 1.0035;\t\t\t#Specific heat at constant pressure in kJ/kg-K\n",
+ "R = 0.287;\t\t\t#Universal gas constant in kJ/kg-K\n",
+ "T5 = T1;\t\t\t#Temperature at point 5 in K\n",
+ "C = 0.04\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "Vslp = round((math.pi*(Dlp**2)*Llp*N*2)/4,2);\t\t\t#Swept volume of LP cylinder in m**3/min\n",
+ "nv = round(1+C-(C*((P2/P1)**(1/n))),4);\t\t\t#Volumetric efficiency\n",
+ "V1 = nv*Vslp;\t\t\t#Volume of air drawn at point 1 in (m**3)/min\n",
+ "m = round((P1*100*V1)/(R*T1),2);\t\t\t#Mass of air in kg/min\n",
+ "T2 = round(T1*((P2/P1)**x));\t\t\t#Temperature at point 2 in K\n",
+ "QR = m*Cp*(T2-T5);\t\t\t#Heat rejected in kJ/min\n",
+ "V5 = (m*R*T5)/(P5*100);\t\t\t#Volume of air drawn in HP cylinder M**3/min\n",
+ "Plp = P2/P1;\t\t\t#Pressure ratio of LP cylinder\n",
+ "Php = P6/P5;\t\t\t#Pressure ratio of HP cylinder\n",
+ "Vshp = V5/nv;\t\t\t#Swept volume of HP cylinder in m**3/min\n",
+ "Dhp = math.sqrt((Vshp*4)/(3.147*Lhp*N*2));\t\t\t#Bore of HP cylinder in m\n",
+ "P = (m*R*(T2-T1))/(x*60);\t\t\t#Power required for HP cylinder in kW\n",
+ "\n",
+ "print V5,Plp,Php,Vshp,Dhp,P\n",
+ "# Results\n",
+ "print 'Heat rejected in intercooler is %3.1f kJ/min \\\n",
+ "\\nDiameter of HP cylinder is %3.4f m \\\n",
+ "\\nPower required for HP cylinder is %3.0f kW'%(QR,Dhp,P)\n",
+ "\n",
+ "# rounding off error. please check\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "4.35484736842 4.0 4.0 4.71405863652 0.184511219993 45.0178314444\n",
+ "Heat rejected in intercooler is 2179.5 kJ/min \n",
+ "Diameter of HP cylinder is 0.1845 m \n",
+ "Power required for HP cylinder is 45 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.17 Page no : 267"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
+ "P3 = 30.;\t\t\t#Pressure at point 3 in bar\n",
+ "T1 = 300.;\t\t\t#Temperature at point 1 in K\n",
+ "n = 1.3;\t\t\t#Adiabatics gas constant\n",
+ "\n",
+ "# Calculations\n",
+ "P2 = math.sqrt(P1*P3);\t\t\t#Intermediate pressure in bar\n",
+ "rD = math.sqrt(P2/P1);\t\t\t#Ratio of cylinder diameters\n",
+ "\n",
+ "# Results\n",
+ "print 'Ratio of cylinder diameters is %3.2f'%(rD)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of cylinder diameters is 2.34\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.18 Page no : 268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "P1 = 1.013;\t\t\t#Pressure at point 1 in bar\n",
+ "T1 = 288.;\t\t\t#Temperaturea at point 1 in K\n",
+ "v1 = 8.4;\t\t\t#free air delivered by compressor in m**3\n",
+ "P4 = 70.;\t\t\t#Pressure at point 4 in bar\n",
+ "n = 1.2;\t\t\t#Adiabatic gas constant\n",
+ "Cp = 1.0035;\t\t\t#Specific heat at constant pressure in kJ/kg-K\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "P2 = P1*((P4/P1)**(1./3));\t\t\t#LP cylinder delivery pressure in bar\n",
+ "P3 = P2*((P4/P1)**(1./3));\t\t\t#IP cylinder delivery pressure in bar\n",
+ "r = P2/P1;\t\t\t#Ratio of cylinder volumes\n",
+ "r1 = P3/P2;\t\t\t#Ratio of cylinder volumes\n",
+ "r2 = r*r1;\t\t\t#Ratio of cylinder volumes\n",
+ "V3 = 1;\t\t\t#Volume at point 3 in m**3\n",
+ "T4 = T1*((P2/P1)**x);\t\t\t#Three stage outlet temperature in K\n",
+ "QR = Cp*(T4-T1);\t\t\t#Heat rejected in intercooler in kJ/kg of air\n",
+ "W = ((3*P1*100*v1*(((P4/P1)**(x/3))-1))/(x*60));\t\t\t#Total indiacted power in kW\n",
+ "\n",
+ "# Results\n",
+ "print 'LP cylinder delivery pressure is %3.3f bar \\\n",
+ "\\nIP cylinder delivery pressure is %3.2f bar \\\n",
+ "\\nRatio of cylinder volumes is %3.2f:%3.1f:%3.0f \\\n",
+ "\\nTemperature at end of each stage is %3.2f K \\\n",
+ "\\nHeat rejected in each intercooler is %3.1f kJ/kg of air \\\n",
+ "\\nTotal indicated power is %3.2f kW'%(P2,P3,r2,r1,V3,T4,QR,W)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "LP cylinder delivery pressure is 4.157 bar \n",
+ "IP cylinder delivery pressure is 17.06 bar \n",
+ "Ratio of cylinder volumes is 16.84:4.1: 1 \n",
+ "Temperature at end of each stage is 364.41 K \n",
+ "Heat rejected in each intercooler is 76.7 kJ/kg of air \n",
+ "Total indicated power is 67.72 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.19 Page no : 269"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "D = 0.45;\t\t\t#Bore in m\n",
+ "L = 0.3;\t\t\t#Stroke in m\n",
+ "P1 = 1.;\t\t\t#Pressure at point 1 inn bar\n",
+ "T1 = 291.;\t\t\t#Temperature at point 1 in K\n",
+ "P4 = 15.;\t\t\t#Pressure at point 4 in bar\n",
+ "n = 1.3;\t\t\t#Adiabatic gas constant\n",
+ "R = 0.29;\t\t\t#Universal gas constant in kJ/kg-K\n",
+ "\n",
+ "# Calculations\n",
+ "x = (n-1)/n;\t\t\t#Ratio\n",
+ "k = (P4/P1)**(1./3);\t\t\t#Pressure ratio\n",
+ "P2 = k*P1;\t\t\t#Pressure at point 2 in bar\n",
+ "P3 = k*P2;\t\t\t#Pressure at point 1 in bar\n",
+ "Vslp = (3.147*(D**2)*L)/4;\t\t\t#Swept volume of LP cylinder\n",
+ "V7 = C*Vslp;\t\t\t#Volume at point 7 in m**3\n",
+ "V1 = Vslp+V7;\t\t\t#Volume at point 1 in m**3\n",
+ "V8 = V7*(k**(1/n));\t\t\t#Volume at point 8 in m**3\n",
+ "EVs = (V1-V8)*1000;\t\t\t#Effective swept volume in litres\n",
+ "T4 = T1*(k**x);\t\t\t#Temperature at point 4 in K\n",
+ "t4 = T4-273;\t\t\t#Delivery temperature in oC\n",
+ "DV = ((P1*T4*(V1-V8))/(P4*T1))*1000;\t\t\t#Delivery volume per stroke in litres\n",
+ "W = (3*R*T1*((k**x)-1))/x;\t\t\t#Workdone per kg of air in kJ\n",
+ "\n",
+ "# Results\n",
+ "print 'Intermediate pressures are %3.3f bar and %3.3f bar \\\n",
+ "\\nEffective swept volume of LP cylinder is %3.2f litres \\\n",
+ "\\nTemperature of air delivered per stroke is %3.1f oC \\\n",
+ "\\nVolume of air delivered per stroke is %3.2f litres \\\n",
+ "\\nWork done per kg of air is %3.1f kJ'%(P2,P3,EVs,t4,DV,W)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Intermediate pressures are 2.466 bar and 6.082 bar \n",
+ "Effective swept volume of LP cylinder is 44.92 litres \n",
+ "Temperature of air delivered per stroke is 85.4 oC \n",
+ "Volume of air delivered per stroke is 3.69 litres \n",
+ "Work done per kg of air is 254.1 kJ\n"
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.20 Page no : 271"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
+ "Pns = 100.;\t\t\t#Maximum pressure in bar\n",
+ "p = 4.; \t\t\t#Pressure ratio\n",
+ "\n",
+ "# Calculations\n",
+ "Ns = math.log(Pns)/math.log(p);\t\t\t#Number of stages\n",
+ "y = math.ceil(Ns);\t \t\t#Rounding off to next higher integer\n",
+ "ps = (Pns/P1)**(1/y);\t\t\t #Exact stage pressure ratio\n",
+ "P2 = ps*P1;\t\t\t#Pressure at point 2 in bar\n",
+ "P3 = ps*P2;\t\t\t#Pressure at point 3 in bar\n",
+ "P4 = ps*P3;\t\t\t#Pressure at point 4 in bar\n",
+ "\n",
+ "# Results\n",
+ "print 'Number of stages are %3.2f \\\n",
+ "\\nExact stage pressure ratio is %3.3f \\\n",
+ "\\nIntermediate pressures are %3.3f bar, %3.2f bar, %3.2f bar'%(y,ps,P2,P3,P4)\n",
+ "\n",
+ "# rounding off error"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of stages are 4.00 \n",
+ "Exact stage pressure ratio is 3.162 \n",
+ "Intermediate pressures are 3.162 bar, 10.00 bar, 31.62 bar\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file