diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb')
-rw-r--r-- | Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb | 160 |
1 files changed, 0 insertions, 160 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb deleted file mode 100644 index af17168c..00000000 --- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb +++ /dev/null @@ -1,160 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 12: Lasers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 1, Page number 12.30" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relative population in laser transition levels is 1.081 *10**30\n", - "answer given in the book is wrong\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "c=3*10**8; #velocity of light(m/s)\n", - "lamda=6943*10**-10; #wavelength of emission(m)\n", - "k=1.38*10**-23; #boltzmann constant\n", - "T=300; #temperature(K)\n", - "\n", - "#Calculation\n", - "new=c/lamda; #frequency(Hz)\n", - "x=h*new/(k*T);\n", - "N1byN2=math.exp(x); #relative population in laser transition levels\n", - "\n", - "#Result\n", - "print \"relative population in laser transition levels is\",round(N1byN2/10**30,3),\"*10**30\"\n", - "print \"answer given in the book is wrong\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 2, Page number 12.31" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of photons emitted is 7.323 *10**15 photons/second\n", - "power density is 2.3 kW/m**2\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "P=2.3*10**-3; #output power(W)\n", - "t=1; #time(sec)\n", - "new=4.74*10**14; #frequency(Hz)\n", - "s=1*10**-6; #spot area(m**2)\n", - "\n", - "#Calculation\n", - "n=P*t/(h*new); #number of photons emitted in each second \n", - "Pd=P/s; #power density(W/m**2)\n", - "\n", - "#Result\n", - "print \"number of photons emitted is\",round(n/10**15,3),\"*10**15 photons/second\"\n", - "print \"power density is\",Pd/10**3,\"kW/m**2\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example number 3, Page number 12.31" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "wavelength of emission is 8628 angstrom\n" - ] - } - ], - "source": [ - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34; #plancks constant(J s)\n", - "c=3*10**8; #velocity of light(m/s)\n", - "Eg=1.44*1.6*10**-19; #band gap(J)\n", - "\n", - "#Calculation\n", - "lamda=h*c/Eg; #wavelength of emission(m)\n", - "\n", - "#Result\n", - "print \"wavelength of emission is\",int(round(lamda*10**10)),\"angstrom\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |