summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb')
-rw-r--r--Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb160
1 files changed, 0 insertions, 160 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb
deleted file mode 100644
index af17168c..00000000
--- a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_MsiPuok.ipynb
+++ /dev/null
@@ -1,160 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 12: Lasers"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 12.30"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "relative population in laser transition levels is 1.081 *10**30\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #plancks constant(J s)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "lamda=6943*10**-10; #wavelength of emission(m)\n",
- "k=1.38*10**-23; #boltzmann constant\n",
- "T=300; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "new=c/lamda; #frequency(Hz)\n",
- "x=h*new/(k*T);\n",
- "N1byN2=math.exp(x); #relative population in laser transition levels\n",
- "\n",
- "#Result\n",
- "print \"relative population in laser transition levels is\",round(N1byN2/10**30,3),\"*10**30\"\n",
- "print \"answer given in the book is wrong\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 12.31"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of photons emitted is 7.323 *10**15 photons/second\n",
- "power density is 2.3 kW/m**2\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #plancks constant(J s)\n",
- "P=2.3*10**-3; #output power(W)\n",
- "t=1; #time(sec)\n",
- "new=4.74*10**14; #frequency(Hz)\n",
- "s=1*10**-6; #spot area(m**2)\n",
- "\n",
- "#Calculation\n",
- "n=P*t/(h*new); #number of photons emitted in each second \n",
- "Pd=P/s; #power density(W/m**2)\n",
- "\n",
- "#Result\n",
- "print \"number of photons emitted is\",round(n/10**15,3),\"*10**15 photons/second\"\n",
- "print \"power density is\",Pd/10**3,\"kW/m**2\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 12.31"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "wavelength of emission is 8628 angstrom\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #plancks constant(J s)\n",
- "c=3*10**8; #velocity of light(m/s)\n",
- "Eg=1.44*1.6*10**-19; #band gap(J)\n",
- "\n",
- "#Calculation\n",
- "lamda=h*c/Eg; #wavelength of emission(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of emission is\",int(round(lamda*10**10)),\"angstrom\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}