diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.4.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.4.ipynb')
-rwxr-xr-x | Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.4.ipynb | 1628 |
1 files changed, 0 insertions, 1628 deletions
diff --git a/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.4.ipynb b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.4.ipynb deleted file mode 100755 index 09aec3f9..00000000 --- a/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_no.4.ipynb +++ /dev/null @@ -1,1628 +0,0 @@ -{
- "metadata": {
- "name": "chapter no.4.ipynb"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 4:Stresses in Beams"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.1,Page no.130"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "L=5000 #mm #Length of Beam\n",
- "a=2000 #mm #Length of start of beam to Pt Load\n",
- "b=3000 #mm #Length of Pt load to end of beam\n",
- "A=150*250 #m**2 #Area of beam\n",
- "b=150 #mm #Width of beam\n",
- "d=250 #mm #Depth of beam\n",
- "sigma=10#N/mm**2 #stress\n",
- "l=2000 #m #Load applied from one end\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Moment of Inertia\n",
- "I=1*12**-1*b*d**3 #m**4\n",
- "\n",
- "#Distance from N.A to end\n",
- "y_max=d*2**-1 #m\n",
- "\n",
- "#Section Modulus\n",
- "Z=1*6**-1*b*d**2 #mm**3\n",
- "\n",
- "#Moment Carrying Capacity\n",
- "M=sigma*Z #N-mm\n",
- "\n",
- "#Let w be the Intensity of the Load in N/m,then Max moment\n",
- "#M_max=w*L**2*8**-1 #N-mm\n",
- "#After substituting values and further simplifying we get\n",
- "#M_max=w*25*100*8**-1\n",
- "\n",
- "#EQuating it to moment carrying capacity,we get max intensity load\n",
- "w=M*(25*1000)**-1*8*10**-3\n",
- "\n",
- "#Part-2\n",
- "\n",
- "#Let P be the concentrated load,then max moment occurs under the load and its value\n",
- "#M1=P*a*b*L**-1 #N-mm\n",
- "\n",
- "#Equting it to moment carrying capacity we get\n",
- "P=M*1200**-1*10**-3 #N\n",
- "\n",
- "#Result\n",
- "print\"Max Intensity of u.d.l it can carry\",round(w,3),\"KN-m\"\n",
- "print\"MAx concentrated Load P apllied at 2 m from one end is\",round(P,3),\"KN\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Max Intensity of u.d.l it can carry 5.0 N-mm\n",
- "MAx concentrated Load P apllied at 2 m from one end is 13.021 KN\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.2,Page no.131"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "D=70 #mm #External Diameter\n",
- "t=8 #mm #Thickness of pipe\n",
- "L=2500 #mm #span \n",
- "sigma=150 #N/mm**2 #stress\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Internal Diameter \n",
- "d=D-2*t #mm\n",
- "\n",
- "#M.I Of Pipe\n",
- "I=pi*64**-1*(D**4-d**4) #mm**4\n",
- "\n",
- "y_max=D*2**-1 #mm\n",
- "Z=I*(y_max)**-1 #mm**3\n",
- "\n",
- "#Moment Carrying capacity\n",
- "M=sigma*Z #N*mm\n",
- "\n",
- "#Max moment int the beam occurs at the mid-span and is equal to\n",
- "#m=P*L*4**-1\n",
- "\n",
- "#Equating Max moment to moment carrying capacity we get,\n",
- "#M=P*2.5*L*4**-1\n",
- "#After substituting and simplifying we get\n",
- "P=4*M*(L)**-1*10**-3 #N\n",
- "\n",
- "#Result\n",
- "print\"Max concentrated load that can be applied at the centre of span is\",round(P,3),\"KN\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Max concentrated load that can be applied at the centre of span is 5.22 KN\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.3,Page no.132"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "#Flanges Dimension\n",
- "b1=180 #mm #Width\n",
- "d1=10 #mm #Thickness\n",
- "\n",
- "D=500 #mm #Overall depth\n",
- "t=8 #mm #Thickness of web\n",
- "\n",
- "#Plate Dimensions\n",
- "b2=240 #mm #Width\n",
- "t2=12 #mm #Thickness\n",
- "\n",
- "sigma=150 #N/mm**2 #Stress\n",
- "L=3000 #mm #span\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Distance of centroid from bottom fibre\n",
- "y_bar=(b2*t2*(D+t2*2**-1)+b1*d1*(D-t1*2**-1)+(D-2*t1)*t*D*2**-1+(b1*t1*t1*2**-1))*(b2*t2+b1*d1+b1*d1+(D-2*d1)*t)**-1\n",
- "\n",
- "#M.I of section\n",
- "I=(1*12**-1*b2*t2**3+b2*t2*(D+t2*2**-1-y_bar)**2+1*12**-1*b1*d1**3+b1*d1*(D-t1*2**-1-y_bar)**2+1*12**-1*b1*t1**3+b1*t1*(t1*2**-1-y_bar)**2+1*12**-1*t*(D-2*t1)**3+t*(D-2*t1)*(D*2**-1-y_bar)**2)\n",
- "\n",
- "#Section Modulus\n",
- "Z=I*(y_bar)**-1 #mm**3\n",
- "\n",
- "#Moment or Resistance\n",
- "M=sigma*Z\n",
- "\n",
- "#Let Load on Cantilever be w/m Length \n",
- "#Max M.I produced\n",
- "#M_max=w*L**2**-1 \n",
- "\n",
- "#Now Equating Moment of resistance to Max moment,we get Max load\n",
- "#4.5*w=M\n",
- "#After rearranging and further simplifying we get\n",
- "w=M*4.5**-1*10**3*10**-9\n",
- "\n",
- "#Result\n",
- "print\"Moment of Resistance is\",round(M,2),\"KN-mm\"\n",
- "print\"Load the section can carry is\",round(w,3),\"KN/m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Moment of Resistance is 198770121.83 KN-mm\n",
- "Load the section can carry is 44.171 KN/m\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.4,Page no.134"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "#Flange (Top)\n",
- "b1=80 #mm #Width \n",
- "t1=40 #mm #Thickness\n",
- "\n",
- "#Flange (Bottom)\n",
- "b2=160 #mm #width\n",
- "t2=40 #mm #Thickness\n",
- "\n",
- "#web\n",
- "d=120 #mm #Depth\n",
- "t3=20 #mm #Thickness\n",
- "\n",
- "D=200 #mm #Overall Depth\n",
- "sigma1=30 #N/mm**2 #Tensile stress\n",
- "sigma2=90 #N/mm**2 #Compressive stress\n",
- "L=6000 #mm #Span\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Distance of centroid from bottom fibre\n",
- "y_bar=(b1*t1*(D-t1*2**-1)+d*t3*(d*2**-1+t2)+b2*t2*t2*2**-1)*(b1*t1+d*t3+b2*t2)**-1 #mm\n",
- "\n",
- "#Moment of Inertia\n",
- "I=1*12**-1*b1*t1**3+b1*t1*(D-t1*2**-1-round(y_bar,2))**2+1*12**-1*t3*d**3+t3*d*(d*2**-1+t2-round(y_bar,2))**2+1*12**-1*b2*t2**3+b2*t2*(t2*2**-1-round(y_bar,2))**2\n",
- "\n",
- "#Extreme fibre distance of top and bottom fibres are y_t and y_c respectively\n",
- "\n",
- "y_t=y_bar #mm\n",
- "y_c=D-y_bar #mm\n",
- "\n",
- "#Moment carrying capacity considering Tensile strength \n",
- "M1=sigma1*I*y_t**-1*10**-6 #KN-m\n",
- "\n",
- "#Moment carrying capacity considering compressive strength \n",
- "M2=sigma2*I*y_c**-1*10**-6 #KN-m\n",
- "\n",
- "#Max Bending moment in simply supported beam 6 m due to u.d.l\n",
- "#M_max=w*L*10**-3*8**-1\n",
- "#After simplifying further we get\n",
- "#M_max=4.5*w\n",
- "\n",
- "#Now Equating it to Moment carrying capacity, we get load carrying capacity\n",
- "w=M1*4.5**-1 #KN/m\n",
- "\n",
- "#Result\n",
- "print\"Max Uniformly Distributed Load is\",round(w,3),\"KN/m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Max Uniformly Distributed Load is 5.096 KN/m\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.5,Page no.136"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "from scipy.integrate import quad\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "#Flanges\n",
- "b=200 #mm #Width\n",
- "t=25 #mm #Thickness \n",
- "\n",
- "D1=500 #mm #Overall Depth\n",
- "t2=20 #mm #Thickness of web\n",
- "\n",
- "d=450 #mm #Depth of web\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Consider,Element of Thickness \"y\" at Distance \"dy\" from N.A \n",
- "#Let Bending stress \"sigma_max\"\n",
- "\n",
- "#Stress on the element \n",
- "#sigma=y*(D*2**-1)*sigma_max ..............(1)\n",
- "\n",
- "#Area of Element\n",
- "#A=b*dy .................................(2)\n",
- "\n",
- "#Force on Element \n",
- "#F=y*250**-1*sigma_max*b*dy\n",
- "\n",
- "#Let M be the Moment of resistance\n",
- "#M=y*250**-1*sigma_max*b*dy*y\n",
- "\n",
- "#Moment of Resistance of top flange be M1\n",
- "def integrand(y, b, D):\n",
- " return b*y**2*D**-1\n",
- "b=200 \n",
- "D=250\n",
- "\n",
- "X = quad(integrand, 225, 250, args=(b,D))\n",
- "\n",
- "Y=2*X[0]\n",
- "\n",
- "#M1=Y*sigma\n",
- "\n",
- "#Now Moment of Inertia I section is\n",
- "X=b*D1**3\n",
- "Y=(b-t2)*d**3\n",
- "I=(X-Y)*12**-1*10**-8\n",
- "\n",
- "#Moment acting on the entire section\n",
- "#since sigmais the value at y=250\n",
- "y_max=250\n",
- "Z=I*10**8*y_max**-1\n",
- "#M=sigma*Z \n",
- "#After Simplifying Further we get\n",
- "#M2=Z*sigma\n",
- "\n",
- "#Percentage Moment resisted by Flanges\n",
- "P1=2258333.3*(2865833.3)**-1*100\n",
- "\n",
- "#Percentage Moment resisted by web\n",
- "P2=100-P1\n",
- "\n",
- "#Result\n",
- "print\"Percentage Moment resisted by Flanges\",round(P1,2),\"%\"\n",
- "print\"Percentage Moment resisted by web\",round(P2,2),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Percentage Moment resisted by Flanges 78.8 %\n",
- "Percentage Moment resisted by web 21.2 %\n"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.6,Page no.137"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "#Flanges\n",
- "b1=200 #mm #Width\n",
- "t1=10 #mm #Thickness\n",
- "\n",
- "#Web\n",
- "d=380 #mm #Depth \n",
- "t2=8 #mm #Thickness\n",
- "\n",
- "D=400 #mm #Overall Depth\n",
- "sigma=150 #N/mm**2\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Area\n",
- "A=b1*t1+d*t2+b1*t1 #mm**2\n",
- "\n",
- "#Moment of Inertia\n",
- "I=1*12**-1*(b1*D**3-(b1-t2)*d**3)\n",
- "\n",
- "#Bending Moment\n",
- "M=sigma*I*(D*2**-1)**-1\n",
- "\n",
- "#Square Section\n",
- "\n",
- "#Let 'a' be the side\n",
- "a=A**0.5\n",
- "\n",
- "#Moment of Resistance of this section\n",
- "M1=1*6**-1*a*a**2*sigma\n",
- "\n",
- "X=M*M1**-1\n",
- "\n",
- "#Rectangular section\n",
- "#Let 'a' be the side and depth be 2*a\n",
- "\n",
- "a=(A*2**-1)**0.5\n",
- "\n",
- "#Moment of Rectangular secction\n",
- "M2=1*6**-1*a*(2*a)**2*sigma\n",
- "\n",
- "X2=M*M2**-1\n",
- "\n",
- "#Circular section\n",
- "#A=pi*d1**2*4**-1\n",
- "\n",
- "d1=(A*4*pi**-1)**0.5\n",
- "\n",
- "#Moment of circular section\n",
- "M3=pi*32**-1*d1**3*sigma\n",
- "\n",
- "X3=M*M3**-1\n",
- "\n",
- "#Result\n",
- "print\"Moment of resistance of beam section\",round(M,2),\"mm\"\n",
- "print\"Moment of resistance of square section\",round(X,2),\"mm\"\n",
- "print\"Moment of resistance of rectangular section\",round(X2,2),\"mm\"\n",
- "print\"Moment of resistance of circular section\",round(X3,2),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Moment of resistance of beam section 141536000.0 mm\n",
- "Moment of resistance of square section 9.58 mm\n",
- "Moment of resistance of rectangular section 6.78 mm\n",
- "Moment of resistance of circular section 11.33 mm\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.7,Page no.139"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "F=12 #KN #Force at End of beam\n",
- "L=2 #m #span\n",
- "\n",
- "#Square section \n",
- "b=d=200 #mm #Width and depth of beam\n",
- "\n",
- "#Rectangular section\n",
- "b1=150 #mm #Width\n",
- "d1=300 #mm #Depth\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Max bending Moment\n",
- "M=F*L*10**6 #N-mm\n",
- "\n",
- "#M=sigma*b*d**2\n",
- "sigma=M*6*(b*d**2)**-1 #N/mm**2\n",
- "\n",
- "#Let W be the central concentrated Load in simply supported beam of span L1=3 m\n",
- "#MAx Moment\n",
- "#M1=W*L1*4**-1\n",
- "#After Further simplifying we get\n",
- "#M1=0.75*10**6 #N-mm\n",
- "\n",
- "#The section has a moment of resistance\n",
- "M1=sigma*1*6**-1*b1*d1**2\n",
- "\n",
- "#Equating it to moment of resistance we get max load W\n",
- "#0.75*10**6*W=M1\n",
- "#After Further simplifying we get\n",
- "W=M1*(0.75*10**6)**-1\n",
- "\n",
- "#Result\n",
- "print\"Minimum Concentrated Load required to brek the beam\",round(W,2),\"KN\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Minimum Concentrated Load required to brek the beam 54.0 KN\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.8,Page no.140"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "L=3 #m #span\n",
- "sigma_t=35 #N/mm**2 #Permissible stress in tension\n",
- "sigma_c=90 #N/mm**2 #Permissible stress in compression\n",
- "\n",
- "#Flanges\n",
- "t=30 #mm #Thickness\n",
- "d=250 #mm #Depth\n",
- "\n",
- "#Web\n",
- "t2=25 #mm #Thickness\n",
- "b=600 #mm #Width\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Let y_bar be the Distance of N.A from Extreme Fibres\n",
- "y_bar=(t*d*d*2**-1*2+(b-2*t)*t2*t2*2**-1)*(t*d*2+(b-2*t)*t2)**-1\n",
- "\n",
- "#Moment of Inertia\n",
- "I=(1*12**-1*t*d**3+t*d*(d*2**-1-y_bar)**2)*2+1*12**-1*(b-2*t)*t2**3+(b-2*t)*t2*(t2*2**-1-y_bar)**2\n",
- "\n",
- "#Part-1\n",
- "\n",
- "#If web is in Tension\n",
- "y_t=y_bar #mm\n",
- "y_c=d-y_bar #mm\n",
- "\n",
- "#Moment carrying caryying capacity From consideration of tensile stress\n",
- "M=sigma_t*I*(y_bar)**-1 #N-mm\n",
- "\n",
- "#Moment carrying caryying capacity From consideration of compressive stress\n",
- "M1=sigma_c*I*(y_c)**-1 #N-mm\n",
- "\n",
- "#If w KN/m is u.d.l in beam,Max bending moment\n",
- "#M=wl**2*8**-1\n",
- "#After further simplifyng we get\n",
- "#M=1.125*w*10**6 N-mm\n",
- "w=M*(1.125*10**6)**-1 #KN\n",
- "\n",
- "#Part-2\n",
- "\n",
- "#If web is in compression\n",
- "y_t2=178.299 #mm\n",
- "y_c2=71.71 #mm \n",
- "\n",
- "#Moment carrying caryying capacity From consideration of tensile stress\n",
- "M2=sigma_t*I*(y_t2)**-1 #N-mm\n",
- "\n",
- "#Moment carrying caryying capacity From consideration of compressive stress\n",
- "M3=sigma_c*I*(y_c2)**-1 #N-mm\n",
- "\n",
- "#Moment of resistance is M2\n",
- "\n",
- "#Equating it to bending moment we get\n",
- "#M2=1.125*10**6*w2\n",
- "#After further simplifyng we get\n",
- "w2=M2*(1.125*10**6)**-1\n",
- "\n",
- "#Result\n",
- "print\"Uniformly Distributed Load carrying capacity if:web is in Tension\",round(w,2),\"KN\"\n",
- "print\" :web is in compression\",round(w2,3),\"KN\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Uniformly Distributed Load carrying capacity if:web is in Tension 73.21 KN\n",
- " :web is in compression 29.446 KN\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.9,Page no.141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "b1=200 #mm #Width at base\n",
- "b2=100 #mm #Width at top\n",
- "\n",
- "L=8 #m Length\n",
- "P=500 #N #Load\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Consider a section at y metres from top\n",
- "\n",
- "#At this section diameter d is\n",
- "#d=b2+y*L**-1*(b1-b2)\n",
- "#After Further simplifying we get\n",
- "#d=b2+12.5*y #mm\n",
- "\n",
- "#Moment of Inertia\n",
- "#I=pi*64**-1*d**4\n",
- "\n",
- "#Section Modulus \n",
- "#Z=pi*32**-1*(b1+12.5*y)**3\n",
- "\n",
- "#Moment \n",
- "#M=5*10**5*y #N-mm\n",
- "\n",
- "#Let sigma be the fibre stress at this section then\n",
- "#M=sigma*Z\n",
- "#After sub values in above equation and further simplifying we get\n",
- "#sigma=5*10**5*32*pi**-1*y*((b2+12.5*y)**3)**-1\n",
- "\n",
- "#For sigma to be Max,d(sigma)*(dy)**-1=0\n",
- "#16*10**6*pi**-1*((b2+12.5*y)**-3+y*(-3)*(b2+12.5*y)**-4*12.5)\n",
- "#After Further simplifying we get\n",
- "#b2+12.5*y=37.5*y\n",
- "#After Further simplifying we get\n",
- "y=b2*25**-1 #m\n",
- "\n",
- "#Stress at this section\n",
- "sigma=5*10**5*32*pi**-1*y*((b2+12.5*y)**3)**-1\n",
- "\n",
- "#Result\n",
- "print\"Stress at Extreme Fibre is max\",round(y,2),\"m\"\n",
- "print\"Max stress is\",round(sigma,2),\"N/mm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Stress at Extreme Fibre is max 4.0 m\n",
- "Max stress is 6.04 N/mm**2\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.10,Page no.143"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "H=10 #mm #Height\n",
- "A1=160*160 #mm**2 #area of square section at bottom\n",
- "L1=160 #mm #Length of square section at bottom\n",
- "b1=160 #mm #width of square section at bottom\n",
- "A2=80*80 #mm**2 #area of square section at top\n",
- "L2=80 #mm #Length of square section at top\n",
- "b2=80 #mm #Width of square section at top\n",
- "P=100 #N #Pull\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Consider a section at distance y from top.\n",
- "#Let the side of square bar be 'a'\n",
- "#a=L2+y*(H)**-1*(b1-b2)\n",
- "#After further simplifying we get\n",
- "#a=L2+8*y\n",
- "\n",
- "#Moment of Inertia\n",
- "#I=2*1*12**-1*a*(2)**0.5*(a*((2)**0.5)**-1)**3\n",
- "#After further simplifying we get\n",
- "#I=a**4*12**-1\n",
- "\n",
- "#Section Modulus \n",
- "#Z=a**4*(12*a*(2)**0.5)**-1\n",
- "#After further simplifying we get\n",
- "#Z=2**0.5*a**3*(12)**-1 #mm**3\n",
- "\n",
- "#Bending moment at this section=100*y N-mm\n",
- "#M=100*10**3*y #N-mm\n",
- "\n",
- "#But\n",
- "#M=sigma*Z\n",
- "#After sub values in above equation we get\n",
- "#sigma=M*Z**-1\n",
- "#After further simplifying we get\n",
- "#sigma=1200*10**3*(2**0.5)**-1*y*((80+80*y)**3)**-1 .......(1)\n",
- "\n",
- "#For Max stress df*(dy)**-1=0\n",
- "#After taking Derivative of above equation we get\n",
- "#df*(dy)**-1=1200*10**3*(2**0.5)**-1*((80+8*y)**-3+y(-3)*(80+8*y)**-4*8)\n",
- "#After further simplifying we get\n",
- "y=80*16**-1 #m\n",
- "\n",
- "#Max stress at this level is\n",
- "sigma=1200*10**3*(2**0.5)**-1*y*((80+8*y)**3)**-1\n",
- "\n",
- "#Result\n",
- "print\"Max Bending stress is Developed at\",round(y,3),\"m\"\n",
- "print\"Value of Max Bending stress is\",round(sigma,3),\"N/mm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Max Bending stress is Developed at 5.0 m\n",
- "Value of Max Bending stress is 2.455 N/mm**2\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.12,Page no.147"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "b=200 #mm #Width of timber \n",
- "d=400 #mm #Depth of timber\n",
- "t=6 #mm #Thickness\n",
- "b2=200 #mm #width of steel plate\n",
- "t2=20 #mm #Thickness of steel plate\n",
- "M=40*10**6 #KN-mm #Moment\n",
- "#Let E_s*E_t**-1=X\n",
- "X=20 #Ratio of Modulus of steel to timber\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#let y_bar be the Distance of centroidfrom bottom most fibre\n",
- "y_bar=(b*d*(b+t)+t2*b2*t*t*2**-1)*(b*d+t2*b2*t)**-1 #mm\n",
- "\n",
- "#Moment of Inertia\n",
- "I=1*12**-1*b*d**3+b*d*(b+t-round(y_bar,3))**2+1*12**-1*t2*b2*t**3+b2*t2*t*(round(y_bar,3)-t*2**-1)**2\n",
- "\n",
- "#distance of the top fibre from N-A\n",
- "y_1=d+t-y_bar #mm\n",
- "\n",
- "#Distance of the junction of timber and steel From N-A\n",
- "y_2=y_bar-t #mm\n",
- "\n",
- "#Stress in Timber at the top\n",
- "Y=M*I**-1*y_1 #N/mm**2\n",
- "\n",
- "#Stress in the Timber at the junction point\n",
- "Z=M*I**-1*y_2\n",
- "\n",
- "#Coressponding stress in steel at the junction point\n",
- "Z2=X*Z #N/mm**2 \n",
- "\n",
- "#The stress in Extreme steel fibre \n",
- "Z3=X*M*I**-1*y_bar\n",
- "\n",
- "#Result\n",
- "print\"Stress in Extreme steel Fibre\",round(Z3,2),\"N/mm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Stress in Extreme steel Fibre 69.67 N/mm**2\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.13,Page no.149"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "#Timber size\n",
- "b=150 #mm #Width\n",
- "b2=120 #mm \n",
- "d=300 #mm #Depth\n",
- "\n",
- "t=6 #mm #Thickness of steel plate\n",
- "L=6 #m #Span\n",
- "\n",
- "#E_s*E_t**-1=20 \n",
- "#X=E_s*E_t**-1\n",
- "X=20 \n",
- "sigma_timber=8 #N/mm**2 #Stress in timber\n",
- "sigma_steel=150 #N/mm**2 #Stress in steel plate\n",
- "\n",
- "#Calculations\n",
- "\n",
- "Y\n",
- "\n",
- "#Due to synnetry cenroid,the neutral axis is half the depth\n",
- "I=1*12**-1*\n",
- "\n",
- "\n",
- "#Result\n",
- "print Z"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "153.0\n"
- ]
- }
- ],
- "prompt_number": 34
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.14,Page no.151"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "L=6000 #mm #Span of beam\n",
- "W=20*10**3 #N #Load\n",
- "sigma=8 #N/mm**2 #Stress\n",
- "b=200 #mm #Width of section\n",
- "d=300 #mm #Depth of section\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#let x be the distance from left side of beam\n",
- "\n",
- "#Bending moment\n",
- "#M=W*2**-1*x #Nmm .......(1)\n",
- "\n",
- "#But M=sigma*Z ..........(2)\n",
- "\n",
- "#Equating equation 1 and 2 we get\n",
- "#W*2**-1*x=sigma*Z ............(3)\n",
- "\n",
- "#Section Modulus \n",
- "#Z=1*6*b*d**2 ...............(4)\n",
- "\n",
- "#Equating equation 3 and 4 we get\n",
- "#b*d**2=3*W*x*sigma**-1 .............(5)\n",
- "\n",
- "#Beam of uniform strength of constant depth\n",
- "#b=3*W*x*(sigma*d**2) \n",
- "\n",
- "#When x=0\n",
- "b=0\n",
- "\n",
- "#When x=L*2**-1\n",
- "b2=3*W*L*(2*sigma*d**2)**-1 #mm\n",
- "\n",
- "#Beam with constant width of 200 mm\n",
- "\n",
- "#We have\n",
- "#d=(3*W*x*(sigma*d)**-1)**0.5\n",
- "#thus depth varies as (x)**0.5\n",
- "\n",
- "#when x=0\n",
- "d1=0\n",
- "\n",
- "#when x=L*2**-1\n",
- "d2=(2*W*L*(2*sigma*300)**-1)**0.5 #mm\n",
- "\n",
- "#Result\n",
- "print\"Cross section of rectangular beam is:\",round(b2,2),\"mm\"\n",
- "print\" :\",round(d2,2),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Cross section of rectangular beam is: 250.0 mm\n",
- " : 223.61 mm\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.15,Page no.154"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "L=800 #mm #Span\n",
- "n=5 #number of leaves\n",
- "b=60 #mm #Width\n",
- "t=10 #mm #thickness\n",
- "sigma=250 #N/mm**2 #Stress\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#section Modulus\n",
- "Z=n*6**-1*b*t**2 #mm**3\n",
- "\n",
- "#from the relation\n",
- "#sigma*Z=M ...................(1)\n",
- "#M=P*L*4**-1\n",
- "#sub values of M in equation 1 we get\n",
- "P=sigma*Z*4*L**-1*10**-3 #KN #Load\n",
- "\n",
- "#Length of Leaves\n",
- "L1=0.2*L #mm\n",
- "L2=0.4*L #mm\n",
- "L3=0.6*L #mm\n",
- "L4=0.8*L #mm\n",
- "L5=L #mm\n",
- "\n",
- "#Result\n",
- "print\"Max Load it can take is\",round(P,2),\"KN\"\n",
- "print\"Length of leaves:L1\",round(L1,2),\"mm\"\n",
- "print\" :L2\",round(L2,2),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Max Load it can take is 6.25 KN\n",
- "Length of leaves:L1 160.0 mm\n",
- " :L2 320.0 mm\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.16,Page no.161"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "%matplotlib inline\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "F=20*10**3 #N #Shear Force\n",
- "\n",
- "#Tee section\n",
- "\n",
- "#Flange\n",
- "b=100 #mm #Width\n",
- "t=12 #mm #Thickness\n",
- "\n",
- "#Web\n",
- "d=88 #mm #Depth\n",
- "t2=12 #mm #Thicknes\n",
- "\n",
- "D=100 #mm #Overall Depth\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Distance of C.G from Top Fibre\n",
- "y=(b*t*t*2**-1+t2*d*(d*2**-1+t))*(b*t+d*t2)**-1 #mm \n",
- "\n",
- "#Moment Of Inertia\n",
- "I=1*12**-1*b*t**3+b*t*(y-t*2**-1)**2+1*12**-1*t2*d**3+t2*d*(t+d*2**-1-y)**2 #mm**4\n",
- "\n",
- "#shear stress at bottom Flange\n",
- "\n",
- "#Area above this level\n",
- "A=b*t #mm**2\n",
- "\n",
- "#C.G of this area from N-A\n",
- "y2=y-t*2**-1\n",
- "\n",
- "#Stress at bottom of flange\n",
- "sigma=F*A*y2*(b*I)**-1 #N/mm**2 \n",
- "\n",
- "#sigma2 at same level but in web where width is 12 mm\n",
- "sigma2=F*A*y2*(t2*I)**-1 #N/mm**2 \n",
- "\n",
- "#To find shear stress at N-A\n",
- "X=t*b*(y-t*2**-1)+t2*(y-t2)*(y-t2)*2**-1 #mm**3\n",
- "\n",
- "sigma3=F*X*(t2*I)**-1 #N/mm**2\n",
- "\n",
- "#Shear stress at top and bottom fibre is zero\n",
- "#sigma4 and sigma5 are top and bottom fibre shear stress\n",
- "sigma4=sigma5=0\n",
- "\n",
- "#Result\n",
- "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
- "\n",
- "#Plotting the Shear Force Diagram\n",
- "\n",
- "X1=[0,t,t,y,D]\n",
- "Y1=[sigma4,sigma,sigma2,sigma3,sigma5]\n",
- "Z1=[0,0,0,0,0]\n",
- "plt.plot(X1,Y1,X1,Z1)\n",
- "plt.xlabel(\"Length x in m\")\n",
- "plt.ylabel(\"Shear Force in kN\")\n",
- "plt.show()\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Shear Force and Bending Moment Diagrams are the results\n"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWX+//HXQdFSNHMDDQvGFAQ33JdMEEFRIRN1stLc\nptKflZPV+J1pGp0WdZrGzJoZxym1LJeycivSMsw1K3U0M3UMimTRVMZwCYH798elKCqCwDn3OZz3\n8/E4Dw+Hc+77wz3T/TnX8rkuh2VZFiIi4vV87A5ARETcgxKCiIgASggiInKOEoKIiABKCCIico4S\ngoiIAE5MCGlpaURFRREeHk7Lli156aWXAJgyZQqBgYFEREQQERFBUlKSs0IQEZFr4HBWHUJmZiaZ\nmZm0bduWnJwc2rdvz/vvv8/SpUupVasWjz76qDNOKyIiZVTVWQcOCAggICAAAD8/P1q0aMGhQ4cA\nUC2ciIj7cckYQmpqKjt27KBLly4AzJ49mzZt2jBmzBiys7NdEYKIiJTA6QkhJyeHwYMHM2vWLPz8\n/Bg3bhwpKSns3LmTRo0aMWnSJGeHICIipWE5UW5urhUbG2vNnDnzir9PSUmxWrZsednrTZs2tQA9\n9NBDDz2u4dG0adNy3bOd1kKwLIsxY8YQFhbGxIkTC1/PyMgofP7ee+/RqlWryz578OBBLMvSw7L4\n05/+ZHsM7vLQtdC10LW4+uPgwYPlum87bVB506ZNLFy4kNatWxMREQHAc889x6JFi9i5cycOh4Pg\n4GDmzJnjrBBEROQaOC0h3HbbbRQUFFz2elxcnLNOKSIi5aBKZTcXGRlpdwhuQ9fiAl2LC3QtKo7T\nCtPKw+Fw4IZhiYi4tfLeO9VCEBERQAlBRETOUUIQERFACUFERM5x2rRT8Vz/+x98/jls2wa9e8O5\nJahEpJJTQvByBQWwdy9s2QJbt5p/v/8e2reHtm0hPh7+9S+48067IxURZ1NC8DLHjplv/+dv/tu2\nQf360LWreYwfD61aga+vef+IESYpZGbCuHH2xi4izqU6hEosPx/27Cn67T89HTp0MDf/Ll3Mo0GD\nqx/n4EHo2xfuugv+/GdwOFwTv4hcm/LeO5UQKpGffjI3/vM3/y++gEaNLnz779IFWraEKlWu/diH\nD0P//tC6NcyZA1XVthRxO0oIXiovD3bvLvrt//Bh6NTpws2/c2eoV6/izpmTA0OGmISyZAnUrFlx\nxxaR8lNC8BKHDxe9+X/1FTRpUvTbf4sWZfv2fy3OnoWxY2HfPli1yow/iIh7UEKohM6ehf/858LN\nf8sWOH7cfOO/+Nt/nTr2xGdZ8Ic/wLJlkJQEwcH2xCEiRSkhVAIZGUW//e/YYW6y52/+XbtCSAj4\nuFkZ4csvw7RppqVwbssLEbGREoKHyc01N/yLv/3n5Fy48XfpYsYBate2O9LSeecdM1V10SKIjrY7\nGhHvpoTg5n78sei3///8B5o1K/rtv1kzz57KuX69GWyeNQuGDbM7GhHvpYTgRs6cge3bL9z8t241\nr1188+/YEfz87I604u3eDf36wW9/C48+anc0It5JCcEmlgU//FC06+frryE0tGgC+NWvPPvb/7X4\n4QdTwBYXB88/735jHiKVnRKCDSZOhKVLzTpAF9/827fX3Pxjx8xSF7fcAvPnQ7Vqdkck4j2UEGwQ\nFARvvWWSgLd8+78Wp0/D3XebwfJlyzxngFzE02kLTZs0bqxkUJzrrzezj5o2hZ49zcJ4IuL+lBDE\nKapUgX/8AwYNgm7dYP9+uyMSkZJoiTJxGocD/vhHs8Bez57w/vumwlpE3JNaCOJ0Y8eaTXYGDIAP\nPrA7GhEpjhKCuER8PKxcCaNHw7x5dkcjIleiLiNxmS5dTFVz375mo57f/14D8yLuRC0EcamQENi0\nCd5+GyZMMLu6iYh7UEIQl2vc2LQUvv0Whg41y3uIiP2UEMQWN9xgBph9fSE21uz3ICL2UkIQ21Sv\nbiq+27eHHj0gLc3uiES8mxKC2MrHB/72Nxg5Erp3hz177I5IxHtplpHYzuGAxx4zBWy9epllL3r0\nsDsqEe+jFoK4jXvugYULzXIX775rdzQi3kctBHErMTHw0Uemqjkz02zPKSKuoYQgbqddO9i4Efr0\nMQVsTz+tAjYRV3Bal1FaWhpRUVGEh4fTsmVLXnrpJQCOHTtGTEwMzZs3JzY2luzsbGeFIB7sV78y\nBWxr1pi1kM6etTsikcrPaQnB19eXmTNnsmfPHrZu3corr7zC3r17mT59OjExMezfv5/o6GimT5/u\nrBDEwzVsCOvWQUYGDBwIJ0/aHZFI5ea0hBAQEEDbtm0B8PPzo0WLFhw6dIgVK1Zw3333AXDffffx\n/vvvOysEqQT8/GD5cpMcevWCI0fsjkik8nLJLKPU1FR27NhB586dycrKwt/fHwB/f3+ysrJcEYJ4\nMF9feO016N3b1CqkpNgdkUjl5PRB5ZycHBITE5k1axa1atUq8juHw4GjmNHCKVOmFD6PjIwkMjLS\niVGKu3M44NlnzTpIt90Gq1ZBRITdUYnYKzk5meTk5Ao7nsNy4m72Z8+eZcCAAcTFxTFx4kQAQkND\nSU5OJiAggIyMDKKiovj222+LBlXOjaKdLSgIkpPNv+J677xjpqO+9ZZpNYiIUd57p9O6jCzLYsyY\nMYSFhRUmA4CEhAQWLFgAwIIFCxg4cKCzQpBKavBgkxTuvtskBRGpGE5rIWzcuJHbb7+d1q1bF3YL\nTZs2jU6dOjF06FB++OEHgoKCWLp0KXXq1CkalFoIUgq7d0O/fjBxIkyaZHc0IvYr773TqV1GZaWE\nIKWVlmZ2YOvbF55/3iyWJ+Kt3LbLSMQVmjSBDRtg2za491745Re7IxLxXEoI4vHq1jUVzadPQ//+\ncOKE3RGJeCYlBKkUrr/eDDQ3awY9e5rqZhG5NkoIUmlUqQJ//zskJpoCtv377Y5IxLNotVOpVBwO\nePJJs9nO7bebZS86d7Y7KhHPoBaCVEpjxsCrr5p9FVavtjsaEc+ghCCVVv/+sHKlSQ6vvWZ3NCLu\nT11GUql16QLr15s6hfR0+MMftNmOSHHUQpBKLyQENm82s5D+3/+D/Hy7IxJxT0oI4hUaNYLPPoN9\n+2DIEFOzICJFKSGI16hdGz74AKpXh9hYOH7c7ohE3IsSgniV6tXhzTehUyezr0Jamt0RibgPJQTx\nOj4+8MILMHq0KWD7+mu7IxJxD5plJF5r0iQICIDoaHj7bVPIJuLN1EIQr3bPPaYLKTERli2zOxoR\ne6mFIF6vd2/46COIj4fMTDM1VcQbKSGIAO3amX0VzhewPfOMCtjE+6jLSOScX/0KNm2CtWvNgPPZ\ns3ZHJOJaSggiF2nQAD79FA4fhjvugJMn7Y5IxHWUEEQuUbMmvP8++PtDVBQcOWJ3RCKuUewYQlRU\n1BVfd5zrWF23bp1zIhJxA76+ZoXUP/7R1CokJZkuJZHKrNiE8Pzzzxc+P58Etm7dyowZM2jYsKHz\nIxOxmcNhBpcbN4YePcxS2u3a2R2ViPMUmxA6dOhQ+Dw5OZlnnnmG06dPM2fOHOLi4lwSnIg7GD/e\nFLD17WtqFmJi7I5IxDmuOu00KSmJZ599lmrVqvHkk08W240kUtkNGmQGnAcPhr/9zRS0iVQ2xSaE\njh07cuTIER577DG6du0KwPbt2wt/305tZ/EyPXrAJ59Av36mgG3SJLsjEqlYDsuyrCv9IjIy0ryh\nmOqcTz/91HlBORwUE5ZbCAqC5GTzr3iftDTTfdSnD/z1r2axPBF3UN57Z7EJ4byCggJ8Lvl//Jkz\nZ7juuuvKfNISg1JCEDd3/DgkJEBgIMyfb5bVFrFbee+dJX63GTt2bJGfc3Jy6NevX5lPKFIZ3Hgj\nrFkDv/xiupBOnLA7IpHyKzEh3HTTTYwfPx6A48ePExsby/Dhw50emIi7u/56s2x2aKhZOjsjw+6I\nRMqnxC4jgMcff5wTJ07w1VdfMXnyZAYPHuzcoNRlJB7EsuC55+Df/zYFbCEhdkck3qq8985iZxkt\nO7c4vMPhoEuXLjz99NN07NgRh8PBu+++y6BBg8p8UpHKxOGAP/wBGjWCnj3Nshddutgdlci1K7aF\nMHLkyCIzjCzLKvLzvHnznBeUWgjioVavhpEjYd48GDDA7mjE2zh9lpEdlBDEk33+uVkp9dlnYcwY\nu6MRb+K0LiMRKZvOneGzz0ytQkaG6U7SZjviCVRSI+IEzZvD5s1mn+bx4yE/3+6IRErm1IQwevRo\n/P39adWqVeFrU6ZMITAwkIiICCIiIkhKSnJmCCK2CQiA9evhwAGzBtLp03ZHJHJ1JY4hnDlzhmXL\nlpGamkpeXp75kMPBU089VeLBN2zYgJ+fHyNGjGD37t0ATJ06lVq1avHoo48WH5TGEKQSyc01A80/\n/AArVkDdunZHJJWV0yuV77jjDlasWIGvry9+fn74+flRs2bNUh28R48e3HjjjZe97s43e5GKVq0a\nLFxopqLedptJDCLuqMRB5UOHDvHRRx9V6Elnz57N66+/TocOHXjhhReoU6dOhR5fxN34+JiF8Bo1\nMjuwffghtGxpd1QiRZXYQujWrRu7du2qsBOOGzeOlJQUdu7cSaNGjZikNYTFi0yaBDNmQK9eZnxB\nxJ2U2ELYsGED8+bNIzg4mOrnlnR0OBxlThIXb785duxY4uPjr/i+KVOmFD6PjIwsXI5bxNPdfTf4\n+8OQIfD3v5sBZ5GySE5OJjk5ucKOV+Kgcmpq6hVfDyrliGpqairx8fGFg8oZGRk0atQIgJkzZ/LF\nF1/w1ltvFQ1Kg8riBXbsMNXM//d/MGGC3dFIZeC0wrQTJ05Qu3ZtateuXeaDDxs2jPXr1/PTTz/R\npEkTpk6dSnJyMjt37sThcBAcHMycOXPKfHwRTxYRARs3mgK29HRT2awCNrFTsS2E/v37s3r1aoKC\ngi7bNc3hcPDdd985Lyi1EMSLHDliWgotWsDcueDra3dE4qm0lpENlBCkop08CUOHmqW0ly4FPz+7\nIxJP5PQ6BBFxvpo1YflyMy21Vy/TahBxNSUEETdRtarZZKdPH+jWDZzYKytyRVrtVMSNOBzw9NPQ\nuLGpal65Etq3tzsq8RalaiGcr0UAOHLkCCkpKU4NSsTbjRsHL79sZiCtXWt3NOItSkwIU6ZM4S9/\n+QvTpk0DIDc3l3vvvdfpgYl4u0GD4N134d57zVpIIs5WYpfRe++9x44dO2h/rt1600038fPPPzs9\nMBGBHj1g3TqIi4PMTLP0hWoVxFlKbCFUr14dH58Lbzt58qRTAxKRosLDYdMmmD8fHn0UCgrsjkgq\nqxITwpAhQ3jggQfIzs7mX//6F9HR0YwdO9YVsYnIOU2awIYN8NVXZi2kX36xOyKpjEpVmLZmzRrW\nrFkDQJ8+fYiJiXFuUCpME7miM2fgnnvg+HF47z244Qa7IxJ34vRK5ZSUFAICArj++usBOH36NFlZ\nWaVe3K5MQSkhiBQrPx8eftisg/Thh2aKqgi4oFJ58ODBVKlS5cIHfHwYrPV6RWxTpYqZkvrrX5vN\ndvbtszsiqSxKnGWUn59PtWrVCn+uXr06Z8+edWpQInJ1Dgf8/vdmqYuePU33Udeudkclnq7EFkL9\n+vVZvnx54c/Lly+nfv36Tg1KREpn1Ch47TVISIBVq+yORjxdiWMI//3vf7nnnntIT08HIDAwkDfe\neINbb73VeUFpDEHkmmzbBnfcYZa90CRA7+W0DXLAdBf985//5PPPPy8sRqtVq1aZTyYiztGpk9mj\nOS7ObLbzxz+qgE2u3VW7jKpUqcLGjRuxLItatWopGYi4sebNTQHb+++btZDy8+2OSDxNiV1GDz74\nIOnp6QwZMoQaNWqYDzkcDBo0yHlBqctIpMxOnIDERLPHwqJFcG7GuHgBp3YZAZw5c4a6deuybt26\nIq87MyGISNnVrg2rV5sB5969zRLadevaHZV4Am2hWQZqIYgnKCiA3/3OJIekJLj5ZrsjEmdzemFa\nWload955Jw0aNKBBgwYkJiby448/lvmEIuIaPj7w/PPwm9+YArbdu+2OSNxdiQlh1KhRJCQkkJ6e\nTnp6OvHx8YwaNcoVsYlIBfjtb01iiI42M5FEilNiQjhy5AijRo3C19cXX19fRo4cyeHDh10Rm4hU\nkLvuMgPMQ4bA22/bHY24qxITQr169XjjjTfIz88nLy+PhQsXqlJZxANFR8OaNTBxIsyebXc04o5K\nTAivvfYaS5cuJSAggEaNGvH2228X7q8sIp6lbVuzSurLL8P//R+48dwNsUGxs4y2bt1Kly5dXB0P\noFlGIs72008wYACEhMC//w2+vnZHJBXBabOMxo0bV/i8q5ZRFKlU6teHTz6Bo0fNwng5OXZHJO6g\nxC4jMMVpIlK51Kxplrlo3BiiokBzRaTYhJCfn8+xY8c4evRo4fOLHyLi+apWNV1GcXGmVuHgQbsj\nEjsVu3TFiRMnaN++PQCWZRU+B9NP9d133zk/OhFxOocD/vxn01Lo0cMsdXHRf+7iRYpNCKmpqS4M\nQ0Ts9uCDEBBgWgsLF0JsrN0RiauVagxBRLzDwIHw7rswfLhJCuJdSlztVES8y223waefmpZCRgY8\n9pg22/EWaiGIyGXCwsxmO6+/btZCKiiwOyJxhasmhLy8PEJCQlwVi4i4kcBA2LABduyAYcPgl1/s\njkic7aoJoWrVqoSGhvL999+7Kh4RcSN16sBHH5ntOPv2hf/9z+6IxJlK7DI6duwY4eHh9OrVi/j4\neOLj40lISCjVwUePHo2/vz+tWrUqcryYmBiaN29ObGws2dnZZY9eRJzuuutgyRIID4fbb4f0dLsj\nEmcpcce05OTkK74eGRlZ4sE3bNiAn58fI0aMYPe53TmeeOIJ6tevzxNPPMGMGTM4fvw406dPLxqU\n1jIScTuWBdOnw5w5Zge20FC7I5JLlffe6fQtNFNTU4mPjy9MCKGhoaxfvx5/f38yMzOJjIzk22+/\nLRqUEoKI25o/HyZPhvfeAy1z5l6cvoXmli1b6NixI35+fvj6+uLj40Pt2rXLfMKsrCz8/f0B8Pf3\nJysrq8zHEhHXGzkS5s0zi+KtWGF3NFKRSkwIEyZM4K233qJZs2acOXOGV199lfHjx1fIyR0OBw5N\ncBbxOHFxsHo1PPAAzJ1rdzRSUUpVmNasWTPy8/OpUqUKo0aNom3btpf1+5fW+a6igIAAMjIyaNiw\n4RXfN2XKlMLnkZGRpRqzEBHX6dQJPvvMzD5KT4ennlIBm6slJycXO85bFiUmhJo1a/LLL7/Qpk0b\nnnjiCQICAsrVR5WQkMCCBQv43e9+x4IFCxg4cOAV33dxQhAR99SsGWzeDP36maTwyitmBVVxjUu/\nLE+dOrVcxyuxy+j111+noKCAl19+mRo1avDjjz+ybNmyUh182LBhdOvWjX379tGkSRPmzZvH5MmT\nWbt2Lc2bN2fdunVMnjy5XH+AiNjL399MskhJgcREOHXK7oikrEo1y+jUqVOkpaW5rGpZs4xEPE9u\nLowebRLDypVQt67dEXkfp88yWrFiBREREfTp0weAHTt2lLowTUS8R7VqZu2j7t3NQwsceJ4SE8KU\nKVP4/PPPufHGGwGIiIjQ5jgickU+PvCXv5jZR7fdBrt22R2RXIsSh398fX2pU6dOkdd8fLRIqogU\nb+JEs9lO796wdClokqBnKPHOHh4ezptvvkleXh4HDhzgoYceolu3bq6ITUQ82F13weLFMHQovP22\n3dFIaZSYEGbPns2ePXuoXr06w4YNo3bt2rz44ouuiE1EPFyvXrB2rdlTYfZsu6ORkjh9LaOy0Cwj\nkcolNdUUsA0cCNOmqYDNWcp77yxxDGHfvn389a9/JTU1lby8vMKTrlu3rswnFRHvEhQEGzdCfLxZ\nC+nf/wZfX7ujkkuV2EJo3bo148aNo127dlSpUsV8yOGgffv2zgtKLQSRSunUKfj1r+HsWXjnHfDz\nszuiysXpLQRfX1/GjRtX5hOIiJxXo4ZZNvvBB83Mo9WrTaWzuIdiB5WPHTvG0aNHiY+P55VXXiEj\nI4Njx44VPkREyqJqVbNCav/+poDt4EG7I5Lziu0yCgoKKnZpaofD4dTiNHUZiXiHOXNg6lSzr0KH\nDnZH4/mc1mWUmppa5oOKiJTGAw+YLqN+/eCNN+DcCjlik2K7jL744gsyMjIKf16wYAEJCQk8/PDD\n6jISkQozcKAZVxgxwiQFsU+xCeH++++nevXqAHz22WdMnjyZ++67j9q1a3P//fe7LEARqfy6d4dP\nP4Unn4QZM8CNe4wrtWK7jAoKCqh7bv3aJUuW8MADD5CYmEhiYiJt2rRxWYAi4h3CwsxmO3FxZrOd\nmTPNYnniOsVe7vz8fM6ePQvAxx9/TFRUVOHvzheoiYhUpJtuMtty/uc/Zi2kM2fsjsi7FJsQhg0b\nRs+ePUlISKBGjRr06NEDgAMHDly2+qmISEWpUweSkky3UVwc/O9/dkfkPa5aqbxlyxYyMzOJjY2l\nZs2aAOzfv5+cnBzatWvnvKA07VTE6+Xnm2W016+HDz80rQe5uvLeO7W4XRkoIYi4hmWZQeZ//tMk\nhRYt7I7IvTl96QoREbs4HDB5MjRqBFFR8O67oO1YnEdj+CLi9u67D+bPhzvuMFXN4hxqIYiIR+jb\nFz74wCSFzExQOVTFU0IQEY/RsaOZltqnj6lV+NOftNlORVKXkYh4lFtvNQVsK1eatZBUFlVxlBBE\nxOP4+5uZft9/D4mJZuMdKT8lBBHxSLVqmVZC7drQuzccPWp3RJ5PCUFEPFa1arBgAfToYRbI+/57\nuyPybBpUFhGP5uNjitcaNzZJYfVq0PqbZaOEICKVwiOPmAK2mBhYssQUssm1UZeRiFQaQ4eaZPDr\nX8PSpXZH43nUQhCRSiUqCtauhf79TQHbww/bHZHnUEIQkUqnTRvYtMkUsB06BNOmabOd0tAlEpFK\n6ZZbTFL47DOzFlJurt0RuT8lBBGptOrVg08+MZvsxMfDzz/bHZF7U0IQkUqtRg2zbPYtt5jxhaws\nuyNyX0oIIlLpVa0Kc+bAgAGmVuG//7U7Ivdk26ByUFAQtWvXpkqVKvj6+rJt2za7QhERL+BwwJQp\npoDt9tvNvgodOtgdlXuxLSE4HA6Sk5OpW7euXSGIiBe6/36zOF5cHLzxhtlnQQxbu4zced9kEam8\n7rgDli+HkSPh9dftjsZ92JYQHA4HvXv3pkOHDsydO9euMETES3XrBp9+Ck89BdOng76f2thltGnT\nJho1asSRI0eIiYkhNDSUHj16FP5+ypQphc8jIyOJjIx0fZAiUqm1aGFqFeLizA5sM2dClSp2R1V6\nycnJJCcnV9jxHJYb9NtMnToVPz8/Jk2aBJjWgxuEVaygILM5R1CQzYGISIXIzoaBA6FBAzOucN11\ndkdUNuW9d9rSZXTq1Cl+PlchcvLkSdasWUOrVq3sCEVEhDp1ICnJzETq29ckCG9kS0LIysqiR48e\ntG3bls6dOzNgwABiY2PtCEVEBDCtgsWLoXVrMy310CG7I3I9t+gyupS6jETELpYFf/kL/OMf8OGH\nZpzBU5T33qnVTkVELuJwwO9+ZwrYIiPNshfdu9sdlWto6QoRkSsYPtzUKNx5p6lZ8AZqIYiIFKNP\nH/jgA0hIMJvtPPCA3RE5lxKCiMhVdOhg9lTo29fUKkyZYrqVKiN1GYmIlODWW00B2+rVZi2kvDy7\nI3IOJQQRkVLw9zezC9PSYNAgOHXK7ogqnhKCiEgp+fnBypWmkC06Gn76ye6IKpYSgojINfD1hQUL\noGdPuO02SE21O6KKo0FlEZFr5HCYFVIbNzZJYfVqaNPG7qjKTwlBRKSMHn4YAgIgJgaWLDF7Nnsy\ndRmJiJTD0KGwdCncdZdJCp5MLQQRkXKKjIS1a6F/f8jIgIkT7Y6obJQQREQqQOvWsHHjhQK26dPB\nx8P6YDwsXBER93XLLSYpbNwII0ZAbq7dEV0bJQQRkQpUrx58/DH8/DMMGGD+9RRKCNfo6FE4edLu\nKETEndWoAcuWQXCwGV/IyrI7otJRQiil/HyYMwfCwmDYMLj5ZrsjEhF3VrUq/POfZqXUbt3gwAG7\nIyqZBpVLYetWmDABrr8e1qypHAUoIuJ8Dgf86U+mgK1nT7OvQseOdkdVPLUQruLwYRg92ixkNXGi\nWQJXyUBErtVvfmNaC/36mW053ZUSwhXk5cFLL0F4ONStC99+C/feW3nXQBcR50tIMC2EUaPMWkju\nSF1Gl1i/Hh56CBo0MM/DwuyOSEQqi27dzBLa52sVJk92ry+aDsuyLLuDuJTD4cDVYaWnw2OPmfnD\nL7wAgwe71/9QIlJ5pKdDXBzcfju8+CJUqVIxxy3vvdPru4xyc+H5502VYXAw7N0LQ4YoGYiI8zRu\nbMYkv/7arIF05ozdERlenRDWrjWJ4NNPYcsWePZZqFnT7qhExBvccAMkJZnlLfr0gexsuyPy0i6j\n77+HRx+FHTtg1ixTTagWgYjYoaDA3I8++cTMQAoMLPux1GV0Dc6cgaefhnbtzPTRPXsgPl7JQETs\n4+MDM2eatY+6d4dvvrEvFq+ZZbRqFTzyiEkEX30FQUF2RyQiYjgc8PjjZrOdqCh4912THFweR2Xv\nMvrvf01R2YEDpragT58KOayIiFOsWWPqnv71Lxg48No+qy6jYpw8CU8+CV26mKldu3crGYiI+4uN\nhQ8+gPHjTXWzK1W6LiPLMs2tRx81RSA7d5ZvkEZExNU6dIANGy4UsE2d6pqxzkrVZbR3r9n0OiMD\nXn7ZLDsrIuKpDh8223K2aWNaC1VL+AqvLiPMBhSPP266hgYMMNNJlQxExNM1bGjqpH78Ee68E06d\ncu75PDohWBa8+SaEhsKRI6bq75FHwNfX7shERCqGnx+sXGkW2oyOhp9+ct65PLbLaNcus0dBTo7p\nHurWzUXBiYjYwLLg9783Y6QffXTlqfNe12WUnW3GCXr3hrvvhi++UDIQkcrP4YBp08xqzLfdZibM\nVDRbEkKT/N7tAAAJnElEQVRSUhKhoaE0a9aMGTNmlOozBQXw2mumeyg311TzPfhgxa0SKCLiCSZM\nMCukxsbCunUVe2yXJ4T8/HwmTJhAUlIS33zzDYsWLWLv3r1X/cyXX0LXrqZQY9UqM9pev76LArZZ\ncnKy3SG4DV2LC3QtLvDGazF4MCxdalZKXby44o7r8oSwbds2br31VoKCgvD19eWuu+5i+fLlV3zv\nTz/BAw+YmUMPPgibN5v5ud7EG//PXhxdiwt0LS7w1msRGWkWxHv8cbMWUkVweUI4dOgQTZo0Kfw5\nMDCQQ4cOXfa+f/zD7FZ23XVmC8tRo8wiUCIiYrRqBZs2wdy5JjGUl8srlR2lLLdbtAg+/tjsVyAi\nIld2881mp8f4+Ao4mOViW7Zssfr06VP483PPPWdNnz69yHuaNm1qAXrooYceelzDo2nTpuW6P7u8\nDiEvL4+QkBA++eQTGjduTKdOnVi0aBEtWrRwZRgiInIJl3cZVa1alZdffpk+ffqQn5/PmDFjlAxE\nRNyAW1Yqi4iI67ndvJ2yFK1VFmlpaURFRREeHk7Lli156aWXADh27BgxMTE0b96c2NhYst1hN24X\nyc/PJyIigvhzI2beei2ys7MZPHgwLVq0ICwsjM8//9xrr8W0adMIDw+nVatW3H333fzyyy9ecy1G\njx6Nv78/rVq1Knztan/7tGnTaNasGaGhoaxZs6bE47tVQihL0Vpl4uvry8yZM9mzZw9bt27llVde\nYe/evUyfPp2YmBj2799PdHQ006dPtztUl5k1axZhYWGFs9O89Vo88sgj9OvXj71797Jr1y5CQ0O9\n8lqkpqYyd+5ctm/fzu7du8nPz2fx4sVecy1GjRpFUlJSkdeK+9u/+eYblixZwjfffENSUhLjx4+n\noKDg6ico15B0Bdu8eXORGUjTpk2zpk2bZmNE9rrjjjustWvXWiEhIVZmZqZlWZaVkZFhhYSE2ByZ\na6SlpVnR0dHWunXrrAEDBliWZXnltcjOzraCg4Mve90br8XRo0et5s2bW8eOHbPOnj1rDRgwwFqz\nZo1XXYuUlBSrZcuWhT8X97dfOoOzT58+1pYtW656bLdqIZS2aM0bpKamsmPHDjp37kxWVhb+/v4A\n+Pv7k5WVZXN0rvHb3/6W559/Hp+LKhK98VqkpKTQoEEDRo0aRbt27fjNb37DyZMnvfJa1K1bl0mT\nJnHzzTfTuHFj6tSpQ0xMjFdei/OK+9vT09MJvGi7yNLcT90qIZS2aK2yy8nJITExkVmzZlGrVq0i\nv3M4HF5xnVatWkXDhg2JiIgodjlfb7kWeXl5bN++nfHjx7N9+3Zq1qx5WZeIt1yLgwcP8uKLL5Ka\nmkp6ejo5OTksXLiwyHu85VpcSUl/e0nXxa0Swk033URaWlrhz2lpaUUynDc4e/YsiYmJDB8+nIED\nBwIm62dmZgKQkZFBw4YN7QzRJTZv3syKFSsIDg5m2LBhrFu3juHDh3vltQgMDCQwMJCOHTsCMHjw\nYLZv305AQIDXXYsvv/ySbt26Ua9ePapWrcqgQYPYsmWLV16L84r7b+LS++mPP/7ITTfddNVjuVVC\n6NChAwcOHCA1NZXc3FyWLFlCQkKC3WG5jGVZjBkzhrCwMCZOnFj4ekJCAgsWLABgwYIFhYmiMnvu\nuedIS0sjJSWFxYsX06tXL9544w2vvBYBAQE0adKE/fv3A/Dxxx8THh5OfHy8112L0NBQtm7dyunT\np7Esi48//piwsDCvvBbnFfffREJCAosXLyY3N5eUlBQOHDhAp06drn6wih7wKK8PPvjAat68udW0\naVPrueeeszscl9qwYYPlcDisNm3aWG3btrXatm1rffjhh9bRo0et6Ohoq1mzZlZMTIx1/Phxu0N1\nqeTkZCs+Pt6yLMtrr8XOnTutDh06WK1bt7buvPNOKzs722uvxYwZM6ywsDCrZcuW1ogRI6zc3Fyv\nuRZ33XWX1ahRI8vX19cKDAy0Xnvttav+7c8++6zVtGlTKyQkxEpKSirx+CpMExERwM26jERExD5K\nCCIiAighiIjIOUoIIiICKCGIiMg5SggiIgIoIYiH8fPzc+rxX3zxRU6fPl3h51u5cqXXLecunkd1\nCOJRatWqxc8//+y04wcHB/Pll19Sr149l5xPxJ2ohSAe7+DBg8TFxdGhQwduv/129u3bB8DIkSN5\n5JFH6N69O02bNmXZsmUAFBQUMH78eFq0aEFsbCz9+/dn2bJlzJ49m/T0dKKiooiOji48/pNPPknb\ntm3p2rUrhw8fvuz8EydO5Omnnwbgo48+omfPnpe9Z/78+Tz00ENXjetiqamphIaGMmrUKEJCQrjn\nnntYs2YN3bt3p3nz5nzxxRflv3Ail3JWibWIM/j5+V32Wq9evawDBw5YlmVZW7dutXr16mVZlmXd\nd9991tChQy3LsqxvvvnGuvXWWy3Lsqy3337b6tevn2VZlpWZmWndeOON1rJlyyzLsqygoCDr6NGj\nhcd2OBzWqlWrLMuyrCeeeMJ65plnLjv/qVOnrPDwcGvdunVWSEiI9d133132nvnz51sTJky4alwX\nS0lJsapWrWp9/fXXVkFBgdW+fXtr9OjRlmVZ1vLly62BAweWeK1ErlVVuxOSSHnk5OSwZcsWhgwZ\nUvhabm4uYJb6Pb/QV4sWLQrXid+4cSNDhw4FzEqRUVFRxR6/WrVq9O/fH4D27duzdu3ay95z/fXX\nM3fuXHr06MGsWbMIDg6+aszFxXWp4OBgwsPDAQgPD6d3794AtGzZktTU1KueQ6QslBDEoxUUFFCn\nTh127Nhxxd9Xq1at8Ll1brjM4XAU2WPBusowmq+vb+FzHx8f8vLyrvi+Xbt20aBBg1Jv6HSluC5V\nvXr1Iuc+/5mrxSFSHhpDEI9Wu3ZtgoODeeeddwBzc921a9dVP9O9e3eWLVuGZVlkZWWxfv36wt/V\nqlWLEydOXFMM33//PX/729/YsWMHH374Idu2bbvsPVdLOiLuQglBPMqpU6do0qRJ4ePFF1/kzTff\n5NVXX6Vt27a0bNmSFStWFL7/4h2izj9PTEwkMDCQsLAwhg8fTrt27bjhhhsAuP/+++nbt2/hoPKl\nn790xynLshg7diwvvPACAQEBvPrqq4wdO7aw26q4zxb3/NLPFPezt+4IJs6laafilU6ePEnNmjU5\nevQonTt3ZvPmzV61y5bIlWgMQbzSgAEDyM7OJjc3l6eeekrJQAS1EERE5ByNIYiICKCEICIi5ygh\niIgIoIQgIiLnKCGIiAighCAiIuf8f5wqyy9KzUKHAAAAAElFTkSuQmCC\n",
- "text": [
- "<matplotlib.figure.Figure at 0x56a6270>"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.17,Page no.163"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "%matplotlib inline\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "F=40*10**3 #N #shear Force\n",
- "\n",
- "#I-section\n",
- "\n",
- "#Flanges\n",
- "b=80 #mm #Width of flange\n",
- "t=20 #mm #Thickness\n",
- "\n",
- "#Web\n",
- "d=200 #mm #Depth\n",
- "t2=20 #mm #Thickness\n",
- "\n",
- "#Flange-2\n",
- "b2=160 #mm #Width\n",
- "t3=20 #mm #Thickness\n",
- "\n",
- "D=240 #mm #Overall Depth\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Distance of N-A from Top Fibre \n",
- "y=(b*t*t*2**-1+d*t2*(t+d*2**-1)+b2*t3*(t+d+t3*2**-1))*(b*t+d*t2+b2*t3)**-1 #mm\n",
- "\n",
- "#Moment of Inertia\n",
- "I=1*12**-1*b*t**3+b*t*(y-(t*2**-1))**2+1*12**-1*t2*d**3+t2*d*(y-(t+d*2**-1))**2+1*12**-1*b2*t3**3+t3*b2*((d+t+t3*2**-1)-y)**2 #mm**4\n",
- "\n",
- "#Shear stress bottom of flange\n",
- "sigma=F*b*t*(y-t*2**-1)*(b*I)**-1 #N/mm**2\n",
- "\n",
- "#At same Level but in web\n",
- "sigma2=F*b*t*(y-t*2**-1)*(t2*I)**-1 #N/mm**2\n",
- "\n",
- "#for shear stress at N.A\n",
- "X=b*t*(y-t*2**-1)+t2*(y-t)*(y-t)*2**-1 #mm**3\n",
- "sigma3=F*X*(t2*I)**-1 #N/mm**2\n",
- "\n",
- "#Shear stress at bottom of web\n",
- "\n",
- "X=b2*t3*((D-y)-t3*2**-1) #mm**3\n",
- "\n",
- "#Stress at bottom of web\n",
- "sigma4=F*X*(t2*I)**-1 #N/mm**2\n",
- "\n",
- "#Stress at Lower flange\n",
- "sigma5=F*X*(b2*I)**-1 #N/mm**2\n",
- "\n",
- "#Result\n",
- "print \"The Shear Force Diagram is the result\"\n",
- "\n",
- "#Plotting the Shear Force Diagram\n",
- "\n",
- "X1=[0,20,20,140,220,220,240]\n",
- "Y1=[0,sigma,sigma2,sigma3,sigma4,sigma5,0]\n",
- "Z1=[0,0,0,0,0,0,0]\n",
- "plt.plot(X1,Y1,X1,Z1)\n",
- "plt.xlabel(\"Length in mm\")\n",
- "plt.ylabel(\"Shear Force in N\")\n",
- "plt.show()\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Shear Force Diagram is the result\n"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1PW+x/HXiGgpmmtg6gkP7qiAmGsmLmiaO+gNl0w0\ne2i2py2acTSVdk29p2s3y8zSkpNaKcelg2VZ6XUrPcfMoOMC3pJLiUsI/O4f3xxXFoGZ3zDzfj4e\n82AYh/l9+D3GefP7rg7LsixERMSnVbC7ABERsZ/CQEREFAYiIqIwEBERFAYiIoLCQEREcGEYxMfH\nExgYSOvWrZ2PTZkyhRYtWhAWFsbQoUP59ddfXXV4ERG5Bi4Lg7Fjx5KcnHzJY71792bfvn3s2bOH\npk2bMnfuXFcdXkREroHLwqBr167UrFnzkseio6OpUMEcskOHDhw5csRVhxcRkWtgW5/BkiVL6Nev\nn12HFxGRi9gSBrNnz6ZSpUqMGDHCjsOLiMhlKrr7gG+99Rbr1q1j8+bNBT6ncePGHDp0yI1ViYiU\nfyEhIfzwww8l+lm3XhkkJyfzwgsvsGbNGq677roCn3fo0CEsy9LNsnjmmWdsr8FTbjoXOhc6F4Xf\nSvNHtMvCIC4ujs6dO3PgwAEaNmzIkiVLuP/++8nOziY6OpqIiAgmTZrkqsOLiMg1cFkz0XvvvXfF\nY/Hx8a46nIiIlIJmIHu4qKgou0vwGDoXF+hcXKBzUTYclmV53OY2DocDDyxLRMSjleazU1cGIiKi\nMBAREYWBiIigMBARERQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERASFgYiIoDAQEREUBiIigsJA\nRERQGIiICAoDERFBYSAiIigMREQEhYGIiKAwEBERFAYiIoLCQEREUBiIiAgKAxFbZWfbXYGIoTAQ\nscF330FcHNSqBS1bwtNPw549YFl2Vya+SmEg4ka7d0NsLPTqBeHh8MsvsGQJnD0LgwdD06bwxBOw\nY4eCQdzLZWEQHx9PYGAgrVu3dj6WmZlJdHQ0TZs2pXfv3mRlZbnq8CIeZft2GDgQ+vWDLl3g0CF4\n/HGoXh06doQXXoAff4QVK6BCBRgxAho1gkcfhS+/hPx8u38D8XYuC4OxY8eSnJx8yWOJiYlER0fz\n/fff07NnTxITE111eBGP8OWX0LcvDB0KvXubEHj4Yaha9crnOhwQGQlz5sCBA/DRRxAQAPfcAw0b\nwgMPwJYtkJfn/t9DvJ/Dslx3MZqWlsaAAQP49ttvAWjevDlbtmwhMDCQjIwMoqKi+Ne//nVlUQ4H\nLixLxOW2bIFZs+CHH+DJJ+Huu6Fy5ZK/3j//CUlJ5paebpqUYmMhKgoqViyrqqW8K81np1v7DI4f\nP05gYCAAgYGBHD9+3J2HF3Epy4JNm6BbNxg3zjT1HDwI995buiAAaNECpk+HXbtg61bThPTUU1Cv\nnjnW+vWQk1M2v4f4Jts6kB0OBw6Hw67Di5QZyzIfxp07w+TJplnnX/+C+Hjw9y/74zVubPobvvnG\ndDS3agXPPgtBQXDXXbB2remQFrkWbr3APN88FBQURHp6OjfeeGOBz01ISHDej4qKIioqyvUFilwD\nyzLt+rNmwZkzZnhobCz4+bmvhptvNn0QDz8MR4/Chx/Cyy+bUOjbF2JizNer9VFI+ZeSkkJKSkqZ\nvJZb+wymTp1K7dq1efzxx0lMTCQrK+uqncjqMxBPlp8Pf/ub+Wvc4TAhMHiwGQXkKY4fh9WrYdUq\ncwURHW2C4Y47zAgm8U6l+ex0WRjExcWxZcsWfvnlFwIDA5k5cyaDBg1i+PDh/Pvf/yY4OJj333+f\nGjVqXFmUwkA8UF4evP8+zJ4NVaqYEOjf3wSCJztxAtasMcGwdavpdI6NhQEDoGZNu6uTsuSRYVAa\nCgPxJLm58O67JgTq1DEh0KeP54fA1WRlmaatpCT49FMz5yE2FgYNMr+blG8KAxEXyMmBZcvMuP+G\nDWHGDOjevXyGwNWcPAmffGKCYcMGuOUW05Q0ZIjpjJbyR2EgUoZ+/90sEZGYaJaHePppuO02u6ty\nrdOnITnZNCWtWwdhYSYYhg6FBg3srk6KS2EgUgbOnIHXX4fnnzcfhtOnQ6dOdlflfmfPwsaNJhg+\n+giaNTNNSTExEBxsd3VSGIWBSCmcOgWvvQYvvQTt25sQaNfO7qo8Q06O6VtISjKjk26++UIwNGli\nd3VyOYWBSAmcPAmLFsErr5hmoOnTzRWBXF1urllmIynJDK0NDLwQDC1b2l2dgMJA5JpkZcGCBfDq\nq2b8/bRpEBpqd1XlS16eWYRv1SoTDtWrm1CIjYU2bbynk728URiIFMOJEzBvHvz1r2by1VNPmfZw\nKZ38fDOx7XwwVKx4IRgiIxUM7qQwECnEzz+b/oDXXzfDJp98EkJC7K7KO1kW7NxpgmHVKjh3zgRD\nTIzZt8GTZml7I4WByFWkp8OLL8Kbb8Kdd5rF3W6+2e6qfIdlwbffmquFVatM89z5YLj1Vveu4eQr\nFAYiFzlyxAwPfecdGD0apk6F+vXtrkrO78mwahVkZJirtJgY7clQlhQGIsBPP5mJYitXmuWjH3tM\nM2k91Q8/XNisJzXVLIcREwM9e0KlSnZXV34pDMSnHTpkloxYvdpsJPPww1C3rt1VSXGlpZmhqklJ\n5uqhf3/T+dy7N1x3nd3VlS8KA/FJBw6YxePWrYP77oMHH4RateyuSkrj/J4Mq1bB7t1mL4bYWLj9\ndu3JUBwKA/Ep+/aZvQQ2bzabxE+eDFdZCV3KuYL2ZOjfH6pVs7s6z6QwEJ+we7cJga1bTVPQpEn6\nUPAVl+/J0L27CYaBA/WHwMUUBuLVtm83W0vu2GE6he+9V00Gvkx7MhRMYSBeads2mDkTvvvODA8d\nPx6uv97uqsSTXG1PhthYM2w1MNDu6txPYSBeZcsWcyXwww9mtvDdd0PlynZXJZ7uansyxMaaPRl8\nZZ6JwkDKPcsyHcKzZpkRJU89ZSaM+fvbXZmUR5fvydC8+YXZz968J4PCQMotyzJ/zc2aBZmZZgXR\nuDjNSJWyc/meDMHBF4LB2/ZkUBhIuWNZ5i+2WbPMDmPTp8OwYVqvRlzL2/dkUBhIuZGfbyYVzZpl\nvn/6adPZp9Usxd2utifD+WAor3syKAzE4+XlwQcfmHkCVaqYEOjfv3z+hxPv4y17MigMxGPl5sK7\n75q1g2rVghkzoE+f8vOfS3xPQXsyDB8OHTrYXV3hFAbicXJyYNkymDsXGjQwVwI9eigEpHy5eE+G\n+fPhq6/MyCRPVZrPTo3ZkDL1++9mM5nERDNSY8kSs9m8SHnkcJj+gzZt4OOP4dQpuytyHYWBlIkz\nZ8y2ks8/b/7jvPcedOpkd1UiUlwKAymVU6fgtdfMHsO33GLGcbdrZ3dVInKtFAZSIidPwqJF8Mor\nphlo/Xoz/V9EyidbRnfPnTuX0NBQWrduzYgRI/j999/tKENKICvLzBH4859h714zs/ODDxQEIuWd\n28MgLS2N119/nZ07d/Ltt9+Sl5fHihUr3F2GXKPMTDMstHFjs4Dc1q1myGhoqN2ViUhZKLCZKCAg\nAMdVxgHm5uaSk5NDXl5eiQ5YvXp1/P39OX36NH5+fpw+fZr6vrKkYDn088/w8suweLGZKfz11xAS\nYndVIlLWCrwyyM7O5uTJk85beno606ZNIygoiIceeqjEB6xVqxaPPvoof/rTn7jpppuoUaMGvXr1\nKvHriWukp8Ojj0KzZvDrr2YSzn//t4JAxFsV2YGclZXFvHnzWLp0KSNGjGDHjh3Url27xAc8dOgQ\n8+bNIy0tjRtuuIFhw4axfPlyRo4cecnzEhISnPejoqKIiooq8TGl+I4cMcND33nHLCG9d6+ZNCYi\nniclJYWUlJQyea0Cw+Dnn3/mpZdeYuXKlcTHx7N7925uuOGGUh9wx44ddO7c2RkoQ4cO5csvvyw0\nDMT1fvrJTBRbuRLi42H/fggKsrsqESnM5X8o/+UvfynxaxUYBsHBwdSpU4f4+HiqVKnCG2+84Zzm\n7HA4eOSRR0p0wObNmzNr1izOnDnDddddx6ZNm2jfvn3JqpdSO3TIrBu0ejVMmAAHDkDdunZXJSLu\nVmAYTJkyxXk/Ozu7zA4YFhbGXXfdRbt27ahQoQJt27ZlwoQJZfb6UjwHDsDs2WZ7wEmT4OBBs5Cc\niPgmLVTnY/btM8tIb94MDzwAkydDjRp2VyXi+SIjzai6yEi7KylYaT47taWIj9i926zN3rMnhIeb\n5qHp0xUEImIoDLzcjh0waBD06wedO5sQePxxqFbN7spExJMoDLzUtm0mAIYMgV69TAg88ghUrWp3\nZSLiiYqcZ3D27FmSkpJIS0sjNzcXMO1SM2bMcHlxcu0++wxmzjRLRjz5pNlvuHJlu6sSEU9XZBgM\nGjSIGjVqEBkZyXXXXeeOmuQaWZZZMG7mTDh6FJ56ykwY8/e3uzIRKS+KDIOjR4/y97//3R21yDWy\nLEhONquIZmbCtGkQF2c28xYRuRZFfmx07tyZvXv30qZNG3fUI8VgWfDRRyYEzpwxo4KGDQM/P7sr\nE5Hyqsgw+Pzzz3nzzTdp1KgRlf9ofHY4HOzdu9flxcml8vNNH8Czz5pAePpp00FcQcMARKSUigyD\n9evXu6MOKURentlA5tln4frrTd9A//5ms24RkbJQYBj89ttvVK9enerVq7uzHrlIbq7ZWH72bLNU\nxIsvQp8+CgERKXsFhkFcXByffPIJbdu2vWKTG4fDwY8//ujy4nxVTg4sWwZz55rloxctgh49FAIi\n4joFhsEnn3wCmG0qxT1+/x3efNMsJd2kCSxZYjabFxFxNQ1C9ABnzphdxJ57Dtq0MU1DnTrZXZWI\n+BKFgY1OnYL/+i/TF3DLLWZPgXbt7K5KRHyRwsAGJ0+afoBXXjHNQOvXQ1iY3VWJiC8r1gj183MN\nwGyHmZqa6tKivFVWlpko9uc/m72FP/3UDBlVEIiI3YoMg4SEBJ5//nnmzp0LQE5ODqNGjXJ5Yd4k\nMxNmzIDGjc0Cclu3wrvvQmio3ZWJiBhFhsGHH37ImjVrqPrH2sf169fn5MmTLi/MG/z8s1k5tEkT\nOHYMvv4ali6FZs3srkxE5FJFhkHlypWpcNF6B6dOnXJpQd4gIwMee8x86Gdlwc6dZrRQSIjdlYmI\nXF2RYTBs2DDuvfdesrKyWLx4MT179mT8+PHuqK3cOXLE7CvcsiWcO2f6Bf76V7j5ZrsrExEpXJGj\niaZMmcKGDRuoVq0a33//PbNmzSI6OtodtZUbP/1kJoqtXAnx8bB/PwQF2V2ViEjxFRkGqampdO3a\nld69ewNw5swZ0tLSCA4OdnVtHu/QIbNkxIcfwoQJcOAA1K1rd1UiIteuyGai2NhY/C5aKL9ChQrE\nxsa6tChPd+AAjBkDHTrATTfBwYMmFBQEIlJeFXllkJeXR6VKlZzfV65cmXPnzrm0KE+1b59ZQXTj\nRnjwQTNMtEYNu6sSESm9Iq8M6tSpw5o1a5zfr1mzhjp16ri0KE+zezfExpqVQ8PC4Mcfze5iCgIR\n8RZFXhm89tprjBw5ksmTJwPQoEEDli1b5vLCPMGOHWbG8PbtZqjo0qXwx3QLERGvUmgY5OXl8dpr\nr/H11187J5pVq1bNLYXZads2EwLffgtTp8KKFWaHMRERb1VoGPj5+bF161Ysy/KJEPjsMxMCBw/C\nE0+YUUJ/bPssIuLVimwmCg8PZ9CgQQwbNowqVaoAZqezoUOHlvigWVlZjB8/nn379uFwOFiyZAkd\nO3Ys8euVhmWZBeNmzjSTxqZNg9Gjwd/flnJERGxRZBicPXuWWrVq8emnn17yeGnC4MEHH6Rfv36s\nWrWK3Nxc25a42LkTJk+GEydMh3BcHFTUot4i4oMclmVZ7jzgr7/+SkRERKF7KDscDtxR1qhR8Kc/\nmaahi6ZSiIhcITISFi82Xz1VaT47ixxaevjwYYYMGULdunWpW7cuMTExHDlypEQHAzOjuW7duowd\nO5a2bdtyzz33cPr06RK/Xmm1bKkgEBEpslFk7NixjBw5kvfffx+A5cuXM3bsWDZu3FiiA+bm5rJz\n504WLlzILbfcwkMPPURiYiIzZ8685HkJCQnO+1FRUURFRZXoeCIi3iolJYWUlJQyea0im4nCwsLY\ns2dPkY8VV0ZGBp06dXLulrZ161YSExP5+OOPLxTlxmai2283X0VECuPzzUS1a9dm2bJl5OXlkZub\nyzvvvFOqGchBQUE0bNiQ77//HoBNmzYRqi2/RERsVWQz0ZIlS7j//vt55JFHAOjcubNzP+SSWrBg\nASNHjiQnJ4eQkJBSv56IiJROgWHw1Vdf0bFjR4KDg/noo4/K9KBhYWFs3769TF9TRERKrsBmookT\nJzrvd+rUyS3FiIiIPYrsMwAz8UxERLxXgc1EeXl5ZGZmYlmW8/7FatWq5fLiRETEPQoMg99++43I\nP8ZQWZblvA9m+FJhM4hFRKR8KTAM0tLS3FiGiIjYqVh9BiIi4t0UBiIiojAQEZEiwiA3N5dmzZq5\nqxYREbFJoWFQsWJFmjdvzk8//eSuekRExAZFrk2UmZlJaGgo7du3p2rVqoAZWrp27VqXFyciIu5R\nZBjMmjXLHXWIiIiNigwDbSojIuL9ihxNtG3bNm655RYCAgLw9/enQoUKVK9e3R21iYiImxQZBpMn\nT+bdd9+lSZMmnD17ljfeeINJkya5ozYREXGTYs0zaNKkCXl5efj5+TF27FiSk5NdXZeIiLhRkX0G\nVatW5ffffycsLIypU6cSFBTklv2JRUTEfYq8Mnj77bfJz89n4cKFVKlShSNHjpCUlOSO2kRExE2K\nvDIIDg7m9OnTZGRkkJCQ4IaSRETE3Yq8Mli7di0RERH06dMHgF27djFw4ECXFyYiIu5TZBgkJCTw\n9ddfU7NmTQAiIiK0sY2IiJcpMgz8/f2pUaPGpT9UQYudioh4kyI/1UNDQ1m+fDm5ubkcPHiQ+++/\nn86dO7ujNhERcZMiw2DBggXs27ePypUrExcXR/Xq1Zk3b547ahMRETcp1jyDOXPmMGfOHHfUIyIi\nNigyDA4cOMCLL75IWloaubm5gFnC+tNPP3V5cSIi4h5FhsGwYcOYOHEi48ePx8/PDzBhICIi3qPI\nMPD392fixInuqEVERGxSYAdyZmYmJ06cYMCAASxatIj09HQyMzOdt9LKy8sjIiKCAQMGlPq1RESk\ndAq8Mmjbtu0lzUEvvvii877D4Sj1xLP58+fTsmVLTp48WarXERGR0iswDNLS0lx20CNHjrBu3Tqm\nTZvGyy+/7LLjiIhI8RTYTLR9+3bS09Od3y9dupSBAwfywAMPlLqZ6OGHH+aFF17QTGYREQ9R4JXB\nhAkT2Lx5MwCfffYZTzzxBAsXLmTXrl1MmDCBVatWleiAH3/8MTfeeCMRERGkpKQU+LyLV0iNiorS\nXswiIpdJSUkp9HP0WjisAnaqCQsLY8+ePQDcd9991K1b1/kBffG/XaunnnqKZcuWUbFiRc6ePctv\nv/1GTEwMb7/99oWiHA63bKAzahTcfrv5KiJSmMhIWLzYfPVUpfnsLLCdJi8vj3PnzgGwadMmunfv\n7vy385PPSmLOnDkcPnyY1NRUVqxYQY8ePS4JAhERcb8Cm4ni4uLo1q0bderUoUqVKnTt2hWAgwcP\nXrGKaWloApuIiP0KDINp06bRo0cPMjIy6N27t7Oz17IsFixYUCYH79atG926dSuT1xIRkZIrdAZy\np06drnisadOmLitGRETsobGdIiKiMBAREYWBiIigMBARERQGIiKCwkBERFAYiIgICgMREUFhICIi\nKAxERASFgYiIoDAQEREUBiIigsJARERQGIiICAoDERFBYSAiIigMREQEhYGIiKAwEBERFAYiIoLC\nQEREUBiIiAgKAxERQWEgIiIoDEREBIWBiIhgQxgcPnyY7t27ExoaSqtWrXj11VfdXYKIiFymorsP\n6O/vzyuvvEJ4eDjZ2dlERkYSHR1NixYt3F2KiIj8we1XBkFBQYSHhwMQEBBAixYtOHbsmLvLEBGR\ni9jaZ5CWlsauXbvo0KGDnWWIiPg828IgOzub2NhY5s+fT0BAgF1liIgINvQZAJw7d46YmBhGjRrF\n4MGDr/qchIQE5/2oqCiioqLcU5yISDmRkpJCSkpKmbyWw7Isq0xeqZgsy2LMmDHUrl2bV1555epF\nORy4o6xRo+D2281XEZHCREbC4sXmq6cqzWen25uJvvjiC9555x3+8Y9/EBERQUREBMnJye4uQ0RE\nLuL2ZqJbb72V/Px8dx9WREQKoRnIIiKiMBAREYWBiIigMBAREXw4DDIy4IsvoF49uysREbGfT4ZB\nZiZER8O4cdCzp93ViIjYz+fC4ORJ6NvXTDabNs3uakREPINPhcGZMzBwIISHw/PPg8Nhd0UiIp7B\nZ8Lg3DkYPhyCguA//1NBICJyMZ8Ig7w8uOsuc//tt8HPz956REQ8jS2rlrqTZcHEiXD8OHzyCfj7\n212RiIjn8eowsCyYMgX27oWNG+H66+2uSETEM3l1GDz7LGzYACkpUK2a3dWISHmXm2t3Ba7jtX0G\n8+eb/oENG6BWLburEZHyrl8/GDkSduywuxLX8MowePNNePll2LTJjB4SESmtWbNg7lwTCi+/DN62\nEr/bdzorjtLs1rNqFTzwAPzjH9CsWRkXJiI+LzUV7rwT6tSBt96CunXtruiCcrXTmSslJ8N998G6\ndQoCEXGNRo1g61Zo1QoiIkyfpDfwmiuDzz+HoUNhzRro3NlFhYmIXOTvf4e774YJE+Dpp6GizUNy\nSnNl4BVh8D//Y9Ybevdd6NXLhYWJiFwmPR1Gj4acHFi+HBo2tK8Wn24m2r8f+veHxYsVBCLifvXq\nmVGLfftCu3awdq3dFZVMub4y+PFH6NbN9PCPGuWGwkRECvHllzBiBAwaZBbDrFzZvcf3ySuDo0fN\nngRPPqkgEBHP0Lkz7NoFhw9Dp07w/fd2V1R85TIMfvnFBME998CkSXZXIyJyQc2akJQE48dDly6w\nbJndFRVPuWsm+vVXsztZ794wZ46bCxMRuQZ79sB//Ad06ACLFkFAgGuP5zPNRKdPw4AB0LEjzJ5t\ndzUiIoULCzOjHf38IDISdu+2u6KClZswyMmBmBgIDoZXX9XmNCJSPlStCkuWwIwZpnl74UKzorKn\nKRfNRLm5EBdnvn7wgf0TO0RESuKHH0yzUcOGJiDKehFNr24mys83s/uysmDFCgWBiJRfjRub4ad/\n/rNZymLrVrsrusCWMEhOTqZ58+Y0adKE5557rsDnWRY88ggcOACrV7t/zK6ISFmrXNmserpoEcTG\nmn1X8vLsrsqGMMjLy2Py5MkkJyezf/9+3nvvPf75z39e9bkJCbBli9musmpV99bpKVK8ZRWsMqBz\ncYHOxQXl9Vz07286lzdtMn0Jx47ZW4/bw+Cbb76hcePGBAcH4+/vz5133smaNWuueN5LL8HKlWYh\nqBo13F2l5yivb3RX0Lm4QOfigvJ8LurXh82bzUoKbdvC+vX21eL2MDh69CgNL1rJqUGDBhw9evSK\n5y1YYPYtvvFGd1YnIuJefn7wzDPmj98JE+Cxx8zoSXdzexg4ijkmdONGe1f/ExFxp27dzFIWBw7A\nrbeaeVVuZbnZtm3brD59+ji/nzNnjpWYmHjJc0JCQixAN9100023a7iFhISU+LPZ7fMMcnNzadas\nGZs3b+amm26iffv2vPfee7Ro0cKdZYiIyEXcPmq/YsWKLFy4kD59+pCXl8e4ceMUBCIiNvPIGcgi\nIuJeHjcDubgT0rxRcHAwbdq0ISIigvbt2wOQmZlJdHQ0TZs2pXfv3mRlZdlcpWvEx8cTGBhI69at\nnY8V9rvPnTuXJk2a0Lx5czZs2GBHyS5ztXORkJBAgwYNiIiIICIigvUXjUH05nNx+PBhunfvTmho\nKK1ateLVV18FfPO9UdC5KLP3Rol7G1wgNzfXCgkJsVJTU62cnBwrLCzM2r9/v91luU1wcLB14sSJ\nSx6bMmWK9dxzz1mWZVmJiYnW448/bkdpLvfZZ59ZO3futFq1auV8rKDffd++fVZYWJiVk5Njpaam\nWiEhIVZeXp4tdbvC1c5FQkKC9dJLL13xXG8/F+np6dauXbssy7KskydPWk2bNrX279/vk++Ngs5F\nWb03POrKoLgT0ryZdVmr3dq1axkzZgwAY8aMYfXq1XaU5XJdu3alZs2alzxW0O++Zs0a4uLi8Pf3\nJzg4mMaNG/PNN9+4vWZXudq5gCvfG+D95yIoKIjw8HAAAgICaNGiBUePHvXJ90ZB5wLK5r3hUWFQ\n3Alp3srhcNCrVy/atWvH66+/DsDx48cJDAwEIDAwkOPHj9tZolsV9LsfO3aMBg0aOJ/nK++TBQsW\nEBYWxrhx45zNIr50LtLS0ti1axcdOnTw+ffG+XPRsWNHoGzeGx4VBsWdkOatvvjiC3bt2sX69etZ\ntGgRn3/++SX/7nA4fPYcFfW7e/t5mThxIqmpqezevZt69erx6KOPFvhcbzwX2dnZxMTEMH/+fKpV\nq3bJv/naeyM7O5vY2Fjmz59PQEBAmb03PCoM6tevz+HDh53fHz58+JJk83b16tUDoG7dugwZMoRv\nvvmGwMBAMjIyAEhPT+dGH1qfo6Df/fL3yZEjR6hfv74tNbrLjTfe6PzQGz9+vPNy3xfOxblz54iJ\niWH06NEMHjwY8N33xvlzMWrUKOe5KKv3hkeFQbt27Th48CBpaWnk5OSwcuVKBg4caHdZbnH69GlO\nnjwJwKlTp9iwYQOtW7dm4MCBLF26FIClS5c63wC+oKDffeDAgaxYsYKcnBxSU1M5ePCgc/SVt0pP\nT3fe//DDD50jjbz9XFiWxbhx42jZsiUPPfSQ83FffG8UdC7K7L3hil7v0li3bp3VtGlTKyQkxJoz\nZ47d5bjNjz/+aIWFhVlhYWFWaGio83c/ceKE1bNnT6tJkyZWdHS09X//9382V+oad955p1WvXj3L\n39/fatBlqDKuAAAD90lEQVSggbVkyZJCf/fZs2dbISEhVrNmzazk5GQbKy97l5+LN954wxo9erTV\nunVrq02bNtagQYOsjIwM5/O9+Vx8/vnnlsPhsMLCwqzw8HArPDzcWr9+vU++N652LtatW1dm7w1N\nOhMREc9qJhIREXsoDERERGEgIiIKAxERQWEgIiIoDEREBIWBlCMBAQEuff158+Zx5syZazreRx99\n5HNLrYt30jwDKTeqVavmnKXtCo0aNWLHjh3Url3bLccT8SS6MpBy7dChQ/Tt25d27dpx2223ceDA\nAQDuvvtuHnzwQbp06UJISAhJSUkA5OfnM2nSJFq0aEHv3r254447SEpKYsGCBRw7dozu3bvTs2dP\n5+tPnz6d8PBwOnXqxP/+7/9ecfy33nqL+++/v9BjXiwtLY3mzZszduxYmjVrxsiRI9mwYQNdunSh\nadOmbN++HTAblowZM4bbbruN4OBg/va3v/HYY4/Rpk0b+vbtS25ubpmfS/Fxrpw+LVKWAgICrnis\nR48e1sGDBy3LsqyvvvrK6tGjh2VZljVmzBhr+PDhlmVZ1v79+63GjRtblmVZH3zwgdWvXz/Lsiwr\nIyPDqlmzppWUlGRZ1pWbCzkcDuvjjz+2LMuypk6daj377LNXHP+tt96yJk+eXOgxL5aammpVrFjR\n+u6776z8/HwrMjLSio+PtyzLstasWWMNHjzYsizLeuaZZ6yuXbtaubm51p49e6zrr7/euZzAkCFD\nrNWrVxf/xIkUQ0W7w0ikpLKzs9m2bRvDhg1zPpaTkwOYpXrPL17WokUL53r3W7duZfjw4YBZ+bJ7\n9+4Fvn6lSpW44447AIiMjGTjxo2F1lPQMS/XqFEjQkNDAQgNDaVXr14AtGrVirS0NOdr9e3bFz8/\nP1q1akV+fj59+vQBoHXr1s7niZQVhYGUW/n5+dSoUYNdu3Zd9d8rVarkvG/90TXmcDgu2RXKKqTL\nzN/f33m/QoUKxWqaudoxL1e5cuVLXvf8z1x+jIsfL0ktItdCfQZSblWvXp1GjRqxatUqwHz47t27\nt9Cf6dKlC0lJSViWxfHjx9myZYvz36pVq8Zvv/12TTUUFial4arXFSmIwkDKjdOnT9OwYUPnbd68\neSxfvpw33niD8PBwWrVqxdq1a53Pv3hXp/P3Y2JiaNCgAS1btmT06NG0bduWG264AYAJEyZw++23\nOzuQL//5q+0SdfnjBd2//GcK+v78/cJet7DXFikpDS0Vn3Pq1CmqVq3KiRMn6NChA19++aVP7SAn\ncjXqMxCf079/f7KyssjJyWHGjBkKAhF0ZSAiIqjPQEREUBiIiAgKAxERQWEgIiIoDEREBIWBiIgA\n/w/qZz1xEBCKMwAAAABJRU5ErkJggg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0x5614110>"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.18,Page no.164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "F=30*10**3 #N #Shear Force\n",
- "\n",
- "#Channel Section\n",
- "d=400 #mm #Depth of web \n",
- "t=10 #mm #THickness of web\n",
- "t2=15 #mm #Thickness of flange\n",
- "b=100 #mm #Width of flange\n",
- "\n",
- "#Rectangular Welded section\n",
- "b2=80 #mm #Width\n",
- "d2=60 #mm #Depth\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Distance of Centroid From Top Fibre\n",
- "y=(d*t*t*2**-1+2*t2*(b-t)*((b-t)*2**-1+10)+d2*b2*(d2*2**-1+t))*(d*t+2*t2*(b-t)+d2*b2)**-1 #mm\n",
- "\n",
- "#Moment Of Inertia of the section about N-A\n",
- "I=1*12**-1*d*t**3+d*t*(y-t*2**-1)**2+2*(1*12**-1*t2*(b-t)**3+t2*(b-t)*(((b-t)*2**-1+t)-y)**2)+1*12**-1*d2**3*b2+d2*b2*(d2*2**-1+t-y)**2\n",
- "\n",
- "#Shear stress at level of weld\n",
- "sigma=F*d*t*(y-t*2**-1)*((b2+t2+t2)*I)**-1 #N/mm**2\n",
- "\n",
- "#Max Shear Stress occurs at Neutral Axis\n",
- "X=d*t*(y-t*2**-1)+2*t2*(y-t)*(y-t)*2**-1+b2*(y-t)*(y-t)*2**-1\n",
- "\n",
- "sigma_max=F*X*((b+t)*I)**-1\n",
- "\n",
- "#Result\n",
- "print\"Shear stress in the weld is\",round(sigma,2),\"N/mm**2\"\n",
- "print\"Max shear stress is\",round(sigma_max,2),\"N/mm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Shear stress in the weld is 3.62 N/mm**2\n",
- "Max shear stress is 4.48 N/mm**2\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.19,Page no.165"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "#Wooden Section\n",
- "b=300 #mm #Width\n",
- "d=300 #mm #Depth\n",
- "\n",
- "D=100 #mm #Diameter of Bore\n",
- "F=10*10**3 #N #Shear Force\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Moment Of Inertia Of Section\n",
- "I=1*12**-1*b*d**3-pi*64**-1*D**4\n",
- "\n",
- "#Shear stress at crown of circle\n",
- "sigma=F*b*D*(d*2**-1-D*2**-1)*(b*I)**-1\n",
- "\n",
- "#Let a*y_bar=X\n",
- "X=b*d*2**-1*d*4**-1-pi*8**-1*D**2*4*D*2**-1*(3*pi)**-1 #mm**3\n",
- "\n",
- "#Shear Stress at Neutral Axis\n",
- "sigma2=F*X*((b-D)*I)**-1 #N/mm**2\n",
- "\n",
- "#Result\n",
- "print\"Shearing Stress at Crown of Bore\",round(sigma,3),\"N/mm**2\"\n",
- "print\"Shear Stress at Neutral Axis\",round(sigma2,3),\"N/mm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Shearing Stress at Crown of Bore 0.149 N/mm**2\n",
- "Shear Stress at Neutral Axis 0.246 N/mm**2\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.20,Page no.166"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "#flanges\n",
- "b=200 #mm #width\n",
- "t1=25 #mm #Thickness\n",
- "\n",
- "#web\n",
- "d=450 #mm #Depth \n",
- "t2=20 #mm #thickness\n",
- "\n",
- "D=500 #mm #Total Depth of section\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Moment Of Inertia of the section about N-A\n",
- "I=1*12**-1*b*D**3-1*12**-1*(b-t2)*d**3 #mm**4\n",
- "\n",
- "#Consider an element in the web at distance y from y from N-A\n",
- "#Depth of web section=225-y\n",
- "\n",
- "#C.G From N-A\n",
- "#y2=y+(((D*2**-1-t)-y)*2**-1)\n",
- "\n",
- "#ay_bar for section at y\n",
- "#Let ay_bar be X\n",
- "#X=X1 be of Flange + X2 be of web above y\n",
- "#X=b*t1*(D*2**-1-t1*2**-1)+t2*(d-t1)*(d-t1+y)*2**-1\n",
- "#After Sub values and Further simplifying we get\n",
- "#X=1187500+10*(225**2-y**2)\n",
- "\n",
- "#Shear stress at y\n",
- "#sigma_y=F*(X)*(t2*I)**-1\n",
- "\n",
- "#Shear Force resisted by the Element\n",
- "#F1=F*X*t2*dy*(t2*I)**-1\n",
- "\n",
- "#Shear stress resisted by web \n",
- "#sigma=2*F*I**-1*(X)*dy\n",
- "\n",
- "#After Integrating above equation and further simplifying we get\n",
- "#sigma=0.9578*F\n",
- "\n",
- "sigma=0.9578*100\n",
- "\n",
- "#Result\n",
- "print\"Shear Resisted by web\",round(sigma,2),\"%\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Shear Resisted by web 95.78 %\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.21,Page no.167"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "#Wooden Beam\n",
- "\n",
- "b=150 #mm #width\n",
- "d=250 #mm #Depth\n",
- "\n",
- "L=5000 #mm #span\n",
- "m=11.2 #N/mm**2 #Max Bending stress\n",
- "sigma=0.7 #N/mm**2 #Max shear stress\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Let 'a' be the distance from left support\n",
- "#Max shear force\n",
- "#F=R_A=W*(L-a)*L**-1 \n",
- "\n",
- "#Max Moment\n",
- "#M=W*(L-a)*a*L**-1\n",
- "\n",
- "#But M=sigma*Z\n",
- "#W*(L-a)*a*L**-1=m*1*6**-1*b*d**2 .....................(1)\n",
- "\n",
- "#In Rectangular Section MAx stress is 1.5 times Avg shear stress\n",
- "F=sigma*b*d*1.5**-1\n",
- "\n",
- "#W*(L-a)*L**-1=F .....................(2)\n",
- "\n",
- "#Dividing Equation 1 nad 2 we get\n",
- "a=m*6**-1*b*d**2*1.5*(sigma*b*d)**-1\n",
- "\n",
- "#Sub above value in equation 2 we get\n",
- "W=(L-a)**-1*L*F*10**-3 #KN \n",
- "\n",
- "#Result\n",
- "print\"Load is\",round(W,2),\"KN\"\n",
- "print\"Distance from Left support is\",round(a,2),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Load is 21.87 KN\n",
- "Distance from Left support is 1000.0 mm\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.22,Page no.168"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "L=1000 #mm #span\n",
- "\n",
- "#Rectangular Section\n",
- "\n",
- "b=200 #mm #width\n",
- "d=400 #mm #depth\n",
- "\n",
- "sigma=1.5 #N/mm**2 #Shear stress\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#Let AB be the cantilever beam subjected to load W KN at free end\n",
- "\n",
- "#MAx shear Force\n",
- "#F=W*10**3 #KN\n",
- "\n",
- "#Since Max shear stress in Rectangular section\n",
- "#sigma_max=1.5*F*A**-1 \n",
- "#After sub values and further simplifyng we get\n",
- "W=1.5*b*d*(1.5*1000)**-1 #KN\n",
- "\n",
- "#Moment at fixwed end\n",
- "M=W*1 #KN-m\n",
- "y_max=d*2**-1 #mm\n",
- "\n",
- "#M.I\n",
- "I=1*12**-1*b*d**3 #mm**3\n",
- "\n",
- "#MAx Stress\n",
- "sigma_max=M*10**6*I**-1*y_max\n",
- "\n",
- "#Result\n",
- "print\"Concentrated Load is\",round(sigma_max,2),\"N/mm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Concentrated Load is 15.0 N/mm**2\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 4.4.24,Page no.170"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of Variables\n",
- "\n",
- "L=4000 #mm #span\n",
- "\n",
- "#Rectangular Cross-section\n",
- "b=100 #mm #Width\n",
- "d=200 #mm #Thickness\n",
- "\n",
- "F_per=10 #N/mm**2 #Max Bending stress\n",
- "q_max=0.6 #N/mm**2 #Shear stress\n",
- "\n",
- "#Calculations\n",
- "\n",
- "#If the Load W is in KN/m\n",
- "\n",
- "#Max shear Force\n",
- "#F=w*l*2**-1 #KN\n",
- "#After substituting values and further simplifying we get\n",
- "#M=2*w #KN-m\n",
- "\n",
- "#Max Load from Consideration of moment\n",
- "#M=1*6**-1*b*d**2*F_per\n",
- "#After substituting values and further simplifying we get\n",
- "w=(1*6**-1*b*d**2*F_per)*(2*10**6)**-1 #KN/m\n",
- "\n",
- "#Max Load from Consideration of shear stress\n",
- "#q_max=1.5*F*(b*d)**-1 #N\n",
- "#After substituting values and further simplifying we get\n",
- "F=q_max*(1.5)*b*d #N\n",
- "\n",
- "#If w is Max Load in KN/m,then\n",
- "#2*w*1000=8000\n",
- "#After Rearranging and Further simplifying we get\n",
- "w2=8000*(2*1000)**-1 #KN/m\n",
- "\n",
- "#Result\n",
- "print\"Uniformly Distributed Load Beam can carry is\",round(w,2),\"KN/m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Uniformly Distributed Load Beam can carry is 3.33 KN/m\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |