diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch) | |
tree | 9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Semiconductor_Devices_Basic_Principle_by_J._Singh/chapter2.ipynb | |
parent | 1b1bb67e9ea912be5c8591523c8b328766e3680f (diff) | |
download | Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2 Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip |
Revised list of TBCs
Diffstat (limited to 'Semiconductor_Devices_Basic_Principle_by_J._Singh/chapter2.ipynb')
-rwxr-xr-x | Semiconductor_Devices_Basic_Principle_by_J._Singh/chapter2.ipynb | 592 |
1 files changed, 0 insertions, 592 deletions
diff --git a/Semiconductor_Devices_Basic_Principle_by_J._Singh/chapter2.ipynb b/Semiconductor_Devices_Basic_Principle_by_J._Singh/chapter2.ipynb deleted file mode 100755 index 1e7a3d16..00000000 --- a/Semiconductor_Devices_Basic_Principle_by_J._Singh/chapter2.ipynb +++ /dev/null @@ -1,592 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:89b26be9b34fcc4abdf434215c6ed45e9bed850a39f0e736d3ded9e4d9969c4c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "\n",
- "Chapter2:ELECTRONS IN SEMICONDUCTORS"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.1:pg-55"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "h=1.05*10**-34\n",
- "mo = 9.1*10**-31\n",
- "E = 0.1*1.6*10**(-19)\n",
- "m=0.067*mo\n",
- "k = sqrt(2*m*E)/h\n",
- "print\"The k-value for an electron in the conduction band of GaAs is ,k = \",\"{:.1e}\".format(k),\"m**-1\"\n",
- "ko = 1.625*10**9\n",
- "print\"the two value are quite difference since the k value represent effective momentum\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The k-value for an electron in the conduction band of GaAs is ,k = 4.2e+08 m**-1\n",
- "the two value are quite difference since the k value represent effective momentum\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.2:pg-56"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "mo = 9.1*10**-31\n",
- "ml = 0.98*mo\n",
- "mt = 0.19*mo\n",
- "mhh =0.49*mo\n",
- "mlh = 0.16*mo\n",
- "mdos = (((6)**(2.0/3))*((ml)*((mt)**2))**(1.0/3))\n",
- "print\"The conduction band density of states mass is ,mdos* =\",\"{:.2e}\".format(mdos),\"kg\"\n",
- "mdos1 = (((mhh)**(3/2)+(mlh)**(3/2))**(2.0/3))\n",
- "print\"The Valence band density of states mass is ,mdos1*=\",\"{:.2e}\".format(mdos1),\"kg\"\n",
- "# In the book ,the answer is given in the form of mo\n",
- " \n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The conduction band density of states mass is ,mdos* = 9.86e-31 kg\n",
- "The Valence band density of states mass is ,mdos1*= 7.05e-21 kg\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.3:pg-59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "h=1.05*10**-34\n",
- "mo = 9.1*10**-31\n",
- "mhh =0.5*mo\n",
- "k = 0.1*10**10\n",
- "Ev = 0\n",
- "e = 1.6*10**-19\n",
- "#(we have assumed the valence band energy Ev=0eV as it is not provided in the book)\n",
- "Ee= Ev-(((h**2)*(k**2))/(2*mhh))\n",
- "print\"The electron energy in the valence band is ,Ee=\",\"{:.2e}\".format(Ee),\"J\"\n",
- "Ee1= Ee/e\n",
- "print\"The electron energy in the valence band is ,Ee= Ee/e=\",\"{:.2e}\".format(Ee1),\"eV\"\n",
- "Eh= Ev+((((h**2)*(k**2))/(2*mhh))/e)\n",
- "print\"The hole energy in the valence band is ,Eh=\",\"{:.2e}\".format(Eh),\"eV\"\n",
- "\n",
- " \n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The electron energy in the valence band is ,Ee= -1.21e-20 J\n",
- "The electron energy in the valence band is ,Ee= Ee/e= -7.57e-02 eV\n",
- "The hole energy in the valence band is ,Eh= 7.57e-02 eV\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.4:pg-62"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "h=1.06*10**-34\n",
- "mo = 9.1*10**-31\n",
- "m = 0.067*mo\n",
- "print\"m = \",\"{:.2e}\".format(m),\"kg\"\n",
- "E = 0.5*1.6*10**-19\n",
- "print\"E = \",\"{:.2e}\".format(E),\"J\" #initializing value of electron energy measured from the bandedge\n",
- "# Effective momentum of electron in the conduction band of GaAs\n",
- "hk = sqrt(2*m*E)\n",
- "print\"The effetive momentum of an electron in the conduction band of GaAs is ,hk = \"\"{:.2e}\".format(hk),\"m**-1\"#calculation\n",
- "k = hk/h\n",
- "print\"the corresponding wavevector is,k = \",\"{:.1e}\".format(k),\"m**-1\"\n",
- "#Effective momentum of free electron in the space with same energy\n",
- "p = sqrt(2*mo*E)\n",
- "print\"The effetive momentum of an electron in the space is ,p = \",\"{:.1e}\".format(p),\"kgms**-1\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "m = 6.10e-32 kg\n",
- "E = 8.00e-20 J\n",
- "The effetive momentum of an electron in the conduction band of GaAs is ,hk = 9.88e-26 m**-1\n",
- "the corresponding wavevector is,k = 9.3e+08 m**-1\n",
- "The effetive momentum of an electron in the space is ,p = 3.8e-25 kgms**-1\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.5:pg-63"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n",
- "mo = 9.1*10**-31 #initializing value of mass of electron\n",
- "ml = 0.98*mo #initializing value of longitudinal mass\n",
- "mt = 0.19*mo #initializing value of transverse mass\n",
- "a = 5.43*10**-10 #initializing value of latice constant\n",
- "kx = ((2*math.pi*0.95)/a) #initializing value of given k-value in x direction \n",
- "ky = ((2*math.pi*0.1)/a) #initializing value of given k-value in y direction \n",
- "kz = ((2*math.pi*0.0)/a) #initializing value of given k-value in z direction \n",
- "kxo = ((2*math.pi*0.85)/a) #initializing value of k-value for Si occupies the (100) valley in x direction \n",
- "kyo = ((2*math.pi*0.0)/a) #initializing value of k-value for Si occupies the (100) valley in y direction \n",
- "kzo = ((2*math.pi*0.0)/a) #initializing value of k-value for Si occupies the (100) valley in z direction \n",
- "kl = kx-kxo\n",
- "print\"the change in k vector in x direction is,kl = kx-kxo = \",\"{:.3e}\".format(kl),\"m**-1\"\n",
- "kt = ky-kyo\n",
- "print\"the change in k vector in y direction is,kt = ky-kyo = \",\"{:.3e}\".format(kt),\"m**-1\"\n",
- "E= (((h**2)*(kl**2))/(2*ml))+(((h**2)*(kt**2))/(2*mt))\n",
- "print\"The electron energy measured from the conduction bandege is ,E= \",\"{:.3e}\".format(E),\"J\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the change in k vector in x direction is,kl = kx-kxo = 1.157e+09 m**-1\n",
- "the change in k vector in y direction is,kt = ky-kyo = 1.157e+09 m**-1\n",
- "The electron energy measured from the conduction bandege is ,E= 5.097e-20 J\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.9:pg-70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n",
- "mo = 9.1*10**-31 #initializing value of mass of electron\n",
- "me = 0.067*mo #initializing value of effective mass of GaAs\n",
- "kbT = 4.16*10**-21 #initializing value of kbT at 300K\n",
- "Nc=2*(((me*kbT)/(2*math.pi*(h**2)))**(3/2))\n",
- "print\"for GaAs conduction band case effective density of states is ,Nc= \",\"{:.2e}\".format(Nc),\"m**-3\"\n",
- "ml = 0.98*mo #initializing value of longitudinal mass\n",
- "mt = 0.19*mo #initializing value of transverse mass\n",
- "mdos = (((6)**(2.0/3))*((ml)*((mt)**2))**(1.0/3))\n",
- "Nc1 = 2*((mdos*kbT)/(2*(math.pi)*(h**2)))**(3/2)\n",
- "print\"for silicon conduction band case effective density of states is ,Nc = \",\"{:.2e}\".format(Nc1),\"m**-3\"\n",
- "\n",
- "# Note : due to different precisions taken by me and the author ... my answer differ \n",
- "\n",
- "print\"for silicon\"\n",
- "mhh =0.5*mo #initializing value of heavy hole mass for silicon\n",
- "mlh = 0.15*mo #initializing value of light hole mass for silicon\n",
- "Nv1 =((kbT/(2*(math.pi)*(h**2)))**(3/2))*2*(mhh**(3/2)+mlh**(3/2))\n",
- "print\"for silicon valence band case effective density of states is ,Nv = \",\"{:.2e}\".format(Nv1),\"m**-3\"\n",
- "print\"for GaAs \"\n",
- "mhh1 =0.45*mo #initializing value of heavy hole mass\n",
- "mlh1 = 0.08*mo #initializing value of light hole mass\n",
- "Nv = 2*(mhh1**(3/2)+mlh1**(3/2))*((kbT/(2*(math.pi)*(h**2)))**(3/2))\n",
- "print\"for GaAs valence band case effective density of states is ,Nv= \",\"{:.2e}\".format(Nv),\"m**-3\"\n",
- "\n",
- "# Answer given in the book for valence band case is wrong\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "for GaAs conduction band case effective density of states is ,Nc= 7.32e+15 m**-3\n",
- "for silicon conduction band case effective density of states is ,Nc = 1.18e+17 m**-3\n",
- "for silicon\n",
- "for silicon valence band case effective density of states is ,Nv = 7.10e+16 m**-3\n",
- "for GaAs \n",
- "for GaAs valence band case effective density of states is ,Nv= 5.79e+16 m**-3\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.10:pg-70"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "mo = 9.1*10**-31 #initializing value of mass of electron\n",
- "me = 0.067*mo #initializing value of effective mass of GaAs\n",
- "kbT = 0.026 #initializing value of kbT at 300K\n",
- "ml = 0.98*mo #initializing value of longitudinal mass\n",
- "mt = 0.19*mo #initializing value of transverse mass\n",
- "mh = 0.55*mo #initializing value of density of state mass for the valence band \n",
- "#let\n",
- "Eg = 0.0 #initializing value of valence bandedge energy\n",
- "mdos = (((6)**(2/3))*((ml)*((mt)**2))**(1.0/3))\n",
- "print\"The desity of states of effective mass of the combined six valleys of silicon is mdos* = \",\"{:.2e}\".format(mdos),\"kg\"\n",
- "Efi = (Eg/2)+((3.0/4)*kbT*log(mh/mdos))\n",
- "print\"The intrinsic fermi level is given by Efi= \",\"{:.2e}\".format(Efi),\"eV\"\n",
- "# -ve sign show that fermi level is below the centre of mid-bandgap\n",
- "# In this question the answer is provided in the book is in terms of Eg and i have assumed value of Eg = 0 V \n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The desity of states of effective mass of the combined six valleys of silicon is mdos* = 2.99e-31 kg\n",
- "The intrinsic fermi level is given by Efi= 1.01e-02 eV\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.11:pg-71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "mo = 9.1*10**-31 #initializing value of mass of electron\n",
- "me = 0.027*mo #initializing value of effective mass of GaAs\n",
- "kbT = 0.026 #initializing value of kbT at 300K\n",
- "mh = 0.4*mo #initializing value of longitudinal mass\n",
- "h=1.05*10**-34 #initializing value of plank constant.\n",
- "Eg = 0.35 #initializing value of valence bandedge energy\n",
- "ni =2*(((kbT*1.6*10**-19)/(2*(math.pi)*h**2))**(3/2))*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))\n",
- "print\"ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= \",\"{:.2e}\".format(ni),\"m**-3\"\n",
- "kbT = 0.05175\n",
- "print\"kbT = \",\"{:.2e}\".format(kbT),\"eV\" #initializing value of kbT at 600K\n",
- "ni =2*(((kbT*1.6*10**-19)/(2*(math.pi)*h**2))**(3/2))*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))\n",
- "print\"ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= \",\"{:.2e}\".format(ni),\"m**-3\"\n",
- "#Note: In the textbook wrong answer is given for intrinsic carrier concentration at 600K\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= 1.43e+44 m**-3\n",
- "kbT = 5.17e-02 eV\n",
- "ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= 8.13e+45 m**-3\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.12:pg-75"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "mo = 9.1*10**-31 #initializing value of mass of electron\n",
- "m_star=0.067*mo #initializing value of appropriate mass in the conduction band for GaAs\n",
- "apsilen = 13.2*8.85*10**-14 #initializing value of relative permitivity for GaAs\n",
- "apsilen_not = 8.85*10**-14 #initializing value of permitivity\n",
- "ml = 0.98*mo #initializing value of longitudinal mass\n",
- "mt = 0.2*mo #initializing value of transverse mass\n",
- "m_sigma_star = (3)/((1.0/ml)+(2.0/mt))\n",
- "print\"The conductivity mass for silicon is ,m_sigma_star = (3*mo)/((1/ml)+(2/mt))= \",\"{:.2e}\".format(m_sigma_star),\"Kg\"\n",
- "print\"The shallow level energies are given by,Ed = Ec-(13.6(eV)*((m_star/mo)/(apsilen/apsilen_not)**2))\"\n",
- "#Let Ec = 0 V and taking positive answer, \n",
- "Ed_GaAs = (13.6*((m_star/mo)/(apsilen/apsilen_not)**2))\n",
- "print\"The donor level energy in GaAs is ,Ed_GaAs = Ed= \",\"{:.2e}\".format(Ed_GaAs),\"eV\"\n",
- "m_dot_GaAs=0.45*mo\n",
- "print\"m_dot_GaAs=0.45*mo = \",\"{:.2e}\".format(m_dot_GaAs),\"kg\" #initializing value of heavy hole mass for GaAs\n",
- "Ea_GaAs = (13.6*((m_dot_GaAs/mo)/(apsilen/apsilen_not)**2))\n",
- "print\"The acceptor level energy in GaAs is ,Ea_GaAs = \",\"{:.2e}\".format(Ea_GaAs),\"eV\"\n",
- "apsilen = 11.9*8.85*10**-14 #initializing value of relative permitivity for GaAs\n",
- "m_dot_Si=0.5*mo #initializing value of heavy hole mass for GaAs\n",
- "Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))\n",
- "print\"The acceptor level energy in Si is ,Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))= \",\"{:.2e}\".format(Ea_Si),\"eV\"\n",
- "Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))\n",
- "print\"The donor level energy in Si is ,Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))= \",\"{:.2e}\".format(Ed_Si),\"eV\"\n",
- "# Note : due to different precisions taken by me and the author ... my answer differ \n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The conductivity mass for silicon is ,m_sigma_star = (3*mo)/((1/ml)+(2/mt))= 2.48e-31 Kg\n",
- "The shallow level energies are given by,Ed = Ec-(13.6(eV)*((m_star/mo)/(apsilen/apsilen_not)**2))\n",
- "The donor level energy in GaAs is ,Ed_GaAs = Ed= 5.23e-03 eV\n",
- "m_dot_GaAs=0.45*mo = 4.10e-31 kg\n",
- "The acceptor level energy in GaAs is ,Ea_GaAs = 3.51e-02 eV\n",
- "The acceptor level energy in Si is ,Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))= 4.80e-02 eV\n",
- "The donor level energy in Si is ,Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))= 2.61e-02 eV\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.13:pg-77"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "n = 10**17 #initializing value of free density of electron of GaAs\n",
- "kBT=0.026 #initializing value of multiplication of boltzmann constant and temperature \n",
- "Nc = 4.45*10**17 #initializing value of effective density of electron\n",
- "#(we have assumed the valence band energy Ev=0eV as it is not provided in the book)\n",
- "E1= kBT*((log(n/Nc)))\n",
- "print\"Ef(B)=\",\"{:.1e}\".format(E1),\"eV\"\n",
- "E2= kBT*((log(n/Nc))+(1/sqrt(8))*(n/Nc))\n",
- "print\"E(J)=\",\"{:.1e}\".format(E2),\"eV\"\n",
- "#for Boltzmann approximation the carrier concentration and fermi level are related as : Ef = Ec+E1\n",
- "#for joyce dixon approximation the carrier concentration and fermi level are related as : Ef = Ec+E2\n",
- "e=E1-E2\n",
- "print\"The error produced by using boltzmann approx. is e=\"\"{:.2e}\".format(e),\"eV\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Ef(B)= -3.9e-02 eV\n",
- "E(J)= -3.7e-02 eV\n",
- "The error produced by using boltzmann approx. is e=-2.07e-03 eV\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.14:pg-77"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "print\"In the Boltzmann approximation, the carrier density is simply\"\n",
- "print\"n = Nc = 2.78*10**19 cm**-3\"\n",
- "N=2.78*10**19 #initializing value of carrier density\n",
- "#In joyce dixon approximation the carrier density is obtained from the solution of the equation\n",
- "print\"Ef = 0 = kBT *(log(n/Nc)+(n/(sqrt8*Nc)))\"\n",
- "#solving by trial and error , we get\n",
- "#n/Nc= 0.76\n",
- "n=0.76*N\n",
- "print\"electron carrier concentration is n=0.76*Nc= \",\"{:.2e}\".format(n),\" cm**-3\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "In the Boltzmann approximation, the carrier density is simply\n",
- "n = Nc = 2.78*10**19 cm**-3\n",
- "Ef = 0 = kBT *(log(n/Nc)+(n/(sqrt8*Nc)))\n",
- "electron carrier concentration is n=0.76*Nc= 2.11e+19 cm**-3\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.16:pg-80"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "Nc = 2.8*10**19 #initializing value of effective density of electron\n",
- "Nd = 10**16 #initializing value of donor atom\n",
- "Ec_minus_Ed = 45*10**-3 #initializing value of donor binding energy\n",
- "kBT=0.026 #initializing value of multiplication of boltzmann constant and temperature \n",
- "\n",
- "#let fraction of ionised donor are represented as Fd = (nd/(n+nd))\n",
- "Fd= (1/(((Nc/(2*Nd))*exp(-(Ec_minus_Ed/kBT)))+1))*100\n",
- "print\"fraction of ionised donor is Fd=\",round(Fd,2),\"%\"\n",
- "Nd = 10**18\n",
- "print\"Nd = \",\"{:.2e}\".format(Nd),\"cm**-3\"\n",
- "Fd= (1.0/(((Nc/(2*Nd))*exp(-(Ec_minus_Ed/kBT)))+1))*100\n",
- "print\"fraction of ionised donor is Fd=\",round(Fd,2),\"%\"\n",
- "# Note : due to different precisions taken by me and the author ... my answer differ \n",
- "\n",
- "\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fraction of ionised donor is Fd= 0.4 %\n",
- "Nd = 1.00e+18 cm**-3\n",
- "fraction of ionised donor is Fd= 28.74 %\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex2.17:pg-80"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "Nc_Si = 2.78*10**19 #initializing value of effective density of electron for silicon\n",
- "Nc_GaAs = 4.45*10**17 #initializing value of effective density of electron for GaAs\n",
- "print\"for joyce dixon approximation the carrier concentration and fermi level are related as : Ef -Ec = kBT*(log(n/Nc)+(n/(sqrt8*Nc))\"\n",
- "print(\"using Ef-Ec = 3* kBT\") \n",
- "print(\"solving above equation by hit and trial method for n/Nc,we get n/Nc = 4.4\") \n",
- "n_by_Nc = 4.4\n",
- "n_Si = n_by_Nc*Nc_Si\n",
- "print\"carrier density for silicon is n=\"\"{:.2e}\".format(n_Si),\"cm**-3\"\n",
- "n_GaAs = n_by_Nc*Nc_GaAs\n",
- "print\"carrier density for GaAs is n=\",\"{:.2e}\".format(n_GaAs),\"cm**-3\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "for joyce dixon approximation the carrier concentration and fermi level are related as : Ef -Ec = kBT*(log(n/Nc)+(n/(sqrt8*Nc))\n",
- "using Ef-Ec = 3* kBT\n",
- "solving above equation by hit and trial method for n/Nc,we get n/Nc = 4.4\n",
- "carrier density for silicon is n=1.22e+20 cm**-3\n",
- "carrier density for GaAs is n= 1.96e+18 cm**-3\n"
- ]
- }
- ],
- "prompt_number": 12
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |